

AN ONTOLOGY AND CONCEPTUAL GRAPH BASED BEST
MATCHING ALGORITHM FOR CONTEXT-AWARE

APPLICATIONS

A THESIS SUBMITTED TO

 THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

REZA KOUSHAEIAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

MAY 2011

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

Prof. Dr. Yasemin Yardimci Cetin

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Altan Koçyiğit

 Supervisor

Examining Committee Members

Prof. Dr. Nazife Baykal (METU, II) _____________________

Assist Prof. Dr. Altan Koçyiğit (METU, II) _____________________

Dr. Ali Arifoğlu (METU, II) _____________________

Assist Prof. Dr. Erhan Eren (METU, II) _____________________

Assist Prof. Dr. Cüneyt Sevgi (IŞIK University)_________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Reza Koushaeian

iv

ABSTRACT

 AN ONTOLOGY AND CONCEPTUAL GRAPH BASED BEST MATCHING
ALGORITHM FOR CONTEXT-AWARE APPLICATIONS

Reza Koushaeian
M.Sc. Department of Information Systems
Supervisor: Assist. Prof. Dr. Altan Koçyiğit

May 2011, 95 Pages

 Context-aware computing is based on using knowledge about the current context.

Interpretation of current context to an understandable knowledge is carried out

by reasoning over context and in some cases by matching the current context

with the desired context. In this thesis we concentrated on context matching issue

in context-aware computing domain. Context matching can be done in various

ways like it is done in other matching processes. Our matching approach is best

matching in order to generate granular similarity results and not to be limited to

Boolean values. We decided to use Ontology as the encoded domain knowledge

for our matching method. Context matching method is related to the method that

we represent context. We selected conceptual graphs to represent the context. We

proposed a generic algorithm for context matching based on the ontological

information that benefit from the conceptual graph theory and its advantages.

Keywords: Context, Context Aware Computing, Ontology, Conceptual Graph,

Context Matching

v

ÖZ

BAĞLAM FARKINDALIKLI UYGULAMALAR ĐÇĐN ONTOLOJĐ VE
KAVRAM ÇĐZGESĐ TABANLI EN ĐYĐ EŞLEŞTĐRME ALGORĐTMASI

Koushaeian, Reza
Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yar. Doc. Dr. Altan Koçyiğit

Mayis 2011, 95 Sayfa

 Bağlam farkındalıklı hesaplama mevcut bağlam hakkında bilginin kullanımına

dayanmaktadır. Mevcut bağlamın anlaşılabilir bilgi haline getirilmesi bağlam

hakkında akıl yürütmeyi ve bazen de istenen bağlam ile mevcut bağlamın

eşleştirilmesi ile yapılır. Bu tezde, bağlam farkındalıklı hesaplama alanındaki

bağlam eşleştirme problemi üzerine yoğunlaştık. Bağlam eşleştirme diğer

eşleştirme süreleçrinde olduğu gibi çeşitli yollarla yapılabilir. Bizim eşleştirme

yaklaşımımız boole sonuç üretme yanında ince kırılımlı benzerlik sonuçları

oluşturmak için en iyi eşleştirmedir. Eşleştirme yöntemimizde kodlanmış alan

 bilgisi olarak ontoloji kullanmaya karar verildi. Bağlamı temsil etmek için ise

kavramsal çizgeler seçildi. Bağlamsal çizge teorisi ve onun avantajlarından

yararlanan ontolojik bilgiye dayalı bir genel algoritma önerildi.

Anahtar Kelimeler: Bağlam, Bağlam Farkındalıklı Hesaplama, Ontoloji,

Kavramsal Çizge, Bağlam Eşleştirme.

vi

ACKNOWLEDGEMENT

First of all , I would like to state my sincere gratitude to my advisor Assistant Prof. Dr. Altan

Koçyiğit. His guidance helped me so much during the research and writing of this thesis. He

made a great contribution into my thesis and supported me during the research.

I would like to express my deepest gratitude to my wife for their love, encouragement, and

support throughout my education. This thesis would never have been completed without their

love and endless support.

vii

 This thesis is dedicated to This thesis is dedicated to This thesis is dedicated to This thesis is dedicated to PPPPardisardisardisardis....

viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... v

ACKNOWLEDGEMENT ... vi

DEDICATION .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

TABLE OF FIGURES ... xii

LIST OF ACRONYMS ... xiii

CHAPTERS

1 INTRODUCTION .. 1

1.1 Context-aware computing .. 1

1.2 Notion of Context .. 2

1.3 Context representation methods .. 2

1.4 Context matching ... 3

1.5 Conceptual graphs .. 3

1.6 Ontology .. 4

1.7 Context Matching based on the Conceptual Graphs and Ontology 4

1.8 Thesis organization .. 5

2 BACKGROUND AND RELATED WORK .. 6

2.1 Context definition .. 6

2.2 Context dimensions .. 7

2.3 Categories of context–aware computing ... 8

2.4 Context matching ... 11

2.5 Some Context Matching Related Works ... 12

2.6 Conceptual graphs .. 13

2.6.1 Definition 1: Vocabulary ..16

2.6.2 Definition 4- labeling functions: ...17

2.6.3 Definition 5- of Canon (Corbett, 2003): ..17

2.6.4 Definition 6 – Conceptual Graph: ...18

ix

2.7 Ontology .. 18

2.7.1 Principles of designing Ontology: ...19

2.7.2 Formal definition of Ontology based on the conceptual graph theory:19

2.7.1 Extended ontology:...21

2.8 Ontology and context-aware computing ... 22

2.9 Ontology-based context matching and related works 23

2.10 Conceptual Graph matching ... 26

3 CONTEXT MATCHING BASED ON CONCEPTUAL GRAPHS31

3.1 Step 1: Generating Ontology and current context observation units: 34

3.1.1 Generating ontology ...34

3.1.2 Generating current context observation units from sensory raw data:36

3.1.3 An example for representing sensory data as context units:38

3.2 Step 2: Converting the query CG into desired context CG: 39

3.2.1 Transliteration of complex relations ..39

3.2.2 An example for Converting the query CG into desired context CG:40

3.3 Step 3: Filtering the current context observation units 43

3.3.1 An example for filtering and augmenting context units:43

3.4 Step 4: Generating current context CG: .. 44

3.4.1 An example of generating Current context CG ..45

3.5 Step 5: Matching between current context CG and desired context CG: 45

3.5.1 Relation Type Similarity:..47

3.5.2 Concept Type Similarity: ..48

3.5.3 Referent Similarity ...51

3.5.4 Matching algorithm: ...59

4 SAMPLE USAGE SCENARIO ...65

4.1 Cinema domain: ... 65

4.2 Step0-1: Building Ontology.. 65

4.3 Step 0-2 generating context observation units ... 69

4.4 Step 1) converting query CG to desired context .. 71

4.5 Step 2) Filtering the current context observations ... 76

4.6 Step 3) generating current context CG .. 76

4.7 Step 4) matching between the current context and desired context 77

5 CONCLUSION ...85

x

5.1 Summary ... 85

5.2 Discussion ... 86

5.3 Future work ... 88

6 REFERENCES ..89

xi

LIST OF TABLES

Table 1 Four categories of context-aware applications based on Schilit’s work 9
Table 2 similarity scores based on the distance .. 57
Table 3 similarity score based on Hour difference .. 58
Table 4 similarity scores based on date difference .. 59

xii

TABLE OF FIGURES

�i���	
 � �i��	 �� ...
�

�i���	 � � �� �	����� ..
�

Figure 3 Generalized Ontology and relation with domain-specific Ontology ��

�i���	 � ��	 ����	x� ����i�� ����	�� ... ��

�i���	 � ����	 ����	�� � �	 �i	����� i� !������ .. ��

�i���	 " ����	 �	����� � �	 �i	����� i� !������ .. �"

�i���	 # ����	 i�$������ i� !������ ... �"

�i���	 % ����	x� ��i� �$ ��	 ����� &'(� ��
%)*�)�*

-
�,�" � ... �%

�i���	 - ����	x� ��i� �$ ����� &	.� �� ��	
%)*�)�*

-��,
�,�# � -
�,
� � �%

�i���	
* ����	x� ��i� $�� ����� &	.� �� ��	
%)*�)�*

 ��
�,�* � �-

�i���	

 i���i�� /�	� �� ... �

�i���	
� �	�	�i� ����	��� ���v	��	0 ��	 ��	�i1� ��	�. ... �

�i���	
� 2�	� �� �3	� �00i�� ��	 i��i�� ����	x� 0i	��i��� i��� ��	 ������, �

�i���	
� 0	�i�	0 ����	x� �� ... ��

�i���	
� ����	�� ����	x� ��i� $�� &	.� .. ��

�i���	
" ����	�� ����	x� ��i� $�� '��� ... ��

�i���	
# ����	�� ����	x� �� ... ��

�i���	
% ����	�� � �	 �i	����� �$!������ ... "#

�i���	
- &	����� � �	 �i	����� �$!������ ... "%

�i���	 �* 5������	0 !������ �$ �i�	� 6��i� .. "%

�i���	 �
 ����	�� ����	x� �7�	�v���� ��i� $�� ����� �	.� ... "-

�i���	 �� ����	�� ����	x� �7�	�v���� ��i� $�� ����� '��� .. #*

�i���	 �� ����	�� ����	x� �7�	�v���� ��i� $�� ����� I�$�� .. #*

�i���	 �� I���i�� /�	� i� ��	 $�� �$ /�	� �� ... #

�i���	 �� 	xi��	���� �	$	�	��� ��	 �	����	0 i� ��	 /�	� �� .. #�

�i���	 �" i��i�� ����	x� 0i	��i��� �$ ������ ��	 �00	0 �� ��	 /�	� �� #�

�i���	 �# ����	x �	������ ��	 �	����	0 i� ��	 /�	� �� ... #�

�i���	 �% ����	�� ����	x� �� ���� i� �	�	���	0 7��	0 �� 0	�i�	0 ����	x� ��. ##

xiii

LIST OF ACRONYMS

RDF Resource Description Language

CG Conceptual Graph

CoBrA Context Broker Architecture

SOCAM Service-Oriented Context-aware Middleware

CASD Context-aware Service Discovery

SOA Service Oriented Architecture

CGIF Conceptual Graph Interchange Form

KIF Knowledge Interchange Format

DF Display Form

LF Linear Form

GPS Global Positioning System

ICCS International Conferences on Conceptual Structure

OWL Web Ontology Language

CHAPTER 1

 INTRODUCTION

Context matching is one challenging area in context-aware applications domain. In this thesis,

we propose a generic approach for context matching that can be used in different application

domains. In order to fulfill this task we use the Conceptual Graph to represent the context. We

benefit from the Ontology advantages to represent domain knowledge in a formal way. We

employ conceptual graphs to represent the Ontology formally. Our proposed Context matching

algorithm is based on conceptual graph matching.

�
 Context-aware computing

 Context-aware computing is one aspect of pervasive computing and it was coined by Weiser in

1991. Context-aware systems have the ability to be aware of their environmental context. The

advantage of this feature is the ability of context-aware systems in adapting their behavior with

the current context automatically. This augments usability and effectiveness of application

(Baldauf, Dustdar, & Rosenberg, 2007). There are some overlaps between definitions of context-

aware and sentient computing. Context-aware computing is similar to sentient computing but it

is agent based. In context-aware computing the agents build their environmental model whereas

sentient computing uses sensors to be conscious of its environment (Poslad, 2009)

One challenging side of the context awareness is continually changing environment (B. Schilit,

Adams, & Want, 2008). In developing context-aware applications respecting to the distribution,

�

modifiability and reusability aspects is another challenge for developers. In addition, limited

options in rapid design and development of context-aware applications are related to lack of

well-defined conceptual models and frameworks. (Corbett, 2004)

�� Notion of Context

 There are two viewpoints on context studies. The first one is cognitive science view that

consider context in order to model situations and focus on human behavior as the main key for

generating this model. The second perspective is engineering view that is concentrated on

problems that should be solved with the help of context in order to reason or represent

knowledge in problem domain (Brézillon, 1999).

 The engineering view is dedicated to external context or physical context which includes context

data of physical environment collected by physical sensors (J.-yi Hong, Suh, & Kim, 2009).

Cognitive context has an important role in developing personalized context-aware applications

based on user’s preferences, task and emotional state of user, the cognitive domains, such as

information retrieval, decision making, situation monitoring, and so on. (J.-yi Hong et al., 2009)

 Brezillon claimed that these two viewpoints are slightly different, and the opposition between

them is originated from how they consider context, while cognitive view emphasizes the level of

interaction between agents, whereas the engineering view considers the knowledge

representation level.(Brézillon, 1999)

 The comprehensive definition of context that we will use in this thesis is the definition of Dey:

“Context refers to any information that characterizes a situation related to the interaction

between users, applications, and the surrounding environment.” (Dey & Abowd, 2000)

�� Context representation methods

Major difficulties in processing context information are originated from ill definition of context

and the way used to represent it. Selecting an appropriate method is important because our final

approach in context matching depends on context representation method used. A proper

representation method should satisfy following criteria:

�

• Support context variations

• Suitable for available context acquisition mechanism.

• Ability to describe ambiguous contexts

• Easy to use and understand

We do not consider challenges in capturing context information and checking its accuracy in this

study. We assume that incoming context information is accurate and in ideal format. It is

important to separate capturing context information from how we use them. This separation of

concerns contributes to the generality of our algorithm. The importance of this separation is the

main idea of developing conceptual frameworks that guarantee separation of concerns in

capturing the context from the publishing and using the same context by the application.

�! Context matching

Context matching is a matching process used in context-aware applications. Matching has

various usages in different research fields. Various matching methods have been developed to

satisfy specific needs, such as pattern matching, exact matching, best matching, fuzzy matching,

string matching and record matching. The matching process deals with two sets of information

in order to compute the similarity between them. The similarity calculation is highly

interconnected to distance calculation that means figuring out how dissimilar are two parts.

(KOCABALLI, 2005)

In context-aware applications the context matching process is helpful in order to set the context-

aware applications’ behavior according to specific conditions. The objective of matching process

in this work is matching the current sensed context with the set of predefined contextual

information, namely desired context. The obtained result indicates similarity of current context

with desired context.

�" Conceptual graphs

Conceptual graph model was developed by Sowa (J. F. Sowa, 2000), and further works in this area

are done by the conceptual graph community. The roots of conceptual graph can be found in

natural language processing, semantic networks, database and logics, and especially the

existential graphs of pierce. The conceptual graph (CG) is a family of formal definitions that

have roots in Sowa’s initial works. It consists of basic conceptual graphs, simple conceptual

�

graphs, positive nested conceptual graphs and full conceptual graph (Chein & Mugnier, 2008). A

brief overview of conceptual graphs is given in Chapter 2.

�$ Ontology

Ontologies are used in various research areas like problem-solving methods, domain-

independent applications and software agents. In most of the cases, developing Ontology is not

the ultimate goal instead it is used as a tool in applications (Noy, McGuinness, & others, 2001).

Adding ontologies with automated reasoning bring intelligence to applications in order to act

more similar to human beings. Applications can benefit from this aspect of Ontology in the areas

of decision support, natural language understanding, knowledge management, and intelligent

databases.

�& Context Matching based on the Conceptual Graphs and Ontology

Selecting an appropriate matching technique is highly dependent on the context representation

method. We represent the contextual information including both current context and desired

context as conceptual graphs therefore our matching approach is based on conceptual graph

matching.

Conceptual graphs are an appropriate tool for visualizing the contextual information. Using

graphs as a graphical representation tool brings some advantages in making, editing and revising

knowledge and also permit a natural representation (Corbett, 2004). In addition, available

experiments in the field of conceptual graphs should be mentioned as another advantage.

 The knowledge of domain including the concepts and relations are also represented as

conceptual graphs. The CG vocabulary consists of the concept hierarchy and relation hierarchy

and the populated ontology that describes the concepts and their interrelations represented as the

CG. We keep the long-term context information in the ontology. In contrast the short-term

sensory data is saved as the context observation units. Context observation units are also CG

with four main relations in order to support contextual information such as hour, date, location

and status of one actor.

 In this thesis, we proposed an easy to use and easy to implement Ontology based context

matching method that is based on the usage of conceptual graphs proposed in the literature. The

�

algorithm devised matches current context with a set of desired contexts and produces a

similarity score for each desired context. We tried to build a generic matching algorithm which

can be used in different context-aware applications. We represented the knowledge base of the

domain as an Ontology and benefit from the advantages of using ontological representations.

�* Thesis organization

 In Chapter 1, the subject of this thesis study is summarized and the problem, the objectives and

the scope of the thesis is presented.

In chapter 2, we firstly review different definitions of context and then context dimensions are

introduced. Context-aware computing applications are summarized. Context matching is defined

and Ontology-based context matching is introduced. Then, conceptual graphs are introduced and

some related works on conceptual graph matching are presented.

 In chapter 3, we introduce our conceptual graph based context matching method. At the

beginning we explain how conceptual graphs can be used to represent context and Ontology, and

then a method is proposed to augment query CG to obtain the desired context CG. In addition we

propose a method to filtering the context observation units and generating appropriate current

context CG based on the Ontology and desired context CG. Finally we compute the similarity

between desired context CG and current context CG based on their relation, concept type and

referent similarity based on the Ontology and we will present the best matching algorithm.

In chapter 4, we investigated the applicability of proposed algorithm through the use of a cinema

scenario. The results obtained by applying the proposed algorithm is also compared with the

results obtained from previous similar works.

 In chapter 5, a brief summary of the study is given and salient features of the proposed matching

method are discussed. Finally directions for future works in the context matching based on

ontological information are suggested.

"

CHAPTER 2

� BACKGROUND AND RELATED WORK

��
 Context definition

 Context, in thesauruses, has similar definitions as ambient, background, whole picture and total

situation. Definitions of context contained many aspects of context aware computing in research

community.

 Schilit et. al. mentioned the location information as the necessary context to adapt a context-

aware application to its location of use, in addition located-objects like printers, terminals and

nearby people and their related changes (B. N. Schilit & Theimer, 1994).

 Brown et al. considered context as user’s context, mainly focused on user’s location information

and in general any tailored user’s information like location, time of day, season of the year,

temperature and so forth. (P. J. Brown, Bovey, & Xian Chen, 1997)

 Ryan et al. defined context as information about computational environment “such as location,

time, temperature or users’ identity” (Ryan, Pascoe, & Morse, 1998).

 Schmidt et al. defined context as the description of current situation on an abstract level, his

definition mainly focuses on current situation in order to add smartness to applications, and he

defined architecture for context recognition, regarding to three dimensions named: Self

dimension that includes device state, physiological, cognitive, Environment dimension that

supports both physical and social, Activity dimension that works on behavior and task (Schmidt,

A. and Aidoo, K. and Takaluoma, A. and Tuomela, U. and Van Laerhoven, K. and Van de Velde, W.,

1999).

 Chen et al. defined context as the set of environmental states and settings that either determines

an application’s behavior or in which an application event occurs and is interesting to the user.

(Chen, G. and Kotz, D., 2000)

 Dey et al. extended the context definition such that it is not limited to user’s context. Information

the user that is attending to, emotional state, focus of attention, location and orientation, date and

time of day, objects and people in the user’s environment constitutes the context (Dey, 1998).

Dey et al. proposed a complete definition of context as any information that characterizes a

situation related to the interaction between users, applications and surrounding

environment.(Dey, Abowd, & Salber, 2001)

��� Context dimensions

 Dey’s definition of context support various dimensions including time, people, location, status,

things etc. whereas previous works consider specific dimensions that are related to the domain of

interest. He proposed a context categorization in order to handle context diversity in a systematic

way. He emphasized three contexts categories as the major context groups that are used in

context-aware applications: “place: geographical spaces like rooms, offices, buildings or streets,

people: individuals or groups and things: physical objects or software components”. In addition,

he listed common characteristics of different contexts as time: help to augment historical

information, location: help to add detailed information about geographical coordination’s or

relative spatial relations, ID: a unique identity in domain and status: describes sensible mood of

the entity (Dey et al., 2001).

Tao Gu et al. (Gu, Pung, & Zhang, 2005a) considered location, activity, person and computational

device as general contexts and brought them in generalized context Ontology.

Kocaballi(KOCABALLI, 2005) in the same way, defined four characteristics for context

information namely location, people nearby, time and status. Harry Chen et al. (Chen, Finin, &

Joshi, 2003) considered place, agent, agent’s location and agent’s activity as contexts in their

proposed Ontology for pervasive context-aware systems, named COBRA-ONT.

%

 What Dey considered as context, supports a wide range of contexts and is extendable in order to

add advanced meanings to context. People context category supports human agents in CoBrA

(Context Broker Architecture) (Chen et al., 2003), things category supports computational tools in

SOCAM (Service-Oriented Context-aware Middleware) (Gu, Pung, & Zhang, 2005a) and software

agents in CoBrA. In addition, context dimensions that were mentioned in his work enrich the

meaning of context. By defining characteristics for each context in the first step we add more

detail to a context that provides a better understanding of the context e.g. location of a place

context can be defined as the place’s GPS position. Beyond the explanation side of context

characteristic, some aspects of fuzziness can be extracted from contextual information. For

example, suppose that a combination of place context like [place: shopping center] and hour

context such as [hour:3:00 am] is given .The meaning of this situation is not the same as the

combination of a place context of shopping center with a hour context that describes a regular

work hour like 10:30 am, so by adding the hour to place context we add new meaning to place

context. In this example, the objective of being in or near a shopping center at early morning

hours might be interpreted as spending time at a night club or withdrawing money from an

ATM station nearby. In the same way, a specific time can take different values in different days

and different places. Breakfast status context with the place context of hotel in a date dimension

of holiday has a different hour from the Breakfast status with home place dimension and regular

working day context.

We found Dey’s definition for context categories and context dimensions comprehensive and we

consider location, time of the day (hour), date and status as the general context dimensions in

this study.

��� Categories of context–aware computing

 Schilit(B. Schilit et al., 2008) remarked major concerns of the context awareness as where the

user is, who the user is with, what resources are nearby. He also proposed four categories of

context-aware applications by the product of nature of context-aware application which are

getting information or doing a command along the application’s treatment that is manual or

automatic, as shown in Table 1 These four categories are studied in specific case of PARCTAB

(B. Schilit et al., 2008), but in general they can be assumed as a good categorization of context-

aware applications.

-

Table � Four categories of context-aware applications based on Schilit’s work ��� Schilit et al�� !!"#

 manual Automatic

Information Proximate selection &

contextual information

Automatic contextual reconfiguration

command Contextual commands Context-triggered actions

A brief interpretation of each category in context-aware applications can be:

• Proximate selection & contextual information: proximate selection is a user interface

technique that nearest objects are announced to the user. The represented information

can be sorted based on the proximity or alphabetically.

• Contextual information in similar way depends on the current location of the user. The

main idea is that people’s behavior in certain locations is predictable. The system

generates results of contextual information queries based on the context of their

activation time. (B. Schilit et al., 2008)

• Automatic contextual reconfiguration: reconfiguration is the process of configuring of

new settings like adding a new connection or removing an old one. The main challenge

is how to use contextual information in order to reconfigure a set of systems or

environment. For example, entering a room should make automatic binding between the

user’s digital pad and room’s available devices like printer. (B. Schilit et al., 2008)

• Contextual commands: similar to contextual information category the contextual

command uses the same fact that users do certain things in certain contexts. For

example, we do special things in certain places like library, cafeteria or classroom.

Contextual commands target this fact by automatically setting the parameters of a

command. For example, the print command might, by default, print the nearest printer.

(B. Schilit et al., 2008)

• Context-triggered actions: In this category current context triggers a specific command.

The structure of such commands is similar to IF-THEN conditions that tailor context-

aware system’s behavior. (B. Schilit et al., 2008)

 Dey et al. (Dey, 2000) proposed the context-aware application categories based on how

applications use the context. He categorized context-aware applications as:

*

1) Presenting information and services: these applications that present context information to the

user or recommend a service to the user based on the context information. Some examples in this

category are:

- Showing user’s location on a map and suggesting interesting places.(Abowd et al.,

1997),(Bederson, 1995),(Davies, Mitchell, Cheverst, & Blair, 1998),(Feiner, MacIntyre,

H\öllerer, & Webster, 1997),(Fels et al., 1998),(McCarthy & Anagnost, 2000),(McCarthy &

Meidel, 1999)

- Suggesting the closest resource to the user (B. Schilit et al., 2008)

- Recognizing and showing the in/out information for a group of users(Dey, Abowd, &

Salber, 1999)

- Presenting ambient information (Heiner, Hudson, & Tanaka, 1999),(Ishii & Ullmer,

1997),(Mynatt, Back, Want, Baer, & Ellis, 1998),(Weiser & J. S. Brown, 1996)

- Providing information about receiver’s situation before setting up a call (Schmidt,

Takaluoma, & M\äntyj\ärvi, 2000)

2) Automatically executing a service: these applications invoke an action or update

configurations by changing context in automatic manner. Some examples are:

- A telephone call routing system that follows user when he move from one

workstation to another workstation(Want, Hopper, Falcao, & Gibbons, 1992)

- Car navigation system that reconfigures driving path when driver lose a turn(Hertz,

n.d.)

- Whiteboard capture application recognizes that opportunistic meeting happens and

starts to capture it.(Brotherton, Abowd, & Truong, 1998)

- Augmented handheld devices with sensors that determines context of use and change

the setting and actions (Harrison, Fishkin, Gujar, Mochon, & Want, 1998),(Hinckley,

Pierce, Sinclair, & Horvitz, 2000),(Schmidt, A. and Aidoo, K. and Takaluoma, A. and

Tuomela, U. and Van Laerhoven, K. and Van de Velde, W., 1999)

- A wearable camera that is also computer and sensing device that capture and save

images in both conscious and unconscious situations based on predefined factors

(Healey & Picard, 2002)

- Devices that link personal information to locations and run reminders in specific

locations. (Beigl, 2000),(Marmasse & Schmandt, 2000)

3) Attaching context information for later retrieval: these applications mark captured data with

the contextual information. Some examples are:

- An application for observation that can add location and time to the saved

information (Pascoe, Ryan, & Morse, 1998)

- Access to meeting notes by knowing people in meeting, time of meeting and

location of meeting(Brotherton et al., 1998), similar to this(Rekimoto, 1999) and

(Dourish et al., 2000)

- Forget-Me-Not (Lamming & Flynn, 1994) and Remembrance agent 9&��0	�,
--#:

as applications that attach context to files in order to easier retrieval.

Chen et al. (Chen, G. and Kotz, D., 2000) proposed two categories to context-aware computing:

- Active context awareness: An application automatically adapts to discovered context, by

changing the application’s behavior. The main focus of this category is running a

command.

- Passive context awareness: An application presents the new or updated context to an

interested user or makes the context persistent for the user to retrieve later. This category

of application aim to inform or memorize.

��! Context matching

 The matching process considers two sets of context information. The first one is the current

context that describes current situation and consists of several contextual information pieces, all

related to each other. The second one is called desired context that describes the desired

situation.

 Interpreting the results of matching depends on our ultimate need. If we are interested in exact

matching it is necessary to define a similarity threshold in order to say the current context

matches to the desired context. In best match approach the provided results are ranked and the

highest similarity score shows the best matching option.

 The output of matching process in best match approach is a similarity score. This score tells us

how much the current context is similar to the desired context. In general, the score takes a value

between 0 and 1. Where 0 indicates no similarity and 1 indicates the maximum similarity.

�

��" Some Context Matching Related Works

 Kocaballi (KOCABALLI, 2005) proposes a weighted granular best matching algorithm and

focuses on four major context elements namely people, location, time and activity. The objective

of matching process in this work is matching the current sensed context with the predefined

contextual situation in order to trigger some actions. Location matching is based on a six level

granular tree. Depending on the distance between two contexts the level of similarity is defined

as fixed values for each level. For example a target context located in place A is coded as

113161 and the desired location of B coded as 112 have two common digits and located in level

2 of similarity. The same approach has been chosen for activity matching but in two level of

granularity. People contexts match in an exact matching manner. Time context considers a

composite format that includes both time and day. Total time similarity factor used to match the

time in a fuzzy matching approach. Finally each dimension has a weight. The weighted score of

each dimension calculated regarding to dimension similarity score and its weight. Total

matching score is equal to the total of dimensions’ (location, people, activity, time) weighted

score.

 In (Pawar & Tokmakoff, 2006) CASD (Context-aware Service Discovery) is proposed. CASD try

to understand the appropriate service for the client. CASD system performs a basic matching

based on keywords in query information sent by the clients. After selecting basic services the

CASD system requests for current context of basic services. The collected contexts from basic

services are stored in service graph. After that CASD system ask for the client context. In the

cases that a persistence service recovery requested, the CASD system subscribe to the context

change event of the client. Client’s contextual information and service graph are sent to the

reasoner. The reasoner matches the client information with services in service graph and returns

a service. Finally, CASD system sends the service reference to the client.

CASD has ability to support continuous matching that is a main advantage for nomadic users. In

basic matching the CASD system subscribe to the selected basic service in order to be informed

about the contextual changes, also the result of the basic matching is kept in a database for

further investigation and also reasoner looking for any better matching results to inform the

CASD system.

�

��$ Conceptual graphs

 John Sowa (J. F. Sowa, 2000) introduced Conceptual graphs (CGs) based on the Sanders Peirce’s

existential graph notion (Van Harmelen, Lifschitz, & Porter, 2008), which are suitable representation

of meaning. CGs have some roots in semantic networks.

Conceptual Graph has some advantages in knowledge representation such as:

- It is a human readable and also computer readable representation

- It can express logical meaning in a precise format

- It has a close representation to natural languages

- There is an international community, ICCS working on this topic.

Conceptual graphs are represented in three forms:

1. DF or Display Form that is a graphical representation

2. CGIF or Conceptual Graph Interchange Form that is a logically equivalent representation in

predicate calculus and in Knowledge Interchange Format (KIF) which is a notion for

representing logic. The CGIF has restricted character set with a simpler syntax than KIF.

3. LF or Linear Form that is a compact and readable format

 The DF and the LF representation forms are designed and used for communication between

human and computers. The CGIF format is used for communication between computers. In IT

systems CGs are used for internal representation. For communication between systems that use

other internal representations, KIF can be used. CGIF can be translated into a KIF for further

logical inference (J. F. Sowa, 1999). Knowledge Interchange Format (KIF) is “a language

designed for use in the interchange of knowledge among disparate computer systems (created by

different programmers, at different times, in different languages, and so forth)” (Genesereth,

1998).

Conceptual graphs are used as a representation method for logic based on semantic networks. A

CG has two kinds of nodes, namely concepts and conceptual relations. Also, there are some arcs

that connect concepts and relations. Nodes of CG are illustrated as:

 1) Concepts are represented by boxes in DF or square brackets in LF.

�

 2) Conceptual relations are represented by circles in DF or parentheses in LF.

 The conceptual graph is a bipartite graph (or bi-graph). The bipartite graphs’ edges connect

two vertices that are in two disjoint sets. So we will not see an arc from a concept to another

concept. As an example, we translate the “A cat is on a mat” to the DF of a CG as shown in

Figure 1.

 The same expression can be written in linear form as [CAT]®(ON)®[MAT]. The generally

written [Concept]®(Relation)®[Concept] should be read like: [Concept]has a(Relation)which is

[Concept]. In reverse mode we can write the same statement in the form of:

[Concept]¬(Relation)¬[Concept] that means: [Concept]is a(Relation)of[Concept],As another

example, [Walk]®(Agent)®[person :John] is read as walk has an agent which is person :John.

[person :John]¬(Agent)¬[Walk] is read as person :John is an agent of walk.(Humanistic

Informatics at Department of Communication, Aalborg University, Denmark, n.d.)

A concept consist of two parts a concept type and a referent. The concept [person :John] has a

concept type Person and of referent John.

 Relations also have a relation type. The relation type is denoted by TR. The number of arcs that

belongs to a relation shows the valence (or arity) of a relation. Based on the relation arity TR can

be partitioned into k sets (Ti
 R , ≤) i=1..k of relation types of arity i where 1≤ i ≤ k , k shows the

relation arity. Signature function can be used to find out the arity of a relation and the sequence

of concept types in a conceptual relation. The B symbol is used to show relation signature.(Chein

& Mugnier, 2008)

 B:TR � B(tr) , B (tr)∈ TC×…×TC k times B (tr)={tc1, … , tck}

Here we have some examples to clarify the meaning of relation arity:

 Consider the CG in Figure 2 the Betw relation has a signature of three concept types

CAT ON MAT

Figure � A simple CG

�

 B (Betw)={Room, Room, Room}

The similar relations with signature of three concepts called Triadic. A relation with one arc

(signature of one concept) is called Monadic and relations with two arcs (signature of two

concepts) are called Dyadic.

All the concepts that are related to the relation should have a sequence, we use number tags over

relation arcs and last placed concept in relation shows the last sequence.

 As described above CGs contain of two types of nodes: concepts and relations. Two sets keep

the related items for these node types. The first set is TC includes concepts types and the second

one is TR that contains relation types. Both of these sets are ordered by a sub-typing relation that

also called specialization relation or a-kind-of relation. This relation between type items is

denoted by ≤ symbol. If we have “t2 as the specialization of t1” we write t2 ≤ t1.This statement

can be read as “t1 is a generalization of t2“, this also means that any entity of type t2 is also of

type t1(Chein & Mugnier, 2008). In the type hierarchy the most general type is represented by the

┬ symbol.

 In CG vocabulary there is another set, I which is the set of individual markers. Concepts are

representation of entities in a specific domain. Concepts with referents are specific entities

namely individual concepts. Unidentified concepts are called generic concepts. We use * symbol

as the generic marker in order to represent unspecified entity regardless of its type. Individual

concepts can be referenced by individual markers. The set of markers is defined as M= I U {*}

ROOM : 2

ROOM : 1

ROOM : 3

�etw

�

Figure A CG relation

"

.We use this notation to represent a generic concept t, (t,*),[t] and to represent the individual

concepts (t, m), [t:m]

��$�
 De5inition
6 Vocabulary

Vocabulary is a triple (TC, TR, I) where: (Chein & Mugnier, 2008)

• TC and TR are finite, disjoint sets.

• TC is the set of concept types and partially ordered by a relation ≤ and has greatest

value represented with ┬ .

• TR is the set of relation symbols, that is ordered by a relation ≤ and is partitioned into

T1
R , … ,Tk

 R sub-sets of arity 1… k

• I is the set of individual markers which is disjoint from TC and TR. Two distinct

individual markers represent distinct entities. Set of markers is defined M= I U {*}. The

generic marker (*) is greater than any element in I, and non-pair elements in I are

incomparable.

Two functions are usually considered as the extension of a vocabulary (Chein & Mugnier, 2008):

1) Individual typing function (τ): is used to map the individual markers to the concept type.

That is, individuals can be typed by this function. The function returns the category of a

referent, that is τ:I�TC .Typing function guarantees CGs to be well-formed. In other words if

we have a relation: r (tC1:m1 , …, tCn:mn) then τ(mi) ≤ tCi 1≤ i ≤ n

 As an example if there is a relation Poses<Person, Object> and we have Poses <friend: Reza,

Object: gift> this relation is validated when τ (mi) ≤ tCi 1≤ i ≤ n. If we assume τ(Reza)=

friend then this relation is validated if in relation hierarchy we should have friend≤ Person.

2) Relation symbol signature: By using the signature we specify all concept types that can be

used in a relation. We can define two relations as signature compatible if:

 ∀ r1,r2∈ Ti
R r1≤r2 ⇒ B(r1) ≤ B(r1)

��$�� Definition �- labeling functions6

Labeling function is used in order to assign a label to the nodes and edges in a graph, which is

defined as: ���������	
�����������

• A Concept node c is labeled by a pair (type(c), referent(c)) where type(c)∈TC and

referent(c)∈ I U {*}

• A Relation node r is labeled by l(r)∈TR , l(r) means type of r and can be represented as

type(r).

• Edges that belong to a relation r have an order that starts from 1,… to B(type(r))

l(c) is the label of the node c of a CG from the vocabulary:

∀ r∈ R , l (r)∈T R
B(r) ∀ c∈C , l (c)∈T C ×(I U {*}) , B(r)=<c1,c2…,cn> such that

 l (r)=type(r) and l (c)=(type(c), reference(c)) then type(ci) ≤ B(type(r))i

_ B (type(r))i means the i-th argument of relation r<tC1,….tCn>

��$�� Definition �- Canon6

 Canon is a tuple (T , I , ≤ , :: , B) that defines the domain of the conceptual graph where

��������������

• T is the set of types that includes two disjunctive sets of TC for concept types and TR for

relation types.

• I is set of individuals that can exist.

• ≤ is the subtype relation

• :: is the conformity relation that relate type labels to individual marker to ensure that

related type have a meaning in domain.

• B is the canonical basis function that associates each relation type with the concept

types that may be used with the relation.

%

��$�! Definition ! – Conceptual Graph6

Conceptual graph is a 2 tuple CG=(Canon, G), where:

• Canon=(T , I , ≤ , :: , B)

• G=(C, R, E, l) that is a ordered bipartite graph that:

- C is set of concepts.

- R is set of relations.

- E is set of edges.

- l is labeling function.

��& Ontology

 Ontology is an explicit, formal representation way that describes the already existing or

potentially existing concepts and interrelationships in a machine readable format (Noy et al.,

2001).

Ontology encodes knowledge in a domain. Domains are restricted information areas that are

concentrated on a specific subject like education, finance, medical care, etc. The concepts and

the relationships among them are described in Ontology in a computer usable method. Ontology

can be represented in various structures from the simple taxonomy, to metadata schema, to

logical theories 9?	@i�, �**�:. Regarding context matching, that is the main interest in this work,

the Ontology representation method should be able to represent context (in its general meaning),

the relationship between contexts and the properties of the context in a consistent way. Ontology

is an approach to structure and define the pertinent metadata. The Ontology represents semantics

of contexts and enables applications to use these semantics.

Major advantages of using Ontology are:

- The structure of knowledge is generated and can easily be shared by the users

- The generated Ontology is reusable

- Assumptions related to the domain become explicit

- The domain knowledge is isolated from the operational domain

- The generated knowledge is normalized

- It reduces the hard coding attempts to represent knowledge

-

��&�
 Principles of designing Ontology6

 There are important principles that should be considered during the design of Ontology. In

(Korpipaa & Mantyjarvi, 2003), goals and design principles for the Ontology for the mobile

device sensor-based application is summarized as following:

1. Domain

2. Simplicity

3. Practical access

4. Flexibility

5. Facilitate inference

6. Genericity

7. Efficiency

8. Expressiveness

��&�� Formal definition of Ontology based on the conceptual graph theory6

Conceptual graphs are suitable for representing Ontology. CGs are also appropriate for

comparing, merging and performing some other operations on Ontology. CG theory already

provides tools, structure and formal definitions for these functional features (Corbett, 2004). In

addition, there is no difficulty in using CGT for representing Ontology where there are

reasoning, subsumption, inheritance and comparison functionalities defined for types and

individuals in a conceptual graph. These available mechanisms can be helpful in reasoning

process using Ontology when it is represented with a CG by considering types as objects. In

other words, the CG formed Ontology will automatically present these functionalities that are

originated from CGT. It also provides a definition of semantic in forms of hierarchy and

subsumption (Corbett, 2004).

 Representing the Ontology with conceptual graph is an adaptable contextual information

representation method that can be applied to different scenarios. Therefore, it may be helpful to

propose a generic algorithm. When the Ontology is represented with a CG, based on its formal

definition it provides a concept type hierarchy that can be used as a framework to define other

conceptual graphs that conform to the hierarchy of concepts (Corbett, 2004).

�*

 In this thesis, we use formal definition of Ontology that is based on conceptual graph theory.

Conceptual graphs and canon are defined in previous sections. The canon can be considered as

the set of CGs that is well-defined and significant in the domain of knowledge 9���7	A, �**%:.

������� Definition -Formal definition of Ontology ��������	
���

An Ontology is a 5-tuple O=(TCM,TRM, IM ,≤, :: , B) that is constructed based on Canon definition

as:

- TCM is the set of concept types for domain M.

- TRM is the set of Relation types for domain M

- IM is the set of individuals in for domain M

- ≤ subtype relation

- B is canonical basis for each relations

In 95. B�� 	�, C��	iD�, ���7	A, E F. 2. B�� 	�, �**%: the original definition of Ontology is

extended to reach a complete Ontology. In this “Closure of the original Ontology” the concept

types and relation types are extended in order to supply some missing arguments or properties of

relations. Extended relation is produced by merging arguments of its sub-type relations to build a

super-type relation.

������� Definition �- relation extension �P.	Nguy�n	��	��.�	
���:

 Assume relation ri with arity(ri)=n for which B(ri)=(tCi 1,….,tCi n) and relation rj arity(rj)=m for

which B(rj)=(tCj 1,….,tCj m) , ri is said to extension of rj and written as ri=ext(rj) if all arguments

of rj are presented in ri ;

ri=ext(rj) if (tCi 1,….,tCi n)= ext (tCj 1,….,tCj m) which means m≤ n , ∀ 1≤k≤n tCi k= tCj k

The new Ontology with relation type hierarchy has broadened components as:

• I is the set of individuals (or instances) include all concept types and relation types I=IC U IR

• conformity function is extended to support relating relation instances to relation types

conformity (::) : IC U IR� TC U TR

• Function B is extended in order to define arguments for both TR ��0 IR sets.

�

 B:TR U IR � τ(TC) U τ (IC)

 The described Ontology based on CG formalism, consists of a type and relation hierarchy that

works as the framework of Ontology. The type hierarchy also can be used as a simple Ontology

that is mentioned in (Corbett & Mayer, 2005).

Another aspect of Ontology in addition to defining a framework is acting as knowledge

container. In this thesis, long term concepts and relations are kept in the Ontology as the

knowledge base used in the matching process. In CG formalism, the framework of knowledge

supports type and relation hierarchy and the knowledge of domain is represented in the form of a

specific conceptual graph. In this specific CG we represent the long term knowledge about the

facts or situations. The specific concepts or individuals should be considered as new concept

types and added to the type hierarchy. This guaranties the graph derivation through

projection.(Amati & Ounis, 2000)

��&�
 Extended ontology6

The formal definition of Ontology based on the Conceptual Graph theory, provides a knowledge

framework for ontology that is represented in the form of the type and relation hierarchy and a

specific conceptual graph that represents the Ontology information. This specific CG resembles

the knowledge of domain including generic and specific concepts and their interrelation

regarding to ontology’s framework (type hierarchy).

In (Amati & Ounis, 2000) the restrictive format of the CGs is introduced that each concept type

in it takes only one referent to represent the specific concept. This format of conceptual graph is

used to provide possibility of deduction system over the conceptual graph.

 In the specific CG we consider the specific concepts as the new concept types and place them

into the type hierarchy. Assume that we have a generic type [City: *] and we are interested in

representing the specific concepts in the ontology for this type, such as [Ankara] and [Istanbul].

 We call this new hierarchy as the closure of hierarchy of concept types. This new hierarchy adds

the individuals into the concept type hierarchy. One of the main advantages of this extension is

the ability to define composite types for individuals without any conjunction between the types.

��

Conjunction between types leads to some difficulties in the representation, since it needs to

define the compatible concept types and banned concept types.

In our approach each individual is considered as the independent concept type and should be

added into the concept type hierarchy. If the individual has a composite concept type then it will

belong to all of these concept types. For example if we have individual [Reza] that is an

international student then we need an [international student] concept type in the concept

hierarchy, but even if there is not such a concept type in the hierarchy we can still present [Reza]

as a new concept that has two concept types of [student] and [International]

��* Ontology and context-aware computing

 Ontology is used to represent the entities and their interrelationships in a specific domain. In

definition of Ontology the description of an entity is called a class or a concept. Each concept

has attributes that describe slots (also called properties or roll) of each class. The restriction on

slots is defined in facets (also called role restrictions). In order to generate Ontology we should

first define classes of Ontology, and then arrange them in a granular hierarchy, and then we

should define slots with their accepted values, and finally fill the slots with values. Different

relations between the defined classes are illustrated by links. These links or relations describe

two types of relation: internal links that describe relation among classes and instances like

instance-of or subclass-of.(Noy et al., 2001)

 In general most of Ontology languages are logic-based languages in order to define concepts,

their properties and relationships in accurate, consistent and meaningful way 9?	@i�, �**�:.

Symbolic knowledge representation and description languages are both based on logic-based

formalism. Description logic is a favorable representation that supports full reasoning that can be

performed automatically. These abilities are widely used in OWL-DL as a solution for

challenging sides of expressiveness and complexity of reasoning.9G	H�i 	� ��., �*
*:

 In general ontologies are exploit representation and reasoning abilities of logics in order to:

1. Describe complex context based on expressiveness of logic languages.

2. To define a semantic for concepts and their relations. This facilitates the integrating context

or sharing it between various sources.

��

3. To use available tools for consistency checking and simple reasoning processes. 9G	��i�i 	�

��., �*
*:

 Context-aware applications need proper context modeling to be generic and to be usable for

various applications. Context sharing and common understanding of context is main driver for

recent research in the field of context representation and reasoning algorithms 9������ E

Li����$$-5��i	�, �**�:.

��: Ontology-based context matching and related works

Three eminent works, SOCAM, CoBrA and the Context Managing Framework (Baldauf et al.,

2007) which use the Ontology-based context modeling are summarized in this section. Our

purpose is to point out which dimensions of context are used and how Ontology can be used to

describe/model them.

Both CoBrA and SOCAM are using the OWL, whereas Context Managing Framework uses the

RDF. The CoBrA uses its own Ontology language that is an OWL based language but called

COBRA-ONT.

The SOCAM (Service-Oriented Context-Aware Middleware) architecture is used for rapid

prototyping context-aware applications 9��, 5���, E (����, �**�7:.The context in basic model

is described in the form of “predicate (subject, value)” like “location (john, bathroom)” that

means john is located in bathroom and “Temperature (kitchen, 120)” that means temperature of

kitchen is 120º F. In the same way, by adding Boolean operations, more complex contexts are

generated. In order to be scalable SOCAM divides the pervasive environment into a set of sub-

domains and uses different ontologies for different environments. In addition to generalized

ontologies, the specific ontologies, that are also known as domain specific ontologies are the

main parts of Ontology knowledge base. In requested situations these two ontologies are bound

together, for example when user is in home the home Ontology and general Ontology are joined

together.

 Basic contexts defined in the generalized Ontology include person, location, activity and

computational entity. These concepts and related properties and relations are illustrated in Figure

4 9��, 5���, E (����, �**�7:.

��

 Different reasoning systems can connect to this knowledge base and perform reasoning tasks

9Fi����i, ��0J, E G	� ���, �**%:. Interpreter uses various ontologies, this reduce the

performance of the system but increase the reusability of the system 9��, 5���, E (����, �**�7:.

The interpreter of SOCAM is developed with Jena2 (HP’s Semantic Web Toolkit) 9“J	��

�	���i� W	7 ���	D��k,” �.0.: that is a Java framework for developing semantic web

applications.

Figure 3 Generalized Ontology and relation with domain-specific Ontology �Gu� (ung�) *hang� !!+b#

 The Context Broker Architecture (in short form CoBrA) also benefits from the advantages of

using Ontology. CoBrA as mentioned before uses the semantic web language OWL. OWL

enables CoBrA to share information with environmental agents and in addition provides an

Ontology model that is easy to reason and check the consistency of contextual information.

OWL also facilitates sharing Ontology as a common knowledge between agents. There are four

main categories of context in CoBrA: place, agent, agent’s activity and agent’s location (Chen et

al., 2003) Ontology is also divided into four separate parts:

1. Ontologies about places: it categories concepts by defining physical places with their social

specifications. For example, place refers to typical physical locations in a university campus

��

like campus, building, room. Spatial information like longitude and latitude are the properties

of the place class.

2. Ontologies about agents: it categories concepts by defining software and human agents.

3. Ontologies about an agent’s location context: it categories agent contexts based on their

location. For example “PersonInBuilding” is a class that describes a group of people that are

located in the building.

4. Ontologies about an agent’s activity context: it categories concepts to describe the activity

situation of agents.

 Context Managing Framework (Korpipaa, Mantyjarvi, Kela, Keranen, & Malm, 2003) uses

Ontology in order to define the valid contexts to be used by clients. Raw sensory data is

converted into Ontology representation form. This representation of context has a higher

reusability than sensory raw data and provides the ability to serve human interpretable context

information for other applications. The Ontology consists of a schema that represents the

structure and properties of concepts and the vocabulary that consist of terms in order to describe

context information. The structure and properties are represented with RDF (Resource

Description Framework) that enables the Ontology to be shared. Context expressions consist of

six parameters, namely context type, context value, confidence, source, timestamp, and attribute.

Context type and context value are mandatory information; an example for context type is

“Environment:Sound:Hormonicity” and the value for this context type is “{Low, Medium,

High}”. Context type is represented the category of concept. Context’s primitive categories are

location, time, environment, user and device. Context value is used with the context type to

describe the context. 9C���i��� E F��� J��vi, �**�:

Dividing universal Ontology into different ontologies of specific domains is a pragmatic

approach that is used in 9��, 5���, E (����, �**�7:.One of the advantages of using individual

ontologies is the simplicity of their creation. The terms and relations in a specific domain are

limited. In addition sentences that use the limited words of specific Ontology have similar

structure 9(����, (��, Li, E P�, �**�:.

�"

��
; Conceptual Graph matching

 Gomez et al. 9F���	�- -�ó	., Ló�	.-Ló�	., E �	�7�k�, �***: used conceptual graph

matching for textual information retrieval. In this work, text is represented in the form of CG and

comparison is done on current and desired texts which correspond to the document and the

user’s query, respectively. The concept nodes of CG are used to represent the elements of text

that includes nouns, verbs, adverbs, adjectives. The relation nodes of CG are used to represent

some restricted relations between concepts like attributes prepositions, subject and object. For

example, a sentences like “John loves Mary” is represented as a conceptual graph like

[John]�(Subj.)�[Love]�(Obj.)�[Mary] where brackets illustrate concept nodes and

parentheses show the relation nodes. A part-of-speech tagger, a syntactic parser, and a semantic

analyzer are used to generate the conceptual graph of the sentences. The algorithm to compare

two CGs in this work includes two main steps. The first step is to find intersection of two

graphs. In the second step, the similarity of two graphs is calculated based on the intersection

graph obtained in the first step.

The intersection graph is defined as GC = G1∩ G2. The concept nodes of this graph are all

concept nodes that appear in both G1 and G2. The relation nodes of this graph are all relations

that appear in graphs G1 and G2 . The similarity of two graphs is highly related to similarity of

their concepts and relations. The similarity is found as S=SC*(a + b*SR). Coefficients a and b are

used to decrease the effect of relation similarity in the case of SR=0. The values for a and b

are selected as follows:

� �
������

������ 	
������ 	
������

� � � �

n(GC) is the number of concept nodes in GC and mGc(G1)+mGc(G2) is the total number of

concepts in G1 and G2 that are connected to GC nodes.

Conceptual similarity (Sc) and relational similarity (Sr) are calculated with the following

equations:

�� �
������

����� 	 �����

�#

Where n(GC) is the number of concepts in graph GCn(G1) and n(G2) are the number of concepts

in graphs G1 and G2, respectively.

�� �
�
����

������ 	
������

Where m(Gc) is the number of relation nodes in graph Gc and mGC(G1) and mGC(G2) are the

numbers of relation nodes in immediate neighborhood of GC nodes in both graphs G1 and G2.

 In 9(���� 	� ��., �**�: a semantic search approach based on conceptual graph theory is

proposed. Semantic search supports searching for various categories of objects from hypertext to

multimedia description. The proposed approach uses CGs in order to describe document content.

Similarity between current context CG (called resource CG) and desired context CG (called

query CG) represents semantic similarity between resource and query contexts. The similarity

between CGs is defined according to the concepts and relation similarities. In order to calculate

the similarity between two concepts, distances between them are calculated as dC (C1, C2) and the

similarity between two concepts is defined as:

 Sim C (C1, C2) = 1- dC(C1,C2)

Concept hierarchy of the CG helps us to calculate the distance between two concepts. In this

method every concept node has a ‘milestone’ value that is calculated as :

 milestone (n)=
���

������

Where l(n) is depth of the node in hierarchy and k is a factor larger than 1 that shows the rate of

decrease in value along the hierarchy. The default value for k is equal to 2.

.

The milestone value of each node is used to calculate the distances between nodes according to

their distances from the common closest node or CCP. Distance between two nodes is calculated

as:

dC (C1,C2)=dC (C1,CCP)+dC (C2,CCP)

dC (C,CCP)= milestone(CCP)-milestone(C)

�%

Then the similarity between relations is:

 Simr(rQ,rR)=1-dr(rQ,rR) => 1 if rQ subsumes rR , 0 if others

where rQ is relation in query CG (desired CG) and rR is relation of resource CG (current context

CG).

CG similarity is defined by using the concept similarity and relation similarity. In a CG each

concept has some connections with the relations and each relation is related to a concept that

introduces a sub-graph under that concept. The similarity between two CGs is defined as the

similarity between two concepts and their related sub-graphs. In order to distinguish between

entities according to their importance, “weights” can be used. More important entities have

higher weight in contrast to entities with less importance.

Similarity of two CGs, CQ and CR, is defined as:

SoG(CQ,CR)= W(CQ,C).SimC(CQ,CR)+Max for each combination{Σj w(Q , j).Simr(r
j
Q , r

j
R).[SoG(C rjQ Q,C rjR R)]

Where

• CQ is the entry of the query CG, CR is the entry of resource CG.

• SoG(CQ,CR) is the similarity between two CGs.

• rj
Q and r

j
R represents the jth relation that connects the entry CQ and CR concepts of

query and resource CGs.

• C rjQ Q and C rjR R are entry nodes of the sub-graphs those are attached to the relations rj
Q

 and r
j
R

• W(CQ,c) and W(CQ,j) represent the weights of the entry and the jth relation association with
the entry respectively.

 In (Laudy & Ganascia, 2010) the authors proposed a compatibility testing method based on

conceptual graphs. The compatibility testing comes as a prior level before information fusion.

They use advantages of conceptual graph theory for illustrating current situation. Matching

measure for two graphs was used to understand compatibility rate by comparing with a threshold

that is assigned by a domain expert.

The similarity between two graphs is computed as:

�-

Sim match(G1,G2)=
Σ�������∈���������������� !���������

�����"#�"�"#�"�

where

• C1 and C2 are the set of concepts of G1 and G2

• |C1| and |C2| are the count of concepts in G1 and G2

• c1 and c2 are concepts of G1 and G2

 The similarity between two graphs is calculated according to concepts with maximum similarity.

In different possible matching of concepts the concepts with maximize similarity is taken into

account.

 Similarity between two concepts is computed by comparing two concepts based on their

conceptual types, their values and their neighborhood. Similarity between two concepts can be

calculated as:

Sim concept (C1,C2) = p1(t1,t2)sim Type (t1,t2)*�
!��$��$��%��& '�(��(��)!*%���& ��������+!,-�%%& ��������

!�)!*
�

where

� c1 and c2 are concept nodes

� t1 and t2 are conceptual types that belong to c1 and c2

� v1 and v2 are individual markers that represent t1 and t2 values.

� p1, p2 , p3 and p4 are weights to emphasize on elements of higher importance.

� Sim Type : similarity between conceptual types defines as the distances between them in

lattice of concept. In order to find distance between two concepts

o ∀(t1, t2)∈ S×S, dist(t1,t2)= min(t ≤ t1, t≤ t2) (lS(t1,t2)+lS(t2,t))

o With ∀(t1, t2)∈ S×S , t≤t' lS(t1, t')=Σ ti ∈(t, t'), ti≠t [
�

�!.�'����
]

� Sim Ref : similarity between two referents

� Sim Rel : similarity regarding to neighborhoods , comparing direct neighborhoods of concepts

is proposed as a factor to find similarity between two concepts which is computed as:

 SimRel(c1,c2)=
�/�0& �#����������

�0& �����)�0& �����

Where nbRelComm(c1,c2) is the number of relations that are common in c1 and c2 , and

nbRel(c1) and nbRel(c2) are total number of relation connection to c1 and c2 nodes.

�*

� diss Rel : dissimilarity regarding neighborhoods. Comparing neighborhoods dissimilarity is

another factor to find similarity between two concepts. It is computed as:

 dissRel(c1,c2)=
�/�0& �1�''�������

�0& �����)�0& �����

nbRelD iff(c1,c2) shows the number of relations that are not common between c1 and c2

�

CHAPTER 3

� CONTEXT MATCHING BASED ON CONCEPTUAL GRAPHS

In this thesis, we use conceptual graphs to model the current and desired contexts. Whenever the

current context changes, the current and desired contexts are matched. The matching process

consists of five main steps as illustrated in Figure 4. The basic idea employed in the matching

process is to construct a CG corresponding to the current context. This graph is structured

according to the incoming query so that the matching is facilitated. For the same purpose, we

also preprocess the query CG to refine requested context by using ontology.

 The first step in the matching process is the preparation step that includes generating the

ontology and the observation units which are tiny conceptual graphs that represent main context

dimensions including hour, date, status and location of a specific actor. The actor may be a

person or a thing. In this step, the knowledge base of the domain will be generated and saved.

 The second step is about converting the query CG into the desired context CG. The original

query may come in the natural language and it is first represented by a conceptual graph. The

conversion of natural language description of query into a conceptual graph is outside the scope

of this study. In this thesis, we concentrate on converting the query CG to a form that can be

processed easily, and this form is called desired context CG.

The context observation units that belong to different actors are generated in first step should be

filtered according to the requested actor’s context in the desired context CG. In this step among a

��

multitude of the context units, the context observations that may be related to the desired context

CG will be filtered. Then, these context units will be used to generate the current context CG.

 In the following step, the filtered context units will be joined together according to the desired

context CG relations. The generated new CG is the called the current context CG.

 The final step computes the matching score for the desired context CGs and the current context

CG.

��

Figure , The context matching process

��

��
 Step
6 Generating Ontology and current context observation

units6

��
�
 Generating ontology

 In this thesis, we represent the Ontology by using the conceptual graphs. Our Ontology consists

of a concept hierarchy, relation hierarchy and a specific graph that represent the domain

knowledge by representing generic concepts, individuals and their interrelations.

We utilize the concept type and relation type hierarchy to compute concept type and relational

type similarity between concepts and relations of desired context and current context CGs.

 We form our Ontology based on five primitive categories, namely Location, Status and Person,

Hour and Date. Parts of a sample Ontology for concept type and relation type hierarchies and

sample domain knowledge are given in Figure 5, Figure 6, and Figure 7.

��

Figure + Sample concept type hierarchy in Ontology

�"

Figure / Sample relation type hierarchy in Ontology

Figure 0 Sample information in Ontology

��
�� Generating current context observation units from sensory raw data6

 Captured data from each sensor should be represented as tiny conceptual graph that we call

context atom. A context atom is a CG that consists of a two concepts and a relation. The relation

reflects the type of the sensor and related concepts represent the actor and sensed value. The

actor may be a person or thing to which is the sensory data is associated.

 Each context observation that belongs to an actor should be associated to hour and the date of

the observation. As the sensing operation is continuous, instead of representing each sensed data

together with date of observation separately, we create a single graph for a sensed data and

associate duration of validity. That is, the time (hour and date) of each context unit is associated

to a time period that starts form “start time” and ends in the ”end time”. The start time is set to

when the context unit is generated and end time is updated as data comes from the related

sensors. If the status and location of the actor in the context unit remains the same with the prior

status and location, we only update the end time. If status and/or location changes, after updating

�#

the end time of the existing context unit, a new context unit for same actor with new values is

generated. Tracing the status and location contexts are directly related to our interest, however

other contexts may also be added to the observation units as needed.

 “Start time” and “End time” of each context unit is kept in the form of the time range for both

hour and date contexts. The Start time and End time in context unit refer to duration of context

so it is reasonable to represent them as a range as the following:

 [Hour: m] and [Date: n] with dstart:hstart < n:m<dend: hend

 We use the main idea of (Pawar & Tokmakoff, 2006) to associate the actors to the sensors and a

system employing our approach should support:

1. Registration of sensors dedicated to the actors which exist in incoming queries.

2. Capturing data from registered sensors.

3. Associating data captured from sensors to the related actors and the system clock.

As a summary, in order to construct context units, the following steps are taken:

1. The context unit of registered actors is constructed with the location and status

context atoms.

2. The hour and date of captured context are set as the start hour and start date of the

current context observation unit.

3. System periodically polls the registered sensors

 If there is no change in the context {

 Update the End hour and date.

 }

 If there are changes in status or location {

1- The End hour and date of the CG should be set to current hour and date.

2- The context unit is stored in context history.

3- New observation CG should be generated for this actor and start hour and date and

end hour and date are set to current hour and date.

}

�%

��
�� An example for representing sensory data as context units6

In Figure 8, a sample context observation unit is given. This unit contains the contextual

information for the user [person:reza] in certain hour period [11:56-12:56] in specific location

that is a GPS measurement on [18/04/2011] having the [Activity:eating lunch] status.

Figure " context unit of the actor 12*A at �"3!,3 !��- � 4+/ pm

As explained above, whenever status and location context information changes a new context

unit will be generated. The context unit in Figure 9 reflects a change in the actor’s status. As it

can be seen end time of previous context unit and the start time of the new context unit are

successive.

Figure 5 Context unit of actor 1eza at the �"3!,3 !��-at4 � 4+0 pm -�74�+ pm

�-

By acquiring an observation that has the same information about the status and location of the

actor (reza) the context unit in Figure 9 should be updated. Updating a context unit changes its

end date/hour to current time of observation. The updated context unit is given in Figure 10.

Figure �! context unit for actor 1eza at the �"3!,3 !�� at �747! pm

��� Step �6 Converting the query CG into desired context CG6

 In this step, Query CG is converted to desired context CG by using the Ontology. The

conversion algorithm is as follows:

1. Replace all existential referents into their equivalences, using Ontology.

2. Complete context units for each actor (context units are CGs that only has one actor and

represent four main context dimensions such as date, hour, status and location).

3. Transliterate the complex relations into a collection of generic relations which has the same

meaning with the complex relation.

4. Translate descriptive referents into the numeric values, using Ontology.

����
 Transliteration of complex relations

 In this step a complex relation in query CG is decomposed into some fundamental relations. We

refer to a relation as complex when no instances with given arguments exist in the Ontology.

Some complex relations resemble a reasoning result and should be extended to contain all

related arguments to lead to the same result. It should be extended in the way to include

fundamental context dimensions that are required for the reasoning. In other words, we extend

the complex relation in order to have required arguments.

�*

 We use the main idea of “Closure Ontology” (P. Nguyen et al., 2008) that was proposed an

extension on relations in the ontology to support new relations based on the current relations that

require extra constraints or arguments in the relation.

 We describe the relation extension as following: assume these relations offend (offender,

offender victim) and steal (thief). We have steal≤offend that means offend is more generic than

thief. As the query we have “did John steal from Mary? “. In order to represent this relation we

extend the steal (thief) to a new relation steal*(thief, thief victim). While introducing new

argument into existing relation we should be careful as selected argument should be a specific

form of its corresponding argument in the generic relation. In this example, we should have

thief<offender and thiefVictim≤offenderVictim in the concept type hierarchy. Adding new

concept types into the concept type hierarchy requires reviewing the relations in the ontology,

and we should be careful to prevent adding new concept types of minor signification. (P.

Nguyen et al., 2008)

 Extending a relation generates a more generic relation. Using the extended relation instead

the complex relation has no side effect on matching results. The extended relation is considered

as the generalization of the complex relation. The complex relation and the extended one have

the maximum similarity and we are allowed to replace the complex relation with the extended

one.

����� An example for Converting the query CG into desired context CG6

 In this section, we illustrate the query CG to desired context CG conversion by an example.

Consider the following incoming query as “Reza is nearby a friend”. The generated query CG

based in this query is similar to following CG in Figure 11.

�

Figure �� incoming query CG

1- All of the existential concepts should be interpreted according to Ontology. In this example,

we have the generic concept [people:*] that satisfy the relation

[person:reza]®(isFriendOf)®[people:*]. Based on the ontology information we have

[person:reza]®(isFriendOf)®[people: Emrah]

The updated incoming query is presented in Figure 12.

Figure � generic concepts converted the specific ones�

2- In second step we add missing dimensions to the actors in the query. If no specific values are

specified for the main context dimensions then we should set their values as the generic

concepts. The updated query CG is given in Figure 13. The hour and date context dimensions in

this step are specified as the generic types, which means [hour period: current hour] and [date

period : current date]

Figure �7 Query CG after adding the missing context dimensions into the actors�

3. The relation of isNearby<person:reza, person:*> is a complex relation, as we can’t find it in

the Ontology. In order to translate this complex relation, we refer to the relation type hierarchy.

��

Therefore isNearby(person,person) relation is found to be a specific type of the

hasDistance(person,person,distance) relation. That is, isNearby≤hasDistance. The hasDistance

relation extension is the hasDisatance*(person1,person2, distance,location1,location2). Between

these three relations we have isNearby≤hasDistance≤hasDistance*. The extension of the

isNearby is defined as isNearby*(person,person,clossness). The closeness is defined as a new

concept type according to the concept hierarchy as closeness≤distance. We also define the

closeness between two persons as distance between persons’ location context as a range of [0-

10m]. We can extend it more to contain the person’s location such as isNearby*(person1,person-

2,clossness, location1, location2). Therefore, we represent the “reza is nearby a person” as:

 hasDistance*(person:reza,person:*,Distance:*,location:A,location,B)

 IsNearby*(person:reza, person:*,closeness:[0-10m], location: A, location :B)

 The resultant query CG is given in Figure 14.

Figure �, desired context CG

��

��� Step �6 Filtering the current context observation units

 Context observation unit consists of context atoms which belong to the same actor at the same

hour and date. Due to the rapid changes in the context information and large number of actors

there may be a huge number of context units in a simple application scenario.

 In this section we describe an algorithm to filter appropriate context units to speed up matching

operation. The resultant context units will be used in the current context CG.

Filtering of context units is performed according to following steps:

1. We compare context units with the desired context CG in order to select appropriate context

units that may be used in current context CG.

2. In the history search more than one result may be found for several actors. In this case, those

units with different actors that occur in the same time should be considered together in

order to generate current context CG.

����
 An example for filtering and augmenting context units6

Suppose that the current hour is 13:30 pm and the current date as 18/04/2011.Current hour and

date can be used to filter the context units which belong to Reza and Emrah (desired context CG

actors). The selected context unit for actor Reza is given in Figure15 and the context unit of the

actor Emrah is given in Figure 16. These context units are chosen because they have the highest

similarity score in the matching with the desired context CG in contrast with the other context

units.

��

Figure �+ current context unit for 1eza

Figure �/ current context unit for 2mrah

��! Step !6 Generating current context CG6

We make use of the structure of the desired context CG (Figure 14) in order to construct the

current context CG. The desired context CG is the query CG that is augmented in order to

replace the generic concepts with those individuals that have the most specific meaning

according to Ontology. The steps for constructing the current context CG is:

1-Make a copy of the desired context CG.

��

2-replace the context units of each actor with the selected current context observation units.

3-compute the values for those arguments that are depending on hour, date, location and status.

��!�
 An example of generating Current context CG

 We generate the current context CG based on the desired context CG given in Figure 14 and the

context units that are selected from the various context observations which are given in Figure

15 and Figure 16. In the current context CG we only replace these context units with the

corresponding context units in the desired context CG. The generated current context CG is

given in Figure 17.

Figure �0 current context CG

��" Step "6 Matching between current context CG and desired context

CG6
In this step the desired context CG and the current context CG is matched. The context matching

approach is based on the conceptual graph matching. In (J. Sowa, 1984),(Foo, Garner, Rao, & Tsui,

1992),(Ralescu & Fadlalla, 1990) the similarity between the concepts and in 9(���� 	� ��., �**�:

and (Laudy & Ganascia, 2010) the similarity between CGs have been studied. We use the original

idea in these references and extend it by the use of Ontology to support our purpose.

We define similarity between two conceptual graphs as the average of their relations’ similarity.

In our model, the relation similarity depends on the relation type similarity and conceptual

similarity and conceptual similarity is the similarity between the concepts of a relation. We

�"

define the concepts as tuple of concept type and referent ([concept type: referent]). Concept type

similarity multiplied by the referent similarity is defined as the conceptual similarity between

two concepts and for all concepts in one relation the conceptual similarity is defined as the

average of arguments similarity. Regarding to the nature of query situation some weights can be

defined for each relation in desired context to discriminate more important context dimensions

from less important ones. Each assigned weight should be between 0 and 1 and sum of the

weights should be 1.

According to our model, similarity between two CGs D and C is computed as:

SimCG(D , C) = AVG(Σ Max { Sim relation type (rdi , rcj)* Sim conceptual (rdi , rcj)})
 for 1≤i≤m and 1≤j≤n

and if we use Weights then:

SimCG(D , C) = Σ D i* Max { Sim relation type (rdi , rcj)* Sim conceptual (rdi , rcj)}
 for 1≤i≤m and 1≤j≤n

1≤i≤m m=number of relations in D

1≤j≤n n= number of relations in C
1≤s≤p p=Arity of desired relation

1≤t≤q q=Arity of current relation

Where,

- D refers to Desired context CG

- C refers to the current context CG

- wi denotes the weight assigned to rdi from the desired CG

- rdi is the i-th relation in desired context CG , rdi < c1 di,…, cs di,… , c
p di > n=Arity of rdi

- rcj is the j-th relation in current context CG, rcj < c1 cj,…, ct cj,… , c
q cj > n=Arity of rcj

In the above computation, we select and compare those relations from desired context CG and

current context CG that have the maximum similarity. That is, we compare the selected relation

from desired context CG with all relations in current context CG, one by one. The relation with

highest similarity score will be selected from current context CG.

�#

Conceptual similarity is defined between two relations and depends on relations’ arguments

similarity. Relation’s argument or concepts are defined as a combination of concept type and

referent such as cs di = [tcs di: ms di]. We take both concept type and referent similarity into account

and calculate the conceptual similarity as:

Sim conceptual (rdi , rcj)=AVG (Sim Concept type (tc
s di ,tc

t
cj)* Sim Referent (m

s di , m
t cj))

�������������������f����������������j���������� f����s���p�����������q

rdi=<c1
di, c

2
di, …., cs

di,….c
p
di>

rcj =<c 1cj,c
2 cj, …., ct cj,….c

q
cj>

rd={rd1|rd2|….|rdi|…|rdn}

rc={ rc1|rc2|….|rcj|…|rcm}

m= number of relations in D, n= number of relations in C

��"�
 Relation Type Similarity6

 We defined relation type similarity measures how much two relation’s relation type is similar

together as:

 Sim relation type (rdi , rcj) = 1 If rcj ≤ rdi

 = 0 Otherwise the similarity value is 0.

 We give the maximum similarity between two relation types if one relation type subsumes the

other one in the relation type hierarchy in the Ontology. Otherwise the similarity is set to zero

and further attempts to find the similarity between their concepts makes no sense.

 As an example, we compute the relation type similarity for the desired context CG in Figure 14

and the current context CG in Figure 18 and represent those pairs with highest similarity as

following are:

1. Sim relation type (atlocation1, atlocation1)=1

2. Sim relation type (hasStatus1, hasStatus1)= 1,

�%

3. Sim relation type (Athour1, Athour1)=1,

4. Sim relation type (Atday1, Atday1)=1 ,

5. Sim relation type (atlocation1, atlocation2)=1

6. Sim relation type (hasStatus1, hasStatus2)= 1,

7. Sim relation type (Athour1, Athour2)=1,

8. Sim relation type (Atday1, Atday2)=1 ,

9. Sim relation type (atlocation2, atlocation1)=1

10. Sim relation type (hasStatus2, hasStatus1)= 1,

11. Sim relation type (Athour2, Athour1)=1,

12. Sim relation type (Atday2, Atday1)=1 ,

13. Sim relation type (atlocation2, atlocation2)=1

14. Sim relation type (hasStatus2, hasStatus2)= 1,

15. Sim relation type (Athour2, Athour2)=1,

16. Sim relation type (Atday2, Atday2)=1 ,

17. Sim relation type (isFriend , isFriend)=1 ,

18. Sim relation type (isNearby* ,isNearby*)=1 ,

19. Sim relation type (Distance , Distance)=1 ,

��"�� Concept Type Similarity6

Each concept in conceptual graph consists of two parts the concept type and the referent.

The similarity between The concept type of two concepts such as [tcs di : m
s di] and [tcs cj :

ms cj] is defined based on the concept type hierarchy of Ontology. We use extended

concept type hierarchy in order to keep individuals as new concept types. The concept

type similarity between two concepts is computed as:

Sim concept type (tc
s di ,tc

t cj)

 = 1 If tc
t cj ≤ tcs di

 =0.50 If tcs di ≤ tct
 cj

 = 0 If CCP = ┬

 =1-Diss concept type (tcs di ,tc
t cj) Otherwise

- tcs di is the concept type of s-th argument of relation rdi , equivalently [tcs di : m
s di]

�-

- tct cj is the concept type of s-th argument of relation rcj, equivalently [tct cj : m
t cj]

 In order to compute the dissimilarity between two concept types or Diss type (ti, tj) we should

compute the distance between them. In the concept type hierarchy (TC) , we find the common

closest parent (CCP) of ti and tj . The distance between two concept types are defined as the total

of their distances from the CCP (Common Closest Parent). Path selection does not have an

impact on the distance value because scores are only depends on the depth of node.

Diss type (ti, tj) = Distance (ti, ccp) + Distance (tj, ccp)

Distance (t, ccp) = milestone (ccp) - milestone(t)

Milestone is used to find the depth of the concept node. Milestone is computed as:

 Milestone (t) = ½ / 2 level(t)
 level(t) shows depth of node.

In some special situations there is no need to calculate the distance between concepts in the

concept type hierarchy explicitly. Here we give some special situations:

1- We have CCP of two concepts as ┬ then :

 The concept similarity between two concepts set to zero.

2- The desired concept type is more generic that the current concept type or tj ≤ ti then the

CCP will be same as the ti that is a concept in desired context CG and tj as the sub-type

of the ti .The similarity between a super-type and sub-type is in highest rate and we

should set the similarity value to 1.

3- The desired concept type is more specific than current concept type or ti ≤ tj .In this case

we assign 0.5 as the concept type similarity score.

4- If we have the ti and tj as direct sub-types of the CCP, that means

Milestone(CCP)=Milestone(ti)+Milestone(tj)

We check the concept type similarity between the relations in desired context CG in Figure 12

and the current context CG in Figure 16. For all relation combinations we check their concept

type similarity as:

1. Sim relation type (atlocation1, atlocation1)=1

�*

 Sim concept type (person,person)=1 Sim concept type (GPS address,GPS address)=1

2. Sim relation type (atlocation1, atlocation2)=1

 Sim concept type (person,person)=1 Sim concept type (GPS address,GPS address)=1

3. Sim relation type (atlocation2, atlocation1)=1

 Sim concept type (person,person)=1 Sim concept type (GPS address,GPS address)=1

4. Sim relation type (atlocation2, atlocation2)=1

 Sim concept type (person,person)=1 Sim concept type (GPS address,GPS address)=1

5. Sim relation type (hasStatus1, hasStatus1)= 1,

 Sim concept type (person,person)=1 Sim concept type (activity,activity)=1

6. Sim relation type (hasStatus1, hasStatus2)= 1,

 Sim concept type (person,person)=1 Sim concept type (activity,mood)=0.75

7. Sim relation type (hasStatus2, hasStatus1)= 1,

 Sim concept type (person,person)=1 Sim concept type (mood,activity)=0.75

8. Sim relation type (hasStatus2, hasStatus2)= 1,

 Sim concept type (person,person)=1 Sim concept type (mood,mood)=1

9. Sim relation type (Athour1, Athour1)=1,

 Sim concept type (person,person)=1 Sim concept type (Hour period, Hour period)=1

10. Sim relation type (Athour1, Athour2)=1,

 Sim concept type (person,person)=1 Sim concept type (Hour period, Hour period)=1

11. Sim relation type (Athour2, Athour1)=1,

 Sim concept type (person,person)=1 Sim concept type (Hour period, Hour period)=1

12. Sim relation type (Athour2, Athour2)=1,

 Sim concept type (person,person)=1 Sim concept type (Hour period, Hour period)=1

13. Sim relation type (Atday1, Atday1)=1 ,

 Sim concept type (person,person)=1 Sim concept type (Date period, Date period)=1

14. Sim relation type (Atday1, Atday2)=1 ,

 Sim concept type (person,person)=1 Sim concept type (Date period, Date period)=1

15. Sim relation type (Atday2, Atday1)=1 ,

 Sim concept type (person,person)=1 Sim concept type (Date period, Date period)=1

16. Sim relation type (Atday2, Atday2)=1 ,

 Sim concept type (person,person)=1 Sim concept type (Date period, Date period)=1

17. Sim relation type (isFriend , isFriend)=1 ,

�

 Sim concept type (person,person)=1 Sim concept type (person, person)=1

18. Sim relation type (isNearby* , isNearby*)=1 ,

 Sim concept type (person1, person1)=1 , Sim concept type (person2, person2)=1
 Sim concept type (closeness, closeness)=1
 Sim concept type (GPS address1, GPS address1)=1,
 Sim concept type (GPS address2, GPS address2)=1

��"�� Referent Similarity

 We mentioned that concepts in the conceptual graph represented in form of a combination of

concept type and the referent. Referent also may be considered as the referent’s value. In order

to find the similarity between two concepts computing the referent similarity is necessary.

Referents may obtain numeric or non-numeric values.

 We define the maximum similarity between a generic concept in the desired context CG and an

individual in the current context CG. For all individual we have m ≤* that means the generic

symbol subsumes all individuals. It means the generic concepts in desired context CG and any

individuals have the maximum referent similarity. The similarity between referents is defined as:

Sim Referent (mdi, mcj) = 1 if mdi =mcj
 = 1 if mdi ≠ mcj and mdi=* or mcj ≤ mdi

 = Sim relational (mdi, mcj) otherwise

For non numeric referents we have

 Sim relational (mdi, mcj)= Sim subCG (Cdi , Ccj)

For Numeric referents we calculate their similarity based on their distance from each other

 Sim relational (mdi, mcj)= Sim value (Distance(mdi, mcj))

������ Referent similarity in non-numeric referents:

 The similarity between two non-numeric referents is defined as their relational similarity. Our

main interest is to propose a generic method for the people and status contexts that always take

non-numerical values. For those contexts which take non-numeric values we choose to translate

those non-numeric values into the numeric ones by using the Ontology.

��

 We define the referent similarity for people and status contexts’ individuals as their

neighborhood similarity. With the neighborhood we mean the sub-graphs that are representing

the main contextual dimensions in the current context CG and desired context CG. The main

common context dimensions that we consider for people’s neighborhood are status, location,

hour and date and for the status context we consider are location, hour and date. The main idea is

that people normally behave the same at specific locations at specific times. For example what

people do during the lunch break in a normal work day at cafeteria? The status of each user may

be set to different things but depending on its type similarity and the relational similarity we

represent their status similarity. Same thing happens for people context, the relational similarity

of people who are in same location at same hour and date with the similar status at the maximum

level. The relational similarity is supposed as categorization for the non-numeric individuals.

Those individuals in the same category are more similar in contrast to other individuals out of

the category.

In order to compute the relational similarity between two individuals we compute the similarity

between their first level sub-graphs. We use modified version of conceptual graph matching

algorithm for this task. That is, we perform the matching only for first level sub-graphs. The

algorithm is:

1 Set weight scores for each relation

2 Set the Sim referent (Entrance D, Entrance C)=0

3 For each relation in Sub-graph D and relations in Sub-graph C

4 {

5 Calculate the similarity between each relation pair

6 Select relation pairs with maximum similarity score

7 For each selected relations 1≤i≤m

8 {

9 For each relation argument 2≤s≤p // we omit the first argument

10 {

11 Calculate the average of concepts similarity

 Sim conceptual (rdi , rcj)=AVG 2≤s≤p (Sim concept type(tc
s di ,tc

t cj)* Sim Referent (m
s di , m

t -

cj))

��

12 Calculate the MAX{ Sim relation type(rdi , rcj)* Sim conceptual (rdi , rcj)}

13 {

14 }

15 Compute the similarity score as :
 Sim subCG (D , C) = Σ D i* Max { Sim relation(rdi , rcj)* Sim conceptual (rdi , rcj)}

16 Return similarity score value

 The conceptual similarity between two different status (or people) depends on their concept type

similarity and their relational similarity. Suppose that two different statuses are [Activity:

Shopping] and [Mode: Free time]. The neighborhoods of these statuses are:

[activity:shopping]®
 -(AtHour)®[hour period:12:57 pm-13:30 pm]
 -(AtDay)®[date period:18/04/2011-18/04/2011]
 -(AtLocation)®[GPS Address: ;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2]

[mode:free time]®
 -(AtHour)®[hour period:11:27 pm- 13:30 pm]
 -(AtDay)®[date period:18/04/2011-18/04/2011]
 -(AtLocation)®[GPS Address: ;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2]

The result of computing relational similarity between [Activity: Shopping] and [mode: Free

time] will be:

Sim relation type(AtHour, AtHour)*(Sim concept type (Hour Period,Hour Period)*Sim referent(12:57

pm-13:30 pm, 11:27 pm-13:30 pm)= 1*1*0.65= 0.65

 Sim referent(12:57 pm-13:30 pm, 11:27 pm-13:30 pm)= 0.65

Rangesim(D,C)= (d2-d1)= 2:03

Rangediss(D,C)=(d1-c1)+ (c2-d2)=1:30

Diss (D,C)=|Rangesim(D,C)-Rangediss(D,C)| / Rangelenght(D)+Rangelenght(C)

 =(2:03-1:30)/(2:03+00:33)=33/186=0.35

Sim (D, C)=1-Diss(D,C) =1-0.35=0.65

��

Sim relation type(AtDay, AtDay)*(Sim concept type (date period,date period)*Sim referent(18/04/2011-

18/04/2011, 18/04/2011-18/04/2011)= 1*1*1=1

Sim relation type(AtLocation,AtLocation)*Sim concept type (GPS Address, GPS Address)*Sim referent-

(;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2� ;a<tude 75 +,’ 7,�,7” N-;ongitude 7

,/’ 77�50” 2)=1*1*1=1

The relational similarity between [activity: shopping], [mode: free time] is calculated as:

 Sim relational (shopping, free time)=AVG(0.65+1+1)=0.88.

In order to calculate the conceptual similarity between [activity: shopping] and [mode: free time]

, we should first calculate their concept type similarity based on the concept type hierarchy that

was given in Figure 5,we have Sim concept type(activity, mode)=0.625 and for conceptual similarity

based on its definition Sim conceptual(C1,C2)=Sim concept type(tc1,tc2)*Sim referent(m1,m2), we have Sim

conceptual(C1,C2)=Sim concept type(Activity,mode)*Sim relational (shopping, free time)

 = 0.625*0.88= 0.55

As another example suppose the relational similarity for people context below:

[Person: Reza]®
 -(Atlocation)®[GPSAddress: ;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2]
 -(HasStatus) ®[activity:shopping]
 -(AtHour)®[hour period:12:57 pm- 13:30 pm]
 -(AtDay)®[date period:18/04/2011-18/04/2011]

[Person: Emrah]®
 -(Atlocation)®[GPSAddress: ;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2]
 -(HasStatus) ®[mode:Free time]
 -(AtHour)®[hour period:11:27 pm- 13:30 pm]
 -(AtDay)®[date period:18/04/2011-18/04/2011]

In the following the relational similarity’s computation is detailed:

Sim relation type(AtLocation, AtLocation)*(Sim concept type (GPS address, GPS address)*Sim referent-

��

(;a<tude 75 +,’ 7,�,7” N-;ongitude 7 ,/’ 77�50” 2, ;a<tude 75 +,’ 7,�,7” N-;ongitude 7

,/’ 77�50” 2)=1*1*1=1

Sim relation type(HasStatus, HasStatus)*(Sim concept type (activity, mode)*Sim referent(Shopping, free

time)= 1*0.625*0.88=0.55

Sim relation type(AtHour, AtHour)*(Sim concept type (Hour Period,Hour Period)*Sim referent(12:57

pm-13:30 pm, 11:27 pm-13:30 pm)=1*1*0.65=0.65

Sim relation type(AtDay, AtDay)*(Sim concept type (Date Period,Date Period)*Sim referent(18/04/2011-

18/04/2011, 18/04/2011-18/04/2011)= 1*1*1=1

Sim Relational ([person:reza],[person:emrah])=AVG(1,0.55,0.65,1)=0.8

SimConceptual([person:reza],[person:emrah])=

 Simconcept type (person,person)*Sim Relational ([person:reza],[person:emrah])=1*0.8=0.8

In summary, for the given desired context CG (Figure 14) and current context CG (Figure 17)

we have two non-numeric references with the referent similarity as following:

SimReferent(reza,reza)= 1
SimReferent(reza,emrah)=0.8
SimReferent(emrah,emrah)=1
SimReferent(emrah,reza)=0.8

SimReferent(*,shoppig)= 1
SimReferent(*,free time)=1

This approach can be used to check the referent similarity between a numeric referent and a non-

numeric referent.

������ Referent similarity for numeric scores:

 For numeric referents the difference between their values can be used to find the dissimilarity

between them. Computing distance between two numeric referents is a bit tricky depending on

whether we have an exact value or a range of numeric data. We consider each combination

differently as explained in the following:

1- Desired concept’s referent and current concept’s referent have range values: In the case

of having range values for current and desired context: We represent the desired context range as

�"

range D with start point d1 end points d2. For current context we assign range C with start point

c1 and end points c2. Dissimilarity between two ranges will be calculated as following:

Diss (D,C)=|Rangesim(D,C)-Rangediss(D,C)| / Rangelenght(D)+Rangelenght(C)

Sim (D, C)=1-Diss(D,C)

Rangelenght(D)=d2-d1 and Rangelenght(C)=c2-c1

We calculate the Rangesim(D,C) and Rangediss(D,C) based on the situation.The possible relations

between ranges D and C are as following:

d1 = c1 & d2 = c2 sim(D,C)=1

d1<c1<c2<d2 sim(D,C)=1

c1<d1<d2<c2 Rangesim(D,C)= (d2-d1)

Rangediss(D,C)=(d1-c1)+ (c2-d2)

d1<c1<d2<c2

c1<d1<c2<d2

Rangesim(D,C)=(|c1+d1|)

Rangediss(D,C)= (|d1-c1|)+(|c2-c1|)

2- Desired concept’s referent has range value and current concept’s referent has certain

value: If the desired concept’s value is in range (d1,d2) but the current concept’s value is a

certain value (c) the possible cases are:

d1≤ c ≤d2 Sim(D,c)=1

c <d1 & c<d2

c>d1& c >d2

Sim(D,c)=0

3- Desired concept’s referent has certain value and current concept’s referent has range

value: In this case desired context take a certain value (d) and current context is specified as a

range C, the possible cases are:

c1≤ d ≤c2 Sim(d,C)=1

d<c1 & d<c2

d>c1& d >c2

Diss(d,C)=min{|c1-d|,|d-c2|} / Range(c2-c1)

Sim(d,C)=1-Diss(d,C)

�#

4- Desired concept’s referent and current concept’s referent have certain values: If both

desired and current context take certain values then the similarity of these referents will be

computed as:

Sim Referent(d,c)=1-DissReferent(d,c)

 Diss Referent(d,c) mapped value to Distance(d ,c)=|d-c| from related table

Similarity scores for these values are set based on concepts’ value difference and related

similarity score. These scores are available in lookup tables, which are generated by the rule of

thumb by domain experts. We present the similarity mapping table for location in Table 2, hour

in Table 3 and date in Table 4. According to the information which is represented in Table 2, 3,

4 it is clear that less distance between contexts returns more similarity score.

In Table 2, the similarity scores for numeric location contexts are given. We use this table to

calculate the similarity between two locations with numeric referents given as the GPS position

information, we measure their distance and based on it we assign similarity value from Table 2.

With some examples we try to illustrate how to compute similarity between two locations in

GPS position values as follows:

Assume two places named KENTPARK and CEPA with certain GPS positions as:

GPS position of CEPA= Latitude 39 54’ 37.08” N , Longitude 32 46’ 42.12” E

GPS position of KENTPARK= Latitude 39 54’ 34.62” N , Longitude 32 46’ 33.82” E

Distance (CEPA, KENTPARK) = 0.12 Km

Sim Referent (CEPA, KENTPARK)=0.7

The Distance (CEPA, KENTPARK) is computed with aid of a GPS distance calculator.

Table similarity scores based on the distance

level Difference Diff value Sim value

1 ≥2.001 km 1 0

2 0.751km- 2 km 0.8 0.2

3 0.151km-0.750km 0.5 0.5

4 0.041km-0.150 km 0.3 0.7

�%

5 0.021 km -0.040 km 0.15 0.85

6 0.006 km-0.020 km 0.05 0.95

7 0 km-0.005km 0 1

In Table 3 the similarity score for Hour contexts is represented. In order to calculate similarity

score between hour contexts we calculate the difference between values and use the information

in Table 3. Here we have some examples:

Simvalue (15:06, 16:00) =1-Dissvalue (15:06, 16:00) = 1-0.3 =0.7
Simvalue (15:06, 17:00) =1-Dissvalue (15:06, 17:00) =1-1= 0
Simvalue (15:06, 18:00) =1-Dissvalue (15:06, 18:00) = 1-1=0
Simvalue (15:06, 19:00) =1-Dissvalue (15:06, 19:00) = 1-1=0

Table 7 similarity score based on Hour difference

level Difference DiffValue SimValue

1 ≥1:31 1 0

2 1:16-1:30 0.8 0.2

3 1:01-1:15 0.5 0.5

4 00:46-1:00 0.3 0.7

5 00:31-00:45 0.15 0.85

6 00:16-00:30 0.05 0.95

7 00:00-00:15 0 1

In Table 4 similarity scores for date context is represented. Referent similarity for date contexts

with the numeric values will be calculated based on their difference and mapped to similarity

score according to Table 4. The referent similarity scores for date contexts are also assigned by

rule of thumb.

 Referent similarity is in its maximum when both current date context and query date context are

the same. For those date contexts that have one day difference we assign the referent similarity

according to their hour referent similarity. In other words if Dissvalue(date C, date D)=1 then Sim

value (date C, date D)= Sim value (hour C ,hour D). Some examples are given as following:

Assume the Desired context and Current context as

�-

Desired context
[date period: 05/04/2011-05/04/2011] and [Hour period: 23:00-23:00]

Current context
[date period: 06/04/2011-06/04/2011] and [Hour period: 00:01-00:01]

As it can be seen the date difference between the desired context and current context is Diss value

(05/04/2011, 06/04/2011) = 1 then the referent similarity for hour will be used as the referent

similarity for date context or Sim value (date D, date C)=Sim value (hour D ,hour C) that we have Sim

value(23:00, 00:01)= 1- Diss value (23:00, 00:01)= 1- 0.5 = 0.5

 This referent similarity score for Hour context will be used as the referent similarity for date

context then Sim value (05/04/2011, 06/04/2011) =0.5

Table , similarity scores based on date difference

level Day difference Diffvalue Simvalue

1 2 days >= 1 0

2 1 day Diff value (hour C. ,hour D) Diff value (hour C. ,hour D)

3 0 day 0 1

��"�! Matching algorithm6

At the first step we set weights for relations in the desired context CG. Then we take one relation

in desired context CG and compare it with the relations in current context CG, one by one. The

relation with highest similarity score will be selected from current context CG. For these

selected relations we check the conceptual similarity. The conceptual similarity between two

relations is defined as the average of corresponding argument’s conceptual similarity. The

conceptual similarity between arguments is the concept type similarity multiplied by the concept

value similarity.

After checking the conceptual similarity we check if these arguments are used in other relations’

argument or not. In other words if these concepts have sub-graphs we have to continue to check

the similarity for sub-graphs.

"*

Checking similarity for sub-graphs is the same as checking similarity for graphs. It starts by

comparing relations and then concepts. If there are other sub-graphs in the compared sub-graphs

they are checked recursively.

These steps of the algorithm are:

1 For each relation in current context CG and relations in desired context CG

2 {

3 Calculate the similarity between each relation pair

4 Select relation pairs with maximum similarity score

5 For each selected relation 1≤i≤m m=Relation number in D

6 {

7 For each relation argument 1≤s≤p p=Arity of current relation

8 {

9 Calculate the relation’s conceptual similarity

 Sim conceptual (rdi , rcj)=AVG (Sim concept type(tc
s di ,tc

t cj)* Sim Referent (m
s di , m

t cj))

10 Calculate the MAX{ Sim relation type(rdi , rcj)* Sim conceptual (rdi , rcj)}

11 {

12 For the equal values select the most significant one.

13 }

14 }

15 }

16 Compute the graph similarity
 Sim CG (D , C) = AVG(Max { Sim relation(ri , rj)*Sim conceptual (rdi , rcj)})

 for 1≤i≤m and 1≤j≤n

17 Return similarity score value

 As an example, we apply our matching algorithm for matching the desired context CG in Figure

14 and the current context CG in Figure 18. The detailed computations are given below. Note

that, in the following, we only present those relations with maximum similarity.

Note: In the following, we use K instead of the [Latitude 39 54’ 34.43” N-Longitude 32 46’

33.97” E].

"

• rd1= atLoccation<person: Reza, GPS Address: *>

• rc1= atLocation<person: Reza, GPS Address: k >

• Simrelation type(atlocation,atlocation)=1

• Sim concept type (person,person)=1

• Sim Referent (reza, reza)=1

• Sim concept type (GPS Address, GPS Address)=1

• Sim Referent (*, K)=1

Simrelation type(atLocation, atLocation)* ((Sim concept type (person,person)*Simreferent(reza,reza) +

Sim concept type (GPS address, GPS address)*Sim referent(*, k))/2=1

o rd2=athour < person:reza, hour period: 13:30-13:30> // current hour:13:30

o rc2=athour < person:reza ,hour period:12:57-13:30>

o Simrelation type(athour,athour)=1

o Sim concept type (person, person)=1

o Sim referent (reza,reza)=1

o Sim concept type (hour period, hour period)=1

o Sim referent (13:30-13:30,12:57-13:30)=1

Simrelation type(athour, athour)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (hour period, hour period)*Sim referent(13:30-

13:30, 12:57 -13:30))/2=1

� rd3=atdate<person:reza, date period: 18/04/2011-18/04/2011>//current date

� rc3=atdate<person:reza, date period:18/04/2011-18/04/2011>

� Simrelation type(Atday, Atday)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(date period, date period)=1

� Sim referent (18/04/2011-18/04/2011, 18/04/2011-18/04/2011)=1

Simrelation type(atday, atday)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (date period, date period)*Sim referent-

(18/04/2011-18/04/2011, 18/04/2011-18/04/2011))/2=1

� rd4=hasstatus<person:reza, status:*>

� rc4=hasstatus<person:reza, activity:shopping>

� Simrelation type(hasStatus, hasStatus)=1

"�

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(Status, activity)=1

� Sim referent (*,shopping)=1

Simrelation type(hasStatus, hasStatus)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (Status, Activity)*Sim referent(*, shopping))/2=1

� rd5=isNearby*<person:reza, person:Emrah,closeness:[0-10m], GPS Add:*,GPS Add:*>

� rc5= isNearby*<person:reza, person:Emrah,closeness:[0m], GPS Add:k, GPS Add:k>

� Simrelation type(isNearby*, isNearby*)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(closeness,closeness)=1

� Simreferent([0-10m],[0m])=1

� Sim concept type(GPS address,GPS address)=1

� Simreferent(*,k)=1

� Sim concept type(GPS address, GPS address)=1

� Simreferent(*,k)=1

Simrelation type(isNearby*, isNearby*) * ((Sim concept type(person,person)*Simreferent(reza,reza) +

Sim concept type(person,person)*Simreferent(emrah,emrah) + Sim concept type-

(closeness,closeness)*Simreferent([0-10m],[0m]) + Sim concept type (GPS address, GPS

address)*Sim referent(*, k)+ Sim concept type (GPS address, GPS address)*Sim referent(*, k))/5=1

� rd6=isfriendof<person:reza, person:emrah>

� rc6= isfriendof<person:reza, person:emrah>

� Simrelation type(isfriendof, isfriendof)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(person, person)=1

� Sim referent (emrah,emrah)=1

"�

Simrelation type(isfriendof, isfriendof)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (person, person)*Sim referent(emrah, emrah))/2=1

o rd7=athour < person:emrah, hour period:13:30-13:30> // current hour

o rc7=athour < person:emrah ,hour period:11:27-13:30>

o Simrelation type(athour,athour)=1

o Sim concept type (person, person)=1

o Sim referent (emrah,emrah)=1

o Sim concept type (hour period, hour period)=1

o Sim referent (13:30-13:30,11:27-13:30)=1

Simrelation type(athour, athour)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (hour period, hour period)*Sim referent(13:30-

13:30, 11:27-13:30))/2=1

� rd8=atdate<person:emrah, date period:18/04/2011-18/04/2011> //current date

� rc8=atdate<person:emrah, date period:18/04/2011-18/04/2011>

� Simrelation type(Atday, Atday)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(date period, date period)=1

� Sim referent (18/04/2011-18/04/2011, 18/04/2011-18/04/2011)=1

Simrelation type(atday, atday)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (date period, date period)*Sim referent-

(18/04/2011-18/04/2011, 18/04/2011-18/04/2011))/2=1

� rd9=hasstatus<person:emrah, status:*>

� rc9=hasstatus<person:emrah, mood:free time>

� Simrelation type(hasStatus, hasStatus)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(Status, mode)=1

� Sim referent (*,free time)=1

Simrelation type(hasStatus, hasStatus)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (Status, mood)*Sim referent(*, free time))/2=1

"�

• rd10= atloccation1<person: emrah, GPS Address: *>

• rc10= atlocation1<person: emrah, GPS Address: k >

• Sim relation type(atlocation, atlocation)=1

• Sim concept type (person,person)=1

• Sim Referent (emrah , emrah)=1

• Sim concept type (GPS Address, GPS Address)=1

• Sim Referent (*, K)=1

Simrelation type(atLocation, atLocation)* ((Sim concept type (person,person)*Simreferent(emrah,emrah) +

Sim concept type (GPS address, GPS address)*Sim referent(*, k))/2=1

SimCG(D,C)=AVG(Simrelation(rd1,rc1), Simrelation(rd2,rc2), Simrelation(rd3,rc3), Simrelation(rd4,rc4), Simrelation-

(rd5,rc5), Simrelation(rd6,rc6), Simrelation(rd7,rc7), Simrelation(rd8,rc8), Simrelation(rd9,rc9), Simrelation(rd10,rc10))=1

The similarity score is equal to 1 that shows that desired context (Figure 14) and the Current

context (Figure 18) are matched with maximum similarity.

"�

CHAPTER 4

! SAMPLE USAGE SCENARIO

In this section we try to apply the proposed matching method to a specific domain of the

context-aware applications, Cinema domain.

!�
 Cinema domain6

 In the cinema domain we have different concepts such as Movie Theater, movies, and the

customers. Different relations between these concepts are defined when the customers are

interested in to be informed about the movie’s subject and its start time. Suppose that the

customers want to go to cinema with some friends in special time. Other information about the

ticket price or special promotions in addition to some extra details about actors/actresses which

have played in the movie and a brief story of the movie will help the customers to decide to

watch or don’t watch the movie. Some extra factors also might be considered such as friends

who are like the movie or other friend’s ratings and comments about the movie.

 In our context matching model, all of these information and interrelations between concepts

must be defined in the ontology. In this chapter we describe how our method for best matching

based on the ontology can be applied to various scenarios in the cinema domain.

!�� Step;-
6 Building Ontology

 The ontology is represented in the form of a conceptual graph. The conceptual graph consists of

a support and graph itself. The support of the CG is mentioned as the framework of the ontology

""

and the graph is considered as the populated ontology. The framework of ontology consists of

the concept type hierarchy and relation type hierarchy.

 The concept type hierarchy is shown in Figure 18. We will benefit from the concept hierarchy

for defining the concept type similarity in the matching process.

We define different concept categories such as location, status, date, time, person and movie and

we describe the individuals as new concept types in the concept hierarchy. For example in

MovieCategory branch we have documentary, action, comedy, biography, adventure and thriller.

All of these concept types in the classic view should be defined as individuals such as

[movieCategory: documentary]. In our approach we keep the concept type embedded in the

individuals by defining them as new concept types. The concept type similarity between the

individuals is defined as their distance from the closest common parent, and all direct children of

the parent (sibling nodes) have maximum concept type similarity. In order to define the zero

similarity between some concepts we can use the absurd type in the hierarchy and connect the

concepts to this type. Those concepts with absurd CCP have zero concept type similarity. We

mentioned that it is not allowed to define the same concept in different branches.

 Each individual that is defined in the concept hierarchy as a new concept type can have more

than one parent. This definition allows us to take concept conjunction into the account. Consider

two concept types namely [bird] and [fish-eater], the conjunction of these two types may be

considered as the [fish-eater-bird], but without any conjunction and by defining [pelican] as the

direct subtype of the [bird] and [fish-eater].

In the concept type hierarchy we have [Latitude 39 54’ 34.43” N-Longitude 32 46’ 33.97” E]

which is the GPS address of the Kentpark. This is located under the [GPS Address] and

[Kentpark]. The embedded meaning of this conceptual definition can be considered as “[Latitude

39 54’ 34.43” N-Longitude 32 46’ 33.97” E] is the GPS Address of Kentpark”. This help us to

determine [Reza]®(atPlace)®[Kentpark] and [Reza]®(atLocation)®[Latitude 39 54’ 34.43” N-

Longitude 32 46’ 33.97” E] as two relations with maximum similarity. Based on relation type

hierarchy we have atlocation<atplace that returns the Simrelation type (atplace,atlocation)=1 and

according to the concept type hierarchy we have [Latitude 39 54’ 34.43” N-Longitude 32 46’

33.97” E] ≤ [KentPark] so the concept type similarity of this GPS address and Kentpark are 1.

"#

 F
ig

u
re

 �
"

 c
o

n
ce

p
t

ty
p

e
 h

ie
ra

rc
h

y
 o

f
O

n
to

lo
g

y

"%

The relation type hierarchy of the ontology is given in Figure 19. Relational hierarchy is

important to define the relation type similarity which is an important factor in computing

similarity score between two conceptual graphs and extending relations.

Figure �5 1elation type hierarchy of Ontology

 The concept type hierarchy and relation type hierarchy which are mentioned as Ontology

framework are also considered as unpopulated Ontology. A specific conceptual graph that is

generated based on this framework is considered as the populated Ontology which consists of

the concepts and interrelations. A sample Ontology is given in Figure 21.

Figure ! (opulated Ontology of Cinema Domain

"-

In the ontology we have Irfan as a person who is a friend of Reza and also likes action movies.

We have Reza who is friend of Irfan and Emrah and likes action movies. We have Emrah who is

friend of Reza. We have two movies in the ontology named “elephant white” and “source code”

both in action and thriller category and the early one is shown in Ankamall and the last one is

shown in Kentpark cinemas. The Kentpark and Ankamall cinemas are specified with their GPS

addresses.

!�� Step ;-� generating context observation units

 We represent the sensory captured data in the form of the conceptual graph. These conceptual

graphs are named the context units. Context units represent the sensory information that is

related to the specific actor.

Figure � current context observation unit for actor reza

#*

Figure current context observation unit for actor 2mrah

Figure 7 current context observation unit for actor Irfan

Suppose that we have the following query:

Query: If there is an interesting movie for Reza and his friends on the cinema, suggest the movie

to Reza. The time of this suggestion should be after work and the status of all people should be

free time.

The incoming query is given in Figure 25 as a conceptual graph. It illustrates that Reza has some

friends and the status of Reza and his friends is set to free time and all of them like the same

movie.

#

Figure , Incoming query in the form of query CG

!�! Step
) converting query CG to desired context

From the given query CG in Figure 25 the desired context CG will be generated through the

following steps.

Step1-1) If there are any existential or generic referents in the query graph we translate them into

individuals based on ontology. The process of the replacement is based on the small matches

between the relations of desired context and the ontology. All of the existential concepts should

be checked with all of the valid referents that we keep them in the concept type hierarchy. Based

on the relation instances that is saved in the relation type hierarchy we have

isfriend<reza,emrah> and isfriend<reza,irfan> ,so we replace the relation

isfriend<person:reza,person:*> with these two relations. Updated query is represented in Figure

25.

#�

Figure + existential referents are replaced in the query CG

Step 1-2) the query CG should be augmented in order to contain dynamic context dimensions in

addition to the static context information in order to present the perfect desired context.

The missing context dimension such as each user’s location, status, hour and date is added and

represented in the figure 26.

#�

Figure / missing context dimensions of actors are added to the query CG

Step1-3) all of the complex relations should be replaced with more generic relations. We refer to

complex relations as those relations in query CG which have no instance in the Ontology. The

output of this step is given in Figure 27. (likeMovie) <person, movie> relation has no instances

in the relation hierarchy, so we extend this relation in order to answer who likes which movie

that is not represent in ontology in an explicit way. We extend these two relations as:

#�

We have the (likeMovie) relation which is more specific than the LikeMovieCategory relation.

Based on the relation hierarchy we have likeMovie ≤ LikeMovieCategory and based on the

concept type hierarchy we have Movie≤ MovieCategory.

likeMovieCategory<person,MovieCategory>
likemovie<person,Movie>

We extend likeMovieCategory<person,MovieCategory> and likemovie<person,Movie> to :

likeMovieCategory*<person,MovieCategory,Movie>

likemovie*<person,MovieCategory,Movie>

The likeMovie* is stored in the relation type hierarchy as a new relation which is more generic

than likeMovie and more specific than likeMovieCategory as :

Likemovie ≤ Likemovie* ≤ likeMovieCategory* ≤ likeMovieCategory

After extending the LikeMovie relation three new relations are generated as following:

likemovie*(person:reza,moviecategory:*,movie:*)
likemovie*(person:emrah,moviecategory:*,movie:*)
likemovie*(person:irfan,moviecategory:*,movie:*)

We set a rule here to generate the new added relations instances. After adding new relations into

the relation type hierarchy we should add the relation instances into the relation hierarchy. Based

on this rule, in the new added likeMoviecategory* relation the new added argument [movie:*]

should be replaced according to the concept type hierarchy with respect to the referents that are

sub-type of the [MovieCategory: action], so we have the following relation instances:

likeMoviecategory*(person:reza, moviecategory:action,movie:elephant white)

likeMoviecategory*(person:reza, moviecategory:action,movie:source code)

likeMoviecategory*(person:irfan, moviecategory:action,movie:elephant withe)

likeMoviecategory(person:irfan, moviecategory:action,movie:source code)

In the same way LikeMovie* relation’s instances should add to the hierarchy as:

likeMovie*(person:reza, moviecategory:action, movie:elephant white)

likeMovie*(person:reza, moviecategory:action, movie:source code)

likeMovie*(person:irfan, moviecategory:action,movie:elephant withe)

#�

likeMovie*(person:irfan, moviecategory:action,movie:source code)

Each combination adds a new relation into the query CG and is represented in Figure 27.

Figure 0 Complex relations are replaced in the query CG

#"

!�" Step �) Filtering the current context observations

Too many context observations may exist for each actor, in order to benefit from them we need

to filter them based on the requested context in the desired context. The filtering process should

be done by comparing each context observation with the desired context. The matching may

have more than one acceptable result, especially when the desired context defines broad ranges

for date and hour. We identify all of the results as the valid context observations. These context

observations will be used to generate the current context CG in the next step.

For filtering the history of current context observations in regard to a passive query all of current

context observations compare with the desired context CG.

The current context observation units for actors of the desired context CG (Figure 27) Reza,

Emrah and Irfan are given in Figures 21, 22, 23.

!�$ Step �) generating current context CG

The main idea for generating the current context CG is to include those contexts that have the

most similarity to the desired context in the form of conceptual graph. The context observations

that are selected in the previous step will be used to generate the current context CG. We create a

copy of the desired context CG and update the context dimensions of each actor in order to form

the current context CG. The resultant current context CG is given in Figure 28.

Figure " current context CG that is generated based on desired context CG�

4.7 Step !) matching between the current context and desired context

As the last step we match the generated current context CG and the desired CG together.

We use the following abbreviations during the computing similarity

R= Latitude 39 53’ 36.64” N-Longitude 32 47’ 03.00” E

#%

E= Latitude 39 53’ 32.28” N-Longitude 32 46’ 42.46” E

I= Latitude 39 53’ 46.02” N-Longitude 32 46’ 59.80” E

Details of the matching are as follows:

• rd1= atloccation1<person: Reza, GPS Address: *>

• rc1= atlocation1<person: Reza, GPS Address: R >

• Simrelation type(atlocation,atlocation)=1

• Sim concept type (person,person)=1

• Sim Referent (reza, reza)=1

• Sim concept type (GPS Address, GPS Address)=1

• Sim Referent (*, R)=1

Simrelation type(atLocation, atLocation)* ((Sim concept type (person,person)*Simreferent(reza,reza) +

Sim concept type (GPS address, GPS address)*Sim referent(*, R))/2=1

o rd2=athour < person:reza, hour period:after work> // current hour:17:40

o rc2=athour < person:reza ,hour period:17:40 pm-17:40 pm >

o Simrelation type(athour,athour)=1

o Sim concept type (person, person)=1

o Sim referent (reza,reza)=1

o Sim concept type (hour period, hour period)=1

o Sim referent (after work,17:40 pm-17:40 pm)=1

Simrelation type(athour, athour)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (hour period, hour period)*Sim referent(after work,

17:40 pm-17:40 pm))/2=1

� rd3=atday<person:reza, date period:* > //current date18/04/2011

� rc3=atday<person:reza, date period:18/04/2011-18/04/2011>

� Simrelation type(Atday, Atday)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(date period, date period)=1

� Sim referent (*, 18/04/2011-18/04/2011)=1

#-

Simrelation type(atday, atday)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (date period, date period)*Sim referent(*,

18/04/2011-18/04/2011))/2=1

� rd4=hasstatus<person:reza, status:free time>

� rc4=hasstatus<person:reza, mood:free time>

� Simrelation type(hasStatus, hasStatus)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(Status, mood)=1

� Sim referent (free time,free time)=1

Simrelation type(hasStatus, hasStatus)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (Status, mood)*Sim referent(free time, free

time))/2=1

� rd5=isfriendof<person:reza, person:emrah>

� rc5= isfriendof<person:reza, person:emrah>

� Simrelation type(isfriendof, isfriendof)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(person, person)=1

� Sim referent (emrah,emrah)=1

Simrelation type(isfriendof, isfriendof)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (person, person)*Sim referent(emrah, emrah))/2=1

� rd6=isfriendof<person:reza, person:irfan>

� rc6= isfriendof<person:reza, person:irfan>

� Simrelation type(isfriendof, isfriendof)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(person, person)=1

� Sim referent (irfan,irfan)=1

Simrelation type(isfriendof, isfriendof)* ((Sim concept type(person,person)*Sim-

referent(reza,reza) + Sim concept type (person, person)*Sim referent(irfan,irfan))/2=1

� rd7=likeMovie*<person:reza,MovieCategory:Action,movie:”source code”>

%*

� rc7= likeMovie*<person:reza,MovieCategory:Action,movie:”source code”>

� Simrelation type(likeMovie*, likeMovie*)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(MovieCategory, MovieCategory)=1

� Simreferent(action,action)=1

� Sim concept type(movie,movie)=1

� Simreferent(source code,source code)=1

Simrelation type(LikeMovie*, LikeMovie*)* ((Sim concept type(person,person)*Simreferent(reza,reza) +

Sim concept type (MovieCategory, MovieCategory)*Sim referent(action,action) + Sim concept type

(Movie, Movie)*Sim referent(source code, source code))/3=1

� rd8=likeMovie*<person:reza,MovieCategory:Action,movie:”elephant white”>

� rc8= likeMovie*<person:reza,MovieCategory:Action,movie:”elephant white”>

� Simrelation type(likeMovie*, likeMovie*)=1

� Sim concept type(person,person)=1

� Simreferent(reza,reza)=1

� Sim concept type(MovieCategory, MovieCategory)=1

� Simreferent(action,action)=1

� Sim concept type(movie,movie)=1

� Simreferent(elephant white, elephant white)=1

Simrelation type(LikeMovie*, LikeMovie*)* ((Sim concept type(person,person)*Simreferent(reza,reza) +

Sim concept type (MovieCategory, MovieCategory)*Sim referent(action,action) + Sim concept type

(Movie, Movie)*Sim referent(elephant white, elephant white))/3=1

� rd9=likeMovie*<person:irfan,MovieCategory:Action,movie:”source code”>

� rc9= likeMovie*<person:irfan,MovieCategory:Action,movie:”source code”>

� Simrelation type(likeMovie*, likeMovie*)=1

� Sim concept type(person,person)=1

� Simreferent(irfan,irfan)=1

� Sim concept type(MovieCategory, MovieCategory)=1

� Simreferent(action,action)=1

%

� Sim concept type(movie,movie)=1

� Simreferent(source code,source code)=1

Simrelation type(LikeMovie*, LikeMovie*)* ((Sim concept type(person,person)*Simreferent(irfan,irfan) +
Sim concept type (MovieCategory, MovieCategory)*Sim referent(action,action) + Sim concept type (Movie,
Movie)*Sim referent(source code, source code))/3=1

• rd10= atloccation<person: irfan, GPS Address: *>

• rc10= atlocation<person: irfan, GPS Address: I >

• Simrelation type(atlocation,atlocation)=1

• Sim concept type (person,person)=1

• Sim Referent (irfan,irfan)=1

• Sim concept type (GPS Address, GPS Address)=1

• Sim Referent (*, I)=1

Simrelation type(atLocation, atLocation)* ((Sim concept type (person,person)*Simreferent(irfan,irfan) +

Sim concept type (GPS address, GPS address)*Sim referent(*, I))/2=1

o rd11=athour < person:irfan, hour period:after work> // current hour:17:40

o rc11=athour < person:irfan ,hour period:15:15 pm-17:40 pm >

o Simrelation type(athour,athour)=1

o Sim concept type (person, person)=1

o Sim referent (irfan,irfan)=1

o Sim concept type (hour period, hour period)=1

o Sim referent (after work,15:15 pm-17:40 pm)=1

Simrelation type(athour, athour)* ((Sim concept type(person,person)*Sim-

referent(irfan,irfan) + Sim concept type (hour period, hour period)*Sim referent(after

work, 15:15 pm-17:40 pm))/2=1

� rd12=atday<person:irfan, date period:* > //current date18/04/2011

� rc12=atday<person:irfan, date period:18/04/2011-18/04/2011>

� Simrelation type(Atday, Atday)=1

� Sim concept type(person,person)=1

� Simreferent(irfan,irfan)=1

� Sim concept type(date period, date period)=1

%�

� Sim referent (*, 18/04/2011-18/04/2011)=1

Simrelation type(atday, atday)* ((Sim concept type(person,person)*Sim-

referent(irfan,irfan)+ Sim concept type (date period, date period)*Sim referent(*,

18/04/2011-18/04/2011))/2=1

� rd13=hasstatus<person:reza, status:free time>

� rc13=hasstatus<person:reza, mood:free time>

� Simrelation type(hasStatus, hasStatus)=1

� Sim concept type(person,person)=1

� Simreferent(irfan,irfan)=1

� Sim concept type(Status, mood)=1

� Sim referent (free time,free time)=1

Simrelation type(hasStatus, hasStatus)* ((Sim concept type(person,person)*Sim-

referent(irfan,irfan) + Sim concept type (Status, mood)*Sim referent(free time, free

time))/2=1

� rd14=likeMovie*<person:irfan,MovieCategory:Action,movie:”elephant white”>

� rc14= likeMovie*<person:irfan,MovieCategory:Action,movie:”elephant white”>

� Simrelation type(likeMovie*, likeMovie*)=1

� Sim concept type(person,person)=1

� Simreferent(irfan,irfan)=1

� Sim concept type(MovieCategory, MovieCategory)=1

� Simreferent(action,action)=1

� Sim concept type(movie,movie)=1

� Simreferent(elephant white, elephant white)=1

Simrelation type(LikeMovie*, LikeMovie*)* ((Sim concept type(person,person)*Simreferent(reza,reza) +

Sim concept type (MovieCategory, MovieCategory)*Sim referent(action,action) + Sim concept type

(Movie, Movie)*Sim referent(elephant white, elephant white))/3=1

• rd15= atloccation<person:emrah, GPS Address: *>

• rc15= atlocation<person: Emrah, GPS Address: E >

• Simrelation type(atlocation,atlocation)=1

• Sim concept type (person,person)=1

%�

• Sim Referent (emrah,emrah)=1

• Sim concept type (GPS Address, GPS Address)=1

• Sim Referent (*, E)=1

Simrelation type(atLocation, atLocation)* ((Sim concept type (person,person)*Simreferent(emrah,emrah) +

Sim concept type (GPS address, GPS address)*Sim referent(*, E))/2=1

o rd16=athour < person:emrah, hour period:after work> // current hour:17:40

o rc16=athour < person:emrah ,hour period:14:31 pm-17:40 pm >

o Simrelation type(athour,athour)=1

o Sim concept type (person, person)=1

o Sim referent (emrah,emrah)=1

o Sim concept type (hour period, hour period)=1

o Sim referent (after work,14:31 pm-17:40 pm)=1

Simrelation type(athour, athour)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (hour period, hour period)*Sim referent(after

work, 14:31 pm-17:40 pm))/2=1

� rd17=atday<person:emrah, date period:* > //current date18/04/2011

� rc17=atday<person:emrah, date period:18/04/2011-18/04/2011>

� Simrelation type(Atday, Atday)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(date period, date period)=1

� Sim referent (*, 18/04/2011-18/04/2011)=1

Simrelation type(atday, atday)* ((Sim concept type(person,person)*Sim-

referent(irfan,irfan)+ Sim concept type (date period, date period)*Sim referent(*,

18/04/2011-18/04/2011))/2=1

� rd18=hasstatus<person:emrah, status:free time>

� rc18=hasstatus<person:emrah, mood:free time>

� Simrelation type(hasStatus, hasStatus)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(Status, mood)=1

� Sim referent (free time,free time)=1

%�

Simrelation type(hasStatus, hasStatus)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (Status, mood)*Sim referent(free time, free

time))/2=1

� rd19=likeMovie*<person:emrah,MovieCategory:*,movie:*>

� rc19= likeMovie*<person:emrah,MovieCategory:*,movie:*>

� Simrelation type(likeMovie*, likeMovie*)=1

� Sim concept type(person,person)=1

� Simreferent(emrah,emrah)=1

� Sim concept type(MovieCategory, MovieCategory)=1

� Simreferent(action,action)=1

� Sim concept type(movie,movie)=1

� Simreferent(*, *)=1

Simrelation type(LikeMovie*, LikeMovie*)* ((Sim concept type(person,person)*Sim-

referent(emrah,emrah) + Sim concept type (MovieCategory, MovieCategory)*Sim referent(*,*) + Sim

concept type (Movie, Movie)*Sim referent(*,*))/3=1

SimCG(D,C)=AVG(Simrelation(rd1,rc1), Simrelation(rd2,rc2), Simrelation(rd3,rc3), Simrelation(rd4,rc4), Simrelation-

(rd5,rc5), Simrelation(rd6,rc6), Simrelation(rd7,rc7), Simrelation(rd8,rc8), Simrelation(rd9,rc9), Simrelation(rd10,rc10),

Simrelation(rd11,rc11), Simrelation(rd12,rc12), Simrelation(rd13,rc13), Simrelation(rd14,rc514), Simrelation(rd15,rc15),

Simrelation(rd16,rc16), Simrelation(rd17,rc17), Simrelation(rd18,rc18), Simrelation(rd19,rc19))=1

This result shows that the current context observations satisfy the criteria of the desired context,

so we can suggest the current context to answer the query as:

You have Free time at 17:40- 18/04/2011
Movie: Action,” elephant white”
Movie: Action, ”source code”
Friend: Emrah, free time, 17:40-18/04/2011

%�

CHAPTER 5

" CONCLUSION

"�
 Summary

In this thesis, we study the context-aware applications area with special concerns about context

representation methods and utilization of Ontology in context matching. Definition of context

and the different dimension of context are figured out. Different aspects of context-aware

applications and the role of context matching are mentioned. The related works in context

matching are examined. After giving the background information about the conceptual graphs

we present our approach in order to utilize the conceptual graph in context representation. We

also define the benefits of Ontology and present how to use conceptual graphs to represent

ontology.

The main problem in the context matching is the lack of a best matching approach that supports

different context dimensions. In regard to multidimensionality of context information we

propose to use ontology in order to represent long term contextual information of desired context

and current context.

We propose an algorithm to match the desired context and current context which are represented

in conceptual graph format. Our matching algorithm is defined to match two conceptual graphs.

We represent the current context and desired context both in the conceptual graph format.

%"

 Some steps are defined prior to matching in order to create the desired context

conceptual graph based on the incoming query and ontological information. The current context

conceptual graph is generated based on the desired context CG structure and the context

observation units.

Some steps are introduced to replace the generic and existential concept with the appropriate

ones from the ontology and an approach is proposed to extend complex relations in the incoming

query in order to replace them with generic relations with instances in the ontology.

In order to generate the current context conceptual graph the generated structure of the desired

context CG should be updated with selected current context observation units which are filtered

based on the actors in the query.

The similarity score between desired context and the current context is defined as the average of

relations similarity. A weighted similarity score is also proposed in order to distinguish more

important relations from the less important ones.

The similarity between two relations depends on the type similarity of relations and the

conceptual similarity of relations. Concepts in a relation are defined as composition of concept

types and referents. We take concept type similarity and referent similarity into account in order

to define the conceptual similarity.

The relations are compared in pairs and the average of the similarities of those relations with the

highest similarity is defined as the similarity score. The similarity score is between 0 and 1. The

similarity score 1 indicates the highest similarity and 0 indicate no similarity.

"�� Discussion

The algorithm for best matching contextual information presented in this thesis has three

important features:

1) It uses the conceptual graphs as the formal method for representing context.

2) It uses extended ontology as the knowledge base of the domain and represents it with

conceptual graphs, the significance of this method of representation embedded in functionality

and reasoning ability of the ontology in contrast with the static ontology representation. In

%#

addition the relation extension and ability to complete missing arguments in a relation enhanced

formalism for translating complex relations. In extended ontology the concept type hierarchy is

extended to (TC U�IC) and the relation type hierarchy is extended to (TR U�IR).This enables us to

answer those queries with complex relations that have no explicit instances in the ontology. We

extend the concept type hierarchy like the relation type hierarchy in order to map sensory data

into real world concepts.

3) It uses best matching approach. The matching process is based on the CG matching rules.

The semantic similarity between different concept types and relation types are defined according

to the previous works in the conceptual graph area. The result of matching is represented as a

granular similarity score which is represented in a range between 0 to 1.

4) It formalizes some steps prior to matching process in order to generate appropriate desired

context and current context. The concepts in the incoming query with universal or existential

referents are replaced with their equivalences from the ontology. The complex relations or those

relations with no instances in the ontology are replaced with a generic relation that is generated

based on an extension on complex relation. Relation extension is demonstrated as Ontology

reasoning tool to convert the complex relations.

5) Semantic similarity between different referents is defined based on their positions in the

concept type hierarchy. For those non-numeric concepts with isolated positions in the concept

type hierarchy the relational similarity is defined. For numeric concepts depending on the

domain of the problem their distance from each other is mapped to a similarity score.

6) The proposed algorithm can also be used for historical context searching. The current context

that consists of context observation can be filtered based on desired context. If in the desired

context some historical context is mentioned then the current context observations should be

selected based on these observations.

7) The proposed context matching approach is an integration of prior works in semantic search

by matching conceptual graphs, ontology extension based on conceptual graphs and weighted

granular best matching algorithm for context-aware applications. We use the main idea of using

conceptual graph as the best tool for representing context. The extended ontology is used to

clarify those complex relations that may occur in the incoming query. An approach to score the

similarity between two contexts is designed in order to satisfy the best matching principles.

8) Our work is theoretical. We have not implemented the proposed algorithm.

%%

"�� Future work

 For context information that comes from different sensors the reliability of the sensors

should be considered and also an approach for aggregating the various context observations as a

unique one should be proposed.

 Implementation of this idea and building software tools for a real-world application and

addressing the HCI issues are the possible future works. We are planning to use PROLOG+CG

which is a powerful development environment that facilitate conceptual graph

processing.(Kabbaj, Moulin, Gancef, Nadeau, & Rouleau, 2001)

 A conjunction method for information fusion as the complementary step should be

utilized. The partial information represented in the form of desired context and the matched

current context CG should be represented in a unified format. The matching process can be used

for checking their consistency.

 The conceptual graphs considered in this thesis can be augmented with first order logic

to improve logical reasoning for matched context.

%-

$ REFERENCES

Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., & Pinkerton, M. (1997).
Cyberguide: A mobile context-aware tour guide. Wireless Networks, 3(5), 421–433.

Amati, G., & Ounis, I. (2000). Conceptual graphs and first order logic. The Computer Journal,
43(1), 1.

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.

Bederson, B. B. (1995). Audio augmented reality: a prototype automated tour guide. Conference
companion on Human factors in computing systems (p. 210–211).

Beigl, M. (2000). MemoClip: A location-based remembrance appliance. Personal and
Ubiquitous Computing, 4(4), 230–233.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni,
D. (2010). A survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing, 6(2), 161–180.

Brézillon, P. (1999). Context in Artificial Intelligence: II. Key elements of contexts. Computers
and Artificial Intelligence, 18, 425–446.

Brotherton, J. A., Abowd, G. D., & Truong, K. N. (1998). Supporting capture and access
interfaces for informal and opportunistic meetings. Georgia Institute of Technology
Technical Report: GIT-GVU-99, 6.

-*

Brown, P. J., Bovey, J. D., & Xian Chen. (1997). Context-aware applications: from the
laboratory to the marketplace. Personal Communications, IEEE, 4(5), 58-64.
doi:10.1109/98.626984

Chein, M., & Mugnier, M. L. (2008). Graph-based knowledge representation: computational
foundations of conceptual graphs. Springer-Verlag New York Inc.

Chen, G. and Kotz, D. (2000). A survey of context-aware mobile computing research.
Dartmouth College, Computer Science. Retrieved from
http://www.cs.dartmouth.edu/reports/TR2000-381.ps.Z

Chen, H., Finin, T., & Joshi, A. (2003). An ontology for context-aware pervasive computing
environments. The Knowledge Engineering Review, 18(03), 197–207.

Corbett, D. (2003). Reasoning and unification over conceptual graphs. Springer Us.

Corbett, D. (2004). Interoperability of ontologies using conceptual graph theory. Conceptual
Structures at Work, 236–236.

Corbett, D. (2008). Graph-Based Representation and Reasoning for Ontologies. Computational
Intelligence: A Compendium, 351–379.

Corbett, D., & Mayer, W. (2005). Concept type hierarchy as ontology: an example historical
knowledge base. AI 2004: Advances in Artificial Intelligence, 251–266.

Davies, N., Mitchell, K., Cheverst, K., & Blair, G. (1998). Developing a context sensitive tourist
guide. First workshop on human computer interaction with mobile devices, GIST
Technical Report G (Vol. 98).

Dey, A. K. (1998). Context-aware computing: The CyberDesk project. Proceedings of the AAAI
1998 Spring Symposium on Intelligent Environments (p. 51–54).

Dey, A. K. (2000). Providing architectural support for building context-aware applications.
Citeseer.

Dey, A. K., & Abowd, G. D. (2000). Towards a better understanding of context and context-
awareness. CHI 2000 workshop on the what, who, where, when, and how of context-
awareness (Vol. 4, p. 1–6).

-

Dey, A. K., Abowd, G. D., & Salber, D. (1999). A context-based infrastructure for smart
environments. Proceedings of the 1st International Workshop on Managing Interactions
in Smart Environments (MANSE’99) (p. 114–128).

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human–Computer
Interaction, 16(2), 97–166.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M., Terry, D.
B., et al. (2000). Extending document management systems with user-specific active
properties. ACM Transactions on Information Systems (TOIS), 18(2), 140–170.

Feiner, S., MacIntyre, B., H\öllerer, T., & Webster, A. (1997). A touring machine: Prototyping
3D mobile augmented reality systems for exploring the urban environment. Personal and
Ubiquitous Computing, 1(4), 208–217.

Fels, S., Sumi, Y., Etani, T., Simonet, N., Kobayshi, K., & Mase, K. (1998). Progress of C-
MAP: A context-aware mobile assistant. Proceeding of AAAI 1998 Spring Symposium
on Intelligent Environments, Technical Report SS-98-02.

Foo, N., Garner, B. J., Rao, A., & Tsui, E. (1992). Semantic distance in conceptual graphs.
Conceptual Structures: current research and practice, 149–154.

Genesereth, M. R. (1998). Knowledge interchange format. draft proposed american national
standard(dpans). ncits. t2/98-004.

Gu, T., Pung, H. K., & Zhang, D. Q. (2005a). A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications, 28(1), 1–18.

Gu, T., Pung, H. K., & Zhang, D. Q. (2005b). A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications, 28(1), 1–18.

Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., & Want, R. (1998). Squeeze me, hold
me, tilt me! An exploration of manipulative user interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems (p. 17–24).

Healey, J., & Picard, R. W. (2002). Startlecam: A cybernetic wearable camera. Wearable
Computers, 1998. Digest of Papers. Second International Symposium on (p. 42–49).

-�

Heflin, J. (2004). OWL Web Ontology Language-Use Cases and Requirements. W3C
Recommendation, 10.

Heiner, J. M., Hudson, S. E., & Tanaka, K. (1999). The information percolator: ambient
information display in a decorative object. Proceedings of the 12th annual ACM
symposium on User interface software and technology (p. 141–148).

Hertz. (n.d.). Hertz Neverlost Review. Retrieved January 22, 2011, from
http://www.bythom.com/neverlost.htm

Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E. (2000). Sensing techniques for mobile
interaction. Proceedings of the 13th annual ACM symposium on User interface software
and technology (p. 91–100).

Hong, J.-yi, Suh, E.-ho, & Kim, S.-J. (2009). Context-aware systems: A literature review and
classification. Expert Systems with Applications, 36(4), 8509 - 8522. doi:DOI:
10.1016/j.eswa.2008.10.071

Humanistic Informatics at Department of Communication, Aalborg University, Denmark. (n.d.).
Onlin Course in Knowledge Representation using Conceptual Graphs. Onlinet
http://cg.huminf.aau.dk/. Retrieved from http://cg.huminf.aau.dk/

Ishii, H., & Ullmer, B. (1997). Tangible bits: towards seamless interfaces between people, bits
and atoms. Proceedings of the SIGCHI conference on Human factors in computing
systems (p. 234–241).

Jena Semantic Web Framework. (n.d.). Online http://jena.sourceforge.net/. Retrieved from
http://jena.sourceforge.net/

Kabbaj, A., Moulin, B., Gancef, J., Nadeau, D., & Rouleau, O. (2001). Uses, improvements, and
extensions of Prolog+ CG: Case studies. Conceptual Structures: Broadening the Base,
346–359.

KOCABALLI, A. B. A. K. (2005). weighted granular best matching algorithm for context-aware
computing systems (M.Sc. thesis). MIDDLE EAST TECHNICAL UNIVERSITY.

Korpipaa, P., & Mantyjarvi, J. (2003). An ontology for mobile device sensor-based context
awareness. Modeling and Using Context, 451–458.

-�

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., & Malm, E. J. (2003). Managing context
information in mobile devices. Pervasive Computing, IEEE, 2(3), 42-51.
doi:10.1109/MPRV.2003.1228526

Lamming, M., & Flynn, M. (1994). Forget-me-not: Intimate computing in support of human
memory. Proceedings of FRIEND21 (Vol. 94, p. 2–4).

Laudy, C., & Ganascia, J. G. (2010). Introducing semantic knowledge in high-level fusion.
Military Communications Conference, 2009. MILCOM 2009. IEEE (p. 1–7).

Marmasse, N., & Schmandt, C. (2000). Location-aware information delivery with commotion.
Handheld and Ubiquitous Computing (p. 361–370).

McCarthy, J., & Anagnost, T. (2000). EventManager: Support for the peripheral awareness of
events. Handheld and Ubiquitous Computing (p. 67–96).

McCarthy, J., & Meidel, E. (1999). ACTIVE MAP: A visualization tool for location awareness
to support informal interactions. Handheld and Ubiquitous Computing (p. 158–170).

Miraoui, M., Tadj, C., & Ben Amar, C. (2008). Architectural Survey of Context-Aware Systems
in Pervasive Computing Environment. Ubiquitous Computing and Communication
Journal, 3(3).

Montes-y-Gómez, M., López-López, A., & Gelbukh, A. (2000). Information retrieval with
conceptual graph matching. Database and Expert Systems Applications (p. 312–321).

Mynatt, E. D., Back, M., Want, R., Baer, M., & Ellis, J. B. (1998). Designing audio aura.
Proceedings of the SIGCHI conference on Human factors in computing systems (p.
566–573).

Nguyen, P., Kaneiwa, K., Corbett, D., & Nguyen, M. Q. (2008). An ontology formalization of
relation type hierarchy in conceptual structure theory. AI 2008: Advances in Artificial
Intelligence, 79–85.

Noy, N. F., McGuinness, D. L., & others. (2001). Ontology development 101: A guide to
creating your first ontology. Citeseer.

Pascoe, J., Ryan, N. S., & Morse, D. R. (1998). Human computer giraffe interaction: HCI in the
field.

-�

Pawar, P., & Tokmakoff, A. (2006). Ontology-based context-aware service discovery for
pervasive environments.

Poslad, S. (2009). Ubiquitous computing: smart devices, environments and interactions. John
Wiley & Sons Inc.

Ralescu, A. L., & Fadlalla, A. (1990). The issue of semantic distance in knowledge
representation with conceptual graphs. Proc. Of AWOCS90, 141–142.

Rekimoto, J. (1999). Time-machine computing: a time-centric approach for the information
environment. Proceedings of the 12th annual ACM symposium on User interface
software and technology (p. 45–54).

Rhodes, B. J. (1997). The wearable remembrance agent: A system for augmented memory.
Personal and Ubiquitous Computing, 1(4), 218–224.

Ryan, N. S., Pascoe, J., & Morse, D. R. (1998). Enhanced reality fieldwork: the context-aware
archaeological assistant. Computer applications in archaeology.

Schilit, B., Adams, N., & Want, R. (2008). Context-aware computing applications. Mobile
Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on (p. 85–
90).

Schilit, B. N., & Theimer, M. M. (1994). Disseminating active map information to mobile hosts.
Network, IEEE, 8(5), 22-32. doi:10.1109/65.313011

Schmidt, A. and Aidoo, K. and Takaluoma, A. and Tuomela, U. and Van Laerhoven, K. and Van
de Velde, W. (1999). Advanced Interaction in Context. HandHeld and Ubiquitous
Computing, Lecture Notes in Computer Science, 1707/1999, 89-101. doi:10.1007/3-
540-48157-5_10

Schmidt, A., Takaluoma, A., & M\äntyj\ärvi, J. (2000). Context-aware telephony over WAP.
Personal and Ubiquitous Computing, 4(4), 225–229.

Sowa, J. F. (1999). Conceptual graph standard. http://users.bestweb.net/~sowa/cg/cgstand.htm.

Sowa, J. F. (2000). Knowledge representation: logical, philosophical, and computational
foundations (Vol. 594). MIT Press.

-�

Sowa, J. (1984). Conceptual structures : information processing in mind and machine. Reading
Mass.: Addison-Wesley.

Strang, T., & Linnhoff-Popien, C. (2004). A context modeling survey. Workshop on Advanced
Context Modelling, Reasoning and Management as part of UbiComp.

Van Harmelen, F., Lifschitz, V., & Porter, B. (2008). Handbook of knowledge representation.
Elsevier Science Ltd.

Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM
Transactions on Information Systems (TOIS), 10(1), 91–102.

Weiser, M., & Brown, J. S. (1996). The coming age of calm technology [1]. Xerox PARC.
Retrieved July, 8, 2007.

Zhong, J., Zhu, H., Li, J., & Yu, Y. (2002). Conceptual graph matching for semantic search.
Conceptual Structures: Integration and Interfaces, 92–106.

