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ABSTRACT 
 
 

FRICTIONLESS DOUBLE CONTACT PROBLEM FOR AN 
AXISYMMETRIC ELASTIC LAYER BETWEEN AN ELASTIC STAMP 

AND A FLAT SUPPORT WITH A CIRCULAR HOLE 
 

Mert, Oya 

M.Sc., Department of Engineering Sciences 

Supervisor: Prof. Dr. M. Ruşen Geçit 

 

April 2011, 86 pages  

 

This study considers the elastostatic contact problem of a semi-infinite 

cylinder. The cylinder is compressed against a layer lying on a rigid 

foundation. There is a sharp-edged circular hole in the middle of the 

foundation. It is assumed that  all the contacting surfaces are frictionless and 

only compressive normal tractions can be transmitted through the interfaces. 

The contact along interfaces of  the elastic layer and the rigid foundation forms 

a circular area of which outer diameter is unknown. The problem is converted 

into the singular integral equations of the second kind by means of  Hankel and 

Fourier integral transform techniques. The singular integral equations are then 

reduced to a system of  linear algebraic equations by using Gauss-Lobatto and 

Gauss-Jacobi integration formulas. This system is then solved numerically. In 

this study, firstly, the extent of the contact area between the layer and 

foundation are evaluated. Secondly, contact pressure between the cylinder and 

layer and contact pressure between the layer and foundation are calculated for 

various material pairs. Finally, stress intensity factor on the edge of the 

cylinder and in the end of the sharp-edged hole are calculated. 

 

Keywords: Axisymmetric, Semi-infinite Cylinder, Singular Integral Equations, 

Contact Problem, Stress Intensity Factor.  
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ÖZ 
 
 

BİR ELASTİK SİLİNDİR İLE YUVARLAK BİR DELİĞİ BULUNAN 

DÜZ BİR DESTEK ARASINDAKİ BİR ELASTİK TABAKA İÇİN 

SÜRTÜNMESİZ EKSENEL SİMETRİK TEMAS PROBLEMİ 

 

Mert, Oya 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi          : Prof. Dr. M. Ruşen Geçit 

 

Nisan 2011, 86 sayfa  

 

Bu çalışma, yarı sonsuz bir silindirin elastostatik temas problemini 

incelemektedir. Silindir, rijit bir temel üzerindeki bir tabakaya karşı 

sıkıştırılmıştır. Temelin ortasında keskin köşeli dairesel bir delik 

bulunmaktadır. Tüm temas yüzeylerinin sürtünmesiz olduğu ve arayüzler 

boyunca sadece basınç normal gerilmelerinin iletildiği varsayılmaktadır. 

Elastik tabaka ve rijit temel arayüzeyi boyunca temas, dış yarıçapı bilinmeyen 

dairesel bir alan oluşturmaktadır. Problem, Hankel ve Fourier integral dönüşüm 

teknikleri kullanılarak ikinci çeşit tekil integral denklemler haline 

dönüştürülmektedir. Tekil integral denklemler daha sonra Gauss-Lobatto ve 

Gauss-Jacobi integrasyon formülleri kullanılarak lineer cebirsel denklemlere 

indirgenmektedir. Bu sistem daha sonra sayısal olarak çözülmektedir. Bu 

çalışmada ilk olarak, tabaka ve temel arasındaki temas alanının genişliği 

değerlendirilmektedir. İkinci olarak, silindir ve tabaka arasındaki temas basıncı 

ve tabaka ile temel arasındaki temas basıncı çeşitli malzeme çiftleri için 

hesaplanmaktadır. Son olarak, silindirin köşesindeki gerilme şiddeti katsayısı 

ve keskin köşeli deliğin ucundaki gerilme şiddeti katsayısı hesaplanmaktadır. 

Anahtar Sözcükler: Eksenel Simetri, Yarı Sonsuz Silindir, Tekil İntegral 

Denklemler, Temas Problemi, Gerilme Şiddeti Katsayısı. 
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2a Diameter of semi-infinite cylinder 
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2c Outer diameter of contact area 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 
 

 
Elasticity is used widely to obtain a solution for engineering problems. 

Especially contact problems as a part of the elasticity have a practical 

importance in the literature. In addition, there are many areas of application for 

the contact problems like composite materials, roadways, grillages and airfield 

pavements. 

 

Contact problems are also called Hertz Contact Problems because the first 

investigations on contact problems were made by Hertz in the second half of 

the 19th century. There are some rules about the theory of Hertz: bodies are 

full elastic; surfaces are frictionless; deformations are small; each surface can 

be treated as an elastic half space. Later, Hertz’s theory was developed for 

axisymmetric contact problems by Bousinessq (1885). Many extensive 

investigations on contact problems appeared after the publications of 

Sneddon’s studies (1951) on integral transforms in the elasticity theory, and 

development of complex variable methods by Mushelishvili (1953). The 

technique of integral transforms is used for solution of different type of contact 

problems. For example, Mellin transform, Laplace transform, Fourier 

transform and Hankel transform are applied for polar coordinates problems, 

vibration problems, cartesian coordinates problems, and cylindrical problems, 

respectively. 

 

Integral equation methods are one of the first methods to obtain general 

solutions for contact problems. There are also various other methods for the 
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solution of the contact problems like methods of finite element, finite 

difference and boundary element. Highly complex problems may be solved 

using the above methods by means of today’s computer technology. 

 

1.1 Literature Review 
 
 

Lebedev and Ufliand (1958) considered an elastic layer overlying a rigid 

foundation subjected to pressing a circular cross-sectional stamp. The pressing 

was occurred via an axial force. The method developed in the study allowed to 

express the required displacements and stresses with regard to an auxiliary 

function, which standed for the solution of Fredholm integral equation. Some 

numerical results were reported to obtain a sample of a stamp by using plane 

base.   

 

Keer (1964) dealt with the problem of contact stress for an elastic die notching 

a layer starting from Vorovich and Ustinov notation. The problem was 

transformed to solution of dual integral equations by the method of Hankel 

transform. Here, equations were firstly formulated for a rigid die. Then, the 

problem was solved for the elastic die by using boundary conditions and 

convenient equations of elasticity. Finally, the influences of the elastic 

constants were expressed in terms of contact applied load, loading and radius 

of contact. 

 

Wu, Pao and Chiu (1971) investigated the plane strain problem involving an 

elastic layer, a half space foundation and cylindrical indenter. Consequences of 

the contact condition for the interface of half space foundation and thin elastic 

layer subjected to the contact stresses of indented layer were discussed in 

detail. In addition, the formulation of integral equations covering the contact 

stress distribution of the indented layer was expressed for the basic problem of 

elastic foundation or elastic indenter.  After analyzing the problems involving 

elastic indenter or elastic foundation, the researchers pointed out one similarity 
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and one difference. The similarity between these two was that both had the 

same integral equations by reformulating the Fredholm integral equations. Yet, 

these equations were different in their kernel functions. In order to solve these 

problems, a numerical method based on finite difference approximation was 

developed. 

 

Parlas and Michalopoulos (1972) analyzed a rigid punch in the shape of a bolt 

which was pressed into half space. The half space was homogeneous, isotropic 

and elastic. It also contained a transverse annular cylindrical hole. A set of dual 

integral equations was obtained from mixed boundary value problem. The first 

and second kind Bessel functions included in this problem were simplified into 

the first kind singular Fredholm integral equations. Next, numerical solution 

for this equation was obtained. The results of displacements and stresses for the 

half space were presented graphically. 

 

Civelek and Erdogan (1974) investigated axially symmetric situation of double 

contact problem including three different materials, which are layer, stamp, and 

half space. The problem was simplified into singular integral equations. 

Unknown functions in these equations were contact pressures. Comprehensive 

numerical results for three stamp geometries (flat-ended rigid cylindrical 

stamp, elastic and rigid spherical stamps) were obtained. 

 

Ufliand and Zlatin (1976) considered an axially symmetric contact problem 

involving an elastic cylinder and an elastic layer overlying a fixed foundation. 

When the transform of Hankel for the layer and orthogonality of 

eigenfunctions for the cylinder were used, the problem was converted into the 

linear algebraic equations. Consequently, these equations made effective 

solutions possible by the method of truncation. 

 

Gecit (1980) studied a plane contact problem covering an elastic layer and 

foundation. Vertical body force, vertical line load and pressure were uniformly 
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applied on the layer. Critical line load was firstly found just after the solution 

of continuous contact problem was performed. Second, formulation of these 

continuous contact problems was carried out according to singular integral 

equations. Distributions of contact stress region of separation and critical line 

load were numerically found. He also studied with an axisymmetric contact 

problem consisting of an elastic layer overlying a semi-infinite base in 1981. 

The elastic layer was pressed towards the base. A line load was vertically 

applied to the layer. The solution of the formulated problem was obtained for 

both tensile and compressive line loads. Numerical solutions were obtained for 

the distributions of the contact stress in terms of combinations of various 

materials. 

 

Kumar and Hiremath (1984) examined an axially symmetric Boussinesq 

problem to determine the stress distributions of an isotropic semi-infinite 

elastic solid. After a rigid annular punch was exposed to heat, it was pressed on 

the free surface of the solid. At the end of the process, the distributions of 

temperature on this surface were found to be uneven. In essence, this was a 

three part mixed boundary value problem and this problem was reduced to 

triple integral equations’ solution. Then, these equations were converted into 

the solution of simultaneous equations which were infinite provided 

that  0,rzz  had in the punch region. Consequently, the variations of 

 0,rzz and total load were presented in graphics. 

 

Gecit (1986) analyzed an elastostatic contact problem including elastic layer 

and semi-infinite cylinder. The cylinder was pressed towards the layer 

overlying a rigid base. Frictionless contacting surfaces were assumed. It was 

thought that tensile tractions were not transmitted along the interfaces. 

Numerical solutions were performed by means of the integral equations. As a 

result, contact pressures and stress intensity factors were calculated for some 

material pairs.  
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Hara and Suzuki (1988) studied an axially symmetric contact problem 

including an elastic half space and a rigid foundation with parabolic ended pit 

and protrusion. The space was pressed against the foundation with a parabolic 

ended pit or protrusion. The results of the problem were separately discussed 

for both of these, respectively. Papkovich-Neuber equations were used to solve 

the problem in oblate spheroidal coordinates. Contact stress and surface 

displacement distributions were displayed. Then, solutions were found to be in 

agreement with solutions for flat-ended pit or protrusion. 

 

Li and Dempsey (1990) investigated an axially symmetric contact problem 

involving a rigid sphere, a rigid flat cylinder, an elastic sphere or a circular 

plate overlying an elastic layer. In this study, these contact problems were 

reduced to integral equations. By applying approximation of exponential series, 

an infinite integral consisting of two Bessel functions was converted to a finite 

summation. This finite summation was actually achieved by the extraction of a 

singular term. Numerical values were compared with existing analytical 

solutions and it was concluded that highly accurate numbers and easiness were 

achieved through the use of this method. Thus, contact pressure distributions, 

displacements and contact radii were stated. 

 

Selvadurai (1994) examined an axially symmetric elastostatic problem 

including two different elastic half spaces and a rigid disc inclusion. The 

inclusion was embedded between the spaces. The contact problem was reduced 

to Fredholm type integral equation of second kind. Numerical results showed 

that precompression stress had an important effect on the radius of the region 

of separation. 

 

Jaffar (1997) considered an axially symmetric frictional contact problem. It 

was thought that a thin elastic layer lying on a rigid foundation was indented by 

a punch. The problem was solved by perturbation theory. Numerical solutions 

were obtained for three different shapes which are spherical, flat-ended 
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cylindrical and conical. In addition, the effect of friction on results was 

considered. Then, solutions were compared to the ones in the literature. 

 

Cakiroglu F, Cakiroglu M and Erdol (2001) analyzed the problem of 

continuous and discontinuous contacts, respectively. The geometry of the 

problem was defined as two elastic layers overlying an elastic semi-infinite 

plane. In addition, a frictionless contact between surfaces and a uniform 

pressure on the top layer were assumed. Singular integral equations were 

formed according to these continuous contact positions, and then the method of 

Gauss- Chebyshev integration was used to solve the problem numerically. 

Finally, graphical forms were obtained for separations and stress distributions. 

 

Chaudhuri and Ray (2003) studied the behaviour of rigid punch on an elastic 

half space. Basic equations were expressed by Hankel transform. The problem 

was solved for both flat-ended cylindirical and paraboloidal punches. After 

that, solutions were obtained from Fredholm integral equation. Calculations 

were made for different values of the nonhomogenity parameter. Finally, the 

effect of stress on these values was shown graphically. 

 

Avci, Bulu and Yapici (2006) investigated an axially symmetric contact 

problem. They used a cylinder which was elastic, thick-walled, hollow and 

isotropic which was pressed by an inelastic external ring. Fourier transform 

helped to solve equations of the elastic theory for the problem cylindrical 

coordinates. Then, basic expressions for the displacements were acquired. A 

singular integral equation was obtained by simplification of the formulation 

employing boundary conditions. Next, Gaussian quadrature was used to solve 

the singular integral equation. Lastly, graphical forms for numerical results 

were obtained for normalized pressure distributions and distance presenting the 

contact zone.  
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Ozsahin, Kahya, Birinci and Cakiroglu (2007) considered a contact problem of 

a layered composite  having different bi-material constants. Navier equations 

were used to solve two dimensional contact problems. Next, displacement 

expressions were written by using Fourier transforms for both layers. The 

problem was converted into algebraic equations by the integral formula of 

Gauss-Chebyshev. From the solution of these equations, graphs for normalized 

contact pressure and the axial stress distribution were obtained. 

 

Kahya, Birinci and Erdol (2007) studied a contact problem with no friction 

between two orthotropic elastic layers. Gravity force was included into the 

equations. Singular integral equations were obtained from Fourier transforms 

and the elasticity theory. Graphs were presented for initial separation point, 

crucial separation load and normalized contact stress, respectively. 

 

Liu, Wang and Zhang (2008) considered the problem of an axially symmetric 

contact for the half space. The half space was functionally graded and coated. 

The problem was simplified into a Cauchy singular integral equation by 

exploiting the Hankel integral transform and transfer matrix method. The 

equations were numerically solved to calculate indentation, contact zone and 

pressure. 

 

Rhimi, El-Borgi, Ben Said and Ben Jemaa (2009) studied the problem of 

receding contact including half space and layer. The layer was elastic 

functionally graded, and the half space was homogeneous. Two bodies were 

compressed together, and there was no friction between them. The problem 

was thought separately for these bodies. Singular integral equation was 

analytically obtained from the axial symmetric elasticity equations employing 

Hankel transform. The receding contact radius and the contact pressure were 

unknown parameters in a singular integral equation. The solution of the 

equation was obtained numerically with Chebyshev polynomials. In addition, 

receding contact length was calculated with an iterative method.  
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1.2 Scope of the Problem and Solution Method 
 
 
This thesis is involved with the problem of axially symmetric double contact 

containing an elastic layer, a circular hole and semi-infinite cylinder. The layer 

overlies a rigid base. There are unlimited contacts between the foundation and 

layer. In addition, there is a uniform compression applied to the layer by the 

cylinder. The layer is restricted between z=0 and z=-h planes. There are two 

assumptions about the problem. First, it is assumed that there is no friction in 

contact surfaces. Second, only compressive tractions can be transmitted along 

the interfaces. When pressure stress loses its effect, separation occurs. The 

separation has infinite length because there is no gravity effect for the problem. 

Stress and displacement relations are written with Fourier and Hankel 

transforms for both the layer and cylinder. Then, boundary conditions applied 

for these expressions make it possible to obtain singular integral equations. All 

linear algebraic equations are obtained from the singular integral equations 

after using some integration formulas like Gauss-Jacobi and Gauss-Lobatto. 

Contact pressures and stress intensity factors are calculated numerically for 

various material pairs. 
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CHAPTER 2 
 
 
 

DOUBLE CONTACT PROBLEM 
 

 
 

    

2.1 Problem Definition 

 

The axisymmetric double contact problem analyzed is that an infinite layer 

overlying a rigid base is compressed by a semi-infinite cylinder subjected to a 

uniform compression p0 as seen in Figure 2.1. It is assumed that all bodies 

except rigid foundation have elastic and isotropic properties. Radius of cylinder 

and layer of thickness are assumed as a and h, respectively. The frictionless 

elastic layer is resting on a horizontal rigid foundation containing a circular 

hole of diameter 2b  at the center  with 
0

90 sharp corner. The body forces are 

assumed to be zero. In this case, the contact between the foundation and layer 

is lost along the outer domain   rc  where c is yet unknown. For linearly 

elastic, isotropic  and axisymmetric  elasticity problems, the field equations can 

be listed as follows: 

Stress-displacement relations are  (Gecit and Erdogan 1978; Gecit 1986) : 

    


























z
w

r
u

r
u

r 



 31
1

,     

    
















 







z
w

r
u

r
u

z 13
1





 ,                              

















r
w

z
u

rz   ,                                                                                  (2.1a–c)                                                     

 
                                                                 
where σ and τ  denote normal and shearing stresses, μ is named as shear 

modulus, κ=3-4 ν, ν is defined as Poisson’s ratio.  
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Navier  equations  (equilibrium equations in point of the displacements) are 

    02111
2

2

2

22

2




























zr

w
z
u

r
u

r
u

rr
u  ,

    011112 2

2

2

22



































z
w

r
w

rr
w

z
u

rzr
u  .                      (2.2a, b)  

       
where u and w are displacement components in r-and z-directions, respectively.    

 

A.                                                          B.       

 

 

 

 

 

 

           

 

Figure 2.1 Undeformed shape (A) and deformed shape (B) of elastostatic 

contact problem. 

 

No friction is supposed for the contact among cylinder, layer and foundation, 

and transmittable tractions across the interfaces are only compressive normal 

ones. Solution of equations (2.2a, b) are obtained by making use of the 

following boundary conditions.  

  0,1 zar ,     

  0,1 zarz ,                

  01 , prz  ,                                           

0)0,()0,( 21  rr rzrz  , 

   0,0, 21 rr zz   ,                ar 0 ,                                                            

)0,()0,( 21 rwrw  ,                 ar 0 ,   

 

r 

2a 

z 1 

2 
2c 

2b 

h 

 

2 
r 

2a 

z 1 

2c 

2b 

p0 

h 
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  0,2 hrz ,                       rcbr ,0 ,     

0),(2 hrrz ,                                                                                                                                              

0),(2 hrw  ,                         crb   .                                                (2.3a–i)                                                                       

Here, the cylinder and layer are implied by the subscripts 1 and 2, respectively. 

Note that Eqs. (2.3f, i) are equivalent to 

)0,()0,( 21 rw
dr
drw

dr
d

 ,       ar 0 ,                                             

0),(2 hrw
dr
d ,                    crb  .                                                (2.4a, b)                        

Solutions for both the cylinder and layer will be obtained after solving Navier 

equations. By using also stress displacements, matches through the interface 

will be performed from these solutions.  

Defining  zU , , 1H  Hankel transform of  zru ,  and  zW , , 0H  Hankel 

transform of  zrw ,  in r-direction, 

      ,,,
0

1 drrJrzruzU  


  

      ,,,
0

0 drrJrzrwzW  


                                                                 (2.5a, b) 

Here, 0J  is the Bessel functions of the 1st kind of order zero, and 1J  is the 

Bessel functions of the 1st kind of order one. Applying 1H  Hankel transform to 

Equation (2.2a) and 0H  Hankel transform to Equation (2.2b) in r-direction 

 

    ,02111 12
1

2

22

2

1 






























r
wH

zdz
Ud

r
u

r
u

rr
uH 

                                                                                                  

    ,01112 2
0

2

2

2

00 





















 






dz
Wd

r
w

rr
wH

r
u

r
uH

z

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       ,0211 02
1

2

1
2  W

dz
d

dz
UdU 

                                   

      .0112 2
0

2

0
21 

dz
WdW

dz
dU

                                        (2.6a, d)                                                 

By taking derivative of Eq. (2.6d), 

    ,0112 3
0

3
02

2
1

2


dz
Wd

dz
dW

dz
Ud

                                             (2.7)                                                 

Eq. (2.6c) can be rewritten as 

    .
2

1
2
1

2
1

2

1
0

dz
UdU

dz
dW


 




                                                            (2.8)                                                 

When the second and third derivatives of Eq. (2.8) are taken with respect to 

variable z, following expressions are obtained 

 
    ,

2
1

2
1

3
1

3
1

2
0

2

dz
Ud

dz
dU

dz
Wd


 






 
    .

2
1

2
1

4
1

4

2
1

2

3
0

3

dz
Ud

dz
Ud

dz
Wd


 




                                                (2.9a, b)                                                 

After substituting Eqs. (2.9b) and (2.8) into Eq. (2.7) and rearranging it, 

following can be obtained  

02 4
2

2
2

4

4

 U
dz

Ud
dz

Ud
 ,                                                                        (2.10)                                                                      

where   denotes the transform variable of Hankel. 

The general solution of Eq. (2.10) is 

                                                   (2.11) 

where 321 ,, ccc  and 4c are arbitrary constants with respect to the variable z . 

By back substitution in the transformed ODEs, one can obtain 

  ., 4321
zz eczceczczW 





 

































                              (2.12) 

      ,, 4321
zz ezccezcczU   



13 
 

When the inverse transforms of Equations (2.11) and (2.12) are taken, 

displacement components are found as follows 

         ,, 1
0

4321   drJezccezcczu zz


   

   



















































0
04321 ., 





  drJeczceczczw zz  

                                                                                                                (2.13a, b) 

The following expressions are acquired for the stress components by 

substituting Eqs. (2.13) in Eqs. (2.1): 

               derJczccrJ
r

zcczr z
r

















 

0
0221121 3212,

                         derJczccrJ
r

zcc z














 

0
0443143 3212 , 

      



0

221 12, z
z eczcczr   

                       drJeczcc z
0443 12  , 

      



0

221 12, z
rz eczcczr   

                      drJeczcc z
1443 12  .                                (2.14a–c) 

Unknown constants may be calculated by employing boundary conditions 

presented in Eqs. (2.3).   

The problem can be investigated as the combination of three basic states for the 

semi-infinite cylinder. That is, 

a) An infinite cylinder exposed to an axial uniform compression p0,  

b) An infinite cylinder symmetric in direction of z=0  plane and 

exposed  to arbitrary axial symmetric loads, 

c) An axial symmetric half-space  0z  exposed to loads on the 

straight boundary z=0. 

The half space solution is anticipated to provide nonzero normal displacement 

w over z=0. Solution of the problem mentioned in item c can be achieved by 
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employing the sine and cosine transforms of Fourier for Eqs. (2.2) in z-

direction. Following statements can be obtained when the cosine and sine 

transforms are applied to Eq. (2.2a) and (2.2b) in z- direction, respectively. 

    ,02111
2

2

2

22

2


































































zr

wF
z
uF

r
uF

r
u

r
F

r
uF ccccc 

 

    











































r
w

r
F

r
wF

z
uF

rzr
uF ssss

11122 2

22


  ,01 2

2














z
wFs

 

    ,02111 2
22

2















dr
dW

U
r
U

dr
dU

rdr
Ud s

c
ccc 

 

    .011112 2
2

2


















  s
ss

c
c W

dr
dW

rdr
WdU

rdr
dU

       (2.15a–d)       

Eq. (2.15c) can be rewritten as 

   
c

cccs U
r
U

dr
dU

rdr
Ud

dr
dW

2
11

2
1

22

2 


 
















 .                             (2.16)   

by taking second and third derivatives of Eq. (2.16), 

    ,
2
1221

2
1

322

2

3

3

2

2

dr
dUU

rdr
dU

rdr
Ud

rdr
Ud

dr
Wd c

c
cccs 


 


















 
 















 c

ccccs U
rdr

dU
rdr

Ud
rdr

Ud
rdr

Ud
dr

Wd
432

2

23

3

4

4

3

3 6631
2

1


       

              
 

.
2
1

2

2

dr
Ud c 

                                                                     (2.17a–b) 

by taking derivative of Eq. (2.15d), 

   

 


























dr
dW

rdr
Wd

rdr
WdU

rdr
dU

rdr
Ud sss

c
cc

22

2

3

3

22

2 111112    

  01 2 
dr

dWs .                                                                                   (2.18) 
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After substituting Eqs. (2.16) and (2.17) into Eq. (2.18) and rearranging it, 

following can be obtained  

   
dr

dU
rr

dr
Ud

rr
dr

Ud
r

dr
Ud

r cccc 32322 22
2

2
222

3

3
3

4

4
4  

   032 2244  cUrr  .                                                                      (2.19)

 th4  order homogeneous ordinary differential equation is obtained as indicated 

below 

      ,03232322 243
2

2
24

3

3

4

4
4  c

cccc U
d

dU
d

Ud
d

Ud
d

Ud














  
                                                                                                                     (2.20)   

the Fourier cosine transform of  zru ,  is defined as seen in Eq. (2.21)                       

      ,cos,,
0

dzzzrurU c  


                                                                       (2.21) 

 
r  ,  is the Fourier transform variable,

  
Eq.(2.20) can be expressed as follows, Durucan (2010),   

    ,04321  cc UU
                                                                            

(2.22)
 

where Δ1, Δ2, Δ3 and Δ4 are 2nd order linear ordinary differential operators with 

variable coefficients in ξ : 

,33 2
2

2
2

1  






d
d

d
d

 

,12
2

2
2

2  






d
d

d
d

 

,432
2

2
3

3 





 
d
d

d
d

 

,1
2

2

4 



 

d
d

d
d

                                                                       
(2.23a–d) 

solution of Eq. (2.20) can be obtained from 2nd order ODEs 

,0,0 42  cc UU
                                                                                     

(2.24) 

in the form of  
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       ,),( 08170615 rrKcrKcrrIcrIcrU c                         (2.25)                         

in Eq. (2.25), arbitrary constants can be given as 8765 ,,, cccc  and the modified 

Bessel functions 1st and 2nd kinds of order zero and one can be shown as 

1100 ,,, KIKI , respectively. 

7c  and 8c  arbitrary constants must be zero due to providing the regularity 

condition at 0r . Thus, 

   .),( 0615 rrIcrIcrU c                                                                  (2.26) 

Similarly, 

          rrIrIcrIcrWs  10605 1,                                      (2.27) 

the Fourier sine transform of  zrw ,  is defined as seen in Eq. (2.28)                       

     dzzzrwrWs  sin,,
0



 .                                                                      (2.28) 

Inverse Fourier transforms of Eqs. (2.26) and (2.27) give 

         


dzrrIcrIczru cos2,
0

0615


 , 

              


dzrrIrIcrIczrw sin12,
0

10605


 .        (2.29a, b) 

Expressions of stress component are acquired by the substitution of Eqs. (2.29) 

in Eqs. (2.1): 

               ,cos21122,
0

106105 




 dzrrIrIcrI

r
rIczrr 















 

              ,cos2522,
0

10605 

 dzrrIrIcrIczrz 



  

              

 dzrrIrIcrIczrrz sin2122,

0
01615



 .   (2.30a–c) 
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2.2 Stress and Displacement Expressions for the Semi-Infinite Cylinder 

 

By renaming the unknown quantities 1c , 2c , 5c and 6c in Eqs.(2.13, 14, 29, 30) as 

follows 

  gc
2

1
1


 , 

 gc 2 , 

1

2

5 2
Ac




 , 

16 2
Bc




 .                                                                                          (2.31a–d) 

 

stress and displacement expressions for semi-infinite cylinder   z0  are 

described as (Agarwal 1978; Gecit 1986; Gupta 1974)  

              dzrrIBrIAzru cos, 2

0
011111 



  

                        rpdrJegz z





 










 


 



 7
3

22
1 0

1
0

1 , 

              



 dzrrIrIBrIAzrw sin1, 2

0
10

1
10111 















 


  

                     





 









 


 



 7
4

22
1 0

0
0

1 zpdrJegz z ,            (2.32a, b) 

             














 






 

0
10

1
11011 2

112, rrIrIBrI
r

rIAzrr 










          






  degrJz

r
rJzdz z



 













 




0
1

1
0

2

2
1112cos ,                                    

              





 dzrrIrIBrIAzrz cos
2

52, 2

0
10

1
1011 















 




                    00
0

12 pdrJegz z  


 


 ,                                                 
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              





 dzrrIrIBrIAzrrz sin
2

12, 2

0
01

1
1111 















 




                   


 drJegz z
1

0

2 


 .                                               (2.33a–c)                                                 

Note that the boundary condition in Eq. (2.3d) is satisfied with this selection of 

1c and 2c as in Eqs. (2.31a, b). 

If the expressions in Eqs. (2.33a, c) are evaluated at ar   

            








 dzaaIaIBaI
a

aIAzar 














 






 

0

2
10

1
11011 cos

2
112,

                     

















 




0
1

1
0 2

1112 






 degaJz

a
aJz z ,              

           





 dzaaIaIBaIAzarz sin
2

12,
0

2
01

1
1111 















 


  

                    


 daJegz z
1

0

2 


 ,                                             (2.34a, b) 

are obtained. Conditions in Eqs. (2.3a, b) give then  

        110
1

110 2
11 BaaIaIAaI

a
aI 



 






  





  

          ,cos
2

1112

0 0
1

1
02 dzzdegaJz

a
aJz z 








 

  













 




 

      101
1

11 2
1 BaaIaIAaI 



 


 


                                           

              dzzdaJegz z 


 sin2

0
1

0
2  





 ,                           (2.35a, b) 

or, after using certain integral formulas,  

        110
1

110 2
11 BaaIaIAaI

a
aI 



 






  





  
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 
 

 
    ,2

1
2

3
22

0
1222

2121

0222

22

2 
















dgaJ
a

aJ
































           







 




0
1222

3

2101
1

11
22

2
1










 dgaJBaaIaIAaI

are obtained.                                                                                         (2.36a, b) 

Noting that the unknown  g  is the 1H  Hankel transform of  rG , 

     drrJrrGg  1
0



 ,                                                                             (2.37) 

after lengthy manipulations, following equations may be obtained from        

Eqs. (2.36)  

        110
1

110 2
11 BaaIaIAaI

a
aI 



 






  







    










 1012

22
1 1

2
21 CaKaK
a

a






     ,1

210 CaK
a

aK 



  




      101
1

11 2
1 BaaIaIAaI 



 


 


     2110 CaKCaaK   , 

                                                                                                                (2.38a, b) 

where 0K and 1K are the modified Bessel functions of the nd2 kind of orders 

zero and one, respectively, and 

    dtttItGC
a


 1

0
1

2
 , 

    dtttItGC
a

2
0

0
2

2 
  .                                                                    (2.39a, b) 

Then, solution of Eqs. (2.38a, b) gives   

   








 22
1

11
1

22

12
1

1 2
1)(1

1
21

2
1)( QCQCaQA













 














  ,   

)()(1)( 22111 


 QCCQB 



  ,                                                 (2.40a, b)                                          

where  
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    )()(
2

1)( 11
221

00
22

1 aKaIaaKaIaQ 


 





 


 , 

)(
2

1)()( 2
1

2212
0

22
2 aIaaIaQ 


 






 


 .                                (2.41a, b) 

By evaluating the expression in Eq. (2.33b) at 0z , one can obtain  

 

        


 dBrrIrIArIprz
2

0
110

1
1001 2

520, 














 


  

                    


drJg 0
0

2



 .                                                              (2.42)                                   

Now, substituting  Eqs. (2.40a, b) in Eq. (2.42), 

        rICQCaQprz 





 0
0

211
221

101 2
2

1220, 


















 


  

                    21211 QdrIrCCQ   

                      


drJdttJttG
a

0
0 0

1
2
 










 ,                                          (2.43) 

is obtained. A similar procedure gives    

   



0

1
1

1
1 2

1)0,( 


 drJgrw
dr
d .                                                        (2.44)                      

By using Hankel inversion theorem in Eq. (2.37), 

 rGrw
dr
d

1

1
1 2

1)0,(


 
                                                                               (2.45) 

is obtained. Further manipulations on Eq. (2.43) reduces the expression to        

       011
0

21 ,,4)0,( pdttGtrtHtrhr
a

z  
 ,                                           (2.46) 

in which 
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    ,,,,
0

11  dtrLtrH 


  

                tItQrIrtIQttItrL  0111101 2,,   

                       


2011
221 2

2
1 QrItIQa













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
 .             (2.47a–c) 

In above equations, while K is denoted as the complete elliptic integrals of the 

1st kind, E is expressed as the complete elliptic integrals of the 2nd kind. 

 

2.3 Stress and Displacement Expressions for the Elastic Layer 

 

Renaming the quantities 41 cc  appearing in the general solutions given in Eqs. 

(2.13, 14) as follows 

21 Cc  , 

22 Dc  , 

23 Ac  , 

24 Bc  ,                                                                                               (2.48a–d) 

one can write these solutions for the elastic layer in the form given by Gecit 

(1981), Civelek and Erdoğan (1974), Gecit and Erdogan (1978)  

               ,, 1
0

22222   drJeDzCeBzAzru zz

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 .                      (2.49a, b) 
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unknown functions above are defined as A2, B2, C2 and D2 . Boundary 

conditions at  0z  and  hz   surfaces makes their calculations possible. 

For this purpose, introduce unknown functions  rpi  (i=1, 2) described by 

  )(0, 12 rprz  ,       

  )(, 22 rphrz  .                                                                                 (2.51a, b) 

Now, evaluate 2z and 2rz at 0z  and h : 
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Substitution  of  Eqs. (2.52a–d) in the conditions given by Eqs. (2.3d) and 

(2.42a, b) gives  
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from which one can take the 0H  Hankel transforms of Eqs. (2.53a, c) and 

1H Hankel transforms of Eqs. (2.53b, d) to obtain  
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In Eqs. (2.54),  iP  2,1i are the 0H Hankel transforms of the new unknown 

functions  rpi  2,1i : 

     drrrJrpP ii  0
0



 ,    2,1i .                                                   (2.55a, b) 

Note that  

   01 rp ,               ra  

   02 rp ,               rcbr ,0 .                                              (2.56a, b) 

Therefore, Eqs. (2.55) can be stated as  
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Solution of the system in Eqs. (2.54) gives 
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where 
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3 41   .                                                          (2.59a–c) 

 

Therefore, expressions of the displacements and stresses of the layer are stated 

from in the point of the unknown functions  2,1ipi . For instance, 
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or, more precisely, 
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Similarly,  
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where  

 
   

     














,,1

,,
,

22

2

22

2

rttrK
r

trE
rt
rt

rtrtE
rt

t

trh  

      ,3,2,,,
0

 


idtrLtrH ii   

           
310

222
22 2,, SrJtJehStrL h   , 

           
310

2
3 11,, SrJtJeehhtrL hh  .          (2.64a–e) 
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CHAPTER 3 
 
 

 
 INTEGRAL EQUATIONS 

 

 
 
 

3.1 Derivation of Integral Equations  
 

Unknown functions of G(r),  rp1  and  rp2  will be calculated from the 

following boundary conditions: 
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                               )( crb  .                                      (3.1a–c) 

If Eqs. (2.35), (2.36), (2.41a), (2.52) and (2.53b) are substituted in Eqs. (3.1a– 

c),  the 2nd kind singular integral equations are presented as follows: 
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                                                                                                                  (3.2a–c)    

The kernels of Eq. (3.2) are stated for 0r  and 0t . It is noted that the 

kernels 1h  and 2h  possess simple Cauchy type singularity at 

rt  (Muskhelishvili 1953),  rt 1  becomes unbounded when  rt  . In 

addition, it is noteworthy that   1K and   11 E  (Abramowitz and Stegun 
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1965). Because of axial symmetry of the problem; it is noted that 

   2,1irpi  are even and  rG is odd:   

    rGrG   , 

   rprp ii    ,  2,1i                                                                         (3.3a–c) 

Then, the integrals from 0 to a in equations (3.2a–c) can be converted into 

integrals from a  to a and Eqs. (3.2) can be stated as follows: 
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The singular integral equations given in (3.4a–c) are subjected to following 

equilibrium conditions and symmetry:  
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The kernels 1k  and 2k  possess logarithmic singularity. Probable singular 

behavior of 1H is due to behavior of 1L at . Therefore, defining  

   


,,lim,, 11 trLtrL
  ,                                                                            (3.7) 

the probable singular part of the kernel  trH ,1  is calculated from   
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and its bounded part is  calculated from 
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Here, the subscripts b  and s  denote the bounded and the singular parts. 

Therefore, the kernel 1H  is  

  ),(),(, 111 trHtrHtrH bs  .                                                                     (3.10) 

By making use of the asymptotic expressions for the modified Bessel functions 

for 0r  and 0t , (Abramowitz and Stegun, 1965) 
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The corresponding singular part,  trH s ,1 , may be evaluated for ),( atra   

as  
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It is noted that  trH ,1 is singular while atr , . 

The singular behavior of    2,1irpi  and  rG  can be determined by writing  
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where  and   are  unknown constants,   2,1* irg i   are  Hölder-continuous 

functions in  aa,  and  rg *
3  is Hölder-continuous in  cb, . Singularity 

powers  and   are determined by analyzing the singular integral equations,  

Eqs. (3.4a, b), near ar  and Eq. (3.4c) close to br  . The technique of 

complex function provided by Muskhelishvili’ work (1953) gives the following 

characteristic equations 

  0coscos241sin 222   ,                                       

0cot  .                                                                                              (3.14a, b)   

Eqs. (3.14) are consistent with the results of previous studies, Adam and Bogy 

(1976), Gecit (1986) and Dundurs and Lee (1972). 

 

                  3.2 Solution of Integral Equations 

 

The singular integral equations are converted into a convenient form in terms 

of dimensionless quantities to make easier the solution of numerical analysis. 

For this purpose, dimensionless variables x, y,   and   can be introduced by  
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  and  Hölder-continuous functions  31ig i   by 
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Then, equation (3.4) and equation (3.6) are rewritten in the form 

     
 

 
  1
11

,~,~11
2

2
2

1
1

1
11 


















 x
xgdy

y
ygyxHyyxk

xy
,        )11(  x  

 
       

  dy
y
ygyxHyyxk

xyx
xg

 
2

2
1

1
222

1

1
,~,~1

1 

















    0
1
1,~2 3

1

1
3 






















 








dgxH
bc
bc ,                              )11(  x         

   
 

      ,0
1
1,~,~2

1
,~

3

1

1
522

2
4

1

1


































 












 dgH
bc
bchdy

y
ygyHy

                                                                                                            )11(    

                                                                                                                (3.17a–c) 
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where 
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By using Gauss-Jacobi integration formula (Erdogan, Gupta and Cook 1973) 

for integrals of  2,1ig i  and Gauss Lobatto integration formula (Krenk, 

1978) for integrals of 3g , one may obtain the following linear algebraic 

equations 
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from  Eqs.(3.17) and   
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from Eqs. (3.18)  where 

 1,...,21;211  niDDD in                                               












12
2cos
n
i

i
 ,                           ni ,,1    












 
12
12cos

n
j

j ,                        nj ,,1                                       (3.22a–c) 

iW   ni ,,1   are named as the weights of  Jacobi polynomial    ,
nP , iy  

and jx  are the roots  of 
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The interpolation constants (Gecit, 1986) are defined by 
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The system of algebraic equations, Eqs. (3.20) and (3.21), contain  13 n  

equation for  13 n  unknowns,  ik yg  nik ,,1;2,1  ,  ig 3  

 ni ,,1   and c . The system of algebraic equations given by equation (3.20) 

and equation (3.21) may be simplified and reduced to the following system: 
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     yxCyxCyxC ijijij  ,,,2 .                                                           (3.27a, b) 

 

Eqs. (3.25) contain  22 n equation for  12 n unknowns. If Eq. (3,25b) is 

analyzed closely, it is understood that the equation is satisfied automatically at 

 20 njj  . Therefore, there would be exactly  12 n  equations for the 

 12 n unknowns. 

 

                  3.3 Stress Intensity Factors  

 

The stress intensity factors are indicated by the stress state around the edge of 

the semi-infinite cylinder and hole in the current section. Intensity factors for 

Mode-I stress, ak and bk may be defined as  
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,2lim  .                                                               (3.28a, b) 

 0,rz  and  hrz ,  can be calculated from Eqs.(2.38) and (3.16): 

     
 

2
2

01
1

0,
x
xgprprz


 , 

     



 











1
1, 302 gprphrz .                                                   (3.29a, b) 

Therefore stress intensity factors ak and bk may be calculated to be 

 12 20
2
1

gapka


 , 
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  )1(2 30  gpbckb ,                                                                        (3.30a, b) 

since  Eq. (3.14b)  gives 21 .           

It is convenient to normalize the stress intensity factors: 

 12 2
2
1

0

g
ap

kk a
a






 , 

)1(2

2

3

0




 g
bcp

kk b
b .                                                                     (3.31a, b) 
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CHAPTER 4 
 

 
 

RESULTS AND CONCLUSIONS 
 

 
 
 

4.1 Verification of the Solution 
 
 
In the study of Gecit (1986), a similar problem is considered without a circular 

hole in the foundation. When the results of the present study are compared with 

those of Gecit (1986), the pressure distrubitions and stress intensity factor 

curves show a similar trend. Contact pressure distrubution between the cylinder 

and layer are shown for a/h=0.25 and ν=0.3 as below. The pressure is  

dependent on λ. It moves to infinity around the edge of the cylinder in both 

studies. The pressure increases with increasing of r/a. Similar comparisions can 

also be made for stress intensity factors.  

 

0.5

0.8

1.0

1.3

1.5

0 0.2 0.4 0.6 0.8 1

λ=1/3 in Gecit's Study λ=1/3 in Current Study
λ=1/9 in Gecit's Study λ=1/9 in Current Study

r/a

p1(r)/p0

  
 

Figure 4.1 Variation of contact pressure vs. r/a for ν=0.3, a/h=0.25 
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Figure 4.2 Variation of the normalized stress intensity factor ak1  vs. λ 

 

The variation of the normalized stress intensity factors ak1  at the edges of the 

semi-infinite cylinder vs. λ for 3.0  and a/h = 1 is plotted in Figure (4.1b) 

for both Gecit and current study.  A sharp increase in the values ak1 between  

λ = 1/3 and 3 is observed for both gecit and current study. Also, ak1 values 

increase more rapidly for higher λ = 3 in Gecit Study. 

 
 
 
The following conclusions may be reached: 

1. It is clear that ak1  is always greater than bk1 .  

2. It is observed that Poisson’s ratio has an effect on contact pressure and 

stress intensity factors. 

3. Contact pressure distributions and variations of stress intensity factor 

are heavily dependent on the bi-material constant.   

4. The magnitudes of ak1  and bk1  increase in proportional to the width 

of the cylinder and hole. 
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4.2 Numerical Results 
 

Normalized contact interval (-1, 1) is considered instead of nominal intervals    

(0, a) and (b, c) for numerical results. The radius of the semi-infinite cylinder 

a, the radius of circular hole b, the thickness of layer h and the half length of 

the contact between rigid foundation and layer c are described by geometric 

parameters. The bi-material constant λ varies from 1/9 to ∞. The case of λ=1 

may represent a semi-infinite cylinder and an elastic layer of identical 

materials. λ is related to the constant μ and κ. Poisson’s ratios, ν1 and ν2, and 

shear modulus,   μ1 and μ2, are defined for the cylinder and layer, respectively. 

A uniform compression p0 applied to the cylinder makes it possible to 

normalize p1(r), p2(r) and G(r) unknowns with using dimensionless variables. 

The cases of 0 < a/h ≤ 1.0 and  0 < b/h ≤ 1.0 are considered. The value of N 

equals to 40 in all computations. It is observed that there are no significant 

changes in the results when the value of N is increased. All graphs are also 

drawn for  3.08.1 11    as shown in graphical figures 4.3- 4.35. 

 

Contact pressure is applied for both the cylinder-layer and layer-rigid support 

in contact regions. Therefore, the contact pressure distributions are calculated 

for various material pairs. In addition, normalized stress intensity factors for 

the semi-infinite cylinder and hole are very different from each other. 

Normalized stress intensity factors vs. λ are plotted for different magnitudes of 

a/h and b/h. It is understood that the bi-material constant λ has an important 

effect on both contact pressure distributions and stress intensity factors. The 

case of λ=1 may show the identical materials for the cylinder and layer. 

 

Figures (4.3) to (4.14) show the graphs of normalized contact pressure between 

the elastic layer and cylinder versus r/a for the various values of a/h and b/h 

when 3.0 . It is noted that the values of λ have a very important role in the 

distribution of the pressure. Similar figures in figures 4.3 to 4.14 are grouped 

into separate sections. Each section is explained in detail; 
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i. Figures (4.3) to (4.8) display the variation of the contact pressure 

between the cylinder and layer vs. r/a values for b/h = 0.1, 0.5, 1.0   

when λ=1/9, 1/3, 1, 3, ∞, ν = 0.3 and a/h = 0.1, 0.25. For figure 4.3, 

numerical values of p1(r)/p0 do not considerably change with increasing 

values of r/a up to r/a = 0.5. Then, p1(r)/p0 values increase with 

increasing r/a values between r/a= 0.5 and 1.0. Especially, when r/a 

approaches 1.0, p1(r)/p0 moves to infinity (Figure 4.1). Similar 

explanations may be performed for Figure 4.4 to 4.8, as well.  

 

ii. The variation of the contact pressure between the cylinder and layer vs. 

r/a values for 0.1,5.0,1.0/ hb  for  ,3,1,3/1,9/1 , 3.0  and 

5.0/ ha  is shown in figures (4.9) to (4.11). The figures 4.9 and 4.11 

are compared with each other in terms of initial contact pressure values. 

When p1(r)/p0 value is equal to 0.49 at r/a = 0 for λ = 1/9 in figure 4.11, 

p1(r)/p0 value corresponds to 0.63 at r/a = 0 for λ = 1/9 in figure 4.9. In 

other words, initial contact pressure for λ = 1/9 almost increases by 20 

% when b/h changes from 1.0 to 0.1. Similar behavior for the change in 

values of initial contact pressure is observed for other λ values, as well. 

 

iii. The variation of the contact pressure between the cylinder and layer vs. 

r/a values for 0.1,5.0,1.0/ hb  for ,,3,1,3/1,9/1   3.0  and 

0.1/ ha  is indicated in figures (4.12) to (4.14). For figure 4.12, all 

curves drawn for different λ values are very close to each other, and 

contact pressure values are in the range of 0.75 and 1.0. On the other 

hand, all curves drawn for different λ values in figure 4.14 are remote 

from each other. Their values are in the broad range of 0.2 and 1.0. In 

addition, for figure 4.12, numerical values of p1(r)/p0 do not 

significantly alter with increasing values of r/a up to r/a = 0.7. Then, 

p1(r)/p0 values increase with increasing r/a values between 0.7 and 1.0. 

On the other hand, for figure 4.14, numerical values of p1(r)/p0 do not 

considerably change with increasing values of r/a up to r/a = 0.2. 
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However, p1(r)/p0 values increase with increasing r/a values between 

0.2 and 1.0. This means that magnitudes of r/a after a point have a 

substantial impact on contact pressure. Especially for figure 4.12 and 

4.14, while r/a approaches 1.0, p1(r)/p0 moves to infinity. Similar 

explanations may be made for Figure 4.13, as well. 

 

Figures (4.15) and (4.18) present the variation of contact pressure vs. r/a for 

0.1,5.0,1.0/ hb  when 3.0 , 9,9/1  and 0.1,1.0/ ha . Pressure 

distributions in figure 4.15 and 4.17 overlap for all values of b/h and a/h = 0.1 

when the bi-material constant λ is assumed to be 1/9 and 9. Conversely, values 

of p1(r)/p0 contact pressures for each r/a values in figure 4.17 are much higher 

than the values of p1(r)/p0 contact pressures for each of the r/a values for figure 

4.15. While initial contact pressure values are in the range of 0.2 and 0.75 for 

figure 4.16, the same values in figure 4.16 are in the range of 0.92 and 0.98. 

That is, curves as a group in figure 4.16 are much closer to each other than the 

curves in figure 4.16. 

 

Figures (4.19) to (4.22) present the curves of contact pressure between the 

elastic layer and cylinder vs. r/a for 0.1,5.0,1.0/ ha  when 3.0 , 

9,9/1  and 0.1,1.0/ hb . There are no significant increments for the 

values of p1(r)/p0 up to r/a = 0.5 for all a/h variations in the graph of figure 

4.19. A similar trend is observed for lower r/a values in figure 4.20. A sharp 

increase in p1(r)/p0 values is observed at r/a = 0.8 in both figure 4.19 and 4.20. 

The effect of different a/h values on p1(r)/p0 becomes negligible along all r/a 

values in figure 4.21. Figure 4.22 shows that the increase in p1(r)/p0 for the 

curve for a/h=0.1 is higher than that of the curves for a/h = 0.5 and 1.0 along 

r/a values. The same figure indicates that p1(r)/p0 values overlap between 

r/a=0.65 and r/a =0.75 for 0.1,5.0,1.0/ ha . 
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The variation of the normalized stress intensity factors ak1  at the edges of     

the semi-infinite cylinder vs. λ for 0.1,5.0,1.0/ hb  when 3.0  and 

0.1,5.0,1.0/ ha  is plotted in figures (4.23) to (4.27). The normalized stress 

intensity factor at the edge of semi-infinite cylinder increases with increasing 

values of λ for different values of a/h and b/h. While curves in figure 4.23 

overlap for a/h = 0.1 and b/h = 0.1, 1.0, the curves in figure 4.24 are clearly 

separated from each other for a/h = 1.0 and b/h = 0.1, 1.0. In other words, 

different magnitudes of b/h values do not create a significantly difference in 

ak1 in figure 4.23 while various values of b/h yield different ak1  values in 

figure 4.24. It is observed that higher a/h values correspond to lower values of 

ak1  for each bi-material constant in figure 4.25 while higher a/h values 

correspond to higher values of ak1  for each bi-material constant in figure 

4.27. 

 

Figures (4.28) to (4.30) present the variation of contact pressure p2(r)/p0 along 

the layer-rigid support vs. r/h for 0.1,75.0,5.0,1.0/ hb  when ,3.0  

0.1,5.0,1.0/ ha  and 0.1,9/1 . When r/h approaches 0.1, 0.5, 0.75, 1.0 

for b/h = 0.1, 0.5, 0.75, 1.0, magnitude of p2(r)/p0 incredibly increases in all 

curves. 

 

Figure (4.31) indicates the variation of contact pressure p2(r)/p0 vs. r/h      

along the layer-rigid support for 9/1,1,9  when ,3.0  5.0/ ha  and 

5.0/ hb . It is seen in the figure that the values of contact pressure decrease 

with increasing values of r/h. It is also understood that the contact pressure has 

a minimum value at around r/h = 1.2. No significant effect for different values 

of λ on curves is observed. 

 

Figure (4.32) and (4.33) show the variation of contact pressure p2(r)/p0 vs. r/h 

along the layer-rigid support for 0.1,5.0,1.0/ ha  when 3.0 , 5.0/ hb  
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and 9,9/1 . When r/h approaches 0.5 for a/h=0.1, 0.5, 1.0, the magnitude 

of p2(r)/p0 considerably increases in all curves.   

 

Normalized stress intensity factors bk1 versus λ at the edges of the hole for 

,0.1,1.0/ ha  3.0  and 0.1,5.0,1.0/ hb  are plotted in Figures (4.34) and 

(4.35). It appears that the magnitudes of bk1  do not significantly increase 

with increasing values of λ for figure 4.34. Yet, values of bk1  gradually 

increase with increasing values of λ for figure 4.35. 

 

4.3 Conclusions 

 

In this thesis, the problem is put forward as the frictionless double contact for 

an axisymmetric elastic layer pressed by an elastic semi-infinite circular 

cylinder. Therefore, stress–displacement expressions are given by Navier 

equations for the solution of the contact problem. The general stress-

displacement expressions are acquired by employing boundary conditions both 

the layer and cylinder after applying Fourier and Hankel transforms for Navier 

Equations.  Therefore, a system of three singular integral equations is obtained. 

This system is converted into linear algebraic equations by means of Gauss-

Jacobi and Gauss Lobatto. The values of unknown functions  iyg1 ,  iyg2  

and  ig 3   ni ,...,1  are calculated from the solution in this system via 

Fortran program. In addition, a/h, b/h and c/h are expressed as independent 

variables in the program. Estimated values of a/h and b/h are given for the 

solution of the problem. Therefore, c/h can be obtained by iterative procedures.  

 

As an alternative method, this problem may also be solved using finite element 

methods or some package programs such as MARC and ANYS. 
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Figure 4.3  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.1 and b/h=0.1. 
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Figure 4.4  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.1 and b/h=0.5. 
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Figure 4.5  Contact pressure between the elastic layer and cylinder for ν=0.3,  a/h=0.1and b/h=1.0. 
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Figure 4.6  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.25 and b/h=0.1. 
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Figure 4.7  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.25 and b/h=0.5. 
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Figure 4.8  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.25 and b/h=0.75. 



 

 

49 

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

9

λ=1/9
1/3
1
3

∞

 

2a 

z 1 

2 
2c 

2b 

p0 

r 

h 

p1(r)/p0

r/a

 
Figure 4.9  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.5 and b/h=0.1. 
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Figure 4.10  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.5 and b/h=0.5. 
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Figure 4.11  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=0.5 and b/h=1.0. 
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Figure 4.12  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=1.0 and b/h=0.1. 
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Figure 4.13  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=1.0 and b/h=0.5. 
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Figure 4.14  Contact pressure between the elastic layer and cylinder for ν=0.3, a/h=1.0 and b/h=1.0. 
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Figure 4.15  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=1/9 and a/h=0.1. 
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Figure 4.16  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=1/9 and a/h=1.0 
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Figure 4.17  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=9 and a/h=0.1. 
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Figure 4.18  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=9 and a/h=1.0. 
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Figure 4.19  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=1/9 and b/h=0.1. 
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Figure 4.20   Contact pressure between the elastic layer and cylinder for ν=0.3, λ=1/9 and b/h=1.0. 
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Figure 4.21  Contact pressure between the elastic layer and cylinder for ν=0.3, λ=9 and b/h=0.1. 
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Figure 4.22   Contact pressure between the elastic layer and cylinder for ν=0.3, λ=9 and b/h=1.0. 



 

 

63 

0.4

0.8

1.2

1.6

-0.8 -0.5 -0.2 0.0 0.3 0.6.05 0.11 0.33 1 3 9 20

λ

 

r

2a 

z 1 

2 
2c 

2b 

h 

p0 

0.1

b/h=1.0

 
                                       Figure 4.23  Variation of ak1   with λ for ν=0.3 and a/h=0.1. 
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                                       Figure 4.24  Variation of ak1  with λ for ν=0.3 and a/h=1.0. 
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                                       Figure 4.25  Variation of ak1  with λ for ν=0.3 and b/h=0.1. 
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                                       Figure 4.26  Variation of ak1  with λ for ν=0.3 and b/h=0.5. 
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                                       Figure 4.27  Variation of ak1  with λ for ν=0.3 and b/h=1.0. 
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Figure 4.28  Contact pressure between the layer and rigid support for ν=0.3, λ=1/9 and a/h=0.1. 
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                                       Figure 4.29  Contact pressure between the layer and rigid support for ν=0.3, λ=1/9 and a/h=1.0. 
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Figure 4.31  Contact pressure between the layer and rigid support for ν=0.3, a/h=0.5 and b/h=0.5. 
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                                       Figure 4.32  Contact pressure between the layer and rigid support for ν=0.3, λ=1/9 and b/h=0.5. 
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                                       Figure 4.33  Contact pressure between the layer and rigid support for ν=0.3, λ=9 and b/h=0.5. 
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APPENDIX A 
 
 

 
DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.35) 

 

 
 

 

Evaluation of some definite integrals from Erdelyi and Magnus (1953): 
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APPENDIX B 
 
 
 

INTEGRALS APPEARING IN EQS. (2.36) 
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APPENDIX C 
 

 
 

SOME GENERAL EXPANSIONS  
 

 
 

 

C.1 COMPLETE ELLIPTIC INTEGRALS OF THE 1st AND THE 2nd 

KINDS 
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C.2 HANKEL TRANSFORM 
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C.3 BESSEL FUNCTIONS OF THE 1st KIND OF ORDER N 
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APPENDIX D 
 
 
 

GAUSS–LOBATTO INTEGRATION FORMULA USED IN  
EQS. (3.20b, c) AND EQ. (3.21c) [ ERDOGAN (1973)] 
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GAUSS–JACOBI INTEGRATION FORMULA USED IN 

    EQS. (3.20a–c) AND EQS. (3.21a, b) [ ERDOGAN (1973)] 
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where jx , it  are the roots of the Jacobi polynomial of  degree n.  
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The weights iW  are given by the formula, 
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Special values for Jacobi polynomials [Abramowitz and Stegun (1965)]: 
 

  tPf nn
 ,

                                                                                                
(D.9) 

 
  00 tf

                                                                                                     
(D.10) 

    ttf 2
2
1

1  
                                                                   

(D.11)
  

 
Recurrence relations, 
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