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Ph.D., Department of Information Systems 

Supervisor: Prof. Dr. Semih Bilgen 

 

March 2011, 178 pages 

 

 
Conceptual models were introduced in the simulation world in order to describe the 
problem domain in detail before any implementation is attempted. One of the recent 
approaches for conceptual modeling of the military mission space is the KAMA approach 
which provides a process description, a UML based notation, and a supporting tool for 
developing conceptual models. The prominence of the approach stems from availability 
of guidance and applications in real life case studies. Although the credibility of a 
conceptual model can be leveraged through use of a structured notation and tools, the 
verification and validation activities must be performed to arrive at more credible 
conceptual models. A conceptual model includes two categories of information: static 
and dynamic. The dynamic information describes the changes that occur over time.  In 
this study, the dynamic characteristics of the conceptual models described in KAMA 
notation are explored and a verification approach based on these is proposed. The 
dynamical aspects of KAMA notation and example conceptual models provide the 
necessary information for characterization of the dynamical properties of conceptual 
models. Using these characteristics as a basis, an approach is formulated that consists of 
formal and semiformal techniques as well as supporting tools. For description of 
additional properties for dynamic verification, an extended form of KAMA is developed, 
called the KAMA-DV notation. The approach is applied on two different real-life case 
studies and its effectiveness is compared with earlier verification studies. 
 
Keywords: Conceptual Modeling, Conceptual Model Dynamics, Verification. 
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Kavramsal modeler simülasyon dünyasına problem uzayının detaylı bir şekilde tasviri 
için öne sürülmüşlerdir. Askeri görev uzayı için gelitirilmiş en yeni kavramsal model 
geliştirme yaklaşımlardan biri, süreç tanımı, UML tabanlı notasyon ve destekleyici aracı 
sağlayan KAMA yaklaşımıdır. KAMA yaklaşımının öne çıkması yaklaşımla ilgili rehber 
bilgi mevcut olması ve yaklaşımın gerçek dünyada vaka çalışmalarına uygulanmasından 
kaynaklanmaktadır.  Kavramsal modellin güvenilirliği yapısal bir notasyon ve araçlarla 
yükseltilmesine rağmen, güvenilirliği artırmak için doğrulama ve geçerleme 
faaliyetlerinin gerçekleştirilmesi gereklidir. Bir kavramsal model static ve dinamik olmak 
üzere iki kategoride bilgi içerir. Dinamik bilgi zamanla meydana gelen değişiklikleri 
betimler. Bu çalışmada KAMA notasyonunda betimlenmiş kavramsal modellerin 
dinamik özellikleri incelenmiş ve bunları temel alan bir doğrulama yaklaşımı önerilmiştir. 
KAMA notasyonundaki dinamik bakış açıları ve örnek kavramsal modeler kavramsal 
modellerdeki dinamik özelliklerin karakterizasyonu için gerekli bilgiyi sağlarlar. Bu 
karakteristikler temel olarak kullanılarak, formel ve yarı formel yaklaşımları ve 
destekleyici araçları içeren bir yaklaşım tanımlanmıştır. Dinamik doğrulama için gerekli 
ek özeliklerin tanımlanması için KAMA`nın genişletilmiş bir biçimi geliştirilmiştir ve bu 
notasyona KAMA-DV adı verilmiştir. Yaklaşım gerçek yaşamdan iki farklı örnek 
üzerinde uygulanmış ve etkililiği önceki doğrulama çalışmalarıyla karşılaştırılmıştır. 
 
Anahtar Kelimeler: Kavramsal modelleme, Kavramsal model dinamikleri, doğrulama. 
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1 INTRODUCTION 

CHAPTER 1  

 

INTRODUCTION 
 
 
 
As the use, scope and effect of complex simulation systems grow, higher levels of 
validity are required. It is easier to build systems from components, run the systems in 
distributed environments and analyze the results, but determining whether the simulation 
is correctly designed for the intended purpose is a hard task. Establishing validity is 
always difficult and costly; validity of a simulation is enhanced through iterative 
application of validation and verification activities during the simulation development 
process.  
 
Typically for large scale systems, before a significant simulation instance is implemented, 
a conceptual model of the subject to be simulated is developed. The conceptual model 
serves to establish the fundamental components and relationships that will be modeled in 
the simulation. As such, it precedes the detailed design and implementation phases, and 
constitutes the foundation on which simulation instances are developed. Consequently, 
correctness of actual simulation exercises requires the correctness of the conceptual 
models based on which the simulations are developed. That is, conceptual model 
correctness is a necessary condition for the correctness of any simulation. 
 
In this thesis we will deal with the verification of dynamic descriptions in conceptual 
models. As our aim is to contribute to the validity of simulations through increasing the 
validity of a fundamental artifact in simulation development, the conceptual model, we 
will briefly discuss what a conceptual model is and how it contributes to simulation 
development in the following section. In the second section we will describe the research 
problem and afterwards we will present our approach briefly.  

1.1 Verification and Validation of Conceptual Models  

 
The dictionary definition of simulation [3] is “the imitative representation of the 
functioning of one system or process by means of the functioning of another”. A 
computer model is formed that represents functioning of the real system where the 
specific aspects of the system are simulated at a specific level of detail. In complex 
simulations there can be several processes, entities behaving deterministically or 
randomly, and users interacting with the simulation. It is hard if not impossible to check 
every execution for correctness for such systems. So the strategy for developing a valid 
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simulation is generally to try as much as possible to find errors, to perform as much 
verification and validation activity as feasible during the development process, and build 
credibility in an iterative way into each work product before building the final executable 
simulation. 
 
The development of simulation systems is not a simple task. Simulation software 
development activities involve many parties which assume different roles such as the user, 
sponsor, developer, verification agent, where each role may be assumed by more than one 
organization. Simulation software is typically not standalone any more; it may consist of 
a number of communicating components, such as federates participating in a federation 
[5]. Such components may either be reused to develop other simulations or all or parts of 
simulations can be integrated with others to form new simulations. So the development 
can also be shared among different parties based on components. 
 
Among the actors involved in simulation, there usually is a gap in understanding; while 
the users emphasize the problem to be solved and the requirements of the simulation, the 
developers deal with how to solve the problem, that is, the design.  
 
During development of a simulation application, the primary concern is the correct 
description of the domain elements represented, which is introduced as the conceptual 
model. It describes the domain thoroughly and is agreed by both developers and users. It 
is a document that describes not only the elements in the domain but also the behavior of 
these elements.   
 
The conceptual model is defined by DoD Modeling Simulation Glossary [4] as “First 
abstractions of the real world that serve as a frame of reference for simulation 
development by capturing the basic information about important entities involved in any 
mission and their key actions and interactions. They are simulation-neutral views of those 
entities, actions, and interactions occurring in the real world”. Usually to attain a correct 
representation, which is called the conceptual model, that imitates the behavior of the real 
life process or system, an adequate representation of the system or process has to be 
developed that defines the system behavior in a common language, that could be 
understood by both the user and the developer. A conceptual model describes the real 
world components and their interactions therefore it tries to fill the gap between the 
requirements and design. 
 
The conceptual model is the first detailed product that provides information on the 
domain. To determine the adequacy of conceptual models for the intended purpose, 
several properties have been defined for conceptual models, such as completeness, depth, 
level of detail, consistency, accuracy, performance [9].  
 
The conceptual model is related to verification in two distinct ways as explained by 
Sargent [2], first, a conceptual model can be used to determine simulation capability, for 
instance to detect if simulation can be used in a case where no test data available. 
Secondly it is used for testing the capabilities of the model, by testing simulation system 
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against the descriptions in the model. Furthermore, it ensures that model components and 
their relations are consistent and complete. 
 
The importance of conceptual modeling is apparent as it is the first, highest level 
abstraction that is agreed upon by simulation user and developer. The conceptual model 
shall thoroughly represent the domain elements and their actions and interactions. All the 
design and development activity is based on the conceptual model. So finding errors in 
the conceptual modeling phase is crucial as finding errors in both requirements and 
design in a software development project. Yet complete verification and validation during 
the conceptual phase is not done practically, where verification of the dynamics is usually 
the most neglected aspect.   
 
The conceptual model is a bridge between the user and the developer, and software 
requirements and design. Approaches dealing with verification of only requirements or 
design are not adequate. Verification is not straightforward as the descriptions provide 
limited information on the dynamic definitions as the model is conceptual as implied by 
its name. It is usually presented in a scientific paper format and most of the information is 
not in a structured format. So even if there is need for increasing the validity of a 
conceptual model which affects the validity of a simulation, there is a lack of specific 
methods and tools for verification of conceptual models. 
 
A recent work has defined a metamodel based notation, KAMA [29], for conceptual 
models. The metamodel based notation has its own merits. It provides a structural 
approach and it tries to support satisfaction of the desired properties of conceptual models. 
Even if KAMA notation is more structural, behavior definitions are not executable, and 
as such, are not suitable for analysis. Furthermore, there is a need to analyze the way the 
KAMA metamodel describes the dynamics, constrains the behavior and instantiation of 
the elements representing the behavior. 
 
As KAMA notation focuses on modeling of conceptual information, therefore the 
abstract behavior descriptions related to precedence, synchronization, branching, and 
hierarchy relations between tasks are vague. More specific relations can be relations 
attached to entities, defining states of the entities and transitions. However the relations 
between the tasks which show similarity with UML activity descriptions are more 
characteristic of the conceptual models as the case studies using KAMA show. There is 
no verification method for dynamics that can be used for verification of such models. 
Such an approach will reduce the postponed effort spent for finding and diagnosing the 
errors of dynamic nature in simulation system that propagated through development 
process. 
 
Related to this problem, several other problems exist. Conceptual modeling is done 
usually not for execution but for communication. A set of models exist where each model 
shall be verified concerning their essence without loss of information. So verification of 
dynamics in conceptual models must be done without the loss of any information in the 
conceptual model. That is, verification of conceptual model dynamics must depend upon 
the information represented in the conceptual model.   
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Conceptual models can not be interpreted easily and executed so that dynamic 
verification techniques can be easily applied. A detailed analysis is needed to understand 
the nature of information in these models and their interpretation for execution. Many 
elements that affect the dynamics are used in conceptual models yet the semantics of 
these elements are not defined precisely similar to operational semantics definition for 
computer programs. For instance in KAMA notation, views such as mission space and 
task flow diagram describe task precedence, hierarchy, synchronization and branching yet 
it is usually not clear if these descriptions are satisfactory for interpretation of dynamics.   
 
Even if the information in a conceptual model can be used for verification, how do we 
define the criteria for verification? Another problem arises here: how the models should 
be characterized to satisfy certain criteria based on the nature of information available for 
dynamic verification and validation. The variability of information in conceptual models 
and the variability in application of the verification techniques complicate this task.    
 

1.2 The Research Problem 

 
The research problem, then, to be tackled in this study can be stated concisely as follows: 
developing a formal verification approach for dynamic properties in conceptual models 
utilizing the existing information gathered without the concern for precise behavior 
description. Two conflicting concerns exist, to preserve the informal semantics in 
conceptual models and increase the credibility through dynamic verification. So the 
approach shall not simply leave out the existing notation or dynamic implications. 
 
This requires description of the semantics, examination of the variations in behavior 
descriptions enriching the semantics while adhering to the original conceptual model 
content and semantics, increasing the credibility of conceptual models through formal 
verification, which are developed adhering to metamodel based approach.  
 

1.3 The Proposed Approach 

 
To increase the validity of conceptual descriptions, we develop a dynamic verification 
methodology for metamodel based conceptual models. The dynamic verification 
approach also utilizes the relation between tasks and the other properties such as related 
roles, work products and objectives.  
 
Conceptual models are early products for clarifying domain entities and simulation 
features. The capability of classical requirements engineering seems to be lacking for 
representing the elements to be simulated in adequate detail. On the other hand 
executable modeling techniques tend to be developer oriented and hard to be 
comprehended by the domain expert. These may be even either inapplicable or very 
costly to apply for large systems. 
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The primary objective in developing a conceptual model is not representing the dynamic 
behavior so that it can be used for execution. In fact dynamic behavior descriptions are 
usually not thorough in the conceptual modeling phase, the classifiers may not exist. 
Although a set of techniques addressing the same problem have been recommended for 
conceptual models which will be discussed in Chapter 2, no application to real case 
studies is available. In this thesis we aim to provide an approach for checking the 
dynamics of conceptual models. As part of this approach we also provide the criteria 
related to validity of conceptual models.  
 
As a first step, the nature of dynamic behavior in models, emphasizing the relation 
between tasks and other elements is analyzed and characterized. By formalizing the 
characteristics, we try to verify the descriptions of precedence relations between tasks, 
model elements related to synchronization and decision, as well as decompositions. The 
techniques for checking dynamic descriptions are developed using formal approaches.  
Traditionally these techniques are used for checking more formal and executable models. 
 
UML based notations exploit the benefit of being structured without alienating the 
domain expert therefore can provide an interim solution for representing conceptual 
models. As an example the KAMA approach consists of a process and accompanying 
metamodel oriented conceptual modeling framework based on MOF [26] and UML [27]. 
Relevance of UML is threefold for KAMA, utilization of similar diagrammatic notation, 
OCL for expression of constraints and UML foundation package as the core of KAMA 
notation. 
 
The KAMA approach has been tested for many real life case studies and evidence is 
available for its usefulness and effectiveness for conceptual modeling. One of the 
compromises of the approach is that the domain model can not be executed so the 
dynamic features cannot be verified. 
 
The dynamic verification approach proposed in the present study is developed and tested 
using the models developed in KAMA. This may also be done in similar UML based 
approaches which do not aim to precisely describe the execution of a simulation. We 
consider conceptual models represented exclusively with a UML based notation. 
  
Model execution is defined by marking the dynamic elements, defining their execution 
lifecycles, and their interaction with other model elements. The uses of this approach are 
twofold: first is verification of the model and the second is providing a base for 
executable model formulation.  
 
In this work we propose an approach for verification of dynamics of conceptual models 
of the mission space. In our approach we check the structural properties related to 
dynamics and analyze the dynamics of the diagrams for possible errors. This technique 
will allow early verification of dynamic descriptions of conceptual models of the mission 
space.  
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1.4 Contributions of the Thesis  

 
The following major contributions are made through this work: 
 

• KAMA semantics are formally defined and a notation is introduced for 
conceptual modeling of C4ISR systems.  

• An enriched model called KAMA-DV is developed for behavioral descriptions. 
This model can be used for both model execution and analysis. 

• Based on the KAMA-DV notation, structural properties related to dynamics are 
verified and dynamics are analyzed by tracing feasible execution paths. 

 
 
The following further contributions can be relevant for other studies in the field:  
 

• A process is proposed for validation of behavioral descriptions in conceptual 
models, including characterization of dynamics, structural checking and dynamic 
analysis. 

• The soundness definition for EPCs is applied to conceptual model verification. 
• The dynamic verification approach is applied on two case studies that deal with 

real world conceptual models. 
 

1.5 Organization of the Thesis 

 
In the second chapter we discuss the current literature on conceptual modeling, KAMA 
approach, verification approaches for conceptual models and other similar conceptual 
descriptions. In the third chapter we review KAMA mission space package definition, 
focusing on task flow diagrams including the mathematical description of the rules that 
the elements of this package obeys and the relevance of the KAMA mission space 
package definition for our verification approach. In Chapter 4, we list the properties and 
limitations of dynamic definitions of conceptual models and provide example task flow 

diagrams presenting the semantic definitions and variances. In Chapter 5, we list 
dynamic verification requirements for conceptual models enriched with model elements 
to enable verification of dynamics, and classes of conceptual models. In Chapter 6, we 
present the formal and semiformal approach for verification of the models and software 
tools that is used for enabling formal verification. In Chapter 7, we present two case 
studies where our approach is applied to real life conceptual models. Finally in Chapter 8, 
we compare our approach with the past work and conclude our study, suggesting 
directions and items for future work.  
 



 7

 
 
 
 

2 CONCEPTUAL MODELS AND VERIFICATION 

CHAPTER 2 

 

CONCEPTUAL MODELS AND VERIFICATION 
 
 
 
In this chapter we will review the approaches for conceptual modeling and verification. 
In the first section we will discuss past conceptual modeling approaches. In the second 
section we will investigate KAMA and various verification approaches. KAMA has a 
structured notation based on a metamodel derived from UML, it stands out providing a 
potential for application of novel dynamic verification techniques. As formulating the 
dynamic techniques is not straightforward and these techniques will be built upon 
considering the relevance and adequacy of  past studies on dynamic verification of other 
conceptual descriptions, in the third section we will list the literature on similar 
techniques used for UML activity models and conceptual business process descriptions. 
 

2.1 Interpretation of Conceptual Modeling for Simulations 

 
In this section, the definition of conceptual models in modeling and simulation, the 
differences in scope of conceptual models, the approaches dealing with conceptual 
modeling, and methods for verification of conceptual models will be reviewed.  

2.1.1 Conceptual Model Definitions 

 
Conceptual model has been defined in different ways by various sources. The most cited 
and used definitions are provided in Table 2-1. Dale Pace who authored several articles 
on conceptual models, used the term simulation conceptual model for the early developed 
model describing domain elements and simulation features that can be both 
understandable by the developer and user [1].  DoD M&S Glossary[4] (very similar 
definitions exist in VV&A RPG[9], IEEE 1516.3 [6] and other sources) define conceptual 
model as “an abstraction from either the existing or a notional physical world that serves 
as a frame of reference for further simulation development by documenting simulation-
independent views of important entities and their key actions and interactions”. 
According to VV&A RPG, IEEE 1516.3 and Brade [23] conceptual modeling stage 
follows the determination of intended use. Balcı [20] states that conceptual modeling is 
the first stage in simulation development that is subject to evaluation (verification and 
validation) activities. Conceptual models are also classified as domain models 
(conceptual models of the mission space) and simulation conceptual models, former 
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having no information on the simulation functions and later include description of 
simulation elements [21]. Conceptual models can be expressed in various formats such as 
scientific paper, structured model or UML model [1][9][23].  
 

Table 2-1. Various Definitions of Conceptual Models 
 
 

 

Concept 

 

Definition 
Source 

 

Definition 

Conceptual 
Models of 
the Mission 
Space 

DoD Modeling and 
Simulation 
Glossary [4] 

First abstractions of the real world that serve as a frame of 
reference for simulation development by capturing the basic 
information about important entities involved in any mission and 
their key actions and interactions. They are simulation-neutral 
views of those entities, actions, and interactions occurring in the 
real world. 

DoD VV&A RPG 
v3.0 [9]  

A simulation conceptual model is the simulation developer’s 
way of translating modeling requirements (i. e., what is to be 
represented by the simulation) into a detailed design framework 
(i. e., how it is to be done), from which the software, hardware, 
networks (in the case of distributed simulation), and 
systems/equipment that will make up the simulation can be built 

SISO 
PDG / SG 
SCM 
FINAL REPORT 
 

A simulation conceptual model is an abstraction from either the 
existing or a notional physical world that serves as a frame of 
reference for further simulation development by documenting 
simulation-independent views of important entities and their key 
actions and interactions.  A simulation conceptual model 
describes what the simulation will represent, the assumptions 
limiting those representations, and other capabilities needed to 
satisfy the stakeholder’s requirements.  It bridges between 
these requirements, and simulation design. 

Simulation 
Conceptual 
Model 

Brade [23] The Conceptual Model describes the abstracted and idealized 
representation of the real system and holds all concepts of the 
model, i.e., its decomposition into interacting subsystems, the 
representation of properties of interest in the form of attributes, 
the degree of abstraction and idealization, and the rationale and 
reasoning that led to the chosen representation of the real 
system in the language of the model’s application domain. 

 

Federation 
Conceptual 
Model 

IEEE Std 1516.3-
2003 [7] 

An abstraction of the real world that serves as a frame of 
reference for federation development by documenting 
simulation-neutral views of important entities and their key 
actions and interactions. The federation conceptual model 
describes what the federation will represent, the assumptions 
limiting those representations, and other capabilities needed to 
satisfy the user’s requirements. Federation conceptual models 
are bridges between the real world, requirements, and design. 
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2.1.2 Conceptual Model Scope 

 

Among conceptual models, two kinds of models can be identified, models that are 
dealing with the problem domain, leaving out the details on simulation and simulation 
conceptual models. In this subsection the characteristics of domain models, simulation 
conceptual models, and federation conceptual models are discussed to understand the 
nature of our dynamic verification problem.  

Domain Conceptual Models: Domain models include abstract representations of the 
domain. They are supposed to be problem independent but a slightest effort to form 
representation of a real world object will be done based on implicit assumptions. To 
arrive at precise domain models, the domain shall be sufficiently restricted by operational 
constraints (legislations, organizational rules, etc.). Conceptual models of the mission 
space [6] or functional description of the mission space as the new name can be seen as 
an effort to form a representation of a complex real domain where the organizational 
constraints are loose and systems are evolving rapidly.   

Simulation Conceptual Models: Simulation conceptual models are problem specific 
models. When dealing with physical reality formulating a problem greatly reduces 
complexity, leaving away the details of unnecessarily parts of the reality and enabling 
more focused and detailed look at the perceived part. Still a model therefore simulation of 
reality is not possible without any distortion. So when forming simulation conceptual 
models the assumptions about the concepts should be presented. In a simulation 
conceptual model the concepts of simulation shall be presented.  

Yet another property of a simulation conceptual model is the inclusion of simulation 
control features such as pause and restart characteristics, data and control capabilities and 
the method to enter control messages [1]. These features do not have any real world 
counterpart and contribute achieving simulation objectives therefore their existence is 
also critical for simulation objectives and therefore validation of conceptual models. The 
relation between FDMS which stand for conceptual models of the mission space and 
conceptual model of the system (a more general term used for simulation conceptual 
models) is not clear.   
Federation Conceptual Models: A third kind of conceptual model that can be 
encountered in the literature is the federation conceptual model. In fact federation 
conceptual model is the term for simulation conceptual model that is used in IEEE 
standard for federation development and execution process [7]. Despite the name has 
design flavor, considering simulation neutral clause in definition and the description and 
alignment of the activity in the development process, it is more requirements oriented 
then simulation conceptual model. 

In this work, we primarily deal with domain conceptual models. Domain conceptual 
models emphasize the structural aspects, and are less concerned about behavioral aspects. 
The behavioral representations are more abstract in domain conceptual models, the 
defined behavior may belong to a set of different objects, the relations between behaviors 
may depend on more general context, and definition of behaviors may be partial. 
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2.1.3 Conceptual Model Development Methods 

 
In this section we will discuss methods used for conceptual modeling. To qualify as a 
conceptual modeling method in our discussion, an approach has to specify the conceptual 
modeling process and an approach for representation of the model or at least guidance for 
development must be provided.  
 
CMMS project is the first project dealing with solely conceptual modeling, explaining the 
need and infrastructure requirements [6]. Similarly VV&A RPG [9] provides the 
definition of conceptual model, guidance on the contents and format without any 
examples on details and examples. In IEEE 1516.3 standard [7], conceptual modeling is 
discussed as a step in development of federated simulations. Base object models (BOM) 
[10] approach provides a method for developing simulation conceptual models and 
design of a federation by providing definitions for reusable object models. The behavior 
representations of base object models are traceable to HLA objects and interactions. 
Other approaches provide also definition for conceptual modeling step, Brade’s 
generalized process for V&V [23] and REVVA [14].  

2.1.3.1 Conceptual Models of Mission Space (CMMS) 

The work for the conceptual models of the mission space project was started in 1995 by 
US Defense modeling and simulation office (DMSO). The high cost of simulation 
development in US military was regarded as a problem and a solution based on using 
reusable and interoperable simulation components was proposed. CMMS project [6] was 
started for building the consistent world view these simulation components will be based 
on. These representations of real world will be agreed both by the user and developer, 
and shared and contributed by every project. Content differences of already developed 
conceptual models, the differences in understanding of the domain caused by different 
sources, terms, and format limited the reuse of conceptual models. The reuse of 
simulation components was also limited because of the difficulty of understanding 
existing conceptual descriptions of simulations. 
 
The proposed solution was to develop an implementation independent conceptual model 
that serves as a base for development of the simulation. The CMMS technical framework 
will include definitions of terms, content, structure, process, and infrastructure for 
creation, distribution and management of models. This is only enabled by common 
syntax and semantics. The differences between agencies shall be resolved by using 
common syntax and semantics.  
 
Another problem of CMMS was acquiring the existing models for further reuse, for 
which data interface format (DIF) was to be defined. The technical framework will 
involve functionality of transforming each existing format to DIF. If the conceptual 
models do not confirm to the description of the CMMS, only the implementation 
independent components will be extracted as a conceptual model.  
 
To support reuse and interoperation, formation of repository of models which will be 
shared among different agencies is desired. Conceptual models of existing simulations 
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will be transferred into the repository, by extracting only the information that is not 
specific to simulation implementation. The acquired knowledge from the existing efforts 
will be extracted by adequately authorized and extracted by using fully structured views.  
 
The CMMS project was no longer mentioned during 2000s. Functional description of 
mission space (FDMS) is mentioned as the continuation of the CMMS framework. 

2.1.3.2 VV&A Recommended Practices Guide (VV&A RPG) Special Topic: 
Conceptual Model Development and Validation 

 
VV&A RPG [9]  provides a special chapter for conceptual model development. By 
merging previous work from many authors and CMMS project and FDMS project are 
merged to form a general guidance on conceptual model development. The definition of 
conceptual model emphasizes the role as a bridge both between requirements and 
specifications, and developers and users. 
 
Three key components of conceptual models are defined, simulation context representing 
the authoritative information on relevant entities, processes, data etc., simulation concept, 
the developers understanding of the simulation context. Simulation concept can further 
decomposed as mission space, the representations of real elements (simulation elements) 
and simulation space, the elements concerning to the functionality of simulation. These 
definitions are inherited from Pace. 
 
VV&A RPG also lists the key items that should be present in a conceptual model which 
include the validation history in addition to key components. The process of development 
of the conceptual model and applications are listed. An important role of conceptual 
model related to validation is highlighted; it is used to determine the appropriateness of 
using the simulation in untested cases, which can occur because of the complexity and 
size of simulation data. 
 
The VV&RPG underlines SME review as the normal form of conceptual model 
validation. The validation is performed to determine the adequacy simulation elements’   
representative capability for intended purpose and simulation concept for overall 
capability and the appropriateness of constraints and boundary conditions introduced on 
the simulation concept by the simulation context. Formal methods are mentioned as a 
way of validation for safety critical simulation applications. 

2.1.3.3 Conceptual Modeling Step in FEDEP 

 
IEEE Recommended Practice for HLA Federation Development and Execution Process 
(FEDEP) [7] is the recommended practice for development and execution of HLA 
compliant simulations. It is a high-level framework that can be tailored based on the 
specific development needs. One of the main step of the process “Perform conceptual 
analysis”, which is broken down into three steps, “Develop Scenario”, “Develop 
Federation Conceptual Model”, and “Develop Federation Requirements”.  
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The FEDEP activities “Develop Scenario” and “Develop Federation Conceptual Model” 
are both relevant to conceptual modeling of the domain. The scenario should include the 
description of major types and number of entities and functional descriptions of their 
capabilities, behaviors and relationships over time, and the relevant environmental 
conditions.  While the federation conceptual model is the implementation independent 
federation objectives are transformed into a representation format to be used by 
federation design and development.  
 
FEDEP [7] process itself leaves out details about VV&A to accompanying standard 
VV&A overlay for FEDEP. The VV&A overlay provides a set of VV&A activities for 
verification of conceptual models.  
 
As both are high level frameworks and focus on the process, neither FEDEP nor VV&A 
overlay mention specific methods and provide guidance. In this work we provide 
verification approach for dynamics of conceptual models in a domain specific language 
KAMA.  
 

2.1.3.4 Base Object Models (BOMs) 

 
Base object models (BOMs)[10] have been introduced for conceptual modeling and 
federation design to further increase reuse of models and simulations. Base object model 
includes two pieces and their connections, a conceptual model, consisting of conceptual 
entities and events and their counterparts as HLA objects and interactions, attributes and 
parameters. In terms of VV&A RPG terminology, the conceptual description includes the 
mission space elements and the HLA object model form the simulation space. 
 
Through connecting these pieces the simulation conceptual model developer can 
formulate a conceptual model from existing BOMs. The planned development includes a 
developer to develop conceptual model using higher level of abstraction from BOMs 
containing conceptual entities and events while corresponding simulation is designed and 
formed by reuse of existing HLA compliant simulations. BOM is to be supported with 
tools, so that all the BOMs will be stored in a library with upload, download, integration 
use history and search capability [10].  
 
Upon inspection one can observe that very little is mentioned about verification and 
validation in BOM standard [10] and guidance documents [12]. In the BOM standard, it 
is stated that in the development process, BOM can be used to validate semantic 
composibility and verify the simulation and results without citation of any particular 
method.  
 
BOMs are stored in XML format that conforms to BOM schema [10]. So any BOM 
syntax can be checked against this schema, which can be regarded as syntax check. 
BOMs are oriented for HLA development and typical use scenario involves a broad range 
of already developed BOMs are available during development so that by integrating 
pieces the user can easily bring together not only conceptual model elements but also 
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simulation components. However the feasibility of this approach is yet to be observed in 
practice. A recent approach concentrates on semantic composibility of BOMs [11]. 
 

2.1.3.5 Defence Conceptual Modeling Framework (DCMF) 

 
DCMF was introduced by Swedish Defence Research Agency as the continuation of the 
CMMS project [13]. Conceptual modeling process is seen as a series of activities such as 
knowledge acquisition, knowledge representation, modeling, and use[13]. During 
knowledge modeling a structured ontology is developed that is equivalent of a conceptual 
model. According to DCMF specification[13], the ontology can be transformed into 
Activity diagrams, sequence diagrams, EPCs, Petri nets and BPMN diagrams during 
knowledge use. Also it is argued that the knowledge use phase can produce results that 
can be used to verify the simulation results. 
 
Although DCMF underlines the need for VV&A and formalization in knowledge 
modeling in general and conceptual modeling in particular, there is not an explicit 
mention of methods and techniques for conceptual model verification and validation. 
DCMF relies on rules defined for objects and Business Process Modeling Notation 
(BPMN) for dynamic behavior description. A particular point relevant in DCMF 
specification is that there is a mention of checking instance BPMNs against conceptual 
BPMNs, although particular approach is not explicitly mentioned. 

2.1.3.6 Other Approaches 

 
In this section we will discuss the conceptual modeling phase in two related 
methodologies: Brade’s V&V process [23] and REVVA [14]. 
 
Brade[23] presents a generalized process for simulation development that emphasizes 
verification and validation at each step. As a case study a sample tailoring of the process 
is also provided in the same work. Two kinds of models are identified: the conceptual 
model (also called the communicative model) and the formal model. The definition of 
conceptual model for Brade can be found in Table 2-1. The formal model represents all 
the behavior of the system in a formal notation. Whether it is possible to develop formal 
model or not for every case is not discussed by Brade, but for the case study provided it is 
stated that formulation and use of a formal model requires highly skilled effort. 
 
The work also distinguishes between internal V&V which deals with V&V activities 
performed by considering the single intermediate work product, and transformation V&V 
performed using previously developed work products. For internal V&V activities of the 
conceptual model, the following methods are listed: form checking, consistency checking, 
unit dimension test, mental execution, comparison with other models. The enablers of 
documentation correctness and internal consistency are stated as checklists, forms, 
consistency matrices, modeling formalisms. According to Brade, with appropriate tools 
that use a central database the former three enablers may be supported. Modeling 
formalisms are supported by formal frameworks applied for formal and executable 



 14 

models. Among these Brade cites propositional linear temporal logic (PLTL), Discrete 
Event Specification (DEVS), Simulation Language with eXtensibility (SLX).  
 
Human review is performed at various phases in the sample application. In case of a 
conceptual model it is used for symbolic description review and mental execution. Each 
submodel is mentally executed to determine whether it behaves as desired and 
consistently with the available domain knowledge during conceptual phase. The results of 
the mental execution are reported by the domain expert performing the mental execution. 
 
The emphasis of Brade’s work is on the analysis of the formal model which encapsulates 
full model structure and behavior, can be pursued more conveniently with classical 
techniques such as syntax and semantic checking, control and data flow analysis, model 
checking and testing. The aim is to check the formal model which is expressed in a 
paradigm such as DEVS and later using it in the development of executable model 
preserving all syntax and semantics. As the case study by Brade shows, complete 
verification of formal model may be also impossible [23]. That happens even though 
Brade uses a case that is a part of a traffic modeling domain where the entity types and 
interactions are limited. In a more general case description of formal model may also be 
infeasible. It is also stated that most of the simulation development projects do not have a 
formal model.  
 
REVVA [14] approach emphasizes acceptability criteria in simulation development and 
verification and validation. Similar to Brade, conceptual model is considered to be a base 
for formal model development. According to REVVA correctness and suitability of 
executable model depends on correctness and suitability of the underlying conceptual 
model. The correctness of the conceptual model has two major components: internal 
consistency of the conceptual model, and consistency with available real system 
knowledge. The most important property is appropriateness of the chosen abstraction and 
idealization within the context of the intended use. This is done by inspection of the 
conceptual model in order to determine that it satisfies the acceptability criteria [15]. 
 

2.1.4 Conceptual Model Verification 

 
We will mention about the works that discussed the verification and validation concepts.  
From the software oriented perspective verification is a much more focused function that 
is concerned with a single phase of development, whereas the validation deals with the 
evaluation of the requirements from the satisfaction of requirements or intended use. In 
the simulation development, verification is defined based on the adequacy of the 
representation of the implementation of the conceptual model, which captures the 
requirements and the intended use and simulation validation is defined based on the 
adequacy of the model as a representation of real world from the perspective of the 
intended use. 
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Table 2-2. The Definition of V&V from the Standpoint of Software and Simulation 
Development 

 
 

Concept IEEE Std 1012-2004 DoD RPG v3 
Verification (A) The process of evaluating a 

system or component to determine 
whether the products of a given 
development phase satisfy the 
conditions imposed at the start of that 
phase. 

The process of determining that a 
model implementation and its 
associated data accurately 
represent the developer's 
conceptual description and 
specifications. 

Validation (A) The process of evaluating a 
system or component during or at the 
end of the development process to 
determine whether it satisfies 
specified requirements. (B) The 
process of providing 
evidence that the software and its 
associated products satisfy system 
requirements allocated to software at 
the end of each life cycle activity, 
solve the right problem (e.g., correctly 
model physical  laws, implement 
business rules, use the proper system 
assumptions), and satisfy intended use 
and user needs. 

The process of determining the 
degree to which a model and its 
associated data provide an 
accurate representation of the real 
world from the perspective of the 
intended uses of the model. 

 
 
The relation between the verification and validation and conceptual model is first 
mentioned by Sargent[2]. As verification deals with whether a simulation works 
according to its specification whereas validation deals with the working of the simulation 
for its intended purpose. As described by the Sargent[2] Triangle depicting the modeling 
process the conceptual model is validated against the real world, however simulation is 
verified based on the conceptual model. So the conceptual model acts as bridge between 
the real world and the model implementation and serves as a product which can be 
utilized for verification of implementations. A validated conceptual model coupled with 
verification activities will contribute to the validation of the implementation. 
 
More broad view of verification and validation is introduced by Brade[23]. According to 
Brade simulation credibility can be built by a series of V&V activities each product in the 
phase can be evaluated by itself or in comparison to other products. According to this 
vies verification and validation can be done at each phase. Brade mentions the activities 
of verification and validation and do not discriminate two types of activities. 
 
As there may be more than one product in development of the simulation, there may be 
more than one model based on the development process as in the case of Brade. So each 
model can be verified based on the products developed in the same phased, or validated 
concerning the requirements form the more general perspective, the overall user 
requirements, conceptual model, or intended use. So verification is an effort based on 
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increasing the self and comparative consistency, validation deals with contribution to the 
developing the right product.  
 
 
Barlas [16] discusses the model verification and validation in general and application of 
them to system dynamics models. The validation means usefulness for some purpose. 
The usefulness of the purpose is also relevant which can hardly be determined and this is 
non-technical, informal and, qualitative process. Also validation is distributed and 
prolonged activity. Even in the case of formal validation of system dynamic models, the 
validation spans more than one stage, a high quality model can be formalized with less 
effort. Barlas also states that from the perspective of philosophy of science, there is not a 
purely objective/ formal way of “theory confirmation” even for the natural science”. 
More on the philosophical aspects of the discussion can be seen in Barlas and his 
references related to philosophy of science. The main two properties of validation as 
relativistic and holistic perspective theory confirmation, validation is a confidence 
building activity. The internal components of the model play crucial role, and informal 
and subjective aspects always exist. The formal quantitative tests always play important 
role as inputs to the process. However statistical significance tests are limited in 
determining the validity of a model by themselves.  
 
Kleijnen [17] accepts the verification and validation definition by Law and Kelton, and 
assuming a perfect program is present, the verification can be performed. However a 
model is always limited in its expression of the reality so only can be good enough rather 
than perfect. So the author highlights that validation deals with the correctness of the 
conceptual model representation. In this work also methods for verification of simulation 
outputs such as testing, sensitivity analysis, risk analysis, and white box testing are 
discussed. A point that is relevant for this study is that, white box testing provides 
opportunity to compare the system with real life system as the transparency provides one 
to one correspondence between simulation and real data. 
 
The Sandia report[18] also aims to define verification and validation concepts and survey 
applications of these in computational science and engineering and computational social 
science. Verification and validation has been applied more in disciplines where modeling 
and simulation software has been developed to automate and support human decision 
making. The standards, frameworks, regular approaches for verification and validation 
are not existent and studies in this field concentrate on application of one method for a 
particular problem. They also state that “the science of performing experimental-
computational comparisons in “computational science” remains immature”. As a method 
they identify that includes development of the “Phenomenon Identification and Ranking 
Chart (PIR)”. In their particular application they provide a method for quantification of 
simulation errors compared to referent. The Sandia report states that the models are not 
necessarily computational; they can be physical, narrative, mathematical, logical, or 
graphical as in the case of UML models or conceptual models of KAMA. Also the report 
states that model verification is not separable from model building and validation and 
confidence is built iteratively. There is no verified and validated code, the confidence of 
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software depends on the intended purpose, on which most of the verification effort is 
based. 
 
The C4ISR systems described in conceptual models are systems where system and 
decision makers are coupled. However during conceptual phase the intended purpose is 
to provide an agreed and reusable description of the mission space. From a wider 
perspective of simulation development, the verified conceptual model later can be used for 
definition of other products such as assessment standards and PIR. Our study aims to 
leverage confidence of conceptual models of C4ISR environment and ensure that the 
conceptual model represents the real world as much as possible.  
 
Adak et. al.[19] presents a metamodel for HLA federations. The methodology involves 
checking of certain properties. Certain properties are represented in the metamodel to limit 
the incorrect behavior. The code generator provides capabilities to check the dynamic aspects 
based on the design. This work deals with later stages of development where federation 
design and implementation is performed.  
 
For conceptual models that exclude simulation specific elements, and focus on the 
mission space the priority is describing the concepts of the domain. This priority forces 
the conceptual model to be understandable rather than formal, thus in practice the validity 
is based on SME review as explained in various sources [9] [22]. Conceptual model is the 
first product that defines the problem thoroughly and provides simulation constraints and 
assumptions, the internal verification and validation based on self-consistency is more 
important. SME review can focus on static or dynamic concepts and relations of the 
model. Usually SME will have to put significant effort to trace dynamic definitions as 
they are stated partially and organized as text document format.  
 
VV&RPG [9] and Brade [23] list techniques for conceptual model verification and 
validation as both consider conceptual modeling a major phase of simulation 
development. However there is no concrete example on how these techniques can be 
applied in different types of conceptual models. Balcı [20] names three distinct 
evaluations for conceptual modeling stage: evaluation of conceptual model quality, 
conceptual modeling process, and M&S project characteristics. 
 
Despite the need for more credible models that will led to more credible simulations, 
formal techniques have had limited use in conceptual modeling, and even rarer use in 
large scale models. This occurs as a result of limited scaling capacity of these methods 
and advanced level of expertise required [1]. Brade suggests a five step process, where 
modeling is divided into three steps: conceptual, formal and executable modeling [23]. 
Even with such division both development of the formal model, verification of the model, 
and the transformation of formal model to executable model are not straightforward and 
the transformation may even be infeasible as in the case of Brade [23]. 
 
The methods listed for conceptual model verification by VV&A RPG are shown in Table 
2-3.   
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Table 2-3. Verification and Validation Methods for Conceptual Model Listed in              
VV&A RPG 

 
 

Class V&V Technique KAMA Tool Support 
Informal Audit  Aids Audit 
Static Calling structure analysis - 
Static Cause-effect graphing - 
Dynamic Comparison test - 
Static Control flow analysis  Supports checking of 

errors related to control 
flow 

Static Data dependency analysis - 
Static Data flow analysis Supports data flow 

analysis through checking 
of related errors 

Informal Desk check - 
Informal Documentation check Aids documentation 

check 
Informal Face validation Aids face validation  
Formal Induction - 
Formal Inductive Assertions - 
Formal Inference - 
Informal Inspection Aids inspection  
Formal Lambda calculus - 
Formal Logical Deduction - 
Static Model Interface Analysis - 
Formal Predicate calculus - 
Formal Predicate transformation - 
Formal Proof of correctness - 
Informal Review Aids review 
Static State transition diagram Aids drawing of state 

diagram 
Static Structural analysis Checking of structural 

errors. 
Static Traceability assessment Supports traceability to 

original referent 
Dynamic User interface analysis - 
Informal Walkthroughs Aids walkthrough 

 
 
According to our knowledge, experience reports on application of verification techniques 
to conceptual models are limited, there is hardly any study dealing with verification of 
the dynamics of these models. 
 
More broadly the validity of models is treated for system dynamics models as explained 
by Barlas [16]. 
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2.2 KAMA: A Metamodel based approach for Conceptual Modeling 

 
KAMA conceptual modeling approach [29] consists of a process description[30] and a  
notation, as well as a tool [35] supporting both. The specific aspect is that the notation 
that is used by KAMA is expressed as a Meta Object Facility (MOF) based metamodel. 
KAMA is developed considering the main properties of conceptual models and past 
approaches which are not based on metamodel.  
 
From the viewpoint of Model Driven Architecture (MDA) [25], a conceptual model 
resembles a computation independent model that provides information about the problem 
domain independent of any computational approach, which is called the mission space in 
military domain. Because of their nature, conceptual models are not executable. They 
shall be utilized as requirements to be used in formulating either more detailed simulation 
conceptual models or the simulation design.  
 
A way of developing conceptual models by utilizing metamodels, KAMA approach [29], 
is to use a notation based on user concepts by extending model elements taken from a 
subset of UML [27]. It provides the SME the domain concepts for modeling, yet is 
structured enough to enable reuse of the model in later stages and online processing. This 
supports MDA [25] vision, aiming to transform software development to iterative 
development of models.  Other advantages are multiple views provided to the user, which 
is mandatory for conceptual model development and a more general process definition 
accompanying the approach [30] on how to acquire and structure information.  
 
The static verification techniques can be integrated into the model development 
environment and enforced during or after development of the model. Rules can be 
defined at various levels and consistency checking of these rules may provide user 
different kinds of errors [37] in different levels [34]. For KAMA environment possible 
static verification possibilities related to above and alternative techniques have been 
provided by Tanrıover and Bilgen [36][37]. A process for verification is defined that also 
utilizes these techniques and applied the process in a case study for a real conceptual 
model. They assert that formal techniques can be checked for given precise metamodel 
and a number of non-trivial errors can be discovered. Similar study is more focused on 
checking errors in activity diagrams. These studies motivate using comprehensive 
process definitions and novel techniques that may enable finding problems in early 
development.  
 

2.2.1 Evaluation of KAMA as a Conceptual Modeling Approach 

 
First reason we adapt KAMA for dynamic properties is that KAMA provides a novel 
approach for describing dynamic properties. As we will show in Chapter 4, model 
elements and diagrams can be interpreted in several different ways, and the defined 
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behavior is not executable. Also other elements that affect the behaviour exist such as 
workProducts. So the interpretation of behavior and checking is an interesting for KAMA 
behavior descriptions as they are conceptual rather than executable.   
 
One of the drawbacks in conceptual modeling literature is the lack of real life case studies 
and models. There is very little number of studies that concerns real conceptual modeling. 
The importance of conceptual model is known for a decade, most of the simulations 
developed before do not have a conceptual model.  The most used format as a scientific 
based format and FDMS and are more recent approaches.  Even if such models are 
developed, the models are not easily accessible as they may contain sensitive information 
and commercial value. The major advantage of KAMA as a conceptual modeling 
language is the large number of case studies and experimental studies. 
 
Use of KAMA in a number of case studies has been reported so far as Karagoz and 
Tanriover presents. Two among these case studies were industrial sized projects while 
other three have been experimental studies. The availability of such developed conceptual 
models has made KAMA the most suitable candidate for the application of our 
methodology.  
 
It is reported that the researchers in the KAMA project team performed three 
experimental studies, which aimed to apply the KAMA notation in different settings. The 
subjects of the experimental studies were “Squad Fire and Battle Marksmanship Training 
Simulator”[31], “Small-scaled Military Unit Movement – Infiltration Task” [33], and 
“Synthetic Environment Simulation System” [32] respectively. All of the researchers 
found the KAMA notation easy to learn and apply. These works also stressed some 
drawbacks related to the need for representing relations among the work products, 
additional relationships between role and task model elements such as “assists”, distinctly 
representing the “equipment” required for a task, and additional mechanism for 
representing the geographical constraints. 

2.3 Verification Approaches for Dynamic Properties  

 
In this study we aim to examine the dynamic properties of conceptual models for 
modeling and simulation. We deal with models that are developed at the early stages in 
the simulation development process. The modeled concepts are real world missions, tasks, 
related roles, objectives, and work products. We have grouped relevant past research into 
three, which we will mention in order of relevancy. First, metamodel based conceptual 
modeling in general, and the KAMA approach in particular provides the main pillar of 
our research. Secondly, research dealing with semantic variations of UML activity 
models and verification of such models is relevant in the sense that the semantics of 
model elements for sequencing of tasks in KAMA show similarities with their UML 
counterparts. However, differences in size of models and semantic variations and the 
limitations of past work in that area justify a novel approach. Finally, verification of 
conceptual business process models, particularly the ones expressed by Enhanced Process 
Chains (EPCs) are relevant for our research. We provide an adaptation method for 
verification of KAMA mission space models using the research results of EPC 
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verification. In the next three subsections we will examine the relation of our research 
with these three related areas in detail.  
 

2.3.1 Verification Methodologies for Metamodel Based Conceptual Models 

 
The developed conceptual modeling notation of KAMA provides the modeling elements 
for these but lacks methods and tools for analysis and verification of the dynamics. 
Tanriover and Bilgen [36][38] provide an inspection approach for conceptual models 
developed in a domain specific notation. The approach includes checklists for 
interdiagram issues and for each diagram type. The checks are listed for initialTasks, 
synchronizationPoints (fork and join type), decisionPoints (fork and merge type), flow to 
the finalTask, loops and workProducts based on the soundness property of workflow nets. 
In this work we deal with both structure and dynamics of conceptual models and 
elaborate the diagrams describing dynamic behavior thoroughly. We define extended 
properties for some of the model elements and define structured conceptual models, and 
used the existing soundness definition for EPCs for verification of conceptual models. 
We use these definitions to develop our approach based on formal verification. The task 

flow diagram inspection steps and corresponding aspects that are dealt in this work are 
listed in Section 8.2.3. 
 
In this work we focus on the mission space package of the KAMA metamodel, which 
includes elements to describe real world missions, tasks and their relations. The mission 
space is presented as a structural view in KAMA metamodel, however it provides 
information on sequencing, synchronization, and branching of tasks which can be used in 
understanding the behavior of the system. We describe an approach including a process 
and set of methods to be used in inspection of dynamics of these models. The inspection 
process will be iterative and will provide user with online and offline verification 
methods. For increasing the power of analysis we extend mission space models to cover 
intended but not explicitly specified behavior descriptions. Our mission space verification 
is based on this extended model. The relationship between metamodels is described in 
Figure 2-1. These extensions which do not exist in original KAMA metamodel, are 
defined based on dynamic properties and is used for the definition of KAMA Dynamic 
Verification (KAMA-DV) metamodel. We utilize approaches that were used for 
verification of Enhanced Process Chain Diagrams (EPCs) based on Petri nets during this 
process. As a result we aim to have a conceptual model that has consistent and correct 
behavioral information.  
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Figure 2-1. Relationship between Metamodels and Models 
 

2.3.2 Verification of UML Activity Descriptions 

 
As KAMA conceptual modeling notation extends some of the elements used in UML 
activity package [27], work on semantics and verification of UML activity package is 
relevant for our research. We will briefly discuss relevant works in this subsection.  
 
Several reasons exist not to utilize UML activity package as is for conceptual modeling 
and dynamic verification. The first is that UML activity package have a number of 
complex constructs that have ability to model programming languages, exceptions, etc. 
that are not suitable for conceptual modeling. The studies aiming to define semantics for 
UML models focus on characteristic modeling elements of activity package namely 
FundamentalActivities and IntermediateActivities. A second drawback is that UML 
activity has Petri net based semantics and that is directly applicable for dynamics of 
conceptual models. The semantic variations exist in UML activity package model 
elements, only some of which are relevant for conceptual models.  
 
Also UML activity package is an evolving modeling approach which has potential to be 
applied widely. For instance a potential application area described in the specification is 
business process modeling if the classifiers are not determined for models. The mission 
space package of KAMA notation has similarities with UML activity package in that 
respect. It has model elements mostly derived from UML activity and leaves out model 
elements such as callOperationAction, message, and other programming language related 
constructs. The modeling elements of KAMA represent traditional concepts used for 
defining conceptual models of the domain and are named similarly. 
 
UML activity representation is considered to be a complex method to use properly 
because of semantic issues, variety of constructs and wide scope [44] [46]. It may be used 
for modeling for various purposes, ranging from workflow models where activities do not 
have any classifier, or operations of classes. Despite the broad scope, Fowler argues that 
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it is not frequently used in practice [40]. For instance the executable UML literature on 
developing executable UML models includes a dozen of books, where activity model is 
left out generally. It may be argued that the desire of the practitioners to arrive at more 
executable and easily analyzable models make activity less attractive. In our work we 
have utilized the modeling elements in KAMA that are derived from activity modeling. 
We will list works aiming to analyze activity models in the following paragraphs.    
 
Drusisnky [45] provides examples of requirement specifications that can be formulated 
using activity diagrams. This work deals with conceptual diagrams expressed in UML 1.4. 
During activity scheduling he provides example constraints on multiple scheduling of the 
activities, the plurality of objects, execution times of loops, reentrance which are relevant 
for our case. For showing the different interpretations in activity diagrams, examples are 
discussed roughly. For each case additional requirements are advised, but no specific 
methodology to exist to inspect the dynamics. Our method tries to deal with similar 
specifications in two ways, a more clear and iterative behavior modeling and verification 
methodology. 
 
The previous work on semantics for activity models is relevant for our research as we 
also aim to describe precise semantics for description of conceptual models in KAMA 
notation. The details of semantics of model elements are described by Bock in a series of 
papers. However other researchers aiming to simulate activity models still have difficulty 
in defining precise semantics [44]. Saarstedt [50] provided a method based on labeled 
transition system and Storrle [46] used colored Petri nets to simulate the activity 
diagrams. For this purpose they also listed the variations encountered and their way of 
interpretation for semantically loose points [71][47].  Former used some assumptions to 
deal with some imprecise points in order provide automatic mechanism for simulation. 
Storrle provides separate methods for simulation of control flow [48] and data flow [46]. 
Also these works deal with only a subset of activity model rather than whole. For 
instance none of these works provide a method for verification of elements in 
completeActivity package. 
 
In the UML activity package [27], explicit relations with objectives, work products and 
roles do not exist. A metamodel based on UML, SPEM [28] provides couple of relations 
as observed in software development models. To our knowledge there is no work that 
specifically deals with verification of models expressed in SPEM. 
 
There is also a relationship between mission space diagram and task flow diagrams 
similar to use case and activity diagrams. Smilaek et. al.[52]  state that the behavioral 
interpretation of UML use case extends and includes associations are not clear. KAMA 
mission space diagram provides a more specific mechanism that affects the sequencing 
of tasks, therefore the dynamics of conceptual models. We have utilized the method to 
form complete task flows diagrams representing entire model using mission space 

diagrams. The included and extended missions are transformed to corresponding task 

flow diagrams. For this purpose we developed an alternative approach based on utilizing 
extension points and includes association.  
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All these differences make the use of UML activity execution approaches limited and 
unusable for verification of conceptual model dynamics which is provided by our novel 
approach. For conceptual models the timing, multiplicity and context relations are 
different from UML activity model. These are explicit in the KAMA metamodel 
specification and there exist a number of semantic variations and extensions as we will 
further discuss in Chapter 4. These aspects shall be parts of a dynamic verification 
approach that will be described in Chapter 6.  
 

2.3.3 Verification of Conceptual Business Process Descriptions 

 
Related areas relevant to research on conceptual model verification include business 
process modeling, workflow management systems, and verification of these systems 
using Petri nets. As we are talking about “conceptual” models, where the term conceptual   
describes the abstract nature of the model, works dealing with conceptual aspects 
business process modeling and their verification are most relevant to our study. On the 
other hand, workflow management systems use notations that are more execution 
oriented. There is a wide literature on methods, techniques and tools to define and 
analyze workflows. Most of this literature is barely relevant for us as they deal with 
mostly executable workflows that include more concrete and executable domain specific 
modeling elements.  
 
Unlike the specific nature of workflow management systems, more conceptual Enhanced 
Process Chain (EPC) diagrams, the diagrams used to describe business processes in ARIS 
toolset [56], are dealt in the literature. A specific characteristic of works dealing with 
business process verification on conceptual level is that they treat semantic variations 
while others try to limit the description language, EPC, to arrive at easily analyzable 
descriptions without semantic variations. In parallel with the MDA vision, each model 
shall be adequate for its purpose and creating a complete model which captures all 
execution semantics formally is neither possible nor the ideal way in earlier stages of 
development. A conceptual model shall provide a coherent but abstract description, not 
pretending to be executable, but supports development. Having the semantic 
interpretation differences that will be listed in Chapter 4, approaches treating them are 
relevant for us.  
 
The most common approach to verify EPCs is similar to works dealing with workflows 
[60]. The approach based on utilization of a special class of Petri nets, called workflow 
nets [53] is used for verification of business process models and workflow models. First 
the business process specification is transformed to a Petri net based specification, a 
workflow net. This Petri net based specification is checked for certain properties by 
creating the all execution sequences. Transformations and reductions are possible in this 
stage to deal with the state space explosion problem. Additional information on initial 
states, final states and invariants can be used during the process.  
 
Researchers in business process and workflow verification have provided definitions for 
the soundness for these models. For verification of conceptual business process models, 
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relaxed soundness property is used that involves each process is executed in at least one 
valid execution of the process [57][64]. Satisfaction of these criteria is checked by using 
the semantic constraints of the nodes used for sequencing of processes in the models, 
namely OR, AND, XOR nodes that are used for splitting and joining the control flow.  
 
There exist similarity between model elements used for sequencing in the UML activity 
package and EPCs, but considering the variations in their semantics, there is a need for 
research using models dealing with real applications. UML activity is examined in terms 
of adequacy for workflow modeling [54] and a similar work provides equivalency of 
some of the model elements in UML Activity and EPCs [63]. EPCs are used to describe 
conceptual business processes and have a number of semantic variations. The original 
EPC semantics is not described in detail and further works provide semantic definitions 
for some of the loose points. UML activity has much broader scope, including elements 
ranging more basic constructs to more complex. More basic constructs also have some 
semantic variances as discussed in previous subsection. As we will show in Chapter 4, 
the KAMA language has also semantic variances. In our work we have used the analysis 
techniques for EPC analysis for the case KAMA conceptual modeling diagrams. We also 
provide a comparison of aspects in conceptual models with those of EPC and UML 2 
activity in next subsection. 
 
2.3.4 Comparison of Approaches for Verification of Dynamic Properties of UML 
Based Conceptual Models 
 
The equivalency of related elements of EPCs and UML Activity model and these nodes is 
summarized in Table 2-4 where previous mappings [55][61] are also included. In 
addition, we have appended the table with equivalent elements of the KAMA mission 
space package which are described in Chapter 3. 
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Table 2-4. The Elements Used in EPC Diagrams and their Counterparts 

 
EPC UML Activity KAMA 
OR-Split N/A  SynchronizationPoint (Fork 

Type) 
XOR-Split DecisionNode DecisionPoint 
AND-Split ForkNode SynchronizationPoint (Fork 

Type) 
OR-Join N/A SynchronizationPoint (Join 

Type) 
XOR-Join MergeNode DecisionPoint (Merge) 
AND-Join JoinNode SynchronizationPoint (Join 

Type) 
Function By Activity and 

Action Model 
Elements 

Task Hierarchy and 
“ConsistOf” Relation 

Cancellation 
Region 
Extensions 

ActivityFinalNode FinalTask 

 
 
During comparison with UML activity, we only consider basic constructs, given in UML 
FundamentalActivities and IntermediateActivities packages, as they include more abstract 
modeling elements suited for conceptual modeling. If UML activity package is taken as a 
whole, for instance for the first aspect, CallBehaviourAction in an activity can provide a 
mechanism to trigger other activities during execution. For EPC, we used the definition 
provided by Mendling [61].  
 
We do not limit the models to include only elements either of EPC diagrams or UML 
Activity Package. Even if such modeling can be possible for some of the cases, this will 
decrease the understandability and communicative power of conceptual model and will 
contradict with the properties of a conceptual model which will be discussed in Section 
4.1. For the analysis of control flow of KAMA-DV models for some of the cases, 
equivalent EPC can be obtained by using the equivalent elements in Table 2-4. In the 
Chapter 6 and Chapter 7 we illustrate the soundness analysis applied in KAMA-DV. 
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3 THE DEFINITION OF KAMA SEMANTICS 

CHAPTER 3 

 
KAMA SEMANTICS 

 
 
 
In this chapter we will define the KAMA elements and rules in terms of set theory. Later 
in Chapter 5, we will provide definitions for executable forms of KAMA elements based 
on these definitions, to verify dynamical aspects of KAMA models. Not only does the 
formalism introduced in this chapter aim to provide a basis for verification of dynamics 
as described in Chapter 5, but also it is expected to form a basis for any future work that 
may attempt at augmenting the KAMA approach.  
 
In the following table the UML metamodel elements related to KAMA metamodel and 
KAMA mission space package elements are listed. The model element names are 
preserved as given in the KAMA metamodel to preserve consistency and traceability. 
 
In what follows, we have used italics to indicate terms used in a formal sense as opposed 
to natural language usage. For instance, “mission” would indicate the ordinary meaning 
of the term whereas “mission” would indicate a specific KAMA model element. In 
general, we have defined sets (marked as S) for each kind of model element that is not 
derived from association. For associations, we define sets of ordered pairs (marked as 
O.P. in the table) which are uniquely identified by the source and target model elements. 
Attributes and AssociationEnds are also defined as attributes so they are assigned to 
model elements and associations, and therefore do not qualify as members of sets 
(marked as attribute in the table). These definitions are provided in the following 
subsection. Following these definitions, we have defined the attributes for elements of 
these sets in Section 3.2. In Section 3.3, we define the constraints provided in KAMA in 
textual and OCL form in terms of set theory. Attributes in terms of lists based on their 
associations exist for mission, task, role and objective model elements in KAMA 
metamodel, therefore we have included the definitions for such lists as also sets which 
are provided in Section 3.4. 
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Table 3-1. UML Metamodel Elements Related to KAMA and KAMA Mission Space 
Package Model Elements 

 
 

KAMA related 
UML 
Metamodel 
Elements 

Represented 
As 

In
cl

u
d

ed
  KAMA Metamodel 

Mission Space 
Package Elements 

Represented 
As 

In
cl

u
d

ed
 

element  -  model element Set � 
named element  -  mission Set � 
feature  -  task Set � 
namespace  -  role Set � 
classifier  -  objective Set � 
class  -  measure Set � 
operation  -  workProduct Set � 
attribute Attribute �  decisionPoint Set � 
package  -  synchronizationPoint Set � 
generalization Set of O.P* �  initialTask Set � 
dependency Set of O.P* �  finalTask Set � 
association Set of O.P* �  responsibleFor Set � 
associationEnd Attribute �  realizes Set of O.P* � 
stateMachine  -  extends Set of O.P* � 
state  -  includes Set of O.P* � 
pseudoState  -  achieves Set of O.P* � 
vertex  -  taskFlow Set of O.P* � 
transition  -  inputTo Set of O.P* � 
activity  -  produces Set of O.P* � 
activityNode  -  quantifiedBy Set of O.P* � 

O.P: Ordered Pairs 

 
 
In defining formal properties for model elements we have divided the model elements 
presented in a task flow diagram into five. The core of task flow diagram includes the 
model elements for modeling basic elements such as mission and tasks. The sequencing 
package has elements used for sequencing of tasks. The other three supporting packages 
are named based on their central elements as role, workProduct and objective packages. 
The role package includes the role, actor model elements, responsibleFor and realizes 
associations. The workProduct package includes workProduct model element, inputTo 
and produces associations. The objective package includes objective and measure 
elements, and achieves and measures associations. Finally the mission space complete 

package has rules for organizing the other elements and completely defining the task 
hierarchy.  
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3.1 Sets of Model Elements 

 
When defining sets of model elements, we chose to use single letter for model elements 
that do not derive from association and double letter for model elements derived from 
association. For each association element we a use the set of ordered pairs (x,y) in which 
the first element (x) represents the source element in the association and the second (y) 
denotes the target element. 
 
In this context we have divided the KAMA mission space package into three 
subpackages. Mission Space Fundamental Package includes the mission and task 
elements. Sequencing Package includes the elements for sequencing of tasks. Role 

Package contains elements for defining roles and actors, Workproducts Package contains 
elements that are used to define workProduct associations, and Objective Package 
contains elements related with objectives of tasks and their measures. 
 
While mission element of Mission Space Fundamental package is derived from activity 

of UML FundamentalActivities package, task element of same package is derived from 
both UML activity and activityNode of the same UML package. Mission Space 

Sequencing package taskFlow element is derived from controlFlow, elements initialTask, 

finalTask, synchronizationPoint and decisionPoint are derived from controlNode of UML 
IntermediateActivities package. The packages of mission space and related packages of 
UML are shown in Figure 3-1.  
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Mission Space 
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Mission Space 
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Mission Space 
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Mission Space 

Objectives

Mission Space 

Complete

<<merge>>

<<merge>> <<merge>>

<<merge>>
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<<merge>> <<merge>>

<<merge>>

FundamentalActivitiesIntermediateActivities

<<include>>

<<include>>

 
Figure 3-1. Dependencies between Mission Space Packages 

 

3.1.1 Mission Space Fundamental Package Elements  

 

E is the set of all model elements. In the current definition attributes and associationEnds 
are taken as attributes of model elements are not elements of the set. 
 

Mission and Task are the basic elements for defining conceptual model dynamics. 
 

M is the set of all Mission elements in a model.  
 

T is the set of all Task elements in a model. 
 

The task model elements are connected with associations of type taskFlow. Also 
consistOf relation between tasks exists for defining task hierarchy. These elements are 
included in the Mission Space Sequencing package. 
 

AS is the set of all model elements that are derived from association metaclass in a model.  
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IN is the set of all includes associations. If there is an association derived from includes 

metaclass between Mm
i

∈ and Mm
j
∈ then INmm

ji
∈),(  

 

GE is the set of all generalizations. If there is a generalization between 

Ee
i

∈ and Ee
j
∈ then GEee

ji
∈),( .  

 

CO is the set of all consistOf associations between a mission and a task or two tasks. If 

there is an association derived from consistOf between TMt
i

∪∈ and Tt
j
∈ then 

COtt
ji

∈),(  

 

3.1.2 Mission Space Sequencing Package Elements  

 

In fundamental elements package we have the elements to define the scheduling of tasks. 
 

TF is the set of all taskFlow elements in a model. If there is an association derived from 

taskFlow between Tt
i

∈ and Tt
j
∈ then TFtt

ji
∈),(  

 

Other than these core elements in taskFlow diagrams, other elements exist for defining 
more complex relationships between tasks. 
 

I is the set of all initialTask elements in a model. 
 

F is the set of all finalTask elements in a model. 
 

D is the set of all decisionPoint elements in a model. 
 

S is the set of all synchronizationPoint elements in a model. 
 

N is the set of all of all model elements that are derived from intermediateNode elements 
in a model. The intermediate node is the node for describing causal relations between 
tasks which include initialTask,  finalTask, decisionPoint, synchronizationPoint 
so SDFIN ∪∪∪= . 
 

We extend the definition of CO, so that it can be defined between a task with an 
intermediateNode or a taskFlow. If there is an association derived from consistOf 

between TMt
i

∪∈ and TFNTt
j

∪∪∈ then COtt
ji

∈),( . By this way we the 

intermediateNodes and taskFlows defined for sequencing become part of the description 
of the task. 
  
E is the set of all elements in a conceptual model related with dynamics shown in Table 
3-1. 
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3.1.3 Elements of Other Packages 

3.1.3.1 Roles Package Elements 

 
R is the set of all role model elements in a model. 
 

A is the set of all actor model elements in a model.  
 

RF is the set of all responsibleFor model elements in a model. If there is a 

responsibleFor association defined between Rr
i

∈ and Tt
j
∈ then RFtr

ji
∈),(  

 

RE is the set of all realizes model elements in a model. If there is a realizes association 

defined between Rr
i

∈ and Tt
j
∈ then REtr

ji
∈),(  

 

OW is the set of all owns model elements in a model. If there is a owns association 

defined between Ta
i

∈ and Rr
j

∈ then OWra
ji

∈),(  

3.1.3.2 Workproducts Package Elements 

 

W is the set of all workProducts model elements in a model. 
 

IT is the set of all inputTo associations in a model. If there is an InputTo association 

defined between Tt
i

∈ and Ww
j
∈ then ITtw

ij
∈),(  

 

PR is the set of all produces associations in a model. If there is an Produces association 

defined between Tt
i

∈ and Ww
j
∈ then PRwt

ji
∈),(  

3.1.3.3 Objectives Package Elements 

 

O is the set of all objective model elements in a model. 
 

U is the set of all measure model elements in a model. 
 

AC is the set of all achieves associations in a model. If there is an achieves association 

defined between Tt
i

∈ and Oo
j
∈ then ACot

ji
∈),(  

 

ME is the set of all measures associations in a model. If there is an measures association 

defined between Oo
i

∈ and Uu
j
∈ then MEuo

ji
∈),(  
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3.1.3.4 Mission Space Complete 

 
Following definitions are made to make diagrammatic display possible.  
 

Let 
i

TD  be the group of model elements that is part of ith taskFlow diagram in a model. 

So the contents of a taskFlow diagram can be defined as an intersection of model 
elements presented in the diagram; 
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A more precise definition of contents of task flow diagram can be done by using 
consistOf association.  
 

)),(( ikkii TDtimpliesCOttTt ∈∈∈∀  

)),(( jkkjj TDtimpliesCOtmMm ∈∈∈∀  

 
 
For the other elements in a task flow diagram, we include the contents associated with 
included tasks. 
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Finally we include the measure model elements associated with the objective model 
elements associated with tasks. 
 

))),(,),(,),(((
ikkii

TDuimpliesMEumACmtCOttTt ∈∈∈∈∈∀  

 
 
It must be noted that in this definition we assume that a task is strictly associated with a 
single task flow diagram. If a task has more than interpretation, that is used in more than 
one task flow diagram and each of these diagrams consists of the same set of tasks model 
elements (according to KAMA semantics) but different associations between them then 
we shall define the taskFlow accordingly. In this case all the associations are specific in 
the context of the single task which is presented in the specific diagram.  
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In fact the definition of KAMA metamodel enforces only one taskFlow entering and 
leaving a task. In this case only other associations can vary. Although not defined in the 
metamodel a task flow diagram can have interpretations for different missions and tasks.  
 

))))(),(

)(),((,),(((

iiiik

iikkii

TDximpliesITRFRETFtx

orACPRTFxtCOttTt

∈∪∪∪∈

∪∪∈∈∈∀
 

 
In case the assumption that a task may consist of different tasks in different task flow 

diagrams is to be accepted, a specific piece of information shall exist in the metamodel 
providing this information or the information in the task flow diagrams can be used for 
this purpose. Then the TDi is defined as in the first definition using information on task 

flow diagrams instead of consistOf association. Each task flow diagram shows some of 
the model elements and represents a task. Although this is not the case in KAMA 
metamodel we will introduce this extension for KAMA-DV in Chapter 6. In the 
remaining parts of this Chapter, we will deal with elements explained in original KAMA 
metamodel and will not include definitions for task flow diagram and related associations. 
 

3.1.3.5 Complete List of Elements  

 
For the sake of completeness, the model elements are listed in Table 3-2.  In addition to 
their package the abbreviation which is used to represent the set of elements in this 
chapter, they are also used in the codes for the rules for the corresponding element in 
Chapter 4. For the remaining chapters, in the mathematical expressions these represent 
the set of these model elements in the models, in other parts they represent model 
elements. 
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Table 3-2. KAMA Mission Space Model Elements, their Abbreviations and Containing 
Packages 

Model Element  Ab. Package Model Element  Ab. Package 
mission M Fundamental role R Roles 
task T Fundamental actor A Roles 
association AS Fundamental responsibleFor RF Roles 
includes IN Fundamental realizes RE Roles 
generalization GE Fundamental owns OW Roles 
consistOf CO Fundamental workProduct W Workproducts 
Mission Space Diag. MD Fundamental inputTo IT Workproducts 
taskFlow TF Sequencing produces PR Workproducts 
initialTask I Sequencing objective O Objectives 
finalTask F Sequencing measure M Objectives 
decisionPoint D Sequencing achieves AC Objectives 
synchronizationPoint S Sequencing measures ME Objectives 
intermediateNode N Sequencing Task Flow Diagram TD Complete 
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3.2 Attributes 

 

All model elements have defining attributes of +
Ζ∈Id  and StringName ∈  that 

represent the unique identification code of the element and name of the element 
respectively. Each model element also have description, assumptions, constraints and 
geographical information attributes. However the mission, task, objective, measure and 
finalNode are defined by more attributes as follows: 
 

Each Mm
i
∈ is a quadruple (Id, Name, Pre, Pos) where Pre String∈  stands for the 

precondition, Pos String∈  stand for the post condition. Most general String type is used 

for conditions, as the syntax for them are not defined further. 
 

Each Tt
i
∈ is a 6-tuple (Id, Name, Pre, Pos, isExtensionPoint, extensionPointId) where 

Pre String∈  stands for the precondition, Pos String∈  stand for the post condition, 

isExtensionPoint Boolean∈  stands for the isExtensionPoint attribute, extensionPointId 
+

Ζ∈  is the id of the extension point. 
 

Each Oo
i
∈ is a triple (Id, Name, Per) where StringPer ∈ stands for the performance 

criterion. 
 

Each Uu
i
∈ is a triple (Id, Name, Unit) where Unit String∈  stands for the unit of the 

measure. 
 

Each Ff
i
∈ is a triple (Id, Name, Iss) where Iss stands for whether the finalNode 

represents successful completion or not. 
 

Each TFtf
i
∈ has attributes (Id, Name, guard) where guard String∈  stands for the 

guard expression. 
 
Other then the attributes listed above, mission, task, role and objective have some lists of 
elements as attributes according to KAMA. The definitions of these lists are given in 
subsection 4.
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3.3 Constraints 

 
In definition of the constraints we have used the terminology of the KAMA metamodel 
definition. The textual constraint definition is provided before the constraint definition in 
mathematical notation.  
 
For model elements mission, task, role and objective the list of related elements are 
included as attributes. In fact these lists can be formed in a given implementation of 
method or tool and need not to be atrributes of the classes. For example each mission has 
a list of roles that is connected to it with realizes or responsibleFor associations. We 
define such a list as follows: 
 

Let Mm
i
∈  be associated with a roleList )(

i
RL  according to KAMA metamodel. For 

the members of this list following rule applies; 
 

For any Rr
j
∈ , if only if REmr

ij
∈)( ,  or RFmr

ij
∈)( ,  then 

ij
RLr ∈ . 

 
Such lists are used optionally as a shorthand notation in the definition of some of the 
constraints. All the lists that exist in the KAMA metamodel are defined in subsection 4.  
 
 
a. Mission Constraints 
 
1. “A mission should be related with at least one role.” 
 

))),(),((( RFmrorREmrRrMm ijijji ∈∈∈∃∈∀  

 
2. “A mission should be related with at least one objective” 
 
 

))),((( AComOoMm jiji ∈∈∃∈∀  

 
3. “A mission may not have a relation of type include or generalize to itself” 
 
 

))),((( INmmMm
iii

∉∈∀  and ))),((( GNmmMm
iii

∉∈∀  

 
b. Task Constraints 
 
1. “A task should be related with at least one role” 
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))),(),((,( RFtrorREtrRrTt ijijji ∈∈∈∃∈∀  

 
 
2. “A task should be related with at least one objective” 
 
 

))),((( ACotOoTt jiji ∈∈∃∈∀  

 
3. “A task has one incoming and one outgoing taskFlow” 
 

)),(,( TFtttTt jiji ∈∃∈∀  and 

)),(,( TFtttTt ijji ∈∃∈∀ and 

)))),(,(),((,( TFttjkTtimpliesTFttTtt kikjiji ∈≠∈¬∃∈∈∀  and 

)))),(,(),((,( TFttikTtimpliesTFttTtt jkkjiji ∈≠∈¬∃∈∈∀  

 
 
c. Role Constraint 
 
1. “A role should be owned by at least one actor” 
 

))),((( OWraAaRr ijji ∈∈∃∈∀  

 
d. Objective Constraint 
 
1. “An objective should be related with at least one measure” 
 
We note that a measure and objective can be related by only  measures association. 
 

))),((( MEuoUuOo jiji ∈∈∃∈∀  

 
e. Measure Constraint 
 
1. “A measure should be related with at least one objective” 
 
We note that a measure and objective can be related by only one measures association. 
 

))),((( MEuoOoUu ijji ∈∈∃∈∀   
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f. WorkProduct Constraint 
 
1. “A workProduct does not have any capability

1.” 
 
By definition of workProduct this is straightforward. We can further check that  there is 
not any association between workProduct and capability where B denotes the set of 
capability.   
 

))),((( ASbwBbWw jiji ∈∈¬∃∈∀  

 
g. DecisionPoint Constraints 

 
1. “The connections coming into and going out of a decisionPoint must be taskFlows.” 
 
By definition of TF set, this constraint holds. 
 
2. “The guard conditions on multiple outgoing connections from a decisionPoint must not 
be the same.” 
 

)).,().,(),),(,),((( guardtdguardtdimplieskiTFtdTFtdDd kijikijii ≠≠∈∈∈∀  

 
3. “Every outgoing connection from a decisionPoint must have a guard condition” 
 

)).,(),(( ∅≠∈∈∀ guardtdimpliesTFtdDd jijii
 

 
h. SynchronizationPoint Constraints 
 
1. “A synchronizationPoint having multiple incoming connections must have a single 
outgoing connection” 
 

).),(),),(),,((( loneonlyforTFtsimplieskjTFststSs liikiji ∈≠∈∈∀  

 
2. “A synchronizationPoint having multiple outgoing connections must have a single 
incoming connection” 
 

).),(),),(),,((( loneonlyforTFstimplieskjTFtstsSs ilkijii ∈≠∈∈∀  

 
 
 
 
 

                                                
1 Capability is a model element that is not a member of mission space package so not in our scope. 
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3. “The connections coming into and going out of a synchronizationPoint must be 
taskFlows” 
 
By definition of other associations and taskFlow elements this will hold. For curiosity we 
can add the following two constraints, the first for ensuring that any association coming 
into a synchronizationPoint is a taskFlow and no association which is not a taskFlow 
coming into a synchronizationPoint exist, the second is similar to first handling 
connections going out (“−” denotes set difference); 
 

)),(),(( TFstimpliesASstSs ijiji ∈∈∈∀ and 

))(),(),(( TFASstimpliesASstSs ijiji −∉∈∈∀  

 
 

)),(),(( TFtsimpliesAStsSs jijii ∈∈∈∀ and 

))(),(),(( TFAStsimpliesAStsSs jijii −∉∈∈∀  

 
 
i. InitialTask Constraint 
 
1. “An initialTask has no incoming connections.” 
 

).),(( TFixIi jj ∉∈∀  

 
j. FinalTask Constraint 
 
1. “A finalTask has no outgoing connections.” 
 

).),(( TFxfFf ii ∉∈∀  

 
k. ResponsibleFor Constraint 
 
1. “A responsibleFor relation has one role as source and one task or mission as target” 
 

))(,(),( MTyRxRFyx ∪∈∈∈∀  

 
l. Realizes Constraint 
 
1. “A realizes relation has one role as source and one task or mission as target” 
 

))(,(),( MTyRxREyx ∪∈∈∈∀  

 
m. Extends Constraints 
 
1. “An extends relation has one mission as source and one mission as target” 
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),(),( MyMxEXyx ∈∈∈∀  

 
 
 
2. “An extends relation cannot have the same mission both as source and as target” 
 

)(),( yxEXyx ≠∈∀  

 
3. “Extended mission must have a related task flow diagram with at least one task whose 
isExtensionPoint attribute set to true” 
 

)).)(((),( 1nPointisExtensiozandxTDzandTzzEXyx =∈∈∃∈∀  

 
n. Includes Constraints 
 
1. “An includes relation has one mission as source and one mission as target” 
 

),(),( MyMxICyx ∈∈∈∀  

 
2. “An includes relation cannot have the same mission both as source and as target” 
 

)(),( yxICyx ≠∈∀  

 
o. Achieves Constraint 
 
1. “An achieves relation has a mission or task as source and an objective as target” 
 

)),((),( OyMTxACyx ∈∪∈∈∀  

 
p. TaskFlow Constraints 
 
1. “A taskFlow may have one of the {task, decisionPoint, synchronizationPoint and 
initialTask} as source and one of the {task, decisionPoint, synchronizationPoint and 
finalTask} as target” 
 

))(),((),( FSDTyISDTxTFyx ∪∪∪∈∪∪∪∈∈∀  

 
2. “Only one taskFlow may exist between the same source and target” 
 
As distinct elements of TF, taskFlow is defined uniquely as a set of ordered pairs, it is 
valid by definition.  
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q. InputTo Constraint 
 
1. “An inputTo relation has one workProduct as source and one task as target” 
 

),(),( TyWxINyx ∈∈∈∀  

 
r. Produces Constraint 
 
1. “A produces relation has one task as source and one workProduct as target” 
 

),(),( WyTxPRyx ∈∈∈∀  

 
s. QuantifiedBy Constraint 
 
1. “A quantifiedBy relation has one objective as source and one measure as target” 
 

),(),( UyOxQByx ∈∈∈∀  
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3.4 Derived Sets 

 
In this section we define the elements for sets defined in the KAMA metamodel. 
 
a. Derived Sets of Mission 
 
For each mission(mi), inputList (IL), outputList (OL), objectiveList (BL), roleList (RL) 
and measureList (UL) are defined as follows; 
 
 

{ }ITmwWwwIL ii ∈∈= ),(,  

 

{ }PRmwWwwOL ii ∈∈= ),(,  

 

{ }AComWooBL ii ∈∈= ),(,  

 

{ })),(),((, REmrorRFmrRrrRL iii ∈∈∈=  

 

{ })))()((, ,, MEuoandAComoUuuUL jjiji ∈∈∃∈=  

 
 
b. Derived Sets of Task 
 
For each task(ti),, inputList (IL), outputList (OL), objectiveList (BL), roleList (RL) and 
measureList (UL) are defined as follows; 
 

{ }ITtwWwwIL ii ∈∈= ),(,  

 

{ }PRtwWwwOL ii ∈∈= ),(,  

 

{ }ACotWooBL ii ∈∈= ),(,  

 

{ })),(),((, REtrorRFtrRrrRL iii ∈∈∈=  

 

{ })))()((, ,, MEuoandACotoUuuUL jjiji ∈∈∃∈=  
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c. Derived Sets of Role 
 
For each rol(ri), e, taskList (TL) and ownerList (WL) are defined as follows; 
 

{ })),(),((),( RExrorRFxrMTxxTL iii ∈∈∪∈=  

 

{ }OWraAaaWL ii ∈∈= ),(,  

 
 
d. Derived Sets of Objective 
 
For each objective(oi),, measureList (UL) is defined as follows; 
 

{ }QBuoUuuUL ii ∈∈= ),(,  

 
 

3.5 The Relationship of KAMA Metamodel Definition with Dynamic Verification 

 
The formal definition of model will be used in KAMA in three ways as explained below. 
 
Some of the rules form the basis of the dynamic behavior. These include the semantic 
definition of tasks, taskFlows, decisionPoints, synchronizationPoints, and task hierarchy. 
However the definitions of KAMA are limited in terms of dynamic execution as we will 
show in Chapter 4. In Chapter 5 we will list the needed extensions for the model elements 
related to task execution. In Chapter 6, we will describe the detailed execution 
mechanism. This will require extensions, model elements, properties and constraints in 
addition to described in this section. This more detailed model for dynamic verification is 
named as KAMA-DV. 
 
The special relations includes and extends that are described in mission space diagrams 
are further utilized for synthesis of task flow diagrams.  After synthesis the dynamic 
analysis will deal with task flow diagrams. We will explain this mechanism in section 5. 
 
Others which relate to more static aspects of the model will be utilized as they should be 
valid during execution and simulation. These rules are listed here and are used during 
checking the consistency of each instance during execution. 
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4 CONCEPTUAL MODEL DYNAMICS 

 
 
 
 

CHAPTER 4 
 
 

CONCEPTUAL MODEL DYNAMICS 
 
 
 
In this section we will discuss the characteristics of dynamics of conceptual models. In 
the first subsection we will discuss general characteristics. In the following one, first the 
limitations that prevent formal verification of conceptual model dynamics in the light of 
KAMA conceptual models and then the required extensions for the modeling constructs, 
task flow diagrams and the related model elements are discussed. In the third subsection, 
we will examine parts of mission space models to extract rules that will guide the 
conceptual model execution process. In this analysis we handle simpler modeling 
elements first, other elements later. 
 

4.1 Conceptual Model Dynamics Characteristics and Limitations 

4.1.1 Characteristics of Conceptual Model Dynamics 

 
In this subsection we will highlight basic dynamic characteristics of conceptual models. 
Dynamic behavior in conceptual model is described in two different ways, behavior in 
context of a mission or behavior in context of an entity. Behavior in context of a mission 
is described by mission space package elements, behavior in context of an entity is 
described by state flow diagrams.  
 
While the state flow diagrams described in KAMA metamodel are simplified version of 
state flow diagrams of UML, task flow diagrams include variations and extensions from 
their counterparts described in activity package of UML. We have provided detailed 
information on structural properties of mission space package of KAMA in the previous 
section. In this section we will highlight the important dynamic characteristics of task 

flow diagrams which are used for description of sequencing of tasks.  
 
CM.A1: A set of missions, tasks and other elements are described using a diagrammatic 
approach. 
 
The core of the mission space package is the task flow diagram and model elements of 
this diagram. Actor is a model element that is part of mission space package, but relevant 
in dynamic behavior. The mission and task model elements form the core of a KAMA 
conceptual model. One of the earliest attempts for conceptual modeling, the definition of 
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CMMS [6], also includes mission and tasks concepts. The mission and tasks definitions 
are also easier to define as their world counterparts exist such as mission and task 
manuals and procedures. Task flow diagrams and taskFlow associations are used to 
describe sequencing of tasks. Other than these synchronizationPoint is used to provide 
concurrent task executions by branching and decisionPoint selective execution of tasks 
and merging of executions. The mission and task model elements are primary elements 
having real counterparts while other elements are used for sequencing. We will further 
elaborate the behavioral aspects during execution in the next section before defining the 
execution semantics. 
 
CM.A2: Decomposition is possible for intermediate form of behavior representing units, 
tasks for the case of KAMA conceptual modeling notation. 
 
Decomposition is possible for tasks. In KAMA each task have a taskList which are the 
constituents of the task. There exists consistOf relation between the task and subtasks. 
The constituent tasks may be further decomposed to form a task hierarchy. Unlike 
CMMS, the KAMA does not include an element for representing action, the lowest level 
of task. If the conceptual model aims to develop entity level behaviors than actions can be 
defined for the tasks in the most lower level which are not decomposed. Also KAMA 
uses initialTask and finalTask constructs to mark the start and end of the flow relations 
between tasks similar to UML. Each decomposition of a task requires information on 
sequencing of constituent tasks.  
 
CM.A3: The upper or lower form of behavior representing unit can be identified within 
the context.  
 
As described earlier there is no definition for action in KAMA, the lowest level task that 
is not decomposed. So the lowest level is determined by the modeler considering the 
specific intent for the conceptual model. Although decomposition starts from a mission, 
mission can be equivalent to a task, if included by or extended in another mission. Both 
mission and action depends on the context both of which can be treated as task. 
 
CM.A4: A task and corresponding task flow diagram can either be global or describe part 
of the overall behavior. 
 
The task flow diagram can be global being equivalent to mission or related to a single 
entity. Moreover a task may be defined concerning all entities of an entity type or may be 
relates one instance of such an entity. So the context of a task varies greatly which also 
affects the other constituent tasks. 
 
CM.A5: A task can abort several other tasks.  
 
In a dynamic context, a task can affect other tasks even if the means for these effects are 
not defined during conceptual modeling. For instance a task may cause changing state of 
an entity which in turn aborts its tasks or a task may simply abort other tasks in order to 
continue. These relations are not explicitly defined in conceptual models as the effects of 
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tasks on entities are not defined in formal manner. Task description is generally in free 
text format. 
 
CM.A6: A task may consume or may not consume its inputs. Also it may produce or 
update its outputs. 
 
The relation of a task with the workProducts that represent inputs and outputs is open to 
interpretation. For instance a task may continuously get an information update (for 
example position of a platform) or order a weapon to launch. In first case the information 
update may still be available while for the second case the missile is consumed. 
 

4.1.2 Limitations of Conceptual Model Dynamics 

 
C.M.L1: The relationship between tasks is not perfectly available. 
 
In conceptual models the relations between tasks are not defined fully and thoroughly. In 
textual conceptual models, the composition of tasks into missions and decomposition of 
tasks may not include the information on sequence of tasks. Even if such sequence 
information is provided it may be unstructured.  
 
C.M.L2: Information depends on the context. The context is not defined precisely. 
 
Information is related to context in conceptual models. A mission or task definition 
includes a reference to a role or workProduct, but information on the workProduct is 
limited. Most of the information that contributes to conceptual model are in free text 
format and come from different sources. It is hard to fully acquire this knowledge and 
specify it in a structured format.  
 
C.M.L3: Information is not present for some parts of the conceptual model. 
 
Some information may be lacking for the mission and tasks. The lacking information may 
be about the sequencing, the roles, the workProducts or the objectives. The information 
may be either unavailable during conceptual model development, or may not be precisely 
known because of the aim of the simulation system which may represent a system that do 
not exist. 
 
C.M.L4: The information on the sequence of tasks may not be specified rigorously. 
 
The information on sequence of tasks may be provided in a very basic way. For instance 
the synchronization of tasks and decisions is not defined so the task decomposition may 
not include details on the sequencing of tasks. The operational concept may have hidden 
properties that are complex to explain and be structured. Moreover the mission space may 
aim to represent a virtual scenario which may not have existed so far. So the related 
entities (roles, workProducts, etc.) are defined in a limited way. 
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C.M.L5:  The information on which actions to be performed during a task execution is 
specified in textual form and may not be executable.  
 
This is the main limitation of conceptual models. The task descriptions are given in an 
unstructured textual form depending on the context rarely conforming to a formal syntax. 
The textual representation is both difficult to process and interpret. 
 

4.2 The Context of Dynamics in KAMA Models 

 
In this section the context of KAMA models will be discussed. Differences of KAMA 
mission space models described in the form of task flow diagrams with diagrammatic 
techniques used to describe similar information based on UML, UML Activity Package 
will be underlined. UML Activity is selected as a reference for comparison because of the 
similarities between KAMA notation and the similarities in scope. We will mention the 
difference of KAMA task and UML activity. As both definitions are used for rather 
liberal modeling without context we base our analysis on concrete examples from 
conceptual models. Then we will describe the task execution in case of conceptual 
models.  
 
After these we will describe the way a conceptual model can define general sequencing 
of tasks during execution and differences and similarities of this with semantics of UML 
activity models. Finally the properties and rules that drive execution of conceptual 
models are listed for the related elements. These properties and rules are categorized into 
two, mandatory rules that shall hold for execution of model elements and optional ones 
that may be helpful and meaningful for specific cases. 
 

4.2.1 Basic Tasks 

 
The sequencing and causal relations of tasks are described by taskFlow elements derived 
from control flow. An example describing the causal relationship between tasks is shown 
in Figure 4-1, which is taken from a conceptual model for describing the fixed wing 
helicopter operation. The causal relationship between tasks is simple for this case, after 
the termination of the first task “Gather at Take off Point”, the second task can start 
execution. For the second case however the causal relation is not so straightforward. 
During execution of the first task, “Continue in Mission Route” the “Observe output of 
sensors” task can be triggered in fixed or variable intervals. In fact while “Continue in 
mission route” has not been terminated, a specific execution of “Observe output of 
sensors” task can be executed and terminated. The first task continues its execution even 
after the successor task has started execution. So the executing task may trigger the 
execution of the successor task more than once. 
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Figure 4-1 Two Task Flow Diagrams with Different Semantics for Task Execution 
 
 
A similar issue can also exist, after the finishing of the predecessor task, the successor 
may not start. For this case, the reasons of not triggering execution of the successor task 
may be the termination status of the task, other elements between task executions 
(synchronizationPoints and decisionPoints) and unsatisfied guard condition of the 
taskFlow connecting two tasks and precondition of the successor task. The example of 
this type of occurrence can be seen Figure 4-2, where Stop the Power Supply Task may 
be delayed for some time after Stop the Surveillance Equipment task finishes. 
 

 

Stop the Surveillance Equipment

Stop the Power Supply

 
 

Figure 4-2. A Delayed Task Execution 
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If a synchronizationPoint of type join exists then the execution may be forced to wait for 
the other branch to terminate, this case will be explained in the following subsection. The 
case for unsuccessful completion of the task will also be explained in the next subsections. 
 
Another important property of a task execution is whether a separate execution of task is 
created or not. While only one execution of task is possible for some of the tasks, a 
separate task execution may occur for the others. If a task execution is single then only 
one execution will exist at a time that handles all further executions. If not a separate 
execution will be created in each case. Two examples for each kind of tasks from 
conceptual models can be seen in Figure 4-3. 
 
 
 
 
 

 
 

 
 

Figure 4-3 Task Flow Diagram Containing SingleExecution Task vs. a Task that is not 
SingleExecution 

 
 
Both of the cases exist in conceptual models, creating a variation during execution of 
tasks. So this variation is one of the obstacles for automatic conceptual model execution. 
We have following rule related to task dynamics for task execution for the case, where no 
consistOf association, synchronizationPoints, and decisionPoints exist.  
 
T-1: A task execution shall either be enabled during execution, in the time of termination 
or after termination of the predecessor task.  
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If a more restricted modeling approach was adopted during conceptual modeling, some of 
the variations may not be present. Then more restrictive optional rules can be used for 
management of task execution. 
 
T-O-1: The task shall enable the successor task during the execution or after finishing 
execution or may not enable it. 
 
T-O-2: The task shall enable the successor task at most once. 
 
T-O-3: If the successor task is a singleExecution task, it shall not be enabled again if it is 
executing. 
 
T-O-4: The enabled task shall start execution if all the preconditions are satisfied. 
 
These rules are defined for the mission space sequencing package. The relation of tasks 
with other elements is explained in the following sections. As the examples show, for the 
simple case of relation of a predecessor and successor task, conceptual models show a lot 
of difference from semantics described by UML activity package. UML specification 
states that the semantics is based on Petri nets, so an activity is triggered if only if the all 
the inputs are available and consumes all the inputs at once and present outputs when 
another activity is ready to accept tokens. In case of conceptual models a task can trigger 
another task even if it had not finished execution and more than once. 
 

4.2.2 The Hierarchy of Tasks 

 
The hierarchy of tasks that occurs as a result of consistOf relation and task flow diagrams 
and introduces issues other than explained in the previous subsection. The initialTask and 
finalTask elements also used to mark start and end of other tasks contained tasks, which 
are connected with a consistOf relation with the upper level task. Each decomposition has 
own task flow diagram which contains task model elements that can be further 
decomposed. 
 
KAMA decomposition of tasks differs from activity in UML 2.0. This difference can be 
seen from the metamodel definitions shown in Figure 4-4. In KAMA the hierarchy is 
maintained by consistOf relation between tasks while in UML the hierarchy is maintained 
by activity, activityNode and action model elements. So each activity is composed of 
nodes. As defined by the UML[27], “an activityNode is an abstract class for points in the 
flow of an activity connected by edges” so these points may be of class nodes, 

controlNodes and objectNodes. Another activity can be called by an action which is an 
activityNode of the activity. The behavior is not further decomposed in the activity but as 
described by the UML specification “a call behavior action may reference an activity 
definition, in which case the execution of the call action involves the execution of the 
referenced activity and its actions (similarly for all the invocation actions)”. So if activity 
is to be decomposed it is done by defining the activityNodes of the activity, then 
reference further activity elements by call behavior action of these activityNodes. 
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In KAMA a task is derived from both activity and activityNode. As such an activity that 
has tasks can be   composed of other tasks by consistOf relation instead of actions. This is 
because of the initial aim of the KAMA mission space package description of the 
structure of the conceptual model. 
 
 
 
 

 
 
 

Figure 4-4 UML activity, activityNode and action Relations  
 
 
The subtasks may be regarded as forming all the parent task or components of it. So an 
execution of subtasks may be started as soon as the execution of the parent task starts or 
during execution of the parent task. In the later case the execution of subtasks may start 
more than once during execution of the parent task.  
 
The execution of upper or lower level task may determine the context. Context is 
determined by the upper level task which contains the other tasks. Based on this context 
roles, workProducts, objectives are effected which will be discussed in the following 
subsections. 
 
The sequencing of contained tasks are described by a task flow diagram, the first node to 
be executed is the initialTask. The last node which does not have any outgoing 
connection is the finalTask. 
 
In Figure 4-5, a finalTask execution that upon termination destroys all the other tasks’ 
executions is shown. A counterexample can exist where a finalTask that will not abort 
execution of the other tasks. In UML 2.0[27] for clearly identifying the difference, two 
distinct elements named as FlowFinalNode and ActivityFinalNode exist. 
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Figure 4-5 FinalTask Differences in Execution 
 
 
Based on the above explanation, the rules concerning the initialTask and finalTask 
elements are as follows; 
 
I-1 An initialTask shall be executed only during the execution of a task that contains the 
node.  
 
F-1 A finalTask shall finish execution before the containing task finishes execution. 
 
Further semantic variations were observed in conceptual models that confirm to rules 
explained as IN-1. The optional properties for initialTasks are listed as; 
 
I-O-1: The initialTask execution shall be created when the continuing task execution is 
created.  
 
I-O-2: The initialTask execution shall be created when the containing task execution is 
started. 
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Further semantic variations were observed in conceptual models that confirm to rule 
explained as FN-1. These optional properties are listed below where FN-O-1 stands for a 
similar case with UML 2.0 finalNode. 
 
F-O-1: The finalTask execution shall cause termination of tasks that started execution by 
the same containing task execution.  
 
F-O-2: The finalTask execution shall cause termination of containing task. 
 
Other than these related to the execution of contained tasks, subtasks, the following rules 
exist;  
 
CO-1: Subtask executions shall not extend execution interval of containing task. 
 
Other optional properties for subtask executions are listed below. 
 
CO-O-1: The subtask executions shall be unique. For each of the execution exactly one 
subtask execution can be created. 
 
CO-O-2: The subtask executions shall not overlap, so during execution of parent task at 
most one task shall execute. 
 
CO-O-3 The subtask executions shall be ordered. First started execution shall finish 
before the next execution. 
 
CO-O-4: A subtask execution shall be executed only by one task. Subtasks can not be 
shared by more than one task. 
 

4.2.3 SynchronizationPoint Model Element 

 
SynchronizationPoints occur as two types, the fork type is used to create multiple task 
executions from a single execution, and join type is used to trigger a single execution 
from multiple incoming executions. Whether a fork node will execute if all the following 
branches accept, some of the branches accept or only one branch accepts is not explicitly 
explained in the KAMA definition.  
 
Also the definition of fork node is present but it is not known whether the branches are 
matched, so that only matched executions are joined, is not discussed. Furtherly 
synchronized groups of tasks can be defined. The definition can be made by matching 
fork and join nodes. After matching the nodes, the execution can be a matched one or 
unmatched one.  
 
After finishing a previous task, the fork type synchronizationPoint will create 
synchronization. During synchronized task executions, a decisionPoint or another fork 
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may provide an exit from the branch which shall later block joining. The synchronization 
nodes can also create loops which shall be checked for termination. 
 
S-O-1: There shall be no leaving branch from synchronized branches. All the branches 
shall be connected with the join type node. 
 
S-O-2: The executions shall be matched in a fork node shall only be later be joined by a 
join node.  
 
S-O-2-1: Synchronized task executions shall start and finish at the same time. 
 
S-O-2-2: Synchronized task executions shall overlap for some intervals. 
 
S-O-2-3: At least two of the synchronized task executions shall overlap during execution. 
 
S-O-2-4: The tasks on separate synchronization branches shall not overlap. 
   
S-O-3: The synchronized branches can be connected based on predetermined conditions. 
 
S-O-3-1: Synchronized task executions can be joined if only if all the branches completed. 
 
S-O-3-2: Synchronized task executions can be joined even if some of branches are not 
active.  
 
S-O-3-3: Synchronized task executions can be joined even if some of branches are not 
active.  
 
S-O-4: Synchronized task executions order can depend on order of the other branches in 
the synchronization. 
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Figure 4-6 A SynchronizationPoint of Fork Type with Flows Synchronized 
 
 
Another problem occurs in case which fork node is storing tokens in case at least one of 
the branches start execution but one of others could not if Petri net based semantics is 
used. For this reason we add an optional constraint. 
 
S-O-5: Synchronization point of type fork will not execute if one of the succeeding 
branches failed to start execution. 
 
S-O-6: Join node will execute if all branches terminate.  
 
S-O-7: Join node will execute only a set of determined branches terminate. 
 
S-O-8: If only a subset of the control flows to a join node is available than all the 
matched executions shall be terminated. 
 
The synchronization nodes provide mechanism to enable execution of a set of taskFlows. 
The task execution during synchronization may not be explicit. In that case there is no 
need to match the fork and join type synchronizationPoints. After execution of task one 
of the enabled tasks may not start because of several reasons. In that case we have to 
continue its enabling or not. In the join case whether the information shall arrive 
synchronously or not is a problem. It shall be required that the information arrives at the 
same time or not.  
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4.2.4 DecisionPoint Model Element 

 
When a decision node executes a single branch is chosen for execution. Then the node 
shall be marked according to the decision. As stated in KAMA metamodel the 
guardConditions of taskFlows from decisionPoints therefore the branches are mutually 
exclusive.  
 
D-1: Only one of the branches shall be selected for each decisionPoint execution.  
 
For some of the conceptual models there may be requirement on the execution of each 
branch as follows; 
 
D-O-1: Each outgoing branch of decisionPoint shall be executable.  
 
The decisionPoint can create a loop, whose termination may also be checked. 
 

4.2.5 Cascaded DecisionPoints and SynchronizationPoints 

 
Cascaded nodes will cause complexities during execution and their interpretation is 
complex. One of the cases to be avoided in conceptual models is cascading of the 
intermediateNodes which do not have direct real counterparts unlike missions or tasks. 
 
IN-O-1: intermediateNodes shall not be cascaded. 
 
IN-O-2: synchronizationPoints and decisionPoints shall not be cascaded. 
 

4.2.6 WorkProduct Package Model Elements 

 
The KAMA workProduct package includes workProduct model elements, inputTo and 
produces relations. Task descriptions can define the requirements of work products in the 
preconditions of tasks.(See Appendix A.4) These work products are modeled with 
workProduct model elements. The availability of workProducts may be a constraint for 
the task execution. The examples of such constraints are as follows; 
 
WP-O-1: The executed task shall have inputs. 
 
WP-O-1-1: An input will be consumed by the executed task and will not be available. 
 
WP-I-1: The executed task shall provide outputs. 
 
WP-I-1-1: A new output will be produced by the executed task. 
 
The workProduct notation is also another concept in conceptual modeling whereby a 
single workProduct can be attached to more than one task. 
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4.2.7 Role Package Model Elements 

 
We have two optional rules that effects execution of tasks. One of them is about 
assignment of roles to tasks, the other is assignment of roles to actors. 
 
R-O-1-1: Each executing task shall be assigned to a role by using realizes relation. 
 
R-O-1-2: Each executing task shall be assigned to a role by using responsibleFor relation. 
 
R-O-1-3: Each executing task shall be assigned to a role either by using a realizes or 
responsibleFor relation 
 
R-O-2-1: A role shall be assigned to an actor. 
 
R-O-2-2: A role shall be owned by an actor. 
 
Other variations may exist due to task hierarchy. 
 
R-O-3-1: If a role is not assigned for a containing task than the role shall be assigned to 
contained tasks. 
 
R-O-3-2 If a role is not assigned for a contained task than the role is the same as the 
containing task. 
 
 

4.2.8 Objective Package Model Elements 

 
For the objectives two basic requirements may exist for the executions. The objective 
elements are either shall have an objective or assigned the objective of higher level task. 
The objective shall have measure. 
 
O-O-1: Each task execution shall have an objective. 
 
O-O-2: Each executing task shall have an objective or have the containing task 
execution’s objective. 
 
O-O-3: A task execution’s objective shall have at least one a measure.  
 
If objectives in conceptual models are more thoroughly defined, more strict requirements 
can be attached so that tasks may only terminate if objectives are successfully attained. 
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4.2.9 Other Static Relations  

 
The dynamical aspects of task execution are also constrained by static relations. The 
relations between the actors and workProducts shall be consistent with the dynamic 
descriptions.   
 
Actors can be related with each other in command hierarchy diagrams. Usually 
containing tasks will be assigned to roles of actors which are superior to roles of actors 
of subtasks.  
 
WorkProducts are related in entity ontology diagrams. There can be related workProducts 
in contained and containing tasks that shall be consistent with the information in entity 
ontology diagrams. 
 

4.2.10 Relations with Objects (Instances of Entities) 

 
Task execution affects individual objects. If more information is available on the objects 
states in during task execution and attribute values more through analysis can be 
performed. However since we deal with cases where the task descriptions are not defined 
in the context of entities, this topic is not in our primary focus. 
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5 V&V REQUIREMENTS FOR CONCEPTUAL MODEL DYNAMICS 

CHAPTER 5 
 
 
V&V REQUIREMENTS FOR CONCEPTUAL MODEL DYNAMICS 

 
 
 
As seen in Chapter 3 and 4, the relationships between tasks are defined in such a way that 
automatic execution is not possible. In the context of conceptual models a task can be 
used to represent a wide range of behaviors, from the behavior of a single element to that 
of many elements constituting a large system. In this Chapter we will further try to clarify 
context of conceptual model dynamics. Section 5.1 below will provide the requirements 
for verification and validation of conceptual models and Section 5.2 will provide the 
framework for execution of model elements that can be used during dynamic verification 
process. 
 

5.1 Conceptual Model Verification Requirements 

 
Given characteristics of conceptual models in chapter 3 and the dynamic semantics of 
elements in section 4 makes possible of checking some properties, however given a 
dynamic description in a conceptual model it is impossible to determine the exact 
behavior. Rather than finding incorrect behavior, a more pragmatic and useful approach 
will be determining if the dynamic interpretation of the conceptual model implies 
behavior that is valid. 
 
We will elaborate more about the execution of tasks in the following sections. However 
for the sake of completeness, we will categorize the requirements of dynamic behavior 
verification as follows:  
 
 

i. Any behavior shall not be allowed that include a task does not end execution, 
the deadlocks and a set of tasks executing infinitely many times, livelocks.  

 
ii. The capability to limit certain execution orders based on the information 

presented in the conceptual model as text. For instance even if two tasks are 
not depicted in the same task flow diagram, there may be a precedence 
relation between them.  
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iii. In addition to precedence relation explained in the previous paragraph, for 
some of the tasks other constraints may exist such as two task executions 
sharing some time frame. 

 
iv. Other than these constraints related to sequencing, other constraints may exist 

between tasks based on the roles and workProducts which will further make 
the executions that to do not obey them invalid. 

 
 
 

5.1.1 Error Prone Parts of a Conceptual Model 

 
While it will be generally agreed that most errors will occur in more complex parts of the 
model, finding the complex parts is not an easy task. To our knowledge, there is no work 
dealing with the complexity of simulation conceptual models or conceptual model parts.  
 
The general approach is application of complexity metrics used for computer programs to 
models. However most the work related to metrics in modeling deals with complexity of 
the class diagrams [81] [82]. In a related work, activity diagrams describing the steps of 
functions of classes, is used to evaluate the number of function calls to distinct classes to 
determine complexity of the models. List of ideas on diagram complexity is provided in 
earlier works [83]. Also research at earlier stages [84] aiming to define and evaluate 
metrics comprehensively considering novel UML developments exist. 
 
In the case of business models there are more relevant work for determination of 
complexity [61]. If sufficient information on determining model complexity is defined, it 
can be used to plan verification activities.  
 

5.2 Execution Dynamics for Model Elements 

 
In this section based on the findings of Chapter 4 and dynamic verification requirements 
specified in section 5.1, we describe the execution framework for conceptual models and 
for mission, task, taskFlow, synchronizationPoint, decisionPoint, initialTask, finalTask. 
After that we describe the mechanism for inspection of these elements dynamically. 
 

5.2.1 Basic Concepts Related to Execution of Tasks  

 
Based on observations on Chapter 4, we will explain a general execution framework first. 
Then for each model element in the context of task flow diagram, we will explain the 
dynamic aspects and variances in terms of our framework.  
 
Considering these properties some basic assumptions shall be made for execution of tasks. 
First of the basic assumption is that task execution may be instantaneous or span time in 
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real world. As we are dealing with tasks that have some practical counterpart in real 
world, we adopt this assumption. Secondly we assume that the taskFlow association is a 
form of relationship that provides causality between task executions. So if one task 
execution enables other’s execution, the second could not start before that task. These 
two assumptions form the basis of our task execution approach.  
 
Other than these, inspection of KAMA metamodel points out that the special elements in  
mission space package like initialTask, finalTask, synchronizationPoint, and 
decisionPoint are described as intermediate constructs. For instance these elements lack 
attributes and therefore is not used to describe tasks, but to describe causal relationships 
between tasks. Therefore the execution of these elements does not take time. These 
elements are used for proper sequencing of the tasks. These sequencing is done by 
marking time points. However these elements can introduce delays. Delays can be as a 
result of guards of the taskFlows or introduced intentionally by the user.  
 
During execution the main unit that the events are located is the order, instead of time. So 
after the assumptions of execution we will discuss how order is manipulated during the 
execution. An event that starts later is regarded to have a larger order. In case during 
execution an event can be given the same order as the previous. We discuss the specific 
cases in the next subsection. Elements such as synchronizationPoint, decisionPoint, 
InitialTask and finalTask elements acts as “traffic switches” (term is used in UML 2.0 
standard to describe the Intermediate Package of Activities). 
 
While we consider that the execution times of the tasks, we also take into consideration 
the fact that during mental execution the exact timing of the tasks may not be known 
precisely and fully. While we define the execution rules for the tasks as below we do not 
aim to provide a direct timing analysis for the execution tasks. Such a timing analysis 
requires much more information on timing than that is present in a conceptual model. Our 
primary interest is the order of the tasks during the execution. The order is important for 
two purposes: 
 

1. The sequencing relations defined by task flow diagrams constraint the order. By 
this way execution is managed and controlled by the task flow diagram. An 
example execution described by the conceptual model can be produced by using 
the information in the conceptual model.  

 
2. Satisfaction of constraints about the order of tasks can be checked. These 

constraints may be deadlocks, live locks and on abortion of tasks, execution times. 
 
There are two distinct types of dynamic model elements in mission space behavior 
descriptions. First is the elements used for representing real counterparts, mission and 
tasks. Second type is used for sequencing of these, taskFlows for basic sequencing, 
initialTasks and finalTasks for organization of task hierarchy, synchronizationPoints for 
synchronization of tasks, decisionPoints used for branching and merging. While the first 
type of execution can consume time the second type can not, while both types can 
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introduce delays during the execution to describe the proper execution order equivalent to 
real order of the mission and tasks. 
 
Mission elements are also treated as tasks. For mission elements that are related with an 
includes relation with an other element, the task of included mission is also available 
during execution. If a mission extends other mission, the extended mission’s elements are 
also embedded included after the extension point.  
 
In Figure 5-1, the bar notation shows the creation of a particular element and execution of 
it. The corresponding to real world execution is shown with an arrow. The execution of 
taskFlow and other elements mark single points in execution. The points are used to 
determine the occurrence order of tasks during execution. 
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Figure 5-1 Execution States of Elements of Task Flow Diagram  
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5.2.2 Phases of Task Execution  

 
The lifeline of task execution is shown in Figure 5-2. The task execution has three 
distinct points that mark enabling of the creation time of the task (eij), starting of the 
execution (sij), finishing of the execution either by termination or abortion of the task (fij).  
 

 
 

Figure 5-2 The Creation, Starting and Finishing Time of a Task Execution 
 
 
Time elapsed between the creation and execution of a task ∆tk= sij - eij, is the waiting time 
of the task. The waiting time can occur because of task waiting for preconditions to be 
satisfied which may exist because of the extensions of the task flow diagram or because 
of the relations between tasks that are not depicted explicitly by the task flow diagram. 
The creation of the task has not a direct counterpart in the real world. It is used for proper 
scheduling of the task executions. It can be zero if the task does not wait for execution 
after creation. 
 
The execution duration of the task ∆te= fij - sij represents the real execution time of the 
real task. If the task is an instantaneous task its duration may be equal to zero.  
 
In our approach, the executions of tasks are described using order of the tasks rather than 
time. The order of a task is chosen for execution for the following reasons. First the order 
of execution is more important in conceptual modeling than the exact times. As 
conceptual model is an abstract representation of the reality, the definition of tasks and 
sequence of task executions are more central. Also related to this, the execution times are 
not precisely defined in a conceptual model generally. Yet the scale of timing may vary 
much in a conceptual model as well as in a simulation. So it will be hard to provide a real 
execution before the implementation of the simulation. 
 
 
 
 
 
 
 

sij fij eij 

∆tl ∆tk 
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5.2.3 Example of Basic Triggering during Task Execution 

 
In Figure 5-3, we have depicted two subsequent task executions conforming to scheme 
explained in previous subsection. In the following paragraphs, we will explain the 
relationships between the tasks based on the principles for task execution. Then we will 
describe the relations based on the order concept. 

  
 

Figure 5-3 General Case of Task Execution 
 
The first relation is preservation of causality, so the starting time of task 2 cannot be 
earlier than starting time of task 1 so s11≤ s21. The relation between orders is as follows, 
s11≤ s21 than o2≤ o5. 
 

The second property is the execution of task 2 shall be enabled during execution of task 1 
so s11 ≤ ttr ≤ f11.  This also results in the constraint that s21 = ∆twf  + ∆tw2. If there is a guard 
condition of the taskFlow than we assume that the flow will wait ∆twf until it is satisfied. 
As we assume no unrecorded or unattributed time passes  
 
Also we shall add here the constraints e11≤ s11≤ t11 and e21≤ s21≤ t21.  

 

Given these two we shall add also another constraint s11 ≤ e21 for the execution approach. 
 

s11 f11 e11 

∆te1 ∆tw1 

∆twf 
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∆te2 ∆tw2 

ftr 

o1 o2 o3 o4 o5 o6 



 67 

Finally it shall be underlined that primary interest of the modeler is the start and finish 
orders of the tasks. The creation and execution orders of other elements are used for 
proper sequencing of tasks. So in the next subsections we will focus on relation between 
task execution orders. 

5.2.4 Variances in Task Executions Related to Model Elements 

5.2.4.1 Successor Task Execution 

 
In Figure 5-4, we have depicted several cases of successor task execution. The task can 
either be executed during execution (Figure 5.4.i) or after the previous execution (Figure 
5.4.iii), also it can execute for multiple times for both cases. In another case the execution 
of successor task can start with the finishing of the predecessor task (Figure 5.4.ii). In this 
case the execution may be one of the several executions that started earlier or later. In a 
more broad case the execution of the successor task may occur after the execution of 
predecessor task with some delay. 
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Figure 5-4 Execution of Successor Task 
 
 

5.2.4.2 SynchronizationPoint (Fork Type) Execution 

 
We present several examples of task executions in Figure 5-5. The synchronization can 
cause immediate start of the following tasks at the same execution point (Figure 5.5.i) or 
just after finishing of the task before the synchronization (Figure 5.5.ii). In a generalized 
case the synchronized tasks can start later because of the delay because of the 
guardConditions in taskFlows or by themselves after they are enabled (Figure 5.5.iii or 
5.5.iv). 
 
In Figure 5-5, different colors indicate unmatched executions. In another case the fork 
can mark executions so that only the matched executions can join later in the flow by an 
associated join type SynchronizationPoint. 

 

 
 
 

Figure 5-5 Execution of Fork Type SynchronizationPoint 
 

 

5.2.4.3 SynchronizationPoint (Join Type) Execution 

 

The synchronization point is also used to join the multiple branches to from a single 
branch. Then these executions that are joined finish at a single instant as shown in Figure 
5-6, the former for the matched case, the latter for the unmatched case. Also a delay can 
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be introduced for the execution of joined executions so that the successor task can start 
after their execution finishes. 
 

 
 

Figure 5-6 Execution of Join Type SynchronizationPoint 
 

 
As an alternative the executions to be joined may not be required to finish at the same 
instant as shown in Figure 5.6.v and Figure 5.6.vi. This is also possible for the unmatched 
executions as shown in Figure 5-6.vii and Figure 5-6.viii. 
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As the decisionPoint executes the time for decision is marked and the other tasks 
continue their execution. A decisionPoint execution is directly associated with the task 
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execution which triggers it. Only one decision at a time will be selected. As in the case of 
successor task execution the decision may start before finishing of the predecessor task or 
with a delay as shown in Figure 5-7. 
 

 
 
 

Figure 5-7 DecisionPoint Execution 
 

 

5.2.4.5 Task Hierarchy Execution 

 
The task can cause execution of the tasks which it includes during its execution. The 
execution of the contained tasks may be in parallel with the execution of the containing 
task. The task executions may start later, finish earlier, or both. Multiple executions of the 
subtasks can also occur, and these executions may overlap. These variations are shown in 
Figure 5-8. The overlapping executions may be ordered as subtask execution that starts 
earlier executing, finishing earlier or unordered. 
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Figure 5-8 Execution of Task Hierarchy 
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6 THE VERIFICATION APPROACH FOR CONCEPTUAL MODEL DYNAMICS 

CHAPTER 6 
 
 

THE VERIFICATION APPROACH FOR                                
CONCEPTUAL MODEL DYNAMICS 

 
 
 
In this chapter the approach for dynamic verification of conceptual models will be 
explained. The aim of the approach is verification of dynamics of Conceptual models by 
exploiting the advantages of model based approach. As we have discussed in Chapter 2 in 
literature survey, the availability of conceptual models is the main limitation in 
developing the approach. Existing KAMA models which conform to KAMA metamodel 
do not have information so that they can be analyzed dynamically based on the execution 
rules given in Chapter 5. We have included the dynamic information requirements in the 
KAMA-DV metamodel we provide in this chapter. This will provide a baseline for the 
future studies that aim to form models that can be analyzed based on the execution rules 
while in this study we left out such an approach.  
 
The method requires performing a set of activities. The general information of overall 
method is provided first, then each step is explained. Each step consists of application of 
semiformal or formal methods for verification. 
 
In this chapter first the model based verification approach is explained. After this general 
explanation of model based approach, KAMA-DV metamodel which provides the basis 
for the approach is described.  The additional model elements and properties of KAMA-
DV metamodel, which differentiate it from KAMA metamodel expressed in Chapter 2, 
are based on the semantic variations expressed in Chapter 4 and execution approach 
described in Chapter 5.  
 
Then we will outline the process of dynamic verification. In the last section, we will 
provide the description of tools that are used to realize the parts of the verification 
approach. 
 

6.1 Model Based Verification Approach 

 
As we aim to develop the verification using model driven approach [25], we have a set of 
models to work on during the verification process. The first model is KAMA model that 
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is developed based on KAMA metamodel. KAMA tool which includes a graphical editor 
and additional capabilities can be used for this activity.  
 
Secondly we have the KAMA-DV Model based on the KAMA-DV Metamodel. This 
model includes all the model elements and rules expressed in KAMA and further 
dynamic extensions. These extensions are added for finding the errors and issues related 
to dynamics and support dynamic analysis.   
 
The compliance of the KAMA-DV Model to its metamodel is the primary step of any 
verification effort dealing with dynamics. The second step is to analyze model to detect 
any errors stemming from dynamics. In Section 6.4, we will provide information on the 
tools that can support our approach and both explain how the necessary tool is used to 
check rules related to dynamic descriptions and how dynamic analysis can be performed. 
 
 

 
 

 
Figure 6-1 Distinct Models Used for Verification 

 
 
 

6.2 KAMA-DV Metamodel 

 
In this section, we briefly explain KAMA-DV Metamodel. KAMA-DV Metamodel is 
developed based on the semantic differences of model elements in KAMA models and 
dynamic requirements. In particular the KAMA-DV additions can be categorized in three:  
 
First the KAMA approach is formally represented in Chapter 3, but the properties related 
to task hierarchy and task flow diagrams are left out as they are also left out in original 
KAMA. In KAMA-DV a particular addition is done to explicitly define semantics for the 
hierarchy by additional elements and rules, that are vaguely defined in KAMA. Some of 
these changes also affect the original KAMA metamodel constraints. 
 
 



 74 

Secondly based on the observations in Chapter 4, additional properties and rules related 
to dynamics are added to represent these. Some of the constraints are added for better 
classification of errors and  having a clear representation to ease application of dynamic 
verification.  
 
Thirdly elements representing the dynamic instances of the various elements are also 
added. These elements have the properties that will represent the execution approach in 
Chapter 5. This are added to KAMA-DV Metamodel as a seperate package. 
 
In the following section we will briefly describe the model elements, properties and rules. 
Later we will define the properties and constraints formally in a way similar to Chapter 3. 
 

6.2.1 KAMA-DV Metamodel Organization 

 
KAMA-DV has two main packages, first contains the elements in KAMA and dynamic 
extensions, second contains the instances representing executed instances of these 
elements. The relations between the elements of these two packages is similar to relations 
between classes and objects in UML definition. 
 
For some of the rules we add additional atrributes to the KAMA metamodel elements. 
The information contained in these atrributes will be used in dynamic erification and 
execution. These rules together with KAMA rules constitute the KAMA-DV metamodel. 
In this section first we will briefly discuss the KAMA-DV elements that are not explicitly 
included in the KAMA Metamodel. These are TaskFlowDiagram element, consistOf and 
representedBy associatons. In this section we will detail the elements of KAMA-DV 
model. 
 

6.2.2 KAMA-DV Core Package 

 
KAMA-DV Core is the main package that includes all the information related to 
dynamics. It contains the KAMA Mission Space Package by merging it. The extensions 
of elements are explained in the following sections. Sets of ordered pairs for associations 
is defined, as RB for RepresentedBy, HC for hascontext, IS for isShown and CN for 
context property similar to Chapter 3. 

6.2.2.1 Task 

 
The semantics of task of KAMA-DV is similar to task of KAMA. As we will explain the 
same task may be associated with more than one task with consistOf association. When 
this happens the task is included in more than one task flow diagram and for each 
diagram it will have both incoming and outgoing taskFlow associations. So a task will 
have a taskFlow participation for each diagram. 
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We are required to represent the task flow diagram as distinct model element. Two 
relations between a task and task flow diagram elements may exist: 
 

i. A task flow diagram can show the subtasks of a task. Then the task is 
associated with representedBy relation with the task flow diagram.  

ii. A task can be shown in a diagram. This occurs when the tasks is a subtask of 
another task that is in representedBy association with the task flow diagram. 
Than we add the isShown association between the task flow diagram and the 
task. 

 
We also include a property for the tasks that is not part of KAMA. These properties are 
needed for capturing the semantic differences explained in Chapter 4.  
 
 

Properties 

 
Context: This property is the set of pairs of task flow diagrams and tasks. Task flow 

diagram is one of the the diagrams this task participates representedBy association and 
tasks are parent tasks of this task. 
 
 

Rules 

 
1. A task participates in consistOf association as a containing task if it is shown in a task 

flow diagram which represents the containing task. 
 

)),(

)),(),(((

COyx

impliesSIzyandRBzxandTDyandTDzTx

∈

∈∈∈∈∈∀
 

 
2. The task has a single incoming taskFlow and outgoing taskFlow for each task flow 

diagram. 
 
For representing this constraint, we separate all related cases into two where a task does 
not consist of any subtask and consist of one or more subtasks. We further decompose 
these constraints into two as incoming and outgoing taskFlows. 
 

))),(,(

)),),((((

)).),(,(

))),((((

zoneonlyforTFxzTzimplies

COyxTyTx

zoneonlyforTFzxTzimplies

COyxTyTx

∈∈

∉∈∀∈∀

∈∈

∉∈∀∈∀
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For the case where a task is represented by one or more task flow diagram, for every task 

flow diagram, task is associated with shownIn, there is only one incoming taskFlow and 
outgoing taskFlow. 
 

)).),(,),(,(

)),(,((

)).),(,),(,(

)),(,((

yoneonlyforTFxySIzyTyimplies

SIzxTDzTx

yoneonlyforTFyxSIzyTyimplies

SIzxTDzTx

∈∈∈

∈∈∈∀

∈∈∈

∈∈∈∀

 

 
3. The task can not participate in consistOf association with itself or a task that consistOf 
itself.  So a task does not contain itself recursively. 
 

iii
TCwhereTCtTt ∉∈∀ , is the set of closure of the task with respect to consistOf 

association. So closure set is defined as the consistOf tasks of the task and closure of 

them, jjiji TCCOtttTC ∪∈= },),({ . 

 
4. If the task contains one or more tasks and participates in a representedBy association 
with a task flow diagram then it shall consistOf with at least one element of type 
initialTask. 

 

))),((

)),(),(((

COwxandIw

impliesRBzxandCOyxandTDzandTyTx

∈∈

∈∈∈∈∈∀
 

 
5. If the task contains one or more tasks and participates in a representedBy association 
with a task flow diagram then it shall consistOf with at least one element of type 
finalTask. 

 

))),((

)),(),(((

COwxandFw

impliesRBzxandCOyxandTDzandTyTx

∈∈
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6.2.2.2 Task Flow Diagram 

 
KAMA-DV has the task flow diagram as a model element rather than a view. This is 
consistent with the aim of KAMA-DV since the exact aim is to develop a metamodel for 
verification of dynamic properties and execution and task flow diagram is the diagram 
describing the relations between tasks.  A task flow diagram resembles a source code file 
as it describes the dynamics of the model. As explained in the definition of task, the 
precise definition of task as a part of other tasks requires task flow diagram definition. 
 
In this respect we treat a task flow diagram similar to an activity associated with an 
activity node of UML. A task flow diagram stand for a single interpretation of the the 
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task based on a given context. So in this case a task itself may have more than one 
interpretation, where only one of them is valid for a given context. Context is associated 
task that contains the related task. Each task flow diagram can be associated no or 
multiple contexts. Context is used to resolve which diagram is used to define the 
behaviour of subtasks. 
 
The task flow diagram bears no direct relation with the concept of a diagram presented by 
the UML standard or XMI diagram interchange format. For UML, diagram is a view of a 
model while XMI DI deals with the orientation of nodes and elements and their 
relationships, concrete syntax.  In our case, task flow diagram provides a description of 
the relations between subtasks and other elements for different occurrences of a task. 
 
Properties 

 
1. isUnique: This attribute is used to describe the nature of the tasks. 
 
2. isOrdered: This attribute is set if the task executions of the task are ordered. For 
ordered task flow diagrams, the executions of subtasks occurs in an order, the first strated 
task execution completes first. 
 
3. isOverlapping: This attribute is set if the task executions of the task can overlap. If 
seperate executions do not use the same resource than they can overlap. 
 
 

Rules 

 
The task flow diagram shows tasks that are subsets of the tasks that the diagram 
represents. 
 
1. If a task flow diagram is defined in the context  of a task, that task shall be in consistOf 

relation with the tasks that task flow diagram represents. 
 

))),()),(),),((,( COzyimpliesCNxyRBxzTzyTDx z ∈∈∈∈∀∈∀  

6.2.2.3 representedBy  

 
The representedBy relation is used to describe that the a task flow diagram represents a 
task. One task can be represented by more than one task flow diagram. This relation only 
exist between a task and a task flow diagram.  
 
Rules 

 
1. A model element of type task and task flow diagram participates in each representedBy 
association.  
 

),(),( TDyTxRByx ∈∈∈∀  
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6.2.2.4  isShown 

 
Although we have explicitly added the representedBy association for the representation 
of tasks, we can define isShown associations by using the others. isShown association 
shows that a task is shown in the diagram.  
 
 
Rules 

 
1. Element of type task, taskFlow, initialTask, finalTasks, syncronizationPoints or 
decisionPoints and element of type task flow diagram participates in each isShown 
association. 
 

),(),( TDyDSFITxRByx ∈∪∪∪∪∈∈∀  

 
2. A task can only be shown in a diagram if it is one of the subtasks of the task that this 
diagram represents.  
 

))),(,),(()),((,, COyxRBzximpliesSIzyTDzTyx ∈∈∈∈∈∀  

 
 

6.2.2.5 hasContext 

 
If a task flow diagram is valid for explaining the dynamic behaviour of a subtask than is 
is meaningful in the context of the task. A task flow diagram may have more than one 
context, as the behaviour it describes may be valid for more than one task.  
 

Rules 

 
1. The source element of hasContext is of type task flow diagram and target of type task.   
 

),(),( TyTDxHCyx ∈∈∈∀  

 

6.2.2.6 SynchronizationPoint 

 
For synchronizationPoint additional attribute is added for identifying fork and join type 
synchronizationPoints. This is based on the multiplicity of SyncronizationPoints in 
KAMA model.  
 
Other than these for specifying the precise model execution additional attributes are 
added for matched fork and join type syncronizationPoints.  
 
Other attributes are defined for specifying the behaviour of the synchronizationPoints  
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In KAMA-DV synchronizationPoint has additional attributes for model execution.   
 
Property 

 
1. isJoin: This attribute is a derived attribute to explicitly define the type of the 
synchronizationPoint.  
 
2. MatchedNode: This attribute holds the ID of the node that this node is matched with. A 
fork and join is matched if during exection all the taskFlows from a fork node to be 
matched by a join. 
 
3. isSynchronizedFork: If the outgoingFlows are synchronized meaning succeding tasks 
start at the same order, or if the incomingFlows are synchronized meaning preceding 
tasks end at the same order this attribute is set to true. 
 
4. forktriggeringType: This attribute specifies the triggering type of the 
syncronizationPoint based on the timing of the succeding task execution. The triggreing 
type is of type triggering type. 
 
5. joinTriggeringType: This attribute specifies the triggering type of the 
syncronizationPoint based on the timing of the succeding task execution. The triggreing 
type is of type triggering type. 
 

6.2.2.7 DecisionPoint 

 
Some of the decisionPoints are used to merge the flows previously diverted by 
decisionPoints that have more than one outgoing taskFlows. 
 

 

Property 

 
1. isMerge: If decisionPoint has a single incoming taskFlow and multiple outgoing 
taskFlows then this attribute is set to one.  
 
2. triggeringType: This attribute is set to an ennumarated value based on the triggering 
type of the synchornizationPoint.  
 

6.2.2.8 InitialTask 

 
The initialTask has an additional property for defining the exact nature of starting of the 
subtask. Based on this property further constraints are defined in execution. 
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6.2.2.9 FinalTask 

 
The finalTask has an additional property for characterization of the behaviour when it is 
reached in execution. 
 
Property 

 
1. isfinalFlow: If the finalTask executions destroys all the active executions that is shown 
in the task flow diagram it is shown than this boolean attribute is set to true.   
 

6.2.3 KAMA-DV Behaviour Package 

 
In KAMA-DV behaviour package we include the executable versions of model elements. 
The executable versions of model elements are based on the execution framework adn 
model element execution rules presented in Chapter 5. As explained in Chapter 5 the 
execution is different for tasks and intermediateNodes.  
 

6.2.3.1 TaskExecution 

 
TaskExecution is used for representing an executin of a task. Following properties exist 
for a task execution. Task execution is created during dynamic behaviour execution. The 
task execution has following attributes  
 
Property 

 
context: It determines the execution context of the task. It is determined by the task flow 

diagram the task starts execution and preceeding node and taskFlow. 
 
creationOrder: It is the oreder of creation of the taskExecution. 
 
startingOrder: It is the order of starting of the taskExecution. 
 
endingOrder: It is the order ofending of the taskExecution. 
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6.2.3.2 IntermediateNodeExecution 

 
IntermediateNodeExecution is used for representing the execution of intemerdiateNodes. 
According to framework given in Chapter 5, these executions are created and triggered. 
 
Property 

 
nodeType: This attribute represents type of the node the intermediate node execution 
refers.  
 
context: It determines the execution context of the intermediateNode. It is determined by 
the task flow diagram the intermediateNode starts execution and preceeding node and 
taskFlow. 
 
creationOrder: It is the order of creation of the intermediateNodeExecution. 
 
triggerOrder: It is the order of triggering of the intermediateNodeExecution. 
 

6.2.3.3 dynamicInstanceOf 

 
This association exists between the structural elements and their dynamic instances. A 
dynamic instance is an instance of a corresponding structural element. 
 
 

6.3 General Outline of the Method 

 
The method for dynamic verification consists of 4 distinct steps, which are shown in a 
task flow diagram in Figure 6-2.  
 
Verification tasks are executed in a sequential fashion; if problems are encountered in a 
task then the activities of previous tasks are performed. The high level steps can be 
interpreted as generic steps necessary for dynamic verification of a domain specific 
modeling notation. In the first step, the information is organized and verified for 
conformance to the static rules. Then based on the related information in the model, the 
dynamic information is enriched. This includes additional of KAMA-DV metamodel 
properties defined in Section 6.1. Some of the attributes can be derived from directly the 
metamodel, while others shall be added by the modeler by determining the exact 
semantics considering the semantic variations explained in Chapter 5. 
 
After additions structural compliance to KAMA and KAMA-DV are checked in the 
model to determine errors and issues. If no structural errors remain, dynamic checking 
can be performed. 
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Figure 6-2. The Process of Dynamic Verification Shown as a Task Flow Diagram 
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6.3.1 Step 1: Structuring the Model and Static Verification  

 
In this step the dynamic parts of the model (single or a group of diagrams) are 
represented as a KAMA task flow description as described in the previous section. The 
conceptual model may already be in a format similar to KAMA or some differences may 
exist. If there is a lack of information then referents and domain experts can be consulted 
for specifying dynamic information in the conceptual model. 
 
After this step the conceptual model shall be checked for the syntax rules as described 
below in section 6.2. These checks can either be running algorithms or by formal 
checking of the model. In the next two subsections we will present the approach for 
verification of the static KAMA constraints and formal verification of properties related 
to dynamic analysis. 

6.3.2 Verification of the Static Constraints 

 
In this section we present an algorithm for checking each of the rules presented in 
Chapter 3. If the model elements and associations are stored in a database format 
assigning each model element metaclass a separate table, the number of iterations needed 
for checking each constraint can be calculated. The KAMA model for mission space 
description is already modularized as packages so the constraints are presented for each 
package with the needed number of iterations in the following subsections. 
 
Integrity of elements can be checked independently for each package. Then checks can be 
applied to determine if the model obeys the constraints as a whole to address the errors 
that occur as a result of interaction of different packages. This mechanism has several 
advantages. For very large models, it will be convenient to process model information. 
Secondly, the constraints for each package can be understood more easily. Similar checks 
can be made for constraints that have similarity.   
 
For KAMA models in the following subsections we list the rules that are defined from 
the KAMA metamodel. For traceability, we use the codes that are presented in Chapter 3 
and the defined model element sets presented in Table 3-2. 
 

6.3.2.1 Mission Space Fundamental Package Rules 

 
Mission Space Fundamental Package constraints are presented in Table 6-1. The code 
represents the unique identifier of the rule based on its presentation given in KAMA 
Metamodel and KAMA semantics explained in Chapter 3. The first two letters of the 
code is taken from section number of these constraints in Chapter 3. The third letter is the 
letter where the corresponding rule is presented in KAMA metamodel. The fourth letter is 
further added to differentiate between the rules that apply to the same element. In the 
iteration column the model elements and associations that are iterated when checking a 
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rule is listed, and number of iterations represent the needed iterations. Iterations are 
calculated based on the number of sets of model elements, and for each set number of 
elements (e.g. n, m, k etc.) are multiplied. 
 

Table 6-1. Number of Iterations Needed for Checking Fundamental Package Rules 
 
 

Code Rule Iteration No. of 
Iterations 

3.3.a.1 ))),(),((( RFmrorREmrRrMm
ijijji

∈∈∈∃∈∀  M n 

3.3.a.2 ))),((( AComOoMm jiji ∈∈∃∈∀  M n 
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iii

∉∈∀ ),(,  GN n 

3.3.a.3B INmmMm
iii

∉∈∀ ),(,  IN n 

3.3.m.1 ),(),( MyMxEXyx ∈∈∈∀  EX n  

3.3.m.2 )(),( yxEXyx ≠∈∀  EX  

3.3.m.3 

)).

)(((),(
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=

∈∈∃∈∀
 

EX, T nm 

3.3.n.1 ),(),( MyMxICyx ∈∈∈∀  IC n 

3.3.n.2 )(),( yxICyx ≠∈∀  IC n 

 

6.3.2.2 Mission Space Sequencing Package Rules 

 
Mission Space Sequencing has the highest number of rules in KAMA Metamodel. In the 
same way as previous section, the number of iterations needed for checking the rules are 
presented in Table 6-2. 
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Table 6-2. Number of Iterations Needed for Checking Sequencing Package Rules 
 
 

Code Rule Iteration No of 
Iterations 
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6.3.2.3 Rules for Other Packages 

Here we list other rules for KAMA Mission Space Packages namely Workproducts, 

Roles, Objectives and Complete Packages. The rules for these elements show patterns as 
q.1, r.1, a.1, b.1, k.1., l.1, o.1 and s.1 are checked by iterating through a single database 
table. The second group is checked by iterating through two database tables. 

 
Table 6-3.Number of Iterations Needed for Workproducts Package Rules 

 
Code Rule Iteration No of 

Iterations 
3.3.f.1 ))),((( ASbwBbWw jiji ∈∈¬∃∈∀  W, AS n 

3.3.q.1 ),(),( TyWxINyx ∈∈∈∀  IN n 

3.3.r.1 ),(),( WyTxPRyx ∈∈∈∀  PR n 

 
 
 

Table 6-4 Number of Iterations Needed for Roles Package Rules 
 

Code Rule Iteration No of 
Iterations 

3.3.a.1 ))),(),((( RFmrorREmrRrMm ijijji ∈∈∈∃∈∀  M n 
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Table 6-5 Number of Iterations Needed for Objectives Package Rules 
 

Code Rule Iteration No of 
Iterations 
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Table 6-6 Number of Iterations Needed for Mission Space Complete Package Rules 

 
 

Code Rule Iteration No of 
Iteration
s 
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We only show the required iterations for explanatory purposes. In determining the 
number of required iterations for checks, we assumed that all the model elements are 
categorized, stored and accessible. If the models are stored in a format similar to XMI, 
and metamodeling and validation tools are available, these checks can be expressed in 
Object Constraint Language (OCL) and validation is feasible. As all these technologies 
evolve and there are limits on the functionality of metamodeling tools, we present the 
constraints for related elements of Mission Space Fundamental and Sequencing Packages 
in Appendix B. 
  

6.3.3 Checking of Properties Related to Dynamics 

 
There are some properties which are not explained in the models but are still relevant for 
dynamics of KAMA models. We will discuss these properties which can be categorized 
as derived properties, task hierarchy related properties, related to taskFlow properties, 
and intermediateNode related properties. When formulating these properties we do not 
use all the properties about dynamic execution described in Chapter 5. In this step, we 
provide a lightweight extension of KAMA Mission Space Package to include more 
information on dynamics. These properties are defined in Appendix B and used as part of 
KAMA-DV model. 
 

6.3.3.1 Derived Properties 

 
In KAMA the decisionPoint and SynchronizationPoint do not have an explicit attribute 
defining the type of the element in relation to multiplicity of incoming and outgoing 
taskFlows. As during dynamic verification it is not logical to test every time the nature of 
such a model element, a derived attribute can be added into the model element definition. 
 
This information is inherent in the model definition based on the incoming and outgoing 
taskFlows and every decisionPoint can be classified as fork type if there is a single 
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incoming taskFlow and multiple outgoing taskFlows, and as join if vice versa. A single 
attribute of isJoin is added to this model element to define. For decision point the 
definition is same, a decisionPoint is either merge or split type and this information is 
stored in the derived attribute isMerge. 
 
Other types of attributes also exist. For instance, ModelID attributes of model elements 
are used store the ID of model elements in the original conceptual model, whereas Name 
is used for storing the Name.  
 

6.3.3.2 Properties Related to Task Hierarchy 

 
In KAMA metamodel definition, we have explicitly added a consistOf relation to the task 
definition in Mission Space Fundamental Package (Section 3.1.1) and Mission Space 
Sequencing Package (Section 3.1.2) which is not mentioned in original KAMA 
Metamodel definition. We have also discussed the dynamic aspects of this relation in 
Section 4.2.2.   
 
The consistOf relation has further description for the Mission Space Task Sequencing 
Package. This relation is needed for further analysis of the conceptual model for instance 
checking to prevent a task consistOf itself or a subtask.  
 
Other properties related to the hierarchy may also be of interest during validation. 
According to KAMA Mission Space Model, tasks may have that have subtasks and 
corresponding task flow diagram shall participate in consist of relation with at least one 
initialTask and one finalTask. The semantics of initialTask and finalTask necessitates 
them to mark the start and end times of the diagram. Furthermore, in some of the cases 
dynamic analysis may require a point of entry (initialTask) and exit (finalTask). 
 

6.3.3.3 Properties Related to IntermediateNodes 

 
Other than these some of the constraints can be defined based on the nature of the models. 
In case of dynamic analysis, tasks are primary elements whereas intermediateNodes and 
taskFlows are used for sequencing according to our description given in Section 5.2.  In 
this case loops formed by task flow diagrams that only contain such elements are prone to 
error as they do not contain tasks.  
 
As we examine the decisionPoint and synchronizationPoint semantics in Chapter 5, the 
expected occurrence of these in pairs is expected for each task definition. Occurrence of 
more than one decisionPoint and synchronizationPoint may also indicate a problem as 
they merely stand for sequencing tasks. We also include necessary conditions for these in 
KAMA-DV Metamodel. 
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6.3.4 Step 2: Enriching the Dynamic Semantics  

 
In this section we explain the merging of the diagrams into a single diagram. Through 
merging the modeler may aim to check the entire information given in the model. At the 
end of merging, the result is single diagram which is more concise and integrated to input 
into other graph based formalism for verification.  
 
A set of diagrams can be verified one by one, or as a group by exploiting the consistOf 
association for tasks, includes and extends associations for missions, and extensionPoint 
tag value of tasks.  
 
Only a group of tasks that form a true hierarchy can be merged to be analyzed.  
So there shall be no loop formed by consistOf association between presented tasks. We 
also limit our attention to case where each task has one task flow diagram, if not these 
can be resolved by using context information for the task. 
 

6.3.4.1 Merging of diagrams based on consistOf association 

 
The semantics of consistOf association is explained in Chapter 5. Below we provide a 
breadth first marking and merging algorithm for the diagrams.  
 

i. For the first iteration if there are composite subtasks of the top level task, 
these task elements will be deleted and replaced by their immediate subtasks.  

ii. For each of the first level composite subtasks, the associated task flow 

diagrams need to be processed by taking out initialTask and finalTask nodes, 
and associated taskFlows, marking task or intermediateNode after initialTask 
and before finalTask and copying them to the top level task flow diagram. 
Delete 1st level subtask and redefine the incoming taskFlow target as first 
marked node and outgoing taskFlow source as second marked node.  

iii. Repeat step 1 and 2 until no composite tasks exist in the diagram.  
 

6.3.4.2 Merging of diagrams based on extends association 

 
If more than one mission is to be merged which have extends association between each 
other, the tasks of the extending mission are appended in the task specified as 
extensionPoint in extended task. The task which is in an extensionPoint shall not 
participate in any consistOf association.  
 

i. Create an imaginary task named same as extending mission. 
ii. Add all the model elements of the mission to extension point, except the 
initialTask and finalTask. 
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6.3.4.3 Merging of diagrams based on includes association 

 
Unlike extends association, information there is no information on how a mission is 
associated by includes with another mission and how their tasks are weaved into each 
other. A subtask can be specified in the hierarchy that the included mission’s task and 
subtasks will be appended. If such a task can be determined, the included mission is 
added as an imaginary task corresponding to included mission. The description of 
merging involves the following steps: 
 

i. If there is no subtask of the including mission, create an imaginary task named 
same as including mission. Create a new task flow diagram, by adding an 
initialTask and finalTask. If only one mission is included just add all the 
model elements to this diagram.  

ii. If more than one mission with subtasks is included, then determine the 
relations of them by consulting the domain expert. They can be connected in 
parallel by synchronizationPoints or decisionPoints, or serial.  

iii. If the including mission have subtasks so a task flow diagram, add the tasks of 
the included mission to a specific task that can be regarded as inclusionPoint 
similar to extensionPoint by consulting the domain expert.  

 

6.3.5 Dynamic Analysis 

 
After syntax and structure checking the dynamic analysis can be performed. The first step 
of dynamic analysis is determination of the methods and tools for dynamic analysis based 
on the dynamic characteristics of conceptual models explained in Chapter 5.  
 
Task flow diagrams can be converted to required formalism based on the desired analysis. 
This conversion can be done manually or by transformation languages. After this 
conversion the dynamic characteristics are examined and evaluated.  
 
If all task flow diagram is described for a single entity and includes only singleExecution 
tasks by transforming the diagram into an EPC soundness and relaxed soundness analysis 
can be performed in a straightforward way. This transformation can be performed on a 
task flow diagram with no structural errors by replacing the similar EPC elements shown 
in Table 2-4. Two different kinds of property are checked as follows: 
 

i. If the corresponding EPC is not sound, some of the executions are not sound, 
meaning that there are execution sequences that do not complete and results 
with a deadlock. 

ii. If the corresponding EPC is even not relaxed sound, some of the tasks in the 
task flow diagram is not part of a sound execution, an execution in which 
finalTask terminate without a task under execution. This means that there are 
execution sequences that do not complete and results with a deadlock. 
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More detailed analysis can be made by interactively executing the EPC to infer the causes 
of being not sound or relaxed sound using tools like EPC tools [59]. 

6.4 Tool Support for the Verification 

 
In this section, the tool to be used in implementing the verification approach proposed in 
this study will be described. As developing a tool from scratch requires a lot of effort and 
reuse is the primary concern for model based development, we decided to customize 
existing tools developed for modeling.  
 

6.4.1 Selection of the Verification Tool 

 
The tools considered in this section are listed according to their developer institution 
(commercial, academic, personal).  The criteria for evaluation of the tools are determined 
as functionality, availability, modifiability, and level of support.  
 
In terms of functionality, the tool shall support both the inspection and visualization of 
the conceptual model dynamics. Our work emphasizes exploration and inspection of 
conceptual model dynamics so the tool may support most of the functions related to 
visualization and user interaction. As KAMA diagrammatic elements have structural, 
behavioral and visual similarity with UML 2.0, the tools based on UML 2.0 are more 
appropriate for us in terms of functionality. However as we have also KAMA tool that 
has a graphical editor, the metamodel definition and verification aspects are more crucial 
in terms of functionality. More precisely following are the main functional requirements 
from the verification tool: 
 
Support Model Manipulation  

KAMA tool has limited power in interoperability as models developed by the tool can be 
imported and exported by only proprietary XML format. The verification tool shall have 
capability to store, query and update the models so that it can acquire models from 
KAMA, process the models and export them to other formats that other tools work with.  
 
Support Metamodel Based Development  

One of the main points is that the original KAMA metamodel is based on UML. As MOF 
and UML are de facto modeling notations used for software modeling and extend their 
reach to other modeling domains it is crucial for verification tool to support metamodel 
based development.  
 

Structure and Semantic Checking 

The tool shall have capability to check the syntax and structure of models so that they can 
be used in dynamic analysis conveniently. The rules expressed in KAMA metamodel are 
also to be checked on a model. In this sense the model shall have an environment for 
defining MOF based metamodels and OCL constraints. Any additional functionality like 
graphical editors, model editors, text editing aids and error highlighting is also a plus for 
the tool. 
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Model Transformation 

In the process of verification the models may need to be merged, model elements may be 
extended with additional properties. While during syntax and structure checking an 
extended notation to KAMA Mission Space and Task Flow can be used, during dynamic 
analysis other types of notation may be used as in our case. So the tool shall have 
capability to transform models from the given formalism to another.  
 
Dynamic Checking of Models 

The tool shall have capability to check dynamics of models. This includes checking of 
soundness and existence of paths with no livelocks and deadlocks. Checking of 
constraints on utilization of workProducts, assignment of roles and actors may also be 
desired. 
 
As an advanced functionality, the tools ability for state space analysis and step by step 
model execution is also highly appreciated for dynamic analysis. Other than functional 
criteria non functional aspects exist such as availability, modifiability and level of 
support.  
 
Availability 

In terms of availability the tools can be categorized into two the commercial tools and 
free tools. There are large number of tools that support metamodel based development 
and verification. 
 
Commercial modeling tools are not inexpensive. Usually these tools come as a set of 
components, so that for the required functionality, the user has to obtain license for a 
handful of separate tools.  Academic tools are available usually for free but the provided 
support is limited. In comparing availability, various levels can also exist (source code 
availability, application software availability, cost, licensing cost). 
 
Modifiability 

Both the dynamic views of KAMA and KAMA-DV has significant differences from 
UML Activity Package. The limitations of MOF and UML based tools stemming from 
the limitation of their capability and UML standard may necessitate need for modification 
of the modeling tool and environment provided by the tool substantially. In case of 
commercial tools this modification is not possible. An application programming interface 
(API) may be provided by some tool vendors which enables modification of the 
functionality as desired, one by one and compose it to form new functionality. 
Unfortunately the support of highly developed APIs is scarce in general and in the 
modeling domain in particular. In modifiability one can further define criteria such as 
source code availability, coherence of the tool, source code documentation, and capable 
API.  
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Level of Support 

In terms of support we evaluate the software documentation, user community and 
availability of a point of contact (POC) for questions. Commercial case tools have a rich 
documentation and wide user community, and support personnel. But they are usually 
configured for a specific functionality.  
 

6.4.1.1 Existing Tools and Their Functional Deficiencies 

 
As we focus on MOF and UML based tools, we see a great number of tools. However 
most of the tools have drawbacks that make them unsuitable for the functionality we 
desire.  
 
i. Although UML development tools deal with most of the modeling only subset of them 
allows metamodel based development or profiling. So we can not describe the semantics 
of KAMA and KAMA-DV in these tools. 
 
ii. In formulating KAMA and KAMA-DV constraints we desire to use OCL, which only 
a limited number of tools support. OCL verification is not integrated with UML editors 
and Activity Package model elements. Among the OCL tools available only a couple of 
them provide an extensive API for developing and updating metamodel and models.    
 
iii. Tools generally do not support analysis and model execution for activity charts and 
EPCs. We will list the capable tools that provide analysis support and their limitations. 
Tools that provide functionality of execution of activity charts and EPCs, which have 
similarity with KAMA dynamic descriptions, are shown in Table 6-7. These tools only 
provide limited capability for model execution.  
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Table 6-7 Tools Dealing with Analysis of Activity Charts and EPCs 
 
 
Tool  Lan. Integrated 

Modeling 
Tool 

Website / Reference Formalism Source 
code 

ActiveChar
tsIDE 

C# Microsoft 
Visio 2003 

http://activecharts.inform
atik.uni-ulm.de/ [50] 

Activity 
Diagrams 

N/A 

ACTi N/A Use tool N/A [51] Activity 
Diagrams 

N/A 

IBM Model 
Debugger 

Java 
 

Integrated http://www.research.ibm.
com/haifa/projects/servic
es/uml/vision.shtml [49] 

Activity 
Diagrams 

N/A 

EPC Tools Java Own 
graphical 
Interface 

http://wwwcs.uni-
paderborn.de/cs/kindler/r
esearch/EPCTools/  

EPCs Availabl
e 

 
 
ActiveChartsIDE is tool developed for activity diagram animation. The limitation of the 
tool is the limitation of working with UML activity diagrams only and no extensions are 
possible. Among these tools ACTi, is not currently provided or supported. It has also 
limitation of being only a textual language for activity diagram specification. IBM model 
debugger is presented in a research paper but is not available for the larger community. 
Also there is limited information on how debugger is realized based on the UML2 
activity package semantics. EPCtools [59] is used to analyze soundness of event process 
chains. The information on the application of the tool and its use make EPCtools a better 
option in analyzing task flow diagrams. 
 
There are also a set of related tools which is used for defining models, checking of 
constraints that are relevant for us. These tools are listed in Table 6-8. However these 
tools have significantly different scope and it will be hardly represent the semantics of 
KAMA-DV metamodel in these tools. For instance none of the tools used for simulation 
of UML models given in Table 6-8   can be used for syntax and structure checking of 
activity diagrams.  
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Table 6-8 Other Tools for Simulation of UML Models 
 
 

Tool  Language Aim Website / Reference 
Use tool Java Animation and 

Verification of UML 
Class Models 

http://www.db.informatik.uni-
bremen.de/projects/USE/ [72] 

Key tool Java Verification of  Java 
Programs 

http://www.key-project.org/ 

GENGED Java Simulation by graph 
transformation 

http://user.cs.tu-
berlin.de/~genged/index.html 
[78] 

Omega Java Simulation of  UML 
Models 

http://www-omega.imag.fr/ 
[77] 

 
 
Although a bunch of tools exist for these purposes only a couple of them has capabilities 
of having multiple tools for achieving all of them. Moreover the tools are developed for 
specific aims which require a lot of effort to tailor them for our verification purpose.  
 
Based on the wide range of capabilities and support, Eclipse Modeling Frameworks is 
used as the environment for dynamic verification of models in this work. Core of the 
Eclipse Modeling Framework is the ecore metamodel which is similar to OMG Meta 
Object Facility (MOF) definition. Eclipse modeling environment also has a separate 
facility for UML2 based development and graphical model development of UML models. 
 
Eclipse modeling framework provides an implementation of OCL. OCL is used to query 
and validate ecore based models and UML models. The constraints can be entered in 
terms of invariants in the ecore model by using an editor. Also a separate OCL console 
exists to enter queries and constraints.  
 
There are many model development tools in the software market. As OCL is our 
preferred choice for expressing the metamodel rules, number of tools are less numerous. 
A bunch of other OCL tools exist but only a few of them provide extensive IDE like 
functionality [73]. As they have a large community of users contributing to 
documentation, testing and support, Eclipse OCL and Eclipse Modeling Tools (MDT) 
have advantages in the non-functional criteria. The components of the tool and their 
associated role in development of verification environment are shown in Table 6-9. 
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Table 6-9 Features and Plug-ins Used during Verification Process 
 
 

Eclipse Modeling 
Framework Component 

Version Function 

EMF Model Development 
Framework 

2.6.0.v20100614-
1136 

Model based development 
environment 

Ecoretools 0.10.0.v20100615-
1639 

Diagrammatic tools for 
metamodel development 

EMF Model Validation 
Framework 

1.4.0.v20100428-
2315 

Additions to Model to 
Validation, adding OCL 
constraints, OCL integration 

OCL Extender  OCL parsing and interpretation 
OCL Examples and Editor 3.0.0.v20100506-

1704 
OCLinEcore Editor 

EPCtools 2.0.3 Dynamic analysis of EPC 
diagrams 

 
 

6.4.2 Models Involved in the Verification Approach 

 
In developing the approach we have selected the Eclipse Model Development Framework 
for the verification of static properties, enriching the model and transformation of the 
model to EPC model. For checking of the dynamic constraints, EPCtools plug-in was 
utilized.  
 
Eclipse Modeling Framework is open source project. The environment provides tools to 
develop custom plug-ins. The forum for support exists where users and developers can 
ask questions and requests. The aim is to provide an integrated environment for model 
driven development. This includes model transformation tools, code generation tools, and 
tools for parsing and interpretation of OCL constraints.  
 
ECPtools was selected for verification of the soundness as it supports defining the EPC 
model and checking for the soundness. EPCtools is a plug-in developed in JAVA so the 
models that are checked for consistency can be transformed to EPC and loaded to the 
model conveniently. 
 
In the next three subsections we will discuss the static checking, transformation and 
dynamic checking approaches in a more detailed way. 
 
As we aim to develop the verification using model driven development, we will have a 
set of models we will work with during the verification process. The first model is a 
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KAMA model that is developed based on KAMA metamodel. KAMA also provides a 
graphical tool for modeling.  
 
For static and structural checking we use the eclipse modeling framework (EMF) Model 
Development Tools (MDT). MDT involves an editor for developing metamodels, OCL 
editor for adding invariants to model classes, facilities to create instances of models and  
checking models conformance to metamodel and invariants. Moreover Eclipse has 
facilities to transform the models to other models using a model transformation language 
which is also based on OCL querying language. This enables transformation of models to 
EPCtools models.  
 
For dynamic analysis we use the EPCtools that is also an Eclipse project to define and 
validate EPC diagrams. EPCtools uses graphical editing Framework of Eclipse (GEF) to 
define models and stores models in EPML format which is the format for EPCs. By using 
Eclipse we have exploited benefit of working in the same environment and exploiting 
many different tools. 
 
 

 
 

 
Figure 6-3 Distinct Models Used for Verification 

 
 

6.4.3 Adaptation of the Tool for Checking of Metamodel Properties 

 
For adaptation of the plug-in environment we have formed a profile for expressing the 
dynamic features in Java environment. Java profile development plug-in provides a visual 
interface for defining the profile. By using the interface one can define new stereotypes 
and tag values. After each model element is defined, the OCL statements are added for 
the elements. The corresponding profile is given in the next chapter in Figure 7-1  which 
correspond to metamodel elements provided in Chapter 3. 
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By using the ecore_diagram facility the profile defined in Eclipse is also shown to the 
user. 
 

6.4.4 The Tool for checking the Dynamic Properties of the Model 

 
We have used EPC tools for checking the dynamic properties of the model. For a better 
understanding of the EPCtools suite [59] one can refer the documentation. We will 
briefly discuss the working of the EPCtools suite in Java environment in the next Chapter.  
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7 EVALUATION OF THE VERIFICATION APPROACH 

CHAPTER 7 
 
 

EVALUATION OF THE VERIFICATION APPROACH 
 
 
 
In this chapter we focus on applying the KAMA-DV approach for verification of real life 
conceptual models. In order to develop our method and validate the approach we use the 
case study methodology. Before detailing the applications, in the first section, case study 
approach and its use in the information systems domain is discussed. 

7.1 Selection of the Case Study Approach  

 
The case study approach aims at empirically investigating a phenomenon within a real-
life context. Related to using case study approach in information systems domain, 
Benbasat [66] states that it is appropriate when “research and theory are in their early 
formative stages”. It is a practice based approach where “importance of experiences of 
actors are of utmost importance” and “context of application is critical”. It is used in 
scarcely researched problems when other methods of research are not applicable, such as 
to study information systems in their natural setting for understanding the nature and 
complexity of problems. Unlike other approaches the level of control is low in case study 
research. Runeson and Höst [67] point out similar uses of the case study approach in the 
information systems domain. Various information sources, including first, second and 
third degree sources are utilized for theory development and testing for an area for which 
understanding is limited. 
 
As summarized by Benbasat [66], the case study approach can used in various ways, on 
the one extreme it can be just used to test a well formed theory in a positivist way. On the 
other hand, it can also be used just to interpret the application of a method. In another 
dimension, while for some research problems a single case study would suffice, multiple 
applications may be necessary for some others. For the latter case, the prior applications 
may be used to build up the theory and the latter ones to test it. The case study research 
has also evaluated based on several different perspectives for validity and reliability [68]. 
 
As we have explained in Chapter 2, the methods for verifying conceptual models for 
simulation systems are limited in scope. Real examples of application of verification 
methods and experience reports are not abundant in the literature. Developing and 
verification of metamodel based conceptual models is also a novel concept and there are 
not established approaches and research practices. All these limit the level of 
understanding in the conceptual modeling area. Conceptual modeling is inherently 
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complex as explained in Chapter 2. The effort to verify a conceptual model is also high 
which indicates the necessity of repeated trials.  
 
In the scope of the present study, considering the limitations of time and case availability, 
two case studies are performed: one for increasing the level of understanding and 
enhancing the approach, and the second for testing it. We present our case studies in an 
outline similar to the one provided by Runeson and Höst [67]. 
 
In the following sections, we will describe each case study, related real world conceptual 
models and the application. Our aim is to develop the approach and show that the 
approach can be used to aid conceptual model verification even if the conceptual models 
are not fully aligned and existing tools provide limited support for the approach. 
 

7.2 Case Study 1: Conceptual Model of the Surveillance Mission  

 
In the first case study we applied the technique to a conceptual model developed by two 
experts in KAMA notation. The initial version of KAMA-DV was developed using the 
mission space package of the KAMA metamodel.  We aim to test the approach to see the 
feasibility of the approach, enhancing the KAMA-DV method and comparison with the 
results of the inspection approach performed on the same model. 
 

7.2.1 Case Study Design 

 
Case design includes the research questions and the case selection, subjects, data 
collection and analysis procedures.  
 
In the first case study the aim is to answer two research questions: 
 
What are structural and dynamic properties of the conceptual models that can be checked 
automatically? 
 
How should the metamodel for conceptual modeling be expressed for automatic checking 
of structural and dynamic errors? 
 
The motivation for these questions stem from the motivation to understand the 
consequences of using metamodel constraints expressed in KAMA for automatic 
verification. By this way we aim to understand the consequences of automatic 
verification by these constraints and develop KAMA-DV into a framework for automatic 
verification.  
 
The original conceptual model was developed in textual format during a C4ISR 
simulation development project. Various entities in the conceptual model have templates 
which list their properties and relations to other elements. The conceptual model was later 
transformed to KAMA notation by the experts. The KAMA tool also has some limited 
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verification functionality, so the model was also checked for some of the syntactic 
properties during development.  
 
The case study was performed in collaboration with a panel of two modeling experts in 
the form of a series of meetings. In the first meeting the KAMA metamodel constraints 
and corresponding KAMA-DV constraints were discussed. By this way KAMA-DV has 
been leveraged to a state where first testing in the context can be performed. Later in a 
meeting with the experts the results of the case study were discussed again. In this 
meeting the focus was on the errors found in the model with respect to the semantics 
defined in the KAMA-DV. The results were also compared with the results of a previous 
verification study based on the inspection approach [34].  
 
The case study has also some limitations. As the conceptual model was originally 
developed in textual format and later represented in the KAMA notation, some of the 
aspects of the KAMA modeling notation were not applied rigorously. While there is a 
vast number of tasks and activities which are also modeled as tasks, other definitions are 
incomplete. For instance the roles were not defined precisely; only actors were defined as 
command and control units. These units are also very limited in nature as there are 12 
command and control units. These definitions were also vague and effectively all the 
command and control units could perform most of the tasks. The work products were also 
not defined as separate items and their characteristics were not explicitly specified. As a 
result, in verification of the conceptual model we focused on the sequencing behavior of 
tasks. For the sake of brevity, we have selected the surveillance mission for conceptual 
model verification as it displays the characteristics of the other tasks and it has relatively 
more complete descriptions.  
 
 

Table 7-1 Model Statistics of SGKS Conceptual Model 
 
 

Conceptual Model Element Number 

Missions 5 

Tasks 54 

Activities 94 

Events 7 

States 7 

Entities 68 

Data Items 29 

Command and Control Units 12 

 
 
The original SGKS conceptual model document has a total of 153 missions, tasks and 
activities, all of which are modeled as tasks in KAMA. The surveillance mission consists 
of 91 of these tasks, which nearly accounts for 60 percent of the tasks. As discussed 
below, the model was not automatically transformed into the KAMA-DV model. As the 
Surveillance mission already represents a major part of SGKS behaviour description, and 
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additional effort is required to define other missions in KAMA-DV, the case study is 
performed using the part of SGKS that includes surveillance mission and subtasks, 
collectively named Surveillance Mission Conceptual model.   
 
Another limitation stemming from the selection of SGKS is that it is rich in information 
about missions and tasks, while the information on workProducts and roles is vague. 
Most of the tasks are performed by many roles. In verification we limit our attention on 
the tasks and their relations. The surveillance mission encompasses all the command and 
control units and entities that are described in the SGKS document related to other 
missions and tasks. 
 

7.2.2 Results of the Case Study 

 
In this section, we will provide the results of the case study. First we will provide 
information on the automatic checking approach. 
 
In the first meeting with the modeling experts KAMA metamodel elements and 
constraints related to them were discussed. The implementation of KAMA-DV 
metamodel in ecore was also discussed. During these meetings there were updates and 
corrections for the KAMA-DV constraints and their implementation. Some of these are 
also discussed further in the following subsection on the improvements of the metamodel.   
 
Then the automatic verification is performed, and results from syntax and structure 
checking and soundness analysis are obtained. Finally during the process the experts are 
provided with initial feedback results and their opinion on the result of the process is used 
to further develop the verification process.  
 
Syntax and Structure Checking 

 
We have selected the surveillance mission as the mission to be verified in our conceptual 
model. The exact list of tasks that surveillance mission consists of is given in Appendix B. 
The related elements in KAMA Mission Space and KAMA Sequencing Package are 
redefined as an ecore metamodel using ecore_diagram facility of ecoretools as seen in 
Figure 7-1. Later this metamodel is opened using OCLinEcore editor and the constraints 
of KAMA Mission Space Sequencing Package and KAMA-DV metamodel are added.  
 
 

Table 7-2 Statistics of the SGKS Surveillance Mission 
 

Model Element Number 

Tasks 91 

taskFlows 179 

IntermediateNodes 77 

Task Flow Diagrams 24 
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Although we aim to directly use the KAMA output format as an input to KAMA-DV as 
mentioned in Chapter 6.3.1, because of the limitations of the KAMA tool, the model 
content was manually created in the EMF environment. By using OCL, we have acquired 
list and number of each type of model element present in the model and these are 
compared with the original SGKS model. 
 
Additional rules that exist in KAMA-DV metamodel are explained in Chapter 6 and their 
exact specifications are provided as OCL statements in Appendix B.2. The constraints are 
based on the specified formal properties given in Chapter 3 and Chapter 6. All of the 
constraints we listed for the sequencing package can be represented in OCL. While 
formulating these constraints some of the constraints given in the original metamodel [29] 
are modified to fit the syntax of the MDT OCL. We have provided the metamodel 
definition of KAMA-DV used for this case study in Appendix B.1.  
 

 
 
 

Figure 7-1 KAMA-DV Model Elements for Sequencing Expressed as an Ecore Diagram 
 
 
After defining the model development based on the metamodel, the constraints related to 
KAMA and KAMA-DV are checked on the SGKS Surveillance Mission. The unsatisfied 
constraints are displayed as errors in popup window and error panel. The error pane 
enables to directly browse through the model elements in the context of which OCL 
constraint violation occurred. 
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A significant number of errors are detected in this process in KAMA Surveillance 
mission even though it had formerly been validated by the KAMA tool. The list of errors 
found after initial checking is presented in Appendix B. We will discuss the nature of 
these errors in the following paragraphs. 
 
The multiplicity constraints defined for associations are enforced in the ecore model 
during model development, for instance only one incoming and outgoing taskFlow is 
allowed for a task. So if a task is associated with more than one taskFlow the prior 
participation is automatically cancelled. Hence only one end of taskFlow is present and 
this error is output by the environment. 
 
MDT OCL has some limitations when checking the errors. In formulating the metamodel 
constraints we have modified original constraints to fit the MDT OCL environment.  
 

The Errors Arising from Violation of KAMA Metamodel Constraints 

 
There are errors that are found by the OCL validator that are not found by KAMA tool 
(See Appendix A.5). These include the multiplicity of incoming taskFlows and outgoing 
taskFlows of a task and existence of guard conditions for taskFlows outgoing from a 
decisionPoint, multiplicities for fork and join type synchronizationPoints.  

The Errors Arising from Violation of KAMA-DV Metamodel Constraints 

 
Additional constraints defined for KAMA taskFlow lead to easier interpretation of errors 
by providing the exact source of errors. The cumulative error list that includes both those 
stemming from KAMA and KAMA-DV constraints are given in Appendix A.6.  
 
Among the errors HangingTask and FlowDeadEnd constraints enable us to identify the 
tasks in which no association with incoming taskFlow but have outgoing taskFlow, and 
vice versa. 
 
Additional errors stemming from the properties listed in previous chapter are also found. 
These include the existence of initialTasks and finalTasks, sequential occurrence of 
intermediateNodes, loops formed by taskFlow associations without any task element. The 
model has a very high number of sequential intermediateNodes. There are also 
occurrences of loops without tasks. 
 
All these errors are listed and discussed with the domain experts. The experts came up 
with recommendations that are used for the improvement of the approach, especially by 
modifying KAMA-DV metamodel and constraints.  
 
As a matter of fact practical application lead to redefining of the rules in the metamodel 
to increase effectiveness of detection.  
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Finally the results were also compared with the results of the inspection case study by 
Tanriover [37]. A summary of errors found by KAMA-DV and corresponding errors 
found by inspection is given in Table 8-1. In the context of Surveillance mission 18 
issues were found by manual inspection. The KAMA-DV indicated problems for all of 
these issues. The semantic issues are not found directly, at least one structural issue is 
found related to the semantic issue. 
 
 

7.2.3 Evaluation of the Case Study 

 
The case study allowed us to develop KAMA-DV further and provide new insights that 
are relevant for further study. These insights stem from application of the process and 
inspection of error reports, comparison with manual inspection results, and discussion of 
the reports with the experts.  
 
In the initial discussion with the experts there was output from the experts on the  
KAMA-DV metamodel. Based on their feedback, the KAMA-DV is updated and first 
implementation of automatic verification is developed. 
 
In the first case study, it was revealed that the rules presented in KAMA metamodel are 
not enough for an automatic verification in terms of locating the errors. There are two 
distinct kinds of deficiency: The first deficiency occurs as there are some underspecified 
issues in KAMA which KAMA-DV is based on in terms of structure and dynamics. The 
second deficiency occurs because of the resolution of KAMA constraints, that is the 
number of model elements and attributes the rule is related with. In the case of the first 
deficiency, consistOf relation is added to the metamodel for representing the task 
hierarchy observed in Surveillance metamodel and is used to relate different tasks. In the 
case of the second deficiency, the resolution of the rules is increased by partitioning them.  
 
During the case study it is also observed that tool support is crucial for metamodel based 
development and verification. For instance there is limited interoperability based on XMI 
because of evolution of the standard, integration of UML and OCL tools, usability of 
graphical modeling environments and the limitation of OCL tools in terms of the OCL 
standard. One important point is that it is highly desirable for these tools to have 
capability for advanced configuration management and prioritization of checking of the 
rules. 
 
One important limitation of the case study was that the surveillance model was not 
originally developed using KAMA metamodel but using templates in textual format. We 
limit error checking to the taskFlow elements, namely those that are related to sequencing 
which is the most detailed part of this case study. 
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7.2.4 Improvements of the Approach Based on the Recommendations   

 
During the first case study, there were some recommendations about the approach in 
general and metamodel and rules in particular. In this subsection we discuss the 
suggestions about the metamodel and improvements made based on the first case study.   
 
i. Representation of the constraints in a more concise way: 

 
Once the metamodel is represented in Essential Meta Object Facility (EMOF) for 
checking the model, the rules are written in a most concise way. Also the lists that are 
originally attributes of some of the model elements are no longer represented as first class 
attributes as they can simply be formed using OCL queries.  
 
The correspondence between the constraints and formal metamodel is increased by 
writing all constraints not using the lists, also the lists that are referred by some of the 
constraints in original KAMA are left out in KAMA-DV. 
 
ii. Increasing the resolution of constraints to increase exact error detection 

 
Constraints are divided to increase the resolution and better locating the errors. For 
instance when the constraints that involve both upper and lower multiplicity are used, it is 
very hard to understand the nature of errors.  
 
For some of the recommendations we took no action in the scope of this work. We will 
discuss some of the suggestions about which we took no action in the scope of this thesis 
in the following paragraphs. 
 
i. Expressing the constraints in First Order Logic (FOL) 

 
The constraints can be expressed in FOL using a similar approach to Tanriover[37], but 
in the case of structural checking and dynamic checking such representation does not 
bring any benefits. If logic based approaches will be used such representation may be 
used. 
 
ii. The Naming of consistOf Association 

 

The considered names for this relation are delegate or relay, but there is no similar UML 
element. A more precise naming for consistOf is searched in KAMA-DV as if the 
subtasks are not related to the task with a strong relation like aggregation. In different 
Task Flow diagrams, tasks can be composed of different tasks, and these tasks can be 
utilized yet in other diagrams. The delegate connector type is of components language 
unit and has far more enriched semantics. Meaning of relay is also much different so they 
are left out for now and consistOf is used for describing the relation between tasks in 
KAMA-DV. For instance change of the name will lead to better understanding of the 
relation between model elements and error messages, but not the number and type of 
errors.  
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iii. Use of Alternative Stereotype Constructs for Model Elements 

 
Another suggestion was to use the structured activity and related elements for some of the 
model elements as stereotypes. These are not used, as they include more specific features 
which are not included in the KAMA metamodel. However some of the constructs can be 
used if more refined conceptual models are available. For instance details of execution 
can be used to specify ConditionalNode, LoopNode, or SequenceNode elements. 
Moreover descriptions of multiple executions of tasks can be mapped to expansion 
regions.  

7.3 Case Study 2: Engagement Task  

 
In the second case study we aim to test the KAMA-DV approach as matured after the 
first case study. The second case study is performed on the engagement task of a Naval 
War Game simulation. The conceptual model was developed using KAMA approach and 
Enterprise architect tool.  

 

7.3.1 Case Study Design 

 
In this case study we aim to test the effectiveness of the KAMA-DV so the research 
questions are different from the ones of the first case study. There are two research 
questions: one about the effectiveness of the approach in finding structural errors, and the 
second on the capability of the method for finding dynamic errors. 
 
i. Can KAMA-DV approach be effectively used for finding the structural errors in 

conceptual models? 
 

ii. Is KAMA-DV capable of finding dynamic errors in conceptual models? 
 
In contrast to the first case study, naval war game simulation was developed using the 
KAMA approach and cruise and engagement task and 8 subtasks were described using 
task flow diagrams defined in the metamodel. The engagement task is different from the 
definitions of surveillance missions and other missions in the first case study. Cruise 
subtask has detailed description of cruise in land, sea, and submarine. In total account 10 
task flow diagrams were used in inspection, which include 22 % of all 45 task flow 

diagrams.  
 
Subjects are two modeling experts similar to first case study. KAMA-DV approach is 
used first to find structural errors and then dynamic errors. After these issues are found, 
subjects are asked to review the errors found by the environment. Also the structural 
issues are compared with previous results that are found by manual inspection.  
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7.3.2 Results of the Case Study 

 
The results of the case study were unexpected as the automated verification found syntax 
errors in the model which was verified before. In addition to syntax errors there were   In 
comparison to the former study by Tanriover [35], some of the detected issues are signals 
for the errors indicated by inspection.  
 
We have provided corresponding error occurrences for 5 diagrams in Table 7-3, which 
contains not only syntactic errors but also semantic ones. In engagement task we have 
encountered total of 83 errors and issues. Detail examination of the results indicated that 
there is either an error or an issue that corresponds to errors found in manual exception. 
There are very few cases where the errors found in manual inspection are not associated 
with an error or an issue found by the automatic approach. The results indicate that the 
errors are less related to KAMA syntax but more on the structural issues added by 
KAMA-DV and semantic issues. 
 
 

Table 7-3. Number and Type of Errors Found in Various DHS Tasks 
 
 

Task Name Number of 
Elements 

Number 
of Errors 

Number 
of Issues 

Number of 
Errors found 
in Manual 
Inspection 

Cruise 21 5 5 1 
Advance 

According 
to Cruise 

Plan 

54 7 8 N/A 

Advance in 
Air 

43 1 5 2 

Engagement 23 5 1 N/A 
Engagement 
of Guided 

Ammunition 

72 3 15 3 

 
 
For comparison with manual inspection, we included a comparison of errors reported by 
Tanriover for the given tasks considering the intradiagram issues, issues found by 
singular inspection of task flow diagrams. In some of the number and types of errors 
found in various diagrams found by the KAMA approach are compared with inspection 
approach.  
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Table 7-4. The Corresponding Errors and Issues 

 
 

Task Flow Diagram 
( See [37] Appendix D) 

Manual Inspection KAMA-DV 

Advance in Air Possible deadlock Sequential intermediateNodes 
Cruise Deadlock  Multiplicity of incoming 

taskFlow of 
synchronizationPoint of type 
Fork 

Scan for Mines  Deadlock Multiplicity of incoming 
taskFlow of 
synchronizationPoint of type 
Fork 

Engagement of Guided 
Ammunition 

-Dangling tasks 
occurrence     
-Deadlock Decision 
nodes 
-Multiplicity of 
synchronizationPoint of 
type fork 

-finalTask Multiplicity 
-Sequential decisionPoints 
- Multiplicity of incoming 

taskFlow of 
synchronizationPoint of type 
Fork 

-Sequential intermediateNodes 
 
 

Dynamic Analysis 

 
In the very few cases where structural errors are limited and simple, these errors can be 
corrected to perform dynamic analysis. Dynamic analysis is performed by transforming 
the task flow diagram to an equivalent EPC and analyzing using EPC tools [59]. 
 
For some of the diagrams we have corrected the structural errors and applied dynamic 
analysis. For the 10 of 5 diagrams the number of issues was limited so we applied 
dynamic analysis in the case of these diagrams. For the case of 3 diagrams that show 
structural similarity, the diagrams are not sound. The EPC corresponding to “Advance in 
Air” task is shown in Figure 7-2 in which two of the distinct parallel branches prevents 
occurrence of valid execution sequence. By experimenting with the tool shown in 
Appendix A.5, the exact branches that prevent execution are determined. We have also 
discovered that the manual inspection also reported the same issue as a semantic error. 
We have identified that even if these errors can not be attributed to violation of syntax or 
structural rules, they can be detectable by soundness analysis.  
 
In a few cases we have observed very little number of syntax errors found by KAMA-DV. 
In general the number errors and issues for diagrams are considerable in spite of the 
former verification efforts. Even the KAMA metamodel is used during the development 
of this model, the limited support of the model development tool for defining and 
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checking constraints and limited effectiveness of manual inspection finding structural 
errors entirely causes error prone models. 
 
 

 
Figure 7-2. The Equivalent EPC of “Advance in Air” Task Flow Diagram that is not sound 

1 

2 
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7.3.3 Evaluation of the Case Study 

 
Results of the case study results show that structural and dynamic verification can locate 
the dynamic errors within the scope of the DHS conceptual model. The errors found in 
the model are clearly errors but issues may either signal an error or not. Before dynamic 
verification the models need to be strictly error free for dynamic method to be applied. 
The results show that the approach is effective in finding errors that could not be found 
by modeling tool or manual inspection.  
 
Some limitations of the case study deserve being mentioned. One of them is the 
unavailability of domain experts during validation so some errors were corrected based 
on consent of the modeling experts that were present in model development. In case of a 
high number of errors being present which may be attributed to high number of model 
elements in a diagram, the diagram has simply been excluded from dynamic analysis. 
 
Finally we would like discuss the validity of the two case studies. The performed 
approach is based on the criteria discussed with model experts which contributed to 
construct validity. The internal validity of the approach is higher as for both domain 
conceptual models similar process is followed and results correlate.  
 
However the conceptual models of simulation systems may vary a lot based on the 
application domain. Conceptual models may include a large number of different 
constraints (for instance mathematical models, time information etc.) that have not been 
tested in our studies. Also during the case studies the severity of errors were discussed 
with the experts but their implications if they are left in the model have not been observed 
during the actual simulation projects. These issues limit the  external validity of the case 
studies carried out. 
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8 DISCUSSION AND CONCLUSION 

CHAPTER 8 
 
 

DISCUSSION AND CONCLUSION 
 
 
 
In this thesis, we have aimed to verify the dynamic properties of conceptual models for 
modeling and simulation. We have dealt with models that are developed at the early 
stages in the simulation development process. The modeled concepts are real world 
missions, tasks, related roles, objectives, and work products which are represented by 
corresponding model elements described by the KAMA-DV metamodel. 
 
We have grouped relevant past research into three, which are mentioned in order of 
relevancy: First, metamodel based conceptual modeling in general, and the KAMA 
approach in particular provides the main pillar of our research. Secondly, research 
dealing with semantic variations of UML activity models and verification of such models 
is relevant in the sense that the semantics of model elements for sequencing of tasks in 
KAMA show similarities with their UML counterparts. However, differences in size of 
models and semantic variations and the limitations of past work in that area justify a 
novel approach. Finally, verification of conceptual business process models, particularly 
the ones expressed by Enhanced Process Chains (EPCs) are relevant for our research. In 
the next section we will examine the relation of our research with these three related 
areas in detail. 
 

8.1 Contributions 

 
In this work we have defıned a formal semantics for KAMA metamodel. The defined 
semantics for conceptual models focus on definition of KAMA metamodel explained in 
Chapter 3 and extension explained in Chapter 6. Further more the KAMA-DV approach 
is realized by tools supporting model driven development, Eclipse modelling 
environment.   
 
We also explored the dynamics of KAMA model elements more throughly and advised 
used of an execution framework. The execution framework deals with some variances 
that are encountered in conceptual modes that are not present in similar frameworks. The 
realization of such a model execution approach is left as a further study topic as 
explained in Section 8.3. 
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We used the KAMA metamodel definition in verification of two real life conceptual 
models. conceptual model. Although KAMA metamodel verification definition consists 
of rules that are not very complex, during verification we have found large number of 
errors in previously checked models. The case study results indicated that for these cases 
the KAMA-DV approach is applicable and effective in finding the errors in dynamics of 
conceptual models. KAMA-DV issues relate to syntax and semantic errors found by 
manual inspection. 
 
At the final stage of verification, dynamic analysis is performed for the cases where 
supporting tools are adequate. Only by using the syntax and structural checks, the models 
that can be dynamically verified can be obtained.  The dynamic analysis is applied based 
on the soundness definition for EPCs. The results suggested that for some of the task flow 
diagrams this can be used to find deadlocks in the diagrams. Moreover the corresponding 
tools can be used to simulate the diagrams indirectly by simulating the correponding EPC.  
 
However the soundness analysis and simulation can be used if number of errors are low 
in a diagram and appropriate conditions hold. There are two main reasons for this. First is 
that only for certain kind of diagrams the EPC analysis is applicable because of the 
semantic variations. Secondly the high number of structural errors has limited the number 
of diagrams that can be analyzed. Our work has layed ground for syntactically correct 
models, so more structured  models that can be analyzed will be available in the future. 
 
Below, after briefly comparing our approach to the related work, we highlight the further 
research topics related to our approach. Some of the research topics deal with bottlenecks 
of our approach, that is, the areas where our approach has limited capability and others 
deal with extending the scope of the work.   

8.2 Accomplished Work 

8.2.1 Verification Approach Based on Formal Techniques for Metamodel Based 
Conceptual Models  

 
In this thesis, we have focused on the dynamic descriptions in metamodel based 
conceptual models, specifically mission space package of the KAMA modeling language, 
which includes elements to describe missions, tasks and their relations. The mission 
space is presented as a structural view in the KAMA metamodel, however it provides 
information on sequencing, synchronization, and branching of tasks which can be used in 
understanding the behavior of the system. We describe an approach including a process 
and set of methods to be used in inspection of dynamics of these models. The inspection 
process will be iterative and will provide the user with online and offline verification 
methods. For increasing the power of analysis we extend mission space models to cover 
intended but not explicitly specified behavior descriptions. While keeping the original 
conceptual model intact, our mission space execution is based on this extended model. 
These extensions which do not exist in the original KAMA metamodel, are defined based 
on the dynamic properties explained in Chapter 3 and 4. We utilize approaches that were 
used for verification of Enhanced Process Chain Diagrams (EPCs) based on Petri nets 
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during this process. As a result we aim to have a conceptual model consisting of 
consistent and correct behavioral information.  
 
The developed conceptual modeling notation of KAMA provides the modeling elements 
for these but lacks methods and tools for analysis and verification of the dynamics. 
Tanriover and Bilgen[36] provide an inspection approach for conceptual models 
developed in a domain specific notation. The approach includes checklists for 
interdiagram issues and for each diagram type. The checks are listed for initialTasks, 
synchronizationPoints (fork and join type), complex structures (fork and decisionPoints), 
flow to the finalTask, loops and workProducts based on the soundness property of 
workflow nets. In this work we only deal with the dynamics of conceptual models and 
elaborate their dynamic behavior thoroughly. We define extended properties for some of 
the model elements and structured conceptual models, soundness and relative soundness 
for conceptual models. We use these definitions to develop our approach based on formal 
and interactive verification.  
 
Checks on metamodel based conceptual models are classified by Tanriover as intra 
diagram and inter diagram checks. A detailed step by step inspection method is provided 
for each diagram for intra diagram checks.  More than one type of diagram are considered 
for inter diagram checks.  
 
In our approach, we formally define consistency checks in terms of set theory. Some of 
these properties not only allow a structured check but also enable checking of the 
dynamic model. The semantic variations in task flow diagrams also extend beyond the 
semantics of classical Petri nets and activity models which is further elaborated in this 
thesis especially in Chapter 4 and 5. At last based on this extended approach, we have 
defined KAMA-DV metamodel that includes semantic properties related to dynamics.   
 
Our contribution includes specification of conceptual model dynamics in a formal 
language, characterization of the dynamics of the conceptual model, and using formal 
methods to verify the conceptual models. 
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Table 8-1. Errors Found by Inspection and Related Errors in KAMA-DV in              
Surveillance Mission 

 
 

Issue Found   Error Found by 
Inspection  

Error Found 
By KAMA-DV 

Number of 
Similar Errors 

2.1 Perform 
Coverage Analysis 
and Planning 

Only one outgoing 
taskFlow from 
decisionPoint 

See error 53 in 
Appendix A.6. 

2 

2.2.3 Detect the 
Targets 

No Outgoing 
taskFlow for 5 tasks 

See error 80, 
81, 82, 83, 84 
in Appendix 
A.6. 

3 

2.2.1 Recognize and 
Identify 

More than one 
incoming taskFlow 
to fork node after 
initialTask 

See error 1,6 in 
Appendix A.6. 

8 

2.2.1 Recognize and 
Identify 

A potential for 
deadlock as the fork 
node after initialTask 
is connected to 
decisionPoint before 
finalTask  

See error 12 in 
Appendix A.6 . 

2 

2.1.2 Perform Pre-
Analysis of Coverage 

“Determine Priority 
of Point and Path” 
task should be 
modeled as two 
distinct tasks  

None 1 

 
 
 
By using automatic checks, we have found the issues that cover the errors related to 
sequencing tasks except one type of semantic error found by inspection approach related 
to sequence of tasks in Surveillance mission. Issues that are related to inspection results 
are summarized in Table 8-1. In fact, by using the automated approach we have identified 
more issues related to task flow diagrams using KAMA-DV and each issue is singled out 
with the related elements. On the other hand, for some undetected semantic errors, the 
issues related to syntax can be used as a signal. In Table 8-2, we show the 
correspondence of the checklist formulated by Tanriover [36] with our approach.  



 116

 
Table 8-2. The Correspondence of Consistency Checks with KAMA-DV 

 

 
 

Consistency Check KAMA-DV  
1. Check for syntactic errors such as dangling nodes, initial 
nodes with more than one outgoing transitions. 

Constraints are formulated in set theory. 
Also the syntax checks are extended to 
include dynamic model. 

2.  Identify decision nodes 
 

Not only the decision nodes are identified 
but also their nature, being structured or 
not, the matched merge node, and matching 
condition.  

 2.1. Check  if  all  flows  outgoing from  the  
decision  nodes have guards 

Syntax check that is defined in Chapter 3. 

 2.2. Check the constraints on the guards to make 
sure that they do not overlap (overlapping such as 
constraint on one guard is x>=0 and on the other 
x=<0) 

Syntax check that is defined in  Chapter 3. 

 2.3 Check if the guards define a complete set (such 
as x=>0 and x<0) 

Syntax check that is defined in  Chapter 3. 

 2.3.1 Identify overlapping and incomplete conditions Syntax check. How the guard is defined.  
3. Identify Fork Nodes Not only the fork nodes are identified but 

also their nature, being structured or not, the 
matched join node, and matching condition.  

 3.1 Check if the fork node has only one entrance, if 
not make sure that a task-flow is not missed before 
the flow is joined. 

Syntax check that is defined in Chapter 3. 

 3.2. Check  if  all  the  flows  from  the  fork  node 
are joined by a (same) join node (non-structurally 
joined nodes or fork nodes may indicate concurrency 
problems) 

Structural and matched flows are identified. 
DV is used find candidate violations.   

 3.2.1. If not, run the localized flows (flows coming 
out of the fork  node) with  UML’s  activity diagram  
(Petri nets like) control flow semantics 

DV is used find candidate violations.   

 3.2.2. Identify livelocks and their causes. DV is used find candidate violations.   
4. Identify join nodes Not only the join nodes are identified but 

also their nature, being structured or not, the 
matched fork node, and matching condition.  

 4.1 Check if join nodes have only one exit 
transitions. 

Syntax check that is defined in Chapter 3. 

 4.2 If not, it is possible that the join node is placed 
too early; there is possibility that there is still a need 
for a parallel flow. 
 

Not relevant as 4.1 is not allowed by syntax. 

 4.3. Trace incoming transitions of the join nodes to 
make sure that all may eventually be activated. 

DV is used find candidate violations.   

 4.4. If not, identify causes of deadlock DV is used find candidate violations.   
5. If the task-flow is complex (includes more than one fork 
node or composite decision nodes) trace each flow from 
the start to end. 

Soundness criteria based on characteristics 
of task flows.  

 5.1. Make sure that every task may execute. DV is used find candidate violations.   
 5.2. Identify dead tasks. DV is used find candidate violations.   
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Table 8.2 (cont.). The Correspondence of Consistency Checks with KAMA-DV 

 
 

8.2.2 UML Activity Verification and Conceptual Business Process Verification  

 
We have adopted the models used for verifying Conceptual Business Process 
Descriptions for conceptual models.   Semantic variances in business process models can 
be handled by Petri net based models so that the analysis is still possible. 
 
In our work we have researched the adequacy of methods to analyze EPCs in terms of 
conceptual models. For instance EPC based methods are applicable for single diagram 
cases considering semantic variations. In order to analyze task flow diagrams, we have 
also extended the method to check EPCs for relaxed soundness to synchronization points 
of join type, decision points of merge type.  For verifying a set of task flow diagrams we 
have to combine them into one which introduces additional problems. During this 
combination we have utilized information from mission space diagrams, consistOf 
relation, and finalTasks.  
 
Definitions for soundness are adapted for conceptual models, which have different model 
elements and semantics then EPCs.  
 
 
 
 
 

Consistency Check KAMA-DV  
6. Trace the flows reaching the final nodes DV is used find candidate traces.   
 6.1. Make sure that they do not originate from a fork 

node. 
DV or syntax check can be used find 
candidate violations.   

 6.2. If they do, there is a possibility that some 
activities will terminate abruptly, try to identify such 
activities. 

DV or syntax check can be used to find 
candidate violations.  

7. Identify loops by tracing through transitions. DV can be used to identify loops. 
 7.1. Run the localized loop with UML’s activity 

diagram (Petri nets like) control flow semantics. 
DV can be used to find candidate 
violations. 

 7.2. Identify livelocks and their causes. Livelocks can be identified using 
soundness analysis. 

8. Identify activities with <input> and <output> entities 
(An entity may be attached  to  a  task  according to the 
definition of  KAMA notation) 

Inputs and outputs can also be analyzed 
using DV. 

 8.1. Make sure  that  if tasks use outputs of one 
another, they also follow the implied sequence in the 
control flow because a produced entity may be an 
input for another task, causing the task to never start 
or to prevent parallel flow. 

Static check is applied before dynamic 
analysis. Dynamic analysis is performed 
using information on properties of 
workproducts such as consuming. 

 8.2. Identify deadlocks and redundancy. Deadlocks and livelocks can be identified 
using soundness analysis. 
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8.2.3 Comparison of Related Approaches  

 
In Table 8-3, we have listed the dynamic aspects observed in conceptual models. The 
references to instances of these aspects in section 4.2 are also provided. For comparison 
we also include the equivalents of these aspects in EPC and UML activity language.  
 
During comparison with UML activity package [27], we only consider basic constructs, 
given in UML FundamentalActivities and IntermediateActivities packages, as they 
include more abstract modeling elements suited for conceptual modeling. If UML activity 
package is taken as a whole, for instance for the first aspect, CallBehaviourAction in an 
activity can provide a mechanism to trigger other activities during execution. For EPC, 
we used the definition provided by Mendling [61].  
 
We do not limit the models to include only elements either of EPC diagrams or UML 
Activity Package. Even if such modeling can be possible for some of the cases, this will 
decrease the understandability and communicative power of conceptual model and will 
contradict with the properties of a conceptual model given in section 4.1. 
 
We have provided a general framework to check conceptual modeling diagrams one by 
one considering their semantic differences and extensions. The semantic differences 
include the triggering mechanism, multiple instantiation, and multiple final nodes. 
Furthermore, we have developed a method to verify a set of diagrams using information 
in mission space diagrams and consistOf relation. For application in specific models we 
have utilized existing tools on soundness analysis.  
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Table 8-3. Comparing of EPC, UML and KAMA in Terms of Aspects in Conceptual Models 
 
 

Reference Aspect EPC UML Activity KAMA  
T-1 Triggering of 

next task before 
task completion 

Not 
possible. 

Not possible 
(Exception 
streaming input 
and output pin) 

Possible 

T-1 Triggering of 
successor task 
with delay 

Not possible Not possible. Possible 

T-1 Multiple 
instances of 
tasks 

Not possible Possible Possible 

T-1 Multiple 
triggering of 
successor task  

Not possible Not possible Possible 

IN-1 (default 
case) 

More than one 
initial node 

Possible Not possible Possible 

FN-1 (default 
case) 

More than one 
final node 

Possible Not possible Possible 

T-1 Cancellation of 
an active task 

Cancellation 
region 
extensions. 

Possible through 
use of actions 

Possible 

T-1, FN-O-1 Cancellation of 
group of tasks 

Cancellation 
region 
extensions 

Possible through 
use of actions 

Possible, no 
restriction 
exists 

FN-O-1, FN-
O-2 

Termination of 
group of tasks 

Completion 
states 

ActivityFinalNode FinalTask 

FN-1 (default 
case) 

Partial 
completion of a 
task group   

Not 
permitted 

Possible through 
use of 
ActivityFinalFlow 

Possible, no 
restriction 
exists. 

S-O-4 Synchronization 
of active 
parallel 
branches 

OR-join Possible through 
use of actions 

Possible, no 
restriction 
exists 

S-O-5 Interaction of 
synchronized 
branches 

Possible, no 
restriction 
exists 

Possible through 
use of actions 

Possible, no 
restriction 
exists 
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8.3 Directions for Further Research 

 
In this section we will ponder upon further research topics related to this study. The 
novelty of the approach stems from both the metamodel based development in conceptual 
modeling and availability of limited support in terms of techniques and tools. First we 
will list the areas related to provide better syntax and semantics for conceptual models 
and development of techniques related to dynamic verification of these. Then we will list 
more general research topics related to model based development that also concern this 
study.  
 

8.3.1 Better Syntax and Semantics Definitions for Conceptual Models 

 
One of the limitations of our research was lack of well defined approaches for developing 
conceptual models. As of now only a couple of approaches exist for conceptual model 
development, among which KAMA [29] and BOM [10] are prevalent. We have 
examined and provided the limitations of these approaches in Chapter 2. 
 
In the course of this study, although we have built our dynamic verification approach 
upon KAMA approach, we have observed some semantic and syntax issues related to 
KAMA. These issues are well expected as the modeling concepts can only be clearer as 
in the case of state modeling concepts of UML over time and by experience. Still a lot of 
work needs to be done in conceptual modeling to arrive better notations and metamodels. 
Semantic definition is difficult as the scope of conceptual model is multiple and 
development and verification activities are interwoven.  
 
Throughout the study we have observed that there is limited supply of real life of models 
that conform to specific development methods like BOM or other UML based approaches 
such as KAMA. New applications of conceptual models will reveal novel problems 
related to model development and verification as we have observed in the course of this 
study. By both definition and through examples these approaches can be enhanced.  
 
In this work for defining KAMA-DV we have utilized the dynamic definitions of KAMA.  
A possible future work is application of this method to other metamodel based conceptual 
modeling approaches. Alternatively in the course of a future study, conceptual model 
syntax and semantics can be developed with initial concern of verification and all the 
information can be supported by built-in verification components. 
 

8.3.2 Execution of Conceptual Models 

 
Throughout this study we have worked on the structural and dynamic verification of 
conceptual models. We have observed that there is a great deal of variability in 
conceptual model semantics compared similar semantic descriptions explained in the 
previous section. A detailed analysis of conceptual models can be made using a detailed 
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framework that supports execution of this semantics. The analysis may provide a basis 
for forming modified and detailed descriptions for dynamic properties such as soundness.  
 
Another topic to be addressed is how to build the necessary verification capability. Some 
of the alternatives for realizing the capability can be obtained by using more executable 
frameworks like executable UML [39], timed UML [77], and other UML based methods 
for the analysis. As there are semantic differences, adaptations of these are further 
research topics to be addressed.  
 
As such research will need a great deal of initial effort, it is better to focus on determining 
essentials of behavior verification first and developing methods focusing on these later. 
For the former detecting essential behavior errors in simulation software and prioritizing 
behavior verification requirements is a key ingredient. 

8.3.3 Tool Support Throughout the Verification Lifecycle 

 
In our case, structural and dynamic verification is supported by the KAMA tool [35] and 
Eclipse Model Development tools [58]. Many obstacles related to tool support in terms of 
model definition, editing, visualization and verification still exist in Model Driven 
Development. The support for both of these tools has some limitations in terms of model 
driven development. As tools supporting methods have limitations in terms of support for 
modeling standards and usability, tool development is an area of research with high 
potential.  
 
A major concern is the interoperability of the tools for better exploitation of functional 
capability of each tool. Moreover, the interoperability of tools shall be built such that a 
continuous traceability from conceptual models to executable models is possible. By this 
way the development process will be more streamlined, transparent and traceable for 
modelers, system designers, developers, and subject model experts. In this sense, aligning 
of methods and increasing interoperability of tools are further research topics. 
 

8.3.4 Application of Other Techniques 

 
The focus of this thesis has been on core verification activities that are related to 
sequential relations between tasks. Based on the specific type of simulation project, 
conceptual model verification issues may be different. Although there is significant 
potential of application of logic based approaches on the analysis of dependencies 
between tasks, resource perspective (actors or workProducts may be regarded as resource) 
and data flow analysis, and some research exists for various kinds of system and software 
models, for conceptual models the available research on logic based approaches is rare if 
at all existent. So other verification approaches can be coupled with dynamic descriptions 
for thorough analysis of conceptual models. 
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8.3.5 Quantitative Analysis of Issues Considering Model Metrics 

 
One obvious extension of the present study would be to alleviate the threats especially to 
external validity as discussed in Section 7.3.3. This would involve multiple 
implementations of our approach on real life conceptual modeling work followed by 
actual simulation exercises. Following a number of such studies, confidence in the 
validity of our approach would definitely be enhanced, possibly following further 
adjustments at various levels of detail.   
 
Furthermore, in the presented case studies, we have not worked thoroughly on the 
distribution of the errors in a model. On one hand, there are indications of severe errors 
effecting the simulation to be developed, and on the other, simply aesthetic problems 
related to diagram visualization. Given the limitation of available effort for model 
verification, it is desirable to use the effort effectively. An important aid may be provided 
by severity metrics and patterns that can be related to errors in the model. Such work can 
use previous work on model metric definitions and their utilization for UML [82][84]. 
Also, EPCs [61] provide a starting point for quantitative analysis of conceptual model 
errors.   
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APPENDICES 
 
 

APPENDIX A: SGKS SURVEILLANCE MISSION AND 
VERIFICATION RESULTS 

 
 
 
In this appendix we present information on the Surveillace mission of the SGKS 
conceptual model. In first section we provide the information on the tasks and their 
tracebility to referent, SGKS conceptual model document. Then we list the diagrams, 
preconditions, postconditions, and roles. Finally we present the diagrams that we used in 
the case study.  
 
1. Tasks and Activities of Surveillance Mission and Tracebility to Original Referent 
 
In this sectiın we list the tasks the Surveillance Mission consistsOf. The englısh 
translation, diagram number, the reference number in SGKS document and type in SGKS 
document are also  included. 
 
 
Original Name (In 
Turkish) 

Translation Presence in 
Diagrams 

Reference 
to SGKS 
Document 

Type 
in SGKS 
Document 

Gözetleme Surveillance 1 3.3.1.1 Mission 
Sensör Kapsama 
Analizini ve 
Planlamasını Yap 

Perform Coverage 
Analysis and 
Planning 

2 3.4.1.1 Task 

Görev emri Dağıt Distribute Mission 
Order 

2 3.4.1.2 Task 

Görev Yerlerine İntikal Move to Mission 
Location 

2 3.4.1.4 Task 

Gözetleme Görev 
Hazırlığını Yap 

Prepare for the 
Mission 

2 3.4.1.9 Task 

Görev Bölgesini 
Gözetle 

Perform 
Surveillance of the 
area 

2 3.4.1.10 Task 

Görev Devir teslimini 
Gerçekleştir 

Handover the 
mission 

2 3.4.1.13 Task 
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Görevi sonlandır End the mission 2 3.4.1.7 Task 
Görev Başarımını 
Değerlendir 

Evaluate mission 
performance 

2 3.4.1.8 Task 

Bölgeyi Tara Scan the area 2.1 3.4.1.11 Task 
Dost Birliklerin Yeirini 
Tespit ve Takip et 

Detect the locations 
of Friend Forces 

2.1 3.4.1.21 Task 

Tespit/Teşhis/Tanıma 
verisini aktar 

Transfer the 
Information on 
Detection, 
Identification and 
Recognition  

2.1 3.4.1.42 Task 

Veritabanını Güncelle Update the Database 2.1 3.4.1.43 Task 
Dinleme Intercept 2.1.1 3.4.1.33 Task 
Hedef tespiti yap Detect the Targets 2.1.1 3.4.1.44 Task 
Hedef Teşhisi ve 
Tanıma 

Recognize and 
Identify 

2.1.1 3.4.1.45 Task 

Adım Tarama Scan by step 2.1.1.1 3.5.1.52 Activity 
Bant Tarama Scan by band 2.1.1.1 3.5.1.53 Activity 
Dinleme Bilgisini Gir Input Interception 

Information 
2.1.1.1 3.5.1.54 Activity 

Dinleme Bilgisini Gir 
Altişleri 

Subtasks of Input 
Interception 
Information  

2.1.1.1.1 3.5.1.54 
(S) 

Activity 
Steps 

Personelle Hedef 
Teşhisi ve Tanıma 

Recognize and 
Identify Targets 
using Personnel 

2.1.1.2 3.5.1.47 Activity 

Radarla Hedef Teşhisi Recognize using 
Radar 

2.1.1.2 3.5.1.48 Activity 

Gündüz Kamerasıyla 
Hedef Teşhisi ve 
Tanıma 

Recognize and 
Identify Targets 
using Day Vision 
Camera 

2.1.1.2 3.5.1.49 Activity 

Termal Kamerayla 
hedef Teşhisi ve 
Tanıma 

Recognize and 
Identify Targets 
using Thermal 
Camera 

2.1.1.2 3.5.1.50 Activity 

Hedef Tespiti Yap 
Altişleri 

Subtasks of Detect 
the Targets  

2.1.1.3 3.5.1.38 
3.5.1.39 
3.5.1.40 
3.5.1.41 
3.5.1.42 
 

Activity 

Haritada Veri 
Gösterimi 

Data Visualization 
on Map 

2.1.2 3.5.1.76 Activity 

Yeni Veri Girişi Input New Data 2.1.2 3.5.1.77 Activity 
Veri Sıralama Sequence Data  2.1.2 3.5.1.78 Activity 
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Veri Sorgulama Query Data 2.1.2 3.5.1.79 Activity 
Veri Silme Delete Data 2.1.2 3.5.1.80 Activity 
Kapsama Ön analizini 
Yap 

Perform Pre-
Analysis of 
Coverage 

2.2 3.5.1.1 Activity 

Platformların Görev 
planlamasını Yap 

Perform Mission 
Planning for 
Platforms 

2.2 3.5.1.2 Activity 

Platformların 
konuşlanma nokta ve 
güzargahlarını tetkik et 

Examine the 
deployment points 
and routes of the 
platforms 

2.2 3.5.1.3 Activity 

Platformların 
konuşlanma nokta ve 
güzergahlarını tekrar 
düzenle 

Update deployment 
points and routes of 
the platforms 

2.2 3.5.1.4 Activity 

Kapsama alanını 
hesapla 

Compute the 
Coverage Ratio 

2.2.1 3.5.1.1 (S) Activity 
Step 

Nokta ve güzergah 
önceliklendir 

Evaluate the priority 
of points and paths 

2.2.1 3.5.1.1 (S) Activity 
Step 

Maliyet etkinlik en 
uygunlama 

Optimize cost 
efficiency 

2.2.2 3.5.1.2 (S) Activity 
Step 

Kullanım zamanlama 
ve sıklık planlaması 

Usage Plan and 
Frequency Planning 

2.2.2 3.5.1.2 Activity 
Step 

Noktaya veya 
Güzergaha ulaşımı 
sağla 

Supply 
Transportation to 
Point or route 

2.2.3 3.5.1.3 Activity 
Step 

Noktayı ve Güzergahı 
kontrol et 

Control the point or 
route 

2.2.3 3.5.1.3 Activity 
Step 

Görev Emrini Oluştur Prepare Mission 
Order 

2.3 3.5.1.5 Activity 

Haberleşme Communication 2.3 3.4.1.36 Task 
Emir Alındığını Teyit 
Et 

Acknowledge Order 
Receival 

2.3 3.5.1.6 Activity 

Haberleşme Ortamını 
Belirle 

Decide 
Communication 
Medium 

2.3.1 3.5.1.57 Activity 

İletimi Sağla Perform 
Transmission 

2.3.1 3.4.1.38 Task 

Ses İletimini Sağla Perform 
Transmission of 
Voice  

2.3.1.1 3.4.1.39 Task 

Görüntü İletimini Sağla Perform 
Transmission of 
Images 

2.3.1.1 3.4.1.40 Task 
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Veri İletimini Sağla Perform 
Transmission of 
Data 

2.3.1.1 3.4.1.41 Task 

Ses Iletimini Sağla 
Altişleri  

Subtasks of  
Perform 
Transmission of 
Voice 
 

2.3.1.1.1 3.5.1.59 
3.5.1.60 
3.5.1.61 
3.5.1.62 
3.5.1.63 
3.5.1.67 
3.5.1.69 
3.5.1.70 
3.5.1.72 
 

Activity 

Modemleri Kilitle Interlock Modems 2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Veri Kodlama Moduna 
Geç 

Switch to Data 
Encryption Mode 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Serbest Mesaj 
Aktarımını Seç  

Select Free Format 
Message 
Transmission 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Veri Gönderilecek 
Platformunu Seç 

Select Data 
Receiving Platform 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Veri Mesajını Gönder Send Data 2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Veri Alındı Teyidi Data Transmission 
Acknowledgement 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Görüntü Kodlama 
Moduna Geç 

Switch to Image 
Coding mode 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Görüntü Matrisinden 
Aktarılıcak Görüntüyü 
Seç  

Select the Image 
from the Image 
Matrix 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Seçilen Görüntüyü 
uydu Göndermecine 
İrtibatlandır 

Match the Image to 
Satellite Transmitter 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 

Görüntü Alındı Teyidi Image Transmission 
Acknowledgement 

2.3.1.1.1.1 3.5.1.67 
(S) 

Activity 
step 
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Görüntü İletimini Sağla 
Altişleri 

Subtasks of Perform 
Transmission of 
Images  

2.3.1.1.2 3.5.1.45 
3.5.1.46 
3.5.1.64 
3.5.1.67 
3.5.1.68 
3.5.1.69 
3.5.1.70 
3.5.1.71 
3.5.1.72 
3.5.1.75 
 
 
 

Activity 

Veri İletimini Sağla 
Altişleri 

Subtasks of Perform 
Transmission of 
Data  

2.3.1.1.3 3.5.1.60 
3.5.1.62 
3.5.1.65 
3.5.1.66 
3.5.1.67 
3.5.1.69 
3.5.1.70 
3.5.1.71 
3.5.1.72 
 

Activity 

Başarım Ölçütü 
Değerlerini Hesapla 

Calculate 
Performance 
Criteria 

2.4 3.5.1.20 Activity 

Başarım Ölçüt 
Değerleriyle Etkinlik 
Değerlerini Karşılaştır 

Compare 
Performance 
Criteria and 
Effectiveness 
Values   

2.4 3.5.1.21 Activity 

Görev Maliyet/Etkinlik 
Değerlendirmesini 
Hazırla 

Prepare mission cost 
effectiveness 
evaluation 

2.4 3.5.1.22 Activity 

Besleme Kaynağını 
Çalıştır 

Start the power 
source 

2.5 3.5.1.10 Activity 

Haberleşme 
Sistemlerini Hazırla 

Prepare 
Communication 
Systems 

2.5 3.5.1.11 Activity 

Sensör Sistemlerini 
Hazırla 

Prepare Sensor 
Systems 

2.5 3.5.1.12 Activity 

K2 Sistemlerini Hazırla Prepare C2 systems 2.5 3.5.1.13 Activity 
Çevrime Gir Open connection 2.5 3.5.1.58 Activity 
Haberleş Communicate 2.6 3.4.1.36 Task 
Platformların Ulaşım 
Hazırlığını Yap 

Prepare Platforms 
for Transportation  

2.6 3.5.1.7 Activity 
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Görev Yerlerine Ulaş Proceed to Mission 
Location 

2.6 3.5.1.8 Activity 

İntikal Teyidini Yap Acknowledgement 
of  Deployment 

2.6 3.5.1.9 Activity 

Performans Kriterlerini 
Belirle 

Determine 
Performance 
Criteria 

2.6.1 3.5.1.8 (S) Activity 
Step 

Yol Tanımlamasını 
Yap 

Prepare Path Plan  2.6.1 3.5.1.8 (S) Activity 
Step 

Belirlenen Yolu Takip 
Et 

Follow the Path 
Plan 

2.6.1 3.5.1.8 (S) Activity 
Step 

Gözetleme Yap Perform 
Surveillance 

2.6.1 3.5.1.8  (S)  Activity 
Step 

Gömülü Sensörleri 
Topla 

Collect Embedded 
Sensors 

2.6.2 3.5.1.7 (S) Activity 
Step 

Antenleri Topla Collect Antennas 2.6.2 3.5.1.7 (S) Activity 
Step 

Platformları Çalışır 
Hale Getir 

Start the Platforms 2.6.2 3.5.1.7 (S) Activity 
Step 

Durumu Raporla Report The State 2.7 3.5.1.14 Activity 
Son Durumu Doğrula Confirm Last State 2.7 3.5.1.15 Activity 
Gözetleme Durdur End the Surveillance 2.8 3.4.1.16 Activity 
Besleme Kaynağını 
Durdur 

Shut down the 
Power Source 

2.8 3.5.1.16 Activity 

Sensör Sistemlerini 
Durdur  

Shut down the 
Sensor Systems 

2.8.1 3.5.1.17 Activity 

Komuta Kontrol 
Sistemlerini Durdur 

Shut down the C2 
Systems 

2.8.1 3.5.1.18 Activity 

Haberleşme 
Sistemlerini Durdur 

Shut down the 
Communication 
systems 

2.8.1 3.5.1.19 Activity 

 
2. Diagrams of the Surveillance Mission 
 
In this section the diagrams of surveillance mission and all the subtasks is listed first. 
Then the diagrams drawed by KAMA tool are given. 
 
SGKS 
Diagrams 

SGKS 
Document 
Reference 

Task Notes 

2  3.3.1.1 Surveillance Communication excluded 
2.1 3.4.1.10 Perform Surveillance of the 

Area 
 

2.1.1 3.4.1.11 Scan the area  
2.1.1.1 3.4.1.33 Intercept  
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SGKS 
Diagrams 

SGKS 
Document 
Reference 

Task Notes 

2.1.1.2 3.4.1.44 Detect the Targets The subtasks are based on the 
type of the resource used 

2.1.1.3 3.4.1.45 Recognize and Identify The subtasks are based on the 
type of the resource used 

2.1.2 3.4.1.43 Update the Database  
2.2 3.4.1.1 Perform Coverage Analysis 

and Planning 
 

2.2.1 3.5.1.1 Perform Pre-Analysis of 
Coverage 

Consists of Sequential Tasks 
(Activity steps in SGKS 
document)  

2.2.2 3.5.1.3 Examine the deployment 
points and routes of the 
platforms 

Consists of Sequential Tasks 
(Activity steps in SGKS 
document) 

2.2.3 3.5.1.4 Update deployment points 
and routes of the platforms 

Consists of Sequential Tasks 
(Activity steps in SGKS 
document) 

2.3 3.4.1.2 Distribute Mission Order  
2.3.1 3.4.1.36 Communication  
2.3.1.1 3.4.1.38 Perform Transmission  
2.3.1.1.1 3.4.1.39 Perform Transmission of 

Voice  
The subtasks are based on the 
type of the equipment used 

2.3.1.1.2 3.4.1.40 Perform Transmission of 
Images 

The subtasks are based on the 
type of the equipment used 

2.3.1.1.3 3.4.1.41 Perform Transmission of 
Data 

The subtasks are based on the 
type of the equipment used 

2.4 3.4.1.8 Evaluate mission 
performance 

 

2.5 3.4.1.9 Prepare for the Mission  
2.6 3.4.1.4 Move to Mission Location  
2.6.1 3.5.1.8 Proceed to Mission Location Consists of Sequential Tasks 

(Activity steps in SGKS 
document) 

2.6.2 3.5.1.7 Prepare Platforms for 
Transportation 

Consists of Sequential Tasks 
(Activity steps in SGKS 
document) 

2.7 3.4.1.13 Handover the mission  
2.8 3.4.1.7 End the mission  
2.8.1 3.4.1.16 End the Surveillance  
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Id: 2 
Name: Surveillance (Gözetleme) 
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Id: 2.1 
Name: Perform Coverage Analysis and Planning (Sensör Kapsama Analiz ve Görev 
Planlamasını Yap) 
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Id: 2.2.1 
Name: Perform Pre-Analysis of Coverage  (Kapsama Ön Analizini Yap) 
 
 

 



 141

Id: 2.2.2 
Name: Examine the deployment points and routes of the platforms (Platformların Görev 
Planlamasını Yap) 
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Id: 2.2.3 
Name: Update deployment points and routes of the platforms (Platform Konuşlanma 
Nokta ve Güzergahlarını Tetkik Et) 
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Id: 2.3 
Name: Distribute Mission Order (Görev Emri Dağıt) 
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Id: 2.3.1 
Name: Communication (Haberleşme) 
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Id: 2.3.1.1 
Name: Perform Transmission (İletimi Sağla) 
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Id: 2.3.1.1.1 
Name: Perform Transmission of Voice (Ses İletimini Sağla) 
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Id: 2.3.1.1.2 
Name: Perform Transmission of Image (Görüntü İletimini Sağla) 
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Id: 2.6 
Name: Move to Mission Location (Görev Yerlerine İntikal Et) 
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Id: 2.6.2 
Name: Prepare Platforms for Transportation (Platformların Ulaşım Hazırlığını Yap) 
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Id: 2.6.1 
Name: Proceed to Mission Location (Görev Yerlerine Ulaş) 
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Id: 2.5 
Name: Prepare for the Mission (Gözetleme Görev Hazırlığını Yap) 
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Id: 2.1 
Name: Perform Surveillance of the Area (Görev Bölgesini Gözetle) 
 
 

 



 153

Id: 2.1.1 
Name: Scan the Area (Planlı Bölge Tara) 
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Id: 2.1.1.1 
Name: Intercept (Dinle) 
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Id: 2.1.1.2 
Name: Detect the Targets (Hedef Tespiti) 
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ID: 2.1.1.3 
Name: Recognize and Identify (Hedef Teşhisi ve Tanıma) 
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ID: 2.1.2 
Name: Update the Database (Veri Tabanı Güncelle) 
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ID: 2.7 
Name: Handover the Mission (Görev Devir Teslimini Gerçekleştir) 
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Id: 2.8 
Name: End the Mission (Görevi Sonlandır) 
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ID: 2.8.1 
Name: End the Surveillance (Gözetleme Durdur) 
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Id: 2.4 
Name: Evaluate Mission Performance (Görev Başarımını Değerlendir) 
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3. Unreferenced Items in Referent Model 
 
 
Original Name (In 
Turkish) 

SGKS Document Notes 

Grup Görev Emirlerinin 
Dağıtımı 

3.4.1.3 Related to “Gorev emri 
dagitilmasi” 3.4.1.2  

Görev Yerlerine İntikal 
Sonrası En Uygun Konuş  
Noktasının Bulunması 

3.4.1.5 After the task 3.4.1.4 
“Görev Yerlerine İntikal“ 

Gorev Bolgesi Degistirme 3.4.1.6 No reference in the 
Document 

 

 
4.  Preconditions, Postconditions and Assumptions Defined for Tasks 
 
Perform Coverage Analysis and Planning 

Preconditions 
All inputs should be ready 
Mission (task) order distribution should be defined  
Mission plan should be prepared 
Postconditions 
The confirmation should be received from all the units which make the mission 
order transmission 
The confirmation should be received from any unit in a period previously 
determined  

 
Move to Mission Location 

Preconditions 
Movement confirmation should be received from all the units (inconsistency) 
Communication should be established 
Communication devices should be determined 
The specified communication medium (channels) should be available, appropriate 
and usable 
Communication devices of the unit(s) shall be appropriate 

 
Prepare for the Surveillance Mission 

Preconditions 
If one or more of the units performing the surveillance can not perform the 
mission, this work ends 
Mission plan should be ready. 
Devolution to the surveillance region should be performed 
Communication and sensor systems should have at least one entity 
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Transfer Detection / Identification / Recognition Information  
Preconditions 

Detection / Identification / Recognition information to be transferred should be 
ready 
Transmission used in communication environment should be available, 
appropriate and work 

 
Update Database 

Preconditions 
Command-control computer should be switched on  
New data should be gathered 

 
 
Transmit 

Assumptions 
Only communication devices that are mentioned in the document will be utilized. 
Preconditions 
The information to be transmitted should be defined. 
The specified communication medium (channels) should be available, appropriate 
and usable 

 
 
Select the Communication Medium 

Assumptions 
In selection of the communication medium, no communication will occur except 
the ones that are supported by the entities communication devices and their 
communication channels. 

 
Preconditions 
Existence of necessary conditions for communication (requirement of notice of 
threat after Detection / Identification /Recognition, alarm situations etc.) 

 
Handover Mission 

Assumptions 
Work termination conditions are not provided and it is performed for permanent 
prescriptive works 

 
Preconditions 
Mission shift plan should be prepared 
Actors should be ready to make handover  

 
Postconditions 
New actors should review and verify the last reported case 

 
 



 164

Report Status 
Preconditions 
A request should be made 

 
Verify Latest Status 

Preconditions 
The report should be received. 
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5. Screenshots of the Error Reports Displayed by EMF  

Two screen shots show the errors found in the model when KAMA constraints are 

checked and KAMA-DV constraints are checked. 

 

KAMA Rules  Checking Screenshot 
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KAMA-DV Rules Checking Screenshot 
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EPC Soundness Checking Screenshot 
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6. List of Errors and Issues for the First Case Study 

No. Description 

1 
The 'UniqueOutgoingforJoinType' constraint is violated on 'Synchronization Point 
Seyir SP1' 

2 
The 'UniqueOutgoingforJoinType' constraint is violated on 'Synchronization Point 
Recognize and Identify SP1' 

3 
The 'UniqueOutgoingforJoinType' constraint is violated on 'Synchronization Point 
Detect the Targets SP1' 

4 
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point 
Select the Activity' 

5 
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point 
Select Communication Medium for Voice' 

6 
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point 
Select Communication Medium for Image' 

7 
The 'UniqueIncomingforForkType' constraint is violated on 'Synchronization Point 
Seyir SP1' 

8 
The 'UniqueIncomingforForkType' constraint is violated on 'Synchronization Point 
Recognize and Identify SP1' 

9 
The 'UniqueIncomingforForkType' constraint is violated on 'Synchronization Point 
Detect the Targets SP1' 

10 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
SeyirSP2' 

11 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Recognize and Identify SP1' 

12 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Proceed to Mission Location SP2' 

13 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Havada İlerleme Faaliyetleri SP4' 

14 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Havada İlerleme Faaliyetleri SP3' 

15 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Havada İlerleme Faaliyetleri SP1' 

16 
The 'SequentialIntermediateNode' constraint is violated on 'Synchronization Point 
Detect the Targets SP1' 

17 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Update the 
Database IT' 

18 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Transmission 
of Image IT' 

19 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Surveillance 
of the Area IT' 

20 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Scan the 
Area IT' 

21 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Recognize 
and Identify IT' 

22 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Prepare 
Platforms for Transportation IT' 

23 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Perform 
Transmission of Voice IT' 

24 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Perform 
Transmission IT' 

25 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Perform 
Transmission IT' 

26 The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Intercept IT1' 
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27 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Havada 
İlerleme Faaliyetleri IT' 

28 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task End the 
Surveillance IT' 

29 
The 'SequentialIntermediateNode' constraint is violated on 'Initial Task Detect the 
Targets IT' 

30 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Yakit 
Miktari' 

31 The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Seyir DP1' 

32 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Select the 
Activity' 

33 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Proceed 
to Mission Location DP1' 

34 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Need for 
Reorganization?' 

35 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Mission 
End Conditions Satisfied?' 

36 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Mission 
Duration Expired?' 

37 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Mission 
Duration Expired?' 

38 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point 
Insufficient Resources?' 

39 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point 
Insufficient Resources?' 

40 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point End 
Mission Order Received?' 

41 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point End 
Mission Order Received?' 

42 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point End 
conditions Satisfied?' 

43 
The 'SequentialIntermediateNode' constraint is violated on 'Decision Point Detection 
End Conditions Satisfied?' 

44 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Transmission of 
Image FT' 

45 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Surveillance of 
the Area FT' 

46 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Scan the Area 
FT' 

47 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Prepare for the 
Mission FT' 

48 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Perform 
Transmission of Voice FT' 

49 
The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task End the 
Surveillance FT' 

50 
The 'IncomingFlowMultiplicity' constraint is violated on 'Task Saðlam Personeli 
Tedavi Gücüne Göre Rassal Olarak Hastalandýr/Yaralandýr' 

51 The 'IncomingFlowMultiplicity' constraint is violated on 'Task Prepare Path Plan ' 

52 
The 'IncomingFlowMultiplicity' constraint is violated on 'Task Perform Surveillance of 
the area' 

53 
The 'IncomingFlowMultiplicity' constraint is violated on 'Task Perform Pre-Analysis of 
Coverage' 

54 
The 'HangingTask' constraint is violated on 'Task Detect the locations of Friend 
Forces' 
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55 The 'FlowDeadEnd' constraint is violated on 'Task Sequence Data ' 

56 The 'FlowDeadEnd' constraint is violated on 'Task Recognize using Radar' 

57 
The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets 
using Thermal Camera' 

58 
The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets 
using Personel' 

59 
The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets 
using Day Vision Camera' 

60 The 'FlowDeadEnd' constraint is violated on 'Task Query Data' 

61 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Voice ' 

62 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Voice ' 

63 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Image' 

64 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Image' 

65 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Data' 

66 The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Data' 

67 The 'FlowDeadEnd' constraint is violated on 'Task Input New Data' 

68 The 'FlowDeadEnd' constraint is violated on 'Task Handover the mission' 

69 The 'FlowDeadEnd' constraint is violated on 'Task Detect using Thermal Camera ' 

70 The 'FlowDeadEnd' constraint is violated on 'Task Detect using Radar' 

71 The 'FlowDeadEnd' constraint is violated on 'Task Detect using Personel' 

72 The 'FlowDeadEnd' constraint is violated on 'Task Detect using Embedded Sensor' 

73 The 'FlowDeadEnd' constraint is violated on 'Task Detect using Day vision Camera' 

74 The 'FlowDeadEnd' constraint is violated on 'Task Delete Data' 

75 The 'FlowDeadEnd' constraint is violated on 'Task Data Visualization on Map' 

76 The 'FinalTaskRequirement' constraint is violated on 'Task Perform Transmission' 

77 The 'FinalTaskRequirement' constraint is violated on 'Task Perform Transmission' 

78 
The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select 
the Activity' 

79 
The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select 
Communication Medium for Voice' 

80 
The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select 
Communication Medium for Image' 

81 
The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point 
Detection End Conditions Satisfied?' 
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APPENDIX B: KAMA-DV METAMODEL DEFINITION IN EMF 

 

In this Appendix, we include the KAMA-DV metamodel definition expressed in ecore 
format. 
 

1. KAMADVMetamodel.ecore 

import ecore : 'http://www.eclipse.org/emf/2002/Ecore#/'; 

 

package kamametamodel : kamametamodel = 'http://kamametamodel/1.0' 

{ 

class Task 

 { 

 invariant FlowDeadEnd:  

self.incomingFlow->size()= 1  

implies self.outgoingFlow->size()>= 1; 

 invariant HangingTask:  

self.outgoingFlow->size()= 1  

implies self.incomingFlow->size()>= 1; 

 invariant InitialTaskRequirement:  

self.consistsOfIN->size()> 0  

implies self.consistsOfIN->exists(oclIsTypeOf(InitialTask)); 

 invariant FinalTaskRequirement:  

  self.consistsOfIN->size()> 0  

  implies self.consistsOfIN->exists(oclIsTypeOf(FinalTask)); 

 invariant SelfconsistOf:  

        self-> closure(consistsOf)->excludes(self); 

 invariant IncomingFlowMultiplicity:  

        self.incomingFlow->size()<= 1; 

 invariant OutgoingFlowMultiplicity:  

        self.outgoingFlow->size()<= 1; 

 property incomingFlow#targetTask : TaskFlow[*]; 

 property outgoingFlow#sourceTask : TaskFlow[*]; 

 attribute ModelID : String[?]; 

 attribute Name : String[?]; 

 property consistsOf : Task[*] { composes }; 

property RepresentedBy#Represents : TaskFlowDiagram[*]  

{ composes }; 

 property consistsOfIN : IntermediateNode[*] { composes }; 

 property ConsistsOfTF : TaskFlow[*] { composes }; 

 } 

  

class TaskFlow 

 { 

 invariant SourceTargetDifference2:  
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(self.targetTask->size() = 1 and self.sourceTask->size() = 1)         

implies not (self.targetTask = self.sourceTask); 

 invariant TaskflowTargetType:  

   (self.targetTask.oclIsTypeOf(Task) or 

     self.target.oclIsTypeOf(DecisionPoint) or 

     self.target.oclIsTypeOf(SynchronizationPoint) or 

     self.target.oclIsTypeOf(FinalTask)); 

 invariant TaskflowSourceType:  

         (self.sourceTask.oclIsTypeOf(Task) or 

     self.source.oclIsTypeOf(DecisionPoint) or 

     self.source.oclIsTypeOf(SynchronizationPoint) or 

     self.source.oclIsTypeOf(InitialTask)); 

 invariant SourceTargetDifference1:  

         (self.target->size() = 1 and self.source->size() = 1)   

      implies not(self.target = self.source); 

 attribute ModelID : String[?]; 

 attribute GuardCondition : String[?]; 

 property target#incomingFlow : IntermediateNode[?]; 

 property source#outgoingFlow : IntermediateNode[?]; 

 property sourceTask#outgoingFlow : Task[?]; 

 property targetTask#incomingFlow : Task[?]; 

 } 

class IntermediateNode { abstract } 

 { 

 invariant SequentialIntermediateNode:  

     self.outgoingFlow->forAll (target=null); 

 property incomingFlow#target : TaskFlow[*]; 

 property outgoingFlow#source : TaskFlow[*]; 

 attribute ModelID : String[?]; 

 } 

class SynchronizationPoint extends IntermediateNode 

 { 

 invariant UniqueIncomingforForkType:  

     self. outgoingFlow->size() >1  

    implies self.incomingFlow->size() = 1; 

 invariant UniqueOutgoingforJoinType:  

          self.incomingFlow->size() >1   

    implies self.outgoingFlow->size() = 1; 

 invariant FlowType:  

(( self.incomingFlow->forAll(oclIsTypeOf(TaskFlow))) and         

(self.outgoingFlow->forAll(oclIsTypeOf(TaskFlow)))); 

 attribute isJoin : Boolean[?]; 

 attribute isJoinDerived : Boolean[?] { derived,volatile } 

  { 

   derivation:  

  if (incomingFlow->size>1) then isJoinDerived=true 

  else isJoinDerived=false 

  endif; 

  } 

 } 

class DecisionPoint extends IntermediateNode 

 { 

 invariant UniqueOutgoingFlowGuardCondition:  

     self.outgoingFlow->forAll(c1, c2 |  c1 <> c2 implies 

c1.GuardCondition <> c2. GuardCondition); 

 invariant ExistsOutgoingGuardCondition:   

       self.outgoingFlow->forAll(GuardCondition <> null); 
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 invariant FlowType:  

((self.incomingFlow->forAll(oclIsTypeOf(TaskFlow))) and 

(self.outgoingFlow->forAll(oclIsTypeOf(TaskFlow)))); 

 attribute isMerge : Boolean[?]; 

 attribute isMergeDerived : Boolean[?] { derived,volatile } 

  { 

   derivation:  

  if (incomingFlow->size>1) then isMergeDerived = true 

  else isMergeDerived=false 

  endif; 

  } 

 } 

class InitialTask extends IntermediateNode 

 { 

 invariant NoIncomingFlow:  

       self.incomingFlow->size() = 0; 

 invariant OutgoingFlowMultiplicityIT:  

  self.outgoingFlow->size() <= 1; 

 } 

class FinalTask extends IntermediateNode 

 { 

 invariant NoOutgoingFlow:  

  self.outgoingFlow->size() = 0; 

 invariant IncomingFlowMultiplicityFT:  

  self.incomingFlow->size() <= 1; 

 } 

class TaskFlowDiagram 

 { 

 invariant NameEquivalence:  

      self.Name =  self. Represents.Name; 

  attribute ModelID : String[?]; 

  attribute Name : String[?]; 

  property Represents#RepresentedBy : Task[?]; 

 

} 

} 
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2. OCL Constraints Related to KAMA Metamodel Rules 
 
In this section, rules of original KAMA metamodel are listed as OCL constraints. ID field 
is based on the constraints listing in the original KAMA metamodel. If it is not traceable 
to KAMA the code is based on the section it occurs in this work. This enables checking 
of the rules using EMF environment.  
 
 

Code Rule OCL Constraint 
3.3.b.3A 

)))),(,(

),((,(

TFttjkTt

impliesTFttTtt

kik

jiji

∈≠∈¬∃

∈∈∀

 

invariant 

OutgoingFlowMultiplicity:  

        self.outgoingFlow-

>size()<= 1; 

 
3.3.b.3B 

)))),(,(

),((,(

TFttikTt

impliesTFttTtt

jkk

jiji

∈≠∈¬∃

∈∈∀

 

invariant 

IncomingFlowMultiplicity:  

        self.incomingFlow-

>size()<= 1; 

3.3.g.1 “The connections coming into and 
going out of a decisionPoint must 
be taskFlows.” 
 

invariant FlowType:  

 

 ((self.incomingFlow-

>forAll(oclIsTypeOf(TaskFlow)

)) and (self.outgoingFlow-

>forAll(oclIsTypeOf(TaskFlow)

))); 

3.3.g.2 

)).,().,(

),),(

,),(((

guardtdguardtd

implieskiTFtd

TFtdDd

kiji

ki

jii

≠

≠∈

∈∈∀

 

invariant 

UniqueOutgoingFlowGuardCondit

ion:  

self.outgoingFlow->forAll(c1, 

c2 |  c1 <> c2 implies 

c1.GuardCondition <> c2. 

GuardCondition); 

3.3.g.3 

)).,(

),((

∅≠

∈∈∀

guardtd

impliesTFtdDd

ji

jii
 

invariant 

ExistsOutgoingGuardCondition:

self.outgoingFlow 

->forAll(GuardCondition <> 

null); 

3.3.h.1 

).),(

),),(

),,(((

loneonlyforTFts

implieskjTFst

stSs

li

ik

iji

∈

≠∈

∈∀

 

invariant 

UniqueIncomingforForkType:  

self. outgoingFlow->size() >1 

implies self.incomingFlow-

>size() = 1; 

 
3.3.h.2 

).),(

),),(

),,(((

loneonlyforTFst

implieskjTFts

tsSs

il

ki

jii

∈

≠∈

∈∀

 

invariant 

UniqueOutgoingforJoinType:  

self.incomingFlow->size() >1 

implies self.outgoingFlow-

>size() = 1; 
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3.3.h.3A 

)),(

),((

TFstimplies

ASstSs

ij

iji

∈

∈∈∀
 

and 

))(),(

),((

TFASstimplies

ASstSs

ij

iji

−∉

∈∈∀
 

invariant 

SynchronizationFlowType:  

((self.incomingFlow-

>forAll(oclIsTypeOf(TaskFlow)

)) and (self.outgoingFlow-

>forAll(oclIsTypeOf(TaskFlow)

))); 

3.3.h.3B 

)),(

),((

TFtsimplies

AStsSs

ji

jii

∈

∈∈∀
 

and 

))(),(

),((

TFAStsimplies

AStsSs

ji

jii

−∉

∈∈∀
 

 

 

Same as 3.3.h.3A. 

3.3.i.1 ).),(( TFixIi jj ∉∈∀  invariant NoIncomingFlow:  

self.incomingFlow->size() = 

0; 

 
3.3.j.1 )),(( TFxfFf ii ∉∈∀  invariant NoOutgoingFlow:  

self.outgoingFlow->size() = 

0; 

 
3.3.p.1.A 

))((

),(

ISDTx

TFyx

∪∪∪∈

∈∀

 

invariant TaskflowSourceType: 

(self.sourceTask.oclIsTypeOf(

Task) or 

self.source.oclIsTypeOf(Decis

ionPoint) or 

self.source.oclIsTypeOf(Synch

ronizationPoint) or 

self.source.oclIsTypeOf(Initi

alTask)); 

 

 
3.3.p.1.B 

))((

),(

FSDTy

TFyx

∪∪∪∈

∈∀
 

invariant TaskflowTargetType: 

(self.targetTask.oclIsTypeOf(

Task) or 

self.target.oclIsTypeOf(Decis

ionPoint) or 

self.target.oclIsTypeOf(Synch

ronizationPoint) or 

self.target.oclIsTypeOf(Final

Task)); 

 

3.3.p.2 “Only one taskFlow may exist 
between the same source and 
target” 

invariant 

SourceTargetDifference2:  

(self.targetTask->size() = 1 

and self.sourceTask->size() = 

1) implies not 

(self.targetTask = 

self.sourceTask); 
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3. OCL Constraints for Dynamic Properties defined in KAMA-DV 
 
In this section the constraints of KAMA-DV metamodel that are used in the case studies 
are listed as OCL constraints. Id is the section number in the KAMA-DV metamodel. The 
OCL constraints are simplified based on the metamodel definition for the case study. 
 

ID Rule OCL Constraint 

6.2.2.6.1 Derived Attribute 
isJoin  

attribute isJoinDerived : Boolean[?] 

{ derived,volatile } 

{ 

derivation:  

if (incomingFlow->size>1) then 

isJoinDerived=true 

else isJoinDerived=false 

endif; 

} 

6.2.2.7.1 Derived Attribute 
isMerge 

attribute isMergeDerived : Boolean[?] 

{ derived,volatile } 

{ 

derivation:  

if (incomingFlow->size>1) then 

isMergeDerived = true 

else isMergeDerived=false 

endif; 

} 

6.2.2.1.2 Hanging Task invariant HangingTask:  

self.outgoingFlow->size()= 1 implies                             
self.incomingFlow->size()= 1; 

6.2.2.1.2 Flow Dead End invariant FlowDeadEnd: 

self.incomingFlow->size()= 1 implies 
self.outgoingFlow->size()= 1; 

6.2.2.1.4 Existence of 
initialTasks  

invariant InitialTaskRequirement:  

self.consistsOfIN->size()> 0 implies 

self.consistsOfIN-

>exists(oclIsTypeOf(InitialTask)); 

 

6.2.2.1.5 Existence of 
finalTasks 

invariant FinalTaskRequirement:  

self.consistsOfIN->size()> 0 implies 

self.consistsOfIN-

>exists(oclIsTypeOf(FinalTask)); 

 

4.2.5 
(optional 
rule) 

Multiple sequential 
occurrence of 
intermediateNodes 

invariant SequentialIntermediateNode:  

self.outgoingFlow->forAll 

(target=null); 

6.2.2.1.3 Task does not 
ConsistOf itself  

Invariant ForbiddenSelfConsistOf: 

self-> 

closure(consistsOf)->exludes(self) 
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