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ABSTRACT 

 
A 3-D VASCULAR CONNECTIVITY TRACKING AND VASCULAR NETWORK 

EXTRACTION TOOLKIT 
 
 

Kara, Kerim 
 

M.Sc., Department of Biomedical Engineering 

Supervisor: Prof. Dr. B. Murat Eyüboğlu 

Co-supervisor: Prof. Dr. H. Saruhan Çekirge 
 

April 2011, 93 Pages 
 

During angiography procedure, contrast medium is injected into circulatory 

system of patients and the mostly preferred technique is X-ray angiography. Due 

to their adverse effects, excess use of contrast medium and X-ray is avoided. 

For diagnosis, treatment planning, and risk assessment purposes, interventional 

radiologists utilize visual inspection to determine connectivity relations between 

vessels. This situation leads angiography to have more adverse effects, since it 

requires additional injection of contrast medium and X-ray dose. 

 

This thesis work presents a 3-D vascular connectivity tracking toolkit for 

automated  extraction of vascular networks in 3-D medical images. The 

proposed method automatically extracts the vascular network connected to a 

user-defined point in a user-defined direction, and requires no further user 

interaction.  The toolkit prevents additional injection of contrast agent and X-ray 

dose, saves time for the interventional radiologist.  

 

While the algorithm is applicable on all 3-D angiography images, performance of 

the method is observed on 3-D catheter angiography image of cerebrovascular 
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structures. The algorithm iteratively tracks gravity centers of vascular branches 

in the user-defined direction, preserving connection to the user-defined point.  

Curvy branches are tracked even if they have discontinuous portions. Since this 

tracking method does not depend on lumen diameter and intensity differences, 

branches with stenoses and branches having large intensity difference can be 

successfully tracked. Skeletonization and junction detection methods are 

described, which are used to detect the sub branches, indirectly connected to 

the point. These methods are capable of handling bifurcations, trifurcations, and 

junctions having more branches. However, false junctions occurring due to 

superposition of vessels are not eliminated.  

 

Keywords: Angiography, vascular network, 3-D medical image processing, 

connectivity, tracking, skeletonization, junction detection 
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ÖZ 

 
3-B VASKÜLER BAĞLANIRLIK ĠZLEYĠCĠSĠ VE VASKÜLER AĞ ÇIKARTMA 

ARAÇ TAKIMI 
 
 

Kara, Kerim 
 

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. B. Murat Eyüboğlu 

Ortak Tez Yöneticisi: Prof. Dr. H. Saruhan Çekirge 
 

Nisan 2011, 93 Sayfa 
 

Anjiyografi işleminde çoğunlukla X-ışını yöntemi kullanılmakta ve hastanın 

dolaşım sistemine kontrast madde verilmektedir . Ġstenmeyen etkilerinden dolayı 

fazla X-ışını ve kontrast madde kullanımından kaçınılmalıdır. Teşhis, tedavi 

planlama ve risk değerlendirme amaçlarıyla girişimsel radyologlar görsel olarak 

inceleme yapmaktadır. Bu durum, daha fazla kontrast madde ve X-ışını dozu 

gerektirdiğinden, anjiyografinin istenmeyen etkilerini artırmaktadır. 

 

Bu tez çalışmasında, 3-B tıbbi görüntülerdeki damar ağlarının otomatik olarak 

çıkartılması için bir 3-B vasküler ağ çıkarma araç takımı sunulmaktadır. Önerilen 

yöntem, kullanıcı tarafından belirtilen bir noktaya yine kullanıcı tarafından 

tanımlanan yönde bağlı olan vasküler ağı otomatik olarak çıkarmakta, ilave bir 

kullanıcı etkileşimi gerektirmemektedir. Böylece, daha fazla kontrast madde 

enjeksiyonuna ve X-ışını dozuna başvurulmasının önüne geçmekte, girişimsel 

radyoloğa zaman kazandırmaktadır.  

 

Tüm 3-B anjiyografi görüntülerine uygulanabilen bu algoritmanın performansı, 

kateter anjiyografi ile elde edilmiş 3-B beyin damar görüntüleri üzerinde 

gözlenmiştir. Algoritma, kullanıcı tarafından belirtilen noktaya bağlantıyı 
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koruyarak, vasküler dalların ağırlık merkezlerini tekrarlı bir biçimde kullanıcı 

tarafından tanımlanan yönde takip etmektedir. Eğri dallar da, kopuk parçalara 

sahip olsalar bile takip edilebilmektedir. Bu takip yöntemi lumen çapına ve 

koyuluk farkına bağlı olmadığından dolayı, stenozlu dallar ve yüksek koyuluk 

farkına sahip dallar da takip edilebilir. Ġlgili noktaya dolaylı olarak bağlanan alt 

dalların tespit edilmesi için, iskeletleştirme ve kavşak tespit yöntemleri de 

açıklanmıştır. Bu yöntemler çatallanımları, trifurkasyonları ve daha fazla dala 

sahip kavşakları ele alabilmektedir. Ancak, damarların bitişik biçimde üst üste 

gelmesinden kaynaklanan yanlış kavşaklar ortadan kaldırılamamıştır.  

 

Keywords: Anjiyografi, vasküler ağ, 3-B tıbbi görüntü işleme, bağlanırlık, izleme, 

iskeletleştirme, kavşak tespiti   
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

1.1.  Motivation of the Thesis Work 

2004 report of World Health Organization on causes of death includes statistical 

information on death causes and rates of individual countries for the year 

2002[1]. According to the report, cardiovascular diseases are a thundering threat 

for the entire world population: Cardiovascular diseases caused 28% of all 

deaths in 2002. With a closer look,  ischaemic heart diseases caused 12%, 

cerebrovascular diseases caused 8%, and hypertensive heart diseases caused 

2% of all deaths. 

 

Together with the report on causes of death, Mortality Country Fact Sheet 2006 

[2], which is also published by World Health Organization, exhibits the dramatic  

effect of cardiovascular diseases on death rates in Turkey. According to the fact 

sheet, diseases originating from circulatory system are the most common 

causes of death in Turkey. The report yields that 54% of deaths are caused by 

cardiovascular diseases: Ischaemic heart diseases caused 24% and 

cerebrovascular diseases caused 14%, while hypertensive heart diseases 

caused 3% of total deaths in the year 2002 (Table 1-1). 
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Table 1-1 - Top ten causes of death, all ages, Turkey, 2002. 

 

 

Weights of vascular diseases among the rates of death causes reveal the 

importance of supporting related clinicians in the decision-making phase. Tools 

and applications, which can support clinicians in terms of better detecting the 

problems, offering efficient clinical solutions, speeding the processes up are 

appreciated. Engineers are expected to put both hardware and software 

products into clinical service. 

 

While there are different specific groups of clinicians working on cardiovascular 

diseases, interventional radiologists, who are a special group of radiologists, 

focus on vascular diseases from the perspective of visualizing the vascular 

structures and evaluating image data. They utilize special forms of radiation to 

obtain image data of vessels. Interventional radiologists' decision-making phase 

covers acquiring and analyzing the image data, accurately diagnosing the 

pathology, determining risks, and treatment-planning.  
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Angiography suites are special environments, where are not only used for 

imaging purposes but also used for diagnosis and treatment operations. 

Interventional procedures like endovascular neurosurgery operations take place 

in these suites. While computed tomography (CT) and magnetic resonance 

(MR) scanners can be used to acquire images and diagnose pathologies, 

specialized x-ray systems are  utilized in angiography suites since they  are 

suitable for vascular treatment purposes as well as image acquisition and 

diagnosis purposes.  

 

X-ray based angiography (AX) scanners have large flat-panel x-ray detectors, 

yielding two-dimensional (2-D) projection images at any time instant. A half-

circle rotation of x-ray source and detector pair can acquire three-dimensional 

(3-D) images of large volumes such as entire head and neck or entire abdomen. 

By utilizing AX scanners together with digital subtraction angiography method, 

interventional radiologists can obtain 2-D and 3-D images of region-of-interest 

and volume-of-interest, respectively. Detailed information regarding digital 

subtraction angiography is provided in the following chapter.  

 

In an angiography suite, patients are generally anaesthetized and interventional 

radiologists have limited time to complete diagnosis and treatment procedures. 

Furthermore, digital subtraction angiography procedures require contrast agent 

injection into circulatory system and the same procedures are implemented 

under x-ray, especially for treatment purposes. The crucial point here is that 

both contrast agent and x-ray are invasive. Then, tools, which achieves the 

process with lower dose and less contrast agent in less time is highly 

appreciable in an angiography suite.  

 

Tools, which save dose, contrast agent, and time are appreciated by 

interventional radiologists as long as the tools support the clinicians in terms of 

diagnosis, risk assessment, and treatment-planning. Appreciable tools are 
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supposed to lead more accurate and faster diagnosis, highlight the risks, and 

assist in the treatment-planning phase. 2-D and 3-D road-mapping, image 

registration, image fusion, automated volume calculation, automated pathology 

detection, dual-volume reconstruction are some examples of such tools. 

1.2.  Scope of the Thesis Work 

Automatically relating the connections between vessels and determining the 

junctions within a vessel network would provide contrast agent, dose, and time 

saving opportunities to interventional radiologist. Such a tool, by utilizing 3-D 

digital subtracted angiography data, could process on connectivity, bifurcation, 

position of a point / volume of interest, positioning connected components with 

respect to it, hence, could support clinicians in terms of diagnosis, risk 

assessment, and treatment-planning.  

 

Automatic detection of vessels, which feed a specified volume, or detecting the 

network and volume, where a specified vessel feeds would support clinicians 

during diagnosis procedures. By making use of the same image processing 

techniques, the tool could support during risk assessment by virtually visualizing 

the vessel network, which might be occluded during operation. While treatment-

planning, it could highlight the path to a specified point in distal, yield the path 

between two specific points, highlight the vessel network originating from and 

connected to a specific point. It is apparently conceivable that this tool could 

support interventional radiologists to consume less contrast agent, dose, and 

time in angiography suites. 

 

Within this thesis work, we proposed a 3-D vessel connectivity tracking method 

and a tool. The method is capable of tracking a single branch, detecting 

junctions, determining bifurcations, trifurcations, etc. on the branches of interest, 

and automatically starting single-branch tracking procedures. Keeping in mind 
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that the method is applicable to any 3-D digital subtracted angiography data of 

any organ in the body, which can be obtained via any modality, we have focused 

on 3-D cerebral vessel data obtained via AX scanners. The 3-D images of 

cerebral vessels used in the comprehension of this work are acquired by a 

rotation of AX scanner's C-arm. Hence, "3-D image" within this text also refers to 

"rotational image", as used by interventional radiologists.  

 

A request by Prof. Saruhan Çekirge from Hacettepe University Faculty of 

Medicine, has initiated this study. Clinical interests and requirements of Prof. 

Çekirge and the technical substructure and patient potential at Hacettepe 

University Faculty of Medicine played determinant role on the scope of this work. 

As an interventional radiologist focusing on cerebrovascular diseases, Prof. 

Çekirge led the development and applications of the work to cerebrovascular 

diseases. Detailed information on the most common cerebrovascular diseases 

and possible applications of 3-D vessel connectivity tracking on them are given 

in the following chapter.  

 

This thesis work aims at creating a basic and working platform as a first step to 

a clinically applicable product in order to promote to human life quality. As a first 

step, the necessary image processing algorithms and components are 

generated, implemented, simulated, integrated together, and demonstrated that 

3-D vessel connectivity tracking algorithm is achieved. On the other hand, a 

graphical user interface is provided, so the clinicians can define inputs and 

observe the outputs.  

 

Although advanced applications of different image processing algorithms, such 

as central line extraction, region growing, and thresholding are generated and 

implemented within the context of this thesis work, we have focused on 

providing an overall working and integrated solution on 3-D vessel connectivity 

tracking rather than going into details and further improving the mentioned 
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individual algorithms. Therefore, the tool generally achieves 3-D vessel 

connectivity tracking and it needs further developments in the background 

components. As a future work, those components would be improved so that the 

tool could be clinically applicable.  

 

In this study, we propose a branch tracking and a junction detection algorithm; 

determining vessel network connected to a user-defined point in user-defined 

direction. Branch tracking algorithm is implementation of the method proposed in 

[3]; iteratively computes gravity center of a local volume, resulting with a single 

branch tracked. As a single branch connected to a specific seed point is tracked, 

junction detection algorithm on that branch is executed. A novel 3-D topology 

preserving centerline extraction method is implemented as an intermediate step 

to junction detection. This centerline extraction method is a combination of  [3] 

and [4]. Junctions are detected on the topology preserving centerline, analyzing 

the junctions on the branch of interest yields new points and directions to start 

the tracking procedure. Iterative implementation of this method provides the 

opportunity to discover the vessel network, including the distal vessels, 

connected to the user-defined point in the user-defined direction. The algorithm 

has the ability to discover the network even if discontinuities occur on a branch 

due to image degradations. One disadvantage of the algorithm to note is that it 

may produce false junctions if super-positioning of vessels are to the subject. A 

better local thresholding method is necessary to overcome this super-positioning 

problem and eliminate this disadvantage. 
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1.3.  Outline of the Thesis 

As background information on cerebrovascular anatomy, diseases, and imaging 

techniques, the cerebral vessels and pathologies are necessary to clearly 

understand the clinical concerns and requirements. The following section covers 

these topics and constitutes a base for problem definition, which is provided in 

the last section of this chapter. 

 

Chapter 2 provides a review on related articles in the literature. Also the 

methods used to achieve the objectives of the entire study are described step by 

step in this chapter. The methods expressed in Chapter 2 are implemented on 

cerebral angiographic images; outcoming results are presented and discussed 

in Chapter 3. Performance evaluation of the entire algorithm is described and 

the performance results are tabulated in Chapter 4. The overall assessment and 

conclusion are provided in Chapter 5. Furthermore, a summary on the trend of 

future work is given in this last chapter. 

 

1.4.  Background Information 

1.4.1. Cerebrovascular Anatomy 

Understanding vascular anatomy of the central nervous system introduces 

countless benefits not only in clinical terms but also in technical perspectives. 

Mentioned anatomical understanding provides educated decision-making 

opportunity for clinicians about evaluation and treatment of patients. On the 

other hand, anatomical knowledge provides an image-processing engineer to 

better conceive the possible relations of branches with each other, foresee 

possible interactions between branches, visual characteristics in different 

medical imaging techniques, understand clinical requirements, and propose 

clinically applicable solutions. This section includes a very superficial 
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introductory arterial vascular anatomy of the brain for engineers. Venous 

anatomy is omitted because it is not observed as a diagnosis and therapy guide 

for the concerned vascular diseases. 

 

 

Figure 1.1- Anterior circulation and posterior circulation with their main 
connections [5]. 

 

The arterial flow to the cerebral hemispheres is supplied through anterior 

circulation and posterior circulation [5]. Figure 1.1 shows the anterior and 

posterior circulations and their main connections. 
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The common carotid arteries originate at the aorta or brachiocephalic arteries, 

and bifurcate into the internal carotid arteries and external carotid 

arteries[5]. Bilaterally paired internal carotid arteries run into the carotid canal at 

the base of skull [6] and provide the anterior circulation [5,7]. The external 

carotid artery divides in the carotid triangle into branches for organs in the neck, 

the face, the scalp, and the meninges [6,7].  

 

Arising from the subclavian arteries, the bilateral vertebral arteries proceed to 

form basilar arteries and provide the posterior circulation [5]. The brain stem, 

cerebellum, and the posterior portions of the cerebral hemispheres are supplied 

by the vertebral and basilar arteries [7]. 

 

An anastomotic ring circle of Willis is the region where the anterior and 

posterior circulations coincide and from which all the major cerebral vessels 

arise (Figure 1.2). The circle of Willis provides abundant opportunities for 

collateral flow; however, a complete ring is present in only approximately 25% of 

individuals [5]. 

 

Figure 1.2 - The Circle of Willis [8].  
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The anterior, middle, and posterior cerebral arteries are the main arteries which 

provide circulation to the cerebral hemispheres. "The anterior cerebral arteries 

(ACAs) (Figure 1.3) and middle cerebral arteries (MCAs) (Figure 1.4) are the 

terminal branches of the internal carotid arteries. The anterior cerebral arteries 

anastomose anteriorly at the anterior communicating artery (AComm). The 

anterior and posterior circulations are linked to each other via the posterior 

communicating arteries (PComm's) (Figure 1.5), which connect the internal 

carotids to the posterior cerebral arteries, thereby joining the anterior and 

posterior circulations. The posterior cerebral arteries (PCAs) (Figure 1.6) arise 

from the top of the basilar artery, which in turn is formed by the convergence of 

the two vertebral arteries. In addition to the posterior cerebral arteries, several 

branches to the brainstem and cerebellum arise from the vertebrobasilar 

system." [5] 

 

The arterial vascular anatomy of the brain is namely summarized in the Table 

1-2 [7]. Graphical illustrations are provided in figures Figure 1.3, Figure 1.4, 

Figure 1.5, and Figure 1.6, which help better understanding arterial 

cerebrovascular anatomy by visualization. 
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Table 1-2 - Arterial vascular anatomy of the brain, proximal arteries are handled 

from arch of aorta till distal branches [7]. 

 

 

  

Arch of the aorta 
Brachiocephalic (innominate) artery 

Right common carotid artery 
Right internal carotid artery 
Right external carotid artery 

Right subclavian artery 
Right vertebral artery 

Left common carotid artery 
Left internal carotid artery 
Left external carotid artery 

Left subclavian artery 
Left vertebral artery 
 

Carotid (anterior) circulation - internal carotid artery 
Opthalmic artery 
Anterior choroidal artery 
Posterior communicating (posterior cerebral artery) 
Anterior cerebral artery 

Recurrent artery of Huebner 
Anterior communicating artery 
Orbito-frontal artery 
Fronto-polar artery 
Calloso-marginal artery 
Pericallosal artery 

Middle cerebral artery 
Lenticulostriate arteries 
Anterior, middle, and posterior temporal arteries 
Prefrontal artery 
Precentral artery 
Central artery 
Superior and inferior parietal arteries 
Angular artery 
 

Vertebrobasilar (posterior) circulation 
Vertebral artery 

Posterior inferior cerebellar artery 
Anterior spinal artery 

Basilar artery 
Anterior inferior cerebellar artery 
Internal auditory (labyrinthine) artery 
Penetrating (pontine) arteries 
Superior cerebellar artery 
Posterior cerebral artery 

Interpeduncular-thalamic artery 
Posterior choroidal artery 
Thalamo-perforating artery 
Thalamo-geniculate artery 
Anterior and posterior temporal arteries 
Parieto-occpital artery 
Calcarine artery 
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Figure 1.3 - Lateral view of two main variations of the anterior cerebral artery; 
a)secondary branches originate from the callosomarginal artery, a main branch 
of the anterior cerebral artery; b) secondary branches arise directly from the 
anterior cerebral artery [6].  

a

) 

b) 
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Figure 1.4 - Lateral view of two variants of the middle cerebral artery; a) with a 
bifurcation A,B; b) with a trifurcation A,B,C [6]. 

  

a) 

b) 
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Figure 1.5 - Lateral view of the infratentorial artery with its connection to internal 
carotid artery [6]. 
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Figure 1.6 - Lateral view of the posterior cerebral artery [6]. 

 

1.4.2.  Main Cerebrovascular Diseases 

This section includes an introduction to the most common cerebrovascular 

pathologies concerned in an angiography suite. Having an overview insight 

about the causes, results, physics, and mechanisms of these pathologies helps 

an image-processing engineer to clearly define the problem, understand the 

clinical requirements and this insight brightens the path leading to a clear 

solution.  

a. Stroke 

Most strokes are due to occlusion or rupture of an artery or arteriole. Classifying 

stroke with respect to its cause, ischemic stroke and hemorrhagic stroke are 

considered. Figure shows an x-ray image of an occlusion. 
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Figure 1.7 - 2-D angiographic image of cerebral vessels, where the arrow points 
at an occlusion [9]. 

 

Ischemic Stroke 

Secondary to arterial occlusion, ischemic stroke causes approximately 80% of 

all cerebrovascular cases [7]. Any mechanism which reduces the amount of 

blood flowing to the brain and, hence, the central nervous system can result with 

ischemia [7]. 

 

Arterial occlusion cases mostly follow thromboembolism [7]. "In thrombotic 

infarcts a blood clot is formed locally on the blood vessel wall, usually at the site 

of an underlying atherosclerotic plaque, causing the vessel to occlude. In an 

embolic infarct a piece of material (usually a blood clot) is formed in one place 
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and then travels through the bloodstream to suddenly lodge in and occlude a 

blood vessel supplying the brain." [5] 

 

Hemorrhagic Stroke 

Rupture of a blood vessel and bleeding into the brain, spinal cord, or adjacent 

structures constitutes the cases of hemorrhagic stroke [7]. Tissue adjacent to 

bleeding exhibits neuronal injury, edema, and an inflammatory reaction. The 

hemorrhage damages adjacent brain tissue and provokes the development of 

vasogenic and cytotoxic edema [7]. Categories of hemorrhagic stroke include 

aneurysmal hemorrhage and vascular malformation [7]. Intracranial hemorrhage 

is the most common presentation of a ruptured aneurysm [7]. 

 

b. Saccular (Berry) Aneurysms 

These are balloon-like structures outpouchings from the vessel wall, which 

typically have a neck connecting it to the parent vessel and a fragile dome that 

has relatively thinner wall and most likely location for aneurysmal rupture [5,7]. 

Saccular aneurysms generally arise at the junctions of arteries because of 

hemodynamic stresses [7]. A graphical illustration of a brain aneurysm is 

provided in Figure 1.8 depicting shape of an aneurysm and a coil placed into it 

to block blood perfusion into it. A real 3-D angiographic image of a brain 

aneurysm is given in Figure 1.9. 
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Figure 1.8 - A graphical illustration of a saccular brain aneurysm. To prevent 
rupture of aneurysms, a coil is placed into it so that blood supply into the 
aneurysm is blocked [10].  
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Figure 1.9 - A real 3-D image of cerebral vessels, where the arrow points at a 
saccular aneurysm [11]. 

 

 

"Approximately 85 percent of the saccular aneurysms are located in the carotid 

circulation with the region of the anterior communicating artery, the origin of the 

posterior communicating artery, and the bifurcation of the middle cerebral artery 

being the most common sites" [7,5]. 

 

"In general, the risk of bleeding is associated with the size of saccular 

aneurysm. The risk of rupture is relatively low when an aneurysm is <5 mm in 

diameter. The average size of ruptured aneurysms is approximately 6-8 mm. 

Unruptured aneurysms >10 mm in diameter have the highest risk for bleeding." 

[7] 
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Factors associated with rupture of intracranial aneurysm are arterial 

hypertension, smoking, heavy alcohol use, oral contraceptive use, 

sypathomimetric drug use/abuse [7]. 

c. Arteriovenous Malformation 

Vascular malformations are an important cause of intracranial hemorrhage. The 

frequency of hemorrhage due to a vascular malformation peaks in the fourth 

decade of life [7].  

 

The most common form of vascular malformations is the arteriovenous 

malformation (AVM) [7]. AVMs are congenital abnormalities in which there are 

abnormal direct connections between arteries and veins [5], including arterial 

elements, a node of dysplastic vessels, which is intermixed with gliotic brain 

tissue, and dilated, arterialized veins [7]. Figure 1 shows an x-ray image of an 

AVM, while Figure 2 shows its image after treatment. 

 

Figure 1.10 - The AVM is seen as a dense collection of vessels (the nidus) that 
connect the arteries directly to the veins without an intervening capillary system 
[12].  
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Figure 1.11 - After Treatment: the AVM is cleared, allowing better circulation 
[12]. 

 

Determining the branches feeding an AVM has critical importance for 

therapeutic purposes. Multiple arterial branches arising from both the carotid 

and vertebrobasilar circulations may be found. Branches of the external carotid 

artery also can supply the malformation. Hemorrhage may be more frequent 

among those AVMs that are small or located deep in the cerebral hemispheres 

[7]. 

1.4.3.  Cerebrovascular Imaging 

When visualizing lesions of the cerebral blood vessels, neuroangiography 

comes into consideration rather than obtaining information about surrounding 

structures.  Angiography provides optimum information about the lesions such 

as narrowings like atherosclerotic plaques, aneurysms, and arteriovenous 

malformations [5]. 
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Although less invasive imaging techniques are developed more in the last 

decade by means of blood vessel visualization and flow assess, conventional 

catheter-based neuroangiography is still the gold-standard in evaluation of 

various intracranial and extracranial vascular abnormalities [5]. For most 

purposes, none of those less invasive techniques achieves the sensitivity and 

specificity of conventional catheter-based neuroangiography [5].   

 

For many purposes, one of less invasive techniques, namely doppler ultrasound, 

magnetic resonance angiography, and spiral computed tomography 

angiography, is used first. If the diagnosis remains unclear, conventional 

angiography is used [5]. It is also important to note that conventional 

angiography is used also for therapeutic purposes [5]. 

a. Doppler Ultrasound 

This is used to measure flow and lumen diameter of large blood vessels in the 

head and neck. Doppler ultrasound is most useful for assessing the proximal 

portions but not for distal branches [5]. This technique cannot detect aneurysms  

[5]. 

b. Magnetic Resonance Angiography (MRA) 

MRA can visualize the major vessels while it cannot visualize the distal 

branches. MRA is mainly useful for detecting arterial blood flow caused by 

atherosclerotic narrowing, thrombosis or dissection, and for detecting some 

aneurysms [5]. 

c. Spiral Computed Tomography Angiography (CTA) 

Intravenous contrast agent is rapidly injected and blood vessel images are 

quickly obtained by implementation of helical CT scanning techniques. While 

CTA can sometimes provide additional information compared to MRA, it is 

noteworthy that CTA is applicable for patients with MRA contraindication (such 

as patients with pacemakers) [5]. 
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d. Catheter Angiography 

Although MRA and CTA are used for the initial diagnosis, catheter angiography 

is used for planning cerebrovascular surgery and endovascular therapy in 

diseases such as stroke, atheromatous stenosis, aneurysms, vascular 

malformations, and vascular tumors [13]. During this technique, guidewire and 

catheter are inserted into the patient, usually in the femoral artery under local 

anesthesia, and threaded up the aorta under continuous x-ray guidance [5] 

(Figure 1.12). Guidewire leads, catheter proceeds after it by gentle manipulation 

to avoid vasospasm, dissection, and catheter-related emboli [13]. Contrast 

material is then injected into the carotid and vertebral arteries on both sides, and 

sequential images of vessels are obtained at different times [5]. On the other 

hand, catheter angiography serves for therapeutic applications. Brain 

aneurysms and arteriovenous malformations can be clotted off and rendered 

harmless by filling them via the angiography catheter [5].  

 

 

Figure 1.12 - Angiography setup [5]. 
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1.5.  Problem Definition 

To obtain the following information in an angiography suit, an endovascular 

radiologist uses visual inspection, which leads to more time and contrast agent 

consumption and x-ray dose: 

 The path to reach a pathology, such as an aneurysm or an AVM, 

 The feeders of an AVM, 

 The branches going in and out of an aneurysm, 

 The network under risk of embolization due  to the operation. 

 

The problem of proposing an algorithm to extract vascular network connected to 

a user-defined point in a user-defined direction reduces to 3-D vascular 

connectivity tracking, which includes 

 3-D vessel tracking, 

 3-D skeletonization, 

 3-D pruning, 

 3-D junction detection, 

 3-D volume growing. 

 

The proposed algorithm could be applied to  

 Highlighting the path reaching to an aneurysm, 

 Highlighting the branches connected to an aneurysm, 

 Determining the arteries supplying blood perfusion to an AVM, 

 Foreseeing the network distal to the point of operation, where is under 

risk of embolization, hence of occlusion. 
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CHAPTER 2 

 

2. THEORY 

 

 

2.1. Literature Review 

2.1.1. Vessel Tracking 

In medical image processing literature, tracking concept is mostly taken into 

account for vessel segmentation applications, i.e. to differentiate between vessel 

and non-vessel points in a given image. Tracking the points, which are known to 

belong to a vessel, increases contrast so that separates the vessels from the 

adjacent tissue and noise signal. This section provides a general overview on 

vessel tracking methods. Those methods cover different applications on different 

imaging techniques, image dimensions and anatomical structures. 

 

Reuze, Coatrieux, Luo, and Dillesenger propose a method to track 3-D MRA 

images and quantitatively analyze blood vessels in them [14]. Based on 3-D 

geometric moments, user-defined seed points are tracked, local diameter and 

orientation are computed. This method is not capable of handling junctions, it 

does not work on "forking situations" and require user interaction to continue.  

 

Method proposed by Klose, Petersen, and Martos is also applied to 3-D MRA 

images and employs connectivity to track the vessels [15]. The authors aim at 
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visualizing small vessels, which are not visible due to superposition of 

background signal. Algorithm starts with an interactively defined seed point and 

determines the voxels connected to one another, starting from the seed. At  the 

branching points,  the  user interaction is required to set  an  additional  seed 

point. 

 

A cerebral vessel extraction method from MRA images is presented by Luo, 

Lee, Ma, Aziz, and Nowinski [16]. Robust intensity searching and region growing 

algorithms are introduced for extraction, connectivity tracking is used to make 

sure that extracted branches are connected to vertebral and carotid arteries.  

 

Kim and Park propose a connectivity-based local adaptive thresholding 

algorithm for carotid artery segmentation from MRA images [17]. Segmented 

carotid image is used for stenosis quantification and virtual endoscopy 

applications.  

 

Collorec and Coatrieux propose a vectorial tracking algorithm to extract vascular 

structures in 2-D catheter angiography images [18]. The algorithm can fail to 

detect vessel portions if severe stenosis occurences exist. 

 

Kutka and Stier present an algorithm for vessel segmentation, which is applied 

to highly noisy 3-D catheter angiography images, extracted cerebral vessels and 

their physical properties like intensity and diameter [19]. Similarly, Quek and 

Kirbas extract vascular structures from 2-D catheter angiography images [20]. 

These authors employ a wave propagation and traceback mechanism to label 

pixels with the likelihood that it is within a vessel. Felkel, Wegentkittl, and 

Kanitsar introduce a vessel tracking method for peripheral 3-D CTA datasets 

[21]. This work is dedicated to detect the main vessels in the leg and locate the 

stenoses. [22], and [23] cover further reviews on vessel extraction techniques 

and algorithms, including vessel tracking methods. 
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While none of the above mentioned vessel tracking works introduce any junction 

detection method, there exists vessel tracking articles that also propose 

methods on junction detection.  

 

Liu and Sun recursively track vascular networks in a 2-D angiogram, they iterate 

on detecting branches and deleting those detected branches [24]. The algorithm 

starts with identifying the network starting from a user-defined point in a user-

defined direction. Initially, it detects a branch and deletes that branch to prevent 

double tracking. Then, junctions on the branch are detected by using matched 

filtering along both edges of the vessel. These junctions are used as starting 

points in the initiation of later recursions. Since the method is proposed for 

detecting vascular network connected to a user-defined point in a specific 

direction, this method is not directly applicable to our problem because we are 

after detecting the networks in 3-D datasets. However, perspectives on 

detecting-deleting and using junctions as new starting points are implemented in 

our work. 

 

Zhou, Hadjiiski, Sahiner, Chan, Patel, Cascade, Kazerooni, and Wei propose an 

algorithm for computerized detection of pulmonary embolism in 3-D CT images 

[25]. Within that algorithm, they implement a bifurcation analysis in 3-D images 

together with vessel tracking and segmentation techniques. Unfortunately, their 

article did not directly contributed to our method since the bifurcation analysis 

method is not clarified and no results regarding bifucation analysis are provided. 

 

Proposal of Bullitt, Aylward, Liu, Stone, Mukherji, Coffey, Gerig, and Pizer on 

largely automated detection of connected 3-D cerebral vascular structures 

include segmentation and skeletonization vessels in 3-D MRA images [26]. 

Although it seems that they propose a solution to our problem, their method has 

some severe disadvantages. Their method does not detect trifurcations and 
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higher-order junctions, and it connects separate branches as if they have a 

junction. Furthermore, no result on distal vessel tracking is provided in the 

article, while revealing the distal connections of a vascular network is a primary 

concern of us.  

 

In literature, two outstanding articles exists which proposes methods on 

extracting vessel network connected to a specific point, working on 3-D 

angiographic images. Carrillo, Hoyos, Davila, and Orkisz propose an algorithm, 

which is expected to extract the axes of the vascular network connected to a 

user-defined seed point in 3D medical images [27]. The algorithm recursively 

tracks branches by sliding a sphere along the vessels, and detects bifurcations 

by analyzing the binary connected components on the surface of the sphere. 

Unfortunately, this algorithm fails in tracking the vessels, the continuity of which 

is affected by severe stenoses and this disadvantage is not negligible. 

Furthermore, the algorithm is dependent on differences of size and intensity 

between a branch and a sub-branch connected to it. Since the algorithm 

assumes similar intensities and the opposite can highly occur in real images, it is 

highly possible that the algorithm ignores some junctions. 

 

In 2001, Flasque, Desvignes, Constans, and Revenu present an iterative vessel 

tracking method [3]. Starting from a user-defined seed point, weighted center of 

mass in a specific local volume is computed, new seed point and tracking 

direction are obtained [3]. Iterative implementation of this computation yields a 

branch, which is connected to the user-defined seed point in the user-defined 

direction. The tracking method introduced in this article is the one, which is 

applied within our work. On the other hand, even if the authors have 

implemented a junction detection method, it is not well-defined and it is stated to 

fail if junction angles are 10 degree or less and 170 degree or more. 
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Brief Overview on Vessel Tracking Literature 

Although there is a vast amount of studies in literature, these studies have 

severe disadvantages in terms of 3-D branch tracking. They either cannot 

handle junctions, require further user interaction, do not regard connectivity to a 

specific point, crashes if stenosis exists, or cannot detect trifurcations and such 

higher order junctions. These studies are mostly dedicated to 2-D image 

processing. 

 

Two distinguished studies became inspiring in terms of single branch tracking 

method [3] and preventing double tracking vascular branches [24]. Methods and 

perspectives proposed in these articles are applied to our algorithm. 

2.1.2. Skeletonization 

Skeletons are region-based shape descriptors which summarize the general 

form of objects/shapes. An illustrative definition of the skeleton is given using the 

prairie-fire analogy: the object boundary is set on fire and the skeleton is formed 

by the loci where the fire fronts meet and extinguish each other [28]. 

 

Skeletonization methods can be grouped into four main classes, which are 

thinning methods, voronoi-based methods, distance-based methods, and 

general-field methods [28,29]. Voronoi-based methods are expressed in [28], 

while detailed information on distance-based methods is provided in [28] and 

general-field methods in [28]. From those classes, thinning method guarantees 

connectivity [29] and is the mostly preferred method for skeleton extraction 

procedures [30]. 

 

Thinning can be considered as an iterative peeling-off process. During a thinning 

operation, simple voxels within the boundary of an object are identified and 

removed [29,31]. Starting from the outermost layer, the object is eroded layer by 



30 
 

layer at each iteration until only the skeleton of the object remains [28]. The 

entire process is terminated when no more voxel can be removed. 

 

Skeletonizing the vascular structure is necessary in our case to detect the 

junctions and compute the angles, which the direction of new tracking initiations. 

These purposes lead us to implement a thinning method to extract vascular 

skeleton, which is capable of preserving both connectivity and topology [28]. 

 

Thinning algorithms can be divided into two with respect to the resulting 

skeleton. Curve-thinning algorithms extract medial lines/center lines, while 

surface-thinning algorithms result with medial surfaces of objects [28,32]. 

Topological thinning methods are further divided into two subgroups as being 

sequential or parallel, regarding the implementation of iterations. Thinning 

algorithms are mostly parallel because “the fire front propagation is parallel by 

nature” [33].  

 

Main concern of thinning operations is about determining a voxel whether it is 

removable or not. A simple point is a voxel that the topology does not change 

and connected components stay still connected even after the voxel is removed 

out of the object. There exists many different discussions on defining a simple 

point in 2-D. On the other hand, simple point definition in 3-D is still complicated, 

since new topological possibilities arise. 

 

Bezerra and Leite gather and summarize different concepts for characterizing 

simple points [34]. They also present some equivalences between simple point 

characterization methods for 3-D image skeletonization. The distinguished 

methods are clearly defined in Section 2.2.2.  

 

Besides summarizing simple point definition theorems, Pan and Klette propose 

a 3-D skeletonization method based on non-simple voxel identification [31]. A 3-
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D sequential 6-subiteration thinning algorithm [30] is tested for simple symmetric 

3D objects. A large number of different combinations of preprocessing steps are 

provided.  

 

Reinders, Jacobson, and Post approach to the subject from another perspective 

and describe methods on post-processing of skeletonized 3-D images [29]. The 

authors focused on voxel graph construction from the skeleton, graph 

simplification, and shape reconstruction from graphs. 

 

While Gonzalez and Woods describe perspectives on pruning the raw skeleton 

[35], Palagyi, Tschirren, and Sonka propose a method for quantitative 

assessment of intrathoracic airway trees, the authors also present a perspective 

on branch-point identification [36]. These perspectives are expressed in Section 

2.2.3 and Section 2.2.4, respectively. Pruning supports junction-detection 

method in terms of eliminating false junctions. 

 

Two articles present 3-D medial axis thinning algorithms, which are applicable to 

our purposes. While Palagyi et al. present a method to determine some 

characteristics of removable points [37], while Lee, Kashyap, and Chu present 

an Euler characteristic based method to preserve connectivity and topology 

features of the original image [4]. We have implemented a combination these 

two methods, which is discussed in details in Section 2.2.2. 

Brief Overview on Skeletonization 

Literature contains useful studies on skeletonization in terms of characterizing 

simple points, non-simple voxel identification, 3-D sequential 6-subiteration 

thinning algorithm for simple symmetric objects, and post-processing of 

skeletonized 3-D images, focusing on shape reconstruction from skeleton. 

References [35], [36], [37], and [4] present inspiring methods and perspective on 

pruning operation, junction identification, identification of border-points and end-
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points, and topology and connectivity preservation during thinning operation, 

respectively. 

2.1.3. Junction Detection 

Detecting junctions has a vital importance to solve 3-D vessel connectivity 

tracking to locate bifurcations and trifurcations and connect the distal sub-

branches to the main network. Literature presents a wide range of junction 

detection algorithms, mostly applied on 2-D images. Among them, 2-D retinal 

image processing is a strong focus of interest in the field of medical imaging: 

Blood vessel detection and tracking algorithms exist for the ocular fundus 

images. There are vessel junction detection algorithms generated for this 

purpose.  

 

Chutatape, Zheng, and Krishnan implement a branching detection strategy 

which is simultaneously executed with vessel tracking algorithm [38]. It cannot 

detect a junction if the angle between the main branch and a sub-branch is less 

than 300 or greater than 900. Tao and Gao propose a perceptual organization 

based method for junction detection in retinal images [39]. The method 

proposed by Quelhas and Boyce includes edge detection and searching for 

branches along the edges [40]. Similarly, Leandro, Cesar, and Costa detect 

junctions by determining continuity along crossings [41]. However, since these 

algorithms are after 2-D junction detection, they are not directly applicable to our 

case. 

 

Among the methods proposed for junction detection in 3-D images, Zhou, 

Chang, Metaxas, and Axel present a bifurcation detection method [42]. This 

method uses AdaBoost learning method with specially designed filters on cross-

sections of vessels to reveal junctions. Friman, Hindennach, Kühnel, and 

Peitgen’s method on branch detection is based on a spectral clustering 
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algorithm [43]. Finally, Fridman, Pizer, Aylward, and Bullitt detect bifurcations by 

using an affine-invariant corner detector [44]. While this last method is likely to 

generate useful results for our case, we considered to detect junctions on 

skeletonized central lines, which could yield more accurate and exact 

localization of junctions. The latter method could also help determining the 

directions of sub-branches with respect to the junction point. 

Brief Overview on Junction Detection 

While many junction detection studies can be found in the literature, they are 

mostly far away from being applicable onto our problem. In [36], authors present 

outstanding methods and perspectives on junction detection by examining the 

26-neighborhood of a voxel. Their straightforward and time saving method is 

applied within our algorithm. 

2.1.4. Region Growing 

As tracking and skeletonization algorithms are applied on a 3-D image of 

vessels, the resulting image carries compact information on centers of mass and 

skeletons of the vessels. The image carries much less non-zero voxels, full 

shapes of vessels are not evident. Full shapes are required at the final image, 

so that the shape information must be recovered. Region growing concept is put 

into service to achieve the recovery. 

 

Gonzalez and Woods provide a clear region growing description in [35]. 

However, this description is given for 2-D images, while we require to grow 

regions in 3-D images. In order to gain familiarity with the concept, theoretical 

background of region growing is discussed in details below. 

 

2-D region growing procedure groups pixels or subregions into larger regions 

based on predefined criteria. The process is initiated with a set of "seed" points 
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and neighboring pixels that have properties similar to the seed (such as specific 

ranges of gray level or color) append to these seeds [35]. 

 

Selecting a set of one or more starting points often can be based on the nature 

of the problem. The selection of similarity criteria depends on the features of the 

problem under consideration and the type of image data. When the images are 

monochrome as in our case, region analysis must be carried out with a set of 

descriptors based on gray levels and spatial properties [35].  

 

Descriptor selection carries special importance on keeping away from 

misleading results, connectivity or adjacency information is used to achieve 

coherency in the region-growing process [35].  

 

Another problem in region growing is the formulation of a stopping rule. 

Basically, growing a region should stop when no more pixels satisfy the criteria 

for inclusion in that region [35]. While keeping in mind that voxels belonging to 

vessels have a non-zero gray level intensity and non-vessel voxels' intensity is 

zero, gray level information that voxels carry is the main criterion that we check 

to stop growing.  

 

Based on the method proposed by Gonzalez and Woods, we have extended the 

2-D region growing method to 3-D and presented a new method, namely volume 

growing. Implementation of method is described in Section 2.2.5. 
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2.2. Methods 

2.2.1. Tracking Single Vascular Branches 

Vessel tracking method is an iterative process, which is initiated by user: Method 

gets the user-defined initiation point    and user-defined initiation direction   , 

and produces an order set of points {  } and correspondingly {  } as the 

expected outputs. {  } and {  } are computed step-by-step in a local volume 

around the previous point      in previous      direction [3].  

 

 

Figure 2.1 - Single vascular branch tracking iteration. The iteration is terminated 
when intensity of voxels go under a specified value.  

 

a. Local Box and Its Gravity Center 

Letting    be the current point and Di be the current tracking direction, a box is 

created such that    is located in the center of its lower base, and Di determines 

the box orientation with respect to a global coordinate system and   . 
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Let unitary vectors D┴1, D┴2 be two directions such that Di ┴ D┴1 ┴ D┴2 ┴ Di, and 

let integer numbers of voxel   ,   , and    be the dimensions of box [3]. 

 

 

Figure 2.2 - Local box around a point    in the direction   .    stays in the 

center of the box' base. The dimension of base is      , while    is the height 
of box. 

 

Assuming a local coordinate system with its origin at the center of the box and 

letting            ,            ,            , one can express 3-D coordinates of 

any voxel within the box with respect to the local coordinate system. 

 

Let                             , and        a weight associated with 

      . 

Then, coordinates of the weighted gravity center    of the local box 

corresponding to    and    is given as [3] 

   
                     

               
 . 

 

The weight        of each voxel is taken as its intensity in the 3-D image. 
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b. Computation of next point 

3-D coordinates of the next point is given as [3] 

     
         

    
   

where    is a constant affecting the distance between two sequential points, 

hence acting on the sensitivity of the method. Setting      locates the next 

number      exactly at the gravity center   , while increasing    pulls      closer 

to the current point   .  

 

c. Computation of next direction 

The next direction of local box is given as [3] 

              
      

        
    

                   

                     
   

where    is also a constant acting on the relation between two succeeding 

directions. Setting      fixes directions of all boxes to initial user-defined 

direction   . As    increases, box direction of the next point is aligned between 

the former box direction and the direction pointing at    from   . Therefore, 

greater    achieves better performance on tracking curvatures. 

 

d. Termination of Iteration 

As locations of points    get closer to the end of distal branches, voxels' intensity 

and, hence, contrast ratio dramatically decrease. The number                
 is 

continuously observed: When its value gets lower than a user-defined threshold, 

tracking iteration is stopped. 

 



38 
 

2.2.2. Skeletonization 

3-D skeletonization is an iterative process that successively deletes some 

special points carrying specific characteristics. A simple point definition is given 

to assure that the connectivity and topology features of the original 3-D object 

are preserved. The process is terminated when no more point can be deleted 

from the image.  

 

Main Definitions 

Let   a point in the 3-D digital space    [37]. 

 

Let us denote       (for    6, 18, 26) the set of points  -adjacent to a point  .  

The sequence of distinct points              is a  -path of length     from 

point    to point    in a non-empty set of points   if each point of the sequence 

is in   and    is  -adjacent to      for each      .  (Note that a single point is 

a  -path of length 0.) [37] 

 

 

Figure 2.3 - Illustration of voxels which are n-adjacent to  .  
a) n = 6, b) n=18, c) n=26 

 

 a            b          c 



39 
 

 

Two points are  -connected in the set   if there is a  -path in   between them.  

A set of points   is  -connected in the set of points     if any two points in   

are  -connected in   [37]. 

 

The 3-D binary       digital picture   is a quadruple              [37]. Each 

element of    is called a point of  . Each point in     is called a black point 

and value 1 is assigned to it. Each point in      is called a white point and value 

0 is assigned to it. Adjacency   belongs to the black points and adjacency   

belongs to the white points. A black component (or  object) is a maximal  -

connected set of points in  . A white component is a maximal  -connected set 

of points in     . We are dealing with (26, 6) points [37]. 

 

There exists exactly one component of      that contains the boundary points 

of   . The other components of      are completely surrounded by  , and are 

called cavities. Difference between a cavity and a hole is that a hole is not 

completely surrounded by  . A 3-D hole can be considered as the tunnel in a 

torus [4]. 

 

A black point in a (26, 6) picture is called border point if it is 6-adjacent to at 

least one white point [37].  

 

A border point   is simple if and only if removing it does not change the number 

of connected objects of both   and      [4]. 

 

Theorem: Simple Point 

Black point   is simple in picture             if and only if all the following 

conditions hold [37]: 

1. The set                is not empty (i.e.,   is not an isolated point); 
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2. The set                is 26-connected (in itself); 

3. The set              is not empty (i.e.,   is a border point); 

4. The set              is 6-connected in the set               

 

Palagyi et al. [37] propose a thinning algorithm, which starts iterations by 

determining the border and non-end-points in each direction separately. Note 

that a point is not an end point if it has at least two black points, and directions 

are north, south, east, west, up, and down. 

 

Figure 2.4 - Special neighbors of  . These voxels are used to determine what 
type of a border point   is. If N=0,   is a border point of type-N. If S=0,   is a 

border point of type-S. If E=0,   is a border point of type-E. If W=0,   is a border 
point of type-W. If U=0,   is a border point of type-U. If D=0,   is a border point 
of type-D. 

 

The algorithm checks if 2nd and 4th conditions of the theorem are satisfied by 

determined border and non-end-points. This checking procedure assures 

connectivity and topology preservation of the algorithm. On the other hand, also 

Lee et al. [4] present two different methods on achieving connectivity and 

topology preservation.  
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Euler Characteristic to Preserve Connectivity and Topology 

One connectivity and topology preserving method introduced in [4] is based on 

Euler characteristic and Euler invariance computation of 26-neighborhood of a 

border and non-end-point, while the latter method proposes a labeling algorithm 

to determine the number of 26-connected objects in the neighborhood.  

 

As the theoretical background of Euler characteristic based method is described 

below, reader is encouraged to refer to [4] to reach the detailed description of 

labeling algorithm. 

 

Then, the 3-D Euler characteristic      is defined by the global formula 

                     

where,     ,     , and      are the number of connected objects, holes, and 

cavities of  , respectively [4].  

 

Lobregt et al. [4] divide        into eight overlapping 2   2   2 octants, denoted 

as      . The corners of an octant correspond to a digit of an 8-digit binary 

number. The point   is located at the position 8 and corresponds to the least 

significant bit, while position 1 corresponds to the most significant bit. 

 

 

Figure 2.5 - a) A 2   2   2 octant,      ; b) An example octant with a 
configuration corresponding to binary 11111011. Note that black points have 
value 1, and white points have value 0. 

 a          b           
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The Euler characteristic is computed by directly summing the individual 

contributions of each octant. The advantage of using this approach is that there 

are only          possible configurations of each octant. Contribution of any 

octant configuration on Euler characteristic can be calculated and saved. To 

reduce the complexity of Euler characteristic calculation, the authors designed a 

look-up table [4], increasing the efficiency of computation Table 2-1.  Table 

shows the Euler characteristic equivalents corresponding to any octant 

configurations: Once the equivalent number of an octant is calculated, its 

corresponding Euler characteristic can be directly taken from the table. 

 

Euler characteristic is computed only for those border and non-end black points, 

i.e. the least significant digit is always 1. Hence, the table includes Euler 

characteristics only for configurations corresponding to odd values.  
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Table 2-1 - Euler table for preserving Euler characteristic. 

O
c
ta

n
t'

s
 

n
u

m
e
ri

c
 

e
q

u
iv

a
le

n
t 

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti

c
 

fo
r 

2
6
-c

o
n

n
e
c
te

d
 

o
b

je
c
ts

 

O
c
ta

n
t'

s
 

n
u

m
e
ri

c
 

e
q

u
iv

a
le

n
t 

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti

c
 

fo
r 

2
6
-c

o
n

n
e
c
te

d
 

o
b

je
c
ts

 

O
c
ta

n
t'

s
 

n
u

m
e
ri

c
 

e
q

u
iv

a
le

n
t 

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti

c
 

fo
r 

2
6
-c

o
n

n
e
c
te

d
 

o
b

je
c
ts

 

O
c
ta

n
t'

s
 

n
u

m
e
ri

c
 

e
q

u
iv

a
le

n
t 

E
u

le
r 

c
h

a
ra

c
te

ri
s
ti

c
 

fo
r 

2
6
-c

o
n

n
e
c
te

d
 

o
b

je
c
ts

 

1 1 65 -3 129 -7 193 -3 

3 -1 67 3 131 -1 195 3 

5 -1 69 -1 133 -1 197 -1 

7 1 71 1 135 1 199 1 
9 -3 73 1 137 -3 201 1 

11 -1 75 3 139 -1 203 3 

13 -1 77 -1 141 -1 205 -1 

15 1 79 1 143 1 207 1 

17 -1 81 -1 145 -1 209 -1 

19 1 83 1 147 1 211 1 

21 1 85 1 149 1 213 1 
23 -1 87 -1 151 -1 215 -1 

25 3 89 3 153 3 217 3 

27 1 91 1 155 1 219 1 

29 1 93 1 157 1 221 1 

31 -1 95 -1 159 -1 223 -1 

33 -3 97 1 161 -3 225 1 

35 -1 99 3 163 -1 227 3 
37 3 101 3 165 3 229 3 

39 1 103 1 167 1 231 1 

41 1 105 5 169 1 233 5 

43 -1 107 3 171 -1 235 3 

45 3 109 3 173 3 237 3 

47 1 111 1 175 1 239 1 

49 -1 113 -1 177 -1 241 -1 

51 1 115 1 179 1 243 1 
53 1 117 1 181 1 245 1 

55 -1 119 -1 183 -1 247 -1 

57 3 121 3 185 3 249 3 

59 1 123 1 187 1 251 1 

61 1 125 1 189 1 253 1 

63 -1 127 -1 191 -1 255 -1 
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As an example, the octant configuration given in Figure 2.2 corresponds to 

binary number 11111011, which is decimal number 251. Euler characteristic for 

this octant configuration's numeric value is given in Table as 1, regarding 26-

connected objects.  

 

Euler invariance of        is then checked to examine if Euler characteristic 

changes after removal of a black point. A black point   within        must be 

invariant in the sense of Euler characteristic to assure topology preserving 

property of the thinning operation. Euler invariance is satisfied if contributions of 

individual octants of        sum up to 0 [4]. 

 

We have replaced the connectivity and topology preservation method presented 

by Lee et al. with the method proposed by Palagyi et al., while keeping 

perspectives of Palagyi et al. on checking whether a point is isolated and a 

border point.  

 

Let ds denote the direction, where ds can be one of North, South, East, West, 

Up, and Down.  Each voxel of image within the frame consisting of white points 

is then examined if it is a simple point. A voxel can be removed if 

 The voxel is a black point 

 The voxel is a border point of type-ds. 

 The voxel is not an end-point 

 The 26-neighborhood of the voxel is Euler invariant 

This examination, and hence the skeletonization algorithm are depicted in 

Figure 2.6. The algorithm is implemented on each direction, i.e., ds is set to 

North, South, East, West, Up, and Down separately. 

 



45 
 

 

Figure 2.6 - Iterative procedure and decision-tree of skeletonization algorithm. 

 

A preprocessing phase is required to execute the skeletonization procedure, 3-D 

vascular image is prepared for thinning within this phase. Since the 

skeletonization procedure assumes binary images, vascular image is first 

binarized. Then, to provide that the outermost voxels of the image are also 

examined, a frame consisting of white points is added on the image. This frame 

is required while constructing 26-neighborhoods of the outermost voxels. This 

preprocessing phase is depicted in Figure 2.7. 
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Figure 2.7 - Preprocessing phase, in which 3-D vessel images are prepared for 
skeletonization. 

2.2.3. Pruning 

Pruning is an integral part of skeletonization methods, since skeletonization 

methods inevitably leave twig-like parasitic components; pruning is a 

postprocessing method applied on skeleton to clean these twigs up.  

 

As discussed in [35], single and end-points in the skeleton are iteratively 

removed. Since the twigs are shorter than the height of local box, and only 

skeleton portions longer than the height, a number of    iterations are 

implemented.  

2.2.4. Junction-Detection 

Once skeleton of a 3-D image is extracted, each voxel in it satisfies exactly one 

of the following three conditions [36]: 
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1. The voxel is an end-point (i.e., it has only one black point in its 26-

neighborhood). 

2. The voxel is a line point (i.e., it has exactly two black points in its 26-

neighborhood). 

3. The voxel is a branch-point (i.e., it has three or more two black points in 

its 26-neighborhood). 

 

Therefore, after skeletonization procedure is applied on an image, determining 

junctions in the output image is a straightforward process: The voxels having at 

least three black points in their 26-neighborhood are junctions. 

2.2.5. Volume-Growing 

Keeping in mind that region growing is a method concerning 2-D images; we 

propose a volume-growing method since 3-D images are to the subject. In 3-D, 

volumes are essential rather than regions. 

 

First problem of volume growing is setting the seed points. During tracking and 

skeletonization procedures, many of the voxels are removed from the image. As 

a result, gravity centers and skeletons of vessels are obtained. Seed points 

should be selected in a manner so that they lead to recovery of vessels by 

appending previously eliminated voxels back to the seeds. Utilizing gravity 

centers    as seed points, one can grow volumes and recover vascular network 

connected to point    in direction   . 

 

Orientation of box around   , correspondingly   , and box dimensions are known 

for all gravity centers. Setting the same boxes around    again, and recovering 

the vessel voxels within those boxes result with recovery of tracked vessels. 

Therefore, the problem of recovering tracked vessel network reduces to 

recovering removed vessel voxels in local boxes.  
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Starting from the lowest slice of box, where    are present, region growing 

method described by Gonzalez and Woods [35] is implemented within all slices 

of the box. After setting    as the seed point, vessel voxels positioned in that box 

are appended to it by preserving connectivity.  

 

Within a box, voxels adjacent to    are examined in terms of gray-scale intensity: 

Adjacent voxels having a non-zero intensity are appended to the seed, while 

adjacent voxels with zero intensity are left. Next, adjacencies of the appended 

voxels are examined in the same manner. This examination procedure is 

terminated when no more voxels exist which are adjacent to either    or latter 

appended voxels. This means that    and appended voxels form an island, 

surrounded by white voxels. The procedure is illustrated in Figure 2.8. 

 

 

Figure 2.8 - Region growing process in the lowest slice of a local box. 

 

Once region growing in a slice is terminated, one higher slice is examined: 

Vessel voxels within that slice, which are adjacent to  the appended voxels in 
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the lower slice are the seeds for the next examination. The entire process is 

repeated until the highest slice is examined as it is shown in Figure 2.9. Entire 

volume growing process is illustrated in Figure 2.10. 

 

 

 

Figure 2.9 - Region growing process in the higher slices of a local box. 

 

The advantage of this approach is that, while preserving connectivity, it also 

ignores vessel portions present within the box but belong to another branch. 

Therefore, branches with portions in boxes are excluded.  
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Figure 2.10 - Illustration of the entire volume growing process. 

2.2.6. Setting New Initiators 

Having completed the volume growing process around all points P, next step is 

determining new initiators, i.e. new starting point and direction combinations. 

This is necessary for automatic continuation of the following process. By 

automatic determination of new initiators, no further user interaction is required.  

 

To achieve automatic determination of new starters, a cube is created around 

previously found junctions, which are on the tracked branch. This cubic volume 

of interest has dimensions          . Apparently, there can be some 

branches included in the cube, which are not connected to the junction. A 24-

connectivity checking process is implemented within the cube to distinguish 

between branches which are connected to the junction and foreign branches. 

Branch portions, which are not 24-connected to the junctions are suppressed.  
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Keeping the definition of a junction in mind, there exists at least three 

intersection points on the surface of the cube, where skeletons of the connected 

branches and the cube surfaces meet each other. Vectors pointing from the 

junction at the intersections are calculated. These vectors are potentially the 

next starting directions, where the junction is assumed to be the next starting 

point. Note that two of these intersections are previously tracked, they are now 

ignored to avoid double tracking. Remaining intersections are set to be the next 

starting directions. The process on setting new initiators is illustrated in Figure 

2.11. 

 

 

Figure 2.11 - Illustration on setting the new initiators. a) A cubic volume is 
created around the distinguished junction. b) Branches, 26-connected to the 
junction, are determined. c) Foreign branches are removed. d) Intersections of 
branches' skeleton with the cube surfaces are searched. e) Vectors through the 
junction and the intersection points are calculated. f) Previously tracked 
intersections are ignored. The remaining vectors are set to be the next starting 
directions, where the next starting point is set as the junction. 
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CHAPTER 3 

 

3. RESULTS AND DISCUSSION 

 

 

3.1.  Single Branch Tracking 

Main parameters acting on the performance of single branch tracking are the 

dimensions of local box in which gravity center is computed, directional constant 

  , spatial replacement constant   , and lower limit of total intensity values in 

the local box. As well as other results in this chapter, the affects of all these 

parameters are observed on 3-D angiographic image data of real patients. 

 

Box dimensions assertively affect the tracking capability by determining the local 

volume of interest. Larger dimensions let foreign branches go into the local 

volume and slide the gravity center to outside of the branch under consideration. 

This situation may lead to false tracking so that the local box may skip from the 

user-defined branch to a neighboring branch at an irrelevant position. Therefore, 

large dimensions of local box can mislead the process to a network which is not 

directly connected to user-defined starting point, while box dimensions large 

enough to cover the lumen of vessels lead to the right path. Figure 3.1 depicts 

two different results of tracking procedure on the same volume. In the first 

procedure, box base has twice larger dimensions and box skips to neighboring 

branch since gravity center does so. In the second procedure, box base 

dimensions slightly cover lumen, hence remains within the right track. 
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Height of the box, on the other hand, has a different effect on catching 

discontinuities of vessel lumen. That is, depending on the box height, one can 

track branches even if they have their portions disconnected due to low contrast 

ratio. Figure 3.2 illustrates a branch with disconnected portions is tracked by the 

algorithm. 

 

Figure 3.1 - Effect of box dimensions on tracking performance. a) Volume of 
interest. b) Tracking fails when box dimensions are twice larger than vessel 
lumen width. The blue rectangle represents the box located at the user-defined 
starting point in the user-defined starting direction. c) Box dimensions enough to 
cover the lumen achieves tracking the right track. The blue rectangle represents 

a) 

b) c) 
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the box located at the user-defined starting point in the user-defined starting 
direction. 
 

 

Figure 3.2 - Longer boxes can track the branches with disconnected portions. a) 
A branch with disconnected branches. b) Tracking procedure could cover it. 

 

As discussed in Section 2.2.1,    establishes a historical linkage between two 

successive gravity centers. Numerical value assigned to    during computations 

determines the dependency of next tracking direction on the former direction. As 

   increases, this dependency vanishes, while      sets all tracking directions 

to initial user-defined direction. For the case     , the algorithm cannot cover 

curvy branches (Figure 3.3); it cannot proceed further than the extrema of a 

curvature. For this reason, tracking curvy branches of cerebral vessel trees 

require a nonzero   . On the other hand, any nonzero    yields complete 

coverage of curvatures (Figure 3.4). 

 

a) 

b) 
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Figure 3.3 - kd affects algorithm's ability to track curvatures. a) A curvy branch. 

b) kd = 0 cannot proceed further through a curve. 

 

 

 

 

 

 

 

 

 

a) b) 
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Figure 3.4 - Any nonzero kd achieves good performance to track curvatures. a) 

kd = 10. b) kd  = 100. c) kd = 3000. 

100 

a) 

b) 
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  c) 

Figure 3.4 - Any nonzero kd achieves good performance to track curvatures. a) 
kd = 10. b) kd  = 100. c) kd = 3000 (continued).  

 

Spatial replacement constant    determines how close that two succeeding 

gravity centers should be and acts on the speed of tracking process. Lower    

values decrease deliberateness and track a branch in less iterations, while 

larger values proceed deliberately and need more iterations to cover the same 

length of branch portion (Figure 3.5) Note that, as discussed in Section 2.2.1, 

the next point      is position somewhere in between the current point    and 

the current gravity center   . Therefore,      cannot go beyond    for any value 

of   .  
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a)        b) 

 

c)        d) 

Figure 3.5 - kp affects the tracking procedure's speed and deliberateness. a) kp = 
0. b) kp = 3. c) kp = 5. d) kp = 7. 

 

In Section 2.2.1, it is stated that the summation of voxels' intensity in the local 

box,                
, is the key parameter to terminate tracking a single branch. 

The process is terminated when the voxels' intensities sum up to a value, which 

is less than a user-defined threshold. Keeping in mind that distal voxels have 

small intensities,                
 is lower in distal and higher in proximal portions 

of vessels. Then, lower threshold setting is required to reach more distal 

portions of branches, while higher threshold setting terminates the tracking 

process before reaching at distal portions.    
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a)              b) 

Figure 3.6 - The limit on the summation of voxels' intensities in a local box affect 
the capability to cover distal branches. a) An image containing distal branches. 
b) Limit is set to 10000, distal portion of the branch is not tracked. c) Limit is set 
to 5000, distal portion of the branch is tracked. 

  

a) 
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3.2. Skeletonization 

An integrated implementation of methods, as described in Section 2.2.2, 

presented by Palagyi et al. [37] and Lee, Kashyap, and Chu [4] resulted with 

true skeletonization of 3-D cerebral vessels. The algorithm achieved extracted 

skeletons of vascular structures both at proximal and distal portions. Figure 3.7 

and Figure 3.8 show proximal and distal vessel portions, respectively, and 

provide the corresponding skeletons after implementation of the algorithm on 

them.  

 

The simple method of pruning, discussed in Section 2.2.3, is applied on 

skeletons so that twigs shorter than the height of local box, are removed. This 

procedure achieved purification of skeleton from useless portions, while keeping 

meaningful junctions and connectivity. While the effect of pruning on junction 

detection is discussed in Section 3.3, Figure 3.9 visualizes the effect of pruning 

on skeletons.  
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        a) 
 

 
        b) 

Figure 3.7 - a) Proximal vessels. b) Their skeleton. 
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     a) 

 

 
     b) 

Figure 3.8 - a) Distal vessels. b) Their skeleton. 
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 a) 
 

 
   b) 

Figure 3.9 - a) The volume of interest. b) Skeleton of the vessels in the volume. 
c) Skeleton after pruning operation. d) Voxels, which are removed during 
pruning. 
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c) 
 

 
      d) 

Figure 3.9 - a) The volume of interest. b) Skeleton of the vessels in the volume. 
c) Skeleton after pruning operation. d) Voxels, which are removed during 
pruning (Continued). 



65 
 

3.3. Junction Detection 

The junction detection method described in Section 2.2.4 clearly detects all the 

true junction within a volume of interest in a 3-D angiographic image. However, 

there are also false junctions detected. 

 

False junctions originating from skeleton twigs are eliminated by applying a 

pruning operation on the extracted skeleton. Figure 3.10 demonstrates the effect 

of pruning operation, during which most false junctions are eliminated and true 

junctions stay. Those false junctions do not mislead to any complication in terms 

of tracking since they point at the same branch of interest; eliminating false 

junctions originating from skeleton twigs is helpful in terms of reducing the 

overall duration of 3-D vessel connectivity tracking operation. 

 

On the other hand, junctions originating from superposition of some branches 

cannot be eliminated by pruning operation. Complication occurs since these 

type of junctions point at a neighboring branch, 3-D vessel connectivity tracking 

operation is misled at these junctions. Figure 3.11 demonstrates that a local 

thresholding method can help discriminating two superposed branches and 

eliminating this type of false junctions.  
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 a) 

 

 

 b) 

Figure 3.10 - a) Red dots mark the junctions before pruning operation. b) Red 
dots mark the junctions after pruning operation. Pruning operation reduced the 
number of junctions from 244 to 76. 
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   a)          b) 

Figure 3.11 - a) Two superposed branches, yielding a false junction. b) The 
superposed branches are discriminated by a local thresholding procedure, the 
false junction is removed. 

 
 
 
 

 
  a)                 b) 

Figure 3.12 - A closer look at detected junctions. a) Red dots showing the 
junctions. One of the junctions pointed by the arrow is due to a skeleton twig. b) 
Junctions marked by red dots are due to superpositioning of branches. 
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3.4. Distinguishing Junctions on the Tracked Branch 

Following the junction detection operation, all the junctions within the volume of 

interest are revealed. However, only those junctions, which are on the tracked 

branch are useful, the rest must be eliminated since they lead to complication in 

the tracking process. 

 

Volume growing method is applied, as discussed in Section 2.2.5,  around 

points    as a distinguishing tool: Only the junctions located in this grown volume 

are considered to keep 3-D vessel connectivity tracking operation continuing. 

These contained junctions are the points, where new connected single branches 

arise. Therefore, next single branch tracking procedures are initiated from these 

junctions. On the other hand, the junctions outside the grown volume are 

removed since they make no contribution on tracking the next connected 

individual branches. 

3.5. Setting New Tracking Initiators 

Tracking of a single branch is completed by computing new directions on 

distinguished junctions to start next tracking procedure. Setting a junction on the 

tracked branch as the new   , and assigning the corresponding direction as the 

new   , tracking procedure for the next connected and distal branch can be 

initiated.  

 

Assignment of new initiators    having initial direction    is depicted in Figure 

3.19, based on the junctions contained in the grown volume and orientations of 

distal branches going out of those junctions.  
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Figure 3.13 - A vascular network, in which the red branch is tracked. 

 

 

Figure 3.14 - Pruned skeleton of the volume of interest. 
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Figure 3.15 - All junctions within the volume of interest. 

 

 

Figure 3.16 - The points Pi of the tracked branch. 
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Figure 3.17 - The recovered branch, recovery is achieved by volume growing 
around the seed points Pi. 

 

 

Figure 3.18 - Distinguished junctions, located in the grown volume. 
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Figure 3.19 - The new starting points (big red dots) and corresponding directions 
(small red dots) Note that superposed neighboring branches are also to be 
tracked. 
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CHAPTER 4 

 

4. PERFORMANCE EVALUATION 

 

 

 

Performance of the algorithm is evaluated on a basis of visual inspection. Real 

patient image data are used as well as image data of a visually complex 

physical phantom.  

4.1. Evaluation Methods 

4.1.1. Performance Evaluation on Real Patient Image Data 

The algorithm has been implemented on images from 4 patients, where 2 

starting point and direction combinations are selected by an expert interventional 

radiologist to be clinically meaningful. A sample patient image and starting 

combination is depicted in Figure 4.1. 
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Figure 4.1 - A sample patient image depicting the starting point and direction as 
defined by an expert interventional radiologist. 

 

Starting from those points in the specified directions, algorithm has extracted the 

network connected to the points in the specified directions. The results are 

viewed by two radiologists, they checked the validity of the algorithm's decisions 

in terms of branch tracking and junction detection. They counted the true and 

false positives as well as the true and false negatives.  

 

Identification of true positives, false positives, true negatives, and false 

negatives is as follows: 

True Positive (TP): Algorithm detects a point as a junction, which is detected as 

a junction also by the radiologists. 

False Positive (FP): Algorithm detects a point as a junction, which is not 

detected as a junction by the radiologists. 
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True Negative (TN): Algorithm states a point is not a junction, which is actually 

not a junction as stated also by the radiologists. 

False Negative (FN): Algorithm states a point is not a junction, which is stated 

to be a junction by the radiologists. 

 

Once these numbers are obtained, sensitivity, specificity, false negative rate, 

and false positive rate of the algorithm are calculated as suggested in [45][46]. 

4.1.2. Performance Evaluation on Physical Phantom's Image Data 

A visually complex object shown in Figure 4.2 has been constructed to evaluate 

the performance of the algorithm by utilizing images of the phantom and having 

the ground truth information.  

 

 

Figure 4.2 - Physical phantom object, having two branches each with two 
junctions. 
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The phantom had two branches, each one having two junctions, that is the 

complete object has five junctions. The algorithm is implemented on three 

different branches in the object: First implementation is started at the root, and 

the other two combinations are started at the two branches.  

 

After having the object constructed, its 3-D angiographic image is acquired and 

the algorithm is implemented on it. A 2-D fluoroscopy image of the phantom and 

a 2-D projection of 3-D image are shown in Figure 4.3 and Figure 4.4, 

respectively. Algorithm has been implemented on this post-processed image. A 

portion of resulting image after the implementation of the algorithm is given in 

Figure 4.5. Affect of branch superposition is observed on two different 

configurations. The true and false positives as well as the true and false 

negatives are counted; and than sensitivity, specificity, false negative rate, and 

false positive rate of the algorithm are calculated [45][46].  
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Equations to calculate above-mentioned metrics regarding the numbers of true 

positives, false positives, true negatives, and false negatives are given as: 

 

             
  

     
    

 

             
  

     
    

 

                    
  

     
    

 

                     
  

     
    

 

 

 
Figure 4.3 - 2-D Fluoroscopy image of the physical phantom. 
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Figure 4.4 - 2-D projection image of the physical phantom's 3-D angiographic 
image, created via Matlab. This projection image is used as an interface to set 
initiators. The artifacts in the images are suppressed by simple global 
thresholding. 
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Figure 4.5 - Visualization of the physical phantom's 3-D image in Matlab. Since 
this 3-D image of the physical phantom includes a huge amount of data in it, 
entire image cannot be visualized in Matlab.  
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4.2.  Evaluation Results 

4.2.1. Performance of the Algorithm on Real Patient Image Data 

The numbers of true positives, false positives, true negatives, and false 

negatives for each patient are given in Table 4-1 as they are counted by visual 

inspection. 

 

Table 4-1 - Numbers of true positives, false positives, true negatives, and false 
negatives in patient data as counted by the radiologists. 

 

True 

Positives 

False 

Positives 

True 

Negatives 

False 

Negatives 

Patient A, 

Point 1 
7 1 10709990 2 

Patient A, 

Point 2 
9 1 10449989 1 

Patient B, 

Point 1 
6 2 10229992 0 

Patient B, 

Point 2 
8 1 11029990 1 

Patient C, 

Point 1 
7 2 10539991 0 

Patient C, 

Point 2 
11 3 12099985 1 

Patient D, 

Point 1 
8 1 10609989 2 

Patient D, 

Point 2 
9 2 11649986 3 
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Based on the values given in Table 4-1, performance of the algorithm is 

evaluated on each patient's starting point and direction combination. The results 

are provided in Table 4-2. 

 

Table 4-2 - Calculated values of sensitivity, specificity, false negative rate, and 
false positive rate corresponding to patient data. 

 
Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Patient A, 

Point 1 
0,77 0,99 0,22 0,93E-7 

Patient A, 

Point 2 
0,90 0,99 0,10 0,95E-7 

Patient B, 

Point 1 
1,00 0,99 0,00 1,95E-7 

Patient B, 

Point 2 
0,88 0,99 0,11 0,90E-7 

Patient C, 

Point 1 
1,00 0,99 0,00 1,89E-7 

Patient C, 

Point 2 
0,91 0,99 0,08 2,47E-7 

Patient D, 

Point 1 
0,80 0,99 0,20 0,94E-7 

Patient D, 

Point 2 
0,75 0,99 0,25 1,71E-7 
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4.2.2. Performance of the Algorithm on Image Data from the Physical 

Phantom 

In the first experiment, object is shaped in such a manner that no superposing 

branches existed. In this case neither false positives nor false negatives are 

observed. Numbers of true positives, false positives, true negatives, and false 

negatives are given in Table 4-3, while corresponding results on sensitivity, 

specificity, false negative rate, and false positive rate are given in Table 4-4. 

Table 4-3 - Numbers of true positives, false positives, true negatives, and false 
negatives in the synthetic object, while the object has no superposing branches. 

 

True 

Positives 

False 

Positives 

True 

Negatives 

False 

Negatives 

Combination 1 5 0 73102495 0 

Combination 2 2 0 73102498 0 

Combination 3 2 0 73102498 0 

 

Table 4-4 - Calculated values of sensitivity, specificity, false negative rate, and 
false positive rate corresponding to the synthetic object with no superposing 
branches. 

 
Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Combination 1 1,00 1,00 0,00 0,00 

Combination 2 1,00 1,00 0,00 0,00 

Combination 3 1,00 1,00 0,00 0,00 
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In the second experiment, two distinct branches of two different branches are 

implicated so that superposition situation is simulated. In this case, one false 

positive is observed. Apparently, number of false positives is equal to the 

number of superpositions. Therefore, increasing the superpositions would 

increase the number of false positives. Numbers of true positives, false 

positives, true negatives, and false negatives are given in Table 4-5, while 

corresponding results on sensitivity, specificity, false negative rate, and false 

positive rate are given in Table 4-6. 

Table 4-5 - Numbers of true positives, false positives, true negatives, and false 
negatives in the synthetic object, while the object has two superposing 
branches. 

 

True 

Positives 

False 

Positives 

True 

Negatives 

False 

Negatives 

Combination 1 5 1 74289691 0 

Combination 2 2 1 74289694 0 

Combination 3 2 1 74289694 0 

 

Table 4-6 - Calculated values of sensitivity, specificity, false negative rate, and 
false positive rate corresponding to the synthetic object with two superposing 
branches. 

 
Sensitivity Specificity 

False 

Negative 

Rate 

False 

Positive 

Rate 

Combination 1 1,00 0,99 0,00 1,3461E-08 

Combination 2 1,00 0,99 0,00 1,3461E-08 

Combination 3 1,00 0,99 0,00 1,3461E-08 
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CHAPTER 5 

 

5.  CONCLUSION AND FUTURE WORK 

 

 

5.1. Conclusion 

In an angiography suite, vascular structure of a patient is examined and treated. 

These procedures are achieved by injecting contrast agent to patient's 

circulatory system, which is an invasive method. For therapeutic purposes, 

mostly X-ray angiography is preferred, which is also invasive. For an 

interventional radiologist, all software and hardware tools are appreciable, which 

are helpful in terms of achieving a task less invasively. These tools can be 

utilized during diagnosis, treatment planning, and risk assessment.  

 

A neuro-radiologist uses visual inspection to determine the feeders of an 

arteriovenous malformation and the path reaching at a pathology. The same 

inspection applies during determination of distal branches, which are under risk 

of embolization and stroke. Lack of an automated tool for achieving these tasks 

drives the clinician consume more time on understanding the situation. 

Furthermore, the clinician has to inject more contrast agent and give more X-ray 

dose to make better decisions. Hence, this lack makes the procedure more 

invasive. 
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Within this work, we presented a basis of a software toolkit for vascular network 

extraction in 3-D angiographic images. It can be used for diagnosis, treatment 

planning, and risk assessment purposes; and provide an advantage on reducing 

contrast agent injection, X-ray dose, and time consumption.  

 

A basic toolkit, which has the main technical components for 3-D vascular 

network extraction, is created. Perspectives on single branch tracking, 3-D 

skeletonization, 3-D pruning, 3-D junction detection, and volume growing for 

vascular network extraction are introduced. Methods for the implementation of 

the toolkit's mentioned components are clearly described. 

 

Single branch tracking component can track vascular branches regardless of the 

branch has curvatures and discontinuities. Curvatures are handled so that any 

orientation they have can be tracked. The branch tracking can be achieved even 

if the branch has discontinuity, i.e. it has some portions disconnected. Note that 

the distance between two disconnected portions must be shorter than the height 

of the local box. This component also does not depend on lumen diameter and 

intensity between the branches, thus branches having large intensity difference 

and branches with stenoses can be successfully tracked.  

 

Skeletonization component can extract the central lines of vascular structures, 

which carry vital importance for detecting junctions. Some parasitic skeleton 

portions reveal after skeletonization process, yielding parasitic junctions. 

Junction detection component detects all the true junctions, and the false 

junctions because of these portions and superposition. The parasitic portions 

are cleaned via the pruning component. Pruning procedure dramatically 

decreases the number of false junctions, which is an advantage to shorten the 

entire processing duration. However, false junctions due to the superposition of 

vessels are not cancelled within this thesis work and it is shown that local 
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thresholding has the capability to clean the false junctions occurring where two 

vessels superpose.  

 

While they are applicable onto any 3-D angiographic data, the components of 

the basic software tool are applied to 3-D cerebrovascular structures in 

angiographic images. The toolkit achieved tracking a single branch connected to 

a user-defined point of interest in a user-defined direction, detecting junctions on 

it, initiating new tracking procedure on sub-branches connected to itself; hence 

extracting a vascular network connected to a specific point. This way, a vascular 

network under risk of embolization during an endovascular operation can be 

determined. The path reaching at a pathology like aneurysm can be highlighted. 

 

Performance evaluation demonstrates that the false junctions due to 

superposition of branches lead to a dramatic decrease in the performance of the 

algorithm. Regarding the real patient image data, average sensitivity of the 

algorithm is calculated as 87%. Note that sensitivity is ideally expected to be 

100%, and the difference occurs due to low quality of angiographic images. In 

the same manner, regarding the real patient image data, average false negative 

rate of the algorithm is calculated as 12%, while false negative rate is ideally 

expected to be 0%. The algorithm produces false negatives when superposition 

of branches occur as if a junction is existing there; eventually the performance of 

the algorithm is decreased. Phantom experiments demonstrate that if high 

quality angiography images were used, and methods to discriminate the 

branches with superposition would be developed and implemented, the 

algorithm could achieve 100% sensitivity and specificity, 0% false negative rate 

and 0% false positive rate. 

 

The toolkit can separately visualize branches, network, skeleton, and junctions. 

Furthermore, clinicians sometimes require to hide the branch; the toolkit is 

designed in a manner so that connected network can be hidden in the entire 
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image. Volume growing component is an assistant tool for this visualization 

process, which covers the tracked branches. 

 

This toolkit is not a clinically applicable software tool yet, but the first step to a 

clinically applicable product is achieved. True network connected to a point is 

extracted, false network due to superposed branches must be eliminated. 

  

5.2. Future Work 

The 3-D vascular connectivity tracking algorithm fails to discriminate two 

superposed branches, hence, produce false junctions at the superposition 

locations. At these false junctions, irrelevant branches join to the network. A 

local thresholding implementation showed that this problem can be overcome. 

As the first action, a suitable local thresholding algorithm must be implemented 

on these superposed vessels to block false junction detection and prevent 

irrelevant branches from joining the network. On the other hand, active contour 

tracking and surface tracking can be used to detect junctions, while polynomial 

fitting can be used to detect and distinguish some unnatural paths, such as false 

junctions due to superposition. Robust optimization and decision making 

methods can be implemented to increase the performance of the algorithm. 

 

After achieving the elimination of false junction production, application of the 

algorithm onto arteriovenous malformations is to be considered. The feeders of 

an AVM are to be determined by the software application. AVMs have different 

vascular structures than the branches examined so far. Volume interior to an 

AVM cannot be tracked, while junction detection method cannot produce useful 

results since there are many junctions in an AVM. A specialized clustering and 

segmentation method must be developed to determine the branches coming in 

and going out of AVM. 
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