

AN INTERACTIVE EVOLUTIONARY ALGORITHM FOR THE

MULTIOBJECTIVE RELOCATION PROBLEM WITH PARTIAL COVERAGE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BERK ORBAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

OPERATIONAL RESEARCH

APRIL 2011

Approval of the thesis:

AN INTERACTIVE EVOLUTIONARY ALGORITHM FOR THE

MULTIOBJECTIVE RELOCATION PROBLEM WITH PARTIAL

COVERAGE

submitted by BERK ORBAY in partial fulfillment of the requirements for the

degree of Master of Science in Operational Research Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. Çağlar Güven

Head of Department, Operational Research _______________

Assoc. Prof. Dr. Esra Karasakal

Supervisor, Industrial Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Nur Evin Özdemirel

Industrial Engineering Dept., METU _______________

Assoc. Prof. Dr. Esra Karasakal

Industrial Engineering Dept., METU _______________

Prof. Dr. Meral Azizoğlu

Industrial Engineering Dept., METU _______________

Assoc. Prof. Dr. Canan Sepil

Industrial Engineering Dept., METU _______________

Asst. Prof. Dr. Banu Yüksel Özkaya

Industrial Engineering Dept., Hacettepe University _______________

Date: 22.04.2011

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name: Berk Orbay

 Signature:

iv

ABSTRACT

AN INTERACTIVE EVOLUTIONARY ALGORITHM FOR THE

MULTIOBJECTIVE RELOCATION PROBLEM WITH PARTIAL COVERAGE

Orbay, Berk

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Esra Karasakal

April 2011, 129 pages

In this study, a bi-objective capacitated facility location problem is presented which

includes partial coverage concept and relocation of facility nodes. In partial

coverage, a predefined distance between a demand node and a facility node is

assumed to be fully covered. After the predefined distance, the service level

commences to decay linearly. The problem is designed to consider the existence of

already functioning facility nodes. It is allowed to close these existing facilities and

open new facilities in potential sites. However, existing facility nodes are strongly

favored against new facility nodes. The objectives are the maximization of the

weighted total coverage and the minimization of number of facility nodes. A novel

interactive multi-objective evolutionary algorithm is proposed to solve this problem,

I-TREA. I-TREA is originated from NSGA-II and designed for interactive methods

benefiting from quality infeasible solutions. The performance of I-TREA is

benchmarked with a modified version of NSGA-II on randomly generated problems

with various sizes and utility functions.

Keywords: Interactive Multi-Objective Evolutionary Algorithm, Maximal Covering

Location Problem, Partial Coverage, Relocation

v

ÖZ

KISMĠ KAPSAMANIN OLDUĞU ÇOK AMAÇLI YENĠDEN YERLEġTĠRME

PROBLEMĠ ĠÇĠN ĠNTERAKTĠF BĠR EVRĠMSEL ALGORĠTMA

Orbay, Berk

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Esra Karasakal

Nisan 2011, 129 sayfa

Bu çalıĢmada, kısmi kapsama ve tesis değiĢtirme konseptlerinin bulunduğu iki

amaçlı kapasite kısıtlı bir yerleĢim problemi sunulmuĢtur. Kısmi kapsamada, bir

servis noktası ile talep noktası arasında belli bir uzaklık değeri içinde o talep

noktasının tam olarak kapsandığı ve bu değerden sonra kapsamanın azalmaya

baĢladığı varsayılmıĢtır. Problemde halihazırda servis noktaları olduğu varsayılmıĢ

ve bu noktaların kapatılmasına izin verilip potansiyel yerlerde yeni servis noktaları

açılmasına izin verilse de halihazırdaki servis noktalarının korunması yeni servis

noktalarının açılmasına tercih edilmektedir. Birinci amaç toplam ağırlıklı kapsamayı

maksimize etmektir. Ġkinci amaç ise açılmıĢ servis noktası sayısını minimize

etmektir. Bu problem için yeni bir interaktif evrimsel algoritma önerilmiĢtir, I-

TREA. I-TREA, hazırlanıĢında NSGA-II temel alınmıĢ, olurlu olmayan ama kaliteli

sonuçlardan yararlanan, interaktif yöntemlerde kullanmak için tasarlanmıĢ bir çok

amaçlı evrimsel algoritmadır. I-TREA‟nın performansı NSGA-II‟nun modifiye

edilmiĢ bir versiyonu ile karĢılaĢtırılarak rastgele oluĢturulmuĢ, değiĢik fayda

fonksiyonlarına ve büyüklüklere sahip problemler üzerinde test edilmiĢtir.

Anahtar Kelimeler: Çok Amaçlı Evrimsel Algoritma, Maksimum Kapsama

YerleĢim Problemi, Kısmi Kapsama, Yer DeğiĢtirme

vi

To My Family,

vii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Assoc. Prof. Dr. Esra Karasakal for her

efforts, guidance, support and constant patience throughout the entire thesis process.

It has always been a pleasure to work with her. I would also like to thank her soon-

to-be-born son for speeding things up and wish both of them well.

I don‟t think I can ever pay my debt to my family. Their enormous support during

the entire process and at my darkest hours while writing this thesis made this study

possible. I would love to write all of them here but I especially want to thank my

father Prof. Dr. Atilla Orbay and my mother Prof. Dr. YeĢim Kamile Aktuğlu.

This study again and again proved that dear friends are absolutely necessary to

undertake a task like a thesis. I am lucky that I have plenty. I would like to thank

Ġpek Sayın for making the last two years more entertaining and not always about

studying. Some friends are too kind to remind you that time is happening through

the means of wedding and engagement. I would like to thank Serkan Özpamukçu

and Funda Akar, Özlem (Karabulut) and Sinan Karsu, Sinem (Süzen) Günsel,

AyĢegül (Demir) and Kerem DemirtaĢ for being great friends and not leaving me

alone in Ankara for the last three years. I would like to thank Doruk Tunaoğlu for

being a friend and helping me out with the initiation of my coding. There are so

many more to thank: Beril, Jehanzeb, Kemal, Hasan, Yiğit, Erdem, Cansu, Eda,

Queen, Deep Purple…

I would also like to thank all of the members of the department for I have learned a

lot from them for the last seven years and they are not all about just teaching.

Last, but not the least, I would like to thank Prof. Dr. Osman CoĢkunoğlu and ġerife

Akuygur Barutçuoğlu. Their support to and interest in my thesis helped more than

they think of. Also, I have learned many valuable things from them during my time

with them.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ… .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

CHAPTERS

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 3

2.1 Location Problems .. 3

2.1.1 Maximum Coverage Location Problem .. 4

2.1.2 Capacitated Problems .. 4

2.1.3 Backup and Multiple Coverage ... 4

2.1.4 Partial Coverage .. 5

2.1.5 Relocation and Time Horizons.. 6

2.2 Interactive Multi-Objective Decision Making .. 7

2.3 Multi-Objective Facility Location Problems .. 9

2.4 Multi-Objective Evolutionary Algorithms (MOEA) 11

2.4.1 Interactive Methods in MOEA .. 12

2.4.2 MOEA in Location Problems.. 13

3 THEORETICAL BACKGROUND .. 15

ix

3.1 Multi-objective Decision Problem .. 15

3.1.1 Dominated Solutions ... 15

3.1.2 Non-dominated Solutions ... 16

3.1.3 Non-dominated Front .. 16

3.2 Epsilon Constraint Method ... 16

3.3 Estimated Utility Function .. 18

3.3.1 Linear Estimated Utility Function ... 18

3.3.2 Preference Information.. 19

3.3.3 Mid-Point Approach ... 19

3.4 Partition Ideal .. 20

3.5 NSGA-II .. 22

3.5.1 Ranks ... 22

3.5.2 Crossover .. 23

3.5.3 Crowding Distance .. 23

3.5.4 Elimination .. 25

3.5.5 Constrained NSGA-II (C-NSGA-II) ... 25

3.6 Maximum Coverage Location Problem .. 25

3.6.1 Partial Coverage .. 26

4 PROBLEM DEFINITION .. 29

4.1 Motivation ... 29

4.2 Proposed Model .. 30

4.2.1 Mathematical Model ... 31

4.2.1.1 Indices and Sets ... 31

4.2.1.2 Decision Variables .. 32

4.2.1.3 Parameters ... 32

4.2.1.4 Representation ... 32

4.3 Computational Complexity ... 34

5 PROPOSED ALGORITHM (I-TREA) ... 35

5.1 OVERVIEW ... 35

x

5.2 CHROMOSOME REPRESENTATION .. 37

5.2.1 Proposed Representation ... 37

5.2.2 Distinction of New and Existing Facilities ... 38

5.2.3 Calculation of Total Weighted Coverage .. 38

5.2.4 Calculation of Capacity Violation ... 39

5.3 RANKS ... 40

5.4 INFEASIBLE SOLUTIONS ... 42

5.5 TRIGGERS ... 42

5.5.1 Trigger Conditions .. 43

5.6 STEP BY STEP ALGORITHM ... 43

5.6.1 Initialization .. 45

5.6.2 Crossover .. 45

5.6.3 Mutation .. 47

5.6.3.1 Forced Closure .. 48

5.6.3.2 Second Chance .. 50

5.6.3.3 Step by Step Process ... 51

5.6.4 Classification ... 56

5.6.5 Elimination .. 57

5.6.5.1 Duplicate Elimination ... 58

5.6.5.2 First Rank 2 Elimination ... 58

5.6.5.3 First Rank 0 Elimination ... 58

5.6.5.4 Second Rank 0 Elimination ... 59

5.6.5.5 First Rank 1 Elimination ... 59

5.6.5.6 Second Rank 2 Elimination ... 59

5.6.5.7 Second Rank 1 Elimination ... 59

5.6.6 Interactive Process .. 60

5.6.6.1 Rank 0 vs. the Incumbent .. 61

5.6.6.2 Rank 1 vs. the Incumbent .. 64

5.6.7 Termination ... 65

6 COMPUTATIONAL RESULTS .. 66

xi

6.1 Problem Settings ... 67

6.2 I-TREA Settings .. 68

6.2.1 Initial Population ... 68

6.2.2 Normalization .. 68

6.2.3 Decision Maker ... 68

6.2.4 Algorithm Parameters ... 69

6.3 Modified NSGA-II Settings .. 70

6.4 Simplified I-TREA Settings .. 70

6.5 Evaluation and Computation Settings ... 71

6.5.1 Technical Specifications ... 71

6.5.2 Performance Metrics ... 71

6.5.2.1 Solution Quality .. 71

6.5.2.2 Question Limit .. 72

6.5.2.3 Runtime ... 73

6.6 Results ... 73

6.6.1 Solution Quality .. 73

6.6.1.1 Benchmarking With Simplified I-TREA (I-TREA-S) 74

6.6.2 Resource Consumption ... 75

6.6.3 Overall Assessment ... 78

6.7 Weaknesses ... 79

7 CONCLUSION ... 81

7.1 Future Studies ... 82

REFERENCES ... 83

APPENDICES

A. PSEUDO CODE OF I-TREA .. 91

B. LIST OF I-TREA PARAMETERS ... 95

C. DETAILED RUN RESULTS ... 97

xii

LIST OF TABLES

TABLES

Table 1. Problem sizes .. 34

Table 2. Coverage matrix .. 38

Table 3. Demand weight (population) list .. 38

Table 4. Facility capacities list .. 39

Table 5. Forced closure example .. 49

Table 6. Second chance example .. 51

Table 7. Mutation example ... 55

Table 8. Problem Sizes .. 67

Table 9. Absolute utility deviation results for chebyshev utility functions 73

Table 10. Absolute utility deviation results for linear utility functions 74

Table 11. Benchmarking the performance of I-TREA-S .. 75

Table 12. Resource requirements of I-TREA for chebyshev utility functions 75

Table 13. Resource requirements of I-TREA for linear utility functions 76

Table 14. Resource requirements of modified NSGA-II for chebyshev utility

functions .. 77

Table 15. Resource requirements of modified NSGA-II for linear utility functions 77

Table 16. Problem type 1 I-TREA linear utility function results 97

Table 17. Problem type 1 I-TREA chebyshev utility function results 99

Table 18. Problem Type 2 I-TREA linear utility function results 101

Table 19. Problem Type 2 I-TREA chebyshev utility function results................... 103

Table 20. Problem Type 3 I-TREA linear utility function results 105

Table 21. Problem Type 3 I-TREA chebyshev utility function results................... 107

Table 22. Problem Type 4 I-TREA linear utility function results 109

Table 23. Problem Type 4 I-TREA chebyshev utility function results................... 111

xiii

Table 24. Problem type 1 modified NSGA-II linear utility function results 113

Table 25. Problem type 1 modified NSGA-II chebyshev utility function results ... 115

Table 26. Problem type 2 modified NSGA-II linear utility function results 117

Table 27. Problem type 2 modified NSGA-II chebyshev utility function results ... 119

Table 28. Problem type 3 modified NSGA-II linear utility function results 121

Table 29. Problem type 3 modified NSGA-II chebyshev utility function results ... 123

Table 30. Problem type 4 modified NSGA-II linear utility function results 125

Table 31. Problem type 4 modified NSGA-II chebyshev utility function results ... 127

xiv

LIST OF FIGURES

FIGURES

Figure 1. Epsilon constraint method ... 18

Figure 2. Partition ideal representation ... 21

Figure 3. Formation of partition ideals ... 22

Figure 4. Formation of ranks ... 23

Figure 5. Cuboid distance representation .. 24

Figure 6. Graphical representation of partial coverage concept 27

Figure 7. Partial coverage example ... 28

Figure 8. Chromosome representation .. 37

Figure 9. Crossover weakness example .. 40

Figure 10. Ranks ... 41

Figure 11. I-TREA Flowchart ... 44

Figure 12. One-point, random point crossover ... 47

Figure 13. Mutation flowchart. ... 52

Figure 14. Classification flowchart ... 57

Figure 15. Interactive process flowchart ... 61

Figure 16. Rank 0 solutions .. 62

Figure 17. The decision maker prefers the incumbent .. 64

1

CHAPTER 1

1 INTRODUCTION

Maximal Covering Location Problem (MCLP) is first introduced by Church and

ReVelle (1974). The problem‟s objective is to cover as many demand points as

possible by facility nodes within an acceptable distance.

MCLP is a widely studied problem in the literature and it has many real life

implementations. To name some of them, Pirkul and Schilling (1988) propose a

backup coverage problem for emergency sites which is a variation of MCLP.

Farhan and Murray (2008) propose a multi-objective facility location problem for

park-and-ride facilities and they use demand coverage as an objective. Harewood

(2002) proposes a Bi-Objective Maximum Availability Location Problem for the

deployment of ambulances in Barbados where coverage maximization is one of the

objectives.

Two of the main assumptions of the classical MCLP are; there are a fixed number of

facilities and there is a fixed critical distance where one side of that distance is “fully

covered” and the other side is “not covered”.

The sudden drop in the coverage value may be valid for some cases, yet it is not

realistic for the most. Therefore partial coverage concept is introduced for a smooth

decay in the coverage function. With partial coverage, the coverage value begins to

decrease according to a function after the critical coverage distance until it reaches

another threshold where demand is “not covered” after that distance.

2

The other assumption is transformed into an objective. In addition, another implicit

assumption of “clean slate setting” (i.e. there are no previous installations within the

region) is reconsidered by including a distinction of existing facilities from „new‟

facilities. Existing facilities are favored in this objective, albeit relocation, opening

and closure of facilities are allowed.

The bi-objective Maximal Coverage Location Problem is a capacitated facility

location problem. The first objective considers the maximization of the total

weighted coverage of demand points, while the second objective is the minimization

of number of facilities.

By being a combinatorial problem, obtaining exact solutions as the problem sizes

grow gets harder in a reasonable amount of time. A meta-heuristic method will be

proposed for fast and reliable results.

The heuristic proposed is an interactive multi-objective evolutionary algorithm (I-

TREA) that uses specific functions to enhance its performance and interactive

process to focus on parts of the solution space that are of interest to the decision

maker and to eliminate undesired parts of the solution space.

I-TREA‟s performance is tested by benchmarking with exact solutions and a

modified version of a distinguished evolutionary algorithm, NSGA-II, for various

problems and problem sizes.

The organization of the thesis is as follows. A literature survey is presented to

discuss previous studies in the related research areas in Chapter 2. The concepts

used in the structure of the thesis are introduced in Chapter 3. The problem

definition is discussed in Chapter 4. Then, the proposed algorithm (I-TREA) is

explained in detail in Chapter 5. The algorithm is tested and benchmarked with exact

solutions and NSGA-II in Chapter 6. Concluding remarks and discussions for further

study are given in Chapter 7.

3

CHAPTER 2

2 LITERATURE REVIEW

2.1 Location Problems

There are excellent surveys in the literature about facility location problems. To

spell some of them; ReVelle et al. (1970) have a survey on location models

classified as public and private sector models. Tansel et al. (1983) examine p-center

and p-median problems. Brandeau and Chiu (1989) present a comprehensive survey

of 50 major location problems up to date. Berman et al. (2010) provide a

comprehensive survey on generalized coverage models. Owen and Daskin‟s (1998)

review on strategic facility location gives substantial information on facility

relocations.

Alfred Weber‟s (1909) work is recognized as the beginning of Location Theory with

the decision problem of locating a single warehouse with the objective of

minimizing the total traveling distance to the demand points. For over a century

there are many contributions to this area.

Set Covering Problem (SCP) is introduced by Toregas et al. (1971). Their aim was

to cover all demand nodes in the region by minimum number of facilities given a

maximum covering distance.

As an alternative to the Set Covering Problem, Church and ReVelle (1974)

developed a new model, namely, Maximal Covering Location Problem (MCLP).

The model differed from SCP by fixing the number of facilities and removing the

4

condition to cover all nodes. Also, the objective is changed to maximization of total

weighted demand coverage instead of finding the minimum amount of facilities.

2.1.1 Maximum Coverage Location Problem

Maximal Coverage Location Problem is originated from Hakimi‟s (1964) p-median

problem, where a set of p facilities should be picked from a discrete set that leads to

the minimum total weighted distance to the demand points. Hakimi‟s study also

covered minimization of the maximum distance from facilities to demand points (p-

center).

2.1.2 Capacitated Problems

As Current and Storbeck (1988) state, most of the location problems had an

underlying assumption of facilities being uncapacitated. It has been shown that the

assumption is not valid for all the cases.

Capacity constraint in Maximal Covering Location Problem is first studied by

Chung et al. (1983). Each facility is associated with a capacity on the amount of

demand they can serve. With this restriction, assignment of demand points to

facilities within coverage distance becomes an imperative.

Pirkul and Schilling (1991) also consider the case where capacities of the facilities

are utilized by demand points even if they are not within the covered region by the

facility. They add a p-median objective with insignificant effect on the maximal

coverage objective to minimize the total distance from uncovered demand points to

their assigned facilities.

2.1.3 Backup and Multiple Coverage

Pirkul and Schilling (1988) integrate capacity restrictions and backup coverage in a

decision model of siting emergency facilities. The need arises from the settings

where high demand occurs and demand cannot be queued. Therefore, backup

5

coverage is considered for demand points in case the assigned facility is fully

utilized and unable to respond.

Daskin and Stern (1981) introduced a multiple coverage approach to Set Covering

Problem. While the primary objective is the same as SCP, the secondary objective

calculates the number of times the demand nodes are covered beside the first

coverage.

Hogan and ReVelle (1986) show that backup coverage can be introduced in

coverage models, without serious effect on the performance of primary coverage.

Daskin et al. (1988) combine multiple, excess, backup and expected coverage in

both SCP and MCLP for emergency services.

Church and Gerard (2003) propose a set covering location model where multi-level

coverage is compulsory, which means each demand point should be covered by

more than at least one facility.

2.1.4 Partial Coverage

Classical MCLP takes coverage as binary, any demand point within the critical

distance is “fully covered” and any demand point beyond that radius is “not

covered”. Berman and Krass (2002) propose a Generalized Maximal Coverage

Location Problem model where coverage is considered as a decreasing step function.

Berman et al. (2003) propose a Gradual Cover Decay Model with more general

forms of the coverage level decay function. Drezner et al. (2004) examine the planar

situation with linear coverage function.

Karasakal and Karasakal (2004) formulate a model with partial coverage called

MCLP-P, where partial coverage occurs between two critical distance values.

Eiselt and Marianov (2009) examined partial coverage situation in Set Covering

Problems.

6

Drezner et al. (2010) consider stochastic case of gradual coverage where minimum

and maximum critical coverage distances are random variables.

2.1.5 Relocation and Time Horizons

Facility location decisions are occasionally long term due to high costs of realizing a

facility which makes the decision of facility location of high importance (Owen and

Daskin 1998). Nevertheless, there are situations where some facilities already exist

and individuals face the decision of opening new facilities and/or removing former

ones. In the literature, it is widely referred as opening and closing of facilities or

relocation of facilities. Relocation concept is closely associated with dynamic

location problem since time horizons are often involved.

Wesolowsky (1973) proposes a model for single dynamic facility location problem

that allows relocation and takes relocation costs into account.

Wesolowsky and Truscott (1975) examine the multiperiod location-allocation

problem with relocation of facilities. They propose a model to locate a fixed number

of facilities and allow relocation.

Van Roy and Erlenkotter (1982) study an uncapacitated dynamic facility problem

where the objective is to minimize the discounted cost of transporting goods from

facilities to demand points. The model allows opening new facilities and closing

existing ones over the time periods.

Drezner and Wesolowsky (1991) examine the problem of locating a facility in a

changing environment, whereas demand shifts occur over time with the objective of

minimizing total expected cost within the predictable time horizon.

Dell‟s (1998) study shows a military application of optimizing the closure and

relocation of army bases in the U.S. due to the shrinkage of army personnel which

uses an mixed integer programming (MIP) method, BRACAS (Base Realignment

and Closure Action Scheduler).

7

Wang et al. (2003) consider a budget constrained single period uncapacitated facility

location problem where opening and closing of facilities are allowed. They explain

the need of relocation as the shift in demand over time and that the position of

existing facilities might not be adequate. The objective is to minimize the total

weighted distance from the demand points, analogous to p-median problem. They

restrict the maximum of number of open facilities in addition to the budget

constraint.

In Farahani et al. (2009), a single facility case is considered with multiple relocation

opportunities for finite or infinite time horizons. Their objective is to minimize

location and relocation cost.

Batta and Huang (1989) and ReVelle and Serra (1991) take the relocation issue in

competitive facility location problems. Batta and Huang (1989) discuss a relocation

promotion model that tries to maximize the profit due to relocation and/or promotion

subject to exponential decay of demand with distance and diminishing monetary

returns in promotion of demand functions. ReVelle and Serra (1991) present a

model to locate new facilities and relocate existing facilities to maximize the

captured market demand in a competitive environment according to Cournot and

Stackelberg strategies.

2.2 Interactive Multi-Objective Decision Making

Step Method, or STEM, is proposed by Benayoun et al. (1971). The method first

finds the optimal points for each objective separately and then finds non-dominated

points benefiting from the weighted Tchebycheff distance metric. Decision maker is

asked to evaluate the objectives to sacrifice from or favor them.

Geoffrion et al. (1972) propose a method based on the Frank-Wolfe gradient ascent

algorithm (1956), using decision maker‟s preference information by pair-wise

comparisons.

8

Zionts and Wallenius (1976, 1983) propose a reduced feasible weight space method.

In this method decision maker is asked for preference information about trade-off

vectors and adjacent extreme points. On the presence of conflicting information,

preference information is deleted starting from the oldest until inconsistency is

resolved.

Steuer‟s (1977) study is a criterion cone reduction method that forms convex

combinations of non-dominated criterion vectors and benefits from decision maker

information in an a posteriori way to find the convex combinations that gradient

closest to decision maker‟s preferences.

Korhonen and Laakso (1986) develop a visual interactive method that uses

achievement scalarizing programming to direct the search on the non-dominated

front.

Köksalan and Sagala (1995) make use of fictional superior solutions (partition

ideals) in the discrete solution space, that dominate several solutions to ask the

decision maker between a preferable feasible solution and the partition ideal to

reduce the feasible solution space quickly and with the least amount of questions

possible.

Köksalan and Karasakal (2006) use Köksalan and Sagala‟s (1995) partition ideal

idea for the continuous space problem to reduce the feasible solution space and to

approximate decision maker‟s utility function by reducing the feasible weight space

at the same time.

Balıbek and Köksalan (2010) apply Korhonen and Laakso‟s (1986) approach in

public debt management strategy problem.

Miettinen et al. (2010) propose their study on the assumption of the human

perception of gain and loss. They propose a model called NAUTILUS. It takes a

solution from the nadir point and iteratively improve the solution by steering

according to preference information from the decision maker. The interactive part is

9

based on behavioral assumptions like the asymmetry of reaction against gain and

loss and past experience to affect future decisions.

2.3 Multi-Objective Facility Location Problems

Until now, only single objective models are covered in this survey. Though, most

real life facility location problems have several conflicting objectives. Different

solving methods are considered for multi-objective problems. Because, there might

exist a multitude of solutions .

ReVelle et al. (1977) examine the problem of locating fire stations according to

several criteria; coverage of fires, area, population, property value, property value

hazard and population hazard.

Ross and Soland (1977) show the similarities between Generalized Assignment

Problem (GAP) and facility location problems. Ross and Soland (1980) benefit from

these similarities in multi-objective facility location problems. The study presents an

interactive approach for the solution of the problem, using satisfaction levels.

Min (1988) develops a multi-objective MIP goal programming model for the

relocation and expansion decisions of public facilities that resemble capacitated

dynamic facility location problem in a fuzzy decision environment. The objectives

are “coverage of populations and proximity to center of gravity of each community”,

“proximity to the old facility to be closed” and “accessibility to major transportation

arteries or public transportation systems or availability of spacious parking lots”.

ReVelle and Laporte (1996) introduce new models and concepts to facility location

problems. Their study compartmentalizes facility location problems as problems

with multiple objectives, multiple products and machines and spatial interactions.

Brimberg and ReVelle (1998) propose a bi-objective model that minimizes total cost

and maximizes demand coverage for an uncapacitated facility location problem.

They solve the bi-objective model using weighting methods.

10

Jayaraman (1998) proposes a multi-objective model for a capacitated multi-product

public facility location problem. There are two cost objectives (i.e. fixed cost of

operations, variable operating costs) and average response time to be minimized.

The number of facilities to be opened is fixed to a pre-determined value.

Melachrinoudis and Min (2000) present a multi-objective, multi-echelon capacitated

dynamic location allocation model that takes relocation and phase-out of facilities

into account over the time horizon. The objectives are the minimization of cost and

the maximization of traffic access and local incentives.

Melachrinoudis et al. (2000) also present a multi-objective, dynamic location

problem which determines an optimal relocation site and phase-out schedule of a

single manufacturing and warehouse facility. The criteria are “total costs during the

planning horizon”, “average access times from the new site to each customer,

supplier and transportation infrastructure respectively” and local incentives (tax

credits, labor quality etc.). Problem is modeled by using Physical Programming (a

variation of Goal Programming), six objective ranges are set as ideal, desirable,

tolerable, undesirable, highly undesirable and unacceptable with different weights of

penalty. The ranges are set by the decision maker. Relocation is also discussed.

Harewood (2002) propose a model for the bi-objective version of Maximum

Availability Location Problem for the deployment of ambulances in Barbados. The

first objective is to maximize coverage and the second is to minimize the costs

incurred. Real data obtained from Barbados Emergency Ambulance Service is

analyzed. The model is optimally solved and tested by simulation with different

parameters.

Liu et al. (2005) introduce a multi-objective emergency facility location model with

the presence of existing facilities. In the model three objectives are considered;

maximization of coverage that are not previously covered by existing facilities

within a critical distance, achieving a reasonable distance between fire stations (i.e.

minimization of deviation from a fixed distance) and maximization of coverage

11

within another critical distance. They propose a multi-objective ant algorithm for the

pareto ranking of the problem.

Farahani and Asgari (2007) examine a real-world military logistics case to locate

distribution centers. A bi-criteria set coverage model is proposed that minimizes the

number of distribution centers to be located and maximizes the quality of locations

chosen. Quality objective consists of a number of other criteria (i.e. temperature,

economical, infrastructure etc.) and the decision maker is asked to determine these

criteria‟s importance (i.e. weights). Then the quality objective is composed as a

weighted sum where weights are determined by the decision maker. There are also

some scenarios tried on the model concerning the facilities. In the first scenario no

facility exists, in the second scenario there are some existing facilities and these

facilities should remain open and in the third scenario it is allowed to close existing

facilities albeit they are favorable over prospective facilities.

Farhan and Murray (2008) develop a multi-objective spatial optimization model for

the location of park-and-ride facilities. They consider three objectives; maximization

of demand coverage, minimization of the total distance between park-and-ride

facilities and major roadways and maximization of the preservation of existing

facilities. Model is solved optimally and a non-dominated front is obtained for the

decision making process.

2.4 Multi-Objective Evolutionary Algorithms (MOEA)

MOEA or EMO (Evolutionary Multiobjective Optimization) is a relatively new but

rapidly growing field. There are already numerous contributions by distinguished

researchers. One of the most promising topics in MOEA is the elitist approach,

where good solutions are favored in reproduction and protected against selection.

Non Dominated Sorting Algorithm (NSGA-II), proposed by Deb et al. (2002), is an

elitist algorithm. NSGA-II‟s working principle is based on non-dominated fronts

(i.e. ranks) and crowding distance metric. Crowded tournament selection concept, an

elitist method to fill the mating pool, is also first coined in NSGA-II.

12

Zitzler et al. (2002) propose an elitist evolutionary algorithm called Strength Pareto

Evolutionary Algorithm (SPEA-II) using an external non-dominated population and

clustering. Fitness and strength functions are based on dominance. Diversity is

maintained by density estimation. This algorithm is an improvement of its

predecessor SPEA, proposed by Zitztler and Thiele (1998).

Pareto Archived Evolutionary Strategy (PAES) is developed by Knowles and Corne

(2000). The motivation for this method originates from the need of solving

telecommunications network problems. PAES mechanism is based on local search

strategy. A single parent, subject to mutation, creates a single off-spring. A finite

sized archive is kept to record non-dominated solutions. The dominance relation

between the parent and the off-spring determines the next generation‟s parent and

the state of the archive.

Constraint handling is an important part of the evolutionary algorithms. The fate of

the infeasible solutions is not determined by default. There are times when they can

be useful indeed. Ray et al. (2009) propose a method that includes infeasible

solution as the driving force of the algorithm called Infeasibility Driven

Evolutionary Algorithm (IDEA). The study also reports that IDEA performs better

than popular MOEA methods like NSGA-II in several ways. They also stress that

marginally infeasible solutions make good trade-off alternatives.

2.4.1 Interactive Methods in MOEA

Phelps and Köksalan (2003) propose an evolutionary meta-heuristic that uses

“clubs” that include best performing solutions for each objective and estimated

utility function to approximate decision maker‟s utility by extracting preference

information using pair-wise comparisons.

Deb and Kumar‟s (2007) study is to enhance NSGA-II with the reference direction

approach. They replace the ranking method where the distance from the reference

direction vector is the primary measure to form ranks (i.e. Rank 1 is the closest,

Rank 2 is the next closest, etc.).

13

Deb and Kumar (2007a) also propose to incorporate Jaszkiewicz and Slowinski‟s

(1994) light beam search (LBS) method in NSGA-II to find a preferred set of

solutions instead of the representation of the whole non-dominated front.

Pfeiffer et al. (2008) study reference point based evolutionary algorithms from the

perspective of group decision making. They implement ranking based and distance

based approaches to find solutions where consensus can be achieved.

Thiele et al. (2009) propose a preference based evolutionary algorithm that

combines fitness with achievement scalarizing functions. The procedure quickly

generates an approximation of the non-dominated front and then concentrates the

population on the most preferred region in the objective space, according to the

preference information from the decision maker.

Fowler et al. (2010) propose a customized evolutionary algorithm similar to Phelps

and Köksalan (2003), to sort solutions that are not evaluated by the decision maker

by forming convex preference cones based on evaluations on a set of solutions by

the decision maker in the interactive part.

Deb et al. (2010) propose a progressive interactive evolutionary algorithm that uses

value functions as the evaluation engine of the decision maker‟s preferences by

asking several solutions to the decision maker to rank them from best to worst.

2.4.2 MOEA in Location Problems

There are surprisingly few evolutionary algorithms for multi-objective facility

location problems.

Villegas et al. (2006) propose a cost-coverage uncapacitated facility location-

allocation problem. They redesign the supply network of a Colombian coffee

association. The bi-objective nature of the problem has required them to generate the

non-dominated front of the solutions, at least an approximation. They use algorithms

based on Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Pareto

14

Archive Evolution Strategy (PAES) and an algorithm based on mathematical

programming. They also present a benchmark of the algorithms‟ performance.

Doerner et al. (2009) take the location problem from a disaster perspective. They

propose a multi-objective location model for the post-disaster (tsunami to be

specific) decision of locating public facilities (primarily schools). There are three

objectives; first objective is a combination of minimization of total weighted

distance (p-median) and maximal coverage, second objective is the minimization of

the risks and the last objective is the minimization of total costs. A variation of

NSGA-II metaheuristic is used to solve the problem and its performance is

discussed.

Konstantinidis et al. (2009) propose a bi-objective problem for the location of

wireless sensor networks. The model they propose is named multi-objective

Deployment and Power Assignment Problem (DPAP). In addition to maximal

coverage, maximization of network lifetime is chosen as an objective. They propose

solving the problem using Multi-Objective Evolutionary Algorithm based on

Decomposition (MOEA/D) and compare its performance with NSGA-II‟s.

Karasakal and Silav (2010) propose an uncapacitated bi-objective problem that

combines well-known concept maximal coverage and p-center. Objectives are the

maximization of weighted coverage and the minimization of the maximum distance

between a demand point and its closest facility. To solve this problem, they propose

a novel algorithm “Modified SPEA-II” (mSPEA-II). Modified SPEA-II uses the

fitness function of SPEA-II and crowding distance concept of NSGA-II.

15

CHAPTER 3

3 THEORETICAL BACKGROUND

3.1 Multi-objective Decision Problem

The general mathematical representation of a multi-objective decision problem is as

follows;

"Minimize/Maximize" {𝑍1(𝑥), 𝑍2(𝑥), … , 𝑍𝑃(𝑥)}

𝑠. 𝑡. 𝑥 ∈ 𝑋

𝑥: Decision vector

𝑋: Feasible space

3.1.1 Dominated Solutions

A solution 𝑥 ∈ 𝑋 is denoted as inefficient or dominated if there exists at least one

other solution that is not worse in any objective and is better in at least one objective

than 𝑥. (assume all objectives are maximization)

𝑍𝑖 𝑥′ ≥ 𝑍𝑖 𝑥 𝑖 = 1,2, … , 𝑃

𝑍𝑘 𝑥′ > 𝑍𝑘 𝑥 𝑘 ≤ 𝑃

16

3.1.2 Non-dominated Solutions

A solution 𝑥 ∈ 𝑋 is denoted as efficient or non-dominated if it‟s not dominated by

any other solution.

3.1.3 Non-dominated Front

The set of non-dominated solutions in the objective space is called non-dominated

front. Pareto front is also used.

3.2 Epsilon Constraint Method

Epsilon constraint method is proposed by Haimes (1971) and used to find non-

dominated solutions in multi-objective optimization problems by transforming the

multi-objective problem into a special single objective weighted sum optimization

problem.

The process is initialized by constructing a payoff table by solving each objective

independently to determine the ranges of the objectives. Then, the optimization

problem is transformed into the ɛ -constrained model.

Its representation for a maximization problem is as follows;

𝑀𝑎𝑥 𝑍𝑡 𝑥 + ∅ 𝑍𝑖 𝑥
𝑖≠𝑡

𝑠. 𝑡.

𝑍𝑖 𝑥 ≥ 𝜀𝑖 ∀𝑖 ≠ 𝑡

𝑥 ∈ 𝑋

∅: a very small positive number

The problem is first solved with all ɛ values set to zero to find the first solution

where 𝑍𝑡 𝑥 is the highest, then 𝜀𝑖 values are incremented to 𝑍𝑖 𝑥 + ∅′ (∅′: a very

17

small positive number) for each objective to find other efficient solutions and solved

again.

For example, let‟s consider a bi-objective problem.

𝑀𝑎𝑥 𝑍1 𝑥 + ∅ 𝑍2 𝑥

𝑠. 𝑡.

𝑍2 𝑥 ≥ 𝜀

𝑥 ∈ 𝑋

∅: a very small positive number

The problem is solved repeatedly by incrementing the ɛ value (i.e. 𝜀1 = 𝑍2
0 𝑥 + ∅′,

𝜀2 = 𝑍2
1 𝑥 + ∅′, 𝑒𝑡𝑐.). The graphical representation of the results is given in

Figure 1.

18

Figure 1. Epsilon constraint method

Different efficient points are found as the epsilon ɛ is incremented. The resulting set

comprises the efficient frontier.

3.3 Estimated Utility Function

For some of the interactive methods in multi-objective decision making problem

where decision maker‟s utility function is assumed to be implicit, there is a need for

a mechanism to process the preference information from the decision maker to

approximate his/her utility function. One of those methods is to derive a linear

estimated utility function.

3.3.1 Linear Estimated Utility Function

𝑢 𝑍 = 𝑤𝑖
∗𝑍𝑖

𝑃

𝑖=1

Where 𝑤𝑖
∗ are the weights and 𝑍𝑖 are the objective values of each objective i.

19

To determine the initial values of 𝑤𝑖
∗s, all weights could be taken as equal (i.e. 1 / P

for i = 1,…,P) or some preference information could be asked from the decision

maker in the form of pair-wise comparisons.

3.3.2 Preference Information

For the sake of consistency, the estimated utility values of the alternatives should be

in line with the decision maker‟s preferences (i.e. preferred solution‟s estimated

utility value should not be lower than the not-preferred solution‟s utility value).

Therefore preference constraints should be added.

 𝑤𝑖

𝑃

𝑖=1

𝑍𝑖
𝑟 − 𝑤𝑖

𝑃

𝑖=1

𝑍𝑖
𝑛 ≥ 𝜀

𝑍𝑖
𝑟 is the i

th
 objective value of the preferred solution and 𝑍𝑖

𝑛 is the i
th

 objective value

of the not-preferred solution. 𝜀 is a very small positive constant to denote there is at

least a marginal difference between the preferred and the not-preferred solution in

terms of utility value.

3.3.3 Mid-Point Approach

Weights are now to be determined from the reduced feasible weight space. A mid-

point approach can be adopted. Mid-point approach is used to determine a set of

weights that is as far as possible from the closest preference constraint.

Köksalan et al. (1984) proposed a linear programming problem for the mid-point

approach.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣

𝑠. 𝑡.

 𝑤𝑖

𝑃

𝑖=1

𝑍𝑖
𝑟 − 𝑤𝑖

𝑃

𝑖=1

𝑍𝑖
𝑛 − 𝑣 ≥ 𝜀 , ∀ 𝑟, 𝑛 ∈ 𝑄

20

𝑤𝑖 − 𝑣 ≥ 0 , ∀𝑖

 𝑤𝑖

𝑃

𝑖=1

= 1

𝑣 ≥ 0

𝑣 is the variable that is used to set the weights (𝑤𝑖) approximately at the mid-point

of the solution space of the problem.

This model is updated and solved as new preference information is obtained

therefore providing new weights each time. One weakness of this method is the

inconsistency between the form of the decision maker‟s utility function and the

linear estimated utility function. This type of inconsistency usually causes

infeasibility in the mathematical model. One way to overcome this obstacle is to

remove preference information (i.e. preference constraints) starting from the oldest

until inconsistency is resolved and the model can perform again.

3.4 Partition Ideal

The concept of partition ideals are proposed by Köksalan and Sagala (1995). The

method is developed for discrete alternative multi-objective problems under the

assumption of decision maker having an implicit general monotone utility function.

The idea is to form “super-solutions” that dominate a portion of the efficient

frontier, but weak enough in terms of decision maker‟s preferences that there exists

a solution preferred to the partition ideal.

21

Figure 2. Partition ideal representation

In the example shown in Figure 2, solution Y is a partition ideal that dominates

solutions X1, X2 and X3. X4, on the other hand, is expected to be preferred to Y in

order to save the decision maker from the trouble of asking X1, X2 and X3 versus X4

seperately.

The name “partition ideal” originates from the method of determining partition

ideals. The solution space partitioned into equal sections, and then solutions within

each section are aggregated to form partition ideals.

22

Figure 3. Formation of partition ideals

Partition ideals can be formed in different ways. Another method is proposed in

Köksalan and Karasakal (2006) for the continuous space. And in this algorithm,

some infeasible solutions will be used for partition ideal role.

3.5 NSGA-II

Non-Dominated Sorting Genetic Algorithm II is proposed by Deb et al. (2000). This

elitist multi-objective genetic algorithm is based on the framework of non-

dominated ranks and crowding distance measures.

3.5.1 Ranks

Each non-dominated front constitutes a “rank”. Ranks are measured according to

their domination relation. If a solution is not dominated by any other solution, then it

is assigned to Rank 1. And if a solution is only dominated by Rank 1 solutions, then

it is assigned to Rank 2 and so on.

23

Figure 4. Formation of ranks

3.5.2 Crossover

The crossover phase of NSGA-II is undertaken by a crowded tournament selection

operator. In crowded tournament selection operator, two solutions in the population

are compared according to their ranks and crowded distance values. The prevalent

solution is added to the mating pool for crossover. The conditions for a solution to

win a “tournament”;

i. It should have a better rank.

ii. If both solutions have the same rank, then it should have a better crowded

distance value.

3.5.3 Crowding Distance

Crowded distance is a property of NSGA-II. It is used to find the density of

solutions occupying the same rank. A solution‟s crowded distance is simply

calculated by the aggregation of its adjacent solutions‟ distance for each objective.

24

The solutions are sorted according to their objective values for each objective and

the absolute difference for that objective between the previous and the next solution

gives a crowding distance value. The sum of crowding distances for all objectives

for that solution gives the crowded distance value of that solution. Crowding

distance values for the boundary solutions (i.e. solutions that obtain the maximum or

minimum value in any objective) are set to either too large or infinite values.

Figure 5. Cuboid distance representation

The equation to calculate crowding distance is as follows:

𝑑𝐼𝑗
𝑚 =

𝑍𝑚

(𝐼𝑗+1
𝑚)

− 𝑍𝑚

(𝐼𝑗−1
𝑚)

𝑍𝑚
𝑚𝑎𝑥 − 𝑍𝑚

𝑚𝑖𝑛

where

𝐼𝑗
𝑚 : Index of the j

th
 member of the sorted list for the m

th
 objective.

25

𝑍𝑚

(𝐼𝑗+1
𝑚)

, 𝑍𝑚

(𝐼𝑗−1
𝑚)

 : Objective values of the neighboring solutions of the j
th

 member of

the sorted list for the m
th

 objective.

𝑍𝑚
𝑚𝑎𝑥 , 𝑍𝑚

𝑚𝑖𝑛 : Maximum and minimum objective values for the m
th

 objective.

3.5.4 Elimination

Elimination starts from the members of lowest rank and continues to the higher

ranks. It is quite common that remaining number of solutions required to be

eliminated is lower than the number of members in that rank. If that is the case, then

elimination proceeds by the crowded distance criteria. The solutions with the lowest

crowded distance values are removed from the population until the population level

is back to normal.

3.5.5 Constrained NSGA-II (C-NSGA-II)

On the presence of constraints, NSGA-II would require some changes in

determination of parent selection and ranking by redefining the domination concept

of NSGA-II. The C-NSGA-II method proposed by Deb et al. (2002) is as follows.

“A solution i is said to constrained-dominate a solution j, if any of the following

conditions is true.

 Solution i is feasible and solution j is not.

 Solutions i and j are both infeasible, but solution has i a smaller overall

constraint violation.

 Solutions i and j are both feasible and solution i dominates solution j.”

3.6 Maximum Coverage Location Problem

Proposed by Church and ReVelle (1974), MCLP is a problem where a fixed number

of facilities are to be set to serve a maximum number of demand nodes with a fixed

coverage distance.

26

The formulation of the problem is as follows;

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑋𝑖

𝐼

𝑖=1

𝑠. 𝑡.

 𝑋𝑖

𝐼

𝑖∈𝐼𝑗

≤ 𝛽𝑌𝑗 ∀𝑗

 𝑌𝑗

𝐽

𝑗=1

= 𝑃 ∀𝑖

𝑋𝑖 , 𝑌𝑗 = 0,1 ∀𝑖, 𝑗

Where;

𝑖: The index for demand points (𝑖 = 1, … , 𝐼)

𝑗: The index for facilities (𝑗 = 1, … , 𝐽)

𝐼𝑗 : Set of demand points covered by facility 𝑗.

𝑋𝑖 : Binary decision variable to determine whether i
th

 demand point is covered or

not.

𝑌𝑗 : Binary decision variable to determine whether j
th

 facility is opened or not.

𝑃 : A limit on the number of facilities to be opened.

𝛽 : A sufficiently large number (greater than I).

3.6.1 Partial Coverage

One of the strict assumptions in the maximal coverage location problem is the

property of the critical distance. Under this assumption, demand points whose

distances are lower than the critical distance value are denoted as “covered” and

27

those of which that are not within the critical distance value as “not covered”. This

binary behavior might not be that realistic. For example, let‟s call Dc as the critical

distance value and ɛ as a marginal distance value. A demand point whose distance

from a facility is Dc - ɛ is “covered”, but another demand point whose distance from

that facility is Dc + ɛ is “not covered”. It is a severe classification, considering the

very small difference between two demand points‟ distances from the facility node.

Partial coverage concept is studied by Berman et al. (2003) and Karasakal and

Karasakal (2004), where the coverage function is transformed into a decaying form

after a threshold point.

Figure 6. Graphical representation of partial coverage concept

Figure 6 shows a linear decaying function, where the service (coverage) level begins

to drop after the critical distance Dc. This type of flexibility may cause change

solutions in terms of facility objective. The problem in the Figure 7 is an example.

28

Figure 7. Partial coverage example

In the setting illustrated by Figure 7, there are two facilities represented as reverse

triangles and demand points as dots. The closer perimeter (the solid circle)

represents the critical coverage distance and the dashed circle determines the partial

coverage distance. And let us assume all demand points have the same weight and

facilities‟ capacities are infinite.

Under the critical distance assumption, the facility on the left covers two demand

points and the facility on the right covers three demand points. It‟s clear that the

facility on the right covers more and would be preferable to its counterpart.

Though when partial coverage is included the facility on the left covers four more

demand points and the facility on the right covers only one more demand point.

Now, the facility on the left covers six demand points four of which are partial and

the facility on the left covers four demand points only one of which is partial. The

distinction between two facilities becomes ambiguous.

29

CHAPTER 4

4 PROBLEM DEFINITION

4.1 Motivation

Location problems are widely studied and the research area has significant real life

applications. Some noteworthy examples are Pirkul and Schilling‟s (1988) study of

locating emergency facilities considering backup coverage and capacity restrictions

and Dell‟s (1998) study of relocating U.S. Army bases due to shrinkage of army

personnel.

Therefore, most of the concepts come from corporeal needs. Maximal Coverage

Location Problem (MCLP) is also a popular problem in location theory. Many of its

variations exist in the literature. To name some of them, Daskin et al. (1988)

combine multiple, excess, backup and expected coverage both in SCP and MCLP;

Karasakal and Karasakal (2003) integrate partial coverage concept to MCLP and

Brimberg and ReVelle (1998) consider a case where cost is also an objective.

However, multi-objective approaches to location problems are not as popular as the

single objective ones. Additionally, cost-coverage bi-objective problems are even a

small set of multi-objective location problems.

There is an unrealistic approach to coverage problems that a demand node is deemed

uncovered if it‟s further than a designated critical distance, no matter the amount of

the excess distance. For example, let us assume the critical distance is 5 units (km,

mile, minutes etc.). If there is a demand point which has a distance of 4.999 units

30

from a facility it is considered as covered. Suppose there is another demand point

that is 5.0001 units away from the same facility and it‟s considered as not covered.

Most of the studies internalize this assumption without question.

Another assumption that might not be so realistic is that the problem setting is

always a clean slate (i.e. there are no previous installations). In fact, there might be a

structure consisting of several facilities that are already built concerning the previous

state of demand. If that is the case, the new model should be an update not a start

from scratch.

In this study, a bi-objective model is proposed to tackle all the issues considered

above.

4.2 Proposed Model

One of the objectives of this model is the maximization of total weighted coverage.

This objective originally comes from Church and ReVelle‟s (1974) Maximal

Covering Location Problem (MCLP) which is a special variation of Hakimi‟s (1964)

p-median problem. For further information, Church and ReVelle (1976) discuss the

relationship between p-median and covering problems in detail. The weight concept

comes from each demand point having different significance (i.e. population). For

example, a demand point might have a significance value of 10, but another demand

point might have a significance value of 15. Significance can be measured

differently, though the most basic way is to think them as population values.

Population of households in a specific area might be higher or lower than te

population of other areas. Additionally, coverage (service) level affects the value of

this objective. Coverage value is usually determined by the distance between a

demand node and a facility node. This is generally a binary value, if the demand

point‟s distance is closer than a designated critical distance value from the facility

node the demand node is considered as covered; else it is not. For this specific

problem, this assumption is replaced with partial coverage concept.

31

Partial coverage is represented in the model as the coverage (service) level. The

coverage is assumed to decay (linearly in this case) from the full coverage after a

critical distance value.

The other objective is the minimization of the total number of open facilities. There

are two types of facilities; existing and new. Existing facilities can be relocated or

closed. On the other hand, it‟s always possible to open new facilities.

Relocation concept is a significant part of the problem. It assumes that there is a

current setting of facilities. These existing (also referred as old) facilities may

become obsolete as demand shifts from one part of the area to another. They may

have to be moved to other potential nodes or closed entirely. It‟s also possible to

place new facilities on these potential nodes, therefore increase the total number of

facilities. Relocation, which is basically moving a facility to another position,

consists of two actions; closing an existing facility and opening a new facility on a

potential node.

The relocation process is handled as putting a distinction between existing facilities

and new facilities. Although one of the objectives is the minimization of total

number of facilities, existing facilities have much lower significance in the indicated

objective. In other words, it will always be beneficial to hold an existing facility,

instead of closing it and opening a new facility. The significance of this trade-off can

be explained as there is no trade-off but priorities between these two types of

facilities. In other terms, keeping the entire existing facilities set open is more

beneficial than closing them all and opening a facility in a potential node.

Capacity limits are set for each facility. Demand cannot be split, therefore cannot be

assigned to more than one facility.

4.2.1 Mathematical Model

4.2.1.1 Indices and Sets

𝑖: Demand points (nodes). (𝑖 = 1, … . , 𝐼)

32

𝑗: Facilities. (𝑗 = 1, … . , 𝐽)

𝑁𝑒𝑤: Set of potential sites to place new facilities.

𝑂𝑙𝑑: Set of already existing facilities.

4.2.1.2 Decision Variables

1 if the demand point 𝑖 is assigned to facility 𝑗.

0 otherwise

1 facility 𝑗 is opened.

0 otherwise

4.2.1.3 Parameters

𝑎𝑖 : Demand (weight) of demand point 𝑖.

𝑠𝑖𝑗 : Coverage (service) level of facility 𝑗 to demand point 𝑖.

∅: A sufficiently small constant. (i.e. < 1/(number of new facilities))

𝑐𝑗 : Capacity value of facility 𝑗.

4.2.1.4 Representation

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑎𝑖𝑠𝑖𝑗 𝑋𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (1)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑌𝑗 + ∅

𝐽

𝑗 ∈𝑁𝑒𝑤

 𝑌𝑗

𝐽

𝑗 ∈𝑂𝑙𝑑

 (2)

𝑠. 𝑡.

 𝑋𝑖𝑗

𝐽

𝑗=1

= 1 ∀𝑖 (3)

𝑋𝑖𝑗 =

𝑌𝑗 =

33

 𝑎𝑖𝑋𝑖𝑗

𝐼

𝑖=1

≤ 𝑐𝑗𝑌𝑗 ∀𝑗 (4)

𝑋𝑖𝑗 , 𝑌𝑗 = 0,1 ∀𝑖, 𝑗 (5)

The first objective (1) is the maximization of total weighted coverage, where each

demand point is evaluated by their demand weights and service levels due to their

assignments to open facilities. The second objective (2) is the minimization of the

number of facilities. Here, there are two types of facility nodes; already existing

facilities (old) and potential sites for placing facilities (new). Keeping the already

existing facilities is the priority; therefore a sufficiently small objective coefficient to

ensure there is a significant trade-off between an already existing facility and a new

facility.

Constraints ensure assignments are in check, capacity restrictions are not violated

and denote the decision variables as binary variables. The first constraint set (3)

makes sure that no demand point is assigned to more than one facility. The second

constraint set (4) prevents assignments to closed facilities or to exceed capacities of

the open facilities. The last constraint (5) forces the assignment and facility

existence capacities to take binary values (i.e. 0 or 1).

34

4.3 Computational Complexity

Decision version of the single objective maximum covering location problem on a

general network is shown to be NP-Complete by Megiddo et al. (1983). Hence, as

the problem size grows (i.e. number of demand points and number of facilities),

computation time required to generate the exact non-dominated front grows

exponentially.

The problem presented is a bi-objective capacitated facility location problem,

therefore it is also expected to be computationally complex.

Table 1. Problem sizes

Problem

Type 1

Problem

Type 2

Problem

Type 3

Problem

Type 4

Demand Points 50 100 150 200

Facilities 10 20 30 40

Existing Facilities 5 10 15 20

Computation Time < 1 min ~5-6 mins > 8 hrs > 8 hrs

To elaborate on the issue, there are four problem types shown in Table 1. Problem

Type 1 is with the smallest number of facility and demand point nodes and can be

solved quickly (just under a minute). In Problem Type 2, it took a little longer than

Problem Type 1. In a few minutes, the non-dominated front is formed. Though, if

problem size is increased a notch further, it takes hours to solve a problem.

Therefore, a need arises to solve the problems quickly and efficiently. In the next

chapter (Chapter 5), an interactive evolutionary algorithm is proposed and in

Chapter 6, this algorithm is evaluated by benchmarking with exact solution and

another similar metaheuristic method.

35

CHAPTER 5

5 PROPOSED ALGORITHM (I-TREA)

This chapter covers an overview of the proposed algorithm, the fundamentals used

in various parts of the algorithm and the step by step algorithm, intended to

elaborate on the process and to provide rationale for using those tools. The

fundamentals include chromosome representation, ranks, infeasible solutions and the

triggers used to determine the automated actions taken by the algorithm by

explaining concepts and processes used in the algorithm. The pseudo code of the

algorithm can be seen in Appendix A and the parameter list of the algorithm with

values for the specific problem can be seen in Appendix B.

5.1 OVERVIEW

For the specified bi-objective facility location problem, an evolutionary algorithm is

proposed. This evolutionary algorithm combines several aspects of other algorithms

in the literature and also provides unique futures, some of which are specific and

essential to the specified problem. The algorithm is responsive to decision maker‟s

preferences in a progressive process, benefiting from preference information both

for sorting out the solution space and concentrating the algorithm‟s attention to the

desired parts of the solution space; uses infeasible but good (i.e. not dominated by

feasible or inferior solutions) solutions as flagships of the population progress; and

provides enhancements and repairs to the chromosome by mutation and its

consolidating functions.

36

The algorithm is founded on principles combined from different methods in the

literature. Some of NSGA-II‟s properties provide a canvas for the algorithm, its

ranking system formed of non-dominated fronts is twisted into three ranks based on

feasibility and domination. The crowding distance measure is applicable to only a

small portion of the algorithm, though some variations of the measure can be found

in the algorithm. It is infeasibility driven, which means a portion of the population is

reserved for infeasible but good solutions (i.e. not dominated by the non-dominated

front of feasible solutions).

Interaction with decision maker is established throughout the process, preference

information is gathered from the decision maker by pair-wise comparisons to

estimate decision maker‟s desired outcome and sometimes denoting a portion of the

solution space undesirable for further inquiry.

Decision maker is assumed to be consistent in his preference information. The

decision maker is not asked to pick a solution for a second time when it is not

preferred for the first time. Also any solution dominated by the non-preferred

solutions is assumed to be inefficient, therefore not asked to the decision maker.

“Best” solution is defined by the decision maker‟s estimated utility and preference

information.

The algorithm is simply named as Interactive Three Ranks Evolutionary Algorithm

(I-TREA). Like most of the evolutionary algorithms, this algorithm should also be

tailored according to the problem. Mutation section is the part where the effect of

customization is perceived most.

Briefly, it is a meta-heuristic algorithm consisting of a caste system, protecting a

portion of good but infeasible solutions, using decision maker preference

information as guidance, benefiting from the unique methods in the mutation

function and aimed to provide the most suitable solution according to decision

maker‟s utility. It is an interactive multi-objective genetic algorithm heralded by

elitism.

37

5.2 CHROMOSOME REPRESENTATION

Chromosome representation of the algorithm is easy to obtain information from,

simple in design to be suitable to use in the functions of the algorithm without much

effort and robust in a way that minimizes the need of repairing the chromosomes

(capacity violation is not a defect, albeit undesirable).

Four pieces of information should be derived from the chromosome;

i. Number of open „new‟ facilities

ii. Number of open „existing‟ facilities

iii. Total weighted coverage

iv. The capacity violation

Coverage matrix, demand point weights and facility capacities are given. Also, the

existing and new facilities are known.

5.2.1 Proposed Representation

An example of the proposed chromosome representation is given in Figure 8.

Figure 8. Chromosome representation

Each demand point is represented as a single gene. The values of the genes denote

the facilities the demand points are assigned to.

The open facilities can be found by looking at the gene values in the chromosome.

Any facility showing up in there means a demand point is assigned to that facility

therefore it should be open.

38

5.2.2 Distinction of New and Existing Facilities

The numbering of new and existing facilities is not entirely random. The first section

of numbers is reserved to existing facilities and the second part belongs to new

facilities. For example if there are J facilities in total and E of them are existing, then

facilities 1 to E are denoted as existing facilities and E+1 to J are new facilities. This

way the algorithm can make a distinction between new and existing facilities and

evaluate the facility objective value of the solution. As can be seen in Table 2, the

first three facilities are existing facilities and the last three facilities are new

facilities.

Table 2. Coverage matrix

Fac\Dem 11 22 33 44 55 66 77

Existing

Facilities

11 1 0 0.8 0 0 1 0

22 0.5 0 1 0 0 0.4 0.7

33 0 0 0.2 1 1 0.3 0

New

Facilities

44 0 0 1 1 0 0 0

55 1 0.1 0 0 1 0 0

66 0 0 0 0.6 0.9 0 1

5.2.3 Calculation of Total Weighted Coverage

Total weighted coverage can be derived using the coverage matrix, demand point

weight list and the assignment information from the chromosome.

Table 3. Demand weight (population) list

Demand Point 1 2 3 4 5 6 7

Weight (Population) 10 15 20 10 10 40 25

39

For example, let‟s calculate the weighted coverage of the sixth demand point of the

solution in Figure 8. From the chromosome representation it is assigned to the

second facility. Using the coverage matrix in Table 2 its coverage value is 0.4 and

using the demand point weight list in Table 3 its weight is 40. Then the weighted

coverage value of the sixth demand point is 0.4 * 40 = 16. Total weighted coverage

can be derived by repeating the same action for each demand point.

5.2.4 Calculation of Capacity Violation

Capacity violation can be derived using the assignment information from the

chromosome, demand point weight list and the capacity list.

Table 4. Facility capacities list

Facility 1 2 3 4 5 6

Capacity 250 250 250 250 250 250

Though, the design has its weaknesses. The design unintentionally hinders the

improvement of the facility objective, mostly because of the crossover mechanism.

The crossover of two chromosomes with different number and types of open

facilities is usually a cause of offspring to be weak in the facility objective (see

Figure 9).

40

Figure 9. Crossover weakness example

The example in Figure 9 shows that both chromosomes have three facilities open (1-

2-3 and 3-4-5 respectively). At the end of the crossover both chromosomes have five

facilities open. This action causes a severe setback in the facility objective.

The length of the chromosome is determined by the number of demand points,

which is usually a large number. It is expected to affect the runtime and memory

requirement of the algorithm seriously.

The proposed chromosome representation, despite its weaknesses is simple in design

and effective in implementation.

5.3 RANKS

The structure resembles the ranking system of NSGA-II, though with pre-

determined number of ranks. There are three ranks considered for the algorithm and

they are simply named Rank 0, Rank 1 and Rank 2. Though they can also be called

as „infeasible good‟, „feasible good‟ and „rejects‟ respectively. Each rank differs

from the other with two binary properties; being dominated by a feasible or inferior

solution and being feasible.

There are two types of solutions in Rank 2 (Rejects). Inefficient solutions are

solutions that are either dominated by a feasible solution or an inferior solution.

41

Inferior solutions are determined by preference information, made up by not-

preferred solutions. They are usually not dominated by feasible solutions. They

practically mark the reduced objective space.

The ranks are;

Rank 0 (Infeasible Good): Infeasible solutions that are not dominated by any

feasible or inferior solution belong here.

Rank 1 (Feasible Good): Also known as the non-dominated front, Rank 1

consists of solutions that are feasible and not dominated by any feasible or

inferior solution.

Rank 2 (Rejects): Rest of the solutions belong here, no matter the feasibility.

The ranks‟ formation is illustrated in Figure 10.

Figure 10. Ranks

42

5.4 INFEASIBLE SOLUTIONS

One of the defining properties of the algorithm is the presence and protection of

potentially beneficial infeasible solutions. Those solutions are named as Rank 0 (or

infeasible good) solutions. They are neither dominated by Rank 1 solutions nor in

the Rank 2 section dominated by inferior solutions (i.e. previously not preferred

alternatives).

There are two reasons to keep Rank 0 solutions;

i. They are useful in the sense of advancement in the population. The better but

infeasible solutions may produce better and less infeasible (i.e. less total

capacity violation) off-spring and feasibility oriented mutations may process

them into efficient feasible solutions.

ii. They can be used as alternatives against the incumbent in the interactive

process.

A predefined portion of the Rank 0 solutions are preserved from elimination.

5.5 TRIGGERS

Some functions do not repeat every generation as the rest of the functions in the

algorithm. Asking questions to the decision maker (interactive process) is a good

example. If there were a question for every generation during the run of the

algorithm, hundreds of questions should have been asked to the decision maker.

Therefore conditions are set for some functions. When requirements for a function

are fulfilled then that function is triggered for once.

The functions triggered by conditions in the algorithm are interactive process,

Forced Closure and Second Chance. Termination conditions are also considered

within this concept.

43

5.5.1 Trigger Conditions

For the algorithm, most of the trigger conditions are related to the progress of the

population. For example if the incumbent stays the same or the average of objectives

of Rank 1 solutions does not change for a number of generations a function might

trigger. Also there might be a condition that two questions should not be asked

subsequently, and there should be some generations between two questions no

matter what. This also applies as a trigger condition.

The trigger conditions are designed in a way that some functions would work only

as needed, therefore sparing the algorithm of an abundant computation time and

multitudes of questions. They also determine when to terminate the algorithm,

providing ample time to the population to progress.

More information on trigger conditions can be found within the explanations of the

individual functions.

5.6 STEP BY STEP ALGORITHM

The algorithm consists of seven parts, five of which repeats in a cycle in each

generation. Those are initialization, crossover, mutation, classification, elimination,

interactive process and termination. Initialization and termination are used only once

at the beginning and the end of algorithm respectively.

Initialization: Introduction of the initial members of the population. (Executed

only once at the start of the algorithm. Includes Classification.)

Crossover: One-point, random-point crossover with crowded tournament

selection.

Mutation: Changing a gene either by chance or a special function.

Forced Closure: Closing of a facility. If the closed facility is a „new‟

facility, then re-opening of an existing facility.

Second Chance: Nullifying of the assignments of demand points which do

not return coverage or can return better coverage.

44

Classification: Putting each solution to their proper ranks. (Rank 0, 1 or 2)

Elimination: Discriminating „worse‟ solutions from „better‟ solutions and

then proceed with the better solutions.

Interactive Process: Extracting preference information from the decision

maker.

Measurement and Termination Check: Gathering the population statistics,

calculation and decision of the fulfillment of termination conditions.

Figure 11. I-TREA Flowchart

45

5.6.1 Initialization

Initialization is the preparation of the commencement of the algorithm (i.e.

generation zero). Initial solutions are introduced to the population and then classified

into ranks. The non-dominated feasible solution with the highest estimated utility

function value becomes the incumbent.

Incumbent is a common term used in interactive algorithms. Incumbent is assumed

as the „best‟ solution for the decision maker that can be found so far. Incumbent is

prone to changes by either domination or preference information by the decision

maker.

5.6.2 Crossover

Crossover is the most ordinary part of the algorithm. The methods used are the

simplest and the most common amongst the genetic algorithms. There is also an

elitist twist called crowded tournament selection method, the one that is also used in

NSGA-II (for detailed information see Theoretical Background chapter). The

algorithm‟s mate selection system benefits from a slightly modified method.

The decision of solutions to be paired for crossover is resolved by implementing

crowded tournament selection method. Every solution in the population has a chance

to enter the mating pool.

NSGA-II‟s (Deb, 2001) crowded tournament selection method is as follows:

“A solution i wins a tournament with another solution j if any of the following

conditions are true:

- If solution i has a better rank, that is ri < rj

- If they have the same rank but solution i has a better crowding distance than

solution j, that is, ri = rj and di > dj .

46

The first condition makes sure that chosen solution lies on a better non-dominated

front. The second condition resolves the tie of both solutions being on the same non-

dominated front by deciding on their crowding distance.”

The algorithm‟s modified version is as follows:

A solution i wins a tournament with another solution j if any of the following

conditions are true:

- If solution i has a better rank, that is ri < rj (Rank 1 < Rank 0 < Rank 2)

- If they have the same rank but solution i has a better estimated utility value than

solution j, that is, ri = rj and di > dj .

The first condition makes sure that chosen solution resides in a better rank. The

second condition resolves the tie of both solutions being on the same non-dominated

front by deciding on their estimated utility.

There are several reasons for the algorithm‟s crowded tournament selection differs

from the Deb‟s NSGA-II crowded tournament selection. First, the algorithm does

not necessarily consist of non-dominated fronts as NSGA-II, therefore it is not so

convenient to assess a solution‟s virtue by its crowding distance. Second, the

algorithm is intended to be a little more elitist than other elitist genetic algorithms

and therefore, at least in the crossover section, sacrificing diversification for the sake

of intensification is preferred. Last, since the algorithm reacts on decision maker‟s

preferences, it is only proper to use an indicator that is the algorithm‟s perception of

DM‟s utility.

After the mating pool‟s inhabitants are formed, it is time to crossover. Crossover is

fairly simple and random. Two solutions (chromosomes) are paired from a single,

random point to give birth to two other solutions. The process is shown in Figure 12.

47

Figure 12. One-point, random point crossover

After the crossover process, the population is expected to double. Next, the new

arrivals are processed for mutation.

5.6.3 Mutation

Mutation is the part where customization is paramount in the algorithm. Due to

flaws, as indicated before, in the structure of the chromosome representation and the

specific nature of the multi-objective problem, mutation should be handled

differently and consolidated with other functions‟ periodic intervention. Those

consolidating functions Forced Closure and Second Chance are also explained in

this section.

The mutation function used in the algorithm is rather a smart function than a random

process; also showing opportunistic behavior, albeit restricted by feasibility

concerns.

Mutation process begins with its auxiliary functions; Forced Closure and Second

Chance, respectively. They leave some genes in the chromosome unassigned by

revoking the respective demand points‟ assignments to their former facilities. In

addition, some other demand points‟ assignments can be also revoked par chance

(i.e. usually with a small probability determined by the mutation probability

48

parameter). Then, all these demand points will be reassigned under the mutation

function.

5.6.3.1 Forced Closure

Forced Closure is a special function that is triggered only if special conditions apply

and when triggered it applies to the solutions only occasionally.

Forced Closure is an effective function that is aimed to improve the facility

objective. The procedure is as follows:

- Close a facility.

 - If the closed facility is a „new‟ facility, open an „existing‟ facility.

The necessity for the Forced Closure function arises from the lack of performance of

crossover and mutation functions to reduce the gene value variety. Therefore

facilities should be shut down manually, instead of waiting for the natural progress

to take place. It is fairly easy to go back in the facility objective therefore a „forced

opening‟ function is unnecessary.

The decision of which facility to close, and which „existing‟ facility to open on the

event of the closure of a „new‟ facility, can be handled in any way that is found

subtle. The methods can range from entire randomness to complicated measures to

appreciate the potential of the facilities.

The forced closure process used in the algorithm for this specific problem takes

facilities‟ aggregated weighted coverage values into consideration in a stochastic

manner to determine the chances of election. In other words, a facility which gets to

cover more weighted demand is less likely to be closed and an „existing facility‟

which gets to cover more weighted demand is more likely to be opened.

Additionally, as a rule, if a facility‟s coverage of a demand point is the highest

among other open facilities the weighted coverage score it gathers from that demand

point is boosted by %50. The rationale for this bonus is for distinction of facilities

49

that can cover more than other facilities for individual demand points rather than

facilities that cover an abundance of demand points with average coverage values.

The coefficient of additional score (%50 for this problem) is determined by

preliminary runs.

For example a facility that can provide full coverage (i.e. coverage value of 1) to two

demand points is preferable to a facility that can provide half coverage (i.e. coverage

value of 0.5) to four demand points. Assume all six demand points have equal

weights.

Table 5 provides problem information for an illustrative example of Forced Closure

function.

Table 5. Forced closure example

State Fac\Dem 1(10) 2(15) 3(20) 4(10) 5(10) Potential Gain

Open 1 1* 0 0.8 0 0 31 = 15* + 16

Open 2 0.5 0 1* 0 0 35 = 5 + 30*

Open 3 0 0 0.2 1* 1* 34 = 4 + 15* + 15*

Open 4 0 0 1* 1* 0 45 = 30* + 15*

The values with asterisk (*) denote the highest coverage values for a demand point

(i.e. facilities will get extra scores from that coverage values). The values in

parentheses in the first row are weights (population) of respective demand points.

Such as the weight of the first demand point is 10, the second 15 and so on.

The aggregate coverage score of facility 1 is calculated as follows. Its coverage of

the first demand point is the highest value among the open facilities. Therefore, the

coverage score it gets from that demand point is boosted by %50; it gets 10 + 0.5*10

= 15 from the first demand point. The coverage score it gets from the third demand

point is 20 * 0.8 = 16. The aggregate coverage score of facility 1 is 15 + 16 = 31.

50

The aggregate coverage scores for other facilities are given on the last column of

Table 5.

The stochastic process of closing a facility is calculated as follows. As mentioned

above, if a facility‟s aggregated coverage is higher it is less likely to be closed. So,

reciprocals of aggregate coverage scores of facilities are taken and the probability of

a facility to be closed is determined by dividing its reciprocal aggregate coverage

score by the sum of reciprocal aggregate coverage of all open facilities.

For example, the probability of closing facility 3 is (1/34) / (1/31 + 1/35 + 1/34 +

1/45) ~= %26.

The process of opening an „existing facility‟ on the event of closing a „new facility‟

is similar. The same aggregate facility score procedure applies for closed „existing

facilities‟. The only difference is the scores are used in probability calculations

without change, instead of their reciprocal values. For example, suppose the

facilities and their aggregate coverage scores shown in Table 5 are used for opening

an „existing facility‟. Then the probability of opening facility 3 would be 34 / (31 +

35 + 34 + 45) ~= %23.

The Forced Closure function quickens the improvement of solutions and is proved to

be effective.

5.6.3.2 Second Chance

Second Chance is a special function that is triggered only if special conditions apply

and when triggered it applies to the solutions only occasionally.

Second Chance is a simple but effective function that is aimed to improve the

coverage objective by revoking any demand point assignment that could not deliver

its maximum coverage potential. Any demand point assignment with zero coverage

is revoked by default to give up space to any potentially profitable assignments.

51

Table 6. Second chance example

Fac\Dem 1 2 3 4 5

1 1 0 0.8 0 0

2 0.5 0 1 0 0

3 0 0 0.2 1 1

4 0 0 1 1 0

An illustrative example is given in Table 6. There are 5 demand points and 4

facilities; hence coverage values that are marked with bold indicate the assignments

(e.g. 3
rd

 demand point is assigned to the 3
rd

 facility with coverage value of 0.2).

Assignments of demand points 2, 3 and 5 are revoked. 2 and 5 return zero coverage

from their assignments and there are better alternatives for the 3
rd

 demand point.

This function assists the mutation process in two ways. First, since mutation is

programmed to be extremely careful about feasibility, it opens up space by

removing demand point assignments that do not contribute to the coverage objective

or where there is potential for improvement for that demand point‟s assignment.

Second, the Second Chance function pinpoints the demand points whose

contribution to the coverage objective can be improved and immediately includes

them in the mutation, without leaving it to chance (i.e. mutation probability).

Second Chance function enables, even if not guarantees, the mutation to achieve

better performance in the coverage objective.

5.6.3.3 Step by Step Process

The core process of mutation is more intricate than usual mutation functions. The

order of mutation is rather iterative than linear. It does not follow the gene order in

the chromosomes. Instead, a supply and demand oriented approach is adopted to

alleviate the restrictions from the facility capacities and avoid infeasibility at the

same time.

52

There are three ways of getting a gene‟s (demand point) value (facility) revoked.

Two of them are explained before; Forced Closure and Second Chance. The third

way is the ordinary approach, mutation probability. Before the start, some genes

assignments are revoked par chance subject to the mutation probability.

The mutation process, designed for this specific problem, is choosing a facility and

choosing a demand point to assign them to each other. The process is repeated until

there is no demand point left unassigned.

The decision of which facility to choose and to assign which demand points to that

facility is subject to design. There are many ways of handling facility and demand

point potentials. The main steps of the mutation (separately from Forced Closure

and Second Chance) are given in a flowchart in Figure 13.

Figure 13. Mutation flowchart.

The extra process (i.e. calculating and revising potentials) in the flowchart might be

required if the design of the mutation requires some appreciation of facilities and

53

demand points according to coverage, weight and capacity values. The process is

repeated until all the demand points are assigned to a facility.

The process designed for the specific problem is as follows. There are three

measures used to assess the potentials of facilities and demand points. Aggregate

coverage score is the sum of weighted coverage values of a facility. If a facility

covers two demand points with coverage values 0.5 and 1 and weights 10 and 15

respectively, the aggregate coverage score of that facility is 20. It is used to assess a

facility‟s weighted coverage potential.

Maximum coverage keeps the record of a demand point‟s maximum potential. For

example if there are three facilities that cover a demand point with coverage values

0.3, 0.6 and 0.9, the demand point‟s maximum coverage value is 0.9.

Total coverage is the sum of coverage values that cover a demand point. For

example if there are three facilities that cover a demand point with coverage values

0.3, 0.6 and 0.9, the demand point‟s total coverage value is 1.8. It is used to assess

the existence of alternatives for a demand point.

There is a rule, though. If a demand point has a weight (population) that is higher

than the remaining capacity of a facility, the coverage relationship is not included in

the calculation of these measures. For example, suppose there is a facility with 15

units of capacity left and there are two demand points with weights 10 and 20. The

coverage value of second demand point is not included in any of the three measure

calculations. Though, if there are two demand points with weights 10 and 15 they

will both be included.

The assignment commences from the facility with the highest aggregate coverage

score. A demand point is assigned to that facility stochastically. Demand point

probabilities are evaluated by their coverage values by the chosen facility and their

maximum and total coverage values.

The assignment process for the specific problem is as follows. If;

54

 A demand point‟s total coverage value is more than twice of its maximum

coverage value, or

 A demand point‟s total coverage value is more than 1 and its coverage value is

less than its maximum coverage value,

that demand point‟s score is calculated as:

𝑆𝑐𝑜𝑟𝑒 = (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒/ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)2

Else:

𝑆𝑐𝑜𝑟𝑒 = (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒)2

This procedure is repeated for each available demand point. Then the probability to

assign a demand point to that facility is that demand point‟s individual score divided

by the sum of all demand points‟ scores.

The rationale for making the assignment scoring process so convoluted is to further

increase the chances of a demand point with a high coverage value available for that

assignment. For example, suppose six demand points with the same weights are

covered by a facility and their coverage values are 0.2 for five demand points and 1

for the remaining demand point. The chance of assigning the demand point with

more coverage is 1 / (0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 1) = %50. But, if the proposed

procedure is used (assume all presumed demand points are covered by only that

facility, therefore total coverage values are equal to their coverage values) the

chance of choosing the demand point with the highest coverage value would be

increased to 1
2
 / [(0.2)

2
 + (0.2)

2
 + (0.2)

2
 + (0.2)

2
 + (0.2)

2
 + 1

2
] ~= %83.3.

The measures aggregate coverage score, maximum coverage and total coverage

values are updated after the assignment and the whole assignment process is

repeated. If there are demand points left with zero maximum coverage value, they

are assigned randomly but without violating capacity constraints if possible.

55

An illustrative example is provided. Table 7 shows a coverage matrix of 5 demand

points and 4 facilities. The numbers in parentheses are weights (population) for each

demand point and remaining capacities for each facility. Suppose all demand points

should be reassigned.

Table 7. Mutation example

Fac\Dem 1 2 3 4 5

1 1 0 0.8 0 0

2 0.5 0 1 0 0

3 0 0 0.2 1 1

4 0 0 1 1 0

First, aggregate coverage scores of the facilities are calculated. Weighted potential

of the 1
st
 facility is 26 = 1 * 10 + 0.8 * 20. Though, weighted potential of the 2

nd

facility is only 5 = 0.5 * 10. It is because the weight of the 3
rd

 demand point is more

than the 2
nd

 facility‟s capacity. There are no such issues for the 3
rd

 and the 4
th

facilities; their weighted potentials are 24 and 30 respectively.

Next, maximum coverage and total coverage values of demand points are calculated.

1
st
 demand point has a maximum coverage of 1 and total coverage of 1.5. 2

nd

demand point has neither a maximum coverage nor a total coverage value, since it is

not covered by any facility. 3
rd

 demand point has a maximum coverage of 1 only

because it is covered by the 4
th

 facility with full coverage. Hence it cannot be

assigned to the 2
nd

 facility because of capacity issues. And its total coverage value is

2. The 4
th

 demand point‟s maximum coverage value is 1 and total coverage value is

2. Lastly, the 5
th

 demand point‟s both maximum coverage and total coverage values

are 1.

The facility with the highest weighted potential is the 4
th

 facility (30). So, it is

chosen as the first facility to assign demand points to. The scores of candidate

demand points for assignment are as follows. 1
st
, 2

nd
 and 5

th
 demand points are not

56

considered since they are not covered by the 4
th

 facility (i.e. zero coverage value).

3
rd

 demand point‟s chance is calculated as follows. Its total coverage (2, hence it

cannot be covered by 2
nd

 facility) is twice of its maximum coverage (1) then its

chance score is 0.25 = (1 / 2)
2
. The 4

th
 demand point has also the same chance score

0.25. The actual chance of assigning the 3
rd

 demand point is %50 = 0.25 / (0.25 +

0.25).

After 3
rd

 or 4
th

 demand point‟s assignment to the 4
th

 facility, aggregate coverage

score, maximum coverage and total coverage values will be updated and the process

will be repeated.

The rationale for making a mutation process so complicated can be explained as the

diminishing effectiveness of intensification for large problem sizes. As the problem

size grows, solutions‟ neighborhood also expands. Therefore a simple mutation

function might render useless, against increasing sizes of solution neighborhood.

Nevertheless, a variation of I-TREA with a simple mutation procedure will be

introduced to show the relative ineffectiveness of the simpler approaches. Forced

Closure function will be maintained, but Second Chance function will not be

included. The demand points subject to mutation will be assigned to facilities

randomly without violating capacity restrictions.

5.6.4 Classification

After the crossover and mutation processes, the off-springs will be ready to be

introduced to the population and classified. The classification system is in accord

with the ranking system. A flowchart is given in Figure 14. The process is repeated

for each off-spring until all the off-springs are properly placed.

57

Figure 14. Classification flowchart

5.6.5 Elimination

Since crossover process doubles the number of solutions an elimination function is

required to keep the individual level in the population constant. The principles of

elitism and diversity should be represented in balance in the elimination process for

the sake of the progress of the algorithm.

Elimination is a relatively straightforward process, though with different special

rules within the ranks. Each rank goes under elimination process twice. Generally

speaking, first elimination process acts as a sweep of „twin‟ (i.e. having the same

objective values) and „weaker‟ (i.e. dominated within the rank) solutions and the

second elimination process uses measurements like estimated utility value and

distance as criteria.

58

There is a special quota for Rank 0 solutions. Rank 0 solutions are exempt from

further elimination if their number of members falls below a designated proportion

(e.g. %10) of the population.

Elimination continues until the population level is reduced to its originally

designated value. The population level is checked after each eliminated solution. If

the population is lowered to its designated level, elimination process ceases its

operation.

Elimination order within each subsection starts from the „older‟ solutions (i.e.

solutions that are classified in previous generations). A high solution turnover is

aimed within the population.

5.6.5.1 Duplicate Elimination

There are two types of chromosomes that return the exact objective values;

duplicates and twins. Duplicate solutions have the exact chromosome content. On

the other hand twin solutions only return the same objective values, yet some of their

gene values differ.

Duplicate solutions are highly undesired. Therefore, they are eliminated first.

5.6.5.2 First Rank 2 Elimination

The solutions are evaluated for elimination according to their objective values and

capacity violation. The solutions that are dominated by other Rank 2 solutions are

eliminated. If there are two solutions that have the same objective values but

different capacity violation values, the solution with the higher capacity violation is

eliminated. If there are two solutions that have the same objective values and

capacity violation values, the „older‟ solution is eliminated.

The expected outcome is a „non-dominated front‟ of Rank 2 solutions.

5.6.5.3 First Rank 0 Elimination

59

The purpose of the first Rank 0 elimination is to exclude any Rank 0 solution that is

„totally dominated‟ by any other Rank 0 solution both in terms of objective values

and capacity violation.

The solutions that are dominated by and have higher capacity violation values than

any other Rank 0 solutions are eliminated. For example if a solution has objective

values of 0.5 and 0.6 with capacity violation value of 30 and another solution has

objective values of 0.7 and 0.8 with capacity violation value of 20, the former

solution is eliminated.

5.6.5.4 Second Rank 0 Elimination

After the first elimination of Rank 0 solutions, second elimination of Rank 0 is

immediate. Rank 0 solutions are eliminated by their minimal radial (euclidian)

distance. This diversity approach aims to spread the Rank 0 solution as evenly as

possible.

Inevitably, every time, there will be at least two solutions with the same minimum

radial distance. In this case, the Rank 0 solution with the lower estimated utility is

eliminated.

5.6.5.5 First Rank 1 Elimination

Eliminate Rank 1 solutions if there are any other Rank 1 solutions with the same

objective values (i.e. twins).

5.6.5.6 Second Rank 2 Elimination

Eliminate remaining Rank 2 solutions according to the crowding distance principles

that are used in NSGA-II.

5.6.5.7 Second Rank 1 Elimination

The second phase of Rank 1 elimination is handled by the estimated utility criteria.

Elimination begins from the Rank 1 solution with the lowest estimated utility value.

60

The elimination continues upwards until the population is lowered back to its normal

level.

After the elimination process, the population is expected to return to its normal

level. The objective of elimination is sorting the most useful solutions due to

population constraint and removing the rest from the population. Although elitism is

championed, a necessary dose of diversity is applied. Elimination process is mainly

straightforward with well defined boundaries between ranks with an array of

elimination methods within the ranks.

5.6.6 Interactive Process

In this part of the algorithm, the decision maker is asked for preference information

by presenting pair-wise comparisons. The main objectives of the interactive process

is to reduce the objective space so the search can be concentrated on regions that are

more desired by the decision maker; and, more importantly, to find the most

preferable solution by the decision maker.

The main question types are asking a Rank 0 solution against the incumbent and

asking a Rank 1 solution against the incumbent.

The interactive process is activated only when triggered and there is at least one

other Rank 1 solution than the incumbent. The interactive process flowchart can be

seen in Figure 15. The trigger conditions and methodology for choosing Rank 0 and

Rank 1 solutions differ.

61

Figure 15. Interactive process flowchart

5.6.6.1 Rank 0 vs. the Incumbent

When the decision maker is asked for preference information by pair-wise

comparison, it is possible to avoid asking so many questions for each Rank 1

solution by asking a few Rank 0 solutions against the incumbent.

62

Figure 16. Rank 0 solutions

Eligibility of Rank 0 solutions is mostly subject to design. Though, there are a

couple of points when it comes to choosing Rank 0 solutions.

In Figure 16, there are three Rank 0 solutions. The Rank 0 solution in the middle is

not eligible by default because it dominates the incumbent.

The Rank 0 solution on the left dominates three Rank 1 solutions and none of which

is the incumbent. The solution is eligible and a good candidate. Because if it is not

preferred to the incumbent, three Rank 1 alternatives for the incumbent will be

removed with only one question.

The Rank 0 solution on the right can also be asked but it only dominates one Rank 1

solution. The only difference between asking that Rank 1 solution is the region that

is dominated by the Rank 0 solution but not dominated by the Rank 1 solution, if the

decision maker prefers the incumbent to the Rank 0 solution. Especially if there is a

maximum on number of questions allowed to ask to the decision maker, the Rank 0

solution on right will be a poor choice.

63

The methodology of choosing a suitable Rank 0 solution for the specific problem is

designed as follows. A Rank 0 solution is a suitable candidate if:

 It does not dominate the incumbent, and

 It dominates at least two Rank 1 solutions.

There might be two suitable Rank 0 solutions. Then the comparison between two

Rank 0 solution is as follows. A Rank 0 solution is more suitable than another Rank

0 solution if:

 It dominates more Rank 1 than solutions than the other Rank 0 solutions, or

 It dominates the same number of Rank 1 solutions and have lower estimated

utility than the other Rank 0 solution.

Let us assume the solution on the left is asked versus the incumbent to the decision

maker. If the decision maker prefers the incumbent to the Rank 0 solution, the Rank

0 solution will be deemed inferior and moved to Rank 2. Also any solution

dominated by that solution will be moved to Rank 2 (see Figure 17). Else, a Rank 1

solution will be asked immediately after.

64

Figure 17. The decision maker prefers the incumbent

5.6.6.2 Rank 1 vs. the Incumbent

There are three ways of asking a Rank 1 solution against the incumbent. If the

decision maker is asked for preference information between a Rank 0 solution and

the incumbent; and the decision maker prefers the Rank 0 solution, a Rank 1

solution will be picked to ask against the incumbent immediately.

If there are no suitable Rank 0 solutions and trigger conditions for asking a Rank 1

solution is satisfied, a Rank 1 solution will be picked to ask against the incumbent.

If the population convergence is imminent and there are still some Rank 1 solutions

left, a Rank solution will be picked to ask against the incumbent. This last action is

named terminal interactive process.

The last two actions are designed as redundancy measures. Mostly due to triggers

that prevent a multitude of questions and lack of suitable Rank 0 solutions, Rank 1

solutions can be required to be asked independently.

65

The methodology of choosing a suitable Rank 1 for the specific problem is designed

as follows. A Rank 1 solution is suitable if: its estimated utility is not higher than

%5 above the incumbent‟s estimated utility value and is higher than other Rank 1

solutions whose estimated utility values are not higher than %5 above the

incumbent‟s estimated utility value.

The rationale for determining a upper bound for a prospective Rank 1 solution is as

follows. The incumbent is assumed to be an indicator of the decision maker‟s

preferences. A potential Rank 1 solution‟s estimated utility value is expected to be

higher than the current incumbent‟s with the updated weights, because estimated

utility function is intended to be an approximate to the decision maker‟s utility

function. But, at the same time, the current incumbent is chosen using the same

utility function (albeit probably with different weights). Therefore, seeking a

solution close to the incumbent would increase the accuracy of the interactive

process.

The process of asking the decision maker for preference information between a

Rank 1 solution and the incumbent is fairly easy. If the incumbent is preferred the

Rank 1 solution will be deemed inferior and moved to Rank 2. Else, the incumbent

will be deemed inferior and moved to Rank 2; and the Rank 1 solution will be the

new incumbent. The objective of asking Rank 1 solutions against the incumbent is to

find strong alternatives that are more preferable than the current incumbent.

5.6.7 Termination

The algorithm proceeds until the conditions for termination trigger are satisfied. The

records required to keep track of these criteria are calculated at the end of every

generation. The incumbent reported after the termination is the final.

66

CHAPTER 6

6 COMPUTATIONAL RESULTS

In this chapter, the success of the algorithm is tested against exact solutions in

smaller types of problems and another meta-heuristic method for all types of

problems. The aim of this chapter is to show that the proposed algorithm (I-TREA)

can produce the exact (or very close) “most preferred” solution in the small size

problems and does surpass the performance of a modified version of a meta-

heuristic method widely used in the literature (NSGA-II) by using four types of

problems (two small, two large) for objective assessment.

Then, difficulties in the implementation and some potential problems are discussed

for further development of the proposed evolutionary algorithm (I-TREA).

To test I-TREA‟s effectiveness 20 different problems are randomly generated from 4

types of problem settings with different sizes. There are 5 different problems for

each problem size.

2 types of decision maker utility function are used; chebyshev and linear. There are

5 randomly generated utility functions for each utility function type to be used on

the 5 problems for each problem size. In other words, a problem is solved by both

utility function types and each of the 5 problems gets different utility weights.

Utility weights are generated randomly between 0 and 1 where each function‟s sum

of weights is 1 (i.e. w1 + w2 = 1).

67

For each utility function associated with a problem, 5 runs are performed and their

averages and standard deviations are reported. There are a total of 200 runs

performed using different utility functions, problems and problem sizes to evaluate

the performance of I-TREA.

For benchmarking reasons, the same process is performed using a modified version

of NSGA-II and their performances are compared. Also, for a single problem size, a

simplified version of I-TREA is evaluated to compare with the performance of the

original I-TREA.

6.1 Problem Settings

There are four different problem sizes to evaluate the effectiveness and consistency

of I-TREA. The parameters of the problems sizes are given in Table 8.

Table 8. Problem Sizes

1 (50x10) 2 (100x20) 3 (150x30) 4 (200x40)

Demand Points 50 100 150 200

Weights (Interval) 5-50 5-50 5-50 5-50

Facilities 10 20 30 40

Existing Facilities 5 10 15 20

Facility Capacities 250 250 250 275

Critical Cov. Distance 40 40 40 40

Partial Cov. Distance 50 50 50 50

Side Length 200 200 200 200

The first two problem sizes are small enough to be optimally solved in a reasonable

amount of time. These problems are solved using CPLEX solver under GAMS by

using the epsilon methodology. Problems of the third problem size cannot be

optimally solved within 8 hours using CPLEX. Therefore, the third and the fourth

problem sizes are denoted as large problems.

68

6.2 I-TREA Settings

6.2.1 Initial Population

Initial population for the I-TREA and modified NSGA-II for each problem type is

generated randomly from a uniform distribution within problem parameters given in

Table 8.

6.2.2 Normalization

Both objectives are normalized to simplify the trade-off assessment between

objectives and the evaluation of results. The upper and lower bounds for each

objective are calculated as follows.

For the number of facilities objective, the lower bound is the least number of

facilities with lowest weight to maintain a feasible solution (i.e. all demand points

are assigned to facilities and no capacity violation happens). For example, in a

problem setting where capacities of facilities are 100 and total demand weight is

250, the minimum required number of facilities should be 3. The upper bound for

the facility objective is the maximum value of the objective (i.e. all facilities are

open).

The lower bound for the weighted coverage objective is the weighted coverage

objective value of the solution with the lowest weighted coverage objective value in

the initial population. The upper bound is calculated by solving the LP relaxed

version of the problem with single objective (maximize total weighted coverage).

6.2.3 Decision Maker

Originally, a decision maker whose utility function is assumed to be implicit is

asked for preference information between two alternative solutions.

For testing purposes, the decision maker is represented by utility functions with

randomly assigned weights. There are 2 types of utility functions with 5 different

69

weight sets for each type. In other words, 10 randomly generated decision maker

“personas” are used to test I-TREA for different types of decision preferences.

The first type of utility function is a chebyshev function where 𝑍1 and 𝑍2 are the

normalized objective values and the maximum weighted deviation from the ideal

value of the two objectives is to be minimized. The sum of weights is equal to 1.

(𝑤1 + 𝑤2 = 1)

𝑈 𝑍 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 {𝑤1 1 − 𝑍1 ; 𝑤2 1 − 𝑍2 }

The second type of utility function is a linear function, where 𝑍1 and 𝑍2 are the

normalized objective values and their weighted sum is to be maximized. The sum of

weights is equal to 1. (𝑤1 + 𝑤2 = 1)

𝑈 𝑍 = 𝑤1𝑍1 + 𝑤2𝑍2

6.2.4 Algorithm Parameters

Although I-TREA‟s process is simple, there are numerous parameters to be adjusted.

In addition, there are triggers. Trigger is a special type of algorithm parameter which

determines the conditions for a function to be activated (e.g. asking questions,

termination).

There are an abundant number of parameters in I-TREA, some of which are in

specially designed mutation functions forced closure and second chance. There are

also ordinary parameters like Rank 0 preservation ratio or termination conditions.

The determination of parameter values were subject to a vast number of preliminary

runs.

The complete list of parameters and their values are given in Appendix B.

70

6.3 Modified NSGA-II Settings

Basically, it is the constrained NSGA-II (CNSGA-II) described by Deb et al. (2002)

in the literature. The modifications are solely based on implementing the interactive

process of I-TREA in NSGA-II.

The only difference in the population mechanism of CNSGA-II is to preserve a

small proportion of infeasible solutions that are not dominated by any feasible

solution (Rank 0 solutions of I-TREA).

The interactive process is slightly different from I-TREA‟s to not to distort the

ranking system of NSGA-II. After preference information, there are no subtractions

from the objective space by moving the not-preferred solution and solutions

dominated by that solution into inferior ranks. Instead, the portion that is dominated

by the not preferred solution is not further included in the interactive process. For

example, a not-preferred Rank 1 solution is still a Rank 1 solution in the crossover

and the elimination processes. But it is not counted as an eligible solution in the

interactive process.

6.4 Simplified I-TREA Settings

To allay the concerns against the convoluted mutation process of I-TREA, a

simplified version is also tested. In the simplified version, Second Chance function

is not included and the main mutation function is entirely randomized.

In the main mutation function a demand point is randomly assigned to an open and

available facility (i.e. demand weight plus the current capacity utilization of that

facility should not exceed the facility‟s capacity). If there are no suitable facilities,

the facility with the minimum capacity violation is chosen.

Forced Closure function is retained.

71

6.5 Evaluation and Computation Settings

6.5.1 Technical Specifications

All the computer runs are performed on the same computer with Intel® Core™ 2

Duo CPU P8400 2.26 GHz, 4 GB of RAM (3 GB RAM usable because of the OS

being x86 or 32 bit).

To find exact solutions CPLEX solver is used on GAMS 23.0 because of its

popularity as the best solver for MIP problems. Epsilon method is used to generate

the non-dominated front.

6.5.2 Performance Metrics

6.5.2.1 Solution Quality

In the literature, there is quite an array of performance metrics to assess the solution

quality for the multi-objective evolutionary algorithms. To name some of them, Deb

(2001) classifies performance metrics as metrics for convergence, metrics for

diversity and metrics for both convergence and diversity; Zitzler et al. (2000) also

suggest three goals, minimization of distance of solutions to the true Pareto set, an

evenly distribution of solutions and solutions belonging to the non-dominated front

should include most of the values for each objective.

Some metrics are devised according to these principles. For example Hyper-volume

Metric proposed by Zitzler and Thiele (1998) is used to calculate how much of the

solution space is dominated by the efficient solutions of the algorithm. Another

method Inverted Generational Distance (IGD) proposed by Bosman and Thiernes

(2003) calculates the deviation from the closest efficient solution. There is also

another metric that measures the ratio of efficient solutions covered by the non-

dominated front of the evolutionary algorithm.

Unfortunately, none of the above methods are applicable in exact form for the

specific problem. First of all, the solution of the problem is undertaken by an

72

interactive method (i.e. directly aimed to find a set of solutions that is of interest to

the decision maker). Therefore concentrating on specific parts of the solution space

is a priority. This objective diminishes the merits of measuring the spread of

solutions.

The methodology used in the algorithm is a subtractive one. It takes portions of the

solution space and removes them from interest using infeasible solutions. Therefore,

it is not so sensible to calculate how much of the efficient frontier is covered by the

population of the evolutionary algorithm.

Interactive methods are only interested in one solution (in some cases, a set of

solutions). If a solution is not of interest, it is not so proper to assess a solution‟s

quality by calculating the distance from that point.

There is another method to assess the solutions for the specific problem; the decision

maker‟s utility function. The deviation from the optimal utility value might provide

a good assessment of the solution quality.

The main metric used is the absolute deviation from the most preferred solution in

terms of decision maker‟s utility values. It is calculated as follows.

𝑈𝑑𝑒𝑣 = 𝑈𝑚𝑜𝑠𝑡 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝑈𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑

For the first two problem types, exact non-dominated front is available and it is easy

to find the solution that is preferred to all other feasible solutions within the non-

dominated front. For the last two problem types, CPLEX is provided with the

decision maker‟s utility function respectively for each individual problem and the

bi-objective problem is solved as a single objective problem to find the most

preferred solutions. For the problems which CPLEX failed to solve optimally within

reasonable time, the approximate results are used as most preferred solutions.

6.5.2.2 Question Limit

73

There is no strict limit put on the number of questions to be asked to the decision

maker. However, to not to consult to the decision maker repeatedly, it is aimed to

not to ask more than 15 questions and to keep the average number of questions

around 10 questions for each problem type. This is especially hard for the large

problem sizes.

6.5.2.3 Runtime

It is aimed to keep the algorithm as fast as possible. Though, the runtime of the

CPLEX solutions (which is more than 8 hours per run for problem types 3 and 4)

allows I-TREA to not to consider runtime as a strictly binding constraint. The

process of I-TREA is extremely rapid.

6.6 Results

6.6.1 Solution Quality

Average absolute utility deviations from the most preferred solutions of I-TREA and

modified NSGA-II for all problem sizes are reported in Table 9 for chebyshev utility

functions and Table 10 for linear utility functions. For the larger two problem types,

the best solutions from the runs are taken as most preferred solution and deviations

are calculated accordingly. Because, the larger problem types are not solvable in a

reasonable amount of time and the complete non-dominated front is unknown.

Table 9. Absolute utility deviation results for chebyshev utility functions

50x10 100x20 150x30 200x40

I-TREA

Std. Dev. 0.0042 0.0008 0.0021 0.0035

Average 0.0008 0.0003 0.0021 0.0023

Max. 0.0209 0.0035 0.0065 0.0132

NSGA-II

Std. Dev. 0.1739 0.1485 0.1040 0.0613

Average 0.1741 0.2192 0.1749 0.1620

Max. 0.5138 0.5247 0.3440 0.2914

74

Table 10. Absolute utility deviation results for linear utility functions

50x10 100x20 150x30 200x40

I-TREA

Std. Dev. 0.0078 0.0043 0.0080 0.0372

Average 0.0016 0.0031 0.0111 0.0296

Max. 0.0390 0.0158 0.0246 0.1071

NSGA-II
Std. Dev. 0.1453 0.1365 0.1376 0.1315

Average 0.1275 0.1291 0.1370 0.1572

Max. 0.3671 0.3422 0.3957 0.3401

The performance of I-TREA clearly surpasses the performance of modified NSGA-

II in every problem size and utility function type. The average absolute deviation

from the most preferred solutions are quite small for I-TREA, though the „best‟

solutions found in larger problems (150x30 and 200x40) are yet to be proved to be

in the exact non-dominated front of their corresponding problems. Their deviations

may be larger than reported in the utility deviation tables. Nevertheless, the results

show that the solutions are close to each other in I-TREA even for larger problems.

The consistency shows that even though there is room for improvement the

algorithm is robust and resilient against increasing problem size.

6.6.1.1 Benchmarking With Simplified I-TREA (I-TREA-S)

A simplified version of I-TREA (I-TREA-S) is tested for a large problem size

(150x30). I-TREA-S performs reasonably well when compared to modified NSGA-

II‟s performance, but I-TREA provides more satisfying results. The results given in

Table 11 confirm that the complex mutation procedure of I-TREA is a requirement

for the specific bi-objective problem.

75

Table 11. Benchmarking the performance of I-TREA-S

Chebyshev Linear

I-TREA

Std. Dev. 0.0021 0.0080

Average 0.0021 0.0111

Max. 0.0065 0.0246

I-TREA-S

Std. Dev. 0.0130 0.0243

Average 0.0179 0.0457

Max. 0.0473 0.0903

NSGA-II

Std. Dev. 0.1040 0.1376

Average 0.1749 0.1370

Max. 0.3440 0.3957

6.6.2 Resource Consumption

The price of high performance is high resource consumption. Although the resource

requirements of I-TREA are modest, Table 12 and Table 13 show the need for more

resources as the problem size increases.

Table 12. Resource requirements of I-TREA for chebyshev utility functions

50x10 100x20 150x30 200x40

Runtime

(sec.)

Std. Dev. 5.34 18.32 59.63 124.92

Average 14.84 54.48 140.76 298.28

Max. 28 85 278 610

Generations

Std. Dev. 1251.77 1920.64 4380.59 5778.70

Average 3580.12 6997.48 11128.00 15001.44

Max. 6747 9516 20900 28362

Questions

Std. Dev. 1.21 2.60 2.86 5.21

Average 5.04 8.12 9.48 11.00

Max. 7 13 15 28

76

Table 13. Resource requirements of I-TREA for linear utility functions

50x10 100x20 150x30 200x40

Runtime

(sec.)

Std. Dev. 4.08 16.91 58.68 102.91

Average 13.72 39.72 95.20 220.12

Max. 21 75 218 365

Generations

Std. Dev. 863.51 1959.79 4189.16 5135.86

Average 3201.60 5272.04 7696.60 11234.92

Max. 5334 9878 16608 18906

Questions

Std. Dev. 1.55 2.33 2.48 2.42

Average 5.40 6.76 7.68 8.20

Max. 10 11 14 13

I-TREA requires increasingly more generations and runtime as problem size

increases. This is due to the expansion of chromosome size and solution space. The

number of questions asked also increases. The largest problem size (200x40) for the

chebyshev utility function exceeds the hypothetical limit of 10 questions average.

Question averages are lower for linear functions because the estimated utility

function and decision maker utility function types correspond (i.e. they are both

linear utility functions).

Modified NSGA-II seems to consume fewer resources. This is mostly due to its

failure to reach all parts of the objective space and find viable alternatives for the

incumbent it finds. Thus, the runs converge prematurely and the performance falters.

Table 14 and Table 15 show the resource consumption of the modified NSGA-II.

77

Table 14. Resource requirements of modified NSGA-II for chebyshev utility

functions

50x10 100x20 150x30 200x40

Runtime

(sec.)

Std. Dev. 1.50 2.37 3.41 2.26

Average 10.60 14.84 19.72 23.52

Max. 13 19 29 29

Generations

Std. Dev. 251.97 347.60 328.98 112.84

Average 2395.68 2400.12 2359.80 2164.24

Max. 3036 3594 3484 2580

Questions

Std. Dev. 1.16 0.87 0.58 0.20

Average 1.44 1.00 0.40 0.04

Max. 5 3 2 1

Table 15. Resource requirements of modified NSGA-II for linear utility functions

50x10 100x20 150x30 200x40

Runtime

(sec.)

Std. Dev. 1.41 1.70 3.32 4.08

Average 10.60 14.84 18.92 24.36

Max. 13 17 28 37

Generations

Std. Dev. 321.62 280.33 333.41 376.50

Average 2367.32 2364.72 2247.12 2279.80

Max. 3036 2782 3560 3890

Questions

Std. Dev. 1.46 1.03 0.54 0.28

Average 1.96 1.32 0.28 0.08

Max. 5 4 2 1

The decline in number of questions is highly unorthodox. This is an indicator of

modified NSGA-II‟s failure to find alternative solutions in the objective space.

Otherwise there would be alternatives to ask to the decision maker. The main

difficulty is to close facilities without a forced closure function. The lack of finding

78

solutions with higher facility objective values results in premature convergence.

Therefore all runs end within about 2000 generations. The runtime increase is due to

expanded chromosome size. The results clearly indicate NSGA-II is not equipped to

handle the specific problem.

6.6.3 Overall Assessment

In each of the four problem types, I-TREA shows significant success. For the small

sized problems, its results match with exact solutions to a good extent. I-TREA

clearly claims superiority against modified NSGA-II with the help of its special

mutation functions, thus presenting itself as a good alternative to exact solutions

when it comes to problems with larger sizes where exact solutions cannot be carried

out in a reasonable amount of time (8 hours in this case).

For the larger problem sizes, where solvers fail to deliver in a reasonable amount of

time, I-TREA provides quick and robust results (under a few minutes). Although it

is not possible to compare with exact non-dominated solutions, the closeness of

results to the „best‟ solutions is an indicator of the consistency of the solution

quality.

However, it is expected to deviate from the “most preferred” solution increasingly as

the problem size grows. The important thing is the increase is limited and can be

tackled by change of parameters (especially triggers). The improvements will come

at the cost of runtime most probably, yet the algorithm is fast enough to tolerate this

kind of trade-off.

Average number of questions increases at a decreasing rate, mostly due to

interactive process gets activated by triggers that are related with population

progress (i.e. if the population stops progressing, it may trigger an interactive

process event).

79

Overall, the algorithm‟s progress is good, yet it will eventually deviate even more

from the most preferred solutions at greater problem sizes. Then, there will be a

need to change the parameters.

6.7 Weaknesses

Although I-TREA thrives, it has certain weak points that should be discussed.

Question timing and increasing average number of questions are the first among

them.

It is previously discussed that placing questions at the right time is extremely

important. If a question is placed earlier it might curb a potential efficient point‟s

progress before it reached its full potential. It either diminishes the chance of its

improvement or leads to ask against a slightly improved version of the defeated

solution, which will probably be a waste of decision maker attention. And if a

question is asked too late, it would be a waste of generations that passed in the best

case. It would probably lead to premature convergence and therefore early

termination. A balance should be maintained, albeit it is a delicate balance.

Another issue is the increase in the average number of questions as the problem size

grows. It can be expected that the size of the efficient frontier to increase as the

problem size increases. Thus, it would eventually lead to an increase in the questions

asked. The current setting, although low, is more prone to violation of a virtual

maximum question limit of 15. Asking an abundance of questions is undesirable,

because one of the objectives of the interactive system is to steer the algorithm to the

decision maker‟s desired regions in the solution space without disturbing the

decision maker too much. The situation is mostly circumvented by accepting the

incumbent as preference information (i.e. picking incumbent alternatives closet to

the incumbent‟s estimated utility).

To tackle the first and the second issues at the same time, question asking is entitled

to several conditions related with the progress of the population and delayed as

further as possible. Though, the one-size-fits-all solution might fail at some point at

80

the increased levels of problem size. The trigger conditions might render useless as

they are bounded by the termination conditions. Another trigger system can be used

that is more sensitive to problem size changes.

Another method might be changing the structure of the interactive process. Instead

of asking pair-wise comparisons, DM might be asked to assess or rank several

solutions at a time.

The midpoint approach can be faulty at times. Using a linear utility function might

cause the algorithm to overlook convex dominated solutions. That means extra

questions in the best case. And resolution of the conflicting decisions from the

decision maker is not very subtle. One irrational decision might wipe all the

previous preference information.

Although I-TREA‟s process is pretty simplified and its performance is improved

with infeasible solutions, diversity might still be an issue. Its deficiency is not felt by

I-TREA, because its aim is to find interesting regions in the solution space and to

disregard the rest of the solution space. Anyway, for I-TREA, most of the internal

benchmark is done with estimated utility values. Though, without the interactive

process, diversity will gain weigh again and should be considered more seriously.

The weakness in the chromosome representation discussed in Section 5.2 is specific

to this problem. Therefore the algorithm‟s mutation needed to be augmented by

other functions.

81

CHAPTER 7

7 CONCLUSION

In this thesis, a bi-objective capacitated facility location problem is studied with the

objectives; the maximization of the total weighted coverage and the minimization of

number of facilities to be opened. Presence of a singular critical coverage value is

claimed to be unrealistic and the assumption of there are no previous installation

within the region (i.e. no existing facilities) is dismissed. Therefore, partial coverage

concept is introduced in the problem and a distinction is assumed between the

„existing‟ and „new‟ facilities.

The problem, due to its combinatorial nature, is reported to be unsolvable in

polynomial time. Therefore an interactive evolutionary algorithm is proposed (I-

TREA). I-TREA benefits from infeasible solutions that are not dominated by the

feasible solutions both for the progress of the algorithm and as trade-off alternatives

like partition ideals explained in Section 3.4. I-TREA is tailored with specific

mutation functions to enhance its performance and to progress quickly.

The algorithm is tested against exact solutions in solvable problem sizes and a

modified version of NSGA-II in all problem sizes. It performed reasonably well in

the small sized problems as it returned exact or close solutions. I-TREA clearly

outperformed the modified NSGA-II in every problem and every problem size. The

algorithm proved to be robust and efficient for this specific problem.

82

7.1 Future Studies

There is still much room for improvement. With so many parameters to fiddle with,

the algorithm can be improved further. I-TREA is only tested against bi-objective

problems. It can also be tested against problems with three or more objectives for its

robustness against increased number of objectives. The algorithm is also overly

elitist. Further diversity measures can be devised at some point in the future.

83

REFERENCES

Balıbek E., Köksalan M., (2010) A multi-objective multi-period stochastic

programming model for public debt management. European Journal of Operational

Research, 205, 1, 205-217.

Batta R., Huang W.V., (1989) On the synthesis of advertising and relocation

decisions for facility. Computers and Industrial Engineering, 16, 1, 179–187.

Benayoun R, de Montgolfier J, Tergny J, Laritchev O (1971). Linear programming

with multiple objective functions: Step method (STEM). Math Program, 1, 366-375.

Berman O., Krass D., (2002) The generalized maximal covering location problem.

Computers and Operations Research, 29, 563–591.

Berman O., Krass D., Drezner Z., (2003) The gradual covering decay location

problem on a network, European Journal of Operational Research, 151, 474–480.

Berman O., Drezner Z., Krass D. (2010) Generalized Coverage: New Developments

in Covering Location Models. Computers and Operations Research, 37, 10, 1675-

1687.

Brandeau M.L., Chiu S.S., (1989) An Overview of Representative Problems in

Location Research. Management Science, 35, 6, 645-674.

Brimberg, J., ReVelle, C. (1998). A bi-objective plant location problem: cost vs.

demand served. Location Science, 6: 121–135.

Chung C.H., Schilling D.A., Carbone R. (1983) The Capacitated Maximal Covering

Problem: A Heuristic Solution. Modelling and Simulation 14, 1383-1388.

84

Church, C., ReVelle, S. (1974) The Maximal Covering Location Problem. Papers

Of The Regional Sci. Assoc., 32, 101-118.

Church, C., ReVelle, S. (1976) Theoretical and computational links between the p-

median, location set-covering and the maximal covering location problem.

Geographical Analysis, 8, 406-415.

Current, J., Storbeck J. (1988) Capacitated Covering Models. Environment And

Planning B., 15, 153-164.

Daskin M.S., Hogan K., Revelle C. (1988) Integration of Multiple, Excess, Backup,

and Expected Covering Models. Environment And Planning B: Planning And

Design 15, 15–35.

Daskin M.S., Stern E.H., (1981) A Hierarchical Objective Set Covering Model For

Emergency Medical Service Vehicle Deployment. Transportation Science 15, 2,

137-152.

Deb K. (2001) Multiobjective Optimization Using Evolutionary Algorithms. John

Wiley & Sons.

Deb K., Kumar A. (2007) Interactive evolutionary multi-objective optimization and

decision-making using reference direction method. GECCO’07 - Proceedings of the

9th Annual Conference on Genetic and Evolutionary Computation,. London,

England.

Deb K. Kumar A. (2007a) Light beam search based multi-objective optimization

using evolutionary algorithms. Congress on Evolutionary Computation (CEC).

Singapore.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002) A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6, 181–197.

85

Deb, K.; Sinha, A.; Korhonen, P.J.; Wallenius, J. (2010) An Interactive Evolutionary

Multiobjective Optimization Method Based on Progressively Approximated Value

Functions. IEEE Transactions on Evolutionary Computation, 14, 5, 723 – 739.

Dell R. (1998) Optimizing army base realignment and closure. Interfaces, 28, 1–18.

Doerner K.F., Gutjahr W.J., Nolz P.C. (2009) Multi-criteria location planning for

public facilities in tsunami-prone coastal areas. OR Spectrum, 31, 3, 651–678.

Drezner T., Drezner Z., Goldstein Z. (2010) A stochastic gradual cover location

problem. Naval Research Logistics, 57, 4, 367-372.

Drezner Z., Wesolowsky G.O., (1991) Facility location when demand is time

dependent. Naval Research Logistics, 38, 763-777.

Drezner Z., Wesolowsky G.O., Drezner T., (2004) The gradual covering problem.

Naval Research Logistics, 51, 841–855.

Eiselt H.A., Marianov V., (2009) Gradual location set covering with service quality.

Socio-Economic Planning Sciences, 43, 121–130.

Farhan B., Murray A.T., (2008) Siting park-and-ride facilities using a multi-

objective spatial optimization model. Computers and Operations Research 35, 445–

456.

Farahani R. Z., Z. Drezner, and N. Asgari (2009) Single Facility Location and

Relocation Problem with Time Dependent Weights and Discrete Planning Horizon.

Annals of Operations Research, 167, 353-368.

Fowler J.W., Gel E.S., Köksalan M., Korhonen P., Marquis J.L., Wallenius J.,

(2010) Interactive evolutionary multi-objective optimization for quasi-concave

preference functions, European Journal of Operational Research, 206, 2, 417-425.

Frank M., Wolfe P. (1956) An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3, pp. 95-110.

86

Haimes Y.Y., Lasdon L.S., and Wismer D.A. (1971) On a bicriterion formulation of

the problems of integrated system identification and system optimization. IEEE

Transactions on Systems, Man and Cybernetics 1, 3, 296-297.

Hakimi S.L. (1964) Optimal Locations of Switching Centers and the Absolute

Centers and Medians of a Graph. Operational Research, 12, 450-459.

Harewood S.I. (2002). Emergency ambulance deployment in Barbados: a multi-

objective approach. Journal of the Operational Research Society, 53, 185–192.

Hogan, K., Revelle, C. (1986) Concepts and Applications Of Backup Coverage.

Management Science, 32, 1434-1444

Jayaraman, V. (1999) A Multi-Objective Logistics Model for a Capacitated Service

Facility Problem. International Journal of Physical Distribution & Logistics, 29, 1,

65–81.

Karasakal E., Silav A. (2010) A Multi-Objective Genetic Algorithm for a Bi-

Objective Facility Location Problem with Partial Coverage. Technical Report 10-05,

IE, METU, Ankara.

Karasakal O., Karasakal E. (2004) A maximal covering location model in the

presence of partial coverage. Computers and Operations Research, 31, 15–26.

Knowles J.D., Corne D.W. (2000) Approximating the non-dominated front using the

Pareto archived evolution strategy. Evolutionary Computation Journal, 8, 2, 149-

172.

Köksalan M, Karasakal E. (2006) An interactive approach for multiobjective

decision making. Journal of the Operational Research Society, 57, 532-540.

Köksalan M, Sagala P.N.S. (1995) Interactive appreaches for discrete alternative

multiple criteria decision making with monotone utility functions. Management

Science, 41, 1158-1711.

87

Korhonen P., Laakso J. (1986) A visual interactive method for solving the multiple

criteria problem. European Journal of Operational Research, 24, 277-287.

Liu N., Huang B., Xiaohong P., (2005) Using the Ant Algorithm to Derive Pareto

Fronts for Multiobjective Siting of Emergency Service Facilities. Journal of the

Transportation Research Board, 1935, 120-129.

Melachrinoudis, E., Min, H., (2000) Dynamic relocation and phase-out of a two-

echelon, hybrid plant and warehousing facility: A multiple objective approach.

European Journal of Operational Research, 123, 1, 1–15.

Melachrinoudis E., Min H., Messac A., (2000) The relocation of a

manufacturing/distribution facility from supply chain perspectives: A physical

programming approach. Applications of Management Science: Multi-criteria

Applications, 1st ed., vol. 10, K.D. Lawrence, G.R. Reeves, and R.K. Klimberg Ed.

Amsterdam: JAI Press, 15-39.

Miettinen K., Eskelinen P., Ruiz F., Luque M. (2010) NAUTILUS method: An

interactive technique in multiobjective optimization based on the nadir point.

European Journal of Operational Research, 206, 2, 426-434.

Min H. (1988) Dynamic expansion and relocation of capacitated public facilities: A

multi-objective approach. Computers and Operations Research, 15, 3, 243-252.

Owen S.H., Daskin M.S., (1998) Strategic facility location: A review. European

Journal of Operational Research, 111, 423–447.

Pfiffer J., Golle U., Rothlauf F. (2008) Reference Point Based Multi-Objective

Evolutionary Algorithms for Group Decisions. GECCO’08 - Proceedings of the

10th Annual Conference on Genetic and Evolutionary Computation, Atlanta,

Georgia, USA.

Phelps S.P., Köksalan M. (2003) An interactive evolutionary metaheuristic for

multiobjective combinatorial optimization. Management Science, 49, 12, 1726-1738.

88

Pirkul H., Schilling D.A., (1988) The Siting of Emergency Service Facilities with

Workload Capacities and Backup Service. Management Science, 34, 7, 896-908.

Pirkul H., Schilling D.A. (1991) The Maximal Covering Location Problem with

Capacities on Total Workload. Management Science, 37, 2, 233–48.

Ray T., Singh H.K., Isaacs A., Smith W. (2009) Infeasibility Driven Evolutionary

Algorithm for Constrained Optimization. Studies in Computational Intelligence,

198, 145-165.

ReVelle C.S., Marks D., Liebman J.C., (1970) An Analysis of Private and Public

Sector Location Models. Management Science, 16, 11, 692-707.

ReVelle C.S., Bigman D., Schilling D., Cohon J., Church R., (1977) Facility

location: A review of context-free and EMS models. Health Services Research, 12,

1129–1146.

ReVelle, C.S., Laporte, G., (1996) The plant location problem: New models and

research prospects. Operations Research, 44, 6, 864–874.

ReVelle, C.S., Serra. D. (1991) The Maximum Capture Problem Including

Relocation. Information and Operations Research, 29, 130–38.

Ross G.T. and Soland R.M., (1977) Modeling facility location problems as

generalized assignment problems, Management Science 24, 3 ,345–357.

Ross, G.T., Soland, R.M., (1980) A multicriteria approach to location of public

facilities. European Journal of Operational Research 4, 307–321.

Steuer R.E., (1977) An interactive multiple criteria linear programming procedure,

TIMS Studies. Management Science, 6, 225-239.

Tansel B.C., Francis R.L., Lowe T.J., (1983) Location on Networks: A Survey. Part

I: The P-Center and P-Median Problems. Management Science, 29, 4, 482-497.

89

Thiele L., Miettinen K, Korhonen P.J., Molina J. (2009) A Preference-Based

Evolutionary Algorithm for Multi-Objective Optimization. Evolutionary

Computation, 17, 3, 411-436.

Toregas, C., Swain R., ReVelle. C., (1971) The Location of Emergency Service

Facilities. Operational Research, 19, 1363-1373.

VanRoy T.J., Erlenkotter D. (1982) A dual-based procedure for dynamic facility

location, Management Science, 28, 10, 1091-1105.

Villegas, J.G., Palacios, F., Medaglia, A.L. (2006) Solution methods for the bi-

objective (cost-coverage) unconstrained facility location problem with an illustrative

example. Annals of Operational Research, 147, 109–141.

Wang Q., Batta R., Bhadury J., Rump C.M. (2003) Budget constrained location

problem with opening and closing of facilities. Computers and Operations

Research, 30, 2047–2069.

Weber, A., (1909) Uber Den Standort Der Industrien; Translated As Alfred Weber's

Theory Of The Location Of Industries. University Of Chicago, 1929.

Wesolowsky G.O. (1973) Dynamic facility location. Management Science, 19, 11,

1241-1248.

Wesolowsky G.O., Truscott W.G. (1976) The multiperiod location-allocation

problem with relocation of facilities. Management Science, 22, 1, 57-65.

Zionts S., Wallenius J. (1976) An interactive programming method for solving the

multiple criteria problem. Management Science, 22, 652-663.

Zionts S., Wallenius J. (1983) An interactive multiple objective linear programming

for a class of underlying nonlinear utility functions. Management Science, 29, 519-

529.

90

Zitzler, E., Deb, K., Thiele, L. (2000) Comparison of multiobjective

evolutionaryalgorithms: Empirical results. Evolutionary Computation, 8, 2, 173-195.

Zitzler E., Laumanns M., Thiele L. (2001) SPEA 2: Improving the Strength Pareto

Evolutionary Algorithm. TIK Report No: 103. Computer Engineering and Networks

Laboratory (TIK), Swiss Federal Institute of Technology, Zurich.

Zitzler, E., Thiele, L., (1998) Multiobjective Optimization Using

EvolutionaryAlgorithms - A Comparative Case Study. Parallel Problem Solving

From Nature, 1498, 292-301.

Zitzler E., Thiele L. (1998a) An evolutionary algorithm for multiobjective

optimization: The strength pareto approach. Technical Report 43, Computer

Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology,

Zurich.

91

APPENDIX A

PSEUDO CODE OF I-TREA

Initialization()

Fill the population with initial solutions.

Classification()

For each new member of the population:

*Add to Rank 0 if it is infeasible and not dominated by any other Rank 1 or

defeated solutions.

*Add to Rank 1 if it‟s feasible and not dominated by any other Rank 1 or

defeated solutions. Add any Rank 1 and 0 solution dominated by the newly

added Rank 1 solution to Rank 2. If it dominates the incumbent, it is the new

incumbent.

*Add to Rank 2 if it does not belong to Rank 0 or Rank 1.

Denote the Rank 1 solution with the highest estimated utility value as

“incumbent”.

For each new generation until termination:

Crossover()

Fill the mating pool by “crowded tournament selection”.

92

One point, random point crossover.

Mutation()

If triggered, Forced Closure ()

Calculate facility potentials for open facilities.

Close a facility using potentials as probability values.

If closed facility is a „new facility‟ and there is at least one closed „existing‟

facility:

Calculate facility potentials for closed „existing‟ facilities.

Open an existing facility using potentials as probability values.

If triggered, Inefficiency Reset()

Revoke all demand point assignments if they return zero coverage or less

coverage than they could be by assignment to another open facility

regardless of the capacity violation.

For each gene that has a value;

Revoke its assignment by chance, whose probability is determined by the

mutation probability.

For each open facility;

Calculate facility potential scores.

For each demand point;

Calculate demand points total scores and maximum scores.

While facility potential scores > 0;

Choose the facility with the highest potential facility score.

93

Calculate the probabilities of the demand points to be assigned to that

facility with regard to maximum scores and total scores.

Assign a demand point to the chosen facility.

Update capacity information for that facility.

Update facility potential scores.

Update demand point maximum and total scores.

Assign the remaining demand points to facilities without any specific order.

Classification()

Elimination(Continue until population level is back to normal)

Eliminate the duplicates.

Eliminate Rank 2 solutions according to domination principle. If a Rank 2

solution is dominated by another Rank 2 solution, it is eliminated.

Eliminate Rank 0 solutions according to both domination and capacity

violation. If a Rank 0 solution is dominated by another Rank 0 solution and

have greater capacity violation than its match, it is eliminated. Stop

eliminating Rank 0 solutions if number of Rank 0 solutions has reached to

Rank 0 preservation limit.

Eliminate Rank 0 solutions according to radial distances. Start eliminating

from the closest Rank 0 solution. There will always be two Rank 0 solutions,

eliminate the one with the higher capacity violation. Stop eliminating Rank 0

solutions if number of Rank 0 solutions has reached to Rank 0 preservation

limit.

Eliminate Rank 1 solutions that return the same objective values (twins).

Eliminate Rank 2 solutions according to crowding distances.

94

Eliminate Rank 1 solutions according to crowding distances.

Interactive Process()

If trigger conditions for asking are satisfied;

Try to find a suitable Rank 0 solution to ask vs. the incumbent.

If there is one, ask the DM Rank 0 vs. the incumbent;

If the incumbent is preferred, Rank 0 solution is a defeated solution.

That solution and all solutions that are dominated by that solution are

moved to Rank 2.

Else, find a suitable Rank 1 solution to ask vs. the incumbent.

If the incumbent is preferred, Rank 1 solution is now a defeated

solution and moved to Rank 2.

Else, incumbent is now a defeated solution and moved to Rank 2.

Rank 1 solution is the new incumbent.

Else, if trigger conditions for asking Rank 1 solutions are satisfied;

If there is a suitable Rank 1 solution to ask vs. the incumbent.

If the incumbent is preferred, Rank 1 solution is now a defeated

solution and moved to Rank 2.

Else, incumbent is now a defeated solution and moved to Rank 2.

Rank 1 solution is the new incumbent.

Calculate population averages, check for termination conditions.

If termination conditions are satisfied, then terminate the run.

95

APPENDIX B

LIST OF I-TREA PARAMETERS

 Population size is 100.

 The preservation ratio of Rank 0 solutions is %10.

 Mutation probability is %5.

 Initial estimated utility weights are equal (i.e. 0.5 and 0.5).

 To ask a Rank 0 solution against the incumbent, the conditions are as follows.

 There should be at least a Rank 0 solution.

 100 generations should pass after the last question.

 And;

 150 generations should pass after the last non-dominated front change.

 1000 generations should pass after the last incumbent change.

or

 Number of questions asked should be less than 2.

 500 generations should pass after the last incumbent change.

 A Rank 0 solution is eligible to ask if it dominates at least two Rank 1

solutions none of which is the incumbent.

 To ask a Rank 1 solution against the incumbent, the conditions are as follows.

 There should be no eligible Rank 0 solution to ask.

 There should be at least one Rank 1 solution which is not the incumbent.

 And;

 250 generations should pass after the last non-dominated front change.

96

 200 generations should pass after the last question.

or

 Number of questions asked should be less than 2.

 500 generations should pass after the last incumbent change.

 The trigger conditions for terminal interactive process are as follows.

 200 generations should pass after the last non-dominated front change.

 1500 generations should pass after the last incumbent change.

 A maximum of 3 Rank 1 solutions can be asked against the incumbent during

the terminal interactive process.

 For a Rank 1 solution to be eligible to ask against the incumbent, its estimated

utility value should not exceed %5 above the incumbent‟s estimated utility

value.

 Forced closure function is triggered if 20 generations have passed after the last

non-dominated front change. Force closure activates once in every 5

generations after being triggered.

 The bonus for highest coverage values in the forced closure function is %50.

 Second chance function is triggered if 10 generations have passed after the last

non-dominated front change. Force closure activates once in every 2

generations after being triggered.

 Termination conditions are as follows.

 200 generations should pass after the last non-dominated front change.

 1500 generations should pass after the last incumbent change.

97

APPENDIX C

DETAILED RUN RESULTS

Table 16. Problem type 1 I-TREA linear utility function results

All Problems (Linear Utility Function)

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 7 0.0000 1699 3

Maximum 21 0.0390 5334 10

Std.Dev. 4.08 0.0078 863.51 1.55

Average 13.72 0.0016 3201.60 5.40

Problem Set 1

Minimum 12 0.0000 3064 5

Maximum 21 0.0000 5334 7

Std.Dev. 3.42 0.0000 852.28 0.84

Average 16.20 0.0000 3939.80 6.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 21 0.0000 5334 7

2 17 0.0000 3936 7

3 12 0.0000 3064 5

4 17 0.0000 3859 6

5 14 0.0000 3506 6

98

Table 16. Problem type 1 I-TREA linear utility function results (cont.)

Problem Set 2

Minimum 11 0.0000 2980 3

Maximum 16 0.0390 4142 5

Std.Dev. 1.95 0.0175 423.90 0.89

Average 14.40 0.0078 3645.40 3.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 16 0.0000 4142 3

2 15 0.0000 3789 3

3 11 0.0000 2980 5

4 15 0.0390 3593 3

5 15 0.0000 3723 3

Problem Set 3

Minimum 7 0.0000 1699 6

Maximum 11 0.0000 2796 10

Std.Dev. 1.64 0.0000 431.19 1.64

Average 8.20 0.0000 2043.00 7.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 7 0.0000 1942 6

2 8 0.0000 1870 7

3 7 0.0000 1908 7

4 11 0.0000 2796 10

5 8 0.0000 1699 6

Problem Set 4

Minimum 10 0.0000 2334 5

Maximum 15 0.0000 3590 6

Std.Dev. 2.30 0.0000 594.60 0.45

Average 12.40 0.0000 3022.80 5.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 14 0.0000 3384 5

2 13 0.0000 3382 5

3 10 0.0000 2334 5

4 15 0.0000 3590 6

5 10 0.0000 2424 5

99

Table 16. Problem type 1 I-TREA linear utility function results (cont.)

Problem Set 5

Minimum 12 0.0000 2615 5

Maximum 20 0.0000 4092 5

Std.Dev. 3.29 0.0000 594.00 0.00

Average 17.40 0.0000 3357.00 5.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 20 0.0000 2907 5

2 12 0.0000 2615 5

3 20 0.0000 4092 5

4 18 0.0000 3668 5

5 17 0.0000 3503 5

Table 17. Problem type 1 I-TREA chebyshev utility function results

All Problems (Chebyshev Utility Function)

Run Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 8 0.0000 2022 2

Maximum 28 0.0209 6747 7

Std.Dev. 5.34 0.0042 1251.77 1.21

Average 14.84 0.0008 3580.12 5.04

Problem Set 1

Minimum 8 0.0000 2022 5

Maximum 13 0.0000 3456 7

Std.Dev. 2.49 0.0000 704.78 1.00

Average 11.20 0.0000 2846.80 6.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 13 0.0000 3220 6

2 8 0.0000 2142 5

3 13 0.0000 3394 7

4 9 0.0000 2022 5

5 13 0.0000 3456 7

100

Table 17. Problem type 1 I-TREA chebyshev utility function results (cont.)

Problem Set 2

Minimum 13 0.0000 3043 2

Maximum 28 0.0000 6747 6

Std.Dev. 5.76 0.0000 1448.35 1.82

Average 19.80 0.0000 4756.80 4.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 16 0.0000 3744 6

2 28 0.0000 6747 3

3 22 0.0000 5438 6

4 13 0.0000 3043 5

5 20 0.0000 4812 2

Problem Set 3

Minimum 8 0.0000 2283 4

Maximum 16 0.0000 4553 6

Std.Dev. 2.88 0.0000 844.11 0.71

Average 12.40 0.0000 3303.60 5.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 8 0.0000 2283 5

2 12 0.0000 2999 4

3 16 0.0000 4553 6

4 13 0.0000 3617 5

5 13 0.0000 3066 5

Problem Set 4

Minimum 14 0.0000 3296 3

Maximum 28 0.0209 6085 7

Std.Dev. 5.83 0.0093 1150.44 1.48

Average 19.00 0.0042 4435.20 4.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 21 0.0209 4865 3

2 18 0.0000 4534 5

3 14 0.0000 3396 5

4 28 0.0000 6085 4

5 14 0.0000 3296 7

101

Table 17. Problem type 1 I-TREA chebyshev utility function results (cont.)

Problem Set 5

Minimum 10 0.0000 2156 5

Maximum 13 0.0000 2722 5

Std.Dev. 1.10 0.0000 230.88 0.00

Average 11.80 0.0000 2558.20 5.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.0000 2722 5

2 10 0.0000 2156 5

3 12 0.0000 2631 5

4 13 0.0000 2694 5

5 12 0.0000 2588 5

Table 18. Problem Type 2 I-TREA linear utility function results

Problems Average

 Time DMDev (abs) Generation Questions

Minimum 13 0.0000 2344 2

Maximum 75 0.0158 9878 11

Std.Dev. 16.91 0.0043 1959.79 2.33

Average 39.72 0.0031 5272.04 6.76

Problem Set 1

Minimum 24 0.0003 3562 2

Maximum 53 0.0035 7256 9

Std.Dev. 12.62 0.0013 1370.73 2.88

Average 39.80 0.0014 5297.20 4.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 53 0.0003 7256 9

2 32 0.0014 4638 2

3 52 0.0008 5778 4

4 24 0.0035 3562 2

5 38 0.0008 5252 5

102

Table 18. Problem Type 2 I-TREA linear utility function results (cont.)

Problem Set 2

Minimum 17 0.0000 2344 4

Maximum 46 0.0117 5384 6

Std.Dev. 11.10 0.0058 1162.04 0.89

Average 30.40 0.0047 3717.40 5.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 17 0.0014 2344 6

2 46 0.0000 5384 6

3 32 0.0001 4133 6

4 34 0.0117 3759 6

5 23 0.0102 2967 4

Problem Set 3

Minimum 13 0.0000 2492 6

Maximum 37 0.0158 6022 9

Std.Dev. 8.79 0.0067 1311.02 1.30

Average 24.20 0.0039 4004.80 7.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 13 0.0012 2492 6

2 37 0.0012 6022 9

3 27 0.0000 4352 8

4 23 0.0158 3710 7

5 21 0.0012 3448 6

Problem Set 4

Minimum 29 0.0011 3978 6

Maximum 69 0.0086 8002 11

Std.Dev. 14.53 0.0029 1512.12 2.07

Average 52.20 0.0054 6264.00 8.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 69 0.0041 8002 7

2 29 0.0086 3978 6

3 57 0.0065 7172 11

4 53 0.0011 6012 9

5 53 0.0067 6156 10

103

Table 18. Problem Type 2 I-TREA linear utility function results (cont.)

Problem Set 5

Minimum 27 0.0000 3844 6

Maximum 75 0.0003 9878 10

Std.Dev. 18.73 0.0002 2340.83 1.58

Average 52.00 0.0001 7076.80 8.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 75 0.0003 9878 10

2 61 0.0000 8338 9

3 27 0.0003 3844 6

4 57 0.0000 7580 7

5 40 0.0000 5744 8

Table 19. Problem Type 2 I-TREA chebyshev utility function results

Problems Average

Run Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 16 0.0000 2380 3

Maximum 85 0.0035 9516 13

Std.Dev. 18.32 0.0008 1920.64 2.60

Average 54.48 0.0003 6997.48 8.12

Problem Set 1

Minimum 16 0.0000 2380 3

Maximum 58 0.0000 7896 8

Std.Dev. 18.15 0.0000 2401.77 2.07

Average 36.40 0.0000 5137.60 5.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 23 0.0000 3412 4

2 16 0.0000 2380 3

3 33 0.0000 4697 6

4 58 0.0000 7896 8

5 52 0.0000 7303 7

104

Table 19. Problem Type 2 I-TREA chebyshev utility function results (cont.)

Problem Set 2

Minimum 60 0.0001 6706 5

Maximum 85 0.0020 9516 10

Std.Dev. 9.20 0.0008 1046.10 2.00

Average 73.20 0.0006 8163.20 8.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 74 0.0004 8354 9

2 70 0.0020 7682 5

3 85 0.0002 9516 10

4 60 0.0001 6706 7

5 77 0.0004 8558 9

Problem Set 3

Minimum 19 0.0000 3084 5

Maximum 58 0.0000 8734 12

Std.Dev. 14.97 0.0000 2136.00 3.11

Average 44.00 0.0000 6701.20 8.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 19 0.0000 3084 5

2 43 0.0000 6868 6

3 58 0.0000 8734 12

4 49 0.0000 7388 11

5 51 0.0000 7432 10

Problem Set 4

Minimum 46 0.0000 5612 6

Maximum 76 0.0035 8532 13

Std.Dev. 14.15 0.0015 1426.07 2.59

Average 63.80 0.0008 7215.00 9.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 46 0.0035 5612 8

2 72 0.0000 8103 10

3 74 0.0002 8110 9

4 51 0.0000 5718 6

5 76 0.0005 8532 13

105

Table 19. Problem Type 2 I-TREA chebyshev utility function results (cont.)

Problem Set 5

Minimum 39 0.0000 5436 6

Maximum 62 0.0000 8662 12

Std.Dev. 9.14 0.0000 1317.60 2.24

Average 55.00 0.0000 7770.40 9.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 62 0.0000 8662 6

2 58 0.0000 8202 10

3 57 0.0000 8242 9

4 39 0.0000 5436 8

5 59 0.0000 8310 12

Table 20. Problem Type 3 I-TREA linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 25 0.0000 2458 5

Maximum 218 0.0246 16608 14

Std.Dev. 58.68 0.0080 4189.16 2.48

Average 95.20 0.0111 7696.60 7.68

Problem Set 1

Minimum 109 0.0163 8544 8

Maximum 218 0.0195 15408 12

Std.Dev. 44.12 0.0015 2721.59 1.58

Average 152.80 0.0178 11287.60 10.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 137 0.0176 10694 11

2 218 0.0163 15408 12

3 176 0.0166 12390 10

4 124 0.0191 9402 8

5 109 0.0195 8544 9

106

Table 20. Problem Type 3 I-TREA linear utility function results (cont.)

Problem Set 2

Minimum 37 0.0000 2811 5

Maximum 47 0.0007 4000 6

Std.Dev. 3.71 0.0003 478.70 0.55

Average 42.40 0.0001 3636.40 5.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 44 0.0000 4000 6

2 47 0.0007 3928 5

3 37 0.0000 2811 5

4 41 0.0000 3679 6

5 43 0.0000 3764 5

Problem Set 3

Minimum 45 0.0150 4366 6

Maximum 99 0.0246 8524 10

Std.Dev. 24.90 0.0038 1965.69 1.67

Average 71.20 0.0196 6429.20 7.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 73 0.0217 6888 6

2 45 0.0246 4366 6

3 99 0.0198 7984 8

4 47 0.0171 4384 7

5 92 0.0150 8524 10

Problem Set 4

Minimum 25 0.0043 2458 5

Maximum 185 0.0156 16608 14

Std.Dev. 67.28 0.0050 5903.22 3.83

Average 66.00 0.0124 6169.40 8.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 185 0.0043 16608 14

2 25 0.0156 2458 5

3 28 0.0156 2946 5

4 43 0.0108 4168 7

5 49 0.0156 4667 10

107

Table 20. Problem Type 3 I-TREA linear utility function results (cont.)

Problem Set 5

Minimum 104 0.0044 8572 6

Maximum 192 0.0077 13436 10

Std.Dev. 34.70 0.0014 1995.49 1.67

Average 143.60 0.0054 10960.40 7.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 104 0.0044 8572 6

2 117 0.0056 9322 6

3 157 0.0049 12058 10

4 148 0.0044 11414 8

5 192 0.0077 13436 7

Table 21. Problem Type 3 I-TREA chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 48 0.0000 4326 4

Maximum 278 0.0065 20900 15

Std.Dev. 59.63 0.0021 4380.59 2.86

Average 140.76 0.0021 11128 9.48

Problem Set 1

Minimum 121 0.0044 8870 6

Maximum 205 0.0044 14940 11

Std.Dev. 33.90 0.0000 2492.84 1.92

Average 163.20 0.0044 12044.8 8.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 151 0.0044 11230 9

2 190 0.0044 14194 10

3 205 0.0044 14940 11

4 149 0.0044 10990 6

5 121 0.0044 8870 8

108

Table 21. Problem Type 3 I-TREA chebyshev utility function results

Problem Set 2

Minimum 57 0.0014 4372 4

Maximum 243 0.0054 17058 10

Std.Dev. 72.16 0.0014 5056.38 2.12

Average 163.00 0.0034 11930.4 7.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 179 0.0036 13068 7

2 130 0.0035 9686 7

3 243 0.0031 17058 10

4 206 0.0014 15468 7

5 57 0.0054 4372 4

Problem Set 3

Minimum 69 0.0000 6478 8

Maximum 278 0.0000 20900 15

Std.Dev. 80.28 0.0000 5599.19 2.77

Average 158.40 0.0000 12622.8 11.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 278 0.0000 20900 15

2 103 0.0000 8498 8

3 69 0.0000 6478 9

4 178 0.0000 13878 12

5 164 0.0000 13360 12

Problem Set 4

Minimum 75 0.0000 6472 9

Maximum 184 0.0065 17272 14

Std.Dev. 45.42 0.0028 4371.19 2.07

Average 137.80 0.0023 ####### 12.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 109 0.0000 9860 13

2 184 0.0036 17272 14

3 148 0.0015 12288 13

4 173 0.0000 15734 14

5 75 0.0065 6472 9

109

Table 21. Problem Type 3 I-TREA chebyshev utility function results (cont.)

Problem Set 5

Minimum 48 0.0006 4326 7

Maximum 102 0.0006 8264 9

Std.Dev. 20.51 0.0000 1460.91 1.10

Average 81.40 0.0006 6716.80 7.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 102 0.0006 8264 9

2 80 0.0006 6820 9

3 84 0.0006 6820 7

4 48 0.0006 4326 7

5 93 0.0006 7354 7

Table 22. Problem Type 4 I-TREA linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 48 0.0000 2686 5

Maximum 365 0.1071 18906 13

Std.Dev. 102.91 0.0372 5135.86 2.42

Average 220.12 0.0296 11234.92 8.20

Problem Set 1

Minimum 218 0.0098 11582 7

Maximum 365 0.0155 18906 10

Std.Dev. 59.98 0.0026 2895.44 1.10

Average 311.40 0.0135 16298.40 8.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 365 0.0098 18906 9

2 300 0.0119 16032 9

3 363 0.0150 18380 9

4 218 0.0154 11582 7

5 311 0.0155 16592 10

110

Table 22. Problem Type 4 I-TREA linear utility function results (cont.)

Problem Set 2

Minimum 48 0.0000 2686 5

Maximum 128 0.0009 6346 7

Std.Dev. 29.95 0.0004 1376.79 0.84

Average 77.80 0.0003 4044.00 5.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 128 0.0005 6346 7

2 48 0.0000 2686 6

3 66 0.0000 3440 5

4 75 0.0009 3964 6

5 72 0.0000 3784 5

Problem Set 3

Minimum 83 0.0000 4642 5

Maximum 250 0.0097 11948 10

Std.Dev. 67.45 0.0046 3084.66 1.95

Average 175.60 0.0054 8844.00 7.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 215 0.0007 10774 10

2 131 0.0083 6598 6

3 199 0.0083 10258 8

4 83 0.0097 4642 5

5 250 0.0000 11948 8

Problem Set 4

Minimum 187 0.0961 10208 5

Maximum 365 0.1071 17230 13

Std.Dev. 75.01 0.0046 3189.44 3.58

Average 260.20 0.0995 13443.60 9.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 249 0.0962 12844 13

2 196 0.1071 10682 5

3 304 0.0961 16254 7

4 187 0.0979 10208 13

5 365 0.1003 17230 10

111

Table 22. Problem Type 4 I-TREA linear utility function results (cont.)

Problem Set 5

Minimum 171 0.0226 8660 6

Maximum 334 0.0330 16950 11

Std.Dev. 69.31 0.0040 3420.37 1.95

Average 275.60 0.0291 13544.60 9.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 171 0.0330 8660 6

2 324 0.0226 15754 11

3 239 0.0313 11420 10

4 334 0.0280 16950 10

5 310 0.0304 14939 10

Table 23. Problem Type 4 I-TREA chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 95 0.0000 5540 5

Maximum 610 0.0154 28362 28

Std.Dev. 124.92 0.0056 5778.70 5.21

Average 298.28 0.0061 15001.44 11.00

Problem Set 1

Minimum 176 0.0049 9498 8

Maximum 413 0.0130 22140 24

Std.Dev. 106.36 0.0035 5480.45 6.54

Average 307.60 0.0072 16412.00 13.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 212 0.0049 11710 10

2 413 0.0079 22140 16

3 380 0.0049 19562 8

4 357 0.0053 19150 24

5 176 0.0130 9498 10

112

Table 23. Problem Type 4 I-TREA chebyshev utility function results (cont.)

Problem Set 2

Minimum 195 0.0011 9528 8

Maximum 279 0.0069 14670 12

Std.Dev. 33.49 0.0027 2010.26 1.52

Average 239.40 0.0035 12346.00 9.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 261 0.0022 13862 9

2 244 0.0069 11804 12

3 195 0.0060 9528 10

4 218 0.0011 11866 8

5 279 0.0016 14670 9

Problem Set 3

Minimum 223 0.0000 11564 7

Maximum 508 0.0037 23910 14

Std.Dev. 117.45 0.0018 4921.98 2.51

Average 337.80 0.0018 16611.20 10.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 260 0.0018 13834 10

2 223 0.0037 11564 11

3 407 0.0036 19144 10

4 291 0.0000 14604 7

5 508 0.0000 23910 14

Problem Set 4

Minimum 187 0.0132 10154 5

Maximum 610 0.0154 28362 28

Std.Dev. 165.63 0.0010 7392.33 9.02

Average 407.00 0.0146 19774.40 12.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 370 0.0137 17568 8

2 341 0.0153 16802 11

3 187 0.0154 10154 5

4 527 0.0154 25986 10

5 610 0.0132 28362 28

113

Table 23. Problem Type 4 I-TREA chebyshev utility function results (cont.)

Problem Set 5

Minimum 95 0.0000 5540 5

Maximum 317 0.0132 14652 13

Std.Dev. 81.40 0.0057 3376.02 3.39

Average 199.60 0.0035 9863.60 9.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 175 0.0000 8540 8

2 317 0.0000 14652 13

3 182 0.0044 9332 7

4 229 0.0000 11254 12

5 95 0.0132 5540 5

Table 24. Problem type 1 modified NSGA-II linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 8 0.0005 1472 0

Maximum 13 0.3671 3036 5

Std.Dev. 1.41 0.1453 321.62 1.46

Average 10.60 0.1275 2367.32 1.96

Problem Set 1

Minimum 9 0.1441 2394 1

Maximum 12 0.3460 3036 5

Std.Dev. 1.14 0.1038 267.84 1.41

Average 10.60 0.2564 2666.80 3.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.1441 3036 5

2 10 0.3460 2537 3

3 11 0.3431 2512 1

4 11 0.1441 2855 3

5 9 0.3049 2394 3

114

Table 24. Problem type 1 modified NSGA-II linear utility function results (cont.)

Problem Set 2

Minimum 12 0.0005 1472 0

Maximum 13 0.0194 2505 4

Std.Dev. 0.55 0.0085 435.28 1.64

Average 12.40 0.0043 2232.00 2.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.0005 2263 4

2 12 0.0005 1472 3

3 13 0.0194 2440 0

4 12 0.0005 2480 4

5 13 0.0005 2505 3

Problem Set 3

Minimum 9 0.0103 2307 1

Maximum 10 0.0103 2452 3

Std.Dev. 0.55 0.0000 71.34 1.10

Average 9.40 0.0103 2363.40 1.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 9 0.0103 2316 1

2 9 0.0103 2307 1

3 10 0.0103 2430 3

4 9 0.0103 2312 1

5 10 0.0103 2452 3

Problem Set 4

Minimum 10 0.0173 1785 1

Maximum 11 0.0720 2520 3

Std.Dev. 0.55 0.0232 320.30 1.10

Average 10.60 0.0472 2354.60 1.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 11 0.0693 2514 1

2 10 0.0173 2517 3

3 10 0.0373 2437 3

4 11 0.0400 1785 1

5 11 0.0720 2520 1

115

Table 24. Problem type 1 modified NSGA-II linear utility function results (cont.)

Problem Set 5

Minimum 8 0.2323 2001 0

Maximum 12 0.3671 2563 1

Std.Dev. 1.87 0.0665 298.91 0.55

Average 10.00 0.3192 2219.80 0.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 9 0.3671 2001 0

2 12 0.2624 2531 1

3 9 0.3671 2002 0

4 8 0.3671 2002 0

5 12 0.2323 2563 1

Table 25. Problem type 1 modified NSGA-II chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 8 0.0000 2001 0

Maximum 13 0.5138 3036 5

Std.Dev. 1.50 0.1739 251.97 1.16

Average 10.60 0.1741 2395.68 1.44

Problem Set 1

Minimum 10 0.0000 2394 1

Maximum 12 0.0975 3036 5

Std.Dev. 0.89 0.0506 267.84 1.41

Average 10.60 0.0548 2666.80 3.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.0000 3036 5

2 10 0.0975 2537 3

3 10 0.0975 2512 1

4 11 0.0000 2855 3

5 10 0.0790 2394 3

116

Table 25. Problem type 1 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 2

Minimum 12 0.3498 2148 1

Maximum 13 0.5138 2521 1

Std.Dev. 0.55 0.0898 159.99 0.00

Average 12.60 0.4482 2432.00 1.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.3498 2521 1

2 12 0.5138 2506 1

3 13 0.3498 2148 1

4 13 0.5138 2470 1

5 13 0.5138 2515 1

Problem Set 3

Minimum 8 0.1209 2008 1

Maximum 10 0.2959 2382 2

Std.Dev. 0.71 0.0783 147.78 0.45

Average 9.00 0.2609 2267.20 1.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 8 0.2959 2008 1

2 9 0.2959 2310 1

3 9 0.1209 2382 2

4 10 0.2959 2317 1

5 9 0.2959 2319 1

Problem Set 4

Minimum 9 0.0000 2002 0

Maximum 11 0.1750 2519 3

Std.Dev. 1.10 0.0732 214.91 1.10

Average 10.20 0.0700 2370.20 1.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 11 0.0875 2515 1

2 11 0.0000 2448 1

3 11 0.0875 2519 1

4 9 0.0000 2367 3

5 9 0.1750 2002 0

117

Table 25. Problem type 1 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 5

Minimum 9 0.0119 2001 0

Maximum 12 0.0744 2547 2

Std.Dev. 1.52 0.0342 266.73 0.84

Average 10.60 0.0369 2242.20 0.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 9 0.0744 2002 0

2 12 0.0119 2504 1

3 11 0.0119 2157 1

4 9 0.0744 2001 0

5 12 0.0119 2547 2

Table 26. Problem type 2 modified NSGA-II linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 11 0.0014 2014 0

Maximum 17 0.3422 2782 4

Std.Dev. 1.70 0.1365 280.33 1.03

Average 14.84 0.1291 2364.72 1.32

Problem Set 1

Minimum 13 0.3422 2033 0

Maximum 16 0.3422 2162 0

Std.Dev. 1.30 0.0000 50.86 0.00

Average 15.20 0.3422 2075.20 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 15 0.3422 2073 0

2 16 0.3422 2062 0

3 16 0.3422 2162 0

4 16 0.3422 2033 0

5 13 0.3422 2046 0

118

Table 26. Problem type 2 modified NSGA-II linear utility function results (cont.)

Problem Set 2

Minimum 14 0.0014 2014 1

Maximum 17 0.0036 2526 2

Std.Dev. 1.14 0.0009 234.17 0.45

Average 15.40 0.0027 2258.00 1.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 15 0.0025 2249 1

2 15 0.0025 2041 1

3 16 0.0014 2460 1

4 17 0.0036 2526 2

5 14 0.0036 2014 1

Problem Set 3

Minimum 12 0.0121 2039 2

Maximum 17 0.0132 2756 4

Std.Dev. 2.07 0.0005 377.25 0.89

Average 14.60 0.0123 2453.60 2.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 13 0.0121 2039 2

2 12 0.0121 2045 2

3 15 0.0121 2756 4

4 16 0.0121 2673 2

5 17 0.0132 2755 3

Problem Set 4

Minimum 11 0.0454 2069 1

Maximum 14 0.0785 2536 3

Std.Dev. 1.10 0.0167 185.96 0.84

Average 12.80 0.0652 2394.80 1.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 13 0.0782 2440 1

2 13 0.0754 2449 1

3 14 0.0454 2536 2

4 11 0.0785 2069 3

5 13 0.0487 2480 2

119

Table 26. Problem type 2 modified NSGA-II linear utility function results (cont.)

Problem Set 5

Minimum 15 0.1942 2541 1

Maximum 17 0.2665 2782 1

Std.Dev. 0.84 0.0396 105.27 0.00

Average 16.20 0.2231 2642.00 1.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 17 0.2665 2541 1

2 15 0.2665 2542 1

3 16 0.1942 2636 1

4 16 0.1942 2709 1

5 17 0.1942 2782 1

Table 27. Problem type 2 modified NSGA-II chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 11 0.0556 2015 0

Maximum 19 0.5247 3594 3

Std.Dev. 2.37 0.1485 347.60 0.87

Average 14.84 0.2192 2400.12 1.00

Problem Set 1

Minimum 13 0.1300 2033 0

Maximum 17 0.1300 2162 0

Std.Dev. 1.58 0.0000 50.86 0.00

Average 15.00 0.1300 2075.20 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 14 0.1300 2073 0

2 17 0.1300 2062 0

3 16 0.1300 2162 0

4 15 0.1300 2033 0

5 13 0.1300 2046 0

120

Table 27. Problem type 2 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 2

Minimum 17 0.3447 2517 1

Maximum 19 0.5247 2740 2

Std.Dev. 0.71 0.0636 96.82 0.55

Average 18.00 0.4347 2580.80 1.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 19 0.4347 2740 1

2 17 0.5247 2517 1

3 18 0.4347 2521 2

4 18 0.4347 2519 1

5 18 0.3447 2607 2

Problem Set 3

Minimum 13 0.3041 2332 1

Maximum 15 0.3889 2625 3

Std.Dev. 0.71 0.0440 126.42 1.00

Average 14.00 0.3408 2463.40 2.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 14 0.3111 2477 3

2 15 0.3041 2625 3

3 13 0.3889 2343 1

4 14 0.3889 2332 1

5 14 0.3111 2540 2

Problem Set 4

Minimum 12 0.1167 2031 1

Maximum 19 0.1202 3594 1

Std.Dev. 2.83 0.0016 577.57 0.00

Average 14.00 0.1174 2629.40 1.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 13 0.1167 2509 1

2 13 0.1167 2530 1

3 12 0.1202 2031 1

4 19 0.1167 3594 1

5 13 0.1167 2483 1

121

Table 27. Problem type 2 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 5

Minimum 11 0.0556 2015 0

Maximum 16 0.0858 2597 1

Std.Dev. 2.17 0.0162 304.03 0.55

Average 13.20 0.0732 2251.80 0.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 12 0.0858 2015 0

2 15 0.0556 2572 1

3 16 0.0556 2597 1

4 12 0.0833 2030 1

5 11 0.0858 2045 0

Table 28. Problem type 3 modified NSGA-II linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 16 0.0008 2032 0

Maximum 28 0.3957 3560 2

Std.Dev. 3.32 0.1376 333.41 0.54

Average 18.92 0.1370 2247.12 0.28

Problem Set 1

Minimum 16 0.3336 2055 0

Maximum 28 0.3957 3560 1

Std.Dev. 5.22 0.0334 628.59 0.45

Average 18.80 0.3592 2457.60 0.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 16 0.3371 2055 0

2 28 0.3336 3560 1

3 18 0.3957 2385 0

4 16 0.3957 2120 0

5 16 0.3336 2168 0

122

Table 28. Problem type 3 modified NSGA-II linear utility function results (cont.)

Problem Set 2

Minimum 16 0.0008 2045 0

Maximum 25 0.0015 2666 2

Std.Dev. 3.58 0.0004 288.69 0.89

Average 19.60 0.0012 2264.00 0.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 25 0.0008 2666 1

2 17 0.0014 2087 0

3 21 0.0008 2476 2

4 19 0.0015 2046 0

5 16 0.0014 2045 0

Problem Set 3

Minimum 18 0.0375 2096 0

Maximum 25 0.0455 2626 1

Std.Dev. 2.59 0.0036 260.83 0.55

Average 21.80 0.0391 2318.20 0.60

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 25 0.0375 2579 1

2 18 0.0455 2143 0

3 23 0.0375 2626 1

4 21 0.0375 2096 1

5 22 0.0375 2147 0

Problem Set 4

Minimum 17 0.0612 2073 0

Maximum 18 0.0833 2142 0

Std.Dev. 0.55 0.0099 24.88 0.00

Average 17.60 0.0656 2110.00 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 18 0.0612 2142 0

2 18 0.0612 2105 0

3 17 0.0833 2113 0

4 18 0.0612 2073 0

5 17 0.0612 2117 0

123

Table 28. Problem type 3 modified NSGA-II linear utility function results (cont.)

Problem Set 5

Minimum 16 0.2014 2032 0

Maximum 17 0.2506 2131 0

Std.Dev. 0.45 0.0255 42.06 0.00

Average 16.80 0.2199 2085.80 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 17 0.2014 2082 0

2 16 0.2506 2032 0

3 17 0.2450 2131 0

4 17 0.2014 2124 0

5 17 0.2014 2060 0

Table 29. Problem type 3 modified NSGA-II chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 16 0.0363 2032 0

Maximum 29 0.3440 3484 2

Std.Dev. 3.41 0.1040 328.98 0.58

Average 19.72 0.1749 2359.80 0.40

Problem Set 1

Minimum 16 0.0896 2110 0

Maximum 19 0.1437 2582 1

Std.Dev. 1.52 0.0227 200.01 0.55

Average 17.40 0.1116 2324.80 0.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 19 0.0896 2465 1

2 19 0.1175 2582 1

3 16 0.1175 2110 0

4 17 0.1437 2309 0

5 16 0.0896 2158 0

124

Table 29. Problem type 3 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 2

Minimum 17 0.2593 2139 0

Maximum 24 0.3172 2669 1

Std.Dev. 2.74 0.0317 253.91 0.55

Average 21.00 0.2825 2436.20 0.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 20 0.3172 2185 0

2 24 0.2593 2669 1

3 17 0.3172 2139 0

4 23 0.2593 2629 1

5 21 0.2593 2559 0

Problem Set 3

Minimum 21 0.2970 2453 0

Maximum 25 0.3440 2601 1

Std.Dev. 1.58 0.0210 63.94 0.45

Average 23.00 0.3064 2567.20 0.80

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 21 0.2970 2453 0

2 25 0.2970 2591 1

3 22 0.3440 2595 1

4 24 0.2970 2596 1

5 23 0.2970 2601 1

Problem Set 4

Minimum 16 0.1000 2032 0

Maximum 19 0.1265 2197 0

Std.Dev. 1.10 0.0140 65.72 0.00

Average 17.80 0.1153 2122.20 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 18 0.1250 2114 0

2 16 0.1250 2094 0

3 18 0.1000 2197 0

4 18 0.1265 2032 0

5 19 0.1000 2174 0

125

Table 29. Problem type 3 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 5

Minimum 16 0.0363 2042 0

Maximum 29 0.0731 3484 2

Std.Dev. 5.41 0.0153 634.97 0.89

Average 19.40 0.0586 2348.60 0.40

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 18 0.0731 2067 0

2 17 0.0552 2092 0

3 17 0.0552 2042 0

4 29 0.0363 3484 2

5 16 0.0731 2058 0

Table 30. Problem type 4 modified NSGA-II linear utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 20 0.0006 2063 0

Maximum 37 0.3401 3890 1

Std.Dev. 4.08 0.1315 376.50 0.28

Average 24.36 0.1572 2279.80 0.08

Problem Set 1

Minimum 20 0.2950 2120 0

Maximum 25 0.3401 2407 0

Std.Dev. 1.92 0.0235 119.49 0.00

Average 22.20 0.3217 2211.00 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 20 0.3381 2144 0

2 22 0.2950 2141 0

3 21 0.3381 2120 0

4 25 0.3401 2407 0

5 23 0.296 2243 0

126

Table 30. Problem type 4 modified NSGA-II linear utility function results (cont.)

Problem Set 2

Minimum 22 0.0006 2092 0

Maximum 26 0.0011 2586 0

Std.Dev. 1.67 0.0003 209.03 0.00

Average 24.60 0.0009 2321.80 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 24 0.0011 2286 0

2 25 0.0006 2092 0

3 26 0.0011 2586 0

4 22 0.0006 2163 0

5 26 0.0011 2482 0

Problem Set 3

Minimum 21 0.0165 2109 0

Maximum 37 0.0228 3890 1

Std.Dev. 7.06 0.0028 776.60 0.45

Average 24.40 0.0216 2504.20 0.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 21 0.0228 2125 0

2 21 0.0228 2109 0

3 21 0.0228 2148 0

4 37 0.0165 3890 1

5 22 0.0228 2249 0

Problem Set 4

Minimum 23 0.1706 2063 0

Maximum 35 0.1876 2605 1

Std.Dev. 4.69 0.0073 240.20 0.45

Average 27.00 0.1746 2175.40 0.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 27 0.1713 2075 0

2 25 0.1720 2069 0

3 25 0.1713 2065 0

4 35 0.1706 2605 1

5 23 0.1876 2063 0

127

Table 30. Problem type 4 modified NSGA-II linear utility function results (cont.)

Problem Set 5

Minimum 22 0.2601 2068 0

Maximum 28 0.2943 2525 0

Std.Dev. 2.51 0.0151 190.25 0.00

Average 23.60 0.2672 2186.60 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 22 0.2601 2120 0

2 23 0.2943 2106 0

3 23 0.2601 2114 0

4 28 0.2601 2525 0

5 22 0.2616 2068 0

Table 31. Problem type 4 modified NSGA-II chebyshev utility function results

Problems Average

 Runtime (sec) Utility Dev. (abs) Generations Questions

Minimum 20 0.0778 2046 0

Maximum 29 0.2914 2580 1

Std.Dev. 2.26 0.0613 112.84 0.20

Average 23.52 0.1620 2164.24 0.04

Problem Set 1

Minimum 21 0.1218 2113 0

Maximum 26 0.1433 2580 1

Std.Dev. 1.87 0.0113 194.29 0.45

Average 23.00 0.1347 2266.80 0.20

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 22 0.1424 2147 0

2 26 0.1433 2580 1

3 23 0.1433 2163 0

4 21 0.1228 2113 0

5 23 0.1218 2331 0

128

Table 31. Problem type 4 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 2

Minimum 22 0.1913 2149 0

Maximum 26 0.2359 2323 0

Std.Dev. 1.87 0.0191 72.51 0.00

Average 24.00 0.2018 2220.20 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 23 0.2359 2149 0

2 22 0.1952 2155 0

3 26 0.1913 2323 0

4 26 0.1932 2254 0

5 23 0.1932 2220 0

Problem Set 3

Minimum 20 0.2194 2075 0

Maximum 22 0.2914 2214 0

Std.Dev. 0.71 0.0302 56.54 0.00

Average 21.00 0.2485 2117.60 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 21 0.2914 2075 0

2 21 0.2194 2121 0

3 20 0.2194 2093 0

4 22 0.2562 2214 0

5 21 0.2562 2085 0

Problem Set 4

Minimum 23 0.1259 2078 0

Maximum 29 0.1619 2138 0

Std.Dev. 2.24 0.0127 28.79 0.00

Average 26.00 0.1443 2108.60 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 27 0.1443 2108 0

2 29 0.1259 2137 0

3 26 0.1443 2138 0

4 25 0.1619 2082 0

5 23 0.1451 2078 0

129

Table 31. Problem type 4 modified NSGA-II chebyshev utility function results (cont.)

Problem Set 5

Minimum 22 0.0778 2046 0

Maximum 25 0.0909 2160 0

Std.Dev. 1.34 0.0058 41.95 0.00

Average 23.60 0.0806 2108.00 0.00

Run Runtime (sec) Utility Dev. (abs) Generations Questions

1 23 0.0909 2118 0

2 23 0.0778 2122 0

3 22 0.0784 2046 0

4 25 0.0778 2094 0

5 25 0.0784 2160 0

