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ABSTRACT

A BIDIRECTIONAL LMS ALGORITHM FOR ESTIMATION OF FAST
TIME-VARYING CHANNELS

Yapıcı, Yavuz

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. A.̈Ozgür Yılmaz

May 2011, 186 pages

Effort to estimate unknown time-varying channels as a part of high-speed mobile communica-

tion systems is of interest especially for next-generationwireless systems. The high compu-

tational complexity of the optimal Wiener estimator usually makes its use impractical in fast

time-varying channels. As a powerful candidate, the adaptive least mean squares (LMS) algo-

rithm offers a computationally efficient solution with its simple first-order weight-vector up-

date equation. However, the performance of the LMS algorithm deteriorates in time-varying

channels as a result of the eigenvalue disparity, i.e., spread, of the input correlation matrix in

such channels.

In this work, we incorporate the LMS algorithm into the well-known bidirectional process-

ing idea to produce an extension called thebidirectional LMS. This algorithm is shown to be

robust to the adverse effects of time-varying channels such as large eigenvalue spread. The as-

sociated tracking performance is observed to be very close to that of the optimal Wiener filter

in many cases and the bidirectional LMS algorithm is therefore referred to as near-optimal.

The computational complexity is observed to increase by thebidirectional employment of the

LMS algorithm, but nevertheless is significantly lower thanthat of the optimal Wiener filter.
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The tracking behavior of the bidirectional LMS algorithm isalso analyzed and eventually a

steady-state step-size dependent mean square error (MSE) expression is derived for single-

antenna flat-fading channels with various correlation properties. The aforementioned analysis

is then generalized to include single-antenna frequency-selective channels where the so-called

independence assumption is no more applicable due to the channel memory at hand, and then

to multi-antenna flat-fading channels. The optimal selection of the step-size values is also

presented using the results of the MSE analysis. The numerical evaluations show a very

good match between the theoretical and the experimental results under various scenarios. The

tracking analysis of the bidirectional LMS algorithm is believed to be novel in the sense that

although there are several works in the literature on the bidirectional estimation, none of them

provides a theoretical analysis on the underlying estimators.

An iterative channel estimation scheme is also presented asa more realistic application for

each of the estimation algorithms and the channel models under consideration. As a result,

the bidirectional LMS algorithm is observed to be very successful for this real-life application

with its increased but still practical level of complexity,the near-optimal tracking performance

and robustness to the imperfect initialization.

Keywords: Least mean squares (LMS), channel estimation, low-complexity, mean square

error (MSE), optimal filter.
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ÖZ

ZAMANLA HIZLI DE ĞİŞEN KANALLARIN KESTİRİM İ İÇİN İK İ YÖNLÜ LMS
ALGORİTMASI

Yapıcı, Yavuz

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. A.Özgür Yılmaz

Mayıs 2011, 186 sayfa

Yüksek hızlı mobil iletişim sistemlerinin bir bileşeniolan zamanla değişen haberleşme kanal-

larının kestirimi, özellikle yeni nesil kablosuz sistemlerin geliştirilmesi bakımından ilgi çek-

mektedir. En iyi Wiener kestiricisinin yüksek hesaplama karmaşıklığı, bu süzgecin zamanla

hızlı değişen kanallarda kullanımını elverişsiz hale getirmektedir. Güçlü bir alternatif olan

uyarlamalı en küçük ortalama kareler (LMS) algoritmasıise, sahip olduğu basit birinci-derece

ağırlık-vektörü güncelleme denklemi ile hesaplama karmaşıklığı bakımından oldukça etkin

bir çözüm sunmaktadır. Fakat, zamanla değişen kanallarda girdi korelasyon matrisine ait

özdeğerlerin birbirinden farklılığı sebebiyle LMS algoritmasının bu tür kanallardaki başarımı

kötüleşmektedir.

Bu çalışmada, LMS algoritmasını iyi bilinen iki yönlü işleme fikriyle biraraya getirerek iki

yönlü LMS algoritmasını ürettik. Bu algoritmanın, zamanla değişen kanallarda bulunan

yüksek özdeğer farklılığı gibi olumsuz etkilere karşı gürbüz olduğu gösterilmiştir. Sonuçtaki

takip performansı, en iyi Wiener süzgecininkine oldukçayakın kalmakta ve bu sebeple de en

iyinin yakınında olarak ifade edilmektedir. Hesaplama karmaşıklığının, LMS algoritmasının

iki yönlü kullanımı ile arttığı gözlense de bu sonuç eniyi Wiener süzgecininkine göre oldukça
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düşük ve klasik LMS algoritması ile de benzer düzeydedir.

İki yönlü LMS algoritmasının takip davranışı ayrıca analiz edilmiş ve sonuçta tek-antenli

düz-sönümlemeli kanallarda çeşitli korelasyon özellikleri için basamak-büyüklüğüne bağlı

yatışkın-durum ortalama kare hatası (MSE) ifadesi elde edilmiştir. Bahsedilen analiz daha

sonra, kanal hafızasından dolayı bağımsızlık varsıyımının uygulanabilir olmadığı tek-antenli

frekans-seçici kanallar ve çok-antenli düz-sönümlemeli kanalları da içerecek şekilde genelleş-

tirilmiştir. Basamak-büyüklüğünün en iyi seçimide, elde edilen MSE analiz sonuçları kul-

lanılarak verilmiştir. Sayısal hesaplamalar, teorik ve deneysel sonuçların çok çeşitli senar-

yolar altında iyi bir uyum sergilediğini göstermiştir.Literatürde iki yönlü kestirme konusunda

çeşitli çalışmalar bulunsa da, bu çalışmalarda ele alınan kestiriciler için herhangi bir teorik

analiz yapılmamıştır. Bu yönüyle, iki yönlü LMS algoritması için sunulan takip analizinin

yenilikçi olduğu düşünülmektedir.

Ayrıca, yinelemeli bir kanal kestirim düzeni, ele alınan bütün kanal modelleri ve kestirim

algoritmaları için sunulmuştur. Sonuç olarak, iki yönlü LMS algoritmasının ele alınan bu

gerçek-hayat uygulaması için gerek artmış fakat yine depratik karmaşıklık seviyesi, en iyinin

yakınındaki takip performansı ve hatalı ilklendirmeye karşı gürbüzlüğü ile oldukça başarılı

olduğu gozlemlenmiştir.

Anahtar Kelimeler: En küçük ortalama kareler (LMS), kanal kestirimi, düşük karmaşıklık,ortalama

kare hatası (MSE), en iyi süzgeç.
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My beloved Songül and my honey daughterİclal Gökçe...
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CHAPTER 1

INTRODUCTION

The ultimate goal in many communication systems is to designan optimal receiver to mini-

mize the probability of detection error. Most of these receivers require the knowledge of the

communication channel under consideration in order to perform coherent demodulation and

detection, and for some other tasks including frame synchronization and decoding. Towards

this end, inserting some amount of a priori known pilot symbols into the transmitted data

sequence to be processed by various channel estimation algorithms at the receiver appears

to be a practical solution. However, as emerging communication technologies pushed by

the end-user demands involve fast time-varying channels, the conventional approaches result

in an excessive computational complexity in obtaining an accurate estimate of the unknown

channel. With this motivation, the efficient channel estimation algorithms in the mean square

error (MSE) sense are therefore the subject of this work assuming a packet-based transmis-

sion scheme in which neither the transmitter nor the receiver has the exact knowledge of the

communication channel in use.

1.1 Motivation

Although the well-known adaptive least mean squares (LMS) algorithm suggests a practical

way of estimating unknown channels in any communication system, the associated perfor-

mance over time-varying channels are known to be far behind that of the optimal Wiener

filter especially as the speed of time-variations increases. The main reason behind this degra-

dation is the large eigenvalue spread of the input correlation matrix for fast time-varying

channels [1]. This motivates us to explore for a suitable adaptive algorithm as an extension of

the conventional LMS algorithm which will be robust to adverse effects of fast fading chan-
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nels such as the large eigenvalue disparity and hopefully achieve a significantly improved

performance yet at a still practical level of complexity as compared to the original algorithm

as well as to the optimal Wiener filter.

In the literature, there are several works on the forward-backward signal processing tech-

niques applied to communication problems with a promise of improved overall performance.

In [2], a forward-backward LMS (FBLMS) adaptive line enhancer is proposed for stationary

systems which makes use of the forward and the backward prediction errors jointly to update

the weight-vector which eventually achieves a lower misadjustment. This algorithm is further

elaborated in [3] which establishes the same performance with a less computational burden.

In [4], a different approach is preferred in which the adaptations are performed in the for-

ward and the backward directions independently along each of the paths present in the trellis

using a per-survivor processing (PSP) based approach [5, 6]. These estimates are then com-

bined using some optimal binding strategies for which the final performance improvement is

significant, but unfortunately with an excessively large overall processing complexity .

In this work, we benefit from the aforementioned works from the literature, and offer to oper-

ate the conventional LMS algorithm in both the forward and the backward directions indepen-

dently along a transmitted block assuming a packet-based transmission scenario. The result-

ing forward and backward estimates are then combined in a suboptimal way to produce the

final channel coefficient estimate in a computationally efficient manner. We call this algorithm

thebidirectional LMSand abbreviate as BiLMS whereas the conventional LMS algorithm is

referred to as theunidirectional LMSthroughout this work with the abbreviation UniLMS.

Through computer simulations, the bidirectional LMS algorithm is shown to achieve a supe-

rior performance over the unidirectional LMS algorithm in fast time-varying channels at an

increased but still practical level of computational complexity. The resulting performance is

even very close to that of the optimal Wiener filter in most cases and is therefore referred to

as near-optimal. Note that the optimality of the Wiener filter under consideration is in the lin-

ear minimum mean-squared error (MMSE) sense so that MMSE andWiener terms are used

interchangeably in this work to specify the desired filter.

Having introduced the bidirectional LMS algorithm, it is ofsignificant interest to analyze the

resulting performance from both practical and theoreticalperspectives. We therefore investi-

gate the theoretical foundations of the steady-state tracking characteristics of the bidirectional
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LMS algorithm and finally come up with a mean square error (MSE) expression which is ver-

ified over a number of channel models including flat-fading, frequency-selective fading and

multi-input multi-output (MIMO) fast time-varying channels with various Doppler spectrums.

We have also realized that although there are some relevant work present in the literature as

summarized above, none of them concerns with the theoretical analysis of the adaptive algo-

rithms under consideration. Therefore, our work not only considers a practical extension of

the LMS algorithm with near-optimal performance but also presents a novel theoretical anal-

ysis for the bidirectional LMS algorithm in time-varying channels with a satisfactorily high

accuracy.

1.2 Thesis Overview

We will present a detailed literature survey in Chapter 2 on the time-varying channel estima-

tion problem. It considers the basics of the transmission schemes for the purpose of channel

estimation including pilot-based and (semi-)blind schemes together with superimposed train-

ing and the PSAM approach. Adaptive algorithms, and particularly the LMS algorithm, are

introduced with the resulting complexity benefits and performance issues. And lastly, the

concept of iterative channel estimation is introduced withthe considerations on some recent

papers.

Chapter 3 considers the bidirectional LMS algorithm in time-varying flat-fading channels.

The tracking behavior of the bidirectional LMS algorithm isanalyzed and a novel steady-

state MSE expression is obtained which includes the effect of the adaptation step-size and is

valid for a variety of correlation characteristics. The optimal selection for the forward and the

backward step-size values is also investigated together with the effect of joint Doppler and

SNR estimation and imperfect initialization. The theoretical results are observed to match the

experimental ones very well both of which exhibit a significant improvement in the tracking

performance. The analysis is then revisited with an assumption of a special correlation charac-

teristics specified by an auto-regressive (AR) process and amore compact steady-state MSE

expression is obtained by eliminating the necessity for numerical integration methods. Fi-

nally, a coded communication system is considered in which coherent detection is performed

using the estimate of the unknown time-varying channel refined through iterations. The bidi-

rectional LMS algorithm is shown to offer a practical solution for this scheme, as well, with
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its computationally efficient structure and near-optimal tracking performance.

The findings for the time-varying flat-fading channels are then generalized to frequency-

selective channels in Chapter 4. The estimation of frequency-selective channels is usually

challenging since the parameter to be estimated at each timeinstant is a vector composed of

the associated channel taps. The bidirectional LMS algorithm which updates the estimate of

the channel vector at each time epoch proposes a very good tracking performance at still low

level of complexity, as for the flat-fading case. The tracking behavior of the bidirectional LMS

algorithm is also investigated together with a discussion about inapplicability of the so-called

independence assumption to frequency-selective channels. The performance of the algorithm

is verified also in a coded system over a frequency-selectivechannel with various power delay

profiles in which the unknown channel is estimated in an iterative fashion.

Finally, Chapter 5 deals with a multi-antenna system in which subchannels between each of

the transmitter and the receiver antenna pair experience time-varying frequency-flat fading.

The optimal Wiener filter has a high complexity in such channels which appreciates the im-

proved performance of the bidirectional LMS algorithm at a practical level of complexity. A

steady-state tracking analysis is again provided which results in a good match with the experi-

mental data in many cases, and some tolerable differences for the rest. Finally, we summarize

the contributions of the thesis and mark some topics as future work in Chapter 6.
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CHAPTER 2

THE TIME-VARYING CHANNEL ESTIMATION

User mobility in current and emerging communication technologies has changed the focus to

time-varying communication channels. Although time-invariant channels are well-understood

from channel estimation point of view, the associated processing complexity makes the time-

varying counterparts really challenging. This work therefore considers low-complexity adap-

tive channel estimation algorithms with improved estimation and tracking performances.

This chapter is devoted to a literature survey in detail on the basics of the problem of time-

varying channel estimation. Training-based and blind channel estimation methods, adaptive

algorithms and particularly the conventional LMS algorithm and finally iterative channel es-

timation approach are some of the subjects covered in this chapter.

2.1 Transmitter and Receiver Structures for Time-Varying Channels

One of the well-known transmission schemes for the purpose of channel estimation is called

the pilot- or training-basedtransmission in which a set of a priori known pilot symbols are

transmitted along with the information-bearing data sequence. The pattern in which pilots

are used in transmission heavily depends on the channel characteristics under consideration.

In some communication systems of time-varying nature, the variation is relatively small as

compared to the transmission intervals so that the channel is referred to as quasi-static or

piecewise time-invariant. For such channels, the pilot-based transmission is employed in a

train-before-transmitscheme [7] where all the available pilots are located at the beginning of

the transmitted block. Although this scheme is suitable forquasi-static channels such as the

one assumed in global system of mobile communications (GSM)protocol [8], which results
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in an overhead of 22.4% on the overall system throughput [9], it is not efficient for fast time-

varying channels.

The simplest alternative solution for time-varying channels is to repeat the training blocks

frequent enough [10]. However, this strategy is known to be usually insufficient to track the

dynamics of the underlying channel and is severely bandwidth consuming. Instead of periodic

transmission of the short training sequences, distribution of pilot symbols along the transmit-

ted block is a much more efficient way to jointly estimate and track time-varying channels.

In the literature, the periodic insertion of single pilot symbols into the transmitting sequence

is calledpilot symbol assisted modulation(PSAM) [11, 12, 13]. A theoretical performance

analysis for PSAM transmission is provided in [14] and [15] over flat-fading and frequency-

selective fading channels, respectively.

Another well-known pilot-based transmission scheme is thesuperimposed trainingin which

an a priori known pilot sequence with a relatively low power is superimposed on the information-

bearing data sequence. The superimposed channel estimation, which is also called thespread

spectrum pilot techniquein [16], is first offered by [17] and further elaborated in some subse-

quent papers including [16, 18]. In [19], the superimposed approach is theoretically analyzed

in terms of overall estimation performance, power allocation and frame synchronization. A

blind estimation algorithm independent of the channel characteristics and modulation format

is proposed in [20] where the superimposed pilot sequence isreferred to as “hidden”. In order

to lower the correlation between the pilot and the data sequences, a different method based

on selective usage of the superimposed sequence from a larger set is introduced in [21]. Re-

cently, the superimposed training based channel estimation technique is further investigated

using exponential basis models [22], for a multi-antenna channel estimation and symbol de-

tection problem [23], for an iterative joint channel estimation and data detection problem

with analytical performance results [24], and finally with an important comparison between

the pilot-based training for next generation terrestrial digital video broadcasting (DVB-T)

technique using orthogonal frequency division multiplexing (OFDM) [25] to circumvent the

frequency selectivity of the underlying communication channel.

The optimal choice of pilot symbols to be transmitted is of great importance in order to

improve the overall performance of the pilot-based approaches. The optimal pilot design

for PSAM-based transmission over time-invariant flat-fading, frequency-selective fading and
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MIMO channels are considered in [26] by obtaining a Cramer-Rao Bound (CRB) which is

independent of the channel estimator in use. This investigation is further extended to include

time-varying channels in [27]. In [28], a periodic pattern for the superimposed pilot sequence

is proposed by deriving the corresponding CRB. An interesting alternative technique is pre-

sented in [29] where a more general superimposed pilot sequence is shown to be possible

through the utilization of underlying cyclostationary nature. A rich survey on pilot-based

transmission schemes is presented in [30] with more detailsfor interested readers.

Blind algorithms constitute another class of strategy to estimate the unknown communication

channel without any need for pilot symbols. In the blind channel estimation, which is also

calledtrain-while-transmitscheme in [7], the channel statistics and therefore the correspond-

ing estimate are obtained directly from observations. By this way, the throughput overhead

due to the pilot transmission present in the training-basedapproach is saved for some other

useful mechanisms such as channel coding [31]. This discussion implies that the bandwidth

available for communication is not wasted to pilot transmission in the blind channel estima-

tion. In the literature, blind channel estimation algorithms are reported to achieve as low as

a 1 dB mean SNR loss for a GSM data transmission over both fast and slowly fading mobile

channels [31]. Beside this performance loss, blind channelestimation algorithms are also

known to suffer from a high computational complexity such that the aforementioned result re-

ported in [31] is achieved by using the fourth order statistics of the underlying communication

channel. In order to have reliable higher order statistics experimentally, blind algorithms have

to wait for sufficient number of observations which tends to loose their practical value. The

slow convergence rate and possibility of convergence to thewrong solution are also argued to

be some of the other major drawbacks of blind algorithms [32].

For interested readers, an initial investigation into the general channel equalization problem

in a blind fashion without resorting to a training sequence is considered in two seminal pa-

pers [33, 34] followed by the work [35] in which a blind correction of any channel impair-

ments is studied. Another survey of interest on blind processing is presented in [36] and the

concept is reconsidered from signal processing view referred to as blind signal separation and

estimation in [37]. In [38], a wideband communication channel is considered together with

OFDM signaling where the unknown channel is estimated blindly by making use of the cyclic-

prefix (CP) in subspace-based methods along with training-based semi-blind algorithms. In

a recent paper [39], performance of the semiblind channel estimation algorithm is analyzed
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in a code-division multiple access (CDMA) system and the superiority of the subspace-based

methods is reported for some certain cases with large channel orders.

The channel estimation problem for MIMO systems is another research area of great im-

portance in the sense that the unknown coefficient set is in a matrix-form which results in

some computational difficulties[40]. The initial studies in MIMO channel estimation problem

commonly assume quasi-static communication channel [41].As the coherence time becomes

smaller as a result of increasing end-user demands, the variation over a transmitted block

could not be ignored any more and the channel model in hand turns out to be time-varying.

For such continuous fading channels, Kalman-based approaches [42] are employed by mak-

ing use of the statistics of the underlying channel. In [43, 44], a time-varying flat-fading

MIMO system is considered with maximum likelihood (ML) and interpolation based channel

estimators in which short training sequences are transmitted periodically. It is argued in these

work that although tracking significantly improves the quality of the channel estimate, the

resulting complexity makes this choice really impracticalas is also stated in [45].

There is a rich literature in the area of MIMO channel estimation problem for both flat-

and frequency-selective fading channels examples of whichare summarized in the follow-

ing. A superimposed type channel estimation approach is presented in [46] for a quasi-static

Rayleigh fading MIMO channel where low-power pilots are transmitted continuously along

with the data symbols. In [47], a spatially correlated MIMO channel is considered from op-

timal transmitted signal design point of view with the assumption of perfect knowledge of

the second order channel statistics at the receiver. A theoretical study is carried on by [48] in

which a lower bound on the the error correlation matrix of training-based channel estimators

for quasi-static frequency-selective MIMO channels. The parameter estimation problem in-

cluding the unknown channel coefficients for a flat-fading MIMO system in the presence of

frequency offset is considered in [49] in a generalized fashion such that each of the transmit-

ter antennas experiences independent frequency offset levels. The expectation-maximization

(EM) algorithm is employed in [50] in order to estimate the unknown frequency-selective

fading MIMO channel where the order of the underlying multipath channel is estimated us-

ing the conditional model order estimator (CME). In a recentwork [51], LS (Least Squares)

and LMMSE (Linear Minimum Mean Square Error) methods are considered for MIMO with

some conclusion about the robustness of space-time coding and receiver diversity to the chan-

nel estimation error.
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From an information theoretic point of view, the achievablerate for a coded modulation flat-

fading MIMO system with PSAM based channel estimation is investigated in [52] under a

perfect interleaving scenario. The effect of channel estimation error is further investigated in

[53] for multiple antenna fading channels with a conclusionof mutual information bounds

and proper power allocation schemes. The optimal training sequence for the ML channel

estimator for a quasi-static flat-fading MIMO channel is first shown in [41] to be orthogonal

across the transmitting antennas and the associated designissues are investigated in detail

by [54]. In [55], optimal pilot signal design is addressed for frequency-selective block-fading

MIMO-OFDM channels by maximizing a lower bound on the average capacity and the same

problem is revisited in [56] with a result of a more general class of optimal pilot symbols by

using some basic features of the Discrete Fourier Transform(DFT).

2.2 Adaptive Estimation of Time-Varying Channels

2.2.1 An Introduction to Adaptive Algorithms

Adaptive algorithms have a wide variety of application areas due to their self-learning char-

acteristics, computational efficiency and convergence to the optimal non-adaptive solutions.

In digital communications, the LMS algorithm is one of the well-known adaptive algorithm

that is commonly used in numerous applications including equalization and channel estima-

tion. In order to provide a solid background on the subject, we first talk about the basis of

adaptive algorithms by following [57] and then continue with the associated stationary and

nonstationary characteristics.

For any adaptive algorithm, an associated error function isdefined which is sometimes called

the (error) performance surface. For quadratic error functions, the corresponding error per-

formance surface is a bowl-shaped hyper paraboloid where the order of this geometry is de-

termined by the number of weights of the algorithm. The horizontal cross-section of this

quadratic performance surface is an ellipse. For such surfaces, there is a single minimum

point at the bottom which specifies the minimum mean-square error (MMSE) and the associ-

ated projection onto the weight-vector plane is the optimalweight-vector [57].

Most adaptive algorithms try to find the optimal weight-vector solution by seeking the mini-

mum point of the performance surface using gradient-based search algorithms. The gradient
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of any point on the performance surface specifies a vector with the direction pointing the

greatest rate of increase of the surface and the magnitude which is the greatest rate of change

at that point. In real-life problems of interest, such surfaces are not known exactly due to

unknown parameters (weights etc.) except for some points onthe surface which could be

measured or estimated in some ways. The exhaustive search over the performance surface

to find the optimal point is therefore not possible for a variety of applications. As such, the

adaptive algorithms are of practical interest in that they seek the minimum point of the per-

formance surface by proceeding in small steps towards the direction of the negative of the

gradient or a matrix scale of it [57] .

Of gradient-based search algorithms, the Newton’s method and the steepest descent are the

two well-known examples. Newton’s method adapts its weights in the direction of the mini-

mum point of the performance surface, but unfortunately hassome practical limitations such

as the necessity of the inverse of the input correlation matrix. On the contrary, the steepest

descent method is much more practical in that it does not require the knowledge of the input

correlation matrix and just progresses in the direction of the negative of the gradient at each

step which is not necessarily towards exactly to the minimumpoint of the performance sur-

face. Although the Newton’s method is much faster than the steepest descent algorithm, the

slow adaptation of the latter behaves as a low pass filter on the overall estimation noise which

diminishes the final misadjustment as compared to the former[57].

2.2.2 The Adaptive LMS Algorithm

Although being more practical in its use than the Newton’s method, the steepest descent

algorithm has an important restriction in that it still requires the estimate of the gradient to

be computed in an off-line fashion for many cases. The LMS algorithm appears firstin [58]

to overcome this necessity by employing an instantaneous estimate of the gradient in the

steepest-descent algorithm rather than a long-term average, and it has been recognized as one

of the most practical adaptive algorithms since then [59].

The conventional LMS algorithm in estimating a flat-fading communication channel is given

as [57]

f̂k+1 = f̂k + 2µ ek ak (2.1)
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where f̂k is the estimate of the fading coefficient, ak is the input symbol,µ is the step-size

value of the algorithm andek is the estimation error given for this particular case as

ek = yk − f̂k ak (2.2)

whereyk is the associated observation symbol. Note that, although the factor ‘2’ in (2.1) could

be safely integrated into the step-size value, we prefer to write it separately in order to provide

an easy comparison with some previous works in the literature.

Before proceeding further, we would also like to specify theWiener filter as a counterpart for

(2.1) which is given as

f̂k = wT
k yk (2.3)

whereyk is aK × 1 vector including the observations to be used and theK × 1 Wiener filter is

given as

wk = R−1
yy Pf y . (2.4)

In (2.4), Ryy = E{yk yH
k } is the K × K autocorrelation matrix andPf y = E{yk f ∗k } is the

K × 1 cross-correlation vector. Note that, (·)T , (·)∗ and (·)H stand for the transpose, complex

conjugate and Hermitian operations, respectively, in above equations.

As in the other adaptive algorithms, the function of the LMS algorithm in stationary environ-

ments is toestimatethe unknown quantity whereas this task turns out to firstestimateand then

track the variations in the unknown quantity in nonstationary environments. Within the scope

of this work, the stationary and nonstationary environments are considered as time-invariant

and time-varying channels, respectively. Therefore, the LMS algorithm has to both estimate

and track the unknown time-varying channel under consideration. Because a packet-based

transmission scheme with short blocklengths is assumed throughout this work, we provide

proper initial conditions to the LMS algorithm with varyingaccuracy to skip the acquisition,

i.e., transition, phase at the beginning of the transmission block and directly switch to the

tracking phase. Hence, transition behavior of the LMS basedalgorithms is considered to be

beyond the scope of this work while a steady-state tracking performance of these algorithms

are investigated in detail here.

Adaptive filters differ from the well-known Wiener filter in that they do not need toknow the

statistical behavior of the underlying processes which is abasic requirement for the Wiener

11



filter as in (2.4) [60]. In addition, Wiener estimate of each channel tap requires first a matrix

inverse and a matrix multiplication as in (2.4) to compute the optimal filter coefficients and

then a vector multiplication as in (2.3) to find the desired estimate unlike the significantly

simpler 1-tap LMS update equation. Therefore, although theWiener filter is optimal in the

MSE sense, the adaptive filters including the LMS algorithm are much more practical.

It is shown in [57] that the LMS algorithm will converge in mean to the Wiener solution for

stationary inputs except for a misadjustment term. In time-invariant environments with sta-

tionary inputs, the rate at which the adaptive filter converges to the Wiener solution is closely

related to the step-size value or adaptation constant in more general terms. For large step-size

values, the convergence is fast but unfortunately results in a large misadjustment whereas the

convergence is slow for small step-size values but hopefully with a small final misadjustment.

The eigenvalue spread of the input data covariance matrix appears to be important in the sense

that the performance of the conventional LMS algorithm deteriorates over time-varying chan-

nels where the eigenvalue spread is large. In [61], the optimal weight vector in time-varying

channels is also shown to change with time.

A well-known measure for the estimation and/or tracking quality of the LMS algorithm is the

resulting MSE value together with the convergence speed which is of importance for station-

ary environments. The speed of convergence and the MSE analysis of the LMS algorithm are

given first in [61] and then in [62] for both the stationary andnonstationary environments.

This work employs the so-called “independence assumption”while deriving the steady-state

MSE expression in which the weight-vector is assumed to be statistically independent of the

current input data vector. The MSE analysis of the LMS algorithm for nonstationary envi-

ronments is also presented in [61] through the transfer function method by considering a 1-st

order auto-regressive (AR) process with a rational power spectrum. In [63], the analysis is

generalized to include any kind of unknown nonstationary processes with a known power

spectrum.

In communication applications, the MSE analysis of the LMS algorithm in frequency-selective

channels has some differences from those presented in [61] and [63]. In frequency-selective

channels, the weight-vector is surely correlated with the input data vector due to the channel

memory at hand. The independence assumption therefore doesnot apply and the previous

MSE analysis has to be revisited. The work given in [64] pioneers the studies of the MSE
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analysis of the LMS algorithm over vector channels. The scenario in which the elements of

the input data vector are also correlated due to some other reasons such as channel coding is

considered in [65] and a proper MSE analysis is offered for the LMS algorithm which requires

to solve a set of equations in an iterative fashion. There aresome other useful works in the

literature on the MSE analysis of the LMS algorithm without invoking the independence as-

sumption such as [66, 67, 68] together with analysis of the transient behavior given in [69, 70]

and [71] which may be useful for interested readers.

It is important to realize that the performance of adaptive filters is subject to change as the un-

derlying channel models also change. An interesting example to this issue is that although the

recursive least squares (RLS) algorithm is known to exhibita faster convergence rate than the

LMS algorithm for time-invariant channels, the LMS algorithm is reported to achieve a supe-

rior tracking performance than the RLS algorithm in time-varying channels [72]. The reason

behind this somewhat surprising result is about the foundations of these algorithms. Although

both of them are of adaptive nature, the LMS originates from astatistical model in the sense

that it adapts itself according to the gradient search basedsteepest descent algorithm whereas

the RLS algorithm has a deterministic nature such that it derives a filter to minimize the sum

of squares of a given prediction error. For this reason, the RLS algorithm is sometimes clas-

sified as “model dependent” which is the main cause for performance degradation observed

in time-varying environments. In the literature, there arevarious attempts to modify the con-

ventional RLS algorithm to make it optimum for time-varyingsystems, e.g., the extended

RLS (ERLS) [73] and optimal exponential factor selection inthe context of adaptive antenna

arrays [74]. From a different perspective, it is argued in [72] and [73] that the convergence

is a transient phenomenon whereas the tracking is a steady-state behavior. Therefore, the

adaptive algorithms with an appealing convergence behavior in nonstationary environments,

such as the RLS algorithm, do not necessarily exhibit a satisfactory tracking performance in

nonstationary environments. This is one of the reasons why the LMS algorithm becomes the

subject of this work.

Finally, an interesting application of the adaptive LMS algorithm is in the area of equalization

in the presence of a temporally colored narrowband interferer. In usual equalization problems

with or without a white narrowband interference, the performance of the LMS algorithm is

considered to be bounded by that of the optimal Wiener filter.However, this way of analysis is

shown in [75] to be incorrect when the interferer has a correlation along the time axis which
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reveals the nonlinear nature of the LMS algorithm. Furthermore, the MSE performance of

the LMS algorithm is unexpectedly shown to be better than that of the Wiener filter [75]

for such situations which is referred to in the literature asa non-Wiener effect of the LMS

algorithm [76]. Indeed, the basic problem with the conventional way of MSE analysis for

the LMS algorithm in such situations lies in the so-called independence assumption which

cannot be invoked since the LMS weight-vector and the input data, i.e., observations, to be

processed become strongly correlated as the bandwidth of the interferer gets smaller than

that of the signal and additive noise. In order to analyze theMSE performance of the LMS

algorithm in the presence of a temporally correlated interferer, a transfer filter approach is

presented as a combination of steady-state and time-varying filters in [75], and the subject is

further investigated in [77] by deriving a proper bound. A similar study is carried on in [78]

to perfectly analyze the nonlinear characteristics of the multi-step LMS algorithm from the

adaptive prediction point of view as a different application area, and with a practical two-stage

structure proposal for the decision-feedback equalization (DFE) problem in [79].

2.3 Iterative Channel Estimation for Time-Varying Channels

Iterative processing has one of its major application areasin estimation of unknown communi-

cation channels. The algorithm called theiterative channel estimationis first proposed by [80]

and further elaborated in [81, 82] and [83] with a promise of asignificant improvement on the

quality of the channel estimate.

In training-based transmission, the number of pilots in usehas a major effect on the estimation

quality which is limited in many applications due to the short blocklength or insufficient

training length to avoid excess pilot overhead on the transmission throughput. In iterative

channel estimation, decisions on the data symbols are also employed in the receiver after an

initial coarse channel estimation using the pilot symbols only. As a result, the overall quality

of the channel estimate improves over iterations. The decisions on the data symbols are

produced using various mechanisms such as a soft-decoder, and are fed back to the estimator

unit in either hard or soft fashion.

In [84], the well-known PSAM transmission technique is employed over a slow flat-fading

channel together with Wiener and moving average (MA) channel estimators. A time-invariant
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frequency-selective channel is considered in [85] together with an iterative channel estimation

scheme. An interesting investigation is given in [86] in which it is argued that the use of soft

statistics cannot always result in a better channel qualityover the time-invariant channels. It-

erative channel estimation is revisited for time-invariant and time-varying frequency-selective

channels in [87] and [88], respectively, and the LMS algorithm with soft feedback is de-

cided to perform the closest to the optimal performance as compared to the various scenarios

including the RLS algorithm and hard feedback. As a different application, a new ISI and

multiple-access interference (MAI) equalization scheme is proposed in [89] together with a

properly adjusted iterative channel estimation method.

There are various work in the literature on the low-complexity algorithms for the iterative

channel estimation. Among these attempts, complexity is still a problem in [90] and [91] due

to the PSP-originated ideas. The Kalman filter is employed inboth [92] and [93], however

the resulting complexity is declared there to be several times greater than that of the LMS

algorithm. In addition, a bidirectional strategy is followed also in [94] over a trellis structure

again together with a high computational complexity.

In a recent paper [95], the Gaussian message passing (GMP) algorithm [96] is considered

for channel estimation in a bidirectional manner. The work in [95] prefers to express the

underlying channel using a 1-st order AR process having a rational power spectrum in order

to be able to express the iterative process using a Forney style graph [97] in accordance with

the GMP algorithm without any theoretical analysis. If the correlation property is different

than what is assumed, e.g., such as the one in the Jakes’ model[98], then a serious mismatch

naturally appears as an important weakness of the proposed algorithm. Although the order of

complexity is discussed to be linear with the number of channel taps, the number of complex

multiplications and additions required to estimate even a single channel tap is much greater

than that of the bidirectional LMS algorithm.

2.4 Conclusion

In training-based schemes, estimation of time-varying channels requires more processing

power and number of pilot symbols as compared to the time-invariant scenarios. As the

underlying channel turns out to be frequency-selective and/or multiple antennas are used at
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both terminals, the overall complexity and necessity to more pilot symbols increase even more

since the channel to be estimated becomes a vector or a matrix, respectively. The efficient use

of the available pilots is therefore of interest and the transmission technique known in the

literature as PSAM becomes a powerful choice in joint estimation and tracking of unknown

channels. This is the reason why we prefer the PSAM techniquein real-life scenarios of the

subsequent chapters.

The optimal Wiener filter in estimation of the unknown time-varying channel has an excessive

computational complexity. The adaptive LMS algorithm therefore appears to be an efficient

solution in time-varying channels with its simple first-order weight-vector update equation.

However, the eigenvalue spread of the input correlation matrix in time-varying channels result

in a performance degradation for the LMS algorithm. This work, therefore, presents a much

more robust extension of the LMS algorithm called the bidirectional LMS together with a

detailed analysis. Finally, the iterative channel estimation technique offers a significant im-

provement in the channel estimate by incorporating the softestimates of the data symbols as

well as the pilot symbols. It is shown in the subsequent chapters that the overall complexity

of the iterative channel estimation due to recurring iterations decreases significantly by em-

ploying the low-complexity bidirectional LMS algorithm with almost no significant change

in the final estimation quality under many scenarios.
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CHAPTER 3

THE BIDIRECTIONAL LMS ALGORITHM FOR

FLAT-FADING CHANNELS

In order to deal with the high processing complexity presentin the estimation of time-varying

communication channels, the bidirectional LMS algorithm is considered in [99] and [100] for

time-varying single-antenna and multi-antenna systems, respectively, with a promise of near-

optimal tracking performance over fast time-varying channels at a practical level of complex-

ity. The tracking performance of the bidirectional LMS algorithm is also shown to be very

close to that of the optimal Wiener filter and is remarkably better than that of the conventional

unidirectional LMS algorithm.

This chapter considers time-varying flat-fading channels as a simple yet sufficient frame-

work on which the bidirectional LMS algorithm is introducedand the associated tracking

performance is analyzed. A steady-state MSE analysis for the bidirectional LMS algorithm

is performed over Rayleigh fading channels with both rational and nonrational power spec-

trums. An analysis on the step-size optimization for the bidirectional LMS algorithm is also

provided to enable the use of the best step-size value prior to transmission for a given chan-

nel. The iterative channel estimation idea is also considered as an application close to the

real-life scenarios for which the bidirectional LMS algorithm is employed to estimate coded

flat-fading time-varying channels.

3.1 System Model for Flat-Fading Channels

We consider a time-varying flat-fading communication channel which is represented by a set

of complex fading coefficients{ fk}Lk=1 whereL is the observation length. The fading coeffi-
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cients are assumed to have unity variance, i.e.,E {| fk|2} = 1, and to be unknown at either the

transmitter and the receiver. A sequence of independent data symbols{ak}Lk=1 with symbol en-

ergyEs = E{|ak|2} is formed using a finite alphabetA, and is transmitted through the channel.

The corresponding output symbols{yk}Lk=1 are observed according to the following equivalent

discrete-time complex baseband channel model given as

yk = fk ak + nk (3.1)

wherenk is a sample from a circularly symmetric white complex Gaussian process with zero-

mean and varianceN0. We assume perfect synchronization in the sense that the timing of the

transmitted block and each of the transmitted symbols are known perfectly. Furthermore, any

frequency offset due to the imperfect knowledge of the carrier frequency is considered to be

beyond the scope of this work, as (3.1) implies.

The received signal-to-noise ratio (SNR), denoted asγr , is given as

γr =
E{ | fk ak |2 }
E{ |nk |2 }

=
E{ | fk |2 }E{ |ak |2 }

E{ |nk |2 }
=

Es

N0
(3.2)

and the information symbol SNR is thereforeγ = γr/R whereR is the overall transmission

rate of the communication system including the effect of channel codes, pilot symbols and

other relevant techniques in use.

3.2 Estimation Algorithms for Flat-Fading Channels

In this section, we will give basic definitions of the conventional MMSE and the unidirectional

LMS channel estimation algorithms for the flat-fading channel model given in Section 3.1. As

an extension, the bidirectional LMS algorithm is also introduced and corresponding complex-

ities are compared.

3.2.1 The MMSE Channel Estimation

In MMSE channel estimation, the ultimate goal is to design anFIR filter which produces an

estimate of the unknown fading coefficient fk by filtering a set of noisy observations such

that the resulting mean square error is minimized [101]. This problem is illustrated in Fig.3.1

whereWk(z) is the desired FIR filter associated with thek-th fading coefficient, f̂k is the
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associated estimate offk, andek is the estimation error defined to beek = fk − f̂k for this

particular case.
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Figure 3.1: The general MMSE channel estimation problem forflat-fading channels.

We assume that the desired MMSE filterWk(z) for thek-th fading coefficient is aK-tap linear

transversal filter which is given as

Wk(z) =
⌊K/2⌋∑

n=−⌊K/2⌋
wk,n z−n (3.3)

where⌊·⌋ describes the floor operation which returns the greatest integer smaller than or equal

to its argument. The estimate of thek-th fading coefficient is then accordingly computed as

f̂k =
⌊K/2⌋∑

n=−⌊K/2⌋
wk,n yk−n (3.4)

= wT
k yk (3.5)

wherewk = [wk,−⌊K/2⌋ . . . wk,⌊K/2⌋]T andyk = [yk+⌊K/2⌋ . . . yk−⌊K/2⌋]T are the tap-weight and

the observation vectors, respectively.

The optimal tap-weight vector that minimizes the MSE associated with this problem could be

computed using the well-known Wiener-Hopf’s equations which are derived in Appendix A.1

and given as
⌊K/2⌋∑

l=−⌊K/2⌋
wk,l ryy (n− l) = r f y (n), (3.6)

for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋. In (3.6), ryy (n − l) = E
{

yk−l y∗k−n

}

is the the autocorrelation

of observations andr f y (n) = E
{

fk y∗k−n

}

is the cross-correlation between fading coefficients

and observations. The Wiener-Hopf’s equations for this problem could also be expressed in

vector form as follows

E{yk yH
k }wk = E{yk f ∗k }, (3.7)

19



or equivalently

wk = R−1
yy Pf y , (3.8)

whereRyy = E{yk yH
k } is theK × K autocorrelation matrix andPf y = E{yk f ∗k } is theK × 1

cross-correlation vector.

In order to evaluate the complexity of the MMSE channel estimation, one should consider

both the pre-filtering and the filtering stages. In the pre-filtering stage, optimal coefficients of

the desired MMSE filter should be computed by using (3.8) which requires a matrix inversion

of complexityO (K3) and a matrix multiplication of complexityO (K2). In the filtering stage,

the desired estimate is obtained according to (3.4) which results in (K − 1) complex additions

andK complex multiplications.

In a packet-based transmission, it is sometimes possible toreduce the overall computational

complexity associated with the pre-filtering stage under certain circumstances. As an ex-

ample, if the alphabetA has equal-energy symbols, e.g., M-ary PSK, and the symbols corre-

sponding to the taps of the estimation filter are known perfectly, then it is sufficient to compute

a single global MMSE filter for each transmitted packet. Otherwise, Ryy andPf y generally

depend on the transmitted symbols and should therefore be recomputed for each time epochk.

In Section 3.8, we make use of this simplification for the initial channel estimation and show

that the MMSE filter has to be recomputed for each time epochk in the subsequent iterations

since the data symbols corresponding to filter taps are not known perfectly.

3.2.2 The Unidirectional and The Bidirectional LMS Algorit hms

The conventional unidirectional LMS algorithm is known to be one of the simplest adaptive

algorithm. For the flat-fading channel model introduced in Section 3.1, the unidirectional

LMS algorithm is given as [57]

f̂k+1 = f̂k + 2µ ek ak (3.9)

whereµ is the step-size value of the algorithm andek is the estimation error given for this

particular case as

ek = yk − f̂k ak. (3.10)
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We observe that the unidirectional LMS algorithm requires 2complex additions and 3 com-

plex multiplications in order to estimate a single fading coefficient and that there is no pre-

filtering stage as for MMSE channel estimation.

Despite its simplicity, the conventional unidirectional LMS algorithm suffers from any time

variation present in the unknown channel. We therefore explore an extension of this adaptive

algorithm with improved tracking performance over fast time-varying channels at a practical

level of complexity. Towards this end, we consider the bidirectional LMS algorithm which is

basically an application of the two-way processing technique in which the conventional LMS

algorithm is employed in both the forward and the backward directions along a data block.

In order to formulate the bidirectional LMS algorithm, we first define f̂ f
k and f̂ b

k to be the

estimates of the fading coefficients in the forward and the backward directions, respectively.

The bidirectional LMS algorithm is then given as

f̂ f
k+1 = f̂ f

k + 2µ f ef
k ak (3.11)

f̂ b
k−1 = f̂ b

k + 2µb eb
k ak (3.12)

whereµ f andµb are the forward and the backward step-size values of the algorithm, ef
k and

eb
k are the forward and the backward estimation errors defined as

ef
k = yk − f̂ f

k ak (3.13)

eb
k = yk − f̂ b

k ak. (3.14)

Throughout this work, the forward and the backward step-size values are assumed to be the

same, i.e.,µ f = µb = µ, unless otherwise stated.

In order to obtain the final estimates of the fading coefficients from the forward and the back-

ward estimates, the arithmetic average operation is preferred among various choices as a

simple yet efficient combining strategy which is described as

f̂k =
f̂ f
k + f̂ b

k

2
, (3.15)

where f̂k represents the final estimates of the fading coefficients.

The computational complexity of the bidirectional LMS algorithm is observed to be as low as

the conventional LMS algorithm and much smaller than that ofthe optimal Wiener filter with
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only 5 complex additions and 9 complex multiplications per iteration. The bidirectional LMS

algorithm inherently do not need any pre-filtering stage as is the case for the conventional

LMS algorithm which is an important advantage of these adaptive algorithms over the MMSE

filter.

As a final point, we would like to mention that the definitions of both LMS algorithms includ-

ing the termak explicitly are appropriate for system identification type problems in which

the ultimate concern is to estimate the channel only, and thetransmitted symbols{ak}Lk=1 are

therefore assumed to be known a priori at the receiver. This type of operation is sometimes

called the training or genie-aided mode, and is very important in understanding and qualifying

the tracking algorithm under consideration.

However, the basic motivation in real-life communication systems is generally to estimate

the transmitted symbols carrying the desired information.In such a case, channel estimation

and tracking is crucial to perform coherent detection and decoding, and we modify the rep-

resentation of both the unidirectional and the bidirectional LMS algorithms accordingly by

just replacingak with the corresponding estimate ˆak. This estimate could be obtained either

through symbol-by-symbol detection in an uncoded scenario, or from some previous stages

as is the case for the iterative channel estimation to be considered in Section 3.8.

3.3 Tracking Performance of Bidirectional LMS over Flat-Fading Channels

In this section, we evaluate the tracking performance of thebidirectional LMS algorithm over

flat-fading channels. Therefore, the problem under consideration is of channel identification

type so that the overall system is operating in the training mode, i.e., all the transmitted

symbols{ak}Lk=1 are known a priori. As a result, we concentrate only on obtaining a measure

which illustrates how well the bidirectional LMS algorithmtracks the unknown time-varying

channel rather than evaluating the overall detection performance through bit error rate (BER)

or block error rate (BLER) results which will be investigated in the subsequent sections.

In order to characterize the tracking behavior of the bidirectional LMS algorithm, one of the

best choice is to derive an MSE expression for the algorithm in a fast time-varying commu-

nication channel. Since we deal with how well the bidirectional LMS algorithm follows the

time-varying channel rather than being interested in how quickly it converges, the analysis is
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performed at the steady-state and the transition analysis is therefore beyond the scope of this

work. In the following analysis, the effect of the step-size value of the adaptations is taken

into account, as well, as one of the major performance parameters. This theoretical derivation

is also very general in the sense that it does not assume any particular fading model and is

valid for any type of fading choice with a known power spectrum.

Throughout this section, we highly benefit from the results presented in [61, 63] associated

with the conventional unidirectional LMS algorithm. Beside developing an analysis for the

bidirectional LMS algorithm depending on these previous results, we also clarify some deriva-

tion steps which are not obvious in those original papers. Webegin with defining the error

performance surface, or equivalently the MSE, for this particular case given as

JMS E, k = E
{

| ek |2
}

(3.16)

= E
{ ∣
∣
∣ yk − f̂k ak

∣
∣
∣
2
}

(3.17)

= E
{ ∣
∣
∣
∣

(

fk − f̂k
)

ak + nk

∣
∣
∣
∣

2 }

(3.18)

= E
{

| nk |2
}

︸     ︷︷     ︸

Jmin

+E
{

|ak |2
}

︸     ︷︷     ︸

Es

∣
∣
∣ fk − f̂k

∣
∣
∣
2

(3.19)

whereek is the overall tracking error andJmin is the minimum achievable MSE due to the

presence of additive noise and is equal toN0. The second term in the last line is sometimes

called the excess MSE, and is denoted as

Jex, k = Es

∣
∣
∣ fk − f̂k

∣
∣
∣
2

(3.20)

which is due to the noisy gradient estimation and the time variation [61]. The steady-state

MSE could be obtained accordingly by taking expected value of JMS E, k as follows

JMS E = E
{
JMS E, k

}
(3.21)

= Jmin + Es E
{ ∣
∣
∣ fk − f̂k

∣
∣
∣
2
}

︸            ︷︷            ︸

JMS IE

(3.22)

where JMS IE is defined as the mean square identification error (MSIE) [63]which is the

basic expression to be derived to characterizeJMS E. Note that there is a relation between the

average excess MSEJex andJMS IE given asJMS IE = Jex/Es whereJex , E{Jex, k}.

In this work, the expectations in the context of MSE computation is assumed to be over a

special ensemble presented in [61] in which the same time-varying channel is used for trans-
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mission of an independent set of information symbols. According to this ensemble model,

the observation symbols associated with each ensemble member is obtained by adding inde-

pendent Gaussian noise samples with the same variance whichis E{
∣
∣
∣nk|2

}

= Jmin = N0. The

observations belonging to each ensemble member together with the associated input symbols

are then sent to the tracking algorithm in order to obtain an estimate. One of the consequences

of this construction is that the expected value of the unknown time-varying fading coefficient

over this ensemble at a time instantk is equal to itself, i.e.,E{ fk} = fk, since the unknown

fading coefficient is unchanged over the ensemble.

We now proceed to further elaborate theJMS IE expression by making use of the aforemen-

tioned ensemble construction and the corresponding results as follows

JMS IE = E
{
∣
∣
∣ fk − f̂k

∣
∣
∣
2
}

(3.23)

= E
{ ∣
∣
∣
∣

(

f̂k − E
{

f̂k
} )

+
(

E
{

f̂k
}

− fk
) ∣∣
∣
∣

2 }

(3.24)

= E
{ ∣
∣
∣
∣ f̂k − E

{

f̂k
} ∣∣
∣
∣

2 }

+ E
{ ∣
∣
∣
∣E

{

f̂k
}

− fk
∣
∣
∣
∣

2 }

+ 2 Re
{

E
{ (

f̂k − E
{

f̂k
}) (

E
{

f̂k
}

− fk
)∗ } }

(3.25)

where the time reverse of (3.23) is used in (3.24). The last term in (3.25) could be further

simplified as in [61] by making use of the fact that the time-varying channel is unchanged

over the ensemble so thatE{ fk} = fk for any time epochk. We accordingly obtain

E
{ (

f̂k − E
{

f̂k
}) (

E
{

f̂k
}

− fk
)∗ }

= E
{

f̂k
(

E
{

f̂k
})∗}
− E

{

f̂k f ∗k
}

− E
{

E
{

f̂k
} (

E
{

f̂k
} )∗}

+E
{

E
{

f̂k
}

f ∗k
}

=

∣
∣
∣
∣E

{

f̂k
} ∣∣
∣
∣

2
− E

{

f̂k
}

f ∗k −
∣
∣
∣
∣E

{

f̂k
} ∣∣
∣
∣

2
+ E

{

f̂k
}

f ∗k

= 0. (3.26)

Therefore,JMS IE of the bidirectional LMS in time-varying channels is expressed as a sum of

two terms which are called the self-noise (Jsel f) and the lag (Jlag) components [61], and is

given as

JMS IE = E
{ ∣
∣
∣ fk − f̂k

∣
∣
∣
2
}

(3.27)

= E
{ ∣
∣
∣
∣ f̂k − E

{

f̂k
} ∣∣
∣
∣

2 }

︸                   ︷︷                   ︸

Jsel f

+E
{ ∣
∣
∣
∣E

{

f̂k
}

− fk
∣
∣
∣
∣

2 }

︸                  ︷︷                  ︸

Jlag

(3.28)

= Jsel f + Jlag. (3.29)
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With the light of (3.28)-(3.29) and the discussion in [61], any deviation of the estimate of the

unknown fading coefficient, f̂k, from the ensemble mean of the estimate,E{ f̂k}, contributes

to the self-noise part while differences between the ensemble mean of the estimate and the

unknown fading coefficient itself amplify the lag part. According to this result,one could

conclude thatJsel f arises from the noisy gradient estimation of the error performance surface

under consideration whereasJlag is just due to the time variation. BecauseJMS IE is perfectly

expressed as a sum of the self-noise and the lag components, we will separately derive the

steady-state expressions forJsel f and Jlag in this section in order to come up with a final

expression for the steady-state MSE.

3.3.1 Derivation of the Self-Noise Component (Jsel f)

As explained before, the source of the self-noise is the noisy gradient estimation of the error

performance surface given in (3.16) for the system identification problem under consideration.

We therefore ignore any time variation while derivingJsel f and focus only on the effect of

the gradient estimation error by extending the findings of [57, 61] on the analysis of the

conventional unidirectional LMS algorithm.

In order to evaluateJsel f, we first model the gradient estimates in the forward and the back-

ward directions as follows

∇̂ f
k = ∇ f

k + ǫ
f
k = 2Es( f̂ f

k − fk) + ǫ
f
k (3.30)

∇̂b
k = ∇b

k + ǫ
b
k = 2Es( f̂ b

k − fk) + ǫ
b
k , (3.31)

respectively, where∇ f
k = 2Es ( f̂ f

k − fk) and∇b
k = 2Es ( f̂ b

k − fk) are the true gradients, andǫ f
k

andǫbk are the associated estimation errors in the forward and the backward directions, respec-

tively [57]. In order to incorporate the effect of gradient estimation error into the adaptations,

we prefer to express the conventional LMS adaptations in theforward and the backward di-

rections as follows

f̂ f
k+1 = f̂ f

k − µ ∇̂
f
k (3.32)

f̂ b
k−1 = f̂ b

k − µ ∇̂
b
k. (3.33)

Note that, the gradient estimates for the conventional LMS algorithm are∇̂ f
k = −2ef

kak and

∇̂b
k = −2eb

kak where the adaptation errorsef
k andef

k are given in (3.13)-(3.14) [102]. Instead
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of this representation, we prefer to use the gradient estimates given in (3.30)-(3.31), and the

adaptations given by (3.32)-(3.33) accordingly become

f̂ f
k+1 = f̂ f

k − 2µEs ( f̂ f
k − fk) − µ ǫ f

k (3.34)

f̂ b
k−1 = f̂ b

k − 2µEs ( f̂ b
k − fk) − µ ǫbk . (3.35)

In order to characterize the error due to the noisy gradient estimation, we define the forward

and the backward tap-weight tracking errors asvf
k = f̂ f

k − fk andvb
k = f̂ b

k − fk, respectively. The

algorithms given in (3.34)-(3.35) could be expressed in terms of tap-weight tracking errors by

subtractingfk+1 from both side of the adaptations as follows

f̂ f
k+1 − fk+1 = f̂ f

k − fk − 2µEs ( f̂ f
k − fk) − µ ǫ f

k (3.36)

f̂ b
k−1 − fk+1 = f̂ b

k − fk − 2µEs ( f̂ b
k − fk) − µ ǫbk . (3.37)

where we make use of the time invariance assumption, i.e.,fk+1 = fk, at the right side of

(3.36)-(3.37) which is previously made for the self-noise derivation. As a result, the adapta-

tions in terms of the tap-weight tracking error become

v̂f
k+1 = (1 − 2µEs)v̂

f
k − µ ǫ

f
k (3.38)

v̂b
k−1 = (1 − 2µEs)v̂

b
k − µ ǫ

b
k . (3.39)

In order to express the self-noise in terms of the overall tap-weight tracking error, which is

defined asvk = f̂k − fk, we further elaborate the expression given in (3.28). In order to

get rid of the inner expectationE{ f̂k} present as a part of the self-noise expression, we take

expectations of (3.34)-(3.35) as follows

E
{

f̂ f
k+1

}

︸  ︷︷  ︸

=E{ f̂ f
k }

= E
{

f̂ f
k

}

− 2µEs

(

E
{

f̂ f
k

}

− E
{

fk
}

︸︷︷︸

= fk

)

− µ E
{

ǫ
f
k

}

︸︷︷︸

=0

(3.40)

E
{

f̂ b
k−1

}

︸  ︷︷  ︸

=E{ f̂ b
k }

= E
{

f̂ b
k

}

− 2µEs

(

E
{

f̂ b
k

}

− E
{

fk
}

︸︷︷︸

= fk

)

− µ E
{

ǫbk

}

︸︷︷︸

= 0

, (3.41)

whereE{ f̂ f
k+1} = E{ f̂ f

k } andE{ f̂ b
k−1} = E{ f̂ b

k } follows from the time invariance assumption,

E{ fk} = fk is a previous result due to the fact thatfk is common across the ensemble, andǫ f
k

ǫbk are zero-mean Gaussian random variables by definition [57].After some straightforward

steps in (3.40)-(3.41), we haveE{ f̂ f
k } = fk andE{ f̂ b

k } = fk, andE{ f̂k} is therefore found to be

E{ f̂k} =
E{ f̂ f

k } + E{ f̂ b
k }

2
=

fk + fk
2

= fk (3.42)
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with a help of (3.15). As a result of these findings, the self-noise expression given in (3.28)

becomes

Jsel f = E
{ ∣
∣
∣
∣ f̂k − E

{

f̂k
} ∣∣
∣
∣

2 }

= E
{ ∣
∣
∣ f̂k − fk

∣
∣
∣
2
}

= E
{

| vk |2
}

(3.43)

where the overall tap-weight tracking errorvk is given as

vk = f̂k − fk (3.44)

=
f̂ f
k + f̂ b

k

2
− fk =

(

f̂ f
k − fk

)

+
(

f̂ b
k − fk

)

2
=

vf
k + vb

k

2
. (3.45)

Using (3.45), the self-noise defined in (3.43) could then be evaluated as

Jsel f = E
{

| vk |2
}

(3.46)

= E










vf
k + vb

k

2









vf
k + vb

k

2





∗



(3.47)

=
E
{ ∣
∣
∣ vf

k

∣
∣
∣
2}

4
+

E
{ ∣
∣
∣ vb

k

∣
∣
∣
2}

4
+

Re
(

E
{

vf
k (vb

k)∗
})

2
(3.48)

whereE{|vf
k |

2} andE{|vb
k|

2} are known through the steady-state analysis of the conventional

LMS algorithm, and is given in [57] asµ/(1−µ) Jmin. In order to simplify the expression found

in (3.48), the expectation in the last term could be further elaborated using (3.38)-(3.39) as

follows

E{vf
k(vb

k)∗} = E
{[

(1− 2µEs)v
f
k−1 − µǫ

f
k−1

] [

(1− 2µEs)(v
b
k+1)∗ − µ(ǫbk+1)∗

]}

(3.49)

= (1− 2µEs)
2E

{

vf
k−1(vb

k+1)∗
}

− µ (1− 2µEs)E
{

vf
k−1(ǫbk+1)∗

}

− µ (1− 2µEs)E
{

ǫ
f
k−1(vb

k+1)∗
}

+ µ2E
{

ǫ
f
k−1(ǫbk+1)∗

}

(3.50)

= (1− 2µEs)
2E

{

vf
k−1(vb

k+1)∗
}

(3.51)

where (3.51) makes use of the assumptions thatǫ
f
k andǫbl are assumed to be zero-mean ran-

dom variables, and they are mutually independent of each other and ofvf
k and vb

k, which

directly follows from [57]. Through iterations, (3.51) becomes

E{vf
k (vb

k)∗} = (1− 2µEs)
LE{vf

0(vb
L)∗}

which could safely be ignored since (1− 2µEs)L ≪ 1 due to the fact that|1 − 2µEs| < 1

is known to be the stability condition of the conventional LMS algorithm. Therefore, the
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self-noise term becomes

Jsel f = E{|vk|2} =
E
{ ∣
∣
∣ vf

k

∣
∣
∣
2}

4
+

E
{ ∣
∣
∣ vb

k

∣
∣
∣
2}

4
(3.52)

=
µ/(1− µ) Jmin

4
+
µ/(1− µ) Jmin

4
=

µ

2(1− µ)
Jmin, (3.53)

which is observed to depend purely on the step-sizeµ and the minimum achievable MSE

which is equal to the noise variance for this particular case. As a result, the self-noise for the

bidirectional LMS algorithm is half that of the conventional LMS algorithm. Since no time

variation is assumed while deriving self-noise part, MSE ofthe bidirectional algorithm in a

quasi-static channel is also expected to be half that of the conventional LMS algorithm.

3.3.2 Derivation of the Lag Component (Jlag)

We have analyzed the contribution of the noisy gradient estimation into the steady-state MSE

by deriving the self-noise expression in the previous section. We therefore assume a perfect

gradient estimation while analyzing the lag component, andconcentrate only on the effect of

the time variation. By making use of this assumption and the results of [61, 63], the forward

and the backward adaptations given in (3.32)-(3.33) become

f̂ f
k+1 = f̂ f

k − µ∇
f
k = (1− 2µEs) f̂ f

k + 2µEs fk (3.54)

f̂ b
k−1 = f̂ b

k − µ∇
b
k = (1− 2µEs) f̂ b

k + 2µEs fk. (3.55)

In order to cope with the time variation, we prefer to expressthe adaptations in the frequency

domain, as in [61]. For this purpose, z-transform of (3.54) and (3.55) are first computed, and

the results are then rearranged as follows

f̂ f (z) = Z
{

f̂ f
k

}

=
1− β
z− β

f (z) (3.56)

f̂ b(z) = Z
{

f̂ b
k

}

=
1− β

z−1 − β
f (z) (3.57)

whereβ = 1 − 2µEs is the geometric ratio of the adjustments [61], Z{ · } denotes the z-

transform [103] defined as

Z { xk } =
∞∑

k=−∞
xk z−k, (3.58)
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and f (z) = Z { fk }. The z-transform off̂k is then found with a help of (3.15) as follows

f̂ (z) =
f̂ f (z) + f̂ b(z)

2
=

1
2

(

1− β
z− β

+
1− β

z−1 − β

)

f (z). (3.59)

The z-transform of the tracking errorv(z) becomes

v(z) = f̂ (z) − f (z) = H(z) f (z) (3.60)

whereH(z) is the transfer function for the bidirectional LMS algorithm which is independent

of the channel characteristics to be estimated, and is givenas

H(z) =
1
2

(1− β
z− β

+
1− β

z−1 − β

)

− 1 (3.61)

= −
1+ β
2β
+

1− β
2β

( 1

1− βz−1
−

1

1− 1
β
z−1

)

. (3.62)

In (3.62), it is observed that the poles of the transfer function H(z) arezp1 = β andzp2 = 1/β

both of which are real. Remembering thatβ = |1 − 2µEs| < 1 is the necessary condition for

the convergence of the LMS algorithm in the mean, the first pole zp1 = β lies inside the unit

circle while the second polezp2 = 1/β is outside of it.

The transfer function could also be expressed in the frequency domain as follows

H(ejw) =
1
2

( 1− β
ejw − β

+
1− β

e− jw − β

)

− 1 (3.63)

= −
(1+ β) (1− cosw)

1+ β2 − 2β cosw
. (3.64)

From (3.64), one could observe thatH(ejw) is a real-valued function. Note also that, the term

in the denominator of (3.64) is nonnegative since

1+ β2 − 2β cosw ≥ 1+ β2 − 2β

= (1− β)2

≥ 0,

and the numerator of (3.64) is also nonnegative since| β | < 1 is the mean-convergence condi-

tion as explained before. As a result,H(ejw) is always a negative function ofw. We emphasize

that these findings aboutH(ejw) is valid for the previous assumption that is the forward and

the backward step-size values are equal. In Section 3.4.2, we also investigate the effect of
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a more general setting in which the forward and the backward step-size values are chosen

independently which result in a complex-valued transfer function in case of unequal forward

and backward values.
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Figure 3.2: Transfer function characteristics forµ = 0.1.

The magnitude and the phase ofH(ejw) are given in Fig. 3.3 forµ = 0.1, Es = 1 and

wǫ [−π, π], as an example. We observe that the phase of the transfer function is∠H(ejw) = −π

for any choice ofw which implies a real and negative value, as stated before. The magnitude

of H(ejw) is almost constant forw > π/2 for this particular choice, and has the minimum at

w = 0.

We now turn to the derivation of the lag component. Remember that the ensemble over which

the expectations are taken is defined at the beginning of thissection to be a set of systems, or

equivalently adaptive processes, which have the same time-varying channel to be estimated

and are fed by a set of independent input signals. In addition, since the gradient of the error

performance surface is assumed to be estimated perfectly for this particular case, the channel

estimates associated with different ensemble members are the same due to the adaptations

given in (3.54)-(3.55). In order to provide a better understanding of this point, we also note
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that the adaptations (3.54)-(3.55) do not depend on the input signal ak which is the major

source of difference across the ensemble, and this dependency is considered in the self-noise

derivation by (3.32)-(3.33) where the forward and the backward gradient estimates are given

to be a function ofak. As a result, we conclude thatE{ f̂k} = f̂k since f̂k is the same across the

ensemble for this particular case.

With a help of the previous discussion which concludes thatE{ f̂k} = f̂k, the lag component

given in (3.26) becomes

Jlag = E
{∣
∣
∣
∣E

{

f̂k
}

− fk
∣
∣
∣
∣

2}

= E
{∣
∣
∣ f̂k − fk

∣
∣
∣
2
}

, (3.65)

andJlag is therefore interpreted as the mean-square energy of the tracking error. In order to

evaluate this energy, the input/output relation given in (3.60) is also represented by a block

diagram as follows

k
k
 f
f
 -
ˆ

k
f
 )
(
z
H


Figure 3.3: Transfer function representation of the bidirectional LMS algorithm.

which implies that the mean-square energy in the tracking error could be evaluated in the

frequency domain as [63]

Jlag =
1
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw (3.66)

whereS(w) is the power spectrum of the fading process under consideration.

As a result, the final expression for the steady state MSIE is given as

JMS IE = Jsel f + Jlag

=
µ

2(1− µ)
Jmin +

1
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw, (3.67)

and the steady-state MSE is therefore found to be

JMS E = Jmin + Es JMS IE

=

(

1+
µEs

2(1− µ)

)

Jmin+
Es

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw. (3.68)
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3.3.3 Numerical Results

In this section, our goal is to verify the steady-state MSE analysis of the bidirectional LMS

algorithm given in the previous section by comparing it withthe experimental data obtained

through Monte Carlo simulations, and to evaluate the overall tracking performance of the

bidirectional LMS algorithm algorithm through a number of comparisons for the resulting

MSE with that of the conventional unidirectional LMS algorithm and the optimal MMSE

filter under various circumstances.

Throughout simulations, an independent set ofL = 100 information symbols are chosen from

a BPSK alphabet such thatA = {−1,+1} andEs = 1. Unless otherwise stated, we assume

Rayleigh fading with the well-known Jakes’ power spectrum [98] for all simulations with the

temporal autocorrelation given as

r(τ) = J0 (2π fdTsτ) (3.69)

whereJ0(.) is the zeroth order Bessel function of the first kind,fdTs is the maximum normal-

ized Doppler frequency, andτ is the time difference in the discrete domain. We also consider

the Gaussian and the double-Gaussian power spectrums to discuss the generality of perfor-

mance superiority of the bidirectional LMS algorithm and the correctness of the associated

theoretical derivations. Note that, the choice of both the Gaussian and the double-Gaussian

power spectrums makes also practical sense since they are known in the literature to well suit

to the HF channels [104].

The speed of the Rayleigh fading channel for Jakes’ spectrumis determined by the maxi-

mum normalized Doppler frequency represented byfdTs. The variations in the magnitude

of the channel along a block of 200 symbols as a result of a set Doppler valuesfdTs =

{0.005, 0.01, 0.02} are depicted in Fig. 3.4. We observe that even the slowest channel real-

ization is changing significantly during the transmission of 100 symbols. In the subsequent

simulations, we prefer to use much faster channel realizations by choosingfdTs = {0.01, 0.02}

unless otherwise stated.

In order to gain more insight on the Doppler spread, considera mobile vehicle making use of

a GSM service at 900 MHz. If the vehicle is moving at a high speed of 120 km/h, then the
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maximum Doppler frequency is

fd = fc
v
c
= 900× 106 Hz

120 km/h

3× 108 m/s
= 100 Hz (3.70)

which is therefore referred to as a very fast channel in the literature.
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Figure 3.4: Magnitude of a set of Rayleigh fading realizations corresponding tofdTs =

{0.005, 0.01, 0.02}.

In order to achieve the aforementioned goals of this section, we depict the experimental and

theoretical MSIE, i.e.,JMS IE, in Fig. 3.8 associated with both the unidirectional and the

bidirectional LMS algorithms for Jakes’ spectrum with respect to varying step-size values

atγ = 10 dB. The theoretical MSIE for the unidirectional LMS is given in [63] as

JMS IE =
µ

1− µ
Jmin +

1
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw, (3.71)

except the term 1− µ in the denominator of the self-noise part, i.e.,Jsel f, and the associated

transfer function is defined therein to be

H(ejw) =
2 (1− cosw)

(

1− 2β cosw+ β2)
. (3.72)
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Figure 3.5: Theoretical and experimental MSIE for UniLMS and BiLMS for varying step-
size,µ, at SNR=10 dB and fdTs = 0.01. The experimental MSIE for a 21-tap MMSE and
theoretical approximate MSIE ignoring (1− µ) term are also provided.

The MSIE value corresponding to the optimal MMSE filter with 21 taps is also provided in

Fig. 3.5 as a bound. We make a number of observations from these results. First, there is

almost a perfect match between the theoretical results obtained using the steady-state MSIE

expression given in (3.67) and the experimental ones for thebidirectional LMS algorithm

for any choice of the step-size value. This result together with the subsequent simulations

at different Doppler and SNR values verifies the derivation of the steady-state MSE for the

bidirectional LMS algorithm performed in the previous section. Second, the minimum MSIE

of the bidirectional LMS algorithm, which is achieved when the optimal step-size value is

used, is very close to that of the optimal MMSE filter with 21 taps and is significantly smaller

than that of the conventional unidirectional LMS algorithm. As a result, the bidirectional LMS

algorithm is said to have a near-optimal tracking performance. Furthermore, this appealing

performance is obtained with a practical level of complexity which is argued previously to

be comparable to that of the unidirectional LMS algorithm and significantly smaller than that

of the optimal MMSE filter. Finally, we also observe significant deviations in theoretical
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MSIE values when it is computed by ignoring the term (1− µ) in the denominator ofJsel f as

in [61, 63] for both the conventional unidirectional and bidirectional LMS algorithms.
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Figure 3.6:Jsel f andJlag terms for BiLMS with varying step-size at SNR=10 dB andfdTs =

0.01.

In derivation of MSE, it is assumed that the resulting MSIE, i.e.,JMS IE, is a sum of self-noise,

i.e., Jsel f, and lag, i.e.,Jlag, parts. In Fig. 3.6, we depict these two parts individually and

also together with the resultingJMS IE for the same settings to provide further understanding.

We observe thatJlag is a decreasing function of the step-size and is dominant forthe small

step-size values whereasJsel f is an increasing function of the step-size and is dominant for

large step-size values. The optimal step-size value, i.e.,µopt, is therefore observed to be a

compromise betweenJsel f andJlag.

In Fig. 3.7, we plot the experimental and theoretical MSIE performances of the unidirectional

LMS and the bidirectional LMS algorithms for varying SNR where both algorithms employ

the optimal step-size values. The experimental MSIE of the 31-tap MMSE filter is also pro-

vided. We observe that the theoretical MSIE values exactly follow the experimental MSIE

values of the bidirectional LMS algorithm, and that the MSIEperformance of the bidirec-
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tional LMS algorithm is very close to that of the optimal MMSEfilter and is much better than

that of the unidirectional LMS algorithm.
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Figure 3.7: Theoretical and experimental MSIE for UniLMS and BiLMS with the optimal
step-size,µopt, with varying SNR andfdTs = 0.01. The experimental MSIE for a 31-tap
MMSE filter is also provided.

Although the details of MMSE filter design is considered in Section 3.2.1, we briefly present

the effect of the associated filter length. For this purpose, the experimental MSIE values of

the optimal MMSE filter with various number of taps are depicted in Fig. 3.8. It is observed

that performance improvement of the optimal MMSE approach as a result of increase in the

number of filter taps diminishes as the number of filter taps gets bigger. A careful consider-

ation of Fig. 3.7 and Fig. 3.8 shows that the bidirectional LMS algorithm results in an MSIE

which is smaller than that of, let us say, an 11-tap MMSE filterfor a definite SNR region. We

therefore use the MMSE filter with a sufficient number of taps in the simulations to provide a

fair performance comparison.
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Figure 3.8: Experimental MSIE for MMSE filters with various taps for fdTs = 0.01.

Before proceeding further, we would like to investigate therobustness of the MMSE filter and

the bidirectional LMS algorithm when the transmitted symbols are known imperfectly. This

is similar to the scenario in the iterative channel estimation to be considered in Section 3.8

where the imperfect estimates of the transmitted symbols are used in channel estimation after

the initial acquisition. In order to gain insight for this future issue, we run the estimation

algorithms under considerations with the imperfect valuesof the transmitted symbols which

are obtained such that a target BER will be achieved in case ofhard decision. Let

âk = ak + ηk (3.73)

be the imperfect estimate of the transmitted symbolak to be used in channel estimation where

ηk is a sample from a zero-mean white Gaussian noise with the varianceσ2
η. If we perform

hard decision on ˆak, the corresponding BER for BPSK signalling is given as [102]

BER=
1
2

erfc





1
√

2ση



 (3.74)
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where erfc(· ) is the complementary error function defined as

erfc(x) =
2
√
π

∫ ∞

x
e−t2 dt . (3.75)

In order to achieve a target BER, we therefore chooseσ2
η to be

σ2
η =

1

2 erfcinv2(2 BER)
(3.76)

where erfcinv(· ) is the inverse of erfc(· ).
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Figure 3.9: Experimental MSIE for UniLMS, BiLMS and 21-tap MMSE at SNR=10 dB and
fdTs = 0.01.

In Fig. 3.9, we present the MSIE results of the 21-tap MMSE filter and the bidirectional LMS

algorithm for the above scenario with various BER choices atγ = 10 for fdTs = 0.01. We

observe that although the MMSE filter performs slightly better than the bidirectional LMS

algorithm in a genie-aided mode, it performs worse as the imperfect estimates in use become

more noisy. This result is of practical importance in understanding and evaluating the results

of the iterative channel estimation technique considered in this and the subsequent chapters.

We now investigate the effect of a much faster Rayleigh fading channel withfdTs = 0.02 on
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the tracking performance of the bidirectional LMS algorithm together with the accuracy of

the associated steady-state MSE expression. In Fig. 3.10, the theoretical and the experimental

MSIE values for the unidirectional and the bidirectional LMS algorithms are depicted for the

varying step-size at SNR= 15 dB. The theoretical MSIE of the bidirectional LMS algorithm is

observed to match exactly the experimental values minimum of which is very close to that of

the optimal MMSE filter with 21-tap and is significantly better than that of the unidirectional

LMS algorithm. The approximate MSIE of both the unidirectional and the bidirectional LMS

algorithm in which the term (1− µ) in the denominator ofJsel f is ignored is again provided

with a result of an obvious deviation from the actual experimental data.
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Figure 3.10: Theoretical and experimental MSIE for UniLMS and BiLMS for varying step-
size,µ, at SNR=15 dB and fdTs = 0.02. The experimental MSIE for a 21-tap MMSE and
theoretical MSIE ignoring (1− µ) term are also provided.

In Fig. 3.11, the theoretical and the experimental MSIE values for the bidirectional and the

unidirectional LMS algorithms are presented with optimal step-size and varying SNR for

fdTs = 0.02. The experimental MSIE of an optimal MMSE filter with 21-tap is also added as

a benchmark. For this significantly fast Rayleigh fading channel, the theoretical MSIE values

of the bidirectional LMS algorithm are observed to exactly follow the associated experimental
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ones. The resulting MSIE of the bidirectional LMS algorithmis also very close to that of the

MMSE filter under consideration and is substantially betterthan that of the unidirectional

LMS algorithm. For comparison purposes, we also provide theMSIE results for optimal

MMSE filters with various number of taps in Fig. 3.12 for this fast Rayleigh fading channel.

In this case, because the channel is changing very fast, the correlation between the consecutive

discrete time indices decreases as compared to relatively slow scenarios. As a result, the MSIE

performance of both the 21-tap and 31-tap optimal MMSE filters are almost the same.

Finally, we present the experimental MSIE results for varying fdTs atγ = 10 dB in Fig. 3.13.

We observe that, although the bidirectional LMS algorithm keeps its superiority over the

unidirectional LMS algorithm for any choice offdTs, the associated performance gets worser

than that of the MMSE filter asfdTs becomes larger.
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Figure 3.11: Theoretical and experimental MSIE for UniLMS and BiLMS with the optimal
step-size,µopt, with varying SNR andfdTs = 0.02. The experimental MSIE for a 21-tap
MMSE filter is also provided.
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Figure 3.12: Experimental MSIE for MMSE filters with varioustaps for fdTs = 0.02.
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Figure 3.13: Experimental MSIE for varyingfdTs atγ = 10 dB.

We now consider the Gaussian and the double-Gaussian spectrums which are discussed in the
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literature to be well suited to the HF communications. In [104], the double-Gaussian spec-

trum is represented by two magnetoionic components with thefollowing tap-gain correlation

function

r(△t) = Ca exp
{

−2π2σ2
a(△t)2 + j 2π fa△t

}

+ Cb exp
{

−2π2σ2
b(△t)2 + j 2π fb△t

}

(3.77)

and the spectrum

S( f ) =
Ca√
2πσa

exp

{

−
( f − fa)2

2σ2
a

}

+
Cb√
2πσb

exp





−

( f − fb)2

2σ2
b





(3.78)

whereCa and Cb are the power ratios,fa and fb are the frequency shifts andσa andσb

are the frequency spreads of the two magnetoionic components specified by the subscripts

a andb. We conclude from (3.78) that the double-Gaussian spectrumis in fact sum of two

Gaussian spectrums so that we use (3.77) and (3.78) with proper parameters while dealing

with Gaussian spectrums, as well.

Throughout simulations, we choose (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and (σa, σb) =

(30, 20) Hz to characterize the double-Gaussian spectrum given in Fig.3.14 and (Ca,Cb) =

(1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) = (40, 0) Hz for the Gaussian spectrum in Fig.3.15. A

set of sample fading realizations for each spectrum is also provided in Fig.3.16 and Fig.3.17
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Figure 3.14: Double-Gaussian spectrum with (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and
(σa, σb) = (30, 20) Hz.
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Figure 3.15: Gaussian spectrum with (Ca,Cb) = (1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) =
(40, 0) Hz.
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Figure 3.16: A fading realization for the double-Gaussian spectrum with (Ca,Cb) = (0.5, 1),
( fa, fb) = (40,−50) Hz and (σa, σb) = (30, 20) Hz.
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Figure 3.17: A realization for the Gaussian spectrum with (Ca,Cb) = (1, 0), (fa, fb) = (0, 0)
Hz and (σa, σb) = (40, 0) Hz.

Keeping the other system parameters the same, we also plot MSIE values as before for the

double-Gaussian and the Gaussian spectrums specified aboveat γ = 5 dB andγ = 15 dB in

Fig.3.18-3.21 with varying step-size values. These results are observed to be very similar to

the previous cases with Jakes’ spectrum.
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Figure 3.18: MSIE for UniLMS, BiLMS and 31-tap MMSE for the double-Gaussian spectrum
with (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and (σa, σb) = (30, 20) Hz atγ = 5 dB.
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Figure 3.19: MSIE for UniLMS, BiLMS and 31-tap MMSE for the double-Gaussian spectrum
with (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and (σa, σb) = (30, 20) Hz atγ = 15 dB.
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Figure 3.20: MSIE for UniLMS, BiLMS and 31-tap MMSE for the Gaussian spectrum with
(Ca,Cb) = (1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) = (40, 0) Hz atγ = 5 dB.
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Figure 3.21: MSIE for UniLMS, BiLMS and 31-tap MMSE for the Gaussian spectrum with
(Ca,Cb) = (1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) = (40, 0) Hz atγ = 15 dB.
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3.4 Step-Size Optimization in Flat-Fading Channels

3.4.1 Equal Forward and Backward Step-Size Values

As is the case for the conventional LMS algorithm, we observefrom (3.68) that the tracking

performance of the bidirectional LMS algorithm highly depends on the step-size value of the

adaptations. Therefore, the optimal choice for the step-size value is of interest to characterize

the minimum achievable MSE for the bidirectional LMS algorithm at the steady-state. We

remind that the step-size value is chosen to be the same for the forward and the backward

adaptations while deriving (3.68), and leave the effect of the independent step-size choice for

the forward and the backward adaptations to the next section.

In order to derive the optimal step-size expression,µopt, theoretically, we first express (3.68)

in terms of onlyβ, and then take derivative with respect toβ as follows

∂JMS E

∂β
=
∂

∂β

{(

1+
(1− β)Es

2(2Es − 1+ β)

)

Jmin +
Es

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw

}

= −
E2

s

(2Es − 1+ β)2
Jmin +

Es

π

∫ π

−π
H(ejw)

∂H(ejw)
∂β

S(w) dw (3.79)

where∂H(ejw)/∂β is given as

∂H(ejw)
∂β

=
1

2β2
− 1

2β2





1
1− βe− jw

− 1

1− 1
β
e− jw





+
(1− β)e− jw

2β





1

(1− βe− jw)2
+

1/β2

(

1− 1
β
e− jw

)2




, (3.80)

or, equivalently, as follows

∂H(ejw)
∂β

= −
(1− cosw) (1− β2 − 2β + 2 cosw)

(1+ β2 − 2β cosw)2
. (3.81)

The optimal geometric ratioβopt could then be evaluated numerically using (3.79) and (3.81)

as follows

∂JMS E

∂β

∣
∣
∣
∣
∣
β=βopt

= 0 (3.82)

and the optimal step-sizeµopt could be found asµopt = (1− βopt)/2Es.

47



We now investigate the effectiveness of the theoretical optimal step-size values, i.e., µopt’s,

computed according to (3.79) and (3.81). We present the resulting theoretical values forµopt

together with the associated experimental ones forfdTs = 0.01 and fdTs = 0.02 in Table 3.1

and Table 3.2, respectively. Note that the experimental optimal step-size values are deter-

mined using 0.01 steps. We observe from Table 3.1 and Table 3.2 that the theoretical µopt

values are very close to the experimental results for a variety of SNR and Doppler choices.

This result is believed to have a significant practical importance since it eliminates the neces-

sity of excessive experiments to findµopt for a genie-aided scenario.

Table 3.1: Theoretical and Experimental Optimal Step-Size(µopt) Values for a Rayleigh Fad-
ing Channel withfdTs = 0.01

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.070 0.070 0.090 0.100 0.100 0.120 0.130 0.140 0.140

Theoretical 0.068 0.075 0.083 0.091 0.101 0.110 0.121 0.132 0.144

Table 3.2: Theoretical and Experimental Optimal Step-Size(µopt) Values for a Rayleigh Fad-
ing Channel withfdTs = 0.02

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.110 0.120 0.140 0.160 0.170 0.180 0.200 0.220 0.230

Theoretical 0.111 0.124 0.137 0.150 0.165 0.180 0.196 0.213 0.231

3.4.2 Independent Forward and Backward Step-Size Values

In order to investigate the step-size optimization in a morecomprehensive fashion, we now

examine a different scenario in which we do not impose the forward and the backward adap-

tations to use strictly the same step-size value. As a result, the forward and the backward

step-size values, i.e.,µ f andµb, could be chosen independently in order to explore for a better

tracking performance. Indeed, one could argue intuitivelythat the forward and the backward

step-size values should be chosen equally by symmetry for the best performance. Neverthe-

less, the following investigation is of value since it provides further understanding of the effect

of the step-size and the characteristics of the transfer function.

In Section 3.2.2, the forward and the backward adaptive algorithms are introduced in (3.11)

and (3.12) with independent step-size valuesµ f and µb, respectively. We now define the
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associated geometric ratios asβ f = 1 − 2µ f Es andβb = 1 − 2µbEs. In order to examine the

effect of independent choice ofµ f andµb on the overall tracking performance, we will first

derive a corresponding MSE expression, and then try to determine the optimal valuesµ f
opt

andµb
opt analytically. To this end, we use the previous definition ofJMS E given in (3.22),

and derive the self-noise and the lag components separatelyto determineJMS IE according to

(3.29).

We use the result of (3.52) to obtain a properJsel f expression associated with the independent

forward and the backward step-size values as follows

Jsel f =
E
{ ∣
∣
∣ vf

k

∣
∣
∣
2}

4
+

E
{ ∣
∣
∣ vb

k

∣
∣
∣
2}

4
(3.83)

=
1
4

(

µ f

1− µ f
+
µb

1− µb

)

Jmin (3.84)

=
1
4

(

1− β f

2Es − 1+ β f
+

1− βb

2Es − 1+ βb

)

Jmin (3.85)

whereE{ | vf
k |

2} andE{ | vb
k |

2} is known through the steady-state MSE analysis of the the con-

ventional LMS algorithm [57], as explained before.

In order to determine the corresponding lag component, we follow the steps of Section 3.3.2.

For this purpose, we first replaceµ in (3.54) and (3.55) withµ f andµb, respectively, and then

take the z-transforms as before to obtain

f̂ f (z) = Z
{

f̂ f
k

}

=
1− β f

z− β f
f (z) (3.86)

f̂ b(z) = Z
{

f̂ b
k

}

=
1− βb

z−1 − βb
f (z) . (3.87)

The z-transform of the tracking error now becomes

f̂ (z) − f (z) =
f̂ f (z) + f̂ b(z)

2
− f (z) (3.88)

=
1
2

(

1− β f

z− β f
+

1− βb

z−1 − βb

)

f (z) − f (z), (3.89)

and the transfer functionH(z) is found to be

H(z) =
1
2

(1− β f

z− β f
+

1− βb

z−1 − βb

)

− 1 (3.90)

= −
1+ β f

2β f
+

1
2

(1− β f

β f

1

1− β f z−1
−

1− βb

βb

1

1− 1
βb z−1

)

. (3.91)
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We observe from (3.91) that the poles of the transfer function H(z) arezp1 = β
f andzp2 = 1/βb

where the first polezp1 = β
f associated with the forward adaptation lies inside the unitcircle

whereas the second polezp2 = 1/βb associated with the backward adaptation lies outside

of it due to the mean-convergence property of the LMS algorithm. As opposed to the equal

forward and the backward step-size case, this time the transfer function is complex-valued as

long asµ f
, µb. The frequency domain representation of the transfer function, which is given

as

H(ejw) =
1
2

( 1− β f

ejw − β f
+

1− βb

e− jw − βb

)

− 1, (3.92)

is also examined in terms of its magnitude and phase in Fig. 3.22 forµ f = 0.1 andµb = 0.3, as

an example. We observe that the phase response∠H(ejw) is now a nonlinear function of the

frequency which implies thatH(ejw) is now complex-valued as stated before. The magnitude

response is now observed to be highly nonlinear for this particular case.
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Figure 3.22: Transfer function characteristics forµ f = 0.1 andµb = 0.3

The lag component is then evaluated using (3.66) and (3.92) as follows

Jlag =
1
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S f (w) dw. (3.93)
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As a result, the overall MSIE associated with the different forward and the backward step-size

case is given as

JMS IE = Jsel f + Jlag (3.94)

=
1
4

[ 1− β f

2Es − 1+ β f
+

1− βb

2Es − 1+ βb

]

Jmin

+
Es

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S f (w) dw. (3.95)

and the corresponding MSE is

JMS E = Jmin + Es

(

Jsel f + Jlag

)

(3.96)

=

(

1 +
Es

4

[ 1− β f

2Es − 1+ β f
+

1− βb

2Es − 1+ βb

])

Jmin

+
Es

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S f (w) dw. (3.97)

Since we are dealing with the expressions for the optimal forward and the backward step-size

values, we take derivative of (3.97) with respect toβ f andβb to jointly find the roots of the

resulting equations as follows

∂JMS E

∂β f

∣
∣
∣
∣
∣
β f=β

f
opt, β

b=βb
opt

= 0 (3.98)

∂JMS E

∂βb

∣
∣
∣
∣
∣
β f=β

f
opt, β

b=βb
opt

= 0. (3.99)

Let us consider the derivative ofJMS E given in (3.97) with respect toβ f as follows

∂JMS E

∂β f
= −

E2
s

2(2Es − 1+ β f )2
Jmin +

Es

2π

∫ π

−π

∂
∣
∣
∣H(ejw)

∣
∣
∣
2

∂β f
S(w) dw (3.100)

where∂
∣
∣
∣H(ejw)

∣
∣
∣
2
/∂β f is given as

∂
∣
∣
∣H(ejw)

∣
∣
∣
2

∂β f
=
∂H(ejw)

∂β f
H(ejw)∗ + H(ejw)

∂H(ejw)∗

∂β f
(3.101)

= 2 Re

{

∂H(ejw)

∂β f
H(ejw)∗

}

(3.102)

= 2 Re






1− ejw

2
(

ejw − β f
)2

[

1
2

(

1− β f

e− jw − β f
+

1− βb

ejw − βb

)

− 1

]



. (3.103)

Similarly, the derivative of (3.97) with respect toβb is given as

∂JMS E

∂βb
= −

E2
s

2(2Es − 1+ βb)2
Jmin +

Es

2π

∫ π

−π

∂
∣
∣
∣H(ejw)

∣
∣
∣
2

∂βb
S(w) dw (3.104)
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where∂
∣
∣
∣H(ejw)

∣
∣
∣
2
/∂βb is

∂
∣
∣
∣H(ejw)

∣
∣
∣
2

∂βb
= 2 Re

{

∂H(ejw)∗

∂βb
H(ejw)

}

(3.105)

= 2 Re






1− ejw

2
(
ejw − βb)2

[

1
2

(

1− β f

ejw − β f
+

1− βb

e− jw − βb

)

− 1

]



. (3.106)

Indeed,β f
opt andβb

opt could be found using (3.100) and (3.104) together with (3.98) and (3.99).

Instead, we made an important observation here to simplify the subsequent equations. If we

evaluate∂JMS E

∂β f for (β f , βb) = (βb
opt, β

f
opt), we have exactly the same expression∂JMS E

∂βb evaluated

for (β f , βb) = (β f
opt, β

b
opt) which is equal to zero by (3.99). It implies that, if (β f , βb) =

(β f
opt, β

b
opt) is a root of ∂JMS E

∂β f , then (β f , βb) = (βb
opt, β

f
opt) is also a root. In addition, since

the quadratic error performance surfaces have a global minimum, then we obtain thatβ f
opt =

βb
opt. Therefore, we do not proceed any more to deriveβ f

opt andβb
opt since the problem under

consideration now turns out to be the one considered in Section 3.4.1.

As a result of this discussion, we conclude that one could nothave further tracking perfor-

mance improvement for the bidirectional LMS algorithm by just employing different step-size

values for the forward and the backward adaptations.

We also verify this theoretical results through some illustrative examples. We assume a

Rayleigh fading channel with Jakes’ spectrum for which the normalized maximum Doppler

frequency isfDTs = 0.01 with Es = 1. We plotJMS IE for SNR valuesγ = 0 dB andγ = 10

dB in Fig. 3.23 and Fig. 3.24, respectively, by making use ofJMS IE expression given in (3.95).

We observe that the forward and the backward step-size values are equal to achieve the min-

imum MSIE, i.e.,JMS IE,min, and that the optimal step-size values areµ f
opt = µ

b
opt = 0.07 for

γ = 0 where the minimum MSIE isJMS IE,min = 0.047, andµ f
opt = µ

b
opt = 0.11 for γ = 0

where the minimum MSIE isJMS IE,min = 0.008.
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Figure 3.23:JMS IE for the independentµ f andµb over Rayleigh fading withfDTs = 0.01.
The optimal step-size values areµ f

opt = µ
b
opt = 0.07 with JMS IE,min = 0.047.
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Figure 3.24:JMS IE for the independentµ f andµb over Rayleigh fading withfDTs = 0.01 and
M-ary PSK. The optimal step-size values areµ f

opt = µ
b
opt = 0.11 with JMS IE,min = 0.008.
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3.5 Effect of Imperfect Doppler and SNR Information

Although some a priori information on the communication channel is available in most prac-

tical systems, the statistical parameters of the underlying time-varying channel should be

derived by means of the observations especially for coherent receivers. The Doppler spread

of the time-varying channel and the SNR are two such examplesthat should be estimated

carefully. In this section, we will consider the proper estimation methods for these parameters

and the effects of their imperfect estimates on the estimation algorithms under consideration.

Before going further, we want to distinguish the necessity for the Doppler spread and the

SNR of the estimation algorithms. The MMSE algorithm requires both of these parameters in

order to design a proper filter whereas the LMS based algorithms do not have such a need to

adaptively estimate the unknown fading coefficients. However, in order to achieve a satisfac-

tory estimation performance, the LMS based algorithms require the choice of a good step-size

value as is discussed in the previous sections. Although such a choice can be done by trial

and error in the training mode, we have shown that the best step-size can also be determined

through an analytical expression which is a function of the Doppler spread and the SNR. We

will therefore use the estimates of these parameters in order to determine the best step-size

value to be employed in LMS adaptations.

For both Doppler and SNR estimation, we prefer data-aided approach such that the unknown

parameters are estimated by continuous transmission of a pilot sequence of lengthLT which

is consist of independent and identically distributed pilot symbols prior to the data block. The

equivalent observation model for (3.1) during this training period is given in vector form as

follows

y = Af + n (3.107)

wherey = [y0 y1 . . . yLT−1] is the observation vector,A = diag{a0, a1, . . . aLT−1} is the di-

agonal pilot matrix,f = [ f0 f1 . . . fLT−1] is the fading vector andn = [n0 n1 . . . nLT−1] is the

noise vector.
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3.5.1 Doppler Spread Estimation

There is a rich literature on the estimation of the mobile speed which in turn determines

the Doppler spread. In [105], the Doppler estimation methods present in the literature are

surveyed and grouped into two basic approaches which are thelevel crossing rate (LCR)

based and covariance-based methods. The common problem of such methods is the necessity

for long training or observation periods in order to have statistically efficient estimates which

makes them hard to be employed in communication scenarios with short block lengths such

as the one considered in this work.

In [106], an optimal maximum-likelihood (ML) approach together with a suboptimal least-

squares (LS) method is proposed for Doppler spread estimation for flat-fading time-varying

systems and employed in vector channels in a recent paper [107]. In [106], it is assumed that

the Doppler spread does not change duringQ transmitted block which is suitable for our study

due to the short blocklengths. Since the proposed ML estimation requires the information of

SNR which is not available a priori, we prefer to use LS estimation which is shown in [106] to

achieve almost the same performance with the ML approach. This LS cost function is given

as

F( fd) =
1
Q

Q∑

q=1

LT−1∑

l=1

∣
∣
∣
∣
∣
∣

K̂q(l)

K̂q(0)
−

r(l; fd)
r(0; fd)

∣
∣
∣
∣
∣
∣

2

(3.108)

whereK̂q(l) is an estimate of the autocorrelation function at theq-th block defined as

K̂q(l) =
1

LT − l

LT−l∑

k=0

f̂ q
k ( f̂ q

k+l )
∗ (3.109)

where f̂ q
k is an estimate of the channel coefficient fk at theq-th transmitted block [106]. In

(3.108),r(.; fd) is the true autocorrelation value, e.g., the one in (3.69) for Jakes’ spectrum.

Note that, an estimate of the unknown fading vector during the training period for any trans-

mitted block could be estimated by least-squares (LS) method without any need to the Doppler

spread and the SNR as follows

f̂ = AH
(

AA H
)−1

y . (3.110)

55



As a result, the final Doppler estimate is given as

f̂d = argmin
fd

F( fd) . (3.111)

Before the corresponding simulation results presented in Section 3.5.3, we discuss the robust-

ness of the estimation algorithms under consideration to the imperfect Doppler estimate for

L = 200 and BPSK modulation withTs = 0.1 ms over a flat Rayleigh fading channel with

Jakes’ spectrum andfd = 100 Hz. The degradation in MSIE due to imperfect estimate of the

Doppler spread̂fd is depicted through a mismatched ratio,f̂d/ fd, in Fig. 3.25 and Fig. 3.26

for γ = 0 dB andγ = 10 dB, respectively.
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Figure 3.25: MSIE for UniLMS, BiLMS and 21-tap MMSE for imperfect Doppler spread
estimate,f̂d, atγ = 0 dB, fd = 100 Hz,Ts = 0.1 ms.

A number of observations could be made on the results presented in Fig. 3.25-3.26. First,

degradation in MSIE is almost the same for both the bidirectional LMS algorithm and the

MMSE filter at low SNR whenf̂d > fd whereas the MMSE filter is observed to be more

robust than the bidirectional LMS algorithm at high SNR whenf̂d > 2 f d. For any SNR

value, the optimal MSIE performance does not change much when fd < f̂d < 2 fd. Second,

both LMS algorithms experience a serious MSIE degradation when f̂d < 0.7 fd. Note that

underestimating the Doppler spread results in a step-size which is smaller than the optimal
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one and therefore maps to the lag part of the MSIE. We know fromthe previous sections that

the MSIE curve shows a sharp increase for the lag part as the step-size value becomes smaller

than the optimal one. As a result, we could conclude that if the Doppler estimation algorithm

results in an estimate such that 0.7 fd < f̂d < 2 fd, we expect to observe almost no change in

the minimum achievable MSIE.
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Figure 3.26: MSIE for UniLMS, BiLMS and 21-tap MMSE for imperfect Doppler spread
estimate,f̂d, atγ = 10 dB, fd = 100 Hz,Ts = 0.1 ms.

3.5.2 SNR Estimation

In this section, we consider ML based SNR estimation for optimal operation as is discussed

in [108]. Towards this end, the probability density function of the observation vector is found

to be

p(y; γ|A) =
1

πLT |Ry|
exp

{

−yHR−1
y y

}

(3.112)

and therefore the ML estimate of the SNR is given as

γ̂ = argmax
γ

ln p(y; γ|A)

= argmax
γ

{

− ln |Ry| − yHR−1
y y

}

(3.113)
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where the observation autocorrelation matrixRy is

Ry = E{y yH} = AR f AH +
Es

γ
I (3.114)

which is obviously a function ofγ. Note that, we employ the Doppler estimatef̂d obtained

in the previous section in (3.114) in order to computeR f . Note also that, one could further

smoothγ̂ by averaging the results associated with the independent training blocks.

3.5.3 Joint Estimation of Doppler Spread and SNR

In this section, we discuss the effect of joint estimation of the Doppler spread and the SNR

by means of the methods presented in the previous sections onthe MSIE statistics. For this

purpose, we consider flat Rayleigh fading channel with Jakes’ spectrum andfd = 100 Hz.

A training sequence consisting of lengthLT prior to a data sequence of lengthL = 200 is

assumed both of which employs randomly chosen BPSK symbols with durationsTs = 0.1

ms. Based on the previous results, the length of the MMSE filter is chosen to be 21 to obtain

the best performance.
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Figure 3.27: MSIE for UniLMS, BiLMS and 21-tap MMSE for knownand estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spectrum and fd = 100 Hz,Q = 4.

Fig. 3.27 presents the degradation of MSIE due to the noisy estimate of the Doppler spread
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and the SNR for all the channel estimation algorithms under consideration after 4 fames, i.e.,

Q = 4. For the bidirectional LMS algorithm and the MMSE filter, MSIE statistics associated

with a training sequence of lengthLT = 20 is observed to be sufficiently close to the known

case for any choice of the SNR. A relatively short training sequence of lengthLT = 10

is also reported to exhibit very good performance at moderate and high SNR values. We

conclude that the degradations in MSIE associated with the bidirectional LMS algorithm and

the MMSE filter are very close to each other.
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Figure 3.28: MSIE for UniLMS, BiLMS and 21-tap MMSE for knownand estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spectrum and fdTs = 0.01 Hz atγ = 9
dB.

In Fig. 3.28 and Fig. 3.29, we present the effect of using multiple frames in estimating the

Doppler spread and the SNR forγ = 9 dB andγ = 15 dB, respectively, for the bidirectional

LMS algorithm. We observe that employing multiple frames significantly improves the MSIE

performance. For example, a single training sequence of length LT = 10 results in a MSIE

statistics for the bidirectional LMS algorithm which is twotimes worse than that for the

unidirectional LMS algorithm whereas it achieves a very close performance to the known

case after employingQ = 3 frames atγ = 9 dB.

59



1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

Q

M
S

IE

 

 
UniLMS (Known γ & fd)
BiLMS (Known γ & fd)
MMSE (Known γ & fd)
BiLMS (L = 5, Unknown γ & fd)
BiLMS (L = 10, Unknown γ & fd)
BiLMS (L = 15, Unknown γ & fd)
BiLMS (L = 20, Unknown γ & fd)

Figure 3.29: MSIE for UniLMS, BiLMS and 21-tap MMSE for knownand estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 Hz atγ = 15
dB.

As a result, we conclude that by employing multiple independent training blocks in estimating

the unknown Doppler spread and the SNR with relatively shortlengths, the bidirectional LMS

algorithm together with the MMSE filter stays very close to the known performance. And that,

any MSIE degradation due to the imperfect estimates of theseparameters are very close to

each other for the aforementioned channel estimation algorithms.

3.6 Effect of Imperfect Initialization

In this section, we consider the effect of imperfect initialization on the overall performance

of the bidirectional LMS algorithm. Although the scope of this work is related to the steady-

state performance of the aforementioned algorithm in time-varying systems, we believed that

it is of practical interest to explore the transient behavior of the algorithm when the initial

value of the channel is known imperfectly or there is no such information at all. To this

end, we first present the results for some simple initialization methods and then consider the

associated Cramer-Rao Bound (CRB). In Section 3.8, we also provide results for the imperfect
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initialization scenario in which unknown channel coefficient is initialized with the estimates

from the previous estimation iteration.

3.6.1 Practical Initialization Methods

We employ the same data-aided framework presented in Section 3.5 where a number ofLT

independent and identically distributed pilot symbols aretransmitted prior to the data block.

With a help of theseLT symbols, our aim is to estimate the most recent channel coefficient in

the training block which will be used as an initial value for the channel coefficient at the be-

ginning of the data block. For continuous transmission, thebidirectional LMS algorithm need

only one training block which is sent prior to the data block since the backward initialization

could be performed by using the training block associated with the next data block.

For the flat-fading channels under consideration, we consider both the zero and the ML ini-

tialization methods. In the former, the unknown fading coefficient at the beginning of the data

block is initialized with 0 which results in the following MSIE

JZero = E
{∣
∣
∣ f̂LT − fLT

∣
∣
∣
2
}

= E
{∣
∣
∣ fLT

∣
∣
∣
2
}

= 1. (3.115)

The ML initialization is defined as

f̂LT = a∗LT
yLT (3.116)

which minimizes the following probability density function

p (yk | fk, ak) =
1
πN0

exp

{

−|yk − fk ak|2

N0

}

(3.117)

according to the channel model given in (3.1). Note that the ML initialization makes use of a

single pilot symbol which results in the following MSIE

JML = E
{
∣
∣
∣ f̂LT − fLT

∣
∣
∣
2
}

= σ2 , (3.118)

as is intuitively expected.

The Monte Carlo results for the bidirectional LMS algorithmwith the aforementioned ini-

tialization methods for various data block lengths and SNR are presented in Fig.3.30-3.32.

We assume a flat Rayleigh fading channel with Jakes’ spectrumfor which fdTs = 0.01. We
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observe that even when the channel is initialized with zero,a data block of lengthL = 200

is very close to the perfect initialization scenario. In addition, a short data block of length

L = 100 with ML initialization results in an MSIE statistics which is almost the same with

that of the perfect case.
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Figure 3.30: MSIE for BiLMS with zero and ML initializationstogether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 5 dB.
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Figure 3.31: MSIE for BiLMS with zero and ML initializationstogether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 10 dB.
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Figure 3.32: MSIE for BiLMS with zero and ML initializationstogether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 15 dB.
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3.6.2 Cramer-Rao Bound for Imperfect Initialization

In this section, we derive the CRB for estimation of an unknown flat Rayleigh fading channel

in order to obtain a bound on the initialization error. We assume that a number ofLT indepen-

dent and identically distributed BPSK symbols are transmitted and the associated observations

are received according to the system model given in (3.1). Wealso assume real entries for

ease of presentation where the generalization to the complex case is straightforward.

In [109], the CRB is given as

E
{∣
∣
∣ f̂i − fi

∣
∣
∣
2
}

≥
(

J−1
)

ii
(3.119)

whereJ is the Fisher’s Information Matrix (FIM) defined as

Ji j = Ey,f

{

∂ ln p (y, f )
∂ fi

∂ ln p (y, f )
∂ f j

}

(3.120)

= −Ey,f

{

∂2 ln p (y, f )
∂ fi ∂ f j

}

(3.121)

for which the expectations are over bothy andf . We may further elaborate (3.121) as follows

Ji j = −E f

{

Ey | f

{

∂2 ln p (y | f )
∂ fi ∂ f j

}}

︸                               ︷︷                               ︸

J1
i j

−E f

{

∂2 ln p (f )
∂ fi ∂ f j

}

︸                ︷︷                ︸

J2
i j

(3.122)

= J1
i j + J2

i j . (3.123)

In order to computeJ1
i j , we consider the following probability density function

p (yk | fk, ak) =
1

√
2πσ2

exp

{

−
(yk − fk ak)2

2σ2

}

(3.124)

whereσ2 is the variance of the additive white Gaussian noise presence in the channel. In

order to get rid ofak dependency, (3.124) should be averaged over the BPSK alphabet which

yields

p (yk | fk) =
∑

i = {−1,+1}
P (ak = i) p (yk | fk, ak = i) (3.125)

=
1

2
√

2πσ2

(

exp

{

−
(yk − fk)2

2σ2

}

+ exp

{

−
(yk + fk)2

2σ2

})

, (3.126)
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and the following probability density function is obtained

p (y | f ) =
LT∏

k=1

p (yk | fk) (3.127)

= (8πσ2)−
LT
2

LT∏

k=1

(

exp

{

−
(yk − fk)

2

2σ2

}

+ exp

{

−
(yk + fk)

2

2σ2

})

. (3.128)

Taking logarithm of (3.128) gives

ln p (y | f ) = −
LT

2
ln(8πσ2) +

LT∑

k=1

ln

(

exp

{

−
(yk − fk)2

2σ2

}

+ exp

{

−
(yk + fk)2

2σ2

})

(3.129)

with which one could compute the first order derivative as follows

∂ ln p (y | f )
∂ fi

=
∂

∂ fi
ln

(

exp

{

−
(yi − fi)2

2σ2

}

+ exp

{

−
(yi + fi)2

2σ2

})

(3.130)

=
yi

σ2
tanh

( yi

σ2
fi
)

−
fi
σ2
, (3.131)

and the second order derivative is readily obtained as

∂2 ln p (y | f )
∂ fi ∂ f j

=

(

yi

σ2
sech2

( yi

σ2
fi
)

− 1
σ2

)

δi j . (3.132)

Finally, we end up with

J1
i j = −E f

{

Ey | f

{ yi

σ2
sech2

( yi

σ2
fi
)}}

δi j +
1

σ2
δi j (3.133)

=




− σ√

2π

" ∞

−∞

u2 exp
{

−σ2

2 u2
}

cosh(u v)
exp

{

−1+ σ2

2σ2
v2

}

du dv+
1
σ2




δi j (3.134)

by a change of variable which isu = yi/σ
2 andv = fi . Note that, no closed form for the

expression (3.134) could be obtained, but it could fortunately be computed through numerical

methods.

Now, consider the joint probability density function of theunknown channel coefficients given

as

p (f ) =
1

(2π)L/2
∣
∣
∣R f

∣
∣
∣
1/2

exp

{

−1
2

fTR f f
}

. (3.135)

The associated first order derivative is computed to be

∂ ln p (f )
∂ fi

= −1
2

LT∑

m=1

fm
[(

R−1
f

)

im
+

(

R−1
f

)

mi

]

(3.136)

= −
LT∑

m=1

fm
[(

R−1
f

)

im

]

, (3.137)
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and the second order differentiation therefore becomes

∂2 ln p (f )
∂ fi ∂ f j

= −
(

R−1
f

)

i j
. (3.138)

where (3.137) employs the fact thatR f is a symmetric matrix. We therefore obtainedJ2
i j as

J2
i j = −E f

{(

−R−1
f

)

i j

}

=
(

R−1
f

)

i j
. (3.139)

As a result, the final expression for FIM is given as

Ji j =




− σ√

2π

" ∞

−∞

u2 exp
{

−σ2

2 u2
}

cosh(u v)
exp

{

−1+ σ2

2σ2
v2

}

du dv+
1

σ2




δi j +

(

R−1
f

)

i j
. (3.140)

By using (3.119) and (3.140), we may compute the bound on the initialization error. In

Table 3.3, we present the MSIE for ML initialization and the associated CRB over a flat

Rayleigh fading channel with Jakes’ spectrum wherefdTs = 0.01 andLT = 1. Note that, zero

initialization yields an MSIE which is 1 all the time, as argued in the previous section. Note

also that, it is possible to yield lower MSIE values and accordingly lower CRB forLT > 1,

but we do not explore for such scenarios since theLT = 1 is shown in the previous section to

achieve satisfactory performance.

Table 3.3: CRB and MSIE for ML Initialization over Flat Rayleigh Fading withfdTs = 0.01
andLT = 1.

SNR 5 dB 10 dB 15 dB

CRB 0.2403 0.0909 0.0307

ML 0.3162 0.1000 0.0316

3.7 Tracking Performance of the Bidirectional LMS over AR Channels

In Section 3.3, the tracking performance of the bidirectional LMS algorithm is analyzed by

deriving an MSE expression at the steady-state where the effect of the step-size choice is

considered, as well. The MSE expression given by (3.68) is valid for any type of fading

channels with a known spectrum. However, this generality comes with a cost such that the

resulting MSE expression is not compact enough and requiresa frequency domain energy

computation which involves numerical integration. Although this previous result could not
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be further elaborated for the fading channels with a nonrational spectrum such as the Jakes’

model [98], there is a possibility to obtain a much simplifiedMSE expression for the fading

channels with rational spectrums.

As is known, most linear time-varying communication channels could be expressed using

some simplified stochastic models which have a rational power spectrum. Among various

choices, auto-regressive (AR) models are commonly used to specify the correlation between

the fading coefficients [110]. In such channels, the complex Gaussian fadingcoefficients are

generated using an innovation process characterized by an AR model. This section considers

the aforementioned model referred to as AR channel throughout the thesis with a purpose of

simplifying the steady-state MSE expression obtained in the previous section. To this end,

we carry the frequency domain computation of the lag component of the MSE into the time

domain by making use of the rationality of the power spectrumfor the AR channel [61]. In

the end, we come up with a more compact closed form expressionfor the steady-state MSE

which depends on the adaptation step-size, as before. Finally, an analytical expression for the

optimal step-size of the adaptation is also derived as a function of SNR and AR correlation

metric.

3.7.1 AR Channel Model

In Section 3.1, a general system model is introduced for flat-fading channels without any con-

straint on the temporal correlation characteristics. In this section, we consider a 1-st order

AR process to specify the correlations between fading coefficients keeping the other model

parameters the same. As a brief summary, we aim to estimate a realization of a time-varying

process which is given by a sequence of complex coefficients{ fk}Lk=1 whereL is the observa-

tion length, as before. A sequence of known complex input symbols {ak}Lk=1 are chosen from

a finite discrete alphabetA with symbol energiesEs = E{|ak|2}. The corresponding com-

plex output symbols{yk}Lk=1 are observed in the presence of additive noise with the following

discrete-time channel model given as

yk = fk ak + nk, (3.141)

wherenk is a sample from a circularly symmetric white complex Gaussian process with zero-

mean and varianceN0. The unknown fading coefficients{ fk}Lk=1 are assumed to be generated
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using an 1st order AR innovation process, without any loss of generalization, given as

fk = α fk−1 + wk (3.142)

where the correlation metricα is called the AR constant which is usually chosen asα = 1−ǫ to

obtain a stable realization withǫ > 0 is a small positive constant. The noise termwk in (3.142)

is a sample from a circularly symmetric white complex Gaussian process with zero-mean and

varianceσ2
w, and is independent of the transmitted symbols and the fading coefficients. The

temporal autocorrelation associated with the AR channel under consideration is given as

r(n) = E
{

fk+n f ∗k
}

(3.143)

= αn E
{

| fk|2
}

(3.144)

Note that, mean-square energy of the fading coefficient is found using (3.142) as follows

E
{

| fk|2
}

= E
{

|α fk−1 + wk|2
}

(3.145)

= α2 E
{

| fk−1|2
}

+ E
{

|wk|2
}

(3.146)

where the assumption of statistically independence of the noise and the fading coefficient is

employed in (3.144) and (3.146). Since the AR process under consideration is stationary, we

haveE{ | fk−1|2} = E{ | fk|2}, and therefore

E
{

| fk|2
}

=
σ2

w

1 − α2
. (3.147)

As a result, the temporal autocorrelation given in (3.144) becomes

r(n) = αn σ2
w

1 − α2
. (3.148)

The SNR for this scenario is then given as

γ =
E{ | fk ak |2 }
E{ |nk |2 }

=
E{ | fk |2 }E{ |ak |2 }

E{ |nk |2 }
=
σ2

w

1 − α2

Es

N0
. (3.149)

Note that one could choose the variance of the input noise asσ2
w = 1 − α2 to have the

customary SNR expression that isγ = Es/N0.
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3.7.2 Steady-State MSE Analysis for AR Channels

As stated before, our purpose in this section is to further simplify the steady-state MSE ex-

pression obtained in (3.68) for AR channels and to derive a compact closed form expression

for the steady-state MSE by making use of the approach of [61]. Using the results given in

(3.22) and (3.29), the steady-state MSE is given as

JMS E= Jmin + Es (Jsel f + Jlag) (3.150)

whereJsel f andJlag are previously found as

Jsel f =
µ

2(1− µ)
Jmin (3.151)

Jlag =
1
2π

∫ π

−π

∣
∣
∣ H(ejw)

∣
∣
∣
2

S(w) dw (3.152)

where the transfer functionH(ejw) is given by (3.62) in the z-domain, andS(w) is the power

spectrum of the unknown fading channel. We observe from (3.150)-(3.152) that the self-noise

part of the MSE is in a simplified form, which solely depends onthe step-size of the adapta-

tions and the minimum achievable MSE, whereas the lag component is not as compact as the

former one and involves numerical integration which results in an unavoidable complexity in

frequency domain energy computation. We therefore focus onthe derivation of the lag com-

ponent and will derive it in the time domain to simplify the resulting expression as opposed

to the the frequency domain evaluation as in (3.152).

In order to better understand and utilize the AR innovation process, we take z-transform of

(3.142) as follows [61]

Z { fk}
︸︷︷︸

f (z)

= α Z { fk−1}
︸  ︷︷  ︸

z−1 f (z)

+ Z {wk}
︸︷︷︸

w(z)

(3.153)

by which we obtain a relation between the z-transform of the fading coefficient fk and the

input noisewk, i.e., f (z) andw(z), as follows

f (z) =
1

1 − αe− jw
w(z) (3.154)

= HAR(z) w(z) (3.155)

whereHAR(z) is the transfer function associated with the first-order AR process which is given

as

HAR(ejw) =
1

1 − αe− jw
. (3.156)
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Because our aim is to compute the lag part of MSE which is discussed previously to be

the average energy in the tap-weight tracking error,f̂k − fk, under the assumption of perfect

gradient estimation, we incorporate the result of (3.60) into (3.155) as follows

f̂ (z) − f (z) = H(z) f (z) (3.157)

= H(z) HAR(z)
︸         ︷︷         ︸

HT(z)

w(z). (3.158)

whereHT(z) is defined to be the overall transfer function of the AR channel.
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Figure 3.33: The overall transfer functionHT(z) to obtain the tracking error out of input noise
over AR channels.

In Fig. 3.33, the filtering operation given in (3.158) is expressed in a block diagram represen-

tation. By making use of the relation given in Fig. 3.33, the average energy in the tap-weight

tracking error, which is the lag part to be computed, could beevaluated as follows

Jlag =
1
2π

∫ π

−π

∣
∣
∣H (ejw) HAR(ejw)

∣
∣
∣
2

Sw(w) dw (3.159)

=
1
2π

∫ π

−π

∣
∣
∣HT (ejw)

∣
∣
∣
2
σ2

w dw (3.160)

whereSw(w) is the power spectral density of the white Gaussian noise processwk which is

given asSw(w) = σ2
w. Note that the power spectral densityS(w) of the fading coefficients is

a rational function of the frequency as follows

S(w) = |HAR(ejw)|2 Sw(w) (3.161)

=
σ2

w
∣
∣
∣1 − αe− jw

∣
∣
∣
2
. (3.162)

In order to avoid from the numerical integration present in (3.160) which is the ultimate

purpose of this section, we make use of the well-known Parseval’s theorem [102] and translate

the infinite integration in the frequency domain into the infinite summation in the discrete time
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domain as follows

Jlag =
σ2

w

2π

∫ π

−π

∣
∣
∣HT(ejw)

∣
∣
∣
2

dw= σ2
w

∞∑

n=−∞
|hT [n] |2 . (3.163)

In order to proceed with the purpose of computing the energy present in (3.163), we should

evaluate the unit step responsehT [n]. To this end, we first compute the partial fraction expan-

sion of the overall transfer functionHT(z) as follows

HT(z) = H(z) HAR(z) =




−1+ β

2β
+

1− β
2β





1
1− βz−1

− 1

1− 1
β
z−1









(

1
1 − α z−1

)

= −
(

1+ β
2β

)

1
1− α z−1

+

(

1− β
2β

)




1
1− α z−1

1
1− βz−1

− 1
1− α z−1

1

1− 1
β
z−1





= A(α, β)
1

1− α z−1
− B(α, β)

1

1− β z−1
− C(α, β)

1

1− 1
β

z−1
(3.164)

where the coefficients are given as a function ofα andβ as follows

A(a, β) =
(1+ β)(1− α)2

2(α − β)(1− αβ)
(3.165)

B(a, β) =
(1− β)

2(α − β)
(3.166)

C(a, β) =
(1− β)

2β(1− αβ)
. (3.167)

In order to obtain a stable discrete-time sequencehT [n], we should specify a proper region of

convergence (ROC) such that the unit circle is included [103]. The locations of the poles of

HT(z) which arezp1 = α, zp2 = β andzp3 = 1/β are determined as follows

• Due to the assumption made in Section 3.7.1 thatǫ is a small positive constant,zp1 = α

lies inside the unit circle at a position very close to 1 with the relation|α | = |1− ǫ | < 1.

• Since| β | = |1 − 2µEs | < 1 is the mean-convergence condition of the conventional

LMS algorithm,zp2 = β lies inside the unit circle andzp3 = 1/β, therefore, lies outside

the unit circle.

As a result, the desired ROC including the unit circle is a ring given as

ROC: max(α , β ) < | z| < 1/β ,
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Figure 3.34: ROC of the overall transfer functionHT(z).

and is depicted in Fig. 3.34 assuming max(α , β ) = α andβ > 0 without any loss of generality.

Using the final ROC given as max(α , β ) < | z| < 1/β, the unit step responsehT [n] is com-

puted to be

hT [n] = A(α, β)αnu[n] − B(α, β) βnu[n] + C(α, β)

(

1
β

)n

u[−n− 1], (3.168)

which may be expressed equivalently as

hT [n] =






A(α, β)αn − B(α, β) βn, n ≥ 0;

C(α, β)
(

1
β

)n
, n < 0.

(3.169)
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The average energy ofhT [n] is then computed in time domain as follows

∞∑

n=−∞
|hT [n]|2 =

∞∑

n=0

∣
∣
∣A(α, β)αn − B(α, β) βn

∣
∣
∣
2
+

−1∑

n=−∞

∣
∣
∣C(α, β) β−n

∣
∣
∣
2

(3.170)

=

∞∑

n=0

(

A2(α, β)α2n + B2(α, β) β2n − 2A(α, β) B(α, β) (αβ)n
)

+

−1∑

n=−∞
C2(α, β) β−2n (3.171)

=
A(α, β)2

1− α2
+

B(α, β)2 +C(α, β)2 β2

1− β2
− 2A(α, β) B(α, β)

1− αβ
. (3.172)

Consequently,Jlag is found with the help of (3.163) and (3.172) as follows

Jlag = σ2
w

(A(α, β)2

1− α2
+

B(α, β)2 +C(α, β)2 β2

1− β2
−

2A(α, β) B(α, β)
1− αβ

)

. (3.173)

As a result, the overall MSIE expression becomes

JMS IE =Jsel f + Jlag

=
µ

2(1− µ)
Jmin + σ

2
w

(

A(α, β)2

1− α2
+

B(α, β)2 +C(α, β)2 β2

1− β2
−

2A(α, β) B(α, β)
1− αβ

)

,

(3.174)

and the associated MSE expression is

JMS E=

(

1+
µEs

2(1− µ)

)

Jmin + σ
2
wEs

(

A(α, β)2

1− α2
+

B(α, β)2 +C(α, β)2 β2

1− β2
−

2A(α, β) B(α, β)
1− αβ

)

.

(3.175)

When we compare the final MSE expressions in (3.68) and (3.175), we observe that (3.175)

associated with the AR channel appears to be in a more compactform in the sense that it does

not require numerical integration as opposed to (3.68).

We could also derive the optimal choice for the step-size, i.e., µopt, using (3.175). Since

the derivative of (3.175) with respect to the geometric ratio β is extensively complicated, we

explore for ways to further simplify the final MSE expressionin (3.175). To this end, we first

observe that the termA(α, β) has a relatively small value as compared toB(α, β) andC(α, β)

due to the (1− α2) factor in the numerator since the AR constantα was previously chosen

to be close to 1. Therefore,JMS IE could be approximated by the following expression as a
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function ofβ as follows

JMS IE ≈ µ

2(1− µ)
Jmin + σ

2
w

B(α, β)2 +C(α, β)2 β2

1− β2

=
1− β

2(2Es − 1+ β )
Jmin +

σ2
w

4
1− β
1+ β

(

1

(α − β)2
+

1

(1− αβ)2

)

(3.176)

with high accuracy especially whenα → 1 which corresponds to a moderate time variation.

This assumption is justified in the next section through numerical examples. The correspond-

ing JMS E expression becomes

JMS E ≈
(

1+
(1− β )Es

2(2Es − 1+ β )

)

Jmin +
σ2

wEs

4
1− β
1+ β

(

1

(α − β)2
+

1

(1− αβ)2

)

with the following derivative with respect toβ as follows

∂JMS E

∂β
≈ −

E2
s

(2Es − 1+ β)2
Jmin +

σ2
wEs

2

[

− 1
(1+ β)2

(

1
(α − β)2

+
1

(1− αβ)2

)

+
1− β
1+ β

(

1

(α − β)3
+

α

(1− αβ)3

) ]

. (3.177)

The optimal valuesβopt andµopt could then be evaluated numerically as follows

∂JMS E

∂β

∣
∣
∣
∣
∣
β=βopt

= 0 (3.178)

µopt =
1− βopt

2Es
. (3.179)

3.7.3 Numerical Results

In this section, we verify the theoretical MSE derivation for the bidirectional LMS algorithm

operating at the steady-state over a communication channelcharacterized by a 1-st order AR

process. To this end, we perform extensive Monte Carlo simulations and compare the as-

sociated MSIE results with the theoretical ones computed using (3.174). We assume BPSK

modulation so that the transmitted symbols, i.e.,{ak}Lk=1, are chosen from the binary alphabet

A = {−1,+1} in an equally likely fashion whereL = 1000, and the symbol energy is therefore

given asEs = 1.
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Figure 3.35: AR channel realizations generated by a white complex Gaussian noise with the
varianceσ2

w = 1− α2 whereα = {0.99, 0.95, 0.90}.

Fading channel realizations are generated according to (3.142) withσ2
w = 1− α2. As a result,

we have unit energy fading coefficients, i.e.,E{| fk|2} = 1, and the resulting SNR therefore

becomesγ = 1/σ2. We consider three different channel speeds which are characterized by a

set of AR constantsα = {0.99, 0.95, 0.90}. In Fig. 3.35, a single realization of the channel

with one of the AR constants under consideration is depicted. We observe that even a small

increase in the AR constantα, the speed of the corresponding channel increases significantly.

In the sequel, we therefore consider the cases withα = {0.99, 0.95, 0.90} for the purpose of

presenting the accuracy of the steady-state MSE and optimalstep-size expressions, and no

other comparisons are provided since such cases have no practical meaning in the scope of

this work.
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Figure 3.36: Theoretical and experimental MSIE for BiLMS together with the experimental
MSIE for UniLMS and a 21-tap MMSE filter with varying step-size andα = 0.99 atγ = 10
dB SNR. The approximate theoretical MSIE for BiLMS given in (3.176) is also provided.

In Fig. 3.36, the theoretical and experimental MSIE for the bidirectional LMS algorithm

are depicted together with the approximate MSIE given by (3.176) for varying step-size and

α = 0.99 atγ = 10 dB SNR. The experimental MSIE for the unidirectional LMS algorithm

and the optimal 21-tap MMSE filter are also presented for comparison purposes. We first ob-

serve that the theoretical results obtained numerically using MSIE expression given in (3.174)

perfectly match the experimental results for any choice of the adaptation step-size. Therefore,

the associated MSE derivation ended up with the expression given by (3.175) is verified. Sec-

ond, the theoretical result for the approximation to (3.174) which is given by (3.176) is also

observed to follow the original exact MSIE results perfectly showing the accuracy of the ap-

proximation to be used in the optimal step-size computations. Third, the superiority of the

bidirectional LMS algorithm in tracking of the unknown AR channel is verified by a much

better performance than the conventional unidirectional LMS and by a similar performance

with the optimal Wiener filter.

In Fig. 3.37, the exact/approximate theoretical and the experimental MSIE resultsfor the
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bidirectional LMS algorithm together with the experimental MSIE for the unidirectional LMS

algorithm are presented for optimal step-size and varying SNR. The experimental MSIE for

the optimal MMSE filter with 21-tap is again added. We observefrom Fig. 3.37 that the

conclusions made for Fig. 3.36 are also valid for the varyingSNR case. We also depict the

MSIE performance of the optimal Wiener filter with various number of taps in Fig. 3.38.
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Figure 3.37: Theoretical and experimental MSIE for BiLMS together with the experimental
MSIE for UniLMS and a 21-tap MMSE filter with optimal step-size (µopt) andα = 0.99
for varying SNR. The approximate theoretical MSIE (3.176) for BiLMS with (µopt) is also
provided.

In Fig. 3.39 and Fig. 3.40, the MSE derivation for the bidirectional LMS algorithm is verified

over much faster AR channels withα = 0.95 andα = 0.9, respectively. We observe from

Fig. 3.39 and Fig. 3.40 that the resulting MSIE, and equivalently MSE, expression for the

bidirectional LMS algorithm has a very good match to the experimental results even for very

fast AR channels. We also observe that the approximate theoretical MSIE result has some

deviation from the original statistics under these highly time varying environments especially

for small step-size values, and is very close to the originalone at the optimal step-size values,

i.e., at the minimum of the performance surface. Therefore,this approximation is again of

value in computing of the optimal step-size.
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Figure 3.38: Experimental MSIE for the MMSE filter with various number of taps forα =
0.99.
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Figure 3.39: Theoretical and experimental MSIE for BiLMS together with the experimental
MSIE for UniLMS with varying step-size andα = 0.95 atγ = 10 dB SNR.
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Figure 3.40: Theoretical and experimental MSIE for BiLMS together with the experimental
MSIE for UniLMS with varying step-size andα = 0.90 atγ = 10 dB SNR.

Because the choice of the adaptation step-size of the bidirectional LMS algorithm has a major

effect on the overall tracking performance, we investigate thethe effectiveness of the the-

oretical optimal steps-size values, i.e.,µopt’s, computed according to (3.177) and (3.178).

Table 3.4-3.6 present the theoretical and experimental results forµopt under various SNR lev-

els and for a set of AR constants given asα = {0.99, 0.95, 0.90}, respectively. We observe

that the theoretical steps-size values are close to the experimental results for many cases. We

again note that, since the MSE is almost constant around the neighborhood ofµopt as seen

from Fig. 3.39 and 3.40, the moderate differences between the theoretical and experimental

values have no impact on the overall tracking performance.

Table 3.4: Theoretical and Experimental Optimal Step-Size(µopt) Values for an AR Channel
with α = 0.99

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.060 0.080 0.100 0.130 0.150 0.190 0.220 0.250 0.300

Theoretical 0.050 0.061 0.075 0.092 0.113 0.138 0.167 0.201 0.240
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Table 3.5: Theoretical and Experimental Optimal Step-Size(µopt) Values for an AR Channel
with α = 0.95

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.130 0.170 0.190 0.230 0.250 0.300 0.350 0.300 0.400

Theoretical 0.119 0.140 0.165 0.195 0.230 0.270 0.312 0.356 0.397

Table 3.6: Theoretical and Experimental Optimal Step-Size(µopt) Values for an AR Channel
with α = 0.90

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.170 0.210 0.250 0.300 0.350 0.350 0.400 0.400 0.450

Theoretical 0.180 0.206 0.236 0.271 0.310 0.352 0.392 0.427 0.454

3.8 Iterative Channel Estimation for Flat-Fading Channels

Iterative channel estimation is a well-known technique in which estimates of the transmitted

symbols are employed together with the a priori known pilot symbols in order to improve the

quality of estimation in an iterative fashion. One of the basic drawbacks of this approach is

the increasing computational complexity through the recurring iterations. The bidirectional

LMS algorithm with its computationally efficient adaptations is therefore considered to be a

good choice to be employed with iterative channel estimation idea.

This section deals with a more realistic communication system with a channel code and iter-

atively employed pilot-aided channel estimation. The basic goal of this section is to compare

the estimation and tracking performances of the estimationalgorithms under consideration in

a communication system very close to real-life applications.

3.8.1 Transmitter and Receiver Models

In this section, we make use of the same equivalent discrete-time complex baseband channel

model given in (3.1) except that the transmitted symbols{ak}Lk=1 are not chosen independently

from the finite alphabetA any more. In order to adopt the PSAM transmission and the

iterative channel estimation techniques, we employ the transmitter and the receiver models

given in Fig. 3.41 and Fig. 3.42, respectively.
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Figure 3.41: Transmitter model including channel encoder,interleaver, PSK modulator and
PSAM block.

At the transmitter shown in Fig. 3.41, a set of binary information symbols{bk}Ld
k=1 of lengthLd,

which are chosen from the binary set{0, 1} in an independent and identical fashion, are first

encoded by a channel code of rateRc. The set of coded symbols{ck}Lc
k=1 at the output of the

encoder are then interleaved to combat with the burst errors, and the resulting set of symbols

{c′k}
Lc
k=1 are modulated using a PSK modulator with a finite modulation alphabetA whereLc is

the block length of the coded symbols withLc =
Ld
Rc

. The modulated symbols{mk}Lm
k=1, where

Lm =
Ld

Rc log2 |A |
is the associated block length and|A | is the cardinality of the alphabetA, are

then multiplexed with a set of pilot symbols{pk}
Lp

k=1 which are known a priori at the receiver

and are chosen from the same alphabetA whereLp is the number of pilot symbols in use.

The multiplexing operation is performed such that the modulated symbols are first split into

the groups ofMp−1 symbols and a single pilot symbol is inserted periodicallyinto the center

of each of these groups. This transmission scheme is known asPSAM whereMp is referred

to as the pilot symbol spacing and is assumed to be odd as discussed in [14].

According to the aforementioned transmission scheme, the necessary number of pilot symbols

are given as

Lp =



Lm−
Mp−1

2

Mp − 1


+ 1 =



Ld
Rc log2 |A |

− Mp−1
2

Mp − 1


+ 1. (3.180)

As a result, the data sequence{ak}Lk=1 which is produced after multiplexing is expressed as

follows

ak =






m
k−

⌊
k−(Mp+1)/2

Mp

⌋ , k , (i − 1) Mp +
Mp+1

2 , i = 1, 2, . . . , Lp;

pk−(Mp+1)/2
Mp

, k = (i − 1) Mp +
Mp+1

2 , i = 1, 2, . . . , Lp.
(3.181)

where the associated frame length becomes

L =
Ld

Rc log2 |A|
+ Lp =

Ld

Rc log2 |A|
+



Ld
Rc log2 |A |

− Mp−1
2

Mp − 1


+ 1 (3.182)
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by (3.180). We also define the set of indices associated with the pilot symbols as follows

Pp =
{

kp(i)
}Lp

i=1
=

{
Mp + 1

2
,

3Mp + 1

2
, . . . ,

(2Lp − 1)Mp + 1

2

}

(3.183)

wherekp(·) stands for any of the indices of the pilot symbols in a transmitted block and is

given as

kp(i) = (i − 1) Mp +
Mp + 1

2
. (3.184)

The data sequence{ak}Lk=1 is then transmitted over the flat-fading channel defined in (3.1).

Note that since the optimal design of the patterns or the values for the pilot symbols is not

considered in this work, we choosepk to be equal to one of the elements of the modulation

alphabetA without any loss of generality.
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Figure 3.42: Receiver model for a time-varying flat-fading channel with iterative channel
estimation.

At the receiver side, an iterative channel estimation technique is employed with a soft-input

soft-output decoder as shown in Fig. 3.42. Therefore, any parameter or the function devoted to

thei-th channel estimation iteration takes the superscript (i), and is updated at each estimation

iteration. In this scheme, the observations are first fed to the channel estimator unit which

employs one of the estimation algorithms explored later in this section. The initial estimate

of the channel is obtained by making use of the observations and the a priori known pilot

symbols only. In the subsequent estimation iterations, thequality of the channel estimate

is improved by making use of the soft information on the codedsymbols provided by the

decoder.

Once an estimate of the unknown channel is obtained, the log-likelihood values (LLRs) of the
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transmitted symbols are computed at thei-th iteration as follows

L(i)( ak ) = log
P

(

yk

∣
∣
∣
∣ f̂ (i)

k , ak ǫ A\
{

are f
}
)

P
(

yk

∣
∣
∣
∣ f̂ (i)

k , are f

) , (3.185)

whereare f is a reference symbol from the modulation alphabetA and f̂ (i)
k is the estimate

of the k-th fading coefficient at thei-th iteration. The probabilities are computed in (3.185)

with the assumption that̂f (i)
k is the actual fading coefficient and its incorrectness is therefore

not accounted for. Since the decoder needs the LLRs for the binary set{ck}Lk=1, the LLRs

associated with the pilot symbols are removed from the set
{

L(i)(ak)
}L

k=1
, and the residual LLRs

are then deinterleaved. The remaining symbol level LLRs, i.e.,L(i)(mk)’s, are then converted

into the desired bit level LLRs, i.e.,L(i)(ck)’s, details of which are given in [111, 112, 113].

There are a number of observations to be made about this formulation. First, a number of

|A |−1 symbol level LLRs are to be computed according to (3.185). Second, the computation

in (3.185) is not optimal, but is hopefully suboptimal. One reason for this claim is that it is

assumed thatL(i)(ak)’s for differentk’s are uncorrelated although they are not since these val-

ues are function of the estimates of the fading coefficients f̂ (i)
k which are obviously correlated.

As a final note, if the higher order modulation alphabets are employed, i.e.,|A | > 2, LLR

computation and feedback units given in Fig. 3.41 are capable of symbol-to-bit level LLR

conversion and vice versa.

Assuming BPSK modulation, LLR computation given in (3.185)becomes

L(i)( ak ) = log
P (yk | f̂k, ak = +1)

P (yk | f̂k, are f = −1)
. (3.186)

If the additive noise present in the channel is Gaussian, then we obtain

L(i)( ak ) = log

(

1
πN0

exp

{

−

∣
∣
∣yk − f̂k

∣
∣
∣
2

N0

} )

− log

(

1
πN0

exp

{

−

∣
∣
∣yk + f̂k

∣
∣
∣
2

N0

} )

(3.187)

=

∣
∣
∣ yk + f̂k

∣
∣
∣
2

N0
−

∣
∣
∣ yk − f̂k

∣
∣
∣
2

N0
(3.188)

=
4 Re

{

y∗k f̂k
}

N0
. (3.189)

where we have used the complex Gaussian distribution with zero mean andN0 variance given

as

fx (x ) =
1
πN0

exp

{

−
|x |2

N0

}

. (3.190)
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The soft decoder in the receiver employs the maximum a posteriori (MAP) algorithm in the

log domain, which is referred to as the log-MAP algorithm anddescribed in detail in [114].

The values given in (3.189) are processed by the soft decoderafter removal of those associ-

ated with the pilot symbols and the extrinsic LLRs of both thecoded, i.e.,L(i)
e (ck)’s, and the

uncoded symbols, i.e.,L(i)
e (bk)’s, are computed accordingly [114]. At each channel estima-

tion iteration except the last one,L(i)
e (ck)’s are sent to the feedback unit to refine the channel

estimate of the previous iteration. After the last iteration, L(NI )
e (bk)’s are sent to the detector

to obtain the estimates of the information bits as follows

b̂k =






1, L(NI )
e (bk) ≥ 0;

0, L(NI )
e (bk) < 0.

(3.191)

whereNI is the number of channel estimation iterations.

The feedback unit in Fig. 3.41 involves a set of operations which are to convert the extrinsic

LLRs of ck’s to those ofmk’s for |A | > 2 in the same way explained in [112], and to evaluate

the estimates of the modulated symbols either in the soft or the hard manner. The soft estimate

of a modulated symbol is indeed the ensemble average of the corresponding LLRs and given

in [82] for BPSK as

m̂(i)
k = E

{

L(i)
e (mk)

}

= tanh





L(i)
e (mk)

2



 , (3.192)

When we choose Gray-coded QPSK with the constellation diagram in Fig.3.43, the soft esti-

mates are given as [115]

m̂(i)
k = −

1+ j
2

tanh





L(i)
e (c2k)

2



 −
1− j

2
tanh





L(i)
e (c2k+1)

2



 , (3.193)

and 8-PSK modulation given in Fig.3.43 results in

m̂(i)
k = A tanh





L(i)
e (c2k)

2



 + B tanh





L(i)
e (c2k+1)

2





+



C tanh





L(i)
e (c2k)

2



 + D tanh





L(i)
e (c2k+1)

2







 tanh





L(i)
e (c2k+2)

2



 (3.194)

whereA = 1−(
√

2+1) j
4 , B = 1+

√
2+ j

4 , C = 1−
√

2+ j
4 , D = 1+(

√
2−1) j
4 .
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Figure 3.43: QPSK and 8-PSK constellation diagrams.

Finally, the hard decision feedback is performed as

m̂(i)
k =






1, L(i)
e (mk) ≥ 0;

−1, L(i)
e (mk) < 0.

(3.195)

These estimates are then multiplexed with the known pilot symbols as in the transmitter to

produce the overall estimates of the transmitted symbols ˆa(i)
k at the estimation iterationi.

After the initial channel estimation, the soft or the hard estimates of the modulated symbols

m̂(i)
k are incorporated into the channel estimation algorithm together with the pilot symbols

as if they were the actual transmitted symbols. A new channelestimate is then computed

using not only the pilot symbols but also the estimated values of modulated symbols. By this

technique, quality of the channel estimate is expected to improve through iterations.

3.8.2 Channel Estimation Algorithms for Flat-Fading Channels

In this section, we revisit the channel estimation algorithms introduced in Section 3.2 to per-

form some modifications explicitly which are necessary for the communication scenario under

consideration. We assume that the initial channel estimation is performed by the MMSE filter

using the pilot symbols only since both the LMS algorithms need the knowledge of the trans-

mitted symbols which is not available initially for the datasymbols. Once an initial estimate is

obtained, we could use any of the LMS algorithms as well as theWiener filter since estimates
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of the data symbols are available as explained in the previous section.

3.8.2.1 MMSE Channel Estimation

In iterative channel estimation, the MMSE filters associated with the initial and the subsequent

iterations are different since the former is using only the pilots which are apart from each other

by a number of data symbols while the latter is employing the data symbols as well so that

the symbols in use are next to each other. We therefore present the MMSE channel estimation

and derivation of the associated filters for the initial and the subsequent estimation iterations

separately.

An initial estimate of the unknown channel is obtained by using only the pilot symbols as

follows

f̂ (1)
k =

⌊K/2⌋∑

n=−⌊K/2⌋
wk,n anp (k)−nMp ynp (k)−nMp . (3.196)

wherenp (k) is the index of the pilot symbol closest toak, i.e.,anp (k) is a pilot symbol, and is

given as

np (k) =






⌊

k−MP+1
2

Mp

⌋

Mp +
Mp+1

2 , k < 1
2 +

( ⌊

k−MP+1
2

Mp

⌋

+ 1

)

Mp ;
( ⌊

k−MP+1
2

Mp

⌋

+ 1

)

Mp +
Mp+1

2 , k > 1
2 +

( ⌊

k−MP+1
2

Mp

⌋

+ 1

)

Mp .
(3.197)

with a special case at the right edge of the observation blockdue to the PSAM transmission

given as

np (k) =
(2Lp − 1)Mp + 1

2
if



k− MP+1
2

Mp

 + 1 > Lp . (3.198)

Note that, the filtering operation given in (3.196) includesthe pilot symbol term explicitly

unlike the conventional formulation given in (3.4). The reason behind this choice is to ob-

tain a single global MMSE filter for each transmitted packet detail of which is given in Ap-

pendix A.2.1. The associated Wiener-Hopf’s equations is also derived in Appendix A.2.1

with the final form given as

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l

{

r f

(

(n− l)Mp

)

+ N0 δnl

}

= r f (k− np (k) + nMp) (3.199)
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for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋ whereδnl is the delta function defined to be

δnl =






1 , n = l;

0 , n , l.
(3.200)

We observe that (3.199) is independent of the transmitted symbols and this result implies a

significant decrease in the overall computational complexity of the MMSE channel estima-

tion, as is argued in Section 3.2.1.

In the subsequent channel estimation iterations, estimates of the data symbols are incorporated

into the channel estimation as well as the pilot symbols. Thedesired estimates are computed

as follows

f̂ (i)
k =

⌊K/2⌋∑

n=−⌊K/2⌋
w(i)

k,n yk−n (3.201)

for i > 1. The optimal filter coefficients at thei-th iteration are computed by using the

Wiener-Hopf’s equations given as follows

⌊K/2⌋∑

l=−⌊K/2⌋
w(i)

k,l

{

â(i)
k−l r f (n− l) (â(i)

k−n)∗ + N0 δnl

}

= r f (n) (â(i)
k−n)∗, (3.202)

for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋. The details of above formulation for subsequent estimation

iterations with some practical considerations is given in Appendix A.2.2.

In the subsequent iterations, it is not possible to design the MMSE filter without any depen-

dency to the transmitted symbols since
(

â(i)
k

)∗
ak , 1 for soft decision feedback. Indeed, this

point is believed to be overlooked in [84] so that the resulting procedure followed there is not

optimal in the MMSE sense.

3.8.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 3.2.2, the conventional unidirectional LMS algorithm adopted

to the iterative channel estimation scheme under consideration is given for thei-th iteration as

follows

f̂ (i)
k+1 = f̂ (i)

k + 2µ e(i)
k â(i)

k (3.203)
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wherei > 1 so that we employ the algorithm after the initial channel estimation iteration,µ

is the step-size value of the adaptation andek is the error term given as

e(i)
k = yk − f̂ (i)

k â(i)
k . (3.204)

3.8.2.3 Bidirectional LMS Channel Estimation

As described in Section 3.2.2, the forward and the backward adaptations of the bidirectional

LMS algorithm adopted to the iterative channel estimation scheme under consideration are

given for thei-th iteration as follows

f̂ f , (i)
k+1 = f̂ f , (i)

k + 2µ e f , (i)
k â(i)

k (3.205)

f̂ b, (i)
k−1 = f̂ b, (i)

k + 2µ eb, (i)
k â(i)

k (3.206)

wherei > 1 as before,µ is the common step-size value andef , (i)
k andeb, (i)

k are the associated

error terms given as

e f , (i)
k = yk − f̂ f , (i)

k â(i)
k (3.207)

eb, (i)
k = yk − f̂ b, (i)

k â(i)
k . (3.208)

The final fading coefficient estimatef̂ (i)k is again given to be

f̂ (i)
k =

f̂ f , (i)
k + f̂ b, (i)

k

2
. (3.209)

3.8.3 Numerical Results

In this section, we evaluate the performance of the channel estimation algorithms considered

in Section 3.8.2 with the transmitter and receiver structures given in Section 3.8.1. To this

end, we perform Monte Carlo simulations which assumes a Rayleigh fading channel together

with the Jakes’ spectrum [98], without any loss of generality. The associated temporal auto-

correlation is given by (3.69) where the normalized maximumDoppler frequency is chosen to

be fdTs = 0.01 and fdTs = 0.02 throughout the simulations, if otherwise stated. We perform

sufficient number of Monte Carlo runs to have appropriate resultsin terms of statistical sig-

nificance. We assume BPSK alphabet throughout the simulations except for some examples

using QPSK and 8-PSK symbols with some special settings.
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At the transmitter, a set ofLd = 98 bits are chosen from the set{0, 1} in an independent and

identical fashion. A convolutional encoder with generator(1, 5/7)8 and rateRc = 1/2 is then

used which employs 2 bits for termination. By this way, a number ofLc = 200 coded symbols

are produced at the output of the encoder. The coded symbols are passed through a random

interleaver and then modulated using a BPSK modulator with the alphabetA = {−1, +1}.

The resulting set of modulated symbols of lengthLm = 200 are passed through the PSAM

block and the final set of symbols{ak}Lk=1 are then sent to the time-varying flat-fading channel

under consideration.

For the PSAM operation, the pilot symbol spacing is chosen tobe Mp = 11 andMp =

21 throughout the simulations which results in a number ofLp = 20 andLp = 10 pilots,

respectively, for each of the transmitted block of lengthL = 220 andL = 210, respectively.

These settings result in a pilot overhead percentage of 0.0909 and 0.0476 for Mp = 11 and

Mp = 21, respectively. The overall transmission rate of the system associated with these pilot

settings, which is defined to beR= Ld/L, becomes 0.4667 and 0.4455, respectively.

At the receiver, the unknown channel is estimated iteratively such that an initial estimate is

obtained using the MMSE estimator making use of the pilot symbols only. This estimate is

then refined over iterations by employing the soft decisionsof the coded symbols with any of

the estimation algorithms under consideration. Note that hard decision feedback could also

be preferred in simulations which is known in the literatureto achieve a degraded error per-

formance under some circumstances. Throughout simulations, we set the number of channel

estimation iterations to 3 after which no significant improvement is observed. The remaining

details of the receiver operations are explained in Section3.8.1.

Note that when we are re-computing taps of the MMSE filter through the iterations of the

channel estimation, we use the available soft decisions on the transmitted symbols instead of

their true values. Therefore, this mismatch destroys the optimality of the MMSE filter and

may cause an error performance degradation since MMSE filteris known to be not robust to

any parameter mismatch (see [116] and references therein).

Before presenting the simulation results, we want to make a final note from a practical point

of view. While analyzing the steady-state MSE behavior of the bidirectional LMS algorithm,

we naturally assume perfect initialization such that the fading coefficients at the beginning

and end of each transmitted block are known without any error. In this section, because we
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are dealing with a more practical scenario, we propose an alternative solution in which the

forward and the backward adaptations are initialized by using not the perfect values of the

fading coefficients which are unknown a priori, but the associated estimates from the previous

estimation iterations. In the following, we provide the simulation results corresponding to this

imperfect initialization case, as well.
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Figure 3.44: BER for random channel interleaver and no channel interleaver cases where the
channel is known a priori for both cases andfdTs = 0.01.

We begin with presenting simulation results for the known channel case with a comparison

on the use of a channel interleaver. Fig. 3.44 depicts the BERresults for a random channel

interleaver and no channel interleaver cases for the normalized maximum Doppler frequency

value of fdTs = 0.01. As is expected, interleaving the set of modulated symbols prior to

PSAM block achieves a significant performance improvement.Therefore, we employ channel

interleaver for the transmission models in the rest of this thesis unless otherwise stated.

In the subsequent figures, we present performances of the bidirectional LMS and the uni-

directional LMS algorithms together with the MMSE filter after 3 estimation iterations for

various choices of the pilot symbol spacing (Mp), the number of MMSE filter taps (K) and

the normalized maximum Doppler frequency (fdTs). The results for the MMSE filter using
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pilot symbols only and for the bidirectional LMS algorithm with imperfect initialization are

also provided together with the known channel bound. In addition, both types of the LMS

algorithm employs the optimal step-size values, i.e.,µopt, in a trial and error basis to achieve

the best possible performance.
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Figure 3.45: BER for BiLMS, UniLMS and MMSE withMp = 11 andfdTs = 0.01. BER for
MMSE using pilots only and for imperfectly initialized BiLMS are also provided.

Fig. 3.45 and 3.46 depict the BER and BLER results, respectively, for Mp = 11 and fdTs =

0.01. As explained before, the MMSE filter employed in the initial estimation iteration uses all

available pilot symbols, so the associated number of taps isLp. In the subsequent iterations,

performances of a 11-tap and 31-tap MMSE filters are comparedand approximately a 0.5

dB SNR improvement is observed at BER= 10−3 when the latter is employed instead of the

former.
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Figure 3.46: BLER for BiLMS, UniLMS and MMSE withMp = 11 and fdTs = 0.01. BLER
for MMSE using pilots only and for imperfectly initialized BiLMS are also provided.

We make a number of observations from Fig. 3.45- 3.46 some of which are as follows. The

1-tap bidirectional LMS algorithm has almost the same BER and BLER performance with

the 31-tap MMSE filter which verifies its low-complexity and near-optimal tracking perfor-

mance. We observe that in order for MMSE filter to achieve the same error performance with

the bidirectional LMS algorithm, even an 11-tap filter is notsufficient. It is also observed

that by employing the soft estimates of the coded symbols with any of the MMSE filter or

the bidirectional LMS algorithm, 1 dB SNR improvement is achieved over 3 iterations as

compared to pilot only case. The final BER result for the bidirectional LMS algorithm is off

the known channel bound by only 1 dB whereas this gap diminishes to 0.5 dB approximately

for the BLER statistics. Interestingly, the conventional unidirectional LMS algorithm with

soft estimates provide no improvement over the pilot only case, even deteriorates at low and

moderate SNR values. As a final remark, the initialization ofthe bidirectional LMS algorithm

with the imperfect estimates result in no performance degradation so that this algorithm could

be argued to be robust to initialization imperfections.

The effect of pilot symbol spacing is partially explored for the system under consideration
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by increasing its value toMp = 21 which means less number of pilot symbols to be used.

Fig. 3.47- 3.48 demonstrate the associated results keepingthe other system parameters the

same. In this case, the performances of the bidirectional LMS algorithm after 3 iterations

is almost the same with that of the 31-tap MMSE filter, as before, with an unchanged gap

from the known channel bound. Since the number of pilot symbols decrease, both BER

and BLER performances associated with the initial channel estimate deteriorate and are far

from the known channel bound by 3 dB where this gap was 2 dB forMp = 11 case. As

before, the imperfect initialization of the bidirectionalLMS algorithm does not cause any

performance degradation and 11-tap MMSE filter could not achieve the error performance of

the bidirectional LMS algorithm. As a final note, the unidirectional LMS algorithm provides

some improvement with the use of the soft estimates of the coded symbols, unfortunately,

which remains somewhat marginal as compared with the other algorithms.
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Figure 3.47: BER for BiLMS, UniLMS and MMSE withMp = 21 andfdTs = 0.01. BER for
MMSE using pilots only and for imperfectly initialized BiLMS are also provided.
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Figure 3.48: BLER for BiLMS, UniLMS and MMSE withMp = 21 and fdTs = 0.01. BLER
for MMSE using pilots only and for imperfectly initialized BiLMS are also provided.

We now explore the effect of the Doppler frequency or equivalently the speed of thechannel

variation by simply choosing a faster channel in which the maximum normalized Doppler fre-

quency isfdTs = 0.02. Fig. 3.49- 3.50 depicts the associated BER and BLER performances,

respectively, forMp = 11, and Fig. 3.51- 3.52 demonstrates the same statistics forMp = 21.

The difficulty in estimating and tracking such a fast time-varying channel could be observed

through the increase in SNR gap between the known channel bound and the associated error

performances of the estimation algorithms. As an example, BER of the bidirectional LMS al-

gorithm after 3 iterations is observed to be off the known channel bound by 2 dB in Fig. 3.51

whereas this gap was only 1 dB forfdTs = 0.01 as is shown in Fig. 3.47. Nevertheless, the

bidirectional LMS algorithm achieves almost the same errorperformance with the MMSE

filter with a sufficient number of taps even under this challenging environment. The robust-

ness of the bidirectional LMS algorithm to initialization imperfections are again verified for

these particular choices. As before, the unidirectional LMS algorithm could not provide any

significant error performance improvement through iterations.
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Figure 3.49: BER for BiLMS, UniLMS and MMSE withMp = 11 andfdTs = 0.02. BER for
MMSE using pilots only and for imperfectly initialized BiLMS are also provided.

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

γ (dB)

B
LE

R

 

 

Known Channel
MMSE (Pilots Only)
MMSE (11−taps, 3 iteration)
BiLMS (Perfect Initialization)
BiLMS (Imperfect Initialization)
UniLMS (Perfect Initialization)

Figure 3.50: BLER for BiLMS, UniLMS and MMSE withMp = 11 and fdTs = 0.02. BLER
for MMSE using pilots only and for imperfectly initialized BiLMS are also provided.
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Figure 3.51: BER for BiLMS, UniLMS and MMSE withMp = 21 andfdTs = 0.02. BER for
MMSE using pilots only and for imperfectly initialized BiLMS are also provided.
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Figure 3.52: BLER for BiLMS, UniLMS and MMSE withMp = 21 and fdTs = 0.02. BLER
for MMSE using pilots only and for imperfectly initialized BiLMS are also provided.
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In Fig. 3.53-3.54, we also present BER results for QPSK and 8-PSK modulations with the

constellations given in Fig. 3.43. The iterative estimatorworks for 3 times which again ex-

ploits a satisfactory convergence. We observe from both cases that the unidirectional LMS

algorithm deteriorates the quality of the channel estimateobtained by using the pilots only and

therefore achieves an error performance which is the worst of all unlike the case for BPSK

modulation with the same channel speed. We also observe thatboth the bidirectional LMS

algorithm and the MMSE filter with the soft estimates of the coded symbols provide almost a

1 dB SNR gain over the pilots only case and are off the known channel bound by again 1 dB.

Finally, we present the BER results for BPSK over an extremely fast channel withfdTs = 0.1

in Fig. 3.55. Under such a scenario, the pilot symbol spacingvalue should be as small as

Mp = 5 in order to achieve reasonable performance for which the performance of the MMSE

filter with 11-tap is better than that for the bidirectional LMS algorithm.
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Figure 3.53: BER for BiLMS, UniLMS and MMSE with QPSK modulation for Mp = 11,
Ld = 98 andfdTs = 0.01.
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Figure 3.54: BER for BiLMS, UniLMS and MMSE with 8-PSK modulation for Mp = 11,
Ld = 97 andfdTs = 0.01.
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Figure 3.55: BER for BiLMS and 11-tap MMSE with BPSK modulation for Ld = 98 and
fdTs = 0.1.

98



3.9 Conclusion

This section considers the bidirectional LMS algorithm over time-varying flat-fading channels

with a result of near-optimal tracking performance and computationally efficient structure.

Having introduced the channel model and the bidirectional LMS algorithm, the associated

tracking behavior is analyzed for Rayleigh fading channel with nonrational power spectrum.

As a result, a step-size dependent steady-state MSE expression is obtained together with a

framework for optimal step-size selection. The numerical results for the analytical MSE ex-

pression and the experimental ones show a very good match. These results verify the near-

optimal tracking performance of the bidirectional LMS algorithm which is significantly better

than that of the unidirectional LMS algorithm and is very similar to that of the optimal Wiener

filter. The effect of independent selection of the forward and the backwardstep-size values

are also investigated and the best strategy is argued to be the equal selection. This analysis is

novel in the sense that although there are several estimators as an application of the bidirec-

tional processing in communication systems, none of them present such a theoretical analysis

that reveals the basis of the appealing performance.

Effects of imperfect knowledge for the Doppler spread and SNR together with the imperfect

initial value are also investigated. The tracking and optimal step-size selection analysis is

then revisited for a Rayleigh fading channel with a temporalcorrelation characterized by a

1-st order AR process. As a result, more compact form of the steady-state MSE expression is

obtained with a high accuracy which eliminates the necessity to the frequency-domain energy

computation using numerical integration methods. Finally, iterative estimation of unknown

time-varying flat-fading channels is considered as a much realistic application employing

the estimation algorithms under consideration and the superiority of the bidirectional LMS

algorithm is again observed.
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CHAPTER 4

THE BIDIRECTIONAL LMS ALGORITHM OVER

FREQUENCY-SELECTIVE FADING CHANNELS

In Chapter 3, we have considered the estimation of time-varying flat-fading channels using

the bidirectional LMS algorithm where both the receiver andthe transmitter are employed

with a single antenna. Although the flat-fading assumption is useful in understanding and

analyzing the performance of the bidirectional LMS algorithm, real-life communication sys-

tems frequently experience frequency-selective fading. Along with the increasing demand for

wireless services of high data rate, frequency selectivityappears naturally as a result of the

fact that the bandwidth of the next generation waveforms become much higher than the coher-

ence bandwidth of communication channels. We therefore address the problem of estimation

and tracking of frequency-selective fading channels in particular with the bidirectional LMS

algorithm.

In frequency-selective fading channels, different replicas of the transmitted signal arrive at

the receiver with various delays which are comparable to thesymbol period. As a result, the

symbol to be detected at a time instant is interfered with previously transmitted symbols which

is known as the intersymbol interference (ISI) problem. These channels are sometimes called

multipath fading channels since the various replicas travel through different paths [102]. Such

communication channels are usually modeled in a vector formas opposed to the scalar random

variable for flat-fading channels. As a result, any algorithm considered in this chapter should

estimate or, for adaptive algorithms, update the random vectors representing time-varying

multipath fading channels.

The analysis of the bidirectional LMS algorithm in frequency-selective channels is some-

what different from the one given for flat-fading channels. The reasonbehind this fact is that
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the memory present in frequency-selective channels makes the well-known independence as-

sumption inapplicable to the problem in hand [65]. In the following, a modified steady-state

MSE expression for frequency-selective channels is given together with an optimal step-size

analysis as before. In order to investigate real-life scenarios, a coded frequency-selective time-

varying Rayleigh fading channel is considered together with the iterative channel estimation

approach using the bidirectional LMS algorithm.

4.1 System Model for Frequency-Selective Fading Channels

We consider a frequency-selective, i.e., multipath, fading communication channel which is

varying with time according to some temporal autocorrelation, and is represented by a set

of complex fading coefficient vectors{fk}Lk=1 with fk =
[
fk,0 fk,1 . . . fk,M−1

]T , whereL is the

observation length andM is the number of taps of the channel. We assume the uniform power

delay profile for the average powers of the channel taps unless otherwise stated. We also

present some results in Section 4.6 associated with a different power delay profile to justify

the generality of this consideration. We therefore assume that { fk,l}M−1
l=0 is an uncorrelated set

with each elementfk,l has unit energy. In addition, the set{ fk,l}Lk=1 is correlated according to

the autocorrelation of the fading model under consideration. The fading coefficients are also

assumed to be known neither at the transmitter nor the receiver.

A set of independent and identically distributed information symbols{ak}Lk=1 are chosen from a

finite alphabetA with symbol energyEs = E{|ak|2} and are transmitted through the multipath

fading channel under consideration. The corresponding discrete-time equivalent complex

baseband channel model is then given as

yk =

M−1∑

l=0

fk,l ak−l + nk (4.1)

= fT
k ak + nk (4.2)

whereyk is the observation symbol,ak = [ak ak−1 . . . ak−M+1]T is the input vector andnk

is a sample from a circularly symmetric white complex Gaussian process with zero-mean

and varianceN0. We also assume perfect timing information for the transmitted blocks and

individual symbols, and no frequency offset, as before.
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The received SNR is given as

γr =

E
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where (4.4) makes use of the fact that the input sequence{ak}Lk=1 is assumed to be uncorre-

lated. The information symbol SNR is accordingly given asγ = γr/R whereR is the overall

transmission rate of the communication system.

4.2 Estimation Algorithms for Frequency-Selective FadingChannels

In this section, we will revisit the channel estimation algorithms considered in the previous

chapter and make some necessary modifications to be employedover the frequency-selective

channel model given in Section 4.1. As an important difference, this section deals with the

estimation of channel vectors as opposed to the scalar coefficient estimation considered in

Section 3.2.

4.2.1 The MMSE Channel Estimation

Let us consider the MMSE estimation for a frequency-selective channel given as

f̂ =W y (4.5)

where f̂ =
[

f̂
T
1 . . . f̂

T
L

]T
is the vector of estimates of fading coefficients,W is the estimation

filter to be optimized andy =
[
y1 . . . yL

]T is the observation vector including the desired

observations to be employed.

Note that (4.5) could be modified such that the overall estimator is derived for a single fading

vector f̂k instead of the complete set of unknown fading vectors represented bŷf. In addition,

less number of observations could be employed in (4.5) instead of all the available ones.

These two simplifications will result in a size reduction forthe estimation matrixW.
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The optimal MMSE filterW could be found by using the Wiener-Hopf’s solution given as

W = Pf y R−1
yy (4.6)

wherePf y = E
{

f yH
}

is the cross-correlation matrix andRyy = E
{

y yH
}

is the autocorrelation

matrix of the observations in use. The details of the derivation of (4.6) is given Appendix B.1.

In order to present a fair complexity analysis, we assume that K observation symbols are

used in order to estimate any of theM×1 fading vectors for each time epoch separately. With

this assumption, the pre-filtering stage given in (4.6) requires a matrix inversion of complexity

O (K3) and a matrix multiplication of complexityO (M K2) in order to find the optimal MMSE

filter. In the filtering stage, desired estimate is computed according to (4.5) which requires

M (K − 1) complex additions andM K complex multiplications.

4.2.2 The Unidirectional and The Bidirectional LMS Algorit hms

The conventional unidirectional LMS algorithm is given fortime-varying frequency-selective

channels as follows [57]

f̂k+1 = f̂k + 2µ ek ak (4.7)

whereµ is the step-size of the adaptation andek is the estimation error defined as

ek = yk − f̂
T
k ak . (4.8)

The unidirectional LMS algorithm is observed to needM+1 complex additions and 2 (M+1)

complex multiplications in order to estimate a single fading vector without any extra compu-

tational complexity.

In order to present the bidirectional LMS algorithm, let us define f̂ f
k,l and f̂ b

k,l to be the esti-

mates of thel-th tap of the channel in the forward and the backward directions, respectively.

The algorithm is then given as

f̂
f

k+1 = f̂
f

k + 2µ ef
k ak (4.9)

f̂
b
k−1 = f̂

b
k + 2µ eb

k ak (4.10)

where f̂
f

k =
[

f̂ f
k,0 f̂ f

k,1 . . . f̂ f
k,M−1

]T
and f̂

b
k =

[

f̂ b
k,0 f̂ b

k,1 . . . f̂ b
k,M−1

]T
are the estimates of the

channel vectorfk in the forward and the backward directions, respectively,µ is the associated
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step-size of the adaptations,ef
k andeb

k are the forward and the backward errors defined as

ef
k = yk − (f̂

f
k )T ak (4.11)

eb
k = yk − (f̂

b
k )T ak. (4.12)

The final estimatêfk of the fading vector are again chosen to be the arithmetic average of the

forward and the backward estimates given as

f̂k =
f̂

f
k + f̂

b
k

2
. (4.13)

The overall complexity of the bidirectional LMS algorithm is now contributed by (3M + 2)

complex additions and (5M + 4) the complex multiplications which is much smaller than the

optimal Wiener filter. As a final note, the proper estimates ofthe transmitted symbols should

be replaced withak in above equations if we deal with a real-life communicationsystem rather

than a system identification type problem, as before.

4.3 Tracking Performance of the Bidirectional LMS over Frequency-Selective

Channels

In this section, we evaluate the tracking performance of thebidirectional LMS algorithm over

a frequency-selective channel by making use of the results presented in Section 3.3 and [61,

63]. We concentrate only on the tracking quality of the bidirectional LMS algorithm rather

than the detection performance for the transmitted symbolswhich will be the subject of the

next section. We therefore assume that the overall system isoperating in the training mode

such that the transmitted symbols{ak}Lk=1 are known a priori at the receiver. In addition, since

we are interested in the tracking performance of the algorithm, the system is assumed to be at

the steady-state condition. We remind that the transition behavior of the algorithm is related

to the overall convergence rate which is beyond the scope of this work.

In order to analyze the tracking performance of the bidirectional LMS algorithm over a time-

varying frequency-selective channel, we will derive a theoretical step-size dependent steady-

state MSE expression which benefits from the previous analysis performed in Section 3.3 for

a scalar case.
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The error performance surface, or equivalently the MSE, forthis problem is given as

JMS E, k = E
{

| ek |2
}

(4.14)

= E
{ ∣
∣
∣
∣ yk − f̂

T
k ak

∣
∣
∣
∣

2}

(4.15)

= E
{

| nk |2
}

+ E
{ ∣
∣
∣ (fk − f̂k)

T ak

∣
∣
∣
2
}

(4.16)

= Jmin + (fk − f̂k)
T E

{

ak aH
k

}

︸     ︷︷     ︸

=Es I

(fk − f̂k) (4.17)

= Jmin + Es

∥
∥
∥ fk − f̂k

∥
∥
∥

2

︸           ︷︷           ︸

Jex, k

(4.18)

whereek is the overall tracking error,Jmin is the minimum achievable MSE due to the presence

of additive noise and is equal toN0, andJex, k is defined as the excess MSE due to the noisy

gradient estimation and the time variation [61]. At the steady state, we may express the

average MSE as follows

JMS E = E
{

JMS E, k
}

(4.19)

= Jmin + Es E
{
∥
∥
∥ fk − f̂k

∥
∥
∥

2
}

︸             ︷︷             ︸

JMS IE

(4.20)

whereJMS IE is defined as the mean square identification error, and is related to the average

excess MSE, i.e.,Jex = E{Jex, k}, as JMS IE = Jex/Es [63]. From this overview, one could

observe thatJMS IE is the basic expression to be derived in order to characterize JMS E.

In the above expressions, all the expectations are assumed to be over the ensemble of [61]

in which a set of independent input symbols are transmitted over the same time-varying

frequency-selective channel, and the corresponding distinct observations are provided to the

bidirectional LMS algorithm to obtain a set of estimates{f̂k}Lk=1. Under this scenario,JMS IE

could be decomposed as follows

JMS IE = E
{ ∥
∥
∥ f̂k − fk

∥
∥
∥

2
}

= E
{ ∥
∥
∥
∥

(

f̂k − E{f̂k}
)

+
(

E{f̂k} − fk

) ∥∥
∥
∥

2 }

(4.21)

= E
{
∥
∥
∥ f̂k − E{f̂k}

∥
∥
∥

2
}

+ E
{
∥
∥
∥E{f̂k} − fk

∥
∥
∥

2
}

+ 2 Re
{

E
{ (

f̂k − E{f̂k}
) (

E{f̂k} − fk

)∗ } }
. (4.22)

Because the time-varying frequency-selective fading channel is assumed to be static across

the ensemble, we haveE{fk} = fk and so that the last term in (4.22) could be simplified as
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in [61] as follows

E
{ (

f̂k − E{f̂k}
) (

E{f̂k} − fk

)∗ }
= E

{

f̂k E{f̂k}∗
}

− E
{

f̂k f∗k
}

− E
{

E{f̂k}E{f̂k}∗
}

+E
{

E{f̂k} f∗k
}

(4.23)

=
∥
∥
∥E{f̂k}

∥
∥
∥

2 − E{f̂k} f∗k −
∥
∥
∥E{f̂k}

∥
∥
∥

2
+ E{f̂k} f∗k (4.24)

= 0 (4.25)

Therefore, we could simply ignore the last term in (4.22), and JMS IE of the bidirectional LMS

in time-varying frequency-selective channels is then expressed as a sum of two terms which

are called the self-noise (Jsel f) and the lag (Jlag) components [61], and is given as

JMS IE = E
{ ∥
∥
∥ f̂k − fk

∥
∥
∥

2
}

(4.26)

= E
{
∥
∥
∥ f̂k − E{f̂k}

∥
∥
∥

2
}

︸                  ︷︷                  ︸

Jsel f

+E
{
∥
∥
∥E{f̂k} − fk

∥
∥
∥

2
}

︸                 ︷︷                 ︸

Jlag

(4.27)

= Jsel f + Jlag. (4.28)

As before, any deviation of the fading coefficient estimate,̂fk, from the ensemble mean,E{f̂k},

contributes to the self-noise part while differences between the ensemble mean and the un-

known coefficientfk result in the lag part [61]. Equivalently, from a different perspective,Jsel f

arises from the noisy gradient estimation of the error performance surface whereasJlag is just

due to time variation. In this section, we will separately derive the steady-state expressions

for Jsel f andJlag parts in order to determine a final expression for the steady-state MSE.

4.3.1 Derivation of the Self-Noise Component (Jsel f)

In this section, we will derive the self-noise component which arises from the error in estima-

tion of the gradient of the error performance surface, or equivalently the MSE, given in (4.14)

associated with the system identification problem under consideration. While derivingJsel f

expression, any time variation is ignored to be considered later in the lag component and the

focus will be only on the effect of the gradient estimation error, as is done in [57, 61].

The true gradients of the error performance surface in the forward and the backward directions
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are given as

∇
f
k = 2Es(f̂

f
k − fk) (4.29)

∇
b
k = 2Es(f̂

b
k − fk), (4.30)

which make use of the results of Section 3.3.2. Since we concentrate on the error in gradient

estimation, we model the noisy gradient estimates in the forward and the backward directions,

respectively, as follows

∇̂
f
k = ∇

f
k + ǫ

f
k = 2Es(f̂

f
k − fk) + ǫ

f
k (4.31)

∇̂
b
k = ∇

b
k + ǫ

b
k = 2Es(f̂

b
k − fk) + ǫ

b
k, (4.32)

whereǫ f
k andǫbk are the associated error vectors of the gradient estimationin the forward and

the backward directions, respectively [57]. We assume thatǫ
f
k andǫbk are composed of uncor-

related elements which are modeled to be zero-mean complex Gaussian random variables. In

order to incorporate the effect of gradient estimation error into the forward and the backward

adaptations, we express the conventional LMS adaptations as follows

f̂
f
k+1 = f̂

f
k − µ ∇̂

f
k (4.33)

f̂
b
k−1 = f̂

b
k − µ ∇̂

b
k (4.34)

where∇̂
f
k = −2ef

kak and∇̂
b
k = −2eb

kak for the conventional LMS algorithm with the associ-

ated errorsef
k andef

k given in (4.11)-(4.12) [102]. Since we are interested in theeffect of noisy

gradient estimation only, we prefer to express the adaptations given in (4.33)-(4.34) using the

gradient estimates in (4.31)-(4.32) as follows

f̂
f
k+1 = f̂

f
k − 2µEs (f̂

f
k − fk) − µ ǫ f

k (4.35)

f̂
b
k−1 = f̂

b
k − 2µEs (f̂

b
k − fk) − µ ǫbk. (4.36)

Before going into further detail, we define the forward and the backward tap-weight tracking

errors asv f
k = f̂

f
k − fk andvb

k = f̂
b
k− fk, respectively. In order to express the adaptations given in

(4.35)-(4.36) in terms of tap-weight tracking errors, we first subtractfk+1 from both sides and

then replacefk+1 with fk at the right side which is a result of the time invariance assumption

as follows

v f
k+1 = (1 − 2µEs)v

f
k − µ ǫ

f
k (4.37)

vb
k−1 = (1 − 2µEs)vb

k − µ ǫ
b
k. (4.38)
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The next step is to further elaborate the self-noise expression given in (4.27). In order to get

rid of the inner expectationE{f̂k} as a part of the self-noise expression, we take expectations

of (4.35)-(4.36) as follows

E
{

f̂
f
k+1

}

︸  ︷︷  ︸

=E{f̂ f
k }

= E
{

f̂
f
k

}

− 2µEs

(

E
{

f̂
f
k

}

− E
{

fk

}

︸︷︷︸

= fk

)

− µ E
{

ǫ
f
k

}

︸︷︷︸

=0

(4.39)

E
{

f̂
b
k−1

}

︸  ︷︷  ︸

=E{f̂b
k}

= E
{

f̂
b
k

}

− 2µEs

(

E
{

f̂
b
k

}

− E
{

fk

}

︸︷︷︸

= fk

)

− µ E
{

ǫ
b
k

}

︸︷︷︸

=0

, (4.40)

whereE{f̂ f
k+1} = E{f̂ f

k } and E{f̂b
k−1} = E{f̂b

k} follows from the time invariance assumption,

E{fk} = fk is a consequence of the fact thatfk is common across the ensemble, andE{ǫ f
k} =

E{ǫbk} = 0 by definition [57]. After some straightforward steps in (4.39)-(4.40), we have

E{f̂ f
k } = fk andE{f̂b

k} = fk, andE{f̂k} is therefore found to be

E
{

f̂k

}

=

E
{

f̂
f
k

}

+ E
{

f̂
b
k

}

2
=

fk + fk

2
= fk (4.41)

with the help of (4.13). As a result of these findings, the self-noise expression given in (4.27)

becomes

Jsel f = E
{ ∥
∥
∥ f̂k − E{ f̂k}

∥
∥
∥

2
}

= E
{ ∥
∥
∥ f̂k − fk

∥
∥
∥

2
}

= E
{

‖vk ‖2
}

(4.42)

wherevk = f̂k − fk is the overall tap-weight tracking error which is given as

vk = f̂k − fk (4.43)

=
f̂

f
k + f̂

b
k

2
− fk =

(f̂
f
k − fk) + (f̂

b
k − fk)

2
=

v f
k + vb

k

2
. (4.44)

The self-noise defined in (4.42) could therefore be evaluated as

Jsel f = E
{

‖vk ‖2
}

(4.45)

= E










v f
k + vb

k

2





H 



v f
k + vb

k

2










(4.46)

=

E
{ ∥
∥
∥
∥v

f
k

∥
∥
∥
∥

2 }

4
+

E
{ ∥
∥
∥vb

k

∥
∥
∥

2
}

4
+

Re
{

E
{(

v f
k

)H (

vb
k

)}}

2
. (4.47)

Note that, the computation ofE{‖v f
k‖

2} and E{‖vb
k‖

2} for frequency-selective channels are

different from those for flat-fading channels. The reason for this difference is that the well-

known independence assumption employed for the analysis over flat-fading channels is not
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valid for frequency-selective channels sinceak’s are correlated for consecutive values ofk as

a result of the memory of the channel at hand. In [65, 64], an iterative expression is given

for the mean-square energy of the tap-weight tracking errorwhich could be expressed at the

steady-state as follows

E
{ ∥
∥
∥vk,i

∥
∥
∥

2
}

=
µMEs

Es− µ [(M − 1)Es + E4]
Jmin (4.48)

whereE4 = E {|ak|4}. We could further simplify (4.48) assuming BPSK signallingas follows

E
{ ∥
∥
∥vk,i

∥
∥
∥

2
}

=
µM

1− µM
Jmin. (4.49)

Note thatvk,i in (4.48) and (4.49) stands for thei-th element of the tap-weight tracking error

for the unidirectional LMS algorithm and is therefore different from (4.45). Note also that

(4.49) withM = 1 simplifies to the same result presented previously for flat-fading case.

The expectation in the last term of (4.47) could be further elaborated with the help of the

modified adaptations (3.38)-(3.39) as follows

E
{(

v f
k

)H (

vb
k

)}

= E
{[

(1 − 2µEs)v
f
k−1 − µ ǫ

f
k−1

]H [

(1 − 2µEs)vb
k+1 − µ ǫ

b
k+1

]}

(4.50)

= (1− 2µEs)
2E

{(

v f
k−1

)H
vb

k+1

}

− µ (1− 2µEs)E
{(

v f
k−1

)H
ǫ

b
k+1

}

− µ (1− 2µEs)E
{(

ǫ
f
k−1

)H
vb

k+1

}

+ µ2E
{(

ǫ
f
k−1

)H
ǫ

b
k+1

}

(4.51)

= (1− 2µEs)
2E

{(

v f
k−1

)H (

vb
k+1

)}

(4.52)

where (4.52) makes use of the assumptions that the elements of ǫ f
k and ǫbk are zero-mean

random variables which are mutually uncorrelated from eachother and from the elements

of v f
k andvb

k, which follows directly from [57]. After sufficient number of iterations, (4.52)

becomes

E
{(

v f
k

)H (

vb
k

)}

= (1− 2µEs)
L E

{(

v f
0

)H (

vb
L

)}

(4.53)

The result obtained in (4.53) could be ignored safely since|1 − 2µEs| < 1 is the stability

condition of the conventional LMS algorithm, and therefore(1− 2µEs)L ≪ 1. Consequently,

the self-noise expression becomes

Jsel f =
µM2Es

2(Es − µ [(M − 1)Es + E4])
Jmin, (4.54)
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which is observed to depend on the step-sizeµ, the minimum achievable MSE which is equal

to the noise variance, the number of taps, i.e.,M, of the frequency-selective channel, and

second and fourth moments of the input signal. The self-noise part for the bidirectional LMS

algorithm is also observed to be half that of the conventional LMS algorithm as before.

4.3.2 Derivation of the Lag Component (Jlag)

As stated before, the lag component of the MSE arises from thetime varying nature of the

unknown system. Since we have considered the effect of noisy gradient estimation in the

self-noise derivation, we assume perfect gradient estimation in this particular case and focus

only on time variation [61, 63]. When the gradient is assumedto be estimated without any

noise, the adaptive processes turn to be original steepest descent algorithm as follows

f̂
f
k+1 = f̂

f
k − µ∇

f
k = (1− 2µEs) f̂

f
k + 2µEs fk (4.55)

f̂
b
k−1 = f̂

b
k − µ∇b

k = (1− 2µEs) f̂
b
k + 2µEs fk. (4.56)

where the true gradients∇ f
k and∇b

k are given in (4.29)-(4.30). In order to cope with the time

variation in a better way, we prefer to translate the adaptations into the frequency domain, as

in [61]. To this end, z-transform of (4.55) and (4.56) are computed, and the results are then

rearranged as follows

f̂
f
(z) = Z

{

f̂
f
k

}

=
1− β
z− β

f(z) (4.57)

f̂
b
(z) = Z

{

f̂
b
k

}

=
1− β

z−1 − β
f(z) (4.58)

whereβ = 1 − 2µEs is the geometric ratio of the adjustments, as before, Z{ . } stands for the

elementwise z-transform of its vector argument andf(z) = Z{fk}. The z-transform of̂fk is then

found through (4.13) as follows

f̂(z) =
f̂

f
(z) + f̂

b
(z)

2
=

1
2

(

1− β
z− β

+
1− β

z−1 − β

)

f(z), (4.59)

and the z-transform of the tap-weight tracking error accordingly becomes

f̂(z) − f(z) = H(z) f(z). (4.60)
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In (4.60),H(z) is the transfer function for the bidirectional LMS algorithm which is indepen-

dent of the channel characteristics to be estimated, and is given as

H(z) = −
1+ β
2β
+

1− β
2β

( 1

1− βz−1
−

1

1− 1
β
z−1

)

, (4.61)

which is equal to the one found in Section 3.3.2.

The next step is to further elaborate the lag expression given in (4.27) in order to get rid of

the inner expectationsE{f̂k}. Due to the reasons explained in Section 3.3.2, we know that

E{f̂k} = f̂k under the assumptions made during the lag derivation. Consequently, the lag

expression given in (4.27) becomes

Jlag = E
{ ∥
∥
∥E{f̂k} − fk

∥
∥
∥

2
}

= E
{ ∥
∥
∥f̂k − fk

∥
∥
∥

2
}

(4.62)

=

M−1∑

l=0

E
{
∣
∣
∣ f̂k,l − fk,l

∣
∣
∣
2
}

(4.63)

One of the consequences of (4.63) is that theJlag could be interpreted as the sum of mean-

square energies present in the element-wise tracking errors, i.e., f̂k,l− fk,l for l = 0, 1, . . . ,M−1.

Due to the symmetry, the mean-square energy in the tracking error is therefore evaluated in

the frequency domain as follows [63]

Jlag =
M
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw (4.64)

with a priori knownS(w) which is the power spectrum of the frequency-selective fading

channel.

As a result, the final expression for the steady state MSIE is given for anM-tap frequency-

selective fading channel as

JMS IE = Jsel f + Jlag

=
µM2Es

2(Es− µ [(M − 1)Es + E4])
Jmin +

M
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw, (4.65)

and the steady-state MSE is therefore found to be

JMS E = Jmin + Es JMS IE

=

(

1+
µM2E2

s

2(Es− µ [(M − 1)Es + E4])

)

Jmin +
MEs

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw. (4.66)
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The optimal choice for the step-size value,µopt, is again of interest to characterize the min-

imum achievable MSE at the steady-state. In order to deriveµopt theoretically, we express

(4.66) in terms of onlyβ and take derivative of the resulting expression with respect to β as

follows

∂JMS E

∂β
=
∂

∂β









1+

(1− β)M2E2
s

2
(

2E2
s − (1− β) [(M − 1)Es + E4]

)




Jmin +

Es M
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw






= −
E4

sM2

(

2E2
s − (1− β) [(M − 1)Es + E4]

)2
Jmin +

Es M
π

∫ π

−π
H(ejw)

∂H(ejw)
∂β

S(w) dw

(4.67)

where∂H(ejw)/∂β is the same as before which is given as

∂H(ejw)
∂β

= − (1− cosw) (1− β2 − 2β + 2 cosw)

(1+ β2 − 2β cosw)2
. (4.68)

The optimal geometric ratioβopt could then be evaluated numerically using (4.67) and (4.68)

as follows

∂JMS E

∂β

∣
∣
∣
∣
∣
β=βopt

= 0 (4.69)

and the optimal step-sizeµopt could be found asµopt = (1− βopt)/2Es.

4.3.3 Numerical Results

In this section, we will present numerical results in order to verify the MSE derivation for the

bidirectional LMS algorithm operating at the steady-stateover frequency-selective Rayleigh

fading channels. The superiority of the bidirectional LMS algorithm in tracking the unknown

communication channel as compared to the conventional unidirectional LMS and the optimal

MMSE filter will also be demonstrated through these results.To this end, we compare the

theoretical MSIE of the bidirectional LMS algorithm obtained through the numerical compu-

tation of (4.65) with the experimental MSIE results, which are obtained through Monte Carlo

simulations, for both the bidirectional and the unidirectional LMS algorithms together with

the optimal MMSE filter. We prefer to compare the MSIE values normalized with respect to

the number of channel taps, i.e.,JMS IE, which is defined as follows

JMS IE =
JMS IE

M
(4.70)
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whereM was previously defined as the number of taps of the frequency-selective channel.

The properties of the frequency-selective channel under consideration is given in Section 4.1.

Without any loss of generality, we assume that all taps of thefrequency-selective channel

experience independent Rayleigh fading with the normalized Doppler fdTs = 0.01 and the

Jakes’ power spectrum [98], unless otherwise stated. We also provide some examples for the

double-Gaussian ans the Gaussian spectrums to discuss the generality of the previous results.

The number of taps of the channel is chosen to beM = {2, 4} throughout the simulations

where a uniform power delay profile is assumed unless otherwise stated. In each Monte Carlo

run, a set ofL = 100 information symbols are chosen independently from the BPSK alphabet

A = {−1,+1} with the symbol energyEs = 1.
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Figure 4.1: Theoretical and experimental normalized MSIE for BiLMS for varying step-size
at SNR=10 dB over a 2-tap Rayleigh fading ISI channel withfdTs = 0.01. The experimental
MSIE for UniLMS and a 31-tap optimal MMSE together with the theoretical MSIE associated
with 1-tap channel are also provided.

In Fig. 4.1, the experimental normalized MSIE results for the bidirectional and the unidirec-

tional LMS algorithms and the 31-tap optimal MMSE filter are presented together with the

theoretical normalized MSIE for the bidirectional LMS algorithm over a 2-tap frequency se-
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lective Rayleigh fading channel atγ = 10 dB SNR. We observe that the bidirectional LMS

algorithm produces much lower normalized MSIE than the unidirectional LMS algorithm

does for any choice of the step-size, and the minima associated with the normalized MSIE of

the bidirectional LMS algorithm is very close to the optimalMMSE filter with 31 taps. This

conclusion verifies the fact that tracking performance of the bidirectional LMS algorithm is

much better than that of the unidirectional LMS algorithm and has near-optimal behavior as

compared to that of the optimal Wiener filter. For comparisonpurposes, the results associated

with the termJsel f = µ/(2(1− µ))Jmin which is based on the approach presented in [61] and

corresponds to a 1-tap channel with BPSK modulation is also provided which shows a signif-

icant deviation from the experimental data. The results foran interesting case in which the

receiver employs both the unidirectional and the bidirectional LMS algorithm with an imper-

fect knowledge of number of channel taps are also provided. We observe that both algorithms

yield a degraded results when the number of channel taps is imperfectly by the receiver taken

to be 1 over a 2-tap multipath fading channel.
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Figure 4.2: Theoretical and experimental normalized MSIE for BiLMS for optimal step-size
over a 2-tap Rayleigh fading ISI channel withfdTs = 0.01. The experimental MSIE for
UniLMS and a 31-tap optimal MMSE together with the theoretical MSIE associated with
1-tap channel are also provided.
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We present similar results in Fig. 4.2, but for varying SNR and by using optimal step-size

values for both the bidirectional and the unidirectional LMS algorithms. We observe that the

theoretical MSIE results of the bidirectional LMS exhibit agood match to the experimental

ones both of which are very close to that of the 31-tap optimalMMSE filtering for each SNR

level when optimal values for the step-size are used. We alsopresent the experimental MSIE

for the optimal MMSE filters in Fig. 4.3 with various number oftaps. By comparing Fig. 4.2

and Fig. 4.3, we observe that the MMSE filter with a number of taps smaller than 31 achieve a

worse tracking performance than the bidirectional LMS especially at low SNR regime. Hence,

the bidirectional LMS could be considered to be superior over the MMSE filter in the sense

that the former achieves a very similar tracking performance to the latter at an extremely low

computational complexity.
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Figure 4.3: Experimental normalized MSIE for MMSE with various number of taps over a
2-tap Rayleigh fading ISI channel withfdTs = 0.01.

In the subsequent figures, we present the performance results over a 4-tap Rayleigh fading

frequency-selective channel withfdTs = 0.01. In Fig. 4.4, we observe that the theoretical

results for the bidirectional LMS algorithm again closely follow the experimental ones for

any choice of the step-size. Together with the results presented in Fig. 4.4, we also observe
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that the tracking performance of the bidirectional LMS algorithm is much better than that of

the unidirectional LMS algorithm and is very close to the that of the optimal MMSE filter

with 31-tap.
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Figure 4.4: Theoretical and experimental normalized MSIE for BiLMS for varying step-size
at SNR=10 dB over a 4-tap Rayleigh fading ISI channel withfdTs = 0.01. The experimental
MSIE for UniLMS and a 31-tap optimal MMSE together with the theoretical MSIE associated
with 1-tap channel are also provided.
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Figure 4.5: Theoretical and experimental normalized MSIE for BiLMS for optimal step-size
over a 4-tap Rayleigh fading ISI channel withfdTs = 0.01. The experimental MSIE for
UniLMS and a 31-tap optimal MMSE together with the theoretical MSIE associated with
1-tap channel are also provided.
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Figure 4.6: Experimental normalized MSIE for MMSE with various number of taps over a
4-tap Rayleigh fading ISI channel withfdTs = 0.01.
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We now investigate the effectiveness of the theoretical optimal steps-size values, i.e.,µopt’s,

for the bidirectional LMS algorithm computed according to (4.67) and (4.68). We present

the resulting theoretical values forµopt together with the associated experimental ones for a

2-tap and 4-tap Rayleigh fading frequency-selective channels with fdTs = 0.01 in Table 4.1

and Table 4.2, respectively. We observe from these results that the theoreticalµopt values are

very close to the experimental results for a variety of SNR and number of channel tap choices.

This result is believed to have a significant practical importance from system design point of

view since it eliminates the necessity of excessive experiments to findµopt for a genie-aided

scenario.

Table 4.1: Theoretical and Experimental Optimal Step-Size(µopt) Values for a 2-tap Rayleigh
Fading ISI Channel withfdTs = 0.01

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.060 0.060 0.070 0.080 0.090 0.100 0.100 0.120 0.120

Theoretical 0.056 0.062 0.069 0.076 0.084 0.092 0.100 0.109 0.119

Table 4.2: Theoretical and Experimental Optimal Step-Size(µopt) Values for a 4-tap Rayleigh
Fading ISI Channel withfdTs = 0.01

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.040 0.050 0.050 0.060 0.070 0.080 0.090 0.110 0.110

Theoretical 0.044 0.050 0.055 0.061 0.067 0.074 0.080 0.087 0.095

We also investigate the performance of the bidirectional LMS algorithm for nonuniform

power delay profiles. Towards this end, we use the 3-tap Proakis-B channel [102] for which

the impulse response of the average magnitudes is given as follows

h = {0.407, 0.815, 0.407} (4.71)
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Figure 4.7: Experimental normalized MSIE for BiLMS and UniLMS with optimal step-size
and MMSE filter with various taps over a 3-tap Rayleigh fadingISI channel withfdTs = 0.01.
A nonuniform power delay profile of Proakis-B channel is used.

The overall fading coefficients for the time-varying channel taps are obtained accordingly as

follows

f ′k,l = hl fk,l (4.72)

for l = 0, 1, . . . ,M − 1 wherehl is thel-th element ofh and fk,l is a unit-energy sample from

a Rayleigh fading realization withfdTs = 0.01. Keeping the other system parameters the

same, Fig. 4.7 presents the experimental normalized MSIE results for the bidirectional and

the unidirectional LMS algorithms both of which operate with the optimal step-size values

together with the MMSE filter with various number of taps. We observe that the bidirectional

LMS algorithm is again superior over the unidirectional LMSalgorithm at any SNR value,

and has a similar tracking performance with the 31-tap MMSE filter. We also note that, even

the 21-tap MMSE filter has a worse error performance than the bidirectional LMS algorithm

at low SNR regime.

Finally, we consider the MSIE results in Fig.4.8-4.11 for 2-tap and 3-tap multipath fading

channels with the double-Gaussian and the Gaussian spectrums characterized by the same
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parameters given in Section 3.3.3. From these results, the bidirectional LMS algorithm is ob-

served to have the same advantage of near-optimal performance. As a difference, we observe

that there are some deviations in the theoretical results from the experimental ones for the lag

part which represents the time-varying nature of the underlying channel. Note that, such de-

viations do not significantly change the optimal step-size value and the minimum achievable

MSIE. Note also that, fading channels with AR type autocorrelation are discussed in Sec-

tion 3.7.1 to show a similar behavior when channel dynamics are changing very fast which is

the case here.
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Figure 4.8: MSIE for UniLMS, BiLMS and 31-tap MMSE for a 2-tapISI channel with the
double-Gaussian spectrum characterized by (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and
(σa, σb) = (30, 20) Hz atγ = 5 dB.
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Figure 4.9: MSIE for UniLMS, BiLMS and 31-tap MMSE for a 3-tapISI channel with the
double-Gaussian spectrum characterized by (Ca,Cb) = (0.5, 1), (fa, fb) = (40,−50) Hz and
(σa, σb) = (30, 20) Hz atγ = 15 dB.
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Figure 4.10: MSIE for UniLMS, BiLMS and 31-tap MMSE for a 2-tap ISI channel with the
Gaussian spectrum characterized by (Ca,Cb) = (1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) =
(40, 0) Hz atγ = 5 dB.
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Figure 4.11: MSIE for UniLMS, BiLMS and 31-tap MMSE for a 3-tap ISI channel with the
Gaussian spectrum characterized by (Ca,Cb) = (1, 0), (fa, fb) = (0, 0) Hz and (σa, σb) =
(40, 0) Hz atγ = 15 dB.

4.4 Effect of Imperfect Doppler and SNR Information

In this section, we generalize the results presented in Section 3.5 to the multipath fading

channels with the system model given in Section 4.1. As a difference, we make use of the

estimates of the independent channel paths in order to improve statistical efficiency. The LS

cost function for the Doppler spread estimation accordingly becomes

F( fd) =
1
Q

1
M

Q∑

q=1

M−1∑

m=0

LT−1∑

l=1

∣
∣
∣
∣
∣
∣

K̂q,m(l)

K̂q,m(0)
−

r(l; fd)
r(0; fd)

∣
∣
∣
∣
∣
∣

2

(4.73)

whereK̂q,m(l) is

K̂q,m(l) =
1

LT − l

LT−l∑

k=0

f̂ q
k,m( f̂ q

k+l,m)∗ . (4.74)

We now present the associated numerical results over a 2-tapRayleigh fading channel with

Jakes’ spectrum andfdTs = 0.01 for a number ofL = 200 independent and identically
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distributed BPSK symbols. In Fig. 4.12, the robustness of the algorithms under consideration

to the imperfect Doppler estimate is depicted atγ = 10 dB. The performances of the Doppler

and the SNR estimation algorithms are also presented in Fig.4.13 for which we assume

that f̂d ∈ [0, 500] Hz. Since we incorporate the statistics available through the independent

channel taps as an important difference from the flat-fading case, employing multiple frames

is observed to achieve no significant performance improvement over the single frame case

and we therefore chooseQ = 1. The observations are very similar to that of the flat-fading

case.
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Figure 4.12: MSIE for UniLMS, BiLMS and 31-tap MMSE over a 2-tap Rayleigh fading
channel for imperfect Doppler spread estimate,f̂d, whereγ = 10 dB, fd = 100 Hz and
Ts = 0.1 ms.
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Figure 4.13: MSIE for UniLMS, BiLMS and 31-tap MMSE for knownand estimated Doppler
and SNR over a 2-tap Rayleigh fading channel with Jakes’ spectrum wherefd = 100 Hz and
Ts = 0.1 ms.

4.5 Effect of Imperfect Initialization

In this section, we generalize the results on the imperfect initialization presented in Section 3.6

to the frequency-selective fading channels. We again use a training block which consists ofLT

independent and identically distributed BPSK symbols in order to provide an initial value for

the fading vector at the beginning of the data block. The observations are received according

to (4.2) with the signal variance ofσ2. We consider the LS initialization given as

f̂ = AH
(

AA H
)−1

y , (4.75)

as well as the zero initialization for the frequency-selective fading channels. In (4.75),f̂ =

[ f̂
T
1 . . . f̂

T
LT

]T is the estimate of the fading vectors,A = diag{aT
1 , . . . a

T
LT
} is the pilot matrix

andy =
[
y1 . . . yL

]T is the observation vector.

The Monte Carlo results for the bidirectional LMS algorithmwith the aforementioned initial-

ization methods for various data block lengths and SNR are presented in Fig.3.30-3.32. The

channel is a 2-tap Rayleigh fading with Jakes’ spectrum andfdTs = 0.01. We again observe
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that zero initialization is sufficient for most of the blocklengths and that LS initialization with

LT = 2 achieves a satisfactory performance.
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Figure 4.14: MSIE for BiLMS with zero and LS initializationstogether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 5 dB.
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Figure 4.15: MSIE for BiLMS with zero and LS initializationstogether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 10 dB.
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Figure 4.16: MSIE for BiLMS with zero and LS initializationstogether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakes’ spectrum andfdTs = 0.01 at
γ = 15 dB.
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For frequency-selective fading channels, we consider the Modified CRB (MCRB) in order to

determine a lower bound on the initialization error. The MCRB is presented in [117] for scalar

parameter estimation problems and then generalized in [118] to the vector case. It is much

easier to compute the MCRB than the CRB in the presence of the nuisance parameters which

are the transmitted symbols in our case. In [117], it is also shown that the MCRB approaches

the CRB in many cases of interest, especially at high SNR region which is given in [119] as

γ > 0 dB.

The MCRB for the frequency-selective fading channels underconsideration is given as

E
{∣
∣
∣ f̂i, j − fi, j

∣
∣
∣
2
}

≥
(

J−1
)

mm
(4.76)

wherem = i(M − 1) + j is the modified index. ThemodifiedFisher’s information matrix

(MFIM) for this particular case is defined as

Jmm′ = Ea

{

Ey,f

{

∂ ln p (y, f |a)
∂ fi, j

∂ ln p (y, f |a)
∂ fi′, j′

}}

(4.77)

= −Ea

{

Ey,f

{

∂2 ln p (y, f |a)
∂ fi, j ∂ fi′, j′

}}

(4.78)

for which the following expectations could be readily obtained as before

Jmm′ = −Ea

{

E f

{

Ey | f

{

∂2 ln p (y | f , a)
∂ fi, j ∂ fi′, j′

}}}

︸                                          ︷︷                                          ︸

J1
mm′

−E f

{

∂2 ln p (f )
∂ fi, j ∂ fi′, j′

}

︸                 ︷︷                 ︸

J2
mm′

(4.79)

= J1
mm′ + J2

mm′ . (4.80)

Consider the following probability density function

p (yk | fk, ak) =
1

√
2πσ2

exp






−

(

yk − fT
k ak

)2

2σ2






(4.81)

by which we could obtained the joint probability density function as follows

p (y | f, a) =
LT∏

k=1

p (yk | fk, ak) = (2πσ2)−
LT
2 exp





− 1

2σ2

LT∑

k=1

p (yk | fk, ak)





. (4.82)

The associated derivatives are then computed as follows

∂ ln p (y | f, a)
∂ fi, j

=
ai− j

σ2
(yi − fT

i ai) (4.83)

∂2 ln p (y | f, a)
∂ fi, j ∂ fi′, j′

= −
ai− j ai′− j′

σ2
δii ′ . (4.84)
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Therefore,J1
mm′ is obtained as

J1
mm′ = −Ea

{

E f

{

Ey | f

{

−
ai− j ai′− j′

σ2
δii ′

}}}

=
1

σ2
δii ′ δ j j ′ . (4.85)

From the results presented in Section 3.6, we obtain

J2
mm′ = −E f

{

∂2 ln p (f )
∂ fi, j ∂ fi′, j′

}

=
(

R−1
f

)

mm′
. (4.86)

As a result, MCRB for the frequency selective fading channels under consideration is found

to be

Jmm′ =
1
σ2
δii ′ δ j j ′ +

(

R−1
f

)

mm′
. (4.87)

By comparing the expressions in (3.140) and (4.87) withM = 1, we observe that the MCRB

expression is equivalent to that of the CRB except for the term including the following inte-

gration

I1 = −
σ
√

2π

∫ ∞

−∞

∫ ∞

−∞

u2 exp
{

−σ2

2 u2
}

cosh(u v)
du

︸                        ︷︷                        ︸

I2

exp

{

−1+ σ2

2σ2
v2

}

dv (4.88)

whereI2 is shown in [119] to go to 0 for the moderate and high SNR valueswhich fulfills

the equivalence of the MCRB and the exact CRB bounds for theseSNR regions. In order

to verify this result, we compute the MCRB according to (4.87) for the flat-fading channel

specified in Section 3.6.2 and obtain the same results associated with the CRB.

In Table 4.3, we present the MSIE for LS initialization and the associated MCRB withLT = 2

over the 2-tap Rayleigh fading channel specified in this section. In order to improve the

performance of the LS estimation, we assume that the channelis not changing duringLT = 2

symbol intervals although it is changing very slowly duringthis time slot. Note again that,

zero initialization yieldsJMS IE = 1 as argued before, and that the LS initialization withLT = 2

results in a satisfactory performance in terms of initialization. In addition, the associated

MCRB guarantees that much lower MSIE values are also possible for LT = 2. As a final

remark, all SNR computation is according to (4.4).
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Table 4.3: MCRB and MSIE for LS Initialization over 2-tap Rayleigh Fading with fdTs =

0.01 andLT = 2.

SNR 5 dB 10 dB 15 dB

MCRB 0.1370 0.0481 0.0160

LS 0.9444 0.3004 0.0961

4.6 Iterative Channel Estimation for Frequency-SelectiveChannels

This section considers the iterative channel estimation method with the estimation algorithms

under consideration in a more realistic communication scenario with a coded time-varying

frequency-selective channel. Although some the followingparts are similar to those presented

in Section 3.8, we would like to explicitly overview the transceiver model and the estimation

algorithms leaving some details to the previous sections toprovide a better understanding.

4.6.1 Transmitter and Receiver Models

In this section, we make use of the equivalent discrete-timecomplex baseband channel model

given in (4.1) for time-varying frequency selective channels. As a difference, the transmitted

symbols{ak}Lk=1 are assumed not to be chosen independently from a finite alphabetA any

more and are generated by the concatenated structure including channel encoder, interleaver,

modulator and the PSAM block. The mechanism of the PSAM blockis now modified ac-

cording to the channel characteristics such that it insertsnot a single pilot symbol but a short

block of pilot symbols periodically, and the iterative receiver is updated accordingly.
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Figure 4.17: Transmitter model including channel encoder,interleaver, PSK modulator and
PSAM block.

The transmitter block diagram under consideration is shownin Fig. 4.17 which is similar to
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Fig. 3.41 except that some blocks operate in a different fashion details of which is explained

later in this section. In this model, a set of binary information symbols{bk}Ld
k=1 are generated

randomly from the binary set{0, 1} in an independent fashion, and are encoded by a channel

code of rateRc. The set of coded symbols{ck}Lc
k=1 with Lc =

Ld
Rc

are then interleaved to increase

the resistance against the burst errors. The resulting interleaved coded symbols{c′k}
Lc
k=1 are

then modulated using a PSK modulator, as before, with a finitemodulation alphabetA. The

symbols{mk}Lm
k=1 at the output of the modulator withLm =

Ld
Rc log2 |A |

are then multiplexed with

a set of pilot symbols{pk}
MLp

k=1 which are known a priori at the receiver and are chosen from

the same alphabetA. The resulting set of symbols{ak}Lk=1 are then transmitted through the

time-varying multipath fading channel given in (4.1).

The PSAM mechanism for this particular case operates such that the modulated symbols are

first split into groups ofMp − M symbols prior to the multiplexing, which is called the pilot

block, whereM is the number of resolvable multipaths present in the channel. Then,M pilot

symbols are inserted into each of these pilot blocks after the
(Mp+1

2 − M
)

-th individual element

as shown in Fig. 4.18. Note that this transmission scheme enables channel estimation unit to

employ the symbol vectors
{

ap(i)

}Lp

i=1
with p(i) = (i − 1)Mp +

(Mp+1
2 − M

)

since elements of

ap(i) are the a priori known pilot symbols such thatap(i) =
[

ap(i) ap(i)−1 . . . ap(i)−M+1

]T
.
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Figure 4.18: The structure of a single group ofMp symbols in a transmitted PSAM block for
frequency-selective fading channels.

In this modified PSAM transmission scheme, the necessary number of pilot symbols areMLp

whereLp is computed to be

Lp =



Lm−
( Mp+1

2 − M
)

Mp − M


+ 1 =



Ld
Rc log2 |A |

−
(Mp+1

2 − M
)

Mp − M


+ 1. (4.89)
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As a result, the final data sequence{ak}Lk=1 to be transmitted is given as follows

ak =






mkm(k) , k , (i − 1) Mp +
Mp+1

2 − ( j − 1) , i = 1, 2, . . . , Lp, j = 1, 2, . . . ,M;

pkp(k) , k = (i − 1) Mp +
Mp+1

2 − ( j − 1) , i = 1, 2, . . . , Lp, j = 1, 2, . . . ,M.
(4.90)

where the indiceskm(k) andkp(k) are given to be

km(k) = k −







k−
(Mp+1

2 − M
)

Mp


+ 1




M, (4.91)

kp(k) = k −
(
Mp + 1

2
− M

)

−



k−
(Mp+1

2 − M
)

Mp


(Mp − M). (4.92)

The associated frame lengthL is then computed accordingly to be

L =
Ld

Rc log2 |A|
+ Lp =

Ld

Rc log2 |A|
+







Ld
Rc log2 |A |

−
(Mp+1

2 − M
)

Mp − M


+ 1




M. (4.93)

We also define the set of indices associated with the pilot symbols as follows

Pp =

{

(i − 1) Mp +
Mp + 1

2
− ( j − 1)

}(Lp,M)

(i, j)= (1, 1)
(4.94)

=

{
Mp + 1

2
− M + 1, . . . ,

Mp + 1

2
,

︸                                   ︷︷                                   ︸

1-st pilot block

. . . , (4.95)

. . . ,
(2Lp − 1)Mp + 1

2
− M + 1, . . . ,

(2Lp − 1)Mp + 1

2
︸                                                            ︷︷                                                            ︸

Lp-th pilot block

}

. (4.96)

Because the optimal design of the patterns or the values for the pilot symbols is again beyond

the scope of this work, we choose the pilot symbols to be equalto one of the elements of the

modulation alphabetA without any loss of generality.

We employ the similar receiver structure as in the flat-fading case which is shown in Fig. 4.19.

In this iterative receiver, the observations are first sent to the channel estimation unit and the

resulting estimate is employed in LLR computation. The resulting LLR sequence is deinter-

leaved and pushed to the soft decoder. The log-MAP algorithmis employed in the soft decoder

to produce the soft estimates of both the original data symbols and the coded symbols. The

initial channel estimate is obtained by making use of the observations and the a priori known

pilot symbols only. The quality of the channel estimate is improved by making use of the soft
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Figure 4.19: Receiver model for a time-varying frequency-selective fading channel with iter-
ative channel estimation.

information on the coded symbols through iterations, as before. We again assume that LLR

computation and feedback units are capable of symbol-to-bit level LLR conversion and vice

versa, if necessary.

The input LLR of the symbolak at i-th estimation iteration is given as

L(i)( ak ) = log
P

(

ak = 1
∣
∣
∣
∣ y, f̂

(i)
)

P
(

ak = −1
∣
∣
∣
∣ y, f̂

(i)
) (4.97)

= log
P

(

y, ak = 1
∣
∣
∣
∣ f̂

(i)
)

P
(

y, ak = −1
∣
∣
∣
∣ f̂

(i)
) (4.98)

which is a suboptimal approach as stated in Chapter 3, and where f̂
(i)
=

[ (

f̂
(i)
k

)T
. . . ,

(

f̂
(i)
k+M−1

)T
]T

is the set of estimates of the unknown multipath fading channel at the i-th iteration and

y =
[

yk . . . , yk+M−1
]T is the set of observations involving the contribution ofak. L(i)( ak )

could be further elaborated as follows

L(i)( ak ) = log

∑

a′k : ak=1

P
(

y, a′k
∣
∣
∣
∣ f̂

(i)
)

∑

a′k : ak=−1

P
(

y, a′k
∣
∣
∣
∣ f̂

(i)
) (4.99)

= log

∑

a′k : ak=1

P
(

y
∣
∣
∣
∣ f̂

(i)
, a′k

)

∑

a′k : ak=−1

P
(

y
∣
∣
∣
∣ f̂

(i)
, a′k

) (4.100)

where the constrainta′k : ak is defined as the seta′k = [ ak−M+1 . . . , a0, . . . , ak+M−1] in which
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ak takes the specified value. Sinceyk’s are uncorrelated for a given channel estimate, an

equivalent expression is obtained as follows

L(i)( ak ) = log

∑

a′k : ak=1

k+M−1∏

n=k

P
(

yn

∣
∣
∣
∣ f̂

(i)
n , an

)

∑

a′k : ak=−1

k+M−1∏

n=k

P
(

yn

∣
∣
∣
∣ f̂

(i)
n , an

)
(4.101)

wherean is previously defined asan = [ an . . . , an−M+1 ]. Using the channel model given in

(4.1), the final form of the corresponding LLR becomes

L(i)( ak ) = log

∑

a′k : ak=1

k+M−1∏

n=k

exp






−

∣
∣
∣
∣
∣
∣
yn −

(

f̂
(i)
n

)T
an

∣
∣
∣
∣
∣
∣

2

N0






∑

a′k : ak=−1

k+M−1∏

n=k

exp






−

∣
∣
∣
∣
∣
∣
yn −

(

f̂
(i)
n

)T
an

∣
∣
∣
∣
∣
∣

2

N0






. (4.102)

Note that LLR of the coded symbolsck’s and the modulated symbolsmk’s are equivalent

due to the BPSK assumption for this particular case, and we therefore do not need any bit-

to-symbol level LLR conversion or vice versa. The rest of theoperation is the same as in

Section 3.8.1.

4.6.2 Channel Estimation Algorithms for Frequency-Selective Fading Channels

4.6.2.1 MMSE Channel Estimation

In this section, we will overview the MMSE channel estimation adopted to frequency-selective

channels leaving details to Appendix B.2. In the initial estimation iteration, the estimator uses

only the pilot symbols and the corresponding observations as follows

f̂
(1)
=W(1) yp (4.103)

whereyp =
[

yp (1) . . . yp (Lp)

]T
is the observation vector including all available observations

associated with the pilot symbols. The optimal MMSE filter iscomputed according to

W(1) = Pp AH
p

(

Ap Rp AH
p + N0 I

)−1
(4.104)
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wherePp = E
{

f f H
p

}

andRp = E
{

fp fH
p

}

are the cross-correlation and the autocorrelation

matrices,fp =
[

fp (1) . . . fp (Lp)

]T
is the fading vector corresponding to the pilot indices and

Ap is the pilot matrix given as

Ap =





aT
p (1) 0 . . . 0

0 aT
p (2) . . . 0

...
... . . .

...

0 0 . . . aT
p (Lp)





. (4.105)

In the subsequent iterations, the desired estimate at thei-th iteration is obtained according to

f̂
(i)
=W (i) y (4.106)

wherei > 1. For this case, the MMSE filter at thei-th iteration is given as

W (i) = R f

(

Â
(i)
)H

(

Â
(i)

R f

(

Â
(i)
)H
+ N0 I

)−1

(4.107)

whereR f = E
{

f f H
}

is the autocorrelation matrix and̂A
(i)

is the data matrix given as

Â
(i)
=





(

â(i)
1

)T
0 . . . 0

0
(

â(i)
2

)T
. . . 0

...
... . . .

...

0 0 . . .
(

â(i)
L

)T





. (4.108)

4.6.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 4.2.2, the conventional unidirectional LMS algorithm adopted

to the iterative channel estimation problem for a time-varying frequency-selective fading

channel is given for thei-th iteration as follows

f̂
(i)
k+1 = f̂

(i)
k + 2µ e(i)

k â(i)
k (4.109)

wherei > 1 so that we employ the algorithm after the initial channel estimation iteration, as

before, andµ is the step-size value of the adaptation. The error terme(i)
k in (4.109) is given as

e(i)
k = yk −

(

f̂
(i)
k

)T
â(i)

k . (4.110)
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4.6.2.3 Bidirectional LMS Channel Estimation

As described in Section 4.2.2, the forward and the backward adaptations of the bidirec-

tional LMS algorithm adopted to the iterative channel estimation problem for a time-varying

frequency-selective fading channel are given for thei-th iteration as follows

f̂
f , (i)

k+1 = f̂
f , (i)

k + 2µ e f , (i)
k â(i)

k (4.111)

f̂
b, (i)
k−1 = f̂

b, (i)
k + 2µ eb, (i)

k â(i)
k (4.112)

wherei > 1 as before,µ is the common step-size value andef , (i)
k andeb, (i)

k are the associated

error terms given as

e f , (i)
k = yk −

(

f̂
f , (i)

k

)T
â(i)

k (4.113)

eb, (i)
k = yk −

(

f̂
b, (i)
k

)T
â(i)

k . (4.114)

The final estimatêf
(i)
k is again given to be

f̂
(i)
k =

f̂
f , (i)

k + f̂
b, (i)
k

2
. (4.115)

4.6.3 Numerical Results

We now explore the performances of the channel estimation algorithms presented in Sec-

tion 4.6.2 over a time-varying frequency selective channelwith the transmitter and receiver

models introduced in Section 4.6.1. A sufficient number of Monte Carlo simulations are

performed to produce statistically significant results. Asusual, Rayleigh fading with Jakes’

model is considered for the temporal variation of each of thechannel taps which are mutu-

ally uncorrelated. We assume BPSK alphabet throughout the simulations except for some

examples using QPSK symbols with some special setting.

At the transmitter, a set ofLd = 98 symbols are chosen from the set{0, 1} in an independent

and identical fashion. A rateRc = 1/2 convolutional encoder with generator (1, 5/7)8 is used

together with 2 termination bits, and a number ofLc = 200 coded symbols are produced

accordingly. After passing through a random interleaver, the coded symbols are modulated

using a BPSK modulator without any loss of generality. Once the PSAM block inserts the

necessary pilot symbols into the modulated stream, the finalset of symbols are transmitted
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through the time-varying frequency-selective fading channel under consideration. The pilot

symbol spacing is chosen to beMp = 11 throughout the simulations which results in a number

of MLp = 2×22= 44 pilot symbols for each of the transmitted block ofL = 244 symbols. The

pilot overhead percentage is therefore 0.1803 and the overall transmission rate, i.e.,R= Ld/L,

becomes 0.4016 with these settings.

At the receiver, the feedback of the estimates of the coded symbols is in the form of soft-

decisions to achieve a better error performance. The numberof channel estimation iterations

is chosen to be 3 beyond which all the algorithms are observedto saturate. In addition, both

the unidirectional and bidirectional LMS algorithms use optimal step-size values which are

determined in trial and error basis for each SNR level. The details of the receiver is explained

in Section 4.6.1.
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Figure 4.20: BER for BiLMS, UniLMS and MMSE withMp = 11 over a 2-tap Rayleigh
fading ISI channel withfdTs = 0.01. All results for BiLMS and UniLMS are associated with
the 3-rd estimation iteration.

We evaluate the performance of the estimation algorithms under consideration through BER

and normalized MSIE statistics with various Doppler frequency choices. Fig. 4.20 presents

the BER results for the bidirectional LMS algorithm, unidirectional LMS algorithm and

MMSE filter with 21 and 31 taps after the 3-rd channel estimation iteration. The BER per-

formance associated with the initial channel estimate for which MMSE filter is used together
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with all the available pilot symbols is also added to provideunderstanding the power of the

iterative channel estimation idea. We make a number of observations for this particular case

as follows. First of all, the BER performance of the bidirectional LMS algorithm is very close

to that of the MMSE filter after 3 channel estimation iterations. We observe that the BER

performance of the optimal MMSE filter employing only the pilot symbols is off the known

channel bound by almost 4 dB at BER= 10−3. The iterative estimation of the unknown chan-

nel enables the bidirectional LMS algorithm to fill this gap by 2 dB so that the associated BER

performance is only 2 dB off the known channel case.
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Figure 4.21: Normalized MSIE for BiLMS, UniLMS and MMSE withMp = 11 over a 2-
tap Rayleigh fading ISI channel withfdTs = 0.01. All results for BiLMS and UniLMS are
associated with the 3-rd estimation iteration.

The effect of imperfect initialization on the bidirectional LMS algorithm is also investigated

for practical purposes by employing estimates of the channel coefficients from the previous

estimation iteration for the initialization instead of theactual values. The associated results

in Fig. 4.20 show that no degradation occurs in the performance of the bidirectional LMS

algorithm as a result of imperfect initialization. Finally, we observe that the unidirectional

LMS algorithm proposes no further improvement over the initial channel estimation.

In Fig. 4.21, we present the performance of the algorithms under consideration through the

normalized MSIE results. We first determine the statistics associated with the optimal MMSE
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filtering which uses all the available pilots only as a reference level, and observe that the

bidirectional LMS algorithm with both perfect and imperfect initialization together with the

MMSE filter lay below the reference level for all SNR choices which implies improvement

in channel estimation quality through iterations unlike the case for unidirectional LMS algo-

rithm.
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Figure 4.22: BER for BiLMS, UniLMS and MMSE withMp = 11 over a 2-tap Rayleigh
fading ISI channel withfdTs = 0.02. All results for BiLMS and UniLMS are associated with
the 3-rd estimation iteration.
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Figure 4.23: Normalized MSIE for BiLMS, UniLMS and MMSE withMp = 11 over a 2-
tap Rayleigh fading ISI channel withfdTs = 0.02. All results for BiLMS and UniLMS are
associated with the 3-rd estimation iteration.

The results for BER and MSE statistics for a much faster Rayleigh fading channel withfdTs =

0.02 are presented in Fig. 4.22- 4.23. We observe that the 21-tap MMSE filter achieves a

BER performance which is off the known channel bound by 2 dB after 3 channel estimation

iterations. The BER performance of bidirectional LMS algorithm is somewhat worse than the

21-tap MMSE especially at a high SNR regime for this challenging fast time-varying scenario,

but nevertheless is better than that of the MMSE filter using the pilots only, i.e., initial channel

estimation, by more than 2 dB. The unidirectional LMS algorithm performs so bad that the

corresponding BER performance with the soft estimates of the coded symbols is off even the

pilots only case. These results could also be observed in Fig. 4.23.

In Fig. 4.24-4.25, we also present the results for QPSK modulation with the constellation

given in Fig. 3.43. Keeping all the other system parameters the same, we assume a 2-tap

Rayleigh fading channel with Jakes’ spectrum andf dT s = 0.01. We observe that the per-

formance of MMSE filter with 11-tap is worse than the bidirectional LMS algorithm and one

should use a 21-tap filter to fill this especially at high SNR region. We also observe that the

unidirectional LMS algorithm with the soft estimates now always performs worse than the

pilots only case, unlike the results for BPSK.
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Figure 4.24: BER for BiLMS, UniLMS and MMSE for QPSK modulation with Mp = 11 over
a 2-tap Rayleigh fading ISI channel withfdTs = 0.01. All results for BiLMS and UniLMS
are associated with the 3-rd estimation iteration.
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Figure 4.25: Normalized MSIE for BiLMS, UniLMS and MMSE for QPSK modulation with
Mp = 11 over a 2-tap Rayleigh fading ISI channel withfdTs = 0.01. All results for BiLMS
and UniLMS are associated with the 3-rd estimation iteration.
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4.7 Conclusion

Estimation of time-varying frequency-selective channelsare considered in this chapter which

is indeed a generalization of the flat-fading case. Because the channel to be estimated is rep-

resented by a vector at each time epoch, the estimation algorithms with sufficiently low com-

plexity is of significant importance. The bidirectional LMSalgorithm is therefore revisited

and investigated over frequency-selective channels both experimentally and analytically. The

results for both the coded and the uncoded communication systems indicate the superiority of

the bidirectional LMS algorithm both in terms of its good tracking performance as compared

to the optimal Wiener filter and its low-complexity structure similar to the unidirectional LMS

algorithm.
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CHAPTER 5

THE BIDIRECTIONAL LMS ALGORITHM FOR

MULTI-INPUT MULTI-OUTPUT CHANNELS

MIMO technology where both the transmitter and the receiveris equipped with multiple an-

tennas has attracted much attention for over a decade with its performance-enhancing capa-

bilities. The MIMO technology offers to use the spatial dimension properly to achieve the

diversity and/or the multiplexing gain and mitigate the adverse effects of fading. Very high

data rates are possible through the use of multiple antennasat both sides of the communica-

tion link. As such, the MIMO technology is believed to be one of the key ingredients of the

next generation wireless standards [120, 121].

In this chapter, we consider the estimation and tracking of time-varying MIMO communica-

tion channels particularly by using the bidirectional LMS algorithm. Indeed, this chapter is

a generalization of the results in Chapter 3 and Chapter 4. The considered channel model is

flat-fading so that each of the subchannels to be estimated isa scalar random variable as in the

case for Chapter 3. Besides, since the symbols transmitted from different antennas arrive on

top of each other at a receiver antenna, the associated subchannels should be estimated jointly

which results in a vector operation as in the case studied in Chapter 4.

5.1 System Model for Flat-Fading MIMO Channels

We consider a flat-fading MIMO communication channel which is represented at a time epoch

k by a matrixHk of sizeN×M whereM andN are the number of transmitter and the receiver

antennas, respectively. Because we are dealing with the channel estimation problem, we

assume that the channel matrixHk is known neither at the transmitter nor at the receiver.
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The (m, n)-th element of the channel matrixHk is indicated byhnm,k which represents the

subchannel between them-th transmitter and then-th receiver antennas, and is assumed to

have a unit energy. The subchannels are assumed to have flat-fading characteristics with the

same statistics. It is also assumed that there is no correlation between the subchannels so that

we have the following expression

E
{

hnm,k h∗n′m′,l
}

= δnn′ δmm′ r(k − l) (5.1)

wherer(·) is the autocorrelation function of the underlying fading channel.

An information symbolam,k with a symbol energyEs = E{|am,k|2} is chosen independently

from a finite alphabetA as before, and is sent through the transmitter antennam. The cor-

responding discrete-time equivalent complex baseband channel model is then given at a time

epochk as follows

yn,k =

M∑

m=1

hnm,k am,k + nn,k , (5.2)

= hT
n,k ak + nn,k (5.3)

for n = 1, 2, . . . , N, whereyn,k is the observation symbol at then-th receiver antenna,ak =

[

a1,k a2,k . . . aM,k
]T is the transmitted symbol vector,hT

n,k =
[

hn1,k hn2,k . . . hnM,k
]

is then-th

row of Hk, andnn,k is a sample from a circularly symmetric white complex Gaussian process

with zero-mean and varianceN0. As could be inferred from (5.2)-(5.3), we assume perfect

information on the block and symbol timings as well as the carrier frequency. The channel

relation could also be expressed in a more compact form as in

yk = Hk ak + nk (5.4)

whereyk =
[

y1,k y2,k . . . yN,k
]T andnk =

[

n1,k n2,k . . . nN,k
]T .

The received SNR for each receiver antenna is then given as

γr =

E






∣
∣
∣
∣
∣
∣
∣

M∑

m=1

hnm,k am,k

∣
∣
∣
∣
∣
∣
∣

2


E{|nn,k|2}
=

M∑

m=1

M∑

m′=1

δmm′ r(0)
︷            ︸︸            ︷

E
{

hnm,k h∗nm′,k

}

Es δll ′
︷         ︸︸         ︷

E
{

am,k a∗m′,k
}

N0
(5.5)

=

Es

M∑

m=1

E
{
∣
∣
∣hnm,k

∣
∣
∣
2
}

N0
=

M Es

N0
, (5.6)
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where (5.6) makes use of the result of (5.1), and the fact thatthe set{am,k}Mm=1 is assumed to

be uncorrelated. The information symbol SNR is accordinglygiven asγ = γr/R whereR is

the overall transmission rate of the communication system.

5.2 Estimation Algorithms for Flat-Fading MIMO Channels

In this section, the channel estimation algorithms under consideration is revisited to be modi-

fied according to the needs for the flat-fading MIMO channel model given in Section 5.1.

5.2.1 The MMSE Channel Estimation

In order to estimate a complex subchannel coefficient hnm,k, one should consider many and

possibly all correlated values of this fading coefficient during a transmission block. As a

result, the set
{

hnm,k
}L
k=1 should be estimated jointly. Furthermore, since each observation

at a single receiver antenna has a partial information on allsubchannels terminating at that

antenna according to (5.2), the set
{

hnm,k
}L
k=1, m = 1, . . . ,M, should be estimated jointly for

optimal operation. As a result, the optimal Wiener filter should be derived to estimate the set

of vectors
{
hn,k

}L
k=1, or equivalentlyhn =

[

hT
n,1 . . . h

T
n,L

]T
, jointly which may also be inferred

from (5.2).

The corresponding MMSE estimator is then given as follows

ĥn =Wn yn (5.7)

for n = 1, 2, . . . , N, whereWn is the estimation filter to be optimized andyn =
[
yn,1 . . . yn,L

]T

is the concatenated observation vector associated with then-th receiver antenna.

We also note that (5.7) could be modified such that overall estimator is derived for a single

subchannel vector̂hn,k instead of the complete set of unknown fading vectorsĥn, and/or less

number of observation vectors could be employed instead of all the available observation

vectorsyn. These two choices will hopefully reduce the associated computational complexity.

The optimal MMSE filter is computed through the Wiener-Hopf’s equations which are ob-

tained by following the similar steps explained in AppendixB.1 and are given as

Wn = Phy, n R−1
yy, n (5.8)
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wherePhy, n = E
{

hn yH
n

}

andRyy, n = E
{

yn yH
n

}

are the cross-correlation and the autocorrela-

tion matrices, respectively. Indeed, this is the same result presented in [122] which is obtained

by deriving the maximuma posteriori(MAP) estimate of the unknown channel vector.

AssumingK observation symbols to be employed in estimatinghn,k, the pre-filtering stage

given in (5.8) requires a matrix inversion of complexityO (K3) and a matrix multiplication

of complexityO (M K2) while the filtering stage in (5.7) needsM (K − 1) complex additions

andM K complex multiplications. In order to estimate the completechannel matrixHk, the

required computations are repeatedN times.

5.2.2 The Unidirectional and The Bidirectional LMS Algorit hms

The conventional LMS algorithm over a flat-fading MIMO channels is given as [57]

ĥn,k+1 = ĥn,k + 2µ en,k ak (5.9)

for n = 1, 2, . . . , N, whereµ is the associated step-size anden,k is the estimation error

associated with then-th receiver antenna defined as

en,k = yn,k − ĥ
T
n,k ak. (5.10)

The conventional LMS algorithm just needsN (M + 1) complex additions and 2N (M + 1)

complex multiplications in order to estimate the channel matrix.

Let us definêhf
nm,k andĥb

nm,k to be the estimates of the fading coefficienthnm,k in the forward

and the backward directions, respectively, which are represented in vector form aŝh
f
n,k =

[

ĥf
n1,k ĥf

n2,k . . . ĥ
f
nM,k

]T
and ĥ

b
n,k =

[

ĥb
n1,k ĥb

n2,k . . . ĥ
b
nM,k

]T
. The bidirectional LMS algorithm

is then given as

ĥ
f
n,k+1 = ĥ

f
n,k + 2µ ef

n,k ak (5.11)

ĥ
b
n,k−1 = ĥ

b
n,k + 2µ eb

n,k ak (5.12)

for n = 1, 2, . . . , N, whereµ is the associated step-size of the adaptations,ef
n,k andeb

n,k are

the forward and the backward errors associated with then-th receiver antenna which is defined
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as

ef
n,k = yn,k − (ĥ

f
n,k)

T ak (5.13)

eb
n,k = yn,k − (ĥ

b
n,k)

T ak. (5.14)

The final estimate is again chosen to be the arithmetic average of the forward and the backward

estimates as follows

ĥn, k =
ĥ

f
n, k + ĥ

b
n, k

2
, (5.15)

for n = 1, 2, . . . , N.

The bidirectional LMS algorithm with this setting requiresN (3M+2) complex additions and

N (5M + 4) complex multiplications. As a result, the overall complexity of the bidirectional

LMS algorithm is close to the conventional unidirectional LMS algorithm as compared to that

for the optimal MMSE filter.

5.3 Tracking Performance of Bidirectional LMS over MIMO Fla t-Fading Chan-

nels

In this section, we evaluate the tracking performance of thebidirectional LMS algorithm for

a flat-fading MIMO channel. As we discussed in the previous section, the update equations

of the bidirectional LMS algorithm for a flat-fading MIMO channel is very similar to that for

the single antenna frequency-selective fading channels considered in Chapter 4. We therefore

benefit from the results of [61, 63] and Section 4.3 as much as possible, and remove some

similar intermediate derivation steps.

We again concentrate only on the tracking quality of the bidirectional LMS algorithm at

the steady-state and assume that the overall system is operating in the training mode where

{am,k}Mm=1 are known a priori at the receiver. The corresponding error performance surface, or
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equivalently the MSE, is given for a flat-fading MIMO channelas follows

JMS E, k = E
{

‖ ek ‖2
}

(5.16)

= E
{ ∥
∥
∥ yk − Ĥk ak

∥
∥
∥

2
}

(5.17)

= E
{ ∥
∥
∥ (Hk − Ĥk)

T ak + nk

∥
∥
∥

2
}

(5.18)

= E
{

‖ nk ‖2
}

+ E
{ ∥
∥
∥ (Hk − Ĥk)

T ak

∥
∥
∥

2
}

(5.19)

=

N∑

n=1

E
{
∣
∣
∣nn,k

∣
∣
∣
2
}

︸             ︷︷             ︸

N Jmin

+ Es

N∑

n=1

∥
∥
∥ hn,k − ĥn,k

∥
∥
∥

2

︸                     ︷︷                     ︸

Jex, k

(5.20)

whereek is the overall tracking error,Jex, k is the excess MSE, and the minimum achievable

MSE due to the presence of additive noise is qual toN Jmin with Jmin = N0, as before. We

may express the average MSE at the steady-state as follows

JMS E = E
{
JMS E, k

}
(5.21)

= N Jmin + Es

N∑

n=1

E
{ ∥
∥
∥ hn,k − ĥn,k

∥
∥
∥

2
}

︸                  ︷︷                  ︸

JMS IE,n

(5.22)

whereJMS IE, n is the MSIE associated with the estimation of then-th column of the chan-

nel matrixHk. Due to the statistical symmetry,JMS IE, n is common for any choice ofn =

1, 2, . . . ,N. As a result, the average MSIE becomes

JMS E = N Jmin + Es

N∑

n=1

JMS IE, n (5.23)

= N Jmin + Es N JMS IE (5.24)

whereJMS IE is redefined here to be the MSIE in estimating any columns ofHk.

We note that,JMS IE = E
{ ∥
∥
∥ hn,k − ĥn,k

∥
∥
∥

2
}

is derived in Section 4.3 for frequency-selective

channels which is exactly the same for our case. Therefore, using the results of Section 4.3,

JMS IE for a flat-fadingN × M MIMO channel is given as

JMS IE =
µM2NEs

2(Es− µ [(M − 1)Es + E4])
Jmin +

MN
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw, (5.25)

and the steady-state MSE is found to be

JMS E =

(

1+
µM2NE2

s

2(Es − µ [(M − 1)Es + E4])

)

Jmin +
MNEs

2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw (5.26)
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whereS(w) is the power spectral density of the underlying fading model, and the transfer

functionH(ejw) is given as

H(z) = −1+ β
2β
+

1− β
2β

( 1
1− βe− jw

− 1

1− 1
β
e− jw

)

. (5.27)

Note that since the correlation property of the input vectors ak are different for the frequency-

selective and MIMO channels, the above expressions are treated to be approximate. Never-

theless, the associated results given in the next section isobserved to be satisfactory. This

consideration may be further investigated as a subject of a future work.

The optimal choice for the step-size value,µopt, is again of interest to characterize the min-

imum achievable MSE at the steady-state. In order to deriveµopt theoretically, we express

(5.26) in terms of onlyβ and take derivative of the resulting expression with respect to β as

follows

∂JMS E

∂β
=
∂

∂β









1+

(1− β)M2NE2
s

2
(

2E2
s − (1− β) [(M − 1)Es + E4]

)




Jmin +

Es MN
2π

∫ π

−π

∣
∣
∣H(ejw)

∣
∣
∣
2

S(w) dw






= −
E4

sM2N
(

2E2
s − (1− β) [(M − 1)Es + E4]

)2
Jmin +

Es MN
π

∫ π

−π
H(ejw)

∂H(ejw)
∂β

S(w) dw

(5.28)

where∂H(ejw)/∂β is the same as before which is given as

∂H(ejw)
∂β

= −
(1− cosw) (1− β2 − 2β + 2 cosw)

(1+ β2 − 2β cosw)2
. (5.29)

The optimal geometric ratioβopt could then be evaluated numerically using (5.28) and (5.29)

as follows

∂JMS E

∂β

∣
∣
∣
∣
∣
β=βopt

= 0 (5.30)

and the optimal step-sizeµopt could be found asµopt = (1− βopt)/2Es.

5.3.1 Numerical Results

In this section, we investigate the accuracy of the MSE derivation for the bidirectional LMS

algorithm operating at the steady-state over a time-varying flat-fading MIMO channel. We

148



compare the normalized MSIE results for the bidirectional LMS algorithm, unidirectional

LMS algorithm and MMSE filter which are obtained through Monte Carlo simulations to-

gether with the theoretical normalized MSIE computed according to (5.25).

As a brief overview, we assume a time-varying MIMO system equipped withM = 2 transmit-

ter andN = 4 receiver antennas where each subchannel between a transmitter and a receiver

antenna pair experience a Rayleigh fading with Jakes’ modeland fdTs = 0.01 in a spatially

uncorrelated fashion. In each Monte Carlo run, a set ofL = 100 information symbols are

chosen independently from the BPSK alphabetA = {−1,+1} with the symbol energyEs = 1.

In this case, the normalization is performed on MSIE with respect to number of the both the

transmitters and receivers as follows

JMS IE =
JMS IE

MN
. (5.31)
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Figure 5.1: Theoretical and experimental normalized MSIE for BiLMS for varying step-size
at SNR=5 dB over a Rayleigh fading MIMO channel withfdTs = 0.01 and (M,N) = (2, 4).
The experimental MSIE for UniLMS together with a 11-tap and 21-tap optimal MMSE filters
are also provided.

In the figures in this subsection, we present the experimental normalized MSIE for the bidi-

rectional LMS algorithm, the unidirectional LMS algorithmand MMSE filter with various
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number of taps together with the theoretical normalized MSIE for the bidirectional LMS al-

gorithm. In Fig. 5.1 and Fig. 5.2, these MSIE performances are depicted for varying step-size

at γ = 5 dB andγ = 10 dB SNR, respectively. We observe that the theoretical results for the

bidirectional LMS algorithm have a good match to the experimental ones except in the neigh-

borhood of the associated minimum points for bothγ = 5 dB andγ = 10 dB cases. Indeed,

such a conclusion may be expected since there are 2× 4 = 8 subchannels to be estimated

which naturally amplifies the small deviations of the theoretical results from the experimental

ones as compared to a single channel estimation problem in single-antenna flat-fading case.

We also observe that the normalized MSIE of the bidirectional LMS algorithm is better than

that of the unidirectional LMS algorithm and is very close tothe MMSE filter. The associated

result for the 11-tap MMSE filter is worse than that of the bidirectional LMS algorithm at

γ = 5 dB and better than itγ = 10 dB while the 21-tap MMSE filter has a superiority over the

bidirectional LMS algorithm for both of the SNR choices.
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Figure 5.2: Theoretical and experimental normalized MSIE for BiLMS for varying step-size
at SNR=10 dB over a Rayleigh fading MIMO channel withfdTs = 0.01 and (M,N) = (2, 4).
The experimental MSIE for UniLMS together with a 11-tap and 21-tap optimal MMSE filters
are also provided.
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Figure 5.3: Theoretical and experimental normalized MSIE for BiLMS for optimal step-size
and varying SNR over a Rayleigh fading MIMO channel withfdTs = 0.01 and (M,N) =
(2, 4). The experimental MSIE for UniLMS together with a 11-tap and 21-tap optimal MMSE
filters are also provided.

Similar conclusions could also be made from Fig. 5.3 where the same statistics are now de-

picted for varying SNR and optimal step-size choices for each SNR level. In Fig. 5.3, we

observe that the 11-tap MMSE filter starts achieving a betterMSIE performance than the

bidirectional LMS algorithm after an SNR threshold of approximatelyγ = 8 dB. In Fig. 5.4,

we also provide a comparison between normalized MSIE valuesfor the MMSE filters with

various number of taps in order to complete the picture.

We now investigate the effectiveness of the theoretical optimal steps-size values, i.e.,µopt’s,

computed according to (4.67) and (4.68). In Table 5.1, the resulting theoretical values for

µopt together with the associated experimental ones are presented for a 2× 4 MIMO Rayleigh

fading channel withfdTs = 0.01. We observe from these results that the theoreticalµopt values

are very close to the experimental results for small SNR values while a deviation occurs for

high SNR values which is obviously due to the deviations of the theoretical results from the

experimental ones explained before in this section.
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Figure 5.4: Experimental normalized MSIE for MMSE with various number of taps over a
Rayleigh fading MIMO channel withfdTs = 0.01 and (M,N) = (2, 4).

Table 5.1: Theoretical and Experimental Optimal Step-Size(µopt) Values for a 2× 4 MIMO
Channel withfdTs = 0.01

SNR 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB

Experimental 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.140 0.160

Theoretical 0.056 0.062 0.069 0.076 0.084 0.092 0.100 0.109 0.119

5.4 Iterative Channel Estimation for Flat-Fading MIMO Chan nels

5.4.1 Transmitter and Receiver Models

In this section, the equivalent discrete-time complex baseband channel model given in (5.2) is

employed for the estimation of time-varying flat-fading MIMO channels with the transmitter

block in Fig. 5.5. In this model, a set of binary information symbols{bk}Ld
k=1 are first generated

randomly in an independent fashion by using the binary set{0, 1}, and are encoded by a chan-

nel code of rateRc. The set of coded symbols{ck}Lc
k=1 are then interleaved to combat with the

burst errors and the interleaved set{c′k}
Lc
k=1 is produced whereLc =

Ld
Rc

. The interleaved coded

symbols are then pushed to the serial-to-parallel (S/P) block such that consecutive symbols
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Figure 5.5: Transmitter model including channel encoder, interleaver, multiplexer, a set of
PSK modulators and PSAM blocks.

are mapped to different transmitter antennas sequentially as shown in Fig. 5.6. The set of

coded symbols associated with each transmitter are then modulated using a PSK modulator,

as before, with a finite modulation alphabetA. At each transmitter antenna branch, the asso-

ciated set of modulated symbols{mm,k}Lm
k=1 with Lm =

Ld
M Rc log2 |A |

are multiplexed with a set

of a priori known pilot symbols{pm,k}
Lp

k=1 chosen from the same alphabetA. The resulting

set of symbols{am,k}Lk=1 are then transmitted through the time-varying flat-fading subchannels

according to (5.2).
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Figure 5.6: The serial-to-parallel (S/P) conversion at MIMO transmitter.

Note that the PSAM mechanism for this particular case operates as in Section 3.8.1 such that

the modulated symbols at each transmitter branch are first split into the group ofMp − 1

symbols and a single pilot symbol is then inserted into the center of each of these groups.

Because the pilot symbols are used at the same locations for all the transmitter branches, they

are represented by vectors as{pk}
Lp

k=1 prior to multiplexing wherepk =
[

p1,k p2,k . . . pM,k
]T .

This transmission scheme implies that the transmitted symbol vectorak for a given time epoch

k is either completely composed of the unknown data symbols orthe a priori known pilot

symbols.

The necessary number of pilot symbols are determined to beM Lp for this multi-antenna
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scheme whereLp is given using the result of (3.180) as

Lp =



Lm−
Mp−1

2

Mp − 1


+ 1 =



Ld
M Rc log2 |A |

− Mp−1
2

Mp − 1


+ 1, (5.32)

and the associated frame lengthL is found to be

L =
Ld

M Rc log2 |A |
+ Lp =

Ld

M Rc log2 |A |
+



Ld
M Rc log2 |A |

− Mp−1
2

Mp − 1


+ 1. (5.33)

Consequently, the final sequence of vectors{ak}Lk=1 to be transmitted is expressed as

ak =






m
k−

⌊
k−(Mp+1)/2

Mp

⌋ , k , (i − 1) Mp +
Mp+1

2 , i = 1, 2, . . . , Lp;

p k−(Mp+1)/2
Mp

, k = (i − 1) Mp +
Mp+1

2 , i = 1, 2, . . . , Lp.
(5.34)

The set of indices associated with the pilot symbol vectors in a transmitted block are the same

as (3.183) which is given by

Pp =
{

kp(i)
}Lp

i=1
=

{
Mp + 1

2
,

3Mp + 1

2
, . . . ,

(2Lp − 1)Mp + 1

2

}

(5.35)

wherekp(·) specifies the indices of the pilot symbol vectors defined as

kp(i) = (i − 1) Mp +
Mp + 1

2
. (5.36)
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Figure 5.7: Receiver model for a time-varying flat-fading MIMO system with iterative chan-
nel estimation.

The receiver structure under consideration is given in Fig.5.7. Leaving some operational de-

tails to Section 4.6.1, we assume BPSK modulation without any loss of generality. In order
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to compute the input LLRs of the transmitted symbols, we benefit from the results of [123]

where a block-fading channel model is considered instead ofa time-varying multi-antenna

channel as is the choice for this particular case. We emphasize the point that the LLR compu-

tation presented below is admittedly not optimal in the sense that it does no take into account

the imperfection of the associated channel estimate as is argued in [124]. Nevertheless, deriv-

ing optimal receivers such as the one given in [124] is beyondthe scope of this work, and the

one presented here is believed to work well enough from our point of view.

The input LLR of the symbolak,m associated with them-th transmitter antenna andk-th sym-

bol time at thei-th estimation iteration is then given as

L(i)( ak,m ) = log
P

(

ak,m = 1
∣
∣
∣
∣ yk, Ĥ

(i)
k

)

P
(

ak,m = −1
∣
∣
∣
∣ yk, Ĥ

(i)
k

) (5.37)

= log
P

(

yk, ak,m = 1
∣
∣
∣
∣ Ĥ

(i)
k

)

P
(

yk, ak,m = −1
∣
∣
∣
∣ Ĥ

(i)
k

) (5.38)

which is a suboptimal approach as stated in Section 4.6.1, and whereĤ
(i)
k is the estimate of

the channel matrixHk at thei-th iteration.L(i)( ak,m ) could be further elaborated as follows

L(i)( ak,m ) = log

∑

ak : ak,m=1

P
(

yk, ak

∣
∣
∣
∣ Ĥ

(i)
k

)

∑

ak : ak,m=−1

P
(

yk, ak

∣
∣
∣
∣ Ĥ

(i)
k

) (5.39)

= log

∑

ak : ak,m=1

P
(

yk

∣
∣
∣
∣ Ĥ

(i)
k , ak

)

∑

ak : ak,m=−1

P
(

yk

∣
∣
∣
∣ Ĥ

(i)
k , ak

) (5.40)

where the constraintak : am,k refers to the set ofak’s whosem-th elementam,k takes the

specified value. Sinceyn,k’s are uncorrelated for a given channel matrix at a given timeepoch

k, we may obtain the following equivalent expression

L(i)( ak,m ) = log

∑

ak : ak,m=1

N∏

n=1

P
(

yn,k

∣
∣
∣
∣ ĥ

(i)
n,k, ak

)

∑

ak : ak,m=−1

N∏

n=1

P
(

yn,k

∣
∣
∣
∣ ĥ

(i)
n,k, ak

)
, (5.41)
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and it becomes with the help of (5.3) as follows:

L(i)( ak,m ) = log

∑

ak : ak,m=1

N∏

n=1

exp






−

∣
∣
∣
∣
∣
∣
yn,k −

(

ĥ
(i)
n,k

)T
ak

∣
∣
∣
∣
∣
∣

2

N0






∑

ak : ak,m=−1

N∏

n=1

exp






−

∣
∣
∣
∣
∣
∣
yn,k −

(

ĥ
(i)
n,k

)T
ak

∣
∣
∣
∣
∣
∣

2

N0






. (5.42)

Note that LLR of the coded symbolsck’s and the modulated symbolsmk’s are equivalent due

to the BPSK assumption and we therefore do not need any bit-to-symbol level LLR conversion

or vice versa. The rest of the operation is the same as in Section 3.8.1.

5.4.2 Channel Estimation Algorithms for Flat-Fading MIMO C hannels

In this section, we overview the channel estimation algorithms for time-varying flat-fading

MIMO channels. Because the formulations presented here arevery similar to those given in

Section 4.6.2, we will present some important results only.

5.4.2.1 MMSE Channel Estimation

An initial estimate for estimate ofhn at thei-th iteration is given as follows

ĥ
(1)
n =W (1)

n yn,p (5.43)

whereyn,p =
[

yn, kp (1) . . . yn, kp (Lp)

]T
is the observation vector received at then-th antenna and

is associated with all the available pilot symbol vectors. Defininghn, p =

[

hT
n, kp (1), . . . , h

T
n, kp (Lp)

]T

to be the subchannel vector associated with all the available pilots, the desired Wiener-Hopf’s

equations are given by (4.104) as follows

W (1) = Pp AH
p

(

Ap Rp AH
p + N0 I

)−1
(5.44)

where the subscriptn is removed since thePp = E
{

hn hH
n, p

}

and Rp = E
{

hn, p hH
n, p

}

do

not depend on the receiver antenna choice. Using (5.1), any element ofPp andRp could be
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expressed as

E
{

hnm, i hn′m′, kp( j)

}

= δnn′ δmm′ r
(

i − kp( j)
)

E
{

hnm, kp(i) hn′m′, kp( j)

}

= δnn′ δmm′ r
(

kp(i) − kp( j)
)

which clarifies the above claim.

In the subsequent estimation iterations, estimate ofhn at thei-th iteration is given as

ĥ
(i)
n =W(i)

n yn (5.45)

for i > 1 where the associated MMSE filter is given by (B.16) as follows

W(i) = Rhh

(

Â
(i)
)H

(

Â
(i)

Rhh

(

Â
(i)
)H
+ N0 I

)−1

. (5.46)

whereRhh = E
{

hn hH
n

}

is the the correlation matrix which does not depend on the receiver

antenna indexn andÂ
(i)

is the data matrix introduced in Section 4.6.2.1.

5.4.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 5.2.2, the conventional unidirectional LMS algorithm adopted

to the iterative channel estimation problem for a time-varying flat-fading MIMO channel is

given for thei-th iteration as follows

ĥ
(i)
n, k+1 = ĥ

(i)
n, k + 2µ e(i)

n, k â(i)
k (5.47)

for n = 1, 2, . . . , N, wherei > 1 so that we employ the algorithm after the initial channel

estimation iteration as before, andµ is the step-size value of the adaptation. The error term

e(i)
n, k in (5.47) is given as

e(i)
n, k = yn,k −

(

ĥ
(i)
n, k

)T
â(i)

k . (5.48)

5.4.2.3 Bidirectional LMS Channel Estimation

As described in Section 5.2.2, the forward and the backward adaptations of the bidirectional

LMS algorithm adopted to the iterative channel estimation problem for a time-varying flat-
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fading MIMO channel are given for thei-th iteration as follows

ĥ
f , (i)

n, k+1 = ĥ
f , (i)

n, k + 2µ e f , (i)
n, k â(i)

k (5.49)

ĥ
b, (i)
n, k−1 = ĥ

b, (i)
n, k + 2µ eb, (i)

n, k â(i)
k (5.50)

for n = 1, 2, . . . , N, wherei > 1 as before,µ is the common step-size value andef , (i)
n, k and

eb, (i)
n, k are the associated error terms given as

e f , (i)
n, k = yn,k −

(

ĥ
f , (i)

n, k

)T
â(i)

k (5.51)

eb, (i)
n, k = yn,k −

(

ĥ
b, (i)
n, k

)T
â(i)

k . (5.52)

The final estimatêh
(i)
n, k is found to be

ĥ
(i)
n, k =

ĥ
f , (i)

n, k + ĥ
b, (i)
n, k

2
. (5.53)

5.4.3 Numerical Results

In this section, we evaluate the performances of the channelestimation algorithms given in

Section 5.4.2 over a time-varying flat-fading MIMO channel with the transmitter and receiver

models introduced in Section 5.4.1. Rayleigh fading with Jakes’ model is assumed for each

of the uncorrelated subchannels with the temporal autocorrelation given in (3.69).

We consider a MIMO system equipped with 2 transmitter and 4 receiver antennas. The speed

of each subchannel variation is determined by the common normalized maximum Doppler

frequency which is chosen to befdTs = 0.01 and fdTs = 0.02 throughout the simulations.

A set of Ld = 98 symbols are chosen from the set{0, 1} in an independent and identical

fashion at the transmitter. A rateRc = 1/2 convolutional encoder with generator (1, 5/7)8

is used, as before, together with 2 termination bits for eachof the transmitted block, and

a number ofLc = 200 coded symbols are produced accordingly. After passing through a

random interleaver, the coded symbols are distributed to the transmitter antennas such that the

consecutive symbols are associated with different antennas. The resulting coded sequences for

each of the transmitter antennas are then modulated using a BPSK modulator, and necessary

pilots are inserted into the sequence prior to transmission. The pilot symbol spacing is chosen

to beMp = 11 throughout the simulations which results in a number ofMLp = 2×10= 20 for
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each of the transmitted block of lengthL = 220. The pilot overhead percentage is therefore

0.1 and the overall transmission rate, i.e.,R= Ld/L, becomes 0.4455.

We prefer to transmit orthogonal pilot vectors chosen from the Alamouti set [125] as sug-

gested in [126]. In Fig. 5.8, the effect of various pilot sequence choices are presented together

with MMSE filter. A nonorthogonal pilot sequence using+1 only is observed to be extremely

bad, whereas the Alamouti set result in a better error performance than the random BPSK

sequence where symbols are selected randomly from the set{−1, 1} for the latter.
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Figure 5.8: BER for MMSE withMp = 11 over a Rayleigh fading MIMO channel with
fdTs = 0.01 and (M,N) = (2, 4). Orthogonal pilots are chosen from the Alamouti set, and all
pilots are 1 for non-orthogonal case.

At the receiver, soft-decision feedback is considered where the number of channel estimation

iterations is 5 for which a good convergence behavior is observed. As usual, sufficient number

of independent Monte Carlo trials are performed to produce statistically significant results.

In addition, both the unidirectional and bidirectional LMSalgorithms use optimal step-size

values which are determined in trial and error basis for eachSNR level. The details of the

receiver operations are explained in Section 5.4.1.
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Figure 5.9: BER for BiLMS, UniLMS and MMSE withMp = 11 over a Rayleigh fading
MIMO channel with fdTs = 0.01 and (M,N) = (2, 4). All results for BiLMS and UniLMS
are associated with the 5-th estimation iteration.

In Fig. 5.9, we depict BER results for the bidirectional LMS algorithm, the unidirectional

LMS algorithm and the MMSE filter with 11, 21 and 31 taps associated with the 5-th channel

estimation iteration. The BER performance of the MMSE filterafter the 1-st channel esti-

mation iteration for which only all the available pilot symbols are employed is also provided

together with the known channel bound. We observe that, the bidirectional LMS algorithm

achieves a BER performance which is much better than that of the 11-tap MMSE filter and is

very close to that of the 21-tap and 31-tap MMSE filters. We also observe that the BER of the

bidirectional LMS algorithm is off the known channel by only 2 dB whereas this gap is 4 dB

for the initial channel estimation with the MMSE filter usingall available pilots. In addition,

imperfect initialization for the bidirectional LMS algorithm in which the estimates of channel

coefficients from the last iteration is used to initialize the algorithm is observed not to cause

any performance degradation. Finally, the unidirectionalLMS algorithm is observed fill this

gap from the known channel only 1 dB.
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Figure 5.10: Normalized MSIE for BiLMS, UniLMS and MMSE withMp = 11 over a
Rayleigh fading MIMO channel withfdTs = 0.01 and (M,N) = (2, 4). All results for BiLMS
and UniLMS are associated with the 5-th estimation iteration.

We also depict the normalized MSIE statistics in Fig. 5.10 corresponding to the Monte Carlo

simulations presented through BER results in the previous figure. We observe that the normal-

ized MSIE of the bidirectional LMS algorithm is much better than that of the 11-tap MMSE

filter and is close to the 21-tap and 31-tap MMSE filters, and that imperfect initialization

does not cause a significant performance degradation, as before. The normalized MSIE of

the 11-tap MMSE filter is observed to be better than the reference statistics corresponding to

the initial channel estimation afterγ = 1 dB SNR whereas this threshold isγ = 2 dB for the

unidirectional LMS algorithm andγ = −1 dB for the rest of the algorithms. Consequently,

these observations absolutely coincide with those inferred from Fig. 5.9.
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Figure 5.11: BER for BiLMS, UniLMS and MMSE withMp = 11 over a Rayleigh fading
MIMO channel with fdTs = 0.02 and (M,N) = (2, 4). All results for BiLMS and UniLMS
are associated with the 5-th estimation iteration.

In Fig. 5.11 and Fig. 5.12, we depict the BER and normalized MSIE results for a faster

Rayleigh fading channel withfdTs = 0.02. For this case, the bidirectional LMS algorithm is

observed to achieve a similar performance to that of the 21-tap MMSE filter and a better per-

formance than that of the 11-tap MMSE filter at high SNR. The unidirectional LMS algorithm

is observed to degrade the performance associated with the initial channel estimate except for

a small region at very high SNR. The results show that the BER corresponding to the initial

channel estimate is off the known channel bound by as large as 6 dB, and that this gap isonly

3 dB for the bidirectional LMS algorithm and 21-tap MMSE filter after 5 estimation iteration.

In this sense, the bidirectional LMS algorithm is observed to achieve almost 1 dB SNR im-

provement over the 11-tap MMSE filter, and is very robust to the imperfect initialization with

the channel estimates from the previous estimation iteration. After these common conclusions

for both figures, we also observe in Fig. 5.12 that the bidirectional LMS algorithm and the

21-tap MMSE filter achieve a better MSIE results than that of the reference level associated

with the initial channel estimate after almostγ = 1 dB SNR whereas this threshold is as large

asγ = 5 dB for the unidirectional LMS algorithm.
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Figure 5.12: Normalized MSIE for BiLMS, UniLMS and MMSE withMp = 11 over a
Rayleigh fading MIMO channel withfdTs = 0.02 and (M,N) = (2, 4). All results for BiLMS
and UniLMS are associated with the 5-th estimation iteration.

5.5 Conclusion

A time-varying flat-fading MIMO communication channel is considered in this chapter with

the purpose of searching for the efficient ways of channel estimation. The channel under

consideration has some similarities with both the flat- and frequency-selective fading channels

and indeed a kind of generalization for both of these previous channel models. Because the

channel to be estimated is in the form of a matrix varying withtime, the resulting complexity

associated with the optimal Wiener filter is extremely high.The bidirectional LMS algorithm

is shown to achieve a close tracking performance to the optimal Wiener filter in both coded

and uncoded environments at a very low level of complexity which is comparable to that of

the conventional unidirectional LMS algorithm. The tracking behavior is analyzed and the

associated optimal step-size is derived. A step-size dependent steady-state MSE expression is

obtained together with the optimal step-size expressions with a satisfactory accuracy.
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CHAPTER 6

CONCLUSION

6.1 Contribution

This work considers estimation of time-varying communication channels with low-complexity

and near-optimal algorithms. Making use of the bidirectional signal processing techniques

present in the literature, the bidirectional LMS algorithmis considered as an extension of the

well-known conventional unidirectional LMS algorithm. This algorithm is shown to achieve

similar MSE statistics as that of the optimal Wiener filter under some specific scenarios as

well as the BER and BLER statistics in both genie-aided and coded communication systems

closer to real-life scenarios. Beside this good tracking ability, the complexity increase as a

result of a bidirectional processing is shown to be still at practical levels as compared to both

the conventional LMS and the optimal Wiener filter. In addition, the bidirectional LMS algo-

rithm is also proved to be robust to the imperfect initialization which improves its practical

value.

One of the major contributions of this work is the steady-state tracking analysis of the bidi-

rectional LMS algorithm. The analysis derives a step-size dependent steady-state MSE ex-

pression which is valid for any kind of channel characteristics with a known power spectrum.

Therefore, the proposed analysis is valid, for example, forthe Rayleigh fading with a well-

known nonrational Jakes’ spectrum as well as a simple rational spectrum characterized in the

time-domain by an AR process. In addition, much simpler formof the steady-state MSE

expression is obtained for AR channels by transferring the frequency-domain computations

into the time-domain. The optimal selection of the step-size value for the bidirectional LMS

algorithm is also presented using the result of the steady-state MSE analysis. The numerical
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evaluations show a very good match between the theoretical and experimental results for a va-

riety of time-varying channel choices including single-antenna and multi-antenna structures

with flat and frequency-selective fading. The analysis alsoshows that the best performance is

achieved when the forward and the backward step-size valuesare equal.

In performance analysis of the bidirectional algorithm, a special attention is devoted to frequency-

selective fading channels since the so-called independence assumption is not valid due to the

memory of the channel of interest. The steady-state MSE analysis is therefore modified for

frequency-selective channels to take into account the corresponding vector structure. The as-

sociated comparisons between theoretical and experimental results exhibit a good match for

frequency-selective channels, as well.

Finally, we have realized that although there are various studies present in the literature on

the bidirectional estimation strategies in communicationsystems, none of them provide a

theoretical analysis about the underlying estimators. As such, our work not only presents a

bidirectional extension of the LMS algorithm with a near-optimal performance at a practical

level of complexity but also novel in the sense that it provides a detailed tracking analysis

for the algorithm resulting in a step-size dependent steady-state MSE expression with high

accuracy.

6.2 Future Work

In this work, we assume a packet-based transmission scheme with relatively short block-

lengths. The transient phase of the bidirectional LMS algorithm is therefore skipped by using

initial conditions on the channel estimate with varying accuracy, i.e., imperfect or genie-aided.

Indeed, the transient behavior of the bidirectional LMS algorithm including the rate of con-

vergence and the associated MSE value has a great importancefor some practical applications

including equalization as well as channel estimation. Thisanalysis would be useful for both

flat and frequency-selective fading channels. The work on the analysis of the conventional

LMS algorithm in transient phase with/without the independence assumption is very limited

even in the signal processing literature, and therefore there is a good opportunity to elaborate

and apply these results to the communication area.

Some other extensions of this work is to investigate the applicability of the present results
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to some other adaptive algorithms, e.g, the conventional RLS or extended RLS (ERLS). An

interesting application of the bidirectional LMS algorithm is the channel estimation prob-

lem for both quasi-static and time-varying OFDM communication. Remembering the two-

dimensional Wiener filter is employed in such systems to exploit the correlation both in the

frequency and time domains, the analysis of the bidirectional LMS operated in a similar fash-

ion seems really challenging.

166



REFERENCES

[1] Simon Haykin. Adaptive Filter Theory. Prentice Hall, 4 edition, September 2001.
ISBN 0130901261.

[2] Y.C. Lim and C.C. Ko. Forward-backward LMS adaptive lineenhancer.Circuits and
Systems, IEEE Transactions on, 37(7):936–940, July 1990.

[3] Hen-Geul Yeh. An efficient implementation of forward-backward LMS adaptive fil-
ters. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transac-
tions on, 44(4):332–336, April 1997.

[4] A. Anastasopoulos and K.M. Chugg. Adaptive soft-input soft-output algorithms for
iterative detection with parametric uncertainty.Communications, IEEE Transactions
on, 48(10):1638–1649, October 2000.

[5] R. Raheli, A. Polydoros, and C.-K. Tzou. The principle ofper-survivor processing:
A general approach to approximate and adaptive MLSE. InProc. of IEEE GLOBE-
COM’91, volume 2, December 1991.

[6] R. Raheli, A. Polydoros, and Ching-Kae Tzou. Per-survivor Processing: A general
approach to MLSE in uncertain environments.Communications, IEEE Transactions
on, 43(234):354–364, Feb/Mar/Apr 1995.

[7] J.K. Tugnait, Lang Tong, and Zhi Ding. Single-user channel estimation and equaliza-
tion. Signal Processing Magazine, IEEE, 17(3):16–28, May 2000.

[8] Raymond Steele and Lajos Hanzo.Mobile Radio Communications. Wiley-IEEE Press,
2 edition, May 1999. ISBN 978-0-471-97806-0.

[9] K.-D. Kammeyer, V. Kuhn, and T. Petermann. Blind and nonblind turbo estimation for
fast fading GSM channels.Selected Areas in Communications, IEEE Journal on, 19
(9):1718–1728, September 2001.

[10] Lang Tong and S. Perreau. Multichannel blind identification: From subspace to maxi-
mum likelihood methods.Proceedings of the IEEE, 86(10):1951–1968, October 1998.

[11] J.H. Lodge and M.L. Moher. Time diversity for mobile satellite channels using trellis
coded modulations. InProc. of IEEE Global Telecommunications, volume 3, 1987.

[12] S. Sampei and T. Sunaga. Rayleigh fading compensation method for 16QAM in digital
land mobile radio channels. InProc. of IEEE 39th Vehicular Technology Conference,
volume 2, pages 640–646, 1-3 1989.

[13] M.L. Moher and J.H. Lodge. TCMP - A modulation and codingstrategy for Rician
fading channels.Selected Areas in Communications, IEEE Journal on, 7(9):1347–
1355, December 1989.

167



[14] J.K. Cavers. An analysis of pilot symbol assisted modulation for Rayleigh fading
channels. Vehicular Technology, IEEE Transactions on, 40(4):686–693, November
1991.

[15] J.K. Cavers. Pilot symbol assisted modulation and differential detection in fading and
delay spread.Communications, IEEE Transactions on, 43(7):2206–2212, July 1995.

[16] P. Hoeher and F. Tufvesson. Channel estimation with superimposed pilot sequence. In
Proc. of GLOBECOM’99, volume 4, pages 2162–2166, 1999.

[17] B. Farhang-Boroujeny. Pilot-based channel identification: Proposal for semi-blind
identification of communication channels.Electronics Letters, 31(13):1044–1046, 22
1995.

[18] F. Mazzenga. Channel estimation and equalization for M-QAM transmission with
a hidden pilot sequence.Broadcasting, IEEE Transactions on, 46(2):170–176, June
2000.

[19] J.K. Tugnait and Xiaohong Meng. On superimposed training for channel estimation:
Performance analysis, training power allocation, and frame synchronization.Signal
Processing, IEEE Transactions on, 54(2):752–765, February 2006.

[20] A.G. Orozco-Lugo, M.M. Lara, and D.C. McLernon. Channel estimation using im-
plicit training. Signal Processing, IEEE Transactions on, 52(1):240–254, January
2004.

[21] F. Tsuzuki and T. Ohtsuki. Channel estimation with selective superimposed pilot se-
quences under fast fading environments. InProc. of IEEE VTC’04 Fall, volume 1,
pages 62–66, 26-29 2004.

[22] J.K. Tugnait and Shuangchi He. Doubly-selective channel estimation using data-
dependent superimposed training and exponential basis models. Wireless Communi-
cations, IEEE Transactions on, 6(11):3877–3883, November 2007.

[23] Shuangchi He, J.K. Tugnait, and Xiaohong Meng. On superimposed training for
MIMO channel estimation and symbol detection.Signal Processing, IEEE Transac-
tions on, 55(6):3007–3021, June 2007.

[24] Xiaohong Meng, J.K. Tugnait, and Shuangchi He. Iterative joint channel estimation
and data detection using superimposed training: Algorithms and performance analysis.
Vehicular Technology, IEEE Transactions on, 56(4):1873–1880, July 2007.

[25] A. Goljahani, N. Benvenuto, S. Tomasin, and L. Vangelista. Superimposed sequence
versus pilot aided channel estimations for next generationDVB-T systems.Broadcast-
ing, IEEE Transactions on, 55(1):140–144, March 2009.

[26] Min Dong, Lang Tong, and B.M. Sadler. Optimal insertionof pilot symbols for trans-
missions over time-varying flat fading channels.Signal Processing, IEEE Transactions
on, 52(5):1403–1418, May 2004.

[27] Min Dong and Lang Tong. Optimal design and placement of pilot symbols for channel
estimation. Signal Processing, IEEE Transactions on, 50(12):3055–3069, December
2002.

168



[28] G. Tong Zhou, M. Viberg, and T. McKelvey. Superimposed periodic pilots for blind
channel estimation. InProc. of 35th Asilomar Conference on Signals, Systems and
Computers, volume 1, pages 653–657, 2001.

[29] J.K. Tugnait and Weilin Luo. On channel estimation using superimposed training and
first-order statistics.Communications Letters, IEEE, 7(9):413–415, September 2003.

[30] Lang Tong, B.M. Sadler, and Min Dong. Pilot-assisted wireless transmissions: General
model, design criteria, and signal processing.Signal Processing Magazine, IEEE, 21
(6):12–25, November 2004.

[31] D. Boss, K.-D. Kammeyer, and T. Petermann. Is blind channel estimation feasible in
mobile communication systems? A study based on GSM.Selected Areas in Commu-
nications, IEEE Journal on, 16(8):1479–1492, October 1998.

[32] J.-J. Werner, Jian Yang, D.D. Harman, and G.A. Dumont. Blind equalization for broad-
band access.Communications Magazine, IEEE, 37(4):87–93, April 1999.

[33] Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation
systems.Communications, IEEE Transactions on, 23(6):679–682, June 1975.

[34] D. Godard. Self-recovering equalization and carrier tracking in two-dimensional data
communication systems.Communications, IEEE Transactions on, 28(11):1867–1875,
November 1980.

[35] J. Treichler and B. Agee. A new approach to multipath correction of constant modulus
signals. Acoustics, Speech and Signal Processing, IEEE Transactions on, 31(2):459–
472, April 1983.

[36] Hui Liu, Guanghan Xu, Lang Tong, and Thomas Kailath. Recent developments in
blind channel equalization: From cyclostationarity to subspaces.Signal Processing,
50(1-2):83–99, 1996.

[37] Ruey-Wen Liu. Blind signal processing: An introduction. In Proc. of 1996 IEEE
International Symposium on Circuits and Systems (ISCAS’96), volume 2, pages 81–
84, 12–15 1996.

[38] B. Muquet, M. de Courville, and P. Duhamel. Subspace-based blind and semi-blind
channel estimation for OFDM systems.Signal Processing, IEEE Transactions on, 50
(7):1699–1712, July 2002.

[39] Husheng Li and H.V. Poor. Performance analysis of semiblind channel estimation
in long-code DS-CDMA systems.Signal Processing, IEEE Transactions on, 54(9):
3383–3399, September 2006.

[40] G.G. Raleigh and J.M. Cioffi. Spatio-temporal coding for wireless communication.
Communications, IEEE Transactions on, 46(3):357–366, March 1998.

[41] Thomas L. Marzetta. BLAST training: Estimating channel characteristics for high
capacity space-time wireless. InProc. of 37th Annual Allerton Conference, pages 958–
966, 1999.

[42] Thomas Kailath, Ali H. Sayed, and Babak Hassibi.Linear Estimation. Prentice Hall,
1 edition, April 2000. ISBN 0130224642.

169



[43] Qinfang Sun, D.C. Cox, A. Lozano, and H.C. Huang. Training-based channel estima-
tion for continuous flat fading BLAST. InProc. of ICC’02, volume 1, pages 325–329,
April–May 2002.

[44] Qinfang Sun, D.C. Cox, H.C. Huang, and A. Lozano. Estimation of continuous flat
fading MIMO channels.Wireless Communications, IEEE Transactions on, 1(4):549–
553, October 2002.

[45] C. Komninakis, C. Fragouli, A.H. Sayed, and R.D. Wesel.Multi-input multi-output
fading channel tracking and equalization using Kalman estimation.Signal Processing,
IEEE Transactions on, 50(5):1065–1076, May 2002.

[46] Haidong Zhu, B. Farhang-Boroujeny, and C. Schlegel. Pilot embedding for joint chan-
nel estimation and data detection in MIMO communication systems.Communications
Letters, IEEE, 7(1):30–32, January 2003.

[47] J.H. Kotecha and A.M. Sayeed. Transmit signal design for optimal estimation of cor-
related MIMO channels.Signal Processing, IEEE Transactions on, 52(2):546–557,
February 2004.

[48] O. Simeone and U. Spagnolini. Lower bound on training-based channel estimation er-
ror for frequency-selective block-fading Rayleigh MIMO channels.Signal Processing,
IEEE Transactions on, 52(11):3265–3277, November 2004.

[49] O. Besson and P. Stoica. On parameter estimation of MIMOflat-fading channels with
frequency offsets. Signal Processing, IEEE Transactions on, 51(3):602–613, March
2003.

[50] D.K.C. So and R.S. Cheng. Iterative EM receiver for space-time coded systems in
MIMO frequency-selective fading channels with channel gain and order estimation.
Wireless Communications, IEEE Transactions on, 3(6):1928–1935, November 2004.

[51] A. Dakdouki and J. Thompson. Channel estimation for multiple-antenna wireless com-
munications.Antennas and Propagation Magazine, IEEE, 51(3):194–204, June 2009.

[52] J. Baltersee, G. Fock, and H. Meyr. Achievable rate of MIMO channels with data-aided
channel estimation and perfect interleaving.Selected Areas in Communications, IEEE
Journal on, 19(12):2358–2368, December 2001.

[53] T. Yoo and A. Goldsmith. Capacity and power allocation for fading MIMO channels
with channel estimation error.Information Theory, IEEE Transactions on, 52(5):2203–
2214, May 2006.

[54] B. Hassibi and B.M. Hochwald. How much training is needed in multiple-antenna
wireless links? Information Theory, IEEE Transactions on, 49(4):951–963, April
2003.

[55] Xiaoli Ma, Liuqing Yang, and G.B. Giannakis. Optimal training for MIMO frequency-
selective fading channels. InProc. of Signals, Systems and Computers, 2002. Confer-
ence Record of the Thirty-Sixth Asilomar Conference on, volume 2, pages 1107–1111,
November 2002.

[56] Hlaing Minn and N. Al-Dhahir. Optimal training signalsfor MIMO OFDM channel
estimation. Wireless Communications, IEEE Transactions on, 5(5):1158–1168, May
2006.

170



[57] Bernard Widrow and Samuel Stearns.Adaptive Signal Processing. Prentice Hall,
March 1985. ISBN 0130040290.

[58] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. InProc. IRE
WESCON Conf. Rec., pages 96–104, 1960.

[59] Bernard Widrow. Thinking about thinking: The discovery of the LMS algorithm.Sig-
nal Processing Magazine, IEEE, 22(1):100–106, January 2005.

[60] J. R. Zeidler. Performance analysis of LMS adaptive prediction filters.Proceedings of
the IEEE, 78(12):1781–1806, December 1990.

[61] B. Widrow, J.M. McCool, M.G. Larimore, and Jr. Johnson,C.R. Stationary and non-
stationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE,
64(8):1151–1162, August 1976.

[62] Bernard Widrow and Max Kamenetsky. Statistical efficiency of adaptive algorithms.
Neural Networks, 16(5-6):735–744, 2003.

[63] Jingdong Lin, J.G. Proakis, Fuyun Ling, and H. Lev-Ari.Optimal tracking of time-
varying channels: A frequency domain approach for known andnew algorithms.Se-
lected Areas in Communications, IEEE Journal on, 13(1):141–154, January 1995.

[64] W.A. Gardner. Learning characteristics of stochastic-gradient-descent algorithms: A
general study, analysis, and critique.Signal Processing, 6(2):113–133, 1984.

[65] S.C. Douglas and Weimin Pan. Exact expectation analysis of the LMS adaptive filter.
Signal Processing, IEEE Transactions on, 43(12):2863–2871, December 1995.

[66] H.J. Butterweck. A steady-state analysis of the LMS adaptive algorithm without use
of the independence assumption. InProc. of International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’95), volume 2, pages 1404–1407, May 1995.

[67] M. Rupp and H.-J. Butterweck. Overcoming the independence assumption in LMS
filtering. In Proc. of Signals, Systems and Computers, 2003. Conference Record of the
Thirty-Seventh Asilomar Conference on, volume 1, pages 607–611, November 2003.

[68] E. Eweda. Tracking analysis of the normalized LMS algorithm without the indepen-
dence and small step size assumptions. InProc. of Signal Processing and Information
Technology (ISSPIT), 2009 IEEE International Symposium on, pages 129–134, De-
cember 2009.

[69] N.R. Yousef and A.H. Sayed. A unified approach to the steady-state and tracking
analyses of adaptive filters.Signal Processing, IEEE Transactions on, 49(2):314–324,
February 2001.

[70] T.Y. Al-Naffouri and A.H. Sayed. Transient analysis of adaptive filters with error non-
linearities.Signal Processing, IEEE Transactions on, 51(3):653–663, March 2003.

[71] T.Y. Al-Naffouri and A.H. Sayed. Transient analysis of data-normalizedadaptive fil-
ters.Signal Processing, IEEE Transactions on, 51(3):639–652, March 2003.

[72] P. Wei, J. R. Zeidler, J. Han, and W. H. Ku. Comparative tracking performance of the
LMS and RLS algorithms for chirped signals.IEEE Transactions on Signal Process-
ing, 50:1602–1610, July 2002.

171



[73] S. Haykin, A. Sayed, J. R. Zeidler, P. Wei, and P. Yee. Tracking of linear time-variant
systems by extended RLS algorithms.IEEE Transactions on Signal Processing, 45:
1118–1128, May 1997.

[74] B. C. Banister and J. R. Zeidler. Tracking performance of the RLS algorithm applied
to an antenna array in a realistic fading environment.IEEE Transactions on Signal
Processing, 50:1037–1050, May 2002.

[75] M. Reuter and J. R. Zeidler. Non-linear effects in LMS adaptive equalizers.IEEE
Transactions on Signal Processing, 47(6):1570–1579, June 1999.

[76] A. Batra, J. R. Zeidler, and A. A. (Louis) Beex. A two-stage approach for im-
proving the convergence of least-mean-square decision-feedback adaptive equaliz-
ers in the presence of severe narrowband interference.EURASIP Journal on Ad-
vances in Signal Processing, 2008, 2008. Article ID 390102, 13 pages, 2008.
doi:10.1155/2008/390102.

[77] K. J. Quirk, L. B. Milstein, and J. R. Zeidler. A performance bound for the LMS
estimator.IEEE Transactions on Information Theory, 46:1150–1158, May 2000.

[78] J. Han, J. R. Zeidler, and W. H. Ku. Nonlinear effects of the LMS adaptive predictor
for chirped input signals.EURASIP Journal on Applied Signal Processing, Special
Issue on Nonlinear Signal and Image Processing, 2002(1):21–29, January 2002.

[79] T. Ikuma, A. A. (Louis) Beex, and J. R. Zeidler. Non-Wiener mean weight behavior of
LMS transversal equalizers with sinusoidal interference.IEEE Transactions on Signal
Processing, 56(9):4521–4525, September 2008.

[80] Kuor-Hsin Chang and C.N. Georghiades. Iterative jointsequence and channel estima-
tion for fast time-varying intersymbol interference channels. InProc. of IEEE ICC’95,
volume 1, pages 357–361, Seattle, WA, June 1995.

[81] H.E. Gamal, M.K. Khairy, and E. Geraniotis. Iterative decoding and channel estima-
tion of DS/CDMA over slow Rayleigh fading channels. InIEEE PIMRC, volume 3,
pages 1299–1303, Boston, MA, September 1998.

[82] Magnus Sandell, Carlo Luschi, Paul Strauch, and Ran Yan. Iterative channel estimation
using soft decision feedback. InProc. of IEEE GLOBECOM’98, volume 6, pages
3728–3733, Sydney, November 1998.

[83] Yingjiu Xu, Hsuan-Jung Su, and E. Geraniotis. Pilot symbol assisted QAM with it-
erative filtering and turbo decoding over Rayleigh flat-fading channels. InProc. of
MILCOM’99, volume 1, pages 86–91, 1999.

[84] Matthew C. Valenti and Brian D. Woerner. Iterative channel estimation and decod-
ing of pilot symbol assisted turbo codes over flat-fading channels. Selected Areas in
Communications, IEEE Journal on, 19:1697–1705, September 2001.

[85] N. Nefedov, M. Pukkila, R. Visoz, and A.O. Berthet. Iterative data detection and chan-
nel estimation for advanced TDMA systems.Wireless Communications, IEEE Trans-
actions on, 51(2):141–144, February 2003.

[86] M. Tuchler, R. Otnes, and A. Schmidbauer. Performance of soft iterative channel
estimation in turbo equalization. InProc. of IEEE ICC’02, volume 3, pages 1858–
1862, New York, NY, May 2002.

172



[87] R. Otnes and M. Tuchler. On iterative equalization, estimation, and decoding. InProc.
of IEEE ICC’03, volume 4, pages 2958–2962, May 2003.

[88] R. Otnes and M. Tuchler. Iterative channel estimation for turbo equalization of time-
varying frequency-selective channels.Wireless Communications, IEEE Transactions
on, 3(6):1918–1923, November 2004.

[89] T. Abe and T. Matsumoto. Space-time turbo equalizationin frequency-selective MIMO
channels.Vehicular Technology, IEEE Transactions on, 52(3):469–475, May 2003.

[90] L.M. Davis, I.B. Collings, and P. Hoeher. Joint MAP equalization and channel estima-
tion for frequency-selective and frequency-flat fast-fading channels.Communications,
IEEE Transactions on, 49(12):2106–2114, December 2001.

[91] Joonbeom Kim, Gordon L. Stuber, and Ye Li. Low-complexity iterative channel esti-
mation for serially concatenated systems over frequency-nonselective Rayleigh fading
channels.Wireless Communications, IEEE Transactions on, 6(2):438–442, February
2007.

[92] Hong Liu and P. Schniter. Iterative frequency-domain channel estimation and equaliza-
tion for single-carrier transmissions without cyclic-prefix. Wireless Communications,
IEEE Transactions on, 7(10):3686–3691, October 2008.

[93] Seongwook Song, A.C. Singer, and Koeng-Mo Sung. Soft input channel estimation
for turbo equalization.Signal Processing, IEEE Transactions on, 52(10):2885–2894,
October 2004.

[94] A. Hansson and T. Aulin. Generalized APP detection of continuous phase modulation
over unknown ISI channels.Communications, IEEE Transactions on, 53(10):1615–
1619, October 2005.

[95] Qinghua Guo, Li Ping, and Defeng Huang. A low-complexity iterative channel estima-
tion and detection technique for doubly selective channels. Wireless Communications,
IEEE Transactions on, 8(8):4340–4349, August 2009.

[96] H.-A. Loeliger. An introduction to factor graphs.Signal Processing Magazine, IEEE,
21(1):28–41, January 2004.

[97] H.-A. Loeliger, J. Dauwels, Junli Hu, S. Korl, Li Ping, and F.R. Kschischang. The
factor graph approach to model-based signal processing.Proceedings of the IEEE, 95
(6):1295–1322, June 2007.

[98] W. C. Jakes.Microwave Mobile Communications. John Wiley and Sons, 1974.
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Appendix A

Derivation of the MMSE Filter for Flat-Fading Channels

A.1 The MMSE Filter for Perfectly Known Transmitted Symbols

The optimal coefficients for the MMSE filter are the ones which minimize the mean-square

error given as

Jk = E
{

|ek |2
}

, (A.1)

whereek is the estimation error defined as

ek = fk − f̂k

= fk −
⌊K/2⌋∑

n=−⌊K/2⌋
wk,n yk−n. (A.2)

This minimization problem is solved by taking derivative of(A.1) with respect to the complex

conjugate of the individual filter taps as follows

∂Jk
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The problem to be solved now simplifies to

E
{

ek y∗k−n

}

= 0 , n = −
⌊K

2

⌋

, . . . ,

⌊K
2

⌋

, (A.4)
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which is known to be the orthogonality principle [1, 101]. Wemay further elaborate the

expectation in (A.4) as follows

E
{

ek y∗k−n

}

= E









fk −

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l yk−l




y∗k−n






= E
{

fk y∗k−n

}

− E






⌊K/2⌋∑

l=−⌊K/2⌋
wk,l yk−l y∗k−n






. (A.5)

By using (A.5) in (A.4), we obtain

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l E

{

yk−l y∗k−n

}

= E
{

fk y∗k−n

}

. (A.6)

Defining ryy (·) to be the autocorrelation of the observations, andr f y (·) to be the cross-

correlation between the fading coefficients to be estimated and the observations, (A.6) be-

comes the well-known linear representation for the Wiener-Hopf’s equations given as

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l ryy (n− l) = r f y (n), n = −

⌊K
2

⌋

, . . . ,

⌊K
2

⌋

(A.7)

whereryy (n− l) = E
{

yk−l y∗k−n

}

andr f y (n) = E
{

fk y∗k−n

}

.

A.2 The MMSE Filter for Iterative Channel Estimation

A.2.1 Initial Estimation Iteration

In order to obtain a global MMSE filter which is independent ofthe transmitted symbols, we

modify the channel model given in (3.1) by multiplying it with the complex conjugate of the

transmitted symbols as follows

y′k = a∗k yk

= fk |ak |2 + a∗k nk

= fk + n′k, (A.8)

where (A.8) makes use of the fact that|ak |2 = 1, e.g., PSK modulation, andn′k = a∗k nk is the

modified additive white Gaussian noise with exactly the samestatistics asnk since

E
{

n′k
}

= ak E {nk} = 0

E
{

|n′k|
2
}

= |ak |2E
{

|nk|2
}

= E
{

|nk|2
}

.
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As a result, the right hand side of (A.8) is observed to be independent ofak which is the

phenomena that leads to the global estimator. The Wiener-Hopf’s equations corresponding to

this particular case are given as

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l ry′y′

(

(n− l)Mp

)

= r f y′(k, n) (A.9)

for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋. In (A.9), the autocorrelation function of the modified observa-

tions is given as follows

ry′y′
(

(n− l)Mp

)

= E
{

y′np (k)−lMp

(

y′np (k)−nMp

)∗}

= E
{ (

fnp (k)−lMp + n′np (k)−lMp

) (

fnp (k)−nMp + n′np (k)−nMp

)∗}

= r f

(

(n− l)Mp

)

+ N0 δnl (A.10)

wherer f ( · ) is the autocorrelation of the fading coefficients and the cross-correlation function

is

r f y′ (k, n) = E
{

f k y′∗np (k)−nMp

}

= E
{

f k

(

fnp (k)−nMp + n′np (k)−nMp

)∗}

= r f (k− np (k) + nMp). (A.11)

Consequently, the final form of the Wiener-Hopf’s equationsgiven in (A.9) become

⌊K/2⌋∑

l=−⌊K/2⌋
wk,l

(

r f

(

(n− l)Mp

)

+ N0 δnl

)

= r f (k− np (k) + nMp) (A.12)

for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋.

This formulation should be modified at both edges of the observation block to properly use

the available pilot symbols. At the left edge of the observation block, if

np(k) −
⌊K

2

⌋

Mp ≤ 0 , (A.13)

the set of indices of the pilot symbols to be used is then givenas

PL =

{

(i − 1) Mp +
Mp + 1

2

}K

i=1

=

{
Mp + 1

2
,

3Mp + 1

2
, . . . ,

(2K − 1)Mp + 1

2

}

. (A.14)
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and (3.196) therefore becomes

f̂ (1)
k =

K−1∑

n=0

wk,n y′(2n+1)Mp+1
2

. (A.15)

The associated Wiener-Hopf’s equations are obtained by theorthogonality principle as

E

{

ek

(

y′(2n+1)Mp+1
2

)∗ }

= E

{
(

fk − f̂ (1)
k

)

y′(2n+1)Mp+1
2

}

= E









fk −

K−1∑

l=0

wk,l y′(2l+1)Mp+1
2





(

y′(2n+1)Mp+1
2

)∗ 


which yields

K−1∑

l=0

wk,l E

{

y′(2l+1)Mp+1
2

(

y′(2n+1)Mp+1
2

)∗ }

= E

{

fk

(

y′(2n+1)Mp+1
2

)∗ }

or equivalently

K−1∑

l=0

wk,l

(

r f

(

(l − n)Mp

)

+ N0δln
)

= r f

(

k−
(2n+ 1)Mp + 1

2

)

(A.16)

for n = 0, 1, . . . ,K − 1.

Similarly, at the right side of the observation block, if

np(k) +
⌊K

2

⌋

Mp > L , (A.17)

the set of indices of the pilot symbols to be used is then givenas

PR =

{

(i − 1) Mp +
Mp + 1

2

}Lp

i=Lp−K+1

=

{
(2(Lp − K) + 1)Mp + 1

2
, . . . ,

(2Lp − 1)Mp + 1

2

}

, (A.18)

and (3.196) therefore becomes

f̂ (1)
k =

K−1∑

n=0

wk,n y′(2(n+Lp−K)+1)Mp+1
2

. (A.19)
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The associated tap weights could be evaluated using (A.16) as follows

K−1∑

l=0

wk,l

(

r f

(

(l − n)Mp

)

+ N0δln
)

= r f

(

k−
(2(n+ Lp − K) + 1)Mp + 1

2

)

(A.20)

for n = 0, 1, . . . ,K − 1.

As a final remark, we observe that the optimal filter coefficients at both edges of the transmit-

ted block depend on the transmitted symbols and has to be recomputed for each time epochk

in the specified interval.

A.2.2 Subsequent Estimation Iterations

The final expression for the Wiener-Hopf’s equations for subsequent channel estimation iter-

ations is a modified version of (3.6). Let us consider the autocorrelation function computed

in a genie-aided fashion as follows

ryy (n− l) = E
{

yk−l (yk−n)∗
}

= ak−l r f (n− l) a∗k−n + N0 δnl , (A.21)

and the cross-correlation function given as

r f y (n) = E
{

fk y∗k−n

}

= r f (n) a∗k−n. (A.22)

Because we do not have the actual values of the data symbols and only have the corresponding

estimates ˆa(i)
k , (A.21) and (A.22) are modified to include these estimates and the final Wiener-

Hopf’s equations for thei-th iteration therefore become

⌊K/2⌋∑

l=−⌊K/2⌋
w(i)

k,l

{

â(i)
k−l r f (n− l) (â(i)

k−n)∗ + N0 δnl

}

= r f (n) (â(i)
k−n)∗, (A.23)

for n = − ⌊K/2⌋ , . . . , ⌊K/2⌋.

At the left edge of the block, the set of indices of the observations to be employed in channel

estimation fork −
⌊

K
2

⌋

≤ 0 is given as

PL = {1, 2, . . . , K} , (A.24)
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and the estimation operation in (3.201) becomes

f̂ (i)
k =

K−1∑

n=0

w(i)
k,n yn+1. (A.25)

Similarly, the set of indices at the right edge of the block for k +
⌊

K
2

⌋

> L is

PR = {L − K + 1, L − K + 2, . . . , L } , (A.26)

and the desired estimates are computed according to

f̂ (i)
k =

K−1∑

n=0

w(i)
k,n yn+L−K+1. (A.27)

At both left and right edges of the block, coefficients of the desired MMSE filter are computed

by using (A.23) with adequate indices given by (A.24) and (A.26), respectively.
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Appendix B

Derivation of the MMSE Filter for Frequency-Selective Fading

Channels

B.1 The MMSE Filter for Perfectly Known Transmitted Symbols

Let us consider the estimation error vector associated withthe estimation problem introduced

in (4.5) given as

e= f − f̂ (B.1)

which results in the following MSE

J = E
{

‖e‖2
}

= E
{

eHe
}

(B.2)

= E
{

tr
(

e eH
)}

. (B.3)

Because the ultimate goal of the MMSE estimator is to minimize the associated MSE, the

derivative of (B.3) has to be computed with respect to the complex-valued matrixW to find

the global minima as follows

∂J
∂W

=
∂

∂W
E

{

tr
((

f − f̂
) (

f − f̂
)H

) }

= E

{

∂

∂W
tr ((f −W y) (f −W y) )H

}

= E

{

∂

∂W
tr

(

f f H − f yHWH −W y f H +W y yHWH
)
}

. (B.4)

Using the results of [127, 128] on derivative computation with respect to the complex-valued
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multi-dimensional input parameters, the desired derivative could be evaluated as follows

∂J
∂W

= E

{

−
∂

∂W
tr

(

f yHWH
)

−
∂

∂W
tr

(

W y f H
)

+
∂

∂W
tr

(

W y yH WH
)
}

= E
{

− f∗ yT + W∗
(

y yH
)T

}

= −
(

E
{

f yH
} )∗
+

(

WE
{

y yH
} )∗

(B.5)

where we have used the following identities from [128]

∂ tr
(

A X H
)

∂X
= 0

∂ tr ( A X )
∂X

= AT

∂ tr ( X A )
∂X

= AT

∂ tr
(

X A X H
)

∂X
= X∗ AT .

The optimal MMSE filter is the root of (B.5) and is therefore given as

W = Pf y R−1
yy (B.6)

wherePf y = E
{

f yH
}

andRyy = E
{

y yH
}

.

B.2 The MMSE Filter for Iterative Channel Estimation

The initial estimation matrixW(1) could be computed using (4.6) together with the modified

cross-correlation and the autocorrelation matrices givenas

Pf y = E
{

f yH
p

}

(B.7)

Ryy = E
{

yp yH
p

}

. (B.8)

In order to compute (B.7)-(B.8), we first express the observation vectoryp as follows

yp =





aT
p (1) 0 . . . 0

0 aT
p (2) . . . 0

...
... . . .

...

0 0 . . . aT
p (Lp)





︸                                ︷︷                                ︸

Ap





fp (1)

fp (2)

...

fp (Lp)





︸     ︷︷     ︸

f p

+





np (1)

np (2)

...

np (Lp)





︸      ︷︷      ︸

np

= Ap fp + np (B.9)
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Inserting (B.9) into (B.7)-(B.8) yields

Pf y = E
{

f
(

Ap fp + np

)H
}

= E
{

f f H
p

}

AH
p (B.10)

Ryy = E
{ (

Ap fp + np

) (

Ap fp + np

)H
}

= Ap E
{

fp fH
p

}

AH
p + N0 I . (B.11)

In order to obtain the final expression for the initial estimation matrix, (B.10) and (B.11) are

incorporated into (4.6) as follows

W(1) = Pp AH
p

(

Ap Rp AH
p + N0 I

)−1
(B.12)

wherePp = E
{

f f H
p

}

andRp = E
{

fp fH
p

}

.

In order to computePf y andRyy in the subsequent estimation iterations, we assume

y ≈





(

â(i)
1

)T
0 . . . 0

0
(

â(i)
2

)T
. . . 0

...
... . . .

...

0 0 . . .
(

â(i)
L

)T





︸                                    ︷︷                                    ︸

Â
(i)





f1

f2

...

fL





︸︷︷︸

f

+





n1

n2

...

nL





︸ ︷︷ ︸

n

= Â
(i)

f + n, (B.13)

and then perform computations as follows

Pf y = E
{

f yH
}

= E
{

f f H
} (

Â
(i)
)H

(B.14)

Ryy = E
{

y yH
}

= Â
(i)

E
{

f f H
} (

Â
(i)
)H
+ N0 I . (B.15)

whereR f = E
{

f f H
}

. The corresponding MMSE filter at thei-th iteration is then given as

W (i) = R f

(

Â
(i)
)H

(

Â
(i)

R f

(

Â
(i)
)H
+ N0 I

)−1

. (B.16)
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