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ABSTRACT

PREDICTING THE EFFECT OF HYDROPHOBICITY SURFACE ON BINDING
AFFINITY OF PCP-LIKE COMPOUNDS USING MACHINE LEARNING METHODS

Yoldaş, Mine

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ferda Nur Alpaslan

Co-Supervisor : Prof. Dr. Erdem Büyükbingöl

April 2011, 47 pages

This study aims to predict the binding affinity of the PCP-like compounds by means of molec-

ular hydrophobicity. Molecular hydrophobicity is an important property which affects the

binding affinity of molecules. The values of molecular hydrophobicity of molecules are ob-

tained on three-dimensional coordinate system. Our aim is to reduce the number of points

on the hydrophobicity surface of the molecules. This is modeled by using self organizing

maps (SOM) and k-means clustering. The feature sets obtained from SOM and k-means clus-

tering are used in order to predict binding affinity of molecules individually. Support vector

regression and partial least squares regression are used for prediction.

Keywords: spherical-self organizing maps, support vector regression, partial least squares

regression, k-means clustering, prediction
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ÖZ

HİDROFİBİSİTİ YÜZEYLERİN PCP BENZERİ BİLEŞİKLERİN BAĞLANMA
EĞİLİMLERİNE ETKİSİNİ MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN

KULLANILARAK ÖNGÖRÜLMESİ

Yoldaş, Mine

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ferda Nur Alpaslan

Ortak Tez Yöneticisi : Prof. Dr. Erdem Büyükbingöl

Nisan 2011, 47 sayfa

Bu çalışmada, PCP benzeri bileşiklerin bağlanma eğilimleri moleküler ipofilisiti kullanılarak

öngörülmeye çalışılmaktadır. Moleküler hidrofibisiti bir molekülün bağlanma eğilimini etk-

ileyen önemli bir faktördür. Moleküllerin moleküler hidrofobisiti değerleri üç boyutlu koor-

dinat sisteminde elde edilmektedir. Amacımız moleküllerin hidrofobisiti yüzeyindeki nok-

taların sayısını azaltmaktır. Bu nedenle bu özellik küresel örgütlemeli harita ve k-ortalama

kümeleme kullanılarak modellenmektedir. Moleküllerin bağlanma eğilimlerini öngörmek

için SOM ve k-ortalama kümeleme kullanılarak elde edilen özellik kümesi ayrı ayrı kul-

lanılacaktır. Bağlanma eğilimlerini öngörmek amacıyla destek vektör regresyonu ve kısmi

en küçük kareler regresyonu kullanılacaktır.

Anahtar Kelimeler: Küresel örgütlemeli harita, destek vektör regresyonu, kısmi en küçük

kareler regresyonu, k-ortalama kümeleme, tahmin
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The aim of drug design is to discover chemical substances interacting with a specific molecule

such as proteins. When the chemical substance binds the corresponding protein, the drug

cures the patient from a specific illness. These chemical substances are called ligands. How-

ever, finding appropriate ligand in a huge chemical space is very difficult. High-throughput

screening (HTS) is used for this purpose. In HTS, large numbers of diverse compounds are

tested, chemical space is searched randomly and the molecules ensuring some biochemical

activity are chosen [21].

In ligand-based drug design, if a ligand binds a target protein, new ligands may be designed

which interact with target protein. Also, quantitative structure-activity relationship (QSAR)

may be used to find correlation between the properties of the molecules and biological activity.

Neural networks may also be used in order to find appropriate ligands or for feature extraction.

Thus, large amount of data may be analyzed. Self organizing maps are sometimes used in

classification of large datasets.

Although there are many physiochemical properties affecting the binding affinity of a ligand

to the receptor, hydrophobicity is a major and basic property regarding for the optimal inter-

action features of the appropriate ligands with their target sites. So, molecular hydrophobic-

ity is used for prediction of the binding affinity of 38 Phencyclidine (PCP)-like compounds

in this study. Phencyclidine is ”dissociative drug formerly used as an anesthetic agent, ex-

hibiting hallucinogenic and neurotoxic effects” [18]. Molecular hydrophobicity means that

a molecule is repelled from water. Molecular lipophilicity means that a molecule loves fat.
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Molecular hidrophobicity is often used interchangeably with molecular lipophilicity. Because

if a molecule loves fat, it will repel from water. In this study, molecular lipophilicity will be

used instead of molecular hydrophobicity in the following chapters.

The organization of thesis is as given below.

• In chapter 2, the background of feature extraction and prediction methods are ex-

plained which are used in this thesis. Feature extraction methods are self-organizing

maps(SOM) and k-means clustering. Prediction methods are support vector regression

and partial least squares(PLS).

• In chapter 3, implementation of SOM to molecular lipophilicity surfaces is discussed.

• In chapter 4, binding affinity of molecules is predicted by molecular lipophilicity.

• The conclusion is discussed in chapter 5.

2



CHAPTER 2

RELATED WORK

Self-organizing map is an unsupervised learning algorithm. In unsupervised learning, the

aim is to classify the data into some classes which are not known apriori. Actually, the class

of all training samples are not known. If the distribution of data is not known, it will be

hard to choose convenient algorithm and get correct results [24]. In SOM, high-dimensional

input space is projected onto a low-dimensional grid. This grid can be used for visualization

of surfaces and to show different features of the SOM. These features of SOM is also the

features of the data [25].

k-means clustering is used in order to divide the data set into k clusters. The mean of each

cluster is calculated and each data sample is assigned to the cluster with minimum mean.

In this chapter, the use of SOM and k-means clustering in molecular surfaces is discussed

because we applied SOM and k-means algorithms to the hidrophobicity surface molecules in

this study.

Waganer et. al [26] use self-organizing maps in rational drug design and combinatorial

chemistry in [26]. Electrostatic potential on the Van der Waals surface of each molecule

is mapped onto one self-organizing neural network. These surfaces can be mapped onto a

two-dimensional plane by using self-organizing map. The color of each unit is determined

by the sample point(s) which is(are) mapped on the corresponding unit. In Figure 2.1, a 3-

dimensional model of a molecule is mapped onto a torus that is a special implementation of

two dimensional SOM and the colors of the map are similar with the colors of molecule. The

smallest negative values of electrostatic potential are shown by red while the smallest positive

values are shown by blue or violet. Other values are shown by continuous mixtures of colors.

The SOMs of the molecular electrostatic potential of four ligands binded to muscarinic recep-
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tors and four ligands binded to nicotinic receptors are generated. When visualization of the

maps are compared, ligands binded to muscarinic receptors have common characteristics and

these characteristics are not included the maps of the ligands that bind to nicotinic receptors.

Figure 2.1: Mapping of a 3-dimensional molecule onto a two-dimensional SOM [26]

Gasteiger et. al [27] map molecular electrostatic potential of a molecule onto a two-dimensional

plane, as well. Since it is easy to perceive all features of the electrostatic potential of a

molecule in a two-dimensional plane. The features of molecules which result from het-

eroatoms, conformation and chirality are seen in these maps.

Alhoniemi et. al [28] used two-dimensional self-organizing maps in exploratory phase of

data mining. Firstly, the input data set is mapped onto a two-dimensional SOM. If the number

of units of SOM is large, similar units will be clustered by using hierarchical agglomerative

clustering and partitive clustering using k-means clustering in the second phase. Thus, the

time of computation is reduced. In agglomerative clustering, two clusters that are closest to

each other are merged until there is only one cluster left. In partitive clustering, the data set is

partitioned into a some clusters. Here, k-means clustering is used as partitive clustering.

Liu et. al [29] tried to compare 3-dimensional shape of flexible molecules by presenting a new

shape descriptor named Diffusion Distance Shape Descriptor (DDSD). m points are selected

from the surface of molecule by k-means clustering. The inner distance between each pair

of points in S is calculated. And then the diffusion distances between each pair of points in

S are calculated. Finally, the descriptor of the shape O is built as the histogram of values of

4



diffusion distances. The flow chart of the method is shown in Figure 2.2.

Figure 2.2: Flow chart of the method in [29]

Clustering algorithms are used for gene expression data analysis in molecular biology. Genes

are partitioned into similar groups by clustering algorithms such as k-means, hierarchical

clustering, SOM. So, functionally related genes are identified. Since there are too many data

in molecular biology, faster clustering algorithms must be developed. Lu et. al [30] proposed

Fast Genetic K-means Algorithm (FGKA). It is based on Genetic K-means Algorithm(GKA)

which is proposed by Krishna and Murty in 1999. K-means algorithm may converge to a

local optimum while FGKA and GKA always converge to a global optimum. FGKA is faster

than GKA. Gene expression data which consists of N genes and each gene is a n-dimensional

vector. The aim of FGKA is to divide the N patterns into K clusters. Firstly, FGKA generates

an initial population P0 of Z coded partitions. The selection, the mutation and the k-means

operator are used to generate next generation Pi+1 from the current population Pi.
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CHAPTER 3

BACKGROUND

In this study, the dataset in [1] is used and the steps shown in figure 3.1 are followed. As can

be seen from Figure 3.1, structural formula of each molecule are obtained on 3D coordinate

system. Then, molecular lipophilicity surfaces are obtained by the structural formulas of

molecules. The molecular lipophilicity surfaces are acquire by VegaZZ program [15]. Thus,

we obtain 3D coordinates of hydrophobicity of each molecule. Since there are a lot of points

on the surfaces for prediction, the number of points on the surfaces are reduced by using a

Self-Organizing Map (SOM) and k-means clustering. We extract the value of each neuron on

SOM as feature sets.

Figure 3.1: Flow of the thesis

[1]
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In this chapter, we will mention methods used for feature extraction, data preparation and

prediction.

3.1 Feature Extraction

The methods for feature extraction are Self Organizing Maps (SOM) and k-means clustering.

3.1.1 Self-Organizing Maps(SOM)

There are three categories of artificial neural networks: feedforward networks, feedback net-

works and competitive learning. In feedforward networks, some outputs are tried to be learned

from some inputs by using supervised adjustment. In feedback networks, the initial state of

the system is tried to find by using the input samples. In competitive or unsupervised learn-

ing, neighboring cells in a neural network try to win a competition whose aim is to match an

input pattern with minimum distance.

Self- organizing map (SOM), which is created by Kohonen in 1981, is a competitive learn-

ing based artificial neural networks. In SOM, each neuron has some neighbors because of

connection of the network’s nodes to each other. There are training vectors and weight vec-

tors of each node which are generally initialized randomly. Training vectors are shown as

x = x(t) ∈ Rn where t is time coordinate and weight vectors are shown as wi(t) : wi ∈ Rn

where i=1,2,...,k(k is the number of nodes in the network). Training vectors are compared

with each node in the network. Euclidean distance is generally used to compute the distance

between weight vector of each node and training vectors at each step t, where t=1,2,3,... Some

other distance metrics can also be used instead of Euclidean distance. The node with min-

imum distance between weight vector of the node and training vector is called winning or

best-matching node and the weights vector of the winning node and its neighbors are updated

while all the other weight vectors remain the same.

The major aim of using SOM is to create feature maps having reduced the dimension of the

space. SOM is used especially for data visualization. It is widely used in fields such as

practical speech recognition, robotics, process control and telecommunications.
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3.1.1.1 The Learning Algorithm

Firstly, the SOM size should be determined. SOM size may be small, medium or large de-

pending on the purpose of the purpose according to Ultsch and Simon [7]. Moreover, Versanto

offers equation 3.1 for determination the optimal size of the map:

msize = 5
√

k (3.1)

where k is the product of columns and rows of the dataset [7]. Although optimal map size will

minimize the empty units, some empty units are needed to facilitate cluster interpretation [7].

There are three approaches to initialize the weight vectors [6].

• Random initialization: The weight vectors are initialized randomly.

• Sample initialization: The weight vectors are initialized from the input patterns. If

there are k weight vectors, first k input patterns or randomly chosen k input patterns are

assigned as weight vectors.

• Linear initialization: Two principal eigenvectors of the input data which comprise a

two-dimensional linear subspace are found. A rectangular or hexagonal array is defined

along this subspace. The centroid of this array coincide with the mean of the input

samples. The weight vectors are initialized by using this array.

SOM toolbox [9] includes random and linear initializations. We used both of them in this

study.

The basic learning algorithm of SOM is explained below:

1. Assume that x = x(t) ∈ <n is the vector of samples where t is the number of iterations.

t is set as desired.

2. wi(t) : wi ∈ <
n, i = 1, 2, ..., k is the weight vector which is initialized by random

initialization or sample initialization or linear initialization..

3. x(t) is compared with each wi(t) at each instant of time and best-matching wi(t) is se-

lected with respect to distance between x(t) and wi(t).

8



4. The closest wi(t) to x(t) and the neighbours of this weight are updated with respect to

time.

5. Repeat steps 3-4 until the number of iterations is t.

The arrangement of cells in the two-dimensional map can be hexagonal, rectangular etc. In

figure 3.2, input x is connected in parallel with all neurons.

Figure 3.2: Cell-arrangement for the map [16]

The distance between the sample vector and the weight vectors is often calculated by Eu-

clidean distance although dot product can also be used. Euclidean distance gives the distance

between two points. The Euclidean distance between a sample vector and a weight vector is

calculated by equation 3.2.

d(x,w) =
√

(x1 − w1)2 + (x2 − w2)2 + ... + (xn − wn)2 (3.2)

where n is the dimension of the input samples and weight vectors. The weight vector with

minimum distance to corresponding sample vector is called the ”winner” or ”best-matching”

unit.

Not only the weight vector with the minimum distance is updated but also the neighboring

units of weight vectors are updated. The width of the neighborhood is indicated by Nc. If

Nc is too large, the spatial resolution will be coarse. While the width of Nc is shrinking, the

spatial resolution improves. Width of the neighborhood shrinks with time(See Figure 3.3).

Finally, only the best-matching unit is updated as in the case of simple competitive learning.

The winning node’s weight is updated as:

wi(t + 1) = wi(t) + α(t)hi(t)[xs(t) − wi(t)] (3.3)

9



Figure 3.3: Topological neighborhood Nc(t1 < t2 < t3) (a) Rectangular (b) Hexagonal [6]

where α(t) is learning rate in range (0,1] and may be constant or linear function or exponential

function decreasing with time or inversely proportional to t. For example, α(t) = 0.9(1 −

t/1000) can be used as learning rate function [6]. If α(t) is selected randomly, it should have

reasonably high values for the first 1000 iterations and decrease monotonically. Here, hi(t)

is the neighborhood function and effects the convergence. hi(t) may be equal to α(t) within

neighborhood width, Nc. Moreover, Gaussian kernel function in equation 3.4 may be used in

some situations.

hi(t) = exp
(
− ‖ ri − rc ‖

σ2(t)

)
(3.4)

Here, σ(t) is the the width of neighborhood decreasing with time. ‖ ri − rc ‖ is the distance

between the best-matching unit c and its neighbor i.

Determination of the number of iterations is important for the accuracy of the mapping. The

number of iterations should be at least 500 times of the number of network units for good

statistical accuracy. This is a rule of thumb [6]. The dimension of the dataset has no effect

on the number of iterations. For instance, 10000 or less iterations may be enough in speech

recognition for fast learning [6].

Two dimensional self organizing maps have ”boundary effect” problem which means that the

boundary units have less neighbors than the others. So, boundary units have less chances for

updating. Heuristic weighting rule and local-linear smoothing are proposed as mathematical

solutions for this problem [1]. Besides these solutions, mapping of data onto toric map is

suggested. A cylinder is created by connecting opposite sides of a rectangular grid. A torus

is cerated by connecting opposite cycles of this cylinder (See Figure 3.4). However, this

solution have some problems, too. Firstly, it is difficult to determine where to cut torus.

Secondly, each neuron associates different surface areas with respect to the place of it on the

10



Figure 3.4: Example of a torus [18]

torus. Finally, it is hard to interpret intuitively for most people. In addition to all of these

suggestions, Kohonen proposed an easily applied rule named ”One-Half Rule”. According to

Kohonen, using asymmetrical SOM shape is better than using symmetrical one. The length

of short side should be at least half of the longer side of the SOM with respect to ”One-Half

Rule” [7].

3.1.1.2 Types of Self-Organizing Maps

Three kinds of self-organizing maps are shown in Figure 3.5. The architectures and neighbor-

hoods are introduced.

Figure 3.5: Types of Self-Organizing Maps [23]
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• One-dimensional SOM: N units are arranged as open-ended or closed-loop topology.

Although each unit except the first and last units has two neighbors in the open-ended

topology, all units have two neighbors in the closed-loop topology.

• Two-dimensional SOM: NxM units are arranged on a two-dimensional grid. There are

two neighborhood types as rectangular and hexagonal neighborhoods. Each unit except

boundaries of the grid has 8 neighbors in the rectangular neighborhood and 6 neighbors

in the hexagonal neighborhood as can be seen in Figure 3.3(a) and 3.3(b). If the distance

between the center unit and its neighbors are equal, hexagonal neighborhood is often

preferred.

• Three-dimensional SOM: Units are arranged inside a rectangular prism or hypercube.

Neighbor units may lie inside a sphere, cube or three-dimensional diamond or star

shaped structures.

3.1.2 K-means Clustering

K-means clustering algorithm was discovered by MacQueen in 1967 [18]. It is an unsuper-

vised learning algorithm used to classify the data with respect to the features of the dataset.

The k-means clustering algorithm is given below.

1. The number of clusters(k) must be determined and the each centroid vector is initialized

randomly.

2. Each cluster has a centroid.

3. Each point in the dataset is assigned to the nearest centroid.

4. After no points remain, new centroids are re-calculated as the mean of the points in the

corresponding cluster.

5. Steps 2-4 are repeated until the centroids do not change their location.

In k-means clustering, centroids are placed far away from each other as much as possible.

As can be seen, the aim of the algorithm given above is to minimize the equation 3.5. This

12



function is called squared error function.

Error =

k∑
j=1

n∑
i=1

‖ x( j)
i − c j ‖

2 (3.5)

where ‖ x( j)
i − c j ‖

2 is a chosen distance measure between x( j)
i is a data point and c j is jth

cluster center, k is the number of centroids and n id the number of input smaples.

The performance of the algorithm depends on the initial randomly selected centroids.

3.2 Prediction Methods

In this section, support vector regression (SVR) and partial least square regression (PLS)

which are used for predicting the value of lipophilicity for each molecule are explained.

3.2.1 Support Vector Machines (SVM)

It will be easier to understand support vector regression if support vector machines are ex-

plained. So, firstly support vector machines are explained.

3.2.1.1 Linear Support Vector Machines

Starting with separable support vector machines which are linear machines facilitate to un-

derstand SVM. xi is the ith dimension of the input samples where x ∈ Rn. A separating

hyperplane separates positive examples from negative ones where input vectors are in two

dimensional form (See Figure 3.6). The data points which satisfy the equation wx + b = 0 are

on the hyperplane. Here, w is perpendicular to the hyperplane and each data point classifies

as yi = -1,1 because of the decision function. The decision function is:

f (x) = sign(w.x + b) (3.6)

where w is weight vector, x is the input pattern and b is the threshold.

Sum of the shortest Euclidean distance to the positive example and the shortest Euclidean dis-

tance to the negative example is called margin. The aim of the SVM classification is finding

13



Figure 3.6: Support vector machines for separable case of binary classification [5]

the hyperplane with the largest margin between two classes. This problem is formulated as a

quadratic optimization problem:

w.xi + b ≥ 1, yi = 1 (3.7)

w.xi + b ≤ −1, yi = −1 (3.8)

These two inequalities can be written in one inequality.

yi(xi.w + b − 1 ≥ 0),∀i (3.9)

For equation 3.7, the data points are on the hyperplane H1: w.xi +b = 1. And for equation 3.8,

the data points are on the hyperplane H2: w.xi + b = −1. Margin is between these two hyper-

plane and equals to 2/||w||. Support vectors are the points which satisfies the equality 3.9 and

shown in Figure 3.6 by extra circles. Now, the equation 3.9 is converted to Lagrangian for-

mulation, because it is easier to handle [5]. It uses Lagrange multipliers αi, where i=1,2,...,n

for each of inequality constraints. The Lagrangian is:

L1 =
1
2
||w||2 −

n∑
i=1

αiyi(xi.w + b) +

n∑
i=1

αi (3.10)

Here, L1 is minimized with respect to w, b and the derivatives of the L with respect to all αi.

Setting the gradient of L1 with respect to w and b to zero gives:

w =
∑

i

αiyixi (3.11)

∑
i

αiyi = 0 (3.12)

If these equations are substituted into 3.10, equation 3.13 is obtained [5]:

L2 =
∑

i

αi −
1
2

∑
i, j

αiαjyiyjxixj (3.13)
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Here, the aim is maximizing L2 with respect to αi, subject to constraint 3.12 and αi ≥ 0. Sup-

port vectors are the points which satisfy αi > 0 and lie on hyperplane H1 or H2. Furthermore,

the Karush-Kuhn-Tucker(KKT) theorem has an important role for α, w and b in SVM. In

other words, we can say that solving the SVM problem is also solving the KKT conditions.

Although w can be found by training procedure, b cannot. If the algorithm for separable

data is used for non-separable data, there will be no solution. Positive slack variables ξi are

introduced in order to solve this problem for equations 3.7 and 3.8 which become:

xi.w + b ≥ +1 − ξi, yi = +1 (3.14)

xi.w + b ≤ −1 + ξi, yi = −1 (3.15)

ξi ≥ 0,∀i (3.16)∑
i ξi is an upper bound on the number of training errors. Hence the objective function is

minimized from ‖w‖2
2 to ‖w‖

2

2 + C(
∑

i ξi)k where C is a parameter determined by the user. Thus

the aim of the support vector machine is maximizing the dual problem:

LD =
∑

i

αi −
1
2

∑
i, j

αiαjyijixixj (3.17)

subject to:

0 ≤ αi ≤ C (3.18)∑
i

αiyi = 0 (3.19)

The solution is:

w =

NS∑
i=1

αiyixi (3.20)

where NS is the number of support vectors. As can be seen from equation 3.18, αi has an

upper bound C. This is the only difference from separable case. The primal Lagrangian is:

LP =
1
2
‖ w ‖2 +C

∑
i

ξi −
∑

i

αi(yi(xi.w + b) − 1 + ξi) −
∑

i

µiξi (3.21)

where µi are the Lagrange multipliers used for positivity of the ξi.

3.2.1.2 Nonlinear Suppor Vector Machines

If the hyperplane is non-linear, the data space is mapped into another Euclidean space H,

called the feature space. Φ is the mapping which is shown in Figure 3.7.

Φ : Rn 7→ H (3.22)
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There is a kernel function which can be substituted with xix j in the training algorithm because

Figure 3.7: Mapping training data into high-dimensional featuring space via Φ

xi.x j are in the form of dot products in equations 3.13 and 3.12. All the equations for linear

machines are valid for non-linear machines in a different space.

K(xi, x j) = Φ(xi)Φ(x j) (3.23)

Thus, an SVM is used by computing:

f (x) =

NS∑
i=1

αiyiΦ(si).Φ(x) + b =

NS∑
i=1

αiyiK(si, x) + b (3.24)

where si are support vectors, NS is the number of support vectors and Φ(x) is replaced by

K(si, x). Some kernel functions mostly used are:

• Linear : K(xi, x j) = (xi · x j)

• Radial Basis Function : K(xi, x j) = e
−γ‖xi−x j‖

2

σ2

• Sigmoid : K(xi, x j) = tanh(γxi · x j + r)

• Polynomial : K(xi, x j) = (γxi · x j + r)d

where γ > 0, r and d are the kernel parameters.

3.2.2 Support Vector Regression (SVR)

In regression, the input and output is in m-dimensional such as< (x1, y1), (x2, y2), ..., (xm, ym) >

where xi ∈ <
m and yi ∈ <. The aim is to find a function f (x) (eq.3.25) having at most ε error

that is ε deviation from target yi.

f (x) = w.x + b (3.25)
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1
2 ‖ w ‖2 is minimized subject to 3.26 and 3.27.

yi − w.xi − b ≤ ε (3.26)

w.xi + b − yi ≤ ε (3.27)

f function does not always find all (xi, yi) pairs with ε error. It is sometimes allowed for some

errors. So, soft margin loss function found by Bennett and Mangarasian is used in SVMs by

Cortes and Vapnik. In this function, slack variables ξi, ξ∗i is used for infeasible constraints.

Hence, he goal is minimizing equation 3.28 subject to 3.29, 3.30 and 3.31:

1
2
‖ w ‖2 +

∑
i=1

m(ξi + ξ∗i ) (3.28)

yi − w.xi − b ≤ ε + ξi (3.29)

w.xi + b − yi ≤ ε + ξ∗i (3.30)

ξi, ξ
∗
i ≥ 0 (3.31)

where constant C is a trade-off between flatness of function f and allows deviations larger

than ε. This is called ε-intensive loss function |ξ|ε which is defined in 3.32.

|ξ|ε =

 0 i f |ξ| ≤ ε

|ξ| − ε otherwise
(3.32)

An ε-tube which is shown by grey area in Figure 3.8 is defined in equation 3.32. If loss is

zero, the predicted value is in the ε-tube. Additionally if the predicted value is not in ε-tube,

the difference between predicted value and radius of the ε-tube gives the loss. A Lagrange

Figure 3.8: The soft margin loss, ε-tube and slack variables for a linear SVM [4]
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function having a saddle point is obtained from 3.28 :

L =
1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ) −
n∑

i=1

(ηiξi + η∗i ξ
∗
i )

−

n∑
i=1

αi(ε + ξi − yi + w · xi + b)

−

n∑
i=1

α∗i (ε + ξ∗i + yi − w · xi − b) (3.33)

where αi,α∗i ,ηi,η∗i ≥ 0 are Lagrange multipliers. The saddle point is computed by using partial

derivatives of L with respect to w, b, ξi and ξ∗i :

dL
db

=

n∑
i=1

(α∗i − αi) = 0 (3.34)

dL
dw

= w −
n∑

i=1

(α∗i − αi)xi = 0 (3.35)

dL
dξi

= C − αi − ηi (3.36)

dL
dξ∗i

= C − α∗i − η
∗
i (3.37)

The equation 3.38 is acquired by substituting 3.34, 3.35, 3.36 and 3.37 to 3.33:

Ld(αi, α
∗
i ) = −

1
2

n∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j)(xi · x j)

−ε

n∑
i=1

(αi + α∗i ) +

n∑
i=1

(αi − α
∗
i )yi (3.38)

subject to
∑n

i=1(αi −α
∗
i ) = 0 and 0 ≤ αiα

∗
i ≤ C. ηi and η∗i is eliminated by using equation 3.36

and 3.37 and equation 3.36 and 3.37 is rewritten as η(
i∗) = C −α(

i∗). Equation 3.35 transforms

into w =
∑n

i=1(αi − α
∗
i )xi. And finally 3.25 becomes:

f (x) =

n∑
i=1

(αi − α
∗
i )x · xi + b (3.39)

The number of support vectors are not dependent the dimension of input vector. Moreover, b

is computed by using KKT conditions:

αi(w · xi + b − yi + ε + ξi) = 0 (3.40)

α∗i (−w · xi − b + yi + ε + ξ∗i ) = 0 (3.41)

ηiξi = (C − αi)ξi = 0 (3.42)

η∗i ξ
∗
i = (C − α∗i )ξ∗i = 0 (3.43)
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We can make some conclusions through KKT conditions. If α∗i = C, (xi, yi)isoutsidetheε-

tube. Besides that αiα
∗
i = 0 where αi , 0 and α∗i , 0.

For nonlinear case, input vector xi is mapped onto a feature space by using Φ : <m 7→ < f .

However, this mapping procedure is hard to verify. So kernels are used such as K(xi, x j) =

Φ(xi) · Φ(x j). Hence, the goal is maximizing:

L = −
1
2

n∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j)K(xi, x j)

−ε

n∑
i=1

(αi + α∗i ) +

n∑
i=1

yi(αi − α
∗
i ) (3.44)

subject to
∑n

i=1(αi − α
∗
i ) = 0 and 0 ≤ αi, α

∗
i ≤ C. We can rewrite equation 3.39 as:

w =

n∑
i=1

(αi − α
∗
i )Φ(xi) (3.45)

f (x) =

n∑
i=1

(αi − α
∗
i )K(xi, x) + b (3.46)

The difference of non-linear case from linear case is trying to find flattest function in input

space in linear case when trying to find in feature space in non-linear case.

3.2.3 Partial Least Squares (PLS)

PLS is used in areas such as chemistry, industrial process control etc. PLS was firstly devel-

oped by Herman Wold in the late sixties in order to use in econometrics [11]. It is started to

use in chemistry in the late seventies by S. Wold and H. Martin.

PLS is better than classical multiple linear regression (MLR) and principal component re-

gression (PCR) and combines the features of these two regression methods. MLR is efficient

when the number of dependent variables is few and these variables are not redundant. If the

number of dependent variables is many for predicting and dependent variables are collinear,

PLS is efficient. If the number of dependent variables is too many, there may be some latent

factors. The aim in PLS is to find these latent factors.

When the number of independent variables are too many, regression is not feasible. One

method is to reduce the number of independent variables by using some stepwise methods

such as principal component regression. However, when the dimension of X is reduced, it

does not guarantee that this reduced X can predict vector Y successfully.
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The aim of PLS is to predict dependent variables, vector Y, from independent variables, matrix

X. The independent variables are shown as:

X = T PT

with TT T = I where I identifies the identity matrix. T is called score matrix and P is called

loading matrix. Predicted Y is shown as:

Ŷ = T BCT

where B and the columns of T identify regression weights and latent vectors respectively.
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CHAPTER 4

DATASET AND MODELLING MOLECULAR SURFACES

4.1 Dataset and Data Preparation

38 phenncyclidine (PCP) drug-like compounds are used as dataset in the experiments [1].

A drug-like compound has NMDA (N-methyl-D-aspartic) receptor binding affinity value Ki

which is shown in Figure 4.1. Compounds are represented on Cartesian coordinate system by

using structural formulas of compounds in [1] by using HyperChem and VegaZZ programs.

The steps performed in [1] are:

• The rough two-dimensional structure of molecules are obtained using HyperChem pro-

gram [8].

• Molecular stability is obtained by MM+ molecular mechanics method. Molecular me-

chanics method is used to model molecular systems by Newtonian mechanics.

• Polak-Ribiere method is used to obtain the geometric optimization of the compounds.

The structure of molecules are obtained in [1] as mentioned above. We use these struc-

tures to obtain molecular lipophilicity surfaces (MLP) of each molecules by using VegaZZ

program [15] in this study. We choose number of points per unit area is 5 for molecular

lipophilicity whose average number of points is 411. The number of points on each molec-

ular lipophilicity surfaces varies between 380 and 550. Since the number of points on each

molecule surfaces is different from each other, we cannot use these points directly in predic-

tion. Moreover, if the dependent variables are too many, it will be hard to predict independent

variables. We decide to reduce the number of points on each molecule surfaces because of

these reasons.
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Figure 4.1: The chemical formulas of PCP-like compounds with their NMDA binding values
Ki. The values in parenthesis express the log(1/Ki)
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4.2 The Modeling Architecture

Self organizing map is a useful method for analysis and visualization of high dimensional

data. Each unit on the map has a three dimensional weight vector.

In this study, we used SOM toolbox developed by Vesanto [9].

4.3 The Learning Algorithm

There are two SOM algorithms which are batch and sequential algorithms in the SOM tool-

box [9]. We used both of these algorithms for our implementation. And also, we used k-means

clustering for modeling our dataset. In this chapter, we will explain batch and sequential SOM

algorithms. K-means clustering algorithm that we used is the algorithm explained in section

2.1.2.

4.3.1 The Batch Map

Since Voronoi sets are used in the batch algorithm, we will explain vector quantization (VQ),

Voronoi tessellation and Voronoi sets in this section.

Figure 4.2: Voronoi tessellation partitions in two-dimensional space. The points show the
codebooks of each Voronoi tessellation and all vectors in the same tessellation are the nearest
vectors to the codebook of the tessellation [6]

Vector quantization ”forms a quantized approximation to the distribution of the input data

vectors x ∈ <n, using a finite number of so-called codebook vectors mi ∈ <
n, i=1,2,...,k” [6].
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In vector quantization, the aim is to find closest codebook to each input data vector by using

Euclidean distance as given in equation 4.1:

‖ x − mc ‖= min
i
‖ x − mi ‖ (4.1)

And also, optimal selection of mi minimizes the quantization error in the equation 4.2.

E =

∫
‖ x − mc ‖

2 p(x)dx (4.2)

where p(x) is the probability density function of x.

Voronoi tessellation is useful for the illustration of the vector quantization methods. In figure

4.2, the codebooks are shown as points in two-dimensional space. This space is partitioned

into regions by lines. Each region includes the nearest vectors to the codebook of the corre-

sponding codebook. These lines constitute the Voronoi tessellation.

Voronoi set is all input points assigned to a Voronoi tessellation.

In the light of all the information given above, the learning algorithm of the batch algorithm

is given as:

1. The weight of each unit wi = [wi
1,w

i
2,w

i
3] is initialized randomly where i=1,2,...,M.

Here, M is the number of units of the map.

2. At each iteration,

(a) Calculate the Euclidean distance between each input point (xp = [xp
1, x

p
2, x

p
3]) and

the weights of all neurons by equation 4.3.

d(xp,wi) =

3∑
k=1

(xp
k − wi

k)2 (4.3)

where i=1,2,...,M. M is the number of units. And the unit with minimum distance

is chosen. Thus, all of the input vectors are assigned to the unit with minimum

distance and Voronoi sets are obtained.

(b) Each weight vector and its neighbors are updated by equation 4.4:

wi(t + 1) =

∑n
j=1 hic(j)(t)xj∑n

j hic(j)(t)
(4.4)

where c(j) is the best match unit of sample vector x j, hi,c( j) is the neighborhood

function, and n is the number of sample vectors in the Voronoi set Vi. In equation

4.4, we used Gaussian function as neighborhood function.
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3. Repeat step 2 until maximum number of iterations is reached.

The batch algorithm is faster to calculate than sequential algorithm. Also, the results of batch

algorithm are as good as or better than the results of sequential algorithm.

4.3.2 The Sequential Map

The learning algorithm of the sequential map is:

1. Initialize weight vectors wi = [wi
1,w

i
2,w

i
3] where i=1,2,...,M and M is the number of

units on the map.

2. At each iterations,

(a) A point xp = [xp
1, x

p
2, x

p
3] is selected randomly from input data set where p=1,2,...,N

and N is the number of input points.

(b) Calculate Euclidean distance between the selected point and the weights of all

units by equation 4.3.

(c) The best matching unit(BMU), the unit with minimum distance, is chosen.

(d) The weight of the BMU and its neighbors are updated by equation 4.5:

wi(t + 1) = wi(t) + α(t)hi(r, s)(xp − wi(t)) (4.5)

where t = 1,2,...T and T is the number of iterations. r is the neighborhood radius

which shrinks with time. α(t) = 0.5(1− t
T ) is the learning factor. hi(r) = exp(−d(wi,wc)

2r(t) )

is the neighborhood function which also shrinks with time.

3. Repeat step 2 until maximum number of iterations is reached.

4.4 Performance

The resulting map changes with respect to training vectors and the learning rate. The optimal

map is obtained for the same input data. Quantization error is useful in order to compare

maps with the same array structure. So, quantization error and topographic error are used for

performance measurement in this thesis.
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The best-matching unit is the weight vector with minimum distance to the input vector. The

quantization error is the distance between the input vector and the best-matching unit. It is

calculated as:

qe =

∑N
p=1 d(xp,wpc)

N
(4.6)

where N is the number of input points, xp is the input vector and wpc is the weight vector of

the best-matching unit of input xp.

Self organizing map is used to map the input vector onto a low dimensional map in a topologi-

cally ordered manner. Topographic error is used in order to measure topological preservation.

It indicates whether closest and second closest weight vector to the input vector are neighbor

or not. It is calculated as:

te =

∑N
s=1 tes

N
(4.7)

where tes = 0 if these two weight vectors are neighbor, tes = 1, otherwise.

4.5 Implementation

In this study, each molecule is on three-dimensional coordinate system and each point on

the molecule has a molecular lipophilicity value. The number of points of each molecular

lipophilicty surface varies between 380 and 600. We use two-dimensional SOM and k-means

clustering to reduce the number of points in the input data set. We use two-dimensional SOM

with 40 neurons and k=40 for k-means clustering. We have 38 molecules and after reducing

the number of input data set, we will predict the binding affinity of each molecule by using

these selected 40 values. In regression, if the number of independent variables is much greater

than the dimension of the dependent variables, the prediction will be inefficient. Since there

are 38 molecules to predict the binding affinity, we use SOM with 40 neurons. Thus, the

regression will not be inefficient.

According to the ”One-Half Rule” [6], the length of short side should be at least half of the

longer side of the SOM. So, we use 8x5 SOM.

In SOM toolbox [9], there are two training phases, rough and fine tuning phases, which are

trained respectively. In rough phase, large neighborhood radius and big initial value for learn-

ing coefficient are used. In fine tuning phase, small neighborhood radius is used and learning

coefficient is small already at the beginning.
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In batch algorithm, the weights of units are initialized randomly. At each iteration, all of the

input points are mapped onto a unit with minimum distance. The number of iterations should

be at least 500 times the number of units. So, the number of iterations for batch algorithm is

20000 for both rough and fine tuning phases. However, the map converges before this number

of iterations is reached. Of course, the points in each Voronoi set change with respect to

initialization values of weights of the units.

The performance is measured by using quantization error and topographic error mentioned in

section 3.4. In figure 4.3, quantization error and topographic error for molecular lipophilicity

surfaces are shown.

Figure 4.3: Total quantization error(tqe) and total topographic error(tte)

In sequential algorithm, each molecule is divided into 40 regions. Each region consists of

points that are close to each other. Our aim is to select a point from each region. The weights

of units are initialized randomly. However, one more point is selected from some regions and

no point is selected from some regions. For instance, no point is selected from 10 regions

for molecule 1. This varies between 10 and 15. When we initialize the weights of units by

selecting one point from each region, the result does not change. So, we cannot represent our

data set by sequential map with 40 units and we decided to use a SOM with more units. Thus,

the probability of selection a point from each region will be higher. The average number of

points of all molecules is 411. We compute the optimal size of SOM by equation 4.8.

msize = 5
√

k (4.8)
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where k is the product of the columns and rows of the dataset. The size is calculated as 170

by equation 4.8. We use a 17x10 SOM with respect to ”One-Half Rule”. We calculated

standard deviation of each unit by using the weights of the units. We thought that if the

standard deviations of two units were close to each other, the best matching units (BMUs) of

these units would be close to each other. So, standard deviations are grouped in fives whose

standard deviations are close to each other and a unit is chosen from each group. There are

40 groups. For instance, no point is selected from 3 regions for molecule 1. Of course, this

result is better than the SOM with 40 units.

In k-means clustering, k=40 and the number of iterations is 100. Actually, k-means clustering

algorithm is similar to batch map algorithm.
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CHAPTER 5

EXPERIMENTAL RESULTS

Our aim is to predict binding affinity of molecules which are given in Figure 3.1 by using

molecular lipophilicity properties of molecules. We use support vector regression(SVR) and

partial least Squares(PLS) for this purpose. We chose Radial Basis Function(RBF) kernel and

ε-loss function for SVR. We try to approximate the number of components for PLS.

5.1 Data Set

Molecular lipophilicity of each molecule given in Figure 3.1 are mapped onto a two-dimensional

SOM and are clustered by k-means clustering. Self-organizing map has 40 neurons which

are assumed as features of molecular lipophilicity. We only used the molecular lipophilic-

ity values which are mapped onto a neuron. So, a molecule has 40 features for molecular

lipophilicity property. Eventually, we have a data set having 38 samples with 40 features for

molecular lipophilicity.

5.2 Software

LIBSVM 3.0 [32] which is developed by Chang and Lin is used for Support Vector Regres-

sion. It is performed on Linux platform. Unscrambler 9.5 [14] is used for Partial Least

Squares(PLS) regression which is performed on Windows XP platform. C++ and MATLAB

is used for achieving prediction results of SVR and PLS, and other calculations.
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5.3 Performance

Root mean squared error(RMSE) and coefficient of determination(R2) are used for perfor-

mance measurement.

RMSE is used to measure difference between the predicted value evaluated by an estimator

and observed value. This is used in error measurement of the system. RMSE is calculated by

5.1.

RMS E =

√√√√√√√√ N∑
i=1

(yi − ŷi)2

N
(5.1)

where yi is observed value of ith variable, ŷi is the predicted value and N is the number of

samples.

R2 is used to determine variance of a variable which is predicted from model. It shows how

much predicted values are close to the observed values. R2 is between 0 and 1. If R2 is close to

1, the system will be explained by the model well. Conversely, if R2 is close to 0, the system

can not be explained well by the model. R2 is calculated by

R2 = 1 −

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − yi)2

(5.2)

where yi and ŷi are the same as given above and yi is the mean of the observed values.

5.4 Assigning SVR Parameters

Setting the appropriate SVR parameters is an important issue in order to provide good predic-

tion performance. C, ε and kernel parameter γ are the optimal parameters of SVR. C is the

trade off between the model complexity and error tolerance. Very large C causes to minimize

error with regard to model complexity. ε is width of ε-intensive zone and affect the number

of support vector of the training data. If ε is large, there are less support vectors which causes

less complex prediction. γ is the width of kernel function which represents the distribution of

independent values in the training data.

We try to assign optimal set of SVR parameters using two different methods. In first one
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which we call it as SVR1 in the following sections, is suggested in [2]. In this approach, C

is selected directly obtained from training data and ε is selected by using noise in the training

data and number of training examples. C is calculated by equation 5.3:

C = max(y + 3σy, y − 3σy) (5.3)

where y and σy is the mean and standard deviation of the observed values of the training data

respectively. ε the proportion of noise level and the number of samples. Since, it depends on

the number of samples, if the number of samples is many, ε will be small. ε is is calculated

by equation 5.4 if the number of samples is less than 30:

ε =
σ
√

N
(5.4)

If the number of samples is greater than or equal to 30, ε is calculated by equation 5.5:

ε = 3σy

√
ln N
N

(5.5)

where N is the number of the samples. Since, we have 38 samples in the dataset, we use

equation 5.5.

According to our data C = 7.8477 and ε = 0.7176. Leave-n-out cross validation and these

calculated values are used to calculate γ. Firstly, the dataset is divided into 5 subset randomly.

One of these five set is used as test set and rest of them are used as training set. This is

repeated for each subset and RMSE is calculated for each test set. Finally, total RMSE values

of test sets is calculated. γ is tested for values between 0.01 and 6 with 0.01 interval where C

and ε are the values given above. γ value which gives minimum RMSE value is selected.

In second approach of parameter selection which is called SVR2 in the following sections is

grid-search method. Leave-n-out cross validation is used in this approach, either. The aim is

assigning set of SVR parameters which gives minimum RMSE result. Grid-search method is

applied after determining ranges of C, ε and γ. 8(γ = [0.01,6], ε = [0.05,0.2], C = [1,600])

[10].

5.5 Evaluating Results

We model molecular surfaces by using two-dimensional SOM and k-means clustering.
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After selection of SVR parameters and the number of components for PLS, training and test

sets are defined. Because we have few samples, we generate 1000 training and test sets

randomly which have 30 samples for each training set and 8 samples for each test set. We

use these 1000 random training and test sets to predict binding affinity of the molecules by

using molecular lipophilicity. We choose three of these random sets with minimum RMSE of

SVR1, SVR2.

5.5.1 Batch Map Algorithm

For batch map, the γ parameter of SVR1 is 0.52. The parameter set of SVR2 is γ = 0.28, ε =

0.2 and C = 1. Before the implementation, the data is scaled between -1 and 1 because some

values of features are close to zero. This situation causes the values of features are rounded

up during calculation. Training and test results of SVR1 and SVR2 can be seen in Table 5.1.

Table 5.1: RMS E values of SVR1 and SVR2 for batch map algorithm

RMS E
SVR1 SVR2

Selection Training Test Training Test
Random-177 0.257556 0.395728 0.23667 0.38883
Random-712 0.267031 0.39711 0.142961 0.416504
Random-421 0.256832 0.407607 0.196094 0.404565

Random-177 gives lowest results for testing for both SVR1 and SVR2. Moreover, SVR2

training and test results are better than SVR2. Therefore, we choose Random-177 to compare

the performance of SVR1, SVR2 and PLS.

PLS values of training and testing are 0.550664 and 0.395946 for Random-177 set, respec-

tively. The overall statistical results can be seen in table 5.2. SVR2 gives better results than

both SVR1 and SVR2. SVR2 has the lowest RMSE and highest R2. As can be seen from

Table 5.1, SVR2 has % 62 of predicted values are fitted to the observed values. The R2 value

of SVR2 shows that predicted values does not fit and does not explain variability in binding

affinity very well. Also, the difference between SVR1 and SVR2 is not much.

In Figure 5.1, the correlation between observed and predicted values is shown for SVR1,
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Table 5.2: RMS E and R2 values of SVR1, SVR2 and PLS for batch map algorithm

SVR1 SVR2 PLS
RMS E 0.487939 0.468075 0.521917
R2 0.590853 0.623486 0.531885

SVR2 and PLS. The error between observed and predicted values are represented by the

horizantal distance between the points and the line. If the point is close to the line, the error

will be small. For SVR1, test and training set values are not too close to the line. The results

of SVR2 are very similiar to the results of SVR1. The test results of PLS are worst than

SVR1 and SVR2. As a result, RMSE and R2 values of SVR1, SVR2 and PLS are sometimes

misleading. The training and test sets of Random-265 dataset are shown in Table 5.4 and

Table 5.3, respectively.

Table 5.3: Observed and predicted values for test set for batch map algorithm

Observed Predicted
No. SVR1 SVR2 PLS
3 6.14 5.82466 5.94611 5.5906
8 5.79 5.5248 5.50959 6.015
9 5.08 5.53152 5.54403 5.5426
12 5.29 5.51334 5.4539 5.6017
20 6.03 5.51435 5.46146 5.6314
29 5.59 5.51743 5.50923 5.6432
34 5.14 5.51326 5.44979 5.6919
36 6.17 5.51845 5.50003 5.8175

The average RMSE of 1000 random test set is 0.7424 and 0.7431 for SVR1 and SVR2 re-

spectively. The average RMSE of 1000 random test sets are very close to each other and is

high for both SVR1 and SVR2 because RMSE values of most test sets are high. Even the

RMSE values of RMSE is sometimes greater than 1. The average RMSE of training tests are

0.2756 and 0.1933 for SVR1 and SVR2, respectively. SVR2 is explained our dataset better

than SVR1 for training sets. Of course, the average RMSE of the training sets is much better

than the average RMSE of the test sets.
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Figure 5.1: Predicted vs. Observed values for Batch Map Algorithm
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Table 5.4: Observed and predicted values for training set for batch map algorithm

Observed Predicted
No. SVR1 SVR2 PLS
1 7.15 7.20432 6.58104 6.1038
2 6.28 6.09016 6.04722 6.3745
4 5.7 5.51439 5.58302 5.1231
5 5.8 5.9646 5.66832 6.0305
6 6.3 6.4758 6.18375 5.6177
7 5.92 6.09144 5.70933 5.4935
10 5.11 5.25079 5.24416 5.7257
11 6.23 4.92052 5.27508 6.583
13 4.8 6.02471 6.07831 5.6717
14 6.07 4.97789 4.99874 6.4831
15 6.25 5.88127 5.82701 5.6772
16 6.09 6.0566 6.01237 5.7158
17 5.62 5.90005 5.85066 5.0261
18 4.37 5.51632 5.46708 5.6455
19 4.97 4.56126 4.49339 4.7623
21 4.91 5.14079 5.10447 5.1779
22 5.08 5.0761 5.16076 5.3719
23 6.65 6.28697 6.41361 6.0266
24 4.47 4.77447 4.76549 4.8502
25 5 5.51636 5.19401 5.538
26 4.07 4.41444 4.5852 4.5146
27 6.84 6.40066 6.47669 5.9018
28 4.98 5.15144 5.11008 5.479
30 5.22 5.52124 5.52406 5.0256
31 6.46 6.2656 6.30831 5.8903
32 5.1 5.53389 5.27415 5.6227
33 5.96 5.5212 5.75243 6.0445
35 3.92 3.89789 4.5012 3.8339
37 4.97 5.14574 5.09933 5.1727
38 4.56 4.83905 4.80983 4.3669
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5.5.2 Sequential Map

Since Sequential map for SOM with 40 neurons cannot select a point from each region which

we divide molecular lipophilicity surface of each molecule into 40 regions, we did not predict

for this map. Instead of this map, we made prediction for SOM with 170 neurons. The γ

parameter of SVR1 is 0.14. The parameter set of SVR2 is γ = 0.22, ε = 0.1 and C = 1. The

results of SVR1 and SVR are shown in table 5.5.

Table 5.5: RMS E values of SVR1 and SVR2 for sequential algorithm

RMS E
SVR1 SVR2

Selection Training Test Training Test
Random-223 0.270489 0.418183 0.259652 0.41087
Random-265 0.246853 0.403818 0.212593 0.396236
Random-712 0.254544 0.404062 0.235578 0.429875

Random-265 has lowest test results for SVR1 and SVR2. SVR2 gives better results than

SVR1 for both training and test. Therefore we choose Random-265 to compare the perfor-

mance of SVR1, SVR2 and PLS.

PLS values of training and test are 0.756899 and 0.626323 for Random-265, respectively.

And the overall statistical results can be seen in table 5.6. SVR1 gives better results than

SVR2 and PLS. So, SVR1 has the lowest RMSE and the highest R2 values. The R2 value of

SVR1 is 0.87. So, our dataset is not explained by SVR1 perfectly.

Table 5.6: RMS E and R2 values of SVR1, SVR2 and PLS for sequential algorithm

SVR1 SVR2 PLS
RMS E 0.268602 0.341272 0.731349
R2 0.876016 0.799852 0.080822

In Figure 5.2, the correlation between observed and predicted values can be seen for SVR1,

SVR2 and PLS. The difference between the training and test points of SVR1 and SVR2 is
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not too much. The test points of PLS are worst than from SVR1 and SVR2 when the training

points are not very different from SVR1 and SVR2. The training and test sets of Random-265

dataset are shown in Table 5.8 and Table 5.7, respectively.

Table 5.7: Observed and predicted values for test set for sequential algorithm

Observed Predicted
No. SVR1 SVR2 PLS
4 5.7 5.2895 5.43035 5.7694
5 5.8 5.83938 5.70145 6.1946
7 5.92 5.26819 5.45199 5.4231
25 5 5.53152 5.49607 5.6521
28 4.98 5.21735 5.44076 6.2495
29 5.59 5.40958 5.49648 5.6644
34 5.14 5.46646 5.49232 5.9357
36 6.17 5.68869 5.56725 5.9349

The average RMSE value of 1000 random test sets for SVR1 and SVR2 are 0.7833 and

0.7802, respectively. The results are not good most of the time as well. The average RMSE

values of test sets are 0.2611 and 0.06312 for SVR1 and SVR2 respectively. SVR1 is ex-

plained our training sets much more better than SVR1 and also the average RMSE of training

sets is much more better than the average RMSE of test sets.

5.5.3 K-means Clustering

In k-means clustering, the γ parameter of SVR1 is 0.19. The parameter set of SVR2 is γ =

0.18, ε = 0.08 and C = 2. The results of SVR1 and SVR2 can be seen from table 5.9.

Random-767 has the lowest test results for SVR1 and SVR2. When the test results of SVR1

are better than the test results of SVR2, the training results of SVR2 is better than SVR1’s

results. So, Random-767 is used to compare the performance of SVR1, SVR2 and PLS.

PLS values of training and test are 0.864482 and 0.640974 for Random-767, respectively. The

overall statistical results can be seen in table 5.10. SVR2 outperforms both SVR2 and PLS.

So, SVR1 has the lowest RMSE and the highest R2. Moreover, our dataset can be explained

well with respect to R2.
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Figure 5.2: Predicted vs. Observed values for Sequential Algorithm
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Table 5.8: Observed and predicted values for training set for sequential algorithm

Observed Predicted
No. SVR1 SVR2 PLS
1 7.15 7.29051 6.41884 6.058
2 6.28 6.21798 6.06217 6.401
3 6.14 6.21702 5.91263 5.0266
6 6.3 6.2605 6.07263 6.0361
8 5.79 5.92612 5.54215 5.6361
9 5.08 4.96728 5.26908 5.2229
10 5.11 5.24813 5.2997 5.8373
11 6.23 6.18375 6.00488 6.7359
12 5.29 5.62817 5.51699 5.6973
13 4.8 4.84368 5.00037 6.5171
14 6.07 5.88437 5.88639 5.8107
15 6.25 6.00458 6.07218 5.6369
16 6.09 5.99067 5.88341 5.0505
17 5.62 5.19395 5.42044 5.7346
18 4.37 4.66239 5.31146 4.8998
19 4.97 5.10612 5.20215 5.1486
20 6.03 5.87598 5.84464 5.3019
21 4.91 5.12182 5.14771 6.4376
22 5.08 5.46623 5.28668 4.7753
23 6.65 6.31566 6.44936 5.8926
24 4.47 4.66954 4.69748 4.5416
26 4.07 4.39638 4.51655 5.9038
27 6.84 6.49023 6.50954 5.7602
30 5.22 5.14575 5.43274 5.0157
31 6.46 6.19365 6.19358 5.8754
32 5.1 5.22842 5.32347 5.6719
33 5.96 5.70537 5.74353 6.0582
35 3.92 4.13387 4.4484 4.0612
37 4.97 5.15026 5.17744 5.1895
38 4.56 4.67353 4.7863 4.4009

Table 5.9: RMS E values of SVR1 and SVR2

RMS E
SVR1 SVR2

Selection Training Testing Training Testing
Random-712 0.27535 0.372461 0.0357069 0.363565
Random-767 0.27535 0.344911 0.0357069 0.363565
Random-265 0.263702 0.378848 0.155701 0.0267476
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Table 5.10: RMS E and R2 values of SVR1, SVR2 and PLS

SVR1 SVR2 PLS
RMS E 0.28731 0.169488 0.822491
R2 0.858143 0.950634 -0.16255

In Figure 5.3, the correlation between observed and predicted values can be seen for SVR1,

SVR2 and PLS. The training points of SVR2 is very close to the line. As can be seen, they are

much better than the results of SVR1 and PLS. However, the test points of SVR1 and SVR2

are not very different. The test and training results of PLS are worst than SVR1 and SVR2.

The training set of Random-767 is shown in Table 5.12 while the test set is shown in Table

5.11.

Table 5.11: Observed and predicted values for test set for k-means algorithm

Observed Predicted
No. SVR1 SVR2 PLS
3 6.14 6.05703 6.05627 5.73223
4 5.7 5.49338 5.3908 5.48782
5 5.8 5.5653 5.46852 5.14772
17 5.62 5.51393 5.47836 5.72177
19 4.97 5.50119 5.418 5.57676
28 4.98 5.46115 5.38369 5.7394
31 6.46 6.08089 6.00962 5.35908
33 5.96 5.53762 5.4517 5.5996

The average RMSE values of 1000 random test sets for SVR1 and SVR2 are 0.7383 and

0.8769, respectively. The average for SVR1 is better than the average for SVR2 for test

tests. The average RMSE values of training sets are 0.2707 and 0.3146 for SVR1 and SVR2,

respectively. The average of SVR1 and SVR2 are close to each other for training sets.

The average RMSE values of test sets for batch map, sequential and k-means algorithms are

not good. Our dataset is too small so it is hard to predict the binding affinity of test molecules.

If our training dataset is larger, the RMSE values may be lower.

Moreover, when we compare the SVR1, SVR2 and PLS for batch map, sequential and k-

means algorithms, SVR outperforms PLS for all of the algorithms which are used in this
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Figure 5.3: Predicted vs. Observed values for K-means Algorithm
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Table 5.12: Observed and predicted values for training set for k-means algorithm

Observed Predicted
No. SVR1 SVR2 PLS
1 7.15 6.98629 7.05239 5.8387
2 6.28 6.12437 6.29231 6.0632
6 6.3 6.13674 6.27806 4.9427
7 5.92 6.13449 5.93924 5.9498
8 5.79 5.63138 5.76426 5.6379
9 5.08 5.25323 5.08487 5.261
10 5.11 5.31135 5.125 5.8646
11 6.23 6.40963 6.1741 6.6337
12 5.29 5.63481 5.30912 5.7424
13 4.8 5.03688 4.83625 6.5824
14 6.07 5.86961 6.03496 5.9669
15 6.25 6.0486 6.22296 5.4814
16 6.09 5.59905 6.06537 4.9997
18 4.37 4.50832 4.38231 5.5156
20 6.03 5.92001 5.99207 5.0055
21 4.91 5.1756 4.94264 5.0023
22 5.08 5.46039 5.11965 5.0836
23 6.65 6.26892 6.62384 6.3508
24 4.47 4.65051 4.50218 4.8746
25 5 5.50769 5.02547 5.5088
26 4.07 3.97999 4.10614 4.3559
27 6.84 6.45907 6.8096 5.7277
29 5.59 5.59707 5.55447 5.7348
30 5.22 5.5625 5.21107 4.8312
32 5.1 5.22021 5.11444 5.6021
34 5.14 5.4667 5.17907 5.4929
35 3.92 4.40924 3.95028 5.7297
36 6.17 6.01648 6.14407 3.9757
37 4.97 5.17135 4.98995 4.999
38 4.56 4.80376 4.59815 4.465
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study. However, overfitting is not significantly observed by neither SVR nor PLS. So, best

parameters cannot always be found in SVR.
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CHAPTER 6

CONCLUSION

In this thesis, molecular lipophilicity surfaces are obtained in 3D coordinate system which are

used to predict binding affinity of molecules. However, the number of points on these surfaces

are different from each other and is too many in order to use for prediction directly. So, the

number of points is reduced by two dimensional self organizing maps (SOM) and k-means

clustering. The surfaces are mapped onto two-dimensional maps. SOM with 40 neurons is

used for the purpose of feature extraction. The value of molecular lipophilicity of each neuron

is used for prediction of binding affinity of molecules.

When we use two-dimensional SOM with 40 neurons and apply batch map algorithm, all

points in the input data set are mapped onto a neuron. Thus, we acquire 40 Voronoi sets.

We calculate the average molecular lipophilicity for each Voronoi set and use these values as

features to predict binding affinity of molecules.

We divided each molecule into 40 regions for sequential map algorithm. Our aim is to map a

point from each region onto units. Although batch map algorithm can model our molecules

well, sequential map algorithm does not give good results. In sequential map algorithm, a

point from each region cannot be mapped because of the random structure of the algorithm.

So, we decided to use a SOM with 170 units. Although a point from each region cannot be

mapped onto units in this approach, as well, the results are better than the first sequential

algorithm approach.

In k-means clustering, due to the nature of the algorithm each molecule can be divided into 40

regions. We finally see that batch map algorithm of SOM and k-means clustering are reduced

the number of input samples efficiently. The sequential map algorithm is not very reliable for

our purpose.
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When we look at the average RMSE values of test sets for batch map, sequential and k-means

algorithm, they are not good. Even RMSE values of some test sets are greater than 1. It

is clear that the models using SVR-1, SVR-2 and PLS are not always explained our dataset

well. However, when we compare SVR-1, SVR-2 and PLS algorithms with each other, SVR

outperforms the PLS.

In study [1], the prediction of binding affinity of molecules are done using molecular electro-

static potential. When we compare the results in [1] with our results, molecular hydropho-

bicity predicts the binding affinity of molecules better.

The molecular electrostatic potential is another property that affects the binding affinity of

molecules. As future work, the effect of the molecular electrostatic potential and the molecu-

lar lipophilicity to the binding affinity can be predicted.

In prediction part, if other methods are used for finding SVR parameters, the prediction results

may improve. Moreover, different regression methods or machine learning algorithms might

be used to obtain better prediction results.
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