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ABSTRACT 

 

 

A METHODOLOGY OF SWARM INTELLIGENCE APPLICATION IN 
CLUSTERING BASED ON NEIGHBORHOOD CONSTRUCTION  

 

 

 

Đnkaya, Tülin 

Ph.D., Industrial Engineering Department 

Supervisor : Prof. Dr. Sinan Kayalıgil 

Co-Supervisor : Prof. Dr. Nur Evin Özdemirel 

 

May 2011, 303 pages 

 

 

 

In this dissertation, we consider the clustering problem in data sets with 

unknown number of clusters having arbitrary shapes, intracluster and intercluster 

density variations.  

We introduce a clustering methodology which is composed of three methods 

that ensures extraction of local density and connectivity properties, data set 

reduction, and clustering. The first method constructs a unique neighborhood for 

each data point using the connectivity and density relations among the points based 

upon the graph theoretical concepts, mainly Gabriel Graphs. Neighborhoods 

subsequently connected form subclusters (closures) which constitute the skeleton of 

the clusters. In the second method, the external shape concept in computational 

geometry is adapted for data set reduction and cluster visualization. This method 

extracts the external shape of a non-convex n-dimensional data set using Delaunay 

triangulation. In the third method, we inquire the applicability of Swarm Intelligence 

to clustering using Ant Colony Optimization (ACO). Ants explore the data set so that 
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the clusters are detected using density break-offs, connectivity and distance 

information. The proposed ACO-based algorithm uses the outputs of the 

neighborhood construction (NC) and the external shape formation. In addition, we 

propose a three-phase clustering algorithm that consists of NC, outlier detection and 

merging phases.  

We test the strengths and the weaknesses of the proposed approaches by 

extensive experimentation with data sets borrowed from literature and generated in a 

controlled manner. NC is found to be effective for arbitrary shaped clusters, 

intracluster and intercluster density variations. The external shape formation 

algorithm achieves significant reductions for convex clusters. The ACO-based and 

the three-phase clustering algorithms have promising results for the data sets having 

well-separated clusters.  
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ÖZ 

 

 

KÜMELEMEDE KOMŞULUK KURMAYA DAYALI SÜRÜ ZEKASI 
UYGULAMA METODOLOJĐSĐ  

 

 

 

Đnkaya, Tülin 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Sinan Kayalıgil 

Ortak Tez Yöneticisi : Prof. Dr. Nur Evin Özdemirel 

 

Mayıs 2011, 303 sayfa 

 

 

 

Bu tezde, küme sayısının bilinmediği, değişik şekilde kümeler ve yoğunluk 

farklılıkları içeren veriler için kümeleme problemini ele aldık.   

Yerel yoğunluk ve bağlantı özelliklerini ortaya çıkaran, veri indirgeme ve 

kümelemeyi sağlayan üç metottan oluşan bir kümeleme metodolojisi önerdik. Đlk 

metot, başta Gabriel çizgeleri olmak üzere çizge kuramı kavramlarını temel alarak ve 

noktalar arası bağlantı ve yoğunluk ilişkilerini kullanarak her veri noktası için 

kendine özgü bir komşuluk tanımlar. Sonrasında birbirlerine bağlı komşuluklar 

altkümeleri (örtüm) oluşturur. Bu altkümeler kümelerin temel iskeletini meydana 

getirir. Đkinci metotta, hesaplamalı geometrideki dış şekil kavramı, veri indirgeme ve 

küme görselleştirme açalı uyarlanmıştır. Bu metot, dışbükey olmayan n-boyutlu 

verilerin dış şeklini Delaunay üçgenlemeyi kullanarak bulmaktadır. Üçüncü metotta, 

karınca kolonisi sezgiseli (KKS) kullanarak sürü zekasının kümeleme problemine 

uygulanabilirliği araştırılmıştır. Karıncalar verileri incelerler; böylece yoğunluk 

kırılmaları, bağlantılar ve uzaklık bilgileri kullanılarak kümeler tanımlanır. Önerilen 
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KKS tabanlı algoritma, komşuluk kurma (KK) ve dış şekil oluşturma yöntemlerinin 

çıktılarını kullanır. Ayrıca, YK, aykırı değer bulma ve birleştirme aşamalarından 

oluşan, üç-aşamalı kümeleme algoritması önerilmiştir.  

Önerilen yaklaşımların güçlü ve zayıf yönleri, literatürden alınan veriler ile 

kontrollü bir şekilde meydana getirilen veriler kullanılarak kapsamlı deneyler ile test 

edilmiştir. KK, değişik şekilde kümeler ile küme içi ve küme dışı yoğunluk 

farklılıkları için etkili bulunmuştur. Dış şekil oluşturma algoritması, dışbükey 

kümelerde anlamlı azalmalar sağlamıştır. KKS tabanlı algoritma ve üç-aşamalı 

kümeleme algoritması iyi ayrılmış kümelerde umut verici sonuçlar vermiştir.  

 

 

Anahtar Kelimeler: Yoğunluk Tabanlı Kümeleme, Uzamsal Veri, Komşuluk 

Oluşturma, Karınca Kolonisi Sezgiseli, Bağlantı  
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CHAPTER 1   

 

 

INTRODUCTION 

 

 

 

Data mining has emerged as an interdisciplinary field to extract the valid, 

interesting and potentially useful patterns in a data set. Data mining has an analogy 

with gold mining. Knowledge, as precious as gold, is to be mined from a vast pile of 

data. During the last few decades, the developments in data storage and processing 

have increased the electronic data production rate immensely. Hence penetration of 

data mining into several application areas has taken place quite fast, bringing about 

the necessity of new approaches in the field. Just as Rutherford D. Roger, a librarian 

in Yale University, stated (Hastie et al. 2009).  

“We are drowning in information and starving for knowledge.” 

Data mining (DM) has been applied successfully in several real-life problems 

such as Customer Relationship Management (CRM), fraud detection, astronomy, 

geography, and manufacturing. For example, Wal-Mart used customer transaction 

databases from its approximately 2900 stores in six countries to extract the customer-

buying patterns (market basket analysis) as input to CRM systems (Spinello 1997). 

Another DM application is the detection and prevention of money laundering 

activities by the U.S. Treasury Financial Crimes Enforcement Network. In a two-

year period the reported laundered funds were approximately $1 billion (Senator et 

al. 1995). DM also leads automation in astronomical discoveries. For example Jet 

Propulsion Laboratory and Palomar discovered 22 quasars using DM (Han and 

Kamber 2001). Three European airlines used a system called CASSIOPEE 

developed by General Electric and SNECMA (a French engine manufacturer) for the 
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prediction and diagnosis of faults in Boeing 737 airplanes. CASSIOPEE won the 

European first prize for innovative applications (Piatetsky-Shapiro et al. 1996).   

Why is data mining important? First, it is a valuable tool to provide a deeper 

understanding of a system through analyzing a data set. That is, it helps to model the 

system, discover the relationships, make predictions and generalizations. The 

insights gained from this process contribute to decision making. DM is also used for 

visualization purposes. Hence, DM attracts a wide variety of fields for application 

such as science, business, engineering, and so on.   

 

Background of Clustering  

 

Main data mining tasks are classification, clustering, association rule mining 

and regression. In this dissertation we focus on clustering. Basically, clustering forms 

groups such that similar objects are assigned to the same group whereas dissimilar 

ones are in different groups. It is an unsupervised learning method where the natural 

groupings are explored without any guidance or use of external information.  

The goals of a clustering application can be summarized as follows.  

(1) An exploratory tool to discover the hidden and the potentially useful 

patterns 

- Categorization and typology  

- Conceptualization of the properties 

- Hypothesis generation for exploratory purposes 

- Hypothesis testing for confirmation purposes 

- Generalization 

(2) Simplification and data compression through generalizations 

(3) Visualization 

The exploratory property of clustering ensures to broaden the understanding 

of the system of interest and provides invaluable insight to the domain experts. For 

example, gene clustering in biology facilitates tracing the evolutionary process 

throughout the ages, clusters in market segmentation help to identify the consumer 

patterns and target markets, and city planners use clusters formed by buildings with 
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similar properties (size, style, etc.) to improve the existing environment of the 

community.  

A real-world clustering example for exploratory purposes emerged from the 

cooperation of NASA and Jet Propulsion Laboratory in California Institute of 

Technology. In years 1990 through 1994 Magellan spacecraft collected a huge 

amount of data from the surface of planet Venus. Burl et al. (1998) applied clustering 

to this image data of Venus in order to recognize the characteristics of the volcanoes 

and to understand the geological evolution of the planet. This project helped 

geologists to discover the volcanic properties, and it was one of the leading real-

world DM applications in the early ages of DM. Currently, Venusian image data set 

is a classical test data set for benchmarks, and it is available in UCI Machine 

Learning Repository (Frank and Asuncion 2010).  

Another real-world exploratory clustering application is in the domain of 

public health. BIOMED (Biomedicine and Health Program affiliated with European 

Commission) initiated a European collaborative project about childhood leukemia 

across 17 countries in Europe, namely EUROCLUS (Alexander et al. 1998). 

EUROCLUS explored the relation between the residence locations and the cancer 

diagnosis. Besides, the spatial clustering results were analyzed in terms of 

environmental factors. The results facilitated to identify the environmental causes of 

childhood leukemia. The work triggered several research studies on cancer diagnosis 

field and biotechnology (Dockerty et al. 1999, Birch et al. 2000, Hoffman et al. 

2007).  

Clustering can also be used for simplification and data compression through 

generalizations. That is, instead of the entire data set, representatives of the clusters, 

can be used for scalability purposes. However, this brings about losing some details 

in the data set. For example, in marketing research, representatives of consumer 

clusters can be used when the size of the data set is too big or there exists too much 

detail.  

Another use of clustering is visualization. Visualization provides a deeper 

understanding and insight. It is especially useful for pattern recognition, image 

processing and geographical information systems.  
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Clustering has been a natural habit of human beings all along. We use 

clustering to discriminate objects, organisms and even abstract things, such as 

culture, thoughts, and so on. In fact, clustering is a kind of learning tool using the 

characteristics of the things in a comparative manner. For example, a basic grouping 

example in animal life is birds and reptiles. They form two different clusters in terms 

of their movement characteristics. This kind of clustering also helps to specify the 

properties of these animals and make generalizations. Today, the increasing growth 

in the computer world provides automation of the clustering task and deployment of 

clustering to a multitude of applications such as biology, marketing, city planning, 

pattern recognition, health, social sciences, and so on. 

 

Clustering Approaches 

  

Clustering is a hard problem due to its challenging characteristics such as 

arbitrary shaped clusters, multidimensionality, unknown number of clusters, 

scalability, mixed data types, and clustering evaluation function. As a natural result 

of this, clustering has emerged from the combination of many fields, i.e. statistics, 

pattern recognition, management information systems, optimization, and artificial 

intelligence.  

Research on clustering has its roots in 1960s (MacQueen 1967), and it is still 

one of the most popular topics in the DM field. In a macro perspective, the clustering 

approaches in the literature can be classified as hierarchical, partitional, probabilistic, 

density-based, graph-based, metaheuristics, fuzzy clustering algorithms and artificial 

neural networks.  

Every clustering approach defines the clustering problem from a different 

perspective. For example, partitional-based and hierarchical approaches and most of 

the metaheuristics define clustering as the division of a data set into disjoint subsets 

so that intracluster similarity and intercluster dissimilarity are maximized. Generally 

they do not take into account the connectivity i.e. the chaining of similarities through 

some form of transitivity or density relations among the data points i.e. intensity of 

the texture in certain regions explicitly. On the other hand, in density-based 

approaches a cluster is defined as a group of objects in a dense region surrounded by 
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less dense regions. Graph-based approaches are built upon connectivity idea in 

graphs and a cluster corresponds to a set of connected components. Probabilistic 

approaches assume that clusters originate from certain probability distributions and 

try to estimate the associative parameters.  

Another distinction is crisp versus fuzzy clustering. That is, each point is 

assigned to exactly one cluster in crisp clustering approaches whereas fuzzy 

clustering explores the degree of membership of a point in each cluster. The above 

clustering approaches are in general applicable to both crisp and fuzzy clustering. In 

addition to these, some clustering algorithms are developed specific to fuzzy 

clustering. The important discriminative property between probabilities in 

probabilistic clustering and fuzziness in fuzzy clustering is that the probability of 

assigning a data point to a cluster is related to a chance event whereas fuzziness 

represents the indifference of the cluster membership of a data point to an extent.  

In order to apply clustering properly, the clustering goal, the application area 

and the area specific clustering requirements need to be clarified explicitly. Then, the 

clustering requirements are matched with capabilities and assumptions of the 

clustering approaches to select the appropriate clustering approach.  

 

Spatial Clustering 

 

In this dissertation, we focus on clustering problems typically exemplified in 

spatial data sets. In a spatial data set location of the objects and their geometric 

relations are of significance. That is, topology, proximity and connectivity become 

the key issues in clustering. Spatial data sets are particularly seen in geographical 

information systems, point based graphics and biomedical systems. Consider the city 

planning application we have discussed above. In order to understand the cultural 

heritage of a city, regions that include similar building types are formed. Thus, each 

region is composed of adjacent buildings having similar properties such as area and 

height.  

An application from biomedical field is processing and classifying the image 

data from the medical imaging devices such as PET and MR. For example, in PET, 

the image segmentation is applied so that clusters represent the locations in the 
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images in which tissue time-activity curves have similarities in terms of shape and 

magnitude. Thus, different types of tissue, bone, and blood can be identified for 

diagnostic purposes.  

The great leap in computer world also necessitates clustering task in the point 

based graphics. In point based graphics a set of points is supplied via scanning and 

the aim is to extract the appearance of complex real-world objects in computer aided 

manufacturing, visualization of point clouds, and virtual reality applications.  

As a real life example, European Topic Center on Air and Climate Change 

study on the air quality and greenhouse gas monitoring analysis and related 

legislation can be given (Nosovskiy et al. 2008). For the air quality database, 

representative stations throughout Europe are selected so that all the stations are 

covered and the relationships among the stations are discovered. In Figure 1.1 all the 

stations used for data collection are shown. Some of the stations are crowded in 

certain regions, e.g. in Germany, whereas some other stations are distributed in some 

regions in a sparse manner, e.g. in Portugal. Hence, there exist density variations in 

the distribution of stations across Europe.  

Another real-life spatial clustering example is provided for the automated 

cancer diagnosis in the breast tissues (Bilgin et al. 2007). The digital images of the 

pathological tissue samples extracted in the biopsy are segmented (clustered) in 

graph theoretical context. An example breast tissue that is taken from the archive of 

Mount Sinai School of Medicine Pathology Department in New York is depicted in 

Figure 1.2. The tissue image includes arbitrary shaped patterns.  
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Figure 1.1 Station locations in Europe (Nosovskiy et al. 2008) 
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Figure 1.2 Breast cancer tissue (a) Original breast tissue. (b) The result of clustering. 
(Bilgin et al. 2007) 

 

In all these applications a wide variety of cluster characteristics particularly 

arbitrary shapes, density variations, and unknown number of clusters, are observed. 

In addition to the cluster extraction, it is sometimes useful to determine the cluster 

boundaries for visualization purposes. For example, the sexual offenses in year 1997 

around Queensland in Australia given in Figure 1.3 (a) are clustered, and the 

boundaries of crime regions are extracted to understand the potential associations 

between the regions (Lee and Estivill-Castro 2006). In Figure 1.3 (b) the large cluster 

corresponds to a region where colleges and universities are located. The other crime 

regions (clusters) match an urban area where most of the streets, railways and 

highways run across, and a tourist attraction region near the coastline. The circular 

cluster with a hole shows a suburban area.  

 

(a) (b) 
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Figure 1.3 Real data set for sexual offenses around Queensland in Australia. (a) Real 
data set. (b) Cluster boundaries. (Lee and Estivill-Castro 2006) 

 

Motivation and Scope  

   

In this dissertation, we consider the clustering problem having the following 

characteristics.  

(1) The number of clusters is unknown.  

(2) Points and clusters are characterized (located, populated, separated) 

spatially.  

(3) The relatedness (similarity or dissimilarity) between pairs of data points is 

measured by the Euclidean distance. 

(4) A cluster is composed of connected data points in a dense region that is 

surrounded by low density regions or the vice versa, sparse area 

circumscribed by dense regions.  

(5) Clusters may have arbitrary shapes. 

(6) There may be density variations within the clusters as long as it follows a 

rough pattern (i.e. consistency along a direction). 

(7) Different clusters may have distinct densities. 

In order to handle a clustering problem with these specifications, the key 

issues become connectivity, density and proximity. Partitional algorithms have 

difficulty in finding the clusters with arbitrary shapes and density variations, so we 

particularly focus on density-based and graph-based clustering approaches. However, 

(a) (b) 
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the performance of these clustering approaches is notably affected from the 

parameter settings, and clusters with density variations may not be extracted. 

Moreover, the determination of the proper parameters needs additional effort and 

expert knowledge.  

There exist parameter-free approaches in the literature. Among them, 

AMOEBA (Estivill-Castro and Lee 2000) and AUTOCLUST (Estivill-Castro, V. and 

Lee, I., 2001) are graph-based methods that classify the edges of Delaunay 

triangulation according to their statistical properties, i.e. mean and standard deviation 

of edge lengths. This classification helps to identify the local and global properties 

inherent in a data set. Different from AMOEBA, AUTOCLUST can identify the 

clusters connected by bridges. However, neither of them can detect the clusters 

having intracluster density variations. ASCDT (Deng et al. 2011) is an extension of 

AUTOCLUST, and it integrates the direction information with the statistical 

properties of the edges in the Delaunay triangulation. Although it uses parameters 

during execution, it is able to extract the clusters with intracluster density variations. 

These approaches take into account proximity and distance using Delaunay 

triangulation, but they barely take advantage of the two important concepts in spatial 

clustering, namely density and connectivity. Moreover, typically, these algorithms 

are designed for 2-dimensional data sets.  

In this dissertation, we aim to develop parameter-free clustering approaches 

for 2- and higher dimensional data sets, using the main concepts in spatial clustering 

in their entirety, i.e. connectivity, density, proximity, and distance.   

Although metaheuristic applications to clustering are mostly limited to 

combinatorial approaches, the flexibility in the design of metaheuristics makes them 

a promising tool for spatial data sets. Particularly, swarm intelligence (SI) is a newly 

emerging field among metaheuristics, and it has an analogy with the clustering 

problem in spatial data sets. That is, a swarm is composed of simple agents having in 

some well-defined space, and it can perform complex tasks through sharing 

information and experience among the swarm members and with their space (i.e. 

environment). For example, consider an ant colony. The communication among the 

ants is ensured by the pheromone substance released by the ants. The swarm is 

directed towards the food sources or shelter attraction regions (both are spatial 
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features) with the help of this substance. In the spatial data sets, density and 

connectivity form attraction regions to join the relevant data points, and such 

attracted data points form the cores of the clusters. There are (may) multiple cores, 

multiple swarms moving in different ways. Thus, agents can collectively discover the 

attractive regions, i.e. potential core regions of clusters through sharing density and 

connectivity information. This is the main motivation that makes us inquire the 

applicability of SI to the clustering problem in this dissertation.  

There exist swarm intelligence applications to the clustering problem in the 

literature. Grosan et al. (2006) and Abraham et al. (2008) compile the previous work 

and introduce comprehensive reviews. The SI applications to clustering differ 

according to the properties of the clustering problem under consideration and the 

specifics of the SI application. Most of the SI applications address the clustering 

problem as a combinatorial optimization problem and search for a clustering solution 

that minimizes the total within cluster variation or distance.  

In order to handle clusters with arbitrary shapes and density variations, 

density and connectivity issues should be integrated in SI. The difference among 

individual members is in their random interpretation of a collective information. The 

swarm intelligence integrates the information (attractiveness of linking data) 

gathered by individual swarm members. However, the SI based work in this context 

is limited, and most of these do not use the full benefits of a swarm. That is, the 

guidance of the swarm is not provided by the emergent knowledge gathered from the 

interaction among the swarm members and with the environment (i.e. collectivity). 

Instead, every swarm member moves individually. Besides, the performance of these 

approaches depends highly on the parameter settings. We primarily propose a new SI 

based clustering methodology for the spatial data sets, which takes advantage of the 

collective choices (to reflect interdependencies) with as few parameters as possible.  

The outline of the dissertation is as follows. 

Chapter 2 explains the general clustering problem and discusses the 

challenging issues in clustering. A vast amount of work about clustering has 

accumulated up to now due to its broad application areas. In this chapter, we classify 

the clustering algorithms in the literature. We explain the clustering goals, the 
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perspectives and the underlying assumptions of each approach briefly, and discuss 

strengths, limitations and complications of these approaches.  

Neighborhood concept is crucial to identify the local properties in a clustering 

problem, and a purified neighborhood, which is composed of only the “similar” 

points, needs to be constructed. Particularly SI needs a neighborhood definition in 

order to construct a solution and exploit the search space in spatial data sets. Thus, in 

Chapter 3 we propose a parameter free neighborhood construction algorithm for data 

sets having clusters with arbitrary shapes, intracluster and intercluster density 

variations. Solely distance and density information may not be sufficient to construct 

purified neighborhoods. Hence, the proposed algorithm considers connectivity, 

proximity and density information extracted from one of the well-known proximity 

graphs, namely the Gabriel Graph.  

There are two outputs of the neighborhood construction algorithm: a unique 

neighborhood for each point and subclusters (closures) formed by the union of the 

neighborhoods having common points. The capabilities of the proposed approach are 

tested with various data sets. The comparison with other neighborhood based 

algorithms, namely distance and density based approaches, indicates the strengths 

and the limitations of the proposed algorithm.  

In Chapter 4 a three-phase clustering algorithm for spatial data sets is 

introduced. It works based on locality, connectivity and density information. The 

first phase extracts the local properties using the neighborhood construction 

algorithm described in Chapter 3. Subclusters (closures) that are formed at the end of 

the neighborhood construction algorithm are refined in the two subsequent phases. 

The second phase is dedicated to outlier detection, and the third phase performs 

hierarchical agglomeration by merging the subclusters. In the second phase the key 

issue is the consistency of a point with its neighborhood, and a point is classified as 

an outlier if it is different from the points in its neighborhood in terms of either 

distance or density. The first two phases only focus on the local properties, so the 

third phase tries to bring in the global perspective inherent in the clustering problem. 

Hence, the improvement in the compactness and the separation values that are 

calculated relative to the neighborhoods are checked for merging. The proposed 
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algorithm is tested empirically and it is compared with the well-known competing 

approaches, i.e. agglomerative, partitional and density based clustering algorithms.  

Given a finite set of data points and a partitioning of the data set, Chapter 5 

concentrates on forming the boundaries of the groupings. In fact, boundary formation 

corresponds to external shape generation in computational geometry. We adapt this 

concept to clustering for scalability and visualization purposes as spatial data allows 

for boundary definition. Using the insights gained from the local perspective, i.e. the 

neighborhood construction algorithm, we can infer that the interior points of the 

closures are already connected. Therefore, it is sufficient to consider only the 

boundary points for outlier detection and merging purposes. This results in removal 

of the interior points from further consideration, and hence reduction of the data set. 

The second function of our boundary formation is visualization of cluster boundaries. 

This capability has use in many point based graphics applications such as computer 

aided design and manufacturing. As we deal with clusters with arbitrary shapes, the 

external shape of a cluster may be non-convex. Thus, our concern becomes 

generation of the non-convex hull of a set of points. 

We propose two external shape generation algorithms based on Delaunay 

triangulation in Chapter 5. The former one is restricted to 2-dimensional space, 

whereas the latter is designed to work in higher dimensional spaces as well. For both 

algorithms the accuracy and the amount of data set reduction are analyzed 

thoroughly in numerical experiments.  

After forming an appropriate background for SI in Chapters 3 and 5, Chapter 

6 is dedicated to the SI based clustering algorithm. First, we study the design steps of 

a SI based algorithm. In the design stage agent representation is one of the key issues 

in determining the capabilities of a SI algorithm, so we propose a classification for 

the SI based clustering algorithms based on the agent representation. We review the 

advantages and the shortcomings for each agent representation.  

In natural life ants live in colonies, and they have a natural tendency of 

clustering for the food search, brood feeding and corpse sorting activities. Ant 

Colony Optimization (ACO) is chosen for the clustering problem among SI 

approaches due to this analogy between an ant colony and clustering.  
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The inputs of the proposed ACO based clustering are the neighborhoods and 

the closures from Chapter 3, and the external shapes of the subclusters (closures) 

from Chapter 5. Hence, locality and scalability issues are taken into account in ACO. 

Ants move in the solution space and insert edges between the data points. In so doing 

they propose such data points to be in the same cluster. Ant representation allows 

finding the initially unknown number of clusters in the data set, as well as the 

clusters with arbitrary shapes and density variations.  

ACO handles the clustering problem by an improvement based optimization 

approach. Experience gained from evaluation of a clustering solution guide the ant 

colony to the attractive regions. This implies that target clustering is the optimal 

solution. However, there is not a generally accepted evaluation function that favors 

the “target” number of clusters in the data set. The evaluation becomes particularly 

more complicated when a data set includes clusters with arbitrary shapes and density 

variations. Thus, we propose a new clustering evaluation scheme in which 

compactness and separation are measured relative to the neighborhoods. When these 

two measures are combined in a single measure via mathematical operators such as 

summation, division, and so on, the trade-offs between compactness and separation 

may not be observed. Therefore while comparing the performance of clustering 

solutions, compactness and separation measures are evaluated in a bicriteria manner. 

The performance of ACO applied to clustering is tested and compared using various 

data sets, and its capabilities are explored.  

Our clustering methodology can be applicable to real-life spatial data sets that 

require minimum amount of a priori domain knowledge. Particularly, the 

methodology can yield effective results in the clustering problems in which accuracy 

is the main concern. For example, in medical image segmentation and satellite 

imagery data sets, the aim is to identify the homogeneous and connected regions that 

have similar density and texture properties.  The segmentation of the medical image 

data sets ensures the delineation of anatomical structures and other regions of 

interest, diagnosis and localization of pathology, so the accuracy of the clustering 

results is vital. The satellite imagery data provides to understand up-to-date 

information in a global manner in several applications such as land use and rainfall 

patterns, epidemic and traffic network.  
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Contributions  

 

The main contributions of this dissertation are as follows. 

(1) A novel parameter free neighborhood construction algorithm is proposed for the 

clustering problem. Connectivity, density and proximity are the key issues for the 

proposed approach. In fact, it is possible to use the proposed approach in 

classification and clustering validity index calculation purposes.  

(2) A new clustering algorithm in graph theoretic context is developed for spatial 

data sets. We combine ideas inherent in the density and the graph based clustering 

approaches. Local properties from the neighborhood are used in cluster formation 

and outlier detection.  

(3) The external shape concept in computational geometry is adapted to clustering 

for data reduction and cluster visualization purposes. A novel algorithm to extract the 

external shape of a non-convex multi-dimensional data set is proposed. The proposed 

algorithm can be used in computational geometry as well.  

(4) We develop a new ACO based clustering algorithm to examine applicability of 

Swarm Intelligence. The proposed algorithm is entirely inspired by Swarm 

Intelligence. A new agent representation, which is capable of finding arbitrary 

shaped clusters with density variations and the unknown number of clusters, and a 

new pheromone update mechanism for bicriteria are introduced.  

(5) In compactness and separation calculations, it is proposed that edges in a 

clustering solution should be evaluated with respect to the neighborhoods of its end 

points so that clustering solution that includes arbitrary shaped clusters and density 

variations is evaluated by local properties and more effectively.   

(6) Use of parameters is avoided in the proposed approaches. The need for 

parameters is substituted by problem specific properties gathered through 

computations.  

(7) In the overall, the dissertation proposes a clustering methodology which is 

composed of three major methods: extraction of local density, proximity and 

connectivity properties, visualization and data set reduction, and collective 

information based intelligence.  
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CHAPTER 2  

 

 

PROBLEM DEFINITION AND LITERATURE REVIEW 

 

 

 

 In this chapter we introduce the clustering problem and briefly review the 

clustering procedures. We then discuss the characteristics and classes of the 

clustering problem and inquire why clustering is a challenging problem. In the 

clustering literature there are distinct points of view and assumptions. Their 

properties and capabilities are reviewed in this chapter. The motivation for this work 

will be substantiated.  

 

2.1. The Clustering Problem 

 

A data point represents an observation in a system, and it is a d-dimensional 

vector in which each dimension represents a physical or an abstract attribute of the 

system, x = (x1,..,xj,..,xd). An attribute can be either qualitative (i.e. nominal or 

ordinal) or quantitative (i.e. continuous, discrete or interval). Typically 

proximity/similarity between a pair of data points is measured by a distance function 

(e.g. Manhattan, Euclidean, Mahalanobis, Minkowski) for quantitative attributes 

whereas similarity measures (e.g. simple matching coefficient, Jaccard coefficient) 

are used for qualitative attributes. The details of these measures are available in Xu 

and Wunsch (2005).  

Technically speaking, given that a data set D which is composed of n data 

points with d attributes, D = {x1,..,xi,..,xn}, clustering forms c subsets (clusters) in D 

so that data points in the same cluster are similar/close to each other, and data points 

in different cluster are dissimilar/far away. Conceptually cluster analysis involves 
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grouping data points based on similarity/proximity information extracted from the 

data set. 

Definition of a cluster is vague, and there may not be a unique clustering in a 

data set due to properties of the data set, the application field and the goal of the 

clustering. An example data set with 14 data points and 2 attributes is provided in 

Figure 2.1 (a). In the figure each ball represents a data point, and x- and y-axes 

denote the two attributes. In the macro perspective one can form two clusters as in 

Figure 2.1 (b), whereas it is possible to cluster the data points into three and four as 

in Figures 2.1 (c) and (d).  

A wide variety of application areas, including pattern recognition, marketing, 

biology, geology and web analysis, make use of clustering for exploratory purposes. 

For example, using loyalty card transactions, a retailer can form consumer profiles 

(clusters) that include consumers having similar interests, income level and habits. 

Thus, the retailer can determine effective sales strategies based on these consumer 

profiles, and increase its profit. Another example is web search engines. Document 

clustering helps to browse and reach to web pages related to a query in a fast and 

effective manner. In biology it is assumed that genes and proteins with similar 

functions have sequences and gene expression data in common. Hence, instead of 

making expensive and time-consuming experiments, gene clustering explores the 

roles of the genes in human genome sequence by forming clusters of similar genes. 

In geology, oil companies use geological features of the oil exploration sites obtained 

during the drilling process to discover promising reserves for oil exploration and 

production. In this case, clustering helps to identify homogeneous sites showing 

similar geological features. This systematic analysis increases the probability of 

success in oil drilling process.  
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      (a)            (b) 

      

 

Figure 2.1 A clustering example. (a) The data set. (b) The clustering result with two 
clusters. (c) The clustering result with three clusters. (d)  The clustering result with 

four clusters. 

 

The second goal implies that the data set is represented by relatively fewer 

clusters. Although simplification causes loss of details, simplicity is still sought. For 

example, the vast of amount of consumer data in market segmentation can be 

simplified and reduced through using the representatives of the consumer clusters.  

The third goal ensures visualization of clusters so that analysts identify the 

characteristics of groups. For example, visualization of the clustering results for gene 

expression data provides insight to understand the biologically meaningful genes for 

cancer diagnosis.  
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The clustering procedures are in general composed of the steps such as: 

attribute selection and extraction, clustering the data (including definition of 

similarity/dissimilarity measure and clustering objective), validation, and 

interpretation of results. Attribute selection determines the most effective attributes 

whereas attribute extraction makes transformations on the attributes in order to 

improve the performance of clustering analysis. For example, intrusion detection 

systems examine network traffic using a large number of attributes such as protocol 

type, duration, service etc. Attribute selection becomes an important step to 

determine clusters with malicious activities in a fast and correct manner. Next, taking 

into account the domain and characteristics of the data set, an appropriate 

similarity/dissimilarity measure is defined and the clustering objective is determined. 

There are quite a number of clustering algorithms in the literature. Given a data set 

either one of them is adapted for the data set, or a new clustering method is 

developed considering the characteristics of the data set and the purpose.  

A partitioning of the data set is obtained as a result of any clustering 

algorithm. Thus, validation is necessary to show that resulting clusters are not 

obtained by chance, or they are not obtained incidentally by the clustering algorithm. 

Clustering validation indices, i.e. internal, external and relative validity indices, or 

expert knowledge are considered for validation purposes. Although expert 

knowledge is a subjective evaluation scheme, validity indices quantify the clustering 

performance in a so-called objective manner. The last but not the least, domain 

experts interpret clustering results so that meaningful insights are gathered from this 

knowledge discovery process through clustering.  

 

2.2. Characteristics of the Clustering Problem 

  

The general clustering problem is NP-hard (Garey and Johnson 1979). Given 

a data set D with n data points and a given number of clusters, c, there are 
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∑  alternative clustering solutions (Anderberg 1973). It is not 

possible to enumerate all possible solutions even for a small-sized data set. In 
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addition to the vast amount of clustering solutions, the nature of the clustering 

problem brings about some challenging issues such as unknown number of clusters, 

handling arbitrary shaped clusters, density variations, mixed data types, clustering 

objectives, additional constraints, and scalability.  

Clustering may be classified as an unsupervised learning scheme, so the 

number of clusters in the data set is not known a priori generally. Besides, a data set 

may have various patterns such as arbitrary shaped clusters and density variations, 

and these patterns complicate both calculation and optimization of compactness, 

separation and connectivity objectives. Attributes of a data set may include various 

types of data such as numerical, ordinal, nominal, and this affects the calculation of 

similarity/dissimilarity calculations between pairs of data points. Conceptually 

clustering aims to obtain compact, well-separated and connected clusters. However, 

it is difficult to quantify and combine these objectives, and come up with a scalar to 

be optimized so that target clusters are achieved ultimately. In some clustering 

applications domain specific constraints some of which contradicts with the natural 

clustering tendency of the data set are forced. The need of clustering in large scale 

data sets brings about some problems such as long processing times, large memory 

requirements, etc. These challenging issues are discussed in detail as follows. 

 

Clustering Objectives and Density Variations 

 

Clustering tries to partition the data set into groups so that points in the same 

cluster are similar (i.e. compactness) whereas points in different clusters are 

dissimilar (i.e. separation), and, at the same time, a point and its close neighbors are 

assigned to the same cluster (i.e. connectivity). A clustering algorithm should take 

into account these three objectives simultaneously. Although it is possible to 

conceptualize the objective of the clustering problem, it is difficult to come up with 

measures to quantify and combine these objectives for the data sets in various fields 

concurrently in all these aspects.  

Throughout the text the terms “similarity/dissimilarity measure” and 

“distance” are used interchangeably. This is mainly because our focus is on spatial 

data that is in pure numerical form. 
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Compactness is the consistency of data points in a cluster in terms of 

similarity and density. The compactness objective ensures intracluster similarity, that 

is, the points in the same cluster should be similar/close to each other. Compactness 

measures in the literature can be mainly classified into two: representative point 

based and edge based measures. As the name implies, representative point based 

ones focus on minimization of the total distance/dissimilarity measure between 

cluster members and a point that represents the cluster (center, medoid, etc.). In these 

cases, generally, the number of representative points identical to the number of 

clusters should be set a priori. Clustering methods that simply optimize an objective 

based on such a measure are limited with spherical shapes, that is, elongated or spiral 

shaped clusters can hardly be obtained by these algorithms. (Ester et al. 1996, Guha 

et al. 1998) 

The edge based methods consider the intracluster distances/dissimilarities 

such as the sum of distances between pairs of data points in a cluster or the 

maximum edge length in a connected graph of the cluster. They are more powerful 

than representative point based methods in handling arbitrary shapes. However, they 

do not succeed in dealing with intracluster variations in density which is defined as 

the number of data points within unit volume. (Ester et al. 1996, Liu et al. 2008) 

Separation is the intervening space or the occurrence of a density change 

between the clusters. Thus, the separation objective provides the intercluster 

dissimilarity. That is, the data points in different clusters should be dissimilar. 

Linkage metrics (i.e. single-link, average-link, and complete-link), total intercluster 

distance variation and distance between cluster representatives are some common 

separation measures in the literature. Linkage metrics are dissimilarity measures for 

clusters. Single-link calculates the dissimilarity (distance) between a pair of clusters 

as the closest (most similar) points between them whereas complete-link takes into 

account the most distant (most dissimilar) points between a pair of clusters. In 

average-link the average distance between pairs of points in two clusters is used. 

The evaluation of both compactness and separation in an absolute manner is 

not sufficient in the data sets having density variations. An example is seen in Figure 

2.2. The distance between any two points in the less dense upper region of cluster 1 

is larger than the minimum distance between two points in clusters 1 and 2. 
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Optimization of an objective based on absolute distances cannot result in the target 

clusters seen in Figure 2.2. Either clusters 1 and 2 are merged or cluster 1 is divided 

into more than one clusters.  

 

 

Figure 2.2 An example data set with intercluster density difference and intracluster 
density variation 

 

Connectivity is the linkage between the data points in close proximity and 

having similarities, and data points in a certain vicinity of a given data point 

constitute the neighbors of the associated point. Hence, the connectivity measure 

focuses on the proximity relations among the data points so that a point and its close 

neighbors are assigned to the same cluster. For example, Handl and Knowles (2007) 

calculate the connectivity objective as the degree of the neighboring data points 

placed in the same cluster for k-nearest neighbors. 

The neighborhood definition is crucial in finding the target clusters with this 

objective. Neighborhood of a point should only include points from the same target 

cluster (a pure neighborhood). Otherwise, target clusters cannot be found by 

optimization of the connectivity objective. To the best of our knowledge, there is not 

a generally accepted method to define a pure neighborhood. Consequently, use of 

connectivity objective has also complications.  

To sum up, a generic clustering objective or measure that fits every data set is 

not available in the literature. The data set characteristics (types of attributes, 

properties of clusters, etc.) and the application field affect the determination of the 

objectives to be used in clustering and the measures for these objectives. In addition, 
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there exist trade-offs among clustering objectives. For example, as the compactness 

objective improves (or stays the same) when the number of clusters in the data set 

increases, the separation and connectivity objectives worsen (or do not improve). The 

integration of the objectives via basic arithmetic operations such as summation, 

division or multiplication undermines the details inherent in each objective and 

causes information loss. Thus, it is not possible to obtain a high-quality clustering 

solution just by optimizing one of these objectives or a combination of them. As a 

remedy to this problem, multiobjective clustering accounts for the information in 

each objective and ensures analysis of the trade-offs between objectives.  

 

Arbitrary Shaped Clusters 

 

Data sets can be composed of clusters of any size, density and shape such as 

ellipsoids, elongated structures, and concentric shapes. Figure 2.3 shows some 

examples of clusters with arbitrary shapes. Particularly, arbitrary shaped clusters are 

seen in geospatial data sets in geographical information systems, geology and earth 

sciences, and image segmentation (Ester et al. 1996, Jain et al. 1999). Extraction of 

arbitrary shaped clusters depends on both the clustering objective and the 

similarity/distance function used. For example, it is not possible to discover cluster 1 

in Figure 2.2 (an elongated cluster with intracluster density variation) using either a 

representative point based or an edge based compactness measure. Proximity 

relations and connectivity issues become vital to discover the arbitrary shapes in 

addition to the compactness and separation objectives.  
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Figure 2.3 Examples for arbitrary shaped clusters (He and Chen 2003) 

 

 

The Number of Clusters 

 

Clustering may be classified as unsupervised learning because there are no 

given class labels as in classification. In addition the number of clusters may also be 

unknown. The difficulty comes especially from the points distributed in a 

heterogeneous manner in the data set. This is due to the inability of applying one 

general function (or measure) across all the data set.  

Some of the algorithms in the literature assume a fixed number of clusters 

given a priori like in facility location and market segmentation. For example, the 

number of facilities (clusters) to be built is determined in the strategic plans, and one 

needs to determine the location of the facilities and the assignment of customers to 

facilities in the tactical level. However, many real world clustering tasks come 

without this prior knowledge like in image segmentation, bioinformatics (e.g. gene 

clustering) and geographic information systems. Instead, one should extract it from 

the data set as a major piece of knowledge. Some approaches use a validity index to 

find the number of clusters. They run the clustering algorithm with several values for 

the number of clusters, and select the one with the “best” validity index. Here, “best” 

usually denotes a knee point for the validity index. However, determination of this 

knee point is a subjective decision, and there might be ambiguous cases.  
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Data Types  

 

Data sets might include two types of attributes: qualitative (i.e. binary, 

nominal or ordinal) or quantitative (i.e. continuous, discrete or interval). This variety 

particularly affects the calculation of the similarity/dissimilarity measure. This 

measure quantifies the degree of similarity/dissimilarity between two data points in 

terms of their attribute values.  

Dissimilarity is measured by distance functions such as Manhattan, 

Euclidean, Mahalanobis, and Minkowski distances, when all attributes are 

quantitative (e.g. height, weight). In order to calculate the similarities in qualitative 

data (e.g. color, rank), some well-known similarity measures are simple matching 

coefficient, Jaccard and Hamming distances. If there exist both quantitative and 

qualitative attributes in a data set, i.e. mixed case, similarities/dissimilarities among 

the attributes are not comparable. As a remedy, the general similarity coefficient by 

Gower (1971) and the generalized Minkowski distance by Ichino and Yaguchi 

(1994) are used in mixed data sets. (Han and Kamber 2001, Jain et al. 1999, Xu and 

Wunsch 2005) 

The contribution of each attribute to the computation of the dissimilarity 

measure is affected from the range of its values. In order to ensure comparability 

between the attributes, attributes are normalized by various scaling methods such as 

min-max, z-score and decimal normalization. This scaling becomes problematic 

when the data set include mixed types of attributes, as binary data usually dominate 

the numerical data (Jain et al. 1999). Hence, attribute types and dissimilarity measure 

used have important effects on the development of a clustering algorithm.  

 

Constraints 

 

Constrained clustering is regarded as semi-supervised learning in which 

additional conditions are satisfied while grouping similar points into clusters. 

Constraints can be interpreted as a priori domain knowledge, so they improve the 

clustering accuracy and efficiency. However, additional mechanisms are needed in a 

clustering algorithm to handle the constraints.  
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Real world clustering problems have various types of constraints. Constraints 

are often seen in the practical cases where the decision maker (expert) has some 

domain knowledge. Constraints can be classified into three categories: cluster-level, 

attribute-level and instance-level constraints (Basu and Davidson 2011).  

a) Cluster-level constraints 

� Capacity constraint 

� δ-constraint (minimum cluster separation) 

� ε-constraint (ε-distance neighbor within cluster) 

� Maximum/minimum cluster diameter  

b) Attribute-level constraints  

� Attribute order preferences 

� Constraints on attribute values 

c) Instance-level constraints (relational) 

� Partial labels 

� User feedback 

� Pairwise relationships 

i) Must-link constraint 

ii) Cannot-link constraint 

iii) Entailed instance-level constraint 

Among cluster level constraints, capacity constraint limits the size of a 

cluster. δ-constraint implies that the distance between points in any two clusters must 

be at least δ. ε-constraint enforces that each point in a cluster must have another point 

in the same cluster such that the distance between these two points is smaller than ε. 

Maximum (minimum) cluster diameter defines a threshold for the maximum 

(minimum) distance between points in the same cluster.  

Attribute-level constraints guide the clustering assignments based on the 

values of an attribute, e.g. in clustering census data, each cluster is expected to 

include individuals having with the same gender in order to extract the gender 

distinctions (Wagstaff 2002). Among instance-level constraints, partial labels denote 

that some points are necessarily assigned to certain clusters. User feedback implies 

interaction with the decision maker, and this feedback directs the clustering 

algorithm to the preferred clustering patterns. Pairwise relationships include must-
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link (ML) constraints where two instances must be in the same cluster, cannot-link 

(CL) constraints where two instances must not be in the same cluster, and entailed 

instance level constraints which represent the transitive properties between ML and 

CL constraints.  

 

Scalability 

 

Improvements in the data storage field enable to work with large amounts of 

data sets, hence analysis of these data becomes crucial and inevitable. As the number 

of data points and the number of attributes increase, data analysis consumes more 

memory and computing time. For example, traditional hierarchical clustering 

algorithms have a time complexity of O(n2), and their memory requirements are 

O(n2). This quadratic structure complicates clustering for very large-scale data sets. 

Although k-means, a well-known partitional algorithm, has approximately linear time 

complexity, O(ncd), it has  disadvantages like sensitivity to outliers and initialization 

of parameters, shapes of clusters. In order to overcome these, random sampling (e.g. 

CURE by Guha et al. (1998)), randomized search (e.g. CLARANS by Ng and Han 

(2002)), summarization of the original data set (e.g. BIRCH by Zhang et al. (1996)), 

and parallelization (e.g. Dahlhaus (2000)) are applied. 

 Clustering algorithms that are capable of handling large data sets are 

necessary and efficient scalable mechanisms need to be developed.   

 

2.3. Clustering Algorithms in the Literature  

 

The wide applicability of the clustering problem brings about a vast variety of 

clustering algorithms in the literature. This variety is the consequence of different 

points of view and assumptions in solving the clustering problem. In this section we 

review the ideas behind the clustering algorithms and summarize their capabilities.  

Recent comprehensive reviews for the clustering algorithms are provided by 

Xu and Wunsch (2005), Berkhin (2006) and Jain et al. (1999). They give a 
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perspective on the state-of-the-art clustering approaches. In addition, they discuss the 

strengths and weaknesses of the existing clustering algorithms.  

In fact, there is not a clear cut classification for the clustering algorithms and 

overlaps between classes exist. In this work, taking into account the main 

perspectives, we group the clustering algorithms into hierarchical, partitional, 

probabilistic, density-based, graph-based, metaheuristic, and fuzzy clustering and 

artificial neural network algorithms. In this section we first review each of these 

classes briefly. We then focus on the swarm intelligence algorithms as they are the 

main concern in this work.  

 

2.3.1. Hierarchical Clustering Algorithms 

 

A tree-like cluster hierarchy, namely dendrogram, is built in hierarchical 

clustering algorithms. These algorithms can be categorized into two according to 

their hierarchical structuring: (Han and Kamber 2001) 

� Agglomerative (bottom-up): It assigns each point to a singleton cluster. 

Then, clusters are successively merged according to a criterion until a 

single cluster including all the points is formed. Single-link, average-link 

and complete-link are the criteria commonly used for merging operations.  

� Divisive (top-down): It moves in just the opposite direction of the 

agglomerative clustering. It starts with a single cluster including all the 

points, and a cluster is split in each step successively until each point is 

assigned to a singleton cluster.  

Well-known algorithms in this area are BIRCH (Zhang et al. 1996), CURE 

(Guha et al. 1998) and ROCK (Guha et al. 2000). Hierarchical methods are 

applicable to several data types and similarity (distance) functions. Besides, the 

number of clusters does not need to be given a priori. The resulting dendrogram 

provides a visual representation for the hierarchy of clusters. However, extra 

mechanisms are required in order to make a decision about the number of clusters. 

Furthermore, hierarchical approaches are greedy and the merging/splitting decisions 



 

 
 

29 

could not be changed throughout the iterations. Thus, they might come up with 

suboptimal solutions. (Xu and Wunsch 2005) 

 

2.3.2. Partitional Clustering Algorithms 

 

Partitional clustering algorithms consider the clustering problem as a 

combinatorial optimization problem. They directly decompose the data set into a set 

of disjoint clusters optimizing an objective function (e.g. the total distance/variation 

among the data points and the cluster representative points). Most of the previous 

work assume that the number of clusters is given a priori. The major advantage with 

the partitional clustering algorithms is their scalability. That is, they are capable of 

generating clusters in large data sets in reasonable times. The shapes of the resulting 

clusters depend on the objective function. Minimization of the total distance among 

the data points and the cluster representative points is the most commonly used 

objective function. However, this objective yields only spherical shaped clusters, 

thus it hardly identify arbitrary shaped clusters. The other deficiencies of the 

partitional clustering algorithms are the dependency of the performance on the 

initialization of representative points, the sensitivity to the outliers and the limited 

use for the data sets having numerical attributes. Well-known algorithms in this 

category are k-means (MacQueen 1967), and PAM (Ng and Han 1994).  

 

2.3.3. Probabilistic Clustering Algorithms 

 

Probabilistic clustering algorithms assume that clusters are drawn from 

certain distributions and their aim is to estimate the parameters of these distributions. 

The performance of these algorithms depends on the initialization of parameters and 

the estimation procedure might yield suboptimal solutions. Besides, they have strong 

assumptions regarding the distribution of the data, and their computational time can 

be quite high. Among them Expectation-Maximization (Mitchell 1997) is the most 

famous one. It estimates the distribution parameters using maximum likelihood 

estimation, and algorithm continues until likelihood convergence is achieved.  
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2.3.4. Density-based Clustering Algorithms 

 

Density-based clustering algorithms require a metric space and they are based 

on density, boundary and connectivity concepts. They assume that a cluster is a 

connected and dense region, and it extends in the direction of density increase. 

Clusters are separated with regions having relatively lower density. This idea 

facilitates extraction of clusters with arbitrary shapes.  

Density-based approaches form two main groups with respect to density 

calculation: density connectivity and density functions. The former group classifies 

the points as boundary or core points according to density, connectivity and 

proximity relations. DBSCAN (Ester et al. 1996), GDBSCAN (Sander et al. 1998) 

and OPTICS (Ankerst et al. 1999) are examples of this type of clustering algorithms. 

The latter group focuses on the calculation of some density functions over the 

attribute space. DENCLUE (Hinneburg and Kiem 1998) is a well-known algorithm 

based on the density function. 

The main advantage of density-based clustering algorithms is their ability to 

find arbitrary shaped clusters. Besides they are capable of handling outliers and noise 

with reasonable scalability. Despite these strong capabilities, the performance of 

density-based approaches is affected by several parameters to be decided a priori, 

mainly the minimum number of points to define a neighborhood or the neighborhood 

size. Correct setting of these parameters is crucial and needs extra effort. Besides, the 

early works on these methods have limitations in extracting clusters with intracluster 

density variations. In addition, the interpretability of the clustering results is more 

difficult.  

Grid-based approaches are a combination of density-based and hierarchical 

clustering algorithms. Like density-based algorithms, grid-based clustering also uses 

the density and connectivity ideas. However, density measurements are conducted in 

the grids obtained by space partitioning. Clusters are generated by using the density 

information in the grids in a hierarchical manner, and arbitrary shapes with density 

variations can be handled. Different from the density-based algorithms, they can 
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handle any type of data. However, they are based on strong assumptions, and fine 

tuning of the parameters is needed. Some example algorithms with grid-based 

approaches are CLIQUE (Agrawal et al. 1998), WaveCluster (Sheikholeslami et al. 

1998) and STING (Wang et al. 1997). Generally grid-based algorithms take 

advantage in large scale data sets due to their computational complexity. For 

example, WaveCluster has a time complexity of O(n).   

 

2.3.5. Graph-based Clustering Methods 

 

Connectivity issue in the clustering problem can be handled in a graph 

theoretic context. Data points represent the nodes, and the edges between nodes show 

the similarity/proximity relations between corresponding pairs of data points. 

Proximity graphs such as k-nearest neighbor (k-NN), minimum spanning tree (MST), 

and Delaunay triangulation (DT) are the main tools used to ensure the connectivity 

relations among the data points (Karypis et al. 1999, Zahn 1971, Estivill-Castro and 

Lee 2000). Note that hierarchical approaches have a direct relationship with the 

graph theory, that is, single-link and complete-link are equivalent to MST and 

maximal complete subgraph, respectively. In addition to these, the clustering 

problem can be formulated as finding the minimum cut, the maximum clique, and so 

on in a given graph. (Sharan and Shamir 2000, Ben-Dor et al. 1999).   

Graph-based approaches are generally combined with other clustering 

algorithms such as hierarchical and density-based, but the main discriminative 

property of graph theoretic approach is its reference to connectivity. Main limitation 

of this approach is the time complexity regarding the construction of the graphs. For 

example, construction of proximity graphs such as k-NN and MST has a time 

complexity of O(n2), and DT needs O(n logn) for d ≤ 3 and O( / 2 / 2 !d
n d
      ) for d ≥ 

3.  
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2.3.6. Metaheuristics 

 

 Metaheuristic approaches view clustering as a combinatorial problem in 

which an objective function is to be optimized. In the traditional heuristics such as k-

means there is the possibility of getting stuck at a local optimum. Stochastic search 

strengthens the explorative property of metaheuristics and help to reach the global 

optimum. In the literature there are several metaheuristic implementations for the 

clustering problem including the Evolutionary Algorithms (EA), Simulated 

Annealing (SA), Tabu Search (TS), and Swarm Intelligence (SI). A brief survey 

about metaheuristics by Rayward-Smith (2005) focuses on the direct applications of 

metaheuristics as well as hybrid algorithms.  

EA, which is inspired from natural evolution, is widely used in clustering. 

The first EA study on clustering is proposed by Raghavan and Birchand (1979). 

Several representation schemes, crossover and mutation operators are introduced in 

the later work. Hybrid EA approaches with other clustering algorithms such as 

partitional (Babu and Murty 1993) and hierarchical (Lozano and Larranaga 1999) 

approaches are also proposed. As EA is a population based approach, it also has 

effective applications in multiobjective clustering (Handl and Knowles 2004a, Handl 

and Knowles 2007). A comprehensive literature review on application of EA to 

clustering is performed by Hruschka et al. (2009). Their work includes all EA 

applications on clustering covering multi-objective and cluster-ensemble clustering.  

The major problem with EAs is their high computational cost. Besides, the 

performance is sensitive to the parameters such as population size, crossover and 

mutation probabilities. Although some guidelines for parameter selection are 

proposed, they are not effective in all problems.  

SA, inspired from the annealing process in the metallurgical processes, is a 

global search method. Klein and Dubes (1989) are the first to apply SA to clustering, 

in which non-improving solutions are accepted in a stochastic manner. Selim and Al-

Sultan (1991) study the effects of parameters on SA. Although Aarts and Korst 

(1989) statistically show that SA algorithms can reach the global optimal solution, 

the temperature decrease must be done very slowly, and this causes a computational 

burden for SA.  
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The main idea in TS is solution space restriction using a tabu list. Al-Sultan 

(1995) proposed a TS based clustering algorithm. Extra mechanisms such as 

packing/releasing and secondary tabu list are developed in order to increase the 

efficiency of TS (Sung and Jin 2000). However, tabu definitions and corresponding 

memory requirements limit the size of data sets to be solved.  

A newly emerging type of metaheuristic is SI and its variants Ant Colony 

Optimization (ACO) and Particle Swarm Optimization (PSO). They are inspired 

from the collective behavior of the swarm, and the analogy (stemming from 

collective nature to be explored) between SI and the clustering problem arises an 

interest in this field. The details of SI and its applications will be further discussed in 

Section 2.4.  

A comparison of clustering metaheuristics is conducted by Trejos et al. 

(2006). They compared k-means, SA, TS, Genetic Algorithms (GA), PSO, and ACO 

for different types of numerical data sets. They state that these metaheuristics help to 

improve the results of traditional clustering methods in challenging data sets with 

numerical data. In addition, k-means has deficiencies in almost all data sets except 

the easiest ones. In particular, population-based metaheuristics, i.e. GA, ACO and 

PSO, perform well even for the challenging data sets.  

To sum up, current metaheuristic applications have limited success in 

clustering. They yield global optimal clustering solutions for small clustering 

problems. However, they suffer from scalability problems. In addition, most of them 

take the fitness value as the minimization of the within cluster variance, and they use 

Euclidean distance as the dissimilarity measure. These choices result in spherical and 

compact clusters. Besides, they usually assume a fixed number of clusters. Another 

complication with the metaheuristic applications is the need for a priori parameter 

setting.  
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2.3.7. Fuzzy Clustering and Artificial Neural Networks 

 

Clustering algorithms described up to now result in hard (crisp) clusters, that 

is, a data point is either assigned to a cluster or not, and clusters are disjoint. 

However, for the clustering problems in which cluster boundaries are not clear cut, 

the assignment of points to clusters is not definite. In such cases, fuzzy clustering 

which introduces a membership function to associate each point with a cluster can 

handle uncertainty in cluster assignments. Fuzzy versions of partitional, hierarchical 

and metaheuristics clustering approaches are proposed in the literature. Among them 

Fuzzy C-Means (FCM) (Bezdeck et al., 1984), which is the fuzzy version of classical 

k-means, is a renown approach due to its simplicity and effectiveness. Several 

variants of FCM (Dave 1992, Höppner et al. 1999, Eschrich et al. 2003) are 

developed in order to handle various data types.  

Artificial neural network (ANN) has also been a legitimate approach in 

clustering. Well-known clustering algorithms based on ANN are self-organizing map 

(SOM) and adaptive resonance theory (ART) models. SOM (Kohonen 1990) maps 

high-dimensional data to 2-dimensional lattice using prototype vectors as cluster 

representatives. Thus, visualization of the clusters is ensured. ART is a learning 

theory based on resonance in neural circuits by adapting weights between attributes 

and clusters simultaneously so that speed and stability is ensured. Main limitations 

with ANN is the parameter setting, that is, the number of clusters (nodes in the 

output layer) and initial weight parameters are required a priori.  

 

2.4. Swarm Intelligence for Clustering 

 

SI is inspired from the collectivity property emerging from a swarm. A 

swarm of agents such as ants, birds, fish, and insects, can accomplish complex tasks 

that a single agent cannot do alone, e.g. finding food sources, migrating and 

protection from enemies. Central control mechanisms commanding the members are 

not seen in swarms. On the contrary, agents interact with each other and with their 
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environment, and collective behavior is ensured. Thus, SI depends on the self 

organized and decentralized collective behavior of the swarm.  

SI is regarded as one of an Evolutionary Computation (EC) algorithm. Like 

other EC algorithms such as GA and other evolutionary algorithms, SI is a 

population based approach, and the population is guided by the objective function 

value. However, the information sharing mechanisms are different. For example, 

individuals in a GA share their chromosomes for reproduction, and a competition 

take place among all the individuals in order to survive. However, SI is based on 

cooperation and information sharing. That is, swarm members share their 

experiences and reveal collective intelligence so that swarm steers towards to the 

promising regions.  

This phenomenon was applied to hard computational problems due to its 

simplicity, scalability and robustness, and promising results were obtained.  

Main properties of the collective behavior are as follows (Grosan et al. 2006):  

� Homogeneity: Members in the swarm have the same behavior model. That 

is, swarm moves without a leader although temporary leaders might 

appear.  

� Velocity matching: Swarm members try to match their velocity with the 

nearby swarm members.  

� Locality: Motion of a swarm member is affected from the nearest swarm 

members.  

� Collision avoidance: Swarm members avoid crashing with nearby swarm 

members.  

� Flock centering: Swarm tries to move towards the perceived center of the 

flock.  

A review article about SI in data mining is introduced by Grosan et al. 

(2006). They report particle swarm and ant colony as the two primary approaches of 

SI in this field. Reviews about SI that specifically stand for clustering are compiled 

by Abraham et al. (2008) and Handl and Meyer (2007). Like Grosan et al. (2006), 

Abraham et al. (2008) also classify clustering algorithms as ACO based and PSO 

based. Handl and Meyer (2007) mainly focus on ant-based clustering algorithms. 
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Their classification depends on natural inspiration and they identify two categories: 

methods directly mimicking the real ant colonies and ant-based general purpose 

optimization algorithms (methods less inspired from the nature). They emphasize 

that some algorithms fall into both categories.  

Previous classifications do not set clear-cut boundaries between categories, 

that is, an algorithm might fall into different categories.  

In this thesis a classification for SI based clustering algorithms that maintain 

three disjoint categories is proposed: PSO, ACO and other SI based methods. 

Properties of these three categories are identified in Table 2.1, and each work in the 

corresponding category is discussed in the light of these properties. Note that some 

of these properties serve the same functions in the algorithm, whereas some 

properties are unique for that category making the difference between categories.  

 

 

Table 2.1 Properties of SI based algorithms 

Particle Swarm 

Optimization 

(PSO) 

Ant Colony  

Optimization 

(ACO) 

Other Swarm Intelligence 

Based (OSIB) 

Metaheuristics 

� Particle representation 

� Homogeneity  

� Velocity matching 

� Locality 

� Collision avoidance 

� Flock centering 

� Ant representation 

� Neighborhood 

� Pheromone update 

� Decision rule for solution 

construction 

� Exploration mechanism 

� Exploitation mechanism 

� Agent representation 

� Neighborhood 

� Solution construction 

� Exploration mechanism 

� Exploitation mechanism 

 

 

2.4.1. Particle Swarm Optimization (PSO) 

 

PSO has its roots in social psychology. That is, social physiologists show that 

individuals’ behaviors, beliefs and memories are affected from the other individuals 
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in the environment, and cognition is a social process. Thus, PSO emerges from the 

integration of sociocognitive perspective with problem solving mechanisms. In PSO 

particles in the swarm fly in the search space with velocities updated according to the 

experiences they gained throughout the search. The aim is to discover better places in 

the search space. The interested reader may refer to Poli et al. (2007) and Eberhart 

and Shi (2001).  

PSO applications in clustering are given in Table A.1 in Appendix A. In these 

applications clustering problem is considered as an optimization problem. That is, an 

objective function, such as a validity index (like total within cluster similarity or 

variation) is optimized by PSO approach. In most of the previous work the number of 

clusters is given a priori, and the objective function is the sum of squared distances 

or dissimilarities of the points from the cluster representatives (Omran et al. 2002, 

Omran et al. 2005, Jarboui et al. 2007, Kao et al. 2008, Ahmadi et al. 2010). Thus, 

the resulting clusters are limited with spherical shapes. There are only a few attempts 

trying to find the number of clusters inherent in the data set, but they also generate 

spherical clusters as the objective function maximizes the total within cluster 

similarity (Picarougne et al. 2007, Veenhuis and Köppen 2006).  

Others such as Omran et al. (2006) and Ahmadi et al. (2010) optimize a 

clustering validity index as the objective function. The important assumption in these 

studies is that the solution that minimizes or maximizes such a validity index is 

equivalent to the target clustering solution. However, to the best of our knowledge, 

the optimization of known validity indices does not guarantee finding the target 

clustering. Besides, most of the clustering validity indices depend on “the highest” 

marginal benefit gained from the clustering solution, and they select the clustering 

solution forming a knee point in the validity index as the “best clustering solution”. 

Thus, their minimum or maximum values may not give the target clusters.  

To sum up, the PSO work in the literature focuses on the deficiencies of k-

means and its variants specifically in exploration, and tries to get closer to the global 

optimum as much as possible. In order to increase the effectiveness and efficiency of 

PSO the proposed algorithms are usually combined with some local search 

algorithms such as k-means (Kao et al. 2008, Ahmadi et al. 2010).  
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2.4.2. Ant Colony Optimization (ACO) 

 

ACO tries to imitate the behavior of real ants. Ants search for food on the 

ground and, during their search, they deposit a substance called pheromone. Other 

ants follow the pheromone trail and this directs their search. Promising paths get 

more pheromone and more ants are directed along these promising paths. As a result, 

ants can find the food sources by indirect communication between them.  

The general framework for an ACO algorithm is presented in Figure 2.4. 

ACO has three main functions. These three functions are explained briefly as 

follows. 

 

ACO Algorithm 

Set parameters and initialize pheromone values 

While termination conditions not met do 

 Solution construction 

 Local search 

 Pheromone update 

end while 

Figure 2.4 The general framework for ACO 

  

Solution Construction: Each ant in the colony constructs a solution. Suppose C = 

{c1, c2,..,cn} is the finite set of solution components. An ant starts solution with an 

empty sequence, s, and in each construction step, a feasible solution component is 

selected from set N(s) ⊆ C\s according to the decision rule, where N(s) denotes the 

set of neighboring feasible solution components (neighborhood) for the partial 

solution s. Decision rule has a stochastic choice mechanism which depends on the 

pheromone amount on the solution components. A basic version of the choosing 

probability conditioned on the current solutions and a solution component c1 is 

provided as follows. 
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where ( )
i

cη  denotes the heuristic information function for solution component i
c , 

and α and β control the relative importance of pheromone value versus heuristic 

information. Then, the selected solution component is appended to partial solution s. 

The solution construction steps continue until N(s) is empty.  

 

Local Search: This part is optional. In this function solutions constructed by the ants 

can be improved by problem specific local search mechanisms. Thus, it strengthens 

the exploitation property of ACO.  

 

Pheromone Update: The aim of the pheromone update is to ensure both exploration 

and exploitation in the search space. This is achieved by the two components in the 

pheromone model: (1) pheromone evaporation (forgetting) for exploration, (2) 

pheromone release for exploitation. That is, pheromone evaporation prevents rapid 

convergence of the algorithm to a suboptimal solution by decreasing all the 

pheromone values, and good solution components are favored by releasing 

pheromone. Although there are variants of pheromone update mechanisms, we 

present a general version for solution component i as follows.  

S |

(1 ) ( )
u i

i i s

s c s

w F sτ ρ τ ρ
∈ ∈

= − + ∑                (2.2) 

where (0,1]ρ ∈  denotes the evaporation rate and Su is the set of solutions used for 

update. Set Su can be all the solutions generated in the current solutions, the best 

solution in the current iteration or the best-so-far solution. Furthermore, F(s) is the 

objective function value for solution s, and ws is the weight associated with solution 

s.  

 

 There are several variants of ACO algorithms which mainly differ from the 

pheromone update mechanism. The reader can refer to Dorigo and Blum (2005) and 

Blum (2005) for the details of ACO.  

ACO applications in clustering are presented in Table A.2 in Appendix A. 

The common property of these articles is the objective function, i.e. minimization of 

within cluster distance or variance. In Ho and Ewe (2005), Runkler (2005), Chen and 

Chen (2006), Prabhaharan et al. (2005), and Wang and Wei (2009) the number of 
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clusters is given a priori, and the solution component of ACO is defined as the 

cluster assignment of a data point. Thus, when an ant completes its path, it represents 

the cluster assignments of data points. Pheromone values are calculated for these 

point-to-cluster assignments.  

As the cluster labels are not static in this representation, the solution 

components (i.e. point-to-cluster assignments) do not show the quality of the 

clustering properly. Instead, the points assigned to the same cluster become 

connected, and a pattern can be observed to indicate the solution quality. Thus, 

pheromone update of point-to-cluster assignments does not perfectly reflect the 

quality of a clustering solution, and it is necessary to take into account the connected 

patterns in the clusters during the design of the pheromone update mechanisms.  

As a remedy, in Tsai et al. (2004) and Sinha et al. (2007) the solution 

component in ACO is defined as the edge between two data points, that is, if there 

exists an edge between two points, then these two points are assigned to the same 

cluster. In this last group of ACO applications each ant visits several data points in 

every iteration, and pheromone amount is related with the inverse of the tour length 

of the ant. Clusters are not formed during the iterations, instead clustering solution is 

constructed after the termination of the algorithm by merging the edges having dense 

pheromone values. The edges of higher pheromone amounts are identified using a 

prespecified threshold. With this approach, it is possible to obtain arbitrary-shaped 

clusters, however intracluster density variations could not be handled.  

 

2.4.3. Other Swarm Intelligence Based (OSIB) Metaheuristics 

 

Algorithms classified as others match the exact properties of neither PSO nor 

ACO. This group can be analyzed in two categories. First category denotes the 

algorithms that display the general SI properties. Emergent behavior of the swarm 

can be seen in this group. Ant-based clustering algorithms are significant examples 

for this category. It is particular to this group that ants use the stigmergy property 

which ensures the communication between agents in an indirect manner using the 

environment (Handl and Meyer 2007). They move in the search space split into 
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grids, and they form clusters from similar points by picking up or dropping off a 

point on the grids according to its similarity with its neighborhood. These operations 

are known as corpse clustering, brood sorting and nest building in the literature 

(Deneubourg et al. 1991, Lumer and Faieta 1994, Handl and Meyer 2007).  

The articles in this group are presented in Table A.3 in Appendix A. Martin et 

al. (2002), Kao and Fu (2006), Yang and Kamel (2006), Handl et al. (2006), and 

Boryczka (2009) propose ant-based clustering approaches that are based on 

Deneubourg et al.’s (1991) model. In this model the data points are assigned to grids, 

and ants move the data points through the grids so that similar points fall into 

adjacent grids. The moves between the grids are performed according to a probability 

function reflecting similarity of the neighboring points. Clusters are formed from the 

points falling into adjacent grids. A mechanism for the interaction of ants such as 

pheromone is not used. An interesting application in ant-based clustering is due to 

Azzag et al. (2007). They build a hierarchical tree using ants so that branches are 

sufficiently dissimilar whereas their roots are similar to each other.  

Second group of algorithms does not benefit from SI in a direct manner, and 

they can be defined better as evolutionary, simulated annealing or tabu search 

algorithms. Mainly, they lack the collective behavior of a swarm.  

The other SI applications include wasp swarm optimization (WSO) (Runkler 

2008), honey-bee mating (HBM) (Fathian et al. 2007), and cat swarm optimization 

(CSO) (Santosa and Ningrum 2009). In WSO limited resources are shared between 

wasps according to the social status of the wasp. HBM imitates the marriage of real 

honey-bee. Division of labor between the honey-bees (i.e. queen, workers and 

broods) ensure to develop high quality generations. CSO is inspired from the 

behaviors of cats. That is, a cat is either resting in alert-looking way or tracing the 

targets. However, CSO does not benefit from the emergent property of a group of 

cats properly. In these studies the objective function is minimization of the total 

within cluster variance or distance, and the agents represent the representative points 

of the clusters. The shapes of the resulting clusters are limited to spherical.  
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2.4.4. Comparison of Swarm Intelligence Based Algorithms 

 

The three categories under SI have the following common points.  

� Locality in PSO is related with the neighborhood concept in ACO and 

OSIB. Locality assets that agents are influenced from the nearest agents. 

Neighborhood also defines the nearby region that an agent can be 

primarily affected from.  

� Pheromone update in ACO serves a purpose similar to velocity matching 

and flock centering in PSO. Pheromone update helps both exploration and 

exploitation. Higher pheromone concentration means higher probability to 

be selected as a solution component, whereas evaporation of pheromone 

gives a chance to explore the unpopular paths. Velocity matching 

functions in a similar manner. It helps the agent to move towards the 

promising regions, the global and local bests, whereas randomness ensures 

exploration. Flock centering also functions as an exploitation mechanism 

by making the swarm members move to the perceived center of the flock 

(global best and local bests).  

� Homogeneity in PSO has commonalities with the decision rule for solution 

construction in ACO and OSIB. Homogeneity implies that agents use the 

same behavioral models, that is, agents determine their next position and 

velocity according to the same rules. Similarly, agents in ACO and OSIB 

algorithms construct the solutions using the same decision rules.  

Besides these resemblances, there are unique properties of these categories. 

In fact, these also point out the differences in capabilities of SI based algorithms.  

� Collision avoidance in PSO prevents the swarm members to collide with 

the nearby agents. However, such an explicit mechanism is not available in 

ACO and OSIB, and identical solutions can be constructed during the 

execution of the algorithm. In fact, ACO is expected to explore the search 

space thoroughly in order to find the optimal solution, so identical 

solutions are not desired in the beginning of ACO. On the other hand, thru 
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the end of ACO the existence of identical solutions is an indicator of 

convergence for ACO.  

� Velocity matching in PSO helps the swarm members to move together. 

Hence, direct interaction among agents can be maintained. However, 

agents in ACO and OSIB algorithms benefit from the stigmergy property 

which implies that interaction among agents is ensured by changes they 

induce in the environment (indirect interaction). Exchange of information 

by pheromone is an example for this. Hence, collectivity is emphasized 

less yielding a higher exploration potential.  

� Flock centering ensures connectivity among agents, that is, agents move 

with a smooth density and fewer break-ups. It is an emergent behavior in 

PSO and an explicit leader is not available in the swarm. Such an implicit 

effect of the collective behavior is not available in ACO and OSIB. Hence 

breakups (gaps) can naturally occur yielding distinct and peculiar courses 

of events to help ramp up exploration.  

Work on PSO satisfies most of the principles of SI based algorithms. 

Homogeneity is ensured by the similar behavior models of the agents. Velocity 

updates of agents are affected from their own past and the global best. Locality is 

ensured by various definitions of the neighborhood. Flock centering is usually 

provided by the tendency to move towards the global best. On the other hand, 

collision avoidance is not emphasized in a direct manner.  

 

2.5. Clustering Validity Indices 

 

 Clustering validity is the assessment of the clustering results obtained by a 

clustering approach. Basically, a valid clustering solution is expected to be obtained 

neither by chance nor by a deficiency of a clustering algorithm, so it is a crucial step 

of the clustering process (Jain et al. 1999). Some important functions of clustering 

validity are as follows (Tan et al. 2005). 

� The existence of clustering tendency in the data set, i.e. data set includes a 

clustering pattern.  
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� Determination of the target number of clusters. 

� Assessment of the clustering results without a priori knowledge.  

� Comparison of the clustering results with target cluster labels given as a 

priori knowledge.  

� Comparison of the two clustering results.  

 There are three quantitative approaches for measuring the clustering validity.  

 

(1) External criteria: Clustering results are evaluated with respect to a predefined 

external structure. There are two ways for evaluation in external criteria: comparison 

of the clustering results with a predefined clustering structure and comparison of the 

proximity matrix to the clustering result. In the former one, the predefined clustering 

structure reflects the intuitive information about the clustering, and the degree of 

correspondence between the clustering solution and the predefined target cluster 

labels measures the quality of the clustering. Validity indices in this group use either 

classification based measures such as entropy, purity, and F-measure, and similarity 

based measures such as Jaccard index, Rand index, and Folkes and Mallows index. 

In the latter one, clustering results are transformed into a matrix, and this matrix is 

compared with the predefined proximity matrix using Г or normalized Г measures.  

 

(2) Internal criteria: Clustering result is evaluated in terms of the properties 

inherent in the data set only, and external information is not supplied. These criteria 

include compactness (i.e. total within cluster distances) and separation (i.e. total 

intercluster distances) based terms or a combination of these two terms (i.e. 

Silhouette coefficient). Particularly, these measures are effective in the evaluation of 

partitional and graph-based clustering algorithms. Besides, for the validation of 

hierarchical clustering results, the degree of proximity in which two data points fall 

into the same cluster is compared with the proximity matrix (e.g. Cophenetic 

correlation coefficient). Besides, single clustering scheme can be analyzed using the 

proximity matrix as well.  

 

(3) Relative indices: A set of clustering solutions are relatively evaluated using these 

indices. Given a clustering algorithm, these indices provide to determine the best 
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clustering solution considering the parameters and the assumptions of the algorithm. 

Some well-known validity indices for hard clustering are the modified Hubert Г 

statistic, the Dunn indices, the Davies-Bouldin index, root-mean-square standard 

deviation, and R-squared. The number of clusters in a data set can be determined 

using these validity indices.  

 

Both external and internal criteria are statistical basis. That is, external and 

internal criteria test the null hypothesis about the random structure of the data set. In 

order to decrease the computational efficiency, they apply Monte-Carlo simulation 

techniques. The aim of these techniques is the calculation of the probability density 

function of the validity indices by generating sufficient number of test data sets. 

Different from external and internal criteria, relative criteria do not use a prespecified 

information during clustering evaluation. They help to compare the clustering results 

obtained by different parameter settings.  

The reader can refer to Halkidi et al. (2002a) and (2002b) for comprehensive 

studies on validity indices. The details of these validity indices are provided as well.   

Despite the vast literature on clustering validity, challenging issues still exist 

in this field.  

� Verification of the clustering validity methods is easy to perform in 2 and 3-

dimensional spatial data sets. However, generalization to higher dimensions 

and different types of data is limited.  

� The absolute value of a clustering validity index may not indicate proper 

evidences about the clustering quality. Thus, a validity index may need to be 

interpreted in a relative manner. For example, a validity index of 2 does not 

show the quality of the clustering. For a proper comparison, the statistical 

distribution of the validity index can be analyzed.  

� It is difficult to apply and interpret the complex validity indices.  

� Clustering validity has a subjective point of view in terms of application 

domain and the characteristics of the clustering algorithm used. For example, 

spherical shaped clusters tend to occur in facility location, so the total sum of 

distances between the cluster representatives and the points can be used as a 

validity index. When a density-based clustering algorithm is applied to a data 
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set with arbitrary shaped clusters, the total sum of distances between the 

cluster representatives and the points may not be a proper measure for the 

clustering quality.  

 

2.6. Scope and Motivation 

 

In this dissertation, we focus on the development and the validation of a new 

clustering methodology where effective attributes for clustering are provided a priori. 

We study the clustering problems in which (1) the number of clusters is unknown, 

(2) clusters may have intracluster density variations and intercluster density 

differences, and (3) clusters may have arbitrary shapes. Our scope includes handling 

data sets having spatial properties and numerical attributes. Thus, it is assumed that 

points are dispersed and clusters are validated in Euclidean space. Data sets having 

such characteristics are particularly seen in geology, geographical information 

systems, city planning, and image segmentation.  

The proposed clustering methodology includes neighborhood construction, 

data set reduction and clustering. In the cluster analysis of the spatial data sets, 

particularly connectivity, proximity and density concepts are crucial. Thus, the 

proposed clustering methodology is developed based on these concepts.  

The swarm concept provides the self-organization and the emergence of 

collective behavior induced by population dynamics. These properties point at SI as a 

promising solution approach to the clustering problems. Thus, in this dissertation, we 

explore the applicability of Ant Colony Optimization (ACO) as one of the SI 

algorithms to the clustering problem.  

In ACO, the neighborhood definition is crucial in ants’ moves and it affects 

the performance and the capabilities of ACO. In this context, we propose a hierarchy 

of neighborhoods (i.e. top-down hierarchy includes clusters, closures, candidate set, 

break point set, core sets, data points) for the general clustering problem. This top-

down hierarchy reveals the relationships between the data points using the 

geometrical (topology) properties and the density. That is, the lower levels of the 

hierarchy resemble kinship, whereas upper levels reflect the citizenship. 
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The scalability issue is taken into consideration during the development of 

ACO algorithm. We propose data set reduction mechanisms through boundary 

formation for the general clustering problem. Given a set of subclusters, the number 

of data points is reduced by extracting the discriminative properties of subclusters 

and representing the subclusters by their boundaries. It is based on the adjacency and 

connectivity information between the data points. As a side product, constructed 

boundaries can be used for visualization of clusters.  

The proposed ACO-based clustering algorithm starts with the neighborhoods 

and the reduced form of the original data set, and its aim is to find a set of non-

dominated solutions that includes the target clustering in terms of separation and 

compactness. Ants explore the data set so that attractive regions (i.e. clusters) are 

detected using density break-offs, connectivity and distance information. Hence, a 

new agent (ant) representation scheme is introduced, and the traditional pheromone 

update mechanism is adapted for the clustering problem.  

In addition to the ACO-based clustering, a three-phase clustering algorithm 

that integrates the density-based, the graph-based the hierarchical clustering is 

introduced. The first phase corresponds to the neighborhood construction algorithm. 

After formation of subclusters (closures) in the first phase, the second phase is 

dedicated to the outlier detection. Finally, in the third phase the subclusters are 

merged according to the improvement in the separation and compactness.  
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CHAPTER 3  

 

 

A NEIGHBORHOOD CONSTRUCTION ALGORITHM FOR 

THE CLUSTERING PROBLEM  

 

 

 

In this chapter a cluster is assumed to include connected data points in a 

dense region that is surrounded by low density regions. Thus, data set properties 

should be considered in both local and global context in clustering. Especially local 

properties such as proximity, density and connectivity are crucial as they constitute 

the basis of clustering. In this context neighborhood definition plays a key role in the 

design of clustering algorithms that depend on search mechanisms in a certain 

locality. Swarm Intelligence is among this type of algorithms where the agent 

representation, solution construction, exploration and exploitation mechanisms are 

all affected by the neighborhood concept. Thus, in this chapter, we consider the 

extraction of local properties through neighborhood definition as an input to a 

clustering algorithm.  

This chapter is organized as follows. The neighborhood construction 

algorithms used in the clustering literature are reviewed in Section 3.1. Section 3.2 

addresses the strengths and weaknesses of the existing neighborhood construction 

approaches. The proposed NC algorithm, which is characteristically based on 

proximity, connectivity and density information, is described in Section 3.3. Typical 

outputs and time complexity of the NC algorithm are also presented in this section. 

Section 3.4 includes experimental results with the NC application. We compare NC 

with some other well-known neighborhood algorithms in terms of effectiveness and 

homogeneity. Finally, we criticize the performance of NC in Section 3.5.  
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3.1. Literature Review on the Neighborhood Construction for the Clustering 

Problem 

 

Neighborhood of a point is defined as the local area or region that includes 

points in the proximity of the corresponding point (O’Callaghan 1975, Chaudhuri 

1996). There are different ways of identifying the proximity relations among points. 

A simple approach defines the neighborhood of a point according to the distance, 

that is, points with the smallest distance to the corresponding point are its neighbors. 

However, this may cause mixing of points from other density regions or clusters.  

An early work by O’Callaghan (1975) incorporates direction with the 

distance. The angle between neighboring points is restricted with a given parameter 

so that homogeneous density regions are discovered. However, O’Callaghan’s 

neighborhood definition depends on two user-specified parameters and it does not 

give an ordering of the neighbors.  

Chaudhuri (1996) proposes nearest centroid neighborhood which satisfies 

two conditions: (1) neighbors of a point must be close to that point, and (2) center or 

centroid of the neighbors of a point must be close to that point. The approach ensures 

that the neighbors are distributed symmetrically around each point. It especially 

works on choosing a representative subset from a set of data and detection of border 

and interior points. Although it is introduced as a parameter-free approach, the size 

of the neighborhood, k, must be given a priori. Besides, the symmetric distribution of 

the points constitutes a special neighborhood definition, which may be appropriate 

for the points in the interior of a data set. However, the points on the boundary are 

crowded in only a certain direction and neighbor mixes with other density regions 

cannot be avoided.   

Graph-based neighborhood definitions consider the proximity and the density 

structure around a point. One common and simple approach is the k-nearest neighbor 

(KNN) graphs. It is especially used in agglomerative hierarchical clustering methods 

as it helps to decompose the data set into small connected sets of points, namely 

subclusters. In Lu and Fu (1978) a point is assigned to the cluster of its nearest 

neighbor (NN) if the distance between them is smaller than a given threshold. In an 

extension of NN, cluster assignment of a point is decided with respect to its KNN.  
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Another agglomerative approach is CHAMELEON (Karypis et al. 1999). Its 

first phase uses the KNN graph to represent the data set with subclusters as it helps to 

capture the disconnections and the density. In the second phase, these subclusters are 

hierarchically merged according to relative interconnectivity and relative closeness 

properties.  

In addition to these hierarchical approaches, some clustering algorithms use 

the KNN graph to estimate the density as in Wong and Lane (1983). The trade-offs 

between local and global properties are explored in multiobjective clustering (Handl 

and Knowles 2005; Handl and Knowles 2007). Connectedness of data points 

represents the local property, and it is measured as the proportion of the neighboring 

points in the KNN graph that are in the same cluster. As the objective becomes the 

maximization of the total connectedness measure, it is implicitly assumed that KNN 

neighborhood of each data point includes similar points from the same cluster. 

However, verification of this assumption is not provided in these studies.  

In addition to NN and KNN, proximity graphs such as minimum spanning 

tree (MST) and Delaunay triangulation (DT) help to extract the adjacency 

information. In order to find the inconsistent edges with respect to their 

neighborhood, Zahn (1971) compares the edges in the MST with the average length 

of the edges in the neighboring subtree of depth d. Hence, d is the user-specified 

parameter in this approach. AMOEBA (Estivill-Castro and Lee 2000) uses adjacent 

points in DT as the neighborhood of a point. DT reflects the proximity relations 

among all the points in the data set, however the points on the boundary of clusters 

may include neighbors from entirely different density regions or clusters. 

A distance-based neighborhood concept was introduced in density-based 

clustering. In DBSCAN (Ester et al. 1996) ε-neighborhood is defined as the circle 

with a given radius (ε). If there are at least MinPts points falling into the circular 

neighborhood of a point, the corresponding point is classified as a core point. Points 

having fewer points in their neighborhood than the threshold (MinPts) are either 

border or noise points. Using these point types, density-connected points are 

determined in defining the clusters.  

OPTICS (Ankerst et al. 1999) extends the neighborhood definition of 

DBSCAN for varying local densities by working with a spectrum of radius 
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parameters, which are smaller than a given generating radius (ε). Density-based 

clustering structure is then found by creating an ordering of the data set.  

GDBSCAN (Sander et al. 1998) generalizes DBSCAN for spatial data sets. In 

order to handle spatial data, distance-based neighborhood is extended based on a 

binary predicate so that intersection and meeting operators can be used for polygons. 

Besides counting of points in a given neighborhood, density measures are extended 

to non-spatial features such as taking the average or sum of a particular feature.  

Ertoz et al. (2003) combine a density calculation scheme in an ε-

neighborhood (distance-based neighborhood) with the KNN (graph-based 

neighborhood). They can address categorical data as well, however the number of 

parameters to be determined increases to three, namely k, MinPts and ε.  

In fact, local properties are also used in other data mining methods such as 

classification and outlier analysis. For example, in classification the class label of a 

point can be determined using the class labels of the points restricted to the point’s 

own neighborhood. Density in a certain region helps to distinguish local and global 

outliers in outlier analysis. In addition to the aforementioned neighborhood 

definitions, there are neighborhoods defined based on other proximity graphs such as 

relative neighborhood graph and Gabriel graph and their variations. A 

comprehensive study about the use of proximity graphs in classification is provided 

by Toussaint (2002).  

 

3.2. Shortcomings of the Previous Neighborhood Construction Approaches  

 

In most of the neighborhood definitions, the neighborhood size is determined 

by one or more parameters such as k, d, ε, MinPts. There is not a well-defined 

method to set these parameters properly. Thus, clustering methods that use these 

neighborhood definitions are sensitive to these parameters. 

One of the graph-based neighborhood approaches, the KNN graph, is easy to 

use. However the parameter k is very critical in extracting the local properties around 

a point. An inappropriate setting of k might cause errors in the neighborhood, such as 

mixing points from different density zones or clusters. Besides, KNN does not take 
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into account the connectivity of points. Let us consider the clustering problem given 

in Figure 3.1. For k ≤ 3 the neighborhood of point i in Cluster 2 includes the points 

from the same cluster, namely points r, m and n. For k = 4, although points i and p 

are connected over point m, the neighborhood does not include point p because the 

connectivity is ignored during neighborhood construction. Instead point o from 

Cluster 1 is added to the neighborhood. Note that for k ≥ 4, the neighborhood of 

point i always includes points from Cluster 1.   

 

 

 

Figure 3.1 Example for the KNN 

 

In the distance-based neighborhood the use of a global neighborhood 

parameter (ε) fails when there are clusters having density variation. An example is 

shown in Figure 3.2. Radius ε is set using all the points in the data set, and this 

setting assures that neighborhood of point j includes points from the same cluster. 

However, neighborhood of point i is drawn empty, although it is not an outlier. When 

we increase the ε value, point i is no longer an outlier. However, this increases the 

neighborhood size of point j and gives rise to neighbor mixes from Cluster 3. In the 

extensions of distance-based neighborhood, the ε parameter setting is specific for 

each neighborhood but there are still parameters to be set a priori (Ankerst et al. 

1999).  

 

 

Cluster 1 Cluster 2 
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Figure 3.2 Example for distance-based neighborhood 

 

There is a lack of a robust neighborhood construction algorithm, which takes 

into account proximity, connectivity and density in a local region simultaneously. 

Zahn (1971) claims that graph-theoretical approaches are powerful in detection of 

patterns inherent in the data sets. Proximity graphs in the graph theory extract the 

influence and relevance of the neighboring nodes in a graph and represent proximity 

information of the nodes. Proximity between any pair of nodes is determined by the 

distance between the nodes and the existence of other intermediary nodes. Toussaint 

(1980) states that proximity graphs defined according to a region of influence, such 

as relative neighborhood graph (RNG) and Gabriel graph (GG), are effective means 

in pattern recognition. He also claims that both of these graphs are less sensitive to 

the position of the points, i.e. the angle between connecting arcs, and no restrictions 

are implied during graph construction unlike in MST.  

In NC we determine the proximity and connectivity using GG, which is 

proposed by Gabriel and Sokal (1969) in order to handle connectedness and 

contiguity in geographic variation data sets. We use the influence region (a circle in 

2-dimensional data sets and a hyperball in higher dimensional data sets) of GG as a 

reference to calculate the density. The proposed approach is parameter-free and it 

defines a unique (case sensitive) neighborhood for each data point.  

 

Cluster 1 

Cluster 2 Cluster 3 
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3.3. Neighborhood Construction (NC) Algorithm  

 

We conceive of two basic requirements for a neighborhood definition in a 

clustering problem: First, neighbors of a point should be determined according to 

proximity, connectivity and density information processed simultaneously. In order 

to group similar data points into clusters, solely proximity or distance is not 

sufficient to construct the neighborhood, especially for the data sets having density 

variations. Incorporation of density and connectivity information helps to avoid 

premature break-ups in the neighborhoods and mixes from other density regions. The 

second issue is the homogeneity of the neighborhood. All neighboring points should 

be similar, and similarity is to weaken if points from other neighborhoods are forced 

in.  

Considering that proximity graphs are effective in pattern recognition 

problems (Jaromczyk and Toussaint 1992), we propose a Neighborhood 

Construction (NC) algorithm based on the Gabriel graph, which is one of the 

fundamental proximity graphs (Đnkaya et al. 2010a and 2010b). Our scope is two or 

higher dimensional data sets having numerical attributes, and we use the Euclidean 

distance as the dissimilarity measure. We assume that the number of clusters is 

unknown. Neighborhood structures constructed by NC work well where (1) clusters 

have arbitrary shapes, (2) different clusters have different densities, and (3) density 

varies within a cluster. The major advantage of NC is that it is a parameter-free 

algorithm using mutual connectivity and density information. NC tries to avoid the 

generalizations about the neighborhoods of points (such as a minimum number of 

points within the close vicinity or a predefined distance) and it produces a 

neighborhood unique to each data point.  

The details of the NC algorithm are explained as follows.  

 

3.3.1. Notation and Definitions in NC 

 

We use the notation given below in the discussion to follow. 

D  set of data points (nodes of the graph) 
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i, j, p, q indices for data points 

dij  Euclidean distance between points i and j  

CCi  core candidate set of point i  

BCi  break point candidate set of point i 

PCi  potential candidate set of point i 

CSi  final candidate set (neighborhood) of point i 

Clm  set of points in closure m 

Before proceeding with the description of the NC algorithm, we give the 

definitions related with the GG. Let B(p, r) denote the set of points included in an 

open ball centered at point p with radius r, i.e. B(p, r) = {q: dpq < r, q ≠ p}.  

The (p, q) edge is inserted in the GG if and only if B(s, dpq / 2) ∩ D = ∅ , 

where s is the midpoint on the line connecting points p and q. Equivalently, the (p, q) 

edge is inserted if and only if dpq ≤ 2 2min : Dpi iq
i

d d i
 
 
 

+ ∈ .  

Two nodes p and q are directly connected by an edge of the GG if and only if 

the hyperball having diameter dpq and passing through these two points does not 

contain any other node of D in its interior. Direct connection makes all connected 

nodes reachable. Two nodes p and q are indirectly connected if the ball with diameter 

dpq contains at least one other node of D in its interior. This implies that there exists 

at least one path between the two nodes whose maximum edge length is shorter than 

dpq. Density between nodes p and q is measured by the number of nodes lying in the 

ball with diameter dpq. Figure 3.3 shows an example of direct and indirect 

connections, and the density calculation.  

 

 

 (a)          (b) 

Figure 3.3 Examples for direct and indirect connection. (a) Direct connection: 
density between nodes p and q is 0. (b) Indirect connection: density between nodes p 

and q is 1. 
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3.3.2. Steps of the NC Algorithm 

 

NC algorithm is composed of five steps. A layer (an enlarging set of points) 

around a point is defined in each step of NC.  

 

Step 1. Core Candidate Set construction by direct connectivity 

In this step, we classify the neighbors of each data point by considering the 

(direct or indirect) connectivity and density information. Given a point i as the base 

point, all remaining points in D are listed in non-decreasing order of their distance to 

point i, and the ordered set Ti is formed. Following the GG construction, the nearest 

point having an indirect connection to point i is identified as point j. Then, dij is the 

distance of the first indirect connection to point i. Data points having a distance to 

point i shorter than dij are directly connected to point i with density 0. We call these 

data points core (neighbor) points of point i and include them in CCi. Indirect 

connections to other points will be established via these core points.  

An example of step 1 is presented in Figure 3.4. First, neighbors of data point 

1 are ranked and T1 is formed. Points 2 and 3 are directly connected to point 1 and 

the first point subject to indirect connection is point 4, so points 2 and 3 having 

shorter distance than d14 form CC1. 

 

 

 

Figure 3.4 Construction of CC1 = {2, 3} 
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Step 2. Break Point Candidate Set construction by density tracking 

Detection of a density change (if any) is performed next. As one moves to the 

next member of Ti, the density is expected to stay the same or to increase for close 

neighbors of point i. The first data point in Ti at which the density starts to decrease 

is identified and called the break point. This point may be the sign of a density 

change (a different cluster). The points that are closer to point i than the break point 

form BCi. BCi is a superset of CCi, and includes points with indirect connections as 

well.  

Figure 3.5 shows an example for step 2. Density values of points in T1 = {2, 

3, 4, 5, 6, 8, 9, 7} are 0, 0, 2, 0, 2, 0, 1, 2, respectively. The first density decrease 

occurs at point 5, hence point 5 becomes a break point. Points 2, 3 and 4 having a 

shorter distance than d15 are included in BC1.  

 

  (a)                 (b) 

Figure 3.5 Construction of BC1. (a) Density values of points in T1, (b) Construction 
of BC1 = {2, 3, 4} 

 

 

Step 3. Potential Candidate Set construction by indirect connectivity checks 

The break point marked in step 2 may indicate either a new density region (a 

different cluster) or simply a dramatic change of direction away from the core of the 

currently defined neighboring points. Premature set wrapping at a break point may 

cause falling short in defining the neighborhood of a data point. As a remedy, BCi is 

extended by checking the connectivity of points. Let k be the first break point of 

point i. If the intersection of sets BCi and BCk is nonempty, then there exists at least 

one point ensuring an indirect connection between points i and k. Following the 
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ordering in Ti, this check is conducted for every subsequent break point until the first 

empty intersection of a pair of break point sets (BCi’s) is found. Points collected up 

to the first empty intersection form PCi. 

Let us consider extension of BC1 in Figure 5. With data point 5 found as the 

first break point, we check if there exists a direction change or beginning of a new 

density region around it. The set {1} ∪ BC1 is compared with BC5 to check the 

existence of a point that induces connectivity between points 1 and 5. BC5 is {3, 1, 2, 

4} and the intersection is {1, 2, 3, 4}. So point 5 is added to PC1. The density 

increases to 2 for the next member of T1 (point 6). This implies that we are moving 

along a similar density region (as points 3 and 5 are within reach now). So point 6 is 

also in PC1. The next density decrease occurs at point 8. Again the set {1} ∪ BC1 is 

compared with BC8. This time, the intersection set is empty as BC8 is {7, 9}. Hence, 

potential candidate set construction for point 1 ends with PC1 = {1, 2, 3, 4, 5, 6}. 

Looking at Figure 3.5 (b) one can see the separate nature of PC1 members from {7, 8, 

9}.  

 

Step 4. Candidate Set construction by mutuality tests 

PCi includes potential neighboring points of data point i, nevertheless mutual 

connectivity among the neighboring data points is neglected. Thus, final decision 

about a neighboring point is made by a mutual connectivity test. Through this 

operation, PCi is shrunk to CSi so that mutuality is provided through at least one 

direct link in the constructed neighborhoods. 

Let point j be any point in PCi. If point j is in CCi, then CCi and CSj are 

compared for mutuality. If the intersection of these sets is nonempty, points i and j 

are mutual (nearest) neighbors. So point j is added to CSi. If the intersection is 

empty, then these points are not likely to share the same neighborhood.  

In order to remove point j and the subsequent points in the ordered set PCi 

there is a final test. If point j is not in CCi, but the intersection of CSi and CSj is 

nonempty, then point j still passes the mutuality test and gets added to CSi. These 

mutuality tests are conducted for each point in successive rounds until no change 

occurs in any of the CSi sets. 
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As an example, let us consider point 7 in Figure 3.5. When we apply steps 1 

through 3, we come up with BC7 = PC7 = {8, 9, 1, 2, 3, 4, 5, 6}. BC7 and PC7 are 

identical in this case and both sets include points 1-6 from another cluster revealed 

by inspection. The reason is that moving away from point 7 the density does not fall 

due to the far position of point 7. However, mutual connectivity is not satisfied for 

points 7 and 1 in either of the tests above. Step 4 eliminates point 1 and the points 

further away from point 1 with respect to point 7 in constructing CS7. Hence, the 

eventual set is CS7 = {8, 9}.  

 

Step 5. Formation of closures (subclusters) by coverage 

Points with common neighbors in the final candidate sets imply that they are 

connected. Thus, closure sets are formed by taking the union of final candidate 

(neighborhood) sets that share some data points. Closures constitute the skeleton of 

the target clustering solution. For example, in Figure 3.6, CS1 ∩ CS2, CS2 ∩ CS3, CS3

∩ CS4, CS4 ∩ CS7, CS7 ∩ CS8 are all nonempty. Therefore Cl1 = CS1 ∪ CS2 ∪ CS3 ∪

CS4 ∪ CS7 ∪ CS8. Note here that although d67 < d78, data points 7 and 8 occur in the 

same closure, whereas data points 6 and 7 are in different closures. This is simply 

due to data points 5 and 6 “attracting” each other as an isolated couple.  

The pseudocode of the NC algorithm is provided in Section C.1 in Appendix 

C.   

 

3.3.3. Output of NC  

 

Two main outputs of NC are the neighborhood of each point, CSi, and the 

closures, Clm. Two complications may arise in the neighborhoods constructed.  

(1) Outlier mixing: If there exist more than one core point for an outlier and if these 

core points are mutual core neighbors, then outlier mixing is unavoidable. Two or 

more distinct outliers fall into a cluster in this case.  

(2) Divided clusters: Because NC lacks a global view of the data set, some local 

density drops are taken to mark different density regions. This cuts off data points 

from the same target clusters and closures tend to be subclusters.  



 

 
 

60 

An example is shown in Figure 3.6. In this data set there are 8 points and 2 

target clusters, namely, C1 = {1, 2, 3, 4, 5, 6, 7} and C2 = {8}. Candidate sets of all 

points are given in Figure 3.6. Note that points 1 and 7 are mutual core neighbors and 

both of them are core neighbors of point 8. Thus, intersection of CS1, CS7 and CS8 is 

nonempty and these points are in the same closure although point 8 is an outlier. This 

exemplifies the first complication.  

When point 7 is the base point, density drops by the move towards point 6. 

Moreover point 7 constitutes the first break point for point 6. So there is no mutual 

connectivity between points 6 and 7 and they are not in the same closure.  

As a result, we end up with a divided cluster and a mixed outlier in two 

closures, Cl1 = {1, 2, 3, 4, 7, 8} and Cl2 = {5, 6}. This is as case with the second 

complication.  

 

Figure 3.6 NC applied to an 8-point data set 

 

Properties of the constructed neighborhoods are as follows. 

1. Core points in the neighborhood of a base point have direct connections to 

each other. They also have shorter distances to the base point than the 

minimum indirect distance in the candidate set of that point.  

2. Mutual nearest neighbors are in the core candidate set of each other.  

3. The first break point has the shortest indirect connection to the base point.   

4. Final candidate set of a point includes the points with direct and indirect 

connections.  

5. A closure is the union of the candidate sets with some common neighbors.  
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3.3.4. Computational Complexity of NC  

 

In step 1, for every point in the data set GG is constructed between the 

associated point and the remaining data points. GG construction has a time 

complexity of O(n2) with n nodes. Thus, the time complexity of step 1 of NC is 

O(n3). Break point candidate set construction in step 2 is performed for every point in 

the data set, and for a given point the remaining points in the data set are checked 

until the first density decrease is detected. Hence, the worst case time complexity of 

step 2 is O(n2). Potential candidate set extension in step 3 checks the connectivity 

between a point and the remaining points for which there exist density decreases. As 

this is repeated for every point in the data set, the worst case time complexity is 

O(n2). Step 4 checks the mutual connectivity of data points with their neighborhoods 

in O(n2) time, and this is repeated until no change occurs in the neighborhoods. In 

Step 5, first, neighborhood of each point is extended by the points both having direct 

and indirect connection to the associated point. The closures become the union of 

these extended neighborhoods which have non-empty intersection. Thus, we can 

infer that step 5 forms closures in O(n2) time. As a result, the overall time complexity 

of the algorithm is MO(n3) where M denotes the number of repetitions for the repeat-

until loop. 

 

3.4. Experimental Results of NC 

 

 The performance of NC algorithm is tested empirically. In this section, data 

sets, performance measures and competing approaches are introduced. The 

experimental results are discussed as well.  

 

3.4.1 Data sets 

 

In our experiments we used three groups of data sets. The first group is 

composed of 2- and higher dimensional data sets compiled from several sources 

(Frank and Asuncion 2010, Sourina 2008, Đyigün 2008). The properties and plots of 
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group 1 data sets are shown in Table B.2 in Appendix B. These include various 

shapes of clusters (circular, elongated, spiral, etc.), display intracluster and 

intercluster density variations, and contain outliers. Some example data sets for 

group 1 are presented in Figure 3.7. For example, train2 in Figure 3.7 (a) includes 

both circular and arbitrary shaped clusters with density variation among clusters, 

there is no outlier and no intracluster density change. data-c-cc-nu-n in Figure 3.7 (b) 

has circular and elongated clusters with both intracluster and intercluster density 

differences and contains outliers.  

 

             

 

Figure 3.7 Example data sets from group 1. (a) train2, (b) data-c-cc-nu-n, (c) data-
uc-cc-nu-n, (d) data-c-cv-nu-n 

 

For the second and third groups, we generated 3-dimensional data sets in 

order to test the strengths and weaknesses of the proposed approach in a controlled 
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experiment. The data set generation method for both groups is explained in detail in 

Section B.1 in Appendix B. Tables B.3 and B.4 in Appendix B includes the 

properties and the plots of groups 2 and 3 as well. Example data sets from groups 2 

and 3 are shown in Figure 3.8.  

 

 

   (a)        (b) 

 

(c)       (d) 

Figure 3.8 Example data sets from group 2. (a) D_0000: no intercluster density 
difference, no intracluster density variation, distant clusters, no outlier, (b) D_0100: 

no intercluster density difference, random intracluster density variation, distant 
clusters, no outlier, (c) D_1010: clusters with intercluster density difference, no 

intracluster density variation, close clusters, without outliers, (d) D_1211: clusters 
with intercluster density difference, smooth intracluster density variation, close 

clusters, with outliers 
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We compared the neighborhoods constructed by KNN, ε-neighborhood and 
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have common neighbors imply the potential for being connected. The closures 

obtained by taking the union of such neighborhoods are expected to form subclusters. 

The closer these subclusters are to the target clusters, the higher the accuracy of the 

neighborhoods. Hence, as an effectivity (accuracy) measure, the closures formed by 

merging the neighborhoods with shared points are compared with the target clusters.  

We use four measures (similarity coefficients) for this comparison: Jaccard 

index (JI), Rand index (RI), quasi-Jaccard index (QJI) and fraction of points having a 

pure neighborhood (PPN). We define these measures as follows.  

a: the number of point pairs that belong to the same target cluster and are assigned to 

the same closure.  

b: the number of point pairs that belong to the same target cluster but are assigned to 

different closures (implies division of clusters).  

c: the number of point pairs that belong to different target clusters but are assigned to 

the same closure (implies mixing of clusters).  

d: the number of point pairs that belong to different target clusters and are assigned 

to different closures.  

a
JI

a+b+c
=                   (3.1) 

a + d
RI  

a + b + c + d
=                  (3.2) 

a + b
QJI  

a + b + c
=                  (3.3) 

JI is one of the well-known external clustering validity indices. It takes values 

between zero and one, one indicating the target clustering is achieved. RI is also 

known as the simple matching coefficient. While JI focuses on point pairs correctly 

assigned to the same cluster, RI also takes into account point pairs correctly assigned 

to different clusters. Both indices penalize division of clusters as well as mixing 

them.  

The purpose of the NC algorithm is not clustering but neighborhood 

construction. Therefore, division of target clusters does not need to be penalized, but 

mixing clusters is a more serious problem. A “pure” neighborhood should have a 

minimum number of points mixed from other clusters. QJI is a measure to quantify 
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such mixes. It is a relaxed version of JI and it only penalizes mixing of points from 

different clusters.  

Our final measure PPN also penalizes only mixing of clusters. It indicates the 

fraction of points having a “pure” neighborhood (no neighbors from other clusters). 

PPN is calculated as follows. Suppose the target cluster labels of six points in a data 

set are 1, 1, 2, 2, 2, 3; and the neighborhood construction algorithm assigns the 

closure labels 1, 1, 2, 2, 3, 1 to these points. Then, in closure 1 two points (i.e. points 

1 and 2) are in the same target cluster 1 out of three points, and assignment of point 6 

to closure 1 causes mixing of target clusters 1 and 3. As all the points in closure 2 

(i.e. points 3 and 4) are in the same target cluster 2, there does not exist any mixing 

of clusters. Closure 3 is a singleton so no cluster mix is observed as well. Hence, 

closures 1, 2 and 3 contribute to PPN with 2, 2 and 1, respectively. To sum up, PPN 

is found as (2 + 2 + 1) / 6 = 5 / 6. PPN does not penalize separation of point 5 from 

points 3 and 4, but it penalizes mixing of point 6 with points 1 and 2 in the first 

closure.  

Among these four measures we think that RI and PPN reflect the 

performance of the neighborhood construction better, as they emphasize placing 

points from different clusters in different closures.  

A neighborhood should be homogeneous as similar points are placed 

together. Thus, the distances between the neighboring points are expected to have a 

small variance, whereas the variance of the distances to the points in the 

complementary set of the neighborhood is expected to be large. This implies that 

local properties around the points are extracted properly. We check the homogeneity 

of the neighborhoods by calculating the average of variances over the closures and 

the average of variances over the complementary sets of the closures in the data set. 

These two measures together indicate the homogeneity of the neighborhoods.  

We used KNN and ε-neighborhood for comparison. To the best of our 

knowledge, there is not a unique method to determine the number of neighbors, k, for 

the KNN. We used two k values, 5% and 10% of the number of points in the data set, 

and these two settings are labeled KNN1 and KNN2, respectively. These values 

ensure that k is smaller than the size of the smallest cluster in the data set. In some of 

the previous work (Koontz et al. 1976; Wong and Lane 1983; Karypis et al. 1999), k 
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is set to a fixed value within the range from 2 to 30. Our settings for k fall into this 

range.  

We applied the procedure used by Ester et al. (1996) for setting the value of 

ε. A k-distance graph is constructed for the whole data set and a threshold point is 

determined to find the maximum k-distance value. This maximum k-distance value 

gives the value of ε. As suggested by Ester et al. (1996) we set k = 4 in the graph and 

calculate a different ε value for each data set.  

 

3.4.3. Summary of Results 

 

The algorithm was coded in Matlab 7.9 and run on a PC with Intel Core2 Duo 

2.33 GHz processor and 2 GB RAM. For an example data set with three clusters, the 

neighborhoods of two points constructed by the competing approaches are shown in 

Figure 3.9. Both intercluster and intracluster density variations occur in all the three 

clusters.  Although points 140 and 166 are in the same cluster, the density around 

point 140 is much higher than the density around point 166 and their neighborhood 

properties are quite different. In KNN1, KNN2, ε-neighborhood and NC there are 9, 

18, 39 and 10 neighbors to point 140, respectively. The same figures for point 166 

are 9, 18, 3 and 17. None of the NC neighbors is from a different cluster, whereas 

both KNN2 and ε-neighborhood produce mixtures from other clusters. NC results in 

three closures, whereas KNN1, KNN2 and ε-neighborhood merge the two spiral 

clusters in Figure 3.9 and end up with two closures. Due to the mixing of clusters, 

homogeneity in the neighborhood is not ensured by either of KNN1, KNN2 and ε-

neighborhoods.  

The detailed results for the selected data sets are presented in Tables C.1, C.2, 

C.4, C.5, C.7 and C.8 in Appendix C. The average, standard deviation, minimum and 

maximum of JI, RI, QJI, PPN, the variance of distances within the neighborhood and 

in the complementary set of the neighborhood are summarized in Tables 3.1 and 3.2 

for the two groups of data sets. We test the statistical significance of the differences 

among competing approaches in terms of the mean values of performance measures. 

For both data set groups the NC algorithm performs significantly better than the 
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remaining three neighborhood approaches at 5% significance level in terms of PPN 

and QJI. ε-neighborhood is the second best, followed by KNN1 and KNN2. 

Relatively small standard deviations of NC performance measures show that it also 

yields robust results in cluster mixes.  

 

 

 

Figure 3.9 Example neighborhood sets for points 140 and 166 in data-c-cc-nu-n_v2. 
(a) KNN1, (b) KNN2, (c) ε-neighborhood, (d) NC algorithm 

 

Although there is not a significant difference between KNN1 and KNN2 in 

both groups of data sets, KNN1 has slightly higher average performance, indicating 

that smaller k values in KNN result in fewer mixes from other clusters. In group 1 

data sets JI and RI of NC are better than those of ε-neighborhood whereas in group 2 

ε-neighborhood has slightly higher JI than NC. In both groups of data sets NC 
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outperforms ε-neighborhood in terms of PPN and QJI, whereas JI and RI results for 

the two algorithms do not differ significantly. This implies that there are fewer 

cluster mixes in NC than in ε-neighborhood whereas the number of divided clusters 

in NC is higher than in ε-neighborhood. The JI and RI values of both KNN1 and 

KNN2 are significantly lower than ε-neighborhood and NC.  

The worst-case performance of NC (minimum of JI, RI, QJI and PPN) is 

better than the remaining three approaches in the group 1 data sets. The best 

performance of all four approaches (maximum of JI, RI, QJI and PPN) indicates that 

there exists at least approach for which target clusters are achieved in the group 1 

data sets.  

For group 2 the worst-case performance of NC is no more the best among the 

four competing approaches, instead ε-neighborhood wins in this case. The worst 

performance of NC in group 2 is observed for the data set D_1211. In this data set 

separation between two of the clusters is no larger than compactness of one of these 

clusters. That is, as the distance between clusters decreases, NC results in cluster 

mixes. In fact, this constitutes the main limitation of NC. In addition, KNN1 and 

KNN2 cannot find the target clusters in any of the data sets in group 2 whereas target 

clusters are achieved in the best performances of both ε-neighborhood and NC.   

In both groups of data sets the NC algorithm yields by far the smallest 

variance within the neighborhood, indicating that it results in more homogeneous 

neighborhoods. The highest variance in the complementary sets of the neighborhoods 

is also observed in NC. Note that the variance results of ε-neighborhood in group 2 

data sets are close to those of NC. Besides, NC and ε-neighborhood yield a more 

homogeneous neighborhood than KNN1 and KNN2.  

KNN1, KNN2, ε-neighborhood and NC find the target cluster labels exactly 

in 13, 8, 13 and 21 data sets, respectively, among the 69 data sets from the 

aggregation of both groups. When we compare the neighborhood construction 

algorithms in terms of cluster mixes, KNN1 and KNN2 mix clusters in 57 and 62 

data sets, respectively. ε-neighborhood has cluster mixes in 24 data sets, and this 

figure is 18 for NC. The cluster mixes in NC are mostly outlier mixes. This explains 

the reason for PPN and QJI levels still being higher than 0.90.  
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Results of Full Factorial Experiments for NC  

 

We conduct a factorial design and a full factorial experiment to understand 

the capabilities of the NC algorithm. According to our full factorial experimental 

design, the main and interaction effect plots are presented in Figures 10 through 13 

for PPN and RI. As seen in Figures 10 and 12 all factors except the existence of the 

outliers affect both performance measures significantly. As the intercluster density 

varies, performance of NC drops in both PPN and RI. PPN also decreases in the case 

of the intracluster density variation. Smooth density change has a more pronounced 

negative effect on PPN than random density variation does. However, random 

density variation in clusters slightly improves the RI performance. This may be 

attributed to the neighborhood construction done in four interacting steps. Smooth 

change in density gives rise to unavoidable breaks. As the distance between clusters 

decreases, the accuracy of the NC algorithm worsens.  

There is not a significant interaction among factors as Figures 11 and 13 

show. As the clusters become closer and there is smooth density variation in the 

clusters, it becomes difficult to come up with a purified neighborhood and PPN 

decreases sharply as shown in Figure 3.11. In this case, the largest distances between 

point pairs in the same cluster is the same as the separation between two clusters, and 

points from other clusters are taken as core neighbors since they are relatively closer.  

The run times of the three approaches for each group are presented in Tables 

C.3, C.6 and C.9 in Appendix C. As expected, the more sophisticated NC has 

significantly longer run times than KNN and ε-neighborhood. The run time increases 

as the number of points in the data sets and the number of dimensionality of the data 

set increase.  
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Table 3.1 Performance comparison of KNN1, KNN2, ε-neighborhood and NC for 
group 1 data sets 

  
KNN1 KNN2 

ε-

neighborhood 

NC 

algorithm 

JI 

average 0.79 0.74 0.86 0.88 

std.dev. 0.21 0.22 0.21 0.13 

min. 0.31 0.31 0.31 0.56 

max. 1.00 1.00 1.00 1.00 

RI 

average 0.80 0.75 0.88 0.91 

std.dev. 0.21 0.22 0.19 0.10 

min. 0.31 0.31 0.33 0.66 

max. 1.00 1.00 1.00 1.00 

QJI 

average 0.79 0.74 0.87 0.99 

std.dev. 0.21 0.22 0.21 0.02 

min. 0.31 0.31 0.31 0.91 

max. 1.00 1.00 1.00 1.00 

PPN 

average 0.85 0.81 0.90 0.99 

std.dev. 0.17 0.18 0.17 0.01 

min. 0.50 0.45 0.50 0.94 

max. 1.00 1.00 1.00 1.00 

VWN* 
average 0.57 0.71 0.49 0.22 

std.dev. 0.44 0.41 0.44 0.38 

VCN** 
average 0.15 0.06 0.74 0.94 

std.dev. 0.31 0.22 0.35 0.22 

*VWN : Variance within the neighborhood 
**VCN : Variance in the complementary set of the neighborhood 
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Table 3.2 Performance comparison of KNN1, KNN2, ε-neighborhood and NC for 
group 2 data sets 

  
KNN1 KNN2 

ε- 

neighborhood 

NC 

algorithm 

JI 

average 0.26 0.25 0.76 0.74 

std.dev. 0.04 0.00 0.25 0.26 

min. 0.24 0.24 0.33 0.25 

max. 0.38 0.25 1.00 1.00 

RI 

average 0.28 0.25 0.89 0.89 

std.dev. 0.10 0.00 0.15 0.17 

min. 0.24 0.24 0.51 0.41 

max. 0.60 0.25 1.00 1.00 

QJI 

average 0.26 0.25 0.82 0.88 

std.dev. 0.04 0.00 0.24 0.21 

min. 0.24 0.24 0.57 0.39 

max. 0.38 0.25 1.00 1.00 

PPN  

average 0.30 0.29 0.86 0.91 

std.dev. 0.06 0.00 0.19 0.17 

min. 0.28 0.28 0.38 0.31 

max. 0.50 0.29 1.00 1.00 

VWN* 
average 0.95 1.00 0.12 0.01 

std.dev. 0.16 0.00 0.12 0.01 

VCN** 
average 0.05 0.00 0.98 0.99 

std.dev. 0.15 0.00 0.03 0.02 

*VWN : Variance within the neighborhood 
**VCN : Variance in the complementary set of the neighborhood 
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Figure 3.10 Main effect plots of group 2 data sets for PPN 

 

 

 

Figure 3.11 Interaction effect plots of group 2 data sets for PPN 
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Figure 3.12 Main effect plots of group 2 data sets for RI 

 

 

 

Figure 3.13 Interaction effect plots of group 2 data sets for RI 
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and the performance of the NC algorithm. The scatter plots in Figure 3.14 show that 

there is positive correlation between RI and MSCR (0.54), and between PPN and 

MSCR (0.53). CV1 and CV2 are negatively correlated with the two performance 

measures. CV1 has correlations of -0.53 and -0.48 with RI and PPN, respectively. 

The same figures are -0.56 and -0.52 for CV2. That is, as the clusters become more 

separated from each other, it gets easier to find the target clusters. Besides, both 

intracluster and intercluster density variations disrupt the performance of the 

algorithm.  

 

 

Figure 3.14 Scatter plots for the data set characteristics (MSCR, CV1 and CV2) 
versus the performance measures (RI and PPN) 

 

The results indicate that the NC algorithm acts as a preprocessing step before 

any clustering attempt and yields quite homogeneous neighborhoods. It handles 

density differences in the local regions up to a certain extent and it prevents cluster 

mixes. In order to ensure the homogeneity of the neighborhoods NC is characterized 

by placing more weight to the local view rather than the global. Particularly, ignoring 

the global view results in a larger number of closures than the number of target 

clusters in the data sets whose clusters become visible only at a relatively high 

resolution.  
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Main limitation of NC occurs when the distance between the clusters in a data 

set is equal to or smaller than the maximum distance within the cluster. In this case 

cluster mixes might occur as the points from other clusters become the core 

neighbors.  

Unlike NC, ε-neighborhood needs an input parameter and it is crucial to set 

this parameter correctly. Since ε-neighborhood is based only on the distance 

information, it fails when there exist density differences in the neighborhood. 

Besides, the use of a single distance threshold constrains the performance of the 

approach for the cases having different density regions in the data set and causes 

cluster mixes in the neighborhoods. As the distance parameter is set considering the 

whole data set, ε-neighborhood has a more global view than NC and results in fewer 

closures. Performances of KNN1 and KNN2 fall behind ε-neighborhood and NC 

because KNN does not consider distance, density and connectivity during 

neighborhood construction. Although the value of k is set smaller than the minimum 

cluster size, cluster mixes occur in the neighborhoods. Lower k values perform 

slightly better as revealed in some results. 

 

3.5. Discussion of NC Results 

 

In the previous work only proximity and direction information is taken into 

account to explore the local properties in constructing neighborhoods. However, 

these are not sufficient when there are density variations in a local region. As a 

remedy density-based connectivity through GG is used in the proposed NC 

algorithm. The experimental results indicate that the idea is effective and relatively 

more purified neighborhoods are constructed. As the number of cluster mixes in the 

purified neighborhood is small, it enables effectivity in clustering. Thus, NC can be 

used as a preprocessing step for a neighborhood-based clustering method. If the 

succeeding clustering algorithm is specialized in the merging operations, target 

clusters can be found with more ease and accuracy.  

The focus on local properties limits the global view of NC which causes tight 

and homogeneous neighborhoods. In order to handle the data sets where the 
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distances between clusters are small compared to within cluster distances, a 

collective evaluation of the proximity, density and connectivity information is 

needed. NC can also be improved for isolation of outliers from the clusters. Finally, 

ways of reducing the run time of NC can be developed.  

Although the main motivation of the NC algorithm is extraction of local 

properties for clustering, NC can also be used as a nearest-neighbor classifier for the 

classification problem. Moreover neighborhoods constructed by NC can be used in 

calculating connectivity for cluster validation purposes.  
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CHAPTER 4  

 

 

A DENSITY-BASED CLUSTERING APPROACH IN GRAPH 

THEORETIC CONTEXT  

 

 

 

In this chapter, we propose a new density-based clustering algorithm. A graph 

theory context is adopted to address arbitrary shapes and heterogeneous densities in 

two or higher dimensional space. Unknown number of clusters is assumed. First, the 

density-based connectivity relations in the neighborhood are considered in closure 

(subcluster) formation. Next, a hierarchical agglomeration scheme is provided in 

order to come up with the final clusters.  

In Section 4.1, the density-based and hierarchical algorithms are reviewed 

briefly. The three-phase heuristic (NOM) is presented in Section 4.2. Experimental 

results are presented in Section 4.3, and results are discussed in Section 4.4. 

 

4.1. Literature Review 

 

The main ideas behind the density-based clustering algorithms are 

connectivity and density, and these two characteristics facilitate handling clusters 

with arbitrary shapes. Salient works in density-based clustering include DBSCAN 

(Ester et al. 1996), OPTICS (Ankerst et al. 1999) and GDBSCAN (Sander et al. 

1998). The reader can refer to Chapter 3.1 for the main properties of these 

algorithms.  

Hierarchical agglomerative clustering methods construct clusters in stages. 

Among these CURE (Guha et al., 1998) uses a fixed number of representative points 

to define the clusters. Agglomeration of a cluster pair is conducted considering the 
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minimum distance between representatives and this is repeated until the given 

number of clusters is achieved. Although CURE can handle arbitrary shapes, the 

parameters including the number of representative points, the number of clusters and 

the shrink factor should be set a priori. One of the complications of CURE is 

handling intracluster and intercluster density variations. CHAMELEON (Karypis et 

al., 1999) uses k-NN to partition the data set. Merging of these partitions depends on 

the graph connectivity. That is, relative inter-connectivity and relative closeness are 

calculated between each cluster pair and compared with a given threshold. Like 

CURE, CHAMELEON can extract arbitrary shaped clusters with different sizes and 

densities, but cannot avoid problems due to density variations within clusters as 

distances are not measured relative to neighborhoods. Since we are interested in 

arbitrary shaped clusters with varying densities, we propose the following procedure 

for merging subclusters. 

 

4.2. Neighborhood Construction – Outlier Detection – Merging (NOM) 

Algorithm 

 

 Our algorithm is composed of three phases: neighborhood construction, 

outlier detection and merging (Đnkaya et al. 2010a and 2010b). The first phase uses 

ideas from (a) density-based algorithms to handle arbitrary shapes and (b) graph 

theoretic representations to address varying densities. A neighborhood is constructed 

for each data point using the proximity and connectivity information. The second 

phase focuses on outlier detection. Local Outlier Factor (LOF) proposed by Breunig 

et al. (2000) is revised for the neighborhoods obtained. In the third phase, a 

hierarchical agglomeration is performed where closures are merged considering the 

improvement in separation-to-compactness ratio subject to consistency with their 

neighborhood. 
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4.2.1. Notation in NOM 

 

In describing NOM, we use the following additional notation to the NC 

algorithm in Chapter 3.  

m, n  indices for clusters 

GG

ijd
  Gabriel Graph (GG) distance between points i and j 

i
lrd   local reachability distance for point i 

i
LOF   local outlier factor for point i 

i(m)  point i in cluster m  

MSTm set of edges in the Minimum Spanning Tree (MST) of the points in 

cluster m 

MSTi(m) set of edges in the MST of the points in the neighborhood of point i in 

cluster m 

GGij set of edges in the GG of the points that are in the ball centered at the 

midpoint of points i and j with diameter dij 

NGGm  set of clusters in the GG neighborhood of cluster m 

Cm  set of points in cluster m  

sepmn  single link separation between clusters m and n 

comp(i)m compactness for the neighborhood of point i in cluster m  

 

4.2.2. Phases of NOM Algorithm 

 

Three phases of the NOM algorithm are described below. 

 

Phase 1. Neighborhood construction 

This is done with the NC algorithm described in Chapter 3. The resultant 

CSi’s are the neighborhoods of points i.  
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Phase 2. Outlier detection 

An outlier is a point that shows abnormal behavior relative to all clustering in 

a data set. In the literature, there are algorithms that extract both clusters and outliers, 

such as CURE (Guha et al., 1998) and DBSCAN (Ester et al., 1996). However, they 

specialize in the detection of global outliers, and neither intercluster nor the 

intracluster density variations are considered. In Breunig et al. (2000), points that are 

outlying relative to their local neighbors are defined as local outliers. They use a 

parameter to define the number of points in a neighborhood and compute a Local 

Outlier Factor (LOF) for each point using this neighborhood. LOF represents the 

degree of being an outlier based on relative comparison of the average reachability 

distances of a point and its neighbors.  

We are interested in both global and local outliers. Thus, we identify the 

outliers using a revised version of LOF. Instead of using a fixed parameter to define 

the size of the neighborhood, we use the neighborhoods constructed in step 1. As the 

NC algorithm makes use of GG connectivity, resulting neighborhoods can have 

different sizes and arbitrary shapes. Euclidean distance calculation may mislead the 

density calculation as it considers the direct links only. In GG distance calculation, 

reachability is ensured via indirect edges with shorter edge lengths, so we claim that 

it compensates for the intracluster density variations. Thus, we consider the GG 

distance between two points in local reachability calculation.  

The GG distance takes into account the connectivity between two points. It is 

the edge with the maximum length in the GG of the points circumscribed by the ball 

passing through points i and j, i.e. { }
( , ) GG

max
ij

GG

ij kl
k l

d d
∈

= . Then, the revised local 

reachability density and LOF becomes 
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=

∑
. Given a 

threshold level, a, if { }
CS

max
i

i j
j

LOF a LOF
∈

> , then point i is called a local outlier. In other 

words, the reachability density around the neighborhood of a local outlier is a times 

greater than the reachability density around its neighboring points. This implies that a 

local outlier shows inconsistency in terms of reachability density in its locality.   
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Phase 3. Merging 

At the end of the first phase, we have closures Clm obtained from the NC 

algorithm. After outliers are separated in the second phase, NC closures may consist 

of divided clusters. As the first two phases take into account density variations in the 

neighborhood, they depend on the local view. The whole data set is not considered, 

so there is a lack of global view in the clustering solution. As a remedy, a 

hierarchical agglomerative procedure is used for merging the neighboring clusters. In 

order to consider both global and local patterns in the data, improvement in the 

separation-to-compactness ratio and dispersion of the neighbors are taken into 

account as the two merging criteria. Clusters subject to merging are determined by 

using the GG. Two clusters are in the same GG neighborhood if the ball drawn 

across the nearest two points of a cluster pair does not include any points from other 

clusters. The following two criteria are then checked for merging.  

 

Criterion 1. Improvement in the separation-to-compactness ratio 

We define the potential compactness of a cluster as the most inconsistent 

edge in the neighborhoods it contains. MSTs are constructed to identify the 

connections with the minimum total length in a cluster and in all its relevant 

neighborhoods. Then, each edge in the cluster’s MST is compared with the edges in 

the MSTs of the neighborhoods within cluster m. Potential compactness of cluster m 

is defined as 
( , ) MST

( ) ( )

max ,
m

ij ij

m
i j

i m j m

d d
pcomp

comp comp∈

  
=  

  
 where compactness value for the 

neighborhood of point i in cluster m is { }
( )

( )
( , ) MST

max
i m

i m pq
p q

comp d
∈

= . 

If the current cluster had to be divided, the edge that would define the 

separation would most probably be the most inconsistent edge with its neighborhood 

identified by 
mpcomp . 

Let the candidate clusters for merging be 1 and 2 where { }
1 2C , C

( *, *) arg min ij
i j

i j d
∈ ∈

= . 

Then 
* *i jd  is the separation between clusters 1 and 2. Merging them will eliminate the 

separation 
* *i jd  and it will replace the potential compactness for the merged cluster. 
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A new separation value will emerge between the merged cluster and the cluster 

nearest to either 1 or 2.  

We find out whether the current separation-to-compactness ratio will improve 

after the merging. We normalize the separation to account for heterogenity and 

calculate the current separation-to-compactness ratio as 

* * * *
12

*(1) *(2)

max ,
i j i j

i j

d d
csep

comp comp

  
=  

  
 and 

{ }
12

1 2

_
max ,

csep
current sc

pcomp pcomp
= . 

We consider the lower bound { }
1

2

1 2
NGG
NGG
2, 1

min ,m n
m
n
m n

lb sep sep
∈
∈
≠ ≠

=  as the possible separation 

value after merging. If we merge clusters 1 and 2, the bound on the new separation-

to-compactness ratio becomes * *

12

_
i jlb d

new sc
csep

≥  where 
* *i jd  is used to normalize the 

lower bound on separation, and 12csep  becomes the new normalized compactness of 

the merged cluster.  

If new_sc is greater than current_sc, we conclude that the separation-to-

compactness ratio improves after merging. However, this might still be an incorrect 

signal for merging, especially for the heterogeneous data sets with large distance 

variations between clusters. Although the ratio seems improving, the new 

compactness value after merging might be inconsistent with its neighborhood. For 

this reason, a second check is conducted for the consistency of the neighborhood.  

 

Criterion 2. Heterogeneity of edge lengths in the neighborhood  

If the candidate clusters for merging satisfy the first criterion, we consider the 

separation 12csep between these two clusters as the potential compactness. To merge, 

this new edge should be consistent with the neighborhoods of its end points. Hence, 

merging is performed if this edge does not worsen the existing dispersion of edge 

lengths in the neighborhoods, that is 

{ }

{ }

{ }

{ }
*(1) *(2)

*(1) *(2)

( , ) MST ( , ) MST

12

( , ) MST ( , ) MST

max max
max ,

min min
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i j

ij ij
i j i j

ij ij
i j i j
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∈ ∈

∈ ∈

 
 

≤  
 
 

.              (4.1) 

The pseudocode of the NOM algorithm is provided in Section D.1 in 

Appendix D.   



 

 
 

83 

4.2.3. Computational Complexity of NOM 

 

The time complexity of the NC algorithm is MO(n3) explained in Section 

3.3.4 whereas computational complexity of the outlier detection phase is O(n) as 

outlier check is performed for every point in the data set. Merging continues until 

none of the cluster pairs satisfy the two merging criteria simultaneously. To sum up, 

the overall time complexity of NOM is MO(n3).  

 

4.3. Experimental Results for NOM 

 

Performance of NOM is tested on three groups of data sets. Group 1 data sets 

are taken from the literature (Frank and Asuncion 2010, Sourina 2008, Đyigün 2008) 

whereas groups 2 and 3 are 3-dimensional control groups to explore the capabilities 

of NOM. The details of data generation mechanisms for groups 2 and 3 are explained 

in Section B.1 in Appendix B. The data set properties and plots for three groups are 

presented in Sections B.2 through B.6 in Appendix B, respectively. Note that there 

are 45 and 24 data sets in groups 1 and 2, respectively. Target clusters are either 

given by the data source or found by visual inspection. The plots of some example 

data sets are provided in Figures 4.1 and 4.2.  

 

 

     (a)            (b)                             (c)                  (d) 

Figure 4.1 Group 1 data sets (a) train2, (b) data-c-cc-nu-n, (c) data-uc-cc-nu-n, (d) 
data-c-cv-nu-n 

 

Four performance criteria are used in evaluating the results: the number of 

clusters, Jaccard index (JI), Rand index (RI) and quasi-Jaccard index (QJI). JI and RI 
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are well-known external cluster validity indices. JI focuses only on the number of 

point pairs that belong to the same target cluster and assigned to the same cluster 

whereas RI also considers the number of point pairs that belong to different target 

clusters and assigned to different clusters. Both of them penalize the divisions and 

mixes of target clusters. In NC we work on neighborhood construction and we aim to 

have no mixes from other clusters in the neighborhoods. In order to measure this, we 

use the relaxed version of JI, namely QJI, which penalizes only the number of point 

pairs that belong to the same target cluster and assigned to different clusters. Each 

measure is calculated for the target clustering solution versus found solutions. The 

algorithm is coded in Matlab 7.9 and run on a PC with Intel Core2 Duo 2.33 GHz 

processor and 2 GB RAM. 

 

 

(a)                                           (b) 

 

(c)                                           (d) 

Figure 4.2 Group 2 data sets (a) D_0000: no intercluster density difference, no 
intracluster density variation, distant clusters, no outlier. (b) D_0100: no intercluster 
density difference, random intracluster density variation, distant clusters, no outlier. 

(c) D_1010: clusters with intercluster density difference, no intracluster density 
variation, close clusters, without outlier. (d) D_1211: clusters with intercluster 

density difference, smooth intracluster density variation, close clusters, with outlier. 
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The performances of NC, outlier detection (OD) and NOM after merging are 

compared with the results of k-means, single-linkage (SL) and DBSCAN approaches. 

In our comparison k-means represents the partitional clustering approach and SL the 

hierarchical clustering approach. SL also has a graph theoretic view as it has an 

analogy with MST construction. DBSCAN is selected as a representative of the 

density-based clustering algorithms. In order to have a fair comparison among these 

algorithms, k-means is run for several values of k in the range between 2 and 10% of 

the points in the data set with increments of 1, and the one with the best JI is used. In 

the same manner, for DBSCAN, among several MinPts settings the one with the best 

JI is selected for comparison.  

The only parameter in NOM, the threshold level a, is set to 2 after pilot runs. 

The details of the results for some sample data sets are given in Tables D.1 through 

D.9 in Appendix D. In Tables 4.2 and 4.3 the summary of the results for the entire 

group 1 and group 2 data sets are provided. Clustering results for an example data set 

is provided in Figure 4.3. For this data set, JI values with k-means, single linkage and 

DBSCAN algorithms are 0.59, 0.49 and 0.50, respectively. Results of both NC and 

NOM are superior with respective JI values of 0.98 and 1.  

According to Table 4.1, NOM gives the best average and minimum values of 

JI and RI over 45 data sets in group 1, as well as the smallest standard deviation. For 

QJI the best average performance and the smallest standard deviation are achieved 

by NOM, but k-means is better in terms of the minimum. That is, NOM results in 

clustering solutions close to target clusters. Moreover, the number of cluster mixes is 

fewer in NOM on the average. 

For group 1 data sets, which include arbitrary shapes, intercluster and 

intracluster density variations, NOM gives the best performance among all the 

clustering algorithms. Using density-based connectivity through GG, NC is the initial 

phase for detecting both arbitrary shapes and density changes in the clusters. Outlier 

detection based on the neighborhoods ensures separation of such points in less dense 

regions. Merging is performed wherever the separation-to-compactness ratio 

indicates an increase. The relative evaluation of compactness and separation values 

according to the neighborhoods in clusters helps handling arbitrary shapes and 

density differences. 
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In data sets in which clusters are well-separated and there are ruptures in the 

intracluster density variations (e.g. data_circle_20_1_5_10 and data_mix_uniform_ 

normal), NOM solution has more clusters than the target solution whereas the 

clustering solutions obtained by single-linkage and DBSCAN are better. The main 

reason is the lack of a global view in NOM. In particular, both the NC and the outlier 

detection phases of NOM have a local view as the decisions are made depending on 

the information gathered from the neighborhoods. Merging in the third phase tries to 

bring about a global perspective by checking the improvement at a larger scale, that 

is, neighborhoods of the clusters instead of points. However, the scale we consider 

seems to be insufficient to fully realize this global perspective. Particularly, current 

separation value (csep12) and new separation-to-compactness ratio (new_sc) need a 

more global assessment scheme.  

In group 1 experiments target clusters are achieved in 9, 32, 17, 13, 16 and 23 

data sets for k-means, single linkage, DBSCAN, NC, outlier detection phase of 

NOM, and NOM, respectively. Note that merging operations in the third phase 

worsen the performance of NOM in three data sets. In fact these three data sets are 

the only ones that have JI smaller than 0.80 in NOM. One of them (train3) having the 

worst performance in JI (0.59), includes noise rather than a few outliers. JI is 

calculated greater than 0.90 after NC and outlier detection phases and most of the 

noise is detected as outlier. However, in the merging phase of NOM noise is 

perceived as a cluster showing similar density properties, so most of these points are 

merged and clusters made up of noise are formed.  

We also tested the noise removed version of this data set and NOM was 

successful in finding the target clusters in this version. As a result, we can infer that 

NOM is not capable of handling noise. The remaining two data sets that have JI 

smaller than 0.80 (data_circle_5_10_8_12 and data_circle_3_10_8_12) include 

intermingled clusters. JI is greater than 0.75 after NC and outlier detection phases. 

However, the close proximity between the clusters prevents the algorithm from 

detecting different density regions by the separation-to-compactness ratio, and the 

clusters are merged in the third phase. Consequently the limitations of NOM are 

handling data sets with intermingled clusters and noise present in the space between 

the clusters.  



 

 
 

87 

Group 2 is used to explore the main limitations and strengths of NOM 

further. In this controlled experiment target clusters are achieved in 12, 6, 8, 7 and 7 

data sets with single linkage, DBSCAN, NC, outlier detection, and NOM, 

respectively. k-means could not find the target clusters in any of the data sets in 

group 2, although it seems the best in terms of RI. The letters in group 2 are non-

convex, but the shapes are not intertwined. Thus, the center calculation in k-means is 

still useful, and k-means shows an average performance in all data sets. As seen from 

Table 4.1 NOM is no more the best performer, and DBSCAN and k-means have 

higher JI averages. However, both algorithms find the target clusters in fewer data 

sets than NOM. Single linkage, having the highest number of successes, does not 

show good performance in the entire group. DBSCAN having the highest JI achieves 

the target clusters in only 6 data sets. NOM finds the target clusters in 7 data sets but 

its JI average is only 0.758. In fact, NOM works well in certain data sets as seen in 

Tables D.1 and D.2 in Appendix D, and performance becomes poor for a certain 

group. Factorial analysis is conducted to determine the data set properties for which 

NOM has poor and superior performance.  

The effects of the four factors in Table B.1 in Appendix B on NOM’s 

performance (RI) are presented in Figure 4.4 (a). When the density differs among the 

clusters and the distance between clusters is close (intercluster distance is equal to 

the distance between the points in the same cluster), RI decreases. The negative 

effect of smooth density variation is higher than the random intracluster density 

variation. Note that the existence of outliers does not have a significant effect on the 

performance of NOM. According to Figure 4.4 (b) the negative effect of the smooth 

density change increases when the intercluster distance is close. When we exclude 

the data sets having these properties, the remaining have JI values higher than 0.80. 

Thus, NOM is capable of handling data sets with intracluster density variations and 

intercluster density differences when the distance between the clusters is greater than 

the distance between the closest points in the same cluster. Otherwise, the mixing of 

clusters seems unavoidable.  

To summarize, despite its high performance in JI, RI and QJI, k-means cannot 

find the target clusters. Single linkage performs well when there is no intercluster 

density difference. DBSCAN mixes outliers and its performance decreases 
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dramatically when there is intracluster density variation (either random change or 

smooth change) and clusters are close. NOM can handle data sets having arbitrary 

shapes, intercluster density differences and intracluster density variations, but it fails 

when clusters are extremely close or when there is noise. To sum up, each clustering 

approach has its own weaknesses and strengths depending on the characteristics of 

the data set taken. 

Execution times of competing approaches and each phase of NOM are given 

in Tables D.3, D.6 and D.9 in Appendix D for selected data sets. Execution times of 

NOM are significantly higher compared to k-means, single-linkage and DBSCAN. It 

spends much time for GG construction, especially for the data sets having a large 

number of points. Outlier detection takes less time as it requires only one pass of the 

entire data set. Merging time increases when the number of closures generated by 

NC (divided clusters) is higher than the number of target clusters (e.g. data_circle). 

As the dimensionality of the data set increases, the execution times of NOM increase 

significantly.  

The computational complexity of k-means, single-linkage and DBSCAN 

algorithms are O(kn), O(n2) and O(n logn), respectively, whereas NOM has a higher 

computational complexity with MO(n3).  

 

 

     (a)      (b)     (c)     (d) 

Figure 4.3 Clustering results for data-uc-cc-nu-n: (a) k-means, (b) Single linkage, (c) 
DBSCAN, (d) NOM 
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Table 4.1 Summary results for group 1 data sets 

k-

means 

Single 

linkage DBSCAN NC 

Outlier 

detection NOM 

JI 

average 0.756 0.937 0.940 0.875 0.875 0.955 

std.dev. 0.231 0.163 0.139 0.128 0.137 0.088 

min 0.278 0.453 0.504 0.558 0.456 0.591 

RI 

average 0.856 0.955 0.963 0.908 0.908 0.967 

std.dev. 0.138 0.119 0.095 0.101 0.107 0.065 

min 0.580 0.532 0.531 0.659 0.639 0.648 

QJI 

average 0.954 0.947 0.972 0.996 0.998 0.981 

std.dev. 0.087 0.145 0.097 0.016 0.012 0.080 

min 0.659 0.460 0.504 0.905 0.916 0.593 

 

 

Table 4.2 Summary results for group 2 data sets 

k-

means 

Single-

linkage DBSCAN NC 

Outlier 

detection NOM 

JI 

average 0.858 0.774 0.877 0.740 0.739 0.758 

std.dev. 0.127 0.255 0.183 0.257 0.257 0.256 

min 0.623 0.328 0.559 0.248 0.248 0.247 

RI 

average 0.962 0.887 0.960 0.905 0.891 0.886 

std.dev. 0.036 0.153 0.060 0.170 0.166 0.196 

min 0.895 0.567 0.843 0.412 0.395 0.285 

QJI 

average 0.938 0.789 0.939 0.878 0.878 0.867 

std.dev. 0.041 0.238 0.119 0.206 0.206 0.218 

min 0.876 0.381 0.674 0.305 0.306 0.259 

 

 



 

 
 

90 

R
I 10

1,00

0,95

0,90

0,85

0,80

210

10

1,00

0,95

0,90

0,85

0,80

10

Intercluster density difference Intracluster density variation

Intercluster distance Outlier

Intercluster density difference

Intercluster distance

Outlier

Intracluster density variation

210 10 10

1,0

0,8

0,6
1,0

0,8

0,6

1,0

0,8

0,6

Interclust er

densit y

difference

0

1

Int racluster

2

densit y

variation

0

1

Interclust er

distance

0

1

 

   (a)       (b) 

Figure 4.4 (a) Main effects of factors on RI, (b) Interaction effects 

 

4.4. Discussion of NOM Results 

 

NOM is a new density-based clustering algorithm, which uses graph theoretic 

concepts such as proximity and connectivity as well as density of points in a data set. 

It has three phases, namely neighborhood construction, outlier detection, and 

merging of subclusters. It assumes that the number of clusters is unknown. 

Compared to some other clustering approaches, one of the advantages of NOM is 

that no parameters need to be set in the neighborhood construction, and only a single 

parameter (threshold level a) is needed in the rest of NOM. 

NOM is tested on a number of data sets having various properties and 

compared with some well-known competing approaches. When the intercluster 

distances are larger than the intracluster distances, NOM is capable of finding 

clustering solutions close to the target clusters with arbitrary shapes and different 

densities. Density, distance and connectivity based mechanisms in NOM successfully 

reveal the local characteristics inherent in the data set. Moreover, NOM can detect 

the outliers in these data sets although it is not successful with noise. Even in the first 

phase of NOM, the closures obtained after the neighborhood construction are the 

same as the target clusters for some data sets. Evaluation of compactness and 

separation measures relative to the neighborhood densities strengthens the 

capabilities of NOM in handling arbitrary shapes and density variations.  
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Main limitation of NOM is the lack of collective information from a global 

perspective. The interrelations among the points are evaluated taking a local view by 

focusing on the pairings of clusters, and this results in excessive division of target 

clusters. More information is needed to handle close clusters having intracluster 

density variations. Besides more globally sensitive mechanisms than the proposed 

phase 3 of NOM can be developed to test merging of divided clusters. Another 

complication of NOM is high execution times, but these durations can be reduced 

using efficient coding schemes.  
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CHAPTER 5  

 

 

CONSTRUCTION OF EXTERNAL SHAPES  

 

 

 

An external shape is the polygonal representation of the boundary of a 

connected finite set of points. Although this concept is introduced in computational 

geometry, it is also used in clustering for the representation of clusters and the 

formation of clusters from closures/subclusters. Firstly, a finite set of points in 

abstract form are used for clustering purposes, yet generating the external shapes of 

these points delineates the clustering results. Secondly, discriminative properties of 

clusters are defined by the points on the boundary or the external shape. As the 

boundary points of different closures/subclusters are adjacent, the dissimilarity 

among these boundary points can be explored further to yield the final clusters. The 

internal points are already connected, and there is little need to consider them during 

this process. Thus, dealing with the boundary points of subclusters reduces the 

number of data points to be processed and hence reduces the demanding memory 

requirements. This data set reduction also strengthens the scalability of a clustering 

algorithm.  

A convex hull represents the external shape of a finite set of points in a 

particular form. However, the external shape of a cluster may inherently be non-

convex in which case we need to find a non-convex hull. Generation of a non-convex 

hull is relatively more complicated. In fact, there is not a unique non-convex hull of a 

set of points. Depending on the degree of detail on the boundary, several non-convex 

hulls can be generated. An example is given in Figure 5.1. Figure 5.1 (a) shows the 

original data set. The lines connecting the boundary data points in Figure 5.1 (b) 

define the convex hull. Figures 5.1 (c) and (d) provide examples for a smooth and a 
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ragged (more detailed) non-convex hull. The ragged non-convex hull in Figure 5.1 

(d) distinguishes the external shape of the data set better than the ones in Figures 5.1 

(b) and (c). 

 

 

(a)                         (b) 

 

  (c)                   (d) 

Figure 5.1 Example external shapes for a set of points. (a) Original data set. (b) 
Convex hull. (c) A smooth non-convex hull. (d) A ragged non-convex hull. 

 

In this chapter, we focus on generation of external shapes for the purpose of 

clustering formation. We propose two algorithms, DTC and IS, designed to find the 

external shape of a finite set of points and extract the external shape (boundary or 

outline) of given clusters/closures in a data set. The former is a major issue in 

classical pattern recognition. The latter is particularly useful in finding the external 

shapes of the closures or (sub)clusters generated by our neighborhood construction 

algorithm NC. Both of the proposed algorithms are not a substitute for a clustering 
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algorithm as they do not perform any division or merging operations on the existing 

closures/(sub)clusters.  

 Section 5.1 introduces the preliminary concepts used in boundary 

construction. Section 5.2 gives the literature on the external shape construction. The 

contribution of the work is also clarified in this section. In Section 5.3, the DTC 

algorithm is explained in detail and some examples are presented. Section 5.4 

presents the IS algorithm and its examples. Experimental results for both DTC and IS 

are presented in Section 5.5. Finally we conclude with the capabilities and limitations 

of both algorithms in Section 5.6.  

 

5.1. Preliminary Concepts 

 

Triangulation decomposes a polygon, which is composed of a finite set of 

points, into a set of triangles. In triangulation of a polygon if an edge belongs to a 

single triangle, it is referred to an outer edge, and the edges that are shared by other 

triangles are inner edges. The outer edges form the boundary (outer frame) of the 

polygon. An example is shown in Figure 5.2.  

 

 

Figure 5.2 Triangulation of a data set. 
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Delaunay triangulation (DT) is a special triangulation which forms (d+1)-

simplices in d-dimensional space. Note that a d-dimensional simplex (d-simplex) is a 

polytope which is the convex hull of its d+1 vertices. Examples for 2- and 3-

simplices are presented in Figure 5.3. DT helps to find the convex hull of a point set 

and to identify the topological structure of a graph. Main properties of DT are: (1) 

An edge is inserted between the two points p and q, if the ball having diameter dpq 

and passing through points p and q is empty. (2) The circumsphere defined for every 

simplex is empty and does not contain any other points. (3) The nearest neighbor of a 

given point is always connected to that point by an edge of a simplex (Goodman and 

O’Rourke, 2004).  

 

                  

Triangle (2-simplex)   Tetrahedron (3-simplex) 

Figure 5.3 Examples of 2- and 3-simplices 

 

The non-convex hull of a set of points is not unique as we have shown in 

Figure 5.1. Thus, the desired degree of detail (smoothness or raggedness) in the 

external shape needs to be controlled by some parameter(s). In the literature a set of 

parameters are discussed in Section 5.2 to control the degree of detail.  

A boundary is a set of connected points, i.e. each point on a boundary has a 

degree of at least two. Disconnectivity arises when a point on the boundary does not 

satisfy this degree condition, and it causes undesired discontinuities on the boundary.  

In this chapter, it is assumed that points in the same closure/cluster are 

connected. Thus, breaking some points off the closure/cluster and forming a new 

closure/cluster cause disconnectivity.  
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5.2. Literature Review 

 

In computational geometry there exists a unique convex hull for a finite set of 

points and there are efficient and fast methods to find the convex hull, such as 

Quickhull by Barber et al. (1996). In this section we review the non-convex hull 

generation approaches found in literature.  

Non-convex hull generation methods can be classified into two: influence-

region based and edge based approaches.  In the influence-region based approaches 

each point has an influence region, such as a ball or a square, and the connectivity of 

these influence-regions helps to identify the non-convex parts of the shape. In an 

early work (Richards 1977) a space filling hull is generated using the union of the 

balls with radius r. If the intersection of a pair of balls includes points on the border, 

an edge is inserted between these points and they constitute the space filling graph 

which denotes the boundary of the shape. Examples for the space filling hull and the 

space filling graph are provided in Figures 5.4 (c) and (d) for a θ shaped letter.  

A fundamental work (Edelsbrunner et al. 1983) generalizes the convex hull of 

a point set by using balls with radius 1/α. The real valued parameter α gives the 

degree of detail in the non-convex shape. For positive α, the external shape is formed 

by taking the intersection of the balls with radius 1/α, and it includes only some 

obvious extreme points. The disk becomes a halfplane with α = 0, and the external 

shape is equivalent to the intersection of these halfplanes, i.e. the convex hull. The 

complement of the ball with radius -1/α is considered for the negative values of α. As 

α goes to -∞, the shape converges to the point set itself. α-shape has deficiencies for 

the point sets having density variations because a single α setting is used. As a 

remedy, weighted α-shape is introduced (Edelsbrunner 1992), and the flexibility is 

ensured by defining a specific weight for each point. In the same work the 

relationship between the space filling hull and the weighted α-shape is explored in 

detail and it is shown that these two approaches are equivalent for a certain weight 

setting. 
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(a)          (b) 

 

(c)          (d) 

Figure 5.4 An example for space filling hull and space filling graph. (a) Data set. (b) 
Weighted balls for the data set. (c) Space filling hull. (d) Space filling graph. 

(Melkemi and Djebali 2001) 

 

In the s-shape proposed by Chaudhuri et al. (1997) a point set is partitioned 

into square grids with side length s. A procedure is proposed to optimize the 

parameter s. The external shape is obtained by taking the union of these square grids, 

hence the shape includes zigzags. In order to overcome this limitation the r-shape is 

introduced. The points are classified as r-interior or r-extreme points using the balls 

with radius r. Edges are inserted between r-extreme points if the boundaries of the 

balls with radius r have a nonempty intersection on the boundary of the non-convex 

hull. In this work, it is also shown that the r-shape is a subgraph of the α-shape.  

In the edge based approaches usually an initial convex hull of the shape is 

generated using either the Voronoi diagram or its dual method DT. Then, the edges 

on the convex hull are deleted or combined, or new edges are inserted according to 

certain rules.  
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Split and merge procedure proposed by Garai and Chaudhuri (1999) is one of 

the edge based procedures. Starting with the initial convex hull, the splitting 

algorithm deletes the edges longer than a certain multiple of the average edge length 

in a neighborhood. The shape obtained after splitting may include zigzags, so 

merging operations are performed on these zigzags to obtain a smooth boundary. In a 

certain locality of a shape, points subject to merging form a polygon and the obtuse 

angles in the polygon are considered for merging. The number of outer edges on a 

polygon and the polygon area are associated with the degree of detail in the external 

shape, so two thresholds are determined considering the desired degree of detail. 

Hence, merging is carried out if the newly formed polygon satisfies these thresholds. 

In order to obtain the A-shape (Melkemi and Djebali 2000) first Voronoi 

diagram and DT of the original point set are constructed, followed by construction of 

an artificial point set A. In fact, point set A comes with a parameter that determines 

the degree of detail in the non-convex hull. If the original points and points in A are 

contained in the same triangle in DT (i.e. if they are neighbors), then the edge 

between the original points in DT becomes a boundary edge. Weighted A-shape 

(Melkemi and Djebali 2001) gives a weight to each point in the data set to handle the 

density variations.  

Alani et al. (2001) use the Voronoi diagram to approximate the spatial 

regions in geographic information systems. In addition to the original data set, an 

extra data set lying outside the original points need to be supplied. As in the 

neighborhood idea used by Melkemi and Djebali (2000) the Voronoi cells having 

neighbors from the additional data set constitute the boundary of the region.  

Taking the DT as the initial shape, the χ (chi) algorithm (Duckham et al. 

2008) removes the longest edges if the edge is longer than a prespecified threshold 

and the degree of each point is at least two. In this method setting of the length 

threshold is crucial in order to have the desired details in the non-convex shape.  

 Most of the literature we have discussed up to now assume 2-dimensional 

space. Edelsbrunner and Mücke (1992) extend the α-shape to 3-dimensional space, 

and Melkemi (2003) proposes the 3-dimensional A shape. Some authors such as 

Duckham et al. (2008), Chaudhuri et al. (1997), and Garai and Chaudhuri (1999) 

claim that the proposed approach in their work can be generalized to higher 
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dimensions. However, to the best of our knowledge, there is not an actual 

implementation of these approaches for higher dimensions.  

 In order to control the degree of detail in a non-convex shape, a parameter is 

used almost in all methods in the literature. This makes the correct parameter setting 

very crucial. Most of the methods propose a procedure to set this parameter properly, 

but the procedure is still affected by the data set properties such as density variations 

and characteristics of the non-convex parts.  

In this work, a parameter-free approach, namely DT Cropping (DTC) is 

proposed for generation of non-convex hulls. DTC is an edge based approach and a 

modified version of χ algorithm by Duckham et al. (2008). DTC can be used to 

construct the external shape of a finite set of points and to find the external shape of 

each cluster/closure of points. Use of DTC is limited to 2-dimensional space.  

In higher dimensional space there is very limited work in external shape 

construction. We propose a new edge based approach, namely the Ideal Simplex (IS). 

IS also starts with the DT construction. The idea behind IS is that in the ideal case 

the simplices in a DT are expected to have equilateral faces, and an elongation is a 

potential indicator for non-convexity in the point set. The elongation of a simplex on 

the boundary is compared with an elongation threshold which controls the degree of 

detail of an external shape.  

 

5.3. External Shape Construction in 2-dimensional Space 

 

The external shape construction algorithm DTC is based on two main ideas. 

Points that belong to different closures/clusters but are in the same simplex (a 

triangle in 2-dimensional space) in DT are on the boundary. This idea is also used by 

Melkemi and Djebali (2000) and Alani et al. (2001). The second idea is the deletion 

of longer edges on the boundary if there exists a path between the two points that has 

all shorter edges. In fact, Duckham et al. (2008) sets out from a similar idea but the 

edge removal is based on a prespecified parameter in their work. That is, in their 

proposal an edge is removed if it is longer than a given threshold. The main 
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difference of our work is that DTC is a parameter-free approach. Before proceeding 

further, basic definition of DT is presented below.   

 

5.3.1. The Delaunay Triangulation Cropping (DTC) Algorithm 

 

Let D be a finite set of points in 2-dimensional space. Suppose that D is 

composed of c disjoint clusters/closures. Given the cluster labels, DTC tries to find 

the external shape of each of the clusters. Note that D may include only one cluster (c 

= 1) and this case is equivalent to finding the external shape of the entire set of 

points.  

The steps of DTC are as follows. 

Step 1. Construct DT for D.  

Step 2. Determine the edges on the initial boundary of each cluster by applying the 

two conditions below.  

Condition 1. If an edge in DT belongs to a single triangle and is not shared by 

other triangles, then this edge is on the boundary.  

Condition 2. If a triangle in DT includes points from different clusters, each 

of these points is on the boundary of the corresponding cluster. The edge of 

this triangle between the two adjacent points that are in the same cluster is a 

boundary edge.  

Step 3. For every cluster in D find the non-convex parts of the boundary.  

Step 3.1. If all the edges on the current boundary have been evaluated and no edge is 

deleted, terminate the algorithm. Otherwise, select the (next) longest edge (e’) on the 

boundary that has not been evaluated yet.  

Step 3.2. Check if both end points of e’ have a degree higher than two. If yes mark 

e’, go to Step 3.3. Otherwise, go to Step 3.1.  

Step 3.3. In the triangle that has e’ as an edge, if both of the other (inner) edges are 

shorter than e’, then delete e’. Instead, let the two inner edges be on the boundary. 

Return to Step 3.1.  

  



 

 
 

101 

In Step 1, the DT and the convex hull of the point set is constructed using the 

Quickhull algorithm (Barber et al., 1996). Step 2 finds a rough initial boundary, 

which is not necessarily convex. Condition 1 specifies the points on the outer frame 

of the data set whereas Condition 2 determines the points on the boundaries of two 

clusters facing each other with simplices running across. Step 3 fine-tunes the 

external shape by detecting further non-convex parts of the boundary. The longest 

edge on the initial boundary (e’) is selected as a candidate for deletion. The degrees 

of the end points of e’ are then checked. Both end points should have a degree higher 

than two so that they are still connected in case e’ is deleted. Otherwise, the edge 

deletion disrupts the connectivity and subclusters may occur. In this case, e’ is not 

considered further for deletion. If e’ satisfies the degree constraint, a last check for 

edge deletion is conducted. That is, if both inner edges of the triangle to which e’ 

belongs are shorter than e’, then it is possible to connect the end points of e’ in an 

indirect manner using these two edges both shorter than the direct distance between 

them. Thus, e’ is deleted and the two inner edges are taken as the new boundary 

edges. This results in a finer non-convex boundary.  

 An external shape construction example for a data set with a single cluster is 

shown in Figure 5.5. Figure 5.5 (a) is the result of Step 1, the DT of the point set. 

Next, Condition 1 is applied in Step 2. If data set includes only one cluster, 

Condition 2 is not used. At the end of Step 2 the dark points in Figure 5.5 (b) become 

the initial boundary points. An edge deletion example in Step 3 is provided in Figure 

5.5 (c). Edge e’ is eliminated and the inner edges become the new edges on the 

boundary. Edge deletion operations are conducted until no edges remain to be 

removed. In Figure 5.5 (c), in the following iterations, edges a, b, c and d are deleted 

in addition to edge e’. Dark points in Figure 5.5 (d) show the final boundary points 

found by DTC.  
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(a)              (b) 

 

(c)        (d) 

Figure 5.5 External shape construction example for a data set with a single cluster in 
2-dimensional space. (a) DT constructed in Step 1 of DTC. (b) Initial boundary (dark 
points) found in Step 2 of DTC. (c) Finding non-convex part of the boundary in Step 

3 of DTC. (d) Final boundary found by DTC. 

 

The boundary points found by DTC in an example data set with three clusters 

are shown in Figure 5.6. The data set has two spiral shaped clusters and intracluster 

density variation. Due to the density variation, the number of boundary points found 

by DTC is large and there exist zigzags on the external shape. Note that this non-

smooth structure is observed especially for the regions with density variation.  
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Figure 5.6 External shape (dark points) for a data set with three clusters in 2-
dimensional space.  

 

 

5.3.2. Time Complexity of DTC 

  

2-dimensional DT construction in Step 1 has a time complexity of O(n logn). 

Step 2 determines the edges on the boundary by checking all the triangles in the DT. 

As the maximum number of edges in a DT is bounded by 3n, the worst-case time 

complexity of Step 2 is O(n). Deletion of every boundary edge is considered in Step 

3 and deletion operations are conducted until there is no improvement. Thus, it is not 

possible to determine a bound for the time complexity of Step 3. Although Steps 1 

and 2 have an overall time complexity of O(n logn), it is not possible to infer the 

overall time complexity of DTC.  

 

5.4. External Shape Construction in d-dimensional Space  

 

 The IS algorithm generates the external shape of a finite set of points in d-

dimensional space where d ≥ 2. It is based on the adjacency information gathered 

from DT and it uses the idea introduced in DTC such that if a simplex is composed 
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of points from different clusters, these points are on the boundary of the 

closures/clusters they belong to. In addition to this, DT avoids “elongated” simplices 

with unbalanced edge lengths as it maximizes the minimum angle in the simplices. 

For this reason, elongated simplices are used in IS to detect the non-convex regions. 

Elongation thresholds are used to control the degree of detail in non-convex parts of 

the boundary.  

 

5.4.1. Elongation Measures 

 

 In this work, two versions of elongation are considered. 

Case 1. Elongation due to the inner angles of a simplex.  

Inner angles of a simplex may be distorted compared to the ideal case and this 

distortion causes obtuse angles in the simplex. In this case elongation is measured as 

the ratio between the distance of the farthest vertex and the distance of the closest 

vertex to the center of gravity of the simplex. Let simplexs be the set of vertices of 

simplex s, g be the center of gravity of the simplex, and dij be the Euclidean distance 

between points i and j. Then, the first elongation measure is calculated as 
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Case 2. Elongation due to the edge lengths of a simplex.  

Elongation may cause large differences in edge lengths of a simplex and, instead of 

obtuse angles, acute inner angles may emerge. Elongation is then measured as the 

ratio of the maximum edge length to the minimum edge length in the simplex. That 

is, the second elongation measure is 
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For 2-dimensional space the ideal triangle (simplex) and two elongation 

examples are presented in Figure 5.7. 
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            (a)           (b)           (c)  

Figure 5.7 Elongation example. (a) The ideal case of an equilateral triangle. (b) 

Elongation due to an obtuse inner angle of a simplex, 1
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= . (c) Elongation due 

to the edge lengths, 2
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5.4.2. Ideal Simplex (IS) Algorithm 

 

 Let D be a finite set of points in d-dimensional space where d ≥ 2. Suppose 

that D is composed of c disjoint closures/clusters. Given the cluster labels, IS tries to 

find the external shape of each cluster. Main steps of the IS algorithm are given as 

follows where the elongation thresholds for em1 and em2 are threshold1 and 

threshold2, respectively. 

Step 1. Construct the set of artificial points A (to be explained later) for D. 

Step 2. Construct DT for the union of D and A.  

Step 3. Determine the edges on the current boundary of each cluster (to be explained 

later).  

Step 4. Find the non-convex parts of the boundary.  

Step 4.1. Find the elongated simplices on the current boundary by applying the 

following two conditions.  

Condition 1. A simplex is elongated if em1 > threshold1. 

Condition 2. A simplex is elongated if em2 > threshold2. 

p 

s r 

p 

s r 
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Step 4.2. Place an artificial point at the center of gravity of each simplex found 

elongated, provided the simplex is not blocked (to be explained later). Add this point 

to new (temporary) set of artificial points TA.  

Step 5. Construct DT for the union of D, A and TA.   

Step 6. Check the feasibility of the newly added artificial points in set TA. Delete the 

artificial points that are isolated or that cause isolation of original points (to be 

explained later). Block the simplices that contain deleted artificial points.  

Step 7. If set TA is not empty, update set A as the union of A and TA, and return to 

Step 2. Otherwise, terminate the algorithm.  

 

Edge Identification 

 

 In Step 1, a least volume hypercube is constructed to enclose the original data 

set. The hypercube is represented with its vertices and midpoints of its faces. Thus, 

3d-1 artificial points are placed in set A to define the hypercube where d denotes the 

number of dimensions.  

 DT of the original points and artificial points is constructed in Steps 2 and 5 

using the Quickhull algorithm (Barber et al., 1996).  

 Step 3 finds the boundary edges considering the following four cases for the 

simplices in DT.   

Case 3.1. If the vertices of a simplex are original data points from the same 

cluster, then all these points are interior points.  

Case 3.2. If the vertices of a simplex are original data points from different 

clusters, then these points are on the boundary of the clusters they belong to.  

Case 3.3. If the vertices of a simplex are an artificial point and original data 

points from different clusters, then the original points are on the boundary of the 

clusters they belong to.  

Case 3.4. If the vertices of a simplex are artificial point(s) and original 

point(s) from the same cluster, the original points are on the boundary of the cluster 

they belong to.  

 

 



 

 
 

107 

Blocking Simplices 

 

Step 4 finds the non-convex parts of the shape by adding artificial points 

inside the elongated simplices. The two elongation measures discussed previously 

are calculated for each simplex on the current boundary. For a simplex, if either of 

these measures is greater than the given thresholds, a new artificial point at the center 

of gravity of the simplex is inserted.  

IS finds the boundary of given clusters and is not allowed to divide the 

clusters. In doing this, IS should not allow disconnectivity or isolation of boundary 

points. If insertion of a new artificial point inside an elongated simplex was found to 

cause disconnectivity in a previous iteration, that simplex has been blocked in step 6. 

In this case, even though it is classified as elongated, a new artificial point is not 

added inside this simplex, and consequently its designated boundary edges are 

maintained. The blocking of such simplices prevents the algorithm from repeating 

the same disconnectivity checks during the iterations. Thus, in Step 4, the artificial 

point is inserted only if the elongated simplex under consideration is not blocked. 

  In Step 5 DT is reconstructed using both the original data set and all the 

artificial points added up to then.  

 Step 6 checks the feasibility of new artificial points in the DT. We extract the 

boundary of each cluster assuming that the original data points in the same cluster 

form a connected graph. That is, clusters as they stood in the original data set are not 

allowed to be divided. There are two cases that might cause disconnectivity, hence 

lead to undesired cluster divisions.   

 Case 6.1. Isolation of an original point: An original point should be 

connected to at least two other original points, otherwise it is isolated. If this 

condition is violated, then the artificial points adjacent to the original point are 

reexamined and the one nearest to the original point is deleted from set TA to ensure 

connectivity. An example in 2-dimensional space is shown in Figure 5.8. The 

original point γ becomes isolated. In this case, the artificial point α is deleted from 

TA so that the original point γ preserves its connectedness to the original point β.  
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Figure 5.8 An example for the isolation of an original point (light and dark circles 
denote the original and the artificial points, respectively) 

 

 Case 6.2. Isolation of an artificial point: Artificial points carve out the 

exterior of the data set to discover the non-convex segments. Hence, an artificial 

point in set TA should be adjacent to at least another artificial point added up to then 

so that non-convex parts in the exterior of the data set are chipped gradually. If an 

artificial point inserted in Step 4 is surrounded only by the original points, it means 

that artificial point forms a hole in the data set. To avoid such disconnectivities, 

adjacent neighbors of each artificial point added in the current iteration are 

examined. If all these neighbors are original points, then the artificial point is deleted 

from set TA. Figure 5.9 shows an example in 2-dimensional space. Point ε will be 

removed from set TA because if not removed an undesired hole occurs in the data 

set.  

 

      

Figure 5.9 An example for the isolation of an artificial point (light and dark circles 
denote the original data points and the artificial points, respectively) 

  

In Step 6, if a new artificial point does not satisfy the above conditions and is 

deleted, its simplex is added to the set of blocked simplices.  

isolated original point 
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artificial point 
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After deletion of the artificial points that disrupt connectivity, Step 7 checks 

the termination condition. The IS algorithm terminates with the boundary points 

found in Step 3. Otherwise, with the newly added artificial points the algorithm 

continues with Step 2.  

 

5.4.3. Parameter Settings in IS 

  

 Elongation parameters (threshold1 and threshold2) in IS control the degree of 

detail in the external shape. In an ideal simplex with equilateral 2-faces, the two 

elongation measures, em1 and em2, take the value of 1. Thus, elongation thresholds 

greater than 1 are considered.  

 The effect of the elongation thresholds on the external shape generation are 

tested with two parameter settings: 2 (low) and 2.5 (high). In Figures 5.10 and 5.11 

examples of external shapes generated by IS with these two settings are shown. As 

Figures 5.10 (b) and 5.11 (b) show the face of shape S in 2-dimensional view, all the 

points except the dark circles are on the boundary. In both figures the dark circles 

represent the points that are expected to be on the boundary but not found by the IS 

algorithm. These missed boundary points give rise to unnecessary carving of the 

shapes at their boundaries. IS misses more boundary points with the high setting of 

the elongation thresholds as seen in Figure 5.11, whereas the “corners” of shape S 

become more visible in the low setting as in Figure 5.10. When we calculate the 

Jaccard Index (JI) and the Rand Index (RI) for the expected versus boundary points, 

the JI value is 0.86 for both settings whereas the RI value is slightly higher, 0.90 for 

the low setting and 0.91 for the high setting, respectively. These mean that targeted 

boundary points occur in 90% of the total points identified as boundary in either 

settings, and with a high setting boundary-non-boundary discretion is successful in 

91% of chosen points. Although the JI and RI values do not differ significantly, the 

percentage of the points correctly labeled as the boundary points (0.99) is slightly 

better with the low setting than the same figure (0.97) with the high setting. This is 

an indicator of high setting potentially missing true boundary points. IS generates 

these external shapes in 26.12 seconds and 22.49 seconds with the low and the high 
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settings, respectively. As expected, more simplices are categorized as elongated with 

the low setting and the run time increases.  

 For higher accuracy in external shape generation, we set both elongation 

thresholds to 2 from now on.  

 

 

(a)      (b) 

Figure 5.10 An example external shape generated by IS with threshold1 = threshold2 
= 2. (a) shape S in 3-dimensional view, (b) face of shape S in 2-dimensional view 
(bold + signs denote the boundary points found, dark circles denote the missing 

boundary points) 

 

 

5.4.4. Time Complexity of IS 

  

 For a data set having n points, the worst case time complexity of Step 1 is 

O(n logn). Steps 2 and 5 are governed by the DT construction having time 

complexity O(n logn) for d ≤ 3 and O( / 2 / 2 !d
n d
      ) for d ≥ 3. In the first iteration, 

DT is constructed from scratch. In the subsequent iterations, the use of an 

incremental DT construction method is possible, as new artificial points are added. 

Steps 3 and 4 are performed for every simplex in DT, hence their worst-case time 

complexity can be calculated as the maximum number of facets of the polytope 

forming the data set which is O( / 2d
n
   ). Since Steps 2-7 are repeated until no new 

artificial point is added, we cannot determine the overall time complexity of the 
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algorithm, but we can conclude that it is MO( / 2 / 2 !d
n d
      ) where M denotes the 

number of repetitions of the repeat-until loop. Note that the Quickhull algorithm can 

handle data sets up to 9 dimensions so our implementation of IS is limited with 9-

dimensional data sets.  

 

 

(a)      (b) 

Figure 5.11 An example external shape generated by IS with threshold1 = threshold2 
= 2.5. (a) shape S in 3-dimensional view, (b) face of shape S in 2-dimensional view 

(bold + signs denote the boundary points found, dark circles denote the missing 
boundary points) 

 

 

5.5. Experimental Results for the DTC and IS Algorithms 

  

 The DTC and IS algorithms are coded in Matlab. We test the performance of 

the algorithms using the data sets given in Appendix B. In addition to these, we also 

use data sets composed of single letters borrowed from our group 2 data set D_0000. 

We first illustrate the performance of the two algorithms in finding the target 

boundary on examples of single letters. Then, we report the data set reduction 

performance of the algorithms for all data sets given in Appendix B.  
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5.5.1. Finding the Target Boundary  

 

Our first aim is to compare the results of the algorithms with the target 

boundary. For each data set the points that constitute the external shape are 

determined by visual inspection, and the target points are labeled as such. Thus, the 

performance of the algorithms is tested by comparing the target boundary points with 

the boundary points found by DTC and IS. Three performance measures are used for 

this purpose, namely JI, RI and the ratio of the number of true points found on the 

boundary by the proposed algorithm to the number of true points on the target 

boundary (RPT).  

Figure 5.12 shows the external shapes generated by DTC and IS in 2-

dimensional space for an S-shaped data set. Figures 5.12 (a) and (b) display that 

DTC cannot discover the upper and lower circular cavities of letter S denoted by 

dark circles. DT fills the circular space in the cavities by crossing triangles. The inner 

edges of each such induced triangle are longer than the current edge on the boundary 

and the current edge is not deleted by DTC. Thus, DTC stops early on at the 

beginning of both cavities. Consequently, the circular cavities remain undetected. On 

the other hand, using the elongation idea instead of edge lengths and adding new 

artificial points (those digging into the cavity), IS can detect and carve out the 

circular cavities in the external boundary as seen in Figures 5.12 (c) and (d). In this 

example, the number of elongated triangles that have been found feasible 

(unblocked) is 77.  

Table 5.1 indicates that IS outperforms DTC in all performance measures but 

time. The run time of IS is significantly longer than that of DTC, but IS can find the 

target boundary with the exception of a single point.  
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(a)         (b) 

 

(c)        (d) 

Figure 5.12 External shape examples for an S-shaped data set in 2-dimensional 
space. (a)-(b) external shape generated by DTC. (c)-(d) external shape generated by 
IS (bold + signs denote boundary points, dark circles denote the missing boundary 

points).  

 

 

Table 5.1 Performance of DTC and IS for 2-dimensional S-shaped data set 

Algorithm 

# of 
points in 
the data 

set 

# of points 
on the 
target 

boundary 

# of points 
found on 

the 
boundary 

JI RI RPT 
Time 
(sec.) 

DTC 179 87 76 0.39 0.56 0.81 0.24 

IS 179 87 94 0.82 0.91 0.99 27.27 
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 DTC is designed for only 2-dimensional space, so in 3-dimensional space the 

external shapes are generated by IS only. External shapes for 3-dimensional A-

shaped and E-shaped data sets are shown in Figure 5.13.  

 

 

(a)     (b) 

Figure 5.13 External shape examples generated by IS in 3-dimensional space. (a) 
external shape of the A-shaped data set. (b) external shape of the E-shaped data set 

(bold + signs denote the boundary points).  

  

 Table 5.2 shows the performance of IS on 3-dimensional data sets. Although 

JI and RI values are not 1, RPT values are equal to 1 and the points on the target 

boundary are discovered correctly. In fact, the external shape found by IS includes 

more points than the target boundary. For example, in Figure 5.14 (b) the six points 

marked with dark circles are identified on the boundary by IS, when in fact they do 

not lie on the target boundary. The low setting on the threshold for detecting 

elongation (2.0 in this case) is the reason for these extra zigzags on the boundary.  
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Table 5.2 Performance of IS for 3-dimensional data sets 

Data set 

# of 
points 
in the 

data set 

# of 
points on 
the target 
boundary 

# of 
points 

found on 
the 

boundary 

JI RI RNPNT 
Time 
(sec.) 

data_S 716 530 555 0.86 0.90 0.99 197.07 

data_A 760 558 578 0.92 0.95 1.00 218.86 

data_E 672 504 524 0.91 0.94 1.00 155.07 

data_O 704 520 564 0.83 0.88 1.00 285.10 

 

 

   

(a)     (b) 

Figure 5.14 External shape generated by IS for the 3-dimensional E-shaped data set. 
(a) 3-dimensional view (b) 2-dimensional view (bold + signs denote the boundary 
points found, dark circles denote the points that should not be on the boundary). 

 

 

5.5.2. Data Set Reduction Performance  

 

We also examine the performance of DTC and IS for all the data sets in terms 

of the total number of points in the data set, the total number of points found on the 

boundary, the time, and the percentage of reduction in the data set. DTC is tested 

only on 2-dimensional group 1 data sets introduced in Appendix B. Experiments with 

IS are conducted on group 1, group 2 and group 3 data sets. 
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The results for individual data sets are presented in Appendix E. For groups 1, 2 and 

3 data sets these results are summarized in Table 5.3. Compared to DTC, IS provides 

more reduction in the number of points, but it spends more time on the average.  

 

Table 5.3 Summary of the results for data sets 

 

Group 1 Group 2 Group 3 

DTC IS IS IS 
%

  
R

ed
u

ct
io

n Average 42.96 52.13 21.12 15.97 

Min 1.52 3.03 7.70 9.96 

Max 74.29 82.86 27.77 19.07 

T
im

e 
 

(s
ec

.)
 

Average 17.68 2004.57 9720.60 190.37 

Min 0.12 0.38 1550.63 41.72 

Max 87.07 14057.06 55914.38 502.43 

 

 When we compare the performance of DTC and IS with group 1 data sets, 

DTC finds more points on the boundary than IS (seen in Tables E.1 and E.2). Thus, 

the percentage of reduction in the total number of points is less for DTC than IS. The 

differences in sizes of boundary point sets are larger especially for the data sets with 

density variations. As DTC is parameter-free, it eliminates all the outer edges on the 

boundary that are longer than the inner edges. However, in IS in order to eliminate an 

edge, the maximum edge length of a triangle should be at least twice as much as the 

minimum edge length, or the maximum distance between a point and the center of 

gravity of a triangle should be at least twice as much as the minimum distance 

between a point and the center of gravity. These make the edge elimination relatively 

easier in DTC and generate more boundary points especially for the data sets having 

density variations. In summary, the elimination criterion in DTC is more relaxed than 

the criteria in IS.  

 As Tables E.1 and E.2 in Appendix E show, run times of IS are in general 

significantly longer than those of DTC for group 1 data sets. For example, the run 

time for data-uc-cc-nu-n is 1.67 seconds with DTC and 5.53 seconds with IS. 

Construction of DT several times and feasibility checks take more time in IS. 

Nevertheless for the data sets in which IS yields significantly more reduction relative 
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to DTC, IS spends less time. For example, DTC results in a 44.55% reduction in 

dataX in 2 seconds whereas the percentage of reduction in IS is 70.30% in 0.38 

seconds. This result is reasonable as DTC eventually generates significantly more 

points on the boundary.  

 

Factor Effects 

 

We use a full factorial experimental design for group 2 and group 3 data sets 

to explore the effects of four factors: intercluster density difference, intracluster 

density variation, distance between clusters and existence of outliers. Detailed results 

for these data sets are provided in Tables E.4 and E.5 in Appendix E. For group 3 

data sets, the main and interaction effect plots in terms of percentage of point 

reduction and time are presented in Figures 5.15 and 5.16, respectively. As seen in 

Figure 5.15, all the factors except existence of outliers affect the reduction 

percentage significantly. No intercluster density difference and no or smooth 

intracluster density variation worsen the reduction percentage, whereas higher 

distance between clusters, presence of intercluster density difference and random 

intracluster density variation improves the reduction percentage. Actually, random 

deletion decreases the total number of points, so combining the effects of the 

proposed algorithm and random intracluster density variation, the percentage of 

reduction significantly improves. Intercluster density difference and existence of 

outliers do not significantly affect the time spent for external shape formation. For no 

or smooth intracluster density variation and lower distance between clusters the time 

spent increases.  

According to Figure 5.16 there exists significant interaction between the 

intercluster density difference and the intracluster density variation, as well as the 

intracluster density variation and the distance between clusters in terms of percentage 

of reduction. That is, when there exist both intercluster density difference and 

intracluster density variation (i.e. random and smooth), the percentage of reduction 

decreases. However, when there exist random intracluster density variation and no 

intercluster density difference, the percentage of reduction improves. Besides, close 

clusters worsen the percentage of reduction for no and random density variation, 
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whereas the percentage of reduction increases for the combination of smooth density 

variation and close clusters.  
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(a)       (b) 

Figure 5.15 Main effect plots for group 3 data sets. (a) % reduction. (b) time.  
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(a)       (b) 

Figure 5.16 Interaction effect plots for group 3 data sets. (a) % reduction. (b) time. 

 

 

5.6. Discussion of the Results for DTC and IS  

 

The purpose of both DTC and IS algorithms is to discover non-convex 

external shapes. In fact, they have mainly two functions: finding the external shape 

of a finite set of points and finding the external shapes of the clusters/closures in a 

data set.  
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DTC works only on 2-dimensional data sets. In 2-dimensional space, 

elimination of an edge is equivalent to elimination of a facet. However, it is difficult 

to adapt the same edge elimination idea to higher dimensions since a facet of a 

simplex in higher dimensional space is composed of several edges, and all the edges 

forming the facet need to be checked to test the possibility of elimination. This brings 

about an exponential increase in time complexity to form the desired non-convexity, 

and may not prove to be functioning right all the time. Hence we limit the use of 

DTC to two dimensions.  

DTC is successful in the generation of the external shapes when the edge 

length in the clearing of a non-convex cavity is larger than the width or diameter of 

the cavity (that is the cavity “widely open”). In this case, DT forms triangles such 

that the inner edges in the cavity are shorter than the outer edge of the triangle 

(crossing the clearing of the cavity). Thus, elimination of the outer edge works 

properly. As DTC is a parameter-free algorithm, the external shape found is not 

necessarily smooth and may include excessive zigzags due to excessive carving. 

Such non-smooth boundaries are observed especially for the data sets with density 

variations. The advantage of this non-smooth pattern is that it helps increase the 

accuracy in representing a shape. However, number of points on the boundary 

becomes excessive as well.  

IS is designed for generation of external shapes in higher dimensional spaces. 

In IS the degree of the detail of the external shape is controlled by the elongation 

thresholds. The experiments with IS on 2- and 3-dimensional data sets show that the 

proposed algorithms are satisfactory in the generation of external shapes. The 

number of points found on the boundary is relatively small, and a significant 

reduction in the data set is achieved especially when the data set includes convex 

shapes. 

The main limitation of IS is its run time, as DT is constructed several times, 

and the boundary condition and the feasibility checks are performed repeatedly until 

the boundary becomes stable. 
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CHAPTER 6  

 

 

A SWARM INTELLIGENCE BASED APROACH FOR 

CLUSTERING: ANT COLONY OPTIMIZATION 

 

 

 

In this chapter, we focus on the application of Swarm Intelligence (SI) to the 

clustering problem. First, we review the major issues in the design of a SI based 

algorithm, namely the identification of agents and the type of swarm.  

Agents define the variables of a problem and they directly affect the search 

procedure. Thus, agent representation plays a key role in the SI design. Taking into 

account the importance of the agent representation, we propose a classification for 

the SI based clustering algorithms in terms of agent representation. We discuss the 

use of each agent representation scheme and its complications.  

SI includes particle swarm optimization, ant colony optimization and other 

swarm (e.g. bees, wasps, termites) based algorithms. In this dissertation we 

particularly concentrate on ACO among these due to the natural tendency of 

clustering in an ant colony. We introduce the ACO-based clustering (ACO-C) 

algorithm, which deals with data sets having the following properties:  

(1) The number of clusters is unknown.  

(2) Clusters are separated spatially.  

(3) Clusters may have arbitrary shapes.  

(4) There may be density variations within the clusters. 

(5) Clusters may have density differences across each other. 

We define ACO-C with two preprocessing steps: neighborhood construction 

and data set reduction. Considering the connectivity, the density and the spatial 

relations among the points, the neighborhood of each point is constructed using the 
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NC algorithm in Chapter 3. Besides, subclusters (closures) are formed using the 

connectivity relations between the neighborhoods of points. Taking these subclusters 

as input, two main decisions of ACO-C become merging the divided subclusters and 

breaking-off the outliers. The interior points of the closures are already connected, 

hence it is sufficient to consider in ACO-C only the data points on the boundaries of 

closures. This provides data set reduction and supports the scalability of the 

clustering algorithm. The boundary points of the closures are determined by either 

Delaunay Triangulation Cropping (DTC) or Ideal Simplex (IS) algorithms introduced 

in Chapter 5. DTC extracts the boundary in 2-dimensional data sets whereas IS steps 

in for higher dimensions.  

To sum up, ACO-C takes the neighborhoods, the closures, and the boundary 

points of closures as input, and it particularly focuses on the merging of subclusters 

and breaking-off the outliers.  

We provide a review of SI based algorithms in the first section of this 

chapter. The details of ACO-C are explained in the second section. Next, a factorial 

design is performed to set the parameters of ACO-C. Then, the performance of ACO-

C is tested on various data sets in order to explore the strengths and weaknesses of 

the algorithm.  

 

6.1. Swarm Intelligence Based Algorithms for Clustering  

 

 A swarm is composed of a group of simple but autonomous agents that 

interact with each other and/or with their environment. Although there are only 

decentralized control mechanisms among the agents, the swarm can achieve complex 

and difficult tasks. The main reason behind this is the collective behavior emerging 

from the swarm.  

Working principles of a swarm are affected from the behavior of an 

autonomous agent, the communication methods among the agents and with the 

environment, and moves of the agents. In SI metaheuristic these concepts correspond 

to agent representation, neighborhood, decision rule, exploration and exploitation 

mechanisms, respectively.  
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The starting point in the design of a SI based algorithm is agent 

representation, and the other characteristics of SI build upon this ground. Agent 

representation is directly related with the potential solutions to be obtained by the 

algorithm. That is, an agent either directly represents a set of variable(s) in the 

solution, or works as a means to construct the solution. Agent representation must be 

capable of covering all the feasible solutions and the optimal solution, and it 

determines the size of the solution search space. 

Neighborhood is directly related with the locality of the agents, i.e. their 

moves. Thus, it determines the possible solution components in the next move of an 

ant, and a decision rule helps to select a solution component in the neighborhood. In 

fact, decision rules for solution construction are tools for the exploitation and 

exploration properties of ACO.  

 

6.1.1. Classification of SI based Clustering Algorithms 

 

Taking into account the importance of the agent representation, we classify 

the SI based clustering literature in terms of the agent representation. The four 

classes are:  (1) cluster-data point assignment, (2) representatives of clusters, (3) 

direct point-agent matching, (4) search agent representation. In this section we 

discuss the main characteristics of these representation schemes, and provide the 

strengths and the weaknesses of each category. In addition to these, we analyze the 

relation between the SI based algorithms (PSO, ACO, OSIB explained in Chapter 2) 

and the representation categories.  

 

(1) Cluster-data point assignment 

 

Cluster assignments of all points are represented by an agent. In Figure 6.1, 

an example for this type of representation is depicted for a data set with six points. 

For a clustering solution with two clusters, the representation is a 6-dimensional 

vector in which each dimension shows the clustering assignment of the associated 
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point. Furthermore, the number of attributes in the data set does not affect the 

representation scheme.  

 

            

    

 

 

Figure 6.1 An example for the cluster-point assignment representation 

 

There is only one study that uses cluster-data point assignment in PSO, 

namely Jarboui et al. (2007). Combinatorial PSO is implemented for the clustering 

problem in this work. The position of a particle (agent) represents the clustering 

assignments of the data points. Generally, movements of particles in PSO are in 

continuous space. For this reason, a dummy vector maps the clustering solution 

represented by the particle taking values from the set {-1, 1, 0} according to the 

solution status, i.e. the local best cluster, the global best cluster or none of these, 

respectively. Velocity ensures to move the particle by combining three components: 

the best position of the particle, the swarm’s best position and the random 

component. As the velocity is a continuous variable, the new position of the particle 

is discretized using a threshold and the dummy vector.  

In ACO, there are several articles reported that use this representation scheme 

(Wang and Wei 2009, Chen and Chen 2006, Ho and Ewe 2005, Runkler 2005, 

Prabhaharan et al. 2005). They all have the same pheromone update mechanism, that 

is, pheromone substance is associated with each cluster-data point assignment. In 
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every iteration some of the pheromone regarding the assignment evaporates, whereas 

the promising cluster-data point assignments are rewarded by increasing pheromone. 

Amount of increase is determined by the inverse of the objective function value, 

which is the within cluster distance variance. Timing of the pheromone update, i.e. 

local or global update, and the decision rule for solution construction affect the 

convergence speed and they are different in each article.  

In fuzzy clustering, Runkler (2008) uses cluster-data point assignment 

scheme in a wasp swarm optimization algorithm. Cluster-data point assignment is 

made using stochastic tournament selection (wasp swarm tournament). Assignment 

probabilities are determined according to the distance between cluster centers and 

points. Since neither direct nor indirect information exchange is observed among the 

wasps, this article does not directly benefit from the collective behavior of the 

swarm. Instead, it ensures the assignment of the resources to the wasps according to 

their contribution to the swarm.  

The articles in this category take the minimization of the within cluster 

distance in Euclidean space as the clustering objective. Therefore, these algorithms 

are suitable for spherical and compact clusters.  

 

(2) Representatives of clusters 

 

An agent shows all the representative points of the clusters such as centers of 

clusters, median points of clusters, medoid points of clusters, etc. In this scheme, the 

number of clusters or the number of representatives needs to be provided a priori. In 

SI a data point is assigned to the cluster having the nearest representative to the data 

point. In Figure 6.2, an example agent is given for a data set with six points with two 

attributes for each. If the number of clusters is given as two, then the agent 

corresponds to a 4-dimensional vector.  
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Figure 6.2 An example for representatives of clusters approach 

 

In the PSO literature Ahmadi et al. (2010), Kao et al. (2008), Omran et al. 

(2006), Paterlini and Krink (2006), Omran et al. (2005) and Omran et al. (2002) use 

this representation scheme. Except Omran et al. (2006), others assume that the 

number of clusters is given, and the velocity of a particle (agent) is adjusted 

according to particle’s local best and the swarm’s global best. Thus, the moves of the 

particles change the coordinates of the representative points. Kao et al. (2008) 

propose a hybrid algorithm combining Nelder-Mead simplex algorithm and PSO. 

Nelder-Mead is used for local search, whereas PSO is used as an exploration tool. 

Omran et al. (2006) assumes that the number of clusters is unknown, and they start 

with a set of potential representatives of clusters. A binary particle is a c-dimensional 

vector where c is the cardinality of the set of potential representatives of clusters. 

Thus, each cluster representative is associated with a dimension in the particle, and 

the associated value is equal to 1, if the cluster representative is used in the current 

solution, otherwise it takes value of 0. Hence, a binary particle determines the 

number of clusters and the cluster representatives used in the solution. The 

coordinates of potential representatives are optimized using the k-means algorithm. 
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Finally, clustering solutions are evaluated using validity indices, Dunn’s index and 

Davies Bouldin index.  

Santosa and Ningrum (2009) apply cat swarm optimization to the clustering 

problem using the representatives of clusters. Each cat represents a cluster center, 

and the moves of a cat changes the coordinates of the associated cluster. In Fathian et 

al. (2007) an agent represents the cluster centroids. Although this algorithm is 

inspired from honey-bee mating, a crossover operator (queen mates with drones) and 

local search (improvement of worker bees) are used. Thus, it rather fits the principles 

of evolutionary algorithms, and emergent properties of swarm are not utilized. To the 

best of our knowledge, there is not any work on ACO that uses the representatives of 

clusters scheme.  

Most of the algorithms in this category minimize within cluster distances as 

the objective function. A few studies consider clustering validity indices, such as 

Dunn’s index and Davies Bouldin index, or use multiple objectives, such as 

minimization of within cluster distances and maximization of intercluster distances. 

However, the method of handling multiple objectives is quite naïve (by taking the 

weighted sum of objectives). The main drawback of this representation is being 

limited to forming of spherical and compact clusters.  

 

(3) Direct point-agent matching  

 

There is one-to-one correspondence with agents and points in this 

representation scheme. That is, each agent is “loaded” with a data point. Agents are 

scattered in 2-dimensional search space, and they move in the search space such that 

agents carrying similar points are positioned close. This representation is an attempt 

to determine the relative position of the points.  

This type of representation is used in PSO by Picarougne et al. (2007), and 

Veenhuis and Köppen (2006). Both algorithms have two phases. In the first phase, 

similar points are gathered, whereas dissimilar ones are set apart. Taking the output 

of the first phase, second phase retrieves the clusters. Cluster retrieval process does 

not benefit from swarm optimization properties; instead a hierarchical algorithm is 

applied to construct the final cluster boundaries. The number of clusters is assumed 
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to be unknown in both algorithms. The difference between these algorithms is their 

velocity update mechanisms which imply different search mechanisms.  

Points are assigned to ants in Azzag et al. (2007) which is classified in the 

OSIB group. They introduce a hierarchical ant based algorithm to build a decision 

tree. Ants move the data points close to the similar points and away from the 

dissimilar ones. In this work, cluster retrieval process is not used. As far as we know, 

direct agent-point matching is not applied in ACO.  

This type of representation helps to determine the relative positions of the 

points. However, as the number of points increases, the number of agents increases 

as well, and this leads to scalability problems. In addition, a separate cluster retrieval 

operation suffers from lack of integration with SI.  

 

(4) Search agent representation 

 

In this representation, an agent does not have a direct matching with the 

points. Instead, it is a means to carry the similar points to the same neighborhood and 

the dissimilar points away from each other. Agents (carriers) moving in the search 

space “visit” the data points to achieve this.  

Xiao et al. (2004) introduce two hybrid SOM-PSO algorithms that benefit 

from this representation. In one of these algorithms, SOM is responsible of cluster 

assignments, and PSO is used to explore the weights found by SOM. Hence, particles 

correspond to the weight set of SOM. In the second algorithm, a number of SOMs 

are used, and the weight set of each of them is considered as a particle. Like the 

former one, PSO focuses on the improvement of the weight set of SOM. The velocity 

of a particle is affected from its previous velocity, its best local value in the past, and 

the global best.  

Sinha et al. (2007) and Tsai et al. (2004) use search agent representation in 

ACO. In these articles, ants generate subtours by inserting edges between connected 

data points. Pheromone value is updated for each edge connecting two points. The 

closer the distance between the two points, the higher the released pheromone 

concentration. In the first phase of the algorithm, the edges between similar points 
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become denser in terms of pheromone concentration. The next phase is the cluster 

retrieval process where clusters are formed using a hierarchical clustering algorithm.  

Boryczka (2009), Kao and Fu (2006), Yang and Kamel (2006), Handl et al. 

(2006) and Martin et al. (2002) use search agent representation in their OSIB 

algorithms. Points are scattered on a 2-dimensional search space. A search agent 

(ant) picks up a point in the search space and drops it off near the points similar to it. 

These picking up and dropping off operations are conducted using probabilities that 

are calculated based upon the similarity of the points in the neighborhood. Here, 

search agents work as if they were forming a topographic map. After forming this 

pseudo-topographic map, a cluster retrieval process is applied to find the boundaries 

of clusters.  

Search agent representation helps to find the number of clusters, however, 

generally, it requires a cluster retrieval process to run in isolation. This representation 

allows for arbitrary shaped clusters.  

 

6.1.2. A Discussion about the Classification of Agent Representations 

 

Table 6.1 summarizes the number of articles we could locate in the literature 

published until 2010 classified with respect to the representation type. All 

representation schemes are used in PSO, and the one most preferred among them is 

the representatives of clusters. The main reasoning behind this observation is that 

PSO generally deals with continuous optimization problems. As representatives of 

clusters operate in the continuous domain, (particle-)representatives of clusters 

matching fits perfectly.  

As far as we know, representatives of clusters and direct point-agent 

representation schemes are not used in ACO. An ant typically constructs a solution 

from scratch as a proposal, whereas representatives of clusters and direct point-agent 

based approaches are generally based on improvement. In other words, it seems as if 

the points of view of ACO and these representation schemes are not compatible. The 

applicability of these representation schemes in ACO can still be a further research 

topic.  
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In OSIB, although all four types of representations are used, the most 

preferred one is the search agent. Search agent is particularly applied in ant based 

system in which data points are considered as the larvae/brood/dead bodies, and ants 

(search agents) are responsible of the classification of these. This prevalence can be 

attributed to the analogy between the ants’ behaviors (larvae feeding, brood sorting, 

corpse clustering) and the clustering problem. 

 

Table 6.1 Summary of the number of papers with respect to representation 

 

 

As we claim that the capabilities of a SI algorithm are affected from the agent 

representation scheme, we summarize the relation between the agent representation 

schemes and the general characteristics of the SI applied in clustering problem in 

Table 6.2. Below we provide a brief comparison of representation schemes with 

respect to problem characteristics.  

• Number of clusters 

o In the literature the number of clusters is given a priori for the cluster-

point assignment representation.  

o In the representatives of clusters approach, an upper bound is defined 

on the (unknown) number of clusters and these representative points 

are activated or deactivated during the iterations. 

o In the direct point-agent and the search agent representations it is not 

necessary to supply the number of clusters a priori. Both of these 

determine the relative position of the points with respect to each other. 

  Representation 

 
Total # of 

articles 

Cluster- 

point  

assignment 

Representatives 

of clusters  

Direct  

point-agent 

Search 

agent 
 

PSO 10 1 6 2 1 

ACO 7 5 - - 2 

OSIB  9 2 1 2 4 
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However, an extra cluster retrieval algorithm is needed after the SI 

based algorithm which eventually yields the number of clusters. This 

clustering retrieval process does not utilize the collective power of SI, 

on the contrary, hierarchical algorithms with thresholds of minimum 

similarity or maximum dissimilarity are usually used for this purpose. 

Hence, this limits the role of SI in finding the final clusters.  

 

• Arbitrary shapes 

o In the cluster-point assignment, within cluster variance/distance is 

minimized in Euclidean space, and this results in spherical and 

compact clusters. In addition, this may result in failure in extracting 

the clusters with different sizes and different densities.  

o Representatives of clusters approach assumes that a data point is 

assigned to a cluster such that the distance between the corresponding 

cluster representative and the point is minimum. This assumption does 

not work successfully with arbitrary shaped clusters.  

o Direct point-agent and search agent representations can handle 

arbitrary shapes. SI is used to extract the relations among the data 

points. In order to determine the clusters, an independent cluster 

retrieval process is executed after SI.  

 

• Data types 

o Up to now no special similarity or dissimilarity measures are used in 

agent representation. Euclidean distances are used with all data types. 

Limited number of suggested approaches uses Hamming distance 

when there are binary or categorical data. In addition, the effect of the 

similarity/dissimilarity measure on the clustering algorithm has not 

been studied so far.  
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• Multiple objectives 

o Most of the literature focus only on the compactness objective (i.e. 

minimization of within cluster variance/distance) and the resulting 

clusters are consequently limited to spherical shapes.  

o Approaches with multiple objectives take the weighted summation of 

the conflicting objectives, and make it the fitness function. However, 

weighted summation is a naïve approach to address multiple 

objectives. Need for setting the weights and possibility of missing 

some nondominated solutions are the main drawbacks of this 

approach. Generally, cluster-point assignment or representatives of 

clusters schemes are used in these applications.  

o We could not locate any studies using point and search agent 

representations in a multiobjective clustering context.  

 

• Constraint handling 

o As far as our search has shown SI based algorithms are not applied to 

constrained clustering problem. However, some of the current work 

can be adapted to the constraints using repair or penalty approaches.  

 

• Scalability 

o There are scalability problems for the cluster-point assignment and 

direct point-agent representations. As there are as many agents as the 

data points, the memory required for agents increase significantly in 

large data sets.  

o Representatives of clusters approach depends only on the number of 

attributes and the number of clusters given a priori. Hence, it is 

capable of handling large data sets.  

o The number of points and the number of attributes do not affect the SI 

work that is based on search agent representation.  
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Table 6.2 Comparison of the agent representations with respect to problem 
characteristics 

 

 

 

6.2. The ACO-based Clustering (ACO-C) Algorithm 

 

 ACO inspires from the behavior of real ants. As ants search for food on the 

ground, they deposit a substance called pheromone on their  paths. The concentration 

of the pheromone substance on the paths helps to direct the colony to the food 

sources. That is, ants release more pheromone on the promising (shortest) paths, and 

more ants are directed towards these. As a result, ant colony finds the food sources 

with effectivity by relating the ant activity with the environment.  

 In this section, the intelligence of an ant colony is used to extract the clusters, 

so an ACO based clustering (ACO-C) algorithm is proposed. The outline of ACO-C 

is shown in Figure 6.3. It takes the NC outputs, i.e. neighborhoods of points and 
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subclusters (closures), as input. After the boundary formation algorithm finds the 

closure boundaries, ACO-C focuses on two operations: detection of outliers and 

merging the divided clusters. The details of ACO-C are given in the following 

sections. 

 

 

 

Figure 6.3 Outline of the ACO-based algorithm 

 

 

6.2.1. Ant (Agent) Representation 

 

An ant represents a search agent in ACO-C, and it is a means to identify the 

data points that are in the same cluster. That is, an ant constructs a total clustering 

solution by forming a network. In this network an edge between a pair of data points 

means that these two data points are located in the same cluster.  

There are two preprocessing steps for ACO-C: neighborhood construction 

and data set reduction (boundary formation). At the beginning of the algorithm ants 

have the neighborhood and closure information generated by the NC algorithm.  

Recall that closures formed at the end of the NC algorithm have two complications: 
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outlier mixes and divided clusters. As a remedy, ACO-C focuses on the detection of 

outliers and merging of the clusters judged to be divided in NC.  

Figures 6.4 and 6.5 show the example data sets for outlier mixing and divided 

closures, respectively. In Figure 6.4, NC results in 4 closures, and closures 1 and 4 

have outlier mixes. The boundary of each closure frames the data points in the 

closure by a closed piecewise continuous curve. Data points on the curve are on the 

boundary and the remaining ones are interior points. In Figure 6.5 (a) NC yields 8 

closures. However, closures 4, 5, 6 and 7 depicted in higher resolution in Figure 6.5 

(b) belong to the same cluster in the target (true) clustering.  

To sum up, both tasks are related with the boundaries of the closures. It is 

assumed that interior points in a closure are already connected and there is no need to 

spend any effort for cluster assignments of these interior points. Therefore, an ant 

tracks a path only on the boundaries of the closures, and it connects either the data 

points on the boundary of the same closure or on the boundaries of different closures. 

As the interior points are excluded from further consideration for clustering, the data 

set is reduced. In other words, boundary formation in Chapter 5 contributes to the 

scalability of the ACO-C algorithm.  

In every iteration of ACO-C, an ant constructs complete tours in the data set. 

Connected points present a cluster. During tour construction each point is connected 

to exactly two other points for convenience forming a complete tour. Such a 

restriction makes it easier to extract arbitrary shaped clusters and reduces 

computational requirements.  

In outlier detection, it is expected that ants will explore the potential to skip 

the outliers, which are located on the boundary, in their tours. In order to merge the 

divided closures, edge insertion between the boundary points of different closures 

should be allowed as well as edge insertion between the boundary points of the same 

closure. An edge connecting the boundary points from two different closures is 

called a bridge. Such bridges are added before ACO-C starts, and they become part 

of the path an ant can take. In Figure 6.6, the dashed lines that connect two closures 

form bridges. The details of the bridge construction are explained in the next section.  

Figure 6.7 shows an example solution constructed by an ant. The boundary 

points and associated closure boundaries are displayed in Figure 6.7 (a). The path 
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visited by the ant corresponds to a five-cluster solution in Figure 6.7 (b). The ant 

skips the outlier point in closure 1 while taking her tour for cluster 1, and this outlier 

forms cluster 3. The outlier in closure 4 is detected in a similar way. Crossing the 

bridges between closures 1 and 2, the ant generates cluster 1.  

This representation serves three main purposes in clustering: data set 

reduction, determination of the number of clusters, and extraction of arbitrary shaped 

clusters. Data set reduction is due to restricting the data points used in the clustering 

only onto the boundaries. The number of tours generated by an ant is not given a 

priori. Instead, an ant implies the number of tours (they emerge), i.e. clusters, using 

the connectivity and distance relations. To sum up, the representation automatically 

suggests the number of clusters (whether it is the ideal, is to be seen), and it is 

possible to obtain arbitrary shaped clusters. Besides, it provides a potential to test the 

edges away from the core neighboring points.  

 

 

Figure 6.4 An example data set for outlier mixing 
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   (a)       (b) 

Figure 6.5 An example data set for divided closures (a) The entire data set, (b) In a 
higher resolution, only the five closures that are part of the cluster in the upper right 

corner  

 

 

 

Figure 6.6 An example for bridge construction 
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   (a)             (b) 

Figure 6.7 An example for solution construction (a) Closures and potential bridges 
between closures, (b) Ant’s path which suggests to a five-cluster solution 

 

 

6.2.2. Neighborhood of a Data Point in ACO-C 

 

The ultimate aim of clustering is to extract clusters such that they are compact 

and connected, moreover they are well-separated from each other. The neighborhood 

definition is crucial as it shows the potential points to be visited by the ant during its 

tour or cluster construction. Taking into account the 2-degree connections, there are 

four important issues regarding the neighborhood definition by an ant: (1) It can 

insert edges between a point and two other points adjacent to it. (2) It can skip some 

adjacent points to break off one or more points including the outliers. (3) It can 

connect adjacent points from boundaries of different closures to merge the divided 

closures by including them in its subtour (i.e. jump or cross the void). (4) It can visit 

only a single point and leave for another subtour to distinguish the outliers or 

singleton clusters.  

In order to find the ACO-C neighborhood of a point, Delaunay triangulation 

is used as it gives the proximity and connectivity relations among the points. Next, a 

tour is constructed passing through the boundary points using the adjacency 

information gathered from the DT. Then, taking into account the 2-degree restriction 

for each data point, we classify the neighbors of a point as follows.  
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Direct neighbors: If boundary points of a closure are in the same simplex in the DT, 

then these points are direct neighbors.  

 

Indirect neighbors: An indirect neighbor of a given point satisfies the following two 

conditions. 

(1) The given point and its indirect neighbor are not in the same simplex, i.e. 

they are not direct neighbors. 

(2) Indirect neighbor of a given point is the direct neighbors of that point’s 

direct neighbors.   

 

Distant neighbor: A distant neighbor of a given point satisfies the following. 

(1) The given point and its distant neighbor are in adjacent closures.  

(2) The given point and its distant neighbor are in the same simplex. 

(3) The shortest distance between two closures is an edge of the same 

simplex.  

 

Nowhere: It is a dummy point. Nowhere does not have a degree limitation, and many 

points in a data set can be connected to nowhere. Connection to nowhere implies that 

the point under consideration does not have another adjacent point that should be 

placed in the same cluster with it. If 2-degree requirement of a point is all consumed 

by nowhere, then that point is an outlier/singleton. If two neighboring points are 

connected to each other, and both of them are also connected to nowhere, then the 

ant’s tour forms a path with two end points connected to nowhere. Hence, the two 

points on a straight line form a 2-point cluster.  

 

Direct and indirect neighbors are already connected as a result of the NC 

algorithm. Examples for direct and indirect neighbors in a 2-dimensional data set are 

presented in Figure 6.8. Indirect neighbors of point i in the figure ensure connectivity 

when one of its direct neighbors is detached as an outlier. Beyond the finite space,  

“nowhere” also stands as a neighbor of the point.  
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Merging the closures becomes possible via distant neighbors as shown in 

Figure 6.9. An ant can visit more than one closure in its tour, so entry to and 

departure from a closure must be allowed. Considering the 2-degree limitation, we 

place at least two bridges between a pair of closures to ensure incoming and outgoing 

edges to and from a closure. In Figure 6.9, two bridges between closures A and B are 

shown by dashed lines.  

A point classified as an outlier satisfies the 2-degree restriction via the 

nowhere node. If a point first connects to nowhere, then it forms a singleton cluster, 

which means that it is an outlier. Hence, connection to nowhere is favored 

particularly for outliers.  

In the 2-dimensional space, the ACO-C neighborhood of point i, NESi, is 

composed of direct and indirect neighbors, distant neighbors, and nowhere. In higher 

dimensions, NESi includes direct neighbors, distant neighbors, and nowhere. 

 

 

Figure 6.8 An example for direct and indirect neighbors of point i in a 2-dimensional 
data set 
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Figure 6.9 An example for distant neighbors of points i and j in a 2-dimensional data 
set 

 

In the neighborhood construction the main difference between 2- and higher 

dimensions is the indirect neighbors. A simplex in 2-dimensional space is equivalent 

to a triangle, so facets of a closure (boundary) are composed of edges. Thus 

boundary points on these edges satisfy 2-degree requirement by default. The indirect 

neighbors are added to the neighborhood of a point, lest the outlier skips (break-offs) 

disrupt the connectivity of the closure due to the 2-degree restriction.  

In 3-dimensions, triangles form the facets of a closure (boundary) and each 

point has a higher degree than two by construction. Thus, outlier detection does not 

cause disconnectivity during an ant’s tour, and there is no need to consider the 

indirect neighbors. In the 3-dimensional space, direct neighbors of point i is shown in 

Figure 6.10. For higher dimensions the same conditions hold.  
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Figure 6.10 An example for direct neighbors (gray circles) of point i in a 3-
dimensional data set  

 

 

6.2.3. The ACO-C Algorithm  

 

We give the notation below and present the outline of the ACO-C algorithm 

in Figure 6.11.  

 

Notation 

 

Index 

i, j  : indices for data points 

m, n  : indices for clusters 

s  : index for ants 

t  : index for iteration number  

 

Problem Parameters  

D  : set of data points in the data set  

no_points : number of points in the data set 

dimension : number of attributes of a point in the data set 

 

 

point i 

point i 
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Algorithm Parameters  

no_ants : number of ants 

max_iter : maximum number of iterations 

ρ   : evaporation rate for the pheromone  

 

Variables  

degreei : number of points currently connected to point i (current degree of 

point i) 

dij : Euclidean distance between points i and j  

ijτ   : pheromone value of the edge (i, j) 

pij  : probability of connecting (placing an edge between) points i and j 

inc_compi : incumbent compactness value for point i 

inc_sepi : incumbent separation value for point i 

clusters            : number of clusters in the solution generated by ant s  

sepsm  : separation value of cluster m in the solution generated by ant s 

compsm  : compactness value of cluster m in the solution generated by ant s 

comps : compactness vector (a one by clusters vector) carrying compactness 

values of all clusters in the solution generated by ant s 

seps : separation vector (a one by clusters vector) carrying separation 

values of all clusters in the solution generated by ant s 

 

Sets 

Do  : set of unvisited points, Do = { i : i∈D and degreei < 2}  

NSi : set of neighbors of point i (includes only direct neighbors and 

indirect neighbors) 

NESi : set of extended neighbors of point i (nowhere node, direct neighbors, 

indirect and distant neighbors, if any) 

NCESi : set of currently available extended neighbors of point i,  

NCESi = { j : j∈NESi and degreej < 2}  

Cms  : set of points in cluster m following the tour by ant s 
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MSTms : set of edges in the MST of the points in cluster m following the tour 

by ant s 

MSTm(i),s : set of edges in the MST of the points in the neighborhood of point i, 

NSi, in cluster m following the tour by ant s 

SC : set of solutions constructed by the ants in the current iteration 

SN : set of nondominated solutions 

SEs : set of edges in the current clustering solution following the tour by 

ant s 
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Figure 6.11 The ACO-C Algorithm 

The ACO-C Algorithm 

 

Step 0. Preprocessing (Neighborhood construction, data set reduction)            

Step 1. Initialization (max_iter, no_ants, ρ )  

For t = 1,.., max_iter  

 For s = 1,.., no_ants  

  Step 2. Connecting the points  

  Set Do = D and NCESk = NESk, Dk∀ ∈ . 

Set m = 1. 

  While Do ≠ ∅   

 2.1. Point selection  

   Select point i from Do at random.  

 Initialize the set of points in the current cluster m, Cms = {i}. 

 While NCESi ≠ ∅  and i ≠  “nowhere” 

  2.2. Edge construction 

Construct edge (i,j) where j∈NCESi using 

probabilities based on ijτ .  

   2.3. Update sets  

Add j to Cms, remove j from Do and from all NCESk’s 

that contain it, set i = j.  

 End while 

 Set m = m + 1 and start a new cluster.  

  End while  

  Step 3. Clustering evaluation  

  Step 4. Local search  

 End for  

 Step 5. Pheromone update  

 Step 6. Non-dominated set update  

End for  
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The details of each step are explained as follows.  

 

Step 0. Preprocessing  

 Preprocessing is composed of three phases.  

 

Phase 1. Neighborhood construction 

Neighborhood of each point i, CSi, and closures are constructed by the NC 

algorithm described in Chapter 3.  

 

Phase 2. Data set reduction  (boundary formation) 

Boundaries of the closures are determined by DTC and IS algorithms for 2- 

and higher dimensional data sets, respectively. The details of the DTC and IS 

algorithms are given in Chapter 5.  

 

Phase 3. Neighborhood in ACO-C 

Using the adjacency information gathered from Delaunay triangulation, 

neighborhood of point i, NESi, is constructed from the direct, indirect, distant 

neighbors and nowhere. This step is repeated for every point in D.  

 

Step 1. Initialization 

The parameters in ACO, i.e. the number of ants (no_ants), the number of 

maximum iterations (max_iter), and the evaporation rate ( ρ ), are initialized. We 

conduct a factorial design explained in Section 6.3 to guide this initialization.  

There is a relationship between the evaporation rate and the pheromone 

deposits on the solution components. In each iteration, pheromone amounts on the 

solution components evaporate at a given rate, and some of this is recovered through 

the release of pheromone by the ants visiting if any. Thus, convergence rate of the 

algorithm depends on the initial pheromone levels and the evaporation rate. In order 

to avoid premature convergence, we initialize the pheromones as the inverse of the 

evaporation rate, 1ijτ ρ=  for , Di j∀ ∈ , to let pheromone removal take adequately 

long.  
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Closures obtained at the end of the NC algorithm are taken as the initial 

clustering solution. Thus, for each point, incumbent compactness and incumbent 

separation values (i.e. inc_compi and inc_sepi) are initialized using the separation and 

the compactness values of the NC closure to which point i belongs.   

Steps 2-6 that are explained below are repeated until the entire ant colony 

performs the maximum number of iterations, max_iter.   

  

Step 2. Connecting the points  

 Each time an ant starts clustering, the set of unvisited points, Do, is initialized 

as the entire data set, D. For each point in the data set, the set of currently available 

extended neighbors, NCESi, is initialized as its complete set of extended neighbors, 

NESi. The current number of clusters is set to 1. Every time an ant starts a new 

subtour, the number of clusters is incremented by 1.  

 Steps 2.1-2.3 are repeated until the set of unvisited points, Do, becomes 

empty.  

 

2.1. Point selection 

A point, say point i, is selected at random from the set of unvisited points, Do. 

Suppose that ant s constructs cluster m. Then, the first element of this cluster, Cms, 

becomes point i. 

Suppose that the current point visited by the ant is point i. While the set of 

currently available extended neighbors for point i, NCESi, is not empty, and point i 

does not correspond to the nowhere node, a subtour (cluster) is constructed by 

repeating Steps 2.2 and 2.3.  

 

2.2. Edge selection 

The ant inserts an edge between the current point i and a point selected from 

the set of currently available neighbors of point i, NCESi. As the pheromone amount 

on an edge, ijτ , represents the tendency for the edge (i, j) to occur in a cluster based 

upon past solutions, probability of selecting the edge (i, j) is calculated as follows.  
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 for j∀ ∈NCESi               (6.1) 

In the next move, the ant continues its visits starting from point j. During the 

construction of clusters both locality and connectivity issues are taken into account, 

locality by the use of points from NCESi and connectivity by recurrence of the 

linkage relation.  

 

2.3. Update sets 

Point j selected in Step 2.2 is added to the current cluster, { }C C
ms ms

j= ∪ . 

As point j becomes a visited point, it is eliminated from Do and from all NCESk’s 

that include point j.  

Point j becomes the next point for connection, i.e. i = j. If the set of currently 

available extended neighbors, NCESi, is not empty for point i, and point i does not 

correspond to the nowhere node, Steps 2.2 and 2.3 are repeated. Otherwise, chain-

like connectivity relations in the subtour (cluster) are broken, and the construction of 

the associated subtour ends up. Hence, a new subtour is initialized by incrementing 

the cluster index, m, by 1. The construction of the new subtour starts in Step 2.1.  

As the result of this iterative process, a clustering solution is generated by ant 

s.  

 

Step 3. Clustering evaluation  

SI based algorithms guide the search by evaluating and reflecting the 

performance of the solutions in general. Thus, it is assumed that the target clustering 

solution will be sought by testing the optimality of an evaluation function. However, 

quantifying and combining the clustering objectives (compactness, connectivity and 

separation) for any data set is not a trivial task. Particularly, for the data sets with 

arbitrary shaped clusters and density variations, traditional compactness objectives 

like maximum edge in a cluster or distance between the points in a cluster and the 

cluster’s representative point, or traditional connectivity measures like k-NN do not 

reflect the quality of the clustering properly. An example data set is displayed in 

Figure 6.12 (a). The maximum edge length in the spiral clusters is the larger than the 
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intercluster distance between these two spiral clusters. Furthermore, the cluster 

center of a spiral cluster is not located within the cluster, so the total distance 

between the cluster points and the cluster center of a spiral cluster becomes large. 

Thus, both compactness calculations may mislead.  

We have also evaluated the performance of a traditional validity index, i.e. 

Dunn index (Halkidi et al. 2002b) in this data set. For generation of arbitrary shaped 

clusters, we use DBSCAN algorithm (Ester et al. 1996). The clustering solutions 

generated by DBSCAN are evaluated using Dunn index with different MinPts 

settings (within the range of 1 to 15), and the results are presented in Figure 6.12 (b). 

In the figure, the number of clusters found by each setting is shown as well, e.g. 56 

clusters are found when MinPts is set to 1. Dunn index measures the worst separation 

to the worst compactness ratio, so the highest Dunn index implies good clustering. 

Although the highest Dunn index (0.31) is achieved for the solutions with 2 and 4 

clusters, the target clustering includes 3 clusters with a Dunn index of 0.09. To sum 

up, Dunn index is not a proper measure to evaluate the quality of the clustering.  

 

     

(a)               (b) 

Figure 6.12 (a) An example data set with arbitrary shaped clusters and density 
variations. (b) Dunn index values for the clustering solutions generated by DBSCAN 

with different MinPts settings.  

 

Optimization based methods and metaheuristics generally use a compactness 

based measure. These have objectives like minimization of total variance/distance in 
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and the cluster’s representative point. However, the number of clusters needs to be 

given a priori, and by their nature resulting clusters have spherical or ellipsoid shapes 

in general.  

In an effort to find the target clusters, some researchers suggest clustering 

validity indices as their objective, since these indices help to quantify the quality of 

the clustering solution and determine the number of clusters in a data set (Halkidi et 

al. 2002a and 2002b). In a clustering validity index the intercluster property (i.e. 

separation) and the intracluster properties (i.e. compactness and connectivity) of a 

clustering solution need to be measured properly. Next, measurements of these 

properties are combined in a scalar value.  

Optimization of a validity index as such for clustering has some 

complications. Firstly, some of the validity indices (like the modified Hubert Г 

statistic) are monotonically non-increasing functions so the optimal value might not 

correspond to the target cluster. Secondly, the combination operation in the final step 

of the validity index calculation is like “cutting toothpicks by an ax”, as some 

important information about compactness, separation and connectivity might be 

overlooked.  

As far as we know, there is not a generally accepted objective function in 

evaluating the clustering solutions with arbitrary shapes, different densities and 

unknown number of clusters. Therefore, we introduce two alternative evaluation 

functions for clustering. Two main contributions of these evaluation functions are: 

(1) Compactness and separation values for the clusters are not combined, instead, 

both of them are considered in the comparisons. (2) Compactness and separation are 

measured relative to the neighborhoods.  

 

Alternative 1. Clustering Evaluation Relative to Neighborhood (CERN) 

Compactness of a cluster is measured in two parts: connectivity ratio and 

relative compactness. The base point in the connectivity ratio calculation is the NC 

closures. In the clustering solution each cluster is evaluated in terms of each closure. 

In doing this, 
mspconnect  is calculated as the number of points left connected 

identically in cluster m (generated in ACO-C by ant s) and in closure p (generated by 
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NC) divided by the number of points in closure p, i.e. 

| C Cl | | C |,     C Cl

1,                                 otherwise

ms p p ms p

mspconnect
∩ ∩ ≠ ∅

= 


. 

In the ideal case, 
mspconnect  takes a value of 1 which implies that either 

cluster m and closure p fully overlap, or cluster m and closure p do not have any 

common elements. To calculate the connectivity ratio of cluster m (generated in 

ACO-C by ant s), 
mspconnect  is multiplied over all closures. Thus, merging multiple 

closures that are entirely contained in the cluster does not harm a connectivity value 

of 1, whereas connectivity gets less than 1 when there is an outlier in the closure. 

Connectivity ratio helps to cover arbitrary shapes and density variations in the 

clusters.  

 We define the relative compactness of cluster m, r_compms, with respect to 

the most inconsistent edge within its neighborhood.  For this purpose, given a 

solution generated by ants, the minimum spanning tree (MST) is constructed for each 

cluster, and each edge in the MST is evaluated relative to the edges in its 

neighborhood. That is, each edge in the MST is compared with the edge contained in 

the cluster with the maximum length in the neighborhoods relative to the end points. 

More formally, 
{ } { }

( ), ( ),

( , ) MST

( , ) MST ( , ) MST

_ max ,
max maxms

m i s m j s

ij ij

ms
i j

kl kl
k l k l

d d
r comp

d d∈

∈ ∈

 
 

=  
  

. 

MST is a graph such that the sum of the edge lengths in the graph is the 

minimum and the graph is connected with no cycles. Hence, MST accommodates 

both arbitrary shapes and density variations.  

 Our objective is to form clusters that span the connected points while 

ensuring consistency in the neighborhoods. Hence, we consider the inverse of the 

connectivity ratio as the weight of the relative compactness. Compactness of cluster 

m generated in by ant s is found as the product of the inverse of the connectivity ratio 

and the relative compactness, i.e. 
_

1

_ ms
ms no closures

msp
p

r comp
comp

connect
=

=

∏

.  

In the division of closures case, a small relative compactness value is 

obtained, but connectivity is disrupted. On the other hand, in the merging of closures 
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case, the relative compactness value increases, and the connectivity is still ensured. 

To sum up, the proposed compactness measure is built upon the trade-off between 

the connectivity and the relative compactness.  

Separation of cluster m generated in ACO-C by ant s, sepms, is based on the 

nearest cluster to cluster m. Suppose that nearest two points are i* and j* between 

cluster m and its nearest neighbor, i.e. { }
, ,

( *, *) arg min : C , Cij ms ns
i j n

i j d i j= ∈ ∈ . The 

distance between points i* and j* is evaluated relative to the neighborhoods of points 

i* and j*, i.e.

 
{ } { }

( *), ( *),

* * * *

( , ) MST ( , ) MST

min ,
max max

m i s m j s

i j i j

ms

kl kl
k l k l

d d
sep

d d
∈ ∈

 
 

=  
  

.  

 Figure 6.13 provides an example for the relative compactness and separation 

calculation. In order to calculate the relative compactness of cluster 1, we consider 

the MST of cluster 1 which is displayed in the figure. Each edge (i, j) in the MST is 

evaluated according to the sets of neighbors for points i and j, NSi and NSj. That is, 

the edge (i, j) is normalized with respect to the maximum edge in the MSTs which 

are constructed using the intersection points of NSi and NSj with the points in cluster 

1. This normalization is conducted for each edge in the cluster MST. Among them 

the maximum is selected as the most inconsistent edge or the relative compactness of 

cluster 1, r_comp1s. The minimum edge length between cluster 1 and the nearest 

cluster 2 is edge (i*, j*), and separation of cluster 1 becomes sep1s which is 

normalized with respect to the maximum edge in the MSTs of the intersection of the 

points in NSi* and NSj* with the points in cluster 1.  

Finally, quality of a clustering solution generated by ant s is represented by 

the worst separation, { }min ms
m

sep , and the worst compactness, { }max ms
m

comp , and 

these two performance measures are used for comparing the clustering solutions in a 

bicriteria setting. 

This evaluation mechanism is advantageous for solving arbitrary shaped 

clusters or cases with large intracluster density variations. However, the evaluation 

scheme may mislead ACO in heterogeneous data sets. If the variance of the 

intercluster distances is high, CERN smoothes out the magnitude information 
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gathered from the edge lengths and gets indifferent to widely varying clearances. To 

overcome this sensitivity, an alternative evaluation function is proposed as follows.  

 

 

Figure 6.13An example for compactness and separation calculation 

 

Alternative 2. Weighted Clustering Evaluation Relative to Neighborhood 

(WCERN) 

 The idea behind this evaluation scheme is similar to CERN. For each cluster, 

both compactness and separation values are calculated relative to the neighborhoods. 

The main difference in WCERN is that the length of an edge is used as the weight 

factor. Thus, compactness and separation of cluster m are calculated as follows. 
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 This evaluation scheme takes both the edge lengths and its relative size in its 

neighborhood into account. Typically, in the relative compactness calculation of 
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clusters with intracluster density variations, the long edges will shrink due to the 

relativity implied by the ratio. In the separation calculation, the minimum edge 

length between the clusters is inflated using the neighborhoods with modest 

variation.   

Just as in CERN, quality of a clustering solution generated by ant s is 

determined as the worst separation, { }min ms
m

sep , and the worst compactness, 

{ }max ms
m

comp .  

To sum up, in step 3, the separation and compactness values of each cluster, 

i.e. sepms and compms, are calculated using evaluation functions from either 

alternative 1 or alternative 2. seps and comps vectors are formed to be used in step 4. 

The quality of the clustering solution becomes { }min ms
m

sep  and { }max ms
m

comp  in 

each alternative.   

 

Step 4. Local search 

 Randomness in ACO ensures exploration in the search space thoroughly, and 

local search is a crucial mechanism to strengthen ACO’s exploitation property. In 

ACO-C we apply local search to each clustering solution constructed and evaluated. 

Conditional merging operations are performed in the local search. That is, if the two 

clustering evaluation criteria do not worsen after merging two clusters, clusters under 

consideration are merged.  

 Two conditions used in the local search are as follows.  

(1) If candidate clusters to be merged are non-singleton clusters, check whether the 

worst separation, { }min ms
m

sep , and the worst compactness, { }max ms
m

comp  after 

merging,  are at least as good as those of the two clusters before merging. If this 

condition holds, candidate clusters are merged.  

(2) If there exists a singleton cluster (potential outlier) in the candidate clusters to be 

merged, check whether the worst compactness, { }max ms
m

comp , after merging induces 

an improvement jointly in both the worst separation, { }min ms
m

sep , and the worst 
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compactness, { }max ms
m

comp , before merging. If this condition holds, candidate 

clusters are merged.  

 The clustering solutions at the end of the local search are accumulated in the 

set of solutions SC constructed by the ants in the current iteration.  

 

Step 5. Pheromone update 

Ants direct the solution to the promising solution regions by releasing 

pheromone. The amount of pheromone released is correlated with the solution 

quality. Pheromone update is performed for each solution component (i.e. edges in 

the connectivity) so that the effect of the solution component is well reflected in the 

pheromone accumulation for correct guidance.  

In the ACO literature pheromone level for each solution component is 

proportional to the evaluation function value of the entire solution. However, the 

basis of our clustering approach is local density, connectivity and proximity 

relations. That is, local properties are rather dominant in clustering. So, definition of 

the solution quality by a single global measure ignores local characteristics 

(compactness of a cluster and separation between a pair of clusters). Pheromone 

update by a single measure for the entire solution may easily mislead the ant colony. 

For example, suppose a data set with three target clusters. In a solution we identify 

one of the clusters correctly whereas the remaining two are mixed. If we combine the 

compactness and separation values of individual clusters in one global measure, we 

may classify the entire solution as poor, missing the correctly identified cluster.  

We use the local information of each data point in the pheromone update. 

That is, in the pheromone update of an edge in the solution, instead of using an 

overall compactness or separation value, we use the compactness and separation 

values of the specific cluster which the edge belongs to. For each point in the data 

set, the incumbent compactness value, i.e. the minimum compactness value obtained 

so far, inc_compi, and incumbent separation value, i.e. the maximum separation 

value obtained so far, inc_sepi, are kept in the memory. Incumbent values denote the 

compactness and separation of an ideal cluster which includes point i. These 

compactness and separation values are not necessarily obtained from the same 
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clustering solution. We compare the compactness (separation) of edge (i, j) in the 

current solution with the best of the incumbent compactness (separation) of its end 

points i and j. More pheromone is released if any of the best incumbent is improved. 

The choice of the best incumbent value for the comparison is a rather conservative 

update scheme, but it helps to avoid rapid convergence.  

If edge (i, j) is visited in the subtours generated by any of the ants, the 

pheromone update mechanism includes both evaporation and pheromone release as 

below. Otherwise, the pheromone on edge (i, j) only evaporates.  

{ }

{ }

min _ , _1
(1 )

2 _

1
    for   ( , ) SE ,

2 _ max _ , _

i j

ij ij ij

ms

ms

ij s

i j

inc comp inc comp

no ants comp

sep
i j s

no ants inc sep inc sep

τ ρ τ ρ τ

ρ τ

 
 = − +
 ×
 

 
 + ∈ ∀
 ×
 

          (6.4) 

   

(1 )ij ijτ ρ τ= −    for ( , ) SE ,si j s∉ ∀              (6.5) 

 

In ACO-C, we consider a bicriteria setting, in which each ant in the colony 

generates a clustering solution in every iteration. Improvement in both incumbents 

for all the solutions generated in an iteration may increase the accumulated 

pheromone amount on the edges dramatically, and this may bring about the rapid 

convergence risk. Thus, we need to stabilize the amount of pheromone deposited by 

the ants. In order to avoid the inflation of pheromone deposit, we use two weight 

factors in the pheromone release expression, namely ½ and 1/no_ants. The former 

one compensates for the bicriteria setting, and the latter accommodates for the ant 

colony effect. In addition, the amount of pheromone released by the ant is scaled 

using the evaporated pheromone, 
ijρτ .  

   

Step 6. Nondominated set update 

Performance of a clustering solution is evaluated using two criteria: the worst 

compactness and the worst separation values. The ultimate aim is to minimize the 

worst compactness and maximize the worst separation.  
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We evaluate the clustering solutions in a bicriteria setting, and propose a set 

of nondominated solutions. This way not only alternative clustering solutions, but 

also their trade-offs can be seen.  

Suppose two clustering solutions generated by ants are s1 and s2. Solution s1 

dominates solution s2 if solution s1 is better than solution s2 in either compactness or 

separation, and it is at least as good as solution s2 in the remaining criterion. More 

formally, s1 dominates s2 if one of the following holds: 

i. { } { }, 1 , 2max maxm s m s
m m

comp comp<  and { } { }, 1 , 2min minm s m s
m m

sep sep≥ .  

ii. { } { }, 1 , 2min minm s m s
m m

sep sep>  and { } { }, 1 , 2max maxm s m s
m m

comp comp≤ . 

 If there does not exist any other clustering solutions dominating solution s1, 

then solution s1 is a nondominated solution.  

We update the set of nondominated solutions, SN, at the end of each iteration. 

That is, the clustering solutions constructed by the ants in the current iteration, SC, 

and the set of nondominated solutions present so far, SN, are checked for 

domination. If a clustering solution in SN is dominated by a solution in SC, then it is 

eliminated from SN and the new nondominated solution is added to SN. Using the 

updated SN, incumbent compactness and separation values (inc_compi and inc_sepi) 

are also updated for each point in the data set. Every addition to SN does not 

necessarily improve the incumbents.  

If the maximum number of iterations is not exceeded, Steps 2-6 are repeated. 

Otherwise, ACO-C terminates with the nondominated solutions in set SN. The 

ultimate aim of ACO-C is that the target clustering solution is included in the set of 

nondominated clustering solutions. Besides, not only a reasonable size of set SN 

which facilitates the evaluation of the decision makers, but also set SN which 

includes nondominated solutions within a wide range of the two criteria is preferred.  

 

6.2.4. Computational Complexity of the ACO-C Algorithm 

 

The worst-case time complexity of step 1 in ACO-C is O(n2) due to the 

initialization of the pheromone amounts of the edges defined according to the 

neighborhoods. Step 2 constructs solutions in O(n2) time. In step 3, the compactness 
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calculation requires MST construction for each cluster in the data set, and each edge 

in the MST is evaluated according to the neighborhood of its end points. Thus, MST 

is constructed once more for the neighborhood of these end points. Hence, 

compactness calculation takes O(n3) in the worst-case. Separation calculation 

includes finding the single-link edges between the clusters and evaluating them 

according to the edges in the MST of their neighborhoods. Therefore, worst-case 

time complexity of separation is O(n3). The total time complexity of step 3 becomes 

O(n3). The local search in step 4 is repeated for all cluster pairs until no 

improvement, so we cannot determine the total time complexity of step 4. Still, using 

the time complexity of the clustering evaluation function, we can infer that step 4 has 

MO(n3) time complexity where M denotes the number of cluster pairs evaluated until 

no improvement. Step 5 updates the pheromone values of all the edges, so it takes 

O(n2) time. Finally, step 6 updates the set of the nondominated solutions. 

Nondomination check is repeated for every solution generated in the current iteration 

and for every nondominated solution so far. Since we cannot determine an upper 

bound on the number of nondominated solutions, it is not possible to make a time 

complexity analysis for step 6. 

We repeat steps 2 to 6 for every ant in the colony for maximum number of 

iterations. Consequently, the overall time complexity of ACO-C is MO(n4) where M 

stands for the number of repetitions of the repeat-until loop.  

 

6.3. Experimental Results for the ACO-C Algorithm  

  

 We test the performance of the ACO-C algorithm empirically. The algorithm 

was coded in Matlab 7.9 and run on a PC with Intel Core2 Duo 2.33 GHz processor 

and 2 GB RAM.  The parameters in ACO strongly affect the performance, so, in a 

pilot group of data sets, we conduct a full factorial experiment in order to set the 

ACO-C parameters. After setting the parameters we test the performance of ACO-C 

in two groups of data sets.  
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6.3.1. Data Sets and Performance Evaluation Criteria  

 

In our experiments we used two groups of data sets, namely groups 1 and 3. 

Group 1 data sets include various shapes of clusters (circular, elongated, spiral, etc.), 

they are with intracluster and intercluster density variations, and contain outliers. 

There are 45 data sets in this group, and 15 of these are used in the pilot experiment 

for parameter setting. Group 3 data sets are 3-dimensional data sets that are 

generated to test the strengths and weaknesses of the proposed approach in a 

controlled experiment. Properties and plots for groups 1 and 3 data sets are given in 

Appendix B.  

Two performance evaluation alternatives are proposed in ACO-C: CERN and 

WCERN. We test the performance of both evaluation schemes, which are described 

in Section 6.2.  

ACO-C yields a set of nondominated clustering solutions. Thus, we keep 

track of the number nondominated solutions in the set. The performance of a 

nondominated clustering solution is evaluated using three criteria: Jaccard index (JI), 

quasi-Jaccard index (QJI) and Rand index (RI) in every nondominated solution. JI 

and RI are well-known external cluster validity indices. JI focuses only on the 

number of point pairs that belong to the same target cluster and assigned to the same 

cluster, whereas RI also considers the number of point pairs that belong to different 

target clusters and assigned to different clusters. QJI is a relaxed version of JI, and it 

penalizes only the number of point pairs that belong to the same target cluster and 

assigned to different clusters. 

The ultimate aim of ACO-C is that the target clustering solution is included in 

the set of nondominated solutions. In order to check this, we report the maximum JI, 

QJI and RI values in the set of nondominated solutions. Finally, the iteration number 

in which the target clustering is achieved is stored.  
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6.3.2. Parameter Settings for the ACO-C Algorithm 

 

The main parameters of ACO-C are the number of ants (no_ants), the 

maximum number of iterations (max_iter) and evaporation rate ( ρ ). These three 

parameters have an important role on the exploration power and the convergence rate 

of ACO-C. Effect of parameters in ACO design has been addressed in the literature 

(Dorigo and Stützle 2004). However, there is not a unique method for parameter 

setting in ACO. Thus, we used a full factorial experimental design in order to 

determine the best parameter setting in ACO-C.  

Three factors used in the experimental design and their levels are presented in 

Table 6.3. In addition to the number of ants (no_ants) and evaporation rate ( ρ ), the 

effect of evaluation function (FE) on the performance of ACO-C is explored further. 

In the experiments we set the maximum number of iterations, max_iter, to three 

times the number of points in the data set, no_points, and record the iteration number 

in which the target clustering is found (if it has). Thus, we do not consider the 

maximum number of iterations (max_iter) as a factor in our experimental design.   

  

Table 6.3 Factors in ACO-C 

Factors Level 0 Level 1 
evaluation function, EF CERN WCERN 
evaporation rate, ρ  0.01 0.05 
number of ants, no_ants 5 10 

 

 In the 23 factorial design each factor combination is coded using the factor 

levels. That is, S_000 denotes the parameter setting in which all three factors are set 

to their level 0. The results are presented in Tables F.1 through F.8 in Appendix F. 

Table 6.4 reports the count of data sets out of 15 for which the target clustering is 

included among the set of nondominated solutions, SN. The number of such data sets 

varies between 11 and 13 for different parameter settings. However, only the CERN 

setting yields the target clusters for set data-uc-cv-nu-n.  Besides, only the settings 

S_000 and S_111 find the target clusters for data-c-cv-nu-n and data-uc-cc-nu-n, 

respectively. Finding the target clusters of data_circle is possible only with the 

parameter settings, S_100 and S_110. When there exist intracluster density 
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differences in the data set (e.g. data-uc-cv-nu-n and data-c-cv-nu-n), experiments 

with CERN can find the target clusters. WCERN is more effective when the 

intercluster and the intracluster edge lengths are significantly different.  

 An example for the set of nondominated solutions generated for data set data-

c-cv-nu-n is as follows. ACO-C yields three nondominated clustering solutions when 

CERN is used as the evaluation function, and evaporation rate and number of ants 

are set to 0.01 and 5, respectively. The resulting nondominated clustering solutions 

and CERN values of each cluster are shown in Figure 6.14.  Target clustering 

solution is included as seen in Figure 6.14 (c). When WCERN is applied instead of 

CERN, the number of nondominated solutions is less by one, and the target 

clustering solution is not one of these (Figure 6.15).  

 

Table 6.4 Performance of ACO-C 

Parameter 
Setting 

# of data sets 
for which 
target is 

covered in 
SN 

Uncovered data sets 

S_000 13 data-uc-cc-nu-n, data_circle        

S_001 11 
data-c-cv-nu-n, data-uc-cc-nu-n, data-c-cc-nu-n_v2, 
data_circle        

S_010 12 data-c-cv-nu-n, data-uc-cc-nu-n, data_circle        
S_011 12 data-c-cv-nu-n, data-uc-cc-nu-n, data_circle        
S_100 12 data-c-cv-nu-n, data-uc-cv-nu-n, data-uc-cc-nu-n    

S_101 11 
data-c-cv-nu-n, data-uc-cv-nu-n, data-uc-cc-nu-n, 
data_circle        

S_110 12 data-c-cv-nu-n, data-uc-cv-nu-n, data-uc-cc-nu-n    
S_111 12 data-c-cv-nu-n, data-uc-cv-nu-n, data_circle        
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   (a)       (b) 
 

 

 

 
(c)  

Clusters 
1 2 3 4 5 6 

comp. 1 0 0 0.91 1.22 0 
sep. 3.16 4.36 4.81 3.16 4.36 3.45 

 

Figure 6.14 Nondominated clustering solutions for data-c-cv-nu-n for the factorial 
setting, S_000, (a) JI = 0.54, (b) JI = 0.57, (c) JI = 1. 
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   (a)       (b) 

 

 

 

Figure 6.15 Nondominated clustering solutions for data-c-cv-nu-n for the factorial 
setting, S_100. (a) JI = 0.54. (b) JI = 0.97. 

 

 The effects of the three factors are analyzed for the two performance 

measures, namely the mean of the maximum RI values of nondominated solutions, 

and the average of computation time. The main effects plots for maximum RI and 

time are presented in Figure 6.16. The low setting of the evaporation rate slows the 

convergence rate and prevents ACO-C from finding suboptimal (missing the target) 

solutions. However, the time spent in ACO-C with this setting of the evaporation rate 

is three times larger. Increasing the number of ants used in ACO-C provides a slight 

improvement in maximum RI in return for negative effects on time. Although 

WCERN performs better than CERN in terms of both the maximum RI and time, 

CERN reaches the target clustering in some data sets (e.g. data-uc-cv-nu-n, data-c-

cv-nu-n). Figure 6.17 underlines no significant interaction among the factors for 

either of the performance measures.  

 To sum up, the production runs are performed with the following parameter 

settings. Despite the increase in the time spent, evaporation rate is set to level 0 

(0.01) due to its superior performance in maximum RI. The increase in the number of 

ants increases the time spent more significantly than the maximum RI, so we set the 

number of ants to level 0 (5). The nondominated solutions generated by WCERN and 
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CERN can be different due to the different rewarding mechanisms of the clustering 

solutions. Thus, both WCERN and CERN are used for the evaluation purposes in 

independent runs of ACO-C, and the union of the resulting sets of nondominated 

solutions is taken as the final solution set. Consequently, we conduct our production 

runs with parameter settings S_000 and S_100.  

In order to set the maximum number of iterations, we check the iteration 

number in which the target clustering is found (#ITA) and the ratio of this iteration 

number to the number of points in the data set (#ITA / #P) from Tables F.1 and F.8 

in Appendix F. In both parameter settings #ITA is less than twice the number of data 

points (the maximum # ITA / #P ratio is 1.30 for train2 in S_000), so we set the 

maximum number of iterations as twice the number of data points.  

 

  

     (a)         (b) 

Figure 6.16 Main effect plots for (a) max RI. (b) time. 

 

 

 

      (a)         (b) 

Figure 6.17 Interaction effect plots for (a) max RI. (b) time. 
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6.3.3. Convergence of the ACO-C Algorithm 

 

Convergence of an ACO algorithm can be analyzed from two perspectives: 

convergence in value and convergence in solution (Dorigo and Blum 2005). 

Convergence in value implies that ACO generates the optimal solution throughout 

the iterations at least once, i.e. selection probability of the optimal solution 

components is positive. Convergence in solution ensures that ACO repeats the 

optimal solution after reaching a steady state.  

In ACO-C we initialize the pheromone values at 1 ρ  as in T’kindt et al. 

(2002). Thus, the minimum amount of pheromone on an edge decreases to 

(1 )max_iterρ ρ−  at the end of ACO-C due to evaporation. To ensure convergence in 

value, we set the maximum number of iterations, max_iter, so that the minimum 

amount of pheromone is a positive value.  

An example is provided for data set data-c-cv-nu-n in Figure 6.18. Four 

closures are generated for this data set at the end of the NC algorithm, and two of 

them (closures 1 and 4) have outlier mixes. The point in closure 3 is already 

classified as an outlier at the end of NC. ACO-C results in three nondominated 

solutions as shown in Figure 6.14 when this data set is run with S_000 setting. The 

trajectories of the pheromone values for the extended neighbors of points 10 and 55 

are presented in Figures 6.19 to 6.20, respectively.  

ACO-C results in a set of nondominated solutions, so, instead of convergence 

to a single optimal solution, we consider convergence of the set of nondominated 

solutions ACO-C. We keep track of the set of nondominated solutions throughout the 

iterations. An example is displayed for data set data-c-cv-nu-n in Figure 6.21. The set 

of nondominated solutions stabilizes after iteration number 70 as the figure indicates.  
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Figure 6.18 NC closures for data set data-c-cv-nu-n 

 

 

     

  (a)      (b) 

Figure 6.19 (a) Extended neighbors of point 55. (b) Trajectories of the pheromone 
values for the extended neighbors of point 55. 
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  (a)      (b) 
Figure 6.20 (a) Extended neighbors of point 10. (b) Trajectories of the pheromone 

values for the extended neighbors of point 10. 

 

 

 

Figure 6.21Convergence analysis for the example data set, data-c-cv-nu-n 
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 6.3.4. Experiments with the ACO-C Algorithm 

 

 We test the performance of ACO-C in group 1 and group 3 data sets using the 

parameter settings in Section 6.3.2. Both evaluation methods, CERN and WCERN, 

are examined in these experiments. We present the details of the results for data sets 

in Tables F.9 through F.12 in Appendix F.  

 

Results of ACO-C in Group 1 Data Sets 

 

In group 1 data sets, ACO-C finds the target clusters in 21 data sets out of 45 

using CERN as the evaluation method, and the same figure is 27 for WCERN. 

Taking the union of the resulting nondominated solutions generated by both 

evaluation mechanisms, we observe that target clusters are achieved in 29 data sets. 

Both CERN and WCERN find the target clusters in 19 data sets out of these 29 data 

sets. Only CERN setting achieves the target clusters in 2 data sets, and the 

contribution of WCERN setting is active in 8 data sets. When we examine the 

performances of the two evaluation functions in terms of mixing of clusters, CERN 

and WCERN mix clusters in 5 and 6 data sets, respectively.  

 The results of ACO-C in group 1 data sets are summarized in Table 6.5. In 

the table, the maximum JI, QJI and RI values are reported over the nondominated 

sets. The number of nondominated solutions generated by CERN and WCERN is 

within a range of 1 to 6. Hence, we can infer that the size of nondominated sets is 

conceivable for practical use.  

As both CERN and WCERN can extract the target clusters, the maximum JI, 

QJI and RI values are all 1. The average performance of CERN and WCERN in 

terms of the maximum JI, QJI and RI do not differ significantly, and we can 

conclude that ACO-C is able to discover clusters close to the target clusters on the 

average.  Nevertheless, the minimum and average values of these performance 

measures demonstrate the deficiencies of both methods, and they are worthwhile to 

elaborate.  

The minimum values for the maximum JI in set SN are obtained for 

data_mix_uniform_normal and data_circle_1_20_1_19 with CERN and WCERN, 
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respectively. In fact, neither CERN nor WCERN can find the target clusters of 

data_mix_uniform_normal and data_circle_1_20_1_19. In data set 

data_mix_uniform_normal, ACO-C perceives the data points around one of the 

target clusters as “local outliers”. Data set data_circle_1_20_1_19 is composed of 

two intermingling clusters in which the compactness of a target cluster is larger than 

the separation between the two clusters, in spite of scaling of these measures relative 

to neighborhoods with WCERN, the minimum value of the maximum RI in set SN is 

observed for the same data set as in the case of JI, namely data_circle_1_20_1_19, 

whereas CERN yields the least of the maximum RI’s in data set 

data_circle_20_1_5_10. Different from JI, RI rewards the data points correctly 

assigned to different clusters. Hence, we can infer that the small JI value of 

data_mix_uniform_normal arises from the division of clusters, so its RI value does 

not yield the minimum. 

The minimum of the maximum QJI across the data sets is significantly higher 

for CERN compared to WCERN. The data set having the highest number of cluster 

mixes with CERN setting is data set train3 which includes noise. However, the 

highest number of cluster mixes is observed for data set data_circle_1_20_1_19 

which includes intermixed clusters. As the intracluster and intercluster distances are 

very close, the weights used in WCERN cause mixing of clusters with a larger 

proportion.  

 

Table 6.5 Summary of ACO-C results in group 1 data sets 

CERN WCERN 

#SN* 
max. JI 
in SN 

max. 
QJI in 

SN 
max. RI 

in SN #SN* 
max. JI 
in SN 

max. 
QJI in 

SN 
max. RI 

in SN 
Min. 1 0.62 0.90 0.87 1 0.69 0.69 0.75 

Max. 5 1 1 1 6 1 1 1 
Average 2.86 0.94 0.99 0.97 2.98 0.96 0.98 0.98 

Std. Dev. 1.21 0.08 0.02 0.04 1.21 0.08 0.07 0.05 
  #SN*: number of nondominated solutions 
  Min., Max., Average and Std.Dev. are for 45 data sets.  
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Consequently, CERN particularly contributes to the identification of target 

clusters distinguished in low resolution like data-c-cv-nu-n and data-uc-cv-nu-n. 

Taking into account the edge lengths, WCERN is more powerful in the extraction of 

target clusters visible in higher resolution such as data_circle and 

data_circle_1_20_1_11. Nevertheless, there exist 16 data sets for which neither 

CERN nor WCERN could find the target clusters. Typically, ACO-C has difficulty 

in detecting the target clusters when there exist data points that look like “local 

outliers” around the clusters. The relative evaluation mechanisms acting in both 

CERN and WCERN are very sensitive to density and distance changes, so these 

points are labeled as separate clusters. Moreover, we may apply ACO-C to a data set 

with noise. Although ACO-C yields the general structure of the target clusters, it 

forms clusters by enclosing noise as well. Another limitation of ACO-C is the 

intermingling clusters having very close intracluster and intercluster distances. In this 

case, the relative evaluation mechanism does not result in target clusters.  

 

Results of ACO-C in Group 3 Data Sets 

 

Group 3 is designed as a controlled experiment. We conduct a full factorial 

design, however, the increase in the number of dimensions and the number of data 

points inflates the execution times dramatically. Hence, we are able to complete the 

experiments for 12 data sets out of 24, for which intercluster density difference is set 

to no difference.  

Both CERN and WCERN find the target clusters in the same 8 data sets out 

of 12. The summary of the results are shown in Table 6.6. The number of 

nondominated solutions generated by CERN and WCERN do not differ significantly. 

The average performances of both settings in terms of maximum JI, maximum QJI 

and maximum RI are also similar. In both settings, the minimum values of the 

maximum JI in set SN are obtained for the same data set, namely DS_0211. 

Furthermore, the data set DS_0211 has the lowest values of the QJI and RI values.  

The performance of CERN and WCERN depends on the closures found by 

the neighborhood construction algorithm, a preprocessing step of ACO-C, due to the 

connectivity term in compactness evaluation (explained in Section 6.2.3). When the 
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closures obtained from neighborhoods of NC result in divided clusters, CERN and 

WCERN stand as appropriate measures for merging them. However, when closures 

include cluster mixtures, CERN and WCERN no longer ensure distinguishing the 

mixed clusters. That is, forced breaking of the cluster mixes that are supplied by the 

NC algorithm inevitably worsens the connectivity. This results in a significant 

increase in the compactness objective, whereas separation does not change. In short, 

using such an evaluation scheme is not capable of neatly identifying the case of 

cluster mixes and tightly neighboring clusters. We can infer that the evaluation 

mechanisms relative to the neighborhoods do not work successfully in such data sets. 

On the other hand, for the cases of neighborhoods without any cluster mixes, 

performance measuring by CERN and WCERN ensure identification of the target 

clusters even if the clusters are located very close.  

For both evaluation settings we analyze the effects of three factors, i.e. 

intracluster density, intercluster distance and existence of outliers, on two 

performance measures, i.e. maximum JI and time. The main and the interaction 

effects with CERN setting are displayed in Figures 6.22 and 6.23, respectively. The 

same effects for WCERN are provided in Figures 6.24 and 6.25.  

In both settings, the figures indicate that smooth density change disrupts the 

performance of ACO-C in terms of maximum JI. Even gradual changes in distances 

cannot be noted as local neighborhood properties. The speed in smooth changes in 

density may be the cause. Closer intercluster distance also decreases the maximum 

JI, whereas the effect of outliers’ presence is negligible. The interaction plots 

demonstrate that there exists interaction between close intercluster distance and 

smooth intracluster density variation in terms of maximum JI. Since cluster mixes are 

observed in the neighborhood when there exist both smooth intracluster density 

change and close clusters, this interaction complies with the deficiency of the 

evaluation schemes. Interactions between the other factors are not significant.  

The time spent in ACO-C decreases for the level of random intracluster 

density variation due to the decrease in the number of points. Execution time of 

ACO-C is negatively affected from close intercluster distances, and outliers do not 

have significant effect on time.  
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Table 6.6 Summary of ACO-C results in group 3 data sets 

CERN WCERN 

#SN* 
max. JI 
in SN 

max. 
QJI in 

SN 
max. RI 

in SN #SN* 
max. JI 
in SN 

max. 
QJI in 

SN 
max. RI 

in SN 
Min. 1 0.61 0.75 0.70 2 0.71 0.82 0.77 
Max. 4 1 1 1 5 1 1 1.00 
Average 2.42 0.93 0.96 0.95 3.25 0.93 0.97 0.96 
Std. Dev. 0.90 0.14 0.09 0.10 0.97 0.12 0.06 0.07 
#SN*: number of nondominated solutions 
Min., Max., Average and Std. Dev. are for 12 data sets.  

 

 

 

   (a)           (b) 
Figure 6.22 (a) Main effects of factors on max JI, (b) Interaction effects with CERN 

setting 
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   (a)       (b) 
Figure 6.23 (a) Main effects of factors on time, (b) Interaction effects with CERN 

setting 

 

 

 

  (a)       (b) 
Figure 6.24 (a) Main effects of factors on max JI, (b) Interaction effects with 

WCERN setting 
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Figure 6.25 (a) Main effects of factors on time, (b) Interaction effects with WCERN 
setting 

 

 

Data Set Reduction and Execution Time of ACO-C  

 

The data set reduction (boundary formation) algorithms are different for 2- 

and higher dimensional space. Hence, we analyze the percentage of data set 

reduction in these two algorithms separately. We present a summary of the data set 

reduction percentages in Table 6.7.  

On the average, the algorithm that is designed for 2-dimensional space, 

namely DTC, ensures a higher reduction compared to the algorithm that is able to 

work in higher dimensions. Nevertheless, the data set reduction typically depends on 

the properties of the data set. Thus, we analyze the correlation between the data set 

properties (explained in Appendix B) and the data set reduction.  

In Figures 6.26 and 6.27, we demonstrate the scatter plots of the data set 

properties having significant correlations with the data set reduction for 2- and higher 

dimensional data sets, respectively. In 2- and higher dimensional spaces, the data set 

reduction is more for the data sets with well-separated clusters, i.e. when the 

minimum separation-to-compactness ratio (MSCR) is high. In fact, this is relevant to 

the DT construction in the proposed algorithms. We display an example in Figure 

6.28. The short intercluster distance between the two clusters in Figure 6.28 (a) 

provide to discover the non-convex parts of the boundary (shown as dashed line), 

whereas in Figure 6.28 (b) the larger intercluster distances bring about skinny 
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triangles between clusters 1 and 2, and the non-convex region in cluster 1 could not 

be detected. When the distance between the two clusters is smaller, the cavity is 

identified by the algorithm. To sum up, higher MSCR yields higher data set 

reduction. Maximum compactness also has a negative correlation with data set 

reduction. Large distances in a cluster bring about zigzags on the boundary, and this 

causes a decrease in the data set reduction.  

 

Table 6.7 The percentages of data set reduction 

2-dimensional 
data sets 

Higher dimensional 
data sets 

Min. 1.52% 4.90% 
Max. 74.29% 53.84% 
Average 42.79% 19.11% 
Std. Dev. 20.42% 12.41% 

          #SN*: number of nondominated solutions 
        Min., Max., Average and Std. Dev. are for 42 2-dimensional  
        data sets in group 1 and 27 higher dimensional sets in groups 1 and 3.  

 

 

 

Figure 6.26 Scatter plots of MSCR and maximum compactness versus data set 
reduction for 2-dimensional data sets (correlation coefficients are 0.371 and 0.418, 

respectively) 
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Figure 6.27 Scatter plots of MSCR and maximum compactness versus data set 
reduction for higher dimensional data sets (correlation coefficients are 0.925 and 

0.581, respectively) 

 

 

  

(a)        (b) 
Figure 6.28 An example for Delaunay triangulation construction  
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number of points and the dimensions. The time spent with the two evaluation settings 

does not show a significant difference.  

We have already determined a lower bound for the time complexity of ACO-

C in Section 6.2.4. Nevertheless, we analyze the time spent in each step of ACO-C to 

gain an understanding of actual times. In Figure 6.30 we demonstrate the percentage 

of time spent in each step of ACO-C for a sample of data sets. The figure points out 

that the bottleneck operation is step 4, namely the local search, on the average.  

In order to understand the complexity of the local search algorithm, we 

analyzed the number of cluster pairs evaluated for merging and the time spent in the 

local search steps in an example data set with 55 data points, i.e. data-c-cv-nu-n. The 

average number of cluster pairs evaluated per ant per iteration is 21.56. In an 

iteration, an ant spends 0.39 seconds in the local search on the average. On the 

average, 3.05% of this time is spent for the selection of the clusters to be merged, and 

the calculation of the compactness and separation measures (explained in Section 

6.2.3) after merging takes 96.55% of this time. Remaining 0.40% is spent for 

checking the improvement in compactness and separation measures. These figures 

show that the evaluation of the new solution is the most time consuming operation in 

the local search. Thus, lengthy comparisons of the many underlying cluster 

combinations are mainly to blame for the increase in the local search time. 

Inspite of its computational burden, the local search compensates the 

undesirable divisions of the clusters. It strengthens the exploitation property of ACO-

C. For this reason, we need to develop a bounding mechanism on the compactness 

and separation calculations or new local search mechanisms.   
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   (a)              (b) 

Figure 6.29 The number of points in the data set (after reduction) versus the 
execution time (in seconds) with (a) 2-dimensional data sets. (b) higher dimensional 

data sets. 

 

 

 

Figure 6.30 The average of the total time spent in each step of ACO-C 
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Comparison of the ACO-C Algorithm with the Competing Clustering Approaches 

 

 The performance of ACO-C is compared with the results of k-means, single-

linkage, DBSCAN, NC closures, outlier detection of NOM, and NOM. In our 

comparison k-means represents the partitional clustering approach and single-linkage 

the hierarchical clustering approach. DBSCAN is selected as a representative of the 

density-based clustering algorithms. In order to have a fair comparison among these 

algorithms, k-means and single-linkage are run for several values of k (i.e. the 

number of clusters in the single-linkage) in the range between 2 and 10% of the 

points in the data set with increments of 1, and the one with the best JI is used for 

each algorithm. In the same manner, for DBSCAN, among several MinPts settings 

the one with the best JI is selected for comparison. For ACO-C, we consider the 

union of the nondominated solutions with CERN and WCERN settings. In order to 

have a fair comparison in terms of time, we use the summation of the execution 

times of both CERN and WCERN for ACO-C.  

The results are summarized in Tables 6.8 and 6.9 for group 1 and group 3 

data sets, respectively. In both groups, the single-linkage algorithm gives the highest 

number of data sets for which the target clusters are found, and ACO-C and NOM 

follow single-linkage. In group 1, ACO-C has the best JI and RI values, and NOM 

and single-linkage come after ACO-C. Furthermore, QJI values of NC, outlier 

detection and ACO-C outperform the remaining approaches.  

In group 3, single-linkage correctly finds the target clusters in all data sets. 

Albeit DBSCAN and k-means are superior to ACO-C in terms of JI and RI, in ACO-

C the number of data sets for which target clusters are achieved is higher compared 

to both algorithms. In group 3, ACO-C outperforms NOM.  

The computational complexity of k-means, single-linkage, DBSCAN, NOM 

and ACO-C algorithms are O(kn), O(n2), O(n logn), MO(n3), and MO(n4), 

respectively. Hence, ACO-C has the highest computational complexity among these 

competing approaches.  

Main limitations of NC, NOM and ACO-C are high execution times 

compared to k-means, single-linkage and DBSCAN. In this context, improvements 

are required. 
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Table 6.8 Comparison of ACO-C with k-means, single-linkage, NC closures, outlier 
detection of NOM, and NOM for group 1 data sets (45 data sets) 

k-means 

Single- 
linkage DBSCAN NC 

Outlier 
detection NOM ACO-C 

# of data sets  
TC* is found 9 32 17 13 16 23 29

JI 

average 0.756 0.937 0.94 0.875 0.875 0.955 0.971
std.dev. 0.231 0.163 0.139 0.128 0.137 0.088 0.054
min 0.278 0.453 0.504 0.558 0.456 0.591 0.806

RI 

average 0.856 0.955 0.963 0.908 0.908 0.967 0.989
std.dev. 0.138 0.119 0.095 0.101 0.107 0.065 0.022
min 0.58 0.532 0.531 0.659 0.639 0.648 0.895

QJI 

average 0.954 0.947 0.972 0.996 0.998 0.981 0.994
std.dev. 0.087 0.145 0.097 0.016 0.012 0.08 0.021
min 0.659 0.46 0.504 0.905 0.916 0.593 0.901

time 

average 0.723 6.484 2.580 64272 6387 70006 531233
std.dev. 0.769 8.262 3.187 408825 14273 421898 368465
min 0.045 0.381 0.034 1.240 1.076 2.382 1047
max 2.714 32.597 12.857 2714383 82117 2820103 1458101

TC*: Target clusters 

 

 

Table 6.9 Comparison of ACO-C with k-means, single-linkage, NC closures, outlier 
detection of NOM, and NOM for group 3 data sets (12 data sets) 

k-means 

Single- 
linkage DBSCAN NC 

Outlier 
detection NOM ACO-C 

# of data sets  
TC* is found 0 12 6 3 3 3 8 

JI 

average 0.968 1 0.990 0.927 0.928 0.884 0.941 
std.dev. 0.030 0 0.024 0.124 0.124 0.199 0.106 
min 0.903 1 0.922 0.669 0.669 0.404 0.708 

RI 

average 0.992 1 0.998 0.977 0.977 0.948 0.958 
std.dev. 0.008 0 0.006 0.042 0.042 0.104 0.077 
min 0.975 1 0.981 0.888 0.888 0.653 0.771 

QJI 

average 0.975 1 0.999 0.949 0.951 0.893 0.974 
std.dev. 0.016 0 0.002 0.105 0.104 0.192 0.056 
min 0.941 1 0.994 0.725 0.728 0.422 0.822 

time 

average 0.423 3.076 1.051 6676 863 7551 768912 
std.dev. 0.083 1.694 0.208 7264 652 7219 466625 
min 0.301 1.448 0.760 1903 257 2494 122351 
max 0.575 6.471 1.251 24099 2250 24388 1378745 

TC*: Target clusters 
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6.4. Discussion of the ACO-C Algorithm 

 

 ACO-C is a novel clustering algorithm which is based on ACO, one of the 

renowned swarm intelligence approaches. It takes the connectivity and proximity 

relations extracted by the neighborhood construction algorithm as input. In ACO-C, 

we combine the connectivity, proximity, density and distance information with the 

exploration and exploitation capabilities of ACO in a bicriteria setting. In order to 

handle unknown number of clusters and arbitrary shaped clusters with density 

variations, we suggest a new ant representation scheme and two clustering evaluation 

mechanisms relative to neighborhoods. ACO-C yields a set of nondominated 

solutions which hopefully includes the target clustering. Furthermore, we take into 

account scalability using a data set reduction algorithm as a preprocessing tool.  

The performance of ACO-C is tested on various data sets. The results indicate 

that when our neighborhoods reflect the density, connectivity and proximity relations 

among the points with the least number of cluster mixes, and within the 

neighborhoods of the points subject to separation, the intracluster distances are not 

greater than the separation value (i.e. intercluster distance), ACO-C is able to find 

clustering solutions very close to the target clusters. In such data sets, ACO-C 

outperforms the other competing approaches in terms of JI, QJI and RI. Particularly, 

the bicriteria evaluation mechanisms with measures relative to the neighborhoods 

enhance the extraction of the arbitrary shaped clusters and density variations.  

However, ACO-C has complications in the following cases exclusively or in 

combinations: (1) The data set has intermingling clusters. (2) The data set includes 

noise. (3) The neighborhoods constructed include several cluster mixes, and at the 

same time, the intercluster distance between two clusters is not greater than the 

intracluster distances within the neighborhoods of the closest points between these 

two clusters. (4) There exist clusters with local outliers.  

Particularly, single-linkage and DBSCAN have superior performance for the 

data sets having clusters visible in the high resolution. The intense use of local 

perspectives and the neighborhoods in ACO-C enhances a sensitive evaluation of 

density, connectivity and distance issues, and this provides not only homogeneous 

clusters but also divided clusters. On the other hand, the top-down hierarchy in 
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single-linkage captures the global view inherent in the clusters, and fewer divided 

clusters are likely seen.  

Although single-linkage delivers nice results using a simple minded approach 

in short times, actually, it cannot find the number of clusters in a data set 

automatically. Instead it forms a hierarchy of data points, and the number of clusters 

is determined via a cutoff point. As we select the clustering solution with the best JI 

value in our single-linkage experiments, this procedure resolves the unknown 

number of clusters issue and single-linkage gains advantage of this. In compactness 

and separation calculations, the single-linkage method does not evaluate the edges 

relative to the neighborhoods. Thus, the performance of the single-linkage method 

worsens, when there exist longer edges within a cluster compared to the edge lengths 

subject to separation. ACO-C is able to find the target clusters in such data sets.  

ACO-C achieves a reasonable number of non-dominated solutions to be used 

for practical purposes. Although the data set reduction mechanism provides a 

significant improvement in certain data sets, the time complexity of ACO-C is still 

high. Particularly, we need to develop mechanisms to reduce execution times. 
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CHAPTER 7  

 

 

CONCLUSION AND DIRECTIONS FOR FUTURE 

RESEARCH  

 

 

 

In this dissertation, we have considered the clustering problem in data sets 

with unknown number of clusters having arbitrary shapes and which display density 

variations. This problem can be observed in spatial data sets such as those in 

geographic information systems, city planning, image segmentation for computer 

aided systems and biomedical applications. Our main motivation has been 

automation of this type of clustering tasks in order to facilitate the identification of 

distinct properties of the data sets.  

 We introduced a new clustering methodology for this purpose. The proposed 

methodology included mechanisms for the extraction of neighborhood characteristics 

in a data set and the reduction of a data set. Two clustering approaches were 

developed based on neighborhood construction, namely a hierarchical density-based 

clustering algorithm and a swarm intelligence based clustering algorithm. We 

demonstrated the strengths and the weaknesses of the proposed methods empirically.  

We started by extracting the neighborhood characteristics of the data points to 

enable effectivity in clustering. In addition to the widely used proximity and 

direction concepts in the literature, our parameter-free neighborhood construction 

approach takes into account the density-based connectivity facilitated by Gabriel 

graph and determines a unique neighborhood for each data point. We tested the 

performance of the proposed approach on various data sets particularly in arbitrary 

shaped and well-separated clusters with density variations, the proposed approach 

yields effective and relatively more purified neighborhoods compared to other 
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proximity and distance based neighborhood approaches. The resulting tight and 

homogeneous neighborhoods facilitate the succeeding clustering process. Typically, 

the algorithm has limited performance in two cases, namely data sets with noise and 

data sets in which the intercluster distances are small compared to intracluster 

distances. Accordingly, the algorithm needs to be extended using the analysis of the 

proximity, density and connectivity information in a more global and collective 

perspective.  

The proposed neighborhood construction algorithm is a generic approach for 

identification of local characteristics. Hence, it can be used as a preprocessing step 

for any kind of clustering method in spatial data sets. Since the uniquely constructed 

neighborhoods are composed of points with similar characteristics, the algorithm 

may also be used as a nearest-neighbor classifier for the classification problem. 

Another extension of the neighborhood construction algorithm can be clustering 

validation. The neighborhoods constructed for data points can form a basis for 

connectivity comparisons.  

 Secondly, we examined the scalability problem in clustering through the use 

of external shape generation in computational geometry. We suggested the use of the 

boundary points only for outlier detection and merging purposes in clustering. Thus, 

given a partitioning (subclusters or clusters) of a data set, we introduced two 

approaches based on Delaunay triangulation for formation of non-convex cluster 

boundaries. The former approach is a parameter-free algorithm, and it works in 2-

dimensional space. The latter is based on user specified elongation thresholds in 

order to control the degree of non-convexity to be considered, and it is designed to 

work in higher dimensions. We analyzed the accuracy and the percentage of data set 

reduction for both algorithms using numerical experiments. The former approach 

was found to be effective in the generation of the external shapes when the edge 

length in the clearing of a non-convex cavity is larger than the width or diameter of 

the cavity. The latter produced satisfactory results when the elongation thresholds are 

set properly. We achieved significant reduction percentages for the data sets 

especially in convex clusters. The proposed approaches can also be used for 

visualization of cluster boundaries and external shape generation in computational 

geometry.  
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Thirdly, we proposed a three-phase clustering algorithm, namely NOM, for 

data sets with spatial characteristics. The algorithm includes neighborhood 

construction, outlier detection, and merging of subclusters phases, which combine 

density and distance information with graph theoretic concepts like proximity and 

connectivity. The criteria we define for outlier detection and merging of clusters are 

based on the assessment of the edge lengths relative to their neighborhoods in order 

to handle arbitrary shapes and density variations in distance calculations. We 

evaluated the performance of the algorithm using data sets having various properties, 

and we conducted a benchmark analysis with some well-known competing 

approaches. The numerical results indicated that the proposed approach is capable of 

finding clustering solutions close to the target clusters with arbitrary shapes and 

different densities when the intercluster distances are larger than the intracluster 

distances. Due to the lack of global view in the algorithm, excessive number of 

cluster divisions is observed in the data sets having clusters in a relatively higher 

resolution. Moreover, the proposed approach had limited success in data sets with 

noise.  

Finally, we inquired the applicability of swarm intelligence to clustering 

using ACO. We used the neighborhoods and the subclusters, and the external shapes 

of the subclusters in order to address locality and scalability issues. We proposed a 

new ant representation scheme that is capable of finding the number of clusters, 

arbitrary shapes and density variations. For ACO, we suggested a bicriteria 

evaluation setting in which compactness and separation measures are considered 

relative to the neighborhoods. The performance of ACO applied to clustering, 

namely ACO-C, was tested using two groups of data sets with arbitrary shaped 

clusters, intracluster and intercluster density variations. One group was taken from 

open sources, and the other was for controlled experiments. The numerical results 

were compared with the well-known clustering approaches. Finally, the capabilities 

and deficiencies of the proposed approach were elaborated.  

ACO-C is capable of finding the target number of clusters and extracting the 

well-separated arbitrary shaped clusters with density variations when proper 

neighborhoods are provided. It can handle data sets with outliers, whereas its 

performance is limited with noise. Furthermore, smooth density changes within the 
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clusters affect the performance of ACO-C negatively. With these results, ACO-C 

outperforms the well-known clustering approaches and our three-phase clustering 

algorithm.  

 The main limitation of our proposed approaches is their long execution times. 

Thus, there is need for the development of efficient algorithms. Particularly, in ACO-

C fast and efficient local search algorithms and bounding mechanisms in the 

clustering evaluation are worthwhile to examine further. Moreover, parallelization 

and distributed computing can be considered to speed up our work.  

There is also room for improvement in the neighborhood construction, NOM 

and ACO-C algorithms. In order to prevent mixing of clusters for the data sets in 

which intercluster distances are smaller compared to within cluster distances, the 

proximity, density and connectivity information can be considered in a collective 

manner. Furthermore, evaluation mechanisms with a more global view can be 

developed in order to resolve the division of clusters in these three approaches. 

Isolation of outliers is another improvement direction for the neighborhood 

construction.  

As for computational experiments, the performance of the proposed 

methodology can be tested on real-life clustering problems. Hence, the capabilities 

and the weaknesses of the proposed approach can be identified thoroughly.  

In this work, we aim to perform clustering, boundary formation and outlier 

detection in the data sets with unknown number of clusters having arbitrary shapes, 

intracluster and intercluster density variations. Consideration of these challenging 

issues all together makes our clustering task quite complicated, and this results in 

excessive computation time. As a remedy, decomposition of the clustering problem 

into manageable subproblems can be considered in the future.  

The inherent clustering pattern in a data set can be observed in different 

scales of local and global perspectives. Moving from local to global scale,  

positioning on the appropriate scale is a challenge that requires collective 

information of distance, density, direction, and proximity. In this dissertation, we 

deepened our understanding on the local perspective, and we also barely touched 

upon the global scale. Nevertheless, the identification of the appropriate level of 
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global and local scale at the right moment along the computations is still a field to 

explore further.   

An interesting future search direction can be constrained clustering. 

Typically, constraints represent the problem-specific information and the preferences 

of a domain expert in a clustering problem, and their guidance enables the effectivity 

and efficiency in clustering. Thus, it is possible to incorporate constraint handling 

mechanisms to the proposed approaches.  

In nature, several types of swarm struggle with obstacles during their daily-

life activities such as food search and sheltering. Nevertheless, they are able to 

survive using the collective intelligence. Thus, swarm intelligence is a promising 

field for constrained clustering due to the analogy between obstacles faced by a 

swarm and constraints in clustering.     

Another extension for future research can be handling data types. In this 

dissertation, we considered numerical data sets and measured dissimilarity using 

Euclidean distances. It is possible to explore the effect of other 

similarity/dissimilarity measures on the proposed approaches.  
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SWARM INTELLIGENCE APPLICATIONS IN CLUSTERING 

 

 

 

 In this part, we present the clustering studies about Swarm Intelligence.  
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Table A.1 Particle Swarm Optimization applications for clustering 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  
avoidance 

Flock  
centering 

Omran et 
al. 2002 

Given Yes No Image Yes 

Weighted sum 
of 

minimization 
of within 
cluster 

distance and 
maximization 
of  intercluster 

distance 

 Partitional 
algorithm  

Cluster centroids 
are represented 
by a particle. 

All agents use 
the same 

behavioral 
model. 

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

Particle 
is 

affected 
from its 

past. 

 -  
Towards 

global best 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Xiao et al. 
2004 

Not 
given 

Yes No Mixed No 

Maximization 
of within-

cluster 
similarity 

 2 hybrid 
SOM-PSO 
algorithms 

are 
proposed:  
- Block 

SOM/PSO: 
SOM first 

clusters data 
set and 

generates a 
group of 
weights. 

PSO 
improves 
clustering.  

- Alternating 
SOM/PSO: 
Weights are 
trained by 
SOM and 

PSO in 
alternating 

fashion. 
Several 

SOMs are 
trained. Each 

SOM is 
treated as a 

particle, 
swarm is run 
for a number 
of iterations. 

 Particle 
denotes the 
complete 

weight set of 
SOM.  

All agents use 
the same 

behavioral 
model. 

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

Particle is 
affected 

from its past. 
- 

Towards 
global best 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Omran et 
al. 2005 

Given Yes No Image Yes 

2 objectives 
are studied: 
- Weighted 

sum of 
minimization 

of within 
cluster 

distance and 
maximization 

of 
intercluster 

distance. 
- Weighted 

sum of 
minimization 

of within 
cluster 

distance, 
maximization 

of 
intercluster 

distance 
and 

minimization 
of 

quantization 
error. 

 - Partitional 
clustering 
algorithm 

- 2 versions 
of PSO are 
considered: 
gbest PSO 

and GCPSO. 

Cluster 
centroids are 

represented by 
a particle. 

 - All agents 
use the same 
behavioral 
model in 

gbest PSO. 
- In GCPSO, 
velocity of 
global best 
particle is 

updated using 
a different 
function. 

 In gbest 
PSO:  

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 
In GCPSO, 
the global 

best 
particle is 
updated by 
resetting 

the 
particle's 

position to 
the global 

best 
position, 
and using 

the 
previous 
velocity 

and a 
random 

component. 

Particle is 
affected 
from its 

past. 

 -  

 Towards 
global best 

for both 
algorithms 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Omran et 
al. 2006 

Not 
given 

No No Image No 

 - Dunn's 
index, validity 
index by Turi 

(2001) and 
S_Dbw 

validity index 

 - Partitional 
algorithm 

- First, large 
clusters are 

formed. 
Then, by 

using binary 
PSO, 

number of 
clusters is 

determined. 
K-means is 

used to 
refine the 
clusters.  

- Position of 
the particle 
(0 or 1) can 
be updated 

using 
sigmoid 
function.  

 Particle denotes 
that a cluster 

centroid is used 
or not. (Binary 

particle) 

All agents use 
the same 

behavioral 
model. 

- Particle's 
previous 
velocity- 
Best of 

particle's 
past- 

Global 
best 

Particle is 
affected 
from its 

past. 

- 
Towards 

global best 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  
avoidance 

Flock  
centering 

Paterlini 
and Krink 

2006 
Given No No Mixed No 

 - 
Minimization 
of trace within 

criterion 
- 

Minimization 
of variance 

ratio criterion 
- 

Minimization 
of Marriott's 

criterion  

 Partitional 
clustering 
algorithm 

Cluster 
centroids are 

represented by a 
particle. 

All agents use 
the same 

behavioral 
model. 

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

Particle is 
affected 
from its 

past. 

- 
Towards 

global best 

Veenhuis 
and 

Köppen 
2006 

Not 
given 

Yes No Mixed No 

- 
Maximization 

of within-
cluster 

similarity 

 - Partitional 
algorithm  

- Clustering 
is performed 
in the datoid 

space.  
- Similarity 

and 
dissimilarity 

distance 
functions 

are defined. 
These take 

into account 
both real 

distance and 
similarity 
distance 

between the 
points.  

- Each point is 
represented by a 
particle (datoid). 
- Position of the 

particle in 2-
dimensional 

plane denotes 
the position of 

the datoid.  

- All dataoids 
use the same 
behavioral 

model. 

- Particle's 
previous 
velocity 
- Nearest 
similar 

particle's 
velocity 
- Nearest 
dissimilar 
particle's 
position 
- Nearest 
similar 

particles' 
center 

 -Datoid is 
affected 

from its k-
nearest 
similar 

neighbors. 

 Avoidance 
of dissimilar 

dataoids 

Towards 
nearest 
similar 

particles' 
center 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  
avoidance 

Flock  
centering 

Jarboui et 
al. 2007 

Given No No Mixed No 

- 
Minimization 

of within-
cluster 

variation 
(Sum of 
squared 

Euclidean 
distances 

between each 
object and its 
cluster center) 

- Variance 
ratio 

 - Partitional 
algorithm 

- 
Combinatorial 

PSO is 
applied. 

- Particles 
define a 
dummy 

variable which 
translates the 
continuous 
state of the 
problem to 

combinatorial 
state. 

- Each point is 
represented by a 

particle.  
- Particle 

denotes the 
cluster 

assignment of 
the 

corresponding 
point.  

- All particles 
use the same 
behavioral 

model. 

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

- Particle 
is 

affected 
from its 

past. 

- - 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Picarougn
e et al. 
2007 

Not 
given 

Yes No Mixed   

 - 
Maximizatio
n of within-

cluster 
similarity 

 - Partitional 
algorithm  

- Ideal 
distance is 
defined.  

It depends on 
the similarity 

of the two 
points. 

Distance 
between 

agents should 
converge to 
this ideal 

distance so 
that relative 

distances 
between 

agents can be 
provided.   
- Data are 

dynamically 
visualized. 

- Disorder of 
the flock is 
defined by 

spatial entropy 
and it is used 
for stopping 

criterion.  

- Each point is 
represented by a 

particle.  
- Position of the 

particle in 2-
dimensional 

plane denotes 
the position of 

the point.  

All agents use 
the same 

behavioral 
model. 

 Velocity 
calculation:  
- Particle's 
previous 
velocity 

- Attraction, 
rejection or 

constant 
alignment of 

the agents 
according to 

their 
similarity 

and current 
positions.  
Amplitude 
calculation: 
- Minimum 

speed 
- Agents in a 

group are 
slower than 

agents 
traveling 

alone.  

 
Neighbors 

of an 
agent are 

agents 
located 
with a 

distance 
smaller 
than or 
equal to 

the 
threshold 
distance.  

 
Avoidance 

of 
dissimilar 

agents 

 Points 
with no 

neighbors 
will be fast 
to catch up 

a group, 
whereas 

points in a 
group will 

move 
slower.  
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Kao et al. 
2008 

Given No No Mixed No 

 - 
Minimization 

of within 
cluster 

distance  (sum 
of  Euclidean 

distances 
between each 
point and its 

cluster center) 

- Partitional 
algorithm  

- Nelder-Mead 
(NM) simplex 

search and 
PSO are 

combined. 
- NM provides 
local search. 
PSO ensures 
exploration. 
K-means is 

used in 
seeding the 

initial 
population. 

 Cluster 
centroids are 

represented by a 
particle. 

- (N+1) 
particles use 
NM operator.  
- 2N particles 

use PSO 
operator.  

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

2N 
particles 

are evenly 
divided 
into N 

neighborh
oods.  

- 
Towards 

global best 
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Table A.1 Particle Swarm Optimization applications for clustering (cont’d) 

Author(s) 
and 

 Year 

Problem Characteristics 
Clustering 
Objective 

Method 
# of  

clusters 
Arbitrary 

shapes 
Constraints 

Data  
type 

Multi-
objective 

Properties 
Particle  

representation 
Homogeneity 

Velocity  
matching 

Locality 
Collision  

avoidance 
Flock  

centering 

Ahmadi et 
al. 2010 

Given No No Mixed No 

 - 
Optimization 
of a validity 

index 
(compactness, 

separation, 
combined 
version, 

Dunn's index, 
Turi's validity 

index, 
S_Dbw) 

 - Problem is 
decomposed 

into small 
subproblems 

using multiple 
cooperative 

swarms. 
Global 

optimum is 
ensured by 
cooperation 

among these. 
- Multiple 
swarms 

represent the 
cluster 

centers. Each 
swarm 

searches for 
the associated 
cluster center. 
- For the given 

the cluster 
centers, K-

means is used 
for cluster 

assignments.  

 Each particle in 
a swarm  

denotes the 
cluster centers. 

 Each swarm 
optimizes  

the 
corresponding 

cluster 
centroid.  

- Particle's 
previous 
velocity 
- Best of 
particle's 

past 
- Global 

best 

 Each 
swarm has 

its own 
search 

space and 
it searches 

for the 
correspon

ding 
cluster 

centroid.  

 There is 
cooperatio
n among  
multiple 
swarms.  

- Towards 
global best 
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Table A.2 Ant Colony Optimization applications for clustering 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Tsai et al. 
2004 

Not 
given 

Yes No Mixed No 

 - 
Minimizat

ion of 
within-
cluster 

distance 

 - Density-
based 

approach 
- ACO is 

hybridized 
with 

simulated 
annealing, 
tournament 

selection 
(GA), tabu 
search and 

density 
distribution. 

 Ant is an agent 
that searches 
through the 

solution 
components 

(points).  

 An ant 
chooses 10 to 

15 points 
randomly. 

Next point to 
be visited by 

ant is 
determined 
from these 

selected points 
by tournament 

selection.  

 - 
Pheromone 
is updated 
for each 

visited edge 
which 

connects 
two points.  

- Pheromone 
density is 

computed as 
the 

summation 
of trail 

evaporation 
and the 
inverse 

function of 
the tour 

length of 
ants. 

 Tournament 
selection is 
done on the 

basis of 
pheromone 
intensity. 

Ant selects 
next point to 
visit using 
tournament 
selection. 

 To 
determine 
the next 
point to 

visit, first 
10-15 points 
are selected 
randomly 

(then 
tournament 
selection is 

used).  

 -Ant selects 
next point to 
visit using 
tournament 
selection. 

- Simulated 
annealing 

ensures the 
reduction of 
number of 

points 
visited by 
each ant in 

every 
iteration. 
- Edges 
having 
greater 

pheromone 
density are 
merged in 
order to 
form the 
clusters. 
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Ho and 
Ewe 2005 

Given No 

 Cluster 
capacity 

constraint: 
cluster 

cardinality 
cannot 
exceed 

maximum 
load. 

 N* No 

 - 
Minimizat
ion of total 

variance 
of the load 

of the 
clusters 

 - Problem is 
dynamic as 
points are 

mobile 
during the 
problem 
solution 
process.  

- 2 points 
can connect  

if their 
Euclidean 
distance is 
below the 

transmission 
range.  

- Visibility 
measure is 

defined as a 
weight 

associated 
with each 
point. It 

indicates the 
number of 
uncovered 

neighboring 
nodes that a 

node can 
cover.   

 - Ant represents 
a clustering 

assignment of 
all points. 

 - Each ant 
can select a 

point from the 
allowed set.  

 - Allowed set 
is composed 
of points that 
are not in the 

partial 
solution yet. 

- Pheromone 
value of 

each point is 
updated 

according to 
visibility 
factor, 

previous 
pheromone 
value of the 

point and 
objective 
function 

value of the 
ant. 

 - Selection 
probability 

is calculated 
using 

visibility 
and 

pheromone 
values. 

 - Selection of points 
(solution components) is 
performed using visibility 

and pheromone values. 
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Runkler 
2005 

Given No No  N* No 

 - 
Minimizat

ion of 
within-
cluster 

variation 
(Sum of 
squared 

Euclidean 
distances 
between 

each point 
and its 
cluster 
center) 

 - Hard c-
means is 
adapted. 
Cluster 

assignments 
of points are 

done by 
ACO.  

 Ant represents 
a clustering 

assignment of a 
point.  

 A point can 
be assigned to 

any cluster. 

  - 
Pheromone 
update is 

performed 
for cluster 
assignment 

of each 
point.   

 - 
Pheromone 
values are 
updated 
using the 

incumbent 
solution and 

objective 
function 

value of the 
solution. 

 A point can 
be assigned 

to any 
cluster 

according to 
a probability 
proportional 

to the 
pheromone 

value. 

Selection of solution 
components is made by 

using pheromone values. 
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Chen and 
Chen 2006 

Given No No  N* No 

 - 
Minimizat

ion of 
within-
cluster 

variation 
(sum of 
squared 

Euclidean 
distances 
between 

each point 
and its 
cluster 
center) 

 
Hierarchical 

algorithm  

 Ant represents 
clustering 

assignment of 
all points. 

In each 
iteration, ant 
moves along 

the points 
which do not 
belong to its 

working 
memory. 

 - Local 
pheromone 
update: Ant 
simultaneou
sly updates 
the amount 

of 
pheromone 

on its visited 
paths using 
the inverse 
of within 
cluster 

variance.  
- Global 

pheromone 
update: 
After all 
ants built 

their 
solutions, 

the amount 
of 

pheromone 
on the 

global best 
path is 

updated.  

 - A random 
number and 
a threshold 

value 
control 
whether 

exploration 
or 

exploitation 
will be 

emphasized 
in the 

solution 
construction. 

- If the 
random 

number is 
smaller than 
threshold, 

exploitation 
is 

emphasized. 
Otherwise, 
exploration 

is used.   

 Cluster 
assignment 
of the point 

is performed 
on a 

probabilistic 
basis 

proportional 
to the 

pheromone 
values 

weighted by 
the inverse 

of the 
distance of 
the edge.  

 Point is 
assigned to 
the cluster 
with the 
highest  

pheromone 
value 

weighted by 
the inverse of 
the distance. 

- A 
percentage of 
the furthest 
points are 
selected. 

These points 
are assigned 

to the clusters 
with the 
closest 

centroids.  
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Prabhahar
an et al. 

2005 
Given No No 

Mixe
d 

Yes 

 - 
Minimizat
ion of total 
intercellul
ar moves 

(y) 
- 

Minimizat
ion of total 
cell load 
variation 
(within 
cluster 

variance) 
(x). 

Assignments 
are done 

according to 
a index, 
x/(1+y). 

 Particle denotes 
the cluster (cell) 
assignments of 

the points 
(machines). 

 Possible 
cluster 

assignments 
of a point 
(machine) 

constitute the 
neighborhood. 

 - Local 
pheromone 
update: Ant 
updates the 
amount of 
pheromone 

on its visited 
edges by the 
pheromone 
value times 
evaporation 

rate.  
- Global 

pheromone 
update: 
After all 
ants built 
solutions, 

the amount 
of 

pheromone 
on the 

global best 
path is 

updated as 
the objective 

value and 
the previous 
pheromone 
value of the 
edge times 
evaporation 

rate.  

 - A random 
number and 
a threshold 

value 
control  
whether 

exploration 
or 

exploitation 
is 

emphasized 
in the 

solution 
construction. 

- If the 
random 

number is 
smaller than 
threshold, 

exploitation 
is 

emphasized, 
otherwise, 
exploration 

is used.   

 Cluster 
(cell) 

assignment 
of the point 
(machine) is 
performed 

on a 
probabilistic 

basis 
proportional 

to the 
pheromone 

values of the 
edges.  

Point 
(machine) is 
assigned to 
the cluster 
with the 
highest 

pheromone 
value. 
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Sinha et al. 
2007 

Not 
given 

Yes No 
Mixe

d 
No 

 - 
Minimizat

ion of 
within-
cluster 

distance 

 - Density-
based 

approach 
- ACO is 

hybridized 
with 

simulated 
annealing, 
tournament 

selection 
(GA), tabu 
search and 

density 
distribution. 

 Ant is an agent 
that searches 
through the 

points.  

 An ant 
chooses 10 to 

15 points 
randomly. 

Next point to 
be visited by 

ant is 
determined 
from these 

selected points 
by tournament 

selection.  

 - 
Pheromone 
value of an 

edge is 
updated 

when an ant 
travels an 

edge.  
- Pheromone 

density is 
the inverse 
function of 

the length of 
the edges. 

 - 
Tournament 
selection is 
done on the 

basis of 
pheromone 
intensity. 

Ant selects 
next point to 
visit using 
tournament 
selection. 

 - Ant selects 
next point to 
visit using 
tournament 
selection. 
 - Tabu 
search 

restricts the 
path of an 
ant, i.e. an 
ant cannot 
visit the 

same point 
more than 

once on the 
same path. 

 - Simulated 
annealing 

ensures the 
reduction of 
number of 

points visited 
by each ant in 

every 
iteration. 
- Edges 
having 
greater 

pheromone 
density are 
merged in 

order to form 
the clusters. 
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Table A.2 Ant Colony Optimization applications for clustering (cont’d) 

Author(s)  
and Year 

Problem Characteristics 
Clustering 
objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data 
type 

Multi- 
objective 

Properties 
Ant  

representation 
Neighborhood 

Pheromone 
update 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Wang and 
Wei 2009 

Given No No N* No 

Minimizat
ion of 

within-
cluster 

variance 

 Points are 
assigned to 
the clusters. 

 Ant denotes the 
cluster 

assignments of 
the points. 

 Possible 
cluster 

assignments 
of a point 

constitute the 
neighborhood. 

  - 
Pheromone 
is updated 
for each 

edge which 
shows the 
assignment 
of a point to 

a cluster.  
- Ant 

updates the 
amount of 
pheromone 

on its visited 
edges by the 

previous 
pheromone 
value times 
evaporation 

rate.  

A point can 
be assigned 

to any 
cluster 

according to 
a probability 
proportional 

to the 
pheromone 

value. 

 Selection of cluster 
assignments is made by 

using pheromone values.  

N*: Numerical 
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Table A.3 Other Swarm Intelligence based applications for clustering  

Author(s) 
and Year 

Problem Characteristics 

Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Martin et 
al. 2002 

Not 
given 

Yes No 
 

No 

Cemetery 
formation 
(corpse 

clustering) 

 Minimal model, 
a modified 
version of 

Deneubourg's 
model  

 Ant is an agent 
that carries 

corpses.  

 - Ants move 
one cell at a 
time, but in 

the same 
direction for a 
pre-specified 

random 
number of 

steps.  
- When a 

corpse lies on 
the trajectory 
of the ant, a 
new random 
direction is 
selected.  

- When ant 
faces an 

obstacle, it 
chooses a new 

direction of 
motion and a 

free path 
length.  

 - If an 
unloaded ant 
has a body 

in its 
neighboring 
cells, it is 

loaded with 
probability 
1. If there 
are several 
bodies, it 

chooses one 
of them 

randomly.  
- After an 

ant moves at 
least one 

step, corpse 
is dropped if 

the ant is 
has corpses 

in its 
neighboring 
cells. Ant 
drops the 

corpse in a 
randomly 

chosen 
empty 

neighboring 
cell.  

 Pick-up and drop rules 
ensure both exploration and 

exploitation.  
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Handl et 
al. 2006 

Not 
given 

Yes No Mixed No 

Maximizat
ion of 

within-
cluster 

similarity 

 - Partitional 
algorithm 

- 2 algorithms 
are proposed: 
ATTA-C for 

cluster retrieval 
and ATTA-TM 
for topographic 

mapping 
- Agglomerative 

hierarchical 
clustering 
(single or 

average link) is 
used for cluster 

retrieval in 
ATTA-C. 

 Ant is an agent 
that searches 
through the 

solution 
components 

(points).  

 - Ant can 
move to the 

grids within a 
predefined 

radius (radius 
of perception) 
surrounding 

itself.  
- Ant has a 

memory, and 
next step of 
the ant is 

towards the 
position of the 
best match in 
the memory.  

- 
Neighborhood 
size increases 
over time (like 

VNS). 

 Probability 
of picking 

up or 
dropping a 

point is 
proportional 

to the 
similarity 

between the 
associated 
point and 
the other 

neighboring 
points.  

 - Probability 
of picking up 
or dropping a 

point is 
proportional to 
the similarity 
between the 
associated 

point and the 
other 

neighboring 
points. 

- 
Neighborhood 

size is 
increased over 

time.  

 - 
Neighborhoo

d function 
gives higher 
penalty to 

higher 
dissimilarity. 

- Each ant 
has a 

memory for 
the 

previously 
carried data. 

When ant 
picks a point, 
it moves the 

point towards 
the best 

matching 
point in the 
memory.  

- Picking up 
and dropping 

a point is 
deterministic 

in a range. 
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Yang and 
Kamel 
2006 

Given Yes No  Mixed No 

Maximizat
ion of 

within-
cluster 

similarity 

 - Partitional 
algorithm 

- Algorithm has 
2 main parts: 
clustering by 

using different 
ant colonies and 
aggregation of 

clustering 
results of these 

different 
colonies by a 

queen ant.  

 Ant is an agent 
that searches 
through the 

solution 
components 

(points).  

 - Ant in site r 
moves to a 
site in the 

square of sxs 
sites 

surrounding 
itself (site in 
which ant is 

located 
currently) 

with different 
speeds. 

 - 
Probability 
of picking 

up or 
dropping a 

point is 
proportional 

to the 
similarity 

between the 
associated 
point and 
the other 

neighboring 
points. 

- A new 
similarity 
matrix is 
computed 

by using the 
clustering 
results of 
different 
colonies.  

 - Probability of picking up 
or dropping a point is 

proportional to the similarity 
of the point with the other 

points in the neighborhood.  
- Each ant moves with a 

different speed (constant, 
uniformly random, 

segmented random, randomly 
decreasing). 

- A new similarity matrix is 
computed using the 

clustering results of the 
different colonies.  
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Kao and 
Fu 2006 

Given No No 
Catego
rical 

No 

Maximizat
ion of 

within-
cluster 

similarity 

 - Partitional 
algorithm 

- Manufacturing 
cell formation is 

studied.  
- A modified 
part similarity 
coefficient is 
introduced.  
- Algorithm 

terminates when 
the entropy 

value becomes 
steady.  

Ant is an agent 
that searches 
through the 

solution 
components 

(points). 

 Each ant has 
a fixed-length 

memory 
which tracks 

of the location 
recently laid 
down. In the 
loaded status, 
ant will move 
towards the 

location of the 
most similar 

point (part) in 
the memory. 

In the 
unloaded 
status, ant 

moves 
randomly.  

 - Ant picks 
up or drops 

a point 
according to 
a probability 
proportional 

to the 
similarity 

between the 
associated 

point and its 
neighbors. 
- Clusters 
are refined 

by k-means. 
- Points are 
merged in a 
hierarchical 

manner  
until the 
desired 

number of 
clusters is 
obtained.  

 Pick-up and 
drop 

probabilities 
are calculated 
proportional to 
the similarity 
between the 
associated 

point and the 
other 

neighboring 
points. 

 After ant-
based 

clustering 
step, k-means 
is applied to 
improve the 

cluster 
quality.  
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Boryczka 
2009 

Not 
given 

No No N* No 

Like 
cemetery 
formation 
(corpse 

clustering) 

 Basic idea is to 
pick up or drop  
a data item on 

the grid.  

Ant is an agent 
that carries data 

points.  

 - Data points 
are assigned to 
grids and ants 

move data 
points to the 
neighboring 
grids with 

certain 
probability. 

- An adaptive 
neighborhood 
size is used.   

 - 
Probability 
of picking 

up and 
dropping off 
a data point 

is  
affected 
from the 
density 

function in a 
given 

neighborhoo
d. 

 - Pick-up and drop rules 
ensure both exploration and 

exploitation.  
- A cooling procedure is used 
for the dissimilarities scaling 

parameter in the 
neighborhood function so 

that exploitation is ensured. 
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 

construction 
Exploration Exploitation 

Azzag et 
al. 2007 

Not 
given 

Yes No Mixed No 

 Build a 
tree with 
maximum 

similar 
roots                                                                                                                        
and 

sufficientl
y 

dissimilar 
branches. 

 - Hierarchical 
algorithm(s) 

- A stochastic 
algorithm (SA) 

and 4 
deterministic 

algorithms (DA) 
(algorithm with 

dissimilarity 
threshold, 

algorithm with 
both 

dissimilarity and 
similarity 

thresholds, 
algorithm with 
self-adaptive 
thresholds, 

algorithm with 
no thresholds 

and no 
parameters) are 

proposed. 

Ant represents                                                                                                               
a point. 

 - An ant 
moves down 

the tree or 
forms a new 

branch.    
- Random 

movements 
are inserted 

into the 
stochastic 
version. 

 - For DA 
with no 

thresholds 
and no 

parameters: 
Ant may 

disconnect 
from the 
current 

connected 
ant and go 

to the top of 
the tree.  

- For SA: 
Ant may 

move down 
to the 

daughter ant 
randomly. 
 - For other 
DAs: Ant 
can either 

form a new 
branch 

connected to 
the current 

ant or move  
down to the 
most similar 

daughter 
ant.  

 - For 
deterministic 

algorithm with 
no thresholds 

and no 
parameters: 

Ant may 
disconnect 
from the 
current 

connected ant 
goes to the 

support (top of 
the tree)  

- For stochastic 
algorithm: Ant 

may move 
down to the 

daughter ant of 
current 

connected ant 
randomly. 

 - For 
deterministic 
algorithms 1-
3: An ant can 
either form a 
new branch 
connected to 
the current 

ant or move  
down to the 
most similar 
daughter ant 

of current 
connected 

ant.  
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Fathian et 
al. 2007 

Given No No N* No 

Minimizat
ion of 

within-
cluster 

variation 
(sum of 
squared 

Euclidean 
distances 
between 

each 
object and 
its cluster 

center) 

 - 

Cluster 
centorids are 

represented by 
queen and 

drones. 

 - New broods 
are created by 

exchanging 
the drone's 

genes with the 
queen's 

(crossover).  
- Worker bees 
improve the 
broods by 

performing 
local search 
(royal jelly).  

 - Algorithm 
starts with 

mating 
flight: queen 

(best 
solution) 
selects 

drones in a 
probabilistic 
manner to 

form the list 
of drones. 
Then, a 
drone is 

randomly 
selected 

from the list 
to create 
broods. 
 - Fitter 

broods are 
replaced 

with 
queen(s).  

 - Drones are 
potential 

parents and 
they go into 

crossover with 
queen in a 

probabilistic 
manner. 

- Workers have 
different 
mutation 

heuristics.  

  - Queen is 
the best 

solution and 
always goes 

into 
crossover. 
Broods are 
created by 
taking a 
weighted 

average of 
the queen 

and selected 
drone.  

- Broods are 
improved 

using worker 
bees.  
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Table A.3 Other Swarm Intelligence based applications for clustering (cont’d) 

Author(s) 
and Year 

Problem Characteristics 
Clustering 
Objective 

Method 

# of  
clusters 

Arbitrary 
shapes 

Constraints 
Data  
type 

Multi-objective Properties 
Agent  

representation 
Neighborhood 

Decision rule 
for solution 
construction 

Exploration Exploitation 

Runkler 
2008 

Given No No Mixed No 

Minimizat
ion of 

within-
cluster 

variation 
(sum of 
squared 

Euclidean 
distances 
between 

each 
object and 
its cluster 

center) 

 - Partitional 
algorithm  

- Memory-free 
WSO is applied. 

Particle denotes 
the cluster 

assignment of 
all the points.  

Possible 
cluster 

assignments 
are sorted 

according to 
the distance 

between 
cluster center 
and the point. 
This sorting 
forms the 

neighborhood 
structure.  

 Stochastic 
tournament 
selection is 
used to pick 
up a solution 
component 

(cluster 
assignment). 

Stochastic tournament 
selection is used to pick up a 
solution component (cluster 

assignment). Pick-up 
probabilities are determined 

according to cost value 
(distance between the cluster 

center and the point).  

Santosa 
and 

Ningrum 
2009 

Given No No N* No 

Minimizat
ion of sum 

of 
squared-

error 

 Seeking mode 
ensures 

exploitation and 
tracing mode 

ensures 
exploration.  

 Each cat 
represents a 

cluster center. 

 In seeking 
mode each 

dimension has 
a certain mode 

to move.  

Cluster 
centers are 
selected via 

roulette 
wheel in 
seeking 
mode. 

In tracing 
mode, cluster 
centers move 
with velocity 

which is 
affected from 

the current 
position and 

the best 
solution. 

 Cluster 
centers move 
with a certain 
percentage in 

each 
dimension. 

N*: Numerical 

 

 

 

 



 

 
 

224 

 

APPENDIX B  

 

 

PROPERTIES AND GENERATION OF DATA SETS USED IN 

THE EXPERIMENTS  

 

 

 

 In this dissertation, three groups of data sets are used in the experiments. 

Group 1 is composed of 2- and higher dimensional data sets compiled from several 

sources (Frank and Asuncion 2010, Sourina 2008, Đyigün 2008). For some data sets 

with outliers, another version was created by removing the outliers to see their effect. 

There are 45 data sets in the first group. We generate the synthetic data sets in groups 

2 and 3. The details of the generation scheme are explained in Section B.1.  

 We quantify data set properties using three measures, namely the minimum 

separation-to-compactness ratio in the target clustering (MSCR), the coefficient of 

variation of the edge lengths in MST of the whole data set (CV1), and the average of 

the coefficient of variations of the edge lengths in individual cluster MSTs (CV2). A 

high value of MSCR shows that even the cluster with the minimum ratio is well-

separated from the others hence a rather trivial data set. A high CV1 for the whole 

data set indicates significant density variation between/within the clusters. Large 

values of CV2 show significant density variation within the clusters. The properties 

of all the data sets in groups 1, 2 and 3 are given in Section B.2.  

 Finally, plot of data sets are provided in Section B.3.  
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B.1. Generation of Group 2 and Group 3 Data Sets 

 

 Generation mechanism of groups 2 and 3 is similar. Each data set is 

composed of four clusters, namely the letters S, A, O and E. There is a fifth spherical 

cluster inside the letter O. These letters are selected due to their non-convex and 

dissimilar (curly, sharp, cornered, oval with a cluster enclosed) shapes. Each letter is 

formed from cubes with unit edge length (grid size) and a point is placed at the 

center of each cube.  

 Basic letter shapes formed from cubes are shown in Figure B.1 for both 

groups. The main difference between the two groups is the data set size. The letters 

are circumscribed in boxes in group 2 approximately 22 by 15 grids in size, whereas 

the same for a letter in group 3 is approximately 15 by 9 grids. Four grids form the 

depth of a letter in group 2, and in group 3 the depth of a letter is three grids. To sum 

up, the size of letters in group 3 is smaller than the ones in group 2. 

 

 

   (a)      (b)  

Figure B.1 Letters formed from cubes in (a) group 2 data sets, (b) group 3 data sets 
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 Following four factors are considered in generating the data sets.  

Factor 1. Intercluster density difference (EDD) 

 Level 1. No difference (EDD1) 

All the clusters have the same density. That is, the grid size is 1 and it is 

identical in each cluster.  

 Level 2. Density difference (EDD2) 

Grid sizes of letters S, A, E and O are 1, 3 3 , 3 3  and 3 9 , respectively. In 3-

dimensional space, these figures produce densities in the proportion of 9: 3: 

3: 1 (points in the letter S are nine times denser than points in the letter O).  

  

Factor 2. Intracluster density variation (ADV) 

 Level 1. No point deletion (ADV1) 

 Points are uniformly distributed in each cluster.  

 Level 2. Random deletion (ADV2) 

 30% of the points are randomly deleted from the uniformly distributed 

clusters. 

 Level 3. Smooth change (ADV3) 

Density decreases with a trend while moving from North to South and from 

West to East within a cluster (letter). That is, the grid size gradually increases 

up to 3 9  times the original size just next to the bottom right corner.  

 

Factor 3. Intercluster distance (DST) 

 Level 1. Distant (DST1) 

Distance between adjacent cluster pairs is determined according to the 

maximum possible density (grid size) in the nearest adjacent neighborhoods. 

The distant level is twice the maximum possible grid size in a letter.  

 Level 2. Close (DST2) 

In the close level the distance between adjacent cluster pairs is equal to the 

maximum possible grid size in a letter.  

Factor 4. Outlier (OL) 

 Level 1. Without outlier (OL1) 
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 There exists no outlier in the data set.  

 Level 2. With outlier (OL2) 

 There are 3 outliers inserted in each data set.  

 

 Using these factors, a full factorial design is applied. The factors used in data 

generation are summarized in Table B.1. 

 

Table B.1 Factorial design for the generation of group 2 data sets 

  
Level 0 Level 1 Level 2 

F
ac

to
rs

 

Intercluster density 

difference 
EDD1 EDD2 - 

Intracluster density  

variation 
ADV1 ADV2 ADV3 

Intercluster distance DST1 DST2 - 

Outlier OL1 OL2 - 

 

Distance between adjacent cluster pairs is determined from the maximum 

possible grid size in the nearest adjacent neighborhoods. Each letter is positioned as 

shown in Figure B.2. The properties and plots of these 24 data sets are presented in 

Sections B.2 and B.3, respectively. 
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Figure B.2 Example data set in a 2-dimensional view 
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B.2. Properties of Data Sets 

 

Table B.2 Data set properties for 2-dimensional group 1 data sets 

Data set 

# of 

target  

clusters 

# of  

outliers 

# of  

points 
MSCR CV1 CV2 

min. 

sep. 

max. 

comp. 

data_60            3 0 60 1.50 0.43 0.23 1.46 1.00 

data_66            4 0 66 1.50 0.47 0.27 1.27 1.00 

data-c-cv-nu-n_v2  3 0 73 1.02 1.04 0.25 0.80 0.78 

data-c-cv-nu-n     6 3 76 1.02 1.04 0.25 0.80 0.78 

data-c-cv-u-n   5 3 81 2.74 1.13 0.24 1.79 0.65 

data-uc-cv-nu-n    6 3 127 0.92 1.04 0.32 0.62 0.67 

data-oo_v2                             2 0 140 2.52 0.47 0.16 0.46 0.55 

data-oo         6 4 144 2.52 1.46 0.16 0.46 0.55 

data-uc-cc-nu-n_v2 3 0 188 0.80 0.78 0.42 0.54 0.68 

data-uc-cc-nu-n    6 3 191 0.80 1.04 0.42 0.54 0.68 

data-c-cc-nu-n2_v2 3 0 192 3.31 0.63 0.24 1.82 0.55 

data-c-cc-nu-n2 6 3 195 1.72 0.79 0.24 0.95 0.55 

dataX_v2                               2 0 200 1.15 0.64 0.63 1.04 0.90 

dataX              4 2 202 1.15 0.75 0.63 1.04 0.90 

data-c-cc-nu-n_v2  3 0 285 1.07 0.56 0.37 0.82 0.77 

train2             4 0 287 2.79 1.23 0.27 0.07 0.03 

data-c-cc-nu-n  7 4 289 0.60 0.94 0.37 0.46 0.77 

train1_v1          5 1 306 3.02 1.28 0.38 0.05 0.03 

train1             6 2 307 3.02 1.39 0.38 0.05 0.03 

train3_v1          5 0 361 3.64 1.62 0.26 0.06 0.05 

train3          36 30 397 0.03 1.26 0.78 0.02 0.74 

data_circle        2 0 700 51.94 2.36 0.59 0.71 0.04 

data_mix_uniform_normal                2 0 1000 13.52 1.39 0.71 2.12 0.51 

data_circle_1_10_5_10                  2 0 1100 3.37 0.79 0.63 0.30 0.09 

data_circle_10_1_10_10                 2 0 1100 1.60 0.89 0.60 0.12 0.15 

data_circle_2_10_2_12                  2 0 1200 15.19 0.82 0.61 0.33 0.08 

data_circle_2_10_3_12                  2 0 1200 5.03 0.73 0.62 0.27 0.09 

data_circle_2_10_4_12                  2 0 1200 4.58 0.69 0.63 0.22 0.07 

data_circle_2_10_5_13                  2 0 1200 13.22 1.10 0.61 0.72 0.09 

data_circle_2_10_6_12                  2 0 1200 2.24 0.63 0.59 0.13 0.07 

data_circle_2_10_3_12                  2 0 1200 5.03 0.73 0.62 0.27 0.09 

data_circle_3_10_8_12                  2 0 1300 0.90 0.63 0.62 0.07 0.08 

data_circle_5_10_8_12                  2 0 1500 0.46 0.61 0.61 0.04 0.09 
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Table B.2 Data set properties for 2-dimensional group 1 data sets (cont’d) 

data_circle1                           2 0 1890 3.90 0.67 0.61 0.22 0.06 

data_circle2                           2 0 1890 4.09 0.70 0.65 0.22 0.07 

data_circle_20_1_5_10                  2 0 2100 17.22 1.79 0.62 0.39 0.20 

data_circle3                           2 0 2100 21.00 2.88 0.62 0.71 0.03 

data_circle_1_20_1_11                  2 0 2100 25.56 0.91 0.63 0.41 0.05 

data_circle_1_20_1_13                  2 0 2100 24.00 0.76 0.61 0.32 0.06 

data_circle_1_20_1_15                  2 0 2100 14.99 0.68 0.62 0.23 0.08 

data_circle_1_20_1_17                  2 0 2100 0.28 0.63 0.61 0.00 0.14 

data_circle_1_20_1_19                  2 0 2100 1.46 0.64 0.63 0.03 0.09 

 

 

Table B.3 Data set properties for higher dimensional group 1 data sets 

Data set # of 

target  

clusters 

# of  

outliers 

# of  

points 

MSCR CV1 CV2 min. 

sep. 

max. 

comp. 

iris        3 0 150 0.35 0.60 0.46 0.22 0.91 

3d_dataset3 2 0 325 11.87 0.93 0.13 5.94 0.62 

3d_dataset4 2 0 1523 29.68 0.71 0.13 5.94 0.62 
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Table B.4 Data set properties for group 2 data sets 

Data set 

# of 

target  

clusters 

# of  

outliers 

# of  

points 
MSCR CV1 CV2 

min. 

sep. 

max. 

comp. 

D_0000 5 0 2780 3.00 0.21 0.04 3.00 1.00 

D_0001 8 3 2783 3.00 0.28 0.04 3.00 1.00 

D_0010 5 0 2780 2.00 0.13 0.04 2.00 1.00 

D_0011 8 3 2783 2.00 0.29 0.04 2.00 1.00 

D_0100 5 0 1975 2.12 0.23 0.06 3.00 1.41 

D_0101 8 3 1978 2.12 0.31 0.06 3.00 1.41 

D_0110 5 0 1927 1.41 0.13 0.05 2.00 1.41 

D_0111 8 3 1930 1.41 0.34 0.05 2.00 1.41 

D_0200 5 0 2780 1.58 0.49 0.39 3.10 2.00 

D_0201 8 3 2783 1.58 0.51 0.39 3.10 2.00 

D_0210 5 0 2780 1.02 0.47 0.39 2.00 2.00 

D_0211 8 3 2783 1.02 0.49 0.39 2.00 2.00 

D_1000 5 0 2780 1.44 0.31 0.12 4.01 4.33 

D_1001 8 3 2783 1.28 0.31 0.12 2.20 4.33 

D_1010 5 0 2780 0.96 0.30 0.12 2.01 4.33 

D_1011 8 3 2783 0.96 0.31 0.12 2.01 4.33 

D_1100 5 0 1925 1.44 0.35 0.17 4.01 4.33 

D_1101 8 3 1928 1.44 0.36 0.17 2.20 4.33 

D_1110 5 0 1948 0.96 0.32 0.16 2.01 4.33 

D_1111 8 3 1951 0.96 0.33 0.16 2.01 4.33 

D_1200 5 0 2780 1.49 0.55 0.45 4.06 6.05 

D_1201 8 3 2783 1.44 0.55 0.45 4.06 6.05 

D_1210 5 0 2780 0.98 0.54 0.45 2.12 6.05 

D_1211 8 3 2783 0.98 0.55 0.45 2.12 6.05 
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Table B.5 Data set properties for group 3 data sets 

Data set 

# of 

target  

cluster

s 

# of  

outliers 

# of  

points 
MSCR CV1 CV2 

min. 

sep. 

max. 

comp. 

DS_0000 5 0 894 2.83 0.39 0.00 2.83 1.00 

DS_0001 8 0 903 2.83 0.44 0.00 2.83 1.00 

DS_0010 5 0 894 2.83 0.50 0.36 5.66 2.00 

DS_0011 8 0 903 2.83 0.58 0.22 5.66 2.00 

DS_0100 5 0 709 2.83 0.41 0.01 2.83 1.41 

DS_0101 8 3 712 2.24 0.44 0.01 2.83 1.41 

DS_0110 5 0 708 2.00 0.19 0.01 2.83 1.41 

DS_0111 8 3 711 2.00 0.30 0.01 2.83 1.41 

DS_0200 5 0 894 1.49 0.51 0.36 2.93 1.97 

DS_0201 8 3 897 1.49 0.52 0.36 2.93 1.97 

DS_0210 5 0 894 1.03 0.45 0.36 2.00 1.97 

DS_0211 8 3 897 1.03 0.47 0.36 2.00 1.97 

DS_1000 5 0 894 2.83 0.32 0.00 4.00 2.08 

DS_1001 8 3 897 2.83 0.34 0.00 4.00 2.08 

DS_1010 5 0 894 1.92 0.28 0.00 2.00 2.08 

DS_1011 8 3 897 1.92 0.29 0.00 2.00 2.08 

DS_1100 5 0 708 2.00 0.35 0.02 5.77 2.94 

DS_1101 8 3 711 1.80 0.36 0.02 3.11 2.94 

DS_1110 5 0 715 1.92 0.29 0.01 2.89 2.08 

DS_1111 8 3 718 1.67 0.30 0.01 2.89 2.08 

DS_1200 5 0 894 1.49 0.55 0.36 5.84 4.10 

DS_1201 8 3 897 1.49 0.57 0.36 5.39 4.10 

DS_1210 5 0 894 0.98 0.54 0.36 3.03 4.10 

DS_1211 8 3 897 0.98 0.54 0.36 3.03 4.10 
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B.3. Plots of Data Sets  

 

Two Dimensional Group 1 Data Sets  

 

      Figure B.3 data_set_60 

 

       Figure B.4 data_set_66 

 

  Figure B.5 data-c-cv-nu-n_v 

 

    Figure B.6 data-c-cv-nu-n 

 

         Figure B.7 data-oo_v2 

 

         Figure B.8 data-oo 
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Figure B.9 data-uc-cc-nu-n_v2  

    Figure B.10 data- uc-cc-nu-n 
 

   
Figure B.11 data-c-cc-nu-n2_v2 

 
     Figure B.12 data-c-cc-nu-n2 

 

 
           Figure B.13 dataX_v2 

 
         Figure B.14 dataX 
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  Figure B.15 data-c-cc-nu-n_v2  

   

            Figure B.16 train2 

 

  
      Figure B.17 data-c-cc-nu-n  

 
Figure B.18 train1_v1 

 

 
   Figure B.19 train1 

                  
   Figure B.20 train3_v1 
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     Figure B.21 train3               

       
Figure B.22 data_circle 

 

 
Figure B.23 data_mix_uniform_normal      

         
     Figure B.24  data_circle_1_10_5_10 

 

 
Figure B.25 data_circle_10_1_10_10  

      
Figure B.26 data_circle_2_10_2_12  
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 Figure B.27 data_circle_2_10_3_12 

      
     Figure B.28 data_circle_2_10_4_12 

 
 Figure B.29 data_circle_2_10_5_13     

 
Figure B.30 data_circle_2_10_6_12 

  
    Figure B.31 data_circle_2_10_3_1 

 
Figure B.32 data_circle_3_10_8_12 
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 Figure B.33 data_circle_5_10_8_12 

 
         Figure B.34 data_circle1 

 

 
Figure B.35 data_circle2 

          
Figure B.36 data_circle_20_1_5_10 

 
Figure B.37 data_circle3 

    
Figure B.38 data_circle_20_1_5_10 
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  Figure B.39 data_circle_1_20_1_11 

 
Figure B.40 data_circle_1_20_1_13 

 

 
 Figure B.41 data_circle_1_20_1_15 

 
Figure B.42 data_circle_1_20_1_17 

 

Figure B.43 data_circle_1_20_1_19 
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Group 2 Data Sets  

 

 

  

Figure B.44 D_0001 

 

Figure B.45 D_0011 

 

 

 

 

  

Figure B.46 D_0101 

 

 Figure B.47 D_0111 
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 Figure B.48 D_0201 

  

 Figure B.49 D_0211 

 

 

 

 

  

 Figure B.50 D_1001 

 

     Figure B.51 D_1011 
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 Figure B.52 D_1101 

 

 Figure B.53 D_1111 

 

 

 

 

 

Figure B.56 D_1201 

 

Figure B.57 D_1211  
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Group 3 Data Sets  

 

 

 

Figure B.54 DS_0001 

 

Figure B.55 DS_0011 

 

 

 

 

 

 Figure B.56 DS_0101 

 

Figure B.57 DS_0111 
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 Figure B.58 DS_0201 

 

Figure B.59 DS_0211 

 

 

 

 

  

 Figure B.60 DS_1001 

 

Figure B.61 DS_1011 
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 Figure B.62 DS_1101 

  

Figure B.63 DS_1111 

 

 

 

 

 

Figure B.64 DS_1201 

 

 Figure B.65 DS_1211 
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APPENDIX C  

 

 

THE NC ALGORITHM AND THE EXPERIMENTAL 

RESULTS  

 

 

 

 We present the pseudocode of the NC algorithm in Section C.1, and we 
provide the experimental results of the NC algorithm in Tables C.1 through C.9  in 
Section C.2. Column headings in Tables C.1 through C.9 are explained as follows. 

 

#TC  : number of target clusters 

#C  : number of clusters found by the corresponding algorithm 

 

C.1. The NC Algorithm 

 

Step 1. Core candidate set (CCi) construction by direct connectivity.  

 

For i = 1,..,|D| 

Sort all remaining points in D in non-decreasing order of distance to point i, 

and form ordered set, Ti. 

Set j = 0 and initialize CCi = ∅ .  

Repeat  

Set j = j + 1 and move to the next nearest neighbor j of point i in Ti.  

Calculate the density (i.e. number of points), densityij, in the hyperball 

passing through points i and j and having diameter dij. 

If densityij = 0 

  CCi = CCi ∪ {j}.  
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End if 

Until densityij ≠  0 

Set core_flagi = j - 1. 

End for 

 

Step 2. Break point candidate set (BCi) construction by density tracking. 

 

For i = 1,..,|D| 

Set j = core_flagi and initialize BCi = CCi. 

Repeat  

Set j = j + 1 and move to the next nearest neighbor j of point i in Ti. 

Calculate densityij in the hyperball passing through points i and j and 

having diameter dij. 

If densityij - densityi,j-1 ≥ 0 

  BCi = BCi ∪ {j}.  

End if 

Until densityij - densityi,j-1 < 0 

Set break_flagi = j - 1. 

End for 

 

Step 3. Potential candidate set (PCi) construction by indirect connectivity checks.  

 

For i = 1,..,|D| 

Set j = break_flagi and flag = 1. Initialize PCi = BCi. 

Repeat  

Set j = j + 1 and move to the next nearest neighbor j of point i in Ti. 

Calculate densityij in the hyperball passing through points i and j and 

having diameter dij. 

If densityij - densityi,j-1 ≥ 0 

  PCi = PCi ∪ {j}.  

Else if T ( )BC BC
ii j∩ ≠ ∅  
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 PCi = PCi ∪ {j}. 

Else 

Set flag = 0. 

End if 

Until flag = 0 

Set CSi = PCi. 

End for 

 

Step 4. Candidate set (CSi) construction by mutuality tests.  

 

Repeat  

For i = 1,..,|D| 

Set j = 0 and candidate_flagi = 0.  

Repeat  

Set j = j + 1 and move to the next nearest neighbor j of point i 

in CSi. 

If CCij ∈  

  If CC CSi j∩ = ∅  

Remove all neighbors k = j,..,|CSi| from CSi.  

Set candidate_flagi = 1. 

    End if 

Else 

 If CS ( )CS CS
ii j∩ = ∅  

Remove ( )CSi j  and all the neighbors such 

that ( )CS 'i j  where j’ > j from CSi.  

Set candidate_flagi = 1. 

    End if 

   End if 

  Until candidate_flagi = 1 or j = |CSi | 

End for 
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Until 
D

_ 0i
i

candidate flag
∈
∏ = , meaning no more change occurs in any CSi. 

 

Step 5. Formation of closures (subclusters) by coverage.  

 

Set D0 = D and initialize NCSi = CSi, Di∀ ∈ . 

While 0D ≠ ∅  

 Select 0Di∈  arbitrarily. 

 Set '
0D  = D0 \ {i} ∪  NCSi. 

 While '
0D ≠ ∅  

  Select '
0Dj ∈  arbitrarily. 

  If NCS NCSi j∩ ≠ ∅  

   NCSi = NCSi ∪  NCSj and NCSj = NCSi ∪  NCSj. 

  End if 

  Remove j and all points in NCSj from '
0D . 

 End while 

End while  

 

Set m = 1, i = 1 and D0 = D.  

Initialize the set of points in closure m, Clm = {i} NCSi∪ . Remove point i and all 

points in NCSi  from D0. 

While 0D ≠ ∅  

 Select 0Di∈  arbitrarily. 

Set flag = 1.  

 For k = 1,..,m 

  If Cl NCSm i∩ ≠ ∅  

   Cl Cl { } NCSm m ii= ∪ ∪ . 

  Set flag = 0 and break.  

  End if 
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 End for 

 If flag = 1 

Set m = m + 1 and start a new closure, Clm = {i} NCSi∪ . 

 End if 

 Remove point i and all points in NCSi  from D0. 

End while 
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       C.2. The Experimental Results of the NC Algorithm 

 

    Table C.1 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of PPN and RI for group 1 data sets 

 
Data set #TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C PPN RI #C PPN RI #C PPN RI #C PPN RI 

data_60            3 3 1.00 1.00 1 0.52 0.39 3 1.00 1.00 3 1.00 1.00 
data_66            4 4 1.00 1.00 1 0.47 0.33 4 1.00 1.00 4 1.00 1.00 
data-c-cv-nu-n_v2  3 3 1.00 1.00 3 1.00 1.00 2 0.80 0.76 3 1.00 1.00 
data-c-cv-nu-n     6 3 0.96 0.97 3 0.96 0.97 4 0.79 0.75 4 0.97 0.98 
data-c-cv-u-n   5 1 0.59 0.48 1 0.59 0.48 5 1.00 1.00 5 1.00 1.00 
data-uc-cv-nu-n    6 1 0.63 0.46 1 0.63 0.46 4 0.78 0.72 5 0.99 0.99 
data-oo_v2                             2 1 0.56 0.51 1 0.56 0.51 1 0.56 0.51 2 1.00 1.00 
data-oo         6 1 0.55 0.48 1 0.55 0.48 5 0.58 0.53 6 1.00 1.00 
data-uc-cc-nu-n_v2 3 2 0.56 0.59 2 0.56 0.59 2 0.56 0.59 3 1.00 1.00 
data-uc-cc-nu-n 6 2 0.55 0.58 1 0.45 0.40 4 0.56 0.60 4 0.99 0.99 
data-c-cc-nu-n2_v2 3 3 1.00 1.00 2 0.80 0.73 3 1.00 1.00 4 1.00 0.99 
data-c-cc-nu-n2 6 2 0.87 0.82 1 0.67 0.50 6 1.00 1.00 7 1.00 0.99 
dataX_v2                               2 2 1.00 1.00 2 1.00 1.00 1 0.50 0.50 2 1.00 1.00 
dataX              4 1 0.50 0.49 1 0.50 0.49 3 0.51 0.51 4 1.00 1.00 
data-c-cc-nu-n_v2  3 1 0.64 0.49 1 0.64 0.49 3 1.00 1.00 3 1.00 1.00 
train2             4 3 0.90 0.91 3 0.90 0.91 4 1.00 1.00 6 1.00 0.99 
data-c-cc-nu-n  7 1 0.63 0.48 1 0.63 0.48 5 0.90 0.88 7 1.00 1.00 
train1_v1          5 4 1.00 1.00 4 1.00 1.00 5 1.00 1.00 8 1.00 0.98 
train1             6 4 0.99 1.00 4 0.99 1.00 6 1.00 1.00 9 1.00 0.98 
train3_v1          5 2 0.71 0.63 2 0.71 0.63 7 1.00 1.00 6 1.00 1.00 
train3          36 1 0.50 0.31 1 0.50 0.31 2 0.51 0.33 17 0.94 0.97 
data_circle        2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 14 1.00 0.88 
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        Table C.1 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of PPN and RI for group 1 data sets (cont’d) 

Data set #TC 
KNN1 KNN2 ε-neighborhood NC Algorithm 

#C PPN RI #C PPN RI #C PPN RI #C PPN RI 
data_mix_uniform_normal                2 2 1.00 1.00 2 1.00 1.00 10 1.00 0.99 38 1.00 0.83 
data_circle_1_10_5_10                  2 2 1.00 1.00 1 0.91 0.84 9 1.00 0.99 29 1.00 0.86 
data_circle_10_1_10_10                 2 1 0.91 0.84 1 0.91 0.84 18 1.00 1.00 22 1.00 0.87 
data_circle_2_10_2_12                  2 2 1.00 1.00 1 0.83 0.72 7 1.00 0.99 22 1.00 0.85 
data_circle_2_10_3_12                  2 1 0.83 0.72 1 0.83 0.72 6 1.00 0.99 30 1.00 0.86 
data_circle_2_10_4_12                  2 1 0.83 0.72 1 0.83 0.72 6 1.00 0.99 37 1.00 0.74 
data_circle_2_10_5_13                  2 2 1.00 1.00 2 1.00 1.00 6 1.00 0.99 30 1.00 0.81 
data_circle_2_10_6_12                  2 1 0.83 0.72 1 0.83 0.72 3 1.00 1.00 39 1.00 0.79 
data_circle_2_10_3_12                  2 1 0.83 0.72 1 0.83 0.72 6 1.00 0.99 30 1.00 0.86 
data_circle_3_10_8_12                  2 1 0.77 0.65 1 0.77 0.65 6 0.78 0.65 26 1.00 0.85 
data_circle_5_10_8_12                  2 1 0.67 0.56 1 0.67 0.56 6 0.67 0.55 29 1.00 0.87 
data_circle1                            2 1 0.95 0.91 1 0.95 0.91 7 1.00 0.99 35 1.00 0.69 
data_circle2                            2 1 0.95 0.91 1 0.95 0.91 11 1.00 0.98 35 1.00 0.86 
data_circle_20_1_5_10                  2 1 0.95 0.91 1 0.95 0.91 75 1.00 1.00 52 1.00 0.66 
data_circle3                            2 1 0.95 0.91 1 0.95 0.91 18 1.00 0.99 41 1.00 0.71 
data_circle_1_20_1_11                  2 1 0.95 0.91 1 0.95 0.91 13 1.00 0.97 49 1.00 0.74 
data_circle_1_20_1_13                  2 1 0.95 0.91 1 0.95 0.91 14 1.00 0.97 41 1.00 0.83 
data_circle_1_20_1_15                  2 1 0.95 0.91 1 0.95 0.91 7 1.00 0.99 47 1.00 0.86 
data_circle_1_20_1_17                  2 1 0.95 0.91 1 0.95 0.91 6 1.00 0.99 57 1.00 0.80 
data_circle_1_20_1_19                  2 1 0.95 0.91 1 0.95 0.91 5 0.95 0.90 38 1.00 0.89 
iris        2 2 1.00 1.00 2 1.00 1.00 3 1.00 0.98 4 1.00 0.99 
3d_dataset3 2 2 1.00 1.00 2 1.00 1.00 127 1.00 0.85 2 1.00 1.00 
3d_dataset4 2 2 1.00 1.00 2 1.00 1.00 4 1.00 1.00 2 1.00 1.00 
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Table C.2 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of JI and QJI for group 1 data sets 

Data set #TC 
KNN1 KNN2 ε-neighborhood NC Algorithm 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI 
data_60            3 3 1.00 1.00 1 0.39 0.39 3 1.00 1.00 3 1.00 1.00 
data_66            4 4 1.00 1.00 1 0.33 0.33 4 1.00 1.00 4 1.00 1.00 
data-c-cv-nu-n_v2  3 3 1.00 1.00 3 1.00 1.00 2 0.63 0.63 3 1.00 1.00 
data-c-cv-nu-n     6 3 0.94 0.94 3 0.94 0.94 4 0.61 0.61 4 0.95 0.95 
data-c-cv-u-n   5 1 0.48 0.48 1 0.48 0.48 5 1.00 1.00 5 1.00 1.00 
data-uc-cv-nu-n    6 1 0.46 0.46 1 0.46 0.46 4 0.62 0.62 5 0.98 0.98 
data-oo_v2                              2 1 0.51 0.51 1 0.51 0.51 1 0.51 0.51 2 1.00 1.00 
data-oo         6 1 0.48 0.48 1 0.48 0.48 5 0.51 0.51 6 1.00 1.00 
data-uc-cc-nu-n_v2 3 2 0.50 0.50 2 0.50 0.50 2 0.50 0.50 3 1.00 1.00 
data-uc-cc-nu-n 6 2 0.49 0.49 1 0.40 0.40 4 0.50 0.50 4 0.98 0.98 
data-c-cc-nu-n2_v2 3 3 1.00 1.00 2 0.66 0.66 3 1.00 1.00 4 0.98 1.00 
data-c-cc-nu-n2 6 2 0.73 0.73 1 0.50 0.50 6 1.00 1.00 7 0.98 1.00 
dataX_v2                                2 2 1.00 1.00 2 1.00 1.00 1 0.50 0.50 2 1.00 1.00 
dataX              4 1 0.49 0.49 1 0.49 0.49 3 0.50 0.50 4 1.00 1.00 
data-c-cc-nu-n_v2  3 1 0.49 0.49 1 0.49 0.49 3 1.00 1.00 3 1.00 1.00 
train2             4 3 0.78 0.78 3 0.78 0.78 4 1.00 1.00 6 0.97 1.00 
data-c-cc-nu-n  7 1 0.48 0.48 1 0.48 0.48 5 0.79 0.79 7 1.00 1.00 
train1_v1          5 4 1.00 1.00 4 1.00 1.00 5 1.00 1.00 8 0.95 1.00 
train1             6 4 0.99 0.99 4 0.99 0.99 6 1.00 1.00 9 0.95 1.00 
train3_v1          5 2 0.50 0.50 2 0.50 0.50 7 0.99 1.00 6 0.99 1.00 
train3          36 1 0.31 0.31 1 0.31 0.31 2 0.31 0.31 17 0.90 0.91 
data_circle        2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 14 0.84 1.00 

 

 



 

 

254 

Table C.2 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of JI and QJI for group 1 data sets (cont’d) 

Data set #TC 
KNN1 KNN2 ε-neighborhood NC Algorithm 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI 
data_mix_uniform_normal                2 2 1.00 1.00 2 1.00 1.00 10 0.98 1.00 38 0.56 1.00 
data_circle_1_10_5_10                  2 2 1.00 1.00 1 0.84 0.84 9 0.99 1.00 29 0.83 1.00 
data_circle_10_1_10_10                 2 1 0.84 0.84 1 0.84 0.84 18 1.00 1.00 22 0.84 1.00 
data_circle_2_10_2_12                  2 2 1.00 1.00 1 0.72 0.72 7 0.98 1.00 22 0.79 1.00 
data_circle_2_10_3_12                  2 1 0.72 0.72 1 0.72 0.72 6 0.99 1.00 30 0.80 1.00 
data_circle_2_10_4_12                  2 1 0.72 0.72 1 0.72 0.72 6 0.99 1.00 37 0.63 1.00 
data_circle_2_10_5_13                  2 2 1.00 1.00 2 1.00 1.00 6 0.98 1.00 30 0.74 1.00 
data_circle_2_10_6_12                  2 1 0.72 0.72 1 0.72 0.72 3 1.00 1.00 39 0.70 1.00 
data_circle_2_10_3_12                  2 1 0.72 0.72 1 0.72 0.72 6 0.99 1.00 30 0.80 1.00 
data_circle_3_10_8_12                  2 1 0.65 0.65 1 0.65 0.65 6 0.65 0.65 26 0.76 1.00 
data_circle_5_10_8_12                  2 1 0.56 0.56 1 0.56 0.56 6 0.55 0.56 29 0.77 1.00 
data_circle1                            2 1 0.91 0.91 1 0.91 0.91 7 0.99 1.00 35 0.66 1.00 
data_circle2                            2 1 0.91 0.91 1 0.91 0.91 11 0.98 1.00 35 0.85 1.00 
data_circle_20_1_5_10                  2 1 0.91 0.91 1 0.91 0.91 75 1.00 1.00 52 0.62 1.00 
data_circle3                            2 1 0.91 0.91 1 0.91 0.91 18 0.99 1.00 41 0.68 1.00 
data_circle_1_20_1_11                  2 1 0.91 0.91 1 0.91 0.91 13 0.97 1.00 49 0.72 1.00 
data_circle_1_20_1_13                  2 1 0.91 0.91 1 0.91 0.91 14 0.97 1.00 41 0.81 1.00 
data_circle_1_20_1_15                  2 1 0.91 0.91 1 0.91 0.91 7 0.99 1.00 47 0.85 1.00 
data_circle_1_20_1_17                  2 1 0.91 0.91 1 0.91 0.91 6 0.99 1.00 57 0.78 1.00 
data_circle_1_20_1_19                  2 1 0.91 0.91 1 0.91 0.91 5 0.90 0.91 38 0.88 1.00 
iris        2 2 1.00 1.00 2 1.00 1.00 3 0.97 1.00 4 0.98 1.00 
3d_dataset3 2 2 1.00 1.00 2 1.00 1.00 127 0.71 1.00 2 1.00 1.00 
3d_dataset4 2 2 1.00 1.00 2 1.00 1.00 4 1.00 1.00 2 1.00 1.00 
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Table C.3 Comparison of KNN1,KNN2, ε-neighborhood and NC in terms of run time (in seconds) for group 1 data sets 

Data set #TC 
KNN1 KNN2 ε-neighborhood NC Algorithm 

#C Time #C Time #C Time #C Time 
data_60            3 3 0.04 1 0.02 3 0.07 3 1.24 
data_66            4 4 0.02 1 0.02 4 0.03 4 1.51 
data-c-cv-nu-n_v2  3 3 0.02 3 0.03 2 0.04 3 2.16 
data-c-cv-nu-n     6 3 0.03 3 0.03 4 0.07 4 2.36 
data-c-cv-u-n   5 1 0.03 1 0.03 5 0.05 5 2.77 
data-uc-cv-nu-n    6 1 0.07 1 0.08 4 0.1 5 10.71 
data-oo_v2                              2 1 0.09 1 0.1 1 0.12 2 14.08 
data-oo         6 1 0.09 1 0.11 5 0.13 6 15.15 
data-uc-cc-nu-n_v2 3 2 0.16 2 0.18 2 0.19 3 34.27 
data-uc-cc-nu-n 6 2 0.19 1 0.18 4 0.27 4 35.71 
data-c-cc-nu-n2_v2 3 3 0.16 2 0.19 3 0.18 4 36.14 
data-c-cc-nu-n2 6 2 0.17 1 0.19 6 0.18 7 37.72 
dataX_v2                                2 2 0.18 2 0.21 1 0.24 2 40.48 
dataX              4 1 0.19 1 0.22 3 0.24 4 42.29 
data-c-cc-nu-n_v2  3 1 0.37 1 0.42 3 0.4 3 119.27 
train2             4 3 0.37 3 0.42 4 0.37 6 120.45 
data-c-cc-nu-n  7 1 0.37 1 0.42 5 0.45 7 123.37 
train1_v1          5 4 0.42 4 0.48 5 0.43 8 146.64 
train1             6 4 0.42 4 0.48 6 0.43 9 147.54 
train3_v1          5 2 0.59 2 0.67 7 0.57 6 242.31 
train3          36 1 0.72 1 0.81 2 0.93 17 318.46 
data_circle        2 2 2.27 2 2.66 3 2.15 14 1765.74 
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Table C.3 Comparison of KNN1,KNN2, ε-neighborhood and NC in terms of run time (in seconds) for group 1 data sets (cont’d) 

Data set #TC 
KNN1 KNN2 ε-neighborhood NC Algorithm 

#C Time #C Time #C Time #C Time 
data_mix_uniform_normal                2 2 4.64 2 5.52 10 4.13 38 3250.87 
data_circle_1_10_5_10                   2 2 5.68 1 6.85 9 5.09 29 4786.74 
data_circle_10_1_10_10                  2 1 5.67 1 6.84 18 5.63 22 1735.09 
data_circle_2_10_2_12                   2 2 6.82 1 8.3 7 6.17 22 3430.11 
data_circle_2_10_3_12                   2 1 6.79 1 8.27 6 6.02 30 2191.76 
data_circle_2_10_4_12                   2 1 6.81 1 8.3 6 5.97 37 2681.99 
data_circle_2_10_5_13                   2 2 6.78 2 8.26 6 5.94 30 3307.2 
data_circle_2_10_6_12                   2 1 6.81 1 8.25 3 5.96 39 3994.25 
data_circle_2_10_3_12                   2 1 6.78 1 8.27 6 6.03 30 2672.78 
data_circle_3_10_8_12                   2 1 8.01 1 9.87 6 7 26 1665.07 
data_circle_5_10_8_12                   2 1 10.88 1 13.55 6 9.12 29 2504.25 
data_circle1                            2 1 17.52 1 22.31 7 14.56 35 3414.44 
data_circle2                            2 1 17.63 1 22.53 11 14.55 35 3433.05 
data_circle_20_1_5_10                   2 1 21.99 1 28.26 75 19.28 52 9729.73 
data_circle3                            2 1 22 1 28.62 18 18.12 41 4734.05 
data_circle_1_20_1_11                   2 1 22 1 28.48 13 17.99 49 10609.76 
data_circle_1_20_1_13                   2 1 22.04 1 28.37 14 18.09 41 11779.36 
data_circle_1_20_1_15                   2 1 21.96 1 28.22 7 17.99 47 8461.14 
data_circle_1_20_1_17                   2 1 21.84 1 28.21 6 18.02 57 9706.72 
data_circle_1_20_1_19                   2 1 21.93 1 28.02 5 18 38 6495.46 
iris        2 2 0.13 2 0.12 3 0.18 4 18.21 
3d_dataset3 2 2 0.47 2 0.54 127 0.46 2 11923 
3d_dataset4 2 2 10.98 2 13.36 4 9.21 2 2714383 
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Table C.4 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of PPN and RI for group 2 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C PPN RI #C PPN RI #C PPN RI #C PPN RI 

D_0000 5 2 0.50 0.60 1 0.29 0.25 5 1.00 1.00 5 1.00 1.00 
D_0001 8 1 0.29 0.25 1 0.29 0.25 8 1.00 1.00 8 1.00 1.00 
D_0010 5 1 0.29 0.25 1 0.29 0.25 5 1.00 1.00 5 1.00 1.00 
D_0011 8 1 0.29 0.25 1 0.29 0.25 8 1.00 1.00 7 1.00 1.00 
D_0100 5 2 0.50 0.60 1 0.28 0.25 15 1.00 0.97 5 1.00 1.00 
D_0101 8 1 0.28 0.25 1 0.28 0.25 18 1.00 0.97 8 1.00 1.00 
D_0110 5 1 0.29 0.24 1 0.29 0.24 15 1.00 0.99 5 1.00 1.00 
D_0111 8 1 0.29 0.24 1 0.29 0.24 18 1.00 0.99 7 1.00 1.00 
D_0200 5 1 0.29 0.25 1 0.29 0.25 6 1.00 1.00 66 1.00 0.95 
D_0201 8 1 0.29 0.25 1 0.29 0.25 9 1.00 1.00 67 1.00 0.95 
D_0210 5 1 0.29 0.25 1 0.29 0.25 6 1.00 1.00 65 0.82 0.87 
D_0211 8 1 0.29 0.25 1 0.29 0.25 9 1.00 1.00 66 0.82 0.87 
D_1000 5 1 0.29 0.25 1 0.29 0.25 11 1.00 0.97 14 1.00 0.92 
D_1001 8 1 0.29 0.25 1 0.29 0.25 13 1.00 0.97 15 1.00 0.92 
D_1010 5 1 0.29 0.25 1 0.29 0.25 10 0.76 0.85 15 0.88 0.81 
D_1011 8 1 0.29 0.25 1 0.29 0.25 12 0.76 0.85 15 0.88 0.81 
D_1100 5 1 0.29 0.25 1 0.29 0.25 13 0.76 0.85 8 1.00 0.99 
D_1101 8 1 0.29 0.25 1 0.29 0.25 15 0.76 0.85 9 1.00 0.99 
D_1110 5 1 0.29 0.25 1 0.29 0.25 9 0.52 0.57 13 0.79 0.85 
D_1111 8 1 0.29 0.25 1 0.29 0.25 10 0.52 0.57 14 0.79 0.85 
D_1200 5 1 0.29 0.25 1 0.29 0.25 8 0.76 0.86 45 1.00 0.92 
D_1201 8 1 0.29 0.25 1 0.29 0.25 11 0.76 0.86 44 0.95 0.90 
D_1210 5 1 0.29 0.25 1 0.29 0.25 7 0.51 0.58 38 0.41 0.39 
D_1211 8 1 0.29 0.25 1 0.29 0.25 10 0.51 0.59 40 0.41 0.39 
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Table C.5 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of JI and QJI for group 2 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C JI QJI #C JI QJI #C JI QJI #C JI QJI 

D_0000 5 2 0.38 0.38 1 0.25 0.25 5 1.00 1.00 5 1.00 1.00 
D_0001 8 1 0.25 0.25 1 0.25 0.25 8 1.00 1.00 8 1.00 1.00 
D_0010 5 1 0.25 0.25 1 0.25 0.25 5 1.00 1.00 5 1.00 1.00 
D_0011 8 1 0.25 0.25 1 0.25 0.25 8 1.00 1.00 7 1.00 1.00 
D_0100 5 2 0.38 0.38 1 0.25 0.25 15 0.88 1.00 5 1.00 1.00 
D_0101 8 1 0.25 0.25 1 0.25 0.25 18 0.88 1.00 8 1.00 1.00 
D_0110 5 1 0.24 0.24 1 0.24 0.24 15 0.94 1.00 5 1.00 1.00 
D_0111 8 1 0.24 0.24 1 0.24 0.24 18 0.94 1.00 7 1.00 1.00 
D_0200 5 1 0.25 0.25 1 0.25 0.25 6 0.99 1.00 66 0.78 1.00 
D_0201 8 1 0.25 0.25 1 0.25 0.25 9 0.99 1.00 67 0.78 1.00 
D_0210 5 1 0.25 0.25 1 0.25 0.25 6 0.99 1.00 65 0.60 0.77 
D_0211 8 1 0.25 0.25 1 0.25 0.25 9 0.99 1.00 66 0.60 0.77 
D_1000 5 1 0.25 0.25 1 0.25 0.25 11 0.86 1.00 14 0.68 1.00 
D_1001 8 1 0.25 0.25 1 0.25 0.25 13 0.86 1.00 15 0.68 1.00 
D_1010 5 1 0.25 0.25 1 0.25 0.25 10 0.58 0.67 15 0.37 0.81 
D_1011 8 1 0.25 0.25 1 0.25 0.25 12 0.58 0.67 15 0.37 0.80 
D_1100 5 1 0.25 0.25 1 0.25 0.25 13 0.59 0.67 8 0.97 1.00 
D_1101 8 1 0.25 0.25 1 0.25 0.25 15 0.59 0.67 9 0.97 1.00 
D_1110 5 1 0.25 0.25 1 0.25 0.25 9 0.33 0.39 13 0.57 0.70 
D_1111 8 1 0.25 0.25 1 0.25 0.25 10 0.33 0.39 14 0.57 0.70 
D_1200 5 1 0.25 0.25 1 0.25 0.25 8 0.63 0.67 45 0.68 1.00 
D_1201 8 1 0.25 0.25 1 0.25 0.25 11 0.63 0.67 44 0.62 0.92 
D_1210 5 1 0.25 0.25 1 0.25 0.25 7 0.36 0.38 38 0.25 0.31 
D_1211 8 1 0.25 0.25 1 0.25 0.25 10 0.36 0.38 40 0.25 0.31 
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Table C.6 Comparison of KNN1,KNN2, ε-neighborhood and NC in terms of run time (in seconds) for group 2 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C Time #C Time #C Time #C Time 

D_0000 5 2 39.41 1 51.24 5 29.17 5 1436761894.00 
D_0001 8 1 39.86 1 51.69 8 29.31 8 2144832592.00 
D_0010 5 1 39.40 1 51.43 5 29.31 5 1800125681.00 
D_0011 8 1 39.54 1 51.96 8 29.25 7 3136493251.00 
D_0100 5 2 18.86 1 23.39 15 14.76 5 467595257.00 
D_0101 8 1 18.95 1 23.38 18 14.82 8 923769738.00 
D_0110 5 1 17.88 1 22.10 15 14.25 5 686832794.00 
D_0111 8 1 17.91 1 22.26 18 14.15 7 373263598.00 
D_0200 5 1 39.80 1 52.55 6 30.08 66 1138221968.00 
D_0201 8 1 39.92 1 52.48 9 30.10 67 2248430650.00 
D_0210 5 1 39.84 1 52.63 6 30.10 65 3215476728.00 
D_0211 8 1 39.85 1 52.48 9 30.16 66 2333344144.00 
D_1000 5 1 39.52 1 52.13 11 30.81 14 291329.40 
D_1001 8 1 39.69 1 52.75 13 31.01 15 1033781560.00 
D_1010 5 1 39.62 1 52.62 10 31.11 15 1013577112.00 
D_1011 8 1 40.23 1 52.64 12 31.02 15 1016609053.00 
D_1100 5 1 17.91 1 22.38 13 15.45 8 336715385.00 
D_1101 8 1 17.97 1 22.41 15 15.44 9 338026006.00 
D_1110 5 1 18.38 1 23.09 9 15.73 13 351864525.00 
D_1111 8 1 18.51 1 23.13 10 15.81 14 331960810.00 
D_1200 5 1 40.08 1 52.74 8 31.70 45 1258736589.00 
D_1201 8 1 40.03 1 52.96 11 31.72 44 1266772753.00 
D_1210 5 1 40.16 1 53.12 7 31.60 38 1260551276.00 
D_1211 8 1 40.17 1 53.70 10 31.79 40 1331819776.00 
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Table C.7 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of PPN and RI for group 3 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C PPN RI #C PPN RI #C PPN RI #C PPN RI 

DS_0000 5 4 0.99 1.00 4 0.99 1.00 5 1.00 1.00 5 1.00 1.00 
DS_0001 8 1 0.27 0.24 1 0.27 0.24 8 1.00 1.00 8 1.00 1.00 
DS_0010 5 3 0.75 0.87 1 0.27 0.25 298 1.00 0.76 5 1.00 1.00 
DS_0011 8 1 0.27 0.24 1 0.27 0.24 301 1.00 0.76 7 1.00 1.00 
DS_0100 5 4 1.00 1.00 3 0.75 0.87 5 1.00 1.00 4 1.00 1.00 
DS_0101 8 2 0.54 0.63 1 0.29 0.25 10 1.00 1.00 4 0.99 1.00 
DS_0110 5 2 0.55 0.75 1 0.29 0.25 9 1.00 1.00 4 1.00 1.00 
DS_0111 8 1 0.29 0.25 1 0.29 0.25 12 1.00 1.00 7 1.00 1.00 
DS_0200 5 2 0.52 0.65 1 0.27 0.25 5 1.00 1.00 17 1.00 0.98 
DS_0201 8 1 0.27 0.25 1 0.27 0.25 8 1.00 1.00 18 1.00 0.98 
DS_0210 5 1 0.27 0.25 1 0.27 0.25 4 0.77 0.89 16 0.79 0.89 
DS_0211 8 1 0.27 0.25 1 0.27 0.25 7 0.77 0.89 18 0.78 0.89 
DS_1000 5 2 0.52 0.65 1 0.27 0.25 5 1.00 1.00 5 1.00 1.00 
DS_1001 8 1 0.27 0.25 1 0.27 0.25 8 1.00 1.00 6 1.00 1.00 
DS_1010 5 1 0.27 0.25 1 0.27 0.25 4 0.77 0.89 4 0.77 0.89 
DS_1011 8 1 0.27 0.25 1 0.27 0.25 6 0.77 0.89 5 0.77 0.89 
DS_1100 5 3 0.75 0.87 1 0.26 0.25 5 1.00 1.00 5 1.00 1.00 
DS_1101 8 2 0.50 0.61 1 0.26 0.24 8 1.00 1.00 6 1.00 1.00 
DS_1110 5 1 0.27 0.25 1 0.27 0.25 4 0.77 0.89 5 1.00 1.00 
DS_1111 8 1 0.27 0.24 1 0.27 0.24 7 0.77 0.89 5 1.00 1.00 
DS_1200 5 1 0.27 0.25 1 0.27 0.25 19 1.00 0.99 17 1.00 0.98 
DS_1201 8 1 0.27 0.25 1 0.27 0.25 20 1.00 0.99 19 1.00 0.98 
DS_1210 5 1 0.27 0.25 1 0.27 0.25 17 0.53 0.64 16 0.31 0.31 
DS_1211 8 1 0.27 0.25 1 0.27 0.25 18 0.53 0.65 17 0.31 0.31 
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Table C.8 Comparison of KNN1, KNN2 ε-neighborhood and NC in terms of JI and QJI for group 3 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C JI QJI #C JI QJI #C JI QJI #C JI QJI 

DS_0000 5 4 0.99 0.99 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 
DS_0001 8 1 0.24 0.24 1 0.24 0.24 8 1.00 1.00 8 1.00 1.00 
DS_0010 5 3 0.66 0.66 1 0.25 0.25 298 0.01 1.00 5 1.00 1.00 
DS_0011 8 1 0.24 0.24 1 0.24 0.24 301 0.01 1.00 7 0.99 0.99 
DS_0100 5 4 0.99 0.99 3 0.66 0.66 5 1.00 1.00 4 0.99 0.99 
DS_0101 8 2 0.40 0.40 1 0.25 0.25 10 1.00 1.00 4 0.98 0.98 
DS_0110 5 2 0.50 0.50 1 0.25 0.25 9 0.99 1.00 4 0.99 0.99 
DS_0111 8 1 0.25 0.25 1 0.25 0.25 12 0.99 1.00 7 0.99 0.99 
DS_0200 5 2 0.41 0.41 1 0.25 0.25 5 1.00 1.00 17 0.92 1.00 
DS_0201 8 1 0.25 0.25 1 0.25 0.25 8 1.00 1.00 18 0.92 1.00 
DS_0210 5 1 0.25 0.25 1 0.25 0.25 4 0.69 0.69 16 0.67 0.73 
DS_0211 8 1 0.25 0.25 1 0.25 0.25 7 0.69 0.69 18 0.67 0.73 
DS_1000 5 2 0.41 0.41 1 0.25 0.25 5 1.00 1.00 5 1.00 1.00 
DS_1001 8 1 0.25 0.25 1 0.25 0.25 8 1.00 1.00 6 1.00 1.00 
DS_1010 5 1 0.25 0.25 1 0.25 0.25 4 0.69 0.69 4 0.69 0.69 
DS_1011 8 1 0.25 0.25 1 0.25 0.25 6 0.69 0.69 5 0.69 0.69 
DS_1100 5 3 0.66 0.66 1 0.25 0.25 5 1.00 1.00 5 1.00 1.00 
DS_1101 8 2 0.38 0.38 1 0.24 0.24 8 1.00 1.00 6 0.99 0.99 
DS_1110 5 1 0.25 0.25 1 0.25 0.25 4 0.70 0.70 5 1.00 1.00 
DS_1111 8 1 0.24 0.24 1 0.24 0.24 7 0.70 0.70 5 0.99 0.99 
DS_1200 5 1 0.25 0.25 1 0.25 0.25 19 0.97 1.00 17 0.92 1.00 
DS_1201 8 1 0.25 0.25 1 0.25 0.25 20 0.97 1.00 19 0.92 1.00 
DS_1210 5 1 0.25 0.25 1 0.25 0.25 17 0.40 0.41 16 0.25 0.27 
DS_1211 8 1 0.25 0.25 1 0.25 0.25 18 0.40 0.41 17 0.24 0.27 
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Table C.9 Comparison of KNN1,KNN2, ε-neighborhood and NC in terms of run time (in seconds) for group 3 data sets 

Data set 
#TC 

KNN1 KNN2 ε-neighborhood NC Algorithm 
#C Time #C Time #C Time #C Time 

DS_0000 5 4 4.18 4 4.88 5 3.72 5 4729.13 
DS_0001 8 1 4.29 1 4.94 8 3.75 8 3953.68 
DS_0010 5 3 4.12 1 4.81 298 3.47 5 3834.32 
DS_0011 8 1 4.25 1 4.92 301 3.56 7 18660.97 
DS_0100 5 4 2.59 3 2.96 5 2.41 4 1917.27 
DS_0101 8 2 2.61 1 3.00 10 2.38 4 1931.07 
DS_0110 5 2 2.58 1 2.98 9 2.32 4 1903.47 
DS_0111 8 1 2.61 1 3.00 12 2.35 7 1931.58 
DS_0200 5 2 4.20 1 4.88 5 3.78 17 9442.06 
DS_0201 8 1 4.19 1 4.94 8 3.80 18 24099.10 
DS_0210 5 1 4.17 1 4.89 4 3.78 16 3840.04 
DS_0211 8 1 4.19 1 4.93 7 3.82 18 3876.84 
DS_1000 5 2 4.13 1 4.81 5 3.87 5 3828.47 
DS_1001 8 1 4.15 1 4.87 8 3.90 6 3863.46 
DS_1010 5 1 4.12 1 4.83 4 3.86 4 3825.85 
DS_1011 8 1 4.15 1 4.89 6 3.93 5 3845.62 
DS_1100 5 3 2.57 1 2.95 5 2.44 5 1907.03 
DS_1101 8 2 2.60 1 2.98 8 2.45 6 4522.14 
DS_1110 5 1 2.63 1 3.02 4 2.48 5 4754.65 
DS_1111 8 1 2.65 1 3.08 7 2.53 5 5077.17 
DS_1200 5 1 4.19 1 4.92 19 3.97 17 6542.76 
DS_1201 8 1 4.21 1 4.94 20 4.02 19 3901.61 
DS_1210 5 1 4.18 1 4.97 17 4.01 16 3837.40 
DS_1211 8 1 4.23 1 4.94 18 4.02 17 3876.83 
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APPENDIX D  

 

 

THE NOM ALGORITHM AND THE EXPERIMENTAL 

RESULTS  

 

 

 

 We present the pseudocode of the NOM algorithm in Section D.1, and we 
provide the experimental results of the NOM algorithm in Tables D.1 through D.9  in 
Section D.2. Column headings in Tables D.1 through D.9 are explained as follows. 

 

#TC  : number of target clusters 

#C  : number of clusters found by the corresponding algorithm 

 

D.1. The NOM Algorithm 

 

Phase 1. Neighborhood Construction 

Run NC algorithm and obtain CSi, i = 1,.., |D|, and Clm, m = 1,.., no_closures.  

 

Phase 2. Outlier Detection 

Set no_cluster = no_closures.  

For i = 1,..,|D| 

 Calculate local reachability density, lrdi, and local outlier factor, LOFi.  

End for 

For i = 1,..,|D| 

 If LOFi > { }
CS

max
i

j
j

k LOF
∈

 

Classify point i as a local outlier and increase the number of clusters, 

no_cluster, by 1.  
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 End if 

End for 

 

Phase 3. Merging 

Set m = 0 and flag1 = 0. 

Repeat  

 Set m = m + 1, flag2 = 0 and n = 0. 

Find the set of clusters in the Gabriel graph neighborhood of cluster m, 

NGGm.  

Calculate the potential compactness of cluster m, pcompm.  

 Repeat  

Set n = n + 1 and move to the next nearest cluster neighbor n of 

cluster m in NGGm. 

Calculate the separation between clusters m and n, csepmn, and current 

separation-to-compactness ratio, current_sc. 

Calculate the lower bound for the possible separation after merging 

clusters m and n, lb, and the new separation-to-compactness ratio, 

new_sc.  

If new_sc > current_sc 

 If 
{ }

{ }

{ }

{ }
*(m) *(n)

*(m) *(n)

( , ) MST ( , ) MST

( , ) MST ( , ) MST

max max
max ,

min min

i j

i j

ij ij
i j i j

mn

ij ij
i j i j

d d

csep
d d

∈ ∈

∈ ∈

 
 

≤  
 
 

 

  Merge clusters m and n.  

  Decrease the number of clusters, no_cluster, by 1.   

  Set flag1 = 1 and flag2 = 1. 

 End if 

End if 

 Until flag2 = 1 or n = | NGGm | 

 If flag2 = 1  

  Set m = 0 and flag1 = 0.  

 End if 

Until flag1 = 0 and m = no_cluster 
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          D.2. The Experimental Results of the NOM Algorithm 

 

Table D.1 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of PPN and RI for group 1 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN 
data_60            3 2 0.90 0.85 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data_66            4 2 0.83 0.77 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 
data-c-cv-nu-n_v2  3 4 0.84 1.00 3 1.00 1.00 5 0.86 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data-c-cv-nu-n     6 5 0.83 0.97 6 1.00 1.00 3 0.68 0.86 4 0.98 0.97 6 1.00 1.00 6 1.00 1.00 
data-c-cv-u-n   5 2 0.97 0.96 5 1.00 1.00 3 1.00 0.98 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 
data-uc-cv-nu-n    6 5 0.83 0.98 5 0.99 0.99 4 0.99 0.98 5 0.99 0.99 6 1.00 1.00 6 1.00 1.00 
data-oo_v2                             2 5 0.76 1.00 7 0.95 1.00 3 0.98 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
data-oo         6 7 0.75 0.98 5 0.53 0.58 2 0.53 0.56 6 1.00 1.00 6 1.00 1.00 6 1.00 1.00 
data-uc-cc-nu-n_v2 3 8 0.73 1.00 7 0.60 0.63 8 0.83 0.94 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data-uc-cc-nu-n 6 6 0.73 0.92 6 0.62 0.63 5 0.83 0.93 4 0.99 0.99 6 1.00 1.00 6 1.00 1.00 
data-c-cc-nu-n2_v2 3 7 0.63 1.00 3 1.00 1.00 3 1.00 1.00 4 0.99 1.00 4 0.99 1.00 3 1.00 1.00 
data-c-cc-nu-n2 6 7 0.64 0.98 6 1.00 1.00 4 1.00 0.99 7 0.99 1.00 7 0.99 1.00 6 1.00 1.00 
dataX_v2                               2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
dataX              4 2 0.99 0.99 4 1.00 1.00 3 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 
data-c-cc-nu-n_v2  3 2 0.88 0.91 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
train2             4 3 0.91 0.90 4 1.00 1.00 4 1.00 1.00 6 0.99 1.00 6 0.99 1.00 4 1.00 1.00 
data-c-cc-nu-n  7 2 0.86 0.89 6 1.00 1.00 4 1.00 0.99 7 1.00 1.00 7 1.00 1.00 7 1.00 1.00 
train1_v1          5 4 1.00 1.00 5 1.00 1.00 5 1.00 1.00 8 0.98 1.00 8 0.98 1.00 5 1.00 1.00 
train1             6 4 1.00 0.99 6 1.00 1.00 5 1.00 1.00 9 0.98 1.00 9 0.98 1.00 6 1.00 1.00 
train3_v1          5 6 0.75 0.86 5 1.00 1.00 5 1.00 1.00 6 1.00 1.00 6 1.00 1.00 6 1.00 1.00 
train3          36 7 0.79 0.86 10 0.64 0.68 6 0.99 0.92 17 0.97 0.94 20 0.97 0.95 14 0.79 0.78 
data_circle        2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 14 0.88 1.00 14 0.88 1.00 2 1.00 1.00 
data_mix_uniform_normal                2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 38 0.83 1.00 39 0.73 1.00 12 0.92 1.00 
data_circle_1_10_5_10                  2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 29 0.86 1.00 29 0.86 1.00 4 0.99 1.00 
data_circle_10_1_10_10                 2 2 1.00 1.00 7 1.00 1.00 3 0.99 1.00 22 0.87 1.00 23 0.86 1.00 7 0.97 1.00 



 

 

 

266 

Table D.1 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of PPN and RI for group 1 data sets 
(cont’d) 

Data set 

#TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C RI PPN #C RI PPN   #C RI PPN #C RI PPN   #C RI 
data_circle_2_10_2_12                  2 2 0.95 0.98 2 1.00 1.00 3 1.00 1.00 22 0.85 1.00 23 0.85 1.00 8 0.96 1.00 
data_circle_2_10_3_12                  2 2 0.91 0.95 2 1.00 1.00 3 1.00 1.00 30 0.86 1.00 31 0.86 1.00 11 0.97 1.00 
data_circle_2_10_4_12                  2 2 0.95 0.97 2 1.00 1.00 2 1.00 1.00 37 0.74 1.00 37 0.74 1.00 11 0.94 1.00 
data_circle_2_10_5_13                  2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 30 0.81 1.00 30 0.81 1.00 8 0.94 1.00 
data_circle_2_10_6_12                  2 2 0.93 0.96 2 1.00 1.00 2 1.00 1.00 39 0.79 1.00 40 0.79 1.00 10 0.97 1.00 
data_circle_2_10_3_12                  2 2 0.91 0.95 2 1.00 1.00 3 1.00 1.00 30 0.86 1.00 31 0.86 1.00 11 0.97 1.00 
data_circle_3_10_8_12                  2 2 0.95 0.98 10 0.99 1.00 3 0.99 1.00 26 0.85 1.00 26 0.85 1.00 2 0.65 0.77 
data_circle_5_10_8_12                  2 2 0.96 0.98 7 0.99 1.00 3 0.99 1.00 29 0.87 1.00 30 0.87 1.00 30 0.87 1.00 
data_circle1                           2 2 0.62 0.95 2 1.00 1.00 2 1.00 1.00 35 0.69 1.00 36 0.69 1.00 9 0.96 1.00 
data_circle2                           2 2 0.65 0.95 2 1.00 1.00 3 0.99 1.00 35 0.86 1.00 36 0.86 1.00 12 0.97 1.00 
data_circle_20_1_5_10                  2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 52 0.66 1.00 53 0.64 1.00 10 0.97 1.00 
data_circle3                           2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 41 0.71 1.00 41 0.71 1.00 9 0.99 1.00 
data_circle_1_20_1_11                  2 2 0.67 0.95 2 1.00 1.00 3 1.00 1.00 49 0.74 1.00 49 0.74 1.00 9 0.89 1.00 
data_circle_1_20_1_13                  2 2 0.65 0.95 2 1.00 1.00 3 1.00 1.00 41 0.83 1.00 41 0.83 1.00 5 0.94 1.00 
data_circle_1_20_1_15                  2 2 0.64 0.95 2 1.00 1.00 3 1.00 1.00 47 0.86 1.00 49 0.86 1.00 8 0.99 1.00 
data_circle_1_20_1_17                  2 2 0.61 0.95 2 1.00 1.00 2 1.00 1.00 57 0.80 1.00 57 0.80 1.00 14 0.96 1.00 
data_circle_1_20_1_19                  2 2 0.58 0.95 2 0.91 0.95 2 0.91 0.95 38 0.89 1.00 38 0.89 1.00 7 0.89 0.95 
iris        2 3 0.88 0.89 6 0.78 0.69 3 0.78 1.00 4 0.92 1.00 4 1.00 0.92 2 1.00 1.00 
3d_dataset3 2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
3d_dataset4 2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
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Table D.2 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of JI and QJI for group 1 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI 
data_60            3 2 0.79 0.79 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data_66            4 2 0.66 0.66 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 
data-c-cv-nu-n_v2  3 4 0.61 1.00 3 1.00 1.00 5 0.66 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data-c-cv-nu-n     6 5 0.59 0.97 6 1.00 1.00 3 0.63 0.81 4 0.95 0.95 6 1.00 1.00 6 1.00 1.00 
data-c-cv-u-n   5 2 0.93 0.93 5 1.00 1.00 3 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 
data-uc-cv-nu-n    6 5 0.62 0.98 5 0.98 0.98 4 0.98 0.98 5 0.98 0.98 6 1.00 1.00 6 1.00 1.00 
data-oo_v2                             2 5 0.52 1.00 7 0.89 1.00 3 0.95 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
data-oo         6 7 0.49 0.99 5 0.50 0.50 2 0.50 0.50 6 1.00 1.00 6 1.00 1.00 6 1.00 1.00 
data-uc-cc-nu-n_v2 3 8 0.34 1.00 7 0.45 0.57 8 0.59 0.98 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
data-uc-cc-nu-n 6 6 0.59 0.93 6 0.48 0.57 5 0.50 0.97 4 0.98 0.98 6 1.00 1.00 6 1.00 1.00 
data-c-cc-nu-n2_v2 3 7 0.29 1.00 3 1.00 1.00 3 1.00 1.00 4 0.98 1.00 4 0.98 1.00 3 1.00 1.00 
data-c-cc-nu-n2 6 7 0.28 0.99 6 1.00 1.00 4 1.00 1.00 7 0.98 1.00 7 0.98 1.00 6 1.00 1.00 
dataX_v2                               2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
dataX              4 2 0.98 0.98 4 1.00 1.00 3 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 
data-c-cc-nu-n_v2  3 2 0.80 0.80 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 3 1.00 1.00 
train2             4 3 0.78 0.78 4 1.00 1.00 4 1.00 1.00 6 0.97 1.00 6 0.96 1.00 4 1.00 1.00 
data-c-cc-nu-n  7 2 0.78 0.78 6 0.99 0.99 4 0.99 0.99 7 1.00 1.00 7 1.00 1.00 7 1.00 1.00 
train1_v1          5 4 1.00 1.00 5 1.00 1.00 5 1.00 1.00 8 0.95 1.00 8 0.95 1.00 5 1.00 1.00 
train1             6 4 0.99 0.99 6 1.00 1.00 5 1.00 1.00 9 0.95 1.00 9 0.95 1.00 6 1.00 1.00 
train3_v1          5 6 0.39 0.90 5 1.00 1.00 5 1.00 1.00 6 0.99 1.00 6 0.99 1.00 6 0.99 1.00 
train3          36 7 0.37 0.90 10 0.46 0.46 6 0.97 0.97 17 0.90 0.91 20 0.91 0.92 14 0.59 0.59 
data_circle        2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 14 0.84 1.00 14 0.84 1.00 2 1.00 1.00 
data_mix_uniform_normal                2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 38 0.56 1.00 39 0.46 1.00 12 0.84 1.00 
data_circle_1_10_5_10                  2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 29 0.83 1.00 29 0.83 1.00 4 0.99 1.00 
data_circle_10_1_10_10                 2 2 1.00 1.00 7 1.00 1.00 3 0.99 1.00 22 0.84 1.00 23 0.84 1.00 7 0.96 1.00 
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Table D.2 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of JI and QJI for group 1 data sets 
(cont’d) 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI 
data_circle_2_10_2_12                  2 2 0.93 0.99 2 1.00 1.00 3 1.00 1.00 22 0.79 1.00 23 0.79 1.00 8 0.94 1.00 
data_circle_2_10_3_12                  2 2 0.88 0.98 2 1.00 1.00 3 1.00 1.00 30 0.80 1.00 31 0.80 1.00 11 0.96 1.00 
data_circle_2_10_4_12                  2 2 0.93 0.99 2 1.00 1.00 2 1.00 1.00 37 0.63 1.00 37 0.63 1.00 11 0.92 1.00 
data_circle_2_10_5_13                  2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 30 0.74 1.00 30 0.74 1.00 8 0.92 1.00 
data_circle_2_10_6_12                  2 2 0.90 0.98 2 1.00 1.00 2 1.00 1.00 39 0.70 1.00 40 0.70 1.00 10 0.96 1.00 
data_circle_2_10_3_12                  2 2 0.88 0.98 2 1.00 1.00 3 1.00 1.00 30 0.80 1.00 31 0.80 1.00 11 0.96 1.00 
data_circle_3_10_8_12                  2 2 0.93 0.98 10 0.99 1.00 3 0.99 1.00 26 0.76 1.00 26 0.76 1.00 2 0.65 0.65 
data_circle_5_10_8_12                  2 2 0.93 0.98 7 0.99 1.00 3 0.99 1.00 29 0.77 1.00 30 0.77 1.00 30 0.77 1.00 
data_circle1                           2 2 0.59 0.97 2 1.00 1.00 2 1.00 1.00 35 0.66 1.00 36 0.66 1.00 9 0.95 1.00 
data_circle2                           2 2 0.63 0.98 2 1.00 1.00 3 0.99 1.00 35 0.85 1.00 36 0.85 1.00 12 0.97 1.00 
data_circle_20_1_5_10                  2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 52 0.62 1.00 53 0.60 1.00 10 0.96 1.00 
data_circle3                           2 2 1.00 1.00 2 1.00 1.00 3 1.00 1.00 41 0.68 1.00 41 0.68 1.00 9 0.99 1.00 
data_circle_1_20_1_11                  2 2 0.65 0.98 2 1.00 1.00 3 1.00 1.00 49 0.72 1.00 49 0.72 1.00 9 0.88 1.00 
data_circle_1_20_1_13                  2 2 0.63 0.98 2 1.00 1.00 3 1.00 1.00 41 0.81 1.00 41 0.81 1.00 5 0.93 1.00 
data_circle_1_20_1_15                  2 2 0.61 0.98 2 1.00 1.00 3 1.00 1.00 47 0.85 1.00 49 0.85 1.00 8 0.99 1.00 
data_circle_1_20_1_17                  2 2 0.58 0.97 2 1.00 1.00 2 1.00 1.00 57 0.78 1.00 57 0.78 1.00 14 0.95 1.00 
data_circle_1_20_1_19                  2 2 0.55 0.97 2 0.91 0.91 2 0.91 0.91 38 0.88 1.00 38 0.88 1.00 7 0.89 0.91 
iris        2 3 0.70 0.83 6 0.57 0.63 3 0.59 0.60 4 0.86 1.00 4 0.86 1.00 2 1.00 1.00 
3d_dataset3 2 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
3d_dataset4 2 2 1 1 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 2 1.00 1.00 
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Table D.3 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of time (in seconds) for group 1 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM*** 

#C Time #C Time #C Time #C Time #C Time #C Time 
data_60            3 2 0.21 3 0.52 3 0.07 3 1.24 3 2.23 3 3.74 
data_66            4 2 0.07 4 0.38 4 0.03 4 1.51 4 1.08 4 2.65 
data-c-cv-nu-n_v2  3 4 0.19 3 0.39 5 0.06 3 2.16 3 1.71 3 3.97 
data-c-cv-nu-n     6 5 0.05 6 0.38 3 0.04 4 2.36 6 1.91 6 4.37 
data-c-cv-u-n   5 2 0.11 5 0.38 3 0.24 5 2.77 5 3.37 5 6.30 
data-uc-cv-nu-n    6 5 0.07 5 0.42 4 0.13 5 10.71 6 7.44 6 18.34 
data-oo_v2                              2 5 0.73 7 0.43 3 1.95 2 14.08 2 13.72 2 28.04 
data-oo         6 7 0.11 5 0.43 2 0.23 6 15.15 6 14.28 6 29.67 
data-uc-cc-nu-n_v2 3 8 0.09 7 0.48 8 0.13 3 34.27 3 9.30 3 43.81 
data-uc-cc-nu-n 6 6 0.10 6 0.48 5 0.12 4 35.71 6 9.37 6 45.33 
data-c-cc-nu-n2_v2 3 7 0.32 3 0.49 3 0.38 4 36.14 4 16.69 3 53.49 
data-c-cc-nu-n2 6 7 0.11 6 0.49 4 0.19 7 37.72 7 17.06 6 55.42 
dataX_v2                                2 2 0.83 2 0.50 2 2.34 2 40.48 2 14.94 2 55.74 
dataX              4 2 0.10 4 0.51 3 0.13 4 42.29 4 15.00 4 57.67 
data-c-cc-nu-n_v2  3 2 0.05 3 0.87 3 0.05 3 119.27 3 33.48 3 153.28 
train2             4 3 0.10 4 0.65 4 0.11 6 120.45 6 21.81 4 143.59 
data-c-cc-nu-n  7 2 0.24 6 0.66 4 0.26 7 123.37 7 34.31 7 159.49 
train1_v1          5 4 0.08 5 0.72 5 0.11 8 146.64 8 22.03 5 170.14 
train1             6 4 0.07 6 0.69 5 0.13 9 147.54 9 21.84 6 170.90 
train3_v1          5 6 0.07 5 0.80 5 0.12 6 242.31 6 45.25 6 288.13 
train3          36 7 0.14 10 0.91 6 0.23 17 318.46 20 51.66 14 377.31 
data_circle        2 2 0.10 2 2.17 2 0.12 14 1765.74 14 606.09 2 2390.75 
data_mix_uniform_normal                2 2 0.17 2 4.19 3 0.29 38 3250.87 39 295.99 12 3700.85 
data_circle_1_10_5_10                  2 2 0.96 2 5.39 3 2.07 29 4786.74 29 2451.40 4 7388.68 
data_circle_10_1_10_10                 2 2 2.14 7 5.55 3 7.11 22 1735.09 23 2472.22 7 4291.73 
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Table D.3 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of time (in seconds) for group 1 data sets 
(cont’d) 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM*** 

#C Time #C Time #C Time   #C Time #C Time 
data_circle_2_10_2_12                  2 2 0.92 2 6.63 3 2.75 22 3430.11 23 2273.90 8 5784.75 
data_circle_2_10_3_12                  2 2 0.93 2 6.26 3 4.91 30 2191.76 31 2359.58 11 4691.89 
data_circle_2_10_4_12                  2 2 1.24 2 6.47 2 7.05 37 2681.99 37 1681.65 11 4564.74 
data_circle_2_10_5_13                  2 2 1.34 2 6.23 2 8.61 30 3307.20 30 2088.10 8 5532.97 
data_circle_2_10_6_12                  2 2 1.98 2 6.23 2 8.37 39 3994.25 40 1948.46 10 6187.39 
data_circle_2_10_3_12                  2 2 0.93 2 6.26 3 4.91 30 2191.76 31 2359.58 11 4691.89 
data_circle_3_10_8_12                  2 2 2.14 10 7.54 3 12.86 26 1665.07 26 2224.98 2 4063.81 
data_circle_5_10_8_12                  2 2 2.71 7 10.23 3 5.71 29 2504.25 30 2403.26 30 5092.63 
data_circle1                            2 2 0.29 2 16.69 2 0.47 35 3414.44 36 10983.40 9 15261.26 
data_circle2                            2 2 0.40 2 16.83 3 0.82 35 3433.05 36 16201.94 12 20495.21 
data_circle_20_1_5_10                  2 2 0.11 2 19.68 3 0.34 52 9729.73 53 26124.00 10 59456.07 
data_circle3                            2 2 0.62 2 19.33 3 2.77 41 4734.05 41 30617.86 9 36674.49 
data_circle_1_20_1_11                  2 2 0.92 2 19.57 3 2.75 49 10609.76 49 15616.89 9 27725.93 
data_circle_1_20_1_13                  2 2 0.77 2 20.71 3 3.64 41 11779.36 41 18708.61 5 31817.30 
data_circle_1_20_1_15                  2 2 0.77 2 19.08 3 3.68 47 8461.14 49 19980.85 8 30163.46 
data_circle_1_20_1_17                  2 2 1.06 2 20.68 2 5.63 57 9706.72 57 17753.30 14 29523.94 
data_circle_1_20_1_19                  2 2 0.92 2 20.34 2 2.75 38 6495.46 38 21364.07 7 29182.07 
iris        2 3 2.19 6 0.57 3 7.45 4 18.21 4 6.24 2 25.02 
3d_dataset3 2 2 1.99 2 1.00 2 6.11 2 11923.00 2 399.94 2 12325.35 
3d_dataset4 2 2 2.11 2 32.60 2 5.57 2 2714383.00 2 82117.80 2 2796865.30 

*** Times for NOM include NC and Outlier Detection times.  
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Table D.4 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of PPN and RI for group 2 data sets 

Data set #TC 

K-means Single-link DBSCAN NC  Outlier Detection NOM 

#C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN 

D_0000 5 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0001 8 4 0.99 0.99 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0010 5 4 0.98 0.98 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0011 8 4 0.98 0.98 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0100 5 4 1.00 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0101 8 4 0.99 0.99 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0110 5 4 0.98 0.97 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0111 8 4 0.98 0.97 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 7 1.00 1.00 7 1.00 1.00 

D_0200 5 4 0.97 0.97 5 1.00 1.00 5 1.00 1.00 66 0.95 1.00 68 0.95 1.00 17 0.96 0.99 

D_0201 8 4 0.97 0.97 8 1.00 1.00 6 0.99 0.99 67 0.95 1.00 71 0.95 1.00 19 0.96 0.99 

D_0210 5 4 0.95 0.94 5 1.00 1.00 5 1.00 1.00 65 0.87 0.82 68 0.87 0.82 17 0.88 0.79 

D_0211 8 4 0.95 0.93 8 1.00 1.00 6 0.98 0.98 66 0.87 0.82 71 0.87 0.82 18 0.88 0.79 

D_1000 5 4 0.99 0.99 4 0.88 0.76 4 0.99 0.99 14 0.92 1.00 14 0.92 1.00 14 0.92 1.00 

D_1001 8 5 0.97 0.98 6 0.88 0.76 4 0.99 0.99 15 0.92 1.00 16 0.92 1.00 16 0.92 1.00 

D_1010 5 5 0.90 0.88 10 0.85 0.76 10 0.89 0.99 15 0.81 0.88 15 0.81 0.88 15 0.81 0.88 

D_1011 8 5 0.91 0.89 10 0.57 0.51 10 0.89 0.99 15 0.81 0.88 16 0.81 0.88 16 0.81 0.88 

D_1100 5 4 1.00 0.99 4 0.88 0.76 4 1.00 0.99 8 0.99 1.00 8 0.99 1.00 8 0.99 1.00 

D_1101 8 4 0.99 0.99 6 0.88 0.76 4 0.99 0.99 9 0.99 1.00 9 0.99 1.00 9 0.99 1.00 

D_1110 5 5 0.90 0.89 10 0.85 0.77 18 0.84 0.77 13 0.85 0.79 17 0.85 0.79 17 0.85 0.79 

D_1111 8 5 0.89 0.87 10 0.57 0.52 18 0.84 0.77 14 0.85 0.79 18 0.85 0.79 18 0.85 0.79 

D_1200 5 5 0.96 0.97 4 0.88 0.76 10 0.98 1.00 45 0.92 1.00 46 0.92 1.00 17 0.95 0.99 

D_1201 8 4 0.96 0.95 10 0.88 0.76 10 0.98 1.00 44 0.90 0.95 48 0.90 0.95 15 0.94 0.94 

D_1210 5 4 0.94 0.93 7 0.58 0.51 10 0.85 0.76 38 0.39 0.41 42 0.40 0.41 15 0.29 0.32 

D_1211 8 5 0.90 0.90 10 0.59 0.51 10 0.85 0.76 40 0.39 0.41 45 0.40 0.41 17 0.29 0.32 
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Table D.5 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of JI and QJI for group 2 data sets 

Data set #TC 

K-means Single-link DBSCAN NC  Outlier Detection NOM 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI 

D_0000 5 4 0.98 0.98 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0001 8 4 0.98 0.98 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0010 5 4 0.94 0.96 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0011 8 4 0.94 0.96 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0100 5 4 0.98 0.98 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0101 8 4 0.98 0.98 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

D_0110 5 4 0.93 0.95 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

D_0111 8 4 0.92 0.95 8 1.00 1.00 6 0.99 0.99 8 1.00 1.00 7 1.00 1.00 7 1.00 1.00 

D_0200 5 4 0.90 0.94 5 1.00 1.00 5 1.00 1.00 66 0.78 1.00 68 0.78 1.00 17 0.84 0.98 

D_0201 8 4 0.90 0.94 8 1.00 1.00 6 0.99 0.99 67 0.78 1.00 71 0.78 1.00 19 0.84 0.98 

D_0210 5 4 0.81 0.89 5 1.00 1.00 5 1.00 1.00 65 0.60 0.77 68 0.60 0.77 17 0.63 0.73 

D_0211 8 4 0.81 0.89 8 1.00 1.00 6 0.94 1.00 66 0.60 0.77 71 0.60 0.77 18 0.63 0.72 

D_1000 5 4 0.97 0.98 4 0.67 0.67 4 0.98 0.98 14 0.68 1.00 14 0.68 1.00 14 0.68 1.00 

D_1001 8 5 0.89 0.99 6 0.67 0.67 4 0.98 0.98 15 0.68 1.00 16 0.68 1.00 16 0.68 1.00 

D_1010 5 5 0.64 0.89 10 0.58 0.67 10 0.56 0.98 15 0.37 0.81 15 0.37 0.81 15 0.37 0.81 

D_1011 8 5 0.66 0.90 10 0.33 0.38 10 0.56 0.98 15 0.37 0.80 16 0.37 0.80 16 0.37 0.80 

D_1100 5 4 0.98 0.98 4 0.67 0.67 4 0.98 0.98 8 0.97 1.00 8 0.97 1.00 8 0.97 1.00 

D_1101 8 4 0.98 0.98 6 0.67 0.67 4 0.98 0.98 9 0.97 1.00 9 0.97 1.00 9 0.97 1.00 

D_1110 5 5 0.65 0.90 10 0.58 0.68 18 0.56 0.68 13 0.57 0.70 17 0.57 0.70 17 0.57 0.70 

D_1111 8 5 0.62 0.88 10 0.33 0.39 18 0.56 0.68 14 0.57 0.70 18 0.57 0.70 18 0.57 0.70 

D_1200 5 5 0.86 0.97 4 0.67 0.67 10 0.92 1.00 45 0.68 1.00 46 0.68 1.00 17 0.80 0.99 

D_1201 8 4 0.85 0.91 10 0.67 0.67 10 0.92 1.00 44 0.62 0.92 48 0.62 0.92 15 0.79 0.90 

D_1210 5 4 0.80 0.88 7 0.36 0.38 10 0.58 0.67 38 0.25 0.31 42 0.25 0.31 15 0.25 0.26 

D_1211 8 5 0.64 0.88 10 0.36 0.38 10 0.58 0.67 40 0.25 0.31 45 0.25 0.31 17 0.25 0.26 
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Table D.6 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of time (in seconds) for group 2 data sets 

Data set #TC 

K-means Single-link DBSCAN NC  Outlier Detection NOM*** 

#C Time #C Time #C Time #C Time #C Time #C Time 

D_0000 5 4 4.40 5 292.36 5 13.58 5 1436761894.00 5 94559.45 5 1436856511.00 

D_0001 8 4 3.69 8 293.72 6 13.09 8 2144832592.00 8 51118.54 8 2144883768.88 

D_0010 5 4 5.34 5 283.95 5 12.41 5 1800125681.00 5 75706.78 5 1800201707.24 

D_0011 8 4 3.88 8 267.73 6 13.48 8 3136493251.00 8 83338.22 8 3136576925.47 

D_0100 5 4 2.29 5 110.82 5 10.95 5 467595257.00 5 14622.20 5 467609896.69 

D_0101 8 4 2.26 8 102.05 6 14.40 8 923769738.00 8 12538.38 8 923782294.18 

D_0110 5 4 2.15 5 109.68 5 9.46 5 686832794.00 5 5455.99 5 686838265.96 

D_0111 8 4 2.26 8 101.57 6 14.27 8 373263598.00 7 5548.29 7 373269162.48 

D_0200 5 4 4.76 5 48.71 5 12.59 66 1138221968.00 68 4456.46 17 1138228858.07 

D_0201 8 4 3.74 8 48.79 6 12.66 67 2248430650.00 71 12642.69 19 2248450350.28 

D_0210 5 4 6.37 5 48.96 5 12.93 65 3215476728.00 68 18286.87 17 3215501304.02 

D_0211 8 4 3.84 8 48.82 6 23.01 66 2333344144.00 71 22100.90 18 2333374030.94 

D_1000 5 4 6.08 4 168.81 4 20.09 14 291329.40 14 9770.67 14 301121.38 

D_1001 8 5 5.86 6 170.14 4 232.33 15 1033781560.00 16 9587.78 16 1033791169.13 

D_1010 5 5 4.02 10 162.47 10 10.89 15 1013577112.00 15 8286.46 15 1013585417.27 

D_1011 8 5 3.90 10 164.47 10 14.87 15 1016609053.00 16 8218.61 16 1016617291.82 

D_1100 5 4 1.91 4 58.96 4 9.73 8 336715385.00 8 2356.02 8 336717813.29 

D_1101 8 4 1.97 6 59.17 4 10.91 9 338026006.00 9 2351.49 9 338028447.80 

D_1110 5 5 2.27 10 58.97 18 16.69 13 351864525.00 17 3825.27 17 351868408.21 

D_1111 8 5 2.28 10 59.77 18 11.94 14 331960810.00 18 3641.22 18 331964510.91 

D_1200 5 5 3.78 4 48.61 10 225.36 45 1258736589.00 46 10584.14 17 1258751359.58 

D_1201 8 4 3.81 10 48.66 10 16.31 44 1266772753.00 48 12758.56 15 1266788467.91 

D_1210 5 4 3.90 7 48.55 10 15.97 38 1260551276.00 42 3485.56 15 1260554764.68 

D_1211 8 5 3.92 10 48.64 10 14.79 40 1331819776.00 45 5800.89 17 1331825587.75 
*** Times for NOM include NC and Outlier Detection times.  
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Table D.7 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of PPN and RI for group 3 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN #C RI PPN 

DS_0000 5 4 1.00 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_0001 8 4 0.99 0.98 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

DS_0010 5 4 1.00 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_0011 8 4 0.99 0.98 8 1.00 1.00 5 1.00 0.99 7 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

DS_0100 5 4 1.00 1.00 5 1.00 1.00 5 1.00 1.00 4 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_0101 8 4 1.00 0.99 8 1.00 1.00 5 1.00 1.00 4 1.00 0.99 6 1.00 0.99 6 1.00 0.99 

DS_0110 5 4 1.00 1.00 5 1.00 1.00 5 1.00 1.00 4 1.00 1.00 4 1.00 1.00 4 1.00 1.00 

DS_0111 8 4 1.00 0.99 8 1.00 1.00 5 1.00 1.00 7 1.00 1.00 7 1.00 1.00 7 1.00 1.00 

DS_0200 5 4 1.00 0.99 5 1.00 1.00 5 1.00 1.00 17 0.98 1.00 19 0.98 1.00 13 0.98 0.99 

DS_0201 8 4 0.99 0.99 8 1.00 1.00 5 1.00 1.00 18 0.98 1.00 21 0.98 1.00 10 0.86 0.76 

DS_0210 5 4 0.98 0.97 5 1.00 1.00 5 0.98 0.97 16 0.89 0.79 18 0.89 0.79 11 0.88 0.77 

DS_0211 8 4 0.97 0.97 8 1.00 1.00 5 0.99 0.98 18 0.89 0.78 21 0.89 0.79 11 0.65 0.54 

DS_1000 5 5 0.96 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1001 8 5 0.96 0.99 8 1.00 1.00 5 1.00 1.00 6 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

DS_1010 5 5 0.94 0.97 4 0.90 0.87 4 1.00 0.99 4 0.89 0.77 4 0.89 0.77 4 0.89 0.77 

DS_1011 8 6 0.90 0.92 7 0.53 0.57 4 0.99 0.99 5 0.89 0.77 6 0.89 0.77 6 0.89 0.77 

DS_1100 5 4 1.00 0.99 5 0.75 0.80 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1101 8 4 0.99 0.99 10 0.74 0.80 5 1.00 1.00 6 1.00 1.00 6 1.00 1.00 6 1.00 1.00 

DS_1110 5 5 0.94 0.96 5 0.73 0.70 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1111 8 6 0.92 0.96 10 0.45 0.62 5 1.00 1.00 5 1.00 1.00 6 1.00 1.00 6 1.00 1.00 

DS_1200 5 5 0.96 0.99 6 0.62 0.77 5 1.00 1.00 17 0.98 1.00 18 0.98 1.00 11 0.99 0.99 

DS_1201 8 6 0.93 0.99 10 0.60 0.66 5 1.00 1.00 19 0.98 1.00 21 0.98 1.00 10 0.64 0.54 

DS_1210 5 5 0.94 0.97 8 0.64 0.53 5 0.96 0.99 16 0.31 1.00 17 0.31 0.31 13 0.30 0.31 

DS_1211 8 5 0.94 0.97 8 0.27 0.28 5 0.96 0.99 17 0.31 1.00 18 0.31 0.31 14 0.30 0.31 
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Table D.8 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of JI and QJI for group 3 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM 

#C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI #C JI QJI 

DS_0000 5 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_0001 8 4 0.97 0.97 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

DS_0010 5 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_0011 8 4 0.97 0.97 8 1.00 1.00 5 1.00 1.00 7 0.99 0.99 8 1.00 1.00 8 1.00 1.00 

DS_0100 5 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 4 0.99 0.99 5 0.99 0.99 5 0.99 0.99 

DS_0101 8 4 0.98 0.98 8 1.00 1.00 5 1.00 1.00 4 0.98 0.98 6 0.99 0.99 6 0.99 0.99 

DS_0110 5 4 0.99 0.99 5 1.00 1.00 5 1.00 1.00 4 0.99 0.99 4 0.99 0.99 4 0.99 0.99 

DS_0111 8 4 0.98 0.98 8 1.00 1.00 5 1.00 1.00 7 0.99 0.99 7 0.99 0.99 7 0.99 0.99 

DS_0200 5 4 0.98 0.98 5 1.00 1.00 5 1.00 1.00 17 0.92 1.00 19 0.92 1.00 13 0.93 0.99 

DS_0201 8 4 0.98 0.98 8 1.00 1.00 5 1.00 1.00 18 0.92 1.00 21 0.92 1.00 10 0.64 0.66 

DS_0210 5 4 0.91 0.95 5 1.00 1.00 5 0.92 0.99 16 0.67 0.73 18 0.67 0.73 11 0.67 0.70 

DS_0211 8 4 0.90 0.94 8 1.00 1.00 5 0.96 1.00 18 0.67 0.73 21 0.67 0.73 11 0.40 0.42 

DS_1000 5 5 0.86 0.99 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1001 8 5 0.84 0.99 8 1.00 1.00 5 1.00 1.00 6 1.00 1.00 8 1.00 1.00 8 1.00 1.00 

DS_1010 5 5 0.77 0.95 4 0.69 0.79 4 0.99 0.99 4 0.69 0.69 4 0.69 0.69 4 0.69 0.69 

DS_1011 8 6 0.60 0.93 7 0.40 0.45 4 0.98 0.98 5 0.69 0.69 6 0.69 0.69 6 0.69 0.69 

DS_1100 5 4 0.98 0.98 5 0.65 0.65 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1101 8 4 0.97 0.97 10 0.65 0.65 5 1.00 1.00 6 0.99 0.99 6 0.99 0.99 6 0.99 0.99 

DS_1110 5 5 0.77 0.94 5 0.62 0.58 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 5 1.00 1.00 

DS_1111 8 6 0.67 0.96 10 0.33 0.33 5 1.00 1.00 5 0.99 0.99 6 0.99 0.99 6 0.99 0.99 

DS_1200 5 5 0.85 0.99 6 0.52 0.52 5 1.00 1.00 17 0.92 1.00 18 0.92 1.00 11 0.95 0.99 

DS_1201 8 6 0.72 0.99 10 0.52 0.52 5 1.00 1.00 19 0.92 1.00 21 0.92 1.00 10 0.39 0.41 

DS_1210 5 5 0.78 0.95 8 0.41 0.41 5 0.86 0.99 16 0.25 0.27 17 0.25 0.27 13 0.25 0.26 

DS_1211 8 5 0.78 0.95 8 0.25 0.25 5 0.86 0.99 17 0.24 0.27 18 0.24 0.27 14 0.25 0.26 
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Table D.9 Comparison of k-means, single-linkage, DBSCAN and NOM in terms of time (in seconds) for group 3 data sets 

Data set #TC 

K-means Single-linkage DBSCAN NC  Outlier Detection NOM*** 

#C Time #C Time #C Time #C Time #C Time #C Time 

DS_0000 5 4 0.58 5 6.47 5 1.16 5 4729.13 5 2250.91 5 6986.76 

DS_0001 8 4 0.45 8 6.13 8 1.14 8 3953.68 8 1491.87 8 5452.12 

DS_0010 5 4 0.45 5 3.25 5 1.24 5 3834.32 5 637.01 5 4475.31 

DS_0011 8 4 0.46 8 3.34 5 1.25 7 18660.97 8 624.74 8 19289.81 

DS_0100 5 4 0.31 5 3.02 5 0.76 4 1917.27 5 578.95 5 2499.59 

DS_0101 8 4 0.30 8 2.94 5 0.76 4 1931.07 6 584.58 6 2519.04 

DS_0110 5 4 0.35 5 3.00 5 0.77 4 1903.47 4 587.85 4 2494.80 

DS_0111 8 4 0.32 8 2.94 5 0.80 7 1931.58 7 583.35 7 2518.53 

DS_0200 5 4 0.46 5 1.45 5 1.18 17 9442.06 19 1942.84 13 11405.16 

DS_0201 8 4 0.46 8 1.46 5 1.18 18 24099.10 21 257.11 10 24388.43 

DS_0210 5 4 0.46 5 1.45 5 1.16 16 3840.04 18 409.37 11 4270.61 

DS_0211 8 4 0.47 8 1.46 5 1.21 18 3876.84 21 411.50 11 4320.92 

DS_1000 5 5 0.44 5 3.28 5 1.12 5 3828.47 5 616.40 5 4449.02 

DS_1001 8 5 0.47 8 3.21 5 1.14 6 3863.46 8 619.00 8 4486.67 

DS_1010 5 5 0.48 4 3.34 4 1.12 4 3825.85 4 742.64 4 4572.34 

DS_1011 8 6 0.52 7 3.26 4 1.18 5 3845.62 6 745.81 6 4595.30 

DS_1100 5 4 0.37 5 1.87 5 0.77 5 1907.03 5 278.45 5 2187.67 

DS_1101 8 4 0.31 10 1.78 5 0.78 6 4522.14 6 838.78 6 5363.20 

DS_1110 5 5 0.33 5 1.79 5 0.78 5 4754.65 5 849.43 5 5606.34 

DS_1111 8 6 0.40 10 1.80 5 0.77 5 5077.17 6 633.61 6 5713.03 

DS_1200 5 5 0.46 6 1.44 5 1.27 17 6542.76 18 253.27 11 6818.25 

DS_1201 8 6 0.46 10 1.41 5 1.23 19 3901.61 21 253.73 10 4191.51 

DS_1210 5 5 0.56 8 1.39 5 1.17 16 3837.40 17 2373.50 13 6235.58 

DS_1211 8 5 0.49 8 1.40 5 1.18 17 3876.83 18 5986.69 14 9889.20 
*** Times for NOM include NC and Outlier Detection times. 
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APPENDIX E  

 

 

EXTERNAL SHAPE GENERATION ALGORITHMS AND 

THE EXPERIMENTAL RESULTS   

 

 

 

 We present the pseudocodes of the external shape generation algorithms, 
namely DTC and IS algorithm in Section E.1. In Section E.2, we provide the 
experimental results of the DTC and IS algorithms in Tables E.1 through E.5.  

 

E.1. The DTC and IS Algorithms 

 

DTC Algorithm  

 

Step 1. DT construction. 

 

Step 2. Identification of the edges on the initial boundary of each cluster. 

For DTs∀ ∈  

 If an edge of triangle s belongs to a single triangle only 

   Add this edge to the set of boundary edges of the associated cluster.  

 End if 

 If triangle s includes points from different clusters 

Add the edge between the two adjacent points that are in the same 

cluster to the set of boundary edges of the associated cluster. 

 End if 

End for  
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Step 3. Extraction of the non-convex parts of the boundaries.  

Repeat 

 Step 3.1. Edge selection 

Select the longest edge (e’) on the boundary that has not been evaluated yet.  

 

 Step 3.2. 2-degree check 

 If both end points of e’ have a degree higher than two 

 

  Step 3.3. Edge deletion 

  If both of the inner edges on the same triangle as e’ are shorter than e’ 

Delete e’ from the set of boundary edges of the associated 

cluster, and add the two inner edges to the set. 

  End if 

 End if 

Until all the edges in the sets of boundary edges have been evaluated and no edge is 

deleted 

 

IS Algorithm 

 

Step 0. Initialization of elongation thresholds, sets A and TA.  

 

Step 1. Construction of the set of artificial points A for D.  

 

Step 2. Construction of DT for D ∪ A.  

 

Step 3. Identification of the edges on the initial boundary of each cluster.  

For DTs∀ ∈  

 If triangle s includes artificial points  

Add the original points to the set of boundary points of the associated 

cluster.  

 End if 

 If triangle s includes points from different clusters 
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Add the original adjacent points that are in the same cluster to the set 

of boundary points of the associated cluster. 

 End if 

End for  

 

Step 4. Identification of the non-convex parts of the boundary.  

Repeat  

For DTs∀ ∈  

If simplex s, that includes original points only, includes (d-1) 

boundary points  

Simplex s is a facet and calculate its elongation thresholds, 

em1 and em2.  

 

  Step 4.1. Elongation check 

  If em1 > threshold1 or em2 > threshold2 

   Add simplex s to the set of elongated simplices.  

 

   Step 4.2. Insertion of an artificial point 

If simplex s is not a member of the set of blocked 

simplices 

Insert an artificial point at the center of gravity 

of simplex s. Add the artificial point to the 

temporary set of artificial points, TA. 

   End if 

  End if 

End for 

 

Step 5. Construction of DT for D ∪ A ∪  TA.  

 

Step 6. Feasibility of the temporary artificial points in set TA.  

For Di∀ ∈  
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If all the simplices that include point i have no other original points 

from the same cluster with point i 

Find the nearest temporary artificial point to point i, say point 

j, and delete point j from set TA. Add the associated simplex 

of point j to the set of blocked simplices.  

Construct DT for D ∪ A ∪  TA.  

 End if  

End for 

 

For TAi∀ ∈  

If all the simplices that include point i have no other artificial points 

except point i 

Delete point i from set TA and add the associated simplex of 

point i to the set of blocked simplices.  

Construct DT for D ∪ A ∪  TA.  

 End if  

End for 

 

Step 7. Update set of artificial points.  

If TA ≠ ∅  

Update set A, A = A ∪  TA. 

End if 

Until TA = ∅  
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E.2. The Experimental Results of the DTC and IS Algorithms 

 

Table E.1 DTC results of 2-dimensional group 1 data sets 

Data set 
# of points 
in the data 

set 

# of points 
found on the 

boundary 

Time 
(sec.) 

% 
reduction 

data_60 60 59 0.91 1.67 
data_66 66 65 0.26 1.52 
data-c-cv-nu-n_v2 73 54 0.31 26.03 
data-c-cv-nu-n 76 57 0.34 25 
data-c-cv-u-n 81 51 0.12 37.04 
data-uc-cv-nu-n 127 106 1.12 16.54 
data-oo_v2 140 36 0.78 74.29 
data-oo 144 40 0.17 72.22 
data-uc-cc-nu-n_v2 188 146 1.66 22.34 
data-uc-cc-nu-n 191 149 1.67 21.99 
data-c-cc-nu-n2_v2 192 170 1.77 11.46 
data-c-cc-nu-n2 195 173 0.69 11.28 
dataX_v2 200 110 2.08 45 
dataX 202 112 2 44.55 
data-c-cc-nu-n_v2 285 183 3.76 35.79 
train2 287 206 1.77 28.22 
data-c-cc-nu-n 289 187 1.22 35.29 
train1_v1 306 169 1.48 44.77 
train1 307 170 1.46 44.63 
train3_v1 361 326 3.24 9.7 
train3 397 338 2.02 14.86 
data_circle 700 316 8.42 54.86 
data_mix_uniform_normal 1000 604 10.67 39.6 
data_circle_10_1_10_10 1100 427 19.86 61.18 
data_circle_1_10_5_10 1100 489 22.19 55.55 
data_circle_2_10_5_13 1200 531 15.16 55.75 
data_circle_2_10_4_12 1200 657 18.78 45.25 
data_circle_2_10_2_12 1200 544 22.55 54.67 
data_circle_2_10_3_12 1200 600 26.34 50 
data_circle_2_10_3_12 1200 600 26.35 50 
data_circle_2_10_6_12 1200 683 33.54 43.08 
data_circle_3_10_8_12 1300 626 26.46 51.85 
data_circle_5_10_8_12 1500 522 17.15 65.2 
data_circle1 1890 870 49.32 53.97 
data_circle2 1890 680 50.82 64.02 
data_circle_1_20_1_11 2100 567 13.93 73 
data_circle_20_1_5_10 2100 786 35.11 62.57 
data_circle_1_20_1_15 2100 697 37.84 66.81 
data_circle3 2100 868 56.88 58.67 
data_circle_1_20_1_13 2100 871 67.39 58.52 
data_circle_1_20_1_19 2100 768 68.01 63.43 
data_circle_1_20_1_17 2100 1002 87.07 52.29 
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Table E.2 IS results of 2-dimensional group 1 data sets 

Data set 

# of 
points 
in the 

data set 

# of 
points 

found on 
the 

boundary 

Time 
(sec.) 

% 
reduction 

data_60 60 55 0.98 8.33 

data_66 66 64 0.45 3.03 

data-c-cv-nu-n_v2 73 52 1.97 28.77 

data-c-cv-nu-n 76 53 2.03 30.26 

data-uc-cv-nu-n 126 78 7.30 38.10 

data-oo_v2 140 24 1.30 82.86 

data-uc-cc-nu-n_v2 188 134 28.84 28.72 

data-uc-cc-nu-n 191 94 5.53 50.79 

data-c-cc-nu-n2_v2 192 130 9.61 32.29 

dataX_v2 200 58 0.38 71.00 

dataX 202 60 0.38 70.30 

data-c-cc-nu-n_v2 285 135 51.29 52.63 

train2 285 199 86.85 30.18 

train1_v1 302 143 44.89 52.65 

train1 303 146 40.28 51.82 

train3_v1 360 249 181.02 30.83 

data_circle 700 239 321.55 65.86 

data_mix_uniform_normal 1000 629 1685.66 37.10 

data_circle_1_10_5_10 1100 355 2047.91 67.73 

data_circle_2_10_2_12 1200 440 2342.84 63.33 

data_circle_2_10_2_12 1200 440 2342.84 63.33 

data_circle1 1890 672 9611.18 64.44 

data_circle2 1890 466 4991.17 75.34 

data_circle3 2098 710 14057.06 66.16 

data_circle_20_1_5_10 2100 889 5957.65 57.67 

data_circle_1_20_1_11 2100 656 3036.09 68.76 

data_circle_1_20_1_13 2100 598 5262.716 71.52 

data_circle_1_20_1_15 2100 519 1949.072 75.29 
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Table E.3 IS results of higher dimensional group 1 data sets 

Data set # of points 
in the data 

set 

# of points 
found on the 

boundary 

Time 
(sec.) 

% 
reduction 

iris 143 136 10.64 4.90 

3d_dataset3 325 191 2.57 41.23 

3d_dataset4 1523 703 12.59 53.84 

 

 

Table E.4 IS results of group 2 data sets 

Data set 
# of points 
in the data 

set 

# of points 
found on 

the 
boundary 

Time 
(sec.) 

% 
reduction 

D_0000 2752 1996 1987.38 27.47 

D_0001 2755 2001 5281.82 27.37 

D_0010 2752 1995 4620.58 27.51 

D_0011 2755 1990 4686.27 27.77 

D_0100 1962 1432 3343.64 27.01 

D_0101 1965 1449 4994.33 26.26 

D_0110 1913 1409 2692.96 26.35 

D_0111 1916 1412 2964.73 26.30 

D_0200 2780 2199 11299.98 20.90 

D_0201 2783 2276 13266.75 18.22 

D_0210 2780 2189 14302.85 21.26 

D_0211 2783 2191 16364.14 21.27 

D_1000 2752 2328 4344.79 15.41 

D_1001 2755 2326 4017.79 15.57 

D_1010 2752 2540 2826.86 7.70 

D_1011 2755 2542 2821.20 7.73 

D_1100 1912 1438 1550.63 24.79 

D_1101 1915 1432 2788.82 25.22 

D_1110 1932 1544 5376.50 20.08 

D_1111 1935 1483 1608.08 23.36 

D_1200 2780 2343 9339.93 15.72 

D_1201 2783 2349 8844.49 15.59 

D_1210 2780 2251 48055.49 19.03 

D_1211 2783 2254 55914.38 19.01 

 

  



 

 
 

284 

 

Table E.5 IS results of group 3 data sets 

Data set 
# of points 
in the data 

set 

# of points 
found on 

the 
boundary 

Time 
(sec.) 

% 
reduction 

DS_0000 894 739 87.28 17.34 
DS_0001 903 732 80.07 18.94 
DS_0010 894 805 474.61 9.96 

DS_0011 903 809 483.82 10.41 
DS_0100 709 586 73.46 17.35 

DS_0101 712 587 51.17 17.56 
DS_0110 708 573 50.47 19.07 
DS_0111 711 580 50.74 18.42 

DS_0200 894 766 257.71 14.32 
DS_0201 897 775 365.76 13.6 
DS_0210 894 761 216.58 14.88 

DS_0211 897 764 253.42 14.83 
DS_1000 894 741 83.68 17.11 
DS_1001 897 746 154.73 16.83 

DS_1010 894 743 183.59 16.89 
DS_1011 897 743 219.74 17.17 
DS_1100 708 582 50.72 17.8 

DS_1101 711 581 50.89 18.28 
DS_1110 715 604 51.56 15.52 
DS_1111 718 610 98.94 15.04 

DS_1200 894 752 41.72 15.88 
DS_1201 897 772 220.52 13.94 
DS_1210 894 751 502.43 16 

DS_1211 897 752 465.22 16.16 
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APPENDIX F  

 

 

EXPERIMENTAL RESULTS FOR THE ACO-C ALGORITHM  

 

 

 

 In this part, we present the experimental results of the ACO-C algorithm. 

Column headings in Tables F.1 through F.12 are explained as follows. 

 

#P  : number of points in the original data set 

#P-ADR : number of points after data set reduction  

#TC  : number of target clusters 

#C after NC : number of clusters after the NC algorithm 

#SN  : number of nondominated solutions in SN 

#ITA  : iteration number in which the target clustering is found where 

maximum number of iterations is set twice #P-ADR. 
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Table F.1 Experimental results for the factorial setting, S_000 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max  

JI 

min  

QJI 

max  

QJI 

min  

RI 

max  

RI 

 # 

ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 3 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 323.06 

data_66            66 65 4 4 4 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 414.20 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 318.01 

data-c-cv-nu-n     76 57 6 4 3 0.54 1.00 0.54 1.00 0.73 1.00 61 1.11 397.80 

data-uc-cv-nu-n    127 106 6 5 5 0.55 1.00 0.55 1.00 0.65 1.00 1 0.01 2298.17 

data-uc-cc-nu-n_v2 188 146 3 3 3 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 5545.08 

data-uc-cc-nu-n    191 149 6 4 5 0.48 0.98 0.48 0.99 0.58 0.99 NA* NA* 5682.89 

data-c-cc-nu-n2_v2 192 170 3 4 4 0.64 1.00 0.64 1.00 0.71 1.00 2 0.01 8694.53 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 7425.50 

data-c-cc-nu-n_v2  285 183 3 3 3 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 10289.99 

train2             287 206 4 6 5 0.68 1.00 0.68 1.00 0.83 1.00 265 1.30 16319.65 

train1_v1          306 169 5 8 5 0.49 1.00 0.49 1.00 0.71 1.00 21 0.13 10463.90 

train1             307 170 6 9 5 0.40 1.00 0.40 1.00 0.57 1.00 68 0.42 8484.69 

train3_v1          361 326 5 6 3 0.63 1.00 0.63 1.00 0.78 1.00 5 0.02 45135.16 

data_circle        700 316 2 14 1 0.68 0.68 1.00 1.00 0.80 0.80 NA* NA* 26713.36 

  NA* : not available 
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Table F.2 Experimental results for the factorial setting, S_001 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 90.15 

data_66            66 65 4 4 3 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 123.48 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 116.99 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.57 0.54 0.57 0.73 0.75 NA* NA* 107.71 

data-uc-cv-nu-n    127 106 6 5 4 0.55 1.00 0.55 1.00 0.65 1.00 1 0.01 656.29 

data-uc-cc-nu-n_v2 188 146 3 3 3 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 1186.21 

data-uc-cc-nu-n    191 149 6 4 3 0.48 0.98 0.48 0.98 0.58 0.99 NA* NA* 1230.32 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.64 1.00 0.64 1.00 0.71 1.00 2 0.01 2356.01 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 5168.22 

data-c-cc-nu-n_v2  285 183 3 3 2 0.54 0.57 0.54 0.57 0.73 0.75 NA* NA* 2604.86 

train2             287 206 4 6 5 0.68 1.00 0.68 1.00 0.83 1.00 48 0.24 4275.32 

train1_v1          306 169 5 8 5 0.40 1.00 0.40 1.00 0.58 1.00 5 0.03 2387.17 

train1             307 170 6 9 4 0.49 1.00 0.49 1.00 0.71 1.00 54 0.33 2523.96 

train3_v1          361 326 5 6 3 0.48 1.00 0.48 1.00 0.60 1.00 27 0.09 11647.17 

data_circle        700 316 2 14 2 0.70 0.70 1.00 1.00 0.81 0.81 NA* NA* 17991.73 

  NA* : not available 
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Table F.3 Experimental results for the factorial setting, S_010 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 88.94 

data_66            66 65 4 4 3 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 112.77 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 82.10 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.95 0.54 0.95 0.73 0.98 NA* NA* 76.91 

data-uc-cv-nu-n    127 106 6 5 3 0.55 1.00 0.55 1.00 0.65 1.00 1 0.01 519.55 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 947.03 

data-uc-cc-nu-n    191 149 6 4 2 0.48 0.98 0.48 0.99 0.58 0.99 NA* NA* 1067.49 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.64 1.00 0.64 1.00 0.71 1.00 4 0.02 1723.34 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 4515.18 

data-c-cc-nu-n_v2  285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 1887.30 

train2             287 206 4 6 2 0.68 1.00 0.68 1.00 0.83 1.00 2 0.01 2650.32 

train1_v1          306 169 5 8 4 0.73 1.00 0.73 1.00 0.90 1.00 5 0.03 1446.23 

train1             307 170 6 9 3 0.72 1.00 0.72 1.00 0.89 1.00 4 0.02 1519.38 

train3_v1          361 326 5 6 5 0.66 1.00 0.66 1.00 0.80 1.00 60 0.20 9030.18 

data_circle        700 316 2 14 1 0.67 0.67 1.00 1.00 0.69 0.79 NA* NA* 10284.58 

  NA* : not available 
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Table F.4 Experimental results for the factorial setting, S_011 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 169.93 

data_66            66 65 4 4 4 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 223.54 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 202.92 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.57 0.54 0.57 0.73 0.75 NA* NA* 207.70 

data-uc-cv-nu-n    127 106 6 5 5 0.55 1.00 0.55 1.00 0.65 1.00 1 0.01 1086.28 

data-uc-cc-nu-n_v2 188 146 3 3 3 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 2532.77 

data-uc-cc-nu-n    191 149 6 4 4 0.48 0.98 0.48 0.98 0.58 0.99 NA* NA* 2407.90 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.64 1.00 0.64 1.00 0.71 1.00 3 0.02 4107.00 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 8907.86 

data-c-cc-nu-n_v2  285 183 3 3 3 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 4583.99 

train2             287 206 4 6 4 0.77 1.00 0.77 1.00 0.89 1.00 58 0.28 6861.84 

train1_v1          306 169 5 8 5 0.49 1.00 0.49 1.00 0.71 1.00 46 0.29 4809.80 

train1             307 170 6 9 4 0.73 1.00 0.73 1.00 0.90 1.00 55 0.34 4141.55 

train3_v1          361 326 5 6 3 0.66 1.00 0.66 1.00 0.80 1.00 9 0.03 21712.58 

data_circle        700 316 2 14 2 0.57 0.68 1.00 1.00 0.73 0.80 NA* NA* 39350.91 

  NA* : not available 
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Table F.5 Experimental results for the factorial setting, S_100 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.81 1.00 0.81 1.00 0.91 1.00 1 0.02 187.78 

data_66            66 65 4 4 3 0.67 1.00 0.67 1.00 0.83 1.00 1 0.02 272.99 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 199.95 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.97 0.54 0.97 0.73 0.99 NA* NA* 254.39 

data-uc-cv-nu-n    127 106 6 5 3 0.55 0.97 0.55 0.97 0.65 0.99 NA* NA* 1605.44 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 3469.06 

data-uc-cc-nu-n    191 149 6 4 3 0.48 0.98 0.48 0.98 0.58 0.99 NA* NA* 4548.81 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.78 1.00 0.78 1.00 0.85 1.00 4 0.02 5469.30 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 4571.74 

data-c-cc-nu-n_v2  285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 7003.74 

train2             287 206 4 6 3 0.50 1.00 0.50 1.00 0.63 1.00 20 0.10 11954.62 

train1_v1          306 169 5 8 4 0.40 1.00 0.40 1.00 0.58 1.00 85 0.53 5718.17 

train1             307 170 6 9 4 0.49 1.00 0.49 1.00 0.70 1.00 31 0.19 6250.71 

train3_v1          361 326 5 6 6 0.49 1.00 0.49 1.00 0.62 1.00 10 0.03 42888.72 

data_circle        700 316 2 14 2 0.52 1.00 1.00 1.00 0.70 1.00 17 0.06 24927.89 

  NA* : not available 
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Table F.6 Experimental results for the factorial setting, S_101 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.81 1.00 0.81 1.00 0.91 1.00 1 0.02 187.78 

data_66            66 65 4 4 3 0.67 1.00 0.67 1.00 0.83 1.00 1 0.02 272.99 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 199.95 

data-c-cv-nu-n     76 57 6 4 2 0.90 0.97 0.90 0.97 0.97 0.99 NA* NA* 254.39 

data-uc-cv-nu-n    127 106 6 5 3 0.55 0.97 0.55 0.97 0.65 0.99 NA* NA* 1605.44 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 3469.06 

data-uc-cc-nu-n    191 149 6 4 3 0.48 0.49 0.48 0.49 0.58 0.60 NA* NA* 4548.81 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.78 1.00 0.78 1.00 0.85 1.00 4 0.02 5469.30 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 4571.74 

data-c-cc-nu-n_v2  285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 7003.74 

train2             287 206 4 6 3 0.77 1.00 0.77 1.00 0.89 1.00 20 0.10 11954.62 

train1_v1          306 169 5 8 4 0.40 1.00 0.40 1.00 0.58 1.00 85 0.53 5718.17 

train1             307 170 6 9 4 0.40 1.00 0.40 1.00 0.57 1.00 31 0.19 6250.71 

train3_v1          361 326 5 6 6 0.49 1.00 0.49 1.00 0.62 1.00 10 0.03 42888.72 

data_circle        700 316 2 14 2 0.78 0.78 1.00 1.00 0.86 0.86 NA* NA* 24927.89 

  NA* : not available 
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Table F.7 Experimental results for the factorial setting, S_110 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.81 1.00 0.81 1.00 0.91 1.00 1 0.02 392.01 

data_66            66 65 4 4 3 0.67 1.00 0.67 1.00 0.83 1.00 1 0.02 576.61 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 408.02 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.97 0.54 0.97 0.73 0.99 NA* NA* 508.57 

data-uc-cv-nu-n    127 106 6 5 3 0.55 0.97 0.55 0.97 0.65 0.99 NA* NA* 3272.53 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 6600.36 

data-uc-cc-nu-n    191 149 6 4 3 0.48 0.98 0.48 0.98 0.58 0.99 NA* NA* 9843.91 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.78 1.00 0.78 1.00 0.85 1.00 3 0.02 11459.56 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 9051.22 

data-c-cc-nu-n_v2  285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 14158.51 

train2             287 206 4 6 3 0.50 1.00 0.50 1.00 0.63 1.00 2 0.01 27192.27 

train1_v1          306 169 5 8 4 0.49 1.00 0.49 1.00 0.71 1.00 10 0.06 12718.37 

train1             307 170 6 9 4 0.40 1.00 0.40 1.00 0.57 1.00 35 0.21 12991.10 

train3_v1          361 326 5 6 6 0.49 1.00 0.49 1.00 0.62 1.00 7 0.02 83777.01 

data_circle        700 316 2 14 2 0.51 1.00 1.00 1.00 0.70 1.00 85 0.28 69943.25 

  NA* : not available 
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Table F.8 Experimental results for the factorial setting, S_111 

Data set #P 

#P-

ADR 

# 

TC 

#C after 

NC 

# 

SN 

min 

JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI 

# 

ITA 

# ITA / 

#P-ADR 

Time 

(sec.) 

data_60            60 59 3 3 2 0.81 1.00 0.81 1.00 0.91 1.00 1 0.02 179.62 

data_66            66 65 4 4 3 0.67 1.00 0.67 1.00 0.83 1.00 1 0.02 224.70 

data-c-cv-nu-n_v2  73 54 3 3 2 0.61 1.00 0.61 1.00 0.76 1.00 1 0.02 160.86 

data-c-cv-nu-n     76 57 6 4 2 0.54 0.97 0.54 0.97 0.73 0.99 NA* NA* 187.86 

data-uc-cv-nu-n    127 106 6 5 3 0.55 0.97 0.55 0.97 0.65 0.99 NA* NA* 975.42 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 2126.75 

data-uc-cc-nu-n    191 149 6 4 4 0.48 1.00 0.48 1.00 0.58 1.00 52 0.36 2471.31 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.78 1.00 0.78 1.00 0.85 1.00 3 0.02 3305.57 

dataX              202 112 4 4 2 0.33 1.00 1.00 1.00 0.68 1.00 1 0.00 8974.09 

data-c-cc-nu-n_v2  285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 4252.89 

train2             287 206 4 6 3 0.50 1.00 0.50 1.00 0.63 1.00 24 0.12 5718.25 

train1_v1          306 169 5 8 4 0.40 1.00 0.40 1.00 0.58 1.00 5 0.03 3223.32 

train1             307 170 6 9 4 0.49 1.00 0.49 1.00 0.70 1.00 16 0.10 3472.29 

train3_v1          361 326 5 6 4 0.66 1.00 0.66 1.00 0.80 1.00 3 0.01 15906.19 

data_circle        700 316 2 14 3 0.56 0.81 1.00 1.00 0.68 0.88 NA* NA* 17987.49 

  NA* : not available 
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Table F.9 Experimental results with CERN for group 1 data sets  

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

data_60                 60 59 3 3 2 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 116.66 

data_66                 66 65 4 4 4 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 403.09 

data-c-cv-nu-n_v2       73 54 3 3 2 0.60 1.00 0.60 1.00 0.75 1.00 1 0.02 877.75 

data-c-cv-nu-n          76 57 6 4 4 0.34 1.00 0.34 1.00 0.36 1.00 61 1.07 1182.30 

data-c-cv-u-n           81 51 5 5 4 0.45 1.00 0.45 1.00 0.48 1.00 1 0.02 1564.88 

data-uc-cv-nu-n         127 106 6 5 5 0.55 1.00 0.55 1.00 0.65 1.00 1 0.01 1009.54 

data-oo_v2              140 36 2 2 2 0.94 1.00 1.00 1.00 0.94 1.00 1 0.03 1343.72 

data-oo                 144 40 6 6 4 0.85 1.00 0.85 1.00 0.86 1.00 1 0.03 9219.90 

data-uc-cc-nu-n_v2      188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 10443.00 

data-uc-cc-nu-n         191 149 6 4 5 0.48 0.98 0.48 0.99 0.58 0.99 NA* NA* 28635.04 

data-c-cc-nu-n2_v2      192 170 3 4 4 0.64 1.00 0.64 1.00 0.71 1.00 5 0.03 37629.45 

data-c-cc-nu-n2         195 173 6 7 3 0.96 0.97 0.96 1.00 0.98 0.99 NA* NA* 28905.86 

dataX_v2                200 110 2 2 2 0.98 1.00 0.99 1.00 0.99 1.00 1 0.01 47231.89 

dataX                   202 112 4 4 3 0.96 1.00 0.96 1.00 0.98 1.00 1 0.01 58055.25 

data-c-cc-nu-n_v2       285 183 3 3 3 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 60914.35 

train2                  287 206 4 6 4 0.77 1.00 0.77 1.00 0.89 1.00 45 0.22 52196.26 

data-c-cc-nu-n          289 187 7 7 4 0.76 1.00 0.76 1.00 0.86 1.00 1 0.01 28679.22 

  NA* : not available 
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Table F.9 Experimental results with CERN for group 1 data sets (cont’d) 

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

train1_v1               306 169 5 8 4 0.49 1.00 0.49 1.00 0.70 1.00 65 0.38 41655.94 

train1                  307 170 6 9 3 0.70 1.00 0.70 1.00 0.88 1.00 180 1.06 628316.00 

train3_v1               361 326 5 6 5 0.52 1.00 0.52 1.00 0.65 1.00 50 0.15 63438.99 

train3                  397 338 36 17 3 0.59 0.89 0.86 0.90 0.87 0.96 NA* NA* 376360.54 

data_circle             700 316 2 14 2 0.68 0.80 1.00 1.00 0.79 0.88 NA* NA* 415833.80 

data_mix_uniform_normal 1000 604 2 38 5 0.58 0.62 1.00 1.00 0.84 0.90 NA* NA* 413802.45 

data_circle_1_10_5_10   1100 489 2 29 2 0.76 0.88 1.00 1.00 0.81 0.90 NA* NA* 94285.89 

data_circle_10_1_10_10  1100 427 2 22 2 0.74 0.83 1.00 1.00 0.77 0.89 NA* NA* 10964.87 

data_circle_2_10_2_12   1200 544 2 22 1 0.74 0.87 1.00 1.00 0.86 0.92 NA* NA* 41374.86 

data_circle_2_10_3_12   1200 600 2 30 1 0.92 0.92 1.00 1.00 0.97 0.97 NA* NA* 11825.11 

data_circle_2_10_4_12   1200 657 2 37 2 0.78 0.86 1.00 1.00 0.83 0.89 NA* NA* 396369.99 

data_circle_2_10_5_13   1200 531 2 30 2 0.73 0.89 1.00 1.00 0.84 0.95 NA* NA* 634347.54 

data_circle_2_10_6_12   1200 683 2 39 2 0.76 0.89 1.00 1.00 0.85 0.93 NA* NA* 670313.00 

data_circle_3_10_8_12   1300 626 2 26 3 0.51 0.91 0.79 0.98 0.60 0.96 NA* NA* 511387.52 

data_circle_5_10_8_12   1500 522 2 29 3 0.68 0.81 0.82 0.91 0.75 0.89 NA* NA* 488377.63 

data_circle1            1890 870 2 35 2 0.90 0.95 1.00 1.00 0.94 0.97 NA* NA* 686963.26 

   NA* : not available 
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Table F.9 Experimental results with CERN for group 1 data sets (cont’d) 

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

data_circle2            1890 680 2 35 2 0.92 0.95 1.00 1.00 0.95 0.99 NA* NA* 786454.59 

data_circle_1_20_1_11   2100 567 2 49 3 0.82 0.93 1.00 1.00 0.83 0.94 NA* NA* 678240.83 

data_circle_1_20_1_13   2100 871 2 41 2 0.87 0.95 1.00 1.00 0.97 0.99 NA* NA* 635587.57 

data_circle_1_20_1_15   2100 697 2 47 3 0.73 0.92 1.00 1.00 0.91 0.95 NA* NA* 774884.04 

data_circle_1_20_1_17 2100 1002 2 57 3 0.75 0.94 1.00 1.00 0.88 0.95 NA* NA* 946392.20 

data_circle_1_20_1_19   2100 768 2 38 4 0.73 0.83 0.78 0.96 0.84 0.92 NA* NA* 145991.85 

data_circle_20_1_5_10 2100 786 2 53 5 0.61 0.81 1.00 1.00 0.75 0.87 NA* NA* 305031.10 

data_circle3            2100 868 2 41 2 0.76 0.87 1.00 1.00 0.88 0.95 NA* NA* 854649.92 

iris 143 136 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.01 10430.63 

3d_dataset3 325 191 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.15 343233.30 

3d_dataset4 1523 703 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.01 438031.45 

   NA* : not available 
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Table F.10 Experimental results with WCERN for group 1 data sets 

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

data_60 60 59 3 3 2 0.52 1.00 0.52 1.00 0.64 1.00 1 0.02 169.70 

data_66 66 65 4 4 3 0.43 1.00 0.43 1.00 0.55 1.00 1 0.02 238.96 

data-c-cv-nu-n_v2 73 54 3 3 2 0.60 1.00 0.60 1.00 0.75 1.00 1 0.02 184.69 

data-c-cv-nu-n 76 57 6 4 2 0.57 0.97 0.57 0.97 0.75 0.99 NA* NA* 247.47 

data-c-cv-u-n 81 51 5 5 4 0.45 1.00 0.45 1.00 0.48 1.00 1 0.02 134.58 

data-uc-cv-nu-n 127 106 6 5 4 0.55 0.97 0.55 0.97 0.65 0.99 NA* NA* 1563.85 

data-oo_v2              140 36 2 2 2 0.94 1.00 1.00 1.00 0.94 1.00 1 0.03  23.18 

data-oo 144 40 6 6 4 0.85 1.00 0.85 1.00 0.86 1.00 1 0.03 62.36 

data-uc-cc-nu-n_v2 188 146 3 3 2 0.50 1.00 0.50 1.00 0.60 1.00 1 0.01 4300.71 

data-uc-cc-nu-n 191 149 6 4 5 0.48 1.00 0.48 1.00 0.58 1.00 201 1.35 5028.95 

data-c-cc-nu-n2_v2 192 170 3 4 3 0.78 1.00 0.78 1.00 0.85 1.00 1 0.01 7148.07 

data-c-cc-nu-n2 195 173 6 7 4 0.76 0.98 0.76 1.00 0.84 0.99 50 0.29 9735.84 

dataX_v2                200 110 2 2 2 0.98 1.00 0.99 1.00 0.99 1.00 1 0.01 1711.40 

dataX 202 112 4 4 3 0.49 1.00 0.49 1.00 0.50 1.00 1 0.01 1647.37 

data-c-cc-nu-n_v2 285 183 3 3 2 0.78 1.00 0.78 1.00 0.87 1.00 1 0.01 7869.58 

train2 287 206 4 6 3 0.77 1.00 0.77 1.00 0.89 1.00 25 0.12 11256.55 

data-c-cc-nu-n 289 187 7 7 3 0.46 1.00 0.46 1.00 0.47 1.00 1 0.01 10102.57 

   NA* : not available 
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Table F.10 Experimental results with WCERN for group 1 data sets (cont’d) 

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

train1_v1 306 169 5 8 4 0.49 1.00 0.49 1.00 0.70 1.00 80 0.47 8098.40 

train1 307 170 6 9 3 0.70 1.00 0.70 1.00 0.88 1.00 31 0.18 8504.68 

train3_v1 361 326 5 6 5 0.50 1.00 0.50 1.00 0.62 1.00 10 0.03 51485.39 

train3 397 338 36 17 3 0.55 0.85 0.66 0.85 0.85 0.95 NA* NA* 73438.99 

data_circle 700 316 2 14 2 0.46 1.00 1.00 1.00 0.67 1.00 17 0.05 38442.84 

data_mix_uniform_normal 1000 604 2 38 5 0.58 0.92 1.00 1.00 0.66 0.97 NA* NA* 404907.01 

data_circle_1_10_5_10   1100 489 2 29 4 0.74 0.94 1.00 1.00 0.82 0.98 NA* NA* 157090.19 

data_circle_10_1_10_10 1100 427 2 22 6 0.85 0.81 1.00 1.00 0.88 0.90 NA* NA* 134393.33 

data_circle_2_10_2_12   1200 544 2 22 4 0.94 0.97 1.00 1.00 0.97 0.98 NA* NA* 361383.09 

data_circle_2_10_3_12 1200 600 2 30 2 0.97 1.00 1.00 1.00 0.98 1.00 620 1.03 338478.52 

data_circle_2_10_4_12   1200 657 2 37 3 0.84 0.97 1.00 1.00 0.92 0.97 NA* NA* 481845.00 

data_circle_2_10_5_13   1200 531 2 30 3 0.88 0.95 1.00 1.00 0.95 0.98 NA* NA* 251748.71 

data_circle_2_10_6_12   1200 683 2 39 3 0.86 0.93 1.00 1.00 0.96 0.97 NA* NA* 511722.92 

data_circle_3_10_8_12 1300 626 2 26 3 0.61 0.72 0.61 0.73 0.78 0.88 NA* NA* 281968.66 

data_circle_5_10_8_12 1500 522 2 29 3 0.58 0.79 0.65 0.79 0.70 0.83 NA* NA* 196187.05 

data_circle1            1890 870 2 35 4 0.94 1.00 1.00 1.00 0.97 1.00 1287 1.48 1057098.04 

   NA* : not available 
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Table F.10 Experimental results with WCERN for group 1 data sets (cont’d) 

Data set #P #P-ADR # TC 

#C after 

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

data_circle2            1890 680 2 35 4 0.78 0.96 1.00 1.00 0.90 0.98 NA* NA* 592462.24 

data_circle_1_20_1_11   2100 567 2 49 4 0.98 1.00 1.00 1.00 1.00 1.00 417 0.74 338156.83 

data_circle_1_20_1_13   2100 871 2 41 3 0.81 1.00 1.00 1.00 0.85 1.00 645 0.74 1201467.39 

data_circle_1_20_1_15   2100 697 2 47 2 0.97 1.00 1.00 1.00 0.98 1.00 417 0.60 719592.45 

data_circle_1_20_1_17 2100 1002 2 57 2 0.81 0.98 1.00 1.00 0.87 0.99 NA* NA* 897515.29 

data_circle_1_20_1_19   2100 768 2 38 1 0.69 0.69 0.69 0.69 0.75 0.75 NA* NA* 562401.06 

data_circle_20_1_5_10 2100 786 2 53 4 0.73 0.85 1.00 1.00 0.80 0.90 NA* NA* 634145.25 

data_circle3            2100 868 2 41 1 1.00 1.00 1.00 1.00 1.00 1.00 1405 1.62 1081741.34 

iris 143 136 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.01 197450.63 

3d_dataset3 325 191 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.01 55341.45 

3d_dataset4 1523 703 2 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1 0.00 902841.56 

   NA* : not available 
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 Table F.11 Experimental results with CERN for group 3 data sets 

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

DS_0000 894 739 5 5 2 0.58 1.00 0.58 1.00 0.59 1.00 1 0.00 440597.04 

DS_0001 903 732 8 8 2 0.44 1.00 0.44 1.00 0.49 1.00 1 0.00 431997.45 

DS_0010 894 805 5 5 2 0.48 1.00 0.48 1.00 0.50 1.00 1 0.00 611567.42 

DS_0011 903 809 8 7 1 1.00 1.00 1.00 1.00 1.00 1.00 15 0.02 826754.81 

DS_0100 709 586 5 4 2 0.98 1.00 1.00 1.00 0.99 1.00 480 0.82 15136.24 

DS_0101 712 587 8 4 3 0.98 1.00 1.00 1.00 0.99 1.00 230 0.39 105842.05 

DS_0110 708 573 5 4 2 0.50 1.00 1.00 1.00 0.74 1.00 612 1.07 113241.92 

DS_0111 711 580 8 7 4 0.39 1.00 1.00 1.00 0.62 1.00 802 1.38 106285.73 

DS_0200 894 766 5 17 2 0.45 0.96 0.45 1.00 0.56 0.97 NA* NA* 758576.74 

DS_0201 897 775 8 18 4 0.46 0.87 0.46 0.96 0.63 0.92 NA* NA* 816136.72 

DS_0210 894 761 5 16 2 0.50 0.68 0.50 0.80 0.66 0.76 NA* NA* 88602.66 

DS_0211 897 764 8 18 3 0.53 0.61 0.53 0.75 0.70 0.70 NA* NA* 566601.80 

   NA* : not available 
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Table F.12 Experimental results with WCERN for group 3 data sets  

Data set #P #P-ADR # TC 

#C after  

NC 

#  

SN 

min 

 JI 

max 

JI 

min  

QJI 

max  

QJI 

min 

RI 

max 

RI # ITA 

# ITA /  

#P-ADR 

Time 

(sec.) 

DS_0000 894 739 5 5 3 0.58 1.00 0.58 1.00 0.59 1.00 1 0.00 413885.35 

DS_0001 903 732 8 8 5 0.44 1.00 0.44 1.00 0.49 1.00 1 0.00 457816.59 

DS_0010 894 805 5 5 3 0.67 1.00 0.67 1.00 0.88 1.00 1 0.00 588700.81 

DS_0011 903 809 8 7 4 0.24 1.00 0.24 1.00 0.25 1.00 42 0.05 433819.53 

DS_0100 709 586 5 4 3 0.50 1.00 0.50 1.00 0.75 1.00 489 0.83 107215.21 

DS_0101 712 587 8 4 3 0.98 1.00 0.98 1.00 1.00 1.00 817 1.39 111630.17 

DS_0110 708 573 5 4 2 0.50 1.00 0.50 1.00 0.75 1.00 315 0.55 102406.58 

DS_0111 711 580 8 7 5 0.43 1.00 0.43 1.00 0.67 1.00 987 1.70 103166.29 

DS_0200 894 766 5 17 2 0.62 0.91 0.62 0.98 0.75 0.96 NA* NA* 480506.34 

DS_0201 897 775 8 18 3 0.55 0.83 0.55 0.97 0.64 0.90 NA* NA* 58580.51 

DS_0210 894 761 5 16 3 0.41 0.76 0.41 0.90 0.61 0.84 NA* NA* 675741.51 

DS_0211 897 764 8 18 3 0.61 0.71 0.61 0.82 0.74 0.77 NA* NA* 812144.05 

   NA* : not available 
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