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ABSTRACT

TWO APPROACHES FOR COLLECTIVE LEARNING WITH LANGUAGE GAMES

Gülçehre, Çağlar

M.Sc., Department of Cognitive Science

Supervisor : Assoc. Prof. Dr. Cem Bozşahin

February 2011, 89 pages

Recent studies in cognitive science indicate that language has an important social function.

The structure and knowledge of language emerges from the processes of human communica-

tion together with the domain-general cognitive processes. Each individual of a community

interacts socially with a limited number of peers. Nevertheless societies are characterized

by their stunning global regularities. By dealing with the language as a complex adaptive

system, we are able to analyze how languages change and evolve over time. Multi-agent

computational simulations assist scientists from different disciplines to build several language

emergence scenarios. In this thesis several simulations are implemented and tested in order

to categorize examples in a test data set efficiently and accurately by using a population of

agents interacting by playing categorization games inspired by L. Steels’s naming game. The

emergence of categories throughout interactions between a population of agents in the catego-

rization games are analyzed. The test results of categorization games as a model combination

algorithm with various machine learning algorithms on different data sets have shown that

categorization games can have a comparable performance with fast convergence.
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ÖZ

DİL OYUNLARI İLE KOLLEKTİF ÖĞRENME İÇİN İKİ YAKLAŞIM

Gülçehre, Çağlar

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi : Doç Dr. Cem Bozşahin

Şubat 2011, 89 sayfa

Bilişsel bilimler alanındaki en son çalışmalar, dilin önemli bir sosyal fonksiyonu olduğunu

göstermektedir. Dilin yapısı ve bilgi birikimi, alan genelindeki bilişsel işlemler ile birlikte in-

sanlar arasındaki iletişimden doğmaktadır. Bir topluluktaki her birey sınırlı sayıdaki bireyler

ile sosyal etkileşim içerisindedir. Buna rağmen toplumlar kendi içlerindeki geniş çaplı düzen-

lilikleri ile bilinmektedir. Dili karmaşık adaptif bir sistem olarak ele alarak; dilin zamanla

nasıl evrimleştiğini ve değiştiğini gözlemleyebiliriz. Ajan-temelli sayısal simülasyonlar, bilim

insanlarının gerçekleştirdiği farklı multidisipliner senaryolar, dilin ortaya çıkışını modelleme

için yardımcı olmaktadır. Bu tezde, L. Steels’in isimlendirme oyunları ile ajan temelli simül-

asyonlarla yaptıklarından esinlenilerek; ajan temelli sistemlerde, nesneleri sınıflandırmak için

pek çok simülasyon test edilmiştir. Ajanlar arasındaki etkileşimler sonucunda, dil oyunlarının

makineli öğrenme için model birleştirme algoritması olarak kullanılması sonucunda, kategori-

lerin verimli ve doğruluk oranı yüksek bir biçimde ortaya çıkışı değişik veri setleri ile beraber

analiz edilip, tezde sunulmuştur.

Anahtar Kelimeler: dil oyunları, yapay zeka, makineli ögrenme, emerjans
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CHAPTER 1

Introduction

”When we study human language, we are approaching what some might call the ’human

essence,’ the distinctive qualities of mind that are, so far as we know, unique to man and

that are inseparable from any critical phase of human existence, personal or social. Hence

the fascination of this study, and, no less, its frustration. The frustration arises from the

coming to grips with the core problem of human language, which I take to be this: having

mastered a language, one is able to understand an indefinite number of expressions that are

new to one’s experience, that bear no simply physical resemblance and are in no simple way

analogous to the expressions that constitute one’s linguistic experience; and one is able ...

to produce such expressions on an appropriate occasion, despite their novelty... The normal

use of language is, in this sense, a creative activity. This creative aspect of normal language

use is one fundamental factor that distinguishes human language from any known system of

animal communication.“

–Noam Chomsky

Language is the most complex social norm that the human species are able to learn and ac-

quire. It is an important characteristic of human communication and social organization. Yet

there are several open research questions about language and enigmatic nature of language has

been engaging human mind since Pāņini. Investigating how language is formed, emerged or

transmitted can give important hints about some essential cognitive aspects1 of human mind

as well. Besides that, Sapir-Whorf hypothesis brings the relation between the language and

mind further and it suggests that how human behaves or thinks are shaped by their languages

(Kay and Kempton, 1984).

1 i.e.: language acquisition, language comprehension etc.
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Language apparently has an important social function. As a communication tool, it is fun-

damentally used for interactions between individuals, and in order to adapt to the evolving

society, it slightly changes from generation to generation. Although social interactions can

sometimes exhibit chaotic characteristics, in reality they are often characterized by shared

cooperative activity (Bratman, 1992), or joint actions (Clark, 1996). Joint actions depend

on shared cognition, that’s a human being’s recognition that she can share beliefs and in-

tentions with other humans (Beckner et al., 2009). As a result of these social interactions,

languages emerge and change. Human languages known to exhibit diachronic properties

such as language evolution, language change, creolization, pidginization and emergence of

new languages. ”Nicaraguan Sign Language“ is a very recent and unique case that linguists

had a chance to witness the emergence of a new language. Diachronic properties of human

languages have several similarities with evolutionary characteristics of living organisms and

it’s worthwhile to note that a living organism is stable only when it is dead.

The basic idea of Language is Complex Adaptive System (LCAS) is that a community of

language users (or agents) can be viewed as a complex adaptive system which collectively

solves the problem of developing a shared communication system. To do so, the community

must agree on a repertoire of forms (e.g.: a sound system), a repertoire of meanings (the con-

ceptualizations of reality), and a repertoire of form-meaning pairs (the lexicon and grammar)

(Beckner et al., 2009).

Languages change over time according to complex interactions among the individuals of a

population. As a result of these complex interactions, individuals establish common con-

ventions which leads to convergence of their lexicons and linguistic coherence. Thus we can

claim that language is a dynamically evolving complex system. Besides, it is a self-organizing

system that adapts to the changes in ecosystem and society. Despite the ongoing attempts of

modeling the language for the sake of learning insights about how a language evolves and how

it is emerged, the question of how new languages emerge is still an unanswered question. But

the recent advancements in multi-agent simulations of language emergence helped scientists

for revealing some mysteries behind this though problem.

Collective and organizational activities between agents in a computational simulation reveal

how language organizes and changes in a constrained environment. Hence understanding how

language evolves or emerges will help us to understand how the social conventions among the

2



societies established. This can help us to build better AI systems that use a population of

agents which can adapt to the changes while these agents are trying to name objects. The goal

of these multi-agent simulations is to arrive to a common convention among the agents. This

is very similar to the agents’ interactions in the language games for aligning their lexicons in

order to establish consensus on a specific word.

Complex adaptive systems (CAS) are a subset of non-linear dynamical systems in which

agents (such as ants, cells . . . etc) in a dynamic network constantly act and react what the

other agents in the network are doing. CAS has just become an important field for the mul-

tidisciplinary studies in natural and social sciences. According to mathematicians and physi-

cists, the interest towards complex adaptive systems lies behind the dynamics of how com-

plexity emerges from extremely simple rule systems. For biologists, it is the conception that

the natural selection is not the only source of organization in nature. In the social sciences,

it is suggested that emergence2 has a comparable impact on establishing social conventions

(Lansing, 2003). To illustrate this concept, consider an immune system which also lacks

centralized control and can’t decide on a permanent, fixed structure; instead it must be able

to adapt to unknown invaders. Yet despite its adaptive nature, a person’s immune system is

coherent enough to distinguish oneself from anyone else; it will attack cells from any other

human. Immune systems, cities, and ecosystems share certain properties that make it useful

to consider the instances of a class of phenomena which J. H. Holland calls complex adap-

tive systems (Holland, 1992). There are strong evidences that human languages are complex

adaptive systems (Beckner et al., 2009; Steels, 2000). This characteristic of language, enables

it to adapt to the changes in social domains and the environment.

Learning insights of language emergence and evolution will reveal important mysteries about

human mind and evolution. Beyond that it will also have important application areas as well.

Autonomous artificial agents which need to coordinate their activity in open-ended environ-

ments could make use of these mechanisms to develop and continuously adapt their commu-

nication systems. On the other hand, understanding how language develops and evolves will

enable us to develop technological artifacts that exhibit human-level language understanding

and production (Steels, 2000).

Algorithms inspired from nature and biology are commonly used for solving complex and NP-

2 the idea that how complex global patterns with new properties can emerge from local interactions without
any central control

3



hard problems in computer science. Many natural phenomena are known to exhibit chaotic

behaviors. Artificial intelligence and specifically machine-learning tries to solve complex

problems that occur as a result of complex processes. Sometimes creating a purely abstract

mathematical solution for AI problems is not feasible. Therefore computer scientists fre-

quently use nature inspired algorithms for AI and particularly for optimization problems,

such as the traveling salesman problem by using, genetic algorithms, connectionist systems

and ant-colony optimizations.

Essentially, categorization is a collective and social activity. There are cultural differences

in categories of things between societies.3 According to prototype theory, categories are

prototypes of reality in human mind and it is mode of graded categorization (Rosch, 1999).

For instance when somebody ask you to give an example of furniture concept, it is more

likely that you will say chair rather than the office desk. But these prototypes change between

different cultures. How and why do they change is an important research question that might

have an answer by building simulations of categorization process.

In this thesis we have shown that, it is possible to create better AI algorithms by using the

CAS models4 in computational linguistics. We have tested two simulations of categorization

of objects by using a specific type of language game, ”categorization game“. In a nutshell,

categorization game is a collective linguistic activity between different language users from

different backgrounds. We have also tested these categorization games as model combination

algorithms 5 by using with different machine learning algorithms on different data sets.

The remainder of this thesis is organized as follows:

Chapter 2: In this chapter we provide a background related to the topics in different types of

language games, language emergence and the perspective that assumes language as a complex

adaptive system.

Chapter 3: In this chapter we give a background about various computational learning tech-

niques and discuss about some philosophical problems related to them.

Chapter 4: In this chapter we present the methods and experiments that were conducted and

give the empirical results obtained from these experiments.

3 e.g.: colors is one of the example (Baronchelli et al., 2010).
4 e.g.: language emergence simulations.
5 Different weak learning algorithms are competing against each other to agree on a category for an object.
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Chapter 5: In this chapter we give an overview of contributions of this thesis, discuss about

some issues in the current model with possible future improvements.
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CHAPTER 2

Background on Language as a Complex Adaptive System

”A number of blind men came to an elephant. A king told them that it was an elephant. The

king asked, ’What is the elephant like?’ and they began to touch its body. One of them said:

’It is like a pillar.’ This blind man had only touched its leg. Another man said, ’The elephant

is like a husking basket.’ This person had only touched its ears. Similarly, he who touched its

trunk or its belly talked of it differently. Later king explained:

All of you are right. The reason every one of you is telling it differently is because each one

of you touched the different part of the elephant. So, actually the elephant has all the features

you mentioned.“

–An Eastern Myth1

Complex Adaptive Systems (CAS) are the systems that involve many components which

adapt or learn as they interact. The study of CAS poses some unique challenges: Some of our

most powerful mathematical tools, particularly methods involving fixed points, attractors, and

the like, are of limited help in understanding the development of CAS. CAS is at the heart of

the several important contemporary problems (Holland, 2006). The state of art technique for

analyzing CAS is to build simulations that is modeling the simplified version of the system.

In this section we have surveyed different types of language games which is the simplified

version of social interactions between individuals.

1 This story takes place in several different eastern myths such as in Jain, Buddhist, Sufi and Hindu religious
philosophy.
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2.1 Language Evolution and Language Change from a Computational Per-

spective

How language emerges, evolves and changes is still an important challenge for linguistics.

Language change is a fundamental reality in the language; but how it is evolving is still being

questioned. With the advances in computational modeling and simulations, we are able to see

the problem from different perspectives. There have been significant amount of increase in

the studies about the language evolution. Language evolution is actually a result of cultural

evolution which must not be confused with biological evolution. Although cultural evolution

and genetic evolution exhibit similar characteristics, cultural evolution seems to exhibit more

complex behaviors because of the irrationality of human being (Traulsen et al., 2009).

Variations in language occurs in two levels (Niyogi, 2006):

• Synchronic Level: Synchronic variations occur across individuals in space at any fixed

point in time. An example of these kinds of variations could be the differences between

dialects of a language.

• Diachronic Level: Diachronic variations are the variations in the language of spatially

localized communities over time.

Evolution of languages seems to be effected by three distinct but interacting adaptive systems

(Christiansen and Kirby, 2003):

• Individual Learning

• Cultural transmission

• Biological evolution

Adaptive systems involve in the transformation of information in such a way that it always

fits an objective function (Christiansen and Kirby, 2003). This is best illustrated in the case of

biological evolution in which natural selection is the mechanism of adaptation par excellence.

Variations in the transmitted genotype are selected for in a way that the resulting phenotype

best fits the function of survival and reproduction. Equivalently, individual learning can be
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thought of as a process of adaptation of the individual’s knowledge. Furthermore Steels and

MacIntyre (1998) suggests that language evolves in time in all levels.

The most disputed part of the complex adaptive systems is the notion of adaptation through

cultural transmission which is also known as ’glossogeny’. The knowledge of particular lan-

guages persists throughout the time only by being repeatedly used to generate linguistic data,

and this data is used as an input to the learner - a type of cultural evolution known as iterated

learning. In that sense, one can think of the adaptation of languages themselves to fit the

needs of the language user, and more importantly, to the language learner (Christiansen and

Kirby, 2003).

When we talk of language evolution, we are usually referring to the evolution in three different

timescales:

• The lifetime of an individual.

• The lifetime of a language.

• The lifetime of the species.

What is particularly interesting about language, and why its emergence on earth can be seen

as a major transition in evolution, is that there are interactions between ”individual learn-

ing“, ”biological evolution“ and the ”cultural transmission“. The learner’s mental capacity

and structure is effected by the outcome of biological evolution. Likewise, the demands on

linguistic transmission are partially determined by the learner’s genetically given biases.

2.2 Emergence of Language

Emergence is generally a hard to grasp philosophical conception, and there is no precise

definition of complexity and emergence in the literature. There are several different definitions

of emergence, and there is a widespread criticism that these definitions frequently are either

conflated or abused by the scientists using the term. We clarified our notion of emergence in

the following section.
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2.2.1 Emergence

Emergence has been an important topic in philosophy for a long time (Chalmers, 2006; Love-

joy, 1927; Klee, 1984; Pepper, 1926; Morgan, 1929) and it is studied extensively from the

perspective of complex systems as well. The first notable mention of emergence comes from

Aristotle in Metaphysics (Wikipedia, 2010c):

“.. the totality is not, as it were, a mere heap, but the whole is something besides the parts ... ”

Usually emergence is distinguished and studied in two different fields (Chalmers, 2006):

Strong Emergence : A high-level phenomenon is strongly emergent with respect to a low-

level domain when high-level phenomenon stems from the lower-level domain. But the truths

concerning higher phenomenon can not be deduced from the lower-level. It is hard to find

strong emergence in the nature, because of the implicit downward causation in it. Chalmers

claims that the only strongly emergent phenomenon in the nature is consciousness (Chalmers,

2006) and the facts of consciousness are not deducible from physical facts.

Weak Emergence : Weak emergence eventuates when a high-level phenomenon arises

from the lower-level domain, and the truths related to the high-level phenomenon would be

unexpected given the principles of the low-level domain. This is the kind of emergence that

we use when we discuss about the emergence of language throughout this thesis. There are a

few core examples of weak emergence (Chalmers, 2006):

• The game of life: From simple low-level rules, complex high-level patterns emerges.

• Connectionist networks: High-level ’cognitive’ behavior emerges from simple interac-

tions between simple threshold logic units.

• Evolution: Complex features of biological organisms emerge from simpler lower level

features with genetic mutations, recombination and natural selection.

All those cases can be deduced from the lower-level components.
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2.2.2 Language Emergence

The exact details of language emergence is problematic, because the system is extremely non-

linear. Computational models of language emergence is a plausible approach for learning

insights about the emergence of language.

Different components of language are usually studied by different perspectives of emergence

framework as discussed by MacWinney (1998):

• Emergent Syntax: The belief that the syntax is an autonomous, innate species-specific

characteristic is highly questionable argument. Syntax demonstrates the mosaic nature

of language change with the use of preexisting neurocognitive components (Schoene-

mann and Wang, 1996). There are several computational scenarios for emergence of

syntax. For example in Talking Heads Experiment, Steels (1998) studied the emergence

of syntax with the visually grounded robotic agents.

• Emergent Semantics: This is the emergence of semantics from simple observations

from bottom-up processes rather than top-down processes that the concepts are imposed

to the agents (Staab et al., 2005). Staab et al. (2005) used emergent semantics to refer to

a set of techniques and principles for analyzing the evolution of decentralized semantic

structures in large scale distributed systems. Typical examples of this kind of emergence

is folksonomy and collaborative tagging.

• Emergence of Auditory Patterns: This refers to the emergence of auditory patterns

during child’s development and during first language learning.

• Emergence of Morphology: This field tries to answer the question, how inflection

marking of English verbs emerged. For example irregular forms of past tense verbs

fell, knew, went...etc and regular forms like wanted, tried ...etc.

• Emergence of Grammar: According to Hopper (1998), grammar is not source of

communication and understanding but by-product of it. In other words grammar is

epiphenomenal.

Steels, Baronchelli, Loreto, Vogt and the other scientists from different disciplines who have

used the multi-agent simulations for modeling the emergence of language observed the social
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dynamical characteristics of language in order to observe how language emerges without

any central control in a society. To analyze the characteristics of the emergence, they have

designed several computational models and explored the meaning and the form association

among population of agents. By studying the simulations of the large number of interactions,

we are able to analyze under what conditions language emerges.

Iterated Learning Model for Emergence of Language Iterated Language Model is a tool

for investigating the cultural evolution of language. Iterated learning Model is based on the

hypothesis that some functional linguistic structure emerges inevitably from the process of

iterated learning without the need for natural selection or explicit functional pressure (Smith

et al., 2003).

2.3 Language Games

2.3.1 An Overview: Language-game

Wittgenstein (1953) takes on a totally different point of view in Philosophical Investigations

(PI) from his outlook on language in Tractatus Logico-Philosophicus (TLP) (Wittgenstein,

1922). In TLP he insisted on ideal language philosophy, but in PI he changed his position to-

wards an Ordinary Language Philosophy. Language game is a hypothetical game (or a thought

experiment) proposed by Ludwig Wittgenstein (Biletzki and Matar, 2010) as a simplified lan-

guage use of everyday language of individuals (Wittgenstein, 1953). By using language-game

Wittgenstein tried to attract philosophers’ and linguists’ attention to the everyday use of lan-

guage in order to bring back the language from the ivory towers of analytical philosophers.

In Philosophical Investigations (PI), Wittgenstein refers the term of language-games repeat-

edly in several different parts of the book. In PI II he starts describing it using a conversation

between the builders:

“ The language is meant to serve for communication between a builder A and an assistant B.

A is building with building-stones: there are blocks, pillars, slabs and beams. B has to pass the

stones, in the order in which A needs them. For this purpose they use a language consisting

of the words ”block”, ”pillar”, ”slab”, ”beam”. A calls them out; B brings the stone which he

has learnt to bring at such-and-such a call.”
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On this conception of the philosophical enterprise, the vagueness of ordinary usage is not a

problem to be eliminated but rather the source of linguistic richness. It is misleading even to

attempt to fix the meaning of particular expressions by linking them referentially to things in

the world. The semantics of a word or phrase or proposition is nothing other than the set of

(informal) rules governing the use of the expression in actual life.

Like the rules of a game, Wittgenstein suggested that, these rules for the use of ordinary

language are neither right nor wrong, neither true nor false: they are merely useful for the

particular applications in which we employ them. The individuals of any community develop

ways of speaking that meet their needs as a group, and these constitute the language-game

that they employ. Human beings at large constitute a greater community within which similar,

though more widely-shared, language-games are played. Although there is little to be said in

general about language as a whole, thereof, it may often be fruitful to consider in detail the

ways in which particular portions of the language are used (Kemerling, 2001).

Even the fundamental truths of arithmetic, Wittgenstein now supposed, are nothing more than

relatively stable ways of playing a particular language game. This reasoning rejects both

logical and intuitionist views of mathematics in favor of a normative conception of its use.

2 + 3 = 5 is nothing other than a way we have collectively decided to speak and write, a

handy, shared language-game (Kemerling, 2001).

What is a game? To better comprehend the computational models of language games, un-

derstanding the game-theoretical notion of game (Normal Form Games) is essential. In our

depictions, a game should have the following three aspects (Easley and Kleinberg, 2010):

1. The game should have a population of agents or players.

2. Each agent has a set of options for how to behave; these are usually referred as the

player’s possible strategies.

3. For each strategy, each agent receives a payoff that can depend on the strategies selected

by everyone. The payoffs will generally be numbers, with each agent preferring larger

payoffs to smaller payoffs.
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Formal definition of Normal Form Games: Formal Definition: A game in normal form is a

structure

G =< P,S,F > where:

P = {1, 2, . . . ,m} is a set of players,

S = {S 1, S 2, . . . , S m} is an m-tuple of pure strategy sets, one for each player, and

F = {F1, F2, . . . , Fm} is an m-tuple of payoff functions.

There are two important challenges while constructing artificial communication systems by

using language-games (De Beule et al., 2006):

• Avoiding homonymy: A term can not be associated with more than one category.

• Avoiding synonymy: Categories/names can not be associated with more than one term.

If there is too much homonymy and synonymy in the communication-system, our system can

not be used effectively.

Jaeger et al. (2009) suggests that computational models of language games study and examine

the role of embodiment, communication, cognition and social interaction in the emergence of

language. A typical language game is played between two different agents (usually denoted

as speaker and hearer) within a shared world that involves some form of communicative signs.

When speaker and hearer shares the same meaning to a particular sign in the world, they will

use the existing items in their inventory in a routine way. Otherwise the speaker should be

able to create new words, and the hearer should be able to extend its knowledge base with the

new item explored by the speaker.

2.3.2 Semiotic Dynamics

Semiotic dynamics is the collective effort of a population of agents or individuals to create a

common semiotic system to use for their communication or information organization (Steels,

2006). Large-scale online social communities which use tagging (e.g.: facebook, delicious,

flickr etc.) are ubiquitous examples of semiotic dynamics. But semiotic dynamics also occurs

in natural language as well. Cattuto et al. (2007) investigated semiotic dynamics with online
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collaborative tagging. Steels and Kaplan (1999) have studied semiotic dynamics for emer-

gence of lexicons in robotic agents. Baronchelli et al. (2005) also did an extensive research

on statistical mechanics of semiotic dynamics in naming game.

2.3.3 Varieties of Language Games

Wittgenstein’s thought experiment influenced many scientists and motivated them to work on

different theories of language-games. The investigation of different language games led to

different explorations in field.

2.3.3.1 Naming Game

Naming game is a very well studied kind of language game. The theory of naming game is

based on the assumption that language evolves and changes from generation to generation.

The popularity of naming game emanates from its simplicity and expressive power.

Naming game was conceived to explore the role of self-organization in the evolution of lan-

guage (Steels, 1995). Steels, in his early studies, such as (Steels, 1995), focused primarily

on the formation of vocabularies, i.e. a set of mappings between words and meanings (for

instance, physical objects). In this context, each agent develops its own vocabulary in a ran-

dom private fashion. But agents are forced to align their vocabularies in order to obtain the

benefit of cooperating through communication (Baronchelli et al., 2007). Thus, a globally

shared vocabulary emerges, or should emerge, as a result of local adjustments of individual

word-meaning association.

Agents in naming game has two fundamental roles: speaker and hearer. Steels in (Steels,

1995) called the agent starting the dialog as initiator and the agent listening to the initiator

as receiver. These pairs of agents are drawn from a population of agents randomly. Then

the speaker identifies an object by using a name (Steels and MacIntyre, 1998). The game is

successful if both agents agree on a particular name and the game is considered as a failure

if otherwise. The game is adaptive if both agents are able to change their rules (e.g.: object-

name relations) to be more successful in the forthcoming games. There is no global or central

control in the game. The game continues until all the agents in the game establish a global

consensus with ”microscopic” interaction rules on naming the object (Baronchelli et al., 2006;
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De Vylder and Tuyls, 2006).

Because different agents can each invent a different name for the previously named object,

synonymy is unavoidable (Baronchelli et al., 2008). But we do not consider the case of

homonymy in naming game. The probability of getting homonymy at the end of game is

arbitrarily small. Since the number of possible words is so large that the probability that

two different players will ever invent the same word at two different times for two different

meanings is practically negligible (Baronchelli et al., 2008).

Each agent in the game can be described by its inventory –a set of form-meaning pairs– (in

our case names are competing to name the object). In the beginning, the inventory is empty

(t = 0) and evolves dynamically as time passes. At each time-step (t = 1, 2, 3...) agents

interact with each other (Baronchelli et al., 2008). Interaction rules are as follows:

• The speaker transmits a name to the hearer. If the inventory of the speaker is empty, it

invents a new name, otherwise it randomly selects a name from its repository.

• If the hearer has the name in its inventory, then the game will be successful. The hearer

and speaker will delete all the alternatives names in their inventory and only the winning

one will be left.

• If the hearer does not have the name in its inventory, then the game will be failure. The

hearer will simply add the name to its inventory.

The interaction rules are visualized in Figure 2.1.

The flowchart for generalized model of the naming game is shown in Figure 2.2.

Formal Definition of the Model The mathematical model for naming game we are going

to discuss is based on Steels and MacIntyre (1998) and more recently to the study in Lenaerts

et al. (2005).

Consider that a population of agentsA with size NA where each agent ai ∈ A is surrounded

with a set of objects Oa = {o0, ..., on} of size NO. The state of ith agent consists of a set

of associations Da between objects in the environment and the features of the objects that

discriminates it from other objects da
j .
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Figure 2.1: Interaction Rules: In case of failure the speaker’s inventory contains three words:
ASDET,OIPIYS and YUEIDH.The speaker utters the name YUEIDH, but hearer does not have
this name in its inventory. Therefore it removes all the names and add the name that speaker
uttered to its inventory. If the hearer has the name that speaker uttered, speaker and hearer
will remove all the names in their inventory except the winning one.
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Figure 2.2: Naming Game Flowchart
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Da = {(o0, da
0), (o0, da

1), ..., (o2, da
l ), ..., (o j, da

j ), ...}

Da includes ambiguous pairings of features and objects. A typical example for the features

might be size, shape and the color of different clothes. Each agent ai ∈ A has its own lexicon

La which is a set of associations between particular meanings da
j and words wa ∈ Wa.

La = {(da
0,w

a
0), (da

0,w
a
1), ..., (da

j ,w
a
2), ..., (da

k ,w
a
j), ...}

La as well asDa allows ambiguous pairings but only between words and meanings. By con-

vention each agent ai ∈ A uses the same association between words and meanings. Therefore

(D)a = (D) for all agents. Moreover (D) with size (d) is finite as in (Steels and Kaplan, 1998).

For the sake of simplicity we will assume that the space of all words (w) is W. Hence the

number of meaning-word association will be n = w × d. The lexicon is dynamic, therefore

meaning and word associations changes in time. Each pair of (da
i ,w

a
k) has a strength value va

kl

where va
kl ∈ [0, 1]. Therefore the lexicon La can be represented with a matrix with rows and

columns are specifying the strength of associations in La:



va
00 va

01 . . . va
0w

va
10 va

11 . . . va
1w

...
...

. . .
...

va
d0 va

d1 . . . va
dw



La is a probability matrix and the state of an agent a is defined as:

φi = (D,La)

(De Vylder and Tuyls, 2006) suggested that naming game always converges using a sampling-

response model.

Naming Game Dynamics According to the studies of Baronchelli et al. (2008), the statis-

tical dynamics of naming-games are analyzed in depth. Naming games has the characteristic

time required by the system to reach convergence as N1.5 where N is the number of agents.
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2.3.3.2 Guessing Game

Likewise the naming game and guessing game is being played between a pair of agents;

speaker and hearer. The guessing game has been used in Talking Heads experiment that

is discussed (Steels and Kaplan, 2002, 1999). Previously similar games were developed in

decision theoretical and game theoretical studies as well (Weber, 2003). But the guessing

games to be discussed here will be based on Luc Steels’ Talking heads experiment (Steels and

Kaplan, 2002), (Steels and Kaplan, 1999).

Guessing Games and Talking Heads Experiment The Talking Heads experiment is a con-

ceptual experiment for modeling how the lexicon emerged in the situated environment. Ex-

periments are done at labs scattered around the world, with cameras that are connected to

a computer. The cameras can either rotate horizontally and vertically. Agents are software

installed on the computer that the camera is connected to. Agents are looking towards a board

where several different shapes are located. As part of the game, agents play guessing game

with the shapes located on the board and they are trying to arrive to a linguistic consensus.

Agents can teleport themselves to another lab after the game is finished.

The game is played between a pair of visually grounded cognitive agents. Agents are capable

to do image segmentation and object recognition through the camera. Also each agent can

perceive different features of the object such as color, size, shape and location. The set of

objects and the related data in the game are called context and the object that the speaker

chooses is the topic. Rest of the objects in the environment form the background.

The speaker will give a linguistic cue to the hearer which is related to the object, for example:

red square on the higher left corner, blue triangle on the lower left cornet etc. “Talking Heads”

use their own language for communication instead of natural language. Exemplary, speaker

by uttering ”makarena” might intend [UPPER-LEFT CORNER LIGHT-RED].

Based on the speaker’s cue, the hearer tries to guess the topic and it communicates its choice

of object by pointing it. If both agents agree on the same word for the selected topic, the

game succeeds. Otherwise the game fails. In case of failure the speaker points to the correct

object that it had in its mind. Both agents repair their own knowledge-base in order to be

more successful in upcoming games.
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The agent architecture in Guessing Game has two important components:

The conceptualization module: This module is responsible for categorizing the reality to be

able to apply categories for finding back the referent on the board or in the perceptual image.

Categories are basically the features of topic like, color, position, shape. Those categories are

stored in a discrimination tree.

The Verbalization module: The lexicon of the agents consists of pairs of word-category pairs

with weights associated with these pairs. If agents do not have any word for referent, they

will invent their own words and when an agent utters a word related to a category, initially it

checks its lexicon if it is already in the lexicon. If the category already exists, agent sorts the

words referring to the object inside the lexicon according to their weights and then utters the

word with the highest score. If the word does not exist in the agent’s lexicon, it will create a

new word for the object.

When a hearer receives a word for an object, it checks its lexicon and sorts the possible

categories associated with the current context and it chooses the highest scored word. If the

word is not in the hearer’s lexicon it places the word there and the hearer will point to the

object.

Guessing games and Cross Situational Learning (CS L) Multi-agent computer simula-

tions that are used for language-change and language evolution are very common in scientific

literature. The use of these models changed the view on language and directed towards the

complex-adaptive system.

The formal studies on word-meaning acquisitions make very strong simplifications in the

communication architecture of the agents. Specifically, they consider only single word ut-

terances, and assume a meaning transfer: when a speaker utters a word, the hearer knows

what the intended meaning is. These kind of simplifications greatly reduce the complexity of

model and therefore the difficulty of the model for understanding the dynamics of language-

emergence.

In CS L agents (Siskind, 1996), infer the meaning of words by monitoring the co-occurrence

of words and their reference (semantics). Based on this assumption Bayesian models are

developed in which CS L makes the assumption that as you hear a word in different contexts,
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in time you will acquire its meaning, from the reference. This model is influenced by Quine’s

thought experiment regarding to the indeterminacy of translation (Smith, 2003).

De Beule et al. (2006)’s study tries to remove simplifications regarding to meaning-transfer

in the language games. They created a guessing game in which N number of agents try to

bootstrap a common lexicon from a set O of objects.

2.3.3.3 Observational Game

Observational game has been first proposed by Vogt (2002) 2 and later Vogt and Coumans

(2003) did further investigations and comparisons with other types of language game mod-

els. Vogt tried to create a minimal language game for simulating verbal language evolution.

Observational games use joint attention and associative Hebbian learning.

Initially two agents are chosen randomly from the population and arbitrarily one of them is

selected as speaker. The other one takes the hearer role. The speaker informs the hearer about

the referent which is the topic of the game, to establish joint attention. The speaker looks for

words that are associated with the subject, and chooses the word-meaning association in which

θ has the highest score. If the speaker can not find an appropriate association, it invents a new

word and adds the meaning of the word association to the lexicon with an initial association

score of θ = 0.01. Then the speaker utters the word. The hearer checks its own lexicon for an

association. If the hearer finds the right association, the game succeeds. Otherwise the game

fails. According to the result of communication, the lexicon is updated:

a. If the game fails, the listener adds the word-meaning association to its lexicon with an initial

association score of θ = 0.01. The speaker reduces the used association score by θ = η × θ,

where η = 0.9 is a constant learning parameter.

b. If the game succeeds, both robots increase association score θ of θ = η × θ + 1 − η of

the word-meaning association. They apply lateral inhibition on all the other participating

associations with θ = η × θ.

2 In this study they have worked with autonomous robots for grounding meaning among them.
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2.3.3.4 The Selfish Games

In selfish games, there is no non-verbal indication of topic in the game (Vogt and Coumans,

2003). Therefore the agents can not verify whether their communication is successful. They

cannot use the association score as an indication of the effectiveness of a word. Hence the

meaning of the utterance will be uncertain to the hearer, because there are many possible

meanings in the context. Similar to the CS L with the guessing games, as the context changes

game to game the cross-section of the contexts in co-occurrence with a particular word will

constitute the meaning. Learning is done with Bayesian Learner. The association score is:

δ = P(m|w) =
P(m)P(w|m)

P(w) =
P(w∩m)

P(w) where P(m) is the probability of meaning m’s occurrence

and P(w) is the probability of word w’s occurrence.

and δ can be converted to confidence probability as done by Smith (2001):

δ =
U(w∩m)

U(w)

where U(w ∩ m) is the co-occurrence frequency of meaning, and word and U(w) is the co-

occurrence frequency of word. In each game hearer and speaker increments U(w ∩ m) and

U(w) by 1.

2.3.3.5 Category Game

Category game has been studied extensively in (Baronchelli et al., 2008, 2007), (Baronchelli

et al., 2010) and by Puglisi et al. (2008). The goal of the category game is to find out if the

categories are in implicit structure of nature or emerges from complex interaction between the

individuals in the environment (Puglisi et al., 2008).

The category game phenomena is very similar to applied to the color categorization game in

(Baronchelli et al., 2008).

In a category game model, a population of N agents is committed to the categorization of

a single analog perceptual channel. Each stimulus is a real number in the interval [0, 1].

Categorization is identified with a partition of the interval [0, 1].

Agents have dynamical inventories of form-meaning associations that is linking perceptual
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categories to the words representing the linguistic counterparts. The words in the lexicon

evolve in time through the language games played.

Initially all N agents, have only the trivial perceptual category [0, 1] in their lexicon. At each

time step two agents are selected, and a scene with M ≤ 2 stimuli (object/stimuli is denoted

as Oi where i ∈ [1,M]) is presented. The speaker must recognize the scene and categorize

an object. The hearer will try to guess the categorized object and based on their success or

failure they will rearrange their form-meaning associations. The only parameter in the model

is dmin. It is the just noticeable difference of the stimuli. dmin is inversely proportional to the

perceptive resolution power of the agents. Therefore objects in the same scene should satisfy

the inequality |oi − o j| > dmin for all pair of (i, j). The way stimuli are randomly chosen,

characterizes the kind of situated environment at the end of the game.

2.3.3.6 Discrimination Games

In discrimination games, the agent tries to distinguish one object or situation from others

using sensors and low-level sensory processes. The goal of the discrimination game is to de-

termine if an agent is capable of developing autonomously a repertoire of features to succeed

in discrimination and the subsequent adaptation of the feature repertoire Steels (1996).

Formal Definition For the formal definition of the discrimination games we will adapt the

terminology of Steels (1996).

There is a set of objects O = {o1, o2, . . . , om} and a set of sensory channels S = {σ1, . . . , σn},

being real-valued partial functions over O. Each function σ j defines a value 0.0 ≤ σ j(oi) ≤

1.0 for each object oi.

An agent α has a set of feature detectors Da = {dα1 . . . d
α
m}. A feature detector is dαk =

〈pαk ,V
α
k , φ

α
k , σ j〉 has an attribute name pαk , a set of possible values Vα

k , a partial function phiαk

and a sensory channel σ j. The result of applying a feature detector dαk to an object oi is a

feature written as a pair (pαk v) where p is the attribute name and v = φαk (σ j(oi)) ∈ Vα
k .

A discrimination game d = 〈α, ot,C〉 contains an agent α, a topic ot ∈ C ⊆ O. C is the context

of the game. If a distinctive set of features are found in the game, the outcome is success.

Otherwise the game ends with failure.
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2.4 Language as a Complex Adaptive System

Language has fundamentally a social function. Its origin and capacity depends on its role in

social life. Social interactions can be uncooperative, and involve conflict, but in the end they

are shared cooperative activities or joint actions. There are several mental attitudes for joint

actions like planning and goal directed actions, which are commitment to help the others and

above all joint beliefs (Beckner et al., 2009). Clark (1996) refers to the language use as a form

of joint action, an action that is carried out by an ensemble of people acting in coordination

with each other.

2.4.0.7 Language as a Social Software

Social software is an interdisciplinary study that uses formal tools to build social procedures:

formal models of knowledge and beliefs, the dynamics of information in a multi-agent setting,

the foundations of game theory and logics that may be used to prove correctness of certain

social procedures. Parikh (1995) makes an analogy between computer systems and social

systems, and compares the natural languages to programming languages. But natural lan-

guages are executed inside the minds of individuals. Hence he proposes that formal methods

and game theoretical tools that are used for analyzing computer source codes can be used for

analyzing natural languages as well (Pacuit and Parikh, 2006).
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CHAPTER 3

Background on Computational Learning Techniques and

Machine Reasoning

”... the question of whether Machines Can Think, a question of which we now know that it is

about as relevant as the question of whether Submarines Can Swim.“

–Edsger W. Dijkstra

An important aspect of our study is to investigate the possibilities of using language games

to improve classification performance. Therefore we have tested several machine learning

algorithms with a variant of language game that we have created -categorization game-. In this

chapter we give a brief overview of computational learning techniques and machine reasoning.

3.1 Machine Reasoning

Machine reasoning is the process of ”algebraically manipulating previously acquired knowl-

edge in order to answer a new question” (Bottou, 2011). This definition covers both logical

and probabilistic inference. But human reasoning doesn’t have the limitations of neither prob-

abilistic nor logical inference. Converting the raw data to the logical expressions known to

be a hard problem and searching discrete spaces of symbolic formulas can lead combinatorial

explosion. Probabilistic reasoning known to have problems with representation. Representing

causality with probabilities are challenging (Bottou, 2011).
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3.2 Computational Learning and Inference

Learning and planning are important features of intelligent agents. In the following sections,

we discuss about popular learning techniques that are suitable for use in multi-agent simula-

tions with language games.

3.2.1 Supervised vs Unsupervised Learning

Unsupervised and Supervised Learning techniques are two of the most popular learning tech-

niques used in computational learning. The difference between the supervised and unsuper-

vised learning algorithms is established with training factor. Crucially the supervised learn-

ing algorithm can be stated as learning with teacher and unsupervised learning is the learning

without teacher.

3.2.2 Supervised Learning

In supervised setting the learning process is the task of inferring a function from the super-

vised training data.

Formalization Bousquet et al. (2004) did a detailed analysis and formalization of super-

vised learning algorithms and my formalization will be based on Bousquet et al.’s work.

Given the features F = { f1, f2, ..., fn} and example di will be a set of values of features:

di = { f i
0, f i

1, ..., f i
n}. A training data set Dt consists of examples di and their labels tk where

tk ∈ T . ThusDt will included pairs of examples and their labelsDt = {(d0, t j), ..., (dm, t j)}. A

typical supervised learning algorithm seeks a function g : X → Y, where X is the input space

and Y is the output space.

G is the space of all possible functions, g which is also called ”Hypothesis Space”. Hence

g ∈ G. g can be scoring function such as f : X × Y → R where g returns the y that gives the

highest score:

g(x) = argmax f(x, y)
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Most of the probabilistic learning algorithms takes the form of a conditional probability

model:

g(x) = P(x|y) or f can take the form of joint probability:

f (x, y) = P(x, y)

There are two approaches to be able to choose g and f :

Empirical Risk Minimization: ERM is used to the agreement between a candidate func-

tion and the data:

Rn(g) = 1
n
∑n

i=1Lg(Xi),Yi where

• Lg(Xi),Yi is the loss function

• Rn is the risk function.

ERM tries to minimize the Empirical Risk function:

Rerm = argming∈GRn(g)

Structural Risk Minimization: SRM is used for preventing overfitting a regularization

penalty into optimization. SRM by Occam’s Razor prefers less complex models, and it is

basically ERM with a regularization penalty function:

Rsrm = argming∈Gd ,d∈NRn(g) + pen(d, n)

Concept Learning The idea of supervised learning is heavily influenced by the cognitive

psychologist Jerome Bruner’s works of concept learning (Quinlan, 1993).

Concepts have been an important topic for psychology, particularly concepts which identify

kinds of things. Such concepts are mental representations which enable one to discriminate

between objects that satisfy the concept and those which do not. Given their discriminative

use, a natural hypothesis is that concepts are simply rules for classifying objects based on

features. Indeed, the ”classical“ theory of concepts takes this viewpoint, suggesting that a
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concept can be expressed as a simple feature-based rule: a conjunction of features that are

necessary and jointly sufficient for membership (Goodman et al., 2008).

Concept learning also refers to a learning task in which a human or machine learner is trained

to classify objects by being shown a set of example objects along with their class labels.

The learner will simplify what has been observed in an example. This simplified version of

what has been learned will then be applied to future examples. Concept learning ranges in

simplicity and complexity because learning takes place over many areas. When a concept

is more difficult, it will be less likely that the learner will be able to simplify, and therefore

they will be less likely to learn. Colloquially, task is known as learning from examples. Most

theories of concept learning are based on the storage of exemplars and avoid summarization

or overt abstraction of any kind (Wikipedia, 2010b).

3.2.2.1 Paradox of Concept Learning

The learning paradox (from the view of Socrates) states that a learner cannot search either for

what she knows or for what she does not know. Because if she already knows she does not

need to relearn and search for this concept, while if she does not know she will not recognize

it even when she encounters it. Fodor stated this paradox with the Fregean sense of concepts

(Borensztajn, 2006):

• Concept learning have to do hypothesis testing and confirmation. Hypothesis should be

formulated in terms of concepts in the conceptual system/mind.

• We can not formulate hypothesis for primitive concepts without using other concepts.

But this would be a circular definition.

If primitive concepts are integrated into a conceptual schema, they must originate from both

bottom-up (learning that goes from implicit to explicit knowledge) and top-down (learning

that goes from implicit to explicit knowledge) learning processes. Briefly Fodor states that

you can not learn new concepts with only bottom-up sensory information and hence primi-

tive concepts should be innate. But there are several problems with this account. By using

selectionist principles some of those problems can be fixed (Borensztajn, 2006).

28



3.2.2.2 Problem Of Induction

Induction is, by dictionary definition, is the process of inferring a general law or principle

from the small and simple observations per se. Most of the computational learning algorithms

assume that humans learn inductively and based on the induction, but there are problems with

logical induction. Problem of induction is an epistemological problem that questions whether

the inductive inferences lead to the knowledge. Hence philosophers seek answer for the two

question (Wikipedia, 2010g):

• Generalizing about the properties of class of objects from some number of observations.

Ex: The cows, I’ve seen are black, hence all the cows are black.

• Presupposing that a sequence of events in the future will occur as it always has in the

past (For ex: Dawn of the sun.). David Hume called this as the “Principle of Uniformity

of Nature”.

3.2.3 Computational Learning Theory

Computational learning theory is the field of machine learning that analyzes the mathematical

characteristics of learning algorithms.

3.2.3.1 PAC Learning

PAC Learning refers to the ”Probably Approximately Correct” Learning which is first dis-

cussed by Leslie Valiant in (Valiant, 1984) and it is a framework for mathematical analysis of

machine learning algorithms.

A major problem in statistical learning theory is the learning of functions. The concept class

and the hypothesis class are the class of functions such as:

F : X → Y where X and Y are distinct sets.

According to Probably Approximately Correct learning, given a class C and an unknown but

fixed probability distribution in which examples are drawn from, p(x), we want to find the

number of examples, N with the probability at least 1 − δ, the hypothesis function H has at
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most ε amount of error, for any ε and δ which satisfies, 1
2 < δ and ε > 0 (Alpaydin, 2010).

The learner of a function is required to converge to the target function in the limit. But this

convergence is probabilistic.

The class F of possible target functions (in PAC literature usually referred as concept, where

concept is adopted from the concept learning) and the hypothesis class H are the classes of

functions of Niyogi (2006),

H =⇒ F : X → Y

In the case of language we can evaluate X to be the set Σ∗, the possible set of strings and Y to

be the set {0, 1}. We can write the 1L(x) : Σ∗ → {0, 1}

where 1L(x) = 1 iff x ∈ L and L is the target language. Therefore learning indicator function

is equivalent to the learning the language itself.

Learnability of Languages with PAC Partha Niyogi did an extensive study of language

learning and computational learning theory in Niyogi (2006). The following depiction is

taken from that book:

The learner receives the pairs of examples (x, y) where x ∈ Σ∗ and y = 1L(x).

The learner hypothesizes functions in H which is H : Σ∗ → {0, 1} and the learner maps the

data sets to the hypothesis classes. Assume that the learner receives the positive and negative

examples in a stream which has k number of elements in Dk, the set of all data streams. Hence:

Dk = {(z1, . . . , zk)|zi = (xi, yi); xi ∈ Σ∗, yi ∈ {0, 1}}

and according to the empirical risk minimization an appropriate ĥl is chosen:

ĥl = argminh∈H
1
l
∑l

i=1(yi − h(xi))

The hat on ĥl represents that it is a random function.

A learning algorithmA is an effective procedure mapping data sets to hypothesis, i.e.,

A : ∪∞i=1Dk → H

ĥl is A(dl) where dl is a random element of Dl. In a successful learning setting, learner’s
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hypothesis will converge to the target as the number of data points goes to the infinity.

Because ĥl is a random function, one may consider the convergence as a probability:

ĥl converges to 1L
1, iff for every ε > 0:

liml→0 P[d(ĥl, 1L) > ε]

P allows us to define the distance between the language’s corresponding distance functions

and it provides the distribution which the data is drawn from, then presented to the learner.

Therefore it provides a characterization of the probabilistic behavior of random function of

ĥl.

The notion of convergence here is the notion of weak convergence of a random variable and

d(ĥl, 1L) random variable, because ĥl = A(tk) where tk is a random text. This notion of weak

convergence is usually stated as (ε, δ) in PAC formulations. If ĥl weakly converges to the

target 1l, it follows that for every ε > 0 and δ > 0, there exists an m(ε, δ) such that for all

l > m(ε, δ).

P[d(ĥl, 1L) > ε] < δ

This implies that, with high probability of (> 1− δ), the learner’s hypothesis is approximately

close to the target language, and m(ε, δ) refers to the sample complexity of learning. A set of

languagesL are said to be learnable if there is an algorithmAwhich can learn every language

in the set uniformly.

There are two important concepts that arose as a result of PAC Learning Theory:

Strong learners A PAC learning algorithm, also called as strong learner, with probability

at least 1− δ the error rate of hypothesis is at most ε. Moreover, the training time and number

of training required must be polynomial in 1
ε ,

1
δ , and the size of the training sample.

Weak learners Weak learners are type of classifiers that are only slightly better then the

random guess. Assume that there are N possible class labels, then classification done by a

weak learner will be only slightly better than 1
N (Kearns and Valiant, 1994).

1 1L is the indicator function for language L.
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3.2.4 Meta-Learning

Meta-learning or learning to learn is a technique in Machine learning that automatically im-

proves the learning method or the algorithm by using the experiences such that the new al-

gorithm is better than the original algorithm (Schaul and Schmidhuber, 2010). Most popular

examples of meta-learning are ensemble learning algorithms like boosting and bagging.

Definition: Definition of meta-learning from (Schaul and Schmidhuber, 2010):

”Consider a domain D of possible experiences s ∈ D, each having a probability p(s) asso-

ciated with it. Let T be the available training experience at any given moment. Training

experience is a subset of D, i.e. T ∈ DT ⊂ P(D), where P(D) is the power set of D. An agent

πθ is parametrized by θ ∈ Θ. A task associates a performance measure φ : (Θ,D) 7→ < with

the agent’s behavior for each experience. We denote by Φ the expected performance of an

agent on D:

Φ(θ) = Es∈D[φ(θ, s)]

Now we define a learning algorithm Lµ : (Θ,DT ) 7→ Θ, parametrized by µ ∈ M, as a function

that changes the agent’s parameters θ based on training experience, so that its expected per-

formance Φ increases. (Here it is assumed that the learning algorithm may be rather complex

algorithm in general and may incorporate more than one learning method.) More formally,

we define the learning algorithm’s expected performance gain δ to be:

δ(Lµ) = Eθ∈Θ,T∈DT

[
Φ(Lµ(θ,T )) − Φ(θ)

]
Any learning algorithm must satisfy δ > 0 in its domain, that is it must improve expected

performance. A learning algorithm’s modifiable components µ are called its meta-parameters.

We define a meta-learning algorithm ML : (M,DT ) 7→ M to be a function that changes the

meta-parameters of a learning algorithm, based on training experience, so that its expected

performance gain δ increases:

Eµ∈M,T∈DT

[
δ(LML(µ,T )) − δ(Lµ)

]
> 0

In other words, using Lµ′ tends to lead to bigger performance increases than using Lµ, where

µ′ = ML(µ,T ) are the updated meta-parameters. Note the symmetry of the two definitions,
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due to meta-learning being a form of learning itself.”

3.2.5 Ensemble Learning

Ensemble learning is a machine-learning paradigm in which multiple learners are trained

and predictions are integrated in order to get better predictive performance than the base

algorithms. Base learner is a single learner from the ensemble. The main idea behind the

ensemble methods is to weigh several individuals and combine them to obtain a classifier

accuracy than any individual in the ensemble (Rokach, 2010).

Ensemble learning has 3 phases:

• Sampling Phase: In the sampling phase the data is split into partitions or weighted.

• Training Phase: Each classifiers will be trained with the data that is split in the sampling

phase.

• Classification Phase: Each classifier will try to classify examples.

• Model Selection/Model Aggregation: The decisions will be aggregated or a specific

classifier will be chosen as the decision-maker.

To be able to get a wise decision from a crowd following conditions are needed as stated in

(Rokach, 2010):

• Diversity of opinion - Each member should have private information even if it is just an

unusual interpretation of the known facts.

• Independence - Members’ opinions are not determined by the opinions of those around

them.

• Decentralization - Members are able to specialize and draw conclusions based on local

knowledge.

• Aggregation - Some kind of mechanism exists for turning the private judgments into a

collective decision.
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Most of the ensemble learning algorithms are also the meta-learning algorithms, such as

boosting and bagging described below. They do not modify the base-learner. They just mod-

ify the inputs and outputs.

According to the base-learners that constitute an ensemble it can be grouped in two categories:

• Homogeneous Ensemble: If the base-learners that constitute an ensemble are of the

same kind, then this ensemble is called to be a homogeneous ensemble.

• Heterogeneous Ensemble: If the base-learners that constitute an ensemble are different

kinds of learners, then this ensemble is called to be a heterogeneous ensemble.

Why and How do Ensemble Techniques work? Learning algorithms that use a single hy-

pothesis suffer from the following problems that ensemble techniques overcome (Dietterich,

2002):

• The statistical problem: The amount of data available for training will not be enough

to be able to model the whole space with a single classifier. Therefore voting several

equally accurate classifiers might work. A classifier that suffers from this problem is

said to have a high ”variance”.

• The computational problem: Searching the whole hypothesis space to find the best

classifier can be computationally intractable, in these cases heuristic techniques such as

stochastic gradient is used. But stochastic gradient can stuck into the local minimum. In

that case weighted combinations of several local minimum can overcome the problem.

• The representation problem: The representational problem arises when the hypoth-

esis space does not contain any useful hypotheses that is a good approximation to the

correct function f . Voting several classifiers can expand the hypothesis space. Hence,

by doing weighted voting we can establish a better approximation to f .

Since there is no point in combining learners that takes similar decisions, we try to create

diverse classifiers in the ensemble methods (Alpaydin, 2010).
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Model Combination Schemes There are several ways to aggregates decisions of base-

learners (Alpaydin, 2010):

• Multi-expert Methods: These methods can be grouped in two subcategories:

– Global approach/learner fusion, given an input, all base-learners generate an out-

put and all these outputs are used. Examples are voting and stacking.

– In the local approach/learner selection, for example, in mixture of experts, there

is a gating model, which looks at the input and chooses one (or very few) of the

learners as responsible for generating the output.

• Multistage combination methods. An example is cascading.

Bagging and AdaBoost algorithms that are discussed in Appendix A are very popular ensem-

ble learning techniques and both of them are a multi-expert method whereas bagging is using

Majority Voting and AdaBoost is using weighted majority voting.

3.3 Deep Learning

Theoretical results in statistical machine learning suggest that in order to learn the complicated

functions that can represent high-level abstractions, deep architectures are required. Deep ar-

chitectures are composed of multiple layers of non-linear operations, such as neural networks

with multiple hidden layers. Several studies in cognitive science have shown that cognitive

processes are deep and the brain has a deep architecture (Bengio, 2009). For example when

people try to solve a problem they organize their ideas and concepts hierarchically. Humans

first learn simpler concepts and then compose them to represent more abstract ones. The first

successful attempt to use deep architectures with supervised learning for deep learning is deep

belief networks (DBN) (Hinton et al., 2006).
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CHAPTER 4

Methodology and Empirical Work

And AC said, “LET THERE BE LIGHT!”

And there was light...

–Isaac Asimov1

4.1 Introduction -The Wisdom of Crowds

In language game models that we have discussed in Chapter 2, agents interact with each

other to agree on a particular name for an object. The purpose of model fusion in “Ensemble

Learning” is to aggregate the decision of several learners or models. Particularly objective

of both domains is same, and we suggest to use a specific type of language game for model

fusion in ML which is an important problem for ensemble learning.

Ensemble and collaborative learning algorithms are gaining popularity in the literature. Ad-

ditionally performance benchmarks against single learner models such as Ruta and Gabrys

(2005)’s study showed that, ensemble techniques perform significantly better than the single

classifier models in terms of accuracy. They can deal with concept drifts2 more successfully

(Wang et al., 2003) than the single classifier learners. Currently in machine learning, the

most popular ensemble learning algorithms are using voting and its variants (e.g.: dynamic

voting, weighted majority voting etc) to aggregate several models. In real world, agents do

not agree on a topic by averaging, social systems are known with their extreme nonlinearity.

Therefore averaging classifiers’ decisions will not be a good approximation model for the real

1 Taken from the Asimov’s renowned short story, “The Last Question”.
2 Concept Drift, refers to the statistical properties of the target variable, which the model is trying to predict,

change over time in unforeseen ways.
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world. Most of the important data related problems are caused by complex social systems.

These problems are known to be challenging. Data generated by real-world phenomena usu-

ally lack obvious patterns (such as stock market, political conflict resolution data etc). Hence

they are not very suitable for general prediction and classification algorithms. Deterministic

algorithms do not perform very well with these kind of problems and sometimes adding a

bit of entropy may yield better performance.3 That’s why sometimes randomized algorithms

perform better on some data sets.

Categories and Categorization

There has been a vast amount of interest on categories in philosophy since Aristotle who,

in his tractate Categories, attempts to list the most general kinds into which entities would di-

vide in the world (Thomasson, 2010). Important names of philosophy such as Aristotle, Kant

and Husserl studied on the notion of categories but each one of them adopted a different view

on categories. Aristotle used language as a clue to ontological categories, and Kant treated

concepts as the route to categories of objects of possible cognition, Husserl explicitly dis-

tinguished categories of meanings from categories of objects, and attempted to draw out the

law-like correlations between categories of each sort. Also Kant and Aristotle lay out a single

system of categories whereas Husserl distinguishes two ways of arriving at top-level ontolog-

ical classifications. According to Husserl categories are entirely a priori matter (Thomasson,

2010). Besides philosophy, there has been great deal of interest on categories in cognitive and

computer science as well. In cognitive science debates are more focused on how humans in

fact come to group things into categories–whether this involves lists of descriptive (observable

or hidden) features, resemblance to prototypes, prominent features weighted probabilistically,

etc. But the current literature misses the point that, categorization is in fact a social process.

The cultural differences in categories of certain things such as color categories is one of the

example of that situation (Roberson et al., 2000; Belpaeme, 2001).

In this chapter we propose two new types of language game (in a late Wittgensteinian sense)

for the model combination and simulation of the categorization process in a group of agents:

• Categorization Game (CG)

• Categorization Game with Confidence Rated Belief Updates (CGCRBU)
3 For example, Littlestone and Warmuth (2002) showed that “randomized weighted majority voting” algorithm

outperforms the “typical weighted majority voting”.
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4.1.1 Majority Voting

Majority voting is one of the most popular and easiest technique for model aggregation. Each

member of the ensemble casts its vote for the selected class and the class with the highest

number of votes is selected as the candidate class4.

4.2 List of Proposed Approaches

In this section, we give detailed explanations on the language games we propose for combi-

nation of several weak learners to obtain a strong learner as in an ensemble setting.

4.2.1 Categorization Game for Model Aggregation

Categorization game is inspired from the naming game of Steels (1996) but it has several

additional functionalities and simplifications in order to adapt to the changes in the domain of

the problem.

Broadly speaking, CG can function like a search algorithm that is trying to find an item with

specified properties among a set of items. In this thesis several flavors are added to the naming

game in order to ensure that it performs like a search algorithm for classifier fusion. In the

second game, we have added a fitness function (we choose the speaker according to a belief

score.) to make sure of that the communication evolve towards the goal that we wish to reach.

In a nutshell, our goal is to combine the models in a reasonable time and find the correct

decision. Therefore choosing the fitter agents as speaker will increase the population’s bias to

a certain target.

4.2.1.1 Categorization Game (CG)

Categorization Game solely performs a basic version of the naming game as introduced by

Steels (1995). After classification is performed by each agent, agents start to play the catego-

rization game in order to agree on a specific category. Unlike the naming game, in CG there

4 Majority voting works like a democratic regime. But the weighted majority voting algorithm, unlike in a
democratic regime, each voter’s vote has a weight associated with their own decision.
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is no invention of new games. We assumed that the categories in the CG is either innate or

pre-adopted from the training data set.

The formal definition of CG is shown below:

A with size NA where each agent ai ∈ A is in contact with Oa = {o0, . . . , on} with meanings

Ma = {m0, . . . ,mn} associated with them NO of objects, agents have their own set of cate-

gories Ca,t and their lexicon will be La,t ⊂ Ma ×Ca,t ×NO. Therefore an agent a at time t can

be defined as at =< Ca,t, La,t,Ha > where Ha is the learning algorithm of agent a at time t.

The algorithm of categorization games is as shown in Algorithm 4.2.1. Categorization game

works in a completely stochastic fashion. There is no central control and no objective function

and there is no guarantee that the game will always converge to the optimal category as well.

But the probability of convergence of majority category is higher than the minority ones:

Let’s assume that, ci are categories and ci ∈ C and

](cm) ≥ ](ck) ≥ · · · ≥ ](c j)

Hence:

p(cm) ≥ p(ck) ≥ · · · ≥ p(c j)

If the class distribution is not uniform, then the probability of cm -the majority category- will

be more likely to be chosen as speaker. Thus it is more likely that the population of agents

will agree on cm for a selected object.

4.2.1.2 Categorization Game with Confidence Rated Belief Updates (CGCRBU)

CGCRBU is based on naming game just like CG. But unlike CG, in the CGCRBU, after

randomly two agents are chosen, their roles such as teacher and learner,5 are not chosen

randomly. The agent with the higher belief score is chosen as teacher and the lower one as the

learner. The information flow in CG is from teacher to learner and the decisions of teachers

determine the outcome of the game. Hence the process of choosing the roles of agents is very

important. These belief scores function like the fitness score in genetic algorithms and we

can assume that it is a type of objective function that determines the optimality of the agents’

5 Teacher is equivalent to speaker and the learner is equivalent to the hearer in the naming game.
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Algorithm 4.2.1 BasicCategorizationGame
1. Select a classification task t among the set of tasks T

2. Create a population P of N number of agentsA

3. Sample training data setDTr to obtain a partition DTr
i of the training data set

4. Train each agent Ai ∈ A with training data set DTr
i

5. for all xi ∈ D
Te do

6. for all Ai ∈ A do

7. Ai classifies xi and obtains label yi where yi ∈ Y

8. end for

9. repeat

10. Randomly select an agent AS
i as a teacher and an agent AH

i as a learner.

11. AS
i utters the category CS

i and AH
i utters the category CH

i .

12. if CS
i equals CH

i then

13. The game is success

14. else

15. The game is failure

16. AH
i updates its lexicon and replaces CH

i with CS
i .

17. end if

18. until isgameconverged

19. end for

decision, in which we rank the agents’ fitness according to this belief score.

Conceptualization of CG Assume that we have a group of agents A and those agents are

trying to categorize an object o. Agent ai (teacher) initiates a dialogue with agent a j (learner)

-an agent with a lower belief score than the ai- and it establishes joint attention by pointing

the object to be classified. Then ai asks what the pointed object is. a j will utter a category

(answer) that it believes that the correct category is. If they can’t agree, learner will replace

the category that she uttered with the category that the teacher uttered and in this case the

result will be failure otherwise the result will be success. If the result is success both agents’

belief scores will be decreased, otherwise the belief scores will be increased according to

Algorithm 4.2.3.

The formal definition of CGCRBU is as below:

• The Teacher and Learner are chosen according to their belief scores βL and βT .

• Belief Score of classifier Ha is computed as: βa = P(xi|Ck) × αa where αa is the confi-
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dence score.

• Structure of agent a at time t is: at =< Ca,t, La,t,Ha, βm >

With the help of belief updates each agent can align their repertoire according to the status

of the game. This provides us dynamic and effective communication as a result. Confidence

scores are computed by obtaining accuracy on the validation data set, similar to the 1-fold

cross validation. Using k-fold cross validation could be very expensive in our simulations.

Because each agent would have to be trained k times. Confidence score αm is multiplied with

the P(xi|Ck) which is the probability of example xi given that it belongs to the category Ck

that the agent Am utters. So computation of belief score βi can be formalized as:

βm = P(xi|Ck) × αm

Belief scores are updated according to Algorithm 4.2.3 and this algorithm is also illustrated

in Figure 4.1. The algorithm of categorization game with confidence rated belief updates is

shown in Algorithm 4.2.2.

The algorithm for belief updates are shown in Algorithm 4.2.3. The goal of belief updates is

to promote the successful communication and to reduce the number of failed games to speed

up the games and increase the accuracy of decisions. Language games are ”shared coopera-

tive activities“(SCA) (Bratman, 1992) or ”joint action“ and in SCA each agent acts according

to their expectations and expectations are based on the expectations on the other agents and

these expectations are based on the beliefs about the other agents about her. As discussed by

Tomasello and Carpenter (2007), social norms, can only be created by the individuals who

engage in shared intentionality and collective beliefs, and they play an enormously important

role in maintaining the shared values of human cultural groups. Moreover learning is a so-

cial and interactive process in which individuals change their beliefs when they receive new

information or feedback (Elio and Pelletier, 1997, 1994). These studies show that our belief

update algorithm is cognitively plausible as well. The successful belief updates rule is very

similar to the perceptron weight update rule.

The algorithm of belief updates are shown on Algorithm 4.2.3, if not stated otherwise, we

have chosen η’s (update rates) as equal ηs = ηh.
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Algorithm 4.2.2 BeliefCategorizationGame(T , N,A,DTr,DTe)
1. Select a classification task t among the set of tasks T

2. Create a population P of N number of agentsA

3. Sample training data setDTr to obtain a sampled training data set DTr
i

4. Train each agent Ai ∈ A with sampled training data set DTr
i

5. Assign confidence sore Ti for each agent Ai using cross-validation

6. for all xi ∈ D
Te do

7. for all Ai ∈ A do

8. Ai classifies xi and obtains label yi where yi ∈ Y

9. βi = Fi ∗ Ti

10. end for

11. repeat

12. Randomly select an agent Ai as a teacher and an agent A j as a learner.

13. if βi > β j then

14. Ai utters the category Ci and A j utters the category C j.

15. if Ci equals C j then

16. S success ← true and U pdateBelie f s(βi, β j, S success)

17. else

18. S success ← f alse and U pdateBelie f s(βi, β j, S success)

19. A j updates its lexicon and replaces C j with Ci.

20. end if

21. else if βi < β j then

22. Ai utters the category Ci and A j utters the category C j.

23. if Ci equals C j then

24. S success ← true and U pdateBelie f s(β j, βi, S success)

25. else

26. S success ← f alse and U pdateBelie f s(β j, βi, S success)

27. A j updates its lexicon and replaces C j with Ci.

28. end if

29. else

30. Randomly select an agent At as teacher and Al as learner.

31. At utters the category Ct and Al utters the category Cl.

32. if Ci equals C j then

33. S success ← true and U pdateBelie f s(βt , βl, S success)

34. else

35. S success ← f alse and U pdateBelie f s(βt , βl, S success)

36. Al updates its lexicon and replaces Cl with Ct .

37. end if

38. end if

39. until isgameconverged

40. end for
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Algorithm 4.2.3 UpdateBeliefs(βH , βS , S success)
1. if S success = True then

2. βH ← βH + ηs × βS

3. βS ← βS + ηs × βH

4. else

5. βH ← (βS − βH) × (1 − η f ) + η f × βS

6. βS ← βS − η f × βH

7. end if

Figure 4.1: Belief Updates: This figure basically shows how the belief scores are determined
according to the conditions. S is the confidence score of speaker and h is the confidence score
of hearer. k is the rate of belief update.
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4.2.2 Sampling Techniques for Categorization Games

4.2.2.1 Importance Sampling (IS)

Importance sampling is sometimes referred as biased sampling as well, and it is a variance

reducing sampling algorithm. A key issue to achieve small errors (for a given number of

samplings) is a suitable strategy of sampling the available multidimensional space. If the vol-

ume of data to be sampled is very large, but is characterized by small probabilities over most

parts, one can achieve importance sampling by approximating the probability distribution by

some function P(x), and generating randomly x according to P, and weighting each result

at the same time by [ dP(x)
dx ]−1 (Bock et al., 1998). Importance sampling is usually used for

estimating variables.

Weighted Random Sampling (WRS) WRS is essentially a variant of an importance sam-

pling. The weights are assigned according to the distribution of classes among the samples in

the data set.

Assume that, X = x0, . . . , xn and C = c0, . . . , cm, where xi’s are our classes and ck’s are our

classes that each xi belongs to. The distributions of classes determined by D(ci). The core

intuition of WRS we have used in these tests is to generate a subsample S k from S where

D(cS k
i ) and D(cSi ) are very close to each other. The reason of using the WRS in our case, is to

be able to increase the bias. The WRS conducted in this thesis does not use replacements.

4.3 Implementation

We have used java for building the simulation. We used WEKA library6 (Hall et al., 2009) for

using the data-mining learning algorithms like C4.5.7 The results of simulation can be stored

in a NoSQL database MongoDb or a file-based RDBMS, sqlite. The relevant statistics have

been drawn with python’s matplotlib library and gnuplot tool. For efficient pseudo random

number generation Mersenne Twister algorithm (Matsumoto and Nishimura, 1998) is used.

The test data sets should have sufficient number of categories in order to better observe the

emergence of categories. I’ve used libsvm (Chang and Lin, 2001) to test the categorization
6 WEKA is an open source application developed by University of Waikato.
7 The WEKA equivalent of C4.5 algorithm is J48
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games with SVM algorithm. We have used NetworkX (Hagberg et al., 2008) and Graphviz

(Ellson et al., 2003) libraries to visualize the networks of agents.

4.4 Empirical Results

4.4.1 Data Sets

The tests have been conducted on 3 different data sets, and their characteristics can be sum-

marized as below:

MNIST Data Set The MNIST database of handwritten digits, has a training set of 60000

examples, and a test set of 10000 examples. It is a subset of a larger set available from

NIST. The digits have been size-normalized and centered in a fixed-size image. This data

set is specifically suitable for researchers who want to try learning techniques and pattern

recognition methods on real-world data while spending minimal efforts on preprocessing and

formatting (LeCun et al., 2002). Due to the size of the data set we had to do sampling on

the data set in order to do fit the data set into the memory. We have use random sampling

on the data set with 40 percent as the sampling percentage. MNIST data set has 785 features

(value of each pixel) which are numerical per picture. MNIST is one of the most popular data

set in the machine learning community. It has been specifically used for benchmarking deep

learning algorithms.

GTVS Data Set GTVS (Ground Truth Verification System) (Canini et al., 2009) is a net-

work traffic classification data set. This data set is constituted with measurements from dif-

ferent places in different times. The data is multivariate and has 13 classes. The classes in the

data set are not balanced. Each example in the data set has 12 features and all those features

are numerical.

Segmentation Data Set We used image segmentation data set created by Brodley and Friedl

(1999) from the outdoor images in University of Massachusetts. The examples of the data set

were drawn randomly from a database of 7 outdoor images. The images were hand segmented

to create a classification for every pixel. Each instance is a 3×3 region and has 19 continuous
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features. There are 6 classes in the data set, that are either, ”brickface, sky, foliage, cement,

window, path or grass“.

Characteristics of Data Sets
Data Set # Nominal Attrs. # Numerical Attrs. # Classes # Test Examples # Training Examples
GTVS - 12 13 Day1 (324276) Day2(175662)
MNIST - 785 10 10000 60000
Segment - 19 7 1500 (test) 810 (challenge)

Table 4.1: Table showing the basic characteristics of data sets.

Construction of Validation Data Set We used validation data set to obtain a confidence

score of a classifier. The training data set is split into N sub sets in which N different classifiers

will be trained from N different partitions. Each classifier randomly chooses k (we have used

k = 1 in our tests.) sub sets of training data set that doesn’t include their own training data set

and create a validation data set from by aggregating those sub sets.

4.4.2 Basic Phenomenology

In the classical naming game simulations, agents invent their own words in the beginning of

the game. But in the categorization game agents have predefined lexicon of categories and

they have already have a word for each object (but their belief and confidence might be weak

about their knowledge) in their lexicon which originates from their training data set. Thus

they do not need to invent new words for each object. In Figure 4.2 we show the changes of

number of different words Nd(t) in our game for each round. In contrast to naming game CG

does not have fluctuations. The fluctuations in typical naming game is caused by invention of

new words. In standard naming game, initially each agent’s lexicon is empty and they create

new words if they don’t have any name.

Plot in Figure 4.2 is monotonically non-increasing. This test is done with 10 agents and a

lexicon of 15 words. In the beginning each agent randomly chooses a lexical item from the

lexicon and plays the CG.

Plot in Figure 4.2 is of a test that involve 10 agents where each agent select a word from the

lexicon of 30 categories.
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Figure 4.2: (CG) Evolution of lexicon and convergence of categories in categorization game.
In the beginning of the game there are 10 different categories and as they agents communicate
with each other, the number of different categories decreases. At the end of the game agents
agree on a single category. At the time intervals that number of different categories stays
same, agents have successful dialogues.
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Figure 4.3: The evolution of lexicon and convergence of categories in CG after 7 runs. As
seen from this plot Nd(t) initially decreases rapidly and then the decline starts to slow down
and in the end they reach linguistic coherence.

In the plot 4.3 60 agents involved in the test and they randomly select a word from the lexicon

of 70 categories.

Plot in Figure 4.4: 50 agents involved in that test and each of them randomly selects a category

from the lexicon of 60 categories. Success rate S (t) is calculated by dividing the number of

successes to the total number of iterations (or communications) in the game.

In the 3D plot 4.5 60 agents involved in the test and they randomly select a word from the

lexicon of 70 categories.

As seen on 3D interaction networks at Figure 4.9, Figure 4.8 and Figure 4.7 as the number of

words in the lexicon and agents increases the interaction network got more complicated and

the communication becomes inefficient.

In Figure 4.10 we have shown the interaction network of 10 agents that chose their words

from the lexicon of 10 words. The agents that have higher belief score is more likely to be
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Figure 4.4: This graph is showing the evolution of success rates S (t) with respect to time t.

Figure 4.5: This graph is showing the evolution of lexicon and convergence of categories in
categorization games. This plot illustrates the change in S (t) and Nd(t) with respect to time.
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Figure 4.6: The evolution of categories showing number of successes and the number failed
communications in CGCRBU with respect to time with 1000 agents and an initial lexicon
containing 120 words in which agents chooses randomly in the beginning of the game.

Figure 4.7: 3D interaction network of a CGCRBU with 10 agents and an initial dictionary of
6 words.
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Figure 4.8: The 3D interaction network of CGCRBU with 15 agents and a lexicon of 10
words.

Figure 4.9: The 3D interaction network of CGCRBU with 50 agents and a lexicon of 8 words.
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Figure 4.10: Interaction networks with 10 Agents and 10 words in the lexicon. Each eclipse
on graph specifies an agent and the first word in each eclipse is the converged word and the
second one is the initially selected word by the agent. Numerical value in the eclipses is
the belief score of an agent at the end of the game. The direction of arrows specifies the
communication flow from teacher to learner.

chosen as the learner.

As seen on Figure 4.12, the success and fail rates are symmetric.

In order to compare the categorization games along with majority voting and other method-

ologies, we have tested several learning algorithms on three different data sets. Initially we

tested them with on MNIST, GTVS and Segmentation data sets and calculated their accuracy.

Accuracy is calculated according to the ratio of number of correctly classified examples to

the number of examples in the test data set. The size of MNIST and GTVS data sets were

too large into fit to memory. Thus MNIST training and test data sets were randomly sampled

without replacement with 40 percent and GTVS training data set is randomly sampled without

replacement with the ratio 50 percent. In GTVS data set first day’s collected data is chosen to

be the training data set and the second day’s data is chosen as test data set.

In Figure 4.14 and 4.15 we can see the change of accuracies with respect to increasing sam-

pling percentage and number of agents. These two tests are done on segmentation data set

with Multinomial Naive Bayes (NB) algorithm as the base learner. CG and CGCRBU are

meta-learning algorithms. Hence they don’t depend on type of the base learner. We have
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Figure 4.11: The evolution of lexicon and convergence of categories in CGCRBU with 1000
agents and 40 words.

done several independent tests on GTVS, MNIST and Segmentation with NB, C4.5, SVM

and Kstar algorithms in order to observe the behavior of the algorithms on different data sets.

As seen from the performance of C4.5 and NB algorithms on MNIST, GTVS and Segmenta-

tion data sets. C4.5 performs significantly better than the NB. Because of the NB’s condition-

ally independence assumption, it ignores the conditional dependency between the dimensions

of data and does not perform well on our data sets.

The first test is conducted on segmentation data set, and the goal is to observe the change of

accuracies with respect to the changes of sampling percentage on the training data set for base

learners. The results are shown in Table 3.1.

The second test is conducted on segmentation data set and the goal is to observe the change of

accuracies with respect to the changes of number of learners training data set for base learners.

The results are shown on Table 4.2.

The third test is about the changes of accuracy on different data sets on different data sets by

using C4.5 algorithm as the base learner. The results of the tests are shown on Table 4.3.
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Figure 4.12: The change of success and fail rates with 10 agents and initially 6 words in the
lexicon.

Accuracies wrt differing sampling percentage
Algorithm Sampling Percentage

5 10 15 20 25
Majority Voting 84.814 80.123 78.518 75.925 77.160
Categorization Games 76.172 73.827 76.543 76.172 76.790
CGCRBU 76.172 76.419 77.777 78.888 78.518

Table 4.2: Table of accuracies of model combination algorithms with Naive Bayes algorithm
as base learner on segmentation data set. When the sampling percentage is small, majority
voting seems to outperform CGCRBU. But as the sampling percentage increases the accuracy
of majority voting drops and the CGCRBU’s accuracy increases.
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Figure 4.13: The change of belief scores in CGCRBU within a game of 20 agents and 15
words in the lexicon. We have used ηs = 10 × ηh in this test. In the beginning as because
of the failed dialogues belief scores slightly decreases. Later on as the number of successful
games start to increase, the belief scores started to increase as well.

Figure 4.14: The graph of change of accuracies with respect to number of agents. Y axis is
the accuracy, X axis is depicting the time.
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Figure 4.15: The graph of change of accuracies with respect to sampling percentages. X axis
is showing the change of sampling ratios, Y axis is for accuracy.

Accuracies of model combination algorithms wrt differing number of agents
Algorithm Number of agents

5 10 15 20 25
Majority Voting 79.876 76.913 78.271 78.395 78.271
Categorization Games 78.888 75.0617 76.913 76.296 74.691
CGCRBU 79.382 80.617 80.370 80.370 79.382

Table 4.3: Table of accuracies of model combination algorithms with Naive Bayes as base
learner on segmentation data set. Majority voting’s accuracy drops rapidly as the number of
agents gets larger. But the number of agents in the game does not seem to have significant
effect on CGCRBU.

Accuracies of C4.5 as base learning algorithm wrt type of the data set
Algorithm Data Set

MNIST GTVS Segmentation
Majority voting 83.625 97.698 93.45
Categorization Games 68.05 98.025 88.271
CGCRBU 82 99.0117 93.580

Table 4.4: Table of accuracies of model combination algorithms with C4.5 Decision Tree
learning algorithm as the base learner on different data sets. CGCRBU and Majority Voting’s
performance are very close. But CGCRBU is superior on GTVS and Segmentation data sets.
CG has very low accuracy on MNIST.
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The fourth test is about the change of accuracy on different data sets on different data sets by

using NB algorithm as the base learner. The results of the tests are shown on Table 4.4.

Accuracies wrt type of the data set
Algorithm Data Set

MNIST GTVS Segmentation
Majority Voting 69.475 74.431 77.654
Category Games 67.175 74.903 72.716
CGCRBU 69.625 74.898 79.626

Table 4.5: Table of accuracies of model combination algorithms with Naive Bayes learning
algorithm as base learner on different data sets.

Accuracies of SVM as base learner on Segmentation Data Set
Algorithm Accuracy
Majority Voting 84.426
Weighted Majority Voting 84.647
CGCRBU 84.015

Table 4.6: Table of accuracies of model combination algorithms with SVM -CSVC where
γ = 0.01 and ε = 0.01- learning algorithm as base learner on segmentation data set. These
results are obtained after averaging results of 5 consecutive tests. There is no significant
difference among the algorithms. We have used ηs = 10 × ηh in this test.

Accuracies of Kstar as base learner on Segmentation Data Set
Algorithm Accuracy
Majority Voting 94.6913
Categorization Game 87.6913
CGCRBU 95.0617

Table 4.7: Table of accuracies of model combination algorithms with Kstar(Cleary and Trigg,
1995) algorithm -which is a instance based classifier similar to KNN discussed in Appendix
A- learning algorithm as base learner on segmentation data set.

The average amount of time for agents in the population to agree on a specific category can

be determined by χ = ω f +ωs

M where ω f is the total number of fails, ωs is the total number of

successes and the M is the number of examples in the whole data set. For each example this

number is N in majority voting where N is the number of agents. The values of χ with respect

to the change in number of agents in the population is shown on table 3.5. The values of chi

increases exponentially after a certain value. This change is more rapid in CG. When N is

lower than 10, the χ value for CGCRBU is smaller than N.
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χ values wrt the number of agents
Algorithm Number of agents

5 10 15 20 25
CG 2.171 18.406 49.866 92.644 147.744
CGCRBU 2.767 9.739 19.866 80.987 79.135

Table 4.8: Table of values of χ’s with CG and CGCRBU on segmentation data set using NB
as a base-learner.

Figure 4.16: The comparison of different model combination algorithms and our proposed
algorithms with respect to changing sampling ratio.
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As seen in Figure 4.4.2, there is a huge gap between BCG and base learner performed poorly

compared to the other algorithms.

Accuracies wrt the number of agents
Algorithm Accuracies

5 10 15 20 25 Avg
Majority Voting 92.469 92.710 94.171 93.827 94.691 93.465
Categorization Games 87.001 87.235 87.666 87.04 91.331 88.055
CGCRBU 92.172 93.795 94.182 94.102 94.975 93.845

Table 4.9: Table of accuracies of model combination algorithms with C4.5 algorithm as base
learner with respect to the change in number of agents on segmentation data set. On average
CGCRBU performs better than the other algorithms in terms of accuracy.

Accuracies wrt the sampling percentages
Algorithm Accuracies

5 10 15 20 25 Avg
Majority Voting 91.111 93.450 94.171 94.197 93.580 93.301
Categorization Games 81.691 86.250 87.666 89.345 87.777 86.546
CGCRBU 90.456 93.795 94.308 94.112 93.839 93.302
Bagging 91.728 92.963 92.839 93.827 94.321 93.135
C4.5 (Base-learner) 82.098 88.148 90.617 89.382 90.7407 88.197

Table 4.10: Table of accuracies with respect to the change in sampling percentage where C4.5
algorithm is the base learner on segmentation data set.

Because of the randomness involved in the CG and CGCRBU, the accuracy of classification

tasks vary in each run. Hence in Table 4.9 and Table 4.10 each test ran 10 times and their

accuracies are averaged. On average CGCRBU outperforms other algorithms in both tests.
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CHAPTER 5

Conclusion and Discussions

“Hominid and human evolution took place over millions and not billions of years, but with

the emergence of language there was a further acceleration of time and the rate of change.”

–William Irwin Thompson

Algorithms inspired from the way that nature deals with complex problems are known to per-

form well for solving challenging problems in computer science. Chaotic behaviors are ubiq-

uitous in nature and social systems. Artificial intelligence and specifically machine-learning

tries to solve complex problems occurring as a result of complex processes. Therefore com-

puter scientists frequently use nature inspired algorithms for AI and particularly optimization

problems, like solving traveling salesman problem by using algorithms such as, genetic al-

gorithms, connectionist systems and ant-colony optimizations. Emergence and evolution of

languages are an optimization process that communicative efficiency provides Darwinian fit-

ness which translates to reproductive success (Niyogi, 2006).

In this thesis, we’ve proposed two new social collective learning algorithms inspired by late

Wittgensteinian language games. This framework is also a conceptualization of the social

interactions between individuals for modeling the emergence of language. In that sense we

claim that this algorithm can be used as a ideal social learning algorithm that several agents

tries to categorize a particular object by discussing with others. Using this framework we

have also observed the emergence of categories.

We have done several tests and developed two simple games, categorization game (CG) and

categorization game with confidence rated belief updates (CGCRBU) and empirically ob-

served their characteristics and emergence of categories under certain circumstances.
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Our tests have shown that CG and CGCRBU converge to an optimal category, in a reasonable

time interval. But the running time and accuracy of each game varies in each run1. According

to the results we obtained from the tests in Chapter 4, the categorization games is a compet-

itive alternative, compared to the majority voting and bagging algorithms2. In some tests we

obtained better results than the majority voting algorithm without having any performance

burdens. On average, CGCRBU converges to an optimal category with less than N iterations

where N is the number of agents when the number of agents is small. The increase in num-

ber of agents and sampling ratios seem to have a significant effect on the accuracy of the

algorithms.

Learning with a language game is a by product of social activities among several agents as in

the real world3. By using categorization games, we have shown how a population of agents

might arrive to a shared language (or to linguistic coherence) through the interactions among

the learning agents without any central control at all. In this sense, we have used BCG and

CGCRBU as a social learning algorithm.

The major disadvantage of categorization games is that they are not stable.

There are several directions that this thesis can be brought to:

1. A theoretical and mathematical framework for categorization games can be defined, in

order to find the lower and upper bounds for the ”Mean Square Error“ of algorithm.

2. The categorization games can be expanded with further ideas, such as using them with

AdaBoost (see Appendix C) or LogitBoost algorithm (Friedman et al., 2000) by simply

replacing weighted majority voting algorithm.

3. Individuals in real world uses their past experience when they decide on a specific

topic and they gain new experiences from the errors they make. Therefore using semi-

supervised learning with self-training (Mihalcea, 2004) to train agents with their past

decisions that agents made might be a more plausible way to model social learning.

4. The statistical mechanics of emergence of categories in language games should be an-

alyzed to better understand how language games behave in certain situations.

1 Also consider that our pseudo random number generator uses current time in milliseconds as the seed and
so in each run random numbers generated varies.

2 Bagging uses majority voting with bootstrapping.
3 Such as second language learning
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5. The games we have proposed, should be tested on different data sets and with different

learning algorithms, to better understand the behavior of these games. These algorithms

can be tested in the heterogeneous ensemble learning context as well.

6. Categories in computer science are usually represented ontologically and hierarchically

with relations among them that establishes the associations. Moreover humans seem to

have a tendency to relate semantically close categories in order recall back easily. Thus

using for example an associated memory might be better way to represent the categories

and they may perform better in pattern recognition tasks.
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APPENDIX A

On Supervised Machine learning Algorithms

A.1 Decision Trees and C4.5

Trees are one of the most common and powerful data structure in the computer science. Build-

ing trees is a cheap procedure; but using them is even cheaper ( O(log(N))). Therefore it is an

attractive data structure for machine learning studies. An important advantage of using deci-

sion trees is that they are transparent unlike Neural Networks or other black box approaches.

So they are easy to interpret by the humans as in Figure A.1.

Simply a decision tree has a recursive structure that (Kohavi and Quinlan, 1999):

• a leaf node with class value or,

• a test node that has more than two outcomes

C4.5 algorithm is a popular decision tree algorithm proposed by Quinlan and it is the successor

of ID3 algorithm (Quinlan, 1993).

There are several design decisions that have to be taken in the decision tree construction

(Theodoridis and Koutroumbas, Theodoridis and Koutroumbas):

• At each node, a set of questions to be asked has to be decided. Each question corre-

sponds to a set of children split nodes and each node t corresponds to a set of examples

Dt
s from training data Dt. Splitting a node is equivalent to the splitting the the dataset

into disjoint descendant subsets {Dt
0, . . . ,D

t
n}. The root of tree is associated with the

whole training dataset Dt. For every split node, following considerations are true:
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Figure A.1: An Example Decision Tree: This figure shows a decison tree with nodes and
leaves. As seen from the figure it is possible to classify an example without testing all the
features.
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Figure A.2: Growing Decision Tree: Ti’s are the result of growing tree from the Dt

Dt = Dt
0 ∪ Dt

1 . . .D
t
n

∅ = Dt
0 ∩ Dt

1 . . .D
t
n

• A splitting criterion must be adopted for determining which split criterion is best to use

among the set of candidate ones.

• A stop-splitting criterion is required for controlling the growth of the tree and a node is

declared as a terminal one (leaf).

A.1.1 Decision tree construction

Most of the decision tree construction algorithms use a top-down construction with a divide

and conquer technique:

• If all the examples in Dt belongs to the same class C j the decision tree is a leaf.

• Otherwise let S be a splitting criterion with outcomes {s1, . . . , sn} that produces a non-

trivial partition of Dt and let’s denote that Dt
i is a nontrivial partition created by S i.

Then the decision tree produced will be as in A.2.
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A.1.2 Splitting Criterion for C4.5 Algorithm

C4.5 algorithm uses information gain for splitting nodes as well as ID3 algorithm (Quinlan,

1986). C4.5 uses Information-Gain as the splitting criteria (Kohavi and Quinlan, 1999).

Information gain uses the ”Entropy”, the measure of disorder in the data. The entropy is

calculated according to the relative frequency of class C j with respect to the training dataset

Dt:

RF(C j,Dt) =
|C j |

|Dt |
= P(C j|Dt)

The entropy H of Dt is :

H(Dt) = E(I(Dt))

E is the expected value and I is the information content of Dt where in our case I(Dt) =

−log2(Dt).

Entropy H which determines the information content of a message that identifies the class of

instance in Dt will be:

H(Dt) = −
∑x

j=1 RF(C j,Dt)log2(RF(C j,Dt))

As a result of assumption that our message is binary encoded we use the log2 which deter-

mines the information content of the message (Shannon, 2001).

By definition the information gain is the change in entropy from a prior state to a state that

takes some information as given (Wikipedia, 2010d):

IG(Dt) = H(Dt) − H(Dt|a)

The information gain will be as below where Dt
i is the sub-partition of training dataset Dt and

Split Test S t
j:

IG(Dt, S ) = H(Dt) −
∑n

j=1
‖S t

j‖

‖S ‖ H(Dt
j)

Decision Tree will choose the split test that maximizes the information gain.

The drawback of information gain is that information gain favors the attributes that can take

on a large number of distinct values.So for instance, IG(Dt, S ) is maximized when the each
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S t
j has one instance. The information gain ratio solves this problem by taking into account

the potential information from the partition itself.

P(Dt, S ) = −
∑n

j=1
‖S t

j‖

‖S ‖ log(
‖S t

j‖

‖S ‖ )

IGR(Dt, S ) =
IG(Dt ,S )
P(Dt ,S )

The test S t
i that maximizes IGR will be selected as the split node.

A.1.3 Stop Splitting Criterion

There are various methods for stopping splitting criterion; a possibility is to adopt a threshold

T and stop splitting if the maximum IGR is less than T . Other alternatives are to stop splitting

either if the cardinality of the subset Xt is small enough or that all points in it belong to a

single class (Theodoridis and Koutroumbas, Theodoridis and Koutroumbas).

A.1.4 C4.5 Construction Pseudocode

The general overview of decision tree construction algorithm is shown in Algorithm A.1.1:

A.2 Bayesian Inference and Bayesian Classification

Probabilistic models for human cognition aim to explain cognition by appealing to the prin-

ciples of probability theory and statistics, which dictate how an agent should act in situations

that involve uncertainty. Probabilistic models are very useful for modeling real-world phe-

nomena which includes certain amount of uncertainty.

A.2.1 Bayesian Inference

In practical usage, ”Bayesian inference” refers to the use of a prior probability over hypotheses

to determine the likelihood of a particular hypothesis given some observed evidence; that is,

the likelihood that a particular hypothesis is true given some observed evidence (the so-called

posterior probability of the hypothesis) comes from a combination of the inherent likelihood

76



Algorithm A.1.1 BUILDTREE(root)
1. if all instances are in the same class then

2. add leaf with Class C j to the root

3. return root

4. end if

5. repeat

6. if IGR > maxIgr then

7. maxIgr ← IGR

8. end if

9. until No Attribute left

10. if maxIgr < T then

11. return root

12. end if

13. attBest ← argmax(IGR)

14. create decision node dNode that splits from attBest

15. return BUILDTREE(dNode)

(or prior probability) of the hypothesis and the compatibility of the observed evidence with

the hypothesis (or likelihood of the evidence, in a technical sense). (Tenenbaum et al., 2006)

Bayesian inference is regularly used by the probabilistic models of cognition, showing the

central role of Bayesian inference in reasoning under uncertainty (Tenenbaum et al., 2006),

(Griffiths and Yuille, 2008), (Tenenbaum and Griffiths, 2001), (Griffiths et al., 2008).

Bayesian inference heavily relies on the Bayes Theory. So it would be nice to see how Bayes

Theory is derived:

Probability theory is based on the following two rules:

Sum rule:

• p(X) =
∑

i p(X,Yi)

and the product rule:

• p(X,Y) = P(X|Y)p(Y) = P(Y |X)p(X)
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where, ∀Xi ∈ X → p(Xi) ≥ 0 and
∑

i p(Xi) = 1

and by using the product rule above we can get the Bayes Rule:

• p(X|Y) =
p(Y |X)p(X)

P(Y)

In this formulation (Wikipedia, 2010a),

• Y is the evidence that has been observed

• X is the hypothesis

• p(X) is the prior probability of X which has already been inferred when the new evi-

dence becomes available

• p(Y) is the marginal probability of Y: a priori probability

• p(Y |X) is the conditional probability or likelihood in which given that you’ve observed

the evidence Y , what is the probability of the hypothesis X being correct.

• p(X|Y) is the posterior probability of hypothesis X given that evidence Y is observed.

and we can rewrite the bayes theorem as below:

• posterior =
prior×likelihood

evidence

also from the above statements we can infer:

• p(Y |X) ∝ p(X|Y)p(Y)

Bayesian decision theory(BDT) introduces a loss function L(X, αY) for the cost of making the

decision αY when the input is Y and the true hypothesis is the X. BDT tries to minimize the

the risk by selecting an appropriate α ∗ (.) function that minimizes the risk, the expected loss

function will be (Tenenbaum et al., 2006):

R(α) =
∑

xi∈X,yi∈Y L(xi, αyi)P(xi, yi)

The loss function is selected so that the same penalty is paid for all wrong decisions: L(X, αY)

if αY , h, L(X, αY) = 0 and αY , h L(X, αY) = 1, so that we’ll get a hinge loss. Therefore

the best decision rule is the maximum a posteriori estimator (MAP) α∗(Y) = argmaxP(X|Y).
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A.2.2 Naive Bayesian Algorithm

Naive Bayes Classifiers are one of the most fundamental type of classifiers. A bayesian

classifier estimates the likelihoods from the training data, but this process requires additional

simplifications. One of the important assumption of Naive Bayesian classifier is that the

probability model for a classifier is a conditional model Wikipedia (2010f), (Barber, 2010):

P(Ci|Di)

Given that Ci is a the class that an example Di belongs to. We know that Di is a set of features,

F0, F1, F2, . . . F j, so we can rewrite the conditional probability as:

P(Ci|F0, F1, . . . , F j)

and according to above formulation, the bayes theorem will be:

P(Ci|F0, . . . , F j) =
p(F0,...,F j |Ci)p(Ci)

p(F0,...,F j)

we ignore the denominator in the bayes theorem because it is constant and doesn’t depend on

Ci, therefore we’ll only P(Ci, F0, . . . , F j) is equivalent to:

P(Ci, F0, . . . , F j)

= P(Ci)P(Ci|F0, F1, . . . , F j)

= P(Ci)P(F0|Ci)P(F1|Ci, F0)P(F2|Ci, F0, F1) . . . P(Fn|Ci, F1, . . . F j−1)

The naiveness of naive bayes classifier originates from the conditional independence assump-

tion:

P(F j|Ci, Fk) = P(F j|Ck)

if j , k then the joint model will be,

P(Ci, F0, . . . , F j) = P(Ci)P(F0|Ci)P(F1|Ci) . . . P(F j|Ci)

= P(Ci)
∏n

j=1 P(F j|Ci)

Adding the Z(evidence) scaling factor of conditional distribution over Ci for the features F j

our conditional model will be:
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P(Ci, F0, . . . , F j) = 1
Z P(Ci)

∏n
j=1 P(F j|Ci)

The corresponding classifier for the model can be expressed as:

classi f y(F0, . . . , F j) = argmaxP(Ci)
∏n

j=1 P(F j|Ci)

Naive bayesian estimation for continuous attributes

The formulation shown above can be used confidently for the discrete attributes but, for the

numeric attributes we have to use a parametric model like gaussian distribution John and

Langley (1995):

P(Ci, F j) = 1
n
∑

i g(F j; µ, σ)

and the µ is the mean:

µ = 1
N
∑

k=1, f j
k ∈F j

xi

The σ where σ2 is the variance is calculated as,

σ =
√

1
(N−1)

∑
k=1, f j

k ∈F j
(xi − µ)2

g( f j; µ, σ) is the gaussian function,

g( f j; µ, σ) = 1√
2πσ

e−
( f j−µ)2

σ2

Naive bayesian document classifier pseudocode

Algorithm A.2.1 TRAINNAIVEBAYES(DT )
1. global C

2. for all c ∈ C do

3. γc ←
|DT

c |

|DT |

4. T ← concat(DT
c )

5. N ← noO f Tokens(T )

6. for all X ∈ DT do

7. for all fi ∈ X do

8. P( fi|c) =
|T fi |
|T |

9. end for

10. end for

11. end for
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Algorithm A.2.2 CLASSIFY(X)
1. local p

2. for all c ∈ C do

3. p = P(c)

4. for all t ∈ X do

5. p = p × P(t|c)

6. end for

7. end for

8. return p

A.3 k-NN

k-NN is a nonparametric classification algorithm. Therefore it doesn’t do any assumption

about the distribution of the data. Furthermore it is lazy-learner. Thus it only does a naive

function approximation during the training and most of the computation is left to the classifi-

cation phase.

k-NN uses distance metric and calculates its closest k neighbor according to this similarity

distance. Most used similarity metric for k-NN is Euclidean Distance. However euclidean

distance works only for numeric attributes. Most popular distance metrics for k-NN:

• Euclidean distance: Euclidean distance is the ordinary distance between two data points

in P,Q euclid space:

dE(P,Q) =

√∑n
i=1(Pi − Qi)2

• Mahalanobis distance: Unlike Euclidean distance, Mahalanobis Distance takes into

account the correlations of the data set and it is scale-invariant. Mahalanobis distance

of a multivariate vector x = (x1, x2, x3, . . . , xN)T from a group of values with mean

µ = (µ1, µ2, µ3, . . . , µN)T and covariance matrix S is defined as:

dM(x) =
√

(x − µ)T S −1(x − µ)

K-nn is also a non-parametric density estimation that is formalized as (Duda et al., 2001),

P(x) = k
(NV)

and where,
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• V is the volume surrounding the sample x

• k is the number of samples in V

• N is the total number of samples

Algorithm of k-NN is fairly simple shown in Algorithm A.3.1; but usually for the problems

that we don’t know anything about the distribution is very efficient.

Pseudocode of k-NN with is as follows (Peterson, 2009):

In order to optimize the classification with k-NN, usually spatial data structures like kd-tree,

ball-tree or R-Trees are being used. This diminishes the bottleneck in calculation of distances

during the classification.

Some important features of the k-NN are:

• The k-NN can be used to classify data without requiring a specific model for general-

ization, this is called ”instance-based learning” which is a kind of ”lazy learning”. The

new unclassified data is compared to the training data and based on the similarity, it is

classified.

• A distance/similarity metric for the data should be available.

• The k-NN classification is based solely on local information (only the k nearest neigh-

boring data points are inspected during the classification process).

• The decision boundaries produced by the k-NN can be in any arbitrary shape.

• The classification is sensitive to the correct selection of k. If k is too small it may lead

to ”over-fitting” and for some problems you may need to fine-tune the model in order

find the correct k for the model.

• For high-dimensional large datasets, classification will be slow if a specific data struc-

ture for the data is not chosen.
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Algorithm A.3.1 KNN(DT )
1. initialize the n × n distance matrix D, initialize the Ω × Ω confusion matrix C, set t ←

0,TotAcc ← 0, and set NumIterations equal to the desired number of iterations (re-

partitions).

2. calculate distances between all the input samples and store in n× n matrix D. (For a large

number of samples, use only the lower or upper triangular of D for storage since it is a

square symmetric matrix.)

3. for t ← 1 to NumIterations do

4. set C← 0, and ntotal ← 0.

5. partition the input samples into κ equally-sized groups.

6. for fold← 1toκ do

7. assign samples in the foldth partition to testing, and use the remaining samples for train-

ing. Set the number of samples used for testing as ntest.

8. set ntotal ← ntotal + ntest.

9. for i← 1tontest do

10. for test sample xi determine the k closest training samples based on the calculated dis-

tances.

11. determine ω̂, the most frequent class label among the k closest training samples.

12. increment confusion matrix C by 1 in element cω,ω̂, where ω is the true and ω the pre-

dicted class label for test sample xi. If ω = ω̂ then the increment of +1 will occur on the

diagonal of the confusion matrix, otherwise, the increment will occur in an off-diagonal.

13. determine the classification accuracy using Acc =

∑Ω
j c j j

ntotal
where c j j is a diagonal element

of the confusion matrix C.

14. calculate TotAcc← TotAcc + Acc.

15. calculate AvgAcc← TotAcc/NumIterations
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A.4 Statistical Learning Theory

A.4.1 VC(Vapnik-Chervonenkis) Dimension

VC dimensions proposed by Vapnik and Chervonenkis and its foundation has been established

by them between 1971-1990. It measures the capacity of a hypothesis space. Capacity is the

measure of the complexity and measures the expressive power or richness of a set of functions

(Sewell, 2008).

I’ll adapt here Alpaydin’s definition of VC dimensions (Alpaydin, 2010):

”Let us say we have a data set containing N points. These N points can be labeled in 2N

ways as positive and negative. Therefore, 2N different learning problems can be defined by

N data points. If for any of these problems, we can find a hypothesis h ∈ H that separates the

positive examples from the negative, then we say H shatters N points. That is, any learning

problem definable by N examples can be learned with no error by a hypothesis drawn from H.

The maximum number of points that can be shattered by H is called the Vapnik-Chervonekis

(VC) dimension of H, is denoted as VC(H), and measures the capacity of the hypothesis class

H. We see that an axis-aligned rectangle can shatter four points in two dimensions. Then

VC(H), when H is the hypothesis class of axis-aligned rectangles in two dimensions, is four.

In calculating the VC dimension, it is enough that we find four points that can be shattered;

it is not necessary that we be able to shatter any four points in two dimensions. For example,

four points placed on a line cannot be shattered by rectangles. However, we cannot place five

points in two dimensions anywhere such that a rectangle can separate the positive and negative

examples for all possible labellings. VC dimension may seem pessimistic. It tells us that

using a rectangle as our hypothesis class, we can learn only data sets containing four points

and not more. A learning algorithm that can be learn data sets of four points is not very useful.

However, this is because the VC dimension is independent of the probability distribution from

which instances are drawn. In real life, the world is smoothly changing, instances close by

most of the time have the same labels, and we need not worry about all possible labellings.

There are a lot of data sets containing many more data points than four that are learnable by

our hypothesis class. So even hypothesis classes with small VC dimensions are applicable

and are preferred over those with large VC dimensions, for example, a lookup table that has

infinite VC dimension.”
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APPENDIX B

On Unsupervised Machine Learning Algorithms

B.1 Unsupervised Learning

In unsupervised learning algorithms, natural groupings or clusters are formed without an ex-

plicit teacher.

B.1.1 Clustering:

From unlabeled examples, {d1, d2, . . . , dn} where dm ∈ RD

How can we find a mapping such as dm → {c1, . . . , ck} where ci is a cluster which consists

of data points in the space RD. Therefore clustering is a form of vector quantization which

allows mapping group of similar vectors to an integer.

B.1.2 K-means Algorithm

K-means algorithm is a type of algorithm for finding clusters and cluster centers in a set of

unlabeled data (Hastie et al., 2003). The K refers to the number of clusters to be created in

the data. Given the initial set of clusters K-means performs two steps:

• e-step: for each center we identify the subset of training points (its cluster) that is closer

to it than any other center;

• m-step: the means of each feature for the data points in each cluster are computed, and

this mean vector becomes the new center for that cluster.
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These two steps are iterated until the convergence.

Given a set of data points X = x1, . . . , xn in d dimensional euclidean space, k-means tries to

cluster these n samples into k clusters where k ≤ n S = s1 . . . sk and tries to minimize the

within-cluster-sum of squares (WCSS) (Wikipedia, 2010e):

arg minS
∑k

i=1
∑

xj∈S i‖xj − µi‖
2

where µi is the mean of points in S i.

Algorithm B.1.1 KMeansCluster(X)
1. global k, n

2. local µ1, µ2, . . . , µi

3. repeat

4. perform e-step and assign each sample to a cluster:

S (t)
i ← {x j : ‖x j − µ

(t)
i ‖≤ ‖xj − µ

(t)
i∗ ‖foralli∗ = 1, . . . , k}

5. perform m-step and calculate the the means of samples in the cluster and find the

new centroid:

µ(t+1)
i ← 1

|S (t)
i |

∑
xj∈S

(t)
i

xj

6. until no change in µi
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APPENDIX C

On Ensemble Learning Algorithms

C.1 Ensemble Learning Algorithms

C.1.0.1 Bagging

Bagging (Polikar, 2009), (Zhou, 2008) trains a group learners from the bootstrap samples.

Say we have a training set D with size N and then we’ll create samples Di from D with size

N′ where N′ ≤ N. Di’s are our bootstrap samples. Bagging combines the classifiers with

weighted majority voting in which most voted prediction becomes output of the classifier.

Bagging reduces the variance of the classifier. The algorithm of bagging is fairly simple and

shown in Algorithm C.1.1.

Algorithm C.1.1 Bagging Algorithm
1. Inputs: Data setD = (x1, y1), . . . , (xn, yn);

2. Base Learner L

3. The size of ensemble S E

4. Algorithm:

5. for sE ← 1 . . . S E do

6. DsE ← bootS trap(D)

7. hsE ← L(DsE )

8. end for

9. Test:

10. H(x)← argmaxy∈Y
∑S E

sE=1 wsE (ysE = hsE (xsE ))

11. return H(x)
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C.1.0.2 AdaBoost

Boosting is a general technique that attempts the boost the accuracy of the base-learning algo-

rithm. Boosting stems from the ”PAC” learning model. It trains ”weak-learning” algorithms

and boosts them in order to get ”strong-learner”.

AdaBoost is a specific type of boosting technique proposed by Freund and Schapire in 1995

(Freund and Schapire, 1995). The algorithm of AdaBoost is shown in Algorithm C.1.2 which

is also shown in (Polikar, 2009), (Freund et al., 1999), (Freund and Schapire, 1995).

Algorithm C.1.2 AdaBoost Algorithm
1. Inputs: (x1, y1), . . . , (xn, yn) where xi ∈ X, yi ∈ Y and Y = {y0, . . . , yi}

2. Initialize D1 = 1
n

3. Base Learner L

4. The size of ensemble S E

5. Algorithm:

6. for sE ← 1 . . . S E do

7. DsE ← bootS trap(D)

8. hsE ← L(DsE )

9. Calculate the error εsE of hsE : εsE ←
∑n

i=1 I‖yi , hsE (xi)‖DsE (i) =
∑

i:yi,hsE (xi) DsE (i)

10. Compute the normalized Error: αsE ← ln
1−εsE
εsE

11. Update Distribution with normalization factor

12. ZsE : DsE+1(i)←
DsE (i)exp(αsE I‖yi,hsE (xi)‖)

ZsE

13. end for

14. Test:

15. C(x) = argmaxk
∑M

m=1 α
nI(Lm(x) , k)

I is the indicator function, and DsE (i) holds the distribution of error of ith example by the

model LsE . AdaBoost starts by training a base-learner L and in each iteration it computes

the error ratio of the classifier than updates the Distribution and weights of examples that are

misclassified by the previous learner will be higher. Therefore we’ll obtain diversity between

the learners.
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C.1.0.3 Evolutionary Ensembles

Evolutionary Ensembles use Genetic algorithms to evolve the best classifier among the en-

semble. The most important evolutionary ensemble algorithm is EVEN (Kim et al., 2002),

(Sylvester and Chawla, 2006). Instead of using voting they employ genetic algorithms and the

best decision evolves among the ensemble. EVEN uses accuracy for the fitness function. The

algorithm for EVEN is as in Algorithm C.1.3 which is taken from (Sylvester and Chawla,

2006). EVEN starts before the training phase splits the data set into three disjoint sets, a

training set, a validation set, and a test set to calculate the accuracy against.

Algorithm C.1.3 Evolution(G, p,C)
1. Inputs: Number of Generations G, Population size p, Number of classifiers C

2. Weight vectorW

3. Predictions X

4. P0 = RandomPopulation(p)

5. for g← 1 . . .G do

6. for i← 0 . . . p do

7. Compute f itnessi = accuracy(Pg.i)

8. end for

9. Sort Pg by f itness

10. Pg+1 = interbreed(Pg) + mutations(Pg) + survivors(Pg)

11. end for

12. Select PG−1.i f romPG−1 such that,

13. f itness(PG−1.i) = argmax( f itness(PG−1.1), . . . , f itness(PG−1.i))

14. return W = weights(PG−1.i)

15. return Y = predictions(PG−1.i)
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