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ABSTRACT 

 

SEISMIC ASSESSMENT OF REINFORCED CONCRETE BEAM-TO-COLUMN 
CONNECTIONS UNDER REVERSED CYCLIC LOADING 

 

Akın, Umut 

M.Sc., Department of Civil Engineering 

Supervisor: Assist. Prof. Dr. Burcu Burak 

 

April 2011, 153 Pages 

 

 

Prior experimental research clearly reveals that the performance of reinforced 
concrete frame structures under earthquake loading is closely related to the behavior 
of beam-to-column connection regions. In order for a reinforced concrete building to 
have an adequate response under high lateral deformations, beam-to-column 
connections should be able to preserve their integrity. However, even today beam-to-
column connections are assumed to be rigid or elastic, leading to an incorrect 
estimation of the structural response under earthquake loading. One of the basic 
reasons for the assumption of rigid joints is the lack of analytical models that 
adequately represent the seismic behavior of the connection region. In this thesis, an 
analytical model that realistically represents the beam-to-column connection 
response is developed, in the light of prior experimental data. The experimental 
subassemblies used in the generation of the analytical model are later modeled in 
OpenSees environment in order to verify the accuracy of the model. Throughout the 
research, utmost attention is paid for the model to be simple enough to be used 
practically and also to cover a wide range of beam to column connection properties. 

Keywords: Reinforced Concrete Moment Resisting Frames, Earthquake Loading, 
Beam-to-Column Connections, Reversed Cyclic Loading, OpenSees, Analytical 
Model.  
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ÖZ 

 

BETONARME KOLON-KİRİŞ BİRLEŞİM BÖLGELERİNİN                  
TERSİNİR TEKRARLANIR YÜKLER ALTINDAKİ                        

DAVRANIŞININ DEĞERLENDİRİLMESİ 

 

Akın, Umut 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Burcu Burak 

 

Nisan 2011, 153 Sayfa 

 

 

Bugüne kadar yapılmış olan deneysel çalışmalar açıkça göstermektedir ki, betonarme 
çerçeve sistemlerinin deprem yükü altındaki performansı, kolon-kiriş bağlantı 
bölgelerinin davranışı ile yakından ilgilidir. Betonarme bir yapının yüksek 
deformasyonlar altında sağlam kalabilmesi, ancak kolon-kiriş bağlantılarının 
bütünlüğünü muhafaza edebilmesi ile mümkündür. Ancak bugün dahi betonarme 
yapıların tasarımında kolon-kiriş bağlantı bölgelerinin rijit ya da elastik olarak 
davranacağı varsayılmakta, bunun sonucunda da yapıların deprem yükü altındaki 
davranışları doğru biçimde öngörülememektedir. Bu durumun ana sebeplerinden biri 
kolon-kiriş bağlantı bölgelerinin davranışını gerçekçi bir şekilde yansıtacak analitik 
modellerin eksikliğidir. Bu araştırma sonucunda, kolon-kiriş bağlantılarının tersinir 
tekrarlanır yükler altındaki davranışı daha önceden tamamlanmış deneysel 
çalışmalardan elde edilen veriler ışığında incelenerek, bu davranışı başarılı bir 
biçimde yansıtan analitik bir model oluşturulmuştur. Modelin oluşturulmasında 
kullanılan deneysel çalışmalar daha sonra OpenSees programı aracılığıyla 
modellenerek, önerilen davranış özelliklerinin deneysel verilerle uyumluluğu ortaya 
konmuştur.  Analitik çalışma süresince oluşturulan modelin pratik kullanıma uygun 
basitlikte ve farklı bağlantı türlerini de temsil edebilecek şekilde kapsamlı olmasına 
çaba gösterilmiştir. 

Anahtar Kelimeler: Betonarme Çerçeve Sistemler, Deprem Yükü, Kolon-Kiriş 
Birleşim Bölgeleri, Tersinir Tekrarlanır Yük, OpenSees, Analitik Model. 
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CHAPTER 1 

1 INTRODUCTION 

INTRODUCTION 

 

 

1.1 BEAM-TO-COLUMN CONNECTIONS 

Beam-to-column connections have vital importance on the performance of reinforced 

concrete moment resisting frame (RCMRF) structures, especially when subjected to 

earthquake loads. For a structure to perform satisfactorily under high seismic action, 

beam-to-column connections should preserve their integrity in order to be capable of 

transferring vertical and horizontal shear loads between beams and columns even for 

the most undesirable loading conditions.  

In contrary to the general tendency to assume beam-to-column connections as rigid 

zones, inelastic response of connections is proven to significantly affect the overall 

structural behavior, especially for buildings which are subjected to high reversed 

cyclic loads. Even today, despite the increasing number of worldwide research 

projects on connection behavior, not enough attention is paid on the design of beam-

to-column connections. However, when the joint shear deformations are not taken 

into consideration, overall structural deformations are underestimated and global 

structural performance cannot be realistically obtained. Both experimental studies 

and field observations after earthquakes clearly reveal that connections have an 

important role in lateral load resistance for reinforced concrete structures and if not 

properly designed, consequences may be irreversible, both in terms of life loss and 

property damage.  

Until today, only simple guidelines are considered for beam-to-column connections 

in practical design applications. Main design principle of beam-to-column 

connections is the ‘strong column-weak beam’ principle, without a detailed 
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understanding of interior mechanisms of connections. Philosophy behind the strong 

column-weak beam principle is the concentration of damage on the plastic hinge 

regions of beams and ensuring the columns do not fail even under high lateral loads. 

In other words, yielding of column reinforcement before beam bars is avoided and a 

bottom column plastic hinge mechanism which leads to the collapse of a structure is 

prevented. But it should not be forgotten that, in order to effectively apply the strong 

column-weak beam philosophy, beam-to-column connections should ensure 

satisfactory performance under high flexural and shear loads. 

As stated previously, despite the importance that beam-to-column connections 

possess for structures, the behavior and performance of connections are probably the 

most important neglected characteristics in the design of RCMRF structures. Main 

reasons for that can be listed as the limited number of experimental and analytical 

research and a large variety of connection types, both in terms of material and 

geometric properties. Although the number of research projects on this topic 

increases from day to day, a common understanding on the connection behavior 

under earthquake loading could not be reached. The multitude of variables effective 

in the performance of connections also increases the complexity of the subject and 

makes it difficult to determine widely applicable and yet simple provisions. Although 

most of the contemporary structural codes impose some practical rules on design of 

beam-to-column connections, the equations in between codes differ significantly. 

Moreover, a large number of subjects ranging from wide beam-to-column 

connections to eccentric connections are specified as areas needing further research. 

Analytical studies aim to represent several inelastic mechanisms responsible for the 

behavior of beam-to-column connections under cyclic loading. From modeling point 

of view, above mentioned difficulties in determination of connection response also 

complicate the simulation of inelastic behavior of connections analytically. Although 

several models have been generated , due to the complexity of parameters possibly 

effecting the joint shear response and wide range of parameters, a practically 

applicable analytical model that is capable of adequately representing the beam-to-

column connection behavior has not been developed so far. 
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1.2 RESEARCH OBJECTIVE AND SCOPE 

In this research project, first an extensive literature review of prior analytical and 

experimental research has been carried out. Then, an experimental database that 

contains information on a wide variety of connection properties is constructed and an 

analytical model defining the beam-to-column connection behavior under cyclic 

loading is developed. Finally, the analytical model is verified by the means of 

computer software, OpenSees.  

Prior to the construction of the database to be used as the primary resource in 

modeling, an in depth research of the literature is conducted by examining analytical 

and experimental studies on beam-to-column connection behavior. Reports on 

analytical studies are utilized in order to create an in depth understanding on the 

general behavior of beam-to-column connections as well as constituting a basic 

reference on analytical models proposed up to this time. Besides giving important 

information on the effects of several geometric and material properties, experimental 

research projects have been taken as the main resource in the construction of the 

database by providing detailed information on specimens, loading conditions and 

responses. On the other hand, main problem encountered during the database 

construction is the inadequacy or deficiency of the data provided in experimental 

research reports. Detailed descriptions of literature review and database construction 

are presented in Chapters 2 and 3, respectively.  

An analytical model addressing the performance of beam-to-column connections is 

developed considering two basic arguments: applicability for a wide range of 

specimens having different characteristics and simplicity in order for the model to be 

handy for practicing engineers. Throughout the research, a large variety of beam-to-

column connections having different geometric and material properties have been 

evaluated in the light of prior research, seeking for the optimum analytical model to 

define the joint shear strength vs. strain response. From the large number of 

parameters possibly effective in the performance of connections, the key parameters 

with higher influence are revealed and presented in the final model. Description of 
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the variables utilized in defining the shear response of connections along with the 

final model is presented in Chapter 4. 

Verification of the proposed shear force vs. shear strain model is explained in 

Chapter 5 of the thesis. The computer models of the experimental subassemblies are 

created and analyzed using ‘OpenSees’ software framework, which is the 

abbreviation of the ‘Open System for Earthquake Engineering Simulation’. The 

developed analytical joint model is assigned to the connection region of the 

generated computer models, which are loaded using the time history presented in the 

respective experimental study. Obtained analytical results are compared with 

experimental data for verification purposes, a detailed description of which is also 

presented in Chapter 5. 

The thesis is finalized with Chapter 6, in which a general summary of the 

investigation and recommendations for future research along with the conclusions 

inferred throughout the study are presented. 
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CHAPTER 2 

2 LITERATURE REVIEW 

LITERATURE REVIEW 

 

 

2.1 BACKGROUND INFORMATION 

Importance of the beam-to-column connections of earthquake resistant reinforced 

concrete structures started to arouse interest in 1960s. Hanson and Conner [1] are 

referred as the first researchers to experimentally analyze connection performance 

under seismic loading by many. Both experimental and analytical investigations on 

the seismic response of beam-to-column connections have been in progress since 

then, especially in seismically vulnerable countries such as the United States, Japan 

and New Zealand.   

Briefly mentioning, experimental research is focused on the response of beam-to-

column connections under different types of loadings. Variations in the geometric 

properties of connections, wide range of material properties and uncertainty in the 

response mechanisms for different combinations of connection characteristics 

provide an endless area of research for experimental investigations. On the other 

hand analytical research aims to mathematically represent the connection behavior. 

Creation of an easy to implement beam-to-column connection model, yet considering 

the diversity of connection characteristics and obtaining accurate results is the main 

objective of analytical studies.  

Despite the increasing number of experimental and analytical studies carried on 

recently, many beam-to-column connection properties still remains the subject open 

for improvement from several aspects. In addition to the aforementioned diversities 

in the connection characteristics, connections involving eccentricity or wide beams 
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expand the research area and make it harder for researchers to come up with a global 

consensus. 

Following parts of the literature review covers several subtopics. Primarily, 

definition and classification of beam-to-column connections are described with 

respect to effective joint width and joint strength definitions of contemporary 

structural codes and recommendations of several researchers. Sequential subtopics 

mention important parameters affecting joint behavior and are explained in the light 

of findings from prior experimental and analytical research. Next two topics are on 

special types of beam-to-column connections namely eccentric connections and wide 

beam-to-column connections.  

Literature review is finalized with a brief statement of prior studies on analytical 

modeling of beam-to-column connections. 

2.2 CLASSIFICATION OF BEAM-TO-COLUMN CONNECTIONS 

In this section of the report, classification of beam-to-column connections is 

addressed with respect to different characteristics, evaluated in accordance with the 

point of view of related researcher or institute. As presented in the following parts of 

this section, most contemporary provisions on structural engineering classify the 

connections with respect to the number of beams surrounding the connection, 

considering the ratio of the beam width to width of the column, which beams frame 

into.  

Additionally, connections involving wide beams or eccentric beams in the direction 

of loading are also classified separately. Especially, the definitions of effective joint 

area and joint shear strength differ considerably.  

In the following paragraphs, the beam-to-column connection definitions are 

presented with respective joint area and shear strength definitions in the 

contemporary structural codes. 
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2.2.1 ACI 318-R08 

ACI 318R-08 [2], Building Code Requirements for Structural Concrete and 

Commentary is a comprehensive document covering the general requirements for 

design and construction of reinforced concrete structures involving additional 

commentary sections to further explain the provisions.  

Though ACI 318R-08 constitutes a well detailed reference for construction of 

reinforced concrete structures, specifications on beam-to-column connections are 

described only briefly in ‘Section 21, Earthquake Resistant Structures’. In this 

section, along with the general requirements about earthquake resistant design, 

provisions for joint transverse reinforcement, design shear strength of joints and 

calculation of effective cross sectional area are described.  

Confinement provided by the surrounding members is assumed as the main 

parameter in determination of the joint shear strength, on the condition that minimum 

joint shear transverse reinforcement is provided. In order to for the beam to provide 

sufficient confinement to the connection it frames into, at least 3/4 of the column 

width should be covered by the beam width. Accordingly, a beam-to-column 

connection is assumed to be fully confined if this condition is satisfied for all 4 faces 

of the column. Also, an effective joint area (Aj) with respect to beam and column 

dimensions is defined and the joint shear strength to be taken into account in design 

is obtained considering effective joint area, square root of concrete compressive 

strength and a ‘joint shear strength factor’ determined with respect to the 

confinement provided by the surrounding members. 

Effective joint area (Aj) has a width equal to effective joint width as defined below 

and a height equal to column height, with respect to ACI 318-R08 (Figure 2.1). 

Effective joint width, bj,318=  min b+h , b+2x                                                (2.1)
 

where, x = the minimum distance between the column edge and beam edges for 

eccentric connections. 

b = beam width, 
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 s = subscript for slab. 

As mentioned priory, the nominal shear strength of the joint (Vn) is specified as a 

limiting value defining the capacity of the beam-to-column connection and 

determined in a similar manner with ACI 318R-08 provisions, excluding the 

different descriptions for effective joint area and confinement factors. Effective joint 

width in ACI352R-02 is defined basically according to beam and column dimensions 

in addition to a coefficient symbolized with ‘m’ which represents the strength 

reduction effect of eccentric connections as given below: 

b c c
j,352 b c

b +b h
Effective joint width, b  = min  , b + m  , h

2 2
 
 
 


             

(2.3) 

where, bb = width of the beam in the loading direction, 

bc = width of the column, 

 

hc = height of the column, 

m = 0.3 for connections with loading beam eccentricity exceeding bc/8, 0.5 

for all other cases. 

Effective joint area (Aj) is specified as bj hc and nominal shear strength of the joint is 

determined as, 

n c jV  = γ f ' A   (psi)               (2.4a) 

n c jV  = 0.083 γ f ' A   (MPa)               (2.4b) 

 is the joint shear strength factor and specified separately for Type 1 and Type 2 

connections as illustrated in Table 2.1. 
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 = 1.25, the stress multiplier to account for the deviation of actual yield 

strength value from the nominal one and the strain hardening of 

reinforcement. 

Vcol1 = top column shear force, 

Vcol2 = bottom column shear force, 

be  = effective slab width, 

2.2.3 Eurocode 8 

The Eurocode 8 [4], ‘Design of Structures for Earthquake Resistance, Part 1: 

General rules, seismic actions and rules for buildings’ specifications are discussed in 

this section. The mentioned document is a member of set of building codes 

composed of 10 main documents involving 57 parts, each on specific subjects, 

prepared by European Committee for Standardization (CEN). The composition of the 

document involves a very large variety of design specifications applicable to 

reinforced concrete, steel, timber and masonry buildings along with comprehensive 

descriptions of performance requirements, ground conditions and seismic actions. 

Design provisions for reinforced concrete structures under seismic action are 

classified in two classes according to the expected hysteretic energy dissipation 

capacities as DCM for medium ductility and DCH for high ductility demands. The 

structures designed following the code are aimed to develop stable mechanisms 

associated with large dissipation of hysteretic energy under repeated reversed 

loading, without suffering brittle failures.  

Design of beam-to-column connections for DCM 

For buildings designed according to achieve medium ductility, only simple 

provisions are stated in Eurocode 8, regarding transverse shear reinforcement in the 

connection region which will be stated in the transverse reinforcement section of this 

report. There are no provisions addressed for shear strength capacity of beam-to-

column connections of buildings designed for DCM. 
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Design of beam-to-column connections for DCH 

For structures expected to behave in a highly ductile manner under seismic loading, a 

more detailed approach is implemented in Eurocode 8.  

Horizontal shear force acting on the beam-to-column connection core is defined 

similar to ACI 352R-02 recommendations and formulized as below, separately 

defined for interior and exterior beam-to-column connections. 

For interior joints,  jhd Rd s1 s2 yd cV = γ (A +A )f -V
            

(2.6a) 

For interior joints,  jhd Rd s1 yd cV = γ A f -V
             

(2.6b) 

where, As1 = the area of the beam top reinforcement, 

As2 = the area of the beam bottom reinforcement, 

Vc = the column shear force, from the analysis in the seismic design,  

γRd = overstrength factor due to strain-hardening of reinforcement and the 

difference in the actual yield strength and the nominal value, which is 

specified to be a minimum of 1.2. 

As it can be observed from the formulae, the design shear force on the joint is 

depends on the concrete compressive strength, axial force on the joint and effective 

shear area of the joint. 

For interior beam-to-column connections, shear force is limited using the following 

equation, whereas for exterior joints, 80 % of the same expression is specified to be 

taken as maximum. 

  

d
jhd cd j c

 1-ν
V ηf  (b h )

η


    
(2.7) 

where, η   = 0.6 × (1-fck/250), 
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υd =  axial force on the column above the joint, normalized by 

 column cross sectional area. 

Effective joint width definition of connections in Eurocode 8 is more simple when 

compared to ACI 318R-08 and ACI 352R-02 definitions. Joint width effective for 

shear response is defined separately for wide beam-to-column connections and 

conventional beam-to-column connections: 

If bc > bw,  bj = min {bc; (bw + 0.5 hc)},               (2.8a) 

If bc < bw,  bj = min {bw; (bc + 0.5 hc)}.              (2.8b) 

2.2.4 TEC 2007 

TEC 2007 [5], ‘Turkish Earthquake Code, Specifications for Structures to be Built in 

Disaster Areas’ is a document published by the Ministry of Public Works and 

Settlement, in Turkey, addressing the general procedures and specifications to be 

considered for the design of structures built in areas under seismic risk.  

Beam-to-column connections are classified depending on the beams surrounding the 

connection and proportion of the beam width covering the column face, similar to 

ACI 318R-08 provisions and ACI 325R-02 recommendations. A connection is 

accepted as ‘confined’ only when it is surrounded by beams on each face and none of 

the beams has a width narrower than 3/4 of the column width. For all other cases, the 

connection is defined as ‘unconfined’.  

Also, horizontal joint shear (design joint shear, Ve) and joint shear strength (Vn) are 

identified in a similar manner to ACI 352R-02. Joint shear strength is designated as a 

limiting value for design joint shear Ve. A general summary of definitions related to 

beam-to-column connections in TEC 2007 is given in Figure 2.5. 
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For unconfined joints: Ve  ≤ 0.45 bj h fcd           (2.10b) 

Definition of the effective joint shear area is based on determination of the effective 

joint width (bj) since the height of joint shear area is assumed to be the column 

height. For wide beam-to-column connections, bj is specified as column width 

whereas for other cases, following conditions are to be considered, 

 j,TEC 1 2 w1Effective joint width, b  = min 2 min(b ,b ), b +h
              

(2.11) 

where, b1,2 = distances between beam axis and column edges, 

bw1 = width of the beam in the direction of loading. 

2.2.5 AIJ Guideline (1999) 

AIJ (Architecture Institute of Japan) Guideline [6] defines the shear strength of a 

beam-to-column connection (Vj) based on effective joint area (Aj), concrete 

compressive strength f’c and shape factors, as stated in Equation 2.12. 

Vj = k Ф 0.8 f 'c
0.7 Aj (in MPa)               (2.12) 

where,   k =   1.00 for interior connections, 

  0.70 for exterior connections, 

0.45 for knee connections, 

Ф =  1.00 for connections with two transverse beams, 

  0.85 for all other cases. 

Effective joint area definition of AIJ guideline differs from priory mentioned 

provisions, because it includes both an effective depth definition in addition to the 

effective joint width. 
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2.3 PARAMETERS AFFECTING BEAM-TO-COLUMN CONNECTIONS 

Performance of beam-to-column connections under cyclic loading depends on 

several parameters. As mentioned priory, geometric and material properties of the 

connections as well as loading conditions influence the response of beam-to-column 

connections considerably. In the following paragraphs of the report, effect of 

important parameters is explained by means of prior experimental and analytical 

investigations. Structural code provisions on the parameter discussed are also 

mentioned. 

2.3.1 Joint Transverse Reinforcement 

Transverse shear reinforcement in the connection region is proven to be effective in 

the earthquake response of reinforced concrete structures form several aspects. 

Confinement of the joint core by transverse reinforcement helps the joint to transfer 

both axial and shear forces between beams and columns.  

In a parametric research carried out by Bonacci and Pantazoupoulou [7] for the 

investigation of the effect of several design parameters on the behavior of beam-to-

column connections, horizontal reinforcement in the joint region is determined to be 

effective in confining the concrete, increasing the compressive resistance and thereby 

preserving the integrity of the connection. It is also concluded that participation of 

joint hoops in the shear resisting mechanism of the joint is significant, particularly in 

the case where low amounts of confinement have been provided. 

Alameddine and Ehsani [8] indicates the influence of transverse reinforcement on 

resisting the excess shear force in a joint after the concrete cracks, minimization of 

crack width prior to the yielding of transverse reinforcement and delaying joint 

deterioration by providing confinement of the concrete. In an experimental research 

conducted on 12 specimens with joint shear reinforcement ratios varying between 

1.14% and 1.87%, it was concluded that transverse reinforcement leads to an 

increase in the energy dissipation capacity and delays the pullout of main beam bars 

and slippage of longitudinal column bars in the joint.   
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Ehsani & Wight [9] underlines the efficiency of joint transverse reinforcement in 

enhancing the overall behavior of specimens without transverse beams and slabs. It is 

noted that slippage of beam bars in the joint region is delayed, as well. 

Confinement provided by transverse shear reinforcement in the beam-to-column 

connections is regarded as one of the most important subjects in contemporary 

structural codes. In the following paragraphs, provisions offered by ACI 352R-02, 

ACI 318R-08 and Eurocode 8 are discussed briefly. 

ACI 352R-02 emphasizes the importance of lateral confinement of concrete in 

transmission of column axial load and shear forces from beams and columns to joint. 

Minimum transverse reinforcement ratio is defined separately for Type 1 and Type 2 

connections and indicated as below. 

If spiral reinforcement is used, 

for Type 1 connections, 
A f 'g cρ =(0.45 -1)

s A f
c yh

                 (2.14) 

for Type 2 connections, 
A f ' f 'g c cρ =min (0.45 -1) ;0.12

s A f f
c yh yh

 
 
 
        

(2.15a) 

If rectangular hoop and crossties are used, 

As b ''f ' s b ''f 'gh c c h c cA =min (0.3 ( -1)) ; 0.09
sh f A f

yh c yh

 
 
 
  

         (2.15b) 

In Eurocode 8, provisions regarding transverse shear reinforcement differ for DCM 

(ductility class medium) and DCH (ductility class high) structures.  

For structures with DCM, transverse shear reinforcement applied in the critical 

regions of columns is obligated to continue also in the connection region, with the 

exception of beam-to-column connections surrounded by beams on all 4 sides. For 
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fully surrounded connections, spacing of the transverse shear reinforcement can be 

double of applied in the critical column region, without exceeding 150 mm. 

For highly ductile structures, Eurocode 8 requires the use of horizontal hoops of 6 

mm diameter bars in minimum, in order to provide adequate confinement in the joint 

region. The total area of the horizontal hoops should satisfy the condition specified 

below. 

jhd 2

sh ywd j jc
ctd

j jw ctd d cd

ν
( )

A  . f b  h
 -f

b  h f  + v f


               
(2.16) 

where, Ash is the total area of the horizontal hoops, 

hjw is distance between the outermost compression fiber  of the beam and the 

reinforcement at the tension zone, 

hjc is the distance between extreme layers of column reinforcement, 

fywd is the yield strength of transverse reinforcement, 

υd is the normalized design axial force of the top column, N/ (Acfcd). 

An additional condition on horizontal joint hoop reinforcement is specified in 

Eurocode 8 in order to ensure integrity of joint after cracking. The condition is stated 

separately for interior and exterior connections and can be seen below. 

For interior joints,  Ashfywd ≥ γRd(As1+As2) fyd(1-0.8υd)           
(2.17)

 

For exterior joints,  Ashfywd ≥ γRdAs2fyd(1-0.8υd) 

The horizontal reinforcement provided in the joint region is required to be evenly 

spaced and placed between the top and bottom beam bars. It is also underlined that 

the longitudinal beam bars should be bent towards the joint in exterior beam-to-

column connections in Eurocode 8. 
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2.3.2 Slab Participation 

Experimental studies of beam-to-column connections including slabs reveal that, 

when properly designed, presence of slab increases the shear capacity of a 

connection. However, especially when the flexural strength ratio of a connection is 

considered, neglecting the effect of slabs may result in underestimation of flexural 

strength of beams and consequently having stronger beams than columns, which may 

lead to brittle failure of the structure. In that manner, determination of the slab effect 

have crucial importance in order to create a more realistic understanding of the 

connection and  overall structure behavior when subjected to lateral loading. 

 Durrani and Zerbe [10] point out the effect of slab on the strength, stiffness and 

shear capacity of connections. It is noted that the lateral load resistance of a 

connection is increased by as much as 40% by the influence of slab participation. 

After underlining the likelihood of underestimation of lateral load resistance of 

connections ignoring slab contribution to the stiffness and strength of the beams, 

French and Boroojerdi [11] also state that all the experimentally tested models 

exhibited a ductile behavior with interstory drifts exceeding 8%. An increase 

between 22% and 49% has been observed on the flexural strengths of the models at 

2% story drifts. Additionally, Cheung, Paulay and Park [12] also observed an 

increase in the negative moment flexural capacity and lateral loading capacity of the 

beam-column-slab systems tested.  

In an experimental research on 4 exterior wide beam-to-column connections, LaFave 

and Wight [13] observed an increase in the connection shear strength resulting from 

the presence of slab. It was concluded that since the floor slab enhances the torsional 

capacity of the beams, the shear strength of the joint increased. 

Burak and Wight [14] underlined the confinement effect provided by the slab in their 

experimental study on 3 eccentric beam-to-column connections. It was determined 

that the effect of eccentricity is minimized and the deterioration of shear strength and 

stiffness is delayed by including floor slabs and spandrel beams to the test setup. As 

a result, the specimens also preserved their energy dissipation capacities and the 

damage is significantly reduced. 
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Contribution of slab on the performance of a beam-to-column connection is directly 

related to the slab width effective under the loading as a part of the beam. It is hard to 

determine the effective slab width to be considered influential for different types of 

connections and loadings. Different regulations offered by ACI 318R-08 and 

Eurocode 8 are explained next. 

Participation of slab is mentioned in Section 8.10, ‘T-beam construction’ in ACI 

318R-08. Maximum effective slab width is defined separately for beams having slab 

on both sides and on one side only, as defined below: 

For beams having slab on both sides the equation that gives the minimum value of 

‘b’ governs, 

 
span

b
4

  

 w
f

b - b
8t

2
                  (2.18) 

 w b - b 1
 * (clear distance between beams)

2 2


 

Similarly, for beams having slab on one side only (edge beams), effective slab width 

is the minimum value of ‘b’ calculated from the equations below.  

 w

span
(b - b )

12
  

 w f(b - b )  6 t                 (2.19) 

w

1
(b - b )  * (clear distance between beams)

2
  

In Eurocode 8, effective flange widths of beams are considered to be effective in 

bending and shear resistance. Top reinforcement of the beam is required to be placed 

mainly in the web width and only a small portion of the top beam reinforcement is 
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Turkish Standards [15] also defines a detailed specification for the flange width 

determination of beams.  

For beams with flanges on both sides (T beams) effective flange width (b) is the 

smallest of: 

bw + 0.2 lp, 

6tf,                  (2.22) 

1
 * (clear distance between beams)

2
. 

For beams with unsymmetrical sections, 

b1 + 0.2 lp, 

6tf,                         (2.23) 

1
 * (clear distance between beams)

2
. 

lp is defined as the distance between the two zero moment points of the beam. If 

detailed calculations are not carried out, for different loading conditions lp can be 

taken as, 

lp  = 1.0 × l (single span, simply supported beam) 

= 0.8 × l (end span of continuous beam) 

= 0.6 × l (internal span of continuous beam) 

= 1.5 × l (cantilever beam)               (2.24) 

where, l is the span length of the beam. 

The above mentioned definitions are illustrated in Figure 2.8. 
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In order to prevent bond related problems and provide smooth transfer of loads 

between concrete and longitudinal bars of beams and columns, provisions regarding 

bar diameters and beam and column dimensions are specified by ACI 352R-02 

recommendations, which are listed below: 

For connections where column width is larger than beam width, 

(column) y

b (beam bars)

h f
20 20   (psi)

d 60000
   

(column) y

b (beam bars)

h f
20 20   (MPa)

d 420
                 (2.25) 

and  

(beam) y

b (column bars)

h f
20 20   (psi)

d 60000
   

(beam) y

b (column bars)

h f
20 20   (MPa)

d 420
                 (2.26) 

For wide beam-to-column connections, in order to consider the absence of 

confinement effect provided by column axial load, limiting value for bars passing 

outside the column core is altered as: 

(column) y

b(beam bars)

h f
24 24   (psi)

d 60000
   

(column) y

b (beam bars)

h f
24 24   (MPa)

d 420
                  (2.27) 

In Eurocode 8, bond resistance depends on several parameters such as longitudinal 

beam bar diameter, tensile strength of concrete and yield strength of beam bars. 

Limiting value for the beam bar diameter is given below for exterior and interior 

connections, respectively: 
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For interior joints, bl ctm d

c Rd yd D max

d 7.5 f 1+0.8ν
.

h γ  f 1+0.75 k . (ρ'-ρ )


            
(2.28) 

For exterior joints, bl ctm
d

c Rd yd

d 7.5 f
 . (1+0.8ν )

h γ  f


             
(2.29) 

where , 

νd = normalized design axial force in the column for seismic design (νd = 

N/fcd·Ac), 

kD = factor reflecting the ductility class equal to 1 for DCH (high ductility) 

and 2/3 for DCM (medium ductility), 

ρ' =  compression reinforcement ratio of the beam bars passing through the 

joint, 

ρmax =  maximum allowed tension reinforcement ratio, 

γRd  = the model uncertainty factor on the design value of resistances, taken 

as 1,2 or 1,0 respectively for DCH or DCM (due to overstrength 

owing to strain-hardening of the longitudinal steel in the beam).  

If these requirements cannot be satisfied in exterior joints, the beam or slab is 

allowed to be extended as exterior stubs. Headed bars or anchorage plates are also 

permitted for better anchorage, in Eurocode 8. 

2.3.4 Moment Strength Ratio 

Moment strength ratio is defined as the ratio of sum of the nominal flexural strengths 

of columns to the sum of the nominal flexural strengths of beams framing into the 

joint, on a planar basis. It can be symbolized as: 

n (columns)
r

n (beams)

M
M  = 

M

                  

(2.30) 
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In order to ensure beam hinging to occur before column hinging, moment strength 

ratio has to be higher than 1.0, in other words, total capacity of columns to bear 

flexural loads should be higher than total capacity of the beams. This approach is 

called the ‘strong column weak beam philosophy’. 

Although any value higher than 1.0 is adequate to ensure strong column-weak beam 

behavior, several values has been proposed by different researchers and code 

provisions. ACI 352R-02 recommends a value higher than 1.2 for type 2 connections 

with the condition of considering the slab participation while calculating beam 

flexural ratios. TEC 2007 also requires Mr to be a minimum of 1.2. 

Eurocode 8 also accentuates the importance of moment strength ratio in preventing 

soft story plastic mechanism. The moment strength ratio is required to be a minimum 

of 1.3. 

Durrani and Wight [18] after evaluating 6 specimens (3 with and 3 without slab), 

suggested a minimum value of 1.5 for moment strength ratio. Also, in an 

experimental research carried out by Ehsani and Wight, 6 specimens with slabs 

(design Mr values varying from 1.1 to 2.0) are investigated and a minimum Mr value 

of 1.4 is recommended. 

In his evaluation of ACI 318-83, Paulay [19] specifies the reasons for the possible 

deviation of Mr from the calculated values as follows: 

- Additional strength enhancement occurs due to strain hardening of 

longitudinal beam bars. 

- Slab bars are not considered when calculating the beam flexural ratio. 

- Earthquake induced axial forces may decrease the flexural capacity of 

column, which is not considered in calculation. 

- Bending-moment patterns along columns of multistory frames during instants 

of seismic excitation differ markedly from those derived by analyses of the 

elastic frames subjected to lateral static load. 
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- For earthquakes that hit the column in both principal directions, flexural 

capacity of column will be inadequate to stay in the elastic range before the 

beams bars yield. 

Although current provisions restrict the calculation of beam flexural capacities 

neglecting slabs, other 4 reasons still exist. After representing the above mentioned 

reasons, Paulay suggests a minimum Mr value in the range of 2 and 2.5. 

2.3.5 Presence of Transverse Beams 

Effect of transverse beams on beam-to-column connection performance is evaluated 

on two bases, resisting joint shear and providing confinement for the joint core. 

Durrani and Wight [18] require a well confined joint core with transverse joint 

reinforcement for effective participation of transverse beams in resisting joint shear. 

Ehsani and Wight [9] underline the improvement of joint confinement and 

elimination of the beam bar pull out by the presence of transverse beams. Also 

Durrani and Zerbe [10] evaluated 6 specimens and found out that transverse beams 

are both effective in providing additional area for shear resistance and confining the 

joint core. 

Another important aspect of the confinement provided by the transverse beams was 

observed in the experimental study carried out by Burak and Wight [9]. During the 

testing of the third specimen in the spandrel direction, a faster deterioration of 

strength and stiffness is experienced arising from the wide and shallow normal beam 

in the transverse direction. Since the total depth of the transverse beam was lower 

than 3/4 of the total depth of the spandrel beam, sufficient confinement was not 

provided, leading to increased damage of the beam-to-column connection.  

Similarly, Bonacci and Pantazopoulou [7] in their parametric investigation of joint 

mechanics conclude that transverse beams confine the joint significantly in addition 

to increasing the volume of concrete to resist joint shear forces. 
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On the contrary, Cheung, Paulay and Park [12] concluded that confinement provided 

by the transverse beam did not affect beam-to-column connection behavior 

significantly. 

2.3.6 Column Axial Load 

Effect of column axial load on the behavior and strength of beam-to-column joints is 

one of the most debatable issues for researchers. Even if it has been investigated both 

experimentally and analytically; a consensus could not be reached. 

Kaku and Asakusa [20] claim that axial loading on columns helps the joint to have 

less pinching, increasd stiffness and anchorage of both hooked and straight beam 

bars passing through the joint. Bonacci and Pantazopoulou [7] indicated that the 

presence of column axial load influences the deformability of the members rather 

than the strength. Meinheit and Jirsa [21] also stated that ultimate shear capacity of 

the joint is not affected by axial loading on column but the shear at first cracking is 

highly increased. On the other hand, Fujii and Morita [22] report that an increase 

from f’c/12 to f’c/4 influences the shear strength of exterior joints by 11 %. 

Also, Li and Kulkarni [23] obtained a shear strength increase around 6 to 8 % with 

an axial load level of 0.25f’cAg for the wide beam specimens tested. 

2.4 ECCENTRIC BEAM-TO-COLUMN CONNECTIONS 

Eccentric connections can be defined as the connections in which the column 

centroidal axis does not coincide with the beam centroidal axis (Figure 2.10). Due to 

architectural and aesthetical reasons, especially the centroidal axes of edge beams in 

the buildings do not coincide with the column centroidal axes in order not to produce 

an extension at the facade of the building.  
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eccentric joints is calculated as the same way with concentric joints except using m 

variable as 0.3 instead of 0.5, as mentioned in Section 2.1, ACI 352R-02 joint 

definition. 

In 1992, Raffaelle and Wight [24] carried out an experimental research on the 

performance of eccentric beam-to-column connections subjected to earthquake 

loading. Tested specimens had eccentricities varying form 0.14 bc to 0.25 bc and the 

specimens had neither transverse beams nor slabs. First observation was the 

excessive pinching of the lateral load – displacement hysteresis loops to reveal the 

reduced performance of the eccentric connections. It is also noted that cracking was 

concentrated on the flush side of the joint, the portion of the joint common to the 

column and the beam. In addition, an effective joint width for eccentric beam 

connections is proposed, as a consequence of observed reduction in lateral load 

capacities of the eccentric joints, as presented below: 

c
j eccentric

c

b
b ,   =  (Rafaelle and Wight, 1995)

3e
1+

x

             (2.31) 

where e is eccentricity and xc is the smaller of bc and hc. 

Kusuhara et al. [25] tested 3 beam-to-column connections, 2 of which have 55 mm. 

(0.17 bc) of eccentricity, all specimens without a floor system. It is observed that the 

shear capacity of the eccentric joint was 94% of the one without eccentricity. 

Additionally, concrete damage on the joint flush side was more severe.  

In a similar experimental investigation, Goto and Joh [26] tested 3 connections with 

varying eccentricities, 0, 0.25 bc and 0.5 bc.  Comparison of the resultant shear 

strength of the connections revealed that, joint shear strength decreases with 

increasing eccentricity. 

The experimental investigation carried out by Burak and Wight [14] was a more 

realistic research due to the inclusion of transverse beam and slab in the experimental 

setup. 3 specimens were tested under lateral loading in two principal directions. All 3 

specimens were eccentric with eccentricities of 0.21 bc, 0.26 bc and 0.26 bc. The 
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results of the experimental research revealed that the existence of slab and transverse 

beam added considerable torsional stiffness and consequently, specimens had high 

energy dissipation capacities. In other words, adverse effects of eccentricity on 

connections are reduced by transverse beam and slab. It is also stated that shear 

cracks formed at the core region of highly eccentric specimens and hence, column 

core dimensions should be taken as development length for spandrel beam bars, 

instead of full length. Similarly, Shin and LaFave [27] underlined the contribution of 

slab and transverse beam in the joint shear capacity of eccentric connections, as a 

conclusion of experimental research on 4 beam-column slab connections, 2 of which 

were eccentric. 

2.5 WIDE BEAM-TO-COLUMN CONNECTIONS 

‘Wide beam-to-column connections’, as the name implies, are connections where the 

beams framing into the joint is wider than the column. A wide beam structure is a 

category of structure that falls between the reinforced concrete frame and the flat 

plate and column system (Burak and Wight [14]). Use of wide beams in construction 

of structures is proven to be beneficial form several aspects such as economy, 

practicability and faster construction. Moreover, since the height of a wide beam is 

low, using wide beams is very effective in limiting the total height of a structure. 

Wide beam-to-column connections are commonly used in construction of buildings 

in non-seismic areas, whereas its use in regions of high seismicity is very limited due 

to lack of experimental data regarding the performance of wide beam-to-column 

connections subjected to earthquake loading. Especially, the ability of a wide beam 

to form a plastic hinge, i.e. total yielding of longitudinal bars of the beam is 

questioned. This mainly stems from uncertainty in the response of beam bars passing 

outside the column core.  

Another questionable property of a wide beam is its smaller moment of inertia when 

compared to a conventional beam with the same flexural capacity. Since the depth to 

width ratio of a wide beam is small, it has smaller lateral stiffness and this may cause 

excessive lateral drifts when subjected to strong earthquake loads. 
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ACI 352R-02 demands for type 2 connections, at least 1/3 of the wide-beam top 

longitudinal and slab reinforcement that is tributary to the effective width should 

pass through the confined column core. Additionally, effective joint width of a wide 

beam-to-column connection is limited to width of column. 

Burak and Wight (2005), in their experimental study on beam-to-column connections 

considered the effective joint width definition of ACI 325R-02 to be highly 

conservative and recommended a larger effective joint width for wide beams: 

j,wide c b c

1
b  = b  (b  - b )

4


                
(2.32) 

Quintero-Febres and Wight [16] tested 3 interior wide beam-to-column connections 

with slab and transverse beams in an experimental research carried out at the 

University of Michigan. The specimens had varying widths between 660.4 mm to 

889.0 mm (26 to 35 inches). It is concluded that, when properly designed, despite of 

the significant pinching of lateral load – deformation curves, the specimens 

possessed adequate strength and deformation capacities to withstand a severe 

deformation history. In addition, the use of larger column sections is encouraged to 

increase anchorage of beam longitudinal bars. Moreover, importance of confinement 

of the wide beam regions outside the column core is highlighted in order to develop a 

full width plastic hinge. 

Experimental research on exterior wide beam-to-column connections revealed 

similar results. Gentry and Wight [28] analyzed 4 exterior wide beam-to-column 

connections and observed that satisfactory performance of wide beam-to-column 

connections can be ensured by limiting the amount of wide beam longitudinal 

reinforcement anchored in the transverse beam and beam width to column width 

ratio. Under these conditions, it is stated that wide beam-to-column connections 

could become preferable in seismic zones because of the reduced reinforcement 

congestion in the column core. 

In the research program by LaFave and Wight [13] more encouraging results are 

obtained. From 3 exterior wide beam and 1 conventional beam-to-column 
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connections with slabs, it was observed that even with a beam width to column width 

ratio more than 3 and more than 2/3 of longitudinal reinforcement of beam anchored 

outside the column core, connections still performed satisfactorily. 

2.6 ANALYTICAL MODELING OF CONNECTIONS 

Performance of a connection is related to the combination of several inelastic 

response mechanisms. Lack of knowledge on some of the parameters possibly 

effective in the behavior of connections and insufficiency of experimental data 

regarding the effect of each and every parameter by itself makes it difficult to 

constitute an inclusive model on beam-to-column joints. Even today, despite of 

increasing number of experimental and analytical investigations, beam-to-column 

connections are generally assumed as rigid or elastic for modeling purposes, leading 

to invalid estimation of the response of the whole structure such as underestimation 

of story drifts and increased stiffness. Research on analytical modeling of beam-to-

column connections aims to idealize the multivariate connection behavior in an 

accurate, simple and comprehensive model that is practically applicable. 

Basic elements used to represent connection behavior in structural modeling can be 

named as plastic hinges, rotational springs and super models. Each element has its 

own advantage and disadvantage from the point of simplicity and accuracy.  Also 

rigid end zones are commonly used in order to account for finite size of the 

connections. A number of beam-to-column connection models created up to date will 

be discussed in the following paragraphs.   

One of the primary research on analytical modeling of beam-to-column connections 

is carried out by Anderson and Townsend [29] in 1977. From the two degrading 

trilinear models suggested, the one considering the effect of degrading concrete and 

connection stiffness is underlined to have a significant effect on the response of the 

reinforced concrete structures. 

In 1988, El Metwally and Chen [30] studied the ‘Moment-Rotation Modeling of 

Reinforced Concrete Beam-Column Connections’. The proposed model is defined as 

a concentrated rotational spring the stiffness of which is determined based on the 
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Kim et al. [37] conducted a statistical research on the influence of several parameters 

on the shear strength of beam-to-column connections in 2007. Whereas the basic 

parametric model contains eight variables; less significant ones are omitted in the 

later steps. The proposed basic joint shear strength prediction model can be seen 

below.  

pro sh,pro-0.00513 0.0151 0.0241 -0.301 0.0886 0.236 1.28 0.765b b
j c

req c sh,req c

s Ab h
v =1.04( ) ( ) ( ) ( )  x (JI) (BI) (JP) (f ' )

s b A h

                   (2.33) 

where, vj = joint shear strength in MPa. 

JP = 1.0 for interior connections, 0.75 for exterior connections, 0.50 for 

knee connections, 

 JI  = joint transverse reinforcement index [(ρ.fy)jointreinf/f’c], 

 BI  = beam reinforcement index [(ρ.fy)beamreinf/f’c], 

Spro = proposed spacing of joint transverse reinforcement, 

Sreq = recommended spacing of joint transverse reinforcement. 

The basic model was evaluated later and after a step wise observation of less 

significant parameters of the model, the prediction equation was simplified as below, 

to make it more practical. 

0.07 0.25 0.75
j cv (MPa)= αγ (JI) (BI) (f ' )

                   
(2.34) 

where,  JP =  1.0 for interior connections,  

0.7 for exterior  connections,  

0.4 for knee connections. 

 γ =  1.02. 
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CHAPTER 3 

3 DATABASE CONSTRUCTION 

DATABASE CONSTRUCTION 

 

 

3.1 OVERVIEW 

First step of the analytical study is the construction of a comprehensive and detailed 

database. A wide range of analytical and experimental studies have been investigated 

and a preliminary database composed of 160 beam-to-column connection 

subassemblies obtained from 29 different research projects is created. After a re-

evaluation of adequacy of the data, the number of specimens included in the final 

database is reduced to 114.  

Since the data collection for the beam-to-column connection tests is relatively more 

demanding than that of other structural members, extent and dependability of 

experimental results is strongly related to the instrumentation utilized during testing. 

Because of this reason, although the studies on connection subassemblies date back 

to 1960s, availability of detailed information is very limited. Therefore, main 

difficulty in constructing the database can be mentioned as the limited number of 

research projects with sufficient and dependable data, especially when the stress vs. 

strain relationships for the connection regions is considered. 

A large variety of beam-to-column connection subassemblies having different 

geometric, material and loading characteristics are presented in the database, 

however, certain limitations are taken into consideration, especially for connections 

that have uncommon geometric and material properties, in order not to lose the 

accuracy and applicability of the analytical model to be created. A general summary 

on the characteristics considered in the selection process of specimens composing the 

database are presented below. 
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3.1.1 Range of Specimen Properties 

Geometry 

Specimens having a wide range of geometric properties are investigated. In addition 

to connection subassemblies with conventional beam and column members, wide 

beam-to-column connections, eccentric connections, specimens that have varying 

column aspect ratios, and subassemblies with floor systems including transverse 

beams and/or slabs are incorporated to the database. The only exclusions are corner 

connections where two perpendicular beams meet and roof connections where the 

specimen has only a bottom column. 

Concrete Compressive Strength (f 'c) 

All specimens selected for the database have concrete compressive strengths varying 

between 19.30 MPa and 94.60 MPa, considering actual concrete strengths. As ACI 

352R-02 recommendations are followed as the main reference, specimens 

constructed using concrete compressive strengths exceeding 100 MPa (15000 psi) 

are excluded from the scope of this research. 

Eccentricity 

As being one of the main parameters investigated, 27 beam-to-column connections 

with eccentricity between beam and column centroidal axes are included in the study. 

Eccentricities vary from 0.125 bcolumn to 0.306 bcolumn for the selected specimens.  

Beam Width to Column Width Ratio 

The effect of the beam width to column width ratio on the behavior of connection 

regions is evaluated in terms of confinement provided by the   beams. The beam 

width to column width ratio ranges from 0.40 to 3.10. 

Transverse Shear Reinforcement Ratio 

Effect of confinement provided by the transverse reinforcement is investigated using 

specimens with a wide range of shear reinforcement ratios. Some selected specimens 
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have no shear reinforcement, whereas others have up to 2.40 % volumetric ratio per 

one layer of transverse reinforcement, the definition of which is given in Section 

4.2.2.4. 

Moment Strength Ratio (Mr) 

Flexural strength ratios of all the specimens are calculated considering the actual 

material properties. For specimens with slabs, effective flange width is defined based 

on ACI 318R-08 equations.  

Although the Mr values of the vast majority of specimens (104) are more than 1.0, 

which represents strong column weak beam behavior, few specimens (10) with 

flexural ratios smaller than 1.0 are also included in the database in order to 

investigate the effect of other parameters such as high yield strength of longitudinal 

beam bars. 

Axial Load on Column 

Among the specimens considered, maximum axial load on the column framing into 

the beam-to-column connection is 1243.24 kN (corresponding to 0.45 Ag×f'c), 

whereas no axial load is applied to some of the subassemblies. 

3.2 SELECTED SPECIMENS 

In this part of the report, the experiments which take part in the database is 

summarized. General properties of the specimens and the main parameters 

investigated are listed. 

Specimens of Durrani and Wight [18] are useful in monitoring the effect of presence 

of transverse beams and slab on the beam-to-column connection performance. From 

six interior specimens tested, three had transverse beams and slab, whereas other 

three had neither slab nor transverse beams. Joint transverse reinforcement was also 

one of the primary variables of the experimental investigation. The tests were 

conducted in 1982. 
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Tests carried out by Ehsani and Wight [9] in 1983 investigated the effect of 

transverse beams and slab on the performance of exterior beam-to-column 

connections. All six specimens were tested under cyclic lateral loading together with 

axial loading.  

In 1988, three beam-column slab subassemblages were tested by Kurose et al. [41] 

one of which was exterior. Two specimens also had transverse beams. The 

specimens with transverse beams were tested in two principal directions, one at a 

time, summing up to 5 analyses in total. Axial load was not applied to the columns. 

Specimens of Park et al. [12] were similar to the ones of Kurose et al., such that this 

group of specimens also included three subassemblies all with slabs and two of them 

with transverse beams. The specimens were loaded in both principal directions one at 

a time, one of which was exterior. The research was completed in 1989. 

Twelve specimens were tested by Alameddine and Ehsani [8] in 1990 with varying 

concrete compressive strengths, joint shear reinforcement ratios, beam and column 

longitudinal reinforcement ratios. The connection subassemblies were two 

dimensional and did not include slabs or transverse beams. All specimens had axially 

loaded columns. 

All four specimens of Raffaelle and Wight [24] had spandrel beam eccentricities 

with varying beam dimensions and reinforcements. Specimens had neither slabs nor 

transverse beams. The investigation was conducted in 1992. 

Gentry and Wight [28] investigated the behavior of exterior wide beam-to-column 

connections in 1992 by testing four specimens that had no slab or transverse beam. 

The column dimensions and reinforcement were the same for all specimens, whereas 

longitudinal reinforcement of the wide beams was altered. The columns were axially 

loaded.  

Quintero-Febres and Wight [16] investigated the performance of interior wide beam-

to-column connections in 1997. The specimens had neither a floor system nor axial 

load on the column.  
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In 1997, LaFave and Wight [13] conducted tests on exterior wide beam-to-column 

connections, similar to Gentry. In this test series, the subassemblies included slab and 

transverse beams. All four specimens were tested under cyclic loading in the wide 

beam direction, without any axial loading. One of the specimens had a conventional 

beam section in the loading direction for comparison of the behavior.  

Chen and Chen [42] explored the effect of eccentricity on the performance of interior 

beam-to-column joints. From the six specimens tested, all were eccentric except one. 

Four of the eccentric specimens, called as JS series, were constructed using spread 

ended beams with varying longitudinal reinforcement. The joints did not include 

transverse beams or slabs. The experimental study was carried out in 1997.  

Specimens of Teng and Zhou [43] were classified in two series composed of three 

specimens each. All specimens were interior and four of them were eccentric. 

Column height and transverse reinforcement ratio are the two altering parameters 

between series one and two. All specimens had axial load on columns in addition to 

lateral cyclic loading. The research project was completed in 2000.  

Tests of Shin and LaFave [27] were conducted in 2004. Four exterior beam-column-

slab connection specimens were tested, two of which had spandrel beam eccentricity.  

The lateral loading was applied in the spandrel beam direction without any axial load 

on the column.   

The main scope of the research carried out by Goto and Joh [26] in 2004 was 

eccentricity. From four of the interior specimens tested, one was concentric, whereas 

the beam and column axes of others’ did not coincide, with increasing eccentricities. 

While the first three specimens had similar joint shear reinforcement ratios, the last 

specimen was constructed with additional shear reinforcement in the joint region. All 

specimens had axial loads applied on the columns, but none had slab or transverse 

beams.  

Interior beam-to-column connections tested by Hwang et al. [44] were aimed to 

explore the significance of joint transverse reinforcement. The research was carried 

out in 2004. None of the specimens had transverse beams and/or slabs.  
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In 2005, Burak and Wight [14] tested three 3/4 scale exterior specimens. All three 

specimens had slab and transverse beams in addition to eccentric spandrel beams. 

Moreover, one of the specimens had a wide beam in the normal beam direction. 

Axial load was applied on the column of each subassembly. This experimental study 

differs from other selected eccentric connection tests, because the specimens were 

loaded in two principal directions, one plane at a time.   

Wong [45] tested seventeen beam-to-column connections in 2005 to observe the 

effect of several parameters such as the horizontal and vertical reinforcement ratios 

in the joint, the hooks of beam longitudinal bars, and anchorage. Four specimens in 

this test series are not included in the database, because beam longitudinal 

reinforcement that has no hooks extending inside the exterior joint creates an 

anchorage problem that is out of the scope of this report.  All specimens had axial 

load but no floor system.  

In their benchmark test series for the validation of mathematical models developed to 

define the behavior of connections, Shiohara and Kusuhara [46] tested six specimens, 

four of which were added to the database because of the lack of data on the 

maximum joint shear strength of two specimens. Different loading protocols and the 

confinement effect of surrounding beams were the primary parameters investigated 

in this study, which was completed in 2006. None of the specimens included 

transverse beams and slab, but the columns were axially loaded. 

In 2006, Lee and Ko [47] tested five specimens, three of which were eccentric. The 

test setup included axial load on columns but no transverse beams and slab. 

Specimens were classified in two groups with respect to the orientation of column. In 

the first group, column was oriented such that the loading was applied in the strong 

direction (parallel to longer side) and the second group was loaded in the weak 

direction.   

Li and Kulkarni [23] tested three wide beam-to-column connection subassemblies 

without slab, transverse beams, or axial load on the columns. The width of the 

column that the wide beam frames into was the main parameter of this experimental 

study completed in 2010.  
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One of the references mostly benefited from is the ACI SP-123, ‘Design of Beam-

Column Joints for Seismic Resistance’, which is published in 1991.The experiments 

and specimens which are discussed below are taken from the above mentioned 

document.  

In their experimental investigation, Joh, Goto and Shibata [48] explored the effect of 

geometric properties of interior joints, especially the eccentricity. Of the five 

specimens tested, four, two eccentric and two concentric ones, which had the shear 

stress vs. shear strain data available, are added to the database. Slab and transverse 

beams did not exist in the test setup, but axial load was applied on the columns.  

Main parameters investigated by Fujii and Morita [22] in 1991 were yield strength of 

beam bars, column axial load and amount of joint hoops. Half of the specimens were 

exterior and the other half were interior, all with axial loading of columns. 

Transverse beams and slab were not included in the test setup.  

In 2004, Kusuhara et al. [25] tested three interior specimens, two of which were 

eccentric. No axial load was applied on the columns and the specimens had neither 

slab nor transverse beams. The main parameters investigated were beam eccentricity 

and effect of transverse shear reinforcement in the joint. 

3.3 LABELING OF SPECIMENS 

The specimens are classified with respect to the significant geometrical properties 

such as the number of beams framing into the connection and slab presence in the 

final database. The types of connections and respective labeling is presented below, 

in Figure 3.1.  
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CHAPTER 4 

4 ANALYTICAL MODEL  

ANALYTICAL MODEL 

 

 

4.1 GENERAL DESCRIPTION 

Main purpose of this study is to develop an analytical model that accurately estimates 

the shear strength of beam-to-column connections and represents the key 

performance points of the shear stress vs. strain relationship. The model is kept 

simple enough so that it can be employed by practicing engineers while covering a 

variety of beam-to-column connections. 

A wide range of parameters related to geometric and material properties of the 

connections have been investigated. The influence of a variable is initially 

determined based on the results of prior experimental and analytical studies. Each 

parameter is evaluated by several different approaches and variation of the joint 

shear strength estimate for each parameter is monitored, with an attempt to obtain the 

best fit for the variable. As the study proceed, the influence of the variables are re-

evaluated with regard to their efficiencies in terms of reducing the total error and the 

number of effected specimens, leading to the omission of parameters with negligible 

effects.  

While obtaining the key points for both shear strength and shear strain, utmost 

importance is given to define the prediction related to physical quantities without 

using fixed coefficients as much as possible. Moreover, basic predictions of both 

shear strength and shear strain capacities of the connections are determined based on 

the properties of beams in the loading direction, which is explained in detail in the 

following sections. Basic prediction is later improved by employing variables 

defined in accordance with the characteristics of the connection. 



58 

 

While defining the variables reflecting the effect of geometric and material properties 

of the connections, indices are created in order to be able to represent the relative 

influence of the parameter mentioned. After that, various combinations of the 

previously defined indices are evaluated to find out the rate of influence on the 

connection performance, while keeping the variable as simple as possible. ACI 

352R-02 report has been used as the basic reference in definition of indices and 

determination of the adequacy of a parameter.  

Since the experimental data on the shear strength of connections is easier to access, a 

more detailed investigation on the shear strength prediction is carried out when 

compared to the determination of the shear strain expected in the beam-to-column 

connections.  

4.2 JOINT SHEAR STRENGTH PREDICTION 

4.2.1 Basic Joint Shear Strength Prediction (Vj0) 

The first step of joint shear strength prediction is the specification of a basic value 

related to the characteristics of the beam-to-column connections. Most of the prior 

research studies and current structural codes define certain shear capacity 

coefficients based on the location of the connection (interior or exterior) and the 

relative width of the beams framing into the connection (confined or unconfined). 

In this analytical study, instead of defining fixed coefficients with respect to the 

surrounding beam properties, a basic shear prediction value is obtained as the first 

step, considering the longitudinal reinforcement properties of the beams framing into 

the connection in the loading direction. In other words, the shear demand imposed by 

the beams is considered to be the basic indicator of the shear loading of the 

connection region. Then, other geometric and material properties of the connection 

are examined to modify the basic prediction and determine the capacity of the 

connection to bear the shear strength demand imposed by the beams. 

Basic shear strength prediction for joint shear strength is denoted by Vj0 and defined 

as the total shear force imposed by the beams calculated as the multiplication of the 
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top longitudinal reinforcement area multiplied by the yield strength for exterior 

joints, whereas total reinforcement area is used instead of top reinforcement area in 

the calculation for interior connections. Formulization of basic shear strength 

prediction can be shown as below. 

For exterior joints: Vj0 = i yi top(A  x f )             
(4.1a)  

For interior joints: Vj0 = i yi top i yi bottom(A  x f ) (A  x f )            
(4.1b) 

In order not to overpredict the shear force imposed by the beam on the joint, any 

force arising from strain hardening is neglected. 

The limitation applied on the basic shear prediction is on the maximum yield strength 

of longitudinal beam reinforcement. In order not to overestimate the shear capacity 

of the joint, 483.0 MPa limits the yield strength of longitudinal beam reinforcement, 

representing a 15% strain hardening of steel bars with 420.0 MPa yield strength. 

4.2.2 Adjustment Factors  

As mentioned earlier, geometric and material properties along with the loading 

conditions are the basic parameters identifying the strength versus strain response of 

beam-to-column connections. Throughout this study, several parameters are 

examined and relatively significant ones are included in the final joint shear strength 

definition. 

General methodology in determination of factors 

First, all major characteristics of a connection are defined as normalized variables. 

For that purpose, simple indices representing the effect of the considered 

characteristic are generated. Main purpose of these indices is to have a basis for 

comparison of different connection subassemblies that have similar properties.  

Then, the influence of each index on the behavior of the connection is investigated 

and an adjustment factor is obtained. This is accomplished by evaluation of priory 
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generated indices and optimizing the adjustment factor to adequately represent the 

effect of the considered characteristic on the behavior of the connection. 

The final step is the determination of the limits for each factor, if necessary, in order 

to prevent unrealistic influence of a parameter on the behavior. ACI 352R-02 

recommendations are taken as the benchmark for limitation purposes. 

4.2.3 Axial Load Factor 

Axial load applied on a column is proven to increase the joint shear strength because 

of the extra confinement it provides to the connection region.  Effect of axial load is 

represented by defining an axial load index based on normalization of the axial load 

by the gross column area. 

Axial Load Index (Ax) = N/Agf 'c                         (4.2)  

where, 

N = Axial load on the column, 

Ag = Gross column area  

From several trials to minimize the error, enhancing effect of axial load on the joint 

shear strength is best represented by half of the axial load index and the axial load 

factor is defined as: 

Axial Load Factor (AF) = (1+Ax/2)               (4.3) 

Although the confinement effect of axial load on the beam-to-column connections 

clearly enhances the shear strength capacity, in case of earthquake loading the axial 

load level on a column may fluctuate, which results in a decreased confinement 

effect than the proposed value. Since the experiments selected for the database were 

carried out under constant or no axial load, the proposed factor defines the effect of 

confinement provided under these circumstances. For design purposes, the possibility 

of fluctuating axial load level under seismic action should be considered and the 

axial load factor should be applied accordingly. 
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4.2.4 Slab Factor 

Experimental results of subassemblies that include slab reveal that beam-column-slab 

connections sustain higher shear stresses. Another important outcome that can be 

inferred is the additional confinement provided by slabs significantly diminishes the 

negative effect of eccentricity on shear capacity.  

Slab efficiency in joint shear strength enhancement is investigated based on the 

amount of additional longitudinal reinforcement placed in the slab. Effective slab 

reinforcement is considered to be the longitudinal reinforcement placed in the 

effective slab width as defined by the ACI 318R-08 equations described in Section 

2.3.2 of this report. 

To obtain the slab reinforcement index, additional longitudinal reinforcement area 

aligned in the loading direction in the effective slab width is compared with the 

effective beam reinforcement area considered for the basic shear strength prediction 

(Vj0). Since the area increase due to slab reinforcement is a direct indicator of shear 

strength enhancement of the connection, created index is directly used as the slab 

factor. 

Slab Factor (SF) = (Abeam,eff + Aslab,eff) / Abeam,eff              (4.4) 

where,  Abeam,ef f =   top beam reinforcement area for exterior connections, 

    total beam reinforcement area for interior connections, 

  Aslab,eff = slab reinforcement area in the effective slab width. 

As the study proceeds, it is noticed that excessive use of slab reinforcement, even in 

the effective slab width, does not enhance the shear strength as expected. In order to 

overcome this condition, a maximum effective slab reinforcement area derived from 

the minimum slab reinforcement ratio defined in ACI 318R-08 is computed. The 

maximum effective slab reinforcement area is limited to five times the minimum slab 

reinforcement area and slab reinforcement exceeding this limit is assumed to be 
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ineffective. This approach is preferred instead of specifying a fixed coefficient in 

order to make the limitation case-specific. 

Upper Limit of Aslab,eff  = 5 x min. Slab Reinf. Ratio 

where, 

min. Slab Reinf. Ratio is obtained as the minimum ratio given by the following 

three equations: 

= 
y

0.0018*420

f
  (fy in MPa)  

= 
y

0.0018*60000

f
  (fy in psi)             (4.5) 

≥ 0.0014  

The min. Slab Reinf. Ratio values for common reinforcement yield strengths are 

provided below:  

min. Slab Reinf. Ratio  = 0.0020 for slabs where deformed bars with yield 

strengths of 280 or 350 MPa (40 or 50 ksi) are used,   

= 0.0018 for slabs where deformed bars with yield 

strengths of 420 MPa (60 ksi) or welded wire 

reinforcement are used 

4.2.5 Surrounding Beam Factor 

Effect of surrounding beams in confining the joint region is one of the primary 

variables affecting the performance of beam-to-column connections. General 

tendency to account for the surrounding element conditions around beam-to-column 

connections is to assign certain coefficients in accordance with the number of beams 

framing into the connection. In this study, instead of establishing specific values 

based on number of beams, development of an index considering both the direction 

of the beam and the ratio of the width of the column face covered by the beam width 



63 

 

is preferred. The main reason to follow such an approach is to be able to represent 

the surrounding beam conditions accurately, not only depending on the number of 

beams but also considering the widths and directions of framing members. The 

resulting surrounding beam index is: 

Surrounding Beam Index (SBI): ∑ (bb,i/bc,i ×  reff,i)               (4.6) 

where, bb,i= beam width framing into the joint, 

  bc,i = column width where the beam frames into the joint, 

  reff,i= efficiency ratio of beam. 

Determination of the relative efficiency of confinement provided by the beams in the 

loading direction compared to the transverse beams is based on the variation of 

coefficients specified in ACI 352R-02 recommendations and denoted by reff,i.  

Determination of Efficiency Ratio (reff): 

Relative efficiency of a beam in confining the joint region is addressed in terms of 

the direction of beam. ACI 352R-02 joint shear coefficients for connections under 

load reversals are used as a guide in determination of efficiency ratios for 

confinement provided by beams in the loading and transverse directions. In ACI 

352R-02, confinement by two beams in the loading direction has the same coefficient 

with confinement by one beam in the loading direction and two in the transverse 

direction. In other words, confinement provided by two transverse beams is 

considered to be equal to the confinement provided by one beam in the loading 

direction. Referring to ACI 325R-02, any beam in the loading direction is accepted to 

be twice as efficient as a beam in the transverse direction. In this manner, efficiency 

ratio for a transverse beam is 1/6, whereas the ratio is 2/6 for a beam in the loading 

direction, summing up to 1 for a fully surrounded connection by four beams. Beam 

confinement is considered only when the beam width covers 3/4 of the column face, 

to be compatible with ACI 352R-02 Recommendations. 
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After determination of respective confinement indices for each beam-to-column 

subassembly, the factor for the enhancement of joint shear strength by surrounding 

beams is determined as: 

Surrounding Beam Factor (SBF) = (1+SBI/4)               (4.7) 

4.2.6 Shear Reinforcement Ratio Factor 

The confinement provided by the joint shear reinforcement depends significantly on 

the selection of the transverse reinforcement ratio. Volumetric transverse 

reinforcement ratios are computed for the gross and core sections of the joint and for 

the effective volume that contains one layer of joint shear reinforcement in each 

section to observe which gives the best correlation with the confining effect. The 

definition of each volumetric ratio is given below: 

total

core

s,one s,one
gross,total

c c b

s,one s,one
core,total

c,core c,core b,core

s,one s,one
gross,one

c c

s,one s,one
core,one

c,core c,core

  
 

  

  
 

  

 
 

  

 
 

  

A x L x n
ρ = 

h x b x d

A x L x n
ρ = 

h x b x d

A x L
ρ = 

h x b x s

A x L
ρ = 

h x b x s                    

(4.8) 

where, As,one = cross sectional area of transverse reinforcement,  

Ls,one = total length of transverse reinforcement for one layer, 

aligned   in the direction of loading, 

ngross = number of transverse reinforcement layers in total beam 

height, 

ncore = number of transverse reinforcement layers between top and 

bottom longitudinal beam reinforcement, 

s = transverse reinforcement spacing, 
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hc,bc = depth and width of column, respectively, 

hc,core,bc,core = depth and width of confined column section, 

db,db,core = effective beam depth and distance between top and 

bottom longitudinal beam reinforcement, respectively. 

After the selection of the joint shear reinforcement ratio that has the best correlation 

with the confinement effect, the joint shear reinforcement index is defined as the 

enhancement or deterioration of confinement by the use of transverse reinforcement 

over or under a limiting value, respectively. Experimental data in the constructed 

database is examined to determine an optimum value for this limit. Volumetric 

transverse reinforcement ratios ranging from 0.5 % to 2.5 % are evaluated and 0.75 

% core shear reinforcement ratio for the effective volume that contains one layer of 

shear reinforcement (ρcore,one) is determined to be the best indicator of the transverse 

reinforcement confinement effect. However, a limiting value of 1.00 % is used in the 

definition of the index in order not to complicate the equation, since the error 

induced by changing the limit from 0.75% to 1.00% was negligible.  

SRI = ρcore,one- 0.01                   (4.9) 

The shear reinforcement factor deteriorates the confinement effect for connections 

with core reinforcement ratios for the effective volume that contains one layer of 

shear reinforcement less than 1.0 % and enhances it for ratios higher than 1.0 %.  

Shear Reinforcement Factor (SRF) = 1+10 × SRI                         (4.10) 

4.2.7 Shear Reinforcement fyield Factor 

Another parameter that influences the efficiency of transverse shear reinforcement 

has been identified as the yield strength of the shear reinforcement. From the large 

spectrum of yield strength values tested, 483.0 MPa, which corresponds to a 15% 

strain hardening of 420 MPa reinforcement, is determined as a limiting value for the 

transverse shear reinforcement to be effective under high shear forces. It is observed 



66 

 

that as yielding of transverse shear reinforcement in the connection region is delayed, 

performance of the connection region improves. 

The proximity of the yield strength to the limit is identified as the indicator of 

performance of the transverse reinforcement, after normalizing the difference by 

483.0 MPa. The equations for the yield strength index (YSI) and yield strength factor 

(YS) are given below: 

Yield strength index, y483.0-f
YSI=( )

483.0               
(4.11) 

Yield strength factor, YS = (1-YSI/4)              (4.12) 

4.2.8 Wide Beam Factor 

For wide beam-to-column connection specimens, the longitudinal beam 

reinforcement outside the effective joint width does not function as effective as the 

reinforcement passing through the joint. Prior experimental research reveal that even 

at specimen failure, some of the exterior longitudinal beam bars do not reach their 

yield strength, although all the interior bars are yielded. Consequently, the basic 

shear strength prediction (Vj0), which assumes all the longitudinal bars are yielded, is 

an over estimation for wide beam-to-column connections. 

In order to overcome this problem, an index representing the longitudinal 

reinforcement layout of the wide beam framing into the connection region is defined. 

Main parameter that identifies the over estimation of shear strength capacity of wide 

beam-to-column connections is determined to be the longitudinal reinforcement area 

passing outside the joint width, in accordance with the wide beam effective joint 

width definition aforementioned in ‘Section 2.6, Wide Beam-to-Column 

Connections’.  

Wide beam index (WBI) is specified as the ratio of the longitudinal reinforcement 

area passing inside the joint width to the total area of beam bars. For interior 

connections, area of both bottom and top bars passing through the effective joint 

width is divided by total reinforcement area, whereas for exterior connections, the 
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area of top beam bars inside the joint width is divided by the total area of top beam 

bars. 

Wide Beam Index (WBI) = Abj,wide/ Awide                   (4.13) 

where, Awide : total area of wide beam bars, 

Abj,wide : area of beam bars passing through the effective joint width. 

Strain distributions observed in wide beam-to-column connections also reveal that, 

even if the beam bars away from the joint core do not reach their yield strength, they 

still experience considerable strains and cannot be seen as totally ineffective. In order 

to account for contribution of bars passing outside the core, square root of wide beam 

index is taken as the wide beam factor.  

To limit the Wide Beam Factor in order not to create excessive strength reduction, in 

accordance with the geometrical properties of wide beam-to-column connections, 

minimum value of WBF is taken as the ratio of effective joint width to wide beam 

width: 

Wide Beam Factor (WBF) = WBI  ≤  bj,wide/bw,wide              (4.14) 

4.2.9 Bond Factor 

The bond between longitudinal reinforcement of the beam in the loading direction 

and concrete is one of the vital parameters affecting the performance of beam-to-

column connections, especially when subjected to cyclic loading. In the light of 

experimental data, it is obvious that both shear strength and shear strain response of a 

connection is strongly related to the bond characteristics.  

The bond strength is evaluated in based on the column width to beam bar diameter 

ratio and the yield strength of longitudinal beam reinforcement. In determination of 

the bond adequacy, ACI 352R-02 recommendations (which are previously stated in 

section 2.3.3) are taken as reference. Bars passing through the column core and 

outside the column core are evaluated separately. Limiting values to define the 
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optimum bond conditions are restated below and defined as the bond limit in 

description of the bond index. 

For bars passing through the column core: 

(column) y

b(beam bars)

h f
20 20   (psi)

d 60000
 

               (2.25) 

(column) y

b(beam bars)

h f
20 20   (MPa)

d 420
 

 

For bars passing outside the column core: 

(column) y

b(beam bars)

h f
24 24   (psi)

d 60000
 

               (2.26)
 

(column) y

b(beam bars)

h f
24 24   (MPa)

d 420
 

 

Longitudinal beam bars evaluated as ‘bonded’ or ‘not bonded’ with respect to the 

aforementioned limits. If the bars are evaluated as ‘not bonded’, extent of bond 

deficiency is determined by comparing the ratio of beam bar diameter to column 

depth with the respective limit and termed as ‘bond index’ (BI) of the bar. 

Bond Index (BI) =
 

column b,beambars(h /d )

Bond Limit               
(4.15) 

Weighted average of bond indices of all beam bars is taken as the indicator of bond 

resistance of the connection, forming bond factor. 

Bond Factor (BF) = i i

i

(BI *A )

A

                

(4.16) 

where, Ai = Cross sectional area of longitudinal beam bar. 
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4.2.10 Eccentricity Factor 

Eccentric connections are observed on exterior faces of many reinforced concrete 

buildings. Prior research indicated that eccentricity decreases the shear strength 

capacity and increases deformations by means of additional shear forces created 

within the connection region. In this research project, the effect of eccentricity on the 

connection behavior is analyzed following ACI 352R-02 recommendations by 

checking the ratio of the distance between the beam and column centroidal axes to 

the column width.  

For specimens that include a floor system, the deterioration of joint strength due to 

eccentricity is minimized, whereas for specimens without slab, eccentricity values 

exceeding one-eighth of column width is known to decrease shear strength. 

Accordingly, effective part of the eccentricity (eeff) is taken as the distance exceeding 

one eighth of the column width. Eccentricity index is the ratio of effective 

eccentricity to column width. 

Eccentricity Index (EI) = eeff/column width  

where, eeff = eccentricity – bc/8.                                    (4.17) 

The deterioration of the shear strength capacity of an eccentric connection without 

slab is observed to be proportional to 25% of eccentricity index.  

Eccentricity Factor (EF) = 1-EI/4                          (4.18) 

For connections with slabs, effect of eccentricity is negligible based on prior 

experimental and analytical research, so if there is a floor system, the effect of 

eccentricity is neglected in the model. 

4.2.11 Summary of Joint Shear Strength Prediction 

The joint shear strength prediction for selected experiments in the database is 

presented as a summary in Table 4.1. Basic shear strength prediction, adjustment 
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factors and resultant joint shear strength prediction are listed for each specimen. The 

resultant joint shear strength (Vj,final) is: 

Vj,final = Vj0 (AF) (SF) (SBF) (SRF) (YS) (WBF) (BF) (EF)            (4.19) 
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j,experimental j,proposed

j,experimental

V -V
Error = 

V
      

         (4.20)

Absolute Error = Error
       

         (4.21) 

Error
Average Error = 

n
                         (4.22) 

 

where,  Vj,experimental  = The experimental value of joint shear strength, 

 Vj,proposed  = The analytical prediction of joint shear strength, 

 n = number of specimens. 
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database. Since the proposed shear strength, Vj,pro, considers the effect of several 

parameters, the shear strength values determined using Vj,pro are more accurate than 

both ACI 352R-02 and TEC 2007 capacity values. Although the predicted shear 

strength values are not always on the conservative side, the average error for Vj,pro is 

only 8.92%. 

4.2.13 Efficiency of Shear Strength Adjustment Factors 

In Table 4.4, the effect of each variable on the accuracy of the joint shear strength 

prediction is evaluated. The variation of the average error with the application of 

each parameter is examined both for only the specimens effected by that parameter 

and for the total database. Efficiency of each parameter, which indicates the 

enhancement of prediction accuracy, is also investigated by comparing the error of 

the shear strength prediction when the parameter is considered (error with parameter) 

with the error when the parameter is not considered (error without parameter). The 

error for the cases when the parameter is considered or not and the efficiency are 

computed by the equations given below: 

j,proposed j,exp

j,exp

V -V
Error for each specimen = 

V

            

(4.23) 

Error for each specimen
Error

n
                (4.24) 

where,  n =If the parameter is considered, n is equal to the number of 

specimens effected by the parameter,  if not, n is the total 

number of specimens. 

Vj,proposed = Joint shear strength that includes the effect of 

parameter for error with parameter and the corresponding 

parameter is neglected for error without parameter 

Error without Parameter - Error with Parameter
Efficiency = 

Error with Parameter           
(4.25) 
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4.3.2 Prediction of Performance Point Pinel 

The target point in generation of the analytical model for the shear force vs. shear 

deformation response of beam-to-column connections is determined as the point 

where inelastic activity of the connection is concentrated, Pinel. This point is selected 

as the target, because the strain can be determined with high accuracy due to the 

significant stiffness decrease at this point. Additionally, as many of the experimental 

joint shear force vs. shear strain response envelopes do not provide data on Pmax and 

Pfinal due to the limitations of either the test setup or the instrumentation, Pinel 

constitutes the most reliable point for shear strength prediction of connections. 

Basic Joint Shear Strain Prediction for Pinel 

For the first prediction of the joint shear strain at point of inelasticity, a procedure 

similar to the joint shear strength prediction is followed. First, all shear force vs. 

shear strain data are digitized using a simple graph digitizing software called 

‘Engauge Digitizer’. The digitized shear force vs. shear strain curves are linearized 

for four performance points as illustrated in Figure 4.2. From the data acquired, the 

ratio of the shear force of a joint at Pinel to the maximum joint shear strength is 

determined as 0.804. The basic joint shear force at point of inelasticity is determined 

as 80.4% of basic joint shear strength. 

Vj0,inel = 0.804 Vj0                     (4.26) 

Accordingly, basic joint shear stress at point of inelasticity, vj0,inel is determined as 

below. 

vj0,inel = j0,inel

ACI,352

V

A
                      (4.27) 

In order to predict the shear strain at point of inelasticity, an effective shear modulus, 

‘Geff’, based on elastic shear modulus is defined. Elastic shear modulus is determined 

as: 



85 

 

Gelastic = 
E

2(1+ν)
                 (4.28) 

where,  E = modulus of elasticity, 

 ν  = poisson’s ratio, 0.2.  

Determination of the effective shear modulus is carried out using prior experimental 

data on the shear force vs. shear strain performance curves. The modulus of elasticity 

values for both the elastic and cracked regions of these curves are calculated and the 

average ratio of these two values is obtained to be 0.35, when all the specimens are 

considered. Since the shear modulus and modulus of elasticity values are linearly 

correlated, effective shear modulus of the connection to be used in the prediction of 

second performance point is determined to be 35% of elastic shear modulus. 

Geff = Gelastic × 0.35                 (4.29) 

Consequently, basic prediction of the shear strain at Pinel is given in Equation 4.30. 

γinel,basic = j0,inel

35

v

G   
                    (4.30) 

Determination of Final Prediction for Pinel: 

Prior experimental research proved confinement significantly affects the shear force 

vs. shear strain response of a beam-to-column connection. In order to reflect the 

effect of confinement by surrounding members and transverse shear reinforcement, 

the basic shear strain prediction is improved using priory computed surrounding 

beam index (SBI) and transverse shear reinforcement confinement factor (SRF). 

Since confinement is inversely proportional to the shear strain magnitude, basic 

prediction is divided to the above mentioned parameters to generate the final shear 

strain prediction for performance point Pinel, γinel. 

γinel = inel,basicγ

SBI x SRF                  
(4.31)  
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Joint Shear Strength Prediction Equations 

Vjmax =Vj3 = Vj0 (AF) (SF) (SBF) (SRF) (YS) (WBF) (BF) (EF)           (4.35) 

For exterior connections,  Vj,cr  = Vj,max × 0.44, 

Vj,inel  = Vj,max × 0.81,            (4.36) 

Vj,final = Vj,max × 0.72. 

For interior connections,  Vj,cr  = Vj,max  × 0.40, 

Vj,inel  = Vj,max × 0.80 ,            (4.37) 

Vj,final = Vj,max × 0.87. 

Joint Shear Strain Prediction Equation: 

inel = inel,basicγ

SBI x SRF
.                 (4.38) 

Although the basic shear strain prediction is obtained for performance point Pinel, the 

equations given below are given with respect to the shear strain at maximum shear 

force, in order to be compatible with the shear strength prediction.  

For exterior connections,  max = inel × 2.49,  

    inel  = max × 0.40,            (4.39) 

cr = max × 0.11, 

final = max × 2.65. 

For interior connections,  max  = inel × 2.77,  

    inel  = max × 0.36,             (4.40) 

cr  = max × 0.09, 
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Summary of Performance Points for Interior Connections 

Pcr; cr = max × 0.09,  Vj,cr  = Vj,max × 0.40. 

Pinel; inel  = max  × 0.36,  Vj,inel = Vj,max × 0.80.                                (4.42) 

Pfinal; final = max  × 2.83,   Vj,final = Vj,max × 0.87. 
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CHAPTER 5 

5 VERIFICATION OF THE JOINT MODEL 

VERIFICATION OF THE JOINT MODEL 

 

 

5.1 OVERVIEW 

Developed analytical model to predict the beam-to-column connection behavior in 

terms of shear strength and shear strain response is implemented in the computer 

environment for the purpose of verification. Verification process is carried out using 

the experimental data acquired from prior research. Computer models of beam-to-

column connection subassemblies previously tested under cyclic loading are 

generated and the compatibility of analytical results with experimental results are 

monitored.  

 The software ‘OpenSees’ [49], the ‘Open System for Earthquake Engineering 

Simulation’, is selected for analytical verification of the model. Main properties of 

OpenSees, which are influential in the selection process of the software, are the 

variety of structural elements, the consequent freedom provided to the user while 

modeling and a number of unique material properties, such as the availability of 

identifying the pinching characteristics of hysteretic materials, which is not currently 

possible with most of the available software. Also, since OpenSees is an open source 

computing framework, a transparent approach is maintained throughout the 

computing process, leading to a more research oriented analytical modeling. On the 

other hand, main disadvantages of the software may be specified as the lack of user 

interface and requirement of full text input, modeling and output files, leading to 

complicated post processing procedures. Brief description of OpenSees is presented 

in the following paragraphs. 
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OpenSees Software Framework 

OpenSees is described as ‘a software framework for developing applications to 

simulate the performance of structural and geotechnical systems subjected to 

earthquakes’ [49]. Goals of the software framework are indicated as, 

 new open-source code development, 

 education, 

 community discussion. 

Fundamental advantages of OpenSees software framework can be listed as, 

 availability of large variety of materials, elements and analysis alternatives, 

 open source modeling rather than a black box approach, 

 goal oriented improvement of computational and modeling properties by 

means of continual discussion and direct contact with developers. 

5.2 DESCRIPTION OF ELEMENTS 

Two different models are generated representing interior and exterior beam-to-

column connections for analytical verification process. Beam and column elements 

are linked through the connection element. Cyclic loading histories of tested 

subassemblies are applied from the beam or column end depending on the 

experimental loading scheme.  

Detailed descriptions of elements composing the connection model are listed in the 

following sections. 

5.2.1 Beam and Column Elements 

Modeling of beams and columns framing into the joint is carried out using elastic 

beam column element of OpenSees with zero length rotational springs placed at their 

end sections. The reason for using such a combination of elements rather than the 

beam with hinges element already implemented in OpenSees is to be able to control 

the moment rotation response of beams and columns, specify the length of the 
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longitudinal elements where the inelastic activity is concentrated (plastic hinge 

length) and also define the cracked section properties of beams and columns in the 

elastic parts. 

Definition of Elastic Regions of Beams and Columns 

Required input parameters for the elastic beam column element of OpenSees are the 

cross sectional area, modulus of elasticity and moment of inertia of the element. 

Modulus of elasticity is defined in accordance with the ACI 318R-08 provisions, 

using the compressive strength of concrete for the elements:  

c cE 4700 f '  (fc in MPa)                             (5.1) 

Additionally, effective stiffness determination of beams and columns are carried out 

in accordance to the ‘Update to ASCE/SEI 41 Concrete Provisions’ published in 

2007, with the exception of beams with slabs. The proposed cracked stiffness 

definition relates the stiffness of an element to the level of axial load. Calculation of 

stiffness properties of beams without slabs and columns are given in Equation 5.2. 

EIeff/EIg = 0.3    for P/Agfc < 0.1 

EIeff/EIg = 0.3 + (P/Agf’c-0.1)  for 0.1 ≤ P/Agfc < 0.5                         (5.2) 

EIeff/EIg = 0.7    for 0.5 ≤ P/Agfc  

In this document for beams with effective slab widths, the cracked moment of inertia 

is taken as the stiffness of the web of the beam, assuming the flange parts are 

ineffective. However, in this research project, a better match is obtained with the 

experimental data, when the effective stiffness values computed from Equation 5.2 

is utilized for specimens with slabs, rather than the stiffness values for the web of the 

beam. 

Figure 5.1 illustrates the comparison of ASCE/SEI 41 updated stiffness definition 

with experimental data. 
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z : shear span, distance of critical section to point of inflection  

5.2.2 Beam-to-Column Connection Element 

The connection model proposed by Alath and Kunnath in 1995 is taken as the basis 

for defining the properties of beam-to-column connection elements used in OpenSees 

models of this analytical study. This model is preferred due to several features such 

as the control the user have on defining the load vs. deformation relationship, when 

compared to the models available in commercial software, such as Perform 3D [40], 

and simplicity of application of this model when compared to more detailed models 

that contains numerous springs, the properties of which cannot be accurately defined. 

This OpenSees connection model does not include bar slip response, however, since 

the influence of beam bar slip on connection behavior is already introduced explicitly 

in the analytical equations defined in Chapter 4, the above mentioned more detailed 

connection models are not required to be employed in the analysis. 

The connection model is composed of 2 parts, rigid end zones of beams and columns 

representing the finite length of these members enclosed in the connection region and 

a rotational spring representing connection shear force and shear strain 

characteristics. The spring is used to connect two nodes defined at the same location, 

each of which is utilized to connect the longitudinal members oriented in one 

principal direction, either the columns or the beams. Since the working mechanism 

of this model resembles that of scissors, the connection model is named as ‘the 

scissors model’. (Figure 5.2) 
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Definition of the material in the model and related explanations are as follows: 

‘uniaxialMaterial Pinching4 $matTag $ePf1 $ePd1 $ePf2 $ePd2 $ePf3 $ePd3 $ePf4 

$ePd4 $eNf1 $eNd1 $eNf2 $eNd2 $eNf3 $eNd3 $eNf4 $eNd4 $rDispP $rForceP 

$uForceP $rDispN $rForceN $uForceN $gK1 $gK2 $gK3 $gK4 $gKLim $gD1 

$gD2 $gD3 $gD4 $gDLim $gF1 $gF2 $gF3 $gF4 $gFLim $gE $dmgType’.[40] 

where, 

$matTag  : Material tag. 

$ePf1 - $ePf4  :Force values assigned to the positive performance points. 

$ePd1 - $ePd4 :Deformation values assigned to the positive performance 

points. 

$eNf1 - $eNf4  :Force values assigned to the negative performance points. 

$eNd1 - $eNd4 :Deformation values assigned to the negative performance 

points. 

$rDispP :Ratio of the deformation at which reloading occurs to the 

maximum deformation  

$rForceP :The ratio of the force at which reloading occurs to the force at 

maximum deformation, 

$uForceP :The ratio of strength developed upon unloading from negative 

load to the maximum strength developed under monotonic 

loading. 

$rDispN :The ratio of the deformation at which reloading occurs to the 

minimum historic deformation demand, 

$rForceN :The ratio of the force at which reloading begins to the force 

corresponding to the minimum historic deformation demand, 
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Lowes and Altoontash [34] also developed a calibration procedure for the hysteretic 

behavior and cyclic degradation parameters of the Pinching4 material. The presented 

parameters were generated using the experimental data by Stevens et al. [52], which 

had an extremely pinched behavior that resulted in a deviation from the assigned load 

deformation points for the material.  

In another study performed using pinching4 material, Çelik and Ellingwood [53] 

presented a simple definition of pinching parameters, which leaded to satisfactory 

results. Moreover, since the degradation parameters for deformation and force were 

assumed to be zero, the hysteretic material responded following exactly the load 

deformation points defined by the user.  

In this analytical study, since the basic goal in using the Pinching4 material is to be 

able to address the previously generated performance points for connection response 

defined in Chapter 4, damage parameters for reloading stiffness and force 

degradation are also assumed to be zero and pinching parameters are taken as the 

ones presented in the study by Çelik and Ellingwood. 

uForceP = uForceN = 0.10                (5.4a) 

rForceP = rDispP = dForceN = dDispN = 0.15             (5.4b) 

 

The unloading stiffness degradation parameters are taken as defined in the 

‘Pinching4 Uniaxial Material Model Discussion’ [49]:  

[gK1  gK2  gK3gK4 ]  = [1.0  0.2  0.3  0.2  0.9]               (5.5) 

where, 

gK1 gK2 gK3 gK4 = Cyclic degradation values for unloading stiffness degradation 

It is observed that the analytical results have a satisfactory match with the 

experimental data when the above mentioned parameters are used in the cyclic 

loading of specimens. 
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Rotational spring moment is expressed in terms of shear forces on the beams as: 

b
j b b

L
M  = (V L+V R)*

2
                (5.11) 

Replacing beam shear forces in Equation (5.11) with Equation (5.10), 

b
j j

b j b

c

 L
M  =  V *

L -w L
2*( )

2*jd 2*L


               (5.12) 

Simplifying the Equation (5.12), the joint moment arm can be finally expressed as, 

ma
j b

c

 1
J = 

1-(w / L ) 1
( - )

jd L

                (5.13) 

The symbols used in the derivation process are explained below: 

 PT = axial load on the top column, 

 PB = axial load on the bottom column, 

 VC  = lateral load applied to the top column, 

 VbL = shear force imposed by the left beam, 

VbR = shear force imposed by the right beam, 

MCT = moment imposed by the top column,  

MCB = moment imposed by the bottom column, 

MBL  = moment imposed by the left beam,  

MBR  = moment imposed by the right beam, 

TBL = tension force on the top reinforcement of the left beam, 

TBR = tension force on the top reinforcement of the right beam, 
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CBL = compression force on concrete for the left beam, 

CBR = compression force on concrete for the right beam, 

wj = width of the beam and column intersection region, equal to the 

depth of the column, 

hj = depth of the beam and column intersection region, equal to the depth 

of the beam. 

5.4 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

In this section of the document, results obtained from the analyses performed using 

OpenSees are compared with experimental data in order to verify the accuracy of the 

developed model. Primarily, the joint shear force vs. shear strain responses of the 

connections are used to verify the analytical model, if available, since this curve 

directly represents the connection behavior. Moreover, in order to consider the global 

response of the subassemblies, the lateral loads vs. displacement relationships are 

presented for each specimen.  

Specimens of Burak and Wight [14] are used as the primary source of the 

verification, due to the availability of detailed data. Then, specimens of Raffaelle and 

Wight [24], Kurose et al. [41] and Chen and Chen [42] are examined for both lateral 

load vs. lateral drift and joint shear stress vs. strain response evaluation.   

5.4.1 Specimens of Burak and Wight 

Specimens tested by Burak and Wight [14] constitute an important source for 

verification of the model, because most of the parameters studied for model 

development are present in this experimental series, such as floor slab, eccentricity in 

the loading beam direction, transverse beams and wide beam-to-column connections.  

Specimen 1, Spandrel Beam Direction (1-S) 

The first specimen of the test series is loaded eccentrically in the direction of the 

spandrel beam. The beam in the loading direction frames into a square column and 
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The last specimen is very similar to Specimen 3 as only the height of the beam is 

increased to 558.8 mm (22''), whereas the longitudinal reinforcement and eccentricity 

ratios were kept constant. An important difference of Specimen 4 is the placement of 

6 layers of transverse reinforcement in the joint region, instead of 3, which was the 

case for other specimens in this test series. 

As can be seen in Figure 5.19, the overestimation of joint shear strength vs. strain 

relationship for the connection leads to a relatively higher estimation of lateral load 

vs. story drift response of the specimen. Although the general behavior of the 

specimen is presented with the connection model, the shear strength response of the 

connection could not be predicted as accurately as for the prior specimens. 

An important property of the beam in the loading direction is its narrow shape with a 

beam depth to beam width (hb/bb) ratio of 2.93. Since the number of specimens with 

high hb/bb ratios is limited, the effect of this parameter could not be considered in the 

joint shear strength prediction model. The effect of the inadequate confinement 

provided by the narrow beams on the response of beam-to-column connections is one 

of the areas that need further experimental and analytical research. 

5.4.3 Specimens of Kurose et al. 

In the experimental research program carried out by Kurose et al. [41], three 

reinforced concrete beam-to-column connections with floor slabs were tested under 

bidirectional reversed cyclic loading. The main parameters investigated were the 

presence of transverse beam and variation of slab reinforcement. From the 5 analyses 

performed, 1 is for exterior beam-to-column connections, whereas the rest are for 

interior connections. 

In the comparison of analytical and experimental shear strength vs. shear strain data 

of Specimens of Kurose, it should be noted that the experimental shear response data 

provided was highly pinched and irregular. Accordingly, the main point considered 

in the evaluation of analytical joint shear response is the accuracy of general 

behavior of the connection, rather than the descending portion of the response 
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For specimens with low joint shear strain values, as for the specimen 1-S, the rigid 

connection response results in a relatively close lateral load vs. story drift curve with 

the connection model. However, for specimens with high joint shear deformations, 

the assumption of rigid beam-to-column connections clearly leads to an extensive 

underestimation of total story drift. For both specimens 2-S and 3-S, the connection 

model represents the structural behavior much more accurately and realistically. 

Figures 5.33, 5.34 and 5.35 clearly indicate that the assumption of rigid connection 

regions leads to underestimation of story drifts and should not be used in design and 

analysis. The use of inelastic beam-to-column connection models results in more 

conservative story drift estimations and more accurate assessment of the load vs. 

deformation behavior for the whole structure and each member. 
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CHAPTER 6 

6 SUMMARY AND CONCLUSIONS 

SUMMARY AND CONCLUSIONS 

 

 

6.1 SUMMARY 

The purpose of this thesis was to develop an analytical model that defines the shear 

response of beam-to-column connections subjected to cyclic loading. The proposed 

model is intended to be applicable for a wide variety of connections yet simple 

enough to be convenient for practical use. 

Primarily, a comprehensive database of experimental research on beam-to-column 

connection specimens is generated, including different types of connections with a 

wide range of geometric and material properties. After the construction of the 

database, the properties of the selected specimens are evaluated in order to define a 

joint shear strength prediction procedure considering the key properties of beam-to-

column connections. 

The generation of the shear strength prediction model begins with a basic joint shear 

strength definition based on the imposed loads on the connections from the beams in 

the loading direction. The proposed basic joint shear strength of the connections is 

later improved by adjustment factors, which are specified with respect to the 

geometric and material properties of the connections. After evaluation of the 

influence of key parameters on the shear strength capacity of the connections in the 

light of prior experimental and analytical research, a detailed shear strength 

prediction model is developed which is applicable to a wide variety of connections.   

The following step in construction of a response model for beam-to-column 

connections under reversed cyclic loading is the determination of basic shear strain 

and shear strength performance points. For that purpose, major performance points 
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for the shear response, Pcr, Pinel, Pmax and Pfinal are specified using the experimental 

joint shear force vs. shear strain data. Since Pinel is the point that can be determined 

accurately among the four performance points, a prediction procedure, based on the 

basic joint shear strength is proposed to define Pinel. Shear force and  shear strain 

values of the other performance points are determined relative to Pinel and the 

performance curves defining the shear force vs. shear strain relationship for exterior 

and interior beam-to-column connections are generated. 

The verification of the proposed performance curves are carried out using OpenSees 

software. Beam-to-column connection element proposed by Alath and Kunnath [31] 

is used in the analytical verification process along with the hysteretic material 

Pinching4 to define the previously generated shear force vs. shear strain relationships 

of the specimens. The results of the reversed cyclic loading analyses of beam-to-

column connections are compared with experimental data in order to verify the 

analytical model. 

6.2 CONCLUSIONS 

As a result of this analytical study, the conclusions presented in the following 

paragraphs are drawn: 

1. Since the contribution of a beam-to-column connection distortion on the story 

drift can be in the range of 40%, assuming the connections as elastic or rigid 

zones can lead to analytical story drifts much below the actual value, which 

may even result in the collapse of the structure. 

2. In order to achieve a reliable structural behavior, the response of beam-to-

column connections should be considered carefully in the analysis and design 

of reinforced concrete structures, especially for seismic design. The proposed 

beam-to-column connection performance models constitute a simple and 

accurate approach to estimate the joint behaviour under cyclic loading. 

3. Although providing extensive information on the detailing of beam-to-

column connections, the shear strength determination equations presented in 
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ACI 352R-02 may lead to an improper assessment of the joint shear capacity 

as a result of using predefined coefficients for certain connection types.  

4. The basic equations presented in TEC2007 significantly overestimate the 

shear capacity of beam-to-column connections and therefore, they cannot be 

conservatively used in seismic design applications. 

5. Shear strength capacity of beam-to-column connections are strongly related 

to the shear demand imposed by the beams in the loading direction. 

6. Although the use of steel reinforcement with high yield strengths as 

longitudinal beam reinforcement increases the shear capacity of a beam-to-

column connection, using bars with yield strength higher than 500 MPa does 

not improve the capacity further. 

7. On the other hand, use of high strength transverse shear reinforcement delays 

the deterioration of confinement in the connection region, leading to higher 

joint shear force capacities. 

8. Bond properties of the longitudinal beam reinforcement in the loading 

direction considerably affect the shear strength capacity of connections. The 

recommendations presented in ACI 352-R02 are adequate in specifying bond 

properties and minimizing bar slip. 

9. Confinement provided by surrounding members and transverse shear 

reinforcement significantly affects the shear strain characteristics of 

connections under cyclic loading. 

10. The proposed stiffness model in ‘Update to ASCE/SEI 41 Concrete 

Provisions (2007)’ estimates the cracked stiffness of the members in the 

elastic range with considerable accuracy. 

11. In order for the Pinching4 material model defined in OpenSees to be more 

reliable, a procedure to determine the damage and pinching parameters for 

different geometric, material and loading conditions should be described. 

12. Also for the Pinching4 material to be used more accurately in the prediction 

of the contribution of joint shear distortions to the total story drift, the 

problem of rapid strain increase for the descending portion of the shear 

strength vs. strain response should be resolved. 
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6.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the presented joint shear behavior model leads to satisfactory results for a 

wide variety of beam-to-column connections and presents a simple approach for the 

understanding of the joint behavior, some important subjects in need of further 

research should be underlined.  

1. In order to reach more accurate results, especially for generating joint shear 

strain performance points, more experimental research should be conducted 

that measures the shear strain vs. shear stress response of connections. 

2. Additionally, to provide a thorough understanding of the response of 

connections after maximum strength has been reached, the specimens should 

be tested to higher drift levels. 

3. The confining effect of beams with varying beam depth to beam width ratios, 

both high and low, and spread end zones on connection behavior should be 

examined. 

4. The effect of aspect ratio of columns with high column depth to column 

width ratios should be evaluated. 
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