

FINDING MALFORMED HTML OUTPUTS AND UNHANDLED EXECUTION
ERRORS OF ASP.NET APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET ERDAL OZKINACI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

MAY 2011

Approval of the Graduate School of Informatics

Prof. Dr. Nazife Baykal

Director

| certify that this thesis satisfies all the requirements #seais for the degree of Master of

Science.

Prof. Dr. Yasemin Yardimci Cetin

Head of Department

This is to certify that we have read this thesis and that inapinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master onh&zie

Examining Committee Members

Assoc. Prof. Dr. Onur Demirors

Assist. Prof. Dr. Aysu Betin Can

Aydin Nusret Gugli, MSc.

Assoc. Prof. Dr. Altan Kocyjit

Assoc. Prof. Dr. Halit @uzTuzin

Assist. Prof. Dr. Aysu Betin Can

Supervisor
(METU, II)
(METU, II)

(METUTECH, Stratek)

(METU, 1)

(METU, CENG)

| hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | atsdeclare that, as required
by these rules and conduct, | have fully cited and referencedll material and results that

are not original to this work.

Name, Last Name Mehmet Erdal Ozkinaci

Signature

ABSTRACT

FINDING MALFORMED HTML OUTPUTS AND UNHANDLED EXECUTION
ERRORS OF ASP.NET APPLICATIONS

Ozkinaci, Mehmet Erdal
M.Sc., Department of Information Systems

Supervisor : Assist. Prof. Dr. Aysu Betin Can

May 2011, 44 pages

As dynamic web applications are becoming widespread naadyery area, ASP.NET is one
of the popular development languages in this domain. Thar®in these web applications
can reduce the credibility of the site and cause possibkdbs number of clients. There-
fore, testing these applications becomes significant. Wegmt an automated tool to test
ASP.NET web applications against execution errors and HExtbrs that cause displaying
inaccurate and incomplete information. Our tool, callednMate, adapts concolic testing
technique which interleaves concrete and symbolic exagsitio generate test inputs dynam-
ically. Mamoste also considers page events as inputs whichat be handled with concolic
testing. We have performed experiments on a subset of ayhaaed ASP.NET application
of a government fiice. We have found 366 HTML errors and a faulty component wiich
used almost every ASP.NET page in this application. In amditMamoste discovered that a

common user control is misused in several generated pages.

Keywords: automated testing, concolic testing, dynamib peges, asp.net

Oz

ASP.NET UYGULAI\/IA!.ARINDAK] HATALI HTML CIKTILARININ VE
ONGORULEMEMS CALISMA HATALARININ BULUNMASI

Ozkinaci, Mehmet Erdal
Yuksek Lisans, Bilisim Sistemleri Bolim{

Tez Yoneticisi : Yard. Dog. Dr. Aysu Betin Can

Mayis 2011, 44 sayfa

ASP.NET, dinamik web uygulamalarinin gelistiriimesirdglanilan populer dillerden biridir.
Web uygulamalarindaki hatalar, bu uygulamalarin givéigjini ve kullanici sayisini azalta-
bilir. Bundan dolayi, bu uygulamalarin test edilmesi onemzdnmaktadir. Bu calismada,
ongorilememis calisma hatalari ve tarayicilarda bozukirgilerin olusmasina neden olan
HTML hatalarini igeren ASP.NET uygulamalarini, otomatirak test eden bir ara¢ sungca
Aracimizin ismi Mamoste’'dir. Mamoste, test girdilerinndimik olarak Gretmek icin somut
ve sembolik calisma yontemlerini déntsimli olarak kudla concolic testi ASP.NET uygu-
lamalarina adapte eder. Mamoste, concolic test ile coajfemweb sayfalarindaki olaylari
da girdi olarak ele alir. Mamoste ile, bir kamu kurumu tardéin y@un olarak kullanilan
ASP.NET uygulamasinin testini gerceklestirdik. Mamp8&6 HTML hatasi ve bu uygula-
manin hemen hemen her sayfasinda kullanilan hatali bgdriléespit etti. Bunun yani sira;

Mamoste, Uretilen sayfalarin bir kisminda hatali kullamg genel bir kontrol aga ¢ikartti.

Anahtar Kelimeler: otomatik test, concolic test, dinamigwsayfalari, asp.net

dedicated to my nephew, my uncle Abid, my family, and waleeit t

Vi

ACKNOWLEDGMENTS

| am deeply grateful to my supervisor, Assist. Prof. Dr. Astin Can, for her encourage-

ment and guidance. | could not finish this study without hepsut.

I would like to thank all of those who supported me in any respleiring this study especially

my friends and the company which | work for, Stratek Stratdgichnologies R-D.

For providing scholarship, | would also thank the Scientditd Technological Research

Council of Turkey (TUBTAK).

Most importantly, | would like to thank whole my family, Stike OZKINACI, Feramuz
OZKINACI, Nuriye OZKINACI, ibrahim Halil OZKINACI, and Emel ASLANTAS, for their

endless love, so glad | have them.

Vii

TABLE OF CONTENTS

ABSTRACT e iv
OZ . e v
DEDICATON Vi
ACKNOWLEDGMENTS e e e e e e vii
TABLE OF CONTENTS e e e e e ivii
LISTOFTABLES e e e e e X
LISTOFFIGURES e e e e Xi
LISTOF SYMBOLS e e e e Xii
CHAPTERS
1 INTRODUCTION e e e e e 1
1.1 Problem Statement o 3
1.2 OVerVIEW 4
2 BACKGROUND AND LITERATURESURVEY 6
2.1 Dynamic Web Languages and ASP.NET 6
2.2 Dynamic Test Input Generation 9
2.3 RelatedWork 13
3 MAMOSTE e 16
3.1 Methodology o 16
3.2 Design And Implementation 21
3.2.1 System Architecture oL L 21
3.2.2 Implementation 25
3.2.3 Instrumentation L 28
3.3 Usage e 30

3.3.1 Installation L

3.3.2 Example 35

4 EXPERIMENTS 36
4.1 Applying Mamoste to SGB.netv2. 37

4.2 Testing SGB.netv2Manually 38
4.3 Applying Mamosteto SGB.netvl. 38

5 CONCLUSION 41
REFERENCES e 42

Table 2.1

Table 3.1
Table 3.2

Table 3.3

Table 4.1
Table 4.2

Table 4.3

LIST OF TABLES

Execution Results of MicrosoftPex

Database Table of the Districts
Code and Instrumented Code Samples

Test Results of Given Example

Comparison of Manual Testing and Mamoste
HTML Faults found by Mamoste

HTML Faults of Menu Component found by Mamoste

29

33

37

40

LIST OF FIGURES

Figure 2.1 HTML Interface File of DivideAndMultiply ASP.NEWeb Form 8
Figure 2.2 Application Logic File of DivideAndMultiply ASRET Web Form 10
Figure 2.3 Code forillustrating Symbolic Execution[1] 11
Figure 2.4 Code for illustrating Defective of MicrosoftPex 15
Figure 3.1 Algorithm of Concolic Testing 17
Figure 3.2 Algorithm of Finding New Inputs in Concolic Tes§i 18

Figure 3.3 Code for illustrating Need of Manual Instruméinotaon Web Applications

Using Database @ e 20
Figure 3.4 System Architecture of Mamoste 22
Figure 3.5 Class Diagram of Concolic Package of Mamoste 26
Figure 3.6 Class Diagram of Trace Listener Package of Mamnost 27
Figure 3.7 Class Diagram of GUI Package of Mamoste 28
Figure 3.8 Configuration File of Mamoste 31

Figure 3.9 Change in Configuration File of Tested Web Apfilicefor Trace Listener

of MamoOSte 32

Figure 3.10 Change in Global Application Class of Tested Wpplication for Trace

Listener of Mamoste e e e e 33

Figure 3.11 Instrumented Application Logic File of DividedMultiply ASP.NET Web

Xi

ASMX

ASP

ASPX

Cail

DLL

GUI

HTML

HTTP

s

ISAPI

JSP

PHP

URL

W3C

XML

LIST OF SYMBOLS

Active Server Methods Extended
Active Server Pages

Active Server Pages Extended
Common Gateway Interface
Dynamic Link Library

Graphical User Interface
HyperText Markup Language
HyperText Transfer Protocol
Internet Information Services
Internet Server Application Programming Interface
Java Server Pages

Hypertext Preprocessor
Uniform Resource Locator
World Wide Web Consortium

eXtensible Markup Language

Xii

CHAPTER 1

INTRODUCTION

Web applications with dynamic content are becoming veryufmpalmost in every business
area such as banking, entertainment and government agerige of the reasons of this
popularity is that updating and maintenance of these agimics do not require distribution
and installation software. Besides, they are accessiblnipycomputer with Internet access,
which means there are potentially thousands of clientsddiitian, in terms of user interaction
these applications are starting to compete with the desippfications due to dynamic web

application technologies.

Information technologies (solutions, applications, pamgs) shift to Internet environment.
Static web technologies cannot support this trend and tleema appearing demand. In or-
der to meet upcoming needs, dynamic web languages are gedelo the last decades such
as the scripting languages ASP and PHP. After these tedlieslseveral complex frame-
works are developed such as ASP.NET and JSP for dynamic wiibaton projects. These
frameworks are more preferable than ASP and PHP scriptimguiges because they have a
number of features which ASP and PHP cannot cope with. Thsysalpport object oriented

architecture that is the most popular view of late yearsevtdlveloping software projects.

ASP.NET is an example of dynamic web application developrzguage. ASP.NET pages
run typically on a server and generate HTML or XML pages thatsent to client browsers.
A common practice in ASP.NET is separating applicationdpguch as event handlers, from
the static HTML parts such as widgets to be displayed on tbevger. In other words, the
static HTML or XML parts reside in a separate file from the cdoiehandling events and
generating dynamic parts. Although this separation esatdese of the code, it makes the

development process error-prone.

Dynamic web applications even if developed with scriptingguages have proliferated in
almost all areas such as banking and communication. As & mdhis tendency, accuracy
and trusty of these kinds of applications have become isargly important. Thus, there is a
risen need to test and verify these applications. Researtiage been interested in improv-
ing testing and verification techniques, algorithms andstéar dynamic web applications.
In other words, testing and verification society has broatieir direction to dynamic web
technologies and applications. There are several tecasiguch as dynamic test generation,
fuzz testing, symbolic execution and concolic executiamr(bination of symbolic and con-
crete execution). Researchers have worked on these teelsnéad have diversified them and
their algorithms to test and verify dynamic web applicasioRor example, Halfond et al. [2]
extract interfaces for Java based web applications to iveptioe €fectiveness of test input
generation. Moreover, Artzi et al. [3] target PHP applicas and aim to catch faulty HTML

outputs of such dynamic web sites.

Several works on testing and verification of dynamic web iapfibns have focused on PHP
and JSP. For example, Wassermann et al. [4] apply symboéicugion to discover SQL
injections of PHP web applications. Halfond et al. [5] areiasted in parameter mismatches
in JSP web applications by using a static analysis basedagpr Moreover, Artzi et al.
[3] use concolic execution technique to find inaccurate HTMitputs and run-time errors
of PHP. On the other hand, Fu et al. [6] are interested in S@dciion on ASP.NET web
applications with the help of symbolic execution, but latesy switch their focus on Java.
As a result of all these researches, we have decided to wdtkASP.NET dynamic web
applications because we believe that ASP.NET dynamic wegukge is still virgin with

respect to testing and verification.

In this thesis we present an automated tool, called Mamtustdeck web applications devel-
oped with ASP.NET whether there are execution errors angshie applications and whether
they produce malformed HTML outputs causing to display auaate and incomplete infor-

mation.

Mamoste is based on concolic testing pioneered by DART [@]@dTE [8]. In concolic test-
ing an application is executed on concrete input values ti@mas and then using symbolic
execution new concrete inputs are generated to maximize coderage. By solving sym-

bolic constraints that are derived from executed contreV,flloncolic testing generates new

concrete inputs to exercise unexplored paths. Mamosteeapplis technique on ASP.NET
applications. In addition, Mamoste triggers all the usgplemented event handlers and sup-
plies inputs. In a sense, we perform unit testing with dymaimput generation where a unit

is an event handler.

We used our tool to detect HTML errors on a subset of an heagibd ASP.NET application
owned by the Ministry of Finance of Turkey. Among numerousMiTerrors and warnings
discovered, Mamoste revealed errors on two important higklsed components of the ap-
plication. We also tested older version of the same subsktampared the bugs found by
the development team to bugs found by Mamoste. We found thaual testing has been
ineffective compared to Mamoste. Firstly, Mamoste used lessrjests and collected more
HTML outputs. Secondly, Mamoste increased code coveragadguting diferent branches

of tested program.

1.1 Problem Statement

Since many Internet users interact with the dynamic wels sitee faults that crash the ap-
plication or interrupt a transaction or cause to displag@umate and incomplete information
are not tolerable. These kinds of errors reduce the créaglibil the site which can cause pos-
sible loss of a number of clients. Since dynamic web apptinatproduce HTML pages at
runtime depending on the interaction with the user, deve®pre more likely to make errors
compared to developing sites with static web technologiashe case of ASP.NET appli-

cations, all execution paths may not return correct HTMLgsagreated dynamically. For
example, code segment closing end tag of an HTML table mayp@&aat execution path be-
cause of a condition when code segment opening begin tagtdflifML table is executed. In

other words, an execution path of a program may produce madfh, wrong and incomplete
HTML because conditions and input values of the programraete the paths executed.
However, while using static web technologies, all HTML paigee developed manually in a

straight-forward approach.

There are several researches analyzing ASP.NET web ajptisaSAFELI [6] detects SQL
injection vulnerabilities at compile time by inspecting MM®ytecode of ASP.NET dynamic

web applications. Although it is an important problem, itoishogonal to detecting mal-

3

formed HTML outputs. Microsoft Pex [9] and Moles [10] aim tergerate unit tests for .NET
framework which includes ASP.NET technology. However, Reuires the developers to
change the modifier of event handlers to public since Pexeasamit tests for only public
methods. Also, unit tests use assertions which can detectigg&ns errors; however, it is not

clear how Pex can detect malformed HTML outputs.

There are specific topics worked on such as SQL injectiorgugian errors and security gaps
related to dynamic web applications and these subjectsoatess important than each other,
but they have been enormously worked subjects. As a resaliare interested outputs of
dynamic web applications. The outputs of these applicatman be HTML and XML files

and these output files can be malformed, wrong and non-s@msabrowsers cannot display
these kinds of output files. Malformed outputs of dynamic wpplications may be tolerable
up to some level by browsers but there is still a limit of talece that browsers can do. For
this reason, this subject is challenging for us and we ddoidieal with outputs of ASP.NET

dynamic web applications.

Researchers have been rarely interested in ASP.NET dynaefi@pplications as aforemen-
tioned above. Therefore, this gap leads us to focus on ASPdyEamic web applications.
Moreover, HTML outputs of ASP.NET applications have notd#d yet. Thus, we have
decided to automate detecting malformed HTML outputs ametime execution errors of

ASP.NET dynamic web applications.

To sum up, the problems we aim to solve in this study are;

e To discover malformed HTML outputs of ASP.NET dynamic weplagations

e To discover unhandled execution errors of ASP.NET dynanaib applications

1.2 Overview

In this thesis study, we studied on concolic executionrigstechnique which was found by
combining concrete and symbolic executions and we devdlgpeautomated tool named
Mamoste based on concolic execution that tries to reveatinue execution errors and defec-

tive HTML outputs generated by ASP.NET dynamic web applicet

4

There are five chapters in this thesis. First chapter inttegulynamic web application con-
cept, concolic execution, related researches and our taeflyb Then, problem statement

section gives reasons why we choose this subject and iedicatr motivation.

Second chapter presents background knowledge and literatuvey about dynamic web
languages and applications. After that dynamic test inpoegation techniques are addressed

especially concolic execution, and finally works relatedues are explained.

In chapter three, we propose our solution in detail. We empl@ethodology of the study
and system architecture of Mamoste. We give technical mm&bion about Mamoste and our
concolic execution perspective. Lastly, explanation offlto apply Mamoste on ASP.NET

dynamic web applications is given with a running examplegptd.

Fourth chapter presents experimental results of the studysabset of an ASP.NET dynamic
web application, called SGB.net, that is used intenselyhbyMinistry of Finance of Turkey

as well as by other governmental organizations. This chaptkides comparison of manual
testing and Mamoste on this application. Moreover, curvension of the SGB.net is com-
pared with previous version. In this chapter, we also empaamd make inferences on the

results of these experiments.

The final chapter evaluates the study and summarizes ouiptite study. Limitations and

future works are also explained in this chapter.

CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Dynamic Web Languages and ASP.NET

Web pages that are implemented by using dynamic web tedjiesltiave dynamic content
in contrast to static web pages. Contents of dynamic webspeayechange in time, according
to user interaction, request parameters that are giveresetpages and etc. However, static

web pages always display same content, it does not chanifj¢ghese pages are changed.

The underlying working principle is actually simply the safor all of dynamic web tech-

nologies. This principle can be summarized as below.

e The client (mostly a browser like Internet Explorer, GooGlerome, Mozilla Firefox)

prepares request data and sends it to the web server.

e The web server receives the request data and detects whattéigsion in the request

data is.

e After comprehending the file extension, the web server eetirthe request data to the

related handler.
e The handler that the request data is sent prepares respbaigeisvasked by the client.

e The handler gives prepared response to the web server angethserver sends it to

the client.

Relations between handlers such as ISAPI, CGI and file ariehiike aspx, asmx are coor-

dinated in the web servers during installation of programbyodevelopers. Thus, the web

6

servers know which handlers deal with which file extensiohlere is no need to process
static files since their contents are static. For this reasmnweb servers send these files as

they are to the clients.

There are many dynamic web languages such as PHP, ASP, IBRINET, JSP to create
dynamic web applications. There arefdiences between these languages. For example,
ASP [11] and PHP [12] are scripting languages. However, NEP.[13] and JSP [14] are
parts of huge frameworks. Moreover, ASP and PHP scriptsrdirged into HTML tags,
i.e. scripts and HTML tags are located in the same file. On therdhand, frameworks of
ASP.NET and JSP can manage GUI parts and code partdtasedt files. In other words,
the static HTML or XML parts reside in a separate file from tlwele for handling events
and generating dynamic parts [15]. Also, ASP scripts can hitew inside HTML tags in
ASP.NET framework. ASP and PHP are interpreted languages®B.NET and JSP are
compiled ones. In other words, source codes of ASP and PHRa@ijigns need to be copied
to the web server that serves these applications. In conthase is no need to copy source
code to the web server for ASP.NET and JSP. It is enough to comypiled files to the web
server in ASP.NET and JSP.

ASP is earlier server-side scripting language of Micrasiodtter, Microsoft has developed the
ASP.NET dynamic web language, but ASP.NET is not newer @ersf ASP. It is an entirely
new technology for server-side scripting. ASP.NET is a pduwéool for developing dynamic
and interactive web pages in .NET framework of Microsoft.eMweb server that executes
ASP.NET applications is IS [16]. ASP.NET has many new fezgsuch as language support,
new controls, XML-based components which are not suppdtedSP. Since ASP.NET
engine can run compiled code, the performance in resportdinjent request in the web
server is increased. ASP.NET dynamic web applicationsdsgeBehind mode or CodeFile
mode. The web applications that usedeBehind mode need compiled files, called dll, in the
web server but there is no need for source code in this modéh®other side, source code

has to be copied into the web server while usitigleFile mode.

ASP.NET pages are called web forms and they consist of HTMérfiace and applica-
tion logic files [15]. The HTML interface file of a web form car llormed with standard
HTML, web controls of ASP.NET framework, XML, and scripts.cripts are executed on

the web server by ASP.NET engine. Also, the web controls xeewted and converted into

1 <%@ Page Language="C#" AutoEventWireup="true" Inherits="Example.DivideAndMultiply"
CodeBehind="DivideAndMultiply.aspx.cs" %>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml">

4 <head runat="server'><title></title></head>

5 <body>

6 <form id="forml" runat="server"><div>

7 <div><asp:Label ID="1blResult" Font-Bold="true" Font-Size="Large"
ForeColor="Red" runat="server'"></asp:Label></div>

8 <div><asp:Label ID="1blNuml" Text="Number 1" runat="server"></asp:Label>

9 <asp:TextBox ID="txtNuml" runat="server"></asp:TextBox></div>

10 <div><asp:Label ID="1blNum2" Text="Number 2" runat="server"></asp:Label>

11 <asp:TextBox ID="txtNum2" runat="server'"></asp:TextBox></div>

12 <div><asp:Button ID="btnDivide" OnClick="btnDivide_Click" Text="Divide"
runat="server'"></asp:Button>

13 <asp:Button ID="btnMultiply" OnClick="btnMultiply_Click" Text="Multiply"
runat="server"></asp:Button></div>

14 </div></form></body>

15 </html>

Figure 2.1: HTML Interface File of DivideAndMultiply ASP.RT Web Form

HTML controls by ASP.NET engine before sending responsééoctient. The application
logic file of a web form composes of event handlers and methédgure 2.1 and Figure
2.2 illustrate an example namebfivideAndMultiply.aspx for ASP.NET web forms. The
DivideAndMultiply.aspx web form is designed to divide or multiply the given two numtbe

by the users.

Figure 2.1 shows the HTML interface a@fivideAndMultiply.aspx and it includes standard
HTML tags and web controls of ASP.NET framework. In this fikete are three labels, two
text boxes and two buttons. It can be added events to any &é tlveb controls and bound
them with custom event handlers. For instance, in this elathe btnDivide_Click event
handler is bound to thenClick attribute of thebtnDivide button and thébtnMultiply_Click
event handler is bound to thenClick attribute of thebtnMultiply button. Note that the im-

plementations of these event handlers are in the applickigc file in Figure 2.2.

As the first line of Figure 2.1 says, the code behind the HTMkEriiace is implemented in
C# and it resides in the application logic fiksvideAndMultiply.aspx.cs which is shown
in Figure 2.2. The application logic file implements the dvgandlers that are bound to the

web controls of the HTML interface file in Figure 2.1.
In this example there are three event handlesge_Load, btnDivide_ClickandbtnMultiply

8

_Click. The Page_Load event handler is the default event handler of every ASP.NED w
form and this event handler initializes the text boxes amdldiel (lines 6-8) in Figure 2.2.
The second event handlértnDivide_Click, is a custom event handler for tloaclick event
of the btnDivide button. This binding can be defined in the interface file ad a®in the
application logic file. In this example the event handlerastd to the button in the interface
file. This event handler performs a division operation anis [the result into theText prop-
erty of the labellblResultin line 20. If one of the given numbers is negative, it puts iaare
message in boldface into the label in line 23. The third elandler, btnMultiply_Click,is

a custom event handler for thClick event of thebtnMultiply button. This event handler
performs a multiplication operation and puts the resulb itte Text property of the label
1blResult in line 30. If one of the given numbers is negative, it puts emremessage in

boldface into the label in line 33.

2.2 Dynamic Test Input Generation

Concolic testing is a hybrid software verification techmgbat interleaves concrete execu-
tion with symbolic execution to generate test inputs dymathi. The basic idea behind the
concolic testing is to execute the application under tess@mne initial inputs. After that,

additional inputs are obtained by solving constraintswéerifrom previously executed paths.

Execution continues with generated new inputs until no mgwitis are obtained.

There is an increase in the number of tools that implementidhybgorithm of concrete exe-
cution and symbolic execution (concolic testing) to geteetast inputs dynamically because
of success of concolic testing on code coverage. Some c¢ tivets are DART [7], CUTE
[8], EXE [17] and Pex [9]. The DART [7] works by code instruntation on C programs to
achieve symbolic evaluation and to generate new input sdtrepossible program execution
paths. The CUTE [8] is a follower of the DART. The CUTE perfarigoncolic execution on
automating unit testing with memory graphs. The Pex geesait test for programs written

with C#, Visual Basic and F# languages by using concolic etea.

Concrete execution is simply running a program with comcretlues. On the other side,
symbolic execution uses symbolic values for the prograrakbas instead of concrete [18].

Symbolic execution is a technique which executes prograitissymbolic input values, in-

9

1 wusing System;

2 namespace Example {

3 public partial class DivideAndMultiply : System.Web.UI.Page {

4 protected void Page_Load(object sender, EventArgs e) {

5 if (!IsPostBack) {

6 txtNuml.Text = "Enter a number...";

7 txtNum2.Text = "Enter a number...";

8 1blResult.Text = "Result will be displayed here...";

9 }

10 }

11 protected void btnDivide_Click(object sender, EventArgs e) {

12 int numl = 0;

13 int num2 = 0;

14 try {

15 numl = Convert.ToInt32(txtNuml.Text.Trim());

16 num2 = Convert.ToInt32(txtNum2.Text.Trim());

17 3

18 catch (Exception) {}

19 if (numl >= 0 && num2 >= 0) {

20 1blResult.Text = "Division : " + (numl / num2).ToString();
21 }

22 else {

23 1blResult.Text = "
Please enter natural numbers...";
24 }

25 }

26 protected void btnMultiply_Click(object sender, EventArgs e) {

27 int numl = Convert.ToInt32(txtNuml.Text.Trim());

28 int num2 = Convert.ToInt32(txtNum2.Text.Trim());

29 if (numl >= 0 && num2 >= Q) {

30 1blResult.Text = "Multiplication : " + (numl * num2).ToString();
31 }

32 else {

33 1blResult.Text = "
Please enter natural numbers...";
34 }

35 }

36 }

37 }

Figure 2.2: Application Logic File of DivideAndMultiply ABNET Web Form

10

1 public static int testMethod(int x, int y) {
2 if (x> 3) {

3 int z = X + 2;

4 if (z <y)

5 return z;

6 else

7 return y;

8 }

9 return 0;

10 1}

Figure 2.3: Code for illustrating Symbolic Execution [1]

stead of concrete data to infer behavior of the programso,Algmbolic execution expresses
the values of program variables symbolically. Consequegtite outputs computed by a pro-

gram are stated as a function of the symbolic inputs [19, 2], 2

X=X+Y,

Z=X*3+Y,;

For example, above statements are executed concretel@ athx and 3 for y. For the first
statement the result of x y is 5 and the value 5 is assigned to x. Then, x+ 8 part of the
second statement is executed and 18 is found and it is adsigrze The values of x, y and z
variables are 5, 3 and 18, respectively. As it can be seemutpeit values become concrete
values due to concrete execution. For symbolic executibr ézjuals A and y equals B as
symbolic values. The result of the first statement is B and A+ B is assigned to x. For the
second statement if X is replaced witrhAB and y is replaced B, the result is (AB) * 3 +

B and it is assigned to z. The output values of symbolic execdor x, y and z variables are
A + B, B and 3A+ 4B that are symbolic values. It can be said that concreteutixecends
up an instance of the possible results set. On the other Bidetiéies of the possible results
set are covered by symbolic execution. The other signifipairtt is that path constraints are
collected during symbolic execution. In concolic executithey are used to create new test

case inputs for the next runs.

Figure 2.3 illustrates a method just for explaining symbekecution. It should be underlined
that the method is a pointless method. All possible pathd@fmiethod in Figure 2.3 are
provided below when symbolic execution is applied to thehmoét[1]. A path constraint is

one of the all possible execution traces of a program.

11

e X<=3

e X>3&X+2<Yy

e X>3&X+2>=Yy

The algorithm steps of the concolic testing are basicalfipbews.

¢ Run the program with bottom element values such as null fonidits

e Capture the path constraints exercised by the run

¢ Infer unexplored path constraints by inverting exercisatth gonstraints

e Generate new concrete input values from the unexploredreamts

e Continue running the program with found input values

e Generate new inputs until all path constraints have beertiegel or until the time limit

is reached

Let us go back Figure 2.3 and apply concolic testing. Firddyx and y equal O, so the
condition x> 3 in line 2 is not satisfied. Thus, the statement in line 9 icetex and 0 value
is returned by the method. Executed path constraintis 8 and x> 3 is found by inverting
the exercised path constraint. After that let 4 is generfatexl by using found path constraint
x > 3. The method is executed with 4 for x, 0 for y and the conditiotine 2 is satisfied
and in line 3 z is assigned to x 2 that equals 6. The if condition in line 4 returns false
and else branch is executed because 6 is greater than 0. €olydscondition of found path
constraint, x> 3 & X + 2 >=Y, is reversed and new path constraint is 8 & x + 2 < y. After
solving this path constraint, 4 is generated for x and 7 isggrd for y. Next, the method
is executed with 4 and 7 for x and y and the condition in linet@rres true and in line 3 z is
assigned to 6 which is calculated value of 2. The if condition in line 4 is satisfied because
6 is less than 7 and the method returns 6 that is value of zllfsitieere is no unexplored path

constraint of the method, so algorithm of concolic testmgnished.

12

2.3 Related Work

There are several works that combine concrete and symb@auéons. Directed Automated
Random Testing, DART, [7] seeks execution errors such agano crashes, non-termination
of C programs and input values causing these errors. DARS naselom testing and symbolic
evaluation to generate new input values for possible progreecution paths. Concolic Unit
Testing Engine, CUTE, [8] is a subsequent work which hasredjimprovements in terms of
the DART. CUTE implements both concrete and symbolic exensi called concolic execu-
tion, in order to solve the problem of automating unit tegtivith memory graphs as inputs.
Another approach called SAGE (Scalable, Automated, Guitextution) [22] implements a
whitebox fuzz testing algorithm originated from symbolieeution and dynamic test gener-
ation. SAGE works on security testing of windows applicasiavritten with C, G-+. Emmi

et al. [23] generate automatic test inputs and databasedsetar database applications with
using concolic execution. Their implementation execu@sceete and symbolic testing si-

multaneously similar to Mamoste.

Automated test input generation techniques has been dpjglizeb applications domain.
Halfond et al. [2] propose a specialized form of symbolicaetion to identify interfaces for
Java based web applications. They claifieetiveness of the testing techniques such as test
input generation on the web applications increases witthéhe of their approach. Another
work on Java based web applications is parameter mismaittiiesse applications by using

a static analysis based approach [5]. Wassermann et ahddazi et al. [3] apply concolic
testing for automated test input generation to PHP dynareic applications. Wassermann
et al. target on SQL injection of PHP dynamic web applicaiorhich is orthogonal to our
work. On the other hand, Artzi et al. develop a tool, Apolmdetect crashes and malformed

HTML outputs of PHP applications.

Although Mamoste and Apollo have similarities such as ugingHTML validator as test
oracle, they distinguish some specific points. First of all target language ASP.NET is
different from their target language PHP. ASP.NET is not a segganguage but PHP is a
scripting language. Secondly, Mamoste composes HTTP séxjas if a user enters inputs
and fires events whereas Apollo simulates user interactyomansforming the PHP script.
Third, Mamoste implements additional checking mechaniaiysut visited inputs, visited

path constraints, and generated path constraints by dgoragbrithm. Finally, our approach

13

is lightweight compared to Apollo since our tests are simtitaunit testing where units are

event handlers.

According to Di Lucca et al. [24] dierent components of the web applications such as web
pages, forms or other web objects can be identified as a onittine unit testing perspective.
They divide the unit testing of the web applications into twabegories: client page testing,
server page testing. Mamoste detects malformed HTML ositptithe web applications.
Thus, it can be said that HTML output is a unit of the client @&gsting category. An event

of a web page can be considered a unit of the server pagegtestiagory.

There are several researchers working specifically on ASPWeb applications. SAFELI, a
static analysis framework, [6] identifies SQL injectionaalts by inspecting MSIL bytecode
of ASP.NET applications using symbolic execution. WhileFEA.l concentrates on SQL
injection on ASP.NET web applications, Mamoste aims to cedgecution errors and mal-
formed HTML outputs of these applications. Another work Mgoft Pex [9] uses a hybrid
technique that integrates concrete and symbolic exe@uforas to generate unit test for pro-
grams under test. Microsoft Pex creates unit tests for egins written with C#, Visual
Basic and F# languages. Moles [10] is another componenidad\by Microsoft and it sup-
ports writing isolated unit tests. By working together Misoft Pex and Moles can generate
unit tests for ASP.NET applications since they are targeted\NET framework. There is an
important point that event handlers of ASP.NET pages areegt@d functions, but Microsoft
Pex can implement unit tests only public behaviors of putlisses. Therefore, in order to
use Microsoft Pex event handlers of ASP.NET pages are etjtirconvert into public func-
tions that is a disadvantage of Microsoft Pex. On the othadhi&lamoste does not need this
kind of conversions. In addition, it is not clear how assersi that are used in unit tests can
capture errors in HTML outputs. In other words, MicrosofixR®es not deal with HTML
validation. Microsoft Research Tedmttempts to simulate IS with Microsoft Pex and Moles
to breed unit tests. On the other hand, Mamoste composes IHXLEsts as if a user enters
inputs and fires events. In a sense, Mamoste replaces uskls@msers. In this case, IIS
does its work by itself; i.e. Mamoste transmits request$Sahd IIS responses the requests.
Therefore, Mamoste manages concrete executions as theyinceal, concrete execution of

Mamoste is not a simulation.

1 httpy/research.microsoft.com

14

using System;

public class Program {
// Pex for fun always selects the first comment line.
public static int Puzzle(int x) {

if (x> 0)

X++;
else

X = -X;
X =X - 3;
if (x> 0)

x = 1;
else

x = 0;
return x;

Figure 2.4: Code for illustrating Defective of Microsoft:Pe

We have practiced Microsoft Pex with the code in Figure 2didicrosoft Pex generates the
results in Table 2.1. As it can be seen in the figure, thereanegdossible paths to execute.
However, three of them are found by Microsoft Pex. It is polgsto execute the fourth path
with x = 3, but Microsoft Pex cannot catch this input. Therefore, i b& said that Mi-
crosoft Pex applies symbolic execution defectively. Expents can be done on the web site

of Microsoft PeX.

Table 2.1: Execution Results of Microsoft Pex

X result | OutpufException
0 0
-1140850204| 1
1 0

2 httpy/www.pexforfun.corydefault.aspx?languag€Sharp&sample_Template

15

CHAPTER 3

MAMOSTE

In order to solve problems specified in Section 1.1 we dewslaptool, called Mamoste. We
aimed to detect malformed HTML outputs of ASP.NET dynamidwaeplications and run-
time execution errors of these applications while develgpflamoste. We propose Mamoste
as an automated tool to find malformed HTML outputs generbyedSP.NET web applica-

tions and unhandled execution errors crashing these afipls.

Mamoste adapts concolic testing technique which is a coatibim of concrete and symbolic
executions to generate test inputs dynamically. The t@a ebnsiders page events as inputs
which cannot be handled with concolic testing. In a sense tdbl performs unit testing
with dynamic input generation where a unit is an event oketgtage. Moreover, Mamoste

receives help from an HTML validator to verify HTML outputsund by Mamoste.

In this chapter, we present our solution in detail. Firsthg explain methodology and al-
gorithm of the study. After that, we give design and implestien of Mamoste in terms
of system architecture and class diagrams. Then, we showtdawite instrumentation on

samples. Moreover, we explain installation and usage adfableby giving an example.

3.1 Methodology

To reach high test coverage, we have adapted concolic destiich has been successfully
applied on Java and C programs [7, 8]. Figure 3.1 shows thedpseode of the concolic
algorithm we implement. Program P and Event E under test are parameters of the proce-
dure. VariableRr contains results of previous executions. Execution resudhsist of path

constraints, input values, outputs and bugs. Varialel®isit is used to keep input values for

16

parameters : Program P, Event E
result : Execution Results

1R=0;

2 toVisit = EmptyQueue();

3 Enqueue(toVisit, Emptylnput());

4 repeat

5 input= Dequeue(toVisit);

6 {newPC, output, bugEk RunConcreteAndSymbolic(P, E, input);
7 if (newPC notin Visited Path Constraints of R)

8 merge {newPC, input, output, bug} into R;

9 newlnputs= FindNewlInputs(newPC, Path Constraints of R);
10 newlnputs= newlnputs - Inputs of R;

11 EnqueueAll(toVisit, newlnputs);

12 until (Empty(toVisit) or TimeExpired())

13 return R;

Figure 3.1: Algorithm of Concolic Testing

next executions and an empty input is added to this variablmé 3 as a bottom element.
Then, there is a loop between line 4 and 12. The progrand it's eventE are executed
concretely and symbolically in this loop. Inline 5, a newuns taken from variableovisit
and concrete and symbolic executions are run with this ifmplihe 6. There is a checking
mechanism in line 7. This mechanism checks whether new matstr@int captured by the
current execution is in the visited path constraint listat. f the path constraint is in the list,
the algorithm passes to the next input. If it is not, resuithgred by the current execution
are attached to the variablein line 8. Subroutine in Figure 3.2 is called to find new inputs
in line 9. Then, the inputs which are explored before areiakted in line 10. The rest of the
inputs found are appended to variahlevisitin line 11. These steps continue untdvisit

is empty or until time is expired.

Figure 3.2 shows the pseudo code of finding new inputs in dontasting. The procedure
gets two parametersc and pcList. The parametepc denotes path constraint which is used
to generate new path constraints and inputs. The parametest keeps the path constraints
that are visited and generated before. Variatiguts is used as a list that contains new found
inputs. Variablepc is parsed to find each conjunct of it in line 2. There is a loopliad for
each piece between line 3 and 9. In this loop, the algorithgates the last conjunct for each
prefix of the path constraint in line 4. Found new path coirgtiay negation is checked if

it is in the pcList parameter or not in line 5. If it is, the algorithm passes tagt iprefix.

17

parameters : Path Constraint pc, Visited and GeneratedXmtstraints pcList
result : New Inputs

1 inputs= 0;
2CL A -+ ACh=PC;
3fori=1...ndo

4 newPC=c; A --- A Ci_1 A G

5 if (newPC not in pcList)

6 merge newPC into pcList;

7 newlnput= Solve(newPC);

8 if (newlnput not empty)

9 merge newlnput into inputs;
10 return inputs;

Figure 3.2: Algorithm of Finding New Inputs in Concolic Test

Otherwise, new path constraint is attached to pheist in line 6. After that, the constraint
solver is called to find a concrete input that satisfies theeggad path constraint in line 7.
If the constraint solver can find such a value, this new inpwtdded to variable inputs that

keeps return values of the procedure in line 9.

We consider three kinds of inputs in ASP.NET dynamic web pageents, HTML controls,
and values entered by clients into the controls. For ever@shoose theeage_Load event as
bottom element. First, we execute the page with Hage_Load event and nothing ohull
value for HTML controls. Then, we collect all HTML controlsié@ events from generated
HTML output. We put them into the event list and the HTML cantist. This step is dierent
from concolic testing approach described in Section 2.2esihis not possible to capture
events and controls of an HTML output by examining path caiists. If the execution fails,
we get the error message and the path constraints up to tive Emot, we receive only the
path constraints of the execution. We save data gathergettfre execution into the indicated

directory of the file system.

After parsing the captured path constraints, we place foani@bles and their values into the
variable list used to keep variables and their domain sekt,Nee apply finding new path

constraints algorithm from the captured path constraintsfend new path constraints. After
solving new path constraints, we find new input values fonémeables by using a constraint
solver. Finally, we execute the page again with the new imaliies and the events. We

continue these steps for all found events until all path tamgs are exercised or until the

18

time limit is reached. After concolic execution is finishegs start to validate HTML outputs
of the tested ASP.NET web page by using an HTML validatois &mphasized that the point
is not using HTML validator. The point is executing all pdgsibranches of a web page and

finding HTML outputs of those executions as well as run-timecation errors.

The variable list, which keeps variables and their domaingews as we explore path con-
straints. Initially, the variable list is empty which meamsning the page withnull value
for all variables. When we examine a path constraint, sucliuas >= 0 && num2 >= 0, the
variablesnum1 and num2 are added to the list with domains set as integers. When draorts
contains a string variable, we add that variable into theals set its domain to full, *”,
value_in_constraintrandom_string. Here value_in_constraintlenotes the string constant
used in the constraint. Such constants are added to the Wdistaas we encounter flierent
string constants in the constraints. Tiamdom_stringdenotes a randomly generated string
constant dierent than all the elements in the domain set. We keep a doseéifor string

variables so that the constraint solver can return a valtighgag a condition, for example,

city # “ankard.

We have modified the concrete execution step in the genenabtio execution algorithm as

well. First, we do not perform the validation during conerekecution. Instead, we save the
output of the concurrent execution along with the curreti ganstraints and then check the
correctness of the outputs, which are the generated HTMegagparately. This separation
of checking mechanism enables to run the executions andatiain in parallel. Second,

the inputs for concrete execution consists of events andvasiges. Here we trigger an event,
such as page load event or click event of a button, and supplyt parameters. This execution

is similar to unit testing with dynamic input generation wa unit is an event.

Symbolic execution is used to drive path constraints fromekecuted control flow that is
required for Mamoste. Symbolic execution parses the proguad constructs a tree from the
program. Usually, special statements are injected to thgram tree so that symbolic exe-
cution understands the program. Such kind of statementtiojeis called instrumentation.
There are two ways to perform instrumentation for symbakeceition: source code instru-
mentation and bytecode instrumentation. Source code ecbge of the tested program is

certainly required.

Mamoste is to be used on the development side as a white lhimgtesol [24]. We use source

19

1 protected void btnWriteDistricts_Click(object sender, EventArgs e) {

2 int provinceCode = Convert.ToInt32(txtProvinceCode.Text);

3 if (provinceCode > 0) {

4 IDataReader dr = GetDistricts(provinceCode);

5 while(dr.Read()) {

6 Response.Write("District Code : " + dr.GetValue(®).ToString() + "
");
7 Response.Write("District Name : " + dr.GetValue(l).ToString() + "
");
8 }

9 }

10 else

11 Response.Write("Wrong province code!");

12}

Figure 3.3: Code for illustrating Need of Manual Instrunaion on Web Applications Using
Database

code instrumentation while developing Mamoste in whichittsrumentation is done man-
ually by the users presently. We prefer the manual instratien to test dynamic web ap-
plications that use a database. We believe that a softwaliaiion connected to a database
cannot be tested fully self-driven since executed contow fs dependent on stored data in
database. In other words, variables and conditions in thgram are mostly attached to the
database. Thus, we need to know about stored data in datalipesgerate values for variables

that are related to the database.

Figure 3.3 shows an event handler of a web page connectedatialaade. The event handler
in Figure 3.3 gets province code from a web control and waudisticts of that province to
the screen if province code is greater than 0 and that previias any district. Otherwise, an

error message is written to the screen.

Let's apply concolic execution to the code in Figure 3.3. fu first iteration, province
code should be bottom element which is O for integers. Simogiqce code is not greater
than 0, else branch in line 10 is executed and(provinceCode > 0) path constraint is
catched. According to the algorithm of finding new inputs igufe 3.2, the path constraint is
inverted andprovinceCode > 0 path constraint is found. This new constraint is unexplpred
so we give the new path constraint to the constraint solveipp8se 100 is returned as a
province code by the constraint solver. For province codgréater than 0,if branch in
line 3 is executed in second iteration. However, there is istrick belong to the current
province (provinceCode = 100) in the database table of the district as seen in Table 3.1.
Thus, in line 5 loop that writes districts to the screen is eacuted. As province code is
related to the database, we cannot execute inside of loaperbl If we instrument the path

constraints manually, we have a chance to run the loop. Fampbe, we can instrument

20

else branch in line 10 with! (provinceCode == 1 || provinceCode

this constraint, we geprovinceCode

Table 3.1: Database Table of the Districts

ProvinceCode| DistrictCode | DistrictName
1 1 Seyhan
1 2 Ceyhan
63 1 Birecik
63 2 Surug

1 || provinceCode ==

63). If we negate

63 as path constraint. The

constraint solver gives 1 or 63 as a province code for thisttamt. As a result, we can
execute inside the loop with 1 or 63 inputs. Consequentlydweot have any solution for

web applications that use database except manual insttatizenat least presently.

3.2 Design And Implementation

In this section, we explain system architecture of Mamosi# give technical information
about Mamoste such as class diagrams. Lastly, explandtioovoto do instrumentation for

capturing path constraints is given with samples.

3.2.1 System Architecture

The system architecture of Mamoste is shown in Figure 3.4nb&te consists of three main
components: Test Driver, Solver Adapter and Validatiornv®ri Below we explain each of

these components in detalil.

3.2.1.1 Test Driver

Test Driver is the main component of Mamoste. This compomensists of three mod-
ules. The main module is Inspector. Inspector is respamddl running the test cases on
ASP.NET page and capturing the path constraints duringdbeution. Constraint Converter
is responsible to communicate solver Adapter componemtaba Domain Miner module is
responsible for populating variable list that are used éndbnstraints as explained in Section

3.1.

21

ASP.NET
Pages
Test Driver L Validation Driver
> Inspector Html » W3C Html
. Validator
Constraint EXGCUUO”
Text frors Validation
Y Result
Constraint
Converter . > Test Result
7 Constraints Repository
Variable
Domain
Variable Domain Constraint v
i onstraints
Miner Test
Results

Solver Adapter

Constraint
Generator

New
Constraints

A 4

Test Input Constraint Solver

(MS Solver Foundation)

Figure 3.4: System Architecture of Mamoste

22

When Mamoste is loaded, Inspector takes the URL of an ingnied ASP.NET page. Then
Inspector sends an HTTP GET request to the web server thétisrasloading the page under
test. At the end of the execution the web server generatesemis an HTML output as a
response to Inspector that is the client in view of the weleserAfter the first execution
of the page, Inspector collects all the HTML controls and ékients by parsing the HTML
output as well as the future ones. Why Inspector appliesmpmocedure each time to all
HTML outputs is the probability of adding HTML controls todlpage in run-time. It means
that HTML controls might be added to the page dynamicallyrduexecution of an event. In
order to catch these controls, Inspector has to take all Hohthputs into consideration. After
finishing work on the HTML output, the module directs it to ¥edidation Driver component.
The execution might be interrupted because of run-timer.etrothis case, Inspector sends
error message to the Validation Driver component. Themdot®r holds to execute the page
with newly generated test case inputs until the input lisiigty or time ends up. These steps
are continued for all gathered events. There idi@dénce between the first execution and the
others. Method of HTTP request has to be POST for all the sveept page load. It has to
be GET for page load event.

During an execution, Inspector module gathers the constraxts of the executed branches
via using the instrumentations described in Section 3.2r@pector sends these captured
constraint texts to the Constraint Converter module. Thoslmte transforms these texts into
custom types of Mamoste. Also, path constraint tree is coctstd during this transforma-
tion. While forming the constraint tree, Constraint Comgeinvokes the Variable Domain
Miner module to expand the variable list and to populate traain set of string variables as
discussed in Section 3.1. Processed path constraints raréose Solver Adapter compo-
nent to create new test case inputs for next executions., &lsse constraints are sent to the

Validation Driver component to use during reporting tesuits.

The Inspector controls new test case inputs given by theeBdldapter whether they are used
in previous executions or not. If the Inspector has used jputibefore, that input is ignored

and the Inspector passes to the next input. In addition, dltte gpnstraints that are captured
during the executions are also checked by the Inspectothehtitey are visited before or not.
If such a visited path constraint is met, that constraintostaken into consideration. Even
HTML output or execution error mining by that constraint ist given Validation Driver

since there is a copy of that output in result list of ValidatiDriver. These two checking

23

mechanisms provide the Inspector and HTML Validator to wamky when it is necessary.

3.2.1.2 Solver Adapter

This component is responsible for generating new test cqsas to explore new branches of
the page under test. It gets formatted path constraints fin@rmest Driver component. Upon
getting a path constraint, Constraint Generator moduldisfdomponent creates new path
constraints by employing a well established algorithm [Ifhe new constraint generation is
the same as other dynamic testing algorithms: GpenA pc A - -+ A pc,, New constraints

are—pc, PC. A =pC, ..., PCLAPC A - A =PCh.

From the constraint set generated according to the algoiitb-igure 3.2, Constraint Gener-
ator selects the ones that have not been solved by the Coh&odver before. If a constraint
is not solved before, it is given to the Constraint Solver todpice new test case input for
it. Otherwise, Constraint Generator ignores that condtraBesides, Constraint Generator
checks whether generated constraints are explored by #teDFver or not. If Constraint
Generator encounters such a visited constraint, it doegimetthat constraint to the Con-
straint Solver since new test case inputs found by the Selilebe a subset of the inputs
generated before. These checking mechanisms prevent tigr@at Solver to generate un-

necessarily new test case inputs same as before.

Mamoste uses MS Solver Foundation [25] for the generatiomwftest case inputs. Mamoste
has to supply the domain of each variable that appears indtheconstraint to the Solver, so
the Solver can return values that make the given booleanular(path constraint) true. As

seen previous explanation, the generated values are usegvasputs by the Inspector.

Presently, Mamoste can handle variables of type integeteba, real and string. In the case
of string, due to the Solver’s abilities Mamoste can onlymurpequality and inequality rela-
tions in constraints. Requests sent to the web server apdnsss the web server prepares are
principally strings. We plan to support other custom typgsiriking them or their properties
to the web controls of the tested page. This correlationigesvus to deal with only primitive
types. In other words, we need to capture correlation of tisoen types and the controls of

the web page in order to support all types.

24

3.2.1.3 Validation Driver and HTML Validation

Validation Driver component is responsible for communiwatwith HTML Validator and
managing Test Result Repository. For validation Mamosts tlse HTML Validator of World
Wide Web Consortium [26]. Each of the HTML outputs is senthe Walidator and the

errofwarning result messages are stored into Test Result Reposibdule.

Mamoste gives several choices about the HTML Validatorstiine is that users can down-
load and install W3C HTML Validator into their computers. €if) they can change the URL
of the Validator with their local copy from the configuratifite. Another opportunity is the
ability to change validation mode: file upload and URL. Thisans that validation can be
done by uploading the HTML output from file or by downloadingrom URL. Result of the
validation can be sent as HTML or XML files and Mamoste prositieese two options. All

these options are adjusted easily from the configuratiomfiamoste.

The Test Result Repository module holds HTML outputs and@ien errors of the tested
ASP.NET dynamic web pages along with the associated pattreamts. Also, it saves the
result of the Validator for each HTML output. This reposjtas used when the Test Results

are displayed to the users.

3.2.2 Implementation

Our web application checker tool Mamoste is a desktop agjpbic and it is written in .NET
Framework 3.5. However, it can test web applications imglet®d in .NET Framework 2.0
or later versions. It should be indicated that Mamoste is ienNdox testing tool which has to
be used on the development side. Thus, itis interestedescodes and client-side codes such
as javascript and vbscript are out of its scope. Servereides are tested by Mamoste. In
other words, Mamoste does not execute client-side codeaibedt works on the server-side

in contrast to the web browsers.

Figure 3.5 displays the class diagram of the concolic paekdgvlamoste. The classes in
this figure are responsible from the concolic testing of Mat@o The IDriver interface
provides required methods for the GUI of Mamoste. Theiver class is inherited from

the IDriver interface. Driver class also includes other methods and fields to apply con-

25

HtmlParser
Class.

& Methods
% AddHtmiControlsTalist) : void
9 FindEvents() : void
@ FindHtmiControls() : List<string>
@ FindStringPattern() : sting (~ 1 overload)
39 IsEventinList) : bool

»

(HttpRequest
Clase

& Methods
5% CresteRequestData() s sring
4% RequestEncode() : string
@ RunHtspRequest) : string

ENUMVarType (&

2 Type

Constant
Class

& Fields

% cons:stringl]

@ opr:stingl]

@ opnverse: string(l
= Methods

9 FindOpndex() : int
& Nested Types

5l

ENUMCons
Enum

ENUMOpr @
Enum

LessThanOrEqual
GreaterThanOrEqual

N —

' Solver

' GeneralFunctions
1a

»

[PathConstraint
Class

© Fields
& cons: List<Constraint>
vars:lList<Variable>

5 Methods
% AddToConstraints(): void

2% AddtoVarlist) : void
% DathConstraint()

' Cons: LList<Constraint>

5]

Vars: IList<Variable>

Variable &
1a

5 Fields
4 domainValues: IList
4 foundvalue: object
o name sting
& type: ENUMVarType

= properties.
5 DomainValues : IList Ll
=P FoundValue: object
EF Mame: string
= Methods
“6 AddtoDomain(): void (- 1 overload)
@ FindVarType() : ENUMVarType # i

IsTypeSuitableD : bool
% Variable() (+ 2 overloads)

ENUMConstraintType % [FeedBack

Enum i

Variable Fields

Stvalue @ ermorCount tint
IntValue @ isvalid s bool
Boolvalue @ key:string
RealVelue @ wamingCount : int
o
perator & Methods
Assignment

@ FeedBack)
& tpe

Constraint ®

Tass

= Fields

¥ data: object

S epr:sting

¢ isVisited: bool

= Properties

2 Ievisited : bool

& Methods

5% AddToVarsi) : void

Clone() Constraint

Constraint() (= 3 overtoads)
ConstruetTree) 1 Constraint
Conver{ToDual() : Constraint (~ 1 overload)
ConvertTreeToSt) : sting
CopyVariables) : void

1 strin

6% 6 8% ¢ &

vars: IList<Variable>

Class

5 Methods
&% GenerateStiing) : string
% Solvel): bool

= Methods

ConvertToDbl() : double
ConvertTolnt() : int
GetEncoding() : Encoding
GetEncodingUtiB() : Encoding
GetOutputPath() : string
GetOutputUr() : string
GetTestLogFileName() : string
GetTestlogXmlPath() : string
GetValidateDirectoryMName() : string
GetValidateOutputPath() : string
Islnt() : bool

Is0utputXmi() : beol
IsPageload() : bool

Ut8() ¢ string

“»

e

b{‘ €

»

(Testlog

= Fields

E Methods

@ GetVariables() : List<Variable>
% Inverse(): Constraint

o cons: IList<Constraint>

¥ headerFeedBack: IList<FesdBack>

®

[TestResutt
Class

& Fields

<

constraints : stiing
error :string
eventName : string
output: stiing
outputfile: string
pageName : string
validateQutputie: string
B Methods

¥ TestResult()

@ fesdback

cveeee

Validation
lass

5 Methods

AddFeedBack() ; void
ComvertToOutputfiles() : stringl]
ConvertToValidateOutputFiles() : sring[]
DeleteValidateOutputFiles()
FindFeedBack() : FeedBack
GetValidateOutputfilesi) : stringl]
ValidateFile() : void

Velidatekitmi() : List<TestResult (~ 1 overload)
ValidatelUr() : void

Validation()

B 6

+% %% ¢ 6% %%

void (+ 1 overload)

validation

Driver
Class

= Fields
4% activevent: string
o events: LList<string>
% inputTaVisit : Queue<lList<Variable>>

Class.

¥ writer: TextWriter

S inputvisited ! ListelList Varizble> >

o visitedConsList :IListlList <Constraints>
= Methods
AddConstraint() void (+ 1 overload)
AddNewlnput() : void
Driver()
ExecuteConcolicTest) : List <TestResults
ExecutePageConealicly() : vaid

(«b(

B

¥ testlog

&

CloseEventTag) void
CloseL ogging() : veid
TlosePageTag() :void
ClosePathTagl) : void
CloseXmiTag) : void
DeleteutputFiles) void
FlushLogging() : void
GetOutputFies() : stringl]
GetTestResults() : IList<TestResult>
OpenEventTag() : void
OpenPageTag() : void
OpenPathTagl) i void
OpenXmiTag) : veid
Startlogging) : void

TestLogh)

WhiteConstraintTags() void
WiiteError(): void

‘WriteLog() : void

WriteOutput() : void
WriteOutputToFile() : sring

beebv bbb

&,
¢

“

FindNewlnput() : Queue<lList<Variable> >
GetTracelistenerfile) string

IsVisitedCons() : boel
ReadFromTracelistenerfile() : string
ValidateHitmi) : List<TestResult> [+ 1 overload)

~

+%%%

[¢)

IDriver
Interface

& Methods
“ ExecuteConcolicTesty : IList< TestAesuit>

@ Volldatetitmi) : fList< TestResult> (+ 1 over(oad)

Figure 3.5: Class Diagram of Concolic Package of Mamoste

26

IDisposable

! TraceListener [E2
Abstract Class

+ MarshalByRefObject
Lo

| TxtTraceListener &
Class
—+ Tracelistener
IDisposable

T = Writer =
TextiWriter €} Y Methods

Abstract Class .d‘ weries W Close() : void =) Class
-+ MarshalByRefObjet | 3% Dispose() : void b Stream
=] : % Flush() : void &
@ TutTracelistener)
@ Write) :void (+ 3 overloads)
% Witelinel): void [+ 3 overloads) |

o file | FleStream ¥
lass

Figure 3.6: Class Diagram of Trace Listener Package of M&amos

colic testing. The path constraint texts captured by tresteder of Mamoste are read from
the trace listener file by methods of this class. Then, thesstaint texts are given the
Constraint class to construct executed constraint tree and find cdssteariables, opera-
tors, etc. During constructing constraint tree, th&riable class is used for variables and
their domain values. Also, theathConstraint class holds the executed path constraint and
its variables. While theENUMConstraintType enumeration is used to determine constraint
types, ENUMVarType enumeration is used for variables. After generating neWw panstraints,

the Driver class calls theSolver class to create new inputs for these constraints. The
HttpRequest class executes the tested page with newly generated inpdtst each exe-
cution, the HtmlParser class parses detected HTML output to find new events and HTML
controls of the page. During executions, thiestLog class is called for logging data of the
executions. TheGeneralFunctions and the Constant classes consist of required general
functions and constants that are called by the other claks#gy testing. Thevalidation
class is responsible to validate the found HTML outputs bpgian HTML validator. The

TestResult and theFeedBack classes is used to monitor results of the executions to #nrs.us

Figure 3.6 displays the class diagram of the trace listeaekage of Mamoste. The class in
this diagram is responsible to capture constraints of dregpaths. TherxtTraceListener
class writes gathered constraints into the trace listeteetHat is specified by the user ex-
plained in Section 3.3.1. Note that this trace listener filased later by th@river class in

Figure 3.5.

Figure 3.7 displays the class diagram of the GUI package ah®dde. The classes in this
diagram are responsible to get users actions and show sedtisre the users. Therogram,

the Settings and theResources classes belong to the .NET framework. Thamoste class

27

SRS
Form k3
Class

= ContainerControl
L@

FAS

|

| Mamoste l
Class
—+ Form

=l Fields

& binkim

5

CheckBoxColumn

»

| 1Driver
Interface
=
& Methods
W ExecuteConcolicTest() : iList< TestResuit >
% ValidateHtmi() : iList< TestResult> (+ 1 overlogd)

| @ mam

@ valid
= Methods

%% e T e e %%

DataGridViewmageColumn

4% binHtmiDegrula Clickf) : void
4% binTestEt Click() : void

4% dgliste_CellContentClick() : void
§9 I oid

nent(} ! void

¥ Mamoste()
4% SecilenlerToplaf) : string[]
2% TestSonucuYaz() : void

Figure 3.7: Class Diagram of GUI Package of Mamoste

provides interaction with the users and shows the testteesalthe screen.

3.2.3 Instrumentation

To collect the path constraints, Mamoste requires mansatumentation. Manual instru-
mentation is done by using trace listener library of Mamo#itenoste . TraceListener.dl1l.
This library has a class nametktTraceListener and this class is inherited from the
TraceListener class [27] of theSystem.Diagnostics hamespace [28]. Users must instru-
ment path constraints by callingriteLine function of the trace listener class of Mamoste.
Usage of this function is likeSystem.Diagnostics.Trace.WriteLine("a > 5"). This in-
strumentation tells Mamoste that the current path is edalsleen a > 5 constraint holds.
I(a > 5) constraint is negation of thea > 5 constraint. To instrument this negated con-
straint, users have to call the function likstem.Diagnostics.Trace.WriteLine("!(a >
5)") inside the related branch. Without these instrumentafidanoste has to perform alias-

ing analysis to relate the variables with the controls ofithge.

Table 3.2 illustrates several instrumentation examplé® first row is about instrumentation
of integer variables. As seen at the first row of the tableyioal code does not contaielse

branch. However, instrumented code contaikise branch since Mamoste needs to know

28

Table 3.2: Code and Instrumented Code Samples

Code Instrumented Code
int a= Convert.ToInt32(txt. Text); int a= Convert.ToInt32(txt. Text);
if (@>5) if (a>5)
Write("Variable a is greater than 5."); System.Diagnostics.Trace.WriteLine("txt5");
Write("Variable a is greater than 5.");
else
System.Diagnostics.Trace.WriteLine("!(txt5)");
string a= txt.Text; string a= txt. Text;
if (!string.IsSNullOrEmpty(a)) if (Istring.IsNullOrEmpty(a))
Write("Variable a is not empty."); System.Diagnostics.Trace.WriteLine("t¢ '@ @ @\"");
else Write("Variable a is not empty.");
Write("Variable a is empty."); else

System.Diagnostics.Trace.WriteLine("!(tb¢ '@ @ @")");
Write("Variable a is empty.");

if (chk.Checked) if (chk.Checked)
Write("Checkbox is selected."); System.Diagnostics.Trace.WriteLine("ckk true");
else Write("Checkbox is selected.");

Write("Checkbox is not selected."); | else
System.Diagnostics.Trace.WriteLine("!(ckk true)");
Write("Checkbox is not selected.");

int a= Convert.ToInt32(txt. Text); int a= Convert.ToInt32(txt. Text);
for (inti=0;i<=a;i++) if @>=0)
if (1% 2==0) System.Diagnostics.Trace.WriteLine("txt 0");
Write(i + " is even number less for (inti =0;i<=a;i++)
than or equal to *+ a+ "."); if (1% 2 ==0)
else System.Diagnostics.Trace.WriteLine("txt %2 0");
Write(i + " is odd number less Write(i + " is even number less
than or equal to *+ a+ "."); than or equal to *+ a+ ".");
else

System.Diagnostics.Trace.WriteLine("!(txt %2 0)");
Write(i + " is odd number less
than or equal to *+ a+ ".");
else
System.Diagnostics.Trace.WriteLine("!(tx& 0)");

which branch is executed each time. Otherwisepranch of the code might not be executed
by Mamoste. The second row shows instrumentation of stiamigbles. The significant point
of this example is usingaee characters instead admpty or null values of string variables.
The third row illustrates instrumentation of boolean vialés. Boolean variable can berue

or false. The instrumentation of boolean varibles must be similarli® == true or chk

== false Or negation of these. Constraint parser that Mamoste usemthandlechk and

I chk as it expects equality or inequality that has left and rigis. Loop instrumentation is
exemplified in the last row of the table. Loop code is placed inf branch and condition
of the if branch is derived from condition of the loop. In this exampie<= a condition

is converted intoa >= 0 as the initial value of variabla is 0. As explained in the first row,

else branch is also a requirement for Mamoste to be able to exd¢lcatmop. Note that the

29

conditions in the loop are instrumented as shown in the upves of the table.

3.3 Usage

In this section, we explain installations and configuratiogiated to Mamoste. After installa-

tions and configurations, we describe how to use Mamoste &S&NET web page.

3.3.1 Installation

Mamoste adopts MS Solver Foundation [25] as a constraimesol hus, users of Mamoste
have to install MS Solver Foundation into their computerbeff, Mamoste requires several
configurations such as in which local directory test resaiessaved and URL of the HTML

Validator. Final one is several changes in configurationhef tested web application like
adding the Trace Listener dll of Mamoste as a reference. dll@ing sub-sections describe

these requirements in detalil.

3.3.1.1 Installation of MS Solver Foundation

MS Solver Foundation can be downloaded from the product wwelj25]. Express edition of
MS Solver Foundation is free to download, so it can be irsdally the users. Installation of
the component is easy nearly just clickingxt button several times. MS Solver Foundation
supports 32-bit and 64-bit of Windows 7 and Windows Vistarafieg systems [29]. Users
installing the component need administrator rights on thraputer. Visual Studio 2008 or
Visual Studio 2010 should be also installed on the computeleast one of these programs

might be already installed since target group of Mamostaistsof software developers.

3.3.1.2 Configuration of Mamoste

Files and directories provided by Mamaoste can be copiedanyovhere on the computer but
they need to be all together. In other words, given packadéamhoste has to be saved same

as given directory hierarchy. The package consists of béles/and directories.

30

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<appSettings>
<add key="OutputPath" value="C:\Mamoste\Output\" />
<add key="TestLogFileName" value="TestLog.xml" />
<add key="ValidateDirectoryName" value="Validate" />
<add key="UrlOfValidator" value="http://validator.w3.org/check" />
<add key="ValidationMode" value="FileUpload" />
<add key="ValidationResultMode" value="Html" />
<add key="TraceListenerFile" value="C:\inetpub\wwwroot\TestApplication\
TraceListenerFile.txt" />
</appSettings>
</configuration>

Figure 3.8: Configuration File of Mamoste

. Output Directory : It is used for saving result files of tlecolic executions.

. OutputValidate Directory : It is used for saving result files of th& ML validations.

. OutputValidateimages Directory : Files inside this directory are used &pldy in

result files of the HTML validations.

. OutputValidatestyle Directory : Files inside this directory are used toptg result

files of the HTML validations in a well formatted.

. Mamoste.Concolic.dll : This file is library for concoliesting of Mamoste.

. Mamoste.exe : This windows application file is the graghiser interface of Mamoste.

. Mamoste.exe.config : This file is configuration file of Mateos

. RpnParser.dll [30] : This file is library for parsing cagd constraint texts during the

concolic executions.

. Mamoste.TraceListener.dll : This file is library for #sing execution traces of the

tested web applications.

After saving the above files and directories, users have &m ammoste.exe.config file

with a text editor. This file seems like in Figure 3.8. Confajions inside this file have to

be changed according to the directory users choose to saseafitd directories of Mamoste.

Configuration keys of Mamaoste that are seen in Figure 3.8xqiaiaed below.

31

<system.diagnostics>
<trace autoflush="true" indentsize="4">
<listeners>
<remove name="Default"/>
</listeners>
</trace>
</system.diagnostics>

Figure 3.9: Change in Configuration File of Tested Web Agian for Trace Listener of
Mamoste

e OutputPath Key : It denotes path in which result files of theoodic executions are

saved.

e TestLogFileName Key : It denotes file that logs of the corceliecutions are written.
The extension of this file has to beml. The directory in which this file is saved is

represented by OutputPath Key.

¢ ValidateDirectoryName Key : It denotes directory name iniclihresult files of the
HTML validations are saved. The path in which this directisriocated is represented

by OutputPath Key.

e UrlOfValidator Key : It represents URL of the W3C HTML Valitta. This key pro-
vides the users of Mamoste to install a copy of the W3C HTMLid&br on their
computer and use it locally. Thus, internet access regenéican be eliminated by this

way.

e ValidationMode Key : Mamoste supports two validation modethe W3C HTML Val-
idator, file upload and URL validations. Consequently, &g can be seFileUpload

and URL values.

¢ ValidationResultMode Key : Mamoste provides two outputetygor the validation

result files, HTML and XML types. Thus, this key can be getl and Xml values.

e TraceListenerFile Key : It denotes log file that keeps eXeouraces of the tested web
applications. Execution errors and path constraint inséniations are written into this

file.

32

3.3.1.3 Configuration of Tested Web Application

Users of Mamoste have to set several configuration properti¢heir web applications for
listening execution traces [27] and capturing path comggaand run-time errors. Firstly,
they need to addMamoste.TraceListener.dll trace listener library to references of their
applications. After adding trace listener referengeh . config, Web Configuration File [31],
and Global.asax, Global Application Class [32], files must be also modifietiefie are two
changes inieb.config file. First one is adding<trace enabled="true" writeToDiagnos
ticsTrace="true"/> config section row between thesystem.web> and </system.web>
tags. Then, users need to add config section [33] in Figurbe&8wWeen the<configuration>
and </configuration> tags. Finally, Global.asax file must be configured. If the tested
web applications do not have this file, users are supposedidtit & their projects. Code in
Figure 3.10 have to be added ilobal.asax file. The code in Figure 3.10 runs for every
request, clears list of trace listener and adds the tratemés of Mamoste to the list. The path
seen in Figure 3.10 represents path of trace listener filgtdagath must be same path of

TraceListenerFile Key in Figure 3.8.

Table 3.3: Test Results of Given Example

Event Path Constraint Test Result Description

Page_Load Valid, 1 warning No Character Encoding Found
btnDivide txtNunl >= 0 && txtNun® >=0 Unhandled Execution Errof Attempted to divide by zero!
No Character Encoding Found
btnDivide I(txtNunl >= 0 && txtNun® >=0) | Invalid, 2 errors, 1 warning| End tag for "br" omitted!

End tag for "b" omitted!
btnMultiply Unhandled Execution Errof Input string was not in a correct
format!

protected void Application_BeginRequest(object sender, EventArgs e)

{
System.Diagnostics.Trace.Listeners.Clear();
System.Diagnostics.Trace.Listeners.Add(new
Mamoste.TracelListener.TxtTraceListener ("C:\\inetpub\\wwwroot\\
TestApplication\\TraceListenerFile.txt"));

}

Figure 3.10: Change in Global Application Class of Tested\Wpplication for Trace Lis-
tener of Mamoste

33

1 wusing System;
2 namespace Example {
3 public partial class DivideAndMultiply : System.Web.UI.Page {
4 protected void Page_Load(object sender, EventArgs e) {
5 if (!IsPostBack) {
6 txtNuml.Text = "Enter a number...";
7 txtNum2.Text = "Enter a number...";
8 1blResult.Text = "Result will be displayed here...";
9 }
10 }
11 protected void btnDivide_Click(object sender, EventArgs e) {
12 int numl = 0;
13 int num2 = 0;
14 try {
15 numl = Convert.ToInt32(txtNuml.Text.Trim());
16 num2 = Convert.ToInt32(txtNum2.Text.Trim());
17 }
18 catch (Exception) {}
19 if (numl >= 0 && num2 >= 0) {
20 System.Diagnostics.Trace.WriteLine("txtNuml >= 0
&& txtNum2 >= 0");
21 1blResult.Text = "Division : " + (numl / num2).ToString(Q);
22 }
23 else {
24 System.Diagnostics.Trace.WriteLine("! (txtNuml >= 0
&& txtNum2 >= 0)");
25 1blResult.Text = "
Please enter natural numbers...";
26 }
27 }
28 protected void btnMultiply_ Click(object sender, EventArgs e) {
29 int numl = Convert.ToInt32(txtNuml.Text.Trim());
30 int num2 = Convert.ToInt32(txtNum2.Text.Trim());
31 if (numl >= 0 && num2 >= 0) {
32 System.Diagnostics.Trace.WriteLine("txtNuml >= 0
&& txtNum2 >= 0");
33 1blResult.Text = "Multiplication : " + (numl * num2).ToString();
34 3
35 else {
36 System.Diagnostics.Trace.WriteLine("! (txtNuml >= 0
&& txtNum2 >= 0)");
37 1blResult.Text = "
Please enter natural numbers...";
38 }
39 }
40 }
41 }

Figure 3.11: Instrumented Application Logic File of DividedMultiply ASP.NET Web Form

34

3.3.2 Example

Figure 3.11 illustrates the instrumented applicationddde of the DivideAndMultiply ASP
.NET web form in Figure 2.2. Statements in line 20, 24, 32 a@daR instrumentations
that users have to write in their program. As seen in Figuté,3he instrumentations are
similar to the explanation in Section 3.2.3. These instmtiaign statements assist Mamoste

to gather path constraints executed.

After running Mamoste on the given example, test resultsaltected as shown in Table 3.3.
According to the first row of the table HTML output dfage_Load execution is valid but
character encoding is not found in the output. Second rowstiloat there is a run-time error
during execution obtnDivide. The error attempting to divide by zero occurstigitNuml >=

0 && txtNum2 >= @ execution path inline 21 of Figure 3.11. Second executiobitabivide
event results in invalid HTML output with 2 errors and 1 waguias it can be seen in third
row of the table. The errors are about missing end tag andimgaia again no character
encoding. Last row of the table displays an execution erdoickvoccurs inbtnMultiply
event. The error is incorrect input string which rises at bleginning of the event in line
29 or 30 of Figure 3.11. For there is no path constraint imsémntation up to that line, the
path constraint column of the table is empty. Consequektmoste detects 1 malformed
HTML output, warnings in HTML outputs and 2 execution ertorese results indicate that
Mamaoste should be used to detect malformed HTML outputs ahdndled execution errors

of ASP.NET dynamic web applications.

35

CHAPTER 4

EXPERIMENTS

We have used our tool Mamoste to check a subset ASP.NET weds pdghe SGB.net sys-
tem of Ministry of Finance of Turkey. This web applicationused by several government
organizations besides this ministry. Therefore, therenaraerous active clients interacting
with this system. In fact, only in Ministry of Finance therneanine to ten thousand clients
accessing and performing several tasks in the SGB.netnsy&emoving faults in this kinds

of systems plays an important role due to its huge numbeiiexitsl

We have applied Mamoste to a subset that includes five ASPdyRamic web pages of the
SGB.net system. The names of pages@r@Birim, Ambar, AmortismanSinir, Amortisman
Sure, and Bolge. The numbers of ASP.NET web controls in these pages areatasgg 10,
20, 10, 13, and 13. In general, the web applications that atdse simply perform listing,
saving, and deleting operations on data. These operatrenslso performed in our subset
under test. Accordingly, each page of our subset has fountgvisting of records, saving of
records, deleting of records, and clearing the page. Tles sizthese pages are provided in

the second column of Table 4.1. The minimum size is 179 anchdseémum size is 354.

We have done three experiments on the selected subset ofGBen& system. The first
experiment is applying Mamoste to the selected subset ilash&ersion (v2) of the SGB.net.

In the second experiment, manual testing is performed orsdhge subset of the SGB.net
v2. Finally, we tested the previous version (v1) of the S@Bwia using Mamoste. While
doing the first and the second experiments, we aimed to cantesirresults of Mamoste and
manual testing for a view offiectiveness of Mamoste. The reason that we applied Mamoste
to v1 and v2 is to find number of errors that the developers bawected and to reveal the

maintenance success rate of the developers and Mamoste.

36

Table 4.1: Comparison of Manual Testing and Mamoste

| Web Page Name|| LOC | Method | VC | TC | IG | H# |

OlcuBirim 184 | Mamoste| 4 7 4 6
Manual 3 11| 3
Ambar 354 | Mamoste| 17 | 19 | 17 | 17
Manual 9 38| 10
AmortismanSinir|| 179 | Mamoste| 4 7 4 6
Manual 3 10| 4
AmortismanSure|| 214 | Mamoste| 8 | 10 | 10| 10
Manual 5 23| 4
Bolge 276 | Mamoste| 11 | 13| 8 | 9
Manual 6 19| 4

4.1 Applying Mamoste to SGB.net v2

Recall that Mamoste focuses on detecting execution erratsnzalformed HTML outputs.
When we used Mamoste on the SGB.net v2, we have found no exeautors. This result
was expected as the system has been used excessively bywémargent @ices and numer-
ous tasks have been performed daily; hence the system ig tested every day. On the
other hand, Mamoste has found a number of faulty generatddlHdutputs. In fact, the
numbers of warnings and errors found are more than expegtéueldevelopers of the sys-
tem. Mamoste found 319 HTML errors and 117 warnings, exolydi7 HTML errors and 21

warnings that repeat in every page because of a reused cemtpon

Mamoste has surfaced two important errors in the system fildtene is as follows. There
is an ASP.NET control used in almost every page of the SGBMaimoste discovered that
in some of the dynamically generated HTML outputs, this mans repeated more than once
and all of the occurrences have the same properties. Thadelcamatic error is because of
a menu component of the system. This component is used bly réladhe ASP.NET pages.
Mamoste has found 47 HTML errors and 21 warnings only in tremmcomponent. In other
words, because of this menu component, there are at leastod3 and 21 warnings in every

single page.

37

4.2 Testing SGB.net v2 Manually

We have inspected and tested the same subset manually intorciempare the test results
and reason about thdfectiveness of Mamoste. Results of manual testing and ¢estfith
Mamoste are displayed in Table 4.1. The LOC column denotsidimber of line of code
in the page, the Method column denotes testing approach tigpe/C column denotes the
number of constraints explored, the TC column denotes tingbeu of total constraints of
page under test. The number of inputs generated by the aoristolver is shown in column
IG. The column H# shows the number of HTML outputs generafettording to the table,
manual testing found less HTML outputs while using more iigstits. On the other hand,
Mamoste discovered more HTML outputs while using less tgsiits. Moreover, Mamoste
executed more path constraints than manual testing as lbecaren in VC column of Table

4.1. This means that code coverage is improved when usingdgt@nsignificantly.

4.3 Applying Mamoste to SGB.net v1

As the third experiment, we ran Mamoste on the same subsé&Bfrit v1. Our goal was to
compare Mamoste with the maintenance team of the systenmas t& HTML fault detection.
Table 4.2 shows HTML faults of SGB.net vl and v2 and thesddare categorized by the
error type. The column labeled as App. Version shows thdomsof the system under test.
The Cnt column shows the number of occurrence of the errercthumn labeled as Y&
shows whether the row represents an error or warning. Thed&sann provides the ratio of
corrected error numbers to total error numbers of v1 whilgraging to v2. Our experiment
revealed that in v2 there are 319 HTML errors and 117 warnaxgtuding the errors caused
by the menu component in every page. Interestingly, Mamiosted 407 HTML errors and
146 warnings in v1. As seen in the last column of the tabley antmall fraction of these
errors in the earlier version had been either found and c@ueor unconsciously corrected by
the developers. The outcomes of this experiment supporagormoach. The first outcome is
that Mamoste finds more HTML errors than the maintenance tddahe system. The second

one is that Mamoste increases the success ratio of errartidet@nd correction.

Table 4.3 illustrates HTML faults of the menu component,ahtis reused by all pages in this

system, both in vl and v2. As it can be seen from the tableetba®rs are basically about

38

Table 4.2: HTML Faults found by Mamoste

App. | Cnt | W/E | Maintnc
Error Type Version Success
Rate (%)
No attribute V2 9 E 25
vl 12
Element not allowed v2 133| E 23
vl 172
Cannot generate v2 54 | W 19
system identifier vl 67
No system identifier V2 54 E 19
could be generated vl 67
Undefined entity V2 54 E 19
vl 67
Reference not terminated v2 54 | W 19
by REFC delimiter vl 67
Missing attribute V2 38 E 19
vl a7
Duplicate specification V2 22 E 27
vl 30
End tag for unfinished V2 9 E 25
element vl 12
Character not allowed v2 9 w 25
vl 12

39

Table 4.3: HTML Faults of Menu Component found by Mamoste

Error Type App. | Cnt | W/E
Vers.
No Character encoding | v2 2 W
vl 1
No attribute V2 1 E
vl 1
Element not allowed v2 34 E
vl 10
Cannot generate v2 3 W
system identifier vl 2
No system identifier v2 8 E
could be generated vl 3
Undefined entity v2 3 E
vl 2
Reference not terminated v2 8 w
by REFC delimiter vl 3
Reference to external V2 8 W
entity in attribute value vl 3
Missing end tag v2 1 E
vl 1

missing, unfinished or wrong HTML elements and attributesiliké Table 4.2, number of
errors in the menu component of v2 is more than those of v1.uFkerlying reason is that
the menu component was implemented over again in a new manhisrcase also supports

usage of Mamoste since the errors in the new menu comporeedetected by Mamoste.

To conclude, we have reached several significant resultsighr these experiments. First,
Mamoste improvesficiency of test in terms of using less test inputs and coligctnore

HTML outputs and execution errors. Second, Mamoste ineseti®e code coverage by exe-
cuting diferent branches of the tested program. Finally, Mamosteases the success ratio

of HTML error detection in ASP.NET web applications.

40

CHAPTER 5

CONCLUSION

In this thesis we presented an automated tool called Manostetect execution errors and
malformed HTML outputs of ASP.NET dynamic web applicatiofamoste applies concolic

testing in generating test cases and considers page egdets anput as well.

Our experiments revealed numerous HTML bugs on a highly A&RINET application and
including a faulty component which is used almost every paighis application. It also
showed that some of generated HTML outputs have the sameotombre than once. In
fact, Mamoste detected the errors that lived through thsimes of this application and that

showed #&ectiveness of Mamoste.

There are several novelties of this study. Firstly, Mampsepares HTTP requests same as
the web browsers. While doing this, it injects inputs inte thquests as if they are entered by
the clients. Secondly, Mamoste finds events of the tested pad uses these events as unit
test elements during concolic testing. This procedure aabe handled by concolic testing.
Thirdly, Mamoste performs several checking mechanismsitonmeze input generation and

HTML validation.

There are some limitations of Mamoste. Firstly, the inseatation that Mamoste needs to
catch branch conditions is manual. We plan to remove thisualanstrumentation as a future
work. Second limitation is that Mamoste can support onlyniiive variable types; integer,
boolean, real and string. We are going to support other oustpes by linking them or their
properties to the web controls of the tested page. At preselyt equality and inequality
relations of string variable type are supported due to tinétditions of the constraint solver
used. Hence, string operations are also a limitation of MaeoWe plan to include string

operations to be used in string constraints such as subdeirefix.

41

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

REFERENCES

Gareth Lee, John Morris, Kris Parker, Gary A. Bundelldd&eng Lam. Using symbolic
execution to guide test generatidBoftware Testing, Verification and Reliability (STYR)
15(1):41-61, March 2005.

William G. J. Halfond, Saswat Anand, and Alessandro OBrecise interface identifi-
cation to improve testing and analysis of web applicatidnsProceedings of the 18th
International Symposium on Software Testing and AnalySISTA) pages 285-296,
20009.

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danbyg, Amit Paradkar, and
Michael D. Ernst. Finding bugs in web applications using aiyit test generation
and explicit state model checkindEEE Transactions on Software Engineering (TSE)
36(4):474-494, JupAugust 2010.

Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar [atipHiroshi Inamura, and
Zhendong Su. Dynamic test input generation for web apjdicat In Proceedings
of International Symposium on Software Testing and AralySISTA) pages 249-260,
2008.

William G. J. Halfond and Alessandro Orso. Automatechiafecation of parameter mis-
matches in web applications. Rroceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (F&dges 181-191, 2008.

Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai @jaand Lixin Tao. A static

analysis framework for detecting sql injection vulnerdigis. InProceedings of the 31st
Annual International Computer Software and Applicationsnference (COMPSAC)

pages 87-96, 2007.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Ddvirected automated random
testing. InProceedings of ACM SIGPLAN Conference on Programming LagegDe-
signh and Implementation (PLDIpages 213—-223, 2005.

Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concalnit testing engine for
c. In Proceedings of the 10th European Software Engineering &ente (ESEC) held
jointly with 13th ACM SIGSOFT International Symposium onriéations of Software
Engineering (FSE)pages 263-272, 2005.

Nikolai Tillmann and Jonathan De Halleux. Pex: white best generation for .net.
In Proceedings of the 2nd International Conference on TestisRmofs (TAP) pages
134-153, 2008.

Microsoft Research Team. Moles - isolation framewark fhet. http://research.
microsoft.com/en-us/projects/moles. Last visited: March 2011.

42

[11] W3Schools. Asp tutorial.http://www.w3schools.com/asp/default.asp. Last
visited: February 2011.

[12] The PHP Group. What is php?ttp://www.php.net. Last visited: February 2011.

[13] Microsoft Corporation. Microsoft asp.nétittp://www.asp.net. Last visited: April
2011.

[14] Oracle. Javaserver pages technologhttp://www.oracle.com/technetwork/
java/javaee/jsp/index.html. Last visited: March 2011.

[15] Paul D. Shefft. Introduction to asp.net and web formkttp://msdn.microsoft.
com/en-us/library/ms973868.aspx. Last visited: April 2011.

[16] Microsoft Corporation. The ficial microsoft iis site. http://www.iis.net. Last
visited: April 2011.

[17] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, Dlavi Dill, and Dawson R. En-
gler. Exe: Automatically generating inputs of deafCM Transactions on Information
and System Security (TISSEC2(2).

[18] James C. King. Symbolic execution and program testibgmmunications of the ACM
(CACM), 19(7):385-394, July 1976.

[19] Corina S. Rsareanu and Willem Visser. A survey of new trends in symboliecetion
for software testing and analysimternational Journal on Software Tools for Technol-
ogy Transfer (STTTL1(4):339-353.

[20] Christoph Csallner, Nikolai Tillmann, and Yannis Smagdakis. Dysy: dynamic sym-
bolic execution for invariant inference. BProceedings of the 30th International Con-
ference on Software Engineering (ICSEXges 281-290, 2008.

[21] Christophe Meudec. Atgen: automatic test data geiograising constraint logic
programming and symbolic executiorSoftware Testing, Verification and Reliability
(STVR)11(2):81-96, June 2001.

[22] Patrice Godefroid, Michael Y. Levin, and David A Molnadutomated whitebox fuzz
testing. InProceedings of Network Distributed Security SymposiumS8)Dnternet
Society, 2008.

[23] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynataest input generation for
database applications. Rroceedings of International Symposium on Software Tgstin
and Analysis (ISSTApages 151-162, 2007.

[24] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing dwabed applications: The
state of the art and future trendsformation and Software Technology (IS#3:1172—
1186.

[25] Microsoft. Ms solver foundationhttp://www.solverfoundation.com. Last vis-
ited: March 2011.

[26] World Wide Web Consortium. Html validatorhttp://validator.w3.org. Last
visited: February 2011.

43

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Microsoft. Tracelistener classhttp://msdn.microsoft.com/en-us/library/
system.diagnostics.tracelistener.aspx. Last visited: April 2011.

Microsoft. System.diagnostics hamespadg.tp://msdn.microsoft.com/en-us/
library/15t15zda.aspx. Last visited: April 2011.

Microsoft. Installing solver foundation. http://msdn.microsoft.com/en-us/
library/££524499(v=vs.93).aspx. Last visited: April 2011.

The Code Project Open License (CPOL). General exmesgarser and evaluator.
http://www.codeproject.com/KB/recipes/GenExpParser.aspx. Last visited:
March 2011.

Microsoft. Editing asp.net configuration files.http://msdn.microsoft.com/
en-us/library/ackhksh7 (v=VS.100) .aspx. Last visited: April 2011.

Microsoft. Global.asax syntaxhttp://msdn.microsoft.com/en-us/library/
2027ewzw.aspx. Last visited: April 2011.

Microsoft. <system.diagnosticselement. http://msdn.microsoft.com/en-us/
library/1txedc80.aspx. Last visited: April 2011.

44

