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ABSTRACT 

 

 

AUTOMATIC RECONSTRUCTION OF PHOTOREALISTIC 3-D BUILDING 

MODELS FROM SATELLITE AND GROUND-LEVEL IMAGES 

 

 

 

 

Sümer, Emre 

Ph.D., Department of Geodetic and Geographic Information Technologies 

   Supervisor: Prof. Dr. Volkan Atalay 

   Co-Supervisor: Assoc. Prof. Dr. Mustafa Türker 

 

March 2011, 229 pages 

 

 

This study presents an integrated framework for the automatic generation of 

the photorealistic 3-d building models from satellite and ground-level 

imagery. First, the 2-d building patches and the corresponding footprints are 

extracted from a high resolution imagery using an adaptive fuzzy-genetic 

algorithm approach. Next, the photorealistic facade textures are automatically 

extracted from the single ground-level building images using a developed 

approach, which includes facade image extraction, rectification, and 

occlusion removal. Finally, the textured 3-d building models are generated 

automatically by mapping the corresponding textures onto the facades of the 

models. 

 

The developed 2-d building extraction and delineation approach was 

implemented on a selected urban area of the Batikent district of Ankara, 

Turkey. The building regions were extracted with an approximate detection 

rate of 93%. Moreover, the overall delineation accuracy was computed to be 

3.9 meters. The developed concept for facade image extraction was tested 

on two distinct datasets. The facade image extraction accuracies were 

computed to be 82% and 81% for the Batikent and eTrims datasets,
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respectively. As to rectification results, 60% and 80% of the facade images 

provided errors under ten pixels for the Batikent and eTrims datasets, 

respectively. In the evaluation of occlusion removal, the average scores were 

computed to be 2.58 and 2.28 for the Batikent and eTrims datasets, 

respectively. The scores are ranked between 1 (Excellent) to 6 (Unusable). 

The modeling of the total 110 single buildings with the photorealistic textures 

took about 50 minutes of processor running time and yielded a satisfactory 

level of accuracy.   

 

Keywords: Building Detection, Facade Texture, Geometric Rectification, 

Occlusion Removal, 3-D Modeling  
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ÖZ 
 
 

FOTOGERÇEKÇ� 3-B B�NA MODELLER�N�N UYDU VE YER SEV�YES� 
GÖRÜNTÜLER�NDEN OTOMAT�K OLARAK GER�ÇATILIMI 

 
 
 
 

Sümer, Emre 

Doktora, Jeodezi ve Co�rafi Bilgi Teknolojileri E.A.B.D 

            Tez Yöneticisi: Prof. Dr. Volkan Atalay 

             Ortak Tez Yöneticisi: Doç. Dr. Mustafa Türker 

 

Mart 2011, 229 sayfa 

 

 

Bu çalı�mada, uydu ve yer seviyesinden çekilmi� görüntülerden fotogerçekçi 

üç boyutlu bina modellemesini otomatik olarak yapmayı sa�layan bütünle�ik 

bir yapı önerilmektedir. �lk önce, yüksek çözünürlüklü uydu görüntülerinden 

uyarlamalı bulanık-genetik algoritma yakla�ımı kullanılarak iki boyutlu bina 

bölge ve ayak izi çıkarımı gerçekle�tirilir. Daha sonra, tekli yersel bina 

görüntüsünden; yüz görüntüsü çıkarımı, rektifikasyon ve engel giderme 

adımlarından olu�an bir yakla�ım kullanılarak fotogerçekçi yüz dokuları 

otomatik olarak çıkarılır. Son olarak, ilgili yüz dokularının model cephelerine 

kaplanması ile doku kaplı üç boyutlu modeller otomatik olarak üretilir. 

 

�ki boyutlu bina bölge ve ayak izi çıkarımı yakla�ımı Türkiye’de Ankara’nın 

Batıkent bölgesinden seçilmi� kentsel bir alan üzerinde uygulanmı�tır. Bina 

bölgeleri yakla�ık %93’lük bir tespit oranı ile çıkarılmı�tır. Bina sınırlarının 

çıkarılma do�rulu�u ise 3.9 metre olarak hesaplanmı�tır. Yüz dokularının 

elde edilmesine yönelik geli�tirilen yakla�ım iki farklı veri kümesi üzerinde 

test edilmi�tir. Yüz dokusu çıkarımı do�rulukları Batikent ve eTrims veri 

kümeleri için sırasıyla %82 ve %81 olarak hesaplanmı�tır. Rektifikasyon 

sonuçlarına göre, yüz dokularının Batikent veri kümesi için %60’ının ve 
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eTrims veri kümesi için %80’inin 10 pikselin altında hataya sahip oldu�u 

tespit edilmi�tir. Engel giderme yakla�ımının de�erlendirilmesinde ortalama 

skorlar Batikent veri kümesi için 2.58, eTrims veri kümesi için 2.28 olarak 

hesaplanmı�tır. Bu skorlar 1 (Kusursuz) ila 6 (Kullanılamaz) de�erleri 

arasında derecelendirilmektedir. Toplamda 110 binanın fotogerçekçi olarak 

modellenmesi 50 dakikalık bir i�lemci yürütme süresi içerisinde ve tatmin 

edici bir ba�arı düzeyi ile gerçekle�tirilmi�tir. 

 

Anahtar Kelimeler: Bina Tespiti, Yüz Dokusu, Geometrik Rektifikasyon, Engel 

Giderme, 3-B Modelleme 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
 
 

This study deals with the photorealistic 3-d modeling of urban buildings from 

space and ground level images. In the first section, the definition of the 

problem and the motivations are given. This is followed by the objectives and 

contributions of the study. Next, the study area is described together with the 

data used to test the developed integrated approach. After that, the software 

and hardware requirements are presented. In the final section, the thesis 

chapters are summarized as an outline. 

 

 

1.1. Problem Definition and Motivations 

 

Since the majority of the population lives in urban areas, many critical 

management issues involving geographical analysis such as urban planning, 

monitoring urban change and growth, civil protection, and environmental 

impact studies are required to be dealt with. In urban areas, land cover and 

land use change rapidly due to new construction of the buildings, roads, and 

other man-made objects. Therefore, monitoring these changes becomes an 

important issue and many Geographic Information System (GIS) applications 

suffer from the lack of timely land cover/use information. The geographic 

databases should be regularly updated with the changes occur on land 

surface. In order to do that the extraction of geographic features has long 

been performed manually by human operators, with high accuracy and 

reliability. However, manual delineation is a very time consuming operation 

and requires qualified people. For this reason, the automated object 
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extraction techniques from digital imagery have become a key concern for 

the modern geospatial applications. 

 

The recent advances in the quality of data acquisition systems along with the 

desire to analyze data have improved the development of new image 

processing techniques for automatic object extraction and reconstruction. 

There exist many techniques to efficiently extract individual objects from 

images for the purpose of spatial analysis and object retrievals from large-

scale image databases as summarized in Baltsavias (2004) and Mayer 

(2008). In these applications, the main interest was on man-made structures, 

especially the buildings. 

 

One of the major research areas in urban remote sensing is the detection of 

buildings. At the first glance, buildings may seem to be simple objects, which 

can be easily identified and extracted. However, automatic extraction of 

buildings from large-scale images must handle several difficulties caused by 

different viewpoints and being in a complex shape and size. Building 

footprints are one of the fundamental GIS data components and they have 

been shown to be extremely useful in urban planning, infrastructure 

development, construction of telecommunication lines, pollution modeling, 

disaster planning, and many other kinds of urban simulations. In addition, 

building footprints not only localize the buildings, but also extract valuable 

information about the structure of building roofs and vertical walls that may 

not be visible to aerial sensors.  

 

In parallel, with the rapid developments in information technologies, the term 

“visuality” has become an important fact. This is due to the fact that 

visualization of 3-d objects greatly improves the ability of human perception. 

Particularly, in geoscience applications, the spatial objects can be viewed 

from different perspectives or they can be examined through walking or flying 

using the virtual reality technology. Among the virtual worlds, virtual cities 

have become a popular phenomenon. A virtual city is composed of solid 3-d 

models of buildings, vegetation, terrain, and many more spatial objects. 
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Buildings are the most essential components of a virtual city model. The 3-d 

geometry of the buildings can be derived from the 2-d footprints of the 

buildings using various photogrammetic methods or they can be generated 

from ground-based laser scanning. Texturing of the building models also 

helps visualize the final model much better than a simple wireframe 

representation. Building textures are commonly captured from ground-based 

or occasionally from airborne remote sensing imagery. The high-quality 

texture acquisition and mapping is still a challenging task and serves as an 

important step for the construction of 3-d city models. Therefore, to provide 

more realistic views it is needed to extract “photorealistic” textures from 

building facade images. This is achieved by satisfying the elements of 

photorealism, such as texture/color fidelity, proportion, scale, edge transition, 

object relationship, etc. The vast majority of those elements are tightly 

connected with the occlusions, which can be identified as foreground objects 

that partially or completely obstruct building facades standing in the 

background. Since occlusions may cause lack of quality in the texturing 

procedure, the extraction and mapping of the occlusion-free facade textures 

have become an important priority. 

 

 

1.2. Objectives and Contributions 

 

The main objective of the present study is to develop an integrated 

framework for the automatic reconstruction of photorealistic 3-d building 

models from satellite and ground-level imagery. The supporting objectives 

can be listed as follows:   

 

• Developing an approach for the automatic extraction of building areas 

and their corresponding 2-d footprints from high resolution space 

imagery based on an adaptive fuzzy-genetic technique. 

 

• Automatic 3-d reconstruction of the buildings from 2-d footprints and 

the normalized digital elevation model (nDSM). 
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• Developing approaches for the automatic extraction of photorealistic 

building facade textures from ground-level photos by employing 

repetitive Watershed segmentation, image rectification, and texture 

cropping.  

 

• Developing an approach for the semi-automatic removal of the 

occlusions based on a correlation-based image matching technique. 

 

• Developing an approach that employs GPS coordinates and 

corresponding bearings of the photo shooting points for the automatic 

texture assignment and mapping of the occlusion-free images to 

building facades. 

 

This study focused on those aspects that have received no or less attention 

in previous works. Specifically, the following contributions are listed: 

 

• For building delineation, a genetic algorithm approach was adapted in 

order to achieve higher detection rates when compared with the 

conventional supervised classifiers. 

 

• An adaptive-fuzzy extension was integrated with the conventional 

genetic algorithm in an attempt to improve the convergence rate by 

adjusting the genetic algorithm parameters. 

  

• A repetitive watershed segmentation approach was introduced to 

extract more accurate texture information from the building facades by 

reducing the over-segmentation.  

 

• A fully automated image rectification procedure was developed to 

rectify the building facade images that include perspective distortions. 

 

• The removal of occlusions that block the building facades was 

achieved from a single ground-level image using a developed semi-
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automated approach, which provides the means of seamless texture 

generation. 

 

• To achieve fast and reliable texture mapping, an automatic approach 

that utilizes ground coordinates and bearings was developed for 

associating the building facades with their corresponding textures. 

 

• For data acquisition, the utilization of low-cost equipments (a GPS 

receiver and a mid-price digital camera) was presented in the 

development of 3-d building models. 

 

• Under certain assumptions, the generation of 3-d photorealistic 

building models was achieved using the minimum number of ground-

level images.   

 

• The overall study integrates the extraction of building footprints, 

retrieval of photorealistic facade textures, and the modeling of the 

textured buildings in 3-d with a satisfactory level of accuracy and the 

computational performance.  

 

 

1.3. Study Area and Data Description 

 

The developed methodology was implemented in a selected urban area of 

the Batikent district of the city of Ankara, Turkey. Batikent is a planned and 

regularly developed settlement area, which contains various types of 

buildings with different shapes and usage, such as residence, industrial, 

commercial, social, and cultural facilities. It is located on the western corridor 

of Ankara, lying over an area about 10,000,000 square meters. The district 

was a housing project of the 1980s, which was the biggest mass-housing 

project accomplished through cooperatives in Turkey. The project was 

planned for 50,000 housing units and 250,000 persons (European 

Resettlement Fund, 2007). The Batikent Housing Cooperation Union was 
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then founded and the area changed greatly by 1995. Figure 1.1 shows the 

study area with a 2-level map. Figure 1.1(a) illustrates the map showing the 

districts of Ankara, while (b) shows the panchromatic image of the whole 

study area captured by IKONOS. The red rectangle denotes the sub-region 

used in testing the developed approach at present study. 

 

The data set used includes the IKONOS stereo panchromatic and pan-

sharpened images in “Geo” data format acquired on August 4, 2002. The 1-m 

resolution pan-sharpened IKONOS image of a selected sub-region is 

illustrated in Figure 1.2. 

 

 

(a) 

 

(b) 

Figure 1.1. The study area. 
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Figure 1.2. Pan-sharpened image of the sub-region used in the present study. 

 

In addition to image data set, the existing digital vector database that 

contains 3-d lines and height points were also utilized to generate a digital 

terrain model (DTM). The 1:1000-scaled digital vector data, which was 

compiled by the Ankara Greater Municipality, General Directory of Water and 

Sewer System (ASKI) in 1999, covers the metropolitan area of Ankara. 

Furthermore, a digital topographic surface model (DSM), which was 

generated from the stereo pairs of the IKONOS satellite images using the 

OrthoEngine Module of PCI Geomatica image processing software, was also 

utilized. Both the DTM and DSM data sets were prepared by Koc San (2009) 

in a former study conducted in the department. Figure 1.3 illustrates the DTM 

and DSM data sets covering the study area.  
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(a) 

  

(b) 

 

 

 

 

 

 

 

 

 

Figure 1.3. (a) DTM and (b) DSM of the study area.  

 

A digital surface model (DSM) includes the objects with their heights above 

the ground level and the topography, while a digital terrain model is an 

elevation model of the landscape that does not include above ground objects. 

To be able to estimate the heights of the man made objects over the terrain, 

a normalized digital surface model (nDSM) was generated by subtracting 

DTM from DSM. Then, a threshold (3 m) was applied to nDSM to separate 

the man made objects. As illustrated in Figure 1.4, the values above 3 m 

represent the building areas. The workflow for the nDSM generation and the 

generated nDSM are shown in Figures 1.5 and 1.6, respectively. 
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Figure 1.4. The generation of nDSM:. The gray areas represent the 3-d features after   

applying the threshold (Koc San, 2009). 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The workflow for generating the normalized digital surface model (nDSM) (Koc 

San, 2009). 
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Figure 1.6. The generated nDSM of the study area. 

 

One other data source used in the study consists of the ground level images. 

They were employed for the extraction of the facade textures of the building 

models. At present study two sets of ground-level images were used. The 

first set of photos (15 in total) belongs to a sub-area selected in the Batikent 

district. These photos were acquired by a hand-held digital camera in a clear-

sky day on January 9th, 2010. The coordinates and the bearings of the photo 

shooting points were also measured by a handheld GPS receiver. The 

scenes from the ground-level data collection procedure are shown in Figure 

1.7. Several ground-level building facade images collected in the Batikent 

district are illustrated in Figure 1.8. 



11 

 

         

 

Figure 1.7. Scenes from the ground-level data collection process. 

 

 

   

   

   

   

   

 

Figure 1.8. The facade images captured in the Batikent district. 
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The second data set includes the ground level images (5 in total) obtained 

from eTrims image database, which was created by Kor� and Förstner 

(2009) along with the members of the eTRIMS consortium. The database 

contains annotated RGB-images of building facades over a hundred 

buildings captured in several major European cities. The ground truth data is 

also provided to serve as a basis for the evaluation and comparison of 

supervised learning approaches to image interpretation. The images selected 

from eTrims dataset are presented in Figure 1.9. 

 

     

 

Figure 1.9. The facade images taken from eTrims image database. 

 

 

1.4. Software and Hardware Requirements 

 

All the implementations and processes were carried out using the 

commercial software packages. The implementations of the proposed 

methodologies were fully performed using the MATLAB programming 

environment. MATLAB, which stands for “MATrix LABoratory”, is a numerical 

computing environment and fourth-generation programming language 

(Matlab online documentation, 2010). It allows matrix manipulations, plotting 

of functions and data, implementation of algorithms, and creation of user 

interfaces. Besides, it provides interfacing with programs written in other 

languages including C, C++, and Fortran. MATLAB contains various 

toolboxes, which are specialized collections of M-files (MATLAB language 

programs) built for solving particular classes of problems. In the present 

study, Image Processing Toolbox™ was widely used in many operations for 

processing, analysis, and visualization of images along with the algorithm 

development. The Virtual Reality Toolbox™ was also employed in the 
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generation of 3-d building models. This toolbox lets the user view and 

interacts with dynamic system simulations in a 3-d virtual reality environment 

(Matlab online documentation, 2010).  

 

The Virtual Reality Toolbox™ can be integrated with virtual reality modeling 

language (VRML) nodes using the structured programming ability of 

MATLAB. VRML is a standard file format used in the representation of the 3-

d interactive vector graphics. GeoVRML, used in this study, is an extended 

version of VRML. It is designed to support geographic applications such as 3-

d terrain modeling, urban planning, GPS data visualizations, etc. This 

standard is an official working group of the Web3D Consortium formed in 

1998 and aims to represent geographic data using the VRML (Reddy et al., 

2001).  

 

The generated 3-d models were visualized using the “Cortona” viewer. This 

viewer works as a VRML plug-in for the widely used internet browsers, such 

as Internet Explorer and Mozilla Firefox. It is not only a viewer but also it 

allows a wide-range of 3-d applications spanning from the visualization of the 

scientific data to advanced 3-d online services. The navigation modes of 

“flying”, “walking” and “studying” are available in Cortona together with the 

features, such as plan, pan, turn, and roll (Cortona3D Viewer User’s Guide, 

2009). The interface of the basic functionalities is illustrated in Figure 1.10.   

 

 

 

 

 

 

 

 

 

Figure 1.10. The screenshot of the Cortona 3-d toolbar. 
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GIMP is the other software package used in the present study. It is a free 

software for raster graphics editor, which is primarily used as an image 

retouching and editing tool. GIMP also accomplishes the fundamental image 

operations, such as resizing, editing, creating photos, combining multiple 

images, and conversion between different image formats (GNU Image 

Manipulation Program, 2010). In this study, the reference data needed for 

facade texture extraction and rectification were generated using the GIMP 

software. 

 

The PCI Geomatica software was also used in the current study. PCI 

Geomatica is a complete and integrated desktop software that features 

remote sensing, digital photogrammetry, geospatial analysis, map 

production, mosaicing, and automated product systems capabilities. It also 

enables users to apply imagery in support of a wide range of applications 

such as the environment, aerospace and defense industries, and satellite 

receiving stations (PCI Geomatics, 2010). In the current study, PCI 

Geomatica was utilized in determining the building heights from nDSM.  

 

In addition to commercial software packages used, two fundamental 

hardware equipments were employed for data acquisition. Samsung WB 500 

digital camera having 10.2 mega pixels resolution and 10x optical zoom lens 

was used for collecting the ground-level building facade images (Figure 

1.11). This digital camera has a focal length starting at 24mm making it one 

of the widest lenses ever found on a compact digital camera. Compared with 

the other digital cameras with longer zoom lenses, this model has been 

packed into a compact body size (Samsung WB500 Review, 2009).  
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Figure 1.11. Samsung WB 500 digital camera. 

 

The Magellan Explorist XL handheld GPS receiver with 3-meter position 

accuracy was used for measuring the coordinates and bearings of the photo 

shooting points (Figure 1.12). This device has a practical usage that boasts a 

high contrast color TFT screen, a built-in compass, plus maps and 

expandability. Moreover, it has an ability to store an unlimited number of 

waypoints, routes and track logs through SD-card memory expansion. The 

device also possesses an advanced PC-style file management system and 

high-speed USB port allows users to download and access compatible 

Magellan mapping software (Magellan Basic User Manual, 2006). 

 

 

 

Figure 1.12. Magellan Explorist XL handheld GPS receiver.  

�
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1.5. Organization of the Thesis 

 

This thesis is composed of eight chapters. The next chapter (chapter 2) 

provides the background information and the literature review about 2-d 

building acquisition, 3-d modeling, facade texture acquisition, and mapping of 

buildings in terms of data requirements and the methodology.  

 

The overall methodology, which comprises the inputs, outputs, and the 

proposed approaches of the framework, is presented in Chapter 3. Besides, 

the developed software PhotoREalistic BUilding Modeling (PREBUM) is 

introduced. The panels and the menu items that the main graphical user 

interface of PREBUM contains are shown with the snapshots.  

 

In chapter 4, the approaches developed for 2-d building extraction and 

delineation from high-resolution satellite imagery are presented. First, the 

genetic algorithm-based adaptive-fuzzy 2-d building extraction approach is 

given. Then, the assessment of the accuracy is explained. Second, the 2-d 

delineation approach, which is carried out based on image geometry and 

morphology, is emphasized. This is followed by the explanation of the 

accuracy assessment method based on positional accuracy. 

  

Chapter 5 presents the building facade texture acquisition approach. It is 

initiated with a facade segmentation stage using the watershed transform. 

This is followed by the description of the automatic technique, which was 

developed for the rectification of the extracted facade images. Then, the 

occlusion-removal, which employs an image matching algorithm based on 

the correlation and post-processing stages, is provided. The methods used 

for assessing the accuracies are also presented.    

 

In chapter 6, the 3-d modeling and texture mapping procedures are 

discussed. First, the generation of the untextured 3-d solid models is 

described. Then, the texture selection method based on GPS coordinates is 

explained along with the mapping procedures of the facades and roofs. 
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Finally in this chapter, the automatically generated photorealistic 3-d building 

models are presented. 

 

In the next chapter (chapter 7), the experimental results and the performance 

issues of the developed approaches are given in detail. In addition, the 

discussions of the results are emphasized by presenting the shortcomings 

and the special cases that may make the approach fail. 

 

The final chapter concludes the developed approaches and contains the 

recommendations that arise from this study. 
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CHAPTER 2 
 
 
 
 

BACKGROUND AND PAST STUDIES 
 
 
 
 
 
 

In this chapter, first the feature extraction basics related to various remote 

sensing technologies are given. Next, the past studies, which were 

conducted in the field of 2-d building extraction and 3-d modeling, are 

presented. Finally, the literature review about building texture acquisition and 

mapping is given. The occlusion removal techniques and the extraction of the 

facade textures are also described in this section. All these studies are 

classified from past to present with respect to different data sources. 

 

 

2.1. Feature Extraction from Remote Sensing Images 

 

In pattern recognition, feature extraction is defined as the transformation of 

the input data into the set of features. If the extracted features are carefully 

chosen, it is expected that the feature set extracts the relevant information 

from the input data in order to perform the desired task. Feature extraction 

can be used in the area of image processing, which involves algorithms to 

detect and isolate various desired portions or shapes (features) of a digital 

image. Extraction of geographic features, such as building footprints, roofs or 

facade textures is one of the practical applications of the geographic feature 

extraction process. It simply consists of the differentiation of the object 

(foreground region) from their surroundings (background region). 

 

Large volumes of remotely-sensed data are being collected by an increasing 

number of sophisticated airborne, spaceborne or ground-based sensor 

systems. These data can be processed and analyzed manually and/or 
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automatically to extract specific features of interest. In the case of automatic 

building feature extraction, optimal spatial resolution, high spectral and 

temporal resolutions of the sensor are considered as the main requirements. 

To choose the optimum data source, it is important to know the data types 

with different characteristics. This is due to the fact that the images collected 

by various sensors have different spatial, spectral, and temporal resolutions. 

Of the various sensor types, the airborne remote sensing technology is one 

of the major data source for gathering information about the buildings due to 

high spatial resolution. Conventional aerial photographs, digital multispectral 

scanners, airborne SAR and airborne laser scanners are the main types of 

the airborne platforms.  

 

Aerial photos possess detailed information due to its high spatial resolution. 

Thus, it is suitable for observing buildings or other infrastructures from the top 

view or side view (in facade texture acquisition purposes). In addition, stereo 

photographs give an opportunity to derive height information of the buildings. 

However, to get such detailed information, a high price must be paid. Digital 

multi-spectral scanners provide digital imagery using the CCD and CMOS 

sensors. These sensors have both high spatial resolution and multi-spectral 

information. Moreover, these scanners have various advantages, such as 

size, weight, dynamic range, and optical sensitivity. Airborne SAR is another 

platform, which is not widely used due to the complex image processing 

technologies in data acquisition and processing. In addition, the side looking 

characteristic of the system limits the radar applications for urban areas. 

Further, it provides considerable spatial resolution (0.5 m – 10 m), which 

allows nighttime data acquisition and operates in bad weather conditions to 

some extent (Lillesand et al., 2007). Airborne laser scanners are used to 

measure three dimensional points, distributed over the terrain surface and on 

objects rising from the ground. For building extraction, information derived 

from the laser scanners is quite important in creating Digital Surface Model 

(DSM) of the build-up areas. Light Detection and Ranging (LIDAR) is a 

special airborne laser scanning technology that employs an airborne 

scanning laser rangefinder to produce detailed and accurate topographic 
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surveys. LIDAR can be used to accurately measure the topography of the 

ground, even where overlying vegetation is quite dense. In the case of 

building extraction, LIDAR can generate accurate information about building 

height and volume calculation. However, laser scanning produces blind 

images and needs to be integrated with the other data sources. Further 

disadvantages of this technology are the high cost and poor data availability. 

 

Spaceborne remote sensing technology is the other important data source in 

collecting information with respect to urban applications, such as in the 

detection of the building footprints. Its major superiority is the large area 

coverage, which is quite difficult to achieve in airborne remote sensing 

technology. This technology possesses several other advantages, such as 

repetitive and continuous coverage, having variety of sensors, possibility of 

acquiring stereo images and elevation data by using pointable sensors, fast 

production and low cost. Besides these advantages, spaceborne systems 

have some drawbacks, such as relatively low resolution data, delayed initial 

image acquisition, lack of central inventory of available satellite locations, 

large image file size, and frequent data incompatibility problems (Lillesand et 

al., 2007). 

 

Recently, the terrestrial data acquisition systems have become popular in 

urban applications. In particular, ground-level laser scanning systems are 

widely used and turned out to be a very promising alternative for many kinds 

of surveying applications. These systems provide the rapid acquisition of 

large 3-d data. Afterwards, this data can be often profitably combined with 

high resolution colored digital images to generate 3-d representation of the 

environment, such as building facade textures. The chief advantage of these 

systems is the more realistic representation of the models compared with the 

representation obtained by a single picture or collection of pictures. This is 

because of the high level of detail together with a good geometric accuracy. 

Nowadays, in virtual reality systems, the use of laser scanner based 3-d 

models opens new perspectives for urban modeling and texturing. However, 

the ground-based laser scanning systems have several drawbacks. The first 
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and the most important drawback is the cost. In terms of service fees, 3-d 

laser scanning costs much more than the other scanning systems. The 

second drawback is the huge size of the scanning files. The users must have 

powerful computer hardware to accommodate the significant memory 

requirements of the data (El-Hakim et al., 2007). 

 

Terrestrial video images also play an important role in many close-range 

urban applications. In the last decade, 3-d reconstruction and texturing of 

building objects from terrestrial video images has received much attention. 

The economic and flexible data acquisition is the main advantage of this 

technique. Besides, the occlusions are handled easily by using the multiple 

view ability. It also provides the capability of capturing building facades as 

seen from the street level, as well. The major drawback of the video data is 

the modeling and texturing difficulty of the building tops, as in the laser 

scanning systems. Moreover; due to different perspectives, scales, contrasts, 

color shadings, and other properties, these variations need to be adjusted in 

order to integrate them into a seamless texture mosaic. On the other hand, in 

a variety of studies, the extraction of building facades has been performed 

from a “single image” instead of sequence of images. A single image is 

cheaper to capture and requires less memory storage. It also provides higher 

resolution data, which has a crucial importance in visualization of textured 

building models. Moreover, a single photo reduces the number of scenes to 

be processed for texture mapping. However, despite many advantages, 

single images have a couple of disadvantages. The most important 

disadvantage is the difficulty of occlusion removal. Further, it takes too much 

time and effort to extract the facade structures for large urban areas. In 

addition, capturing the building roofs is a troublesome task.    

 

 

2.2. 2-D Building Acquisition and 3-D Modeling   

 

As a general tendency, large variety of aerial images in single, multiple or 

overlapping forms are employed in many studies. Besides, airborne LIDAR 
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and SAR applications have mostly been encountered in the recent studies. 

The hybrid methodologies that provide the integration of LIDAR and aerial 

imagery are commonly observed, as well. The use of ancillary data, such as 

digital surface model and topographic map information are also utilized by 

certain researchers. In this section, the spaceborne 2-d building acquisition 

and 3-d modeling studies are also summarized. It is observed that high 

resolution satellite images, such as IKONOS, SPOT, QuickBird, GeoEye, and 

WorldView are mostly used in recent studies. Depending on the application; 

the single and stereo use of panchromatic, multispectral, and pan-sharpened 

spaceborne imagery are encountered. The use of hybrid data set, such as 

the integrated SAR-optical imagery and LIDAR-optical imagery data sets are 

also experienced in certain studies. Moreover, in several studies the use of 

DEMs and DSMs, which are generated from different spaceborne sensors, 

can be observed. 

 

 

2.2.1. 2-D Building Acquisition and 3-D Modeling from Airborne Images 

 

In many applications of 2-d building acquisition, airborne imagery is widely 

used. Especially, in most of the early studies, black and white aerial images 

were used as a single data source. In a study conducted by Huertas and 

Nevatia (1988), a generic model of shapes of structures were used by 

assuming that the buildings are rectangular or composed of rectangular 

components such as box, ‘E’, ‘T’ and ‘L’ shapes. Their method was 

composed of four steps including line and corner detection, labeling of the 

corners based on shadows, tracing of object boundaries, and finally the 

verification of hypotheses. In addition, the shadows cast by the buildings 

were also utilized in verification of the buildings and estimation of the building 

heights. More generally, their method showed an example of how generic 

model knowledge can be used in extracting objects in real, outdoor scenes. 

  

One of the frequently used applications of aerial photography is the 

extraction of the buildings from their shadows. Irvin and McKeown (1989) 
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state that the shadows are usually among the darkest areas in images and 

their extraction can be feasible using the image processing techniques. They 

developed four methods to estimate the grouping of the related structures. 

These are the prediction of structure shape, grouping of the related 

structures, verification of individual structures, and the structure height 

estimation. In each method, the main focus was on the relation between 

structures and their cast shadows. Their study showed that these techniques 

can be used to generate new pieces of information in the scene 

interpretation.   

 

In a similar study conducted by Lin et al. (1994), a system was introduced for 

the detection and description of buildings in aerial scenes. The monocular 

views of arbitrary aerial scenes were utilized to detect and describe the 

buildings. Since low-level segmentation methods give highly fragmented 

segments, the perceptual grouping approach was used. The shape 

properties and shadow information was utilized to form and verify the 

hypotheses generated by the grouping process. This study also provided the 

3-d descriptions of the buildings. The proposed system was tested on a 

number of examples and proved to be successful in overhead and oblique 

views.   

 

A semi-automatic approach was proposed by Sahar and Krupnik (1999) for 

the 2-d extraction of buildings from large-scale images. Their goal was to 

reveal the 3-d outlines of the buildings. Their approach was composed of 

three stages, which are preprocessing, monoscopic processing, and 

stereoscopic processing. In the preprocessing stage, two different kinds of 

edge segments, one belonging to shadow areas and the other belonging to 

other features, were produced. The monoscopic processing stage was aimed 

at selecting topologically organized sets of edge segments. The potential 

building chains were created in this stage. In the last stage, the outlines of 

the buildings and the corner 3-d coordinates were extracted. The results 

were found to be quite encouraging in detecting outlines of buildings 
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accurately and reliably through an automatic procedure that exploits stereo, 

shadows, and a priori geometric information.  

 

Further, Noronha and Nevatia (2001) performed the automatic detection and 

modeling of buildings from multiple aerial images. They described a system 

that detects and constructs 3-d models for rectilinear buildings. The main 

steps of the system include; the grouping of line segments, junctions, and 

parallels together with triples and U-contours, formation of roof hypotheses, 

wall and shadow verification. Their system was tested on a large number of 

real examples with successful results.     

 

A subsequent study that utilizes aerial imagery in building detection was 

conducted by Gerke et al. (2001), who achieved the automatic extraction of 

buildings from the combination of aerial color infrared images and the digital 

surface model in an urban environment. The knowledge about the scene and 

the geometry of the objects were represented by means of a generic scene 

model. The buildings were reconstructed using invariant geometric moments 

leading to orthogonal geometric models. 

 

Hofmann et al. (2002) utilized laser scanner data and topographic map 

information for detecting buildings using a knowledge-based approach. Their 

study was divided into two parts, which are segmentation and detection. 

First, the region based segmentation method was applied to delimit the 

objects. This was followed by locating the recorded houses by using a 

scanned topographic map, which was filtered and converted into a vector 

format. The study provided promising results where more than 95% of the 

buildings in the dataset were detected successfully.   

 

The joint analysis of SAR, LIDAR, and aerial imagery was carried out by 

Gamba and Houshmand (2002) for the simultaneous extraction of land cover, 

DTM, and 3-d shapes of the buildings. The aim of this study was to 

discriminate between different objects in the scene using the 2-d and 3-d 

characteristics of the objects. This was achieved by a proposed algorithm, 
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which consists of grouping the pixels into segments, finding and enlarging the 

seeds for the planar surfaces, and connecting the planes into larger regions. 

The results were not completely satisfactory due to the LIDAR 

measurements, which suffer from uncertainties and errors in sharp boundary 

representation. 

 

A novel method for building extraction from the concept of fitting CSG 

(Constructive Solid Geometry) primitives to aerial images was proposed by 

Tseng and Wang (2003). In this study, a semi-automatic procedure was 

adopted for performing high-level operations, such as building detection and 

model selection interactively by the operator and performing optimal model-

image fitting automatically using a least-squares fitting algorithm. The test 

results were encouraging and supported the theory of model-based building 

extraction. 

 

A model-based approach to recognize and reconstruct buildings from 

multiple aerial images was developed by Jaynes, et al. (2003). First, the 

buildings were segmented by detecting and grouping the lines that 

correspond to building rooftop boundaries. This was followed by the 

reconstruction process that makes use of the corresponding digital elevation 

(DEM) map. The approach reconstructed the various building types, such as 

peaked, flat, multi-level flat, and curved surfaces. The approach was 

evaluated on several datasets and it was concluded that the proposed two-

phase approach leads to accurate reconstruction of a wide variety of building 

types while still retaining robustness.  

 

Oriot (2003) performed a novel semi-automatic method to delineate buildings 

based on statistical active models (statistical snakes). This method purely 

utilized a stereoscopic pair of images in extracting the buildings. Besides, the 

method was proved to limit the number of interactions. The algorithm was 

successful to find solutions far away from the initialization area and buildings 

were described accurately in general.  
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Rottensteiner (2003) presented a methodology for the automated generation 

of complex 3-d building models from point clouds generated by the LIDAR 

sensors. The first step in their workflow was to estimate the DTM and DSM 

from LIDAR points. Then, the initial building patches were created by 

subtracting DTM from DSM. After that, the morphological operators and 

texture analysis were performed for eliminating the false alarm areas. After 

detecting the building regions, the following steps were accomplished by the 

proposed workflow: (i) detection and grouping of roof planes, (ii) model 

generation, (iii) consistent estimation of the model parameters, and (vi) model 

regularization. All buildings in the test area were detected, although their 

outlines had a rather complex shape. It was also reported that the 

constructed models resemble the roof shapes well according to a visual 

inspection. 

 

In a more recent study conducted by Kim and Nevatia (2004), an approach 

was proposed for detecting and describing complex buildings with flat or 

complex rooftops by using the multiple overlapping images. Probabilistic 

reasoning, level-of-details, and cues (layers) derived from elevation data 

were used at different stages of the proposed approach in order to manage 

the huge search space for rooftop boundary hypotheses. The generated 3-d 

rooftop hypotheses were verified with the evidence collected from the images 

and the elevation data using Expandable Bayesian Networks (EBNs). As the 

final step, the overlap and rooftop analyses were performed for finding the 

final complex building models. The experimental results were reported to be 

promising for complex buildings.  

 

Cho et al. (2004) proposed a practical method for 2-d building detection from 

airborne laser scanning data. They introduced a concept of pseudo-grid 

(binning) into raw laser scanning data to avoid the loss of information and 

accuracy due to interpolation. The proposed method comprised low and high 

level processes. The generation of pseudo-grid, noise removal and 

segmentation were included in the low level process, while the high level 

process basically consists of grouping, tree removal, and building detection 



27 
 

steps. According to experimental results, the proposed approach was found 

to be promising. 

 

In a method presented by Peng and Liu (2005), the use of monocular urban 

aerial images without any prior knowledge of illumination was presented in 

the extraction of buildings in dense urban areas. Based on a building concept 

model, 2-d building extraction was performed in two stages that are (i) 

sunshine parts extraction, and (ii) self-shadow parts extraction. The images 

were initially simplified and segmented as sunshine parts, sunshine parts of 

high objects, and sunshine ground based on region-oriented radiometric 

features. To verify initial segmentations, a method was proposed for 

estimating the shadow cast direction by a shadow context model. Finally, 

refinement of the extracted buildings was accomplished with the aid of 

context and a modified partial snake model. The results showed that the 

approach can detect both flat and gable roofed buildings from a complicated 

background of images. For the shadows, the integrities of road were 

successfully maintained.   

 

Characterization of buildings, which consist of building identification and 

height estimation using L-Band polarimetric interferometric synthetic aperture 

radar (SAR) data, was performed by Guillaso et al. (2005). Initially, a 

polarimetric interferometric segmentation was carried out to differentiate 

buildings from their surroundings. Three main classes were identified that are 

single bounce as surface, double bounce as building, and volume scattering 

as vegetation. Once the buildings were localized, the building heights were 

retrieved using a phase-to-height procedure. The height estimates of most of 

the buildings were reported to be acceptably accurate. 

 

In a study conducted by Simonetto et al. (2005), the extraction of 3-d 

rectangular buildings from stereoscopic high resolution airborne radar 

images, recorded by a SAR airborne sensor was carried out. To detect the 

buildings, an adapted processing scheme was proposed that includes the 

Hough transform and a stereoscopic refinement stages. The building heights 
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were also measured by monoscopic and stereoscopic measures with the aid 

of previously extracted building footprints. Experiments were performed on 

images representing an industrial area. The results showed the potentiality of 

the method for rectangular building extraction and DEM generation.  

 

An automated extraction procedure for 2-d building footprints from airborne 

LIDAR data was presented by Wang et al. (2006), who offered a novel 

Bayesian technique for automatically constructing building footprints from a 

pre-classified LIDAR point cloud. Initially, a bounded-error approximate 

building footprint was computed by the algorithm using an application of the 

shortest path algorithm. Then, the most probable building footprint was 

determined using linear optimization and simulated annealing techniques by 

maximizing the posterior probability. The algorithm was tested on 300 

buildings in the data set and it was reported that the building footprints were 

obtained accurately.   

 

Lu et al. (2006) proposed an approach for the automatic detection of 

buildings from aerial images using the combined analysis and interpretation 

techniques that include classification, shape modeling, and fusion. A dense 

DSM was obtained by stereo image matching and the preliminary building 

interest areas were revealed by using the results of multi-band classification, 

the DSM, and Normalized Difference Vegetation Index (NDVI). From these 

areas, a shape modeling algorithm was implemented in order to delineate 

their boundaries precisely. As a final step, Dempster-Shafer data fusion 

method was applied to detect buildings from the combination of three 

different outputs coming from DSM, K-Means clustering, and the delineated 

buildings. A number of test areas, which include buildings of different sizes, 

shape, and roof color were investigated and the results were found to be 

encouraging. 

 

In a study conducted by Zhang et al. (2006), a framework was introduced for 

automatic extraction of 2-d building footprints from LIDAR measurements. As 

a first step, the ground and non-ground LIDAR measurements were 
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separated using a progressive morphological filter. Then, building 

measurements were identified from non-ground measurements by a region 

growing algorithm based on the plane-fitting technique. In the final step, the 

raw footprints were obtained by connecting the boundary points. The 

framework was tested on urbanized areas such as large institutional, 

commercial, and small residential buildings. A quantitative analysis revealed 

that the total of omission and commission errors for the extracted footprints 

was about 12% for both the institutional and residential areas. 

 

Rottensteiner et al. (2007) developed a method for the detection of the 

buildings by the Dempster-Shafer fusion of airborne laser scanner (ALS) and 

multi-spectral images. The first image was an RGB orthophoto with a 

resolution of 0.15 m and the other was a geo-coded RGB together with a 

color infrared band with 0.5 m resolution. First, the image was classified 

based on a pixel-based approach. The classified image was improved by 

considering the uncertainty of the NDVI and by post-classification. It was 

concluded that the detection of the buildings are dependent on the building 

size. They also stated that the small buildings were detected incorrectly, in 

general.       

 

In a study conducted by Xu and Jin (2007), the automatic detection and 

reconstruction of 3-d building objects from multi-aspect meter resolution SAR 

images were carried out. Initially, the imaging features of the object were 

generated as a priori knowledge. Then, the scattering image of the object 

were identified and extracted. Next, a statistical description of the object 

image and its coherency was given. Lastly, an automatic algorithm to match 

the object images of different aspects was designed and the reconstruction 

was performed. Reconstruction of building objects from their multi-aspect 

images revealed the fidelity of the whole process chain and the feasibility of 

3-d objects. 

 

In a very similar study, the recognition of urban buildings was carried out 

from multi-aspect high-resolution interferometric SAR (InSAR) data by Thiele 
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et al. (2007), who proposed two approaches for building detection and 

reconstruction. The first approach exploited the frequently observed lines of 

bright double-bounce scattering, while in the second, the extended buildings 

were extracted by grouping the primitives of different kinds. In short, both 

approaches focused on the recognition of buildings supported by knowledge-

based analysis considering the SAR-specific effects, such as layover, radar 

shadow, and multipath signal propagation, observed in urban areas. The 

detection rates were computed to be 52% and 76%, while the false alarm 

rates were found to be 78% and 11% for the first and second approaches, 

respectively.  

 

Further, Lee et al. (2008) proposed a new building detection and description 

algorithm from the fused LIDAR and photogrammetric data set. Their 

algorithm was composed of three steps. In the first step, initial building 

regions were extracted from LIDAR data. Next, the extraction of coarse 

building boundaries was carried out based on LIDAR results with region 

segmentation and merging from aerial imagery. In the third step, the precise 

building boundaries were extracted based on the coarse building boundaries 

using line segments matching and perceptual grouping. Experimental results 

demonstrated that the proposed algorithm yields accurate and reliable results 

on multi-sensor data.       

 

The extraction of building features from remotely sensed elevation and 

spectral data based on mathematical morphology was presented in a study 

conducted by Vu et al. (2009). The elevation data derived from LIDAR were 

used as the primary data to delineate the structural information. On the other 

hand, the spectral data (a true color ortho-photo with 20 cm spatial 

resolution) was used as an additional source to remove vegetation and 

classify the building roof material. Object-based completeness and 

correctness were measured to report the accuracy of extraction in a 

quantitative way. Of the two test areas, first produced a correctness 

percentage of 83 while the second yielded 67. The completeness 
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percentages were found to be 79 and 73 for the first and second test areas, 

respectively.    

 

In a very recent study conducted by Michaelsen et al. (2010), the extraction 

of building polygons was carried out from aerial SAR images. As a 

preprocessing step, the image was scaled down and then a morphological 

opening operation was applied to enhance and isolate the spot structures. 

Besides, the image was tiled into overlapping sub-images and on each image 

a morphological closing operation was applied to enhance thin line structures 

and close gaps. In the next step, short line segments were extracted from the 

sub-images using the squared averaged gradient filter. The third step was 

the grouping stage, in which the objects were accumulated. In the final step, 

the decision for the building polygons was constructed and the post-

processing operations were performed. It was reported that promising results 

were obtained in recognition of the buildings from high resolution SAR data.        

 

Wang et al. (2010) presented a new approach to extract buildings from high-

resolution polarimetric synthetic aperture radar (PolSAR) data by employing 

both region-based and edge-based information. In the initial step, raw region 

and edge information were obtained by low-level detectors. Next, the 

rectangle features were extracted from the results of edge detection. In the 

final step, a novel Markov Random Field (MRF) framework was proposed for 

rectangles. Under this framework, the building rectangles were identified from 

the optimized rectangle candidates by minimizing the total energy. The 

effectiveness of the proposed method was tested using the real fully PolSAR 

data.    

 

Ahmadi et al. (2010) proposed a new method for building boundary detection 

and extraction based on active contour model from high resolution aerial 

images. In their model, all building boundaries were detected by introducing 

certain points in the buildings’ vicinity. Different from the traditional snake 

model, the proposed approach provided the detection of most relevant 

building boundaries without requiring height data and additional information 
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to distinguish between buildings and other features. Although the accuracy 

was found to be excellent in terms of building boundary extraction, some 

failures were also reported. This was due to the radiometric similarity 

between building roofs and the image background. 

 

 

2.2.2. 2-D Building Acquisition and 3-D Modeling from Spaceborne 

Images 

 

As in airborne imagery, recent high-resolution spaceborne images also 

provide a valuable data source for the acquisition of 2-d and 3-d building 

information. In a study conducted by Fraser et al. (2001), 3-d reconstruction 

of the buildings from high resolution IKONOS stereo imagery was reported. 

The focus of their study was on geopositioning accuracy, radiometric quality 

and attributes of the imagery that support building feature extraction. The 

results were reported to be successful such that the IKONOS stereo imagery 

has the potential to yield 1-m geopositioning accuracies and better in the 

context of building reconstruction. 

 

Lee et al. (2003) presented a building extraction approach that utilizes the 

classification results conducted using both the multispectral and 

panchromatic IKONOS images. The classification results were then utilized 

for estimating the approximate locations and shapes of the candidate 

buildings. Their fine extraction was carried out in the corresponding 

panchromatic image through segmentation and squaring. The building 

squaring approach, which is based on the Hough transform, was also 

employed for detecting and forming the boundaries of rectilinear buildings. It 

was reported that 64.4% percent of the buildings were detected, extracted, 

and accurately formed.  

 

Shackelford and Davis, (2003) developed a combined fuzzy pixel-based and 

object-based approach for discriminating the buildings from other urban land 

cover classes using the pan-sharpened multispectral IKONOS imagery. First, 
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a pixel-based hierarchical fuzzy classifier was carried out to categorize 

individual image pixels. Next, a multiresolution segmentation technique was 

used to segment the image to facilitate further object-based classification. 

Finally, an object-based fuzzy logic classification that utilizes shape, spectral, 

and neighborhood features was performed to differentiate between the 

buildings and the impervious surface classes in a dense urban environment. 

The classification accuracies were computed to be 76%, 81% and 99% for 

buildings, impervious surfaces, and roads, respectively.   

 

The detection of building outlines based on the fusion of SAR and optical 

features were employed by Tupin and Roux, (2003). The aim of this study 

was to define areas of interest for building height reconstruction in 

radargrammetric or interferometric applications. The methodology was 

divided into two parts. In the first part, the extraction of partial potential 

building footprints (linear features) was carried out on a SAR image.  Then, 

the shapes were detected on the optical image using the previously extracted 

lines. It was concluded that the detection of big buildings was difficult for 

many reasons. For the middle and small buildings, the detection was found to 

be rather satisfactory.  

 

Wei et al. (2004) developed an algorithm that utilizes the clustering and edge 

detection operations to extract buildings from high-resolution panchromatic 

Quickbird images. First, an unsupervised clustering was performed to extract 

building shadows. Next, the candidate building objects were extracted from 

the clustering classes. Finally, the Canny edge detection operator was 

applied to detect the edges of the candidate building objects. Besides, the 

building boundaries were refined and some false building objects were 

excluded. The building extraction results were compared with the manually 

delineated results and the proposed algorithm was found to be quite efficient. 

 

An integrated strategy for automatic extraction of buildings from 1-meter 

resolution satellite imagery of urban areas was demonstrated by Jin and 

Davis (2005). Buildings were extracted using the structural, contextual, and 
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spectral information. As the first step, a series of morphological opening and 

closing operations were applied to build a differential morphological profile 

(DMP), which consists of image structural information. Then, the shadow 

regions were extracted by DMP to provide reliable contextual information. 

This was followed by the extraction of the bright buildings using the spectral 

information. By combining the structural, contextual, and spectral information, 

about 72% of the building areas were extracted with a quality percentage of 

58%.  

 

Further, Kim et al. (2006) proposed a new algorithm for extracting building 

lines from monoscopic high-resolution satellite images. The approach was 

based on the extraction of the lines from rectangular-shaped building roofs 

with relatively large size. This was achieved by line voting and matching. The 

algorithm was initiated by an input point selected manually on a building roof. 

A region of interest was then defined, centered on the input point and within 

the region lines extracted. After that, a line voting process was applied to 

estimate the initial orientation and position of a building line. Finally, the 

orientation and position were refined using a least squares matching process. 

Two Ikonos images were used in the assessment of the performance and the 

proposed algorithm extracted 83% of the building lines.   

 

A semi-automatic approach to extract buildings in structured and 

unstructured urban settlement areas from Quickbird imagery was presented 

by Mayunga et al. (2007). The method was based on radial casting algorithm 

to initialize snake contours. After employing the image pre-processing 

operations, the snakes contour was initialized. This was followed by the fine 

measurements of building outlines, which was performed by the modified 

snake model. In all test areas, buildings with different shapes and orientation 

were extracted with a reliable accuracy.  

 

In a study conducted by Sohn and Dowman (2007), automatic extraction of 

building footprints was employed from the fusion of IKONOS imagery using 

the pan-sharpened multi-spectral bands and the airborne LIDAR data. 
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Initially, a laser point cloud in 3-d space was recognized as an isolated 

building object. Then, the rectilinear lines around building outlines were 

integrated to compensate the weakness of data-driven and model-driven 

methods. Finally, a full description of building outlines was accomplished by 

merging the convex polygons. The evaluations showed that the delineation 

performance was found to be around 0.11 (the branching factor), the 

detection percentage was computed to be 90% (the correctness), and the 

overall quality was reported to be about 80%.    

 

Inglada (2007) proposed an image processing system for the detection and 

recognition of man-made objects from SPOT 5 supermode THR (Trés Haute 

Resolution or very high resolution) images having 2.5 m resolution. A 

supervised learning approach based on support vector machines was used 

to provide the learning of a generic model for each class of objects by 

utilizing a geometric characterization of the examples in the database. The 

main novelty of this study was the use of a high number of geometric image 

features in order to characterize several classes of objects that have different 

geometric properties. The results revealed the possibility of discriminating the 

several classes of objects with the classification rates higher than 80%. 

 

In a more recent study, Liu et al. (2008) established a new general semi-

automatic building extraction method from high resolution satellite imagery. 

To extract the precise building roof boundary, two different approaches 

(region-based and feature-based) were integrated. Region-based approach 

was used to discriminate the small and simple rectilinear rooftops from its 

background. On the other hand, in the feature-based approach, the precise 

positions of complex rooftops were delineated by employing pose clustering 

and model matching techniques. Integration of these approaches provided 

the extraction of buildings from simple rectangle rooftop to complicated ones. 

The tests on Quickbird imagery yielded an accuracy of 75% in the extraction 

of the regular building rooftops. 
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Sirmacek and Unsalan (2009) proposed methods to detect urban areas and 

buildings from panchromatic VHR IKONOS images. The methods were 

based on scale invariant feature transform (SIFT) keypoints, multiple 

subgraph matching, and graph-cut methods. The algorithm was initiated by 

picking two template building images with their corresponding SIFT 

keypoints, one representing dark buildings and the other representing bright 

buildings. The SIFT keypoints were also obtained for the test image. Next, 

the urban area was detected by applying a multiple subgraph matching 

between the template and test image SIFT keypoints. Then, separate 

buildings were detected from the formerly detected urban area using a novel 

graph-cut method. By using diverse and representative test sets, very 

promising results were reported on automatic detection of urban areas and 

buildings. 

 

Ioannidis et al. (2009) proposed a knowledge-based method to control the 

suburban informal buildings. The method was based on the use of high 

resolution images and application of automatic change detection by 

computation and comparison of digital surface models and building extraction 

techniques. The basic idea behind the proposed approach was that the 

construction of a new building in the area of a construction site would appear 

as a “change” in DSM. For the cases where the area of interest was 

especially large, the satellite imagery was preferred. With the proposed 

algorithm, 72% of new buildings were detected using the fully automated 

procedures. 

 

In a different change detection study, the automatic detection and delineation 

of the buildings from high resolution space images were carried out by Koc 

San (2009). The proposed approach was developed for updating the 

buildings of an existing vector database making use of spectral values, 

Digital Elevation Model (DEM) and model-based extraction techniques. 

Initially, the building areas were detected by image classification and 

normalized Digital Surface Model (nDSM), which was computed by 

subtracting Digital Terrain Model (DTM) from DSM. After that, the buildings in 
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the existing vector database were updated through evaluating the detected 

building areas and using the proposed model-based building extraction 

technique. The results showed that the proposed approach was quite 

satisfactory in detecting and delineating the buildings from high resolution 

space images. 

 

In a study conducted by Karantzalos and Paragios (2009), the problem of 

automatic building extraction/segmentation from satellite images was aimed 

to solve. The main focus of the study was to overcome the limitations of the 

existing inaccurate data-driven segmentation that is caused by misleading 

low level information derived from shadows and occlusions. To do that, they 

introduced a novel recognition-driven framework that accounts for automatic 

and accurate building extraction. They also demonstrated the integration of 

prior knowledge on multiple building shapes into the segmentation process. 

The qualitative and quantitative evaluations demonstrated the potential of the 

proposed approach, which was supported by the very promising 

experimental results.  

 

In a recent study, Lafarge et al. (2010) demonstrated a new approach for 

building reconstruction from satellite DSM having 0.7-m resolution. As a first 

step, the extraction of 2-d supports of the urban structures was carried out 

either automatically or interactively. Next, 3-d block was positioned on the 2-d 

supports using a Gibbs model. Afterwards, a Bayesian decision was used to 

find the optimal configuration of 3-d blocks using a Monte Carlo sampler. This 

method was validated on multiple data sets. It was reported that the 

proposed approach not only provides very good results from a single DSM, 

but also works well on various data resolutions. 

 

Tournaire et al. (2010) extracted the building footprints from digital elevation 

models with various resolutions ranging from 10-cm to 1-m ground sample 

distance. A satellite DEM having 50 cm GSD was obtained with a graph-cut 

optimization approach in a multi-view framework. The proposed method was 

based on stochastic geometry and marked point processes of rectangles. 
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The aim was to obtain a reliable object configuration described by a 

collection of rectangular building footprints. Even if buildings were more 

complicated than a simple rectangle, they could be described by a union of 

rectangles which was able to generate the complex structures. The proposed 

methodology was compared with an existing methodology based on the 

same mathematical framework. The current study obtained similarly good 

results with a high computational efficiency using a simplified energy 

function.  

 

Karantzalos and Paragios (2010) introduced a novel inferential framework for 

the reconstruction of 3-d buildings from the fused optical image and digital 

elevation model data sets. The proposed framework significantly extended 

the previous 3-d extraction and reconstruction efforts by accounting for 

shadows, occlusions, and other unfavorable conditions. The segmentation 

task was carried out in optical images and digital elevation maps. The 

competing priors to determine their pose and 3-d geometry from the 

observed data were also allowed by the integrated approach. Furthermore, a 

grammer-based building representation was introduced to efficiently describe 

the space of the solutions. Apart from the new building models, other terrain 

classes were added or removed from the database. The results were found 

to be very promising and the quantitative evaluation demonstrated the 

potential of the approach.   

 

In 2-d building footprint extraction, several general purpose supervised 

learning strategies on multi-spectral imagery have been applied. The general 

approach used employs purely spectral input vectors built by the set of 

intensity values in each spectral channel for each pixel in the image. 

Although these vectors provide a suitable fixed-dimensionality space, in 

which the conventional classifiers often work well, it is evident that spatial 

relationships such as texture, proximity, or shape can be very informative in 

feature extraction. This kind of extra information can be added to spectral 

information. However, there exists a combinatorial huge choice for these 

additional vector dimensions (Harvey et al., 2002). To deal with this problem, 
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a hybrid evolutionary algorithm called GENIE (GENetic Image Exploitation) 

was developed by Perkins et al. (2000). The algorithm searches a space of 

image processing operations for a set that can produce suitable feature 

planes, and a more conventional classifier which uses those feature planes 

to output a final classification. The overall structure of GENIE is shown in 

Figure 2.1. 

  

 

 

Figure 2.1. The overall structure of GENIE (Perkins et al., 2000). 

 

Initially, the training data was provided by marking up an image that shows 

both the locations of feature and the non-feature of interests. Then, the 

original data planes were transformed into a set of feature planes by a certain 

sequence of image processing operations (chromosomes). This was followed 

by a conventional supervised classification algorithm that was applied to 

feature planes in order to obtain the output image plane, which was an 

indicator for each pixel, whether that feature was there or not. Finally, a 

fitness value was calculated for each chromosome by comparing the output 

and the truth planes. The GENIE system was tested on various study areas 

for the automatic extraction of man-made features including buildings from 

high-resolution IKONOS images. 

 

In a further study, Perkins et al. (2005) developed the system GENIE Pro. As 

in GENIE, this system was also a general purpose adaptive tool deriving 

automatic pixel classification algorithms for satellite and aerial imagery from 

training input. In particular, GENIE pro integrated spectral information and 

spatial cues such as texture, local morphology and large-scale shape 
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information, in a much more sophisticated way. The system architecture of 

GENIE Pro is shown Figure 2.2.  

 

 

 

Figure 2.2. The processing pipeline of Genie Pro (Perkins et al., 2005). 

 

As in the system GENIE, the “Spectral/Texture” and “Grayscale Morphology” 

operations were the sets of attribute extractors. However, this time, each set 

was specialized for a specific task. For the extraction of spectral and texture 

attributes, the operators were designed to be simple and no complicated 

morphological operations were available. The aim was to highlight regions 

that might be the feature of interest but the result was likely to contain many 

false alarm areas. In the extraction of local morphological attributes, it was 

intended to further eliminate false alarms by employing morphological 

operations such as openings and closings with various different shaped 

structuring elements. The final stage of GENIE pro was composed of 

thresholding the grayscale image to obtain discrete labels, and performing an 

optional shape-filtering step. 

 

The idea of fuzzy adaptive genetic algorithms is based on the adjustment of 

the selected control parameters or genetic operators during the evolution. 

These algorithms offer the most appropriate exploration and exploitation 

behavior to avoid premature convergence problem and improve the final 
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result (Herrera and Lozano 2003). The fuzzy logic based adaptive genetic 

algorithm model is shown Figure 2.3.  

 

 

Figure 2.3. The fuzzy adaptive genetic algorithm model (Herrera and Lozano 2003). 

 

In a study conducted by Liu et al. (2005), the use of a hybrid fuzzy genetic 

algorithm was presented. The crew grouping problem was solved using the 

fuzzy logic based controllers. The crossover and mutation probabilities were 

adjusted dynamically in order to improve the algorithm performance. When 

compared with the standard genetic algorithm, more satisfactory results were 

achieved with the fuzzy genetic approach. 

 

 

2.3. Building Facade Texture Acquisition and Mapping   

 

In this section, a review of studies focused on the acquisition and mapping of 

building facade textures is presented. First, the studies that include the 

capturing of the building facade textures from airborne sensors are 

summarized. It is shown that oblique and overlapping aerial images are 

commonly used. Next, the ground-based studies, which were conducted on 

building facade texture acquisition and mapping, are investigated. This 

section is further divided into three sub-parts which include the studies 

utilizing the terrestrial laser scanning technology, terrestrial image sequences 

that can be either a sequence of photos or a video data, and the studies 

conducted using the ground-level single images. It is reported that most 

widely used single images are those taken from panoramic, perspective, and 
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straight views. In the third part of this section, the investigation of the 

fundamental occlusion removal methods is provided briefly. 

 

 

2.3.1. Airborne Studies Related to Building Facade Texture Acquisition 

and Mapping  

 

The extraction of building facade textures from oblique airborne imagery is 

not commonly encountered in the literature due to its comparatively low 

resolution and poor depiction of facades. One of the related studies was 

conducted by Frueh et al. (2004), who employed the automatic texture 

selection for 3-d city models. First, the images were automatically registered 

by matching the 2-d image lines with projections of 3-d lines, derived from the 

city model. Next, the optimal image was selected by taking several factors 

into account, such as occlusion, image resolution, surface normal orientation, 

and coherence with neighboring triangles. Finally, for compact representation 

and efficient rendering, the utilized patches of textures were combined into a 

single texture atlas. They utilized 17 aerial images taken from a helicopter 

and the correct poses were found for all using the suitable parameters. 

 

Lorenz and Döllner (2006) carried out facade texture mapping from 

overlapping high resolution monochrome aerial images. The proposed 

method was based on the rectified images that were extracted for each 

facade at a fixed spatial resolution. A quality map was also provided for 

encoding the actual effective spatial resolution of the projected aerial image. 

The rectified images were obtained by registering the multiple texture images 

to each others. As a result, the study was reported to be efficient in texturing 

the facades of large-scale city models.    

 

Further, Wu et al. (2007) presented an approach for automatic retrieval of 

optimal texture from aerial video for the photo-realistic 3-d visualization of 

street environment. As an initial step, the texture distortions were eliminated 

by a fully-automatic orthorectification technique. Then, the normalized cross-
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correlation operation was applied to ortho-rectified texture sub-windows in 

order to select a pair of texture having occlusion. Finally, the optimal texture 

was determined from two candidates based on an estimation method. The 

experimental results showed that the proposed approach increases eight 

times more efficiency and effectiveness than manual operation for urban 

texture reconstruction.  

 

In a more recent study, the automated texture acquisition from oblique aerial 

images was performed by Wang et al. (2008). First, the image feature lines 

were extracted, which was followed by the matching of the extracted lines 

with the corresponding 3-d feature lines of object space from 3-d model. The 

interest image areas including building surfaces were then rectified with the 

refined external orientation (EO) parameters and the textures were obtained. 

The experimental results proved the correctness and robustness of the 

proposed approach.        

 

 

2.3.2. Ground-based Studies Related to Building Facade Texture    

Acquisition and Mapping  

 

In order to capture the building facade textures, various ground-based data 

sources were employed in the literature. The proposed techniques widely 

utilize the laser scanning data, terrestrial image sequences, and single 

images.  

 

 

2.3.2.1. Building Facade Texture Acquisition and Mapping from Laser 

Scanning Data 

 

A number of research projects have attempted to capture facade details from 

terrestrial laser scanning. One of these studies was proposed by Früh and 

Zakhor (2003), who automatically created textured 3-d city models using a 

mobile scanning system. They also managed to combine the images taken 
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from ground level and bird’s eye perspective. To do that, a detailed model of 

the building facades were acquired by the ground based modeling process. 

The acquisition vehicle was localized using the DSM obtained from airborne 

laser scanning data. Then, the ground-based facades were registered to 

airborne model by means of Monte Carlo localization. Finally, to obtain a 3-d 

model the two models were merged with different resolutions. The study 

showed that the proposed approach results in visually acceptable models for 

downtown environments.   

  

Böhm, (2008) demonstrated a new approach for facade detail extraction from 

range data in the case of incomplete texture information due to occlusions. 

The developed approach efficiently combined the coarse geometry of an 

existing building model (in the second level of detail – LOD2) with the 

detailed features from ground-based LIDAR data. To use a mapping for the 

integration of terrestrial LIDAR data, two-dimensional representation of the 

point cloud was derived. The point cloud that belongs to a particular facade 

was interpolated into a regular raster. The approach was found to be simple 

and efficient in enhancing prismatic building models using street-level LIDAR 

data. 

 

Similarly, Carlberg et al. (2008) presented a general framework for facade 

surface reconstruction and segmentation using partially ordered 3-d point 

clouds composed of registered ground-based and airborne range and color 

data. The developed algorithm was capable of being applied to a large class 

of LIDAR data acquisition systems, in which ground-based data was obtained 

as a series of scan lines. Besides, the system was found to be efficient and 

scalable since it provided the reconstruction of the surfaces and the 

segmentation of the ground-based range data, simultaneously. Further, the 

merging of ground-based and airborne meshes, which exploits the locality of 

the ground-based mesh, was accomplished by a new algorithm. 

 

In a more recent study conducted by Pu and Vosselman (2009), knowledge 

based reconstruction of building facade models from terrestrial laser 
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scanning data was presented. First, the important facade elements such as 

walls and roofs were distinguished as features. Then, knowledge about the 

size, position, orientation, and topology of the features was introduced to 

recognize them in a segmented laser point cloud. This was followed by the 

generation of an outline polygon of each feature using the least squares 

fitting, convex hull fitting or concave polygon fitting. Next, knowledge was 

employed to hypothesize the occluded parts from the directly extracted 

feature polygons. Finally, a polyhedron building model was used for the 

integration of extracted feature polygons with the hypothesized parts. The 

method was tested with two data sets containing various building shapes. 

The approach was found to be effective in automatic reconstruction of 

building models from terrestrial laser scanning data.  

 

 

2.3.2.2. Building Facade Texture Acquisition and Mapping from 

Terrestrial Image Sequences 

 

The vast majority of the studies have utilized the sequence of images in 

extracting the facade textures of the buildings. Of these, Faugeras et al. 

(1998) addressed the problem of the recovery of a realistic texture model of a 

scene from a sequence of ground-based images, without any prior 

knowledge about the parameters of the cameras or their motion. The 

approach was based on the correspondences between the images and the 

epipolar geometry. The geometry of the scene was reconstructed and the 

textures to be mapped on the scene polygons were extracted automatically 

from the images. Moreover, several images were combined through 

mosaicing them in order to remove the visual artifacts, such as pedestrians 

or trees from the textures. The whole system was evaluated and found to be 

efficient in production of scene models of high quality.   

 

In a study conducted by Ortin and Remondino (2005), an occlusion-free 

image was generated for realistic texture mapping. The proposed method 

was used to determine the real appearance of facades by employing a 
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simple technique that relies on the homography between adjacent images. 

Thus, a new occlusion-free virtual texture was generated. The method could 

be directly applied to non-calibrated or even disoriented images acquired by 

an amateur camera. The test results were found to be satisfactory in 

recovery of the visual appearance of planar facades as well as complex 3-d 

objects.     

 

Further, a highly automated facade texture generation and mapping system 

for 3-d building modeling was proposed by Tsai et al. (2007). The seamless 

and photo-realistic texture mosaics of building facades were generated from 

video sequences acquired with a digital camera and digital video 

camcorders. To provide the geometric alignment, the image frames were 

registered using an algorithm based on semi-automatically extracted interest 

points. Then, a polygon-based algorithm that utilizes alpha blending was 

applied to integrate colors and shadings over the overlapped regions of 

adjacent images. By doing this, continuous facade textures were produced in 

terms of geometric outlines and color domains. The occlusions of the 

generated texture mosaics were identified and mended using a series of 

morphological operations. Finally, the occlusion-free facade textures were 

mapped onto corresponding building facets. A test example showed that the 

resultant building model contained more complete and accurate texture 

features as well as a near-photorealistic appearance.  

 

Mayer and Reznik (2007) performed the interpretation of building facades 

from uncalibrated wide-baseline image sequences. The proposed approach 

was composed of several novel features, such as the determination of facade 

planes by robust least square matching, learning of implicit shape models for 

objects, and the determination of windows by using Markov Chain Monte 

Carlo (MCMC) method, which employs an abstraction hierarchy based on 

mathematical morphology. The results were produced fully automatically, 

using only a few semantically meaningful thresholds and found to be fairly 

reasonable. 
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Korah and Rasmussen (2007) presented a technique for constructing “clean” 

texture map of a partially occluded building facade. A series of images taken 

from a moving camera were used as the main input stream. They applied a 

robust measure of spread to infer whether a particular mosaic pixel was 

occluded in a majority of views and proposed a novel spatio-temporal 

timeline-based inpainting algorithm. The algorithm utilized the appearance 

and motion cues to fill the texture map in highly occluded portions. Besides, 

the proposed method achieved to recognize foreground and background 

patches in a static imagery, as well. Satisfactory results were shown on 

building sequences.  

 

In a more recent study conducted by Poullis and You (2009), the 

reconstruction of a photorealistic large-scale urban city model was presented. 

After the interactive reconstruction of complex linear and non-linear surfaces, 

the texturing problem was addressed. For the composition of photorealistic 

textures a rendering pipeline was proposed. The pipeline provided the 

recovery of missing or occluded texture portions in one image from another 

without doing any manual editing work. Apart from the images acquired from 

the ground-level, the aerial and satellite images were also employed for 

producing a set of view-independent seamless textures. The evaluation of 

the reconstructed 3d models could not be performed since there was no 

ground truth for comparison. Instead, model accuracy, realistic 

representation and level of detail, and scalability were considered. Their 

approach was found to be successful in creating the photorealistic large-

scale virtual environments. 

 

In an exceptional study conducted by Hoegner and Stilla (2009), 3-d building 

models were textured from the images recorded by infrared (IR) cameras. 

First, a relative orientation of the image sequences was generated. Then, the 

relative oriented image scene was matched. Next, the textures were 

extracted for each image and they were combined to create complete 

textures for the model surfaces. It was reported that the automated texturing 

of 3-d building models was achieved successfully.  
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Jang and Jung (2009) proposed a practical method for large scale building 

modeling with multiple image sequences. In their study, a single acquisition 

system, which is composed of a hand-held digital camera equipped with a 

GPS and a digital compass, was utilized. First, a scene was acquired by a 

pose camera. This step was used to annotate each image with navigation 

information acquired by a GPS and a digital compass. Then, an adjacency 

graph was built to determine the approximate spatial adjacency between 

each image sequences of roughly known poses. This was important with 

regard to organize the nodes into a set of sequences and access the nodes. 

Next, the camera positions were obtained by a standard “Structure from 

Motion” algorithm. Finally, the user-assisted modeling approach, which is 

based on a half-edge data structure, was employed. By using this method, 

suitable line segments were extracted for estimating the vanishing points and 

the corresponding corners. 

 

In a very recent study, Tian et al. (2010) demonstrated an automatic 

knowledge-based method for the reconstruction of building facades from 

terrestrial video sequences. First, rules were applied to group the extracted 

features in a reasonable manner. Then, for each surface patch, a suitable 

outline and normal direction was specified. Using these patches, a hybrid 

model was employed to recover a building model from the extracted facade 

patches and hypothesized parts. The results showed that the proposed 

method correctly sets up topological relationships between the generated 

surface patches as well as the reasonable structure models in occluded 

areas.  

 

In a study conducted by Kang et al. (2010), the automatic mosaicing of 

building facade textures was achieved from a sequence of monocular close-

range images. The process was initiated by the computation of the camera 

parameters. The images were then rectified in order to eliminate the salient 

geometric distortions. Further, the relevant image segment was automatically 

retrieved using the detection range variance between the corresponding 

points for each of the facades. Afterwards, the entire building facade texture 
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was mosaiced for ortho-image generation. Finally, a dual post-processing 

step was employed to refine the mosaic image. The experimental results 

demonstrated that this method was widely acceptable in terms of automation 

level and applicability.  

 

 

2.3.2.3. Building Facade Texture Acquisition and Mapping from Single 

Image 

 

The utilization of single images has also been frequently met in the literature. 

One of the earliest studies was conducted by Song and Shan (2004). In a 3-d 

geospatial information system, wall textures were obtained from ground 

photography acquired by a digital camera and a 35mm roll film camera. Each 

wall was related to one individual image file and the wall texture was 

associated directly with the view plane without building the 3-d model. It was 

reported that the integration between the photorealistic visualization and 3-d 

GIS was successfully achieved. 

 

Haala and Kada (2005) proposed a semi-automatic texture mapping 

procedure which uses panoramic scenes collected from a high-level system 

based on a rotating CCD line scanner. With this technology, large areas were 

able to be covered at high resolution and superb image quality. Besides, 

texture for a considerable number of buildings became available from a 

single scene. In addition to the reduced number of images to be processed, 

the use of panoramic scenes was able to minimize the changes in 

illumination since the image acquisitions at a different epoch was avoided. 

 

In a study performed by Müller et al. (2007) the automatic derivation of 3-d 

models of high visual quality was carried out from rectified single facade 

images of arbitrary resolutions. After reconstructing the urban model, the 

procedural modeling of facades was performed using an algorithm 

developed. First, the facade structures such as floors, windows or doors were 

subdivided. Then, the subdivisions were segmented into smaller rectangles 
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using translational symmetry. Afterwards, the smaller rectangles with 3-d 

objects from a library of architectural elements were matched. Finally, various 

editing operations were performed by means of semantic facade 

interpretation along with the extraction of shape grammar rules. The tests 

were conducted on ground-based images. The comparisons showed how 

high resolution imagery can be visually enhanced with the proposed method. 

 

Mohan and Murali (2007) presented a novel method for automatic modeling 

of planar surfaces with texture using the single view perspective images 

based on the edges and intensity representation. In their approach, the wire-

frame building models were reconstructed. Next, perspective rectification was 

applied on every surface in the presence of symmetric objects. Afterwards, 

the wire-frame model was modified to have the true aspect ratio. Finally, the 

surfaces were rendered by piecewise texture mapping. Convincing 

photorealistic models were produced after rendering using texture mapping. 

 

A novel approach was demonstrated by Laycock et al. (2007) for automatic 

generation and texturing of urban environment. The method was based on 

procedural texture generation, which permits the realization of a large 

variation in the building facade’s appearance. The approach was efficient in 

terms of its memory usage and graphics hardware utilization. The procedural 

texture generation comprised the segmentation of a ground level image into 

three maps of wall, feature, and object. The wall map was used to refer to the 

wall material, such as flint or brick. The feature map was composed of a 

unique set of objects like windows or doors. On the other hand, the object 

lookup map was a template image representing the arrangement of the 

features on the facade. The OpenGL shading language was employed to 

combine these three maps during the rendering. An automatically generated 

and populated urban environment was preprocessed in less than ten 

minutes. 

 

In a more recent study conducted by David (2008), an approach was 

proposed to detect building facades from the perspective view single images. 
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First, the image line segments were located. Then, the vanishing points of 

these segments were determined using the RANSAC robust estimation 

method. This was followed by the generation of local support for planar 

facades at different orientations. Next, the plane support points were 

clustered using an algorithm without having any knowledge about the number 

of clusters or their spatial proximity. Finally, the building facades were 

identified by fitting vanishing point-aligned quadrilaterals to the clustered 

support points. It was reported that the main contribution of this study was on 

the improved performance over existing approaches while placing no 

constraints on the facades. 

 

Ripperda (2008) presented an approach for the extraction of building facade 

elements from ground-based images and range data. The reconstruction was 

a grammar based extraction approach which was guided by the reversible 

jump Markov Chain Monte Carlo (rjMCMC) method. This was due to the fact 

that the model was a structural description of the facade. Since the main 

interest in their study was the distribution of windows and doors, their widths 

and heights were also emphasized.  

 

 

2.3.3. Summary of Texture Occlusion Removal Techniques 

 

Apart from the occlusion removal techniques mentioned in the facade texture 

acquisition section, there have been several fundamental studies 

concentrated solely on texture occlusion removal. In one of these studies, the 

“image quilting” approach was developed by Efros and Freeman (2001), who 

presented a simple image-based method for generating a novel visual 

appearance, in which a new image was synthesized by stitching together the 

small patches of the existing images. The algorithm was composed of 

iteratively executed three steps. In the first step, the image was traced in 

raster scan order in steps of one block. Second, the input texture, which 

satisfies the overlap constraints within some error tolerance, was searched 

for every location. In the last step, the error surface between the newly 
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chosen block and the old blocks at the overlap region was computed. In 

addition, the minimum cost path along this surface was determined and the 

selected block was pasted onto the texture. More generally, the proposed 

algorithm was found to be fast and very simple in texture synthesis. 

Moreover, successful results were obtained for a wide range of textures. 

 

Further, a region filling and object removal approach by an exemplar-based 

image inpainting was proposed by Criminisi et al. (2004). This study was 

proved to combine the advantages of two previous approaches that are 

texture synthesis and inpainting. The result was an image in which the 

selected object was replaced by a visually plausible background that mimics 

the appearance of the source region. For determining the fill order of the 

target region, an exemplar-based texture synthesis technique modulated by a 

unified scheme was employed. The fill priority was affected by a confidence 

value derived from the pixel values. The approach was also capable of 

propagating both linear structure and two-dimensional texture into the target 

region with a single simple algorithm. As a result, the approach was proved 

to be robust and effective.      

 

In a different study conducted by Wilczkowiak et al. (2005), a hole filling 

algorithm, which can automatically locate candidate source patches and 

adhere to user specified constraints, was demonstrated. The source patches 

were either retrieved from elsewhere in the same image or from other images 

taken from different perspectives. The two significant contributions of this 

work were the automatic detection and adjustment of source patches, in 

which the macrostructure was compatible with the hole region. It was also 

reported that the proposed approach has a capability of handling 

macrostructure with an adjustable degree of automation.  

 

In a recent study, a new image completion algorithm to work with the building 

facade textures was presented by Konushin and Vezhnevets (2007). Under 

the assumption of high periodicity of facade textures, the reconstruction of 

textures was carried out by an approach based on a cloning procedure. In 
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this procedure, the unknown (or occluded) area was filled with large patches 

as much as possible. In other words, a source patch was searched to cover 

the whole unknown area at once. When it was found, this patch was cloned 

into the hole. Otherwise, the hole was split in two, and the same procedure 

was repeated once more. The proposed algorithm was tested on more than 

30 buildings of Moscow and Seoul. The results showed that the algorithm 

was able to keep the macrostructures of the buildings and deal with large 

resolution textures, as well.   
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CHAPTER 3 
 
 
 
 

THE METHODOLOGY AND THE DEVELOPED SOFTWARE 
 
 
 
 
 
 

In this chapter, first the methodology of the developed photorealistic 3-d 

building modeling framework is given. Then, the interface of the developed 

software PhotoREalistic BUilding Modeling (PREBUM) is described.   

 

 

3.1. The Methodology 

 

The methodology of the developed photorealistic 3-d building modeling from 

satellite and ground-level imagery is shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The flowchart of the developed photorealistic 3-d building modeling from satellite 

and ground-level imagery. 
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The normalized digital surface model (nDSM), satellite image, and the 

ground-level photographs are the main inputs of the system. Existing building 

database is used as the secondary input data. When preparing this data, the 

buildings, which have identical appearance in terms of size and texture, are 

grouped together. This grouping is done as a result of building analysis from 

the satellite image and also from the field work. These groups are then 

subdivided into polygons and called “building blocks”. Three main 

approaches were developed for generating 3-d solid model as well as the 

photorealistic 3-d model. These approaches are; (i) 2-d building extraction 

and delineation, (ii) building facade texture acquisition, and (iii) Texture 

selection and mapping.  

  

The 3-d solid building models are generated using two different data sets. 

The first data set contains 2-d building footprints (x-y), which are detected 

from high resolution pan-sharpened satellite image by employing the method 

developed for the 2-d building extraction and delineation part of the 

framework. In brief, the method first extracts the building patches from the 

imagery using an adaptive fuzzy-genetic approach. This stage is originated 

from a genetic algorithm based image exploitation system “GENIE”, which 

was developed by Perkins et al., (2000). However, the method developed at 

present study brings an important novelty that is an adaptive-fuzzy module 

that fine-tunes the genetic algorithm parameters aiming to improve the 

feature extraction performance. The technique integrates the concepts of the 

well known genetic algorithm, such as population, chromosome, gene, 

crossover, and mutation into fundamental image processing concepts. The 

population is defined as the set of chromosomes, which consists of a 

predetermined number of image processing operations (genes). The genes 

are composed of the basic image processing operations. The algorithm is 

initiated by selecting the training samples for the building and non-building 

areas from the imagery. Next, the image processing operations are 

performed on a chromosome-by-chromosome basis to obtain the specific 

attribute planes, which are then fed into Fisher Linear Discriminant (FLD) 

module that finds an optimal discriminating hyper plane between the building 
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and non-building features. For each chromosome, the fitness values are 

calculated by analyzing the detection and mis-detection rates. After that, the 

crossover and mutation operations are applied to arbitrary chromosome(s) in 

order to create a better population in the next generation by diversifying the 

current population. At the end of each generation cycle, the crossover and 

the mutation probabilities are adjusted by the adaptive-fuzzy module for the 

next generation. The evolutionary process is repeated until a satisfactory 

level of iteration is reached.   

 

In the second stage of the proposed method, building delineation operation is 

carried out. First, the morphological image processing operations are 

performed in order to enhance the extracted building polygons. Then, the 

building block to be processed is selected for further processing. For the 

selected building block, the corners of the building patches that fall within the 

block are detected. To do that, first the best fitting ellipse to each building 

patch is determined. Then, the maximum-area rectangle that can be 

inscribed in the ellipse is determined. In this manner, the corners of the 

rectangle can be used as the corners of the building patches. The building 

boundaries are then delineated by simply connecting the corner points in 

correct order. 

 

The second data set used in the generation of 3-d solid models is the 

normalized digital surface model (nDSM), which is computed by subtracting 

digital terrain model (DTM) from digital surface model (DSM). The nDSM 

used at present study was generated in a former study conducted by Koc 

San (2009) in the department. By using the nDSM, the height information (z) 

of the building models is fetched easily within a satisfactory level of error 

margin. The detailed description about nDSM generation is given in data 

description section, in Chapter 1. In addition to three dimensional information 

(x-y-z), the size, translation, and orientation parameters of the building 

patches are also taken into account in the generation of untextured building 

models.  
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To extract the facade textures to be mapped on a solid model, a texture 

selection approach was developed. For each building block, two photos 

belonging to any two adjacent facades of any building are selected from 

ground-level photographs by means of proximity and bearing. Then, the 

selected photos are processed using the developed “Building Facade 

Texture Acquisition” technique to generate the facade textures. In brief, the 

developed technique provides the automatic retrieval of the photorealistic 

textures from single ground-level building images. First, the facade image is 

extracted using the Watershed segmentation technique. To initiate the 

segmentation the marker pixels are seeded automatically both for the 

foreground (facade) and background (sky, pavement and neighboring 

buildings) regions and the segmentation is carried out repetitively until the 

most successful foreground segment is extracted. Next, the extracted facade 

image is geometrically rectified using a developed technique that operates in 

an automated way. The main steps of the automatic rectification procedure 

includes; the Hough transformation of the segmented image, identification of 

the vertical end points of the detected Hough lines, estimation of the trend-

lines, and the projective transformation. The geometric rectification is 

followed by the automated texture cropping and occlusion removal, which are 

also carried out automatically. In removing the occlusions a developed 

image-matching based approach is used. The approach consists of such 

operations that mark the occluded region, search the marked region in the 

remaining parts of the facade image, select a non-occluded patch, and copy 

it into marked region. Once the occlusion-free facade textures are generated 

they are mapped on the corresponding facades of the solid model and thus 

the photorealistic 3-d model is obtained.    

 

 

3.2. The Developed Software  

 

The software entitled PhotoREalistic BUilding Modeling (PREBUM) was 

developed within the scope of the study. The motivation of the software 

development has arisen from the need of integrating the main components of 
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the overall methodology and increasing the level of automation. This brings 

some advantages, such as speed, easiness, and compactness. Due to its 

user-friendly design supported by a graphical user interface (GUI) PREBUM 

is easy to use. The main interface of PREBUM is illustrated in Figure 3.2.  

 

 

 

Figure 3.2. The interface of the developed software. 

 

The interface is composed of three main panels fragmented by blue lines and 

numbered as 1, 2, and 3 in Figure 3.2. Panel -1 (Layers) is designed to keep 

track of input, output, and intermediate results of the analysis. The name of 

the output image files are simultaneously recorded on this panel and the user 

is allowed to scroll among them. The image files supported by the software 

include .jpg, .tif, .gif, .bmp, and .png. For the display of multispectral images, 

the desired band combination can be selected using the band-selection 

option before proceeding to next step. For this moment, the software is 

1 
2 

3 
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limited to four bands, which are red (R), green (G), blue (B) and grayscale. 

Therefore, the user can select any combination of the bands Red ,Green, 

and Blue or a monochrome image. Figure 3.3 illustrates a couple of 

examples regarding the display of multispectral images.   

 

  

 

(a) 

 

(b) 

 

Figure 3.3. (a) The display of a satellite image using the bands Red, Green, and Blue, and 

(b) the display of a facade image in Red band only. 
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Panel-2 is the view panel of the interface, in which the images are displayed. 

This panel is tightly connected with Panel-1 such that a selected file is 

visualized in this area immediately.  

 

The final part of the GUI is the panel-3, which contains the major functions for 

data input and manipulation.  Each function is performed by a popup menu 

item such as “File”, “Pre-Processing”, “2-D Delineation”, “Solid Modeling”, 

“Texture Generation” and “Photorealistic Modeling” (Figure 3.4). 

 

 

 

Figure 3.4. A closer view of panel-3. 

 

“File” is the first menu item, which comprises four options: “Load Study Area”, 

“Delete All Layers”, “Delete Single Layer” and “Exit” (Figure 3.5). 

 

 

 

Figure 3.5. The options of the “File” menu item. 

 

The “Load Study” option provides the loading of the satellite image to layers 

panel. To do that, an open dialog box is initiated with the default file name as 
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“study_area.tif”. Besides, all other image file extensions mentioned above are 

also supported (Figure 3.6).  

 

 

 

Figure 3.6. A snapshot from the option “Load Study Area”. 

 

The second and third options are used to remove the files that are loaded 

previously to Panel-1. The only difference between the two options is that the 

former deletes the entire layers, while the latter deletes the selected layer 

only. The fourth option (Exit) terminates the program.  

 

The second menu item “Pre-processing” consists of the fundamental image 

processing functions, which are used for enhancing the input imagery before 

proceeding to further stages. The input imagery can be a satellite image 

covering the study area or the ground-level photos of the building facades. 

The options contained within this menu item include “Adjust Intensity”, 

“Adjust Hue”, “Adjust Saturation”, “Histogram Equalization”, “Smooth”, and 

“Sharpen” (Figure 3.7).  
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Figure 3.7. The “Pre-processing” menu item and the options it contains. 

 

The first three options provide the adjustment of the input image in terms of 

hue, saturation and intensity (HSI). The features and the importance of HSI 

color space are given in Chapter 5. The interface “Adjust Intensity” is 

composed of “increase (+)”, “decrease (-)” and “reset“ buttons along with an 

image preview window. The interfaces “Adjust Hue” and “Adjust “Saturation” 

are identical with the interface “Adjust Intensity”. Figure 3.8 shows the “Adjust 

Intensity” option of the “Pre-processing” menu item.  

 

 

 

Figure 3.8. The option “Adjust Intensity” of the “Pre-processing” menu item. 
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The “Histogram Equalization” option of the “Pre-processing” menu item is 

employed to enhance the contrast of the image by means of a well-known 

contrast enhancement technique of histogram equalization. The fifth option, 

“Smooth” is used for eliminating the Gaussian-type noise from the imagery by 

smoothing it via a simple average filter. Finally, the last option “Sharpening“ 

is carried out to sharpen the image by reducing the level of blurring.  

 

The next menu item, “2-D Delineation”, includes five options that are “Set GA 

Parameters”, “Segmentation”, “Morphological Pre-Processing”, “Building 

Block Selection”, and “Delineation” (Figure 3.9).     

 

 

 

Figure 3.9. The “2-D Delineation” menu item and the options it contains. 

 

In this menu item, the building footprints are detected using a sequence of 

operations. The first option “Set GA Parameters” allows the initialization of 

the genetic algorithm parameters that are used in the segmentation of remote 

sensing imagery to detect the building patches. After segmenting the 

imagery, a pre-processing stage based on image morphology is carried out 

using the “Morphological Pre-Processing” option of the menu item “2-D 

Delineation”. This is followed by the selection of building blocks that contain 

buildings being in similar characteristics with respect to size and texture. 

Finally, the boundaries of the segmented patches are extracted using the 

option “Delineation”, which operates on an image geometry-based approach 



64 
 

developed at present study. The details of the options of the current menu 

item are emphasized in Chapter 4. The source code for the developed 2-d 

building extraction and delineation procedure is provided in Appendix A. 

 

The menu item “Solid Modeling” is used in generating the untextured 3-d 

building models. It contains the options of “Input 3-D Height Information”, 

“Generate 3-D Models”, and “Show 3-D Solid Models” (Figure 3.10). 

 

 

 

Figure 3.10. The “Solid Modeling” menu item and the options it contains. 

 

In this menu item, the option “Input 3-D Height Information” provides data 

input for the building heights by overlaying the nDSM data with the detected 

building patches. For each building block, separate text files, which contain 

building height information belonging to each building contained within the 

block, are generated and then selected using this option. The option 

“Generate 3-D Models” integrates the height information with the previously 

determined 2-d coordinates. This process ends by generating the untextured 

3-d models. The option “Show 3-D Solid Models” is used to visualize the 

building models using Cortona VRML viewer. A detailed description about the 

menu item “Solid Modeling” is given in Chapter 6. The source code for 3-d 

model generation is given in Appendix C.  

 

The menu item “Texture Generation” is used for the generation of the 

building facade textures to be mapped on the solid model. The options 

contained within this item include “Load Facades and Set Parameters”, 
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“Texture Extraction”, “Rectification and Cropping”, and “Occlusion Removal” 

(Figure 3.11).  

 

 

 

Figure 3.11. The “Texture Generation” menu item and the options it contains. 

 

With the option “Load Facades and Set Parameters” the ground-level photos 

that are associated with the building blocks to be processed are loaded to the 

system. The parameters to be used in the texture extraction phase are also 

set using this option. The “Texture Extraction” option initiates the extraction of 

the facade textures from ground-level building photos using an approach that 

operates on iterative Watershed segmentation. The option “Rectification and 

Cropping” is used to perform the geometric rectification of the extracted 

facade textures and crop the rectified textures. The last option in this menu 

item is “Occlusion Removal”. It is used to remove the occlusions which may 

be present in the facade textures. A detailed description about this menu item 

is given in Chapters 5 and 6. The source code for the facade texture 

generation procedure is given in Appendix B. 

 

The sixth and the last menu item of panel-3 is “Photorealistic Modeling”. The 

function of this menu item is twofold; the mapping of the facade textures and 

the visualization of the photorealistic model. The options contained within this 

menu item include “Map Textures” and “Show 3-D Photorealistic Models” 

(Figure 3.12). The first option “Map Textures” is used to map the previously 

generated facade textures on the solid model. Besides, it handles the roof 
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texturing with artificially produced tile patterns. In the second option “Show 3-

D Photorealistic Models”, the visualization of the photorealistic model is 

carried out using the Cortona VRML viewer. A detailed description about this 

menu item is given in Chapter 6. The source code for the facade texture 

mapping is given in Appendix C. 

 

 

 

Figure 3.12. The “Photorealistic Modeling” menu item and the options it contains. 

 

In addition to the panels described above, the separate popup windows, 

warning dialog boxes, and wait bars are also employed in PREBUM to inform 

the user. 
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CHAPTER 4 
 
 
 
 

2-D BUILDING EXTRACTION AND DELINEATION  
 
 
 
 
 
 

In this chapter, a new technique developed for 2-D extraction and delineation 

of urban buildings from high resolution satellite imagery is described. In brief, 

the building regions are extracted using an adaptive fuzzy-genetic algorithm, 

while the footprints are detected through the morphological image processing 

operations. The overall methodology is given in the first section. Then, the 

steps of the extraction and delineation are examined thoroughly together with 

the accuracy assessment methods.  

 

 

4.1. The Proposed Workflow 

 

The steps of the proposed 2-D building extraction and delineation framework 

are given in Figure 4.1. The high resolution satellite image constitutes the 

input data. The 2-D building extraction is performed using an adaptive fuzzy-

genetic approach, which combines the genetic algorithm concepts with the 

well-known image processing operations. The adaptive fuzzy part is used to 

improve the feature extraction performance by adjusting the genetic 

algorithm parameters. Next, the building delineation step is carried out to 

reveal the footprints of the extracted patches to be used in the generation of 

3-D building models. This step comprises image morphology functions such 

as opening, hole-filling, and convex image generation along with the 

detection of the region corners of the binary images.
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Figure 4.1. The general workflow of the 2-D building extraction and delineation approach. 

 

 

4.2. Building Extraction 

 

The processing steps of the proposed methodology for 2-D building 

extraction using the adaptive fuzzy-genetic approach are illustrated in Figure 

4.2. First, the training and test regions are selected from the image both for 

the building and non-building classes. Next, the predetermined image 

processing operations are performed on the RGB image bands to obtain the 

spectral and texture attributes. These attributes are reduced into a single 

grayscale image band (the extracted building regions) by a Fisher Linear 

Discriminant Analysis. Then, the fitness values are computed by using the 

test samples. This is followed by performing several genetic algorithm 

operations in order to diversify the candidate solutions. In the last step, the 

genetic algorithm parameters are adjusted by an adaptive fuzzy logic 

controller to improve the performance of the methodology. This evolutionary 

process is repeated until a satisfactory level of accuracy is achieved. 
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Figure 4.2. The proposed 2-D building extraction technique. 

 

 

4.2.1. The Genetic-Image Component 

 

Before describing the processing steps in detail, the fundamental image-

based genetic algorithm (Perkins et al. 2000) basics are introduced first. In 

their design, the population of the genetic algorithm is generated from a 

predefined number of chromosomes, each of which can be seen as a 

candidate solution in extracting the building regions. The structure of a 

chromosome consists of a predetermined number of image processing 

High Resolution 

Satellite 

Imagery 

Selection of 

Training and Test 

Regions 

Spectral and 

Textural 

Operations 

Spectral and 

Textural Attributes 

 

Extracted  

Building  

Regions 

Fisher Linear Discriminant 

Fitness Calculation 

Next Generation 

Adaptive  

Fuzzy Logic 

Controller 

Genetic-Image Component 

Selection, Crossover 

and Mutation 

Operations 

 

 

Adaptive-Fuzzy Component 



70 
 

operations (genes). The genes are the well-known functions, such as basic 

mathematical, logical, thresholding operations, as well as the spectral and 

texture measures. The structure of a population, chromosomes, and the 

genes are illustrated in Figure 4.3.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The structure of a population, which is composed of M chromosomes and N 

genes in each chromosome. 

 

The first step is the selection of training and test samples from the satellite 

image. At present study, the aim was to discriminate buildings from the 

background. Therefore, two feature classes namely “building” and “non-

building” were specified and the training samples were selected for each 

class. The sample size was determined as 50 equal size (10x10) square 

regions per class, which makes a total of 5000 pixels. The test samples were 

also collected to be used for assessing the accuracy of building extraction. 

Similar to training samples, 50 equal area test samples were marked for each 

of the “building” and “non-building” classes. The training and test samples 

were collected from different locations of the study area. The training 

samples were collected from the lower part of the study area, while the test 

samples were collected from the upper portion. The distribution of the test 

and training samples are illustrated in Figure 4.4. The red and green squares 
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denote the test samples for the building and non-building feature classes, 

while the blue and yellow squares correspond to training samples for the 

building and non-building classes, respectively.   

 

 

 

Figure 4.4. The distribution of the training and test samples. 

 

In the developed PREBUM software, the selection of the training and test 

samples is carried out using the “Segmentation” option of the “2-D 

Delineation” menu item. Before starting the selection, the user is given an 

option to either utilize the existing samples or to select the new ones before 

proceeding to further steps. The corresponding dialog box is shown in Figure 

4.5. 
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Figure 4.5. The question dialog box which pops up before the training/test sample selection.  

 

The next step is the initialization of the chromosomes with the image 

processing operations (genes). These operations are randomly selected from 

a gene pool. The complete list of the image processing functions, which are 

included in the gene pool, is shown in Table 4.1.     

 

Table 4.1.The primitive image processing operations (the gene pool) (Harvey et al., 2002).  

 

 Input 
Category GENE ID Gene Description # of Input  

Bands 
# of 

Parameters 
1 Add Bands 2 0 

2 Add Scalar 1 1 

3 Subtract Bands 2 0 

4 Normalized Difference 2 0 

5 Multiply Bands 2 0 

6 Multiply by Scalar 1 1 

7 Negate Band 1 0 

8 Square Root 1 0 

9 Square 1 0 

10 Linear Scale 1 2 

Basic 
Mathematical 

11 Linear Combination 2 1 

12 Minimum 2 0 

13 Maximum 2 0 Logical 

14 If Less Than Else 4 0 

15 Clip High 1 1 

16 Clip Low 1 1 Thresholding 

17 Threshold 1 1 

18 R5R5 1 0 

19 LAWB 1 0 

20 LAWD 1 0 

21 LAWF 1 0 

Texture 

22 LAWH 1 0 

23 Distance Similarity 3 0 

24 Correlation Similarity 3 0 Spectral 

25 Similarity Value 3 0 

 

The first category in the gene pool is composed of basic mathematical 

operations. Gene#1 simply adds two bands, while Gene#2 adds a positive or 
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negative scalar parameter to a band. Gene#3 subtracts two bands and 

Gene#4 is similar to Gene#3 but divides the result by the sum of its two 

inputs. Gene#5 multiplies the pixel values of the bands, while Gene#6 scales 

the input band by a positive scalar. The genes #7, #8 and #9 perform the 

negation, square root, and square operations, respectively to a single input 

band. Gene#10 is similar to Gene#6 but takes an extra parameter, which is 

added on the scaled input. The last gene Gene#11 in this category outputs a 

linear combination of two inputs, in proportion specified by a parameter that 

takes a value between 0 and 1.  

 

The second category comprises the fundamental logical operations. The 

genes #12 and #13 perform pixel-wise minimum and maximum for binary 

input. Gene#14 outputs its third input whenever the first input is less than its 

second input, and its fourth input elsewhere. The third category includes 

several basic thresholding operations. Falling in this category, Gene#15 

truncates any pixel values above a value set by its parameter while Gene#16 

does the reverse. In Gene#17 the values below its parameter are set to 0 

(black), while the values above the parameter are set to 1 (white). The 

functions in the texture category apply Laws’ texture energy measures to 

input bands. The fundamental (L3, E3, S3) and derived vectors (L5, E5, S5, 

W5, R5) are composed of 1-d convolution kernels, which are: 

 

• L3 = [1 2 1] • L5 = [1 4 6 4 1]   

• E3 = [-1 0 1] • E5 = [-1 -2 0 2 1] 

• S3 = [-1 2 -1] • S5 = [-1 0 2 0 -1] 

 • W5 = [-1 2 0 -2 1] 

 • R5 = [1 -4 6 -4 1] 

 

where; the mnemonics stand for (L)evel, (E)dge, (S)pot, (W)ave and (R)ipple 

(Laws, 1980). In the current study, R5R5, LAWB, LAWD, LAWF and LAWH 

(Genes #18 - #22) are generated from the set of 1-d kernels given above, in 

which R5R5 corresponds to R5T x R5; LAWB, LAWD, LAWF and LAWH 

correspond to S3T x L3, E3T x E3, L3T x S3 and S3T x S3, respectively. In the 
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last category, the spectral similarity measurement within the input bands is 

provided by the distance and correlation similarities along with the similarity 

value.   

 

All the chromosomes in the population have the same fixed number of genes. 

The optimum numbers for the chromosomes and genes will be discussed in 

section 4.2.3. An example chromosome with five genes can be illustrated as 

follows: [3     7     17     7     21], where the numbers denote the gene 

identification numbers. The image processing operations “Subtraction – 

Gene#3”, “Negation – Gene#7”, “Thresholding – Gene#17”, “Negation – 

Gene#7” and “Texture (LAWF) – Gene#21” are performed on randomly 

selected input and output bands. The input bands are the R (red), G (green), 

and B (blue) bands of the satellite image, while the output bands are the 

empty temporary bands. A temporary output band can be used as an input 

band after it is initialized by an operator. In other words, the temporary band 

should be non-empty. At present study, four temporary bands were 

determined and they were labeled “temp1”, “temp2”, “temp3”, and “temp4”.  

 

According to our hypothetical chromosome described above, an example 

scenario works as follows: For Gene#3, let’s assume that the algorithm 

selects two input bands (R, G) and one output (temp3). The result of 

subtraction (R - G) is written to “temp3”. From now on, the band “temp3” can 

also be used as an input band. For the next gene (Gene#7), single input and 

output bands are selected, which are assumed to be “G” and “temp1”, 

respectively. The result of negating the green band is written to “temp1”. 

After that, for Gene#17, a single input band (temp3) and the output band 

(temp2) are selected together with a scalar parameter, which can be 

selected randomly between 0 and 255 for an 8-bit image. In the present 

example, the scalar parameter was defined as 135. Therefore, the pixel 

values of the band “temp3” staying above 135 are set to 255 and those 

staying below are set to 0. Then, the result is written to band “temp2”. Next, 

Gene#7 is used again to negate an input band (B) and the resultant image is 

written to an output band (temp4). In this case “temp4” is the solely 
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candidate output band since it is the only remaining empty band. Finally, for 

Gene#21, an input band (temp1) is selected, the LAWF texture mask is 

applied to this band, and the output is written to selected band (temp4).  

 

At the end, all the temporary output bands are utilized that represent the 

spectral and textural attributes of a chromosome. Since the final classification 

produces the output of a single binary band (the extracted building regions), 

the dimension of the temporary output bands are reduced to one. This is 

carried out by means of a Fisher Linear Discriminant (FLD), which is a 

conventional classification algorithm (Figure 4.6). 

 

 

 

 

 

 

 

 

Figure 4.6. The dimension reduction procedure using Fisher Linear Discriminant. 

 

The dimension reduction method provides a linear combination of the 

temporary output bands that maximize the mean separation between true 

(building) and false (non-building) pixels, normalized by the total variance in 

the projection defined by the linear combination. The result of the 

discriminant-finding phase is a gray-scale image, which is then reduced to a 

binary image by finding the threshold value that maximizes the “fitness”. The 

dimension reduction phase is exemplified in Figure 4.7 (Joo, 2003). 
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Figure 4.7. The optimum direction ‘w’ in discriminating the points belonging to two different 

classes (red and black). 

 

In a projection onto one direction, w (two class problem), the samples are n 

d-dimensional vectors x1… xn, which consist of two subsets D1 and D2. The 

projected samples are computed by the below equation that consists of two 

subsets Y1 and Y2.  

 
y = wt x                (Equation – 1) 

 
The criterion is to maximize the Fisher Linear Discriminant J(w): 
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The optimal line direction, w, can be computed as follows:  
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Following the extraction of building regions in binary form, the next step is to 

evaluate the fitness of the candidate solution (chromosome). The details of 

fitness computation are discussed in section 4.2.4. After calculating the 

fitness values for all chromosomes in the population, the chromosomes are 

ranked from lowest to highest fitness. Then, only the best chromosomes are 

selected and the rest are discarded. The selection rate XR is the fraction of 

the total population (NPOP) that survives for the next generation. The number 

of chromosomes to be kept (NKEPT) is computed as follows: 

 

NKEPT = NPOP x XR                          (Equation – 5) 

 

Of the total population of the chromosomes in a generation (NPOP), only the 

top NKEPT are kept for mating, and the bottom (NPOP-NKEPT) are discarded to 

allocate room for the new offsprings. Next, two chromosomes are selected 

from NKEPT chromosomes to produce two new offsprings. The chromosomes 

are selected using a random pairing technique, which utilizes a uniform 

random number generator. The chromosome with the highest fitness value, 

which is named as “elite chromosome,” is excluded from this process to 

preserve the success rate for the next generations.   

 

After selecting the parent chromosomes, the mating procedure is performed. 

Mating can be defined as the creation of one or more offspring from the 

selected parents. The most common forms of mating involve; the production 

of two offspring by two parents (crossover) and a single offspring by one 

parent (mutation). These operations are aimed to create a better population 

in the next generation by producing the altered offspring. The probabilities of 

the parent chromosomes to be involved in the crossover and mutation 

operations are set to PC and Pm, respectively. In this study, the “single point” 

crossover operation is used. In this operation, a crossover point is randomly 

selected between the first and the last genes of the parents’ chromosomes. 

First, parent-1 copies its genes staying on the left of the crossover point to 
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offspring-1. Similarly, parent-2 copies its genes staying on the left of the 

same crossover point to offspring-2. Then, the genes staying on the right of 

the crossover point of parent-1 are moved to offspring-2 and parent-2 passes 

its genes to offspring-1 in the same manner (Figure 4.8).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. An example for the crossover operation and the generated offsprings. 

 

Mutation is the second way to diversify the population. As in crossover, a 

single point mutation procedure is employed at present study. The gene to be 

mutated is randomly selected from the parent chromosome and exchanged 

by a gene arbitrarily selected from the gene pool (Figure 4.9).  
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Figure 4.9. An example for the mutation operation and the produced offspring. 

 

At the end of the crossover and mutation operations, the parents are 

expected to produce a total of NPOP – NKEPT offspring in order to keep the 

chromosome population as NPOP. To do that, the selection and mating 

procedures are repeated until the required number of offsprings is produced.  

 

 

4.2.2. Adaptive-Fuzzy Component  

 

Before proceeding to next generation of the genetic image component, an 

adaptive-fuzzy logic controller step is employed. The performance of the 

genetic algorithm is quite sensitive to control parameters. It is possible to 

destroy a well performing chromosome when the crossover probability is 

high. On the other hand, a low crossover probability may prevent obtaining 

better individuals and does not guarantee faster convergence. High mutation 

may cause too much diversity and takes longer time to reach the optimal 

solution, while low mutation tends to miss some near-optimal points. Thus, 

the use of fuzzy logic controllers to adapt genetic algorithm parameters is an 

important issue to improve the performance of the genetic algorithm.  
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The genetic algorithm performance measures, such as the average and 

maximum fitness values and the control parameters (crossover and mutation 

probabilities) are fed into the adaptive-fuzzy component. The controller sends 

back the adjusted parameters to be used in the next generation of the 

genetic algorithm cycle. The parameter flow between the two components is 

illustrated in Figure 4.10.   

 

 

 

 

 

 

 

Figure 4.10. The parameter flow between the genetic image and the adaptive-fuzzy 

components (Herrera and Lozano, 2003). 

 

The idea behind the adaptive-fuzzy component approach is as follows: The 

crossover and mutation probabilities (Pc and Pm) should increase if it 

consistently produces a better offspring. However, Pc should decrease and 

Pm should increase when fave(k) (average fitness in kth generation) 

approaches to fmax(k) (maximum fitness in kth generation) or fave(k-1) 

approaches to fave(k). This scheme is based on the fact that it encourages the 

well-performing genes to produce more offspring and reducing the chance for 

poorly performing genes to destroy the potential chromosomes during the 

crossover and mutation processes. In a study conducted by Liu et al., (2005), 

two parameters (e1 and e2) were introduced to define the fuzzy rules for 

crossover and mutation operations (Equations 6 and 7).        
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Using these parameters, the fuzzy rules are identified in order to describe the 

relation between the inputs e1, e2, and the output (the step size of the 

crossover or mutation probabilities) shown in Tables 4.2 and 4.3. 

 

Table 4.2. Fuzzy rules for the crossover operation. 

 

CROSSOVER  

(�Pc(k)) 
e2 

e1 NL NS ZE PS PL 
PL NS ZE NS PS PL 

PS ZE ZE NL ZE ZE 

ZE NS NL NL NL NL 

 

 

Table 4.3. Fuzzy rules for the mutation operation. 

 

MUTATION 

(�Pm(k)) 
e2 

e1 NL NS ZE PS PL 
PL PS

* 
ZE

* 
PS

* 
NS

* 
NL

* 

PS ZE
* 

ZE
* 

PL
* 

ZE
* 

NS
* 

ZE PS
* 

PL
* 

PL
* 

PL
* 

PS
* 

 

In these tables, the abbreviations NL, NS, ZE, PS and PL stand for “Negative 

Large”, “Negative Small”, “Zero”, “Positive Small” and “Positive Large”, 

respectively. The inputs of the mutation controller (e1 and e2) are same as 

the inputs of the crossover controller. However, the output values in table 4.3 

that are illustrated by an asterisk (*) are scaled by 10% compared with the 

original output values given in table 4.2 (i.e. PS
* = PS / 10). The output 

values specify the step sizes of �Pc(k) and �Pm(k) for the crossover and 

mutation probabilities, respectively. Bu using the membership functions 

shown in Figure 4.11, the defuzzification process is performed by means of 

the centroid approach. In this technique, the fuzzy set membership function 

has the graph of a triangle as in the present case. If this triangle is to be cut 

in a straight horizontal line somewhere between the top and the bottom, and 

the top portion are to be removed, the remaining shape looks like a 

trapezoid. In the initial step of defuzzification, the parts of the graph are 

chopped off to form trapezoids. All of these trapezoids are then 

superimposed one another, forming a single geometric shape. Then, the 
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centroid of this shape is calculated and used as the defuzzified value. If the 

shape has a plate of equal density, the centroid is the point along the 

horizontal axis about which this shape would balance (Liu et al., 2005).  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

Figure 4.11. The membership functions for (a) e1, (b) e2 and (c) �Pm(k).  

 

By means of defuzzification process, the control parameters of the genetic 

algorithm are modified using the computed crisp values �Pc(k) and �Pm(k) 

(Equations 8 and 9)  

ZE 

PS 

PL 

0.05 0.06 0.3 0.4 1 0 

ZE PS PL 

0.4 0.6 1 0 

NL NS 

 -0.6 -0.4 -1 

ZE PS PL 

0.04 0.06 0.1 0 

NL NS 

 -0.06 -0.04 -0.1 
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)()1()( kPkPkP ccc ∆+−=              (Equation – 8) 

 

)()1()( kPkPkP mmm ∆+−=              (Equation – 9) 

 

After determining the new probabilities for crossover and mutation, the next 

generation is initiated with a renewed population. In the literature of genetic 

algorithm, the number of generations that evolve depends on whether an 

acceptable solution is reached or a set of iterations is exceeded. After a 

while, all the chromosomes and their fitness values would become the same. 

At this point, the algorithm should be stopped. In the present study, the 

genetic algorithm was stopped after the predetermined number of 

generations is reached.  

 

The execution of the adaptive fuzzy-genetic approach in PREBUM is 

performed by choosing the “Segmentation” option under the “2-D 

Delineation” menu item. The progress of segmentation can be monitored by 

a wait bar. The segmentation result is stored in a file named 

“extracted_buildings.bmp” and is recorded on the “Layers” panel. The 

screenshots of the wait bar during segmentation and the “Layers” panel after 

segmentation are presented in Figure 4.12. 

 

 
 
 

 
 
 
 
 
 
 
 

(a) 

 

(b) 

Figure 4.12. The screenshots of (a) the wait bar and (b) the “Layers” panel.    
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4.2.3. Genetic Algorithm Parameter Analysis  

 

In the extraction of the building regions using the genetic algorithm, a number 

of parameters that include the training and test sample sizes, the selection 

rate (XR), the number of generations, the population size (number of 

chromosomes), the chromosome size (number of genes), and the 

probabilities of crossover (Pc) and mutation (Pm) are used For these 

parameters, the optimum values were determined. 

 

To decide on a selection rate is somewhat arbitrary. Letting only a few 

chromosomes survive may limit the available genes while keeping too many 

chromosomes may result in a bad performance. As was the case in a study 

conducted by Haupt and Haupt (2004), XR was kept to 50% level in the 

natural selection process. The number of generations was kept 20, which 

was found to be optimum for obtaining a barely changing value of the 

maximum fitness after performing several tests. The initial crossover and 

mutation probabilities were set to 0.8 and 0.2, in parallel with the literature 

(Liu et al., 2005; Haupt and Haupt, 2004; Perkins et al., 2000).  

 

To determine the optimum values for the population, the chromosome and 

training / test sample sizes, an accuracy test was carried out. To do that, the 

average and the maximum fitness values were computed under the 

varying parameters of training / test sample sizes, population size, and the 

chromosome size. For the training / test sample size, an initial step size of 5 

was selected together with the minimum and maximum values of 5 and 50. 

Similarly, for the population and chromosome sizes, the step size, the 

minimum value, and the maximum value were set to 5, 5, and 30, 

respectively (Table 4.4). In this manner, a total number of 360 individual tests 

(algorithm runs) were performed, in which ten combinations for training / test 

sample sizes and six for each of the population and chromosome sizes (10 * 

6 * 6 = 360).  
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Table 4.4. The selected step sizes and the minimum/maximum values for determining the 

optimum population, chromosome, and training/test sample sizes.  

 
 

Parameters 
 

Step Size Minimum Value Maximum Value 
 

Training / Test Sample Size 
(number of regions) 

 

5 5 50 

 

Population Size (P) 
(number of chromosomes) 

 

5 5 30 

 

Chromosome Size (C) 
(number of genes) 

 

5 5 30 

 

After performing the tests, the highest peak value of 18 was calculated for the 

population size of 30 and the chromosome size of 5 (Table 4.5). In table 4.5, 

these values are highlighted in blue color. Finally, the optimum size for 

training and test samples was chosen to be 50 since among the other 

samples sizes the highest “maximum fitness” and “average fitness” values 

were reached using this value.  
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Table 4.5. The results of 360 individual runs, yielding the optimum population and 

chromosome sizes. 

 

(Population,Chromosome) Training / Test Sample Sizes   
Pair 

 

5 
 

10 
 

15 
 

20 
 

25 
 

30 
 

35 
 

40 
 

45 
 

50 TOTAL 
PEAKS 

(p,c) = (5,5) 2 0 0 0 0 0 0 0 0 0 2 

(p,c) = (5,10) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (5,15) 0 1 1 2 1 1 2 2 2 2 14 

(p,c) = (5,20) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (5,25) 0 1 1 0 1 1 0 0 0 0 4 

(p,c) = (5,30) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (10,5) 2 0 0 0 0 0 0 0 0 0 2 

(p,c) = (10,10) 0 2 2 1 1 1 2 1 1 1 12 

(p,c) = (10,15) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (10,20) 0 0 0 0 0 0 0 1 0 0 1 

(p,c) = (10,25) 0 0 0 1 1 1 0 0 1 0 4 

(p,c) = (10,30) 0 0 0 0 0 0 0 0 0 1 1 

(p,c) = (15,5) 1 0 0 2 1 2 2 2 2 2 14 

(p,c) = (15,10) 0 1 1 0 0 0 0 0 0 0 2 

(p,c) = (15,15) 0 1 0 0 1 0 0 0 0 0 2 

(p,c) = (15,20) 0 0 1 0 0 0 0 0 0 0 1 

(p,c) = (15,25) 1 0 0 0 0 0 0 0 0 0 1 

(p,c) = (15,30) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (20,5) 1 1 0 1 1 1 1 2 2 2 12 

(p,c) = (20,10) 0 0 1 1 1 1 1 0 0 0 5 

(p,c) = (20,15) 1 0 1 0 0 0 0 0 0 0 2 

(p,c) = (20,20) 0 1 0 0 0 0 0 0 0 0 1 

(p,c) = (20,25) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (20,30) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (25,5) 1 2 2 2 1 1 2 2 2 2 17 

(p,c) = (25,10) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (25,15) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (25,20) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (25,25) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (25,30) 1 0 0 0 1 1 0 0 0 0 3 

(p,c) = (30,5) 1 2 2 2 2 2 2 1 2 2 18 

(p,c) = (30,10) 1 0 0 0 0 0 0 0 0 0 1 

(p,c) = (30,15) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (30,20) 0 0 0 0 0 0 0 1 0 0 1 

(p,c) = (30,25) 0 0 0 0 0 0 0 0 0 0 0 

(p,c) = (30,30) 0 0 0 0 0 0 0 0 0 0 0 

 

To clarify the procedure in determining the peak values, the following 

example is given using the fixed parameters of training / test sample sizes of 

15 and the population size of 5. Further, the chromosome size is altered 

between 5 and 30 with a step size of 5 and the following fitness values are 

computed (Table 4.6).    
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Table 4.6. An example to clarify the peak values given in Table 4.5. 

 

 

     

 

 

 

 

 

 

 

 

 

Of the 6 different cases, the highest maximum fitness value of 91.24 was 

calculated for the chromosome size of 25 (case 5). Similarly, the highest 

average fitness value of 81.81 was computed for the Case 3, in which the 

chromosome size was 15. In Table 4.5, the corresponding cells are marked 

as 1 and highlighted in yellow color. The remaining peak values were 

determined in a similar way under different values of population, 

chromosome, and training / test sample sizes. 

 

In the developed PREBUM software, the parameters of the genetic algorithm 

can be set by initiating the “Set GA Parameters” option under the “2-D 

Delineation” menu item. To retrieve the optimum parameters, the “Load 

Default Parameters” push button is clicked and the optimum values of the 

parameters are set to 50 for the training/test regions, to 20 for the number of 

generations, to 30 for the number of chromosomes, to 5 for the number of 

genes, to 0.8 for the crossover rate, and to 0.2 for the mutation rate. 

Alternatively, in each popup menu item these parameters can be set 

arbitrarily by selecting the predefined values. The “Apply” button is used to 

finalize the values by disabling the selection. The “Close” button closes the 

selection window. Figure 4.13 illustrates two different screenshots for the 

parameter selection of the genetic algorithm. In the figure, the left window (a) 

CASE 1: 
Chromosome Size: 5 
Maximum Fitness Value: 87.58 
Average Fitness Value: 72.67 
 
CASE 2: 
Chromosome Size: 10 
Maximum Fitness Value: 85.79 
Average Fitness Value: 71.75 
 
CASE 3: 
Chromosome Size: 15 
Maximum Fitness Value: 87.80 
Average Fitness Value: 81.81 
 

CASE 4: 
Chromosome Size: 20 
Maximum Fitness Value: 87.16 
Average Fitness Value: 67.30 
 
CASE 5: 
Chromosome Size: 25 
Maximum Fitness Value: 91.24 
Average Fitness Value: 68.18 
 
CASE 6: 
Chromosome Size: 30 
Maximum Fitness Value: 66.34 
Average Fitness Value: 61.61 

Training/Test Sample Size = 15, Population Size = 5 
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illustrates the optimum parameters, while the right window (b) shows the 

arbitrary selection.   

 

  

 (a)        (b) 

Figure 4.13. The parameters of the genetic algorithm with (a) the optimum values and (b) the 

arbitrary values.  

 

 

4.2.4. The Accuracy Assessment of Building Extraction  

 

The assessment of building extraction was carried out by the calculation of 

the fitness value for each chromosome. The fitness value (FT) of a 

chromosome can be defined by the degree of agreement between the final 

binary output and the test pixels of building and non-building regions. For 

each chromosome, the FT value was calculated using the detection (D) and 

misdetection (MD) rates (Equation 10). 

 

FT = 50 x (D + (1 - MD))               (Equation – 10) 

 

where, D is the fraction of test pixels marked as “building” that the classifier 

marks as “building” (true positive), plus the fraction of test pixels marked as 

“non-building” that the classifier marks as “non-building” (true negative). On 

the other hand, MD is the fraction of test pixels marked as “building” that the 

classifier marks as “non-building” (false negative), plus the fraction of test 
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pixels marked as “non-building” that the classifier marks as “building” (false 

positive). For instance, if D=1 then, MD becomes 0 and FT is computed to be 

100, which is the best case. In the worst case, FT becomes 0, for which D=0 

and MD=1. Note that, a fitness score of 50 can be achieved with a classifier 

that identifies all pixels as “building” or “non-building”.     

 

 

4.3. Building Delineation 

 

In this section, the delineation of the above extracted buildings is described. 

Since, many false alarm areas are likely to appear along with the candidate 

building patches, a preprocessing step is employed using the morphological 

image processing operations. Then, the building boundaries are extracted 

using those functions that operate based on the measurement of the 

properties of the binary image regions. The steps of the proposed building 

delineation procedure are presented in Figure 4.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. The workflow of the building delineation methodology. 
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4.3.1. The Preprocessing  

 

The preprocessing operations carried out in the present study are based on 

image morphology, which is an important tool for extracting image 

components that are useful in the representation and description of region 

shape. Image morphology is based on set theory in mathematics and offers a 

powerful approach to numerous image processing problems. The 

morphological techniques are mostly used for pre- or post-processing, such 

as morphological filtering, thinning, thickening, and pruning (Gonzalez and 

Woods, 2008). 

 

In the pre-processing stage, four fundamental morphological operations are 

employed in order to enhance the building regions. These are opening, 

artifact removal, hole filling, and convex image generation. First, the opening 

operation is performed to smooth the contours of the building regions and to 

eliminate the thin protrusions. The opening of set A by the structuring 

element B is denoted as A � B, which is formulated as 

 

  A � B = (A  B)  B              (Equation – 11) 

 

where, the symbols  and  denote the morphological erosion and dilation, 

respectively. Erosion tends to decrease the sizes of objects and remove 

small anomalies by subtracting objects with a radius smaller than the 

structuring element. On the contrary, dilation generally increases the sizes of 

objects and connecting areas that are separated by spaces smaller than the 

size of the structuring element.  

 

In the present study, a disk-shaped structuring element with a radius (R) of 3 

was used for the opening operation (Figure 4.15). This element was 

produced by the Matlab library function strel(‘disk’,3). Although other shapes 

of structuring elements, such as diamond, line, square and rectangle are also 

available, the disk-shape element with a radius of 3 was found to be more 

feasible in preserving the orientation of the building regions.  
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Figure 4.15. A disk-shaped structuring element with a radius of 3 (Matlab Online 

Documentation, 2010).  

 

To implement the opening operation, Matlab’s imopen(im,se) library function 

was used. In this function, ‘im’ refers to input image, which contains the 

extracted building regions in the present case, and ‘se’ refers to formerly 

generated structuring element. To remove the isolated regions an artifact 

removal procedure was also performed immediately after the opening 

operation. For this operation, a threshold value of 250 pixels was selected. 

Therefore, the regions with the areas smaller than the threshold value were 

deleted from the binary image. A building block selected from the study area 

and the building regions extracted are illustrated in Figures 4.16(a) and 

4.16(b), respectively. The composite effect of the opening and artifact 

removal operations are illustrated in Figure 4.16(c), where the isolated 

regions and small protrusions were eliminated to a great extent. 
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(a) 

 

(b) 

 

(c) 

Figure 4.16. (a) A selected building block from the study area, (b) the extracted building 

regions, and (c) the building regions after applying the opening and artifact removal 

operations. 

 

After applying the opening and artifact removal operations, the next step is 

hole filling. A hole is defined as a set of background pixels surrounded by a 

connected border of foreground pixels in a binary image. In general, the hole-

filling algorithms are based on the combination of dilation, complementation, 

and intersection in an image (Gonzalez and Woods, 2008). In the present 

study, the hole-filling operation was carried out by Matlab’s imfill(bw,’holes’) 

library function, in which  ‘bw’  corresponds to binary image after opening 

process and ‘holes’ refers to an optional argument. The binary image after 

filling the holes is shown in Figure 4.17. It is evident that the holes are 

removed successfully. 
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Figure 4.17. The building regions after applying the hole-filling operation.  

 

The last pre-processing step was the convex image generation. In 

mathematical morphology, set A is defined to be convex if a straight line 

joining any two points in A lies within entirely A. The convex hull H of an 

arbitrary set S is the smallest convex polygon that can contain S. A convex 

image is a binary image that specifies the convex hull, with all pixels within 

the hull filled in. In this manner, the boundaries of greater complexity due to 

low image resolution are simplified. In the present study, the Matlab’s 

ConvexImage property was used for obtaining the convex image. This 

function is the principle tool of Matlab’s Image Processing Toolbox (IPT) for 

computing the region descriptors (Gonzales et al., 2009). The building 

regions after converting to convex image are illustrated in Figure 4.18. As 

can be seen in the figure, the complex boundaries have become simpler that 

offers an advantage in extracting the footprints of the buildings.  

 

 

 

Figure 4.18. The final image after applying the pre-processing step of convex image 

generation. 
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The morphological pre-processing operations can also be implemented using 

the “Morphological Pre-Processing” option of the “2-D Delineation” menu item 

in PREBUM. To perform the aforementioned morphological operations, the 

push button “Load Default Parameters” is clicked. In addition to opening, 

threshold, hole filling and convex image generation functions, the software 

also includes the morphological functions of closing, erosion, and dilation 

along with their structuring element sizes. A sample configuration of the 

morphological functions is presented in Figure 4.19, in which the functions 

Opening and Threshold are initialized with certain values and Hole Filling and 

Convex Image Generation options are enabled. On the other hand, Closing, 

Erosion, and Dilation operations are disused.    

 

 

 

Figure 4.19. A sample configuration for the morphological pre-processing functions of the 

PREBUM software. 

 

After the initialization, the enhancement process is triggered by clicking the 

“Apply” button. After a while, the enhancement step is terminated and the 

enhanced building patches are stored in a file named 

“enhanced_buildings.bmp” and recorded on the “Layers” panel (Figure 4.20).    
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Figure 4.20. The view of the “Layers” panel after the morphological pre-processing step. 

 

 

4.3.2. Region Corner Detection  

 

The last step before producing the building footprints is to detect the corners 

of the extracted building patches. Since the quadrilateral buildings are 

considered in this study, four corner points are sufficient to delineate a 

boundary. To detect the corners, first the best fitting ellipse is generated for 

each building patch. This is performed by the regionprops function of 

Matlab. This function returns the ellipse parameters, such as orientation, foci, 

semi-minor axis and semi-major axis. An example for the best fitting ellipse is 

given in Figure 4.21, in which the left side shows an image region and its 

best fitting ellipse, while on the right side the parameters are indicated 

graphically, where the solid blue lines represent the axes and the red dots 

represent the foci. The orientation of the ellipse is computed by using the 

angle between the horizontal dashed line and the major axis.        
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Figure 4.21. The generation of the best fitting ellipse (Matlab Online Documentation, 2010).   

 

In the next step, the rectangle having the largest area that can be inscribed in 

the ellipse is determined and the corners (1 to 4) of this rectangle are defined 

as the region corners (Figure 4.22). 

 

 

 

 

 

 

 

 

Figure 4.22. The computed region corner points (1-4).    

 

To do that, ‘y2’ is written in terms of ‘x2’ using the squared area of the 

rectangle and the equation of a standard ellipse, where 
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To maximize the area of the rectangle, the first derivative of S(x) should be 0. 
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Either )0( =x  or )02( 22
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, respectively. Since, the semi-major axis 

(a) and semi-minor axis (b) are known before, the corner points are 

computed easily, therefore.     

 

However, the orientations of the building regions are generally different from 

the case given in Figure 4.22. Therefore, the patches are rotated by � radian 

in anti-clockwise direction. The rotation angle � is computed from the 

orientation parameters that are provided by the regionprops function. The 

rotated corner points (XRi,YRi) are calculated by multiplying the original corner 

points (Xi,Yi) by the rotation matrix. Then, the resultant matrix after 

multiplication is added to original corner points. 
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After detecting the corners of the building patches, the building boundaries 

are delineated by simply connecting the corners (vertices) in the correct 

order. This is achieved using the Bresenham’s line algorithm, which is used 

to determine what points in an n-dimensional raster should be plotted in order 

to form a close approximation to a straight line between two given points 

(Bresenham, 1965). For a selected sub area, the extracted building footprints 

are illustrated in green color in Figure 4.23.     
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Figure 4.23. The extracted building footprints overlaid with the image. 

 

 

4.3.3. The Accuracy Assessment of Building Delineation 

 

The assessment of the delineated building footprints is carried out by means 

of computing the positional accuracy. The positional accuracy is the expected 

deviation of an object from its original location. It is generally measured by 

selecting a specified number of sample points in a prescribed manner and 

comparing the position coordinates with a reference source of information 

(Aronoff, 1989). 

 

In the present case, to assess the positional accuracies of the building 

footprints detected, the reference source information was prepared using the 

GIMP-2 image processing software. Then, for each building, the coordinates 

of four corner points were measured on the reference source so that they 

could be compared with the corresponding coordinates in the output image. 

Figure 4.24 illustrates a sample building selected in which the reference and 

the output footprints are indicated by colored lines together with the corner 

coordinates. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.24. For a selected sub area, (a) the extracted footprints and (b) the reference 

footprints. (c) The extracted corners and (d) the reference corners of a building. 

 

For each corner point, the pixel distance errors (DistErr) were computed from 

the specified (x,y) pairs using the following formula, 

 

22 )()(    PRPR YYXXDistErr −+−=               (Equation-18) 

 

where, (XR,YR) correspond to test points on the reference image and (XP,YP) 

are the points selected from the output image. Without specifying the level of 

confidence, the stated distance errors become actually quite meaningless. 

Therefore, a normal distribution model was used and, for each building, the 

accuracies were computed at the confidence levels 80%, 85%, 90% and 

95%, using the below given formula, 

 

DistErrMeanDistErrSDValueZAccuracy _    _  *  _    +=             (Equation-19)       

 

where, Z_Value denotes Z score for the corresponding level of confidence, 

SD_DistErr is the standard deviation of distance error and Mean_DistErr is the 
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mean of distance error. For the confidence levels 80%, 85%, 90% and 95%, 

respectively the Z scores of 0.84, 1.045, 1.28, and 1.645 were used.  

 

For a sample building cropped from the sub-image patch, the pixel errors of 

each corner point and the accuracies under different confidence levels are 

illustrated in Tables 4.7 and 4.8. In this case, SD_DistErr and Mean_DistErr 

were found to be 1.20 and 2.68, respectively. 

 

Table 4.7. For a sample building the pixel errors on four corner points.  

 

CORNERS XR YR XP YP DistErr 

1 76 19 78 18 2,24 

2 71 36 71 38 2,00 

3 97 44 99 48 4,47 

4 104 27 106 27 2,00 

 

 

Table 4.8. For a sample building, the accuracies under different confidence levels.  

 

CONFIDENCE 
LEVEL 

Z_VALUE ACCURACY 

80% 0,84 3,69 

85% 1,045 3,93 

90% 1,28 4,22 

95% 1,645 4,65 
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CHAPTER 5 
 
 
 
 

BUILDING FACADE TEXTURE ACQUISITION 
 
 
 
 
 
 

This chapter presents an approach for automatic acquisition of the realistic 

facade textures from ground-level building photographs. A series of methods 

were applied successively to obtain building facade texture images in order 

to map on 3-D building models. This chapter comprises; the proposed 

workflow, automatic texture extraction, and rectification along with the semi-

automatic occlusion removal. Besides, the evaluation of the accuracy in each 

step is described.     

 

 

5.1. The Proposed Workflow 

 

The main steps followed in the proposed building facade texture acquisition 

approach are shown in Figure 5.1. The approach is initiated with the 

automatic texture extraction, which is carried out using a repetitive watershed 

segmentation. Then, the extracted facade texture images are geometrically 

rectified in an automated way. Finally, an occlusion removal step is employed 

to get rid of the obstacles that block the facade texture. 
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Figure 5.1. Building facade texture acquisition. 

 

 

5.2. Facade Image Extraction 

 

The building facade textures are automatically extracted from the ground-

level building photographs. First, a preprocessing step is employed to reduce 

the non-uniform illumination effects on the facade images. Then, the marker 

pixels are initialized automatically both for the foreground (building) and the 

background (out of building) regions to initiate the segmentation. After that, 

the watershed segmentation is carried out repetitively until a stable 

foreground segment is obtained. These steps are repeated until a specified 

number of iterations are reached. To minimize the over-segmentation, the 

texture segments produced at the end of each iteration are overlaid using the 

and-logic. Figure 5.2 summarizes the proposed automatic texture extraction 

technique. 
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Figure 5.2. The workflow of the proposed automatic facade image extraction technique. 
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5.2.1. Radiometric Pre-processing  

 

As is known good illumination conditions improve the efficiency of every 

image analysis application. However, uniform illumination condition is rarely 

obtained due to many factors, such as sun angle, casting shadows, etc. In a 

segmentation process, non-uniform illumination is one of the main reasons 

for the failure conditions causing over- and under-segmentation.  

  

In this study, the building facade photographs acquired from ground level 

mostly suffer from the non-uniform illumination. A building with non-uniform 

illumination is shown in Figure 5.3.  

 

   

(a) 

 

 

 

 

 

(b) 

Figure 5.3. (a) A ground level photograph of a building having non-uniform illumination and 

(b) the region of interest in a closer view. 

 

To minimize this effect, the RGB (Red-Green-Blue) image was transformed 

into HSI (Hue-Saturation-Intensity) color space. The HSI color space is 

known as an ideal tool for developing image processing algorithms and also 

decouples intensity component from the color-carrying information in a color 

image. The adjustment of the saturation component was found to be useful in 

the pre-processing step due to the fact that it gives a measure of the degree 

to which a pure color is diluted by white light (Gonzales and Woods, 2008). 

The computation of the saturation component is as follows:  
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)],,[min(  
)(

3
  1   BGR

BGR
S

++
−=                                 (Equation – 1) 

 

The non-uniform illumination is reduced by multiplying the saturation 

component by a saturation coefficient (sc), of 5. At present study, this value 

was found to be optimum, as it provided the most successful segmentation 

accuracies after performing several experiments. In PREBUM, the saturation 

boosting is achieved by the “Adjust Saturation” option under the menu item of 

“Pre-processing”. To obtain the predetermined coefficient value, the 

“increase (+)” button is pressed five times, consecutively. Figure 5.4 

illustrates the building shown in Figure 5.3 after boosting the saturation. 

 

 

(a) 

 

  

 

 

 

(b) 

Figure 5.4. (a) The building shown in Figure 5.3 after boosting the saturation and (b) the 

region of interest in a closer view. 

 

 

5.2.2. Initialization of the Marker Pixels  

 

Before executing the watershed transform, the initial marker pixels (seeds) 

must be seeded in the input image. In this study, the initial markers are 

located automatically both for the foreground and background regions. It is 

assumed that for the foreground (building) region the initial marker pixels fall 

in the middle of the image frame. Similarly, the background seeds for the 

non-building objects (sky, pavement, neighboring buildings, etc.) are located 

near the edges of the image frame (Figure 5.5). The distribution of the new 
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markers in further stages of the repetitive watershed segmentation will be 

discussed in the following section. 

 

 

    

Figure 5.5. The initial markers for the foreground (red) and background (green) regions. 

 

 

5.2.3. Watershed Transform  

 

The watershed transform grows out of mathematical morphology and takes 

its inspiration from hydrology and the study of watersheds (Beucher and 

Meyer, 1992). Hydrological watersheds partition the landscape based on 

watershed lines (or ridges) and the valleys between them. When it rains, 

water will flow to low lying catchment basins of the landscape. The 

boundaries between these basins are called the watersheds (Figure 5.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Illustration of the concept of watershed segmentation: (a) The profile of gray level                   

image; (b) Local minima of gray level yield catchment basins, local maxima define the 

watershed lines. 

. . 
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Watershed transformation is the delineation of watershed lines from a 

gradient image derived from the input image based on immersion simulation. 

In the gradient image, high magnitudes correspond to distinct boundaries in 

the input image, whereas uniform smooth areas of the input image have low 

gradient that represent low magnitude surface (Figure 5.7). The algorithm 

imposes a discrete set of gray values on the image and then expands each 

catchment basin from its minimum grey level by iteratively merging the 

nearest connected-component regions of the next highest gray level. Any 

pixels that are equidistant from two basins are labeled as watershed 

boundaries (Vincent and Soille, 1991).  

 

 

 

Figure 5.7. The gradient image. 

 

In the present case, as a contribution to original watershed transform, a 

repetitive segmentation method is proposed, such that for each run, new 

foreground markers are automatically positioned randomly inside the newly 

segmented regions. The number of the new markers is computed as one 

percent of the total image area. That is, if the original image is 480x480 

pixels, then the marker count becomes 480 x 480 x 0.01 = 2304. By using 

the repetitive segmentation approach, more foreground information is 

extracted compared to original watershed method. This is because of the fact 

that the amount of texture produced in the next repetition is more than or 

equal to amount of texture in the current repetition. In Figure 5.8, the 
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distribution of the marker pixels and the corresponding building segments up 

to 4th repetition are illustrated.  

 

  

  

  

  

 

Figure 5.8. The distributions of the marker pixels (left column) and the segments produced 

(right column) in the first (row-1), second (row-2), third (row-3) and fourth (row-4) iterations. 
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To limit the segmentation, a stopping criterion was determined. Therefore, 

the execution procedure is terminated either by providing a stable texture 

ratio (tr) or by reaching a maximum repetition count (mrc). To check the first 

condition, “tr” (extracted pixels / total image pixels), is calculated for each 

segment. The differences between the consecutive ratios are also computed 

and stored. If any difference ratio is smaller than a predefined texture ratio 

threshold (trt) then the algorithm stops. This means that the growing of the 

foreground region is highly diminished or completely ended. In the present 

case the “trt” constant was set to 0.001. In the second condition, the stopping 

decision is made based on “mrc”, which is bounded by 50. This time, the 

segmentation is terminated at the 50th repetition, at worst. However, in 

general this case ends up with an over-segmentation problem and a post 

processing step is needed. 

 

To reduce the over-segmentation problem, the whole watershed 

segmentation procedure is re-executed from the beginning and new 

segments are stored separately. This process is repeated until a number of 

specified iterations are reached. This parameter is called the maximum 

iteration count (mic). Based on a number of experiments, the optimum value 

was determined to be 10 for this parameter. Figure 5.9 illustrates the 

resulting segments after performing ten independent iterations. 
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Figure 5.9. The resulting segments after performing ten independent iterations. 

 

Next, the generated segments are overlaid and the intersections of the 

foreground regions are extracted. In this manner, the over-segmentation 

would likely be reduced to a reasonable level. The building facade patch in 

binary form and the extracted facade image in RGB form are shown in Figure 

5.10. Note that the saturation value of the RGB image was reduced back to 

original value. 

 



111 

 

 

(a) 

 

(b) 

Figure 5.10. (a) The building facade patch extracted through intersecting the segments and 

(b) the extracted RGB facade image. 

 

In PREBUM, the initialization of the facade segmentation parameters “mrc” 

and “mic” is carried out using the “Load Facades and Set Parameters” option 

under the menu item of “Texture Generation”. The predefined values of 50 

and 10, respectively can be set for the parameters “mrc” and “mic”, by 

clicking the “Load Default Parameters” button. Other than these values, the 

user is allowed to select any other values using the corresponding popup 

menus. A screenshot that shows two different parameter settings is given in 

Figure 5.11.       

 

 

(a) 

 

(b) 

Figure 5.11. The texture extraction parameters with (a) the predefined values and (b) the 

arbitrary values.    

 

After the parameters are set, the facade segmentation procedure is initiated 

using the “Texture Extraction” option under the same menu item. The 
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growing images in each repetition of watershed segmentation are shown on 

the view panel. During segmentation, the current counts of repetition and 

iteration parameters are also demonstrated in a textbox. Figure 5.12 

illustrates an example that shows the status of these parameters along with 

the growing image, in which the instantaneous iteration and repetition counts 

are shown as 1 and 7, respectively. 

 

 

 

Figure 5.12. A screenshot of a segmentation, from which the current repetition count is 7 and 

the current iteration count is 1. 

 

At the end of the facade segmentation process, the resulting facade image is 

stored in a file named “Facade_extracted_image.jpg” and recorded on the 

“Layers” panel. Two identification suffixes (1 or 2) are appended at the end of 

the file names in order to distinguish the two adjacent facades belonging to 

the same building. A screenshot of “Layers” panel after the facade texture 

extraction is given in Figure 5.13. Note that the original facade images are 

stored as “Facade_image_1.jpg” and “Facade_image_2.jpg”, while the 

extracted facade image files are “facade_extracted_image_1.jpg” and 
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“facade_extracted_image_2.jpg”. “1” and “2” are the file name suffixes which 

indicate the adjacent facade ids of a single building.  

 

 

 

Figure 5.13. A screenshot of the ”Layers” panel after the facade texture extraction process. 

 

 

5.2.4. The Accuracy Assessment of Facade Image Extraction 

 

The segmented facade images are assessed by a quantitative evaluation 

metric developed by Shufelt and McKeown (1993). This metric is based on 

labeling of pixels by comparing the output of the proposed methodology with 

the reference data. For labeling, four possible categories may occur for each 

pixel that are; true positive (tp), true negative (tn), false positive (fp) and 

false negative (fn). In true positive case, both the analysis results and the 

reference data label the pixels as belonging to foreground (building facade). 

In true negative case, the background is labeled both by the analysis results 

and the reference data. In false positive case, the analysis results label the 

pixels as belonging to foreground, while the reference data labels them as 

background. The false negative case is the exact opposite of the false 

positive case. These four cases are illustrated in Figure 5.14, where “A” 

(rectangle) is the reference region and “B” (trapezoid) is the extracted region. 

The green area corresponds to “tp” pixels, while the yellow refers to “tn”. On 



114 

 

the other hand, the blue and the orange areas correspond to “fn” and “fp” 

pixels, respectively.        

     

 

 

Figure 5.14. The four possible cases used in the accuracy assessment of the facade image 

extraction procedure.   

 

To evaluate the performance, the counts of “tp”, “tn”, “fp” and “fn” pixels are 

calculated and facade detection percentage (fdp), branching factor (bf), and 

quality percentage (qp) metrics are computed.  

 

fdp = 
fntp

tp

+

*100
,     bf = 

tp

fp
,     qp = 

fnfptp

tp

++

*100
                                   (Equation-2) 

   

The metric “fdp” can be treated as a measure of object detection 

performance. It evaluates the fraction of reference pixels labeled as building 

facade pixels by the proposed technique. The metric “bf” is the measure of 

over-segmentation, in which the analysis labels background pixels as 

foreground pixels. If there is no over-segmentation, the value of “bf” would 

become zero. On the other hand, the case with the “bf” value of one would 

incorrectly label a background pixel as a foreground pixel for every 

foreground pixel it correctly detected. Finally, the metric “qp” was used to 

measure the absolute quality of the proposed method. In order to obtain 100 

percent quality, the proposed method must produce a perfect segmentation 

of the foreground with respect to reference data. In other words, the 

A 
B 
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proposed method must correctly label every pixel, without missing any (fn=0) 

and without mislabeling any background pixels (fp = 0).     

 

 

5.3. Facade Image Rectification 

 

After extracting the building facades, the next step is the automatic 

rectification of the facade images. The purpose of the rectification procedure 

is to remove or at least reduce the perspective distortions due to improper 

viewing angles of the camera. Perspective distortion is known as warping of 

an object and its surrounding area that differs significantly from what the 

object looks like with a normal focal length. As can be easily seen in Figure 

5.15, the extracted facade image contains vertical and horizontal distortions. 

   

 

 

Figure 5.15. The distortions with respect to horizontal and vertical reference lines.  

 

In the present case, the proposed approach reduces the perspective 

distortion in an automated way. In order to do that a series of operations are 
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employed. These include the detection of the edges using the Canny 

operator, the extraction of the strongest vertical lines through Hough 

transformation, the end-point detection, the adjustment of the vertical facade 

edges, and the projective transformation. The workflow of the proposed 

approach to perform facade image rectification is given in Figure 5.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. The workflow of the proposed automatic facade image rectification procedure. 
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5.3.1. Facade Edge Analysis 

 

The strongest vertical edges of the building facade patch are extracted using 

the Canny edge detector and the Hough transform. For a ground level image, 

the vertical edges can said to be more important than the horizontal edges. 

This is due to the fact that the occlusions usually block the lower part of a 

building facade and therefore, the extraction of the bottom edges become 

almost impossible. On the other hand, the vertical facade edges can be 

recovered totally or partially, at worst. Thus, it would be adequate to detect 

the facade corner points.  

 

The Canny edge detector is a powerful multi-stage algorithm in detecting 

wide range of edges in many image processing applications. The algorithm 

includes; noise reduction through a Gaussian filtering, determination of the 

intensity gradient, non-maximum suppression and edge tracing, and 

hysteresis thresholding (Canny, 1986). Therefore, in the present case the 

Canny edge detector was applied for extracting the edges of the building 

facade patches. Since the vertical edges are of more importance, the 

horizontal edges are eliminated using a 3x3 filter, H (Figure 5.17).  
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(a) 

 

(b) 

-1 2 -1 

-1 2 -1 

-1 2 -1 

 

(c) 

Figure 5.17. (a) The edges after applying the Canny edge detector, (b) the remaining edges 

after removing the horizontal edges and (c) the 3x3 vertical template, H. 

 

After detecting the vertical edges, the next step is to reveal the strongest 

edge information. This is performed using the Hough transformation, which is 

based on the mapping the information in the image (feature space) into a 

parameter space. The following equation and Figure 5.18 give the basis of 

the process (Vozikis,2009). 

 

� �
∞

∞−

∞

∞−
−−= dxdyyxyxFH ))sin()cos((),(),( θθρδρθ                  (Equation – 3) 

 

 

 

 

 

 

 

H: 
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Figure 5.18. The Hough Transformation. 

 

where, � is the Dirac delta function, (�,�) and (x,y) are Hough and image 

domains, respectively. Each point (x,y) in the original image F(x,y) is 

transformed into a sinusoid  � = xcos(�) – ysin(�) and H(�,�), which gives the 

total number of sinusoids that intersect at point (�,�). Hence, it gives the total 

number of points making up the line in the original image. By choosing a 

threshold T for H(�,�) and using the inverse Hough transform, the original 

image is filtered so that the lines containing at least T points are kept only.  

 

Figure 5.19 illustrates the result of the Hough transform applied on the binary 

image shown in Figure 5.17(b) using a line-cut threshold (T) value of 150. 

Note that the resulting Hough lines were thickened by one pixel for the 

adjustment of end points, which will be described in the following section.        

 

 

 

Figure 5.19. The facade edges detected using the Hough transform with the line-cut 

threshold value of 150. 
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5.3.2. End-Point Analysis 

 

After detecting the Hough lines, the next step is to detect the end-points of 

the vertical edges. This process is regarded as the preliminary step before 

the detection of the facade corners.  

 

The end-points are detected using the Harris corner detector, which is a 

widely accepted method for interest point detection. The method defines a 

corner to be a point with low self-similarity. The similarity is measured by 

taking the weighted sum of squared differences (SSD) between two image 

patches. A corner is characterized by a large variation of SSD in all directions 

of the vector (x y) (Harris and Stephens, 1988).  

 

The detected four end-points (colored in red) of the Hough lines are shown in 

Figure 5.20. As can be predicted easily, there may be a number of cases, in 

which more than four end-points can be detected. In these cases, the closest 

four end-points to image corners (upper left, upper right, lower left and lower 

right) are selected. Since in this study the rectangle facade images are 

considered, four end-points are needed inherently.  

 

 

 

Figure 5.20. The end-points of Hough lines located by the Harris corner detector. 

 

Due to the occluded areas on the building facade or the segmentation 

problems, the facade edges may not be extracted accurately. In parallel, the 

end-points may not be detected correctly. As can be seen in Figure 5.20, the 
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position of the lower end-point of the left edge is not correct. To fix this 

problem, the erroneous end-point is moved downward to the level of the right 

lower end-point. By doing this the approximate position of the erroneous 

point is estimated (Figure 5.21).  

 

 

 

Figure 5.21. The estimated position of the erroneous end-point, which is shown in green.  

 

Because of the curvilinear nature of the Hough lines, the current end-points 

are not yet the final positions for performing the geometric rectification. 

Therefore, to identify the facade corner points a trend line is estimated in an 

iterated way. To do that first, the lines that connect the upper and lower end-

points of the facade edge are drawn (Figure 5.22(a)). Then, a wide range of 

different lines are drawn in a similar way by moving the upper and lower end-

points in the horizontal direction. For each line drawn, the agreement is 

measured with the actual facade edges by counting the coinciding pixels. 

And, the line having the maximum coinciding pixels is selected as the trend 

line. The initial (blue) and the final (yellow) trend lines for the left and right 

facade edges are shown in Figure 5.22. Note that, the yellow dots illustrate 

the final positions of the end-points (facade corner points). 

 

. 
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(a) 

 

(b) 

Figure 5.22. The orientations of (a) the initial trend lines and (b) the final trend lines.  

 

 

5.3.3. Projective Transformation 

 

The last step of the facade image rectification is the projective 

transformation, which maps lines to lines but does not necessarily preserve 

parallelism. Any plane projective transformation can be expressed by a 3x3 

non-singular homogenous coordinates. In other words, any non-singular 3x3 

matrix defines a projective transformation of the plane. The computation of a 

projective transformation is illustrated in Figure 5.23 and Equation 4. 
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Figure 5.23. A projective transformation with center O, mapping xy plane to x’y’ plane. 
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             (Equation – 4) 

 

 

where, H is a 3x3 non-singular homogenous matrix, (X1 X2 X3) corresponds to 

XYZ plane coordinates and (X1
’
 X2

’
 X3

’) corresponds to the other plane 

coordinates, which is X’Y’Z’.      

 

In the following example, the homogenous matrix H can be determined by 

using the correspondences (x,y) � (x’,y’) for four points, shown in Figure 

5.24. Since the transformation is carried out in 2D, the values for X3 and X3’ 

are taken as 1 (Reid, 2003). 

 

 

Figure 5.24. For a 2D projective transformation example, the correspondences of four points.  
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For the first correspondence (0,0) � (0,0) 
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yields h13 = h23 = 0; 

 

The second correspondence  (1,0) � (1,0) 
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yields h21 = 0 and h11 = h31 + h33; 

 

The third correspondence (0,1) � (0,1) 
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yields h12 = 0 and h22 = h32 + h33; 

 

The fourth correspondence (1,1) � (2,1) 
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yields h31+h33 = 2, h32 + h33 = 1 and h31+h32+h33 = 1  

 

By solving the equations using the matrix elements only, H can be found as  
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In the present case, the final positions of the facade corners correspond to 

points on xy plane, while the aligned positions refer to x’y’. Therefore, to 

compute the homogenous matrix shown in the previous example, a similar 

transformation can be carried out.       

 

The projective transformation is carried out by mapping the trend lines onto 

newly determined aligned positions that are parallel to vertical axis. To do 

that the angle between a trend line and the vertical axis (colored in green) is 

calculated and the aligned positions are computed using this angle (Figure 

5.25(a)). For the horizontal direction, the imaginary dashed lines (colored in 

red) are drawn between the upper and lower end-point pairs. Then, the 

angles between the imaginary lines and the horizontal axes (colored in blue) 

are calculated and the aligned positions ((X1’,Y1’), (X2’,Y2’), (X3’,Y3’), (X4’,Y4’)) 

are computed (Figure 5.25(b)). 

 

 

(a) 

 

 

(b) 

Figure 5.25. The alignment operation with respect to (a) vertical axis and (b) horizontal axis. 
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After finding the locations of the end-points, the projective transformation is 

carried out using the MATLAB image processing toolbox functions. Then, the 

resulting image is resampled using the bicubic interpolation method that 

involves the sixteen nearest neighbors of a point. In this technique, the 

intensity value assigned to a point (x,y) is obtained using the equation:   

 

� �= =
=

3

0

3

0
    ),(

i j

ji

ij yxayxυ              (Equation – 5) 

 

where, the sixteen coefficients (
ija ) are computed from sixteen equations in 

sixteen unknowns (Gonzalez and Woods, 2008). By applying the proposed 

geometric rectification procedure, the perspective distortions inherent in the 

building facade image are reduced to a reasonable level. For the facade 

image of a building selected from the study area, the extracted building 

facades before and after geometric rectification are illustrated in Figure 5.26.    

 

 

(a) 

 

(b) 

Figure 5.26. The extracted building facades (a) before geometric rectification and (b) after 

geometric rectification with the horizontal and vertical reference lines superimposed. 

 

In the developed PREBUM software, the rectification process is carried out 

using the “Rectification and Cropping” option under the menu item of 

“Texture Generation”. The detected edges, vertical Hough lines, the detected 



127 

 

end-points, and the trend lines are demonstrated in a separate popup 

window. The facade image after performing the rectification is stored in a file 

named “facade_rectified_image.jpg” and recorded on the “Layers” panel. As 

in the previous section, the identification suffixes are appended at the end of 

the file names. The screenshot of the “Layers” panel after performing the 

rectification of the facade image is given in Figure 5.27, in which the file 

names that are circled in red correspond to adjacent facades of a single 

building. 

 

 

 

Figure 5.27. A screenshot of ”Layers” panel after the rectification process of the facade 

image.  

 

 

5.3.4. The Accuracy Assessment of Facade Image Rectification 

 

After performing the geometric rectification on the extracted facade images, 

the results are evaluated using the same quantitative metric described in 

section 4.3.3. For each facade image, the corresponding reference data is 

prepared by performing the geometric rectification manually using the GIMP-

2 image processing software. Then, four test points are determined both on 

the reference image and the rectified image. The locations of the test points 

(red color) on reference image and the test points (green color) on rectified 

image are illustrated in Figure 5.28.  
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(a) 

 

(b) 

Figure 5.28. The test points on (a) the reference and (b) the rectified images. 

 

As described in section 4.3.3, the pixel distance errors (DistErr) are 

computed for the specified (x,y) pairs. In addition, the accuracies are 

computed in a similar way at the confidence levels 80%, 85%, 90% and 95% 

with the corresponding Z scores of 0.84, 1.045, 1.28 and 1.645.  For a 

sample image, the pixel errors for each test point and the accuracies under 

different confidence levels are given in Tables 5.1 and 5.2. Note that the 

standard deviation (SD_DistErr) and the mean of the distance error 

(Mean_DistErr) are computed to be 0.68 and 3.83.   

 

Table 5.1. For a sample image, the pixel errors for the test points 1 to 4. 

 

TEST 
POINTS 

XR YR XP YP DistErr 

1 100 136 103 139 4,24 

2 67 272 70 275 4,24 

3 417 295 415 297 2,83 

4 420 138 420 142 4,00 

 

 

Table 5.2. For a sample image, the accuracies under different confidence levels.  

 

CONFIDENCE 
LEVEL 

Z_VALUE ACCURACY 

80% 0,84 4,40 

85% 1,045 4,54 

90% 1,28 4,69 

95% 1,645 4,94 
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5.4. Occlusion Removal 

 

Before the acquisition of the final building facade textures, the last step is the 

removal of the occlusions. An occlusion can be defined as a foreground 

object that partially or completely obstructs an object standing in the 

background. These objects are generally composed of vegetation, such as 

trees, bushes, etc. However, other sort of occlusions can also be 

encountered rarely, such as lamp posts, parked vehicles or pedestrians. The 

workflow of the developed occlusion removal procedure is illustrated in 

Figure 5.29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29. The steps of the proposed occlusion removal procedure.  
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The first step of the developed occlusion removal procedure is the automatic 

cropping of the rectified facade images. This step is necessary since the 

current facade images may still suffer from the over-segmentation problem. 

Therefore, the remaining background regions are completely removed from 

the facade image. Then, the occluded area is marked on the facade image 

interactively by means of defining the upper-lower and the left-right margins. 

Next, a correlation-based image matching is performed to mend the occluded 

region. This is followed by two post-processing steps, one dealing with the 

texture seams and the other reducing the illumination differences between 

the occluded and the candidate facade image patches. Once the whole steps 

are completed, the user can stop or restart the same procedure until a 

satisfactory result is achieved. At the end of this procedure the final product 

becomes a building facade image to be mapped on 3-d building facades.   

    

 

5.4.1. Facade Image Cropping 

 

In this pre-processing step, the facade image is separated from the 

background. To do that, first, the corner points on the rectified facade image 

are identified using the Harris corner detection algorithm. Then, two corner 

points, one closest to upper left corner (A) and the other closest to upper 

right corner (B) of the image, are selected as the upper facade corners 

(Figure 5.30).  

 

 

(a) 

 

(b) 

Figure 5.30. (a) The rectified facade image and (b) the set of corner points with the detected 

upper facade corners (A and B). 

A B 
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By locating these two points, the size of cropping from the sides and the top 

are determined. For the sides, the vertical lines (green color) that pass 

through the facade corners determine the cropping limit. On the other hand, a 

horizontal line (pink color) that passes through the lower facade point (A) 

identifies the height to be removed from the top. These lines and the resulting 

cropped image are shown in Figure 5.31. 

 

 

(a) 

 

(b) 

Figure 5.31. (a) The delimiter lines for the sides (green) and the top (pink). (b) The facade 

image after cropping from the left, right, and the upper sides. 

  

The last and the most troublesome task in finalizing the facade image 

cropping is to find the cropping limit for the bottom of the image. To do that 

each row is analyzed one by one starting from the bottom of the RGB image 

and, for each row, the most frequently occurring brightness value is 

computed. If this value is (0,0,0) for red, green and blue bands, then the 

background (black) region is supposed to be dominant and the row is 

removed from the facade image. On the other hand; if the value is other than 

(0,0,0), then the row is kept as a foreground information. Further, the 

remaining background pixels after cropping are filled with the original RGB 

values. After performing the cropping operation from four sides, the unfilled 

and the filled images are illustrated in Figures 5.32(a) and (b), respectively. 

Note that the filled regions are indicated by red circles in Figure 5.32(a). 

 

 

 

A B 
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(a) 

 

(b) 

Figure 5.32. After performing the cropping operation, (a) the unfilled image and (b) the filled 

image. 

 

In the developed PREBUM software, the facade image cropping operation is 

performed using the “Rectification and Cropping” option under the menu item 

“Texture Generation”. The aforementioned cropping steps are achieved 

automatically and illustrated on the view panel. The cropped facade image is 

stored in a file named “facade_rectified_cropped_image.jpg” and recorded on 

the “Layers” panel. As in the previous two sections, the identification suffixes 

are also appended at the end of the file names. Figure 5.33 illustrates a 

screenshot of the “Layers” panel, on which the file names of the cropped 

facade images are circled in red. 

 

 

 

Figure 5.33. A screenshot of the ”Layers” panel after performing the facade texture cropping 

operation. 
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5.4.2. Occlusion Extraction and Texture Mending 

 

After the cropping operation, the next step is the extraction of the occlusions. 

In the present study, the occlusion extraction is performed by employing a 

semi-automated technique aiming to reveal the occluded regions of the 

facade image. To do that the user is enabled to draw a quadrilateral that 

encloses the occlusions. The patch enclosed by a red dashed box shown in 

Figure 5.34(a) represents the occluded area on the facade image. Note that, 

the selected quadrilateral region also contains non-occluded texture that 

belongs to building facade. This is because of the fact that inclusion of non-

occluded texture increases the chance of finding a highly correlated patch to 

be replaced with the occluded patch.  

 

 

(a) 

 

 

 

 

 

(b) 

Figure 5.34. (a) The selection of an occluded region that is enclosed by a dashed red 

rectangle. (b) The cropped patch of the occluded area. 

 

In order to reveal the occlusions, an occlusion threshold (ot) is determined by 

Otsu’s method (Otsu, 1979), which is based on minimizing the intra-class 

variance in determining a global threshold value. Next, the patch is 

segmented into two classes, one (the black areas) representing the 

occlusions and the other (the white areas) representing the building regions 

(Figure 5.35). As can be seen in the figure, several parts that belong to 

building facade are segmented as occlusions. However, the majority of the 

building facade elements including windows, balconies, and the wall texture 

are recovered successfully. 
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(a) 

 

(b) 

Figure 5.35. (a) The segmented image, in which the black pixels represent the occlusions 

and (b) the image patch with the occluded areas (black) superimposed.  

 

The extraction of the occlusions is followed by the texture mending 

procedure, which is based on the image matching approach. In this 

procedure, the most similar patch to selected patch (all but itself) is searched 

within the cropped facade image. For measuring the similarity, the correlation 

metric is used for the non-occluded (segmented as white) regions only. The 

correlation coefficient (r) can be computed as follows:  
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where; Amn and Bmn are the brightness values for the matrices A and B at the 

coordinates (m,n), A and B are the mean values of the matrices A and B, 

respectively. 

 

Since the correlation coefficient is computed for a single image band it is 

applied to R-G-B bands separately, therefore. Then, the average value of the 

three is computed and accepted as the correlation value. Finally, the patch 

having the highest correlation with the occluded patch (candidate patch) is 

detected and fused to cropped facade image (Figure 5.36). 
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(a) 

 

(b) 

 

(c) 

Figure 5.36. (a) The occluded patch, (b) the detected candidate patch, and (c) the mended 

facade image after fusing the patch detected in (b). 

 

 

5.4.3. Post-processing 

 

Although the occlusions are eliminated from the facade image, two more 

issues remain to be handled before the acquisition of the final building facade 

texture. The first issue is the sharp transitions (seams) at the borders of the 

fused patches. This problem can be solved by applying a motion blurring 

filter, which creates a movement blur. This filter is capable of linear, radial, 

and zoom movements. The blurring size and direction can be altered by 

adjusting the length and angle parameters. In this study, the linear type of 

filter was used so that the blurring occurs in a single direction either 

horizontally or vertically. On the other hand, the value for the parameter 

motion blurring length (mbl), which represents the blur intensity, was kept as 

5. Moreover, the values for the motion blurring angle (mba) were taken to be 

900 for the horizontal and 00 for the vertical seams.  

 

The filter is applied within the three pixel wide buffer zone which is generated 

around the seam instead of applying it to whole image. In general motion 
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blurring has negative effects in many image processing applications.  In the 

present case however, it is utilized for generating the seamless textures. A 

small section of a sample building facade image before and after the motion 

blurring is illustrated in Figure 5.37.  

  

 

(a) 

 

(b) 

Figure 5.37. (a) A sample building facade image patch with a seam pointed by the white 

arrows and (b) the reduced seam after applying the motion blurring in vertical direction. 

 

The second problem is the non-uniformity of the illumination such that the 

candidate patch may have different illumination characteristics with respect to 

neighborhood (Figure 5.38). 

 

 

 
Figure 5.38. The abrupt illumination change (within red circle) on the building facade image.   
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To reduce this effect, a couple of operations that are image differencing and 

the weighted averaging are carried out. First, a difference image is calculated 

by subtracting the occluded patch (Figure 5.36(a)) from the candidate patch 

(Figure 5.36(b)) after converting both to grayscale. Then, a threshold (image 

difference threshold - idt) is defined to determine the pixels of the occluded 

patch to be assigned to candidate patch. The assignment is performed based 

on the following condition: “if the pixel value in difference image is less than 

“idt” then, assign the corresponding pixel in the occluded patch to same 

position in the candidate patch”. Otherwise, the original pixel value in the 

candidate patch remains unchanged. In the present case the value for “idt” 

was defined as 50, above which the difference is considered to be a 

structural difference rather than a radiometric difference. The difference 

image and the updated candidate patch are illustrated in Figure 5.39. 

 

 

(a) 

 

(b) 

Figure 5.39. (a) The grayscale difference image, in which dark areas refer to minor or no 

change and (b) the updated candidate image.    

 

Although the level of illumination seemed to be normalized considerably, the 

noisy pixels may arise. Therefore, the noisy pixels are removed using the 

weighted image averaging method. To do that, the candidate and the 

updated candidate images are summed up with the equal weights of 0.5. By 

doing this, the balance between the noise level and the non-uniformity of the 

illumination are preserved to a certain extent. The resulting image patch after 

removing the noisy pixels is illustrated in Figure 5.40.       

 

 

 

Figure 5.40. The image patch produced after applying the weighted averaging.  
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As mentioned earlier, the extraction of the occlusions is carried out using a 

developed semi-automatic procedure. Therefore, the user can stop the 

execution if the results are satisfactory or can resume the process to obtain 

better results. It should be remembered that removing the occlusions entirely 

may not be possible in the first iteration. As can be seen in Figure 5.40, upon 

performing the first iteration, occlusions (a branch of a tree) still remain in the 

lower right corner of the facade image. Therefore, to remove the remaining 

occlusions the same steps are repeated and the final building facade texture 

is generated as shown in Figure 5.41. The building facade image before 

applying any post-processing operation is illustrated in Figure 5.42, in which 

the texture seams and the non-uniform illumination are quite noticeable.     

 

 

 

Figure 5.41. The final building facade image after applying the post-processing steps.   

 

 

 

 

Figure 5.42. The building facade image before applying any post-processing. 
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The occlusion removal in the developed PREBUM software is performed by 

choosing the “Occlusion Removal” option under the menu item “Texture 

Generation”. The selection of the occluded quadrilateral region is carried out 

by the user. During the matching process a wait bar is visualized along with a 

message showing the instantaneous maximum correlation rate (Figure 5.43).  

 

 

 

Figure 5.43. A wait bar that shows the correlation rate. 

 

At the end of each occlusion removal cycle, a decision is asked via a 

question dialog box (Figure 5.44(a)). Therefore, the user can either stop the 

execution or resume the occlusion removal procedure to achieve better 

results. After terminating the procedure, the cleared facade image is stored in 

a file named “facade_cleared_image.jpg” and recorded on the “Layers” 

panel. The identification suffixes are appended at the end of the file names. A 

screenshot of the “Layers” panel after applying the occlusion removal 

procedure is shown in Figure 5.44(b), in which the file names (circled in red) 

correspond to cleared facade images (final textures).   
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(a) 

 

(b) 

 

Figure 5.44. (a) The question dialog box appeared after each occlusion removal cycle and 

(b) the screenshot of the “Layers” panel after performing the occlusion removal procedure.  

 

 

5.4.4 The Accuracy Assessment of Occlusion Removal 

 

After applying the occlusion removal procedure, the results were assessed 

by a subjective metric. Although the objective methods offer a simple and 

convenient way, the subjective assessment of the final image quality is found 

to be more appropriate. The assessment was carried out by presenting an 

occlusion-free image to a cross-section of viewers and averaging their 

evaluations. In the present case, the evaluations were performed using an 

absolute rating scale, illustrated in Table 5.3. The rating values change 

between 1 and 6, in which 1 is categorized as “Excellent”, while 6 

corresponds to “Unusable”. After all, the final ratings of each facade texture 

were computed by averaging the individual ratings of each viewer. 
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Table 5.3. Rating scale of the Television Allocations Study Organization (Frendendall and 

Behrend, 1960). 

 

Value Rating Description 

1 Excellent An image of extremely high quality, as good as you could desire 

2 Fine 
An image of high quality, providing enjoyable viewing. 

Interference is not objectionable 

3 Passable An image of acceptable quality. Interference is not objectionable. 

4 Marginal 
An image of poor quality; you wish you could improve it. 

Interference is somewhat objectionable. 

5 Inferior 
A very poor image, but you could watch it. Objectionable 

interference is definitely present.   

6 Unusable An image so bad that you could not watch it. 
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CHAPTER 6  
 
 
 
 

3-D MODEL GENERATION AND TEXTURE MAPPING 
 
 
 
 
 
 

In this chapter, the integration of 3-d building models with the facade images 

is explained. First, the generation of the untextured 3-d solid model is 

described. The 3-d solid models are generated by means of integrating 2-d 

footprint information and the normalized digital surface model (nDSM). Then, 

a texture selection and mapping procedure is employed to construct the 

textured model. To improve the level of reality the synthetic roof models and 

textures are also utilized. In the last section, the example models of various 

building blocks are presented.      

 

 

6.1. Generating the Solid Building Models 

 

The solid building models are generated from both the quadrilateral shaped 

2-d boundary information and the height information. Quadrilateral is a 

polygon with four edges (sides) and four vertices (corners), which is defined 

in Euclidean plane geometry. In this study, the square and rectangle shaped 

buildings are analyzed. An example building boundary (green) with the 

numbered corner points (yellow) and the mid-points of the edges (red) are 

illustrated in Figure 6.1. 
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Figure 6.1. The boundaries of a quadrilateral shaped building.  

 

The pixel coordinates (x,y) of the corners are automatically extracted using 

the approach described in chapter 4. The geographic coordinates in terms of 

easting and northing are also computed from the satellite image, where 

easting refers to the eastward-measured distance and northing refers to 

northward-measured distance in meters. For a sample building, the list of 

pixel coordinates and the geographic coordinates for four corners together 

with the building identification number (ID) and the building block ID 

information are illustrated in Table 6.1.        

 

Table 6.1. For a sample building, the corner coordinates and the building ID information.  

 

Building 
Block ID 

Building  

ID 
Building 

Corner ID 

Pixel 
Coordinate 

for X 

Pixel 
Coordinate 

for Y 

Easting 

(meters) 

Northing 

(meters) 

1 581 594 477067 4425613 

2 581 572 477067 4425635 

3 601 572 477087 4425635 
3 1 

4 601 594 477087 4425613 

 

As can be seen in the table, the sample building belongs to third block (Block 

ID=3) and is labeled as the first building (Building ID=1). It is evident from the 

corner coordinates that the building has a rectangular shape with the 

dimensions of 20x22 m that is computed from the absolute difference 

between the easting (|477067 – 477087| = 20 m) and the northing (|4425613 

– 4425635| = 22 m). 

 

After computing the size, the next step is to determine the location of the 

building in the model. In order to provide the correct position of the buildings, 

the translation of each building must be carried out on the x-y plane. 

. . . 
. . . 

. . 
1 

2 3 

4 
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Translating a set of points means adding a predetermined pair of constants 

(X,Y) to Cartesian coordinates for every point in the set. If the original 

coordinates of a point are (x, y) then, the translation is carried out as follows 

(Equation 1): 

 

),(),(
''

YyXxyx ++=                      (Equation – 1) 

 

where, (x’, y’) is the translated coordinates. This is illustrated in Figure 6.2, in 

which the corner coordinates of a building (red color) are shifted on the base 

map with respect to pixel coordinates based on the information given in Table 

6.1. 

 

 

 

 

Figure 6.2. The translation of a building (red) on a base map.  

 

Next, the rotation on 2-d plane is carried out. The information for rotation is 

derived from the orientation parameter, which was discussed in chapter 4. 

x 

y 

(1,1) 

594 

572 

581 601 
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The orientations of the buildings were already computed during the extraction 

of 2-d footprints. Buildings with various orientations are presented in Figure 

6.3.  

 

    

1.07 radians 
(61.31 degrees) 

0.00 radians 
(0.00 degrees) 

-1.02 radians     
(-58.44 degrees) 

0.28 radians 
(16.04 degrees) 

 

Figure 6.3. The buildings with different orientations. 

 

After obtaining the orientation information, the 2-d characteristics of the 

buildings are determined. Then, the building heights are estimated from 

nDSM and the 2-d quadrilaterals are extruded along the “z” axis. To do that 

the centroid coordinates of the buildings are used. These coordinates are 

computed from the intersecting point of the minor and major axes of the best 

fitting ellipse which was explained in chapter 4. For a building, the centroid 

point (blue cross) and its projection onto corresponding nDSM patch are 

presented in Figure 6.4. 

 

  

(a) (b) 
Figure 6.4. (a) The center point (blue cross) of a binary building patch and (b) the 

corresponding nDSM patch. 

 

Next, a 7x7 buffer zone from the center is generated to capture the height 

information. The size of the zone is a default value specified by the PCI 

Geomatica software. The values falling within the buffer zone are rounded to 
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the nearest real numbers with one decimal place. This is followed by the 

computation of the majority height value. The advantage of using the majority 

value is that it avoids the selection of the extreme values in determining the 

building heights. The computed majority value is accepted as the estimated 

height of the building. In case the majority value is more than one, either is 

selected arbitrarily. For a sample building, the captured height values and the 

frequencies after rounding are illustrated in Figure 6.5. In the given example, 

the most occurring (with 17 times) height value of 14.7 m was selected as the 

building height.  

    

 

(a) 

Rounded height values (m) Frequency 

14.3 1 

14.4 2 

14.5 5 

14.6 6 

14.7 17 

14.8 11 

14.9 4 

15.0 3 

TOTAL 49 

(b) 

Figure 6.5. (a) The height values falling within the 7x7 buffer zone. (b) The frequencies of the 

rounded height values and the selected height value of 14.7 m. 
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After computing the estimated height value, the solid model becomes ready 

to construct. For creating the model, a crucial assumption is hypothesized 

and therefore, a generic size is determined for each building in the block. To 

do that, the x-y-z dimensions are analyzed separately and the most 

frequently occurring extents are determined and assigned to all buildings in 

the block. This assumption was found to be plausible since all buildings in a 

block have identical dimensions very often in reality. In this manner, the 

errors due to small variations in size are eliminated. The untextured 3-d 

model of a building block (Block-3) is presented in Figure 6.6. Note that the 

roof shapes were assumed to be flat for this moment.   

 

 

 

Figure 6.6. The automatically generated 3-d models in a building block (Block-3).  

 

In the developed PREBUM software, the 3-d solid models are generated 

using the “Solid Modeling” menu item. First, for the block being considered, 

the heights of the buildings are initiated using the “Input 3-D Height 

Information” option. The current block information is retrieved automatically 

and the related height files are listed. The name of a height file consists of a 

block id along with a building id. For example, the height file, “r3_b1.txt”, 

keeps the rounded height values of building # 1 in block # 3. The extension is 

chosen as “.txt”, which is easily recognized by many programming 
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languages. Figure 6.7 illustrates the dialog box which includes the selected 

height files and a warning message after the user selection.      

 

Then, the height information is integrated with the 2-d coordinates by using 

the menu option of “Generate 3-D Models”. And, with the extrusion process 

the 3-d solid model is generated. This process ends up with a warning 

message that informs the user (Figure 6.8). The last option “Show 3-D Solid 

Models” is initiated to visualize the building models using the Cortona viewer.   

 

 

(a) 

 

(b) 

Figure 6.7. (a) The selection dialog box for the height files and (b) the subsequent warning 

message.  
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Figure 6.8. The warning message after the generation of 3-D solid models. 

 

 

6.2. Texture Selection and Mapping 

 

After generating 3-d building models, the next step is to map the extracted 

textures on the building facades. The workflow of the developed texture 

selection and mapping procedure is illustrated in Figure 6.9. The first step is 

the labeling of the edges of the buildings falling within the selected block. 

Then, two photos are selected from database with respect to proximity and 

orientation. This is followed by the extraction, rectification, and occlusion 

removal of the images, discussed in chapter 5. Finally, the texture mapping 

procedure is carried out.  
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Figure 6.9. The workflow for the texture selection and mapping. 

 

In the edge labeling step, the shapes of the buildings are analyzed using the 

2-d information. In the present case, the shape is considered to be rectangle 

or square. For the rectangle shaped buildings, two different labels, such as 

“a” and “b” are assigned to adjacent edges. And, the similar labeling is 

repeated for the opposing edges. For the square shaped buildings, the 

labeling of the edges using the labels “a” and “b” is carried out arbitrarily. The 

proposed automated labeling process for each building is shown in Figure 

6.10. Note that within a selected building block, associating the correct 

textures with the corresponding facades of the buildings is an important step. 

This is based on the assumption that all the buildings falling within a block 

have identical sizes and therefore identical opposing facade textures. As an 

exceptional case; if the buildings that fall within a block are square in shape 
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and they have different orientations, then the labeling operation can be 

performed manually.  

 

    

(a)         (b) 

Figure 6.10. The building blocks that contain (a) the rectangular shape buildings and (b) the 

square shaped buildings with the labels assigned to edges. 

 

Next, the corresponding facade photographs (ground-level photographs) are 

selected from the photo database. As mentioned earlier, 15 photos were 

taken in the Batikent district in a clear-sky day using Samsung WB500 digital 

camera. For each building block, at least two photos were taken from the 

points having suitable shooting conditions, such as sufficient angle of view 

and reasonable amount of occlusions. The reason for taking at least two 

photos is originated from the assumption that each quadrilateral building has 

only two opposing facades and therefore, the opposed facades are mapped 

with the same texture. The number of photos taken for each building block is 

given in Table 6.2. The photos taken for Block - 7 were excluded from the 

database since the building facade structure in this block was quite complex 

and therefore, the proposed building facade texture extraction approach 

would fail, accordingly. 
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  Table 6.2.The number of photos taken for the building blocks 1 – 6, and 8. 

 

Building Block # of photos taken 

1 2 

2 3 

3 2 

4 2 

5 2 

6 2 

8 2 

TOTAL 15 

 

In parallel, the coordinates of the photo shooting points were also measured 

by a handheld GPS receiver. As a general policy, the facades facing to street 

were photographed because of the accessibility issues. Besides, the 

shooting points were selected carefully, in which the GPS signals captured 

were rather strong in these points.  

 

In the study area, the photo shootings and the coordinate measurements for 

eight building blocks were completed within an hour. For shooting the photos 

no vehicle was used. Instead, the facades were photographed on foot. The 

locations of the photo shoots and their directions are illustrated in Figure 

6.11.  
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Figure 6.11. The locations of photo shooting points and the directions for the building blocks 

considered.  

 

The structure of the photo database is given in Table 6.3, in which four 

attributes are stored. The first attribute “Photo ID” uniquely identifies each 

facade photo. The second and third attributes are the earth coordinates of 

the shooting points in terms of easting and northing. And the fourth attribute 

is the bearing, which is measured by the built-in compass of the handheld 

GPS receiver. The actual values of the bearings are rounded to nearest 

direction according to Figure 6.12. 
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Table 6.3.The structure of the photo database. 

 

Photo ID Easting Northing 
GPS bearing 

(in degrees) 

1 476650 4425958 90 

2 476672 4425995 90 

3 476728 4426027 180 

4 476977 4425978 135 

5 477012 4425947 0 

6 477066 4425793 90 

7 477126 4425752 0 

8 477101 4425759 180 

9 477070 4425729 90 

10 477069 4425697 270 

11 476952 4425585 0 

12 476767 4425703 135 

13 476782 4425745 315 

14 476768 4425846 180 

15 476727 4425735 225 

 

 

 

 

 
 

Figure 6.12. The 8-directions with the angles.  

 

The next step is the selection of the corresponding photos. This is carried out 

by analyzing the proximity and the bearing of the shooting points with respect 

to facade mid-points. First, for a selected building block, the proximities of all 

shooting points to facade mid-points are calculated. For the Batikent study 

area, this computation was performed based on the Euclidean distance 

between each of the 15 shooting points and the facade mid-points of the 
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buildings falling within the block. For example, Block-2 contains 11 buildings, 

for which the number of facade midpoints was 44. Thus, a total of 660 

distance values (15 x 44 = 660) must be calculated. Then, these distance 

values are sorted in the ascending order. Next, starting from the closest, the 

correspondences between the photos and the facades are analyzed. The 

photo, for which the computed bearing of the shooting point and the bearing 

measured by GPS are the same, is selected as a facade texture. 

 

Bearing to a point is the angle measured in degrees in a clockwise direction 

from the north. Thus, four possibilities arise depending on the four quadrants. 

To determine the quadrant; the signs of �x and �y should be examined. For 

example, in computation of the angle between A and B; �y and �x are found 

to be (yb-ya)>0 and (xb-xa)>0, which are in the first quadrant (Figure 6.13). 

 

 

 

Figure 6.13. The computation of �y and �x between A and B. 

 

The complete set of possibilities for the signs of (�y, �x) and the 

corresponding (AB) bearings are illustrated in Figure 6.14. Note that, the 

value of bearing can be computed as follows (Equation 2). 
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Figure 6.14. (AB) Bearings in the (a) first, (b) second, (c) third, and (d) fourth quadrants. 

(a) (b) 

(c) (d) 



157 
 

After computing the bearings, a set of adjustments with respect to quadrants 

are carried out in order to normalize the computed bearings. To do that, for 

the second and third quadrants, 1800 is added to original bearings. Similarly, 

3600 is added to bearings in the fourth quadrant.  

 

In the present case, the bearings are calculated with respect to two points. Of 

these points, the first is the photo shooting point and the other is the facade 

mid-point falling within the block. As in the GPS bearings the computed 

angles are rounded to nearest 8-direction. Those photos having the same 

bearings with the GPS are assigned to corresponding facade as well as to 

other facades with the same label in the building block being considered. 

This process is repeated until the texture assignment procedure is 

completed. To map the facade images for the whole study area, the 

algorithm is run for each building block falling within the study area. In the 

present case the algorithm was run seven times, one for each block (except 

block-7).  

 

The facade texture mapping of the buildings in Block-2 is illustrated in Figure 

6.15. In this example, the photo closest to facade mid-point (having the 

proximity ranking of 1) was analyzed first (Figure 6.15(a)). It was found that 

photo#1 satisfied the condition of having the same bearing as measured by 

the GPS. Therefore, the texture of the facade with label “a” in building block-2 

was mapped using photo#1. Next, the photo having the proximity ranking of 2 

was analyzed (Figure 6.15(b)). The bearing values of the photo and GPS 

(1800 and 00) did not match and therefore, photo#14 was rejected. It was 

also realized that photo#14 does not belong to Block-2. Next, the photo in the 

third place in terms of proximity was analyzed (Figure 6.15(c)). Although 

there was a match between two bearings, photo#2 was also rejected. This is 

due to the fact that a photo having the label “a” was already assigned to the 

facade. In the fourth iteration, the photo with the proximity ranking of four was 

analyzed (Figure 6.15(d)). In this case, the photo was selected due to the 

match between two bearings. In addition to that the label of the facade, “b”, 

was not occupied before. The execution of the algorithm is terminated and 
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the remaining candidate photos are discarded in case two photos are 

selected for any two adjacent facades (“a” and “b” in Figure 6.10). In the 

present case, the photos #1 and #3 were selected to be used in the texture 

mapping of the 3-d solid building models belonging to building block #2.   

 

  
Photo ID: 1 

Facade Label: a 
GPS bearing: 90

0 

Computed bearing: 90
0
 

Proximity ranking : 1 
 

(a) 

Photo ID: 14 
Facade Label: a 

GPS bearing: 180
0
 

Computed bearing: 0
0 

Proximity ranking : 2 
 

(b) 
 

  
Photo ID: 2 

Facade Label: a 
GPS bearing: 90

0
 

Computed bearing: 90
0
 

Proximity ranking : 3 
 

(c) 

Photo ID: 3 
Facade Label: b 

GPS bearing: 180
0
 

Computed bearing: 180
0
 

Proximity ranking : 4 
 

(d) 
 

Figure 6.15. The facade photo assignment procedure for building block-2. 

 

After selecting the photos, the facade textures to be mapped on the solid 

model are extracted using the proposed method described in chapter 5. In 

texture mapping, the first step is to calculate the size of the texture to be 

mapped using the 2-d texture coordinates. Then, the binding of texture to a 
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face is carried out. In this manner, each corner of the texture piece is bound 

to a 3-d coordinate on the facade. If necessary, the texture image is 

stretched to fit the face. The mapping procedure is fully performed in VRML 

through an automated way. To do that, VRML’s “ImageTexture” node is 

employed by giving the path of the texture image files to “URL” field. For 

building block-2, the 3-d buildings after mapping the facade textures are 

shown in Figure 6.16. 

 

 

 

Figure 6.16. A screenshot of the textured buildings of building block-2. 

 

To improve the level of reality, the building roofs are also modeled in VRML 

environment. To do that, the actual roof types of the building blocks were 

visually investigated from the Google Earth images, which provide higher 

spatial resolution than the original pan-sharpened imagery. Consequently, 

two different roof types that are “gable” and “hip” were examined to be used 

in the study area. The illustrations of the roof types and the corresponding 

VRML models are presented in Figure 6.17. Besides, the overhanging parts 

of the roofs were also taken into account to preserve the fidelity, which is 

shown in Figure 6.16. 
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(a) 

 

(b) 

Figure 6.17. The illustrations (top) and the VRML models (bottom) of (a) gable and (b) hip 

roof types.  

 

For texturing the roof models, a unit pattern (tile) cropped from the high 

resolution Google Earth imagery is employed. To provide a realistic 

appearance the selected pattern is repeated all over the roof surface. The 

unit pattern and the produced roof texture are illustrated in Figures 6.18 (a) 

and (b), respectively. 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 6.18. (a) The roof pattern used at present study and (b) the resulting texture on a roof. 
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However, for the gable type of roofs, a gap (indicated by a circle) occurs 

between the roof and the top of the building facade (Figure 6.19(a)). This gap 

is filled with a homogenous texture pattern cropped from the facade texture 

(Figure 6.19(b)). 

 

 

(a)         (b) 

Figure 6.19. The texture filling procedure for the gable-roofed buildings. (a) A building with 

the unfilled roof texture. (b) The same building with the filled roof texture. 

 

Finally, in the selected area of study, which is composed of eight building 

blocks, the photorealistic building models were generated. Due to the 

problems mentioned earlier, the facade textures for those buildings falling 

within Block-7 were extracted and mapped manually. Two different bird’s-eye 

perspectives of the study area are illustrated in Figure 6.20. 
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Figure 6.20. The generated photorealistic 3-D buildings of the study area from two different 

bird’s-eye perspectives. 

 

In the developed PREBUM software, the selection and mapping of the 

facade textures are implemented by employing the menu item of 

“Photorealistic Modeling”. Under this menu item, the first option, “Map 

Textures”, fulfills all the operations mentioned in this section. A warning 

message (Figure 6.21) appears immediately after the completion of the 

mapping process. In the second option, “Show 3-D Photorealistic Models”, 

the textured 3-d building models can be visualized using the Cortona viewer. 

 

 

 

Figure 6.21. The warning message after the generation of the photorealistic 3-d model.        
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CHAPTER 7 
 
 
 
 

RESULTS AND DISCUSSION 
 
 
 
 
 
 

This chapter contains the experimental results of the implementation of the 

proposed approaches described in chapters 4 and 5. For each approach, the 

results were generated using the accuracy assessment techniques described 

earlier. Besides, the time complexities of the algorithms are also reported. In 

the discussion sections, the shortcomings and the limitations, which may 

make the proposed approaches fail, are revealed by providing examples for 

each case. The results and discussions explained in the following sections 

are grouped into three main categories: (i) results and discussion for 2-d 

building extraction and delineation, (ii) results and discussion for building 

facade texture acquisition, and (iii) discussion for 3-d model generation and 

texture mapping. 

 

 

7.1. Results and Discussion for 2-D Building Extraction and       

Delineation 

 

The developed automatic 2-D building extraction approach, described in 

section 4.2, was implemented in the Batikent study area. The system was run 

for two different variants by using the predetermined optimum genetic 

algorithm parameters that are Training/Test Sample Size = 50, Number of 

Generations = 20, Population Size = 30, Chromosome Size = 5, Crossover 

Probability = 0.8, and Mutation Probability = 0.2. In the first variant, the 

adaptive-fuzzy component was excluded, which means that the crossover 

and the mutation probabilities were kept fixed. For each chromosome 
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(candidate solution), the fitness values were calculated by using the accuracy 

assessment method explained in section 4.2.4. After 10 individual runs of the 

algorithm, the fitness value of 91.86 (averaged over 10 runs) was reached in 

the last generation. For each run, the computed fitness values and the 

performance curve are presented in Table 7.1 and Figure 7.1, respectively.     

 

Table 7.1. For each run, the fitness values computed for 20 generations that do not include 

the adaptive-fuzzy component (the first variant). 

 

Number of 
Generations 

Test 
-1 

Test 
-2 

Test 
-3 

Test 
-4 

Test 
-5 

Test 
-6 

Test 
-7 

Test 
-8 

Test 
-9 

Test 
-10 

Average 
Fitness 

1 88,97 90,91 82,34 90,96 89,22 80,04 88,03 84,03 90,96 87,67 87,31 

2 90,56 91,33 82,34 91,00 91,20 81,21 90,01 85,61 91,00 88,87 88,31 

3 90,56 91,33 85,74 91,00 91,37 85,39 90,18 87,78 91,00 89,65 89,40 

4 91,28 91,33 85,74 91,48 91,49 85,41 90,30 87,85 91,48 89,88 89,62 

5 91,32 91,33 85,74 91,48 91,66 85,41 90,46 87,94 91,48 89,96 89,68 

6 91,32 91,33 85,74 91,48 92,23 90,91 91,04 90,97 91,48 91,16 90,77 

7 91,32 91,33 85,74 92,86 92,23 90,91 91,04 90,97 92,86 91,62 91,09 

8 91,32 91,33 88,50 92,86 92,35 90,99 91,16 91,08 92,86 91,70 91,41 

9 91,50 91,33 88,50 92,86 92,35 90,99 91,16 91,08 92,86 91,70 91,43 

10 91,50 91,58 90,91 92,86 92,35 90,99 91,16 91,08 92,86 91,70 91,70 

11 91,50 91,58 90,91 92,86 92,35 91,26 91,16 91,21 92,86 91,74 91,74 

12 91,50 91,68 91,04 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,80 

13 91,50 91,68 91,04 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,80 

14 91,50 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,84 

15 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

16 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

17 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

18 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

19 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

20 91,64 91,68 91,46 92,86 92,35 91,48 91,16 91,32 92,86 91,78 91,86 

 

 

Figure 7.1. The performance curve of the first variant averaged over 10 runs. 

 

In the second variant, the adaptive-fuzzy component was included into the 

system. In other words, the proposed approach was fully executed. That is, 
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the crossover and mutation probabilities were adjusted adaptively with 

respect to performance measures mentioned in section 4.2.2. After 10 

individual runs, the highest fitness value of 93.13 was found in the 20th 

generation, averaged over 10 runs. The fitness values and the performance 

curve of the second variant are illustrated in Table 7.2 and Figure 7.2, 

respectively.     

 

Table 7.2. For each run, the fitness values computed for 20 generations that include the 

adaptive-fuzzy component (the second variant). 

 

Number of 
Generations 

Test 
-1 

Test 
-2 

Test 
-3 

Test 
-4 

Test 
-5 

Test 
-6 

Test 
-7 

Test 
-8 

Test 
-9 

Test 
-10 

Average 
Fitness 

1 88,72 92,32 85,11 81,34 88,72 90,27 83,64 91,24 85,11 86,66 87,31 

2 92,26 92,75 85,11 82,51 92,26 91,86 83,64 92,25 85,11 87,00 88,47 

3 92,60 92,75 85,11 86,69 92,60 91,86 87,04 92,25 85,11 88,13 89,41 

4 92,83 92,75 92,96 86,71 92,83 92,58 87,04 92,60 92,96 90,87 91,41 

5 92,83 93,08 92,96 86,71 92,83 92,62 87,04 92,62 92,96 90,87 91,45 

6 92,83 94,23 92,96 92,21 92,83 92,62 87,04 92,62 92,96 90,87 92,12 

7 92,83 94,23 92,96 92,21 92,83 92,62 87,04 92,62 92,96 90,87 92,12 

8 93,08 94,23 92,96 92,29 93,08 92,62 89,80 92,62 92,96 91,79 92,54 

9 93,08 94,23 93,06 92,29 93,08 92,80 89,80 92,72 93,06 91,86 92,60 

10 93,08 94,23 93,06 92,29 93,08 92,80 92,21 92,84 93,06 92,70 92,93 

11 93,08 94,23 93,06 92,56 93,08 92,80 92,21 92,84 93,06 92,70 92,96 

12 93,08 94,23 93,06 92,78 93,08 92,80 92,34 92,89 93,06 92,76 93,01 

13 93,08 94,23 93,06 92,78 93,08 92,80 92,34 92,89 93,06 92,76 93,01 

14 93,08 94,23 93,06 92,78 93,08 92,80 92,76 92,89 93,06 92,90 93,06 

15 93,08 94,23 93,06 92,78 93,08 92,94 92,76 92,96 93,06 92,93 93,09 

16 93,08 94,23 93,06 92,78 93,08 92,94 92,76 92,96 93,06 92,93 93,09 

17 93,08 94,23 93,06 92,78 93,08 92,94 92,76 92,96 93,06 92,93 93,09 

18 93,08 94,23 93,06 92,78 93,08 92,94 93,06 92,96 93,06 93,03 93,13 

19 93,08 94,23 93,06 92,78 93,08 92,94 93,06 92,96 93,06 93,03 93,13 

20 93,08 94,23 93,06 92,78 93,08 92,94 93,06 92,96 93,06 93,03 93,13 

 

 

Figure 7.2. The performance curve of the second variant averaged over 10 runs.                            
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In order to compare and analyze the performance curves together, the 

starting fitness values of the two variants were fixed to 87.31. When the 

results of the two variants are compared, the conventional genetic algorithm 

approach (variant - 1) yields 4.55 (91.86 – 87.31) progress in terms of fitness 

between the first and the last generations. On the other hand, the adaptive-

fuzzy genetic algorithm approach (variant - 2) yields a better progress of 5.82 

(93.13 – 87.31). Further, the second variant proved to develop by reaching 

an almost perfect score (92.12%) only after six generations, while the first 

variant required longer periods of evolution to get close to this level of 

accuracy. Besides, the maximum fitness value of the second variant was 

found to be just a little more successful than the first variant at the end of 20 

generations. The reason for the slower convergence of the first variant is due 

to the fixed initial probabilities of the crossover and mutation, which has a 

potential risk to get trapped in local minimum solution.  

 

The building areas extracted using the second variant of the proposed 

approach with the approximate fitness values of 83 and 93 are illustrated in 

Figures 7.3 and 7.4, respectively. As expected, “non-building” regions, which 

were labeled as “building” (false alarm regions) in Figure 7.3, are eliminated 

to a large extent in Figure 7.4. Several examples of these areas are 

illustrated in both figures by red circles numbered 1 to 5. 
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Figure 7.3. The building regions extracted using the proposed adaptive fuzzy-genetic 

classification approach with the approximate fitness value of 83. 

 

 

 

 

Figure 7.4. The building regions extracted using the proposed adaptive fuzzy-genetic 

classification approach with the approximate fitness value of 93. 
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The experimental results of the building delineation approach were assessed 

by employing the accuracy assessment technique described in section 4.3.3. 

In order to avoid the delineation of the misclassified structures or any 

remaining artifacts, the procedure was executed for the selected building 

blocks only. Therefore, eight building blocks of the existing building database 

that contain the quadrilateral buildings were used for this purpose, and each 

building block was analyzed independently. As mentioned in the previous 

chapters, an assumption was made that in each block, the buildings are 

identical with respect to size, except their orientations. For blocks 1, 2, 3, and 

4, the extracted patches (Figure 7.5(a)), the extracted footprints (Figure 

7.5(b)) and the reference footprints (Figure 7.5(c)) falling within the blocks 

are illustrated. Similarly, for blocks 5, 6, 7, and 8, the corresponding outputs 

are shown in Figure 7.6.  
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(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 01 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 02 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 03 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK - 04 

 

Figure 7.5. (a) The detected building patches, on which the numbers represent building IDs 

after the morphological pre-processing, (b) the extracted footprints (green), and (c) the 

reference footprints (red). 
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(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 05 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 06 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK – 07 
 

 
(a) 

 
(b) 

 
(c) 

 

BUILDING BLOCK - 08 
 

Figure 7.6. (a) The detected building patches, on which the numbers represent building IDs 

after the morphological pre-processing, (b) the extracted footprints (green), and (c) the 

reference footprints (red). 

 

For each building falling within each building block, the distance errors 

computed at the corner points are given in Table 7.3. The accuracies 

computed under different confidence levels are given in Table 7.4. 
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Table 7.3. The distance errors (pixel) computed for the corner points of the buildings. 

 

DistErr (Pixel) 
BUILDING 

BLOCK 
Building No Corner  

Point-1 
Corner  
Point-2 

Corner 
Point-3 

 Corner 
Point-4 

Mean_ 
DistErr 

SD_ 
DistErr 

1 1.41 1.41 1.41 0.00 1.06 0.71 

2 1.00 1.00 1.00 1.00 1.00 0.00 

3 1.00 2.00 2.00 1.00 1.50 0.58 

4 1.41 2.24 2.00 1.00 1.66 0.56 

5 0.00 2.24 1.41 1.41 1.27 0.93 

6 2.83 1.00 1.00 3.00 1.96 1.11 

7 3.61 2.24 2.24 3.16 2.81 0.69 

8 2.24 1.00 0.00 1.41 1.16 0.93 

9 2.24 1.41 1.41 1.00 1.52 0.52 

10 2.24 1.41 1.41 1.00 1.52 0.52 

11 2.00 1.00 0.00 2.00 1.25 0.96 

12 2.24 2.24 1.41 1.41 1.83 0.47 

13 1.41 3.00 2.24 1.00 1.91 0.89 

1 

14 2.83 1.41 2.24 3.16 2.41 0.77 

1 2.24 2.00 4.47 2.00 2.68 1.20 

2 1.00 2.00 3.16 3.00 2.29 1.00 

3 1.41 2.00 1.00 1.00 1.35 0.47 

4 3.00 2.24 2.24 3.61 2.77 0.66 

5 0.00 3.16 1.14 1.00 1.39 1.32 

6 2.24 1.00 1.41 2.24 1.72 0.62 

7 1.41 4.12 4.47 2.24 3.06 1.47 

8 1.00 5.00 4.00 1.00 2.75 2.06 

9 1.41 1.41 2.24 2.00 1.77 0.42 

10 1.00 1.41 2.24 3.16 1.95 0.96 

2 

11 1.00 2.00 3.16 2.24 2.10 0.89 

1 3.00 0.00 1.00 3.16 1.79 1.55 

2 2.24 1.41 2.24 2.83 2.18 0.58 

3 1.00 1.00 1.41 1.41 1.21 0.24 

4 2.24 1.41 2.24 2.83 2.18 0.58 

5 2.00 0.00 2.00 2.83 1.71 1.20 

6 2.00 1.00 3.16 3.61 2.44 1.18 

7 2.00 0.00 0.00 2.00 1.00 1.15 

8 1.00 0.00 1.00 1.41 0.85 0.60 

3 

9 3.16 2.24 2.24 3.16 2.70 0.53 

1 4.47 3.00 0.00 3.00 2.62 1.88 

2 2.24 1.00 2.00 2.83 2.02 0.76 

3 9.85 9.06 8.00 5.39 8.07 1.94 

4 1.41 1.00 3.00 3.16 2.14 1.10 

5 2.00 2.24 1.00 0.00 1.31 1.02 

6 1.41 1.41 2.24 2.24 1.83 0.47 

7 2.24 1.41 3.00 5.00 2.91 1.53 

8 1.00 1.41 1.41 1.00 1.21 0.24 

9 1.41 1.00 1.00 1.41 1.21 0.24 

10 3.16 1.00 2.00 3.61 2.44 1.18 

11 2.83 2.00 1.00 2.24 2.02 0.76 

12 2.00 3.61 3.00 5.39 3.50 1.42 

13 1.00 1.00 4.12 4.12 2.56 1.80 

14 1.00 0.00 3.00 3.16 1.79 1.55 

15 1.00 0.00 2.00 2.24 1.31 1.02 

16 0.00 3.00 4.24 3.00 2.56 1.80 

17 1.00 1.00 2.24 2.24 1.62 0.71 

4 

18 1.41 1.00 3.00 3.16 2.14 1.10 
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1 1.00 3.16 1.00 1.00 1.54 1.08 

2 2.83 1.41 1.41 3.61 2.32 1.09 

3 5.39 7.21 6.40 7.07 6.52 0.83 

4 2.24 1.00 2.24 2.24 1.93 0.62 

5 2.24 0.00 1.00 2.00 1.31 1.02 

6 5.10 4.47 2.83 3.16 3.89 1.07 

7 9.22 8.25 7.28 7.07 7.95 0.99 

8 3.00 1.00 2.00 2.83 2.21 0.92 

9 1.00 1.41 2.24 1.00 1.41 0.58 

10 9.49 8.06 10.20 10.44 9.55 1.07 

5 

11 3.00 3.16 5.39 5.39 4.23 1.33 

1 3.16 1.00 1.00 2.24 1.85 1.05 

2 3.61 1.00 0.00 2.24 1.71 1.56 

3 4.00 1.00 1.00 1.41 1.85 1.44 
6 

4 3.61 1.00 1.41 3.00 2.25 1.25 

1 2.24 2.00 1.00 1.41 1.66 0.56 

2 2.83 2.00 3.00 2.83 2.66 0.45 

3 3.61 5.00 2.00 4.47 3.77 1.31 

4 5.39 4.00 1.00 4.47 3.71 1.90 

5 3.00 2.00 1.41 2.24 2.16 0.66 

6 4.24 5.10 1.41 3.61 3.59 1.57 

7 4.00 3.16 0.00 2.24 2.35 1.72 

8 4.47 3.61 2.00 4.47 3.64 1.17 

9 1.41 2.24 1.00 1.41 1.52 0.52 

10 2.24 2.00 0.00 3.00 1.81 1.28 

11 6.40 2.24 5.83 2.83 4.32 2.10 

12 3.16 2.83 2.24 4.47 3.17 0.95 

7 

13 3.16 2.24 1.00 2.24 2.16 0.89 

1 1.00 1.41 2.24 2.00 1.66 0.56 

2 1.41 1.41 1.41 1.41 1.41 0.00 

3 1.00 2.00 2.24 1.41 1.66 0.56 

4 1.00 1.41 1.41 1.00 1.21 0.24 

5 0.00 2.00 2.83 2.00 1.71 1.20 

6 2.00 1.00 1.41 2.24 1.66 0.56 

7 1.00 1.00 0.00 0.00 0.50 0.58 

8 1.00 0.00 2.00 2.24 1.31 1.02 

9 1.41 1.41 3.16 3.16 2.29 1.01 

10 2.00 0.00 1.00 2.24 1.31 1.02 

11 1.00 1.00 2.24 2.24 1.62 0.71 

12 1.00 1.41 1.00 0.00 0.85 0.60 

13 3.00 0.00 2.00 3.61 2.15 1.58 

14 1.41 1.00 1.00 1.41 1.21 0.24 

15 3.00 4.00 4.12 3.16 3.57 0.57 

16 2.24 1.41 3.16 3.61 2.60 0.98 

17 0.00 2.00 2.83 2.00 1.71 1.20 

18 2.24 1.41 3.16 3.61 2.60 0.98 

19 1.00 1.00 2.24 2.24 1.62 0.71 

20 0.00 0.00 2.00 2.00 1.00 1.15 

21 0.00 1.00 1.41 1.00 0.85 0.60 

22 0.00 1.00 1.41 1.00 0.85 0.60 

23 2.00 1.00 1.41 2.24 1.66 0.56 

24 1.41 1.00 0.00 1.00 0.85 0.60 

25 1.41 2.24 2.24 1.41 1.83 0.47 

26 0.00 1.00 2.24 2.00 1.31 1.02 

27 1.00 0.00 2.00 2.24 1.31 1.02 

28 1.00 1.00 5.00 5.00 3.00 2.31 

29 1.00 1.00 2.24 2.24 1.62 0.71 

8 

30 1.00 1.41 1.00 0.00 0.85 0.60 
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Table 7.4. The accuracies of the buildings under different confidence levels. 

 

Accuracy Under Different 
Confidence Levels 

BUILDING 
BLOCK 

Building No 

80% 85% 90% 95% 

1 1.65 1.80 1.97 2.22 

2 1.00 1.00 1.00 1.00 

3 1.98 2.10 2.24 2.45 

4 2.13 2.25 2.38 2.59 

5 2.05 2.24 2.45 2.79 

6 2.89 3.11 3.37 3.78 

7 3.39 3.53 3.69 3.94 

8 1.94 2.13 2.35 2.69 

9 1.95 2.06 2.18 2.37 

10 1.95 2.06 2.18 2.37 

11 2.05 2.25 2.48 2.82 

12 2.22 2.32 2.43 2.61 

13 2.66 2.84 3.05 3.37 

1 

14 3.05 3.21 3.39 3.67 

1 3.69 3.93 4.22 4.65 

2 3.13 3.34 3.57 3.94 

3 1.75 1.85 1.96 2.13 

4 3.33 3.46 3.62 3.86 

5 2.50 2.77 3.08 3.57 

6 2.24 2.37 2.51 2.74 

7 4.30 4.60 4.95 5.48 

8 4.48 4.90 5.39 6.14 

9 2.12 2.20 2.30 2.45 

10 2.76 2.95 3.18 3.53 

2 

11 2.85 3.03 3.24 3.56 

1 3.09 3.41 3.77 4.33 

2 2.67 2.79 2.92 3.13 

3 1.41 1.46 1.51 1.60 

4 2.67 2.79 2.92 3.13 

5 2.72 2.96 3.25 3.69 

6 3.43 3.67 3.95 4.38 

7 1.97 2.21 2.48 2.90 

8 1.36 1.48 1.62 1.84 

3 

9 3.15 3.26 3.38 3.58 

1 4.20 4.58 5.02 5.71 

2 2.66 2.81 2.99 3.27 

3 9.71 10.10 10.56 11.27 

4 3.07 3.29 3.55 3.95 

5 2.17 2.38 2.62 2.99 

6 2.22 2.32 2.43 2.61 

7 4.20 4.52 4.88 5.44 

8 1.41 1.46 1.51 1.60 

9 1.41 1.46 1.51 1.60 

10 3.43 3.67 3.95 4.38 

11 2.66 2.81 2.99 3.27 

12 4.69 4.98 5.32 5.84 

13 4.08 4.45 4.87 5.53 

14 3.09 3.41 3.77 4.33 

15 2.17 2.38 2.62 2.99 

16 4.08 4.45 4.87 5.53 

17 2.22 2.36 2.53 2.79 

4 

18 3.07 3.29 3.55 3.95 
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1 2.45 2.67 2.92 3.32 

2 3.23 3.45 3.71 4.11 

3 7.22 7.39 7.58 7.89 

4 2.45 2.57 2.72 2.94 

5 2.17 2.38 2.62 2.99 

6 4.79 5.01 5.26 5.66 

7 8.78 8.99 9.22 9.58 

8 2.98 3.16 3.38 3.71 

9 1.90 2.02 2.16 2.37 

10 10.45 10.66 10.92 11.31 

5 

11 5.35 5.62 5.94 6.42 

1 2.73 2.95 3.20 3.58 

2 3.02 3.34 3.71 4.28 

3 3.07 3.36 3.70 4.23 
6 

4 3.30 3.56 3.85 4.31 

1 2.13 2.25 2.38 2.59 

2 3.04 3.13 3.24 3.40 

3 4.87 5.14 5.45 5.93 

4 5.31 5.70 6.14 6.84 

5 2.71 2.85 3.00 3.24 

6 4.91 5.24 5.61 6.18 

7 3.80 4.15 4.56 5.19 

8 4.62 4.86 5.13 5.55 

9 1.95 2.06 2.18 2.37 

10 2.88 3.15 3.45 3.91 

11 6.09 6.52 7.01 7.77 

12 3.97 4.16 4.39 4.73 

7 

13 2.90 3.09 3.29 3.62 

1 2.13 2.25 2.38 2.59 

2 1.41 1.41 1.41 1.41 

3 2.13 2.25 2.38 2.59 

4 1.41 1.46 1.51 1.60 

5 2.72 2.96 3.25 3.69 

6 2.13 2.25 2.38 2.59 

7 0.98 1.10 1.24 1.45 

8 2.17 2.38 2.62 2.99 

9 3.14 3.34 3.58 3.95 

10 2.17 2.38 2.62 2.99 

11 2.22 2.36 2.53 2.79 

12 1.36 1.48 1.62 1.84 

13 3.48 3.80 4.17 4.75 

14 1.41 1.46 1.51 1.60 

15 4.05 4.17 4.30 4.51 

16 3.43 3.63 3.86 4.21 

17 2.72 2.96 3.25 3.69 

18 3.43 3.63 3.86 4.21 

19 2.22 2.36 2.53 2.79 

20 1.97 2.21 2.48 2.90 

21 1.36 1.48 1.62 1.84 

22 1.36 1.48 1.62 1.84 

23 2.13 2.25 2.38 2.59 

24 1.36 1.48 1.62 1.84 

25 2.22 2.32 2.43 2.61 

26 2.17 2.38 2.62 2.99 

27 2.17 2.38 2.62 2.99 

28 4.94 5.41 5.96 6.80 

29 2.22 2.36 2.53 2.79 

8 

30 1.36 1.48 1.62 1.84 

 

A total of 110 buildings that fall in eight blocks were analyzed. The minimum 

and maximum values for the mean distance errors were computed to be 0.5 
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and 9.55, respectively. Similarly, the extreme values of the standard 

deviation were computed to be 0 and 2.31, respectively. The variation of the 

accuracy values were found to be in the range 0.98 - 10.45 at the confidence 

level 80%, in the range 1.00 - 10.66 at the confidence level 85%, in the range 

1.00 - 10.92 at the confidence level 90%, and in the range 1.00 - 11.31 at the 

confidence level 95%. The average values of the mean distance errors were 

computed as 1.63 for block 1, 2.16 for block 2, 1.78 for block 3, 2.40 for block 

4, 3.89 for block 5, 1.91 for block 6, 2.80 for block 7, and 1.59 for block 8. In 

addition, the accuracies under the confidence level of 95% were also 

investigated. This confidence level is a typically used confidence level in the 

vast majority of the scientific studies. The average accuracies were 

computed as 2.76 for block 1, 3.82 for block 2, 3.18 for block 3, 4.28 for block 

4, 5.48 for block 5, 4.10 for block 6, 4.72 for block 7, and 2.91 for block 8 at 

the specified confidence level. Since the spatial resolution of the satellite 

image is 1-meter, the unit of errors may be given as “meters” instead of 

“pixels”. Of the building blocks, block#1 provided the highest average 

accuracy of 2.76 meters at the confidence level of 95%. This means that we 

are confident that 95% of the time the observed errors will be 2.76 meters or 

less. Conversely, we are also accepting that 5% of the time errors exceeding 

2.76 meters will occur. The second highest accuracy of 2.91 pixels was 

provided by block#8. The accuracies computed for the remaining blocks were 

ranked as follows: block#3 with 3.18 meters, block#2 with 3.82 meters, 

block#6 with 4.10 meters, block#4 with 4.28 meters, block#7 with 4.72 

meters, and block#5 with 5.48 meters.  

 

Based on the experimental results it can be stated that the developed 

building delineation approach was quite successful for blocks #1, #8, #3 and 

#2, for which the errors were computed to be less than 4 meters at 95% 

confidence level. Further, when the buildings in these blocks are visually 

examined, the boundary agreements are found to be quite successful. On the 

contrary, the accuracies were found to be relatively low for the building 

blocks #6, #4, #7 and #5. The visual examination also supports the 
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experimental findings for the buildings falling within these blocks, in which a 

few of the boundaries are observed to be mis-orientated. 

 

Besides the experimental results, the running times, which are required by 

the computer to perform the developed algorithms, were also computed. The 

“genetic algorithm parameter analysis” step took the running time of 120 

hours (5 days). This step was performed once in the beginning of the 

methodology and composed of several experiments in order to estimate the 

optimum genetic algorithm parameters, such as chromosome and gene sizes 

together with the number of the training and test regions. After that, the 

adaptive fuzzy-genetic approach was executed with the optimum parameters 

to extract the 2-d building patches. This step took an average time of 24 

minutes for the whole study area. In the final step, the delineation of the 

building regions was carried out on block by block basis. For each block, the 

delineation time took only 2 seconds on average. As a result, the total 

elapsed time for the delineation of eight building blocks was computed to be 

16 seconds on average. If the optimal parameter analysis stage is excluded, 

the building extraction and delineation step would take less than 25 minutes 

for the eight building blocks containing a total of 110 single buildings. All 

these performance measurements were operated on Windows XP operating 

system and executed on a Pentium Core 2 1.86 GHz processor with 2 GB 

RAM.       

 

In most cases the proposed 2-d building extraction and delineation approach 

was successful for detecting the 2-d building boundaries. However, several 

shortcomings were evident in certain cases. After investigating the reasons of 

the failures, it was found that the success of building extraction highly affects 

the accuracy of building delineation. One reason was the over segmentation 

of the image, which may occur due to the spectral confusion among the 

feature classes. In the present study, this problem is mostly encountered for 

closely located buildings. The above mentioned segmentation problem is 

illustrated in Figure 7.7, in which the patches of two closely located buildings 

were detected as a merged single patch.  
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(a) 

 

(b) 

Figure 7.7. (a) The image that contains closely located two buildings and (b) the result of 

segmentation which generated a merged single patch (colored in pink). 

 

A different type of problem was faced during the boundary delineation of the 

buildings. For the square-shaped buildings with diagonal orientation, the 

building boundaries were delineated wrongly in several cases. This 

shortcoming is due to the mis-orientation of the best fitting ellipse, which 

arises from the irregular shape of the binary patch that have more than four 

vertices. For the square-shaped buildings that are elongating vertically, this 

problem is solved to a certain extent by using a minimum bounding box 

(mbb). The orientation of these buildings can be easily determined by 

counting the pixels falling inside the mbb. If these pixels are more than a 

predefined threshold value, then the buildings are accepted to be vertically 

elongated. This type of error was generally observed in building blocks #4 

and #5. In Figure 7.8, two distinct square-shaped buildings with different 

orientations are illustrated. The vertically elongated building (Figure 7.8(a)) 

was delineated correctly after applying the method based on mbb, while the 

diagonally elongated building (Figure 7.8(b)) was wrongly delineated 

because of the above mentioned reason.  

 

 

 

(a) 

 

 

(b) 

Figure 7.8. The building boundaries (in green) detected from (a) a vertically elongated 

building and (b) a diagonally elongated building. The binary images represent the extracted 

building patches. 
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The developed 2-d building extraction and delineation approach has a 

limitation, which is that the approach solely operates on the quadrilateral-

shaped buildings. Therefore, in this study, the polygonal shaped buildings 

having more than four edges are kept out of the consideration. As described 

above, the proposed delineation approach is based on finding the rectangle 

with the largest area, which can be inscribed in the best-fitting ellipse. 

Therefore, a building patch must have four edges. To exclude the complex 

structures, the buildings are analyzed on block-by-block basis. Figure 7.9 

illustrates two different examples for the complex-shaped buildings, which 

are not included in the analyses.  

 

  

 

Figure 7.9. The buildings with complex geometry. 

 

 

7.2. Results and Discussion for Building Facade Texture Acquisition 

 

The developed approach was tested on both the Batikent and eTrims 

datasets. After performing the accuracy assessment explained in section 5.2, 

the quantitative evaluation results were obtained. For both datasets, the 

evaluation results are provided in Table 7.5. 
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Table 7.5. The quantitative results of the facade image extraction for the eTrims and Batikent 

datasets. 

 

Dataset 
Building  

No 
TP TN FP FN FDP(%) BF QP(%) 

1 30494 24271 137 10634 74.1 0.004 73.9 

2 31372 24409 350 9405 76.9 0.011 76.3 

3 34607 13634 62 17233 66.8 0.002 66.7 

4 39143 23589 145 2659 93.6 0.004 93.3 

5 44334 19658 127 1417 96.9 0.003 96.6 

eTRIMS 

Average: 81.7 0.005 81.4 

1 70929 147223 9778 2470 96.6 0.138 85.3 

2 71047 144305 14339 709 99.0 0.202 82.5 

3 72034 156757 1358 251 99.7 0.019 97.8 

4 73297 152183 4917 3 100 0.067 93.7 

5 83568 125890 20457 485 99.4 0.245 80.0 

6 110366 89258 3056 27720 79.9 0.028 78.2 

7 69718 149359 11308 15 100 0.162 86.0 

8 81713 77551 528 70608 53.6 0.006 53.5 

9 71495 148445 3797 6663 91.5 0.053 87.2 

10 47413 175553 736 6698 87.6 0.016 86.4 

11 85193 116449 3357 25401 77.0 0.039 74.8 

12 117029 57081 502 55788 67.7 0.004 67.5 

13 68217 151735 3823 6625 91.1 0.056 86.7 

14 90673 118861 20678 188 99.8 0.228 81.3 

15 88658 135845 5680 217 99.8 0.064 93.8 

BATIKENT 

Average: 89.5 0.088 82.3 

 

For the eTrims dataset, the computed facade detection percentages (FDP) 

were in the range 74.1% - 96.9%. Similarly, the branching factors (BF) and 

the quality percentages (QP) were found to be between 0.002 - 0.011 and 

66.7% - 96.6%, respectively. The average “FDP”, “BF”, and “QP” values were 

found to be 81.7%, 0.005, and 81.4%, respectively. The “QP” values were 

close to “FDP” values since the branching factors were relatively small. This 

means that the over-segmentation problem is almost never encountered in 

the extraction of the building facades. The building facade patches of eTrims 

data set with the highest and lowest quality percentages are illustrated in 

Figures 7.10 and 7.11, respectively.     
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(a) 

 

(b) 

 

(c) 

Figure 7.10. (a) A facade image from the eTrims dataset, (b) the reference patch generated 

manually, and (c) the facade patch extracted automatically through the developed approach. 

This facade image provided the highest QP value of 96.6%. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7.11. (a) A facade image from the eTrims dataset, (b) the reference patch generated 

manually, and (c) the facade patch extracted automatically through the developed approach. 

This facade image provided the lowest QP value of 66.7%. 

 

For the Batikent dataset (Table 7.5), the “FDP” values were found to be in the 

range 53.6% - 100%. In the same way, the branching factors (BF) and the 

quality percentages (QP) were computed to be in the range 0.004 - 0.245 

and 53.5% - 97.8%, respectively. The average facade detection percentage 

was computed to be 89.5%, while the average “BF” and “QP” values were 

found to be 0.088 and 82.3%, respectively. Different from the eTrims dataset, 

there was a significant gap between the average values of “FDP” and “QP”. It 

is believed that this was due to the high branching factor values compared to 

values of the eTrims dataset. This means that the over-segmentation 

problem is evident in the Batikent data set, in which the analysis labels 

background pixels as foreground pixels. It is also observed that the computed 
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facade detection percentages of 53.6% (building #8) and 67.7% (building 

#12) were found to be considerably low. It is believed that these low accuracy 

values were due to the high number of false negative (FN) pixels. If these 

buildings are excluded from the dataset, then the average facade detection 

accuracy can reach to 93.9%. From the Batikent dataset, the facade patches 

of two buildings with the highest and lowest quality percentage values are 

shown in Figures 7.12 and 7.13, respectively.         

 

 

(a) 

 

(b) 

 

(c) 

Figure 7.12. (a) A facade image from the Batikent dataset, (b) the reference patch generated 

manually, and (c) the facade patch extracted automatically through the developed approach. 

This facade image provided the highest QP value of 97.8%. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7.13. (a) A facade image from the Batikent dataset, (b) the reference patch generated 

manually, and (c) the facade patch extracted automatically through the developed approach. 

This facade image provided the lowest QP value of 53.5%. 

 

The developed approach for facade image rectification (section 5.3) was 

tested on the extracted facade images of both datasets. The accuracy 

assessment of the rectified images was carried out using the technique 
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described in section 5.3.4. For both data sets, the assessment results that 

contain a complete list of pixel distance errors are given in Table 7.6. The 

accuracies computed at 80%, 85%, 90% and 95% confidence levels are 

given in Table 7.7.   

 

Table 7.6. The pixel errors computed at the test points on the rectified facade images. 

 

DistErr (pixel) 

Dataset 
Building  

No 
Test 
Point 

#1 

Test 
Point 

#2 

Test 
Point 

#3 

Test 
Point 

#4 

Mean_ 
DistErr 

SD_ 
DistErr 

1 3.61 5.10 1.41 3.00 3.28 1.52 

2 1.41 2.24 2.24 1.41 1.83 0.47 

3 2.00 1.00 2.24 1.41 1.66 0.56 

4 4.47 9.49 16.55 8.54 9.76 5.02 

5 2.83 1.41 3.00 7.28 3.63 2.53 

eTRIMS 

Average: 4.03 2.02 

1 4.24 4.24 2.83 4.00 3.83 0.68 

2 1.00 3.61 3.16 1.00 2.19 1.39 

3 14.14 21.40 17.00 16.76 17.33 3.01 

4 2.24 2.00 6.08 6.40 4.18 2.39 

5 5.83 8.49 6.40 4.47 6.30 1.67 

6 12.04 2.83 11.40 9.22 8.87 4.21 

7 20.52 19.72 4.24 13.93 14.60 7.51 

8 6.00 8.06 8.06 5.83 6.99 1.24 

9 7.07 16.55 10.30 7.07 10.25 4.47 

10 5.83 3.61 3.16 5.83 4.61 1.42 

11 5.83 12.37 1.41 5.00 6.15 4.57 

12 15.30 9.22 11.40 11.40 11.83 2.53 

13 9.22 6.71 7.81 6.40 7.54 1.28 

14 2.83 6.40 3.61 1.41 3.56 2.10 

15 3.61 8.06 4.47 4.00 5.03 2.05 

BATIKENT 

Average: 7.55 2.70 
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Table 7.7. For the rectified facade images, the accuracies computed at 80%, 85%, 90%, and 

95% confidence levels. 

 

Accuracy Under Different 
Confidence Levels Dataset 

Building 
No 

80% 85% 90% 95% 

1 4.56 4.87 5.23 5.79 

2 2.22 2.32 2.43 2.61 

3 2.13 2.25 2.38 2.59 

4 13.98 15.01 16.19 18.03 

5 5.76 6.28 6.28 7.80 

eTRIMS 

Average: 5.73 6.15 6.50 7.36 

1 4.40 4.54 4.69 4.94 

2 3.36 3.64 3.97 4.48 

3 19.85 20.47 21.18 22.28 

4 6.19 6.67 7.24 8.11 

5 7.70 8.04 8.43 9.04 

6 12.41 13.27 14.26 15.79 

7 20.91 22.45 24.21 26.95 

8 8.03 8.29 8.58 9.03 

9 14.00 14.92 15.97 17.60 

10 5.80 6.10 6.43 6.95 

11 9.99 10.92 12.00 13.66 

12 13.96 14.47 15.07 15.99 

13 8.61 8.87 9.17 9.63 

14 5.33 5.76 6.25 7.02 

15 6.76 7.18 7.66 8.41 

BATIKENT 

Average: 9.82 10.37 11.01 11.99 

 

For the eTrims dataset, the minimum and maximum values for the mean 

distance errors were computed to be 1.66 and 9.76, respectively. Similarly, 

the minimum and maximum values of the standard deviation were computed 

to be 0.47 and 5.02, respectively (Table 7.6). The variation of the accuracy 

values were computed to be in the range 2.13 - 13.98 at the confidence level 

80%, in the range 2.25 - 15.01 at the confidence level 85%, in the range 2.38 

- 16.19 at the confidence level 90%, and in the range 2.59 - 18.03 at the 

confidence level 95% (Table 7.7). The average value for the mean distance 

errors were computed as 4.03 in the eTrims dataset. In addition, the 

accuracy under the confidence level of 95% was also investigated. At this 

confidence level, the average value was found to be 7.36. Buildings #3 and 
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#2 provided the best accuracies, which were 2.59 and 2.61, respectively. 

These buildings were followed by building #1 with the accuracy of 5.79 and 

building #5 with the accuracy of 7.80. Of the used five test buildings, building 

#4 provided the worst results. For this building the mean error value and the 

standard deviation were computed as 9.76 and 5.02 pixels (Table 7.6). The 

reason why this building revealed the lowest accuracy was investigated. It 

was found that on the right facade border, the output of the Hough 

transformation produced too many short line segments with different 

orientations. Therefore, the optimal coinciding trend line generated from 

these Hough line segments was not correct. The rectification process was 

highly affected by the incorrectly determined trend line, which boosts the 

positional error.  

 

When the results of the Batikent dataset were analyzed, the minimum and 

maximum values for the mean distance errors were computed to be 2.19 and 

17.33, respectively. Likewise, the extreme values of the standard deviation 

were found to be 0.68 and 7.51, respectively (Table 7.6). The variation of the 

accuracy values were computed to be in the range 3.36 - 20.91 at the 

confidence level 80%, in the range 3.64 - 22.45 at the confidence level 85%, 

in the range 3.97 - 24.21 at the confidence level 90%, and in the range 4.48 - 

26.95 at the confidence level 95% (Table 7.7). The average value of the 

mean distance errors were computed as 7.55 in this dataset. In addition, the 

accuracy under the confidence level of 95% was also investigated. At this 

confidence level, the average value of 15 buildings was found to be 11.99. It 

was found that buildings #2, #1, #10, #14, and #4 provided the lowest errors 

with the accuracies ranging from 4.48 to 8.11 pixels. The next five buildings 

that provided the lowest errors were building #15, #8, #5, #13, and #11, for 

which the accuracies were computed in the range 8.41 – 13.66. The worst 

five buildings (Buildings #6, #12, #9, #3, and #7) provided the highest errors 

with accuracies ranging from 15.79 to 26.95 at the confidence level 95% 

(Table 7.7). The reasons for the failures were investigated and it was found 

that the main reasons for the high error values were the deficiencies and the 

redundancies of the extracted facade border lines. These cases likely occur 
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due to the protrusions, such as balconies, pavilions and overhanging roofs. 

Since the facade extraction algorithm segments the protruded regions as 

foreground texture the original facade edges get lost, therefore. 

  

The developed approach for occlusion removal was tested on the rectified 

images of both datasets. Using the qualitative accuracy assessment method 

described in section 5.4.4, the occlusion-free facade images of the buildings 

that fall within the datasets were evaluated by ten viewers. The viewer 

profiles are quite dissimilar, such as from senior students in the field of 

computer science, research assistants, professors and the people working in 

the field of image processing. For both datasets, the ratings of the viewers 

are provided in Table 7.8. 

 

Table 7.8. The ratings of ten viewers for the occlusion-free facade images. 

 

VIEWER # 
Dataset 

Building 
No 1 2 3 4 5 6 7 8 9 10 

Average 
Rating 

1 2 1 2 2 1 1 2 2 2 1 1.6 

2 2 3 2 2 3 1 2 1 2 2 2.0 

3 2 2 3 3 2 1 3 1 3 1 2.1 

4 3 3 4 3 3 2 3 2 3 2 2.8 

5 3 2 4 4 2 3 3 2 3 3 2.9 

eTRIMS 

Average: 2.28 

1 3 3 5 4 4 2 4 3 4 2 3.4 

2 3 2 4 3 3 2 4 3 3 2 2.9 

3 3 3 2 3 2 1 3 2 3 1 2.3 

4 3 4 3 3 3 2 4 3 3 2 3.0 

5 2 3 2 2 3 1 3 2 3 2 2.3 

6 2 3 2 3 2 2 3 2 2 1 2.2 

7 3 3 2 2 3 1 2 3 2 1 2.2 

8 3 4 5 3 4 2 3 4 3 3 3.4 

9 1 2 3 2 2 1 2 2 3 2 2.0 

10 3 2 4 2 3 2 2 4 2 2 2.6 

11 2 2 3 2 3 2 2 3 3 2 2.4 

12 2 2 3 2 2 1 2 3 2 1 2.0 

13 4 4 5 3 5 3 3 5 3 4 3.9 

14 1 2 3 1 2 1 2 2 2 1 1.7 

15 2 4 3 2 2 1 4 2 2 2 2.4 

BATIKENT 

Average: 2.58 
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For the eTrims dataset, the average ratings of the facade images were in the 

range 1.6 – 2.9. Buildings #1, #2, #3, #4 and #5 comprised the standing from 

the best to worst, respectively. The average value was computed to be 2.28, 

which can be identified as “Fine” with respect to rating scale given in section 

5.4.4. This means that the reviewers were satisfied with the results and found 

the occlusion removal quality nearly high. On the other hand, for the Batikent 

dataset, the average ratings were in the range 1.7 – 3.9. The best rating was 

computed for building #14. The subsequent best ratings were computed for 

buildings #9, #12, #6, #7, #3, #5, #11, #15, #10, #2, #4, #1, #8, and # 13. 

The average of the whole dataset was calculated as 2.58, which is staying in 

the middle of the criterions “Fine” and “Passable”. This can be interpreted as 

the occlusion-free images have an acceptable quality. For each dataset, the 

facade images with the best and the worst ratings are shown in Figures 7.14 

and 7.15. The main reasons for the failures were investigated and it was 

found that the major problems were the excessive blurring of the seams, 

discontinuities between the objects (e.g. shifted windows or broken lines), 

and the occlusions that cannot be removed completely. For instance, building 

#5 of eTrims database suffers from a broken line problem, circled in red color 

(Figure 7.14(b)). It is evident that this problem is due to the erroneous 

rectification. Similarly, building #13 of the Batikent data set has the worst 

rating of all the buildings in two data sets. This building contains two major 

problems, one is the shifted window (outlined in red), and the other is the 

lamppost that cannot be removed (outlined in cyan) (Figure 7.15(b)). It is 

believed that these failures are mainly caused by the problems occurred in 

the matching step of the proposed occlusion removal.  
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(a) 
 

(b) 

Figure 7.14. For the eTrims dataset, the facade images with (a) the best rating and (b) the 

worst rating with an example of a failure outlined in red. 

 

 

(a) 
 

(b) 

Figure 7.15. For Batikent dataset, the facade images with (a) the best rating and (b) the 

worst rating with examples of failures outlined in red and cyan. 

 

In addition to the experimental results, the running time calculations of the 

algorithms were also computed for the building facade texture acquisition 

approach. The running time for the extraction of one facade was found to be 

1 minute on average. Therefore, under the assumption of identical opposing 

facade textures of a building, the time required for extracting all the facades 

was about 2 minutes. After that, the rectification performances were 

assessed. The proposed algorithm took approximately 15 seconds for the 

rectification of a single facade and 30 seconds for the rectification of the 
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whole building using the above assumption. The occlusion removal stage, 

which include the auto-cropping, image matching and post-processing steps, 

was also analyzed in terms of the computational performance. This stage 

took about 10 seconds per facade and 20 seconds for the entire building 

based on the aforementioned assumption and by excluding the user-

intervention for manually selecting the occluded area. To sum up, the entire 

approach took about 3 minutes (2 mins + 30 secs + 20 secs) for producing 

the rectified occlusion-free facade textures for a single building. As an overall 

performance, building facade texture acquisition took about 24 minutes for 

the whole study area that contain a total of 110 single buildings falling within 

8 building blocks under the assumption that the buildings in a block have 

identical appearance. In the evaluation of the performance, the operating 

system and the hardware configuration used were the same as in the 2-d 

building extraction and delineation approach.  

 

In general, the developed approaches for building facade texture acquisition 

yielded satisfactory results. However, several shortcomings and limitations 

were also evident. One problem is the under-segmentation, which occurs 

during the facade image extraction process through Watershed 

segmentation. This problem is typically faced if the photographed facade is 

blocked by a large amount of occlusion or the facade texture is extremely 

heterogeneous due to the casting shadow or the non-uniform illumination. In 

each case, the segmentation algorithm may not be able to partition the 

facade image correctly and therefore, the accuracy of the extracted facade 

image drops. Figure 7.16 illustrates these two different cases. In the first 

case, the building facade is occluded by the vegetation, pedestrian, and a 

billboard (Figure 7.16(a)). In the second case, the facade texture has become 

heterogeneous due to the shadow cast on the facade of the building (Figure 

7.16(b)). For both cases, the extracted patches are shown in Figures 7.16(c) 

and (d).       
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(a) 

 

(b) 

 

(c) 

 

 

 

(d) 

Figure 7.16. The problem of under-segmentation. (a)-(b) The original images, and (c)-(d) the 

extracted patches suffering from under-segmentation. 

 

Under-segmentation negatively affects the further steps of the developed 

approaches. In the present case, the extraction of the vertical facade edges 

is the main concern since the vertical facade edges have a vital importance 

in the developed automatic rectification procedure. However, it was observed 

that in some cases the extraction of the vertical facade edges cannot be 

possible. One case was the existence of the occlusions and texture 

heterogeneity, which were already discussed above. The other case is arisen 

from the protrusions, such as pavilions and balconies on the facades. Since 

the facade extraction algorithm segments the protruded regions as the 
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foreground texture, the original facade edges are missed, therefore causing 

the fail of the automated rectification approach. An example case is 

illustrated in Figure 7.17. First, the original facade image given in Figure 

7.17(a) is segmented. The result of the segmentation is given in Figure 

7.17(b). Then, the vertical edges (Figure 7.17(c)) are detected by the Canny 

edge detector and the Hough lines (Figure 7.17(d)) are extracted. As can be 

seen in Figure 7.17(d), the Hough transformation was not able to detect all 

the vertical edges and therefore, some of the vertical edges were missed. 

This is due to the fact that the Hough transform merely preserves the strong 

edges. If the detected vertical edges are not enough for generating the trend 

lines to be used in the rectification procedure, the result of face image 

rectification would be inaccurate. Therefore, the proposed automatic 

rectification procedure would fail. Figure 7.17(e) illustrates the rectified 

facade image, for which the failure of the rectification procedure is obvious. 

For these reasons, the facade textures that belong to building block-7 were 

rectified manually. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7.17. An example case showing the failure of the automated rectification approach. 

(a) The original image, (b) the result of facade extraction, (c) the detected edges by Canny 

operator, (d) the extracted Hough lines, and (e) the result of the rectification. 

 

One other shortcoming of the building facade texture acquisition approach is 

the partial loss of the texture information due to the level of the building 

bases, which may be lower than the level of the pavement. In this case, the 

camera cannot record the undersides of the facades. Depending on the 

buildings, the size of texture loss can be small or as much as the whole story 

of a building. In the facade image of a building shown in Figure 7.18, a 

significant part (under the red line) cannot be acquired due to the height 

difference between the building baseline and the pavement.  
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Figure 7.18. A building facade image, in which the height difference between the building 

baseline and the pavement is evident. 

 

Another shortcoming to be mentioned is the over-segmentation, which is 

caused by the facades of the attached buildings that have identical textures. 

In this case, the facades of the attached buildings are extracted as a single 

facade due to the texture similarity between two facades. During data 

collection, the facades of disjoint buildings should be attempted to be 

photographed separately. However, in dense settlement areas this may not 

always be possible. This shortcoming is illustrated in Figure 7.19, in which 

two buildings with identical textures are located back to back. Therefore, the 

facades of these buildings were extracted as a joint single facade image 

resulting in over-segmentation. 

 

 

(a) 

 

(b) 

Figure 7.19. (a) Two buildings with identical textures that are located back to back and (b) 

the segmented facade with facade over-segmentation. 



193 
 

Another exceptional case is encountered in the developed occlusion removal 

approach. As described in section 5.4.2, the occluded area on a facade 

image is replaced by an occlusion-free patch detected based on a 

correlation-based image matching algorithm. However, the occlusion-free 

patch, which is fused into the occluded area, may sometimes be unrealistic. 

This is due to the fact that the structures, such as windows or doors may be 

shifted from their original locations on the occlusion removed image. Besides, 

some superfluous objects may appear on the image. In order not to increase 

the complexity, the integrity and consistency of the facades were not 

considered in the present study. These problematic cases are illustrated with 

an example in Figure 7.20. Note that, the original image shown in Figure 

7.20(a) refers to a 5-story building, whereas the generated occlusion free 

image, which is shown in Figure 7.20(b), has an additional story at the 

bottom, outlined in red. In addition, the windows at the bottom are 

superfluous. 

 

 

 

(a) 

 

 

(b) 

Figure 7.20. (a) The original image and (b) the generated occlusion-free image that contains 

superfluous information and incomplete structures. 

 

In addition to above described shortcomings the developed texture 

acquisition approach has a couple of limitations. The first limitation is the 

shooting constraint of the facade photographs. As described in section 5.2.2, 

the facade extraction algorithm automatically seeds the initial foreground 
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markers to be located in the center of the image. To achieve this, the region 

of interest (the building facade) must be centered in the photograph. 

Otherwise, the segmentation algorithm may fail in extracting the building 

facade from the photograph. This is illustrated in Figure 7.21, in which the 

segmentation algorithm was not able to extract the building facade 

successfully (Figure 7.21(b)) as the building facade in the photograph (Figure 

7.21(a)) was located off the center of the photograph. 

 

 

(a) 

 

(b) 

Figure 7.21. (a) A building facade located near the edge of the photograph and (b) the result 

of segmentation performed using the developed approach. 

 

The second limitation is observed in the occlusion removal stage. For the 

building facades having heterogeneous textures the algorithm works more 

efficiently if the building facade contains a repetitive pattern. This is due to 

the fact that within a building facade with heterogeneous texture, the 

probability of finding a patch that is correlated to occluded patch is high. One 

other factor that affects the success rate of the occlusion removal algorithm is 

the number of story of the buildings. The higher the building is the more 

chance that a patch highly correlated to the occluded patch can be found. 

Another factor that affects the success rate of the occlusion removing 

algorithm is the occlusion size. In order to obtain successful results, the size 

of the occlusions should not be larger than one half of the building facade 

with respect to width or height. Otherwise, the developed occlusion removal 
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algorithm may not be able to detect an occlusion-free patch within the 

building facade image being searched.  

 

The above described limitations are illustrated with an example in Figure 

7.22. In Figures 7.22(a), (c), and (e) the red frames represent the occluded 

regions to be replaced with the occlusion-free counterparts. The building 

shown in Figure 7.22(a) is an example of a multistory building with a 

moderate occlusion size. It is evident that the pattern of the facade is 

repetitive. Therefore, as expected, the detected facade patch for replacing 

the occluded area was quite satisfactory (Figure 7.22(b)). On the building 

facade given in Figure 7.22(c) the occlusion spreads out over the surface of 

the facade. Although the facade pattern is repetitive and the building has 

multiple stories, the algorithm failed for finding a patch highly correlated to 

occluded area (Figure 7.22(d)). The building shown in Figure 7.22(e) has 

only two stories and the occlusion size is moderate. However, as in the 

previous case the result was not satisfactory since a patch highly correlated 

to occluded area was not able to be found (Figure 7.22(f)). 
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(a) 
(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7.22. Examples for showing the limitations of the developed occlusion removal 

technique. 
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7.3. Results and Discussion for 3-D Model Generation and Texture 

       Mapping 

 

In this section, the quantitative or qualitative results were not obtained. 

Instead, the algorithm performances were evaluated in order to find the 

running times for generating the textured 3-d building models. The total 

elapse time for generating 3-d solid models together with the texture 

selection and mapping was computed to be about 3 seconds per block and 

24 seconds for 8 blocks under the same operating system and hardware 

configurations used in the performance analyses of 2-d building extraction 

and delineation, and the building facade texture acquisition approaches.  

 

A number of shortcomings and limitations were also faced during the 

generation of 3-d solid models and texture mapping. The first shortcoming is 

the brightness difference between the adjacent facades of the buildings. 

Since the acquisition of the facade images is carried out in different 

illumination conditions the global brightness of the images are tend to be 

different, therefore. This shortcoming is illustrated in Figure 7.23, in which the 

difference in the illumination of the adjacent facades is obvious (Figures 

7.23(a) and (b)). Note that the average values for the blue image bands were 

computed to be 140 and 160 for the facade images (a) and (b), respectively.  
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(a) 

 

(b) 

Figure 7.23. The adjacent facades of a building with different illuminations. 

 

The other shortcoming is the mismatching of the adjacent facade textures. 

This problem may occur due to several reasons. The first reason would be 

the shooting distance of a facade photograph. In general, the photos are 

taken from a constant distance. However, in some cases this may not be 

possible due to the obstacles. In these cases, the dimensions of the building 

facades photographed would tend to change due to shooting points with 

varying distances. This also affects the dimensions of the foreground textures 

being extracted. In particular, for the adjacent facade images of a single 

building, in which each facade is photographed from varying distances, a 

texture mis-matching problem likely occurs between the adjacent facade 

textures. As a consequence, this problem may reduce the visual quality of 

the textured building models. The second reason would be the varying level 

of the building bases. As discussed in the previous section, the textures of 

the adjacent facades may not be consistent due to different amount of texture 

that may be extracted for each facade. The third reason is the effect of 
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projective transformation used in the rectification stage. As is known, the size 

of an image after projective transformation may not be the same with the 

original size before the transformation. The amount of change is proportional 

with the amount of perspective distortion, in which highly distorted images 

would tend to diminish in size after the rectification. Since the effect of 

perspective distortions may not be same for each adjacent facade, the size of 

each rectified texture may change, therefore. This case also results with the 

texture mis-matching problem. Figure 7.24 illustrates a modeled building that 

suffers from the texture mis-match. It is also apparent that the number stories 

reflected by the facade textures are different. 

 

 

 

Figure 7.24. A building suffering from a texture mismatch problem. 

 

The last shortcoming is caused by the z-component (height) of 3-d building 

models. Due to errors contained by the normalized digital surface models, 

some of the building heights were not be determined. For example, for block-

1 the height information was missing (Figure 7.25(a)). It is predicted that 

these deficiencies were caused by the matching problems occurred during 

the generation of nDSM.  In the present study, for the buildings in block-1, 

the height information was estimated from the number of floors that the 

buildings contained. To do that, the height of each floor, which was assumed 

to be 2.5 m, was multiplied by the number of floors. That is, for a 10-story 
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building, the height was estimated to be 25 meters. The problematic patch of 

nDSM data that corresponds to block-1 is illustrated in Figure 7.25(a), while 

the corresponding R-G-B image is illustrated in Figure 7.25(b). Note that, on 

nDSM data the color at building locations appear black, which means that 

image correlation failed at these positions and therefore, produced zero 

elevation.  

 

 

 

Figure 7.25. For building block-1, the (a) nDSM data and (b) the R-G-B image.  

 

In addition to aforementioned shortcomings, the modeling part has an 

important limitation, which is related with the shape of the facade images to 

be mapped on 3-d models. Since the quadrilateral facades are considered in 

this study, only the rectangular-shaped textures are captured and processed, 

accordingly. The facade textures having different geometry such as 

polygonal, circular, etc. other than quadrilateral are kept out of the scope in 

the present study. As is known, all the techniques developed in the 

generation of the facade texture were already adapted to produce 

quadrilateral texture patches. As illustrated in Figure 7.26, a circular texture is 

forced to map onto a quadrilateral building facade, which results in an 

unrealistic view of the model.  

 

(a) (b) 
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(a) 

 

(b) 

Figure 7.26. Mapping a circular facade texture on a quadrilateral plane (a and b), which 

generates an unrealistic view of the model. 
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CHAPTER 8 
 
 
 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 
 
 
 

In this chapter, first the conclusions of the developed integrated framework 

for 2-d building extraction and delineation, building facade texture acquisition, 

3-d model generation, and texture mapping are presented. Next, the future 

directions for the study are discussed.   

 

 

8.1.  Conclusions for 2-D Building Extraction and Delineation  

 

The developed approach for 2-d extraction and delineation of buildings from 

high resolution space imagery reveals the following conclusions: 

 

• The conventional genetic algorithm-based approach for the 

extraction of 2-d building patches provided higher detection rates 

when compared to Fisher Linear Discriminant (FLD) classifier. It 

was observed that the detection rates of FLD hardly reached to 

the detection rates, which were generated in the first generation 

of the genetic algorithm-based approach. 

 

• The detection rate of the conventional genetic algorithm was 

computed to be 91.86% (averaged over 10 runs) although the 

convergence rate was found to be relatively low. On the other 

hand, the proposed adaptive fuzzy-genetic algorithm converged 

earlier than the conventional algorithm within the first a few 

generations yielding an average fitness rate of 93.13%. The 

reason for the slow convergence of the conventional algorithm
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•  was due to the fixed initial probabilities of crossover and mutation 

operations, which highly increase the risk to get trapped in local 

minimum solution.   

 

• The selection of the optimum initial values for the genetic 

algorithm parameters, such as the selection rate of 50%, the 

population size of 30, the chromosome size of 5, and the 

training/test sample sizes of 50 was found to be very efficient in 

reaching the maximum fitness values. 

 

• When the accuracy of building delineation was evaluated at 95% 

confidence level, the mean errors were computed to be less than 

4 meters for the total 110 buildings falling within 8 building blocks.  

 

• The pre-processing stage before running the delineation 

algorithm eliminated the false alarm areas successfully. The 

morphological opening operation with a disk-shaped structuring 

element having a radius of 3 removed the isolated regions and 

small protrusions to a large extent. The radius of the structuring 

element was proved to preserve the orientation of the building 

patches. Further, the hole-filling morphological operation 

achieved the removal of every hole in all binary patches. In 

addition, the convex binary patch generation proved to simplify 

the protruded region boundaries before extracting the building 

footprints.  

 

• It is observed that performing the processing and analysis 

operations one block at a time improved the building delineation 

accuracy by excluding the misclassified structures, complex-

shaped buildings, or any artifacts, which were kept out of 

consideration in the present study. 
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• According to running time performances, the elapsed time of 24 

minutes for the building extraction and the elapsed time of 16 

seconds for the delineation of 2-d buildings were achieved for the 

whole study area that includes 110 single buildings. On the other 

hand, the determination of the optimum genetic algorithm 

parameters took 120 hours of running time, the step of which was 

performed once in the beginning of the methodology only.    

 

 

8.2.  Conclusions for Building Facade Texture Acquisition 

 

The conclusions derived from the automatic extraction of the ground-level 

facade textures are as follows: 

 

• For both data sets, the average quality percentage values of the 

facade image extraction were computed to be over 80% using a 

fully automated approach.  

 

• In the pre-processing step, the analysis performed for the 

saturation component proved to reduce the non-uniform 

illumination on building facade images. After conducting several 

interactive experiments, the saturation coefficient of five was 

accepted to be the optimum value at present study. However, this 

value should not be considered global.  

 

• In facade image extraction, the use of an initial marker template 

increased the level of automation in watershed segmentation by 

setting sufficient foreground and background markers at right 

locations.  

 

• The “repetitive” aspect of watershed segmentation produced 

much more texture information than the conventional watershed 

algorithm. Further, the over-segmentation problem was overcome 
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to a large extent by means of intersecting the intermediate 

segments and using the segment of the intersections as the final 

segment. 

 

• The developed automatic technique for texture rectification 

reduced the perspective distortions and yielded fairly encouraging 

positional accuracies. For the Batikent dataset, nine facade 

images out of fifteen were at the level of error bound under ten 

pixels. In the eTrims dataset, four out of five images yielded 

positional error rates no more than ten pixels. All assessments 

were performed at 95% confidence level.   

 

• The combined use of Canny edge detector and Hough 

transformation was successful in detecting the vertical strong line 

segments of facades, which have a crucial importance in the 

rectification of the facade image. Besides, the best fitting lines 

(trend lines) were estimated from these line segments in order to 

fix the discontinuities and define the degree of distortion.     

 

• The qualitative results of the occlusion removal were satisfactory. 

For the Batikent dataset, the average of the ratings was computed 

to be 2.58 staying in the middle of the criterions “Fine” and 

“Passable”. In parallel, the buildings in the eTrims dataset were 

included into “Fine” category having an average subjective rating 

of 2.28.   

 

• The cropping operation, which was conducted as a pre-processing 

step in the occlusion removal procedure, was proved to reveal the 

foreground region (facade image) and discard the background 

region most of the time.  

 

• In the texture mending stage, the correlation based image 

matching approach was found to be quite successful for finding 
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the occlusion-free counterpart of the occluded region. The 

experiments conducted revealed that the image matching process 

commonly terminates at the correlation rates ranging from +0.90 

to +0.99 for the successful cases.  

 

• Of the post-processing steps applied in occlusion removal, the 

motion blurring technique enhanced the results by removing the 

sharp transitions (seams) at the borders of the pasted texture 

patches. Moreover, applying an algorithm that is based on image 

differencing and weighted averaging reduced the illumination 

differences remarkably. 

 

• The running time performance of facade image acquisition stage 

was computed. On average, the extraction of one facade was 

performed within a minute, while the rectification of a single facade 

took about 15 seconds. The occlusion removal of a single facade 

took approximately 10 seconds, as well. 

 

 

8.3.  Conclusions for 3-D Model Generation and Texture Mapping  

 

The conclusions of 3-d solid model generation and texture mapping of the 

reconstructed models are as follows:  

 

• It is evident that the previously extracted 2-d building footprints 

facilitated the determination of the  coordinates (x,y) of the building 

patch corners and the mid-points of the edges. Further, the use of 

nDSM data was proved to be helpful in extruding the solid building 

models automatically by providing the approximate heights (z) of 

the buildings.  

 

• In the modeling phase, the assumption “The buildings in a block 

have identical size” provided the elimination of certain positional 
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errors due to varying building dimensions. Moreover, this 

assumption improved the model generation performance to a 

large extent. 

 

• The assumption made “The opposing facades have identical 

textures” was proved to be quite functional in texture mapping. 

This assumption not only improved the mapping performance in 

terms of speed, but also reduced the number of photos taken from 

the study area. In parallel, the coordinates of the shooting points 

collected by a manuel GPS was also diminished.  

 

• The analysis of the computed and measured bearings of the 

shooting points was found to be very successful in boosting the 

texture mapping accuracy. With the developed algorithm, all the 

facade textures were mapped properly onto solid models. 

 

• The user-assisted roof modeling (by taking the realistic roof types 

and overhanging roofs into account) improved the level of reality 

of the building models. Further, the use of high-resolution roof 

texture patches also enhanced the quality of the building models.       

 

• The reconstruction of a single building block in 3-d and texture 

mapping took about a few seconds. More generally, the overall 

running time performance of the photo-realistic 3-d building 

modeling of the study area, which contains a total of 110 single 

buildings falling within eight blocks, was computed to be about 50 

minutes. The total elapsed time is accumulated by adding the 

elapsed times of 2-d building extraction and delineation (25 

minutes), building facade texture acquisition (24 minutes) and 3-d 

model generation and texture mapping (24 seconds). 
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As a final concluding remark, the overall results revealed that a considerable 

progress has been made towards the automated reconstruction and 

representation of photorealistic large scale urban environments.  

 

 

8.4.  Recommendations 

 

Although the proposed 3-d photorealistic building modeling approach 

demonstrates promising results, several priorities for future research remain. 

For instance, higher resolution satellite imagery or different data sources 

such as aerial photos or airborne laser scanning systems can be employed to 

extract complex buildings and detailed 3-d roof models with high quality roof 

textures as well as the city furniture such as roads, landmarks and 

vegetation. 

 

Alternatively, the fusion of multi-source imagery to generate accurate and 

detailed building models with high quality textures, together with the high 

precision digital elevation / surface information for a more intelligent and 

robust perception should be the essential future research direction. 

Specifically, the use of ground-level laser scanning system might be helpful 

in detecting and removing the occlusions in an automated manner by using 

the range information. 

 

New techniques will be required to facilitate the removal of the occlusions 

having different orientations and size. To do that, more sophisticated building 

structure analysis including automatic detection of windows and other 

structural elements can be deliberated. This additional information might 

enable the robust reconstruction of occluded building texture in more 

challenging cases.  

 

Finally, mosaicing of facade textures will be an alternative research issue in 

the future. Generation of image mosaics for simple (planar) or complex (non-
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planar) facades might be helpful in the extraction of the facade textures from 

the close-range digital image sequence. 
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APPENDIX A: SOURCE CODE OF THE 2-D BUILDING EXTRACTION AND  

                         DELINEATION 

 

number_of_generations = ga_parameters(2); 

population_size = ga_parameters(3);  

number_of_genes = ga_parameters(4); 

crossover_rate = ga_parameters(5);   

mutation_rate = ga_parameters(6);  

  

number_of_data_planes = 3; %Original data planes 

number_of_scratch_planes = 4; %Temporary planes 

gene_info_size = 7; % Maximum number of input & output planes  

 

fprintf(fid, 'Population Size: %d\n',population_size); 

fprintf(fid, 'Number of Genes: %d\n',number_of_genes); 

  

%% Building initial scratch planes (All are composed of zeros) 

for i=1:number_of_scratch_planes 

   scratch(:,:,i) = study_area(:,:,1) - study_area(:,:,1); 

end 

  

building_samples = zeros(number_of_bina_samples, number_of_scratch_planes); 

non_building_samples = zeros(number_of_non_bina_samples,                            

                                                  number_of_scratch_planes); 

 

%% Building the initial population 

population = zeros(population_size,number_of_genes); 

  

for j=1:population_size 

   for k=1:number_of_genes  

      population(j,k) = 1 + round(rand*22);   

   end 

end 
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[row,col] = size(study_area(:,:,1)); % Size of the original image 

study_area_size = size(study_area,3); % Size of the bands 

output_plane = zeros(row,col); 

  

% CONSTRUCTION OF GENE INFO MATRIX, initially all (-1) 

gene_info = -ones(population_size,gene_info_size,number_of_genes); 

 

for i=1:population_size 

   for j=1:number_of_genes 

      gene_info = generate_gene_info(population(i,j),scratch, study_area_size, gene_info,i,j); 

      gene_info(i,1,j) = 1 + round(rand * (number_of_scratch_planes - 1)); 

   end 

end 

 

average_fitness_values = zeros(number_of_generations,1); 

maximum_fitness_values = zeros(number_of_generations,1); 

  

% GENETIC ALGORITHM CYCLE STARTS HERE 

chromosome_fits = zeros(number_of_generations*population_size,1); 

h = waitbar(0,'Genetic Algorithm is running...'); 

for generation=1:number_of_generations %Number of Generations 

   total_time = number_of_generations * population_size * number_of_genes; 

   chromosome_index = 1; 

   view_count = 1; 

      for i=1:population_size 

         for j=1:number_of_genes 

            scratch(:,:,gene_info(i,1,j)) = evaluate_genes(population(i,j), scratch, study_area,   

            gene_info, i, j); 

waitbar((((generation-1)*number_of_genes*population_size) + ((i-1)*number_of_genes) + j) /   

total_time) 

           end           

            for k=1 : number_of_scratch_planes 

                if (max(max(scratch(:,:,k)))==0) | (min(min(scratch(:,:,k)))==255) 

                   scratch(:,:,k) = study_area(:,:,1); 

                end 

            end 
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APPENDIX B: SOURCE CODE OF BUILDING FACADE TEXTURE   

                        ACQUISITION 

 

%Determining new markers for the foreground 

while marker_count < max_marker_count 

   rw = ceil(r*rand); 

   cl = ceil(c*rand); 

   if (yeni2(rw,cl) ~= 0) 

      if (marker(rw,cl) ~= 1) 

         marker(rw,cl) = 1; 

         marker_count = marker_count + 1; 

      end 

   end 

end 

       

if e_trims == 1 

   marker(2:2,4:c-2)=2;  

   marker(2:c-2,r-2:c-2)=2;  

   marker(r-floor(r/50):c-2,2:c-2)=2;  

   marker(2:c-2,3:3)=2; 

else 

   marker(2:2,4:c-2)=2;  

   marker(2:c-2,r-2:c-2)=2;  

   marker(r-floor(r/6):c-2,2:c-2)=2;  

   marker(2:c-2,3:3)=2; 

end 

end 

         

disp('Applying watershed segmentation by flooding from marked sources...') 

imout=watershedmex(g,marker); 

imwrite(palettemex(imout),'watershed_output.bmp'); 

 

temp_mask = yeni2; % Previous Mask 

yeni = imread('watershed_output.bmp'); 

yeni1 = rgb2gray(yeni); 
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thr = graythresh(yeni1); 

yeni2 = im2bw(yeni1,thr); 

yeni2 = 1 - yeni2; % Current Mask 

yeni2 = or(temp_mask,yeni2); 

 

mark = imread('marker_output.bmp'); 

mark1 = rgb2gray(mark); 

overlapped = yeni1 + mark1; 

segmented_texture(:,:,1) = im(:,:,1).* yeni2; 

segmented_texture(:,:,2) = im(:,:,2).* yeni2; 

segmented_texture(:,:,3) = im(:,:,3).* yeni2; 

imwrite(segmented_texture, 'cropped.jpg'); 

 

L = bwlabel(yeni2); 

stats1 = regionprops(L,'Area'); 

stats2 = regionprops(L,'Extent'); 

mask_library(:,:,iteration_number) = yeni2;    

mask_stats(iteration_number,1) = (stats1(1).Area) / (r*c); % Area proportion in original image 

mask_stats(iteration_number,2) = stats2(1).Extent; % Area proportion in MBB 

         

if(mask_stats(iteration_number,1)) <= 0.5 %Ignore the small (less than 50%) regions 

   mask_stats(iteration_number,2) = 0; %Nullify the extent 

end 

 

%Stopping Criteria 

diff = abs(mask_stats(iteration_number,1) - mask_stats(iteration_number-1,1));  

if(diff <= change_area_quantity) 

   i_t = i_t + 1; % No or minor change 

else 

   i_t = 0; % Signifcant change 

end 

if(i_t == iteration_tolerance) 

   iteration_number = ic+1; % Stop the iteration 

else 

   iteration_number = iteration_number + 1; % Carry on iteration 

 end 
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APPENDIX C: SOURCE CODE OF 3-D MODEL GENERATION AND  

                         TEXTURE MAPPING 

 
min_photo = zeros(size(site_building_coords,1),7); 

min_photo_dist = zeros(size(site_building_coords,1),1); 

  

finish_photo_selection = 0; %Initially unfinished 

short_edge_slot = 0; %Initially short building edge photo is empty 

long_edge_slot = 0; %Initially long building edge photo is empty 

selected_short_edge_photo_id = 0; 

selected_long_edge_photo_id = 0; 

  

for i=1:size(site_building_coords,1) 

   for j=1:size(temp_building_midpoint_coords,1) 

      dist = sqrt((site_building_coords(i,3) - temp_building_midpoint_coords(j,6))^2 ...  

                    + (site_building_coords(i,4) - temp_building_midpoint_coords(j,7))^2); 

      if dist < min_dist 

         min_dist = dist; 

         min_index = j; 

      end        

   end 

   min_photo(i,:) = temp_building_midpoint_coords(min_index,:); 

   min_photo_dist(i) = sqrt((site_building_coords(i,3) -     

   temp_building_midpoint_coords(min_index,6))^2 + 

   (site_building_coords(i,4) - mp_building_midpoint_coords(min_index,7))^2); 

   min_dist = 100000; 

end 

 

if reg_ID ~= 7 

   while(finish_photo_selection == 0) 

      [m_val m_ind] = min(min_photo_dist); 

      photo_id = mod(site_building_coords(m_ind,2),100); 

      edge_id = site_building_coords(m_ind,1); 

      photo_easting = site_building_coords(m_ind,3); 

      photo_northing = site_building_coords(m_ind,4);
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degree_photo = site_building_coords(m_ind,5); 

facade_easting = min_photo(m_ind,6); 

facade_northing = min_photo(m_ind,7); 

 

delta_X = photo_easting - facade_easting;  

delta_Y = photo_northing - facade_northing; 

temp_alpha = atan(delta_Y / delta_X); 

 

if delta_Y >= 0 & delta_X >= 0 %First Quadrant 

   alpha = temp_alpha 

elseif delta_Y >= 0 & delta_X < 0 %Second Quadrant 

   alpha = temp_alpha + pi; 

elseif delta_Y < 0 & delta_X < 0 %Third Quadrant 

   alpha = temp_alpha + pi; 

elseif delta_Y < 0 & delta_X >= 0 %Fourth Quadrant 

   alpha = temp_alpha + (pi*2); 

end 

 

degree_measured = (alpha/(2*pi)*360); 

% The computed angle is approximated to one of the nearest 8-neighbor 

if degree_measured > 0 & degree_measured < 45   

   diff0 = degree_measured - 0;  

   diff45 = 45 - degree_measured; 

   if diff0 < diff45 

      rounded_degree_measured = 0; 

   else 

      rounded_degree_measured = 45; 

   end 

 

elseif degree_measured > 45 & degree_measured < 90 

   diff45 = degree_measured - 45;  

   diff90 = 90 - degree_measured; 

   if diff45 < diff90 

      rounded_degree_measured = 45; 

   else 

      rounded_degree_measured = 90; 

   end 
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