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ŞAZİYE BETÜL CELEP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

APRIL 2011



Approval of the thesis:

STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATE MODEL

WITH JUMP AND ITS APPLICATION ON GENERAL ELECTRIC DATA
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Signature :

iii



ABSTRACT

STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATE MODEL
WITH JUMP AND ITS APPLICATION ON GENERAL ELECTRIC DATA

Celep, Şaziye Betül

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

April 2011, 81 pages

In this thesis, we present two different approaches for the stochastic volatility and stochastic

interest rate model with jump and analyze the performance of four alternative models. In the

first approach, suggested by Scott, the closed form solution for priceson European call stock

options are developed by deriving characteristic functions with the help ofmartingale meth-

ods. Here, we study the asset price process and give in detail the derivation of the European

call option price process. The second approach, suggested by Bashki-Cao-Chen, describes

the closed form solution of European call option by deriving the partial integro-differential

equation. In this one we give the derivations of both asset price dynamicsand the European

call option price process. Finally, in the application part of the thesis, we examine the per-

formance of four alternative models using General Electric Stock Option Data. These models

are constructed by using the theoretical results of the second approach.

Keywords: option pricing, stochastic volatility stochastic interest rate model with jump, par-

tial integro-differential equation, martingale methods, direct algorithm

iv



ÖZ

SIÇRAMALI STOKASTİK VOLAT İL İTE VE STOKASṪIK FAİZ ORANI MODELİ
VE MODELİN GENERAL ELECTRIC VEṘISİ ÜZEṘINE UYGULAMASI

Celep, Şaziye Betül

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Nisan 2011, 81 sayfa

Bu çalışmada, stokastik volatilite ve stokastik faiz oranına sahip sıçramalı opsiyon fiyatlama

modeli, iki farklı yaklaşımla incelenmiş ve 4 alternatif modelüzerinde analizler yapılmıştır.

Scott tarafından̈onerilen ilk yaklaşımda, opsiyon fiyatı karakteristik fonksiyonun bazı mar-

tingale ÿontemleriyle bulunması sonucu oluşturulmuştur. Sonrasında yaklaşım ayrıntılı bir

şekilde incelenip, opsiyon fiyatının çıkarımı orjinal çalışmada bulunmayan ispatlarla birlikte

sunulmuştur. Bashki-Cao-Chen tarafından oluşturulan ikinci yaklaşımda ise kısmi integro-

diferansiyel denklemleri kullanılarak opsiyon fiyatına ulaşılmıştır. Bu çalıs¸madaki fiyat s̈ureci

dinamikleri ayrıntılı biçimde incelenerek, opsiyon fiyat formülasyonu gerekli g̈orülen ispat-

larla beraber oluşturulmuştur. Son olarak ikinci yaklaşımın yardımıyla 4 farklı opsiyon fiyat-

lama modelinin analitik ç̈ozümleri çıkarılmış ve modellerin deneysel performansları General

Electric Hisse Senedi Verisiüzerindeölçülmüşẗur.

Anahtar Kelimeler: opsiyon fiyatlama, sıçramalı stokastik volatile stokastik faiz oranı modeli,

kısmi integro-diferansiyel denklemi, martingale yöntemleri, direct algoritması
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SCOTT’S APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Call Option Pricing Process . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Characteristic Function Using Martingale Methods . . . . . . . . . . 8

3 PARTIAL INTEGRO-DIFFERENTIAL EQUATION APPROACH . . . . . . 23

3.1 Asset Price Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Construction of Partial Integro-Differential Equation . . . . . . . . . 25

3.3 Solution of Partial Integro-Differential Equation . . . . . . . . . . . 29

3.4 Final Forms of the European Call Option Prices . . . . . . . . . . . 49

4 THE PERFORMANCE OF ALTERNATIVE OPTION PRICING MODELS
ON GENERAL ELECTRIC STOCK DATA . . . . . . . . . . . . . . . . . . 55

4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Structural Parameter Estimation . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Parameter Estimation Procedure . . . . . . . . . . . . . . 59

4.2.2 Some Algorithms and Methods to Minimize SSE . . . . . 62

viii



4.2.2.1 MATLAB lsqonlin . . . . . . . . . . . . . . . 62

4.2.2.2 Excel Solver . . . . . . . . . . . . . . . . . . 62

4.2.2.3 Simulated Annealing (SA) and Adaptive Sim-
ulated Annealing (ASA) . . . . . . . . . . . . 62

4.2.2.4 Direct Algorithm . . . . . . . . . . . . . . . 63

4.3 Implied Parameters and In Sample Performance . . . . . . . . . . . 66

4.4 Out-of-Sample Performance of Alternative Models . . . . . . . . . . 70

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

APPENDICES

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



LIST OF TABLES

TABLES

Table 4.1 The Sample Properties of General Electric Stock Options . . . . . . .. . . 57

Table 4.2 Implied Volatility from the Black-Scholes Model . . . . . . . . . . . . . . 58

Table 4.3 Implied Parameters of All Options . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.4 Implied Parameters of Short-Term Options . . . . . . . . . . . . . . . . .. 68

Table 4.5 Implied Parameters of At-The-Money Options . . . . . . . . . . . . . . .. 69

Table 4.6 Absolute Pricing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Table 4.7 Percentage Pricing Errors . . . . . . . . . . . . . . . . . . . . . . . . .. . 72

Table A.1 The General Electric Option Price Data . . . . . . . . . . . . . . . . . . .. 78

Table A.2 The Implied Volatility Graph’s M-File . . . . . . . . . . . . . . . . . . . . 79

Table A.3 The M-File ”Objvolintshort” . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table A.4 The M-File of Direct Algorithm . . . . . . . . . . . . . . . . . . . . . . . 80

Table A.5 The M-File of lsqnonlin . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table A.6 The M-File ”lsqvolintshort” . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table A.7 The M-File ”callstockvolint” . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



LIST OF FIGURES

FIGURES

Figure 4.1 Implied Volatility Graph of Black-Scholes Model . . . . . . . . . . . . .. 59

Figure 4.2 Sampled Points with Direct Algorithm . . . . . . . . . . . . . . . . . . . 65

xi



CHAPTER 1

INTRODUCTION

The Black Scholes Model which was articulated by Fischer Black and Myron Scholes in their

1973 paper has an important role in theory and application of financial studies. Obviously, the

model is a pioneering work in the area. However it is also know that the assumptions to get

the closed form solutions cause some empirical biases such as volatility smile. For this reason

in the last two decades, option pricing has witnessed an explosion of new models that each

relax some of the restrictive Black Scholes assumptions. Among these assumptions, constant

volatility, constant interest rate and no rapid price movements resembling jumps have been

the most studied ones. Over the years, there have been many alternative models offered to

solve this and other drawbacks of the Black Scholes model. Examples includethe stochastic-

interest-rate option models of Merton (1973), the jump-diffusion and pure jump models of

Bates (1991), Madan and Chang (1996), and Merton (1976), the stochastic-volatility models

of Heston (1993), Hull and White(1987), Stein and Stein (1991), the stochastic volatility

and stochastic interest rates models of Bakshi and Chen (1997a,b), andScott (1997) and the

stochastic-volatility jump-diffusion models of Bates (1996). In this work, we concentrate on

the most generalized model that is stochastic volatility and stochastic interest rate model with

jumps with two different angles conducted by Scott [33] and Bashki-Cao-Chen [1].

In the former approach, the closed-form solution for the price of the European call option is

obtained by using some martingale properties and mathematical tricks. In addition, by as-

suming that the volatility and the underlying price have a non-zero correlationand both the

interest rate and volatility follow a Cox-Ingersoll-Ross Model [11] captured many properties

of the financial data such as non-negative interest rate and volatility. Although the approach

has some theoretical advantages, in application, parameter estimation and determination pro-
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cedure is formidable.

In the latter one studied by Bashki, Cao and Chen [1], the closed-form solution for the price

of the European call option is derived by using the partial integro-differential equation. By

reducing the difficulty of this complex equation to ordinary differential equations, the call

price is obtained. Moreover, the assumption of lognormally distributed jumps provided model

improvement and convenience with the market data. Although this approach istheoretically

complex and has implementational costs compared to Scott’s study, it is more applicable,

since it is given only as a function of identifiable variables such that all parameters can be

estimated.

The aim of this study is to review these two approaches of the same model in detail and use

the results of the second approach in application. The second chapter presents the derivation

of the option pricing formula suggested in the study of Scott [33] step-by-step. The way of

how the martingale method is used for derivation of characteristic functions isanalyzed. In

the third chapter, by following the study of Bashki, Cao and Chen [1], the European call op-

tion price is obtained. Firstly, the complicated partial integro-differential equation is reduced

to simple forms. After that, the solutions of these simple ordinary differential equations are

found. Moreover, in the last section of the chapter the results are recorded to use them in

application part of the study. In Chapter 4, the results from the previous chapter are cali-

brated for the General Electric Stock Data. With the help of the calibration procedure, the

performance of four alternative models are compared. These alternative models are Black

Scholes Model, Stochastic Volatility Model, Stochastic Volatility Jump Model and Stochastic

Volatility Stochastic Interest Rate Model. In fact, in the fourth chapter the aim isto answer

the following question mainly: ”What do we gain from each generalized feature rather than

using simple Black Scholes?” Finally, the conclusion follows.
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CHAPTER 2

SCOTT’S APPROACH

Various econometric and numerical studies show that asset prices do notexhibit the assump-

tions of Black Scholes Model which are constant volatility, constant interest rate and no rapid

price movements resembling jumps. Therefore, new extensions of models thatcapture qual-

itative feature of the financial data is needed. The model that presented inthis chapter is an

example of a model that relaxed the assumptions mentioned above. In this chapter, firstly,

we introduced the model in Louis Scott’s paper [33] and then we studied step-by-step the

construction of closed form solution of European call option prices. We only concentrated

on European options because the closed form solution with this technique can be reached

only for this type options. For path dependent options some numerical methods should be

used. The technique to derive a closed form solution to the call option pricing problem under

the assumption of stochastic volatility, stochastic interest and jump-diffusion is diverse. The

method used in this chapter is effectual from the point of view of getting closed form solution

however impractical in application due to the extreme number of parameters.

2.1 Model Construction

Let (Ω, F,P) be our probability space. The underlying risky asset price volatility and interest

rate is assumed to follow a standard Cox-Ingersoll-Ross (CIR) processgiven as follows:

dyj(t) = K j [Θ j − y j(t)]dt+ σ j

√
y j(t)dZj(t) ( j = 1,2), (2.1.1)

whereK j , Θ j , andσ j are respectively the speed of adjustment, long-run mean and volatility

3



coefficient of the processy j(t). Z1 andZ2 being constructed as independent Brownian Mo-

tions. It means that their correlation is 0. Moreover, independent Brownian Motions have

zero covariation. Therefore,dZ1dZ2 = 0. The continuous part of the price process, defined as

Sc(t) is assumed to satisfy the following stochastic differential equation:

dSc(t) = r(t)Sc(t)dt+ σ
√

y1(t)Sc(t)dW(t), (2.1.2)

whereW is a Brownian Motion that is independent ofZ2 but correlated withZ1 with sizeρ .

It means that the covariations aredWdZ2 = 0 anddW(t)dZ1(t) = ρd(t).

The instantaneous interest rate,r, is assumed to be a linear combination ofy1 andy2; the

reason behind this choice is given in [11] in detail:

r(t) = y1(t) + y2(t). (2.1.3)

The jumps in the log-price process are constructed as a sequence (Mk) of independent nor-

mally distributed random variables with parametersµ j andσ2
j asN(µ j , σ

2
j ) and jump counter

is modeled as an independent Poisson Process with intensityλ.Consequently,X(t) is assumed

to be the sum of all the jumps which occur up to and including timet :

N(t)∑

k=1

Mk = X(t).

Finally, the jump process is formed ase
X(t)

E(eX(t)) which is a martingale. To examine the jump pro-

cess, we calculated the expectation of exp(X(t)) by using some characteristics of expectation.

Let Bj ’s be the events in the sigma algebraF in the probability space (Ω, F,P) such that

∪Bj = F. ThenE(X) =
∞∑
j=0

E(X|Bj) · P(Bj). For more details the reader is referred to the book

given in [23]. By using above property, the expectation can be computedas below:
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E(euX(t)) = E(e
u

N(t)∑
k=1

Mk
)

=

∞∑

j=0

[E(e
u

N(t)∑
k=1

Mk
)|N(t) = j] · P(N(t) = j)

=

∞∑

j=0

[E(e
u

j∑
k=1

Mk
)].P(N(t) = j), (2.1.4)

The above summation can be written forj = 0 and for all j ≥ 1, separately. Forj = 0,
0∑

k=1
Mk = 0. Therefore the expectation is 1 (E(1) = 1). Consequently,

E[euX(t)] = (P(N(t) = 0))+
∞∑

j=1

[E(e
u

j∑
k=1

Mk
)] · P(N(t) = j),

whereN(t) is a Poisson Process with intensityλ. Because of this reason,P(N(t) = k) =
e−λt ·(λt)k

k! for k = 0,1, ..., and, hence,

E[euX(t)] = e−λt +

∞∑

j=1

[E(e
u

j∑
k=1

Mk
)] · e

−λt · (λt) j

j!

= e−λt +

∞∑

j=1

[E(eu(M1+M2···M j ))] · e
−λt · (λt) j

j!

= e−λt +

∞∑

j=1

E(eu(M1)) · E(eu(M2)) · · ·E(eu(M j )) · e
−λt · (λt) j

j!
, (2.1.5)

Note thatM′j s are iid. In addition,ρ j(u) = E[eu(M j )] is the moment generating function of

normal distribution:

E[euX(t)] = e−λt + e−λt
∞∑

j=1

[ρ j(u) · λt] j

j!

= e−λt ·
[
1+

∞∑

j=1

[ρ j(u) · λt] j

j!

]

= e−λt ·
[ ∞∑

j=0

[ρ j(u) · λt] j

j!

]

= e−λt · eρ j (u)λt

= eλt[ρ j (u)−1]. (2.1.6)
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Sinceρ j(u) = eµ ju+(1/2)σ2
j u

2
is the mgf ofN(µ j , σ

2
j ),

E[euX(t)] = exp(λt(eµ ju+(1/2)σ2
j u

2
− 1)). (2.1.7)

The jump process is constructed as follows:

J(t) =
eX(t)

E(eX(t))
. (2.1.8)

Finally, we established the price process at timet as follows:

S(t) = J(t)Sc(t). (2.1.9)

2.2 Call Option Pricing Process

In the model, it is assumed that all of the expectations are under a risk-neutral measure,

Q under which the discounted asset prices are martingales. This assumption causes many

advantages in the upcoming steps. Now, the call option prices can be defined as

C[S(0), y(0),T] = EQ[e−RT (S(T) − K)+|y1(0) = y1, y2(0) = y2],

whereRT =

T∫

0

r(u)du andy is a vector such that,y = (y1, y2). The logarithmic function is a

monotone one. Therefore, instead ofS(T) ≥ K, ln S(T)≥ ln K can be used:

C[S(0), y(0),T] = EQ[e−RT S(T); lnS(T) ≥ lnK] − KEQ[e−RT ; lnS(T) ≥ lnK], (2.2.1)

i.e.,

C[S(0), y(0),T] = EQ[e−RT S(T)1{lnS(T)≥lnK}] − KEQ[e−RT 1{lnS(T)≥lnK}]. (2.2.2)

We separated the equation (2.2.2) into two parts. The first part is,EQ[e−RT S(T)1{lnS(T)≥lnK}]

and the second part is,−KEQ[e−RT 1{lnS(T)≥lnK}]. To make the calculations easier, in the first

6



expectationchange of numéraireis computed. Anuméraire is an asset that is used as a price

unit. As an example, if (St) is the price process of an asset, the discounted price (St/S0) can

be viewed as the price of the asset, when the riskless asset is taken as anuméraire [24]. For

the expectation given in (2.2.2), the stock process itself is taken as anuméraire. Consequently,

the new probability measure named asQ1:

dQ1

dQ
=

e−RT S(T)
S(0)

and EQ1[X] = EQ
[
X · dQ1

dQ

]
.

Note that the above Radon Nikodyn Derivative must be a martingale [34]. Therefore, the

martingale property ofdQ1
dQ =

e−RT S(T)
S(0) should be checked. But since the discounted asset

prices are martingale under the risk neutral probability measureQ, e−RT S(T)
S(0) is a martingale

automatically.

The expectation in the first part of (2.2.2) takes the form:

S(0) · EQ
[
e−RT S(T)

S(0)
· 1{lnS(T)≥lnK}

]
= S(0) · EQ1[1{lnS(T)≥lnK}]. (2.2.3)

On the other hand, in the second part of (2.2.2) we take theT-forward measure as anuméraire.

T-forward measure is a probability measurePT defined by

dPT

dP
=

e
−

T∫

0
r(s)ds

P(0,T)
,

whereP(0,T) is a price process [24].

In our case, bond pricing function [B(y(0),T)] is taken as aT-forward measure. After that,

by entitling the new probability measure asQ2, the Radon Nikodyn derivative becomes

dQ2

dQ
=

e−RT B(T,T)
B(y(0),T)

, where B(T,T) = 1.

In this case the expectation that we are concerned is as follows:

−K · EQ
[

e−RT

B(y(0),T)
· 1{lnS(T)≥lnK}

]
· B(y(0),T) = −K · B(y(0),T) · EQ2[1{lnS(T)≥lnK}]. (2.2.4)

7



Finally, the equation (2.2.2) occurs as

C[S(0), y(0),T] = S(0) · EQ1[1{lnS(T)≥lnK}] − K · B(y(0),T) · EQ2[1{lnS(T)≥lnK}]. (2.2.5)

We denoted the density function of lnS(T) underQ1, Q2 as f Q1(x) and f Q2(x), respectively,

and distribution function asFQi (x) for i = 1,2,:

EQi [1{lnS(T)≥lnK}] =

∞∫

−∞

f Qi (x)dx for lnS(T) ≥ lnK.

= FQi (lnS(T) ≥ lnK). (2.2.6)

As a result the call price process (2.2.5) takes the form

C[S(0), y(0),T] = S(0) · FQ1(lnS(T) ≥ lnK) − K · B(y(0),T) · FQ2(lnS(T) ≥ lnK).

= S(0) ·
∞∫

lnK

F1(dx) − K · B(y(0),T) ·
∞∫

lnK

F2(dx), (2.2.7)

whereFi is the distribution function of lnS(T) underQi for i = 1,2.

2.3 Characteristic Function Using Martingale Methods

To invent the distribution functionsF1 andF2 underQ1, Q2, respectively, firstly we should

clarify the form of the characteristic functionsφ1(u) andφ2(u) of the process lnS(T). Subse-

quently, by turning into account the inversion formula we can obtain the distribution functions.

The functionφ1(u) is as follows:

8



φ1(u) = EQ1[eiulnS(T)]

= EQ
[
eiulnS(T) · dQ1

dQ

]

= EQ
[
eiulnS(T)−RT · S(T)

S(0)

]

= EQ
[
e[(1+iu)lnS(T)−RT ]

S(0)

]
, (2.3.1)

The characteristic functionφ2(u) can be expressed as follows:

φ2(u) = EQ2[eiulnS(T)]

= EQ
[
eiulnS(T) · dQ2

dQ

]

= EQ
[
eiulnS(T) · e−RT

B(y(0),T)

]

= EQ
[
eiulnS(T)−RT

B(y(0),T)

]
. (2.3.2)

Defineψ(a) = EQ[exp(−RT + alnS(T))] for real values ofa. Instead of the real numbera, we

wrote a complex number in the following steps. We are allowed to do this analytic extension

because the exponential function inψ(a) is an entire function. The following definition can

clarify the fundamental definition in complex analysis, given in [15]:

Definition 2.3.1 A function f having a derivative at a point z0 ∈ A (A open) is said to be

differentiable at z0. If f has a derivative at z0, as well as at every point of some neighborhood

of z0, it is said to be analytic. If f is analytic at every point in A, then f is analytic in A. A

function that is analytic in whole complex plane is said to be entire.

Afterwards, the equation (2.3.1) can be written as

φ1(u) =
ψ(1+ iu)
ψ(1)

since S(0) = EQ[e−RT · S(T)] = ψ(1).

Furthermore, the equation (2.3.2) becomes
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φ2(u) =
ψ(iu)
ψ(0)

since B(y(0),T) = EQ[e−RT · B(T,T)] = EQ[e−RT ] = ψ(0).

Note thatS(T) = J(T)Sc(T) implies lnS(T) = lnJ(T) + lnSc(T). To invent the characteristic

functions above, the processψ(z) needs to be calculated but it infers that the log price process

should be analyzed. Consequently,

ψ(z) = EQ[exp(−RT + zlnS(T))],

= EQ[exp(−RT + zlnSc(T) + zlnJ(T))],

= EQ[ezlnJ(T)] · EQ[e−RT+zlnSc(T)], since J(T) and Sc(T) are independent.

(2.3.3)

In the above equation, the term with jumps can be obtained easily. However, the part with

log-price process should be examined deeply. Therefore, the followinglemma in [34] will be

one of the supporting steps.

Lemma 2.3.2 (Decomposition of Correlated into Independent Brownian Motions) Suppose

B2(t) and B1(t) are Brownian Motions and

dB1(t)dB2(t) = ρ(t)d(t),

whereρ is a stochastic process taking values strictly between−1 and 1. Define processes

W1(t) and W2(t) such that

B1(t) = W1(t)

B2(t) =

t∫

0

ρ(s)dW1(s) +

t∫

0

√
1− ρ2(s)dW2(s). (2.3.4)

then W1(t) and W2(t) are independent Wiener Processes.

Proof. We are claiming thatd[W1,W2](t) = 0. From the hypothesis,
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dB1(t)dB2(t) = d[B1, B2](t) = ρ(t)d(t).

Note thatdB1(t) = dW1(t) anddB2(t) = ρ(t)dW1(t) +
√

1− ρ2(t)dW2(t). Therefore,

ρ(t)d(t) = d[B1, B2](t) = dW1(t) · [ρ(t)dW1(t) +
√

1− ρ2(t)dW2(t)]

= ρ(t)d(t) +
√

1− ρ2(t)dW1(t)dW2(t). (2.3.5)

We are sure thatρ(t) is strictly in between−1 and 1. Subsequently, equation (2.3.5) is feasible

if and only if dW1(t)dW2(t) = 0. �

At this step with the help of Lemma 2.3.2 we wrote the following coequal instead ofW(t) in

our process:

W(t) = ρdZ1(t) +
√

1− ρ2W′(t),

with [W,Z1] = ρ and [W′,Z1] = 0.

Hereby, by using the Ito Formula, the continuous part of stock price process (f (Sc(t)) =

log(Sc(t))), can be expressed as follows:

ln(Sc(t)) = ln(Sc(0))+

t∫

0

dSc(s)
Sc(s)

− 1
2
·

t∫

0

d[Sc,Sc]s

(Sc(s))2
.

Assume with out loss of generalitySc(0) = 1,

ln(Sc(t)) =

t∫

0

r(s)ds+ σ
√

1− ρ2

t∫

0

√
y1(s)dW′(s) + σρ

t∫

0

√
y1(s)dZ1(s)

− 1
2
·

t∫

0

σ2ρ2y1(s)ds− 1
2
·

t∫

0

σ2(1− ρ2)y1(s)ds. (2.3.6)

We entitle the terms of the above equality as follows:
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Rt =

t∫

0

r(s)ds,

ξt = σ

√
1− ρ2

t∫

0

√
y1(s)dW′(s) − 1

2
· σ2(1− ρ2)

t∫

0

y1(s)ds, (2.3.7)

ηt = σρ

t∫

0

√
y1(s)dZ1(s) − 1

2
·

t∫

0

σ2ρ2y1(s)ds.

Therefore, the continuous part of the expectation given in (2.3.3) turn into the following form:

EQ[e−RT+zlnSc(T)] = EQ[e−RT+zRt+zξt+zηt ]

= EQ[exp((z− 1)Rt + zξt + zηt)]. (2.3.8)

To clarify the terms given in the above equation, first we defined the sigma algebra generated

by Z1 andZ2 asσ[Z1,Z2]. Second, by using the iterated expectation property, (2.3.8) is written

as

EQ[EQ[exp((z− 1)Rt + zξt + zηt)| σ[Z1,Z2]]] .

Note that under the condition, that is sigma algebra generated byZ1 and Z2, the terms of

expectation are independent, because ifZ1 andZ2 are known theny1 andy2 are also certain.

In addition, the correlation betweenW′ andZ1 is zero. Therefore, (2.3.8) can be expressed as

EQ
[
EQ[e(z−1)Rt | σ[Z1,Z2]] · EQ[ezξt | σ[Z1,Z2]] · EQ[ezηt | σ[Z1,Z2]]

]
. (2.3.9)

In the above expectation, the termse(z−1)Rt andezηt areσ[Z1,Z2]-measurable. For this reason,

the following equations obtained:

EQ[e(z−1)Rt | σ[Z1,Z2]] = e(z−1)Rt and EQ[ezηt | σ[Z1,Z2]] = ezηt . (2.3.10)
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Because of the above results, only the termEQ[ezξt | σ[Z1,Z2]] in equation (2.3.9) is uncertain.

To clarify it first we entitledYj(t) =
t∫

0

y j(u)du for j = 1,2. Second, note that sinceξt|Z1,Z2

is a integral of Brownian Motion with drift given unconditionally in equation (2.3.7), it has a

normal distribution with expectation−1
2 σ

2(1− ρ2)Y1(t) and varianceVar(ξt|Z1,Z2) = σ2(1−

ρ2)Y1(t). Therefore,EQ[ezξt | σ[Z1,Z2]] is actually the moment generating function of normal

distribution with mean−1
2 σ

2(1− ρ2)Y1(t) and varianceσ2(1− ρ2)Y1(t). Finally, the following

equation is obtained:

EQ[ezξT | σ[Z1,Z2]] = exp

(
−z
2
σ2(1− ρ2)Y1(T) +

σ2(1− ρ2)Y1(T)z2

2

)

= exp

(
z(z− 1)

[
σ2(1− ρ2)Y1(T)

2

])
. (2.3.11)

By combining (2.3.10) and (2.3.11) equation (2.3.8) takes the form

EQ[exp((z− 1)RT + zξT + zηT)] = EQ[e(z−1)RT · ez(z−1)(
σ2(1−ρ2)Y1(T)

2 ) · ezηT ]

= EQ[e(z−1)Y2(T) · e(z−1)Y1(T) · ez(z−1)(
σ2(1−ρ2)Y1(T)

2 ) · ezηT ].

(2.3.12)

The above expectation consists of terms withYj and a term withηT . At this step, we wrote

ηT in terms ofYj ’s. We know the following equation:

ηt = σρ

t∫

0

√
y1(s)dZ1(s) − 1

2
·

t∫

0

σ2ρ2y1(s)ds. (2.3.13)

In addition, we constructed the model as

dy1(t) = K1[Θ1 − y1(t)]dt+ σ1

√
y1(t)dZ1(t).

The integral form of above equation is as follows:

y1(t) − y1(0) = K1Θ1t − K1

t∫

0

y1(s)ds+ σ1

t∫

0

√
y1(s)dZ1(s).
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Therefore,

t∫

0

√
y1(s)dZ1(s) =

y1(t) − y1(0)− K1Θ1t − K1Y1(t)
σ1

.

As a result, (2.3.13) takes the form

ηt =
σρ

σ1
· [y1(t) − y1(0)− K1Θ1t − K1Y1(t)] − 1

2
· σ2ρ2Y1(t).

Then, equation (2.3.12) can be expressed as follows:

EQ[exp((z− 1)RT + zξT + zηT)] = EQ
[
e(z−1)Y2(T)+(z−1)Y1(T)+z(z−1)(

σ2(1−ρ2)Y1(T)
2 )

×ezσρ
σ1
·(y1(T)−y1(0)−K1Θ1T+K1Y1(T))−σ

2ρ2Y1(T)z
2

]

= EQ[e(z−1)Y2(T) · ewY1(T)+zσρ
σ1
·(y1(T)−y1(0)−K1Θ1T)], (2.3.14)

with w = (z− 1)+ z(z− 1)1
2σ

2(1− ρ2) + zσρ
σ1
· K1 − 1

2 · σ
2ρ2z.

Sincey1 andy2 are independent, the right hand side of (2.3.14) can be written as follows:

EQ[e(z−1)Y2(T) · ewY1(T)+zσρ
σ1
·(y1(T)−y1(0)−K1Θ1T)] = EQ[e(z−1)Y2(T)]

× EQ[ewY1(T)] · ezσρ
σ1
·(y1(T)−y1(0)−K1Θ1T)

.

(2.3.15)

Eventually, we reached our main purpose with the above equation. To writeψ(z), we are

going back to the jump process to calculateEQ[ezlnJ(T)] where

J(T) = eX(T)−λT(e
µ j+(1/2)σ2

j −1).

Therefore the log-jump process is as follows:
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lnJ(T) = X(T) − λT(eµ j+(1/2)σ2
j − 1).

Presently, we are ready to construct the following equation:

E[ezlnJ(T)] = EQ[ezX(T)−zλT(e
µ j+(1/2)σ2

j −1)]

= e−zλT(e
µ j+(1/2)σ2

j −1) · EQ[ezX(T)]

= e−zλT(e
µ j+(1/2)σ2

j −1)+λT(e
µ j+(1/2)σ2

j −1). (2.3.16)

Finally, by combining (2.3.14) and (2.3.16), the equation (2.3.3) is expressed as

ψ(z) = e−zλT(e
µ j+(1/2)σ2

j −1)+λT(e
µ j+(1/2)σ2

j −1)

× ezσρ
σ1
·(y1(T)−y1(0)−K1Θ1T) · EQ[e(z−1)Y2(T)] · EQ[ewY1(T)]. (2.3.17)

Derivation ofψ(z) is the main goal because the characteristic functions can be written sub-

sequently. However,ψ(z) contains unknown expectations. Note thatY1(T) and Y2(T) are

following CIR processes. Consequently, we will try to get the expectationsusing the proper-

ties of CIR models by using the following lemma in [34] and theorem in [24].

Lemma 2.3.3 (Feyman-Kac)Consider the stochastic differential equation

∂ f
∂t
+ µ(x, t)

∂ f
∂x
+

1
2
· σ2(x, t)

∂2 f

∂x2
= R(x, t) f , (2.3.18)

defined or all real x and t in the interval[0,T], subject to the terminal condition

f (x,T) = ψ(x),

whereµ, σ, ψ, R are known functions, T is a parameter,τ = T − t and f is the unknown. Then

the solution can be written as an expectation:
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f (x, t) = E[e
−

T∫

t
R(Xτ)dτ

· ψ(XT)|Xt = x], (2.3.19)

where X is an Ito-process driven by the equation,

dX = µ(X, t)dt+ σ(X, t)dW,

with W(t) is a Brownian Motion and the initial condition for X(t) is X(0) = x.

The proof of Feyman-Kac formula can be found in [34] in Chapter 6.

Theorem 2.3.4 For a process Xxt starting at x[X0 = x] and following a Cox-Ingersoll-Ross

Model, that means

dXt = (a− bXt)dt+ σ
√

XtdWt on [0,∞),

and for any non-negativeλ andµ, we have

E[e
−λXx

t −µ
t∫

0
Xx

sds
] = exp(−aςλ,µ(t))exp(−xΩλ,µ(t)), (2.3.20)

where the functionsςλ,µ(t) andΩλ,µ(t) are given by

ςλ,µ(t) = −
2
σ2

ln

(
2γe

t(γ+b)
2

σ2λ(eγt − 1)+ γ − b+ eγt(γ + b)

)

and

Ωλ,µ(t) =
λ(γ + b+ eγt(γ − b)) + 2µ(eγt − 1)
σ2λ(eγt − 1)+ γ − b+ eγt(γ + b)

with γ =
√

b2 + 2σ2µ.

Proof.
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For the proof, we follow the original proof given in [24] in section 6.2.2. For λ andµ fixed,

consider the functionF(t, x) defined by

F(t, x) = E[e
−λXx

t −µ
t∫

0
Xx

sds
]. (2.3.21)

Note that for the initial conditionx we can use Feyman-Kac Formula given in Lemma 2.3.3.

Therefore, we look forF as a solution of the problem,

∂F
∂t
=
σ2

2
x
∂2F

∂x2
+ (a− bx)

∂F
∂x
− µxF and F(0, x) = e−λx. (2.3.22)

Assume thatF can be written asF(t, x) = e−aς(t)−xΩ(t). The reason behind is the additive

property ofXx
t relative to the parametera and the initial valuex [18]. At this step, write the

candidate of the solution to the given differential equation (2.3.22):

F(t, x)[−aς′(t) − xΩ′(t)] =
σ2

2
x[F(t, x)Ω2(t)] − (a− bx)F(t, x)Ω(t) − µxF(t, x).

CancelingF(t, x) from both sides of the above equation gives

−aς′(t) − xΩ′(t) =
σ2

2
xΩ2(t) − (a− bx)Ω(t) − µx

= x

[
σ2

2
Ω2(t) + bΩ(t) − µ

]
− a[Ω(t)]. (2.3.23)

In equation (2.3.23) the coefficients ofa andx should be equal. Therefore, the following two

equations are obtained:

−Ω′(t) = σ2

2
Ω2(t) + bΩ(t) − µ and ς′(t) = Ω(t) (2.3.24)

By writing the candidate solution into the initial condition given asF(0, x) = e−λx, we get

F(0, x) = e−aς(0)−xΩ(0). Then,

e−λx = e−aς(0)−xΩ(0).
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This means that the initial conditions for (2.3.24) areς(0) = 0 andΩ(0) = λ. We need to

solve the following differential equations to find outΩ(t) andς(t) under the initial conditions:

−dΩ
dt
=
σ2

2
Ω2 + bΩ − µ.

That means,

−dΩ
σ2

2 Ω
2 + bΩ − µ

= dt.

Taking the integral of both sides in the above equation,

−
t∫

0

dΩ
σ2

2 Ω
2 + bΩ − µ

= t +C.

Now, by using partial fraction technique of integral, the denominator is separated into two

parts as follows:

1
γ

t∫

0

1

Ω +

(
b+γ
σ2

)dΩ − 1
γ

t∫

0

1

Ω +

(
b−γ
σ2

)dΩ = t +C.

By taking the integrals,

1
γ

ln

∣∣∣∣∣∣
σ2Ω + b+ γ

σ2Ω + b− γ

∣∣∣∣∣∣ = t +C. (2.3.25)

From the initial condition ofΩ we know thatΩ(0) = λ. Therefore,

C =
1
γ

ln

∣∣∣∣∣∣
σ2λ + b+ γ

σ2λ + b− γ

∣∣∣∣∣∣ .

This means that the equation (2.3.25) is as follows:

ln

∣∣∣∣∣∣
σ2Ω + b+ γ

σ2Ω + b− γ

∣∣∣∣∣∣ = γt + ln

∣∣∣∣∣∣
σ2λ + b+ γ

σ2λ + b− γ

∣∣∣∣∣∣ .
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We take the exponential of both sides and get

σ2Ω + b+ γ

σ2Ω + b− γ
= eγt · σ

2λ + b+ γ

σ2λ + b− γ
. (2.3.26)

The above term is denoted as

F = eγt · σ
2λ + b+ γ

σ2λ + b− γ
.

Then equation (2.3.26) comes into the form

σ2Ω + b+ γ = Fσ2Ω + Fb− Fγ.

Consequently,

Ω =
b+ γ − Fb+ Fγ

Fσ2 − σ2
.

After writing F into the equation and making some arrangements,Ω takes its value as given

in the theorem:

Ω(t) =
λ(γ + b+ eγt(γ − b)) + 2µ(eγt − 1)
σ2λ(eγt − 1)+ γ − b+ eγt(γ + b)

. (2.3.27)

Presently, to clarifyς(t), we can take the given value from the theorem and see, by taking the

derivative that it is reallyΩ(t). This is because of the equation (2.3.24). In the theorem,

ς(t) = − 2
σ2

log

(
2γe

t(γ+b)
2

σ2λ(eγt − 1)+ γ − b+ eγt(γ + b)

)
.

We entitled the terms as follows:

S(t) = 2γe
t(γ+b)

2 and K(t) = σ2λ(eγt − 1)+ γ − b+ eγt(γ + b).

By taking the derivative ofς(t) we get
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ς′(t) = − 2
σ2

(
S′(t)K(t) − K′(t)S(t)

S(t)K(t)

)
.

Then,

ς′(t) = − 2
σ2

(
S(t)γ+b

2 K(t) − S(t)[σ2λeγtγ + (γ + b)eγtγ]

S(t)K(t)

)
.

After arranging the terms,

ς′(t) =
λ(γ + b+ eγt(γ − b)) + 2µ(eγt − 1)
σ2λ(eγt − 1)+ γ − b+ eγt(γ + b)

. (2.3.28)

The right hand side of equation (2.3.28) isΩ(t), which is the main goal of the theorem. �

We will go back to our fundemental problem that is derivation ofψ(z) from equation (2.3.17).

At this step we can writeEQ[e(z−1)Y2(T)] andEQ[ewY1(T)] by using Theorem 2.3.4, since both

Y2(T) andY1(T) follow a CIR process. We know thatYj(t) =
t∫

0

y j(u)du andy j(0) = y j for

j = 1,2. In addition,

dyj(t) = [K jΘ j − K jy j(t)]dt+ σ j

√
y j(t)dZj(t) ( j = 1,2).

Consequently, by using the theorem,

EQ[e(z−1)Y2(T)] = exp(−K2Θ2 · ς(T))exp(−y2 ·Ω(T)) (2.3.29)

where

ς(T) = − 2

σ2
2

ln

(
2γe

T(γ+K2)
2

γ − K2 + eγT(γ + K2)

)

and

Ω(T) =
2(1− z)(eγT − 1)

γ − K2 + eγT(γ + K2)
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with

γ =

√
K2

2 + 2σ2
2(1− z).

The expectation with respect toY1(T) is as follows:

EQ[ewY1(T)] = exp(−K1Θ1 · ς(T))exp(−y1 ·Ω(T)) (2.3.30)

where

ς(T) = − 2

σ2
1

log

(
2γe

T(γ+K1)
2

γ − K1 + eγT(γ + K1)

)

and

Ω(T) =
2(−w)(eγT − 1)

γ − K1 + eγT(γ + K1)

with

γ =

√
K2

1 − 2σ2
1w.

Finally, we reached to our main concern. Firstly, to find the distribution functionsF1 andF2,

we try to get characteristic functionsφ1 andφ2. After that, because of the following relations

between characteristic function andψ(z), the problem turns into findingψ(z):

φ1(u) =
ψ(1+ iu)
ψ(1)

and φ2(u) =
ψ(iu)
ψ(0)

.

Now, we are able to calculate each term ofψ(z) by using (2.3.29) and (2.3.30). Remember

that,
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ψ(z) = e−zλT(e
µ j+(1/2)σ2

j −1)+λT(e
µ j+(1/2)σ2

j −1)

× ezσρ
σ1
·(y1(T)−y1(0)−K1Θ1T) · EQ[e(z−1)Y2(T)] · EQ[ewY1(T)].

(2.3.31)

Consequently,φ1 andφ2 are available. By using Fourier inversion formula in [33], the distri-

butionsF1 andF2 can be expressed as follows:

F j(x) =
1
2
+

1
2π
·
∞∫

0

φ j(−u) · eiux − φ j(u) · e−iux

iu
· du, (2.3.32)

1− F j(x) =
1
2
− 1

2π
·
∞∫

0

φ j(−u) · eiux − φ j(u) · e−iux

iu
· du for ( j = 1,2).

After all, the closed form solution for the call option pricing function using (2.2.7) is as

follows:

C[S(t), y(t),T − t] = S(t)

[
1
2
− 1

2π
·
∞∫

0

φ1(−u) · eiulnK − φ1(u) · e−iulnK

iu
· du

]

− B(y(t),T − t)

× K

[
1
2
− 1

2π
·
∞∫

0

φ2(−u) · eiulnK − φ2(u) · e−iulnK

iu
· du

]
. (2.3.33)
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CHAPTER 3

PARTIAL INTEGRO-DIFFERENTIAL EQUATION

APPROACH

In this chapter, the closed form solution of European call options under stochastic volatility

and stochastic interest rate jump-diffusion model is handled in a different point of view. The

method develops a partial integro-differential equation (PIDE) whose solution is the European

Call Price. The solution technique suggested in [1] is based on the form ofthe solution

of Black Scholes Model. Beginning with the similar form of Black-Scholes CallPrice, the

problem to solve the partial integro-differential equation is reduced to deal with some ordinary

differential equations, which are easier and less complex. As in the previous chapter, we

only concentrated on European call options because the closed form option prices can be

reached for only this type options. This method has advantages in applications because of the

estimation of few parameters when compared to Scott’s approach in the previous chapter. For

this reason, this model is used in the next chapter to measure the empirical performance of

submodels which can be produced by letting some terms to be zero .

3.1 Asset Price Dynamics

Let (Ω, F,P) be our probability space. The underlying risky asset price at timet is assumed

to follow the stochastic differential equation as

dS(t) = (R(t) − λµ j)S(t)dt+
√

V(t)S(t)dWs(t) + J(t)dN(t)S(t−). (3.1.1)

Moreover,V(t) is defined as the diffusion component of return variance conditional on no

jump occurring and assumed to follow a standard Cox-Ingersoll-Ross (CIR) process given as
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follows:

dV(t) = [θv − KvV(t)]dt+ σv

√
V(t)dWv(t), (3.1.2)

whereKv, θv/Kv, andσv are respectively the speed of adjustment, long-run mean and variation

coefficient of the diffusion volatilityV(t).

The underlying risky asset price instantaneous spot interest rateR(t) is defined as follows:

dR(t) = [θR− KRR(t)]dt+ σR

√
R(t)dWR(t), (3.1.3)

whereKR, θR/KR, andσR are respectively the speed of adjustment, long-run mean and volatil-

ity coefficient of the processR(t).

In the above equations,Ws, Wv and WR are standard Brownian Motions. The correlation

betweenWs andWv is ρ. That meansd[Ws(t),Wv(t)] = ρdt. The rest of the Brownian Motions

is assumed to be independent from each other.

In equation (3.1.1),λ is the frequency of jumps per year,J(t) is the percentage jump size

conditional on a jump occurring,N(t) is a Poisson Jump Counter with intensityλ, whereN(t)

andJ(t) are uncorrelated. The jump size is assumed to be as follows:

ln[1 + J(t)] ∼ N(ln(1+ µ j) −
1
2
σ2

j , σ
2
j ).

That means under the conditionJ(t) > −1, 1+ J(t) is distributed as LogNormal(ln(1+ µ j) −

1/2σ2
j , σ

2
j ). By using the expectation and variance formula, the following values can be found:

E[(1 + J(t))] = eln(1+µ j )−1/2σ2
j+1/2σ2

j = 1+ µ j ,

Var[(1 + J(t))] = e(σ2
j−1)e2[ln(1+µ j )−1/2σ2

j ]+σ
2
j = e(σ2

j−1) · (1+ µ j)
2.

Firstly, consider a zero-coupon bond that pays 1 dollar inτ periods from timet, and letB(t, τ)

be its current price. Then,
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B(t, τ) = EQ
[
exp

(
−

t+τ∫

t

R(u)du

)]
,

whereR follows a CIR Process. Note that in Theorem 2.3.4, we showed how to find such

an expectation for a CIR Process. For this reason, the current value of the zero coupon bond

under the risk neutral measure Q can be expressed as

B(t, τ) = EQ
[
exp

(
−

t+τ∫

t

R(u)du

)]
= exp[−θR · ς(τ) − R(t) ·Ω(τ)] (3.1.4)

where the functionsς(τ) andΩ(τ) are given by

ς(τ) = − 2

σ2
R

ln

(
2γe

τ(γ+KR)
2

γ − KR+ eγτ(γ + KR)

)

and

Ω(τ) =
2(eγτ − 1)

γ − KR+ eγτ(γ + KR)
,

with γ =
√

K2
R+ 2σ2

R.

3.2 Construction of Partial Integro-Differential Equation

The processes, that are given in the previous section, are defined under the risk neutral prob-

ability measure,Q. Therefore discounted prices are martingale under this measure. By using

Ito-Doeblin Formula, a partial integro-differential equation, that the discounted call prices

satisfy, can be obtained. The discounted call price is formed as follows:

f (t, τ; S,R,V) = e
−

t+τ∫

t
R(s)ds

C(t, τ; S,R,V),

whereC(t,S,R,V) is the timet price of the call option.
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We denoted the continuous part of the stock process at timet asSc(t). From equation (3.1.1),

the differential equation can be expressed as follows:

dSc(t) = (R(t) − λµ j)S(t)dt+
√

V(t)S(t)dWs(t). (3.2.1)

The quadratic variation ofSc(t) is d[Sc,Sc]t = V(t)S2(t)dt. Because of the construction of

volatility process given in (3.1.2) the quadratic variation isd[V,V]t = σ
2
vV(t)dt and, similarly,

from the equation (3.1.3),d[R,R]t = σ
2
RR(t)dt.

In the Ito Doeblin formula, we also need to know the cross variation of processes. Note that

since the Brownian Motions of interest rate and stock process are independent, their cross

variation is 0. By the same reasoning, the cross variation between volatility andinterest rate

process is 0. Furthermore, the jumps in the model is independent from all other stochastic

processes. Only volatility and stock price process are correlated with each other as in the

following equation,

d[Sc,V]t = d[
√

V(t)S(t)Ws(t), σv

√
V(t)Wv(t)] = σvV(t)S(t)ρdt,

whereρ is the correlation between two Brownian Motions.

Using above relations, the Ito-Doeblin Formula can be written as follows:

e
−

t∫

0
R(s)ds

C(t,S,R,V) −C(0,S,R,V) =

t∫

0

e
−

u∫

0
R(s)ds

·
[
− R(u)C(u,S,R,V)du

+Ct(u,S,R,V)du+CSdSc(u) +CVdV(u) +CRdR(u) + 1
2VS2CS Sdu+ 1

2Vσ2
vCVVdu

+1
2Rσ2

RCRRdu+ 1
2 · 2VSσvρCS Vdu

]

+
∑

0<u≤t

e
−

u∫

0
R(s)ds

[C(u,S,R,V) −C(u,S−,R,V)], (3.2.2)

whereS− = S(s−).

Note that ifs is a jump time, from the stock price process, the following expression is mean-

ingful:
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∆S(s) = J(s)dN(s)S(s−) where dN(s) = 1.

Therefore,S(s) − S(s−) = J(s)S(s−). As a result,S(s) = (1+ J)S(s−).

Now by using (3.1.2), (3.1.3), (3.2.1) and the above result, the Ito Doeblin Formula becomes

arranged as follows:

e
−

t∫

0
R(s)ds

C(t,S,R,V) −C(0,S,R,V) =

t∫

0

e
−

u∫

0
R(s)ds

·
[
− R(u)C(u,S,R,V) +Ct(u,S,R,V)

+[R(t) − λµ j ]SCS +
1
2VS2CS S+ [θv − KvV]CV +

1
2Vσ2

vCVV + [θR− KRR]CR+
1
2Rσ2

RCRR

+VSσvρCS V

]
du+

t∫

0

e
−

u∫

0
R(s)ds

[√
VSCSdWs(u) + σv

√
VCVdWv(u) + σR

√
RCRdWR(u)

]

+
∑

0<u≤t

e
−

u∫

0
R(s)ds

[
C(u,S−(1+ J),R,V) −C(u,S−,R,V)

]
(3.2.3)

Our aim is to separate (3.2.3) into two parts. The first one will be the martingale part and

the other will be the non-martingale part. As the discounted call price is a martingale under

the risk neutral measure, thedu terms should not exist in the equation. In fact, the partial

integro-differential equation will be the the coefficient ofdu. Since integrals with respect to

the Brownian Motions are martingale, they can be added to the martingale part. However, the

summation part of the equation should be arranged so that we can separateit into two parts.

Note that the summation above represents the jump component of the call price process. We

can write the summation as integral. The variable of integration is a jump measure. We

used the notation given in [10] for the jump measure. In intuitive terms, for any measurable

setA ⊂ R
d, MX([0, t] × A) is the number of jumps ofX occurring between 0 andt, whose

amplitude belongs toA. By using this notation we get the the following equation:

∑

0<u≤t

e
−

u∫

0
R(s)ds

[C(u,S−(1+ J),R,V) −C(u,S−,R,V)]

=

∫

[0,t]×{J>−1}

e
−

u∫

0
R(s)ds

[C(u,S−(1+ J),R,V) −C(u,S−,R,V)]M(du× dJ).

(3.2.4)
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We compensated the jump part so that it has a martingale and non-martingale part in it. As

a notation, the compensated jump measure isM̃(du× dJ) = M(du× dJ) − E[M(du× dJ)],

whereE is the expectation under the risk neutral measure. Note that the compensatedjump

measure is a martingale. The expectation isE[M(du× dJ)] = λF(dJ)duwhereF is the jump

size distribution. Therefore, the jump term given in (3.2.4) can be written as follows:

∫

[0,t]×{J>−1}

e
−

u∫

0
R(s)ds

[C(u,S−(1+ J),R,V) −C(u,S−,R,V)][ M̃(du× dJ) + λF(dJ)du].

Finally we are ready to write (3.2.3) into two parts. The first part will be equipped withdu

terms and the second part will be martingale:

e
−

t∫

0
R(s)ds

C(t,S,R,V) −C(0,S,R,V) =

t∫

0

e
−

u∫

0
R(s)ds

·
[
− R(u)C(u,S,R,V) +Ct(u,S,R,V)

+[R(u) − λµ j ]SCS +
1
2VS2CS S+ [θv − KvV]CV +

1
2Vσ2

vCVV + [θR− KRR]CR+
1
2Rσ2

RCRR

+VSσvρCS V+

∫

{J>−1}

e
−

u∫

0
R(s)ds

[
C(u,S−(1+ J),R,V) −C(u,S−,R,V)

]
λF(dJ)

]
du

+

t∫

0

e
−

u∫

0
R(s)ds

[√
VSCSdWs(u) + σv

√
VCVdWv(u) + σR

√
RCRdWR(u)

]

+

∫

[0,t]×{J>−1}

e
−

u∫

0
R(s)ds

[
C(u,S−(1+ J),R,V) −C(u,S−,R,V)

]
M̃(du× dJ). (3.2.5)

The differential form of above equation looks as follows:

d

(
e
−

t∫

0
R(s)ds

C(t,S,R,V)

)
= e
−

t∫

0
R(s)ds

[
1
2VS2CS S+ [R− λµ j ]SCS + VSσvρCS V

+1
2Vσ2

vCVV + [θv − KvV]CV +
1
2Rσ2

RCRR+ [θR− KRR]CR+Ct − RC

+λE[C(t,S−(1+ J),R,V) −C(t,S−,R,V)]

]
dt

+e
−

t∫

0
R(s)ds

[√
VSCSdWs(t) + σv

√
VCVdWv(t) + σR

√
RCRdWR(t)

+

∫

{J>−1}

[C(t,S−(1+ J),R,V) −C(t,S−,R,V)]M̃(dt× dJ)

]
. (3.2.6)
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We know that the discounted call price above is a martingale. Therefore, inour equation the

terms that are not martingale should not exist. We equate these parts to zero.As a result, the

following Partial Integro-Differential Equation is obtained:

1
2VS2CS S+ [R− λµ j ]SCS + VSσvρCS V+

1
2Vσ2

vCVV + [θv − KvV]CV

+1
2Rσ2

RCRR+ [θR− KRR]CR+Ct − RC

+λE[C(t,S−(1+ J),R,V) −C(t,S−,R,V)] = 0.

Note that the derivative of the call price with respect tot, Ct is equal to minus the derivative

of the call price with respect toτ, −Cτ. The reason behind ist + τ = T, whereT is a constant.

ThereforeCt + Cτ = 0. To construct the same notation with the reference, we will use the

following equation in the rest of the study:

1
2VS2CS S+ [R− λµ j ]SCS + VSσvρCS V+

1
2Vσ2

vCVV + [θv − KvV]CV

+1
2Rσ2

RCRR+ [θR− KRR]CR−Cτ − RC

+λE[C(t,S−(1+ J),R,V) −C(t,S−,R,V)] = 0, (3.2.7)

subject toC(T,0) = max[S(T) − K,0].

3.3 Solution of Partial Integro-Differential Equation

In fact the call price that we are trying to find is the solution of equation (3.2.7). The general

method to find out the solution of such a partial integro-differential equation is inspired from

the call price of Black Scholes Model [7]. The call price calculated in Black Scholes Model

is of the following form:

C(S, t) = N(d1)S − N(d2)Ke−r(T−t),

whereN(·) is the cumulative distribution function of standard normal distribution,

S is the underlying asset price,

K is the strike price of the European Call Option,
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T − t is the time to maturity,

r is the risk free rate.

Inspired from Black Scholes Model European Call Option Price, the European Call Option

Price of Stochastic Volatility and Stochastic Interest Rate Jump-Diffusion Model Price can be

constructed as follows. Assume that the solution of the partial integro-differential equation

(3.2.7) is of the following form:

C(t, τ) = π1(t, τ,S,R,V)S(t) − KB(t, τ)π2(t, τ,S,R,V), (3.3.1)

whereπ1 andπ2 are the probability functions that are calculated by inverting the respective

characteristic functions,

S is the underlying asset price,

K is the strike price of the European Call Option,

τ is the time to maturity,

B(t, τ) is the zero-coupon bond that pays 1 dollar inτ periods from timet.

As it can be seen above, the form of the solution is similar to the form of Black Scholes. The

first difference in our solution is that the discount factor is not in exponential form.Instead, it

is the bond price, because the interest rate is not constant in the model. Another difference is

that our probabilities are not normal as in the case of Black Scholes.

Now we will apply the transformationL(t) = ln(S(t)) to the terms of equation (3.2.7). Firstly

under this transformation the difference of call priceC(t,S−(1+J),R,V)−C(t,S−,R,V) takes

the formC(t, L + ln(1+ J),R,V) −C(t, L,R,V). To get the idea behind the jump size should

be converted with logarithmic function. The stock price process itself jumps withan amount

∆S = S−J and it changes fromS− to S− + S−J. Therefore the logarithm of the stock price

process will change from ln(S−) to ln(S−+S−J).Consequently,∆L = ln(S−+S−J)−ln(S−) =

ln(1+ J).

The conjectured solution given in (3.3.1) will be the starting point of derivatives and differ-

ences of call price as follows:

CS = π1 +
∂π1

∂L
− KB

S
∂π2

∂L
, (3.3.2)

CS S =
∂π1

∂L
1
S
+
∂2π1

∂L2

1
S
− KB

[
− 1

S2

∂π2

∂L
+

1
S2

∂2π2

∂L2

]
, (3.3.3)
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CV = S
∂π1

∂V
− KB

∂π2

∂V
, (3.3.4)

CVV = S
∂2π1

∂V2
− KB

∂2π2

∂V2
, (3.3.5)

CS V =
∂π1

∂V
+
∂2π1

∂L∂V
− KB

∂2π2

∂L∂V
1
S
, (3.3.6)

CR = S
∂π1

∂R
− KB

∂π2

∂R
− Kπ2

∂B
∂R

, (3.3.7)

CRR= S
∂2π1

∂R2
− KB

∂2π2

∂R2
− K

∂π2

∂R
∂B
∂R
− K

[
∂π2

∂R
∂B
∂R
+ π2

∂2B

∂R2

]
, (3.3.8)

Ct = S
∂π1

∂t
− KB

∂π2

∂t
− Kπ2

∂B
∂t
,

Cτ = −S
∂π1

∂τ
+ KB

∂π2

∂τ
+ Kπ2

∂B
∂τ
. (3.3.9)

The difference of call option prices can be constructed as follows:

C(t, L + ln(1+ J),R,V) −C(t, L,R,V) = S−(1+ J)π1(t, L + ln(1+ J),R,V)

− KBπ2(t, L + ln(1+ J),R,V) − S−π1(t, L,R,V)

+ KBπ2(t, L,R,V). (3.3.10)

Substituting all of the above results into the partial integro-differential equation (3.2.7), we

obtain the following equations with respect to probabilitiesπ1, π2 and a differential equation

of bond price:
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S−
[
1
2

V
∂2π1

∂L2
+ [R− λµ j +

1
2

V]
∂π1

∂L
+ [θv − (Kv − σvρ)V]

∂π1

∂V

+σvρV
∂2π1

∂L∂V
+

1
2

Rσ2
R
∂2π1

∂R2
+ [θR− KRR]

∂π1

∂R

+[R− λµ j ]π1 − Rπ1 +
1
2

Vσ2
v
∂2π1

∂V2
− ∂π1

∂τ
+ λE[(1 + J)π1(t, L + ln(1+ J),R,V)

−π1(t, L,R,V)]

]
= 0,

(3.3.11)

−KB

[
1
2

V
∂2π2

∂L2
+ [R− λµ j −

1
2

V]
∂π2

∂L
+ σvρV

∂2π2

∂L∂V

+
1
2

Vσ2
v
∂2π2

∂V2
+ [θv − KvV]

∂π2

∂V
+

1
2

Rσ2
R
∂2π2

∂R2

+

[
θR− (KR−

σ2
R

B
∂B
∂R

)R

]
∂π2

∂R
− ∂π2

∂τ
+ λE[π2(t, L + ln(1+ J),R,V) − π2(t, L,R,V)]

]
= 0,

(3.3.12)

−Kπ2

[
1
2

Rσ2
R
∂2B

∂R2
+ [θR− KRR]

∂B
∂R
+
∂B
∂t
− RB

]
= 0. (3.3.13)

Equations (3.3.11) and (3.3.12) are equal to 0 because these two equations have independent

derivatives in them and the partial integro-differential equation itself is equated with zero. The

reason of equality to zero of equation (3.3.13) is because of the Ito Formulaand martingale

property. We can prove (3.3.13) as follows:

d

(
e
−

t∫

0
R(s)ds

B(0, t,R)

)
= e
−

t∫

0
R(s)ds

[
− R(t)B(0, t,R)dt+ dB(0, t,R)

]
. (3.3.14)

This equation should not have termdt since discounted prices are martingale under the risk

neutral measure. To finddB(0, t,R) we applied the Ito Doeblin Formula and used the interest

rate structure given as:

dR(t) = [θR− KRR(t)]dt+ σR

√
R(t)dWR(t).
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By Ito Doeblin Formula,

dB(0, t,R) =
∂B
∂t

dt+
∂B
∂R

dR(t) +
1
2
∂2B

∂R2
Rσ2

Rdt

=
∂B
∂t

dt+ +
∂B
∂R

[
[θR− KRR(t)]dt+ σR

√
R(t)dWR(t)

]

+
1
2
∂2B

∂R2
Rσ2

Rdt. (3.3.15)

By writing the equation above into (3.3.14) and arranging the terms we get the main goal, that

is equation (3.3.13).

Finally the differential equations (3.3.11) and (3.3.12) for probabilitiesπ1 andπ2, respectively,

can be written as follows, sinceS− andKB are nonzero:

1
2

V
∂2π1

∂L2
+ [R− λµ j +

1
2

V]
∂π1

∂L
+ [θv − (Kv − σvρ)V]

∂π1

∂V
+ σvρV

∂2π1

∂L∂V

+
1
2

Rσ2
R
∂2π1

∂R2
+ [θR− KRR]

∂π1

∂R
− λµ jπ1

+
1
2

Vσ2
v
∂2π1

∂V2
− ∂π1

∂τ
+ λE[(1 + J)π1(t, L + ln(1+ J),R,V) − π1(t, L,R,V)] = 0,

(3.3.16)

1
2

V
∂2π2

∂L2
+ [R− λµ j −

1
2

V]
∂π2

∂L
+ σvρV

∂2π2

∂L∂V
+

1
2

Vσ2
v
∂2π2

∂V2
+ [θv − KvV]

∂π2

∂V

+
1
2

Rσ2
R
∂2π2

∂R2
+

[
θR− (KR−

σ2
R

B
∂B
∂R

)R

]
∂π2

∂R

−∂π2

∂τ
+ λE[π2(t, L + ln(1+ J),R,V) − π2(t, L,R,V)] = 0. (3.3.17)

The above equations are calledFokker Planck forward equations for probability functions.

These partial differential equations must be solved separately subject to the terminal condi-

tions:

πi(T,0) = 1{L(T)≥K} for i = 1,2.
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In fact, the Fokker-Planck forward equations (also known as the Kolmogorov forward equa-

tions) provide a relation between the differential equation of probability functions and the

stochastic process itself. The details of these forward equations about continuous processes

can be examined in [6] and the processes with jumps in [13]. In fact, using the corresponding

characteristic functions instead of probabilities is easier because the closed form of probabil-

ities may not be available but the characteristic functions always exist. The Fokker-Planck

forward equations are very important at this step. Firstly, we constructedthe corresponding

stochastic processes by looking at the Fokker-Planck forward equations above. Then, by us-

ing these processes, we showed that the probabilities and characteristic functions satisfy the

same PIDE. After that instead of the probabilities we dealt with the characteristic functions.

The details of this methodology for the stochastic volatility model are pointed out inthe orig-

inal paper of Heston (1993), and the detailed version can be investigatedin [12]. Note that the

construction of the process for the probabilityπ2 is standard, but forπ1 it is slightly trickier.

The following property of normal distribution is necessary in that sense. The property is as

follows:

E(ez f (z)) = ez+ 1
2σ

2
zE(z∗),

whereZ ∼ N(z, σ2
z) andZ∗ ∼ N(z+ σ2

z, σ
2
z).

The proof of the above equation is a consequence of writing the pdf of normal distributions

and calculating the expectation as

E(ez f (z)) =

∞∫

−∞

ez f (z)e
− (z−z)2

2σ2
z

1√
2πσ2

z

dz

=

∞∫

−∞

f (z)e
− (z−(z+σ2

z))2

2σ2
z e

−σ
4
z+2σ2

zz

2σ2
z

1√
2πσ2

z

dz

= ez+ 1
2σ

2
z

∞∫

−∞

f (z)e
− (z−(z+σ2

z))2

2σ2
z

1√
2πσ2

z

dz

= ez+ 1
2σ

2
zE(z∗), (3.3.18)

with Z ∼ N(z, σ2
z) andZ∗ ∼ N(z+ σ2

z, σ
2
z).
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By using the above result we arranged the terms with jumps in the integro-differential equation

of π1 as follows:

−λµ jπ1 + λ E [(1 + J)π1(t, L + ln(1+ J),R,V) − π1(t, L,R,V)] = −λE(J)π1

+ λE[(1 + J)π1(t, L + ln(1+ J),R,V) − π1(t, L,R,V)]

= λE[(1 + J)[π1(t, L + ln(1+ J),R,V) − π1(t, L,R,V)]]

= λ(1+ µ j)E[π1(t, L + ln∗(1+ J),R,V) − π1(t, L,R,V)], (3.3.19)

with ln[1 + J(t)] ∼ N(ln(1+ µ j) − 1
2σ

2
j , σ

2
j ),

and ln∗[1 + J(t)] ∼ N(ln(1+ µ j) + 1
2σ

2
j , σ

2
j ).

Using the results given in above equations and dividing each term with (1+ µ j), the integro-

differential equation ofπ1 can be written as

1
2

V
(1+ µ j)

∂2π1

∂L2
+

[R− λµ j +
1
2V]

(1+ µ j)
∂π1

∂L
+

[θv − (Kv − σvρ)V]
(1+ µ j)

∂π1

∂V
+

σvρV
(1+ µ j)

∂2π1

∂L∂V

+
1
2

Rσ2
R

(1+ µ j)
∂2π1

∂R2
+

[θR− KRR]
(1+ µ j)

∂π1

∂R

+
1
2

Vσ2
v

(1+ µ j)
∂2π1

∂V2
+

1
(1+ µ j)

∂π1

∂t
+ λ(E[π1(t, L + ln∗(1+ J),R,V) − π1(t, L,R,V)] = 0.

Define the following time change in the above equation, we get

∂π1

∂t
1

(1+ µ j)
=
∂π1

∂t∗
, where t∗ =

t
(1+ µ j)

.

Therefore, the PIDE corresponding toπ1 is as follows:
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1
2

V
(1+ µ j)

∂2π1

∂L2
+

[R− λµ j +
1
2V]

(1+ µ j)
∂π1

∂L
+

[θv − (Kv − σvρ)V]
(1+ µ j)

∂π1

∂V
+

σvρV
(1+ µ j)

∂2π1

∂L∂V

+
1
2

Rσ2
R

(1+ µ j)
∂2π1

∂R2
+

[θR− KRR]
(1+ µ j)

∂π1

∂R

+
1
2

Vσ2
v

(1+ µ j)
∂2π1

∂V2
+
∂π1

∂t∗
+ λ(E[π1(t∗, L + ln∗(1+ J),R,V) − π1(t∗, L,R,V)] = 0.

We wrote the following PIDE forπ2 as a reminder:

1
2

V
∂2π2

∂L2
+ [R− λµ j −

1
2

V]
∂π2

∂L
+ σvρV

∂2π2

∂L∂V
+

1
2

Vσ2
v
∂2π2

∂V2
+ [θv − KvV]

∂π2

∂V

+
1
2

Rσ2
R
∂2π2

∂R2
+

[
θR− (KR−

σ2
R

B
∂B
∂R

)R

]
∂π2

∂R

+
∂π2

∂t
+ λE[π2(t, L + ln(1+ J),R,V) − π2(t, L,R,V)] = 0.

The PIDE forπ1 andπ2 can be expressed in a general form as follows:

1
2

V
ai

∂2P

∂L2
+

[R− λµ j + biV]

ai

∂P
∂L
+
σvρV

ai

∂2P
∂L∂V

+
1
2

Vσ2
v

ai

∂2P

∂V2
+

[θv − ciV]
ai

∂P
∂V

+
1
2

Rσ2
R

ai

∂2P

∂R2
+ [θR− (KR− diR)]

∂P
∂R

+
∂P
∂ti
+ λE[P(ti , L + lni(1+ J),R,V) − P(ti , L,R,V)] = 0 (3.3.20)

for i = 1,2, where a1 = (1 + µ j), a2 = 1, b1 =
1
2, b2 = −1

2, c1 = (Kv − σvρ),

c2 = Kv,

d1 = KR, d2 =
σ2

R
B
∂B
∂R, t1 = t∗, t2 = t, ln1(1+ J) = ln∗(1+ J),

ln2(1+ J) = ln(1+ J).

We can write the corresponding stochastic differential equation by looking at the above prob-

abilities. The spot price process, stochastic volatility and stochastic interestrate dynamics are

as follows:
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dLti =
[R− λµ j + biV]

ai
dti +

√
V
ai

dWS + lni(1+ J)dN,

dVti =
[θv − ciV]

ai
dti + σv

√
V
ai

dWL,

dRti = [θR− (KR− diR)]dti + σR

√
R
ai

dWR. (3.3.21)

Subsequently, define any twice differentiable functionf as a conditional expectation ofL, V,

R, whereL(ti), V(ti), R(ti) follow the risk neutral processes given by (3.3.21). This function is

constructed as follows:

f (L,V,R, ti) := E[g(L(T),V(T),R(T)|L(ti) = L,V(ti) = V,R(ti) = R)]

subject to the terminal condition

f (L,V,R,T) = g(L,V,R).

In fact, this function is a martingale under the risk neutral probability measure. In the thesis

given in [12], one of the three conditions of a martingale, that is the tower property, is proved.

We can establish by using Ito-Doeblin Formula the PIDE thatf satisfies as follows:

d f =
∂ f
∂ti

dti +
∂ f
∂L

dL+
∂ f
∂V

dV+
∂ f
∂R

dR+
1
2
∂2 f

∂L2
d < L, L > + +

1
2
∂2 f

∂V2
d < V,V > +

1
2
∂2 f

∂R2
d < R,R> +

∂2 f
∂L∂V

d < L,V > +
∂2 f
∂L∂R

d < L,R> +
∂2 f
∂V∂R

d < V,R> +

∫

[0,ti ]×{J>−1}

[ f (u, L + lni(1+ J),R,V) − f (u, L,R,V)]M(du× dJ) (3.3.22)

and, after using equations in (3.3.21),
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d f =

[
∂ f
∂ti
+
∂ f
∂L

[R− λµ j + biV]

ai
+
∂ f
∂V

[θv − ciV]
ai

+
∂ f
∂R

[θR− (KR− diR)] +
1
2
∂2 f

∂L2

V
ai

1
2
∂2 f

∂V2

V
ai
+

1
2
∂2 f

∂R2

R
ai
+

∂2 f
∂L∂V

σvρV
ai
+

∫

{J>−1}

[ f (u, L + lni(1+ J),R,V) −

f (u, L,R,V)]λF(dJ)

]
dti +

∫

[0,ti ]×
{J>−1}

[ f (u, L + lni(1+ J),R,V) − f (u, L,R,V)]M̃(du× dJ) +

∂ f
∂L

√
V
ai

dWS +
∂ f
∂V

σv

√
V
ai

dWL +
∂ f
∂R
σR

√
R
ai

dWR. (3.3.23)

Consequently, sincef is a martingale, in the above equations the non-martingale part becomes

zero as in the following PIDE,

1
2

V
ai

∂2 f

∂L2
+

[R− λµ j + biV]

ai

∂ f
∂L
+
σvρV

ai

∂2 f
∂L∂V

+
1
2

Vσ2
v

ai

∂2 f

∂V2
+

[θv − ciV]
ai

∂ f
∂V

+
1
2

Rσ2
R

ai

∂2 f

∂R2
+ [θR− (KR− diR)]

∂ f
∂R
+
∂ f
∂ti

+λE[ f (ti , L + lni(1+ J),R,V) − f (ti , L,R,V)] = 0 (3.3.24)

subject to the terminal condition

f (L,V,R,T) = g(L,V,R). (3.3.25)

Note that the above equation has the same form with equation (3.3.20). With the proper choice

of g we can get the characteristic functions corresponding toπ1 andπ2. Chooseg as

g(L,V,R) = eiφL.

Therefore, the functionf is in this case as follows:

f (L,V,R, ti) := E[eiφL|L(ti) = L,V(ti) = V,R(ti) = R)]. (3.3.26)

It is clear that the solution of equation (3.3.24) gives the characteristic functions ofπ1 andπ2.
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Finally we reached the desired solution. We can say that the probability functions and their

corresponding characteristic functions will satisfy the same PIDEs. By using this result, we

employ the PIDEs of characteristic functions instead of probability functions. Then, by using

the inversion formula, we can get the probability functions. This transition is essential be-

cause, one can view the characteristic function as a contingent claim to be solved using the

standard contingent claims’ partial integro-differential equation under relatively easy bound-

ary conditions [4].

We entitled the characteristic functions corresponding toπ1 andπ2 as f1 and f2, respectively.

The following equations can be written for the characteristic functions by going back to equa-

tions (3.3.16) and (3.3.17):

1
2

V
∂2 f1
∂L2
+ [R− λµ j +

1
2

V]
∂ f1
∂L
+ [θv − (Kv − σvρ)V]

∂ f1
∂V
+ σvρV

∂2 f1
∂L∂V

+
1
2

Rσ2
R
∂2 f1
∂R2
+ [θR− KRR]

∂ f1
∂R
− λµ j f1

+
1
2

Vσ2
v
∂2 f1
∂V2

− ∂ f1
∂τ
+ λE[(1 + J) f1(t, L + ln(1+ J),R,V) − f1(t, L,R,V)] = 0

(3.3.27)

and

1
2

V
∂2 f2
∂L2
+ [R− λµ j −

1
2

V]
∂ f2
∂L
+ σvρV

∂2 f2
∂L∂V

+
1
2

Vσ2
v
∂2 f2
∂V2

+ [θv − KvV]
∂ f2
∂V

+
1
2

Rσ2
R
∂2 f2
∂R2
+

[
θR− (KR−

σ2
R

B
∂B
∂R

)R

]
∂ f2
∂R

−∂ f2
∂τ
+ λE[ f2(t, L + ln(1+ J),R,V) − f2(t, L,R,V)] = 0 (3.3.28)

with the boundary conditions

fi(T,0, φ) = eiφL(T) for i = 1,2.

The method to find the solution of the PDEs is very common in applied mathematics. We start

with a conjecture solution and insert the solution into the PDE. Finally, we reachthe terms

of the solution. For this reason assume that the solutions of (3.3.27) and (3.3.28) are in the

following form

f1(t, τ,S,R,V, φ) = exp(u(τ) + xr (τ)R(t) + xv(τ)V(t) + iφln[S(t)]). (3.3.29)
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f2(t, τ,S,R,V, φ) = exp(z(τ) + yr (τ)R(t) + yv(τ)V(t) + iφln[S(t)] − ln[B(t, τ)]), (3.3.30)

with u(0) = xr (0) = xv(0) = 0 andz(0) = yr (0) = yv(0) = 0 with B(T,0) = 1.

Finally, we solved the PDEs by writing the conjecture solutions given above,into the equa-

tions of f1 and f2. Starting with f1 we can get the following differentials by taking derivative

of conjecture solution,

∂ f1
∂L
= f1 · (iφ), (3.3.31)

∂2 f1
∂L2

= f1 · (iφ)2 = − f1 · φ2, (3.3.32)

∂ f1
∂V
= f1 · xv(τ), (3.3.33)

∂2 f1
∂V2

= f1 · xv(τ)
2, (3.3.34)

∂2 f1
∂L∂V

= f1 · xv(τ) · (iφ), (3.3.35)

∂ f1
∂R
= f1 · xr (τ), (3.3.36)

∂2 f1
∂R2

= f1 · xr (τ)
2, (3.3.37)

∂ f1
∂τ
= f1 · (u′(τ) + x′r (τ)R(t) + x′v(τ)V(t)), (3.3.38)

and the terms in jump part can be written as
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f1(t, τ, L+ ln(1+ J),R,V) = exp(u(τ)+ xr (τ)R(t)+ xv(τ)V(t)+ iφL+ iφln(1+ J)) = f1 ·eiφln(1+J),

(3.3.39)

where f1 = f1(t, τ, L,R,V).

By writing all of the above solutions into the equation (3.3.27), we get

[
− 1

2
Vφ2 + [R− λµ j +

1
2

V]iφ + σvρVxv(τ) · (iφ) +
1
2

Vσ2
vxv(τ)

2 + [θv − (Kv − σvρ)V]xv(τ)

+
1
2

Rσ2
Rxr (τ)

2 + [θR− KRR]xr (τ) − (u′(τ) + x′r (τ)R+ x′v(τ)V) − λµ j

+λE[(1 + J)eiφln(1+J) − 1]

]
× f1 = 0. (3.3.40)

Equation (3.3.40) has terms with the volatility processV, interest rate processR, and terms

withoutV andRwhich are independent from each other. Therefore each of these terms should

be zero. As a result, we can construct the following equations:

[
− 1

2
φ2 +

1
2

iφ + σvρxv(τ) · (iφ) +
1
2
σ2

vxv(τ)
2 − (Kv − σvρ)xv(τ) − x′v(τ)

]
× V = 0.

The above equation can be written now as

x′v(τ) =
1
2
σ2

vxv(τ)
2 + (iφσvρ − Kv + σvρ)xv(τ) −

φ2 − iφ
2

= 0. (3.3.41)

The terms with respect toR are,

[
iφ +

1
2
σ2

Rxr (τ)
2 − KRxr (τ) − x′r (τ)

]
× R= 0.

Arranging, the terms we get

x′r (τ) =
1
2
σ2

Rxr (τ)
2 − KRxr (τ) −

−2iφ
2
= 0. (3.3.42)

The terms that are not a multiple ofV andR are,
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−λµ j iφ + θvxv(τ) + θRxr (τ) − u′(τ) − λµ j + λE[(1 + J)eiφln(1+J) − 1] = 0.

As a result, the following equation can be formed:

u′(τ) = θvxv(τ) + θRxr (τ) − λµ j [iφ + 1] + λE[(1 + J)eiφln(1+J) − 1]. (3.3.43)

Actually equations (3.3.41) and (3.3.42) are special cases of so called Riccati equations. These

equations are first-order ordinary differential equations and in general form, they are given as:

dy
dx
+ a(x)y2 + b(x)y+ c(x) = 0,

wherea(x), b(x), c(x) are known functions.

If the coefficientsa, b, c are constants in the Ricatti equation as in our case, then it allows a

separation of the variables and the solutiony can be obtained by the general integral

C1 − x =
∫

dy

ay2 + by+ c
.

Detailed information about Ricatti equations can be found in [22].

Lemma 3.3.1 The differential equation y′(s) = A
2y2+ By− C

2 with constants A, B,C and with

initial condition y(0) = 0 has the following solution:

y(s) =
−C

γcoth(γs
2 ) − B

, where γ =
√

AC+ B2. (3.3.44)

Proof. To show that the given ordinary first order differential equation has the above solu-

tion we followed the general method that is writing the conjecture solution into the given

differential equation then showing that, really the equation is satisfied.

Firstly, we take the derivative ofy(s),

y′(s) =
Cγ(1− coth2(γs

2 )) · γ2
(γcoth(γs

2 ) − B)2
. (3.3.45)
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Secondly, we write the terms of the differential equation separately:

A
2

y2 =

AC2

2

(γcoth(γs
2 ) − B)2

, (3.3.46)

By=
−BC(γcoth(γs

2 ) − B)

(γcoth(γs
2 ) − B)2

, (3.3.47)

−C
2
=

−C
2 (γcoth(γs

2 ) − B)2

(γcoth(γs
2 ) − B)2

, (3.3.48)

Subsequently, adding (3.3.46), (3.3.47) and (3.3.48), we get

C
2 (AC+ B2) − C

2γ
2coth2(γs

2 )

(γcoth(γs
2 ) − B)2

=
Cγ(1− coth2(γs

2 )) · γ2
(γcoth(γs

2 ) − B)2
.

This equation is exactly the same as (3.3.45) which isy′(s).

�

At this step another proof from differential equations is needed to solve our problem.

Lemma 3.3.2 Let y(s) = −C
γcoth( γs

2 )−B
, whereγ =

√
AC+ B2, with the derivative y′(s) = A

2y2 +

By− C
2 and with initial condition y(0) = 0, then the integral of this function is as follows:

s∫

0

y(t)dt =
−Bs

A
−

2ln(coshγs
2 − B

sinh( γs
2 )

γ
)

A
. (3.3.49)

Proof. To prove the lemma, we try to show the derivative of the right-hand side of theequation
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(3.3.49) is exactly the same asy(s) given above:

d
ds

(
−Bs

A
−

2ln(coshγs
2 − B

sinh(γs
2 )

γ
)

A

)
=
−B
A
− 2

A

[sinh(γs
2 )γ2 −

B
γ
cosh(γs

2 )γ2

cosh(γs
2 ) − B

γ
sinh(γs

2 )

]

=
−B
A
− γ

A

[1− B
γ
coth(γs

2 )

coth(γs
2 ) − B

γ

]

=
B2 − AC− B2

A(γcoth(γs
2 ) − B)

=
−C

(γcoth(γs
2 ) − B)

= y(s).

Note that the integral may be differ with a constant. However in the statement of the lemma

the initial condition is given to be zero. Therefore the integral is exactly the same as (3.3.49).

�

Finally we reached to our main goal that is finding the solutions of (3.3.41), (3.3.42), (3.3.43)

of by using the two lemmas above. Note that (3.3.41), (3.3.42) are in the form of the differ-

ential equation given in Lemma 3.3.1. Therefore using the lemma we get,

xv(τ) =
−(φ2 − iφ)

γcoth(γτ2 ) − (iφσvρ − Kv + σvρ)
, (3.3.50)

whereγ =
√
σ2

v(φ2 − iφ) + (iφσvρ − Kv + σvρ)2,

and

xr (τ) = −
−2iφ

ηcoth(ητ2 ) + KR
(3.3.51)

with η =
√
σ2

R(−2iφ) + K2
R.

Using Lemma 3.3.2, equation (3.3.43) can be solved as,
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u(τ) = θv

∫
xv(τ) + θR

∫
xr (τ) − τλµ j [iφ + 1] + τλE[(1 + J)eiφln(1+J) − 1]

= θv

[
(Kv − iφσvρ − σvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ − σvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+ θR

[
KR

σ2
R

τ −
2ln

(
cosh(ητ2 ) + KR

sinh(ητ2 )
η

)

σ2
R

]
− λµ j [iφ + 1]τ

+ τλE[(1 + J)eiφln(1+J) − 1]. (3.3.52)

The expectationE[(1 + J)eiφln(1+J)] can be easily calculated due to the fact that ln(1+ J) is

distributed as normal with mean ln(1+ µ j) − 1
2σ

2
j and varianceσ2

j . The general form of the

characteristic function of normal distributionU ∼ N(µ, σ2) is

E(eiφu) = exp(iµφ − 1
2σ

2φ2).

Therefore, by writing the mean and variance of ln(1+J) and arranging the terms as follows,

we can get

E[(1 + J)eiφln(1+J)] = E[eln(1+J)eiφln(1+J)]

= E[e(1+iφ)ln(1+J)]

= E[ei( 1
i +φ)ln(1+J)]

= exp(i(ln(1+ µ j) − 1
2σ

2
j )(

1
i + φ) − 1

2σ
2
j (

1
i + φ)2)

= exp((1+ iφ)ln(1+ µ j) + σ
2
j
iφ
2

(1+ iφ))

= (1+ µ j)
(1+iφ)exp

(
σ2

j
iφ
2

(1+ iφ)

)
. (3.3.53)

Note that in the characteristic function definitionφ is a real number. However, in equation

(3.3.53) we wrote instead ofφ a complex number. We are allowed to this because the normal

distribution has an entire characteristic function. That means instead of a real number a com-
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plex number can be put. More detailed results about analytical characteristic functions can be

examined in [32].

At this step, by using the lemmas and the conjecture solution off2, we can construct the

derivatives as follows:

∂ f2
∂L
= f2 · (iφ), (3.3.54)

∂2 f2
∂L2

= f2 · (iφ)2 = − f2 · φ2, (3.3.55)

∂ f2
∂V
= f2 · yv(τ), (3.3.56)

∂2 f2
∂V2

= f2 · yv(τ)
2, (3.3.57)

∂2 f2
∂L∂V

= f2 · yv(τ) · (iφ), (3.3.58)

∂ f2
∂R
= f2 · yr (τ), (3.3.59)

∂2 f2
∂R2

= f2 · yr (τ)
2, (3.3.60)

∂ f2
∂τ
= f2 · (z′(τ) + y′r (τ)R(t) + y′v(τ)V(t)), (3.3.61)

and the terms in jump part can be written as

f2(t, τ, L + ln(1+ J),R,V) = exp(u(τ) + xr (τ)R(t) + xv(τ)V(t) + iφL + iφln(1+ J) − ln[B(t, τ)]

= f2 · eiφln(1+J), (3.3.62)
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where f2 = f2(t, τ, L,R,V).

By writing the above derivatives into equation (3.3.28) we get

[
− 1

2
Vφ2 + [R− λµ j −

1
2

V]iφ + σvρVyv(τ) · (iφ) +
1
2

Vσ2
vyv(τ)

2 + [θv − KvV]yv(τ)

+
1
2

Rσ2
Ryr (τ)

2 +

[
θR−

(
KR−

σ2
R

B
∂B
∂R

)
R

]
yr (τ) − (z′(τ) + y′r (τ)R+ y′v(τ)V)

+λE[eiφln(1+J) − 1]

]
× f2 = 0. (3.3.63)

From a similar argument done forf1, equation (3.3.63) should have zero multiples of terms

with the volatility processV, interest rate processR and terms withoutV andR which are

independent from each other. As a result, we can construct the following equations:

[
− 1

2
φ2 − 1

2
iφ + σvρyv(τ) · (iφ) +

1
2
σ2

vyv(τ)
2 − Kvyv(τ) − y′v(τ)

]
× V = 0.

The above equation can be written now as,

y′v(τ) =
1
2
σ2

vyv(τ)
2 + (iφσvρ − Kv)yv(τ) −

φ2 + iφ
2

= 0. (3.3.64)

The terms with respect to R are,
[
iφ +

1
2
σ2

Ryr (τ)
2 −

(
KR−

σ2
R

B
∂B
∂R

)
yr (τ) − y′r (τ)

]
× R= 0,

Arranging the terms we get,

y′r (τ) =
1
2
σ2

Ryr (τ)
2 − (KR−

σ2
R

B
∂B
∂R

)yr (τ) −
−2iφ

2
= 0. (3.3.65)

The terms that are not a multiple ofV andR are,

−λµ j iφ + θvyv(τ) + θRyr (τ) − z′(τ) + λE[eiφln(1+J) − 1] = 0.

As a result the following equation can be formed,
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z′(τ) = θvyv(τ) + θRyr (τ) − λµ j iφ + λE[eiφln(1+J) − 1]. (3.3.66)

Using Lemma 3.3.1, equations (3.3.64) and (3.3.65) can be solved as

yv(τ) =
−(φ2 + iφ)

γcoth(γτ2 ) − (iφσvρ − Kv)
, (3.3.67)

whereγ =
√
σ2

v(φ2 + iφ) + (iφσvρ − Kv)2,

and

yr (τ) = −
−2iφ

ηcoth(ητ2 ) + (KR−
σ2

R
B
∂B
∂R)

(3.3.68)

with η =
√
σ2

R(−2iφ) + (KR−
σ2

R
B
∂B
∂R)2.

Using Lemma 3.3.2, equation (3.3.66) can be solved as

z(τ) = θv

∫
yv(τ) + θR

∫
yr (τ) − τλµ j iφ + τλE[eiφln(1+J) − 1]

= θv

[
(Kv − iφσvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ)

sinh(γτ2 )
γ

)

σ2
v

]
+ θR

[
(KR−

σ2
R

B
∂B
∂R)

σ2
R

τ

−
2ln

(
cosh(ητ2 ) + (KR−

σ2
R

B
∂B
∂R)

sinh(ητ2 )
η

)

σ2
R

]
− λµ j iφτ

+ τλE[eiφln(1+J) − 1], (3.3.69)

where the expectation is the characteristic function of ln(1+ J) which is normally distributed.

The form of the characteristic function of normal distribution is given in the previous part

when the differential equations off1 constructed. Therefore,

E[eiφln(1+J)] = (1+ µ j)
iφexp(σ2

j
iφ
2

(iφ − 1)).
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Eventually, the closed form solution of European Call Option Price is obtained. One can

found the results and summary in the next section.

3.4 Final Forms of the European Call Option Prices

In this chapter, the option pricing formula is formed under the asset price process Stochastic

Volatility Stochastic Interest Rate Jump Diffusion Model (SVSI-J). The European Call Option

Price occurred in a Partial Integro-Differential Equation. We solved this equation to get the

solution. To sum up, the call price is found as

C(t, τ) = π1(t, τ,S,R,V)S(t) − KB(t, τ)π2(t, τ,S,R,V), (3.4.1)

where

π j(t, τ,S,R,V) =

1
2
+

1
π

∞∫

0

Re

(
e−iφln[K] f j (t,τ,S,R,V)

iφ

)
dφ, (3.4.2)

and the characteristic functionsf j(t, τ,S,R,V) are

f1(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ − σvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ − σvρ)

sinh(γτ2 )
γ

)

σ2
v

]
+ θR

[
KR

σ2
R

τ

−
2ln

(
cosh(ητ2 ) +

KRsinh(ητ2 )
η

)

σ2
R

]
− λµ j [iφ + 1]τ

+ τλ[(1 + µ j)
(1+iφ)exp(σ2

j
iφ
2

(1+ iφ)) − 1]

+

[
− −2iφ

ηcoth(ητ2 ) + KR

]
R(t)

+

[
−(φ2 − iφ)

γcoth(γτ2 ) − (iφσvρ − Kv + σvρ)

]
V(t) + iφln[S(t)]

)
(3.4.3)
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with γ =
√
σ2

v(φ2 − iφ) + (iφσvρ − Kv + σvρ)2,

η =

√
σ2

R(−2iφ) + K2
R

and

f2(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ)

sinh(γτ2 )
γ

)

σ2
v

]
+ θR

[
(KR−

σ2
R

B
∂B
∂R)

σ2
R

τ

−
2ln

(
cosh(ητ2 ) + (

KR−σ2
R

B
∂B
∂R)

sinh(ητ2 )
η

)

σ2
R

]
− λµ j iφτ

+ τλ[(1 + µ j)
iφexp(σ2

j
iφ
2

(iφ − 1))− 1]

+

[
− −2iφ

ηcoth(ητ2 ) + (KR−
σ2

R
B
∂B
∂R)

]
R(t)

+

[
−(φ2 + iφ)

γcoth(γτ2 ) − (iφσvρ − Kv)

]
V(t)

+ iφln[S(t)] − ln[B(t, τ)]

)
(3.4.4)

with γ =
√
σ2

v(φ2 + iφ) + (iφσvρ − Kv)2 and

η =

√
σ2

R(−2iφ) + (KR−
σ2

R
B
∂B
∂R)2.

The results are the same as the ones in the paper of Bakshi, Cao and Chen.The only difference

is they wrote instead of hyperbolic functions their equals in exponential forms.

This pricing formula is much more applicable when compared to the formula driven by Scott

in the second chapter. The reason is that the number of parameters are much more less, es-

pecially, it is given only as a function of identifiable variables such that all parameters can be

estimated. In the next chapter, the performance of alternative option pricing models is com-

pared. 4 models are chosen to identify the best one from them. These modelsare Black Sc-

holes Model (BS), Stochastic Volatility Model (SV), Stochastic Volatility Jump Model (SVJ)

and Stochastic Volatility Stochastic Interest Rate Model (SVSI). The general form Stochastic

Volatility Stochastic Interest Rate Jump Diffusion (SVSI-J) is not included to the empirical

study. The reason behind is that in the literature this model performance is evaluated and
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results were abundantly poor. Therefore many empirical studies are concentrated on the 4

models we already mentioned (see Bakshi, Cao and Chen for details).

From the general formula mentioned above the call prices of sub models BS,SV, SVJ, SVSI

can be obtained. Since we need to write the call prices in closed form in the parameter

estimation in the next chapter, the sub models prices are established as follows:

If λ is zero in (3.4.3) and (3.4.4), then we get the characteristic functions of SVSI as

f̂1(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ − σvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ − σvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+ θR

[
KR

σ2
R

τ −
2ln

(
cosh(ητ2 ) + KR

sinh(ητ2 )
η

)

σ2
R

]

+

[
− −2iφ

ηcoth(ητ2 ) + KR

]
R(t)

+

[
−(φ2 − iφ)

γcoth(γτ2 ) − (iφσvρ − Kv + σvρ)

]
V(t) + iφln[S(t)]

)
. (3.4.5)

f̂2(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+ θR

[
(KR−

σ2
R

B
∂B
∂R)

σ2
R

τ −
2ln

(
cosh(ητ2 ) + (KR−

σ2
R

B
∂B
∂R)

sinh(ητ2 )
η

)

σ2
R

]

+

[
− −2iφ

ηcoth(ητ2 ) + (KR−
σ2

R
B
∂B
∂R)

]
R(t)

+

[
−(φ2 + iφ)

γcoth(γτ2 ) − (iφσvρ − Kv)

]
V(t)

+ iφln[S(t)] − ln[B(t, τ)]

)
. (3.4.6)

The SVJ model can be obtained by takingR(t) = R (constant). Therefore, the partial deriva-

tives with respect toR will vanish and the bond price will beB(t, τ) = e−Rτ. Hence, the
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solution of the partial differential equation (3.3.27) becomes

f̃1(t, τ,S,R,V, φ) = exp(u(τ) + xr (τ)R+ xv(τ)V(t) + iφln[S(t)]).

The differential equations ofxv(τ) given in (3.3.41) does not differ in this case. However,

(3.3.42) and (3.3.43) become

x′r (τ) = −
−2iφ

2
= 0

and

u′(τ) = θvxv(τ) − λµ j [iφ + 1] + λE[(1 + J)eiφln(1+J) − 1].

For this reason,xr (τ) = iφτ. Finally we can writexr (τ)R = iφτR = −iφln(B(t, τ)). The

coefficients ofu(τ) is the same, only it does not include any terms withR. When the solution

of the differential equation in (3.3.28) is considered,

f̃2(t, τ,S,R,V, φ) = exp(z(τ) + yr (τ)R+ yv(τ)V(t) + iφln[S(t)].

The different part of this equation is that there is no coefficient with ln(B(t, τ)) because we do

not have any derivatives with respect toRalso. From a similar argument the equation (3.3.64)

is the same. However, (3.3.65) and (3.3.66) become

y′r (τ) = −
−2iφ

2
= 0

and

u′(τ) = θvyv(τ) − λµ j iφ + λE[eiφln(1+J) − 1].

Finally, the characteristic functions corresponding to SVJ are:
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f̃1(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ − σvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ − σvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+ τλ[(1 + µ j)
(1+iφ)exp(σ2

j
iφ
2

(1+ iφ)) − 1] − λµ j [iφ + 1]τ

+

[
−(φ2 − iφ)

γcoth(γτ2 ) − (iφσvρ − Kv + σvρ)

]
V(t) + iφln[S(t)]

− iφln(B(t, τ))

)
, (3.4.7)

f̃2(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+ τλ[(1 + µ j)
iφexp(σ2

j
iφ
2

(iφ − 1))− 1] − λµ j iφτ

+

[
−(φ2 + iφ)

γcoth(γτ2 ) − (iφσvρ − Kv)

]
V(t)

+ iφln[S(t)] − iφln[B(t, τ)]

)
. (3.4.8)

The SV model differs from SVJ only with the coefficient λ. By equatingλ to zero in the

characteristic functions of SVJ, the characteristic functions of SV can beformed as

f̌1(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ − σvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ − σvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+

[
−(φ2 − iφ)

γcoth(γτ2 ) − (iφσvρ − Kv + σvρ)

]
V(t) + iφln[S(t)]

− iφln(B(t, τ))

)
, (3.4.9)
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f̌2(t, τ,S,R,V, φ) = exp

(
θv

[
(Kv − iφσvρ)τ

σ2
v

−
2ln

(
cosh(γτ2 ) + (Kv − iφσvρ)

sinh(γτ2 )
γ

)

σ2
v

]

+

[
−(φ2 + iφ)

γcoth(γτ2 ) − (iφσvρ − Kv)

]
V(t)

+ iφln[S(t)] − iφln[B(t, τ)]

)
. (3.4.10)
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CHAPTER 4

THE PERFORMANCE OF ALTERNATIVE OPTION PRICING

MODELS ON GENERAL ELECTRIC STOCK DATA

There are many studies to construct mathematical description of financial markets and deriva-

tive investment instruments. The classical model for stock price fluctuationsis the Black-

Scholes model. The model assumes that the implicit volatility is constant for all strike prices

for options on the same underlying asset with the same remaining time to maturity. How-

ever, the actual functional relationship between implicit volatility and strike price is typically

shaped like a lopsided smile. This functional relationship is therefore often referred to as the

”volatility smile”. The curve of the volatility smile indicates the deviation of the market’s

probability density function from the log-normal distribution assumed in the Black Scholes

Model. Volatility smile is the most significant problem of this model. The other deviations of

Black Scholes Model from the market behavior are the empirical distributions of log-returns

are ’fat-tailed’ and ’sharp-peaked’ compared with normal distributions. Also price jumps of 4

or more standard deviations occur regularly in stock markets, but should be very rare events

if log-returns are normal distributed.

The purpose of the empirical analysis in this chapter of this study is to measurethe improve-

ments of the model generalization like stochastic volatility, stochastic volatility with jump

and stochastic volatility, stochastic interest rate rather than using Black Scholes model. We

are trying to answer the questions: Is it really worthy to use models complicatedthen Black

Scholes? Is the gain, if any, worth the additional complexity or implementational costs?
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4.1 Data Description

We used the Options on the Stock of General Electric in our empirical performance study.

General Electric Company was founded in 1892 and operates as a technology, media and fi-

nancial services company worldwide. Its Capital Finance segment offers commercial lending

and leasing products to manufacturers, distributors, and end-users ofequipment of capital as-

sets; consumer financial services to consumers and retailers; capital and investment solutions

for real estate; commercial finance to energy and water industries; and commercial aircraft

leasing and finance, and fleet and financing solutions. The stock and its options are traded

actively in Chicago Board Options Exchange. Observe that, many empiricalperformance

studies are constructed on S&P 500 index. However we chose the stock data on General Elec-

tric on purpose. Because Bakshi, Cao, and Chen (1996) suggest that their index option results

may not hold for single stock options. The data set is collected on 20 January 2011 at 14:05.

At that time the General Electric stock price was 18.43 dollars. The data contains options

with 7 different maturities. The days to expiration of these options are changing from20 days

up to 515 days. Time to expiration of the options is founded by dividing days toexpiration

to 360. For the risk free interest rate the 3 month T-bill Discount rate 0.15 % isused. For

dividend payments Forward Annual Dividend Yield of General Electric Stocks 2.8 % is used.

Some exclusion filters are applied to construct the option prices’ data set. Firstly, options

with unrealistic implied volatilities are ignored so that accurate results can be found. Sec-

ond, as options with less than six days to expiration may induce liquidity-related biases, they

are excluded from the sample. After this filtration, the number of data set is reduced to 75

observations over all. The data set can be found in Appendix A.

The option data is divided into several categories according to either moneyness or term to

expiration.S(t)− K is called the time-t intrinsic value of a call. A call option said to be at the

money (ATM) if S/K changes in between 0.97 and 1.03; out of the money (OTM) ifS/K is

less than 0.97; and in the money (ITM) ifS/K is greater than 1.03. We applied a finer partition

which resulted in 6 moneyness categories. By the term to expiration, we classified the option

contract into 3 categories. The first one is short term options with days to expiration less than

60 days. The second type is medium term options that has days to expiration between 60

and 180 days. Finally, there are long term options with days to expiration greater than 180

days. For each of these categories, the following table can be constructed to show the sample
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properties of the data. Under each moneyness and maturity category the average of option call

prices are taken.S denotes the general electric stock price when the data is collected.K is the

strike price of options contract. OTM denotes out of the money options, ITMcorresponds to

in the money options and ATM refers to at the money options.The numbers in parenthesis in

Table 4.1 are the number of observations in each category.

Table 4.1: The Sample Properties of General Electric Stock Options

Moneyness(S/K) Days to Expiration

< 60 60− 180 ≥ 180

< 0.94
$0.06 $0.25 $0.68

(8) (12) (9)

0.94− 0.97 - - -

0.97− 1.00
$0.37 $0.87 -

(2) (3) (-)

1.00− 1.03
$0.85 $1.373 -

(2) (3) (-)

1.03− 1.06
- - $2.63

(-) (-) (2)

≥ 1.06
$3.19 $4.572 $7.54

(8) (18) (8)

According to Table 4.1, the average call price ranges from $0.06 to $7.54. ITM and ATM

options respectively taking up 48 percent and 13.3 percent of the total sample.

57



4.2 Structural Parameter Estimation

For the empirical work to follow, we concentrate on the four models: the BS, the SV, the SVSI,

and the SVJ. The analysis is intended to present what each generalizationof the benchmark BS

model can really buy in terms of performance improvement and whether eachgeneralization

produces a worthy trade off between benefits and costs. To get a sense of what we should look

for in any desirable alternative to the BS model, the implied volatility in Table 4.2 is obtained

by inverting the Black-Scholes model separately for each call option contract by using the

MATLAB comment ‘blsimpv’. The implied volatilities of individual calls are then averaged

within each moneyness-maturity category to produce an average implied volatility.S denotes

the spot General Electric stock level, andK is the exercise price.

Table 4.2: Implied Volatility from the Black-Scholes Model

Moneyness(S/K) Days to Expiration

< 60 60− 180 ≥ 180

< 0.94 %36.58 %28.96 %30.85

0.94− 0.97 - - -

0.97− 1.00 %29.35 %29.48 -

1.00− 1.03 %30.26 %31.05 -

1.03− 1.06 - - %33.6

≥ 1.06 %58.66 %49.17 %56.21

The findings are consistent with those in the existing literature (e.g., Bates (1996), Bashki-

Cao-Chen (1997a)). Clearly, regardless term to expiration, the BS impliedvolatility exhibits

a strong U-shaped pattern (smile) as the call option goes from deep ITM to ATM and then to

deep OTM with the deepest ITM call-implied volatilities taking the highest values. Further-

more, the volatility smiles are the strongest for short-term options, indicating that short-term

options are the most severely mispriced by the BS model and present perhaps the greatest

challenge to any alternative option pricing model. The maturity-related-biasescan be seen

clearly in Figure 4.1. In the figure, the short-term options (days to expiration less than 60
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days) shows the strongest smile if we compare it with medium-term (days to expiration be-

tween 60 and 180 days) and long-term options (days to expiration greateror equal to 180

days). The MATLAB m-file regarding to Figure 4.1 can be found in the Appendix.
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Figure 4.1: Implied Volatility Graph of Black-Scholes Model

Any acceptable alternative to the BS model must show an ability to properly price non-ATM

options, especially short-term OTM calls. As the smile evidence is indicative ofnegatively-

skewed implicit return distributions with excess kurtosis, a better model must bebased on a

distributional assumption that allows for negative skewness and excess kurtosis [1].

4.2.1 Parameter Estimation Procedure

In applying option pricing models, the option implied prices are under risk-neutral distribu-

tions, while those estimated from observed time series data are for the true distributions. Thus,

before estimating the parameters, we need to change the measure or use someresults from

the literature. To solve this problem, we rely on the general-equilibrium models of Bakshi
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and Chen (1997b) and Bates (1996) in which the factor risk premiums are proportional to

the respective factors and, consequently, the processes forV(t), R(t), q(t) andJ(t) under the

true probability measure share the same stochastic structure as their counterparts under the

risk-neutral measure. Specifically,θv, σv, ρ, θR, σR, σ j are the same under either probability,

only KR,Kv, λ, µ j will change when the probability measure changes from the risk- neutral

to its true counterpart. Let these parameters under the true probability measure be respec-

tively denoted byKR,Kv, λ, µ j . However, according to the study of Bates (1991), when the

risk aversion coefficient of the representative agent is bounded within a reasonable range,the

parameters of the true distributions will not differ significantly from their risk-neutral counter-

parts [1]. For this reason, we will use the exact theoretical prices under risk neutral measure

in parameter estimation procedure instead of true measure.

Generally, we faced with the difficulty that the spot volatility and the structural parameters

are unobservable in option pricing models. Consider the SVSI for instance. The strike

price and the term to expiration are specified in the contract, while the spot stock price, the

spot interest rate, and the matchingT-period bond price can be taken from published mar-

ket data. But, the spot volatility (conditional on no jump), its related structuralparameters

KR, θR, σR,Kv, θv, σv, ρ need to be estimated. Although the volatility risk premium is inter-

nalized in parameter estimates in this study, in some other works like [31] the risk premium

is estimated explicitly. However, in general, an explicit estimate of volatility risk premium is

not required to implement the models with stochastic volatility. The type of argumentssimilar

in this study are therefore more preferable and the examples can be seen inmany other works

like Bates (1996), Longstaff (1995), etc.

There are many methods to estimate parameters in the literature. Examples include,maxi-

mum likelihood, generalized method of moments, etc. Each method holds its on advantages

and disadvantages in it. Generally, the improvement of alternative models andpractices on

these models end up with the parameter estimation methods that are less dependedon his-

torical data. This approach reduced the data requirement and the performance of the model

is significantly improved. In the estimation procedure of this study, we focused on the mini-

mization of sum of square dollar pricing error. This error can be constructed in the following

steps.

Step 1: CollectN option prices on the same stock taking from the same day, for anyN greater
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than or equal to one plus the number of parameters to be estimated.

Step 2: Let Ti andKi be the time to expiration and the strike price of thei-th option. Entitle

the observed call price obtained from the market asC̃i(t,Ti ,Ki) andCi(t,Ti ,Ki) its model

price as determined from the formulas of the previous chapter. For example, for SVSI model

price the characteristic function equation given in (3.4.5) and (3.4.6) should be used withS(t)

andR(t) taken from the market.

Step 3: Define the difference asHi [V(t),Φ] = C̃i(t,Ti ,Ki)−Ci(t,Ti ,Ki) where the parameters

in general areΦ = (KR, θR, σR,Kv, θv, σv, ρ, λ, µ j , σ j) and V(t) is the spot volatility. For

instance, for SVSI the only parameters areΦ = (KR, θR, σR,Kv, θv, σv, ρ) and spot volatility

V(t).

Step 4: Find the spot volatilityV(t) and parametersΦ that minimizes:

N∑

n=1

|Hn[V(t),Φ]2|. (4.2.1)

The objective function in (4.2.1) is defined as the Sum of Square Error of Dollar Pricing (SSE).

The disadvantage of this objective function is that it may force the estimation to assign more

weight to relatively expensive options like ITM and long term options. An alternative could

be to minimize the sum of squared percentage pricing errors of all options, but that would

lead to a more favorable treatment of cheaper options like OTM. As it can be seen, each

estimation procedure has its own advantages and disadvantages. Based on this consideration,

we choose to adopt the objective function in (4.2.1). In addition, applying such an implied

parameter procedure gives equal chance to each model besides BS model. Note that there are

many methods and technical programing languages to minimize the sum of squareerror. A

summary of these techniques are examined in the next chapter. In the literature many studies

which measures the performance of these techniques exist. One of this studies can be found in

[30]. In our study, we used DIRECT algorithm together with MATLAB function, lsqnonlin.
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4.2.2 Some Algorithms and Methods to Minimize SSE

4.2.2.1 MATLAB lsqonlin

The least-squares, non-linear optimizer of MATLAB is the function lsqnonlin(fun,x0,lb,ub).

It minimizes the vector-valued function, fun, using the vector of initial parameter values, x0,

where the lower and upper bounds of the parameters are the vectors lb and ub, respectively.

This method requires the user-defined function which is a vector rather than computing the

value of sum of squares. In our problem the vector ‘fun’ is



H1[V(t),Φ]

H2[V(t),Φ]
...

HN[V(t),Φ]



·

The result produced by lsqnonlin is dependent on the choice of x0, the initial estimate. This

is, therefore, not a global optimizer, but rather, a local one. More detailed information about

lsqnonlin can be found in [8] and [9].

4.2.2.2 Excel Solver

The standard Solver supplied with Excel contains an optimizer that can be used for opti-

mization procedure. It uses a Generalized Reduced Gradient (GRG) method and, hence, is a

local optimizer. The calibration results are therefore sensitive to the initial estimates of the

parameters. The details can be provided from [27].

4.2.2.3 Simulated Annealing (SA) and Adaptive Simulated Annealing (ASA)

Simulated Annealing is a probability-based, non-linear, optimizer inspired by the physical

process of annealing. This method statistically guarantee finding an optimal solution. It were

Kirkpatrick and Vecchi (1983) who realized the algorithms application to optimization in

general.

Adaptive Simulated Annealing (ASA) was developed by the theoretical physicist Lester Ing-
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ber. ASA is similar to SA except that it uses statistical measures of the current performance

of the algorithm to modify its control parameters i.e. the annealing scheme. For adetailed

discussion on ASA the reader is referred to (Ingber 1995).

4.2.2.4 Direct Algorithm

DIRECT is an algorithm developed by Donald R. Jones et al. [20] for finding the global min-

imum of a multi-variate function subject to simple bounds, using no derivative information.

Instead, the algorithm samples points in the domain, and uses the information it has obtained

to decide where to search next. In fact, this algorithm is a modification of the standard Lips-

chitzian approach that eliminates the need to specify a Lipschitz constant. Thedetails about

the Lipschitz constant and the relation with the algorithm can be provided from[14]. This

algorithm solves the type of optimization problem given as

min
x

f (x) such that xL ≤ x ≤ xU

with f (x) ∈ R andx, xL, xU ∈ RN .

The first step in the DIRECT algorithm is to transform the search space to bethe unit hyper-

cube. In geometry, a hypercube is a n-dimensional analogue of a square (n=2) and a cube

(n=3). The function is then sampled at the center-point of this cube. The hypercube is then

divided into smaller hyperrectangles whose centerpoints are also sampled.However, when no

Lipschitz constant is used, we can not understand the definition of convergence except when

the optimal value of the function is known. This problem is solved by a user defined iteration

number. The algorithm typically terminates when a user-supplied budget of function evalu-

ations is exhausted. There are many prepared packages to use the DIRECT algorithm in the

analysis of studies. Some examples are in the paper of Finkel (2003) and Bjorkman, Holm-

strom (1999). In our study, we used the package given in [5]. In this paper, there is a function

called gblSolve which applies the DIRECT algorithm into your function in MATLAB. The

function that we want to minimize is defined as a real valued function under thename ‘fun’.

Then the lower bound for the parameter setxL and upper boundxU is defined in the vector

form. After that the global number of iteration is specified in the name GLOBAL.Finally the

printing level of the results in the screen of MATLAB is chosen. Then the user can run the

algorithm. The types of printing levels defined under the name PriLev in the algorithm are:
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PriLev≥ 0 Warnings,

PriLev> 0 Small info,

PriLev> 1 Each iteration info.

The output is specified with the name Result withResult= gblS olve( f un, xL, xU ,GLOBAL,

PriLev). If the commandfopt = Result. fk is typed in MATLAB, the minimum value of

the function that you want to minimize can be reached. In addition, with the command

xopt = Result.xk the estimated parameters can be found. To understand the idea behind Direct

algorithm and this specific MATLAB code, the following example from [5] canbe examined.

Create a m.file in MATLAB under the name ’funct1’ as:

f unction f = f unct1(x);

f = (x(2)− 5 ∗ x(1)2/(4 ∗ pi2) + 5 ∗ x(1)/pi − 6)2 + 10∗ (1− 1/(8 ∗ pi)) ∗ cos(x(1))+ 10;

Then write the following commands on the screen of MATLAB:

f un=′ f unct1′;

xL = [−5 0]′;

xU = [10 15]′;

GLOBAL.iterations= 20;

PriLev= 2;

After that call the gblSolve function, which can be provided from the appendix of the paper

[5], we get

Result= gblS olve( f un, xL, xU ,GLOBAL,PriLev);

When 20 iterations are finished we type the following commands:

fopt = Result. fk

xopt = Result.xk

If you want to see a scatter plot of all sampled points in the search space, do:
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C = Result.GLOBAL.C;

plot(C(1, :),C(2, :),′ .′);

The sampled points in the algorithm can be seen in Figure 4.2 for this example. Inthe

algorithm, firstly, the domain of the function is transformed to a unit rectangle. Then at the

center of this rectangle, the function is sampled. After that, the rectangle is divided into

smaller ones and the sampling continued. The stopping time of this procedure is determined

by the user defined function ”GLOBAL.iterations”. In this example the numberof iterations

is defined as 20. If you run the commands in MATLAB, you can see that the total number of

sampled points is 319.

−5 0 5 10
0

5

10

15

Figure 4.2: Sampled Points with Direct Algorithm

The results are as follows:

fopt = 0.3979,

xopt = [3.1417 2.2500].
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In our study, we firstly applied the DIRECT algorithm and then used the resulted parame-

ters in lsqnonlin as initial values. The reason behind this way of parameter estimation is that

lsqnonlin function is sensitive to the initial value. Therefore, we used this function when

we are sure that the initial estimates are quite close to the optimal parameter set. Inaddi-

tion, note that after finding the characteristic functions formula for each model, we have to

invert them by using Fourier Inversion Formulas given in (3.4.2). That means, we encounter

with the difficulty to calculate the integral of a complex function in the analysis. We exceed

this problem by using the numerical integration function ”quadl” in MATLAB. The function

quadl(@fun,a,b) implements an adaptive Gauss Lobatto quadrature rule on the function ‘fun’

over the interval [a,b] wherea andb are finite real numbers. A problem arises because quadl

evaluates only proper integrals. However, in our problem the integral boundaries were 0 and

∞. For sufficiently largeb, the integral can be evaluated with the required accuracy. Therefore

we take the integral only from 0 to 200. To save space only SVSI parameterestimation proce-

dure for short-term options is given in the Appendix as m-files. In A.3, the objective function

that is used in DIRECT Algorithm can be found with the m.file name ”objvolintshort”. Note

that the total number of iterations is determined as 20 in the user defined function. According

to this number of iterations, the number of sampled points is 825. The DIRECT Algorithm

itself can be provided from A.4 which calls the gblSolve. We used the commandsas an m.file

but these commands can be written on the screen on MATLAB. In A.5, the ”lsqnonlin” func-

tion is called back. Again these commands can be used directly. The objectivefunction of

lsqnonlin function can be examined in A.6 with m.file name ”lsqvolintshort”. Finally, the for-

mulation of call option model price of SVSI is in A.7 with the name ”callstockvolint”. Note

that this model price is derived theoretically in the previous chapter.

4.3 Implied Parameters and In Sample Performance

In implementing the above procedure the parameters in the groups under ”AllOptions”,

”Short-Term Options”, and ”At-the-Money Options” are obtained by respectively using all

the available options, only short-term options (days to expiration< 60), and only ATM op-

tions (0.97 < S/K < 1.03) in the day as input into the estimation. For each group the SSE is

noted. The structural parameter for each submodel is recorded. The structural parametersKv,

θv/Kv andσv are respectively the speed of adjustment, the long-run mean, and the variation
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Table 4.3: Implied Parameters of All Options

Parameters All Options

BS SV SVSI SVJ

Kv 0.8531 0.85 0.86

θv 0.5 0.6493 0.4648

σv 3.4141 4.4803 3.41

ρ -0.5594 -0.6164 -0.55

θR 0.0139

KR 5

σR 0.162

µ j 0.0864

σ j 0

λ 1

V(t) 32.76% 13.08% 14.5% 12.17%

SSE 3.7306 0.9084 0.9871 0.8633

coefficient of the diffusion volatilityV(t). Similarly, KR, θR/KR andσR are respectively the

speed of adjustment, the long-run mean, and the variation coefficient of the spot interest rate

R(t). The parameterµ j represents the mean jump size,λ the frequency of the jumps per year,

andσ j the standard deviation of the logarithm of one plus the percentage jump size. BS, SV,

SVSI, and SVJ, respectively, stand for the Black Scholes, the stochastic volatility model, the

stochastic volatility and stochastic interest rate model, and the stochastic volatility model with

random jumps.

These reported statistics are quite informative about the internal working of the models in

three tables. As such, several observations are in order. Firstly, the implied spot volatility

among the SV, and the SVSI models are close to each other. Only the implied spotvolatility

of BS is higher from the others in every category. In fact, this closenessin implied volatility

is somewhat surprising. It should, however, be recognized that evensmall differences in

volatility can lead to significantly different pricing and hedging results.
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Table 4.4: Implied Parameters of Short-Term Options

Parameters Short-Term Options

BS SV SVSI SVJ

Kv 3.1379 3.1380 3.8262

θv 0.778 0.6118 0.3716

σv 4.9989 5.2716 4.99

ρ -0.4383 -0.5001 -0.43

θR 0.1645

KR 5

σR 0.1

µ j 0.0843

σ j 0.0001

λ 0.9997

V(t) 31.48% 14.39% 15.81% 15.89%

SSE 0.1618 0.05 0.0546 0.0475

Second, to understand the difference of estimated structural parameters for the SV, the SVSI,

and the SVJ models (each assuming stochastic volatility) recall that in the SV model the skew-

ness and kurtosis levels of stock returns are controlled mostly by correlation ρ and volatility

variation coefficientσv, respectively. The SVSI model relies on the same flexibility, with the

additional caveat of having stochastic interest rates to ensure more proper discounting of fu-

ture payoffs. In addition to inheriting all features of the SV, the SVJ model also allows price

jumps to occur, which can internalize more negative skewness and higher kurtosis without

making other parameters unreasonable. Therefore, note from the Tables 4.3, 4.4 and 4.5 that

1) The implied speed-of-volatility-adjustmentKv is the highest for the SVJ.

2) The variation coefficientσv and the magnitude ofρ are the lowest for the SVJ, then SV and

after that SVSI.

These estimates together present the picture of the pricing structure of the calls. Firstly, the
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Table 4.5: Implied Parameters of At-The-Money Options

Parameters At-the-Money Options

BS SV SVSI SVJ

Kv 0.0002 0.0031 1.7657

θv 0.1536 0.4198 0.1667

σv 0.8561 2.8547 0.8028

ρ -0.4776 -0.48 -0.4439

θR 0.0462

KR 2.2275

σR 0.0002

µ j 0.0185

σ j 0.5

λ 0.1667

V(t) 30.32% 8.74% 11.59% 8.33%

SSE 0.0129 0.0026 0.0059 0.0032

SVJ model’s demand on theV(t) process is the least strict as it requires both the lowestσv

and the lowestρ (in magnitude). However, the SVSI requiresσv andρ to be respectively

as high as 4.4803 and -0.6164 for all options. The SVJ model attributes part of the implicit

negative skewness and excess kurtosis to the possibility of a jump occurring with an average

frequency of 1 times per year and an average jump size of 8.64 percent. Secondly, one would

expect that adding three extra parameters (related to the interest rate process) will advance

the performance of the model. This poor performance by the SVSI can be examined in other

measures as well. These results show that adding more parameters to the model does not

necessarily better the performance. Finally, by looking at the dollar pricingerrors (SSE) one

can also see the similar performance of SVSI when compared to SV. From the”All Options”

panel of Table 4.3, the SSE is 3.7306 for the BS and 0.8633 for the SVJ, while it is 0.9084

and 0.9871 for the SV and the SVSI, respectively. Allowing jumps with the model SVJ

improves in-sample fit further. The cliff between the SSE of BS model and the other models
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is generally the case. In our study the number of observations is only 75. If you have a

larger data set as in the paper of Bashki, Cao and Chen (1996), this huge cliff becomes more

clear. Thirdly, if we compare short-term and all options implied parameters, the volatility

coefficientσv is higher for each model than before, meaning that for the short-term options

to be priced properly the volatility process needs to be more volatile than for alloptions of

any maturity to be priced. Moreover, to price the observed ATM option prices properly, all

the three models with stochastic volatility would require volatility shocks to be less negatively

correlated with underlying price changes. Finally, as expected, the respective in-sample fits of

the four models of short-term options and at-the-money options are better than when the same

one set of parameters is applied to all options. This is reflected by the significant reduction in

the SSE of each model.

The above results however show something that we do not want to get. That is, if each can-

didate option pricing model were correctly specified, the six sets of option prices, formed

across either moneyness or maturity, should not have resulted in different implied parame-

ter/volatility values. Tables 4.3, 4.4 and 4.5 indicate that every candidate model is misspeci-

fied.

4.4 Out-of-Sample Performance of Alternative Models

We have shown that the in sample fit of option prices is increasingly better as we extend from

the BS to the SV and then to the SVJ model. However, going from the SV to the SVSI does

not necessarily improve the fit much further. In fact, this increasingly better fit might simply

due to having an increasingly larger number of structural parameters. Tolower the impact

of this connection, we turn to examining each model’s out-of-sample cross-sectional pricing

performance. The presence of more parameters may actually cause overfitting, whereas the

structural fitting does not get better. In the following tables, we measured this impact.

Firstly, we calculated model prices of each call option using the parameters estimated for all-

options. Then we subtracted the model price from its observed counterpart which is named as

the pricing error. To calculate the absolute pricing error, we took the absolute value of each

pricing error. In addition, the percentage pricing error is calculated by dividing the pricing

error (model price-market price) to market price. This procedure is repeated for every call in
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the sample, then the average of these errors are recorded. These steps are separately followed

for the BS, the SV, the SVSI, and the SVJ models. Table 4.6 reports the absolute pricing errors

whereas in Table 4.7 the percentage pricing errors are examined. The minus sign in percentage

pricing error implies that in that category the model systematically overprice theoptions. The

plus sign on the contrary means that the options are underpriced. Note thatpricing errors are

obtained ”All Option” based on the implied parameter/ volatility values. In our main reference

Bashki, Cao and Chen (1996) these results are reported in three different categories which are

”Maturity-Based”, ”Moneyness-Based”, ”All-Option-Based”. For our study, one category is

enough to measure the out of sample performance of alternative models.

Table 4.6: Absolute Pricing Errors

Moneyness(S/K) Model Days to Expiration
< 60 60− 180 ≥ 180

< 0.94

BS $0.019 $0.105 $0.107
SV 0.010 0.029 0.059

SVSI 0.015 0.052 0.091
SVJ 0.006 0.028 0.060

0.94− 0.97 - - -

0.97− 1.00

BS 0.071 0.127 -
SV 0.033 0.0961 -

SVSI 0.051 0.126 -
SVJ 0.02 0.063 -

1.00− 1.03

BS 0.052 0.062 -
SV 0.054 0.040 -

SVSI 0.044 0.064 -
SVJ 0.040 0.06 -

1.03− 1.06

BS - - 0.068
SV - - 0.023

SVSI - - 0.028
SVJ - - 0.042

≥ 1.06

BS 0.11 0.169 0.508
SV 0.064 0.117 0.168

SVSI 0.066 0.117 0.166
SVJ 0.062 0.107 0.158

By starting with the absolute and the percentage pricing errors, respectively given in Tables

4.6 and 4.7 we reached the following results. First, both pricing error measures rank the SVJ

model first, the SV second, the SVSI next, and the BS last, except that fora few categories

either the SV or the SVSI performs slightly better than the others. According tothe percentage

pricing errors, the SVSI does slightly better than the SVJ in pricing the long-term deepest ITM
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calls (days to expiration> 180). This is not surprising since the long-term deep ITM calls to

be the most sensitive to interest rates. Moreover, according to both measures, the SVJ surpass

the SVSI in pricing deep OTM calls (Moneyness< 0.94) which is also expected. In contrast

to this result, in [1] the performance of SVSI was better than SVJ while pricingdeep OTM

calls.

Table 4.7: Percentage Pricing Errors

Moneyness(S/K) Model Days to Expiration
< 60 60− 180 ≥ 180

< 0.94

BS %22.96 %-45.34 %-18.58
SV 32.33 -27.52 -20.22

SVSI -88.24 0.052 -35.54
SVJ -35.47 0.028 -23.69

0.94− 0.97 - - -

0.97− 1.00

BS -18.51 -15.04 -
SV 9.11 11.38 -

SVSI 13.96 15.04 -
SVJ 5.71 7.48 -

1.00− 1.03

BS -6.06 -4.83 -
SV -6.45 2.44 -

SVSI -5.39 4.27 -
SVJ -4.80 4.98 -

1.03− 1.06

BS - - 22.99
SV - - 0.96

SVSI - - 1.17
SVJ - - 1.65

≥ 1.06

BS 3.71 3.22 6.82
SV -0.21 -1.39 0.30

SVSI -0.68 -1.51 -0.23
SVJ 0.19 -0.76 0.94

Second, regardless of option moneyness or maturity, adding stochastic volatility produces a

significant improvement over the BS model. This improvement reduces the absolute pricing

errors up to 68 percent in the striking cases like deep ITM calls. To see thisimportant progress

take a OTM call with moneyness less than 0.94 and with days to expiration between 60 to 180.

From Table 4.1 the average price for such a call is $0.25. When the BS is applied to value

this call, the resulting absolute pricing error is, on average, $0.105 as shown in Table 4.6, but

when the SV is applied, the average error goes down to $0.02. Thus, Table 4.6 suggests that

once stochastic volatility is added to the model adding other features lead o a second order

development. Thirdly, the absolute error becomes greater when we beganfrom short term
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followed by medium and finally came to long term options. This result is valid for agiven

moneyness category and regardless of the pricing model. Looking at the percentage pricing

error measure, the BS exhibits clear moneyness and maturity related biases.In addition, from

Table 4.7 it can be seen that there is relatively large mispricing of short termoptions as well as

OTM options. The reason behind this result may be the objective function in equation (4.2.1)

is biased in favor of more expensive calls (i.e., long-term and ITM calls). As we try to estimate

each parameter by minimizing the sum of squared dollar pricing errors, this factor can enlarge

the extent of poor fit for short term and OTM options in each pricing model.However, this

possible enlargement should not affect the overall conclusion regarding the pricing structure

of short-term and OTM options relative to others. The reason is that in Figure 4.1, even when

the BS implied volatility is estimated for each option individually (no weighted average),

the volatility smile is clearly the sharpest for short-term options. Finally, the magnitude of

mispricing varies dramatically across the models, with the BS producing the highest and the

SVJ the lowest errors. Among the four models, the SVJ shows the best abilityin improving

the pricing of short-term options. The same conclusions can be reached regarding the models

even according to the percentage pricing errors.

Note that in judging the alternative models, some other yardsticks can be employed. The first

one may be showing the consistency of implied structural parameters with thoseimplicit in

the relevant times-series data. For more details, [1] and [4] can be examined. Secondly, the

hedging errors can be used to measure how well a model captures the dynamic properties of

option and underlying security prices. In fact, our theoretical model andclosed form solution

lead to useful analytical hedge ratios, and contains many known option formulas as special

cases.
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CHAPTER 5

CONCLUSION

In this study, we have presented two totally different approaches of stochastic volatility and

stochastic interest rate model with jumps to the derivation of closed-form European call option

problem and used one of these approaches in the empirical analysis. In the first approach, sug-

gested by Scott [33], the characteristic function is obtained via martingale methods. Conse-

quently, by using the inversion formula, the distributions and call option prices are calculated.

The other approach proposed by Bashki, Cao and Chen [1] give the option pricing formula

and the spot asset price dynamics by constructing partial integro-differential equations. In

the empirical analysis, we established 4 alternative models with the help of the closed-form

solutions obtained in the second approach. The performance of these models are measured

on General Electric Stock Option Data from two perspectives: (1) in-sample fit and (2) out-of

sample performance.

In the theoretical part of the study, we have derived the closed-form European call option

prices in both approaches step-by-step with the proofs. On the other hand, in the applica-

tion part, the performances of Black Scholes Model, Stochastic Volatility Model, Stochastic

Interest Rate Model, Stochastic Volatility and Stochastic Interest Rate Modelare compared.

According to our results, incorporating stochastic volatility and jumps improvesmodels on

stock options significantly. However, adding stochastic interest rate did not enhance the per-

formance as one would expect. In-sample fit performance is highest forSVJ model then for

SV and SVSI and least for BS Model. Out-of sample performance ranks the SVJ model first,

the SV second, the SVSI next and the BS last. Only for long-term deep in-the money options

SVSI shows better performance then the other models. The short-term options priced best

by SVJ model which shows the greatest challenge to any alternative option pricing model.
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Moreover, adding volatility into the model improves the out-of sample performance signif-

icantly. Therefore, once stochastic volatility is added, adding other features lead a second

order improvement.

In this thesis, the author looked for understandable arrangements which could serve the inter-

ested reader for further use of the original works. Furthermore, the application part is con-

structed to guide the readers how much each generalization of alternative models improves

option pricing.

Because of the time constraint of this study, we have left the hedging of the models and

measuring their performance in this perspective for future works. In fact, the results for index

options suggested by Bashki, Cao and Chen [1] has not been applied ona single stock option

yet. Therefore, the analysis on single stock options in this study can be improved with some

other performance measures. In addition to these, the techniques to price path dependent

options can be an extension of the methods given in the thesis.
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[32] Sato, K. (1999).Lévy Processes and Infinitely Divisible Distributions. Cambridge Uni-
versity Press.

[33] Scott, L. O. (1997).Pricing Stock Options in a Jump-Diffusion Model with Stochastic
Volatility and Interest Rates: Applications of Fourier Inversion Methods. Mathematical
Finance 7, pp. 413-426.

[34] Shreve, S. E. (2004).Stochastic Calculus for Finance II- Continuous-Time Models.
Springer-Verlag Press.

[35] Stein, E., Stein J. (1991).Stock Price Distributions with Stochastic Volatility. Review of
Financial Studies 4, pp. 727-752.

77



APPENDIX A

Table A.1: The General Electric Option Price Data

Strike/Maturity 18.02.11 18.03.11 15.04.11 17.06.11 16.09.11 20.01.12 18.01.13
7.5 - - - - - 11.1 11.13
10 - - 8.45 8.6 8.57 8.55 8.6
12 - - - 6.45 - - -

12.5 - - - - - 6.15 6.3
13 - 5.4 - 5.65 5.45 - -
14 - 4.65 4.45 4.85 4.55 - -
15 3.55 3.5 3.65 3.65 3.55 4 4.5
16 2.52 2.56 2.66 2.76 2.96 - -
17 1.65 1.66 1.81 2.04 2.19 - -

17.5 - - - - - 2.27 2.99
18 0.77 0.92 1.1 1.33 1.69 - -
19 0.30 0.44 0.61 0.85 1.15 - -
20 0.11 0.18 0.28 0.5 0.76 1.13 1.84
21 0.03 0.09 0.15 0.27 0.47 - -
22 - - 0.08 - - - -

22.5 0.01 0.03 0.12 0.25 0.51 1.1
23 - - 0.03 - - - -
25 0.01 0.02 0.01 0.05 - 0.23 0.73
30 - - - - - 0.08 0.29
35 - - - - - - 0.18

The m.file used to get the Figure 4.1 is as follows:
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Table A.2: The Implied Volatility Graph’s M-File

l=[1.4177;1.3164;1.2287;1.1519;1.0841;1.0239;0.97;0.9215;0.8776;0.8191;0.7372];
m=[76;75;58;45;39;30;29;30;31;36;49];
plot(l,m,char(’–’))
hold on
z=[1.843;1.5358;1.4177;1.3164;1.2287;1.1519;1.0841;1.0239;0.97;0.9215;0.8776;0.8377;
0.8191;0.8013;0.7372];
k=[84;56;51;48;41;37;33;31;29;28;28;30;28;29;32];
plot(z,k,[char(’m’),char(’-.’)])
hold on
x=[2.4573;1.843;1.4744;1.2287;1.0531;0.9215;0.8191;0.7372;0.6143;0.5266];
y=[83;59;45;38;34;31;30;30;32;33];
plot(x,y,[char(’r’),char(’:’)])
xlabel(’Moneyness(S/K)’)
ylabel(’Implied Volatility(%)’)
legend(’Days to Expiration< 60’,’Days to Expiration 60− 180’,
’Days to Expiration>= 180’)

Table A.3: The M-File ”Objvolintshort”

function [objective]=objvolintshort(parm)
q=0.028;%dividend yield
r=0.0015;%risk free interest rate
S=18.43;%spot stock price
Cobserved1=[3.55;2.52;1.65;0.77;0.3;0.11;0.03;0.01;0.01];
Strike1=[15;16;17;18;19;20;21;22.5;25];
Strike2=[13;14;15;16;17;18;19;20;21;22.5;25];
Cobserved2=[5.4;4.65;3.5;2.56;1.66;0.92;0.44;0.18;0.09;0.03;0.02];
Time1=0.06;%Time to Maturities
Time2=0.11;
sum1=0;
for j=1:size(Cobserved1,1)
sum1=sum1+(Cobserved1(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4),parm(5),parm(6),
parm(7),parm(8),q,r,Time1,S,Strike1(j)))2;
end
sum2=0;
for j=1:size(Cobserved2,1)
sum2=sum2+(Cobserved2(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4),parm(5),parm(6),
parm(7),parm(8),q,r,Time2,S,Strike2(j)))2;
end
objective=sum1+sum2;
end
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Table A.4: The M-File of Direct Algorithm

fun = ’objvolintshort’;
%Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar
xL = [0 0 5−1 0 0 0 0.1]′;
xU = [1 3.138 10−0.439 0.5 1 5 5]′;
GLOBAL.iterations= 20;
PriLev= 2;
Result= gblSolve(fun,xL,xU ,GLOBAL,PriLev);
fopt = Result.fk;
xopt = Result.xk;

Table A.5: The M-File of lsqnonlin

%parameters Thetav,Kv,sigmav,rho,V,Thetar,Kr,Sigmar
lb = [0 0 5−1 0 0 0 0.1];
ub= [1 3.138 10−0.439 0.5 1 5 5];
x0 = [0.1296;3.0799;8.4259;-0.5325;0.25;0.0185;4.9074;0.1907];
options= optimset(’MaxIter’,1000,’MaxFunEvals’,20000,’TolFun’,1e-30);
tic;
[x,resnorm]= lsqnonlin(@lsqvolintshort,x0,lb,ub,options);
tElapsed=toc;

Table A.6: The M-File ”lsqvolintshort”

function [objective]=lsqvolintshort(parm)
q=0.028;%dividend yield
r=0.0015;%risk free interest rate
Time1=0.06;%time to maturities
Time2=0.11;
S=18.43;%spot stock price
Cobserved1=[3.55;2.52;1.65;0.77;0.3;0.11;0.03;0.01;0.01];
K1=[15;16;17;18;19;20;21;22.5;25];
Cobserved2=[5.4;4.65;3.5;2.56;1.66;0.92;0.44;0.18;0.09;0.03;0.02];
K2=[13;14;15;16;17;18;19;20;21;22.5;25];
for j=1:size(Cobserved1,1)
diff1(j)=Cobserved1(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4),parm(5),parm(6),
parm(7),parm(8),q,r,Time1,S,K1(j));
end
for j=1:size(Cobserved2,1)
diff2(j)=Cobserved2(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4),parm(5),parm(6),
parm(7),parm(8),q,r,Time2,S,K2(j));
end
objective=[diff1’;diff2’];
end
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Table A.7: The M-File ”callstockvolint”

function CallSVSI= callstockvolint(Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar,q,r,tau,S,K)
warning off;
y=@(phi)real(exp(-i∗log(K)∗phi).∗f1(phi,Thetav,Kv,Sigmav,rho,V,Thetar,
Kr,Sigmar,q,r,tau,S)./(i ∗ phi ));
p1=0.5+ 1/pi∗quadl(y,0,200);
z=@(phi)real(exp(-i∗log(K)∗phi).∗f2(phi,Thetav,Kv,Sigmav,rho,V,Thetar,
Kr,Sigmar,q,r,tau,S)./(i ∗ phi ));
p2=0.5+ 1/pi∗quadl(z,0,200);
CallSVSI= exp(-q∗tau)∗S∗p1-Bnd(Thetar,Kr,Sigmar,r,tau)∗K∗p2;
end
function cf1= f1(phi,Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar,q,r,tau,S)
Epsr=sqrt(Kr2-(2∗(Sigmar2)∗i∗phi));
Epsv=sqrt([Kv-[(1+(i∗phi))∗rho∗Sigmav]].2-[(i∗phi).∗(1+(i∗phi))∗(Sigmav2)]);
cf11=[V∗(i∗phi).∗((i∗phi)+1).∗(1-exp(-Epsv∗tau))]./[(2∗Epsv)
−[(Epsv-Kv+[(1+(i∗phi))∗rho∗Sigmav]).∗(1-exp(-Epsv∗tau))]];
cf12=[-Thetav∗(Epsv-Kv+[(1+(i∗phi))∗rho∗Sigmav])∗tau]./Sigmav2;
cf13=1i∗phi∗log(S);
cf14=[-2∗Thetav∗log(1-(([Epsv-Kv+[(1+(i∗phi))∗rho∗Sigmav]].∗
(1-exp(-Epsv∗tau)))./(2∗Epsv)))]./Sigmav2;
cf15=[-2∗Thetar∗log(1-(((Epsr-Kr).∗(1-exp(-Epsr*tau)))./(2∗Epsr)))]./Sigmar2;
cf16=(-Thetar∗(Epsr-Kr)∗tau)./Sigmar2;
cf17=[2∗(r-q)∗i∗phi.∗(1-exp(-Epsr∗tau))]
./[(2∗Epsr)-[(Epsr-Kr).∗(1-exp(-Epsr∗tau))]];
cf1=exp(cf11+cf12+cf13+cf14+cf15+cf16+cf17);
end
function cf2=f2(phi,Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar,q,r,tau,S)
Epsrstar=sqrt(Kr2-(2∗(Sigmar2)∗(i∗phi-1)));
Epsvstar=sqrt([Kv-[(i∗phi)∗rho∗Sigmav]].2-[(i∗phi).∗((i∗phi)-1)∗(Sigmav2)]);
cf21=[V∗(i∗phi).∗((i∗phi)-1).∗(1-exp(-tau∗Epsvstar))]
./[(2∗Epsvstar)-[(Epsvstar-Kv+[(i∗phi)∗rho∗Sigmav]).∗(1-exp(-tau∗Epsvstar))]];
cf22=(1i∗phi∗log(S))-log(Bnd(Thetar,Kr,Sigmar,r,tau));
cf23=[-Thetav∗(Epsvstar-Kv+[(i∗phi)∗rho∗Sigmav])∗tau]./Sigmav2;
cf24=[-2∗Thetav∗log(1-([[Epsvstar-Kv+[(i∗phi)∗rho∗Sigmav]]
.∗(1-exp(-tau∗Epsvstar))]./(2∗Epsvstar)))]./Sigmav2;
cf25=[-2∗Thetar∗log(1-(((Epsrstar-Kr).∗(1-exp(-Epsrstar∗tau)))
./(2∗Epsrstar)))]./Sigmar2;
cf26=(-Thetar∗(Epsrstar-Kr)∗tau)./Sigmar2;
cf27=[2∗(r-q)∗(i∗phi-1).∗(1-exp(-Epsrstar∗tau))]
./[(2∗Epsrstar)-[(Epsrstar-Kr).∗(1-exp(-Epsrstar∗tau))]];
cf2=exp(cf21+cf22+cf23+cf24+cf25+cf26+cf27);
end
function[bond]=Bnd(Thetar,Kr,Sigmar,r,tau)
bondstar=sqrt(Kr2+(2∗Sigmar2));
bond1=(-Thetar∗(((bondstar-Kr)∗tau)+
(2∗log(1-(((1-(exp(-bondstar∗tau)))∗(bondstar-Kr))
/(2∗bondstar))))))/Sigmar2;
bond2=(-2∗(1-(exp(-bondstar∗tau))))/
(2∗bondstar-((bondstar-Kr)∗(1-(exp(-bondstar∗tau)))));
bond=exp(bond1+r*bond2);
end
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