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ABSTRACT

A BIDIRECTIONAL LMS ALGORITHM FOR ESTIMATION OF FAST
TIME-VARYING CHANNELS

Yapicli, Yavuz
Ph.D., Department of Electrical and Electronics Engimegri

Supervisor : Assoc. Prof. Dr. zgiir Yiimaz

May 2011, 186 pages

Effort to estimate unknown time-varying channels as a partghf-speed mobile communica-
tion systems is of interest especially for next-generatiineless systems. The high compu-
tational complexity of the optimal Wiener estimator usyiatiakes its use impractical in fast
time-varying channels. As a powerful candidate, the adajiast mean squares (LMS) algo-
rithm offers a computationallyficient solution with its simple first-order weight-vector-up
date equation. However, the performance of the LMS alguoritleteriorates in time-varying

channels as a result of the eigenvalue disparity, i.e.aspraf the input correlation matrix in

such channels.

In this work, we incorporate the LMS algorithm into the wkHewn bidirectional process-
ing idea to produce an extension called ihdirectional LMS This algorithm is shown to be
robust to the adversdfects of time-varying channels such as large eigenvaluadpiiéhe as-

sociated tracking performance is observed to be very ctos®t of the optimal Wiener filter
in many cases and the bidirectional LMS algorithm is theeefeferred to as near-optimal.
The computational complexity is observed to increase byitlieectional employment of the

LMS algorithm, but nevertheless is significantly lower thhat of the optimal Wiener filter.
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The tracking behavior of the bidirectional LMS algorithmaiso analyzed and eventually a
steady-state step-size dependent mean square error (MBtession is derived for single-

antenna flat-fading channels with various correlation prisgs. The aforementioned analysis
is then generalized to include single-antenna frequeat®eBve channels where the so-called
independence assumption is no more applicable due to timmehaemory at hand, and then
to multi-antenna flat-fading channels. The optimal setectf the step-size values is also
presented using the results of the MSE analysis. The nuatei@luations show a very

good match between the theoretical and the experimentatsesder various scenarios. The
tracking analysis of the bidirectional LMS algorithm isiegkd to be novel in the sense that
although there are several works in the literature on thiedational estimation, none of them

provides a theoretical analysis on the underlying estinsato

An iterative channel estimation scheme is also presentednagre realistic application for
each of the estimation algorithms and the channel modelerwrwhsideration. As a result,
the bidirectional LMS algorithm is observed to be very sssf@ for this real-life application
with its increased but still practical level of complexitlye near-optimal tracking performance

and robustness to the imperfect initialization.

Keywords: Least mean squares (LMS), channel estimatiomclumplexity, mean square

error (MSE), optimal filter.
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ZAMANLA HIZLI DE GISEN KANALLARIN KESTIRIMI IGIN iK1 Y ONLU LMS
ALGORITMASI

Yapicli, Yavuz
Doktora, Elektrik ve Elektronik Muhendisligi Bolim{
Tez Yoneticisi  : Dog. Dr. AOzgiir Yilmaz

Mayis 2011, 186 sayfa

Yuksek hizli mobil iletisim sistemlerinin bir bileseaian zamanla degisen haberlesme kanal-
larinin kestirimi, 6zellikle yeni nesil kablosuz sisterih gelistiriimesi bakimindan ilgi ¢cek-
mektedir. En iyi Wiener kestiricisinin yiksek hesaplanaarkasikhgi, bu siizgecin zamanla
hizli degisen kanallarda kullanimini elverissiz hadgignektedir. Gucll bir alternatif olan
uyarlamali en kiicUk ortalama kareler (LMS) algoritmiasy sahip oldugu basit birinci-derece
agirhk-vektort guncelleme denklemi ile hesaplamantasikligl bakimindan oldukga etkin
bir cozUm sunmaktadir. Fakat, zamanla degisen kamtl girdi korelasyon matrisine ait
0zdegerlerin birbirinden farkhihgi sebebiyle LMS aligmasinin bu tiir kanallardaki basarimi

kotulesmektedir.

Bu calismada, LMS algoritmasini iyi bilinen iki yonlgleme fikriyle biraraya getirerek iki
yonli LMS algoritmasini urettik. Bu algoritmanin, zantea degisen kanallarda bulunan
yuksek ozdeger farkhhgi gibi olumsuz etkilere kaggirbliz oldugu gosterilmistir. Sonuctaki
takip performansi, en iyi Wiener stizgecininkine olduked&in kalmakta ve bu sebeple de en
iyinin yakininda olarak ifade edilmektedir. Hesaplamankagikliginin, LMS algoritmasinin

iki yonlu kullanimi ile artti§i gozlense de bu sonucigniViener stizgecininkine gore olduk¢a
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dusuk ve klasik LMS algoritmasi ile de benzer diizeydedi

Iki yonlii LMS algoritmasinin takip davranisi ayrica inadilmis ve sonucta tek-antenli
diiz-sonumlemeli kanallarda cesitli korelasyon liideri icin basamak-buyuklugine bagh
yatiskin-durum ortalama kare hatasi (MSE) ifadesi eldenégtir. Bahsedilen analiz daha
sonra, kanal hafizasindan dolayi bagimsizlik varsiymuggulanabilir oimadigi tek-antenli
frekans-secici kanallar ve cok-antenli diiz-sonimeé kanallari da icerecek sekilde genelles-
tirilmistir. Basamak-buyukluginun en iyi secirde, elde edilen MSE analiz sonuglari kul-
lanilarak verilmistir. Sayisal hesaplamalar, teorik wenelysel sonuclarin ¢ok cesitli senar-
yolar altinda iyi bir uyum sergiledigini gostermistititeratlirde iki yonlu kestirme konusunda
cesitli calismalar bulunsa da, bu calismalarda &teaa kestiriciler icin herhangi bir teorik
analiz yapilmamistir. Bu yoniyle, iki yonli LMS aldnas! icin sunulan takip analizinin

yenilikci oldugu dusunulmektedir.

Ayrica, yinelemeli bir kanal kestirim diizeni, ele alinaiatin kanal modelleri ve kestirim
algoritmalari icin sunulmustur. Sonuc olarak, iki y@rMS algoritmasinin ele alinan bu
gercek-hayat uygulamasi icin gerek artmis fakat yinprdék karmasiklik seviyesi, en iyinin
yakinindaki takip performansi ve hatal ilklendirmeye skagiirbiizlugu ile oldukca basarih

oldugu gozlemlenmistir.

Anahtar Kelimeler: En kiicuk ortalama kareler (LMS), kbkestirimi, disik karmasiklik,ortalama

kare hatasI (MSE), en iyi sizgec.
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CHAPTER 1

INTRODUCTION

The ultimate goal in many communication systems is to deaigoptimal receiver to mini-
mize the probability of detection error. Most of these reees require the knowledge of the
communication channel under consideration in order togperfcoherent demodulation and
detection, and for some other tasks including frame symibation and decoding. Towards
this end, inserting some amount of a priori known pilot syfekinto the transmitted data
sequence to be processed by various channel estimatioritiahg®e at the receiver appears
to be a practical solution. However, as emerging commuicatechnologies pushed by
the end-user demands involve fast time-varying chanresgconventional approaches result
in an excessive computational complexity in obtaining acueate estimate of the unknown
channel. With this motivation, thefecient channel estimation algorithms in the mean square
error (MSE) sense are therefore the subject of this worknaisgua packet-based transmis-
sion scheme in which neither the transmitter nor the recéias the exact knowledge of the

communication channel in use.

1.1 Motivation

Although the well-known adaptive least mean squares (LM@&)rdahm suggests a practical
way of estimating unknown channels in any communicatioriesys the associated perfor-
mance over time-varying channels are known to be far beliad af the optimal Wiener
filter especially as the speed of time-variations increashe main reason behind this degra-
dation is the large eigenvalue spread of the input cormalatatrix for fast time-varying
channels [1]. This motivates us to explore for a suitablgotida algorithm as an extension of

the conventional LMS algorithm which will be robust to adsedfects of fast fading chan-



nels such as the large eigenvalue disparity and hopefulijeae a significantly improved
performance yet at a still practical level of complexity asnpared to the original algorithm

as well as to the optimal Wiener filter.

In the literature, there are several works on the forwamrkard signal processing tech-
niques applied to communication problems with a promisenpiroved overall performance.
In [2], a forward-backward LMS (FBLMS) adaptive line enhands proposed for stationary
systems which makes use of the forward and the backwardgticderrors jointly to update
the weight-vector which eventually achieves a lower migsimipent. This algorithm is further
elaborated in [3] which establishes the same performanteaness computational burden.
In [4], a different approach is preferred in which the adaptations aferpezd in the for-
ward and the backward directions independently along ebttfegaths present in the trellis
using a per-survivor processing (PSP) based approach.[Fhefse estimates are then com-
bined using some optimal binding strategies for which thal faerformance improvement is

significant, but unfortunately with an excessively largera processing complexity .

In this work, we benefit from the aforementioned works from literature, and fder to oper-
ate the conventional LMS algorithm in both the forward arelliackward directions indepen-
dently along a transmitted block assuming a packet-basegdrtrission scenario. The result-
ing forward and backward estimates are then combined in aepsinial way to produce the
final channel coficient estimate in a computationallffieient manner. We call this algorithm
the bidirectional LMSand abbreviate as BiLMS whereas the conventional LMS dlyaoris
referred to as thenidirectional LMSthroughout this work with the abbreviation UniLMS.
Through computer simulations, the bidirectional LMS aitjon is shown to achieve a supe-
rior performance over the unidirectional LMS algorithm &sf time-varying channels at an
increased but still practical level of computational coexity. The resulting performance is
even very close to that of the optimal Wiener filter in mostesaand is therefore referred to
as near-optimal. Note that the optimality of the Wienerffilieder consideration is in the lin-
ear minimum mean-squared error (MMSE) sense so that MMSBAader terms are used

interchangeably in this work to specify the desired filter.

Having introduced the bidirectional LMS algorithm, it issifjnificant interest to analyze the
resulting performance from both practical and theorefieabkpectives. We therefore investi-

gate the theoretical foundations of the steady-stateitrgataracteristics of the bidirectional



LMS algorithm and finally come up with a mean square error (M&gression which is ver-
ified over a number of channel models including flat-fadinggéiency-selective fading and
multi-input multi-output (MIMO) fast time-varying chantsawith various Doppler spectrums.
We have also realized that although there are some relevaktpresent in the literature as
summarized above, none of them concerns with the thedratiedysis of the adaptive algo-
rithms under consideration. Therefore, our work not onlgsiders a practical extension of
the LMS algorithm with near-optimal performance but alsesents a novel theoretical anal-
ysis for the bidirectional LMS algorithm in time-varying anels with a satisfactorily high

accuracy.

1.2 Thesis Overview

We will present a detailed literature survey in Chapter 2lentime-varying channel estima-
tion problem. It considers the basics of the transmissitrem@s for the purpose of channel
estimation including pilot-based and (semi-)blind schemogether with superimposed train-
ing and the PSAM approach. Adaptive algorithms, and pdaituthe LMS algorithm, are
introduced with the resulting complexity benefits and penfance issues. And lastly, the
concept of iterative channel estimation is introduced \thih considerations on some recent

papers.

Chapter 3 considers the bidirectional LMS algorithm in tiwaeying flat-fading channels.
The tracking behavior of the bidirectional LMS algorithmagalyzed and a novel steady-
state MSE expression is obtained which includes tfeceof the adaptation step-size and is
valid for a variety of correlation characteristics. Theioytl selection for the forward and the
backward step-size values is also investigated togethibr thé dfect of joint Doppler and
SNR estimation and imperfect initialization. The thearettresults are observed to match the
experimental ones very well both of which exhibit a significenprovement in the tracking
performance. The analysis is then revisited with an assompf a special correlation charac-
teristics specified by an auto-regressive (AR) process andra compact steady-state MSE
expression is obtained by eliminating the necessity for enal integration methods. Fi-
nally, a coded communication system is considered in whitteent detection is performed
using the estimate of the unknown time-varying channel eefitirough iterations. The bidi-

rectional LMS algorithm is shown tofi@r a practical solution for this scheme, as well, with
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its computationally ficient structure and near-optimal tracking performance.

The findings for the time-varying flat-fading channels arentlgeneralized to frequency-
selective channels in Chapter 4. The estimation of frequeetective channels is usually
challenging since the parameter to be estimated at eactlirtstant is a vector composed of
the associated channel taps. The bidirectional LMS algoriivhich updates the estimate of
the channel vector at each time epoch proposes a very gatkthiggperformance at still low
level of complexity, as for the flat-fading case. The tragkiehavior of the bidirectional LMS
algorithm is also investigated together with a discussimou&inapplicability of the so-called
independence assumption to frequency-selective chanfiegsperformance of the algorithm
is verified also in a coded system over a frequency-selectimanel with various power delay

profiles in which the unknown channel is estimated in anfikexdashion.

Finally, Chapter 5 deals with a multi-antenna system in Wisigbchannels between each of
the transmitter and the receiver antenna pair experienge-varying frequency-flat fading.
The optimal Wiener filter has a high complexity in such chdsmmehich appreciates the im-
proved performance of the bidirectional LMS algorithm atragtical level of complexity. A
steady-state tracking analysis is again provided whiahlt®s a good match with the experi-
mental data in many cases, and some toleralfferdnces for the rest. Finally, we summarize

the contributions of the thesis and mark some topics asdutark in Chapter 6.



CHAPTER 2

THE TIME-VARYING CHANNEL ESTIMATION

User mobility in current and emerging communication tedbgies has changed the focus to
time-varying communication channels. Although time-itsat channels are well-understood
from channel estimation point of view, the associated msicg complexity makes the time-
varying counterparts really challenging. This work therefconsiders low-complexity adap-

tive channel estimation algorithms with improved estimatand tracking performances.

This chapter is devoted to a literature survey in detail @nldhsics of the problem of time-
varying channel estimation. Training-based and blind nehastimation methods, adaptive
algorithms and particularly the conventional LMS algamtland finally iterative channel es-

timation approach are some of the subjects covered in tligteh

2.1 Transmitter and Receiver Structures for Time-Varying Channels

One of the well-known transmission schemes for the purpbsbannel estimation is called
the pilot- or training-basedtransmission in which a set of a priori known pilot symbols ar
transmitted along with the information-bearing data seqee The pattern in which pilots
are used in transmission heavily depends on the channelathastics under consideration.
In some communication systems of time-varying nature, #étion is relatively small as
compared to the transmission intervals so that the chasnaférred to as quasi-static or
piecewise time-invariant. For such channels, the pileeblatransmission is employed in a
train-before-transmischeme [7] where all the available pilots are located at gggriming of
the transmitted block. Although this scheme is suitablegimasi-static channels such as the

one assumed in global system of mobile communications (G3btpcol [8], which results
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in an overhead of 22% on the overall system throughput [9], it is ndi@ent for fast time-

varying channels.

The simplest alternative solution for time-varying chdarie to repeat the training blocks
frequent enough [10]. However, this strategy is known to $uigally insuficient to track the
dynamics of the underlying channel and is severely bandivadhsuming. Instead of periodic
transmission of the short training sequences, distributifopilot symbols along the transmit-
ted block is a much morefificient way to jointly estimate and track time-varying chdane
In the literature, the periodic insertion of single pilofdyols into the transmitting sequence
is calledpilot symbol assisted modulatid®SAM) [11, 12, 13]. A theoretical performance
analysis for PSAM transmission is provided in [14] and [18oflat-fading and frequency-

selective fading channels, respectively.

Another well-known pilot-based transmission scheme isstiferimposed trainingn which

an a priori known pilot sequence with a relatively low poveesiuiperimposed on the information-
bearing data sequence. The superimposed channel estinalkih is also called thgpread
spectrum pilot techniquim [16], is first dfered by [17] and further elaborated in some subse-
guent papers including [16, 18]. In [19], the superimposgoreach is theoretically analyzed
in terms of overall estimation performance, power allagatnd frame synchronization. A
blind estimation algorithm independent of the channel att@ristics and modulation format
is proposed in [20] where the superimposed pilot sequenedared to as “hidden”. In order
to lower the correlation between the pilot and the data sempse a dierent method based
on selective usage of the superimposed sequence from a &aigis introduced in [21]. Re-
cently, the superimposed training based channel estim&ichnique is further investigated
using exponential basis models [22], for a multi-antenrenackel estimation and symbol de-
tection problem [23], for an iterative joint channel estirna and data detection problem
with analytical performance results [24], and finally with immportant comparison between
the pilot-based training for next generation terrestrigiitdl video broadcasting (DVB-T)
technique using orthogonal frequency division multiplex{OFDM) [25] to circumvent the

frequency selectivity of the underlying communication ruhel.

The optimal choice of pilot symbols to be transmitted is ofajrimportance in order to
improve the overall performance of the pilot-based apgreac The optimal pilot design

for PSAM-based transmission over time-invariant flat#fggifrequency-selective fading and



MIMO channels are considered in [26] by obtaining a Cramao-Bound (CRB) which is
independent of the channel estimator in use. This invastigéds further extended to include
time-varying channels in [27]. In [28], a periodic patteon the superimposed pilot sequence
is proposed by deriving the corresponding CRB. An intengsélternative technique is pre-
sented in [29] where a more general superimposed pilot sequis shown to be possible
through the utilization of underlying cyclostationary mat. A rich survey on pilot-based

transmission schemes is presented in [30] with more ddtaiisterested readers.

Blind algorithms constitute another class of strategy torede the unknown communication
channel without any need for pilot symbols. In the blind aterestimation, which is also
calledtrain-while-transmitscheme in [7], the channel statistics and therefore thespond-
ing estimate are obtained directly from observations. By way, the throughput overhead
due to the pilot transmission present in the training-bagguoach is saved for some other
useful mechanisms such as channel coding [31]. This digcugsplies that the bandwidth
available for communication is not wasted to pilot transiais in the blind channel estima-
tion. In the literature, blind channel estimation algamthare reported to achieve as low as
a 1 dB mean SNR loss for a GSM data transmission over bothridsslawly fading mobile
channels [31]. Beside this performance loss, blind chaestination algorithms are also
known to sifter from a high computational complexity such that the af@etioned result re-
ported in [31] is achieved by using the fourth order statsstif the underlying communication
channel. In order to have reliable higher order statistigeeamentally, blind algorithms have
to wait for suficient number of observations which tends to loose theirtimaovalue. The
slow convergence rate and possibility of convergence teviloag solution are also argued to

be some of the other major drawbacks of blind algorithms.[32]

For interested readers, an initial investigation into tkaeagal channel equalization problem
in a blind fashion without resorting to a training sequerxednsidered in two seminal pa-
pers [33, 34] followed by the work [35] in which a blind cortien of any channel impair-
ments is studied. Another survey of interest on blind prsicgsis presented in [36] and the
concept is reconsidered from signal processing view redeio as blind signal separation and
estimation in [37]. In [38], a wideband communication chalnis considered together with
OFDM signaling where the unknown channel is estimated blibg making use of the cyclic-
prefix (CP) in subspace-based methods along with trainasgdh semi-blind algorithms. In

a recent paper [39], performance of the semiblind chanrighason algorithm is analyzed



in a code-division multiple access (CDMA) system and theesopty of the subspace-based

methods is reported for some certain cases with large charhers.

The channel estimation problem for MIMO systems is anotlesearch area of great im-
portance in the sense that the unknownfioent set is in a matrix-form which results in
some computational fliculties[40]. The initial studies in MIMO channel estimatiproblem
commonly assume quasi-static communication channel Kdthe coherence time becomes
smaller as a result of increasing end-user demands, thatieariover a transmitted block
could not be ignored any more and the channel model in hand turt to be time-varying.
For such continuous fading channels, Kalman-based appeedd2] are employed by mak-
ing use of the statistics of the underlying channel. In [44)], 4 time-varying flat-fading
MIMO system is considered with maximum likelihood (ML) amdérpolation based channel
estimators in which short training sequences are trarstngéeriodically. It is argued in these
work that although tracking significantly improves the diyabf the channel estimate, the

resulting complexity makes this choice really impractiaslis also stated in [45].

There is a rich literature in the area of MIMO channel estioraproblem for both flat-
and frequency-selective fading channels examples of wéiiehsummarized in the follow-
ing. A superimposed type channel estimation approach s&epted in [46] for a quasi-static
Rayleigh fading MIMO channel where low-power pilots arensanitted continuously along
with the data symbols. In [47], a spatially correlated MIMBaanel is considered from op-
timal transmitted signal design point of view with the asgtion of perfect knowledge of
the second order channel statistics at the receiver. Adlieal study is carried on by [48] in
which a lower bound on the the error correlation matrix oifirag-based channel estimators
for quasi-static frequency-selective MIMO channels. Theameter estimation problem in-
cluding the unknown channel déeients for a flat-fading MIMO system in the presence of
frequency dset is considered in [49] in a generalized fashion such thett ef the transmit-
ter antennas experiences independent frequeflisgtdevels. The expectation-maximization
(EM) algorithm is employed in [50] in order to estimate thekmown frequency-selective
fading MIMO channel where the order of the underlying muatipchannel is estimated us-
ing the conditional model order estimator (CME). In a recgatk [51], LS (Least Squares)
and LMMSE (Linear Minimum Mean Square Error) methods areswered for MIMO with
some conclusion about the robustness of space-time codihgeaeiver diversity to the chan-

nel estimation error.



From an information theoretic point of view, the achievafale for a coded modulation flat-
fading MIMO system with PSAM based channel estimation igtigated in [52] under a
perfect interleaving scenario. Thé&ext of channel estimation error is further investigated in
[53] for multiple antenna fading channels with a conclusadrmutual information bounds
and proper power allocation schemes. The optimal trainegence for the ML channel
estimator for a quasi-static flat-fading MIMO channel istfgkown in [41] to be orthogonal
across the transmitting antennas and the associated desigrs are investigated in detail
by [54]. In [55], optimal pilot signal design is addressedffequency-selective block-fading
MIMO-OFDM channels by maximizing a lower bound on the averagpacity and the same
problem is revisited in [56] with a result of a more generaissl of optimal pilot symbols by

using some basic features of the Discrete Fourier Trans{DiaT).

2.2 Adaptive Estimation of Time-Varying Channels

2.2.1 AnIntroduction to Adaptive Algorithms

Adaptive algorithms have a wide variety of application ardae to their self-learning char-
acteristics, computationafficiency and convergence to the optimal non-adaptive soisitio
In digital communications, the LMS algorithm is one of thell@own adaptive algorithm

that is commonly used in numerous applications includingaégation and channel estima-
tion. In order to provide a solid background on the subjed,finst talk about the basis of
adaptive algorithms by following [57] and then continuehwihe associated stationary and

nonstationary characteristics.

For any adaptive algorithm, an associated error functiatefged which is sometimes called
the (error) performance surface. For quadratic error fanst the corresponding error per-
formance surface is a bowl-shaped hyper paraboloid wherertter of this geometry is de-
termined by the number of weights of the algorithm. The hwrial cross-section of this
guadratic performance surface is an ellipse. For such sfahere is a single minimum
point at the bottom which specifies the minimum mean-squaice MMSE) and the associ-

ated projection onto the weight-vector plane is the optiweiht-vector [57].

Most adaptive algorithms try to find the optimal weight-wecsolution by seeking the mini-

mum point of the performance surface using gradient-basartls algorithms. The gradient
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of any point on the performance surface specifies a vectdr thig direction pointing the

greatest rate of increase of the surface and the magnituid vgtthe greatest rate of change
at that point. In real-life problems of interest, such scefaare not known exactly due to
unknown parameters (weights etc.) except for some pointhe@rsurface which could be
measured or estimated in some ways. The exhaustive seagchhevperformance surface
to find the optimal point is therefore not possible for a vgrief applications. As such, the
adaptive algorithms are of practical interest in that thegksthe minimum point of the per-
formance surface by proceeding in small steps towards tleetatin of the negative of the

gradient or a matrix scale of it [57] .

Of gradient-based search algorithms, the Newton's metinodtlze steepest descent are the
two well-known examples. Newton’s method adapts its weighthe direction of the mini-
mum point of the performance surface, but unfortunatelydusse practical limitations such
as the necessity of the inverse of the input correlation ima@®n the contrary, the steepest
descent method is much more practical in that it does notineetfue knowledge of the input
correlation matrix and just progresses in the directiorhefriegative of the gradient at each
step which is not necessarily towards exactly to the mininpaint of the performance sur-
face. Although the Newton’s method is much faster than teepsst descent algorithm, the
slow adaptation of the latter behaves as a low pass filter@oyérall estimation noise which

diminishes the final misadjustment as compared to the fofa1ér

2.2.2 The Adaptive LMS Algorithm

Although being more practical in its use than the Newton'shoé, the steepest descent
algorithm has an important restriction in that it still régs the estimate of the gradient to
be computed in anfBline fashion for many cases. The LMS algorithm appearsifir§s8]

to overcome this necessity by employing an instantaneotimatse of the gradient in the
steepest-descent algorithm rather than a long-term awegaagl it has been recognized as one

of the most practical adaptive algorithms since then [59].

The conventional LMS algorithm in estimating a flat-fadirgronunication channel is given

as [57]
fior = f + 2ueca (2.1)
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where fy is the estimate of the fading ddeient, a is the input symboly is the step-size

value of the algorithm ane is the estimation error given for this particular case as

& =Yk — fkax (2.2)

whereyy is the associated observation symbol. Note that, althcugFactor ‘2’ in (2.1) could
be safely integrated into the step-size value, we preferrite vt separately in order to provide

an easy comparison with some previous works in the litegatur

Before proceeding further, we would also like to specify\Wener filter as a counterpart for

(2.1) which is given as

fic = wyyg (2.3)

wherey, is aK x 1 vector including the observations to be used andtlel Wiener filter is
given as

Wi = Ry Pry . (2.4)

In (2.4), Ry = E{ykka} is the K x K autocorrelation matrix an®sy, = E{y, f;} is the
K x 1 cross-correlation vector. Note thad,"( (-)* and ()™ stand for the transpose, complex

conjugate and Hermitian operations, respectively, in aleyuations.

As in the other adaptive algorithms, the function of the LM asathm in stationary environ-
ments is teestimatehe unknown quantity whereas this task turns out to éisimateand then
track the variations in the unknown quantity in nonstationaryiemmments. Within the scope
of this work, the stationary and nonstationary environmmeme considered as time-invariant
and time-varying channels, respectively. Therefore, thkSlalgorithm has to both estimate
and track the unknown time-varying channel under consiitera Because a packet-based
transmission scheme with short blocklengths is assumedighiout this work, we provide
proper initial conditions to the LMS algorithm with varyiragcuracy to skip the acquisition,
i.e., transition, phase at the beginning of the transmmsbiock and directly switch to the
tracking phase. Hence, transition behavior of the LMS badgadrithms is considered to be
beyond the scope of this work while a steady-state trackerfppmance of these algorithms

are investigated in detail here.

Adaptive filters difer from the well-known Wiener filter in that they do not needbow the

statistical behavior of the underlying processes whichhssic requirement for the Wiener
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filter as in (2.4) [60]. In addition, Wiener estimate of eatiagnel tap requires first a matrix
inverse and a matrix multiplication as in (2.4) to compute ¢iptimal filter coéficients and
then a vector multiplication as in (2.3) to find the desiretineste unlike the significantly
simpler 1-tap LMS update equation. Therefore, althoughWiener filter is optimal in the

MSE sense, the adaptive filters including the LMS algoritierauch more practical.

It is shown in [57] that the LMS algorithm will converge in nreto the Wiener solution for
stationary inputs except for a misadjustment term. In tinvewiant environments with sta-
tionary inputs, the rate at which the adaptive filter congsrtp the Wiener solution is closely
related to the step-size value or adaptation constant ie ig@meral terms. For large step-size
values, the convergence is fast but unfortunately resuldslarge misadjustment whereas the
convergence is slow for small step-size values but hopetfuith a small final misadjustment.
The eigenvalue spread of the input data covariance matpeaap to be important in the sense
that the performance of the conventional LMS algorithm detates over time-varying chan-
nels where the eigenvalue spread is large. In [61], the @btimeight vector in time-varying

channels is also shown to change with time.

A well-known measure for the estimation dodtracking quality of the LMS algorithm is the
resulting MSE value together with the convergence speedmibkiof importance for station-

ary environments. The speed of convergence and the MSEsaalithe LMS algorithm are

given first in [61] and then in [62] for both the stationary amshstationary environments.
This work employs the so-called “independence assumptidnle deriving the steady-state
MSE expression in which the weight-vector is assumed toddesstally independent of the
current input data vector. The MSE analysis of the LMS atbari for nonstationary envi-

ronments is also presented in [61] through the transfertimmenethod by considering a 1-st
order auto-regressive (AR) process with a rational powectspm. In [63], the analysis is
generalized to include any kind of unknown nonstationamgycpsses with a known power

spectrum.

In communication applications, the MSE analysis of the LM@&thm in frequency-selective
channels has someftirences from those presented in [61] and [63]. In frequesedyetive
channels, the weight-vector is surely correlated with tpai data vector due to the channel
memory at hand. The independence assumption thereforendbepply and the previous

MSE analysis has to be revisited. The work given in [64] p@sehe studies of the MSE
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analysis of the LMS algorithm over vector channels. The agerin which the elements of
the input data vector are also correlated due to some othsoms such as channel coding is
considered in [65] and a proper MSE analysisfteed for the LMS algorithm which requires
to solve a set of equations in an iterative fashion. Theresange other useful works in the
literature on the MSE analysis of the LMS algorithm withawtdking the independence as-
sumption such as [66, 67, 68] together with analysis of thesient behavior given in [69, 70]

and [71] which may be useful for interested readers.

Itis important to realize that the performance of adaptilter§ is subject to change as the un-
derlying channel models also change. An interesting examaghis issue is that although the
recursive least squares (RLS) algorithm is known to exhilféster convergence rate than the
LMS algorithm for time-invariant channels, the LMS alghbrit is reported to achieve a supe-
rior tracking performance than the RLS algorithm in timeywag channels [72]. The reason
behind this somewhat surprising result is about the fouodaf these algorithms. Although
both of them are of adaptive nature, the LMS originates frogtatistical model in the sense
that it adapts itself according to the gradient search bsisspest descent algorithm whereas
the RLS algorithm has a deterministic nature such that iveem filter to minimize the sum
of squares of a given prediction error. For this reason, th® &gorithm is sometimes clas-
sified as “model dependent” which is the main cause for perdoce degradation observed
in time-varying environments. In the literature, thereagous attempts to modify the con-
ventional RLS algorithm to make it optimum for time-varyisgstems, e.g., the extended
RLS (ERLS) [73] and optimal exponential factor selectiorthia context of adaptive antenna
arrays [74]. From a diierent perspective, it is argued in [72] and [73] that the eogence

is a transient phenomenon whereas the tracking is a stéatdyfsehavior. Therefore, the
adaptive algorithms with an appealing convergence behavioonstationary environments,
such as the RLS algorithm, do not necessarily exhibit afaat@y tracking performance in
nonstationary environments. This is one of the reasons Wy MS algorithm becomes the

subject of this work.

Finally, an interesting application of the adaptive LMSaxlthm is in the area of equalization
in the presence of a temporally colored narrowband interfén usual equalization problems
with or without a white narrowband interference, the perfance of the LMS algorithm is

considered to be bounded by that of the optimal Wiener fiHexvever, this way of analysis is

shown in [75] to be incorrect when the interferer has a cati@h along the time axis which
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reveals the nonlinear nature of the LMS algorithm. Furttmenthe MSE performance of
the LMS algorithm is unexpectedly shown to be better thah dfidhe Wiener filter [75]
for such situations which is referred to in the literatureaason-Wiener fect of the LMS
algorithm [76]. Indeed, the basic problem with the convami way of MSE analysis for
the LMS algorithm in such situations lies in the so-calledependence assumption which
cannot be invoked since the LMS weight-vector and the inpis,di.e., observations, to be
processed become strongly correlated as the bandwidtheahtarferer gets smaller than
that of the signal and additive noise. In order to analyzeMI®E performance of the LMS
algorithm in the presence of a temporally correlated ieterf a transfer filter approach is
presented as a combination of steady-state and time-gafjiers in [75], and the subject is
further investigated in [77] by deriving a proper bound. Agar study is carried on in [78]
to perfectly analyze the nonlinear characteristics of thdtirstep LMS algorithm from the
adaptive prediction point of view as didirent application area, and with a practical two-stage

structure proposal for the decision-feedback equalingfi-E) problem in [79].

2.3 lterative Channel Estimation for Time-Varying Channels

Iterative processing has one of its major application areastimation of unknown communi-
cation channels. The algorithm called ttexative channel estimatiois first proposed by [80]
and further elaborated in [81, 82] and [83] with a promise sigmificant improvement on the

quality of the channel estimate.

In training-based transmission, the number of pilots inhesea major #ect on the estimation
quality which is limited in many applications due to the ghilocklength or insfficient
training length to avoid excess pilot overhead on the trassion throughput. In iterative
channel estimation, decisions on the data symbols are alptoged in the receiver after an
initial coarse channel estimation using the pilot symbally.0As a result, the overall quality
of the channel estimate improves over iterations. The aemson the data symbols are
produced using various mechanisms such as a soft-decodeare fed back to the estimator

unit in either hard or soft fashion.

In [84], the well-known PSAM transmission technique is eoyeld over a slow flat-fading

channel together with Wiener and moving average (MA) chbestemators. A time-invariant
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frequency-selective channel is considered in [85] togethin an iterative channel estimation
scheme. An interesting investigation is given in [86] in @it is argued that the use of soft
statistics cannot always result in a better channel qualigy the time-invariant channels. It-
erative channel estimation is revisited for time-invariand time-varying frequency-selective
channels in [87] and [88], respectively, and the LMS aldwnitwith soft feedback is de-

cided to perform the closest to the optimal performance agpeoed to the various scenarios
including the RLS algorithm and hard feedback. As fiedent application, a new ISI and
multiple-access interference (MAI) equalization schemproposed in [89] together with a

properly adjusted iterative channel estimation method.

There are various work in the literature on the low-comgliesigorithms for the iterative
channel estimation. Among these attempts, complexitylisgtroblem in [90] and [91] due
to the PSP-originated ideas. The Kalman filter is employeboit [92] and [93], however
the resulting complexity is declared there to be severadgimreater than that of the LMS
algorithm. In addition, a bidirectional strategy is folled/also in [94] over a trellis structure

again together with a high computational complexity.

In a recent paper [95], the Gaussian message passing (Gittlain [96] is considered
for channel estimation in a bidirectional manner. The warf95] prefers to express the
underlying channel using a 1-st order AR process havingienatpower spectrum in order
to be able to express the iterative process using a Fornkeygtph [97] in accordance with
the GMP algorithm without any theoretical analysis. If tlegrelation property is dierent
than what is assumed, e.g., such as the one in the Jakes’ [88flehen a serious mismatch
naturally appears as an important weakness of the propégadtam. Although the order of
complexity is discussed to be linear with the number of ceataps, the number of complex
multiplications and additions required to estimate evemgls channel tap is much greater

than that of the bidirectional LMS algorithm.

2.4 Conclusion

In training-based schemes, estimation of time-varyingnokés requires more processing
power and number of pilot symbols as compared to the timariamt scenarios. As the

underlying channel turns out to be frequency-selectivea@ndultiple antennas are used at
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both terminals, the overall complexity and necessity toemlot symbols increase even more
since the channel to be estimated becomes a vector or a pragpectively. Thef@cient use
of the available pilots is therefore of interest and the dmaission technique known in the
literature as PSAM becomes a powerful choice in joint edimnaand tracking of unknown
channels. This is the reason why we prefer the PSAM techriiqueal-life scenarios of the

subsequent chapters.

The optimal Wiener filter in estimation of the unknown timarying channel has an excessive
computational complexity. The adaptive LMS algorithm #fere appears to be affieient
solution in time-varying channels with its simple first-erdveight-vector update equation.
However, the eigenvalue spread of the input correlationiriattime-varying channels result
in a performance degradation for the LMS algorithm. Thiskytierefore, presents a much
more robust extension of the LMS algorithm called the bitimal LMS together with a
detailed analysis. Finally, the iterative channel estiomatechnique fiers a significant im-
provement in the channel estimate by incorporating theestitnates of the data symbols as
well as the pilot symbols. It is shown in the subsequent @raghat the overall complexity
of the iterative channel estimation due to recurring iiera decreases significantly by em-
ploying the low-complexity bidirectional LMS algorithm thi almost no significant change

in the final estimation quality under many scenarios.
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CHAPTER 3

THE BIDIRECTIONAL LMS ALGORITHM FOR
FLAT-FADING CHANNELS

In order to deal with the high processing complexity presetiie estimation of time-varying

communication channels, the bidirectional LMS algoritlincansidered in [99] and [100] for
time-varying single-antenna and multi-antenna systeespactively, with a promise of near-
optimal tracking performance over fast time-varying ctelsmat a practical level of complex-
ity. The tracking performance of the bidirectional LMS ai¢fom is also shown to be very
close to that of the optimal Wiener filter and is remarkablitdrehan that of the conventional

unidirectional LMS algorithm.

This chapter considers time-varying flat-fading channslsaaimple yet dticient frame-
work on which the bidirectional LMS algorithm is introducesid the associated tracking
performance is analyzed. A steady-state MSE analysis @obitlirectional LMS algorithm
is performed over Rayleigh fading channels with both ratiand nonrational power spec-
trums. An analysis on the step-size optimization for therbaional LMS algorithm is also
provided to enable the use of the best step-size value primansmission for a given chan-
nel. The iterative channel estimation idea is also consitles an application close to the
real-life scenarios for which the bidirectional LMS algbm is employed to estimate coded

flat-fading time-varying channels.

3.1 System Model for Flat-Fading Channels

We consider a time-varying flat-fading communication clenvhich is represented by a set

of complex fading coﬁicients{fk}k=1 wherelL is the observation length. The fading @be
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cients are assumed to have unity variance, E¢|fy|°} = 1, and to be unknown at either the
transmitter and the receiver. A sequence of indc—:tpendemsghambols{ak}k=1 with symbol en-
ergy Es = E{|a/?} is formed using a finite alphabét, and is transmitted through the channel.
The corresponding output symeyﬁ}{;:l are observed according to the following equivalent

discrete-time complex baseband channel model given as

Vi = frak + Nk (3.1)

wheren is a sample from a circularly symmetric white complex Gaasgrocess with zero-
mean and variancly. We assume perfect synchronization in the sense that thegtiof the

transmitted block and each of the transmitted symbols averkrperfectly. Furthermore, any
frequency @'set due to the imperfect knowledge of the carrier frequea@pnsidered to be

beyond the scope of this work, as (3.1) implies.

The received signal-to-noise ratio (SNR), denotegh.as given as

_ Etfka?) _ EURPIE(aP) _ Es
"TOE{In?) E(|nk|2) No

(3.2)

and the information symbol SNR is therefare= v, /R whereR is the overall transmission
rate of the communication system including tHteet of channel codes, pilot symbols and

other relevant techniques in use.

3.2 Estimation Algorithms for Flat-Fading Channels

In this section, we will give basic definitions of the comvenal MMSE and the unidirectional
LMS channel estimation algorithms for the flat-fading chelnmodel given in Section 3.1. As
an extension, the bidirectional LMS algorithm is also idiroed and corresponding complex-

ities are compared.

3.2.1 The MMSE Channel Estimation

In MMSE channel estimation, the ultimate goal is to desigrrH filter which produces an
estimate of the unknown fading déeient fy by filtering a set of noisy observations such
that the resulting mean square error is minimized [101]s pnoblem is illustrated in Fig.3.1

whereW(2) is the desired FIR filter associated with theh fading codficient, f is the

18



associated estimate df, ande is the estimation error defined to leg = fx — fk for this

particular case.

Yo —1 W, (2) T’®—> €
k

+

fi

Figure 3.1: The general MMSE channel estimation problenilétfading channels.

We assume that the desired MMSE filt¥(2) for thek-th fading codicient is aK-tap linear
transversal filter which is given as
LK/2]
W@ = > Wz (3.3)
n=—K/2|
where| -] describes the floor operation which returns the greatesgémtsmaller than or equal

to its argument. The estimate of tkeh fading codficient is then accordingly computed as

) LK/2)
fk = Z Wi n Yk-n (3.4)
n=21K/2]
= Wy Yk (3.5)

wherewy = [WK—LK/ZJ . Wk,LK/ZJ]T andyk = [yk+LK/2J S yk_LK/ZJ]T are the tap-weight and

the observation vectors, respectively.

The optimal tap-weight vector that minimizes the MSE assted with this problem could be
computed using the well-known Wiener-Hopf’s equationsclitare derived in Appendix A.1

and given as
LK/2]

Wit fyy (N=1) =ty (), (3.6)
I=—[K/2]
forn = —|K/2],...,lK/2). In (3.6),ry(n—1) = E{yk_| Yﬁ—n} is the the autocorrelation
of observations andsy (n) = E {fk y’l;_n} is the cross-correlation between fading fméents
and observations. The Wiener-Hopf's equations for thidlem could also be expressed in

vector form as follows

EtyyH wi = Etyy £, (3.7)
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or equivalently

wi = Ryy Pry, (3.8)

whereR,, = E{y, y!'} is theK x K autocorrelation matrix anBs, = E{y, f’} is theK x 1
% k Yk y k Tx

cross-correlation vector.

In order to evaluate the complexity of the MMSE channel estiom, one should consider
both the pre-filtering and the filtering stages. In the ptetiihg stage, optimal céiécients of
the desired MMSE filter should be computed by using (3.8) Whézjuires a matrix inversion
of complexityO (K3) and a matrix multiplication of complexit® (K2). In the filtering stage,
the desired estimate is obtained according to (3.4) whistltin K — 1) complex additions

andK complex multiplications.

In a packet-based transmission, it is sometimes possibiediace the overall computational
complexity associated with the pre-filtering stage undetage circumstances. As an ex-
ample, if the alphabe# has equal-energy symbols, e.g., M-ary PSK, and the symbals-c
sponding to the taps of the estimation filter are known péyfeihen it is sidficient to compute
a single global MMSE filter for each transmitted packet. @thse, R,y andPsy generally
depend on the transmitted symbols and should thereforeebenuted for each time epokh
In Section 3.8, we make use of this simplification for thei@ithannel estimation and show
that the MMSE filter has to be recomputed for each time epdalthe subsequent iterations

since the data symbols corresponding to filter taps are rawikmperfectly.

3.2.2 The Unidirectional and The Bidirectional LMS Algorithms

The conventional unidirectional LMS algorithm is known te dne of the simplest adaptive
algorithm. For the flat-fading channel model introduced éct®n 3.1, the unidirectional

LMS algorithm is given as [57]

fior = f + 2ueca (3.9)

whereu is the step-size value of the algorithm amdis the estimation error given for this

particular case as

& =Yk — fa. (3.10)
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We observe that the unidirectional LMS algorithm requiregplex additions and 3 com-
plex multiplications in order to estimate a single fadingficient and that there is no pre-

filtering stage as for MMSE channel estimation.

Despite its simplicity, the conventional unidirectionaVlB algorithm siffers from any time
variation present in the unknown channel. We thereforecggpn extension of this adaptive
algorithm with improved tracking performance over fastaivarying channels at a practical
level of complexity. Towards this end, we consider the legidiional LMS algorithm which is
basically an application of the two-way processing techaiop which the conventional LMS

algorithm is employed in both the forward and the backwarddations along a data block.

In order to formulate the bidirectional LMS algorithm, wesfildefineﬁ(f and ﬂ(b to be the
estimates of the fading cficients in the forward and the backward directions, respelgti

The bidirectional LMS algorithm is then given as
fl, = £l +2u" ¢ & (3.11)
b= 2+ 2P (3.12)

x—h
o
AN
|

whereu® anduP® are the forward and the backward step-size values of theithlgn e;; and

qtj are the forward and the backward estimation errors defined as

& = Y- fla (3.13)

& = w- fPa (3.14)

Throughout this work, the forward and the backward step-s&ues are assumed to be the

same, i.eu’ = 4P = 4, unless otherwise stated.

In order to obtain the final estimates of the fadingfGoents from the forward and the back-
ward estimates, the arithmetic average operation is pesfemmong various choices as a

simple yet éicient combining strategy which is described as

A fk + fk

fio= 25—, (3.15)

where fi represents the final estimates of the fadingficoients.

The computational complexity of the bidirectional LMS aligfom is observed to be as low as

the conventional LMS algorithm and much smaller than thahefoptimal Wiener filter with
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only 5 complex additions and 9 complex multiplications peration. The bidirectional LMS
algorithm inherently do not need any pre-filtering stagesathé case for the conventional
LMS algorithm which is an important advantage of these adapdgorithms over the MMSE

filter.

As a final point, we would like to mention that the definitioridoth LMS algorithms includ-
ing the termay explicitly are appropriate for system identification typ@igems in which
the ultimate concern is to estimate the channel only, andramsmitted symbolmk}k:1 are
therefore assumed to be known a priori at the receiver. Vpis of operation is sometimes
called the training or genie-aided mode, and is very immbitaunderstanding and qualifying

the tracking algorithm under consideration.

However, the basic motivation in real-life communicatiorstems is generally to estimate
the transmitted symbols carrying the desired informatlarsuch a case, channel estimation
and tracking is crucial to perform coherent detection antbdimg, and we modify the rep-
resentation of both the unidirectional and the bidirealdoMS algorithms accordingly by
just replacingax with the corresponding estimaég. "This estimate could be obtained either
through symbol-by-symbol detection in an uncoded scenarifrom some previous stages

as is the case for the iterative channel estimation to bedemsl in Section 3.8.

3.3 Tracking Performance of Bidirectional LMS over Flat-Fading Channels

In this section, we evaluate the tracking performance obttieectional LMS algorithm over
flat-fading channels. Therefore, the problem under consiita is of channel identification
type so that the overall system is operating in the trainiraden i.e., all the transmitted
symbols{ak}k=1 are known a priori. As a result, we concentrate only on obigia measure
which illustrates how well the bidirectional LMS algorithimacks the unknown time-varying
channel rather than evaluating the overall detection pmidace through bit error rate (BER)

or block error rate (BLER) results which will be investigai@ the subsequent sections.

In order to characterize the tracking behavior of the badiomal LMS algorithm, one of the
best choice is to derive an MSE expression for the algorithm fiast time-varying commu-
nication channel. Since we deal with how well the bidirecéibLMS algorithm follows the

time-varying channel rather than being interested in howldy it converges, the analysis is
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performed at the steady-state and the transition anakysierefore beyond the scope of this
work. In the following analysis, thefkect of the step-size value of the adaptations is taken
into account, as well, as one of the major performance paeamerhis theoretical derivation

is also very general in the sense that it does not assume atgufE fading model and is

valid for any type of fading choice with a known power spegtru

Throughout this section, we highly benefit from the resuitsspnted in [61, 63] associated
with the conventional unidirectional LMS algorithm. Besideveloping an analysis for the
bidirectional LMS algorithm depending on these previossiits, we also clarify some deriva-
tion steps which are not obvious in those original papers.bégn with defining the error

performance surface, or equivalently the MSE, for thisipaldr case given as

Jusex = E{leal’] (3.16)

= E{lw - fal} (3.17)

_ { [(fe- ) a + nk| } (3.18)

= {|nk|2}+E{|ak|2}|fk—fk| (3.19)
Jm.n Es

whereeg is the overall tracking error andnn is the minimum achievable MSE due to the
presence of additive noise and is equaNg The second term in the last line is sometimes

called the excess MSE, and is denoted as

Jexk = Es | fi — ﬁ<|2 (3.20)

which is due to the noisy gradient estimation and the timéatian [61]. The steady-state

MSE could be obtained accordingly by taking expected vafuig g « as follows

Juse = E{Jusek]} (3.21)
~ 12
= Juin + Es E{| fio— fi] } (3.22)
| S —
IvsiE

where Jys e is defined as the mean square identification error (MSIE) {83kh is the
basic expression to be derived to charactedige . Note that there is a relation between the

average excess MSEyx andJys e given aslys | = Jex/Es WhereJex = E{Jex k-

In this work, the expectations in the context of MSE compaiais assumed to be over a

special ensemble presented in [61] in which the same timgnagachannel is used for trans-
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mission of an independent set of information symbols. Adiy to this ensemble model,
the observation symbols associated with each ensemble enésnibtained by adding inde-
pendent Gaussian noise samples with the same variance ier¢hnk|2} = Jmin = Ng. The
observations belonging to each ensemble member togettieth@iassociated input symbols
are then sent to the tracking algorithm in order to obtainstimate. One of the consequences
of this construction is that the expected value of the unkntime-varying fading ca@cient
over this ensemble at a time instdnis equal to itself, i.e.E{fy} = fk, since the unknown

fading codficient is unchanged over the ensemble.

We now proceed to further elaborate thgs e expression by making use of the aforemen-

tioned ensemble construction and the corresponding sezsiftollows

IMsiE = E{|fk—ﬁ<|2} (3.23)
= E{|(f - E{#)) + (B[} - %[} (3.24)
= |- (R}l (R - &)

+2 RelE{(f - E{&}) (E{f - 1) }] (3.25)

where the time reverse of (3.23) is used in (3.24). The last ia (3.25) could be further
simplified as in [61] by making use of the fact that the timeyireg channel is unchanged

over the ensemble so tht fx} = f for any time epoclk. We accordingly obtain

E{(f - E{Ad) (E{&) - 1)}

Il
m
—_——

—h,
=~
—
m
—_——
—h,
L

Therefore,Jus e of the bidirectional LMS in time-varying channels is exged as a sum of

two terms which are called the self-nois&¢s) and the lag J.g) components [61], and is

given as
JvusiE = E{| fic — fx |2} (3.27)
_ E{|f}-E{fk}|2}+E{|E{fL}— fk|2} (3.28)
Jself Jlag
= Jself + Jag- (3.29)

24



With the light of (3.28)-(3.29) and the discussion in [6l}yaleviation of the estimate of the
unknown fading coficient, f,, from the ensemble mean of the estimdEéf,}, contributes

to the self-noise part while fierences between the ensemble mean of the estimate and the
unknown fading coficient itself amplify the lag part. According to this resui)e could
conclude thatlse s arises from the noisy gradient estimation of the error parémce surface
under consideration wheredgy is just due to the time variation. Becaudgs e is perfectly
expressed as a sum of the self-noise and the lag componentsijliveeparately derive the
steady-state expressions fdge s and Jiog in this section in order to come up with a final

expression for the steady-state MSE.

3.3.1 Derivation of the Self-Noise Componenteg|¢)

As explained before, the source of the self-noise is theyrmiadient estimation of the error
performance surface given in (3.16) for the system ideatific problem under consideration.
We therefore ignore any time variation while derividg,; and focus only on thefiect of

the gradient estimation error by extending the findings af, [61] on the analysis of the

conventional unidirectional LMS algorithm.

In order to evaluatdsg s, we first model the gradient estimates in the forward and Huk-b

ward directions as follows

<
Il

Vi +¢ = 2E(f] - i) + ¢ (3.30)

VP = WP+ = 2E4(fP - fi) + &, (3.31)

respectively, wher&li = ZES(fAkf — fi) andVP = ZES(ﬁE’ — fi) are the true gradients, araél
andeIE are the associated estimation errors in the forward andatlenard directions, respec-
tively [57]. In order to incorporate thefect of gradient estimation error into the adaptations,
we prefer to express the conventional LMS adaptations iridiveard and the backward di-

rections as follows

A~

o f o f f
il = ff —uv! (3.32)

fo, = f2— uVh (3.33)

Note that, the gradient estimates for the conventional LMSrahm are@i = —Zeiak and

@E = —ZeEak where the adaptation erroeé andeli are given in (3.13)-(3.14) [102]. Instead
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of this representation, we prefer to use the gradient estgrgiven in (3.30)-(3.31), and the
adaptations given by (3.32)-(3.33) accordingly become
£l = £ — 2uEs(f] - f) —ue! (3.34)
fo, = P - 2uE(fP - f) — e (3.35)

In order to characterize the error due to the noisy gradistitnation, we define the forward
and the backward tap-weight tracking errorsjas: f! —f andv? = fP— f,, respectively. The
algorithms given in (3.34)-(3.35) could be expressed im&eof tap-weight tracking errors by

subtractingfy,1 from both side of the adaptations as follows

for— o = f = fo— 2uBs(f - ) - g (3.36)

= for = £ — f— uEs(fO-f) —pe. (3:37)

where we make use of the time invariance assumption, fie.,= fx, at the right side of
(3.36)-(3.37) which is previously made for the self-noisgivhtion. As a result, the adapta-
tions in terms of the tap-weight tracking error become

~ f
Vk+1

U

(1 - 2uEq)¥} — e (3.38)

(1 - 2uE)® — e (3.39)

In order to express the self-noise in terms of the overalwamht tracking error, which is
defined asi = fi — fy, we further elaborate the expression given in (3.28). Ireotd
get rid of the inner expectatioﬁ{ﬁ(} present as a part of the self-noise expression, we take

expectations of (3.34)-(3.35) as follows

E(f..) = E{f) - 2uEs(E{f} - E{f]) - Elg]) (3.40)
~—— —— ——
=E(f]) = fi =0
E(fr,} = E{fP} - 2uEs(E{fP} - E{fi}) - E[}. (3.41)
———— ~—— ~——
=E(fP} = f« =0

whereE{ fAkf+1} = E{f:} andE{fP ,} = E{fP} follows from the time invariance assumption,

E{fx} = fx is a previous result due to the fact thigtis common across the ensemble, a&ﬁd
eE are zero-mean Gaussian random variables by definition [&ftér some straightforward
steps in (3.40)-(3.41), we ha®& f,} = f andE(fP} = fi, andE{ fi} is therefore found to be

B} + B2 fo+ £
2 B 2 B

E{fJ = i (3.42)

26



with a help of (3.15). As a result of these findings, the seita expression given in (3.28)

becomes

A ~y |12 N 2
Jself = E{| fi - E{f)] }: E{| fi - ] }: E{ vl (3.43)
where the overall tap-weight tracking ernqris given as

Vg = ﬁ(_ fi (3.44)
forfe (Rt + (B-f) wew

2 k 2 2

(3.45)

Using (3.45), the self-noise defined in (3.43) could thenuzduated as

Jseit = E{IwP) (3.46)

= E{[V‘z ;VE} [V'Z Vt")}} (3.47)

= 3.48
7] + + ( )

where E{|v;|2} and E{MVP?} are known through the steady-state analysis of the comveaiti
LMS algorithm, and is given in [57] a8/ (1—u) Jmin. In order to simplify the expression found
in (3.48), the expectation in the last term could be furtHaberated using (3.38)-(3.39) as

follows

Efv (V)"

E{[(1- 2BV, — ey |[(1 - 2uEY (1) - (el )]} (3.49)
= (1-2UEPE (v (§,0)"} - (L~ UEJE vy ,4(e,)')
—p (1 - UEQE {6, ()"} + 1?E{e_y(€1)"] (3.50)

= (1-2uEE v (1)) (3.51)

where (3.51) makes use of the assumptions ettbamdelb are assumed to be zero-mean ran-
dom variables, and they are mutually independent of eacér @hd ofvlz and VE which

directly follows from [57]. Through iterations, (3.51) moes
Eve ()} = (1—2uEq) Efvg(v)")

which could safely be ignored since €12uEs)" <« 1 due to the fact thafl — 2uEs < 1

is known to be the stability condition of the conventional EMilgorithm. Therefore, the
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self-noise term becomes
E Vf 2 E Vb 2
Jsett = E{wl? = {|4k| } + {|4k|}

#/ (1 = 1) Imin + #/(1 = ) Imin _ H o
7] 2 20— ) min;

(3.52)

(3.53)

which is observed to depend purely on the step-giznd the minimum achievable MSE
which is equal to the noise variance for this particular cdsea result, the self-noise for the
bidirectional LMS algorithm is half that of the conventibiaMS algorithm. Since no time
variation is assumed while deriving self-noise part, MSEhef bidirectional algorithm in a

guasi-static channel is also expected to be half that ofdheentional LMS algorithm.

3.3.2 Derivation of the Lag Component {jag)

We have analyzed the contribution of the noisy gradientregton into the steady-state MSE
by deriving the self-noise expression in the previous eactiWe therefore assume a perfect
gradient estimation while analyzing the lag component,@rtentrate only on thefect of
the time variation. By making use of this assumption and éselts of [61, 63], the forward

and the backward adaptations given in (3.32)-(3.33) become

£l £l — 1V = (1-2uEQ) ] + 2uEs fi (3.54)

b
fk—1

fP— VP = (1 2uEq) f? + 2uEs fi. (3.55)

In order to cope with the time variation, we prefer to expiiégsadaptations in the frequency
domain, as in [61]. For this purpose, z-transform of (3.54) €3.55) are first computed, and

the results are then rearranged as follows

ffo = z{qj}:mf(z) (3.56)
P = z{fo)= ;1__ﬂﬁf(z) (3.57)

where = 1 — 2uEs is the geometric ratio of the adjustments [61]{ 4 denotes the z-

transform [103] defined as

Z (%)= ) xzh (3.58)



andf(2) = Z { fx}. The z-transform ofy is then found with a help of (3.15) as follows

ffg+fP@ 1(1-p 1-p
2 _2(z—ﬁ+2‘1—/3

f(2) = ) f(2). (3.59)

The z-transform of the tracking errez) becomes

V(2) = f @2-f2=H®f® (3.60)

whereH(2) is the transfer function for the bidirectional LMS algbiit which is independent

of the channel characteristics to be estimated, and is gisen

el I LA
H@ = 2(2—B+r1—ﬁ) 1 (3.61)

o l+p 1-p 11

- 2 i 28 (1_/3z1 1—ér1)' (3.62)

In (3.62), it is observed that the poles of the transfer fiomcH (2) arezy = g andzy, = 1/8
both of which are real. Remembering titat |1 — 2uE4 < 1 is the necessary condition for
the convergence of the LMS algorithm in the mean, the firsé pal = g lies inside the unit

circle while the second polgy, = 1/4 is outside of it.

The transfer function could also be expressed in the fre;udamain as follows

jwy 1 1_:8 1_5
_(1+,3) (1 - cosw) (3.64)
1+ 32— 28cosw '

From (3.64), one could observe théfe") is a real-valued function. Note also that, the term

in the denominator of (3.64) is nonnegative since

1+p%-28cosw > 1+p82-28

(1-p)?
0,

v

and the numerator of (3.64) is also nonnegative sif¢ec 1 is the mean-convergence condi-
tion as explained before. As arestt{e!") is always a negative function of. \We emphasize
that these findings abotit(el") is valid for the previous assumption that is the forward and

the backward step-size values are equal. In Section 3.42ls0 investigate theffect of
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a more general setting in which the forward and the backweeptsize values are chosen
independently which result in a complex-valued transfecfion in case of unequal forward

and backward values.
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w

Figure 3.2: Transfer function characteristics fioe 0.1.

The magnitude and the phase ld{elV) are given in Fig. 3.3 fox = 0.1, Es = 1 and
we [-, 7], as an example. We observe that the phase of the transfaidons /H(elV) = —n

for any choice ofw which implies a real and negative value, as stated before.nTdgnitude

of H(eM) is almost constant fow > /2 for this particular choice, and has the minimum at

w = 0.

We now turn to the derivation of the lag component. Rementizrthe ensemble over which
the expectations are taken is defined at the beginning o$déuison to be a set of systems, or
equivalently adaptive processes, which have the samevamdéag channel to be estimated
and are fed by a set of independent input signals. In addisimce the gradient of the error
performance surface is assumed to be estimated perfectiiyi$gparticular case, the channel
estimates associated withfidirent ensemble members are the same due to the adaptations

given in (3.54)-(3.55). In order to provide a better undanging of this point, we also note
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that the adaptations (3.54)-(3.55) do not depend on thet isignal ax which is the major
source of diference across the ensemble, and this dependency is ceakiddhe self-noise
derivation by (3.32)-(3.33) where the forward and the bakirgradient estimates are given
to be a function ofy. As a result, we conclude th&f fAk} = fk sinceﬂ( is the same across the

ensemble for this particular case.

With a help of the previous discussion which concludes Bdt) = fi, the lag component

given in (3.26) becomes

Jag = E{|E{f) - fk|2} = E{[fe- 7). (3.65)

and Jiog is therefore interpreted as the mean-square energy ofabkirig error. In order to
evaluate this energy, the inpotitput relation given in (3.60) is also represented by akbloc

diagram as follows

fk—’ H(Z) — fk- fk

Figure 3.3: Transfer function representation of the bitiomal LMS algorithm.

which implies that the mean-square energy in the trackimgr eould be evaluated in the

frequency domain as [63]

Jag = % I " [HE™)* S(w) dw (3.66)

whereS(w) is the power spectrum of the fading process under congidera
As a result, the final expression for the steady state MSIkvencas
Jself + Jiag

1ot
ﬁamw = I n|H(eJ )|? s(w) dw, (3.67)

NIVIYI=

and the steady-state MSE is therefore found to be

Iuse = Jmin + EsJusie
E E 4 3
(1+ 2(‘1_5#)) Jnin+ 5 [ n|H(eJW)| S(w) dw. (3.68)
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3.3.3 Numerical Results

In this section, our goal is to verify the steady-state MSElysis of the bidirectional LMS
algorithm given in the previous section by comparing it vilie experimental data obtained
through Monte Carlo simulations, and to evaluate the oWvératking performance of the
bidirectional LMS algorithm algorithm through a number afngparisons for the resulting
MSE with that of the conventional unidirectional LMS algbm and the optimal MMSE

filter under various circumstances.

Throughout simulations, an independent sdt ef 100 information symbols are chosen from
a BPSK alphabet such that = {-1, +1} andEg = 1. Unless otherwise stated, we assume
Rayleigh fading with the well-known Jakes’ power spectr@8][for all simulations with the

temporal autocorrelation given as

r(r) = Jo (2rfqTsr) (3.69)

whereJy(.) is the zeroth order Bessel function of the first kiigll s is the maximum normal-
ized Doppler frequency, andis the time dfference in the discrete domain. We also consider
the Gaussian and the double-Gaussian power spectrumsctessslihe generality of perfor-
mance superiority of the bidirectional LMS algorithm ane dorrectness of the associated
theoretical derivations. Note that, the choice of both tlaeissian and the double-Gaussian
power spectrums makes also practical sense since they @anakn the literature to well suit

to the HF channels [104].

The speed of the Rayleigh fading channel for Jakes’ specisudetermined by the maxi-
mum normalized Doppler frequency representedffls. The variations in the magnitude
of the channel along a block of 200 symbols as a result of a sgplr valuesfyTs =
{0.005 0.01, 0.02} are depicted in Fig. 3.4. We observe that even the slowesinehaeal-
ization is changing significantly during the transmissidri®0 symbols. In the subsequent
simulations, we prefer to use much faster channel readizstby choosindyTs = {0.01, 0.02}

unless otherwise stated.

In order to gain more insight on the Doppler spread, considapbile vehicle making use of

a GSM service at 900 MHz. If the vehicle is moving at a high gpeie120 kmh, then the
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maximum Doppler frequency is

120 kmh

———— =100Hz 3.70
3x 108 m/s ( )

fy = fc\—C/ — 900x 10° Hz

which is therefore referred to as a very fast channel in thediure.

25
— — —fdTs = 0.005
fdTs = 0.01
— — fdTs =0.02
2
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Figure 3.4: Magnitude of a set of Rayleigh fading realizagiacorresponding tdgTs =
{0.005 0.01, 0.02}.

In order to achieve the aforementioned goals of this sectiendepict the experimental and
theoretical MSIE, i.e.Jus|g, In Fig. 3.8 associated with both the unidirectional and the
bidirectional LMS algorithms for Jakes’ spectrum with respto varying step-size values
aty = 10 dB. The theoretical MSIE for the unidirectional LMS is gjivin [63] as
1 4 L2
dusie = 7 dnnt 5o [ HE[ S dw (3.72)
1-pu 2 J_,
except the term % u in the denominator of the self-noise part, i.&;, and the associated

transfer function is defined therein to be

2 (1- cosw)
(1-2pBcosw+32)

H(e") = (3.72)
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Figure 3.5: Theoretical and experimental MSIE for UniLMSIaBIiLMS for varying step-
size,u, at SNR=10 dB andfqTs = 0.01. The experimental MSIE for a 21-tap MMSE and
theoretical approximate MSIE ignoring €lu) term are also provided.

The MSIE value corresponding to the optimal MMSE filter with taps is also provided in
Fig. 3.5 as a bound. We make a number of observations frone tlessilts. First, there is
almost a perfect match between the theoretical resultsnaotaising the steady-state MSIE
expression given in (3.67) and the experimental ones fobitlieectional LMS algorithm
for any choice of the step-size value. This result togethién the subsequent simulations
at different Doppler and SNR values verifies the derivation of thadyt-state MSE for the
bidirectional LMS algorithm performed in the previous $&at Second, the minimum MSIE
of the bidirectional LMS algorithm, which is achieved whd toptimal step-size value is
used, is very close to that of the optimal MMSE filter with 2fig&nd is significantly smaller
than that of the conventional unidirectional LMS algorithfs a result, the bidirectional LMS
algorithm is said to have a near-optimal tracking perforoganFurthermore, this appealing
performance is obtained with a practical level of compiexithich is argued previously to
be comparable to that of the unidirectional LMS algorithrd aignificantly smaller than that

of the optimal MMSE filter. Finally, we also observe signifitaleviations in theoretical
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MSIE values when it is computed by ignoring the term-(i) in the denominator odse s as

in [61, 63] for both the conventional unidirectional anditédtional LMS algorithms.

0.051

0.045 Jiag

0.04

‘]MSIE = Jlag * ']self

0.035

0.03F

0.025

MSIE

0.02

0.015-

0.01

0.005

0 0.1 0.2 0.3 0.4 0.5

Figure 3.6:Jseit and Jjag terms for BiLMS with varying step-size at SNRO dB andfyTs =
0.01.

In derivation of MSE, it is assumed that the resulting MSIE., Jys g, IS a sum of self-noise,
i.e., Jself, and lag, i.e. Jiag, parts. In Fig. 3.6, we depict these two parts individualiyl a
also together with the resultingjs e for the same settings to provide further understanding.
We observe thafl,g is a decreasing function of the step-size and is dominanthf@ismall
step-size values wheredsg s is an increasing function of the step-size and is dominant fo
large step-size values. The optimal step-size value, e, is therefore observed to be a

compromise betweedseir and Jjqg.

In Fig. 3.7, we plot the experimental and theoretical MSIEgenances of the unidirectional
LMS and the bidirectional LMS algorithms for varying SNR wadoth algorithms employ
the optimal step-size values. The experimental MSIE of théap MMSE filter is also pro-
vided. We observe that the theoretical MSIE values exadllpw the experimental MSIE

values of the bidirectional LMS algorithm, and that the MSi&formance of the bidirec-
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tional LMS algorithm is very close to that of the optimal MMEEer and is much better than

that of the unidirectional LMS algorithm.

0.16 T
BIiLMS (Experimental)
014 A *  BILMS (Theoretical) ||
S AP — - — UniLMS (Experimental)
) O UniLMS (Theoretical)
012} \.® — — — MMSE (31-tap) i
N
0.1 © b
w
v 0.08
=

0.06

0.04

0.02

Figure 3.7: Theoretical and experimental MSIE for UniLMSI&@iLMS with the optimal
step-size uopt, With varying SNR andfgTs = 0.01. The experimental MSIE for a 31-tap
MMSE filter is also provided.

Although the details of MMSE filter design is considered it 3.2.1, we briefly present
the dfect of the associated filter length. For this purpose, themxgntal MSIE values of
the optimal MMSE filter with various number of taps are degukcin Fig. 3.8. It is observed
that performance improvement of the optimal MMSE approach eesult of increase in the
number of filter taps diminishes as the number of filter tajis bigger. A careful consider-
ation of Fig. 3.7 and Fig. 3.8 shows that the bidirectional & klgorithm results in an MSIE
which is smaller than that of, let us say, an 11-tap MMSE fitbera definite SNR region. We
therefore use the MMSE filter with aSicient number of taps in the simulations to provide a

fair performance comparison.
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Figure 3.8: Experimental MSIE for MMSE filters with variowaps forfyTs = 0.01.

Before proceeding further, we would like to investigate riblsustness of the MMSE filter and
the bidirectional LMS algorithm when the transmitted syistare known imperfectly. This

is similar to the scenario in the iterative channel estiorato be considered in Section 3.8
where the imperfect estimates of the transmitted symbelsised in channel estimation after
the initial acquisition. In order to gain insight for thistfwe issue, we run the estimation
algorithms under considerations with the imperfect valfathe transmitted symbols which

are obtained such that a target BER will be achieved in cakarofdecision. Let

Ak = a + 1k (3.73)

be the imperfect estimate of the transmitted syn#aab be used in channel estimation where
nk iIs a sample from a zero-mean white Gaussian noise with thanmo-%. If we perform

hard decision oy, the corresponding BER for BPSK signalling is given as [102]

BER = % erfc[ } (3.74)

20,
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where erfc() is the complementary error function defined as

erfc(x) = % f T et (3.75)

In order to achieve a target BER, we therefore chongsm be

2 1
op = .
2 erfcin/(2 BER)

(3.76)

where erfcinv() is the inverse of erfc().
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Figure 3.9: Experimental MSIE for UniLMS, BiLMS and 21-tapMBE at SNR=10 dB and
fqTs = 0.01.

In Fig. 3.9, we present the MSIE results of the 21-tap MMSErfi#nd the bidirectional LMS
algorithm for the above scenario with various BER choiceg at 10 for fgTs = 0.01. We
observe that although the MMSE filter performs slightly éethan the bidirectional LMS
algorithm in a genie-aided mode, it performs worse as theifept estimates in use become
more noisy. This result is of practical importance in untierding and evaluating the results

of the iterative channel estimation technique considemedis and the subsequent chapters.
We now investigate theffect of a much faster Rayleigh fading channel wigiis = 0.02 on
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the tracking performance of the bidirectional LMS algamtliogether with the accuracy of
the associated steady-state MSE expression. In Fig. Bid@heoretical and the experimental
MSIE values for the unidirectional and the bidirectional SMIgorithms are depicted for the
varying step-size at SNR15 dB. The theoretical MSIE of the bidirectional LMS algbrit is
observed to match exactly the experimental values miniminheh is very close to that of
the optimal MMSE filter with 21-tap and is significantly bettean that of the unidirectional
LMS algorithm. The approximate MSIE of both the unidirentaband the bidirectional LMS
algorithm in which the term (% ) in the denominator odsg s is ignored is again provided

with a result of an obvious deviation from the actual experital data.
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Figure 3.10: Theoretical and experimental MSIE for UniLM®&iLMS for varying step-
size,u, at SNR=15 dB andfqTs = 0.02. The experimental MSIE for a 21-tap MMSE and
theoretical MSIE ignoring (* u) term are also provided.

In Fig. 3.11, the theoretical and the experimental MSIE @slfor the bidirectional and the
unidirectional LMS algorithms are presented with optimt@pssize and varying SNR for
fqTs = 0.02. The experimental MSIE of an optimal MMSE filter with 2Jta also added as
a benchmark. For this significantly fast Rayleigh fadingrated, the theoretical MSIE values

of the bidirectional LMS algorithm are observed to exaatljdw the associated experimental
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ones. The resulting MSIE of the bidirectional LMS algoritisralso very close to that of the
MMSE filter under consideration and is substantially bettem that of the unidirectional
LMS algorithm. For comparison purposes, we also provideMI$#E results for optimal
MMSE filters with various number of taps in Fig. 3.12 for thést Rayleigh fading channel.
In this case, because the channel is changing very fastotheation between the consecutive
discrete time indices decreases as compared to relatleghssenarios. As a result, the MSIE

performance of both the 21-tap and 31-tap optimal MMSE §lte almost the same.

Finally, we present the experimental MSIE results for vagyiyTs aty = 10 dB in Fig. 3.13.
We observe that, although the bidirectional LMS algoritheeps its superiority over the
unidirectional LMS algorithm for any choice d§Ts, the associated performance gets worser

than that of the MMSE filter a§; T becomes larger.
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Figure 3.11: Theoretical and experimental MSIE for UniLMRIa8BiLMS with the optimal
step-size uopt, With varying SNR andfgTs = 0.02. The experimental MSIE for a 21-tap
MMSE filter is also provided.
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Figure 3.12: Experimental MSIE for MMSE filters with variotagps forfgTs = 0.02.
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Figure 3.13: Experimental MSIE for varyinig T aty = 10 dB.

We now consider the Gaussian and the double-Gaussianemsoivhich are discussed in the
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literature to be well suited to the HF communications. In4l@he double-Gaussian spec-
trum is represented by two magnetoionic components witlidlfi@ving tap-gain correlation

function

r(at) = Caexp{-27°c3(at)? + j 2nfant] + Cpexp{-2n°cp(at)? + j2rfpat]  (3.77)

and the spectrum

S(f) = \/;—aexp{—(f — fa)z} P exp{—(f _ fb)z} (3.78)

Ta 203 \2r oy 20'%

whereC, and C,, are the power ratiosfy and f, are the frequency shifts ang, and o,
are the frequency spreads of the two magnetoionic compsrspacified by the subscripts
a andb. We conclude from (3.78) that the double-Gaussian specisuimfact sum of two
Gaussian spectrums so that we use (3.77) and (3.78) witlepparameters while dealing

with Gaussian spectrums, as well.

Throughout simulations, we choose,(Cy) = (0.5, 1), (fa, fp) = (40,-50) Hz and ¢4, o) =
(30,20) Hz to characterize the double-Gaussian spectrum givéngi3.14 andC,, Cp) =
(1,0), (fa, fp) = (0,0) Hz and {5, o) = (40,0) Hz for the Gaussian spectrum in Fig.3.15. A

set of sample fading realizations for each spectrum is at®aqed in Fig.3.16 and Fig.3.17
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Figure 3.14: Double-Gaussian spectrum with,Cp) = (0.5, 1), (fa, fp) = (40,-50) Hz and
(0a, 0p) = (30, 20) Hz.
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Figure 3.15: Gaussian spectrum withy(Cp) = (1,0), (fa, fp) = (0,0) Hz and 64, 0p) =
(40,0) Hz.
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Figure 3.16: A fading realization for the double-Gaussipacsrum with C,, Cp) = (0.5,1),
(fa, fp) = (40,-50) Hz and {a, o) = (30,20) Hz.
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Figure 3.17: A realization for the Gaussian spectrum w@h Cp) = (1,0), (f4, fy) = (0,0)
Hz and ¢4, o) = (40,0) Hz.

Keeping the other system parameters the same, we also pliit ¥Bues as before for the
double-Gaussian and the Gaussian spectrums specified abpwe5 dB andy = 15 dB in
Fig.3.18-3.21 with varying step-size values. These resuk observed to be very similar to

the previous cases with Jakes’ spectrum.
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Figure 3.18: MSIE for UniLMS, BiLMS and 31-tap MMSE for thewlde-Gaussian spectrum
with (Ca, Cp) = (0.5,1), (fa, fp) = (40, -50) Hz and {4, o) = (30,20) Hz aty = 5 dB.
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Figure 3.19: MSIE for UniLMS, BILMS and 31-tap MMSE for thewlde-Gaussian spectrum
with (Ca, Cp) = (0.5,1), (fa, fp) = (40, -50) Hz and {4, o) = (30, 20) Hz aty = 15 dB.
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Figure 3.20: MSIE for UniLMS, BiLMS and 31-tap MMSE for the Gsian spectrum with
(Ca’ Cb) = (1’ 0)7 (fa, fb) = (O’ 0) HZ and (Ta, O-b) = (40, O) HZ at')/ = 5 dB
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Figure 3.21: MSIE for UniLMS, BiLMS and 31-tap MMSE for the Gsian spectrum with
(Ca, Cp) = (1,0), (fa, fp) = (0,0) Hz and {4, o) = (40,0) Hz aty = 15 dB.
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3.4 Step-Size Optimization in Flat-Fading Channels

3.4.1 Equal Forward and Backward Step-Size Values

As is the case for the conventional LMS algorithm, we obsémm (3.68) that the tracking
performance of the bidirectional LMS algorithm highly dede on the step-size value of the
adaptations. Therefore, the optimal choice for the step-&lue is of interest to characterize
the minimum achievable MSE for the bidirectional LMS algom at the steady-state. We
remind that the step-size value is chosen to be the sameddotivard and the backward
adaptations while deriving (3.68), and leave tlftee of the independent step-size choice for

the forward and the backward adaptations to the next section

In order to derive the optimal step-size expressjgy, theoretically, we first express (3.68)

in terms of onlyB, and then take derivative with respecjtas follows

dvse _ 0 (1-P)Es L Es (T w2
B 0/3{(1+2(2Es—1+/3))Jm'n+2ﬂf He™) S(W)dw}

E2 w
_m Jmin + E?j: H(e JW) aH(e )S( w) dw (3.79)

wheredH(e)/dB is given as

oHE™ 1 1 11
B 2P 2B (1-peV 1-lew
(1-pe [ 1 1/g? ]

+ —— 4 , (3.80)

1 — Be-iw)2 W 2

2B (1-pe W) (1- lel )

or, equivalently, as follows

OH(eM™) _ (1-cosw) (1% - 28 +2cosw) (3.81)

B (1 + B2 — 2B cosw)?
The optimal geometric ratiG,pt could then be evaluated numerically using (3.79) and (3.81)
as follows

0IusE
aﬁ ﬁ:ﬁopt

= 0 (3.82)

and the optimal step-sizg,: could be found aggpt = (1 — Bopt)/ 2Es.
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We now investigate thefiectiveness of the theoretical optimal step-size values, tiopt’s,
computed according to (3.79) and (3.81). We present thétirgstheoretical values fouopt
together with the associated experimental onedfot = 0.01 andfyTs = 0.02 in Table 3.1
and Table 3.2, respectively. Note that the experimentah@btstep-size values are deter-
mined using M1 steps. We observe from Table 3.1 and Table 3.2 that theetiead 1.
values are very close to the experimental results for atyaoeSNR and Doppler choices.
This result is believed to have a significant practical intgace since it eliminates the neces-

sity of excessive experiments to fipg,: for a genie-aided scenario.

Table 3.1: Theoretical and Experimental Optimal Step-§izg;) Values for a Rayleigh Fad-
ing Channel withfgTs = 0.01

SNR 0OdB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16 dB

Experimental| 0.070 | 0.070 | 0.090 | 0.100 | 0.100 | 0.120 | 0.130 | 0.140 | 0.140
Theoretical | 0.068 | 0.075| 0.083 | 0.091 | 0.101 | 0.110 | 0.121 | 0.132 | 0.144

Table 3.2: Theoretical and Experimental Optimal Step-§izg) Values for a Rayleigh Fad-
ing Channel withfgTs = 0.02

SNR 0OdB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16 dB

Experimental| 0.110 | 0.120 | 0.140 | 0.160 | 0.170 | 0.180 | 0.200 | 0.220 | 0.230
Theoretical | 0.111| 0.124 | 0.137 | 0.150 | 0.165 | 0.180 | 0.196 | 0.213 | 0.231

3.4.2 Independent Forward and Backward Step-Size Values

In order to investigate the step-size optimization in a nammprehensive fashion, we now
examine a dterent scenario in which we do not impose the forward and tikvard adap-

tations to use strictly the same step-size value. As a rebdtforward and the backward
step-size values, i.e:! anduP®, could be chosen independently in order to explore for &bett
tracking performance. Indeed, one could argue intuititikeét the forward and the backward
step-size values should be chosen equally by symmetry édbéist performance. Neverthe-
less, the following investigation is of value since it pre$ further understanding of thiect

of the step-size and the characteristics of the transfeatitum

In Section 3.2.2, the forward and the backward adaptiveritgns are introduced in (3.11)

and (3.12) with independent step-size valuésand °, respectively. We now define the
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associated geometric ratios@ls= 1 — 2u'Es andgP = 1 — 2uPEs. In order to examine the
effect of independent choice pf anduP on the overall tracking performance, we will first
derive a corresponding MSE expression, and then try to méterthe optimal value,a(f)pt
andugpt analytically. To this end, we use the previous definitionJgk g given in (3.22),
and derive the self-noise and the lag components sepatatdterminelys e according to
(3.29).

We use the result of (3.52) to obtain a progelis expression associated with the independent

forward and the backward step-size values as follows

ellv [} E{lw[]

J = 3.83
self 2 + 2 ( )
1 ’uf #b
1( 1-pf 1-p°
4\ 2Es—1+p" " 2Eq-1+pP

whereE{ |v|£ 2} andE{|V? 2} is known through the steady-state MSE analysis of the the con

ventional LMS algorithm [57], as explained before.

In order to determine the corresponding lag component, Waxfdhe steps of Section 3.3.2.
For this purpose, we first replagdn (3.54) and (3.55) witlu ! anduP, respectively, and then

take the z-transforms as before to obtain

ffz = z{ﬁ(}:i:—g:f(z) (3.86)
o) = Z{ff}:z_ll_—_ﬂﬁbbf(z). (3.87)

The z-transform of the tracking error now becomes

12 + f°(2)

-1 = > @ (3.88)
Taft g
- %(;ﬁf + le _ﬁﬁb) f@ - 12, (3.89)

and the transfer functiol(2) is found to be

1/1-p" 1-p°
HE = (35 + 7o) L (3.90)
1+t 114 1 1-8 1
T 2pf +§( BT 1-pgfz1 P 1—}%2‘1)' (3.99)
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We observe from (3.91) that the poles of the transfer fundti(z) arez,; = Bt andzp, = 1/p°
where the first poley; = Bt associated with the forward adaptation lies inside theirdte
whereas the second pog, = 1/B° associated with the backward adaptation lies outside
of it due to the mean-convergence property of the LMS allyorit As opposed to the equal
forward and the backward step-size case, this time thef&afusction is complex-valued as
long asu® # 4P. The frequency domain representation of the transfer imcivhich is given

as

_ _pf _ b

He"y = E( 1-p 1B )—1, (3.92)
2 eJW—/B’f e—jW_ﬂb

is also examined in terms of its magnitude and phase in R2g.18ru; = 0.1 andup = 0.3, as

an example. We observe that the phase respdi@!V) is now a nonlinear function of the

frequency which implies that (el") is now complex-valued as stated before. The magnitude

response is now observed to be highly nonlinear for thisqaatr case.

15

[H@)I

0.5

O H(2)
(=)

Figure 3.22: Transfer function characteristics fdr= 0.1 andu? = 0.3

The lag component is then evaluated using (3.66) and (39®)llaws

Jag = % f_ " IHE™)[” S (w) dw. (3.93)
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As a result, the overall MSIE associated with thigatient forward and the backward step-size

case is given as

Iusie = Jself + Jiag (3.94)
T 4l 2Eq-1+8"F  2Eg—1+p0 ™"
Es (™ .,
+ 52 f IHE™)” St (w) dw. (3.95)

and the corresponding MSE is

Iuse = Jmin + Es (Jself + Jlag) (3.96)

i b
l"'E 1-5 + 1-5 ] Imin
41 2B 1487 T 2Es-1+pP

+ % f_n [HE™)[” S (w) dw. (3.97)

Since we are dealing with the expressions for the optimaldiodl and the backward step-size
values, we take derivative of (3.97) with respecBfoand® to jointly find the roots of the

resulting equations as follows

0J
—MSE =0 (3.98)
B 1=}y BO=BEy;
0J
VSRl = 0 (3.99)
IB°  1BT=p] BO=B2
Let us consider the derivative df;s e given in (3.97) with respect 18" as follows
a2
J EZ Es (™ d|H(E"
Dwse _ _ s Jmin + — o|HE™ S(w) dw (3.100)
opf 2(2Es — 1+ )2 2r J_. 0Bt
whered |H(eJ'W)|2 /9B" is given as
f 2 . .
o|H(EeW H(elw ) ) H (elw)*
alG N C) H(eM) + H(elvy ZHE) (3.101)
opt opt opt
AHEW) .
2Re H(eY)* 3.102
{ 55 HE™ (3.102)

1-eM [1(1-p"  1-p
ZRB{Z(eiW—ﬁf)2 [i(e-iW—ﬁf " eiw_lgb)_l] . (3.103)

Similarly, the derivative of (3.97) with respect 8 is given as

YN
dIuse _ E2 L Es [T dlHEM)
opP 2(2Es—1+p2"™ " 2n ). opP

S(w) dw (3.104)
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whered |H(eJW)|2 /0B is
. 2 .
d|H(EeY jwy
[HE™)| » re HE™)
B8P P

1-e 1 1—ﬂf 1_ﬂb
2Re{Z(eiW—/ab)2 [5 (eiW—ﬂf T e ﬁb)—l] . (3.106)

H(eiW)} (3.105)

Indeed,B(‘;pt and,Bgpt could be found using (3.100) and (3.104) together with (3298 (3.99).
Instead, we made an important observation here to simgléystibsequent equations. If we
evaluateaf%% for (87, 8°) = (BB, ﬁépt), we have exactly the same express-‘?@}%frE evaluated
for (87,8°) = (ﬂgpt,ﬁgpt) which is equal to zero by (3.99). It implies that, gf(8°) =
(B3 - Bop) i @ root of SsE, then ',4°) = (B30 Bop) i @lso a root. In addition, since
the quadratic error performance surfaces have a globahmimi, then we obtain thﬁf)pt =
ﬁgpt. Therefore, we do not proceed any more to de,ﬂ'({/& andﬁgpt since the problem under

consideration now turns out to be the one considered in@e8t#.1.

As a result of this discussion, we conclude that one couldhawé further tracking perfor-
mance improvement for the bidirectional LMS algorithm bstjamploying diferent step-size

values for the forward and the backward adaptations.

We also verify this theoretical results through some ilaste examples. We assume a
Rayleigh fading channel with Jakes’ spectrum for which themmalized maximum Doppler
frequency isfpTs = 0.01 with Eg = 1. We plotJys e for SNR valuesy = 0 dB andy = 10
dBin Fig. 3.23 and Fig. 3.24, respectively, by making usé\gf g expression given in (3.95).
We observe that the forward and the backward step-size algeequal to achieve the min-
imum MSIE, i.e.,dus e min, and that the optimal step-size values,a(ﬁgt = ﬂgpt = 0.07 for

y = 0 where the minimum MSIE iSys g min = 0.047, anduly, = uy = 0.11 fory = 0

where the minimum MSIE i9ys g min = 0.008.
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Figure 3.23:Jys e for the independent’ and P over Rayleigh fading withfip Ts = 0.01.
The optimal step-size values axgzpt = ugpt = 0.07 with Jus g min = 0.047.
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Figure 3.24:Jys e for the independeni® anduP over Rayleigh fading witHp Ts = 0.01 and
M-ary PSK. The optimal step-size values aé@t = ugm = 0.11 with Jus g min = 0.008.

53



3.5 Hfect of Imperfect Doppler and SNR Information

Although some a priori information on the communicationruiel is available in most prac-
tical systems, the statistical parameters of the undeylyime-varying channel should be
derived by means of the observations especially for cobheezeivers. The Doppler spread
of the time-varying channel and the SNR are two such exantplsshould be estimated
carefully. In this section, we will consider the proper ettion methods for these parameters

and the fects of their imperfect estimates on the estimation allgorit under consideration.

Before going further, we want to distinguish the necessitythe Doppler spread and the
SNR of the estimation algorithms. The MMSE algorithm regsiiboth of these parameters in
order to design a proper filter whereas the LMS based algosittio not have such a need to
adaptively estimate the unknown fading floments. However, in order to achieve a satisfac-
tory estimation performance, the LMS based algorithmsiredbe choice of a good step-size
value as is discussed in the previous sections. Although awhoice can be done by trial
and error in the training mode, we have shown that the bgstsite can also be determined
through an analytical expression which is a function of tltoppler spread and the SNR. We
will therefore use the estimates of these parameters irr ¢odgetermine the best step-size

value to be employed in LMS adaptations.

For both Doppler and SNR estimation, we prefer data-aidedoggeh such that the unknown
parameters are estimated by continuous transmission ¢dtaspjuence of lengtht which

is consist of independent and identically distributedtmlombols prior to the data block. The
equivalent observation model for (3.1) during this tragnperiod is given in vector form as

follows

y=Af+n (3.107)

wherey = [yoy1 ... Yi,-1] is the observation vectoA = diagap, ay, ... a -1} is the di-
agonal pilot matrixf = [fo f1 ... f,_1] is the fading vector and = [nony ... n,_1] is the

noise vector.

54



3.5.1 Doppler Spread Estimation

There is a rich literature on the estimation of the mobileesp@hich in turn determines
the Doppler spread. In [105], the Doppler estimation methpiesent in the literature are
surveyed and grouped into two basic approaches which arkevkeé crossing rate (LCR)
based and covariance-based methods. The common problemiofrethods is the necessity
for long training or observation periods in order to havdistiaally efficient estimates which
makes them hard to be employed in communication scenaribssivort block lengths such

as the one considered in this work.

In [106], an optimal maximum-likelihood (ML) approach tdger with a suboptimal least-
squares (LS) method is proposed for Doppler spread estimédr flat-fading time-varying
systems and employed in vector channels in a recent papgl. [bJ106], it is assumed that
the Doppler spread does not change dufingansmitted block which is suitable for our study
due to the short blocklengths. Since the proposed ML estmatquires the information of
SNR which is not available a priori, we prefer to use LS estiomewhich is shown in [106] to
achieve almost the same performance with the ML approachs I®1cost function is given

as

1 &S Ral) (s fa) ’
== o _ .

whereKq(I) is an estimate of the autocorrelation function atdkté block defined as

Lr-I

" 1 i

Rq(l) = T Z ) (3.109)
k=0

whereﬁ:q is an estimate of the channel ¢beient fx at theg-th transmitted block [106]. In
(3.108),r(.; fq) is the true autocorrelation value, e.g., the one in (3.68)Jakes’ spectrum.
Note that, an estimate of the unknown fading vector durimgtthining period for any trans-
mitted block could be estimated by least-squares (LS) ndethithout any need to the Doppler

spread and the SNR as follows

f=A"(AAH) Ty, (3.110)
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As a result, the final Doppler estimate is given as

fg = argfmin F(fq). (3.111)
d

Before the corresponding simulation results presente@aiéh 3.5.3, we discuss the robust-
ness of the estimation algorithms under considerationdartiperfect Doppler estimate for
L = 200 and BPSK modulation witfis = 0.1 ms over a flat Rayleigh fading channel with
Jakes’ spectrum anfy = 100 Hz. The degradation in MSIE due to imperfect estimatéef t
Doppler spreacfd is depicted through a mismatched ratfg/ fq, in Fig. 3.25 and Fig. 3.26
for y = 0 dB andy = 10 dB, respectively.
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Figure 3.25: MSIE for UniLMS, BIiLMS and 21-tap MMSE for imgect Doppler spread
estimate,fy, aty = 0dB, fg = 100 Hz,Ts = 0.1 ms.

A number of observations could be made on the results pegantFig. 3.25-3.26. First,
degradation in MSIE is almost the same for both the bidioeeti LMS algorithm and the
MMSE filter at low SNR whenfd > fq whereas the MMSE filter is observed to be more
robust than the bidirectional LMS algorithm at high SNR whign> 2fd. For any SNR
value, the optimal MSIE performance does not change muchithe: fy < 2fy. Second,
both LMS algorithms experience a serious MSIE degradatihan/\fd < 0.7f4. Note that

underestimating the Doppler spread results in a step-sieehws smaller than the optimal
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one and therefore maps to the lag part of the MSIE. We know fremprevious sections that
the MSIE curve shows a sharp increase for the lag part asdhesite value becomes smaller
than the optimal one. As a result, we could conclude thatifDoppler estimation algorithm
results in an estimate such tha? ) < fd < 214, we expect to observe almost no change in

the minimum achievable MSIE.
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Figure 3.26: MSIE for UniLMS, BILMS and 21-tap MMSE for imgect Doppler spread

estimate fg, aty = 10 dB, fy = 100 Hz,Ts = 0.1 ms.

3.5.2 SNR Estimation

In this section, we consider ML based SNR estimation formatioperation as is discussed
in [108]. Towards this end, the probability density funatiaf the observation vector is found

to be

PY;YA) = T exp{-y"'R; Y| (3.112)

and therefore the ML estimate of the SNR is given as

>
Il

argmaxin p(y; yIA)
Y

argmax{ - In|R,| - y"Ry 'y } (3.113)
Y
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where the observation autocorrelation maRixis
E
Ry = Efyy"} = ARsAH + = (3.114)
Y

which is obviously a function of. Note that, we employ the Doppler estimédteobtained
in the previous section in (3.114) in order to compRte Note also that, one could further

smoothy by averaging the results associated with the independantrig blocks.

3.5.3 Joint Estimation of Doppler Spread and SNR

In this section, we discuss thé&ect of joint estimation of the Doppler spread and the SNR
by means of the methods presented in the previous sectiotiedvISIE statistics. For this
purpose, we consider flat Rayleigh fading channel with Jad@sctrum andfy = 100 Hz.

A training sequence consisting of lendth prior to a data sequence of lendth= 200 is
assumed both of which employs randomly chosen BPSK symbitfisdurationsTs = 0.1
ms. Based on the previous results, the length of the MMSE fdtehosen to be 21 to obtain

the best performance.
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Figure 3.27: MSIE for UniLMS, BiLMS and 21-tap MMSE for knovaimd estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spettindfy = 100 Hz,Q = 4.

Fig. 3.27 presents the degradation of MSIE due to the noissnate of the Doppler spread
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and the SNR for all the channel estimation algorithms undasicleration after 4 fames, i.e.,
Q = 4. For the bidirectional LMS algorithm and the MMSE filter, MESstatistics associated
with a training sequence of length = 20 is observed to be fiiciently close to the known
case for any choice of the SNR. A relatively short trainingusnce of lengtiLy = 10
is also reported to exhibit very good performance at modeaatd high SNR values. We
conclude that the degradations in MSIE associated withitfieebtional LMS algorithm and

the MMSE filter are very close to each other.

P>+ UniLMS (Known y & fd)

¢+ BiLMS (Known y & fd)

* - MMSE (Known y & fd)
—%*— BILMS (L = 5, Unknown y & fd)
—— BILMS (L = 10, Unknown y & fd)
—— BiILMS (L = 15, Unknown y & fd)
—6— BILMS (L = 20, Unknown y & fd)

0.08

w
0 0.06
=
0.04T
K
¢ % o 2
O 1 1 1 1 1 1 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5
Q

Figure 3.28: MSIE for UniLMS, BiLMS and 21-tap MMSE for knovamd estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spattindfyTs = 0.01 Hz aty = 9
dB.

In Fig. 3.28 and Fig. 3.29, we present théeet of using multiple frames in estimating the
Doppler spread and the SNR fgr= 9 dB andy = 15 dB, respectively, for the bidirectional
LMS algorithm. We observe that employing multiple framemdicantly improves the MSIE
performance. For example, a single training sequence gthdny = 10 results in a MSIE
statistics for the bidirectional LMS algorithm which is twiiones worse than that for the
unidirectional LMS algorithm whereas it achieves a veryselperformance to the known

case after employin® = 3 frames ay = 9 dB.
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P>+ UniLMS (Known y & fd)
&+ BiLMS (Known y & fd)
0.1} * - MMSE (Known y & fd) .
—%*— BILMS (L = 5, Unknown y & fd)
—>— BILMS (L = 10, Unknown y & fd)
0.08F —#— BILMS (L = 15, Unknown y & fd)|]
—6— BILMS (L = 20, Unknown y & fd)

0.06 i

MSIE

Figure 3.29: MSIE for UniLMS, BiLMS and 21-tap MMSE for knovaimd estimated Doppler
and SNR over flat Rayleigh fading channel with Jakes’ spetandfyTs = 0.01 Hz aty = 15
dB.

As aresult, we conclude that by employing multiple indeandraining blocks in estimating
the unknown Doppler spread and the SNR with relatively deadths, the bidirectional LMS
algorithm together with the MMSE filter stays very close te kmown performance. And that,
any MSIE degradation due to the imperfect estimates of tpasameters are very close to

each other for the aforementioned channel estimation igthgas.

3.6 Hfect of Imperfect Initialization

In this section, we consider théfect of imperfect initialization on the overall performance
of the bidirectional LMS algorithm. Although the scope oistivork is related to the steady-
state performance of the aforementioned algorithm in tiarging systems, we believed that
it is of practical interest to explore the transient behawbthe algorithm when the initial
value of the channel is known imperfectly or there is no sutthrmation at all. To this
end, we first present the results for some simple initidbramethods and then consider the

associated Cramer-Rao Bound (CRB). In Section 3.8, we atsade results for the imperfect
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initialization scenario in which unknown channel @d&ent is initialized with the estimates

from the previous estimation iteration.

3.6.1 Practical Initialization Methods

We employ the same data-aided framework presented in 8egttowhere a number dfy
independent and identically distributed pilot symbols taa@smitted prior to the data block.
With a help of thesé&.t symbols, our aim is to estimate the most recent channélicieat in
the training block which will be used as an initial value fhetchannel cdécient at the be-
ginning of the data block. For continuous transmissionpid&ectional LMS algorithm need
only one training block which is sent prior to the data blorice the backward initialization

could be performed by using the training block associatdt thie next data block.

For the flat-fading channels under consideration, we cendidth the zero and the ML ini-
tialization methods. In the former, the unknown fadingfiic&nt at the beginning of the data

block is initialized with O which results in the following MBS

Jzero = E{|fLT - fLT|2} = E{|f|_T|2} =1 (3.115)

The ML initialization is defined as

ﬁ_T = aT_T Vit (3.116)

which minimizes the following probability density functio

1 ~ fea?
D (yicl o A1) = —— exp] — Y= T (3.117)
7 Ng No

according to the channel model given in (3.1). Note that theiitialization makes use of a

single pilot symbol which results in the following MSIE

o 2
e = E{|fi, - 1} = o2, (3.118)

as is intuitively expected.

The Monte Carlo results for the bidirectional LMS algorithwith the aforementioned ini-
tialization methods for various data block lengths and SK&Rpmesented in Fig.3.30-3.32.
We assume a flat Rayleigh fading channel with Jakes’ spedwunvhich f3Ts = 0.01. We
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observe that even when the channel is initialized with zardata block of length. = 200
is very close to the perfect initialization scenario. Iniséidd, a short data block of length
L = 100 with ML initialization results in an MSIE statistics vdfi is almost the same with

that of the perfect case.

04r g
‘ — = UniLMS (Perfect Ini.)
| ! BiLMS (Perfect Ini.)
035r 1\ —— BIiLMS - Zero Ini. (L = 100)
- —+— BILMS - Zero Ini. (L = 200)
03F # | —*— BILMS - Zero Ini. (L = 500)
\ BiLMS - ML Ini. (L = 100)
0.25+
w
n 0.2
=
0.15}
0.1f
0.05F
O 1 1 1 1 1 J
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3.30: MSIE for BILMS with zero and ML initialization®gether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakgsectrum andfyTs = 0.01 at
v =5dB.
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\ — - — - UniLMS (Perfect Ini.)
! BiLMS (Perfect Ini.)
0.251 \ —— BILMS - Zero Ini. (L = 100)
’ \ —+— BiLMS - Zero Ini. (L = 200)
\ —%— BILMS - Zero Ini. (L = 500)
\ BiLMS - ML Ini. (L = 100)
0.2 :
w
»n 0.15f
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0.1}
0.051
O 1 1 1 1 1 J
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3.31: MSIE for BIiLMS with zero and ML initialization®gether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakgsectrum andfyTs = 0.01 at
v =10 dB.
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: : — - — - UniLMS (Perfect Ini.)
0.18} ! BILMS (Perfect Ini.)
: ! —— BILMS - Zero Ini. (L = 100)
0.16 \ —+— BiLMS - Zero Ini. (L = 200)
_ \ —%— BILMS - Zero Ini. (L = 500)
0.14F | BiLMS - ML Ini. (L = 100)
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w
n 01r
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0.06 [
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Figure 3.32: MSIE for BILMS with zero and ML initialization®gether with perfectly ini-
tialized UniLMS over flat Rayleigh fading channel with Jakgsectrum andfyTs = 0.01 at
v =15dB.
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3.6.2 Cramer-Rao Bound for Imperfect Initialization

In this section, we derive the CRB for estimation of an unkndhat Rayleigh fading channel
in order to obtain a bound on the initialization error. Weusss that a number dfr indepen-
dent and identically distributed BPSK symbols are transdiand the associated observations
are received according to the system model given in (3.1).al&k assume real entries for

ease of presentation where the generalization to the carmpke is straightforward.

In [109], the CRB is given as

E{fi- 1) = (37, (3.119)

wherel is the Fisher’s Information Matrix (FIM) defined as

o dlnp(y,f) dlnp(y,f)
Jj = Ey,f{ a1, o, (3.120)
3%Inp(y.f)
= —Byii—F7— 3.121
y,f{ 8fi6fj ( )

for which the expectations are over bgtndf. We may further elaborate (3.121) as follows

#Inp(y|f) #In p(f)
Ji = —Ef{Eyi{——0—2 1t -Ef{ ——>— 3.122
' f{ ylf{ 5fi8fj f 8fi6fj ( )
Jilj Jizj
= 3+ 3. (3.123)

In order to computeJilj, we consider the following probability density function

_ O fla)” ak)z} (3.124)

(k| f )—;ex
pyk k’ak_ 27-[-0-2 p 20_2

whered? is the variance of the additive white Gaussian noise presénthe channel. In

order to get rid of dependency, (3.124) should be averaged over the BPSK aptiich

yields
p(ylf) = P(ax =1)p (V! fk, ax = 1) (3.125)
i= L+l
1 (Vi — f)? (Vi + fi)?
_ _ W= 1)° YL (31206
2V 2no? (eXp{ 202 e 202 ( )
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and the following probability density function is obtained

Lt
poyIf=]]p Kl (3.127)
k=1
a1 (v — fi)? (i + fi)?
=(8noe) 2 1_[ (exp{—z—az} + exp{ 502 }) (3.128)

k=1

Taking logarithm of (3.128) gives

Lt
Inp (ylf) =~ L—2T In(870?) + Z In (exp{—%} + exp{—M}) (3.129)

2
= 20

with which one could compute the first order derivative akes
dinp (ylIf) 0 (vi — )2 (yi + )
—_— = — - - 3.130
ofi ofi n|exp 2072 T exp 202 ( )
Yi

- tanh( Y f.) L (3.131)
(oA O-

I\.)

and the second order derivative is readily obtained as

2
%{%If) ((Z'zsed?f( ) %)5”‘- (3.132)

Finally, we end up with

3= Ef{Ey|f{ysecﬁ( )}}5ij+$5ij (3.133)

~ & exp| __uz} 1+ 0% 1
- [ vor ff cosh(v) eXp{—WVZ} du dV+ 5 | i (3.134)

by a change of variable which is = y;/o? andv = f;. Note that, no closed form for the

expression (3.134) could be obtained, but it could fortelygte computed through numerical

methods.

Now, consider the joint probability density function of timeknown channel cdicients given

as
()= ﬁ eXp{—%fTRf f} . (3.135)
(2m)/2 R

The associated first order derivative is computed to be

dInp(f) _ 1 S
o, 2L

fm [(ReY). + (R | (3.136)
- Z foo [(Rgl)im] i (3.137)
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and the second orderftBrentiation therefore becomes

&In p(f) _
“of ot -(R7); - (3.138)

where (3.137) employs the fact tHat is a symmetric matrix. We therefore obtainﬂﬁias

2 = {( R )”.} = (R7Y), - (3.139)

As a result, the final expression for FIM is given as

~ uexp{-Z 2} 1+ 02 1
o [ 2 e e 2], v

By using (3.119) and (3.140), we may compute the bound onritialization error. In

Table 3.3, we present the MSIE for ML initialization and tteseciated CRB over a flat
Rayleigh fading channel with Jakes’ spectrum whigig; = 0.01 andLt = 1. Note that, zero
initialization yields an MSIE which is 1 all the time, as aegliin the previous section. Note
also that, it is possible to yield lower MSIE values and adioagly lower CRB forLt > 1,
but we do not explore for such scenarios sincelthe= 1 is shown in the previous section to

achieve satisfactory performance.

Table 3.3: CRB and MSIE for ML Initialization over Flat Raigh Fading withf3Ts = 0.01
andLt = 1.

|SNR| 5dB | 10dB | 15dB |

CRB | 0.2403 | 0.0909 | 0.0307
ML | 0.3162 | 0.1000 | 0.0316

3.7 Tracking Performance of the Bidirectional LMS over AR Channels

In Section 3.3, the tracking performance of the bidirealdoMS algorithm is analyzed by
deriving an MSE expression at the steady-state where fteeteof the step-size choice is
considered, as well. The MSE expression given by (3.68) lisl ¥ar any type of fading

channels with a known spectrum. However, this generalitpe®with a cost such that the
resulting MSE expression is not compact enough and reqaifesquency domain energy

computation which involves numerical integration. Altigbuthis previous result could not
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be further elaborated for the fading channels with a noomati spectrum such as the Jakes’
model [98], there is a possibility to obtain a much simplifM&E expression for the fading

channels with rational spectrums.

As is known, most linear time-varying communication chdsreuld be expressed using
some simplified stochastic models which have a rational p@pectrum. Among various
choices, auto-regressive (AR) models are commonly usepeaifg the correlation between
the fading co#ficients [110]. In such channels, the complex Gaussian fachegficients are
generated using an innovation process characterized byrRam@del. This section considers
the aforementioned model referred to as AR channel thrauighe thesis with a purpose of
simplifying the steady-state MSE expression obtained éngdievious section. To this end,
we carry the frequency domain computation of the lag compbaotthe MSE into the time
domain by making use of the rationality of the power spectfarnthe AR channel [61]. In
the end, we come up with a more compact closed form exprefsidhe steady-state MSE
which depends on the adaptation step-size, as before \rimalanalytical expression for the
optimal step-size of the adaptation is also derived as aitmof SNR and AR correlation

metric.

3.7.1 AR Channel Model

In Section 3.1, a general system model is introduced foffdlding channels without any con-
straint on the temporal correlation characteristics. Ia ffection, we consider a 1-st order
AR process to specify the correlations between fadinghioients keeping the other model
parameters the same. As a brief summary, we aim to estimatdization of a time-varying
process which is given by a sequence of complexXtments{ fk}|';:1 wherelL is the observa-
tion length, as before. A sequence of known complex inpuﬁmlﬂak}k:l are chosen from
a finite discrete alphabe#i with symbol energie€s = E{|a,/?}. The corresponding com-
plex output symboli;yk}k:1 are observed in the presence of additive noise with theviiig

discrete-time channel model given as
Ve = feak + N (3.141)

whereny is a sample from a circularly symmetric white complex Gaarsgirocess with zero-

mean and varianchy. The unknown fading C(fﬁcients{fk}k=1 are assumed to be generated
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using an % order AR innovation process, without any loss of genertibrma given as

fk =a fk_1 + W (3.142)

where the correlation metricis called the AR constant which is usually choserras1-¢ to
obtain a stable realization with> 0 is a small positive constant. The noise tewgin (3.142)

is a sample from a circularly symmetric white complex Gaarsgirocess with zero-mean and
variances2, and is independent of the transmitted symbols and the gacbefficients. The

temporal autocorrelation associated with the AR channééunonsideration is given as

r(n) E{ ficrn 7} (3.143)

A"E { |fk|2} (3.144)

Note that, mean-square energy of the fadingitcent is found using (3.142) as follows

E{ 11’}

E{lafics + wi? (3.145)

o?E{Ifical®} + E{Iwi?) (3.146)

where the assumption of statistically independence of tigerand the fading cdigcient is
employed in (3.144) and (3.146). Since the AR process urmesideration is stationary, we

haveE{ | f_1|%} = E{|f?}, and therefore

0_2
E{If? = - (3.147)
As a result, the temporal autocorrelation given in (3.14Hdmes
M = a"s (_’Wa2. (3.148)
The SNR for this scenario is then given as
:E{|fkak|2}_E{|fk|2}E{|ak|2}_ o Es (3.149)

E{Ine2} ~ E{Inl?}  1-0a2 Ny

Note that one could choose the variance of the input noise2as- 1 — o2 to have the

customary SNR expression thatyis= Es/Ng.
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3.7.2 Steady-State MSE Analysis for AR Channels

As stated before, our purpose in this section is to furthmipbfy the steady-state MSE ex-
pression obtained in (3.68) for AR channels and to derivenapazt closed form expression
for the steady-state MSE by making use of the approach of [B%|ng the results given in
(3.22) and (3.29), the steady-state MSE is given as

IMsE = Jmin + Es(Jselr + Jlag) (3.150)

whereJseif andJiog are previously found as

S .,
2(1-p)

Jag = % I ﬂ|H(ej"")|2 S(w) dw (3.152)

Jeelf = (3-151)

where the transfer functioH (elV) is given by (3.62) in the z-domain, ar®{w) is the power
spectrum of the unknown fading channel. We observe fronb(3-13.152) that the self-noise
part of the MSE is in a simplified form, which solely dependstlom step-size of the adapta-
tions and the minimum achievable MSE, whereas the lag coemds not as compact as the
former one and involves numerical integration which resuitan unavoidable complexity in
frequency domain energy computation. We therefore focub@mlerivation of the lag com-
ponent and will derive it in the time domain to simplify thesv#ting expression as opposed

to the the frequency domain evaluation as in (3.152).

In order to better understand and utilize the AR innovatioocess, we take z-transform of

(3.142) as follows [61]

Z{f} = a Z{f_1} + Z {w} (3.153)
—— ——— ——
f(2) 112 w(2)

by which we obtain a relation between the z-transform of #winy codicient fx and the

input noisew, i.e., f(2) andw(2), as follows

f(2)

T oo™ w(2) (3.154)

Har (2 W(2) (3.155)

whereHar(y is the transfer function associated with the first-order Aétpss which is given

as
1

Har(e") = ———.
AR(EY) = T/

(3.156)
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Because our aim is to compute the lag part of MSE which is diset previously to be
the average energy in the tap-weight tracking erfor, f, under the assumption of perfect

gradient estimation, we incorporate the result of (3.6@) (8.155) as follows

f@-f2 = HE@IE (3.157)
= H(2QHar (@ wW(2. (3.158)
Hr (2

whereH+(2) is defined to be the overall transfer function of the AR clenn

f “
W HAR(Z) ‘ H(2) > fk B fk

H. (2)

Figure 3.33: The overall transfer functiéfy (2) to obtain the tracking error out of input noise
over AR channels.

In Fig. 3.33, the filtering operation given in (3.158) is exgsed in a block diagram represen-
tation. By making use of the relation given in Fig. 3.33, thierage energy in the tap-weight

tracking error, which is the lag part to be computed, coulévmuated as follows

Jiag % f |H (€") Har (€")|” Sw(w) dw (3.159)

1 (" -
o f IHr @) o2 dw (3.160)

whereS,,(w) is the power spectral density of the white Gaussian noisegsswi which is
given asSy(w) = o2. Note that the power spectral dens@gw) of the fading cofficients is

a rational function of the frequency as follows

SW) = [Har(E")P Sw(w) (3.161)
- ‘7—5“2 (3.162)
|1—a/e‘JW|

In order to avoid from the numerical integration present3ril§0) which is the ultimate
purpose of this section, we make use of the well-known Palsdtieorem [102] and translate

the infinite integration in the frequency domain into theniié summation in the discrete time
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domain as follows

2 T ©
g, i 2
Jiag = EW L [Hr (&™) dw =0}, n;w Ihr[n] 2. (3.163)
In order to proceed with the purpose of computing the energggnt in (3.163), we should
evaluate the unit step resportsgn]. To this end, we first compute the partial fraction expan-
sion of the overall transfer functiafdy(2) as follows

1+8 1-B(_1 L =
H(Z)HAR(Z)I[— 28 + 28 [1_ﬁr1_1_%z—1))(1—a2‘1)

Hr (2

_(1+ﬁ) 1 +(1—ﬂ) 1 11 1
28 J1-azl 2 )|1-aztl-pzt l-azll-1iz1

1
= A(a,ﬁ)m - B(@,ﬂ)m - C(%ﬂ)@ (3.164)
where the coicients are given as a function @fandg as follows

(1+p)(1-a)
A 3.165
(ap) 2@ - A 1—-ap) ( )

(1-8
B = 3.166
@B = 205 (3.166)
(1-5)

C = — 3.167
@A) = ZA<ap (3.167)

In order to obtain a stable discrete-time sequdrda], we should specify a proper region of
convergence (ROC) such that the unit circle is included [108e locations of the poles of

Ht(2) which arezy; = «, 7, = g andzy = 1/ are determined as follows

¢ Due to the assumption made in Section 3.7.1 ¢hata small positive constanty; = a

lies inside the unit circle at a position very close to 1 with telationa| = |1 - €| < 1.

e Since|B| = |1 — 2uEs| < 1 is the mean-convergence condition of the conventional
LMS algorithm,zp, = g lies inside the unit circle angy = 1/, therefore, lies outside

the unit circle.

As a result, the desired ROC including the unit circle is g given as

ROC: max «,B) < |z| < 1/8,
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Figure 3.34: ROC of the overall transfer functibig (2).

and is depicted in Fig. 3.34 assuming nfax 8) = @ andB > 0 without any loss of generality.

Using the final ROC given as mé&x ,B) < |z| < 1/, the unit step responde[n] is com-
puted to be

hr[n] = A(a, 8) @"u[n] — B(e,B)B"u[n] + C(a,B) (/%) u[-n-1], (3.168)
which may be expressed equivalently as

m”ﬂ:{Awﬁyw-Mmmﬁm n>o0; (3169

Ca.p) (3)". n<o0.
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The average energy bf-[n] is then computed in time domain as follows

o 0 -1
SUibelnl? = Y |A@pe" - B.p)p + > [Capp (3.170)
N=—oc0 n=0 nN=—co
= > (A¥(a.p) a® + BX(e. ) 7" - 2A(a. ) B(e B) (ap)")
n=0
-1
+ Z CYa,p)p 2" (3.171)
:_002 2 2 p2
_ AP | B+ C@pPf  2A@BB@p) gy
1-—a? 1-2 l-ap
ConsequentlyJiag is found with the help of (3.163) and (3.172) as follows
2 2 22
Jlag _ O'\%,(A(a/,ﬁ) + B((Y,ﬂ) +C((Y,ﬂ) B _ ZA(Q/’ﬂ) B(a’ﬂ)) (3173)

1-a? 1-p2 1-aop
As a result, the overall MSIE expression becomes

ImsE =Jself + Jiag
Y (A(a,ﬁ)2 , B@.p)?+C(a.p)° B 2A(@.p) B(a,ﬂ))
20—p) ™ "W 1 @2 1-42 1-ap ’
(3.174)

and the associated MSE expression is

HEs
+ _—
2(1-p)

A@p)® | Ba.p)*+Cla.p?p  2A(.p) B(a,ﬁ))
1-a? 1-p2 1-ap '

(3.175)

IvsE= (1 )Jmm +02Es (

When we compare the final MSE expressions in (3.68) and (B.W&bobserve that (3.175)
associated with the AR channel appears to be in a more corfguacin the sense that it does

not require numerical integration as opposed to (3.68).

We could also derive the optimal choice for the step-size, jiopt, Using (3.175). Since
the derivative of (3.175) with respect to the geometricorftis extensively complicated, we
explore for ways to further simplify the final MSE expressinr{3.175). To this end, we first
observe that the terma(a, 8) has a relatively small value as compare®(a, 8) andC(«a, )

due to the (1- o?) factor in the numerator since the AR constantvas previously chosen

to be close to 1. Therefordys e could be approximated by the following expression as a

73



function ofB as follows

% B(e, )2 + C(a, B)% B2
Jusie = —2(1_#)Jmin + 02 15
_ o 1-p o owl-p(_ 1 1
= 2(2Es_1+ﬁ)~]m|n + 2 1+ﬂ((a’—ﬂ)2 + (1—@/3)2) (3.176)

with high accuracy especially when— 1 which corresponds to a moderate time variation.
This assumption is justified in the next section through mizakexamples. The correspond-

ing Jus g expression becomes

_ 2 _
Juse = (1+ (1-p)Es )Jmm+chEsl ﬂ((al 1 )

2(E-—1+5) 4 1+8\(@-pB2  (A-apy

with the following derivative with respect f®as follows

dIvse _ _E—iJ L 02Es 1 ( 1 . 1 )
op @E-1ep?™™ T 2 L @WepP\@-p? (- apy
1-8 1 a
155 ((a—,b’)3 ’ (1—aﬁ)3)]' (3.177)

The optimal valueg,t anduopt could then be evaluated numerically as follows

dImsEe

B

=0 (3.178)

1 - Bopt
2E¢

B=Popt

3.7.3 Numerical Results

In this section, we verify the theoretical MSE derivation fiee bidirectional LMS algorithm
operating at the steady-state over a communication chahaehcterized by a 1-st order AR
process. To this end, we perform extensive Monte Carlo sitituls and compare the as-
sociated MSIE results with the theoretical ones computathu8.174). We assume BPSK
modulation so that the transmitted symbols, i{.ak}k:l, are chosen from the binary alphabet
A ={-1,+1} in an equally likely fashion where = 1000, and the symbol energy is therefore
given askEg = 1.
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Figure 3.35: AR channel realizations generated by a whiteptex Gaussian noise with the
varianceo?, = 1 — o wherea = {0.99, 0.95, 0.90}.

Fading channel realizations are generated according1dZBwitho?, = 1 - o?. As a result,

we have unit energy fading cfieients, i.e.,E{|f|?} = 1, and the resulting SNR therefore
becomes = 1/02. We consider three flerent channel speeds which are characterized by a
set of AR constante: = {0.99, 0.95, 0.90}. In Fig. 3.35, a single realization of the channel
with one of the AR constants under consideration is depictiée observe that even a small
increase in the AR constaat the speed of the corresponding channel increases signtifica

In the sequel, we therefore consider the cases with{0.99, 0.95, 0.90} for the purpose of
presenting the accuracy of the steady-state MSE and op$itepisize expressions, and no
other comparisons are provided since such cases have rcakaceaning in the scope of

this work.
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Figure 3.36: Theoretical and experimental MSIE for BiLM§ether with the experimental
MSIE for UniLMS and a 21-tap MMSE filter with varying step-sianda = 0.99 aty = 10
dB SNR. The approximate theoretical MSIE for BiLMS given 311(76) is also provided.

In Fig. 3.36, the theoretical and experimental MSIE for thdirbctional LMS algorithm
are depicted together with the approximate MSIE given b¥4@) for varying step-size and
a = 0.99 aty = 10 dB SNR. The experimental MSIE for the unidirectional LM§aoaithm
and the optimal 21-tap MMSE filter are also presented for @mmpn purposes. We first ob-
serve that the theoretical results obtained numericallyguglSIE expression given in (3.174)
perfectly match the experimental results for any choicéefadaptation step-size. Therefore,
the associated MSE derivation ended up with the expressien gy (3.175) is verified. Sec-
ond, the theoretical result for the approximation to (3)lwhich is given by (3.176) is also
observed to follow the original exact MSIE results perfesthowing the accuracy of the ap-
proximation to be used in the optimal step-size computatiorhird, the superiority of the
bidirectional LMS algorithm in tracking of the unknown ARarmel is verified by a much
better performance than the conventional unidirectiordSLand by a similar performance

with the optimal Wiener filter.
In Fig. 3.37, the exagpproximate theoretical and the experimental MSIE redoltghe
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bidirectional LMS algorithm together with the experimdmM#SIE for the unidirectional LMS
algorithm are presented for optimal step-size and varyiN& SThe experimental MSIE for
the optimal MMSE filter with 21-tap is again added. We obsdreen Fig. 3.37 that the
conclusions made for Fig. 3.36 are also valid for the varyNR case. We also depict the

MSIE performance of the optimal Wiener filter with variouswmher of taps in Fig. 3.38.

0.16 ‘ :
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Figure 3.37: Theoretical and experimental MSIE for BiLM@ether with the experimental
MSIE for UniLMS and a 21-tap MMSE filter with optimal step-8ifuop) anda = 0.99
for varying SNR. The approximate theoretical MSIE (3.17@) BiLMS with (uopt) is also
provided.

In Fig. 3.39 and Fig. 3.40, the MSE derivation for the bidii@tal LMS algorithm is verified
over much faster AR channels with= 0.95 anda = 0.9, respectively. We observe from
Fig. 3.39 and Fig. 3.40 that the resulting MSIE, and equiiffeMSE, expression for the
bidirectional LMS algorithm has a very good match to the expental results even for very
fast AR channels. We also observe that the approximate eétiegr MSIE result has some
deviation from the original statistics under these highiyet varying environments especially
for small step-size values, and is very close to the original at the optimal step-size values,
i.e., at the minimum of the performance surface. Therefttris, approximation is again of

value in computing of the optimal step-size.
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Figure 3.38: Experimental MSIE for the MMSE filter with van® number of taps far =
0.99.
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Figure 3.39: Theoretical and experimental MSIE for BiLM§ether with the experimental
MSIE for UniLMS with varying step-size and = 0.95 aty = 10 dB SNR.
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Figure 3.40: Theoretical and experimental MSIE for BiLM@ether with the experimental
MSIE for UniLMS with varying step-size and = 0.90 aty = 10 dB SNR.

Because the choice of the adaptation step-size of the bidinal LMS algorithm has a major
effect on the overall tracking performance, we investigatetligedfectiveness of the the-
oretical optimal steps-size values, i.gept'S, computed according to (3.177) and (3.178).
Table 3.4-3.6 present the theoretical and experimentaltsgf®r 1ot under various SNR lev-
els and for a set of AR constants givenas {0.99, 0.95, 0.90}, respectively. We observe
that the theoretical steps-size values are close to theiexgaal results for many cases. We
again note that, since the MSE is almost constant aroundeiglporhood ofuop as seen
from Fig. 3.39 and 3.40, the moderatdfeiences between the theoretical and experimental
values have no impact on the overall tracking performance.

Table 3.4: Theoretical and Experimental Optimal Step-§igg;) Values for an AR Channel
with @ = 0.99

SNR | 0dB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16dB |

Experimental| 0.060 | 0.080 | 0.100 | 0.130 | 0.150 | 0.190 | 0.220 | 0.250 | 0.300
Theoretical | 0.050| 0.061 | 0.075| 0.092 | 0.113 | 0.138 | 0.167 | 0.201 | 0.240
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Table 3.5: Theoretical and Experimental Optimal Step-§izg) Values for an AR Channel
with @ = 0.95

SNR | 0dB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16dB |

Experimental| 0.130 | 0.170 | 0.190 | 0.230 | 0.250 | 0.300 | 0.350 | 0.300 | 0.400
Theoretical | 0.119| 0.140 | 0.165 | 0.195 | 0.230 | 0.270 | 0.312 | 0.356 | 0.397

Table 3.6: Theoretical and Experimental Optimal Step-§igg;) Values for an AR Channel
with @ = 0.90

SNR 0OdB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16 dB

Experimental| 0.170 | 0.210 | 0.250 | 0.300 | 0.350 | 0.350 | 0.400 | 0.400 | 0.450
Theoretical | 0.180 | 0.206 | 0.236 | 0.271 | 0.310 | 0.352 | 0.392 | 0.427 | 0.454

3.8 Iterative Channel Estimation for Flat-Fading Channels

Iterative channel estimation is a well-known technique ol estimates of the transmitted
symbols are employed together with the a priori known pijmhisols in order to improve the
quality of estimation in an iterative fashion. One of theibasawbacks of this approach is
the increasing computational complexity through the néagriterations. The bidirectional
LMS algorithm with its computationallyf&cient adaptations is therefore considered to be a

good choice to be employed with iterative channel estimatiea.

This section deals with a more realistic communicationesysivith a channel code and iter-
atively employed pilot-aided channel estimation. The togsial of this section is to compare
the estimation and tracking performances of the estimatigorithms under consideration in

a communication system very close to real-life application

3.8.1 Transmitter and Receiver Models

In this section, we make use of the same equivalent distraeeomplex baseband channel
model given in (3.1) except that the transmitted syml{mjg;:l are not chosen independently
from the finite alphabetA any more. In order to adopt the PSAM transmission and the
iterative channel estimation techniques, we employ thastratter and the receiver models

given in Fig. 3.41 and Fig. 3.42, respectively.
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Figure 3.41: Transmitter model including channel encouerleaver, PSK modulator and
PSAM block.

At the transmitter shown in Fig. 3.41, a set of binary infotiumnsymbols{bk}til of lengthLg,
which are chosen from the binary 46t 1} in an independent and identical fashion, are first
encoded by a channel code of r&&e The set of coded symbolsk}t;1 at the output of the
encoder are then interleaved to combat with the burst ermosthe resulting set of symbols
{c{(}'i;il are modulated using a PSK modulator with a finite modulatlphabetA whereL. is

the block length of the coded symbols with = %. The modulated symbolsn},™ , where

Lm = Wilﬂl is the associated block length a| is the cardinality of the alphabed, are
then multiplexed with a set of pilot symbo{lpk}:;:pl which are known a priori at the receiver
and are chosen from the same alphaletvhereLj, is the number of pilot symbols in use.
The multiplexing operation is performed such that the matha symbols are first split into
the groups oM — 1 symbols and a single pilot symbol is inserted periodiciaity the center
of each of these groups. This transmission scheme is know$as/1 whereM, is referred

to as the pilot symbol spacing and is assumed to be odd asdestin [14].

According to the aforementioned transmission scheme gbessary number of pilot symbols

are given as
L — == BT~ T
m=— —2 09 [A
Lp=|—————=|+1= 1 3.180
PTI M -1 "L Mp—1 | (3.180)

As a result, the data sequen{taiﬁ}k=1 which is produced after multiplexing is expressed as

follows
. Mp+1l . i
mk_{kf(Mpﬂ)/zJ s kK # (| - 1) Mp + > > i=12..., Lp,
a = Mp Mo (3.181)
PicMps1)2 k=(@{-)Mp+-5=,i=12...,Lp.
Mp
where the associated frame length becomes
L L —R0|Ld| 1 Mpz_l
d d og, |A
L=————+Lp= 1 3.182
Rol0g, 1Al "~ Rlog, |A Mp—1 | (3.182)
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by (3.180). We also define the set of indices associated hlpilot symbols as follows

(3.183)

Pp::{kpo)hil = { 5 R >

wherekp(-) stands for any of the indices of the pilot symbols in a traitteah block and is

given as

Mp+1

ko) = (i = 1) Mp + —

(3.184)
The data sequenc{tatk}k:1 is then transmitted over the flat-fading channel defined ith)(3
Note that since the optimal design of the patterns or theegafar the pilot symbols is not
considered in this work, we choogg to be equal to one of the elements of the modulation

alphabetA without any loss of generality.

Py
al | i) ()
RSAM =~ — Feadr:??‘:k = Interleaver
()
Lo’ (c)
G O(c (i) ~
Y | chama _ H wr D@ L6 B s by
T T Estimator Computation 1 ik Decoder i

T —_I_ LY (b)

Figure 3.42: Receiver model for a time-varying flat-fadidtaenel with iterative channel
estimation.

At the receiver side, an iterative channel estimation teghnis employed with a soft-input
soft-output decoder as shown in Fig. 3.42. Therefore, argrpeter or the function devoted to
thei-th channel estimation iteration takes the superscijpad is updated at each estimation
iteration. In this scheme, the observations are first fedhé¢ochannel estimator unit which
employs one of the estimation algorithms explored latehis $ection. The initial estimate
of the channel is obtained by making use of the observatiodsttze a priori known pilot
symbols only. In the subsequent estimation iterations,qtidity of the channel estimate
is improved by making use of the soft information on the codgohbols provided by the

decoder.
Once an estimate of the unknown channel is obtained, thiékelgaood values (LLRs) of the
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transmitted symbols are computed at itk iteration as follows
P (| £ ace A\ (aver )

o ] 20 2

LD (ay) = log : (3.185)

whereae; is a reference symbol from the modulation alphaieand ﬂ((i) is the estimate
of the k-th fading codficient at thei-th iteration. The probabilities are computed in (3.185)
with the assumption thai(i) is the actual fading cdicient and its incorrectness is therefore
not accounted for. Since the decoder needs the LLRs for thm;biset{ck}kzl, the LLRs
associated with the pilot symbols are removed from th@é%(ak)}t: X and the residual LLRs
are then deinterleaved. The remaining symbol level LLRs,i¥)(m)’s, are then converted

into the desired bit level LLRs, i.el)(c,)’s, details of which are given in [111, 112, 113].

There are a number of observations to be made about this fatioru First, a number of
|A|—1symbol level LLRs are to be computed according to (3.188f08d, the computation

in (3.185) is not optimal, but is hopefully suboptimal. Or@ason for this claim is that it is
assumed that® (a)’s for differentk’s are uncorrelated although they are not since these val-
ues are function of the estimates of the fadingfioents fk(i) which are obviously correlated.
As a final note, if the higher order modulation alphabets anpleyed, i.e.|A| > 2, LLR
computation and feedback units given in Fig. 3.41 are capabkymbol-to-bit level LLR

conversion and vice versa.

Assuming BPSK modulation, LLR computation given in (3.1BBfomes

Pyl fi. & = +1)
P (k! fi. arer = —1)

LD (ay) = log (3.186)

If the additive noise present in the channel is Gaussiam, wWeobtain

- 1 Ivic — i 1 Iyic + fi’
0) - _ - —
LY(ak) = log (nNo exp{ No }) log (nNo exp{ No })3.187)
3 |yk+1€k|2_ |YK—]€k|2 3188
4 Rely; f,
= M. (3.189)
No

where we have used the complex Gaussian distribution withrsean andNg variance given

as

fx(X) = — exp{—lx—lz}. (3.190)
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The soft decoder in the receiver employs the maximum a postéMAP) algorithm in the
log domain, which is referred to as the log-MAP algorithm aedcribed in detail in [114].
The values given in (3.189) are processed by the soft de@ftigrremoval of those associ-
ated with the pilot symbols and the extrinsic LLRs of both tloeed, i.e.Lg)(ck)‘s, and the
uncoded symbols, i.eLg)(bk)’s, are computed accordingly [114]. At each channel estima
tion iteration except the last oneg)(ck)’s are sent to the feedback unit to refine the channel
estimate of the previous iteration. After the last itena,ting')(bk)‘s are sent to the detector
to obtain the estimates of the information bits as follows

R 1, My =>o0;

by = (3.191)
0, LM by <o0.

whereN; is the number of channel estimation iterations.

The feedback unit in Fig. 3.41 involves a set of operationgkwvhare to convert the extrinsic
LLRs of ¢¢’s to those ofmy’s for |A| > 2 in the same way explained in [112], and to evaluate
the estimates of the modulated symbols either in the soffteoh&rd manner. The soft estimate
of a modulated symbol is indeed the ensemble average of thesponding LLRs and given

in [82] for BPSK as

()
Le (m‘)], (3.192)

il = E{L(my)} = tanh(

When we choose Gray-coded QPSK with the constellation diadn Fig.3.43, the soft esti-

mates are given as [115]

. i () i ()
) = - 1;  tanh ( Le (ZCZ")] 1 ) ’ tanh(—Le (‘;2"”)], (3.193)
and 8-PSK modulation given in Fig.3.43 results in
0] 0]
(i) _ Le’(Cox) Le’(Coks1)
m’ = Atanh(—2 + B tanh —
0] 0] 0]
+|C tanh(Le (202")) + Dtanh(%]} tanh(#) (3.194)

whereA = 1—(‘E+l)j, B= 1+‘f+j,C _ 1—\f+j’ D= 1+(x<4§—1)j.
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Figure 3.43: QPSK and 8-PSK constellation diagrams.

Finally, the hard decision feedback is performed as

0] .
ud ={ Lo bemd=0 (3.195)

-1, LY9my<o.

These estimates are then multiplexed with the known pilottsyls as in the transmitter to

produce the overall estimates of the transmitted synﬁf@latﬁhe estimation iteration

After the initial channel estimation, the soft or the hartireates of the modulated symbols
m{j) are incorporated into the channel estimation algorithnetiogr with the pilot symbols

as if they were the actual transmitted symbols. A new chaasginate is then computed
using not only the pilot symbols but also the estimated @abfanodulated symbols. By this

technique, quality of the channel estimate is expected pwore through iterations.

3.8.2 Channel Estimation Algorithms for Flat-Fading Chanrels

In this section, we revisit the channel estimation algonghintroduced in Section 3.2 to per-
form some modifications explicitly which are necessary i@r¢dommunication scenario under
consideration. We assume that the initial channel estimasi performed by the MMSE filter

using the pilot symbols only since both the LMS algorithmeadhthe knowledge of the trans-
mitted symbols which is not available initially for the datambols. Once an initial estimate is

obtained, we could use any of the LMS algorithms as well aS\ttemer filter since estimates
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of the data symbols are available as explained in the pre\geation.

3.8.2.1 MMSE Channel Estimation

In iterative channel estimation, the MMSE filters associatéh the initial and the subsequent
iterations are dierent since the former is using only the pilots which are tepam each other
by a number of data symbols while the latter is employing the dymbols as well so that
the symbols in use are next to each other. We therefore prseMMSE channel estimation
and derivation of the associated filters for the initial almel subsequent estimation iterations

separately.

An initial estimate of the unknown channel is obtained byngsbnly the pilot symbols as
follows

LK/2]

f\k(l) = Z Wich @n,, (-nMp Ynp ()-nMp- (3.196)
n=—|K/2]

whereny, (k) is the index of the pilot symbol closestg, i.e.,an, ) is a pilot symbol, and is

given as

k_MF;rl Mp+1 1 k—MFé+1
{ w, | Mp+ =2~ k<3z+ v
k_Mp+l

2

with a special case at the right edge of the observation kiloekto the PSAM transmission

+1)Mp ;

np (K) = (3.197)

Mp+1
Mp+1 1 k-5
+1)Mp+ > k>§+(\‘|\/|—p

+1)Mp :

given as

2L, — DM, + 1 Kk — Me+l
(2L ~ DM if l—z +1>Lp. (3.198)

np (K) = = e

Note that, the filtering operation given in (3.196) includis pilot symbol term explicitly
unlike the conventional formulation given in (3.4). Thegea behind this choice is to ob-
tain a single global MMSE filter for each transmitted packetiad of which is given in Ap-
pendix A.2.1. The associated Wiener-Hopf’s equations $s dlerived in Appendix A.2.1

with the final form given as

LK/2]
i {1 ((N=1Mp) + Nodn | =r¢ (k= np (K) + nMy) (3.199)
1=—|K/2]
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forn = —|[K/2], ... ,|K/2] wheredy is the delta function defined to be

1, n=I;
Snl :{ (3.200)

We observe that (3.199) is independent of the transmittetbsis and this result implies a
significant decrease in the overall computational complexi the MMSE channel estima-

tion, as is argued in Section 3.2.1.

In the subsequent channel estimation iterations, estinwditbe data symbols are incorporated
into the channel estimation as well as the pilot symbols. déwred estimates are computed
as follows

LK/2]

£0 = Z W) Vi (3.201)

n=—|K/2]

fori > 1. The optimal filter cofficients at the-th iteration are computed by using the

Wiener-Hopf’s equations given as follows

K2 . . .
Do (&l i -nEL )+ Nosw ) =re (@&, (3.202)
1=—|K/2]
forn = —|K/2], ... ,|K/2]. The details of above formulation for subsequent estimatio

iterations with some practical considerations is given ppé&ndix A.2.2.

In the subsequent iterations, it is not possible to desigrMMSE filter without any depen-
dency to the transmitted symbols sir(%))* ax # 1 for soft decision feedback. Indeed, this
point is believed to be overlooked in [84] so that the resglprocedure followed there is not

optimal in the MMSE sense.

3.8.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 3.2.2, the conventionablineictional LMS algorithm adopted
to the iterative channel estimation scheme under congideria given for the-th iteration as

follows
0 = £9 4+ 2,0 a0 (3.203)
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wherei > 1 so that we employ the algorithm after the initial channéhestion iterationu

is the step-size value of the adaptation and the error term given as

(i)

) =y - £080. (3.204)

3.8.2.3 Bidirectional LMS Channel Estimation

As described in Section 3.2.2, the forward and the backwdagtations of the bidirectional
LMS algorithm adopted to the iterative channel estimationesne under consideration are

given for thei-th iteration as follows

& f.(0)
fk+1

20 = 2.0, 5, eb050 (3.206)

fAkf,(i) + 2 ekf’(i) ég) (3.205)

wherei > 1 as beforey is the common step-size value aeio“) andeE’ O are the associated

error terms given as

ekf,(i) - - f“kf,(i) as) (3.207)

b.() _

e yi — £20 80, (3.208)

The final fading cofficient estimate‘A(i)k is again given to be
f1.3) L £b.0)
£0) _ fk + fk

) 5 (3.209)

3.8.3 Numerical Results

In this section, we evaluate the performance of the charstiehation algorithms considered
in Section 3.8.2 with the transmitter and receiver struggugiven in Section 3.8.1. To this
end, we perform Monte Carlo simulations which assumes adifdyfading channel together
with the Jakes’ spectrum [98], without any loss of generallthe associated temporal auto-
correlation is given by (3.69) where the normalized maxinidoppler frequency is chosen to
be f4Ts = 0.01 andfyTs = 0.02 throughout the simulations, if otherwise stated. Wequerf

suficient number of Monte Carlo runs to have appropriate regultsrms of statistical sig-

nificance. We assume BPSK alphabet throughout the simotaggcept for some examples

using QPSK and 8-PSK symbols with some special settings.
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At the transmitter, a set dfy = 98 bits are chosen from the g€t 1} in an independent and
identical fashion. A convolutional encoder with generdtioh/7)g and rateR; = 1/2 is then
used which employs 2 bits for termination. By this way, a nenmdf L. = 200 coded symbols
are produced at the output of the encoder. The coded symim[saased through a random
interleaver and then modulated using a BPSK modulator vi¢halphabetA = {-1, +1}.
The resulting set of modulated symbols of lengith = 200 are passed through the PSAM
block and the final set of symboﬂak}l';:l are then sent to the time-varying flat-fading channel

under consideration.

For the PSAM operation, the pilot symbol spacing is chosebetM, = 11 andM, =
21 throughout the simulations which results in a numbek pf= 20 andL, = 10 pilots,
respectively, for each of the transmitted block of lengtk 220 andL = 210, respectively.
These settings result in a pilot overhead percentage0809 and @476 forM, = 11 and
M, = 21, respectively. The overall transmission rate of theesysissociated with these pilot

settings, which is defined to lie= Lq4/L, becomes @667 and (1455, respectively.

At the receiver, the unknown channel is estimated iteritigsach that an initial estimate is
obtained using the MMSE estimator making use of the pilotlsyisionly. This estimate is
then refined over iterations by employing the soft decismirttie coded symbols with any of
the estimation algorithms under consideration. Note thatl ldecision feedback could also
be preferred in simulations which is known in the literattoeachieve a degraded error per-
formance under some circumstances. Throughout simutatiea set the number of channel
estimation iterations to 3 after which no significant imgrment is observed. The remaining

details of the receiver operations are explained in Se&i8r.

Note that when we are re-computing taps of the MMSE filter ugtothe iterations of the
channel estimation, we use the available soft decisions@iransmitted symbols instead of
their true values. Therefore, this mismatch destroys thenafity of the MMSE filter and
may cause an error performance degradation since MMSEifilte@rown to be not robust to

any parameter mismatch (see [116] and references therein).

Before presenting the simulation results, we want to makea fiote from a practical point
of view. While analyzing the steady-state MSE behavior eftidirectional LMS algorithm,
we naturally assume perfect initialization such that thdinig codficients at the beginning

and end of each transmitted block are known without any etrothis section, because we
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are dealing with a more practical scenario, we propose annalive solution in which the
forward and the backward adaptations are initialized bypaisiot the perfect values of the
fading codficients which are unknown a priori, but the associated estisrfeom the previous
estimation iterations. In the following, we provide the siation results corresponding to this

imperfect initialization case, as well.

10 T T T T T
Known Channel (Random Channel Interleaver)
—<&— Known Channel (No Channel Interleaver)

0 2 4 6 8 10 12

Figure 3.44: BER for random channel interleaver and no oblainterleaver cases where the
channel is known a priori for both cases afads = 0.01.

We begin with presenting simulation results for the knowarutel case with a comparison
on the use of a channel interleaver. Fig. 3.44 depicts the BSRIts for a random channel
interleaver and no channel interleaver cases for the naretaimaximum Doppler frequency
value of f4Ts = 0.01. As is expected, interleaving the set of modulated sympdbr to

PSAM block achieves a significant performance improvemEmerefore, we employ channel

interleaver for the transmission models in the rest of thésis unless otherwise stated.

In the subsequent figures, we present performances of tirediidnal LMS and the uni-
directional LMS algorithms together with the MMSE filter exft3 estimation iterations for
various choices of the pilot symbol spacing ), the number of MMSE filter taps (K) and

the normalized maximum Doppler frequendyTs). The results for the MMSE filter using
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pilot symbols only and for the bidirectional LMS algorithmtlvimperfect initialization are
also provided together with the known channel bound. Intaadiboth types of the LMS
algorithm employs the optimal step-size values, ligp, in a trial and error basis to achieve

the best possible performance.

BER
[any
o

Known Channel
—*— MMSE (Pilots Only)

1073} —F— MMSE (11-taps, 3 iteration)
—O&— MMSE (31-taps, 3 iteration)
—<— BiLMS (Perfect Initialization)
—+— BILMS (Imperfect Initialization)
——P— UniLMS (Perfect Initialization)

0 2 4 6 8 10 12
y (dB)

Figure 3.45: BER for BiLMS, UniLMS and MMSE witM,, = 11 andfyTs = 0.01. BER for
MMSE using pilots only and for imperfectly initialized BiLBlare also provided.

Fig. 3.45 and 3.46 depict the BER and BLER results, respagtifor M, = 11 andfyTs =
0.01. As explained before, the MMSE filter employed in the aliéistimation iteration uses all
available pilot symbols, so the associated number of taps.i$n the subsequent iterations,
performances of a 11-tap and 31-tap MMSE filters are companeldapproximately a.b
dB SNR improvement is observed at BERO 2 when the latter is employed instead of the

former.
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Figure 3.46: BLER for BiLMS, UniLMS and MMSE witiv, = 11 andfyTs = 0.01. BLER
for MMSE using pilots only and for imperfectly initializediBVIS are also provided.

We make a number of observations from Fig. 3.45- 3.46 somehafihware as follows. The
1-tap bidirectional LMS algorithm has almost the same BER BhER performance with
the 31-tap MMSE filter which verifies its low-complexity andar-optimal tracking perfor-
mance. We observe that in order for MMSE filter to achieve #meserror performance with
the bidirectional LMS algorithm, even an 11-tap filter is sofficient. It is also observed
that by employing the soft estimates of the coded symbols anty of the MMSE filter or
the bidirectional LMS algorithm, 1 dB SNR improvement is i@vled over 3 iterations as
compared to pilot only case. The final BER result for the leictional LMS algorithm is fi
the known channel bound by only 1 dB whereas this gap dimasist 05 dB approximately
for the BLER statistics. Interestingly, the conventionaldirectional LMS algorithm with
soft estimates provide no improvement over the pilot onsec@&ven deteriorates at low and
moderate SNR values. As a final remark, the initializatiothefbidirectional LMS algorithm
with the imperfect estimates result in no performance digran so that this algorithm could

be argued to be robust to initialization imperfections.

The dfect of pilot symbol spacing is partially explored for the teys under consideration
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by increasing its value tdl, = 21 which means less number of pilot symbols to be used.
Fig. 3.47- 3.48 demonstrate the associated results kedipingther system parameters the
same. In this case, the performances of the bidirectionab laWjorithm after 3 iterations
is almost the same with that of the 31-tap MMSE filter, as &efovith an unchanged gap
from the known channel bound. Since the number of pilot symbecrease, both BER
and BLER performances associated with the initial chanstinate deteriorate and are far
from the known channel bound by 3 dB where this gap was 2 dBfgr= 11 case. As
before, the imperfect initialization of the bidirectionaMS algorithm does not cause any
performance degradation and 11-tap MMSE filter could noieaehthe error performance of
the bidirectional LMS algorithm. As a final note, the unidiienal LMS algorithm provides
some improvement with the use of the soft estimates of thedagmbols, unfortunately,

which remains somewhat marginal as compared with the otberitoms.

10 T T T T T
10_1 ..................................................
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L 10 I SR U VU N N
M
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10k —&— MMSE (11-taps, 3 iteration)
—6— MMSE (31-taps, 3 iteration) /
—<&— BILMS (Perfect Initialization) ¥
—+— BILMS (Imperfect Initialization)
—H— UniLMS (Perfect Initialization)
-4
10 1 1 1 1 1
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Figure 3.47: BER for BiLMS, UniLMS and MMSE witM, = 21 andfqTs = 0.01. BER for
MMSE using pilots only and for imperfectly initialized BiLBlare also provided.
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Figure 3.48: BLER for BiLMS, UniLMS and MMSE witiv, = 21 andfyTs = 0.01. BLER
for MMSE using pilots only and for imperfectly initializediBVIS are also provided.

We now explore theféect of the Doppler frequency or equivalently the speed ottiannel
variation by simply choosing a faster channel in which theimam normalized Doppler fre-
quency isfyTs = 0.02. Fig. 3.49- 3.50 depicts the associated BER and BLER padioces,
respectively, foM, = 11, and Fig. 3.51- 3.52 demonstrates the same statistidd for 21.
The dificulty in estimating and tracking such a fast time-varyingrutel could be observed
through the increase in SNR gap between the known channabtend the associated error
performances of the estimation algorithms. As an exam Bf the bidirectional LMS al-
gorithm after 3 iterations is observed to k& the known channel bound by 2 dB in Fig. 3.51
whereas this gap was only 1 dB ffyTs = 0.01 as is shown in Fig. 3.47. Nevertheless, the
bidirectional LMS algorithm achieves almost the same epenformance with the MMSE
filter with a suficient number of taps even under this challenging environmehe robust-
ness of the bidirectional LMS algorithm to initializatiomperfections are again verified for
these particular choices. As before, the unidirectionalS éMgorithm could not provide any

significant error performance improvement through itersi
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Figure 3.49: BER for BiLMS, UniLMS and MMSE witM,, = 11 andfqTs = 0.02. BER for
MMSE using pilots only and for imperfectly initialized BiLBlare also provided.
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Figure 3.50: BLER for BiLMS, UniLMS and MMSE witiv, = 11 andfyTs = 0.02. BLER
for MMSE using pilots only and for imperfectly initializediBVIS are also provided.
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Figure 3.51: BER for BiLMS, UniLMS and MMSE witM,, = 21 andfqTs = 0.02. BER for
MMSE using pilots only and for imperfectly initialized BiLBlare also provided.
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Figure 3.52: BLER for BiLMS, UniLMS and MMSE witiv, = 21 andfyTs = 0.02. BLER
for MMSE using pilots only and for imperfectly initializediBVIS are also provided.
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In Fig. 3.53-3.54, we also present BER results for QPSK amBB- modulations with the
constellations given in Fig. 3.43. The iterative estimatorks for 3 times which again ex-
ploits a satisfactory convergence. We observe from bothscsat the unidirectional LMS
algorithm deteriorates the quality of the channel estirnatained by using the pilots only and
therefore achieves an error performance which is the wdrall anlike the case for BPSK
modulation with the same channel speed. We also observédttathe bidirectional LMS
algorithm and the MMSE filter with the soft estimates of the&d symbols provide almost a

1 dB SNR gain over the pilots only case and aftettee known channel bound by again 1 dB.

Finally, we present the BER results for BPSK over an extrgrfadt channel withfyTs = 0.1
in Fig. 3.55. Under such a scenario, the pilot symbol spagiadge should be as small as
M, = 5 in order to achieve reasonable performance for which thieqmeance of the MMSE

filter with 11-tap is better than that for the bidirectionab algorithm.

BER
I

Known Channel
1073 —*—MMSE (Pilots Only) | N N N
—6— MMSE (21-tap, 3 iterations) : N
—<&— BILMS (Perfect Initialization) '

— - — BiLMS (Imperfect Initialization)

——— UniLMS (Perfect Initialization)
-4

10 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Figure 3.53: BER for BiLMS, UniLMS and MMSE with QPSK modutat for M = 11,
Lg = 98 anddes =0.01.
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Figure 3.54: BER for BILMS, UniLMS and MMSE with 8-PSK modtitan for M, = 11,
Lq = 97 andfyTs = 0.01.
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3.9 Conclusion

This section considers the bidirectional LMS algorithmraume-varying flat-fading channels
with a result of near-optimal tracking performance and cotajonally dficient structure.
Having introduced the channel model and the bidirectiondiSLalgorithm, the associated
tracking behavior is analyzed for Rayleigh fading channighwonrational power spectrum.
As a result, a step-size dependent steady-state MSE eixpresobtained together with a
framework for optimal step-size selection. The numeriealits for the analytical MSE ex-
pression and the experimental ones show a very good mataseTesults verify the near-
optimal tracking performance of the bidirectional LMS aitfum which is significantly better
than that of the unidirectional LMS algorithm and is very gimto that of the optimal Wiener
filter. The dfect of independent selection of the forward and the backwtap-size values
are also investigated and the best strategy is argued teelegtial selection. This analysis is
novel in the sense that although there are several estisnasoain application of the bidirec-
tional processing in communication systems, none of thexegmt such a theoretical analysis

that reveals the basis of the appealing performance.

Effects of imperfect knowledge for the Doppler spread and SNjgtteer with the imperfect
initial value are also investigated. The tracking and optistep-size selection analysis is
then revisited for a Rayleigh fading channel with a tempeomatelation characterized by a
1-st order AR process. As a result, more compact form of #edst-state MSE expression is
obtained with a high accuracy which eliminates the negessiihe frequency-domain energy
computation using numerical integration methods. Findtgrative estimation of unknown
time-varying flat-fading channels is considered as a muelist& application employing
the estimation algorithms under consideration and thergug of the bidirectional LMS

algorithm is again observed.
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CHAPTER 4

THE BIDIRECTIONAL LMS ALGORITHM OVER
FREQUENCY-SELECTIVE FADING CHANNELS

In Chapter 3, we have considered the estimation of timehvgritat-fading channels using
the bidirectional LMS algorithm where both the receiver dnel transmitter are employed
with a single antenna. Although the flat-fading assumpt®nseful in understanding and
analyzing the performance of the bidirectional LMS alduont real-life communication sys-
tems frequently experience frequency-selective fadingnéwith the increasing demand for
wireless services of high data rate, frequency selectayiiyears naturally as a result of the
fact that the bandwidth of the next generation waveformsimecmuch higher than the coher-
ence bandwidth of communication channels. We thereforeeaddhe problem of estimation
and tracking of frequency-selective fading channels inigaar with the bidirectional LMS

algorithm.

In frequency-selective fading channelsfteient replicas of the transmitted signal arrive at
the receiver with various delays which are comparable teymebol period. As a result, the
symbol to be detected at atime instant is interfered witkiptesly transmitted symbols which
is known as the intersymbol interference (ISI) problem. Sehehannels are sometimes called
multipath fading channels since the various replicas tilweugh diferent paths [102]. Such
communication channels are usually modeled in a vector &ropposed to the scalar random
variable for flat-fading channels. As a result, any algonittonsidered in this chapter should
estimate or, for adaptive algorithms, update the randontov®cepresenting time-varying

multipath fading channels.

The analysis of the bidirectional LMS algorithm in frequgsselective channels is some-

what diterent from the one given for flat-fading channels. The red&sdnind this fact is that
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the memory present in frequency-selective channels makesell-known independence as-
sumption inapplicable to the problem in hand [65]. In thédiwing, a modified steady-state
MSE expression for frequency-selective channels is giogather with an optimal step-size
analysis as before. In order to investigate real-life stesga coded frequency-selective time-
varying Rayleigh fading channel is considered togetheh tie iterative channel estimation

approach using the bidirectional LMS algorithm.

4.1 System Model for Frequency-Selective Fading Channels

We consider a frequency-selective, i.e., multipath, fgdiommunication channel which is
varying with time according to some temporal autocorretatiand is represented by a set
of complex fading coficient vectorqfk}i';=1 with fx = [fko fk1 - - fk,M_l]T, wherelL is the
observation length anill is the number of taps of the channel. We assume the uniforneipow
delay profile for the average powers of the channel taps sirddserwise stated. We also
present some results in Section 4.6 associated witlffereint power delay profile to justify
the generality of this consideration. We therefore assurat] fk,|}|"£51 is an uncorrelated set
with each elementy, has unit energy. In addition, the s{éh}l';:l is correlated according to
the autocorrelation of the fading model under considenatithe fading cofiicients are also

assumed to be known neither at the transmitter nor the ®ceiv

A set of independent and identically distributed informat:';ymbols{ak}k=1 are chosen from a
finite alphabetA with symbol energyEs = E{| a/?} and are transmitted through the multipath
fading channel under consideration. The correspondingrets-time equivalent complex

baseband channel model is then given as

M-1

Yk = Z fir @ + N (4.1)
=)

= fla+ ng (4.2)

whereyy is the observation symboby = [acac1 ... am+1]' is the input vector andy
is a sample from a circularly symmetric white complex Gaarsgirocess with zero-mean
and varianceNg. We also assume perfect timing information for the transdiblocks and

individual symbols, and no frequencytset, as before.
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The received SNR is given as

M-1 ) mMoim-1 _/_ES(S"'
v = 1=0 _ 1=0 I'=0 4.3)
' E{Ivid?} No
M-1 )
Es E{|fK|| } VE
_ 1=0 _ S

where (4.4) makes use of the fact that the input sequ&n@b:l is assumed to be uncorre-
lated. The information symbol SNR is accordingly givenyas v, /R whereR is the overall

transmission rate of the communication system.

4.2 Estimation Algorithms for Frequency-Selective FadingChannels

In this section, we will revisit the channel estimation algoms considered in the previous
chapter and make some necessary modifications to be empogethe frequency-selective
channel model given in Section 4.1. As an importaffiiedence, this section deals with the
estimation of channel vectors as opposed to the scaldficdeat estimation considered in

Section 3.2.

4.2.1 The MMSE Channel Estimation

Let us consider the MMSE estimation for a frequency-seleathannel given as

f=wy (4.5)

SR 1T
wheref = [fI fI] is the vector of estimates of fading dbeients,W is the estimation
filter to be optimized ang = [y1 ... y|_]T is the observation vector including the desired

observations to be employed.

Note that (4.5) could be modified such that the overall esoma derived for a single fading
vectorfy instead of the complete set of unknown fading vectors reptes byf. In addition,
less number of observations could be employed in (4.5) adstd# all the available ones.

These two simplifications will result in a size reduction floe estimation matrixV.

102



The optimal MMSE filteW could be found by using the Wiener-Hopf’s solution given as

W =Pty Ry} (4.6)

wherePsy = E { fyH} is the cross-correlation matrix afjy = E { yyH } is the autocorrelation

matrix of the observations in use. The details of the daawatf (4.6) is given Appendix B.1.

In order to present a fair complexity analysis, we assume Khabservation symbols are
used in order to estimate any of thex 1 fading vectors for each time epoch separately. With
this assumption, the pre-filtering stage given in (4.6) i@sua matrix inversion of complexity
O (K?®) and a matrix multiplication of complexit® (M K2) in order to find the optimal MMSE
filter. In the filtering stage, desired estimate is computecbeding to (4.5) which requires

M (K — 1) complex additions ant#l K complex multiplications.

4.2.2 The Unidirectional and The Bidirectional LMS Algorithms

The conventional unidirectional LMS algorithm is given fone-varying frequency-selective

channels as follows [57]

fron = fx + 2uecay 4.7)

wherey is the step-size of the adaptation amds the estimation error defined as

& = Yk — fy a. (4.8)

The unidirectional LMS algorithm is observed to nédd 1 complex additions and 2{+ 1)
complex multiplications in order to estimate a single faduector without any extra compu-

tational complexity.

In order to present the bidirectional LMS algorithm, let wide f,' and f° to be the esti-
mates of thd-th tap of the channel in the forward and the backward divesti respectively.

The algorithm is then given as
of
for = f +2uea (4.9)

~b
fir = fo +2ueda (4.10)

- JPRR - T - T .
wherefy = [flo £ ... £, ] and® = [fo,fo, ... f, ]  are the estimates of the

channel vectofy in the forward and the backward directions, respectiyelyg, the associated
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step-size of the adaptatiorté, andeﬁ are the forward and the backward errors defined as

e = yi— ()T a (4.11)

@ = yo- () a (4.12)

The final estimaté, of the fading vector are again chosen to be the arithmetiageeof the
forward and the backward estimates given as
o b
~ fe+f
fr= XX (4.13)
2
The overall complexity of the bidirectional LMS algorithra mow contributed by (81 + 2)
complex additions and (8 + 4) the complex multiplications which is much smaller thaa th
optimal Wiener filter. As a final note, the proper estimatetheftransmitted symbols should
be replaced witlay in above equations if we deal with a real-life communicasgstem rather

than a system identification type problem, as before.

4.3 Tracking Performance of the Bidirectional LMS over Frequency-Selective

Channels

In this section, we evaluate the tracking performance obttieectional LMS algorithm over

a frequency-selective channel by making use of the restdtsepted in Section 3.3 and [61,
63]. We concentrate only on the tracking quality of the l@dironal LMS algorithm rather
than the detection performance for the transmitted symibish will be the subject of the
next section. We therefore assume that the overall systapeisating in the training mode
such that the transmitted symb({m}{;:l are known a priori at the receiver. In addition, since
we are interested in the tracking performance of the algorithe system is assumed to be at
the steady-state condition. We remind that the transiteimalior of the algorithm is related

to the overall convergence rate which is beyond the scopesofvork.

In order to analyze the tracking performance of the bidioeel LMS algorithm over a time-
varying frequency-selective channel, we will derive a tietioal step-size dependent steady-
state MSE expression which benefits from the previous aisghgsformed in Section 3.3 for

a scalar case.
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The error performance surface, or equivalently the MSEtHisrproblem is given as

Jusex = Eflel? (4.14)
= Ef|w-fead] (4.15)
- E{Inf?) + E{|(fk—fk)Tak|2} (4.16)
= Jnin + (fk— 107 Efacall} (fi - ) (4.17)
= Jmin + Es ||fk - | (4.18)

-]ex k

whereeg is the overall tracking errodmn is the minimum achievable MSE due to the presence
of additive noise and is equal tdy, andJex k is defined as the excess MSE due to the noisy
gradient estimation and the time variation [61]. At the dieatate, we may express the

average MSE as follows

Juse = E{Jvsek} (4.19)
s 2
= Jnin + Es E{ [ fi—]*} (4.20)
[ S ——
Jvsie

whereJys e is defined as the mean square identification error, and iteckta the average
excess MSE, i.eJex = E{Jexk}, @sIusie = Jex/Es [63]. From this overview, one could

observe thallys g is the basic expression to be derived in order to charaetéyjizg .

In the above expressions, all the expectations are assuwontszldver the ensemble of [61]
in which a set of independent input symbols are transmittegt the same time-varying

frequency-selective channel, and the correspondingnhdistibservations are provided to the
bidirectional LMS algorithm to obtain a set of estimatﬁak:l. Under this scenariolys e

could be decomposed as follows
E{IIfi - "} = E{]| (i - Ef) + (Etfa - ) ||2} (4.21)

E{IIf - Eda |} + E{EH0 - 1]}
+2 Re(E {(f - Efful) (Etfd - 1) |} (4.22)

JIumsIE

Because the time-varying frequency-selective fading ohhkis assumed to be static across

the ensemble, we havg{fy} = fx and so that the last term in (4.22) could be simplified as
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in [61] as follows

E{(f -Ef)(Ef-f) ) = E{fEfI) - E{Rf;) - E{EfIERI)
+E{Efful i} (4.23)

= |EfQ| - Efaty - [[EG|] + EFf (4.24)

0 (4.25)

Therefore, we could simply ignore the last term in (4.22} &ys e of the bidirectional LMS
in time-varying frequency-selective channels is then egped as a sum of two terms which

are called the self-noisel{eir) and the lag Jiag) components [61], and is given as

wsie = Ef[f- ] (4.26)
: E{||fk — Effi) ||2}+ E{HE{fk} —fiy ||2} (4.27)

Jself Jlag
= Jself + Jiag- (4.28)

As before, any deviation of the fading dbeient estimatef,k, from the ensemble meaE{fk},
contributes to the self-noise part whilefdrences between the ensemble mean and the un-
known codficientfy result in the lag part [61]. Equivalently, from &i@irent perspectivelset
arises from the noisy gradient estimation of the error parémce surface wheredgg is just

due to time variation. In this section, we will separatelyivkethe steady-state expressions

for Jseir andJiag parts in order to determine a final expression for the stesalyg MSE.

4.3.1 Derivation of the Self-Noise ComponentXgs)

In this section, we will derive the self-noise componentahharises from the error in estima-
tion of the gradient of the error performance surface, oivedgntly the MSE, given in (4.14)
associated with the system identification problem undesidemnation. While derivinglset
expression, any time variation is ignored to be considesitst In the lag component and the

focus will be only on the #ect of the gradient estimation error, as is done in [57, 61].
The true gradients of the error performance surface in tivedia and the backward directions
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are given as

vl = 2Bk -fo) (4.29)

Ve = 2B - ). (4.30)
which make use of the results of Section 3.3.2. Since we carate on the error in gradient

estimation, we model the noisy gradient estimates in thedoat and the backward directions,

respectively, as follows

Vo=V +el = 2E(fi-f)+e (4.31)

Vh=VPred = 2B —f)+ el (4.32)

whereef; andeE are the associated error vectors of the gradient estimetithre forward and
the backward directions, respectively [57]. We assumeegbandeﬁ are composed of uncor-
related elements which are modeled to be zero-mean complegsian random variables. In
order to incorporate theffiect of gradient estimation error into the forward and thekinecd

adaptations, we express the conventional LMS adaptat®falaws

~

N o f
fior = fo = Vi (4.33)

b B ab
fleo = fo— Vi (4.34)

where@lz = —ZeIiak and@E = —2€&Pa for the conventional LMS algorithm with the associ-
ated errors& andeli givenin (4.11)-(4.12) [102]. Since we are interested indffiect of noisy
gradient estimation only, we prefer to express the adapimtjiven in (4.33)-(4.34) using the

gradient estimates in (4.31)-(4.32) as follows

+f +f ~f
fr = Tk — 2uEs (e —f) —peg (4.35)

b b b
fien = B — uEs (o —fi) —pep. (4.36)

Before going into further detail, we define the forward arelllackward tap-weight tracking
errors asqz = ﬂz —fx andvE = fE—fk, respectively. In order to express the adaptations given in
(4.35)-(4.36) in terms of tap-weight tracking errors, wstfgubtracfy.1 from both sides and
then replacdy,, with fx at the right side which is a result of the time invariance agsion

as follows

f
Vk+1

(1 - 2uEq)v, —ue, (4.37)

Ve, (1 - 2uEVE — €. (4.38)

107



The next step is to further elaborate the self-noise exmesggven in (4.27). In order to get

rid of the inner expectatioE{fk} as a part of the self-noise expression, we take expectations

of (4.35)-(4.36) as follows

Effea) = Eff) - 24Es(Effc) - E{f} ) - Efel) (4.39)
—_——— —— ~——
—Ef}) =f =0
Effcs) = Effe) - 26Es(E[f}) - Effi} ) -1 E[€D). (4.40)
b —f -0
=E{f,} =Tk =

where E{ﬂzﬂ} = E{ﬂi} and E{fE_l} = E{fE} follows from the time invariance assumption,
E{fx} = fx is a consequence of the fact tligis common across the ensemble, eﬁ"{d;} =
E{eE} = 0 by definition [57]. After some straightforward steps in3@)-(4.40), we have
E(ft} = fy andE{fL} = fy, andE{fy) is therefore found to be

+f b
E {fk} + E {fk} f
2 k + fk
E {fi} = 5 =~ =T (4.41)

with the help of (4.13). As a result of these findings, the-seise expression given in (4.27)

becomes
2 2R 2 2
Jsarr = E{ [[f — EL |} = E{ 1 = Al } = E{ivct?) (4.42)
wherevy = fy — fy is the overall tap-weight tracking error which is given as
Rt Ge-fo s G-t vt .44
- T2 kT 2 -T2 '
The self-noise defined in (4.42) could therefore be evatliase
Jseit = E{IvclP} (4.45)
f p\H /. f b
v Y Ve Y
E {[ > > (4.46)
f |2 2 f\H
c[lF) efwr) eefelefea)
= 2 + 2 + 5 - (4.47)

Note that, the computation cE{llvl‘;llz} and E{||v||?} for frequency-selective channels are
different from those for flat-fading channels. The reason far difference is that the well-

known independence assumption employed for the analysisflat-fading channels is not
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valid for frequency-selective channels siragés are correlated for consecutive valueskafs
a result of the memory of the channel at hand. In [65, 64], ariive expression is given
for the mean-square energy of the tap-weight tracking avioch could be expressed at the

steady-state as follows

12\ _ HMEs _
E{”VKI ” } T Es— u[(M - 1)Es + E4 Jmin (4.48)

whereE, = E {Ja*}. We could further simplify (4.48) assuming BPSK signallasjfollows

E{Ivia [} = l/j'x'M Innin (4.49)

Note thatvy; in (4.48) and (4.49) stands for ti¢h element of the tap-weight tracking error
for the unidirectional LMS algorithm and is therefordfdient from (4.45). Note also that

(4.49) withM = 1 simplifies to the same result presented previously foifflding case.

The expectation in the last term of (4.47) could be furthabetated with the help of the
modified adaptations (3.38)-(3.39) as follows

e{(ve)" ()

E{[(l — 2uE, —pel ] (@ - 2uEND, - yeE+1]}(4.50)
= (1-2uE)’E {(Vlz—l)H VE+1} - u(l-2uEqE {(Vlz—l)H GE+1}
—pu(1- 2uEQE {(e;_l)H vE+1} + 1%E {(e;_l)H 6E+1} (4.51)

- - 2,uES)2E{(V|i_1)H (VE+1)} (4.52)

where (4.52) makes use of the assumptions that the elemblaisamd elE are zero-mean
random variables which are mutually uncorrelated from eattler and from the elements
of V|£ andvE, which follows directly from [57]. After stficient number of iterations, (4.52)

becomes
E{(vlﬁ)H(vE)} - (1—2,uEs)LE{(V(f))H (vE)} (4.53)

The result obtained in (4.53) could be ignored safely sifice 2uEg < 1 is the stability
condition of the conventional LMS algorithm, and thereftte- 2E)- < 1. Consequently,
the self-noise expression becomes

ﬂMzEs
Jmin,
2(Es—u[(M - 1)Es + E4)])

Jself = (4-54)
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which is observed to depend on the step-gizéhe minimum achievable MSE which is equal
to the noise variance, the number of taps, iM,, of the frequency-selective channel, and
second and fourth moments of the input signal. The selfenpist for the bidirectional LMS

algorithm is also observed to be half that of the conventiaiS algorithm as before.

4.3.2 Derivation of the Lag Component {jag)

As stated before, the lag component of the MSE arises frontirtiee varying nature of the

unknown system. Since we have considered fliece of noisy gradient estimation in the
self-noise derivation, we assume perfect gradient estmat this particular case and focus
only on time variation [61, 63]. When the gradient is assurtelde estimated without any

noise, the adaptive processes turn to be original steepssent algorithm as follows

+f ~f ~f
for = fo— nVp=(1-2uE) Ty + 2uEsh (4.55)

zb zb ~b
fir = fo— uVl=(1-2uEq)f, + 2uEsfy. (4.56)

where the true gradienl%; andVE are given in (4.29)-(4.30). In order to cope with the time
variation in a better way, we prefer to translate the adepigtinto the frequency domain, as
in [61]. To this end, z-transform of (4.55) and (4.56) are poed, and the results are then

rearranged as follows

' = zﬁQ %—gﬂa (4.57)
e = z{il= ;'/;ﬂa (4.58)

wherep = 1 — 2uEg is the geometric ratio of the adjustments, as befofe} Ztands for the
elementwise z-transform of its vector argument 8@p= Z{fy}. The z-transform ofk is then

found through (4.13) as follows

f(2) =

'o+P@ 1(1-8
2 E(zﬂ z1-

)ﬂa (4.59)

and the z-transform of the tap-weight tracking error acicmylgt becomes

f@ -2 = HD (2. (4.60)
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In (4.60),H(2) is the transfer function for the bidirectional LMS algbnt which is indepen-
dent of the channel characteristics to be estimated, aridan gs

1+/3+1—/3( 1 )
28 B \1-pzt 1-4z1)

H@) = - (4.61)

which is equal to the one found in Section 3.3.2.

The next step is to further elaborate the lag expressiomdivé4.27) in order to get rid of
the inner expectationE{fk}. Due to the reasons explained in Section 3.3.2, we know that
E{fi} = fx under the assumptions made during the lag derivation. Goesely, the lag

expression given in (4.27) becomes

Jag = E{JEM0 -]} = E{ [~ ]} (4.62)
M-1

E{|ﬁd ~ f |2} (4.63)
1=0

One of the consequences of (4.63) is that Jpg could be interpreted as the sum of mean-
square energies present in the element-wise trackingserrer, fL,|— fiyforl =0,1,...,M-1.
Due to the symmetry, the mean-square energy in the trackiog is therefore evaluated in

the frequency domain as follows [63]

Jlag = % j:” |H(ejW) |2 S(w) dw (4.64)

with a priori knownS(w) which is the power spectrum of the frequency-selectivantad

channel.

As a result, the final expression for the steady state MSIEvengfor anM-tap frequency-

selective fading channel as

Iusie = Jself + Jiag

_ /leES . M T iw 2
= 2(E-al(M-DEs+E ™ Z,TLT|H(€‘ )|” S(w)dw, (4.65)

and the steady-state MSE is therefore found to be

Jvse = Jmin + EsJusie
M2E2
_ (1+ 1% s
2(Es—u[(M - 1)Es+ E4])

)Jmin“‘ MFES f [HE™) [ Sm)dw.  (4.66)
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The optimal choice for the step-size valugp, is again of interest to characterize the min-
imum achievable MSE at the steady-state. In order to deriyetheoretically, we express

(4.66) in terms of only3 and take derivative of the resulting expression with resfieg as

follows
dduse 0 (1-B)M?E2 EsM f" (2
=—{1 S Jmin H(Ee")|" S(w)d
p B {[ ’ 2(2E2 - (1-p)[(M - 1)Es + E4])] T _n| (e Stw dw
A2 T jw
=- =M 5 Jmin + EsM f H(e") oHE) S(w) dw
(2E2- (1-B)[(M - 1)Es + Ed]) T o %
(4.67)
wheredH(e") /98 is the same as before which is given as
jw _ _pB2_
oH(ev) _ (1 —cosw) (1-p5°-28+2cosw) (4.68)

B (1 + 2 — 2B cosw)?

The optimal geometric ratiG,pt could then be evaluated numerically using (4.67) and (4.68)

as follows

9Juse = 0 (4.69)
aﬁ ﬁ:ﬁopt

and the optimal step-sizg could be found agopt = (1 - Bopt) /2Es.

4.3.3 Numerical Results

In this section, we will present numerical results in oraevérify the MSE derivation for the
bidirectional LMS algorithm operating at the steady-stater frequency-selective Rayleigh
fading channels. The superiority of the bidirectional LM&aaithm in tracking the unknown
communication channel as compared to the conventionairanttbnal LMS and the optimal
MMSE filter will also be demonstrated through these resuls.this end, we compare the
theoretical MSIE of the bidirectional LMS algorithm obtaththrough the numerical compu-
tation of (4.65) with the experimental MSIE results, whick abtained through Monte Carlo
simulations, for both the bidirectional and the unidirentl LMS algorithms together with
the optimal MMSE filter. We prefer to compare the MSIE valuesmalized with respect to

the number of channel taps, i.8ys g, Which is defined as follows

Jusie
M

IMSIE = (4.70)
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whereM was previously defined as the number of taps of the frequeel®ctive channel.

The properties of the frequency-selective channel undesideration is given in Section 4.1.
Without any loss of generality, we assume that all taps offteguency-selective channel
experience independent Rayleigh fading with the normdl2eppler f4Ts = 0.01 and the

Jakes’ power spectrum [98], unless otherwise stated. Videpatsvide some examples for the
double-Gaussian ans the Gaussian spectrums to discussnbelbty of the previous results.
The number of taps of the channel is chosen tdvbe- {2, 4} throughout the simulations
where a uniform power delay profile is assumed unless otBerstated. In each Monte Carlo
run, a set oL = 100 information symbols are chosen independently from th8IBalphabet

A = {-1, +1} with the symbol energ¥s = 1.

0.6 I
BIiLMS (Experimental)

*  BILMS (Theoretical)

7( BIiLMS (Theoretical, 1-tap Channel) 4
—x— BILMS (Experimental, Imperfect # of Taps)

— - — - UniLMS (Experimental)

0.4 L —+— - UniLMS (Experimental, Imperfect # of Taps) ]

V| - — — MMSE (31-tap) A

0.5

Normalized MSIE

Figure 4.1: Theoretical and experimental normalized MRUIEHILMS for varying step-size

at SNR=10 dB over a 2-tap Rayleigh fading ISI channel witfTs = 0.01. The experimental
MSIE for UniLMS and a 31-tap optimal MMSE together with thedhetical MSIE associated
with 1-tap channel are also provided.

In Fig. 4.1, the experimental normalized MSIE results fa lidirectional and the unidirec-
tional LMS algorithms and the 31-tap optimal MMSE filter aregented together with the

theoretical normalized MSIE for the bidirectional LMS afigiom over a 2-tap frequency se-
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lective Rayleigh fading channel at= 10 dB SNR. We observe that the bidirectional LMS
algorithm produces much lower normalized MSIE than the ivedtional LMS algorithm
does for any choice of the step-size, and the minima assdcieith the normalized MSIE of
the bidirectional LMS algorithm is very close to the optildMSE filter with 31 taps. This
conclusion verifies the fact that tracking performance eflidirectional LMS algorithm is
much better than that of the unidirectional LMS algorithnd dras near-optimal behavior as
compared to that of the optimal Wiener filter. For comparigarposes, the results associated
with the termJseis = u/(2(1 — u))JImin Which is based on the approach presented in [61] and
corresponds to a 1-tap channel with BPSK modulation is alseigeed which shows a signif-
icant deviation from the experimental data. The resultsafointeresting case in which the
receiver employs both the unidirectional and the bidicewl LMS algorithm with an imper-
fect knowledge of number of channel taps are also providezslobgerve that both algorithms
yield a degraded results when the number of channel tapgisriettly by the receiver taken

to be 1 over a 2-tap multipath fading channel.

0.3 \ \
BIiLMS (Experimental)
%  BILMS (Theoretical)
0.25k BIiLMS (Theoretical, 1-tap Channel)| |
N — - —- UniLMS (Experimental)
N — — — MMSE (31-tap)
N\
0.2 N b
18] \
g N
o N
8 0asf N\ .
< N
€ N
0.1f N il
0.05
0

Figure 4.2: Theoretical and experimental normalized M®IEFILMS for optimal step-size
over a 2-tap Rayleigh fading ISI channel withTs = 0.01. The experimental MSIE for
UniLMS and a 31-tap optimal MMSE together with the theortiMSIE associated with
1-tap channel are also provided.
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We present similar results in Fig. 4.2, but for varying SNRI &y using optimal step-size
values for both the bidirectional and the unidirectional &Mlgorithms. We observe that the
theoretical MSIE results of the bidirectional LMS exhibigaod match to the experimental
ones both of which are very close to that of the 31-tap optMidISE filtering for each SNR
level when optimal values for the step-size are used. Wepbssent the experimental MSIE
for the optimal MMSE filters in Fig. 4.3 with various numbertaps. By comparing Fig. 4.2
and Fig. 4.3, we observe that the MMSE filter with a number p$ ®maller than 31 achieve a
worse tracking performance than the bidirectional LMS ety at low SNR regime. Hence,
the bidirectional LMS could be considered to be superior tive MMSE filter in the sense
that the former achieves a very similar tracking perforneatacthe latter at an extremely low

computational complexity.

0.35 ‘

—*— MMSE (5-tap)
—<— MMSE (11-tap)
—©— MMSE (21-tap) |
—+— MMSE (31-tap)
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Normalized MSIE

0.1

0.05

Figure 4.3: Experimental normalized MSIE for MMSE with \@ars number of taps over a
2-tap Rayleigh fading ISI channel with T = 0.01.

In the subsequent figures, we present the performance sesdt a 4-tap Rayleigh fading
frequency-selective channel witiqTs = 0.01. In Fig. 4.4, we observe that the theoretical
results for the bidirectional LMS algorithm again closeblidw the experimental ones for

any choice of the step-size. Together with the results ptedan Fig. 4.4, we also observe
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that the tracking performance of the bidirectional LMS aitipon is much better than that of

the unidirectional LMS algorithm and is very close to thettbfithe optimal MMSE filter
with 31-tap.

BiLMS (Experimental)
0.9r *  BILMS (Theoretical) !

BiLMS (Theoretical, 1-tap Channel)
— - — UniLMS (Experimental) !
— — — MMSE (31-tap) !

08} |

0.7r

Normalized MSIE

Figure 4.4: Theoretical and experimental normalized MRUEHILMS for varying step-size
at SNR=10 dB over a 4-tap Rayleigh fading ISI channel wiffTs = 0.01. The experimental

MSIE for UniLMS and a 31-tap optimal MMSE together with thedhetical MSIE associated
with 1-tap channel are also provided.
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Figure 4.5: Theoretical and experimental normalized M®IEFILMS for optimal step-size
over a 4-tap Rayleigh fading ISI channel withTs = 0.01. The experimental MSIE for
UniLMS and a 31-tap optimal MMSE together with the theortiMSIE associated with
1-tap channel are also provided.
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Figure 4.6: Experimental normalized MSIE for MMSE with \@ars number of taps over a
4-tap Rayleigh fading ISI channel with Ts = 0.01.
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We now investigate thefiectiveness of the theoretical optimal steps-size valuesubpt's,

for the bidirectional LMS algorithm computed according #6(7) and (4.68). We present
the resulting theoretical values fog: together with the associated experimental ones for a
2-tap and 4-tap Rayleigh fading frequency-selective cawith fgTs = 0.01 in Table 4.1
and Table 4.2, respectively. We observe from these resdtdtie theoreticalkyp: values are
very close to the experimental results for a variety of SN&m@mmber of channel tap choices.
This result is believed to have a significant practical inioce from system design point of
view since it eliminates the necessity of excessive expantmto findugp: for a genie-aided

scenario.

Table 4.1: Theoretical and Experimental Optimal Step-§igg) Values for a 2-tap Rayleigh
Fading ISI Channel witHygTs = 0.01

SNR | 0dB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16dB |

Experimental| 0.060 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.100 | 0.120 | 0.120
Theoretical | 0.056 | 0.062 | 0.069 | 0.076 | 0.084 | 0.092 | 0.100 | 0.109 | 0.119

Table 4.2: Theoretical and Experimental Optimal Step-§igg) Values for a 4-tap Rayleigh
Fading ISI Channel witHgTs = 0.01

SNR | 0dB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16dB |

Experimental| 0.040 | 0.050 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.110 | 0.110
Theoretical | 0.044 | 0.050 | 0.055 | 0.061 | 0.067 | 0.074 | 0.080 | 0.087 | 0.095

We also investigate the performance of the bidirectionalS_&lgorithm for nonuniform
power delay profiles. Towards this end, we use the 3-tap Rr@akhannel [102] for which

the impulse response of the average magnitudes is giverlasso

h = {0.407,0.815 0.407} (4.71)
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Figure 4.7: Experimental normalized MSIE for BILMS and UME with optimal step-size
and MMSE filter with various taps over a 3-tap Rayleigh fadfdbchannel withfgTs = 0.01.
A nonuniform power delay profile of Proakis-B channel is used

The overall fading cd@cients for the time-varying channel taps are obtained aiogly as

follows

f|2,| = h fi (4.72)

forl =0,1,...,M — 1 whereh; is thel-th element oh and fy, is a unit-energy sample from

a Rayleigh fading realization witliyTs = 0.01. Keeping the other system parameters the
same, Fig. 4.7 presents the experimental normalized M3#tsefor the bidirectional and
the unidirectional LMS algorithms both of which operatetwibe optimal step-size values
together with the MMSE filter with various number of taps. Wserve that the bidirectional
LMS algorithm is again superior over the unidirectional LMIgorithm at any SNR value,
and has a similar tracking performance with the 31-tap MM&é&rfiwe also note that, even
the 21-tap MMSE filter has a worse error performance thanittiesbtional LMS algorithm

at low SNR regime.

Finally, we consider the MSIE results in Fig.4.8-4.11 fotap-and 3-tap multipath fading

channels with the double-Gaussian and the Gaussian spectiinaracterized by the same
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parameters given in Section 3.3.3. From these results,idivedtional LMS algorithm is ob-

served to have the same advantage of near-optimal perfcemas a diference, we observe
that there are some deviations in the theoretical resulia the experimental ones for the lag
part which represents the time-varying nature of the ugdeylchannel. Note that, such de-
viations do not significantly change the optimal step-siazlei@ and the minimum achievable
MSIE. Note also that, fading channels with AR type autodatien are discussed in Sec-
tion 3.7.1 to show a similar behavior when channel dynanreshanging very fast which is

the case here.
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Figure 4.8: MSIE for UniLMS, BILMS and 31-tap MMSE for a 2-t&Bl channel with the
double-Gaussian spectrum characterized®y Cp) = (0.5,1), (fa, fp) = (40,-50) Hz and
(a, 0p) = (30,20) Hz aty = 5 dB.
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Figure 4.9: MSIE for UniLMS, BILMS and 31-tap MMSE for a 3-té®l channel with the

double-Gaussian spectrum characterized®y Cp) = (0.5,1), (fa, fp) = (40,-50) Hz and
(0ra, 0p) = (30,20) Hz aty = 15 dB.
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Figure 4.10: MSIE for UniLMS, BILMS and 31-tap MMSE for a 2ptéSI channel with the

Gaussian spectrum characterized By, Cp) = (1,0), (fa, fy)) = (0,0) Hz and 64, 0p) =
(40,0) Hz aty = 5 dB.
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Figure 4.11: MSIE for UniLMS, BILMS and 31-tap MMSE for a 3ptéSI channel with the
Gaussian spectrum characterized By, Cp) = (1,0), (fa, fy) = (0,0) Hz and {4, 0p) =
(40,0) Hz aty = 15 dB.

4.4 Hfect of Imperfect Doppler and SNR Information

In this section, we generalize the results presented inide8t5 to the multipath fading
channels with the system model given in Section 4.1. Adfi@m@ince, we make use of the
estimates of the independent channel paths in order to wemtatistical &iciency. The LS

cost function for the Doppler spread estimation accorgimgicomes

Q M-1Lt-1, 2
11 Ram(1)  r(l; fq
"l =3m IO (O.f) (4.73)
= 55 1 [Kgm(©0) - 1(05 o)
whereKgm(l) is
A 1 Lo
Ran) = 77 2 fiml Ko™ (4.74)
k=0

We now present the associated numerical results over a Ragleigh fading channel with

Jakes’ spectrum andyTs = 0.01 for a number ofL = 200 independent and identically
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distributed BPSK symbols. In Fig. 4.12, the robustness @fllgorithms under consideration
to the imperfect Doppler estimate is depicted at 10 dB. The performances of the Doppler
and the SNR estimation algorithms are also presented in4-@ for which we assume
that fy € [0,500] Hz. Since we incorporate the statistics availableubhothe independent
channel taps as an importanffdirence from the flat-fading case, employing multiple frames
is observed to achieve no significant performance improwtroeer the single frame case
and we therefore choos@ = 1. The observations are very similar to that of the flat-fgdin

case.
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Figure 4.12: MSIE for UniLMS, BILMS and 31-tap MMSE over a &tRayleigh fading
channel for imperfect Doppler spread estimafg, wherey = 10 dB, fy = 100 Hz and
Ts=0.1ms.

123



0.5

¢ - BILMS (Knowny & fd)

0.45 B> - UniLMS (Knowny & fd)

0.4k * - MMSE (Known y & fd)
' —— BILMS (L = 10, Unknown y & f )

035¢ —O— BILMS (L =20, Unknowny&f) |
w
n 03f —p— UniLMS (L = 10, Unknown y&fd) H
=
o —[>— - UniLMS (L = 20, Unknown y & f )
X 0.25 @ |
= ~ —%— MMSE (L = 10, Unknown y & f )
£
5 0.2f —%— - MMSE (L = 20, Unknowny &f) 1
2

0.15f
0.1
@

0.05f

Figure 4.13: MSIE for UniLMS, BiLMS and 31-tap MMSE for knoveimd estimated Doppler
and SNR over a 2-tap Rayleigh fading channel with Jakes’tsppmovherefy = 100 Hz and

4.5 Hfect of Imperfect Initialization

In this section, we generalize the results on the imperféiialization presented in Section 3.6
to the frequency-selective fading channels. We again usérarig block which consists dft
independent and identically distributed BPSK symbols gteoito provide an initial value for
the fading vector at the beginning of the data block. The fasi®ens are received according

to (4.2) with the signal variance of?. We consider the LS initialization given as

f=AH(AAH) Ty, (4.75)

as well as the zero initialization for the frequency-selectading channels. In (4.75§, =
[fI fIT]T is the estimate of the fading vectoss, = diagaj, ... a] } is the pilot matrix

andy = [y1 ... y]" is the observation vector.

The Monte Carlo results for the bidirectional LMS algorithwith the aforementioned initial-
ization methods for various data block lengths and SNR ageqmted in Fig.3.30-3.32. The
channel is a 2-tap Rayleigh fading with Jakes’ spectrum faild = 0.01. We again observe
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that zero initialization is dticient for most of the blocklengths and that LS initializatiwith

Lt = 2 achieves a satisfactory performance.
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Figure 4.14: MSIE for BiLMS with zero and LS initializatiotiggether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakg@arum andfyTs = 0.01 at
v =5dB.
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Figure 4.15: MSIE for BIiLMS with zero and LS initializationsgether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakgg&rum andfyTs = 0.01 at
v =10 dB.
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Figure 4.16: MSIE for BiLMS with zero and LS initializatioiggether with perfectly initial-
ized UniLMS over 2-tap Rayleigh fading channel with Jakg@arum andfyTs = 0.01 at
v =15dB.
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For frequency-selective fading channels, we consider tbdifiékd CRB (MCRB) in order to
determine a lower bound on the initialization error. The MERpresented in [117] for scalar
parameter estimation problems and then generalized irl fbli®ie vector case. It is much
easier to compute the MCRB than the CRB in the presence ofuilsamce parameters which
are the transmitted symbols in our case. In [117], it is atemng that the MCRB approaches
the CRB in many cases of interest, especially at high SNRregihich is given in [119] as
v > 0dB.

The MCRB for the frequency-selective fading channels uedesideration is given as

E{Ifs - fuil’} = () (4.76)

wherem = i(M — 1) + j is the modified index. ThenodifiedFisher’'s information matrix

(MFIM) for this particular case is defined as

aln ,fla) dIn Jfla
Jom = Ea{Ey,f{ E;(f;i/j ) gf(:/j/l )}} (4.77)
~ 0Inp(y.fla)

for which the following expectations could be readily ob&d as before

#Inp(y|f.a) &2In p(f)
R AT e SR Ferrion BECEL
- 2

R+ (4.80)

N

Consider the following probability density function

1 (e — 7 a)”
P (Yklfk, &) = NTT expi—————— (4.81)

2072

by which we could obtained the joint probability density étion as follows

Lt - 1 Lt
pylf,a= 1_[ P (Yklfk a) = (210%)"7 exp{—ﬁ P (Vicl fics ak)}- (4.82)
k=1 77 a

The associated derivatives are then computed as follows

dlnp (ylf, a) a_j

=ELRE - H-fa) (4.83)
1]

8?Inp (ylf, a) ai_j a—j

ooty T o O (4.84
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Therefore J}  is obtained as

ajar_j 1
T = —Ea{Ef {Eylf {—% 5ii/}}} =3 Siir Gjj’ - (4.85)

From the results presented in Section 3.6, we obtain

8?In p(f) _
J2 —Ef{—1 = (RT . 4.86
mmt = {8fi,j8fi/’j,} ( f )mm ( )

As a result, MCRB for the frequency selective fading chasnelder consideration is found

to be

1 -1
Jnm = ;(5”/5”/ + (Rf )mm . (4.87)

By comparing the expressions in (3.140) and (4.87) with= 1, we observe that the MCRB

expression is equivalent to that of the CRB except for the tecluding the following inte-

CPepl LW 1ie
f f cosh(Jv) du exp{— > vz} dv (4.88)

gration

wherel, is shown in [119] to go to O for the moderate and high SNR vaiueh fulfills
the equivalence of the MCRB and the exact CRB bounds for tB&He regions. In order
to verify this result, we compute the MCRB according to (4.8% the flat-fading channel
specified in Section 3.6.2 and obtain the same results assdavith the CRB.

In Table 4.3, we present the MSIE for LS initialization and #ssociated MCRB witht = 2
over the 2-tap Rayleigh fading channel specified in thisigectIn order to improve the
performance of the LS estimation, we assume that the cha&net changing duringi.r = 2
symbol intervals although it is changing very slowly durithgs time slot. Note again that,
zero initialization yieldslys e = 1 as argued before, and that the LS initialization viith= 2
results in a satisfactory performance in terms of initetiian. In addition, the associated
MCRB guarantees that much lower MSIE values are also pes§iblLy = 2. As a final

remark, all SNR computation is according to (4.4).
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Table 4.3: MCRB and MSIE for LS Initialization over 2-tap Reigh Fading withfyTs =
0.01 andLy = 2.

SNR 5dB | 10dB | 15dB

MCRB | 0.1370| 0.0481| 0.0160
LS 0.9444 | 0.3004 | 0.0961

4.6 Iterative Channel Estimation for Frequency-SelectiveChannels

This section considers the iterative channel estimatiotimogewith the estimation algorithms
under consideration in a more realistic communication aderwith a coded time-varying
frequency-selective channel. Although some the followiags are similar to those presented
in Section 3.8, we would like to explicitly overview the tsneiver model and the estimation

algorithms leaving some details to the previous sectiomsduide a better understanding.

4.6.1 Transmitter and Receiver Models

In this section, we make use of the equivalent discrete-tiomeplex baseband channel model
given in (4.1) for time-varying frequency selective chasndés a diference, the transmitted
symbols{ak}k:1 are assumed not to be chosen independently from a finite taplraany
more and are generated by the concatenated structureimglicicannel encoder, interleaver,
modulator and the PSAM block. The mechanism of the PSAM bleakow modified ac-
cording to the channel characteristics such that it ingertsa single pilot symbol but a short
block of pilot symbols periodically, and the iterative ra®ee is updated accordingly.

by G C, M 3

—— Encoder —— Interleaver ——> PSK ——> PSAM ——

|

Pk
Pilot Symbols

Figure 4.17: Transmitter model including channel encouerleaver, PSK modulator and
PSAM block.

The transmitter block diagram under consideration is shiowfig. 4.17 which is similar to
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Fig. 3.41 except that some blocks operate infeedent fashion details of which is explained
later in this section. In this model, a set of binary infor'matsymbols{bk}tgl are generated
randomly from the binary s€0, 1} in an independent fashion, and are encoded by a channel
code of ratéR;. The set of coded symbolsk}t;1 with L. = % are then interleaved to increase
the resistance against the burst errors. The resultingaateed coded symbol{‘zr.{(}t;l are
then modulated using a PSK modulator, as before, with a findgdulation alphabe#. The
symbols{mk}t:l at the output of the modulator withy, = W"zml are then multiplexed with

a set of pilot symbol$pk}|'i'1p which are known a priori at the receiver and are chosen from
the same alphabe#i. The resulting set of symbo[sak}k:1 are then transmitted through the

time-varying multipath fading channel given in (4.1).

The PSAM mechanism for this particular case operates sttt modulated symbols are
first split into groups oM, — M symbols prior to the multiplexing, which is called the pilot
block, whereM is the number of resolvable multipaths present in the cHaflen, M pilot
symbols are inserted into each of these pilot blocks afm(r-“ﬁgﬂ — M)-th individual element
as shown in Fig. 4.18. Note that this transmission schemielenahannel estimation unit to
employ the symbol vectm{sap(i)}iL:pl with p(i) = (i — )M, + (% — M) since elements of

. . T
ay() are the a priori known pilot symbols such tiagfiy = [ap) ap)-1 - - - ap()-ms1] -

ofo| - [pfP[=|P[P[D] - [D
M_ +1 M, +1 Indices of
1 2 P~ P M
2 M‘ 2 +1 ’ } Data Symbols
M, +1 M, +1 Indices of
-M+1 P Pilot Symbols

Figure 4.18: The structure of a single grouphd§ symbols in a transmitted PSAM block for
frequency-selective fading channels.

In this modified PSAM transmission scheme, the necessaryeuaf pilot symbols ardiL

whereL p is computed to be

RS - (%= - ™)

Lm— (Mp2+l _ |\/|)

1=
Mo—-M |

Lp = +1. (4.89)
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As a result, the final data sequer{e@}{;:l to be transmitted is given as follows

o] Mt k#(-DMp+ 82 _(j-1),i=12...,Lp j=12...,M;
Pot s k= (-DMp+ 22 _(j-1),i=12...,Lp j=12...,M.
(4.90)
where the indice&n(k) andkp(k) are given to be
Kk — (Mpz+1 _ M)
kn(k) = k—-||————=|+1| M, (4.91)
Mp
Mp+1
Mp +1 k—(=5=-M)
Ko(k) = k- -M|-|————| (Mp - M). (4.92)
2 M,
The associated frame lengthis then computed accordingly to be
Lg Mp+1
L L R.10g, [A] _( 2 M)
L=—2 4L,= + +1| M. 4.93
Relog, |l ~ P~ Rclog, |A| [ Mp— M (4.93)
We also define the set of indices associated with the pilobsysras follows
_ Mp+1 (Lp- M)
Pp = (i-1)Mp+ > -(j-12) (4.94)
(i, )=(11)
Mp+1 M+ 1 Mp+1 (4.95)
= -M+1 ..., e .
2 2
1-st pilot block
2Ly, - 1My +1 2Lp—-1)Mp+1
e 2) R VPPN Con' 2) P } (4.96)

Lp-th pilot block

Because the optimal design of the patterns or the valuekdquitot symbols is again beyond
the scope of this work, we choose the pilot symbols to be eguathe of the elements of the

modulation alphabe# without any loss of generality.

We employ the similar receiver structure as in the flat-fgaiase which is shown in Fig. 4.19.
In this iterative receiver, the observations are first serihé channel estimation unit and the
resulting estimate is employed in LLR computation. The tesyLLR sequence is deinter-
leaved and pushed to the soft decoder. The log-MAP algoriglemployed in the soft decoder
to produce the soft estimates of both the original data sysrdred the coded symbols. The
initial channel estimate is obtained by making use of theeplagions and the a priori known

pilot symbols only. The quality of the channel estimate ipiaved by making use of the soft
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Figure 4.19: Receiver model for a time-varying frequenelestive fading channel with iter-
ative channel estimation.

information on the coded symbols through iterations, asreef\We again assume that LLR
computation and feedback units are capable of symbolttteel LLR conversion and vice

versa, if necessary.

The input LLR of the symbaéy ati-th estimation iteration is given as

o P(ak:1|y,f(i))
LY(ak) = log P(ak=—1|y,f(i)) (4.97)
P(y,ak:1|f“’)
= log (4.98)

P(y, a = —1|f(i))

o [T po T
which is a suboptimal approach as stated in Chapter 3, ancbffle= [(fk ) cees ( k+M—1) ]
is the set of estimates of the unknown multipath fading ckhm thei-th iteration and
Y = [Vk ..., Yem—1]" is the set of observations involving the contributionagf LO(ay)

could be further elaborated as follows

f(i))

> Plva

L0(a) = log 2= - (4.99)
P(y, a f('))
a a=-1
P ([1". %)
| a=1
_ jog XX P(y|f(i),a{() (4.100)
a ra=-1

where the constrairg, : a is defined as the sef = [ak-m+1 ... » @, ... , &+m-1] In Which
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ay takes the specified value. Singgs are uncorrelated for a given channel estimate, an

equivalent expression is obtained as follows

k+M-1 <)
Z l_[ P (yﬂ fn 9 aﬂ)
0 B =1 n=k
LY (ak) log peTVE] » (4.101)
P (Yn fn s an)
a ta=-1 n=k
wherea, is previously defined ag, = [a, ..., ar-m+1]. Using the channel model given in
(4.1), the final form of the corresponding LLR becomes
~nT |2
keM-1 Yn = (fr?)) an
expq —
a;%:l 1n:ll< No
LO(a) = log — (4.102)
2(0)
kﬁl Yn — (fnI ) an
exps —
aa=—1 n=k NO

Note that LLR of the coded symbotx’s and the modulated symboig(’s are equivalent
due to the BPSK assumption for this particular case, and emtbre do not need any bit-
to-symbol level LLR conversion or vice versa. The rest of dperation is the same as in

Section 3.8.1.

4.6.2 Channel Estimation Algorithms for Frequency-Seleate Fading Channels
4.6.2.1 MMSE Channel Estimation

In this section, we will overview the MMSE channel estimatamopted to frequency-selective
channels leaving details to Appendix B.2. In the initiairesttion iteration, the estimator uses

only the pilot symbols and the corresponding observatiei®liows

W -wmy (4.103)

T . U . .
wherey, = [yp@ --- Yp(y| is the observation vector including all available obsdorat

associated with the pilot symbols. The optimal MMSE filtecasnputed according to
-1
W =P A (ApRp Al + Nol ) (4.104)
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whereP, = E{ff}} andR, = E{f,f} are the cross-correlation and the autocorrelation
matrices,f, = [fp(l) fp(Lp)]T is the fading vector corresponding to the pilot indices and

Ay is the pilot matrix given as

[ T
aqg 0 .. 0
0 a, ... O
Ap=| a"_(z) T (4.105)
o 0 A,y |

In the subsequent iterations, the desired estimate aitthigeration is obtained according to

FO_wy (4.106)

wherei > 1. For this case, the MMSE filter at tivh iteration is given as

] owH [ o H -1
w0 = R, (A(')) (A("Rf (A(") + NOI) (4.107)

whereR; = E { ffH } is the autocorrelation matrix ar is the data matrix given as

(@) o ... o
_ AM\"
A0 | ° (a? ) (_) (4.108)
0o 0 (aﬁ’)T

4.6.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 4.2.2, the conventionabineictional LMS algorithm adopted
to the iterative channel estimation problem for a time-irayyfrequency-selective fading

channel is given for theth iteration as follows

0 = 10+ 2ud0 a0 (4.109)

wherei > 1 so that we employ the algorithm after the initial channéheastion iteration, as

before, and is the step-size value of the adaptation. The error n;(j)rin (4.109) is given as
. T
& =y - (flﬁ") a0, (4.110)
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4.6.2.3 Bidirectional LMS Channel Estimation

As described in Section 4.2.2, the forward and the backwdaptations of the bidirec-
tional LMS algorithm adopted to the iterative channel eation problem for a time-varying

frequency-selective fading channel are given forittieiteration as follows

O R0 2t 040 (4.111)

ﬂ?ig) _ ff’(i) +2/ie;?’(i)ét(<i) (4.112)

wherei > 1 as beforey is the common step-size value aeio“) andeE’ O are the associated

error terms given as

>

) s T .
L0 yk—(fkf’(')) () (4.113)

. T
R 2 (4.114)

The final estimaté.” is again given to be

co B+ B0
f =X —k

. (4.115)

4.6.3 Numerical Results

We now explore the performances of the channel estimatigorighms presented in Sec-
tion 4.6.2 over a time-varying frequency selective chamvi#t the transmitter and receiver
models introduced in Section 4.6.1. AfBcient number of Monte Carlo simulations are
performed to produce statistically significant results. ussal, Rayleigh fading with Jakes’
model is considered for the temporal variation of each ofcii@nnel taps which are mutu-
ally uncorrelated. We assume BPSK alphabet throughoutithelaions except for some

examples using QPSK symbols with some special setting.

At the transmitter, a set dfy = 98 symbols are chosen from the $&tl} in an independent
and identical fashion. A rate. = 1/2 convolutional encoder with generatot $17)g is used
together with 2 termination bits, and a numberlgf = 200 coded symbols are produced
accordingly. After passing through a random interleaves, doded symbols are modulated
using a BPSK modulator without any loss of generality. O RSAM block inserts the

necessary pilot symbols into the modulated stream, the s$etabf symbols are transmitted
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through the time-varying frequency-selective fading ct@munder consideration. The pilot
symbol spacing is chosen to b, = 11 throughout the simulations which results in a number
of ML = 2x22 = 44 pilot symbols for each of the transmitted block.of 244 symbols. The
pilot overhead percentage is therefor#8D3 and the overall transmission rate, iR= Lg/L,

becomes @016 with these settings.

At the receiver, the feedback of the estimates of the codetbels is in the form of soft-

decisions to achieve a better error performance. The nuofl@yannel estimation iterations
is chosen to be 3 beyond which all the algorithms are obsetvedturate. In addition, both
the unidirectional and bidirectional LMS algorithms usdim@al step-size values which are
determined in trial and error basis for each SNR level. Thaildeof the receiver is explained

in Section 4.6.1.
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Figure 4.20: BER for BiLMS, UniLMS and MMSE wittM,, = 11 over a 2-tap Rayleigh
fading ISI channel withfgTs = 0.01. All results for BiLMS and UniLMS are associated with
the 3-rd estimation iteration.

We evaluate the performance of the estimation algorithnteuoonsideration through BER
and normalized MSIE statistics with various Doppler fregmechoices. Fig. 4.20 presents
the BER results for the bidirectional LMS algorithm, unélitional LMS algorithm and
MMSE filter with 21 and 31 taps after the 3-rd channel estiormatteration. The BER per-

formance associated with the initial channel estimate foiclv MMSE filter is used together
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with all the available pilot symbols is also added to provishelerstanding the power of the
iterative channel estimation idea. We make a number of gasens for this particular case
as follows. First of all, the BER performance of the bidirectl LMS algorithm is very close
to that of the MMSE filter after 3 channel estimation iterao We observe that the BER
performance of the optimal MMSE filter employing only thegpisymbols is & the known
channel bound by almost 4 dB at BERO 2. The iterative estimation of the unknown chan-
nel enables the bidirectional LMS algorithm to fill this gapzdB so that the associated BER

performance is only 2 dBfbthe known channel case.
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—6— MMSE (21-tap, 3 iterations)
—>— MMSE (31-tap, 3 iterations)
—<— BIiLMS (Perfect Initialization)

— - — - BILMS (Imperfect Initialization)
—H— UniLMS (Perfect Initialization)
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Figure 4.21: Normalized MSIE for BiLMS, UniLMS and MMSE withkl, = 11 over a 2-

tap Rayleigh fading ISI channel withyTs = 0.01. All results for BiLMS and UniLMS are
associated with the 3-rd estimation iteration.

The dtect of imperfect initialization on the bidirectional LMSgalrithm is also investigated
for practical purposes by employing estimates of the chlacweficients from the previous
estimation iteration for the initialization instead of thetual values. The associated results
in Fig. 4.20 show that no degradation occurs in the perfomaanf the bidirectional LMS
algorithm as a result of imperfect initialization. Finallye observe that the unidirectional

LMS algorithm proposes no further improvement over thaahithannel estimation.

In Fig. 4.21, we present the performance of the algorithnideuonsideration through the

normalized MSIE results. We first determine the statistesoaiated with the optimal MMSE
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filtering which uses all the available pilots only as a refieee level, and observe that the
bidirectional LMS algorithm with both perfect and impeféaitialization together with the
MMSE filter lay below the reference level for all SNR choicekigh implies improvement
in channel estimation quality through iterations unlike tase for unidirectional LMS algo-

rithm.

BER
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Known Channel

—%— MMSE (Pilots Only)

1074 —©— MMSE (21-tap, 3 iterations)

—<— BILMS (Perfect Initialization)
— - — - BILMS (Imperfect Initialization)

—H— UniLMS (Perfect Initialization)

5 ‘
0 2 4 6 8 10 12
Y

10

Figure 4.22: BER for BiLMS, UniLMS and MMSE wittM, = 11 over a 2-tap Rayleigh
fading ISI channel withfgTs = 0.02. All results for BiLMS and UniLMS are associated with
the 3-rd estimation iteration.
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Figure 4.23: Normalized MSIE for BiLMS, UniLMS and MMSE withl, = 11 over a 2-
tap Rayleigh fading ISI channel withyTs = 0.02. All results for BiLMS and UniLMS are
associated with the 3-rd estimation iteration.

The results for BER and MSE statistics for a much faster Rglylading channel witiy T =

0.02 are presented in Fig. 4.22- 4.23. We observe that the@MMSE filter achieves a
BER performance which isfbthe known channel bound by 2 dB after 3 channel estimation
iterations. The BER performance of bidirectional LMS altfon is somewhat worse than the
21-tap MMSE especially at a high SNR regime for this challegdast time-varying scenario,
but nevertheless is better than that of the MMSE filter udiegpilots only, i.e., initial channel
estimation, by more than 2 dB. The unidirectional LMS altfori performs so bad that the
corresponding BER performance with the soft estimatesettded symbols isfbeven the

pilots only case. These results could also be observed iMFA§.

In Fig. 4.24-4.25, we also present the results for QPSK naditul with the constellation
given in Fig. 3.43. Keeping all the other system parametegssame, we assume a 2-tap
Rayleigh fading channel with Jakes’ spectrum &I s = 0.01. We observe that the per-
formance of MMSE filter with 11-tap is worse than the bidirectal LMS algorithm and one
should use a 21-tap filter to fill this especially at high SNBi@oa. We also observe that the
unidirectional LMS algorithm with the soft estimates noways performs worse than the

pilots only case, unlike the results for BPSK.
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Figure 4.24: BER for BiLMS, UniLMS and MMSE for QPSK modulati with M = 11 over

a 2-tap Rayleigh fading ISI channel withTs = 0.01. All results for BiLMS and UniLMS
are associated with the 3-rd estimation iteration.
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Figure 4.25: Normalized MSIE for BiLMS, UniLMS and MMSE forR®K modulation with
M, = 11 over a 2-tap Rayleigh fading ISI channel witfTs = 0.01. All results for BILMS
and UniLMS are associated with the 3-rd estimation iteratio
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4.7 Conclusion

Estimation of time-varying frequency-selective chanm@tsconsidered in this chapter which
is indeed a generalization of the flat-fading case. Becéwesehannel to be estimated is rep-
resented by a vector at each time epoch, the estimationithigarwith suficiently low com-
plexity is of significant importance. The bidirectional LM&orithm is therefore revisited
and investigated over frequency-selective channels bgteramentally and analytically. The
results for both the coded and the uncoded communicatideragsndicate the superiority of
the bidirectional LMS algorithm both in terms of its gooddkang performance as compared
to the optimal Wiener filter and its low-complexity strucgimilar to the unidirectional LMS

algorithm.
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CHAPTER 5

THE BIDIRECTIONAL LMS ALGORITHM FOR
MULTI-INPUT MULTI-OUTPUT CHANNELS

MIMO technology where both the transmitter and the recesequipped with multiple an-
tennas has attracted much attention for over a decade wigieiformance-enhancing capa-
bilities. The MIMO technology fiers to use the spatial dimension properly to achieve the
diversity andor the multiplexing gain and mitigate the adverskeets of fading. Very high
data rates are possible through the use of multiple antemtrizsth sides of the communica-
tion link. As such, the MIMO technology is believed to be orig¢h® key ingredients of the

next generation wireless standards [120, 121].

In this chapter, we consider the estimation and trackingnoétvarying MIMO communica-
tion channels particularly by using the bidirectional LMgaithm. Indeed, this chapter is
a generalization of the results in Chapter 3 and Chapter é.cbhsidered channel model is
flat-fading so that each of the subchannels to be estimatesaalar random variable as in the
case for Chapter 3. Besides, since the symbols transmitted different antennas arrive on
top of each other at a receiver antenna, the associatedasuirlk should be estimated jointly

which results in a vector operation as in the case studiedhap@r 4.

5.1 System Model for Flat-Fading MIMO Channels

We consider a flat-fading MIMO communication channel whilkeipresented at a time epoch
k by a matrixHy of sizeN x M whereM andN are the number of transmitter and the receiver
antennas, respectively. Because we are dealing with thenehastimation problem, we

assume that the channel matti is known neither at the transmitter nor at the receiver.
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The (m, n)-th element of the channel matrk is indicated byh,mk which represents the
subchannel between tm-th transmitter and the-th receiver antennas, and is assumed to
have a unit energy. The subchannels are assumed to havediladr-icharacteristics with the
same statistics. It is also assumed that there is no coorla¢tween the subchannels so that

we have the following expression

E{ MmNy | = Sy S 1(K = 1) (5.1)

wherer(+) is the autocorrelation function of the underlying fadir@onel.

An information symbolany with a symbol energyes = E{|amk|2} is chosen independently
from a finite alphabetA as before, and is sent through the transmitter antemn@he cor-
responding discrete-time equivalent complex basebanahehanodel is then given at a time

epochk as follows

M
Ynk = Z hnmk @mk + Nnks (5.2)
m=1
= hlpac+ Nk (5.3)
forn =1, 2, ..., N, wherey, is the observation symbol at timeth receiver antennay =

[ark &2k --- aM,k]T is the transmitted symbol vectchlk = [hnik hnz2k - - - hamk] is then-th
row of Hy, andn, is a sample from a circularly symmetric white complex Gaasgirocess
with zero-mean and varianddy. As could be inferred from (5.2)-(5.3), we assume perfect
information on the block and symbol timings as well as theieafrequency. The channel

relation could also be expressed in a more compact form as in

Yk = Hiakx + ng (5.4)
]T

.
wherey, = [yikYok ... Ynkl andng = [Nyxnok ... Nk

The received SNR for each receiver antenna is then given as

M 2 MM Smnt 1(0) Es oy
E{ mz_l hnmk 8mk } Zmzl E {hamk Dy i} E {amk @y i
— — — m= =
T Elln? No ©5)
M
Es ) E{|hnmk|2}
m=1 M Es
= < =N (5.6)
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where (5.6) makes use of the result of (5.1), and the facttl‘reaa‘.(;et{amk}m=1 is assumed to
be uncorrelated. The information symbol SNR is accordirgyen asy = y,/R whereR s

the overall transmission rate of the communication system.

5.2 Estimation Algorithms for Flat-Fading MIMO Channels

In this section, the channel estimation algorithms undasickeration is revisited to be modi-

fied according to the needs for the flat-fading MIMO channetielgiven in Section 5.1.

5.2.1 The MMSE Channel Estimation

In order to estimate a complex subchannelfitoent h,nk, one should consider many and
possibly all correlated values of this fading @ib@ent during a transmission block. As a
result, the set hnmk}l';:1 should be estimated jointly. Furthermore, since each @htien

at a single receiver antenna has a partial information osudthannels terminating at that
antenna according to (5.2), the $et1mk}k:1, m=1,..., M, should be estimated jointly for
optimal operation. As a result, the optimal Wiener filtergddoe derived to estimate the set
of vectors{hn,k}k:l, or equivalentlyh, = [hl1 hI’L]T, jointly which may also be inferred

from (5.2).

The corresponding MMSE estimator is then given as follows

hn = Why, (5.7)

forn = 1, 2, ..., N, whereW, is the estimation filter to be optimized apg= [yn1 - .. yn,L]T

is the concatenated observation vector associated with-tiheeceiver antenna.

We also note that (5.7) could be modified such that overalinasor is derived for a single
subchannel vectdt, instead of the complete set of unknown fading vectgrsandor less
number of observation vectors could be employed insteadl dfie available observation

vectorsy,,. These two choices will hopefully reduce the associatedpedational complexity.

The optimal MMSE filter is computed through the Wiener-Hgpéquations which are ob-

tained by following the similar steps explained in AppenBid and are given as

Whn = Phy.n R;)%n (5.8)
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wherePp, , = E { hn y,'ﬂ} andRyy = E{yn yH } are the cross-correlation and the autocorrela-
tion matrices, respectively. Indeed, this is the sametresesented in [122] which is obtained

by deriving the maximuna posteriori(MAP) estimate of the unknown channel vector.

AssumingK observation symbols to be employed in estimatmg, the pre-filtering stage
given in (5.8) requires a matrix inversion of complex@®(K?3) and a matrix multiplication
of complexityO (M K?) while the filtering stage in (5.7) need4 (K — 1) complex additions
and M K complex multiplications. In order to estimate the completannel matrixy, the

required computations are repeatédimes.

5.2.2 The Unidirectional and The Bidirectional LMS Algorithms

The conventional LMS algorithm over a flat-fading MIMO chaisis given as [57]

I'A1n,k+1 = ﬁn,k + 2 €enk (5.9)

forn = 1,2, ..., N, whereyu is the associated step-size amgk is the estimation error

associated with the-th receiver antenna defined as

~T
€k = Ynk — Nk ak. (5.10)

The conventional LMS algorithm just neetis(M + 1) complex additions and\Ne(M + 1)

complex multiplications in order to estimate the channelrixa

. of ~ . . . .
Let us deflnehnmk and hﬁmk to be the estimates of the fading @@&ent hyy in the forward
and the backward directions, respectively, which are smted in vector form aﬁ,:,k =

~ ~ A T ~ A ~
AL A o Al andhn, = [RE, hoy.] "+ The bidirectional LMS algorithm

Rb
A -

is then given as

o f nf f
hn,k+l = hn,k + 2u €k (5.11)

~b
ok = Ao + 2uel,a (5.12)

forn = 1, 2, ..., N, whereu is the associated step-size of the adaptatieh§andeﬁk are

the forward and the backward errors associated with{ereceiver antenna which is defined
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as

o f
e Yk = (Nni)" & (5.13)

~b
= Yok — (" ac (5.14)

The final estimate is again chosen to be the arithmetic agaxfttpe forward and the backward

estimates as follows

~f ~b
" h,, + h
LS L 5 nk (5.15)

forn=12 ..., N.

The bidirectional LMS algorithm with this setting requitd¢3M + 2) complex additions and
N (5M + 4) complex multiplications. As a result, the overall conxte of the bidirectional
LMS algorithm is close to the conventional unidirection® & algorithm as compared to that

for the optimal MMSE filter.

5.3 Tracking Performance of Bidirectional LMS over MIMO Fla t-Fading Chan-

nels

In this section, we evaluate the tracking performance obit&ectional LMS algorithm for
a flat-fading MIMO channel. As we discussed in the previougise, the update equations
of the bidirectional LMS algorithm for a flat-fading MIMO chael is very similar to that for
the single antenna frequency-selective fading channelsidgered in Chapter 4. We therefore
benefit from the results of [61, 63] and Section 4.3 as muchoasiple, and remove some

similar intermediate derivation steps.

We again concentrate only on the tracking quality of therbitional LMS algorithm at
the steady-state and assume that the overall system istiogeirathe training mode where

{amk}m=1 are known a priori at the receiver. The corresponding ereoiopmance surface, or
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equivalently the MSE, is given for a flat-fading MIMO chanmaslfollows

Jusek = E{llelP) (5.16)
= E{ Iy Fiea} (5.17)
_ E{||(Hk-F|k)Tak+nk||2} (5.18)
= E{lne?} + E{ ]| Hk- A" a |} (5.19)

N N
= D E{|nn,k|2} +Es 3 [ bk = Bk (5.20)

n=1 n=1

N Jmin Jex k

whereg is the overall tracking erroiey « is the excess MSE, and the minimum achievable
MSE due to the presence of additive noise is qualtéi, with Jmin = Ng, as before. We

may express the average MSE at the steady-state as follows

E{JIvsek} (5.21)
N

N Jmin + Es Y E { I[Pk — P ||2} (5.22)

n=1

ImsE

JVSIEN

where Jus g n is the MSIE associated with the estimation of tikéh column of the chan-
nel matrixHy. Due to the statistical symmetryys e n iS common for any choice af =

1,2,...,N. As aresult, the average MSIE becomes

N

Ivse = Nmin + Es Z JMSIEN (5.23)
n=1

= NJnin + EsN Jusie (5.24)

whereJus g is redefined here to be the MSIE in estimating any columris,of

We note thatJys e = E { [| Pk = Ak ||2} is derived in Section 4.3 for frequency-selective
channels which is exactly the same for our case. Therefsieg the results of Section 4.3,

Jwvs e for a flat-fadingN x M MIMO channel is given as

uM2NEg
2(Es—u[(M - 1)Es + E4))

MN " i
Juste = Jun+ e [ HEM[ swdn (529

and the steady-state MSE is found to be

UM2NE2
2(Es—u[(M - 1)Es + E4])

MNEs
2n

Jvse=|1+ )Jmin"‘ f IH(ejW)I2 S(w)dw (5.26)
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where S(w) is the power spectral density of the underlying fading nhoded the transfer

function H(el) is given as

__1+,8 1-p 1 B 1
= 2% % (1—/3e—jw 1_%€jw)- (5.27)

Note that since the correlation property of the input vex#grare diferent for the frequency-
selective and MIMO channels, the above expressions aredr¢a be approximate. Never-
theless, the associated results given in the next sectiohsisrved to be satisfactory. This

consideration may be further investigated as a subject atiuad work.

The optimal choice for the step-size valugy, is again of interest to characterize the min-
imum achievable MSE at the steady-state. In order to deriyetheoretically, we express

(5.26) in terms of only3 and take derivative of the resulting expression with resfieg as

follows
duse 0 (1-B)M2NE2 EsMN f” (2
=—{|1 - Imin + — H(e™)[" S(w)d
op p {{ ' 2(2E§ - (1-B)[(M -1)Es + E4])] i _n| ()| Sw) dw
Ann2 T jw
- — EsM™N > Junin + Es MN f H(eiW)mS(w)dw
(2E2 - (1) [(M - 1)Es + E4)) . %
(5.28)
wheredH(elV)/dp is the same as before which is given as
jw _ _p32_
oH(ev) _ _(1 cosw) (1 — 3% — 2B + 2 cosw) (5.29)

B (1 + B2 — 2B cosw)?

The optimal geometric ratiG,pt could then be evaluated numerically using (5.28) and (5.29)

as follows

Ouse =0 (5.30)
aﬁ ,Bz,gopt

and the optimal step-sizg: could be found aggpt = (1 — Bopt)/2Es.

5.3.1 Numerical Results

In this section, we investigate the accuracy of the MSE dédwn for the bidirectional LMS

algorithm operating at the steady-state over a time-vgr{liai-fading MIMO channel. We
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compare the normalized MSIE results for the bidirection®3_algorithm, unidirectional
LMS algorithm and MMSE filter which are obtained through Mei@arlo simulations to-
gether with the theoretical normalized MSIE computed atiogrto (5.25).

As a brief overview, we assume a time-varying MIMO systemigoged withM = 2 transmit-
ter andN = 4 receiver antennas where each subchannel between a titensmd a receiver
antenna pair experience a Rayleigh fading with Jakes’ mawiglf3Ts = 0.01 in a spatially
uncorrelated fashion. In each Monte Carlo run, a sdt ef 100 information symbols are
chosen independently from the BPSK alphatiiet {—1, +1} with the symbol energ¥s = 1.

In this case, the normalization is performed on MSIE wittpees to number of the both the

transmitters and receivers as follows

NYEYS
MN

Jvsie = (5.31)

0.6 ‘ .
. / J
! | BIiLMS (Experimental) /
sk | \ — - — - BILMS (Theoretical) / |
' \ — - — - UniLMS (Experimental) / :
\ — — — MMSE (11-tap) /
\ —<— MMSE (21-tap) /

Normalized MSIE

0 | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 5.1: Theoretical and experimental normalized MRUIEHILMS for varying step-size
at SNR=5 dB over a Rayleigh fading MIMO channel witQ Ts = 0.01 and (M, N) = (2, 4).
The experimental MSIE for UniLMS together with a 11-tap adet@p optimal MMSE filters
are also provided.

In the figures in this subsection, we present the experirhantamalized MSIE for the bidi-

rectional LMS algorithm, the unidirectional LMS algorithemd MMSE filter with various
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number of taps together with the theoretical normalized B8k the bidirectional LMS al-
gorithm. In Fig. 5.1 and Fig. 5.2, these MSIE performancesdapicted for varying step-size
aty = 5dB andy = 10 dB SNR, respectively. We observe that the theoreticailtsefor the
bidirectional LMS algorithm have a good match to the experital ones except in the neigh-
borhood of the associated minimum points for bete 5 dB andy = 10 dB cases. Indeed,
such a conclusion may be expected since there ar@ 2= 8 subchannels to be estimated
which naturally amplifies the small deviations of the thé¢ioes results from the experimental
ones as compared to a single channel estimation problemngresantenna flat-fading case.
We also observe that the normalized MSIE of the bidirectiah4S algorithm is better than
that of the unidirectional LMS algorithm and is very closarie MMSE filter. The associated
result for the 11-tap MMSE filter is worse than that of the f@dtional LMS algorithm at
v = 5dB and better than it = 10 dB while the 21-tap MMSE filter has a superiority over the
bidirectional LMS algorithm for both of the SNR choices.

0.4 \
| BiLMS (Experimental) 7
0.35F | BiLMS (Theoretical) /A
\ — - — - UniLMS (Experimental) /
03 L ‘\ - - = MMSE (ll—tap) _/ .
| —— MMSE (21-tap) /
" .
7 0-25
=
e)
& 02
©
£
2 015

0.1

0.05

Figure 5.2: Theoretical and experimental normalized MRUEHILMS for varying step-size
at SNR=10 dB over a Rayleigh fading MIMO channel wifgTs = 0.01 and (M, N) = (2, 4).
The experimental MSIE for UniLMS together with a 11-tap adet2p optimal MMSE filters
are also provided.
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0.35 ‘

BiLMS (Experimental)
—%— - BILMS (Theoretical)
0.3 — — — UniLMS (Experimental) |
—<— MMSE (11-tap)
—o&— MMSE (21-tap)
0.25k 7

0.15

Normalized MSIE

0.1

0.05

Figure 5.3: Theoretical and experimental normalized MBIEHILMS for optimal step-size
and varying SNR over a Rayleigh fading MIMO channel wigfiTs = 0.01 and M,N) =
(2,4). The experimental MSIE for UniLMS together with a 11-tagg21-tap optimal MMSE
filters are also provided.

Similar conclusions could also be made from Fig. 5.3 wheeestime statistics are now de-
picted for varying SNR and optimal step-size choices folhe@hIR level. In Fig. 5.3, we
observe that the 11-tap MMSE filter starts achieving a béfiStE performance than the
bidirectional LMS algorithm after an SNR threshold of appneately y = 8 dB. In Fig. 5.4,
we also provide a comparison between normalized MSIE vdluethe MMSE filters with

various number of taps in order to complete the picture.

We now investigate thefiectiveness of the theoretical optimal steps-size valuesubpt's,
computed according to (4.67) and (4.68). In Table 5.1, tkeltiag theoretical values for
Hopt together with the associated experimental ones are pegséarta 2< 4 MIMO Rayleigh
fading channel witifgTs = 0.01. We observe from these results that the theoretigabalues
are very close to the experimental results for small SNRegluhile a deviation occurs for
high SNR values which is obviously due to the deviations efttieoretical results from the

experimental ones explained before in this section.
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Figure 5.4: Experimental normalized MSIE for MMSE with \@ars number of taps over a
Rayleigh fading MIMO channel witligTs = 0.01 and M, N) = (2, 4).

Table 5.1: Theoretical and Experimental Optimal Step-§izgg;) Values for a 2x 4 MIMO
Channel withfqTs = 0.01

SNR | 0dB | 2dB | 4dB | 6dB | 8dB | 10dB| 12dB| 14dB | 16dB |

Experimental| 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.110 | 0.120 | 0.140 | 0.160
Theoretical | 0.056 | 0.062 | 0.069 | 0.076 | 0.084 | 0.092 | 0.100 | 0.109 | 0.119

5.4 Iterative Channel Estimation for Flat-Fading MIMO Chan nels

5.4.1 Transmitter and Receiver Models

In this section, the equivalent discrete-time complex basd channel model given in (5.2) is
employed for the estimation of time-varying flat-fading MMchannels with the transmitter
block in Fig. 5.5. In this model, a set of binary informatic;nrrfbols{bk}tg1 are first generated

randomly in an independent fashion by using the binaryGd$, and are encoded by a chan-
nel code of ratdR.. The set of coded symbolsk}l'zil are then interleaved to combat with the
burst errors and the interleaved QE{gt}l'Zil is produced wheré; = %. The interleaved coded

symbols are then pushed to the serial-to-parall@P)®lock such that consecutive symbols
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Figure 5.5: Transmitter model including channel encodderieaver, multiplexer, a set of
PSK modulators and PSAM blocks.

are mapped to éierent transmitter antennas sequentially as shown in Fé&g. Bhe set of
coded symbols associated with each transmitter are thewlated using a PSK modulator,
as before, with a finite modulation alphal#@t At each transmitter antenna branch, the asso-
ciated set of modulated symqunk}t:l with Ly, = W“gzlﬂl are multiplexed with a set
of a priori known pilot symbolg pmk}ltzp1 chosen from the same alphaly@t The resulting
set of symbols{amk}k:1 are then transmitted through the time-varying flat-fadinigchannels

according to (5.2).

Lol

Figure 5.6: The serial-to-parallel /& conversion at MIMO transmitter.

Note that the PSAM mechanism for this particular case opsras in Section 3.8.1 such that
the modulated symbols at each transmitter branch are filistirsjo the group ofM, - 1
symbols and a single pilot symbol is then inserted into th#ereof each of these groups.
Because the pilot symbols are used at the same locationl floe &ransmitter branches, they
are represented by vectors {m}t:pl prior to multiplexing wherep, = [pPik P2k - - - pM,k]T.
This transmission scheme implies that the transmitted syw@ztoray for a given time epoch
k is either completely composed of the unknown data symbotkem= priori known pilot

symbols.
The necessary number of pilot symbols are determined tMlg for this multi-antenna
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scheme wheré, is given using the result of (3.180) as

L — 25— MR —
Lp = T +1= Mo T +1, (5.32)
and the associated frame lendtls found to be
Lg Lg MR; :Bdgz Al Mpz_l
L:W+Lp: MR. Tog, 1] Mp—1 + 1. (5.33)

Consequently, the final sequence of vec{amsk:l to be transmitted is expressed as

Mt k#(-DMp+ 82 =12 . Ly
a = o - (5.34)
P k-(Mp+1)/2 K=(@{-1)Mp+ p2+ ,i1=12..., L.

Mp

The set of indices associated with the pilot symbol vectoestransmitted block are the same

as (3.183) which is given by

Pp = {kp(i) }i=1 - { G 5 5 (5.35)
wherekp(-) specifies the indices of the pilot symbol vectors defined as
i i Mp+1
Ko(i) = (i = 1)Mp + > (5.36)
P«
l i LV (c,)
PSAM Feadrg?ck <—k Interleaver
& ()
Yk Channel fk( ) LLR L (C;( ) L (©J) Soft )
T 7 Estimator Computation—>De'merleaver—> Decoder —— e |,

T 1 LY (by)

Figure 5.7: Receiver model for a time-varying flat-fadinghNU system with iterative chan-
nel estimation.

The receiver structure under consideration is given in ¥ig. Leaving some operational de-

tails to Section 4.6.1, we assume BPSK modulation withoytlass of generality. In order
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to compute the input LLRs of the transmitted symbols, we fiefrem the results of [123]
where a block-fading channel model is considered insteaal tohe-varying multi-antenna
channel as is the choice for this particular case. We emph#ise point that the LLR compu-
tation presented below is admittedly not optimal in the sehat it does no take into account
the imperfection of the associated channel estimate aguediin [124]. Nevertheless, deriv-
ing optimal receivers such as the one given in [124] is beytbedscope of this work, and the

one presented here is believed to work well enough from oimt jod view.

The input LLR of the symbody ,, associated with thexth transmitter antenna arketh sym-

bol time at tha-th estimation iteration is then given as

c(an= 1 )
o= )
P (Vi an = 1|

P (Vie am=-1| A )

LO(am) = log (5.37)

= log

(5.38)

which is a suboptimal approach as stated in Section 4.6dLy\mmareI3|S) is the estimate of

the channel matrixy at thei-th iteration.L®(ay ) could be further elaborated as follows

Z (yk’ak|H(l))

log &=t (5.39)

Z (Yk, é))

& - m=—

Z (yk|H(l) )

= Jog Bt (5.40)

Z (yk|H(l) )

ax: akm=-1

LO(axm)

where the constraind, : amy refers to the set of’'s whosem-th elementa,x takes the
specified value. Sincg,k’s are uncorrelated for a given channel matrix at a given &meach

k, we may obtain the following equivalent expression

P (ynk hrg?(’ ak)

akagm=1

LO(am) = log , (5.41)

e o)

—=| L=

ID(Ynk

I
iy

a:axm=—1 n

£

155



and it becomes with the help of (5.3) as follows:

LO(agm) = log . (5.42)

Note that LLR of the coded symbotg’'s and the modulated symbatg’s are equivalent due
to the BPSK assumption and we therefore do not need any-sitrtinol level LLR conversion

or vice versa. The rest of the operation is the same as indbegi8.1.

5.4.2 Channel Estimation Algorithms for Flat-Fading MIMO C hannels

In this section, we overview the channel estimation alparg for time-varying flat-fading
MIMO channels. Because the formulations presented hereeayesimilar to those given in

Section 4.6.2, we will present some important results only.

5.4.2.1 MMSE Channel Estimation

An initial estimate for estimate df, at thei-th iteration is given as follows

~(1
AY —w Py, (5.43)

T. . .
whereyn’ID = [yn, kp(1) - - - Yn, kp(Lp)] is the observation vector received at thth antenna and
T
is associated with all the available pilot symbol vectorsfibinghy, p = [hn’ ko () Mk (L)
to be the subchannel vector associated with all the aveilailits, the desired Wiener-Hopf's

equations are given by (4.104) as follows
-1
W® =Py Al (ApRp AL + Nol ) (5.44)

where the subscript is removed since th®, = E{hyhl},} andR, = E{hy ,hff ;] do

not depend on the receiver antenna choice. Using (5.1), lanyeet ofP, andR, could be
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expressed as

E { Pam i hn’m,kp(j)} Onry Ommt T ( I - kp(J))
E { Fmko) Nk} = e S 1 (Kp(Q) = Kp(3) )
which clarifies the above claim.
In the subsequent estimation iterations, estimats, @it thei-th iteration is given as
RO —w@y, (5.45)

fori > 1 where the associated MMSE filter is given by (B.16) as folow

) G ~riyv\H -1
WO = Rer (A(I)) ( AVR,, (A(')) +NO|) . (5.46)

whereRy, = E{hn h,'ﬂ } is the the correlation matrix which does not depend on theivec

antenna index andA(i) is the data matrix introduced in Section 4.6.2.1.

5.4.2.2 Unidirectional LMS Channel Estimation

Following the result of Section 5.2.2, the conventionabineictional LMS algorithm adopted
to the iterative channel estimation problem for a time-wagyflat-fading MIMO channel is

given for thei-th iteration as follows
Ay = Al +2ued a0 (5.47)
forn =1, 2,..., N, wherei > 1 so that we employ the algorithm after the initial channel

estimation iteration as before, apds the step-size value of the adaptation. The error term

eﬂ?k in (5.47) is given as

. i \T
@ = Yok - (hn(f’k) 0, (5.48)

5.4.2.3 Bidirectional LMS Channel Estimation

As described in Section 5.2.2, the forward and the backwdaghtations of the bidirectional

LMS algorithm adopted to the iterative channel estimatioobfem for a time-varying flat-
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fading MIMO channel are given for theth iteration as follows

Avy = Ay + 2ue 080 (5.49)

Aoy = A + 2ueP 080 (5.50)

forn = 1,2 ..., N,wherei > 1 as beforeu is the common step-size value aq:qg) and

eg’ E) are the associated error terms given as

£.() S RONNG)

€k = Yk~ (hn,k ) a (5.51)
X ~ b, (i T N

0 = o - (i) &0 (5.52)

The final estimaté, y is found to be

B0 | ~b()
<@ Dk + bk

hy i = (5.53)

2

5.4.3 Numerical Results

In this section, we evaluate the performances of the chagstghation algorithms given in
Section 5.4.2 over a time-varying flat-fading MIMO channéhvthe transmitter and receiver
models introduced in Section 5.4.1. Rayleigh fading witke3amodel is assumed for each

of the uncorrelated subchannels with the temporal autelation given in (3.69).

We consider a MIMO system equipped with 2 transmitter anctdiver antennas. The speed
of each subchannel variation is determined by the commomalaed maximum Doppler
frequency which is chosen to igTs = 0.01 andfyTs = 0.02 throughout the simulations.
A set of Ly = 98 symbols are chosen from the $6t1} in an independent and identical
fashion at the transmitter. A rat®. = 1/2 convolutional encoder with generator, $17)g

is used, as before, together with 2 termination bits for eafcthe transmitted block, and
a number ofL; = 200 coded symbols are produced accordingly. After pas$imugh a
random interleaver, the coded symbols are distributedaeréimsmitter antennas such that the
consecutive symbols are associated witfeslent antennas. The resulting coded sequences for
each of the transmitter antennas are then modulated usifS& Bnodulator, and necessary
pilots are inserted into the sequence prior to transmisdibe pilot symbol spacing is chosen

to beM, = 11 throughout the simulations which results in a numbevaf, = 2x10 = 20 for
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each of the transmitted block of length= 220. The pilot overhead percentage is therefore

0.1 and the overall transmission rate, ilR5 Lq/L, becomes @455.

We prefer to transmit orthogonal pilot vectors chosen from Alamouti set [125] as sug-
gested in [126]. In Fig. 5.8, thefect of various pilot sequence choices are presented tagethe
with MMSE filter. A nonorthogonal pilot sequence usiagy only is observed to be extremely
bad, whereas the Alamouti set result in a better error padoce than the random BPSK

sequence where symbols are selected randomly from the et} for the latter.

BER

—*— MMSE (Pilots Only, Orthogonal) N
—3|| —<— MMSE (11-tap, Orthogonal, 5 iteration)

— ¥ — MMSE (Pilots Only, Random BPSK)

— © — MMSE (11-tap, Random BPSK, 5 iteration)
—+H— MMSE (Pilots Only, Non-Orthogonal)
—— MMSE (11-tap, Non-Orthogonal, 5 iteration)

10_4 i i i i
-4 -2 0 2 4 6

Figure 5.8: BER for MMSE withM, = 11 over a Rayleigh fading MIMO channel with
fqTs = 0.01 and (M, N) = (2,4). Orthogonal pilots are chosen from the Alamouti set, dhd a
pilots are 1 for non-orthogonal case.

At the receiver, soft-decision feedback is considered w/kis® number of channel estimation
iterations is 5 for which a good convergence behavior ismesk As usual, dicient number
of independent Monte Carlo trials are performed to produagssically significant results.
In addition, both the unidirectional and bidirectional LM&orithms use optimal step-size
values which are determined in trial and error basis for €xdR level. The details of the

receiver operations are explained in Section 5.4.1.
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Figure 5.9: BER for BILMS, UniLMS and MMSE witiM, = 11 over a Rayleigh fading
MIMO channel withfgTs = 0.01 and M, N) = (2,4). All results for BILMS and UniLMS
are associated with the 5-th estimation iteration.

In Fig. 5.9, we depict BER results for the bidirectional LMIgaithm, the unidirectional
LMS algorithm and the MMSE filter with 11, 21 and 31 taps ass@d with the 5-th channel
estimation iteration. The BER performance of the MMSE filiéter the 1-st channel esti-
mation iteration for which only all the available pilot syoib are employed is also provided
together with the known channel bound. We observe that, itfieebtional LMS algorithm
achieves a BER performance which is much better than thaeadati-tap MMSE filter and is
very close to that of the 21-tap and 31-tap MMSE filters. We alsserve that the BER of the
bidirectional LMS algorithm is fi the known channel by only 2 dB whereas this gap is 4 dB
for the initial channel estimation with the MMSE filter usiadj available pilots. In addition,
imperfect initialization for the bidirectional LMS algdnim in which the estimates of channel
codficients from the last iteration is used to initialize the aitjon is observed not to cause
any performance degradation. Finally, the unidirectidridlS algorithm is observed fill this

gap from the known channel only 1 dB.
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Figure 5.10: Normalized MSIE for BILMS, UniLMS and MMSE witM, = 11 over a
Rayleigh fading MIMO channel witligTs = 0.01 and M, N) = (2, 4). All results for BILMS
and UniLMS are associated with the 5-th estimation iteratio

We also depict the normalized MSIE statistics in Fig. 5.1@asponding to the Monte Carlo
simulations presented through BER results in the previgusdi \We observe that the normal-
ized MSIE of the bidirectional LMS algorithm is much bettban that of the 11-tap MMSE
filter and is close to the 21-tap and 31-tap MMSE filters, arat tmperfect initialization
does not cause a significant performance degradation, esebefhe normalized MSIE of
the 11-tap MMSE filter is observed to be better than the reterestatistics corresponding to
the initial channel estimation after= 1 dB SNR whereas this thresholdyis= 2 dB for the
unidirectional LMS algorithm angt = —1 dB for the rest of the algorithms. Consequently,

these observations absolutely coincide with those infieinem Fig. 5.9.
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Figure 5.11: BER for BILMS, UniLMS and MMSE witiM, = 11 over a Rayleigh fading
MIMO channel withfgTs = 0.02 and M, N) = (2,4). All results for BILMS and UniLMS
are associated with the 5-th estimation iteration.

In Fig. 5.11 and Fig. 5.12, we depict the BER and normalizedBMi@sults for a faster
Rayleigh fading channel witlyTs = 0.02. For this case, the bidirectional LMS algorithm is
observed to achieve a similar performance to that of theapIMMSE filter and a better per-
formance than that of the 11-tap MMSE filter at high SNR. Thidivectional LMS algorithm

is observed to degrade the performance associated withittzé channel estimate except for
a small region at very high SNR. The results show that the B&Responding to the initial
channel estimate isithe known channel bound by as large as 6 dB, and that this gagyis

3 dB for the bidirectional LMS algorithm and 21-tap MMSE filgter 5 estimation iteration.
In this sense, the bidirectional LMS algorithm is obserne@dhieve almost 1 dB SNR im-
provement over the 11-tap MMSE filter, and is very robust @ithperfect initialization with
the channel estimates from the previous estimation iteratfter these common conclusions
for both figures, we also observe in Fig. 5.12 that the bitimeal LMS algorithm and the
21-tap MMSE filter achieve a better MSIE results than thahefreference level associated
with the initial channel estimate after almgst 1 dB SNR whereas this threshold is as large

asy = 5 dB for the unidirectional LMS algorithm.
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Figure 5.12: Normalized MSIE for BiLMS, UniLMS and MMSE witM, = 11 over a
Rayleigh fading MIMO channel witligyTs = 0.02 and M, N) = (2, 4). All results for BILMS
and UniLMS are associated with the 5-th estimation iteratio

5.5 Conclusion

A time-varying flat-fading MIMO communication channel isnsidered in this chapter with
the purpose of searching for thieient ways of channel estimation. The channel under
consideration has some similarities with both the flat- aaddency-selective fading channels
and indeed a kind of generalization for both of these previchuannel models. Because the
channel to be estimated is in the form of a matrix varying wiitie, the resulting complexity
associated with the optimal Wiener filter is extremely hi§he bidirectional LMS algorithm

is shown to achieve a close tracking performance to the aptiiener filter in both coded
and uncoded environments at a very low level of complexitychvlis comparable to that of
the conventional unidirectional LMS algorithm. The trawkibehavior is analyzed and the
associated optimal step-size is derived. A step-size digpersteady-state MSE expression is

obtained together with the optimal step-size expressidtisawsatisfactory accuracy.
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CHAPTER 6

CONCLUSION

6.1 Contribution

This work considers estimation of time-varying communaathannels with low-complexity
and near-optimal algorithms. Making use of the bidiredaiosignal processing techniques
present in the literature, the bidirectional LMS algoritiswonsidered as an extension of the
well-known conventional unidirectional LMS algorithm. iShalgorithm is shown to achieve
similar MSE statistics as that of the optimal Wiener filtedansome specific scenarios as
well as the BER and BLER statistics in both genie-aided amttdcommunication systems
closer to real-life scenarios. Beside this good trackinidgjtgbthe complexity increase as a
result of a bidirectional processing is shown to be stillraicical levels as compared to both
the conventional LMS and the optimal Wiener filter. In aduiti the bidirectional LMS algo-
rithm is also proved to be robust to the imperfect initidi@a which improves its practical

value.

One of the major contributions of this work is the steadyesteacking analysis of the bidi-
rectional LMS algorithm. The analysis derives a step-sigeetident steady-state MSE ex-
pression which is valid for any kind of channel charactesswith a known power spectrum.
Therefore, the proposed analysis is valid, for examplefHerRayleigh fading with a well-
known nonrational Jakes’ spectrum as well as a simple r@tgpectrum characterized in the
time-domain by an AR process. In addition, much simpler fafihe steady-state MSE
expression is obtained for AR channels by transferring thguency-domain computations
into the time-domain. The optimal selection of the steg-sialue for the bidirectional LMS

algorithm is also presented using the result of the stetatg-81SE analysis. The numerical
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evaluations show a very good match between the theoretidadxperimental results for a va-
riety of time-varying channel choices including singldeama and multi-antenna structures
with flat and frequency-selective fading. The analysis alsamws that the best performance is

achieved when the forward and the backward step-size vaheesqual.

In performance analysis of the bidirectional algorithmpedal attention is devoted to frequency-
selective fading channels since the so-called indeperdassumption is not valid due to the
memory of the channel of interest. The steady-state MSEysisak therefore modified for
frequency-selective channels to take into account thespanding vector structure. The as-
sociated comparisons between theoretical and experihmestats exhibit a good match for

frequency-selective channels, as well.

Finally, we have realized that although there are varioudiss present in the literature on
the bidirectional estimation strategies in communicatystems, none of them provide a
theoretical analysis about the underlying estimators. ueh sour work not only presents a
bidirectional extension of the LMS algorithm with a neatiopal performance at a practical
level of complexity but also novel in the sense that it pregic detailed tracking analysis
for the algorithm resulting in a step-size dependent stestale MSE expression with high

accuracy.

6.2 Future Work

In this work, we assume a packet-based transmission schetheelatively short block-
lengths. The transient phase of the bidirectional LMS atligor is therefore skipped by using
initial conditions on the channel estimate with varyingwaecy, i.e., imperfect or genie-aided.
Indeed, the transient behavior of the bidirectional LMSoalhm including the rate of con-
vergence and the associated MSE value has a great impofteurscene practical applications
including equalization as well as channel estimation. Emalysis would be useful for both
flat and frequency-selective fading channels. The work enatialysis of the conventional
LMS algorithm in transient phase withithout the independence assumption is very limited
even in the signal processing literature, and therefoneetisea good opportunity to elaborate

and apply these results to the communication area.
Some other extensions of this work is to investigate theiegipility of the present results
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to some other adaptive algorithms, e.g, the convention& BlLextended RLS (ERLS). An
interesting application of the bidirectional LMS algorithis the channel estimation prob-
lem for both quasi-static and time-varying OFDM communaat Remembering the two-
dimensional Wiener filter is employed in such systems toakfe correlation both in the
frequency and time domains, the analysis of the bidireatitMS operated in a similar fash-

ion seems really challenging.
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Appendix A

Derivation of the MMSE Filter for Flat-Fading Channels

A.1 The MMSE Filter for Perfectly Known Transmitted Symbols

The optimal co#ficients for the MMSE filter are the ones which minimize the msaqunare

error given as

Jo=E{lecl, (A.1)

whereg is the estimation error defined as

fi — fi
LK/2]

fi — Z Wicn Yk-n- (A.2)
n=—|K/2]

&

This minimization problem is solved by taking derivative(8f1) with respect to the complex

conjugate of the individual filter taps as follows

0 0

= Ellel?
MW W {1eF)
06
- E
{e‘awan}
9 [ L%J *
= Eq{& fi — Wk,IYk—I)
aW;ﬁ I=—|K/2]
= —E{ayi). (A.3)

The problem to be solved now simplifies to

E{avin}=0. ”:_{EJ"“’EJ’ (A.4)



which is known to be the orthogonality principle [1, 101]. Wey further elaborate the

expectation in (A.4) as follows

[K/2]
E{&Y&_n} = E{[fk— Z Wk,IYk—I]Yr(_n}

=—|K/2]
LK/2]
= E { fk yr(_n } -E Z Wi | Yk-I yr(_n . (A.5)
I=—|K/2]
By using (A.5) in (A.4), we obtain
LK/2]
W | E { Yik-1 Ylk(_n} =E { fk ylk(_n} . (A.G)
I=—|K/2]

Defining ryy (-) to be the autocorrelation of the observations, apd-) to be the cross-
correlation between the fading dfeients to be estimated and the observations, (A.6) be-
comes the well-known linear representation for the Wid#epf’'s equations given as

LK/2] K K

2 W (=N =ry@. n=-|3|..|3] A7)

whereryy (n 1) = E {1 y;_,} andrey (n) = E{fiyi_, .

A.2 The MMSE Filter for Iterative Channel Estimation

A.2.1 Initial Estimation Iteration

In order to obtain a global MMSE filter which is independenthd transmitted symbols, we
modify the channel model given in (3.1) by multiplying it Withe complex conjugate of the

transmitted symbols as follows

Yk 3y Yic

fic| a [ + aj g

i+ 1y, (A.8)

where (A.8) makes use of the fact thak |2 = 1, e.g., PSK modulation, amy = a; ng is the

modified additive white Gaussian noise with exactly the satagstics asy since

E{n;} = aE{ng =0

E{In?} = laPE{Ind} = E{Ind?}.
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As a result, the right hand side of (A.8) is observed to be peddent ofa, which is the
phenomena that leads to the global estimator. The Wienpf4#lequations corresponding to
this particular case are given as

LK/2]

D0 ity ((V=1Mp) = ey (k,n) (A.9)
1=—|K/2]

forn = —|K/2], ... ,|K/2]. In (A.9), the autocorrelation function of the modified ohse

tions is given as follows

Fyy ((n - I)Mp) = E { )/np (K)-IM,, (ynp(k)—nMp)*}
E { (fnp(k)—IMp + n’np (k)_IMp) (fnp (K-nM, T n,np(k)—nMp)*}

re ((N=1)Mp) + No (A.10)

wherer () is the autocorrelation of the fading déeients and the cross-correlation function
is
Ity (k,n) = E { fky,;fp (k)—nMp}

E{ fic (Fro9-nvs + Mo gy |
ri (k= np (K) +nMp). (A.11)

Consequently, the final form of the Wiener-Hopf's equatigiven in (A.9) become
LK/2]
it (re ((n=1Mp) + Nodni) =1t (k= np (k) + nMp) (A.12)
1=—|K/2]

forn = —|K/2], ... ,|K/2].

This formulation should be modified at both edges of the ofagien block to properly use

the available pilot symbols. At the left edge of the obseovablock, if

np(K) — {gJ M < O, (A.13)

the set of indices of the pilot symbols to be used is then gagen

_ Mp + 1\
PL = {(i-1)Mp+
i=1
Mp+1 3Mp+1 2K — 1)Mp + 1
{ g . ;p } (A.14)
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and (3.196) therefore becomes

K-1
fk(l) = Z Win Y(2n+l)Mp+1 . (A.15)
n=0 2

The associated Wiener-Hopf’s equations are obtained bgrthegonality principle as

E { (fk - fAk(l)) }/(zn+1)Mp+1 }
—z

K-1 *
= E { [fk - Z Wi | )/(2|+1)Mp+1J (y(2n+1)Mp+1) }
2 2

1=
Wi E {y’(2|+1)Mp+l (y(2n+l)Mp+l) } = E{ fi (y’(2n+1)Mp+l) }
2 2 2

which yields

~
[uN

I
o

or equivalently

K-1
@2n+ 1My +1
wig (e ((1=n)Mp) + N05|n):rf(k——p (A.16)
I=0 2
forn=01,..., K-1.
Similarly, at the right side of the observation block, if
K
np(K) + {EJ Mp > L. (A17)
the set of indices of the pilot symbols to be used is then gagen
_ Mp+1\"
PR = J(i-1)Mp+
2 i=Lp—K+1
2L, -K)+ )My +1 2L, - 1My + 1
R
2 2
and (3.196) therefore becomes
A K-1
fk(l) = Z Wi n y(Z(n+Lp—K)+1)Mp+1 . (A.19)
n=0 2
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The associated tap weights could be evaluated using (Asl@®llaws

Z Wi | (rf ((| - n)Mp) + N05|n) =TI 5 (A.20)

R-L (k— (2(n+Lp—K)+1)Mp+1)
|=

forn=01,...,K-1.

As a final remark, we observe that the optimal filterfic&nts at both edges of the transmit-
ted block depend on the transmitted symbols and has to bempaded for each time epodh

in the specified interval.

A.2.2 Subsequent Estimation Iterations

The final expression for the Wiener-Hopf’s equations forsaguent channel estimation iter-
ations is a modified version of (3.6). Let us consider the @rtelation function computed

in a genie-aided fashion as follows

E{Yit (Yien)}
a1 re(n=1a_, + Nodni, (A.21)

ryy(n=1)

and the cross-correlation function given as

E { fk y&_n}
re(n) ag_p,. (A.22)

'ty (N)

Because we do not have the actual values of the data symlbtsydnhave the corresponding
estimatesal(f), (A.21) and (A.22) are modified to include these estimateitha final Wiener-
Hopf’s equations for theth iteration therefore become
LK/2]
>0 owd {a e -0 @)+ Noo | =re (@), (A.23)
I==[K/2]

forn=-1K/2], ... ,|K/2].

At the left edge of the block, the set of indices of the obstirua to be employed in channel

estimation fork — [%J < Ois given as

PL = {L2...,K}, (A.24)



and the estimation operation in (3.201) becomes

K-1
(0= > wd) v (A.25)
n=0

Similarly, the set of indices at the right edge of the blookkfor || > Lis

PR = {(L-K+LL-K+2...,L}, (A.26)

and the desired estimates are computed according to

K-1
fk(l) = ZWE,)nyn+L—K+l- (A.27)
n=0

At both left and right edges of the block, dheients of the desired MMSE filter are computed
by using (A.23) with adequate indices given by (A.24) and2@, respectively.
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Appendix B

Derivation of the MMSE Filter for Frequency-Selective Fading

Channels

B.1 The MMSE Filter for Perfectly Known Transmitted Symbols

Let us consider the estimation error vector associated tivlestimation problem introduced

in (4.5) given as

e=f-f (B.1)

which results in the following MSE
J = E{llel’}=E{ee} (B.2)
= Eftr(ed')}. (B.3)

Because the ultimate goal of the MMSE estimator is to minantze associated MSE, the
derivative of (B.3) has to be computed with respect to thegleravalued matrixV to find

the global minima as follows

j_VJV - aiwe{tr (-7 -}

9 H
e { o (- wy) (- wy))'|

9 H Hyy/H H Hyz/H
E{a—wtr(ff —fyrwH —wyfH + wyyHwH) L (B.4)

Using the results of [127, 128] on derivative computatiothwespect to the complex-valued
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multi-dimensional input parameters, the desired dekieatould be evaluated as follows

;_V\zl = E{—aiwtr(fyHWH) - aiwtr(Wny) + aiwtr(WyyHWH)}
- E{—f*yT + W*(yyH)T}
= - (E{y") + (wef{yy")) (B.5)

where we have used the following identities from [128]

au(AxH) .
X B
atr (AX) -
— 7 A
X
atr (XA) -
-7 A
X
atr (XAXH
——L————) = X*AT.
X

The optimal MMSE filter is the root of (B.5) and is thereforeagi as

W = Piy Ry (B.6)

wherePyy = E{fy"} andRyy = E{yy"|.

B.2 The MMSE Filter for Iterative Channel Estimation

The initial estimation matrisV® could be computed using (4.6) together with the modified

cross-correlation and the autocorrelation matrices gagen

Py = E{fyp} (B.7)

Ry = E{y,yhl. (B.8)

In order to compute (B.7)-(B.8), we first express the obdemavectory, as follows

ag(l) 0o ... 0 fo Np()
0 \ 0 f n
> p(2) p(2)
Yp = . ap.() . : * :
0 0o ... a;(Lp) I foww | [ Npey |

—— ——
Ap fp Np

(B.9)

1
>
°
_h
°
+
>
°
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Inserting (B.9) into (B.7)-(B.8) yields

Py = E{f(Apfp+np)}

= E{ffy} A} (B.10)
Ry = E{(Apfp +1p) (Apfp + np)H}
= ApE{fpfil Al + Nol. (B.11)

In order to obtain the final expression for the initial estiim@a matrix, (B.10) and (B.11) are

incorporated into (4.6) as follows

-1
W® =Py AR (A Ry Al + Nol ) (B.12)

wherePy, = E{ff}} | andR,, = E{f,f }.

In order to comput®sy andRyy in the subsequent estimation iterations, we assume

T o _ _ ,
(ag)) 0 0 f1 ni
o (&) ... o f n
yo| 0 & R L S
0 0 (éﬂ))—r fL | NL |
——— ~——
A(i) f n

and then perform computations as follows

Pry = E{fy”}

_ E{ffH}(A“))H (B.14)
Ryy = E{yyH}
_ A“)E{ffH}(A(‘))H + Nol. (B.15)

whereR; = E{ffH } The corresponding MMSE filter at theh iteration is then given as

. ~inH [ i H -1
wo = R, (A(')) (A(I)Rf (A(')) n NOI) . (B.16)
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