A VERIFICATION APPROACH FOR DYNAMICS OF
METAMODEL BASED CONCEPTUAL MODELS
OF THE MISSION SPACE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

UTKAN ERYILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

MARCH 2011

Approval of the Graduate School of Informatics

Prof. Dr. Nazife BAYKAL
Director
I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor

of Philosophy.

Prof. Dr. Yasemin YARDIMCI
Head of Department
This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Dr. Semih BILGEN

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Onur DEMIRORS (METU, 1I)

Prof. Dr. Semih BILGEN (METU, EE)
Assist. Prof. Dr. Kayhan IMRE (Hacettepe U., CENG)
Assist. Prof. Dr. Altan KOCYIGIT (METU, II)

Assoc. Prof. Dr. Halit OGUZTUZUN (METU, CENG)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name : Utkan Eryilmaz

Signature

iii

ABSTRACT

A VERIFICATION APPROACH FOR DYNAMICS OF
METAMODEL BASED CONCEPTUAL MODELS OF THE
MISSION SPACE

Eryilmaz, Utkan
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Semih Bilgen

March 2011, 178 pages

Conceptual models were introduced in the simulation world in order to describe the
problem domain in detail before any implementation is attempted. One of the recent
approaches for conceptual modeling of the military mission space is the KAMA approach
which provides a process description, a UML based notation, and a supporting tool for
developing conceptual models. The prominence of the approach stems from availability
of guidance and applications in real life case studies. Although the credibility of a
conceptual model can be leveraged through use of a structured notation and tools, the
verification and validation activities must be performed to arrive at more credible
conceptual models. A conceptual model includes two categories of information: static
and dynamic. The dynamic information describes the changes that occur over time. In
this study, the dynamic characteristics of the conceptual models described in KAMA
notation are explored and a verification approach based on these is proposed. The
dynamical aspects of KAMA notation and example conceptual models provide the
necessary information for characterization of the dynamical properties of conceptual
models. Using these characteristics as a basis, an approach is formulated that consists of
formal and semiformal techniques as well as supporting tools. For description of
additional properties for dynamic verification, an extended form of KAMA is developed,
called the KAMA-DV notation. The approach is applied on two different real-life case
studies and its effectiveness is compared with earlier verification studies.

Keywords: Conceptual Modeling, Conceptual Model Dynamics, Verification.

v

0z

METAMODEL TABANLI GOREV UZAYI
KAVRAMSAL MODELLERININ DINAMIKLERINE YONELIK
BIR DOGRULAMA YAKLASIMI

Eryilmaz, Utkan
Doktora, Bilisim Sistemleri

Tez Danmigmant: Prof. Dr. Semih Bilgen

Mart 2011, 178 pages

Kavramsal modeler simiilasyon diinyasina problem uzayinin detayl bir sekilde tasviri
icin One siiriilmiislerdir. Askeri gorev uzay: icin gelitirilmis en yeni kavramsal model
gelistirme yaklagimlardan biri, siire¢ tanimi, UML tabanli notasyon ve destekleyici araci
saglayan KAMA yaklasimidir. KAMA yaklasiminin 6ne ¢ikmasi yaklasimla ilgili rehber
bilgi mevcut olmasi ve yaklasimin gercek diinyada vaka caligmalarina uygulanmasindan
kaynaklanmaktadir. Kavramsal modellin giivenilirligi yapisal bir notasyon ve araglarla
yiikseltilmesine ragmen, giivenilirligi artirmak icin dogrulama ve gecerleme
faaliyetlerinin gergeklestirilmesi gereklidir. Bir kavramsal model static ve dinamik olmak
tizere iki kategoride bilgi icerir. Dinamik bilgi zamanla meydana gelen degisiklikleri
betimler. Bu calismada KAMA notasyonunda betimlenmis kavramsal modellerin
dinamik 6zellikleri incelenmis ve bunlar1 temel alan bir dogrulama yaklagimi onerilmistir.
KAMA notasyonundaki dinamik bakis agilar1 ve ornek kavramsal modeler kavramsal
modellerdeki dinamik Ozelliklerin karakterizasyonu i¢in gerekli bilgiyi saglarlar. Bu
karakteristikler temel olarak kullanilarak, formel ve yar1 formel yaklasimlar1 ve
destekleyici araglar1 iceren bir yaklasim tanimlanmistir. Dinamik dogrulama i¢in gerekli
ek ozeliklerin tanimlanmasi icin KAMA™ nin genisletilmis bir bicimi gelistirilmistir ve bu
notasyona KAMA-DV adi verilmistir. Yaklasim gercek yasamdan iki farkli Ornek
izerinde uygulanmus ve etkililigi onceki dogrulama ¢alismalariyla karsilastirilmastir.

Anahtar Kelimeler: Kavramsal modelleme, Kavramsal model dinamikleri, dogrulama.

ACKNOWLEDGMENTS

I want to express my gratitude to my supervisor Semih Bilgen for his guidance, support,
understanding, and encouragement. With his support, I dared to deal with all the hardness
I encountered during this study.

I also want to thank all the examining comitee members, Onur Demirdrs, Halit
Oguztiiziin, Altan Kogyigit, and Kayhan Imre for their recommendations and suggestions.

Part of this work has been performed in the KAMA Conceptual Model Development
Tool Project. I would like express my appreciation to members of the KAMA project
group who participated in laying the groundwork for this study. I am most grateful to
Alpay Karagoz and Ozgur Tanriover for their collabaration during this work especially as
participants of the case study.

I also want to extend my thanks to Veysi Isler, my director at MODSIMMER, and other
staff for supporting me during the study.

For the final years of this work, my friends in Ankara, Evren Deviren, Ulas Beldek, and
Cagatay Topal supported me morally and provided such friendly places to stay that I even
did not feel as a guest. I also extend my thanks to all my friends for their encouragement.

I would like to thank to my family, my mother Nuray, my father Ibrahim, my
grandmother Mebrure, my uncle Hiiseyin for supporting me without any doubt in
pursuing my goals in life. My younger brother Baran made me smile even at the times I
feel most stressful.

During last phases of this work, my wife Neslihan supported me and turned difficult
times to enjoyable. I am grateful for her patience, understanding, and encouragement.

vi

TABLE OF CONTENTS

ABSTRACT ..o v
OZ ..ot \%
ACKNOWLEDGMENTS ..ot vi
TABLE OF CONTENTS ..ot vii
LIST OF ABBREVIATIONS AND ACRONMYS.....ooviiiiiieeiiiiiieeeiiinnn, X
LIST OF FIGURESo xi
LISTOF TABLESc oo e s xii
CHAPTER
I INTRODUCTIONcooiiiiiiiiiiiieee ettt e e e e e e eeevvieee e e e e e e e eeeeaeaees 1
1.1 Verification and Validation of Conceptual Models...........cccceevviiiiiiiiiiiiinnnnnis 1
1.2 The Research Problemcooiiiiiiiiiiiiiiiiicc e 4
1.3 The Proposed ApProachi.............ueiiiiiiiiiiiiiiiiiiiie e 4
1.4 Contributions of the ThesiSccoccuiiiiiiiiiiiiiii e 6
1.5 Organization Of the TheSISueiiiiiiiiiiiiiiii e 6
2 CONCEPTUAL MODELS AND VERIFICATION.......cccooeeeiiiiiieennnnes 7
2.1 Interpretation of Conceptual Modeling for Simulationsccccceeeviiieeeennnnee. 7
2.1.1 Conceptual Model Definitions.........ceeeeevririiiiiiieeeieiiiiiiiiieeeee e 7
2.1.2 Conceptual Model SCOPE......cccueeeiiiiiiiiieiiiieee e 9
2.1.3 Conceptual Model Development Methods.........cccoovviiiiiiiiiieiiiinniiiiiineee, 10
2.1.4 Conceptual Model Verification............oovvvueeiiiiieieeeinniiiiiieeeeee e 14
2.2 KAMA: A Metamodel based approach for Conceptual Modeling................... 19
2.2.1 Evaluation of KAMA as a Conceptual Modeling Approach.................... 19
2.3 Verification Approaches for Dynamic Propertiescccocccceeeriiieieinniieecenns 20
2.3.1 Verification Methodologies for Metamodel Based Conceptual Models...21
2.3.2 Verification of UML Activity Descriptionscoeevuueiieeeeeeeeennniiinenee. 22
233 Verification of Conceptual Business Process Descriptions...................... 24
3 THE DEFINITION OF KAMA SEMANTICS.........cccovviiiiieeeieiereeeees 27
3.1 Sets of Model EIEMENLSccooviiiiiiiiiiiieiiiiieceeieeeeeee e 29
3.1.1 Mission Space Fundamental Package Elementsccceeeeeeeeeeeeeeeennnn. 30
3.1.2 Mission Space Sequencing Package Elementsccccooevuuiiiiieeeennnnnnne 31
3.1.3 Elements of Other Packagescccooviiiiiiiiiiiiiiiiiieeeeee 32

vii

3.2 AETIDULES ettt e et et e et e et e e ea e et seassesaeeeannes 36

3.3 CONSIIAINES ..ttt e e et e e et e e e s e e e s e e e e e eaaneee 37
3.4 DErIVEd SEIS..ccuuiiiiiiiiiiieiiee e e e e 43
3.5 The Relationship of KAMA Metamodel Definition with
Dynamic VerifiCationeuiiiiiiiiiiiiiiiiiiiiee et e e e e eee e e 44
4 CONCEPTUAL MODEL DYNAMICS. ..., 45
4.1 Conceptual Model Dynamics Characteristics and Limitationsc......... 45
4.1.1 Characteristics of Conceptual Model Dynamics..............eeeeeeeeeevinninnnneen. 45
4.1.2 Limitations of Conceptual Model Dynamics..........coovveueiiieeeeeeinnnininneee. 47
4.2 The Context of Dynamics in KAMA Modelscoooiiiiiiiiiiiiiiniiiiiiiceeeenn, 48
4.2.1 BaSIC TASKS .o 48
4.2.2 The Hierarchy of Tasksccccuvviiiiiiiiiiiiee e 51
42.3 SynchronizationPoint Model Element..................uvvvvviiiiiiiieiveiieiiiiiineennnn. 54
4.2.4 DecisionPoint Model Element.............ccccoovviiiiiiiiiiiiiiiiiiiiiceeeeeeeee 57
4.2.5 Cascaded DecisionPoints and SynchronizationPOintscccceuvvun. 57
4.2.6 WorkProduct Package Model Elementscccooeeeeieeiieeiieieeeeeeeeeeeeen, 57
4.2.7 Role Package Model EIementscccoeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeee e 58
4.2.8 Objective Package Model Elementsccooeeeeeeeeeieiieeeeeeeeeeeeeeeeeeeeeen 58
4.2.9 Other Static Relations............euviiiiiiiiiiiiiiiiiiieee e 59
4.2.10 Relations with Objects (Instances of Entities)ccocccveeeeriuieeeennnieeeenns 59
5 V&V REQUIREMENTS FOR CONCEPTUAL MODEL
DYNAMICS ..o e ettt re e e e e e e e e e eeaaaanaes 60
5.1 Conceptual Model Verification Requir€ments...........occuvveveeeeeeeeinniiiiiieeeeeennn. 60
5.1.1 Error Prone Parts of a Conceptual Model...........ccccoviiiiiiiiiiiiiiinnniiiine. 61
5.2 Execution Dynamics for Model Elementsccccuvviiieiiiiiniiiiiiiiieeeeeeee 61
5.2.1 Basic Concepts Related to Execution of Tasks..........cccuvvvveeeeiiiinnninnnnnen. 61
5.2.2 Phases of Task EXECUtIONuuiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 65
523 Example of Basic Triggering during Task Execution..........cccceccveeeennnne. 66
5.2.4 Variances in Task Executions Related to Model Elements....................... 67

6 THE VERIFICATION APPROACH FOR CONCEPTUAL MODEL

DYNAMICS ..o e e e e et e e e e e e e e e e raaaanaes 72
6.1 Model Based Verification Approachcc.eeeeeiiiiiiiiiiiiiiiiiiiiiiieeeeeen 72
6.2 KAMA-DV Metamodelcceiiiiiiiiiiiiiiiiieeee ettt 73

6.2.1 KAMA-DV Metamodel Organization..............ceevrueeeiieeeeeeennnniiiiieeeeeenn. 74
6.2.2 KAMA-DV Core Package.........ccceeeviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeiieeeee e 74
6.2.3 KAMA-DV Behaviour Packagec..eeeeeiiiiiiiiiiiiiiiiiiiieieceeen 80
6.3 General Outline of the Method..........cccueviiiiiiiiiiiieeee 81
6.3.1 Step 1: Structuring the Model and Static Verification............cccevvveeeeennn. 83
6.3.2 Verification of the Static COnStraintsceeeeeerrriiiiiieeeeeeeeeniiiieeeee, 83
6.3.3 Checking of Properties Related to Dynamics..........ooeeuuviiiieeeeeennniinnnnnee. 87
6.3.4 Step 2: Enriching the Dynamic Semanticscccuvvvieeeeeenniiiiiiieeeennnn. 89
6.3.5 Dynamic ANALYSISceeeiiiiiiiiiiiiiiiieeee et 90
6.4 Tool Support for the Verificationeeeeeiiiiiiiiiiiiiiieiiiiiniiieeeeee e 91

viii

6.4.1 Selection of the Verification TOOL........c.cvvvveiiiiiiiiiiiieiieeeeee e 91

6.4.2 Models Involved in the Verification Approachccccceeeeeiiiiiiiinnnne. 96
6.4.3 Adaptation of the Tool for Checking of Metamodel Properties 97
6.4.4 The Tool for checking the Dynamic Properties of the Model.................. 98
7 EVALUATION OF THE VERIFICATION APPROACH.................... 99
7.1 Selection of the Case Study Approach..........cccccevvviiiiiiiiiiiiiiiiiiiiiiieeee e 99
7.2 Case Study 1: Conceptual Model of the Surveillance Mission...................... 100
7.2.1 Case Study DESIZNeeeeiiiiiiiiiiiiiiieeee e 100
7.2.2 Results of the Case Studyuvviiieiiiiiiiiiie e 102
7.2.3 Evaluation of the Case Study.........ccccoevviiiiiiiiiiiiiiiiiiee e 105
7.2.4 Improvements of the Approach Based on the Recommendations........... 106
7.3 Case Study 2: Engagement Taskcooooiiiiiiiiiiiiiiiiiiiieeeeeieeee 107
7.3.1 Case Study DESIZNeeeeiiiiiiiiiiiiiieeeee et 107
7.3.2 Results of the Case Studyuvviiieiiiiiiiiieee e 108
7.3.3 Evaluation of the Case Study.........ccccoovviiiiiiiiiiiiiiiiiee e 111
8 DISCUSSION AND CONCLUSION......uuuiiiiiiiii 112
8.1 CONLIIDULIONS ...ttt e e e e e ee e 112
8.2 Accomplished WOTKouviiiiiiiiiiiie e 113
8.2.1 Verification Approach Based on Formal Techniques for Metamodel Based
Conceptual MOAEISoeiiiiiiiiiiiiiiieeee e e e e 113
8.2.2 UML Activity Verification and Conceptual Business
Process VErifICation.coocuuiiiiiiiiiiiiiiiiee ettt 117
8.2.3 Comparison of Related Approaches..............eeeeeeiviviiiiiiiiieeeeinnnniiieneee, 118
8.3 Directions for Further Research............cccccoviiiiiiniiiiiceecce 120
8.3.1 Better Syntax and Semantics Definitions for Conceptual Models.......... 120
8.3.2 Execution of Conceptual Models..........oocuuiiiiiiieiiiiiiiiiiiiiceeeeeeee 120
8.3.3 Tool Support Throughout the Verification Lifecycleccoounnnneeee. 121
8.3.4 Application of Other TeChNIQUEScccuviiiiiiiiiiiiiiiiiiiiceee e 121
8.3.5 Quantitative Analysis of Issues Considering Model Metrics 122
REFERENCES ...t e e 123
APPENDICES
A. SGKS SURVEILLANCE MISSION AND VERIFICATION
RE S UL T S . e e 131

B. KAMA-DV METAMODEL DEFINITION IN EMF........................171

CURRICULUM VITAE.......ccoiiiiiiiiiii e, 177

iX

LIST OF ABBREVIATIONS AND ACRONMYS

BOM: Base Object Models

C4ISR: Command, Control, Communications, Computer, Intelligence, Surveillance,
Reconnaissance.

CMMS: Conceptual Models of the Mission Space

DCMF: Defence conceptual Modeling Framework

DMSO: United States Department of Defense Modeling and Simulation Office
DoD: Department of Defense

DV: Dynamic Verification

EMF: Eclipse Modeling Framework

FDMS: Functional Descriptions of the Mission Space

FEDEP: Federation Development and Execution Process

HLA: High Level Architecture

IDE: Integrated Development Environment

IEEE: Institute of Electrical and Electronics Engineers

IEEE FEDEP: IEEE Recommended Practice for High Level Architecture (HLA)
Federation Development and Execution Process

IEEE HLA: IEEE High Level Architecture

KAMA: KAMA Conceptual Modeling Approach

KAMA-DV: KAMA Conceptual Modeling Approach Extended for Dynamic
Verification

MDA: Model Driven Architecture

MDT: Model Development Tools

MOF: Meta Object Facility

OCL: Object Constraint Language

OMG: Object Management Group

REVVA: Common Validation, Verification and Accreditation Framework for Simulation
UML: Unified Modeling Language

SGKS: Border Surveillance Control System

SISO: Simulation Interoperability Standards Organization

V&V: Verification and Validation

VV&A: Verification, Validation and Accreditation

VV&A RPG: Verification, Validation and Accreditation Recommended Practices Guide

LIST OF FIGURES

Figure 2-1. Relationship between Metamodels and Modelscccocvieeiiniiiiicinnnnneen. 22
Figure 3-1. Dependencies between Mission Space Packages..........cccovevveeeiniiiieiennnneeen. 30
Figure 4-1 Two Task Flow Diagrams with Different Semantics for Task Execution 49
Figure 4-2. A Delayed Task EXECULIONccoocuuiiiiiiiiiiiiiiniieee et 49
Figure 4-3 Task Flow Diagram Containing SingleExecution Task vs. a Task

that 1S NOt SINGLEEXCCUTION.uuvuvenennnininineiieiiiiieietttaeaaaaaaaaaasasaaaasaaassssassesasssssssssssannes 50
Figure 4-4 UML activity, activityNode and action Relations..............ccceeeeeeeeiinnniiinnneee. 52
Figure 4-5 FinalTask Differences in EXECULION............eeiiiiiiiiiiniiiiiiiniieceeieecceeen 53
Figure 4-6 A SynchronizationPoint of Fork Type with Flows Synchronized.................. 56
Figure 5-1 Execution States of Elements of Task Flow Diagramc.ccccocuuue.... 64
Figure 5-2 The Creation, Starting and Finishing Time of a Task Execution.................... 65
Figure 5-3 General Case of Task EXECUtIONccoorvuiiiiiiniiiiiiiniiiee e 66
Figure 5-4 Execution 0f SUCCESSOT TaSKccoouuieiiiiiiiiiiiiiiiceeeeee e 68
Figure 5-5 Execution of Fork Type SynchronizationPoOintcccccueeeeeieiinancunnnnne. 68
Figure 5-6 Execution of Join Type SynchronizationPointcccccceeeeeeeeieeenincunnnene. 69
Figure 5-7 DecisionPoint EXECULIONueiiiiiiiitiiiiiieee et et e e e e 70
Figure 5-8 Execution of Task Hierarchyccccooiiiiiiiiiiiiiiiniiccecceeeee e 71
Figure 6-1 Distinct Models Used for Verificationccceeeeviiiiiiiniiieeeeniieeeenieeeen. 73
Figure 6-2. The Process of Dynamic Verification Shown as a Task Flow Diagram........ 82
Figure 6-3 Distinct Models Used for Verificationc.ccceeeeviiieiiiniiieeenniieeeenieeenn 97
Figure 7-1 KAMA-DV Model Elements for Sequencing Expressed as

an ECore DIa@ram........ccooiiiiiiiiiiiiiiiii et a e 103
Figure 7-2. The Equivalent EPC of “Advance in Air” Task Flow Diagram

that 1S NOT SOUNM ...eeiiiiiiiiiiiiiiee e et e e s e e e ee s 110

X1

LIST OF TABLES

Table 2-1. Various Definitions of Conceptual Modelsccccoovviiiiiiiiiiiiiiiniiiiiiieeeeenn, 8
Table 2-2. The Definition of V&V from the Standpoint of Software and Simulation
DEVEIOPIMENT ..cceiiiiiiiiiiiiiiee ettt e e ettt e e e e e e et e e e e e e e e ssbaeaeeas 15
Table 2-3. Verification and Validation Methods for Conceptual Model Listed in

VVEA RPG ...ttt e 18
Table 2-4. The Elements Used in EPC Diagrams and their Counterparts........................ 26
Table 3-1. UML Metamodel Elements Related to KAMA and KAMA Mission Space
Package Model EICMENES.cooviiiiiiiiiiiiieeiiiiiieeeee ettt e e e 28
Table 3-2. KAMA Mission Space Model Elements, their Abbreviations and

Containing PaCKA@ESceeiiiiiiiiiiiiiieee e 35

Table 6-1. Number of Iterations Needed for Checking Fundamental Package Rules 84
Table 6-2. Number of Iterations Needed for Checking Sequencing Package Rules 85

Table 6-3.Number of Iterations Needed for Workproducts Package Rules..................... 86
Table 6-4 Number of Iterations Needed for Roles Package Rules.................ccccuvvvvvvvnnnnns 86
Table 6-5 Number of Iterations Needed for Objectives Package Rulesuu.... 86
Table 6-6 Number of Iterations Needed for Mission Space Complete Package Rules87
Table 6-7 Tools Dealing with Analysis of Activity Charts and EPCs...........cccccccoeneeeee. 94
Table 6-8 Other Tools for Simulation of UML Models...........ccceevviiiiiiiiiiieininniiiieneee. 95
Table 6-9 Features and Plug-ins Used during Verification Processccccoccveeeennnnee.. 96
Table 7-1 Model Statistics of SGKS Conceptual Model..........cccccoeviiiiiiiiiiiiinnnniiiineen. 101
Table 7-2 Statistics of the SGKS Surveillance MiSSiOncccoovvcuiiieeiiiiiinnninneen. 102
Table 7-3. Number and Type of Errors Found in Various DHS Tasks............cccoceee... 108
Table 7-4. The Corresponding Errors and ISSUES.........cccuvviiiiiiiiiiiiiiiiiiiiieeeeeeeee 109
Table 8-1. Errors Found by Inspection and Related Errors in KAMA-DV in Surveillance
IMIISSION .ttt ettt e e e et e e ettt e e sttt e e sttt e e e et e e e e e e e eaneeee s 115
Table 8-2. The Correspondence of Consistency Checks with KAMA-DV 116
Table 8-3. Comparing of EPC, UML and KAMA in Terms of Aspects in

Conceptual MOAEIS.eviiiiiiiiiiii et 119

Xii

CHAPTER 1

INTRODUCTION

As the use, scope and effect of complex simulation systems grow, higher levels of
validity are required. It is easier to build systems from components, run the systems in
distributed environments and analyze the results, but determining whether the simulation
is correctly designed for the intended purpose is a hard task. Establishing validity is
always difficult and costly; validity of a simulation is enhanced through iterative
application of validation and verification activities during the simulation development
process.

Typically for large scale systems, before a significant simulation instance is implemented,
a conceptual model of the subject to be simulated is developed. The conceptual model
serves to establish the fundamental components and relationships that will be modeled in
the simulation. As such, it precedes the detailed design and implementation phases, and
constitutes the foundation on which simulation instances are developed. Consequently,
correctness of actual simulation exercises requires the correctness of the conceptual
models based on which the simulations are developed. That is, conceptual model
correctness is a necessary condition for the correctness of any simulation.

In this thesis we will deal with the verification of dynamic descriptions in conceptual
models. As our aim is to contribute to the validity of simulations through increasing the
validity of a fundamental artifact in simulation development, the conceptual model, we
will briefly discuss what a conceptual model is and how it contributes to simulation
development in the following section. In the second section we will describe the research
problem and afterwards we will present our approach briefly.

1.1 Verification and Validation of Conceptual Models

The dictionary definition of simulation [3] is “the imitative representation of the
functioning of one system or process by means of the functioning of another”. A
computer model is formed that represents functioning of the real system where the
specific aspects of the system are simulated at a specific level of detail. In complex
simulations there can be several processes, entities behaving deterministically or
randomly, and users interacting with the simulation. It is hard if not impossible to check
every execution for correctness for such systems. So the strategy for developing a valid

simulation is generally to try as much as possible to find errors, to perform as much
verification and validation activity as feasible during the development process, and build
credibility in an iterative way into each work product before building the final executable
simulation.

The development of simulation systems is not a simple task. Simulation software
development activities involve many parties which assume different roles such as the user,
sponsor, developer, verification agent, where each role may be assumed by more than one
organization. Simulation software is typically not standalone any more; it may consist of
a number of communicating components, such as federates participating in a federation
[5]. Such components may either be reused to develop other simulations or all or parts of
simulations can be integrated with others to form new simulations. So the development
can also be shared among different parties based on components.

Among the actors involved in simulation, there usually is a gap in understanding; while
the users emphasize the problem to be solved and the requirements of the simulation, the
developers deal with how to solve the problem, that is, the design.

During development of a simulation application, the primary concern is the correct
description of the domain elements represented, which is introduced as the conceptual
model. It describes the domain thoroughly and is agreed by both developers and users. It
is a document that describes not only the elements in the domain but also the behavior of
these elements.

The conceptual model is defined by DoD Modeling Simulation Glossary [4] as “First
abstractions of the real world that serve as a frame of reference for simulation
development by capturing the basic information about important entities involved in any
mission and their key actions and interactions. They are simulation-neutral views of those
entities, actions, and interactions occurring in the real world”. Usually to attain a correct
representation, which is called the conceptual model, that imitates the behavior of the real
life process or system, an adequate representation of the system or process has to be
developed that defines the system behavior in a common language, that could be
understood by both the user and the developer. A conceptual model describes the real
world components and their interactions therefore it tries to fill the gap between the
requirements and design.

The conceptual model is the first detailed product that provides information on the
domain. To determine the adequacy of conceptual models for the intended purpose,
several properties have been defined for conceptual models, such as completeness, depth,
level of detail, consistency, accuracy, performance [9].

The conceptual model is related to verification in two distinct ways as explained by
Sargent [2], first, a conceptual model can be used to determine simulation capability, for
instance to detect if simulation can be used in a case where no test data available.
Secondly it is used for testing the capabilities of the model, by testing simulation system

against the descriptions in the model. Furthermore, it ensures that model components and
their relations are consistent and complete.

The importance of conceptual modeling is apparent as it is the first, highest level
abstraction that is agreed upon by simulation user and developer. The conceptual model
shall thoroughly represent the domain elements and their actions and interactions. All the
design and development activity is based on the conceptual model. So finding errors in
the conceptual modeling phase is crucial as finding errors in both requirements and
design in a software development project. Yet complete verification and validation during
the conceptual phase is not done practically, where verification of the dynamics is usually
the most neglected aspect.

The conceptual model is a bridge between the user and the developer, and software
requirements and design. Approaches dealing with verification of only requirements or
design are not adequate. Verification is not straightforward as the descriptions provide
limited information on the dynamic definitions as the model is conceptual as implied by
its name. It is usually presented in a scientific paper format and most of the information is
not in a structured format. So even if there is need for increasing the validity of a
conceptual model which affects the validity of a simulation, there is a lack of specific
methods and tools for verification of conceptual models.

A recent work has defined a metamodel based notation, KAMA [29], for conceptual
models. The metamodel based notation has its own merits. It provides a structural
approach and it tries to support satisfaction of the desired properties of conceptual models.
Even if KAMA notation is more structural, behavior definitions are not executable, and
as such, are not suitable for analysis. Furthermore, there is a need to analyze the way the
KAMA metamodel describes the dynamics, constrains the behavior and instantiation of
the elements representing the behavior.

As KAMA notation focuses on modeling of conceptual information, therefore the
abstract behavior descriptions related to precedence, synchronization, branching, and
hierarchy relations between tasks are vague. More specific relations can be relations
attached to entities, defining states of the entities and transitions. However the relations
between the tasks which show similarity with UML activity descriptions are more
characteristic of the conceptual models as the case studies using KAMA show. There is
no verification method for dynamics that can be used for verification of such models.
Such an approach will reduce the postponed effort spent for finding and diagnosing the
errors of dynamic nature in simulation system that propagated through development
process.

Related to this problem, several other problems exist. Conceptual modeling is done
usually not for execution but for communication. A set of models exist where each model
shall be verified concerning their essence without loss of information. So verification of
dynamics in conceptual models must be done without the loss of any information in the
conceptual model. That is, verification of conceptual model dynamics must depend upon
the information represented in the conceptual model.

Conceptual models can not be interpreted easily and executed so that dynamic
verification techniques can be easily applied. A detailed analysis is needed to understand
the nature of information in these models and their interpretation for execution. Many
elements that affect the dynamics are used in conceptual models yet the semantics of
these elements are not defined precisely similar to operational semantics definition for
computer programs. For instance in KAMA notation, views such as mission space and
task flow diagram describe task precedence, hierarchy, synchronization and branching yet
it is usually not clear if these descriptions are satisfactory for interpretation of dynamics.

Even if the information in a conceptual model can be used for verification, how do we
define the criteria for verification? Another problem arises here: how the models should
be characterized to satisfy certain criteria based on the nature of information available for
dynamic verification and validation. The variability of information in conceptual models
and the variability in application of the verification techniques complicate this task.

1.2 The Research Problem

The research problem, then, to be tackled in this study can be stated concisely as follows:
developing a formal verification approach for dynamic properties in conceptual models
utilizing the existing information gathered without the concern for precise behavior
description. Two conflicting concerns exist, to preserve the informal semantics in
conceptual models and increase the credibility through dynamic verification. So the
approach shall not simply leave out the existing notation or dynamic implications.

This requires description of the semantics, examination of the variations in behavior
descriptions enriching the semantics while adhering to the original conceptual model
content and semantics, increasing the credibility of conceptual models through formal
verification, which are developed adhering to metamodel based approach.

1.3 The Proposed Approach

To increase the validity of conceptual descriptions, we develop a dynamic verification
methodology for metamodel based conceptual models. The dynamic verification
approach also utilizes the relation between tasks and the other properties such as related
roles, work products and objectives.

Conceptual models are early products for clarifying domain entities and simulation
features. The capability of classical requirements engineering seems to be lacking for
representing the elements to be simulated in adequate detail. On the other hand
executable modeling techniques tend to be developer oriented and hard to be
comprehended by the domain expert. These may be even either inapplicable or very
costly to apply for large systems.

The primary objective in developing a conceptual model is not representing the dynamic
behavior so that it can be used for execution. In fact dynamic behavior descriptions are
usually not thorough in the conceptual modeling phase, the classifiers may not exist.
Although a set of techniques addressing the same problem have been recommended for
conceptual models which will be discussed in Chapter 2, no application to real case
studies is available. In this thesis we aim to provide an approach for checking the
dynamics of conceptual models. As part of this approach we also provide the criteria
related to validity of conceptual models.

As a first step, the nature of dynamic behavior in models, emphasizing the relation
between tasks and other elements is analyzed and characterized. By formalizing the
characteristics, we try to verify the descriptions of precedence relations between tasks,
model elements related to synchronization and decision, as well as decompositions. The
techniques for checking dynamic descriptions are developed using formal approaches.
Traditionally these techniques are used for checking more formal and executable models.

UML based notations exploit the benefit of being structured without alienating the
domain expert therefore can provide an interim solution for representing conceptual
models. As an example the KAMA approach consists of a process and accompanying
metamodel oriented conceptual modeling framework based on MOF [26] and UML [27].
Relevance of UML is threefold for KAMA, utilization of similar diagrammatic notation,
OCL for expression of constraints and UML foundation package as the core of KAMA
notation.

The KAMA approach has been tested for many real life case studies and evidence is
available for its usefulness and effectiveness for conceptual modeling. One of the
compromises of the approach is that the domain model can not be executed so the
dynamic features cannot be verified.

The dynamic verification approach proposed in the present study is developed and tested
using the models developed in KAMA. This may also be done in similar UML based
approaches which do not aim to precisely describe the execution of a simulation. We
consider conceptual models represented exclusively with a UML based notation.

Model execution is defined by marking the dynamic elements, defining their execution
lifecycles, and their interaction with other model elements. The uses of this approach are
twofold: first is verification of the model and the second is providing a base for
executable model formulation.

In this work we propose an approach for verification of dynamics of conceptual models
of the mission space. In our approach we check the structural properties related to
dynamics and analyze the dynamics of the diagrams for possible errors. This technique
will allow early verification of dynamic descriptions of conceptual models of the mission
space.

1.4 Contributions of the Thesis

The following major contributions are made through this work:

e KAMA semantics are formally defined and a notation is introduced for
conceptual modeling of C4ISR systems.

¢ An enriched model called KAMA-DV is developed for behavioral descriptions.
This model can be used for both model execution and analysis.

e Based on the KAMA-DV notation, structural properties related to dynamics are
verified and dynamics are analyzed by tracing feasible execution paths.

The following further contributions can be relevant for other studies in the field:

e A process is proposed for validation of behavioral descriptions in conceptual
models, including characterization of dynamics, structural checking and dynamic
analysis.

e The soundness definition for EPCs is applied to conceptual model verification.

e The dynamic verification approach is applied on two case studies that deal with
real world conceptual models.

1.5 Organization of the Thesis

In the second chapter we discuss the current literature on conceptual modeling, KAMA
approach, verification approaches for conceptual models and other similar conceptual
descriptions. In the third chapter we review KAMA mission space package definition,
focusing on task flow diagrams including the mathematical description of the rules that
the elements of this package obeys and the relevance of the KAMA mission space
package definition for our verification approach. In Chapter 4, we list the properties and
limitations of dynamic definitions of conceptual models and provide example task flow
diagrams presenting the semantic definitions and variances. In Chapter 5, we list
dynamic verification requirements for conceptual models enriched with model elements
to enable verification of dynamics, and classes of conceptual models. In Chapter 6, we
present the formal and semiformal approach for verification of the models and software
tools that is used for enabling formal verification. In Chapter 7, we present two case
studies where our approach is applied to real life conceptual models. Finally in Chapter 8,
we compare our approach with the past work and conclude our study, suggesting
directions and items for future work.

CHAPTER 2

CONCEPTUAL MODELS AND VERIFICATION

In this chapter we will review the approaches for conceptual modeling and verification.
In the first section we will discuss past conceptual modeling approaches. In the second
section we will investigate KAMA and various verification approaches. KAMA has a
structured notation based on a metamodel derived from UML, it stands out providing a
potential for application of novel dynamic verification techniques. As formulating the
dynamic techniques is not straightforward and these techniques will be built upon
considering the relevance and adequacy of past studies on dynamic verification of other
conceptual descriptions, in the third section we will list the literature on similar
techniques used for UML activity models and conceptual business process descriptions.

2.1 Interpretation of Conceptual Modeling for Simulations

In this section, the definition of conceptual models in modeling and simulation, the
differences in scope of conceptual models, the approaches dealing with conceptual
modeling, and methods for verification of conceptual models will be reviewed.

2.1.1 Conceptual Model Definitions

Conceptual model has been defined in different ways by various sources. The most cited
and used definitions are provided in Table 2-1. Dale Pace who authored several articles
on conceptual models, used the term simulation conceptual model for the early developed
model describing domain elements and simulation features that can be both
understandable by the developer and user [1]. DoD M&S Glossary[4] (very similar
definitions exist in VV&A RPG[9], IEEE 1516.3 [6] and other sources) define conceptual
model as “an abstraction from either the existing or a notional physical world that serves
as a frame of reference for further simulation development by documenting simulation-
independent views of important entities and their key actions and interactions”.
According to VV&A RPG, IEEE 1516.3 and Brade [23] conceptual modeling stage
follows the determination of intended use. Balc1 [20] states that conceptual modeling is
the first stage in simulation development that is subject to evaluation (verification and
validation) activities. Conceptual models are also classified as domain models
(conceptual models of the mission space) and simulation conceptual models, former

having no information on the simulation functions and later include description of
simulation elements [21]. Conceptual models can be expressed in various formats such as

scientific paper, structured model or UML model [1][9][23].

Table 2-1. Various Definitions of Conceptual Models

Concept

Definition
Source

Definition

Conceptual
Models of
the Mission
Space

DoD Modeling and
Simulation
Glossary [4]

First abstractions of the real world that serve as a frame of
reference for simulation development by capturing the basic
information about important entities involved in any mission and
their key actions and interactions. They are simulation-neutral
views of those entities, actions, and interactions occurring in the
real world.

Simulation
Conceptual
Model

DoD VV&A RPG
v3.0 [9]

A simulation conceptual model is the simulation developer’s
way of translating modeling requirements (i. e., what is to be
represented by the simulation) into a detailed design framework
(i. e., how it is to be done), from which the software, hardware,
networks (in the case of distributed simulation), and
systems/equipment that will make up the simulation can be built

SISO

PDG/SG

SCM

FINAL REPORT

A simulation conceptual model is an abstraction from either the
existing or a notional physical world that serves as a frame of
reference for further simulation development by documenting
simulation-independent views of important entities and their key
actions and interactions. A simulation conceptual model
describes what the simulation will represent, the assumptions
limiting those representations, and other capabilities needed to
satisfy the stakeholder’s requirements. It bridges between
these requirements, and simulation design.

Brade [23]

The Conceptual Model describes the abstracted and idealized
representation of the real system and holds all concepts of the
model, i.e., its decomposition into interacting subsystems, the
representation of properties of interest in the form of attributes,
the degree of abstraction and idealization, and the rationale and
reasoning that led to the chosen representation of the real
system in the language of the model’s application domain.

Federation
Conceptual
Model

IEEE Std 1516.3-
2003 [7]

An abstraction of the real world that serves as a frame of
reference for federation development by documenting
simulation-neutral views of important entities and their key
actions and interactions. The federation conceptual model
describes what the federation will represent, the assumptions
limiting those representations, and other capabilities needed to
satisfy the user’s requirements. Federation conceptual models
are bridges between the real world, requirements, and design.

2.1.2 Conceptual Model Scope

Among conceptual models, two kinds of models can be identified, models that are
dealing with the problem domain, leaving out the details on simulation and simulation
conceptual models. In this subsection the characteristics of domain models, simulation
conceptual models, and federation conceptual models are discussed to understand the
nature of our dynamic verification problem.

Domain Conceptual Models: Domain models include abstract representations of the
domain. They are supposed to be problem independent but a slightest effort to form
representation of a real world object will be done based on implicit assumptions. To
arrive at precise domain models, the domain shall be sufficiently restricted by operational
constraints (legislations, organizational rules, etc.). Conceptual models of the mission
space [6] or functional description of the mission space as the new name can be seen as
an effort to form a representation of a complex real domain where the organizational
constraints are loose and systems are evolving rapidly.

Simulation Conceptual Models: Simulation conceptual models are problem specific
models. When dealing with physical reality formulating a problem greatly reduces
complexity, leaving away the details of unnecessarily parts of the reality and enabling
more focused and detailed look at the perceived part. Still a model therefore simulation of
reality is not possible without any distortion. So when forming simulation conceptual
models the assumptions about the concepts should be presented. In a simulation
conceptual model the concepts of simulation shall be presented.

Yet another property of a simulation conceptual model is the inclusion of simulation
control features such as pause and restart characteristics, data and control capabilities and
the method to enter control messages [1]. These features do not have any real world
counterpart and contribute achieving simulation objectives therefore their existence is
also critical for simulation objectives and therefore validation of conceptual models. The
relation between FDMS which stand for conceptual models of the mission space and
conceptual model of the system (a more general term used for simulation conceptual
models) is not clear.

Federation Conceptual Models: A third kind of conceptual model that can be
encountered in the literature is the federation conceptual model. In fact federation
conceptual model is the term for simulation conceptual model that is used in IEEE
standard for federation development and execution process [7]. Despite the name has
design flavor, considering simulation neutral clause in definition and the description and
alignment of the activity in the development process, it is more requirements oriented
then simulation conceptual model.

In this work, we primarily deal with domain conceptual models. Domain conceptual
models emphasize the structural aspects, and are less concerned about behavioral aspects.
The behavioral representations are more abstract in domain conceptual models, the
defined behavior may belong to a set of different objects, the relations between behaviors
may depend on more general context, and definition of behaviors may be partial.

2.1.3 Conceptual Model Development Methods

In this section we will discuss methods used for conceptual modeling. To qualify as a
conceptual modeling method in our discussion, an approach has to specify the conceptual
modeling process and an approach for representation of the model or at least guidance for
development must be provided.

CMMS project is the first project dealing with solely conceptual modeling, explaining the
need and infrastructure requirements [6]. Similarly VV&A RPG [9] provides the
definition of conceptual model, guidance on the contents and format without any
examples on details and examples. In IEEE 1516.3 standard [7], conceptual modeling is
discussed as a step in development of federated simulations. Base object models (BOM)
[10] approach provides a method for developing simulation conceptual models and
design of a federation by providing definitions for reusable object models. The behavior
representations of base object models are traceable to HLA objects and interactions.
Other approaches provide also definition for conceptual modeling step, Brade’s
generalized process for V&V [23] and REVVA [14].

2.1.3.1 Conceptual Models of Mission Space (CMMS)

The work for the conceptual models of the mission space project was started in 1995 by
US Defense modeling and simulation office (DMSO). The high cost of simulation
development in US military was regarded as a problem and a solution based on using
reusable and interoperable simulation components was proposed. CMMS project [6] was
started for building the consistent world view these simulation components will be based
on. These representations of real world will be agreed both by the user and developer,
and shared and contributed by every project. Content differences of already developed
conceptual models, the differences in understanding of the domain caused by different
sources, terms, and format limited the reuse of conceptual models. The reuse of
simulation components was also limited because of the difficulty of understanding
existing conceptual descriptions of simulations.

The proposed solution was to develop an implementation independent conceptual model
that serves as a base for development of the simulation. The CMMS technical framework
will include definitions of terms, content, structure, process, and infrastructure for
creation, distribution and management of models. This is only enabled by common
syntax and semantics. The differences between agencies shall be resolved by using
common syntax and semantics.

Another problem of CMMS was acquiring the existing models for further reuse, for
which data interface format (DIF) was to be defined. The technical framework will
involve functionality of transforming each existing format to DIF. If the conceptual
models do not confirm to the description of the CMMS, only the implementation
independent components will be extracted as a conceptual model.

To support reuse and interoperation, formation of repository of models which will be
shared among different agencies is desired. Conceptual models of existing simulations

10

will be transferred into the repository, by extracting only the information that is not
specific to simulation implementation. The acquired knowledge from the existing efforts
will be extracted by adequately authorized and extracted by using fully structured views.

The CMMS project was no longer mentioned during 2000s. Functional description of
mission space (FDMS) is mentioned as the continuation of the CMMS framework.

2.1.3.2 VV&A Recommended Practices Guide (VV&A RPG) Special Topic:
Conceptual Model Development and Validation

VV&A RPG [9] provides a special chapter for conceptual model development. By
merging previous work from many authors and CMMS project and FDMS project are
merged to form a general guidance on conceptual model development. The definition of
conceptual model emphasizes the role as a bridge both between requirements and
specifications, and developers and users.

Three key components of conceptual models are defined, simulation context representing
the authoritative information on relevant entities, processes, data etc., simulation concept,
the developers understanding of the simulation context. Simulation concept can further
decomposed as mission space, the representations of real elements (simulation elements)
and simulation space, the elements concerning to the functionality of simulation. These
definitions are inherited from Pace.

VV&A RPG also lists the key items that should be present in a conceptual model which
include the validation history in addition to key components. The process of development
of the conceptual model and applications are listed. An important role of conceptual
model related to validation is highlighted; it is used to determine the appropriateness of
using the simulation in untested cases, which can occur because of the complexity and
size of simulation data.

The VV&RPG underlines SME review as the normal form of conceptual model
validation. The validation is performed to determine the adequacy simulation elements’
representative capability for intended purpose and simulation concept for overall
capability and the appropriateness of constraints and boundary conditions introduced on
the simulation concept by the simulation context. Formal methods are mentioned as a
way of validation for safety critical simulation applications.

2.1.3.3 Conceptual Modeling Step in FEDEP

IEEE Recommended Practice for HLA Federation Development and Execution Process
(FEDEP) [7] is the recommended practice for development and execution of HLA
compliant simulations. It is a high-level framework that can be tailored based on the
specific development needs. One of the main step of the process “Perform conceptual
analysis”, which is broken down into three steps, “Develop Scenario”, “Develop
Federation Conceptual Model”, and “Develop Federation Requirements”.

11

The FEDEP activities “Develop Scenario” and “Develop Federation Conceptual Model”
are both relevant to conceptual modeling of the domain. The scenario should include the
description of major types and number of entities and functional descriptions of their
capabilities, behaviors and relationships over time, and the relevant environmental
conditions. While the federation conceptual model is the implementation independent
federation objectives are transformed into a representation format to be used by
federation design and development.

FEDEP [7] process itself leaves out details about VV&A to accompanying standard
VV&A overlay for FEDEP. The VV&A overlay provides a set of VV&A activities for
verification of conceptual models.

As both are high level frameworks and focus on the process, neither FEDEP nor VV&A
overlay mention specific methods and provide guidance. In this work we provide
verification approach for dynamics of conceptual models in a domain specific language
KAMA.

2.1.3.4 Base Object Models (BOMs)

Base object models (BOMs)[10] have been introduced for conceptual modeling and
federation design to further increase reuse of models and simulations. Base object model
includes two pieces and their connections, a conceptual model, consisting of conceptual
entities and events and their counterparts as HLA objects and interactions, attributes and
parameters. In terms of VV&A RPG terminology, the conceptual description includes the
mission space elements and the HLA object model form the simulation space.

Through connecting these pieces the simulation conceptual model developer can
formulate a conceptual model from existing BOMs. The planned development includes a
developer to develop conceptual model using higher level of abstraction from BOMs
containing conceptual entities and events while corresponding simulation is designed and
formed by reuse of existing HLA compliant simulations. BOM is to be supported with
tools, so that all the BOMs will be stored in a library with upload, download, integration
use history and search capability [10].

Upon inspection one can observe that very little is mentioned about verification and
validation in BOM standard [10] and guidance documents [12]. In the BOM standard, it
is stated that in the development process, BOM can be used to validate semantic
composibility and verify the simulation and results without citation of any particular
method.

BOMs are stored in XML format that conforms to BOM schema [10]. So any BOM
syntax can be checked against this schema, which can be regarded as syntax check.
BOMs are oriented for HLA development and typical use scenario involves a broad range
of already developed BOMs are available during development so that by integrating
pieces the user can easily bring together not only conceptual model elements but also

12

simulation components. However the feasibility of this approach is yet to be observed in
practice. A recent approach concentrates on semantic composibility of BOMs [11].

2.1.3.5 Defence Conceptual Modeling Framework (DCMF)

DCMF was introduced by Swedish Defence Research Agency as the continuation of the
CMMS project [13]. Conceptual modeling process is seen as a series of activities such as
knowledge acquisition, knowledge representation, modeling, and use[13]. During
knowledge modeling a structured ontology is developed that is equivalent of a conceptual
model. According to DCMF specification[13], the ontology can be transformed into
Activity diagrams, sequence diagrams, EPCs, Petri nets and BPMN diagrams during
knowledge use. Also it is argued that the knowledge use phase can produce results that
can be used to verify the simulation results.

Although DCMF underlines the need for VV&A and formalization in knowledge
modeling in general and conceptual modeling in particular, there is not an explicit
mention of methods and techniques for conceptual model verification and validation.
DCMF relies on rules defined for objects and Business Process Modeling Notation
(BPMN) for dynamic behavior description. A particular point relevant in DCMF
specification is that there is a mention of checking instance BPMNs against conceptual
BPMNss, although particular approach is not explicitly mentioned.

2.1.3.6 Other Approaches

In this section we will discuss the conceptual modeling phase in two related
methodologies: Brade’s V&V process [23] and REVVA [14].

Brade[23] presents a generalized process for simulation development that emphasizes
verification and validation at each step. As a case study a sample tailoring of the process
is also provided in the same work. Two kinds of models are identified: the conceptual
model (also called the communicative model) and the formal model. The definition of
conceptual model for Brade can be found in Table 2-1. The formal model represents all
the behavior of the system in a formal notation. Whether it is possible to develop formal
model or not for every case is not discussed by Brade, but for the case study provided it is
stated that formulation and use of a formal model requires highly skilled effort.

The work also distinguishes between internal V&V which deals with V&V activities
performed by considering the single intermediate work product, and transformation V&V
performed using previously developed work products. For internal V&V activities of the
conceptual model, the following methods are listed: form checking, consistency checking,
unit dimension test, mental execution, comparison with other models. The enablers of
documentation correctness and internal consistency are stated as checklists, forms,
consistency matrices, modeling formalisms. According to Brade, with appropriate tools
that use a central database the former three enablers may be supported. Modeling
formalisms are supported by formal frameworks applied for formal and executable

13

models. Among these Brade cites propositional linear temporal logic (PLTL), Discrete
Event Specification (DEVS), Simulation Language with eXtensibility (SLX).

Human review is performed at various phases in the sample application. In case of a
conceptual model it is used for symbolic description review and mental execution. Each
submodel is mentally executed to determine whether it behaves as desired and
consistently with the available domain knowledge during conceptual phase. The results of
the mental execution are reported by the domain expert performing the mental execution.

The emphasis of Brade’s work is on the analysis of the formal model which encapsulates
full model structure and behavior, can be pursued more conveniently with classical
techniques such as syntax and semantic checking, control and data flow analysis, model
checking and testing. The aim is to check the formal model which is expressed in a
paradigm such as DEVS and later using it in the development of executable model
preserving all syntax and semantics. As the case study by Brade shows, complete
verification of formal model may be also impossible [23]. That happens even though
Brade uses a case that is a part of a traffic modeling domain where the entity types and
interactions are limited. In a more general case description of formal model may also be
infeasible. It is also stated that most of the simulation development projects do not have a
formal model.

REVVA [14] approach emphasizes acceptability criteria in simulation development and
verification and validation. Similar to Brade, conceptual model is considered to be a base
for formal model development. According to REVVA correctness and suitability of
executable model depends on correctness and suitability of the underlying conceptual
model. The correctness of the conceptual model has two major components: internal
consistency of the conceptual model, and consistency with available real system
knowledge. The most important property is appropriateness of the chosen abstraction and
idealization within the context of the intended use. This is done by inspection of the
conceptual model in order to determine that it satisfies the acceptability criteria [15].

2.1.4 Conceptual Model Verification

We will mention about the works that discussed the verification and validation concepts.
From the software oriented perspective verification is a much more focused function that
is concerned with a single phase of development, whereas the validation deals with the
evaluation of the requirements from the satisfaction of requirements or intended use. In
the simulation development, verification is defined based on the adequacy of the
representation of the implementation of the conceptual model, which captures the
requirements and the intended use and simulation validation is defined based on the
adequacy of the model as a representation of real world from the perspective of the
intended use.

14

Table 2-2. The Definition of V&V from the Standpoint of Software and Simulation

Development

Concept IEEE Std 1012-2004 DoD RPG v3

Verification | (A) The process of evaluating a The process of determining that a
system or component to determine model implementation and its
whether the products of a given associated data accurately
development phase satisfy the represent the developer's
conditions imposed at the start of that | conceptual description and
phase. specifications.

Validation (A) The process of evaluating a The process of determining the

system or component during or at the
end of the development process to
determine whether it satisfies
specified requirements. (B) The
process of providing

degree to which a model and its
associated data provide an
accurate representation of the real
world from the perspective of the
intended uses of the model.

evidence that the software and its
associated products satisfy system
requirements allocated to software at
the end of each life cycle activity,
solve the right problem (e.g., correctly
model physical laws, implement
business rules, use the proper system
assumptions), and satisfy intended use
and user needs.

The relation between the verification and validation and conceptual model is first
mentioned by Sargent[2]. As verification deals with whether a simulation works
according to its specification whereas validation deals with the working of the simulation
for its intended purpose. As described by the Sargent[2] Triangle depicting the modeling
process the conceptual model is validated against the real world, however simulation is
verified based on the conceptual model. So the conceptual model acts as bridge between
the real world and the model implementation and serves as a product which can be
utilized for verification of implementations. A validated conceptual model coupled with
verification activities will contribute to the validation of the implementation.

More broad view of verification and validation is introduced by Brade[23]. According to
Brade simulation credibility can be built by a series of V&V activities each product in the
phase can be evaluated by itself or in comparison to other products. According to this
vies verification and validation can be done at each phase. Brade mentions the activities
of verification and validation and do not discriminate two types of activities.

As there may be more than one product in development of the simulation, there may be
more than one model based on the development process as in the case of Brade. So each
model can be verified based on the products developed in the same phased, or validated
concerning the requirements form the more general perspective, the overall user
requirements, conceptual model, or intended use. So verification is an effort based on

15

increasing the self and comparative consistency, validation deals with contribution to the
developing the right product.

Barlas [16] discusses the model verification and validation in general and application of
them to system dynamics models. The validation means usefulness for some purpose.
The usefulness of the purpose is also relevant which can hardly be determined and this is
non-technical, informal and, qualitative process. Also validation is distributed and
prolonged activity. Even in the case of formal validation of system dynamic models, the
validation spans more than one stage, a high quality model can be formalized with less
effort. Barlas also states that from the perspective of philosophy of science, there is not a
purely objective/ formal way of “theory confirmation” even for the natural science”.
More on the philosophical aspects of the discussion can be seen in Barlas and his
references related to philosophy of science. The main two properties of validation as
relativistic and holistic perspective theory confirmation, validation is a confidence
building activity. The internal components of the model play crucial role, and informal
and subjective aspects always exist. The formal quantitative tests always play important
role as inputs to the process. However statistical significance tests are limited in
determining the validity of a model by themselves.

Kleijnen [17] accepts the verification and validation definition by Law and Kelton, and
assuming a perfect program is present, the verification can be performed. However a
model is always limited in its expression of the reality so only can be good enough rather
than perfect. So the author highlights that validation deals with the correctness of the
conceptual model representation. In this work also methods for verification of simulation
outputs such as testing, sensitivity analysis, risk analysis, and white box testing are
discussed. A point that is relevant for this study is that, white box testing provides
opportunity to compare the system with real life system as the transparency provides one
to one correspondence between simulation and real data.

The Sandia report[18] also aims to define verification and validation concepts and survey
applications of these in computational science and engineering and computational social
science. Verification and validation has been applied more in disciplines where modeling
and simulation software has been developed to automate and support human decision
making. The standards, frameworks, regular approaches for verification and validation
are not existent and studies in this field concentrate on application of one method for a
particular problem. They also state that “the science of performing experimental-
computational comparisons in “‘computational science” remains immature”. As a method
they identify that includes development of the “Phenomenon Identification and Ranking
Chart (PIR)”. In their particular application they provide a method for quantification of
simulation errors compared to referent. The Sandia report states that the models are not
necessarily computational; they can be physical, narrative, mathematical, logical, or
graphical as in the case of UML models or conceptual models of KAMA. Also the report
states that model verification is not separable from model building and validation and
confidence is built iteratively. There is no verified and validated code, the confidence of

16

software depends on the intended purpose, on which most of the verification effort is
based.

The C4ISR systems described in conceptual models are systems where system and
decision makers are coupled. However during conceptual phase the intended purpose is
to provide an agreed and reusable description of the mission space. From a wider
perspective of simulation development, the verified conceptual model later can be used for
definition of other products such as assessment standards and PIR. Our study aims to
leverage confidence of conceptual models of C4ISR environment and ensure that the
conceptual model represents the real world as much as possible.

Adak et. al.[19] presents a metamodel for HLA federations. The methodology involves
checking of certain properties. Certain properties are represented in the metamodel to limit
the incorrect behavior. The code generator provides capabilities to check the dynamic aspects
based on the design. This work deals with later stages of development where federation
design and implementation is performed.

For conceptual models that exclude simulation specific elements, and focus on the
mission space the priority is describing the concepts of the domain. This priority forces
the conceptual model to be understandable rather than formal, thus in practice the validity
is based on SME review as explained in various sources [9] [22]. Conceptual model is the
first product that defines the problem thoroughly and provides simulation constraints and
assumptions, the internal verification and validation based on self-consistency is more
important. SME review can focus on static or dynamic concepts and relations of the
model. Usually SME will have to put significant effort to trace dynamic definitions as
they are stated partially and organized as text document format.

VV&RPG [9] and Brade [23] list techniques for conceptual model verification and
validation as both consider conceptual modeling a major phase of simulation
development. However there is no concrete example on how these techniques can be
applied in different types of conceptual models. Balct [20] names three distinct
evaluations for conceptual modeling stage: evaluation of conceptual model quality,
conceptual modeling process, and M&S project characteristics.

Despite the need for more credible models that will led to more credible simulations,
formal techniques have had limited use in conceptual modeling, and even rarer use in
large scale models. This occurs as a result of limited scaling capacity of these methods
and advanced level of expertise required [1]. Brade suggests a five step process, where
modeling is divided into three steps: conceptual, formal and executable modeling [23].
Even with such division both development of the formal model, verification of the model,
and the transformation of formal model to executable model are not straightforward and
the transformation may even be infeasible as in the case of Brade [23].

The methods listed for conceptual model verification by VV&A RPG are shown in Table
2-3.

17

Table 2-3. Verification and Validation Methods for Conceptual Model Listed in

VV&A RPG

Class V&V Technique KAMA Tool Support

Informal Audit Aids Audit

Static Calling structure analysis -

Static Cause-effect graphing -

Dynamic Comparison test -

Static Control flow analysis Supports checking of
errors related to control
flow

Static Data dependency analysis -

Static Data flow analysis Supports data flow
analysis through checking
of related errors

Informal Desk check -

Informal Documentation check Aids documentation
check

Informal Face validation Aids face validation

Formal Induction -

Formal Inductive Assertions -

Formal Inference -

Informal Inspection Aids inspection

Formal Lambda calculus -

Formal Logical Deduction -

Static Model Interface Analysis -

Formal Predicate calculus -

Formal Predicate transformation -

Formal Proof of correctness -

Informal Review Aids review

Static State transition diagram Aids drawing of state
diagram

Static Structural analysis Checking of structural
errors.

Static Traceability assessment Supports traceability to
original referent

Dynamic User interface analysis -

Informal Walkthroughs Aids walkthrough

According to our knowledge, experience reports on application of verification techniques
to conceptual models are limited, there is hardly any study dealing with verification of
the dynamics of these models.

More broadly the validity of models is treated for system dynamics models as explained
by Barlas [16].

18

2.2 KAMA: A Metamodel based approach for Conceptual Modeling

KAMA conceptual modeling approach [29] consists of a process description[30] and a
notation, as well as a tool [35] supporting both. The specific aspect is that the notation
that is used by KAMA is expressed as a Meta Object Facility (MOF) based metamodel.
KAMA is developed considering the main properties of conceptual models and past
approaches which are not based on metamodel.

From the viewpoint of Model Driven Architecture (MDA) [25], a conceptual model
resembles a computation independent model that provides information about the problem
domain independent of any computational approach, which is called the mission space in
military domain. Because of their nature, conceptual models are not executable. They
shall be utilized as requirements to be used in formulating either more detailed simulation
conceptual models or the simulation design.

A way of developing conceptual models by utilizing metamodels, KAMA approach [29],
is to use a notation based on user concepts by extending model elements taken from a
subset of UML [27]. It provides the SME the domain concepts for modeling, yet is
structured enough to enable reuse of the model in later stages and online processing. This
supports MDA [25] vision, aiming to transform software development to iterative
development of models. Other advantages are multiple views provided to the user, which
is mandatory for conceptual model development and a more general process definition
accompanying the approach [30] on how to acquire and structure information.

The static verification techniques can be integrated into the model development
environment and enforced during or after development of the model. Rules can be
defined at various levels and consistency checking of these rules may provide user
different kinds of errors [37] in different levels [34]. For KAMA environment possible
static verification possibilities related to above and alternative techniques have been
provided by Tanriover and Bilgen [36][37]. A process for verification is defined that also
utilizes these techniques and applied the process in a case study for a real conceptual
model. They assert that formal techniques can be checked for given precise metamodel
and a number of non-trivial errors can be discovered. Similar study is more focused on
checking errors in activity diagrams. These studies motivate using comprehensive
process definitions and novel techniques that may enable finding problems in early
development.

2.2.1 Evaluation of KAMA as a Conceptual Modeling Approach

First reason we adapt KAMA for dynamic properties is that KAMA provides a novel
approach for describing dynamic properties. As we will show in Chapter 4, model
elements and diagrams can be interpreted in several different ways, and the defined

19

behavior is not executable. Also other elements that affect the behaviour exist such as
workProducts. So the interpretation of behavior and checking is an interesting for KAMA
behavior descriptions as they are conceptual rather than executable.

One of the drawbacks in conceptual modeling literature is the lack of real life case studies
and models. There is very little number of studies that concerns real conceptual modeling.
The importance of conceptual model is known for a decade, most of the simulations
developed before do not have a conceptual model. The most used format as a scientific
based format and FDMS and are more recent approaches. Even if such models are
developed, the models are not easily accessible as they may contain sensitive information
and commercial value. The major advantage of KAMA as a conceptual modeling
language is the large number of case studies and experimental studies.

Use of KAMA in a number of case studies has been reported so far as Karagoz and
Tanriover presents. Two among these case studies were industrial sized projects while
other three have been experimental studies. The availability of such developed conceptual
models has made KAMA the most suitable candidate for the application of our
methodology.

It is reported that the researchers in the KAMA project team performed three
experimental studies, which aimed to apply the KAMA notation in different settings. The
subjects of the experimental studies were “Squad Fire and Battle Marksmanship Training
Simulator”’[31], “Small-scaled Military Unit Movement — Infiltration Task™ [33], and
“Synthetic Environment Simulation System” [32] respectively. All of the researchers
found the KAMA notation easy to learn and apply. These works also stressed some
drawbacks related to the need for representing relations among the work products,
additional relationships between role and fask model elements such as “assists”, distinctly
representing the ‘“equipment” required for a task, and additional mechanism for
representing the geographical constraints.

2.3 Verification Approaches for Dynamic Properties

In this study we aim to examine the dynamic properties of conceptual models for
modeling and simulation. We deal with models that are developed at the early stages in
the simulation development process. The modeled concepts are real world missions, tasks,
related roles, objectives, and work products. We have grouped relevant past research into
three, which we will mention in order of relevancy. First, metamodel based conceptual
modeling in general, and the KAMA approach in particular provides the main pillar of
our research. Secondly, research dealing with semantic variations of UML activity
models and verification of such models is relevant in the sense that the semantics of
model elements for sequencing of fasks in KAMA show similarities with their UML
counterparts. However, differences in size of models and semantic variations and the
limitations of past work in that area justify a novel approach. Finally, verification of
conceptual business process models, particularly the ones expressed by Enhanced Process
Chains (EPCs) are relevant for our research. We provide an adaptation method for
verification of KAMA mission space models using the research results of EPC

20

verification. In the next three subsections we will examine the relation of our research
with these three related areas in detail.

2.3.1 \Verification Methodologies for Metamodel Based Conceptual Models

The developed conceptual modeling notation of KAMA provides the modeling elements
for these but lacks methods and tools for analysis and verification of the dynamics.
Tanriover and Bilgen [36][38] provide an inspection approach for conceptual models
developed in a domain specific notation. The approach includes checklists for
interdiagram issues and for each diagram type. The checks are listed for initialTasks,
synchronizationPoints (fork and join type), decisionPoints (fork and merge type), flow to
the finalTask, loops and workProducts based on the soundness property of workflow nets.
In this work we deal with both structure and dynamics of conceptual models and
elaborate the diagrams describing dynamic behavior thoroughly. We define extended
properties for some of the model elements and define structured conceptual models, and
used the existing soundness definition for EPCs for verification of conceptual models.
We use these definitions to develop our approach based on formal verification. The task
flow diagram inspection steps and corresponding aspects that are dealt in this work are
listed in Section 8.2.3.

In this work we focus on the mission space package of the KAMA metamodel, which
includes elements to describe real world missions, tasks and their relations. The mission
space is presented as a structural view in KAMA metamodel, however it provides
information on sequencing, synchronization, and branching of tasks which can be used in
understanding the behavior of the system. We describe an approach including a process
and set of methods to be used in inspection of dynamics of these models. The inspection
process will be iterative and will provide user with online and offline verification
methods. For increasing the power of analysis we extend mission space models to cover
intended but not explicitly specified behavior descriptions. Our mission space verification
is based on this extended model. The relationship between metamodels is described in
Figure 2-1. These extensions which do not exist in original KAMA metamodel, are
defined based on dynamic properties and is used for the definition of KAMA Dynamic
Verification (KAMA-DV) metamodel. We utilize approaches that were used for
verification of Enhanced Process Chain Diagrams (EPCs) based on Petri nets during this
process. As a result we aim to have a conceptual model that has consistent and correct
behavioral information.

21

_| Dependency _|

KAMA (K--—-——-"-"""-""""""""="——————+ KAMA-DV
Metamodel Metamodel
R0 7
| | |
| | |
o '
conforms conforms
Lo |
: : conforms :
e i
| | |
| | |
| L
KAMA KAMA-DV
Mission Mission
Space Space
Model Model

Figure 2-1. Relationship between Metamodels and Models

2.3.2 Verification of UML Activity Descriptions

As KAMA conceptual modeling notation extends some of the elements used in UML
activity package [27], work on semantics and verification of UML activity package is
relevant for our research. We will briefly discuss relevant works in this subsection.

Several reasons exist not to utilize UML activity package as is for conceptual modeling
and dynamic verification. The first is that UML activity package have a number of
complex constructs that have ability to model programming languages, exceptions, etc.
that are not suitable for conceptual modeling. The studies aiming to define semantics for
UML models focus on characteristic modeling elements of activity package namely
FundamentalActivities and IntermediateActivities. A second drawback is that UML
activity has Petri net based semantics and that is directly applicable for dynamics of
conceptual models. The semantic variations exist in UML activity package model
elements, only some of which are relevant for conceptual models.

Also UML activity package is an evolving modeling approach which has potential to be
applied widely. For instance a potential application area described in the specification is
business process modeling if the classifiers are not determined for models. The mission
space package of KAMA notation has similarities with UML activity package in that
respect. It has model elements mostly derived from UML activity and leaves out model
elements such as callOperationAction, message, and other programming language related
constructs. The modeling elements of KAMA represent traditional concepts used for
defining conceptual models of the domain and are named similarly.

UML activity representation is considered to be a complex method to use properly
because of semantic issues, variety of constructs and wide scope [44] [46]. It may be used
for modeling for various purposes, ranging from workflow models where activities do not
have any classifier, or operations of classes. Despite the broad scope, Fowler argues that

22

it is not frequently used in practice [40]. For instance the executable UML literature on
developing executable UML models includes a dozen of books, where activity model is
left out generally. It may be argued that the desire of the practitioners to arrive at more
executable and easily analyzable models make activity less attractive. In our work we
have utilized the modeling elements in KAMA that are derived from activity modeling.
We will list works aiming to analyze activity models in the following paragraphs.

Drusisnky [45] provides examples of requirement specifications that can be formulated
using activity diagrams. This work deals with conceptual diagrams expressed in UML 1.4.
During activity scheduling he provides example constraints on multiple scheduling of the
activities, the plurality of objects, execution times of loops, reentrance which are relevant
for our case. For showing the different interpretations in activity diagrams, examples are
discussed roughly. For each case additional requirements are advised, but no specific
methodology to exist to inspect the dynamics. Our method tries to deal with similar
specifications in two ways, a more clear and iterative behavior modeling and verification
methodology.

The previous work on semantics for activity models is relevant for our research as we
also aim to describe precise semantics for description of conceptual models in KAMA
notation. The details of semantics of model elements are described by Bock in a series of
papers. However other researchers aiming to simulate activity models still have difficulty
in defining precise semantics [44]. Saarstedt [50] provided a method based on labeled
transition system and Storrle [46] used colored Petri nets to simulate the activity
diagrams. For this purpose they also listed the variations encountered and their way of
interpretation for semantically loose points [71][47]. Former used some assumptions to
deal with some imprecise points in order provide automatic mechanism for simulation.
Storrle provides separate methods for simulation of control flow [48] and data flow [46].
Also these works deal with only a subset of activity model rather than whole. For
instance none of these works provide a method for verification of elements in
completeActivity package.

In the UML activity package [27], explicit relations with objectives, work products and
roles do not exist. A metamodel based on UML, SPEM [28] provides couple of relations
as observed in software development models. To our knowledge there is no work that
specifically deals with verification of models expressed in SPEM.

There is also a relationship between mission space diagram and task flow diagrams
similar to use case and activity diagrams. Smilaek et. al.[52] state that the behavioral
interpretation of UML use case extends and includes associations are not clear. KAMA
mission space diagram provides a more specific mechanism that affects the sequencing
of tasks, therefore the dynamics of conceptual models. We have utilized the method to
form complete task flows diagrams representing entire model using mission space
diagrams. The included and extended missions are transformed to corresponding task
flow diagrams. For this purpose we developed an alternative approach based on utilizing
extension points and includes association.

23

All these differences make the use of UML activity execution approaches limited and
unusable for verification of conceptual model dynamics which is provided by our novel
approach. For conceptual models the timing, multiplicity and context relations are
different from UML activity model. These are explicit in the KAMA metamodel
specification and there exist a number of semantic variations and extensions as we will
further discuss in Chapter 4. These aspects shall be parts of a dynamic verification
approach that will be described in Chapter 6.

2.3.3 Verification of Conceptual Business Process Descriptions

Related areas relevant to research on conceptual model verification include business
process modeling, workflow management systems, and verification of these systems
using Petri nets. As we are talking about “conceptual” models, where the term conceptual
describes the abstract nature of the model, works dealing with conceptual aspects
business process modeling and their verification are most relevant to our study. On the
other hand, workflow management systems use notations that are more execution
oriented. There is a wide literature on methods, techniques and tools to define and
analyze workflows. Most of this literature is barely relevant for us as they deal with
mostly executable workflows that include more concrete and executable domain specific
modeling elements.

Unlike the specific nature of workflow management systems, more conceptual Enhanced
Process Chain (EPC) diagrams, the diagrams used to describe business processes in ARIS
toolset [56], are dealt in the literature. A specific characteristic of works dealing with
business process verification on conceptual level is that they treat semantic variations
while others try to limit the description language, EPC, to arrive at easily analyzable
descriptions without semantic variations. In parallel with the MDA vision, each model
shall be adequate for its purpose and creating a complete model which captures all
execution semantics formally is neither possible nor the ideal way in earlier stages of
development. A conceptual model shall provide a coherent but abstract description, not
pretending to be executable, but supports development. Having the semantic
interpretation differences that will be listed in Chapter 4, approaches treating them are
relevant for us.

The most common approach to verify EPCs is similar to works dealing with workflows
[60]. The approach based on utilization of a special class of Petri nets, called workflow
nets [53] is used for verification of business process models and workflow models. First
the business process specification is transformed to a Petri net based specification, a
workflow net. This Petri net based specification is checked for certain properties by
creating the all execution sequences. Transformations and reductions are possible in this
stage to deal with the state space explosion problem. Additional information on initial
states, final states and invariants can be used during the process.

Researchers in business process and workflow verification have provided definitions for
the soundness for these models. For verification of conceptual business process models,

24

relaxed soundness property is used that involves each process is executed in at least one
valid execution of the process [57][64]. Satisfaction of these criteria is checked by using
the semantic constraints of the nodes used for sequencing of processes in the models,
namely OR, AND, XOR nodes that are used for splitting and joining the control flow.

There exist similarity between model elements used for sequencing in the UML activity
package and EPCs, but considering the variations in their semantics, there is a need for
research using models dealing with real applications. UML activity is examined in terms
of adequacy for workflow modeling [54] and a similar work provides equivalency of
some of the model elements in UML Activity and EPCs [63]. EPCs are used to describe
conceptual business processes and have a number of semantic variations. The original
EPC semantics is not described in detail and further works provide semantic definitions
for some of the loose points. UML activity has much broader scope, including elements
ranging more basic constructs to more complex. More basic constructs also have some
semantic variances as discussed in previous subsection. As we will show in Chapter 4,
the KAMA language has also semantic variances. In our work we have used the analysis
techniques for EPC analysis for the case KAMA conceptual modeling diagrams. We also
provide a comparison of aspects in conceptual models with those of EPC and UML 2
activity in next subsection.

2.3.4 Comparison of Approaches for Verification of Dynamic Properties of UML
Based Conceptual Models

The equivalency of related elements of EPCs and UML Activity model and these nodes is
summarized in Table 2-4 where previous mappings [55][61] are also included. In
addition, we have appended the table with equivalent elements of the KAMA mission
space package which are described in Chapter 3.

25

Table 2-4. The Elements Used in EPC Diagrams and their Counterparts

EPC UML Activity KAMA
OR-Split N/A SynchronizationPoint (Fork
Type)
XOR-Split DecisionNode DecisionPoint
AND-Split ForkNode SynchronizationPoint (Fork
Type)
OR-Join N/A SynchronizationPoint (Join
Type)
XOR-Join MergeNode DecisionPoint (Merge)
AND-Join JoinNode SynchronizationPoint (Join
Type)
Function By Activity and Task Hierarchy and
Action Model “ConsistOf” Relation
Elements
Cancellation ActivityFinalNode | FinalTask
Region
Extensions

During comparison with UML activity, we only consider basic constructs, given in UML
FundamentalActivities and IntermediateActivities packages, as they include more abstract
modeling elements suited for conceptual modeling. If UML activity package is taken as a
whole, for instance for the first aspect, CallBehaviourAction in an activity can provide a
mechanism to trigger other activities during execution. For EPC, we used the definition
provided by Mendling [61].

We do not limit the models to include only elements either of EPC diagrams or UML
Activity Package. Even if such modeling can be possible for some of the cases, this will
decrease the understandability and communicative power of conceptual model and will
contradict with the properties of a conceptual model which will be discussed in Section
4.1. For the analysis of control flow of KAMA-DV models for some of the cases,
equivalent EPC can be obtained by using the equivalent elements in Table 2-4. In the
Chapter 6 and Chapter 7 we illustrate the soundness analysis applied in KAMA-DV.

26

CHAPTER 3

KAMA SEMANTICS

In this chapter we will define the KAMA elements and rules in terms of set theory. Later
in Chapter 5, we will provide definitions for executable forms of KAMA elements based
on these definitions, to verify dynamical aspects of KAMA models. Not only does the
formalism introduced in this chapter aim to provide a basis for verification of dynamics
as described in Chapter 5, but also it is expected to form a basis for any future work that
may attempt at augmenting the KAMA approach.

In the following table the UML metamodel elements related to KAMA metamodel and
KAMA mission space package elements are listed. The model element names are
preserved as given in the KAMA metamodel to preserve consistency and traceability.

In what follows, we have used italics to indicate terms used in a formal sense as opposed
to natural language usage. For instance, “mission” would indicate the ordinary meaning
of the term whereas “mission” would indicate a specific KAMA model element. In
general, we have defined sets (marked as S) for each kind of model element that is not
derived from association. For associations, we define sets of ordered pairs (marked as
O.P. in the table) which are uniquely identified by the source and target model elements.
Attributes and AssociationEnds are also defined as attributes so they are assigned to
model elements and associations, and therefore do not qualify as members of sets
(marked as attribute in the table). These definitions are provided in the following
subsection. Following these definitions, we have defined the attributes for elements of
these sets in Section 3.2. In Section 3.3, we define the constraints provided in KAMA in
textual and OCL form in terms of set theory. Attributes in terms of lists based on their
associations exist for mission, task, role and objective model elements in KAMA
metamodel, therefore we have included the definitions for such lists as also sets which
are provided in Section 3.4.

27

Table 3-1. UML Metamodel Elements Related to KAMA and KAMA Mission Space

Package Model Elements
KAMA related | Represented | - KAMA Metamodel Represented | ~
UML As < Mission Space As <
Metamodel —3 Package Elements —3
Elements = =
element - model element Set v
named element - mission Set v
feature - task Set v
namespace - role Set v
classifier objective Set v
class - measure Set v
operation - workProduct Set v
attribute Attribute v decisionPoint Set v
package - synchronizationPoint Set v
generalization | Setof O.P" | v/ initialTask Set v
dependency Setof O.P" | v finalTask Set v
association Setof O.P | v responsibleFor Set v
associationEnd | Attribute | v realizes Setof O.P" | v
stateMachine - extends Setof O.P" | v
state - includes Setof O.P" | v
pseudoState - achieves Setof O.P" | v
vertex - taskFlow Setof O.P" | v
transition - inputTo Setof O.P" | v
activity - produces Setof O.P" | v
activityNode - quantifiedBy Setof O.P" | v
O.P: Ordered Pairs

In defining formal properties for model elements we have divided the model elements
presented in a task flow diagram into five. The core of task flow diagram includes the
model elements for modeling basic elements such as mission and tasks. The sequencing
package has elements used for sequencing of tasks. The other three supporting packages
are named based on their central elements as role, workProduct and objective packages.
The role package includes the role, actor model elements, responsibleFor and realizes
associations. The workProduct package includes workProduct model element, inputTo
and produces associations. The objective package includes objective and measure
elements, and achieves and measures associations. Finally the mission space complete
package has rules for organizing the other elements and completely defining the task
hierarchy.

28

3.1 Sets of Model Elements

When defining sets of model elements, we chose to use single letter for model elements
that do not derive from association and double letter for model elements derived from
association. For each association element we a use the set of ordered pairs (x,y) in which
the first element (x) represents the source element in the association and the second (y)
denotes the target element.

In this context we have divided the KAMA mission space package into three
subpackages. Mission Space Fundamental Package includes the mission and task
elements. Sequencing Package includes the elements for sequencing of tasks. Role
Package contains elements for defining roles and actors, Workproducts Package contains
elements that are used to define workProduct associations, and Objective Package
contains elements related with objectives of tasks and their measures.

While mission element of Mission Space Fundamental package is derived from activity
of UML FundamentalActivities package, task element of same package is derived from
both UML activity and activityNode of the same UML package. Mission Space
Sequencing package taskFlow element is derived from controlFlow, elements initialTask,
finalTask, synchronizationPoint and decisionPoint are derived from controlNode of UML
IntermediateActivities package. The packages of mission space and related packages of
UML are shown in Figure 3-1.

29

1 1

IntermediateActivities FundamentalActivities

/N A
| <<include>>
[i
! |
! |
! |
|
! I

<<include>> << >> L << >>
; merge Mission Space merge
| e ___D Fundamental __________________
	> <
	/NN
I I ! ! I	
I I ! ! I	
I I ! ! I	
	<<merge>>
	N
I I T ! i I I	
1 1 1 1 1	
Mission Space Mission Space Mission Space Mission Space	
Sequencing Roles Workproducts Objectives	
)	

| ! ! |
| ! ! |
| | S<merge>> <<merge>> |
| ! ! |
e TTT I [! I
| | | |
| <<merge>> 1 1 <<merge>> |
| |
| |

——————————————————— Mission Space [-—-————————"-————-——=
Complete

Figure 3-1. Dependencies between Mission Space Packages

3.1.1 Mission Space Fundamental Package Elements

E is the set of all model elements. In the current definition attributes and associationEnds
are taken as attributes of model elements are not elements of the set.

Mission and Task are the basic elements for defining conceptual model dynamics.

M is the set of all Mission elements in a model.

T is the set of all Task elements in a model.

The task model elements are connected with associations of type faskFlow. Also
consistOf relation between tasks exists for defining task hierarchy. These elements are

included in the Mission Space Sequencing package.

AS is the set of all model elements that are derived from association metaclass in a model.

30

IN is the set of all includes associations. If there is an association derived from includes
metaclass between m, € M andm; € M then (m,,m ;)€ IN

GE is the set of all generalizations. If there is a generalization between
e, € Eande, € Ethen (¢,,¢,)€ GE.

CO is the set of all consistOf associations between a mission and a task or two tasks. If
there is an association derived from consistOf between t, € M UT and?, € T then

(1,,1,)€ CO

3.1.2 Mission Space Sequencing Package Elements

In fundamental elements package we have the elements to define the scheduling of fasks.

TF is the set of all taskFlow elements in a model. If there is an association derived from
taskFlow between ¢, € T and?, € T then (¢,,1,)€ TF

Other than these core elements in faskFlow diagrams, other elements exist for defining
more complex relationships between fasks.

1 is the set of all initialTask elements in a model.

F is the set of all finalTask elements in a model.

D is the set of all decisionPoint elements in a model.

S is the set of all synchronizationPoint elements in a model.

N is the set of all of all model elements that are derived from intermediateNode elements
in a model. The intermediate node is the node for describing causal relations between
tasks which include initialTask, finalTask, decisionPoint, synchronizationPoint

soN=ITuUFuUDuUS.

We extend the definition of CO, so that it can be defined between a rask with an
intermediateNode or a taskFlow. If there is an association derived from consistOf

between £, € M UT andt, € T U N UTF then (¢,,7,)€ CO. By this way we the

intermediateNodes and taskFlows defined for sequencing become part of the description
of the task.

E is the set of all elements in a conceptual model related with dynamics shown in Table
3-1.

31

3.1.3 Elements of Other Packages

3.1.3.1 Roles Package Elements

R is the set of all role model elements in a model.
A is the set of all actor model elements in a model.

RF is the set of all responsible For model elements in a model. If there is a
responsibleFor association defined between 7, € Rand?, € T then (r,,¢,)€ RF

RE is the set of all realizes model elements in a model. If there is a realizes association
defined between 7, € Rand?, € T then (r,,t,)€ RE

OW is the set of all owns model elements in a model. If there is a owns association
defined between @, € T'andr;, € Rthen (a,,r,)€ OW

3.1.3.2 Workproducts Package Elements

W is the set of all workProducts model elements in a model.

IT is the set of all inputTo associations in a model. If there is an InputTo association
defined between ¢, € T andw, € W then (w,,1,) € IT

PR is the set of all produces associations in a model. If there is an Produces association
defined between ¢, € T andw, € W then (f,,w;) € PR

3.1.3.3 Objectives Package Elements

O is the set of all objective model elements in a model.
U is the set of all measure model elements in a model.

AC 1s the set of all achieves associations in a model. If there is an achieves association
defined between #, € T ando, € O'then (¢,,0,)€ AC

ME is the set of all measures associations in a model. If there is an measures association
defined between 0, € O andu; € U then (0,,u,)€ ME

32

3.1.3.4 Mission Space Complete
Following definitions are made to make diagrammatic display possible.

Let TD, be the group of model elements that is part of i taskFlow diagram in a model.
So the contents of a taskFlow diagram can be defined as an intersection of model

elements presented in the diagram;

ID,=(T,vl, UF, UD US, UTF,)U

(R, URE, URF,))U (W, UIT, UPR,)U (0, VU, UAC, UME))
where T, cT,I. cl,F,cF,D,cD,S, cS,TF, cTF,

R cR,RE. c RE,RF, c RF,W, cW,IT, c IT,PR, C PR,

0, cO,U, cU,AC, c AC,ME, c ME)

A more precise definition of contents of task flow diagram can be done by using
consistOf association.

vVt eT((t,,t,)e CO implies t, € TD,)
Vm; e M((m;,t,)e CO implies t, € TD,)

For the other elements in a task flow diagram, we include the contents associated with
included tasks.

VvVt eT(((¢,t,)e CO,((t,,x)e (TF UPRUAC) or
(t,,x)e (TF U RE U RF U IT))) implies xe TD,)

Finally we include the measure model elements associated with the objective model
elements associated with tasks.

Vt,eT(((t,.t,)e CO,(, ,m)e AC,(mu)e ME) implies uc TD,)

It must be noted that in this definition we assume that a task is strictly associated with a
single task flow diagram. If a task has more than interpretation, that is used in more than

one task flow diagram and each of these diagrams consists of the same set of tasks model

elements (according to KAMA semantics) but different associations between them then
we shall define the faskFlow accordingly. In this case all the associations are specific in
the context of the single task which is presented in the specific diagram.

33

Vvt e T(((¢,,t,)e CO,((t,,x)e (TF, U PR, U AC,) or
(x,t,)e (TF, URE, U RF, U IT)))) implies xe TD,,
TF, cTF,PR, c PR,AC, c AC,RE, c RE,RF, c RF,IT, c IT)

In fact the definition of KAMA metamodel enforces only one taskFlow entering and
leaving a task. In this case only other associations can vary. Although not defined in the
metamodel a task flow diagram can have interpretations for different missions and tasks.

vt eT(((¢,,t,)e CO,(t,,x)e (TF U PR, U AC,) or
(x,t,)e (TF U RE, U RF, U IT)))) implies xe TD,)

In case the assumption that a fask may consist of different tasks in different task flow
diagrams is to be accepted, a specific piece of information shall exist in the metamodel
providing this information or the information in the task flow diagrams can be used for
this purpose. Then the TD;is defined as in the first definition using information on fask
flow diagrams instead of consistOf association. Each task flow diagram shows some of
the model elements and represents a fask. Although this is not the case in KAMA
metamodel we will introduce this extension for KAMA-DV in Chapter 6. In the
remaining parts of this Chapter, we will deal with elements explained in original KAMA
metamodel and will not include definitions for task flow diagram and related associations.

3.1.3.5 Complete List of Elements

For the sake of completeness, the model elements are listed in Table 3-2. In addition to
their package the abbreviation which is used to represent the set of elements in this
chapter, they are also used in the codes for the rules for the corresponding element in
Chapter 4. For the remaining chapters, in the mathematical expressions these represent
the set of these model elements in the models, in other parts they represent model
elements.

34

Table 3-2. KAMA Mission Space Model Elements, their Abbreviations and Containing

Packages

Model Element Ab. | Package Model Element Ab. | Package
mission M Fundamental | role R Roles

task T Fundamental | actor A Roles
association AS | Fundamental | responsibleFor RF Roles
includes IN Fundamental | realizes RE Roles
generalization GE | Fundamental | owns OW | Roles
consistOf CO | Fundamental | workProduct \\ Workproducts
Mission Space Diag. | MD | Fundamental | inputTo IT Workproducts
taskFlow TF | Sequencing | produces PR Workproducts
initialTask I Sequencing | objective O Objectives
finalTask F Sequencing | measure M Objectives
decisionPoint D Sequencing | achieves AC | Objectives
synchronizationPoint | S Sequencing | measures ME | Objectives
intermediateNode N Sequencing | Task Flow Diagram | TD | Complete

35

3.2 Attributes

All model elements have defining attributes of Id € Z" and Name € String that

represent the unique identification code of the element and name of the element
respectively. Each model element also have description, assumptions, constraints and
geographical information attributes. However the mission, task, objective, measure and
finalNode are defined by more attributes as follows:

Each m, € M is a quadruple (Id, Name, Pre, Pos) where Pre € String stands for the
precondition, Pos € String stand for the post condition. Most general String type is used
for conditions, as the syntax for them are not defined further.

Each t, € T'is a 6-tuple (Id, Name, Pre, Pos, isExtensionPoint, extensionPointld) where
Pre € String stands for the precondition, Pos € String stand for the post condition,

isExtensionPointe Boolean stands for the isExtensionPoint attribute, extensionPointld
€ 7" is the id of the extension point.

Each o, € O is a triple (Id, Name, Per) where Per € String stands for the performance

criterion.

Each u, € U is a triple (Id, Name, Unit) where Unite String stands for the unit of the

measure.

Each f, € Fisatriple (Id, Name, Iss) where Iss stands for whether the finalNode
represents successful completion or not.

Each tf, € TF has attributes (Id, Name, guard) where guarde String stands for the
guard expression.

Other then the attributes listed above, mission, task, role and objective have some lists of

elements as attributes according to KAMA. The definitions of these lists are given in
subsection 4.

36

3.3 Constraints

In definition of the constraints we have used the terminology of the KAMA metamodel
definition. The textual constraint definition is provided before the constraint definition in
mathematical notation.

For model elements mission, task, role and objective the list of related elements are
included as attributes. In fact these lists can be formed in a given implementation of
method or tool and need not to be atrributes of the classes. For example each mission has

a list of roles that is connected to it with realizes or responsibleFor associations. We
define such a list as follows:

Let m, € M be associated with a roleList (RL.) according to KAMA metamodel. For
the members of this list following rule applies;

Foranyr, € R, ifonly if (r,m,)€ RE or (r,m,)€ RF then r, € RL,.

Such lists are used optionally as a shorthand notation in the definition of some of the
constraints. All the lists that exist in the KAMA metamodel are defined in subsection 4.

a. Mission Constraints

1. “A mission should be related with at least one role.”
Vm, € M (3r; € R((r;,m;)€ RE or (r;,m;)€ RF))

2. “A mission should be related with at least one objective”

Vm, € M (o, € O((m;,0,)€ AC))

3. “A mission may not have a relation of type include or generalize to itself”

(Vm, e M ((m,;,m.)& IN)) and (Nm, e M ((m,,m,)& GN))
b. Task Constraints

1. “A task should be related with at least one role”

37

Vi, € T(3r; € R,((r;,1;)€ RE or (r;,1,)€ RF))

2. “A task should be related with at least one objective”

Vt,eT(Jo;€ O((t;,0,) € AC))
3. “A task has one incoming and one outgoing taskFlow”

(Vt,€T,3t,(t,,t,)e TF) and

(Vt,€T,3t,(t;,t,)e TF) and

(Vi,,t,€T((t;,t;)€ TF implies—3t, € T(k # j,(¢,,1,)€ TF))) and
(Vi,,t;€ T((t,,t;)€ TF implies—3t, € T(k #1,(¢, ,t;) € TF)))

¢. Role Constraint

1. “A role should be owned by at least one actor”
Vr,€ R(da; € A((a,;,r,)€ OW))

d. Objective Constraint
1. “An objective should be related with at least one measure”
We note that a measure and objective can be related by only measures association.

Vo,€ O(Fu; e U((0;,u;)e ME))

e. Measure Constraint
1. “A measure should be related with at least one objective”

We note that a measure and objective can be related by only one measures association.

Vu,eU(Jo,€ O((0;,u;)€ ME))

38

f. WorkProduct Constraint

1. “A workProduct does not have any capability’.”

By definition of workProduct this is straightforward. We can further check that there is
not any association between workProduct and capability where B denotes the set of
capability.

Yw, € W(—Elbj € B((wl.,bj)e AS))

g. DecisionPoint Constraints
1. “The connections coming into and going out of a decisionPoint must be taskFlows.”
By definition of TF set, this constraint holds.

2. “The guard conditions on multiple outgoing connections from a decisionPoint must not
be the same.”

vd, e D(((d,,t;,)e TF,(d,.t,)€ TF,i # k) implies (d,,t;).guard # (d,t,).guard)
3. “Every outgoing connection from a decisionPoint must have a guard condition”

Vd, e D((d;,t;)e TF implies (d,,t;).guard + D)

h. SynchronizationPoint Constraints

1. “A synchronizationPoint having multiple incoming connections must have a single
outgoing connection”

Vs, € S((;,s,),(t,s,)€ TF, j # k) implies (s;,t,)€ TF for only onel).

2. “A synchronizationPoint having multiple outgoing connections must have a single
incoming connection”

Vs, € S(((s;,,),(s;,t,)€ TF, j # k) implies (¢,,s;) € TF for only onel).

' Capability is a model element that is not a member of mission space package so not in our scope.

39

3. “The connections coming into and going out of a synchronizationPoint must be
taskFlows”

By definition of other associations and faskFlow elements this will hold. For curiosity we
can add the following two constraints, the first for ensuring that any association coming
into a synchronizationPoint is a taskFlow and no association which is not a taskFlow
coming into a synchronizationPoint exist, the second is similar to first handling
connections going out (“—"" denotes set difference);

Vs, € S((¢;,s,)€ AS implies (t,,s;)€ TF) and
Vs, € S((¢;,s,)€ AS implies (t,,s,) & (AS —TF))

Vs, € S((s;,t;)e AS implies (s,,t;) € TF) and
Vs, € S((s;,t;)€ AS implies (s,,t,) & (AS —TF))

i. InitialTask Constraint
1. “An initialTask has no incoming connections.”

Vi, € I((x,i,) & TF).

j- FinalTask Constraint

1. “A finalTask has no outgoing connections.”

Vf. e F((f,,x)e¢ TF).

k. ResponsibleFor Constraint

1. “A responsibleFor relation has one role as source and one task or mission as target”
V(x,y)e RF(xe R,ye (TUM))

l. Realizes Constraint

1. “A realizes relation has one role as source and one task or mission as target”
V(x,y)e RE(xe R,ye (T UM))

m. Extends Constraints

1. “An extends relation has one mission as source and one mission as target”

40

V(x,y)e EX(xe M,ye M)

2. “An extends relation cannot have the same mission both as source and as target”
V(x,y)e EX(x#Y)

3. “Extended mission must have a related task flow diagram with at least one task whose
isExtensionPoint attribute set to true”

V(x,y)e EX(Jz(ze T and z€ TD(x) and z.isExtensionPoint = 1))

n. Includes Constraints

1. “An includes relation has one mission as source and one mission as target”
V(x,y)e IC(xe M,ye M)

2. “An includes relation cannot have the same mission both as source and as target”
V(x,y)e IC(x#Yy)

0. Achieves Constraint

1. “An achieves relation has a mission or task as source and an objective as target”
V(x,y)e AC(xe (TUM),ye 0)

p. TaskFlow Constraints

1. “A taskFlow may have one of the {rask, decisionPoint, synchronizationPoint and
initialTask} as source and one of the {task, decisionPoint, synchronizationPoint and

finalTask} as target”

Vix,y)eTF(xe TuDuSuUl),ye TUDUSUF))

2. “Only one taskFlow may exist between the same source and target”

As distinct elements of TF, taskFlow is defined uniquely as a set of ordered pairs, it is
valid by definition.

41

q. InputTo Constraint

1. “An inputTo relation has one workProduct as source and one task as target”
V(x,y)e IN(xeW,yeT)

r. Produces Constraint

1. “A produces relation has one task as source and one workProduct as target”
V(x,y)e PR(xeT,ye W)

S. QuantifiedBy Constraint

1. “A quantifiedBy relation has one objective as source and one measure as target”

V(x,y)e OB(xe O,ye U)

42

3.4 Derived Sets

In this section we define the elements for sets defined in the KAMA metamodel.
a. Derived Sets of Mission

For each mission(m;), inputList (IL), outputList (OL), objectiveList (BL), roleList (RL)
and measureList (UL) are defined as follows;

1L, ={wlwe W, (w,m,) € IT}

OL ={wlwe W,(w,m,)e PR}

BL, ={oloe W.,(m,,0) e AC}

RL, ={r|re R,((r ,m,)€ RF or (r ,m,)€ RE)}

UL, ={ulue U,30,((m,0,)€ AC and (0,u)€ ME))}

b. Derived Sets of Task

For each task(t;),, inputList (IL), outputList (OL), objectiveList (BL), roleList (RL) and
measureList (UL) are defined as follows;

IL, ={wlwe W, (w,1,)e IT}

OL, ={wlwe W, (w,1,)e PR}

BL, ={ojoe W.(1,,0)e AC}

RL, ={rlre R,((r ,1,)€ RF or (r ,t,)€ RE)}

UL, ={ulue U,30,((t,0,)€ AC and (0,u)€ ME))}

43

c. Derived Sets of Role

For each rol(r;), e, taskList (TL) and ownerList (WL) are defined as follows;

TL, ={x‘xe (T UM),((r,,x)e RF or (r;,x)€ RE)}

WL, = {a‘a € A(a,1)e OW}

d. Derived Sets of Objective

For each objective(o;),, measureList (UL) is defined as follows;

UL, ={ulue U, (0,,u)e OB}

3.5 The Relationship of KAMA Metamodel Definition with Dynamic Verification

The formal definition of model will be used in KAMA in three ways as explained below.

Some of the rules form the basis of the dynamic behavior. These include the semantic
definition of rasks, taskFlows, decisionPoints, synchronizationPoints, and task hierarchy.
However the definitions of KAMA are limited in terms of dynamic execution as we will
show in Chapter 4. In Chapter 5 we will list the needed extensions for the model elements
related to task execution. In Chapter 6, we will describe the detailed execution
mechanism. This will require extensions, model elements, properties and constraints in
addition to described in this section. This more detailed model for dynamic verification is
named as KAMA-DV.

The special relations includes and extends that are described in mission space diagrams
are further utilized for synthesis of rask flow diagrams. After synthesis the dynamic
analysis will deal with task flow diagrams. We will explain this mechanism in section 5.

Others which relate to more static aspects of the model will be utilized as they should be

valid during execution and simulation. These rules are listed here and are used during
checking the consistency of each instance during execution.

44

CHAPTER 4

CONCEPTUAL MODEL DYNAMICS

In this section we will discuss the characteristics of dynamics of conceptual models. In
the first subsection we will discuss general characteristics. In the following one, first the
limitations that prevent formal verification of conceptual model dynamics in the light of
KAMA conceptual models and then the required extensions for the modeling constructs,
task flow diagrams and the related model elements are discussed. In the third subsection,
we will examine parts of mission space models to extract rules that will guide the
conceptual model execution process. In this analysis we handle simpler modeling
elements first, other elements later.

4.1 Conceptual Model Dynamics Characteristics and Limitations

4.1.1 Characteristics of Conceptual Model Dynamics

In this subsection we will highlight basic dynamic characteristics of conceptual models.
Dynamic behavior in conceptual model is described in two different ways, behavior in
context of a mission or behavior in context of an entity. Behavior in context of a mission
is described by mission space package elements, behavior in context of an entity is
described by state flow diagrams.

While the state flow diagrams described in KAMA metamodel are simplified version of
state flow diagrams of UML, rask flow diagrams include variations and extensions from
their counterparts described in activity package of UML. We have provided detailed
information on structural properties of mission space package of KAMA in the previous
section. In this section we will highlight the important dynamic characteristics of rask
flow diagrams which are used for description of sequencing of tasks.

CM.ALl: A set of missions, tasks and other elements are described using a diagrammatic
approach.

The core of the mission space package is the task flow diagram and model elements of
this diagram. Actor is a model element that is part of mission space package, but relevant
in dynamic behavior. The mission and task model elements form the core of a KAMA
conceptual model. One of the earliest attempts for conceptual modeling, the definition of

45

CMMS [6], also includes mission and tasks concepts. The mission and tasks definitions
are also easier to define as their world counterparts exist such as mission and task
manuals and procedures. Task flow diagrams and taskFlow associations are used to
describe sequencing of fasks. Other than these synchronizationPoint is used to provide
concurrent task executions by branching and decisionPoint selective execution of tasks
and merging of executions. The mission and fask model elements are primary elements
having real counterparts while other elements are used for sequencing. We will further
elaborate the behavioral aspects during execution in the next section before defining the
execution semantics.

CM.A2: Decomposition is possible for intermediate form of behavior representing units,
tasks for the case of KAMA conceptual modeling notation.

Decomposition is possible for tasks. In KAMA each task have a taskList which are the
constituents of the rask. There exists consistOf relation between the rask and subtasks.
The constituent tasks may be further decomposed to form a task hierarchy. Unlike
CMMS, the KAMA does not include an element for representing action, the lowest level
of task. If the conceptual model aims to develop entity level behaviors than actions can be
defined for the tasks in the most lower level which are not decomposed. Also KAMA
uses initialTask and finalTask constructs to mark the start and end of the flow relations
between tasks similar to UML. Each decomposition of a task requires information on
sequencing of constituent tasks.

CM.A3: The upper or lower form of behavior representing unit can be identified within
the context.

As described earlier there is no definition for action in KAMA, the lowest level task that
is not decomposed. So the lowest level is determined by the modeler considering the
specific intent for the conceptual model. Although decomposition starts from a mission,
mission can be equivalent to a fask, if included by or extended in another mission. Both
mission and action depends on the context both of which can be treated as fask.

CM.A4: A task and corresponding task flow diagram can either be global or describe part
of the overall behavior.

The task flow diagram can be global being equivalent to mission or related to a single
entity. Moreover a task may be defined concerning all entities of an entity type or may be
relates one instance of such an entity. So the context of a task varies greatly which also
affects the other constituent tasks.

CM.AS: A task can abort several other fasks.
In a dynamic context, a task can affect other tasks even if the means for these effects are
not defined during conceptual modeling. For instance a task may cause changing state of

an entity which in turn aborts its fasks or a task may simply abort other tasks in order to
continue. These relations are not explicitly defined in conceptual models as the effects of

46

tasks on entities are not defined in formal manner. Task description is generally in free
text format.

CM.AG6: A task may consume or may not consume its inputs. Also it may produce or
update its outputs.

The relation of a task with the workProducts that represent inputs and outputs is open to
interpretation. For instance a fask may continuously get an information update (for
example position of a platform) or order a weapon to launch. In first case the information
update may still be available while for the second case the missile is consumed.

4.1.2 Limitations of Conceptual Model Dynamics

C.M.L1: The relationship between tasks is not perfectly available.

In conceptual models the relations between tasks are not defined fully and thoroughly. In
textual conceptual models, the composition of tasks into missions and decomposition of
tasks may not include the information on sequence of tasks. Even if such sequence
information is provided it may be unstructured.

C.M.L2: Information depends on the context. The context is not defined precisely.

Information is related to context in conceptual models. A mission or task definition
includes a reference to a role or workProduct, but information on the workProduct is
limited. Most of the information that contributes to conceptual model are in free text
format and come from different sources. It is hard to fully acquire this knowledge and
specify it in a structured format.

C.M.L3: Information is not present for some parts of the conceptual model.

Some information may be lacking for the mission and tasks. The lacking information may
be about the sequencing, the roles, the workProducts or the objectives. The information
may be either unavailable during conceptual model development, or may not be precisely
known because of the aim of the simulation system which may represent a system that do
not exist.

C.M.L4: The information on the sequence of tasks may not be specified rigorously.

The information on sequence of fasks may be provided in a very basic way. For instance
the synchronization of tasks and decisions is not defined so the task decomposition may
not include details on the sequencing of tasks. The operational concept may have hidden
properties that are complex to explain and be structured. Moreover the mission space may
aim to represent a virtual scenario which may not have existed so far. So the related
entities (roles, workProducts, etc.) are defined in a limited way.

47

C.M.L5: The information on which actions to be performed during a task execution is
specified in textual form and may not be executable.

This is the main limitation of conceptual models. The task descriptions are given in an
unstructured textual form depending on the context rarely conforming to a formal syntax.
The textual representation is both difficult to process and interpret.

4.2 The Context of Dynamics in KAMA Models

In this section the context of KAMA models will be discussed. Differences of KAMA
mission space models described in the form of task flow diagrams with diagrammatic
techniques used to describe similar information based on UML, UML Activity Package
will be underlined. UML Activity is selected as a reference for comparison because of the
similarities between KAMA notation and the similarities in scope. We will mention the
difference of KAMA task and UML activity. As both definitions are used for rather
liberal modeling without context we base our analysis on concrete examples from
conceptual models. Then we will describe the task execution in case of conceptual
models.

After these we will describe the way a conceptual model can define general sequencing
of tasks during execution and differences and similarities of this with semantics of UML
activity models. Finally the properties and rules that drive execution of conceptual
models are listed for the related elements. These properties and rules are categorized into
two, mandatory rules that shall hold for execution of model elements and optional ones
that may be helpful and meaningful for specific cases.

4.2.1 Basic Tasks

The sequencing and causal relations of rasks are described by faskFlow elements derived
from control flow. An example describing the causal relationship between fasks is shown
in Figure 4-1, which is taken from a conceptual model for describing the fixed wing
helicopter operation. The causal relationship between tasks is simple for this case, after
the termination of the first rask “Gather at Take off Point”, the second task can start
execution. For the second case however the causal relation is not so straightforward.
During execution of the first zask, “Continue in Mission Route” the “Observe output of
sensors” fask can be triggered in fixed or variable intervals. In fact while “Continue in
mission route” has not been terminated, a specific execution of “Observe output of
sensors” task can be executed and terminated. The first task continues its execution even
after the successor fask has started execution. So the executing fask may trigger the
execution of the successor fask more than once.

48

Gather at take off Point @miSSiOH route

Eollow Mission Route Till Entering Tact_Area_D

Observe Output of Sensors

Figure 4-1 Two Task Flow Diagrams with Different Semantics for 7Task Execution

A similar issue can also exist, after the finishing of the predecessor task, the successor
may not start. For this case, the reasons of not triggering execution of the successor task
may be the termination status of the task, other elements between fask executions
(synchronizationPoints and decisionPoints) and unsatisfied guard condition of the
taskFlow connecting two fasks and precondition of the successor task. The example of
this type of occurrence can be seen Figure 4-2, where Stop the Power Supply Task may
be delayed for some time after Stop the Surveillance Equipment task finishes.

Gtop the Surveillance EquipmerD

Gtop the Power SuppD

Figure 4-2. A Delayed Task Execution

49

If a synchronizationPoint of type join exists then the execution may be forced to wait for
the other branch to terminate, this case will be explained in the following subsection. The
case for unsuccessful completion of the rask will also be explained in the next subsections.

Another important property of a task execution is whether a separate execution of task is
created or not. While only one execution of task is possible for some of the tasks, a
separate fask execution may occur for the others. If a fask execution is single then only
one execution will exist at a time that handles all further executions. If not a separate
execution will be created in each case. Two examples for each kind of tasks from
conceptual models can be seen in Figure 4-3.

Getermine the Communication Mediub\

Selected Communication Medium

Gerform Coverage Analysis and Prepare Plan for PIatform§

Communicate
Gistribute the Mission OrdeD

/ Communication Information

s N
/ \
| |
\ /

N b

Figure 4-3 Task Flow Diagram Containing SingleExecution Task vs. a Task that is not
SingleExecution

Both of the cases exist in conceptual models, creating a variation during execution of
tasks. So this variation is one of the obstacles for automatic conceptual model execution.
We have following rule related to task dynamics for task execution for the case, where no
consistOf association, synchronizationPoints, and decisionPoints exist.

T-1: A task execution shall either be enabled during execution, in the time of termination
or after termination of the predecessor task.

50

If a more restricted modeling approach was adopted during conceptual modeling, some of
the variations may not be present. Then more restrictive optional rules can be used for
management of rask execution.

T-O-1: The fask shall enable the successor fask during the execution or after finishing
execution or may not enable it.

T-O-2: The task shall enable the successor fask at most once.

T-O-3: If the successor fask is a singleExecution task, it shall not be enabled again if it is
executing.

T-0O-4: The enabled rask shall start execution if all the preconditions are satisfied.

These rules are defined for the mission space sequencing package. The relation of rasks
with other elements is explained in the following sections. As the examples show, for the
simple case of relation of a predecessor and successor task, conceptual models show a lot
of difference from semantics described by UML activity package. UML specification
states that the semantics is based on Petri nets, so an activity is triggered if only if the all
the inputs are available and consumes all the inputs at once and present outputs when
another activity is ready to accept tokens. In case of conceptual models a fask can trigger
another fask even if it had not finished execution and more than once.

4.2.2 The Hierarchy of Tasks

The hierarchy of fasks that occurs as a result of consistOf relation and fask flow diagrams
and introduces issues other than explained in the previous subsection. The initial/Task and
finalTask elements also used to mark start and end of other rasks contained tasks, which
are connected with a consistOf relation with the upper level fask. Each decomposition has
own task flow diagram which contains fask model elements that can be further
decomposed.

KAMA decomposition of fasks differs from activity in UML 2.0. This difference can be
seen from the metamodel definitions shown in Figure 4-4. In KAMA the hierarchy is
maintained by consistOf relation between tasks while in UML the hierarchy is maintained
by activity, activityNode and action model elements. So each activity is composed of
nodes. As defined by the UML[27], “an activityNode is an abstract class for points in the
flow of an activity connected by edges” so these points may be of class nodes,
controlNodes and objectNodes. Another activity can be called by an action which is an
activityNode of the activity. The behavior is not further decomposed in the activity but as
described by the UML specification “a call behavior action may reference an activity
definition, in which case the execution of the call action involves the execution of the
referenced activity and its actions (similarly for all the invocation actions)”. So if activity
is to be decomposed it is done by defining the activityNodes of the activity, then
reference further activity elements by call behavior action of these activityNodes.

51

In KAMA a task is derived from both activity and activityNode. As such an activity that
has tasks can be composed of other fasks by consistOf relation instead of actions. This is
because of the initial aim of the KAMA mission space package description of the
structure of the conceptual model.

UL UNAL:: Classes::
CommonBehaviors:: Harnel::
BasicBehaviors:: MNaumedEfement
Bekavior
T {subsets owner} {subsets ownedElement} T
Activity g+ Bctivity + node ActivityMNode
-
0.1 *

Figure 4-4 UML activity, activityNode and action Relations

The subtasks may be regarded as forming all the parent task or components of it. So an
execution of subtasks may be started as soon as the execution of the parent rask starts or
during execution of the parent task. In the later case the execution of subtasks may start
more than once during execution of the parent fask.

The execution of upper or lower level task may determine the context. Context is
determined by the upper level task which contains the other fasks. Based on this context
roles, workProducts, objectives are effected which will be discussed in the following
subsections.

The sequencing of contained tasks are described by a task flow diagram, the first node to
be executed is the initialTask. The last node which does not have any outgoing
connection is the finalTask.

In Figure 4-5, a finalTask execution that upon termination destroys all the other tasks’
executions is shown. A counterexample can exist where a finalTask that will not abort
execution of the other tasks. In UML 2.0[27] for clearly identifying the difference, two
distinct elements named as FlowFinalNode and ActivityFinalNode exist.

52

Frequency Band Intervals

/inputTo

Listen the Environment

Detect Target

Recognize and Identify Targets

/ produces

ISR Information

Figure 4-5 FinalTask Differences in Execution
Based on the above explanation, the rules concerning the initialTask and finalTask
elements are as follows;

I-1 An initialTask shall be executed only during the execution of a fask that contains the
node.

F-1 A finalTask shall finish execution before the containing task finishes execution.

Further semantic variations were observed in conceptual models that confirm to rules
explained as IN-1. The optional properties for initialTasks are listed as;

I-O-1: The initialTask execution shall be created when the continuing fask execution is
created.

[-O-2: The initialTask execution shall be created when the containing task execution is
started.

53

Further semantic variations were observed in conceptual models that confirm to rule
explained as FN-1. These optional properties are listed below where FN-O-1 stands for a
similar case with UML 2.0 finalNode.

F-O-1: The finalTask execution shall cause termination of tasks that started execution by
the same containing task execution.

F-O-2: The finalTask execution shall cause termination of containing task.

Other than these related to the execution of contained fasks, subtasks, the following rules
exist;

CO-1: Subtask executions shall not extend execution interval of containing task.
Other optional properties for subtask executions are listed below.

CO-O-1: The subtask executions shall be unique. For each of the execution exactly one
subtask execution can be created.

CO-0-2: The subtask executions shall not overlap, so during execution of parent task at
most one task shall execute.

CO-0O-3 The subtask executions shall be ordered. First started execution shall finish
before the next execution.

CO-0O-4: A subtask execution shall be executed only by one fask. Subtasks can not be
shared by more than one fask.

4.2.3 SynchronizationPoint Model Element

SynchronizationPoints occur as two types, the fork type is used to create multiple fask
executions from a single execution, and join type is used to trigger a single execution
from multiple incoming executions. Whether a fork node will execute if all the following
branches accept, some of the branches accept or only one branch accepts is not explicitly
explained in the KAMA definition.

Also the definition of fork node is present but it is not known whether the branches are
matched, so that only matched executions are joined, is not discussed. Furtherly
synchronized groups of fasks can be defined. The definition can be made by matching
fork and join nodes. After matching the nodes, the execution can be a matched one or
unmatched one.

After finishing a previous task, the fork type synchronizationPoint will create
synchronization. During synchronized task executions, a decisionPoint or another fork

54

may provide an exit from the branch which shall later block joining. The synchronization
nodes can also create loops which shall be checked for termination.

S-O-1: There shall be no leaving branch from synchronized branches. All the branches
shall be connected with the join type node.

S-0O-2: The executions shall be matched in a fork node shall only be later be joined by a
join node.

S-0O-2-1: Synchronized fask executions shall start and finish at the same time.

S-0-2-2: Synchronized fask executions shall overlap for some intervals.

S-0-2-3: At least two of the synchronized fask executions shall overlap during execution.
S-0O-2-4: The tasks on separate synchronization branches shall not overlap.

S-0O-3: The synchronized branches can be connected based on predetermined conditions.
S-0O-3-1: Synchronized fask executions can be joined if only if all the branches completed.

S-0-3-2: Synchronized fask executions can be joined even if some of branches are not
active.

S-0-3-3: Synchronized fask executions can be joined even if some of branches are not
active.

S-0O-4: Synchronized task executions order can depend on order of the other branches in
the synchronization.

55

Start Power Source

Start Communication Systems

Gtan Sensor System9 Gtan Cc2 System§

Switch to Online Status

Figure 4-6 A SynchronizationPoint of Fork Type with Flows Synchronized

Another problem occurs in case which fork node is storing tokens in case at least one of
the branches start execution but one of others could not if Petri net based semantics is
used. For this reason we add an optional constraint.

S-0O-5: Synchronization point of type fork will not execute if one of the succeeding
branches failed to start execution.

S-0-6: Join node will execute if all branches terminate.
S-0O-7: Join node will execute only a set of determined branches terminate.

S-0O-8: If only a subset of the control flows to a join node is available than all the
matched executions shall be terminated.

The synchronization nodes provide mechanism to enable execution of a set of raskFlows.
The task execution during synchronization may not be explicit. In that case there is no
need to match the fork and join type synchronizationPoints. After execution of task one
of the enabled fasks may not start because of several reasons. In that case we have to
continue its enabling or not. In the join case whether the information shall arrive
synchronously or not is a problem. It shall be required that the information arrives at the
same time or not.

56

4.2.4 DecisionPoint Model Element

When a decision node executes a single branch is chosen for execution. Then the node
shall be marked according to the decision. As stated in KAMA metamodel the
guardConditions of taskFlows from decisionPoints therefore the branches are mutually
exclusive.

D-1: Only one of the branches shall be selected for each decisionPoint execution.

For some of the conceptual models there may be requirement on the execution of each
branch as follows;

D-O-1: Each outgoing branch of decisionPoint shall be executable.

The decisionPoint can create a loop, whose termination may also be checked.

4.2.5 Cascaded DecisionPoints and SynchronizationPoints

Cascaded nodes will cause complexities during execution and their interpretation is
complex. One of the cases to be avoided in conceptual models is cascading of the
intermediateNodes which do not have direct real counterparts unlike missions or tasks.

IN-O-1: intermediateNodes shall not be cascaded.

IN-O-2: synchronizationPoints and decisionPoints shall not be cascaded.

4.2.6 WorkProduct Package Model Elements

The KAMA workProduct package includes workProduct model elements, inputTo and
produces relations. Task descriptions can define the requirements of work products in the
preconditions of tasks.(See Appendix A.4) These work products are modeled with
workProduct model elements. The availability of workProducts may be a constraint for
the rask execution. The examples of such constraints are as follows;

WP-O-1: The executed task shall have inputs.

WP-O-1-1: An input will be consumed by the executed rask and will not be available.
WP-I-1: The executed rask shall provide outputs.

WP-I-1-1: A new output will be produced by the executed rask.

The workProduct notation is also another concept in conceptual modeling whereby a
single workProduct can be attached to more than one task.

57

4.2.7 Role Package Model Elements

We have two optional rules that effects execution of fasks. One of them is about
assignment of roles to tasks, the other is assignment of roles to actors.

R-O-1-1: Each executing fask shall be assigned to a role by using realizes relation.
R-0O-1-2: Each executing task shall be assigned to a role by using responsibleFor relation.

R-O-1-3: Each executing task shall be assigned to a role either by using a realizes or
responsibleFor relation

R-O-2-1: A role shall be assigned to an actor.
R-0O-2-2: A role shall be owned by an actor.
Other variations may exist due to task hierarchy.

R-O-3-1: If a role is not assigned for a containing fask than the role shall be assigned to
contained fasks.

R-O-3-2 If a role is not assigned for a contained task than the role is the same as the
containing fask.

4.2.8 Objective Package Model Elements

For the objectives two basic requirements may exist for the executions. The objective
elements are either shall have an objective or assigned the objective of higher level task.
The objective shall have measure.

O-0O-1: Each task execution shall have an objective.

0O-0-2: Each executing task shall have an objective or have the containing task
execution’s objective.

0-0-3: A task execution’s objective shall have at least one a measure.

If objectives in conceptual models are more thoroughly defined, more strict requirements
can be attached so that fasks may only terminate if objectives are successfully attained.

58

4.2.9 Other Static Relations

The dynamical aspects of fask execution are also constrained by static relations. The
relations between the actors and workProducts shall be consistent with the dynamic
descriptions.

Actors can be related with each other in command hierarchy diagrams. Usually
containing tasks will be assigned to roles of actors which are superior to roles of actors
of subtasks.

WorkProducts are related in entity ontology diagrams. There can be related workProducts
in contained and containing tasks that shall be consistent with the information in entity
ontology diagrams.

4.2.10 Relations with Objects (Instances of Entities)

Task execution affects individual objects. If more information is available on the objects
states in during task execution and attribute values more through analysis can be
performed. However since we deal with cases where the task descriptions are not defined
in the context of entities, this topic is not in our primary focus.

59

CHAPTER 5

V&V REQUIREMENTS FOR CONCEPTUAL MODEL DYNAMICS

As seen in Chapter 3 and 4, the relationships between tasks are defined in such a way that
automatic execution is not possible. In the context of conceptual models a task can be
used to represent a wide range of behaviors, from the behavior of a single element to that
of many elements constituting a large system. In this Chapter we will further try to clarify
context of conceptual model dynamics. Section 5.1 below will provide the requirements
for verification and validation of conceptual models and Section 5.2 will provide the
framework for execution of model elements that can be used during dynamic verification
process.

5.1 Conceptual Model Verification Requirements

Given characteristics of conceptual models in chapter 3 and the dynamic semantics of
elements in section 4 makes possible of checking some properties, however given a
dynamic description in a conceptual model it is impossible to determine the exact
behavior. Rather than finding incorrect behavior, a more pragmatic and useful approach
will be determining if the dynamic interpretation of the conceptual model implies
behavior that is valid.

We will elaborate more about the execution of tasks in the following sections. However
for the sake of completeness, we will categorize the requirements of dynamic behavior
verification as follows:

1. Any behavior shall not be allowed that include a task does not end execution,
the deadlocks and a set of tasks executing infinitely many times, livelocks.

il. The capability to limit certain execution orders based on the information
presented in the conceptual model as text. For instance even if two fasks are
not depicted in the same fask flow diagram, there may be a precedence
relation between them.

60

1ii. In addition to precedence relation explained in the previous paragraph, for
some of the rasks other constraints may exist such as two rask executions
sharing some time frame.

iv. Other than these constraints related to sequencing, other constraints may exist
between fasks based on the roles and workProducts which will further make
the executions that to do not obey them invalid.

5.1.1 Error Prone Parts of a Conceptual Model

While it will be generally agreed that most errors will occur in more complex parts of the
model, finding the complex parts is not an easy task. To our knowledge, there is no work
dealing with the complexity of simulation conceptual models or conceptual model parts.

The general approach is application of complexity metrics used for computer programs to
models. However most the work related to metrics in modeling deals with complexity of
the class diagrams [81] [82]. In a related work, activity diagrams describing the steps of
functions of classes, is used to evaluate the number of function calls to distinct classes to
determine complexity of the models. List of ideas on diagram complexity is provided in
earlier works [83]. Also research at earlier stages [84] aiming to define and evaluate
metrics comprehensively considering novel UML developments exist.

In the case of business models there are more relevant work for determination of
complexity [61]. If sufficient information on determining model complexity is defined, it
can be used to plan verification activities.

5.2 Execution Dynamics for Model Elements

In this section based on the findings of Chapter 4 and dynamic verification requirements
specified in section 5.1, we describe the execution framework for conceptual models and
for mission, task, taskFlow, synchronizationPoint, decisionPoint, initialTask, finalTask.
After that we describe the mechanism for inspection of these elements dynamically.

5.2.1 Basic Concepts Related to Execution of Tasks

Based on observations on Chapter 4, we will explain a general execution framework first.
Then for each model element in the context of task flow diagram, we will explain the
dynamic aspects and variances in terms of our framework.

Considering these properties some basic assumptions shall be made for execution of tasks.
First of the basic assumption is that fask execution may be instantaneous or span time in

61

real world. As we are dealing with fasks that have some practical counterpart in real
world, we adopt this assumption. Secondly we assume that the raskFlow association is a
form of relationship that provides causality between task executions. So if one task
execution enables other’s execution, the second could not start before that fask. These
two assumptions form the basis of our fask execution approach.

Other than these, inspection of KAMA metamodel points out that the special elements in
mission space package like initialTask, finalTask, synchronizationPoint, and
decisionPoint are described as intermediate constructs. For instance these elements lack
attributes and therefore is not used to describe tasks, but to describe causal relationships
between tasks. Therefore the execution of these elements does not take time. These
elements are used for proper sequencing of the tasks. These sequencing is done by
marking time points. However these elements can introduce delays. Delays can be as a
result of guards of the taskFlows or introduced intentionally by the user.

During execution the main unit that the events are located is the order, instead of time. So
after the assumptions of execution we will discuss how order is manipulated during the
execution. An event that starts later is regarded to have a larger order. In case during
execution an event can be given the same order as the previous. We discuss the specific
cases in the next subsection. Elements such as synchronizationPoint, decisionPoint,
InitialTask and finalTask elements acts as “traffic switches” (term is used in UML 2.0
standard to describe the Intermediate Package of Activities).

While we consider that the execution times of the tasks, we also take into consideration
the fact that during mental execution the exact timing of the tasks may not be known
precisely and fully. While we define the execution rules for the tasks as below we do not
aim to provide a direct timing analysis for the execution tasks. Such a timing analysis
requires much more information on timing than that is present in a conceptual model. Our
primary interest is the order of the tasks during the execution. The order is important for
two purposes:

1. The sequencing relations defined by task flow diagrams constraint the order. By
this way execution is managed and controlled by the task flow diagram. An
example execution described by the conceptual model can be produced by using
the information in the conceptual model.

2. Satisfaction of constraints about the order of tasks can be checked. These
constraints may be deadlocks, live locks and on abortion of fasks, execution times.

There are two distinct types of dynamic model elements in mission space behavior
descriptions. First is the elements used for representing real counterparts, mission and
tasks. Second type is used for sequencing of these, raskFlows for basic sequencing,
initialTasks and finalTasks for organization of task hierarchy, synchronizationPoints for
synchronization of tasks, decisionPoints used for branching and merging. While the first
type of execution can consume time the second type can not, while both types can

62

introduce delays during the execution to describe the proper execution order equivalent to
real order of the mission and tasks.

Mission elements are also treated as fasks. For mission elements that are related with an
includes relation with an other element, the task of included mission is also available
during execution. If a mission extends other mission, the extended mission’s elements are
also embedded included after the extension point.

In Figure 5-1, the bar notation shows the creation of a particular element and execution of
it. The corresponding to real world execution is shown with an arrow. The execution of
taskFlow and other elements mark single points in execution. The points are used to
determine the occurrence order of tasks during execution.

63

Name /

States
Symbol
Task ..
Created Started Finished OR Aborted
TaskFlow Created Executed OR Aborted
e |)
InitialTask Created Executed OR Aborted
FinalTask
@ Created Executed OR Aborted
I |
SyncronizationNode
(Fork) Created Executed OR Aborted
I I |
SyncronizationNode
(Join) Created Executed OR Aborted
I I |
DecisionNode Created

<>

Figure 5-1 Execution States of Elements of Task Flow Diagram

Executed OR Aborted

64

5.2.2 Phases of Task Execution

The lifeline of rask execution is shown in Figure 5-2. The rask execution has three
distinct points that mark enabling of the creation time of the fask (e;), starting of the
execution (s;;), finishing of the execution either by termination or abortion of the fask (f;;).

eij Sij fi

Aty At

Figure 5-2 The Creation, Starting and Finishing Time of a Task Execution

Time elapsed between the creation and execution of a fask Af,= s;; - e;; 1s the waiting time
of the task. The waiting time can occur because of rask waiting for preconditions to be
satisfied which may exist because of the extensions of the task flow diagram or because
of the relations between tasks that are not depicted explicitly by the task flow diagram.
The creation of the task has not a direct counterpart in the real world. It is used for proper
scheduling of the fask executions. It can be zero if the task does not wait for execution
after creation.

The execution duration of the fask At.= f;; - s;; represents the real execution time of the
real task. If the task is an instantaneous task its duration may be equal to zero.

In our approach, the executions of tasks are described using order of the fasks rather than
time. The order of a task is chosen for execution for the following reasons. First the order
of execution is more important in conceptual modeling than the exact times. As
conceptual model is an abstract representation of the reality, the definition of fasks and
sequence of task executions are more central. Also related to this, the execution times are
not precisely defined in a conceptual model generally. Yet the scale of timing may vary
much in a conceptual model as well as in a simulation. So it will be hard to provide a real
execution before the implementation of the simulation.

65

5.2.3 Example of Basic Triggering during Task Execution

In Figure 5-3, we have depicted two subsequent task executions conforming to scheme
explained in previous subsection. In the following paragraphs, we will explain the
relationships between the rasks based on the principles for task execution. Then we will
describe the relations based on the order concept.

€yl S11 fzr f 11
|
Aty1 T At,;
€21
®------ B S21 far
®------- ® >
0] 02 03 04 Os 06

Figure 5-3 General Case of Task Execution

The first relation is preservation of causality, so the starting time of task 2 cannot be
earlier than starting time of fask 1 so s;;< s»;. The relation between orders is as follows,
§11< 527 than 0,< 0s.

The second property is the execution of task 2 shall be enabled during execution of task 1
s0 s77 < ;< f1;. This also results in the constraint that s,; = At,y + At,». If there is a guard
condition of the taskFlow than we assume that the flow will wait Az, until it is satisfied.
As we assume no unrecorded or unattributed time passes

Also we shall add here the constraints e;;<s;;<t;; and e2;<s52;<12].

Given these two we shall add also another constraint s;; < e;; for the execution approach.

66

Finally it shall be underlined that primary interest of the modeler is the start and finish
orders of the tasks. The creation and execution orders of other elements are used for
proper sequencing of tasks. So in the next subsections we will focus on relation between
task execution orders.

5.2.4 Variances in Task Executions Related to Model Elements

5.2.4.1 Successor Task Execution

In Figure 5-4, we have depicted several cases of successor task execution. The fask can
either be executed during execution (Figure 5.4.1) or after the previous execution (Figure
5.4.1i1), also it can execute for multiple times for both cases. In another case the execution
of successor fask can start with the finishing of the predecessor fask (Figure 5.4.ii). In this
case the execution may be one of the several executions that started earlier or later. In a
more broad case the execution of the successor task may occur after the execution of
predecessor task with some delay.

Si1 S$21 S11 f11=S21
» »
< > < > >
As I As 1
S1k §21 S$2m S1k §21 S$2m S$2n
T : »! | ' o
i i ' '
S et EEEEER] RS > DAY R A R >
| [F > | | e '
> As,
As j
i. Starting During Execution ii. Starting just after Execution
S11 fi1 s21
g
< > >
As]
Sk $20 Som Sk Sn
i i
1 [] L
] 1 e Y\ __ __ _ _»
2L ZS:—E ______ I >
AS‘,I : » N
| Ll »
As,
iii. Starting after Execution

67

Figure 5-4 Execution of Successor Task

5.2.4.2 SynchronizationPoint (Fork Type) Execution

We present several examples of task executions in Figure 5-5. The synchronization can
cause immediate start of the following fasks at the same execution point (Figure 5.5.1) or
just after finishing of the task before the synchronization (Figure 5.5.i1). In a generalized
case the synchronized tasks can start later because of the delay because of the
guardConditions in taskFlows or by themselves after they are enabled (Figure 5.5.iii or

5.5.1v).

In Figure 5-5, different colors indicate unmatched executions. In another case the fork
can mark executions so that only the matched executions can join later in the flow by an

associated join type SynchronizationPoint.

Stk Sop= S3p=S4s flk
|

Sik S2n S3p S4s flk

»

vy

1. Three distinct executions
after a fork node

»

v

S1k $2n= S3p= S45= fik

>

\A 4

ii. Three distinct executions start just after finishing of

the first execntion.

Sik fik son s

I LI
»

iii. Three distinct executions with
different starting times.

v

3p Sak
o

v

iv. Three distinct executions with different starting
times start after the finishing of first execution.

v

Figure 5-5 Execution of Fork Type SynchronizationPoint

5.2.4.3 SynchronizationPoint (Join Type) Execution

The synchronization point is also used to join the multiple branches to from a single
branch. Then these executions that are joined finish at a single instant as shown in Figure
5-6, the former for the matched case, the latter for the unmatched case. Also a delay can

68

be introduced for the execution of joined executions so that the successor fask can start
after their execution finishes.

Stk S2n S3p flk: f2n:f3pzs4s Sik S2n S3p f]k: f2n:f3p:S4s
1 | 1 N ! ! ! »
1 1 1 1 ; |
1 L 1 Y I L 1 »
] 1 1]] !
] 1 [} »]] |—>
A > o >
1 1 1 1 1 1
i. Joining of three matched task executions ii. Joining of three task executions
Son S = — —
Sik S2n 3Ip f]k f2n f3p_S4s Sik S2n S3p flk—on—f3p S4s
1 1 \ [' 1 v
; | : g \ ; | L
b > A — >
| | ! —p> | | '—>
! ! ! > ' 1 i
| | ! \ \ | —_ »
| | ! | | |

iv. Joining of three task executions

iii. Joining of three task executions with delay
Stk San S3p Jik Jon fip=Sas Sik S2n S3p fu= fon=f3p S4s
] !] : : , | | : :
| ! 1 1 [h 1 1 l '
A — — —>
L Ry
R R R R I _
| [1 1 [\ 1 1 1 1
v. Joining of matched three task vi. Joining of matched three task executions
executions in future time with delay
Sik S2n S3p f]k f2n f3p:s4s Sik S2n S3p f]k: f2n:f3p Sis
1 ! 1 : : | 1 | : :
\ 1 | 1 [\ 1 | | [N
Lo i o N : N
e S
| > | | | |
B R S
vii. Joining of three task executions in viii. Joining of three task executions with
future time delay

Figure 5-6 Execution of Join Type SynchronizationPoint

As an alternative the executions to be joined may not be required to finish at the same
instant as shown in Figure 5.6.v and Figure 5.6.vi. This is also possible for the unmatched
executions as shown in Figure 5-6.vii and Figure 5-6.viii.

5.2.4.4 DecisionPoint Execution

As the decisionPoint executes the time for decision is marked and the other rasks
continue their execution. A decisionPoint execution is directly associated with the rask

69

execution which triggers it. Only one decision at a time will be selected. As in the case of
successor task execution the decision may start before finishing of the predecessor task or
with a delay as shown in Figure 5-7.

S11 821 fu Si1 f11=s21
| » | »
> >
1. Task execution with a decisionPoint where ii. Task execution with a decisionPoint where
decision is taken during execution of prior decision is taken just after finishing of the
task prior task
S11 f 11 821

N
»

| »

iii. Task execution with a decisionPoint with delay

Figure 5-7 DecisionPoint Execution

5.2.4.5 Task Hierarchy Execution

The fask can cause execution of the fasks which it includes during its execution. The
execution of the contained fasks may be in parallel with the execution of the containing
task. The task executions may start later, finish earlier, or both. Multiple executions of the
subtasks can also occur, and these executions may overlap. These variations are shown in
Figure 5-8. The overlapping executions may be ordered as subtask execution that starts
earlier executing, finishing earlier or unordered.

70

S1i=€2j

f1i=f3x

A 4

i. Sychronous execution of a task and
snbtasks

S7i

e fri=ea

S1i=€2; eq fii S1i €2 es fii
| l » [1 »
[L [1 L
1 1 1
............ > SRR
| | |
]])
1 1 1
€4j ey ey S1i €2j t1;
iii. Execution of task and subtasks (early iv. Execution of task and subtasks (late start
finish). and early finish).
s1€37 e 2y fii €x €4 ex
[T SN ; TN
] [[1 L [[[[L
1 1 1 1 1 1 1 1 1 1
Lo o R A R
ISR ! Lol
1 1 1 1 1 1 1 1 1 1
v. Multiple executions of subtasks vi. Multiple and intersecting executions of
subtasks
Sii€y ex e ey fli
[A i |
|]] L
I 1 1
[==

—_— -

v

>

vii. Multiple and intersecting executions of
subtasks not preserving start order in finish.

Figure 5-8 Execution of Task Hierarchy

71

CHAPTER 6

THE VERIFICATION APPROACH FOR
CONCEPTUAL MODEL DYNAMICS

In this chapter the approach for dynamic verification of conceptual models will be
explained. The aim of the approach is verification of dynamics of Conceptual models by
exploiting the advantages of model based approach. As we have discussed in Chapter 2 in
literature survey, the availability of conceptual models is the main limitation in
developing the approach. Existing KAMA models which conform to KAMA metamodel
do not have information so that they can be analyzed dynamically based on the execution
rules given in Chapter 5. We have included the dynamic information requirements in the
KAMA-DV metamodel we provide in this chapter. This will provide a baseline for the
future studies that aim to form models that can be analyzed based on the execution rules
while in this study we left out such an approach.

The method requires performing a set of activities. The general information of overall
method is provided first, then each step is explained. Each step consists of application of
semiformal or formal methods for verification.

In this chapter first the model based verification approach is explained. After this general
explanation of model based approach, KAMA-DV metamodel which provides the basis
for the approach is described. The additional model elements and properties of KAMA-
DV metamodel, which differentiate it from KAMA metamodel expressed in Chapter 2,
are based on the semantic variations expressed in Chapter 4 and execution approach
described in Chapter 5.

Then we will outline the process of dynamic verification. In the last section, we will
provide the description of tools that are used to realize the parts of the verification
approach.

6.1 Model Based Verification Approach

As we aim to develop the verification using model driven approach [25], we have a set of
models to work on during the verification process. The first model is KAMA model that

72

is developed based on KAMA metamodel. KAMA tool which includes a graphical editor
and additional capabilities can be used for this activity.

Secondly we have the KAMA-DV Model based on the KAMA-DV Metamodel. This
model includes all the model elements and rules expressed in KAMA and further
dynamic extensions. These extensions are added for finding the errors and issues related
to dynamics and support dynamic analysis.

The compliance of the KAMA-DV Model to its metamodel is the primary step of any
verification effort dealing with dynamics. The second step is to analyze model to detect
any errors stemming from dynamics. In Section 6.4, we will provide information on the
tools that can support our approach and both explain how the necessary tool is used to
check rules related to dynamic descriptions and how dynamic analysis can be performed.

KAMA KAMADV SourceTarget EPML
Metamodel Metamodel
D D D
conforms conforms conforms

| | |

| | |

| | |

| | |

| | |

| | |
KAMA KAMADV
Model Model EPC Model

Figure 6-1 Distinct Models Used for Verification

6.2 KAMA-DV Metamodel

In this section, we briefly explain KAMA-DV Metamodel. KAMA-DV Metamodel is
developed based on the semantic differences of model elements in KAMA models and
dynamic requirements. In particular the KAMA-DV additions can be categorized in three:

First the KAMA approach is formally represented in Chapter 3, but the properties related
to task hierarchy and rask flow diagrams are left out as they are also left out in original
KAMA. In KAMA-DYV a particular addition is done to explicitly define semantics for the
hierarchy by additional elements and rules, that are vaguely defined in KAMA. Some of
these changes also affect the original KAMA metamodel constraints.

73

Secondly based on the observations in Chapter 4, additional properties and rules related
to dynamics are added to represent these. Some of the constraints are added for better
classification of errors and having a clear representation to ease application of dynamic
verification.

Thirdly elements representing the dynamic instances of the various elements are also
added. These elements have the properties that will represent the execution approach in
Chapter 5. This are added to KAMA-DV Metamodel as a seperate package.

In the following section we will briefly describe the model elements, properties and rules.
Later we will define the properties and constraints formally in a way similar to Chapter 3.

6.2.1 KAMA-DV Metamodel Organization

KAMA-DV has two main packages, first contains the elements in KAMA and dynamic
extensions, second contains the instances representing executed instances of these
elements. The relations between the elements of these two packages is similar to relations
between classes and objects in UML definition.

For some of the rules we add additional atrributes to the KAMA metamodel elements.
The information contained in these atrributes will be used in dynamic erification and
execution. These rules together with KAMA rules constitute the KAMA-DV metamodel.
In this section first we will briefly discuss the KAMA-DV elements that are not explicitly
included in the KAMA Metamodel. These are TaskFlowDiagram element, consistOf and
representedBy associatons. In this section we will detail the elements of KAMA-DV
model.

6.2.2 KAMA-DV Core Package

KAMA-DV Core is the main package that includes all the information related to
dynamics. It contains the KAMA Mission Space Package by merging it. The extensions
of elements are explained in the following sections. Sets of ordered pairs for associations
is defined, as RB for RepresentedBy, HC for hascontext, IS for isShown and CN for
context property similar to Chapter 3.

6.2.2.1 Task

The semantics of task of KAMA-DV is similar to fask of KAMA. As we will explain the
same task may be associated with more than one fask with consistOf association. When
this happens the fask is included in more than one task flow diagram and for each
diagram it will have both incoming and outgoing taskFlow associations. So a fask will
have a taskFlow participation for each diagram.

74

We are required to represent the task flow diagram as distinct model element. Two
relations between a task and task flow diagram elements may exist:

1. A task flow diagram can show the subtasks of a fask. Then the task is
associated with representedBy relation with the rask flow diagram.
1i. A task can be shown in a diagram. This occurs when the tasks is a subtask of

another task that is in representedBy association with the task flow diagram.
Than we add the isShown association between the task flow diagram and the
task.

We also include a property for the fasks that is not part of KAMA. These properties are
needed for capturing the semantic differences explained in Chapter 4.

Properties

Context: This property is the set of pairs of task flow diagrams and tasks. Task flow
diagram is one of the the diagrams this task participates representedBy association and
tasks are parent tasks of this task.

Rules

1. A task participates in consistOf association as a containing task if it is shown in a fask
flow diagram which represents the containing task.

VxeT (ze TD and ye TD and (x,z)€ RB and (y,z)e SI) implies
(x,y)e CO)

2. The task has a single incoming taskFlow and outgoing taskFlow for each task flow
diagram.

For representing this constraint, we separate all related cases into two where a task does

not consist of any subtask and consist of one or more subtasks. We further decompose
these constraints into two as incoming and outgoing taskFlows.

VxeT(VyeT({(x,y)e CO))
implies (ze€ T,(x,z)e TF for only one z)).

VxeT(VyeT((x,y)e& CO)),
implies (ze€ T,(z,x)e TF for only one z))

75

For the case where a fask is represented by one or more task flow diagram, for every task
flow diagram, task is associated with shownln, there is only one incoming faskFlow and
outgoing taskFlow.

VxeT({(zeTD, (x,z)e SI)
implies (yeT,(y,z)e SI,(x,y)e TF for only one Yy)).

VxeT({(zeTD, (x,z)e SI)
implies (ye T,(y,z)e SI,(y,x)e TF for only one Yy)).

3. The task can not participate in consistOf association with itself or a task that consistOf
itself. So a rask does not contain itself recursively.

Vt,eT,t, & TC where TC, is the set of closure of the task with respect to consistOf
association. So closure set is defined as the consistOf tasks of the task and closure of

them, TC, ={t, |(t,,t,)€ CO,} UTC,.

4. If the task contains one or more tasks and participates in a representedBy association
with a rask flow diagram then it shall consistOf with at least one element of type
initialTask.

VxeT (yeT and ze TD and (x,y)e CO and (x,z)€ RB) implies
(we I and (x,w)e CO))

5. If the task contains one or more tasks and participates in a representedBy association
with a rask flow diagram then it shall consistOf with at least one element of type
finalTask.

VxeT (yeT and z€ TD and (x,y)e CO and (x,z) € RB) implies
(we F and (x,w)e CO))

6.2.2.2 Task Flow Diagram

KAMA-DV has the task flow diagram as a model element rather than a view. This is
consistent with the aim of KAMA-DV since the exact aim is to develop a metamodel for
verification of dynamic properties and execution and fask flow diagram is the diagram
describing the relations between tasks. A task flow diagram resembles a source code file
as it describes the dynamics of the model. As explained in the definition of task, the
precise definition of task as a part of other tasks requires task flow diagram definition.

In this respect we treat a fask flow diagram similar to an activity associated with an
activity node of UML. A fask flow diagram stand for a single interpretation of the the

76

task based on a given context. So in this case a task itself may have more than one
interpretation, where only one of them is valid for a given context. Context is associated
task that contains the related rask. Each task flow diagram can be associated no or
multiple contexts. Context is used to resolve which diagram is used to define the
behaviour of subtasks.

The task flow diagram bears no direct relation with the concept of a diagram presented by
the UML standard or XMI diagram interchange format. For UML, diagram is a view of a
model while XMI DI deals with the orientation of nodes and elements and their
relationships, concrete syntax. In our case, task flow diagram provides a description of
the relations between subtasks and other elements for different occurrences of a task.
Properties

1. isUnique: This attribute is used to describe the nature of the tasks.

2. isOrdered: This attribute is set if the task executions of the fask are ordered. For
ordered task flow diagrams, the executions of subtasks occurs in an order, the first strated
task execution completes first.

3. isOverlapping: This attribute is set if the task executions of the fask can overlap. If
seperate executions do not use the same resource than they can overlap.

Rules

The task flow diagram shows tasks that are subsets of the tasks that the diagram
represents.

1. If a task flow diagram is defined in the context of a fask, that task shall be in consistOf
relation with the tasks that task flow diagram represents.

VxeTD (Vy,ze T((z,x)€ RB),(y,x)e CN) implies (y,z) e CO))

6.2.2.3 representedBy

The representedBy relation is used to describe that the a rask flow diagram represents a
task. One task can be represented by more than one task flow diagram. This relation only
exist between a task and a task flow diagram.

Rules

1. A model element of type fask and task flow diagram participates in each representedBy
association.

V(x,y)e RB(xeT,yeTD)

77

6.2.2.4 isShown

Although we have explicitly added the representedBy association for the representation
of tasks, we can define isShown associations by using the others. isShown association
shows that a rask is shown in the diagram.

Rules

1. Element of type task, taskFlow, initialTask, finalTasks, syncronizationPoints or
decisionPoints and element of type fask flow diagram participates in each isShown

association.

V(x,y)e RB(xeTUIUFuUSuUD,yeTD)

2. A task can only be shown in a diagram if it is one of the subtasks of the fask that this
diagram represents.

Vx,yeT,zeTD ((y,z)e SI) implies ((x,z) € RB,(x,y)e CO))

6.2.2.5 hasContext

If a task flow diagram is valid for explaining the dynamic behaviour of a subtask than is
is meaningful in the context of the task. A task flow diagram may have more than one
context, as the behaviour it describes may be valid for more than one task.

Rules

1. The source element of hasContext is of type task flow diagram and target of type task.

V(x,y)e HC(xe TD,yeT)

6.2.2.6 SynchronizationPoint

For synchronizationPoint additional attribute is added for identifying fork and join type
synchronizationPoints. This is based on the multiplicity of SyncronizationPoints in
KAMA model.

Other than these for specifying the precise model execution additional attributes are
added for matched fork and join type syncronizationPoints.

Other attributes are defined for specifying the behaviour of the synchronizationPoints

78

In KAMA-DV synchronizationPoint has additional attributes for model execution.
Property

1. isJoin: This attribute is a derived attribute to explicitly define the type of the
synchronizationPoint.

2. MatchedNode: This attribute holds the ID of the node that this node is matched with. A
fork and join is matched if during exection all the taskFlows from a fork node to be
matched by a join.

3. isSynchronizedFork: If the outgoingFlows are synchronized meaning succeding fasks
start at the same order, or if the incomingFlows are synchronized meaning preceding
tasks end at the same order this attribute is set to true.

4. forktriggeringType: This attribute specifies the triggering type of the
syncronizationPoint based on the timing of the succeding rask execution. The triggreing
type is of type triggering type.

5. joinTriggeringType: This attribute specifies the triggering type of the

syncronizationPoint based on the timing of the succeding rask execution. The triggreing
type is of type triggering type.

6.2.2.7 DecisionPoint

Some of the decisionPoints are used to merge the flows previously diverted by
decisionPoints that have more than one outgoing taskFlows.
Property

1. isMerge: If decisionPoint has a single incoming taskFlow and multiple outgoing
taskFlows then this attribute is set to one.

2. triggeringType: This attribute is set to an ennumarated value based on the triggering
type of the synchornizationPoint.

6.2.2.8 InitialTask

The initialTask has an additional property for defining the exact nature of starting of the
subtask. Based on this property further constraints are defined in execution.

79

6.2.2.9 FinalTask

The finalTask has an additional property for characterization of the behaviour when it is
reached in execution.

Property

1. isfinalFlow: If the finalTask executions destroys all the active executions that is shown
in the rask flow diagram it is shown than this boolean attribute is set to true.

6.2.3 KAMA-DV Behaviour Package

In KAMA-DV behaviour package we include the executable versions of model elements.
The executable versions of model elements are based on the execution framework adn
model element execution rules presented in Chapter 5. As explained in Chapter 5 the
execution is different for tasks and intermediateNodes.

6.2.3.1 TaskExecution

TaskExecution is used for representing an executin of a task. Following properties exist
for a task execution. Task execution is created during dynamic behaviour execution. The
task execution has following attributes

Property

context: It determines the execution context of the task. It is determined by the task flow
diagram the task starts execution and preceeding node and taskFlow.

creationOrder: 1t is the oreder of creation of the taskExecution.
startingOrder: 1t is the order of starting of the taskExecution.

endingOrder: 1t is the order ofending of the raskExecution.

80

6.2.3.2 IntermediateNodeExecution

IntermediateNodeExecution is used for representing the execution of intemerdiateNodes.
According to framework given in Chapter 5, these executions are created and triggered.

Property

nodeType: This attribute represents type of the node the intermediate node execution
refers.

context: It determines the execution context of the intermediateNode. It is determined by
the task flow diagram the intermediateNode starts execution and preceeding node and
taskFlow.

creationOrder: It is the order of creation of the intermediateNodeExecution.

triggerOrder: It is the order of triggering of the intermediateNodeExecution.

6.2.3.3 dynamiclnstanceOf

This association exists between the structural elements and their dynamic instances. A
dynamic instance is an instance of a corresponding structural element.

6.3 General Outline of the Method

The method for dynamic verification consists of 4 distinct steps, which are shown in a
task flow diagram in Figure 6-2.

Verification tasks are executed in a sequential fashion; if problems are encountered in a
task then the activities of previous tasks are performed. The high level steps can be
interpreted as generic steps necessary for dynamic verification of a domain specific
modeling notation. In the first step, the information is organized and verified for
conformance to the static rules. Then based on the related information in the model, the
dynamic information is enriched. This includes additional of KAMA-DV metamodel
properties defined in Section 6.1. Some of the attributes can be derived from directly the
metamodel, while others shall be added by the modeler by determining the exact
semantics considering the semantic variations explained in Chapter 5.

After additions structural compliance to KAMA and KAMA-DV are checked in the

model to determine errors and issues. If no structural errors remain, dynamic checking
can be performed.

81

T

“rortrol Ak

—L/{Dnlnﬂ Akigir <k ontrol Akiss
(e «fg» \

Carmeck Syntax and warify Syntax and Studura \
Structure

—r S b

et el Al

o
axartrel akigi (Strcural Erer List <)2
= 3,_(SheratElortin st Hantrel Akigie
—
Chack
Syntlactic
and
S‘::" Axprtrol Alug (Strectural Sror Lizt = 1) \
aigs \
Prapara Dynamic \
fodel

el Az cigs

Uzdate Conceptual
-

_F—F'__._J - \\\ Model

5 J
skontral dkogie
ekantral Skigis | /
<tge aign

Updata Varification
Fules

T' T #kaontral fkig (Evoss Starnrning fram Concaptual Medal)z

=kentrel Alugis

Hl _’%«/Konwl Akigi (Ervars In Varlfication Aulas)s

chack Error
Situgtion

Wanfy the Dynamics

akentrel Akig (Mo Errors)>

>

Report Verfication
Results

skontral kigis

|

Figure 6-2. The Process of Dynamic Verification Shown as a Task Flow Diagram

82

6.3.1 Step 1: Structuring the Model and Static Verification

In this step the dynamic parts of the model (single or a group of diagrams) are
represented as a KAMA task flow description as described in the previous section. The
conceptual model may already be in a format similar to KAMA or some differences may
exist. If there is a lack of information then referents and domain experts can be consulted
for specifying dynamic information in the conceptual model.

After this step the conceptual model shall be checked for the syntax rules as described
below in section 6.2. These checks can either be running algorithms or by formal
checking of the model. In the next two subsections we will present the approach for
verification of the static KAMA constraints and formal verification of properties related
to dynamic analysis.

6.3.2 Verification of the Static Constraints

In this section we present an algorithm for checking each of the rules presented in
Chapter 3. If the model elements and associations are stored in a database format
assigning each model element metaclass a separate table, the number of iterations needed
for checking each constraint can be calculated. The KAMA model for mission space
description is already modularized as packages so the constraints are presented for each
package with the needed number of iterations in the following subsections.

Integrity of elements can be checked independently for each package. Then checks can be
applied to determine if the model obeys the constraints as a whole to address the errors
that occur as a result of interaction of different packages. This mechanism has several
advantages. For very large models, it will be convenient to process model information.
Secondly, the constraints for each package can be understood more easily. Similar checks
can be made for constraints that have similarity.

For KAMA models in the following subsections we list the rules that are defined from
the KAMA metamodel. For traceability, we use the codes that are presented in Chapter 3
and the defined model element sets presented in Table 3-2.

6.3.2.1 Mission Space Fundamental Package Rules

Mission Space Fundamental Package constraints are presented in Table 6-1. The code
represents the unique identifier of the rule based on its presentation given in KAMA
Metamodel and KAMA semantics explained in Chapter 3. The first two letters of the
code is taken from section number of these constraints in Chapter 3. The third letter is the
letter where the corresponding rule is presented in KAMA metamodel. The fourth letter is
further added to differentiate between the rules that apply to the same element. In the
iteration column the model elements and associations that are iterated when checking a

83

rule is listed, and number of iterations represent the needed iterations. Iterations are
calculated based on the number of sets of model elements, and for each set number of
elements (e.g. n, m, k etc.) are multiplied.

Table 6-1. Number of Iterations Needed for Checking Fundamental Package Rules

Code Rule Iteration | No. of
Iterations

3.3.a.1 Vm € M(3r, € R((r;,m)€ REor(r;,m)€ RF)) M n

3.3a2 | Vm, e M (3o, € O((m;,0,)€ AC)) M n

33.a3A | Vm e M, (m.,m,)& GN GN n

3.3.a3B | Vm.e M, (m,,m,)¢ IN IN n

33.m.1 | V(x,y)e EX(xe M,ye M) EX n

33.m.2 | V(x,y)e EX(x#Yy) EX

33.m3 | V(x,y)e EX(z(ze T and ze TD(x) and | EX, T nm
zisExtensionPoint = 1))

3.3.n.1 V(x,y)e IC(xe M,ye M) IC

3.3.n.2 V(x,y)e IC(x # y) IC

6.3.2.2 Mission Space Sequencing Package Rules

Mission Space Sequencing has the highest number of rules in KAMA Metamodel. In the
same way as previous section, the number of iterations needed for checking the rules are
presented in Table 6-2.

84

Table 6-2. Number of Iterations Needed for Checking Sequencing Package Rules

Code Rule Iteration |No of
Iterations

3.3.b.3A | (V1,,t,€ T((t,,t,)€ TF implies TF n
—dt, e T(k# j,(t,,t,)e TF)))

3.3.b.3B | (V1,,1,€ T((1,,1;)€ TF implies TF n
—dt, e T(k # i,(tk,tj)e TF)))

3.3.g.1 |“The connections coming into and going out of a|AS n
decisionPoint must be taskFlows.”

3.3.82 |Vd e D((d;,t;,)eTF,(d,;,t,)eTF,i#k) D, TF nm

implies (d,,t;).guard #(d,,t,).guard)
3383 |Vd e D(d,,t)eTF D, TF nm
implies (d; .t).guard # Q)

33.h1 Vs e SW((t;,8).(t,,s,)€TF, j # k) S, TF, TF |nmm
implies (s,,t,)€ TF for only onel).

33.h2 Vs e SW((s;0t,),(s,.t,) € TF, j # k) S, TF, TF |nmm
implies (t,,s,)€ TF for only onel).

3.3.h.3A | Vs, € S((t;,s,)€ AS implies (t,,s,) € TF)and S, AS, TF |nmk
Vs, € S((t;,s,)€ AS implies (¢,,s,) & (AS —TF))

3.3.h.3B | Vs, € S((s;,t;) € AS implies (s;,t;)€ TF)and |S, AS, TF nmk
Vs, € S((s;,t;)€ AS implies (s,,t;) & (AS —TF))

3.3..1 Vij = [((x’ij)g TF) I, TF nm

3341 \Vf e F((f,x)eTF) F,TF |nm

3.3.p.1 Vx,y)e TF(xe TuDuUSUI), TF n
ye(TUDUSUF))

3.3.p.2 | “Only one raskFlow may exist between the same |TF n
source and target”

85

6.3.2.3 Rules for Other Packages

Here we list other rules for KAMA Mission Space Packages namely Workproducts,
Roles, Objectives and Complete Packages. The rules for these elements show patterns as
g-1,r.1, a1, b.1, k.1., 1.1, 0.1 and s.1 are checked by iterating through a single database

table. The second group is checked by iterating through two database tables.

Table 6-3.Number of Iterations Needed for Workproducts Package Rules

Code Rule Iteration | No of
Iterations

3.3.£.1 Vw, € W(—Elbj € B((wi,bj)e AS)) W, AS n

3.3.q.1 | V(x,y)e IN(xeW,yeT) IN

33xr1 | V(x,y)e PR(xeT,yeW) PR

Table 6-4 Number of Iterations Needed for Roles Package Rules

Code Rule Iteration | No of
Iterations

3.3.a1 | Vm, e M3r, € R((r,,m,)€ REor(r;,m,)€ RF)) M n

3.3.b.1 | Vt,e T(dr; € R((r;,1,) € RE or (r;,t,) € RF)) T n

3.3.c.1 Vr. e R(Elaj € A((aj,ri)e OWw)) R, OW nm

3.3kl | V(x,y)e RF(xe R,ye (TUM)) RF

3311 | V(x,y)e RE(xe R,ye (TUM)) RE

Table 6-5 Number of Iterations Needed for Objectives Package Rules

Code Rule Iteration | No of
Iterations
33.a2 | Vm, e M(Eloj € 0((ml.,0j)e AQ)) M, AC nm
3302 [V1,e T(30,€ O((1;,0,)€ AC)) T,AC [nm
3.3.d.1 | Vo,e O(Ju,; e U((o,,u;)€ ME)) O,ME | nm
3.3.el | Vu,e U(Jo; € O((0,,u;,) € ME)) U, ME | nm
3.3.01 | V(x,y)e AC(xe (TUM),ye O) AC
3351 | V(x,y)e OB(xe O,ye U) QB n

86

Table 6-6 Number of Iterations Needed for Mission Space Complete Package Rules

Code Rule Iteration No of
Iteration
S
33.t.1 | Vi, e T(((t,,1,) € CO, T, CO, nmk
((t,,x)e (TF U PR, UAC,) (TFOPR, VAC)U

or (x,t,)€ (TF URE, URF, UIT)))| (ITF WRE, URF UIT))
implies xe TD,)

We only show the required iterations for explanatory purposes. In determining the
number of required iterations for checks, we assumed that all the model elements are
categorized, stored and accessible. If the models are stored in a format similar to XMI,
and metamodeling and validation tools are available, these checks can be expressed in
Object Constraint Language (OCL) and validation is feasible. As all these technologies
evolve and there are limits on the functionality of metamodeling tools, we present the
constraints for related elements of Mission Space Fundamental and Sequencing Packages
in Appendix B.

6.3.3 Checking of Properties Related to Dynamics

There are some properties which are not explained in the models but are still relevant for
dynamics of KAMA models. We will discuss these properties which can be categorized
as derived properties, task hierarchy related properties, related to taskFlow properties,
and intermediateNode related properties. When formulating these properties we do not
use all the properties about dynamic execution described in Chapter 5. In this step, we
provide a lightweight extension of KAMA Mission Space Package to include more
information on dynamics. These properties are defined in Appendix B and used as part of
KAMA-DV model.

6.3.3.1 Derived Properties

In KAMA the decisionPoint and SynchronizationPoint do not have an explicit attribute
defining the type of the element in relation to multiplicity of incoming and outgoing
taskFlows. As during dynamic verification it is not logical to test every time the nature of
such a model element, a derived attribute can be added into the model element definition.

This information is inherent in the model definition based on the incoming and outgoing
taskFlows and every decisionPoint can be classified as fork type if there is a single

87

incoming taskFlow and multiple outgoing taskFlows, and as join if vice versa. A single
attribute of isJoin is added to this model element to define. For decision point the
definition is same, a decisionPoint is either merge or split type and this information is
stored in the derived attribute isMerge.

Other types of attributes also exist. For instance, ModellID attributes of model elements
are used store the ID of model elements in the original conceptual model, whereas Name
is used for storing the Name.

6.3.3.2 Properties Related to Task Hierarchy

In KAMA metamodel definition, we have explicitly added a consistOf relation to the task
definition in Mission Space Fundamental Package (Section 3.1.1) and Mission Space
Sequencing Package (Section 3.1.2) which is not mentioned in original KAMA
Metamodel definition. We have also discussed the dynamic aspects of this relation in
Section 4.2.2.

The consistOf relation has further description for the Mission Space Task Sequencing
Package. This relation is needed for further analysis of the conceptual model for instance
checking to prevent a task consistOf itself or a subtask.

Other properties related to the hierarchy may also be of interest during validation.
According to KAMA Mission Space Model, fasks may have that have subtasks and
corresponding task flow diagram shall participate in consist of relation with at least one
initialTask and one finalTask. The semantics of initialTask and finalTask necessitates
them to mark the start and end times of the diagram. Furthermore, in some of the cases
dynamic analysis may require a point of entry (initialTask) and exit (finalTask).

6.3.3.3 Properties Related to IntermediateNodes

Other than these some of the constraints can be defined based on the nature of the models.
In case of dynamic analysis, tasks are primary elements whereas intermediateNodes and
taskFlows are used for sequencing according to our description given in Section 5.2. In
this case loops formed by task flow diagrams that only contain such elements are prone to
error as they do not contain fasks.

As we examine the decisionPoint and synchronizationPoint semantics in Chapter 5, the
expected occurrence of these in pairs is expected for each task definition. Occurrence of
more than one decisionPoint and synchronizationPoint may also indicate a problem as
they merely stand for sequencing tasks. We also include necessary conditions for these in
KAMA-DV Metamodel.

88

6.3.4 Step 2: Enriching the Dynamic Semantics

In this section we explain the merging of the diagrams into a single diagram. Through
merging the modeler may aim to check the entire information given in the model. At the
end of merging, the result is single diagram which is more concise and integrated to input
into other graph based formalism for verification.

A set of diagrams can be verified one by one, or as a group by exploiting the consistOf
association for tasks, includes and extends associations for missions, and extensionPoint
tag value of tasks.

Only a group of tasks that form a true hierarchy can be merged to be analyzed.
So there shall be no loop formed by consistOf association between presented fasks. We
also limit our attention to case where each task has one task flow diagram, if not these
can be resolved by using context information for the task.

6.3.4.1 Merging of diagrams based on consistOf association

The semantics of consistOf association is explained in Chapter 5. Below we provide a
breadth first marking and merging algorithm for the diagrams.

i For the first iteration if there are composite subtasks of the top level task,
these rask elements will be deleted and replaced by their immediate subtasks.
1. For each of the first level composite subtasks, the associated task flow

diagrams need to be processed by taking out initialTask and finalTask nodes,
and associated taskFlows, marking task or intermediateNode after initialTask
and before finalTask and copying them to the top level task flow diagram.
Delete 1* level subtask and redefine the incoming ftaskFlow target as first
marked node and outgoing taskFlow source as second marked node.

iil. Repeat step 1 and 2 until no composite tasks exist in the diagram.

6.3.4.2 Merging of diagrams based on extends association

If more than one mission is to be merged which have extends association between each
other, the tasks of the extending mission are appended in the task specified as
extensionPoint in extended ftask. The task which is in an extensionPoint shall not
participate in any consistOf association.

1. Create an imaginary fask named same as extending mission.

ii. Add all the model elements of the mission to extension point, except the
initialTask and finalTask.

89

6.3.4.3 Merging of diagrams based on includes association

Unlike extends association, information there is no information on how a mission is
associated by includes with another mission and how their tasks are weaved into each
other. A subtask can be specified in the hierarchy that the included mission’s task and
subtasks will be appended. If such a task can be determined, the included mission is
added as an imaginary task corresponding to included mission. The description of
merging involves the following steps:

i. If there is no subtask of the including mission, create an imaginary fask named
same as including mission. Create a new task flow diagram, by adding an
initialTask and finalTask. If only one mission is included just add all the
model elements to this diagram.

1. If more than one mission with subtasks is included, then determine the
relations of them by consulting the domain expert. They can be connected in
parallel by synchronizationPoints or decisionPoints, or serial.

iii. If the including mission have subtasks so a task flow diagram, add the tasks of
the included mission to a specific task that can be regarded as inclusionPoint
similar to extensionPoint by consulting the domain expert.

6.3.5 Dynamic Analysis

After syntax and structure checking the dynamic analysis can be performed. The first step
of dynamic analysis is determination of the methods and tools for dynamic analysis based
on the dynamic characteristics of conceptual models explained in Chapter 5.

Task flow diagrams can be converted to required formalism based on the desired analysis.
This conversion can be done manually or by transformation languages. After this
conversion the dynamic characteristics are examined and evaluated.

If all task flow diagram is described for a single entity and includes only singleExecution
tasks by transforming the diagram into an EPC soundness and relaxed soundness analysis
can be performed in a straightforward way. This transformation can be performed on a
task flow diagram with no structural errors by replacing the similar EPC elements shown
in Table 2-4. Two different kinds of property are checked as follows:

1. If the corresponding EPC is not sound, some of the executions are not sound,
meaning that there are execution sequences that do not complete and results
with a deadlock.

ii. If the corresponding EPC is even not relaxed sound, some of the fasks in the

task flow diagram is not part of a sound execution, an execution in which
finalTask terminate without a task under execution. This means that there are
execution sequences that do not complete and results with a deadlock.

90

More detailed analysis can be made by interactively executing the EPC to infer the causes
of being not sound or relaxed sound using tools like EPC tools [59].

6.4 Tool Support for the Verification

In this section, the tool to be used in implementing the verification approach proposed in
this study will be described. As developing a tool from scratch requires a lot of effort and
reuse is the primary concern for model based development, we decided to customize
existing tools developed for modeling.

6.4.1 Selection of the Verification Tool

The tools considered in this section are listed according to their developer institution
(commercial, academic, personal). The criteria for evaluation of the tools are determined
as functionality, availability, modifiability, and level of support.

In terms of functionality, the tool shall support both the inspection and visualization of
the conceptual model dynamics. Our work emphasizes exploration and inspection of
conceptual model dynamics so the tool may support most of the functions related to
visualization and user interaction. As KAMA diagrammatic elements have structural,
behavioral and visual similarity with UML 2.0, the tools based on UML 2.0 are more
appropriate for us in terms of functionality. However as we have also KAMA tool that
has a graphical editor, the metamodel definition and verification aspects are more crucial
in terms of functionality. More precisely following are the main functional requirements
from the verification tool:

Support Model Manipulation

KAMA tool has limited power in interoperability as models developed by the tool can be
imported and exported by only proprietary XML format. The verification tool shall have
capability to store, query and update the models so that it can acquire models from
KAMA, process the models and export them to other formats that other tools work with.

Support Metamodel Based Development

One of the main points is that the original KAMA metamodel is based on UML. As MOF
and UML are de facto modeling notations used for software modeling and extend their
reach to other modeling domains it is crucial for verification tool to support metamodel
based development.

Structure and Semantic Checking

The tool shall have capability to check the syntax and structure of models so that they can
be used in dynamic analysis conveniently. The rules expressed in KAMA metamodel are
also to be checked on a model. In this sense the model shall have an environment for
defining MOF based metamodels and OCL constraints. Any additional functionality like
graphical editors, model editors, text editing aids and error highlighting is also a plus for
the tool.

91

Model Transformation

In the process of verification the models may need to be merged, model elements may be
extended with additional properties. While during syntax and structure checking an
extended notation to KAMA Mission Space and Task Flow can be used, during dynamic
analysis other types of notation may be used as in our case. So the tool shall have
capability to transform models from the given formalism to another.

Dynamic Checking of Models

The tool shall have capability to check dynamics of models. This includes checking of
soundness and existence of paths with no livelocks and deadlocks. Checking of
constraints on utilization of workProducts, assignment of roles and actors may also be
desired.

As an advanced functionality, the tools ability for state space analysis and step by step
model execution is also highly appreciated for dynamic analysis. Other than functional
criteria non functional aspects exist such as availability, modifiability and level of
support.

Availability

In terms of availability the tools can be categorized into two the commercial tools and
free tools. There are large number of tools that support metamodel based development
and verification.

Commercial modeling tools are not inexpensive. Usually these tools come as a set of
components, so that for the required functionality, the user has to obtain license for a
handful of separate tools. Academic tools are available usually for free but the provided
support is limited. In comparing availability, various levels can also exist (source code
availability, application software availability, cost, licensing cost).

Modifiability

Both the dynamic views of KAMA and KAMA-DV has significant differences from
UML Activity Package. The limitations of MOF and UML based tools stemming from
the limitation of their capability and UML standard may necessitate need for modification
of the modeling tool and environment provided by the tool substantially. In case of
commercial tools this modification is not possible. An application programming interface
(API) may be provided by some tool vendors which enables modification of the
functionality as desired, one by one and compose it to form new functionality.
Unfortunately the support of highly developed APIs is scarce in general and in the
modeling domain in particular. In modifiability one can further define criteria such as
source code availability, coherence of the tool, source code documentation, and capable
APL

92

Level of Support

In terms of support we evaluate the software documentation, user community and
availability of a point of contact (POC) for questions. Commercial case tools have a rich
documentation and wide user community, and support personnel. But they are usually
configured for a specific functionality.

6.4.1.1 Existing Tools and Their Functional Deficiencies

As we focus on MOF and UML based tools, we see a great number of tools. However
most of the tools have drawbacks that make them unsuitable for the functionality we
desire.

i. Although UML development tools deal with most of the modeling only subset of them
allows metamodel based development or profiling. So we can not describe the semantics
of KAMA and KAMA-DV in these tools.

ii. In formulating KAMA and KAMA-DV constraints we desire to use OCL, which only
a limited number of tools support. OCL verification is not integrated with UML editors
and Activity Package model elements. Among the OCL tools available only a couple of
them provide an extensive API for developing and updating metamodel and models.

iii. Tools generally do not support analysis and model execution for activity charts and
EPCs. We will list the capable tools that provide analysis support and their limitations.
Tools that provide functionality of execution of activity charts and EPCs, which have
similarity with KAMA dynamic descriptions, are shown in Table 6-7. These tools only
provide limited capability for model execution.

93

Table 6-7 Tools Dealing with Analysis of Activity Charts and EPCs

Tool Lan. Integrated | Website / Reference Formalism | Source
Modeling code
Tool
ActiveChar | C# Microsoft http://activecharts.inform | Activity N/A
tsIDE Visio 2003 atik.uni-ulm.de/ [50] Diagrams
ACTi N/A | Use tool N/A [51] Activity N/A
Diagrams
IBM Model | Java | Integrated http://www.research.ibm. | Activity N/A
Debugger com/haifa/projects/servic | Diagrams
es/uml/vision.shtml [49]
EPC Tools | Java | Own http://wwwcs.uni- EPCs Availabl
graphical paderborn.de/cs/kindler/r e
Interface esearch/EPCTools/

ActiveChartsIDE is tool developed for activity diagram animation. The limitation of the
tool is the limitation of working with UML activity diagrams only and no extensions are
possible. Among these tools ACTi, is not currently provided or supported. It has also
limitation of being only a textual language for activity diagram specification. IBM model
debugger is presented in a research paper but is not available for the larger community.
Also there is limited information on how debugger is realized based on the UML2
activity package semantics. EPCtools [59] is used to analyze soundness of event process
chains. The information on the application of the tool and its use make EPCtools a better
option in analyzing fask flow diagrams.

There are also a set of related tools which is used for defining models, checking of
constraints that are relevant for us. These tools are listed in Table 6-8. However these
tools have significantly different scope and it will be hardly represent the semantics of
KAMA-DV metamodel in these tools. For instance none of the tools used for simulation
of UML models given in Table 6-8 can be used for syntax and structure checking of
activity diagrams.

94

Table 6-8 Other Tools for Simulation of UML Models

Tool Language Aim Website / Reference

Use tool Java Animation and http://www.db.informatik.uni-
Verification of UML | bremen.de/projects/USE/ [72]
Class Models

Key tool Java Verification of Java | http://www.key-project.org/
Programs

GENGED | Java Simulation by graph | http://user.cs.tu-
transformation berlin.de/~genged/index.html

[78]

Omega Java Simulation of UML | http://www-omega.imag.fr/

Models [77]

Although a bunch of tools exist for these purposes only a couple of them has capabilities
of having multiple tools for achieving all of them. Moreover the tools are developed for
specific aims which require a lot of effort to tailor them for our verification purpose.

Based on the wide range of capabilities and support, Eclipse Modeling Frameworks is
used as the environment for dynamic verification of models in this work. Core of the
Eclipse Modeling Framework is the ecore metamodel which is similar to OMG Meta
Object Facility (MOF) definition. Eclipse modeling environment also has a separate
facility for UML2 based development and graphical model development of UML models.

Eclipse modeling framework provides an implementation of OCL. OCL is used to query
and validate ecore based models and UML models. The constraints can be entered in
terms of invariants in the ecore model by using an editor. Also a separate OCL console
exists to enter queries and constraints.

There are many model development tools in the software market. As OCL is our
preferred choice for expressing the metamodel rules, number of tools are less numerous.
A bunch of other OCL tools exist but only a few of them provide extensive IDE like
functionality [73]. As they have a large community of users contributing to
documentation, testing and support, Eclipse OCL and Eclipse Modeling Tools (MDT)
have advantages in the non-functional criteria. The components of the tool and their
associated role in development of verification environment are shown in Table 6-9.

95

Table 6-9 Features and Plug-ins Used during Verification Process

Eclipse Modeling Version Function
Framework Component
EMF Model Development | 2.6.0.v20100614- Model based development
Framework 1136 environment
Ecoretools 0.10.0.v20100615- | Diagrammatic tools for
1639 metamodel development
EMF Model Validation 1.4.0.v20100428- Additions to Model to
Framework 2315 Validation, adding OCL
constraints, OCL integration
OCL Extender OCL parsing and interpretation
OCL Examples and Editor | 3.0.0.v20100506- OCLinEcore Editor
1704
EPCtools 2.0.3 Dynamic analysis of EPC
diagrams

6.4.2 Models Involved in the Verification Approach

In developing the approach we have selected the Eclipse Model Development Framework
for the verification of static properties, enriching the model and transformation of the
model to EPC model. For checking of the dynamic constraints, EPCtools plug-in was
utilized.

Eclipse Modeling Framework is open source project. The environment provides tools to
develop custom plug-ins. The forum for support exists where users and developers can
ask questions and requests. The aim is to provide an integrated environment for model
driven development. This includes model transformation tools, code generation tools, and
tools for parsing and interpretation of OCL constraints.

ECPtools was selected for verification of the soundness as it supports defining the EPC
model and checking for the soundness. EPCtools is a plug-in developed in JAVA so the
models that are checked for consistency can be transformed to EPC and loaded to the
model conveniently.

In the next three subsections we will discuss the static checking, transformation and
dynamic checking approaches in a more detailed way.

As we aim to develop the verification using model driven development, we will have a
set of models we will work with during the verification process. The first model is a

96

KAMA model that is developed based on KAMA metamodel. KAMA also provides a
graphical tool for modeling.

For static and structural checking we use the eclipse modeling framework (EMF) Model
Development Tools (MDT). MDT involves an editor for developing metamodels, OCL
editor for adding invariants to model classes, facilities to create instances of models and
checking models conformance to metamodel and invariants. Moreover Eclipse has
facilities to transform the models to other models using a model transformation language
which is also based on OCL querying language. This enables transformation of models to
EPCtools models.

For dynamic analysis we use the EPCtools that is also an Eclipse project to define and
validate EPC diagrams. EPCtools uses graphical editing Framework of Eclipse (GEF) to
define models and stores models in EPML format which is the format for EPCs. By using
Eclipse we have exploited benefit of working in the same environment and exploiting
many different tools.

Dependency Dependency
KAMA K-——----————1 KAMADV K-----——————

Metamodel Metamodel EPML
N N N
confé rms co nfé ms co nfé ms
l l l

KAMA KAMADV
Model Model EPC Model

Figure 6-3 Distinct Models Used for Verification

6.4.3 Adaptation of the Tool for Checking of Metamodel Properties

For adaptation of the plug-in environment we have formed a profile for expressing the
dynamic features in Java environment. Java profile development plug-in provides a visual
interface for defining the profile. By using the interface one can define new stereotypes
and tag values. After each model element is defined, the OCL statements are added for
the elements. The corresponding profile is given in the next chapter in Figure 7-1 which
correspond to metamodel elements provided in Chapter 3.

97

By using the ecore_diagram facility the profile defined in Eclipse is also shown to the
user.

6.4.4 The Tool for checking the Dynamic Properties of the Model

We have used EPC tools for checking the dynamic properties of the model. For a better
understanding of the EPCtools suite [S9] one can refer the documentation. We will
briefly discuss the working of the EPCtools suite in Java environment in the next Chapter.

98

CHAPTER 7

EVALUATION OF THE VERIFICATION APPROACH

In this chapter we focus on applying the KAMA-DV approach for verification of real life
conceptual models. In order to develop our method and validate the approach we use the
case study methodology. Before detailing the applications, in the first section, case study
approach and its use in the information systems domain is discussed.

7.1 Selection of the Case Study Approach

The case study approach aims at empirically investigating a phenomenon within a real-
life context. Related to using case study approach in information systems domain,
Benbasat [66] states that it is appropriate when “research and theory are in their early
formative stages”. It is a practice based approach where “importance of experiences of
actors are of utmost importance” and “context of application is critical”. It is used in
scarcely researched problems when other methods of research are not applicable, such as
to study information systems in their natural setting for understanding the nature and
complexity of problems. Unlike other approaches the level of control is low in case study
research. Runeson and Host [67] point out similar uses of the case study approach in the
information systems domain. Various information sources, including first, second and
third degree sources are utilized for theory development and testing for an area for which
understanding is limited.

As summarized by Benbasat [66], the case study approach can used in various ways, on
the one extreme it can be just used to test a well formed theory in a positivist way. On the
other hand, it can also be used just to interpret the application of a method. In another
dimension, while for some research problems a single case study would suffice, multiple
applications may be necessary for some others. For the latter case, the prior applications
may be used to build up the theory and the latter ones to test it. The case study research
has also evaluated based on several different perspectives for validity and reliability [68].

As we have explained in Chapter 2, the methods for verifying conceptual models for
simulation systems are limited in scope. Real examples of application of verification
methods and experience reports are not abundant in the literature. Developing and
verification of metamodel based conceptual models is also a novel concept and there are
not established approaches and research practices. All these limit the level of
understanding in the conceptual modeling area. Conceptual modeling is inherently

99

complex as explained in Chapter 2. The effort to verify a conceptual model is also high
which indicates the necessity of repeated trials.

In the scope of the present study, considering the limitations of time and case availability,
two case studies are performed: one for increasing the level of understanding and
enhancing the approach, and the second for testing it. We present our case studies in an
outline similar to the one provided by Runeson and Host [67].

In the following sections, we will describe each case study, related real world conceptual
models and the application. Our aim is to develop the approach and show that the
approach can be used to aid conceptual model verification even if the conceptual models
are not fully aligned and existing tools provide limited support for the approach.

7.2 Case Study 1: Conceptual Model of the Surveillance Mission

In the first case study we applied the technique to a conceptual model developed by two
experts in KAMA notation. The initial version of KAMA-DV was developed using the
mission space package of the KAMA metamodel. We aim to test the approach to see the
feasibility of the approach, enhancing the KAMA-DV method and comparison with the
results of the inspection approach performed on the same model.

7.2.1 Case Study Design

Case design includes the research questions and the case selection, subjects, data
collection and analysis procedures.

In the first case study the aim is to answer two research questions:

What are structural and dynamic properties of the conceptual models that can be checked
automatically?

How should the metamodel for conceptual modeling be expressed for automatic checking
of structural and dynamic errors?

The motivation for these questions stem from the motivation to understand the
consequences of using metamodel constraints expressed in KAMA for automatic
verification. By this way we aim to understand the consequences of automatic
verification by these constraints and develop KAMA-DV into a framework for automatic
verification.

The original conceptual model was developed in textual format during a C4ISR
simulation development project. Various entities in the conceptual model have templates
which list their properties and relations to other elements. The conceptual model was later
transformed to KAMA notation by the experts. The KAMA tool also has some limited

100

verification functionality, so the model was also checked for some of the syntactic
properties during development.

The case study was performed in collaboration with a panel of two modeling experts in
the form of a series of meetings. In the first meeting the KAMA metamodel constraints
and corresponding KAMA-DV constraints were discussed. By this way KAMA-DV has
been leveraged to a state where first testing in the context can be performed. Later in a
meeting with the experts the results of the case study were discussed again. In this
meeting the focus was on the errors found in the model with respect to the semantics
defined in the KAMA-DV. The results were also compared with the results of a previous
verification study based on the inspection approach [34].

The case study has also some limitations. As the conceptual model was originally
developed in textual format and later represented in the KAMA notation, some of the
aspects of the KAMA modeling notation were not applied rigorously. While there is a
vast number of tasks and activities which are also modeled as tasks, other definitions are
incomplete. For instance the roles were not defined precisely; only actors were defined as
command and control units. These units are also very limited in nature as there are 12
command and control units. These definitions were also vague and effectively all the
command and control units could perform most of the tasks. The work products were also
not defined as separate items and their characteristics were not explicitly specified. As a
result, in verification of the conceptual model we focused on the sequencing behavior of
tasks. For the sake of brevity, we have selected the surveillance mission for conceptual
model verification as it displays the characteristics of the other tasks and it has relatively
more complete descriptions.

Table 7-1 Model Statistics of SGKS Conceptual Model

Conceptual Model Element | Number
Missions 5
Tasks 54
Activities 94
Events 7
States 7
Entities 68
Data Items 29
Command and Control Units 12

The original SGKS conceptual model document has a total of 153 missions, tasks and
activities, all of which are modeled as tasks in KAMA. The surveillance mission consists
of 91 of these rasks, which nearly accounts for 60 percent of the fasks. As discussed
below, the model was not automatically transformed into the KAMA-DV model. As the
Surveillance mission already represents a major part of SGKS behaviour description, and

101

additional effort is required to define other missions in KAMA-DV, the case study is
performed using the part of SGKS that includes surveillance mission and subtasks,
collectively named Surveillance Mission Conceptual model.

Another limitation stemming from the selection of SGKS is that it is rich in information
about missions and tasks, while the information on workProducts and roles is vague.
Most of the tasks are performed by many roles. In verification we limit our attention on
the fasks and their relations. The surveillance mission encompasses all the command and
control units and entities that are described in the SGKS document related to other
missions and fasks.

7.2.2 Results of the Case Study

In this section, we will provide the results of the case study. First we will provide
information on the automatic checking approach.

In the first meeting with the modeling experts KAMA metamodel elements and
constraints related to them were discussed. The implementation of KAMA-DV
metamodel in ecore was also discussed. During these meetings there were updates and
corrections for the KAMA-DV constraints and their implementation. Some of these are
also discussed further in the following subsection on the improvements of the metamodel.

Then the automatic verification is performed, and results from syntax and structure
checking and soundness analysis are obtained. Finally during the process the experts are
provided with initial feedback results and their opinion on the result of the process is used
to further develop the verification process.

Syntax and Structure Checking

We have selected the surveillance mission as the mission to be verified in our conceptual
model. The exact list of tasks that surveillance mission consists of is given in Appendix B.
The related elements in KAMA Mission Space and KAMA Sequencing Package are
redefined as an ecore metamodel using ecore_diagram facility of ecoretools as seen in
Figure 7-1. Later this metamodel is opened using OCLinEcore editor and the constraints
of KAMA Mission Space Sequencing Package and KAMA-DV metamodel are added.

Table 7-2 Statistics of the SGKS Surveillance Mission

Model Element Number
Tasks 91
taskFlows 179
IntermediateNodes 77
Task Flow Diagrams 24

102

Although we aim to directly use the KAMA output format as an input to KAMA-DV as
mentioned in Chapter 6.3.1, because of the limitations of the KAMA tool, the model
content was manually created in the EMF environment. By using OCL, we have acquired
list and number of each type of model element present in the model and these are
compared with the original SGKS model.

Additional rules that exist in KAMA-DV metamodel are explained in Chapter 6 and their
exact specifications are provided as OCL statements in Appendix B.2. The constraints are
based on the specified formal properties given in Chapter 3 and Chapter 6. All of the
constraints we listed for the sequencing package can be represented in OCL. While
formulating these constraints some of the constraints given in the original metamodel [29]
are modified to fit the syntax of the MDT OCL. We have provided the metamodel
definition of KAMA-DV used for this case study in Appendix B.1.

H Task
Represeniyy = ModellD : EString [
0..% = Mame : EString

i 1

E3

CongistsOfTF

q.* .
H TaskFlowDiagran} FREEcHY tarqet E
= ModelD : EString Egs qutgoingFibw
= Mame | EString iRCo AT ers—
H TaskFlow
_ . o ModellD : EString
incomingFlow = GuardCondition @ EString
[ululy Eltsw o
a. rget 0.1 = outgoingFlow
H IntermediateNode HOLES
> o ModellD : EString (<
H SynchronizationPoint H DecisionPoint H InitialTask H FinalTaslk
A

= islain : EBoolean = isMerge : EBoolean

Figure 7-1 KAMA-DV Model Elements for Sequencing Expressed as an Ecore Diagram

After defining the model development based on the metamodel, the constraints related to
KAMA and KAMA-DV are checked on the SGKS Surveillance Mission. The unsatisfied
constraints are displayed as errors in popup window and error panel. The error pane
enables to directly browse through the model elements in the context of which OCL
constraint violation occurred.

103

A significant number of errors are detected in this process in KAMA Surveillance
mission even though it had formerly been validated by the KAMA tool. The list of errors
found after initial checking is presented in Appendix B. We will discuss the nature of
these errors in the following paragraphs.

The multiplicity constraints defined for associations are enforced in the ecore model
during model development, for instance only one incoming and outgoing faskFlow is
allowed for a task. So if a task is associated with more than one taskFlow the prior
participation is automatically cancelled. Hence only one end of taskFlow is present and
this error is output by the environment.

MDT OCL has some limitations when checking the errors. In formulating the metamodel
constraints we have modified original constraints to fit the MDT OCL environment.

The Errors Arising from Violation of KAMA Metamodel Constraints

There are errors that are found by the OCL validator that are not found by KAMA tool
(See Appendix A.5). These include the multiplicity of incoming taskFlows and outgoing
taskFlows of a task and existence of guard conditions for taskFlows outgoing from a
decisionPoint, multiplicities for fork and join type synchronizationPoints.

The Errors Arising from Violation of KAMA-DV Metamodel Constraints

Additional constraints defined for KAMA raskFlow lead to easier interpretation of errors
by providing the exact source of errors. The cumulative error list that includes both those
stemming from KAMA and KAMA-DV constraints are given in Appendix A.6.

Among the errors HangingTask and FlowDeadEnd constraints enable us to identify the
tasks in which no association with incoming taskFlow but have outgoing taskFlow, and
vice versa.

Additional errors stemming from the properties listed in previous chapter are also found.
These include the existence of initialTasks and finalTasks, sequential occurrence of
intermediateNodes, loops formed by taskFlow associations without any fask element. The
model has a very high number of sequential intermediateNodes. There are also
occurrences of loops without zasks.

All these errors are listed and discussed with the domain experts. The experts came up
with recommendations that are used for the improvement of the approach, especially by

modifying KAMA-DV metamodel and constraints.

As a matter of fact practical application lead to redefining of the rules in the metamodel
to increase effectiveness of detection.

104

Finally the results were also compared with the results of the inspection case study by
Tanriover [37]. A summary of errors found by KAMA-DV and corresponding errors
found by inspection is given in Table 8-1. In the context of Surveillance mission 18
issues were found by manual inspection. The KAMA-DV indicated problems for all of
these issues. The semantic issues are not found directly, at least one structural issue is
found related to the semantic issue.

7.2.3 Evaluation of the Case Study

The case study allowed us to develop KAMA-DV further and provide new insights that
are relevant for further study. These insights stem from application of the process and
inspection of error reports, comparison with manual inspection results, and discussion of
the reports with the experts.

In the initial discussion with the experts there was output from the experts on the
KAMA-DV metamodel. Based on their feedback, the KAMA-DV is updated and first
implementation of automatic verification is developed.

In the first case study, it was revealed that the rules presented in KAMA metamodel are
not enough for an automatic verification in terms of locating the errors. There are two
distinct kinds of deficiency: The first deficiency occurs as there are some underspecified
issues in KAMA which KAMA-DV is based on in terms of structure and dynamics. The
second deficiency occurs because of the resolution of KAMA constraints, that is the
number of model elements and attributes the rule is related with. In the case of the first
deficiency, consistOf relation is added to the metamodel for representing the task
hierarchy observed in Surveillance metamodel and is used to relate different fasks. In the
case of the second deficiency, the resolution of the rules is increased by partitioning them.

During the case study it is also observed that tool support is crucial for metamodel based
development and verification. For instance there is limited interoperability based on XMI
because of evolution of the standard, integration of UML and OCL tools, usability of
graphical modeling environments and the limitation of OCL tools in terms of the OCL
standard. One important point is that it is highly desirable for these tools to have
capability for advanced configuration management and prioritization of checking of the
rules.

One important limitation of the case study was that the surveillance model was not
originally developed using KAMA metamodel but using templates in textual format. We
limit error checking to the taskFlow elements, namely those that are related to sequencing
which is the most detailed part of this case study.

105

7.2.4 Improvements of the Approach Based on the Recommendations

During the first case study, there were some recommendations about the approach in
general and metamodel and rules in particular. In this subsection we discuss the
suggestions about the metamodel and improvements made based on the first case study.

i. Representation of the constraints in a more concise way:

Once the metamodel is represented in Essential Meta Object Facility (EMOF) for
checking the model, the rules are written in a most concise way. Also the lists that are
originally attributes of some of the model elements are no longer represented as first class
attributes as they can simply be formed using OCL queries.

The correspondence between the constraints and formal metamodel is increased by
writing all constraints not using the lists, also the lists that are referred by some of the
constraints in original KAMA are left out in KAMA-DV.

ii. Increasing the resolution of constraints to increase exact error detection

Constraints are divided to increase the resolution and better locating the errors. For
instance when the constraints that involve both upper and lower multiplicity are used, it is
very hard to understand the nature of errors.

For some of the recommendations we took no action in the scope of this work. We will
discuss some of the suggestions about which we took no action in the scope of this thesis
in the following paragraphs.

i. Expressing the constraints in First Order Logic (FOL)

The constraints can be expressed in FOL using a similar approach to Tanriover[37], but
in the case of structural checking and dynamic checking such representation does not
bring any benefits. If logic based approaches will be used such representation may be
used.

ii. The Naming of consistOf Association

The considered names for this relation are delegate or relay, but there is no similar UML
element. A more precise naming for consistOf is searched in KAMA-DV as if the
subtasks are not related to the rfask with a strong relation like aggregation. In different
Task Flow diagrams, tasks can be composed of different rasks, and these fasks can be
utilized yet in other diagrams. The delegate connector type is of components language
unit and has far more enriched semantics. Meaning of relay is also much different so they
are left out for now and consistOf is used for describing the relation between tasks in
KAMA-DV. For instance change of the name will lead to better understanding of the
relation between model elements and error messages, but not the number and type of
errors.

106

iii. Use of Alternative Stereotype Constructs for Model Elements

Another suggestion was to use the structured activity and related elements for some of the
model elements as stereotypes. These are not used, as they include more specific features
which are not included in the KAMA metamodel. However some of the constructs can be
used if more refined conceptual models are available. For instance details of execution
can be used to specify ConditionalNode, LoopNode, or SequenceNode elements.
Moreover descriptions of multiple executions of fasks can be mapped to expansion
regions.

7.3 Case Study 2: Engagement Task

In the second case study we aim to test the KAMA-DV approach as matured after the
first case study. The second case study is performed on the engagement task of a Naval
War Game simulation. The conceptual model was developed using KAMA approach and
Enterprise architect tool.

7.3.1 Case Study Design

In this case study we aim to test the effectiveness of the KAMA-DV so the research
questions are different from the ones of the first case study. There are two research
questions: one about the effectiveness of the approach in finding structural errors, and the
second on the capability of the method for finding dynamic errors.

1. Can KAMA-DV approach be effectively used for finding the structural errors in
conceptual models?

ii. Is KAMA-DV capable of finding dynamic errors in conceptual models?

In contrast to the first case study, naval war game simulation was developed using the
KAMA approach and cruise and engagement fask and 8 subtasks were described using
task flow diagrams defined in the metamodel. The engagement task is different from the
definitions of surveillance missions and other missions in the first case study. Cruise
subtask has detailed description of cruise in land, sea, and submarine. In total account 10
task flow diagrams were used in inspection, which include 22 % of all 45 rask flow
diagrams.

Subjects are two modeling experts similar to first case study. KAMA-DV approach is
used first to find structural errors and then dynamic errors. After these issues are found,
subjects are asked to review the errors found by the environment. Also the structural
issues are compared with previous results that are found by manual inspection.

107

7.3.2 Results of the Case Study

The results of the case study were unexpected as the automated verification found syntax
errors in the model which was verified before. In addition to syntax errors there were In
comparison to the former study by Tanriover [35], some of the detected issues are signals
for the errors indicated by inspection.

We have provided corresponding error occurrences for 5 diagrams in Table 7-3, which
contains not only syntactic errors but also semantic ones. In engagement task we have
encountered total of 83 errors and issues. Detail examination of the results indicated that
there is either an error or an issue that corresponds to errors found in manual exception.
There are very few cases where the errors found in manual inspection are not associated
with an error or an issue found by the automatic approach. The results indicate that the
errors are less related to KAMA syntax but more on the structural issues added by
KAMA-DV and semantic issues.

Table 7-3. Number and Type of Errors Found in Various DHS Tasks

Task Name | Number of | Number | Number | Number of
Elements of Errors | of Issues | Errors found
in Manual
Inspection
Cruise 21 5 5 1
Advance 54 7 8 N/A
According
to Cruise
Plan
Advance in 43 1 5 2
Air
Engagement 23 S5 1 N/A
Engagement 72 3 15 3
of Guided
Ammunition

For comparison with manual inspection, we included a comparison of errors reported by
Tanriover for the given tasks considering the intradiagram issues, issues found by
singular inspection of fask flow diagrams. In some of the number and types of errors
found in various diagrams found by the KAMA approach are compared with inspection
approach.

108

Table 7-4. The Corresponding Errors and Issues

Task Flow Diagram Manual Inspection KAMA-DV
(See [37] Appendix D)
Advance in Air Possible deadlock Sequential intermediateNodes
Cruise Deadlock Multiplicity of incoming
taskFlow of
synchronizationPoint of type
Fork
Scan for Mines Deadlock Multiplicity of incoming
taskFlow of
synchronizationPoint of type
Fork
Engagement of Guided | -Dangling tasks -finalTask Multiplicity
Ammunition occurrence -Sequential decisionPoints
-Deadlock Decision - Multiplicity of incoming
nodes taskFlow of
-Multiplicity of synchronizationPoint of type
synchronizationPoint of | Fork
type fork -Sequential intermediateNodes
Dynamic Analysis

In the very few cases where structural errors are limited and simple, these errors can be
corrected to perform dynamic analysis. Dynamic analysis is performed by transforming
the task flow diagram to an equivalent EPC and analyzing using EPC tools [59].

For some of the diagrams we have corrected the structural errors and applied dynamic
analysis. For the 10 of 5 diagrams the number of issues was limited so we applied
dynamic analysis in the case of these diagrams. For the case of 3 diagrams that show
structural similarity, the diagrams are not sound. The EPC corresponding to “Advance in
Air” task is shown in Figure 7-2 in which two of the distinct parallel branches prevents
occurrence of valid execution sequence. By experimenting with the tool shown in
Appendix A.5, the exact branches that prevent execution are determined. We have also
discovered that the manual inspection also reported the same issue as a semantic error.
We have identified that even if these errors can not be attributed to violation of syntax or
structural rules, they can be detectable by soundness analysis.

In a few cases we have observed very little number of syntax errors found by KAMA-DV.
In general the number errors and issues for diagrams are considerable in spite of the
former verification efforts. Even the KAMA metamodel is used during the development
of this model, the limited support of the model development tool for defining and

109

checking constraints and limited effectiveness of manual inspection finding structural
errors entirely causes error prone models.

\ m
\-
@ |
‘I. i : :r i

\ ‘\‘_
, .

N . i
-
™, ... H

hY] -}
Function [Function } [Function

Function
< = > < — >‘-

{ Event)

Figure 7-2. The Equivalent EPC of “Advance in Air”’ Task Flow Diagram that is not sound

110

7.3.3 Evaluation of the Case Study

Results of the case study results show that structural and dynamic verification can locate
the dynamic errors within the scope of the DHS conceptual model. The errors found in
the model are clearly errors but issues may either signal an error or not. Before dynamic
verification the models need to be strictly error free for dynamic method to be applied.
The results show that the approach is effective in finding errors that could not be found
by modeling tool or manual inspection.

Some limitations of the case study deserve being mentioned. One of them is the
unavailability of domain experts during validation so some errors were corrected based
on consent of the modeling experts that were present in model development. In case of a
high number of errors being present which may be attributed to high number of model
elements in a diagram, the diagram has simply been excluded from dynamic analysis.

Finally we would like discuss the validity of the two case studies. The performed
approach is based on the criteria discussed with model experts which contributed to
construct validity. The internal validity of the approach is higher as for both domain
conceptual models similar process is followed and results correlate.

However the conceptual models of simulation systems may vary a lot based on the
application domain. Conceptual models may include a large number of different
constraints (for instance mathematical models, time information etc.) that have not been
tested in our studies. Also during the case studies the severity of errors were discussed
with the experts but their implications if they are left in the model have not been observed
during the actual simulation projects. These issues limit the external validity of the case
studies carried out.

111

CHAPTER 8

DISCUSSION AND CONCLUSION

In this thesis, we have aimed to verify the dynamic properties of conceptual models for
modeling and simulation. We have dealt with models that are developed at the early
stages in the simulation development process. The modeled concepts are real world
missions, tasks, related roles, objectives, and work products which are represented by
corresponding model elements described by the KAMA-DV metamodel.

We have grouped relevant past research into three, which are mentioned in order of
relevancy: First, metamodel based conceptual modeling in general, and the KAMA
approach in particular provides the main pillar of our research. Secondly, research
dealing with semantic variations of UML activity models and verification of such models
is relevant in the sense that the semantics of model elements for sequencing of fasks in
KAMA show similarities with their UML counterparts. However, differences in size of
models and semantic variations and the limitations of past work in that area justify a
novel approach. Finally, verification of conceptual business process models, particularly
the ones expressed by Enhanced Process Chains (EPCs) are relevant for our research. In
the next section we will examine the relation of our research with these three related
areas in detail.

8.1 Contributions

In this work we have defined a formal semantics for KAMA metamodel. The defined
semantics for conceptual models focus on definition of KAMA metamodel explained in
Chapter 3 and extension explained in Chapter 6. Further more the KAMA-DV approach
is realized by tools supporting model driven development, Eclipse modelling
environment.

We also explored the dynamics of KAMA model elements more throughly and advised
used of an execution framework. The execution framework deals with some variances
that are encountered in conceptual modes that are not present in similar frameworks. The
realization of such a model execution approach is left as a further study topic as
explained in Section 8.3.

112

We used the KAMA metamodel definition in verification of two real life conceptual
models. conceptual model. Although KAMA metamodel verification definition consists
of rules that are not very complex, during verification we have found large number of
errors in previously checked models. The case study results indicated that for these cases
the KAMA-DV approach is applicable and effective in finding the errors in dynamics of
conceptual models. KAMA-DV issues relate to syntax and semantic errors found by
manual inspection.

At the final stage of verification, dynamic analysis is performed for the cases where
supporting tools are adequate. Only by using the syntax and structural checks, the models
that can be dynamically verified can be obtained. The dynamic analysis is applied based
on the soundness definition for EPCs. The results suggested that for some of the task flow
diagrams this can be used to find deadlocks in the diagrams. Moreover the corresponding
tools can be used to simulate the diagrams indirectly by simulating the correponding EPC.

However the soundness analysis and simulation can be used if number of errors are low
in a diagram and appropriate conditions hold. There are two main reasons for this. First is
that only for certain kind of diagrams the EPC analysis is applicable because of the
semantic variations. Secondly the high number of structural errors has limited the number
of diagrams that can be analyzed. Our work has layed ground for syntactically correct
models, so more structured models that can be analyzed will be available in the future.

Below, after briefly comparing our approach to the related work, we highlight the further
research topics related to our approach. Some of the research topics deal with bottlenecks
of our approach, that is, the areas where our approach has limited capability and others
deal with extending the scope of the work.

8.2 Accomplished Work

8.2.1 \Verification Approach Based on Formal Techniques for Metamodel Based
Conceptual Models

In this thesis, we have focused on the dynamic descriptions in metamodel based
conceptual models, specifically mission space package of the KAMA modeling language,
which includes elements to describe missions, tasks and their relations. The mission
space is presented as a structural view in the KAMA metamodel, however it provides
information on sequencing, synchronization, and branching of tasks which can be used in
understanding the behavior of the system. We describe an approach including a process
and set of methods to be used in inspection of dynamics of these models. The inspection
process will be iterative and will provide the user with online and offline verification
methods. For increasing the power of analysis we extend mission space models to cover
intended but not explicitly specified behavior descriptions. While keeping the original
conceptual model intact, our mission space execution is based on this extended model.
These extensions which do not exist in the original KAMA metamodel, are defined based
on the dynamic properties explained in Chapter 3 and 4. We utilize approaches that were
used for verification of Enhanced Process Chain Diagrams (EPCs) based on Petri nets

113

during this process. As a result we aim to have a conceptual model consisting of
consistent and correct behavioral information.

The developed conceptual modeling notation of KAMA provides the modeling elements
for these but lacks methods and tools for analysis and verification of the dynamics.
Tanriover and Bilgen[36] provide an inspection approach for conceptual models
developed in a domain specific notation. The approach includes checklists for
interdiagram issues and for each diagram type. The checks are listed for initialTasks,
synchronizationPoints (fork and join type), complex structures (fork and decisionPoints),
flow to the finalTask, loops and workProducts based on the soundness property of
workflow nets. In this work we only deal with the dynamics of conceptual models and
elaborate their dynamic behavior thoroughly. We define extended properties for some of
the model elements and structured conceptual models, soundness and relative soundness
for conceptual models. We use these definitions to develop our approach based on formal
and interactive verification.

Checks on metamodel based conceptual models are classified by Tanriover as intra
diagram and inter diagram checks. A detailed step by step inspection method is provided
for each diagram for intra diagram checks. More than one type of diagram are considered
for inter diagram checks.

In our approach, we formally define consistency checks in terms of set theory. Some of
these properties not only allow a structured check but also enable checking of the
dynamic model. The semantic variations in task flow diagrams also extend beyond the
semantics of classical Petri nets and activity models which is further elaborated in this
thesis especially in Chapter 4 and 5. At last based on this extended approach, we have
defined KAMA-DV metamodel that includes semantic properties related to dynamics.

Our contribution includes specification of conceptual model dynamics in a formal

language, characterization of the dynamics of the conceptual model, and using formal
methods to verify the conceptual models.

114

Table 8-1. Errors Found by Inspection and Related Errors in KAMA-DYV in
Surveillance Mission

Issue Found Error Found by Error Found Number of
Inspection By KAMA-DV | Similar Errors

2.1 Perform Only one outgoing See error 53in | 2

Coverage Analysis taskFlow from Appendix A.6.

and Planning decisionPoint
2.2.3 Detect the No Outgoing See error 80, 3
Targets taskFlow for 5 tasks | 81, 82, 83, 84
in Appendix
A.6.
2.2.1 Recognize and | More than one See error 1,6 in | 8
Identify incoming taskFlow Appendix A.6.
to fork node after
initialTask
2.2.1 Recognize and | A potential for See error 12in | 2
Identify deadlock as the fork | Appendix A.6 .
node after initialTask
is connected to
decisionPoint before
finalTask
2.1.2 Perform Pre- “Determine Priority | None 1

Analysis of Coverage

of Point and Path”
task should be
modeled as two
distinct tasks

By using automatic checks, we have found the issues that cover the errors related to
sequencing fasks except one type of semantic error found by inspection approach related
to sequence of fasks in Surveillance mission. Issues that are related to inspection results
are summarized in Table 8-1. In fact, by using the automated approach we have identified
more issues related to rask flow diagrams using KAMA-DV and each issue is singled out
with the related elements. On the other hand, for some undetected semantic errors, the
issues related to syntax can be used as a signal. In Table 8-2, we show the
correspondence of the checklist formulated by Tanriover [36] with our approach.

115

Table 8-2. The Correspondence of Consistency Checks with KAMA-DV

Consistency Check

KAMA-DV

1. Check for syntactic errors such as dangling nodes, initial
nodes with more than one outgoing transitions.

Constraints are formulated in set theory.
Also the syntax checks are extended to
include dynamic model.

2. Identify decision nodes

Not only the decision nodes are identified
but also their nature, being structured or
not, the matched merge node, and matching
condition.

2.1. Check if all flows outgoing from the
decision nodes have guards

Syntax check that is defined in Chapter 3.

2.2. Check the constraints on the guards to make
sure that they do not overlap (overlapping such as
constraint on one guard is x>=0 and on the other
x=<0)

Syntax check that is defined in Chapter 3.

2.3 Check if the guards define a complete set (such
as x=>0 and x<0)

Syntax check that is defined in Chapter 3.

2.3.1 Identify overlapping and incomplete conditions

Syntax check. How the guard is defined.

3. Identify Fork Nodes

Not only the fork nodes are identified but
also their nature, being structured or not, the
matched join node, and matching condition.

3.1 Check if the fork node has only one entrance, if
not make sure that a task-flow is not missed before
the flow is joined.

Syntax check that is defined in Chapter 3.

3.2. Check if all the flows from the fork node
are joined by a (same) join node (non-structurally
joined nodes or fork nodes may indicate concurrency
problems)

Structural and matched flows are identified.
DV is used find candidate violations.

3.2.1. If not, run the localized flows (flows coming
out of the fork node) with UML’s activity diagram
(Petri nets like) control flow semantics

DV is used find candidate violations.

3.2.2. Identify livelocks and their causes.

DV is used find candidate violations.

4. Identify join nodes

Not only the join nodes are identified but
also their nature, being structured or not, the
matched fork node, and matching condition.

4.1 Check if join nodes have only one exit
transitions.

Syntax check that is defined in Chapter 3.

4.2 If not, it is possible that the join node is placed
too early; there is possibility that there is still a need
for a parallel flow.

Not relevant as 4.1 is not allowed by syntax.

4.3. Trace incoming transitions of the join nodes to
make sure that all may eventually be activated.

DV is used find candidate violations.

4.4. If not, identify causes of deadlock

DV is used find candidate violations.

5. If the task-flow is complex (includes more than one fork
node or composite decision nodes) trace each flow from
the start to end.

Soundness criteria based on characteristics
of task flows.

5.1. Make sure that every task may execute.

DV is used find candidate violations.

5.2. Identify dead tasks.

DV is used find candidate violations.

116

Table 8.2 (cont.). The Correspondence of Consistency Checks with KAMA-DV

Consistency Check KAMA-DV
6. Trace the flows reaching the final nodes DV is used find candidate traces.
6.1. Make sure that they do not originate from a fork | DV or syntax check can be used find
node. candidate violations.
6.2. If they do, there is a possibility that some DV or syntax check can be used to find
activities will terminate abruptly, try to identify such | candidate violations.
activities.
7. Identify loops by tracing through transitions. DV can be used to identify loops.
7.1. Run the localized loop with UML’s activity DV can be used to find candidate
diagram (Petri nets like) control flow semantics. violations.
7.2. Identify livelocks and their causes. Livelocks can be identified using
soundness analysis.
8. Identify activities with <input> and <output> entities Inputs and outputs can also be analyzed
(An entity may be attached to a task according to the using DV.
definition of KAMA notation)
8.1. Make sure that if tasks use outputs of one Static check is applied before dynamic
another, they also follow the implied sequence in the | analysis. Dynamic analysis is performed
control flow because a produced entity may be an using information on properties of
input for another task, causing the task to never start | workproducts such as consuming.
or to prevent parallel flow.
8.2. Identify deadlocks and redundancy. Deadlocks and livelocks can be identified
using soundness analysis.

8.2.2 UML Activity Verification and Conceptual Business Process Verification

We have adopted the models used for verifying Conceptual Business Process
Descriptions for conceptual models. Semantic variances in business process models can
be handled by Petri net based models so that the analysis is still possible.

In our work we have researched the adequacy of methods to analyze EPCs in terms of
conceptual models. For instance EPC based methods are applicable for single diagram
cases considering semantic variations. In order to analyze task flow diagrams, we have
also extended the method to check EPCs for relaxed soundness to synchronization points
of join type, decision points of merge type. For verifying a set of task flow diagrams we
have to combine them into one which introduces additional problems. During this
combination we have utilized information from mission space diagrams, consistOf
relation, and finalTasks.

Definitions for soundness are adapted for conceptual models, which have different model
elements and semantics then EPCs.

117

8.2.3 Comparison of Related Approaches

In Table 8-3, we have listed the dynamic aspects observed in conceptual models. The
references to instances of these aspects in section 4.2 are also provided. For comparison
we also include the equivalents of these aspects in EPC and UML activity language.

During comparison with UML activity package [27], we only consider basic constructs,
given in UML FundamentalActivities and IntermediateActivities packages, as they
include more abstract modeling elements suited for conceptual modeling. If UML activity
package is taken as a whole, for instance for the first aspect, CallBehaviourAction in an
activity can provide a mechanism to trigger other activities during execution. For EPC,
we used the definition provided by Mendling [61].

We do not limit the models to include only elements either of EPC diagrams or UML
Activity Package. Even if such modeling can be possible for some of the cases, this will
decrease the understandability and communicative power of conceptual model and will
contradict with the properties of a conceptual model given in section 4.1.

We have provided a general framework to check conceptual modeling diagrams one by
one considering their semantic differences and extensions. The semantic differences
include the triggering mechanism, multiple instantiation, and multiple final nodes.
Furthermore, we have developed a method to verify a set of diagrams using information
in mission space diagrams and consistOf relation. For application in specific models we
have utilized existing tools on soundness analysis.

118

Table 8-3. Comparing of EPC, UML and KAMA in Terms of Aspects in Conceptual Models

Reference Aspect EPC UML Activity KAMA
T-1 Triggering of Not Not possible Possible
next task before | possible. (Exception
task completion streaming input
and output pin)
T-1 Triggering of Not possible | Not possible. Possible
successor task
with delay
T-1 Multiple Not possible | Possible Possible
instances of
tasks
T-1 Multiple Not possible | Not possible Possible
triggering of
successor task
IN-1 (default | More than one | Possible Not possible Possible
case) initial node
FN-1 (default | More than one | Possible Not possible Possible
case) final node
T-1 Cancellation of | Cancellation | Possible through | Possible
an active task region use of actions
extensions.
T-1, FN-O-1 | Cancellation of | Cancellation | Possible through | Possible, no
group of tasks | region use of actions restriction
extensions exists
FN-O-1, FN- | Termination of | Completion | ActivityFinalNode | FinalTask
0-2 group of tasks | states
FN-1 (default | Partial Not Possible through Possible, no
case) completion of a | permitted use of restriction
task group ActivityFinalFlow | exists.
S-0-4 Synchronization | OR-join Possible through | Possible, no
of active use of actions restriction
parallel exists
branches
S-0-5 Interaction of Possible, no | Possible through Possible, no
synchronized restriction use of actions restriction
branches exists exists

119

8.3 Directions for Further Research

In this section we will ponder upon further research topics related to this study. The
novelty of the approach stems from both the metamodel based development in conceptual
modeling and availability of limited support in terms of techniques and tools. First we
will list the areas related to provide better syntax and semantics for conceptual models
and development of techniques related to dynamic verification of these. Then we will list
more general research topics related to model based development that also concern this
study.

8.3.1 Better Syntax and Semantics Definitions for Conceptual Models

One of the limitations of our research was lack of well defined approaches for developing
conceptual models. As of now only a couple of approaches exist for conceptual model
development, among which KAMA [29] and BOM [10] are prevalent. We have
examined and provided the limitations of these approaches in Chapter 2.

In the course of this study, although we have built our dynamic verification approach
upon KAMA approach, we have observed some semantic and syntax issues related to
KAMA. These issues are well expected as the modeling concepts can only be clearer as
in the case of state modeling concepts of UML over time and by experience. Still a lot of
work needs to be done in conceptual modeling to arrive better notations and metamodels.
Semantic definition is difficult as the scope of conceptual model is multiple and
development and verification activities are interwoven.

Throughout the study we have observed that there is limited supply of real life of models
that conform to specific development methods like BOM or other UML based approaches
such as KAMA. New applications of conceptual models will reveal novel problems
related to model development and verification as we have observed in the course of this
study. By both definition and through examples these approaches can be enhanced.

In this work for defining KAMA-DV we have utilized the dynamic definitions of KAMA.
A possible future work is application of this method to other metamodel based conceptual
modeling approaches. Alternatively in the course of a future study, conceptual model
syntax and semantics can be developed with initial concern of verification and all the
information can be supported by built-in verification components.

8.3.2 Execution of Conceptual Models

Throughout this study we have worked on the structural and dynamic verification of
conceptual models. We have observed that there is a great deal of variability in
conceptual model semantics compared similar semantic descriptions explained in the
previous section. A detailed analysis of conceptual models can be made using a detailed

120

framework that supports execution of this semantics. The analysis may provide a basis
for forming modified and detailed descriptions for dynamic properties such as soundness.

Another topic to be addressed is how to build the necessary verification capability. Some
of the alternatives for realizing the capability can be obtained by using more executable
frameworks like executable UML [39], timed UML [77], and other UML based methods
for the analysis. As there are semantic differences, adaptations of these are further
research topics to be addressed.

As such research will need a great deal of initial effort, it is better to focus on determining
essentials of behavior verification first and developing methods focusing on these later.
For the former detecting essential behavior errors in simulation software and prioritizing
behavior verification requirements is a key ingredient.

8.3.3 Tool Support Throughout the Verification Lifecycle

In our case, structural and dynamic verification is supported by the KAMA tool [35] and
Eclipse Model Development tools [58]. Many obstacles related to tool support in terms of
model definition, editing, visualization and verification still exist in Model Driven
Development. The support for both of these tools has some limitations in terms of model
driven development. As tools supporting methods have limitations in terms of support for
modeling standards and usability, tool development is an area of research with high
potential.

A major concern is the interoperability of the tools for better exploitation of functional
capability of each tool. Moreover, the interoperability of tools shall be built such that a
continuous traceability from conceptual models to executable models is possible. By this
way the development process will be more streamlined, transparent and traceable for
modelers, system designers, developers, and subject model experts. In this sense, aligning
of methods and increasing interoperability of tools are further research topics.

8.3.4 Application of Other Techniques

The focus of this thesis has been on core verification activities that are related to
sequential relations between tasks. Based on the specific type of simulation project,
conceptual model verification issues may be different. Although there is significant
potential of application of logic based approaches on the analysis of dependencies
between fasks, resource perspective (actors or workProducts may be regarded as resource)
and data flow analysis, and some research exists for various kinds of system and software
models, for conceptual models the available research on logic based approaches is rare if
at all existent. So other verification approaches can be coupled with dynamic descriptions
for thorough analysis of conceptual models.

121

8.3.5 Quantitative Analysis of Issues Considering Model Metrics

One obvious extension of the present study would be to alleviate the threats especially to
external validity as discussed in Section 7.3.3. This would involve multiple
implementations of our approach on real life conceptual modeling work followed by
actual simulation exercises. Following a number of such studies, confidence in the
validity of our approach would definitely be enhanced, possibly following further
adjustments at various levels of detail.

Furthermore, in the presented case studies, we have not worked thoroughly on the
distribution of the errors in a model. On one hand, there are indications of severe errors
effecting the simulation to be developed, and on the other, simply aesthetic problems
related to diagram visualization. Given the limitation of available effort for model
verification, it is desirable to use the effort effectively. An important aid may be provided
by severity metrics and patterns that can be related to errors in the model. Such work can
use previous work on model metric definitions and their utilization for UML [82][84].
Also, EPCs [61] provide a starting point for quantitative analysis of conceptual model
errors.

122

REFERENCES

[1] Pace, D.K., (2000).Simulation Conceptual Model Development, Proceedings of
the Spring 2000 Simulation Interoperability Workshop, Orlando, FL, CD. March 26-31.

[2] Sargent, R.G., (1991) “Simulation Model Verification and Validation” |,
Proceedings of the 1991 Winter Simulation Conference.

[3] simulation. (2010). In Merriam-Webster Online Dictionary. Retrieved March 25,
2010, from http://www.merriam-webster.com/dictionary/simulation

[4] “DoD Glossary of Modeling and Simulation (M&S) Terms”, DoD 5000.59-M, 29
August 1995.

[5] Fujimoto, R.M., (1999). Parallel and Distributed Simulation Systems, 1* Edition,
John Wiley & Sons, Inc. New York, NY, USA.

[6] Sheehan J., Prosser T., Conley H., Stone G., Yentz K., and Morrow J., (1998).
Conceptual Models of the Mission Space (CMMS): Basic Concepts, Advanced
Techniques, and Pragmatic Examples,” 98 Spring Simulation Interoperability Workshop
Papers, March 1998, Volume 2, pp. 744-751.

[7] IEEE Std. 1516.3-2003: IEEE Recommended Practice for High Level
Architecture (HLA) Federation Development and Execution Process (FEDEP), 23 April
2003.

[8] IEEE Std. 1516.4-2007: IEEE Recommended Practice for Verification, Validation,
and Accreditation of a Federation—An Overlay to the High Level Architecture
Federation Development and Execution Process, 20 December 2007.

[9] VV&A Recommended Practices Guide Build 3.0, Special Topic: Conceptual
Model Development and Validation, http://vva.msco.mil/, 15/09/2009.

[10] SISO-STD-003-2006: Base Object Model (BOM) Template Specification
(approved 8 May 06)

[11] Moradi, F., Ayani, R., Mokarizadeh, S., Shahmirzadi, A. G. H., Tan, G., (2007).
A Rule-based Approach to Syntactic and Semantic Composition of BOMs, Proceedings
of the 11th IEEE Symposium on Distributed Simulation and Real-Time Applications,
2007.

123

[12] SISO-STD-003.1-2006: Guide for BOM Use and Implementation (approved 8
May 06)

[13] Mojtahed, V., Lozano, M. G.., Svan, P., Andersson, B., and Kabilan V., (2005).
DCMF-Defence Conceptual Modeling Framework, Systems Technology Methodology
Report Number FOI-R--1754--SE, ISSN 1650-1942, FOI-Swedish Defence Research
Agency, November 2005.

[14] THALES JP 11.20-W3300: Common Validation, Verification and Accreditation
Framework for Simulation (REVV A) Guidelines for VV&A Techniques.30 August 2004.

[15] THALES JP 11.20-W3300: Common Validation, Verification and Accreditation
Framework for Simulation (REVVA) VV&A Ciriteria Definition (CRIT) V1.1, 10
November 2004.

[16] Barlas, Y., (1996). Formal Aspects of Model Validity and Validation in System
Dynamics, System Dynamics Review.

[17] Kleijnen, J.P.C., (1995). Verification and Validation of Simulation Models,
European Journal of Operational Research.

[18] Slepoy, A., Mitchell, S. A., Backus, G. A., McNamara, L. A., Trucano, T. G.,
(2008). R&D for Computational Cognitive and Social Models: Foundations for Model
Evaluation through Verification and Validation (final LDRD report),
http://www.osti.gov/bridge/product.biblio.jsp?query id=0&page=0&osti 1d=945901, last
accessed on April 2010.

[19] Topcu, O., Adak, M., Oguztiiziin, H., (2008). A Metamodel for Federation
Architectures, ACM Transactions on Modeling and Computer Simulation, Volume 18 ,
Issue 3, July 2008.

[20] Balci, O., (2003). Verification, Validation, and Certification of Modeling and
Simulation Applications, Proceedings of the 2003 Winter Simulation Conference, pp
150-158.

[21] Lacy, L.W., Randolph, W., Harris, B., Youngblood, S., Sheehan, J., Might, R.,
Metz, M., (2001). Developing a Consensus Perspective on Conceptual Models for
Simulation Systems, Proceedings of the Spring 2001 Simulation Interoperability
Workshop, Orlando, FL., CD, 2001.

[22] Pace, D. K. and Sheehan J.. (2002). Subject Matter Expert (SME) / Peer Use in
M&S V&V, V&V State of the Art: Proceedings of Foundations ’02, a Workshop on
Model and Simulation Verification and Validation for the 21st Century, Laurel, MD,
October 22-24, 2002.

124

[23] Brade, D.A., (2003), Generalized Process for the Verification and Validation of
Models and Simulation Results, Dissertation, Fakultit fir Informatik, Universitit der
Bundeswehr Miinchen. Neubiberg, 2004.

[24] Brade D., (2003), Conceptual Modeling Meets Formal Specification, Proceedings
of Spring Simulation Interoperability Workshop.

[25] MDA Guide Version 1.0.1, Object Management Group (OMG), 12.06.2003.

[26] Meta Object Facility (MOF) Core Specification Version 2.0, Object Management
Group (OMG), January 2006, http://www.omg.org/spec/MOF/2.0/PDF

[27] OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2,
http://www.omg.org/docs/formal/07-11-02.pdf

[28] OMG, Software & Systems Process Engineering Meta-Model, v2.0,
http://www.omg.org/cgi-bin/doc?formal/2008-04-01

[29] Karagoz, N.A, (2008). A Framework for Developing Conceptual Models of the
Mission Space For Simulation Systems, PhD Thesis, Department of Informatics, Middle
East Technical University.

[30] Karagoz, N. A., Demirors, O., Gencel, C., Undeger, C., (2006). Mission Space
Conceptual Model Development in the Simulation Systems: A Process Definition,
Proceedings of ODTU Savunma Teknolojileri Kongresi Ankara, 29-30 June 2006.

[31] Civelek, M. (2006). Modeling A Sample Mission Space of TAF by Using
KAMA-C4ISRMOS Notation, Technical Report, 2005-2006/2-21, Informatics Institute,
Middle East Technical University.

[32] Aysolmaz, B. (2007). Conceptual Model of a Synthetic Environment Simulation
System Developed Using Extended KAMA Methodology, Technical Report, 2006-
2007/2-17, Informatics Institute, Middle East Technical University.

[33] Giilenc, S. (2006). Conceptual Model Development with KAMA-C4ISRMOS
Notation - An Analyst's Approach, Technical Report, 2006-2007/1-11, Informatics
Institute, Middle East Technical University.

[34] Eryilmaz, U., Bilgen, S., Molyer, O., (2006). Verification and Validation Methods
for Conceptual Modeling of the Mission Space, Proceedings of Savunma Teknolojileri
Kongresi Ankara, 29-30 June 2006.

[35] Eryilmaz, U., Karagoz, N. A., (2009). KAMA: A Tool for Developing Conceptual

Models For C4ISR Simulations, Proceedings of 2009 European Simulation
Interoperability Workshop, Istanbul, 2009.

125

[36] Tanriover, O., Bilgen, S., (2007). An Inspection Approach for Conceptual Models
in Notations Derived from UML: A Case Study, Proceedings of the ISCIS 2007, Ankara,
Turkey, CD. November 7-9, 2007, ieeexplore.ieee.org.

[37] Tanriover, O., (2008). A Verification Method for Simulation Conceptual Models
in UML”, Ph.D. Thesis, Middle East Technical University, Ankara, September 2008.

[38] Tanriover, O., Bilgen, S., (2010). Ch. 15. UML-Based Conceptual Models and
V&V, in Conceptual Modeling for Discrete-Event Simulation, Edited by S. Robinson, R.
Brooks, K. Kotiadis, D.-J. Van Der Zee, Taylor & Francis.

[39] Mellor, S. J., Balcer, M. J., (2002). Executable UML: A Foundation for Model-
Driven Architecture, Addison-Wesley Professional, The Addison-Wesley Object
Technology Series.

[40] Fowler, M., (2003). UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3" edition, Addison Wesley, September 2003.

[41] Luz, M.P., da Silva, A.R., (2004). Executing UML Models, WISME 2004.

[42] Unbhelkar, B., (2005). Verification and Validation for Quality of UML 2.0 Models,
Wiley Series in Systems Engineering and Management, 2005.

[43] Baker, P., Loh, S., Weil, F., (2005). Model-Driven Engineering in a Large
Industrial Context — Motorola Case Study, Proceedings of Model Driven Engineering
Languages and Systems 8th International Conference, MoDELS 2005, Montego Bay,
Jamaica, October 2-7, 2005.

[44] Schattkowsky, T., Forster, A., (2007). On the Pitfalls of UML 2 Activity
Modeling, Proceedings of the International Workshop on Modeling in Software
Engineering, p.8, May 20-26, 2007.

[45] Drusinsky, D., (2008). From UML Activity Diagrams to Specification
Requirements, Third IEEE International Conference on System of Systems Engineering.

[46] Storrle, H., (2005). Semantics and Verification of Data Flow in UML 2.0
Activities, Electronic Notes in Theoretical Computer Science 127(4), pp. 35-52, April,
2005.

[47] Storrle, H. and Hausmann, J., (2005). Towards a Formal Semantics of UML 2.0
Activities, In Proceedings German Software Engineering Conference, vol. P-64 of LNI,
pp- 117-128, 2005.

[48] Storrle, H., (2004). Semantics of Control-Flow in UML 2.0 Activities,

Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric
Computing, pp. 235-242, September 26-29, 2004.

126

[49] Dotan, D. and Kirshin, A. (2007). Debugging and testing behavioral UML models,
in 22nd ACM SIGPLAN Conference on Object Oriented Programming Systems and
Applications (OOPSLA), pages 838-839. ACM, 2007.

[50] Sarstedt, S., Kohlmeyer J., Raschke, A., Schneiderhan, M., and Gessenharter, D.,
(2005). ActiveChartsIDE, Poster at ECMDA 2005, Nov 2005.

[51] Crane, M. L. and Dingel, J., (2008). Towards a UML Virtual Machine:
Implementing an Interpreter for UML 2 Actions and Activities, Proceedings of the 2008
conference of the center for advanced studies on collaborative research: meeting of
minds, pp. 96 — 110, October 27-30, 2008, Ontario, Canada.

[52] Smialek, M., Bojarski, J., Nowakowski, W., Straszak, T., (2005). Scenario
Construction Tool Based on Extended UML Metamodel, Proceedings of Model Driven
Engineering Languages and Systems 8th International Conference, MoDELS 2005,
Montego Bay, Jamaica, October 2-7, 2005.

[53] wvan der Aalst, W.M.P., (1997). Verification of work-fow nets, in 18th
International Conference on the Application and Theory of Petri Nets (ICATPN '97),
volume 1248 of LNCS, pages 407-426. Springer, 1997.

[54] Russell, N, van der Aalst, W.M.P., ter Hofstede, A.H.M., Wohed, P., (2006). On
the Suitability of UML 2.0 Activity Diagrams for Business Process Modeling, Third
Asia-Pacific Conference on Conceptual Modeling (APCCM 2006), Hobart, Australia.
Conferences in Research and Practice in Information Technology, Vol. 53., Markus
Stumptner, Sven Hartmann and Yasushi Kiyoki, Ed.

[55] Staines, T.S., (2008). Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri Nets, in
Engineering of Computer Based Systems, 2008. ECBS ’08: Proceedings of the 15th
Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, pp. 191-200, Wash-ington, DC, USA, 2008.

[56] Davis, R., Brabander, E, (2007). Introduction to ARIS Platform, in ARIS Design
Platform, Springer London.

[57] van Dongen, B.F., van der Aalst, W.M.P., and Verbeek, HM.W., (2005),
Verification of EPCs: Using Reduction Rules and Petri Nets, O. Pastor and J. Falcao e
Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 372-386, 2005.

[58] Eclipse Model Development Tools Homepage,
http://www.eclipse.org/modeling/mdt/, last accessed on February 2011.

127

[59] EPC Tools Homepage,
http://www?2.cs.unipaderborn.de/cs/kindler/research/EPCTools/, last accessed on March
2011.

[60] Mendling, J., Verbeek, HM.W., van Dongen, B.F., van der Aalst, W.M.P.,
Neumann, G., (2008). Detection and prediction of errors in EPCs of the SAP reference
model, Data & Knowledge Engineering 64 pp. 312-329.

[61] Mendling, J., (2008). Event-Driven Process Chains (EPC), J. Mendling (Ed.):
Metrics for Process Models, LNBIP 6, pp. 17-57.

[62] Mendling, J., (2008). Verification of EPC Soundness, J. Mendling (Ed.): Metrics
for Process Models, LNBIP 6, pp. 59-102.

[63] Dehnert, J., van der Aalst, W.M.P., (2004). Bridging the Gap between Business
Models and Workflow Specifications, International Journal of Cooperative Information
Systems 13(3), 289-332, 2004.

[64] Wynn, M., T., (2009). Business process verification — finally a reality!, Business
Process Management Journal Vol. 15 No. 1, pp. 74-92.

[65] Kristensen, L.M., Mechlenborg, P., Zhang, L., Mitchell, B., and Gallasch, G.E.,
(2007). Model-based Development of a Course of Action Scheduling Tool, In
International Journal on Software Tools for Technology Transfer (STTT) Springer-
Verlag.

[66] Benbasat, 1., Goldstein D.K., Mead, M., (1987). The Case Research Strategy in
Studies of Information Systems, MIS Q 11(3):369-386.

[67] Runeson, P., Host, M., (2009). Guidelines for Conducting and Reporting Case
Study Research in Software Engineering, Empirical Software Engineering 14:131-164.

[68] Gibbert, M., Ruigrok, W., Wicki, B., (2008). What Passes As A Rigorous Case
Study?, Strategic Management. Journal, 29: 1465-1474

[69] Appelbe, W., Stasko, J., and Kraemer, E.,(1993). Applying Program Visualization
Techniques to Aid Parallel and Distributed Program Development, Georgia Institute of
Technology, College of Computing, Technical Report GIT-GVU-91-08.

[70] Kirshin, A., Dotan, D., Hartman, A., (2006). UML Simulator Based on a Generic
Model Execution Engine, LNCS 4364, Models in Software Engineering Workshops and
Symposia at MoDELS 2006, Genoa, Italy, October 1-6, 2006.

[71] Sarstedt, S., Gessenharter, D., Kohlmeyer, J., Raschke, A., Schneiderhan, M.,

(2005). ActiveChartsIDE: An Integrated Software Development Environment
Comprising a Component for Simulating UML 2 Activity Charts, Proceedings of the

128

2005 European Simulation and Modeling Conference (ESM’05), pages 66—73, October
2005.

[72] Richters, M. and Gogolla, M., (2000). Validating UML Models and OCL
Constraints, UML 2000, LNCS 1939, pp. 265-277, 2000.

[73] Chiorean, D., Petrascu,V. Petrascu,D., (2008). How My Favorite Tool Supporting
OCL Must Look Like, Electronic Communications of the EASST, Volume 15, 2008,
Proceedings of the 8" International Workshop on OCL Concepts and Tools(OCL2008) at
Models 2008.

[74] Westergaard, M., Lassen, K.B., (2006). The Britney Suite Animation Tool, Petri
Nets and Other Models of Concurrency ICATPN 2006, LNCS 4024, pp. 431-440, 2006.

[75] Computer Tool for Colored Petri Nets Web page,
http://wiki.dimi.au.dk.cpntoolscpntools.wiki, last accessed on January 2008.

[76] Letelier, P., Sanchez, P., (2003). Validation of UML Classes through Animation,
Advanced Conceptual Modeling Techniques, LNCS 2784/2003.

[77] Ober, L., Graf, S., Ober, 1., (2006). Validating Timed UML Models by Simulation
and Verification, International Journal on Software Tools for Technology (2006) 8(2):
128-145.

[78] Ermel, C., Holscher, K., Kuske, S., Ziemann P., (2005). Animated Simulation of
Integrated UML Behavioral Models based on Graph Transformation, in M. Erwig and A.
Schiirr, editors, Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC'05), Dallas, Texas, USA, September 2005.

[79] Taleghani, A., Atlee, J.M., (2006). Semantic Variations Among UML
StateMachines, LNCS 4364, Models in Software Engineering Workshops and Symposia
at MoDELS 2006, Genoa, Italy, October 1-6, 2006.

[80] Harel, D., Kugler, H., (2004). The Rhapsody Semantics of Statecharts (or, On the
Executable Core of the UML), in Proc. of 3rd Int. Workshop on Integration of Software
Specification Techniques for Applications in Engineering, volume 3147, pages 325-354.
LNCS, Springer-Verlag, 2004.

[81] Genero, M., Piattini, M., Calero, C., (2005). A Survey of Metrics for UML Class
Diagrams, Journal of Object Technology, Vol. 4, No. 9, November-December 2005, pp.
59-92.

[82] Berndrdez, B., Durdn, A., Genero M., (2004). Empirical Evaluation and Review

of a Metrics—Based Approach for Use Case Verification, Journal of Research and
Practice in Information Technology, Vol. 36, No. 4, November 2004

129

[83] Marchesi, M., (1998). OOA Metrics for the Unified Modelling Language,
Proceedings of the 2nd EUROMICRO Conference on Software Manteinance and

Reengineering.

[84] Baroni, A.L., (2005). Quantitative Assessment of UML Dynamic Models,
Proceedings of ESEC-FSE’05, September 5-9, 2005, Lisbon, Portugal.

130

APPENDICES

APPENDIX A: SGKS SURVEILLANCE MISSION AND
VERIFICATION RESULTS

In this appendix we present information on the Surveillace mission of the SGKS
conceptual model. In first section we provide the information on the tasks and their
tracebility to referent, SGKS conceptual model document. Then we list the diagrams,
preconditions, postconditions, and roles. Finally we present the diagrams that we used in
the case study.

1. Tasks and Activities of Surveillance Mission and Tracebility to Original Referent

In this sectiin we list the tasks the Surveillance Mission consistsOf. The english
translation, diagram number, the reference number in SGKS document and type in SGKS

document are also included.

Original Name (In Translation Presence in | Reference | Type
Turkish) Diagrams to SGKS in SGKS
Document | Document
Gozetleme Surveillance 1 3.3.1.1 Mission
Sensor Kapsama Perform Coverage 34.1.1 Task
Analizini ve Analysis and
Planlamasini Yap Planning
Gorev emri Dagit Distribute Mission 2 34.1.2 Task
Order
Gorev Yerlerine Intikal | Move to Mission 2 34.14 Task
Location
Gozetleme Gorev Prepare for the 2 3.4.1.9 Task
Hazirhigini Yap Mission
Gorev Bolgesini Perform 2 3.4.1.10 Task
Gozetle Surveillance of the
area
Gorev Devir teslimini | Handover the 2 3.4.1.13 Task
Gergeklestir mission

131

Gorevi sonlandir End the mission 2 34.1.7 Task
Gorev Basarimini Evaluate mission 2 3.4.1.8 Task
Degerlendir performance
Bolgeyi Tara Scan the area 2.1 34.1.11 Task
Dost Birliklerin Yeirini | Detect the locations | 2.1 34.1.21 Task
Tespit ve Takip et of Friend Forces
Tespit/Teshis/Tanima | Transfer the 2.1 3.4.1.42 Task
verisini aktar Information on
Detection,
Identification and
Recognition
Veritabanini Giincelle | Update the Database | 2.1 3.4.143 Task
Dinleme Intercept 2.1.1 3.4.1.33 Task
Hedef tespiti yap Detect the Targets 2.1.1 3.4.1.44 Task
Hedef Teshisi ve Recognize and 2.1.1 3.4.1.45 Task
Tanima Identify
Adim Tarama Scan by step 2.1.1.1 3.5.1.52 Activity
Bant Tarama Scan by band 2.1.1.1 3.5.1.53 Activity
Dinleme Bilgisini Gir | Input Interception 2.1.1.1 3.5.1.54 Activity
Information
Dinleme Bilgisini Gir | Subtasks of Input 2.1.1.1.1 3.5.1.54 Activity
Altigleri Interception S) Steps
Information
Personelle Hedef Recognize and 2.1.1.2 3.5.1.47 Activity
Teshisi ve Tanima Identify Targets
using Personnel
Radarla Hedef Teshisi | Recognize using 2.1.1.2 3.5.1.48 Activity
Radar
Giindiiz Kamerasiyla Recognize and 2.1.1.2 3.5.1.49 Activity
Hedef Teshisi ve Identify Targets
Tanima using Day Vision
Camera
Termal Kamerayla Recognize and 2.1.1.2 3.5.1.50 Activity
hedef Teshisi ve Identify Targets
Tanima using Thermal
Camera
Hedef Tespiti Yap Subtasks of Detect | 2.1.1.3 3.5.1.38 Activity
Altisleri the Targets 3.5.1.39
3.5.1.40
3.5.1.41
3.5.1.42
Haritada Veri Data Visualization 2.1.2 3.5.1.76 Activity
Gosterimi on Map
Yeni Veri Girisi Input New Data 2.1.2 3.5.1.77 Activity
Veri Siralama Sequence Data 2.1.2 3.5.1.78 Activity

132

Veri Sorgulama Query Data 2.1.2 3.5.1.79 Activity
Veri Silme Delete Data 2.1.2 3.5.1.80 Activity
Kapsama On analizini | Perform Pre- 2.2 3.5.1.1 Activity
Yap Analysis of
Coverage
Platformlarin Gorev Perform Mission 2.2 3.5.1.2 Activity
planlamasin Yap Planning for
Platforms
Platformlarin Examine the 2.2 3.5.1.3 Activity
konuslanma nokta ve deployment points
giizargahlarini tetkik et | and routes of the
platforms
Platformlarin Update deployment | 2.2 35.14 Activity
konuslanma nokta ve points and routes of
giizergahlarini tekrar the platforms
diizenle
Kapsama alanini Compute the 2.2.1 3.5.1.1(S) | Activity
hesapla Coverage Ratio Step
Nokta ve giizergah Evaluate the priority | 2.2.1 3.5.1.1(S) | Activity
onceliklendir of points and paths Step
Maliyet etkinlik en Optimize cost 2.2.2 3.5.1.2(S) | Activity
uygunlama efficiency Step
Kullanim zamanlama Usage Plan and 2.2.2 3.5.1.2 Activity
ve siklik planlamasi Frequency Planning Step
Noktaya veya Supply 2.2.3 35.13 Activity
Giizergaha ulagimi Transportation to Step
sagla Point or route
Noktay1 ve Giizergaht | Control the point or | 2.2.3 35.13 Activity
kontrol et route Step
Gorev Emrini Olustur | Prepare Mission 2.3 3.5.15 Activity
Order
Haberlesme Communication 2.3 3.4.1.36 Task
Emir Alindigin1 Teyit | Acknowledge Order | 2.3 3.5.1.6 Activity
Et Receival
Haberlesme Ortamin1 | Decide 2.3.1 3.5.1.57 Activity
Belirle Communication
Medium
[letimi Sagla Perform 2.3.1 3.4.1.38 Task
Transmission
Ses Iletimini Sagla Perform 2.3.1.1 3.4.1.39 Task
Transmission of
Voice
Goriintii Iletimini Sagla | Perform 2.3.1.1 3.4.1.40 Task

Transmission of
Images

133

Veri Iletimini Sagla Perform 2.3.1.1 34.1.41 Task
Transmission of
Data
Ses Iletimini Sagla Subtasks of 2.3.1.1.1 3.5.1.59 Activity
Altigleri Perform 3.5.1.60
Transmission of 3.5.1.61
Voice 3.5.1.62
3.5.1.63
3.5.1.67
3.5.1.69
3.5.1.70
3.5.1.72
Modemleri Kilitle Interlock Modems 2.3.1.1.1.1 | 3.5.1.67 Activity
(S) step
Veri Kodlama Moduna | Switch to Data 2.3.1.1.1.1 | 3.5.1.67 Activity
Geg Encryption Mode (S) step
Serbest Mesaj Select Free Format | 2.3.1.1.1.1 | 3.5.1.67 Activity
Aktarimim Seg Message (S) step
Transmission
Veri Gonderilecek Select Data 2.3.1.1.1.1 | 3.5.1.67 Activity
Platformunu Se¢ Receiving Platform S) step
Veri Mesajin1 Gonder | Send Data 2.3.1.1.1.1 | 3.5.1.67 Activity
(S) step
Veri Alind1 Teyidi Data Transmission | 2.3.1.1.1.1 | 3.5.1.67 Activity
Acknowledgement S) step
Goriintii Kodlama Switch to Image 2.3.1.1.1.1 | 3.5.1.67 Activity
Moduna Geg Coding mode (S) step
Gorlintii Matrisinden Select the Image 2.3.1.1.1.1 | 3.5.1.67 Activity
Aktarilicak Goriintiiyii | from the Image (S) step
Se¢ Matrix
Secilen Goriintiiyii Match the Image to | 2.3.1.1.1.1 | 3.5.1.67 Activity
uydu Gondermecine Satellite Transmitter S) step
Irtibatlandir
Goriintii Alind1 Teyidi | Image Transmission | 2.3.1.1.1.1 | 3.5.1.67 Activity
Acknowledgement S) step

134

Goriintii Iletimini Sagla | Subtasks of Perform | 2.3.1.1.2 3.5.1.45 Activity
Altigleri Transmission of 3.5.1.46
Images 3.5.1.64
3.5.1.67
3.5.1.68
3.5.1.69
3.5.1.70
3.5.1.71
3.5.1.72
3.5.1.75
Veri Iletimini Sagla Subtasks of Perform | 2.3.1.1.3 3.5.1.60 Activity
Altigleri Transmission of 3.5.1.62
Data 3.5.1.65
3.5.1.66
3.5.1.67
3.5.1.69
3.5.1.70
3.5.1.71
3.5.1.72
Basarim Oliitii Calculate 24 3.5.1.20 Activity
Degerlerini Hesapla Performance
Criteria
Bagarim Olgiit Compare 2.4 3.5.1.21 Activity
Degerleriyle Etkinlik Performance
Degerlerini Karsilastir | Criteria and
Effectiveness
Values
Gorev Maliyet/Etkinlik | Prepare mission cost | 2.4 3.5.1.22 Activity
Degerlendirmesini effectiveness
Hazirla evaluation
Besleme Kaynagini Start the power 2.5 3.5.1.10 Activity
Caligtir source
Haberlesme Prepare 2.5 3.5.1.11 Activity
Sistemlerini Hazirla Communication
Systems
Sensor Sistemlerini Prepare Sensor 2.5 3.5.1.12 Activity
Hazirla Systems
K2 Sistemlerini Hazirla | Prepare C2 systems | 2.5 3.5.1.13 Activity
Cevrime Gir Open connection 2.5 3.5.1.58 Activity
Haberles Communicate 2.6 3.4.1.36 Task
Platformlarin Ulagim Prepare Platforms 2.6 3.5.1.7 Activity
Hazirhigin1 Yap for Transportation

135

Gorev Yerlerine Ulag Proceed to Mission | 2.6 3.5.1.8 Activity
Location
Intikal Teyidini Yap Acknowledgement | 2.6 3.5.1.9 Activity
of Deployment
Performans Kriterlerini | Determine 2.6.1 3.5.1.8(S) | Activity
Belirle Performance Step
Criteria
Yol Tanimlamasini Prepare Path Plan 2.6.1 3.5.1.8(S) | Activity
Yap Step
Belirlenen Yolu Takip | Follow the Path 2.6.1 3.5.1.8(S) | Activity
Et Plan Step
Gozetleme Yap Perform 2.6.1 3.5.1.8 (S) | Activity
Surveillance Step
GOmiilii Sensorleri Collect Embedded 2.6.2 3.5.1.7(S) | Activity
Topla Sensors Step
Antenleri Topla Collect Antennas 2.6.2 3.5.1.7(S) | Activity
Step
Platformlar1 Caligir Start the Platforms | 2.6.2 3.5.1.7(S) | Activity
Hale Getir Step
Durumu Raporla Report The State 2.7 3.5.1.14 Activity
Son Durumu Dogrula | Confirm Last State | 2.7 3.5.1.15 Activity
Gozetleme Durdur End the Surveillance | 2.8 3.4.1.16 Activity
Besleme Kaynagimi Shut down the 2.8 3.5.1.16 Activity
Durdur Power Source
Sensor Sistemlerini Shut down the 2.8.1 3.5.1.17 Activity
Durdur Sensor Systems
Komuta Kontrol Shut down the C2 2.8.1 3.5.1.18 Activity
Sistemlerini Durdur Systems
Haberlesme Shut down the 2.8.1 3.5.1.19 Activity
Sistemlerini Durdur Communication
systems

2. Diagrams of the Surveillance Mission

In this section the diagrams of surveillance mission and all the subtasks is listed first.
Then the diagrams drawed by KAMA tool are given.

SGKS SGKS Task Notes
Diagrams | Document

Reference
2 3.3.1.1 Surveillance Communication excluded
2.1 3.4.1.10 Perform Surveillance of the

Area

2.1.1 34.1.11 Scan the area
2.1.1.1 3.4.1.33 Intercept

136

SGKS SGKS Task Notes
Diagrams | Document
Reference
2.1.1.2 3.4.1.44 Detect the Targets The subtasks are based on the
type of the resource used
2.1.1.3 3.4.1.45 Recognize and Identify The subtasks are based on the
type of the resource used

2.1.2 3.4.1.43 Update the Database

2.2 34.1.1 Perform Coverage Analysis
and Planning

2.2.1 3.5.1.1 Perform Pre-Analysis of Consists of Sequential Tasks
Coverage (Activity steps in SGKS

document)

222 3.5.1.3 Examine the deployment Consists of Sequential Tasks
points and routes of the (Activity steps in SGKS
platforms document)

223 35.14 Update deployment points Consists of Sequential Tasks
and routes of the platforms (Activity steps in SGKS

document)

2.3 34.1.2 Distribute Mission Order

2.3.1 3.4.1.36 Communication

2.3.1.1 3.4.1.38 Perform Transmission

2.3.1.1.1 | 3.4.1.39 Perform Transmission of The subtasks are based on the
Voice type of the equipment used

2.3.1.1.2 | 3.4.1.40 Perform Transmission of The subtasks are based on the
Images type of the equipment used

23.1.1.3 | 3.4.141 Perform Transmission of The subtasks are based on the
Data type of the equipment used

24 34.1.8 Evaluate mission
performance

2.5 34.19 Prepare for the Mission

2.6 34.14 Move to Mission Location

2.6.1 3.5.1.8 Proceed to Mission Location | Consists of Sequential Tasks

(Activity steps in SGKS
document)

2.6.2 3.5.1.7 Prepare Platforms for Consists of Sequential Tasks
Transportation (Activity steps in SGKS

document)

2.7 34.1.13 Handover the mission

2.8 34.1.7 End the mission

2.8.1 3.4.1.16 End the Surveillance

137

Id: 2
Name: Surveillance (G6zetleme)

138

Id: 2.1
Name: Perform Coverage Analysis and Planning (Sensor Kapsama Analiz ve Gorev

Planlamasini Yap)

Belirtimi

cminbul Akiziz | | ._f | .-_f‘/;

#Girdi Olugtues eGirdi Olugturs

aGivdif Giktre " eqindifCik
Bitki Srtiisi Kapsanacak &lan

wigw
Kapsama Ondnalizin
Yap

allretirs P

wGirdl ikt
adirdi Slugturs Kapsama alan Listesi wdirdif Gikbi
Kapsanacak Bilge
L Sayiral Hartas)
. }/;//’J
i I o

~lel el 4Firdl Slugturs

wlzw

Elatfarmlann Garey
Elanlamasini vap

atantrol Akigr (Evet)s

allretirs ——_

| wGirdif ik

wKantrol Akigie

wige Gdzetlerne Plam

Platform Konuslanma
Hokts ve
| Gdzergahlanm Tetkik

atontrol Akigis ‘_‘l'f

Tekrar
Dlzer|ameay
a Ihtiyag

Var frmi?
<Kontrol akis (Hayir)s

1
)

139

Id: 2.2.1
Name: Perform Pre-Analysis of Coverage (Kapsama On Analizini Yap)

adirdif Cikts Firdif il

kapsenacshk Bilge Platformlann Kapsama
Sayisal Haritas: Szellikler

o 77 /J
. «Girdi ©lugturs “Girdi Olugturs ‘ wGirdif Cikts |
Kapzama &larim Sensor/HabadesmalPk

Hezapla “Girdi Olugturs ‘ form Tipleri

zlretirs 3

wGirdif Giktes
Kapsarma alan Listesi

wlge :

Mokts Gizergah «GEirdi Slugturs
Onceliklendie

T

wKontral Akigir

wKontrol Akigi»

L
@

140

Id: 2.2.2
Name: Examine the deployment points and routes of the platforms (Platformlarin Gorev
Planlamasin1 Yap)

#lantral Akizie

v

#lgw
Malivet Etkinlik En
Uwgunlama vap

#Kantral Akizie

l

Eullamim Zamanlama
ve Siklhik Planlarmas:
ap

“Ig»

#Kontral Akizis

W

141

Id: 2.2.3
Name: Update deployment points and routes of the platforms (Platform Konuglanma
Nokta ve Giizergahlarini Tetkik Et)

“Kaontral Akizis

i

Moktava veva
Gizergaha Ulagim
Sagla

| wlge

#Kantral Akizie

 gisw
Maoktay Gizergahi
Kontral Et

“Kontral Akiziz

v
@)

142

Id: 2.3
Name: Distribute Mission Order (Gorev Emri Dagit)

“Kontral Akigis

Sarey Emrini Clogtur

#gw

«retivs

wGirdif Gkt

“Kaontrol Akigis Géraew Emri

&lz®

Haberlezrme

skontrol Akisis
W

alz»
Ermnir Alindiding Teyit Et

“Kaontrol Akigis

. “Kontral Akizie
aigw

Haberlez

143

Id: 2.3.1
Name: Communication (Haberlesme)

skontral Alkigie

l

Haberlesrne Ortarmim
Belirla

#Igw

#Girdif Ciktis

«lratirs

Tletim Bilgisi
wGirdif Cikbir

Haberlezme Srtarm

“Kantral Akigis

#Firdi Dlugturs

TR #lretive
«Ig»

iletimi Sadla

“Kontral Akizie

144

Id: 2.3.1.1
Name: Perform Transmission (Iletimi Sagla)

skontral Akizis

Sankroniza
syaon

#ontrol Alagie skontrol Akigir elontrol Akisie

& | 3

alge [«igw | xigw
Ses Iletimini Sadla Garantd Iletimini Veri Iletimini Sagla
Sagla
#Girdi Slugturs Girdi Olugturs #Girdi Olugturs
wqirdif Cikti® | eairdif Gkt | eairdifCikbe
Ses [letimi Bilgisi Gorantd Iletirmi Bilgisi veri Iletirni Bilgisi

145

Id: 2.3.1.1.1

Name: Perform Transmission of Voice (Ses Iletimini Sagla)

“Rontrol Akigi® ’
Tlatim
Ortarmi Seg

J iz
Koordinasyon Cevrim
Hontrol Akigis zlsiziile Haberleg
|

wontrol Akigie
#1g®

Sahra Telefonu le
aKortrol Ak aberles
I.

wKantral Akigix

\ «Iz»
_J Sifreli Telefan ile

sKontrol kg abarles

erbntrol Akisiz —

\\| alge
Mikrotelefon ile

rol Akizi* jabarlag

" aberlegme Telsiziile
Haberlag

ig»
VEAT Uydu Terminali
ile Haberles

[sig»
TAFICS ile Haberles

wfe>
HF/SSE Telsiz ile
Haberles

#lz»
Kara Géozetlerne

Ugady' Helikopteri ile
Habarlas

146

\l. /

.

sHontrol Akizi»

ritral Akigiz

sKantral Akigez

AW

wKantrol Akigie

\

“hontrol 1!

wKontrol dkigie

Id: 2.3.1.1.2

Name: Perform Transmission of Image (Goriintii {letimini Sagla)

._

)J s>
[
= i Grunty
) - Mikrodalga Goronto
Ed -
arontrol akigis - zHantrol AKIFIF isndarmas ile
Haberlasme | Haberle

Crtami Seg §

wKontrol Akigie

\ g%
= WSAT Uydu Terminali

kantrol Akige o Habarlas

Konthol Alogre

ti;:'
T, » QBrintd Analiz
Eonsolu fle ansliz ve
\ fletim Sadla
wHantrd] Akigi
#ig»

—
T L PO i BFICS le Haberles

2lortral skagis

W\ \ [

zkantrol Ak IFf&5B Telsiz ile
|\ | ilzberles

ral Akigiz

#l5e

Insansiz Hava fraa ile
Haberes

]
Fara Gozetlermne

UcadHelikopted |le
Habarlag

g
Uydu Gozetle

Haberlesrme Uydusuile
Haberles

‘d;)
Fokadraf Uydusundan
Eerdntd Al

147

VN

zKontrol Akizis

\

wHontrol skigie

sKontrol Alisie

)
Kontral skigie /

Id: 2.6

Name: Move to Mission Location (Gorev Yerlerine Intikal Et)

=Kontraol Akigis

’

«iz»

Haberlesme

wr.ontrol Akigie
W

iz

Platfarmlann Ulasim
Hazithgini vap

Kontral Akigis
W

¢f§:

«Girdif Skt

aGirdi Ciktis
Rots Segrnentler Rota Bilgisi
Parformans Kriterari

Davraniglan

Gérav Terlerine Ulag w aGirdi Olusturs

|

Kontral Akigis

.

«lg»

intik al Teyidini Yap

I/d‘iontml akigi»

148

Id: 2.6.2
Name: Prepare Platforms for Transportation (Platformlarin Ulasim Hazirligini Yap)

#Kontrol Akigis
W

#kantral Akizie “ontrol Akigie

N

Antenleri Topla

“ls» #igw
Garmalld Sensdrlari
Topla

#kaontral Akizie «Kontrol Akizis

\i #kontral Akizie

e
Platforrnlan Calizir
Hale Getir

“Kaontrol Akisie
v' -

149

Id: 2.6.1
Name: Proceed to Mission Location (Gorev Yerlerine Ulas)

“Hontrol Akizi»

l

Parforman Kritarlarini
Belirle

«ig»

«Kontrol Akisi»

L

«igs
Yol Tamimlamas Tap

“Hontrol Akizi»

“Kontral Akigie “Kantral Akigi»

S

aig» s
Belidernen vYalu Takip
Et

Gozetlerme Yap

slontrol Akiz (Hayir)s ‘

eKontrol Akimiz skontrol akigz

«Kontrol Akisi®

Hegdef
Moktaya
Ulagifdi rru?

sKontrol Akigi (Evet)s

A
L)

150

Id: 2.5
Name: Prepare for the Mission (G6zetleme Gorev Hazirligini Yap)

x[gtKu:untru:-I F\Flgm
ocigx- |
Beslame K aynadin
Calizor

«kontral Akiie

L

'L «K-:untr::ul Ak sekontral Akige akontral &ligee ..I..

0:15:0

alzn aign
Haberlesme GrSi ini
: b3 SensirSisterlerini KZ (Komuta-Kanral)
SistemleriniHazra Hazirla Siztemlerini Hazila
.,.le:-ntrl:-I & ki
0:153\71

evrime Gir

sKantral &kigee
akantrol Akizie

wkantral &kige

151

Id: 2.1

Name: Perform Surveillance of the Area (Gorev Bolgesini Gozetle)

«Kantral Akige

L

"lf S «Kantral Akisie

(«i;w
— BialgeyiTara

|

wekantrel Akizie

Giifew
siireq sona
erdi|mi?

«kaontral Akige

wkontrol &kis Chayire

alretite

aGirdifG ik
_) Tespit/TeshisTanima

Wersi

«kaontral Akisi [evet)s

«Kantral Akisi Thawrfe

K aynaklar
W etersiz mi?

wkontrol Akog (evetls ~ /

«Kantrol Akis) (evetls

¥

«Kontrol Akige
| wIzw

CrostRirliklerin Verini
Tespitve Takip Et
«Girdi Olugturs

«Kantrol Akise

wiFirdi Olustore

_). Tespit/Teshis/Tanima
Bilgizini Aktar

«Kantral Akige

| «igw
Yeritabanin Giincells

«Kontrol Akisie

!
| .)
Ba.sanll
Sonlanma

152

Id: 2.1.1

Name: Scan the Area (Planli Bolge Tara)

«Girdif Giktie

Frekans Bandi
Aralklan Belivkimi

-

w@irdi Olugturs

sKontrol Akizie

“Kantral Akigis

P Kontrol Akigi

«lgs

Dinlerme

«Wtrol EUAEES

erdi ri?

skontrol Akig (hayirys Fontrol Akisi

sKontrol Akis (hayiriz

Kaynaklar
etersiz mi?

eta) 1T
slresigona
i?

sKontrol Akis (evet)s

P!

akontrol Akigi (evet)s

aKontrol Akigi (evet)s

sKontrol Akigal

wizs
Hedef Tespiti Yap

\iKontrol Akizis
aig»
Hedef Teshisi ve
Tanima

wlretirs

«Girdi/ Giktrs

Tespit/Teshis/Tanma
Verisi

wKontrol Akisie

Baganl
Sonlsnms

153

Id: 2.1.1.1
Name: Intercept (Dinle)

- wgivdif Gkt

Frekans Band

#kontral Akizis
Arahklan Belirtimi f

#Girdi Olugturs

#5irdi Clugturs #Kontral Akigie

#iz» I

Adim Tara Bant Tara

#Uretirs ___._-—-—'—""'_'_'_'_r «Kontral Akisis

#kontral Akizis

#Girdif ik
Dinlerne Bilgisi

“Kontral Akigie

i

elg»

Dinlerme Bilgizini Gir

skontral Akigie

154

Id: 2.1.1.2
Name: Detect the Targets (Hedef Tespiti)

sk antral akige

C(is:ﬂ
= PersonelIle Hedef
wKontrol Al Tespit Yap

sk antrol &kigi Thay
sk ontrol Akigee

sk ontrol Alage
(ﬂi;)\'ﬁ
RadarlaHedef Tespiti
skantral Akige Y ap

\

«Kontral Akize
Giindiiz Kamerazigla

HedefTespit Yap

ek aptrol Akise

zartlan
olusth ru?

ckantrol Akig [evetls aign

ﬁis:ﬁ
Termal Kamerayla
HadefTaspit Yap

| «ign
Gamiili Sensiddede
HedefTes=pid ¥ap

155

allretire

i Gird il ik

Tespit/TeshisTanima
W e tisi

adretirm

«Girdif G ikt

———— TespitUyanz
«Uiretite

ID: 2.1.1.3
Name: Recognize and Identify (Hedef Teshisi ve Tanima)

sKantral Akige

sk ontrol .ﬁ.klgm“ii""

Personelile Hedef
Teshizive Tanima

sKantral Akige

cKantral Akizi Chawr
wkontral &kigm

cKantral Akigee I
== Radarla Hedef Teghisi

olustum
«Kantrol Akis [evetls
«ckdntrol Akizme

:- . ' oci;x-

o GiindiizKameraziyla
HedefTezhisi ve

. Tanimas

ai;w
TermalKarmeravla
HedefTeshisi ve
Tanima

156

ID: 2.1.2
Name: Update the Database (Veri Taban1 Giincelle)

2k ontrol Akisie

~—
ekentrol Akipis Kontmal akige antrol Skigis aantrel Ak Kontral kg

e —
wtyr =igz] s [iz sy |
e Wen Sirg Tap Ve il Wari Sergula Hafitada Varl Gostar Wer Sirala

e

wiantrol Akize tantrol Ak Hontrol

157

ID: 2.7
Name: Handover the Mission (Gorev Devir Teslimini Gerceklestir)

#kontrol Akigis

L

Durumu Raparla

#igw

lretire

wgirdif Ciktis

Cevir Teslim Durarn

Faporu
#Kontral Akizie

l -

#lg* #G@irdi Olugturs
Son Durumu Dodrula

K\ﬂ_lretr} ﬁ

#lontrol Akigie el Gk
Devir Teslim
Daodrulama Mesaj

158

Id: 2.8
Name: End the Mission (Gorevi Sonlandir)

Gaavi
SonlErdir
Baglpma
Crunfirnu

«Kontrol Akigi®

l

Is» sHedefs a0 plits
adzetlerne Durdur | » Durdurma Baganmi Durdurma Srasi
Ulagire Baganimmo it
“Kontrol Alkige
I

Beslame Kaynadm
Curdur

whontrol akize

!
@

Goravi
Sonlandir

159

ID: 2.8.1
Name: End the Surveillance (G6zetleme Durdur)

Gazetlerm
e Dufrdur
Bazla

| #kontrol Ak

Gézetlermne

sKortrol Akize skontrol Akizee «Kontrol Alagie

) 3

wfgw aig® #Igw
Sensdr Sisternlerini Kormuta Kontrol Haberlesrme
Dudur Siztemlerini Durdur zisterlerini Dudur

sKontrol Akizis

wkontral Akizie zkantral Akigie

Gazetlermne
Durdur Senk 2

“kontrol Akizis

Gzetlemn
e Durdur

160

Id: 2.4
Name: Evaluate Mission Performance (Gorev Basarimini Degerlendir)

o - Eaclama s®ontrol Akigi®

aGirdif Ciktiz J

Gdrey Bilgileri

I cis
(G..l;;:i'i' Olugburs =sew —% Baganm Olgit Dejerini
o o Heszapla
o o —
Girdi/ ikt 7
«Girdi/ Gikti» «Girdif Cikte
8 Dederlendi - - -
orev Degerlendimme 3 R aarey Ctkinlik
Eriterlen ! = y
\‘ o Deferlendirmesi

o

2Girdi Olugturs

“on Baganm Olglt Degeri
ile Etkinlik Dederini
Karzilagtir

wGirdi Olugture l

akontrol Akisie

&
#lgw

Girew Malivet Etkinlik

Defedendirmesiini
Hazirla
. — allretirs

aGirdi Ol bgturs

wdirdif Cikti»

Géarev Malivet Raporg
“Kontral Akigie

£
@

Gorew
Bazanmmir

161

3. Unreferenced Items in Referent Model

Original Name (In SGKS Document Notes

Turkish)

Grup Gorev Emirlerinin 34.13 Related to “Gorev emri

Dagitim dagitilmasi” 3.4.1.2

Gorev Yerlerine Intikal 34.1.5 After the task 3.4.1.4

Sonrast En Uygun Konusg “Gorev Yerlerine Intikal

Noktasinin Bulunmasi

Gorev Bolgesi Degistirme 34.1.6 No reference in the
Document

4. Preconditions, Postconditions and Assumptions Defined for Tasks

Perform Coverage Analysis and Planning
Preconditions
All inputs should be ready
Mission (task) order distribution should be defined
Mission plan should be prepared
Postconditions
The confirmation should be received from all the units which make the mission
order transmission
The confirmation should be received from any unit in a period previously
determined

Move to Mission Location
Preconditions
Movement confirmation should be received from all the units (inconsistency)
Communication should be established
Communication devices should be determined
The specified communication medium (channels) should be available, appropriate
and usable
Communication devices of the unit(s) shall be appropriate

Prepare for the Surveillance Mission
Preconditions
If one or more of the units performing the surveillance can not perform the
mission, this work ends
Mission plan should be ready.
Devolution to the surveillance region should be performed
Communication and sensor systems should have at least one entity

162

Transfer Detection / Identification / Recognition Information

Preconditions
Detection / Identification / Recognition information to be transferred should be
ready
Transmission used in communication environment should be available,
appropriate and work

Update Database
Preconditions
Command-control computer should be switched on
New data should be gathered

Transmit
Assumptions
Only communication devices that are mentioned in the document will be utilized.
Preconditions
The information to be transmitted should be defined.
The specified communication medium (channels) should be available, appropriate
and usable

Select the Communication Medium
Assumptions
In selection of the communication medium, no communication will occur except
the ones that are supported by the entities communication devices and their
communication channels.

Preconditions
Existence of necessary conditions for communication (requirement of notice of
threat after Detection / Identification /Recognition, alarm situations etc.)

Handover Mission
Assumptions
Work termination conditions are not provided and it is performed for permanent
prescriptive works

Preconditions
Mission shift plan should be prepared

Actors should be ready to make handover

Postconditions
New actors should review and verify the last reported case

163

Report Status
Preconditions
A request should be made

Verify Latest Status
Preconditions

The report should be received.

164

5. Screenshots of the Error Reports Displayed by EMF

Two screen shots show the errors found in the model when KAMA constraints are

checked and KAMA-DV constraints are checked.

KAMA Rules Checking Screenshot

GKS_Surveillance _Mi &) alglil

Fle Edit MNavigate Search Project Run Sample Reflective Editor Window Help

Jrs- | @ |$5-0-Q- | BB @S 7] - 5 avabronsing 35 »

| %] kamaMetamodsl ecore (5}5 Task.xmi £2 = Ll
g 4 Task Perform Pre-Analysis of Caverage ;I ?
L= + ¢+ Task Perfarm Mission Planning for Platforms [E
4 Task Examine the deployment paints and routes of the platforms
<> Task Update deployment points and routes of the platfarms
“ Initial Task Perfarm Coverage Analysis and Planning IT
< Final Task Perform Caverage Analysis and Planning FT
< Decision Point Need for Reorganization?
-4 Task Flow Perform Caverage Analysis and Planning TF1
4 Task Flow Perfarm Coverage Analysis and Planning TF2
4 Task Flow Perform Coverage Analysis and Planning TF3 =l
=1 Properties (E Cansole (E* EClass References ({J;' Search ﬂ_‘; Problems &3 T = .
27 errors, 1 warning, O others
Description = | Resource | Path | Location | Type | e
= & Errors (27 ikems)
2 The 'ExistsOutgoingGuardCondition’ constraint is violsted on ‘Decision Point Detection End Conditions Satisfied?' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The 'ExistsCutgoingGuardCondition’ constraint is violated on 'Decision Point Seleck the Activity' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The 'HangingTask' constraint is violated on ‘Task Detect the locations of Friend Forces' Task. xmi JKAM Ay, Unknown - EMF Problem
@ The 'Hanging r 2
2 The MoFlowDeadEnd' constraint is violated on 'Task Data Yisualization on Map' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on ‘Task Delete Data' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The MoFlowDeadEnd' constraint is violated on 'Task Detect using Day vision Camera' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on ‘Task Detect using Embedded Sensor' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The MoFlowDeadEnd' constraint is violated on 'Task Detect using Personel' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on 'Task Detect using Radar' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The NoFlowDeadEnd' constraint is violated on 'Task Detect using Thermal Camera ' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on 'Task Examine the deployment paints and routes of the platForms' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The NoFlowDeadEnd' constraint is violated on 'Task Handover the mission’ Task. xmi Jkamavz] .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on 'Task Input New Data' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The MoFlowDeadEnd' constraint is violsted on 'Task Query Dats' Task. xmi Jkamavz! .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets using Day Vision Camera' Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The NoFlowDeadEnd' constraint is violsted on 'Task Recognize and Identify Targets using Personel Task. xmi Jkamayvz] .. Unknown EMF Problem —
Q The "MoFlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets using Thermal Camera’ Task, xmi [KAMAYZS ... Unknown EMF Problem
2 The NoFlowDeadEnd' constraint is violated on 'Task Recognize using Radar' Task. xmi Jkamavz) .. Unknown EMF Problem
Q The "MoFlowDeadEnd' constraint is violated on 'Task Sequence Data Task, xmi [KAMAYZS ... Unknown EMF Problem
@ The 'TaskflowTargetType' constraint is violated on 'Task Flow Perform Coverage Analysis and Flanning TF1' Task. xmi Jkamavz] .. Unknown EMF Problem
Q The 'TaskflowTargetType' constraint is violated on 'Task Flow Surveillance TF4' Task, xmi [KAMAYZS ... Unknown EMF Problem LI
J (e The 'HangingTask' constraint is wiolaked on 'Task Update deployment points and routes of the platfarms' J

165

KAMA-DV Rules Checking Screenshot

~=lolx|

& Java - KAMA¥2/model/SGKS_Surveillance_Mi

File Edit Havigate Search Project Run Sample Reflective Editor Window Help

- | ¥ 5-0- QG- | BEHG- B 5] -0 000 B G JavaBrowsing 45 >
B Wavigator 52 = [D KaMAmadelconstraintste:xt (_4 kamaMetamodel. ecore f@ Task.xmi &3 = Ll
| = G:D | A E| @ platFarm:/resource KA AvZimodel /SGKS _Surveillance_Mission/Task. xmi ﬂ é
ERET [<+ Task Surveillance
H-E settings [l <4+ Task Perform Coverage Analysis and Planning
E-E bin < Task Perform Pre-Analysis of Coverage
e : 4+ TaskPerform Mission Planning Far Platfarms ~|
[H-[= META-INF =1 Properties (E Console (B EClass References r\');' Search ﬂL Problems &3 T
- model 56 efrors, 1 warning, 0 others
SiEKS_Survellance_Mission Description = | Resource [Path -
52 Task,xmi £l €3 Errors (56 items)
@ kamaMetamodel.ecore Q The 'ExistsCutgoingGuardCondition’ constraint is violated on 'Decision Point Detection End Conditions Satisfied?* Task.xmi TKAMAYZ).,
@ kamaMetamadel. ecorediag @, The 'ExistsOutgoingGuardCondition' constraint is vidlated on 'Decision Paint Select the Activity' Taskomi | [KAMAYZL.,
[t kamamMetamodel.genmadel Q The 'HangingTask' constraint is violated on 'Task Detect the locations of Friend Forces' Task.xmi TKAMAYE],
= KamMamodelconstraintstext 3 The 'HangingTask constraint is violated on 'Task Update deployment points and routes of the platforms' Task.xmi | [KAMAYZ]..
- E} src Q The MoFlowDeadEnd' constraint is violated on 'Task Data Visualization on Map' Task.xmi TKAMAYZ).
- .classpath &, The NoFlowDeadend' constraint is violated on 'Task Delete Data' Taskomi | [KAMAYZ].,
Q -project Q The MoFlowDeadEnd' constraint is violated on 'Task Detect using Day vision Camera’ Task,xmi TKAMAYZ],,
i build. properties Q The 'NoFlowDeadEnd' constraint is violaked on 'Task Detect using Embedded Sensor Task.xmi TKAMAYE],,
plugin. properties Q The "MoFlowDeadEnd' canstraint is violaked on 'Task Detect using Personel Task.=mi TKAMAYZ].
<t phagin,xml Q The MoFlowDeadEnd' constraint is violated on 'Task Detect using Radar’ Task.xmi TKAMAYZ)..
Q The MoFlowDeadEnd' constraint is violated on 'Task Detect using Thermal Camera Task.xmi TKAMAYZ],,
Q The MoFlowDeadEnd' canstraint is violated on 'Task Examine the deployment paints and routes of the platfiorms* Task,zmi TEAMAYZ], o
Q The 'MoFlowDeadEnd' constraint is violated on 'Task Handower the mission' Task.xmi TKAMAVE]..
Q The "MoFlowDeadEnd' constraint is violated on 'Task Input Mew Data' Task.xmi TKAMAYZ).
Q The MoFlowDeadEnd' constraint is violated on 'Task Query Data' Task.xmi TKAMAYZ).
Q The MoFlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets using Day Vision Camera' Task.xmi TKAMAYZ]
Q The 'NoFlowDeadEnd' constraint is violaked on 'Task Recognize and Identify Targets using Personel’ Task.xmi TKAMAYZE],
Q The "MoFlowDeadEnd' canstraint is violsted on 'Task Recognize and Identify Targets using Thermal Camera® Task.=mi TKAMAYZ].
Q The MoFlowDeadEnd' constraint is violated on 'Task Recognize using Radar’ Task.xmi TKAMAYZ).
Q The MoFlowDeadEnd' constraint is violated on 'Task Sequence Data ' Task.xmi TKAMAYZ],,
Q The ‘SequentialintermediateNode’ constraint is violated on 'Decision Point Detection End Conditions Satisfied? Task,xmi TKAMAYZ]
Q The 'SequentiallntermediateMode’ constraint is violated on 'Decision Point End conditions Satisfied? Task.xmi TKAMAVE]..
Q The 'SequentialintermediateMode’ canstraint is violaked on 'Decision Paint End Mission Order Received?' Task.=mi TKAMAYZ].,
Q The 'SequentialintermediateMode’ canstraint is violated on 'Decision Point End Mission Order Received?' Task.xmi TKAMAYZ).,
Q The 'SequentialintermediateMode’ canstraint is violated on 'Decision Paint Insufficient Resources? Task.xmi TKAMAYZ],,
Q The 'SequentiallntermediateMode’ canstraint is violabed on 'Decision Point Insufficient Resources? Task.xmi TEAMAYE],
i £ Tha 'Saniantisllintarmadistalinda’ cancheaink ic vinlabad n Taricinn Boink Miccinn Puor sbion Frairad?! Tack v .'van,'ll_I
J 0= Selected Object: Task Examing the deployment points and routes of the platForms J

166

EPC Soundness Checking Screenshot

—1&]x]
100% EY 5 davaBronsing 5 >

=g)—

=l

File Edit Mavigsts Search Froject Run Window Help
e B B B - B B e e e

g £ B reta] =0

2 |[BE e T st

1 e B
1= DHS_Dynamic_Verffication O Event i
B et
: & -settings O Function

- bin]
& src @ And i1 xE

|»

.classpath Sor i
project)< —

. Z advance_n_ar.epul ®°’—_| .
Ml L aMeDL, Process foders:
-2 settings

B bin =

(= KAMAmodels Sirulation:
-G METAE Refrash snablsd
(2 model

Step Simulation

B sre

Function
W Random simulation
.project I~ Gptiristic
build. properties Information:
plugin.praperties @ clon 3 ||
I phuginsanl

Inthe current skate;

@ Contact free

In all reachable states:
@ Clean
@ scund

@ contact free

Refresh

Swikch algorithm:

" symbolic caloulation

= Explicit calculation

A ¥

(Ei Problems 22 |
v I EEEELGE
dstart| | & Gl - Inbo (3396) - k. | 1) edipse | = Java - DHS_Dynamic_Ye... | = Help - Edlipse | 188] UtkanThesisDraftv20022 | ‘ rd @‘ @ | 2«7 1200

167

6. List of Errors and Issues for the First Case Study

No.

Description

The 'UniqueOutgoingfordoinType' constraint is violated on 'Synchronization Point
Seyir SP1'

The 'UniqueOutgoingfordoinType' constraint is violated on 'Synchronization Point

2 | Recognize and Identify SP1'
The 'UniqueOutgoingfordoinType' constraint is violated on 'Synchronization Point
3 | Detect the Targets SP1'
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point
4 | Select the Activity'
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point
5 | Select Communication Medium for Voice'
The 'UniqueOutgoingFlowGuardCondition' constraint is violated on 'Decision Point
6 | Select Communication Medium for Image'
The 'UniquelncomingforForkType' constraint is violated on 'Synchronization Point
7 | Seyir SP1'
The 'UniquelncomingforForkType' constraint is violated on 'Synchronization Point
8 | Recognize and Identify SP1'
The 'UniquelncomingforForkType' constraint is violated on 'Synchronization Point
9 | Detect the Targets SP1'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
10 | SeyirSP2'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
11 | Recognize and Identify SP1'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
12 | Proceed to Mission Location SP2'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
13 | Havada llerleme Faaliyetleri SP4'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
14 | Havada llerleme Faaliyetleri SP3'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
15 | Havada llerleme Faaliyetleri SP1'
The 'SequentiallntermediateNode' constraint is violated on 'Synchronization Point
16 | Detect the Targets SP1'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Update the
17 | Database IT'
The 'SequentiallntermediateNode’ constraint is violated on 'Initial Task Transmission
18 | of Image IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Surveillance
19 | of the Area IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Scan the
20 | Area IT
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Recognize
21 | and Identify IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Prepare
22 | Platforms for Transportation IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Perform
23 | Transmission of Voice IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Perform
24 | Transmission IT'
The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Perform
25 | Transmission IT'
26 | The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Intercept IT1'

168

27

The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Havada
llerleme Faaliyetleri IT'

28

The 'SequentiallntermediateNode’ constraint is violated on 'Initial Task End the
Surveillance IT'

29

The 'SequentiallntermediateNode' constraint is violated on 'Initial Task Detect the
Targets IT'

30

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Yakit
Miktari'

31

The 'SequentiallntermediateNode' constraint is violated on 'Decision Point Seyir DP1

32

The 'SequentiallntermediateNode' constraint is violated on 'Decision Point Select the
Activity'

33

The 'SequentiallntermediateNode' constraint is violated on 'Decision Point Proceed
to Mission Location DP1'

34

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Need for
Reorganization?'

35

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Mission
End Conditions Satisfied?'

36

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Mission
Duration Expired?'

37

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Mission
Duration Expired?'

38

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point
Insufficient Resources?'

39

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point
Insufficient Resources?'

40

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point End
Mission Order Received?'

41

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point End
Mission Order Received?'

42

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point End
conditions Satisfied?'

43

The 'SequentiallntermediateNode’ constraint is violated on 'Decision Point Detection
End Conditions Satisfied?'

44

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Transmission of
Image FT'

45

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Surveillance of
the Area FT'

46

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Scan the Area
FT'

47

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Prepare for the
Mission FT'

48

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task Perform
Transmission of Voice FT'

49

The 'IncomingFlowMultiplicityFT' constraint is violated on 'Final Task End the
Surveillance FT'

50

The 'IncomingFlowMultiplicity' constraint is violated on Task Sadlam Personeli
Tedavi Glciine Gére Rassal Olarak Hastalandyr/Yaralandyr'

51

The 'IncomingFlowMultiplicity' constraint is violated on 'Task Prepare Path Plan'

52

The 'IncomingFlowMultiplicity' constraint is violated on 'Task Perform Surveillance of
the area’

53

The 'IncomingFlowMultiplicity' constraint is violated on Task Perform Pre-Analysis of
Coverage'

54

The 'HangingTask' constraint is violated on "Task Detect the locations of Friend
Forces'

169

55

The 'FlowDeadEnd' constraint is violated on 'Task Sequence Data '

56

The 'FlowDeadEnd' constraint is violated on 'Task Recognize using Radar'

57

The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets
using Thermal Camera’

58

The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets
using Personel’

59

The 'FlowDeadEnd' constraint is violated on 'Task Recognize and Identify Targets
using Day Vision Camera'

60

The 'FlowDeadEnd' constraint is violated on 'Task Query Data'

61

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Voice'

62

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Voice '

63

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Image'

64

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Image'

65

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Data'

66

The 'FlowDeadEnd' constraint is violated on 'Task Perform Transmission of Data'

67

The 'FlowDeadEnd' constraint is violated on 'Task Input New Data’'

68

The 'FlowDeadEnd' constraint is violated on 'Task Handover the mission'

69

The 'FlowDeadEnd' constraint is violated on 'Task Detect using Thermal Camera'

70

The 'FlowDeadEnd' constraint is violated on 'Task Detect using Radar'

71

The 'FlowDeadEnd' constraint is violated on 'Task Detect using Personel'

72

The 'FlowDeadEnd' constraint is violated on 'Task Detect using Embedded Sensor'

73

The 'FlowDeadEnd' constraint is violated on 'Task Detect using Day vision Camera'

74

The 'FlowDeadEnd' constraint is violated on 'Task Delete Data'

75

The 'FlowDeadEnd' constraint is violated on 'Task Data Visualization on Map'

76

The 'FinalTaskRequirement' constraint is violated on 'Task Perform Transmission'

77

The 'FinalTaskRequirement' constraint is violated on 'Task Perform Transmission'

78

The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select
the Activity'

79

The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select
Communication Medium for Voice'

80

The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point Select
Communication Medium for Image'

81

The 'ExistsOutgoingGuardCondition' constraint is violated on 'Decision Point
Detection End Conditions Satisfied?'

170

APPENDIX B: KAMA-DV METAMODEL DEFINITION IN EMF

In this Appendix, we include the KAMA-DV metamodel definition expressed in ecore
format.

1. KAMADVMetamodel.ecore

import ecore : 'http://www.eclipse.org/emf/2002/Ecore#/';

package kamametamodel : kamametamodel = 'http://kamametamodel/1.0'
{
class Task
{
invariant FlowDeadEnd:
self.incomingFlow->size()= 1
implies self.outgoingFlow->size()>= 1;
invariant HangingTask:
self.outgoingFlow->size()= 1
implies self.incomingFlow->size()>= 1;
invariant InitialTaskRequirement:
self.consistsOfIN->size()> 0
implies self.consistsOfIN->exists(oclIsTypeOf(InitialTask));
invariant FinalTaskRequirement:
self.consistsOfIN->size()> 0
implies self.consistsOfIN->exists(oclIsTypeOf(FinalTask));
invariant SelfconsistOf:
self-> closure(consistsOf)->excludes (self) ;
invariant IncomingFlowMultiplicity:
self.incomingFlow->size ()<= 1;
invariant OutgoingFlowMultiplicity:
self.outgoingFlow->size ()<= 1;
property incomingFlow#targetTask : TaskFlow[*];
property outgoingFlow#sourceTask : TaskFlowl[*]
attribute ModelID : String[?];
attribute Name : String[?];
property consistsOf : Task[*] { composes };
property RepresentedBy#Represents : TaskFlowDiagram|*]
{ composes };
property consistsOfIN : IntermediateNode[*] { composes };
property ConsistsOfTF : TaskFlow[*] { composes };
}

4

class TaskFlow
{

invariant SourceTargetDifference?2:

171

(self.targetTask->size() = 1 and self.sourceTask->size() =
implies not (self.targetTask = self.sourceTask);
invariant TaskflowTargetType:
(self.targetTask.oclIsTypeOf(Task) or
self.target.oclIsTypeOf(DecisionPoint) or
self.target.oclIsTypeOf(SynchronizationPoint) or
self.target.oclIsTypeOf(FinalTask));
invariant TaskflowSourceType:
(self.sourceTask.oclIsTypeOf(Task) or
self.source.oclIsTypeOf(DecisionPoint) or
self.source.oclIsTypeOf(SynchronizationPoint) or
self.source.oclIsTypeOf(InitialTask));
invariant SourceTargetDifferencel:
(self.target->size() = 1 and self.source->size() = 1)
implies not (self.target = self.source);
attribute ModelID : String[?];
attribute GuardCondition : String[?];
property target#incomingFlow : IntermediateNode[?];
property source#outgoingFlow : IntermediateNode[?];
property sourceTask#outgoingFlow : Task[?];
property targetTask#incomingFlow : Task[?];
}
class IntermediateNode { abstract }
{
invariant SequentiallIntermediateNode:
self.outgoingFlow->forAll (target=null);
property incomingFlow#target : TaskFlow[*];
property outgoingFlow#source : TaskFlow[*];
attribute ModelID : String[?];
}
class SynchronizationPoint extends IntermediateNode
{
invariant UniqueIncomingforForkType:
self. outgoingFlow->size() >1
implies self.incomingFlow->size() = 1;
invariant UniqueOutgoingforJoinType:
self.incomingFlow->size() >1

implies self.outgoingFlow->size() = 1;
invariant FlowType:
((self.incomingFlow->forAll(oclIsTypeOf(TaskFlow))) and

(self.outgoingFlow->forAll(oclIsTypeOf(TaskElow))));
attribute isJoin : Boolean|[?];
attribute isJoinDerived : Boolean[?] { derived,volatile }
{
derivation:
if (incomingFlow->size>1) then isJoinDerived=true
else isJoinDerived=false
endif;
}
}
class DecisionPoint extends IntermediateNode
{
invariant UniqueOutgoingFlowGuardCondition:
self.outgoingFlow->forAll(cl, c2 | cl <> c2 implies
cl.GuardCondition <> c2. GuardCondition);
invariant ExistsOutgoingGuardCondition:
self.outgoingFlow->forAll(GuardCondition <> null);

172

invariant FlowType:
((self.incomingFlow->forAll(oclIsTypeOf(TaskFlow))) and
(self.outgoingFlow->forAll(oclIsTypeOf(TaskFlow))));
attribute isMerge : Boolean[?];
attribute isMergeDerived : Boolean[?] { derived,volatile }
{
derivation:
if (incomingFlow->size>1) then isMergeDerived = true
else isMergeDerived=false
endif;
}
}
class InitialTask extends IntermediateNode
{
invariant NoIncomingFlow:
self.incomingFlow->size() = 0;
invariant OutgoingFlowMultiplicityIT:
self.outgoingFlow->size() <= 1;
}
class FinalTask extends IntermediateNode
{
invariant NoOutgoingFlow:
self.outgoingFlow->size() = 0;
invariant IncomingFlowMultiplicityFT:
self.incomingFlow->size() <= 1;
}
class TaskFlowDiagram
{
invariant NameEquivalence:
self.Name = self. Represents.Name;
attribute ModelID : String[?];
attribute Name : String[?];
property Represents#RepresentedBy : Task[?];

173

2. OCL Constraints Related to KAMA Metamodel Rules

In this section, rules of original KAMA metamodel are listed as OCL constraints. ID field
is based on the constraints listing in the original KAMA metamodel. If it is not traceable
to KAMA the code is based on the section it occurs in this work. This enables checking
of the rules using EMF environment.

Code Rule OCL Constraint
3.3.b.3A | (Vt,t,eT((t,,t.)e TF implies | tnvariant
L L OutgoingFlowMultiplicity:
: self.outgoingFlow—
=3, e T(k# j,(t, 1) TF)) | . =
3.3.b.3B | (Vt,t.€ T((t,,t,)€ TF implies| *"variant o
J J IncomingFlowMultiplicity:
. self.incomingFlow—
—3t, e T(k#i,(t,,t)eTF)) |, . =
3.3.g1 “The connections coming into and | invariant FlowType:
in, f isionPoi
Eo gk(;}t 0 ’a} decisionPoint must ((self. incomingFlow-
C tas OWs. >forAll(oclIsTypeOf(TaskFlow)
)) and (self.outgoingFlow—
>forAll(oclIsTypeOf(TaskFlow)
)))
3.3.g.2 Vd. e D((d,,t,)e TF, invariant |
J UniqueOutgoingFlowGuardCondit
(d;,t,)e TF,i # k) implies ion:
self.outgoingFlow->forAll(cl,
(d;,t;).guard #(d,,t,).guard) |c2 | «cl <> c2 implies
cl.GuardCondition <> cZ2.
GuardCondition) ;
3.3.g3 Vd, e D((d,,t.)e TF implies | irvariant
J ExistsOutgoingGuardCondition:
(d.,t)).guard * @) self.outgoingFlow
T ->forAll (GuardCondition <>
null) ;
3.3.h.1 Vsi c S(((t,sl.), invariant
J UniqueIncomingforForkType:
(tk,sl,)e TF,j+# k) implies self. outgoingFlow->size() >1
implies self.incomingFlow—
(s;,t,)e TF for only onel). >size() = 1;
3.3.h.2 Vs, € S(((si’tj)’ invariant |
UniqueOutgoingforJdJoinType:
(si,tk)e TF,j+# k) implies self.incomingFlow->size() >1
implies self.outgoingFlow—
(t,,s,)€ TF for only onel). >size() = 1;

174

3.3.h.3A

Vs, € S((t;,s,)€ AS
implies (t,,s,) € TF)

and
Vs, € S((t;,s,)€ AS

implies (t;,s;) & (AS —TF))

invariant
SynchronizationFlowType:
((self.incomingFlow—
>forAll(oclIsTypeOf(TaskFlow)
)) and (self.outgoingFlow—
>forAll(oclIsTypeOf(TaskFIlow)
))) i

3.3.h.3B Vs, € S((s;,t;) € AS Same as 3.3.h.3A.
implies (s;,t;) € TF)
and
Vs, € S((s;,1;) € AS
implies (s;,t,) & (AS —TF))
3.3..1 Vi. e I((x l.<)$ TF) invariant NoIncomingFlow:
J >0 ' ; ; _ ; -
self.incomingFlow->size() =
0;
3-3-,]-1 Vfi c F((fi,x)$ TF) invariant NoOuthLHgElow:
self.outgoingFlow->size() =
0;
3.3.p.1.A V(x, y) cTF invariant TaskflowSourceType:
(self.sourceTask.oclIsTypeOfL (
(xe(TuDuUSUI)) Task) or
self.source.oclIsTypeOf(Decis
ionPoint) or
self.source.oclIsTypeOf(Synch
ronizationPoint) or
self.source.oclIsTypeOf(Initi
alTask));
3.3.p.1.B V(X, y) cTF invariant TaskflowTargetType:
(self.targetTask.oclIsTypeOfL (
(yeMTUDUSUF)) Task) or
self.target.oclIsTypeOf(Decis
ionPoint) or
self.target.oclIsTypeOf(Synch
ronizationPoint) or
self.target.oclIsTypeOf(Final
Task));
3.3.p.2 “Only one faskFlow may exist invariant .
between the same source and SourceTargetDifference2:
(self.targetTask->size() = 1

target”

and self.sourceTask->size() =
1) implies not
(self.targetTask =

self. sourceTask) ;

175

3. OCL Constraints for Dynamic Properties defined in KAMA-DV

In this section the constraints of KAMA-DV metamodel that are used in the case studies
are listed as OCL constraints. Id is the section number in the KAMA-DV metamodel. The
OCL constraints are simplified based on the metamodel definition for the case study.

ID Rule OCL Constraint
Derived Attribute attribute isJoinDerived : Boolean|[?]
6.2.2.6.1 isJoin { derived,volatile }

{

derivation:

if (incomingFlow->size>1) then
isJoinDerived=true

else isJoinDerived=false
endif;

}

6.2.2.7.1 Derived Attribute attribute isMergeDerived : Boolean|[?]
isMerge { derived,volatile }

{

derivation:

if (incomingFlow->size>1) then
isMergeDerived = true

else isMergeDerived=false

endif;

}

6.2.2.1.2 Hanging Task invariant HangingTask:
self.outgoingFlow->size()= 1 implies
self.incomingFlow->size()= 1;

6.2.2.1.2 Flow Dead End invariant FlowDeadEnd:
self.incomingFlow->size()= 1 implies
self.outgoingFlow->size()= 1;

6.2.2.1.4 Existence of invariant InitialTaskRequirement:

initialTasks self.consistsOfIN->size()> 0 implies
self.consistsOfIN-
>exists(oclIsTypeOf(InitialTask));
6.2.2.1.5 Existence of invariant FinalTaskRequirement:
finalTasks self.consistsOfIN->size()> 0 implies
self.consistsOfIN-
>exists(oclIsTypeOf(FinalTask));
4.2.5 Multiple sequential invariant SequentiallIntermediateNode:

self.outgoingFlow->forAll

optional | occurrence of
(p (target=null) ;

rule) intermediateNodes
6.2.2.1.3 Task does not Invariant ForbiddenSelfConsistOf:
ConsistOf itself self—>

closure (consistsOf)->exludes(self)

176

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Eryilmaz, Utkan

Nationality: Turkish (TC)

Date and Place of Birth: 1 January 1977 , Denizli
Marital Status: Single

email: utkaneryilmaz @gmail.com

EDUCATION

Degree Institution Year of Graduation
MS METU Industrial Engineering 2006

MBA METU Management 2001

BS METU Electrical and Electronics Engineering 1999

High School Denizli Anatolian High School, Denizli 1995
WORK EXPERIENCE

Year Place Enrollment

1999-2009 METU MODSIMMER Research Assistant

1998 Erbakir A.S., Denizli Intern Engineering Student
1997 Tirk Telekom, Ankara Intern Engineering Student
FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

1. Eryilmaz U., Bilgen S., “Verification of Conceptual Models Using Metamodel
Evolution”, submitted to “Simulation, Transactions of the Society for Modeling and
Simulation International”.

2. Eryilmaz U., Bilgen S., “A Metamodel Based Approach for Conceptual Model
Verification”, submitted to 26th International Symposium on Computer and Information
Sciences.

3. Eryilmaz U., Karagoz A. “KAMA: A Tool for Developing Conceptual Models For

C4ISR Simulations”, Proceedings of the European Simulation Interoperability Workshop
(EUROSIW), (2009), istanbul, Turkey.

177

4. Sancar H., Cagiltay K., Isler V., Tamer G., Ozmen N., Eryilmaz U. “Developing a
Validation Methodology for Educational Driving Simulators and a Case Study”,
Proceedings of the 13th International Conference on Human-Computer Interaction. Part
I'V: Interacting in Various Application Domains, (2009), p. 760-769.

5. Keskin U., Eryilmaz U., Parlak F., 1§1er V. “Kritik Altyapilarin Korunmasi ve Kriz
Yonetimi Alaninda Modelleme ve Simiilasyonun Kullanimi”, 4th National Defense
Technologies Conference, Vol. 1, (2008), p. 311-320 (In Turkish)

6. Eryilmaz U., Bilgen, Molyer O. “Dogrulama ve Gegerleme Yaklagimlarimn Gorev
Uzay1 Kavramsal Modellerine yonelik Incelenmesi”, 3rd National Defense Technologies
Conference, Vol. 1", (2006), p. 63-72 (In Turkish)

7. Eryillmaz U. “Hybrid Ranking Methods Based on DEA and Outranking Methods”,
MSc thesis, Industrial Engineering, Middle East Technical University.

8. Eryilmaz U., Karasakal E. “Veri Zarflama Analizi ve Baskinlik iliskileri Metodlarm1
Temel Alan Hibrid Bir Siralama Metodu”. 26th Operations Research and Industrial
Engineering National Conference, (2006), p.498-501. (In Turkish)

9. Eryillmaz U., Karasakal E. “A Hybrid Ranking Method Based on DEA and Outranking
Methods”. 18th International Conference on Multiple Criteria Decision Making, (2006),
p-81.

HOBBIES
Trekking, hiking, playing football, reading on post-structuralism

178

