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ABSTRACT

STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATE MODEL
WITH JUMP AND ITS APPLICATION ON GENERAL ELECTRIC DATA

Celep, Saziye Bét
M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

April 2011, 81 pages

In this thesis, we present twoftirent approaches for the stochastic volatility and stochastic
interest rate model with jump and analyze the performance of four altezmatdels. In the
first approach, suggested by Scott, the closed form solution for pic&siropean call stock
options are developed by deriving characteristic functions with the heaipaatfingale meth-
ods. Here, we study the asset price process and give in detail tlvatamriof the European
call option price process. The second approach, suggested bkifzshrChen, describes
the closed form solution of European call option by deriving the partiagiotelifferential
equation. In this one we give the derivations of both asset price dynamétthe European
call option price process. Finally, in the application part of the thesis, \aenme the per-
formance of four alternative models using General Electric Stock Optita. Dhese models

are constructed by using the theoretical results of the second approach

Keywords: option pricing, stochastic volatility stochastic interest rate modbljump, par-

tial integro-diterential equation, martingale methods, direct algorithm



Oz

SIGRAMALI STOKASTIK VOLAT ILITE VE STOKASTIK FAIZ ORANI MODELI
VE MODELIN GENERAL ELECTRIC VERSI UZERINE UYGULAMASI

Celep, Saziye Bét
Y iuksek Lisans, Finansal MatematiloBmi

Tez Yoneticisi : Doc. Dr. Azize Hayfavi

Nisan 2011, 81 sayfa

Bu calismada, stokastik volatilite ve stokastik faiz oranina sahip sicransiaopfiyatlama
modeli, iki farkli yaklasimla incelenmis ve 4 alternatif modelerinde analizler yapilmistir.
Scott tarafindardnerilen ilk yaklasimda, opsiyon fiyati karakteristik fonksiyonun bazi-mar
tingale yontemleriyle bulunmasi sonucu olusturulmustur. Sonrasinda yaklagintigybir
sekilde incelenip, opsiyon fiyatinin ¢ikarimi orjinal calismada bulunmayzatlésla birlikte
sunulmustur. Bashki-Cao-Chen tarafindan olusturulan ikinci yakidg ise kismi integro-
diferansiyel denklemleri kullanilarak opsiyon fiyatina ulasiimistir. Bu gadaki fiyat ireci
dinamikleri ayrintili bicimde incelenerek, opsiyon fiyat failasyonu gerekli grulen ispat-
larla beraber olusturulmustur. Son olarak ikinci yaklasimin yardimiylaldi fapsiyon fiyat-
lama modelinin analitik @zimleri ¢ikariimis ve modellerin deneysel performanslari General

Electric Hisse Senedi Verisizerindedlculmustir.

Anahtar Kelimeler: opsiyon fiyatlama, sigramali stokastik volatile stokastik faizionodel,

kismi integro-diferansiyel denklemi, martingaléntemleri, direct algoritmasi
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CHAPTER 1

INTRODUCTION

The Black Scholes Model which was articulated by Fischer Black and iM@aholes in their
1973 paper has an important role in theory and application of financiaéstudbviously, the
model is a pioneering work in the area. However it is also know that therga&ns to get
the closed form solutions cause some empirical biases such as volatility smiteisfeason
in the last two decades, option pricing has witnessed an explosion of neelisrtbdt each
relax some of the restrictive Black Scholes assumptions. Among these dgswsnponstant
volatility, constant interest rate and no rapid price movements resembling juempsbieen
the most studied ones. Over the years, there have been many alternatiels mi@red to
solve this and other drawbacks of the Black Scholes model. Examples irtbkidochastic-
interest-rate option models of Merton (1973), the jumfitdion and pure jump models of
Bates (1991), Madan and Chang (1996), and Merton (1976), thkasttic-volatility models
of Heston (1993), Hull and White(1987), Stein and Stein (1991), thehastic volatility
and stochastic interest rates models of Bakshi and Chen (1997a,l§catiq1997) and the
stochastic-volatility jump-dfusion models of Bates (1996). In this work, we concentrate on
the most generalized model that is stochastic volatility and stochastic intaeestadel with

jumps with two diferent angles conducted by Scott [33] and Bashki-Cao-Chen [1].

In the former approach, the closed-form solution for the price of thegaan call option is
obtained by using some martingale properties and mathematical tricks. In addifias-

suming that the volatility and the underlying price have a non-zero correlatidrboth the
interest rate and volatility follow a Cox-Ingersoll-Ross Model [11] captumany properties
of the financial data such as non-negative interest rate and volatility. ugththe approach

has some theoretical advantages, in application, parameter estimation andrasgten pro-



cedure is formidable.

In the latter one studied by Bashki, Cao and Chen [1], the closed-forrtigofor the price
of the European call option is derived by using the partial integfi@intial equation. By
reducing the dficulty of this complex equation to ordinaryftéirential equations, the call
price is obtained. Moreover, the assumption of lognormally distributed jungvéderd model
improvement and convenience with the market data. Although this approtwoi®tically
complex and has implementational costs compared to Scott’s study, it is moreabfmlic
since it is given only as a function of identifiable variables such that alipaters can be

estimated.

The aim of this study is to review these two approaches of the same model iinadetaise
the results of the second approach in application. The second chagdgents the derivation
of the option pricing formula suggested in the study of Scott [33] steptdyy-sThe way of
how the martingale method is used for derivation of characteristic functicmsaiyzed. In
the third chapter, by following the study of Bashki, Cao and Chen [1], tivejzean call op-
tion price is obtained. Firstly, the complicated partial integrdedlential equation is reduced
to simple forms. After that, the solutions of these simple ordinafigdintial equations are
found. Moreover, in the last section of the chapter the results aredetdo use them in
application part of the study. In Chapter 4, the results from the previbapter are cali-
brated for the General Electric Stock Data. With the help of the calibratiocegioe, the
performance of four alternative models are compared. These altermatidels are Black
Scholes Model, Stochastic Volatility Model, Stochastic Volatility Jump Model andizistic
Volatility Stochastic Interest Rate Model. In fact, in the fourth chapter the aitm éswer
the following question mainly: "What do we gain from each generalized featather than

using simple Black Scholes?” Finally, the conclusion follows.



CHAPTER 2

SCOTT'S APPROACH

Various econometric and numerical studies show that asset prices dghilbit the assump-
tions of Black Scholes Model which are constant volatility, constant intesés and no rapid
price movements resembling jumps. Therefore, new extensions of modetafitate qual-
itative feature of the financial data is needed. The model that presenitteid hapter is an
example of a model that relaxed the assumptions mentioned above. In thisrcHiagtly,
we introduced the model in Louis Scott’s paper [33] and then we studieebgtspep the
construction of closed form solution of European call option prices. W concentrated
on European options because the closed form solution with this technigueeceeached
only for this type options. For path dependent options some numerical nsethodld be
used. The technique to derive a closed form solution to the call option ggcoblem under
the assumption of stochastic volatility, stochastic interest and julfiipsghn is diverse. The
method used in this chapter if@ectual from the point of view of getting closed form solution

however impractical in application due to the extreme number of parameters.

2.1 Model Construction

Let (2, F, P) be our probability space. The underlying risky asset price volatility atettaést

rate is assumed to follow a standard Cox-Ingersoll-Ross (CIR) prgoess as follows:

dyj(t) = Kj[@j —yj()ldt + oy \Jy;()dZt)  (j=1.2), (2.1.1)

whereKj, ®j, andoj are respectively the speed of adjustment, long-run mean and volatility
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codficient of the procesg;(t). Z; andZ, being constructed as independent Brownian Mo-
tions. It means that their correlation is 0. Moreover, independent Heswiotions have
zero covariation. TherefordZ;dZ, = 0. The continuous part of the price process, defined as

S¢(t) is assumed to satisfy the following stochastitetiential equation:

dSS(t) = r(t)SS(H)dt + o v/y2 (O SCE)AWL), (2.1.2)

whereW is a Brownian Motion that is independentdf but correlated wittZy with sizep .

It means that the covariations até/d2 = 0 anddW(t)dZ;(t) = pd(t).

The instantaneous interest rate,is assumed to be a linear combinationypfandy,; the

reason behind this choice is given in [11] in detail:

r(t) = ya(t) + ya(t). (2.1.3)

The jumps in the log-price process are constructed as a sequdpcef(independent nor-
mally distributed random variables with parame]zaejrsmdo-j2 asN(yj, o-jz) and jump counter
is modeled as an independent Poisson Process with intan§itynsequentlyX(t) is assumed

to be the sum of all the jumps which occur up to and including time

N(t)

Z My = X(b).
k=1

Finally, the jump process is formed E% which is a martingale. To examine the jump pro-

cess, we calculated the expectation of exp(X(t)) by using some chastcteof expectation.

Let Bj’s be the events in the sigma algelifain the probability spacecf, F, P) such that
UBj = F. ThenE(X) = § E(X|Bj) - P(Bj). For more details the reader is referred to the book
i=0

given in [23]. By using above property, the expectation can be compstbelow:

4



N(t)
k

uy ™M
EE”0)=Ee =)
N(t)

-Z[E(ekl JIN) = ] PN = )

j=0

= Z[E(e &"PING) = ), (2.1.4)

The above summation can be written foe= 0 and for allj > 1, separately. Fof = O,

0
> Mg = 0. Therefore the expectation is E(1) = 1). Consequently,
k=1

E[e”V] = (P(N(t) = 0)) + Z[E(e A9 PN = ).

where N(t) is a Poisson Process with intensity Because of this reaso®(N(t) = k) =

% fork=0,1,..., and, hence,

E[eux(t)] t Z[E(e K= 1Mk)] M
=1

M)y €71 ()
+Z[E( N

et (at)]

-t Z E(e" ™M) . E(e'M2))... E(e (Ml)) (2.1.5)

=1 J
Note thaths are iid. In additionp;j(u) = E[e"Mi)] is the moment generating function of

normal distribution:

E[euX(t)] —e At gt Z [p (u) ,lt]]

=

=egt. [1 + i —[pj(u?|. /lt]j]

R

R

=0
et griUt

= gltlei-1], (2.1.6)



Sincep;(u) = €9 X271 s the mgf ofN(uj, o?),

E[e™X0] = exp@t(euju+(l/2)frfuz ~ 1)) (2.1.7)

The jump process is constructed as follows:

oX(®)

Finally, we established the price process at tiras follows:
S(t) = J()SE(1). (2.1.9)

2.2 Call Option Pricing Process

In the model, it is assumed that all of the expectations are under a riskehménasure,
Q under which the discounted asset prices are martingales. This assungqigssanany

advantages in the upcoming steps. Now, the call option prices can beddagine

C[S(0), y(0), T] = E?[e R (S(T) = K)*ly1(0) = y1,2(0) = yal,

T
whereRr = fr(u)du andy is a vector such thay, = (y1,y2). The logarithmic function is a

0
monotone one. Therefore, insteadS{fl) > K, In S(T)> In K can be used:

C[S(0), y(0), T] = EQ[e R"S(T); InS(T) > InK] - KEQ[e™R™; InS(T) > InK],  (2.2.1)

C[S(0),y(0), T] = EQ[e ™™ S(T) Ljins(m)zink)] — KEQ[& ™ Lins(myzink)]- (2.2.2)

We separated the equation (2.2.2) into two parts. The first paEQRjg R S(T) Ljins(T)zInk}]

and the second part is,KEQ[e‘RT Lins(m)=ink;]. To make the calculations easier, in the first
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expectatiorchange of numérairiss computed. Anumeéraireis an asset that is used as a price
unit. As an example, if%;) is the price process of an asset, the discounted pBg&g) can

be viewed as the price of the asset, when the riskless asset is takemuasesaire [24]. For
the expectation givenin (2.2.2), the stock process itself is takenamaraire Consequently,

the new probability measure named@s

dQ _ e‘RTS(T)
dQ = S(0)

and EU[X] = E9X. ==

dQ
dQ |
Note that the above Radon Nikodyn Derivative must be a martingale [3Bgrefore, the
martingale property oﬁ'j—Q = £ ZT(g’)(T) should be checked. But since the discounted asset
prices are martingale under the risk neutral probability mea@,n“éRST(sT)(T is a martingale

automatically.

The expectation in the first part of (2.2.2) takes the form:

e Rrg(T
(1) - Linsmyzink) | = S(0) - E2[Lins(myzink)]- (2.2.3)

gel& o)
S(0)-E 50

Onthe other hand, in the second part of (2.2.2) we tak@ tfieward measure asraimeéraire

T-forward measure is a probability meas@edefined by

T
— [ r(s)ds

dP’ e {

dP ~ PO, T)’

whereP(0, T) is a price process [24].

In our case, bond pricing functioB(y(0), T)] is taken as & -forward measure. After that,

by entitling the new probability measure @s, the Radon Nikodyn derivative becomes

dQ eRB(T,T)
dQ ~ B(y(0).T)"’

where B(T,T) =1

In this case the expectation that we are concerned is as follows:

_ RT

e
~K-E® ByOLT) Lins(m)zink) | - BY(0), T) = =K - B(y(0), T) - E%[Ljins(m)zink}]. (2.2.4)



Finally, the equation (2.2.2) occurs as

CIS(0).Y(0). T] = S(0) - E%[Lns(rysinc/] - K - BY(0). T) - E2[Lins(rysin].  (2.2.5)

We denoted the density function of 8(T) underQy, Q. as f 2 (x) and f %(x), respectively,

and distribution function aB? (x) fori = 1, 2;:

EQ[Linsmzinky] = f fo(x)dx for InS(T) > InK.

= FQ(InS(T) > InK). (2.2.6)

As a result the call price process (2.2.5) takes the form

C[S(0), y(0), T] = S(0)- F2(InS(T) > InK) — K - B(y(0), T) - F(InS(T) > InK).

= S(0)- f F1(dX) — K - B(y(0), T) - f F2(dX), (2.2.7)

InK InK

whereF; is the distribution function of I/8(T) underQ; fori = 1, 2.

2.3 Characteristic Function Using Martingale Methods

To invent the distribution functions; andF, underQ, Q>, respectively, firstly we should
clarify the form of the characteristic functiogg(u) and¢-(u) of the process II5(T). Subse-
guently, by turning into account the inversion formula we can obtain the disisibfunctions.

The functiong;(u) is as follows:



¢r(u) = EQ[eHnSM)

[ dQ
_ Q[ dulns(T)  ¥&1
-9e dQ]

[ _ry S(T)
_ gQ[gunsm-rr 21

© S(0)
[ (1+U)InS(T)-Ry]

The characteristic functiogp(u) can be expressed as follows:

g2(U) = ER2[e"SD)]

- sz
_ EQ[4uInS(T) | X2
~e9¢ dQ]

[ . e_RT
— EQ e|uInS(T) . —]
[ B(y(0).T)
’eiuInS(T)—RT }

— EQ
R EYOR)

(2.3.2)

Definey(a) = EQ[exp(-Ry + ainS(T))] for real values ofa. Instead of the real number we
wrote a complex number in the following steps. We are allowed to do this analyéinssn
because the exponential functionifa) is an entire function. The following definition can

clarify the fundamental definition in complex analysis, given in [15]:

Definition 2.3.1 A function f having a derivative at a poing # A (A open) is said to be
differentiable at g. If f has a derivative atg as well as at every point of some neighborhood
of 2, it is said to be analytic. If f is analytic at every point in then f is analytic in A. A

function that is analytic in whole complex plane is said to be entire.

Afterwards, the equation (2.3.1) can be written as
1+i .
da(U) = % since S(0) = EQe ™R - S(T)] = y(1).
Furthermore, the equation (2.3.2) becomes

9



_ ¥

_ - _ EQaRr . — EQ[eRry =
0 since B(y(0),T) = ER[e™ - B(T,T)] = EX[e "] = y(0).

$2(u)

Note thatS(T) = J(T)S%(T) implies InS(T) = InJ(T) + InS¢(T). To invent the characteristic
functions above, the procesz) needs to be calculated but it infers that the log price process

should be analyzed. Consequently,

EQ[exp(—Rr + ZnS(T))],

¥(2
EQexg~Rr + ZnS¢(T) + 2nJ(T))],

= EQe™M]. EQ[e Rr+anS" M) since J(T) and SY(T) are independent.

(2.3.3)

In the above equation, the term with jumps can be obtained easily. Howesgrathwith
log-price process should be examined deeply. Therefore, the folldaimgna in [34] will be

one of the supporting steps.

Lemma 2.3.2 (Decomposition of Correlated into Independent Brownia Motions) Suppose

B, (t) and By (t) are Brownian Motions and

dBy()dBy(t) = p(t)d(b),

wherep is a stochastic process taking values strictly betweé&rand 1. Define processes

Wi (t) and Wh(t) such that

Ba(t) Wi(t)

t t
fp(s)dwl(s)+fJl—pz(s)d\/\/z(s). (2.3.4)
0

0

Ba(t)

then W (t) and W(t) are independent Wiener Processes.

Proof. We are claiming thad[W;, W-](t) = 0. From the hypothesis,

10



dBy(t)dBy(t) = d[ By, B2](t) = p(t)d(t).

Note thatd By (t) = dWy(t) anddBy(t) = p(t)dWA(t) + /1 — p2(t)dWs(t). Therefore,

pOA(t) = d[B1, B2](t) = dWA(Y) - [o()dWA(L) + /1 - p2(t)dWL(D)]
= p®)d() + /1 - p2OdWAD) (D). (2.3.5)

We are sure thai(t) is strictly in between-1 and 1 Subsequently, equation (2.3.5) is feasible
if and only if dWj (t)dWs(t) = 0. [ |

At this step with the help of Lemma 2.3.2 we wrote the following coequal inste8d9fin

our process:

W() = pdZi(t) + /1 - p?W'(1),

with [W,Z;] = pand W', Z;] = 0.

Hereby, by using the Ito Formula, the continuous part of stock priceepso€ (S°(t)) =

log(S€(t))), can be expressed as follows:

dsf(s) 1 td[SC,SC]s
S92 ) (S(9)?

t
IN(SC(1)) = In(S%(0)) + f
0

Assume with out loss of generali§F(0) = 1,

t

t t
In(S°(t) = f (9ds+ o1 p2 f VAW (S + op f WSdzi(9
0 0

o

t

t
' f PPy(Sds- 7 - f (1~ p2)ys(9)ds (2.3.6)
0 0

|
NI =

We entitle the terms of the above equality as follows:

11



t
R = | r(s)ds
J

t t
= o1 p? f W () - 5 021~ p?) f yi(9)ds (23.7)
0 0

t

- f 20Py1(9ds

0

NI =

t
n = op f WEdzi(s -
0

Therefore, the continuous part of the expectation given in (2.3.3) ttorihe following form:

EQ[e—RT+z|nS°(T)] — EQ[e—RT+ZR+ert+Z77t]

= EQexp(@- )R + Z + zpy)]. (2.3.8)

To clarify the terms given in the above equation, first we defined the sigrebralgenerated
by Z; andZ, aso[Z1, Zo]. Second, by using the iterated expectation property, (2.3.8) is written

as

EQ[E[exp(@ - DR + z + z)| o{Z1, Z2]]].-

Note that under the condition, that is sigma algebra generatef} layd Z,, the terms of
expectation are independent, becaus® iindZ, are known thery; andy, are also certain.

In addition, the correlation betwe&W andZ; is zero. Therefore, (2.3.8) can be expressed as

EQEC[€* IR o[Zy, Z]] - ER[€%Y| 0[Z4, Z5]] - EV[€”"| o[ Z4, Z2]] |- (2.3.9)

In the above expectation, the terets VR ande?t arec[Z1, Zo]-measurable. For this reason,

the following equations obtained:

EQ[eZ IR [21,Z5]] = ¥R and EQ[?!]| o[Z1, Z,]] = €. (2.3.10)

12



Because of the above results, only the t&®je%t| o[Z1, Z»]] in equation (2.3.9) is uncertain.
To clarify it first we entitledY;(t) = }yj(u)dufor j = 1,2. Second, note that sinégZ, Z»

is a integral of Brownian Motion wi'?h drift given unconditionally in equation3(2), it has a
normal distribution with expectatiogto?(1 — p?)Y1(t) and varianc&/ar(&lZs, Zo) = o3(1 -
p2)Y1(t). Therefore EQ[€%| o[Z1, Z5]] is actually the moment generating function of normal
distribution with meartto%(1 - p?)Y1(t) and variancer?(1 - p)Y:(t). Finally, the following

equation is obtained:

EC[e*T| 0[Z1, Z2]] = exp(_?zol(l v+ 28 —pz)vl(T)zZ)

2
= exp(z(z— 1)[%]). (2.3.11)

By combining (2.3.10) and (2.3.11) equation (2.3.8) takes the form

2(1-p)Y1(T)
EQexp(z— 1)Rr + 1 + zy7)] = EQ[e@ DR . A& D(—777) . 2]

_ EQ[ez VM) . lz- (M) , 1)) | iy

(2.3.12)

The above expectation consists of terms Wifland a term withyr. At this step, we wrote

nt in terms ofYj’s. We know the following equation:
t

t
n=op f NACEACKES f 2oPya(9ds (2.3.13)

0 0

In addition, we constructed the model as

dyi(t) = Kq[®1 — y1()]dt + o1 vy ()dZa(t).

The integral form of above equation is as follows:

t t
yi(t) - y1(0) = KOst - Ky f yi(9ds+ oy f NAGEACY
0 0

13



Therefore,

t

f mdzl(s) _ ya(t) — y1(0) — K1®1t — KlYl(t)'

01
0

As aresult, (2.3.13) takes the form

1
n = g—lj “[y1(t) = y1(0) — K1®1t — K1 Y1(t)] - 57 20%Y1(t).

Then, equation (2.3.12) can be expressed as follows:

s21-pAv (1)
EQ[exp((z_ l)RT + zé‘_‘.l. + ZUT)] - EQ[e(z_l)YZ(T)+(Z_1)Y1(T)+Z(Z_1)(f)

02,2
Xez%-(yl(T)—yl(O)—K1®1T+K1Y1<T»—%”’Z]

— EQ[ez DY) . ele(T)+Z%~(y1(T)—y1(0)—K1®1T)]’ (2.3.14)

withw = (z— 1)+ 22— 1)30%(1 - p?) + 22 - Ky - 5 - 0%p’2.

Sincey; andy, are independent, the right hand side of (2.3.14) can be written as follows:

EQ[e(z—l)Yz(T)'eWYl(T)+Z%'(Y1(T)—Y1(0)—K1®1T)] _ EQ[e(z—l)Yz(T)]

< EQ[eWYl(T)] _ezg—i'(yl(T)—yl(o)—Kl@lT)‘

(2.3.15)

Eventually, we reached our main purpose with the above equation. Tow{@Etewe are

going back to the jump process to calcul&g{e?™(M] where

AT) = M-TE iy

Therefore the log-jump process is as follows:

14



INJ(T) = X(T) — AT (277 _ 1),

Presently, we are ready to construct the following equation:

E[e?I()] = EQ[ezx(T)—uT(é‘i*(l/z)”Jz_l)]

+(1/2)02

— e TETI-) EQ[eX(M)]

P 27 1yt j+(1/2)”12—1)‘ (2.3.16)

Finally, by combining (2.3.14) and (2.3.16), the equation (2.3.3) is expiesse

+(1/2)02

2
+(1/2)0% f _1)

W) = e—uT(ef‘J' T —1)4aAT ("]

% eZ%'(yl(T)_yl(o)_Kl(’)lT) . EQ[e(z—l)Yz(T)] . EQ[ele(T)]. (2.3.17)

Derivation ofy(2) is the main goal because the characteristic functions can be written sub-
sequently. Howevery(z) contains unknown expectations. Note tiva{T) and Y»(T) are
following CIR processes. Consequently, we will try to get the expectatieimgy the proper-

ties of CIR models by using the following lemma in [34] and theorem in [24].
Lemma 2.3.3 (Feyman-Kac)Consider the stochasticirential equation

ot of 1, 6%
E +ﬂ(X, t)& + é O (X’t)ﬁ = R(X, t)f, (2318)

defined or all real x and t in the intervfiD, T], subject to the terminal condition

f(xT) = ¢(x),

whereu, o, ¥, R are known functions, T is a parametes T —t and f is the unknown. Then

the solution can be written as an expectation:

15



.
- [RX:)dr
t

f(x,t) = E[e (X)X = K, (2.3.19)

where X is an Ito-process driven by the equation,

dX = u(X, O)dt + (X, )dW,

with W(t) is a Brownian Motion and the initial condition for(¥ is X(0) = x.
The proof of Feyman-Kac formula can be found in [34] in Chapter 6.

Theorem 2.3.4 For a process X starting at x[Xo = x] and following a Cox-Ingersoll-Ross

Model, that means

dX = (@a—bX)dt+ o /XdW on [0,),

and for any non-negative andu, we have

—Ax{—u}xgds
Ele o ] =exp-aciu(t)exp—xQ (1), (2.3.20)

where the functions, ,(t) andQ, ,(t) are given by

+b)

® = -2n 2re 2 )
S = T2 2 @t~ 1) + y — b + @y + b)

and

Aly + b+ &Yy = b)) + 2u(e* - 1)
a2t -1)+y—-b+e'(y +b)

Q/l,/l (t) =

withy = b2 + 202u.

Proof.
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For the proof, we follow the original proof given in [24] in section 6.2.2r K andu fixed,

consider the functiofr (t, X) defined by

—/lX{—/.t}Xéds
F(t.x) =E[e o ] (2.3.21)

Note that for the initial conditiorx we can use Feyman-Kac Formula given in Lemma 2.3.3.

Therefore, we look foF as a solution of the problem,

OF o2 §°F oF B
i EXW +(a- bx)& —uxF and F(0,x) = e (2.3.22)

Assume thaF can be written a$(t,x) = e 2020 The reason behind is the additive
property ofX* relative to the parameterand the initial valuex [18]. At this step, write the

candidate of the solution to the giverfiérential equation (2.3.22):

o2

F(t, X)[-as’(t) — xQ'(1)] = 7X[F(t, X)Q2(1)] — (@ - bX)F(t, X)Q(t) — uxF(t, x).

CancelingF(t, X) from both sides of the above equation gives

—ag’(t) — x'(t) = U—;Xﬁz(t) — (&= bx)Q(t) - px

= X %zﬁz(t) +bQ(t) — 1| — a[Q(t)]. (2.3.23)

In equation (2.3.23) the céiicients ofa andx should be equal. Therefore, the following two

eguations are obtained:

2
—Q'(t) = %Qz(t) +bQM) —px and (1) = Q(t) (2.3.24)
By writing the candidate solution into the initial condition given@®, x) = e %, we get

F(0,X) = e &0)X20) Then,

e—/lx — e—ag(O)—xQ(O)‘

17



This means that the initial conditions for (2.3.24) g(@) = 0 andQ(0) = 1. We need to

solve the following diferential equations to find odi(t) andg(t) under the initial conditions:

_dQ 0_2 2
— = —Q°+bQ - .
a 2 H
That means,
—dQ
?Q + bQ - U

Taking the integral of both sides in the above equation,

t
f =t+C
5 "7 2+bQ—pu

Now, by using partial fraction technique of integral, the denominator israggghinto two

parts as follows:

Ef—l dQ—Ef—l dQ =t+C.
Y (b+y) Y 0 b—y

By taking the integrals,

1
Y

a?Q+b+y

n——-|=t+C. 2.3.25
oc2Q+b-vy " ( )

From the initial condition of2 we know that2(0) = A. Therefore,

1
C==In
Y

a?l+b+y
c2Al+b-vy|

This means that the equation (2.3.25) is as follows:

?Q+b+y
o2Q+b-vy

cA+b+y

In —_.
oc2l+b-y

=yt+1In

18



We take the exponential of both sides and get

0'29+b+)/_ It c?l+b+y
c2Q+b-y o2l+b-y

(2.3.26)

The above term is denoted as

Fogt. CAtbty
oc2l+b-y

Then equation (2.3.26) comes into the form

?Q+b+y=Fo?Q+Fb-Fy.

Consequently,

_b+y-Fb+Fy

Q
Fo2 - o2

After writing F into the equation and making some arrangemetskes its value as given

in the theorem:

Aly + b+ &'(y = b)) + 2u(e" - 1)
c2Aet -1 +y—-b+ei(y+b)’

Q) = (2.3.27)

Presently, to clarify:(t), we can take the given value from the theorem and see, by taking the

derivative that it is reall2(t). This is because of the equation (2.3.24). In the theorem,

t(y+b)

2ye 2
c2Aet -1 +y-b+ei(y+h))

2
$(t) = ~—log
a

We entitled the terms as follows:

S(t) = 2ye2>  and K(t) = 024" — 1)+ y — b+ &(y + b).

By taking the derivative of(t) we get
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§'(t) =~

2 (S/(HK() — K'(H)S(1)
?( SMK(D) )

Then,

2 (SMOBEK(D) - SM[o2aey + (y + b)erty]
“0=-5 SOK® )

After arranging the terms,

() = Aly +b+e&'(y - b)) + 2u(e" - 1)
SO e - Dry-brelys)

(2.3.28)

The right hand side of equation (2.3.28¥1¢t), which is the main goal of the theorem. B

We will go back to our fundemental problem that is derivatiog () from equation (2.3.17).
At this step we can writ& [ DY2(N] and EQ[e¥*1(T)] by using Theorem 2.3.4, since both
Y2(T) and Y1(T) follow a CIR process. We know thafj(t) = }yj(u)du andy;(0) = y;j for

j = 1,2 In addition, °

dyj(t) = [Kj@j - ijj(t)]dt+ ol ,/yj(t)de(t) (j=1,2).

Consequently, by using the theorem,

EC[eZDY2(M] = exp(-K20; - ¢(T))exp(yz - (T)) (2.3.29)
where
T(y+Ko)
2 2ye= 72
T)=-=l
(1) o3 n(?’—K2+eyT(7+ Kz))
and

21-2(T -1)
y-Ko+e@T(y+Kp)

QT) =

20



with

v = 1/K§+20'%(1—Z).

The expectation with respect ¥a(T) is as follows:

EQ[e"(M] = exp(K101 - ¢(T))expg(~y1 - (T)) (2.3.30)
where
T(r+Ky)
2 2ye=z
T)=-—lo
(0 o’ g()’—K1+€‘yT(7+ Kl))

and

2(-w)(eT - 1)

Q(T) =
(M y—Ki+eT(y+Ky)

with

y = ,/Kf—Za‘%W.

Finally, we reached to our main concern. Firstly, to find the distribution funsfq andF,,
we try to get characteristic functiogg andg,. After that, because of the following relations

between characteristic function apcz), the problem turns into finding(2):

and ¢o(u) = 09

¥(0)’

_Y(l+iu)
¢1(u) = o)

Now, we are able to calculate each termyugf) by using (2.3.29) and (2.3.30). Remember
that,
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+(1/2)u- +(1/2)(r

W) = e—zﬂ(e“J T —1)4aT ("] 1-1)

« gl 0M-Y1(0)-KiO:T) - EQ[eEDYa(M] . gQ[e (M.

(2.3.31)

Consequentlyp; andg, are available. By using Fourier inversion formula in [33], the distri-

butionsF; andF» can be expressed as follows:

Fi(x) =

f¢‘( W elux ‘Hu) e du, (2.3.32)
0

I\JIH
B’IH

1-Fj(x) = -du for (j=12).

I\)II—‘

1 T¢ u) e|ux ¢(u) g-iux
0

After all, the closed form solution for the call option pricing function using2(2) is as

follows:

C[S(t),y(t), T —-t] = S(t)[% _ % #1(-u) - eiuani; $1(U) - e7UINK ' du]
- By, T - t)
Bo(—U) - UK _ g (u) - g uInk
* K[_ o f = dU]. (2.3.33)
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CHAPTER 3

PARTIAL INTEGRO-DIFFERENTIAL EQUATION
APPROACH

In this chapter, the closed form solution of European call options unidehastic volatility
and stochastic interest rate jumgdsion model is handled in aftiérent point of view. The
method develops a partial integrofférential equation (PIDE) whose solution is the European
Call Price. The solution technique suggested in [1] is based on the formeo$olution

of Black Scholes Model. Beginning with the similar form of Black-Scholes @alte, the
problem to solve the partial integroftirential equation is reduced to deal with some ordinary
differential equations, which are easier and less complex. As in the previapsec we
only concentrated on European call options because the closed fdiom @pices can be
reached for only this type options. This method has advantages in appl&chgoause of the
estimation of few parameters when compared to Scott’'s approach in theyseWapter. For
this reason, this model is used in the next chapter to measure the empirfcainzerce of

submodels which can be produced by letting some terms to be zero .

3.1 Asset Price Dynamics

Let (Q, F, P) be our probability space. The underlying risky asset price at timeassumed

to follow the stochastic dlierential equation as

dS(t) = (R(t) — A;)S(t)dt + vV ()S(t)dWs(t) + I(E)dN(H)S(t7). (3.1.2)
Moreover, V(1) is defined as the flusion component of return variance conditional on no

jump occurring and assumed to follow a standard Cox-Ingersoll-Ros9 (CiRess given as
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follows:

dV(t) = [6 — KWV (D)]dt + oy V() dW(D), (3.1.2)

whereKy, 8,/Ky, ando-, are respectively the speed of adjustment, long-run mean and variation

codficient of the difusion volatility V(t).

The underlying risky asset price instantaneous spot interesR{@tis defined as follows:

dR(t) = [6r — KrR(D)]dt + o'r VRE)dWK(t), (3.1.3)

whereKRg, 0r/Kg, andor are respectively the speed of adjustment, long-run mean and volatil-

ity coefficient of the procesR(t).

In the above equation8Vs, W, and Wr are standard Brownian Motions. The correlation
betweerVs andW, is p. That meansl[Ws(t), Wy (t)] = pdt. The rest of the Brownian Motions

is assumed to be independent from each other.

In equation (3.1.1)1 is the frequency of jumps per yeal(t) is the percentage jump size
conditional on a jump occurring\(t) is a Poisson Jump Counter with intensitywhereN(t)

andJ(t) are uncorrelated. The jump size is assumed to be as follows:

In[ + J®)] ~ N(n(L+ ;) - %af,o-f).

That means under the conditidft) > —1, 1+ J(t) is distributed as LogNormal(In(® ;) -

1/20-12, o-jz). By using the expectation and variance formula, the following valueseéoumd:

E[(l + J(t))] — eln(l+“i)_1/2‘712+1/2‘712 - 1+,uj,

Firstly, consider a zero-coupon bond that pays 1 dollarperiods from timd, and letB(t, 1)

be its current price. Then,
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t+71
B(t, 7) = EQ[ex;( - R(u)du)],
I

whereR follows a CIR Process. Note that in Theorem 2.3.4, we showed how to tictd s

an expectation for a CIR Process. For this reason, the current viailne nero coupon bond

under the risk neutral measure Q can be expressed as

t+7
B(t,7) = EQ[exp( - f R(u)du)] = eXxp[-fr - s(r) — R(t) - Q(7)] (3.1.4)
t

where the functiong(r) andQ(r) are given by

7(y+KR)

) 2 In( 2ye” 2 )
T)=——
° o& \y—Kr+&7(y+Kg)

and

27 - 1)

Q7)) = ,
@ Y- Kr+@7(y + Kg)

withy = | /Ké + 20'%.

3.2 Construction of Partial Integro-Differential Equation

The processes, that are given in the previous section, are defidedthe risk neutral prob-
ability measureQ. Therefore discounted prices are martingale under this measure. By using
Ito-Doeblin Formula, a partial integro{tiérential equation, that the discounted call prices

satisfy, can be obtained. The discounted call price is formed as follows:

t+r

- [ R(9)ds
f(t,;S,RV)=e 1 C(t,7;S.RV),

whereC(t, S, R, V) is the timet price of the call option.
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We denoted the continuous part of the stock process atttan8°(t). From equation (3.1.1),

the diferential equation can be expressed as follows:

dSC(t) = (R(t) — Auj)S(B)dt + V()S(t)dWa(t). (3.2.1)

The quadratic variation o®°(t) is d[S¢, Sy = V(t)S?(t)dt. Because of the construction of
volatility process given in (3.1.2) the quadratic variatiod[ls, V]; = o-2V(t)dt and, similarly,

from the equation (3.1.3)[R,R]; = c-2R(t)dt.

In the Ito Doeblin formula, we also need to know the cross variation of gesse Note that
since the Brownian Motions of interest rate and stock process are indiepe their cross
variation is 0. By the same reasoning, the cross variation between volatiliyendst rate
process is 0. Furthermore, the jumps in the model is independent from ail sittthastic
processes. Only volatility and stock price process are correlated withather as in the

following equation,

d[Se, VIt = dl YWOSOWs(D), o YWOW(] = oV (HS(D)pcl

wherep is the correlation between two Brownian Motions.

Using above relations, the Ito-Doeblin Formula can be written as follows:

u

-}R(s)ds - [R(9)ds
e o C(t,S,RV)-C(0,S,R V) = fe 0 - = RU)C(u, S, R, V)du

+Ci(u, S,R V)du + CsdS°(u) + CydV(u) + CrAR(U) + 3V S?Cssdu+ $Vo2Cyvdu

+3RoZCrrAU+ 5 - 2VSO'VpCsvdu]

+ > e ! R(S)ds[c(u, S,R V) -C(u,S™,R V)], (3.2.2)

whereS™ = S(s7).

Note that ifsis a jump time, from the stock price process, the following expression is mean-

ingful:
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AS(s) = J()AN(s)S(s”) where dN(s) = 1.
Therefore S(s) — S(s7) = J(5)S(s7). As aresultS(s) = (1 + J)S(s).

Now by using (3.1.2), (3.1.3), (3.2.1) and the above result, the Ito Doeblimiéla becomes

arranged as follows:

_}R(s)ds t —}R(S)ds
e o C(t,S,RV)-C(0,S,RV) = fe 0 : [— RU)C(u,S,R V) + Ci(u,S,R, V)

0
+[R(t) — /l,uj]SCS + %VSZCSS+ [0y — KWV]Cy + %VO'\Z,CVV + [6r — KRRICR + %RO’ZRCRR

—UR( )d
+VSaypCsv|du+ f e s VWS GsdWs(u) + oy VV CydW,(U) + o'r VRCRAWR(U)

—}R(s)ds
+ Y e [C(u, S~ (1+J),RV)-C(u, s—,R,V)} (3.2.3)
O<ust

Our aim is to separate (3.2.3) into two parts. The first one will be the martingaleapd
the other will be the non-martingale part. As the discounted call price is a maldingder
the risk neutral measure, tliel terms should not exist in the equation. In fact, the partial
integro-diferential equation will be the the ciieient ofdu. Since integrals with respect to
the Brownian Motions are martingale, they can be added to the martingale parever, the

summation part of the equation should be arranged so that we can séjpatatewvo parts.

Note that the summation above represents the jump component of the callnotesg We
can write the summation as integral. The variable of integration is a jump measwe. W
used the notation given in [10] for the jump measure. In intuitive terms, fpmagasurable
setA c RY, Mx([0,t] x A) is the number of jumps aX occurring between 0 arigl whose

amplitude belongs té. By using this notation we get the the following equation:

—}R(s)ds _ B
dleo  [CUS(1+J)RV)-CUS,RV)]

O<uc<t

—?R(s)ds B B
= e o [C(u, S (1+J),RV)-C(u,S™,RV)M(duxdJ.

[0,t]x{J>-1}
(3.2.4)
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We compensated the jump part so that it has a martingale and non-martingateipaAs
a notation, the compensated jump measumd(dux dJ) = M(dux dJ) — E[M(dux dJ)],
whereE is the expectation under the risk neutral measure. Note that the compejusaped
measure is a martingale. The expectatioB[iM(dux dJ)] = AF(dJ)duwhereF is the jump

size distribution. Therefore, the jump term given in (3.2.4) can be writteolms\s:

et O CW s (1 + 9). R V) - C(u S, R V) Mi(dux dJ) + AF (dJ)du]

[0,t]x{JI>-1}

Finally we are ready to write (3.2.3) into two parts. The first part will be goegowithdu

terms and the second part will be martingale:

_}R(s)ds —}R(S)ds
e® C(tSRV)-C(SRV)= fe 0 : [— RU)C(U, S,R V) + Ci(u, S,R V)
0
+[R(U) — /I,LLJ']SCS + %VSZCSS+ [9\, - KVV]CV + %VO'\ZICVV + [QR — KRR]CR + %RO‘ZRCRR

—}R(s)ds
+VSoypCsy + f e o [C(u,S‘(1+J),R,V)—C(u,S‘,R,V)]/lF(dJ)]du

{I>-1)

c

o

+ fe_ ' R(S)ds|: WS GdWs(U) + oy \/\_/CVd\M’(u) TOR \/§CRdVVR(U)}

—}R(s)ds B B _
+ f e o [C(u,S @+J),RV)-C(uS ,R,V)]M(dux dJ). (3.2.5)

[0.4]x{J>—1}

The diterential form of above equation looks as follows:

t

_ [REds - [REds
d(e o C(t, S,R,V)) —e 0 [%vszcss+ [R— A;]S Gs + VSoypCsy

+2Vo2Cyy + [0y — KW]Cy + 3Ro2Crr+ [0 — KRRICR + C; — RC

+AE[C(t, S™(1+ J),R V) - C(t, S™,R V)] [dt

- } R(s)ds|

+e o [Ws GsdWs(t) + oy VWCvdW(t) + or VRCRAWK(t)

+ f [C(t,S™(1L+ J),R V) -C(t,S™,R V)]M(dt x dJ)
{JI>-1}

. (3.2.6)
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We know that the discounted call price above is a martingale. Therefooey iequation the
terms that are not martingale should not exist. We equate these parts té\geroesult, the

following Partial Integro-Diferential Equation is obtained:

2VS?Css+ [R— wj]SCs + VSayCsy + 3VaiCyy + [0y — K\V]Cy
+2R02Crr+ [0r — KRRICr + C; — RC

+AE[C(t,S™(1+ J),R V) - C(t,S™,R V)] = 0.

Note that the derivative of the call price with respect,t@; is equal to minus the derivative
of the call price with respect ta —C.. The reason behind is+ 7 = T, whereT is a constant.
ThereforeC; + C, = 0. To construct the same notation with the reference, we will use the

following equation in the rest of the study:

$VS?Css+[R— AujlSGs + VSoyoCsy + 3Va2Cyy + [ — K V]Cy
+%RO'§CRR+ [QR — KRR]CR - C-,- -RC

+AE[C(t, S™(1+ J),R V) - C(t,S™,R V)] = 0, (3.2.7)

subject toC(T, 0) = max[S(T) — K, 0].

3.3 Solution of Partial Integro-Differential Equation

In fact the call price that we are trying to find is the solution of equation (B.Zf7e general
method to find out the solution of such a partial integrfiediential equation is inspired from
the call price of Black Scholes Model [7]. The call price calculated in Blacholes Model

is of the following form:
C(S,t) = N(dq)S - N(dp)Ke" D,

whereN(:) is the cumulative distribution function of standard normal distribution,
S is the underlying asset price,

K is the strike price of the European Call Option,

29



T —tis the time to maturity,

r is the risk free rate.

Inspired from Black Scholes Model European Call Option Price, thefaan Call Option
Price of Stochastic Volatility and Stochastic Interest Rate Juntfuglon Model Price can be
constructed as follows. Assume that the solution of the partial intedfereintial equation

(3.2.7) is of the following form:
C(t,7) = m(t, 7, S,R V)S(t) - KB(t, 7)72(t, 7, S,R V), (3.3.1)

wheren; andr, are the probability functions that are calculated by inverting the respective
characteristic functions,

S is the underlying asset price,

K is the strike price of the European Call Option,

7 is the time to maturity,

B(t, 7) is the zero-coupon bond that pays 1 dollat iperiods from time.

As it can be seen above, the form of the solution is similar to the form of BlabkI8s. The
first difference in our solution is that the discount factor is not in exponential florstead, it
is the bond price, because the interest rate is not constant in the modeleAdif#rence is

that our probabilities are not normal as in the case of Black Scholes.

Now we will apply the transformatioh(t) = In(S(t)) to the terms of equation (3.2.7). Firstly
under this transformation theftirence of call pric€(t, S™(1+J), R, V)-C(t,S™, R, V) takes
the formC(t,L + In(1 + J), R V) — C(t, L, R, V). To get the idea behind the jump size should
be converted with logarithmic function. The stock price process itself jumpsamigimount
AS = S~ J and it changes fron®~ to S~ + S~J. Therefore the logarithm of the stock price
process will change from I8() to In(S™+S~J). ConsequentlyAL = In(S™+S~J)-In(S™) =
In(1+ J).

The conjectured solution given in (3.3.1) will be the starting point of déviga and difer-

ences of call price as follows:

: or1  KBom
Cs=m+ o~ ==, (3.3.2)
oml &m1l 1 oy 1 &%ny
Cog= A= 0M 2 ypl_ %2, =972 3.33
SS=3ls azs 2oL 52912 (3.3.3)

30



ony ono
- ¥ _ g2 3.4
Cv =S— - (3.3.4)
8%, 0%r»
Cyy = 21 _kpl’2 3.35
VT vz V2 (3:3.9)
omy  0°m &ny 1
Coy= L - = 3.3.6
SV=v T atov 3LOV S’ (3.3.6)
_ o0m ono 0B
Cr=S72 ~ KB=Z — Kmaor, (3.3.7)
Con= 5P _yplTe _yOme0B _([omiB | 0°B (3.3.8)
RR™ ~R2 oR2 " BROR JRAR  CoRR| >
_ <0m ony 0B
Co=Sgr ~ KB —Kmage,
P P oB
C, = - kBZ2  kn, 22, (3.3.9)

ot

or ot

The difference of call option prices can be constructed as follows:

C(t,L+In(1+ J),RV)-C(t,L,RV)

+

STA+ Ir(t,L+In(1+ J),R V)
KBrao(t,L +In(1+ J),R V) - S mi(t,L,R V)

KBra(t, L, R V). (3.3.10)

Substituting all of the above results into the partial integi@edéntial equation (3.2.7), we

obtain the following equations with respect to probabilitiesr, and a diferential equation

of bond price:
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_ 1 8271'1 1 (971'1 57‘(1
SVEEL LR A + 2VIZ2E 4 6y — (Ky — ayp)V] o2
S[2V8L2+[R /l,uJ+2V]aL+[V (Ky = ovp) ]8V
Pm 1 2(’)27r1
VAL S S ™
TV Eav T 2R GRR
+[R= Aui]m — Rey + 2V 2@—%+AE[(1+J)n tL+In(L+J),RV)
R AV e ’

on
+[0r - KRR]a_F\::

_ﬂl(t’ L’ va)]:| = 07
(3.3.11)

1, ,6%n, 1, ,,0m 8%
KB|ZVI2 4 R ;- V] 22 o2
[2 gz TIR= i = SVIGE + owVary

1 2627r2 omy 1 262772
+§VO-V_8V2 + [9\/ - KVV]B_V + ERO'R—(?RZ
2
O'RaB ony  Onp
_ - ——I)R|—= - —= + AE[m(t,L +In(1+ J V) —-m(t, L,R V)]| =0,
ok - (ke - S ERIRITE - 2 4 Al L+ (0 4 R V) - 7o LR V)
(3.3.12)
1_ ,6%B 9B 9B
_ - - - — + ——-RB|=0. 3.3.13
Kﬂz[ZRO'RaR2+[6’R KRR]8R+ at ( )

Equations (3.3.11) and (3.3.12) are equal to 0 because these two egimtvenndependent
derivatives in them and the partial integrdfdrential equation itself is equated with zero. The
reason of equality to zero of equation (3.3.13) is because of the Ito Foandlanartingale

property. We can prove (3.3.13) as follows:

- } R(s)ds

t
- [ R(s)ds
o B(O,t, R)) =g 0 [ ~ R()B(0,t, R)dt + dB(0,t, R . (3.3.14)

de

This equation should not have tewfhsince discounted prices are martingale under the risk
neutral measure. To findiB(0, t, R) we applied the Ito Doeblin Formula and used the interest

rate structure given as:

dR(t) = [6r — KrR)]dt + or v/RE)AWEK(H).
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By Ito Doeblin Formula,

2
dB(0,t,R) = %du g—zdR(t) + %‘;—RERagdt
= %dt + +% [0r — KrR()]dt + or V/R(E)dWK(1)
16°B_ ,

By writing the equation above into (3.3.14) and arranging the terms we get theyoad, that
is equation (3.3.13).

Finally the diferential equations (3.3.11) and (3.3.12) for probabilitieandr,, respectively,

can be written as follows, sinc& andKB are nonzero:

1. 0%m 1 _o0m om d°my
EVW + [R—/ll,lj + Ev]a_l_ + [0\/ - (KV_ O'Vp)V]a—V + O'Vme
+§R0'Rﬁ + [QR — KRR]B_R - /l,ujﬂ']_
1 &1 om
+§vagw = 5o FAE[L+ Dt L+In(1+ ), R V) - m(t, LR V)] =0,
(3.3.16)
S S O V)i S Vi SO Y i SO PR L
2" 92 Hi= 550 TPV alav T 2 Tvigye TV T VYIGy
1_ 8 0% 0B, _|om,
2VRgr TR IR BRI GR
—? + AE[mo(t, L+ In(1+ J),R V) — mo(t,L,R V)] = 0. (3.3.17)
.

The above equations are calledkker Planck forward equations for probability functions.
These partial dferential equations must be solved separately subject to the terminal condi-

tions:

mi(T,0) = Ly mysky for i=12
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In fact, the Fokker-Planck forward equations (also known as the Kabmnoygforward equa-
tions) provide a relation between thefdrential equation of probability functions and the
stochastic process itself. The details of these forward equations atnttiriuwus processes
can be examined in [6] and the processes with jumps in [13]. In fact, ustngptiniesponding
characteristic functions instead of probabilities is easier because thd éwseof probabil-
ities may not be available but the characteristic functions always exist. dkieeFPlanck
forward equations are very important at this step. Firstly, we constralceedorresponding
stochastic processes by looking at the Fokker-Planck forward eqeathmve. Then, by us-
ing these processes, we showed that the probabilities and characteristiolfis satisfy the
same PIDE. After that instead of the probabilities we dealt with the chardatduactions.
The details of this methodology for the stochastic volatility model are pointed ¢l iarig-
inal paper of Heston (1993), and the detailed version can be investigdis]. Note that the
construction of the process for the probabilityis standard, but for; it is slightly trickier.
The following property of normal distribution is necessary in that senée. property is as

follows:

E(&f(2) = & %“5E(z*),

whereZ ~ N(z 02) andZ* ~ N(z+ 02, 02).

The proof of the above equation is a consequence of writing the pdfrafalaistributions

and calculating the expectation as

_(z2?

1
E(ef(2) = ef(e ¥z ———dz
Yoo 2n02
* @R ohark 1
= ff(z)e v; @ % dz
e 2770'%

127 _e@od? g

e 29z f f(2e %7 dz
- 1 2

= ¢ 292E(2), (3.3.18)

with Z ~ N(z 02) andZ* ~ N(Z+ 02, 02).
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By using the above result we arranged the terms with jumps in the intefjeveshitial equation

of 1 as follows:

—Aujm+ A E [(L+ d)m(t L+In(1+J),R V) —mi(t, LR V)] = —AE(d)m

+

AE[(L + Dma(t, L+ In(L+ J), R V) — 71(t, L, R V)]

AE[(L + D)[7a(t, L+ In(L + J), R V) — 71(t, L, R V)]

AL+ p)E[mtL+In*(1+J),RV)-mtLRV),  (33.19)

with In[1 + O] ~ N(n(L+ 1)) - 302.02),

and IF[L + J®)] ~ N(In(L+ pj) + o2, 0?).

Using the results given in above equations and dividing each term withu(}, the integro-

differential equation of, can be written as

V.  8%m [R-Auj+ %V] or1 [6v—(Ky—ow)V]omy  owV 8%y
@rp) a2~ (@L+p) oL @+pp) oV (L+pu)dlav
L1 Rog 9%m; , [0=— KeR] omy

2(1+uj) oR? (L+uj) OR
1 Vo2 #m 1 om

= — + A(E[m(t,L+In"(1+J V) -m(t,L,R V)] =0.

1
2

Define the following time change in the above equation, we get

%; - @ where t* = t
ot (L+p) ot E)

Therefore, the PIDE corresponding/tpis as follows:
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1 V 0 [R-wj+3Viom [0 - (Ke-owp)V]on1 oV 0°m
2@+u a2 T @+p) oL @L+p) OV (L+p) LoV
! Ro% 0211 [6r— KrR] 0m1
T2@rp) o T (L+p) OR

1 VO'V 3271'1 871'1
A(E[r1(t", L+ In*(1+ J),RV t',LLRV
@eay vz T o TAEME LA ). RY) - m(t LR V) =

We wrote the following PIDE forr, as a reminder:

1, ,0%n> 1 anz FPry 1., ,0%m anz
V2 L [R- Ay, v oN——=2 + “Vo — KyV] =2
5V gz TR = SVIgE T owVarG + sVousgs + - KwWig

1 92 T2 O-R 0B ony

+=Ro2—= +|6r - (K R|—=

>RRgRz *| R~ (Kr— FaRRI 7R

+% + AE[mo(t, L + In(1 + J),R V) — mo(t, L,R, V)] =

The PIDE forr; andm, can be expressed in a general form as follows:

1V(92p+ [R—Auj+biV]oP oV 62P . 1Vcr5@+ [6v - ciV] 6P

23 02 a E+ a oLV T 2 & oV a oV
1Rog 8%P
0r — (Kr—-dR
+2a6R2+[R (Kr— )]
P
+‘;—t + AE[P(t, L + Ini(1+ J),R V) = P(t, LR V)] = 0 (3.3.20)
i
fori = 1,2, where ay = (1+pyj), a2=1, by =131 by=-3 c = (K -op)

CZ = KV!
th=Kg, o= "Rgg, t1=t, tb=t Iny(1+J)=In"(1+J),

Ino(1+J) =In(1+ J).

We can write the corresponding stochastiedential equation by looking at the above prob-

abilities. The spot price process, stochastic volatility and stochastic intatestynamics are

as follows:
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- wdq + \/gd\/\/s +Ini(1+ J)dN,

[6v — V] \%
dVy = ———dt + —dW,
t a [ O'Vﬂai WL

dR; = [6r — (Kr — diR)]dt + or \/Ed\NR. (3.3.21)

Subsequently, define any twicdldirentiable functiorf as a conditional expectation bf V,
R, whereL(t;), V(t), R(tj) follow the risk neutral processes given by (3.3.21). This function is

constructed as follows:

f(L,V.R ;) := E[g(L(T), V(T), R(T)IL(t)) = L, V(t}) = V,R(t}) = R)]

subject to the terminal condition

f(LV,RT) =9g(L,V,R).

In fact, this function is a martingale under the risk neutral probability measuarde thesis

given in [12], one of the three conditions of a martingale, that is the tovegrepty, is proved.

We can establish by using Ito-Doeblin Formula the PIDE thaatisfies as follows:

of of of of 10°f 16%f
df = a_tldtl +8_LdL+ aT/dV'F a—IQdR'l' Emd< L,L>++§Wd<\/,v>+

2 2 2 2
1afd<F\’,R>+afd<L,V>+afd<L,R>+ ot

o1 V.R
2 0R2 LoV JLoR avard < VR>+

[f(u,L+Ini(1+J),RV) - f(u,L,R V)]M(dux dJ) (3.3.22)
[0,t]x{I>-1}

and, after using equations in (3.3.21),
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C[of  af[R—Awy+bV]  af [6y— V] 121V
df = |:6—tl + i a + W a —[9R (KR d R)] + = 26'_2

1PTV 1P1R - Pf owV

26V2 f(u, L+ Ini(1 V) —
20V2 a 28R2a| TV, a f [f(uL+In(1+J),RV)
{I>-1)

f(u, L,R,V)]/lF(dJ)]dti+ f [f(u,L+Ini(1+J),RV) - f(u, L RV)]M(duxdJ) +

[0,t]x
{I>-1}
of of \Y of R
Ws + — — — — . 3.2
o d 5 + aVO'V1/aid\/\4_+aR0'R1/aid\NR (3.3.23)

Consequently, sinckis a martingale, in the above equations the non-martingale part becomes

zero as in the following PIDE,

1va2f+[R—Auj+biV]g oV 0% 1Voi #f  [6-aV] af

22 0.2 a oLt Ta GV 2 & avi & oV
1RoZ 92 f of

SRt (K- diR

+2 a o TR~ (Ke- )]6R ot

FAE[f(t, L+Ini(1+ J),RV) - f(t, LLR V)] = 0 (3.3.24)

subject to the terminal condition

f(L,V,RT) =g(L,V,R. (3.3.25)

Note that the above equation has the same form with equation (3.3.20). Witlogies phoice

of g we can get the characteristic functions corresponding tndxr,. Choosej as

o(L,V,R) = €’".

Therefore, the functiofi is in this case as follows:

f(L,V,R t) 1= E[€’"|L(t;) = L, V(t;) = V.R(t) = R)]. (3.3.26)

Itis clear that the solution of equation (3.3.24) gives the characteristitifuns ofr; andns.
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Finally we reached the desired solution. We can say that the probabilitidoea@nd their

corresponding characteristic functions will satisfy the same PIDEs. By ukis result, we

employ the PIDEs of characteristic functions instead of probability functidhen, by using

the inversion formula, we can get the probability functions. This transitiosserdial be-

cause, one can view the characteristic function as a contingent claim tiveel sising the

standard contingent claims’ partial integrdfdrential equation under relatively easy bound-

ary conditions [4].

We entitled the characteristic functions correspondingitandr, as f; and f,, respectively.

The following equations can be written for the characteristic functions gdmack to equa-

tions (3.3.16) and (3.3.17):

(3.3.27)

of
+ [0~ KWV 57

%V% +[R—Auj + %V]Z—fl_l + [0y — (Ky - (J'\,p)V](;—{/1 + ooV
+%Ro%% +[0r— KRR]Z_]; —Aujfy
+%v03% - ‘Z—E +AE[(1 + ) fa(t, L+ In(L+ J),R V) - f1(t, LLR V)] = 0
and
%v% +[R- Ay - %V]g—r_z + avpv% + %w&%
+%Ro-é% +|6r — (Kr — %‘2*2—2)R z—g
ot

~Z2 4 AE[R(tL L+ In(1+ )R V) - (L LR V)] =0

with the boundary conditions

fi(T,0,¢) = N for =12

(3.3.28)

The method to find the solution of the PDEs is very common in applied mathematicsaVe s

with a conjecture solution and insert the solution into the PDE. Finally, we réecterms

of the solution. For this reason assume that the solutions of (3.3.27) an2i8)3a3e in the

following form
fit, 7, S, RV, ¢) = expU(7) + X ())R(t) + X, (7)V(1) + i¢In[S(1)]).
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fa(t. 7. S, RV, ¢) = exp(7) + y: ()R(Y) + W(r)V() +i¢In[S)] - In[B(t, 7)]).  (3.3.30)

with u(0) = x(0) = x,(0) = 0 andz(0) = y;(0) = yy(0) = 0 with B(T,0) = L.

Finally, we solved the PDEs by writing the conjecture solutions given abioiethe equa-
tions of f; and f,. Starting withf; we can get the following dlierentials by taking derivative

of conjecture solution,

ofr . .
o = f1(9), (3.3.31)
azfl . 2 2
Nz fi-(i¢)”=—f1-¢%, (3.3.32)
of
a_vl = f1 - x(7), (3.3.33)
021,
vz = x/(7)>, (3.3.34)
¢y i 3.3.35
Sy = 1) (ie), (3.3.35)
af
a_é = f1- % (7), (3.3.36)
52f,
= = f1- % (7)2, (3.3.37)
afl / / /
27 = f (V@) + X @R + V). (3.3.38)

and the terms in jump part can be written as
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fa(t, 7, L+In(1+J), R V) = expU(r) + X (1)R() + X (1)V(t) +igL +igln(1+ J)) = f; -4+
(3.3.39)

wheref; = f1(t, 7, L,R V).

By writing all of the above solutions into the equation (3.3.27), we get

= VA TR Ay + V16 + rupV (o) - () + SVoRx(e + [~ (Ky - p)VIK(D)
+%Ra§xr(7)2 +[6r — KrRI%(7) = (U'(7) + X (1)R+ X,(1)V) — Ay

+AE[(L + J)é!"+) _ 1] x f;, = 0. (3.3.40)

Equation (3.3.40) has terms with the volatility proc&snterest rate procedk, and terms
withoutV andRwhich are independent from each other. Therefore each of thess stiould
be zero. As a result, we can construct the following equations:

- %¢2 + %i¢ + ovox(7) - (i) + %ang(r)z — (Ky = oup)xu(7) = X(1)| X V = 0.

The above equation can be written now as

1 . 2
X(0) = 50500 + g — Ky + o) - “—0 =0, (33.41)
The terms with respect e are,
i¢+1'o-2x(r)2—K X (1) = X, R=0
2 R RAr T) Xl’(T) XR=0U.
Arranging, the terms we get
1 -2
X(r) = 502% (12 ~ Knx, (1) - T¢ _0, (3.3.42)

The terms that are not a multiple ¥fandR are,

41



—Ajiep + Oyx(T) + Or% (T) — U/ (1) — Auj + AE[(L + J)&¥n+D) _ 1] = 0.

As a result, the following equation can be formed:

U (1) = Oyx(7) + Or% (7) — Aujfig + 1] + AE[(L + J)g?N+)) 1], (3.3.43)

Actually equations (3.3.41) and (3.3.42) are special cases of so callestiRiquations. These

equations are first-order ordinaryi@rential equations and in general form, they are given as:

dy

>t a(x)y? + b(x)y + c¢(x) = 0,

wherea(x), b(x), c(x) are known functions.

If the codficientsa, b, c are constants in the Ricatti equation as in our case, then it allows a

separation of the variables and the solutyaran be obtained by the general integral

dy
Ci—-X= | ———.
1o fay2+by+c

Detailed information about Ricatti equations can be found in [22].

Lemma 3.3.1 The dfferential equation ¥(s) = %yz + By-— % with constants AB, C and with

initial condition y(0) = 0 has the following solution:

y(s) = where y = VAC + B2 (3.3.44)

ycoth5) - B’

Proof. To show that the given ordinary first ordeifférential equation has the above solu-
tion we followed the general method that is writing the conjecture solution into ithea g

differential equation then showing that, really the equation is satisfied.

Firstly, we take the derivative g{s),

_ Cy(1-cothf(%)- %
y(s) = (ycothZ) - B)?

(3.3.45)

42



Secondly, we write the terms of thefliirential equation separately:

A02
—y° = , 3.3.46
y2 ycoth(yz) - B)?2 ( )
~ —BC(ycoth(%) - B) (3.3.47)
~ (ycoth®) - B)? o
—-C _ = (ycoth) — B)? (3.3.48)
2 (ycoth@)-B)2 o
Subsequently, adding (3.3.46), (3.3.47) and (3.3.48), we get
S(AC + B?) - $y2coti?(%) _ _ Cy(1-cottf(R)) -}
ycoth(%) - B)2 (ycothE) - B)?
This equation is exactly the same as (3.3.45) whigh(is).
[ |

At this step another proof from fllerential equations is needed to solve our problem.

Lemma 3.3.2 Let (s) = M—S_ﬁ, wherey = VAC + B2, with the derivative (s) =
2

By - % and with initial condition y0) = O, then the integral of this function is as follows:

inh(%
ant;z))

(3.3.49)

S
_ 2In(coshs —
| voat= 2=~ ?
A A
0

Proof. To prove the lemma, we try to show the derivative of the right-hand side eihation
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(3.3.49) is exactly the same ¥s) given above:

g(—Bs_ 2In(coshy — Bsm:@) B 2 sinh(3)} - Ecosh(;)}
ds\ A A A Al coshz) - Bsinh(y)

B y[1-Jcoth(®)
- e s
B2 - AC - B?
A(ycoth%) - B)
I
(ycoth) - B)
= ¥(9).

—_—

Note that the integral may beftér with a constant. However in the statement of the lemma

the initial condition is given to be zero. Therefore the integral is exactlydheesas (3.3.49).

Finally we reached to our main goal that is finding the solutions of (3.3.4B.43), (3.3.43)

of by using the two lemmas above. Note that (3.3.41), (3.3.42) are in the foottme differ-

ential equation given in Lemma 3.3.1. Therefore using the lemma we get,

—(¢* - ig)
ycoth(G) — (ipovp — Ky + o)

X(1) =

wherey = \o2(¢? - i¢) + (ipovp — Ky + oyp)?,

and

~2i¢

X (1) = ———
() ncoth(Z) + Ke

withn = /0'2R(—2i¢) + KF%.

Using Lemma 3.3.2, equation (3.3.43) can be solved as,
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u(7)

b f X(7) + OR f % (1) = TAujlig + 1] + TAE[(L + J)?nI+D) _ 1]

2

P [(Kv —igovp — ovp)T
v
Oy

2In(cosh§) + (Ky = igayp — o) sin:@))]

oy

< 2In(cosh§) + KR—Sin:(%))
+ eR[—ET— 5 ]—M[i¢+ 1]
ORrR ORrR
+  TAE[(1 + J)d?n() _ 1], (3.3.52)

The expectatiorE[(1 + J)é?"(1+9)] can be easily calculated due to the fact that ln(d) is
distributed as normal with mean Infdu;) - %(rf and variancerJ?. The general form of the

characteristic function of normal distributidh ~ N(u, 0?) is

E(e”) = exp(ue — 30°¢°).

Therefore, by writing the mean and variance of Kl and arranging the terms as follows,

we can get
E[(1 + J)d¥n+)] = g[nrd)gon(d)
= E[ellHiein(+)]
— E[ei(%+¢)ln(1+J)]

= exp((In(L1 + pj) - %0-12)(% +¢) - %0‘12(% +$)?)

= exp((1+ ig)In(L + uj) + a?%(l +1i¢))

=(1+pu j)(1+i¢)exp(0'j2i§¢(l + i¢)). (3.3.53)

Note that in the characteristic function definitigris a real number. However, in equation
(3.3.53) we wrote instead @fa complex number. We are allowed to this because the normal

distribution has an entire characteristic function. That means instead alf sur@ber a com-

45



plex number can be put. More detailed results about analytical charéictenetions can be

examined in [32].

At this step, by using the lemmas and the conjecture solutiofy,afve can construct the

derivatives as follows:

of

a|_2 =1, (i9), (3.3.54)

22;2 =ty (i0)2 = — T 2 (3.3.55)

‘Z_{f e (3.3.56)

gi/fg =ty y(0)2 (3.3.57)

;Sf/ ~ (@) - (i), (3.3.58)

‘;fRZ ~ ey (o). (3.3.59)

63222 fpyo ()2, (3.3.60)

%—f; = f2- (Z(7) + S (DR{®) + Y () V(1)) (3.3.61)

and the terms in jump part can be written as

fo(t,7,L+In(1+ J),R V) expUu(r) + X ()R() + x(r)V(t) + igL + igIn(1 + J) — In[B(t, 7)]

_ f,. o) (3.3.62)
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wheref, = fo(t, 7, L, R V).

By writing the above derivatives into equation (3.3.28) we get

1 1 . 1
- qusz +[R— Auj - éV]|¢ + oV W(T) - (i9) + Evagyv(f)2 + [0 — KyV]yu(7)

0% 9B

1.5 2
+-Rogyr (1) + B 7R

2

or - (KR— )]yr(r) (Z(0) + Y. (OR + Y, (r)V)

+AE[M) _ 1]| x f, = 0. (3.3.63)

From a similar argument done fdt, equation (3.3.63) should have zero multiples of terms
with the volatility process/, interest rate procesR and terms withou¥/ and R which are

independent from each other. As a result, we can construct the fofjagnations:

1 1. . 1
- §¢2 - §|¢ + oy (1) - (ig) + EO'\Z/YV(T)Z - Kwi(7) = y(7) [ x V = 0.

The above equation can be written now as,

2 .
¢ +I¢:0'

Yi(7) = —(fvyv(r)2 +(igovp — KOW(®) - — (3.3.64)
The terms with respect to R are,
0+ 3207~ (K~ T 0RN) )| x R =0
Arranging the terms we get,
yi(7) = <fRyr(r)2 (Kr— —RaB) (1) - =0. (3.3.65)
B R

The terms that are not a multiple ¥fandR are,

—Ajip + OW(7) + Oryr (1) — Z(7) + AE[/NHD) 1] = 0.

As a result the following equation can be formed,
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Z(7) = Oyu(7) + ORY: (7) — Aujigp + AE[NA+D) _ 1], (3.3.66)

Using Lemma 3.3.1, equations (3.3.64) and (3.3.65) can be solved as

—(¢” +1i9)
7) = — , (3.3.67)
(o) VCOth(y?) — (igovp — Ky)
wherey = \/0'\2/(¢2 +i¢) + (ipoyp — Ky)2,
and
-2
yi(r) = - - ? p (3.3.68)
ncoth(5) + (Kr—- 558
withn = \/UZR(—Ziqs) + (Kr - %‘2“3—3)2.
Using Lemma 3.3.2, equation (3.3.66) can be solved as
2r) = 6 f Yu(7) + 6R f Vi (1) — TAujigp + TAE[/NIH) — 1]
— [(Kv — igoyp)T
= O ——""—
Oy
2|n(cosh(L;) + (Ky - i¢avp)3‘”*;(§)) (Ko Bi8)
_ 5 ] + QR[ R 2B R’ _
oy OR
T a2 sinh(%)
2In(cosh%) +(Kr— BE TZ) |
- 5 ] — Aujigt
OR
+  TAE[MNA+I) _ 1], (3.3.69)

where the expectation is the characteristic function of ¥yg) which is normally distributed.
The form of the characteristic function of normal distribution is given in thevipus part

when the diferential equations of; constructed. Therefore,

E[e/"0I] = (1+ 4 ,-)“”exp(rf,?ig(hz5 - 1))
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Eventually, the closed form solution of European Call Option Price is oldairi@@ne can

found the results and summary in the next section.

3.4 Final Forms of the European Call Option Prices
In this chapter, the option pricing formula is formed under the asset prozeegs Stochastic
\olatility Stochastic Interest Rate Jumpfiision Model (SVSI-J). The European Call Option

Price occurred in a Partial Integro{Bérential Equation. We solved this equation to get the

solution. To sum up, the call price is found as

C(t,7) = m1(t, 7, SR, V)S(t) - KB(t, 7)72(t, 7, S, R, V), (3.4.2)

where

mj(t, 7, S,R V) =

17 e idIn[K] (7. SRV)
= Re( | )d¢, (3.4.2)
n 1)
0

NI =

and the characteristic functiorgt, 7, S,R, V) are

f1(t,7,S,R V, ¢)

o§

ex;{(%[(Kv —igovp — ovp)7

ZIn(COShg) + (KV - i¢0'v,0 - O'VP) Sin:(g))
- + QR —RT
ol o2
2In(cosh@) + KRsir;h(%))
B 2 ]—/l,uj[i¢+1]r
OR
+ L+ ﬂj)‘l”“’)eXp(o,?%(l +ig)) - 1]
~2i¢
’ [ " ooth@) + Ke | )
~(¢* - i9) _ )
' [’ycoth%) — (igorep — Ky + O'VP)]V(t) +ign[S@Ol|  (34.3)
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with y = Voi(@? - i¢) + (igoww — Ky + avp)?,

n= ,/o‘ZR(—ka) + KF%

and

f2(t’ T, S’ Ra \/a ¢)

exp(e\,[ (Ky —igayp)r

o

T . sinh(
2In(cosh%) + (Ky — igayp) y( )) (Kn— %g%_g
— > +9R > ¢
loxvi OR
- R-0% sinh(§
2In(cosh%)+(K £ 8) ,,( ))
_ — } - /1,uji¢7'
R .
T+ ) expled 0 - 1) - 1]
+ [ - ~2¢ . ]R(t)
neoth(k) + (Kg — 52 28)
—(¢* +ig) }
_ V(t
' [wcoth(%) (g K| O
+ igIn[S()] - IN[BL(t, T)]) (3.4.4)

with y = vo2(¢? + i¢) + (ipovp — Ky)? and

1= \ok(-2i¢) + (K~ FB)2

The results are the same as the ones in the paper of Bakshi, Cao and@@enly diference

is they wrote instead of hyperbolic functions their equals in exponentialfor

This pricing formula is much more applicable when compared to the formulandoy&cott
in the second chapter. The reason is that the number of parameters drenoigcless, es-
pecially, it is given only as a function of identifiable variables such thatatbumeters can be
estimated. In the next chapter, the performance of alternative optiongriagels is com-
pared. 4 models are chosen to identify the best one from them. These raml8kack Sc-
holes Model (BS), Stochastic Volatility Model (SV), Stochastic Volatility Jumpdeld SV J)
and Stochastic Volatility Stochastic Interest Rate Model (SVSI). The géfeem Stochastic
Volatility Stochastic Interest Rate Jumpfiision (SVSI-J) is not included to the empirical

study. The reason behind is that in the literature this model performanceligmdand
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results were abundantly poor. Therefore many empirical studies acemniated on the 4

models we already mentioned (see Bakshi, Cao and Chen for details).

From the general formula mentioned above the call prices of sub modeBS\BSVJ, SVSI
can be obtained. Since we need to write the call prices in closed form in theneter

estimation in the next chapter, the sub models prices are established as:follows

If 1is zeroin (3.4.3) and (3.4.4), then we get the characteristic functions 8f 8/

f(t.7.S.R V. ¢) 5

Oy

eX[{ [(Kv igayp — oyp)T

2In(cosh§)+(Kv iporyp — O_Vp)smh(g)

of ]

. 2In(cosh@)+K sinh(% ))
|

2
OR OR

_2ip
[_ ncoth(%) + Kg R

+
3
—
| ~
~
|

~(¢* ~i¢) _
[ycoth(g) “(igoryp — Ky + op) ]V(t) + |¢In[S(t)]). (3.4.5)

(Ky —igoyp)T

of

fa(t, 7, S, R V, ¢)

exr{&v

2|n(coshg) + (Ky — igorp) S‘”:@)]

o

7% 9B 2In(cosh@) +(Kr— CfBR 23 smh(_))

+ GR[(KR 2B 6R)T B 2 7 ]

7R : 7R
’ L’ = ]Wn

ncoth(s) + (Kg — 228
—~(¢* +i9)
[ycoth(LZT) —(igorup — K\,)]V(t)

+ igIn[S(Y)] - In[B(t, T)])_ a5

The SVJ model can be obtained by takiR@) = R (constant). Therefore, the partial deriva-

tives with respect tdR will vanish and the bond price will b&(t,7) = e ™. Hence, the
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solution of the partial dferential equation (3.3.27) becomes

fi(t 7, S, R V. 6) = expU(r) + X ()R + X()V(t) + igIn[S(1)]).

The diferential equations of,(7) given in (3.3.41) does not fller in this case. However,

(3.3.42) and (3.3.43) become

-2 _

x(r) = 5

and

U (7) = Gyx(7) — Ajfligp + 1] + AE[(L + J)on@+I) _ 1],

For this reasony (r) = i¢7r. Finally we can writex, ()R = i¢7R = —igIn(B(t,7)). The
codficients ofu(r) is the same, only it does not include any terms ViRtiWwhen the solution

of the diferential equation in (3.3.28) is considered,

fat, 7. SR V, ¢) = expl(r) + yr ()R + Yu(1)V(1) + igIn[S(D)].

The diferent part of this equation is that there is nofGo&nt with In(B(t, 7)) because we do
not have any derivatives with respecRalso. From a similar argument the equation (3.3.64)

is the same. However, (3.3.65) and (3.3.66) become

-2 _

yi(r) = o

and

U’(T) = vav(T) _ /lﬂj|¢ + /lE[ei¢|n(l+J) _ 1]

Finally, the characteristic functions corresponding to SVJ are:
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fi(t.7.S.R V.9) w%&PQ_W“W—GMT

oy

2In(cosh6’) + (Ky = igoyp — oyp) Si”:(y—{))]

2

Ov
b T+ ) O xpErd S (L4 i) - 1] - Alio + 1]
—(¢* - i9) .
" [ycoth(g) —(igorup — Ky + va)]V(t) +igIn[S(V)]
- wmm@ﬂ& (3.4.7)
RtLTSRV.¢) = ex;(e\,[w

2In(cosh@) + (Ky — i¢0'vp)%(g))]

of

+ +ﬂj)‘¢exp(cr?ig(i¢ — 1)) - 1] - Aujigr

—(¢? +i9)
’ [ycoth%f) ~(iporwp K»]V(t)
+ i¢|n[S(t)]—i¢|n[B(t,T)]). (3.4.8)

The SV model diters from SVJ only with the cdicient A. By equatinga to zero in the

characteristic functions of SVJ, the characteristic functions of SV cdaorbeed as

fi(t, 7, S,R V, ¢)

oy

onfo| cmi#00=0

2In(cosh%’) + (Ky — igoyp — oyp) Si”*;(y—{))]

o
~(¢* - i9) .
['ycoth(V—ZT) —(igoup — Ky + o-\,p)]v(t) +igIn[S(V)]

gIn(B, r))), (3.4.9)
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fo(t, 7, SRV, ¢)

o

eXF<9v[ (Ky —igoyp)T

i

—~(¢* +i¢) ]V
[ycoth(%’) g —ky Y

idﬂS@}d@MB&ﬂO. (3.4.10)

m«asw9+a@—WmmﬁT§j}

+
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CHAPTER 4

THE PERFORMANCE OF ALTERNATIVE OPTION PRICING
MODELS ON GENERAL ELECTRIC STOCK DATA

There are many studies to construct mathematical description of financk@t®and deriva-
tive investment instruments. The classical model for stock price fluctuaiotie Black-
Scholes model. The model assumes that the implicit volatility is constant for ak girikes
for options on the same underlying asset with the same remaining time to maturity: How
ever, the actual functional relationship between implicit volatility and strikeepstypically
shaped like a lopsided smile. This functional relationship is therefore oftemred to as the
"volatility smile”. The curve of the volatility smile indicates the deviation of the market's
probability density function from the log-normal distribution assumed in thelB&aholes
Model. Volatility smile is the most significant problem of this model. The other deviatod
Black Scholes Model from the market behavior are the empirical distritaitbiog-returns
are 'fat-tailed’ and 'sharp-peaked’ compared with normal distributioriso Arice jumps of 4

or more standard deviations occur regularly in stock markets, but sheuldrlg rare events

if log-returns are normal distributed.

The purpose of the empirical analysis in this chapter of this study is to meihsuiraprove-
ments of the model generalization like stochastic volatility, stochastic volatility with jump
and stochastic volatility, stochastic interest rate rather than using BlackeSahodel. We
are trying to answer the questions: Is it really worthy to use models complitadadlack

Scholes? Is the gain, if any, worth the additional complexity or implementatiostdzo
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4.1 Data Description

We used the Options on the Stock of General Electric in our empirical peafuce study.
General Electric Company was founded in 1892 and operates as altaphnoedia and fi-
nancial services company worldwide. Its Capital Finance segnfEartscommercial lending
and leasing products to manufacturers, distributors, and end-usesggipfnent of capital as-
sets; consumer financial services to consumers and retailers; cagiiaastment solutions
for real estate; commercial finance to energy and water industries;canihercial aircraft
leasing and finance, and fleet and financing solutions. The stock angtite®are traded
actively in Chicago Board Options Exchange. Observe that, many empgaectdrmance
studies are constructed on S&P 500 index. However we chose the staakda@eneral Elec-
tric on purpose. Because Bakshi, Cao, and Chen (1996) suggetsteinandex option results
may not hold for single stock options. The data set is collected on 20 JaP0at at 14:05.
At that time the General Electric stock price was 18.43 dollars. The dataicsmations
with 7 different maturities. The days to expiration of these options are changin@fialays
up to 515 days. Time to expiration of the options is founded by dividing dagspoation
to 360. For the risk free interest rate the 3 month T-bill Discount rate 0.158$dd. For
dividend payments Forward Annual Dividend Yield of General Electrozkss 2.8 % is used.

Some exclusion filters are applied to construct the option prices’ data setlyFaptions
with unrealistic implied volatilities are ignored so that accurate results can Inel foBec-
ond, as options with less than six days to expiration may induce liquidity-relatseditney
are excluded from the sample. After this filtration, the number of data setlixee to 75

observations over all. The data set can be found in Appendix A.

The option data is divided into several categories according to either mesgwr term to
expiration.S(t) — K is called the tima-intrinsic value of a call. A call option said to be at the
money (ATM) if S/K changes in between 0.97 and 1.03; out of the money (OTIE) K is
less than 0.97; and in the money (ITMBfK is greater than 1.03. We applied a finer partition
which resulted in 6 moneyness categories. By the term to expiration, we @ddbidi option
contract into 3 categories. The first one is short term options with daygtagon less than
60 days. The second type is medium term options that has days to expirativeen 60
and 180 days. Finally, there are long term options with days to expirati@iegrihan 180

days. For each of these categories, the following table can be condttocieow the sample
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properties of the data. Under each moneyness and maturity categorgthgawef option call
prices are takerS denotes the general electric stock price when the data is colldCtisdhe

strike price of options contract. OTM denotes out of the money options,ddivesponds to
in the money options and ATM refers to at the money options.The numbersantpasis in

Table 4.1 are the number of observations in each category.

Table 4.1: The Sample Properties of General Electric Stock Options

Moneyness(¥#) Days to Expiration
< 60 60— 180 > 180
$0.06 $0.25 $0.68
< 0.94
8) (12) ()]
0.94-0.97 - - -
$0.37 $0.87 -
0.97-1.00
2 (3 Q)
$0.85 $1.373 -
1.00-1.03
(2 3 )
- - $2.63
1.03-1.06
) ) (2
$3.19 $4.572 $7.54
>1.06
(8) (18) (8)

According to Table 4.1, the average call price ranges from $0.06 to $7T%4 and ATM
options respectively taking up 48 percent and 13.3 percent of the &otgdls.
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4.2 Structural Parameter Estimation

For the empirical work to follow, we concentrate on the four models: the BSYhthe SVSI,

and the SVJ. The analysis is intended to present what each generalofdtietoenchmark BS
model can really buy in terms of performance improvement and whetheigeaehnalization
produces a worthy traddfthetween benefits and costs. To get a sense of what we should look
for in any desirable alternative to the BS model, the implied volatility in Table 4.2 israuta

by inverting the Black-Scholes model separately for each call optionaxnby using the
MATLAB comment ‘blsimpv’. The implied volatilities of individual calls are then aaged
within each moneyness-maturity category to produce an average implied vol&tifignotes

the spot General Electric stock level, akds the exercise price.

Table 4.2: Implied Volatility from the Black-Scholes Model

Moneyness(#) Days to Expiration
<60 60- 180 > 180
<094 %36.58 %28.96 %30.85
0.94-0.97 - - -
0.97-1.00 %29.35 %29.48 -
1.00-1.03 %30.26 %31.05 -
1.03-1.06 - - %33.6
> 1.06 %58.66 %49.17 %56.21

The findings are consistent with those in the existing literature (e.g., Bat@s)(1Bashki-
Cao-Chen (1997a)). Clearly, regardless term to expiration, the BS imyladlity exhibits
a strong U-shaped pattern (smile) as the call option goes from deep ITWMoafnd then to
deep OTM with the deepest ITM call-implied volatilities taking the highest valuasther-
more, the volatility smiles are the strongest for short-term options, indicatinglilog-term
options are the most severely mispriced by the BS model and presenppéeheagreatest
challenge to any alternative option pricing model. The maturity-related-b&@sebe seen

clearly in Figure 4.1. In the figure, the short-term options (days to expirdgiss than 60
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days) shows the strongest smile if we compare it with medium-term (days t@gapibe-
tween 60 and 180 days) and long-term options (days to expiration gaggjual to 180
days). The MATLAB m-file regarding to Figure 4.1 can be found in the Apulbe

90 . . .
— — — Days to Expiration <60
— - — - Days to Expiration 60-180
Days to Expiration >=180 |7

80

u (o] ~
o o o
T T T

\
~
! ! !

Implied Volatility(%)

N
o

T

~
N

1

30F T 1

20 Il Il Il
0.5 1 15 2 2.5

Moneyness(S/K)

Figure 4.1: Implied Volatility Graph of Black-Scholes Model

Any acceptable alternative to the BS model must show an ability to properly poic-ATM
options, especially short-term OTM calls. As the smile evidence is indicatineggitively-
skewed implicit return distributions with excess kurtosis, a better model musaded on a

distributional assumption that allows for negative skewness and exgdssik [1].

4.2.1 Parameter Estimation Procedure

In applying option pricing models, the option implied prices are under riskraledistribu-
tions, while those estimated from observed time series data are for the trikudists. Thus,
before estimating the parameters, we need to change the measure or usesdtadrom

the literature. To solve this problem, we rely on the general-equilibrium moddsalshi
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and Chen (1997b) and Bates (1996) in which the factor risk premiumsrapantional to

the respective factors and, consequently, the process®&tioiR(t), q(t) and J(t) under the
true probability measure share the same stochastic structure as their patatander the
risk-neutral measure. Specifically,, ov, p, Or, or, o"j are the same under either probability,
only Kg, Ky, 4, uj will change when the probability measure changes from the risk- neutral
to its true counterpart. Let these parameters under the true probability rdssvespec-
tively denoted byKg, Ky, 4, 7z;. However, according to the study of Bates (1991), when the
risk aversion coféicient of the representative agent is bounded within a reasonable thage,
parameters of the true distributions will noffér significantly from their risk-neutral counter-
parts [1]. For this reason, we will use the exact theoretical pricesruislteneutral measure

in parameter estimation procedure instead of true measure.

Generally, we faced with the filiculty that the spot volatility and the structural parameters
are unobservable in option pricing models. Consider the SVSI for instaite strike
price and the term to expiration are specified in the contract, while the st [stice, the
spot interest rate, and the matchifgperiod bond price can be taken from published mar-
ket data. But, the spot volatility (conditional on no jump), its related strucpaeameters
KR, 0r, oR, Ky, 0V, oy, p Need to be estimated. Although the volatility risk premium is inter-
nalized in parameter estimates in this study, in some other works like [31] thereskuym

is estimated explicitly. However, in general, an explicit estimate of volatility risknpuen is

not required to implement the models with stochastic volatility. The type of argursienitar

in this study are therefore more preferable and the examples can be seamjimther works

like Bates (1996), Longsfa(1995), etc.

There are many methods to estimate parameters in the literature. Examples in@dude,
mum likelihood, generalized method of moments, etc. Each method holds its ortagk&n
and disadvantages in it. Generally, the improvement of alternative modeljsractices on
these models end up with the parameter estimation methods that are less depehded
torical data. This approach reduced the data requirement and thenpanice of the model
is significantly improved. In the estimation procedure of this study, we fatasahe mini-
mization of sum of square dollar pricing error. This error can be cocigtun the following

steps.

Step 1 CollectN option prices on the same stock taking from the same day, foNagrgater
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than or equal to one plus the number of parameters to be estimated.

Step 2 Let T; andK; be the time to expiration and the strike price of tkth option. Entitle
the observed call price obtained from the markeﬁa(ﬂ;, Ti, Ki) and Ci(t, T, K;) its model
price as determined from the formulas of the previous chapter. For exgiop&Vv/SI model
price the characteristic function equation given in (3.4.5) and (3.4.6)dhewsed wittS(t)

andR(t) taken from the market.

Step 3 Define the diference asfi[V(t), ®] = Ci(t, Ti, Ki) - Ci(t, Ti, Ki) where the parameters
in general ared = (Kg,0r, or, Ky, OV, 0y, p, 4, uj, oj) and V(t) is the spot volatility. For
instance, for SVSI the only parameters dre= (Kg, 0r, or, Ky, 8V, oy, p) and spot volatility
V(t).

Step 4 Find the spot volatility/ (t) and parameter® that minimizes:

N
Z IHa[V(t), ®]?. (4.2.1)
n=1

The objective function in (4.2.1) is defined as the Sum of Square ErrookdiDPricing (SSE).
The disadvantage of this objective function is that it may force the estimatiasigramore
weight to relatively expensive options like ITM and long term options. Anradtive could
be to minimize the sum of squared percentage pricing errors of all optiohshdt would
lead to a more favorable treatment of cheaper options like OTM. As it cared® gach
estimation procedure has its own advantages and disadvantages. Balsiscconsideration,
we choose to adopt the objective function in (4.2.1). In addition, applyilchg sn implied
parameter procedure gives equal chance to each model besides BE Nuté that there are
many methods and technical programing languages to minimize the sum of squoareA
summary of these techniques are examined in the next chapter. In the lgerany studies
which measures the performance of these techniques exist. One of tlés stamdl be found in

[30]. In our study, we used DIRECT algorithm together with MATLAB ftilon, Isgnonlin.
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4.2.2 Some Algorithms and Methods to Minimize SSE
4.2.2.1 MATLAB Isgonlin

The least-squares, non-linear optimizer of MATLAB is the function Isgn@iimx0,lb,ub).
It minimizes the vector-valued function, fun, using the vector of initial patamealues, X0,
where the lower and upper bounds of the parameters are the vectos lib arespectively.
This method requires the user-defined function which is a vector ratherctraputing the

value of sum of squares. In our problem the vector ‘fun’ is

[ Ha[V(t), @] |
He V(D). @] |

[HNIV(D), @]

The result produced by Isgnonlin is dependent on the choice of xO0, itre @stimate. This
is, therefore, not a global optimizer, but rather, a local one. Mordlddtaformation about

Isgnonlin can be found in [8] and [9].

4.2.2.2 Excel Solver

The standard Solver supplied with Excel contains an optimizer that candaefas opti-
mization procedure. It uses a Generalized Reduced Gradient (GR&)dreatd, hence, is a
local optimizer. The calibration results are therefore sensitive to the initiah@&gs of the

parameters. The details can be provided from [27].

4.2.2.3 Simulated Annealing (SA) and Adaptive Simulated Annealing (ASA

Simulated Annealing is a probability-based, non-linear, optimizer inspired dyllysical
process of annealing. This method statistically guarantee finding an optila@bsolt were
Kirkpatrick and Vecchi (1983) who realized the algorithms application to opétita in

general.
Adaptive Simulated Annealing (ASA) was developed by the theoreticalighikester Ing-
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ber. ASA is similar to SA except that it uses statistical measures of the tpegormance
of the algorithm to modify its control parameters i.e. the annealing scheme. deinged

discussion on ASA the reader is referred to (Ingber 1995).

4.2.2.4 Direct Algorithm

DIRECT is an algorithm developed by Donald R. Jones et al. [20] foirfqnthe global min-
imum of a multi-variate function subject to simple bounds, using no derivatfeentation.
Instead, the algorithm samples points in the domain, and uses the informatisrolvfained
to decide where to search next. In fact, this algorithm is a modification of thdastz Lips-
chitzian approach that eliminates the need to specify a Lipschitz constanteTdibs about
the Lipschitz constant and the relation with the algorithm can be provided [ftdin This

algorithm solves the type of optimization problem given as

min f(x) suchthat x < X< Xy
X

with f(x) € R andx, x_, xy € RY .

The first step in the DIRECT algorithm is to transform the search spacetteehenit hyper-
cube. In geometry, a hypercube is a n-dimensional analogue of aeslu@) and a cube
(n=3). The function is then sampled at the center-point of this cube. Thedwypeis then
divided into smaller hyperrectangles whose centerpoints are also sarHpledver, when no
Lipschitz constant is used, we can not understand the definition of igemee except when
the optimal value of the function is known. This problem is solved by a uderatkiteration
number. The algorithm typically terminates when a user-supplied budganhofién evalu-
ations is exhausted. There are many prepared packages to use the DéRferithm in the
analysis of studies. Some examples are in the paper of Finkel (2003)jarkaan, Holm-
strom (1999). In our study, we used the package given in [5]. In #pep there is a function
called gblSolve which applies the DIRECT algorithm into your function in MAB.AThe
function that we want to minimize is defined as a real valued function underatme ‘fun’.
Then the lower bound for the parameter getand upper boundy is defined in the vector
form. After that the global number of iteration is specified in the name GLOBAhally the
printing level of the results in the screen of MATLAB is chosen. Then thex gan run the

algorithm. The types of printing levels defined under the name PriLev in thethlgoare:

63



PriLev > 0 Warnings,
PriLev > 0 Small info,
PriLev > 1 Each iteration info.

The output is specified with the name Result wikasult= gblS olvéfun, x,, xy, GLOBAL
PriLev). If the commandf,pt = Resultfy is typed in MATLAB, the minimum value of

the function that you want to minimize can be reached. In addition, with the cothman
Xopt = Resultx the estimated parameters can be found. To understand the idea behirtd Direc

algorithm and this specific MATLAB code, the following example from [5] tenexamined.
Create a m.file in MATLAB under the name ‘functl’ as:

functionf = functl(x);

f = (X(2) - 5% x(1)?/(4  pi?) + 5 x(1)/pi — 6)% + 10 (1L — 1/(8 * pi)) * cogx(1)) + 10;
Then write the following commands on the screen of MATLAB:

fun=" functl’;

X =[-50];

xy =[10 157;

GLOBALiterations= 20;

PriLev = 2;

After that call the gblSolve function, which can be provided from the agpeof the paper
[5], we get

Result= gblS olvéfun, x_, xy, GLOBAL PriLeV);

When 20 iterations are finished we type the following commands:
fopt = Resultfi

Xopt = Resultxg

If you want to see a scatter plot of all sampled points in the search space, d
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C = ResultGLOBALC;
plot(C(1,:),C(2,2),” "),

The sampled points in the algorithm can be seen in Figure 4.2 for this examplie In
algorithm, firstly, the domain of the function is transformed to a unit rectangien®&t the
center of this rectangle, the function is sampled. After that, the rectangleigdediinto
smaller ones and the sampling continued. The stopping time of this proced@telisohed
by the user defined function "GLOBAL.iterations”. In this example the nunabéerations
is defined as 20. If you run the commands in MATLAB, you can see that takrtomber of

sampled points is 319.

15— : :
10 t -
51 . :
0 1 1
-5 0 5 10

Figure 4.2: Sampled Points with Direct Algorithm

The results are as follows:
Xopt = [3.1417 22500]
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In our study, we firstly applied the DIRECT algorithm and then used thdtegsparame-
ters in Isgnonlin as initial values. The reason behind this way of paramd¢it@aéen is that
Isgnonlin function is sensitive to the initial value. Therefore, we used thistion when

we are sure that the initial estimates are quite close to the optimal parameter seldi-In
tion, note that after finding the characteristic functions formula for eacheimag have to
invert them by using Fourier Inversion Formulas given in (3.4.2). Thatmagwe encounter
with the dificulty to calculate the integral of a complex function in the analysis. We exceed
this problem by using the numerical integration function "quad!” in MATLABeTfunction
quadl(@fun,a,b) implements an adaptive Gauss Lobatto quadrature rule fomttion ‘fun’

over the interval [a,b] whera andb are finite real numbers. A problem arises because quadl
evaluates only proper integrals. However, in our problem the integraidaries were 0 and

oo. For suficiently largeb, the integral can be evaluated with the required accuracy. Therefore
we take the integral only from 0 to 200. To save space only SVSI paraestaration proce-
dure for short-term options is given in the Appendix as m-files. In A.3, bjeadive function

that is used in DIRECT Algorithm can be found with the m.file name "objvolintshd\tite

that the total number of iterations is determined as 20 in the user defined fun&ticording

to this number of iterations, the number of sampled points is 825. The DIRECritim
itself can be provided from A.4 which calls the gblSolve. We used the comnzenais m.file

but these commands can be written on the screen on MATLAB. In A.5, thadtdm” func-

tion is called back. Again these commands can be used directly. The objeotateon of
Isgnonlin function can be examined in A.6 with m.file name "Isqvolintshort”. Finalky ftn-
mulation of call option model price of SVSI is in A.7 with the name "callstockvolintbtél

that this model price is derived theoretically in the previous chapter.

4.3 Implied Parameters and In Sample Performance

In implementing the above procedure the parameters in the groups unde®jfitns”,
"Short-Term Options”, and "At-the-Money Options” are obtained bypezdively using all

the available options, only short-term options (days to expiratid@@®0), and only ATM op-
tions (097 < S/K < 1.03) in the day as input into the estimation. For each group the SSE is
noted. The structural parameter for each submodel is recordedtrlibtusal parameters,,

6y/K, ando, are respectively the speed of adjustment, the long-run mean, and th@owaria
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Table 4.3: Implied Parameters of All Options

Parameters All Options

BS SV SVSI SVJ
Ky 0.8531 | 0.85 0.86
Oy 0.5 0.6493 | 0.4648
Ov 3.4141 | 44803 | 3.41
0 -0.5594 | -0.6164| -0.55
Or 0.0139
Kr 5
OR 0.162
Ui 0.0864
fonl 0
A 1
V(t) 32.76% | 13.08% | 14.5% | 12.17%
SSE 3.7306 | 0.9084 | 0.9871 | 0.8633

codficient of the dffusion volatility V(t). Similarly, Kg, 6r/Kr andor are respectively the
speed of adjustment, the long-run mean, and the variatiofficieat of the spot interest rate
R(t). The parametgr; represents the mean jump sizehe frequency of the jumps per year,
andoj the standard deviation of the logarithm of one plus the percentage jump Sz&\B
SVSI, and SVJ, respectively, stand for the Black Scholes, the stiickakatility model, the
stochastic volatility and stochastic interest rate model, and the stochastic volatitigf mith

random jumps.

These reported statistics are quite informative about the internal workittgeanodels in
three tables. As such, several observations are in order. Firstly, tHedngpot volatility
among the SV, and the SVSI models are close to each other. Only the impliecbtaddity
of BS is higher from the others in every category. In fact, this closeingagplied volatility
is somewhat surprising. It should, however, be recognized that @vetl diferences in

volatility can lead to significantly dierent pricing and hedging results.
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Table 4.4: Implied Parameters of Short-Term Options

Parameters Short-Term Options

BS SV SVSI SVJ
Ky 3.1379 | 3.1380 | 3.8262
Oy 0.778 | 0.6118 | 0.3716
Ov 4.9989 | 5.2716 | 4.99
0 -0.4383| -0.5001| -0.43
Or 0.1645
Kr 5
OR 0.1
Ui 0.0843
T 0.0001
A 0.9997
V(t) 31.48% | 14.39% | 15.81% | 15.89%
SSE 0.1618 | 0.05 0.0546 | 0.0475

Second, to understand thetérence of estimated structural parameters for the SV, the SVSI,
and the SVJ models (each assuming stochastic volatility) recall that in the SV thed&ew-
ness and kurtosis levels of stock returns are controlled mostly by corretatind volatility
variation codficiento, respectively. The SVSI model relies on the same flexibility, with the
additional caveat of having stochastic interest rates to ensure morer gligpounting of fu-
ture paydfs. In addition to inheriting all features of the SV, the SVJ model also allows pric
jumps to occur, which can internalize more negative skewness and higtiesik without

making other parameters unreasonable. Therefore, note from the #aBJe&.4 and 4.5 that
1) The implied speed-of-volatility-adjustmeliy is the highest for the SVJ.

2) The variation coficiento, and the magnitude gfare the lowest for the SVJ, then SV and
after that SVSI.

These estimates together present the picture of the pricing structure @ltheFarstly, the
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Table 4.5: Implied Parameters of At-The-Money Options

Parameters At-the-Money Options

BS SV SVSI SVJ
Ky 0.0002 | 0.0031 | 1.7657
Oy 0.1536 | 0.4198 | 0.1667
Ov 0.8561 | 2.8547 | 0.8028
Jol -0.4776| -0.48 -0.4439
ORr 0.0462
Kr 2.2275
OR 0.0002
Ui 0.0185
fonl 0.5
A 0.1667
V(t) 30.32% | 8.74% | 11.59% | 8.33%
SSE 0.0129 | 0.0026 | 0.0059 | 0.0032

SVJ model's demand on thé(t) process is the least strict as it requires both the lowgst
and the lowesp (in magnitude). However, the SVSI requires andp to be respectively
as high as 4.4803 and -0.6164 for all options. The SVJ model attributesfgle implicit
negative skewness and excess kurtosis to the possibility of a jump occwitinan average
frequency of 1 times per year and an average jump size of 8.64 pereson@y, one would
expect that adding three extra parameters (related to the interest ragsgravill advance
the performance of the model. This poor performance by the SVSI caxapeied in other
measures as well. These results show that adding more parameters to thelossdeot
necessarily better the performance. Finally, by looking at the dollar prasirays (SSE) one
can also see the similar performance of SVSI when compared to SV. Frawilki@ptions”
panel of Table 4.3, the SSE is 3.7306 for the BS and 0.8633 for the S\, itvis 0.9084
and 0.9871 for the SV and the SVSI, respectively. Allowing jumps with the inSy#d

improves in-sample fit further. The filbetween the SSE of BS model and the other models
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is generally the case. In our study the number of observations is onlyfAgulhave a
larger data set as in the paper of Bashki, Cao and Chen (1996), théschffijpecomes more
clear. Thirdly, if we compare short-term and all options implied parametegsydfatility
codficiento is higher for each model than before, meaning that for the short-termngptio
to be priced properly the volatility process needs to be more volatile than fop@dins of
any maturity to be priced. Moreover, to price the observed ATM option priceperly, all
the three models with stochastic volatility would require volatility shocks to be |egginely
correlated with underlying price changes. Finally, as expected, theatapin-sample fits of
the four models of short-term options and at-the-money options are bettextigm the same
one set of parameters is applied to all options. This is reflected by the sagmifeduction in

the SSE of each model.

The above results however show something that we do not want to getisTHaach can-
didate option pricing model were correctly specified, the six sets of optimegrformed
across either moneyness or maturity, should not have resultedi@nedit implied parame-
ter/volatility values. Tables 4.3, 4.4 and 4.5 indicate that every candidate modelspeauis
fied.

4.4 Out-of-Sample Performance of Alternative Models

We have shown that the in sample fit of option prices is increasingly bettee aztend from
the BS to the SV and then to the SVJ model. However, going from the SV to thed®é¢S
not necessarily improve the fit much further. In fact, this increasingly bftt@ight simply
due to having an increasingly larger number of structural parameterfowis the impact
of this connection, we turn to examining each model’s out-of-sample cext®sal pricing
performance. The presence of more parameters may actually cauddtmggrwhereas the

structural fitting does not get better. In the following tables, we measuigdrtpact.

Firstly, we calculated model prices of each call option using the parametarsaéd for all-
options. Then we subtracted the model price from its observed courttestpah is named as
the pricing error. To calculate the absolute pricing error, we took thelalesealue of each
pricing error. In addition, the percentage pricing error is calculatediagidg the pricing

error (model price-market price) to market price. This procedurepsated for every call in
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the sample, then the average of these errors are recorded. Thesarstepparately followed
for the BS, the SV, the SVSI, and the SVJ models. Table 4.6 reports thieigygicing errors
whereas in Table 4.7 the percentage pricing errors are examined. Thesignun percentage
pricing error implies that in that category the model systematically overpricepi@ens. The
plus sign on the contrary means that the options are underpriced. Nofittiag) errors are
obtained "All Option” based on the implied paramétalatility values. In our main reference
Bashki, Cao and Chen (1996) these results are reported in tifexedt categories which are
"Maturity-Based”, "Moneyness-Based”, "All-Option-Based”. Faurcstudy, one category is

enough to measure the out of sample performance of alternative models.

Table 4.6: Absolute Pricing Errors

Moneyness(&) | Model Days to Expiration
<60 60— 180 > 180
BS | $0.019 $0.105 $0.107
<094 SV | 0.010 0.029 0.059
SVSI | 0.015 0.052 0.091
SVJ | 0.006 0.028 0.060
0.94-0.97 - - -
BS |0.071 0.127 -
SV | 0.033 0.0961 -
0.97-1.00 SVSI | 0.051 0.126 -
SVJ | 0.02 0.063 -
BS | 0.052 0.062 -
SV | 0.054 0.040 -
100-103 SVSI | 0.044 0.064 -
SVJ | 0.040 0.06 -
BS |- - 0.068
sV |- - 0.023
103-106 SvVSI | - - 0.028
S\VA RS - 0.042
BS |0.11 0.169 0.508
> 106 SV | 0.064 0.117 0.168
= SVSI | 0.066 0.117 0.166
SVJ | 0.062 0.107 0.158

By starting with the absolute and the percentage pricing errors, resggaiven in Tables
4.6 and 4.7 we reached the following results. First, both pricing error messamk the SVJ
model first, the SV second, the SVSI next, and the BS last, except thatféov categories
either the SV or the SVSI performs slightly better than the others. Accordiihg feercentage
pricing errors, the SVSI does slightly better than the SVJ in pricing the lomg-deepest ITM
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calls (days to expiration 180). This is not surprising since the long-term deep ITM calls to
be the most sensitive to interest rates. Moreover, according to both resathe SVJ surpass
the SVSI in pricing deep OTM calls (Moneynes$.94) which is also expected. In contrast
to this result, in [1] the performance of SVSI was better than SVJ while prideep OTM

calls.
Table 4.7: Percentage Pricing Errors
Moneyness(#) | Model Days to Expiration
<60 60— 180 > 180
BS | %22.96 %-45.34 %-18.58
<0094 SV | 32.33 -27.52 -20.22
SVSI | -88.24 0.052 -35.54
SVJ | -35.47 0.028 -23.69
0.94-0.97 - - -
BS -18.51 -15.04 -
SV | 911 11.38 -
0.97-1.00 SVSI | 13.96 15.04 -
SVJ | 571 7.48 -
BS | -6.06 -4.83 -
SV -6.45 2.44 -
100-103 SvVsI | -5.39 4.27 -
SVJ | -4.80 4.98 -
BS |- - 22.99
SV |- - 0.96
1.03-1.06 svs| | - i 117
SVJ | - - 1.65
BS |3.71 3.22 6.82
> 1.06 Sv | -0.21 -1.39 0.30
- SVSI | -0.68 -1.51 -0.23
SVvJ | 0.19 -0.76 0.94

Second, regardless of option moneyness or maturity, adding stochdstitityqproduces a
significant improvement over the BS model. This improvement reduces toh&itbpricing
errors up to 68 percent in the striking cases like deep ITM calls. To seiebastant progress
take a OTM call with moneyness less than 0.94 and with days to expiration re®@e¢e 180.
From Table 4.1 the average price for such a call is $0.25. When the B®liedyo value
this call, the resulting absolute pricing error is, on average, $0.105 asmishdable 4.6, but
when the SV is applied, the average error goes down to $0.02. Thus, & élsuggests that
once stochastic volatility is added to the model adding other features leadcoradserder

development. Thirdly, the absolute error becomes greater when we fregaishort term
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followed by medium and finally came to long term options. This result is valid fgiven
moneyness category and regardless of the pricing model. Looking aétbenpage pricing
error measure, the BS exhibits clear moneyness and maturity related hiesédition, from
Table 4.7 it can be seen that there is relatively large mispricing of shoridetions as well as
OTM options. The reason behind this result may be the objective functiaquiatien (4.2.1)
is biased in favor of more expensive calls (i.e., long-term and ITM calls)wétry to estimate
each parameter by minimizing the sum of squared dollar pricing errors, this tan enlarge
the extent of poor fit for short term and OTM options in each pricing moHelvever, this
possible enlargement should ndiext the overall conclusion regarding the pricing structure
of short-term and OTM options relative to others. The reason is that imd-igLi, even when
the BS implied volatility is estimated for each option individually (no weighted awrag
the volatility smile is clearly the sharpest for short-term options. Finally, the ratgmof
mispricing varies dramatically across the models, with the BS producing theshighe the
SVJ the lowest errors. Among the four models, the SVJ shows the best @bilityroving
the pricing of short-term options. The same conclusions can be reastdling the models

even according to the percentage pricing errors.

Note that in judging the alternative models, some other yardsticks can be edpldye first
one may be showing the consistency of implied structural parameters withithpkeit in

the relevant times-series data. For more details, [1] and [4] can be ex&n8eeondly, the
hedging errors can be used to measure how well a model captures tmmidyproperties of
option and underlying security prices. In fact, our theoretical modetisid form solution
lead to useful analytical hedge ratios, and contains many known optiotufas as special

cases.
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CHAPTER 5

CONCLUSION

In this study, we have presented two totallyfelient approaches of stochastic volatility and
stochastic interest rate model with jumps to the derivation of closed-foropgan call option
problem and used one of these approaches in the empirical analysis finstlpproach, sug-
gested by Scott [33], the characteristic function is obtained via martingaleodgtiConse-
quently, by using the inversion formula, the distributions and call option pdoce calculated.
The other approach proposed by Bashki, Cao and Chen [1] giveptiengricing formula
and the spot asset price dynamics by constructing partial intefferatitial equations. In
the empirical analysis, we established 4 alternative models with the help of gedeiorm
solutions obtained in the second approach. The performance of thestsnaoel measured
on General Electric Stock Option Data from two perspectives: (1) in-Eafitnd (2) out-of

sample performance.

In the theoretical part of the study, we have derived the closed-fomapean call option
prices in both approaches step-by-step with the proofs. On the othdr imathe applica-
tion part, the performances of Black Scholes Model, Stochastic Volatility M&lechastic
Interest Rate Model, Stochastic Volatility and Stochastic Interest Rate Modelompared.
According to our results, incorporating stochastic volatility and jumps improvesels on
stock options significantly. However, adding stochastic interest rate dient@nce the per-
formance as one would expect. In-sample fit performance is higheSMaémodel then for
SV and SVSI and least for BS Model. Out-of sample performance raekSWJ model first,
the SV second, the SVSI next and the BS last. Only for long-term deegimtimey options
SVSI shows better performance then the other models. The short-terrmopticed best

by SVJ model which shows the greatest challenge to any alternative optcimgpmodel.
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Moreover, adding volatility into the model improves the out-of sample perfoceaignif-
icantly. Therefore, once stochastic volatility is added, adding other featead a second

order improvement.

In this thesis, the author looked for understandable arrangements vehilchserve the inter-
ested reader for further use of the original works. Furthermore,gp&cation part is con-
structed to guide the readers how much each generalization of alternatiledsmmproves

option pricing.

Because of the time constraint of this study, we have left the hedging of tllelsnand
measuring their performance in this perspective for future works.clin tiae results for index
options suggested by Bashki, Cao and Chen [1] has not been appléesimgie stock option
yet. Therefore, the analysis on single stock options in this study can bevetpvath some
other performance measures. In addition to these, the techniques to atticdgpendent

options can be an extension of the methods given in the thesis.
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APPENDIX A

Table A.1: The General Electric Option Price Data

Strike/Maturity | 18.02.11| 18.03.11| 15.04.11| 17.06.11| 16.09.11| 20.01.12| 18.01.13
7.5 - - - - - 111 11.13
10 - - 8.45 8.6 8.57 8.55 8.6
12 - - - 6.45 - - -
12.5 - - - - - 6.15 6.3
13 - 5.4 - 5.65 5.45 - -
14 - 4.65 4.45 4.85 4.55 - -
15 3.55 3.5 3.65 3.65 3.55 4 4.5
16 2.52 2.56 2.66 2.76 2.96 - -
17 1.65 1.66 1.81 2.04 2.19 - -
17.5 - - - - - 2.27 2.99
18 0.77 0.92 11 1.33 1.69 - -
19 0.30 0.44 0.61 0.85 1.15 - -
20 0.11 0.18 0.28 0.5 0.76 1.13 1.84
21 0.03 0.09 0.15 0.27 0.47 - -
22 - - 0.08 - - - -
22.5 0.01 0.03 0.12 0.25 0.51 11
23 - - 0.03 - - - -
25 0.01 0.02 0.01 0.05 - 0.23 0.73
30 - - - - - 0.08 0.29
35 - - - - - - 0.18

The m.file used to get the Figure 4.1 is as follows:
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Table A.2: The Implied Volatility Graph’s M-File

1=[1.4177;1.3164;1.2287;1.1519;1.0841,1.0239;0.97;0.9215;0.8776;0.81372D.7
m=[76;75;58;45;39;30;29;30;31;36;49];

plot(l,m,char(’-"))

hold on
z=[1.843;1.5358;1.4177;1.3164,;1.2287;1.1519;1.0841;1.0239;0.97;0.9218MBB77;
0.8191;0.8013;0.7372];

k=[84,;56;51,48;41;37;33;31,29;28;28;30;28;29;32];
plot(z,k,[char('m’),char(-.)])

hold on
x=[2.4573;1.843;1.4744,1.2287;1.0531;0.9215;0.8191;0.7372;0.6143;0.5266]
y=[83;59;45;38;34,;31,30;30;32;33];

plot(x,y,[char(r’),char(’:")])

xlabel('Moneyness(&)")

ylabel(Implied Volatility(%)’)

legend(’'Days to Expiratior: 60’,Days to Expiration 66- 180,

'Days to Expiration>= 180’)

Table A.3: The M-File "Objvolintshort”

function [objective}objvolintshort(parm)

0=0.028;%dividend yield

r=0.0015;%risk free interest rate

S=18.43;%spot stock price
Cobserved£[3.55;2.52;1.65;0.77;0.3;0.11;0.03;0.01;0.01];
Strike1=[15;16;17;18;19;20;21,;22.5;25];
Strike2=[13;14,;15;16;17;18;19;20;21,22.5;25];
Cobserved2[5.4;4.65;3.5;2.56;1.66;0.92;0.44,0.18;0.09;0.03;0.02];
Time1=0.06;%Time to Maturities

Time2=0.11,

sumEo0;

for j=1:size(Cobservedl,1)
sumEsumi(Cobservedl(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4nf&y,parm(6),
parm(7),parm(8),q,r, Time1,S,Strike1(f))

end

sumz=0;

for j=1:size(Cobserved2,1)
sumz2=sum2+(Cobserved?2(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4ngex,parm(6),
parm(7),parm(8),q,r, Time2,S,Strike2(f)))

end

objective=sumksumz2;

end
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Table A.4: The M-File of Direct Algorithm

fun = "objvolintshort’;
%Thetav,Kv,Sigmav,rho,V, Thetar,Kr,Sigmar
XxL=[005-100001];

Xy =[13.138 10-0.43905155];
GLOBAL.iterations= 20;

PriLev= 2;

Result= gblSolve(fun,x,xy,GLOBAL,PriLev);
fopt = Result.f;

Xopt = Result.x;

Table A.5: The M-File of Isgnonlin

%parameters Thetav,Kv,sigmav,rho,V,Thetar,Kr,Sigmar
Ib=[005-100001];

ub=[13.13810-0.43905 15 5];

x0 =1[0.1296;3.0799;8.4259;-0.5325;0.25;0.0185;4.9074;0.1907];
options= optimset('MaxlIter’, 1000, MaxFunEvals’,20000, TolFun’,1e-30);
tic;

[x,resnorm]= Isgnonlin(@Isqgvolintshort,x0,lb,ub,options);
tElapsedtoc;

Table A.6: The M-File "Isqvolintshort”

function [objective}lsqvolintshort(parm)

0=0.028;%dividend yield

r=0.0015;%risk free interest rate

Time1=0.06;%time to maturities

Time2=0.11;

S=18.43;%spot stock price
Cobserved£[3.55;2.52;1.65;0.77;0.3;0.11;0.03;0.01;0.01];
K1=[15;16;17;18;19;20;21;22.5;25];
Cobserved2[5.4;4.65;3.5;2.56;1.66;0.92;0.44,0.18;0.09;0.03;0.02];
K2=[13;14;15;16;17;18;19;20;21;22.5;25];

for j=1:size(Cobservedl,1)
diff1(j)=Cobservedl(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4),@;pdrm(6),
parm(7),parm(8),q,r,Timel,S,K1(j));

end

for j=1:size(Cobserved2,1)
diff2(j)=Cobserved2(j)-callstockvolint(parm(1),parm(2),parm(3),parm(4), @ pegrm(6),
parm(7),parm(8),q,r,Time2,S,K2(j));

end

objective=[diff1’;diff2’];

end
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Table A.7: The M-File "callstockvolint”

function CallSVSk callstockvolint(Thetav,Kv,Sigmav,rho,V, Thetar,Kig&iar,q,r,tau,S,K)
warning df;

y=@ (phi)real(exp(-ilog(K):phi).«f1(phi,Thetav,Kv,Sigmav,rho,V, Thetar,
Kr,Sigmar,q,r,tau,S)(i = phi));

p1=0.5+ 1/pixquadi(y,0,200);

z=@(phi)real(exp(-ilog(K)=phi).«f2(phi, Thetav,Kv,Sigmav,rho,V, Thetar,
Kr,Sigmar,q,r,tau,S)(i = phi));

p2=0.5+ 1/pixquadl(z,0,200);

CallSVSE exp(-g:itau)-S«pl-Bnd(Thetar,Kr,Sigmar,r,tasi «p2;

end

function cf1= f1(phi, Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar,@3u,S)
Epsesqrt(Kr-(2+(Sigmar)«i=phi));
Eps\esqrt([Kv-[(1+(i=phi))xrhoxSigmav]]-[(i +phi).=(1+(i+phi) )+ (Sigmav)]);
cf11=[V «(i=phi).«((i=phi)+1).«(1-exp(-Epsw¥tau))]./[(2+Epsv)
—[(Epsv-Kw+[(1+(i=phi))xrho«Sigmav])=(1-exp(-Epswtau))]];
cf12=[-Thetaw(Epsv-Kw[(1+(i*phi))+rho«Sigmav])tau]./ Sigmav;
cf13=1ixphixlog(S);
cfl4=[-2«Thetawlog(1-(([Epsv-Kw+[(1+(i=phi))«rhoxSigmav]]
(1-exp(-Epsvtau)))/(2+Epsv)))}/Sigmav;
cf15=[-2«Thetarlog(1-(((Epsr-Kr)«(1-exp(-Epsr*tau))y (2+Epsr)))}/Sigmar;
cf16=(-Thetar(Epsr-Kr)tau) /Sigmar;
cf17=[2x(r-q)«i=phi.«(1-exp(-Epsttau))]
.J[(2+Epsr)-[(Epsr-Kr)«(1-exp(-Epsttau))]];
cfl=exp(cflhcfl2+cf13+cfla+cf15+cfl6+cf17);

end

function cf2=f2(phi, Thetav,Kv,Sigmav,rho,V,Thetar,Kr,Sigmar,@u,S)
Epsrstaesqrt(Kr-(2+(Sigmar)«(i+phi-1)));
Epsvstaesqrt([Kv-[(i+phi)«rho«Sigmav]}?-[(i =phi).«((i+phi)-1)«(Sigmaw)]);
cf21=[V «(i=phi).«((i=phi)-1).+(1-exp(-tawEpsvstar))]
./[(2«Epsvstar)-[(Epsvstar-K#{(i =phi)<rhoxSigmav])«(1-exp(-tasEpsvstar))]];
cf22=(lixphixlog(S))-log(Bnd(Thetar,Kr,Sigmar,r,tau));
cf23=[-Thetaw(Epsvstar-Kw[(i xphi)«rho«Sigmav])tau] /Sigmav;
cf24=[-2«Thetawlog(1-([[Epsvstar-Kw[(i =phi)«rhoxSigmav]]
+(1-exp(-tasEpsvstar))]/ (2+Epsvstar)))]/ Sigmav;
cf25=[-2«Thetarlog(1-(((Epsrstar-Krx(1-exp(-Epsrstatau)))
J(2«Epsrstar))))/Sigma¥;

cf26=(-Thetar(Epsrstar-Kr}tau) /Sigmar;
cf27=[2x(r-q)«(i=phi-1).#(1-exp(-Epsrstatau))]
./[(2+Epsrstar)-[(Epsrstar-Kr)(1-exp(-Epsrstatau))]];
cf2=exp(cf2h-cf22+cf23+cf24+cf25+cf26+cf27);

end

function[bond:Bnd(Thetar,Kr,Sigmar,r,tau)
bondstaesqrt(KrP+(2+Sigmar));

bondE(-Thetak(((bondstar-Kritaul
(2+log(1-(((1-(exp(-bondstatau)))-(bondstar-Kr))
/(2+bondstar))))))Sigma?;

bond2=(-2+(1-(exp(-bondstaitau)))y
(2xbondstar-((bondstar-K¢j1-(exp(-bondstaitau)))));
bond=exp(bond*r*bond2);

end

81



