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ABSTRACT 

THE VALUE OF INFORMATION IN A MANUFACTURING FACILITY 
TAKING PRODUCTION AND LEAD TIME QUOTATION DECISIONS 

 
 
 

Kaman, Cumhur 
M.Sc., Department of Industrial Engineering 
Supervisor: Assist. Prof. Dr. Seçil Savaşaneril 

 
May 2011, 64 pages 

 

Advancements in information technology enabled to track real time data in 

a more accurate and precise way in many manufacturing facilities. 

However, before obtaining the more accurate and precise data, the 

investment in information technology should be validated. Value of 

information may be adopted as a criterion in this investment. In this study, 

we analyze the value of information in a manufacturing facility where 

production and lead time quotation decisions are taken. In order to assess 

the value of information, two settings are analyzed. Under the first setting, 

the manufacturer takes decisions under perfect information. To find the 

optimal decisions under perfect information, a stochastic model is 

introduced. Under the second setting, the manufacturer takes decisions 

under imperfect information. To obtain a solution for this problem, 

Partially Observable Markov Decision Process is employed. Under the 

second setting, we study two approaches. In the first approach, we 

introduce a nonlinear programming model to find the optimal decisions. In 
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the second approach, a heuristic approach, constructed on optimal actions 

taken under perfect information is presented. We examine the value of 

information under different parameters by considering the policies under 

nonlinear programming model and heuristic approach. The profit gap 

between the two policies is investigated. The effect of Make-to-Order 

(MTO) and Make-to-Stock (MTS) schemes on the value of information is 

analyzed. Lastly, different lead time quotation schemes; accept-all, accept-

reject and precise lead time; are compared to find under which quotation 

scheme value of information is highest. 

 

Keywords: Value of Information, Markov Decision Process, Partially 

Observable Markov Decision Process, Production Control, Lead Time 

Quotation 
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ÖZ 

ÜRETİM VE TEDARİK SÜRESİ KARARLARINI VEREN BİR ÜRETİM 
TESİSİNDE BİLGİNİN DEĞERİ 

 
 

Kaman, Cumhur 
Yüksek Lisans, Endüstri Mühendisliği Bölümü 
Tez yöneticisi: Yrd. Doç. Dr. Seçil Savaşaneril 

 
Mayıs 2011, 64 sayfa 

 

Bilgi teknolojisindeki gelişmeler, birçok üretim tesisinde gerçek zamanlı 

verilerin takip edilmesine olanak sağlamaktadır. Ancak, doğru ve kesin 

verilerin elde edilmesinden önce, bilgi teknolojisindeki yatırımın 

doğrulanması gerekmektedir. Bilginin değeri, bu yatırım için bir ölçüt 

olarak kullanılabilir. Bu çalışmada, üretim ve tedarik zamanı kararlarını 

alan bir üretim tesisinde bilginin değeri analiz edilmektedir. Bilginin 

değerini tespit edebilmek amacıyla, iki durum analiz edilmektedir. Birinci 

durum altında, üretici kararlarını şeffaf bilgi altında almaktadır. Şeffaf bilgi 

altında en uygun kararları elde edebilmek için, rassal bir model 

kurulmuştur. İkinci durum altında, üretici kararlarını şeffaf olmayan bilgi 

altında almaktadır. Şeffaf olmayan bilgi altında alınan en uygun kararları 

belirlemek amacıyla Kısmi Gözlemlenebilen Markov Karar Süreci 

kullanılmaktadır. İkinci durum altında, iki yaklaşım üzerinde 

çalışılmaktadır. Birinci yaklaşımda, en uygun kararları elde edebilmek için 

doğrusal olmayan bir model kurulmaktadır. İkinci yaklaşımda, şeffaf bilgi 

altında alınan en uygun kararlardan faydalanan sezgisel bir yaklaşım 
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geliştirilmiştir. Doğrusal olmayan model ve sezgisel yaklaşım altında alınan 

politikalar kullanılarak, farklı parametreler altında, bilginin değeri 

incelenmektedir. İki farklı politika altındaki kâr farklarının nedenleri 

araştırılmıştır. Sipariş üzerine üretim politikası ile stok politikalarının 

bilginin değeri üzerindeki etkisi analiz edilmektedir. Son olarak, farklı 

tedarik süresi bildirme politikalarının; bütün müşterileri kabul et, 

müşterileri kabul et ya da reddet ve kesin tedarik süresi; bir karşılaştırması 

yapılmış ve bilginin değerinin en fazla olduğu politikalar belirlenmiştir. 

 

Anahtar kelimeler: Bilginin Değeri, Markov Karar Süreci, Kısmi 

Gözlemlenebilen Markov Karar Süreci, Üretim Kontrolü, Tedarik Süresi 

Bildirme 
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CHAPTER 1  

 

INTRODUCTION 

Companies are racing to take place in the global market which is dynamic 

in nature and electronically connected (Gunasekaran and Ngai, 2004). In 

this market, information is absolutely crucial in decision making. 

Especially, under uncertainty, decision making is inherently related to 

information and its availability (Eckwert and Zilcha, 2001). The 

advancements in information technology has enabled to gather the 

necessary information before the company makes a decision. In this 

context, many firms benefit from information technology in supply chain 

operations. As given in Simchi-Levi and Zhao (2004) “Information 

technology has changed the way companies collaborate with suppliers and 

customers”. These collaborations have achieved great success in inventory 

reduction and service level improvement by the help of real time data. 

However, the real time data may contain errors or it cannot be accessed 

under all circumstances due to observability constraints, leading to an 

increase in the uncertainty. On the other hand, the more accurate 

information, the better the company is able to reduce the uncertainty 

coming with the decision (Oestreich and Buytendijk, 2010). Therefore, the 

“value of information” gains importance. 

 

As mentioned, because of the observability constraints, the real-time data in 

production may be corrupted or even not be tracked. The observability 
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constraints may result from many factors. For instance, errors, leading to 

the inaccuracy of inventory records, may arise due to “incorrect product 

identification, transaction errors, inaccessibility of items due to improper 

usage of the depot, misplacements and shrinkage” (Uçkun, Karaesmen, and 

Savaş, 2008). Inaccuracy of inventory records may lead to ineffective 

replenishment decisions. Another example would be related with the status 

of production. Consider a manufacturing facility where status of 

production is closely tracked by the help of Radio Frequency Identification 

(RFID) tags. An example for this is “Ford’s wireless kanban system based 

on RFID, which improved tracking of parts through the assembly process” 

(Tajima, 2007). However, in general, there are risks associated with 

employing RFID tags. For instance, the radio waves sent from tags has the 

potential of being “absorbed by moisture or can be hidden or distorted by 

metal and noise from electric motors and fluorescent lights”(Hingley, 

Taylor, and Ellis, 2007). Also, there may occur tag collision, where the 

signals sent from tags interfere with one another, or system failures due to 

the mistakes made by the employees causing the system to be inaccessible 

for a period of time (Higgins and Cairney, 2006). Therefore, the exact status 

of production may not be observed or tracked at all times.  

 

In this study, we analyze the value of information in a manufacturing 

facility where production and lead time quotation decisions are made. In 

particular, we consider a manufacturer who cannot observe the current 

state of production, but rather gets inaccurate information about the current 

state. There are many examples of this situation in production facilities. For 

instance, consider the lag between the time at which a production event 

occurs and the time at which this information is entered into a computer 
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system. The production visibility will be reduced and the manufacturer 

controlling the production status from this computer system cannot obtain 

the accurate information for a period of time. Another example for not 

obtaining accurate information may result from imperfect automatic data 

capture systems, such as RFID, used to track the status of production. 

Consider a production facility where serial N operations are performed to 

obtain the final product. Assume that the status of the production is tracked 

by an RFID system, which updates the current status, when the product 

passes from one workstation to another workstation. When the signals sent 

from a tag attached to a semi-finished product is read by multiple readers 

located at different workstations simultaneously, the current status is not 

going to be directly observable but partially observable. In these kind of 

situations, since the manufacturer cannot access to accurate information 

(the number of items waiting in the inventory or the number of outstanding 

orders), inefficient decisions, causing extra holding/penalty costs to incur, 

will be made.  

 

To assess the value of information, performance measures under perfect 

and partial information will be compared. The manufacturer will be 

examined under two settings. In the first setting, the manufacturer can 

observe the actual state of the production, i.e. the manufacturer can access 

to perfect information about the exact status of production. This might be 

the case where production status is tracked via RFID. We present a 

stochastic model to find the optimal decisions under perfect information. 

Under the second setting, the manufacturer cannot observe the actual state 

of production. Instead, the manufacturer “can only observe imperfect 

signals of the system state” (Zhang, 2010), i.e. the manufacturer can get 
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imperfect information about the actual state of the production. This might 

be the case when the manufacturer is operating under a system with no 

RFID. To obtain a solution for this problem, Partially Observable Markov 

Decision Process (POMDP) will be employed. Under the second setting, 

two approaches are developed. The first approach to the problem is a 

nonlinear model. The second approach is a heuristic policy constructed on 

actions taken under perfect information.  

 

The remainder of this study is organized as follows. The related literature is 

reviewed in the following chapter. In Chapter 3, we represent the models 

and the underlying assumptions. Numerical analyses are given in Chapter 

4. The comparison of the manufacturer under the first and second settings  

and the observations are presented in this chapter. In Chapter 5, we 

conclude our study by representing suggestions on future work. 
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CHAPTER 2  

 

LITERATURE SURVEY 

In this study, we consider the value of information in a manufacturing 

facility where the exact status of production is not observable. The 

manufacturer takes production and lead time quotation decisions. Hence, 

the focus of the literature review is on lead time quotation decisions and 

value of information.  

2.1 Sharing Lead time Information 

Due date management policies have received much attention in the 

literature. In this section, we will only consider the ones where the 

manufacturer shares the lead time information with the lead time sensitive 

customers. Note that, the studies given in this section assume that the 

decisions are taken under perfect information.  

 

Duenyas and Hoop (1995) consider the profit maximization problem of a 

manufacturer quoting lead times and sequencing the lead time sensitive 

customers in a Make-to-Order (MTO) environment. In this paper, three 

models are considered. In the first model, an infinite capacity manufacturer 

is examined. In the second model, a finite capacity plant is considered. The 

authors investigate the model in two parts; the first one, accept-reject 

policies and the second one “variable lead times”. The first part reveals the 
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structure of an optimal policy for the manufacturer depending on the 

number of customers waiting. The second part proves that the longer lead 

times should be quoted when the number of customers waiting increases. 

In the third model, FCFS policy is not applied and a scheduling policy is 

tried to be found out.  

 

Savaşaneril et al. (2010) examine the problem of a manufacturer who jointly 

accepts customers, quotes lead times and makes inventory decisions. The 

manufacturer would like to maximize her profit in an environment where 

there are holding cost for the items left in the inventory and lateness cost 

for the delayed items. The authors investigate the effect of carrying 

inventory and different lead time quotation policies on the profit and the 

effect of base-stock level on the lead time quotation policy. The authors find 

that the base stock level increases when the precision of the lead time 

quotation policies decreases. Also, it is shown that an increase in the base 

stock level does not always lead to a decrease in the number of customers 

waiting.  

 

Chen and Yu (2005) analyze the value of sharing lead time information in a 

supply chain consisting of a manufacturer and a customer (inventory 

manager). The paper discusses two scenarios. In the first scenario, complete 

information sharing, the customer knows the exact lead time for his orders. 

The authors show that it is optimal for the inventory manager to adopt a 

state-dependent, base-stock policy with order-up-to levels depending on 

the lead time under complete information sharing. In the second scenario, 

when there is no information sharing, the manufacturer does not share the 

lead-time information with the customer. Two policies are investigated 



 

7

under this scenario. The first policy is a constant base-stock policy and the 

second policy is history-dependent base-stock policy. The authors conclude 

that, under no information sharing scenario, the second policy gives the 

customer more lead time information than the first policy. The authors also 

find out that, the value of lead time information increases when the 

demand is high volume or high variability is observed in the lead time 

distribution. 

 

Dobson and Pinker (2006) try to determine whether a firm can benefit from 

sharing state-dependent lead time information. Also, the authors analyze 

under which conditions, sharing state-dependent lead time information is 

beneficial for the firm and the customers. To address these two questions, 

two settings are compared. In the first setting, the firm shares a state-

dependent lead time quote with the customers and in the second setting, 

the firm gives a single lead time for all the customers. The authors show 

that quoting state-dependent lead times is better than a single lead time 

quotation policy. Quoting state dependent lead times can increase the 

throughput of the company while simultaneously reducing the expected 

waiting time of the customer's in some cases. 

 

Liu et al. (2009) evaluates the value of real time shipment tracking 

information in a supply chain consisting of a manufacturer and a retailer. A 

model where the products shipped by the manufacturer pass through serial 

stages before received by the retailer, is constructed. In this model, each 

stage represents a physical location. The retailer can have real time 

information as the products pass through the physical locations. The 

ordering rule for the retailer is assumed to be order-up-to level for each 
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period obtained by minimizing the one-period expected cost. The authors 

compare three cases. In the first case, the retailer can access to the real time 

tracking information. In the second case, the retailer can access to lagged 

shipment tracking information. In the third case, the retailer cannot access 

any shipment tracking information. The authors find out that, the long-run 

average cost of the retailer increases when the tracking information is 

lagged.  

 

In this study, we try to find the optimal policy and profit for a 

manufacturer taking production and lead time quotation decisions under 

both perfect information and imperfect information. We believe that, this is 

the first study trying to find the optimal policy and profit of a manufacturer 

taking production and lead time quotation decision under imperfect 

information. 

2.2 Value of Information 

There exist many articles studying the value of information in 

production/inventory management systems. We can differentiate the 

articles in this stream by flow of information. Two directions are possible 

for the flow of information. The first direction is from lower echelon to 

upper echelon. Gavirneni et al. (1999) model the information flow between 

a supplier and a retailer, where the retailer orders according to an (s, S) 

policy. The authors confine the study to three models. Under the first 

model, the base case, the supplier has information only about the past 

demand data. Under the second model, the partial information sharing, the 

demand distribution faced by the retailer, the retailer's (s, S) policy and 
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parameters s and S are known by the supplier. Under the third model, 

complete information sharing the supplier receives immediate information 

about the retailer's demand in addition to known under the second model. 

The authors find out that, the information is not beneficial when the end-

item demand variance is high, or the difference between S and s is very 

high or very low. Also, the authors state that the manufacturer does not 

benefit information when the capacity is low. The authors argue that when 

the end-item demand variance is moderate and the difference between S 

and s is not so substantial, and the capacity is high, the benefits of 

information are great.  

 

Cachon and Fisher (2000) evaluate the value of demand and inventory 

information in a supply chain consisting of one supplier and N identical 

retailers. In this study, two levels of information sharing are considered. 

Under the first one, traditional information sharing, the supplier can only 

observe the retailers' orders. Under the second one, full information 

sharing, the supplier can observe retailers' immediate inventory data. The 

authors believe that under full information sharing, the supplier can 

improve its both quantity and allocation decisions. However, the authors 

find limited benefits since the information is most valuable when the 

retailer is likely to submit an order. The authors think that, the value of 

information can increase when the demand is unknown.  

 

Simchi-Levi and Zhao (2004) determine the benefit of sharing demand 

information in a two-stage supply chain, consisting of a capacitated 

supplier and a retailer, in an infinite horizon. In particular, the authors try 

to get the optimal policy for the information sharing model, quantify the 
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benefits resulting from information sharing and determine the conditions 

under which the information is most beneficial for the manufacturer. They 

show that, a cyclic order-up-to policy, where the manufacturer produces up 

to the target inventory level as long as there is enough production capacity, 

is optimal. Also, under both discounted and average cost criterion, the 

manufacturer's cost decreases due to information sharing when the 

capacity increases. In addition, under non-stationary demand, the authors 

observe that information sharing is most beneficial when the demand rate 

is decreasing and least beneficial when the demand rate is increasing.  

 

The second direction for flow of information is from upper echelon to lower 

echelon. Ferrer and Ketzenberg (2004) consider a remanufacturing facility 

where a trade-off between limited information about long supplier lead 

times and manufacturing yields is faced. The paper analyzes the value of 

information in two distinct process capabilities; the first one is the ability to 

obtain purchased parts within a short lead time and the second one is the 

ability to identify part yield in the disassembly stage of remanufacturing. 

To analyze the value of information, four different models, where different 

combinations of two abilities take place, are used. The authors find out that 

the value of yield information is more valuable than lead time information. 

Also, the authors argue that having both capabilities is a slightly better 

having solely the ability of identifying part yield.  

 

He et al. (2002) analyze the value of queue length information in inventory 

control in a supply chain consisting of a manufacturer and a warehouse.. 

The concept of information level, where the warehouse manager can get 

different levels of information; no information, partial information or full 
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information, about the queue length, is used in the study. The authors show 

that, a warehouse manager can reduce her inventory costs significantly if 

she switches from no information level to partial information level, under 

which there is information about whether the manufacturer is busy or 

available, but no information about the exact queue length. However, in 

their model, the value of information is not so effective for a warehouse 

manager switching from partial information to full information.  

 

Bensoussan et al. (2009) determine the value of visibility within a company, 

where upper stage (production rather than demand) information benefit is 

assessed. The authors study problem of an inventory manager who cannot 

observe the current inventory level due to information delays. It is assumed 

that, the inventory manager uses a reference inventory level, where the 

most current information is used to when making replenishment decisions. 

Two information delay types are considered; the one being inventory 

information delay and the second being demand information delays. The 

authors demonstrate that the inventory information delay, under which the 

delays are non-crossing, is a special case of demand information delay. It is 

found out that a base stock policy is optimal when the replenishment cost is 

linear. It is also proved that the optimal cost is decreasing with the amount 

of delay in the system. The authors conclude their studies with a 

managerial insight; companies having slow-paced information systems 

should increase their stock levels to compensate for their pace.  

 

In our problem, we consider the flow of information from upper echelon to 

lower echelon. We assess the value of information by examining a 

manufacturer under two settings. Under the first setting, the manufacturer 
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faces information distortion whereas under the second setting, the 

manufacturer takes actions under perfect information. We believe that 

difference in policies and profits can be used as criteria in determining the 

value of information. 

2.3 Use of Automatic Data Capture Systems 

Papers related with the use of automatic data capture systems in 

production and inventory management is also in the scope of this study.  

 

Lee and Özer (2007) try to analyze the value of RFID implications by 

different aspects. The authors firstly discusses the potential benefits (labor 

cost savings, inventory reduction, shrinkage and out-of-stock reduction) 

that a company can have when RFID is employed. The paper then gives the 

examples of some ongoing research that incorporate information provided 

by RFID; value of visibility within a company, value of visibility across 

companies (downstream information shared upstream and upstream 

information shared downstream. Under these headings, the authors 

discusses many models that are not specifically about RFID, but could 

easily be adapted so that the RFID-benefits can be inferred.  

 

Kök and Shang (2007) consider a single-product, single-location periodic 

inventory system where the inventory records are not accurate. It is 

assumed that inaccuracy in inventory changes the physical inventory level 

but leaves the inventory record unchanged. The authors find a joint 

inspection and replenishment policy minimizing the total costs (inventory-

related and inspection) over a finite horizon. The authors characterize an 



 

13

optimal policy where there exists a threshold inventory level for the 

inspection decision and base stock for the replenishment decision. Than, 

they propose a heuristics performing near optimal. The authors find out 

that, the products having a higher value, larger error variance, lower 

inspection cost or smaller demand variance should be inspected more 

frequently than other items. Also, the order-up-to level should be increased 

when the number of periods since the last inspection increases. Lastly, the 

costs of proposed heuristics is compared with the optimal costs of a no-

error system (such as perfect RFID installed) and found that the proposed 

heuristic is slightly worse in terms of value of accurate inventory 

information.  

 

Ferrer et al. (2010) answer the question of how to enhance service quality 

and what benefits can be reaped by using RFID technology. The paper 

gives descriptive cases of how to increase capacity, reduce cycle-time, 

automate processes and enable self-service by adopting RFID.  

 

Lindau and Lumsden (1999) find the effect of automated data capture 

systems on inventory management by investigating 10 companies adopting 

these systems. The authors find out that the the higher the technology level 

of automated data capture system, the better the result. 

 

In our study, the benefits of a RFID system which is used to track the status 

of production, is determined by examining the policies and profits of a 

manufacturer under two settings. In the first setting, the manufacturer 

tracks the status of production via RFID, whereas in the second setting, the 

manufacturer tracks the status under no RFID system.  
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CHAPTER 3  

 

MODEL 

We consider a joint production and due date quotation problem of a 

manufacturer in the presence of information distortion. We assume that 

there exists a single item under consideration. Manufacturer may keep 

stock to meet demand. 

 

Customers arrive according to a Poisson process with rate λ and they get 

service on a first come first served (FCFS) basis. The production time is 

exponentially distributed with parameter μ. A lead time / due date, �, is 

quoted for each arriving customer. If the customer accepts the quoted lead 

time, then the customer places an order and waits until the item is 

available; if he rejects the quoted lead time, he leaves. Customers are 

assumed to be identical and can place an order one at a time. Order 

placement does not incur any cost. There is a revenue of R, earned from any 

customer who has placed an order. The manufacturing facility is assumed 

to have a single server (machine) and production of an order could be 

completed later than the quoted lead time. In this case, there is a penalty / 

lateness cost, ℓ, per item, per unit time charged for the amount of time later 

than the quoted due date. Apart from quoting a lead time, the 

manufacturer decides whether to start or continue the production. There is 

no fixed cost of production. One-for-one replenishment is suitable because 

there exist a single server queue and no fixed cost of manufacturing. A 
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holding cost, �, is incurred per unit per unit time for the items in inventory. 

The aim is to find the production and quotation policy that maximizes the 

profit of the manufacturer. 

 

As mentioned above, a lead time is quoted for the arriving customer and 

the customer has the flexibility to accept the quoted due date. This 

flexibility is modeled with an acceptance probability, f(d), in such a way 

that the customers are more reluctant to accept longer lead times, i.e. f(d) is 

a decreasing function of �. Moreover, it is assumed that there exists a finite 

maximum lead time, dmax, where f(dmax)=0. Note that a quoted lead time 

which was rejected by a former customer may be accepted by another one. 

 

The manufacturer takes two decisions as mentioned above. The first one, 

acta, is whether to initiate / continue the production or not. The second one, 

actb, is the lead time quotation. Therefore, an action of the manufacturer can 

be denoted with 
 where a=(acta, actb). The action space is defined as 

A Aa Ab= × where Aa ={produce, not produce} and Ab = {0, 1, 2,...,dmax}. 

 

In the presence of information distortion, there exist two processes that 

evolve simultaneously; the actual process and the observed process. The 

actual state of the system is represented by �, whereas the observed state of 

the system is denoted by �’. The states of the system denote the number of 

customers waiting in the queue. Both the actual and observed states can 

take values in S={-∞, …, -1, 0, 1, 2, …, ∞}. The number of items waiting in 

the inventory is denoted with the negative values of � (and �’), whereas the 

number of customers in the queue is denoted with the positive values of � 
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(and �’). The state of the system may change either with the arrival of a 

customer or arrival of a manufactured part. 

 

In the following sections, firstly we will consider the problem of a 

manufacturer who can see the actual state of the system completely and 

present the corresponding model (full information model). Secondly, the 

problem of a manufacturer under information distortion will be examined. 

Under information distortion, two approaches will be discussed. First, the 

model that solves the problem to optimality will be given. Then a heuristic 

approach will be presented.  

3.1 Full Information Model 

In this section, we consider a manufacturer who does not face any 

information distortion in the process. The manufacturer can perfectly see 

which state the system is actually in and hence the actions are taken 

accordingly. The state of the system will be represented by �. Under the 

assumption of Poisson arrivals and exponential production times, the 

process is a Continuous Time Markov Chain. By applying uniformization 

(“the technique of uniformizing the rate in which a transition occurs from 

each state by introducing transitions from a state to itself”, (Ross, 1996)), the 

Continuous Time Markov Chain is transformed to an equivalent discrete 

time model. The problem is formulated as a Markov Decision Process 

(MDP). Note that, during the analysis only stationary policies will be 

considered.  
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Lead time quotation is made upon only customer arrival. Production 

decision, on the other hand, is taken at any point in time including 

customer arrival, part arrival and fictitious part arrival. Therefore, the 

decision epochs are determined not only by customer arrivals but also by part 

arrivals and fictitious part arrivals. Note that a transition is defined by a 

customer arrival, a part arrival (i.e, production completion), or a fictitious 

part arrival. 

 

Under the actions explained above, the transition probabilities are as 

follows: 

 

i. Under “produce” action given that an arriving customer is quoted �; 

 

( ) 1

(1 ( ))
( | , )

1

0

f d j i

f d j i
p j i a

j i

otherwise
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λ µ
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λ µ
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− = +=  
 
 = −

+ 
 
 

    (3.1) 

 

ii. Under “do not produce” action, given that an arriving customer is 

quoted �; 

 

( ) 1

( | , ) 1 ( )

0

f d j i

p j i a f d j i

otherwise
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Under full information under the average reward criterion the optimality 

equation is as follows: 

 

1 2

( )
*( ) *( ) *( )

h i
g i i i

λ µ
ν ν ν

λ µ λ µ λ µ
τ τ

−−
+ = + +

+ + +
   (3.3) 

 

Where operators iτ  are defined as 

 

1

* *
*

* *

( ( ) ( 1)) ( ) (1 ( )) ( ) 0
( ) max

( ( 1) ( ) (1 ( )) ( ) 0

i

d

R L d i f d f d i for i
i

R i f d f d i for i

ν ν
ν

ν ν
τ − + + + − ≥ 
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+ + + − < 

ℓ
    (3.4) 

 

and 

 

2

*( ) , *( 1) 0
*( ) max

*( 1) 0

i i for i
i

i for i

ν ν
ν

ν
τ − ≤ 

≡  
− > 

    (3.5) 

 

In Equation (3.3), g represents the long-run optimal average profit per 

transition, *( )iν  stands for the relative effect of starting in state � on the 

total expected reward under the optimal policy. The holding cost until the 

next transition is given by; 

 

( )h i

λ µ

−−
+

         (3.6) 

 

where �- = max {- �, 0}. If a customer arrives in state � and a lead time of � is 

quoted, then the expected profit will be given by ( ( )) ( )iR L d f d− ℓ . ( )iL d  
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denotes the expected amount of delay for a customer arriving in state � and 

quoted the lead time �. Under the FCFS policy it is computed as; 

 

1( ) ( ) ( ) , ( 0);

( ) 0, ( 0);

i i

d

i

L d x d E x dx if i

L d if i

∞

+= − ≥
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1
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j
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Note that no lateness cost incurs when there is inventory on hand.  

 

For this problem, the following equivalent linear programming model is 

introduced: 

 

( ) max

(1) ( | , ) 0

(2) 1

(3) 0 ,

ia ia

i a

ja ia

a i a

ia

i a

ia

Pfull r
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p j i a j

i a

π

π π

π

π

− = ∀

=

≥ ∀

∑∑

∑ ∑∑

∑∑
 

 

Model 3.1 – Full Information Model 

 

In this formulation, iar  denotes the expected one-step reward when the 

actual state is � and action 
 is taken. iaπ  denotes the long-run fraction of 
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time at which the system is in state � and action 
 is taken. As mentioned 

above, 
 stands for both production and quotation actions. 

 

The profit obtained in state � under the action 
, i.e. iar , until the next 

transition is as follows:  

 

( ( )) ( )ia i

h i
r R L d f d for i

λ
λ µ λ µ

−

= + − ∀
+ +

ℓ     (3.8) 

3.2 Partial Information Model 

In this section, the problem of the manufacturer in the presence of 

information distortion is examined. As mentioned, under information 

distortion there exist two processes; actual process and observed process. 

The manufacturer cannot see the states of the actual process, but he can see 

the states of the observed process. The manufacturer observes the state and 

holds an opinion which actual state the system is in. Hence, the 

manufacturer has partial information about the actual state. Then, the 

manufacturer decides which actions to take. Note that, the actions control 

both the observed and actual processes. The system is observed again after 

the transition occurs under the manufacturer’s actions.  

 

Under partial information, when the actual state is �, the manufacturer 

takes the signal that it is �’, with a known probability O(�’|�). Therefore, the 

manufacturer has perfect information on the observed process and partial 

information (information distortion) on the actual process. Note that the 

S xS matrix formed by the O(�’|�) entries will be called observation matrix 
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throughout the text. Under information distortion, the state of the system 

can be represented by (�, �’).  

 

Under the assumption of Poisson arrivals and exponential production 

times, the problem under consideration can be modeled as POMDP. Note 

that, during the analyses not only stationary but also randomized policies 

will be considered. 

 

As in full information model, lead time quotation is made only upon 

customer arrival. It is assumed that production decision can be taken upon 

customer or part arrivals, or fictitious part arrivals. 

 

Under the actions explained above, the transitions probabilities are as 

follows: 

 

i. Under production action, given that an arriving customer is quoted 

�; 
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  (3.9) 

 

ii. Under “do not produce” action, given that an arriving customer is 

quoted �; 
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0
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The difference between full information model and partial information 

model is that; the latter is one constrained in action space in the sense that 

same actions must be taken under the same observed state whatever the 

actual state is. 

 

3.2.1 Optimal Policy under Partial Information 

To obtain an optimal solution to the problem given above, we need to 

introduce constraints to the full information model to make sure that the 

manufacturer takes the same actions in the observed state �’. The following 

constraints are added into (Pfull) in order to find an optimal solution under 

partial information. As mentioned the state of the system is represented by 

(�, �’). Then the following constraints must be satisfied: 

 

'
'

'

, , 'ii a
i a

ii b

b

for all a A i i S
π

α
π
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∑

     (3.11) 

 

where 'ii aπ  denotes the long run fraction of time when the actual state is �, 

observed state is �’ and action 
 is taken.  
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However, 'i aα  for a A∈  and 'i S∈  are unknowns. Note that, introducing 

(3.11) into the full information model results in a nonlinear model. Before 

presenting the model, we make the following transformation; 

 

' ' , 'ii ii a

b A

for all i i Sπ π
∈

= ∈∑       (3.12) 

 

Hence, ' ' ' , ' ,ii a i a ii for i i S a Aπ α π= ∈ ∈ . The optimal model under partial 

information is as follows: 
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Model 3.2 – Partial Information Model 

 

Note that, the one-step rewards under full information and partial 

information are same, i.e. 'ii a iar r= . The reason is that, the revenues are 

earned and the costs are incurred according to the actual process, and not 

according to the observed one under partial information. 'iiπ  denotes the 

long-run fraction of time at which the system is in actual state � and 

observed state �’. For a similar analysis of POMDP, see Serin and Kulkarni 

(2005). 
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3.2.2 Heuristic Policy 

In section 3.2.1, we consider a manufacturer taking decisions under 

information distortion and present a nonlinear model to find the optimal 

policy. Since the presented model is a nonlinear one, it is hard to reach an 

optimal solution in a reasonably short time. Therefore, to obtain the optimal 

solution in a reasonably short time, we introduce a heuristic policy, which 

is based on a linear programming model.  

 

The nonlinear model given in section 3.2.1 is obtained by introducing 

nonlinear constraints to the full information model. A heuristic policy can 

be obtained by removing the constraints under partial information while 

defining the state as (�, �’). Note that removing the constraints will result in 

a deterministic policy in actual state �.  

 

In section 3.2.1 the manufacturer is forced to take the same actions in state 

�’. On the contrary, in this section, the constraint of taking the same 

decision in state �’ is first removed, and then introduced; i.e., a sequential 

approach is developed. This sequential approach leads to a randomized 

policy in �’, described as follows. 

 

Under information distortion, the manufacturer is not certain about the 

actual state �. Yet, the manufacturer holds an opinion on the actual state � 

when observing state �’, due to O(�’|�). Therefore, the manufacturer can 

take optimal actions of the actual state � for the observed state �’ with a 

probability O(�’|�).  
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Removing the constraints causing nonlinearity in (Ppartial) will result in the 

following model: 

 

'
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Model 3.3 – Heuristic Model 

 

Note that, under this model, the profit earned is same with the profit 

obtained under (Pfull), because the manufacturer takes actions for the 

observed state �’ based on the actual state �. 

 

 

Proposition 1: Steady state probability of 'ii aπ  under (Pheuristic) and steady state 

probability of iaπ  under (Pfull) are related as follows: 

 

' ( ' | )ii a ia O i iπ π=         (3.13) 

 

 

Proof: Firstly note that, the following relationship can be written by using the first 

constraint of (Pheuristic);  

 

' '

'

( , ' | , ' ) , 'jj b ii a

b i i a
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26

 

where ( , ' | , ' )p j j i i a  is defined in Equations (3.9) and (3.10). Note that  

 

( , ' | , ' )p j j i i a = ( | , ) ( ' | )p j i a O j j        (3.15) 

 

from Equations (3.1) and (3.2). Hence by using Equation (3.15), Equation (3.14) 

can be expressed as follows; 

 

' '

'

( | , ) ( ' | )jj b ii a

b i i a

p j i a O j jπ π=∑ ∑∑∑      (3.16) 

 

Assume that Equation (3.13) holds. Then, Equation (3.16) can be written as; 

 

'

( ' | ) ( ' | ) ( | , ) ( ' | ) , 'jb ia

b i i a
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b i a

O j j p j i a O j jπ π=∑ ∑∑     (3.18) 

 

Note that, in Equation (3.18) ( ' | )O j j ’s cancel out. Hence, 

 

⟹⟹⟹⟹ ( | , )jb ia

b i a

p j i aπ π=∑ ∑∑       (3.19) 

 

∎ 

 

Using the solution of (Pheuristic), we can derive a possibly randomized 

policy depending on the observed states. To do so, firstly we define the 

following probabilities: 
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'

'

( | ') , , '
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i

ii b

i b

a i for all a A i i S

π
β

π
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∑
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    (3.20) 

 

( | ')a iβ  denotes the probability that action 
 is taken given that the 

observed state is �’.  

 

A heuristic policy is constructed on ( | ')a iβ  by taking action 
 with 

probability ( | ')a iβ  whenever the system is at state (�, �’). Thus the heuristic 

policy naively tries to mimic the policy under full information. 

 

Note that under the given heuristic policy, the transition probabilities can 

be expressed as: 

 

( , ' | , ') ( | , ) ( | ') ( ' | )
a

p j j i i p j i a a i O j jβ=∑      (3.21) 

 

By using these transition probabilities, we can evaluate the heuristic policy 

by solving the system of equations given below: 

 

' '

'

( , ' | , ') 0 , 'jj ii

i i

p j j i i j j Sπ π− = ∀ ∈∑∑     (3.22) 

 

'

'

1ii

i i

π =∑∑          (3.23) 

 

To calculate the profit under this heuristic policy, the following equation is 

employed;  
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' '

'

ii ii

i i

r π∑∑          (3.24) 

 

In the above equation, 'iir  denotes the one step reward when the actual state 

is � and the observed state is �’. Note that, under heuristic policy, the costs 

are incurred and profits are earned according to actual process. Therefore, 

'iir  can be expressed as: 

 

' ( | ')ii ia

a

r r a iβ=∑         (3.25) 

3.2.3 An Example 

In this section, an example will be given in order to see the effects of 

information distortion on policies and profits. Two settings will be 

considered. Under the first setting, the manufacturer perfectly sees the 

actual states and takes the optimal actions under full information. Under 

the second setting, the manufacturer imperfectly observes the actual states, 

.i.e. she faces with information distortion. Under the second setting, firstly 

the manufacturer pursues optimal policy under information distortion. 

Secondly, the manufacturer carries out heuristic policy under information 

distortion. 

 

Throughout the text, due date policies are denoted as an array of state - due 

date pairs. Take the case of (-2, 0). “-2” denotes two units of stock, “0” 

denotes the quoted lead time. Another instance may be (2, 3). In this case, 
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the customer arriving to join the queue for the second place will be quoted 

a lead time of “3”. 

 

The parameters for the three manufacturers are as follows: R=5, ℓ=2, 

�=0.35, �= 0.60 and A={produce, do not produce} x {0, 1, 2, 3, 4, 5}. When “5” is 

quoted, an arriving customer will not accept the quoted lead time, i.e. 

f(dmax) = 0. 

 

Under the first setting, the manufacturer has a base stock level of 1 unit, 

and starts rejecting when the number of customers waiting is 5. The quotes 

are as [(-1, 0); (0, 1); (1, 2); (2, 3); (3, 3); (4, 4); (5, 5)]. The profit for this policy 

is 0.83543772. 

 

Note that, information distortion should be clarified before giving the 

second setting. For this example assume that, when the actual state is �, the 

manufacturer can observe the states (�+1, �, �-1) with probabilities O(�+1|�), 

O(�|�) and O(�-1|�), respectively. The policies of the second and third 

settings will be examined under the following observation probabilities 

(0.25, 0.50, 0.25).  

 

The manufacturer following the optimal policy under information 

distortion has a base stock level of 2 units, starts rejecting when the number 

of customers waiting reaches 6. The quotes are [(-2, 0); (-1, 0); (0, 1); (1, 1); (2, 

2); (3, 3); (4, 4); (5, 4); (6, 5)]. Note that, the optimal policy under partial 

information is not randomized for this specific instance. The profit 

generated under optimal policy is 0.75629761. The manufacturer following 

optimal policy has a higher base stock level than under first setting. Also, 
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shorter lead times are quoted. Hence, the profit earned is lower than under 

the first setting.  

 

The manufacturer adopting the heuristic policy under information 

distortion has a base stock level of 3 units. Rejecting the customer starts 

when the number of customers waiting is 7. As opposed to the full 

information policy and optimal policy, the actions are randomized. 

Therefore, the quotes under this setting will be given with the probability of 

taking that action. The following notation will be used for the quotes: (-1, 

1;0.851). The last term represent the probability of quoting “1” when the 

observed state is “-1”. By using this notation, the quotes are as follows: [(-3, 

0 ; 1); (-2, 0 ; 1); (-1, 0 ; 0.851); (-1, 1 ; 0.149); (0, 0 ; 0.556); (0, 1 ; 0.389); (0, 2 ; 

0.055); (1, 1 ; 0.618); (1, 2 ; 0.346); (1, 3 ; 0.036); (2, 2 ; 0.690); (2, 3 ; 0.310); (3,3 

; 0.985); (3, 4 ; 0.015); (4, 3 ; 0.781); (4, 4 ; 0.219); (4, 5 ; 0.008); (5, 4 ; 0.877); (5, 

5 ; 0.123); (6, 5 ; 1); (7, 5 ; 1). The profit under this setting is 0.66307105. Note 

that the highest base stock level is attained under this setting. Moreover, the 

highest number of customers waiting is reached under this policy. All of 

these are consequences of taking randomized actions under the heuristic 

policy. As expected, the lowest profit is earned under this setting.  
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CHAPTER 4  

 

NUMERICAL ANALYSIS 

In this chapter the effect of information distortion (information availability) 

on the policies and profits is analyzed. Firstly, the effect of information 

distortion is examined under different parameters. Both heuristic and 

optimal policies obtained by the methods given in Chapter 3 are discussed. 

The profit gap between the two policies is investigated. The effect of 

observation matrix on the information distortion is also assessed. The effect 

of Make-to-Order (MTO) (where the base stock level is zero) and Make-to-

Stock (MTS) (where the optimal base stock level is kept) schemes on the 

value of information is analyzed. Finally, different lead time quotation 

policies; accept-all, accept-reject and precise lead time; are compared to find 

under which policy the value of information is highest. 

 

Firstly, information distortion should be clarified. Although it can be 

defined in many different ways, two specific structures with respect to the 

observation matrix are investigated under different parameters. In the first 

structure, given that the system is in state �, it is possible to observe the 

system in states (�-1, �, �+1) with probabilities (Oii-1, Oii, Oii+1). We call this 

triple state observation. Under the second structure, it is assumed that given 

that the system is in state �, states (�-1, �) [or (�+1, �)] can be observed with 

probability (Oii-1, Oii). [or (Oii+1, Oii)]. We call this double-state observation. The 

first structure for double-state observation will be abbreviated as “DSOF” 
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(Double State Observation Former) whereas the second will be abbreviated 

as “DSOL” (Double State Observation Latter). Note that, under both 

double-state and triple-state observation structures, it is possible to observe 

state �, when the actual state is � with probability Oii. Oii will be called self-

state observation probability throughout the text. 

 

To perform the analysis, a workstation having a RAM of 4 GB and a 

processor of Intel Core I7 620M with 2.67 GHz is employed. The models 

given in Chapter 3 are run in GAMS program. BARON is chosen as the 

solver for optimal policies under the partial information, whereas CPLEX is 

preferred for full information policies and heuristic policies. The inputs for 

the models; profits and transition probabilities; are calculated by running 

Dev C++ compiler. Note that, finding the full information optimal and 

heuristic policies requires negligible time compared with optimal policies 

under partial information. 878 cases were analyzed in this study. 

 

In the analysis, the profit gap between the optimal and heuristic policies 

and the policy under full information is used as a performance measure. 

Specifically the following measures are used; 

 

opt heu

opt

Profit  - Profit

Profit
opt heuGAP − =       (4.1) 

 

full heu

full

Profit  - Profit

Profit
full heuGAP − =       (4.2) 

 

full opt

full

Profit  - Profit

Profit
full optGAP − =       (4.3) 
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In the above equations, “Profitopt” and “Profitheu” represent the profit under 

partial information for optimal and heuristic policies, respectively. The 

profit under full information is represented by “Profitfull”.  

 

For all the analysis, the following parameters are used: R=5, ℓ=2, μ=1. The 

production action space is Aa ={produce, do not produce}. Action space for 

lead time quotation is assumed as Ab ={0, 1, 2, 3, 4, 5} for sections 4.1 - 4.3. 

In section 4.4, we assume Ab can take different values. In all the figures the 

action space for production will be abbreviated as Aa ={p, dp} 

 

The acceptance probability of customers is assumed as; 

 

( )
max

1
d

f d
d

= −         (4.4) 

4.1 Analysis of Heuristic and Optimal Policies under Partial 

Information in the Presence of Triple-State Observation 

In this section, heuristic and optimal partial information profits for triple-

state observation are compared under different parameters to see the effect 

of information distortion on the performances. Specifically the effect of 

observation matrix on the profits is analyzed and the value of information 

is assessed. 

 

As mentioned above, under triple state observation, given that the system 

is in �, three states; �, �-1, �+1, can be observed with probabilities Oii, Oii-1, 
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Oii+1, respectively. It is assumed the probability of observing states �-1 and 

�+1 are equal; that is,  

 

1 1 1
2

ii
ii ii

O
O O− += = −         (4.5) 

 

For example, when Oii=0.40, Oii-1=Oii+1=0.30. In this case, it is more likely to 

observe the self–state than to observe Oii-1 or Oii+1. 

4.1.1 The effect of unit holding cost on value of information 

Firstly, profit under optimal policy under partial information will be 

discussed under different holding cost values. The profits earned under 

optimal policy for increasing holding cost values are shown in Figure 4.1. 

 

 

 

 

Figure 4.1 - Profits generated by optimal policies under different holding 

costs vs. Oii under triple state observation under R=5, ℓℓℓℓ=2, ����=0.35 and 

A={p,dp}×{0,1,…,5} 
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Observation 1-a: An increase in self-state observation probability does not 

necessarily increase the profit, i.e. it may imply higher information distortion. 

 

 

First of all, self–state observation probability giving the lowest profit can be 

interpreted as the probability value under which the value of information is 

highest. Under different parameters, the lowest profit is realized under 

different self-state probabilities. One would expect to see, as Oii increases 

from 0 to 1, the policy and profit would approach to those obtained under 

full information model. However, this is not the case for triple-state 

observation (also for double state). For holding cost values shown in Figure 

4.1, the lowest profit is yielded under Oii values greater than 0. The analysis 

shows that if self-state observation probability is low, then an increase in Oii 

does not necessarily imply information availability (or equivalently it does 

not imply less information distortion), i.e. the value of information can 

increase. Under all holding cost values in Figure 4.1 as self–state 

observation probability increases, the profit under optimal policies first 

falls and then increases. Take the case under h=0.60. For Oii values less than 

0.20, the optimal policy quotes positive lead times even if there are items in 

stock, i.e. the policy reserves the item to deliver to the same customer at a 

later time. This is not a rational policy because it may lead to unnecessary 

loss of customers and revenue. Furthermore, losing a customer results in 

unnecessary holding cost. As a result, lower profit than the one under full 

information policy is earned. Under h=0.6, for Oii ∈ [0, 0.20] the highest 

profit is generated under Oii=0.00. The reason is as follows. Note for 
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instance that, when optimal base stock level is 1, under Oii=0.00 when the 

observed number of stock is 1, the manufacturer has no doubt that actual 

stock level is 0. Therefore, although observed stock level is positive, quoting 

positive lead times seems reasonable. On the other hand, for Oii values 

greater than 0, an observed stock level may correspond to several (actual) 

stock levels. When the observed stock level is 1, the actual stock level could 

indeed be 1. Thus, it is more likely that quoting positive lead times is an 

irrational policy. The higher the Oii value, the more irrational the policy is 

and the lower the profit. In conclusion, for Oii ∈ [0, 0.2], when Oii = 0.00, 

information distortion is relatively the lowest. 

 

Under the same holding cost (h=0.6), for Oii values greater than 0.20, the 

lead time quote is zero when the manufacturer has items in inventory, i.e. 

the policy is partly in line with the policy under full information. Hence 

unnecessary loss of customers and revenue is avoided. However, there are 

slight variances in terms of duedate quotes, especially for middle values of 

Oii (Oii ∈ [0.3, 0.6]). When policies are analyzed under h=0.60, for Oii less 

than 0.6, it is seen that the lead time quotes are deterministic but shorter 

than the quotes under full information policy. Therefore, additional penalty 

cost is incurred. The profit under Oii=0.30 takes the lowest value for Oii ∈ 

[0.3, 0.6], since the shortest lead times are quoted under Oii=0.30. As Oii 

increases, the lead times get closer to the ones under the full information 

policy. Hence, less penalty cost is incurred and the profit increases. For Oii 

values greater than 0.60, as Oii gets closer to 1, the policies becomes 

randomized. A lead time quotation policy similar to the full information 

lead time policy is pursued for Oii values greater than 0.70, but because of 

the randomization the profits are lower than the full information profit. The 
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lowest profit is yielded under Oii=0.70 in (0.70, 1.00) since the shortest lead 

times, are quoted under Oii=0.70. In summary, for Oii values greater than 

0.20, lead times are shorter than those under full information. But as Oii 

increases, the quotation policy approaches to full information policy, i.e. 

longer lead times are quoted. 

 

 

Observation 1-b: Under make-to-order production scheme, for Oii values where 

the information distortion is highest, the optimal decision is to keep stock, and the 

higher the cost of keeping stock, the higher the value of information. 

 

 

Under sufficiently high holding cost (h ≥ 0.7), the system operates under 

the make-to-order scheme under full information. In that case a change in 

holding cost does not affect the profit. In Figure 4.1, it is observed that if Oii 

is sufficiently low, and holding cost is sufficiently high (for example when 

Oii ∈ [0, 0.2] and h ∈ {1.00, 1.25, 1.50, 2.00, 3.00}, or equivalently, when Oii ≤ 

0.2 and h≥ 1.00}), still MTO scheme is the optimal operating scheme. 

Therefore, an increase in holding cost does not affect the profit. 

 

On the other hand, as Oii increases, the system switches to a hybrid MTS-

MTO scheme and starts keeping stock (for example, Oii≥0.5 and h ∈ {1.00, 

1.25, 1.50, 2.00, 3.00}). When the system keeps stock under partial 

information, an increase in holding cost decreases the profit. 

 

The reason for operating under MTO for low Oii and under MTS for higher 

Oii is as follows. Consider the extreme case where Oii=0. When the 
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manufacturer observes that there are no customers in the system, he 

perfectly knows that there exists 1 customer in the system and makes the 

quotes accordingly. Since customer arrival rates are relatively low (hence 

this leads to MTO), the perfect information in state 0 is quite useful. Hence, 

the system does not keep stock similar to the full information case, whereas 

the profit obtained is slightly lower than the profit under full information. 

As Oii increases (but still low) the amount of information provided 

decreases, but it is still sufficient so that the system still operates under 

MTO. As Oii increases, the lead time quotes are less accurate: a short quote 

might be stated when there is actually relatively higher number of 

customers waiting. 

 

As Oii increases, the information distortion also increases and there exists a 

threshold at which the system starts keeping 1 unit of stock, due to not 

being able to see the actual number of customers in the system. Keeping 

stock dampens the effect of wrong due-date quotation. Note that, the value 

at which the system starts keeping stock increases with h value. If the 

system operates under MTO scheme, the Oii value under which the profit is 

lowest is as high as 0.70. For Oii ∈ [0, 0.7], as Oii increases the effect of 

wrong due date quotation increase. It is possible to dampen the effect by 

keeping stock; however this option results in holding cost. As h increases, 

the Oii value at which the system starts keeping stock increases. Note that, 

when stock is kept, the system may irrationally quote positive lead times 

when there is an item in stock. But, this behavior vanishes as Oii further 

increases and as a result the profit increases. When Oii is sufficiently high, 

the information level is high enough that the operating scheme is MTO 

again. □ 
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4.1.2 The effect of arrival rate on value of information 

Behavior of the profits with respect to Oii under varying customer arrival 

rates by optimal policies is shown in Figure 4.2. 

 

 

 

 

Figure 4.2 - Profits earned by optimal policies under different customer 

arrival rates vs. Oii under triple state observation under R=5, ℓℓℓℓ=2, hhhh=0.50 

and A={p,dp}×{0,1,…,5} 

 

 

Note that, under different customer arrival rates, the comparison of profit 

per unit transition is not meaningful as the rate changes with the arrival 

rate. Hence, when comparing customer arrival rates, the calculations are 

based on profit per unit time, not per transition.  
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Observation 2: As customer arrival rate increases, the Oii value where the value of 

information is highest decreases.  

 

 

As shown in Figure 4.2, as customer arrival rate increases, the Oii value 

where the value of information is highest has a tendency to decrease. For 

relatively low customer arrival rates, �=0.35 and �=0.50, the highest benefit 

of information is obtained under Oii=0.20 and Oii=0.10 respectively, whereas 

for high customer arrival rates, �=0.75 and �=1.00, the highest benefit of 

information is obtained under Oii=0.00.  

 

When λ is low, as discussed in Observation 1-a, for low Oii values an 

increase in Oii results in a decrease in profit (i.e, an increase in the value of 

information). The reason for decrease in profit is irrationally quoting 

positive lead times when there is stock. For very low Oii values, quoting 

positive lead times is actually the right action, since an observed positive 

stock corresponds to an out-of-stock situation. As Oii increases, it is less 

certain whether an observed stock corresponds to an item or out-of-stock 

situation, and thus the profit decreases. As arrival rate increases, so does 

the optimal stock level (under full information). When Oii=0, when one unit 

of stock is observed, possibly there are two units in stock or no units at all. 

Thus, low Oii values do not necessarily correspond to improved 

information availability. Therefore, as Oii increases, information availability 

increases together with the profit. □ 
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4.1.3 Comparison of the heuristic policy with the optimal policy 

Heuristic policy is more inflexible in nature in contrast to the optimal 

policy. The inflexibility of the heuristic policy may lead to considerable 

declines in profits especially under high holding cost values. Figure 4.3 

shows the profits under heuristic policy under different holding cost 

values.  

 

 

 

 

Figure 4.3 - Profits obtained by heuristic policies under different holding 

costs vs. Oii under triple state observation under R=5, ℓ=2, ����=0.35 and 

A={p,dp}×{0,1,…,5} 

 

 

For all the holding cost values in Figure 4.3, a decline in the profits is seen 

as Oii increases from 0.00 to 0.10. The reason for the decline in the profit is 

the addition of an observable state. Under heuristic policy, as Oii increases 

from 0.00 to 0.10, the number of randomized actions increases. Under 
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Oii=0.00, when the manufacturer observes state �, the actual state will be 

either �-1 or �+1. On the other hand, under Oii=0.10, when the manufacturer 

observes state �, the actual state can be �-1, �, or �+1. Therefore, the 

randomization in actions increases when Oii increases from 0.00 to 0.10. The 

increase in the number of randomized actions also increases the value of 

information.  

 

In Figure 4.3, for Oii values greater than 0.10, as the self-state observation 

probability increases, the value of information decreases. The reason is as 

follows. Under the same full information policy, for all the self-state 

observation probabilities (except Oii=0.00 and Oii=1.00), the same actions are 

taken with changing probabilities under heuristic policy. In other words, 

the structure of the heuristic policy is same under the same full information 

policy. First of all, due to randomization a higher base stock level than full 

information base stock level is compulsory. Secondly, positive lead times 

are quoted when there are items in the inventory. Thirdly, lead times are 

randomized. As Oii increases, nothing improves in the policy. However, 

with an increased self-state observation probability, heuristic policy can 

mimic the full information policy more accurately. For instance, as Oii 

increases, the heuristic model decreases the long run fraction of time spent 

in the adopted base stock level (which is higher than full information base 

stock level). Therefore the value of information decreases with increasing 

Oii values. 

 

 

Observation 3: Under partial information, optimal policy is more robust to the 

changes in self–state observation probability than the heuristic policy. 
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Heuristic policy is very much dependent on full information policy by 

definition, and differs from the full information policy only slightly as self–

state observation probability changes. In other words, it cannot adapt itself 

as Oii increases. On the contrary, optimal policy distinguishes itself by 

adapting to the changes in Oii. It is flexible enough to respond to the 

changes in self–state observation probability by quoting positive lead times 

when there are items in the inventory, quoting shorter lead times than full 

information policy and adopting randomized actions. As the self-state 

observation probability increases, the optimal policy may change the 

action, i.e. not necessarily the same action is taken for the observed state �’ 

for changing Oii values. Hence, the negative effect of information distortion 

is minimized under this policy. □ 

 

To sum up, optimal policies has the flexibility to switch actions as the self–

state observation increases. However, policy is same under heuristic policy 

for all Oii values. In other words, the heuristic policies are insensitive to 

changes in self–state observation probability.  

 

 

Observation 4: Given that the system operates under the same policy under full 

information, as holding cost increases, the profit gap between the heuristic and 

optimal policies increases under the same self–state observation probability. 
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Under partial information, the holding cost is higher due to having a higher 

base stock level than full information policy, reserving items to deliver at a 

later time and due to randomized lead times. As mentioned, heuristic 

policy takes the same actions for the observed state �’ for changing Oii 

values under the same full information policy. Therefore, under the same 

full information policy, a fall in the profits generated under heuristic policy 

is triggered by the increase in the holding cost. However, if the increase in 

the holding cost changes the policy obtained under full information (by 

decreasing the stock level), the increase in holding cost does not necessarily 

increase the gap between profits under optimal and heuristic policies.  

 

 

 

 

Figure 4.4 - Gap between profits obtained by heuristic and optimal 

policies under different holding cost values vs. Oii for triple-state 

observation under R=5, ℓ=2, ����=0.35    and A={p,dp}×{0,1,…,5} 
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Figure 4.4 shows the gap between profits by heuristic and optimal policies 

under various holding cost values. Note that, there are two different full 

information policies adopted by the holding cost values shown in Figure 

4.4. The first one is obtained under h=0.50 and h=0.65, the second one is 

obtained under h=1.00, h=1.25 and h=1.50.  

 

Under high holding cost (h=1.00, h=1.25 and h=1.50), the full information 

policy keeps no stock. The optimal policy keeps the same base stock level as 

the full information. For higher Oii values, the optimal policy keeps higher 

base stock and quotes longer lead times compared to low Oii values. On the 

other hand, under heuristic policy, for all Oii values the base stock level is 

higher than full information policy and does not change. Since this policy is 

pursued under all the high holding cost values under heuristic policy, an 

increase in the holding cost contributes a fall in the profits. Note that, as 

shown in Figure 4.4, as holding cost increases, the gap between profits may 

decrease if the policy under full information changes with the holding cost. 

For example when Oii=0.5, an increase holding cost from 0.65 to 1.00, 

narrows the gap between the profits. 

 

Note that, in Figure 4.4, the widest profit gap is obtained under the self–

state observation probability where the value of information is highest 

under heuristic policy. In other words, the Oii value where the lowest profit 

is earned under heuristic policy determines the Oii value where the widest 

gap is obtained. Therefore the maximum decrease in the profit under 

heuristic policy is higher than the maximum decrease in the profit under 

optimal policies under the same holding cost. Being able to take different 

actions for changing Oii values makes a slight fall in the profits under 
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optimal policy. However, taking the same actions under heuristic policy 

causes sharp declines in the profits. 

 

The gap between the optimal and heuristic policies under varying customer 

arrival rates is shown in Figure 4.5. 

 

 

 

 

Figure 4.5 – Gap between profits obtained by heuristic and optimal 

policies under different customer arrival rates vs. Oii under triple state 

observation under R=5, ℓ=2, hhhh=0.35    and A={p,dp}×{0,1,…,5} 

 

 

As shown in Figure 4.5, the gap between the profits under heuristic and 

optimal policies narrows as the customer arrival rate increases. The 

underlying reason for the narrowing gap between the policies is closely 

related with having a base stock level higher than full information base 

stock level. Note that, under heuristic policies, the base stock level is always 

higher than full information base stock level (the reason for a higher base 
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stock level lies under randomized actions). Under optimal policies, under 

low customer arrival rates, the full information base stock level is adopted 

for low and middle Oii values. Therefore, as shown in Figure 4.5, the gap 

between the policies under �=0.35 is substantial for low and middle Oii 

values. On the contrary, the gap is narrower under high customer arrival 

rates, since under optimal policies the base stock level is higher than full 

information base stock level like under heuristic policies. Therefore, the 

effect of a higher base stock level under heuristic policies is mitigated. 

 

Although lower profits are generated under heuristic policies than under 

optimal policies, the performance of heuristic policies is outstanding with 

respect to computational time. In general, the time spent under heuristic 

policies is almost %95 lower than under optimal policies. The time gap 

between the two policies can widen up to %99 under certain circumstances 

especially when Oii takes middle values. The heuristic policy can be 

preferred to optimal policy under high customer arrival rates as the profit 

gap is insignificant under these high rates when compared with the ones 

under other changing parameters. □ 

4.2 Analysis of Heuristic and Optimal Partial Information Policies in 

the Presence of Double-State Observation 

In this section, heuristic and optimal policies under partial information are 

compared in the presence of double-state observation under different 

parameters.  
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As mentioned, under double–state observation, two states can be observed 

under two structures, DSOF or DSOL. Under DSOF, when the 

manufacturer observes state �, the core process can be � or �+1 with 

probabilities iiπ  and 
1,i iπ + , respectively. On the other hand, under DSOL, 

when the manufacturer observes state �, the core process can be � and �-1 

with probabilities iiπ  and 
1,i iπ − , respectively.  

 

Under double–state observations under different holding cost values, the 

profits under optimal policies are given in Figure 4.6. 

 

 

 

 

Figure 4.6 - Profits obtained by optimal policies under different holding 

costs vs. Oii under double state observation under R=5, ℓ=2, ����=0.35 and 

A={p,dp}×{0,1,…,5} 
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Note that in Figure 4.6, under Oii=0 and Oii=1, the same profit is generated 

under both DSOF and DSOL structures under the same holding cost. The 

reason for the same profit is that the observation matrices under Oii=0 and 

Oii=1 form the “perfect observability class” (Zhang, 2010). Therefore, the 

system state is revealed by the action set, i.e. perfect observability applies.  

 

A careful examination of Figure 4.6, also reveals that the profits earned 

under DSOL and DSOF structures under the same holding cost are highly 

symmetrical with respect to self-state observation probabilities. For 

instance, under h=0.40, the profit realized under DSOF structure when 

Oii=0.20 is nearly equal to the profit made under DSOL structure when 

Oii=0.80. The reason is that the structure of the policy is substantially same 

under both DSOL and DSOF. The difference between the policies lies in the 

states and the probabilities of the randomized actions. The action taken in 

the observed state i under DSOL structure is roughly same as the action 

taken in the observed state i-1 under DSOF structure. Note that, there are 

subtle differences in probabilities of taking a randomized action under 

symmetrical DSOL and DSOF structures.  

 

 

Observation 5: Under DSOF, low Oii leads to higher base stock compared to full 

information, whereas under DSOL high Oii leads to higher base stock compared to 

full information. 

 

 

Under DSOF, when actual state is �, observed states are � or � -1. In other 

words, when observed state is �, actual state is � or � +1. When Oii is low, 
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steady-state analysis shows that given observed state is �, iiπ .and 
1,i iπ +  are 

close to each other. Therefore, the manufacturer has a tendency to quote 

wrong lead times since the information availability is low. To mitigate the 

effect of wrong lead time quotation the system increases the base-stock 

level. For high self-state observation probabilities, steady state analysis 

shows that iiπ  is much higher than 
1,i iπ + . Therefore, the lead time quotes 

gets closer to full information lead time quotes. Similar behavior is 

observed under DSOL under high Oii values. In those cases, �, iiπ .and 
1,i iπ −  

are close to each other. As under DSOF under low Oii values, to minimize 

the effect of wrong lead time quotation, a higher base stock level than full 

information base stock policy is kept. Since extra stock is kept, an increase 

in holding cost decreases the profits under partial information. However, as 

opposed to DSOF structure, under low Oii values, 
1,i iπ −  is much higher than 

iiπ . Since one of probabilities is much higher than the other, the information 

availability is high for the manufacturer under imperfect information. This 

explains the symmetric behavior in Figure 4.6. 

 

The behavior of profits generated under heuristic policy for both DSOF and 

DSOL structures is similar to optimal policy. The profits yielded under 

DSOF and DSOL structure heuristic policy are nearly symmetrical as under 

optimal policies. However, due to their inflexibilities, the same policy 

structure is adopted for 0 < Oii <1 under the same full information policy.  

 

The behavior of profits under different customer arrival rates for DSOF and 

DSOL structures are similar with the ones under different holding cost 

values. □ 



 

51

4.3 The Effect of Make-to-Stock (MTS) vs. Make-to-Order (MTO) 

Schemes on Value of Information 

In this section, MTS and MTO schemes are examined under triple state 

observation under optimal policies to see the effect of schemes on value of 

information. To assess the effect, the profit gap under two schemes is 

analyzed under different parameters for fixed Oii values. In this section, we 

use the following performance measure; 

 

Profit  -  Profit

Profit

full opt

MTO MTO
MTO full

MTO

VoI =       (4.6) 

 

Under both full and partial information, a MTS scheme carries optimal level 

of inventory whereas under a MTO scheme no inventory is carried, i.e. base 

stock level is zero. The manufacturer operating under a MTS scheme can 

take both lead time quotation and production decisions at any observed 

state. On the other hand, the manufacturer operating under a MTO scheme 

can only take production and lead time quotation decisions for �’>0. Note 

that, under partial information, under MTO scheme, when the actual state 

is zero, i.e. �=0, a manufacturer can only observe two states �’=0 and �’=1.  
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Figure 4.7 – Profit gap between MTS and MTO schemes and full 

information vs. h under R=5, ℓ=2, λ=0.35, Oii=0.40 and A={p,dp}×{0,1,…,5} 

 

 

As shown in the figure above, an increase in the holding cost does not affect 

the profit generated under MTO schemes. The reason is, under an MTO 

scheme the manufacturer does not keep any stock. Hence, an increase in the 

holding cost does not have any effect on the profit. On the other hand, an 

increase in the holding cost affects the profit under an MTS scheme. Under 

relatively low holding cost, the gap between partial information and full 

information MTS scheme is narrow. Under relatively low holding cost 

(h=0.20), the base stock level is higher under partial information MTS 

scheme than full information MTS scheme. However, the effect of a higher 

base stock level is modest since the holding cost is low. On the other hand, 

high holding cost has significant effect when the partial information base 

stock level is higher than full information base stock level. Under relatively 

high holding cost (h=0.80), the manufacturer does not keep any stock under 
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full information MTS scheme, i.e. the manufacturer operates under a MTO 

scheme. But, under partial information MTS scheme, the manufacturer has 

a base stock level greater than zero. Therefore, a higher base stock level 

than full information has a powerful effect on the profit generated under 

partial information when the holding cost is high.  

 

When the value of information is analyzed under full information with 

respect to increasing arrival rates, it is observed that under relatively low 

customer arrival rates, the base stock level is zero. Therefore, the 

manufacturer under full information operates under a MTO scheme. On the 

other hand, under high customer arrival rates, under full information, the 

manufacturer operates under a MTS scheme. 

 

 

 

 

Figure 4.8 – Profit gap between MTS and MTO schemes and full 

information vs. h under R=5, ℓ=2, h=0.50, Oii=0.40 and A={p,dp}×{0,1,…,5} 
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As shown in the figure above, an increase in the customer arrival rate 

causes the value of information under MTO scheme to increase. There are 

two effects behind the increase in the value of information under partial 

information MTO scheme. The first effect is as follows. Given that observed 

state is �; it is more likely that actual state is �-1, �, � +1 for �’>0. Hence lead 

time quotes are ineffective for �’>0. On the other hand, when �’=0, most of 

the time lead time quote is 0. Thus under �’=0, lead time quote is effective. 

The second effect is as follows. As the customer arrival rate increases, 

system spends more time under ineffective lead time quote region, i.e. �’>0. 

Thus this leads to decrease in profit. Therefore, value of information is 

higher under high customer arrival rates.  

 

The decline in the value of information under MTS scheme with increasing 

customer arrival rate is related with having a high base stock level. As 

mentioned in Section 4.1, under partial information, the policy may prefer 

to quote positive lead times when there are items in the stock, and the effect 

of positive lead time quotation is much more noticeable when the base 

stock level is one, while the effect vanishes as base stock level increases. 

Under high customer arrival rates, under MTS scheme, base stock levels are 

high. Therefore the effect of positive lead time quotation is mitigated and 

the value of information decreases with increasing customer arrival rate. □ 

4.4 The Effect of Lead Time Quotation Policies on the Value of 

Information 

In this section, different lead time quotation policies are examined to find 

the effect lead time quotation policies on information distortion. Firstly, we 
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consider a manufacturer who accepts all the customers, i.e. maximum due 

date is not quoted to any customer. Secondly, a manufacturer where the 

customers are either accepted or rejected is considered. Thirdly, as in 

Section 4.1, a manufacturer who quotes precise lead times to customers will 

be examined. The aim is to find under which lead time quotation policy the 

benefit of information is highest.  

 

All of the analysis is made under optimal policies for triple–state 

observation. The analysis will be conducted on increasing holding cost 

values firstly, and then on increasing customer arrival rates. To assess the 

performance of policies, the gap between the profits under partial 

information and corresponding full information will be employed. In this 

section, we use the following performance measure to assess the value of 

information; 

 

Profit  -  Profit

Profit

full opt

LTQP LTQP

MTO full

LTQP

VoI =       (4.7) 

 

where Profit fullLTQP  and ProfitoptLTQP  denote the profit for a lead time quotation 

policy obtained under full information and partial information optimal 

policy respectively. 
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Figure 4.9 - Profit gap between partial information and full information 

lead time policies vs. h under R=5, ℓ=2, λ=0.35 

 

 

Under increasing holding cost, it is hard to decide on under which lead 

time quotation policy the benefit of information is highest. The base stock 

levels obtained under partial information accept-all policies are higher than 

under partial information accept-reject and precise lead time policies. 

Therefore, the changes in holding cost are remarkably effective on partial 

information accept-all policies. The positive lead time quotation when there 

are items in the inventory may take place under partial information precise 

lead time quotation policy. However, positive lead time quotation policy 

does not take place under partial information accept-reject policy, since this 

would mean to reject the customer when there are items in the inventory 

(the manufacturer can only quote 0 or maximum lead time). Therefore, the 

positive lead time quotation policy is not effective under partial 

information accept-reject policies. 
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Figure 4.10 - Profit Gap between Partial Information and Full 

Information Lead Time Policies vs. h under R=5, ℓ=2, h====0.50 

 

 

As shown in the figure above, the value of information is generally highest 

under partial information precise lead time quotation policies, and 

generally lowest under partial information accept-all policies. The reason 

behind is the base stock levels adopted. As mentioned above, the highest 

base stock levels are obtained under accept-all policies. Under relatively 

low customer arrival rates, the highest holding cost is incurred under 

partial information accept-all policy. However, with increasing customer 

arrival rates, the base stock levels under partial information lead time 

policies get closer. Therefore, the effect of a higher base stock level is 

mitigated. Under relatively high customer arrival rates, however, partial 

information accept-all policy has the highest base stock level. Therefore, the 
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value of information increases under partial information accept-all policy as 

opposed to other partial information lead time policies.  

 

Note that, wrong lead time quotation is not possible under both accept-all 

and accept-reject policies. This implies higher information availability 

under precise lead time quotation schemes.□ 
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CHAPTER 5  

 

CONCLUSION 

In this study, we consider a manufacturer taking production and lead time 

quotation decisions in an environment where the exact status of production 

is not directly observable but rather partially observable. The 

manufacturer’s aim is to find the joint optimal production and lead 

quotation policy that maximizes her profit. We try to assess the value of 

information by comparing the profit generated and the policy followed by a 

manufacturer who does not face any information distortion, i.e. can access 

to perfect information, with another manufacturer in the presence of 

information distortion. A stochastic model is introduced to find the optimal 

joint production and lead time quotation policy under perfect information. 

To find the optimal decisions for the manufacturer facing information 

distortion, Partially Observable Markov Decision Process is employed. We 

study two approaches for the manufacturer facing information distortion. 

In the first approach, we introduce a nonlinear programming model to find 

the optimal decisions. In the second approach, a heuristic approach, 

constructed on optimal actions taken under perfect information is 

represented. To examine the value of information, we define information 

distortion with two specific structures, triple-state, where the manufacturer 

can observe states �-1, �, �+1, and double-state observations �-1, � or �+1, � 

when the actual state is �. Under both structures, we allow the 

manufacturer to observe the state � when the actual state is � with a 
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probability named self-state observation probability. We analyze the value of 

information under different parameters by adopting the policies under 

nonlinear programming model and heuristic approach under triple-state 

observations. Interesting observations are made during analyzes.  

 

Firstly, it is found that, an increase in self-state observation probability does 

not necessarily lead to an increase in the profit. Secondly, it is demonstrated 

that as the holding cost increases the value of information also increases 

even if the operating scheme is MTO under full information. Moreover, 

under increasing customer arrival rates, the self-state observation 

probability giving the highest value of information is shown to be 

decreasing. We then compare the optimal policies and heuristic policies 

under information distortion. We observe that, optimal policy is more 

robust to the changes in self–state observation probability than the heuristic 

policy under partial information. In addition, it is observed that as holding 

cost increases, the profit gap between the heuristic and optimal policies 

increases under the same self–state observation probability given that the 

system operates under the same policy under full information. We also 

analyze the value of information under double-state observation by 

introducing two structures, DSOL and DSOF. The profits under DSOL and 

DSOF are seen to be highly symmetrical. Analysis show that; under DSOF, 

higher base stock levels compared to full information are obtained under 

low self-state observation probabilities, whereas under DSOL higher base 

stock compared to full information are attained under high self-state 

observation probabilities. Then, the effect of MTS and MTO schemes is 

investigated under triple state observation under optimal policies to see the 

effect of schemes on value of information. The value of information is 
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found to be higher under partial information MTS scheme than MTO 

scheme under increasing holding cost. However, the value of information is 

lower under partial information MTS scheme than partial information MTO 

scheme under high customer arrival rates. Finally, the effect of different 

lead time quotation policies; accept-all, accept-reject and precise lead time 

quotation, on value of information is studied. Under low customer arrival 

rate, the effect of holding cost on value of information cannot be compared 

under different schemes. However, under high customer arrival rates, the 

value of information under precise lead time quotation policy is generally 

found to be higher than the other quotation policies. 

 

The analysis made in this study can be extended in many future research 

directions. Firstly, in this study, the fixed cost of production is assumed to 

be zero. The fixed cost of production can be assumed to be greater than 

zero and a different policy structure is obtained. Secondly, we confine the 

information distortion into two specific structures. Other information 

distortion structures, especially the ones where the asymmetric observation 

probabilities take place, may be defined and examined. Thirdly, we 

considered a single acceptance probability function. Other probability 

functions can be defined, and the effect of acceptance probability on the 

policies may be analyzed. Lastly, the revenue earned from any customer 

who has placed an order is assumed to be the same. The revenue earned 

from a customer who has placed an order is assumed not to be the same 

and two different customer classes can be considered in the problem. 
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