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ABSTRACT

NUMERICAL STUDY OF RAYLEIGH BÉNARD THERMAL CONVECTION
VIA SOLENOIDAL BASES

Yıldırım, Cihan
Ph.D., Department of Engineering Sciences

Supervisor : Assoc. Prof. Dr. Hakan I. Tarman

March 2011, 140 pages

Numerical study of transition in the Rayleigh-Bénard problem of thermal convection

between rigid plates heated from below under the influence of gravity with and with-

out rotation is presented. The first numerical approach uses spectral element method

with Fourier expansion for horizontal extent and Legendre polynomal for vertical ex-

tent for the purpose of generating a database for the subsequent analysis by using

Karhunen-Loéve (KL) decomposition. KL decompositions is a statistical tool to de-

compose the dynamics underlying a database representing a physical phenomena to

its basic components in the form of an orthogonal KL basis. The KL basis satisfies all

the spatial constraints such as the boundary conditions and the solenoidal (divergence-

free) character of the underlying flow field as much as carried by the flow database.

The optimally representative character of the orthogonal basis is used to investigate

the convective flow for different parameters, such as Rayleigh and Prandtl numbers.

The second numerical approach uses divergence free basis functions that by construc-

tion satisfy the continuity equation and the boundary conditions in an expansion of

the velocity flow field. The expansion bases for the thermal field are constructed to
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satisfy the boundary conditions. Both bases are based on the Legendre polynomials

in the vertical direction in order to simplify the Galerkin projection procedure, while

Fourier representation is used in the horizontal directions due to the horizontal extent

of the computational domain taken as periodic. Dual bases are employed to reduce

the governing Boussinesq equations to a dynamical system for the time dependent

expansion coefficients. The dual bases are selected so that the pressure term is elim-

inated in the projection procedure. The resulting dynamical system is used to study

the transitional regimes numerically.

The main difference between the two approaches is the accuracy with which the

solenoidal character of the flow is satisfied. The first approach needs a numerically or

experimentally generated database for the generation of the divergence-free KL basis.

The degree of the accuracy for the KL basis in satisfying the solenoidal character of

the flow is limited to that of the database and in turn to the numerical technique used.

This is a major challenge in most numerical simulation techniques for incompressible

flow in literature. It is also dependent on the parameter values at which the underlying

flow field is generated. However the second approach is parameter independent and it

is based on analytically solenoidal basis that produces an almost exactly divergence-

free flow field. This level of accuracy is especially important for the transition studies

that explores the regions sensitive to parameter and flow perturbations.

Keywords: Solenoidal Basis, Karhunen-Loéve Analysis, Rayleigh-Bénard Convec-

tion, Rotating Rayleigh-Bénard Convection, Galerkin Projection, Spectral Methods

v



ÖZ

SOLENOIDAL BAZLARLA RAYLEIGH BÉNARD ISI KONVEKSİYONU
ÜZERİNE SAYISAL ÇALIŞMA

Yıldırım, Cihan
Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr. Hakan I. Tarman

Mart 2011, 140 sayfa

Yerçekimi etkisinde bulunan alttan ısıtılmış iki rijit tabaka arasındaki dönen ve dönmeyen

Rayleigh-Bénard ısı konveksiyonunun geçiş evreleri sayısal yaklaşım ile incelenmiştir.

Birinci yaklaşım, Karhunen-Loéve (KL) ayrıştırmasıyla analiz yapmak için verita-

banı oluşturmak amacıyla, yatay düzlemde Fourier serileri ve düşey düzlemde Legen-

dre polinomlarını kullanan spektral elamanlar metodunu kullanmaktadır. KL ayrıştırması,

fiziksel olguyu ifade eden veritabanının dinamiğini ortogonal KL bazları cinsinden

basit bileşenlerine ayrıştırmak için kullanılan istatiksel bir araçtır. KL bazları, sınır

şartları, akış alanı ve akış veritabanının temelini oluşturan solenoidal karakter gibi

bütün uzamsal kısıtlamaları sağlamaktadır. Ortogonal bazların sistemi optimum açıklama

kabiliyeti konvektif akışın Rayleigh ve Prandtl sayıları gibi farklı parametreleri için

incelenmiştir.

İkinci yöntem konvektif hız alanını açmak için süreklilik denklemini ve sınır şartlarını

sağlayan diverjanstan bağımsız bazları kullanmaktadır. Isı alanı için kullanılan bazlar

sınır şartlarını sağlayacak şekilde oluşturulmuşlardır. Her iki baz düşey düzlemde

Legendre polinomları tarafından açımlanmaktadır. Yatay düzlemin periyodik kabulu

vi



neticesinde Fourier açılımının kullanılması ile birlikte sistem Galerkin projeksiyon

yöntemi ile sadeleştirilmiştir. Çifteş bazları dinamik sistemin Boussinesq temel den-

klemlerini zamana bağlı açılım katsayıları cinsine indirgeyebilmek için kullanılmıştır.

Projeksiyon bazları basınç terimini projeksiyon işleminde elimine edecek şekilde

seçilmiştir. Elde edilen dinamik sistem geçiş rejimlerinin sayısal incelemesinde kul-

lanılmaktadır.

İki yaklaşım arasındaki temel fark diverjansdan kaynaklı hatalardan oluşan sayısal

kirlenmedir. Akışkanlar dinamiği problemlerinde süreklilik denkleminin sağlanması

büyük bir problemdir. Birinci metod akış alanının analizi için tam simülasyona ihtiyaç

duyar, dolayısıyla sayısal hatalardan etkilenir. Bununla beraber ikinci metod analitik

olarak diverjanstan bağımsız bazlara dayanır.

Anahtar Kelimeler: Solenoidal bazlar, Karhunen-Loéve Analizi, Rayleigh-Bénard

Konveksiyonu, Dönen Rayleigh-Bénard Konveksiyonu, Galerkin Projeksiyonu, Spek-

tral Metodlar
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CHAPTER 1

INTRODUCTION

1.1 RAYLEIGH BÉNARD CONVECTION

Thermal convection in a fluid layer has been a cradle of nonlinear stability studies.

The classical Rayleigh-Benard problem of thermal convection in a horizontal layer

heated from below has been the most studied problem amongst the natural convec-

tive flows. This is due to its transition dynamics exhibiting a sequence of discrete

steps from steady regime to periodic, quasi-periodic regimes and eventually to chaotic

regime as well as the simplicity of the geometry. The geometry of infinite fluid layer

confined between rigid plates has been approximated by a periodic horizontal extent

in the numerical studies and by large-aspect-ratio containers in the experiments.

Rayleigh-Benard thermal convection occurs if the temperature difference between

the bottom and top layer is high enough. Natural convection phenomena are quite

relevant in both natural and industrial applications. Some astrophysical phenomena

such as solar granulation or convection in the planetary boundary layer and some

industrial processes such as thermal convection in electric power industry (especially

in nuclear reactors cooling), cooling electronic components, solar heating devices and

crystallization processes involve this phenomena. The dynamics is governed by three

non-dimensional parameters: Rayleigh number, Prandtl number and the aspect ratio

of the convective box. Depending on these parameters, the flow exhibits a number of

discrete transitions before reaching turbulence.

Rayleigh-Benard thermal convection in a periodic box is investigated in this thesis

because it has the simple geometry to adapt the numerical procedure easily. Abun-
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dant studies in literature make it convenient to test and compare new numerical ap-

proaches.

1.1.1 NUMERICAL AND EXPERIMENTAL INVESTIGATIONS

The literature on numerical studies of the Rayleigh-Benard problem can be collected

in two main categories. First category involves the stability analysis. Second category

involves numerical simulation for the different aspects of the convection, e.g. heat

transfer, turbulence, etc.

Henri Bénard showed the formation of steady hexagonal flow pattern between very

thin layer (Bénard 1901). Lord Rayleigh introduced theoretical explanation of Bénard’s

results and determined stability condition of flow heated from below and cooled from

above (Rayleigh 1916). He showed that fluid layer is motionless if the temperature

gradient is small. When the temparature gradient reaches to a spesific value corre-

sponding to a critical value of Rayleigh number, the fluid layer looses its stability.

The system reaches to a new stable state in which convective rolls transport the heat

flux.

Early thoretical works dealt with stability analysis and heat transport of the convec-

tive motion. Malkus [3] theoretically investigated various properties of the turbulent

convection especially maximum heat transport capacity and its constraint. Malkus

and Veronis [4] determined the amplitude and the form of the thermal convection

and its dependencies caused by external disturbance. Chandrasekhar [2] extensively

explained the various features of hydrodynamic and hydromagnetic stability in his

well-known book. Schlüter, Lortz and Busse [5] proved Malkus’s ”Hypothesis of

maximum heat transport” for finite amplitude steady solution. They showed that all

steady solutions of convection are unstable except the two dimensional roll motion.

Most of the numerical works utilized finite difference and finite volume methods.

Spectral methods has been used extensively after the Orszag and co-authors’ works.

Plows [6] used two dimensional iterative finite difference technique to calculate con-

vective heat flux and compare his results with early works. He investigated the re-

lation between Nusselt number and mesh density, iteration cycles and extrapolation
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zero zone thickness for steady two dimensional convection.

Busse and his co-authors widely conducted experimental [7, 8] and numerical works

[1, 9, 10, 11]. They used a Galerkin method to investigate instabilities and transition

for different Prandtl number in the numerical studies. Clever and Busse [1] focused

on the stability of the two dimensional roll motion with three dimensional distur-

bances. They showed the features of a number of instabilities with different control

parameters. They worked on [9] the steady solution of two dimensional rolls for low

Prandtl number range. They performed some numerical experiments to demonstrate

the effect of the Prandtl number on the nonlinear heat transport character. They also

inspected nonlinear features of oscillatory convection for different Prandtl, Rayleigh

numbers and wavenumber combination in the paper [11]. Frick, Busse and Clever

[10] investigated bimodal convection and square pattern convection for high Prandtl

number fluid. They obtained steady solution in the limit of infinite Prandtl number

and investigated its stability with galerkin approach. Further, Busse and Clever [12]

discussed the symmetry considerations in the bifurcated solution of the numerical

analysis.

Another important and widely referenced study is by Lipps. He used finite differences

to calculate the three dimensional thermal convection in air for different regimes [13].

He calculated some illuminative properites of motion such as heat flux, kinetic energy

etc. Grötzbach investigated convection in air with a finite volume code (TURBIT-3)

considering the mesh requirements of the Rayleigh-Bénard problem [14, 15].

The transition to turbulance was studied by Mclaughlin and Orszag for air. They

used a spectral method utilizing Fourier representation and Chebyshev polynomials

with flow symmetries to simulate transition to turbulent regime for air. They searched

the frequency content of different regimes in view of Ruelle-Takens Theory. [16].

Meneguzzi et. al simulated low Prandtl number fluid using pseudospectral method

[17] for both free and rigid boundaries. They also discussed the effect of a magnetic

force parallel to the roll axis. Verzicco and Camussi investigated the Prandtl variation

effect on the Nusselt number. They conducted three sets of studies including low to

high Prandtl number range numerical experiment using second order finite difference

method [18].
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More recently, Guessous proposed a numerical procedure that utilizes Fourier series

and Legendre interpolants to investigate corelations between dimensionless parame-

ters in natural convection in her PhD thesis [19]. She extended this procedure to the

forced convection problem [20] as well.

Busse and Whitehead [7] showed the development of different oscillatory instabili-

ties included cross roll, zigzag, pinching instabilities for varying wavenumber. They

provided some explanatory shadowgraph illustrations of these instabilities. They also

conducted some experiments [8]on the oscillatory instability of bimodal convection

for high Prandtl number fluids.

Krishnamurti investigated convection at several different Prantl number values and in-

dicated the relationship between Prandtl and Rayleigh numbers for different regimes

[21]. Krishnamurti produced a parametric flow regime diagram which includes stabil-

ity condition of two dimensional rolls, bimodal convection and oscillatory convection

in that experimental work. According to this diagram transition range between con-

duction and turbulent convection regimes increasing with increasing Prandtl number.

The underlying nonlinear instability mechanisms of transition has been extensively

studied experimentally by Krishnamurti [21], Golub and Benson [22], Busse [23].

Somerville and Lipps [24] invastigated the difference between two dimensional and

three dimensional modelling of Rayleigh-Bénard problem with rigid boundaries. They

found increase in the wavelength of the convective structures in their three dimen-

sional simulation as indicated by experimental studies. Koschmieder [25] reviewed

many theoretical, numerical and experimental work in literature about the Rayleigh-

Bénard convection.

1.1.2 RAYLEIGH BÉNARD CONVECTION WITH ROTATION

Many geophysical and astrophysical phenomena such as flow motion in oceans, stars

or planets are affected by the rotational forces in addition to the thermal forces. Mi-

esch [26] reviewed some of these work about solar convection with rotation. Evonuk

and Glatzmaier [27] studied the effect of planetary rotation rate on the pattern of

thermal convection for giant planets.
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In earlier time, Veronis contributed to the current knowledge on convection with ro-

tation in literature. He generally worked on the two dimensional system with stress

free boundary conditions. He [28] observed that steady finite amplitude convection

can exist for lower than the critical Rayleigh number for a limited range of rotation.

Veronis [29] theoretically examined the effects of rotation and viscosity on the cel-

lular motion of convection for different boundary conditions. He clearly explained

the energy releasing and dissipative mechanisms in regards to viscosity. Veronis also

[30] examined the differences between convection in low Prandtl and high Prandtl

fluids confined in rotating two dimensional stress free boundaries. He observed the

unstable behaviour for low Prandtl numbers. Because of this unstability, convective

motion starts at lower than the critical Rayleigh number. Finite amplitude instability

occurs due to the nonlinear effects but it can be damped by the increasing rotation.

Clever and Busse [31] investigated the stability of two dimensional convection under

three dimensional disturbances. They considered rigid plates rotating around its ver-

tical axis. They obtained some quantitative stability criterion depending on the varied

rotation and constructed a stability diagram of the natural convection with respect to

rotation. They observed that coriolis force reduces the heat transport for low Rayleigh

and high Prandtl numbers flow. On the other hand, limited rotation is observed to en-

hance the heat transport for decreasing Prandtl number.

Rossby [32] investigated the natural convection in several fluids confined between

rotating and stationary plates, experimentaly. He tested the predictions of the stability

theory on the onset of convection. He also tried to determine the relation between

heat flux and control parameters. He found finite amplitude instability in mercury

for a limited range of rotation. Küppers and Lortz [33] theoretically investigated the

stability behavior for a specific case, infinite Prandtl number and free-free boundaries.

They showed that there is no stable steady-state convection for higher than the critical

Taylor number, Ta2 = 2285 (Ω ≈ 23.9). Küppers [34] conducted the same analysis

in [33] and extended the work to rigid boundaries and finite Prandtl number.

Somerville and Lipps [35] repeated Rossby’s work in a three dimensional numer-

ical simulation. They studied experimentally observed quasi-steady or quasi-two

dimensional flows by numerical simulation at the same experimental parameters of
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Rossby’s. Clune and Knobloch [36] focused on the previous experimental work and

obtained the results of linear stability and weakly nonlinear calculations under the

same experimental conditions. They calculated critical points, hopf frequency, criti-

cal Taylor number affected by Küppers-Lortz instability and the angle of rotated rolls.

Scheel [37] in her Phd work investigated pattern formation and spatiotemporal chaos

in rotating frame. She also investigated the stability of Rayleigh Bénard convection

with rotation. Recently Clever and Busse [38] studied numerically two and three di-

mensional convection under the influence of rotation. Unusual dynamical features for

low Prandtl number were the main attention in their work.

Kurt et. al. [39, 40] studied rotating cylindrical annulus with small gap approxi-

mation. They conducted stability analysis of convection influenced by rotation and

magnetic field. They also observed some instabilities.

1.2 KARHUNEN LOÉVE DECOMPOSITION

The Karhunen-Loéve (KL) procedure was proposed independently by Karhunen [41]

and Loéve [42]. This technique is used in many different fields including the iden-

tification of coherent structures in turbulent flows, low dimensional representation

of PDEs, filtering data, reconstruction of incomplete data, face recognition, image

compression, etc. Main idea of this procedure is capturing the dominant features

in numerically or experimentally generated database representing a phenomena. It is

also known as Proper Orthogonal Decomposition (POD), Principal Component Anal-

ysis (PCA) or Empirical Orthogonal Function (EOF) in the literature. Popularity of

the method increases with increasing computational capabilities and new fields of

applications.

In early times, Lorenz proposed a weather forecasting method based on EOF [43] in

his scientific report. Lumley used this method in his turbulence work with the name

of POD and provided the conceptual details to the turbulence community [44]. His

book [45] is also an important contribution to the fluid mechanics literature. Different

aspects of this procedure for fluid problems especially for turbulence can be found in

the book by Holmes et.al. [46].
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Sirovich [47, 48, 49] provided a systematic formulation of the KL procedure and

proposed the method of snapshots to extract the KL modes or coherent structures in

large data sets representing turbulent flow. He introduced a practical methodology of

constructing the KL modes by decomposing the covariance tensor for fluid mechanics

problems. This methodology requires enough data in order to capture all the features

of the flow experimentally or numerically. He proposed to use physical symmetries in

order to expand the available data and provide more features about the flow for robust

analysis. Applications of this procedure to minimal channel flow problem explained

in Webber, Handler and Sirovich [50] and Webber [51]. They constructed the velocity

field using Chebyshev-Fourier spectral method and then produced optimal KL basis

which best represent the turbulance in channel flow in energy sense.

Tarman [52] used this decomposition technique for turbulent natural convection with

stress free boundaries. He separated the flow into mean and fluctuating components

and used the fluctuation component to construct the covariance matrix. He used sym-

metry and translational invariance to enhance the flow sample. As a continuation,

Tarman [53] used this technique in order to construct a reduced order approximation

to Boussinesq equations. The energy content of the KL modes is used to devise a

truncation scheme towards a dynamical approximation. Further, Tarman [54] incor-

porated the truncated modes into the dynamical approximation in order to recapture

the lost dissipative effects without increasing the degrees of freedom. Tarman and

Sirovich [55] extended the previous work [54] by generating the KL bases using the

the mechanical and thermal fields separately and without separating the flow field into

the mean and the fluctuating components. This removed the need to model the time

rate of change of the mean flow, separately and so increased the accuracy. Tarman

[56] performed a parametric study of Rayleigh-Bénard convection in air with stress

free boundaries in a periodic box by varying Rayleigh number. He used thermal and

mechanical KL bases obtained from a thermal convection database for this purpose.

The results of this work is in qualitative aggreement with literature.

More recently, Yıldırım, Yarımpabuç and Tarman [57] conducted some numerical

experiment with Rayleigh-Bénard convection with rigid boundaries. They used KL

bases to reduce the Boussinesq equations to a low dimensional dynamical system.

The resulting system is used to study the transition regimes as Rayleigh number varied
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for low, unity and high Prandtl numbers. The issue of the KL basis being poorly

solenoidal is raised here. The KL basis reflects the nature of the underlying numerical

flow field. Unfortunately, numerical schemes available for resolving the continuity

equation generally produce poorly solenoidal flow field.

1.3 DIVERGENCE FREE METHODS

The incompressibility condition appears as a constraint in the governing system of

equations and is an important source of difficulty in numerical simulations. There are

schemes developed solely to satisfy the continuity constraints such as fractional step

scheme Orszag and Kells [58] and a spectral scheme by Kleiser and Schumann [59].

Others used representations which inherently satisfy the continuity constraints in a

Galerkin approach. Moser, Moin and Leonard [60] presented a spectral method to au-

tomaticaly satisfy the continuity equation and boundary conditions and tested for the

channel flow and the flow between concentric cylinders. They expanded the vertical

and horizontal extend with Chebyshev polynomials and Fourier series, respectively.

They used the benefit of cosine Fourier transform for Chebyshev polynomial repre-

sentation, but had to tackle the non-unity weight function associated with Chebyshev

polynomials. They reported that their low dimensional representation help to save on

computer storage in addition to provide operational efficiency. They also investigated

aliasing error for time dependent and steady flow.

Kessler [61] studied steady and oscillatory regimes of Rayleigh Bénard convection

with explicitly constructed solenoidal basis based on poloidal-toroidal decomposi-

tion. Trigonometric polynomials and the beam functions are used in the construction

of the solenoidal basis satisfying the boundary conditions in a rectangular container.

The effects of the adiabatic and conduction sidewalls on the convective structures

are investigated. Noack and Eckelmann [62] constructed a low dimensional Galerkin

method with divergence free basis for the three dimensional flow around a circular

cylinder. They discussed the advantages and disadvantages of this Galerkin solution

as compared to other simulation.

Gelfgat [63] carried out a parametric study for two and three dimensional Rayleigh-
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Bénard convection in rectangular 2D and 3D boxes with divergence free Galerkin

method based on Chebyshev polynomials of the first and the second type. Puigjaner,

Herrero, Giralt and Simó [64] studied stability and bifurcation in convective flow

in air in a cubical cavity heated from below numerically. They used a divergence

free Galerkin spectral method to discretize the system and a parameter continuation

method to determine the different branches of solution. They used combination of

trigonometric and hyperbolic function instead of Jacobi family function.

Most recently Meseguer and Trefethen reported [65, 66] a spectral Petrov-Galerkin

formulation based on divergence free basis. They used this new method to study linear

stability analysis of pipe flow in their first report. In latter report they investigated

nonlinear evolution of pipe flow. They evaluated nonlinear terms by transforming

between real and Fourier spaces. They also used this technique to investigate high

Reynolds pipe flow [67].

The use of solenoidal type representation is especially useful in applying the tech-

niques of bifurcation theory to the resulting dynamical system representation of the

problem. For the optimal flow control problems, on the other hand, it means a reduc-

tion in the number of constraints to satisfy when searching for an optimal solution

within the flow constraints. In this study, we extend the approach presented in pre-

vious work on the study of linear stability and nonlinear simulation of transition in

thermal convection. The solenoidal basis is based on Legendre polynomial expansion

of the flow field in the vertical wall direction. This representation provides a simpler

form of the basis and highly accurate quadrature for evaluating integrals arising from

Galerkin projection onto the dual space.

1.4 SCOPE OF THE WORK

In this thesis, the physics of Rayleigh-Bénard convection explained and governing

equations are derived in chapter 2. A spectral element method is implemented to solve

the governing PDE with dealiasing and explained in chapter 3. KL representation of

the resulting solution database is used to analyse the underlying convection phenom-

ena in this chapter as well. In chapter 4, divergence-free basis and solenoidal spectral
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method are introduced. In addition to the linear stability analysis using solenoidal

spectral method, the implementation of time solver and the treatment of the nonlinear

terms are discussed. The Fortran code developed for the implementation of diver-

gence free spectral method is tested and the results are presented in chapter 5. The

effect of rotation on Rayleigh-Bénard convection is studied using soleniodal spectral

method in chapter 6. The results are discussed in chapter 7. Finally, a detailed for-

mulation of the KL decomposition and a flow chart representation of the code are

presented in the appendices.
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CHAPTER 2

RAYLEIGH-BÉNARD PROBLEM

2.1 GOVERNING EQUATIONS

A viscous, incompressible fluid layer with periodic horizontal extent confined be-

tween two isothermal, rigid, parallel infinite plates seperated by a distance H = 2h

is considered for Rayleigh-Bénard convection problem. If the temperature at the bot-

tom plate is high enough in comparison to the top plate, hot fluid will tend to rise due

to bouyoncy force and cold fluid will tend to sink due to gravity. This mechanism

produces “cell” pattern which transport heat from bottom to top plates. When tem-

perature differences ∆T between the plates is high enough, the cell pattern exhibits

increasingly complex behavior eventually reaching to disorderly state or chaos.

Rayleigh-Bénard problem is governed by a system of partial differential equations

reduced from the Navier-Stokes equations by Oberbeck-Boussinesq (or Boussinesq)

approximation. According to this approximation temperature differences in the plates

are assumed small and all fluid property is assumed independent of the temperature

except buoyancy term. Thus fluid density ρ is considered to depend linearly on the

temperature [68].

A cartesian space is considered with the z-axis directed vertically upwards opposing

the gravity direction between −H/2 < z < H/2. Rayleigh-Benard convection is

governed by Boussinesq equations in the form:
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Figure 2.1: Convective box

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇) u = − 1
ρ0
∇p − ρ

ρ0
gez + ν∇2u, (2.2)

∂T
∂t

+ (u · ∇) T = α∇2T, (2.3)

where

u =
(
ux, uy, uz

)
= (u, v,w) ,

ρ = ρ0
[
1 − β (T − T0)

]
. (2.4)

Flow field and temperature can be decomposed into conductive state, i.e. no convec-

tive motion, and small perturbation

u (x, t) = 0 + ú (x, t) , (2.5)

T (x, t) = T (z) + θ́ (x, t) , (2.6)

p (x, t) = P (z) + ṕ (x, t) . (2.7)
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where x = (x, y, z) are the cartesian coordinates, α is the thermal diffusivity, β is the

thermal expansion coefficient, ρ is the fluid density and u, θ, p are the independent

variables respectively.

The heat flux in the conductive state is transferred by the static fluid layer conduc-

tively, so (2.2), (2.3) and (2.4) reduce to:

0 = −1
ρ

dP
dz
− g

[
1 − β (T − T0)

]
, (2.8)

0 = α
d2T
dz2 . (2.9)

The conductive temperature distrubution in the fluid layer is then:

T (z) − T0 = ∆T
(
1
2
− z

H

)
=

∆T
2

(
1 − z

h

)
. (2.10)

The governing equations for the convective perturbation are obtained by subtracting

the equations for the basic conduction state from equations (2.1), (2.2) and (2.3) to

obtain

∇ · ú = 0, (2.11)

∂ú
∂t

+ (ú · ∇) ú = − 1
ρ0
∇ ṕ + βgθ́ez + ν∇2θ́, (2.12)

∂θ́

∂t
+ (ú · ∇) θ́ = ú · ez

∆T
2h

+ α∇2θ́. (2.13)

The advection term ú · ez∆T/2h comes from,

(ú · ∇) T = ú · ez

(
dT
dz

)
= −ú · ez

(
∆T
2h

)
.

The no-slip boundary conditions at the upper and lower rigid walls lead to

ú = θ́ = 0 at z = ±H
2
.

Under the scaling of the respective physical variables by the thermal diffusion time

h2/α, the fluid layer half-height H/2 and temperature difference between the rigid

boundaries ∆T , the equations (2.11), (2.12) and (2.13) become:

∇ · u = 0, (2.14)

∂u
∂t

+ (u · ∇) u = −∇p + PrRahθez + Pr∇2u, (2.15)

∂θ

∂t
+ (u · ∇) θ =

u · ez

2
+ ∇2θ. (2.16)
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where

Rah =
gβ∆Th3

να
=

Ra
8

and Pr =
ν

α
.

are Rayleigh (Ra) and Prandtl (Pr) numbers. Rah is Rayleigh number based on the

half-depth. H is used normally as a length-scale however for computational conve-

nience half-depth h = H/2 is used so that normalized z variable varies in −1 ≤ z ≤ 1.

Nusselt number is the ratio between the convective heat flux and total heat flux trans-

ported from bottom to top plate. It is calculated at the plate as an average of the slope

of temperature profile in the horizontal plane.

Nu =
convection + conduction

conduction
= 1 +

∣∣∣∣∣∣

〈
∂θ

∂z

〉∣∣∣∣∣∣
wall

.
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Figure 2.2: Representation of typical temperature profile
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2.2 ROTATING RAYLEIGH BÉNARD CONVECTION

An additional force in Rayleigh Bénard convection may be introduced by rotation in

the vertical direction normal to the isothermal plates bounding the convective layer.

This is the Coriolis force in addition to the forces already acting in the form of viscous

and buoyancy forces in Rayleigh Bénard convection. This force mainly depends on

the velocity. Centrifugal force is also present in rotating systems, however, it depends

on the aspect ratio (width to depth) of the convective box and is neglected in most

of the work in literature involving small aspect ratios. Centrifugal force become too

small in comparison to gravity induced forces for small aspect ratio containers in

comparison to geometries with larger aspect ratio as reported in [69]. This study

is restricted to small aspect ratio L/H geometries, thus, the centrifugal forces are

ignored and our interest is mainly limited Coriolis force with its effect on convection.
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Figure 2.3: Convective box under action of rotation

15



Coriolis force can be simply added to momentum equation 2.12 as an additional forc-

ing to form the governing equations:

∇ · ú = 0, (2.17)

∂ú
∂t

+ (ú · ∇) ú = − 1
ρ0
∇ṕ + βgθ́ez + ν∇2θ́ − 2Ωzez × ú, (2.18)

∂θ́

∂t
+ (ú · ∇) θ́ = ẃ

∆T
2h

+ α∇2θ́, (2.19)

where ẃ is the vertical component of the velocity and Ωz is the rotation rate about the

vertical axis. The no-slip boundary conditons at the upper and lower rigid walls are

considered

ú = θ́ = 0 at z = ±H
2
.

Under the scaling of the respective physical variables by the thermal diffusion time

h2/α, the fluid layer half-height H/2 and temperature difference between the rigid

boundaries ∆T , the equations (2.17), (2.18) and (2.19) become:

∇ · u = 0, (2.20)

∂u
∂t

+ (u · ∇) u = −∇p + PrRahθez + Pr∇2u − 2PrΩez × u, (2.21)

∂θ

∂t
+ (u · ∇) θ =

w
2

+ ∇2θ, (2.22)

where

Ω =
Ωzh2

ν
,

is the Coriolis parameter in addition to Rayleigh (Ra) and Prandtl (Pr) numbers. The

square of the Coriolis parameter is known as Taylor (Ta) number (Ta = 4Ω2).
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CHAPTER 3

KARHUNEN LOÉVE ANALYSIS OF RAYLEIGH-BENARD

PROBLEM

3.1 SPECTRAL-ELEMENT FORMULATION

KL analysis is based on an optimal parametrization of the underlying flow field in the

energy sense. This is accomplished by representing the flow field in terms of KL basis

functions generated using a database characterizing the flow field. For this purpose, a

database is generated first by numerically integrating the governing equations (2.14),

(2.15), (2.16). Introducing the vorticity ω = ∇ × u, the governing equations become:

∇ · u = 0, (3.1)

∂u
∂t

+ u × ω = −∇Π + PrRahθez + Pr∇2u, (3.2)

∂θ

∂t
+ (u · ∇) θ =

u · ez

2
+ ∇2θ. (3.3)

where Π = p + u · u/2 is the stagnation pressure. The numerical technique is based

on a spectral-element approach presented in Guessous [19, 20]. It uses Fourier se-

ries representation in the horizontal directions while a rescaled Legendre Lagrangian

expansion is used in the vertical direction. The formulation is repeated below for

completeness.

All spatial variables are discretized by Fourier expansion in horizontal directions:


u

θ

Π


(x, y, z, t) =

∑

|m|≤Nx/2

∑

|n|≤Ny/2



û

θ̂

Π̂


(m, n, z, t) × exp

(
i
(
mkxx + nkyy

))
. (3.4)
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Variables are evaluated at the horizontal collocation points which are

xi =
2πi

kxNx
, y j =

2π j
kyNy

.

In the vertical direction, the velocity and temperature variables are expanded in terms

of scaled Legendre-Lagrange interpolants,

û(m, n, z, t) =

Nz∑

p=0

ū(m, n, p, t)h̄p(z), (3.5)

θ̂(m, n, z, t) =

Nz∑

p=0

θ̄(m, n, p, t)h̄p(z), (3.6)

while the pressure is expanded in terms of Legendre polynomials [70]

P̂(m, n, z, t) =

Nz−1∑

p=1

P̄(m, n, p, t)Lp−1(z). (3.7)

Here h̄p(z) = hp(z)/
√

w̄p with Legendre-Lagrange interpolants

hp(z) =

Nz∏

( j=0
j,p)

(
z − z j

)
(
zp − z j

) .

zp and w̄p are the Legendre-Gauss-Lobatto grid points and the Gauss-Lobatto quadra-

ture weights, respectively.

After introducing the expansions (3.5, 3.6, 3.7 ) and projecting (3.4) onto the Fourier

space in ”x” and ”y” and onto appropriate test spaces in ”z”, the resulting weak form

of the equations are integrated in time by a semi-implicit scheme which treats the

nonlinear advection terms explicitly using the second-order Adams Bashforth method

and the pressure and the diffusion terms using implicit Crank-Nicolson scheme [19,

20].

∇ · un+1 = 0, (3.8)

un+1 − un

∆t
=

3
2

(u × ω + PrRahθez)n − 1
2

(u × ω + PrRahθez)n−1

− 1
2
∇

(
Πn+1 + Πn

)
+

Pr
2
∇2

(
un+1 + un

)
, (3.9)

θn+1 − θn

∆t
=

3
2

(u · ez

2
− (u · ∇) θ

)n
− 1

2

(u · ez

2
− (u · ∇) θ

)n−1
+

1
2
∇2

(
θn+1 + θn

)
.

(3.10)
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where n−1, n and n+1 represent the time iterations and ∆t refers to time incrementing

between the subsequent iterations. This formulation can be represented in more clear

form,

∇ · un+1 = 0, (3.11)
(
Pr∇2 − 2

∆t

)
un+1 = ∇Πn+1 + gn, (3.12)

(
∇2 − 2

∆t

)
θn+1 = f n, (3.13)

where

gn = −3 (u × ω + PrRahθez)n + (u × ω + PrRahθez)n−1 + ∇Πn −
(
Pr∇2 +

2
∆t

)
un,

f n = −3
(u · ez

2
− (u · ∇) θ

)n
+

(u · ez

2
− (u · ∇) θ

)n−1
−

(
∇2 +

2
∆t

)
θn.

with no-slip and unperturbed boundary conditions are

un+1 = θn+1 = 0 and z = ±1.

Discritized momentum and energy equations are solved by iteratively in time. An

obstacle can be handled because of unknown pressure boundary conditions at the

plates by Uzawa method [71].

3.1.1 ALIASING REMOVAL

Poor spatial resolution introduces inaccuracies in the numerical representation of the

dynamics of the flow. As the forcing parameter Rayleigh number increases, so does

the resolution requirement of the representation. This, in turn, increases the cost of

the computation. In the collocation approach, inadequate resolution causes aliasing

error. Aliasing error occurs when evaluating the nonlinear terms where product of the

variables in truncated representations with inadequate resolution is involved. 3/2 rule

is used for removing this handicap [72]. Consider the product of the functions, for

example,

ak(x) =

K∑

k=−K

âk exp(ikx) and bk(x) =

K∑

k=−K

b̂k exp(ikx).
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that gives

c(x j) =

K∑

k=−K

ĉk exp(ikx j) = a(x j)b(x j).

where K = N/2. Then, the product in the Fourier space is contaminated by aliased

convolution sum

c̃k =

K∑

(p,q=−K
p+q=k )

âp b̂q

︸       ︷︷       ︸
ĉk

+

K∑

( p,q=−K
p+q=k+N)

âp b̂q +

K∑

( p,q=−K
p+q=k−N)

âp b̂q

︸                              ︷︷                              ︸
aliasing term

.

The classical 3/2 rule of filtering the aliasing error involves the product to be evaluated

in the mesh size (resolution) expanded as much as 3/2 times the original mesh size.

The aliasing removal is used when the resolution requirements of the flow are high at

regimes with high Rayleigh number.

3.2 KL FORMULATION

The KL method is a statistical procedure to analyze the physical phenomena from

numerically and experimentally generated database. The procedure is used to gener-

ate an emprical basis (KL basis) in terms of which the database can be parametrized

optimally in the energy norm (see Appendix A for details). The resulting subspace

spanned by the KL basis can also be used to reduce the governing equations into a

low dimensional form using Galerkin projection. The elements of the basis set are the

eigenfunctions of the integral equation A.12 and the corresponding eigenvalues give

the energy of the corresponding modes. The kernel of that equation obtained from

DNS solution in §3.1. The addition of symmetries expands the existing database

and in turn produce sharper basis carrying the character of the flow. In this the-

sis, the numerical database consists of three dimensional velocity and temperature

fields vn
i (x1, x2, x3) where vi denotes the flow vector, n denotes the snapshots (sam-

ples) in time, i (= 1, 2, 3) denotes the velocity vector and (= 4) temperature, and

x = (x1, x2, x3) or interchangibly x = (x, y, z) denote the spatial directions. This set of
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Figure 3.1: Flowchart of the 3/2 rule based on FFT
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KL modes may be paired in such a way to provide a convenient parametric represen-

tation of the flow database in the terms of real and physical flowlets vk,

v(x, t) =
∑

k

vk =
∑

k

[
ak(t)Ψk(x) + ak∗(t)Ψk∗(x)

]
. (3.14)

where the summation index k runs through the conjugate pairs of the KL modes {k, k∗}
defined by

k = (m, n, q) and k∗ = (−m,−n, q), (3.15)

where

Ψk∗ =
(
Ψk

)∗
and ak∗ = a∗k. (3.16)

Here, (∗) represents the complex conjugate. Translational invariance of the flow in the

horizontal directions implies that the eigenfunctions are in the form

Ψk(x) ≡ Ψ(m, n, q; x) = Φk(z)exp(2πi(mx/sx + ny/sy)). (3.17)

In addition, there are some rotational symmetries satisfied by the solution to the gov-

erning PDE in the periodic box. When the box is assumed to have square planform,

there are added rotational symmetries that are considered in Table 3.1.

Table 3.1: Rotational symmetries and their actions

Symmetry group element Its action
Identity I {u, v,w, θ, x, y, z}
Rotation 90◦ R {−v, u,w, θ,−y, x, z}
Rotation 180◦ R2 {−u,−v,w, θ,−x,−y, z}
Rotation 270◦ R3 {v,−u,w, θ, y,−x, z}
Reflection in x F {−u, v,w, θ,−x, y, z}
Diagonal Flip FR {v, u,w, θ, y, x, z}
Reflection in y FR2 {u,−v,w, θ, x,−y, z}
Diagonal Flip FR3 {−v,−u,w, θ,−y,−x, z}
Vertical Flip Z {u, v,−w,−θ, x, y,−z}

Since flow generated by these symmetries are possible solutions to the governing

PDEs, a generated flow database can be expanded 16-fold by the action of these

symmetries
{
I,R,R2,R3, F, FR, FR2, FR3

}
× {I,Z} ,
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resulting in sharper KL bases when the expanded database is used in the construc-

tion of the bases. As a consequence, the KL bases come as families of modes with

maximum number of members (degeneracy) 8, for example,

{Ψ(0, 1, q; x),Ψ(1, 0, q; x),Ψ(−1, 0, q; x),Ψ(0,−1, q; x)} ,

and with odd-even parity in the vertical variable z. The governing equations (3.1,

3.2, 3.3) are numerically integrated using the numerical scheme described in §3.1

for various parameter values in different regimes. The resulting flow database v =

[u, v,w, θ] (x, t) is symmetrically expanded before generating the KL bases Φ j(m, n, q; z),

j = 1, ..., 4 and these bases are in turn used to parametrize the database to study the

underlying dynamics of the flow in different regimes and for different parameter val-

ues.

3.3 KL ANALYSIS

Different Prandtl regions, namely Pr < 1, Pr ≈ 1, Pr > 1, and different transition

regimes, steady to weakly turbulent, are investigated. For this purpose, in the steady

regime, three Pr cases are considered. The resulting Nusselt number (Nu) values are

calculated at the wall and compared with Clever and Busse [1] in Table 3.2. The en-

Table 3.2: Comparison of Nusselt number for different Rayleigh numbers

Ra 2000 50000
Pr 7 0.71 0.025 7 0.71
Nu 1.2129 1.2105 1.0614 3.864 4.245
Nu[1] 1.214 1.212 1.0610 3.894 3.9587

ergy distribution amongst KL modes are compared in Table 3.3 for the steady regime.

It can be seen that the first KL mode dominates in the energy content in all cases.

This is an indication of the efficient parametrization of the flow database by KL rep-

resentation. In the storage or reconstruction of the flow field only a few KL modes

need to be considered. Further, the drop in the energy content towards less energetic

KL modes sharpens as Pr increases. Thus the flow at low Pr contains more structure

to be resolved and so it takes more KL modes to resolve it. This can clearly be seen

in Figures 3.2, 3.3, 3.4.
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Figure 3.2: Convective rolls and KL energy spectrum for steady regime for Pr=0.025,
at 16x16x16 resolution

Figure 3.3: Convective rolls and KL energy spectrum for steady regime for Pr=0.71,
at 16x16x16 resolution
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Figure 3.4: Convective rolls and KL energy spectrum for steady regime for Pr=7, at
16x16x16 resolution

Table 3.3: KL energy distribution in steady roll regime (Ra=2000)

Pr = 0.025 Pr = 0.71 Pr = 7
mnq λ mnq λ mnq λ

1 101 8.82e+1 101 3.5e+2 101 3.56e+2
2 301 1.84e+0 201 2.84e-1 201 1.17e-2
3 201 1.15e+0 301 6.5e-4 301 2.53e-3
4 501 5.90e-2 401 9.71e-7 401 2.12e-6
5 401 2.79e-2 501 4.94e-8 501 2.48e-8

The vertical profiles Φ j(m, n, q; z) of the two most energetic KL modes for three Pr

numbers are shown in Figure 3.5. The first mode m = 1, n = 0, q = 1, being the

main mode present when convection sets in, shows almost no variation with Pr. This

corresponds to the fact that the point when convection just sets in is independent of

Pr. The mode m = 2, n = 0, q = 1, on the other hand, show some variation with

Pr. This variation manifests itself in the thickness of the boundary layer which gets

thinner as Pr is reduced as expected, as well as, in the dominance of the mechanical

components relative to the thermal component of the mode for small Pr. The thinning

of the boundary layer leaves a relatively wide area in the core region in which the

Φ1(2, 0, 1; z) profile is flat. These features of the KL basis may be considered in a
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future effort to develop a KL based model of the phenomena.

Figure 3.5: Vertical profiles of most energetic first two mode for three different Pr
numbers, 0.025, 0.71, 7

In another numerical experiment, the periodic regime is explored. The corresponding

energy distribution among the first five KL modes are shown in Table 3.4. The regime

is characterized by traveling waves moving along the rolls as shown in Figure 3.6.

The traveling waves are in the form superimposed onto the earlier roll motion as it

is evident in the time evolution of the modal coefficients a(m, n, q; t) in Figure 3.7

corresponding to the first four modes in Table 3.4.

It is shown in Figure 3.7, the coefficient a(1, 0, 1; t) shows no time variation while

a(1, 1, 1; t) and a(1, 1, 2; t) are periodically varying in time and only in phase. The

phase differences in a(1,∓1, 1; t) and a(1,∓1, 2; t) are facilitating the traveling of the

wave along the roll direction.

26



Table 3.4: KL energy distribution in periodic regime (Ra=15000), 24x24x24 resolu-
tion

Pr = 0.71
mnq λ

1 101 6.44e+1
2 111 9.43e+0
3 102 4.67e+0
4 112 2.73e+0
5 211 4.62e-1

  Figure 3.6: Perodic regime and its KL energy spectrum. The KL modes in the spec-
trum are labeled as in Table 3.4
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Figure 3.7: Time evolution and polar decomposition of the complex modal coeffi-
cients corresponding to (1) (1,0,1) (star) and (0,1,1) (circle), (2) (1,1,1) (star) and
(1,-1,1) (circle), (3) (1,0,2) (star) and (0,1,2) (circle), (4) (1,1,2) (star) and (1,-1,2)
(circle)

The appearance of the third KL mode is interesting in that it has all its components

vanishing except the v-component (see Figure 3.8) and that this mode is the first

energetic mode with nonvanishing vertical vorticity component (see Figure 3.9). This

points to two important character of the underlying dynamics of this regime. First, the

apperance of the oscillatory instability is shown to be associated with the appearance

of the vertical vorticity component [23]. Second, due to vanishing w-component,

this mode does not contribute to energy production, which is related to 〈wT 〉, thus it

is parasitic. When activeted, the parasitic nature of this mode caused a drop in the

heat transfer rate which is observed as the first kink in the Nu versus Ra curve in

the literature [73]. Thus in order to effect heat transfer efficiency, this mode is to be

controled [57].
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Figure 3.8: The vertical profiles of the first four KL modes as labeled in Table 3.4.
Here, u-, v-, w-, and T-components of each KL eigenvector are denoted by solid,
dash-dotted, dashed and dotted lines, respectively

A revealing characterization of the modes can be achieved by the following represen-

tation of the divergence-free velocity field

u = δν + εη, (3.18)

where the operators δ and ε are defined by

δν ≡ ∇ × (∇ × νez) , εη ≡ ∇ × ez. (3.19)

In this representation, the mechanical components uk of the KL eigenfunctions Ψk =
{
uk, θk

}
take the form of

uk(x) = δνk(x) + εηk(x), (3.20)

where

νk(x) = νk(z)exp(2πimx/sx + 2πiny/sy), ηk(x) = ηk(z)exp(2πimx/sx + 2πiny/sy),

(3.21)

in which

νk(z) =
Φk

3(z)
(

2π
sx

)2
(m2 + n2)

, ηk(z) =

(
∇ × uk

)
3

(z)

.

(
2π
sy

)2

(m2 + n2) (3.22)

The functions νk(z) and ηk(z) are associated with the vertical velocity and the vertical

vorticity components, respectively, and plotted in Figure. 3.9
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Figure 3.9: The vertical profiles of νk(z) (solid line) and ηk(z) (dotted line) corre-
sponding to the first four KL modes as labeled in Table 3.4

The double periodic regime is investigated for low and high Prandtl regions, as well.

In this regime, two concurrent periodic motions are present. The one with larger

period contains more energy. This represents the traveling wave motion observed

earlier. Smaller period is caused by the thermals released from the thermal boundary

layers [56]. It is seen from Figure 3.10 and Figure 3.11 Nusselt number variation and

energy variation of the first (convective) mode are same for low Prandtl number fluid.

The same result can be observed for the high Prandtl number fluid (see Figure 3.13

and 3.14).

Table 3.5: KL energy distribution in double periodic regime (Ra=3700)

Pr = 0.025
mnq λ

1 111 0.2410
2 011 0.1958
3 012 0.1745
4 013 0.1744
5 112 0.0695
6 121 0.0309
7 031 0.0142
8 131 0.0099
9 021 0.0098
10 014 0.0068
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Figure 3.10: Nusselt number variation with time for Pr=0.025, Ra=3700, at 24x24x24
resolution
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Figure 3.11: Main convective energy of the most energetic horizontal modes for
Pr=0.025, Ra=3700, at 24x24x24 resolution
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Figure 3.12: Most energetic 10 KL modes of double periodic regime for Pr=0.025,
Ra=3700, at 24x24x24 resolution

Table 3.6: KL energy distribution in double periodic regime (Ra=70000)

Pr = 7
mnq λ

1 011 0.4560
2 012 0.3892
3 021 0.0496
4 031 0.0404
5 013 0.0188
6 022 0.0140
7 032 0.0048
8 014 0.0040
9 051 0.0039
10 111 0.0033
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Figure 3.13: Nusselt number variation with time for double periodic regime, Pr=7,
Ra=70000, at 32x32x32 resolution
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Figure 3.14: Main convective energy of the most energetic horizontal modes for dou-
ble periodic regime, Pr=7, Ra=70000, at 32x32x32 resolution
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Figure 3.15: Most energetic 10 KL modes of double periodic regime for Pr=7,
Ra=70000, at 32x32x32 resolution
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Weakly turbulent regime is also explored. KL energy distributions in weakly turbulent

regime for two different Prandtl numbers are indicated at the Table 3.7.

Table 3.7: KL energy distribution in weakly turbulent regime, 32x32x32 resolution

Pr = 0.025 Pr = 7
mnq λ mnq λ

1 011 0.2588 011 0.4240
2 111 0.2076 012 0.3512
3 012 0.1292 021 0.0444
4 013 0.1048 031 0.0248
5 112 0.0648 013 0.0244
6 121 0.0328 111 0.0172
7 122 0.0160 121 0.0144
8 031 0.0100 022 0.0124
9 113 0.0088 112 0.0088

10 022 0.0084 014 0.0052

It is shown in the Figures 3.16 and 3.17 that convection is mainly governed by the

first two modes for the high Prandtl flow while many more modes are involved in

the representation of the dynamics in the low Prandtl case. A specific feature in

this regime is that there is an energy exchange between rolls in x- and y-directions

occuring at random times as shown in Figure 3.18 and Figure 3.19. In the previous

regimes, the rolls aligned in parallel rows in one direction. This exchange of energy

is much more rapid and random for the lower Prandtl value case. This is expected

due to the more active dynamics in this case as observed earlier. It can be seen that

many more harmonic structures are involved in the reconstruction of the flow for a

given target energy resolution in the case of low Prandtl number in comparison to the

larger Prandtl number case in the Figure 3.20 .
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Figure 3.16: Most energetic 10 KL modes for weakly turbulent regime at Pr=0.025,
Ra=6000, at 32x32x32 resolution
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Figure 3.17: Most energetic 10 KL modes for weakly turbulent regime at Pr=7,
Ra=140000, at 32x32x32 resolution
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Figure 3.18: Main convective energy of the most energetic horizontal modes for
weakly turbulent regime for Pr=0.025, Ra=6000, at 32x32x32 resolution
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Figure 3.19: Main convective energy of the most energetic horizontal modes for
weakly turbulent regime for Pr=7, Ra=140000, at 32x32x32 resolution
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Figure 3.20: Energy contribution of the modes for weakly turbulent regime
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When various regimes, i.e periodic, double periodic and weakly turbulent, are com-

pared for fixed Prandtl (see Figure 3.21), it is observed that the first two modes are

dominant in the periodic regime. There is a sharp decrease in the energy content after

the second mode. First and second modes contain almost all of the energy. On the

other hand there is no sharp decrease in the energy content for double periodic and

weakly turbulent regimes due to complexity of the flow. It also shows the reliability

of the KL parameterization.

The above considerations constitute a static use of KL bases in the sense that they are

used to extract useful and hidden information in a simulation database representing

the flow dynamics. However, KL bases can also be used to construct a suitable space

onto which the governing PDE can be Galerkin projected to obtain a system of ODEs

which provide a low dimensional representation of the evolution of the flow dynamics

in energy optimal sense. Since KL bases are generated from a database representing

the flow dynamics at some reference values of the flow parameters, the optimal rep-

resentation is only possible within a neighborhood of these reference values. Further-

more, the divergence-free nature of the KL bases is only limited to the extent that it

is satisfied by the flow database. As it is true for the most incompressible flow solv-

ing strategies, the present numerical technique can only provide a certain degree of

resolution to divergence-free constraints. This carries over to the generated KL bases

and gets worse towards relatively less energetic modes in the bases hierarchy. Thus,

as an alternative, we set out to use parameter independent analytic solenoidal bases

to explore the time evolution of the flow dynamics in a sector of the parameter space

in the next chapters.
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Figure 3.21: Comparison of most energetic 10 KL modes for different regimes,
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CHAPTER 4

SOLENOIDAL BASIS

The flow takes place in a doubly periodic 3D rectangular box of aspect ratio S x/2 ×
S y/2 × 1, (see Figure 2.1) where 0 ≤ x ≤ Lx/h = S x, 0 ≤ x ≤ Ly/h = S y and

−1 ≤ z ≤ 1. Lx and Ly are the dimensional lenghts at the rectangular region

in the horizontal ”x” and ”y” directions, respectively. Let ξ = 2π/S x and η =

2π/S y be the corresponding fundamental wavenumbers, then periodicity with peri-

ods S x = 2π/ξ and S y = 2π/η implies that:

u
(
x +

2πm
ξ
, y +

2πn
η
, z, t

)
= u (x, y, z, t) ,

θ

(
x +

2πm
ξ
, y +

2πn
η
, z, t

)
= θ (x, y, z, t) ,

for all integers m and n. This allows to use Fourier expansion in x and y directions:

u =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

û (m, n, z, t) exp
[
i
(
kxx + kyy

)]
, (4.1)

θ =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

θ̂ (m, n, z, t) exp
[
i
(
kxx + kyy

)]
, (4.2)

where kx = 2πm/S x and ky = 2πn/S y . The horizontal directions are discretized by

xi = S xi/Nx = 2πi/ξNx, y j = S y j/Ny = 2π j/ηNy for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny.

4.1 CONSTRUCTION OF BASIS

Continuity equation ∇ · u = 0 give the relation between the velocity components

ikxû (m, n, z, t) + ikyv̂ (m, n, z, t) + Dŵ (m, n, z, t) = 0, (4.3)

45



in Fourier space, where D = d/dz and time t is frozen. The Dirichlet type boundary

conditions become:

û (m, n,±1) = v̂ (m, n,±1) = ŵ (m, n,±1) = 0. (4.4)

The equation (4.3) can be used to construct the solenoidal basis functions. There are

four cases with respect to wavenumbers:

CASE 1:

kx , 0 and ky = 0 → ikxû + Dŵ = 0,



û

v̂

ŵ


=



−Dŵ/ikx

v̂

ŵ


= a(1)



0

g(z)

0


+ a(2)



(i/kx)Dh(z)

0

h(z)


, (4.5)

CASE 2:

kx = 0 and ky , 0 → ikyv̂ + Dŵ = 0,



û

v̂

ŵ


=



û

−Dŵ/iky

ŵ


= a(1)



g(z)

0

0


+ a(2)



0

(i/ky)Dh(z)

h(z)


, (4.6)

CASE 3:

kx = 0 and ky = 0 → Dŵ = 0,



û

v̂

ŵ


= a(1)



−g(z)

0

0


+ a(2)



0

g(z)

0


, (4.7)
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CASE 4:

kx , 0 and ky , 0 → ikxû + ikyv̂ + Dŵ = 0,



û

v̂

ŵ


=



−(ikyv̂ + Dŵ)/ikx

v̂

ŵ


= a(1)



−(ky/kx)g(z)

g(z)

0


+ a(2)



(i/kx)Dh(z)

0

h(z)


. (4.8)

The solenoidal bases are required to satisfy the boundary conditions, thus g(±1) =

h(±1) = Dh(±1) = 0, and so the polynomials g(z) = (1 − z2)Lp(z) and h(z) = (1 −
z2)2Lp(z) are formed and written in terms of pth order Legendre polynomials, Lp. The

choice of the Legendre polynomials is motivated by the upcoming considerations.

The solenoidal flow field can now be expanded in terms of solenoidal basis functions

û(m, n, z) =

Q∑

p=0

(
a(1)

p V̂ (1)
p (z) + a(2)

p V̂ (2)
p (z)

)
, (4.9)

θ̂(m, n, z) =

Q∑

p=0

(
bpT̂p(z)

)
, (4.10)

where there is no restriction except boundary conditions for temperature, i.e., T̂p(z) =

g(z).

The solenodial basis functions come in pairs, V̂ (1,2)
p , and so provide a representation

of the velocity field in two degrees of freedom. This is of course expected because

the continuity equation provides the connection between three components of the

velocity vector and thus reducing the degree of freedom in characterizing the velocity

field from three to two. It should be noted that the first bases, V̂ (1)
p , are lacking in their

vertical velocity components, while a little algebra can show that the second bases,

V̂ (2)
p , lack the vertical vorticity component. This is very much similar to the toroidal

and poroidal decomposition of the divergence-free velocity field introduced earlier

in equation (3.18). According to this classification, the expansion coefficient a(1) is

associated with the toroidal component and a(2) is with the poloidal component of the

velocity field.
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The expansion coefficients may be obtained by an inner product, defined as,

(
V̄ ,V

)
=

$

Ω

V̄ · V dΩ =

+1∫

−1

ˆ̄V∗ · V̂ dz,

for each wave number pair (kx, ky) due to the orthogonality of the Fourier bases where

(*) denotes complex conjugation. This will be used to project the governing equations

onto a projector (dual) space in a Galerkin procedure as well. In order to construct

the projector space and the corresponding bases V̄ (dual bases), impose the condition

of the elimination of the pressure term in the Galerkin projection i.e.

(
V̄ ,∇p

)
=

$

Ω

V̄ · ∇p dΩ =

$

Ω

∇ ·
(
pV̄

)
dΩ −

$

Ω

p∇ · V̄ dΩ

=

"

S

pV̄ · n dS −
$

Ω

p∇ · V̄ dΩ,

Thus V̄ is required to be solenoidal and to satisfy the condition V̄ ·n = 0 on the bound-

ing surface S with normal n in order to eliminate the pressure term in the Galerkin

projection. In the geometry between rigid plates with infinite horizontal extent, this

implies that

V̄ · ez |z=±1 = 0.

This can be satisfied by properly selected dual basis as:

CASE 1:

kx , 0 and ky = 0 → ikxû + Dŵ = 0,



û

v̂

ŵ


=



−Dŵ/ikx

v̂

ŵ


= α



0

f (z)

0


+ β



(i/kx)Dg(z)

0

g(z)


. (4.11)

CASE 2:

kx = 0 and ky , 0 → ikyv̂ + Dŵ = 0,
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

û

v̂

ŵ


=



û

−Dŵ/iky

ŵ


= α



f (z)

0

0


+ β



0

(i/ky)Dg(z)

g(z)


. (4.12)

CASE 3:

kx = 0 and ky = 0 → Dŵ = 0,



û

v̂

ŵ


= α



− f (z)

0

0


+ β



0

f (z)

0


. (4.13)

CASE 4:

kx , 0 and ky , 0 → ikxû + ikyv̂ + Dŵ = 0,



û

v̂

ŵ


=



−(ikyv̂ + Dŵ)/ikx

v̂

ŵ


= α



−(ky/kx) f (z)

f (z)

0


+ β



(i/kx)Dg(z)

0

g(z)


. (4.14)

The selection of the polynomials f (z) = Lp(z) and g(z) = (1 − z2)Lp(z) ensure the

satisfaction of the wall surface condition by the dual bases.

Two further considerations in the construction of the bases may facilitate the nu-

merical implementation of the bases. First, Gram-Schmidt process can be used to

introduce orthogonality between basis pairs in the ordinary vector sense that amounts

to rearrangement of the components without loss of solenoidal property as shown in

the representative Case 4 for the basis

V̂ (1)(z) =



−(ky/kx)g(z)

g(z)

0


, V̂ (2)(z) =



ikxDh(z)

ikyDh(z)

(k2
x + k2

y)h(z)


, (4.15)
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and its dual

ˆ̄V (1)(z) =



−(ky/kx) f (z)

f (z)

0


, ˆ̄V (2)(z) =



ikxDg(z)

ikyDg(z)

(k2
x + k2

y)g(z)


. (4.16)

It can be shown that this rearrangement results in the added convenient property that

(
V̄ (i),V ( j)

)
= γi jδi j and

(
V̄ (i),∇2V ( j)

)
= Γi jδi j,

where δi j is the Kronecker delta.

Table 4.1: Rotational symmetries and their actions in Fourier space

Symmetry group element Its action

Identity I
{
û, v̂, ŵ, θ̂, kx, ky, z

}

Rotation 90◦ R
{
−v̂, û, ŵ, θ̂,−ky, kx, z

}

Rotation 180◦ R2
{
−û,−v̂, ŵ, θ̂,−kx,−ky, z

}

Rotation 270◦ R3
{
v̂,−û, ŵ, θ̂, ky,−kx, z

}

Reflection in x F
{
−û, v̂, ŵ, θ̂,−kx, ky, z

}

Diagonal flip FR
{
v̂, û, ŵ, θ̂, ky, kx, z

}

Reflection in y FR2
{
û,−v̂, ŵ, θ̂, kx,−ky, z

}

Diagonal flip FR3
{
−v̂,−û, ŵ, θ̂,−ky,−kx, z

}

Second, the rotational symmetries in Table 4.1 can be incorporated into the solenoidal

bases with some manipulation of the components without loss of solenoidal property

as shown in the representative Case 4.

V̂ (1)(z) =



−c sign(kxky) ikyg(z)/K

c sign(kxky) ikxg(z)/K

0


, V̂ (2)(z) =



ikxDh(z)/K

ikyDh(z)/K

Kh(z)


(4.17)

where sign is the sign function, K =
√

k2
x + k2

y and c = 1 for |kx| < |ky|, while c = −1

otherwise. Further, the bases satisfy the conjugate property, namely, V̂(−kx,−ky, z) =

V̂∗(kx, ky, z).

Another issue for the implementation is the accurate evaluation of the inner prod-

uct integrals. This can be achieved by the use of Gaussian quadrature that involves
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evaluation at the Gauss-Legendre-Lobatto grid zk and weights ωk

(
V̄ ,V

)
=

+1∫

−1

ˆ̄V∗ · V̂ dz =

Nz∑

k=0

ˆ̄V∗(zk) · V̂(zk)ωk,

that produces exact results for the integrand a polynomial of degree ≤ 2Nz − 1, or in

space P2Nz−1. Since V (1,2)
p (z) ∈ Pp+4 and V̄ (1,2)

p (z) ∈ Pp+2, the Gaussian quadrature

gives the exact results in the Galerkin projection of the nonlinear terms as the most

demanding term if

2Nz − 1 ≥ (Q + 3) + (Q + 4) + (Q + 2) = 3Q + 9→ Nz ≥ (3Q + 10)/2,

where Q is the highest degree Legendre polynomial used in the representation.

When a representation of the soleniodal flow field in the form

u =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

eikx x+ikyy
Q∑

p=0

(
a(1)

p V̂ (1)
p (z) + a(2)

p V̂ (2)
p (z)

)
, (4.18)

with

θ =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

eikx x+ikyy
Q∑

p=0

bpT̂p(z), (4.19)

are substituted into the governing equations (2.15) and (2.16), the residuals arise

Ru = −∂u
∂t
− (u · ∇) u − ∇p + PrRahθez + Pr∇2u,

Rθ = −∂θ
∂t
− (u · ∇) θ − u · ez

2
+ ∇2θ.

The projection of these residuals onto the dual space spanned by V̄ (1)
p , V̄ (2)

p and T̄p

(= T̂p) is annuled

(
V̄ ,Ru

)
= 0,

(
T̄ ,Rθ

)
= 0,

to get


(
V̄ (1), V̂ (1)

) (
V̄ (1), V̂ (2)

)
(
V̄ (2), V̂ (1)

) (
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 +


c(1)

c(2)

 =

PrRah



(
V̄ (1), T̂ ez

)
(
V̄ (2), T̂ ez

)



b

b

 + Pr



(
V̄ (1),∇2V̂ (1)

) (
V̄ (1),∇2V̂ (2)

)
(
V̄ (2),∇2V̂ (1)

) (
V̄ (2),∇2V̂ (2)

)



a(1)

a(2)

 ,
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(
T̄ , T̂

)
ḃ + d =

(
T̄ , V̂ (1) · ez

)
a(1) +

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b,

under Galerkin procedure where c(1), c(2) and d are nonlinear terms. At this point, it

is important to note that by the construction of the solenoidal basis and its dual, the

pressure term vanishes in the resulting system.

Products of cross components of basis and dual basis vanish by construction and

system reduces to:


(
V̄ (1), V̂ (1)

)
0

0
(
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 +


c(1)

c(2)

 =

PrRah


0

(
V̄ (2), T̂ ez

)



b

b

 + Pr



(
V̄ (1),∇2V̂ (1)

)
0

0
(
V̄ (2),∇2V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ + d =

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b.

Then have a system governing the time evolution of the time dependent expansion

coefficients a(1,2), b with the mass (M) and stiffness (S) matrices:


(
V̄ (1), V̂ (1)

)
0 0

0
(
V̄ (2), V̂ (2)

)
0

0 0
(
T̄ , T̂

)


︸                                     ︷︷                                     ︸

M



ȧ(1)

ȧ(2)

ḃ


+



c(1)

c(2)

d


=

Pr



(
V̄ (1),∇2V̂ (1)

)
0 0

0
(
V̄ (2),∇2V̂ (2)

)
Rah

(
V̄ (2), T̂ ez

)

0
(
T̄ , V̂ (2) · ez

)
/2Pr

(
T̄ ,∇2T̂

)
/Pr


︸                                                                  ︷︷                                                                  ︸

S



a(1)

a(2)

b


. (4.20)

4.2 LINEAR STABILITY ANALYSIS

Linear stability of Boussinesq hydrodynamic equations is investigated by Chandrasekhar

[2]. Chandrasekhar found that critical wavenumber and critical Rayleigh number are

independent of the Prandtl number. Reid and Harris [74] found the stability curve

has one minima at critical wavenumber equal to 3.117 and critical Rayleigh number

at 1707.8 for viscous fluids confined between rigid plates. Below the critical point,
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the fluid layer has no motion and heat is transfered by conduction throughout the

fluid layer. Any perturbation is damped by the system in this stable region. When

the Rayleigh number is increased over the critical value buoyancy forces overcome

the viscous forces and two dimensional steady rolls are formed. Rayleigh number is

the main control parameter in the convective regime. Periodic, double periodic and

weakly turbulent regimes are developed as the Rayleigh number is increased.

At the onset of convective motions, the velocity and temperature perturbations over

the conductive state are small, so that the nonlinear terms in the governing equations

(2.15) and (2.16) can be neglected to get the residuals

Ru = −∂u
∂t
− ∇p + PrRahθez + Pr∇2u,

Rθ = −∂θ
∂t
− u · ez

2
+ ∇2θ,

after the truncated representations in terms of the bases 6.1 and 6.2 are substituted.

The annuling of the projected residuals results in the linear system of ODEs;


(
V̄ (1), V̂ (1)

) (
V̄ (1), V̂ (2)

)
(
V̄ (2), V̂ (1)

) (
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 =

PrRah



(
V̄ (1), T̂ ez

)
(
V̄ (2), T̂ ez

)



b

b

 + Pr



(
V̄ (1),∇2V̂ (1)

) (
V̄ (1),∇2V̂ (2)

)
(
V̄ (2),∇2V̂ (1)

) (
V̄ (2),∇2V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ =

(
T̄ , V̂ (1) · ez

)
a(1) +

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b.

The two systems can be combined into one governing system after introducing the

vanishing products of the cross components of basis and dual basis to get:


(
V̄ (1), V̂ (1)

)
0 0

0
(
V̄ (2), V̂ (2)

)
0

0 0
(
T̄ , T̂

)


︸                                     ︷︷                                     ︸

M



ȧ(1)

ȧ(2)

ḃ


=

Pr



(
V̄ (1),∇2V̂ (1)

)
0 0

0
(
V̄ (2),∇2V̂ (2)

)
Rah

(
V̄ (2), T̂ ez

)

0
(
T̄ , V̂ (2) · ez

)
/2Pr

(
T̄ ,∇2T̂

)
/Pr


︸                                                                  ︷︷                                                                  ︸

S



a(1)

a(2)

b


, (4.21)
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where M and S refer to the mass and the stiffness matrices, respectively, as before.

After introducing a time dependence of the expansion coefficients in the form of

a(1)(t) = exp(λt)a(1)
0 , a(2)(t) = exp(λt)a(2)

0 and b(t) = exp(λt)b0 into the above sys-

tem, one gets the generalized eigenvalue problem

λM



a(1)
0

a(2)
0

b0


= S



a(1)
0

a(2)
0

b0


.

The stability is determined by the eigenvalues of this problem. As the rightmost

eigenvalue in the complex plane crosses the imaginary axis as Rayleigh number is

varied for a given wavenumber ξ = 2π/S x (or η = 2π/S y for S x = S y) that cor-

responds to the wavenumber pair (kx = ξ, ky = 0), the system becomes unstable to

infinitesimal perturbations. The resulting critical values of Rayleigh number and the

wavenumber are shown in Table 4.2 and the corresponding marginal stability curve

in Figure 4.1. These are in excellent agreement with literature [2].

Table 4.2: Linear stability points

kc 1 2 3 3.117 4 5 6 7
Rac 5854.48 2177.41 1711.27 1707.76 1879.25 2439.32 3417.98 4918.54

The corresponding flow field can be visualized by constructing a stream function

[65, 75] Ψ defined by

DΨ = kxu · ex + kyu · ey = 2<
exp

(
i
(
kxx + kyy

)) Q∑

p=0

(
a(1)

p kxV (1)
p · ex + a(1)

p kyV (2)
p · ey

)

that gives

Ψ = 2k2<
iexp

(
i
(
kxx + kyy

)) (
1 − z2

)2
Q∑

p=0

a(2)
p Lp(z)



as shown in Figure 4.2 in the form of two-dimensional steady rolls.
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Figure 4.1: Linear stability curve
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Figure 4.2: The contours of the streamfunction (solid line) and the isotherms (dash
line) corresponding to the marginally stable eigenmode at kc = 3.117 and Rac =

1707.8.
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4.3 TIME DISCRETIZATION

For time discretization, semi-implicit numerical integration is used. The nonlin-

ear and driving (buoyancy) terms are integrated explicitly using third order Adams-

Bashforth, while diffusive terms are integrated implicitly by Adams-Moulton. Also

second order Crank-Nicolson & Adam-Bashfort and fourth order Adam-Bashfort &

Adams-Moultan schemes are tested but the third order scheme is selected because it

gives acceptable accuracy with acceptable computational effort [72]. In this scheme,

the governing equations (2.15) and (2.16) are discretized as follows:

un+1 − un

∆t
=

23
12

(− (u · ∇) u + PrRahθez)n − 16
12

(− (u · ∇) u + PrRahθez)n−1

(4.22)

+
5

12
(− (u · ∇) u + PrRahθez)n−2 + Pr∇2

(
5

12
un+1 +

8
12

un − 1
12

un−1
)
,

θn+1 − θn

∆t
=

23
12

(
− (u · ∇) θ +

u · ez

2

)n
− 16

12

(
− (u · ∇) θ +

u · ez

2

)n−1
(4.23)

+
5

12

(
− (u · ∇) θ +

u · ez

2

)n−2
+ ∇2

(
5
12
θn+1 +

8
12
θn − 1

12
θn−1

)
.

The projection of the time discretized form of the governing equations after the sub-

stitution of the truncated expansions (6.1) and (6.2) results in

M(1, 1)
a(1)n+1 − a(1)n

∆t
=

1
12

S (1, 1)
(
5a(1)n+1

+ 8a(1)n − a(1)n−1)

− 1
12

(
23c(1)n − 16c(1)n−1

+ 5c(1)n−2)
,

M(2, 2)
a(2)n+1 − a(2)n

∆t
=

1
12

S (2, 2)
(
5a(2)n+1

+ 8a(2)n − a(2)n−1)

− 1
12

(
23c(2)n − 16c(2)n−1

+ 5c(2)n−2)

+
1
12

S (2, 3)
(
23bn − 16bn−1 + 5bn−2

)
,

M(3, 3)
bn+1 − bn

∆t
=

1
12

S (3, 3)
(
5bn+1 + 8bn − bn−1

)

− 1
12

(
23dn − 16dn−1 + 5dn−2

)

+
1
12

S (3, 2)
(
23a(2)n − 16a(2)n−1

+ 5a(2)n−2)
,

where M(i, j) and S (i, j) refer to the (i, j)th block matrices of the mass and stiffness

matrices, respectively. It is obvious that temporal discretization requires three known

57



steps to calculate the unknown step. Linear stability eigen-solution or known nonlin-

ear solution from the previous run can be used as initial conditions.

4.4 NONLINEAR IMPLEMENTATION

The nonlinear advection terms in the momentum and energy equations have signifi-

cant importance at high Rayleigh numbers. The computation of these terms consumes

more time in Fourier-Legendre space than in real space. Thus all nonlinear terms are

calculated in real space then projected onto Fourier-Legendre space to obtain the time

dependent coefficients [66, 75]

c1,2 =
(
V̄ (1,2), (u · ∇) u

)
and d =

(
T̄ , (u · ∇) θ

)
, (4.24)

that denote the projection of the nonlinear terms onto the dual space. Forward and

backward Fourier transforms are used in computing these terms by transforming be-

tween real and Fourier spaces.

Derivatives of velocity and temperature fields in horizontal directions are calculated

basicaly by Fourier transforms (FFT), while Legendre differentiation matrix [76] is

used for the vertical direction. The use of Fourier differentiation matrix [76] is tested

for computing derivatives in horizontal directions, however, it is observed that FFT

algorithm performs faster than matrix algorithm for horizontal resolutions used.
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Figure 4.3: Time dependent coefficient of nonlinear velocity term
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Figure 4.4: Time dependent coefficient of nonlinear temperature term
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CHAPTER 5

DIRECT NUMERICAL SIMULATION OF RAYLEIGH

BÉNARD CONVECTION

5.1 VERIFICATION

Direct numerical simulation (DNS) code is written using Fortran programing lan-

guage and includes some numerical tools and schemes. Reliability of the code is

tested in various numerical experiments. First of all, the divergence free condition is

tested. Afterall, the expansion in terms of solenoidal bases are expected to satisfy the

divergence free condition. The code is fully divergence free.

Sensivity to the resolution is tested using computed Nusselt number for various ver-

tical and horizontal resolutions in Figures 5.1 and 5.2, respectively. Vertical reso-

lution is important because thermal and viscous boundary layers must be resolved

adequately. At least two nodes have to be located in the boundary layer to provide ad-

equate resolution. Nusselt number involves the gradiant of temperature in the bound-

ary layer, thus it may used to test for the adequacy of resolution. The vertical and

horizontal resolution is increased until the relative change in the computed Nusselt

number is less than 0.01. As expected, Nusselt number is much more sensitive to the

resolution in the vertical direction. The runs in this thesis are also tested in the similar

fashion.
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Figure 5.1: Vertical grid refinement for Pr=0.71, Ra=2000, horizontal resolution=16.

62



4 6 8 10 12 14 16
1.21

1.211

1.212

1.213

1.214

1.215

1.216

1.217

Horizontal resolution

N
u

Figure 5.2: Horizontal grid refinement for Pr=0.71, Ra=2000, vertical resolution=16.
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5.1.1 HEAT TRANSPORT

Nusselt number is one of the most reported value in literature either experimental or

numerical. Convective motion sets in when the Rayleigh number exceeds the critical

value, ie., Rac = 1707.76 [2]. In Figure 5.3, transient behavior of Nusselt number is

shown for Pr = 0.71 on the 16x16x16 spatial grid. Starting from the linear stability

eigensolution as the initial condition, Nusselt number rises from 1 until convergence

is reached at its actual value. The speed of convergence is observed to increase with

increasing Rayleigh number. For near critical Rayleigh numbers, Ra > Rac, as the

conductive state has just lost its stability indicated by the eigenvalues crossing the

imaginary axis, the time rate of change is dictated by the real parts of the eigenval-

ues that are very small (§4.2). Thus, transients take longer. As Rayleigh number

increases, the nonlinear effects get stronger and play stronger role in the time rate of

change. This translates into shorter transients and faster convergence.

Decay of kinetic energy is plotted for three cases of Prandtl number in Figure 5.4

when Rayleigh number is set at Ra = 1700 < Rac. Kinetic energy eventually decays

to zero in this no motion state, however, with rates of decay depending on Prandtl

number. In this process, where convergence to no motion state is underway, the non-

linear terms are loosing their effects, the viscous terms dominate. Thus, high Prandtl

case is observed to loose its kinetic energy faster in comparison to low Prandtl num-

ber case as Pr is inversely proportional to viscosity. The linearity of decay also sup-

ports that linear terms are in effect in this process. This effect is also observed in

the decay of Nusselt number to its conductive state value of unity in Figure 5.5 for

Ra = 0.99 ∗ Rac. For Ra = 1.01 ∗ Rac in Figure 5.6, on the other hand, the trend of

change in Nusselt number is growth that is faster for higher Prandt number. In this

case, the process discussed above is reversed and lower dissipative forces in the case

of higher Prandtl numbers have less effect on growth.

Figures 5.7 and 5.8 show the evolution of three dimensional disturbances at Ra =

2000 for Pr = 0.71. As initial condition, random temperature field is added onto

the linear stability eigensolution as perturbation. The flow eventually converges to

two-dimensional roll solution as one of the horizontal velocity component decays

to zero as expected. The eventual roll direction is selected randomly by convective
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processes because square planform of the convective box introduces degeneracy for

the preference of horizontal directions. If rectangular box were selected instead, the

rolls would be directed along the longer side.

Nusselt number is one of the main indicator quantity in thermal convection because

heat transfer rate and heat transfer mechanism are important for practical applications

in practice, for example; ventilation, cooling or heating, that is worth controlled by

scientists and engineers. As further means of validation, numerically obtained Nus-

selt number values are compared with the literature [1] in Table 5.1. Our results are in

agreement with the literature for the values up to Nu ≈ 3 for moderate Prandtl num-

bers. The agreement is also good for high Prandtl number for some wavenumbers.

These results show that code is capable to simulate the Rayleigh-Bénard convection

accurately.

Table 5.1: Heat flux of the convection. Italic values refer to Clever&Busse [1]

Pr = 0.71 Pr = 7
Ra α = 2.2 α = 2.6 α = 3.117 α = 2.2 α = 2.6 α = 3.117
2000 - 1.151 1.211 1.195 1.147 1.213

- 1.152 1.212 - 1.155 1.214
2500 1.288 1.418 1.475 1.452 1.415 1.479

1.289 1.418 1.475 1.295 1.424 1.478
3000 1.489 1.610 1.668 1.646 1.619 1.670

1.489 1.608 1.663 1.500 1.615 1.667
5000 1.956 2.060 2.123 2.104 2.111 2.027

1.948 2.056 2.116 1.969 2.060 2.112
10000 2.426 2.547 2.618 2.491 2.544 2.729

2.468 2.581 2.661 2.473 2.557 2.618
20000 2.945 3.051 3.173 2.982 3.279 3.412

2.995 3.136 3.258 2.930 3.030 3.119
30000 3.205 3.406 3.436 3.594 3.753 3.853

3.346 3.511 3.662 3.203 3.323 3.440
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Figure 5.3: Heat transport for Pr=0.71 at 16x16x16 resolution
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Figure 5.4: Total Kinetic Energy variation at conductive regime (Ra=1700)
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Figure 5.5: Heat flux variation with time below the marginal stability point
(Ra = 0.99Rac)
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Figure 5.6: Heat flux variation with time above the marginal stability point
(Ra = 1.01Rac)
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Figure 5.7: Velocity and temperature evolution with time for steady two dimen-
sional roll regime, Pr=0.71, Ra=2000, 16x16x16 resolution at x = Lx/4, y = Ly/4,
z = −0.792
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Figure 5.8: Kinetic energy evolution with time for steady two dimensional roll
regime, Pr=0.71, Ra=2000, 16x16x16 resolution
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5.1.2 TIME DEPENDENT EXPANSION COEFFICIENTS

Time dependent expansion coefficients a(1,2) represent the time evolution of the toroidal

and poloidal components of the solenoidal convective motions, respectively. The first

coefficient a(1) is absent in the steady two dimensional roll motion because it is asso-

ciated with the basis V (1) that has no vertical velocity but contributes to the vertical

vorticity. On the other hand a(2) is associated with the basis V (2) that has vertical

velocity, but contributes none to vertical vorticity. Thus it is ever present in the con-

vective motions because heat transport is associated with the correlations < wθ >.

That is why the motions associated with the first basis are parasitic in that they con-

sume system energy but do not contribute to the heat transport.

The time evolution of the poloidal kinetic energy per modes are shown in 5.9 and

in the steady roll motion regime (Figure 5.12) for 16x16x16 resolution. After some

initial transients, the energy in the toroidal modes all decays to zero . All the kinetic

energy of the motion is carried by few of the poloidal modes in this regime 5.10 as

indexed in Table 5.2. The horizontal wavenumber of the surviving modes vanishes

kx = 0 indicating the two dimensionality of the underlying motion. This decay for

many orders of magnitude is an indication that the flow is well resolved. After the

initial transients, the total kinetic energy in the toroidal and poloidal modes is shown

to converge to their physically expected values in Figure 5.11 for steady two dimen-

sional roll regime.
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Figure 5.9: Most energetic four poloidal component for steady two dimensional roll
regime, Pr=0.71, Ra=2000, 16x16x16 resolution.
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Figure 5.10: Poloidal kinetic energy of the surviving modes for steady two dimen-
sional roll regime, Pr=0.71, Ra=2000, 16x16x16 resolution (table 5.2)
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Table 5.2: Poloidal kinetic energy of the surviving modes for steady two dimensional
roll regime, Pr=0.71, Ra=2000, 16x16x16 resolution. Here, the indices (p,m, n) are
as appeared in equation (6.1)

Index p m n
1 0 0 1
2 1 0 2
3 2 0 1
4 3 0 2
5 5 0 2
6 2 0 3
7 4 0 3
8 0 0 3
9 4 0 1

10 6 0 3
11 6 0 1
12 1 0 4
13 7 0 2
14 3 0 4
15 5 0 4
16 0 0 5
17 2 0 5
18 7 0 4
19 4 0 5
20 1 0 6
21 6 0 5
22 5 0 6
23 3 0 6
24 0 0 7
25 7 0 6
26 2 0 7
27 6 0 7
28 4 0 7
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Figure 5.11: Energy variation of toroidal and poloidal kinetic energy for steady two
dimensional roll regime, Pr=0.71, Ra=2000, 16x16x16 resolution
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Figure 5.12: v-w velocity vector and temperature contour on Y-Z plane at steady two
dimensional roll regime, Pr=0.71, Ra=2000, 16x16x16 resolution, x = Lx/4
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As Rayleigh number is increased further, the flow goes through a Hopf bifurcation to

a periodic regime. Periodic variation in the flow quantities of Nusselt number, veloc-

ity and temperature components are shown in Figures 5.13, 5.14, 5.15, 5.16 and 5.17

at various spatial locations in the convective box. While the motion in the boundary

layer (|z| = 0.98074) is relatively slow, the activity increases as the boundary layer

is exited towards the cell center. The discrete spikes in the power spectrum in Fig-

ures 5.18 and 5.19 are trademark of periodic motions. Nonlinear processes involved

in the evolution of the motion cause the multiples of the fundamental frequency of

oscillation to appear as many spikes in the spectrum.

Toroidal modes are activated in this regime. This is an indication of the three-

dimensionality of the underlying motion as vertical vorticity appears in the flow as

carried by the toroidal modes. This is in agreement with findings in literature that the

start of periodic motions is observed to be associated with the appearance of vertical

vorticity [1]. Even though many toroidal modes are activated in this regime, their total

contribution to kinetic energy of motion is about %35 as shown in Figure 5.20. The

kinetic energy content of the most energetic four toroidal and poloidal components

are shown in Figures 5.21 and 5.22. The most energetic toroidal modes all appear to

have kx , 0, that is, they appear to be varying in the normal direction to the roll axis of

the earlier steady regime. In the view of Figure 5.25, main roll motion is still present

in this regime, thus, the motion associated with the energetic toroidal modes appear

to represent the wave motion riding the rolls as observed in literature. The modal

energy distribution in Figures 5.23 and 5.24 for the toroidal and poloidal modes show

the sufficiency of the resolution by the drop of many order of magnitudes in energy

content.
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Figure 5.13: Nusselt variation at the periodic regime, Pr=0.71, Ra=20000, 16x16x20
resolution

79



−5

0

5

z=−0.98074

−5

0

5

U

z=−0.77537

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100

−5

0

5

z=0

Time

Figure 5.14: u component of velocity variation at the periodic regime, Pr=0.71,
Ra=20000, 16x16x20 resolution, x = Lx/4, y = Ly/4
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Figure 5.15: v component of velocity variation at the periodic regime, Pr=0.71,
Ra=20000, 16x16x20 resolution, x = Lx/4, y = Ly/4
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Figure 5.16: w component of velocity variation at the periodic regime, Pr=0.71,
Ra=20000, 16x16x20 resolution, x = Lx/4, y = Ly/4
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Figure 5.17: Temperature variation at the periodic regime, Pr=0.71, Ra=20000,
16x16x20 resolution, x = Lx/4, y = Ly/4
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Figure 5.18: Power spectrum of w velocity at periodic regime, Pr=0.71, Ra=20000,
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Figure 5.19: Power spectrum of temperature at periodic regime, Pr=0.71, Ra=20000,
16x16x20 resolution, z = −0.77537, x = Lx/4, y = Ly/4
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Figure 5.20: Kinetic energy variation of toroidal and poloidal components at the pe-
riodic regime, Pr=0.71, Ra=20000, 16x16x20 resolution
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Figure 5.21: Most energetic four toroidal component for periodic regime, Pr=0.71,
Ra=20000, 16x16x20 resolution
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Figure 5.22: Most energetic four poloidal component for periodic regime, Pr=0.71,
Ra=20000, 16x16x20 resolution
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Figure 5.23: Toroidal kinetic energy distrubution for modes (q,m, n) of periodic
regime, Pr=0.71, Ra=20000, 16x16x20 resolution
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Figure 5.24: Poloidal kinetic energy distrubution for modes (q,m, n) of periodic
regime, Pr=0.71, Ra=20000, 16x16x20 resolution
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Figure 5.25: v-w velocity vector and temperature contour on Y-Z plane at periodic
regime, Pr=0.71, Ra=20000, 16x16x20 resolution, x = Lx/4
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Double periodic regime occurs as Rayleigh number is increased past the range cor-

responding to the periodic regime. It is characterized by two incommensurate os-

cillation frequencies present in the motion. This is shown in Figures 5.28 and 5.29.

Double periodic oscillations can be seen in Figures 5.30, 5.31, 5.32, 5.33 and 5.34

depicting the time series evolution of various flow quantities at three spatial locations

in the vertical. It is observed in [56] in the KL analysis of thermal convection between

free surfaces that the second frequency is associated with the release of the thermals

from the boundary layer. The thermal in the form of a local eddy may be identified

in Figure 5.27 in the presence of the roll motion which is still present in this regime

(see figure 5.26).

The modal kinetic energy distribution in Figures 5.35 and 5.36 for the toroidal and

poloidal modes show the sufficiency of the resolution by the drop of many order

of magnitudes in energy content. More modes are involved in carrying the kinetic

energy in this regime. This indicates that the underlying dynamics in the double-

periodic regime is more complicated and involves smaller scales. The appearance of

small scales helps to dissipate the excess energy in the system. Poloidal kinetic energy

seems to increase in this regime in comparison to the earlier periodic regime in the

expense of a decrease in the toroidal kinetic energy as shown in Figure 5.37. Since

toroidal components of the flow are parasitic with their vanishing vertical velocity,

the transition to the double periodic regime acts towards an enhancement in the heat

transport.
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Figure 5.26: u-w velocity vector and temperature contour on X-Z plane at double
periodic regime, Pr=0.71, Ra=50000, 16x16x32 resolution, y = Ly/4
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Figure 5.27: v-w velocity vector and temperature contour on Y-Z plane at double
periodic regime, Pr=0.71, Ra=50000, 16x16x32 resolution, x = Lx/4
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Figure 5.28: Power spectrum of w velocity at double periodic regime, Pr=0.71,
Ra=50000, 16x16x32 resolution, z = −0.91185, x = Lx/4, y = Ly/4

95



0 5 10 15 20 25 30 35 40 45 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (f)

P
ow

er

f1=0.88
f2=1.64
f3=f2+f1
f4=2f2
f5=2f2+f1
f6=4f2
f7=4f2+f1

Figure 5.29: Power spectrum of temperature at double periodic regime, Pr=0.71,
Ra=50000, 16x16x32 resolution, z = −0.91185, x = Lx/4, y = Ly/4
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Figure 5.30: u component of velocity variation at the double periodic regime,
Pr=0.71, Ra=50000, 16x16x32 resolution, x = Lx/4, y = Ly/4
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Figure 5.31: v component of velocity variation at the double periodic regime,
Pr=0.71, Ra=50000, 16x16x32 resolution, x = Lx/4, y = Ly/4
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Figure 5.32: w component of velocity variation at the double periodic regime,
Pr=0.71, Ra=50000, 16x16x32 resolution, x = Lx/4, y = Ly/4
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Figure 5.33: Temperature variation at the double periodic regime, Pr=0.71,
Ra=50000, 16x16x32 resolution, x = Lx/4, y = Ly/4
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Figure 5.34: Nusselt variation at the double periodic regime, Pr=0.71, Ra=50000,
16x16x32 resolution
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Figure 5.35: Toroidal kinetic energy distrubution for modes (q,m, n) of double peri-
odic regime, Pr=0.71, Ra=50000, 16x16x32 resolution
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Figure 5.36: Poloidal kinetic energy distrubution for modes (q,m, n) of double peri-
odic regime, Pr=0.71, Ra=50000, 16x16x32 resolution
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Figure 5.37: Kinetic energy variation of toroidal and poloidal components at the dou-
ble periodic regime, Pr=0.71, Ra=50000, 16x16x32 resolution
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CHAPTER 6

ROTATING RAYLEIGH-BÉNARD CONVECTION

In this chapter, the effect of rotation on Rayleigh Bénard convection is investigated.

The governing equations, presented in chapter §2, are used for the linear stability

analysis and nonlinear numerical simulation of rotating Rayleigh Bénard convection.

Due to the geometrical reasons, just the effect of the coriolis force is considered, while

the centrifugal force is neglected.

Solenoidal bases, constructed in chapter §4, are used to represent the solenoidal flow

field in the form

u =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

eikx x+ikyy
Q∑

p=0

(
a(1)

p V̂ (1)
p (z) + a(2)

p V̂ (2)
p (z)

)
, (6.1)

with

θ =
∑

|m|≤Nx/2

∑

|n|≤Ny/2

eikx x+ikyy
Q∑

p=0

bpT̂p(z), (6.2)

which are subsequently substituted into the governing equations (2.21) and (2.22), to

yield the residuals

Ru = −∂u
∂t
− (u · ∇) u − ∇p + PrRahθez + Pr∇2u − 2PrΩez × u,

Rθ = −∂θ
∂t
− (u · ∇) θ − w

2
+ ∇2θ.

The projection of these residuals onto the dual space spanned by V̄ (1)
p , V̄ (2)

p and T̄p

(= T̂p) is annuled, as explained in §4.1,

(
V̄ ,Ru

)
= 0,

(
T̄ ,Rθ

)
= 0,
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to get


(
V̄ (1), V̂ (1)

) (
V̄ (1), V̂ (2)

)
(
V̄ (2), V̂ (1)

) (
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 +


c(1)

c(2)

 =

PrRah



(
V̄ (1), T̂ ez

)
(
V̄ (2), T̂ ez

)



b

b

 + Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1), (∇2 − 2Ωez)V̂ (2)

)
(
V̄ (2), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ + d =

(
T̄ , V̂ (1) · ez

)
a(1) +

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b,

under Galerkin procedure where c(1), c(2) and d are nonlinear terms. At this point, it

is important to note that by the construction of the solenoidal basis and its dual, the

pressure term vanishes in the resulting system.

Products of cross components of basis and dual basis vanish by construction and

system reduces to:


(
V̄ (1), V̂ (1)

)
0

0
(
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 +


c(1)

c(2)

 =

PrRah


0

(
V̄ (2), T̂ ez

)



b

b

 + Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1), (−2Ωez)V̂ (2)

)
(
V̄ (2), (−2Ωez)V̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ + d =

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b.

The resulting system governing the time evolution of the time dependent expansion

coefficients a(1,2), b with the mass (Mr) and stiffness (S r) matrices:


(
V̄ (1), V̂ (1)

)
0 0

0
(
V̄ (2), V̂ (2)

)
0

0 0
(
T̄ , T̂

)


︸                                     ︷︷                                     ︸

Mr



ȧ(1)

ȧ(2)

ḃ


+



c(1)

c(2)

d


=

Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1),−2ΩezV̂ (2)

)
0

(
V̄ (2),−2ΩezV̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)
Rah

(
V̄ (2), T̂ ez

)

0
(
T̄ , V̂ (2) · ez

)
/2Pr

(
T̄ ,∇2T̂

)
/Pr


︸                                                                                      ︷︷                                                                                      ︸

S r



a(1)

a(2)

b


. (6.3)

are used to investigate the effect of rotation numerically.
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6.1 LINEAR STABILITY ANALYSIS

Early theoretical investigation on the linear stability is conducted by Chandrasekhar

[2]. Another detailed linear stability analysis of rotating Rayleigh-Bénard equations

is performed by Clever and Busse [38]. They reported critical wavenumbers and

corresponding critical Rayleigh number values for a range of Ω.

At the onset of convective motions, the velocity and temperature perturbations over

the conductive state are negligible, so that the nonlinear terms in equation (6.3) can

be neglected to get the linearized system



(
V̄ (1), V̂ (1)

) (
V̄ (1), V̂ (2)

)
(
V̄ (2), V̂ (1)

) (
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 = PrRah



(
V̄ (1), T̂ ez

)
(
V̄ (2), T̂ ez

)



b

b



+Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1), (∇2 − 2Ωez)V̂ (2)

)
(
V̄ (2), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ =

(
T̄ , V̂ (1) · ez

)
a(1) +

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b.

After introducing the zero blocks corresponding to the products of cross components

of basis and dual basis as before, the linear system of ODEs reduces to



(
V̄ (1), V̂ (1)

)
0

0
(
V̄ (2), V̂ (2)

)



ȧ(1)

ȧ(2)

 = PrRah


0

(
V̄ (2), T̂ ez

)



b

b



+Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1),−2ΩezV̂ (2)

)
(
V̄ (2),−2ΩezV̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)



a(1)

a(2)

 ,

(
T̄ , T̂

)
ḃ =

(
T̄ , V̂ (2) · ez

)
a(2) +

(
T̄ ,∇2T̂

)
b.

The two system can be combined to form the mass (Mr) and the stiffness (S r) coeffi-
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cient matrices for the rotation case


(
V̄ (1), V̂ (1)

)
0 0

0
(
V̄ (2), V̂ (2)

)
0

0 0
(
T̄ , T̂

)


︸                                     ︷︷                                     ︸

Mr



ȧ(1)

ȧ(2)

ḃ


=

Pr



(
V̄ (1), (∇2 − 2Ωez)V̂ (1)

) (
V̄ (1),−2ΩezV̂ (2)

)
0

(
V̄ (2),−2ΩezV̂ (1)

) (
V̄ (2), (∇2 − 2Ωez)V̂ (2)

)
Rah

(
V̄ (2), T̂ ez

)

0
(
T̄ , V̂ (2) · ez

)
/2Pr

(
T̄ ,∇2T̂

)
/Pr


︸                                                                                      ︷︷                                                                                      ︸

S r



a(1)

a(2)

b


. (6.4)

After introducing a time dependence of the expansion coefficients in the form a(1)(t) =

exp(λt)a(1)
0 , a(2)(t) = exp(λt)a(2)

0 and b(t) = exp(λt)b0 into the above system, one gets

the generalized eigenvalue problem

λMr



a(1)
0

a(2)
0

b0


= S r



a(1)
0

a(2)
0

b0


.

The stability of this system is determined by the eigenvalues of the Jacobian matrix

as explained in § 4.2. Linear stability curves for various rotation rates (see Figure

6.1) are calculated and they are in good agreement with literature [2, 38]. Figures

6.2 and 6.3 show that critical Rayleigh number and the critical wavenumber increase

with increasing rotation rate. The rate of increase changes for Ω > 20. More recent

research is conducted by Scheel [37]. work. She computed the variation of critical

Rayleigh number and critical wavenumber versus rotation. Our findings (figure 6.2

and 6.3) match with the Clever’s [38] and Schell’s [37] results.
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Figure 6.1: Linear stability curve effected by different rotation force
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Figure 6.2: The critical Rayleigh number (Rac) variation with rotation
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Figure 6.3: The critical wavenumber (kc) variation with rotation

111



Table 6.1: Critical Rayleigh number and corresponding critical wavenumber influ-
enced by rotation

Ω Rac kc

1 1.709720e+03 3.12
5 1.756340e+03 3.16

10 1.895650e+03 3.28
15 2.110500e+03 3.45
20 2.384370e+03 3.65
30 3.057960e+03 4.06
40 3.845780e+03 4.44
50 4.712040e+03 4.78
60 5.638050e+03 5.09
70 6.613270e+03 5.38
80 7.631280e+03 5.63
90 8.687730e+03 5.87

100 9.779510e+03 6.10
110 1.090426e+04 6.31
120 1.206005e+04 6.50
130 1.324526e+04 6.69
140 1.445853e+04 6.87
150 1.569865e+04 7.04
200 2.226776e+04 7.80
250 2.937952e+04 8.45
300 3.695596e+04 9.02
350 4.493512e+04 9.52
400 5.326733e+04 9.98
450 6.191361e+04 10.40
500 7.084390e+04 10.79

Table 6.2: Comparison of critical values with Chandrasekhar’s [2] calculation. Sec-
ond approximation of Chandrasekhar’s value are considered.

Ω (Ta = 4Ω2) Rac Rac (Ch) kc kc (Ch)
5 1756.34 1756.6 3.16 3.15

50 4712.04 4713.1 4.78 4.80
500 70843.90 71132 10.79 10.80
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6.2 TIME DISCRETIZATION

For time discretization of rotating natural convection semi-implicit integration is used.

The nonlinear and driving (buoyancy and Coriolis) terms are integrated explicitly us-

ing third order Adams-Bashforth, while diffusive terms are integrated implicitly using

third order Adams-Moulton. Under the time discretization, the governing equations

(2.21) and (2.22) become:

un+1 − un

∆t
=

23
12

(− (u · ∇) u + PrRaθez − 2PrΩez × u)n − (6.5)

16
12

(− (u · ∇) u + PrRaθez − 2PrΩez × u)n−1 +

5
12

(− (u · ∇) u + PrRaθez − 2PrΩez × u)n−2 +

Pr∇2
(

5
12

un+1 +
8

12
un − 1

12
un−1

)

θn+1 − θn

∆t
=

23
12

(
− (u · ∇) θ +

w
2

)n
− 16

12

(
− (u · ∇) θ +

w
2

)n−1
+ (6.6)

5
12

(
− (u · ∇) θ +

w
2

)n−2
+ ∇2

(
5

12
θn+1 +

8
12
θn − 1

12
θn−1

)

Time discretized equations are projected onto the dual space after the substitution of

the expansions for u (6.1) and for Θ (6.2) to get the nonlinear system the discrete time

evolution of the expansion coefficients;

Mr(1, 1)
a(1)n+1 − a(1)n

∆t
=

1
12

S r(1, 1)
(
5a(1)n+1

+ 8a(1)n − a(1)n−1)

+
1

12
S r(1, 2)

(
5a(2)n+1

+ 8a(2)n − a(2)n−1)

− 1
12

(
23c(1)n − 16c(1)n−1

+ 5c(1)n−2)

Mr(2, 2)
a(2)n+1 − a(2)n

∆t
=

1
12

S r(2, 1)
(
5a(1)n+1

+ 8a(1)n − a(1)n−1)

+
1

12
S r(2, 2)

(
5a(2)n+1

+ 8a(2)n − a(2)n−1)

− 1
12

(
23c(2)n − 16c(2)n−1

+ 5c(2)n−2)

+
1

12
S r(2, 3)

(
23bn − 16bn−1 + 5bn−2

)

Mr(3, 3)
bn+1 − bn

∆t
=

1
12

S r(3, 3)
(
5bn+1 + 8bn − bn−1

)

− 1
12

(
23dn − 16dn−1 + 5dn−2

)

+
1

12
S r(3, 2)

(
23a(2)n − 16a(2)n−1

+ 5a(2)n−2)
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where Mr(i, j) and S r(i, j) refer to the (i, j)th block matrices of the ”Mr” and ”S r”, re-

spectively. Three known steps are required to calculate one unknown step because of

third order discretization. Linear stability eigensolution or known nonlinear solution

from the previous run can be used as initial conditions.

6.3 NONLINEAR PROPERTIES OF ROTATION

It is observed in Figure 6.4(c) that limited rotation in moderate Prandtl fluids sta-

bilizes the convection and suppresses the oscillation in high Rayleigh number flow.

This phenomena is also observed by Veronis [30]. Increased heat flux is caused by

the stabilizing effect of limited rotation for range of Ω = 0 − 30. Coriolis force can

balance horizontal temperature gradients. Hence less potential energy is released by

horizontal temperature gradients. On the other hand, increasing rotation destabilizes

the system and brings new oscillatory motions for Ra − Rac = 20000 [38]. Increased

heat flux with limited rotation is also observed for low Rayleigh number flows in

Figure 6.4(a,b), but this increment is very low because convection is still two dimen-

sional at these parameter values. Heat flux decreases at Ω = 10 for Ra − Rac = 2000,

Ω = 30 for Ra − Rac = 10000 and Ω = 30 for Ra − Rac = 20000 because horizontal

velocities destabilize the system with increasing rotation. Veronis [30] indicated that

rotational constraint balances the non-linear processes for up to Ta ≤ 103.6 (Ω ≈ 31)

for convection between free boundaries. More recent work conducted by Clever and

Busse [38] reported that rolls are unstable for Pr > 1 beyond Ω ≈ 27. In general,

increasing rotation rate bring unstable behaviour for all Prandtl fluids.

Coriolis term depends linearly on the horizontal velocity. Hence increasing rota-

tion rate magnify the toroidal energy as shown in Figures 6.5, 6.6 and 6.7. For all

Rayleigh number values increasing rotation absorbs the poloidal energy and stimu-

lates the toroidal energy. Increase in toroidal energy is very rapid for Ra−Rac = 2000

and Ra−Rac = 10000 because both cases correspond to steady two dimensional con-

vection in non-rotating system. Limited Coriolis force, for example Ω = 10, does not

affect the roll structure but introduces three dimensional motion as it is seen in Fig-

ures 6.8 and 6.9. This motion appears in oblique angle to the roll direction as also

observed by Veronis [29]. On the other hand, Ra − Rac = 20000 case exhibits a dif-
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ferent behaviour. Since it corresponds to periodic motion in non-rotating system, it

contains small scale motions with vertical vorticity. The motion tends to two dimen-

sional convection with increasing rotation and toroidal energy sharply decreases and

poloidal energy conversely increases for Ω ≈ 15. It is caused due to the stabilizing

effect of limited rotation as explained above. This effect also increases the heat trans-

port because of increasing poloidal component. As vertical shear increases, Ω ≥ 15

for low Rayleigh and Ω ≥ 30 for high Rayleigh numbers, toroidal motion dominates

and brings unstable character.
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Figure 6.4: Nusselt number variation with rotation, Pr = 0.71, (a)Ra − Rac = 2000,
(b)Ra − Rac = 10000, (c)Ra − Rac = 20000; α = kc(Ω); (a), (b) with 16x16x16 reso-
lution, (c) with 16x16x20 resolution
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Figure 6.5: Toroidal and poloidal kinetic energy variation with rotation, Pr = 0.71,
Ra − Rac = 2000, α = kc(Ω), 16x16x16 resolution
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Figure 6.6: Toroidal and poloidal kinetic energy variation with rotation, Pr = 0.71,
Ra − Rac = 10000 α = kc(Ω), 16x16x16 resolution
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Figure 6.7: Toroidal and poloidal kinetic energy variation with rotation, Pr = 0.71,
Ra − Rac = 20000, α = kc(Ω), 16x16x20 resolution
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Figure 6.8: v-w streamline (solid line) and temperature contour (dash line) on Y-Z
plane at x = Lx/4, Pr = 0.71, Ra − Rac = 2000, Ω = 10
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Figure 6.9: u-v streamline (solid line) and temperature contour (dash line) on X-Y
plane at z = 0.4861, Pr = 0.71, Ra − Rac = 2000, Ω = 10
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CHAPTER 7

CONCLUSION

In this thesis, the use of two different solenoidal bases, namely, KL bases and ana-

lytic solenoidal bases, is investigated. Both bases are tested on well-known and well-

studied Rayleigh-Bénard convection. Rigid vertical and periodic horizontal bound-

aries are considered for realistic treatment. Periodic horizontal boundaries may ac-

count for large horizontal extent convective layers. There are large amount of work

on Rayleigh-Bénard convection, however, the construction and implementation of the

solenoidal bases in this thesis is novel.

Karhunen-Lóeve decomposition is an efficient tool in extracting hidden or compli-

cated dynamics within a flow database generated numericaly or experimentally. In

this work, Boussinesq equations for some reference parameter values are numerically

integrated using a spectral element algorithm from literature in order to generate the

database. The algorithm, like most incompressible flow solvers in literature, can only

produce a limited resolution to the divergence free criteria. This poor resolution is car-

ried to the KL bases in the construction process that involves solving an eigenproblem

and KL bases are the eigenvectors of the two-point velocity correlation tensor. This

limited satisfaction of the solenoidal condition gets even worse down in the hiearchy

of the KL modes due to the loss of accuracy in computing the eigensolutions. Thus,

KL modes make poor solenoidal bases. The advantage of the KL bases is in their

parametrization of the underlying dynamics in energy optimal sense. For reference

parameter values, fewer KL modes are necessary to represent the flow variables in

a truncated representation compared to any other bases. However, this optimality

is lost at off-reference values of the flow parameters, thus KL bases are parameter
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dependent. These considerations are precluded the use of KL bases in a parametric

study of thermal convection. Instead, they are used to study the underlying dynamics

in the generated database for various parameter values. The use of flow symmetries

and the underlying Legendre polynomial representation in this part of the study pro-

vided the inspiration to be carried to the alternative form of solenoidal bases, namely,

analytic solenodal bases, next.

Analytic solenoidal bases (or just solenoidal bases) are used to study the dynamics of

thermal convection for a range of parameter values covering different flow regimes.

The overall approach may be termed as solenoidal spectral method. The most impor-

tant advantage of the solenoidal bases is their exact satisfaction of the divergence-free

criteria. Their construction does not require a database to be generated beforehand,

which ironically necessitates the implementation of another numerical solver, and

they are parameter free. Their representation of the flow variables in terms of time

dependent expansion coefficients provide the convenient tool to reduce the governing

PDEs to a dynamical system that is amenable to implementing the tools of dynamical

system theory and bifurcation theory. The ease and high accuracy obtained in the

linear stability analysis of the system is encouraging in this direction. The advantage

of eliminating the pressure term in the process of projection onto the dual space is

in the heart of the implementational convenience. Solenoidal bases lack any rational

criteria of ordering the bases elements based on their importance in the dynamics of

the flow as opposed to KL bases that come attached with their share of total kinetic

energy of the flow. Thus, the expansions in terms solenoidal bases result in larger

system. However, the techniques of Fourier and Legendre spectral methods, such as,

FFT procedure of computing derivatives and the nonlinear terms, the accurate evalu-

ation of inner product integrals using Legendre Gaussian quadrature, help overcome

this drawback. Furthermore, the form of the resulting system facilitates the use of

creative implementation techniques such as, iterative solvers and parallelization.

7.1 FUTURE WORKS

Semi-implicit and explicit time solvers are usually employed in order to avoid the

need to invert coefficient matrices in advancing to the next time step. Unless some
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kind of orthogonality can be introduced into the solenoidal bases, the presence of the

mass matrix in the resulting system already requires inversion. The work by Moser,

Moin and Leonard [60] advices against imposing any further restrictions onto the

bases that may degrade the method. Thus, unconditionally stable fully implicit time

solvers combined with powerfull Newton method may be explored in the future im-

plementation. This removes severe restrictions imposed by explicit or semi-implicit

methods on the time step and improves long term integration.

Iterative solvers for the resulting system may be implemented. This also motivates

construction of suitable preconditioners for the system especially when the resulting

system is stiff for certain parameter ranges, such as, low Prandtl number cases.

The tools of computational Bifurcation analysis should be implemented in the para-

metric study in order to better understand the underlying dynamics. Continuation

methods and Floquet analysis in studying periodic regimes are important components

of these tools. This will be a valuable complement to the implementation of solenoidal

spectral method.
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Appendix A

KARHUNEN LOÉVE DECOMPOSITION

A.1 THE EIGENVALUE PROBLEM

The aim of the Karhunen Loéve (KL) technique is to determine a vectorΨi(x1, x2, x3)

which will maximize the quantity
∑N

n=1 |(vn
i ,Ψi)|2 subject to the condition (Ψi,Ψi) =

1. Here, the inner product is defined as (ai, bi) =
∫

D
ai(x)b̄i(x)dx where repeated

index indicates summation over the range of the index and overbar denotes complex

conjugation. Then the energy is defined as |v|2 = vv̄, which can be written in terms of

eigenfunction expansion as

E =

N∑

n=1

|(vn
i ,Ψi)|2 =

N∑

n=1

(Ψi, vn
i )(vn

j ,Ψ j). (A.1)

It can be rewritten in the form

E =

N∑

n=1

∫

D
Ψ̄i(x)vn

i (x)dx
∫

D
v̄n

j(x́)Ψ j(x́)dx́, (A.2)

or

E =

∫

D
Ψ̄i(x)

∫

D

N∑

n=1

vn
i (x)v̄n

j(x́)Ψ j(x́)dx́dx́. (A.3)

By defining the kernel

Ki j(x, x́) =

N∑

n=1

vn
i (x)v̄n

j(x́), (A.4)

the energy can also be defined as

E = (Ψi,Ki jΨ j). (A.5)
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The product of the kernel with a vector is defined by

Ki jΨ j =

∫

D
Ki j(x, x́)Ψ j(x́)dx́. (A.6)

Introducing a Lagrange multiplier λ and considering the orthogonality constraint

(Ψi,Ψi) = 1, the modified energy becomes

E? = E − λ(Ψi,Ψi). (A.7)

Perturbation of the eigenfunction yields the equation

E?(Ψ + aΨ́) =

∫

D
Ψi + aΨ́i

∫

D
Ki j(Ψ j + aΨ́ j)dx́dx

− λ
∫

D
(Ψi + aΨ́i)(Ψi + aΨ́i)dx,

or

E?(Ψ + aΨ́) =

∫

D
Ψi + aΨ́i

∫

D
Ki jΨ jdx́dx +

∫

D
Ψi + aΨ́i

∫

D
Ki jaΨ́ jdx́dx

− λ
( ∫

D
Ψi + aΨ́iΨidx +

∫

D
Ψi + aΨ́iaΨ́idx

)
.

Minimization of a and a give the equations

∂

∂a
E?(Ψi + aΨ́i)|a=ā=0 = 0 =

∫

D

∫

D
ΨiKi jΨ́ jdx́dx − λ

∫

D
ΨiΨ́idx, (A.8)

∂

∂a
E?(Ψi + aΨ́i)|a=ā=0 = 0 =

∫

D

∫

D
Ψ́iKi jΨ jdx́dx − λ

∫

D
Ψ́iΨidx, (A.9)

and thus
∫

D

[ ∫

D
Ψ jKi jdx́ − λΨi

]
Ψ́idx = 0. (A.10)

This equation is valid if
∫

D
Ψ j(x́)Ki j(x, x́)dx́ − λΨi(x) = 0, (A.11)

or
∫

D
Ki j(x, x́)Ψ j(x́) = λΨi(x), (A.12)

which is the eigenvalue problem Ki jΨ j = λΨi. The solution of the problem gives the

most energetic mode Ψi(x) which will correspond the energy in that mode λ.
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A.1.1 BOUNDARY CONDITIONS

The velocity and temperature vectors used to shape the eigenfunctions come from the

velocity and temperature fields satisfied by the boundary conditions such as

vn
i (x1, x2, 1) = vn

i (x1, x2,−1) = 0. (A.13)

Substitution of equation (A.13) into the eigenproblem (A.12) gives the boundary con-

ditions for the eigenproblem

Ψi(x1, x2, 1) =
1
λ

∫

D
Ki j(x1, x́1, x2, x́2, 1, x́3)Ψ j(x́1, x́2, x́3)dx́. (A.14)

The kernel (A.4) at the boundaries can be written as

Ki j(x1, x́1, x2, x́2, 1, x́3) =

N∑

n=1

vi(x1, x2, 1)v̄ j(x́1, x́2, x́3) = 0, (A.15)

and

Ki j(x1, x́1, x2, x́2,−1, x́3) =

N∑

n=1

vi(x1, x2,−1)v̄ j(x́1, x́2, x́3) = 0. (A.16)

Using these formulas in equation (A.14), the following boundary conditions for the

eigenfunctions can be obtained

Ψi(x1, x2, 1) =

∫

D
0 ×Ψ j(x́1, x́2, x́3)dx́ = 0, (A.17)

and

Ψi(x1, x2,−1) =

∫

D
0 ×Ψ j(x́1, x́2, x́3)dx́ = 0. (A.18)

So the set of eigenfunctions obtained from velocity and temperature fields satisfies

the same boundary conditions.

A.1.2 INCOMPRESSIBILITY

The incompressibility condition is

∂

∂xi
vi(x) = 0 for i = 1, 2, 3. (A.19)
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Divergence of the integral equation (A.12) results

∂

∂xi
Ψi(x) =

1
λ

∫

D

∂

∂xi
Ki j(x, x́)Ψ j(x́)dx́. (A.20)

The kernel depend on x and the definition of (A.4) can be used to write the divergence

of kernel as

∂

∂xi
Ki j(x, x́) =

N∑

n=1

v̄ j(x́)
∂

∂xi
vi(x) = 0. (A.21)

Divergence of the eigenfunctions are

∂

∂xi
Ψi(x) =

∫

D
0 ×Ψ j(x́)dx́ = 0. (A.22)

Hence the eigenfunctions must be incompressible to satisfy the equation above.

A.1.3 ORTHOGONALITY

If Ψm
i and Ψn

i are two different solutions of the eigenvalue problem with respective

eigenvalues λm and λn, satisfying the integral equations
∫

D
Ki j(x, x́)Ψm

j (x́)dx́ = λmΨm
i (x), (A.23)

and
∫

D
Ki j(x, x́)Ψn

j(x́)dx́ = λnΨn
i (x), (A.24)

then multiplying equation (A.23) by Ψ̄n
i (x) and integrating over the domain give the

relation

λm
∫

D
Ψm

i (x)Ψ̄n
i (x)dx =

∫

D

∫

D
Ki j(x, x́)Ψm

j (x́)Ψ̄n
i (x)dx́dx

=

∫

D
Ψm

j (x́)
∫

D
Ki j(x, x́)Ψ̄n

i (x)dxdx́

=

∫

D
Ψm

j (x́)
∫

D
K̄ ji(x́, x)Ψ̄n

i (x)dxdx́

= λn
∫

D
Ψm

j (x́)Ψ̄n
j(x́)dx́.

Arranging terms to the same side

(λm − λn)
∫

D
Ψm

i (x)Ψ̄n
i (x)dx = 0. (A.25)
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Because λm , λn for m , n, this equation must be orthogonal, i.e.,
∫

D
Ψm

i (x)Ψ
n
i (x)dx = 0 for m , n. (A.26)

In addition to the orthogonality, orthonormality condition, (Ψm
i ,Ψ

n
i ) = δmn, simplifies

the decomposition of the velocity and temperature fields. A velocity or temperature

field can be expressed as a summation of the eigenfunctions with time dependent

coefficients

vi(x, t) =
∑

m

am(t)Ψm
i (x). (A.27)

If this equation is multiplied by Ψ
n
i (x) and integrated over the domain D, the expres-

sion of time dependent coefficients becomes
∫

D
Ψ

n
i (x)vi(x, t)dx =

∑

m

am(t)
∫

D
Ψ

n
i (x)Ψm

i (x)dx =
∑

m

am(t)δmn, (A.28)

where

an(t) =

∫

D
Ψ

n
i (x)vi(x, t)dx. (A.29)

Using this equation, time dependent coefficients can be obtained by integrating the

product of the velocity or temperature and the eigenfunction. These time dependent

coefficients are the magnitude of the corresponding eigenfunctions and used to recon-

struct velocity or temperature field as indicated in equation (A.27).

A.1.4 TRANSLATIONAL INVARIANCE AND DISCRETE SYMMETRIES

The flow field for Rayleigh Bénard convection have discrete symmetries in x1, x2, x3

directions and translational invariance in x1, x2 directions. So, each symmetry pro-

duces an equally valid flow field which can be incorporated into the original flow and

hence the statistical sample can be enhanced. Addition of an arbitrary value l to x1

produces a new velocity or temperature field, vn
i = (x1 + l, x2, x3). The new kernel

is evaluated from a summation over time and over the domain of the new velocity or

temperature field

Ki j =

N∑

n=1

∫ L1

0
vn

i (x1 + l, x2, x3)vn
j(x́1 + l, x́2, x́3)dl. (A.30)
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The kernel can be rewritten in terms of the dummy variable s = x́1 + l with x1 + l =

s + x1 − x́1 and dl = ds, as

Ki j =

N∑

n=1

∫ x́1+L1

x́1

vn
i (x1 − x́1 + s, x2, x3)vn

j(s, x́2, x́3)ds. (A.31)

This integral equation depend only on x1 − x́1 and integral limits can be replaced by 0

and L1 respectively, because of the periodicity in x1 direction. The same analysis can

be performed in x2 direction because periodicity and translational invariance are also

valid in this direction:

Ki j(x1 − x́1, x2 − x́2, x3, x́3) =

N∑

n=1

∫ L1

0

∫ L2

0
vn

i (x1 − x́1 + s1, x2 − x́2 + s2, x3)v̄n
j(s1, s2, x́3)ds2ds1. (A.32)

The original eigenproblem is
∫ L1

0

∫ L2

0

∫ 1

−1
Ki j(x1 − x́1, x2 − x́2, x3, x́3)Ψ j(x́1, x́2, x́3)dx́3dx́2dx́1 = λΨi(x1, x2, x3).

(A.33)

Multiplying both sides by complex exponentials, e−i2πk1 x1/L1e−i2πk2 x2/L2 and integrating

in x1 and x2 directions give the equation
∫ 1

−1
dx́3

∫ L1

0

∫ L2

0
e−i2πk1 x1/L1e−i2πk2 x2/L2Ψ j(x́1, x́2, x́3)

∫ L1

0

∫ L2

0
Ki j(x1 − x́1, x2 − x́2, x3, x́3)e−i2πk1(x1−x́1)/L1e−i2πk2(x2−x́2)/L2dx2dx1dx́2dx́1

= λ

∫ L1

0

∫ L2

0
Ψi(x1, x2, x3)e−i2πk1 x1/L1e−i2πk2 x2/L2dx2dx1, (A.34)

which can be rewritten as
∫ L3

0
Ψ̂ j(k1, k2, x3)K̂i j(k1, k2, x3, x́3)dx́3 = λΨ̂i(k1, k2, x3), (A.35)

where the hat symbol represents the Fourier transform of the quantity in x1 and x2

directions. K̂i j can be evaluated from the transformed field vectors. If equation (A.32)

is multiplied by the complex exponentials and integrated over x1 and x2 directions,

thetransformed kernel yields

K̂i j =

N∑

n=1

∫ L1

0

∫ L2

0

∫ L1

0

∫ L2

0
vn

i (x1 − x́1 + s1, x2 − x́2 + s2, x3)vn
j(s1, s2, x́3)e−i2πk1(x1−x́1)/L1

e−i2πk2(x2−x́2)/L2dx2dx1ds2ds1.
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Changing the variables with x?1 = x1 − x́1 + s1 and x?2 = x2 − x́2 + s2 and separating

the complex exponentials, give

K̂i j =

N∑

n=1

∫ L1

0

∫ L2

0
vn

j(s1, s2, x́3)ei2πk1 s1/L1ei2πk2 s2/L2

∫ L1−x1+s1

−x1+s1

∫ L2−x2+s2

−x2+s2

vn
i (x?1 , x

?
2 , x3)e−i2πk1 x?1 /L1e−i2πk2 x?2 /L2dx?2 dx?1 ds2ds1.

The velocity and temperature fields are periodic in x1 and x2 directions. Therefore,

the last two integrals can be rewritten from 0 to L1 and from 0 to L2. v̂n
i (k1, k2, x3) is the

Fourier transform of the velocity or temperature fields. The kernel is the summation

of the first two integrals because the last two integrals are independent of s1 and s2.

The first two integrals can be rewritten as

∫ L1

0

∫ L2

0
vn

j(s1, s2, x́3)e−i2πk1 s1/L1e−i2πk2 s2/L2ds2ds1 = v̂
n
j(k1, k2, x́3). (A.36)

Then the transformed kernel can be evaluated as

K̂i j(k1, k2, x3, x́3) =

N∑

n=1

v̂n
i (k1, k2, x3)v̂

n
j(k1, k2, x́3). (A.37)

The decomposition is evaluated in x3 direction using the transformed kernel. Evalua-

tion must be performed for each Fourier mode (k1, k2) and quantum number q so the

eigenvector is

Ψk
i (x1, x2, x3) = Ψ̂

q
i (k1, k2, x3)ei2πk1 x1/L1ei2πk2 x2/L2 , (A.38)

where k = (k1, k2, q). In addition to the translational invariance, discrete symmetries

in x1, x2 direction and vertical midplane increase the dataset by a factor of eight. Each

discrete symmetry produces a new flow field satisfying the boundary conditions and

the governing equations. More specifically, with

vn+
1 = (v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3),T (x1, x2, x3)), (A.39)

and its vertical symmetry

vn−1 = (v1(x1, x2,−x3), v2(x1, x2,−x3),−v3(x1, x2,−x3),−T (x1, x2,−x3)), (A.40)
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the flow ensemble can be increased 16-fold by

vn±2 = (−v1(−x1, x2,±x3), v2(−x1, x2,±x3),±v3(−x1, x2,±x3),±T (−x1, x2,±x3)),

vn±3 = (v1(x1,−x2,±x3),−v2(x1,−x2,±x3),±v3(x1,−x2,±x3),±T (x1,−x2,±x3)),

vn±4 = (−v1(−x1,−x2,±x3),−v2(−x1,−x2,±x3),±v3(−x1,−x2,±x3),±T (−x1,−x2,±x3)),

vn±5 = (v2(x2, x1,±x3), v1(x2, x1,±x3),±v3(x2, x1,±x3),±T (x2, x1,±x3)),

vn±6 = (−v2(−x2, x1,±x3), v1(−x2, x1,±x3),±v3(−x2, x1,±x3),±T (−x2, x1,±x3)),

vn±7 = (v2(x2,−x1,±x3),−v1(x2,−x1,±x3),±v3(x2,−x1,±x3),±T (x2,−x1,±x3)),

vn±8 = (−v2(−x2,−x1,±x3),−v1(−x2,−x1,±x3),±v3(−x2,−x1,±x3),±T (−x2,−x1,±x3)),

where the last four symmetries are valid only when the horizontal planform of the

computational domain is a square, that is, L1 = L2. From these realistic fields the

Fourier transforms of the increased dataset can be rewritten in terms of the original

form as

v̂n±1 = (v̂1(k1, k2,±x3), v̂2(k1, k2,±x3),±v̂3(k1, k2,±x3),±T̂ (k1, k2,±x3)),

v̂n±2 = (−v̂1(−k1, k2,±x3), v̂2(−k1, k2,±x3),±v̂3(−k1, k2,±x3),±T̂ (−k1, k2,±x3)),

v̂n±3 = (v̂1(k1,−k2,±x3),−v̂2(k1,−k2,±x3),±v̂3(k1,−k2,±x3),±T̂ (k1,−k2,±x3)),

v̂n±4 = (−v̂1(−k1,−k2,±x3),−v̂2(−k1,−k2,±x3),±v̂3(−k1,−k2,±x3),±T̂ (−k1,−k2,±x3)),

v̂n±5 = (v̂2(k2, k1,±x3), v̂1(k2, k1,±x3),±v̂3(k2, k1,±x3),±T̂ (k2, k1,±x3)), (A.41)

v̂n±6 = (−v̂2(−k2, k1,±x3), v̂1(−k2, k1,±x3),±v̂3(−k2, k1,±x3),±T̂ (−k2, k1,±x3)),

v̂n±7 = (v̂2(k2,−k1,±x3),−v̂1(k2,−k1,±x3),±v̂3(k2,−k1,±x3),±T̂ (k2,−k1,±x3)),

v̂n±8 = (−v̂2(−k2,−k1,±x3),−v̂1(−k2,−k1,±x3),±v̂3(−k2,−k1,±x3),±T̂ (−k2,−k1,±x3)).

The improved form of the kernel is

K̂i j(k1, k2, x3, x́3) =

N∑

n=1

8∑

p=1

v̂i
n±p (k1, k2, x3)¯̂v

n±p
j (k1, k2, x́3). (A.42)
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The effect of symmetry n±3 on the kernel is

K̂11(k1,−k2, x3, x́3) = K̂11(k1, k2, x3, x́3),

K̂12(k1,−k2, x3, x́3) = −K̂12(k1, k2, x3, x́3),

K̂13(k1,−k2, x3, x́3) = K̂13(k1, k2, x3, x́3),

K̂14(k1,−k2, x3, x́3) = K̂14(k1, k2, x3, x́3),

K̂21(k1,−k2, x3, x́3) = −K̂21(k1, k2, x3, x́3),

K̂22(k1,−k2, x3, x́3) = K̂22(k1, k2, x3, x́3),

K̂23(k1,−k2, x3, x́3) = −K̂23(k1, k2, x3, x́3),

K̂24(k1,−k2, x3, x́3) = −K̂24(k1, k2, x3, x́3), (A.43)

K̂31(k1,−k2, x3, x́3) = K̂31(k1, k2, x3, x́3),

K̂32(k1,−k2, x3, x́3) = −K̂32(k1, k2, x3, x́3),

K̂33(k1,−k2, x3, x́3) = K̂33(k1, k2, x3, x́3),

K̂34(k1,−k2, x3, x́3) = K̂34(k1, k2, x3, x́3),

K̂41(k1,−k2, x3, x́3) = K̂41(k1, k2, x3, x́3),

K̂42(k1,−k2, x3, x́3) = −K̂42(k1, k2, x3, x́3),

K̂43(k1,−k2, x3, x́3) = K̂43(k1, k2, x3, x́3),

K̂44(k1,−k2, x3, x́3) = K̂44(k1, k2, x3, x́3).

If it is assumed that (Ψ̂1(k1, k2, x3), Ψ̂2(k1, k2, x3), Ψ̂3(k1, k2, x3), Ψ̂4(k1, k2, x3)) is the

solution of the (A.35), then the symmetry above leads

(Ψ̂1(k1,−k2, x3),−Ψ̂2(k1,−k2, x3), Ψ̂3(k1,−k2, x3), Ψ̂4(k1,−k2, x3)), (A.44)

as the solution to K̂i j(k1,−k2, x3, x́3) with the same eigenvalue. Therefore, it only

requires to solve the problem for x2 ≥ 0. Similarly, x1 direction have the symmetry

n+
2 so only the solution of the problem for x1 ≥ 0 is needed. Using the property of the

Fourier transform

v̂i(−k1,−k2, x3) = ¯̂vi(k1, k2, x3), (A.45)

and similarly for the kernel

K̂i j(−k1,−k2, x3) = ¯̂Ki j(k1, k2, x3). (A.46)
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The complex conjugate of equation (A.35) tends to ¯̂Ψ(−k1,−k2, x3) for corresponding

kernel K̂i j(−k1,−k2, x3) with the same eigenvalue. Using the solution of this equation

for the set of wavenumbers (k1, k2), k1 > 0 and k2 > 0, three additional solutions

can be obtained for (−k1, k2), (k1,−k2), (−k1,−k2) using the symmetries. Similarly, for

(k1, k2) a square planform only requires solution of (A.35) for k1 ≥ k2 ≥ 0. As a

result, eigenfunctions come with a maximum degeneracy of 8-fold. An eigenvalue

of the mode (0, 0) has degeneracy 1. On the other hand, eigenfunction of the mode

(1, 0) or (0, 1) has degeneracy 4 and the others has degeneracy 8. The time dependent

coefficients can still be computed using (A.29) with three parameters k(k1, k2, q),

ak(t) =

∫ L1

0

∫ L2

0

∫ 1

−1
vi(x1, x2, x3, t) ¯̂Ψq

i (k1, k2, x3)e
−i2πk1 x1

L1 e
−i2πk2 x2

L2 dx1dx2dx3, (A.47)

or

ak(t) =

∫ 1

−1
v̂i(k1, k2, x3, t) ¯̂Ψq

i (k1, k2, x3)dx3. (A.48)
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Appendix B

FLOWCHART OF DIVERGENCE FREE SIMULATION

start program

construct basis

construct coefficients

construct matrix block
calculate velocity and 

thermal filds

calculate derivatives of 
velocity and thermal filds

calculate nonlinear termscalculate nonlinear 
coefficient

input parameters

time loop

write coefficients 
to file

calculate new 
coefficients

calculate velocity and 
thermal filds

calculate nonlinear terms

calculate derivatives of 
velocity and thermal fields

calculate Nusselt

stop program

Fourier Space Real Space

t<tmax

t=tmax

Figure B.1: Flowchart of nonlinear simulation with divergence free basis

134



REFERENCES

[1] R. M. Clever and F. H. Busse, “Transition to time-dependent convection,” Jour-
nal of Fluid Mechanics, vol. 65, pp. 625–645, Oct. 1974.

[2] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability. International
Series of Monographs on Physics, Oxford: Clarendon, 1961.

[3] W. V. R. Malkus, “The heat transport and spectrum of thermal turbulence,” Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, vol. 225, no. 1161, pp. pp. 196–212, 1954.

[4] W. V. R. Malkus and G. Veronis, “Finite amplitude cellular convection,” Journal
of Fluid Mechanics, vol. 4, no. 03, pp. 225–260, 1958.
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