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ABSTRACT

FRICTIONLESS DOUBLE CONTACT PROBLEM FOR AN
AXISYMMETRIC ELASTIC LAYER BETWEEN AN ELASTIC STAMP
AND A FLAT SUPPORT WITH A CIRCULAR HOLE

Mert, Oya
M.Sc., Department of Engineering Sciences

Supervisor: Prof. Dr. M. Rusen Gegit

April 2011, 86 pages

This study considers the elastostatic contact problem of a semi-infinite
cylinder. The cylinder is compressed against a layer lying on a rigid
foundation. There is a sharp-edged circular hole in the middle of the
foundation. It is assumed that all the contacting surfaces are frictionless and
only compressive normal tractions can be transmitted through the interfaces.
The contact along interfaces of the elastic layer and the rigid foundation forms
a circular area of which outer diameter is unknown. The problem is converted
into the singular integral equations of the second kind by means of Hankel and
Fourier integral transform techniques. The singular integral equations are then
reduced to a system of linear algebraic equations by using Gauss-Lobatto and
Gauss-Jacobi integration formulas. This system is then solved numerically. In
this study, firstly, the extent of the contact area between the layer and
foundation are evaluated. Secondly, contact pressure between the cylinder and
layer and contact pressure between the layer and foundation are calculated for
various material pairs. Finally, stress intensity factor on the edge of the

cylinder and in the end of the sharp-edged hole are calculated.

Keywords: Axisymmetric, Semi-infinite Cylinder, Singular Integral Equations,

Contact Problem, Stress Intensity Factor.
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0z

BiR ELASTIK SILINDIR ILE YUVARLAK BiR DELiGi BULUNAN
DUZ BiR DESTEK ARASINDAKI BiR ELASTIK TABAKA ICIN
SURTUNMESIZ EKSENEL SIMETRIK TEMAS PROBLEMI

Mert, Oya
Yiksek Lisans, Miihendislik Bilimleri Bolimii

Tez Yoneticisi : Prof. Dr. M. Rusen Gegit

Nisan 2011, 86 sayfa

Bu c¢alisma, yar1 sonsuz bir silindirin elastostatik temas problemini
incelemektedir. Silindir, rijit bir temel {izerindeki bir tabakaya karsi
sikistirilmistir.  Temelin  ortasinda keskin koseli dairesel bir delik
bulunmaktadir. Tiim temas yiizeylerinin siirtiinmesiz oldugu ve araylizler
boyunca sadece basing normal gerilmelerinin iletildigi varsayilmaktadir.
Elastik tabaka ve rijit temel arayiizeyi boyunca temas, dis yaricap1 bilinmeyen
dairesel bir alan olusturmaktadir. Problem, Hankel ve Fourier integral doniisiim
teknikleri kullanilarak ikinci c¢esit tekil integral denklemler haline
dontstiiriilmektedir. Tekil integral denklemler daha sonra Gauss-Lobatto ve
Gauss-Jacobi integrasyon formiilleri kullanilarak lineer cebirsel denklemlere
indirgenmektedir. Bu sistem daha sonra sayisal olarak ¢oziilmektedir. Bu
calismada ilk olarak, tabaka ve temel arasindaki temas alaninin genisligi
degerlendirilmektedir. Tkinci olarak, silindir ve tabaka arasindaki temas basinci
ve tabaka ile temel arasindaki temas basinci ¢esitli malzeme c¢iftleri igin
hesaplanmaktadir. Son olarak, silindirin kdsesindeki gerilme siddeti katsayisi
ve keskin koseli deligin ucundaki gerilme siddeti katsayis1 hesaplanmaktadir.

Anahtar Sozciikler: Eksenel Simetri, Yar1 Sonsuz Silindir, Tekil Integral

Denklemler, Temas Problemi, Gerilme Siddeti Katsayisi.
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CHAPTER 1

INTRODUCTION

Elasticity is used widely to obtain a solution for engineering problems.
Especially contact problems as a part of the elasticity have a practical
importance in the literature. In addition, there are many areas of application for
the contact problems like composite materials, roadways, grillages and airfield

pavements.

Contact problems are also called Hertz Contact Problems because the first
investigations on contact problems were made by Hertz in the second half of
the 19th century. There are some rules about the theory of Hertz: bodies are
full elastic; surfaces are frictionless; deformations are small; each surface can
be treated as an elastic half space. Later, Hertz’s theory was developed for
axisymmetric contact problems by Bousinessq (1885). Many extensive
investigations on contact problems appeared after the publications of
Sneddon’s studies (1951) on integral transforms in the elasticity theory, and
development of complex variable methods by Mushelishvili (1953). The
technique of integral transforms is used for solution of different type of contact
problems. For example, Mellin transform, Laplace transform, Fourier
transform and Hankel transform are applied for polar coordinates problems,
vibration problems, cartesian coordinates problems, and cylindrical problems,

respectively.

Integral equation methods are one of the first methods to obtain general

solutions for contact problems. There are also various other methods for the



solution of the contact problems like methods of finite element, finite
difference and boundary element. Highly complex problems may be solved

using the above methods by means of today’s computer technology.

1.1 Literature Review

Lebedev and Ufliand (1958) considered an elastic layer overlying a rigid
foundation subjected to pressing a circular cross-sectional stamp. The pressing
was occurred via an axial force. The method developed in the study allowed to
express the required displacements and stresses with regard to an auxiliary
function, which standed for the solution of Fredholm integral equation. Some
numerical results were reported to obtain a sample of a stamp by using plane

base.

Keer (1964) dealt with the problem of contact stress for an elastic die notching
a layer starting from Vorovich and Ustinov notation. The problem was
transformed to solution of dual integral equations by the method of Hankel
transform. Here, equations were firstly formulated for a rigid die. Then, the
problem was solved for the elastic die by using boundary conditions and
convenient equations of elasticity. Finally, the influences of the elastic
constants were expressed in terms of contact applied load, loading and radius

of contact.

Wu, Pao and Chiu (1971) investigated the plane strain problem involving an
elastic layer, a half space foundation and cylindrical indenter. Consequences of
the contact condition for the interface of half space foundation and thin elastic
layer subjected to the contact stresses of indented layer were discussed in
detail. In addition, the formulation of integral equations covering the contact
stress distribution of the indented layer was expressed for the basic problem of
elastic foundation or elastic indenter. After analyzing the problems involving

elastic indenter or elastic foundation, the researchers pointed out one similarity



and one difference. The similarity between these two was that both had the
same integral equations by reformulating the Fredholm integral equations. Yet,
these equations were different in their kernel functions. In order to solve these
problems, a numerical method based on finite difference approximation was

developed.

Parlas and Michalopoulos (1972) analyzed a rigid punch in the shape of a bolt
which was pressed into half space. The half space was homogeneous, isotropic
and elastic. It also contained a transverse annular cylindrical hole. A set of dual
integral equations was obtained from mixed boundary value problem. The first
and second kind Bessel functions included in this problem were simplified into
the first kind singular Fredholm integral equations. Next, numerical solution
for this equation was obtained. The results of displacements and stresses for the

half space were presented graphically.

Civelek and Erdogan (1974) investigated axially symmetric situation of double
contact problem including three different materials, which are layer, stamp, and
half space. The problem was simplified into singular integral equations.
Unknown functions in these equations were contact pressures. Comprehensive
numerical results for three stamp geometries (flat-ended rigid cylindrical

stamp, elastic and rigid spherical stamps) were obtained.

Ufliand and Zlatin (1976) considered an axially symmetric contact problem
involving an elastic cylinder and an elastic layer overlying a fixed foundation.
When the transform of Hankel for the layer and orthogonality of
eigenfunctions for the cylinder were used, the problem was converted into the
linear algebraic equations. Consequently, these equations made effective

solutions possible by the method of truncation.

Gecit (1980) studied a plane contact problem covering an elastic layer and

foundation. Vertical body force, vertical line load and pressure were uniformly



applied on the layer. Critical line load was firstly found just after the solution
of continuous contact problem was performed. Second, formulation of these
continuous contact problems was carried out according to singular integral
equations. Distributions of contact stress region of separation and critical line
load were numerically found. He also studied with an axisymmetric contact
problem consisting of an elastic layer overlying a semi-infinite base in 1981.
The elastic layer was pressed towards the base. A line load was vertically
applied to the layer. The solution of the formulated problem was obtained for
both tensile and compressive line loads. Numerical solutions were obtained for
the distributions of the contact stress in terms of combinations of various

materials.

Kumar and Hiremath (1984) examined an axially symmetric Boussinesq
problem to determine the stress distributions of an isotropic semi-infinite
elastic solid. After a rigid annular punch was exposed to heat, it was pressed on
the free surface of the solid. At the end of the process, the distributions of
temperature on this surface were found to be uneven. In essence, this was a
three part mixed boundary value problem and this problem was reduced to
triple integral equations’ solution. Then, these equations were converted into
the solution of simultaneous equations which were infinite provided

thato . (r,O) had in the punch region. Consequently, the variations of

o, (r,O) and total load were presented in graphics.

Gecit (1986) analyzed an elastostatic contact problem including elastic layer
and semi-infinite cylinder. The cylinder was pressed towards the layer
overlying a rigid base. Frictionless contacting surfaces were assumed. It was
thought that tensile tractions were not transmitted along the interfaces.
Numerical solutions were performed by means of the integral equations. As a
result, contact pressures and stress intensity factors were calculated for some

material pairs.



Hara and Suzuki (1988) studied an axially symmetric contact problem
including an elastic half space and a rigid foundation with parabolic ended pit
and protrusion. The space was pressed against the foundation with a parabolic
ended pit or protrusion. The results of the problem were separately discussed
for both of these, respectively. Papkovich-Neuber equations were used to solve
the problem in oblate spheroidal coordinates. Contact stress and surface
displacement distributions were displayed. Then, solutions were found to be in

agreement with solutions for flat-ended pit or protrusion.

Li and Dempsey (1990) investigated an axially symmetric contact problem
involving a rigid sphere, a rigid flat cylinder, an elastic sphere or a circular
plate overlying an elastic layer. In this study, these contact problems were
reduced to integral equations. By applying approximation of exponential series,
an infinite integral consisting of two Bessel functions was converted to a finite
summation. This finite summation was actually achieved by the extraction of a
singular term. Numerical values were compared with existing analytical
solutions and it was concluded that highly accurate numbers and easiness were
achieved through the use of this method. Thus, contact pressure distributions,

displacements and contact radii were stated.

Selvadurai (1994) examined an axially symmetric elastostatic problem
including two different elastic half spaces and a rigid disc inclusion. The
inclusion was embedded between the spaces. The contact problem was reduced
to Fredholm type integral equation of second kind. Numerical results showed
that precompression stress had an important effect on the radius of the region

of separation.

Jaffar (1997) considered an axially symmetric frictional contact problem. It
was thought that a thin elastic layer lying on a rigid foundation was indented by
a punch. The problem was solved by perturbation theory. Numerical solutions

were obtained for three different shapes which are spherical, flat-ended



cylindrical and conical. In addition, the effect of friction on results was

considered. Then, solutions were compared to the ones in the literature.

Cakiroglu F, Cakiroglu M and Erdol (2001) analyzed the problem of
continuous and discontinuous contacts, respectively. The geometry of the
problem was defined as two elastic layers overlying an elastic semi-infinite
plane. In addition, a frictionless contact between surfaces and a uniform
pressure on the top layer were assumed. Singular integral equations were
formed according to these continuous contact positions, and then the method of
Gauss- Chebyshev integration was used to solve the problem numerically.

Finally, graphical forms were obtained for separations and stress distributions.

Chaudhuri and Ray (2003) studied the behaviour of rigid punch on an elastic
half space. Basic equations were expressed by Hankel transform. The problem
was solved for both flat-ended cylindirical and paraboloidal punches. After
that, solutions were obtained from Fredholm integral equation. Calculations
were made for different values of the nonhomogenity parameter. Finally, the

effect of stress on these values was shown graphically.

Avci, Bulu and Yapici (2006) investigated an axially symmetric contact
problem. They used a cylinder which was elastic, thick-walled, hollow and
isotropic which was pressed by an inelastic external ring. Fourier transform
helped to solve equations of the elastic theory for the problem cylindrical
coordinates. Then, basic expressions for the displacements were acquired. A
singular integral equation was obtained by simplification of the formulation
employing boundary conditions. Next, Gaussian quadrature was used to solve
the singular integral equation. Lastly, graphical forms for numerical results
were obtained for normalized pressure distributions and distance presenting the

contact zone.



Ozsahin, Kahya, Birinci and Cakiroglu (2007) considered a contact problem of
a layered composite having different bi-material constants. Navier equations
were used to solve two dimensional contact problems. Next, displacement
expressions were written by using Fourier transforms for both layers. The
problem was converted into algebraic equations by the integral formula of
Gauss-Chebyshev. From the solution of these equations, graphs for normalized

contact pressure and the axial stress distribution were obtained.

Kahya, Birinci and Erdol (2007) studied a contact problem with no friction
between two orthotropic elastic layers. Gravity force was included into the
equations. Singular integral equations were obtained from Fourier transforms
and the elasticity theory. Graphs were presented for initial separation point,

crucial separation load and normalized contact stress, respectively.

Liu, Wang and Zhang (2008) considered the problem of an axially symmetric
contact for the half space. The half space was functionally graded and coated.
The problem was simplified into a Cauchy singular integral equation by
exploiting the Hankel integral transform and transfer matrix method. The
equations were numerically solved to calculate indentation, contact zone and

pressure.

Rhimi, El-Borgi, Ben Said and Ben Jemaa (2009) studied the problem of
receding contact including half space and layer. The layer was elastic
functionally graded, and the half space was homogeneous. Two bodies were
compressed together, and there was no friction between them. The problem
was thought separately for these bodies. Singular integral equation was
analytically obtained from the axial symmetric elasticity equations employing
Hankel transform. The receding contact radius and the contact pressure were
unknown parameters in a singular integral equation. The solution of the
equation was obtained numerically with Chebyshev polynomials. In addition,

receding contact length was calculated with an iterative method.



1.2 Scope of the Problem and Solution Method

This thesis is involved with the problem of axially symmetric double contact
containing an elastic layer, a circular hole and semi-infinite cylinder. The layer
overlies a rigid base. There are unlimited contacts between the foundation and
layer. In addition, there is a uniform compression applied to the layer by the
cylinder. The layer is restricted between z=0 and z=-h planes. There are two
assumptions about the problem. First, it is assumed that there is no friction in
contact surfaces. Second, only compressive tractions can be transmitted along
the interfaces. When pressure stress loses its effect, separation occurs. The
separation has infinite length because there is no gravity effect for the problem.
Stress and displacement relations are written with Fourier and Hankel
transforms for both the layer and cylinder. Then, boundary conditions applied
for these expressions make it possible to obtain singular integral equations. All
linear algebraic equations are obtained from the singular integral equations
after using some integration formulas like Gauss-Jacobi and Gauss-Lobatto.
Contact pressures and stress intensity factors are calculated numerically for

various material pairs.



CHAPTER 2

DOUBLE CONTACT PROBLEM

2.1 Problem Definition

The axisymmetric double contact problem analyzed is that an infinite layer
overlying a rigid base is compressed by a semi-infinite cylinder subjected to a
uniform compression py as seen in Figure 2.1. It is assumed that all bodies
except rigid foundation have elastic and isotropic properties. Radius of cylinder
and layer of thickness are assumed as a and /4, respectively. The frictionless

elastic layer is resting on a horizontal rigid foundation containing a circular
hole of diameter 2b at the center with 90 sharp corner. The body forces are
assumed to be zero. In this case, the contact between the foundation and layer
is lost along the outer domain (c <r< oo) where cis yet unknown. For linearly
elastic, isotropic and axisymmetric elasticity problems, the field equations can
be listed as follows:

Stress-displacement relations are (Gecit and Erdogan 1978; Gecit 1986) :

_ e[
7, =2 e 2 K)(r+azj

-

-

o, = A (3_K)(@+zj+(’<+l)6_w
Kk—=1] 0

or r z

ou ow
=u| —+=—=1, 2.1a—c
T.=HU ( % o ) ( )

where o and 7 denote normal and shearing stresses, x is named as shear

modulus, k=3-4 v, v is defined as Poisson’s ratio.



Navier equations (equilibrium equations in point of the displacements) are

2 2 2
(1<+1)(a - +la—u—l}+(1<—l)a U oW =0,

or’ ror r’ 0z* oroz
2 2 2
o[ G L) e[ QW LW (e i) T 2o, (2.2a, b)
oroz r Oz or r or Oz

where u and w are displacement components in r-and z-directions, respectively.

Figure 2.1 Undeformed shape (A) and deformed shape (B) of elastostatic

contact problem.

No friction is supposed for the contact among cylinder, layer and foundation,
and transmittable tractions across the interfaces are only compressive normal

ones. Solution of equations (2.2a, b) are obtained by making use of the

following boundary conditions.

O-rl (a’Z): O >
Trzl (a’Z) = O >
GZ] (r’w): _p() >

Trzl (”',O) = Trz2 (”',O) = O ’
o (r,O) =0, (r,O), (O <r< a),
w,(r,0) =w,(r,0), (O£r<a),
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o, (r—h)=0, (0<r<b, c<r<wm),

7,0 (=) =0,

w,(r,—h)=0, (b <r< c) ) (2.3a-1)
Here, the cylinder and layer are implied by the subscripts 1 and 2, respectively.
Note that Egs. (2.3f, 1) are equivalent to

d d
EW] (r,O)zsz(r,O), (OS r<a),

d

—m (r—h)=0, (b<r<c). (2.4a, b)

Solutions for both the cylinder and layer will be obtained after solving Navier
equations. By using also stress displacements, matches through the interface
will be performed from these solutions.

Defining U(p,z), H, Hankel transform of u(r,z) and W(p,z), H, Hankel

transform of w(r,z) in r-direction,

U(p, Z) = u(r, z)r J, (pr)dr,

S =8

W(p, z) = w(r, z)rJO (pr)dr, (2.5a,b)

O — 8

Here, J, is the Bessel functions of the 1% kind of order zero, and J, is the
Bessel functions of the 1% kind of order one. Applying H, Hankel transform to

Equation (2.2a) and H, Hankel transform to Equation (2.2b) in r-direction

2 2
(K+1)H{ﬂ+la—u—l]+(x—l) ddU' +2§H1(6—W]:0,

ot ror i?

2 2
1574 or r 2

11



d*U d
(+ 1= p2U, )+ (1) =2 25 pi) =0,

dz z
2
2p 40, +(K—1)(—p2Wo)+(’<+1)d WZ/O =0. (2.6a, d)
dz dz

By taking derivative of Eq. (2.6d),

d*U aw, d>W,
2p y L-(k-1)p? =L+ (kc+1)—32 =0, (2.7)

/7 dz dz

Eq. (2.6¢c) can be rewritten as

2
d;Vo __letlp, (k-1)d Y, 2.8)
1z 2 2p dz

When the second and third derivatives of Eq. (2.8) are taken with respect to

variable z, following expressions are obtained

d*w, 3 (K‘+1)p dU, N (K—l) d’U,

dz* 2 dz 2p dZ
d3W0__(1<+l)p d2U1+(1<—1) d*U, (2.9a. b)
dz* - 2 dz* 2p  dz* . o

After substituting Eqs. (2.9b) and (2.8) into Eq. (2.7) and rearranging it,
following can be obtained

d'U
dz*

2
2p2d lzj+p4U:0, (2.10)
dz

where p denotes the transform variable of Hankel.

The general solution of Eq. (2.10) is

Ulp,z)=(c, +c,z)e™ +(cs +c,z)e”, (2.11)
where c,,c,,c; and c,are arbitrary constants with respect to the variable z.

By back substitution in the transformed ODEs, one can obtain

W(p,z):{cl +(z+£]c2}e_pz +{—c3 —(z—fjc&em. (2.12)
p p

12



When the inverse transforms of Equations (2.11) and (2.12) are taken,

displacement components are found as follows

ulp.z)= [ [le,+erz)e ™ +(e, +e.2)e | o, (or)dp.

N RS e

(2.13a, b)
The following expressions are acquired for the stress components by

substituting Eqgs. (2.13) in Egs. (2.1):
()] [ 2+ L) o ol e+ e forlfe oo
0 r
"',UT{[ c3 +c4 1'] (pr)}+[2p(c3 +c4z)—(l<—3)c4]JO(pr)}epzpdp,
0 r

y“ 2p(c; +cyz)—(k +1)e,]e ™
0

+20(e, +e,2)+ (e 1)eJe Jo o, (or)dp.

Trz(’”az)zﬂj{[_ 2p(c; +eyz)=(k ~1)e, Je”

+ [2,0(03 + c4z)— (K‘ - l)c4 ]e”z }p J, (pr)dp . (2.14a—)
Unknown constants may be calculated by employing boundary conditions
presented in Egs. (2.3).

The problem can be investigated as the combination of three basic states for the
semi-infinite cylinder. That is,
a) An infinite cylinder exposed to an axial uniform compression py,
b) An infinite cylinder symmetric in direction of z=0 plane and
exposed to arbitrary axial symmetric loads,
¢) An axial symmetric half-space (ZZ 0) exposed to loads on the
straight boundary z=0.
The half space solution is anticipated to provide nonzero normal displacement

wover z=0. Solution of the problem mentioned in item c can be achieved by

13



employing the sine and cosine transforms of Fourier for Egs. (2.2) in z-
direction. Following statements can be obtained when the cosine and sine

transforms are applied to Eq. (2.2a) and (2.2b) in z- direction, respectively.

2 ) 5
(K+1) FC a_u +Fc(la_u]_Fc(l] +(K—1)Fc 0 u‘ +2Fc oW :Oa
or’ r or r’ oz’ oroz

2 2
Py +2Fs[a—uj+(x—l)Fs ow +(K—1)Fs[l@j
oroz | r 0z or? r or

2

Eq. (2.15c¢) can be rewritten as

2
dw, (K+1)[d U, 14U, _Uc}rMU _ (2.16)
dr 20

dr?® r dr P2

by taking second and third derivatives of Eq. (2.16),

aw, (x+1)|[d’U, 14*U, 24U, 2 (x-1)a dU,
=— +— -— +—=U, |[+—— ,
dr? 20 | ar®> r ar* r* odr 2 dr
a’w, (c+1)|d*U, 14°U, 34U, 64U, 6
=— +— -— +— -—U,
dr? 200 | ar* v dar’ @ P odr st

+(1<—1)0¢ d’U,

5 PR (2.17a-b)
by taking derivative of Eq. (2.15d),
S ot
—(K‘+1)0!2dWS =0. (2.18)

dr

14



After substituting Eqgs. (2.16) and (2.17) into Eq. (2.18) and rearranging it,

following can be obtained

d*U, d°u,
rt—=+2r7 [2oc +3] [2 2,2 3], 4V
dr dr dr dr
ot 42022 -3|U, = 0. (2.19)

4" order homogeneous ordinary differential equation is obtained as indicated

below

£t d*U, +26& U, —(254 +3§2)d;;c —(253 —35)%+(§4 +2¢° —3)Uc =0,

dé’ dé’
(2.20)
the Fourier cosine transform of u(r, z) is defined as seen in Eq. (2.21)
U,(ra)= J.u(r,z)cos(az)dz, (2.21)
0
¢ =ar, ais the Fourier transform variable,
Eq.(2.20) can be expressed as follows, Durucan (2010),
A(A,U,)+45(A,U,)=0, (2.22)

where Ay, As, As and A4 are 2™ order linear ordinary differential operators with

variable coefficients in & :

A, fﬁzi— 5——5 +3,
ag> T dé
A, —525 fpE
Ay = 3%%2;—@—53—%,
A4=g§_i§_(g 5 (2.23a-d)

solution of Eq. (2.20) can be obtained from 2" order ODEs
, U, =0, AU, =0, (2.24)

in the form of
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U,(r,a) = cid (ar)+carl(or)+ c, K, (ar) + cqarK o (or), (2.25)
in Eq. (2.25), arbitrary constants can be given as cs,c¢,c;,cg and the modified
Bessel functions 1% and 2™ kinds of order zero and one can be shown as
1,,K,,1,,K,, respectively.

c; and c¢g arbitrary constants must be zero due to providing the regularity

condition at » =0. Thus,

U,(r,a) = ciI,(ar)+cqarl (o). (2.26)
Similarly,
W, (r,o) = —csl,(ar)—cs[(x + 1)1, () + arl, ()] (2.27)

the Fourier sine transform of W(r, z) is defined as seen in Eq. (2.28)
W, (r,c)= [ wlr,2)sin(oz)dz (2.28)
0

Inverse Fourier transforms of Egs. (2.26) and (2.27) give

J. (ar)+ c,arl, (ar)|cos(oz)da ,
0

w(r,2) = _%T{CSIO (ar)+ e[ + 1)1, (@) + o (e Jsin(oz)da . (2292, b)

Expressions of stress component are acquired by the substitution of Egs. (2.29)

in Egs. (2.1):

7”7{ ar ——I (ar)}+c6[(1< 1)[ (ar)+2arl ar ]}acos az)da
27”? 2¢41, —C 1<+5) (ar)+2arll(ar)]}acos(az)da,
t (r2)= —%T{zcsll () + e, [l + 1)1, (ar) + 2001, (e Yersin(ez)da - (230a—)
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2.2 Stress and Displacement Expressions for the Semi-Infinite Cylinder

By renaming the unknown quantitiesc, ,c,,c;and ¢, in Eqs.(2.13, 14, 29, 30) as

follows
K—1
pc, =——g(p).
2
¢, =—g(p),
2
Cs = _a_Al ’
2u
Co = ——B (2.31a—d)
2p

stress and displacement expressions for semi-infinite cylinder (OS z< oo) are

described as (Agarwal 1978; Gecit 1986; Gupta 1974)

mugu, (r,z)=—| [4,(a)I,(ar)+ B,(a) 1, (ar)] & cos(az) da

S =8

+I(Kl_1—pZ] (p)e =, (pr) dp+ZLL 27K
0

2 2 T-x
_°° K, +1 2
muw,(r,z —J. A (), (or)+ B, (a) ” I,(ar)+ I, (ar) |} @® sin(az) da
0
T +1 . 4
M 2 +pz] p)e”:J,(pr)d —%7_2 (2.32a, b)

or

_ _%j { [ 1y (ar)} +B() [’“1 —hy(ar)+art (ar)}

o cos(ee)dar+ 2 ﬂo-pa nior)-L{5t el w} clp)e pdp.

(.2 :—j{ @)+ B (a )[’“1;5zo(ar)mﬂ](m)}}azcos(az)da

2% .
+;f(1+p2)g(p)e **pJ,(pr)dp = p,.,
0

17



Tz (F,Z) =

{Al (@)a I, (ar)+ B (a)[’(];lll (ar)mﬂo(ar)}} o sin(az) dar

N 8o

Oty 8 O ) 8

+=|pzglp)e? pJ,(pr)p. (2.33a—)

Note that the boundary condition in Eq. (2.3d) is satisfied with this selection of
c,and c,as in Egs. (2.31a, b).

If the expressions in Egs. (2.33a, c) are evaluated at r =a

o (0.2)= —%I{Ala {zo (aa)-—1, (aa)} B {’“12‘ L (aa)+ cal, (aa)}oﬁ cos(az) de

¥ H(l—pz)Jo(pa)—é(K‘z_l —pZ]J] (pa)}g(p)e‘“pdp :

CHEN

_ Z):%I{A,a I (ca)+ B, [KTHI (aa)+ aal, (aa)}az sin(az) de

2% p-
+;J.ng(p)e “pJ, (pa) dp, (2.34a, b)
0
are obtained. Conditions in Egs. (2.3a, b) give then

a[lo (ea)--L1, (aa)} 4+ [KT_II (aa)+ aal, (aa)} B

oa

o (ca) 4, + [’ﬁ; L (aa)+ cal )} B

-2 [[pzg(p)e?pJ (pa)dpsin(oz)dz, (2.35a, b)
Ta” gy
or, after using certain integral formulas,

a[lo (ea)--L1, (aa)} 4+ [’flz‘lzo(aa)maz] (aa)} B

oa

18



-2 T 2p. Jo(pa)-—2 i 2 1.(pa)|g(p)dp
ra’sy (a2+p2) (0{2+p2)2
+1 2 %
ot ) )t ) 8, = 2 o)
T a +p
are obtained. (2.36a, b)

Noting that the unknown g(p) is the 4, Hankel transform of G(r),

0

g(p)=[G(r)rJ,(pr)dr, (2.37)

0
after lengthy manipulations, following equations may be obtained from

Egs. (2.36)

a[lo (aa)_LI] (aa)} 4+ [Klz—l

oa

+1+2a%a’ 1 1
:{—%K] (aa)—;Ko(Owl)}C] + [Ko(aa)+—K, (aa)}cz,

1, () + aal (ot )} B

oa

o (ca) 4, + [’ﬁ; L (ca)+ cal, (aa)} B, = aK,(aa)C, - K. (aa)C,

(2.38a, b)
where K,and K, are the modified Bessel functions of the 2"“kind of orders

zero and one, respectively, and

=—J' (o)t at,
c, =2 [ G@)1(at)e d . (2.39a, b)

T

Then, solution of Egs. (2.38a, b) gives

(@)= {’( +1{Q1( J+1 ff‘zjﬂcl—;[g @ +’<'2“}Cz}/2(a),

B,(a) = [— ; 0,(2)C, +C, } /QZ (@), (2400, b)

where
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0, (a)= azazlo(aa)Ko(aa)+(’<‘T+l+ a2a2] I, (aa)K,(aa),

0,(a) = —azazloz(aa)+(’<‘ 1 +a2a2] 1’ (ca). (2.41a, b)

By evaluating the expression in Eq. (2.33b) atz =0, one can obtain

6. (0)=—p, %j {a I (o)A, +[’<'2+5 I (or)+arl (ar)}Bl}azda

+

ENEN)

[ g(p)pJ,(pr)d (2.42)

0

Now, substituting Egs. (2.40a, b) in Eq. (2.42),

o .,(r,0)=-p, +2J.H[— 20, (a)+X L azaz}C, +[-0,(a)+2]ac, }Io(ar)
4 0

+[_ o (a)cl +OtC2] arl, (ar)}ada/Q2 (Ot)

0LO0

%TUG(‘W' (pf)df} pJy(pr)dp ., (243)

is obtained. A similar procedure gives

[e(p)pJ,(pr)dp. (2.44)

By using Hankel inversion theorem in Eq. (2.37),

K +1

i w,(r,0) =

o o G(r) (2.45)

is obtained. Further manipulations on Eq. (2.43) reduces the expression to

o, (r,0)= 12 j [, (r,t)+tH (r,0)]G(¢)dt - p, (2.46)
4 0

in which
—K(t/r)+ E(t/r) (t<r),

h, (r,t) =
s E(r/1) (1> 7).
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H,(r,t)=| L(r.t,a)da,

S =8

L,(r.t.0) = et o)+ (@)1, (et) e £, (ar)+ ([2- O, () Jot 1, ()

{’flz” vata?-20, (a)} / (m)] I, (ar)}a/gz @. (472

In above equations, while K is denoted as the complete elliptic integrals of the

1% kind, E is expressed as the complete elliptic integrals of the 2™ kind.
2.3 Stress and Displacement Expressions for the Elastic Layer

Renaming the quantities ¢, —c, appearing in the general solutions given in Egs.

(2.13, 14) as follows

c =C,,

¢, = pPD,,

¢y =4,,

¢, =pB,, (2.48a—d)

one can write these solutions for the elastic layer in the form given by Gecit

(1981), Civelek and Erdogan (1974), Gecit and Erdogan (1978)

+[C,(p)+ (x, + p2) Dy(p) 1} p. Sy (o) dp (249, b)
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Tﬂz(r,z):2,uj H Az(p)+[pz+1_2’<2]Bz(p)}m

0

{ c, (p)+[pz+ ’“22_1] D, (p)} e-m} p>J.(pr)dp . (2.50a, b)

unknown functions above are defined as 4,, B>, C; and D, . Boundary
conditions at (z= 0) and (z= —h) surfaces makes their calculations possible.
For this purpose, introduce unknown functions p, (r) (=1, 2) described by
0.,(0)=p,(1),

o.,(r=h)=p,(r). (2.51a, b)

Now, evaluate o_,and 7,_,at z=0 and —/:

rz2

0.,(r,0)=-2 uj { { 4,(p)+ [— 1+2K2 ] B,(p) }

0

{ Cz(p){“;z ] Dz(p)} }pz Jy(pr)dp,

a0 =20 | o)1 8.00)- 004152 2,00) o2 o,

0

o (rmh)==2 M{ 4, (p)—[1 +2’<2 + ph] B,(p) }

0

+ {Cz (p)+ (1 +2K2 - ph] D, (p)} e }pz Jolpr)dp,

L, (r—h)=2 uj{ 4(p) {1—;2 _ph] 5.(0) }_ph

0

{— C,(p)+ [1 _2K2 + ph] D, (p)} eph}pz J(pr)dp. (2.52a-d)

Substitution of Eqgs. (2.52a—d) in the conditions given by Egs. (2.3d) and
(2.42a, b) gives
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1+x,

][ A B oI 2 .| ki = ),

0

2] | o1 8 (p)-Co)s

0

‘zﬂj {Az (p)—[l +2K2 + ph] B, (p)}e‘p” + {Cz (p)+ (1 +2K2 - ph] D, (p)} eph}

0

l-x,

D, (p)}sz] (pr)dp =0,

p*J,(pr)dp = p,(r),

20, {Az (P){l_;z —Ph] B, (p)}e‘p” {— C, (/))+[1_2'<2 + ph] D, (p)}eph}

0

p*J\(pr)dp =0, (2.53a-d)

from which one can take the H, Hankel transforms of Egs. (2.53a, c¢) and

H | Hankel transforms of Egs. (2.53b, d) to obtain

I+x, I+, 1

4, - B, +C, + D, =— Pl(P)’
2u,p

4+1Kp 15K p g,

l+x 20 l+x 2o e?!
A, — 2+ ph | B, +e*"'C, + 2 _phl|e*"D, =— P(p),

2 2 2u,p

1- 1-

A2+( 2K2—ph]B2—e2phC2+( K2+ph]e2phD2:0. (2.54a—d)

In Egs. (2.54), P(p) (i =1, 2) are the H, Hankel transforms of the new unknown

functions p,(r) (i=1,2):

0

P(p)= in (r)rJ o (or)dr (i=1, 2) . (2.55a, b)
0

Note that

p(r)=0, (a<r<w)

p,(r)=0, (0<r<b, c<r<wm). (2.56a, b)

Therefore, Egs. (2.55) can be stated as
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P, (p) = J.p2 (r)rJO (pr)dr . (2.57a,b)

b

Solution of the system in Egs. (2.54) gives

1 1- _
oty = = H K2 5, (p) -2 p 20 }P](p)
Hy 2

J{ 1‘2’9 S,(p)-r,ph(1-e )}e‘p”PZ(p)} /Ss(p),

1 _

pB; = 2, [Sl (P) o P ]/53

pC, =LH =52 5 (p)+ 202 }e‘”ha(p)
2u, 2

_[1_2’(2 S,(p)+ ph (l—e‘zp”)}Pz(p)} e_ph/53 (o),

1 - —
PD2 =7 —[5,(0) e R(0)-5,(p) s () Je " /55 (o). (2.58a—d)
2
where
S(p)=1-(1-2ph )"
S,(p)=1+2ph—e"

S,(p)=(1-e?" )= ap*hie. (2.59a—)

Therefore, expressions of the displacements and stresses of the layer are stated
from in the point of the unknown functions p, (i =1, 2). For instance,
—2ph —4ph a

K, +17 1+4ph
(’”’0): j‘uz '([(l—e_zg)e—4p2h2 _th.([p](t)tJO(pt)dtJO(pr)dp

K+l 1+ ph—(1— ph)e " o
2u, !(l—e‘zp” J —apinie [P0 (o)t (pr)dp, - (2.60)
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and

d KL i 1+4phe et
~w(r0)=- i ! t{ 2} —apiie (o) (pr)pdpr
LK +1¢ 1+ ph— 2ol
22 [ j i o z)hez ¢ " (pr)o(pr)pdpdt
2 b O
(2.61)
or, more precisely,
d a
sz = 2u2 {![ —tH,( rt)}p] dt+th rt)pz()dt}
(2.62)
Similarly,
+17 1 e e
e LUk e s VI

2:”2 0 —2ph p2h2 —-2ph

K T 1+4phet et
2 ~[’: J. —2ph) —4p2h2 _2ph']0(pr)']0(pt)dpdta

0

iwz(r,_h)= K, +1{ I —tH(r,t) p,(t) dHE [ —%hz(r,t)+tH2(r,t) }pz(t)dt},

(2.63a, b)
where
5 ! E(t r), (t<r)
halrot)= tﬂ_/: 1
7 E( /f)—;K(r/f), (t>r)
H(r0)=[ Lt p)dp (1=2,3),
L(rt.p)=|5,(p)+2p* | pe1 (1), (pr) /5;(p) .
Ly(rt,p) =14 ph=(1=ph ) e | pe 1, (pt)J, (pr) /S,(p) - (2.64a—¢)
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CHAPTER 3

INTEGRAL EQUATIONS

3.1 Derivation of Integral Equations

Unknown functions of G(r), p, (r) and p, (r) will be calculated from the

following boundary conditions:

iwl(r,O)—iwz(r,O)zo (0<r<a),

dr dr

o, (r,O)— o, (r,O) =0 (0<r<a,

diw2 (r,—h)=0 (b<r<c). (3.1a—<)
P

If Egs. (2.35), (2.36), (2.41a), (2.52) and (2.53b) are substituted in Egs. (3.1a—

c), the 2" kind singular integral equations are presented as follows:

K, +1G(F)_ K, +1 {J [lhz (r,t)—tH, (r,t)} p,(t)dt +l tH, (r,t)pz(t)dt} =0,

27p, 2p, [y L7w
(0<r<a)
4 a
A T8, (]G0 e~ ()= 1 05r<a
0

K, +1 {jﬁ% (rt)p, (t)dt+H%hz(r,t)—sz(VJ)}Pz(f)df} =0. (b<r<o)

21, o
(3.2a—c)
The kernels of Eq. (3.2) are stated for »>0 and #>0. It is noted that the

kernels A~ and A&, possess simple Cauchy type singularity at
t = r (Muskhelishvili 1953), 1/(t—r) becomes unbounded when ¢=r. In

addition, it is noteworthy that K (l): ooand E (l) =1 (Abramowitz and Stegun
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1965). Because of axial symmetry of the problem; it is noted that
p,(r)(i=1,2) are even and G(r)is odd:

G(- r) = —G(r) ,

p(=r)=p,(r) ., (i=12) (3.3a-¢)
Then, the integrals from 0 to ain equations (3.2a—) can be converted into

integrals from —a to aand Eqgs. (3.2) can be stated as follows:

%le +k1(r,1)+|f|H1(r,f)}G(f)df—l’](r)zpo, (~a<r<a)
T —-r

—a

24G(r J'[—+k r,t)—m |t|H, rt)}p](t)dt—%rj. tH,(r,t)p,(t)dt =0
a4 b

(—a<r<a)
J.|I|H rt)p(t t——J. —mtH,(r,t)|p,(t)dt =0  (b<r<c)
(3.4a—<)
where
k(1) =" t'"i_l (i=12),
=
(1) = |rt| KQt/r|)+ EQt/r|) Qt|<|r|)
E(r/d) (>1),
~IE (/) (1] <)
m, (r,t): 5 )
—EQr/tD KQr/t|) Qt| > |r ),
_H (K] +1) e
A= m . (3.5a—¢)

The singular integral equations given in (3.4a—c) are subjected to following

equilibrium conditions and symmetry:
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jG(z)dzzo,

J. |t| p](t)dt:—a2p0 )

[ tp,(t)a =—%a2p0. (3.6a—)
b

The kernels &, and k, possess logarithmic singularity. Probable singular
behavior of H, is due to behavior of L, at a = 0. Therefore, defining

L, (r.t,a)=lim L (r,t,a), (3.7)

the probable singular part of the kernel H, (r,t) is calculated from

H]S(r,t):T L. (rt5s)ds, (3.8)
0

and its bounded part is calculated from

Hlb(r,t):T [L,(rt,a)- L, (rt.a)]da. (3.9)
0

Here, the subscripts & and s denote the bounded and the singular parts.
Therefore, the kernel H, is

H (r,t)=H, (r,t)+H,(r,1). (3.10)

By making use of the asymptotic expressions for the modified Bessel functions

for » >0 and ¢ >0, (Abramowitz and Stegun, 1965)

L (o) =~ {(a Na—la? —[2(52 Iy _r)}a +1} /ﬁ |

(3.11)

The corresponding singular part, /| (r,t), may be evaluated for (—a <r,f <a)

as

e e e e aeerce)

rt 2 dr dr* \t+r—-2a t-r+2a
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{_%_3(a+r)i_(a+r)zd2}( N ]} (3.12)

dr dr’* \t—r-2a t+r+2a

It is noted that H,(r,¢)is singular while 7,z — +a .

The singular behavior of p,(r)(i=1,2) and G(r) can be determined by writing

G(r):%, (0<Refy)<1)
p](r):%’ (0<Re(y)<1)
pz(r)ZM (0<Re(0)<1) (3.13a—)

(r=b)’
where y and 6 are unknown constants, gi*(r)(i =1, 2) are Holder-continuous

functions in [—a,a] and g, (r) is Holder-continuous in [b, c]. Singularity
powers yand 6 are determined by analyzing the singular integral equations,
Egs. (3.4a, b), near r — ta and Eq. (3.4¢) close to »=5b. The technique of
complex function provided by Muskhelishvili” work (1953) gives the following

characteristic equations
Asin® 7y + (1 —4y +27/2)c0sn;/ —cos’ty =0,
cotrd=0. (3.14a, b)

Egs. (3.14) are consistent with the results of previous studies, Adam and Bogy

(1976), Gecit (1986) and Dundurs and Lee (1972).
3.2 Solution of Integral Equations
The singular integral equations are converted into a convenient form in terms

of dimensionless quantities to make easier the solution of numerical analysis.

For this purpose, dimensionless variables x, y, & and 1 can be introduced by
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(r,t) = a(x,y) (—a< (r, t) <a), (-1< (x, y) <1)

(r,t):%(ﬁ,n)+c+b (b<(rf)<c), (-1<(&n)<1)

(3.15a—d)
and Holder-continuous functions g, (i =1-3) by

G(r)=Glax)= %Po ﬂ

(l—xz)y ’

()= ()= £25)_
(1-x*)
pz(r)=p2(c;b§+c;b]=pogs(é)(%] . (3.16a—c)

Then, equation (3.4) and equation (3.6) are rewritten in the form

l[ 1 +’E(x,y)+|ylﬁ](x,y)} e . TP
Tl y—x (1

Tl

A g](x)y _J‘ { 1 +/:2(x,y)—ﬂ|y|l‘~[2()€,y)} gz(y)y dy
(l—xz) SLy—x (1—)/2)
2a] (n+ LYl ) 12| an =0, <<

1

-1

1+n
(-1<é&<))
(3.17a—)

] c+b 1-n ’ -2 g
_f](mc_b]gs(n)(lm] dn—[c_b , (3.18a)

[ A B 2] e+ o) o152 an o



where

k,(x.y)=ak(ax,ap).

I-Nll.(x,y): azHl.(ax,ay),

)=

~ —b
Ae)=a't<

5

% c—b
H.| ax,—n+
2 ) 3( 2 !

c+b ]
+ ,ay |,

2

c+b}
2 b

c+b c-b

Aen)=(<52) m <5 tes

2

+c+b
2’277 2 )

(3.19a-g)

By using Gauss-Jacobi integration formula (Erdogan, Gupta and Cook 1973)

for integrals of g,(i=1,2) and Gauss Lobatto integration formula (Krenk,

1978) for integrals of g,, one may obtain the following linear algebraic

equations

ZW%L 1xj +h (.9, )+ v A, (xj,yi)}gl(yi)}— :

(xj’ni)g3(ni): 0,

| Vi—X;
—4r c+b)~
D,(1-n,)| n, H
212! nl)(nl c=b)"
=2 Wy, ﬁ4(§j’yi)g2(yi)_4zDi
P i=l1

from Egs.(3.17) and

Z |yi|W:' gZ(yi):_l’
i=1

1—
2n+1
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S}
P
<

ul |:}~’2 (ﬁfjvﬂi)—ﬂ(ﬂi +
C

! +l?2(xj,yl.)—7t|yi|ﬁ2(xj,yi):|gz(yi)}

jﬁs (éjvrli):|g3(r]i): 0.
(jzl,...,n)
(3.20a—)



Z VVigl(yi):Oa
i1

\ (1—171.)( c+b] 12 )
;27[131 (2n+1) n; +c—b gS(r]i)_ (c-b]z ) (3213 C)
2a

from Egs. (3.18) where
D, =1/2=D, ;D,=1(i=2,..,n—1)

2ir
= COS , i=1,...,n
T (2n+1] ( )
2j-1 .
. = oS T, =1,...,n 3.22a—c
3 (2n+1 ] (J ) ( )

W, (i=1,...,n) are named as the weights of Jacobi polynomial Pn(_y ), Y,

and X, are the roots of
P (y)=0, (i=1,....,n)

Pn(]_y’]_y)(xj)z 0. (j=1,..,n-1) (3.23a, b)

The interpolation constants (Gecit, 1986) are defined by

202y +1 I!F(l —2y+ 1) (-7.-7) (-7.-7)
C. = r P )P, :
i ; 9127 [F(l—)/+l)2J ! (x]) ! (yz)

(i=1,...n;j=1....n—1) (3.24)
The system of algebraic equations, Egs. (3.20) and (3.21), contain (3n+1)
equation for (3n+1) unknowns, g, (y,)(k=1,2;i= 1,...n), g(n)
(z' = 1,...,n) and c. The system of algebraic equations given by equation (3.20)

and equation (3.21) may be simplified and reduced to the following system:

W, Lz)ycl(xj,yi)gl(yi)—[l{yl — ]hs(xj,yi)

i=1 (1_xj T\ Y =X, yl.+xj

n/
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-2r yl.H( ,yl)]g (yl)}—zn: 4 Di(l_ni)(ni"'

= 2n+1

th)ﬁ3(xj’77i)g3(77i):0’

c

n/

Z%,WIC](O )8 (y,)=0,
1

i=1

~
[

n

W, l{[ + 1 ]hét(xj’yi)_'_2yil—~[](xj’yi)j|gl(yi)}
i=1 T\ =X, )i tX;

—(I_V:" i Cylx .3, )e,(v,)=1. (jzl,---,ﬁ—ll

J

]

n,/z Wf{lHiJfgyﬁ] 0., )ﬂ}gl (v,)-m.C,(0,5,)g,(y,)=1,

i=1 7 Vi 7
S 160 )ea0) =450 L e )o{n+ S50 e o) -0,
i=l
(jzl,...,n)
n/2
2 Wiyiglv)==7,
i=1
S2rp, 10 ”f)(m”b]g (,)-—1> (3.250-g)
par 2n+1) c=b )" eV '
&

where

LE[L} (o<,
hS(xj’yi): ]2 ' 5

2 (x, X, X,

ok | S R

J i j i

yiz_sz Vi J Vi

K= [+ B[ (<], )
h4(x. y )Z ‘nyi‘ E P
jo Vi
E{);_Jl] (]yi|>‘xj )’
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v —x,

he(xj’yi)Z%%(xpyi)- (3.26a-d)
Y =X

and

C,(x,.3,)=C,(x,9)-C, (x,-»),

C, (3, )= €yl 3)+ €y (x=). (3.27a, b)

Egs. (3.25) contain (2n+2)equation for (2n+l)unknowns. If Eq. (3,25b) is
analyzed closely, it is understood that the equation is satisfied automatically at

$; =0 (j =n/2). Therefore, there would be exactly (27 +1) equations for the

(2n + 1) unknowns.

3.3 Stress Intensity Factors

The stress intensity factors are indicated by the stress state around the edge of

the semi-infinite cylinder and hole in the current section. Intensity factors for

Mode-I stress, k, and k, may be defined as
k, =lim~2(a-r) o.(r,0),

k, =lim~2(r-b) o.(r—h). (3.28a, b)

r—b

o. (r,O) and o (r,—h) can be calculated from Egs.(2.38) and (3.16):

—p(r)= gz(x)
Uz(r’o)_pl( ) Py (l—xz)y’
o.(r.—h)=p,(r)=p,g; (:)(%]9 : (3.29a, b)

Therefore stress intensity factors k, and k, may be calculated to be

1

k, = 25_}/ Poa’ g, (1)’
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ky, =2(c=b)pog; (-1, (3.30a, b)
since Eq. (3.14b) gives 6=1/2.

It is convenient to normalize the stress intensity factors:

- k, %—y
i
0
_ kb
k, =—F——=2g,(-1). (3.31a, b)
c—b
Do >
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CHAPTER 4

RESULTS AND CONCLUSIONS

4.1 Verification of the Solution

In the study of Gecit (1986), a similar problem is considered without a circular
hole in the foundation. When the results of the present study are compared with
those of Gecit (1986), the pressure distrubitions and stress intensity factor
curves show a similar trend. Contact pressure distrubution between the cylinder
and layer are shown for a/h=0.25 and v=0.3 as below. The pressure is
dependent on A. It moves to infinity around the edge of the cylinder in both
studies. The pressure increases with increasing of »/a. Similar comparisions can

also be made for stress intensity factors.

rla

X A=1/3 in Gecit's Study —— A=1/3 in Current Study
4+ A=1/9 in Gecit's Study =——2=1/9 in Current Study

Figure 4.1 Variation of contact pressure vs. r/a for v=0.3, a/h=0.25
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Figure 4.2 Variation of the normalized stress intensity factor —k,, vs. 1

The variation of the normalized stress intensity factors — l?,a at the edges of the

semi-infinite cylinder vs. 4 for v =0.3 and a/h = 1 is plotted in Figure (4.1b)

for both Gecit and current study. A sharp increase in the values — l?,a between

A =1/3 and 3 is observed for both gecit and current study. Also, —l?,avalues

increase more rapidly for higher A = 3 in Gecit Study.

The following conclusions may be reached:

1. Itis clear that —k, is always greater than —k, b -

la

2. It is observed that Poisson’s ratio has an effect on contact pressure and
stress intensity factors.

3. Contact pressure distributions and variations of stress intensity factor
are heavily dependent on the bi-material constant.

4. The magnitudes of—k,, and —k,, increase in proportional to the width

of the cylinder and hole.
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4.2 Numerical Results

Normalized contact interval (-1, 1) is considered instead of nominal intervals
(0, @) and (b, c¢) for numerical results. The radius of the semi-infinite cylinder
a, the radius of circular hole b, the thickness of layer /# and the half length of
the contact between rigid foundation and layer ¢ are described by geometric
parameters. The bi-material constant A varies from 1/9 to o. The case of 1=1
may represent a semi-infinite cylinder and an elastic layer of identical
materials. 4 is related to the constant x« and x. Poisson’s ratios, v; and v,, and
shear modulus, u; and w0, are defined for the cylinder and layer, respectively.
A uniform compression po applied to the cylinder makes it possible to
normalize pi(7), p2(r) and G(r) unknowns with using dimensionless variables.
The cases of 0 < a/h < 1.0 and 0 < b/h < 1.0 are considered. The value of N
equals to 40 in all computations. It is observed that there are no significant

changes in the results when the value of N is increased. All graphs are also

drawn for x, =1.8 (vl = 0.3) as shown in graphical figures 4.3- 4.35.

Contact pressure is applied for both the cylinder-layer and layer-rigid support
in contact regions. Therefore, the contact pressure distributions are calculated
for various material pairs. In addition, normalized stress intensity factors for
the semi-infinite cylinder and hole are very different from each other.
Normalized stress intensity factors vs. 4 are plotted for different magnitudes of
a/h and b/h. It is understood that the bi-material constant A has an important
effect on both contact pressure distributions and stress intensity factors. The

case of A=1 may show the identical materials for the cylinder and layer.

Figures (4.3) to (4.14) show the graphs of normalized contact pressure between
the elastic layer and cylinder versus #/a for the various values of a/h and b/h
when v =0.3. It is noted that the values of 4 have a very important role in the
distribution of the pressure. Similar figures in figures 4.3 to 4.14 are grouped

into separate sections. Each section is explained in detail;

38



il.

111

Figures (4.3) to (4.8) display the variation of the contact pressure
between the cylinder and layer vs. r/a values for b/h = 0.1, 0.5, 1.0
when 4=1/9, 1/3, 1, 3, o, v = 0.3 and a/h = 0.1, 0.25. For figure 4.3,
numerical values of p;(7)/po do not considerably change with increasing
values of 7/a up to r/a = 0.5. Then, pi(r)/po values increase with
increasing r/a values between r/a= 0.5 and 1.0. Especially, when #/a
approaches 1.0, pi(r)/po moves to infinity (Figure 4.1). Similar

explanations may be performed for Figure 4.4 to 4.8, as well.

The variation of the contact pressure between the cylinder and layer vs.

r/a values for b/h=0.1,0.5,1.0 for 1 =1/9,1/3,1,3,0, v=0.3 and
a/h=20.5 is shown in figures (4.9) to (4.11). The figures 4.9 and 4.11

are compared with each other in terms of initial contact pressure values.
When pi(r)/po value is equal to 0.49 at v/a = 0 for A = 1/9 in figure 4.11,
p1(r)/po value corresponds to 0.63 at r/a = 0 for A = 1/9 in figure 4.9. In
other words, initial contact pressure for 4 = 1/9 almost increases by 20
% when b/h changes from 1.0 to 0.1. Similar behavior for the change in

values of initial contact pressure is observed for other A values, as well.

The variation of the contact pressure between the cylinder and layer vs.

r/a values for b/h=0.1,0.5,1.0 for A =1/9,1/3,1,3,0, v=0.3 and
a/h=1.0 1s indicated in figures (4.12) to (4.14). For figure 4.12, all

curves drawn for different 4 values are very close to each other, and
contact pressure values are in the range of 0.75 and 1.0. On the other
hand, all curves drawn for different 4 values in figure 4.14 are remote
from each other. Their values are in the broad range of 0.2 and 1.0. In
addition, for figure 4.12, numerical values of pi(r)/po do not
significantly alter with increasing values of r/a up to #/a = 0.7. Then,
p1(r)/po values increase with increasing r/a values between 0.7 and 1.0.
On the other hand, for figure 4.14, numerical values of p;(7)/po do not

considerably change with increasing values of 7/a up to r/a = 0.2.
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However, pi(r)/po values increase with increasing r/a values between
0.2 and 1.0. This means that magnitudes of r/a after a point have a
substantial impact on contact pressure. Especially for figure 4.12 and
4.14, while r/a approaches 1.0, pi(r)/po moves to infinity. Similar

explanations may be made for Figure 4.13, as well.

Figures (4.15) and (4.18) present the variation of contact pressure vs. r/a for

b/h=0.1,05,1.0 when v=03, 1=1/9,9 and a/h=0.1,1.0. Pressure

distributions in figure 4.15 and 4.17 overlap for all values of b/h and a/h = 0.1
when the bi-material constant 4 is assumed to be 1/9 and 9. Conversely, values
of p1(r)/po contact pressures for each r/a values in figure 4.17 are much higher
than the values of p;(7)/po contact pressures for each of the r/a values for figure
4.15. While initial contact pressure values are in the range of 0.2 and 0.75 for
figure 4.16, the same values in figure 4.16 are in the range of 0.92 and 0.98.
That is, curves as a group in figure 4.16 are much closer to each other than the

curves in figure 4.16.

Figures (4.19) to (4.22) present the curves of contact pressure between the

elastic layer and cylinder vs. r/a for a/h=0.1,0.5,1.0 when v=0.3,
A=1/9,9 and b/h=0.1,1.0. There are no significant increments for the

values of pi(r)/po up to r/a = 0.5 for all a/h variations in the graph of figure
4.19. A similar trend is observed for lower 7/a values in figure 4.20. A sharp
increase in pi(r)/po values is observed at r/a = 0.8 in both figure 4.19 and 4.20.
The effect of different a/h values on p;(r)/po becomes negligible along all /a
values in figure 4.21. Figure 4.22 shows that the increase in pi(r)/po for the
curve for a/h=0.1 is higher than that of the curves for a/h = 0.5 and 1.0 along
rla values. The same figure indicates that p;(r)/po values overlap between

r/a=0.65 and r/a =0.75 for a/h =0.1,0.5,1.0.
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The variation of the normalized stress intensity factors —l;,a at the edges of
the semi-infinite cylinder vs. 4 for b/h=0.1,0.5,1.0 when v =0.3 and
a/h=0.1,0.5,1.0 is plotted in figures (4.23) to (4.27). The normalized stress

intensity factor at the edge of semi-infinite cylinder increases with increasing
values of 4 for different values of a/h and b/h. While curves in figure 4.23
overlap for a/h = 0.1 and b/h = 0.1, 1.0, the curves in figure 4.24 are clearly
separated from each other for a/h = 1.0 and b/h = 0.1, 1.0. In other words,

different magnitudes of b/h values do not create a significantly difference in
—k,, in figure 4.23 while various values of /A yield different —k,, values in
figure 4.24. It is observed that higher a/h values correspond to lower values of

—l?,a for each bi-material constant in figure 4.25 while higher a/h values

correspond to higher values of —l;,a for each bi-material constant in figure

4.27.

Figures (4.28) to (4.30) present the variation of contact pressure p,(r)/po along
the layer-rigid support vs. v/h for b/h=0.1,0.5,0.75,1.0 when v =0.3,

a/h=0.1,0.5,1.0 and A =1/9,1.0. When r/h approaches 0.1, 0.5, 0.75, 1.0

for b/h = 0.1, 0.5, 0.75, 1.0, magnitude of p,(r)/po incredibly increases in all

curves.

Figure (4.31) indicates the variation of contact pressure p.(r)/po vs. r/h

along the layer-rigid support for 4 =9,1,1/9 when v=0.3, a/h=0.5 and
b/h=0.5.1t is seen in the figure that the values of contact pressure decrease

with increasing values of #/A. It is also understood that the contact pressure has
a minimum value at around »/4 = 1.2. No significant effect for different values

of A on curves 1s observed.

Figure (4.32) and (4.33) show the variation of contact pressure p(7)/po vs. r'h
along the layer-rigid support for a/h=0.1,0.5,1.0 when v=0.3, b/h=0.5
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and A =1/9,9. When r/h approaches 0.5 for a/h=0.1, 0.5, 1.0, the magnitude

of pa(r)/po considerably increases in all curves.

Normalized stress intensity factors — k,, versus A at the edges of the hole for
a/h=0.1,1.0, v=0.3 and b/h=0.1,0.5,1.0 are plotted in Figures (4.34) and
(4.35). It appears that the magnitudes of —l?,b do not significantly increase

with increasing values of A for figure 4.34. Yet, values of —k, gradually

increase with increasing values of 4 for figure 4.35.
4.3 Conclusions

In this thesis, the problem is put forward as the frictionless double contact for
an axisymmetric elastic layer pressed by an elastic semi-infinite circular
cylinder. Therefore, stress—displacement expressions are given by Navier
equations for the solution of the contact problem. The general stress-
displacement expressions are acquired by employing boundary conditions both
the layer and cylinder after applying Fourier and Hankel transforms for Navier
Equations. Therefore, a system of three singular integral equations is obtained.
This system is converted into linear algebraic equations by means of Gauss-
Jacobi and Gauss Lobatto. The values of unknown functions g,(y.), g,(»,)
and g,(n,) (i=1...,n) are calculated from the solution in this system via
Fortran program. In addition, a/h, b/h and c/h are expressed as independent
variables in the program. Estimated values of a/h and b/h are given for the

solution of the problem. Therefore, c¢/A can be obtained by iterative procedures.

As an alternative method, this problem may also be solved using finite element

methods or some package programs such as MARC and ANYS.
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Figure 4.3 Contact pressure between the elastic layer and cylinder for v=0.3, a/A=0.1 and b/h=0.1.
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Figure 4.4 Contact pressure between the elastic layer and cylinder for v=0.3, a/h=0.1 and b/h=0.5.
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Figure 4.5 Contact pressure between the elastic layer and cylinder for v=0.3, a/h=0.1and b/h=1.0.
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Figure 4.6 Contact pressure between the elastic layer and cylinder for v=0.3, a/h=0.25 and b/h=0.1.



Ly

Pi(Y)/po

20 1

L5 1

1.0

0.5

Figure 4.7 Contact pressure between the elastic layer and cylinder for v=0.3, a/h=0.25 and b/h=0.5.
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Figure 4.8 Contact pressure between the elastic layer and cylinder for v=0.3, a/h=0.25 and b/h=0.75.
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Figure 4.10 Contact pressure between the elastic layer and cylinder for v=0.3, a/A=0.5 and b/h=0.5.
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Figure 4.12 Contact pressure between the elastic layer and cylinder for v=0.3, a/A=1.0 and b/h=0.1.



€S

Pi(1)/po

Po

Vi
20 r 1 r
2a

A=1/9
L ey
A

1.5

8 OV w ~

05 r

0.0 0.2 0.4 0.6 0.8
r/a
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Figure 4.14 Contact pressure between the elastic layer and cylinder for v=0.3, a/A=1.0 and b/h=1.0.
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Figure 4.16 Contact pressure between the elastic layer and cylinder for v=0.3, A=1/9 and a/h=1.0
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Figure 4.17 Contact pressure between the elastic layer and cylinder for v=0.3, A=9 and a/h=0.1.
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Figure 4.18 Contact pressure between the elastic layer and cylinder for v=0.3, A=9 and a/h=1.0.
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Figure 4.19 Contact pressure between the elastic layer and cylinder for v=0.3, A=1/9 and b/A=0.1.
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Figure 4.20 Contact pressure between the elastic layer and cylinder for v=0.3, A=1/9 and b/A=1.0.
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Figure 4.26 Variation of —k,, with A for v=0.3 and b/4=0.5.
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APPENDIX A

DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.35)

Evaluation of some definite integrals from Erdelyi and Magnus (1953):

!ewzam@zﬁkzaQiPQ, (A1)
Te"”sin(a z)dz = 5 < > (A.2)
o a’+p

T p’-a’
P dz = , A3
J;Ze CcOS ((ZZ) yA W ( )

2ap

a2+p22

J. ze " sin (a z) dz = (A.4)
0
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APPENDIX B

INTEGRALS APPEARING IN EQS. (2.36)

I(az P J(pA)J (pt)dp

=iKo(aA)l,(af)+i2K](aA)l,(ar)
20 a
~ Lk (@A), (), (4>21)  (B.D)
20
[ 1(p4) (o) dp = K, (e A) 1 (a). (421)  (B2)
o +p
L (o A) 1 (p1)dp = - K, o A) T, (). (421) (B3
&+ p

+

T 2p 22J0(PA)J1(pt)dp
ey

— 2Kl A+ 2K (@A) a), (421) B4
T 2/93 —J\(p4)J,(p1)dp
1o+ p?)

:_%KO(Q A1 () + EK () (a). (4z1)  (BS)
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APPENDIX C

SOME GENERAL EXPANSIONS

C.1 COMPLETE ELLIPTIC INTEGRALS OF THE 1* AND THE 2™
KINDS

C.2 HANKEL TRANSFORM
F(0)= B A0 = [r ) (or)ar 20

S)=HE, (p)= [ pF(p)J, (pr)dp v>=-12

0

C.3 BESSEL FUNCTIONS OF THE 1* KIND OF ORDER N

1,x)= gok!(ki n)@m
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APPENDIX D

GAUSS-LOBATTO INTEGRATION FORMULA USED IN
EQS. (3.20b, ¢) AND EQ. (3.21¢c) [ ERDOGAN (1973)]

%jk(xk t)G_:j ekt =32 el) e=tn)

o 2n+1

Pn(z’ ZJ(E):O, t; :COS( 2 jr (i:l,...,n),

2n+1

11
272 2k -1
P( 2 ZJ(xk)=0, X, :COS(2n+lﬂj’ (k=1,..n),

GAUSS-JACOBI INTEGRATION FORMULA USED IN
EQS. (3.20a—c) AND EQS. (3.21a, b) [ ERDOGAN (1973)]

1 n
Jk(xj,t)g(t)(l —1)*(1+¢) dt = ZWik(xj,t-)g(ti) (j=1....n-1),
-1 i=1

where x,¢; are the roots of the Jacobi polynomial of degree n.
wit)y=([1-2)"(1+t)) (-l1<a,f<0, —1<z<1)

P“P)(e,)=0 (i=1,..n)

P(”a’”ﬁ)(xj):O (jzl,...,n—l),

n—1

The weights W, are given by the formula,
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(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)



oo 2n+a+f+2 C(n+a+1)C(n+p+1) 20+P
Y (m+)n+a+pr1) Trra+p+l) PP )Pe)()

n+l i

Special values for Jacobi polynomials [Abramowitz and Stegun (1965)]:

f, = PPr) (D.9)
folt)=0 (D.10)
ﬁ(z)=%[a—,8+(a+,8+2)t] D.11)

Recurrence relations,

[ (0) = (a0, +as, 1)1, ()= s, £, (0) (D.12)
a, =2n+1)n+a+p+1)2n+a+p) (D.13)
a,, =(2n+a+p+1)fa’® - ) (D.14)
ay, =(2n+a+ p) (D.15)
a,, =2(n+a)n+p) (D.16)

86



