

FINDING MALFORMED HTML OUTPUTS AND UNHANDLED EXECUTION
ERRORS OF ASP.NET APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET ERDAL ÖZKINACI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

MAY 2011

Approval of the Graduate School of Informatics

Prof. Dr. Nazife Baykal

Director

I certify that this thesis satisfies all the requirements as athesis for the degree of Master of

Science.

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department

This is to certify that we have read this thesis and that in ouropinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Aysu Betin Can

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Onur Demirörs (METU, II)

Assist. Prof. Dr. Aysu Betin Can (METU, II)

Aydın Nusret Güçlü, MSc. (METUTECH, Stratek)

Assoc. Prof. Dr. Altan Koçyĭgit (METU, II)

Assoc. Prof. Dr. Halit ŎguzTüzün (METU, CENG)

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: Mehmet Erdal Özkınacı

Signature :

iii

ABSTRACT

FINDING MALFORMED HTML OUTPUTS AND UNHANDLED EXECUTION
ERRORS OF ASP.NET APPLICATIONS

Özkınacı, Mehmet Erdal

M.Sc., Department of Information Systems

Supervisor : Assist. Prof. Dr. Aysu Betin Can

May 2011, 44 pages

As dynamic web applications are becoming widespread nearlyin every area, ASP.NET is one

of the popular development languages in this domain. The errors in these web applications

can reduce the credibility of the site and cause possible loss of a number of clients. There-

fore, testing these applications becomes significant. We present an automated tool to test

ASP.NET web applications against execution errors and HTMLerrors that cause displaying

inaccurate and incomplete information. Our tool, called Mamoste, adapts concolic testing

technique which interleaves concrete and symbolic executions to generate test inputs dynam-

ically. Mamoste also considers page events as inputs which cannot be handled with concolic

testing. We have performed experiments on a subset of an heavily used ASP.NET application

of a government office. We have found 366 HTML errors and a faulty component whichis

used almost every ASP.NET page in this application. In addition, Mamoste discovered that a

common user control is misused in several generated pages.

Keywords: automated testing, concolic testing, dynamic web pages, asp.net

iv

ÖZ

ASP.NET UYGULAMALARINDAK İ HATALI HTML ÇIKTILARININ VE
ÖNGÖRÜLEMEṀIŞ ÇALIŞMA HATALARININ BULUNMASI

Özkınacı, Mehmet Erdal

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Aysu Betin Can

Mayıs 2011, 44 sayfa

ASP.NET, dinamik web uygulamalarının geliştirilmesindekullanılan popüler dillerden biridir.

Web uygulamalarındaki hatalar, bu uygulamaların güvenilirli ğini ve kullanıcı sayısını azalta-

bilir. Bundan dolayı, bu uygulamaların test edilmesi önem kazanmaktadır. Bu çalışmada,

öngörülememiş çalışma hataları ve tarayıcılarda bozuk görüntülerin oluşmasına neden olan

HTML hatalarını içeren ASP.NET uygulamalarını, otomatik olarak test eden bir araç sunacağız.

Aracımızın ismi Mamoste’dir. Mamoste, test girdilerini dinamik olarak üretmek için somut

ve sembolik çalışma yöntemlerini dönüşümlü olarak kullanan concolic testi ASP.NET uygu-

lamalarına adapte eder. Mamoste, concolic test ile çözülemeyen web sayfalarındaki olayları

da girdi olarak ele alır. Mamoste ile, bir kamu kurumu tarafından yŏgun olarak kullanılan

ASP.NET uygulamasının testini gerçekleştirdik. Mamoste, 366 HTML hatası ve bu uygula-

manın hemen hemen her sayfasında kullanılan hatalı bir bileşen tespit etti. Bunun yanı sıra;

Mamoste, üretilen sayfaların bir kısmında hatalı kullanılmış genel bir kontrol açığa çıkarttı.

Anahtar Kelimeler: otomatik test, concolic test, dinamik web sayfaları, asp.net

v

dedicated to my nephew, my uncle Abid, my family, and walnut tree

vi

ACKNOWLEDGMENTS

I am deeply grateful to my supervisor, Assist. Prof. Dr. AysuBetin Can, for her encourage-

ment and guidance. I could not finish this study without her support.

I would like to thank all of those who supported me in any respect during this study especially

my friends and the company which I work for, Stratek Strategic Technologies R-D.

For providing scholarship, I would also thank the Scientificand Technological Research

Council of Turkey (TÜḂITAK).

Most importantly, I would like to thank whole my family, Şükriye ÖZKINACI, Feramuz

ÖZKINACI, Nuriye ÖZKINACI, İbrahim Halil ÖZKINACI, and Emel ASLANTAŞ, for their

endless love, so glad I have them.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

DEDICATON . vi

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS . xii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Statement . 3

1.2 Overview . 4

2 BACKGROUND AND LITERATURE SURVEY 6

2.1 Dynamic Web Languages and ASP.NET 6

2.2 Dynamic Test Input Generation . 9

2.3 Related Work . 13

3 MAMOSTE . 16

3.1 Methodology . 16

3.2 Design And Implementation . 21

3.2.1 System Architecture . 21

3.2.2 Implementation . 25

3.2.3 Instrumentation . 28

3.3 Usage . 30

viii

3.3.1 Installation . 30

3.3.2 Example . 35

4 EXPERIMENTS . 36

4.1 Applying Mamoste to SGB.net v2 37

4.2 Testing SGB.net v2 Manually . 38

4.3 Applying Mamoste to SGB.net v1 38

5 CONCLUSION . 41

REFERENCES . 42

ix

LIST OF TABLES

Table 2.1 Execution Results of Microsoft Pex 15

Table 3.1 Database Table of the Districts 21

Table 3.2 Code and Instrumented Code Samples 29

Table 3.3 Test Results of Given Example 33

Table 4.1 Comparison of Manual Testing and Mamoste 37

Table 4.2 HTML Faults found by Mamoste 39

Table 4.3 HTML Faults of Menu Component found by Mamoste 40

x

LIST OF FIGURES

Figure 2.1 HTML Interface File of DivideAndMultiply ASP.NET Web Form 8

Figure 2.2 Application Logic File of DivideAndMultiply ASP.NET Web Form 10

Figure 2.3 Code for illustrating Symbolic Execution [1] 11

Figure 2.4 Code for illustrating Defective of Microsoft Pex. 15

Figure 3.1 Algorithm of Concolic Testing 17

Figure 3.2 Algorithm of Finding New Inputs in Concolic Testing 18

Figure 3.3 Code for illustrating Need of Manual Instrumentation on Web Applications

Using Database . 20

Figure 3.4 System Architecture of Mamoste 22

Figure 3.5 Class Diagram of Concolic Package of Mamoste 26

Figure 3.6 Class Diagram of Trace Listener Package of Mamoste 27

Figure 3.7 Class Diagram of GUI Package of Mamoste 28

Figure 3.8 Configuration File of Mamoste 31

Figure 3.9 Change in Configuration File of Tested Web Application for Trace Listener

of Mamoste . 32

Figure 3.10 Change in Global Application Class of Tested WebApplication for Trace

Listener of Mamoste . 33

Figure 3.11 Instrumented Application Logic File of DivideAndMultiply ASP.NET Web

Form . 34

xi

LIST OF SYMBOLS

ASMX Active Server Methods Extended

ASP Active Server Pages

ASPX Active Server Pages Extended

CGI Common Gateway Interface

DLL Dynamic Link Library

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IIS Internet Information Services

ISAPI Internet Server Application Programming Interface

JSP Java Server Pages

PHP Hypertext Preprocessor

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML eXtensible Markup Language

xii

CHAPTER 1

INTRODUCTION

Web applications with dynamic content are becoming very popular almost in every business

area such as banking, entertainment and government agencies. One of the reasons of this

popularity is that updating and maintenance of these applications do not require distribution

and installation software. Besides, they are accessible byany computer with Internet access,

which means there are potentially thousands of clients. In addition, in terms of user interaction

these applications are starting to compete with the desktopapplications due to dynamic web

application technologies.

Information technologies (solutions, applications, programs) shift to Internet environment.

Static web technologies cannot support this trend and thereis an appearing demand. In or-

der to meet upcoming needs, dynamic web languages are developed in the last decades such

as the scripting languages ASP and PHP. After these technologies several complex frame-

works are developed such as ASP.NET and JSP for dynamic web application projects. These

frameworks are more preferable than ASP and PHP scripting languages because they have a

number of features which ASP and PHP cannot cope with. They also support object oriented

architecture that is the most popular view of late years while developing software projects.

ASP.NET is an example of dynamic web application development language. ASP.NET pages

run typically on a server and generate HTML or XML pages that are sent to client browsers.

A common practice in ASP.NET is separating application logic, such as event handlers, from

the static HTML parts such as widgets to be displayed on the browser. In other words, the

static HTML or XML parts reside in a separate file from the codefor handling events and

generating dynamic parts. Although this separation enables reuse of the code, it makes the

development process error-prone.

1

Dynamic web applications even if developed with scripting languages have proliferated in

almost all areas such as banking and communication. As a result of this tendency, accuracy

and trusty of these kinds of applications have become increasingly important. Thus, there is a

risen need to test and verify these applications. Researchers have been interested in improv-

ing testing and verification techniques, algorithms and tools for dynamic web applications.

In other words, testing and verification society has broadentheir direction to dynamic web

technologies and applications. There are several techniques such as dynamic test generation,

fuzz testing, symbolic execution and concolic execution (combination of symbolic and con-

crete execution). Researchers have worked on these techniques and have diversified them and

their algorithms to test and verify dynamic web applications. For example, Halfond et al. [2]

extract interfaces for Java based web applications to improve the effectiveness of test input

generation. Moreover, Artzi et al. [3] target PHP applications and aim to catch faulty HTML

outputs of such dynamic web sites.

Several works on testing and verification of dynamic web applications have focused on PHP

and JSP. For example, Wassermann et al. [4] apply symbolic execution to discover SQL

injections of PHP web applications. Halfond et al. [5] are interested in parameter mismatches

in JSP web applications by using a static analysis based approach. Moreover, Artzi et al.

[3] use concolic execution technique to find inaccurate HTMLoutputs and run-time errors

of PHP. On the other hand, Fu et al. [6] are interested in SQL injection on ASP.NET web

applications with the help of symbolic execution, but laterthey switch their focus on Java.

As a result of all these researches, we have decided to work with ASP.NET dynamic web

applications because we believe that ASP.NET dynamic web language is still virgin with

respect to testing and verification.

In this thesis we present an automated tool, called Mamoste,to check web applications devel-

oped with ASP.NET whether there are execution errors crashing the applications and whether

they produce malformed HTML outputs causing to display inaccurate and incomplete infor-

mation.

Mamoste is based on concolic testing pioneered by DART [7] and CUTE [8]. In concolic test-

ing an application is executed on concrete input values to variables and then using symbolic

execution new concrete inputs are generated to maximize code coverage. By solving sym-

bolic constraints that are derived from executed control flow, concolic testing generates new

2

concrete inputs to exercise unexplored paths. Mamoste applies this technique on ASP.NET

applications. In addition, Mamoste triggers all the user implemented event handlers and sup-

plies inputs. In a sense, we perform unit testing with dynamic input generation where a unit

is an event handler.

We used our tool to detect HTML errors on a subset of an heavilyused ASP.NET application

owned by the Ministry of Finance of Turkey. Among numerous HTML errors and warnings

discovered, Mamoste revealed errors on two important highly reused components of the ap-

plication. We also tested older version of the same subset and compared the bugs found by

the development team to bugs found by Mamoste. We found that manual testing has been

ineffective compared to Mamoste. Firstly, Mamoste used less testinputs and collected more

HTML outputs. Secondly, Mamoste increased code coverage byexecuting different branches

of tested program.

1.1 Problem Statement

Since many Internet users interact with the dynamic web sites, the faults that crash the ap-

plication or interrupt a transaction or cause to display inaccurate and incomplete information

are not tolerable. These kinds of errors reduce the credibility of the site which can cause pos-

sible loss of a number of clients. Since dynamic web applications produce HTML pages at

runtime depending on the interaction with the user, developers are more likely to make errors

compared to developing sites with static web technologies.In the case of ASP.NET appli-

cations, all execution paths may not return correct HTML pages created dynamically. For

example, code segment closing end tag of an HTML table may notbe in execution path be-

cause of a condition when code segment opening begin tag of that HTML table is executed. In

other words, an execution path of a program may produce malformed, wrong and incomplete

HTML because conditions and input values of the program determine the paths executed.

However, while using static web technologies, all HTML pages are developed manually in a

straight-forward approach.

There are several researches analyzing ASP.NET web applications. SAFELI [6] detects SQL

injection vulnerabilities at compile time by inspecting MSIL bytecode of ASP.NET dynamic

web applications. Although it is an important problem, it isorthogonal to detecting mal-

3

formed HTML outputs. Microsoft Pex [9] and Moles [10] aim to generate unit tests for .NET

framework which includes ASP.NET technology. However, Pexrequires the developers to

change the modifier of event handlers to public since Pex creates unit tests for only public

methods. Also, unit tests use assertions which can detect executions errors; however, it is not

clear how Pex can detect malformed HTML outputs.

There are specific topics worked on such as SQL injection, execution errors and security gaps

related to dynamic web applications and these subjects are not less important than each other,

but they have been enormously worked subjects. As a result, we are interested outputs of

dynamic web applications. The outputs of these applications can be HTML and XML files

and these output files can be malformed, wrong and non-standard, so browsers cannot display

these kinds of output files. Malformed outputs of dynamic webapplications may be tolerable

up to some level by browsers but there is still a limit of tolerance that browsers can do. For

this reason, this subject is challenging for us and we decideto deal with outputs of ASP.NET

dynamic web applications.

Researchers have been rarely interested in ASP.NET dynamicweb applications as aforemen-

tioned above. Therefore, this gap leads us to focus on ASP.NET dynamic web applications.

Moreover, HTML outputs of ASP.NET applications have not studied yet. Thus, we have

decided to automate detecting malformed HTML outputs and run-time execution errors of

ASP.NET dynamic web applications.

To sum up, the problems we aim to solve in this study are;

• To discover malformed HTML outputs of ASP.NET dynamic web applications

• To discover unhandled execution errors of ASP.NET dynamic web applications

1.2 Overview

In this thesis study, we studied on concolic execution testing technique which was found by

combining concrete and symbolic executions and we developed an automated tool named

Mamoste based on concolic execution that tries to reveal run-time execution errors and defec-

tive HTML outputs generated by ASP.NET dynamic web applications.

4

There are five chapters in this thesis. First chapter introduces dynamic web application con-

cept, concolic execution, related researches and our tool briefly. Then, problem statement

section gives reasons why we choose this subject and indicates our motivation.

Second chapter presents background knowledge and literature survey about dynamic web

languages and applications. After that dynamic test input generation techniques are addressed

especially concolic execution, and finally works related toours are explained.

In chapter three, we propose our solution in detail. We explain methodology of the study

and system architecture of Mamoste. We give technical information about Mamoste and our

concolic execution perspective. Lastly, explanation of how to apply Mamoste on ASP.NET

dynamic web applications is given with a running example in depth.

Fourth chapter presents experimental results of the study on a subset of an ASP.NET dynamic

web application, called SGB.net, that is used intensely by the Ministry of Finance of Turkey

as well as by other governmental organizations. This chapter includes comparison of manual

testing and Mamoste on this application. Moreover, currentversion of the SGB.net is com-

pared with previous version. In this chapter, we also emphasize and make inferences on the

results of these experiments.

The final chapter evaluates the study and summarizes outputsof the study. Limitations and

future works are also explained in this chapter.

5

CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Dynamic Web Languages and ASP.NET

Web pages that are implemented by using dynamic web technologies have dynamic content

in contrast to static web pages. Contents of dynamic web pages can change in time, according

to user interaction, request parameters that are given to these pages and etc. However, static

web pages always display same content, it does not change until these pages are changed.

The underlying working principle is actually simply the same for all of dynamic web tech-

nologies. This principle can be summarized as below.

• The client (mostly a browser like Internet Explorer, GoogleChrome, Mozilla Firefox)

prepares request data and sends it to the web server.

• The web server receives the request data and detects what fileextension in the request

data is.

• After comprehending the file extension, the web server redirects the request data to the

related handler.

• The handler that the request data is sent prepares response which is asked by the client.

• The handler gives prepared response to the web server and theweb server sends it to

the client.

Relations between handlers such as ISAPI, CGI and file extensions like aspx, asmx are coor-

dinated in the web servers during installation of programs or by developers. Thus, the web

6

servers know which handlers deal with which file extensions.There is no need to process

static files since their contents are static. For this reason, the web servers send these files as

they are to the clients.

There are many dynamic web languages such as PHP, ASP, Perl, ASP.NET, JSP to create

dynamic web applications. There are differences between these languages. For example,

ASP [11] and PHP [12] are scripting languages. However, ASP.NET [13] and JSP [14] are

parts of huge frameworks. Moreover, ASP and PHP scripts are inlined into HTML tags,

i.e. scripts and HTML tags are located in the same file. On the other hand, frameworks of

ASP.NET and JSP can manage GUI parts and code parts as different files. In other words,

the static HTML or XML parts reside in a separate file from the code for handling events

and generating dynamic parts [15]. Also, ASP scripts can be written inside HTML tags in

ASP.NET framework. ASP and PHP are interpreted languages but ASP.NET and JSP are

compiled ones. In other words, source codes of ASP and PHP applications need to be copied

to the web server that serves these applications. In contrast, there is no need to copy source

code to the web server for ASP.NET and JSP. It is enough to copycompiled files to the web

server in ASP.NET and JSP.

ASP is earlier server-side scripting language of Microsoft. Later, Microsoft has developed the

ASP.NET dynamic web language, but ASP.NET is not newer version of ASP. It is an entirely

new technology for server-side scripting. ASP.NET is a powerful tool for developing dynamic

and interactive web pages in .NET framework of Microsoft. The web server that executes

ASP.NET applications is IIS [16]. ASP.NET has many new features such as language support,

new controls, XML-based components which are not supportedby ASP. Since ASP.NET

engine can run compiled code, the performance in respondingto client request in the web

server is increased. ASP.NET dynamic web applications useCodeBehindmode orCodeFile

mode. The web applications that useCodeBehindmode need compiled files, called dll, in the

web server but there is no need for source code in this mode. Onthe other side, source code

has to be copied into the web server while usingCodeFilemode.

ASP.NET pages are called web forms and they consist of HTML interface and applica-

tion logic files [15]. The HTML interface file of a web form can be formed with standard

HTML, web controls of ASP.NET framework, XML, and scripts. Scripts are executed on

the web server by ASP.NET engine. Also, the web controls are executed and converted into

7

1 <%@ Page Language="C#" AutoEventWireup="true" Inherits="Example.DivideAndMultiply"

CodeBehind="DivideAndMultiply.aspx.cs" %>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml">

4 <head runat="server"><title></title></head>

5 <body>

6 <form id="form1" runat="server"><div>

7 <div><asp:Label ID="lblResult" Font-Bold="true" Font-Size="Large"

ForeColor="Red" runat="server"></asp:Label></div>

8 <div><asp:Label ID="lblNum1" Text="Number 1" runat="server"></asp:Label>

9 <asp:TextBox ID="txtNum1" runat="server"></asp:TextBox></div>

10 <div><asp:Label ID="lblNum2" Text="Number 2" runat="server"></asp:Label>

11 <asp:TextBox ID="txtNum2" runat="server"></asp:TextBox></div>

12 <div><asp:Button ID="btnDivide" OnClick="btnDivide_Click" Text="Divide"

runat="server"></asp:Button>

13 <asp:Button ID="btnMultiply" OnClick="btnMultiply_Click" Text="Multiply"

runat="server"></asp:Button></div>

14 </div></form></body>

15 </html>

Figure 2.1: HTML Interface File of DivideAndMultiply ASP.NET Web Form

HTML controls by ASP.NET engine before sending response to the client. The application

logic file of a web form composes of event handlers and methods. Figure 2.1 and Figure

2.2 illustrate an example namedDivideAndMultiply.aspx for ASP.NET web forms. The

DivideAndMultiply.aspxweb form is designed to divide or multiply the given two numbers

by the users.

Figure 2.1 shows the HTML interface ofDivideAndMultiply.aspx and it includes standard

HTML tags and web controls of ASP.NET framework. In this file there are three labels, two

text boxes and two buttons. It can be added events to any of these web controls and bound

them with custom event handlers. For instance, in this example the btnDivide_Click event

handler is bound to theOnClickattribute of thebtnDividebutton and thebtnMultiply_Click

event handler is bound to theOnClick attribute of thebtnMultiply button. Note that the im-

plementations of these event handlers are in the application logic file in Figure 2.2.

As the first line of Figure 2.1 says, the code behind the HTML interface is implemented in

C# and it resides in the application logic fileDivideAndMultiply.aspx.cs which is shown

in Figure 2.2. The application logic file implements the event handlers that are bound to the

web controls of the HTML interface file in Figure 2.1.

In this example there are three event handlers,Page_Load, btnDivide_Clickand btnMultiply

8

_Click. The Page_Load event handler is the default event handler of every ASP.NET web

form and this event handler initializes the text boxes and the label (lines 6-8) in Figure 2.2.

The second event handler,btnDivide_Click, is a custom event handler for theOnClick event

of the btnDivide button. This binding can be defined in the interface file as well as in the

application logic file. In this example the event handler is bound to the button in the interface

file. This event handler performs a division operation and puts the result into theText prop-

erty of the labellblResult in line 20. If one of the given numbers is negative, it puts an error

message in boldface into the label in line 23. The third eventhandler,btnMultiply_Click, is

a custom event handler for theOnClick event of thebtnMultiply button. This event handler

performs a multiplication operation and puts the result into the Text property of the label

lblResult in line 30. If one of the given numbers is negative, it puts an error message in

boldface into the label in line 33.

2.2 Dynamic Test Input Generation

Concolic testing is a hybrid software verification technique that interleaves concrete execu-

tion with symbolic execution to generate test inputs dynamically. The basic idea behind the

concolic testing is to execute the application under test onsome initial inputs. After that,

additional inputs are obtained by solving constraints derived from previously executed paths.

Execution continues with generated new inputs until no new inputs are obtained.

There is an increase in the number of tools that implement hybrid algorithm of concrete exe-

cution and symbolic execution (concolic testing) to generate test inputs dynamically because

of success of concolic testing on code coverage. Some of these tools are DART [7], CUTE

[8], EXE [17] and Pex [9]. The DART [7] works by code instrumentation on C programs to

achieve symbolic evaluation and to generate new input values for possible program execution

paths. The CUTE [8] is a follower of the DART. The CUTE performs concolic execution on

automating unit testing with memory graphs. The Pex generates unit test for programs written

with C#, Visual Basic and F# languages by using concolic execution.

Concrete execution is simply running a program with concrete values. On the other side,

symbolic execution uses symbolic values for the program variables instead of concrete [18].

Symbolic execution is a technique which executes programs with symbolic input values, in-

9

1 using System;

2 namespace Example {

3 public partial class DivideAndMultiply : System.Web.UI.Page {

4 protected void Page_Load(object sender, EventArgs e) {

5 if (!IsPostBack) {

6 txtNum1.Text = "Enter a number...";

7 txtNum2.Text = "Enter a number...";

8 lblResult.Text = "Result will be displayed here...";

9 }

10 }

11 protected void btnDivide_Click(object sender, EventArgs e) {

12 int num1 = 0;

13 int num2 = 0;

14 try {

15 num1 = Convert.ToInt32(txtNum1.Text.Trim());

16 num2 = Convert.ToInt32(txtNum2.Text.Trim());

17 }

18 catch (Exception) {}

19 if (num1 >= 0 && num2 >= 0) {

20 lblResult.Text = "Division : " + (num1 / num2).ToString();

21 }

22 else {

23 lblResult.Text = "
Please enter natural numbers...";

24 }

25 }

26 protected void btnMultiply_Click(object sender, EventArgs e) {

27 int num1 = Convert.ToInt32(txtNum1.Text.Trim());

28 int num2 = Convert.ToInt32(txtNum2.Text.Trim());

29 if (num1 >= 0 && num2 >= 0) {

30 lblResult.Text = "Multiplication : " + (num1 * num2).ToString();

31 }

32 else {

33 lblResult.Text = "
Please enter natural numbers...";

34 }

35 }

36 }

37 }

Figure 2.2: Application Logic File of DivideAndMultiply ASP.NET Web Form

10

1 public static int testMethod(int x, int y) {

2 if (x > 3) {

3 int z = x + 2;

4 if (z < y)

5 return z;

6 else

7 return y;

8 }

9 return 0;

10 }

Figure 2.3: Code for illustrating Symbolic Execution [1]

stead of concrete data to infer behavior of the programs. Also, symbolic execution expresses

the values of program variables symbolically. Consequently, the outputs computed by a pro-

gram are stated as a function of the symbolic inputs [19, 20, 21].

x = x + y;

z= x * 3 + y;

For example, above statements are executed concretely with2 for x and 3 for y. For the first

statement the result of x+ y is 5 and the value 5 is assigned to x. Then, x * 3+ y part of the

second statement is executed and 18 is found and it is assigned to z. The values of x, y and z

variables are 5, 3 and 18, respectively. As it can be seen, theoutput values become concrete

values due to concrete execution. For symbolic execution let x equals A and y equals B as

symbolic values. The result of the first statement is A+ B and A+ B is assigned to x. For the

second statement if x is replaced with A+ B and y is replaced B, the result is (A+ B) * 3 +

B and it is assigned to z. The output values of symbolic execution for x, y and z variables are

A + B, B and 3A+ 4B that are symbolic values. It can be said that concrete execution ends

up an instance of the possible results set. On the other side all entities of the possible results

set are covered by symbolic execution. The other significantpoint is that path constraints are

collected during symbolic execution. In concolic execution, they are used to create new test

case inputs for the next runs.

Figure 2.3 illustrates a method just for explaining symbolic execution. It should be underlined

that the method is a pointless method. All possible paths of the method in Figure 2.3 are

provided below when symbolic execution is applied to the method [1]. A path constraint is

one of the all possible execution traces of a program.

11

• x <= 3

• x > 3 & x + 2 < y

• x > 3 & x + 2 >= y

The algorithm steps of the concolic testing are basically asfollows.

• Run the program with bottom element values such as null for all inputs

• Capture the path constraints exercised by the run

• Infer unexplored path constraints by inverting exercised path constraints

• Generate new concrete input values from the unexplored constraints

• Continue running the program with found input values

• Generate new inputs until all path constraints have been exercised or until the time limit

is reached

Let us go back Figure 2.3 and apply concolic testing. Firstly, let x and y equal 0, so the

condition x> 3 in line 2 is not satisfied. Thus, the statement in line 9 is executed and 0 value

is returned by the method. Executed path constraint is x<= 3 and x> 3 is found by inverting

the exercised path constraint. After that let 4 is generatedfor x by using found path constraint

x > 3. The method is executed with 4 for x, 0 for y and the conditionin line 2 is satisfied

and in line 3 z is assigned to x+ 2 that equals 6. The if condition in line 4 returns false

and else branch is executed because 6 is greater than 0. Only second condition of found path

constraint, x> 3 & x + 2>= y, is reversed and new path constraint is x> 3 & x + 2< y. After

solving this path constraint, 4 is generated for x and 7 is generated for y. Next, the method

is executed with 4 and 7 for x and y and the condition in line 2 returns true and in line 3 z is

assigned to 6 which is calculated value of x+ 2. The if condition in line 4 is satisfied because

6 is less than 7 and the method returns 6 that is value of z. Finally, there is no unexplored path

constraint of the method, so algorithm of concolic testing is finished.

12

2.3 Related Work

There are several works that combine concrete and symbolic executions. Directed Automated

Random Testing, DART, [7] seeks execution errors such as program crashes, non-termination

of C programs and input values causing these errors. DART uses random testing and symbolic

evaluation to generate new input values for possible program execution paths. Concolic Unit

Testing Engine, CUTE, [8] is a subsequent work which has adjunct improvements in terms of

the DART. CUTE implements both concrete and symbolic executions, called concolic execu-

tion, in order to solve the problem of automating unit testing with memory graphs as inputs.

Another approach called SAGE (Scalable, Automated, GuidedExecution) [22] implements a

whitebox fuzz testing algorithm originated from symbolic execution and dynamic test gener-

ation. SAGE works on security testing of windows applications written with C, C++. Emmi

et al. [23] generate automatic test inputs and database records for database applications with

using concolic execution. Their implementation executes concrete and symbolic testing si-

multaneously similar to Mamoste.

Automated test input generation techniques has been applied to web applications domain.

Halfond et al. [2] propose a specialized form of symbolic execution to identify interfaces for

Java based web applications. They claim effectiveness of the testing techniques such as test

input generation on the web applications increases with thehelp of their approach. Another

work on Java based web applications is parameter mismatchesin these applications by using

a static analysis based approach [5]. Wassermann et al. [4] and Artzi et al. [3] apply concolic

testing for automated test input generation to PHP dynamic web applications. Wassermann

et al. target on SQL injection of PHP dynamic web applications which is orthogonal to our

work. On the other hand, Artzi et al. develop a tool, Apollo, to detect crashes and malformed

HTML outputs of PHP applications.

Although Mamoste and Apollo have similarities such as usingan HTML validator as test

oracle, they distinguish some specific points. First of all our target language ASP.NET is

different from their target language PHP. ASP.NET is not a scripting language but PHP is a

scripting language. Secondly, Mamoste composes HTTP requests as if a user enters inputs

and fires events whereas Apollo simulates user interaction by transforming the PHP script.

Third, Mamoste implements additional checking mechanismsabout visited inputs, visited

path constraints, and generated path constraints by concolic algorithm. Finally, our approach

13

is lightweight compared to Apollo since our tests are similar to unit testing where units are

event handlers.

According to Di Lucca et al. [24] different components of the web applications such as web

pages, forms or other web objects can be identified as a unit from the unit testing perspective.

They divide the unit testing of the web applications into twocategories: client page testing,

server page testing. Mamoste detects malformed HTML outputs of the web applications.

Thus, it can be said that HTML output is a unit of the client page testing category. An event

of a web page can be considered a unit of the server page testing category.

There are several researchers working specifically on ASP.NET web applications. SAFELI, a

static analysis framework, [6] identifies SQL injection attacks by inspecting MSIL bytecode

of ASP.NET applications using symbolic execution. While SAFELI concentrates on SQL

injection on ASP.NET web applications, Mamoste aims to detect execution errors and mal-

formed HTML outputs of these applications. Another work Microsoft Pex [9] uses a hybrid

technique that integrates concrete and symbolic executions so as to generate unit test for pro-

grams under test. Microsoft Pex creates unit tests for applications written with C#, Visual

Basic and F# languages. Moles [10] is another component provided by Microsoft and it sup-

ports writing isolated unit tests. By working together Microsoft Pex and Moles can generate

unit tests for ASP.NET applications since they are targetedon .NET framework. There is an

important point that event handlers of ASP.NET pages are protected functions, but Microsoft

Pex can implement unit tests only public behaviors of publicclasses. Therefore, in order to

use Microsoft Pex event handlers of ASP.NET pages are required to convert into public func-

tions that is a disadvantage of Microsoft Pex. On the other hand, Mamoste does not need this

kind of conversions. In addition, it is not clear how assertions that are used in unit tests can

capture errors in HTML outputs. In other words, Microsoft Pex does not deal with HTML

validation. Microsoft Research Team1 attempts to simulate IIS with Microsoft Pex and Moles

to breed unit tests. On the other hand, Mamoste composes HTTPrequests as if a user enters

inputs and fires events. In a sense, Mamoste replaces users and browsers. In this case, IIS

does its work by itself; i.e. Mamoste transmits requests to IIS and IIS responses the requests.

Therefore, Mamoste manages concrete executions as they occur in real, concrete execution of

Mamoste is not a simulation.

1 http://research.microsoft.com

14

using System;

public class Program {

// Pex for fun always selects the first comment line.

public static int Puzzle(int x) {

if (x > 0)

x++;

else

x = -x;

x = x - 3;

if (x > 0)

x = 1;

else

x = 0;

return x;

}

}

Figure 2.4: Code for illustrating Defective of Microsoft Pex

We have practiced Microsoft Pex with the code in Figure 2.4 and Microsoft Pex generates the

results in Table 2.1. As it can be seen in the figure, there are four possible paths to execute.

However, three of them are found by Microsoft Pex. It is possible to execute the fourth path

with x = 3, but Microsoft Pex cannot catch this input. Therefore, it can be said that Mi-

crosoft Pex applies symbolic execution defectively. Experiments can be done on the web site

of Microsoft Pex2.

Table 2.1: Execution Results of Microsoft Pex

x result Output/Exception
0 0
-1140850204 1
1 0

2 http://www.pexforfun.com/default.aspx?language=CSharp&sample=_Template

15

CHAPTER 3

MAMOSTE

In order to solve problems specified in Section 1.1 we developed a tool, called Mamoste. We

aimed to detect malformed HTML outputs of ASP.NET dynamic web applications and run-

time execution errors of these applications while developing Mamoste. We propose Mamoste

as an automated tool to find malformed HTML outputs generatedby ASP.NET web applica-

tions and unhandled execution errors crashing these applications.

Mamoste adapts concolic testing technique which is a combination of concrete and symbolic

executions to generate test inputs dynamically. The tool also considers page events as inputs

which cannot be handled with concolic testing. In a sense, the tool performs unit testing

with dynamic input generation where a unit is an event of tested page. Moreover, Mamoste

receives help from an HTML validator to verify HTML outputs found by Mamoste.

In this chapter, we present our solution in detail. Firstly,we explain methodology and al-

gorithm of the study. After that, we give design and implemetation of Mamoste in terms

of system architecture and class diagrams. Then, we show howto write instrumentation on

samples. Moreover, we explain installation and usage of thetool by giving an example.

3.1 Methodology

To reach high test coverage, we have adapted concolic testing which has been successfully

applied on Java and C programs [7, 8]. Figure 3.1 shows the pseudo code of the concolic

algorithm we implement. Program P and Event E under test are parameters of the proce-

dure. Variable R contains results of previous executions. Execution results consist of path

constraints, input values, outputs and bugs. VariabletoVisit is used to keep input values for

16

parameters : Program P, Event E
result : Execution Results

1 R= ∅;
2 toVisit = EmptyQueue();
3 Enqueue(toVisit, EmptyInput());
4 repeat
5 input= Dequeue(toVisit);
6 {newPC, output, bug}= RunConcreteAndSymbolic(P, E, input);
7 if (newPC not in Visited Path Constraints of R)
8 merge {newPC, input, output, bug} into R;
9 newInputs= FindNewInputs(newPC, Path Constraints of R);
10 newInputs= newInputs - Inputs of R;
11 EnqueueAll(toVisit, newInputs);
12 until (Empty(toVisit) or TimeExpired())
13 return R;

Figure 3.1: Algorithm of Concolic Testing

next executions and an empty input is added to this variable in line 3 as a bottom element.

Then, there is a loop between line 4 and 12. The programP and it’s event E are executed

concretely and symbolically in this loop. In line 5, a new input is taken from variabletoVisit

and concrete and symbolic executions are run with this inputin line 6. There is a checking

mechanism in line 7. This mechanism checks whether new path constraint captured by the

current execution is in the visited path constraint list or not. If the path constraint is in the list,

the algorithm passes to the next input. If it is not, results gathered by the current execution

are attached to the variableR in line 8. Subroutine in Figure 3.2 is called to find new inputs

in line 9. Then, the inputs which are explored before are eliminated in line 10. The rest of the

inputs found are appended to variabletoVisit in line 11. These steps continue untiltoVisit

is empty or until time is expired.

Figure 3.2 shows the pseudo code of finding new inputs in concolic testing. The procedure

gets two parameters,pc and pcList. The parameterpc denotes path constraint which is used

to generate new path constraints and inputs. The parameterpcList keeps the path constraints

that are visited and generated before. Variableinputs is used as a list that contains new found

inputs. Variablepc is parsed to find each conjunct of it in line 2. There is a loop applied for

each piece between line 3 and 9. In this loop, the algorithm negates the last conjunct for each

prefix of the path constraint in line 4. Found new path constraint by negation is checked if

it is in the pcList parameter or not in line 5. If it is, the algorithm passes the next prefix.

17

parameters : Path Constraint pc, Visited and Generated PathConstraints pcList
result : New Inputs

1 inputs= ∅;
2 c1 ∧ · · · ∧ cn = pc;
3 for i = 1...n do
4 newPC= c1 ∧ · · · ∧ ci−1 ∧ ¬ci ;
5 if (newPC not in pcList)
6 merge newPC into pcList;
7 newInput= Solve(newPC);
8 if (newInput not empty)
9 merge newInput into inputs;
10 return inputs;

Figure 3.2: Algorithm of Finding New Inputs in Concolic Testing

Otherwise, new path constraint is attached to thepcList in line 6. After that, the constraint

solver is called to find a concrete input that satisfies the generated path constraint in line 7.

If the constraint solver can find such a value, this new input is added to variable inputs that

keeps return values of the procedure in line 9.

We consider three kinds of inputs in ASP.NET dynamic web pages: events, HTML controls,

and values entered by clients into the controls. For events,we choose thePage_Load event as

bottom element. First, we execute the page with thePage_Load event and nothing ornull

value for HTML controls. Then, we collect all HTML controls and events from generated

HTML output. We put them into the event list and the HTML control list. This step is different

from concolic testing approach described in Section 2.2 since it is not possible to capture

events and controls of an HTML output by examining path constraints. If the execution fails,

we get the error message and the path constraints up to the error. If not, we receive only the

path constraints of the execution. We save data gathered from the execution into the indicated

directory of the file system.

After parsing the captured path constraints, we place foundvariables and their values into the

variable list used to keep variables and their domain set. Next, we apply finding new path

constraints algorithm from the captured path constraints and find new path constraints. After

solving new path constraints, we find new input values for thevariables by using a constraint

solver. Finally, we execute the page again with the new inputvalues and the events. We

continue these steps for all found events until all path constraints are exercised or until the

18

time limit is reached. After concolic execution is finished,we start to validate HTML outputs

of the tested ASP.NET web page by using an HTML validator. It is emphasized that the point

is not using HTML validator. The point is executing all possible branches of a web page and

finding HTML outputs of those executions as well as run-time execution errors.

The variable list, which keeps variables and their domain set, grows as we explore path con-

straints. Initially, the variable list is empty which meansrunning the page withnull value

for all variables. When we examine a path constraint, such asnum1 >= 0 && num2 >= 0, the

variablesnum1 and num2 are added to the list with domains set as integers. When a constraint

contains a string variable, we add that variable into the list and set its domain to {null, “”,

value_in_constraint, random_string}. Here value_in_constraintdenotes the string constant

used in the constraint. Such constants are added to the domain list as we encounter different

string constants in the constraints. Therandom_stringdenotes a randomly generated string

constant different than all the elements in the domain set. We keep a domainset for string

variables so that the constraint solver can return a value satisfying a condition, for example,

city , “ankara”.

We have modified the concrete execution step in the general concolic execution algorithm as

well. First, we do not perform the validation during concrete execution. Instead, we save the

output of the concurrent execution along with the current path constraints and then check the

correctness of the outputs, which are the generated HTML pages, separately. This separation

of checking mechanism enables to run the executions and validation in parallel. Second,

the inputs for concrete execution consists of events and user values. Here we trigger an event,

such as page load event or click event of a button, and supply input parameters. This execution

is similar to unit testing with dynamic input generation where a unit is an event.

Symbolic execution is used to drive path constraints from the executed control flow that is

required for Mamoste. Symbolic execution parses the program and constructs a tree from the

program. Usually, special statements are injected to the program tree so that symbolic exe-

cution understands the program. Such kind of statement injection is called instrumentation.

There are two ways to perform instrumentation for symbolic execution: source code instru-

mentation and bytecode instrumentation. Source code or bytecode of the tested program is

certainly required.

Mamoste is to be used on the development side as a white box testing tool [24]. We use source

19

1 protected void btnWriteDistricts_Click(object sender, EventArgs e) {

2 int provinceCode = Convert.ToInt32(txtProvinceCode.Text);

3 if (provinceCode > 0) {

4 IDataReader dr = GetDistricts(provinceCode);

5 while(dr.Read()) {

6 Response.Write("District Code : " + dr.GetValue(0).ToString() + "
");

7 Response.Write("District Name : " + dr.GetValue(1).ToString() + "
");

8 }

9 }

10 else

11 Response.Write("Wrong province code!");

12 }

Figure 3.3: Code for illustrating Need of Manual Instrumentation on Web Applications Using
Database

code instrumentation while developing Mamoste in which theinstrumentation is done man-

ually by the users presently. We prefer the manual instrumentation to test dynamic web ap-

plications that use a database. We believe that a software application connected to a database

cannot be tested fully self-driven since executed control flow is dependent on stored data in

database. In other words, variables and conditions in the program are mostly attached to the

database. Thus, we need to know about stored data in databaseto generate values for variables

that are related to the database.

Figure 3.3 shows an event handler of a web page connected to a database. The event handler

in Figure 3.3 gets province code from a web control and writesdistricts of that province to

the screen if province code is greater than 0 and that province has any district. Otherwise, an

error message is written to the screen.

Let’s apply concolic execution to the code in Figure 3.3. Forthe first iteration, province

code should be bottom element which is 0 for integers. Since province code is not greater

than 0, else branch in line 10 is executed and!(provinceCode > 0) path constraint is

catched. According to the algorithm of finding new inputs in Figure 3.2, the path constraint is

inverted andprovinceCode > 0 path constraint is found. This new constraint is unexplored,

so we give the new path constraint to the constraint solver. Suppose 100 is returned as a

province code by the constraint solver. For province code isgreater than 0,if branch in

line 3 is executed in second iteration. However, there is no district belong to the current

province (provinceCode = 100) in the database table of the district as seen in Table 3.1.

Thus, in line 5 loop that writes districts to the screen is notexecuted. As province code is

related to the database, we cannot execute inside of loop in line 5. If we instrument the path

constraints manually, we have a chance to run the loop. For example, we can instrument

20

Table 3.1: Database Table of the Districts

ProvinceCode DistrictCode DistrictName
1 1 Seyhan
1 2 Ceyhan
63 1 Birecik
63 2 Suruç

else branch in line 10 with!(provinceCode == 1 || provinceCode == 63). If we negate

this constraint, we getprovinceCode == 1 || provinceCode == 63 as path constraint. The

constraint solver gives 1 or 63 as a province code for this constraint. As a result, we can

execute inside the loop with 1 or 63 inputs. Consequently, wedo not have any solution for

web applications that use database except manual instrumentation at least presently.

3.2 Design And Implementation

In this section, we explain system architecture of Mamoste and give technical information

about Mamoste such as class diagrams. Lastly, explanation of how to do instrumentation for

capturing path constraints is given with samples.

3.2.1 System Architecture

The system architecture of Mamoste is shown in Figure 3.4. Mamoste consists of three main

components: Test Driver, Solver Adapter and Validation Driver. Below we explain each of

these components in detail.

3.2.1.1 Test Driver

Test Driver is the main component of Mamoste. This componentconsists of three mod-

ules. The main module is Inspector. Inspector is responsible for running the test cases on

ASP.NET page and capturing the path constraints during the execution. Constraint Converter

is responsible to communicate solver Adapter component. Variable Domain Miner module is

responsible for populating variable list that are used in the constraints as explained in Section

3.1.

21

Figure 3.4: System Architecture of Mamoste

22

When Mamoste is loaded, Inspector takes the URL of an instrumented ASP.NET page. Then

Inspector sends an HTTP GET request to the web server that results in loading the page under

test. At the end of the execution the web server generates andsends an HTML output as a

response to Inspector that is the client in view of the web server. After the first execution

of the page, Inspector collects all the HTML controls and theevents by parsing the HTML

output as well as the future ones. Why Inspector applies parsing procedure each time to all

HTML outputs is the probability of adding HTML controls to the page in run-time. It means

that HTML controls might be added to the page dynamically during execution of an event. In

order to catch these controls, Inspector has to take all HTMLoutputs into consideration. After

finishing work on the HTML output, the module directs it to theValidation Driver component.

The execution might be interrupted because of run-time error. In this case, Inspector sends

error message to the Validation Driver component. Then, Inspector holds to execute the page

with newly generated test case inputs until the input list isempty or time ends up. These steps

are continued for all gathered events. There is a difference between the first execution and the

others. Method of HTTP request has to be POST for all the events except page load. It has to

be GET for page load event.

During an execution, Inspector module gathers the constraint texts of the executed branches

via using the instrumentations described in Section 3.2.3.Inspector sends these captured

constraint texts to the Constraint Converter module. This module transforms these texts into

custom types of Mamoste. Also, path constraint tree is constructed during this transforma-

tion. While forming the constraint tree, Constraint Converter invokes the Variable Domain

Miner module to expand the variable list and to populate the domain set of string variables as

discussed in Section 3.1. Processed path constraints are sent to the Solver Adapter compo-

nent to create new test case inputs for next executions. Also, these constraints are sent to the

Validation Driver component to use during reporting test results.

The Inspector controls new test case inputs given by the Solver Adapter whether they are used

in previous executions or not. If the Inspector has used an input before, that input is ignored

and the Inspector passes to the next input. In addition, the path constraints that are captured

during the executions are also checked by the Inspector whether they are visited before or not.

If such a visited path constraint is met, that constraint is not taken into consideration. Even

HTML output or execution error mining by that constraint is not given Validation Driver

since there is a copy of that output in result list of Validation Driver. These two checking

23

mechanisms provide the Inspector and HTML Validator to workonly when it is necessary.

3.2.1.2 Solver Adapter

This component is responsible for generating new test case inputs to explore new branches of

the page under test. It gets formatted path constraints fromthe Test Driver component. Upon

getting a path constraint, Constraint Generator module of this component creates new path

constraints by employing a well established algorithm [7].The new constraint generation is

the same as other dynamic testing algorithms: Givenpc1 ∧ pc2 ∧ · · · ∧ pcn, new constraints

are¬pc1, pc1 ∧ ¬pc2, . . . , pc1 ∧ pc2 ∧ · · · ∧ ¬pcn.

From the constraint set generated according to the algorithm in Figure 3.2, Constraint Gener-

ator selects the ones that have not been solved by the Constraint Solver before. If a constraint

is not solved before, it is given to the Constraint Solver to produce new test case input for

it. Otherwise, Constraint Generator ignores that constraint. Besides, Constraint Generator

checks whether generated constraints are explored by the Test Driver or not. If Constraint

Generator encounters such a visited constraint, it does notgive that constraint to the Con-

straint Solver since new test case inputs found by the Solverwill be a subset of the inputs

generated before. These checking mechanisms prevent the Constraint Solver to generate un-

necessarily new test case inputs same as before.

Mamoste uses MS Solver Foundation [25] for the generation ofnew test case inputs. Mamoste

has to supply the domain of each variable that appears in the path constraint to the Solver, so

the Solver can return values that make the given boolean formula (path constraint) true. As

seen previous explanation, the generated values are used asnew inputs by the Inspector.

Presently, Mamoste can handle variables of type integer, boolean, real and string. In the case

of string, due to the Solver’s abilities Mamoste can only support equality and inequality rela-

tions in constraints. Requests sent to the web server and responses the web server prepares are

principally strings. We plan to support other custom types by linking them or their properties

to the web controls of the tested page. This correlation provides us to deal with only primitive

types. In other words, we need to capture correlation of the custom types and the controls of

the web page in order to support all types.

24

3.2.1.3 Validation Driver and HTML Validation

Validation Driver component is responsible for communicating with HTML Validator and

managing Test Result Repository. For validation Mamoste uses the HTML Validator of World

Wide Web Consortium [26]. Each of the HTML outputs is sent to the Validator and the

error/warning result messages are stored into Test Result Repository module.

Mamoste gives several choices about the HTML Validator. First one is that users can down-

load and install W3C HTML Validator into their computers. Then, they can change the URL

of the Validator with their local copy from the configurationfile. Another opportunity is the

ability to change validation mode: file upload and URL. This means that validation can be

done by uploading the HTML output from file or by downloading it from URL. Result of the

validation can be sent as HTML or XML files and Mamoste provides these two options. All

these options are adjusted easily from the configuration fileof Mamoste.

The Test Result Repository module holds HTML outputs and execution errors of the tested

ASP.NET dynamic web pages along with the associated path constraints. Also, it saves the

result of the Validator for each HTML output. This repository is used when the Test Results

are displayed to the users.

3.2.2 Implementation

Our web application checker tool Mamoste is a desktop application and it is written in .NET

Framework 3.5. However, it can test web applications implemented in .NET Framework 2.0

or later versions. It should be indicated that Mamoste is a white box testing tool which has to

be used on the development side. Thus, it is interested source codes and client-side codes such

as javascript and vbscript are out of its scope. Server-sidecodes are tested by Mamoste. In

other words, Mamoste does not execute client-side codes because it works on the server-side

in contrast to the web browsers.

Figure 3.5 displays the class diagram of the concolic package of Mamoste. The classes in

this figure are responsible from the concolic testing of Mamoste. The IDriver interface

provides required methods for the GUI of Mamoste. TheDriver class is inherited from

the IDriver interface. Driver class also includes other methods and fields to apply con-

25

Figure 3.5: Class Diagram of Concolic Package of Mamoste

26

Figure 3.6: Class Diagram of Trace Listener Package of Mamoste

colic testing. The path constraint texts captured by trace listener of Mamoste are read from

the trace listener file by methods of this class. Then, these constraint texts are given the

Constraint class to construct executed constraint tree and find constants, variables, opera-

tors, etc. During constructing constraint tree, theVariable class is used for variables and

their domain values. Also, thePathConstraint class holds the executed path constraint and

its variables. While theENUMConstraintType enumeration is used to determine constraint

types, ENUMVarType enumeration is used for variables. After generating new path constraints,

the Driver class calls theSolver class to create new inputs for these constraints. The

HttpRequest class executes the tested page with newly generated inputs.After each exe-

cution, the HtmlParser class parses detected HTML output to find new events and HTML

controls of the page. During executions, theTestLog class is called for logging data of the

executions. TheGeneralFunctions and the Constant classes consist of required general

functions and constants that are called by the other classesduring testing. TheValidation

class is responsible to validate the found HTML outputs by using an HTML validator. The

TestResult and theFeedBack classes is used to monitor results of the executions to the users.

Figure 3.6 displays the class diagram of the trace listener package of Mamoste. The class in

this diagram is responsible to capture constraints of executed paths. TheTxtTraceListener

class writes gathered constraints into the trace listener file that is specified by the user ex-

plained in Section 3.3.1. Note that this trace listener file is used later by theDriver class in

Figure 3.5.

Figure 3.7 displays the class diagram of the GUI package of Mamoste. The classes in this

diagram are responsible to get users actions and show test results to the users. TheProgram,

the Settings and theResources classes belong to the .NET framework. TheMamoste class

27

Figure 3.7: Class Diagram of GUI Package of Mamoste

provides interaction with the users and shows the test results on the screen.

3.2.3 Instrumentation

To collect the path constraints, Mamoste requires manual instrumentation. Manual instru-

mentation is done by using trace listener library of Mamoste, Mamoste.TraceListener.dll.

This library has a class namedTxtTraceListener and this class is inherited from the

TraceListener class [27] of theSystem.Diagnostics namespace [28]. Users must instru-

ment path constraints by callingWriteLine function of the trace listener class of Mamoste.

Usage of this function is likeSystem.Diagnostics.Trace.WriteLine("a > 5"). This in-

strumentation tells Mamoste that the current path is enabled when a > 5 constraint holds.

!(a > 5) constraint is negation of thea > 5 constraint. To instrument this negated con-

straint, users have to call the function likeSystem.Diagnostics.Trace.WriteLine("!(a >

5)") inside the related branch. Without these instrumentationsMamoste has to perform alias-

ing analysis to relate the variables with the controls of thepage.

Table 3.2 illustrates several instrumentation examples. The first row is about instrumentation

of integer variables. As seen at the first row of the table, original code does not containelse

branch. However, instrumented code containselse branch since Mamoste needs to know

28

Table 3.2: Code and Instrumented Code Samples

Code Instrumented Code
int a= Convert.ToInt32(txt.Text); int a= Convert.ToInt32(txt.Text);
if (a > 5) if (a > 5)

Write("Variable a is greater than 5."); System.Diagnostics.Trace.WriteLine("txt> 5");
Write("Variable a is greater than 5.");

else
System.Diagnostics.Trace.WriteLine("!(txt> 5)");

string a= txt.Text; string a= txt.Text;
if (!string.IsNullOrEmpty(a)) if (!string.IsNullOrEmpty(a))

Write("Variable a is not empty."); System.Diagnostics.Trace.WriteLine("txt != \"@@@\"");
else Write("Variable a is not empty.");

Write("Variable a is empty."); else
System.Diagnostics.Trace.WriteLine("!(txt != \"@@@\")");
Write("Variable a is empty.");

if (chk.Checked) if (chk.Checked)
Write("Checkbox is selected."); System.Diagnostics.Trace.WriteLine("chk== true");

else Write("Checkbox is selected.");
Write("Checkbox is not selected."); else

System.Diagnostics.Trace.WriteLine("!(chk== true)");
Write("Checkbox is not selected.");

int a= Convert.ToInt32(txt.Text); int a= Convert.ToInt32(txt.Text);
for (int i = 0; i <= a; i++) if (a >= 0)

if (i % 2 == 0) System.Diagnostics.Trace.WriteLine("txt>= 0");
Write(i + " is even number less for (int i = 0; i <= a; i++)

than or equal to "+ a+ "."); if (i % 2 == 0)
else System.Diagnostics.Trace.WriteLine("txt % 2== 0");

Write(i + " is odd number less Write(i + " is even number less
than or equal to "+ a+ "."); than or equal to "+ a+ ".");

else
System.Diagnostics.Trace.WriteLine("!(txt % 2== 0)");
Write(i + " is odd number less

than or equal to "+ a+ ".");
else

System.Diagnostics.Trace.WriteLine("!(txt>= 0)");

which branch is executed each time. Otherwise,if branch of the code might not be executed

by Mamoste. The second row shows instrumentation of string variables. The significant point

of this example is using@@@ characters instead ofempty or null values of string variables.

The third row illustrates instrumentation of boolean variables. Boolean variable can betrue

or false. The instrumentation of boolean varibles must be similar tochk == true or chk

== false or negation of these. Constraint parser that Mamoste uses cannot handlechk and

!chk as it expects equality or inequality that has left and right sides. Loop instrumentation is

exemplified in the last row of the table. Loop code is placed ina if branch and condition

of the if branch is derived from condition of the loop. In this example, i <= a condition

is converted intoa >= 0 as the initial value of variablei is 0. As explained in the first row,

else branch is also a requirement for Mamoste to be able to executethe loop. Note that the

29

conditions in the loop are instrumented as shown in the upperrows of the table.

3.3 Usage

In this section, we explain installations and configurations related to Mamoste. After installa-

tions and configurations, we describe how to use Mamoste on anASP.NET web page.

3.3.1 Installation

Mamoste adopts MS Solver Foundation [25] as a constraint solver. Thus, users of Mamoste

have to install MS Solver Foundation into their computers. Then, Mamoste requires several

configurations such as in which local directory test resultsare saved and URL of the HTML

Validator. Final one is several changes in configuration of the tested web application like

adding the Trace Listener dll of Mamoste as a reference. The following sub-sections describe

these requirements in detail.

3.3.1.1 Installation of MS Solver Foundation

MS Solver Foundation can be downloaded from the product web site [25]. Express edition of

MS Solver Foundation is free to download, so it can be installed by the users. Installation of

the component is easy nearly just clickingNext button several times. MS Solver Foundation

supports 32-bit and 64-bit of Windows 7 and Windows Vista operating systems [29]. Users

installing the component need administrator rights on the computer. Visual Studio 2008 or

Visual Studio 2010 should be also installed on the computer.At least one of these programs

might be already installed since target group of Mamoste consists of software developers.

3.3.1.2 Configuration of Mamoste

Files and directories provided by Mamoste can be copied intoanywhere on the computer but

they need to be all together. In other words, given package ofMamoste has to be saved same

as given directory hierarchy. The package consists of belowfiles and directories.

30

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="OutputPath" value="C:\Mamoste\Output\" />

<add key="TestLogFileName" value="TestLog.xml" />

<add key="ValidateDirectoryName" value="Validate" />

<add key="UrlOfValidator" value="http://validator.w3.org/check" />

<add key="ValidationMode" value="FileUpload" />

<add key="ValidationResultMode" value="Html" />

<add key="TraceListenerFile" value="C:\inetpub\wwwroot\TestApplication\

TraceListenerFile.txt" />

</appSettings>

</configuration>

Figure 3.8: Configuration File of Mamoste

1. Output Directory : It is used for saving result files of the concolic executions.

2. Output\Validate Directory : It is used for saving result files of the HTML validations.

3. Output\Validate\images Directory : Files inside this directory are used to display in

result files of the HTML validations.

4. Output\Validate\style Directory : Files inside this directory are used to display result

files of the HTML validations in a well formatted.

5. Mamoste.Concolic.dll : This file is library for concolic testing of Mamoste.

6. Mamoste.exe : This windows application file is the graphical user interface of Mamoste.

7. Mamoste.exe.config : This file is configuration file of Mamoste.

8. RpnParser.dll [30] : This file is library for parsing captured constraint texts during the

concolic executions.

9. Mamoste.TraceListener.dll : This file is library for listening execution traces of the

tested web applications.

After saving the above files and directories, users have to open Mamoste.exe.config file

with a text editor. This file seems like in Figure 3.8. Configurations inside this file have to

be changed according to the directory users choose to save files and directories of Mamoste.

Configuration keys of Mamoste that are seen in Figure 3.8 are explained below.

31

<system.diagnostics>

<trace autoflush="true" indentsize="4">

<listeners>

<remove name="Default"/>

</listeners>

</trace>

</system.diagnostics>

Figure 3.9: Change in Configuration File of Tested Web Application for Trace Listener of
Mamoste

• OutputPath Key : It denotes path in which result files of the concolic executions are

saved.

• TestLogFileName Key : It denotes file that logs of the concolic executions are written.

The extension of this file has to bexml. The directory in which this file is saved is

represented by OutputPath Key.

• ValidateDirectoryName Key : It denotes directory name in which result files of the

HTML validations are saved. The path in which this directoryis located is represented

by OutputPath Key.

• UrlOfValidator Key : It represents URL of the W3C HTML Validator. This key pro-

vides the users of Mamoste to install a copy of the W3C HTML Validator on their

computer and use it locally. Thus, internet access requirement can be eliminated by this

way.

• ValidationMode Key : Mamoste supports two validation modesof the W3C HTML Val-

idator, file upload and URL validations. Consequently, thiskey can be setFileUpload

and URL values.

• ValidationResultMode Key : Mamoste provides two output types for the validation

result files, HTML and XML types. Thus, this key can be setHtml and Xml values.

• TraceListenerFile Key : It denotes log file that keeps execution traces of the tested web

applications. Execution errors and path constraint instrumentations are written into this

file.

32

3.3.1.3 Configuration of Tested Web Application

Users of Mamoste have to set several configuration properties in their web applications for

listening execution traces [27] and capturing path constraints and run-time errors. Firstly,

they need to addMamoste.TraceListener.dll trace listener library to references of their

applications. After adding trace listener reference,Web.config, Web Configuration File [31],

and Global.asax, Global Application Class [32], files must be also modified. There are two

changes inWeb.config file. First one is adding<trace enabled="true" writeToDiagnos

ticsTrace="true"/> config section row between the<system.web> and </system.web>

tags. Then, users need to add config section [33] in Figure 3.9between the<configuration>

and </configuration> tags. Finally, Global.asax file must be configured. If the tested

web applications do not have this file, users are supposed to add it in their projects. Code in

Figure 3.10 have to be added inGlobal.asax file. The code in Figure 3.10 runs for every

request, clears list of trace listener and adds the trace listener of Mamoste to the list. The path

seen in Figure 3.10 represents path of trace listener file andthis path must be same path of

TraceListenerFile Key in Figure 3.8.

Table 3.3: Test Results of Given Example

Event Path Constraint Test Result Description
Page_Load Valid, 1 warning No Character Encoding Found!
btnDivide txtNum1 >= 0 && txtNum2 >= 0 Unhandled Execution Error Attempted to divide by zero!

No Character Encoding Found!
btnDivide !(txtNum1 >= 0 && txtNum2 >= 0) Invalid, 2 errors, 1 warning End tag for "br" omitted!

End tag for "b" omitted!
btnMultiply Unhandled Execution Error Input string was not in a correct

format!

protected void Application_BeginRequest(object sender, EventArgs e)

{

System.Diagnostics.Trace.Listeners.Clear();

System.Diagnostics.Trace.Listeners.Add(new

Mamoste.TraceListener.TxtTraceListener("C:\\inetpub\\wwwroot\\

TestApplication\\TraceListenerFile.txt"));

}

Figure 3.10: Change in Global Application Class of Tested Web Application for Trace Lis-
tener of Mamoste

33

1 using System;

2 namespace Example {

3 public partial class DivideAndMultiply : System.Web.UI.Page {

4 protected void Page_Load(object sender, EventArgs e) {

5 if (!IsPostBack) {

6 txtNum1.Text = "Enter a number...";

7 txtNum2.Text = "Enter a number...";

8 lblResult.Text = "Result will be displayed here...";

9 }

10 }

11 protected void btnDivide_Click(object sender, EventArgs e) {

12 int num1 = 0;

13 int num2 = 0;

14 try {

15 num1 = Convert.ToInt32(txtNum1.Text.Trim());

16 num2 = Convert.ToInt32(txtNum2.Text.Trim());

17 }

18 catch (Exception) {}

19 if (num1 >= 0 && num2 >= 0) {

20 System.Diagnostics.Trace.WriteLine("txtNum1 >= 0

&& txtNum2 >= 0");

21 lblResult.Text = "Division : " + (num1 / num2).ToString();

22 }

23 else {

24 System.Diagnostics.Trace.WriteLine("!(txtNum1 >= 0

&& txtNum2 >= 0)");

25 lblResult.Text = "
Please enter natural numbers...";

26 }

27 }

28 protected void btnMultiply_Click(object sender, EventArgs e) {

29 int num1 = Convert.ToInt32(txtNum1.Text.Trim());

30 int num2 = Convert.ToInt32(txtNum2.Text.Trim());

31 if (num1 >= 0 && num2 >= 0) {

32 System.Diagnostics.Trace.WriteLine("txtNum1 >= 0

&& txtNum2 >= 0");

33 lblResult.Text = "Multiplication : " + (num1 * num2).ToString();

34 }

35 else {

36 System.Diagnostics.Trace.WriteLine("!(txtNum1 >= 0

&& txtNum2 >= 0)");

37 lblResult.Text = "
Please enter natural numbers...";

38 }

39 }

40 }

41 }

Figure 3.11: Instrumented Application Logic File of DivideAndMultiply ASP.NET Web Form

34

3.3.2 Example

Figure 3.11 illustrates the instrumented application logic file of the DivideAndMultiply ASP

.NET web form in Figure 2.2. Statements in line 20, 24, 32 and 36 are instrumentations

that users have to write in their program. As seen in Figure 3.11, the instrumentations are

similar to the explanation in Section 3.2.3. These instrumentation statements assist Mamoste

to gather path constraints executed.

After running Mamoste on the given example, test results arecollected as shown in Table 3.3.

According to the first row of the table HTML output ofPage_Load execution is valid but

character encoding is not found in the output. Second row shows that there is a run-time error

during execution ofbtnDivide. The error attempting to divide by zero occurs intxtNum1 >=

0 && txtNum2 >= 0 execution path in line 21 of Figure 3.11. Second execution ofbtnDivide

event results in invalid HTML output with 2 errors and 1 warning as it can be seen in third

row of the table. The errors are about missing end tag and warning is again no character

encoding. Last row of the table displays an execution error which occurs in btnMultiply

event. The error is incorrect input string which rises at thebeginning of the event in line

29 or 30 of Figure 3.11. For there is no path constraint instrumentation up to that line, the

path constraint column of the table is empty. Consequently,Mamoste detects 1 malformed

HTML output, warnings in HTML outputs and 2 execution errors. These results indicate that

Mamoste should be used to detect malformed HTML outputs and unhandled execution errors

of ASP.NET dynamic web applications.

35

CHAPTER 4

EXPERIMENTS

We have used our tool Mamoste to check a subset ASP.NET web pages of the SGB.net sys-

tem of Ministry of Finance of Turkey. This web application isused by several government

organizations besides this ministry. Therefore, there arenumerous active clients interacting

with this system. In fact, only in Ministry of Finance there are nine to ten thousand clients

accessing and performing several tasks in the SGB.net system. Removing faults in this kinds

of systems plays an important role due to its huge number of clients.

We have applied Mamoste to a subset that includes five ASP.NETdynamic web pages of the

SGB.net system. The names of pages areOlcuBirim, Ambar, AmortismanSinir, Amortisman

Sure, and Bolge. The numbers of ASP.NET web controls in these pages are respectively 10,

20, 10, 13, and 13. In general, the web applications that use database simply perform listing,

saving, and deleting operations on data. These operations are also performed in our subset

under test. Accordingly, each page of our subset has four events: listing of records, saving of

records, deleting of records, and clearing the page. The sizes of these pages are provided in

the second column of Table 4.1. The minimum size is 179 and themaximum size is 354.

We have done three experiments on the selected subset of the SGB.net system. The first

experiment is applying Mamoste to the selected subset in thelast version (v2) of the SGB.net.

In the second experiment, manual testing is performed on thesame subset of the SGB.net

v2. Finally, we tested the previous version (v1) of the SGB.net via using Mamoste. While

doing the first and the second experiments, we aimed to compare test results of Mamoste and

manual testing for a view of effectiveness of Mamoste. The reason that we applied Mamoste

to v1 and v2 is to find number of errors that the developers havecorrected and to reveal the

maintenance success rate of the developers and Mamoste.

36

Table 4.1: Comparison of Manual Testing and Mamoste

Web Page Name LOC Method VC TC IG H#

OlcuBirim 184 Mamoste 4 7 4 6
Manual 3 11 3

Ambar 354 Mamoste 17 19 17 17
Manual 9 38 10

AmortismanSinir 179 Mamoste 4 7 4 6
Manual 3 10 4

AmortismanSure 214 Mamoste 8 10 10 10
Manual 5 23 4

Bolge 276 Mamoste 11 13 8 9
Manual 6 19 4

4.1 Applying Mamoste to SGB.net v2

Recall that Mamoste focuses on detecting execution errors and malformed HTML outputs.

When we used Mamoste on the SGB.net v2, we have found no execution errors. This result

was expected as the system has been used excessively by the government offices and numer-

ous tasks have been performed daily; hence the system is being tested every day. On the

other hand, Mamoste has found a number of faulty generated HTML outputs. In fact, the

numbers of warnings and errors found are more than expected by the developers of the sys-

tem. Mamoste found 319 HTML errors and 117 warnings, excluding 47 HTML errors and 21

warnings that repeat in every page because of a reused component.

Mamoste has surfaced two important errors in the system. Thefirst one is as follows. There

is an ASP.NET control used in almost every page of the SGB.net. Mamoste discovered that

in some of the dynamically generated HTML outputs, this control is repeated more than once

and all of the occurrences have the same properties. The second dramatic error is because of

a menu component of the system. This component is used by nearly all the ASP.NET pages.

Mamoste has found 47 HTML errors and 21 warnings only in this menu component. In other

words, because of this menu component, there are at least 47 errors and 21 warnings in every

single page.

37

4.2 Testing SGB.net v2 Manually

We have inspected and tested the same subset manually in order to compare the test results

and reason about the effectiveness of Mamoste. Results of manual testing and testing with

Mamoste are displayed in Table 4.1. The LOC column denotes the number of line of code

in the page, the Method column denotes testing approach type, the VC column denotes the

number of constraints explored, the TC column denotes the number of total constraints of

page under test. The number of inputs generated by the constraint solver is shown in column

IG. The column H# shows the number of HTML outputs generated.According to the table,

manual testing found less HTML outputs while using more testinputs. On the other hand,

Mamoste discovered more HTML outputs while using less test inputs. Moreover, Mamoste

executed more path constraints than manual testing as it canbe seen in VC column of Table

4.1. This means that code coverage is improved when using Mamoste significantly.

4.3 Applying Mamoste to SGB.net v1

As the third experiment, we ran Mamoste on the same subset of SGB.net v1. Our goal was to

compare Mamoste with the maintenance team of the system in terms of HTML fault detection.

Table 4.2 shows HTML faults of SGB.net v1 and v2 and these faults are categorized by the

error type. The column labeled as App. Version shows the versions of the system under test.

The Cnt column shows the number of occurrence of the error, the column labeled as W/E

shows whether the row represents an error or warning. The last column provides the ratio of

corrected error numbers to total error numbers of v1 while upgrading to v2. Our experiment

revealed that in v2 there are 319 HTML errors and 117 warningsexcluding the errors caused

by the menu component in every page. Interestingly, Mamostefound 407 HTML errors and

146 warnings in v1. As seen in the last column of the table, only a small fraction of these

errors in the earlier version had been either found and corrected or unconsciously corrected by

the developers. The outcomes of this experiment support ourapproach. The first outcome is

that Mamoste finds more HTML errors than the maintenance teamof the system. The second

one is that Mamoste increases the success ratio of error detection and correction.

Table 4.3 illustrates HTML faults of the menu component, which is reused by all pages in this

system, both in v1 and v2. As it can be seen from the table, these errors are basically about

38

Table 4.2: HTML Faults found by Mamoste

App. Cnt W/E Maintnc
Error Type Version Success

Rate (%)
No attribute v2 9 E 25

v1 12
Element not allowed v2 133 E 23

v1 172
Cannot generate v2 54 W 19
system identifier v1 67
No system identifier v2 54 E 19
could be generated v1 67
Undefined entity v2 54 E 19

v1 67
Reference not terminated v2 54 W 19
by REFC delimiter v1 67
Missing attribute v2 38 E 19

v1 47
Duplicate specification v2 22 E 27

v1 30
End tag for unfinished v2 9 E 25
element v1 12
Character not allowed v2 9 W 25

v1 12

39

Table 4.3: HTML Faults of Menu Component found by Mamoste

Error Type App. Cnt W/E
Vers.

No Character encoding v2 2 W
v1 1

No attribute v2 1 E
v1 1

Element not allowed v2 34 E
v1 10

Cannot generate v2 3 W
system identifier v1 2
No system identifier v2 8 E
could be generated v1 3
Undefined entity v2 3 E

v1 2
Reference not terminated v2 8 W
by REFC delimiter v1 3
Reference to external v2 8 W
entity in attribute value v1 3
Missing end tag v2 1 E

v1 1

missing, unfinished or wrong HTML elements and attributes. Unlike Table 4.2, number of

errors in the menu component of v2 is more than those of v1. Theunderlying reason is that

the menu component was implemented over again in a new manner. This case also supports

usage of Mamoste since the errors in the new menu component are detected by Mamoste.

To conclude, we have reached several significant results through these experiments. First,

Mamoste improves efficiency of test in terms of using less test inputs and collecting more

HTML outputs and execution errors. Second, Mamoste increases the code coverage by exe-

cuting different branches of the tested program. Finally, Mamoste increases the success ratio

of HTML error detection in ASP.NET web applications.

40

CHAPTER 5

CONCLUSION

In this thesis we presented an automated tool called Mamosteto detect execution errors and

malformed HTML outputs of ASP.NET dynamic web applications. Mamoste applies concolic

testing in generating test cases and considers page events as test input as well.

Our experiments revealed numerous HTML bugs on a highly usedASP.NET application and

including a faulty component which is used almost every pageof this application. It also

showed that some of generated HTML outputs have the same control more than once. In

fact, Mamoste detected the errors that lived through the versions of this application and that

showed effectiveness of Mamoste.

There are several novelties of this study. Firstly, Mamosteprepares HTTP requests same as

the web browsers. While doing this, it injects inputs into the requests as if they are entered by

the clients. Secondly, Mamoste finds events of the tested page and uses these events as unit

test elements during concolic testing. This procedure cannot be handled by concolic testing.

Thirdly, Mamoste performs several checking mechanisms to minimize input generation and

HTML validation.

There are some limitations of Mamoste. Firstly, the instrumentation that Mamoste needs to

catch branch conditions is manual. We plan to remove this manual instrumentation as a future

work. Second limitation is that Mamoste can support only primitive variable types; integer,

boolean, real and string. We are going to support other custom types by linking them or their

properties to the web controls of the tested page. At presentonly equality and inequality

relations of string variable type are supported due to the limitations of the constraint solver

used. Hence, string operations are also a limitation of Mamoste. We plan to include string

operations to be used in string constraints such as subset and prefix.

41

REFERENCES

[1] Gareth Lee, John Morris, Kris Parker, Gary A. Bundell, and Peng Lam. Using symbolic
execution to guide test generation.Software Testing, Verification and Reliability (STVR),
15(1):41–61, March 2005.

[2] William G. J. Halfond, Saswat Anand, and Alessandro Orso. Precise interface identifi-
cation to improve testing and analysis of web applications.In Proceedings of the 18th
International Symposium on Software Testing and Analysis (ISSTA), pages 285–296,
2009.

[3] Shay Artzi, Adam Kieżun, Julian Dolby, Frank Tip, DannyDig, Amit Paradkar, and
Michael D. Ernst. Finding bugs in web applications using dynamic test generation
and explicit state model checking.IEEE Transactions on Software Engineering (TSE),
36(4):474–494, July/August 2010.

[4] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and
Zhendong Su. Dynamic test input generation for web applications. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA), pages 249–260,
2008.

[5] William G. J. Halfond and Alessandro Orso. Automated identification of parameter mis-
matches in web applications. InProceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), pages 181–191, 2008.

[6] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao. A static
analysis framework for detecting sql injection vulnerabilities. InProceedings of the 31st
Annual International Computer Software and Applications Conference (COMPSAC),
pages 87–96, 2007.

[7] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random
testing. InProceedings of ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 213–223, 2005.

[8] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference (ESEC) held
jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pages 263–272, 2005.

[9] Nikolai Tillmann and Jonathan De Halleux. Pex: white boxtest generation for .net.
In Proceedings of the 2nd International Conference on Tests and Proofs (TAP), pages
134–153, 2008.

[10] Microsoft Research Team. Moles - isolation framework for .net. http://research.
microsoft.com/en-us/projects/moles. Last visited: March 2011.

42

[11] W3Schools. Asp tutorial.http://www.w3schools.com/asp/default.asp. Last
visited: February 2011.

[12] The PHP Group. What is php?http://www.php.net. Last visited: February 2011.

[13] Microsoft Corporation. Microsoft asp.net.http://www.asp.net. Last visited: April
2011.

[14] Oracle. Javaserver pages technology.http://www.oracle.com/technetwork/
java/javaee/jsp/index.html. Last visited: March 2011.

[15] Paul D. Sheriff. Introduction to asp.net and web forms.http://msdn.microsoft.
com/en-us/library/ms973868.aspx. Last visited: April 2011.

[16] Microsoft Corporation. The official microsoft iis site. http://www.iis.net. Last
visited: April 2011.

[17] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. En-
gler. Exe: Automatically generating inputs of death.ACM Transactions on Information
and System Security (TISSEC), 12(2).

[18] James C. King. Symbolic execution and program testing.Communications of the ACM
(CACM), 19(7):385–394, July 1976.

[19] Corina S. P̌ašareanu and Willem Visser. A survey of new trends in symbolic execution
for software testing and analysis.International Journal on Software Tools for Technol-
ogy Transfer (STTT), 11(4):339–353.

[20] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dynamic sym-
bolic execution for invariant inference. InProceedings of the 30th International Con-
ference on Software Engineering (ICSE), pages 281–290, 2008.

[21] Christophe Meudec. Atgen: automatic test data generation using constraint logic
programming and symbolic execution.Software Testing, Verification and Reliability
(STVR), 11(2):81–96, June 2001.

[22] Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated whitebox fuzz
testing. InProceedings of Network Distributed Security Symposium (NDSS). Internet
Society, 2008.

[23] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamictest input generation for
database applications. InProceedings of International Symposium on Software Testing
and Analysis (ISSTA), pages 151–162, 2007.

[24] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing web-based applications: The
state of the art and future trends.Information and Software Technology (IST), 48:1172–
1186.

[25] Microsoft. Ms solver foundation.http://www.solverfoundation.com. Last vis-
ited: March 2011.

[26] World Wide Web Consortium. Html validator.http://validator.w3.org. Last
visited: February 2011.

43

[27] Microsoft. Tracelistener class.http://msdn.microsoft.com/en-us/library/
system.diagnostics.tracelistener.aspx. Last visited: April 2011.

[28] Microsoft. System.diagnostics namespace.http://msdn.microsoft.com/en-us/
library/15t15zda.aspx. Last visited: April 2011.

[29] Microsoft. Installing solver foundation. http://msdn.microsoft.com/en-us/
library/ff524499(v=vs.93).aspx. Last visited: April 2011.

[30] The Code Project Open License (CPOL). General expression parser and evaluator.
http://www.codeproject.com/KB/recipes/GenExpParser.aspx. Last visited:
March 2011.

[31] Microsoft. Editing asp.net configuration files.http://msdn.microsoft.com/
en-us/library/ackhksh7(v=VS.100).aspx. Last visited: April 2011.

[32] Microsoft. Global.asax syntax.http://msdn.microsoft.com/en-us/library/
2027ewzw.aspx. Last visited: April 2011.

[33] Microsoft. <system.diagnostics> element. http://msdn.microsoft.com/en-us/
library/1txedc80.aspx. Last visited: April 2011.

44

