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ABSTRACT 
 

 
OPTIMAL MANAGEMENT OF COASTAL AQUIFERS USING HEURISTIC 

ALGORITHMS 
 
 
 

Demirbaş, Korkut 

Ph.D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Ayşe Burcu Altan Sakarya 

Co-Supervisor: Prof. Dr. Halil Önder 

 

March 2011, 137 pages 
 
 
Excessive pumping in coastal aquifers results in seawater intrusion where optimal and 

efficient planning is essential. In this study, numerical solution of single potential solution by 

Strack is combined with genetic algorithm (GA) to find the maximum extraction amount in a 

coastal aquifer. Seawater intrusion is tracked with the potential value at the extraction well 

locations. A code is developed by combining GA and a subroutine repeatedly calling 

MODFLOW as a numerical solver to calculate the potential distribution for different 

configurations of solution (trial solutions). Potential distributions are used to evaluate the 

fitness values for GA. The developed model is applied to a previous work by Mantoglou. 

Another heuristic method, simulated annealing (SA) is utilized to compare the results of GA. 

Different seawater prevention methods (i.e. injection wells, canals) and decision variables 

related to those methods (i.e. location of the injection wells or canals) are added to model to 

further prevent the seawater intrusion and improve the coastal aquifer benefit. A method 

called “Alternating Constraints Method” is introduced to improve the solution for the cases 

with variable location. The results show that both proposed method and the regular solution 

with GA or SA prove to be successful methods for the optimal management of coastal 

aquifers. 

 
 
 
Keywords: Seawater Intrusion, Management of Coastal Aquifers, Genetic Algorithm, 
Simulated Annealing 
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ÖZ 
 
 

KIYI AKİFERLERİNİN SEZGİSEL ALGORİTMALAR KULLANARAK  
OPTİMUM YÖNETİMİ 

 
 
 

Demirbaş, Korkut 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ayşe Burcu Altan Sakarya 

Ortak Tez Yöneticisi: Prof. Dr. Halil Önder 

 
Mart 2011, 137 sayfa 

 
 

Kıyı akiferlerinden aşırı derecede su çekilmesi deniz suyu girişimine yol açmaktadır. Bu 

durum akiferlerde optimum (en uygun) ve etkin planlanma yapılmasını gerektirmektedir. Bu 

çalışmada Strack’ın tek potansiyel çözümününün sayısal çözümü, genetik algoritmayla  

birleştirilerek kıyı akiferlerindeki en yüksek su çekim miktarı bulunmaya çalışılmıştır. Tuzlu 

su girişimi, kuyu lokasyonlarındaki potansiyel değerlerine bakılarak takip edilmiştir. Genetik 

algoritma ile sayısal çözücü olarak MODFLOW’u tekrar tekrar çağıran bir altprogram 

birleştirilerek bir kod geliştirilmiş ve bu kod genetik algoritma tarafından ihtiyaç duyulan 

amaç fonksiyonu değerlerini hesaplamak üzere farklı çözüm konfigürasyonlarına karşılık 

gelen potansiyel dağılımını bulmak için kullanılmıştır. Geliştirilen model önceden 

Mantoglou tarafından çalışılan bir kıyı akiferi modeline uygulanmıştır. Genetik algoritma 

sonuçlarını karşılaştırmak üzere farklı bir sezgisel yöntem olan benzetilmiş tavlama yöntemi 

kullanılmıştır. Tuzlu su girişimini engellemek ve kıyı akiferden alınacak yararın artırılması 

amacıyla farklı tuzlu su önleme metodları ve bu metodlara yönelik karar değişkenleri modele 

eklenmiştir. Lokasyonların önemli olduğu işletme modelleri için sadece genetik algoritmanın 

kullanıldığı çözümü geliştirmek üzere “Değişken Kısıtlamalar Yöntemi” adında yeni bir 

metod geliştirilmiştir. Sonuçlar, önerilen yeni yöntemin ve sadece genetik algoritma ve 

benzetilmiş tavlama kullanılarak elde edilen yöntemin başarılı sonuçlar ortaya koyduğunu 

göstermiştir.  

 
 
 
Anahtar Kelimeler: Tuzlu Su Girişi, Kıyı Akiferlerinin Yönetimi, Genetik Algoritma, 
Benzetimsel Tavlama 
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Chapters 

CHAPTER 1 
 

 

1. INTRODUCTION 
 
 
 
 
1.1 Overview 

 

Rapidly growing human population and increasing human activity bring enormous 

pressure to the limited water supplies. Due to uncontrolled use, in many parts of the world 

water resources are in danger of running out. 

 

Groundwater is the main source of freshwater in earth. High percentage of usable 

freshwater is stored under the surface, in the layers of soil formations (Leap, 2004). Of all 

these formations, aquifers are the most important ones, with their ability to store and transmit 

water with high efficiency. The water in the aquifers are supplied by the recharges from the 

higher grounds and with the potential energy developed it flows slowly through the soil 

pores feeding the surface water on the way till reaching to the sea at the end. 

 

Coastal areas are one of the main centers of human settlements. The use of 

groundwater by extracting it from the wells has always been common and main source of 

water consumption, especially where surface water does not exist. Normally, groundwater 

flowing to sea is replenished by natural means. However, if it is consumed faster than it is 

replenished, freshwater storages will be filled with or contaminated by seawater and the 

valuable aquifers will be damaged at a point of no return or at least with a recovery cost of 

huge amounts.  

 

The objective of the study is to introduce a management model for the maximum 

extraction of groundwater in a coastal aquifer while not permitting seawater intrusion. The 

proposed model includes the modeling of the coastal aquifer and combining with the global 

optimization method, Genetic Algorithm (GA). Simulation model is based on single 

potential solution by Strack (1976) which assumes that freshwater and saltwater are 
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immiscible and there exist a sharp interface separating the two fluids. The performance of 

the optimization algorithm will be tested on different groundwater scenarios including 

different seawater prevention methods (i.e. injection wells and canals). The result of the 

optimization algorithm GA will be compared with another heuristic method, Simulated 

Annealing (SA). To test the performance of GA and SA, Linear Programming (LP) or Mixed 

Integer Programming (MIP) will be utilized, whenever applicable.  

 

1.2 Literature Survey 

 

Under this title, a literature review based on previous studies on the subject is provided. 

Firstly, seawater intrusion modeling studies in coastal aquifers are presented. Then, 

management studies on coastal aquifers are summarized. Lastly, general studies on GA and 

SA are briefly discussed.  

 

1.2.1 Seawater Intrusion Modeling 

 

There are basically two different approaches for modeling seawater intrusion in coastal 

aquifers. In miscible fluid assumption, there exists a transition zone where seawater and 

freshwater mix due to hydrodynamic dispersion (Essaid, 1999). Miscible fluid assumption 

requires the simultaneous solution of the groundwater flow and mass transport equations. 

Analytical solutions to these equations are very limited and numerical solutions usually 

require high computation power (Essaid, 1990a). In the simpler approach, it is assumed that 

freshwater and saltwater does not mix and there exist a sharp interface that separates the two 

fluids. This assumption is valid especially when the width of the aquifer is narrow with 

respect to the depth of the aquifer (Essaid, 1986). 

 

Sharp interface models are mainly classified into two (Essaid, 1990a): i)In a two-fluid 

approach, coupled equations of saltwater and freshwater flows are solved. ii)In a one-

dynamic fluid approach, saltwater is assumed stagnant and only freshwater flow dynamics 

are utilized (equation regarding the freshwater flow is utilized). Seawater adopts the newly 

formed interface instantaneously.  

 

Studies of seawater intrusion models based on sharp interface assumption goes back to the 

beginning of the second half of the twentieth century. Some of the major works include 
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Henry (1959), Shamir and Dagan (1971) and Mercer et al. (1980). Later studies enabled the 

application of sharp interface assumption on multilayer problems, including the works by 

Wilson and Costa (1982), Essaid (1986) and Huyakorn et al. (1996).  

 

Henry (1959) proposed an analytical solution of the saltwater intrusion for one dimensional 

steady state flow. Seawater and freshwater are assumed immiscible. For different boundary 

conditions, the equations of the sharp interface are derived.  

 

Shamir and Dagan (1971) introduced the partial differential equations that govern the motion 

of groundwater flow and describe the location of interface for a shallow unconfined aquifer. 

The equations are based on sharp interface and Dupuit-Forcheimer assumption (Bear and 

Zhou, 2004). Examples of numerical solution for a moving interface are given. It is reported 

that for a shallow aquifer, seepage length can be taken as zero without much error.  

 

Mercer et al. (1980) presented a finite difference numerical model to solve the coupled 

equations of saltwater and freshwater flow. The assumptions include; sharp interface 

assumption, Dupuit-Forcheimer assumption and impermeable aquifer base.  

 

Wilson and Costa (1982) solved finite element simulation of two layered coastal aquifer. 

Dupuit-Forcheimer assumption enabled the vertical integration of flow equations. The flow 

in vertical dimension is handled by adding leakage terms in governing equations.  

 

Polo and Ramis (1983) presented a mathematical model to describe the saltwater freshwater 

motion with a sharp interface and Dupuit-Forchheimer assumption. Tests with analytical 

solutions are performed and reported to give good results. Numerical solution using finite 

difference approximation is also given.  

 

Essaid (1986) introduced a quasi-three dimensional finite difference model to compare the 

two sharp interface models; coupled freshwater-saltwater model (two-fluid flow) and the 

Ghyben-Herzberg sharp interface model (one-dynamic fluid flow), (Essaid, 1999). He tested 

different cases to see the departure of one-dynamic fluid flow from the two-fluid flow. He 

concluded short-term responses and transitional responses between short term and long term 

can only be realistically simulated by including the dynamics of saltwater flow. In other 
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cases, where long term responses are required or short-term responses of an aquifer with 

high conductivity is studied, one fluid flow can be used. 

 

Application of miscible flow for the aquifers with narrow transition zones are reported to 

arise some difficulties in the solution. Voss and Souza (1987) introduced some modifications 

for the variable density application of the simulation of coastal aquifers containing a narrow 

freshwater-saltwater transition zone. 

 

In a study by Essaid (1990a), a finite difference model that simulates freshwater and 

saltwater flow separated by a sharp interface is developed to study a multilayered coastal 

aquifer. Flow between the layers is assumed vertical and added to the governing equations as 

a leakage term. Tip and toe locations for the interface are found by linearly extrapolating the 

discrete points (locations) found by numerical solver.  

 

Galeati, et. al (1992) presented a numerical solution of the density dependent flow model for 

an unconfined aquifer. The proposed method is used to study the coastal aquifer in Italy, 

where seawater intrusion occurs due to excessive dewatering. Two dimensional flow in 

vertical cross-section is modeled using finite element method. 

 

Huyakorn et al. (1996) developed a sharp interface numerical model to simulate saltwater 

intrusion in multilayered coastal aquifer systems. The dynamics of both freshwater and 

saltwater flow are considered.  

 

Sakr (1999) studied the validity of sharp interface model in a confined coastal aquifer. 

Different cases were solved first with immiscible flow (sharp interface), then by density 

dependent model. To find the limitations of sharp interface, steady and non-steady models 

are solved by changing different parameter values; seepage factor, dispersion to advection 

ratio, geometry ratio and time scaling factor. Steady state simulations showed that the sharp 

interface approach is valid when the system is dominated by advection. The unsteady 

analysis showed that the use of sharp interface for all cases is sufficiently accurate at early 

times of simulation. 

 

Karahanoğlu and Doyuran (2003) studied the case concerning the excavations below sea 

levels in a coastal aquifer in Kocaeli-Darıca, Turkey. Eleven new wells were drilled to 
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estimate the hydro-geological features and also for the monitoring of the area. Two different 

scenarios are considered to study the seawater intrusion into aquifer. Two dimensional finite 

element solution of the model is given.   

 

Camur and Yazıcıgil (2005) introduced a three dimensional numerical density dependent 

flow and transport simulation model to predict the effects of an artificial water canal opening 

planned between Aegean Sea and historical Ephesus Site. The simulations included pre-

pumping and pumping periods without canal and prediction period in the presence of canal. 

The results indicated that opening could cause further seawater intrusion and would affect 

the pumpage period for the nearby wells. 

 

Ranjan et al. (2004) focused on the effects of geo-hydrological factors and recharge on 

saltwater-freshwater interface. A conceptual model based on sharp interface was considered 

to estimate the change in freshwater saltwater interface. The results showed that saltwater 

intrusion is far more sensitive to recharge than aquifer properties (i.e. storage coefficient, 

porosity, hydraulic conductivity). 

 

Books about seawater intrusion includes complete books dedicated to the subject (i.e. Bear et 

al., 1999) and books with chapters that cover seawater intrusion concept (i.e. Delleur, 2004a) 

 

Bear et al. (1999) edited a complete book about seawater intrusion, where different concepts 

of the subject are written by different authors. The book nicely summarizes the seawater 

intrusion subject, by including the mathematical models, analytical and numerical solution 

methods and case studies involving management problems. “Analytical Solutions” chapter 

by Cheng and Ouazar (1999) describes the derivation of single potential solution by Strack 

(1976) and different scenarios by changing the location and discharge value of an extraction 

well and a canal. 

 

Delleur (2004a) gathered chapters written by different authors from the field in a book that 

covers the groundwater subject from fundamental mathematical theorems to different site 

applications. Chapters that involve seawater intrusion concept and management of seawater 

intrusion include “Elementary Groundwater Flow and Transport Processes” by Delleur 

(2004b) and “Seawater Intrusion into Coastal Aquifers” by Bear and Zhou (2004). 
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1.2.2 Management of Coastal Aquifers  

 

Initial efforts to support and improve the operation of groundwater systems by simulation 

and optimization techniques are started in early 1970’s (Benhachmi et al., 2003). Gorelick 

(1983) made a review of the single objective linear simulation management models for 

groundwater. According to Gorelick, there are basically two types of management models; 

embedded and response matrix approach. In the embedded approach, formulations of 

groundwater equations are directly written into optimization formulation. In response matrix 

approach, a matrix of influence coefficients is formed by utilizing the unit response of the 

system to a unit impulse. The method which is valid for linear systems requires iterations for 

nonlinear systems (Tokgöz et al., 2002 and Demirbaş, 2003). 

 

Later, Ahfeld and Heidari (1994) summarized the characteristics of hydraulic control design 

problems and approaches to solve these problems in a groundwater system. Field 

applications are classified into water supply management problems and remediation 

management problems.  

 

Management of coastal aquifers usually require the simulation of the equations related to 

seawater and freshwater flow. The studies can be classified according to the type of the 

interface assumption for the simulation (see Section 1.2.1). Among the many studies that 

utilizes the sharp interface assumption, studies made by Willis and Liu (1984), Shamir et al. 

(1984), Finney et al. (1992), Willis and Finney (1998), and Emch and Yeh (1998)  can be 

listed. Studies that utilize density dependent flow are relatively new. However, the number 

of applications is increasing with the increasing power of today’s computers. Some of the 

works are Das and Datta (1999, 2001). 

 

Constraining the saltwater intrusion is often provided by indirect manners like constraining 

drawdown at control points or minimizing seawater flow at certain locations (Benhachmi et 

al., 2003). Others include tracking the seawater encroachment or checking the saltwater 

concentration at certain locations (i.e. extracted water).  

 

The management model applications in saltwater intrusion often require the use of nonlinear 

optimization due to complexity of governing equations (Emch and Yeh, 1998).  Later using 
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global optimizers like GA became popular. Some of the works are  Cheng et al. (2000), Park 

et al. (2003), Park and Aral (2003), Mantoglou et al. (2004), Benhachmi et al. (2001, 2003), 

Katsifarakis and Petala (2004, 2006), Mantoglou and Papantoniou (2004, 2008), Qahman 

and Larabi (2005). Bhattacharjya and Datta (2005). Studies made by SA also exist, although 

their numbers are few. Rao et al. (2003) and Rao et al. (2004) can be listed as examples. 

 

Willis and Liu (1984) proposed a multiobjective management model, which is applied to 

Yun Lin Basin in Taiwan. For the basin, water demands has become larger than the natural 

recharge values which results in saltwater intrusion. A finite element model is formed to 

simulate the aquifer response. Conflicting objectives include maximizing the groundwater 

extraction to supply the water demand and groundwater levels in the coastal region where 

seawater intrusion occurs.  

 

Shamir et al. (1984) made a study to determine the optimal annual operation of a costal 

aquifer by considering four objectives; a desired groundwater surface map, desired location 

of the seawater toe, desired concentration map and the minimization of the energy (cost) for 

pumping. A trade-off curve is formed to choose between different desirable solutions. The 

model is  applied to a coastal aquifer in Israel.  

 

Finney et al. (1992) used sharp interface assumption and coupled equations of freshwater 

and saltwater flow for the simulation of multi-layered aquifer. The flow in aquifer layers are 

based on flow equations in two dimensions. Flows in vertical direction between different 

layers are provided with the recharge terms in governing equations. A multi-objective 

optimization model is developed in order to satisfy a certain water demand and to minimize 

the seawater volume. The resulting problem is solved with a nonlinear optimization solver 

package, MINOS (Murtagh and Saunders, 1993). Seawater intrusion is constrained with 

restrictions on possible pumping and recharge locations. 

 

Hallaji and Yazıcıgil (1996) used response matrix approach for the combined simulation 

optimization of seawater intrusion model in southern Turkey. In their solution, they used 

head constraint in specified locations for the control of saltwater intrusion. Several 

management models are studied to find the optimal operating policy. Tradeoff curves are 

built for the objectives of optimal pumping rates and minimum pumping costs. The best 
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alternative found is explained as pumping excess water from the most productive wells and 

transport them to the remaining areas.  

 

Emch and Yeh (1998) used multi-objective management model to manage the groundwater 

resources and together with the coastal surface water. Two fluid sharp interface assumption 

is utilized. The conflicting objectives considered were the minimization of seawater intrusion 

and minimization of cost of supplying water. Saltwater intrusion is tracked with the level of 

interface. Water demand is given as a lower bound constraint. Additional constraints related 

to minimum drawdowns at control points are also included. MINOS used as an optimization 

tool and SHARP (Essaid, 1990b) as the flow simulator.  

 

Two fluid sharp interface assumptions is utilized by Willis and Finney (1998) for the 

management of a coastal basin in Taiwan.  The basin is modeled using finite difference 

approximation. Resulting management problem is solved using two different nonlinear 

optimization methods. Different objective functions are combined in a single potential 

function by using different weighing constants for each objective function term. Objectives 

include minimization of pumping, minimization of injection costs and minimization of 

seawater intrusion. Seawater intrusion is tracked with the position of the toe of the interface. 

 

Das and Datta (1999) utilized embedding technique where numerically approximated 

simulation equation of the flow is incorporated as constraint set of optimization model for 

the management of multiobjective management of a coastal aquifer. Seawater, freshwater 

interaction is modelled as a density dependent miscible flow and transport model. Nonlinear 

optimization solver package MINOS, is used as an optimization tool.  

 

Three dimensional density dependent miscible flow and transport model for a seawater 

intruded coastal aquifer is studied by Das and Datta (2001). Effects of vertical recharge, 

boundary conditions and location of pumping on simulation model are investigated and 

following conclusions are derived: i) amount of seawater intrusion is found inversely 

proportional with recharge, ii) seawater intrusion increased with decreasing boundary head. 

iii) Increased pumping increased salinity. iv) Location of the well has a significant effect on 

seawater intrusion (i.e. away from the coast, there is less danger of saltwater intrusion). 

Lastly, Das and Datta (2001) experimented with a series of barrier wells and concluded that 
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installing series of barrier wells that are close to the sea boundary is an effective way to 

avoid seawater intrusion.  

 

Zhou et al. (2002) utilized response matrix approach to manage the freshwater sources 

without permitting seawater intrusion on a multilayered aquifer system in Leizhou Peninsula 

in southern China. A quasi-three dimensional flow (horizontal flow, flow in the vertical 

dimension are included in governing equations by leakage terms) on a finite element model 

is used to simulate groundwater levels in the aquifer system. Control of the seawater 

intrusion is attained by restricting the water levels at points along the coast. 

 

Motz et al. (2004) used response matrix approach to combine two dimensional miscible flow 

and a linear optimization model. Response matrices are formed by repeatedly calling 

groundwater flow and transport model SUTRA (Voss, 1984).The model is used for the 

management of seawater intrusion in Göksu Delta in Southern Turkey.  

 

One of the early applications of genetic algorithm on groundwater problems is the study by 

McKinney and Lin (1994). Three different management problems are solved to test the 

performance of GA on groundwater management. These problems include a pumping 

management problem which maximizes the extraction amount by constraining drawdown at 

certain control points, a cost management problem which minimizes the installation and 

operating costs for a number of potential well locations to provide a certain water demand 

and a cost minimization for an aquifer remediation problem. Results showed that GA can 

effectively and efficiently be used to obtain global (or at least near global) optimal solutions 

to these groundwater management problems.  

 

Aly and Peralta (1999) introduced a simulation and optimization approach for single and 

multi-objective planning period for a groundwater contamination remediation. Proposed 

optimization model was tested with GA and a nonlinear optimization algorithm (mixed 

integer nonlinear programming) using different scenarios. GA found better results than the 

mixed integer nonlinear programming for more complex problems. 

 

Cheng et al. (2000) used the analytical solutions of the freshwater flow to analyze the cases 

with one-well, two-well and one-well with recharge canal. For multiple wells, a management 

problem is developed to optimize the maximum pumpage and GA is used to search for the 
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optimal solution. Sharp interface is assumed for the transition zone. Dupuit-Forchheimer 

assumption is used to vertically integrate the flow equation. Together with the above 

assumption and assumption of static seawater lead to the single potential solution by Strack 

(1976). Seawater intrusion is tracked with the potential taking a specific value at the well 

location. First, critical pumpage rates for a single well intruded with saltwater is studied.  

From the derived equations, a design chart is provided, where intrusion distance and 

maximum pumping rate versus toe potential is given. The same equations are derived for two 

well case where the wells are separated at a distance from each other and at some distance 

away from the coast. A dimensionless chart is presented where maximum discharge is given 

as a function of toe potential and the ratio of the distance between the wells to the distance to 

the coast. For the case with recharge canal and one extraction well, equations are provided 

for the changing locations of the canal. From the results, it is seen that critical extraction is 

increasing when canal moves away from the coast till a critical distance. From this distance 

on, the critical extraction rate remains the same.   

 

Analytical solutions for a two dimensional steady saltwater-intruded coastal unconfined 

aquifer based on the sharp interface assumption and Strack (1976) solution is successfully 

applied to a management model using genetic algorithm by Benhachmi et al. (2001).  

 

Benhachmi et al. (2003) applied GA to a seawater intruded groundwater management 

problem in Miami coast. For the simulation model, analytical solution of the single potential 

formulation by Strack (1976) is used. Aquifer geometry is simplified (i.e. straight coastline, 

constant thickness, homogeneity, etc.) to enable the use of analytical solution. Solution of the 

aquifer for multiple wells is found by using method of images as given by Strack (1976). The 

management objectives were to maximize the economic benefit from pumped water and 

minimize the utility cost of lifting the water. Toe encroachment invading the wells (i.e. if the 

toe location from the coast in front of a well is greater than the distance of the well from the 

coast) are included in the objective function as a penalty to control the seawater intrusion for 

the management.  

 

Park and Aral (2003) combined single potential formulation by Strack and GA to optimize 

the conflicting objectives of maximum amount of extraction and minimum distance to the 

coast without letting seawater intrusion. They concluded that including the well locations as 

a decision variable improved the results significantly.  
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For the large number of the simulation evaluations required for the solution by GA, Park et 

al. (2003) utilized a PC cluster of 32 processors. Fitness function for GA is computed in a 

parallel manner in order to decrease the solution time. Coupled equations of freshwater and 

saltwater flow with sharp interface approach are used for the solution of the simulation 

model. Seawater intrusion is constrained by groundwater levels at certain points, the quantity 

of saltwater pumped and the salt concentrations at the extraction wells. These constraints are 

added to the objective function as a penalty term with different weighting constants.  

Objective was to withdraw maximum amount of groundwater.  

 

In the study made by Katsifarakis and Petala (2004, 2006), the numerical evaluation of 

groundwater flow with boundary element code and seawater inflow is checked with the sign 

of flow rate value at the coastal boundary element. Optimal location and optimal withdrawal 

rate for two wells is studied with the proposed model.  

 

Mantoglou (2003) developed a model that seeks for the optimal pumping rates for a coastal 

aquifer.  Single potential solution based on sharp interface assumption and Ghyben-Herzberg 

relation is used for the simulation model. Seawater intrusion is tracked by the toe location.  

Analytical solutions are compared with numerical solutions. The methodology was applied 

to an aquifer in Greek island of Kalymnos. 

 

Mantaglou et al. (2004) compared a nonlinear optimization algorithm (sequential quadratic 

programming) and evolutionary algorithm for the maximum extraction rates in a coastal 

aquifer using the single potential solution by Strack (1976). They found that although 

sequential quadratic programming reaches solution far more quickly, it could stuck on local 

optimums.  

 

Mantoglou and Papantoniou (2004) used evolutionary algorithms to manage a pumping 

network in a coastal aquifer. The formulation of the constraints is based on numerical 

formulation of sharp interface assumption and Ghyben-Herzberg approximation that leads to 

single potential formulation of Strack (1976). The objectives were to optimize the total 

pumping rates and well locations. The proposed methodology was applied to a Greek island. 

Evolutionary algorithm was developed using MATLAB and differential equation for flow 
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(single potential solution for an unconfined aquifer) is solved by using the finite difference 

solver, MODFLOW (McDonald and Harbourgh, 1988).  

 

Bhattacharjya and Datta (2005) utilized density dependent miscible flow and transport model 

and GA to maximize the water extracted in a coastal aquifer. Saltwater intrusion is controlled 

by constraining the salt concentration in extracted water. To reduce the computational 

burden due to high number of function evaluations, a trained artificial neural network 

(approximate simulator) instead of the simulation model is used to calculate the response of 

aquifer to different solution configurations.  

 

Qahman and Larabi (2005) considered a hypothetical coastal confined aquifer, which is a 

modified version of Henry’s problem (Voss, 1984). The flow was modeled as three 

dimensional density dependent miscible flow and transport model. Simulation scenarios 

include maximizing the total volume of extracted water, maximizing the profit of selling 

water, minimizing the operational and water treatment costs and minimizing the salt 

concentration of pumped water. Maximum allowable salt concentration in extracted water 

and minimum head in the wells are used as constraint, for seawater intrusion. GA was used 

as the optimization tool.  

 

Mantoglou and Papantoniou (2008) introduced a method, where pumping locations are 

optimized by GA where for each individual extraction rates are optimized with linear 

programming. The single potential solution by Strack (1976) is used to find the response of 

the aquifer to different discharge combinations. 

 

SA applications in groundwater management are relatively few. In a study made by Kuo et al 

(1991), optimal locations and discharge values for the wells in a pump and treat system in a 

groundwater contamination site is solved by using SA. The algorithm is designed as 

combinatorial algorithm and decision variables are chosen accordingly (i.e. from a specified 

set of potential values). Although required more computational time, SA algorithm is 

reported to give better results for which the search space is non-smooth due to well 

installation cost involved in objective function.  

 

Wang and Zheng (1998) compared the performance of SA and GA for the solution of a 

groundwater management problem, where either maximum groundwater demand or 
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minimum cost of extraction is searched for. It is reported that GA and SA gave identical or 

better results than the linear and nonlinear programming. SA is reported to require less 

number of function evaluations. However, Wang and Zheng (1998) also stated that SA 

solutions are highly dependent on empirical parameters. 

 

Cunha (2002) compared four different optimization methods, including simulated annealing 

for groundwater development planning for a hypothetical problem designed for a real 

aquifer.  The model to be solved included capital costs for the placement (drilling and 

installing costs) and variable costs for the operation of the new wells. Cunha (2002) reported 

that all the solutions except simulated annealing is very sensitive to the initial solution. Using 

different initial solutions, simulated annealing showed its robustness by almost always 

achieving the same solutions. Though the solutions are reported to be much more time 

consuming than the others, results by SA found to be better. 

 

Rao et al. (2003) used simulated annealing to search for the optimal groundwater solution in 

deltaic regions without inducing excessive saltwater intrusion. SA was coupled with SHARP 

flow model and was used to find the optimal location and pumpages of extraction wells. The 

computational burden is lowered by replacing SHARP with an artificial neural network. 

SHARP flow model is a solver based on sharp interface assumption and coupled equations 

of freshwater and saltwater flow. Seawater intrusion is controlled by a interface elevation 

constraint at specified nodes.  

 

Rao et al. (2004) controlled the seawater intrusion through a series of barrier wells (wells 

that extracts the saltwater and throws it back to the sea) while maximizing the extraction 

amount. Multi-objective management problem is solved using SA as an optimizer and 

SEAWAT (Guo and Langevin, 2002) for simulating the seawater groundwater dynamics 

based on density dependent groundwater flow and transport model. Seawater intrusion is 

controlled by checking the salt concentration in the wells and restraining head values at 

control points. To reduce the computational burden arised from the solution of density 

dependent problem, SEAWAT model is replaced with a trained artificial neural network. 

Simulated annealing algorithm is utilized to solve the optimization problem. Tradeoff curves 

are formed between two objectives, maximization of groundwater development through 

production wells and minimizing the pumpage from the barrier wells. 
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In an effort to identify the groundwater source parameters (i.e. pumping source location, 

pumping rate and period, etc.), Lin and Yeh (2008) used SA as an optimization tool and 

MODFLOW as the numerical solver. Following the results, they gave least number of 

parameter values to analyze the source information. It is reported that combination of SA and 

MODFLOW gave successful results including the cases with measured errors.  

 

1.2.3 Optimization Methods (GA and SA) 

 

There are various books in literature written about GA. Most of these books are introductory 

books that cover the subject by explaining the GA from the scratch. Among those Coley 

(1999), Haupt and Haupt (2004) and Sivanandam and Deepa (2007) can be listed. Others 

took the subject on a broader perspective by covering the family of algorithms involving GA 

(i.e. evolutionary algorithms). Examples are the books by Michalewicks (1996) and De Jong 

(2006). Majority of these books discuss how GAs work by using the empirical evidence. 

However, there are few giving the theoretical foundation like the famous work by Goldberg 

(1989).  

 

Since SA is a stochastic algorithm that is built over natural phenomena like GA, there are 

discussion about SA in most of the above books. However, the scope of these discussions is 

rather limited. Books that cover SA in a complete book also exist, like the study by Van 

Laarhoven and Aarts (1987). In following paragraphs, a detailed surveying of these books 

will be given. 

 

De Jong (2006) studied the family of evolutionary algorithms, which include GA as a 

subarea. Evolutionary algorithm is defined as the iteration of population of individuals 

evolving to a better fitness with certain selection, reproduction and mutation mechanisms. 

De Jong (2006) then described GAs as the type of evolutionary algorithm where all the 

individuals are replaced by the offsprings after one generation and mating individuals are 

selected according to their fitness for which the offsprings are generated by recombining 

generic information by crossover and random alteration of the bits by mutation. To better 

understand the basics of evolutionary algorithm, De Jong (2006) returned to the roots of 

evolutionary system in biology which mainly consists of; i) population or populations 

competing for a limited source ii) constantly changing population with the births of new 

individuals and death of old individuals iii) fitness which is defined as the degree of survival 
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for a specific individual iv) reproduction which gives offsprings similar to parents but 

somehow different (concept of inheritance). 

 

Banzhaf and Rieves (1999) edited and published the proceedings of workshop, named 

“Foundations of Genetic Algorithm”. The workshop is organized under the direction of 

International Society for Genetic Algorithm and reviewed with well-known authors from the 

field. The workshop titles mostly focused on the theoretical issues related to GA and 

improvements in GA.  

 

Sivanandam and Deepa (2007) presented the basic concepts related to GA, with special 

emphasis on the roots of GA, which are connected to biology. This was inspiring since the 

first application of GA by Holland (1975) was for the simulation of the evolution of a system 

in nature. Some biological background on cells, genes, chromosome and DNA are given. 

The structure of genetic information on DNA (genotype), what it represents (phenotype) and 

how it is carried to offsprings by reproduction is discussed in an effort to understand the 

counterparts of these concepts in GA. 

 

In his well-known book, Goldberg (1989) tried to explain why and how GAs work both with 

empirical and theoretical work. “Schema Theorem” introduced by Holland (1975) is 

explained in detail. In the end, case studies are discussed, where special attention is given to 

machine learning.  

 

In his book, Coley (1999) made a brief introduction to GA, where basic and advanced 

operators and how they affect the results of the algorithm are discussed. Different methods to 

improve the simple GA (i.e. using hybrid methods, advanced coding techniques, etc.) are 

explained. A whole chapter is dedicated to how to write a basic GA algorithm and a sample 

code written in Fortran 90 is given in the end.  

 

Michalewics (1996) listed the various optimization areas where GA is successfully applied, 

including the hydraulic control problems. He defined GAs as: “During the last decade, the 

significance of optimization has grown even further, many important large-scale 

combinatorial optimization problems and highly constrained engineering problems can only 

be solved approximately on present day computers. Genetic algorithms aim at such complex 

problems. They belong to the class of probabilistic algorithms, yet they are very different 
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from random algorithms as they combine elements of directed and stochastic search. 

Because of this, GAs are also more robust than existing directed search methods. Another 

important property of such genetic based search methods is that they maintain a population 

of potential solutions - all other methods process a single point of the search space. 

Examples on combinatorial optimization and the ones which include continuous decision 

variables are discussed.” For binary representation, “Schema Theorem” by Golderg (1989) is 

given as a theoretical foundation of why GAs work. Floating number representation is 

compared to binary coded representation and from the results obtained, it is concluded that 

floating number representation is superior to binary representation. 

 

Different types of GA operators (i.e. one point, two point, uniform crossover etc), and their 

effects on searching the solution space is given in detail by Haupt and Haupt (2004).  

Concepts are explained with basic applications and methods to handle advanced applications 

are listed. The other algorithms based on natural phenomena including SA are summarized. 

Classification of different types of GAs and their definitions are given in a chapter. 

 

Van Laarhoven and Aarts (1987), defined SA as an approximation algorithm that can be 

applicable to a wide variety of problem. Theoretical proof that SA will always converge to a 

global optimum is given by using the theory of Markov chains (Markov chains are sequence 

of algorithms which define the acceptance criteria for iterative solutions (See Section 2.2.2)). 

However, since any implementation of SA is an approximation of the assumptions accepted 

for the mentioned proof (i.e. infinite number of Markov chains), there is no guarantee that a 

global optimum will be found using SA. In the book, different types of SA implementations 

are discussed and performance for these cases are analyzed. Van Laarhoven and Aarts 

(1987) reported that adaptive SAs (i.e. SAs with adaptive parameters that changes during the 

run) performed better than SAs with constant parameters. Beside classical structure designed 

for combinatorial problems, SAs that use continuous decision variables are also covered. 

 

1.2.3.1 GA Parameters 

 

Studies on finding the optimal parameter set for GA started from the point where GA started 

to be used as a function optimizer (De Jong, 1992). Goldberg (1989) summarized the 

extensive study and conclusions of De Jong (1975) on optimal GA parameters. De Jong 

tested five different optimization functions with different population numbers, crossover 



 17 

constants and mutation probabilities. He defined two performance measures for testing the 

success of GA; offline and online performance.  Online performance is defined as the 

average of the fitness values till current generation while online performance is defined as 

the average of the best fitness till current generation. From the results, he concluded that 

small populations improve initial performance while high populations improve long time 

performance. He tested populations ranging from 50 to 200. He also concluded that a 

crossover rate of 0.6 is a good balance between online and offline performance. De Jong also 

suggested low mutation rates that are inversely proportional to population number. Mutation 

rates larger than 0.1 are reported to converge the algorithm to random selection. 

 

Grefenstette (1986) tested different GA parameters on five different test functions. Based on 

five independent runs, best GA parameters for online performance was reported as 

population number = 30, crossover rate = 0.95 and mutation rate = 0.01 while scaling and 

elitism is on. Best offline performance was reported when population number = 80, 

crossover rate = 0.45 and mutation rate = 0.01 while scaling is on but no elitism. Grefenstette 

(1986) also suggested crossover rates of 1.0 performing better if the stochastic effects are 

reduced by inducing more selection pressure.  

 

Schaffer et al. (1989) experimented with 8400 different combinations on crossover, mutation 

rate, population number and different types of GA operators. The result of each combination 

was averaged over 10 independent runs. Best performance was achieved when two point 

crossover is selected and population number = 20-30, crossover rate = 0.75-0.95 and 

mutation rate = 0.005-0.01. 

 

Haupt and Haupt (2004) made 200 independent runs for 21 different population numbers and 

21 different mutation rates. Average number of calls needed to arrive to an acceptable 

solution is accepted as a measure of success. The best combinations for the 5 different 

functions ranged from 8 to 88 for the population, 0.01 to 0.41 for the mutation rate. Haupt 

and Haupt (2004) used 12 bits for the encoding of each decision variable.  

 

Haupt and Haupt (2004) also compared the binary and floating-point representation on an 

optimization problem on the design of antenna array. Population number of 20, mutation rate 

of 0.2 were used. To reduce the impact of variation, the algorithm was repeated and averaged 

over 10 independent runs.  The results of binary representation outperformed the results of 
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floating-point representation. They reported that success of binary representation may be due 

to different sizes of the search space for two different representation (1021 potential solutions 

for binary representation with 21 variables and an encoding on base 10, ∞ potential solutions 

for floating representation) 

 

Michalewicz (1996) utilized the idea of variable population number and tested four functions 

for the comparison of fixed and variable population number. Initial population number, 

crossover and mutation rate are taken as 20, 0.65 and 0.015, respectively. The length of the 

chromosomes was 20. Twenty independent runs were performed for each instance and 

measures of performance and fitness were averaged over twenty runs. He concluded that 

variable population size gives better performance in the expense of higher evaluation 

numbers. He found 75, 15, 75 and 100 as the optimal population number for the four 

functions. 

 

Michalewicz (1996) also studied the effect of binary and floating point representation. The 

average values obtained from ten independent runs are presented. Population number was 60 

and the number of generations was set to 20,000. Binary representation used 30 bits for 

representing each decision variable; for 45 variables, which adds up to 1350 bits. Best results 

were almost identical for the two representations although solutions with floating-point 

representation converged to near optimal results faster.  

 

Back (1993) focused their studies on mutation operator and suggested a mutation rate of 

about 1/L (one over total string length). Back and Schutz (1996) later introduced a method 

on variable  mutation rate which starts with a higher rate of mutation (i.e. 0.5) and decreases 

to 1/ L as the algorithm progress.  
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1.3 Research Objectives 
 

The general goal of this study is to develop a management model in order to optimize the 

maximum benefit in a coastal aquifer where there is a threat of seawater intrusion. The 

model will be modified to examine different seawater intrusion prevention methods (i.e 

injection wells, canals, etc.) with the emphasis on efficient and/or optimal use of coastal 

aquifer.  

 

For the optimization process, a heuristic algorithm, GA will be used. GAs are accepted 

to be a robust optimization techniques that are applicable to wide range of problems. 

However, their robustness sometimes limits their efficiency. GAs are reported to be less 

effective than tailored techniques which already have information about the search space. 

For improved performance, GA parameters should be modified according to problem in 

hand. GA operators should also be chosen accordingly. 

 

GA has difficulty to find near optimal results when domain (search space) gets larger 

(i.e. dense discretization) and decision variables or constraints increase. Including advanced 

operators in GA and improving the algorithm helps to find near optimal results. Improved 

methods are expected to be developed as more complex problems occur. To enable easier 

modification for the aforementioned processes, a GA code will be developed.  

 

The results will be compared with the results of another widely used heuristic algorithm, 

SA. To examine the efficiency of GA, SA and improved GA; LP or MIP will be utilized, 

whenever applicable. It is expected that comparative results will give the user idea of 

utilizing different management alternatives for a convenient coastal aquifer model. 
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1.4 Organisation of the Thesis 

 

The thesis is organized in six chapters. Chapter 1 is an introduction to thesis which 

include a brief overview of the study, a literature survey and the current subchapter. Chapter 

2 describes the simulation and management model used in the thesis. Management model 

includes the formulations related to optimization methods, GA and SA. Chapter 3 

summarizes the program code, explaining the operators of GA, command by command. The 

fourth chapter contains the solution of a sample problem by GA. It explains how GAs work 

by including detailed explanation of GA operators and their implementation on a 

groundwater dewatering example. The chapter also includes the parameter optimization for 

GA using the same dewatering problem. The parameters found are utilized for the rest of the 

study. Chapter 5 includes the application and discussion of the results. Different scenarios 

(problems) by including different seawater prevention methods are tested on the same 

simulation model using the simulation optimization methods developed. Each problem is 

followed by the corresponding results and discussions. Final chapter summarizes the 

conclusions. 



 21 

 

CHAPTER 2 
 

 

2. BACKGROUND 
 
 
 
 
2.1 Simulation Model 
 
In a coastal aquifer, since freshwater is less dense than saltwater, freshwater floats over the 

saltwater, where two fluids meet. The seawater and freshwater mix due to hydrodynamic 

dispersion and a finite thickness of a brackish water interface is formed. In the simpler 

approach, this transition zone is assumed narrow and there exist a sharp interface that 

separates two fluids.  This way, transition zone is neglected. However, flow dynamics still 

depends both on saltwater and freshwater. To further simplify the solution, Ghyben and 

Herzberg (independently in 1888 by Ghyben and 1901 by Herzberg) assumed static 

equilibrium where seawater is stagnant and there is hydrostatic pressure distribution in the 

freshwater region (Bear and Zhou, 2004). This is equal to a dynamic equilibrium where 

freshwater flows horizontally (Dupuit-Forcheimer assumption) and seawater is stagnant. 

This way flow dynamics of saltwater can be ignored and only flow related to freshwater 

gives the solution. The interface position is found by the Ghyben-Herzberg relation. 

Hydrostatic pressure distribution in both zones leads to a seepage through a single point. It is 

assumed that seawater adopts the freshwater shape instantaneously. (See Figure 2.1). 

 

 

Figure 2.1 Ghyben-Herzberg interface model 

 

Seawater 
Side 

Freshwater 
Side Depth of interface below sea level, hs  

Elevation of water table above sea level, ht  
 

Sharp Interface 
 

γs 

γf  
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The pressure at a point on the interface is the same whether approached from the freshwater 

side or the saltwater side. Thus, 

 

)( tsfss hhh += γγ  (2.1)

      

where, 

γs is the specific weight of seawater, 

γf  is the specific weight of freshwater, 

hs is the depth of interface below sea level, 

ht is elevation of water table above sea level. 

 

Solving for hs we get, 

tt

fs

f

t

fs

f

s hhhh
δρρ

ρ

γγ

γ 1
=

−
=

−
=  (2.2)

   

where, 

ρf  is the density of freshwater, 

ρs  is the density of seawater, 

δ  is (ρs - ρf )/ρf. 

 

Substitution of ρf =1000 kg/m3 and ρs = 1025 kg/m3 in Eqn. 2.2, yields commonly known 

equation, hs = 40ht, since δ =0.025. According to the above model, the depth of interface 

below sea level is 40 times the elevation of water table above sea level. That means for a 

steady model, if there is 1 unit of decline in the groundwater head, there will be 40 units of 

increase in the depth of interface till it reaches a steady state. The relation given by Eqn. 2.2 

is called the law of Ghyben and Herzberg (Bear and Zhou, 2004).  

 

Sharp interface approach based on Ghyben-Herzberg approximation is more appropriate for 

modeling long term responses of freshwater zones or short term responses in aquifers where 

saltwater can move in and out easily (Essaid, 1999). Figure 2.2 shows the vertical cross-

section of such an aquifer. Toe location is tip of the interface; the farthest point where 

seawater reaches through freshwater. Toe location divides the aquifer into two zones. Zone 1 

is the freshwater only zone and Zone 2 is where freshwater flows over stagnant seawater 
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(Mantoglou, 2003). In both zones, freshwater flows horizontally, in other words, Dupuit-

Forcheimer assumption is valid. For the above conditions, aquifer storativity is ignored and 

so governing equation becomes time independent. 

 

 

Figure 2.2 Coastal unconfined aquifer pumped by one well 
 

The governing equation of steady groundwater flow for Zone 1 and Zone 2 is expressed as 

follows; 
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in which, fhb =   
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in which, sf hdhb +−=  

 

In Eqns. 2.3 and 2.4, 

K is the hydraulic conductivity, 

b is the thickness of freshwater zone, 

hf is the elevation of water table above datum, 

d is the elevation of sea level above datum, 
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N is the incoming volumetric flow rate per unit horizontal area (recharge rate), 

W is the outgoing volumetric flow rate per unit horizontal area (withdrawal rate), 

z is the elevation of interface above datum. 

 

Using Eqn. 2.2, 

dhh fs −=δ  (2.5)

 

Strack (1976) defined flow potential for the two zones in order to express Eqns. 2.3 and 2.4 

as a single function. 

 

Zone 1: 
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2
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Zone 2: 
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φ  function is continuous and smooth across the zones and satisfies the following equation 

(Strack,1976). 
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Toe location may be found either from Eqn. 2.6 or 2.7 by letting sf hdh δ=−  (Eqn. 2.5) and 

dhs = , which is equal to; 

2

2

)1(
dtoe

δδ
φ

+
=  (2.9)

where, toeφ  is the potential at the toe of seawater. 

 

Toe location represents the encroachment of the interface, the farthest point till seawater has 

progressed. As the freshwater discharged to the sea is reduced (i.e. with increasing extraction 

demand), freshwater head above seawater reduces and seawater wedge moves toward inland. 

Further increase in amount of extraction leads to pumping saline water from the wells. 
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Analytical solution of Eqn. 2.8 is limited, except for the cases with simple boundary 

conditions and/or with limited number of inputs (like wells, recharge, etc.). Numerical 

solution methods on the other hand, give the flexibility of solving wide range of problems 

with the required precision in an adequate time.  

 

The single potential formulation given above (Eqn. 2.8) is in fact the governing equation for 

a confined aquifer with unit thickness. If the boundary conditions are known, it can be 

transformed to a problem that can be solved numerically with a finite difference solver, such 

as MODFLOW (Harbaugh and McDonald, 1996). After solving for φ(x,y), elevation of water 

table, hf and depth of seawater-freshwater interface, hs can be estimated with the following 

functions. 
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Before presenting the management formulation, it may be convenient to discuss the early 

upconing event seen in the solutions of single potential solution. This event was also 

mentioned by Cheng et al. (2000) and Cheng and Ouazar (1999) (See Section 1.2.1). Figure 

2.3 shows the advancement of seawater wedge as the discharge value at the wells in the 

example are slowly increased.  Figure 2.3-a shows the interface just before φ=φtoe at the well 

nearest to the coast. Discharge value of the wells for this case is 738 m3/day. There is no 

upconing for this situation. When the discharge values are increased till φ>φtoe at the well 

nearest to the coast (i.e. to a discharge value of 740 m3/day), an upconing is formed under the 

well (Figure 2.3-b). This is not possible since upconing has no connection with seawater. 

However, once the discharge values are further increased by less than 7% (i.e. to 782 

m3/day), seawater wedge reaches the well location (Figure 2.3-c). Taking φtoe at the well 

locations as a constraint for seawater intrusion for all the above cases makes us on the safe 

side, since seawater wedge have not reached the wells yet. Figure 2.3-d shows the response 

of the aquifer, when discharges are further increased to 1000 m3/day. Once, wells starts to 

pump seawater, the solution by single potential solution does not reflect the flow dynamics 

(Cheng et al., 2000).  
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a) b) 

  

c) d) 

Figure 2.3 Interface elevation for different discharge values; a) QEXTi=738 m3/day                     

b) QEXTi=740 m3/day c) QEXTi =782 m3/day d) QEXTi =1000 m3/day for i=1,2…5 

 
 
2.2 Management Model 
 
Using the simulation model, it is possible to get the assessment of how the aquifer behaves 

under different scenarios and compare them in an effort to attain a better solution. However, 

it is usually hard to cover all the alternatives, which will fulfill the required constraints. In 

many cases, a better solution might have easily been omitted.  

 

Transforming the simulation model to an optimization problem, by defining the objectives 

and including the constraints, give the user the freedom to search for the optimal solution 

using various optimization methods. Using optimization in a management model not only 

enables finding the optimal solutions in an adequate time but also enhances the flexibility of 

adopting similar management objectives to the model.  
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The objective in this study is to find the maximum benefit in a coastal aquifer without letting 

seawater intrusion into the extraction wells. φtoe represents the border where the seawater 

intrusion has reached. If the φ values at the extraction wells are smaller than φtoe, it is 

assumed that wells are intruded by seawater.   

 

The general mathematical formulation for the optimization problem in this study is as 

follows; 

 

The objective function,  

CANCAN
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Set of constraints, 
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u
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where; m is the number of extraction wells and n is the number of injection wells. EXTiQ  is 

the extraction rate for ith extraction well and INJjQ  is injection rate for jth injection well. RCAN 

is the recharge rate for the canal (rate of water recharged to the canal). α  is the ratio of the 

economical value of injected water to the economical value of extracted water. β  is the ratio 

of the economical value of recharged canal water to the economical value of extracted water. 

x∆  is the length of the discretization in x-coordinate direction and y∆  is the length of 
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constant discretization in y-coordinate direction. iφ  is the potential at i
th extraction well. 

u
EXTiQ  and l

EXTiQ  are the upper and lower limits for ith extraction wells, u
INJjQ  and  l

INJjQ  are 

the upper and lower limits for j
th injection wells and  u

CANR  and l
CANR  are the upper and 

lower limits for the canal, respectively. INJjx  is the x-coordinate of the ith injection well with 

u
INJjx  and l

INJjx , the upper and lower limits of INJjx , respectively. INJjy  is the y-coordinate of 

the ith injection well with u
INJjy  and l

INJjy , the upper and lower limits of INJjy , respectively. 

CANx  is x-coordinate of the canal. u
CANx  and l

CANx  are the upper and lower limits for the x-

coordinate of the canal, respectively. CANy  is y-coordinate of the canal. u
CANy  and l

CANy  are 

the upper and lower limits for y-coordinate, respectively. The canal runs parallel to the coast 

and CANl  is defined as the difference between the starting and ending coordinate of the canal 

in y direction. The upper and lower limits of CANl  are expressed by u
CANl  and l

CANl , 

respectively. A sketch showing the geometrical elements of the management problem is 

given in Figure 2.4.  
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Figure 2.4 A sketch of the geometrical elements of the management problem 

 

Eqns. 2.12 to 2.21 is a general formulation of all the elements that will be covered in this 

thesis. Not all of them will be included at the same time in a single optimization case. For 

instance, in an optimization problem that includes extraction elements only, the second and 
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third terms of right hand side of Eqn. 2.12 and Eqns. from 2.15 to 2.21 will drop from the 

optimization formulation.  

 

Since objective function and the constraints are linear functions of decision variables (i.e. 

discharge rates), the problem (Eqns. 2.12 to 2.21) is a linear optimization problem. φ values 

show linear response to stress and response matrix approach can be used to transform the 

management problem into LP or MIP (MIP is used if the constraints related to locations 

(Eqns. 2.17 to 2.21) are involved in the management problem). Resulting LP or MIP, then 

can be solved by using a linear optimization code (Demirbas, 2003).  

 

In this study, the solution to the defined management problem is found by using heuristic 

algorithm methods, GA and SA. The results, whenever applicable, are compared with the 

results of  LP or MIP.   

 

For the solution with LP and MIP, MODMAN (Greenwald, 1998) is utilized. MODMAN 

repeatedly calls MODFLOW to assemble the response matrix coefficients. MODFLOW 

provides the numerical solution of φ distribution, for which the governing equations are 

identical to a hypothetical confined aquifer. Finally, the optimization code LINDO (Lindo 

Systems) is used for the solution of LP or MIP.  

 

The defined optimization problem is a constrained problem. In order to deal with constraints 

in GA, a number of methods are reported in literature. Davis and Steenstrup (1987) 

summarized three of these methods; imposing great penalties for constraint violation, 

imposing moderate penalties, and creating decoders that creates only feasible solutions. 

Davis and Steenstrup (1987) reported that imposing great penalties on individuals that 

violate constraints omits the infeasible solutions from the optimization process and if the 

search space contains many individuals violating the constraints, then GA will spend most of 

its time on these individuals and if any feasible solution is found it may dominate the 

population resulting in a premature convergence. Davis and Steenstrup also reported if the 

last method is used, the resulting problem will be very computer intensive and also hard to 

implement.  
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In this study, penalty method is used to convert the constrained problem into an 

unconstrained problem and moderate penalties (i.e. increasing the penalty till no constraint 

violation in the optimum solution) are used for constraint violations. Since the upper and 

lower bounds of the decision variables (Eqns. 2.14 to 2.21) are entered as input file to the 

genetic code, only constraints related to state variables (Eqn. 2.13) are added to the objective 

function as penalty term. The penalty is proportional to the degree of violation of the 

constraints. 

 

Unconstrained objective function, 
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where, 

c is a problem dependent penalty constant.  

 
 
2.2.1 Genetic Algorithm 
 
GAs are powerful search and optimization technique for optimal solutions when 

conventional techniques are not adequate. They are successful in finding optimal or near 

optimal solutions for highly convex and nonlinear problems (Goldberg, 1989). In literature, 

increasing number of applications exist in wide range of areas. General mechanisms are 

based on biological evolution by natural selection, which was first discovered by Charles 

Darwin in 1851. The algorithm as known today is first developed by Holland (1975). 

Although initial application is used for the simulation of an adaptive system, not long time 

passed since GAs are begun to be utilized as function optimizers.  In GA, decision variables 

are coded as strings of binary digits which are called “chromosome” or “individual”. Each 

set of strings (individuals) corresponds to a solution in the problem and each of those 

individuals has a degree of success according to the objective function, which is called 

fitness. Population composed of many individuals evolves under specified selection rules 

that maximize their fitness. 

 

Mainly three mechanisms; selection, crossover and mutation drives the new generations to 

the optimal or near optimal solution. Selection is done based on the fitness of the 

chromosomes which may be defined as the rank of the objective function. 
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Flow chart of simple GA (Figure 2.5) can be given as; 

1. A number of individuals (population number) are randomly generated as initial 

population.  

 

2. Fitness of each individual is evaluated. Fitness is the numerical representation of objective 

function plus a degree of penalty if any constraint is violated. In selection of the new 

generation, the individuals with higher fitness will have more chance to be selected as 

mating individuals. Sometimes an elitist strategy is utilized; where the individual with 

highest fitness is directly pass to the next iteration.  

 

3. After mating individuals are selected, whether they will undergo crossover or not is 

decided with a probability. Random crossover locations on each string pairs are chosen. 

Then, information is exchanged between two strings starting from the selected location 

(One-point crossover).  

 

4. Mutation operator is considered for each bit of the string with a chosen probability. If the 

probability occurs, that specific bit is randomly flipped. While crossover exchange the 

information that is already in genetic pool, mutation operator may add new information to  

genetic diversity. Mutation is generally accepted as an insurance policy against the 

premature loss of chromosomes in generations (Goldberg 1989). 

 

5. Step 2 to 5 is repeated for a number of generations till a convergence criteria is met (i.e. 

till maximum number of generations, G is reached). Number of current generation is denoted 

by g. The individual with the best fitness is the optimal or near optimal solution. 
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Figure 2.5 Flow chart of simple genetic algorithm 

 
 

GAs usually require several objective function evaluations. If the objective function requires 

the solution of a numerical model, then with dense discretization and numerous input 

variables, obtaining near optimal solutions can take quiet some time. In order to achieve 

moderate results in reasonable time, modifications should be made in the model and/or 

number of function evaluations should be decreased by improving the algorithm (Coley, 

1999).  

 

In the following sections, equations of initialization of the algorithm, how to handle 

problems with more than one decision variable, encoding and decoding of the solution 

vectors will be covered. Then, selection, crossover and mutation types will be explained with 

samples. Elitism, which is a mechanism to guarantee the selection of the best individual for 

the next generation will be discussed.   
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2.2.1.1 Initialization of the Algorithm 
 
GA starts with the random generation of the binary coded individuals. The number of 

individuals in a population is called population number and is denoted by P. Each individual 

represents a specific set of decision variables string length of which is decided by the user.  

Total string length is simply found by Eqn. 2.23 (Michalewicz, 1996). 

∑
=

=
η

1i

ilL  (2.23)

where, 

L is the total string length of individual, 

η  is the number of decision variables, 

li is the string length of ith decision variable. 

 

The binary representation of an individual is the concatenation of the binary representations 

of each decision variables (Eqn. 2.24). 

 

ηυ zzzi .......21=  (2.24)

where, 

iυ  is the binary representation of  ith individual in a population, 

zj is the binary representation of jth decision variable (j=1,2…...η ). 

 

Table 2.1 An example of an initially generated population with P=5,η =2, l1=6, l2=4 and  
L=10 = (l1+ l2) 

 

Binary  
Representation  

of the First  
Decision Variable 

Binary 
 Representation   
of the Second 

DecisionVariable 
Binary Representation  

of the Individual 
101110 1001 1011101001 
101110 1000 1011101000 
010011 0110 0100110110 
000100 1010 0001001010 
110100 0111 1101000111 
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2.2.1.2 Selection and Decoding of the Variables 
 
To evaluate the success of a solution that an individual represent, set of decision variables 

for the specific individual should be decoded from their binary form and used in estimation 

of the objective function. Binary coded decision variables are first converted to their base 10 

values and then converted to their real values. The base 10 value of the variables are 

calculated by Eqn. 2.25. 
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where, 

ri  is the base 10 value of ith
 variable, 

i
jB   is the value of jth

 bit of the ith variable. 

 

The real values of the individuals are calculated by using the transformation formulation 

given by Eqn. 2.26. The value depends both on boundary values and the base 10 value of the 

encoded variables.  
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where,  

ix  is the ith decision variable, 

l
ix  is the lower bound for variable xi, 

u
ix  is the upper bound for variable xi. 

 

When all set of variables are decoded to their real values, objective function for each 

individual in the population can be evaluated by using Eqn. 2.27. 

 ),,.........,( 11 ηxxxffi =  i=1.....P (2.27)

where, 

fi is the fitness of the ith
 individual. 
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Two types of selection are covered. First, the equations of fitness proportionate selection will 

be given and linear scaling, which is an improvement for fitness proportionate selection, will 

be explained. Then, a different selection mechanism, tournament selection will be described. 

 

2.2.1.2.1 Fitness Proportionate Selection 
 
Mating individuals are selected in probabilities proportionate to their fitnesses. The chance 

of selection of an individual is equal to the ratio of the fitness of that individual to the sum of 

all fitnesses in the population (Eqn. 2.28).  
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iisumii ffff
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//τ  (2.28)

where, 

iτ  is the selection probability for the ith
 individual, 

fsum is the sum of all fitnesses in a population. 

 

During selection, better than average individuals will get exponentially more chance (chance 

to be selected more than once), average individuals will get even chance and worse than 

average individuals will have less chance to be selected for the next generation (Goldberg, 

1989).  

 

Linear Scaling 

Early in a GA run, few individuals with very high fitness with respect to others will have 

much more chance to be selected. These individuals can easily dominate the population 

resulting a premature convergence. Also later in optimization, when the fitness values do not 

show much variation, the algorithm may have difficulties in selecting between good and 

better individuals. Instead, selection process approaches to random selection. Scaling the 

fitness of population by pivoting them about the average population fitness may help for 

both situations (Goldberg, 1989).  

For linear scaling; 

bfaf i
scal

i += .  (2.29)

where, 

scal

if is the scaled fitness of ith individual in a population. 
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It is assumed that average fitness of the population remains unchanged after scaling; 

avg
scal

avg ff =  (2.30)

where, 

favg is the average fitness of the population, 

scal

avgf is the average fitness of the scaled population. 

 

The scaled fitness of the best individual is assumed to be average fitness times scaling 

constant; 

avgscal
scal

best ff .λ=  (2.31)

where, 

scal

bestf is the scaled fitness of the best individual,  

scalλ  is the scaling constant. 

From Eqn. 2.29, 

i
scal

i fafb .−=  (2.32)

 

If Eqn. 2.32 is added up for all the individuals in the population (i.e. i=1,2.....P), the 

following equation is obtained; 
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Using Eqn. 2.30, Eqn. 2.34 becomes 

avgavgavg fafafb ).1(. −=−=  (2.35)

 

Inserting Eqn. 2.35 into Eqn. 2.29 gives 

avgi
scal

i fafaf ).1(. −+=  (2.36)

For the best fitness in a population, fbest the above equation takes the form 

avgbest
scal

best fafaf ).1(. −+=  (2.37)
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Then inserting Eqn. 2.31 into 2.37 becomes 

avgbestavgscal fafaf ).1(.. −+=λ  (2.38)

and 
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Inserting Eqns. 2.35 and 2.39 into Eqn. 2.29, fitness of all the individuals can be scaled 

according to the following equation. 
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Negative values may arise after scaling if very small fitness values with respect to the 

average fitness population occur (Goldberg, 1989). Fitness values should be positive in order 

that operators function properly (i.e. selection). In this study, negative values after scaling 

are set to zero.  

 
2.2.1.2.2 Tournament Selection 
 

In tournament selection, two or higher number of individuals are selected randomly and the 

individual with best fitness is selected for mating. Tournament selection is reported to be 

more effective when fitness surface does not show much variation (Coley, 1999). In this 

study, number of individuals in a tournament is taken as two. 

 

Both fitness proportionate and tournament selection is repeated till required number of 

individuals are selected for mating. At the end of selection, some individuals may have 

chance to be selected more than once and some may have no chance to be selected at all.   

 

2.2.1.3 Elitism 
 

In fitness proportionate selection, best individual in a population has the highest probability 

to be selected for mating (Eqn. 2.28). However due to stochastic effects, there is no 

guarantee for it to be selected both for fitness proportionate selection and tournament 

selection. Sometimes in GA, elitist strategy is utilized, so that the best individual of current 

population is carried directly to the next generation. Usual application is not to apply 
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mutation or crossover to the best individual (Goldberg, 1989). Instead, individual with best 

fitness takes the place of the individual with the minimum fitness in new generated 

population. Elitist strategy is reported to improve efficiency of algorithm for some problems. 

However, in some cases it can put much pressure on selection with the result of early 

convergence to a local optimum (Coley, 1999).  

 

After the selection process, the mates are passed to crossover and mutation, in turn.  With the 

completion of these two processes, first generation of GA is complete. 

 

2.2.1.4 Crossover 
 

Whether crossover will be applied to chosen mates or not is decided by the crossover 

constant, pc. pc is usually a real number decided between 0 and 1. Three different types of 

crossover is utilized; one point, two point and uniform crossover. 

 

One point crossover 

The point of crossover is also randomly chosen. The bits after the chosen point are 

interchanged between the mates. If there is no crossover, the mates are left as is. An example 

is given in Table 2.2 where the bits after 4th bit (shown in bold) are interchanged. 

 

Table 2.2 One point crossover example 

 
 Binary Coding of  

Mating Individuals  
10101011010011 Before Crossover 
11110010111010 
10100010111010 

After Crossover 
11111011010011 

 
 
 
Two point crossover 

Two random points on individuals are chosen. The bits between those points are 

interchanged. The other bits are left as is. An example is given in Table 2.3 where the bits 

between 3th bit and 11th bit (shown in bold) are interchanged.   
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Table 2.3 Two point crossover example  

 Binary Coding of  
Mating Individuals  
10101010110011 Before Crossover 
11110011011010 
10110011010011 

After Crossover 
11101010111010 

 
 
Uniform Crossover 

In uniform crossover, whether a bit is interchanged between mating individuals is decided 

randomly. Uniform crossover is accepted as the general form of point crossovers. An 

example is given in Table 2.4 where interchanged bits are shown in bold. 

 

Table 2.4 Uniform crossover example  

 
 Binary Coding of  

Mating Individuals  
10101011010011 Before Crossover 
11110010111010 
11100010110011 

After Crossover 
10111011011010 

 
 
 
2.2.1.5 Mutation 
 

The next step of GA after crossover is mutation. Mated individuals (whether they undergo 

crossover or not) are then passed to mutation process. For each bit, it is decided whether 

there will be a mutation or not. If mutation occurs, the value of the bit is simply flipped. The 

probability of mutation is set with mutation number, pm which is decided betwen 0 and 1. An 

example to mutation is given in Table 2.5, where the bits that undergo mutation are shown in 

bold. 

 

Table 2.5 Mutation operator example  

 Binary Coding of Individual 
Before Mutation  1010001000010111000001000000 
After Mutation 1010101000010111010001000000 
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Uniform Mutation: 

The probability of mutation for each bit in an individual is same for normal mutation. If 

mutation occurs in lower bits, the change in the value of individual is small relative to a 

mutation in higher bits. Normal mutation can be adjusted so that lower bits will have more 

chance of mutation while higher bits will have less chance (Eqn. 2.41).  

i
m

i
m pp 2/=  (2.41)

where, 
i
mp is the probability of mutation at ith bit for uniform mutation. 

With uniform mutation, for every bit, average change in the value of the individual due to 

mutation will be equal to each other.  

 

After mutation, one generation of GA is complete. The algorithm starts all over again from 

the selection process (Figure 2.5). After a predefined number of generations, the algorithms 

is stopped and the individual with the best fitness till current generation (i.e. g=G) is taken as 

the best optimal result.  

),,.........,( ****

21 ηxxxffbest =  (2.42)

 

where, 

*
bestf is the best fitness till current generation, 

f
 
is the objective function, 

*
ix is the ith decision variable of the best fitness till current generation.  

 
2.2.2 Simulated Annealing 
 
Simulated annealing is a global optimization method based on the analogy of annealing and 

cooling of metals. When cooling metals, the molecules move very rapidly while temperature 

is high and move slowly when cooled down (Van Laarhoven and Aarts, 1987). SA advances 

point by point and each time comparing the new point with the early accepted point. The 

point here refers to set of decision variables that corresponds to a unique solution to the 

problem (i.e X=(x1,x2,......xη); where X is a solution vector).  The improvement of solution is 

achieved by generating random small placements in an iterative fashion (Van Laarhoven and 

Aarts, 1987). Starting from a random initial point in search space, the value of the objective 

function is calculated and evaluated for each new displacement. If there is an improvement, 
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the solution is automatically accepted. If not, it is accepted with a probability. The criterion 

is called Metropolis Criteria and for a minimization problem, it is given in Eqn. 2.43. 

T
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ep

)( −−

=  (2.43)

where, 

pacp is the probability of acceptance of the new solution, 

fnew is the cost of the new solution, 

facp is the cost of the previously accepted solution, 

T is a control parameter. 

 

As seen in Eqn. 2.43, control parameter T, which refers to the temperature in the physical 

process has an influence on the probability of the acceptance of a solution. An initial 

temperature should be chosen to permit a high rate of transition acceptance, which means a 

broad covering of the solution space. As the procedure continues, the temperature is lowered 

and the rate of acceptance will decrease.  

 

The structure of the SA algorithms may vary. However, all of them have a sequence of 

Metropolis algorithms (Markov chains) that progress at a sequence of decreasing control 

parameter, T (Van Laarhoven and Aarts, 1987). Basic parameters related to SA are as 

follows; i) Initial value of control parameter, T  ii) Final value of T for convergence, iii) 

Length of Markov chains and iv) A rule for the change of the control parameter T. The 

choices related to the above parameters are called as “Cooling Schedule” and greatly affects 

the performance of the algorithm (Van Laarhoven and Aarts, 1987). General flowchart of a 

traditional SA algorithm is shown in Figure 2.6. 

 
In traditional gradient based methods, the success of the solution depends on the starting 

point. The method may stuck in a local optimum according to the initial point chosen. GA 

intends to surpass this bottleneck by using population based optimization and operators like 

crossover and mutation.  On the other hand, SA, being a point based search method, intends 

to escape the local minima by not only accepting the better results as in gradient methods, 

but also the worse ones with some probability. Similar to GA, no requirement for derivatives 

and easy implementation are the main advantages of SA. 
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Figure 2.6 General flowchart of SA 
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Algorithm as derived by Kirkpatrick (1983) was for the solution of a combinatorial problem. 

Combinatorial problems are defined as the optimization of the arrangement, grouping, 

ordering and selection of discrete objects usually finite in number (Lawler, 1976). An 

example to the combinatorial optimization is the famous benchmark problem, traveling 

salesman. In the problem, minimum traveling distance is searched for a salesman who has to 

visit a number of cities in a row. For optimization with continuous variables, a set of real 

values that are usually constrained in a specified interval are utilized. Optimization with 

continous and combinatorial decision variables are classified in two different optimization 

groups and the methods for their solution are reported to be quite divergent (Papadimitriou 

and Steiglitz, 1982). 

 

The first implementations of SA involving continuous decision variables are introduced by 

Vanderbilt and Louie (1984), Bohachevsky et al. (1986) and Corona et al. (1987). Among 

these studies, Goffe et al. (1992)  defined the implementation of Corona et al. (1987) as the 

best combination of ease of use and robustness. SA code developed here is based on the 

algorithm introduced by Corona et al. (1987) and later used by Goffe et al. (1992). 

 

The algorithm starts from a random initial point, Xo. The value of the objective function at 

the initial point, f(Xo) is evaluated. Initial point is the first accepted point, Xacp for SA (i.e 

Xacp= Xo and  f(Xacp) = f(Xo)) The new point, Xnew is found by making a perturbation to a 

single decision variable in the solution, in turn (Eqn. 2.44). The remaining variables are left 

as is. The initial value of the perturbation can be defined by the user according to the range 

of decision variables.  

 

 ii
new
i vRxx .+=  i=1,2…..η

 
(2.44)

where, 

new
ix  is the new value of the ith decision variable, 

R is a random number between 0 and 1,  

vi is step length for ith decision variable.   

 

If the cost of the new point, f(Xnew) is better than the previously accepted solution  then the 

new point is accepted. (Xacp= Xnew and f(Xacp) = f(Xnew)). If the new point is worse than the 

previous solution, it is accepted with a probability given by Metropolis criteria (Eqn. 2.43). 
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As can be seen from Eqn. 2.43, the acceptance probability depends on parameter T and the 

difference between previous and the new solution. Taking T as constant, if the cost 

difference between two solutions is high, the probability of acceptance decreases. T is chosen 

so that early in a run almost all points are accepted. This enables a coarse search of the 

solution area. Later in a run as T decreases, less number of worse solutions are accepted to 

direct the solution towards convergence.  

 

After perturbation for each decision variable and corresponding cost functions are evaluated, 

one whole cycle is completed. The process is repeated for a predefined number of cycles, Ns. 

Again, cost of each new point is compared with the cost of the previously accepted solution.  

During this loop, step lengths are constant (howevever, perturbations change according to 

the random number in Eqn. 2.44). The number of acceptance for each decision variable, 

accp
iκ  is recorded. After Ns cycle, step lengths for each decision variable are updated using 

the ratio of accp
iκ  to the total number of evaluations for each decision variable, which is Ns. 

If this ratio is greater than 0.6, the step lengths are enlarged and if they are less than 0.4 they 

are reduced according to the Eqns. 2.45 and 2.46.  In between, step lengths remain same. 
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where, 

ω is a constant parameter usually chosen between  1 and 2. 

 

The new points are found by updating the decision variables one at a time using Eqn. 2.44. 

The loop is repeated for Nt times. After Nt×Ns×n cycles (i.e changing the perturbation Nt 

times for each decision variable), the value of control parameter T is updated according to 

the following equation;   

 

TtT const .=  (2.47)

where, 

tconst is usually a constant value between 0 and 1 and usually taken close to 1.  
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Then, with the newly found T and the last perturbations found in previous iterations, it starts 

all over again. But this time, optimum solution vector till that time, Xopt is taken as the initial 

solution for the new loops ((Xacp= Xopt and f(Xacp) = f(Xopt)). The algorithm can be stopped 

after a predefined number of T adjustments or after a number of T adjustments where the 

cost value does not change greater than a percent defined by the user. The flowchart of the 

algorithm is given in Figure 2.7. 

 

The algorithm as explained above is modified so that T values are updated together with the 

step-sizes so that the very outer loop has dropped from the algorithm. This way number of 

function evaluations decreased in a significant amount. The best values found by the regular 

and modified algorithm code was identical; thus, modified algorithm is used in rest of the 

study. A code is developed in Fortran 90 programming language based on the above 

assumptions and algorithm as explained in Section 2.2.2. Annealing parameters are chosen 

based on suggestions given by Corona et al. (1987), Goffe et al. (1992) and numerous runs 

with the code. The parameter set used in the study is as follows, Ns=30, Nt=50, ω=2 and 

initial T value is 1000 and tconst=0.85. 
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Figure 2.7 Flowchart of continuous SA 
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CHAPTER 3 
 

 

3. GA CODE 
 
 
 
 
3.1 Introduction 

 

The code developed is written in Fortran 90 programming language. The code basically 

consists of a main program, named “Main” and a subroutine, named “Function”. Main, as 

indicated by the name, includes the main GA and operators; selection, crossover and 

mutation. Function includes the commands required to estimate the objective function. The 

objective function is calculated by calling a simulation model like MODFLOW and running 

it for each set of solution vectors. 

 

Using the code, one-point, two-point or uniform type of crossover can be performed. 

Selection types include fitness proportionate selection (with or without scaling) and 

tournament selection. Two different types of mutation is possible; a classical bitwise 

mutation with probabilities of mutation for each bit are equal and so called uniform mutation 

with probabilities for each bit are modified so that the mean change in the value of decision 

variable remains the same.  Elitism can be applied to bring the best individual in current 

generation to the next generation without visiting selection. 

 

In this study, since computational time is expected to be dominated by the time spent for the 

calculation of the objective function, the code structure is kept as simple as possible to 

enable easy modification. Special care is taken to minimize the time spent for calling the 

numerical model and storing its outputs. 
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3.1.1 Main Program and Initialization 

 
Main program starts with the statement of constants and variables. Types of different main 

operators (i.e. type of crossover, mutation or selection, etc.) and additional operators like 

scaling and elitism are all selected and read through ‘input #.txt’ file. The values of different 

GA parameters (i.e. crossover constant, mutation constant, population number, generation 

number, number of decision variables, string length of each variable, boundary of variables 

etc.) are also entered through the “input#.txt” file.  

 

The user is free to execute several GA runs with the same input file (i.e. input 1.txt). By this 

way stochastic effects resulted from random parameters can be tested. In execution of GA, 

the seed number determines the set of random numbers generated. For the same seed number 

and input values, GA will find the exact same result. For multiple runs, program 

automatically updates the seed number, every time a run is complete.  

 

If required, different input files can be built for multiple runs. The files should be created 

starting from input 1.txt (ie. input 1.txt, input 2.txt .... input n.txt). The number of input files 

should be stated in the main program.  

 

Initial population is built by randomly assigning 1 and 0 to bits representing an individual. A 

random number between 0 and 1 which is denoted by R  is thrown and if R comes out to be 

greater than 0.5, the bit takes the value of 1 and else it takes the value of zero. The 

individuals are stored in two dimensional arrays. First dimension of the array defines the 

individual’s number and the second dimension defines the value of the corresponding bit. 

The length of string for each variable can be different and set by the user in input file. The 

procedure is repeated for each member of the population. Initialization code is shown in 

Figure 3.1. 
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    DO i=1,pop_num,1    

 
! The procedure is repeated for each member of the 

population. 
   DO j=1,totstr_length,1  

 IF(rand().ge.0.5) then   
  birey(i,j)=1. 

! If random number thrown is greater than 0.5, the bit 

takes the value of 1. 

 ELSE  
  birey(i,j)=0. 

! If random number thrown is less than 0.5, the bit 

takes the value of 0. 
 END IF 
 END DO 

 

 
    END DO 

 

Figure 3.1 Initialization code 

 
3.1.2 Decoding the Variables and Calculating Fitness  
 
The decision variables are first decoded to the base 10 values (Eqn. 2.25) and then to the real 

values (Eqn. 2.26). The decoded values are then passed to “Function” subroutine and used in 

estimating the objective function. The code related to decoding of the variables is shown in 

Figure 3.2. The objective function is calculated by calling the numerical model; 

MODFLOW-2000 (Harbaugh et al. 2000). The code waits for the execution of MODFLOW-

2000, since the outputs are used in estimating the objective function. A sample of the 

function subroutine is shown in Figure 3.3. 

 
 DO k2=1,x_num 
 bi_constant(k2)=(up_bound(k2)-                 
            low_bound(k2))/(2**str_length(k2)-1) 
 totstr_length=str_length(k2)+totstr_length 
 END DO 
 

! “bi-constant” values are calculated at the 

beginning of “Main” program, after the 

“input.txt” file is read. They are used in 

calculating the value of decision variables 

from their base 10 correspondence.  

 

 DO 600 p=1,pop_num,1 
 

! The procedure is repeated for each member 

of the population. 

 top_stra=1 
 top_strb=0  
 
 Do xd=1,x_num 
 toplam(xd)=0 
 top_strb=top_strb+str_length(xd) 
 

 
 

 

 

 

 

 DO j=top_stra,top_strb  
 toplam(xd)=toplam(xd)+ 
 birey(p,j)*2**(top_strb-j) 
 END DO 
 

!First, integer values of the binary coded 

decision variables are calculated 

 

 

 x(p,xd)=bi_constant(xd)*toplam(xd) 
 +low_bound(xd) 
 top_stra=top_stra+str_length(xd)    
 END DO 
 
 600 END DO 

!Then, real value of the decision variables 

are calculated. 

 

 
Figure 3.2 Decoding of the variables 
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result = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam') 
 

! Numerical model is run for each individual 

(i.e. MODFLOW executable file “mf2k.exe” 

with the MODLFLOW list file, 

101_inj03.nam. The “*.nam” file lists the 

packages and input files that is required to 

run MODFLOW).  The outputs of the model 

is required for the calculation of violation of 

constraints.  

 

 OPEN (UNIT=8,FILE="101_inj03.hed") 
 
 DO I=1,30 
 READ(8,*) (HEADS(I,Z),Z=1,60) 
 END DO 
 
 CLOSE (UNIT=8,STATUS='KEEP') 
 

! Output file of the numerical model is read 

and required parameters (i.e. head values 

which represent the potential values in the 

model) are stored in two dimensional 

array(30 is the number of rows while 60 is 

the number of columns in MODFLOW 

model). 

 

 cp(1)=(8.0078-heads(15,23)) 
 cp(2)=(8.0078-heads(9,29)) 
 cp(3)=(8.0078-heads(21,34)) 
 cp(4)=(8.0078-heads(6,40)) 
 cp(5)=(8.0078-heads(15,42)) 
 

!Calculation of penalty requires the 

calculation of the degree of the violation for 

constraints (i.e. the difference between the 

potential values at the control points and the 

problem specific potential value of 8.0078, 

which represents toe location))  

 

 g=0 ! Penalty value is initially set to 0. 

 

 DO I=1,5 
 g = g+max(0.0,cp(I))*max(0.0,cp(I)) 
 END DO 
  
 
 

!The penalty for each constraint is summed 

up. The values are squared to improve the 

efficiency of the optimization process. 

 DO I=1,A(1)-3 
  f1=f1-Q(I)   
  f2=0 
 END DO 
 
               cost = f1 - penalty_coef*g 
 
 

!Objective function is calculated. 

Figure 3.3 Part of the “Function” subroutine that calls “MODFLOW-2000” and calculates 
objective function 

 
Scaling is used to help selection when the fitness values do not show much variation or to 

prevent the domination of few individuals when the fitness of these individuals are much 

higher than the others. Scaling is used for fitness proportionate selection only. Since the 

order of fitnesses will be unchanged, scaling will have no effect on tournament selection. 

Linear scaling code is shown in Figure 3.4. 
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fitness_ort=fitness_sum(pop_num)/(pop_num-numfit_zero)  
 

!First, the average fitness of the population is 

calculated. Since zero fitness individuals are 

not scaled, they would not be included in 

scaling calculations. 
 fitness_sum(1)=0  

 a_constant=(sca_constant-
1)*fitness_ort/(fitness_eni-fitness_ort) 

!Scaling constant, a is calculated. 

 b_constant=(1-a_constant)*fitness_ort 
 

!Scaling constant, b is calculated. 

 DO p=1,pop_num 
 fitness(p)=a_constant*fitness(p)+b_constant 
 if (fitness(p).le.0) then 
 fitness(p)=0 
 end if 
 END DO 

!Fitness values of all  individuals are scaled.  

 
 DO p=1,pop_num-1,1 
 fitness_sum(p+1)=fitness_sum(p)+fitness(p+1) 
 END DO 
 

 

Figure 3.4 Linear scaling code  

 
3.1.3 Selection 
 
For fitness proportionate selection, first a a random number is thrown between zero and total 

sum of the fitnesses, fsum. Fittnes values are added one by one until the sum is greater than or 

equal to the random number chosen. The last individual added is chosen as the first parent 

that will pass to crossover. The other parent is chosen in the same way. Code for fitness 

proportionate selection is shown in Figure 3.5.  

 
               sel_num1=rand()*fitness_sum(pop_num) 
  k=1 
 

! A random number is thrown between 0 and 

total sum of the fitnesses. 

 
  DO WHILE(sel_num1.ge.fitness_sum(k)) 
     k=k+1 
  END DO 
 

! First parent is selected. 

 

 

 

  sel_int1=k  

               sel_num2=rand()*fitness_sum(pop_num) 
  k=1 
 

! The above procedure is repeated for the 

second parent. 

  DO WHILE(sel_num1.ge.fitness_sum(k)) 
     k=k+1 
  END DO 
 

 

 sel_int1=k  

Figure 3.5 Code of fitness proportionate selection  
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For tournament selection, two individuals are selected randomly. Fitness values are 

compared and fitter individual passes to crossover (Figure 3.6) 

 

sel_num1=rand()*pop_num 
sel_num2=rand()*pop_num 
sel_intara1=sel_num1+1 
sel_intara2=sel_num2+1 
 

! Two individuals are  randomly  selected for 

tournament process. 

 

 

 

 
if (fitness(sel_intara1).gt.fitness(sel_intara2)) then 
 
 sel_int1=sel_intara1 
 
else 
 
 sel_int1=sel_intara2 
 
end if 
 

! Fitter individual is passed to crossover. 

sel_num1=rand()*pop_num 
sel_num2=rand()*pop_num 
sel_intara1=sel_num1+1 
sel_intara2=sel_num2+1 
 
if (fitness(sel_intara1).gt.fitness(sel_intara2)) then 
 
 sel_int2=sel_intara1 
 
else 
 
 sel_int2=sel_intara2 
 
end if 

! The procedure is repeated for the selection of 

second individual 

 

Figure 3.6 Code of tournament selection 
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3.1.4 Crossover 
 
For each pair selected for mating, R, a random number between 0 and 1, is thrown. If R<pc, 

crossover is performed. The point of crossover is set by throwing the dice once again. The 

bits after the chosen point are interchanged between the mates. If there is no crossover, the 

mates are left as is (Figure 3.7). 

 

r=rand() 
 

!First, a random number is thrown between 0 

and 1. 

  
 IF (r.le.x_over) THEN   
  
 

!If random number is less than or equal to 

crossover constant then crossover is 

performed. 

  rnew=rand()   
  x_overpt=(totstr_length-1)*rnew+1.  
 

!A new number is thrown to estimate the point 

of crossover. 

  DO c=1,x_overpt,1 
  Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
  Birey_ara(2*p,c)=Birey(sel_int2,c) 
  END DO 
 

!The bits till the crossover point is kept same.  

 

  DO c=x_overpt+1,totstr_length,1 
  Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
  Birey_ara(2*p,c)=Birey(sel_int1,c) 
  END DO 

! The bits after the point are interchanged 

between parents. 

 

 
 ELSE 
  x_overpt=0 
  DO c=1,totstr_length,1 
  Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
  Birey_ara(2*p,c)=Birey(sel_int2,c) 
  END DO  

 

! If there is no crossover, the parents are left 

without adjustment.  

 

 

  
 ENDIF 

 

Figure 3.7 The code that performs one-point crossover 

 
For two point crossover, R is thrown twice to choose two different points on the strings. The 

bits between chosen points are interchanged between mates (Figure 3.8). 
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r=rand() 
 

!  A random number is thrown between 0 and 1. 

IF (r.le.x_over) THEN    ! If random number is less than or equal to 

crossover constant then crossover is performed. 

 rnew=rand() 
 rnew2=rand() 

! Two different random numbers are thrown to 

estimate the two points of crossover. 

 

 if (rnew.gt.rnew2) then 
 rara=rnew2 
 rnew2=rnew 
 rnew=rara 
 end if 
 

! Random numbers are put into order. 

 

 

 x_overpt=(totstr_length-1)*rnew+1.  
 x_overpt2=(totstr_length-1)*rnew2+1. 
  

! The points of crossover are set. 

 

 DO c=1,x_overpt,1 
 Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
 Birey_ara(2*p,c)=Birey(sel_int2,c) 
 END DO 

! The bits till the first point of crossover are kept 

same.  

 

 DO c=x_overpt+1,x_overpt2,1 
 Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
 Birey_ara(2*p,c)=Birey(sel_int1,c) 
 END DO 
 

!The bits from the first to the second  point of 

crossover are interchanged.  

 
 
 

 DO c=x_overpt2+1,totstr_length 
 Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
 Birey_ara(2*p,c)=Birey(sel_int2,c) 
 END DO 
 

! The bits after the second  point of crossover 

are kept same.  

 
 

ELSE 
 x_overpt=0 
 x_overpt2=0 
 rnew=0 
 rnew2=0 
 

! If there is no crossover, the parents are left 

without adjustment. 
 
 

 DO c=1,totstr_length,1 
 Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
 Birey_ara(2*p,c)=Birey(sel_int2,c) 
 END DO      
  
END IF 

 

Figure 3.8 The code that performs two-point crossover 

 
For uniform crossover, a random dummy individual is generated. The string length of this 

dummy individual is equal to the string length of the individuals in population. For each bit 

of the mating individuals, corresponding value of the dummy variable is inspected. If the 

value is 1, the bits are interchanged, otherwise they are left as is. The code that performs 

uniform crossover is shown in Figure 3.9. 
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r=rand() 
 

! A random number is thrown between 0 and 1. 

IF (r.le.x_over) THEN    
 

! If the random number is less than or equal to 

crossover constant than crossover is performed. 

 

 DO j=1,totstr_length,1 
 IF(rand().ge.0.5) then   
 uni_xover(j)=1. 
 ELSE  
 uni_xover(j)=0. 
 END IF 
 END DO 
 

!Random dummy individual is generated. 

 

 DO c=1,totstr_length,1 
 

!For each bit, whether there will be crossover or 

not is inspected. 

 

 if (uni_xover(c).eq.1) then !make xover 
 Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
 Birey_ara(2*p,c)=Birey(sel_int1,c)  
 

!If the bit value of dummy individual is 1, the 

corresponding bits in mating individuals are 

interchanged. 

 else if (uni_xover(c).eq.0) then 
 Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
 Birey_ara(2*p,c)=Birey(sel_int2,c) 

!Else, they are left as is.  

 end if 
 
 END DO 

 

ELSE 
      x_overpt=0 
 DO c=1,totstr_length,1 
 Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
 Birey_ara(2*p,c)=Birey(sel_int2,c) 
 END DO 
 

! If there is no crossover, the parents are left 

without adjustment. 

ENDIF  

Figure 3.9 The code that performs uniform crossover. 

 
 
3.1.5 Mutation 
 
By moving bit by bit through strings, it is decided whether there will be a mutation or not. 

For each bit, R is thrown and if R<pm, the bit is changed (i.e. if it is one, it becomes 0, else it 

becomes 1). Otherwise, it remains unchanged (Figure 3.10). 
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DO 400 ix=1,pop_num,1 
 

! Mutation procedure is repeated for each 

individual. 

  mut_adet=0 ! Number of mutations occurred are stored for 

inspection. 

  DO jx=1,totstr_length,1 
 

 

 

    rastgele=rand() 
  
    if(rastgele.le.mut_num) then  

! If random number is less than or equal to 

mutation number, then mutation is performed.  

 

                           if (birey(ix,jx).EQ.1) then  
   birey_ara(ix,jx)=0 
   mut_adet=mut_adet+1 
               else  
   birey_ara(ix,jx)=1 
   mut_adet=mut_adet+1 
               endif 

! The bits are flipped. 

 

 

 

 

 

 

   END IF       
  END DO 
    400 END DO 

 

Figure 3.10 The code that performs mutation 

 

In uniform mutation, the probability of mutation in a bit depends on its location. The 

individuals are mutated according to Eqn. 2.41. Code of uniform mutation is shown in Figure 

3.11. 

 

DO 700 ix=1,pop_num,1 ! Mutation procedure is repeated for each 

individual. 

 mut_adet=0 ! Number of mutations occured is stored for 

inspection. 

 top_stra=1 
 top_strb=0 
 DO xd=1,x_num 
            top_strb=top_strb+str_length(xd) 
 DO jx=top_stra,top_strb  

 

 

 

 rastgele=rand()  

 IF (rastgele.le.mut_num/(2**(top_strb-
 jx+1))) THEN  
   

! If random number is less than or equal to 

modified mutation number, then mutation is 

performed.  

 IF (birey(ix,jx).EQ.1) THEN  
 birey_ara(ix,jx)=0 
 mut_adet=mut_adet+1 
 ELSE 
 birey_ara(ix,jx)=1 
 mut_adet=mut_adet+1 

! The bits are flipped. 

 

 END IF 
     END IF  
            END DO 
 top_stra=top_stra+str_length(xd) 
 END DO 
700  END DO 

 

Figure 3.11 The code that performs uniform mutation 
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3.1.6 Output Files 
 
To store the data related to the current run and to inspect the code’s efficiency, different 

output files are created. The files are stored in a subdirectory of “sonuclar” directory, which 

is in the same directory that the program is executed. Subdirectory for each run is separate 

and automatically created. 

 

The main output file is “output.txt”. The binary-coded individuals, their fitnesses, penalty 

values, best fitness and average fitness values are listed generation by generation in 

“output.txt” file. Average and best fitness values are also printed explicitly to 

“best_fitness.txt” and “average_fitness.txt” files. Crossover and mutation processes are 

printed in “xover_control.txt” and “mutas_control.txt” files, respectively. Since these files 

can be quiet large for excessive number of populations, generations or string numbers as 

well, it is recommended to comment out the related parts in the code, unless detailed 

examining is required. Additional output files are created if multiple runs are executed to 

enable easy comparison (i.e. avg_all.txt and best_all.txt). All the files are prepared in a 

format that data can be easily transferred to common spreadsheets. 

 
The program can easily be adopted to solve different optimization problems. Initially, the 

inputs should be arranged for the number of decision variables (i.e. string length, boundary 

values, etc.). Then, the old objective function should also be replaced with the new function. 

If an external solver is to be included, associated codes should be rewritten for calling the 

new solver and utilizing the related outputs for objective function estimation.  
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CHAPTER 4 
 

 

4. OPTIMIZING GA PARAMETERS 
 
 
 
 
4.1 Dewatering Example 

To scrutinize the developed code and optimize the GA parameters for the rest of the study, a 

simple circular idealized aquifer with radius 1000 m is utilized (Figure 4.1). The problem is a 

hypothetical problem, which was considered by Demirbas (2003). The objective is to 

estimate the total extraction rates for the wells in order to lower the water table to specified 

values at control points. Circular boundary of the aquifer has constant piezometric head that 

is 20 m. There are three wells; WEXT1, WEXT2, WEXT3 and two control locations; CP1 and CP2 

(Table 4.1). WEXTi denotes the ith extraction well and CPj denotes the jth control point. Control 

locations represent the points where hydraulic head is of importance. Hydraulic conductivity 

of the aquifer is constant and its value is 11.448 m/day. 

Table 4.1 Locations of the wells and control points 

 

Well and control  x y 

points (m) (m) 

WEXT1 950 1050 

WEXT2 1350 1050 

WEXT3 1050 1550 

CP1 1050 1150 

CP2 1050 1350 
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Figure 4.1 Plan view of the aquifer 

 

The water table is required to be lowered to at least u
h1  at CP1 and to at least u

h2  at CP2.. 

Maximum and minimum capacities of the wells are limited to u

EXTiQ  and l

EXTiQ , 

respectively. The objective is to minimize the total discharge rate for above conditions.  

 

The formulation for optimization problem is as follows; 

 

The objective function, 

∑
=

=
3

1i

EXTiQfMinimize  (4.1) 

Set of constraints, 
u

EXTiEXTi

l

EXTi QQQ ≤≤  for  i=1,2,3 (4.2) 

u

jCPj hh ≤  for  j=1,2 (4.3)

where, CPjh is the head at jth control point.  u
h1  and u

h2  values are 18 m and 18.5 m, u

EXTiQ  

and l

EXTiQ  values are  0 and 1500 m3/day, respectively.  

 

The management problem formulated above is then converted into an unconstrained 

problem. Since constraints on discharge values (Eqn. 4.2) are defined as boundaries of 

Constant Head 
Boundary 

CP1 

CP2 

WEXT3 

WEXT2 WEXT1 
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decision variables, only constraints on head values (Eqn. 4.3) are added to the objective 

function as penalty function.    

 

Unconstrained  objective function, 

∑∑
==

−+=
2

1

2
3

1

)),0(max(
j

u
jCPj

i

EXTi hhcQfMinimize  (4.4) 

 

“c” is a problem dependent constant and choosing the right penalty constant requires  much 

attention. High penalty constants result in distortion in solution space (Goldberg,1989). As 

the penalty constant increases, the unconstrained formulation approaches the constrained 

solution where infeasible solutions are omitted from the optimization process. Doing so 

throws away the information that can be provided from the infeasible solutions. On the other 

hand, very small penalty constants may result in infeasible solutions since infeasible 

solutions with lower penalties may have better fitness with respect to the feasible solutions. 

This trade-off increases the difficulty of deciding on penalty constant. The penalty constant 

in this study is obtained by increasing it till no infeasible optimal solution is achieved (Table 

4.2).  At the end it is expected that best feasible string will be more fit than an infeasible 

string with low constraint violation. 

 

Table 4.2 The characteristic of GA for different penalty values  

Penalty constant 

Number of infeasible 
optimals  

among 20 runs 
10,000 20 
50,000 20 

100,000 13 
150,000 0 
250,000 0 

 

GA code developed can only solve maximization problems. Eqn. 4.4 can be transformed to a 

maximization problem by multiplying the right hand side of equation with minus one. 

However, fitness values should be positive in order that GA operates correctly (i.e. for 

proper ordering of fitness values in fitness proportionate selection). Thus, a positive large 

number is added to the right hand side of equation. This number should be larger than the 

sum of upper values of decision variables (i.e. ∑
=

3

1i

u
EXTiQ ). Thus, solutions with no or little 
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constraint violation are not omitted from the selection process. This number should not to be 

selected very large, so that selection process can easily make a choice between good and 

better individuals. Here, the number is taken as 10000, although a wide range of selection 

can be made according to the above-mentioned criteria. Eqn. 4.4 then takes the form; 

∑∑
==

−−−=
2

1

2
3

1

)),0(max(10000
j

u

jCPj

i

EXTi hhcQfMaximize  (4.5) 

“Function” subroutine in GA code is modified according to Eqn. 4.5.  

 

A particular run of optimization problem is considered to show the step by step progress of 

GA. To start off,  a randomly generated initial population of 16 individuals is shown in Table 

4.3. 

 

Table 4.3 An example of an initial population generated by GA 

Indv.   
no. Individuals 

1  1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 

2  1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 

3  0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 

4  1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 

5  0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 

6  0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 

7  1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 

8  1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 

9  1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 

10  1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 

11  1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 

12  0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 

13  1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 

14  0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 

15  0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 

16  0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 

 
 
As an example, binary coding of the 4th individual is 
 
υ4 = 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 

 
For this problem, number of bits representing each variable is constant and set to eight. The 

first eight bits represent the first decision variable. Next eight bits represent the second and 

remaining bits represent the third decision variable. The number of bits representing each 

variable is set at the beginning of a GA run. 
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z1 = 1 1 1 0 0 0 0 1 
z2 = 0 0 1 0 1 0 0 1 
z3 = 1 0 1 1 1 1 1 0 
 
The base 10 value of z1 is calculated by using the Eqn. 2.25. 
 
(z1)2= (r1)10 
(1 1 1 0 0 0 0 1)2=(1x20+0x21+0x22+0x23+0x24+1x25+1x26+1x27)10 
r1 =225 
 
x1 is then calculated using Eqn. 2.26. 
 

12

)01500(
.2250

81
−

−
+=x = 1323.53 m3/day. 

 

(1500-0) is the range of variable x1 and )12( 8 −  is the number of intervals that this range 

will be divided into. The value of 88.5)12/()01500( 8 =−−  m3/day then gives the precision 

of x1. In other words for potential solutions, x1 can take the value of 0 or 5.88 m3/day, but no 

other value in between. The precisions for the remaing variables, x2 and x3 are also the same, 

since the string lengths and the ranges for the variables are the same. To increase the 

precision, either string length should be increased or range of the variables should be 

narrowed (Coley, 1999). Similarly, x2 and x3 are encoded to their values as 241.2 m3/day and 

1117.7 m3/day, respectively. Base 10 and real values of remaining variables are listed in 

Table 4.4. 

 
Table 4.4 Decoded values of decision variables 

x1  x2  x3  Indv. 
No z1 z2 z3 r1 r2 r3 (m3/day) (m3/day) (m3/day) 

1 10101100 01010000 11111011 172 80 251 1011.8 470.6 1476.5 
2 10111001 00010001 11011001 185 17 217 1088.2 100.0 1276.5 
3 01000011 01110110 10010000 67 118 144 394.1 694.1 847.1 
4 11100001 00101001 10111110 225 41 190 1323.5 241.2 1117.6 
5 00110000 11001011 01011111 48 203 95 282.4 1194.1 558.8 
6 00010101 01001000 00101010 21 72 42 123.5 423.5 247.1 
7 11110001 00101100 11111011 241 44 251 1417.6 258.8 1476.5 
8 10101110 00101001 11101010 174 41 234 1023.5 241.2 1376.5 
9 11110010 10100010 00000010 242 162 2 1423.5 952.9 11.8 

10 11011101 01100010 00001111 221 98 15 1300.0 576.5 88.2 
11 10000000 01110101 10010111 128 117 151 752.9 688.2 888.2 
12 00110111 01000101 10101001 55 69 169 323.5 405.9 994.1 
13 10110001 11010000 10011001 177 208 153 1041.2 1223.5 900.0 
14 00010111 01011111 01110010 23 95 114 135.3 558.8 670.6 
15 00100110 01111100 01000010 38 124 66 223.5 729.4 388.2 
16 00111111 11110111 10110101 63 247 181 370.6 1452.9 1064.7 
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After decoding the decision variables for a solution (i.e. discharge values for extraction 

wells), objective function is evaluated using Eqn. 4.4. MODFLOW run is required to 

estimate the head values at control points. Head values are used to calculate the penalty for 

constraint violations (Eqn. 4.3).  The objective function for the 4th individual is calculated  

as, 

 

f1= f(1323.5 m3/day,  241.2 m3/day, 1117.7 m3/day)= 7317.7  

 

Total discharge rates, fitnesses and penalty values calculated for the initial population are 

shown in Table 4.5.  From the table, it can be seen that penalty is applied to individual 3, 5, 

6, 12, 14 and 15. For these solutions, total water extracted is not high enough to lower the 

heads to required levels. Fitness of individuals 6 and 14 come out to be negative due to high 

degree of violation and these individuals are omitted from selection process. However, 

individual 3, 5, 12 and 15  would still have chance to be selected. 

 

Table 4.5 Fitness and penalty values for initial population  

Indv.   Total Q  Penalty  
No. Individuals Fitness   (m3/day) value 

1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 7041.2 2958.8 0 
2 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7535.3 2464.7 0 
3 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 7280.7 1935.3 800 
4 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 7317.7 2682.4 0 
5 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 7564.7 2035.3 400 
6 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 -15351.1 794.1 24600 
7 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 6847.1 3152.9 0 
8 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7358.8 2641.2 0 
9 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 7611.8 2388.2 0 

10 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8035.3 1964.7 0 
11 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 7670.6 2329.4 0 
12 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 5360.5 1723.5 2900 
13 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 6835.3 3164.7 0 
14 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 -364.7 1364.7 9000 
15 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 333.8 1341.2 8300 
16 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 7111.8 2888.2 0 

 
 
The probabilities of selection for the initial population are given in Table 4.6. The individual 

with best fitness is υ10. υ10 has a fitness of 8035.3. Zero penalty indicates no violation of the 

constraints. υ10 has the highest chance to be selected for mating with a probability of 8.6% 

(Eqn. 2.28). However, the results show that it is not selected. This is due to stochastic effects 



 64 

and can be bypassed by choosing elitism. The results also show that probability of selection 

for most of the individuals (13 individuals among 14 individuals that will be selected for the 

next generation) are almost identical, ranging from 5.7% to 8.6%. Considering the stochastic 

effects, selection of any of individual among the population is very close to random 

selection. Scaling the fitness values, according to average fitness and thus increasing 

probability interval (range) between good and better individuals (or bad and worse solutions) 

may enhance the algorithm performance.  

 

Table 4.6 Expected probabilities of selection in initial generation  

Probability  

Indv.  of selection  

No. Fitness (%) 
1 7041.2 7.5% 
2 7535.3 8.0% 
3 7280.7 7.8% 
4 7317.7 7.8% 
5 7564.7 8.1% 
6 0.0 0.0% 
7 6847.1 7.3% 
8 7358.8 7.8% 
9 7611.8 8.1% 

10 8035.3 8.6% 
11 7670.6 8.2% 
12 5360.5 5.7% 
13 6835.3 7.3% 
14 0.0 0.0% 
15 333.8 0.4% 
16 7111.8 7.6% 

Total 93904.4 100.0% 
 
 
Mating Pairs (Parents) 

Crossover rate of 0.85 indicates that about 85% of all individuals are expected to undergo 

crossover. Initially, individual 2 and 8 are selected for mating (Table 4.7). Since R thrown 

for the pair (0.466) is less than pc (0.85), it is decided to perform crossover. The point of 

crossover is decided by another R which comes out to be 0.256. This number times length of 

string in base 10 value gives the point of crossover (i.e. 0.256×24=6.15 and 6.15=(6)10). In 

Table 4.7, the point of crossover is shown with a slash sign. The bits after this point are 

interchanged between mating individuals. 
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Table 4.7 An example of crossover from the sample problem 

 Indiv. Individuals Fitness Penalty 
 No.  Value Value 

8  1 0 1 0 1 1 /1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7358.82 0 Before 
Crossover: 2  1 0 1 1 1 0 /0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7535.29 0 

     
A  1 0 1 0 1 1 /0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 7605.88 0 After 

Crossover: B   1 0 1 1 1 0 /1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 7288.24 0 
 
 
One of the newly built individuals (Individual A) has a better fitness than both of its parents. 

However, as seen in Table 4.7, this is not always the case (Individual B). The idea of 

crossover is to improve the population by exchanging ideas. However, exchanging of 

knowledge together with selection only guarantees the population to evolve to better 

solutions (Coley, 1999). 

 

Mutation 

The springs now undergo mutation. The rate of mutation, pm is 0.004. This indicates that 

only 1 mutation among 250 bits is expected. Mutation constant multiplied with total string 

length (pm×L) gives the expected probability of mutation for an individual which is 

0.004×24≅0.1 (i.e. approximately one among ten individuals is expected to undergo 

mutation). One of the mutated individuals is shown in Table 4.8. Only one bit (i.e. 10th bit) 

undergoes mutation, for which the random number thrown, 1.0838988×10-3 is less than pm, 

0.004.   

Table 4.8 An example of mutation from the sample problem 

  Fitness Penalty 
  Individuals  Value Value 

Before 
Mutation: 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8035.29 0 

After 
Mutation: 

1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 8155.76 0 

 
 
Through Generations 

Referring to Table 4.9, it is seen that, at the end of ten iterations, best fitness value increased 

from 8035.3 to 8215.7. Since, there is no elitism, best fitness of current generation is not 

monotonically increasing. Average fitness of the population increased from 5869.0 to 

7247.9, in one generation. From this generation on, average fitness shows a noisy progress. 

Note that crossover rate, pc=0.85 and mutation rate, pm=0.04 for this case. 
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Table 4.9 Average and best fitness values through generations 

Generation Best Fitness 
Best Fitness 
of Current Average Fitness 

No. Values Generation Values 
1 8035.3 8035.3 5869.0 
2 8155.8 8155.8 7247.9 
3 8155.8 8011.8 7169.7 
4 8155.8 7829.4 7112.3 
5 8155.8 7929.4 7126.5 
6 8155.8 8051.5 6896.2 
7 8215.7 8215.7 6901.7 
8 8215.7 7900.0 7259.6 
9 8215.7 7864.7 6981.4 

10 8215.7 7864.7 7187.1 

 
If there were no crossover and mutation, but only selection (i.e. pc and pm are set to zero), 

average fitness of the population would converge to the fitness of a single individual in 

initial population (Figure 4.2-a). For this case, the population converges to individual 11 

(υ11), with a fitness value of 7670.6 (Initial population is the same as the previous case, since 

seed number used for random number generation is still the same). Since there is no elitism, 

converged individual needs not to be the best one. However, if elitism is applied, average 

fitness value converges to the fitness of the best individual; individual 10 (υ10) with a fitness 

value of 8035.3 (Figure 4.2-b).  

 

  
a) b) 

Figure 4.2 Average fitness values for pc=0 and pm=0, a) No elitism b) Elitism is applied 

 
Since random processes are involved in GA (i.e. random numbers thrown to decide in 

crossover, mutation and selection, initial population generated, etc.) no two runs of GA are 

same, unless the seed numbers that decide on the random numbers are the same. Thus, single 
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run is not to be trusted to derive solid conclusions for GA and its parameters. Multiple runs 

are required to reduce stochastic variations (Coley, 1999). In Figure 4.3, GA results for the 

sample problem are shown for five different runs. Best optimal results range from 7964.41 to 

8281.65.   
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Figure 4.3 GA result from five different runs 

 

4.2 GA Parameters 

 

The wide spectrum of parameter values in literature review (see Section 1.2.3) shows that 

GA results not only depend on GA parameters but also the problem to be optimized (the 

characteristic of the search space) or the type of GA operators selected (i.e. their effect on 

selection pressure). Following the early studies listed in literature review, initial parameter 

set for starting the GA run is chosen as P=30, pc=0.6 and pm=0.0417. The results are 

averaged over 20 runs.  

 

4.2.1 Effect of Scaling and Elitism 

 

The effect of applying linear scaling and elitism on the dewatering example is shown in 

Figure 4.4. Not only both methods provided a faster convergence rate and improved solution 

but using them together gave the best results. Using elitism without scaling only performed 

better than applying scaling only. 
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Figure 4.4 Effect of scaling and elitism on optimization (averaged over 20 runs) 

 

4.2.2 Effect of Population Number 

 

Five different population numbers are tested and best fitness rates are shown in Figure 4.5. It 

is seen that most of the population numbers converge to the same fitness value, 8370.59. 

Among five different instances, only P=30 does not converge to this value.  Set of decision 

variables for the best solution is x1=1211.77 m3/day, x2=0 and x3=417.65 m3/day. For  P=50, 

the algorithm required the least number of function evaluations for convergence.  
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Figure 4.5 Effect of population number on optimization (averaged over 20 runs) 
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4.2.3 Effect of Crossover Number 

 

For the crossover rate, pc=0 (no crossover), 0.25, 0.5, 0.75 and 1.0 (mates always undergoes 

crossover) values were tested. As a result of the previous population test, population number 

is taken as 50. Referring to Figure 4.6, it is seen that only pc=0.5 and pc=0.25 converges to 

best fitness. pc=0.5 converges to the best optimal solution faster than pc=0.25. It is interesting 

to observe that with no crossover but mutation and selection only, the algorithm converges to 

an acceptable solution for this sample problem. 
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Figure 4.6 Effect of different crossover rate on optimization (averaged over 20 runs) 

 

4.2.4 Effect of Mutation Number 

 

Figure 4.7 shows the effect of different mutation rates on solution. Five different mutation 

rates including 0.0417 are tried. This value corresponds to 1/total number of bits for the 

problem.  Although all the results are acceptable, the best results are achieved with 

pm=0.0417. The rate is similar to what Back and Schutz (1993) suggested.  
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Figure 4.7 Effect of mutation rates on optimization (averaged over 20 runs) 

 
4.2.5 Effect of Number of Runs on Solution 

 

The results for different number of runs are shown in Figure 4.8. For this example, using the 

optimal combination of parameter set, GA can find the maximum fitness, in every run.   

Stochastic errors have no effect on finding the optimal solution. However, as the search 

space gets complicated, the results from different runs are expected to be different.  To 

derive solid conclusions, GA runs should be repeated with different seed numbers (See 

Section 5.1). Though the optimal solutions found at the end are not different, it can be seen 

that as the number of runs increased, the figure gets a smother shape, giving a broader idea 

of the progress of GA for different runs. The average change of best fitness curve from 5 

runs to 10 runs is less than 0.02 % while from 10 runs to 15 runs, it is less than 0.009% and 

from 15 to 20 runs less than 0.007%. 
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Figure 4.8 The results for different number of runs a) Five runs b) Ten runs c) Twenty runs 

 

Optimal Parameter Set Used for the Rest of the Study 

In our studies, it is seen that various combination of parameter sets can be used in order to 

get adequate results. The following set is accepted as the optimal set and will be primarily 

used in the problems in following chapters (i.e. fittness proportionate selection, two point 

crossover, scaling and elitism on, scaling constant, λscal =1.5, crossover rate, pc=0.5, 

mutation rate, pm=0.0417 (1/Length of string), population number, P=50) 
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CHAPTER 5 
 

 

5. APPLICATION AND DISCUSSION OF RESULTS 
 
 
 
 
A coastal aquifer, previously studied by Mantoglou (2003) is used as the basic model for the 

optimization of the management models introduced in this thesis. First, the very same 

problem by Mantoglou (2003) which seeks for the optimal amount of extraction from five 

different extraction wells is studied. Different seawater prevention strategies (injection wells, 

canals and both) are added to the model in order to optimize the additional decision variables 

related to the prevention methods (i.e. injection rate and location for injection wells, recharge 

rate and location for canals, etc.). The optimization results by GA and SA are compared with 

the results from LP or MIP, whenever applicable. 

 

5.1 Extraction Wells Only Problem 

 
The example involves the optimal management of extraction wells at specified locations. 

The simulation model used is a rectangular coastal aquifer in Greek island of Kalymnos. All 

required parameters and assumptions are taken from the study by Mantoglou (2003). The 

finite difference representation of the model is shown in Figure 5.1. The sea shore is located 

on the west. The aquifer which is 7000 m length and 3000 m wide is discretized with 

constant ∆x=116.67 m in East-West direction and constant ∆y=100 m in South-East direction 

(∆x is the distance between two discretization lines in x-coordinate direction and ∆y is the 

distance between two discretization lines in y-coordinate direction). Depth of aquifer is 25 m. 

The North and South boundaries are taken as impervious.  The recharge rates at higher 

elevations are 150 mm/year over an area of 9 km2. This recharge is fixed flux boundary on 

the east side (i.e. 150 mm / year×9 km2 = 1.35×106 m3/year). There is an additional recharge 

of 50 mm/year over the aquifer. Hydraulic conductivity is constant as 100 m/day. There are 

five well locations for which the coordinates are listed in Table 5.1.  
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Figure 5.1 Plan view of the aquifer 

 

Table 5.1 Location of the extraction wells  

Extraction 
Wells 

x 

(m) 
y 

(m) 

WEXT1 2657 1572 

WEXT2 3353 2200 

WEXT3 3932 975 

WEXT4 4632 2470 

WEXT5 4873 1586 

 

The objective is to find the total maximum rates for the extraction wells without letting the 

seawater intrusion. toeφ  represents the border where the seawater intrusion reaches. If the φ  

values at the wells are smaller than toeφ , it is assumed that wells are intruded by seawater.  

 

The formulation for the optimization problem is as follows; 

The objective function,  

∑
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=
5
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Set of constraints, 

toei φφ ≥  i=1,2….5 (5.2)

15000 ≤≤ EXTiQ  m3/day i=1,2….5 (5.3)

where, toeφ  is calculated as 8.0078 m2 for sρ =1025 kg/m3 and fρ =1000 kg/m3 and d=25 m 

(Eqn. 2.9).  

 

φ  values are found by using MODFLOW. The boundary conditions are modified according 

to Eqns. 2.6 and 2.7. At the coast, since hf=d, φ =0. At no flow boundaries xh f ∂∂  and 

0=∂∂ yh f  then x∂∂φ  and 0=∂∂ xφ  . 

 

The management problem above then converted into an unconstrained problem. Since the 

upper and lower bounds of the well rates are entered as input to the genetic code, only 

constraints related to potential values at well locations (state variables) are added to the 

objective function as penalty term, to obtain the unconstrained objective function, 

 

∑∑
==

−−=
5

1

2
5

1

))0078.8,0(max(
i

i

i

EXTi cQfMaximize φ  (5.4)

 

To find the value of the penalty constant, c, different values are tested by making various 

runs and as explained in Section 4.1, the minimum one that gives no infeasible solution is 

used as the penalty constant for the rest of the cases studied. Following the above procedure, 

c is found to be 10000.  

 

5.1.1 Discussion of Results for Extraction Wells Only Problem 

 
20 independent runs are carried out using GA. GA parameters are taken from the optimal 

results found in Chapter 4 (i.e. P=50, pm=0.025 (which is 1/L=1/40), pc=0.5, scaling and 

elitism are on and two point crossover is applied). The convergence behavior of the best 

solution found among 20 runs is shown in Figure 5.2. 



 75 

 

3500

3600

3700

3800

3900

4000

4100

4200

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

B
e
s
t 
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

 

Figure 5.2 Best solution found by GA for Mantoglou (2003) problem 

 

The optimal set of decision variables found by GA is QEXT1=58.82 m3/day, QEXT2=323.53 

m3/day, QEXT3=882.35 m3/day, and QEXT4=1347.06 m3/day and QEXT5=1476.47 m3/day.              

φ values corresponding to the optimal solution is shown in Figure 5.3. φ=8.0078 m2 line 

which represents the toe of saltwater encroachment can be seen just in front of the extraction 

well. Using the transformation formulations (Eqns. 2.10 and 2.11), freshwater head values 

and interface elevations are found and freshwater heads above seawater are shown in Figure 

5.4. The vertically exaggerated figure of the freshwater head and vertical cross-section at 

y=1500 m is shown also shown in Figure 5.4. Cones of depression for the wells can be seen 

in the same figure. The cones are more apparent for the wells far away from the cost since 

the optimal extraction rates found for these wells come out to be bigger. 

 

 

Figure 5.3 φ values corresponding to optimal solution  
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a) 

 

b) 

 

c) 

Figure 5.4 a) Saltwater-freshwater interface for the optimal solution b) Freshwater zone 
vertically exaggerated c) Longitudinal cross-section of freshwater head at y=1500 m 

 

 

 



 77 

 

The same optimization problem is then solved by using SA. For testing different initial 

points and stochastic effects involved in SA, the algorithm is run 5 times using different seed 

numbers.  

 

Best solution vectors found by GA and SA are shown in Table 5.2. The results show that 

optimal results found by GA and SA are similar to the result found by LP (i.e. less than 0.1 

%). Both results are better than the solution by Mantoglou (2003). The difference may be 

from the type of solver, parameters used for solver (i.e criteria for convergence), or hydraulic 

parameters that are not clearly presented in the paper.  

 

Table 5.2 Optimal well rates for different algorithms 

 

 Present Work 
Mantoglou 

(2003) 

Wells          GA          SA          LP          SQP 

QEXT1 (m
3/day) 58.82 52.39 51.44 436 

QEXT2 (m
3/day) 323.53 325.08 322.44 1089 

QEXT3 (m
3/day) 882.35 872.67 869.06 789 

QEXT4 (m
3/day) 1347.06 1348.20 1350.32 1149 

QEXT5 (m
3/day) 1476.47 1494.81 1500.0 483 

Total (m3/day) 4088.24 4093.15 4093.26 3945 
 

The convergence characteristic of SA together with the optimal solution by GA is shown in 

Figure 5.5. From the figure, it can be seen that, SA required less number of function 

evaluations to reach optimum.  
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Figure 5.5 Best optimal results found by SA and GA 

 
 
5.2 Injection Wells Problem 

 
Utilizing injection wells is a well-known method used for the prevention of seawater 

intrusion in seawater treated sites. In common approach, series of wells are usually 

positioned on a line between seaside and the extraction area (Van Dam, 1999). This way, 

injections wells act as a physical barrier that prevents the further progress of saltwater. For 

the following problem, two different cases are studied. Case 1 represents the situation where 

locations of the wells are fixed and extraction and injection amounts are to be optimized. In 

Case 2, it is required to determine the optimal location of injection wells and corresponding 

pumpage rate for both injection and extraction wells. The location of the extraction wells are 

fixed for the present problem (i.e. to test the optimal locations and discharge of the injection 

wells for the case of extraction at specified locations) although their locations can also be 

optimized with the proposed model.  

 

5.2.1 Case 1: Injection Wells Problem (Fixed Locations) 

 
Three injection wells are added to the base model (Figure 5.6). The locations of the wells are 

fixed and their coordinates are listed in Table 5.3. The objective is to find the total maximum 

benefit without letting the seawater into extraction wells. Once again, 8.0078 m2 represents 

the border where the seawater intrusion has reached. If the values at the extraction points are 
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lower than this value, the wells are accepted as intruded. The upper limit for the injection 

well rates is constrained to 500 m3/day. Thus, the total amount of water that can be injected 

from three wells is 1500 m3/day. 

 

 
Figure 5.6 Finite difference representation of the model (where; WINJi is the ith injection well)  
 

 

Table 5.3 Location of the injection wells 
 

Extraction 
Wells 

x 

(m) 
y 

(m) 

WINJ1 2042 2250 

WINJ2 2042 1450 

WINJ3 2042 750 
 

The formulation for the optimization problem is as follows; 

The objective function,  

∑∑
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3

1

5

1 j

INJj

i

EXTi QQfMaximize α  (5.5) 

 

Set of constraints, 
0078.8≥iφ m2

 i=1,2….5 (5.6)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.7) 

5000 ≤≤ INJjQ  m3/day j=1,2….3 (5.8)
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Unconstrained objective function, 

∑ ∑∑
= ==

−×−−=
3

1

5

1

2
5

1

))0078.8,0(max(10000
j i

iINJj

i

EXTi QQfMaximize φα  (5.9)

 
The objective is to get the maximum benefit by extracting freshwater. Since the injected 

water which is utilized to prevent the seawater progress brings a cost to the solution, it is 

subtracted from the total amount of extraction. “α” constant, as explained previously, is the 

ratio of the economical value of injected water to the economical value of extracted water. It 

is initially taken as one (i.e. the economical value of injected water is same as the 

economical value of freshwater).  

 
5.2.1.1 Discussion of the Results for Case 1: Injection Wells Problem (Fixed Locations) 
 

From the optimal results shown in Table 5.4, it can be seen that for α=1, the amounts of 

water injected are almost zero (15.87 m3/day for GA and 2.63 m3/day for SA). This is 

concurrent with the fact that when the economical value of the extracted water is the same as 

the economical value of injected water, installing injection wells for the prevention of 

seawater intrusion becomes infeasible. However, in most situations the quality of injected 

water is cheaper than the extracted water (i.e. treated low cost wastewater or low quality 

freshwater obtained from saltwater) and α value would be less than one. 

 

Best fitness values found (4072.37 for GA and 4077.68 for SA) are almost identical for GA 

and SA. However, combinations of discharge values for the wells, though close, are 

different. For the optimal results, difference between total extractions is less than 9 m3/day, 

however the difference between extraction from each well can be greater than 110 m3/day 

(i.e for WEXT5).  

 

It is also interesting to observe that although no or little injection is selected, the results are 

not as good as the results obtained from the extraction wells only problem (See Section 5.1). 

This shows that with the negative term included in the objective function due to new 

decision variables, the management problem became harder to solve for both optimizing 

algorithms.  
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Table 5.4 Optimal well rates (α=1.0) 
 

        GA        SA        LP 

QEXT1 (m
3/day) 94.12 74.92 51.44 

QEXT2 (m
3/day) 376.47 373.97 322.44 

QEXT3 (m
3/day) 888.24 943.64 869.06 

QEXT4 (m
3/day) 1235.29 1307.12 1350.32 

QEXT5 (m
3/day) 1494.12 1380.66 1500.0 

QINJ1 (m
3/day) 0 1.30 0 

QINJ2 (m
3/day) 15.87 0.15 0 

QINJ3 (m
3/day) 0 1.18 0 

Total  Extracted Q (m3/day) 4088.24 4080.31 4093.26 

Total Injected Q (m3/day) 15.87 2.63 0 

Fitness Values 4072.37 4077.68 4093.26 
 
 
In order to activate the injection wells, α is taken as 0.5 and the solutions are repeated once 

again using GA, SA and LP. The set of decision variables for the best solution (found among 

20 runs for GA and 5 runs for SA) are given in Table 5.5. Since α<1, injection wells turned 

out to be feasible. The total amounts of injection for the solutions are close to the upper 

bounds for the injection wells, which is 1500 m3/day. Total amount of extraction without 

injection (optimal solution found in Section 5.1.1) has also increased from 4093.26 m3/day to 

5007.01 m3/day. 

 

The best fitness values for GA and SA (4250.14 for GA and 4250.08 for SA) are almost 

identical and the corresponding decision variables for two solution are close with at most ≅6 

% difference. The results are also very close to optimal solution found by LP. 
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Table 5.5 Optimal well rates (α=0.5) 
 

        GA       SA       LP 

QEXT1 (m
3/day) 511.76 526.59 518.85 

QEXT2 (m
3/day) 541.18 547.01 533.63 

QEXT3 (m
3/day) 1029.41 1040.99 1025.21 

QEXT4 (m
3/day) 1405.88 1463.21 1429.32 

QEXT5 (m
3/day) 1500.00 1419.86 1500.00 

QINJ1 (m
3/day) 492.06 499.67 500.00 

QINJ2 (m
3/day) 484.13 497.46 500.00 

QINJ3 (m
3/day) 500.00 498.02 500.00 

Total  Extracted Q (m3/day) 4988.23 4997.65 5007.01 

Total Injected Q (m3/day) 1476.19 1495.15 1500.00 

Fitness Values 4250.14 4250.08 4257.01 
 

Figure 5.7  shows the convergence characteristics for GA and SA, when α is taken as 0.5. It 

can be seen that SA converged to the optimal faster than GA. SA converges to best optimal 

around function evaluation number (from here on iteration number is used instead of number 

of function evaluations) 11000, while GA founds a similar result at around 29200. However, 

optimal result by GA at iteration number 11000 (fitness value of 4217.36) is only ≅1% less 

than the optimal result by SA (fitness value of 4250.08).  

 

 

3700

3800

3900

4000

4100

4200

4300

0 5000 10000 15000 20000 25000 30000 35000

B
e
s
t 
F

it
n

e
s
s
 V

a
lu

e
s

Number of Function Evaluations

GA

SA

 
Figure 5.7 Best solution found by GA and SA 

 
φ values corresponding to the best optimal solution and freshwater heads above seawater are 

shown in Figure 5.8 and Figure 5.9-a, respectively. φtoe line which represents the toe of 

saltwater encorachment is not in front of the extraction wells (i.e QEXT1) but a little far away 
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from them. However, experiments with the model show that with a little increase in 

discharge value, φtoe line jumps behind the extraction wells. This is in compliance with the 

results from Cheng et al. (2000). Vertical crosssection at y=1500 m is also shown in Figure 

5.9-b.  

 

Figure 5.8 φ values corresponding to optimal solution GA  

 

 
a) 

 
b) 

Figure 5.9 a) Freshwater head corresponding to optimal solution b) Longitudinal cross-
section of freshwater head at y=1500 m 
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5.2.2 Case 2: Injection Wells Problem (Variable Locations) 

 
In case 1, the locations of the injection wells were fixed. Including the locations as a decision 

variable in the optimization process may help to improve the results. The locations of the 

injection wells are constrained with the sea on the west, impervious boundary on the north 

and south and the first extraction well on the east direction (i.e. WEXT1). 

The objective function is as follows,  

∑∑
==

−=
3

1

5

1 j

INJj

i

EXTi QQfMaximize α  (5.10)

Set of constraints,  

0078.8≥iφ  m2 i=1,2….5 (5.11)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.12) 

5000 ≤≤ INJjQ  m3/day j=1,2….3 (5.13)

200 ≤≤ INJjx  j=1,2….3 (5.14)

300 ≤≤ INJjy  j=1,2….3 (5.15)

 

Unconstrained objective function, 

∑ ∑∑
= ==

−×−−=
3
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1

))0078.8,0(max(10000
j i

iINJj

i

EXTi QQfMaximize φα  (5.16) 

The optimization formulation is tested for α= 0.5.  

 

5.2.2.1 Discussion of the Results for Case 2: Injection Wells Problem (Variable 
Locations) 

 

The best optimal results found are shown in Table 5.6. Again, the best fitness values from 

GA and SA are almost same (fitness value of 4358.50 for GA and 4356.77 for SA). For both 

solutions, it is seen that injection wells are gathered in the middle in y direction and to the 

farthest point from the sea in x direction (i.e. the upper bound for the x constraint for 

injection well locations). This is expected, since injection wells and canals are reported to be 

not effective when placed far too seaward from pumping wells (Cheng and Ouazar, 1999). 

For the discharge values, SA chooses a solution where total extraction (5000.10 m3/day) is 

less than the total extraction found by GA solution (5052.94 m3/day).  In proportion, 



 85 

injection amount is also less for the solution with SA (1286.66 m3/day with respect to the 

1388.89 m3/day for GA). Best fitness values are slightly worse than the solution found by 

MIP (i.e. less than 2 %). In addition, both SA and GA fail to find the optimal solution for 

which the location for the three injection wells is same (i.e. xinj=15 and yinj=20).  

 

Table 5.6 Optimal well rates and locations (α=0.5) 
 

         GA         SA         MIP 

QEXT1 (m
3/day) 700.00 637.99 740.66 

QEXT2 (m
3/day) 652.94 537.59 512.53 

QEXT3 (m
3/day) 1170.59 1068.11 1003.64 

QEXT4 (m
3/day) 1500.00 1496.08 1417.87 

QEXT5 (m
3/day) 1029.41 1260.33 1500.00 

QINJ1 (m
3/day) 468.25 293.47 500.00 

QINJ2 (m
3/day) 420.63 499.70 500.00 

QINJ3 (m
3/day) 500.00 493.50 500.00 

xINJ1 20 20 20 
yINJ1 14 15 15 
xINJ2 20 20 20 
yINJ2 13 13 15 
xINJ3 20 20 20 

yINJ3 13 16 15 

Total Extracted Q (m3/day) 5052.94 5000.10 5174.70 

Total Injected Q (m3/day) 1388.89 1286.66 1500.00 

Fitness Values 4358.50 4356.77 4424.70 
*Locations are given as the coordinates of cells in finite difference 
representation.  

 

 

The φ distribution and the locations corresponding to best optimal solution are shown in 

Figure 5.10. Three-dimensional representation of freshwater head above seawater and a 

cross-section from the same graph are shown in Figure 5.11-a and Figure 5.11-b, 

respectively. 
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Figure 5.10 φ values corresponding to optimal solution 

 

 

a) 

 

b) 

Figure 5.11 a) Freshwater head corresponding to optimal solution b) Longitudinal cros-
section of freshwater head at y=1500 m 
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5.2.3 An Improvement for the Solution Technique: Alternating Constraints Method  
 

An individual in a population is a representation of all the unknowns that are to be 

optimized. As briefly discussed in previous sections, for the solution with traditional GA, all 

the decision variables (i.e. including both the discharge values and location of injection wells 

for the current problem), are to be encoded as series of binary strings. As the length of 

individuals are increased, the number of solutions among which GA tries to find the optimal 

(search area) increases. In addition, increasing number of decision variables results in 

increasing complexity in solution space, which makes the problem hard to solve for the 

optimization methods. In this study, a method called Alternating Constraints Method is 

introduced where discharge values and the locations are optimized one at a time in an 

iterative manner.  

 
Procedure of the method is as follows: 

Step 1: Fix the location of the injection wells to arbitrary locations within the constraint 

limits (Eqns. 5.14 and 5.15).  Run GA to find the optimal discharge of extraction and 

injection wells (Eqn. 5.16). iφ  and discharge values are constrained by Eqns. 5.11, 5.12 and 

5.13, respectively. 

 

Step 2: Fix the well rates (both extraction and injection) with the optimal rates found in Step 

1. Optimize the location of the injection wells by maximizing the φ  differences in the 

control locations by running GA once again (Eqn. 5.17). The locations of the injection wells 

are again constrained by Eqns. 5.14 and 5.15. 

 

∑
=

−=
m

i

toeifMaximize
1

),0max( φφ  (5.17)

where, m is the number of extraction wells, for which the φ values are checked.
 

 

Step 3: Repeat Step 1 once again, this time by fixing the well locations with the optimal 

locations found in step 2. Flowchart of the method is given in Figure 5.12. 
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Run GA to find the extraction and injection 
rates that give maximum total benefit while 
locations of the injection wells are fixed 

within constraint limits

Run GA once again to find optimal the 
injection well locations. This time extraction 
and injection rates are fixed with the optimal 

rates found Step-1.

Run GA for the last time to find extraction 
and injection rates that give maximum total 
benefit, while locations of the injection wells 
are fixed with the optimal locations found in 

Step-2

START

STOP

Step-2

Step-1

Step-3

 
Figure 5.12 The flowchart for the current method 

 
 
5.2.3.1 Discussion of the Results for Case 2: Injection Wells  Problem (Variable 

Locations) using Alternating Constraints Method 
 

 
The method introduced is applied to Case 2: Injection Well Problem (Variable Locations). 

Convergence character for the best optimal solution found is shown in Figure 5.13. From the 

figure, it can be seen that in Step 1, the algorithm converges to a value of 4332.16. However, 

after step 2 where the locations of the wells are to be optimized, the algorithm converges to a 

better solution, 4402.25 in Step 3 of proposed method.  
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Figure 5.13 Best fitness values corresponding to optimal solution for Alternating Constraints 
Method 

 
The results from different optimization solvers used are shown in Table 5.7. Among the 

randomized search algorithms, the best optimal result (i.e. 4402.25) is found by the 

Alternating Constraints Method. The worst solution by Alternating Constraints Method is 

better with respect to the worst solution by GA. Average and worst solutions for SA are 

higher, which shows a smoother distribution for the solutions by SA.   

 
Table 5.7 The maximum, minimum and average of the optimal solutions for the Injection 

Well Problem (Variable Locations), α=0.5 (Among 20 runs for GA and 5 runs for SA)  
 

  
Best 

Solution 
Worst 

Solution Average 

Alternating Constraints Method 4402.25 4134.08 4256.15 
GA 4358.50 4087.12 4261.99 
SA 4356.77 4279.18 4319.93 

MIP 4424.70 - - 
 

For the solution with MIP, each potential location for the injection wells is an additional 

integer variable in the optimization formulation. The number of integer variables for the 

current example is 9000 (50 (number of columns in x direction) ×  60 (number of rows in y 

direction) ×  3 (number of injection wells)). Maximum number of integer variables that can 

be solved with the trial version of LINDO is only 50. Thus, the search domain is divided into 

smaller zones and the solution method is repeated for each zone. It must be noted that this 

approach does not guarantee an optimal solution, considering that optimal locations may 

cover different zones.  
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φ distribution for the best optimal solution is shown in Figure 5.14. Freshwater head 

distribution for the coastal aquifer and a cross-section in y-dimension is shown in Figure 

5.15. 

 

Figure 5.14 φ values corresponding to optimal solution GA  

 
a) 

 
b) 

Figure 5.15 a) Freshwater head corresponding to optimal solution b) Longitudinal cross-
section of freshwater head at x=1500 m 
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5.2.4 Summary of the Results  
 

For the injection well problem, the solution sets corresponding to the best optimal solutions 

for the case with fixed locations and the case with variable locations are shown in Table 5.8. 

As discussed in Section 5.2.1, optimal values found when the location of the wells are fixed 

are almost identical (i.e. values changing from 4250.08 to 4257.01). When the locations of 

the injection wells are included in the optimization process, the fitness value has increased 

from 4250.14 to 4358.50, for the solution with GA. Total extraction amount has increased 

from 4988.23 m3/day to 5052.94 m3/day. When Alternating Constraints Method is applied, 

fitness value has increased to 4402.25 and total extraction amount to 5141.18 m3/day.  

 

5.3 Canal Problem 

 
As to form a barrier for seawater intrusion, instead of injecting from a point source (well), 

water can be articially recharged by using surface spreading (i.e. water canal) for unconfined 

aquifers (Todd, 1980). Since groundwater flow is assumed to be horizontal, the flow 

dynamics for the model will be independent of height of the canal and canal is modeled as an 

additional source of recharge. 

 

For the canal problem, two different management models are formulated for both of which 

the objective functions are same, while decision variables and constraints are different. The 

management models seek for the maximum amount of extraction while recharge is provided 

by a canal.  

  

For the first case, the location and length of canal is to be optimized while recharge rate for 

the canal is fixed. For the second case, the location and recharge rate for the canal is to be 

optimized while length of the canal is fixed.  

 

5.3.1 Case 1: Canal Problem (Variable Location and Length) 

 

The objective is to use the maximum groundwater potential while there is no seawater 

intrusion. φ value of 8.0078 m2 represents the border where the seawater intrusion has 

reached. The canal utilized in the study is parallel to the coastline and extends as a straight 

line in y direction. Length and location of the canal together with the total amount of 
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extraction from five wells are to be optimized. lcan is the number of grids that canal occupies 

in y direction. Upper limit for lcan is 10. Recharge rate is fixed to 1.2857×10-2 m3/day/m2 for 

which the total amount of discharge for the maximum length of canal is equal to 1500 

m3/day.  Note that this amount is equal to the total upper bound for the injection wells 

studied in the previous problem. This is to make the comparisons between the problems 

easier. β, which is the ratio of the economical value of recharged canal water to the 

economical value of extracted water, is taken as 0.5.  

 
 
The objective function is as follows,  

CANCAN

m

i

EXTi RlyxQfMaximize ....
1

∆∆−=∑
=

β  (5.18)  

 

Set of constraints,  

0078.8≥iφ  m2 i=1,2….5 (5.19)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.20) 

100 ≤≤ CANl   (5.21)

201 ≤≤ CANx   (5.22)

301 ≤≤ CANy
  (5.23)

 
  
Unconstrained objective function, 

∑∑
==

−×−∆∆−=
m

i

iCANCAN

m

i

EXTi RlyxQfMaximize
1

2

1

))0078.8,0(max(10000.... φβ  (5.24)
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5.3.1.1 Application of Alternating Constraints method to Case 1: Canal Problem 

(Variable Location and Length) 
 
The method introduced in Section 5.2.3, where locations and recharge values are optimized 

in an iterative manner, is applied to Case 1: Canal Problem. 

 

Procedure of the method is as follows: 

Step 1: Fix the location of the canal to a random location within the constraint limits (Eqns. 

5.22 and 5.23). Run GA to find the optimal discharge for extraction wells and optimal length 

for canal. The objective function (Eqn. 5.24) used to find the extraction rates, iφ  values and 

length of the canal are constrained by Eqns. 5.19 and 5.20. 

 

Step 2: Fix the extraction rates and length with the optimal rates found in Step 1. Optimize 

the location of the canal by maximizing the φ  differences in the control locations by running 

GA once again (Eqn. 5.25). The location of the canal is again constrained by Eqns. 5.22 and 

5.23. 

∑
=

−=
m

i

toeifMaximize
1

),0max( φφ  (5.25)

Step 3: Repeat Step 1 once again, this time by fixing the location of the canal with the 

optimal location found in Step 2. 

 
The method is applied to Case 1: Canal Problem (Variable Location and Length). Runs are 

repeated for 20 times with different seeds to examine the effects of stochastic effects 

involved in solution.  

 
The best optimal solution found by the Alternating Constraints method, GA and SA is shown 

in Table 5.9. In all solutions, optimum length of the canal is found as 10 grids. This is the 

upper limit for the length of the canal for which recharge is fully applied. In all solutions, x-

coordinate of the canal is found as 20 and y-coordinate is found around to the middle of the 

aquifer. The fitness values from different algorithms are almost identical, the result from 

Alternating Constraints Method (with a fitness value of 4397.06) is the best one.  
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Table 5.9 Optimal well rates for β=0.5 (Bold values are optimized values, the other values 
are fixed) 

 
 Alternating 

Constraints 
Method               GA               SA 

QEXT1 (m
3/day) 676.47 658.82 640.33 

QEXT2 (m
3/day) 582.35 605.88 660.54 

QEXT3 (m
3/day) 1017.65 1035.29 1175.94 

QEXT4 (m
3/day) 1376.47 1388.24 1360.45 

QEXT5 (m
3/day) 1494.12 1452.94 1258.74 

Canal Length 10 10 10 
Canal x-coordinate 20 20 20 
Canal y-coordinate 9 8 5 

Canal Recharge 
Rate (m3/day/m2) 

1.2857x10-2 1.2857x10-2 1.2857x10-2 

Total Extracted Q (m3/day)  5147.06 5141.18 5096.00 
Total Recharged Q (m3/day) 1500.00 1500.00 1500.00 

Fitness 4397.06 4391.18 4346.00 
 

The φ distribution is shown in Figure 5.16. The potential line of 8.0078 m2 is in front of the 

extraction wells, which shows that seawater has not progressed behind the extraction wells 

for the solution.  

 

 
Figure 5.16 φ values corresponding to optimal solution 

 

Figure 5.17 shows the freshwater head distribution above seawater for the coastal aquifer. 

The location of the canal can be seen as a line shaped depression in front of the extraction 

wells.  
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a) 

 
b) 

Figure 5.17 a) Freshwater head corresponding to optimal solution. b) Longitudinal        
cross-section of freshwater head at x=1500 m 

 

5.3.2 Case 2: Canal Problem (Variable Location and Recharge) 

 
Similar to Case 1, the objective is to use the maximum groundwater potential while there is 

no seawater intrusion. The location and recharge value of the canal (instead of length of the 

canal in Case 1) are to be optimized together with the total extraction from five wells. The 

upper limit for the recharge of the canal is constrained to 1.2857×10-2 m3/day/m2. Canal 

length is fixed to 10 grids in y direction (as found in Case 1) for which the total amount of 

discharge for the maximum recharge of the canal is equal to 1500 m3/day.  

 
The objective function is as follows,  

CANCAN

m

i

EXTi RlyxQfMaximize ....
1

∆∆−=∑
=

β  (5.26)  
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Set of constraints,  

0078.8≥iφ  m2 i=1,2….5 (5.27)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.28) 

2102857.10 −×≤≤ CANR  m3/day/m2  (5.29)

201 ≤≤ CANx   (5.30)

301 ≤≤ CANy
  (5.31)

 

Unconstrained objective function, 

∑∑
==

−×−∆∆−=
m

i

iCANCAN

m

i

EXTi RlyxQfMaximize
1

2

1

))0078.8,0(max(10000.... φβ  (5.32)

The optimization formulation is tested for β=0.5. 

 
5.3.2.1 Application of Alternating Constraints Method on Canal Problem (Variable 

Location and Recharge) 
 

Procedure of the method is as follows: 

Step 1: Fix the location of the canal to a random location within the constraint limits (Eqns. 

5.30 and 5.31). Run GA to find the optimal discharge for extraction wells and optimal 

recharge for canal (Eqn. 5.32). The iφ  values, extraction rates, and recharge value for the 

canal are constrained by Eqns. 5.27, 5.28 and 5.29, respectively. 

 

Step 2: Fix the extraction and recharge rates with the optimal rates found in Step 1. Optimize 

the location of the canal by maximizing the φ  differences in the control locations by running 

GA once again (Eqn. 5.33). The location of the canal is again constrained by Eqns. 5.30 and 

5.31. 

 

∑
=

−=
m

i

toeifMaximize
1

),0max( φφ  (5.33)

Step 3: Repeat step 1 once again, this time by fixing the location of the canal with the 

optimal location found in step 2. 

 

The method is applied to Case 2: Canal Problem (Variable Location and Recharge). Again 

the runs are repeated for 20 times. The problem is also solved with SA for comparison 

purposes.  
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The best optimal results are shown in Table 5.10. The results are again almost identical for 

different algorithms. For the optimal solution, canals locate themselves on the upper limit of 

the x direction farthest point from the coast and around to the middle in y direction. Recharge 

rates are found close to 1.2857x10-2 m3/day/m2 for which the total amount of recharge is 

1500 m3/day. This is the upper limit for the recharge value. 

 
Table 5.10 Optimal well rates for β=0.5 (Bold values are optimized values, the other values 

are fixed) 
 

 Alternating 
Constraints Method               GA               SA 

QEXT1 (m
3/day) 700.00 805.88 668.01 

QEXT2 (m
3/day) 670.59 817.65 572.63 

QEXT3 (m
3/day) 1152.94 1235.29 1030.37 

QEXT4 (m
3/day) 1417.65 1329.41 1418.44 

QEXT5 (m
3/day) 1182.35 876.47 1455.09 

Canal Length 10 10 10 
Canal x-coordinate 20 20 20 
Canal y-coordinate 8 10 9 

Canal Recharge 
Rate (m3/day/m2) 

1.2857×10-2 1.2857×10-2 1.2832×10-2 

Total Extracted Q (m3/day)  5123.53 5064.71 5144.54 
Total Recharged Q (m3/day) 1500.00 1500.00 1497.01 

Fitness 4373.53 4314.71 4396.03 
 
 
Potential distribution for the best solution found is shown in Figure 5.18. The freshwater 

distribution above seawater is shown in Figure 5.19. 

 

 

Figure 5.18 φ values corresponding to optimal solution GA 
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a) 

 
b) 

 Figure 5.19 a) φ values corresponding to optimal solution. b) Longitudinal                      
cross-section of  freshwater head at x=1500 m 

 
 
5.3.3 Summary of the Results  
 

In Table 5.11, the results from Case 1: Canal problem (Variable Location and Length) and 

Case 2: Canal problem (Variable Location and Recharge) are put side by side. The results 

give a similar picture especially for the locations, length and recharge values for the canal. 

The results from the two different cases turn out to be identical, for which the different 

decision variables are optimized but similar results are found for the same objective. 
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5.4 Injection Wells & Canal Problem 

 

A management problem is designed where two different seawater prevention methods 

discussed in previous problems (injection and canal) and related decision variables (locations 

and recharge values) are included in a single problem. Total amount of recharge (by injection 

wells and canal) are constrained so that it is shared between injection wells and canal. This is 

done by using penalty method. If the total amount is exceeded, a penalty is applied to the 

objective function, proportional to the degree of violation.  

 

The objective function is as follows,  

CANCAN

j

INJj

m

i

EXTi RlyxQQfMaximize ....
3

11

∆∆−−= ∑∑
==

βα  (5.34)  

Set of constraints,  

0078.8≥iφ  m2 i=1,2….5 (5.35)

15000 ≤≤ EXTiQ m3/day i=1,2….5 (5.36) 

5000 ≤≤ INJjQ m3/day j=1,2….3 (5.37)

200 ≤≤ INJjx  j=1,2….3 (5.38)

300 ≤≤ INJjy  j=1,2….3 (5.39)

2102857.10 −×≤≤ CANR m3/day/m2
  (5.40)

201 ≤≤ CANx   (5.41)

301 ≤≤ CANy
  (5.42)

1500...0
3

1

≤∆∆+≤∑
=

CANCAN

j

INJj RyxlQ  m3/day
  (5.43)
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Unconstrained objective function, 

2
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=

=

==

CANCAN

j

INJj

m

i

i

CANCAN

j

INJj

m

i

EXTi

RyxlQ

RyxlQQfMaximize

φ

βα

 (5.44)

 

The optimization formulation is tested for the case with α and β =0.5. 

 

5.4.1 Discussion of the Results for Injection Wells & Canal Problem 

 
The best optimal results found by GA and SA are shown in Table 5.12. Solution by SA 

chooses to recharge from the canal instead of injecting from the wells. Solution by GA, on 

the other hand, reaches a mix solution, where some of the water is injected from the wells 

while remaing is recharged from the canals. Similar fitness values indicate that either 

solution gives similar benefits. This is expected, since optimal fitness values for injection 

well only case (4358.50, see Section 5.2) was close to the optimal solution for canal only case 

(4391.18, see Section 5.3) for the solution with GA. It is also noted that optimal results given 

in Table 5.12 are also similar to the previously found optimals. A choice between two 

options (canal or injection well) would require other criterias that are not involved in our 

solution (i.e. the cost of installation, sustainability questions or environmental affects) 

 

Table 5.20 shows the convergence behaviour of SA and GA. Although, SA converged to a 

slightly better value, GA found a near optimal value faster.  
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Table 5.12 Optimal decision variables for the Injection Wells & Canal Problem for α and 

β=0.5 (Bolds are optimized values, the others are fixed values) 
 

 GA SA 
QEXT1 (m

3/day) 558.82 671.76 
QEXT2 (m

3/day) 558.82 578.06 
QEXT3 (m

3/day) 1005.88 1029.03 
QEXT4 (m

3/day) 1435.29 1372.34 
QEXT5 (m

3/day) 1488.24 1495.15 
QINJ1 (m

3/day) 277.78 0.01 
QINJ2 (m

3/day) 325.40 0.00 
QINJ3 (m

3/day) 15.87 0.00 
xINJ1 20 5 
yINJ1 17 20 
xINJ2 20 12 
yINJ2 8 6 
xINJ3 20 15 
yINJ3 20 5 

Canal Length (m) 10 10 
Canal x-coordinate 20 20 
Canal y-coordinate 8 9 

Canal Recharge Rate (m3/day/m2) 0.6537 ×10-2 1.2856×10-2 
Total Extracted  Q (m3/day) 5047.06 5146.35 
Total Recharged Q (m3/day) 1382.38 1499.99 

Fitness 4355.87 4396.36 
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Figure 5.20  Best optimal result found by GA and SA 



 104 

 

CHAPTER 6 
 
 

6. CONCLUSIONS 
 
 
 
 
A combined simulation-optimization of a coastal aquifer is studied to optimize the maximum 

benefit by extracting water without seawater intrusion. The simulation formulation was 

based on the single potential formulation by Strack (1976). The main assumptions were 

sharp interface between seawater and freshwater and seawater is assumed stagnant while 

freshwater flows horizontally over seawater.  Seawater intrusion is tracked by the potential 

values at the extraction wells. MODFLOW is used for the numerical solution of the single 

potential solution. Two different heuristic algorithms, GA and SA are used as optimization 

tools. Different prevention methods are added to the model and optimal solution for these 

scenarios are found by using the management formulation. A method named “Alternating 

Constraints Method” is introduced to improve the results by GA, where locations are also 

decision variables. To evaluate the effectiveness of the system, linear or mixed integer 

programming is utilized, whenever applicable. The conclusions are summarized below; 

 

1. Although an optimal parameter set is found and used for solutions with GA, good 

results can be achieved by using different combinations of parameter values and 

different type of GA operators.  

 

2. Binary length of decision variables sets the precision of the solution. Longer the 

string length, larger the search space and it may be harder for the optimization solver 

to find the near global solution. Thus, before starting a study, the user should decide 

on the degree of precision important for the solution. This kind of control on 

precision enables the user to make a coarser search at the beginning of a research 

without much computational requirement and increase the precision of the solution 

as research progress.  
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3. The results by LP and MIP, whenever applicable,  showed that GA and SA are 

successfully finding near global optimums for the seawater management problem 

considered in this study. 

 

4. Including the locations of recharge elements (i.e. injection wells, canal) as decision 

variable in the solutions improved the maximum extraction amount. For both 

injection wells and canal, optimum results are found when they are located farther 

away from the coast.  

 

5. Alternating Constraints Method improved the results where locations of the recharge 

elements are of important in terms of management problem. The method improved 

the results by both increasing the quality of the final solution and decreasing the 

number of function evaluations required to reach that solution.  

 

6. Adding canal or injection well to the model prevented the encroachment of seawater 

interface and increased the maximum extraction amount.  

 

7. When injected and extracted water is of the same economical value, there is no net 

gain in groundwater extraction amount. Using lower quality of injected water 

increases the efficiency of the groundwater extraction. 

 

8. Maximum benefit achieved using either canal or injection well is almost identical for 

the management objectives considered. A choice between two options requires other 

criterias involved in solution (i.e. the cost of installation, sustainability questions or 

environmental effects) 

 

9. Various runs with different starting points and seed numbers showed that SA usually 

converges to near global optimum, independent of the starting point or random 

processes involved in solution by SA. 

 

10. The results show that both GA and SA can effectively be used to obtain near global 

solutions for the management problems utilized in this study. Computational time 

depends on the number of decision variables, discretization resolution, and 

complexity of the problem (i.e. complex geometry). 
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APPENDICES 

APPENDIX A 
 
 

A. GA CODE 
 
 
 
Genkod.f90 
Program GENETIK_INJLOCX 
INTEGER seed 
INTEGER pop_num,sel_int1,sel_int2,gen_num,xd,eni_sira,enk_sira 
REAL sel_num1,sel_num2,fitness(1000),fitness_new(1000),fitness_sum(1000) 
REAL inj_coef 
REAL fitness_eni,fitness_ort,totalx,bestever_fitness,fitness_ortiki 
INTEGER str_length(100),uni_xover(100),x_overpt,x_overpt2,ix,jx,eni_gen,gen,mut_adet,x_num 
INTEGER p,totstr_length,runno,top_stra,top_strb,xover_type,mut_type,sca_type,sel_type 
REAL up_bound(30),low_bound(30),bi_constant(30),rastgele !Max no. of decision variables is 30 
REAL toplam(1000),deneme,x(1000,30),best_x(30),worst_x(30),bestever_x(30) 
REAL mut_num,f,con,pen_con, r,rnew,rnew2,rara,zz,host,best_all(1000,1000),avg_all(1000,1000) 
REAL var_all(1000,1000),a_constant,b_constant,sca_constant,gen_var 
INTEGER time,bas_time,bit_time,tot_time,inp_say,totinp_say,penalty_coef,elitism 
REAL Q(50) ! Max. number of wells is 50. 
INTEGER birey(1000,100),birey_ara(1000,100),run_say,best_birey(100),bestever_birey(100) 
INTEGER sel_intara1,sel_intara2,pop_transfer,tot_saat,tot_dak,tot_san,total_run 
INTEGER seed_type,numfit_zero 
CHARACTER*3 :: cg 
CHARACTER*5 :: ch 
 
seed=99987687 ! Random seed number. 
pop_transfer=0 ! If 0 no population transfer, if one for once, brings the last population to next run. 
seed_type=1   ! If 0 seed remains same, else it changes at each input cycle. 
total_run=60   ! If run number is greater than input file no. hen cycle in input files with different seed. 
totinp_say=3    ! Number of input files to be used. 
 
DO 100 run_say=1,total_run   !N o of input txt file 
bas_time=time() 
OPEN(unit=17,file='c:\Korkut_GA\\RUNNO.txt')  
READ (17,*) RUNNO 
CLOSE (17) 
OPEN(unit=18,file='c:\Korkut_GA\\RUNNO.txt',status='replace') 
WRITE (18,*) RUNNO+1 
CLOSE(18) 
 
WRITE (ch,2000) RUNNO 
2000  FORMAT(I5) 
 
! Selects the input file according to run_say. 
IF (MOD(run_say,totinp_say).EQ.0) THEN 
inp_say=totinp_say 
ELSE 
inp_say=MOD(run_say,totinp_say) 
END IF 
WRITE (cg,1000) inp_say 
1000  FORMAT(I3) 
 
! Read Input files. 
OPEN(5,file='input'//cg//'.txt') 
IF (seed_type.EQ.0) THEN 
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seed=seed 
ELSE  
IF (totinp_say.EQ.1) THEN 
seed=seed-100 
ELSE IF (MOD(run_say,totinp_say).EQ.1) THEN 
seed=seed-100 
ELSE  
seed=seed 
END IF 
END IF 
 
READ (5,*) sel_type ! If 0 random, 1 fitness proportianete, if 2 tournament selection 
READ (5,*) xover_type ! If 1 one point, if 2 two point, if three uniform xover 
READ (5,*) mut_type ! If 1 normal muation, if 2 uniform mutation  
READ (5,*) sca_type ! If 0 it is off, else on 
READ (5,*) sca_constant !will be included in calculations if scaling is on 
READ (5,*) elitism ! If 0 it is off, else on 
READ (5,*) x_num 
DO k1=1,x_num 
READ (5,*) low_bound(k1) 
READ (5,*) up_bound(k1) 
ENDDO 
DO k1=1,x_num 
READ (5,*) str_length(k1) 
ENDDO 
READ (5,*) pop_num 
READ (5,*) gen_num 
READ (5,*) x_over 
READ (5,*) mut_num 
READ (5,*) penalty_coef 
READ (5,*) inj_coef 
CLOSE(5) 
 
eni=0 
totstr_length=0 
enk_sira=1 
eni_sira=1 
bestever_fitness=0 ! best ever fitness 
 
DO k2=1,x_num 
bi_constant(k2)=(up_bound(k2)-low_bound(k2))/(2**str_length(k2)-1) 
totstr_length=str_length(k2)+totstr_length 
ENDDO 
RESULT = MAKEDIRQQ('sonuclar\sonuclar'//ch//'')  
OPEN(10,file='sonuclar\\sonuclar'//ch//'\output.txt') 
WRITE(10,*) 'PROGRAM CIKTILARI' 
OPEN(20,file='sonuclar\\sonuclar'//ch//'\kontrol.txt') 
WRITE(20,*) 'KONTROL CIKTILARI' 
OPEN(30,file='sonuclar\\sonuclar'//ch//'\xover_kontrol.txt') 
OPEN(40,file='sonuclar\\sonuclar'//ch//'\ortalama_fitness.txt') 
OPEN(50,file='sonuclar\\sonuclar'//ch//'\mutas_kontrol.txt') 
OPEN(70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt') 
OPEN(80,file='sonuclar\\sonuclar'//ch//'\best_fitness.txt') 
OPEN(90,file='sonuclar\\sonuclar'//ch//'\gen_variation.txt') 
 
WRITE (10,*) 'Total Run Number:',run_say,'      /',total_run 
WRITE (10,*) 'Degisken Sayısı:',x_num 
DO k1=1,x_num 
WRITE (10,*) 'Degisken',(k1),'in aralığı:',low_bound(k1),up_bound(k1) 
ENDDO 
DO k1=1,x_num 
WRITE (10,*) 'Degisken',(k1),'in string uzunluğu:',str_length(k1) 
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ENDDO 
WRITE (10,*) 'Populasyon Sayısı:',pop_num 
WRITE (10,*) 'Generasyon Sayısı:',gen_num 
WRITE (10,*) 'Crossover Katsayısı:',x_over 
WRITE (10,*) 'Mutasyon Katsayısı:',mut_num 
WRITE (10,*) 
WRITE (10,15) ' Selection türü:',sel_type,'(if 0 random sel, 1 fitness proportianete, if tournament)' 
WRITE (10,15) ' Crossover türü:',xover_type,'(if 1 one point, if 2 two point, if three uniform)' 
WRITE (10,15) ' Mutasyon türü:',mut_type,'(if 1 normal muation, if 2 asamali mutation)' 
WRITE (10,15) ' Scaling durumu off/on:',sca_type,'(if 0 it is off else on)' 
WRITE (10,15) ' Elitism durumu off/on:',elitism,'(if 0 it is off 1 on)' 
WRITE (10,15) ' Populasyon transferi off/on:',pop_transfer,'   (if 0 it is off else on)' 
WRITE (10,15) ' Degisik Seed off/on:',seed_type,'   (if 0 it is off else on)' 
WRITE (10,*) ' Input sayısı:',totinp_say 
WRITE (10,*) ' Penalti Katsayisi:',penalty_coef 
WRITE (10,*) ' Enjeksiyon Kaysayisi:',inj_coef 
WRITE (10,*) ' Seed sayısı:',seed 
WRITE (10,*) ' Scaling katsayısı:',sca_constant 
WRITE (10,*) 
WRITE (80,*) 'Runno:',ch 
WRITE (80,*) pop_num 
WRITE (80,*) gen_num 
WRITE (80,*) x_over 
WRITE (80,*) mut_num 
WRITE (80,*) sel_type 
WRITE (80,*) xover_type 
WRITE (80,*) mut_type 
WRITE (80,*) penalty_coef 
WRITE (80,*) seed 
WRITE (80,*) 
WRITE (40,*) 'Runno:',ch 
WRITE (40,*) pop_num 
WRITE (40,*) gen_num 
WRITE (40,*) x_over 
WRITE (40,*) mut_num 
WRITE (40,*) sel_type 
WRITE (40,*) xover_type 
WRITE (40,*) mut_type 
WRITE (80,*) penalty_coef 
WRITE (40,*) seed 
WRITE (40,*) 
15 FORMAT (a21,i3,a56) 
 
CALL SRAND(seed) 
 
IF (pop_transfer.EQ.0) THEN  
DO i=1,pop_num,1  
DO j=1,totstr_length,1 
IF(rand().GE.0.5) then   
birey(i,j)=1. 
ELSE  
birey(i,j)=0. 
END IF 
END DO 
END DO 
 
ELSE IF (pop_transfer.EQ.1) THEN  
IF (MOD(run_say,2).EQ.1) THEN  
birey=0 !Reset individuals. 
toplam=0 
x=0 
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! Random individuals are built. 
DO i=1,pop_num,1  
DO j=1,totstr_length,1 
IF(RAND().GE.0.5) then   
birey(i,j)=1. 
ELSE  
birey(i,j)=0. 
END IF 
END DO 
END DO 
 
ELSE  
!Last pop. of the previous pop is transformed into current pop if  
! pop transfer is selected. 
 
DO p=1,pop_num 
top_stra=1 
top_strb=0 
DO xd=1,x_num 
toplam(xd)=(x(p,xd)-low_bound(xd))/bi_constant(xd) 
top_strb=top_strb+str_length(xd) 
DO j=top_stra,top_strb  
IF (toplam(xd).GE.2**(top_strb-j)) then  
birey(p,j)=1 
toplam(xd)=toplam(xd)-2**(top_strb-j) 
ELSE  
birey(p,j)=0 
END IF 
END DO 
top_stra=top_stra+str_length(xd) 
END DO 
END DO 
END IF 
END IF  
 
DO 200 gen=1,gen_num,1  ! Generation loop 
 
WRITE (10,*) 
WRITE (20,*) 
WRITE (30,*) 
WRITE (50,*) 
WRITE (70,*) 
WRITE (10,*) 'Generasyon Sayısı=',gen 
WRITE (20,*) 'Generasyon Sayısı=',gen 
WRITE (30,*) 'Generasyon Sayısı=',gen 
WRITE (50,*) 'Generasyon Sayısı:',gen 
WRITE (70,*) 'Generasyon Sayısı:',gen 
 
! Evaluate the fenotype of individuals. 
DO 600 p=1,pop_num,1 
 
top_stra=1 
top_strb=0 
DO xd=1,x_num 
toplam(xd)=0 
top_strb=top_strb+str_length(xd) 
DO j=top_stra,top_strb   ! Sum of the bit values for indvs.  
toplam(xd)=toplam(xd)+birey(p,j)*2**(top_strb-j) 
END DO 
x(p,xd)=bi_constant(xd)*toplam(xd)+low_bound(xd) 
top_stra=top_stra+str_length(xd)   
END DO 
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600 END DO 
 
WRITE (10,13) 'Pop_num',('x[o]',i=1,x_num),'TotalExtQ','TotalNetQ','Fitness','Penalty' 
13 FORMAT (a13,30a12) 
 
fitness_eni=0 ! Best individual in current pop 
fitness_enk=10000000 ! Worst individual in current pop 
numfit_zero=0   ! Number of indv. with zero fitness 
 
DO 500 p=1,pop_num 
 
! Calls the "fonksiyon" subroutine. 
f = FUNC(x,p,x_num,ch,inj_coef,run_say,penalty_coef) 
fitness(p)=f 
 
IF (fitness(p).GT.fitness_eni) THEN ! Finds the best fitnes in current pop. 
fitness_eni = fitness(p) 
DO j=1,x_num 
best_x(j)=x(p,j) 
ENDDO 
DO J=1,totstr_length 
best_birey(j)=birey(p,j) 
END DO     
END IF 
 
IF (fitness(p).LT.fitness_enk) THEN ! Finds the worst indv.in current pop. 
fitness_enk = fitness(p) 
enk_sira=p 
END IF 
 
IF (fitness_eni.GT.bestever_fitness) then 
DO j=1,x_num 
bestever_x(j)=best_x(j) 
ENDDO 
DO J=1,totstr_length 
bestever_birey(j)=best_birey(j) 
END DO 
bestever_fitness=fitness_eni 
eni_gen=gen 
eni_sira=p 
END IF            
500 END DO 
 
!!!!!!!!!!!!!!!!!!!!!!! 
! Elitist !!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!! 
IF (elitism.EQ.1) THEN 
IF (gen.GT.1) THEN 
 
DO j=1,totstr_length 
birey(enk_sira,j)=bestever_birey(j) 
END DO 
 
DO j=1,x_num 
x(enk_sira,j)=bestever_x(j) 
ENDDO 
fitness(enk_sira)=bestever_fitness 
 
WRITE (10,18) 'Fittest birey,',enk_sira,'.nolu yukarıdaki en az fit bireyin yerini alır'  
WRITE (10,8) enk_sira,'.',(x(enk_sira,I),I=1,x_num),fitness(enk_sira),gen  
18 FORMAT (a13,i5,a50) 
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8 FORMAT (i,a,20f10.2) 
END IF 
 
ELSE 
END IF    
!!!!!!!!!!!!!!!!!!!!!!!!! 
 
! Negative fitness takes the 0 value 
DO p=1,pop_num,1 
IF (fitness(p).LE.0.) then ! Fitness' should be positive 
fitness(p)=0.     
numfit_zero=numfit_zero+1  ! Number of indv. with zero fitness 
ELSE            
ENDIF 
END DO 
 
! Sum up the fitness values for fitness proportinate selection 
fitness_sum(1)=fitness(1) 
DO p=1,pop_num-1,1 
fitness_sum(p+1)=fitness_sum(p)+fitness(p+1) 
END DO 
fitness_ort=fitness_sum(pop_num)/pop_num 
 
WRITE (10,19) 'En iyi fitness=',bestever_fitness,eni_gen,'. generasyondan',eni_sira,'. no.daki birey' 
19 FORMAT (a18,f9.2,i5,a15,i5,a15) 
DO j=1,x_num 
WRITE (10,*) 'x degerleri=',bestever_x(j) 
END DO 
 
WRITE (40,*) fitness_ort 
WRITE (80,*) bestever_fitness 
avg_all(gen,run_say)=fitness_ort 
best_all(gen,run_say)=bestever_fitness 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! Linear Scaling !!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
IF (sca_type.EQ.1) THEN 
! Zero fitness individuals are not included for scaling calc. 
fitness_ort=fitness_sum(pop_num)/(pop_num-numfit_zero)  
fitness_sum(1)=0 
a_constant=(sca_constant-1)*fitness_ort/(fitness_eni-fitness_ort) 
b_constant=(1-a_constant)*fitness_ort 
 
DO p=1,pop_num 
fitness(p)=a_constant*fitness(p)+b_constant 
IF (fitness(p).LE.0) THEN 
fitness(p)=0 
END IF 
WRITE (10,8) p,'.yeni fitness',fitness(p) 
END DO 
 
DO p=1,pop_num-1,1 
fitness_sum(p+1)=fitness_sum(p)+fitness(p+1) 
END DO 
 
WRITE (10,*) 'Avarage fitness for scaling',fitness_ort 
END IF 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! Genetic Variation !!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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k=0 
DO i=1,pop_num 
DO j=1,totstr_length 
IF (birey(i,j).EQ.best_birey(j)) THEN 
k=k+1 
ENDIF 
END DO 
END DO 
 
gen_var=k/(totstr_length*(pop_num*1.))   
WRITE (90,*) gen_var 
var_all(gen,run_say)=gen_var 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
DO 300 p=1,pop_num/2  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! SELECTION !!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
! Random selection !!!!!!!!!!!!!! 
 
IF (sel_type.EQ.0) THEN 
  
! First Individual 
sel_num1=RAND()*pop_num 
sel_int1=sel_num1+1 
 
! Second Individual 
sel_num2=RAND()*pop_num 
sel_int2=sel_num2+1 
 
! Fitness proportinate selection !!!!! 
 
ELSE IF (sel_type.eq.1) THEN    
sel_num1=rand()*fitness_sum(pop_num) 
sel_num2=rand()*fitness_sum(pop_num) 
 
! Select first individual  
k=1 
DO WHILE(sel_num1.GE.fitness_sum(k)) 
k=k+1 
ENDDO 
sel_int1=k 
 
! Select second individual 
k=1 
DO WHILE(sel_num2.GE.fitness_sum(k)) 
k=k+1 
ENDDO 
sel_int2=k 
 
!Tournament selection !!!!!!!!!!!  
 
ELSE IF (sel_type.EQ.2) then 
 ! First Individual 
sel_num1=RAND()*pop_num 
sel_num2=RAND()*pop_num 
sel_intara1=sel_num1+1 
sel_intara2=sel_num2+1 
 
IF (fitness(sel_intara1).GT.fitness(sel_intara2)) THEN   
sel_int1=sel_intara1 
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ELSE 
sel_int1=sel_intara2 
END IF 
 
WRITE(20,*) 'Çift Selection.',p 
WRITE(20,9) 'Tournamenta secilenler',sel_intara1,'. ve',sel_intara2,'.birey' 
WRITE(20,*) 'Fitnesları',fitness(sel_intara1),'. ve',fitness(sel_intara2) 
WRITE(20,*) 'Crossovera hak kazanan birinci birey',sel_int1 
 
! Second Individual 
sel_num1=RAND()*pop_num 
sel_num2=RAND()*pop_num 
sel_intara1=sel_num1+1 
sel_intara2=sel_num2+1 
 
IF (fitness(sel_intara1).GT.fitness(sel_intara2)) THEN 
sel_int2=sel_intara1 
ELSE 
sel_int2=sel_intara2 
END IF 
 
WRITE(20,9) 'Tournamenta secilenler',sel_intara1,'. ve',sel_intara2,'.birey' 
WRITE(20,*) 'Fitnesları',fitness(sel_intara1),'. ve',fitness(sel_intara2) 
WRITE(20,*) 'Crossovera hak kazanan ikinci birey',sel_int2 
 
END IF 
 
! SELECTION ENDS !!!!!!!!!!!!!!!!!!!!!!!!!! 
 
WRITE(20,9) 'Selectiona secilen',sel_int1,'. ve',sel_int2,'.bireyler' 
9 FORMAT (a,i,a,i,a) 
 
WRITE(30,*) 'Crossover oncesi' 
WRITE(30,10 ) (birey(sel_int1,y),y=1,totstr_length) 
WRITE(30,10 ) (birey(sel_int2,y),y=1,totstr_length) 
10 FORMAT (100i2) 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!! XOVER !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
! One point crossover !!!!!!!!!!! 
 
IF (xover_type.EQ.1) THEN    
!If random number less than xover constant, then xover 
r=Rand() 
IF (r.LE.x_over) THEN    
rnew=RAND() 
x_overpt=(totstr_length-1)*rnew+1. !The point of xover 
 
! Bits remain same till the point of xover. 
DO c=1,x_overpt,1 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
! Bits interchanged after the point of xover 
DO c=x_overpt+1,totstr_length,1 
Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
Birey_ara(2*p,c)=Birey(sel_int1,c) 
ENDDO 
 
! If no xover, the indvs. remain same 
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ELSE 
x_overpt=0 
DO c=1,totstr_length,1 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
ENDIF 
 
WRITE(30,*) 'Crossover sonrası' 
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length) 
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length) 
WRITE(30,16) 'Crossover degeri=',r,rnew,'One-point xover noktası=',x_overpt 
16  FORMAT (a20,f7.3,f7.3,a25,i3) 
WRITE(30,*) 
! Two point crossover !!!!!!!! 
 
ELSE IF (xover_type.EQ.2) THEN 
 
! If random number less than xover constant, then xover 
r=RAND() 
IF (r.LE.x_over) THEN    
 
rnew=RAND() 
rnew2=RAND() 
 
IF (rnew.GT.rnew2) THEN 
rara=rnew2 
rnew2=rnew 
rnew=rara 
END IF 
 
x_overpt=(totstr_length-1)*rnew+1. ! the point of xover 
x_overpt2=(totstr_length-1)*rnew2+1. ! the point of xover 
  
! Bits remain same till the first point of xover. 
DO c=1,x_overpt,1 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
! Bits between point 1 and 2 remains same. 
DO c=x_overpt+1,x_overpt2,1 
Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
Birey_ara(2*p,c)=Birey(sel_int1,c) 
ENDDO 
! Bits after 2nd point of xover2 remain same. 
DO c=x_overpt2+1,totstr_length 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
 
! If no xover, the indvs. remain same. 
ELSE 
x_overpt=0 
x_overpt2=0 
rnew=0 
rnew2=0 
DO c=1,totstr_length,1 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
ENDIF 
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WRITE(30,*) 'Crossover sonrası' 
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length) 
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length) 
WRITE(30,*) 'Crossover degerleri=',r,rnew,rnew2,'Two-point xover noktaları=',x_overpt,x_overpt2 
WRITE(30,*) 
 
! Uniform crossover !!!!!!!!!!!!!! 
ELSE IF (xover_type.eq.3) THEN 
 
r=RAND() 
IF (r.LE.x_over) THEN    
 
! Uniform xover points are selected. 
DO j=1,totstr_length,1 
IF(RAND().GE.0.5) THEN   
uni_xover(j)=1. 
ELSE  
uni_xover(j)=0. 
END IF 
END DO 
 
DO c=1,totstr_length,1 
 
IF (uni_xover(c).EQ.1) THEN !make xover 
Birey_ara(2*p-1,c)=Birey(sel_int2,c) 
Birey_ara(2*p,c)=Birey(sel_int1,c) 
 
ELSE IF (uni_xover(c).EQ.0) THEN 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
 
END IF 
ENDDO 
 
WRITE(30,*) 'Crossover degeri=',r,'Uniform xover string=' 
WRITE(30,11) (uni_xover(j),j=1,totstr_length) 
WRITE(30,*) 'Crossover sonrası' 
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length) 
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length) 
 
ELSE 
 
x_overpt=0 
DO c=1,totstr_length,1 
Birey_ara(2*p-1,c)=Birey(sel_int1,c) 
Birey_ara(2*p,c)=Birey(sel_int2,c) 
ENDDO 
 
WRITE(30,*) 'Crossover degeri=',r 
WRITE(30,*) 'No Crossover' 
WRITE(30,*) 'Crossover sonrası' 
WRITE(30,11) (birey_ara(2*p-1,y),y=1,totstr_length) 
WRITE(30,11) (birey_ara(2*p,y),y=1,totstr_length) 
WRITE(30,*) 
ENDIF 
 
11 FORMAT (100i2) 
ENDIF 
 
!! XOVER ENDS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
300 END DO 
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IF (GEN.LT.GEN_NUM) THEN ! No xover after last generation. 
DO i=1,pop_num 
DO j=1,totstr_length 
birey(i,j)=birey_ara(i,j) 
END DO 
END DO 
 
IF (MOD(pop_num,2).EQ.1) THEN   
!If the no. of populasyon is odd, the last individual is written twice 
DO j=1,totstr_length 
birey(pop_num,j)=birey(pop_num-1,j) 
birey_ara(pop_num,j)=birey(pop_num-1,j) 
END DO 
END IF 
 
END IF 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!! MUTATION !!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!Normal Mutation !!!!!!! 
 
IF (mut_type.EQ.1) THEN 
 
DO 400 ix=1,pop_num,1 
mut_adet=0 
DO jx=1,totstr_length,1 
 
rastgele=RAND() 
IF(rastgele.LE.mut_num) THEN  
WRITE(50,*) 'Mut.Deg.ve Random Mut.Deg',mut_num,rastgele 
WRITE(50,*) 'Mutasyon noktası=',jx 
 
IF (birey(ix,jx).EQ.1) THEN  
birey_ara(ix,jx)=0 
mut_adet=mut_adet+1 
ELSE  
birey_ara(ix,jx)=1 
mut_adet=mut_adet+1 
ENDIF 
ENDIF 
 
END DO 
 
WRITE(50,*) 'Mutasyon sayısı=',mut_adet 
WRITE(50,*) 'Mutasyon oncesi - Aşağı Ok' 
WRITE(50,14 ) (birey(ix,y),y=1,totstr_length) 
WRITE(50,14) (birey_ara(ix,y),y=1,totstr_length) 
WRITE(50,*) 'Mutasyon sonrası - Yuk Ok' 
WRITE(50,*) 
14  FORMAT (100i2) 
 
400 END DO 
 
! Uniform Mutasyon !!!!!!! 
 
ELSE IF (mut_type.EQ.2) THEN 
DO 700 ix=1,pop_num,1 
mut_adet=0 
top_stra=1 
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top_strb=0 
 
DO xd=1,x_num 
top_strb=top_strb+str_length(xd) 
 
DO jx=top_stra,top_strb  
rastgele=RAND() 
 
IF (rastgele.LE.mut_num/(2**(top_strb-jx+1))) THEN  
WRITE(50,*) 'Aşamalı Mut.Deg. ve Random        Mut.Deg',mut_num*100/(2**(top_strb-jx+1)),rastgele 
WRITE(50,*) 'Mutasyon noktası=',jx 
 
IF (birey(ix,jx).EQ.1) THEN  
birey_ara(ix,jx)=0 
mut_adet=mut_adet+1 
ELSE  
birey_ara(ix,jx)=1 
mut_adet=mut_adet+1 
ENDIF 
ENDIF 
END DO 
top_stra=top_stra+str_length(xd) 
END DO 
 
WRITE(50,*) 'Mutasyon sayısı=',mut_adet 
WRITE(50,*) 'Mutasyon oncesi - Aşağı Ok' 
WRITE(50,14) (birey(ix,y),y=1,totstr_length) 
WRITE(50,14) (birey_ara(ix,y),y=1,totstr_length) 
WRITE(50,*) 'Mutasyon sonrası - Yukarı Ok' 
WRITE(50,*) 
 
700 END DO 
END IF 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!! MUTATION ENDS !!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
IF (GEN.LT.GEN_NUM) THEN  ! No mutation after the last generation 
 
DO i=1,pop_num 
DO j=1,totstr_length 
birey(i,j)=birey_ara(i,j) 
END DO 
END DO 
 
END IF 
 
200 END DO ! Main generation loop  
 
CLOSE(20) 
CLOSE(30) 
CLOSE(40) 
CLOSE(50) 
CLOSE(70) 
CLOSE(80) 
 
17 FORMAT(i3,100f10.2) 
22 FORMAT(i3,100f10.3) 
 
! Calls "post_simulasyon" subroutine 
CALL post(bestever_x,ch,run_say) 
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bit_time=time() 
tot_time=bit_time-bas_time 
tot_saat=tot_time/(60*60) 
tot_dak=(tot_time-tot_saat*60*60)/(60) 
tot_san=(tot_time-tot_saat*60*60-tot_dak*60) 
WRITE (10,*) 'Toplam run zamanı=',tot_saat,'saat',tot_dak,'dakika',tot_san,'saniye' 
CLOSE(10) 
 
100 ENDDO !run_say 
 
OPEN (90,FILE='sonuclar\\sonuclar'//ch//'\best_all.txt') 
OPEN (100,FILE='sonuclar\\sonuclar'//ch//'\avg_all.txt') 
OPEN (110,FILE='sonuclar\\sonuclar'//ch//'\var_all.txt') 
 
DO I=1,gen_num 
WRITE (90,17) I,(best_all(I,J),J=1,total_run) 
WRITE (100,17) I,(avg_all(I,J),J=1,total_run) 
WRITE (110,22) I,(var_all(I,J),J=1,total_run) 
END DO 
 
END program GENETIK_INJLOCX 
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Fonksiyon.f90 
FUNCTION func(x,p,x_num,ch,inj_coef,run_say,penalty_coef) RESULT (cost) 
USE DFLIB 
USE DFPORT 
IMPLICIT NONE 
REAL(8) :: cost, f1, f2, g,Q(20) 
INTEGER :: p,x_num,penalty_coef,A(20),LXY(20,20),I,Z,SAYAC,run_say 
INTEGER(2) result 
REAL(8) ::cp(10),heads(60,60)  
REAL  x(1000,1000),HFB_K(1000),pen,total_q,totalnet_q,inj_coef 
INTEGER tx,HFB(1000),HFB_LXY(1000,1000) 
CHARACTER*5 :: ch 
 
! This part reads *.wel file. 
OPEN (UNIT=7,FILE="101_inj03.wel") 
READ (7,*) (A(I),I=1,2) 
READ (7,*) (A(3))  
DO I=1,A(1) 
READ(7,*) (LXY(I,Z),Z=1,3),Q(I) 
END DO 
CLOSE (UNIT=7,STATUS='KEEP') 
 
! According to runno optimizes well rates or location in an iterative manner. 
IF (MOD(run_say,3).EQ.1) THEN   
 
DO I=1,A(1)  
Q(I)=-1*x(p,I) 
END DO 
Q(6)=x(p,6) 
Q(7)=x(p,7) 
Q(8)=x(p,8) 
 
! According to runno, optimizes well rates or location in an iterative manner. 
ELSE IF (MOD(run_say,3).EQ.2) THEN   
 
DO I=1,3 
LXY(I+5,2)=NINT(x(p,2*I-1)) !injection well y-axes 
LXY(I+5,3)=NINT(x(p,2*I)) !injection well x-axes 
END DO 
 
ELSE IF (MOD(run_say,3).EQ.0) THEN   
 
DO I=1,A(1)   
Q(I)=-1*x(p,I) 
END DO 
 
Q(6)=x(p,6) 
Q(7)=x(p,7) 
Q(8)=x(p,8) 
 
END IF 
 
! Modifies *.wel file. 
OPEN (UNIT=7,FILE="101_inj03.wel") 
WRITE (7,*),A(1),A(2) 
WRITE (7,*),A(3) 
DO I=1,A(1) 
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I) 
21 FORMAT (3i,f12.2) 
END DO 
CLOSE (UNIT=7,STATUS='KEEP') 



 127 

 
! Calls MODFLOW. 
RESULT = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam') 
 
! Modifies *.hed file. 
OPEN (UNIT=8,FILE="101_inj03.hed") 
DO I=1,30 
READ(8,*) (HEADS(I,Z),Z=1,60) 
END DO 
CLOSE (UNIT=8,STATUS='KEEP') 
 
! Calculate penalty values using  
! the potential values at control points. 
cp(1)=(8.0078-heads(15,23)) 
cp(2)=(8.0078-heads(9,29)) 
cp(3)=(8.0078-heads(21,34)) 
cp(4)=(8.0078-heads(6,40)) 
cp(5)=(8.0078-heads(15,42)) 
 
g=0 
IF (MOD(run_say,3).EQ.1) THEN   
DO I=1,5 
g = g+MAX(0.0,cp(I))*MAX(0.0,cp(I)) 
END DO 
 
ELSE IF (MOD(run_say,3).EQ.2) THEN   
DO I=1,5 
g = g+MAX(0.0,-cp(I))*MAX(0.0,-cp(I)) 
END DO 
 
ELSE IF (MOD(run_say,3).EQ.0) THEN  
DO I=1,5 
g = g+MAX(0.0,cp(I))*MAX(0.0,cp(I)) 
END DO 
END IF 
 
OPEN(70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt')     
WRITE(70,*)  SAYAC,g*penalty_coef 
SAYAC=SAYAC+1 
 
! Objective function 
f1=0 
DO I=1,A(1)-3 
f1=f1-Q(I)   
f2=0 
END DO 
 
DO I=A(1)-2,A(1) 
f1=f1-inj_coef*Q(I) 
END DO 
 
IF (MOD(run_say,3).EQ.1) THEN  
cost = MAX(0.0,f1 - penalty_coef * g) 
ELSE IF (MOD(run_say,3).EQ.2) THEN  
cost = MAX(0.0,g) 
ELSE IF (MOD(run_say,3).EQ.0) THEN 
cost = MAX(0.0,f1 - penalty_coef * g) 
END IF 
 
total_q=0 
DO I=1,5 
total_q=total_q+Q(I) 
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END DO 
 
totalnet_q=0 
DO I=1,x_num 
totalnet_q=totalnet_q+Q(I) 
END DO 
 
WRITE (10,8) p,'.',(x(p,i),i=1,x_num),-total_q,-totalnet_q,cost,g 
8 FORMAT (i,a,30f12.2) 
 
RETURN  
END FUNCTION 
 
 
Post_Simulasyon.f90 
SUBROUTINE  Post(bestever_x,ch,run_say) 
USE DFLIB 
USE DFPORT 
IMPLICIT NONE 
INTEGER :: A(20),LXY(20,20),I,Z,d,run_say 
INTEGER(2) result 
REAL bestever_x(30),heads(100,100),KSILON(100,100),HF(100,100) 
REAL ZH(100,100),faytoe,sigma,pfre,pden     
REAL DELY,DELX,Q(20) 
INTEGER host 
CHARACTER*5 :: ch   
 
DELX=7000./60 
DELY=100. 
 
! This part reads *.wel file. 
OPEN (UNIT=7,FILE="101_inj03.wel") 
READ (7,*) (A(I),I=1,2) 
READ (7,*) (A(3))  
DO I=1,A(1) 
READ(7,*) (LXY(I,Z),Z=1,3),Q(I) 
END DO 
CLOSE (UNIT=7,STATUS='KEEP') 
 
!  Decision variables are assigned to Q values. 
IF (MOD(run_say,3).EQ.1) THEN 
DO I=1,A(1) 
Q(I)=-1*bestever_x(I) 
END DO 
 
Q(6)=bestever_x(6) 
Q(7)=bestever_x(7) 
Q(8)=bestever_x(8) 
 
ELSE IF (MOD(run_say,3).EQ.2) THEN  
do I=6,8 
LXY(I,2)=NINT(bestever_x(2*(I-5)-1)) ! Injection well x-axes  
LXY(I,3)=NINT(bestever_x(2*(I-5))) ! Injection well y-axes 
end do 
 
ELSE IF (MOD(run_say,3).EQ.0) THEN 
  
DO I=1,A(1)  
Q(I)=-1*bestever_x(I) 
END DO 
Q(6)=bestever_x(6) 
Q(7)=bestever_x(7) 
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Q(8)=bestever_x(8) 
 
END IF 
 
! This part modifies *.wel file 
OPEN (UNIT=7,FILE="101_inj03.wel") 
WRITE (7,*),A(1),A(2) 
WRITE (7,*),A(3) 
DO I=1,A(1) 
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I) 
21  FORMAT (3i,f12.2) 
END DO 
CLOSE (UNIT=7,STATUS='KEEP') 
 
! This part calls MODFLOW 
RESULT = RUNQQ('c:\modflow\\mf2k.exe','101_inj03.nam') 
 
! Calculate the fay toe value 
pfre=1. 
pden=1.025 
sigma=(pden-pfre)/pfre 
d =25 
faytoe=(1+sigma)*sigma*d*d/2 
 
 
  ! Modifies *.hed file 
OPEN (UNIT=8,FILE="101_inj03.hed") 
DO I=1,30 
READ(8,*) (HEADS(I,Z),Z=1,60) 
END DO 
 
DO I=1,30 
DO Z=1,60 
IF (HEADS(I,Z).LE.0) THEN  
HEADS(I,Z)=0. 
END IF 
END DO 
END DO 
 
DO I=1,30 
DO Z=1,60 
IF (HEADS(I,Z).GT.FAYTOE) THEN 
KSILON(I,Z)=d 
ZH(I,Z)=0 
HF(I,Z)=SQRT(2*HEADS(I,Z)+(1+SIGMA)*D*D) 
 
ELSE 
KSILON(I,Z)=SQRT(2*HEADS(I,Z)/SIGMA/(1+SIGMA)) 
ZH(I,Z)=d-ksilon(I,Z) 
HF(I,Z)=SQRT(2*sigma*HEADS(I,Z)/(1+sigma))+d 
END IF 
 
END DO  
END DO 
CLOSE (UNIT=8,STATUS='KEEP') 
 
! Calculates freshwater head and interface depth using the potential values. 
OPEN(23,file='sonuclar\\sonuclar'//ch//'\wells.wel')   
 
WRITE (23,*),A(1),A(2) 
WRITE (23,*),A(3) 
DO I=1,A(1) 
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WRITE (23,21),(LXY(I,Z),Z=1,3),Q(I) 
END DO 
CLOSE (UNIT=23,STATUS='KEEP') 
 
OPEN(17,FILE='sonuclar\\sonuclar'//ch//'\ZH.hed')   
WRITE (17,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60) 
DO I=1,30 
WRITE (17,13) DELY*(I-1)+DELY/2,(ZH(I,Z),Z=1,60) 
13  format (1000f8.2) 
END DO 
CLOSE (UNIT=17,STATUS='KEEP') 
 
OPEN(19,FILE='sonuclar\\sonuclar'//ch//'\HF.hed') 
WRITE (19,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60) 
DO I=1,30 
WRITE (19,13) DELY*(I-1)+DELY/2,(HF(I,Z),Z=1,60) 
END DO 
CLOSE (UNIT=19,STATUS='KEEP') 
 
 
OPEN(21,FILE='sonuclar\\sonuclar'//ch//'\FAY.hed') 
WRITE (21,13) 0.00,(DELX*(Z-1)+DELX/2,z=1,60) 
DO I=1,30 
WRITE (21,13) DELY*(I-1)+DELY/2,(HEADS(I,Z),Z=1,60) 
END DO 
CLOSE (UNIT=19,STATUS='KEEP') 
 

END subroutine post
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APPENDIX B 
 
 

B. SA CODE 
 
 
 
 
Main_SA.f90 
PROGRAM KORKUT_SA 
INTEGER SEED,I,J,K,x_num,run_say,total_run,k1,runno,t_update,c 
REAL x(30),xnew(30),best_x(30),f,fnew,fmax,up_bound(30) 
REAL low_bound(30),Step_length(30),T,T_coef,T0 !Maximum dec.variable is 30. 
REAL penalty_coef,ratio,inj_coef 
INTEGER num_accepted,num_accepteDim(30),num_unaccepted, 
INTEGER num_ofbounds,num_better,axiter_say,Outiter_say,Initer_say,totiter_say 
INTEGER Variable_no 
CHARACTER*3 :: cg 
CHARACTER*5 :: ch 
 
totiter_say=0 
seed=12312586   
bas_time=time() 
 
OPEN(UNIT=17,FILE='c:\Korkut_GA\\RUNNO.txt')   
READ (17,*) RUNNO 
CLOSE (17) 
OPEN(UNIT=18,FILE='c:\Korkut_GA\\RUNNO.txt',status='replace') 
WRITE (18,*) RUNNO+1 
CLOSE(18) 
WRITE (ch,2000) RUNNO 
2000  FORMAT(I5) 
 
!  Reads input file 
OPEN(5,file='input.txt') 
READ (5,*) total_run  
READ (5,*) x_num 
DO k1=1,x_num 
READ (5,*) low_bound(k1) 
READ (5,*) up_bound(k1) 
ENDDO 
DO k1=1,x_num 
READ (5,*) x(k1) 
ENDDO 
DO k1=1,x_num 
READ (5,*) Step_length(k1) 
ENDDO 
READ (5,*) T 
READ (5,*) T_coef 
READ (5,*) Initer_say 
READ (5,*) Outiter_say 
READ (5,*) maxiter_say 
READ (5,*) c 
READ (5,*) penalty_coef 
READ (5,*) inj_coef 
 
RESULT = MAKEDIRQQ('sonuclar\sonuclar'//ch//'') 
 
OPEN(10,file='sonuclar\\sonuclar'//ch//'\output.txt') 
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WRITE(10,*) 'PROGRAM CIKTILARI' 
OPEN(20,file='sonuclar\\sonuclar'//ch//'\f.txt') 
WRITE(20,*) 'f degerleri' 
OPEN(30,file='sonuclar\\sonuclar'//ch//'\eniyi_f.txt') 
WRITE(30,*) 'EN İYİ DEGERLER' 
WRITE(30,*) 'Iterasyon sayısı','En iyi cost','Sicaklik' 
OPEN(40,file='sonuclar\\sonuclar'//ch//'\kontrol.txt') 
OPEN(50,file='sonuclar\\sonuclar'//ch//'\steps.txt') 
OPEN(60,file='sonuclar\\sonuclar'//ch//'\eniyi_xset.txt') 
WRITE (10,*) 'Total run sayisi=',total_run  
WRITE (10,*) 'Değişken sayisi=',x_num 
DO k1=1,x_num 
WRITE (10,*) 'Low bound=',low_bound(k1) 
WRITE (10,*) 'Upper bound=',up_bound(k1) 
ENDDO 
DO k1=1,x_num 
WRITE (10,*) 'Variable',k1,x(k1) 
ENDDO 
DO k1=1,x_num 
WRITE (10,*) 'Initial Steplengths=',Step_length(k1) 
ENDDO 
 
WRITE (10,*) 'Initial Temperature=',T 
WRITE (10,*) 'Temperature coefficient=',T_coef 
WRITE (10,*) 'Inner iteration number=',Initer_say 
WRITE (10,*) 'Outer iteration number=',Outiter_say 
WRITE (10,*) 'Maximum iteration number=',maxiter_say 
WRITE (10,*) 'Steplength adjustment coeff.=',c 
WRITE (10,*) 'Penalty coefficient=',penalty_coef 
WRITE (10,*) 'Seed number=',seed 
WRITE (10,*) 'Inj coef=',inj_coef 
WRITE (10,*) 
WRITE (10,*) 
WRITE (10,*) 
 
!!!!!!!!!!!!!!!!!!MAIN LOOP!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
DO 100 run_say=1,total_run  
totiter_say=0 
seed=seed-100 
num_accepted=0 
num_unaccepted=0 
num_ofbounds=0 
num_better=0 
DO I=1,x_num 
num_accepteDim(I)=0 
ENDDO 
T0=T 
 
CALL SRAND(seed)     
totiter_say=totiter_say+1 
f = func(x,x_num,ch,penalty_coef,totiter_say,inj_coef) 
DO i=1,x_num 
WRITE(10,*) 'xint=',x(i),'fint=',f 
ENDDO 
WRITE(10,*) 
WRITE(20,*) totiter_say,f 
 
fmax=f 
DO k1=1,x_num 
best_x(k1)=x(k1) 
ENDDO 
WRITE(30,*) totiter_say,fmax,T 
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WRITE(50,*) 'xnew(i)-x(i)','   step_length(i)' 
 
DO 325 K=1,Outiter_say 
DO 225 J=1,Initer_say 
DO 125 Variable_no=1,x_num 
 
DO I = 1, x_num 
IF (I.EQ.Variable_no) THEN 
! Step length is multiplied with a random number btwn. -1 and 0. 
xnew(i)=x(i)+(RAND()*2-1)*step_length(i)  
ELSE 
xnew(i)=x(i) 
ENDIF 
 
! If new point is out of boundaries, get a new one. 
IF((xnew(i).LT.low_bound(i)) .OR. (xnew(i).GT.up_bound(i))) THEN   
xnew(i)=low_bound(i)+(up_bound(i)-low_bound(i))*RAND() 
num_ofbounds=num_ofbounds+1 
ELSE 
ENDIF 
WRITE(50,*) xnew(i)-x(i),step_length(i) 
END DO 
WRITE(50,*)  
totiter_say=totiter_say+1 
 
! Call function subroutine. 
fnew = func(xnew,x_num,ch,penalty_coef,totiter_say,inj_coef) 
 
! Control if the new solution is the best solution. 
IF (fnew.GT.fmax) THEN ! New optimum 
fmax=fnew 
num_better=num_better+1 
DO i=1,x_num 
best_x(i)=xnew(i) 
ENDDO 
WRITE(30,*) totiter_say,fmax,T 
ENDIF 
DO i=1,x_num 
WRITE(10,*) 'xnew=',xnew(i),'fnew=',fnew 
ENDDO 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
! If the new solution is a better solution, accept it. 
IF (fnew.GT.f) THEN 
num_accepted=num_accepted+1 
num_accepteDim(Variable_no)=num_accepteDim(Variable_no)+1 
WRITE(10,*) 'Since fnew>f (Bttr thn prvs sltn, f=fnew, The new solution is ACCEPTED' 
f=fnew 
DO k1=1,x_num 
x(k1)=xnew(k1) 
ENDDO 
ELSE     ! Else, accept according to Metropolis criteria.  
r=RAND() 
IF (r.le.EXP(-(f-fnew)/T)) THEN 
WRITE(10,*) 'fnew<f, but since random num.',r,' is less than exp-(f-fnew)/T)=',    & 
EXP(-(f-fnew)/T),'f=fnew, The new solution is accepted' 
WRITE(10,*) 'Temperature T=',T,'f-fnew=',f-fnew 
num_accepted=num_accepted+1 
num_accepteDim(Variable_no)=num_accepteDim(Variable_no)+1 
f=fnew 
DO k1=1,x_num 
x(k1)=xnew(k1) 
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ENDDO 
ELSE      
WRITE(10,*) 'Since fnew<f and r<exp(...), f=f  The new soltn is not accepted' 
num_unaccepted=num_unaccepted+1 
ENDIF 
ENDIF 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
DO i=1,x_num 
WRITE(10,*) 'x=',x(i),'f=',f 
ENDDO 
WRITE(10,*) 
WRITE(20,*) totiter_say,f 
 
125 END DO 
225 END DO 
 
WRITE(40,*) 'Temperature=',T 
WRITE(40,*) 'Temperature update sayisi=',t_update 
WRITE(40,*) 'The number of better solutions=',num_better 
WRITE(40,*) 'The number of accepted but worse solutions=',num_accepted 
WRITE(40,*) 'The number of unaccepted and worse solutions=',num_unaccepted 
WRITE(40,*) 'The best solution=',fmax 
 
DO i=1,x_num 
WRITE(40,*) 'best_x=',best_x(i) 
ENDDO 
WRITE(40,*) 
 
! The ratio of the no. of acptd.  newcomers to the no of  total eval.  is to be around 0.5. 
DO I=1,x_num 
ratio=num_accepteDim(I)*1./Initer_say 
WRITE(50,*) 'ratio for',i,num_accepteDim(I),Initer_say,ratio 
IF (ratio.ge.0.6) then 
step_length(I)=step_length(I)*(1+c*(ratio-0.6)/0.4) 
ELSE IF (ratio.le.0.4) then 
step_length(I)=step_length(I)/(1+c*(0.4-ratio)/0.4) 
END IF 
IF (step_length(I).gt.up_bound(I)+low_bound(I)) then 
step_length(I)=up_bound(I)-low_bound(I) 
END IF 
END DO 
 
! Update temperature. 
T=T*T_coef 
t_update=t_update+1 
 
! Reset values 
seed=seed-10000 
num_accepted=0 
num_unaccepted=0 
num_ofbounds=0 
num_better=0 
DO I=1,x_num 
num_accepteDim(I)=0 
ENDDO 
 
! After temperature update, continue with the best-ever solution. 
f=fmax 
DO i=1,x_num 
x(i)=best_x(i) 
ENDDO 
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325 END DO 
 
WRITE(10,*) 'Temperature update sayısı=',t_update 
WRITE(10,*) 'The number of better solutions=',num_better 
WRITE(10,*) 'The number of accepted but worse solutions=',num_accepted 
WRITE(10,*) 'The number of unaccepted and worse solutions=',num_unaccepted 
WRITE(10,*) 'The best solution=',fmax,'found at iteration no' 
 
DO i=1,x_num 
WRITE(10,*) 'best_x=',best_x(i) 
WRITE(60,*) 'best_x=',best_x(i) 
ENDDO 
 
100 ENDDO  
!!!!!!!!!!!!!!MAIN LOOP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
END PROGRAM 
 
 
Fonksiyon.F90 
FUNCTION func(x,x_num,ch,penalty_coef,totiter_say,inj_coef) RESULT (cost) 
USE DFLIB 
USE DFPORT 
IMPLICIT NONE 
REAL(8) :: cost, f1, f2, g,Q(20) 
INTEGER :: p,x_num,penalty_coef,A(20),LXY(20,20),I,Z,SAYAC,run_say,totiter_say 
INTEGER(2) result 
REAL(8) ::cp(10),heads(60,60) 
REAL  x(30),HFB_K(1000),pen,total_q,inj_coef 
INTEGER tx,HFB(1000),HFB_LXY(1000,1000) 
CHARACTER*5 :: ch 
 
! This part reads the *.wel file 
OPEN (UNIT=7,FILE="101_INJ03.WEL") 
READ (7,*) (A(I),I=1,2) 
READ (7,*) (A(3)) 
DO I=1,A(1) 
READ(7,*) (LXY(I,Z),Z=1,3),Q(I) 
END DO 
CLOSE (UNIT=7,STATUS='KEEP') 
 
! Decision variables are assigned to well values. 
DO I=1,A(1)-3   
Q(I)=-1*x(I) 
END DO 
 
Q(6)=x(6) 
Q(7)=x(7) 
Q(8)=x(8) 
 
DO I=6,8 
LXY(I,2)=NINT(x(2*I-3)) ! Injection well y-axes. 
LXY(I,3)=NINT(x(2*I-2)) ! Injection well x-axes. 
END DO 
 
OPEN (UNIT=7,FILE="101_INJ03.WEL") 
WRITE (7,*),A(1),A(2) 
WRITE (7,*),A(3) 
DO I=1,A(1) 
WRITE (7,21),(LXY(I,Z),Z=1,3),Q(I) 
21 FORMAT (3i,f12.2) 
END DO 
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CLOSE (UNIT=7,STATUS='KEEP') 
 
! Calls Modflow.exe. 
result = RUNQQ('c:\modflow\\mf2k.exe','101_INJ03.nam') 
 
! This part reads *.hed file. 
OPEN (UNIT=8,FILE="101_INJ03.hed") 
DO I=1,30 
READ (8,*) (HEADS(I,Z),Z=1,60) 
END DO 
CLOSE (UNIT=8,STATUS='KEEP') 
 
! Calculate penalty values using the potential values at control points. 
cp(1)=(8.0078-heads(15,23)) 
cp(2)=(8.0078-heads(9,29)) 
cp(3)=(8.0078-heads(21,34)) 
cp(4)=(8.0078-heads(6,40)) 
cp(5)=(8.0078-heads(15,42)) 
 
g=0 
DO I=1,5 
g = g+max(0.0,cp(I))*max(0.0,cp(I)) 
END DO 
 
OPEN (70,file='sonuclar\\sonuclar'//ch//'\penaltilar.txt')     
WRITE(70,*)  totiter_say,g,g*penalty_coef 
 
!  Objective function 
f1=0 
DO I=1,A(1)-3 
f1=f1-Q(I) 
f2=0 
END DO 
 
DO I=A(1)-2,A(1) 
f1=f1-inj_coef*Q(I) 
END DO 
 
cost = max(0.0,f1 - penalty_coef * g) 
 
RETURN  
END FUNCTION  
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