
OPTIMAL MANAGEMENT OF COASTAL AQUIFERS USING HEURISTIC
ALGORITHMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

KORKUT DEMİRBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CIVIL ENGINEERING

MARCH 2011

Approval of the thesis:

OPTIMAL MANAGEMENT OF COASTAL AQUIFERS USING HEURISTIC
ALGORITHMS

submitted by KORKUT DEMİRBAŞ in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Güney Özcebe _________________
Head of Department, Civil Engineering

Assoc. Prof. Dr. A. Burcu Altan Sakarya _________________
Supervisor, Civil Engineering Dept., METU

Prof. Dr. Halil Önder _________________
Co-Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Metin Ger _________________
İstanbul Aydın University

Assoc. Prof. Dr. A. Burcu Altan Sakarya _________________
Civil Engineering Dept., METU

Prof. Dr. Can Elmar Balas _________________
Civil Engineering Dept., Gazi University

Assoc. Prof. Dr. Nuray Tokyay _________________
Civil Engineering Dept., METU

Assoc. Prof. Dr. Mehmet Ali Kökpınar _________________
General Directorate of State Hydraulic Works

Date: 17.03.2011

 iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results
that are not original to this work.

 Name, Last name : Korkut, Demirbaş

Signature :

 iv

ABSTRACT

OPTIMAL MANAGEMENT OF COASTAL AQUIFERS USING HEURISTIC

ALGORITHMS

Demirbaş, Korkut

Ph.D., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Ayşe Burcu Altan Sakarya

Co-Supervisor: Prof. Dr. Halil Önder

March 2011, 137 pages

Excessive pumping in coastal aquifers results in seawater intrusion where optimal and

efficient planning is essential. In this study, numerical solution of single potential solution by

Strack is combined with genetic algorithm (GA) to find the maximum extraction amount in a

coastal aquifer. Seawater intrusion is tracked with the potential value at the extraction well

locations. A code is developed by combining GA and a subroutine repeatedly calling

MODFLOW as a numerical solver to calculate the potential distribution for different

configurations of solution (trial solutions). Potential distributions are used to evaluate the

fitness values for GA. The developed model is applied to a previous work by Mantoglou.

Another heuristic method, simulated annealing (SA) is utilized to compare the results of GA.

Different seawater prevention methods (i.e. injection wells, canals) and decision variables

related to those methods (i.e. location of the injection wells or canals) are added to model to

further prevent the seawater intrusion and improve the coastal aquifer benefit. A method

called “Alternating Constraints Method” is introduced to improve the solution for the cases

with variable location. The results show that both proposed method and the regular solution

with GA or SA prove to be successful methods for the optimal management of coastal

aquifers.

Keywords: Seawater Intrusion, Management of Coastal Aquifers, Genetic Algorithm,
Simulated Annealing

 v

ÖZ

KIYI AKİFERLERİNİN SEZGİSEL ALGORİTMALAR KULLANARAK
OPTİMUM YÖNETİMİ

Demirbaş, Korkut

Doktora, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ayşe Burcu Altan Sakarya

Ortak Tez Yöneticisi: Prof. Dr. Halil Önder

Mart 2011, 137 sayfa

Kıyı akiferlerinden aşırı derecede su çekilmesi deniz suyu girişimine yol açmaktadır. Bu

durum akiferlerde optimum (en uygun) ve etkin planlanma yapılmasını gerektirmektedir. Bu

çalışmada Strack’ın tek potansiyel çözümününün sayısal çözümü, genetik algoritmayla

birleştirilerek kıyı akiferlerindeki en yüksek su çekim miktarı bulunmaya çalışılmıştır. Tuzlu

su girişimi, kuyu lokasyonlarındaki potansiyel değerlerine bakılarak takip edilmiştir. Genetik

algoritma ile sayısal çözücü olarak MODFLOW’u tekrar tekrar çağıran bir altprogram

birleştirilerek bir kod geliştirilmiş ve bu kod genetik algoritma tarafından ihtiyaç duyulan

amaç fonksiyonu değerlerini hesaplamak üzere farklı çözüm konfigürasyonlarına karşılık

gelen potansiyel dağılımını bulmak için kullanılmıştır. Geliştirilen model önceden

Mantoglou tarafından çalışılan bir kıyı akiferi modeline uygulanmıştır. Genetik algoritma

sonuçlarını karşılaştırmak üzere farklı bir sezgisel yöntem olan benzetilmiş tavlama yöntemi

kullanılmıştır. Tuzlu su girişimini engellemek ve kıyı akiferden alınacak yararın artırılması

amacıyla farklı tuzlu su önleme metodları ve bu metodlara yönelik karar değişkenleri modele

eklenmiştir. Lokasyonların önemli olduğu işletme modelleri için sadece genetik algoritmanın

kullanıldığı çözümü geliştirmek üzere “Değişken Kısıtlamalar Yöntemi” adında yeni bir

metod geliştirilmiştir. Sonuçlar, önerilen yeni yöntemin ve sadece genetik algoritma ve

benzetilmiş tavlama kullanılarak elde edilen yöntemin başarılı sonuçlar ortaya koyduğunu

göstermiştir.

Anahtar Kelimeler: Tuzlu Su Girişi, Kıyı Akiferlerinin Yönetimi, Genetik Algoritma,
Benzetimsel Tavlama

 vi

DEDICATION

 To my parents

 vii

ACKNOWLEDGMENTS

I would like to thank Assoc. Prof. Dr. Ayşe Burcu ALTAN SAKARYA for her invaluable

support and suggestions during the study. This thesis would never have taken shape without

her assistance. I would also like to thank Prof. Dr. Halil ÖNDER for his guidance and his

careful reviews with a deep insight on the subject.

I would also like to express my most grateful thanks to Gizem KARSLI for her contributions

and invaluable support in the turning points of this study. Our discussions always provided a

different perspective, when things became complicated. Kubilay GÖNEN deserves

mentioning for tirelessly evoking my interest and helping me not to lose my focus on the

subject. Last but not the least; I am very grateful to my family for encouraging me in my

studies. Without their support, this thesis would hardly be completed.

 viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ…………………………...v

ACKNOWLEDGMENTS…………………………………………………………. vii

LIST OF FIGURES…………......……………………………………………….... xi

LIST OF TABLES……………………………………………………………...… xiii

LIST OF SYMBOLS………………………………………………………………. xv

CHAPTERS 1

1. INTRODUCTION... 1

1.1 OVERVIEW.. 1

1.2 LITERATURE SURVEY .. 2

1.2.1 Seawater Intrusion Modeling ... 2

1.2.2 Management of Coastal Aquifers... 6

1.2.3 Optimization Methods (GA and SA) ... 14

1.2.3.1 GA Parameters ... 16

1.3 RESEARCH OBJECTIVES .. 19

1.4 ORGANISATION OF THE THESIS .. 20

2. BACKGROUND ... 21

2.1 SIMULATION MODEL ... 21

2.2 MANAGEMENT MODEL ... 26

2.2.1 Genetic Algorithm ... 30

2.2.1.1 Initialization of the Algorithm .. 33

2.2.1.2 Selection and Decoding of the Variables .. 34

2.2.1.3 Elitism.. 37

2.2.1.4 Crossover .. 38

2.2.1.5 Mutation.. 39

 ix

2.2.2 Simulated Annealing ... 40

3. GA CODE .. 47

3.1 INTRODUCTION .. 47

3.1.1 Main Program and Initialization .. 48

3.1.2 Decoding the Variables and Calculating Fitness ... 49

3.1.3 Selection... 51

3.1.4 Crossover... 53

3.1.5 Mutation .. 55

3.1.6 Output Files... 57

4. OPTIMIZING GA PARAMETERS.. 58

4.1 DEWATERING EXAMPLE ... 58

4.2 GA PARAMETERS... 67

4.2.1 Effect of Scaling and Elitism .. 67

4.2.2 Effect of Population Number.. 68

4.2.3 Effect of Crossover Number... 69

4.2.4 Effect of Mutation Number .. 69

4.2.5 Effect of Number of Runs on Solution... 70

5. APPLICATION AND DISCUSSION OF RESULTS... 72

5.1 EXTRACTION WELLS ONLY PROBLEM .. 72

5.1.1 Discussion of Results for Extraction Wells Only Problem 74

5.2 INJECTION WELLS PROBLEM ... 78

5.2.1 Case 1: Injection Wells Problem (Fixed Locations) 78

5.2.1.1 Discussion of the Results for Case 1: Injection Wells Problem (Fixed

Locations)... 80

5.2.2 Case 2: Injection Wells Problem (Variable Locations) 84

5.2.2.1 Discussion of the Results for Case 2: Injection Wells Problem

(Variable Locations).. 84

5.2.3 An Improvement for the Solution Technique: Alternating Constraints

Method.. 87

5.2.3.1 Discussion of the Results for Case 2: Injection Wells Problem

(Variable Locations) using Alternating Constraints Method............ 88

5.2.4 Summary of the Results .. 91

 x

5.3 CANAL PROBLEM... 91

5.3.1 Case 1: Canal Problem (Variable Location and Length) 91

5.3.1.1 Application of Alternating Constraints method to Case 1: Canal

Problem (Variable Location and Length)... 94

5.3.2 Case 2: Canal Problem (Variable Location and Recharge)......................... 96

5.3.2.1 Application of Alternating Constraints Method on Canal Problem

(Variable Location and Recharge) .. 97

5.3.3 Summary of the Results .. 99

5.4 INJECTION WELLS & CANAL PROBLEM .. 101

5.4.1 Discussion of the Results for Injection Wells & Canal Problem............... 102

6. CONCLUSIONS ... 104

REFERENCES…………………………………………………………………………… 106

APPENDICES.. 113

A. GA CODE ... 113

B. SA CODE .. 131

CURRICULUM VITAE…………………………………………………………………... 137

 xi

LIST OF FIGURES

FIGURES

Figure 2.1 Ghyben-Herzberg interface model ... 21

Figure 2.2 Coastal unconfined aquifer pumped by one well ... 23

Figure 2.3 Interface elevation for different discharge values; a) QEXTi=738 m3/day

b) QEXTi=740 m3/day c) QEXTi =782 m3/day d) QEXTi =1000 m3/day for i=1,2..5 .. 26

Figure 2.4 A sketch of the geometrical elements of the management problem..................... 28

Figure 2.5 Flow chart of simple genetic algorithm.. 32

Figure 2.6 General flowchart of SA... 42

Figure 2.7 Flowchart of continuous SA... 46

Figure 3.1 Initialization code ... 49

Figure 3.2 Decoding of the variables ... 49

Figure 3.3 Part of the “Function” subroutine that calls “MODFLOW-2000” and calculates

objective function... 50

Figure 3.4 Linear scaling code... 51

Figure 3.5 Code of fitness proportionate selection .. 51

Figure 3.6 Code of tournament selection ... 52

Figure 3.7 The code that performs one-point crossover .. 53

Figure 3.8 The code that performs two-point crossover .. 54

Figure 3.9 The code that performs uniform crossover... 55

Figure 3.10 The code that performs mutation.. 56

Figure 3.11 The code that performs uniform mutation .. 56

Figure 4.1 Plan view of the aquifer.. 59

Figure 4.2 Average fitness values for pc=0 and pm=0, a) No elitism b) Elitism is applied 66

Figure 4.3 GA result from five different runs.. 67

Figure 4.4 Effect of scaling and elitism on optimization (averaged over 20 runs) 68

Figure 4.5 Effect of population number on optimization (averaged over 20 runs)................ 68

Figure 4.6 Effect of different crossover rate on optimization (averaged over 20 runs) 69

Figure 4.7 Effect of mutation rates on optimization (averaged over 20 runs) 70

Figure 4.8 The results for different number of runs a) Five runs b) Ten runs

c) Twenty runs ... 71

 xii

Figure 5.1 Plan view of the aquifer.. 73

Figure 5.2 Best solution found by GA for Mantoglou (2003) problem................................. 75

Figure 5.3 φ values corresponding to optimal solution.. 75

Figure 5.4 a) Saltwater-freshwater interface for the optimal solution b) Freshwater zone

vertically exaggerated c) Longitudinal cross-section of freshwater head

at y=1500 m ... 76

Figure 5.5 Best optimal results found by SA and GA ... 78

Figure 5.6 Finite difference representation of the model (where; WINJi is the ith injection

well) ... 79

Figure 5.7 Best solution found by GA and SA .. 82

Figure 5.8 φ values corresponding to optimal solution GA ... 83

Figure 5.9 a) Freshwater head corresponding to optimal solution b) Longitudinal

cross-section of freshwater head at y=1500 m... 83

Figure 5.10 φ values corresponding to optimal solution.. 86

Figure 5.11 a) Freshwater head corresponding to optimal solution b) Longitudinal

cros-section of freshwater head at y=1500 m... 86

Figure 5.12 The flowchart for the current method... 88

Figure 5.13 Best fitness values corresponding to optimal solution for Alternating

Constraints Method.. 89

Figure 5.14 φ values corresponding to optimal solution GA ... 90

Figure 5.15 a) Freshwater head corresponding to optimal solution b) Longitudinal

cross-section of freshwater head at x=1500 m... 90

Figure 5.16 φ values corresponding to optimal solution.. 95

Figure 5.17 a) Freshwater head corresponding to optimal solution. b) Longitudinal

cross-section of freshwater head at x=1500 m... 96

Figure 5.18 φ values corresponding to optimal solution GA ... 98

Figure 5.19 a) φ values corresponding to optimal solution. b) Longitudinal

cross-section of freshwater head at x=1500 m.. 99

Figure 5.20 Best optimal result found by GA and SA .. 103

 xiii

LIST OF TABLES

TABLES

Table 2.1 An example of an initially generated population with P=5,η =2, l1=6, l2=4 and

L=10 = (l1+ l2) .. 33

Table 2.2 One point crossover example... 38

Table 2.3 Two point crossover example .. 39

Table 2.4 Uniform crossover example... 39

Table 2.5 Mutation operator example .. 39

Table 4.1 Locations of the wells and control points .. 58

Table 4.2 The characteristic of GA for different penalty values.. 60

Table 4.3 An example of an initial population generated by GA .. 61

Table 4.4 Decoded values of decision variables .. 62

Table 4.5 Fitness and penalty values for initial population ... 63

Table 4.6 Expected probabilities of selection in initial generation.. 64

Table 4.7 An example of crossover from the sample problem .. 65

Table 4.8 An example of mutation from the sample problem ... 65

Table 4.9 Average and best fitness values through generations .. 66

Table 5.1 Location of the extraction wells... 73

Table 5.2 Optimal well rates for different algorithms.. 77

Table 5.3 Location of the injection wells... 79

Table 5.4 Optimal well rates (α=1.0)... 81

Table 5.5 Optimal well rates (α=0.5)... 82

Table 5.6 Optimal well rates and locations (α=0.5) .. 85

Table 5.7 The maximum, minimum and average of the optimal solutions for the Injection

Well Problem (Variable Locations), α=0.5 (Among 20 runs for GA and 5 runs

for SA).. 89

Table 5.8 Best optimal results found for Injection Well Problem, α=0.5 (Bolds are values

that are optimized, the other values are fixed for the related solution) 92

Table 5.9 Optimal well rates for β=0.5 (Bold values are optimized values, the other values

are fixed)... 95

 xiv

Table 5.10 Optimal well rates for β=0.5 (Bold values are optimized values, the other values

are fixed)... 98

Table 5.11 Optimal well rates for β=0.5 (Bold values are optimized values, the other values

are fixed)... 100

Table 5.12 Optimal decision variables for the Injection Wells & Canal Problem for α and

β=0.5 (Bolds are optimized values, the others are fixed values).......................... 103

 xv

LIST OF SYMBOLS

γs Specific weight of seawater

γf Specific weight of freshwater

hs Depth of interface below sea level

ht Elevation of water table above sea level

ρf Density of fresh water

ρs Density of seawater

δ Constant that equals (ρs - ρf)/ρf

K Hydraulic conductivity

b Thickness of freshwater zone

hf Elevation of water table above datum

d Elevation of sea level above datum

N Incoming volumetric flow rate per unit horizontal area

W Outgoing volumetric flow rate per unit horizontal area

z Elevation of interface above datum

φ Flow potential defined by Strack (1976)

φtoe Potential at the toe of seawater

m Number of extraction wells

n Number of injection wells

EXTiQ Extraction rate for ith extraction well

INJjQ Injection rate for jth injection well

RCAN Recharge rate for canal

α Ratio of the economical value of injected water to the economical value of extracted

water

β Ratio of the economical value of recharged canal water to the economical value of

extracted water

x∆ Length of the discretization in x-coordinate direction

y∆ Length of the discretization in y-coordinate direction

iφ Potential at ith extraction well

 xvi

u
EXTiQ Upper limit for ith extraction well

l
EXTiQ Lower limits for ith extraction well

u
INJjQ Upper limit for jth injection well

l
INJjQ Lower limits for jth injection well

INJjx x-coordinate of the ith injection well

INJjy y-coordinate of the ith injection well

u
INJjx Upper limit of xINJj

l
INJjx Lower limit of xINJj

u
INJjy Upper limit of yINJj

l
INJjy Lower limit of yINJj

CANx x-coordinate of the canal

CANy y-coordinate of the canal

u
CANx Upper limit for x-coordinate of the canal

l
CANx Lower limit for x-coordinate of the canal

u
CANy Upper limit for y-coordinate of the canal

l
CANy Lower limit for y-coordinate of the canal

CANl Difference between the starting and ending coordinate of the canal in y-direction

u
CANl Upper limit of lCAN

l
CANl Lower limits of lCAN

c Penalty constant

G Maximum number of generation

g Generation number

P Population number

L Total string length

η Number of decision variables

li String length of ith decision variable

iυ Binary representation of ith individual in a population

 xvii

zj Binary representation of jth decision variable

ri Base 10 value of ith
 variable,

i
jB Value of jth

 bit of the ith variable

xi i
th decision variable

u

ix

Upper bound of ith decision variable

l

ix

Lower bound of ith decision variable

fi
Fitness of the ith

 individual

iτ Selection probability for the ith
 individual,

fsum Sum of all fitnesses in a population

scal

if Scaled fitness of ith individual in a population

favg Average fitness of individuals in a population

scal

avgf
 Average fitness of the scaled population

scal

bestf

Scaled fitness of the best individual.

scalλ Scaling constant

fbest Best fitness in a population

pc Crossover probability that is selected between 0 and 1

pm Mutation probability that is selected between 0 and 1

i
mp Probability of mutation at ith bit for uniform mutation.

*
bestf Best fitness till current generation

f Objective function

*
ix

i
th decision variable of the best fitness till current generation

pacp Probability of acceptance of the new solution

fnew Cost of the new solution for SA

facp Cost of the previously accepted solution for SA

T Control parameter for SA

X Solution vector

X0 Initial solution vector

Xnew New solution vector

Xacp Accepted solution vector

Xopt Optimal solution vector

 xviii

new
ix New value of the ith the decision variable for SA

R A random positive real number between 0 and 1

vi Step length for the ith decision variable

accp
iκ The number of accepted trials for each decision variable

ω Constant parameter usually chosen between 1 and 2

Ns Number of cycles till step-size adjustment

Nt Number of cycles till T adjustment

tconst Constant parameter used to update T

WEXTi i
th extraction well

CPj j
th control point

u

jh Upper limit for the hydraulic head at jth control location

CPjh Head at jth control point

WINJi
i
th injection well

 1

Chapters

CHAPTER 1

1. INTRODUCTION

1.1 Overview

Rapidly growing human population and increasing human activity bring enormous

pressure to the limited water supplies. Due to uncontrolled use, in many parts of the world

water resources are in danger of running out.

Groundwater is the main source of freshwater in earth. High percentage of usable

freshwater is stored under the surface, in the layers of soil formations (Leap, 2004). Of all

these formations, aquifers are the most important ones, with their ability to store and transmit

water with high efficiency. The water in the aquifers are supplied by the recharges from the

higher grounds and with the potential energy developed it flows slowly through the soil

pores feeding the surface water on the way till reaching to the sea at the end.

Coastal areas are one of the main centers of human settlements. The use of

groundwater by extracting it from the wells has always been common and main source of

water consumption, especially where surface water does not exist. Normally, groundwater

flowing to sea is replenished by natural means. However, if it is consumed faster than it is

replenished, freshwater storages will be filled with or contaminated by seawater and the

valuable aquifers will be damaged at a point of no return or at least with a recovery cost of

huge amounts.

The objective of the study is to introduce a management model for the maximum

extraction of groundwater in a coastal aquifer while not permitting seawater intrusion. The

proposed model includes the modeling of the coastal aquifer and combining with the global

optimization method, Genetic Algorithm (GA). Simulation model is based on single

potential solution by Strack (1976) which assumes that freshwater and saltwater are

 2

immiscible and there exist a sharp interface separating the two fluids. The performance of

the optimization algorithm will be tested on different groundwater scenarios including

different seawater prevention methods (i.e. injection wells and canals). The result of the

optimization algorithm GA will be compared with another heuristic method, Simulated

Annealing (SA). To test the performance of GA and SA, Linear Programming (LP) or Mixed

Integer Programming (MIP) will be utilized, whenever applicable.

1.2 Literature Survey

Under this title, a literature review based on previous studies on the subject is provided.

Firstly, seawater intrusion modeling studies in coastal aquifers are presented. Then,

management studies on coastal aquifers are summarized. Lastly, general studies on GA and

SA are briefly discussed.

1.2.1 Seawater Intrusion Modeling

There are basically two different approaches for modeling seawater intrusion in coastal

aquifers. In miscible fluid assumption, there exists a transition zone where seawater and

freshwater mix due to hydrodynamic dispersion (Essaid, 1999). Miscible fluid assumption

requires the simultaneous solution of the groundwater flow and mass transport equations.

Analytical solutions to these equations are very limited and numerical solutions usually

require high computation power (Essaid, 1990a). In the simpler approach, it is assumed that

freshwater and saltwater does not mix and there exist a sharp interface that separates the two

fluids. This assumption is valid especially when the width of the aquifer is narrow with

respect to the depth of the aquifer (Essaid, 1986).

Sharp interface models are mainly classified into two (Essaid, 1990a): i)In a two-fluid

approach, coupled equations of saltwater and freshwater flows are solved. ii)In a one-

dynamic fluid approach, saltwater is assumed stagnant and only freshwater flow dynamics

are utilized (equation regarding the freshwater flow is utilized). Seawater adopts the newly

formed interface instantaneously.

Studies of seawater intrusion models based on sharp interface assumption goes back to the

beginning of the second half of the twentieth century. Some of the major works include

 3

Henry (1959), Shamir and Dagan (1971) and Mercer et al. (1980). Later studies enabled the

application of sharp interface assumption on multilayer problems, including the works by

Wilson and Costa (1982), Essaid (1986) and Huyakorn et al. (1996).

Henry (1959) proposed an analytical solution of the saltwater intrusion for one dimensional

steady state flow. Seawater and freshwater are assumed immiscible. For different boundary

conditions, the equations of the sharp interface are derived.

Shamir and Dagan (1971) introduced the partial differential equations that govern the motion

of groundwater flow and describe the location of interface for a shallow unconfined aquifer.

The equations are based on sharp interface and Dupuit-Forcheimer assumption (Bear and

Zhou, 2004). Examples of numerical solution for a moving interface are given. It is reported

that for a shallow aquifer, seepage length can be taken as zero without much error.

Mercer et al. (1980) presented a finite difference numerical model to solve the coupled

equations of saltwater and freshwater flow. The assumptions include; sharp interface

assumption, Dupuit-Forcheimer assumption and impermeable aquifer base.

Wilson and Costa (1982) solved finite element simulation of two layered coastal aquifer.

Dupuit-Forcheimer assumption enabled the vertical integration of flow equations. The flow

in vertical dimension is handled by adding leakage terms in governing equations.

Polo and Ramis (1983) presented a mathematical model to describe the saltwater freshwater

motion with a sharp interface and Dupuit-Forchheimer assumption. Tests with analytical

solutions are performed and reported to give good results. Numerical solution using finite

difference approximation is also given.

Essaid (1986) introduced a quasi-three dimensional finite difference model to compare the

two sharp interface models; coupled freshwater-saltwater model (two-fluid flow) and the

Ghyben-Herzberg sharp interface model (one-dynamic fluid flow), (Essaid, 1999). He tested

different cases to see the departure of one-dynamic fluid flow from the two-fluid flow. He

concluded short-term responses and transitional responses between short term and long term

can only be realistically simulated by including the dynamics of saltwater flow. In other

 4

cases, where long term responses are required or short-term responses of an aquifer with

high conductivity is studied, one fluid flow can be used.

Application of miscible flow for the aquifers with narrow transition zones are reported to

arise some difficulties in the solution. Voss and Souza (1987) introduced some modifications

for the variable density application of the simulation of coastal aquifers containing a narrow

freshwater-saltwater transition zone.

In a study by Essaid (1990a), a finite difference model that simulates freshwater and

saltwater flow separated by a sharp interface is developed to study a multilayered coastal

aquifer. Flow between the layers is assumed vertical and added to the governing equations as

a leakage term. Tip and toe locations for the interface are found by linearly extrapolating the

discrete points (locations) found by numerical solver.

Galeati, et. al (1992) presented a numerical solution of the density dependent flow model for

an unconfined aquifer. The proposed method is used to study the coastal aquifer in Italy,

where seawater intrusion occurs due to excessive dewatering. Two dimensional flow in

vertical cross-section is modeled using finite element method.

Huyakorn et al. (1996) developed a sharp interface numerical model to simulate saltwater

intrusion in multilayered coastal aquifer systems. The dynamics of both freshwater and

saltwater flow are considered.

Sakr (1999) studied the validity of sharp interface model in a confined coastal aquifer.

Different cases were solved first with immiscible flow (sharp interface), then by density

dependent model. To find the limitations of sharp interface, steady and non-steady models

are solved by changing different parameter values; seepage factor, dispersion to advection

ratio, geometry ratio and time scaling factor. Steady state simulations showed that the sharp

interface approach is valid when the system is dominated by advection. The unsteady

analysis showed that the use of sharp interface for all cases is sufficiently accurate at early

times of simulation.

Karahanoğlu and Doyuran (2003) studied the case concerning the excavations below sea

levels in a coastal aquifer in Kocaeli-Darıca, Turkey. Eleven new wells were drilled to

 5

estimate the hydro-geological features and also for the monitoring of the area. Two different

scenarios are considered to study the seawater intrusion into aquifer. Two dimensional finite

element solution of the model is given.

Camur and Yazıcıgil (2005) introduced a three dimensional numerical density dependent

flow and transport simulation model to predict the effects of an artificial water canal opening

planned between Aegean Sea and historical Ephesus Site. The simulations included pre-

pumping and pumping periods without canal and prediction period in the presence of canal.

The results indicated that opening could cause further seawater intrusion and would affect

the pumpage period for the nearby wells.

Ranjan et al. (2004) focused on the effects of geo-hydrological factors and recharge on

saltwater-freshwater interface. A conceptual model based on sharp interface was considered

to estimate the change in freshwater saltwater interface. The results showed that saltwater

intrusion is far more sensitive to recharge than aquifer properties (i.e. storage coefficient,

porosity, hydraulic conductivity).

Books about seawater intrusion includes complete books dedicated to the subject (i.e. Bear et

al., 1999) and books with chapters that cover seawater intrusion concept (i.e. Delleur, 2004a)

Bear et al. (1999) edited a complete book about seawater intrusion, where different concepts

of the subject are written by different authors. The book nicely summarizes the seawater

intrusion subject, by including the mathematical models, analytical and numerical solution

methods and case studies involving management problems. “Analytical Solutions” chapter

by Cheng and Ouazar (1999) describes the derivation of single potential solution by Strack

(1976) and different scenarios by changing the location and discharge value of an extraction

well and a canal.

Delleur (2004a) gathered chapters written by different authors from the field in a book that

covers the groundwater subject from fundamental mathematical theorems to different site

applications. Chapters that involve seawater intrusion concept and management of seawater

intrusion include “Elementary Groundwater Flow and Transport Processes” by Delleur

(2004b) and “Seawater Intrusion into Coastal Aquifers” by Bear and Zhou (2004).

 6

1.2.2 Management of Coastal Aquifers

Initial efforts to support and improve the operation of groundwater systems by simulation

and optimization techniques are started in early 1970’s (Benhachmi et al., 2003). Gorelick

(1983) made a review of the single objective linear simulation management models for

groundwater. According to Gorelick, there are basically two types of management models;

embedded and response matrix approach. In the embedded approach, formulations of

groundwater equations are directly written into optimization formulation. In response matrix

approach, a matrix of influence coefficients is formed by utilizing the unit response of the

system to a unit impulse. The method which is valid for linear systems requires iterations for

nonlinear systems (Tokgöz et al., 2002 and Demirbaş, 2003).

Later, Ahfeld and Heidari (1994) summarized the characteristics of hydraulic control design

problems and approaches to solve these problems in a groundwater system. Field

applications are classified into water supply management problems and remediation

management problems.

Management of coastal aquifers usually require the simulation of the equations related to

seawater and freshwater flow. The studies can be classified according to the type of the

interface assumption for the simulation (see Section 1.2.1). Among the many studies that

utilizes the sharp interface assumption, studies made by Willis and Liu (1984), Shamir et al.

(1984), Finney et al. (1992), Willis and Finney (1998), and Emch and Yeh (1998) can be

listed. Studies that utilize density dependent flow are relatively new. However, the number

of applications is increasing with the increasing power of today’s computers. Some of the

works are Das and Datta (1999, 2001).

Constraining the saltwater intrusion is often provided by indirect manners like constraining

drawdown at control points or minimizing seawater flow at certain locations (Benhachmi et

al., 2003). Others include tracking the seawater encroachment or checking the saltwater

concentration at certain locations (i.e. extracted water).

The management model applications in saltwater intrusion often require the use of nonlinear

optimization due to complexity of governing equations (Emch and Yeh, 1998). Later using

 7

global optimizers like GA became popular. Some of the works are Cheng et al. (2000), Park

et al. (2003), Park and Aral (2003), Mantoglou et al. (2004), Benhachmi et al. (2001, 2003),

Katsifarakis and Petala (2004, 2006), Mantoglou and Papantoniou (2004, 2008), Qahman

and Larabi (2005). Bhattacharjya and Datta (2005). Studies made by SA also exist, although

their numbers are few. Rao et al. (2003) and Rao et al. (2004) can be listed as examples.

Willis and Liu (1984) proposed a multiobjective management model, which is applied to

Yun Lin Basin in Taiwan. For the basin, water demands has become larger than the natural

recharge values which results in saltwater intrusion. A finite element model is formed to

simulate the aquifer response. Conflicting objectives include maximizing the groundwater

extraction to supply the water demand and groundwater levels in the coastal region where

seawater intrusion occurs.

Shamir et al. (1984) made a study to determine the optimal annual operation of a costal

aquifer by considering four objectives; a desired groundwater surface map, desired location

of the seawater toe, desired concentration map and the minimization of the energy (cost) for

pumping. A trade-off curve is formed to choose between different desirable solutions. The

model is applied to a coastal aquifer in Israel.

Finney et al. (1992) used sharp interface assumption and coupled equations of freshwater

and saltwater flow for the simulation of multi-layered aquifer. The flow in aquifer layers are

based on flow equations in two dimensions. Flows in vertical direction between different

layers are provided with the recharge terms in governing equations. A multi-objective

optimization model is developed in order to satisfy a certain water demand and to minimize

the seawater volume. The resulting problem is solved with a nonlinear optimization solver

package, MINOS (Murtagh and Saunders, 1993). Seawater intrusion is constrained with

restrictions on possible pumping and recharge locations.

Hallaji and Yazıcıgil (1996) used response matrix approach for the combined simulation

optimization of seawater intrusion model in southern Turkey. In their solution, they used

head constraint in specified locations for the control of saltwater intrusion. Several

management models are studied to find the optimal operating policy. Tradeoff curves are

built for the objectives of optimal pumping rates and minimum pumping costs. The best

 8

alternative found is explained as pumping excess water from the most productive wells and

transport them to the remaining areas.

Emch and Yeh (1998) used multi-objective management model to manage the groundwater

resources and together with the coastal surface water. Two fluid sharp interface assumption

is utilized. The conflicting objectives considered were the minimization of seawater intrusion

and minimization of cost of supplying water. Saltwater intrusion is tracked with the level of

interface. Water demand is given as a lower bound constraint. Additional constraints related

to minimum drawdowns at control points are also included. MINOS used as an optimization

tool and SHARP (Essaid, 1990b) as the flow simulator.

Two fluid sharp interface assumptions is utilized by Willis and Finney (1998) for the

management of a coastal basin in Taiwan. The basin is modeled using finite difference

approximation. Resulting management problem is solved using two different nonlinear

optimization methods. Different objective functions are combined in a single potential

function by using different weighing constants for each objective function term. Objectives

include minimization of pumping, minimization of injection costs and minimization of

seawater intrusion. Seawater intrusion is tracked with the position of the toe of the interface.

Das and Datta (1999) utilized embedding technique where numerically approximated

simulation equation of the flow is incorporated as constraint set of optimization model for

the management of multiobjective management of a coastal aquifer. Seawater, freshwater

interaction is modelled as a density dependent miscible flow and transport model. Nonlinear

optimization solver package MINOS, is used as an optimization tool.

Three dimensional density dependent miscible flow and transport model for a seawater

intruded coastal aquifer is studied by Das and Datta (2001). Effects of vertical recharge,

boundary conditions and location of pumping on simulation model are investigated and

following conclusions are derived: i) amount of seawater intrusion is found inversely

proportional with recharge, ii) seawater intrusion increased with decreasing boundary head.

iii) Increased pumping increased salinity. iv) Location of the well has a significant effect on

seawater intrusion (i.e. away from the coast, there is less danger of saltwater intrusion).

Lastly, Das and Datta (2001) experimented with a series of barrier wells and concluded that

 9

installing series of barrier wells that are close to the sea boundary is an effective way to

avoid seawater intrusion.

Zhou et al. (2002) utilized response matrix approach to manage the freshwater sources

without permitting seawater intrusion on a multilayered aquifer system in Leizhou Peninsula

in southern China. A quasi-three dimensional flow (horizontal flow, flow in the vertical

dimension are included in governing equations by leakage terms) on a finite element model

is used to simulate groundwater levels in the aquifer system. Control of the seawater

intrusion is attained by restricting the water levels at points along the coast.

Motz et al. (2004) used response matrix approach to combine two dimensional miscible flow

and a linear optimization model. Response matrices are formed by repeatedly calling

groundwater flow and transport model SUTRA (Voss, 1984).The model is used for the

management of seawater intrusion in Göksu Delta in Southern Turkey.

One of the early applications of genetic algorithm on groundwater problems is the study by

McKinney and Lin (1994). Three different management problems are solved to test the

performance of GA on groundwater management. These problems include a pumping

management problem which maximizes the extraction amount by constraining drawdown at

certain control points, a cost management problem which minimizes the installation and

operating costs for a number of potential well locations to provide a certain water demand

and a cost minimization for an aquifer remediation problem. Results showed that GA can

effectively and efficiently be used to obtain global (or at least near global) optimal solutions

to these groundwater management problems.

Aly and Peralta (1999) introduced a simulation and optimization approach for single and

multi-objective planning period for a groundwater contamination remediation. Proposed

optimization model was tested with GA and a nonlinear optimization algorithm (mixed

integer nonlinear programming) using different scenarios. GA found better results than the

mixed integer nonlinear programming for more complex problems.

Cheng et al. (2000) used the analytical solutions of the freshwater flow to analyze the cases

with one-well, two-well and one-well with recharge canal. For multiple wells, a management

problem is developed to optimize the maximum pumpage and GA is used to search for the

 10

optimal solution. Sharp interface is assumed for the transition zone. Dupuit-Forchheimer

assumption is used to vertically integrate the flow equation. Together with the above

assumption and assumption of static seawater lead to the single potential solution by Strack

(1976). Seawater intrusion is tracked with the potential taking a specific value at the well

location. First, critical pumpage rates for a single well intruded with saltwater is studied.

From the derived equations, a design chart is provided, where intrusion distance and

maximum pumping rate versus toe potential is given. The same equations are derived for two

well case where the wells are separated at a distance from each other and at some distance

away from the coast. A dimensionless chart is presented where maximum discharge is given

as a function of toe potential and the ratio of the distance between the wells to the distance to

the coast. For the case with recharge canal and one extraction well, equations are provided

for the changing locations of the canal. From the results, it is seen that critical extraction is

increasing when canal moves away from the coast till a critical distance. From this distance

on, the critical extraction rate remains the same.

Analytical solutions for a two dimensional steady saltwater-intruded coastal unconfined

aquifer based on the sharp interface assumption and Strack (1976) solution is successfully

applied to a management model using genetic algorithm by Benhachmi et al. (2001).

Benhachmi et al. (2003) applied GA to a seawater intruded groundwater management

problem in Miami coast. For the simulation model, analytical solution of the single potential

formulation by Strack (1976) is used. Aquifer geometry is simplified (i.e. straight coastline,

constant thickness, homogeneity, etc.) to enable the use of analytical solution. Solution of the

aquifer for multiple wells is found by using method of images as given by Strack (1976). The

management objectives were to maximize the economic benefit from pumped water and

minimize the utility cost of lifting the water. Toe encroachment invading the wells (i.e. if the

toe location from the coast in front of a well is greater than the distance of the well from the

coast) are included in the objective function as a penalty to control the seawater intrusion for

the management.

Park and Aral (2003) combined single potential formulation by Strack and GA to optimize

the conflicting objectives of maximum amount of extraction and minimum distance to the

coast without letting seawater intrusion. They concluded that including the well locations as

a decision variable improved the results significantly.

 11

For the large number of the simulation evaluations required for the solution by GA, Park et

al. (2003) utilized a PC cluster of 32 processors. Fitness function for GA is computed in a

parallel manner in order to decrease the solution time. Coupled equations of freshwater and

saltwater flow with sharp interface approach are used for the solution of the simulation

model. Seawater intrusion is constrained by groundwater levels at certain points, the quantity

of saltwater pumped and the salt concentrations at the extraction wells. These constraints are

added to the objective function as a penalty term with different weighting constants.

Objective was to withdraw maximum amount of groundwater.

In the study made by Katsifarakis and Petala (2004, 2006), the numerical evaluation of

groundwater flow with boundary element code and seawater inflow is checked with the sign

of flow rate value at the coastal boundary element. Optimal location and optimal withdrawal

rate for two wells is studied with the proposed model.

Mantoglou (2003) developed a model that seeks for the optimal pumping rates for a coastal

aquifer. Single potential solution based on sharp interface assumption and Ghyben-Herzberg

relation is used for the simulation model. Seawater intrusion is tracked by the toe location.

Analytical solutions are compared with numerical solutions. The methodology was applied

to an aquifer in Greek island of Kalymnos.

Mantaglou et al. (2004) compared a nonlinear optimization algorithm (sequential quadratic

programming) and evolutionary algorithm for the maximum extraction rates in a coastal

aquifer using the single potential solution by Strack (1976). They found that although

sequential quadratic programming reaches solution far more quickly, it could stuck on local

optimums.

Mantoglou and Papantoniou (2004) used evolutionary algorithms to manage a pumping

network in a coastal aquifer. The formulation of the constraints is based on numerical

formulation of sharp interface assumption and Ghyben-Herzberg approximation that leads to

single potential formulation of Strack (1976). The objectives were to optimize the total

pumping rates and well locations. The proposed methodology was applied to a Greek island.

Evolutionary algorithm was developed using MATLAB and differential equation for flow

 12

(single potential solution for an unconfined aquifer) is solved by using the finite difference

solver, MODFLOW (McDonald and Harbourgh, 1988).

Bhattacharjya and Datta (2005) utilized density dependent miscible flow and transport model

and GA to maximize the water extracted in a coastal aquifer. Saltwater intrusion is controlled

by constraining the salt concentration in extracted water. To reduce the computational

burden due to high number of function evaluations, a trained artificial neural network

(approximate simulator) instead of the simulation model is used to calculate the response of

aquifer to different solution configurations.

Qahman and Larabi (2005) considered a hypothetical coastal confined aquifer, which is a

modified version of Henry’s problem (Voss, 1984). The flow was modeled as three

dimensional density dependent miscible flow and transport model. Simulation scenarios

include maximizing the total volume of extracted water, maximizing the profit of selling

water, minimizing the operational and water treatment costs and minimizing the salt

concentration of pumped water. Maximum allowable salt concentration in extracted water

and minimum head in the wells are used as constraint, for seawater intrusion. GA was used

as the optimization tool.

Mantoglou and Papantoniou (2008) introduced a method, where pumping locations are

optimized by GA where for each individual extraction rates are optimized with linear

programming. The single potential solution by Strack (1976) is used to find the response of

the aquifer to different discharge combinations.

SA applications in groundwater management are relatively few. In a study made by Kuo et al

(1991), optimal locations and discharge values for the wells in a pump and treat system in a

groundwater contamination site is solved by using SA. The algorithm is designed as

combinatorial algorithm and decision variables are chosen accordingly (i.e. from a specified

set of potential values). Although required more computational time, SA algorithm is

reported to give better results for which the search space is non-smooth due to well

installation cost involved in objective function.

Wang and Zheng (1998) compared the performance of SA and GA for the solution of a

groundwater management problem, where either maximum groundwater demand or

 13

minimum cost of extraction is searched for. It is reported that GA and SA gave identical or

better results than the linear and nonlinear programming. SA is reported to require less

number of function evaluations. However, Wang and Zheng (1998) also stated that SA

solutions are highly dependent on empirical parameters.

Cunha (2002) compared four different optimization methods, including simulated annealing

for groundwater development planning for a hypothetical problem designed for a real

aquifer. The model to be solved included capital costs for the placement (drilling and

installing costs) and variable costs for the operation of the new wells. Cunha (2002) reported

that all the solutions except simulated annealing is very sensitive to the initial solution. Using

different initial solutions, simulated annealing showed its robustness by almost always

achieving the same solutions. Though the solutions are reported to be much more time

consuming than the others, results by SA found to be better.

Rao et al. (2003) used simulated annealing to search for the optimal groundwater solution in

deltaic regions without inducing excessive saltwater intrusion. SA was coupled with SHARP

flow model and was used to find the optimal location and pumpages of extraction wells. The

computational burden is lowered by replacing SHARP with an artificial neural network.

SHARP flow model is a solver based on sharp interface assumption and coupled equations

of freshwater and saltwater flow. Seawater intrusion is controlled by a interface elevation

constraint at specified nodes.

Rao et al. (2004) controlled the seawater intrusion through a series of barrier wells (wells

that extracts the saltwater and throws it back to the sea) while maximizing the extraction

amount. Multi-objective management problem is solved using SA as an optimizer and

SEAWAT (Guo and Langevin, 2002) for simulating the seawater groundwater dynamics

based on density dependent groundwater flow and transport model. Seawater intrusion is

controlled by checking the salt concentration in the wells and restraining head values at

control points. To reduce the computational burden arised from the solution of density

dependent problem, SEAWAT model is replaced with a trained artificial neural network.

Simulated annealing algorithm is utilized to solve the optimization problem. Tradeoff curves

are formed between two objectives, maximization of groundwater development through

production wells and minimizing the pumpage from the barrier wells.

 14

In an effort to identify the groundwater source parameters (i.e. pumping source location,

pumping rate and period, etc.), Lin and Yeh (2008) used SA as an optimization tool and

MODFLOW as the numerical solver. Following the results, they gave least number of

parameter values to analyze the source information. It is reported that combination of SA and

MODFLOW gave successful results including the cases with measured errors.

1.2.3 Optimization Methods (GA and SA)

There are various books in literature written about GA. Most of these books are introductory

books that cover the subject by explaining the GA from the scratch. Among those Coley

(1999), Haupt and Haupt (2004) and Sivanandam and Deepa (2007) can be listed. Others

took the subject on a broader perspective by covering the family of algorithms involving GA

(i.e. evolutionary algorithms). Examples are the books by Michalewicks (1996) and De Jong

(2006). Majority of these books discuss how GAs work by using the empirical evidence.

However, there are few giving the theoretical foundation like the famous work by Goldberg

(1989).

Since SA is a stochastic algorithm that is built over natural phenomena like GA, there are

discussion about SA in most of the above books. However, the scope of these discussions is

rather limited. Books that cover SA in a complete book also exist, like the study by Van

Laarhoven and Aarts (1987). In following paragraphs, a detailed surveying of these books

will be given.

De Jong (2006) studied the family of evolutionary algorithms, which include GA as a

subarea. Evolutionary algorithm is defined as the iteration of population of individuals

evolving to a better fitness with certain selection, reproduction and mutation mechanisms.

De Jong (2006) then described GAs as the type of evolutionary algorithm where all the

individuals are replaced by the offsprings after one generation and mating individuals are

selected according to their fitness for which the offsprings are generated by recombining

generic information by crossover and random alteration of the bits by mutation. To better

understand the basics of evolutionary algorithm, De Jong (2006) returned to the roots of

evolutionary system in biology which mainly consists of; i) population or populations

competing for a limited source ii) constantly changing population with the births of new

individuals and death of old individuals iii) fitness which is defined as the degree of survival

 15

for a specific individual iv) reproduction which gives offsprings similar to parents but

somehow different (concept of inheritance).

Banzhaf and Rieves (1999) edited and published the proceedings of workshop, named

“Foundations of Genetic Algorithm”. The workshop is organized under the direction of

International Society for Genetic Algorithm and reviewed with well-known authors from the

field. The workshop titles mostly focused on the theoretical issues related to GA and

improvements in GA.

Sivanandam and Deepa (2007) presented the basic concepts related to GA, with special

emphasis on the roots of GA, which are connected to biology. This was inspiring since the

first application of GA by Holland (1975) was for the simulation of the evolution of a system

in nature. Some biological background on cells, genes, chromosome and DNA are given.

The structure of genetic information on DNA (genotype), what it represents (phenotype) and

how it is carried to offsprings by reproduction is discussed in an effort to understand the

counterparts of these concepts in GA.

In his well-known book, Goldberg (1989) tried to explain why and how GAs work both with

empirical and theoretical work. “Schema Theorem” introduced by Holland (1975) is

explained in detail. In the end, case studies are discussed, where special attention is given to

machine learning.

In his book, Coley (1999) made a brief introduction to GA, where basic and advanced

operators and how they affect the results of the algorithm are discussed. Different methods to

improve the simple GA (i.e. using hybrid methods, advanced coding techniques, etc.) are

explained. A whole chapter is dedicated to how to write a basic GA algorithm and a sample

code written in Fortran 90 is given in the end.

Michalewics (1996) listed the various optimization areas where GA is successfully applied,

including the hydraulic control problems. He defined GAs as: “During the last decade, the

significance of optimization has grown even further, many important large-scale

combinatorial optimization problems and highly constrained engineering problems can only

be solved approximately on present day computers. Genetic algorithms aim at such complex

problems. They belong to the class of probabilistic algorithms, yet they are very different

 16

from random algorithms as they combine elements of directed and stochastic search.

Because of this, GAs are also more robust than existing directed search methods. Another

important property of such genetic based search methods is that they maintain a population

of potential solutions - all other methods process a single point of the search space.

Examples on combinatorial optimization and the ones which include continuous decision

variables are discussed.” For binary representation, “Schema Theorem” by Golderg (1989) is

given as a theoretical foundation of why GAs work. Floating number representation is

compared to binary coded representation and from the results obtained, it is concluded that

floating number representation is superior to binary representation.

Different types of GA operators (i.e. one point, two point, uniform crossover etc), and their

effects on searching the solution space is given in detail by Haupt and Haupt (2004).

Concepts are explained with basic applications and methods to handle advanced applications

are listed. The other algorithms based on natural phenomena including SA are summarized.

Classification of different types of GAs and their definitions are given in a chapter.

Van Laarhoven and Aarts (1987), defined SA as an approximation algorithm that can be

applicable to a wide variety of problem. Theoretical proof that SA will always converge to a

global optimum is given by using the theory of Markov chains (Markov chains are sequence

of algorithms which define the acceptance criteria for iterative solutions (See Section 2.2.2)).

However, since any implementation of SA is an approximation of the assumptions accepted

for the mentioned proof (i.e. infinite number of Markov chains), there is no guarantee that a

global optimum will be found using SA. In the book, different types of SA implementations

are discussed and performance for these cases are analyzed. Van Laarhoven and Aarts

(1987) reported that adaptive SAs (i.e. SAs with adaptive parameters that changes during the

run) performed better than SAs with constant parameters. Beside classical structure designed

for combinatorial problems, SAs that use continuous decision variables are also covered.

1.2.3.1 GA Parameters

Studies on finding the optimal parameter set for GA started from the point where GA started

to be used as a function optimizer (De Jong, 1992). Goldberg (1989) summarized the

extensive study and conclusions of De Jong (1975) on optimal GA parameters. De Jong

tested five different optimization functions with different population numbers, crossover

 17

constants and mutation probabilities. He defined two performance measures for testing the

success of GA; offline and online performance. Online performance is defined as the

average of the fitness values till current generation while online performance is defined as

the average of the best fitness till current generation. From the results, he concluded that

small populations improve initial performance while high populations improve long time

performance. He tested populations ranging from 50 to 200. He also concluded that a

crossover rate of 0.6 is a good balance between online and offline performance. De Jong also

suggested low mutation rates that are inversely proportional to population number. Mutation

rates larger than 0.1 are reported to converge the algorithm to random selection.

Grefenstette (1986) tested different GA parameters on five different test functions. Based on

five independent runs, best GA parameters for online performance was reported as

population number = 30, crossover rate = 0.95 and mutation rate = 0.01 while scaling and

elitism is on. Best offline performance was reported when population number = 80,

crossover rate = 0.45 and mutation rate = 0.01 while scaling is on but no elitism. Grefenstette

(1986) also suggested crossover rates of 1.0 performing better if the stochastic effects are

reduced by inducing more selection pressure.

Schaffer et al. (1989) experimented with 8400 different combinations on crossover, mutation

rate, population number and different types of GA operators. The result of each combination

was averaged over 10 independent runs. Best performance was achieved when two point

crossover is selected and population number = 20-30, crossover rate = 0.75-0.95 and

mutation rate = 0.005-0.01.

Haupt and Haupt (2004) made 200 independent runs for 21 different population numbers and

21 different mutation rates. Average number of calls needed to arrive to an acceptable

solution is accepted as a measure of success. The best combinations for the 5 different

functions ranged from 8 to 88 for the population, 0.01 to 0.41 for the mutation rate. Haupt

and Haupt (2004) used 12 bits for the encoding of each decision variable.

Haupt and Haupt (2004) also compared the binary and floating-point representation on an

optimization problem on the design of antenna array. Population number of 20, mutation rate

of 0.2 were used. To reduce the impact of variation, the algorithm was repeated and averaged

over 10 independent runs. The results of binary representation outperformed the results of

 18

floating-point representation. They reported that success of binary representation may be due

to different sizes of the search space for two different representation (1021 potential solutions

for binary representation with 21 variables and an encoding on base 10, ∞ potential solutions

for floating representation)

Michalewicz (1996) utilized the idea of variable population number and tested four functions

for the comparison of fixed and variable population number. Initial population number,

crossover and mutation rate are taken as 20, 0.65 and 0.015, respectively. The length of the

chromosomes was 20. Twenty independent runs were performed for each instance and

measures of performance and fitness were averaged over twenty runs. He concluded that

variable population size gives better performance in the expense of higher evaluation

numbers. He found 75, 15, 75 and 100 as the optimal population number for the four

functions.

Michalewicz (1996) also studied the effect of binary and floating point representation. The

average values obtained from ten independent runs are presented. Population number was 60

and the number of generations was set to 20,000. Binary representation used 30 bits for

representing each decision variable; for 45 variables, which adds up to 1350 bits. Best results

were almost identical for the two representations although solutions with floating-point

representation converged to near optimal results faster.

Back (1993) focused their studies on mutation operator and suggested a mutation rate of

about 1/L (one over total string length). Back and Schutz (1996) later introduced a method

on variable mutation rate which starts with a higher rate of mutation (i.e. 0.5) and decreases

to 1/ L as the algorithm progress.

 19

1.3 Research Objectives

The general goal of this study is to develop a management model in order to optimize the

maximum benefit in a coastal aquifer where there is a threat of seawater intrusion. The

model will be modified to examine different seawater intrusion prevention methods (i.e

injection wells, canals, etc.) with the emphasis on efficient and/or optimal use of coastal

aquifer.

For the optimization process, a heuristic algorithm, GA will be used. GAs are accepted

to be a robust optimization techniques that are applicable to wide range of problems.

However, their robustness sometimes limits their efficiency. GAs are reported to be less

effective than tailored techniques which already have information about the search space.

For improved performance, GA parameters should be modified according to problem in

hand. GA operators should also be chosen accordingly.

GA has difficulty to find near optimal results when domain (search space) gets larger

(i.e. dense discretization) and decision variables or constraints increase. Including advanced

operators in GA and improving the algorithm helps to find near optimal results. Improved

methods are expected to be developed as more complex problems occur. To enable easier

modification for the aforementioned processes, a GA code will be developed.

The results will be compared with the results of another widely used heuristic algorithm,

SA. To examine the efficiency of GA, SA and improved GA; LP or MIP will be utilized,

whenever applicable. It is expected that comparative results will give the user idea of

utilizing different management alternatives for a convenient coastal aquifer model.

 20

1.4 Organisation of the Thesis

The thesis is organized in six chapters. Chapter 1 is an introduction to thesis which

include a brief overview of the study, a literature survey and the current subchapter. Chapter

2 describes the simulation and management model used in the thesis. Management model

includes the formulations related to optimization methods, GA and SA. Chapter 3

summarizes the program code, explaining the operators of GA, command by command. The

fourth chapter contains the solution of a sample problem by GA. It explains how GAs work

by including detailed explanation of GA operators and their implementation on a

groundwater dewatering example. The chapter also includes the parameter optimization for

GA using the same dewatering problem. The parameters found are utilized for the rest of the

study. Chapter 5 includes the application and discussion of the results. Different scenarios

(problems) by including different seawater prevention methods are tested on the same

simulation model using the simulation optimization methods developed. Each problem is

followed by the corresponding results and discussions. Final chapter summarizes the

conclusions.

 21

CHAPTER 2

2. BACKGROUND

2.1 Simulation Model

In a coastal aquifer, since freshwater is less dense than saltwater, freshwater floats over the

saltwater, where two fluids meet. The seawater and freshwater mix due to hydrodynamic

dispersion and a finite thickness of a brackish water interface is formed. In the simpler

approach, this transition zone is assumed narrow and there exist a sharp interface that

separates two fluids. This way, transition zone is neglected. However, flow dynamics still

depends both on saltwater and freshwater. To further simplify the solution, Ghyben and

Herzberg (independently in 1888 by Ghyben and 1901 by Herzberg) assumed static

equilibrium where seawater is stagnant and there is hydrostatic pressure distribution in the

freshwater region (Bear and Zhou, 2004). This is equal to a dynamic equilibrium where

freshwater flows horizontally (Dupuit-Forcheimer assumption) and seawater is stagnant.

This way flow dynamics of saltwater can be ignored and only flow related to freshwater

gives the solution. The interface position is found by the Ghyben-Herzberg relation.

Hydrostatic pressure distribution in both zones leads to a seepage through a single point. It is

assumed that seawater adopts the freshwater shape instantaneously. (See Figure 2.1).

Figure 2.1 Ghyben-Herzberg interface model

Seawater
Side

Freshwater
Side Depth of interface below sea level, hs

Elevation of water table above sea level, ht

Sharp Interface

γs

γf

 22

The pressure at a point on the interface is the same whether approached from the freshwater

side or the saltwater side. Thus,

)(tsfss hhh += γγ (2.1)

where,

γs is the specific weight of seawater,

γf is the specific weight of freshwater,

hs is the depth of interface below sea level,

ht is elevation of water table above sea level.

Solving for hs we get,

tt

fs

f

t

fs

f

s hhhh
δρρ

ρ

γγ

γ 1
=

−
=

−
= (2.2)

where,

ρf is the density of freshwater,

ρs is the density of seawater,

δ is (ρs - ρf)/ρf.

Substitution of ρf =1000 kg/m3 and ρs = 1025 kg/m3 in Eqn. 2.2, yields commonly known

equation, hs = 40ht, since δ =0.025. According to the above model, the depth of interface

below sea level is 40 times the elevation of water table above sea level. That means for a

steady model, if there is 1 unit of decline in the groundwater head, there will be 40 units of

increase in the depth of interface till it reaches a steady state. The relation given by Eqn. 2.2

is called the law of Ghyben and Herzberg (Bear and Zhou, 2004).

Sharp interface approach based on Ghyben-Herzberg approximation is more appropriate for

modeling long term responses of freshwater zones or short term responses in aquifers where

saltwater can move in and out easily (Essaid, 1999). Figure 2.2 shows the vertical cross-

section of such an aquifer. Toe location is tip of the interface; the farthest point where

seawater reaches through freshwater. Toe location divides the aquifer into two zones. Zone 1

is the freshwater only zone and Zone 2 is where freshwater flows over stagnant seawater

 23

(Mantoglou, 2003). In both zones, freshwater flows horizontally, in other words, Dupuit-

Forcheimer assumption is valid. For the above conditions, aquifer storativity is ignored and

so governing equation becomes time independent.

Figure 2.2 Coastal unconfined aquifer pumped by one well

The governing equation of steady groundwater flow for Zone 1 and Zone 2 is expressed as

follows;

Zone 1:

0=−+








∂

∂

∂

∂
+








∂

∂

∂

∂
WN

y

h
Kb

yx

h
Kb

x

ff (2.3)

in which, fhb =

Zone 2:

0=−+










∂

∂

∂

∂
+











∂

∂

∂

∂
WN

y

h
Kb

yx

h
Kb

x

ff
 (2.4)

in which, sf hdhb +−=

In Eqns. 2.3 and 2.4,

K is the hydraulic conductivity,

b is the thickness of freshwater zone,

hf is the elevation of water table above datum,

d is the elevation of sea level above datum,

hf d
b hs

Toe location

Sea

Well pumping
rate Q

Water table for
Q=0

Fresh
water

Salt
water

Interface

Zone 2 Zone 1

z

ht

 24

N is the incoming volumetric flow rate per unit horizontal area (recharge rate),

W is the outgoing volumetric flow rate per unit horizontal area (withdrawal rate),

z is the elevation of interface above datum.

Using Eqn. 2.2,

dhh fs −=δ (2.5)

Strack (1976) defined flow potential for the two zones in order to express Eqns. 2.3 and 2.4

as a single function.

Zone 1:

[]22)1(
2

1
dh f δφ +−= (2.6)

Zone 2:

()2

2

1
dh f −

+
=

δ

δ
φ (2.7)

φ function is continuous and smooth across the zones and satisfies the following equation

(Strack,1976).

0=−+








∂

∂

∂

∂
+








∂

∂

∂

∂
QN

y
K

yx
K

x

φφ
 (2.8)

Toe location may be found either from Eqn. 2.6 or 2.7 by letting sf hdh δ=− (Eqn. 2.5) and

dhs = , which is equal to;

2

2

)1(
dtoe

δδ
φ

+
= (2.9)

where, toeφ is the potential at the toe of seawater.

Toe location represents the encroachment of the interface, the farthest point till seawater has

progressed. As the freshwater discharged to the sea is reduced (i.e. with increasing extraction

demand), freshwater head above seawater reduces and seawater wedge moves toward inland.

Further increase in amount of extraction leads to pumping saline water from the wells.

 25

Analytical solution of Eqn. 2.8 is limited, except for the cases with simple boundary

conditions and/or with limited number of inputs (like wells, recharge, etc.). Numerical

solution methods on the other hand, give the flexibility of solving wide range of problems

with the required precision in an adequate time.

The single potential formulation given above (Eqn. 2.8) is in fact the governing equation for

a confined aquifer with unit thickness. If the boundary conditions are known, it can be

transformed to a problem that can be solved numerically with a finite difference solver, such

as MODFLOW (Harbaugh and McDonald, 1996). After solving for φ(x,y), elevation of water

table, hf and depth of seawater-freshwater interface, hs can be estimated with the following

functions.

Zone 1:

2

1
2))1(2(dh f δφ ++= and dhs = For φ

δδ
≤

+ 2

2

)1(
d (2.10)

Zone 2:

dh f +
+

= 2

1

)
1

2
(

δ

δφ
 and 2

1

)
1

2
(

1

δ

δφ

δ +
×=sh for 2

2

)1(
0 d

δδ
φ

+
≤≤ (2.11)

Before presenting the management formulation, it may be convenient to discuss the early

upconing event seen in the solutions of single potential solution. This event was also

mentioned by Cheng et al. (2000) and Cheng and Ouazar (1999) (See Section 1.2.1). Figure

2.3 shows the advancement of seawater wedge as the discharge value at the wells in the

example are slowly increased. Figure 2.3-a shows the interface just before φ=φtoe at the well

nearest to the coast. Discharge value of the wells for this case is 738 m3/day. There is no

upconing for this situation. When the discharge values are increased till φ>φtoe at the well

nearest to the coast (i.e. to a discharge value of 740 m3/day), an upconing is formed under the

well (Figure 2.3-b). This is not possible since upconing has no connection with seawater.

However, once the discharge values are further increased by less than 7% (i.e. to 782

m3/day), seawater wedge reaches the well location (Figure 2.3-c). Taking φtoe at the well

locations as a constraint for seawater intrusion for all the above cases makes us on the safe

side, since seawater wedge have not reached the wells yet. Figure 2.3-d shows the response

of the aquifer, when discharges are further increased to 1000 m3/day. Once, wells starts to

pump seawater, the solution by single potential solution does not reflect the flow dynamics

(Cheng et al., 2000).

 26

a) b)

c) d)

Figure 2.3 Interface elevation for different discharge values; a) QEXTi=738 m3/day

b) QEXTi=740 m3/day c) QEXTi =782 m3/day d) QEXTi =1000 m3/day for i=1,2…5

2.2 Management Model

Using the simulation model, it is possible to get the assessment of how the aquifer behaves

under different scenarios and compare them in an effort to attain a better solution. However,

it is usually hard to cover all the alternatives, which will fulfill the required constraints. In

many cases, a better solution might have easily been omitted.

Transforming the simulation model to an optimization problem, by defining the objectives

and including the constraints, give the user the freedom to search for the optimal solution

using various optimization methods. Using optimization in a management model not only

enables finding the optimal solutions in an adequate time but also enhances the flexibility of

adopting similar management objectives to the model.

 27

The objective in this study is to find the maximum benefit in a coastal aquifer without letting

seawater intrusion into the extraction wells. φtoe represents the border where the seawater

intrusion has reached. If the φ values at the extraction wells are smaller than φtoe, it is

assumed that wells are intruded by seawater.

The general mathematical formulation for the optimization problem in this study is as

follows;

The objective function,

CANCAN

n

j

INJj

m

i

EXTi RlyxQQfMaximize
11

∆∆−−= ∑∑
==

βα (2.12)

Set of constraints,

toei φφ ≥ for i=1,2….m (2.13)

u
EXTiEXTi

l
EXTi QQQ ≤≤ for i=1,2….m (2.14)

u
INJjINJj

l
INJi QQQ ≤≤ for j=1,2….n (2.15)

u
CANCAN

l
CAN RRR ≤≤ (2.16)

u
INJjINJj

l
INJj xxx ≤≤ for j=1,2….n (2.17)

u
INJjINJj

l
INJj yyy ≤≤ for j=1,2….n (2.18)

u
CANCAN

l
CAN xxx ≤≤ (2.19)

u
CANCAN

l
CAN yyy ≤≤ (2.20)

u
CANCAN

l
CAN lll ≤≤ (2.21)

where; m is the number of extraction wells and n is the number of injection wells. EXTiQ is

the extraction rate for ith extraction well and INJjQ is injection rate for jth injection well. RCAN

is the recharge rate for the canal (rate of water recharged to the canal). α is the ratio of the

economical value of injected water to the economical value of extracted water. β is the ratio

of the economical value of recharged canal water to the economical value of extracted water.

x∆ is the length of the discretization in x-coordinate direction and y∆ is the length of

 28

constant discretization in y-coordinate direction. iφ is the potential at i
th extraction well.

u
EXTiQ and l

EXTiQ are the upper and lower limits for ith extraction wells, u
INJjQ and l

INJjQ are

the upper and lower limits for j
th injection wells and u

CANR and l
CANR are the upper and

lower limits for the canal, respectively. INJjx is the x-coordinate of the ith injection well with

u
INJjx and l

INJjx , the upper and lower limits of INJjx , respectively. INJjy is the y-coordinate of

the ith injection well with u
INJjy and l

INJjy , the upper and lower limits of INJjy , respectively.

CANx is x-coordinate of the canal. u
CANx and l

CANx are the upper and lower limits for the x-

coordinate of the canal, respectively. CANy is y-coordinate of the canal. u
CANy and l

CANy are

the upper and lower limits for y-coordinate, respectively. The canal runs parallel to the coast

and CANl is defined as the difference between the starting and ending coordinate of the canal

in y direction. The upper and lower limits of CANl are expressed by u
CANl and l

CANl ,

respectively. A sketch showing the geometrical elements of the management problem is

given in Figure 2.4.

x

y

Canal Injection Well

xCAN

lCAN = 4

yCAN

yINJ

xINJ

(4,2)

(8,3)

(0,0)

(2,1) (3,1) (1,1)

∆y

∆x

Figure 2.4 A sketch of the geometrical elements of the management problem

Eqns. 2.12 to 2.21 is a general formulation of all the elements that will be covered in this

thesis. Not all of them will be included at the same time in a single optimization case. For

instance, in an optimization problem that includes extraction elements only, the second and

 29

third terms of right hand side of Eqn. 2.12 and Eqns. from 2.15 to 2.21 will drop from the

optimization formulation.

Since objective function and the constraints are linear functions of decision variables (i.e.

discharge rates), the problem (Eqns. 2.12 to 2.21) is a linear optimization problem. φ values

show linear response to stress and response matrix approach can be used to transform the

management problem into LP or MIP (MIP is used if the constraints related to locations

(Eqns. 2.17 to 2.21) are involved in the management problem). Resulting LP or MIP, then

can be solved by using a linear optimization code (Demirbas, 2003).

In this study, the solution to the defined management problem is found by using heuristic

algorithm methods, GA and SA. The results, whenever applicable, are compared with the

results of LP or MIP.

For the solution with LP and MIP, MODMAN (Greenwald, 1998) is utilized. MODMAN

repeatedly calls MODFLOW to assemble the response matrix coefficients. MODFLOW

provides the numerical solution of φ distribution, for which the governing equations are

identical to a hypothetical confined aquifer. Finally, the optimization code LINDO (Lindo

Systems) is used for the solution of LP or MIP.

The defined optimization problem is a constrained problem. In order to deal with constraints

in GA, a number of methods are reported in literature. Davis and Steenstrup (1987)

summarized three of these methods; imposing great penalties for constraint violation,

imposing moderate penalties, and creating decoders that creates only feasible solutions.

Davis and Steenstrup (1987) reported that imposing great penalties on individuals that

violate constraints omits the infeasible solutions from the optimization process and if the

search space contains many individuals violating the constraints, then GA will spend most of

its time on these individuals and if any feasible solution is found it may dominate the

population resulting in a premature convergence. Davis and Steenstrup also reported if the

last method is used, the resulting problem will be very computer intensive and also hard to

implement.

 30

In this study, penalty method is used to convert the constrained problem into an

unconstrained problem and moderate penalties (i.e. increasing the penalty till no constraint

violation in the optimum solution) are used for constraint violations. Since the upper and

lower bounds of the decision variables (Eqns. 2.14 to 2.21) are entered as input file to the

genetic code, only constraints related to state variables (Eqn. 2.13) are added to the objective

function as penalty term. The penalty is proportional to the degree of violation of the

constraints.

Unconstrained objective function,

∑∑∑
===

−−∆∆−−=
m

i

itoeCANCAN

n

j

INJj

m

i

EXTi cRlyxQQfMaximize
1

2

11

)),0(max(.... φφβα (2.22)

where,

c is a problem dependent penalty constant.

2.2.1 Genetic Algorithm

GAs are powerful search and optimization technique for optimal solutions when

conventional techniques are not adequate. They are successful in finding optimal or near

optimal solutions for highly convex and nonlinear problems (Goldberg, 1989). In literature,

increasing number of applications exist in wide range of areas. General mechanisms are

based on biological evolution by natural selection, which was first discovered by Charles

Darwin in 1851. The algorithm as known today is first developed by Holland (1975).

Although initial application is used for the simulation of an adaptive system, not long time

passed since GAs are begun to be utilized as function optimizers. In GA, decision variables

are coded as strings of binary digits which are called “chromosome” or “individual”. Each

set of strings (individuals) corresponds to a solution in the problem and each of those

individuals has a degree of success according to the objective function, which is called

fitness. Population composed of many individuals evolves under specified selection rules

that maximize their fitness.

Mainly three mechanisms; selection, crossover and mutation drives the new generations to

the optimal or near optimal solution. Selection is done based on the fitness of the

chromosomes which may be defined as the rank of the objective function.

 31

Flow chart of simple GA (Figure 2.5) can be given as;

1. A number of individuals (population number) are randomly generated as initial

population.

2. Fitness of each individual is evaluated. Fitness is the numerical representation of objective

function plus a degree of penalty if any constraint is violated. In selection of the new

generation, the individuals with higher fitness will have more chance to be selected as

mating individuals. Sometimes an elitist strategy is utilized; where the individual with

highest fitness is directly pass to the next iteration.

3. After mating individuals are selected, whether they will undergo crossover or not is

decided with a probability. Random crossover locations on each string pairs are chosen.

Then, information is exchanged between two strings starting from the selected location

(One-point crossover).

4. Mutation operator is considered for each bit of the string with a chosen probability. If the

probability occurs, that specific bit is randomly flipped. While crossover exchange the

information that is already in genetic pool, mutation operator may add new information to

genetic diversity. Mutation is generally accepted as an insurance policy against the

premature loss of chromosomes in generations (Goldberg 1989).

5. Step 2 to 5 is repeated for a number of generations till a convergence criteria is met (i.e.

till maximum number of generations, G is reached). Number of current generation is denoted

by g. The individual with the best fitness is the optimal or near optimal solution.

 32

Figure 2.5 Flow chart of simple genetic algorithm

GAs usually require several objective function evaluations. If the objective function requires

the solution of a numerical model, then with dense discretization and numerous input

variables, obtaining near optimal solutions can take quiet some time. In order to achieve

moderate results in reasonable time, modifications should be made in the model and/or

number of function evaluations should be decreased by improving the algorithm (Coley,

1999).

In the following sections, equations of initialization of the algorithm, how to handle

problems with more than one decision variable, encoding and decoding of the solution

vectors will be covered. Then, selection, crossover and mutation types will be explained with

samples. Elitism, which is a mechanism to guarantee the selection of the best individual for

the next generation will be discussed.

 33

2.2.1.1 Initialization of the Algorithm

GA starts with the random generation of the binary coded individuals. The number of

individuals in a population is called population number and is denoted by P. Each individual

represents a specific set of decision variables string length of which is decided by the user.

Total string length is simply found by Eqn. 2.23 (Michalewicz, 1996).

∑
=

=
η

1i

ilL (2.23)

where,

L is the total string length of individual,

η is the number of decision variables,

li is the string length of ith decision variable.

The binary representation of an individual is the concatenation of the binary representations

of each decision variables (Eqn. 2.24).

ηυ zzzi21= (2.24)

where,

iυ is the binary representation of ith individual in a population,

zj is the binary representation of jth decision variable (j=1,2…...η).

Table 2.1 An example of an initially generated population with P=5,η =2, l1=6, l2=4 and
L=10 = (l1+ l2)

Binary
Representation

of the First
Decision Variable

Binary
 Representation
of the Second

DecisionVariable
Binary Representation

of the Individual
101110 1001 1011101001
101110 1000 1011101000
010011 0110 0100110110
000100 1010 0001001010
110100 0111 1101000111

 34

2.2.1.2 Selection and Decoding of the Variables

To evaluate the success of a solution that an individual represent, set of decision variables

for the specific individual should be decoded from their binary form and used in estimation

of the objective function. Binary coded decision variables are first converted to their base 10

values and then converted to their real values. The base 10 value of the variables are

calculated by Eqn. 2.25.

1

1

2. −

=
∑= j

l

j

i
ji

i

Br (2.25)

where,

ri is the base 10 value of ith
 variable,

i
jB is the value of jth

 bit of the ith variable.

The real values of the individuals are calculated by using the transformation formulation

given by Eqn. 2.26. The value depends both on boundary values and the base 10 value of the

encoded variables.

12

)(
.

−

−
+=

i

i

l

lu
i

i
l
ii

xx
rxx (2.26)

where,

ix is the ith decision variable,

l
ix is the lower bound for variable xi,

u
ix is the upper bound for variable xi.

When all set of variables are decoded to their real values, objective function for each

individual in the population can be evaluated by using Eqn. 2.27.

),,.........,(11 ηxxxffi = i=1.....P (2.27)

where,

fi is the fitness of the ith
 individual.

 35

Two types of selection are covered. First, the equations of fitness proportionate selection will

be given and linear scaling, which is an improvement for fitness proportionate selection, will

be explained. Then, a different selection mechanism, tournament selection will be described.

2.2.1.2.1 Fitness Proportionate Selection

Mating individuals are selected in probabilities proportionate to their fitnesses. The chance

of selection of an individual is equal to the ratio of the fitness of that individual to the sum of

all fitnesses in the population (Eqn. 2.28).

∑
=

==
P

i

iisumii ffff
1

//τ (2.28)

where,

iτ is the selection probability for the ith
 individual,

fsum is the sum of all fitnesses in a population.

During selection, better than average individuals will get exponentially more chance (chance

to be selected more than once), average individuals will get even chance and worse than

average individuals will have less chance to be selected for the next generation (Goldberg,

1989).

Linear Scaling

Early in a GA run, few individuals with very high fitness with respect to others will have

much more chance to be selected. These individuals can easily dominate the population

resulting a premature convergence. Also later in optimization, when the fitness values do not

show much variation, the algorithm may have difficulties in selecting between good and

better individuals. Instead, selection process approaches to random selection. Scaling the

fitness of population by pivoting them about the average population fitness may help for

both situations (Goldberg, 1989).

For linear scaling;

bfaf i
scal

i += . (2.29)

where,

scal

if is the scaled fitness of ith individual in a population.

 36

It is assumed that average fitness of the population remains unchanged after scaling;

avg
scal

avg ff = (2.30)

where,

favg is the average fitness of the population,

scal

avgf is the average fitness of the scaled population.

The scaled fitness of the best individual is assumed to be average fitness times scaling

constant;

avgscal
scal

best ff .λ= (2.31)

where,

scal

bestf is the scaled fitness of the best individual,

scalλ is the scaling constant.

From Eqn. 2.29,

i
scal

i fafb .−= (2.32)

If Eqn. 2.32 is added up for all the individuals in the population (i.e. i=1,2.....P), the

following equation is obtained;

∑∑
==

−=
p

i

i

P

i

scal
i fafbP

11

.. (2.33)

and

p

fa

P

f

b

p

i

i

P

i

scal
i ∑∑

== −= 11

.

(2.34)

Using Eqn. 2.30, Eqn. 2.34 becomes

avgavgavg fafafb).1(. −=−= (2.35)

Inserting Eqn. 2.35 into Eqn. 2.29 gives

avgi
scal

i fafaf).1(. −+= (2.36)

For the best fitness in a population, fbest the above equation takes the form

avgbest
scal

best fafaf).1(. −+= (2.37)

 37

Then inserting Eqn. 2.31 into 2.37 becomes

avgbestavgscal fafaf).1(.. −+=λ (2.38)

and

avgbest

avgscal

ff

f
a

−

−
=

)1(λ
 (2.39)

Inserting Eqns. 2.35 and 2.39 into Eqn. 2.29, fitness of all the individuals can be scaled

according to the following equation.

avgi

avgbest

avgscalscal
i faf

ff

f
f).1(

)1(
−+

−

−
=

λ
 (2.40)

Negative values may arise after scaling if very small fitness values with respect to the

average fitness population occur (Goldberg, 1989). Fitness values should be positive in order

that operators function properly (i.e. selection). In this study, negative values after scaling

are set to zero.

2.2.1.2.2 Tournament Selection

In tournament selection, two or higher number of individuals are selected randomly and the

individual with best fitness is selected for mating. Tournament selection is reported to be

more effective when fitness surface does not show much variation (Coley, 1999). In this

study, number of individuals in a tournament is taken as two.

Both fitness proportionate and tournament selection is repeated till required number of

individuals are selected for mating. At the end of selection, some individuals may have

chance to be selected more than once and some may have no chance to be selected at all.

2.2.1.3 Elitism

In fitness proportionate selection, best individual in a population has the highest probability

to be selected for mating (Eqn. 2.28). However due to stochastic effects, there is no

guarantee for it to be selected both for fitness proportionate selection and tournament

selection. Sometimes in GA, elitist strategy is utilized, so that the best individual of current

population is carried directly to the next generation. Usual application is not to apply

 38

mutation or crossover to the best individual (Goldberg, 1989). Instead, individual with best

fitness takes the place of the individual with the minimum fitness in new generated

population. Elitist strategy is reported to improve efficiency of algorithm for some problems.

However, in some cases it can put much pressure on selection with the result of early

convergence to a local optimum (Coley, 1999).

After the selection process, the mates are passed to crossover and mutation, in turn. With the

completion of these two processes, first generation of GA is complete.

2.2.1.4 Crossover

Whether crossover will be applied to chosen mates or not is decided by the crossover

constant, pc. pc is usually a real number decided between 0 and 1. Three different types of

crossover is utilized; one point, two point and uniform crossover.

One point crossover

The point of crossover is also randomly chosen. The bits after the chosen point are

interchanged between the mates. If there is no crossover, the mates are left as is. An example

is given in Table 2.2 where the bits after 4th bit (shown in bold) are interchanged.

Table 2.2 One point crossover example

 Binary Coding of

Mating Individuals
10101011010011 Before Crossover
11110010111010
10100010111010

After Crossover
11111011010011

Two point crossover

Two random points on individuals are chosen. The bits between those points are

interchanged. The other bits are left as is. An example is given in Table 2.3 where the bits

between 3th bit and 11th bit (shown in bold) are interchanged.

 39

Table 2.3 Two point crossover example

 Binary Coding of
Mating Individuals
10101010110011 Before Crossover
11110011011010
10110011010011

After Crossover
11101010111010

Uniform Crossover

In uniform crossover, whether a bit is interchanged between mating individuals is decided

randomly. Uniform crossover is accepted as the general form of point crossovers. An

example is given in Table 2.4 where interchanged bits are shown in bold.

Table 2.4 Uniform crossover example

 Binary Coding of

Mating Individuals
10101011010011 Before Crossover
11110010111010
11100010110011

After Crossover
10111011011010

2.2.1.5 Mutation

The next step of GA after crossover is mutation. Mated individuals (whether they undergo

crossover or not) are then passed to mutation process. For each bit, it is decided whether

there will be a mutation or not. If mutation occurs, the value of the bit is simply flipped. The

probability of mutation is set with mutation number, pm which is decided betwen 0 and 1. An

example to mutation is given in Table 2.5, where the bits that undergo mutation are shown in

bold.

Table 2.5 Mutation operator example

 Binary Coding of Individual
Before Mutation 1010001000010111000001000000
After Mutation 1010101000010111010001000000

 40

Uniform Mutation:

The probability of mutation for each bit in an individual is same for normal mutation. If

mutation occurs in lower bits, the change in the value of individual is small relative to a

mutation in higher bits. Normal mutation can be adjusted so that lower bits will have more

chance of mutation while higher bits will have less chance (Eqn. 2.41).

i
m

i
m pp 2/= (2.41)

where,
i
mp is the probability of mutation at ith bit for uniform mutation.

With uniform mutation, for every bit, average change in the value of the individual due to

mutation will be equal to each other.

After mutation, one generation of GA is complete. The algorithm starts all over again from

the selection process (Figure 2.5). After a predefined number of generations, the algorithms

is stopped and the individual with the best fitness till current generation (i.e. g=G) is taken as

the best optimal result.

),,.........,(****

21 ηxxxffbest = (2.42)

where,

*
bestf is the best fitness till current generation,

f

is the objective function,

*
ix is the ith decision variable of the best fitness till current generation.

2.2.2 Simulated Annealing

Simulated annealing is a global optimization method based on the analogy of annealing and

cooling of metals. When cooling metals, the molecules move very rapidly while temperature

is high and move slowly when cooled down (Van Laarhoven and Aarts, 1987). SA advances

point by point and each time comparing the new point with the early accepted point. The

point here refers to set of decision variables that corresponds to a unique solution to the

problem (i.e X=(x1,x2,......xη); where X is a solution vector). The improvement of solution is

achieved by generating random small placements in an iterative fashion (Van Laarhoven and

Aarts, 1987). Starting from a random initial point in search space, the value of the objective

function is calculated and evaluated for each new displacement. If there is an improvement,

 41

the solution is automatically accepted. If not, it is accepted with a probability. The criterion

is called Metropolis Criteria and for a minimization problem, it is given in Eqn. 2.43.

T

ff

acp

acpnew

ep

)(−−

= (2.43)

where,

pacp is the probability of acceptance of the new solution,

fnew is the cost of the new solution,

facp is the cost of the previously accepted solution,

T is a control parameter.

As seen in Eqn. 2.43, control parameter T, which refers to the temperature in the physical

process has an influence on the probability of the acceptance of a solution. An initial

temperature should be chosen to permit a high rate of transition acceptance, which means a

broad covering of the solution space. As the procedure continues, the temperature is lowered

and the rate of acceptance will decrease.

The structure of the SA algorithms may vary. However, all of them have a sequence of

Metropolis algorithms (Markov chains) that progress at a sequence of decreasing control

parameter, T (Van Laarhoven and Aarts, 1987). Basic parameters related to SA are as

follows; i) Initial value of control parameter, T ii) Final value of T for convergence, iii)

Length of Markov chains and iv) A rule for the change of the control parameter T. The

choices related to the above parameters are called as “Cooling Schedule” and greatly affects

the performance of the algorithm (Van Laarhoven and Aarts, 1987). General flowchart of a

traditional SA algorithm is shown in Figure 2.6.

In traditional gradient based methods, the success of the solution depends on the starting

point. The method may stuck in a local optimum according to the initial point chosen. GA

intends to surpass this bottleneck by using population based optimization and operators like

crossover and mutation. On the other hand, SA, being a point based search method, intends

to escape the local minima by not only accepting the better results as in gradient methods,

but also the worse ones with some probability. Similar to GA, no requirement for derivatives

and easy implementation are the main advantages of SA.

 42

Set initial value for control
parameter, T

START

Generate an initial solution

Generate new solution

Evaluate objective function

Better Solution
Accept based on
probability

No

Yes

Accept new solution Yes

Another solution

Adjust control
parameter, T

No

Stop

No

Yes

Yes

Figure 2.6 General flowchart of SA

 43

Algorithm as derived by Kirkpatrick (1983) was for the solution of a combinatorial problem.

Combinatorial problems are defined as the optimization of the arrangement, grouping,

ordering and selection of discrete objects usually finite in number (Lawler, 1976). An

example to the combinatorial optimization is the famous benchmark problem, traveling

salesman. In the problem, minimum traveling distance is searched for a salesman who has to

visit a number of cities in a row. For optimization with continuous variables, a set of real

values that are usually constrained in a specified interval are utilized. Optimization with

continous and combinatorial decision variables are classified in two different optimization

groups and the methods for their solution are reported to be quite divergent (Papadimitriou

and Steiglitz, 1982).

The first implementations of SA involving continuous decision variables are introduced by

Vanderbilt and Louie (1984), Bohachevsky et al. (1986) and Corona et al. (1987). Among

these studies, Goffe et al. (1992) defined the implementation of Corona et al. (1987) as the

best combination of ease of use and robustness. SA code developed here is based on the

algorithm introduced by Corona et al. (1987) and later used by Goffe et al. (1992).

The algorithm starts from a random initial point, Xo. The value of the objective function at

the initial point, f(Xo) is evaluated. Initial point is the first accepted point, Xacp for SA (i.e

Xacp= Xo and f(Xacp) = f(Xo)) The new point, Xnew is found by making a perturbation to a

single decision variable in the solution, in turn (Eqn. 2.44). The remaining variables are left

as is. The initial value of the perturbation can be defined by the user according to the range

of decision variables.

 ii
new
i vRxx .+= i=1,2…..η

(2.44)

where,

new
ix is the new value of the ith decision variable,

R is a random number between 0 and 1,

vi is step length for ith decision variable.

If the cost of the new point, f(Xnew) is better than the previously accepted solution then the

new point is accepted. (Xacp= Xnew and f(Xacp) = f(Xnew)). If the new point is worse than the

previous solution, it is accepted with a probability given by Metropolis criteria (Eqn. 2.43).

 44

As can be seen from Eqn. 2.43, the acceptance probability depends on parameter T and the

difference between previous and the new solution. Taking T as constant, if the cost

difference between two solutions is high, the probability of acceptance decreases. T is chosen

so that early in a run almost all points are accepted. This enables a coarse search of the

solution area. Later in a run as T decreases, less number of worse solutions are accepted to

direct the solution towards convergence.

After perturbation for each decision variable and corresponding cost functions are evaluated,

one whole cycle is completed. The process is repeated for a predefined number of cycles, Ns.

Again, cost of each new point is compared with the cost of the previously accepted solution.

During this loop, step lengths are constant (howevever, perturbations change according to

the random number in Eqn. 2.44). The number of acceptance for each decision variable,

accp
iκ is recorded. After Ns cycle, step lengths for each decision variable are updated using

the ratio of accp
iκ to the total number of evaluations for each decision variable, which is Ns.

If this ratio is greater than 0.6, the step lengths are enlarged and if they are less than 0.4 they

are reduced according to the Eqns. 2.45 and 2.46. In between, step lengths remain same.

)
4.0

6.0/
.1.(

−
+= s

accp
i

ii

N
vv

κ
ω if accp

iκ >0.6Ns i=1,2....η (2.45)

4.0

/4.0
.1 s

accp
i

i
i

N

v
v

κ
ω

−
+

=
 if accp

iκ <0.4Ns
i=1,2....η (2.46)

where,

ω is a constant parameter usually chosen between 1 and 2.

The new points are found by updating the decision variables one at a time using Eqn. 2.44.

The loop is repeated for Nt times. After Nt×Ns×n cycles (i.e changing the perturbation Nt

times for each decision variable), the value of control parameter T is updated according to

the following equation;

TtT const .= (2.47)

where,

tconst is usually a constant value between 0 and 1 and usually taken close to 1.

 45

Then, with the newly found T and the last perturbations found in previous iterations, it starts

all over again. But this time, optimum solution vector till that time, Xopt is taken as the initial

solution for the new loops ((Xacp= Xopt and f(Xacp) = f(Xopt)). The algorithm can be stopped

after a predefined number of T adjustments or after a number of T adjustments where the

cost value does not change greater than a percent defined by the user. The flowchart of the

algorithm is given in Figure 2.7.

The algorithm as explained above is modified so that T values are updated together with the

step-sizes so that the very outer loop has dropped from the algorithm. This way number of

function evaluations decreased in a significant amount. The best values found by the regular

and modified algorithm code was identical; thus, modified algorithm is used in rest of the

study. A code is developed in Fortran 90 programming language based on the above

assumptions and algorithm as explained in Section 2.2.2. Annealing parameters are chosen

based on suggestions given by Corona et al. (1987), Goffe et al. (1992) and numerous runs

with the code. The parameter set used in the study is as follows, Ns=30, Nt=50, ω=2 and

initial T value is 1000 and tconst=0.85.

 46

Figure 2.7 Flowchart of continuous SA

 47

CHAPTER 3

3. GA CODE

3.1 Introduction

The code developed is written in Fortran 90 programming language. The code basically

consists of a main program, named “Main” and a subroutine, named “Function”. Main, as

indicated by the name, includes the main GA and operators; selection, crossover and

mutation. Function includes the commands required to estimate the objective function. The

objective function is calculated by calling a simulation model like MODFLOW and running

it for each set of solution vectors.

Using the code, one-point, two-point or uniform type of crossover can be performed.

Selection types include fitness proportionate selection (with or without scaling) and

tournament selection. Two different types of mutation is possible; a classical bitwise

mutation with probabilities of mutation for each bit are equal and so called uniform mutation

with probabilities for each bit are modified so that the mean change in the value of decision

variable remains the same. Elitism can be applied to bring the best individual in current

generation to the next generation without visiting selection.

In this study, since computational time is expected to be dominated by the time spent for the

calculation of the objective function, the code structure is kept as simple as possible to

enable easy modification. Special care is taken to minimize the time spent for calling the

numerical model and storing its outputs.

 48

3.1.1 Main Program and Initialization

Main program starts with the statement of constants and variables. Types of different main

operators (i.e. type of crossover, mutation or selection, etc.) and additional operators like

scaling and elitism are all selected and read through ‘input #.txt’ file. The values of different

GA parameters (i.e. crossover constant, mutation constant, population number, generation

number, number of decision variables, string length of each variable, boundary of variables

etc.) are also entered through the “input#.txt” file.

The user is free to execute several GA runs with the same input file (i.e. input 1.txt). By this

way stochastic effects resulted from random parameters can be tested. In execution of GA,

the seed number determines the set of random numbers generated. For the same seed number

and input values, GA will find the exact same result. For multiple runs, program

automatically updates the seed number, every time a run is complete.

If required, different input files can be built for multiple runs. The files should be created

starting from input 1.txt (ie. input 1.txt, input 2.txt input n.txt). The number of input files

should be stated in the main program.

Initial population is built by randomly assigning 1 and 0 to bits representing an individual. A

random number between 0 and 1 which is denoted by R is thrown and if R comes out to be

greater than 0.5, the bit takes the value of 1 and else it takes the value of zero. The

individuals are stored in two dimensional arrays. First dimension of the array defines the

individual’s number and the second dimension defines the value of the corresponding bit.

The length of string for each variable can be different and set by the user in input file. The

procedure is repeated for each member of the population. Initialization code is shown in

Figure 3.1.

 49

 DO i=1,pop_num,1

! The procedure is repeated for each member of the

population.
 DO j=1,totstr_length,1

 IF(rand().ge.0.5) then
 birey(i,j)=1.

! If random number thrown is greater than 0.5, the bit

takes the value of 1.

 ELSE
 birey(i,j)=0.

! If random number thrown is less than 0.5, the bit

takes the value of 0.
 END IF
 END DO

 END DO

Figure 3.1 Initialization code

3.1.2 Decoding the Variables and Calculating Fitness

The decision variables are first decoded to the base 10 values (Eqn. 2.25) and then to the real

values (Eqn. 2.26). The decoded values are then passed to “Function” subroutine and used in

estimating the objective function. The code related to decoding of the variables is shown in

Figure 3.2. The objective function is calculated by calling the numerical model;

MODFLOW-2000 (Harbaugh et al. 2000). The code waits for the execution of MODFLOW-

2000, since the outputs are used in estimating the objective function. A sample of the

function subroutine is shown in Figure 3.3.

 DO k2=1,x_num
 bi_constant(k2)=(up_bound(k2)-
 low_bound(k2))/(2**str_length(k2)-1)
 totstr_length=str_length(k2)+totstr_length
 END DO

! “bi-constant” values are calculated at the

beginning of “Main” program, after the

“input.txt” file is read. They are used in

calculating the value of decision variables

from their base 10 correspondence.

 DO 600 p=1,pop_num,1

! The procedure is repeated for each member

of the population.

 top_stra=1
 top_strb=0

 Do xd=1,x_num
 toplam(xd)=0
 top_strb=top_strb+str_length(xd)

 DO j=top_stra,top_strb
 toplam(xd)=toplam(xd)+
 birey(p,j)*2**(top_strb-j)
 END DO

!First, integer values of the binary coded

decision variables are calculated

 x(p,xd)=bi_constant(xd)*toplam(xd)
 +low_bound(xd)
 top_stra=top_stra+str_length(xd)
 END DO

 600 END DO

!Then, real value of the decision variables

are calculated.

Figure 3.2 Decoding of the variables

 50

result = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam')

! Numerical model is run for each individual

(i.e. MODFLOW executable file “mf2k.exe”

with the MODLFLOW list file,

101_inj03.nam. The “*.nam” file lists the

packages and input files that is required to

run MODFLOW). The outputs of the model

is required for the calculation of violation of

constraints.

 OPEN (UNIT=8,FILE="101_inj03.hed")

 DO I=1,30
 READ(8,*) (HEADS(I,Z),Z=1,60)
 END DO

 CLOSE (UNIT=8,STATUS='KEEP')

! Output file of the numerical model is read

and required parameters (i.e. head values

which represent the potential values in the

model) are stored in two dimensional

array(30 is the number of rows while 60 is

the number of columns in MODFLOW

model).

 cp(1)=(8.0078-heads(15,23))
 cp(2)=(8.0078-heads(9,29))
 cp(3)=(8.0078-heads(21,34))
 cp(4)=(8.0078-heads(6,40))
 cp(5)=(8.0078-heads(15,42))

!Calculation of penalty requires the

calculation of the degree of the violation for

constraints (i.e. the difference between the

potential values at the control points and the

problem specific potential value of 8.0078,

which represents toe location))

 g=0 ! Penalty value is initially set to 0.

 DO I=1,5
 g = g+max(0.0,cp(I))*max(0.0,cp(I))
 END DO

!The penalty for each constraint is summed

up. The values are squared to improve the

efficiency of the optimization process.

 DO I=1,A(1)-3
 f1=f1-Q(I)
 f2=0
 END DO

 cost = f1 - penalty_coef*g

!Objective function is calculated.

Figure 3.3 Part of the “Function” subroutine that calls “MODFLOW-2000” and calculates
objective function

Scaling is used to help selection when the fitness values do not show much variation or to

prevent the domination of few individuals when the fitness of these individuals are much

higher than the others. Scaling is used for fitness proportionate selection only. Since the

order of fitnesses will be unchanged, scaling will have no effect on tournament selection.

Linear scaling code is shown in Figure 3.4.

 51

fitness_ort=fitness_sum(pop_num)/(pop_num-numfit_zero)

!First, the average fitness of the population is

calculated. Since zero fitness individuals are

not scaled, they would not be included in

scaling calculations.
 fitness_sum(1)=0

 a_constant=(sca_constant-
1)*fitness_ort/(fitness_eni-fitness_ort)

!Scaling constant, a is calculated.

 b_constant=(1-a_constant)*fitness_ort

!Scaling constant, b is calculated.

 DO p=1,pop_num
 fitness(p)=a_constant*fitness(p)+b_constant
 if (fitness(p).le.0) then
 fitness(p)=0
 end if
 END DO

!Fitness values of all individuals are scaled.

 DO p=1,pop_num-1,1
 fitness_sum(p+1)=fitness_sum(p)+fitness(p+1)
 END DO

Figure 3.4 Linear scaling code

3.1.3 Selection

For fitness proportionate selection, first a a random number is thrown between zero and total

sum of the fitnesses, fsum. Fittnes values are added one by one until the sum is greater than or

equal to the random number chosen. The last individual added is chosen as the first parent

that will pass to crossover. The other parent is chosen in the same way. Code for fitness

proportionate selection is shown in Figure 3.5.

 sel_num1=rand()*fitness_sum(pop_num)
 k=1

! A random number is thrown between 0 and

total sum of the fitnesses.

 DO WHILE(sel_num1.ge.fitness_sum(k))
 k=k+1
 END DO

! First parent is selected.

 sel_int1=k

 sel_num2=rand()*fitness_sum(pop_num)
 k=1

! The above procedure is repeated for the

second parent.

 DO WHILE(sel_num1.ge.fitness_sum(k))
 k=k+1
 END DO

 sel_int1=k

Figure 3.5 Code of fitness proportionate selection

 52

For tournament selection, two individuals are selected randomly. Fitness values are

compared and fitter individual passes to crossover (Figure 3.6)

sel_num1=rand()*pop_num
sel_num2=rand()*pop_num
sel_intara1=sel_num1+1
sel_intara2=sel_num2+1

! Two individuals are randomly selected for

tournament process.

if (fitness(sel_intara1).gt.fitness(sel_intara2)) then

 sel_int1=sel_intara1

else

 sel_int1=sel_intara2

end if

! Fitter individual is passed to crossover.

sel_num1=rand()*pop_num
sel_num2=rand()*pop_num
sel_intara1=sel_num1+1
sel_intara2=sel_num2+1

if (fitness(sel_intara1).gt.fitness(sel_intara2)) then

 sel_int2=sel_intara1

else

 sel_int2=sel_intara2

end if

! The procedure is repeated for the selection of

second individual

Figure 3.6 Code of tournament selection

 53

3.1.4 Crossover

For each pair selected for mating, R, a random number between 0 and 1, is thrown. If R<pc,

crossover is performed. The point of crossover is set by throwing the dice once again. The

bits after the chosen point are interchanged between the mates. If there is no crossover, the

mates are left as is (Figure 3.7).

r=rand()

!First, a random number is thrown between 0

and 1.

 IF (r.le.x_over) THEN

!If random number is less than or equal to

crossover constant then crossover is

performed.

 rnew=rand()
 x_overpt=(totstr_length-1)*rnew+1.

!A new number is thrown to estimate the point

of crossover.

 DO c=1,x_overpt,1
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

!The bits till the crossover point is kept same.

 DO c=x_overpt+1,totstr_length,1
 Birey_ara(2*p-1,c)=Birey(sel_int2,c)
 Birey_ara(2*p,c)=Birey(sel_int1,c)
 END DO

! The bits after the point are interchanged

between parents.

 ELSE
 x_overpt=0
 DO c=1,totstr_length,1
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

! If there is no crossover, the parents are left

without adjustment.

 ENDIF

Figure 3.7 The code that performs one-point crossover

For two point crossover, R is thrown twice to choose two different points on the strings. The

bits between chosen points are interchanged between mates (Figure 3.8).

 54

r=rand()

! A random number is thrown between 0 and 1.

IF (r.le.x_over) THEN ! If random number is less than or equal to

crossover constant then crossover is performed.

 rnew=rand()
 rnew2=rand()

! Two different random numbers are thrown to

estimate the two points of crossover.

 if (rnew.gt.rnew2) then
 rara=rnew2
 rnew2=rnew
 rnew=rara
 end if

! Random numbers are put into order.

 x_overpt=(totstr_length-1)*rnew+1.
 x_overpt2=(totstr_length-1)*rnew2+1.

! The points of crossover are set.

 DO c=1,x_overpt,1
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

! The bits till the first point of crossover are kept

same.

 DO c=x_overpt+1,x_overpt2,1
 Birey_ara(2*p-1,c)=Birey(sel_int2,c)
 Birey_ara(2*p,c)=Birey(sel_int1,c)
 END DO

!The bits from the first to the second point of

crossover are interchanged.

 DO c=x_overpt2+1,totstr_length
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

! The bits after the second point of crossover

are kept same.

ELSE
 x_overpt=0
 x_overpt2=0
 rnew=0
 rnew2=0

! If there is no crossover, the parents are left

without adjustment.

 DO c=1,totstr_length,1
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

END IF

Figure 3.8 The code that performs two-point crossover

For uniform crossover, a random dummy individual is generated. The string length of this

dummy individual is equal to the string length of the individuals in population. For each bit

of the mating individuals, corresponding value of the dummy variable is inspected. If the

value is 1, the bits are interchanged, otherwise they are left as is. The code that performs

uniform crossover is shown in Figure 3.9.

 55

r=rand()

! A random number is thrown between 0 and 1.

IF (r.le.x_over) THEN

! If the random number is less than or equal to

crossover constant than crossover is performed.

 DO j=1,totstr_length,1
 IF(rand().ge.0.5) then
 uni_xover(j)=1.
 ELSE
 uni_xover(j)=0.
 END IF
 END DO

!Random dummy individual is generated.

 DO c=1,totstr_length,1

!For each bit, whether there will be crossover or

not is inspected.

 if (uni_xover(c).eq.1) then !make xover
 Birey_ara(2*p-1,c)=Birey(sel_int2,c)
 Birey_ara(2*p,c)=Birey(sel_int1,c)

!If the bit value of dummy individual is 1, the

corresponding bits in mating individuals are

interchanged.

 else if (uni_xover(c).eq.0) then
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)

!Else, they are left as is.

 end if

 END DO

ELSE
 x_overpt=0
 DO c=1,totstr_length,1
 Birey_ara(2*p-1,c)=Birey(sel_int1,c)
 Birey_ara(2*p,c)=Birey(sel_int2,c)
 END DO

! If there is no crossover, the parents are left

without adjustment.

ENDIF

Figure 3.9 The code that performs uniform crossover.

3.1.5 Mutation

By moving bit by bit through strings, it is decided whether there will be a mutation or not.

For each bit, R is thrown and if R<pm, the bit is changed (i.e. if it is one, it becomes 0, else it

becomes 1). Otherwise, it remains unchanged (Figure 3.10).

 56

DO 400 ix=1,pop_num,1

! Mutation procedure is repeated for each

individual.

 mut_adet=0 ! Number of mutations occurred are stored for

inspection.

 DO jx=1,totstr_length,1

 rastgele=rand()

 if(rastgele.le.mut_num) then

! If random number is less than or equal to

mutation number, then mutation is performed.

 if (birey(ix,jx).EQ.1) then
 birey_ara(ix,jx)=0
 mut_adet=mut_adet+1
 else
 birey_ara(ix,jx)=1
 mut_adet=mut_adet+1
 endif

! The bits are flipped.

 END IF
 END DO
 400 END DO

Figure 3.10 The code that performs mutation

In uniform mutation, the probability of mutation in a bit depends on its location. The

individuals are mutated according to Eqn. 2.41. Code of uniform mutation is shown in Figure

3.11.

DO 700 ix=1,pop_num,1 ! Mutation procedure is repeated for each

individual.

 mut_adet=0 ! Number of mutations occured is stored for

inspection.

 top_stra=1
 top_strb=0
 DO xd=1,x_num
 top_strb=top_strb+str_length(xd)
 DO jx=top_stra,top_strb

 rastgele=rand()

 IF (rastgele.le.mut_num/(2**(top_strb-
 jx+1))) THEN

! If random number is less than or equal to

modified mutation number, then mutation is

performed.

 IF (birey(ix,jx).EQ.1) THEN
 birey_ara(ix,jx)=0
 mut_adet=mut_adet+1
 ELSE
 birey_ara(ix,jx)=1
 mut_adet=mut_adet+1

! The bits are flipped.

 END IF
 END IF
 END DO
 top_stra=top_stra+str_length(xd)
 END DO
700 END DO

Figure 3.11 The code that performs uniform mutation

 57

3.1.6 Output Files

To store the data related to the current run and to inspect the code’s efficiency, different

output files are created. The files are stored in a subdirectory of “sonuclar” directory, which

is in the same directory that the program is executed. Subdirectory for each run is separate

and automatically created.

The main output file is “output.txt”. The binary-coded individuals, their fitnesses, penalty

values, best fitness and average fitness values are listed generation by generation in

“output.txt” file. Average and best fitness values are also printed explicitly to

“best_fitness.txt” and “average_fitness.txt” files. Crossover and mutation processes are

printed in “xover_control.txt” and “mutas_control.txt” files, respectively. Since these files

can be quiet large for excessive number of populations, generations or string numbers as

well, it is recommended to comment out the related parts in the code, unless detailed

examining is required. Additional output files are created if multiple runs are executed to

enable easy comparison (i.e. avg_all.txt and best_all.txt). All the files are prepared in a

format that data can be easily transferred to common spreadsheets.

The program can easily be adopted to solve different optimization problems. Initially, the

inputs should be arranged for the number of decision variables (i.e. string length, boundary

values, etc.). Then, the old objective function should also be replaced with the new function.

If an external solver is to be included, associated codes should be rewritten for calling the

new solver and utilizing the related outputs for objective function estimation.

 58

CHAPTER 4

4. OPTIMIZING GA PARAMETERS

4.1 Dewatering Example

To scrutinize the developed code and optimize the GA parameters for the rest of the study, a

simple circular idealized aquifer with radius 1000 m is utilized (Figure 4.1). The problem is a

hypothetical problem, which was considered by Demirbas (2003). The objective is to

estimate the total extraction rates for the wells in order to lower the water table to specified

values at control points. Circular boundary of the aquifer has constant piezometric head that

is 20 m. There are three wells; WEXT1, WEXT2, WEXT3 and two control locations; CP1 and CP2

(Table 4.1). WEXTi denotes the ith extraction well and CPj denotes the jth control point. Control

locations represent the points where hydraulic head is of importance. Hydraulic conductivity

of the aquifer is constant and its value is 11.448 m/day.

Table 4.1 Locations of the wells and control points

Well and control x y

points (m) (m)

WEXT1 950 1050

WEXT2 1350 1050

WEXT3 1050 1550

CP1 1050 1150

CP2 1050 1350

 59

Figure 4.1 Plan view of the aquifer

The water table is required to be lowered to at least u
h1 at CP1 and to at least u

h2 at CP2..

Maximum and minimum capacities of the wells are limited to u

EXTiQ and l

EXTiQ ,

respectively. The objective is to minimize the total discharge rate for above conditions.

The formulation for optimization problem is as follows;

The objective function,

∑
=

=
3

1i

EXTiQfMinimize (4.1)

Set of constraints,
u

EXTiEXTi

l

EXTi QQQ ≤≤ for i=1,2,3 (4.2)

u

jCPj hh ≤ for j=1,2 (4.3)

where, CPjh is the head at jth control point. u
h1 and u

h2 values are 18 m and 18.5 m, u

EXTiQ

and l

EXTiQ values are 0 and 1500 m3/day, respectively.

The management problem formulated above is then converted into an unconstrained

problem. Since constraints on discharge values (Eqn. 4.2) are defined as boundaries of

Constant Head
Boundary

CP1

CP2

WEXT3

WEXT2 WEXT1

 60

decision variables, only constraints on head values (Eqn. 4.3) are added to the objective

function as penalty function.

Unconstrained objective function,

∑∑
==

−+=
2

1

2
3

1

)),0(max(
j

u
jCPj

i

EXTi hhcQfMinimize (4.4)

“c” is a problem dependent constant and choosing the right penalty constant requires much

attention. High penalty constants result in distortion in solution space (Goldberg,1989). As

the penalty constant increases, the unconstrained formulation approaches the constrained

solution where infeasible solutions are omitted from the optimization process. Doing so

throws away the information that can be provided from the infeasible solutions. On the other

hand, very small penalty constants may result in infeasible solutions since infeasible

solutions with lower penalties may have better fitness with respect to the feasible solutions.

This trade-off increases the difficulty of deciding on penalty constant. The penalty constant

in this study is obtained by increasing it till no infeasible optimal solution is achieved (Table

4.2). At the end it is expected that best feasible string will be more fit than an infeasible

string with low constraint violation.

Table 4.2 The characteristic of GA for different penalty values

Penalty constant

Number of infeasible
optimals

among 20 runs
10,000 20
50,000 20

100,000 13
150,000 0
250,000 0

GA code developed can only solve maximization problems. Eqn. 4.4 can be transformed to a

maximization problem by multiplying the right hand side of equation with minus one.

However, fitness values should be positive in order that GA operates correctly (i.e. for

proper ordering of fitness values in fitness proportionate selection). Thus, a positive large

number is added to the right hand side of equation. This number should be larger than the

sum of upper values of decision variables (i.e. ∑
=

3

1i

u
EXTiQ). Thus, solutions with no or little

 61

constraint violation are not omitted from the selection process. This number should not to be

selected very large, so that selection process can easily make a choice between good and

better individuals. Here, the number is taken as 10000, although a wide range of selection

can be made according to the above-mentioned criteria. Eqn. 4.4 then takes the form;

∑∑
==

−−−=
2

1

2
3

1

)),0(max(10000
j

u

jCPj

i

EXTi hhcQfMaximize (4.5)

“Function” subroutine in GA code is modified according to Eqn. 4.5.

A particular run of optimization problem is considered to show the step by step progress of

GA. To start off, a randomly generated initial population of 16 individuals is shown in Table

4.3.

Table 4.3 An example of an initial population generated by GA

Indv.
no. Individuals

1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1

2 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1

3 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0

4 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0

5 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1

6 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0

7 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1

8 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0

9 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

10 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1

11 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1

12 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1

13 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1

14 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0

15 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0

16 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1

As an example, binary coding of the 4th individual is

υ4 = 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0

For this problem, number of bits representing each variable is constant and set to eight. The

first eight bits represent the first decision variable. Next eight bits represent the second and

remaining bits represent the third decision variable. The number of bits representing each

variable is set at the beginning of a GA run.

 62

z1 = 1 1 1 0 0 0 0 1
z2 = 0 0 1 0 1 0 0 1
z3 = 1 0 1 1 1 1 1 0

The base 10 value of z1 is calculated by using the Eqn. 2.25.

(z1)2= (r1)10
(1 1 1 0 0 0 0 1)2=(1x20+0x21+0x22+0x23+0x24+1x25+1x26+1x27)10
r1 =225

x1 is then calculated using Eqn. 2.26.

12

)01500(
.2250

81
−

−
+=x = 1323.53 m3/day.

(1500-0) is the range of variable x1 and)12(8 − is the number of intervals that this range

will be divided into. The value of 88.5)12/()01500(8 =−− m3/day then gives the precision

of x1. In other words for potential solutions, x1 can take the value of 0 or 5.88 m3/day, but no

other value in between. The precisions for the remaing variables, x2 and x3 are also the same,

since the string lengths and the ranges for the variables are the same. To increase the

precision, either string length should be increased or range of the variables should be

narrowed (Coley, 1999). Similarly, x2 and x3 are encoded to their values as 241.2 m3/day and

1117.7 m3/day, respectively. Base 10 and real values of remaining variables are listed in

Table 4.4.

Table 4.4 Decoded values of decision variables

x1 x2 x3 Indv.
No z1 z2 z3 r1 r2 r3 (m3/day) (m3/day) (m3/day)

1 10101100 01010000 11111011 172 80 251 1011.8 470.6 1476.5
2 10111001 00010001 11011001 185 17 217 1088.2 100.0 1276.5
3 01000011 01110110 10010000 67 118 144 394.1 694.1 847.1
4 11100001 00101001 10111110 225 41 190 1323.5 241.2 1117.6
5 00110000 11001011 01011111 48 203 95 282.4 1194.1 558.8
6 00010101 01001000 00101010 21 72 42 123.5 423.5 247.1
7 11110001 00101100 11111011 241 44 251 1417.6 258.8 1476.5
8 10101110 00101001 11101010 174 41 234 1023.5 241.2 1376.5
9 11110010 10100010 00000010 242 162 2 1423.5 952.9 11.8

10 11011101 01100010 00001111 221 98 15 1300.0 576.5 88.2
11 10000000 01110101 10010111 128 117 151 752.9 688.2 888.2
12 00110111 01000101 10101001 55 69 169 323.5 405.9 994.1
13 10110001 11010000 10011001 177 208 153 1041.2 1223.5 900.0
14 00010111 01011111 01110010 23 95 114 135.3 558.8 670.6
15 00100110 01111100 01000010 38 124 66 223.5 729.4 388.2
16 00111111 11110111 10110101 63 247 181 370.6 1452.9 1064.7

 63

After decoding the decision variables for a solution (i.e. discharge values for extraction

wells), objective function is evaluated using Eqn. 4.4. MODFLOW run is required to

estimate the head values at control points. Head values are used to calculate the penalty for

constraint violations (Eqn. 4.3). The objective function for the 4th individual is calculated

as,

f1= f(1323.5 m3/day, 241.2 m3/day, 1117.7 m3/day)= 7317.7

Total discharge rates, fitnesses and penalty values calculated for the initial population are

shown in Table 4.5. From the table, it can be seen that penalty is applied to individual 3, 5,

6, 12, 14 and 15. For these solutions, total water extracted is not high enough to lower the

heads to required levels. Fitness of individuals 6 and 14 come out to be negative due to high

degree of violation and these individuals are omitted from selection process. However,

individual 3, 5, 12 and 15 would still have chance to be selected.

Table 4.5 Fitness and penalty values for initial population

Indv. Total Q Penalty
No. Individuals Fitness (m3/day) value

1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 7041.2 2958.8 0
2 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7535.3 2464.7 0
3 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 7280.7 1935.3 800
4 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 7317.7 2682.4 0
5 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 7564.7 2035.3 400
6 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 -15351.1 794.1 24600
7 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 6847.1 3152.9 0
8 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7358.8 2641.2 0
9 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 7611.8 2388.2 0

10 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8035.3 1964.7 0
11 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 7670.6 2329.4 0
12 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 5360.5 1723.5 2900
13 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 6835.3 3164.7 0
14 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 -364.7 1364.7 9000
15 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 333.8 1341.2 8300
16 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 7111.8 2888.2 0

The probabilities of selection for the initial population are given in Table 4.6. The individual

with best fitness is υ10. υ10 has a fitness of 8035.3. Zero penalty indicates no violation of the

constraints. υ10 has the highest chance to be selected for mating with a probability of 8.6%

(Eqn. 2.28). However, the results show that it is not selected. This is due to stochastic effects

 64

and can be bypassed by choosing elitism. The results also show that probability of selection

for most of the individuals (13 individuals among 14 individuals that will be selected for the

next generation) are almost identical, ranging from 5.7% to 8.6%. Considering the stochastic

effects, selection of any of individual among the population is very close to random

selection. Scaling the fitness values, according to average fitness and thus increasing

probability interval (range) between good and better individuals (or bad and worse solutions)

may enhance the algorithm performance.

Table 4.6 Expected probabilities of selection in initial generation

Probability

Indv. of selection

No. Fitness (%)
1 7041.2 7.5%
2 7535.3 8.0%
3 7280.7 7.8%
4 7317.7 7.8%
5 7564.7 8.1%
6 0.0 0.0%
7 6847.1 7.3%
8 7358.8 7.8%
9 7611.8 8.1%

10 8035.3 8.6%
11 7670.6 8.2%
12 5360.5 5.7%
13 6835.3 7.3%
14 0.0 0.0%
15 333.8 0.4%
16 7111.8 7.6%

Total 93904.4 100.0%

Mating Pairs (Parents)

Crossover rate of 0.85 indicates that about 85% of all individuals are expected to undergo

crossover. Initially, individual 2 and 8 are selected for mating (Table 4.7). Since R thrown

for the pair (0.466) is less than pc (0.85), it is decided to perform crossover. The point of

crossover is decided by another R which comes out to be 0.256. This number times length of

string in base 10 value gives the point of crossover (i.e. 0.256×24=6.15 and 6.15=(6)10). In

Table 4.7, the point of crossover is shown with a slash sign. The bits after this point are

interchanged between mating individuals.

 65

Table 4.7 An example of crossover from the sample problem

 Indiv. Individuals Fitness Penalty
 No. Value Value

8 1 0 1 0 1 1 /1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7358.82 0 Before
Crossover: 2 1 0 1 1 1 0 /0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7535.29 0

A 1 0 1 0 1 1 /0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7605.88 0 After

Crossover: B 1 0 1 1 1 0 /1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7288.24 0

One of the newly built individuals (Individual A) has a better fitness than both of its parents.

However, as seen in Table 4.7, this is not always the case (Individual B). The idea of

crossover is to improve the population by exchanging ideas. However, exchanging of

knowledge together with selection only guarantees the population to evolve to better

solutions (Coley, 1999).

Mutation

The springs now undergo mutation. The rate of mutation, pm is 0.004. This indicates that

only 1 mutation among 250 bits is expected. Mutation constant multiplied with total string

length (pm×L) gives the expected probability of mutation for an individual which is

0.004×24≅0.1 (i.e. approximately one among ten individuals is expected to undergo

mutation). One of the mutated individuals is shown in Table 4.8. Only one bit (i.e. 10th bit)

undergoes mutation, for which the random number thrown, 1.0838988×10-3 is less than pm,

0.004.

Table 4.8 An example of mutation from the sample problem

 Fitness Penalty
 Individuals Value Value

Before
Mutation: 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8035.29 0

After
Mutation:

1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8155.76 0

Through Generations

Referring to Table 4.9, it is seen that, at the end of ten iterations, best fitness value increased

from 8035.3 to 8215.7. Since, there is no elitism, best fitness of current generation is not

monotonically increasing. Average fitness of the population increased from 5869.0 to

7247.9, in one generation. From this generation on, average fitness shows a noisy progress.

Note that crossover rate, pc=0.85 and mutation rate, pm=0.04 for this case.

 66

Table 4.9 Average and best fitness values through generations

Generation Best Fitness
Best Fitness
of Current Average Fitness

No. Values Generation Values
1 8035.3 8035.3 5869.0
2 8155.8 8155.8 7247.9
3 8155.8 8011.8 7169.7
4 8155.8 7829.4 7112.3
5 8155.8 7929.4 7126.5
6 8155.8 8051.5 6896.2
7 8215.7 8215.7 6901.7
8 8215.7 7900.0 7259.6
9 8215.7 7864.7 6981.4

10 8215.7 7864.7 7187.1

If there were no crossover and mutation, but only selection (i.e. pc and pm are set to zero),

average fitness of the population would converge to the fitness of a single individual in

initial population (Figure 4.2-a). For this case, the population converges to individual 11

(υ11), with a fitness value of 7670.6 (Initial population is the same as the previous case, since

seed number used for random number generation is still the same). Since there is no elitism,

converged individual needs not to be the best one. However, if elitism is applied, average

fitness value converges to the fitness of the best individual; individual 10 (υ10) with a fitness

value of 8035.3 (Figure 4.2-b).

a) b)

Figure 4.2 Average fitness values for pc=0 and pm=0, a) No elitism b) Elitism is applied

Since random processes are involved in GA (i.e. random numbers thrown to decide in

crossover, mutation and selection, initial population generated, etc.) no two runs of GA are

same, unless the seed numbers that decide on the random numbers are the same. Thus, single

 67

run is not to be trusted to derive solid conclusions for GA and its parameters. Multiple runs

are required to reduce stochastic variations (Coley, 1999). In Figure 4.3, GA results for the

sample problem are shown for five different runs. Best optimal results range from 7964.41 to

8281.65.

7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

0 100 200 300 400 500 600 700 800 900 1000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
s
 V

a
lu

e
s

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 4.3 GA result from five different runs

4.2 GA Parameters

The wide spectrum of parameter values in literature review (see Section 1.2.3) shows that

GA results not only depend on GA parameters but also the problem to be optimized (the

characteristic of the search space) or the type of GA operators selected (i.e. their effect on

selection pressure). Following the early studies listed in literature review, initial parameter

set for starting the GA run is chosen as P=30, pc=0.6 and pm=0.0417. The results are

averaged over 20 runs.

4.2.1 Effect of Scaling and Elitism

The effect of applying linear scaling and elitism on the dewatering example is shown in

Figure 4.4. Not only both methods provided a faster convergence rate and improved solution

but using them together gave the best results. Using elitism without scaling only performed

better than applying scaling only.

 68

8200

8250

8300

8350

8400

0 5000 10000

B
e
s
t
 F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

No Elitism, No Scaling

No Elitism, Scaling On

Elitism On, No Scaling

Elitism On, Scaling On

Figure 4.4 Effect of scaling and elitism on optimization (averaged over 20 runs)

4.2.2 Effect of Population Number

Five different population numbers are tested and best fitness rates are shown in Figure 4.5. It

is seen that most of the population numbers converge to the same fitness value, 8370.59.

Among five different instances, only P=30 does not converge to this value. Set of decision

variables for the best solution is x1=1211.77 m3/day, x2=0 and x3=417.65 m3/day. For P=50,

the algorithm required the least number of function evaluations for convergence.

8340

8350

8360

8370

8380

0 10000 20000 30000 40000 50000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
 V

a
lu

e
s

P=200

P=100

P=50

P=30

Figure 4.5 Effect of population number on optimization (averaged over 20 runs)

 69

4.2.3 Effect of Crossover Number

For the crossover rate, pc=0 (no crossover), 0.25, 0.5, 0.75 and 1.0 (mates always undergoes

crossover) values were tested. As a result of the previous population test, population number

is taken as 50. Referring to Figure 4.6, it is seen that only pc=0.5 and pc=0.25 converges to

best fitness. pc=0.5 converges to the best optimal solution faster than pc=0.25. It is interesting

to observe that with no crossover but mutation and selection only, the algorithm converges to

an acceptable solution for this sample problem.

8340

8350

8360

8370

8380

0 10000 20000 30000

B
e
s
t
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

pc=0

pc=0.25

pc=0.5

pc=0.75

pc=1

Figure 4.6 Effect of different crossover rate on optimization (averaged over 20 runs)

4.2.4 Effect of Mutation Number

Figure 4.7 shows the effect of different mutation rates on solution. Five different mutation

rates including 0.0417 are tried. This value corresponds to 1/total number of bits for the

problem. Although all the results are acceptable, the best results are achieved with

pm=0.0417. The rate is similar to what Back and Schutz (1993) suggested.

pc=0

pc=0.25

pc=0.5

pc=0.75

pc=1

 70

8330

8340

8350

8360

8370

0 10000 20000 30000 40000

B
e
s
t
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

pm=0

pm=0.01

pm=0.025

pm=0.0417

pm=0.1

Figure 4.7 Effect of mutation rates on optimization (averaged over 20 runs)

4.2.5 Effect of Number of Runs on Solution

The results for different number of runs are shown in Figure 4.8. For this example, using the

optimal combination of parameter set, GA can find the maximum fitness, in every run.

Stochastic errors have no effect on finding the optimal solution. However, as the search

space gets complicated, the results from different runs are expected to be different. To

derive solid conclusions, GA runs should be repeated with different seed numbers (See

Section 5.1). Though the optimal solutions found at the end are not different, it can be seen

that as the number of runs increased, the figure gets a smother shape, giving a broader idea

of the progress of GA for different runs. The average change of best fitness curve from 5

runs to 10 runs is less than 0.02 % while from 10 runs to 15 runs, it is less than 0.009% and

from 15 to 20 runs less than 0.007%.

pm=0

pm=0.01

pm=0.025

pm=0.0417

pm=0.1

 71

8300

8310

8320

8330

8340

8350

8360

8370

8380

0 10000 20000 30000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
s
 V

a
lu

e
s

a)

8300

8310

8320

8330

8340

8350

8360

8370

8380

0 10000 20000 30000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
s
 V

a
lu

e
s

b)

8300

8310

8320

8330

8340

8350

8360

8370

8380

0 10000 20000 30000

Number of Function Evaluations

B
e
s

t
F

it
n

e
s
s
 V

a
lu

e
s

c)

Figure 4.8 The results for different number of runs a) Five runs b) Ten runs c) Twenty runs

Optimal Parameter Set Used for the Rest of the Study

In our studies, it is seen that various combination of parameter sets can be used in order to

get adequate results. The following set is accepted as the optimal set and will be primarily

used in the problems in following chapters (i.e. fittness proportionate selection, two point

crossover, scaling and elitism on, scaling constant, λscal =1.5, crossover rate, pc=0.5,

mutation rate, pm=0.0417 (1/Length of string), population number, P=50)

 72

CHAPTER 5

5. APPLICATION AND DISCUSSION OF RESULTS

A coastal aquifer, previously studied by Mantoglou (2003) is used as the basic model for the

optimization of the management models introduced in this thesis. First, the very same

problem by Mantoglou (2003) which seeks for the optimal amount of extraction from five

different extraction wells is studied. Different seawater prevention strategies (injection wells,

canals and both) are added to the model in order to optimize the additional decision variables

related to the prevention methods (i.e. injection rate and location for injection wells, recharge

rate and location for canals, etc.). The optimization results by GA and SA are compared with

the results from LP or MIP, whenever applicable.

5.1 Extraction Wells Only Problem

The example involves the optimal management of extraction wells at specified locations.

The simulation model used is a rectangular coastal aquifer in Greek island of Kalymnos. All

required parameters and assumptions are taken from the study by Mantoglou (2003). The

finite difference representation of the model is shown in Figure 5.1. The sea shore is located

on the west. The aquifer which is 7000 m length and 3000 m wide is discretized with

constant ∆x=116.67 m in East-West direction and constant ∆y=100 m in South-East direction

(∆x is the distance between two discretization lines in x-coordinate direction and ∆y is the

distance between two discretization lines in y-coordinate direction). Depth of aquifer is 25 m.

The North and South boundaries are taken as impervious. The recharge rates at higher

elevations are 150 mm/year over an area of 9 km2. This recharge is fixed flux boundary on

the east side (i.e. 150 mm / year×9 km2 = 1.35×106 m3/year). There is an additional recharge

of 50 mm/year over the aquifer. Hydraulic conductivity is constant as 100 m/day. There are

five well locations for which the coordinates are listed in Table 5.1.

 73

Figure 5.1 Plan view of the aquifer

Table 5.1 Location of the extraction wells

Extraction
Wells

x

(m)
y

(m)

WEXT1 2657 1572

WEXT2 3353 2200

WEXT3 3932 975

WEXT4 4632 2470

WEXT5 4873 1586

The objective is to find the total maximum rates for the extraction wells without letting the

seawater intrusion. toeφ represents the border where the seawater intrusion reaches. If the φ

values at the wells are smaller than toeφ , it is assumed that wells are intruded by seawater.

The formulation for the optimization problem is as follows;

The objective function,

∑
=

=
5

1i

EXTiQfMaximize (5.1)

S
ea

Impervious Boundary

Impervious Boundary

C
on

stan
t F

lu
x B

ou
n

d
ary

WEXT3

WEXT5

WEXT4

WEXT2

WEXT1

 74

Set of constraints,

toei φφ ≥ i=1,2….5 (5.2)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.3)

where, toeφ is calculated as 8.0078 m2 for sρ =1025 kg/m3 and fρ =1000 kg/m3 and d=25 m

(Eqn. 2.9).

φ values are found by using MODFLOW. The boundary conditions are modified according

to Eqns. 2.6 and 2.7. At the coast, since hf=d, φ =0. At no flow boundaries xh f ∂∂ and

0=∂∂ yh f then x∂∂φ and 0=∂∂ xφ .

The management problem above then converted into an unconstrained problem. Since the

upper and lower bounds of the well rates are entered as input to the genetic code, only

constraints related to potential values at well locations (state variables) are added to the

objective function as penalty term, to obtain the unconstrained objective function,

∑∑
==

−−=
5

1

2
5

1

))0078.8,0(max(
i

i

i

EXTi cQfMaximize φ (5.4)

To find the value of the penalty constant, c, different values are tested by making various

runs and as explained in Section 4.1, the minimum one that gives no infeasible solution is

used as the penalty constant for the rest of the cases studied. Following the above procedure,

c is found to be 10000.

5.1.1 Discussion of Results for Extraction Wells Only Problem

20 independent runs are carried out using GA. GA parameters are taken from the optimal

results found in Chapter 4 (i.e. P=50, pm=0.025 (which is 1/L=1/40), pc=0.5, scaling and

elitism are on and two point crossover is applied). The convergence behavior of the best

solution found among 20 runs is shown in Figure 5.2.

 75

3500

3600

3700

3800

3900

4000

4100

4200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

B
e
s
t
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

Figure 5.2 Best solution found by GA for Mantoglou (2003) problem

The optimal set of decision variables found by GA is QEXT1=58.82 m3/day, QEXT2=323.53

m3/day, QEXT3=882.35 m3/day, and QEXT4=1347.06 m3/day and QEXT5=1476.47 m3/day.

φ values corresponding to the optimal solution is shown in Figure 5.3. φ=8.0078 m2 line

which represents the toe of saltwater encroachment can be seen just in front of the extraction

well. Using the transformation formulations (Eqns. 2.10 and 2.11), freshwater head values

and interface elevations are found and freshwater heads above seawater are shown in Figure

5.4. The vertically exaggerated figure of the freshwater head and vertical cross-section at

y=1500 m is shown also shown in Figure 5.4. Cones of depression for the wells can be seen

in the same figure. The cones are more apparent for the wells far away from the cost since

the optimal extraction rates found for these wells come out to be bigger.

Figure 5.3 φ values corresponding to optimal solution

 76

a)

b)

c)

Figure 5.4 a) Saltwater-freshwater interface for the optimal solution b) Freshwater zone
vertically exaggerated c) Longitudinal cross-section of freshwater head at y=1500 m

 77

The same optimization problem is then solved by using SA. For testing different initial

points and stochastic effects involved in SA, the algorithm is run 5 times using different seed

numbers.

Best solution vectors found by GA and SA are shown in Table 5.2. The results show that

optimal results found by GA and SA are similar to the result found by LP (i.e. less than 0.1

%). Both results are better than the solution by Mantoglou (2003). The difference may be

from the type of solver, parameters used for solver (i.e criteria for convergence), or hydraulic

parameters that are not clearly presented in the paper.

Table 5.2 Optimal well rates for different algorithms

 Present Work
Mantoglou

(2003)

Wells GA SA LP SQP

QEXT1 (m
3/day) 58.82 52.39 51.44 436

QEXT2 (m
3/day) 323.53 325.08 322.44 1089

QEXT3 (m
3/day) 882.35 872.67 869.06 789

QEXT4 (m
3/day) 1347.06 1348.20 1350.32 1149

QEXT5 (m
3/day) 1476.47 1494.81 1500.0 483

Total (m3/day) 4088.24 4093.15 4093.26 3945

The convergence characteristic of SA together with the optimal solution by GA is shown in

Figure 5.5. From the figure, it can be seen that, SA required less number of function

evaluations to reach optimum.

 78

3800

3900

4000

4100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
s
 V

a
lu

e
s

GA

SA

Figure 5.5 Best optimal results found by SA and GA

5.2 Injection Wells Problem

Utilizing injection wells is a well-known method used for the prevention of seawater

intrusion in seawater treated sites. In common approach, series of wells are usually

positioned on a line between seaside and the extraction area (Van Dam, 1999). This way,

injections wells act as a physical barrier that prevents the further progress of saltwater. For

the following problem, two different cases are studied. Case 1 represents the situation where

locations of the wells are fixed and extraction and injection amounts are to be optimized. In

Case 2, it is required to determine the optimal location of injection wells and corresponding

pumpage rate for both injection and extraction wells. The location of the extraction wells are

fixed for the present problem (i.e. to test the optimal locations and discharge of the injection

wells for the case of extraction at specified locations) although their locations can also be

optimized with the proposed model.

5.2.1 Case 1: Injection Wells Problem (Fixed Locations)

Three injection wells are added to the base model (Figure 5.6). The locations of the wells are

fixed and their coordinates are listed in Table 5.3. The objective is to find the total maximum

benefit without letting the seawater into extraction wells. Once again, 8.0078 m2 represents

the border where the seawater intrusion has reached. If the values at the extraction points are

 79

lower than this value, the wells are accepted as intruded. The upper limit for the injection

well rates is constrained to 500 m3/day. Thus, the total amount of water that can be injected

from three wells is 1500 m3/day.

Figure 5.6 Finite difference representation of the model (where; WINJi is the ith injection well)

Table 5.3 Location of the injection wells

Extraction
Wells

x

(m)
y

(m)

WINJ1 2042 2250

WINJ2 2042 1450

WINJ3 2042 750

The formulation for the optimization problem is as follows;

The objective function,

∑∑
==

−=
3

1

5

1 j

INJj

i

EXTi QQfMaximize α (5.5)

Set of constraints,
0078.8≥iφ m2

 i=1,2….5 (5.6)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.7)

5000 ≤≤ INJjQ m3/day j=1,2….3 (5.8)

Impervious Boundary

Impervious Boundary

C
on

stan
t F

lu
x B

ou
n

d
ary

WEXT1

WINJ1

WINJ2

WINJ3

WEXT2

WEXT3

WEXT4

WEXT5

S
ea

 S
id

e

 80

Unconstrained objective function,

∑ ∑∑
= ==

−×−−=
3

1

5

1

2
5

1

))0078.8,0(max(10000
j i

iINJj

i

EXTi QQfMaximize φα (5.9)

The objective is to get the maximum benefit by extracting freshwater. Since the injected

water which is utilized to prevent the seawater progress brings a cost to the solution, it is

subtracted from the total amount of extraction. “α” constant, as explained previously, is the

ratio of the economical value of injected water to the economical value of extracted water. It

is initially taken as one (i.e. the economical value of injected water is same as the

economical value of freshwater).

5.2.1.1 Discussion of the Results for Case 1: Injection Wells Problem (Fixed Locations)

From the optimal results shown in Table 5.4, it can be seen that for α=1, the amounts of

water injected are almost zero (15.87 m3/day for GA and 2.63 m3/day for SA). This is

concurrent with the fact that when the economical value of the extracted water is the same as

the economical value of injected water, installing injection wells for the prevention of

seawater intrusion becomes infeasible. However, in most situations the quality of injected

water is cheaper than the extracted water (i.e. treated low cost wastewater or low quality

freshwater obtained from saltwater) and α value would be less than one.

Best fitness values found (4072.37 for GA and 4077.68 for SA) are almost identical for GA

and SA. However, combinations of discharge values for the wells, though close, are

different. For the optimal results, difference between total extractions is less than 9 m3/day,

however the difference between extraction from each well can be greater than 110 m3/day

(i.e for WEXT5).

It is also interesting to observe that although no or little injection is selected, the results are

not as good as the results obtained from the extraction wells only problem (See Section 5.1).

This shows that with the negative term included in the objective function due to new

decision variables, the management problem became harder to solve for both optimizing

algorithms.

 81

Table 5.4 Optimal well rates (α=1.0)

 GA SA LP

QEXT1 (m
3/day) 94.12 74.92 51.44

QEXT2 (m
3/day) 376.47 373.97 322.44

QEXT3 (m
3/day) 888.24 943.64 869.06

QEXT4 (m
3/day) 1235.29 1307.12 1350.32

QEXT5 (m
3/day) 1494.12 1380.66 1500.0

QINJ1 (m
3/day) 0 1.30 0

QINJ2 (m
3/day) 15.87 0.15 0

QINJ3 (m
3/day) 0 1.18 0

Total Extracted Q (m3/day) 4088.24 4080.31 4093.26

Total Injected Q (m3/day) 15.87 2.63 0

Fitness Values 4072.37 4077.68 4093.26

In order to activate the injection wells, α is taken as 0.5 and the solutions are repeated once

again using GA, SA and LP. The set of decision variables for the best solution (found among

20 runs for GA and 5 runs for SA) are given in Table 5.5. Since α<1, injection wells turned

out to be feasible. The total amounts of injection for the solutions are close to the upper

bounds for the injection wells, which is 1500 m3/day. Total amount of extraction without

injection (optimal solution found in Section 5.1.1) has also increased from 4093.26 m3/day to

5007.01 m3/day.

The best fitness values for GA and SA (4250.14 for GA and 4250.08 for SA) are almost

identical and the corresponding decision variables for two solution are close with at most ≅6

% difference. The results are also very close to optimal solution found by LP.

 82

Table 5.5 Optimal well rates (α=0.5)

 GA SA LP

QEXT1 (m
3/day) 511.76 526.59 518.85

QEXT2 (m
3/day) 541.18 547.01 533.63

QEXT3 (m
3/day) 1029.41 1040.99 1025.21

QEXT4 (m
3/day) 1405.88 1463.21 1429.32

QEXT5 (m
3/day) 1500.00 1419.86 1500.00

QINJ1 (m
3/day) 492.06 499.67 500.00

QINJ2 (m
3/day) 484.13 497.46 500.00

QINJ3 (m
3/day) 500.00 498.02 500.00

Total Extracted Q (m3/day) 4988.23 4997.65 5007.01

Total Injected Q (m3/day) 1476.19 1495.15 1500.00

Fitness Values 4250.14 4250.08 4257.01

Figure 5.7 shows the convergence characteristics for GA and SA, when α is taken as 0.5. It

can be seen that SA converged to the optimal faster than GA. SA converges to best optimal

around function evaluation number (from here on iteration number is used instead of number

of function evaluations) 11000, while GA founds a similar result at around 29200. However,

optimal result by GA at iteration number 11000 (fitness value of 4217.36) is only ≅1% less

than the optimal result by SA (fitness value of 4250.08).

3700

3800

3900

4000

4100

4200

4300

0 5000 10000 15000 20000 25000 30000 35000

B
e
s
t
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

GA

SA

Figure 5.7 Best solution found by GA and SA

φ values corresponding to the best optimal solution and freshwater heads above seawater are

shown in Figure 5.8 and Figure 5.9-a, respectively. φtoe line which represents the toe of

saltwater encorachment is not in front of the extraction wells (i.e QEXT1) but a little far away

 83

from them. However, experiments with the model show that with a little increase in

discharge value, φtoe line jumps behind the extraction wells. This is in compliance with the

results from Cheng et al. (2000). Vertical crosssection at y=1500 m is also shown in Figure

5.9-b.

Figure 5.8 φ values corresponding to optimal solution GA

a)

b)

Figure 5.9 a) Freshwater head corresponding to optimal solution b) Longitudinal cross-
section of freshwater head at y=1500 m

 84

5.2.2 Case 2: Injection Wells Problem (Variable Locations)

In case 1, the locations of the injection wells were fixed. Including the locations as a decision

variable in the optimization process may help to improve the results. The locations of the

injection wells are constrained with the sea on the west, impervious boundary on the north

and south and the first extraction well on the east direction (i.e. WEXT1).

The objective function is as follows,

∑∑
==

−=
3

1

5

1 j

INJj

i

EXTi QQfMaximize α (5.10)

Set of constraints,

0078.8≥iφ m2 i=1,2….5 (5.11)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.12)

5000 ≤≤ INJjQ m3/day j=1,2….3 (5.13)

200 ≤≤ INJjx j=1,2….3 (5.14)

300 ≤≤ INJjy j=1,2….3 (5.15)

Unconstrained objective function,

∑ ∑∑
= ==

−×−−=
3

1

5

1

2
5

1

))0078.8,0(max(10000
j i

iINJj

i

EXTi QQfMaximize φα (5.16)

The optimization formulation is tested for α= 0.5.

5.2.2.1 Discussion of the Results for Case 2: Injection Wells Problem (Variable
Locations)

The best optimal results found are shown in Table 5.6. Again, the best fitness values from

GA and SA are almost same (fitness value of 4358.50 for GA and 4356.77 for SA). For both

solutions, it is seen that injection wells are gathered in the middle in y direction and to the

farthest point from the sea in x direction (i.e. the upper bound for the x constraint for

injection well locations). This is expected, since injection wells and canals are reported to be

not effective when placed far too seaward from pumping wells (Cheng and Ouazar, 1999).

For the discharge values, SA chooses a solution where total extraction (5000.10 m3/day) is

less than the total extraction found by GA solution (5052.94 m3/day). In proportion,

 85

injection amount is also less for the solution with SA (1286.66 m3/day with respect to the

1388.89 m3/day for GA). Best fitness values are slightly worse than the solution found by

MIP (i.e. less than 2 %). In addition, both SA and GA fail to find the optimal solution for

which the location for the three injection wells is same (i.e. xinj=15 and yinj=20).

Table 5.6 Optimal well rates and locations (α=0.5)

 GA SA MIP

QEXT1 (m
3/day) 700.00 637.99 740.66

QEXT2 (m
3/day) 652.94 537.59 512.53

QEXT3 (m
3/day) 1170.59 1068.11 1003.64

QEXT4 (m
3/day) 1500.00 1496.08 1417.87

QEXT5 (m
3/day) 1029.41 1260.33 1500.00

QINJ1 (m
3/day) 468.25 293.47 500.00

QINJ2 (m
3/day) 420.63 499.70 500.00

QINJ3 (m
3/day) 500.00 493.50 500.00

xINJ1 20 20 20
yINJ1 14 15 15
xINJ2 20 20 20
yINJ2 13 13 15
xINJ3 20 20 20

yINJ3 13 16 15

Total Extracted Q (m3/day) 5052.94 5000.10 5174.70

Total Injected Q (m3/day) 1388.89 1286.66 1500.00

Fitness Values 4358.50 4356.77 4424.70
*Locations are given as the coordinates of cells in finite difference
representation.

The φ distribution and the locations corresponding to best optimal solution are shown in

Figure 5.10. Three-dimensional representation of freshwater head above seawater and a

cross-section from the same graph are shown in Figure 5.11-a and Figure 5.11-b,

respectively.

 86

Figure 5.10 φ values corresponding to optimal solution

a)

b)

Figure 5.11 a) Freshwater head corresponding to optimal solution b) Longitudinal cros-
section of freshwater head at y=1500 m

 87

5.2.3 An Improvement for the Solution Technique: Alternating Constraints Method

An individual in a population is a representation of all the unknowns that are to be

optimized. As briefly discussed in previous sections, for the solution with traditional GA, all

the decision variables (i.e. including both the discharge values and location of injection wells

for the current problem), are to be encoded as series of binary strings. As the length of

individuals are increased, the number of solutions among which GA tries to find the optimal

(search area) increases. In addition, increasing number of decision variables results in

increasing complexity in solution space, which makes the problem hard to solve for the

optimization methods. In this study, a method called Alternating Constraints Method is

introduced where discharge values and the locations are optimized one at a time in an

iterative manner.

Procedure of the method is as follows:

Step 1: Fix the location of the injection wells to arbitrary locations within the constraint

limits (Eqns. 5.14 and 5.15). Run GA to find the optimal discharge of extraction and

injection wells (Eqn. 5.16). iφ and discharge values are constrained by Eqns. 5.11, 5.12 and

5.13, respectively.

Step 2: Fix the well rates (both extraction and injection) with the optimal rates found in Step

1. Optimize the location of the injection wells by maximizing the φ differences in the

control locations by running GA once again (Eqn. 5.17). The locations of the injection wells

are again constrained by Eqns. 5.14 and 5.15.

∑
=

−=
m

i

toeifMaximize
1

),0max(φφ (5.17)

where, m is the number of extraction wells, for which the φ values are checked.

Step 3: Repeat Step 1 once again, this time by fixing the well locations with the optimal

locations found in step 2. Flowchart of the method is given in Figure 5.12.

 88

Run GA to find the extraction and injection
rates that give maximum total benefit while
locations of the injection wells are fixed

within constraint limits

Run GA once again to find optimal the
injection well locations. This time extraction
and injection rates are fixed with the optimal

rates found Step-1.

Run GA for the last time to find extraction
and injection rates that give maximum total
benefit, while locations of the injection wells
are fixed with the optimal locations found in

Step-2

START

STOP

Step-2

Step-1

Step-3

Figure 5.12 The flowchart for the current method

5.2.3.1 Discussion of the Results for Case 2: Injection Wells Problem (Variable

Locations) using Alternating Constraints Method

The method introduced is applied to Case 2: Injection Well Problem (Variable Locations).

Convergence character for the best optimal solution found is shown in Figure 5.13. From the

figure, it can be seen that in Step 1, the algorithm converges to a value of 4332.16. However,

after step 2 where the locations of the wells are to be optimized, the algorithm converges to a

better solution, 4402.25 in Step 3 of proposed method.

 89

4000

4100

4200

4300

4400

4500

0 5000 10000

B
e
s
t
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

Step 1

Step 3

Figure 5.13 Best fitness values corresponding to optimal solution for Alternating Constraints
Method

The results from different optimization solvers used are shown in Table 5.7. Among the

randomized search algorithms, the best optimal result (i.e. 4402.25) is found by the

Alternating Constraints Method. The worst solution by Alternating Constraints Method is

better with respect to the worst solution by GA. Average and worst solutions for SA are

higher, which shows a smoother distribution for the solutions by SA.

Table 5.7 The maximum, minimum and average of the optimal solutions for the Injection

Well Problem (Variable Locations), α=0.5 (Among 20 runs for GA and 5 runs for SA)

Best

Solution
Worst

Solution Average

Alternating Constraints Method 4402.25 4134.08 4256.15
GA 4358.50 4087.12 4261.99
SA 4356.77 4279.18 4319.93

MIP 4424.70 - -

For the solution with MIP, each potential location for the injection wells is an additional

integer variable in the optimization formulation. The number of integer variables for the

current example is 9000 (50 (number of columns in x direction) × 60 (number of rows in y

direction) × 3 (number of injection wells)). Maximum number of integer variables that can

be solved with the trial version of LINDO is only 50. Thus, the search domain is divided into

smaller zones and the solution method is repeated for each zone. It must be noted that this

approach does not guarantee an optimal solution, considering that optimal locations may

cover different zones.

 90

φ distribution for the best optimal solution is shown in Figure 5.14. Freshwater head

distribution for the coastal aquifer and a cross-section in y-dimension is shown in Figure

5.15.

Figure 5.14 φ values corresponding to optimal solution GA

a)

b)

Figure 5.15 a) Freshwater head corresponding to optimal solution b) Longitudinal cross-
section of freshwater head at x=1500 m

 91

5.2.4 Summary of the Results

For the injection well problem, the solution sets corresponding to the best optimal solutions

for the case with fixed locations and the case with variable locations are shown in Table 5.8.

As discussed in Section 5.2.1, optimal values found when the location of the wells are fixed

are almost identical (i.e. values changing from 4250.08 to 4257.01). When the locations of

the injection wells are included in the optimization process, the fitness value has increased

from 4250.14 to 4358.50, for the solution with GA. Total extraction amount has increased

from 4988.23 m3/day to 5052.94 m3/day. When Alternating Constraints Method is applied,

fitness value has increased to 4402.25 and total extraction amount to 5141.18 m3/day.

5.3 Canal Problem

As to form a barrier for seawater intrusion, instead of injecting from a point source (well),

water can be articially recharged by using surface spreading (i.e. water canal) for unconfined

aquifers (Todd, 1980). Since groundwater flow is assumed to be horizontal, the flow

dynamics for the model will be independent of height of the canal and canal is modeled as an

additional source of recharge.

For the canal problem, two different management models are formulated for both of which

the objective functions are same, while decision variables and constraints are different. The

management models seek for the maximum amount of extraction while recharge is provided

by a canal.

For the first case, the location and length of canal is to be optimized while recharge rate for

the canal is fixed. For the second case, the location and recharge rate for the canal is to be

optimized while length of the canal is fixed.

5.3.1 Case 1: Canal Problem (Variable Location and Length)

The objective is to use the maximum groundwater potential while there is no seawater

intrusion. φ value of 8.0078 m2 represents the border where the seawater intrusion has

reached. The canal utilized in the study is parallel to the coastline and extends as a straight

line in y direction. Length and location of the canal together with the total amount of

 92

O
pt

m
. E

xt
r.

 a
nd

 I
nj

.
R

at
es

 t
og

et
he

r
w

it
h

th
e

O
pt

m
. L

oc
. o

f
th

e
In

j.
 W

el
ls

**

A
lt

er
na

ti
ng

C

on
st

ra
in

ts
 M

et
ho

d

75
8.

82

56
4.

71

10
52

.9
4

14
52

.9
4

13
11

.7
7

50
0.

00

47
6.

19

50
0.

00

20

15

20

15

20

15

51
41

.1
8

14
76

.1
9

44
02

.2
5

O
pt

m
. E

xt
r.

 a
nd

 I
nj

.
R

at
es

 t
og

et
he

r
w

it
h

th
e

O
pt

m
. L

oc
. o

f
th

e
In

j.
 W

el
ls

**

 M

IP

74
0.

66

51
2.

53

10
03

.6
4

14
17

.8
7

15
00

.0
0

50
0.

00

50
0.

00

50
0.

00

20

15

20

15

20

15

51
74

.7
0

15
00

.0
0

44
24

.7
0

O
pt

m
. E

xt
r.

 a
nd

 I
nj

.
R

at
es

 t
og

et
he

r
w

it
h

th
e

O
pt

m
. L

oc
. o

f
th

e
In

j.
 W

el
ls

**

 S

A

63
7.

99

53
7.

59

10
68

.1
1

14
96

.0
8

12
60

.3
3

29
3.

47

49
9.

70

49
3.

50

20

15

20

13

20

16

50
00

.1
0

12
86

.6
6

43
56

.7
7

O
pt

m
. E

xt
r.

 a
nd

 I
nj

.
R

at
es

 t
og

et
he

r
w

it
h

th
e

O
pt

m
. L

oc
. o

f
th

e
In

j.
 W

el
ls

**

G
A

70
0.

00

65
2.

94

11
70

.5
9

15
00

.0
0

10
29

.4
1

46
8.

25

42
0.

63

50
0.

00

20

14

20

13

20

13

50
52

.9
4

13
88

.8
9

43
58

.5
0

O
pt

m
. E

xt
r.

 a
nd

In

j.
R

at
es

 (
L

oc

 o
f

th
e

In
j.

 W
el

ls

ar
e

F
ix

ed
)*

 L

P

51
8.

85

53
3.

63

10
25

.2
1

14
29

.3
2

15
00

.0
0

50
0.

00

50
0.

00

50
0.

00

18
 8 18

15

18

23

50
07

.0
1

15
00

.0
0

42
57

.0
1

O
pt

m
. E

xt
r.

 a
nd

In

j.
R

at
es

 (
L

oc
.

 o
f

th
e

In
j.

 W
el

ls

ar
e

F
ix

ed
)*

 S
A

52
6.

59

54
7.

01

10
40

.9
9

14
63

.2
1

14
19

.8
6

49
9.

67

49
7.

46

49
8.

02

18
 8 18

15

18

23

49
97

.6
5

14
95

.1
5

42
50

.0
8

O
pt

m
. E

xt
r.

 a
nd

In

j.
R

at
es

 (
L

oc
.

 o
f

th
e

In
j.

 W
el

ls

ar
e

F
ix

ed
)*

 G
A

51
1.

76

54
1.

18

10
29

.4
1

14
05

.8
8

15
00

.0
0

49
2.

06

48
4.

13

50
0.

00

18
 8 18

15

18

23

49
88

.2
3

14
76

.1
9

42
50

.1
4

T
ab

le
 5

.8
 B

es
t

op
ti

m
al

 r
es

ul
ts

 f
ou

nd
 f

or
 I

nj
ec

ti
on

 W
el

l
P

ro
bl

em
, α

=
0.

5
(B

ol
ds

 a
re

 v
al

ue
s

th
at

 a
re

 o
pt

im
iz

ed
, t

he
 o

th
er

 v
al

ue
s

ar
e

fi
xe

d
fo

r
th

e
re

la
te

d
so

lu
ti

on
)

Q
E

X
T

1
 (

m
3 /d

ay
)

Q
E

X
T

2
 (

m
3 /d

ay
)

Q
E

X
T

3
 (

m
3 /d

ay
)

Q
E

X
T

4
 (

m
3 /d

ay
)

Q
E

X
T

5
 (

m
3 /d

ay
)

Q
IN

J1
 (

m
3 /d

ay
)

Q
IN

J2
 (

m
3 /d

ay
)

Q
IN

J2
 (

m
3 /d

ay
)

x I
N

J1

y I
N

J1

x I
N

J2

y I
N

J2

x I
N

J3

y I
N

J3

T
ot

al
 E

xt
ra

ct
ed

Q

 (
m

3 /d
ay

)

T
ot

al
 I

nj
ec

te
d

Q

 (
m

3 /d
ay

)

F
it

ne
ss

*
O

pt
im

al
 E

xt
ra

ct
io

n
an

d
In

je
ct

io
n

R
at

es
 (

L
oc

at
io

ns
 o

f
th

e
In

je
ct

io
n

W
el

ls
 a

re
 F

ix
ed

)
**

 O
pt

im
al

 E
xt

ra
ct

io
n

an
d

In
je

ct
io

n
R

at
es

 to
ge

th
er

 w
it

h
th

e
O

pt
im

al
 L

oc
at

io
ns

 o
f

th
e

In
je

ct
io

n
W

el
ls

 93

extraction from five wells are to be optimized. lcan is the number of grids that canal occupies

in y direction. Upper limit for lcan is 10. Recharge rate is fixed to 1.2857×10-2 m3/day/m2 for

which the total amount of discharge for the maximum length of canal is equal to 1500

m3/day. Note that this amount is equal to the total upper bound for the injection wells

studied in the previous problem. This is to make the comparisons between the problems

easier. β, which is the ratio of the economical value of recharged canal water to the

economical value of extracted water, is taken as 0.5.

The objective function is as follows,

CANCAN

m

i

EXTi RlyxQfMaximize
1

∆∆−=∑
=

β (5.18)

Set of constraints,

0078.8≥iφ m2 i=1,2….5 (5.19)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.20)

100 ≤≤ CANl (5.21)

201 ≤≤ CANx (5.22)

301 ≤≤ CANy
 (5.23)

Unconstrained objective function,

∑∑
==

−×−∆∆−=
m

i

iCANCAN

m

i

EXTi RlyxQfMaximize
1

2

1

))0078.8,0(max(10000.... φβ (5.24)

 94

5.3.1.1 Application of Alternating Constraints method to Case 1: Canal Problem

(Variable Location and Length)

The method introduced in Section 5.2.3, where locations and recharge values are optimized

in an iterative manner, is applied to Case 1: Canal Problem.

Procedure of the method is as follows:

Step 1: Fix the location of the canal to a random location within the constraint limits (Eqns.

5.22 and 5.23). Run GA to find the optimal discharge for extraction wells and optimal length

for canal. The objective function (Eqn. 5.24) used to find the extraction rates, iφ values and

length of the canal are constrained by Eqns. 5.19 and 5.20.

Step 2: Fix the extraction rates and length with the optimal rates found in Step 1. Optimize

the location of the canal by maximizing the φ differences in the control locations by running

GA once again (Eqn. 5.25). The location of the canal is again constrained by Eqns. 5.22 and

5.23.

∑
=

−=
m

i

toeifMaximize
1

),0max(φφ (5.25)

Step 3: Repeat Step 1 once again, this time by fixing the location of the canal with the

optimal location found in Step 2.

The method is applied to Case 1: Canal Problem (Variable Location and Length). Runs are

repeated for 20 times with different seeds to examine the effects of stochastic effects

involved in solution.

The best optimal solution found by the Alternating Constraints method, GA and SA is shown

in Table 5.9. In all solutions, optimum length of the canal is found as 10 grids. This is the

upper limit for the length of the canal for which recharge is fully applied. In all solutions, x-

coordinate of the canal is found as 20 and y-coordinate is found around to the middle of the

aquifer. The fitness values from different algorithms are almost identical, the result from

Alternating Constraints Method (with a fitness value of 4397.06) is the best one.

 95

Table 5.9 Optimal well rates for β=0.5 (Bold values are optimized values, the other values
are fixed)

 Alternating

Constraints
Method GA SA

QEXT1 (m
3/day) 676.47 658.82 640.33

QEXT2 (m
3/day) 582.35 605.88 660.54

QEXT3 (m
3/day) 1017.65 1035.29 1175.94

QEXT4 (m
3/day) 1376.47 1388.24 1360.45

QEXT5 (m
3/day) 1494.12 1452.94 1258.74

Canal Length 10 10 10
Canal x-coordinate 20 20 20
Canal y-coordinate 9 8 5

Canal Recharge
Rate (m3/day/m2)

1.2857x10-2 1.2857x10-2 1.2857x10-2

Total Extracted Q (m3/day) 5147.06 5141.18 5096.00
Total Recharged Q (m3/day) 1500.00 1500.00 1500.00

Fitness 4397.06 4391.18 4346.00

The φ distribution is shown in Figure 5.16. The potential line of 8.0078 m2 is in front of the

extraction wells, which shows that seawater has not progressed behind the extraction wells

for the solution.

Figure 5.16 φ values corresponding to optimal solution

Figure 5.17 shows the freshwater head distribution above seawater for the coastal aquifer.

The location of the canal can be seen as a line shaped depression in front of the extraction

wells.

 96

a)

b)

Figure 5.17 a) Freshwater head corresponding to optimal solution. b) Longitudinal
cross-section of freshwater head at x=1500 m

5.3.2 Case 2: Canal Problem (Variable Location and Recharge)

Similar to Case 1, the objective is to use the maximum groundwater potential while there is

no seawater intrusion. The location and recharge value of the canal (instead of length of the

canal in Case 1) are to be optimized together with the total extraction from five wells. The

upper limit for the recharge of the canal is constrained to 1.2857×10-2 m3/day/m2. Canal

length is fixed to 10 grids in y direction (as found in Case 1) for which the total amount of

discharge for the maximum recharge of the canal is equal to 1500 m3/day.

The objective function is as follows,

CANCAN

m

i

EXTi RlyxQfMaximize
1

∆∆−=∑
=

β (5.26)

 97

Set of constraints,

0078.8≥iφ m2 i=1,2….5 (5.27)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.28)

2102857.10 −×≤≤ CANR m3/day/m2 (5.29)

201 ≤≤ CANx (5.30)

301 ≤≤ CANy
 (5.31)

Unconstrained objective function,

∑∑
==

−×−∆∆−=
m

i

iCANCAN

m

i

EXTi RlyxQfMaximize
1

2

1

))0078.8,0(max(10000.... φβ (5.32)

The optimization formulation is tested for β=0.5.

5.3.2.1 Application of Alternating Constraints Method on Canal Problem (Variable

Location and Recharge)

Procedure of the method is as follows:

Step 1: Fix the location of the canal to a random location within the constraint limits (Eqns.

5.30 and 5.31). Run GA to find the optimal discharge for extraction wells and optimal

recharge for canal (Eqn. 5.32). The iφ values, extraction rates, and recharge value for the

canal are constrained by Eqns. 5.27, 5.28 and 5.29, respectively.

Step 2: Fix the extraction and recharge rates with the optimal rates found in Step 1. Optimize

the location of the canal by maximizing the φ differences in the control locations by running

GA once again (Eqn. 5.33). The location of the canal is again constrained by Eqns. 5.30 and

5.31.

∑
=

−=
m

i

toeifMaximize
1

),0max(φφ (5.33)

Step 3: Repeat step 1 once again, this time by fixing the location of the canal with the

optimal location found in step 2.

The method is applied to Case 2: Canal Problem (Variable Location and Recharge). Again

the runs are repeated for 20 times. The problem is also solved with SA for comparison

purposes.

 98

The best optimal results are shown in Table 5.10. The results are again almost identical for

different algorithms. For the optimal solution, canals locate themselves on the upper limit of

the x direction farthest point from the coast and around to the middle in y direction. Recharge

rates are found close to 1.2857x10-2 m3/day/m2 for which the total amount of recharge is

1500 m3/day. This is the upper limit for the recharge value.

Table 5.10 Optimal well rates for β=0.5 (Bold values are optimized values, the other values

are fixed)

 Alternating
Constraints Method GA SA

QEXT1 (m
3/day) 700.00 805.88 668.01

QEXT2 (m
3/day) 670.59 817.65 572.63

QEXT3 (m
3/day) 1152.94 1235.29 1030.37

QEXT4 (m
3/day) 1417.65 1329.41 1418.44

QEXT5 (m
3/day) 1182.35 876.47 1455.09

Canal Length 10 10 10
Canal x-coordinate 20 20 20
Canal y-coordinate 8 10 9

Canal Recharge
Rate (m3/day/m2)

1.2857×10-2 1.2857×10-2 1.2832×10-2

Total Extracted Q (m3/day) 5123.53 5064.71 5144.54
Total Recharged Q (m3/day) 1500.00 1500.00 1497.01

Fitness 4373.53 4314.71 4396.03

Potential distribution for the best solution found is shown in Figure 5.18. The freshwater

distribution above seawater is shown in Figure 5.19.

Figure 5.18 φ values corresponding to optimal solution GA

 99

a)

b)

 Figure 5.19 a) φ values corresponding to optimal solution. b) Longitudinal
cross-section of freshwater head at x=1500 m

5.3.3 Summary of the Results

In Table 5.11, the results from Case 1: Canal problem (Variable Location and Length) and

Case 2: Canal problem (Variable Location and Recharge) are put side by side. The results

give a similar picture especially for the locations, length and recharge values for the canal.

The results from the two different cases turn out to be identical, for which the different

decision variables are optimized but similar results are found for the same objective.

 100

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
R

ec
ha

rg
e

R
at

e

 S
A

66
8.

01

57
2.

63

10
30

.3
7

14
18

.4
4

14
55

.0
9 10

20
 9

1.
28

32
×

10
-2

51
44

.5
4

14
97

.0
1

43
96

.0
3

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
R

ec
ha

rg
e

R
at

e

 G
A

80
5.

88

81
7.

65

12
35

.2
9

13
29

.4
1

87
6.

47

10

20

10

1.
28

57
×

10
-2

50
64

.7
1

15
00

.0
0

43
14

.7
1

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
R

ec
ha

rg
e

R
at

e

A
lt

er
na

ti
ng

C

on
st

ra
in

ts
 M

et
ho

d

70
0.

00

67
0.

59

11
52

.9
4

14
17

.6
5

11
82

.3
5 10

20
 8

1.
28

57
×

10
-2

51
23

.5
3

15
00

.0
0

43
73

.5
3

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
L

en
gt

h

 S
A

64
0.

33

66
0.

54

11
75

.9
4

13
60

.4
5

12
58

.7
4 10

20
 5

1.
28

57
×

10
-2

50
96

.0
0

15
00

.0
0

43
46

.0
0

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
L

en
gt

h

 G
A

65
8.

82

60
5.

88

10
35

.2
9

13
88

.2
4

14
52

.9
4 10

20
 8

1.
28

57
×

10
-2

51
41

.1
8

15
00

.0
0

43
91

.1
8

O
pt

im
al

 C
an

al

L
oc

at
io

n
an

d
L

en
gt

h

A
lt

er
na

ti
ng

C

on
st

ra
in

ts
 M

et
ho

d

67
6.

47

58
2.

35

10
17

.6
5

13
76

.4
7

14
94

.1
2 10

20
 9

1.
28

57
×

10
-2

51
47

.0
6

15
00

.0
0

43
97

.0
6

T
ab

le
 5

.1
1

O
pt

im
al

 w
el

l
ra

te
s

fo
r

β
=

0.
5

(B
ol

d
va

lu
es

 a
re

 o
pt

im
iz

ed
 v

al
ue

s,
 th

e
ot

he
r

va
lu

es
 a

re
 f

ix
ed

)

 Q
E

X
T

1
 (

m
3 /d

ay
)

Q
E

X
T

2
 (

m
3 /d

ay
)

Q
E

X
T

3
 (

m
3 /d

ay
)

Q
E

X
T

4
 (

m
3 /d

ay
)

Q
E

X
T

5
 (

m
3 /d

ay
)

C
an

al
 L

en
gt

h

C
an

al
 x

-c
oo

rd
in

at
e

C
an

al
 y

-c
oo

rd
in

at
e

C
an

al
 R

ec
ha

rg
e

R
at

e(
m

3 /d
ay

/m
2)

T
ot

al
 E

xt
ra

ct
ed

 Q
 (

m
3 /d

ay
)

T
ot

al
 I

nj
ec

te
d

Q
 (

m
3 /d

ay
)

F
it

ne
ss

 101

5.4 Injection Wells & Canal Problem

A management problem is designed where two different seawater prevention methods

discussed in previous problems (injection and canal) and related decision variables (locations

and recharge values) are included in a single problem. Total amount of recharge (by injection

wells and canal) are constrained so that it is shared between injection wells and canal. This is

done by using penalty method. If the total amount is exceeded, a penalty is applied to the

objective function, proportional to the degree of violation.

The objective function is as follows,

CANCAN

j

INJj

m

i

EXTi RlyxQQfMaximize
3

11

∆∆−−= ∑∑
==

βα (5.34)

Set of constraints,

0078.8≥iφ m2 i=1,2….5 (5.35)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.36)

5000 ≤≤ INJjQ m3/day j=1,2….3 (5.37)

200 ≤≤ INJjx j=1,2….3 (5.38)

300 ≤≤ INJjy j=1,2….3 (5.39)

2102857.10 −×≤≤ CANR m3/day/m2
 (5.40)

201 ≤≤ CANx (5.41)

301 ≤≤ CANy
 (5.42)

1500...0
3

1

≤∆∆+≤∑
=

CANCAN

j

INJj RyxlQ m3/day
 (5.43)

 102

Unconstrained objective function,

2
3

1

1

2

3

11

))1500...,0(max(10000

))0078.8,0(max(10000

....

−∆∆+×−

−×−

∆∆−−=

∑

∑

∑∑

=

=

==

CANCAN

j

INJj

m

i

i

CANCAN

j

INJj

m

i

EXTi

RyxlQ

RyxlQQfMaximize

φ

βα

 (5.44)

The optimization formulation is tested for the case with α and β =0.5.

5.4.1 Discussion of the Results for Injection Wells & Canal Problem

The best optimal results found by GA and SA are shown in Table 5.12. Solution by SA

chooses to recharge from the canal instead of injecting from the wells. Solution by GA, on

the other hand, reaches a mix solution, where some of the water is injected from the wells

while remaing is recharged from the canals. Similar fitness values indicate that either

solution gives similar benefits. This is expected, since optimal fitness values for injection

well only case (4358.50, see Section 5.2) was close to the optimal solution for canal only case

(4391.18, see Section 5.3) for the solution with GA. It is also noted that optimal results given

in Table 5.12 are also similar to the previously found optimals. A choice between two

options (canal or injection well) would require other criterias that are not involved in our

solution (i.e. the cost of installation, sustainability questions or environmental affects)

Table 5.20 shows the convergence behaviour of SA and GA. Although, SA converged to a

slightly better value, GA found a near optimal value faster.

 103

Table 5.12 Optimal decision variables for the Injection Wells & Canal Problem for α and

β=0.5 (Bolds are optimized values, the others are fixed values)

 GA SA
QEXT1 (m

3/day) 558.82 671.76
QEXT2 (m

3/day) 558.82 578.06
QEXT3 (m

3/day) 1005.88 1029.03
QEXT4 (m

3/day) 1435.29 1372.34
QEXT5 (m

3/day) 1488.24 1495.15
QINJ1 (m

3/day) 277.78 0.01
QINJ2 (m

3/day) 325.40 0.00
QINJ3 (m

3/day) 15.87 0.00
xINJ1 20 5
yINJ1 17 20
xINJ2 20 12
yINJ2 8 6
xINJ3 20 15
yINJ3 20 5

Canal Length (m) 10 10
Canal x-coordinate 20 20
Canal y-coordinate 8 9

Canal Recharge Rate (m3/day/m2) 0.6537 ×10-2 1.2856×10-2
Total Extracted Q (m3/day) 5047.06 5146.35
Total Recharged Q (m3/day) 1382.38 1499.99

Fitness 4355.87 4396.36

2500

3000

3500

4000

4500

0 10000 20000 30000 40000 50000

Number of Function Evaluations

B
e
s
t

F
it

n
e
s
s
 V

a
lu

e
s

GA

SA

Figure 5.20 Best optimal result found by GA and SA

 104

CHAPTER 6

6. CONCLUSIONS

A combined simulation-optimization of a coastal aquifer is studied to optimize the maximum

benefit by extracting water without seawater intrusion. The simulation formulation was

based on the single potential formulation by Strack (1976). The main assumptions were

sharp interface between seawater and freshwater and seawater is assumed stagnant while

freshwater flows horizontally over seawater. Seawater intrusion is tracked by the potential

values at the extraction wells. MODFLOW is used for the numerical solution of the single

potential solution. Two different heuristic algorithms, GA and SA are used as optimization

tools. Different prevention methods are added to the model and optimal solution for these

scenarios are found by using the management formulation. A method named “Alternating

Constraints Method” is introduced to improve the results by GA, where locations are also

decision variables. To evaluate the effectiveness of the system, linear or mixed integer

programming is utilized, whenever applicable. The conclusions are summarized below;

1. Although an optimal parameter set is found and used for solutions with GA, good

results can be achieved by using different combinations of parameter values and

different type of GA operators.

2. Binary length of decision variables sets the precision of the solution. Longer the

string length, larger the search space and it may be harder for the optimization solver

to find the near global solution. Thus, before starting a study, the user should decide

on the degree of precision important for the solution. This kind of control on

precision enables the user to make a coarser search at the beginning of a research

without much computational requirement and increase the precision of the solution

as research progress.

 105

3. The results by LP and MIP, whenever applicable, showed that GA and SA are

successfully finding near global optimums for the seawater management problem

considered in this study.

4. Including the locations of recharge elements (i.e. injection wells, canal) as decision

variable in the solutions improved the maximum extraction amount. For both

injection wells and canal, optimum results are found when they are located farther

away from the coast.

5. Alternating Constraints Method improved the results where locations of the recharge

elements are of important in terms of management problem. The method improved

the results by both increasing the quality of the final solution and decreasing the

number of function evaluations required to reach that solution.

6. Adding canal or injection well to the model prevented the encroachment of seawater

interface and increased the maximum extraction amount.

7. When injected and extracted water is of the same economical value, there is no net

gain in groundwater extraction amount. Using lower quality of injected water

increases the efficiency of the groundwater extraction.

8. Maximum benefit achieved using either canal or injection well is almost identical for

the management objectives considered. A choice between two options requires other

criterias involved in solution (i.e. the cost of installation, sustainability questions or

environmental effects)

9. Various runs with different starting points and seed numbers showed that SA usually

converges to near global optimum, independent of the starting point or random

processes involved in solution by SA.

10. The results show that both GA and SA can effectively be used to obtain near global

solutions for the management problems utilized in this study. Computational time

depends on the number of decision variables, discretization resolution, and

complexity of the problem (i.e. complex geometry).

 106

REFERENCES

Ahlfeld, D. P. and Heidari, M., Applications of Optimal Hydraulic Control to Ground-Water

Systems, Journal of Water Resources Planning and Management, ASCE, 120(3), 350-365,
1994.

Aly, A. H. and Peralta, R. C., Comparison of a Genetic Algorithm and Mathematical

Programming to the Design of Groundwater Cleanup Systems, Water Resources Research,
35(8), 2415–2426, 1999.

Back, T., Optimal Mutation Rates in Genetic Search, In Forrest, S. (Ed.), Proceedings of the
5th International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, 2–
9, 1993.

Back, T. and Schutz, M, Intelligent Mutation Rate Control in Canonical Genetic Algorithms,
In Ras, Z. W. and Michalewicz, M. (Eds.), Proceedings of the 9th International Symposium
on Foundations of Intelligent Systems, Berlin: Springer, 1079, 158-167, 1996.

Banzhaf, W. and Reeves, C., Foundations of Genetic Algorithm 5, Morgan Kaufmann
Publishers, San Francisco, 1999.

Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D. and Herrera, I. (Eds.), Seawater Intrusion in

Coastal Aquifers - Concepts, Methods and Practices, in Theory and Application of Transport

in Porous Media, Kluwer Academic Publishers, Dordrecht, 1999.

Bear, J. and Zhou, Seawater Intrusion into Coastal Aquifers, Chapter 12 in: Delleur, J. W.
(Ed.), The Handbook of Groundwater Engineering, Second Edition, CRC Press, New York,
12.1-12.29, 2004.

Benhachmi, M. K., Ouazar, D., Naji, A., Cheng, A.H.-D., and El Harrouni, K., Optimal

Management in Saltwater-Intruded Coastal Aquifers by Simple Genetic Algorithm, In
Ouazar, D. and Cheng, A.H.-D. (Eds.), 1st International Conference on Saltwater Intrusion
and Coastal Aquifers-Monitoring, Modeling, and Management, Essaouira, Morocco, April
23-25, 2001.

Benhachmi, M. K., Ouazar, D., Naji, A., Cheng, A.H.-D., and El Harrouni, K., Pumping

Optimization in Saltwater-intruded Aquifers by Simple Genetic Algorithm-Deterministic

Model, Proceedings of Coastal Aquifers Intrusion Technology: Mediterranean Countries
International Conference (TIAC'03), Alicante, Spain, 1, 291-293, 2003.

Bhattacharjya, R. K. and Datta, B., Optimal Management of Coastal Aquifers Using Linked

Simulation Optimization Approach, Water Resources Management, 19(3), 295-320, 2005.

Bohachevsky, I., Johnson, M. E., and Stein, M. L., Generalized Simulated Annealing for

Function Optimization, Technometrics, 28, 209-217, 1986.

 107

Camur, M. Z. and Yazıcıgil, H., Effects of the Planned Ephesus Recreational Canal on

Freshwater-Seawater, Environmental Geology, 48(2), 229-237, 2005.

Cheng A. H.–D. and Ouazar D., Analytical Solutions, Chapter 6 in: Bear, J. ,Cheng , A. H.
D., Sorek, S., Ouazar, D., and, Herrera, I. (Eds.), Seawater Intrusion in Coastal Aquifers,
Kluwer Academic Publishers, Dordrecht, 163-191, 1999.

Cheng, A. H.–D., Halhal, D., Naji, A., and Ouazar, D., Pumping Optimization in Saltwater

Intruded Coastal Aquifers, Water Resources Research, 36(8), 2155-2165, 2000

Coley, D., An Introduction to Genetic Algorithms for Scientists and Engineers, World
Scientific, London, 1999.

Corona, A., Marchesi, M., Marteni, C., and Ridella, S., Minimizing Multimodal Functions of

Continuous Variables with the “Simulated Annealing” Algorithm, ACM Trans.
Mathematical Software, 13 (3), 262–280, 1987.

Cunha, M. D. C., Four Approaches for Groundwater Planning, Engineering Optimization,
35(1), 39-49 (11), 2003.

Das, A. and Datta, B., Development of Multi Objective Management Models for Coastal

Aquifers, Journal of Water Resources Planning Management, ASCE, 125(2), 76–87, 1999.

Das, A. and Datta, B., Simulation Of Seawater Intrusion In Coastal Aquifers: Some Typical

Responses, SADHANA – Academy Proceedings in Engineering Sciences, Indian Academy
of Sciences, 26(4), 317-353, 2001.

Davis, L. and Steenstrup, M., Genetic Algorithms and Simulated Annealing: An Overview, In
Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufmann
Publishers, Inc., LA, 1-11, 1987.

De Jong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Doctoral Thesis, Department of Computer and Communication Sciences, University of
Michigan, Ann Arbor, 1975.

De Jong, K. A., Genetic Algorithms Are NOT Function Optimizers, In Whitley, D. (Ed.),
Foundations of Genetic Algorithms: Proceedings 24-29 July 1992, Morgan Kaufman, Vail,
CO, 1992.

De Jong, K. A., Evolutionary Computation: A Unified Approach, MIT Press, 2006.

Delleur, J. W. (Ed.), The Handbook of Groundwater Engineering, Second Edition, CRC
Press, New York, 2004a.

Delleur, J. W., Elementary Groundwater Flow and Transport Processes, Chapter 3 in:
Delleur, J. W. (Ed.), The Handbook of Groundwater Engineering, Second Edition, CRC
Press, New York, 3.1-3.45, 2004b.

Demirbaş, K., Combined Optimization-simulation of an Excavation Site for Dewatering

Purposes, MS Thesis, Middle East Technical University, Civil Eng. Dept., Ankara, 2003.

 108

Emch, P. G. and Yeh, W. W. G., Management Model for Conjunctive Use of Coastal Surface

Water and Groundwater, Journal of Water Resources Planning and Management, ASCE,
124(3), 129-139, 1998.

Essaid, H. I., A Comparison of The Coupled Fresh Water-Salt Water Flow and The Ghyben-

Herzberg Sharp Interface Approaches to Modeling of Transient Behavior in Coastal Aquifer

Systems, Journal of Hydrology, 169-193, 1986.

Essaid, H. I., A Multilayered Sharp Interface Model of Coupled Freshwater and Saltwater

Flow in Coastal Systems: Model Development and Application, Water Resources Research,
26 (7), 1431-1454., 1990a.

Essaid, H. I., The Computer Model, SHARP, A Quasi-Three-Dimensional Finite-Difference

Model to Simulate Freshwater and Saltwater Flow in Layered Coastal Aquifer Systems: U.S.

Geological Survey Water-Resources Investigations Report 90-4130, 1990b.

Essaid, H. I., USGS SHARP Model, Chapter 8 in: Bear, J. ,Cheng , A. H. D., Sorek, S.,
Ouazar, D., and, Herrera, I. (Eds.), Seawater Intrusion in Coastal Aquifers, Kluwer
Academic Publishers, Dordrecht, 213-247, 1999.

Finney, B. A., Samsuhadi, S., and Willis, R., Quasi-three-dimensional Optimisation Model

for Jakarta Basin, Journal of Water Resources Planning and Management, 118, 18–31, 1992.

Galeati, G., Gambolati, G., and Neuman, S.P., Coupled and Partially Coupled Eulerian-

Lagrangian Model of Freshwater-Saltwater Mixing, Water Resources Research, 28(1), 149-
165, 1992.

Goffe, W. L., Ferrier, G. D., and Rodgers, J., Simulated Annealing: An Initial Application in

Econometrics, Computer Science in Economics & Management, Springer, 5(2), 133-146,
1992.

Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley-Longman, Reading, Mass, 1989.

Gorelick, S. M., A Review of Distributed Parameter Management Modeling Methods, Water
Resources Research, 19(2), 305-319, 1983.

Greenwald, R., MODMAN: An Optimization Module for MODFLOW Version 4.0,
GeoTrans, 2 Paragon Way, Freehold, NJ 07728., 1998.

Grefenstette, J., Optimization of Control Parameters for Genetic Algorithms, IEEE
Transactions on Systems, Man, and Cybernetics, SMC-16(1), 122–128, 1986.

Guo, W. and Langevin, C. D., User's guide to SEAWAT: A Computer Program for

Simulation of Three-Dimensional Variable-Density Ground-Water Flow, U.S. Geological
Survey Open-File Report 01-434, 2002.

Hallaji, K. and Yazıcıgil, H., Optimal Management of a Coastal Aquifer in Southern Turkey,
Journal of Water Resources Planning and Management, ASCE, 122, 233–244, 1996.

 109

Harbaugh, A. W. and McDonald, M. G., User’s Documentation for MODFLOW-96, an

Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow

Model: U.S. Geological Survey Open-File Report 96-485, 1996.

Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G., MODFLOW-2000, the

U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization

Concepts and the Ground-water Flow Process: U.S. Geological Survey Open-File Report

00-92, 2000

Haupt, R. L. and Haupt, S. E., Practical Genetic Algorithms, Wiley, New York, 2004.

Henry, H. R., Salt Intrusion into Freshwater Aquifers, Journal of Geophysical Research, 64,
1911-1919, 1959.

Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, 1975.

Huyakorn, P. S., Wu, Y. S., and Park, N. S., Multiphase Approach to the Numerical Solution

of a Sharp Interface Saltwater Intrusion Problem, Water Resources Research, 32(1), 93–102,
1996.

Karahanoğlu, N. and Doyuran, V., Finite Element Simulation of Seawater Intrusion into a

Quary-Site Coastal Aquifer, Kocaeli Darıca, Turkey, Environmental Geology, 44(4), 456-
466, 2003.

Katsifarakis, K. L. and Petala, Z., Combined Combined Use of Genetic Algorithms and

Boundary Elements to Optimize Coastal Aquifers Protection and Restoration of Environment

VII, Mykonos, 2004.

Katsifarakis, K. L. and Petala, Z., Combining Genetic Algorithms and Boundary Elements to

Optimize Coastal Aquifers’ Management, Journal of Hydrology, 327(1-2), 200-207, 2006.

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., Optimization by Simulated Annealing,
Science, 220, Number 4598, 671-680, 1983.

Kuo, C. H., Michel, A. N., and Gray, W. G., Design of Optimal Pump-and-Treat Strategies

For Contaminated Groundwater Remediation Using the Simulated Annealing Algorithm,
Water Resources Research ,15(2), 95-105, 1992.

Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, New York, 1976.

Leap, D., Geological Occurrence of Groundwater, Chapter 2 in: Delleur, J. W. (Ed.), The
Handbook of Groundwater Engineering, Second Edition, CRC Press, New York, 2.1-2.59,
2004.

Lin, Y. C. and Yeh, H.D., Identifying Groundwater Pumping Source Information Using

Simulated Annealing, Published online in Wiley Interscience, 2008.

 110

Lindo Systems, LINDO User’s Manual, Lindo Systems, Chicago, IL, 1996.

Mantoglou, Α., Pumping Management of Coastal Aquifers Using Analytical Models of

Saltwater Intrusion, Water Resources Research, 39(12), 1-12, 2003.

Mantoglou, A., Papantoniou, M., and Giannoulopoulos, P., Management of Coastal Aquifers

Based on Nonlinear Optimization and Evolutionary Algorithms, Journal of Hydrology,
297(1-4), 209-228., 2004.

Mantoglou, A. and Papantoniou, M., Optimal Design of Pumping Networks in Coastal

Aquifers Using evolutionary algorithms, Proceedings of International Symposium on Water

Resources Management: Risk and Challenges for the 21
st
 Century, İzmir, 783-793. 2004.

Mantoglou, A. and Papantoniou, M., Optimal Design of Pumping Networks in Coastal

Aquifers Using Sharp Interface Models, Journal of Hydrology, 361 (52-63), 2008.

McDonald, M. G. and Harbaugh, A. W., A Modular Three-Dimensional Finite Difference

Groundwater Flow Model, Modelling Techniques, Book 6, Chapter A1, 1988.

McKinney, D. C. and Lin, M.-D., Genetic Algorithms Solution of Groundwater Management

Models, Water Resources Research, 30(6), 1897-1906, 1994.

Mercer J. W., Larson, S. P., and Faust, C. R., Simulation of Salt Water Interface Motion,

Ground Water, 18, 374-385, 1980.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, M. N., and Teller, E.,
Equations of State Calculations By Fast Computing Machines, Journal of Chemical Physics,
21, 1087-1092, 1953.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.),

Springer-Verlag, London, 1996.

Motz, L. H., Yurtal, R., and Gordu F., Final Project Report: Optimization of Groundwater

Use Subject to Saltwater Intrusion Along the Mediterranean Cost of Turkey for National

Science Foundation and Turkish Scientific and Technical Council of Turkey, 2004.

Murtagh, B. A. and Saunders, M. A., MINOS 5.4 User’s Guide. Technical Report, SOL 83–
20R, Systems Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, California, 1993.

Qahman, K. and Larabi, A., Evaluation and Numerical Modeling of Seawater Intrusion in

the Gaza Aquifer (Palestine), Hydrogeology Journal, 2005.

Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

Park, C. H. and Aral, M. M., Multi-Objective Optimization of Pumping Rates and Well

Placement in Coastal Aquifers, Journal of Hydrology, 290 (1-2), 80-99, 2004.

 111

Park, N., Hong, S. H., Shim, M. G., Han, S. Y., and Bae, S. K., Optimization of Ground

Water Withdrawal in Coastal Regions. Second International Conference on Saltwater

Intrusion and Coastal Aquifers’ Monitoring, Modeling and Management (SWICA-M3),
Merida, Yucatan, Mexico, March 30-April 2, 2003.

Polo, J. F. and Ramis, F. J. R., Simulation of Salt Water-Fresh Water Interface Motion,
Water Resources Research, 19, 61-68, 1983.

Ranjan, P., Kazama, P. and Sawamoto, M., Modeling of the Dynamics of Saltwater-

Freshwater, Interface in Coastal Aquifers, Proceedings of the Joint AOGS Annual Meeting

& APHW Second Conference 2004, Singapore, 373-380, July 2004.

Rao, S. V. N., Thandaveswara, B. S., Murty Bhallamudi, S., and Srinivasulu, V., Optimal

Groundwater Management in Deltaic Regions Using Simulated Annealing and Neural

Networks, Water Resources Management, 17, 409-428 , 2003.

Rao, S. V. N., Sreenivasulu, V., Bhallamudi, S.M., Thandaveswara, B.S., and Sudheer, K.P.
Planning Groundwater Development in Coastal Aquifers, Hydrological Sciences Journal
49(1), 155-170, 2004.

Sakr, S. A., Validity of a Sharp Interface Model in a Confined Coastal Aquifer,
Hydrogeology Journal, 7(2), 155-160, 1999.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R., A Study of Control Parameters

Affecting Online Performance of Genetic Algorithms for Function Optimization,
Proceedings of 3rd International Conference on Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann, 51–60, 1989.

Shamir, U. and Dagan, G., Motion of the Seawater Interface in Coastal Aquifers: A

Numerical Solution, Water Resources Research, 7, 644-657, 1971.

Shamir, U., Bear, J., and Gamliel, A., Optimal Annual Operation of A Coastal Aquifer,
Water Resources Research, 20, 435–444, 1984.

Sivanandam, S. N. and Deepa, S. N., Introduction to Genetic Algorithms. Springer-Verlag,
2007.

Strack, O. D. L., A Single-potential Solution for Regional Interface Problems in Coastal

Aquifers, Water Resources Research, 12(6), 1165-1174, 1976.

Todd, D. K., , Ground-water Hydrology (Second Edition): John Wiley and Sons, New. York,
1980.

Tokgöz, M., Yılmaz, K. K., and Yazıcıgil, H., Optimal Aquifer Dewatering Schemes For

Excavation of a Collector Line, Journal of Water Resources Planning and Management,
ASCE, 248-261, 2002.

Van Dam, J. C., Exploitation, Restoration and Management, Chapter 4 in: Bear, J. ,Cheng ,
A. H. D., Sorek, S., Ouazar, D., and, Herrera, I. (Eds.), Seawater Intrusion in Coastal
Aquifers, Kluwer Academic Publishers, Dordrecht, 73-125, 1999.

 112

Van Laarhoven, P. J. M. and Aarts, E. H. L., Simulated Annealing, Theory and Practice,
Kluwer Acad. Publ., 1987.

Vanderbilt, D. and Louie, S.G., A Monte Carlo Simulated Annealing Approach to

Optimization over Continuous Variables, J. Comput. Phys., 56, 259-271, 1984.

Voss, C. I., SUTRA (Saturated Unsaturated Transport): A Finite-element Simulation Model

for Saturated-unsaturated, Fluid-density-dependent Ground-water Flow with Energy

Transport or Chemically-Reactive Single-species Solute Transport, U.S. Geological Survey
Water-Resources Investigations Report p. 84-4369, 1984.

Voss, C. I. and Souza W.R., Variable Density Flow and Solute Transport Simulation of

Regional Aquifers Containing a Narrow Freshwater-Saltwater Transition Zone, Water
Resources Research, 23(10), 1851-1866, 1987.

Wang, M. and Zheng, Y., Ground Water Management Optimization Using Genetic

Algorithms And Simulated Annealing: Formulation And Comparison, Journal of the
American Water Resources Association, 34(3), 519–530, 1998.

Willis, R. and Liu, P., Optimisation Model for Groundwater Planning, Journal of Water
Resources Planning and Management, ASCE, 110, 333-347, 1984.

Willis R. and Finney, B. A., Planning Model for Optimal Control of Saltwater Intrusion,
Journal of Water Resources Planning and Management, ASCE, 114, 163–178, 1988.

Wilson, J. L. and Costa, S. A., Finite Element Simulation of a Saltwater/Freshwater

Interface With Indirect Toe Tracking, Water Resources Research, 18(4), 1069-1080, 1982.

Zhou, X., Chen, M., and Liang, C., Optimal Schemes of Groundwater Exploitation for

Prevention of Seawater Intrusion in the Leizhou Peninsula in Southern China,
Environmental Geology, 43, 978-985, 2003.

 113

APPENDICES

APPENDIX A

A. GA CODE

Genkod.f90
Program GENETIK_INJLOCX
INTEGER seed
INTEGER pop_num,sel_int1,sel_int2,gen_num,xd,eni_sira,enk_sira
REAL sel_num1,sel_num2,fitness(1000),fitness_new(1000),fitness_sum(1000)
REAL inj_coef
REAL fitness_eni,fitness_ort,totalx,bestever_fitness,fitness_ortiki
INTEGER str_length(100),uni_xover(100),x_overpt,x_overpt2,ix,jx,eni_gen,gen,mut_adet,x_num
INTEGER p,totstr_length,runno,top_stra,top_strb,xover_type,mut_type,sca_type,sel_type
REAL up_bound(30),low_bound(30),bi_constant(30),rastgele !Max no. of decision variables is 30
REAL toplam(1000),deneme,x(1000,30),best_x(30),worst_x(30),bestever_x(30)
REAL mut_num,f,con,pen_con, r,rnew,rnew2,rara,zz,host,best_all(1000,1000),avg_all(1000,1000)
REAL var_all(1000,1000),a_constant,b_constant,sca_constant,gen_var
INTEGER time,bas_time,bit_time,tot_time,inp_say,totinp_say,penalty_coef,elitism
REAL Q(50) ! Max. number of wells is 50.
INTEGER birey(1000,100),birey_ara(1000,100),run_say,best_birey(100),bestever_birey(100)
INTEGER sel_intara1,sel_intara2,pop_transfer,tot_saat,tot_dak,tot_san,total_run
INTEGER seed_type,numfit_zero
CHARACTER*3 :: cg
CHARACTER*5 :: ch

seed=99987687 ! Random seed number.
pop_transfer=0 ! If 0 no population transfer, if one for once, brings the last population to next run.
seed_type=1 ! If 0 seed remains same, else it changes at each input cycle.
total_run=60 ! If run number is greater than input file no. hen cycle in input files with different seed.
totinp_say=3 ! Number of input files to be used.

DO 100 run_say=1,total_run !N o of input txt file
bas_time=time()
OPEN(unit=17,file='c:\Korkut_GA\\RUNNO.txt')
READ (17,*) RUNNO
CLOSE (17)
OPEN(unit=18,file='c:\Korkut_GA\\RUNNO.txt',status='replace')
WRITE (18,*) RUNNO+1
CLOSE(18)

WRITE (ch,2000) RUNNO
2000 FORMAT(I5)

! Selects the input file according to run_say.
IF (MOD(run_say,totinp_say).EQ.0) THEN
inp_say=totinp_say
ELSE
inp_say=MOD(run_say,totinp_say)
END IF
WRITE (cg,1000) inp_say
1000 FORMAT(I3)

! Read Input files.
OPEN(5,file='input'//cg//'.txt')
IF (seed_type.EQ.0) THEN

 114

seed=seed
ELSE
IF (totinp_say.EQ.1) THEN
seed=seed-100
ELSE IF (MOD(run_say,totinp_say).EQ.1) THEN
seed=seed-100
ELSE
seed=seed
END IF
END IF

READ (5,*) sel_type ! If 0 random, 1 fitness proportianete, if 2 tournament selection
READ (5,*) xover_type ! If 1 one point, if 2 two point, if three uniform xover
READ (5,*) mut_type ! If 1 normal muation, if 2 uniform mutation
READ (5,*) sca_type ! If 0 it is off, else on
READ (5,*) sca_constant !will be included in calculations if scaling is on
READ (5,*) elitism ! If 0 it is off, else on
READ (5,*) x_num
DO k1=1,x_num
READ (5,*) low_bound(k1)
READ (5,*) up_bound(k1)
ENDDO
DO k1=1,x_num
READ (5,*) str_length(k1)
ENDDO
READ (5,*) pop_num
READ (5,*) gen_num
READ (5,*) x_over
READ (5,*) mut_num
READ (5,*) penalty_coef
READ (5,*) inj_coef
CLOSE(5)

eni=0
totstr_length=0
enk_sira=1
eni_sira=1
bestever_fitness=0 ! best ever fitness

DO k2=1,x_num
bi_constant(k2)=(up_bound(k2)-low_bound(k2))/(2**str_length(k2)-1)
totstr_length=str_length(k2)+totstr_length
ENDDO
RESULT = MAKEDIRQQ('sonuclar\sonuclar'//ch//'')
OPEN(10,file='sonuclar\\sonuclar'//ch//'\output.txt')
WRITE(10,*) 'PROGRAM CIKTILARI'
OPEN(20,file='sonuclar\\sonuclar'//ch//'\kontrol.txt')
WRITE(20,*) 'KONTROL CIKTILARI'
OPEN(30,file='sonuclar\\sonuclar'//ch//'\xover_kontrol.txt')
OPEN(40,file='sonuclar\\sonuclar'//ch//'\ortalama_fitness.txt')
OPEN(50,file='sonuclar\\sonuclar'//ch//'\mutas_kontrol.txt')
OPEN(70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt')
OPEN(80,file='sonuclar\\sonuclar'//ch//'\best_fitness.txt')
OPEN(90,file='sonuclar\\sonuclar'//ch//'\gen_variation.txt')

WRITE (10,*) 'Total Run Number:',run_say,' /',total_run
WRITE (10,*) 'Degisken Sayısı:',x_num
DO k1=1,x_num
WRITE (10,*) 'Degisken',(k1),'in aralığı:',low_bound(k1),up_bound(k1)
ENDDO
DO k1=1,x_num
WRITE (10,*) 'Degisken',(k1),'in string uzunluğu:',str_length(k1)

 115

ENDDO
WRITE (10,*) 'Populasyon Sayısı:',pop_num
WRITE (10,*) 'Generasyon Sayısı:',gen_num
WRITE (10,*) 'Crossover Katsayısı:',x_over
WRITE (10,*) 'Mutasyon Katsayısı:',mut_num
WRITE (10,*)
WRITE (10,15) ' Selection türü:',sel_type,'(if 0 random sel, 1 fitness proportianete, if tournament)'
WRITE (10,15) ' Crossover türü:',xover_type,'(if 1 one point, if 2 two point, if three uniform)'
WRITE (10,15) ' Mutasyon türü:',mut_type,'(if 1 normal muation, if 2 asamali mutation)'
WRITE (10,15) ' Scaling durumu off/on:',sca_type,'(if 0 it is off else on)'
WRITE (10,15) ' Elitism durumu off/on:',elitism,'(if 0 it is off 1 on)'
WRITE (10,15) ' Populasyon transferi off/on:',pop_transfer,' (if 0 it is off else on)'
WRITE (10,15) ' Degisik Seed off/on:',seed_type,' (if 0 it is off else on)'
WRITE (10,*) ' Input sayısı:',totinp_say
WRITE (10,*) ' Penalti Katsayisi:',penalty_coef
WRITE (10,*) ' Enjeksiyon Kaysayisi:',inj_coef
WRITE (10,*) ' Seed sayısı:',seed
WRITE (10,*) ' Scaling katsayısı:',sca_constant
WRITE (10,*)
WRITE (80,*) 'Runno:',ch
WRITE (80,*) pop_num
WRITE (80,*) gen_num
WRITE (80,*) x_over
WRITE (80,*) mut_num
WRITE (80,*) sel_type
WRITE (80,*) xover_type
WRITE (80,*) mut_type
WRITE (80,*) penalty_coef
WRITE (80,*) seed
WRITE (80,*)
WRITE (40,*) 'Runno:',ch
WRITE (40,*) pop_num
WRITE (40,*) gen_num
WRITE (40,*) x_over
WRITE (40,*) mut_num
WRITE (40,*) sel_type
WRITE (40,*) xover_type
WRITE (40,*) mut_type
WRITE (80,*) penalty_coef
WRITE (40,*) seed
WRITE (40,*)
15 FORMAT (a21,i3,a56)

CALL SRAND(seed)

IF (pop_transfer.EQ.0) THEN
DO i=1,pop_num,1
DO j=1,totstr_length,1
IF(rand().GE.0.5) then
birey(i,j)=1.
ELSE
birey(i,j)=0.
END IF
END DO
END DO

ELSE IF (pop_transfer.EQ.1) THEN
IF (MOD(run_say,2).EQ.1) THEN
birey=0 !Reset individuals.
toplam=0
x=0

 116

! Random individuals are built.
DO i=1,pop_num,1
DO j=1,totstr_length,1
IF(RAND().GE.0.5) then
birey(i,j)=1.
ELSE
birey(i,j)=0.
END IF
END DO
END DO

ELSE
!Last pop. of the previous pop is transformed into current pop if
! pop transfer is selected.

DO p=1,pop_num
top_stra=1
top_strb=0
DO xd=1,x_num
toplam(xd)=(x(p,xd)-low_bound(xd))/bi_constant(xd)
top_strb=top_strb+str_length(xd)
DO j=top_stra,top_strb
IF (toplam(xd).GE.2**(top_strb-j)) then
birey(p,j)=1
toplam(xd)=toplam(xd)-2**(top_strb-j)
ELSE
birey(p,j)=0
END IF
END DO
top_stra=top_stra+str_length(xd)
END DO
END DO
END IF
END IF

DO 200 gen=1,gen_num,1 ! Generation loop

WRITE (10,*)
WRITE (20,*)
WRITE (30,*)
WRITE (50,*)
WRITE (70,*)
WRITE (10,*) 'Generasyon Sayısı=',gen
WRITE (20,*) 'Generasyon Sayısı=',gen
WRITE (30,*) 'Generasyon Sayısı=',gen
WRITE (50,*) 'Generasyon Sayısı:',gen
WRITE (70,*) 'Generasyon Sayısı:',gen

! Evaluate the fenotype of individuals.
DO 600 p=1,pop_num,1

top_stra=1
top_strb=0
DO xd=1,x_num
toplam(xd)=0
top_strb=top_strb+str_length(xd)
DO j=top_stra,top_strb ! Sum of the bit values for indvs.
toplam(xd)=toplam(xd)+birey(p,j)*2**(top_strb-j)
END DO
x(p,xd)=bi_constant(xd)*toplam(xd)+low_bound(xd)
top_stra=top_stra+str_length(xd)
END DO

 117

600 END DO

WRITE (10,13) 'Pop_num',('x[o]',i=1,x_num),'TotalExtQ','TotalNetQ','Fitness','Penalty'
13 FORMAT (a13,30a12)

fitness_eni=0 ! Best individual in current pop
fitness_enk=10000000 ! Worst individual in current pop
numfit_zero=0 ! Number of indv. with zero fitness

DO 500 p=1,pop_num

! Calls the "fonksiyon" subroutine.
f = FUNC(x,p,x_num,ch,inj_coef,run_say,penalty_coef)
fitness(p)=f

IF (fitness(p).GT.fitness_eni) THEN ! Finds the best fitnes in current pop.
fitness_eni = fitness(p)
DO j=1,x_num
best_x(j)=x(p,j)
ENDDO
DO J=1,totstr_length
best_birey(j)=birey(p,j)
END DO
END IF

IF (fitness(p).LT.fitness_enk) THEN ! Finds the worst indv.in current pop.
fitness_enk = fitness(p)
enk_sira=p
END IF

IF (fitness_eni.GT.bestever_fitness) then
DO j=1,x_num
bestever_x(j)=best_x(j)
ENDDO
DO J=1,totstr_length
bestever_birey(j)=best_birey(j)
END DO
bestever_fitness=fitness_eni
eni_gen=gen
eni_sira=p
END IF
500 END DO

!!!!!!!!!!!!!!!!!!!!!!!
! Elitist !!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!
IF (elitism.EQ.1) THEN
IF (gen.GT.1) THEN

DO j=1,totstr_length
birey(enk_sira,j)=bestever_birey(j)
END DO

DO j=1,x_num
x(enk_sira,j)=bestever_x(j)
ENDDO
fitness(enk_sira)=bestever_fitness

WRITE (10,18) 'Fittest birey,',enk_sira,'.nolu yukarıdaki en az fit bireyin yerini alır'
WRITE (10,8) enk_sira,'.',(x(enk_sira,I),I=1,x_num),fitness(enk_sira),gen
18 FORMAT (a13,i5,a50)

 118

8 FORMAT (i,a,20f10.2)
END IF

ELSE
END IF
!!!!!!!!!!!!!!!!!!!!!!!!!

! Negative fitness takes the 0 value
DO p=1,pop_num,1
IF (fitness(p).LE.0.) then ! Fitness' should be positive
fitness(p)=0.
numfit_zero=numfit_zero+1 ! Number of indv. with zero fitness
ELSE
ENDIF
END DO

! Sum up the fitness values for fitness proportinate selection
fitness_sum(1)=fitness(1)
DO p=1,pop_num-1,1
fitness_sum(p+1)=fitness_sum(p)+fitness(p+1)
END DO
fitness_ort=fitness_sum(pop_num)/pop_num

WRITE (10,19) 'En iyi fitness=',bestever_fitness,eni_gen,'. generasyondan',eni_sira,'. no.daki birey'
19 FORMAT (a18,f9.2,i5,a15,i5,a15)
DO j=1,x_num
WRITE (10,*) 'x degerleri=',bestever_x(j)
END DO

WRITE (40,*) fitness_ort
WRITE (80,*) bestever_fitness
avg_all(gen,run_say)=fitness_ort
best_all(gen,run_say)=bestever_fitness

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Linear Scaling !!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF (sca_type.EQ.1) THEN
! Zero fitness individuals are not included for scaling calc.
fitness_ort=fitness_sum(pop_num)/(pop_num-numfit_zero)
fitness_sum(1)=0
a_constant=(sca_constant-1)*fitness_ort/(fitness_eni-fitness_ort)
b_constant=(1-a_constant)*fitness_ort

DO p=1,pop_num
fitness(p)=a_constant*fitness(p)+b_constant
IF (fitness(p).LE.0) THEN
fitness(p)=0
END IF
WRITE (10,8) p,'.yeni fitness',fitness(p)
END DO

DO p=1,pop_num-1,1
fitness_sum(p+1)=fitness_sum(p)+fitness(p+1)
END DO

WRITE (10,*) 'Avarage fitness for scaling',fitness_ort
END IF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Genetic Variation !!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 119

k=0
DO i=1,pop_num
DO j=1,totstr_length
IF (birey(i,j).EQ.best_birey(j)) THEN
k=k+1
ENDIF
END DO
END DO

gen_var=k/(totstr_length*(pop_num*1.))
WRITE (90,*) gen_var
var_all(gen,run_say)=gen_var
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DO 300 p=1,pop_num/2
!!!
! SELECTION !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

! Random selection !!!!!!!!!!!!!!

IF (sel_type.EQ.0) THEN

! First Individual
sel_num1=RAND()*pop_num
sel_int1=sel_num1+1

! Second Individual
sel_num2=RAND()*pop_num
sel_int2=sel_num2+1

! Fitness proportinate selection !!!!!

ELSE IF (sel_type.eq.1) THEN
sel_num1=rand()*fitness_sum(pop_num)
sel_num2=rand()*fitness_sum(pop_num)

! Select first individual
k=1
DO WHILE(sel_num1.GE.fitness_sum(k))
k=k+1
ENDDO
sel_int1=k

! Select second individual
k=1
DO WHILE(sel_num2.GE.fitness_sum(k))
k=k+1
ENDDO
sel_int2=k

!Tournament selection !!!!!!!!!!!

ELSE IF (sel_type.EQ.2) then
 ! First Individual
sel_num1=RAND()*pop_num
sel_num2=RAND()*pop_num
sel_intara1=sel_num1+1
sel_intara2=sel_num2+1

IF (fitness(sel_intara1).GT.fitness(sel_intara2)) THEN
sel_int1=sel_intara1

 120

ELSE
sel_int1=sel_intara2
END IF

WRITE(20,*) 'Çift Selection.',p
WRITE(20,9) 'Tournamenta secilenler',sel_intara1,'. ve',sel_intara2,'.birey'
WRITE(20,*) 'Fitnesları',fitness(sel_intara1),'. ve',fitness(sel_intara2)
WRITE(20,*) 'Crossovera hak kazanan birinci birey',sel_int1

! Second Individual
sel_num1=RAND()*pop_num
sel_num2=RAND()*pop_num
sel_intara1=sel_num1+1
sel_intara2=sel_num2+1

IF (fitness(sel_intara1).GT.fitness(sel_intara2)) THEN
sel_int2=sel_intara1
ELSE
sel_int2=sel_intara2
END IF

WRITE(20,9) 'Tournamenta secilenler',sel_intara1,'. ve',sel_intara2,'.birey'
WRITE(20,*) 'Fitnesları',fitness(sel_intara1),'. ve',fitness(sel_intara2)
WRITE(20,*) 'Crossovera hak kazanan ikinci birey',sel_int2

END IF

! SELECTION ENDS !!!!!!!!!!!!!!!!!!!!!!!!!!

WRITE(20,9) 'Selectiona secilen',sel_int1,'. ve',sel_int2,'.bireyler'
9 FORMAT (a,i,a,i,a)

WRITE(30,*) 'Crossover oncesi'
WRITE(30,10) (birey(sel_int1,y),y=1,totstr_length)
WRITE(30,10) (birey(sel_int2,y),y=1,totstr_length)
10 FORMAT (100i2)

!!
!!!! XOVER !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

! One point crossover !!!!!!!!!!!

IF (xover_type.EQ.1) THEN
!If random number less than xover constant, then xover
r=Rand()
IF (r.LE.x_over) THEN
rnew=RAND()
x_overpt=(totstr_length-1)*rnew+1. !The point of xover

! Bits remain same till the point of xover.
DO c=1,x_overpt,1
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO
! Bits interchanged after the point of xover
DO c=x_overpt+1,totstr_length,1
Birey_ara(2*p-1,c)=Birey(sel_int2,c)
Birey_ara(2*p,c)=Birey(sel_int1,c)
ENDDO

! If no xover, the indvs. remain same

 121

ELSE
x_overpt=0
DO c=1,totstr_length,1
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO
ENDIF

WRITE(30,*) 'Crossover sonrası'
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length)
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length)
WRITE(30,16) 'Crossover degeri=',r,rnew,'One-point xover noktası=',x_overpt
16 FORMAT (a20,f7.3,f7.3,a25,i3)
WRITE(30,*)
! Two point crossover !!!!!!!!

ELSE IF (xover_type.EQ.2) THEN

! If random number less than xover constant, then xover
r=RAND()
IF (r.LE.x_over) THEN

rnew=RAND()
rnew2=RAND()

IF (rnew.GT.rnew2) THEN
rara=rnew2
rnew2=rnew
rnew=rara
END IF

x_overpt=(totstr_length-1)*rnew+1. ! the point of xover
x_overpt2=(totstr_length-1)*rnew2+1. ! the point of xover

! Bits remain same till the first point of xover.
DO c=1,x_overpt,1
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO
! Bits between point 1 and 2 remains same.
DO c=x_overpt+1,x_overpt2,1
Birey_ara(2*p-1,c)=Birey(sel_int2,c)
Birey_ara(2*p,c)=Birey(sel_int1,c)
ENDDO
! Bits after 2nd point of xover2 remain same.
DO c=x_overpt2+1,totstr_length
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO

! If no xover, the indvs. remain same.
ELSE
x_overpt=0
x_overpt2=0
rnew=0
rnew2=0
DO c=1,totstr_length,1
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO
ENDIF

 122

WRITE(30,*) 'Crossover sonrası'
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length)
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length)
WRITE(30,*) 'Crossover degerleri=',r,rnew,rnew2,'Two-point xover noktaları=',x_overpt,x_overpt2
WRITE(30,*)

! Uniform crossover !!!!!!!!!!!!!!
ELSE IF (xover_type.eq.3) THEN

r=RAND()
IF (r.LE.x_over) THEN

! Uniform xover points are selected.
DO j=1,totstr_length,1
IF(RAND().GE.0.5) THEN
uni_xover(j)=1.
ELSE
uni_xover(j)=0.
END IF
END DO

DO c=1,totstr_length,1

IF (uni_xover(c).EQ.1) THEN !make xover
Birey_ara(2*p-1,c)=Birey(sel_int2,c)
Birey_ara(2*p,c)=Birey(sel_int1,c)

ELSE IF (uni_xover(c).EQ.0) THEN
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)

END IF
ENDDO

WRITE(30,*) 'Crossover degeri=',r,'Uniform xover string='
WRITE(30,11) (uni_xover(j),j=1,totstr_length)
WRITE(30,*) 'Crossover sonrası'
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length)
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length)

ELSE

x_overpt=0
DO c=1,totstr_length,1
Birey_ara(2*p-1,c)=Birey(sel_int1,c)
Birey_ara(2*p,c)=Birey(sel_int2,c)
ENDDO

WRITE(30,*) 'Crossover degeri=',r
WRITE(30,*) 'No Crossover'
WRITE(30,*) 'Crossover sonrası'
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length)
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length)
WRITE(30,*)
ENDIF

11 FORMAT (100i2)
ENDIF

!! XOVER ENDS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

300 END DO

 123

IF (GEN.LT.GEN_NUM) THEN ! No xover after last generation.
DO i=1,pop_num
DO j=1,totstr_length
birey(i,j)=birey_ara(i,j)
END DO
END DO

IF (MOD(pop_num,2).EQ.1) THEN
!If the no. of populasyon is odd, the last individual is written twice
DO j=1,totstr_length
birey(pop_num,j)=birey(pop_num-1,j)
birey_ara(pop_num,j)=birey(pop_num-1,j)
END DO
END IF

END IF

!!
!!!! MUTATION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!Normal Mutation !!!!!!!

IF (mut_type.EQ.1) THEN

DO 400 ix=1,pop_num,1
mut_adet=0
DO jx=1,totstr_length,1

rastgele=RAND()
IF(rastgele.LE.mut_num) THEN
WRITE(50,*) 'Mut.Deg.ve Random Mut.Deg',mut_num,rastgele
WRITE(50,*) 'Mutasyon noktası=',jx

IF (birey(ix,jx).EQ.1) THEN
birey_ara(ix,jx)=0
mut_adet=mut_adet+1
ELSE
birey_ara(ix,jx)=1
mut_adet=mut_adet+1
ENDIF
ENDIF

END DO

WRITE(50,*) 'Mutasyon sayısı=',mut_adet
WRITE(50,*) 'Mutasyon oncesi - Aşağı Ok'
WRITE(50,14) (birey(ix,y),y=1,totstr_length)
WRITE(50,14) (birey_ara(ix,y),y=1,totstr_length)
WRITE(50,*) 'Mutasyon sonrası - Yuk Ok'
WRITE(50,*)
14 FORMAT (100i2)

400 END DO

! Uniform Mutasyon !!!!!!!

ELSE IF (mut_type.EQ.2) THEN
DO 700 ix=1,pop_num,1
mut_adet=0
top_stra=1

 124

top_strb=0

DO xd=1,x_num
top_strb=top_strb+str_length(xd)

DO jx=top_stra,top_strb
rastgele=RAND()

IF (rastgele.LE.mut_num/(2**(top_strb-jx+1))) THEN
WRITE(50,*) 'Aşamalı Mut.Deg. ve Random Mut.Deg',mut_num*100/(2**(top_strb-jx+1)),rastgele
WRITE(50,*) 'Mutasyon noktası=',jx

IF (birey(ix,jx).EQ.1) THEN
birey_ara(ix,jx)=0
mut_adet=mut_adet+1
ELSE
birey_ara(ix,jx)=1
mut_adet=mut_adet+1
ENDIF
ENDIF
END DO
top_stra=top_stra+str_length(xd)
END DO

WRITE(50,*) 'Mutasyon sayısı=',mut_adet
WRITE(50,*) 'Mutasyon oncesi - Aşağı Ok'
WRITE(50,14) (birey(ix,y),y=1,totstr_length)
WRITE(50,14) (birey_ara(ix,y),y=1,totstr_length)
WRITE(50,*) 'Mutasyon sonrası - Yukarı Ok'
WRITE(50,*)

700 END DO
END IF

!!
!!!! MUTATION ENDS !!!!!!!!!!!!!!!!!!!!!!
!!

IF (GEN.LT.GEN_NUM) THEN ! No mutation after the last generation

DO i=1,pop_num
DO j=1,totstr_length
birey(i,j)=birey_ara(i,j)
END DO
END DO

END IF

200 END DO ! Main generation loop

CLOSE(20)
CLOSE(30)
CLOSE(40)
CLOSE(50)
CLOSE(70)
CLOSE(80)

17 FORMAT(i3,100f10.2)
22 FORMAT(i3,100f10.3)

! Calls "post_simulasyon" subroutine
CALL post(bestever_x,ch,run_say)

 125

bit_time=time()
tot_time=bit_time-bas_time
tot_saat=tot_time/(60*60)
tot_dak=(tot_time-tot_saat*60*60)/(60)
tot_san=(tot_time-tot_saat*60*60-tot_dak*60)
WRITE (10,*) 'Toplam run zamanı=',tot_saat,'saat',tot_dak,'dakika',tot_san,'saniye'
CLOSE(10)

100 ENDDO !run_say

OPEN (90,FILE='sonuclar\\sonuclar'//ch//'\best_all.txt')
OPEN (100,FILE='sonuclar\\sonuclar'//ch//'\avg_all.txt')
OPEN (110,FILE='sonuclar\\sonuclar'//ch//'\var_all.txt')

DO I=1,gen_num
WRITE (90,17) I,(best_all(I,J),J=1,total_run)
WRITE (100,17) I,(avg_all(I,J),J=1,total_run)
WRITE (110,22) I,(var_all(I,J),J=1,total_run)
END DO

END program GENETIK_INJLOCX

 126

Fonksiyon.f90
FUNCTION func(x,p,x_num,ch,inj_coef,run_say,penalty_coef) RESULT (cost)
USE DFLIB
USE DFPORT
IMPLICIT NONE
REAL(8) :: cost, f1, f2, g,Q(20)
INTEGER :: p,x_num,penalty_coef,A(20),LXY(20,20),I,Z,SAYAC,run_say
INTEGER(2) result
REAL(8) ::cp(10),heads(60,60)
REAL x(1000,1000),HFB_K(1000),pen,total_q,totalnet_q,inj_coef
INTEGER tx,HFB(1000),HFB_LXY(1000,1000)
CHARACTER*5 :: ch

! This part reads *.wel file.
OPEN (UNIT=7,FILE="101_inj03.wel")
READ (7,*) (A(I),I=1,2)
READ (7,*) (A(3))
DO I=1,A(1)
READ(7,*) (LXY(I,Z),Z=1,3),Q(I)
END DO
CLOSE (UNIT=7,STATUS='KEEP')

! According to runno optimizes well rates or location in an iterative manner.
IF (MOD(run_say,3).EQ.1) THEN

DO I=1,A(1)
Q(I)=-1*x(p,I)
END DO
Q(6)=x(p,6)
Q(7)=x(p,7)
Q(8)=x(p,8)

! According to runno, optimizes well rates or location in an iterative manner.
ELSE IF (MOD(run_say,3).EQ.2) THEN

DO I=1,3
LXY(I+5,2)=NINT(x(p,2*I-1)) !injection well y-axes
LXY(I+5,3)=NINT(x(p,2*I)) !injection well x-axes
END DO

ELSE IF (MOD(run_say,3).EQ.0) THEN

DO I=1,A(1)
Q(I)=-1*x(p,I)
END DO

Q(6)=x(p,6)
Q(7)=x(p,7)
Q(8)=x(p,8)

END IF

! Modifies *.wel file.
OPEN (UNIT=7,FILE="101_inj03.wel")
WRITE (7,*),A(1),A(2)
WRITE (7,*),A(3)
DO I=1,A(1)
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I)
21 FORMAT (3i,f12.2)
END DO
CLOSE (UNIT=7,STATUS='KEEP')

 127

! Calls MODFLOW.
RESULT = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam')

! Modifies *.hed file.
OPEN (UNIT=8,FILE="101_inj03.hed")
DO I=1,30
READ(8,*) (HEADS(I,Z),Z=1,60)
END DO
CLOSE (UNIT=8,STATUS='KEEP')

! Calculate penalty values using
! the potential values at control points.
cp(1)=(8.0078-heads(15,23))
cp(2)=(8.0078-heads(9,29))
cp(3)=(8.0078-heads(21,34))
cp(4)=(8.0078-heads(6,40))
cp(5)=(8.0078-heads(15,42))

g=0
IF (MOD(run_say,3).EQ.1) THEN
DO I=1,5
g = g+MAX(0.0,cp(I))*MAX(0.0,cp(I))
END DO

ELSE IF (MOD(run_say,3).EQ.2) THEN
DO I=1,5
g = g+MAX(0.0,-cp(I))*MAX(0.0,-cp(I))
END DO

ELSE IF (MOD(run_say,3).EQ.0) THEN
DO I=1,5
g = g+MAX(0.0,cp(I))*MAX(0.0,cp(I))
END DO
END IF

OPEN(70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt')
WRITE(70,*) SAYAC,g*penalty_coef
SAYAC=SAYAC+1

! Objective function
f1=0
DO I=1,A(1)-3
f1=f1-Q(I)
f2=0
END DO

DO I=A(1)-2,A(1)
f1=f1-inj_coef*Q(I)
END DO

IF (MOD(run_say,3).EQ.1) THEN
cost = MAX(0.0,f1 - penalty_coef * g)
ELSE IF (MOD(run_say,3).EQ.2) THEN
cost = MAX(0.0,g)
ELSE IF (MOD(run_say,3).EQ.0) THEN
cost = MAX(0.0,f1 - penalty_coef * g)
END IF

total_q=0
DO I=1,5
total_q=total_q+Q(I)

 128

END DO

totalnet_q=0
DO I=1,x_num
totalnet_q=totalnet_q+Q(I)
END DO

WRITE (10,8) p,'.',(x(p,i),i=1,x_num),-total_q,-totalnet_q,cost,g
8 FORMAT (i,a,30f12.2)

RETURN
END FUNCTION

Post_Simulasyon.f90
SUBROUTINE Post(bestever_x,ch,run_say)
USE DFLIB
USE DFPORT
IMPLICIT NONE
INTEGER :: A(20),LXY(20,20),I,Z,d,run_say
INTEGER(2) result
REAL bestever_x(30),heads(100,100),KSILON(100,100),HF(100,100)
REAL ZH(100,100),faytoe,sigma,pfre,pden
REAL DELY,DELX,Q(20)
INTEGER host
CHARACTER*5 :: ch

DELX=7000./60
DELY=100.

! This part reads *.wel file.
OPEN (UNIT=7,FILE="101_inj03.wel")
READ (7,*) (A(I),I=1,2)
READ (7,*) (A(3))
DO I=1,A(1)
READ(7,*) (LXY(I,Z),Z=1,3),Q(I)
END DO
CLOSE (UNIT=7,STATUS='KEEP')

! Decision variables are assigned to Q values.
IF (MOD(run_say,3).EQ.1) THEN
DO I=1,A(1)
Q(I)=-1*bestever_x(I)
END DO

Q(6)=bestever_x(6)
Q(7)=bestever_x(7)
Q(8)=bestever_x(8)

ELSE IF (MOD(run_say,3).EQ.2) THEN
do I=6,8
LXY(I,2)=NINT(bestever_x(2*(I-5)-1)) ! Injection well x-axes
LXY(I,3)=NINT(bestever_x(2*(I-5))) ! Injection well y-axes
end do

ELSE IF (MOD(run_say,3).EQ.0) THEN

DO I=1,A(1)
Q(I)=-1*bestever_x(I)
END DO
Q(6)=bestever_x(6)
Q(7)=bestever_x(7)

 129

Q(8)=bestever_x(8)

END IF

! This part modifies *.wel file
OPEN (UNIT=7,FILE="101_inj03.wel")
WRITE (7,*),A(1),A(2)
WRITE (7,*),A(3)
DO I=1,A(1)
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I)
21 FORMAT (3i,f12.2)
END DO
CLOSE (UNIT=7,STATUS='KEEP')

! This part calls MODFLOW
RESULT = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam')

! Calculate the fay toe value
pfre=1.
pden=1.025
sigma=(pden-pfre)/pfre
d =25
faytoe=(1+sigma)*sigma*d*d/2

 ! Modifies *.hed file
OPEN (UNIT=8,FILE="101_inj03.hed")
DO I=1,30
READ(8,*) (HEADS(I,Z),Z=1,60)
END DO

DO I=1,30
DO Z=1,60
IF (HEADS(I,Z).LE.0) THEN
HEADS(I,Z)=0.
END IF
END DO
END DO

DO I=1,30
DO Z=1,60
IF (HEADS(I,Z).GT.FAYTOE) THEN
KSILON(I,Z)=d
ZH(I,Z)=0
HF(I,Z)=SQRT(2*HEADS(I,Z)+(1+SIGMA)*D*D)

ELSE
KSILON(I,Z)=SQRT(2*HEADS(I,Z)/SIGMA/(1+SIGMA))
ZH(I,Z)=d-ksilon(I,Z)
HF(I,Z)=SQRT(2*sigma*HEADS(I,Z)/(1+sigma))+d
END IF

END DO
END DO
CLOSE (UNIT=8,STATUS='KEEP')

! Calculates freshwater head and interface depth using the potential values.
OPEN(23,file='sonuclar\\sonuclar'//ch//'\wells.wel')

WRITE (23,*),A(1),A(2)
WRITE (23,*),A(3)
DO I=1,A(1)

 130

WRITE (23,21),(LXY(I,Z),Z=1,3),Q(I)
END DO
CLOSE (UNIT=23,STATUS='KEEP')

OPEN(17,FILE='sonuclar\\sonuclar'//ch//'\ZH.hed')
WRITE (17,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60)
DO I=1,30
WRITE (17,13) DELY*(I-1)+DELY/2,(ZH(I,Z),Z=1,60)
13 format (1000f8.2)
END DO
CLOSE (UNIT=17,STATUS='KEEP')

OPEN(19,FILE='sonuclar\\sonuclar'//ch//'\HF.hed')
WRITE (19,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60)
DO I=1,30
WRITE (19,13) DELY*(I-1)+DELY/2,(HF(I,Z),Z=1,60)
END DO
CLOSE (UNIT=19,STATUS='KEEP')

OPEN(21,FILE='sonuclar\\sonuclar'//ch//'\FAY.hed')
WRITE (21,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60)
DO I=1,30
WRITE (21,13) DELY*(I-1)+DELY/2,(HEADS(I,Z),Z=1,60)
END DO
CLOSE (UNIT=19,STATUS='KEEP')

END subroutine post

 131

APPENDIX B

B. SA CODE

Main_SA.f90
PROGRAM KORKUT_SA
INTEGER SEED,I,J,K,x_num,run_say,total_run,k1,runno,t_update,c
REAL x(30),xnew(30),best_x(30),f,fnew,fmax,up_bound(30)
REAL low_bound(30),Step_length(30),T,T_coef,T0 !Maximum dec.variable is 30.
REAL penalty_coef,ratio,inj_coef
INTEGER num_accepted,num_accepteDim(30),num_unaccepted,
INTEGER num_ofbounds,num_better,axiter_say,Outiter_say,Initer_say,totiter_say
INTEGER Variable_no
CHARACTER*3 :: cg
CHARACTER*5 :: ch

totiter_say=0
seed=12312586
bas_time=time()

OPEN(UNIT=17,FILE='c:\Korkut_GA\\RUNNO.txt')
READ (17,*) RUNNO
CLOSE (17)
OPEN(UNIT=18,FILE='c:\Korkut_GA\\RUNNO.txt',status='replace')
WRITE (18,*) RUNNO+1
CLOSE(18)
WRITE (ch,2000) RUNNO
2000 FORMAT(I5)

! Reads input file
OPEN(5,file='input.txt')
READ (5,*) total_run
READ (5,*) x_num
DO k1=1,x_num
READ (5,*) low_bound(k1)
READ (5,*) up_bound(k1)
ENDDO
DO k1=1,x_num
READ (5,*) x(k1)
ENDDO
DO k1=1,x_num
READ (5,*) Step_length(k1)
ENDDO
READ (5,*) T
READ (5,*) T_coef
READ (5,*) Initer_say
READ (5,*) Outiter_say
READ (5,*) maxiter_say
READ (5,*) c
READ (5,*) penalty_coef
READ (5,*) inj_coef

RESULT = MAKEDIRQQ('sonuclar\sonuclar'//ch//'')

OPEN(10,file='sonuclar\\sonuclar'//ch//'\output.txt')

 132

WRITE(10,*) 'PROGRAM CIKTILARI'
OPEN(20,file='sonuclar\\sonuclar'//ch//'\f.txt')
WRITE(20,*) 'f degerleri'
OPEN(30,file='sonuclar\\sonuclar'//ch//'\eniyi_f.txt')
WRITE(30,*) 'EN İYİ DEGERLER'
WRITE(30,*) 'Iterasyon sayısı','En iyi cost','Sicaklik'
OPEN(40,file='sonuclar\\sonuclar'//ch//'\kontrol.txt')
OPEN(50,file='sonuclar\\sonuclar'//ch//'\steps.txt')
OPEN(60,file='sonuclar\\sonuclar'//ch//'\eniyi_xset.txt')
WRITE (10,*) 'Total run sayisi=',total_run
WRITE (10,*) 'Değişken sayisi=',x_num
DO k1=1,x_num
WRITE (10,*) 'Low bound=',low_bound(k1)
WRITE (10,*) 'Upper bound=',up_bound(k1)
ENDDO
DO k1=1,x_num
WRITE (10,*) 'Variable',k1,x(k1)
ENDDO
DO k1=1,x_num
WRITE (10,*) 'Initial Steplengths=',Step_length(k1)
ENDDO

WRITE (10,*) 'Initial Temperature=',T
WRITE (10,*) 'Temperature coefficient=',T_coef
WRITE (10,*) 'Inner iteration number=',Initer_say
WRITE (10,*) 'Outer iteration number=',Outiter_say
WRITE (10,*) 'Maximum iteration number=',maxiter_say
WRITE (10,*) 'Steplength adjustment coeff.=',c
WRITE (10,*) 'Penalty coefficient=',penalty_coef
WRITE (10,*) 'Seed number=',seed
WRITE (10,*) 'Inj coef=',inj_coef
WRITE (10,*)
WRITE (10,*)
WRITE (10,*)

!!!!!!!!!!!!!!!!!!MAIN LOOP!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DO 100 run_say=1,total_run
totiter_say=0
seed=seed-100
num_accepted=0
num_unaccepted=0
num_ofbounds=0
num_better=0
DO I=1,x_num
num_accepteDim(I)=0
ENDDO
T0=T

CALL SRAND(seed)
totiter_say=totiter_say+1
f = func(x,x_num,ch,penalty_coef,totiter_say,inj_coef)
DO i=1,x_num
WRITE(10,*) 'xint=',x(i),'fint=',f
ENDDO
WRITE(10,*)
WRITE(20,*) totiter_say,f

fmax=f
DO k1=1,x_num
best_x(k1)=x(k1)
ENDDO
WRITE(30,*) totiter_say,fmax,T

 133

WRITE(50,*) 'xnew(i)-x(i)',' step_length(i)'

DO 325 K=1,Outiter_say
DO 225 J=1,Initer_say
DO 125 Variable_no=1,x_num

DO I = 1, x_num
IF (I.EQ.Variable_no) THEN
! Step length is multiplied with a random number btwn. -1 and 0.
xnew(i)=x(i)+(RAND()*2-1)*step_length(i)
ELSE
xnew(i)=x(i)
ENDIF

! If new point is out of boundaries, get a new one.
IF((xnew(i).LT.low_bound(i)) .OR. (xnew(i).GT.up_bound(i))) THEN
xnew(i)=low_bound(i)+(up_bound(i)-low_bound(i))*RAND()
num_ofbounds=num_ofbounds+1
ELSE
ENDIF
WRITE(50,*) xnew(i)-x(i),step_length(i)
END DO
WRITE(50,*)
totiter_say=totiter_say+1

! Call function subroutine.
fnew = func(xnew,x_num,ch,penalty_coef,totiter_say,inj_coef)

! Control if the new solution is the best solution.
IF (fnew.GT.fmax) THEN ! New optimum
fmax=fnew
num_better=num_better+1
DO i=1,x_num
best_x(i)=xnew(i)
ENDDO
WRITE(30,*) totiter_say,fmax,T
ENDIF
DO i=1,x_num
WRITE(10,*) 'xnew=',xnew(i),'fnew=',fnew
ENDDO
!!!

! If the new solution is a better solution, accept it.
IF (fnew.GT.f) THEN
num_accepted=num_accepted+1
num_accepteDim(Variable_no)=num_accepteDim(Variable_no)+1
WRITE(10,*) 'Since fnew>f (Bttr thn prvs sltn, f=fnew, The new solution is ACCEPTED'
f=fnew
DO k1=1,x_num
x(k1)=xnew(k1)
ENDDO
ELSE ! Else, accept according to Metropolis criteria.
r=RAND()
IF (r.le.EXP(-(f-fnew)/T)) THEN
WRITE(10,*) 'fnew<f, but since random num.',r,' is less than exp-(f-fnew)/T)=', &
EXP(-(f-fnew)/T),'f=fnew, The new solution is accepted'
WRITE(10,*) 'Temperature T=',T,'f-fnew=',f-fnew
num_accepted=num_accepted+1
num_accepteDim(Variable_no)=num_accepteDim(Variable_no)+1
f=fnew
DO k1=1,x_num
x(k1)=xnew(k1)

 134

ENDDO
ELSE
WRITE(10,*) 'Since fnew<f and r<exp(...), f=f The new soltn is not accepted'
num_unaccepted=num_unaccepted+1
ENDIF
ENDIF
!!

DO i=1,x_num
WRITE(10,*) 'x=',x(i),'f=',f
ENDDO
WRITE(10,*)
WRITE(20,*) totiter_say,f

125 END DO
225 END DO

WRITE(40,*) 'Temperature=',T
WRITE(40,*) 'Temperature update sayisi=',t_update
WRITE(40,*) 'The number of better solutions=',num_better
WRITE(40,*) 'The number of accepted but worse solutions=',num_accepted
WRITE(40,*) 'The number of unaccepted and worse solutions=',num_unaccepted
WRITE(40,*) 'The best solution=',fmax

DO i=1,x_num
WRITE(40,*) 'best_x=',best_x(i)
ENDDO
WRITE(40,*)

! The ratio of the no. of acptd. newcomers to the no of total eval. is to be around 0.5.
DO I=1,x_num
ratio=num_accepteDim(I)*1./Initer_say
WRITE(50,*) 'ratio for',i,num_accepteDim(I),Initer_say,ratio
IF (ratio.ge.0.6) then
step_length(I)=step_length(I)*(1+c*(ratio-0.6)/0.4)
ELSE IF (ratio.le.0.4) then
step_length(I)=step_length(I)/(1+c*(0.4-ratio)/0.4)
END IF
IF (step_length(I).gt.up_bound(I)+low_bound(I)) then
step_length(I)=up_bound(I)-low_bound(I)
END IF
END DO

! Update temperature.
T=T*T_coef
t_update=t_update+1

! Reset values
seed=seed-10000
num_accepted=0
num_unaccepted=0
num_ofbounds=0
num_better=0
DO I=1,x_num
num_accepteDim(I)=0
ENDDO

! After temperature update, continue with the best-ever solution.
f=fmax
DO i=1,x_num
x(i)=best_x(i)
ENDDO

 135

325 END DO

WRITE(10,*) 'Temperature update sayısı=',t_update
WRITE(10,*) 'The number of better solutions=',num_better
WRITE(10,*) 'The number of accepted but worse solutions=',num_accepted
WRITE(10,*) 'The number of unaccepted and worse solutions=',num_unaccepted
WRITE(10,*) 'The best solution=',fmax,'found at iteration no'

DO i=1,x_num
WRITE(10,*) 'best_x=',best_x(i)
WRITE(60,*) 'best_x=',best_x(i)
ENDDO

100 ENDDO
!!!!!!!!!!!!!!MAIN LOOP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
END PROGRAM

Fonksiyon.F90
FUNCTION func(x,x_num,ch,penalty_coef,totiter_say,inj_coef) RESULT (cost)
USE DFLIB
USE DFPORT
IMPLICIT NONE
REAL(8) :: cost, f1, f2, g,Q(20)
INTEGER :: p,x_num,penalty_coef,A(20),LXY(20,20),I,Z,SAYAC,run_say,totiter_say
INTEGER(2) result
REAL(8) ::cp(10),heads(60,60)
REAL x(30),HFB_K(1000),pen,total_q,inj_coef
INTEGER tx,HFB(1000),HFB_LXY(1000,1000)
CHARACTER*5 :: ch

! This part reads the *.wel file
OPEN (UNIT=7,FILE="101_INJ03.WEL")
READ (7,*) (A(I),I=1,2)
READ (7,*) (A(3))
DO I=1,A(1)
READ(7,*) (LXY(I,Z),Z=1,3),Q(I)
END DO
CLOSE (UNIT=7,STATUS='KEEP')

! Decision variables are assigned to well values.
DO I=1,A(1)-3
Q(I)=-1*x(I)
END DO

Q(6)=x(6)
Q(7)=x(7)
Q(8)=x(8)

DO I=6,8
LXY(I,2)=NINT(x(2*I-3)) ! Injection well y-axes.
LXY(I,3)=NINT(x(2*I-2)) ! Injection well x-axes.
END DO

OPEN (UNIT=7,FILE="101_INJ03.WEL")
WRITE (7,*),A(1),A(2)
WRITE (7,*),A(3)
DO I=1,A(1)
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I)
21 FORMAT (3i,f12.2)
END DO

 136

CLOSE (UNIT=7,STATUS='KEEP')

! Calls Modflow.exe.
result = RUNQQ('c:\modflow\\mf2k.exe','101_INJ03.nam')

! This part reads *.hed file.
OPEN (UNIT=8,FILE="101_INJ03.hed")
DO I=1,30
READ (8,*) (HEADS(I,Z),Z=1,60)
END DO
CLOSE (UNIT=8,STATUS='KEEP')

! Calculate penalty values using the potential values at control points.
cp(1)=(8.0078-heads(15,23))
cp(2)=(8.0078-heads(9,29))
cp(3)=(8.0078-heads(21,34))
cp(4)=(8.0078-heads(6,40))
cp(5)=(8.0078-heads(15,42))

g=0
DO I=1,5
g = g+max(0.0,cp(I))*max(0.0,cp(I))
END DO

OPEN (70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt')
WRITE(70,*) totiter_say,g,g*penalty_coef

! Objective function
f1=0
DO I=1,A(1)-3
f1=f1-Q(I)
f2=0
END DO

DO I=A(1)-2,A(1)
f1=f1-inj_coef*Q(I)
END DO

cost = max(0.0,f1 - penalty_coef * g)

RETURN
END FUNCTION

 137

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Demirbaş, Korkut
Nationality: Turkish (TC)
Date and Place of Birth: 26 February 1978, Trabzon
Marital Status: Single
Phone: +90 312 221 11 89
email: korkutdemirbas@gmail.com

EDUCATION

Degree Institution Year of Graduation
MS METU Civil Engineering 2003
BS METU Civil Engineering 1999
High School Trabzon Anadolu High School 1995

WORK EXPERIENCE

Year Place Enrollment
2006- Present TÜBİTAK Assistant Expert
2003-2004 METU Department of Civil

Engineering
Computer Assistant

1998 July Karayolları Genel Müdürlüğü Intern Engineering Student

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

1. Demirbaş, K., Combined Optimization-simulation of an Excavation Site for Dewatering

Purposes, MS Thesis, Middle East Technical University, Civil Eng. Dept., Ankara, 2003.

2. Demirbas, K., Altan Sakarya, A. B., Onder, H., Optimal Groundwater Management

Using Evalutionary Algorithm To Prevent Saltwater Intrusion, IAHR International
Groundwater Symposium, 18-20 June, Istanbul, 2008.

3. Demirbas, K., Altan Sakarya, A. B., Onder, H., Combined Simulation Optimization of an

Excavation Site for Dewatering Purpose, 8th International Congress on Advences in Civil
Engineering, 15-17 September, Gazimagosa, 2008.

4. Demirbas, K., Altan Sakarya, A. B., Onder, H., Combined Simulation Optimization of a

Coastal Aquifer by Using Genetic Algorithm, 6th International Symposium on
Environmental Hydraulics, 23-25 June, Greece, 2010.

HOBBIES

3D Animation, Drawing, Nature and Biology, Movies, Scuba

