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ABSTRACT 

THE PROCESSING OF Mg-Ti POWDER FOR HYDROGEN STORAGE 

 

Çakmak, Gülhan 

Ph.D., Department of Metallurgical and Materials Engineering 

Supervisor: Prof. Dr. Tayfur Öztürk 

February 2011, 100 pages 

 

 

A study was carried out on the selection of processing condition that would yield 

Mg-Ti with most favourable hydrogenation properties. Processing routes under 

consideration were; mechanical milling under inert atmosphere, reactive milling i.e. 

milling under hydrogen atmosphere, ECAP (equal channel angular pressing) and 

thermal plasma synthesis. Structure resulting from each of these processing routes 

was characterized with respect to size reduction, coherently diffracting volume and 

the distribution of Ti catalyst. 

Mechanical milling yielded a particulate structure made up of large Mg agglomerates 

with embedded Ti fragments with a uniform distribution. Mg agglomerates have 

sizes larger than 100 µm which arises as a result of a balance between cold welding 

process and ductile fracture. Repeated folding of Mg particles entraps Ti fragments 

inside the Mg agglomerates resulting in a very uniform distribution. Coherently 

diffracting volumes measured by X-ray Rietveld analysis have small sizes ca. 26 nm 

which implies that the agglomerates typically comprise 1011 crystallites. Mechanical 

milling under hydrogen, i.e. reactive milling, led to drastic reduction in particle size. 

Mg and Ti convert to MgH2 and TiH2 which are milled efficiently due to their 

brittleness resulting in particle sizes of sub-micron range. Hydrogenation 
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experiments carried out on Mg-10 vol % Ti milled under argon yields enthalpy and 

entropy values of -76.74 kJ/mol-H2 and -138.64 J/K.mol-H2 for absorption and 66.54 

kJ/mol H2 and 120.12 J/K.mol H2 for desorption, respectively. For 1 bar of hydrogen 

pressure, this corresponds to a hydrogen release temperature of 280 °C. This value 

is not far off the lowest desorption temperature reported for powder processed Mg 

based alloys. 

ECAP processing is a bulk process where the powders, consolidated in the first pass, 

have limited contact with atmosphere. This process which can be repeated many 

times lead to structural evolution similar to that of milling, but for efficient mixing of 

phases it was necessary to employ multi-pass deformation. An advantage of ECAP 

deformation is strain hardening of the consolidated powders which has improved 

milling ability. Based on this, a new route was proposed for the processing of ductile 

hydrogen storage alloys. This involves several passes of ECAP deformation carried 

out in open atmosphere and a final milling operation of short duration under inert 

atmosphere.  

The plasma processing yields Mg particles of extremely small size. Evaporation of 

Mg-Ti powder mixture and the subsequent condensation process yield Mg particles 

which are less than 100 nm. Ti particles, under the current experimental condition 

used, have irregular size distribution but some could be quite small, i.e. in the order 

of a few tens of nanometers. 

Of the four processing routes, it was concluded that both reactive milling and 

thermal plasma processing are well suited for the production of hydrogen storage 

alloys. Reactive milling yield particles in submicron range and plasma processing 

seems to be capable of yielding nanosize Mg particles which, potentially, could be 

decorated with even smaller Ti particles. 

Keywords: Magnesium, hydrogen storage, mechanical milling, severe plastic 

deformation, thermal plasma synthesis, structural characterization 
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ÖZ 

Mg-Ti ALAŞIMLARININ HİDROJEN DEPOLAMA AMACIYLA ÜRETİLMESİ 

 

Çakmak, Gülhan 

Doktora, Metalurji ve Malzeme Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Tayfur Öztürk 

Şubat 2011, 100 sayfa 

 

Çalışma, Mg-Ti esaslı hidrojen depolama alaşımlarının üretimi için uygun üretim 

yöntemlerinin seçimini hedef almıştır. Bu amaçla seçilen yöntemler; argon altında 

öğütme, hidrojen altında öğütme, eş kanallı açısal pres (EKAP) ve ısıl plazma 

yöntemleridir. Elde edilen yapılar, tane büyüklüğü, kristal/hücre boyutu ve Ti 

dağılımı bakımından incelenmiş ve karşılaştırılmıştır. 

Öğütme yöntemi ile elde edilen yapı, büyük Mg taneler üzerinde homojen dağılmış 

küçük Ti parçacıkları şeklindedir. Mg parçacıklar genellikle 100 µm’dan büyüktür. Bu 

başlangıç tozlarından daha büyük olan parçacık boyutu, topların çarpma etkisi ile 

birbirine yapışması ve sünek kırılma etkisi ile oluşmuştur. Mg tanelerin katlanarak 

tekrar yapışması Ti taneciklerinin yapı içinde homojen dağılmasına olanak 

sağlamıştır. X ışınları yöntemi ile elde edilen kristal boyutu 26 nm’dir. Bu değer Mg 

tanelerinin genellikle 1011 hücreden oluştuğunu göstermektedir. Hidrojen altında 

öğütme tane boyutunda belirgin bir düşüşe neden olmuştur. Bu yöntemde Mg ve Ti 

tozlarının öğütme esnasında kırılgan MgH2 ve TiH2 tozlarına dönüşmesi sonucunda 

mikron altı tane boyutlarına ulaşılmıştır. Argon altında öğütülmüş Mg-10 hacim % Ti 

sırasıyla hidrojen emme ve geri verme için 76.74 kJ/mol-H2 and -138.64 J/K.mol-H2 

,66.54 kJ/mol H2 and 120.12 J/K.mol H2 entalpi ve entropi değerleri vermiştir. Bu 

değerler Mg esaslı malzemeler için literaturde bulunan en düşük değerlerden çok da 

uzak değildir.  
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EKAP’ın kütle halinde bir yöntem olması nedeniyle tozların ortamla etkileşimi en az 

düzeydedir. Yöntem aynı numuneye tekrar tekrar uygulanabilmekte ve bu sayede 

öğütme yöntemi ile elde edilen hücre/kristal boyutuna ulaşılabilmektedir. Fakat bu 

yöntemde fazların birbiri içinde karışabilmeleri için çok yüksek miktarlarda 

deformasyona ihtiyaç vardır. ECAP yöntemi gerinim sertleşmesine neden olarak 

daha hızlı öğütmeye olanak sağlamaktadır. Yöntem bu nedenle sünek hidrojen 

depolama alaşımlarının öğütülebilmesi için özellikle uygundur. Bu amaçla önerilen 

yöntem hidrojen depolama alaşımının önce hava ortamında ECAP yöntemi ile 

deforme edilmesi ve takiben inert ortamda öğütülmesidir. 

 Plazma yöntemi çok küçük tane boyutunda Mg tozlarının üretimine olanak sağlar. 

Mg-Ti toz karışımın buharlaştırılması ve çöktürülmesi yöntemi ile 100 nm’den daha 

küçük Mg taneleri üretilebilmiştir. Ti  boyutları nanometre mertebesinden mikron 

mertebesine geniş bir dağılım göstermekle birlikte tanelerin önemli bir kısmı 10-20 

nm aralığındadır. 

Bu çalışma kullanılan yöntemler arasında hidrojen altında öğütme ve ısıl plazma 

yöntemlerinin hidrojen depolama alaşımlarının üretimi için uygun olduğunu 

göstermektedir. Hidrojen altında öğütme yöntemi mikron altı, ısıl plazma yöntemi ise 

nano boyutta tozların üretimine olanak sağlamıştır. Plazma yöntemi kullanılarak çok 

küçük Ti parçacıklarla kaplanmış Mg tozlarının oluşturulabilmesi mümkün 

gözükmektedir. 

Anahtar Kelimeler: Magnezyum, hidrojen depolama, öğütme, aşırı plastik 

deformasyon, ısıl plazma yöntemi, yapısal karakterizasyon 
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CHAPTER 1  

INTRODUCTION 

 

Due to the problem of gas emission leading to greenhouse effect as well as future 

outlook for remaining reserves for oil resources, it become highly desirable to 

develop alternative and abundant sources of a new energy. 

Among all possible candidates, hydrogen appears to be best suited energy carrier 

for that purpose. In fact, the combustion of hydrogen i) produces nothing else then 

water, ii) produces three times more energy than the usual fuels (Hydrogen 130 

kJ/g as compared to 48 kJ/g for natural gas or 40 kJ/g for gasoline). The major 

issue with hydrogen remains the problem of storing hydrogen economically and 

conveniently. Conventional techniques such as gas storage do not fulfill the 

requirement due to weight and volume issues. Storage in the liquid form is an 

energy intensive process and unpractical due to “boil-off” problem.  

An alternative method is to store hydrogen within a solid material. There are various 

candidates which could store hydrogen in solid form. Metallic hydrides (MgH2, LaNi5, 

TiFe, CeNi3) and complex hydrides (Al(BH4)3, LiBH4) are candidates that are actively 

being developed (Sakintuna et al. 2007). 

Among the various alternatives, storing hydrogen in the form of metal hydrides has 

two advantages. One is related to safety and the other is the high volumetric 

capacity. In fact with hydrides, volumetric capacity is much higher than that 

achieved when storing hydrogen in liquid form (85 g/L-MgH2 compared to 70 g/L). 
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Among all possible hydrides, magnesium is an attractive candidate due to its low 

density, low toxicity and great abundance. The production of Magnesium (Mg) is a 

well established process and therefore the cost of Magnesium is quite reasonable. 

It is well known that MgH2 has high stability with an enthalpy value of ΔH= 74.7 

kJ/mol-H2 which means that temperatures in excess of 350 °C would be required for 

dehydrogenation.  This high stability is a major problem that needs to be solved so 

that Mg can be used as a hydrogen storage medium.  

This thermodynamic barrier can be overcome by changing the bond strength 

between Mg and H. This change usually requires modifications in the local 

arrangements of the atoms. The strategy is to find out right combinations of atoms, 

i.e. additives that sufficiently weaken Mg-H bond strength. An alternative method is 

to modify the bulk material by the formation of nanocrystalline structure, which 

results in a large fraction of grain boundary volumes. Similarly, the processing that 

can lead to the formation of amorphous structure can alter Mg-H bond strength 

producing the same effect. 

To this end over the years, various additives; rare earths (e.g. Ce, La), transition 

metals (Ni, Co, Fe, Cu, Y, Ti), non transition elements (Al, Li) have been alloyed 

with Mg. Efforts are concentrated on systems such as Mg-Ni, Mg-Fe, Mg-Cu, Mg-Si. 

In these systems, some improvements in the enthalpy values were observed. Ni 

addition in Mg, for instance, results in Mg2Ni phase formation which has an 

hydrogenation enthalpy of -65 kJ/mol-H2 instead of -75 kJ/mol-H2 for Mg. The 

associated effect on capacity was, however, always negative, i.e. the capacity was 

lowered (Reilly et al. 1968).  

In order to overcome the thermodynamical limitations, the formation of metastable 

phases was also considered. An example for this is the formation of metastable γ-

MgH2 (Augey-Zinsou and Ares-Fernández, 2010). This phase is known to have lower 

stability compared to β-MgH2. But the problem is that the phase is unstable at 

dehydrogenation temperatures. Metastable phases in binary and ternary Mg 

hydrides are currently being investigated (Hong et al. 2000, Bouodina and Guo 

2002). 
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Another major problem in Mg is the slow kinetics in hydrogenation and 

dehydrogenation reactions. Addition of catalytic elements as well as the production 

of nanocrystalline or amorphous structures has been the main strategy in 

accelerating the reaction rates.  

Catalytic additions to Mg cover pure elements, oxides, nitrides, carbides. But the 

most impressive improvements were obtained with the transition elements such as 

Pd, Ti, V (Sakintuna et al. 2007). Elements such as Ti and V have no solubility in 

Mg; therefore, heavy milling is usually employed so as to finely distribute these 

elements over the particulate structure.  

Nanocrystallisation is another strategy to improve the sorption rates (Augey-Zinsou 

and Ares-Fernández, 2010). High energy ball milling is a common method to refine 

the powders to small sizes. By carefully controlling the milling conditions, it is 

possible to obtain nanocrystalline Mg with this method. The accelerated kinetics is 

usually explained by small particle size as well as a large fraction of grain boundary 

volumes within the particles that have amorphous structure. The process is 

facilitated if the milled material is brittle. For this reason, often MgH2 is the 

preferred form as a starting material which has better milling ability than Mg (Bobet 

et al., 2000). Milling of Mg under hydrogen atmosphere produces the same result 

with in situ conversion of Mg to MgH2. For both techniques, due to brittleness of 

hydrides, milling leads to very rapid fragmentation resulting in a large increase in 

the surface area. 

A drawback in the synthesis of hydrogen storage alloys with mechanical milling is 

the necessity to process the material under a protective atmosphere. Exposure of 

powders during or after milling to atmospheres containing O2, H2O etc. is lethal and 

must therefore be avoided (Ivey et al. 1983). Thus the powders are often processed 

and handled under argon atmosphere of high purity, i.e. in a glove box. 

In this respect, ECAP processing, a recent process that has been employed in the 

processing of hydrogen storage alloys, is quite attractive since the new surfaces 

generated in this process are negligibly small. The process normally involves a 

material in bulk form extruded through a die with two channels of equal cross-

section, intersecting at an angle. The method has been used for hydrogen storage 
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purposes for alloys such as Mg-Ni (Loken et al. 2007) with the result that ECAP 

processing has a positive effect on hydrogenation kinetics. 

A different method for production of hydrogen storage alloys may be nanopowder 

synthesis. Although it is expected that nanopowders should have improved 

hydrogen storage properties due to their high surface area they have not been 

widely studied yet.  

Of the various techniques of nanopowder synthesis, thermal plasma route has the 

advantage that it can be adapted to volume production (Suresh et al. 2008). 

Plasma, a fourth state of matter, can yield temperatures as high as 10000 K in a 

suitably designed torch. At these high temperatures, powders fed to the torch 

evaporate and then condense further down in the reactor. Since the materials 

condense from the vapor phase, resulting powders are in the nanometer range. This 

nanosized powders are expected to have improved hydrogenation properties but 

have not yet been studied.  

To sum up, the studies conducted over the last ten years or so show that for the 

improved hydrogenation properties, the storage material (Mg) should be in the form 

of small sized particles. The studies also show that for improved kinetics it is 

necessary to have catalytic additives that need to be finely distributed over this 

particulate structure.  

In this thesis, an investigation was carried out on alternative production methods 

which could be used in the processing of Mg-Ti. First we review, Chapter 2, the 

production methods that could be used for hydrogen storage alloys. Results of the 

experimental programs are given in Chapters 3-5. These cover mechanical milling, 

milling under argon as well as milling under hydrogen i.e. reactive milling, ECAP 

processing and thermal plasma synthesis. Chapter 6 gives a comparative summary 

of the results obtained from each of these processing routes. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. Introduction 

For an effective hydrogen storage system, the storage alloys should satisfy certain 

specific criteria. The main criteria are high gravimetric and volumetric storage 

capacities, low sorption (absorption and desorption) temperature, fast reaction 

kinetics and resistance to degradation. Specific targets have been set in various 

research programs that are currently in progress (DOE-2001, NESSHY-2006). 

Lightweight elements of periodic table are particularly relevant for satisfying the 

requirement with respect to high gravimetric capacity. Of these elements, only C,Ni, 

Li, Na, Mg, Al form stable compounds and have sufficiently high hydrogen content. 

LiH and NaH are too stable for practical applications. Ammonia and methane are not 

reversible in the practical sense, and AlH3 requires very high pressures for 

reversibility. Another potential candidate for light hydrogen storage is based on the 

[AlH4 ]- anion as in NaAlH4. Achieving reversible hydrogenation in such complex 

hydrides is known to be complicated and has rather slow reaction kinetics (Gross et 

al. 2002). Within these elements, Mg appear to be the only candidate that reacts 

with hydrogen in reversible manner, though its hydride is relatively stable and 

reaction rate is rather sluggish. 

Mg and Mg based alloys can store large quantities of hydrogen up to 7.6 wt % 

(Pedersen et al., 1983). The binary phase diagram of Mg-H is given in Figure 2.1 

(Manchester et al. 1988). Mg has a hexagonal crystal structure (hP2) with lattice 

parameters of a=0.321 nm c=0.521 nm in the elemental form. The hydrogenation 

takes place via a primary dissolution of H in Mg. Maximum solubility of H in Mg(α) is  



6 

 

 
Figure 2.1. Phase diagram of Mg-H system (Manchester et al. ,1988). 

 

9.1 at %. More dissolution of H in Mg (α) leads to the formation of MgH2(β).This 

phase has a body centered tetragonal structure (tP6) with lattice parameter of a= 

0.452 nm c= 0.302 nm. Thus the full conversion of Mg to MgH2 leads to 32.57 % 

volume expansion.  

The conversion of Mg to MgH2 may be followed in pressure composition 

temperature (PCT) diagram given in Figure 2.2. Here the diagram refers to 

isotherms at ~300 °C. As seen in the diagram, the pressure rises very rapidly with 

little absorption of hydrogen and the pressure then remains constant throughout the 

extended range. At the end of the plateau where Mg to MgH2 transformation is 

complete, the pressure rise leads to very little change in the absorbed hydrogen. 

Upon reversal, i.e. decreasing the pressure, PCT follows a similar pattern. The 

plateau pressure has a somewhat lower value implying hysteresis in the reaction. 

Figure 2.3 is adapted from Manchester et al. and refers to different isotherms 

determined at 340, 350 and 375 °C for Mg. Values of plateau pressure determined 
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at different temperature may be used to obtain the enthalpy and entropy of the 

reaction using Van’t Hoff equation.  

                                         R
S

RT
H

Pln
Δ

−
Δ

=
                                        (2.1)

 

Here, P is the equilibrium pressure ΔH and ΔS are enthalpy and entropy change, 

respectively. R is gas constant and T is the equilibrium temperature. Following the 

data given in Figure 2.3, Manchester et al. determines ΔH=74.9 kJ/mol-H2 and 

ΔS=135.1 J/Kmol-H2 respectively. It should be emphasised that entropy change 

from molecular hydrogen in gas state to hydrogen in the solid state is constant for 

all metal hydrides and has a value of approximately ΔSf=-130 J/Kmol-H2 (Züttel et 

al., 2004). In dehydriding reaction the entropy change is expected to have the same 

value (ΔSf =130 J/Kmol-H2). Therefore, the stability of formed hydride could be 

measured by the enthalphy of the reaction only. Assuming an enthalpy value of 

74.9 kJ/mol-H2 for dehydriding reaction i.e. value given by Manchester et al. (1988), 

it is necessary to reach 576 K to desorp hydrogen from MgH2. For metal hydride 

that could desorb hydrogen in ambient conditions (300 K, 1 bar) it is necessary that 

the enthalphy of the dehydriding reaction should be reduced down to 39.2 kJ/mol-

H2.  

 
Figure 2.2. Pressure composition isotherm of Mg-MgH2 system (Milonas,2009).  
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For hydrogen to react with metals it is necessary that the molecular hydrogen 

should be split into atomic form. Once this is achieved hydrogen atoms can diffuse 

into the lattice forming the stable hydride. Normally, the surface of metal powders is 

covered by oxides or other contaminants and therefore the surface is not active 

enough to split the hydrogen molecule. Therefore Mg, like other hydrogen storage 

alloys, requires an activation treatment. This usually involves several hydriding-

dehydriding treatments under severe conditions, i.e. relatively high temperatures, 

high pressures, and low vacuum (Selvam et al. 1986). As a result, fresh surfaces are 

created in the metallic powders. This process may be helped by self pulverization of 

powders which occurs due to a volume change associated with hydriding and 

dehydriding reaction (Zaluska et al. 1999). 

Dissociation of hydrogen molecules into the atomic form is often helped by the 

addition of the so-called catalytic elements. Pd is a well-known catalyst for hydrogen 

dissociation reaction (Zaluska et al.  1999, Gutfleisch et al. 2005). The hydriding 

properties are enhanced by Pd nanoparticles attached to Mg surface. Due to high 

cost of Pd, often other transition metals are used for the same purpose. Of these, 

the elements Ti, V, Nb are most common (Barkhordarian et al., 2003). The catalytic 

additions are not limited to pure elements. Transition metals (Hanada et al. 2005), 

oxides (Oelerich et al. 2001), carbides(Immamura et al. 2009),or nitrides(Luo et al. 

2004) may also be used for the same purpose.  

 

 
Figure 2.3. Pressure-composition-temperature diagram of Mg-H system 

(Manchester et al.1988) 
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2.2. Processing of hydrogen storage alloys 

Hydrogen storage alloys may be produced in a variety of ways. These may be 

categorised as solid-state, liquid-state and vapour phase processes. The solid state 

processes cover electroreduction of oxides, mechanical alloying and severe plastic 

deformation, i.e. equal channel angular pressing. Arc melting and vacuum induction 

melting which may be followed by rapid solidification are liquid state processes. Thin 

film deposition and thermal plasma synthesis involve processing in vapour phase. 

2.2.1.  Solid State Processing  

2.2.1.1. Direct Synthesis of hydrogen storage alloys from their oxides 

Solid state electroreduction of oxides is a method to extract metals from their 

oxides. The method, also referred to as electro-deoxidation, was first proposed by 

Chen et al. in the late 1990s and originally employed to produce Ti from TiO2. The 

method was used for other oxides and more recently, for TiO2-Fe2O3 and MgO-NiO 

for the synthesis of FeTi (Örs et al. 2009) and Mg-Ni(Tan et al. 2010) compounds as 

hydrogen storage alloys.  

In this method, a cathode is made from slightly sintered pellets of metal oxides, 

placed on or attached to a collector. The electrolysis is performed between this 

cathode and an inert anode, such as graphite, in a bath of molten salt, such as 

CaCl2, which has a decomposition voltage higher than that required for the 

electrodeoxidation of the oxide. The main characteristics of this method, in contrast 

to conventional electrolytic methods, are that metal is not deposited from electrolyte 

onto the cathode; rather it is left at the cathode in the solid state. During the 

process, the oxygen in cathode is ionized, enters the electrolyte and is subsequently 

discharged  at the anode.  

In electrodeoxidation process, number of factors affects the ease of reduction 

achieved. The oxides of low reduction potential are reduced easily such as NiO, 

Cr2O3, Fe2O3. The reduction is affected by oxygen diffusivity in the solid state. Since 

the diffusion of oxygen is slow in metallic lattice, the rate slows down when the 
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metallic state is achieved. The advantage of this process is that the resulting 

material is in the powder form of small size. The size reported for FeTi alloy (Örs et 

al. 2009) is 1-2 µm. 

The synthesis of Mg or Mg rich compositions from their oxides seems to be rather 

complicated. This is attributed to high stability of MgO, low melting point of Mg, and 

conductivity problems (Tan et al. 2010). 

2.2.1.2. Mechanical Milling  

Mechanical milling is a common technique used in the processing of hydrogen 

storage alloys. The method often aims at homogeneous mixing and refining of the 

base powder with the additives. In certain cases, the aim is material synthesis, i.e. 

elemental powders are milled heavily so as to obtain alloy phases including solid 

solutions, quasi-crystalline and crystalline intermetallic phases, and amorphous 

alloys. 

Mechanical milling, as used for particle refinement and the material synthesis, have 

been reviewed by Suryanarayana (1995) in detail. For this reason only a brief 

description will be presented here.  

Equipment used for mechanical milling of hydrogen storage alloys are normally of 

high-energy type. These cover spex shaker mill, planetary ball mills, and attritor 

mills (Yamada and Koch, 1993). Spex mills which handle about 10-20 g of powder 

at a time are most commonly used for laboratory investigations. The vial follows 

infinity sign (∞) as it moves and due to high rotation speeds, the impact force of 

the balls are quite high. Planetary mills involve two movements. These vials are 

arranged on a rotating disk and a special drive mechanism causes them to rotate 

around their own axes. Since the vials and the supporting disk rotate in opposite 

directions, the centrifugal forces alternately act in similar and opposite directions. 

This results in both frictional and impact effects.  

The nature of the initial powder combination i.e. ductile-ductile, ductile-brittle, or 

brittle-brittle have an important effect on the resulting microstructure and phases 

observed.  
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Ductile-ductile mixtures are particularly suitable for alloying. The alloying usually 

achieved due to repeated cold welding and fracturing processes that take place 

throughout milling. According to Benjamin and Volin (1974), initially the powders 

are flattened by micro-forging process. The flattened particles are than cold welded 

together and form composite lamellar structure. This leads to an increase in the 

particle size. With continued milling, composite lamella is strain hardened and as a 

result the lamella is subjected to ductile fracture. Normally milling is continued until 

a steady state is reached where there is a balance between the cold welding and 

fracturing process. 

In the process of milling, the alloying occurs due to decreased diffusion distance, 

increased defect concentration and heat. With further milling, true alloying occurs in 

atomic level in the form of solid solutions, intermetallics, or amorphous phase. 

In ductile-brittle systems, while the ductile component is flattened, brittle one 

becomes fragmented. With further milling, the ductile component work hardened 

and the lamella get convoluted and refined. The composition of the individual 

particles converges with the overall composition. Under such conditions whether 

alloying can occur depends on the solubility of a brittle phase within the ductile 

component. If the phase has limited solubility then the alloying is not expected. 

In brittle-brittle systems, both constituents are fragmented and their particle size is 

reduced. At very small particle size, the powder particles behave in non-brittle 

fashion. It has been observed that harder (more brittle) phase get fragmented and 

embedded into the softer phase. Further alloying occurs similar to described in 

ductile-brittle systems. 

Within the overall framework described above, important parameters of milling are 

milling media, i.e. ball diameter, ball to powder ratio, milling time and the 

environmental control.  

Hardened steel, stainless steel, WC, zirconia, alumina are the most common 

materials used as the grinding media. The density of the grinding balls together 

with their size determines the severity of milling. The density should be high enough 

so that the balls create enough impact force on the powders. The size of the 
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grinding medium also has an influence on the milling efficiency. According to Lai et 

al. (1998) in Ti-Al system solid solution is successfully obtained using 15 mm 

diameter balls. The use of larger diameter balls (20-25 mm), despite their high 

impact energy, was less successful in yielding the solutionized structure. A similar 

result was reported by Padella et al. (1991) where Pd-Si powder mixture was 

successfully converted to amorphous phase with smaller balls (2 mm as opposed to 

8 mm). 

Ball to powder weight ratio could vary from 1:1 (Chin et al., 1997) to 220:1 (Kis-

Varga, 1996). Though the values are commonly around 10:1 for laboratory scale 

milling process. Ball to powder weight ratio has an effect for the milling efficiency of 

the material; the higher the ratio shorter is the milling time.   

The powders are usually milled under inert atmospheres, e.g. Ar (Rochman et al. 

1999) or He (Varin et al. 2004). Normally filling and unloading of the vial is carried 

out in a glove box under Ar atmosphere. The powders that are ductile tend to weld 

together and an anti-sticking agent e.g. NaCl , stearic acid or graphite is usually 

added at a level of 1-5 wt%. Cyrogenic conditions have also positive effect on the 

grindability of ductile powders (Huang et al ,1996). 

The first report on the formation of a nonostructured material synthesized by high 

energy ball milling is from Thompson and Politis in 1987. According to 

Suryanarayana (1995) at the early stages of milling, shear bands were observed 

due to the high deformation rates experienced during milling. With continued 

milling, the average local strain increases due to the increasing dislocation density. 

At a certain dislocation density within these heavily strained regions, the crystal 

disintegrates into subgrains that are separated by low angle grain boundaries. 

According to Suryanarayana, this results in a decrease of the lattice strain. On 

further processing, deformation occurs through shear bands located in the 

previously unstrained parts of the material. The grain size decreases steadily and 

the shear bands coalesce. The small angle boundaries are replaced by higher angle 

grain boundaries, implying grain rotation. Consequently, dislocation free 

nanocrystalline grains are formed.  
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Amorphous phase formation is also possible with this method in binary, ternary and 

higher order alloy systems. In the synthesis of amorphous phase, the milling can 

start from the blended elemental powder mixtures, prealloyed powders and/or 

intermetallics, mixtures of intermetallics and elemental powders. Suryanarayana 

(1999) states that for the amorphous phase formation from a mixture of powders (A 

and B) two routes are possible:  

mA+nB (AmBn)crystalline (AmBn)nanocrystalline (AmBn)amorphous                                                 (2.2) 

mA+nB (AmBn)amorphous                                                                               (2.3) 

Occurrence of amorphization by both routes can be found in the literature (Huot et 

al. 1998 and 1999, Gennari et al. 2001, Liang et al. 1999) 

Amorphization in mechanical milling is not purely a mechanical process and that a 

solid-state reaction occurs (Schward and Johnson 1983). During mechanical milling, 

however, destabilization of the crystallite phase is thought to occur by the 

accumulation of structural defects such as vacancies, dislocations, grain boundaries, 

and anti-phase boundaries. The continued decrease in grain size (and consequent 

increase in the grain boundary area) and the lattice expansion would also contribute 

to the increase in the free energy of the system. It has been reported that the 

stored energy during mechanical milling can be about 50 % of the enthalpy of 

fusion. (This value in cold rolling and wire drawing is only a small fraction of the 

fusion energy; Eckert et al, 1992). These defects raise the free energy of the 

intermetallic system to a level higher than that of the amorphous phase and 

consequently, it becomes possible for the amorphous phase to form.  

Increased milling energy (achieved by a higher ball to powder ratio, increased speed 

of rotation, etc.) is normally expected to introduce more strain and increase the 

defect concentration in the powder and thus leads to easier amorphization. 

However, higher milling energies also produce more heat (and higher temperatures) 

and this can result in the crystallization of the amorphous phase. Therefore, a 

balance between these two effects will determine the nature of the final product 

phase. There have been conflicting reports on the effect of milling temperature on 

the nature of phases formed. Generally a lower milling temperature is reported to 
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promote amorphization process. For example, the time required for amorphization 

in NiTi was 2 hours at -190 °C, 13 hours at 60 °C (Suryanarayana, 2001). For the 

characterisation of milled powders X-ray diffraction techniques are frequently used. 

Nanocrystalline phases give very broad peaks, it is difficult to differentiate either the 

phase is crystalline or amorphous or the combination of both. 

In some systems, it was reported that on mechanical alloying of the blended 

elemental powder mixture, the sequence of phase formation with time was solid 

solution, intermetallic and amorphous phase (Oleszak et al., 1993 and Bonetti et al. 

1993). Whether an intermetallic or a solid solution phase forms before 

amorphization depends on the relative free energies of solid solution and the 

intermetallic phases.  

The degree of solutionizing is usually determined by extrapolating the lattice 

parameter vs. solute content. According to Suryanarayana, supersaturated solid 

solution formation is possible with mechanical milling and the formation of it is 

promoted in solid immissible systems rather than missible ones. Extensive solid 

solubility has been observed in Cu-Co (Gente et al. 1993), Fe-Cu (Huang et al. 

1994) and Mg-Ti (Liang et al. 1999). They claimed that the presence of structural 

defects is responsible for the formation of supersaturated solid solutions.  

The mechanical milling procedure has been used for Mg based hydrogen storage 

systems for several reasons. The studies conducted within last ten years or so, 

show that for the improved hydrogenation properties, the storage material (Mg) 

should be in the form of small particles with a uniform distribution of fine catalytic 

additives. Mechanical milling procedure results in the creation of defects, 

micro/nanostructures and reduction in the size of particulate structure. The high 

defect content together with increased surface area aid the diffusion process and 

results in fast hydrogenation kinetics. For instance Huot et al. (1999) reports faster 

hydrogenation kinetics in milled MgH2 as compared to unmilled one with the former 

having 10 fold increase in surface area. 

In addition to increase in the surface area, the role of mechanical milling is to 

distribute the catalytic additives in the host material. For instance Liang et al. (2001) 
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attributed fast hydriding dehydriding rates in Mg-V to the homogeneous distribution 

of catalytic additive, i.e. V ,achieved by  ball milling. 

The milling procedure can be applied either under inert or hydrogen atmosphere. 

With the application of hydrogen pressure, in situ conversion of Mg to MgH2 is 

possible. For instance Huot et al. (1999) produced MgH2 from pure Mg under H2 

atmosphere. This more brittle hydride phase results in faster size reduction and 

shorter milling time. Pulverisation and deformation process occurring together in 

this route plays a major role in the hydriding properties.  

2.2.1.3. Equal Channel Angular Pressing  

ECAP developed by Segal et al. in the 1980s and has become a widely used 

procedure for the severe plastic deformation of the materials. In this method, plastic 

deformation is induced by repetitive pressing of material through equal channels 

intersecting at an angle Φ, Figure 2.4. Typically Φ vary from 45 to 157.5°, though 

90 and 120° are the most common ones. The channel and therefore the material to 

be deformed can be either square or circular in cross section. Since the cross 

sectional area of the sample does not change, the same material can be pressed 

repetitively in this method. There are basically four routes that can be followed in 

repetitive pressing; route A (the sample is not rotated between passes), BC 

(clockwise 90° rotation after each pass), BA (counter-clockwise 90° rotation after 

each pass), and C (180° rotation between passes)( Stolyarov et al.,2001).  

 
Figure 2.4. Die used for equal channel angular pressing. Φ refers to channel 

angle, Ψ refers to the angle of curvature 
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ECAP die angle is important for microstructural refinement. A series of experiments 

on pure Al have shown that the ultrafine microstructures can be obtained when the 

die angle was close to 90°( Nakashima et al.1998). 

Although the pressing can be repeated a number of times, substantial refinement in 

the average grain size occurs after only a single passage through the die.For 

instance, Liu et al. (2003) starting form 95µm Mg-3.3Li alloy decreased the grain 

size to 2 µm after only one pass. The misorientation between subgrains increases 

with increasing number of ECAP passes. For instance, in the Al-3%Mg alloy the 

grain size was effectively reduced to 1 μm from initial grain size of 500 μm after first 

pass and to 0.2 µm is observed after an effective strain of ∼4 passes (Munoz-Morris, 

2004).  

Chakkingal et al. (1998) have found that using the die angle Φ =90◦and route BC 

microstructure evolves most rapidly into equiaxed grains separated by high angle 

grain boundaries. When Φ=120, route A found to be more effective indicating that 

choice of processing route influences the effectiveness of the die angle (Shin and 

Kim, 2000). 

Smaller grain sizes are achieved when ECAP deformation is carried out at low 

temperatures (Yamashita et al. 2001, Kim et al. 2003). So, to obtain refined grain 

structure, temperature should be lowered to a level which maintains the materials 

ductility. Mg, however, with its hexagonal structure has limited ductility so 

temperatures of at least around 200 °C are needed in order to ensure sufficient 

ductility (Yamashita et al. 2001).  

ECAP processing has also been used for the consolidation of powders (Matsuki et al. 

2000 and Senkov et al. 2005). This is normally achieved by high temperature 

pressing in conventional powder metallurgy. Maksuki et al.(2000) reports that even 

single pass  ECAP deformation is sufficient to consolidate the powder sample.  

Within the context of hydrogen storage alloys, Sprinyuk et al. (2006,2010) and 

Loken et al. (2007) have used ECAP processing for Mg-Ni and Mg-Mm-Ni observing 

faster hydrogenation kinetics.  
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2.2.2. Melt Processing  

The melt processes that are used in the production of hydrogen storage alloys 

normally involve vacuum induction melting and arc melting.  

Vacuum induction melting uses electromagnetic induction to melt the charge. Since 

most hydrogen storage alloys have high affinity to oxygen, the melting process is 

carried out  under vacuum atmosphere. The alloy systems; Mg2Ni (Terashita et al. 

2001), TiV1.1Mn0.9 (Yonkeu et al. 2008), Zr0.55Ti0.45V0.54Mn0.24Ni0.88Co0.16Cr0.16 (Kim et 

al. 2009) are some of the examples that have been produced with this method. 

Arc melting is another method that have been used for production of hydrogen 

storage alloys. This method is particularly suitable for difficult-to-melt alloys and 

intermetallic compositions. In this method, the charge material is exposed to an 

electric arc where the current passes through the charged material. The melting 

environment is usually an inert gas, normally argon. The material obtained is in the 

bulk form. Zr alloys (Beal et al. 1955),AB5  type  alloys (MlNi4.0Al0.3Cu0.5Zn0.2), CoB 

(Song et al. 2009), FeTi (Chen at al., 2002), Ti-Cr-V (Kawasuso et al. 2009) are 

some of the metal alloy systems that have been produced with this method.  

Hydrogen storage alloys produced by arc melting include Ti-V-Mn BCC alloys (Wang, 

2009) Mg2Ni (Shao et al., 2004), Mg (Choe et al., 2010), Zr-Ti-Ni alloys( Mingfen et 

al. , 2002), FeTi (Khatamian et al., 1983), Nb-Zr-Fe alloys ( Okuyama et al., 2007). 

The materials both in induction melting and arc melting are obtained in the bulk 

form. To use the material for hydrogen storage purposes it is necessary to pulverize 

them with methods such as mechanical milling. In order to decrease the energy and 

time for the milling operation, melting of the alloy may be followed by rapid 

solidification methods. This involves contact of the molten metal with the cooling 

medium which has high thermal conductivity. Molten metal is solidified into a thin 

strip or small droplets. The rapid extraction of thermal energy allows the system to 

be cooled far from equilibrium. This results in the formation of metastable phases as 

well as in the extension of the solubility limit. The process leads to sharp reduction 

in grain size and often in the formation of nanocrystalline and/or amorphous 

structure (Jones et al. 1982, Liebermann et al. 1983, Cahn et al. 1991). The 

amorphization rules described in mechanical milling section is also valid in rapid 
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solidification. So, the selection of suitable solute element is essential to obtain 

amorphous or nanocrystalline alloys. Examples of hydrogen storage alloys that 

involve rapid solidification include Mg2Ni (Zhang et al. 2010), Mg-Al alloys (Urgnani 

et al. 2009), V35Ti25Cr40 (Pei et al. 2009), LaNi5−xSix (x=0.1, 0.3, 0.5)(Srivastava 

1998), Ti–V (Yu et al. 2004). 

2.2.3. Vapour Phase Processing  

In vapour phase processing, materials are evaporated and then condensed into solid 

form. This evaporation-condensation process is very common for thin films studied 

for hydrogen storage purposes. However, the similar approach has recently been 

applied for powder production with the thermal plasma synthesis. 

2.2.3.1. Thin Film Processing 

In the 80’s, storage of hydrogen in thin films has become quite popular due to their 

high surface area with improved hydrogenation kinetics. Thin films have several 

advantages over bulk materials. Typical deposition techniques such as sputtering, 

thermal evaporation or electron-beam evaporation allow the evaporation of more 

than one element at a time. Moreover by controlling deposition parameters, it is 

possible to exercise compositional control in the resulting films. Although the 

amount of material deposited is very low, it helps to identify compositions suitable 

for hydrogen storage.  

Thin films have shorter diffusion distances and hence better hydrogenation 

properties. For instance, Mg thin films, capped with Pd overlayer, desorption 

temperature could be as low as 100 °C (Higuchi et al., 2002). In such films kinetic 

improvements have been also observed which may be due to Pd as catalyst. The 

main problem with this method is the limited amount of material that can be 

produced. Furthermore, the films are usually not stable and deteriorate during 

cycling (Remhof and Borgschulte, 2008).  

For thin films that are amorphous, it is difficult to obtain thermodynamic properties 

as they display no clear plateau in their PCT. Such a case was reported by Ingason 
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et al. (2007) for 25 nm thin film co-sputtered Mg-C. Ingason et al.(2005) further 

claimed that the films thicker than 300 nm show similar properties to bulk 

counterparts.  

Favourable hydrogenation properties in thin films (Akyıldız and Öztürk, 2010) imply 

that nanosize Mg could have improved storage properties. A method for this could 

be thermal plasma synthesis which allows the production of nano powders. 

2.2.3.2. Thermal Plasma Processing  

Thermal plasma synthesis is a new approach for the production of hydrogen storage 

alloys (Çakmak et al. 2010). So the method will be described in some detail.  

Plasmas can be divided into two broad categories; equilibrium (thermal) plasma and 

and non-equilibrium (cold) plasma. In thermal plasma, both heavy particles and 

electrons are in thermal equilibrium and therefore they have high energy densities. 

This is unlike cold plasma where only electrons have high temperature which are 

used for etching purposes.   

Thermal plasma, due to its high energy density is suitable for powder synthesis, 

coating process and spheroidization treatment. The source can be in the form of 

direct current (DC), radio-frequency (RF) or microwave. In DC arc plasma, the arc is 

generated between the cathode and the anode which ionizes the plasma gas. The 

temperatures reached varies from 8000 to 15000K. In arc spraying; the arc is 

generated between the tips of two continuously fed metallic wires. The tips of the 

wires melt by the arc and spray atomised by an overlaid gas flow. Wires of the 

same metal, different metals or hollow wires filled with ceramics or hard metals can 

be used. Normally powder particles are injected radially or directly behind the nozzle 

into the plasma jet. 

In an RF torch, energy coupling to the plasma is accomplished through the 

electromagnetic field of the induction coil. A schematic representation of a typical 

RF torch is given in Figure 2.5. Here, plasma gas is fed into a quartz tube. The tube 

is separated from the induction coil by a sheath gas that flows in between. The 

purpose of this is to protect the torch from high temperature generated in the 
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plasma. Powder is fed into the torch by carrier gas via a probe placed axially into 

the torch. The probe is usually a water cooled stainless steel tube of a small 

diameter. 

Typically there are three zones in RF systems used for nanopowder synthesis. These 

are plasma torch, reactor and powder collector (see Figure5.1). The torch (as well 

as the reactor) is maintained either at atmospheric conditions (Tendero et al., 2006) 

or under a slight vacuum (Katva et al., 2004). The reactor is normally a water 

cooled stainless steel chamber. This chamber also accommodates a quenching zone 

where normally nitrogen gas of relatively high flow rate is fed into the chamber 

(Kumar, 2008). The reactor is connected to the collector where nanopowders 

produced are collected in a filter system.  

 

 

 
Figure 2.5. Schematic diagram of an RF plasma torch. 
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Metallic powders of similar melting and boiling points, good thermal conductivity 

and a high vapour pressure can be processed at moderate temperatures. Examples 

in this category include copper (Kobayashi et al. 2007), iron (Kumar et al 2008), and  

Nickel (Shanmugavelayutham et al. 2004,2007). By optimising the quenching 

conditions, i.e. feed rate of metallic powder and flow rate of quenching gas, the 

particle size can be modified. This so-called flash vaporization process can also be 

used for non metallic powders such as alumina (Hu et al., 2007) and silica (Hu et 

al., 2007). 

If the aim in synthesis is a mixed composition, i.e. compound or solid solution, it is 

necessary to the consider the differences between melting and boiling temperatures 

of the elements involved. If they differ from each other with respect to these 

temperatures, then the precursors can be fed into the torch-reactor at different 

zones.  

Since the thermal plasma synthesis involves rapid quenching, this may lead to the 

formation of metastable phases (Szépvölgyi et al. 2007, Hu et al. 2007). For 

instance Hu et al. (2007) in synthesising alumina observed the metastable phases γ, 

θ, δ instead of alpha-alumina. Also because of quenching process the formation of 

quasicrystals was reported( Kumar et al. , 2006). 

Thermal plasma reactor can also be used to obtain metallic powders from their 

precursors via a reduction process. For instance, Bai et al.(2009) used hydrogen gas 

in the chamber to obtain Ni powder from the nickel hydroxide/carbonate precursors. 

Hydrogen was also used as a carrier gas in the system. In this method, the 

precursors underwent vaporization and reduction and then the resulting metallic Ni 

species condensed and formed nanoparticles as a result of high quenching rate.  

The method can also be applied for the synthesis of nitrides, oxides and chlorides. 

This process usually requires some specific gases in the reaction chamber to provide 

estimated reactions to take place. Direct oxidation reaction is also possible in 

plasma synthesis (Szépvölgyi et al., 2008). Ikeda et al.(2007) used this approach to 

obtain TiO2 particles. In this study, liquid precursors were used containing titanium 
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terabutoxide and diethanolamine. The precursors were fed into the system with the 

use of Ar and O2. The size of resulting particles was controlled by the parameters of 

the quenching process for which Ar, O2, He were used. Similarly, thermal plasma 

can also be used for nitriding reaction (Kobayashi et al., 2007) 

Powder particles collected either from the cyclone or from the walls of the reactor 

are often agglomerated. With the application of high power levels, the tendency for 

agglomeration is diminished. For instance Szépvölgyi et al.(2007) obtained 30-70 

nm FeAl particles with 15 kW, whereas the same system operated at 5 kW yielded 

highly agglomerated particles.  

2.3. Summary 

It has been shown that Mg is one of the most attractive options for hydrogen 

storage and meets most criteria for practical application. However, there are two 

main problems with this option; high stability of MgH2 and slow reaction kinetics.  

It has been shown that there are a variety of methods that can be used for the 

processing of hydrogen storage alloys. These cover solid state processings; 

electroreduction of oxides to metallic powders, mechanical milling under inert or 

hydrogen atmosphere and ECAP processing. It is also possible to produce hydrogen 

storage alloys using liquid phase processing, namely induction melting and arc 

melting. This is often followed by rapid solidification and/or mechanical milling. 

Thermal plasma synthesis is a vapour phase process yielding nanopowders. 

For Mg based hydrogen storage alloys, studies reviewed above show that it is highly 

desirable to produce the alloy with as small a particle size as possible. For improved 

reaction kinetics, catalytic additions are often necessary. Studies further show that it 

is necessary to distribute the catalytic addition in the particulate material as 

homogeneously as possible.  
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CHAPTER 3  

THE PROCESSING OF Mg-Ti FOR HYDROGEN STORAGE 
WITH MECHANICAL MILLING 

3.1.  Introduction 

Mechanical milling by high energy ball milling is a common method for the synthesis 

of hydrogen storage alloys in magnesium based systems (Zaluska et al. 1999).The 

main aim is usually to refine powders to extremely small sizes. 

Mechanical milling of pure Mg was studied by Zaluska et al. (1999), Schulz et al. 

(1999) and Orimo et al. (2001). These studies all showed that the milled powders 

have better sorption properties than unmilled one. Schulz et al. (1999) claimed that 

the main reason for this was an increase in surface area of the powders. They 

mentioned that mechanical milling has a positive affect for lowering the activation 

energy barrier for desorption of hydrogen.  

 

 

Figure 3.1. Van’t Hoff plot of Mg based  storage materials. (Liang 2004) 
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The plateau pressure is the measure of stability for hydrogen storage alloys and this 

value can be changed by alloying additions. Some additions increases the plateau 

pressure, whereas the addition of elements such as V and Cd decreases it(Liang et 

al. 2004). The effect of additions on such thermodynamic properties can be followed 

by the Van’t Hoff plots. (Liang et al. 2004). It is seen from Figure 3.1 that the 

addition of TiO2, V, or Li does not change the stability of MgH2, whereas Zn, Al or Ni 

decreases the stability, i.e. dehydrogenation takes place at lower temperature. 

The transition metals are good catalysts for chemisorption of hydrogen and have 

often been added to Mg to improve their sorption properties. For instance, Liang et 

al. (1999) have added Ti, V, Mn, Fe, Ni to MgH2. This produces little effect on 

thermodynamics, but kinetics were improved considerably. Absorption and 

desorption kinetics were fastest in the case of Ti addition. They also found that 

powders could be hydrogenated without activation. In terms of effectiveness, Ti was 

followed by V and then by Ni. The effectiveness of Ti was also verified in a latter 

study (Ershova et al. 2008).  

Mechanical milling, in addition to synthesizing elements into compounds or to the 

mixtures, leads to the introduction of defects e.g. dislocations, stacking faults etc. 

into the structure as well as to particle fragmentation which results in an increase in 

the surface area. Most metallic powders, however, are difficult to mill due to their 

ductility. Bobet et al. (2005) in order to improve the milling ability added hard oxide 

powders to Mg. Hard/brittle powders that have been added to the Mg systems are 

V2O5 (Yermakov et al. 2006), Nb2O5 (Friedrichs et al. 2006, Barkhordarian et al. 

2004), Al2O3 (Güvendiren et al. 2004, Friedrichs et al. 2006), also SiC (Güvendiren 

et al. 2004), VH2 (Yermakov et al. 2006, Güvendiren et al. 2004). The addition of 

these hard particles has been found to have a positive effect on the sorption 

kinetics. However, desorption temperatures of Mg were little affected by these 

additions. Table 3.1 gives some examples of magnesium based hydrogen storage 

systems produced by mechanical alloying with various additions. 

A common technique used as an aid in milling is to carry out the milling operation 

under hydrogen atmosphere (Bobet et al. 2000) or to start the milling process with 

MgH2 rather than Mg (Liang et al. 2004). Milling under hydrogen leads to in-situ 
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conversion of Mg to MgH2. Such reactive milling therefore leads to very rapid 

fragmentation of the powders due to the brittleness of hydrides. 

Table 3.2 gives some examples of reactively milled magnesium based hydrogen 

storage materials together with their hydrogenation properties. The lowest 

desorption temperature reported for Mg is about 280°C which is achieved by milling 

MgH2 under 10 bar pressure (Klassen et al. 2006). 

The mechanical milling leads to a size reduction as well as to substructure 

development. The size reduction is measured by variety of methods e.g. laser 

method, direct measurement from electron microscope image, or from the 

measurement of surface are with BET (Brunauer, Emmett and Teller) method. The 

substructure, i.e. coherently diffracting volume sizes, is measured usually using X-

ray diffraction methods.  

The size results obtained with the methods named above varies from micron to 20-

30 nm range for Mg based systems. For instance Zaluska et al. (1999) having spex 

milled Mg granules for 20 hours reported particles that are only 20 µm in size. 

Values reported by Bystrzycki et al.(2005) for Mg powders mixed with Mo, Co, Zr, V  

magneto-milled for 20 hours are in the range of 20-30 µm. Scale of substructure 

that evolves as a result of these processings; however, is much finer. Zaluska et al. 

(1999) reported a “cell size” of 20-30 nm for the milled Mg measured directly with 

TEM. In most studies the values are derived from the X-ray diffraction profile and 

are in the range of 40-65 nm (Bystrycki et al., 2005; Liang et al., 2003; Riktor et al., 

2009). 

For the hydrides milling leads to very rapid fragmentation resulting in a large 

increase in the surface area (Huot et al., 1998). For instance Chen et al. (2001) 

have milled MgH2 particles of  initially 5-15 µm in  size was reduced  them to 2 µm 

only after 1 hour of milling. Varin et al. (2005) have carried out extended milling 

(100 hours) and reported an average particle size of 0.6 µm. Similar values were 

reported in milling of MgH2-TiH2 (Charbonnier et al., 2004; Choi et al., 2008), MgH2-

Co (Chen et al., 2001), MgH2-V (Liang et al., 1999) for which the milling time varied 

between 10 and 60 hours. Reactive milling of Mg, i.e. milling under hydrogen 

atmosphere, is almost as effective as starting with hydrides. Tessier et al. (1999) 
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have milled Mg under 10 bar hydrogen for 40 hours reported that 25 % of Mg was 

converted to MgH2 yielding quite small particles. In similar studies, values of 1.3-

0.57 µm (Bobet et al., 2002) were reported for MgH2. Although the particle 

sizes.that are reported are quite small for hydride milling or with reactive milling, all 

these values are quite small as compared to those achieved with direct milling of Mg 

based powders. As for the crystallite size, however, the difference is rather diffuse. 

This value as measured with X-ray diffraction falls in the range 15- 66 nm. For 

instance Bobet et al. (2000) reports a crystallite size of MgH2 12 nm in Mg-Co 

system milled under hydrogen for 10 hours. They report almost the same value 

when the mixture was milled under argon 

3.1.1. Hydrogen Storage in Mg-Ti system 

Ti is one of the most widely used additives in the processing of Mg for hydrogen 

storage purposes. Mg and Ti both have hexagonal close packed (HCP) structure at 

ambient conditions. Ti transforms to a body centered cubic structure above 1155 K. 

Solubility of Mg in Ti is less than 2 at % and Ti has no solubility at all in Mg. No Mg-

Ti intermetallic compound is formed in this binary system, Figure 3.2 (Nayeb-

Hashemi et.al.1998). Ti has been added to Mg especially for their catalytic effects, 

i.e. splitting of hydrogen molecule into atomic form, ready for diffusion into the host 

metal. Since normally Ti has no solubility in Mg lattice, in order to obtain this 

catalytic effect the surface of the Mg powders should be covered by Ti particles of 

extremely small size. 

Such refined structure is very difficult to achieve using melting methods.  

Mechanical milling and thin films are the only processing techniques that can be 

used for this purpose. Under such conditions, some degree of  solubility as well as  

metastable phase formation are possible (Akiba et al. 2009) in both bulk form 

(Liang et al. 1999 ) or as in thin film samples (Kyoi et al.  2004). Liang et al. (2003) 

have synthesized MgxTi100-x alloys by means of ball milling using Spex mill. They 

have used stainless steel balls and pot with a ball to powder ratio of 10:1 under 

argon atmosphere. No new phase formation has been reported. But they observed 

dissolution of Ti in Mg which could be as much as 12.5 at % Ti. This was reflected 
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to a decrease in c/a ratio of the crystal. Liang et al.(2003) conclude that the 

extended solubility improves the kinetics of hydrogenation.  It has been shown that 

the supersaturated solid solution obtained by milling is not stable and decomposes 

upon exposure to elevated temperatures. During hydrogenation the single phase 

alloy has been transformed to MgH2 and TiH2. So the incorporation of Ti into Mg 

was temporary and disappeared with the first cycle. 

Asano et al. (2009) have studied wide range of Mg-Ti mixture spanning all 

compositions;MgxTi100-x x ranging from 25 to 80. The powders were milled in argon 

atmosphere with planetary mill up to 150 hours. They observed two-phase Mg-Ti 

HCP structure in Mg rich composition down to x=60. Between X=60 to 50 they 

observed a BCC phase with a lattice parameter of a=0.345 nm, and a=0.342 nm at 

x=60 and at x=50 respectively. Beyond X=50 no BCC phase was observed. In a 

separate study, the same group reports also the formation of FCC phase(Asano 

2009). In this study they have milled the powders using zirconia or stainless steel 

balls. With stainless steel balls and pot, the results have confirmed that Mg rich end 

had a two phase HCP structure which was followed by BCC phase starting from 

X=80. When they used zirconia balls however, the resulting phase was FCC. 

 

 
Figure 3.2. Binary Phase Diagram of Mg-Ti, Nayeb-Hashemi et.al.(1998) 
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They proposed that the HCP phase was formed by solution of Ti into Mg and, BCC 

phase by solution of Mg in Ti. FCC phase was stabilized by introduction of stacking 

faults into the HCP structure.  

FCC and BCC phases reported by Akiba and co-workers were not stable upon 

hydrogenation. The BCC phase can be hydrogenated to 5.0 wt % at 423 K and to 

3.9 wt % at 303 K. The FCC phase ( including MgH2 ) had  a hydrogen content of 

4.7 wt % and the chemical formula of Mg42Ti58H177. 

A Mg-Ti compound with FCC structure was also produced by a high pressure 

synthesis (Rönnebro et al. 2005). This phase synthesized from MgH2 and TiH2 

powders had a unit formula Mg7TiH16 with Fm3m (225) space group. The basic 

structural building block is claimed to be face centered cubic unit cell; a = 4.76(6) 

A°, which is close to the TiH1.9 structure a = 4.44(8) A°, The compound with the 

formula of Mg7TiH16 had 7 wt % hydrogen. In a similar study, Kyoi et al. (2004) 

have synthesized Mg7TiH16 FCC hydride using a high pressure anvil cell by reacting a 

mixture of MgH2 and TiH2. This FCC hydride phase had a Ca7Ge type superstructure. 

The compound releases its hydrogen at around 332°C by decomposing into Mg and 

TiH1.9 whereby releasing 4.7 wt % of hydrogen. 

Mg-Ti compositions can also be synthesized by thin film processing. Vermeulen and 

co-workers (2006) have synthesized Mg-Ti thin films by sputtering. These thin films, 

which had a two phase HCP structure, covered with Pd, were hydrogenated by 

means of both electrochemical method and solid-gas reactions. Broederz et al. 

(2008) have produced Mg thin films doped with Ti. They found that hydrogenated 

film with alloy compositions between Mg65Ti35 and Mg86Ti14 had FCC structure. 

However, enthalpy of these hydrides were found to differ little (-65 kJ/mol-H2) from 

that of rutile MgH2. The enthalpy of the thin films compositions incorporating less 

than 14 at % Ti was however -61 kJ/mol-H2 which is less than that of pure MgH2 

(74.06 kJ/mol). This shows that Mg-Ti hydrides could be less stable than pure MgH2. 

The authors have reported that the Mg-Ti compositions mentioned above have good 

optical switching properties and excellent hydrogenation kinetics. 

Following the favorable characteristics of Mg-Ti system, the present work 

concentrates on Mg-10 vol %Ti alloy and aims to process this alloy via mechanical 
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milling. The aim is to produce a nanostructured Mg-Ti where both Mg and Ti are 

formed as nanosized particles. The study involves processing in two conditions; i) 

milling of Mg-Ti under inert atmosphere ii) reactive milling of Mg-Ti, i.e. milling 

under hydrogen atmosphere.  

3.2. Experimental Procedure 

Starting materials were elemental powders (Alfa Aesear) of Mg and Ti. All were 

provided in ≤ 44µm (-325 mesh) with a purity of 99.8 %. Scanning Electron 

Microscope (SEM) images of the starting powders are given in Figure 3.3. 

 

   

(a) 
 

 

(b) 
Figure 3.3. SEM images of starting powders a) Ti (≤44µm) and b) Mg 

(≤44µm). 
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of the powder was measured using the BET method (Quantachrome Autosorb-1-

C/MS analyzer). The method determines total surface area of the material using the 

physical adsorption of gas over the surface area of the material. The samples were 

out gassed at 573 K for 6 hours before the experiments and the measurements are 

carried out at 77 K. The particle size was measured using laser diffraction technique 

by comparing a sample’s scattering pattern with an appropriate optical model. 

Hydrogenation experiment is carried out with Sievert type apparatus. Photograph  

and schematic representation of the apparatus are given in Figure 3.6 (a) and (b), 

respectively. The volumetric hydrogen storage apparatus contains a pressure gauge, 

hydrogen and Ar gas inlets connected to the cylindrical reservoir and to the sample 

system with several valves. A filter with the a hole diameter of 1 µm is placed to the 

gas inlet/outlet part of the reactor system. The temperature of the reactor system, 

reservoir and filter is monitored separately using three thermometers at each point. 

The reactor is inserted into a furnace to set the temperature for intended 

application. Here the apparatus can be divided into three regions; i) the reservoir, ii) 

filter and iii) reactor. The reservoir and the filter region had volumes of 72 and 8 

cm3 respectively. The reactor volume varied depending on the amount of sample 

place inside, but typically had a value of 2.5 cm3. 

Before starting the sorption experiments, samples were activated. (for the samples 

milled under hydrogen atmosphere no activation was necessary.) Activation involved 

several cycles of hydriding and dehydriding. For this purpose, furnace is set to the 

desired temperature ( e.g. 350°C) and after stabilization of the temperature, 

hydriding is carried out by exposing the sample to 10 bar of hydrogen pressure for 3 

hours. For dehydriding the system is taken under vacuum and waited for 3 hours.  

Measurement of the PCT was carried out by hydriding the sample at different levels 

of hydrogen pressure. Pressure levels studied varied from 0.5 to 10 bar at an 

interval of 0.5 atm. At a given level, change in pressure was monitored. The 

experiment was terminated when no change in pressure occurred for a period of 5 

minutes. Drops in pressure are added together to find the total absorption for that 

level. The pressure is adjusted to a new value and the whole process is repeated 

until the maximum pressure is reached (usually 10 bar).  
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The pattern of reactively milled sample is given in Figure 3.8 after 30 hours of 

milling. The pattern covers peaks of TiH2, MgH2 as well as Mg. From the 

diffractogram, it appears that Ti is totally converted to its hydride; while the 

conversion of Mg is only partial.  

Various structural parameters derived from Rietveld refinement of X-ray data for 

samples milled under argon as well as those milled under hydrogen are reported in 

Table 3.3. Rietveld refined pattern of samples after 30 hours of milling are given in 

Figure 3.9. The goodness of fit value (R) value is 6.5 and 7.4 for mechanically milled 

and reactively milled samples, respectively. According to Luterotti (2002), the value  

should be less than 10 for a usable fit.  As seen in Table 3.3, the lattice parameter 

of Mg remains almost the same after milling. Thus, Mg does not dissolve Ti to any 

significant extent. Values of crystallite size reported in table 3.3, show that Mg and 

Ti in have quite comparable values.  

SEM images of milled samples are given in Figure 3.10. Mg-Ti milled under Ar 

appears to be little affected by milling in terms of its appearance. The particles after 

 

 
Figure 3.7. X-ray diffractogram of the milled sample before (a) and after 

hydrogenation (b). 
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Figure 3.8. X-ray diffractogram of reactively milled sample(a). Figure also 

shows the diffractogram of dehydrided(b) and rehydrided (c) samples. 

 

milling appear to be even larger than the initial ones; compare Figure 3.10 (a) and 

Figure 3.10 (b). Particles seem to be in the form of agglomerates probably formed 

by a cold welding process. BET measurement of this sample yields a value of 1.76 

m2/g.  

Mg-Ti milled under hydrogen atmosphere develops extremely refined structure, as 

shown in Figure 3.10 (c). BET measurement carried out on the milled sample yields 

a value of 9.86 m2/g. The most particles are micron and submicron in size, but 

some are coarse in the order of 30-40 µm. It is probable that these relatively coarse 

particles are Mg which were not converted to MgH2.   

In conclusion, it appears that milling under hydrogen and argon are quite different 

in terms of particulate structure they produce. While milling under hydrogen leads 

to the development of particles of extremely small size (< 1µm), milling under 

argon does not produce such an effect. The particles in the latter case agglomerate 

and results in particles that are even larger than the initial ones.  
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Figure 3.9. X-ray diffractograms of mechanically milled samples (a) argon (b) 

hydrogen. 
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Table 3.3. Structural characteristics of Mg-10 vol%Ti powders processed via 

mechanical milling under argon and hydrogen atmosphere. 
 

  Argon 
atmosphere 

Hydrogen 
atmosphere 

surface area 
(m2/g)  1.76  9.86 

volume fraction 
of phases 

Mg 70.94 39.82 
Ti 19.28 0.79 

MgH2 - 38.50 
TiH2 - 5.27 
MgO 9.77 15.58 

Average 
crystallite size 

(nm) 

Mg 20.78 25.09 
Ti 25.06 33.63 

MgH2 - 20.05 
TiH2 - 25.04 

lattice 
parameters 

(Ǻ) 

Mg-a 3.21(3) 3.21(4) 
Mg-c 5.21(8) 5.21(9) 
Ti-a 2.95(6) 2.95(8) 
Ti-c 4.69(3) 4.69(9) 

MgH2-a - 4.49(8) 
MgH2-c - 3.05(9) 

TiH2 - 4.46(1) 
 

 

(a) 
Figure 3.10. The microstructure of Mg-10 vol%Ti samples (a)unmilled (b) 

milled under argon  (c) milled under hydrogen (10 bar). 
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 (b) 
 

 

(c) 

 
Figure 3.10. Continued, 
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3.3.2. Hydrogenation Experiments: Following milling of Mg-Ti under argon and 

hydrogen, each for 30 hours, the samples were subjected to various hydrogenation 

experiments. 

The sample milled under Ar was hydrogenated at 300 °C using the procedure 

described above. Figure 3.7(b) shows the X ray diffractogram of the sample after 

hydrogenation. It can be seen that the peaks for Mg and Ti which were present in 

the milled sample are replaced by those of MgH2 and TiH2 after hydrogenation. Thus 

the phases were totally converted into hydrides. 

Before hydrogenation experiments, an activation procedure was applied to Mg-Ti 

samples milled under Ar. This consisted of 3 cycles of hydriding and dehydriding 

treatment carried out at 350 °C. Following activation PCT curves were determined 

at two different temperatures, namely 320 °C and 280 °C. The curves dobtained for 

absorption and desorption are given in Figure 3.11. These curves give plateau 

pressures of 0.99 bar at 280 °C and 3.05 bar for 320 °C for absorption. The values 

for desorption are 0.98 bar and 2.6 bar in the same order.  

 

 
Figure 3.11. PCT diagram of Mg-10 vol % Ti milled under argon. 
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Figure 3.12. Van’t Hoff plot of the mechanically milled samples; milled under 

argon, milled under hydrogen. 

 

The temperature dependence of plateau pressure (P) can be described by van’t Hoff 

equation.  

                                          R
S

RT
H

Pln
Δ

−
Δ

=
                                     (3.1) 

,here ΔH and ΔS are enthalpy and entropy of dehydrogenation, R is the gas 

constant and T is the temperature. Plateau pressure determined at 320 and 280 °C 

are shown plotted in Figure 3.12. This yields enthalpy and entropy values of -76.74 

kJ/mol-H2 and -138.64 J/K.mol-H2 for absorption and 66.54 kJ/mol H2 and 120.12 

J/K.mol H2 for desorption, respectively. For 1 bar of hydrogen pressure, this 

corresponds to a hydrogen release temperature of 280 °C. This value is not far off 

the lowest desorption temperature reported for powder processed Mg based alloys 

(Oelerich et al. 2001). Thus, it appears that even though Mg milled under argon 

have yielded quite coarse particles size the processing was successful in that the 

mixture had a desorption temperature which was one of the lowest reported in the 

literature.  
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(a) 
 

 

(b) 

 
Figure 3.13. (a)Pressure change ( hydrogen)  as a function of  temperature in 

Mg-10 vol. % Ti  milled under hydrogen, (b) PCT diagram of Mg-10 vol % Ti  

milled under hydrogen. 
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No activation was necessary for Mg-Ti milled under hydrogen. This can be seen by 

the temperature programmed sorption curve given in Figure 3.13 (a). This curve 

was determined under 10 bar of hydrogen pressure and the pressure change was 

recorded as a function of temperature, i.e. temperature programmed sorption. It is 

seen that there is a clear pressure drop at temperatures close to 300 oC.  

Hydrogenation behavior of the reactively milled Mg-Ti was further evaluated by 

determining its PCT (absorption). Figure 3.13(b) show this diagram at, 325oC and 

350 oC. Van’t Hoff plot for this sample is also shown plotted in Figure 3.12. The 

enthalpy and entropy values obtained from this curve is -62.42 kJ/mol H2 and -

112.91 J/K.mol H2, respectively. The enthalpy of hydrogenation here is slightly less 

than that of the sample milled under Argon.  

3.4. Discussion 

Results reported above show that the processing of Mg-Ti via mechanical milling 

under argon and hydrogen differ from each other in several respects. The most 

important difference is that milling under hydrogen leads to extremely small particle 

size. Mg is converted to MgH2 and due to its brittleness and they are fragmented 

into particles of extremely small size. BET measurement yields a surface area value 

which is an order of magnitude larger than that of the sample milled under argon. 

This implies that the particle size is an order of magnitude less in milling under 

hydrogen. For the Mg particles mechanically milled under argon, higher particle size 

was obtained implying the agglomeration of the initial particles. Ti particles seem to 

be distributed homogeneously throughout the Mg particles. 

Mg agglomerates as well as Ti fragments are made up of coherently diffracting 

volumes of approximately 20-25 nm in size for both mechanically and reactively 

milled sample.  

Hydrogenation experiments have shown that mechanically milled Mg-Ti sample can 

be hydrogenated after an activation treatment, whereas reactively milled samples 

does not require activation. After activation, both samples can be hydrogenated 
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easily.  From the PCT diagram for desorption of mechanically milled samples, 

enthalpy and entropy values are calculated to be -76.74 kJ/mol-H2 and -138.64 

J/K.mol-H2 for absorption and 66.54 kJ/mol-H2 and 120.12 J/K.mol H2 for desorption 

respectively. The enthalpy and entropy of hydrogenation obtained for reactively 

milled sample yields values of -62.42 kJ/mol-H2 and -112.91 J/K.mol-H2 in the 

respective order.  

3.5. Conclusions 

The current study on the processing of Mg-Ti for hydrogen storage has shown that 

Mg-Ti can be processed quite successfully using mechanical milling both under 

argon and under hydrogen.  

Milling under argon has shown that: 

i. Mg powders agglomerate to sizes which are larger than the initial ones, 

while Ti is fragmented into pieces homogenously distributed throughout the 

structure.  

ii. Mg agglomerates as well as Ti fragments are made up of coherently 

diffracting volumes of approximately 20-25 nm in size 

The processed powders following an activation treatment reacts with hydrogen. The 

enthalpy of hydrogen desorption has a value of 66.54 kJ/mol which means that the 

processed powders can desorp hydrogen at 280 °C against 1 bar of hydrogen 

pressure. This is close to lowest desorption temperature reported for Mg based 

powders processed with additives (Oelerich et al.2001). 

The milling of Mg-Ti under hydrogen atmosphere has shown that: 

iii. Mg and Ti are partially converted into their hydrides and they are milled 

down to extremely small sizes, while untransformed fraction remains as 

coarse particles in the order of 30-40 µm.  
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CHAPTER 4  

THE PROCESSING OF Mg AND Mg-Ti WITH SEVERE 
PLASTIC DEFORMATION 

4.1.  Introduction 

A number of routes are available for structural refinement of metallic materials e.g. 

mechanical milling (Suryanarayana,2001), repetitive rolling(Pedneault et al., 2008), 

equal channel angular pressing (ECAP)(Segal, 1999) etc. Of these, mechanical 

milling is a well established method, used widely for the processing of metallic 

powders. The method not only induces severe plastic deformation but also, quite 

often, leads to particle fragmentation. In fact the milling with its associated 

structural refinement has established itself as an efficient method of material 

synthesis for hydrogen storage alloys (e.g. Güvendiren et al. 2004). 

Although the effectiveness of mechanical milling is well established in the processing 

of hydrogen storage alloys especially in intermetallics or intermetallic forming 

mixtures, it is often very difficult to employ this in ductile powders (Huang et al. 

1995). Mg and Mg based powders are not brittle enough and therefore, as 

illustrated by Çakmak et al. (2010) they agglomerate during milling with the 

resultant increase in particle size. The role of additives is then to help make material 

brittle so that the milling may lead to particle fragmentation rather than 

agglomeration. Still, the milling of Mg or Mg based powders to small particulate 

sizes is an extremely difficult task (Hwang et al. 2001, Zaluska et al. 1999). 

A drawback in the synthesis of hydrogen storage alloys is the necessity to process 

the material under a protective atmosphere. Exposure of powders during or after 

milling to atmospheres containing O2, H2O etc are lethal and must therefore be 

avoided [(e.g. Ivey et al. 1983). Thus the powders are often processed and handled 
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under argon atmosphere of high purity, i.e. in a glove box. The problem is 

aggravated by the fact the milling, when successful, leads to a rapid generation of 

new surfaces, so the environment to which they are exposed to is of paramount 

importance.  

Clearly an alternative method of material synthesis which would not require a 

protective atmosphere would be extremely beneficial. In this respect, ECAP 

processing appears to be the an obvious candidate since the new surfaces 

generated in this process are negligibly small. In fact, ECAP have already been 

employed in the processing of Mg based hydrogen storage alloys (Loken et al. 2007, 

Skripnyuk et al. 2007,Çakmak et al. 2007). The process normally involves a material 

in bulk form extruded through a die with two channels of equal cross-section, 

intersecting at an angle. The passage of material through the channels produces a 

simple shear deformation. This method, first used in 1972 by Segal , has since been 

developed in a number of respects; see Valiev and Langdon (2006). Though various 

forms of ECAP are available, the essence of the process is still the same, i.e. the 

cross-section of the material does not change during the passage, and so the 

process may be repeated many times enabling the accumulation of extremely large 

strains. It has been shown for many bulk metallic systems that the ECAP processing 

leads to drastic structural refinements often leading to the formation of submicron 

or nanoscale structures (e.g. Komura et al. 1999, Pushin et al. 2002).  

The current work explores the possibility of employing ECAP processing in lieu of 

mechanical milling in an effort to develop a cost-effective processing route for 

hydrogen storage alloys.  

4.2.  Material and Method 

Elemental powders used in this work were Mg and Ti, each 99.5 wt % pure with -

325 mesh size (see Figure 4.8 for particle size distribution). Samples were prepared 

from pure Mg and Mg-10%vol Ti powders. Two sets of samples were prepared for 

each; one was processed with ECAP and the other with mechanical milling.  
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For ECAP processing, the powder was first Spex milled for 10 minutes and then 

compacted with a pressure of 200 MPa into 8 mm diameter pellets. For ease of 

handling, the compacted powders were encapsulated in a copper block. The block 

was either square in its cross-section 14x14 mm, or round with 18 mm diameter. 

This was achieved by drilling a hole of 8 mm diameter from one end. Four pellets, 

each approximately 20 mm in length, were fitted into the hole. The block was then 

closed by pressing a copper insert into it. The block was 130 mm in length, so 

approximately 25 mm at each end was solid copper.  

ECAP was carried out by feeding the copper block into a special die. Two die 

geometries were employed. One was a single zone 90 o die that enabled batch 

processing, and the other was a two-zone 120o die that allowed continuous 

deformation, as shown in Figure 4.1. 

A single zone die had two identical channels with 14x14 mm cross section 

intersecting at an angle of φ=90°. The inner corner of the intersection was kept 

sharp while the outer corner was rounded with ψ =20°, Figure 4.1(a). Samples 

were deformed by feeding the copper block into die cavity and pressing the punch 

onto the block. To eliminate seizure, the punch was forced into the channel, 

typically by 25 mm, and then removed. A deformable insert was placed into the 

channel and the operation was repeated in the same manner as before. This 

continued until the block was forced through the deformation zone and came out 

from the exit end of the channel. For the geometry in question, i.e. φ=90° and ψ 

=20°, the passage through the deformation zone, imposes a true strain of ε= 1.00 

(Kim et al. 2001). After the passage, the copper block was re-fed to the die by 

rotating the sample 90°, i.e.the so-called Bc route, see García-Infanta et al. (2008). 

Two-zone die had circular cross-section. The channel angle was 120° in both zones 

arranged in such a manner that the entry and exit channel was parallel to each 

other, Figure 4.1 (b). Each zone, in this die, could impose a strain of ε=0.60 giving 

a total value of ε =1.2. The process was automated, i.e. sample was pushed 

backward and forward in the die a number of times ,until the desired level of strain 

was achieved. The advantage of this parallel die was that it allowed the application  
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characterization was carried out using a field emission SEM. Structural refinement in 

samples was measured in terms of the size of coherently diffracting volumes. For 

this purpose, X-ray diffractograms were measured in a step scanning mode (0.02° 

for 3 seconds) 20 o <2θ<80o using CuKα radiation (typically 40 kV, 40mA). Standard 

Si sample was run at each session of X-ray measurements so as to correct angular 

shift that might occur in peak positions. The crystallite size, the lattice parameters 

as well as volume fractions were obtained from the Rietveld refinement of X-ray 

data.  

4.3.  Results  

4.3.1. ECAP Processing of Mg and Mg-Ti 

The regime of ECAP deformation employed in this study normally involved a single 

zone die with passage of samples 1, 2, 3 and finally 4-times. This corresponds to 

true strain values of ε=1, 2, 3 and 4, respectively. Figure 4.2 shows a typical 

diffractogram recorded from a Mg sample deformed to ε =4. The goodness of fit(R) 

value for the Rietveld refinement of the data was 5.25. Structural parameters 

derived from X-ray data for Mg and Mg-Ti are given in Table 4.1 and Table 4.2, 

respectively. Crystallite size, reported in this table, shows that he powders have 

been strained as a result of ECAP deformation. The values are such that there is a 

monotonic decrease with increasing level of strain, both for Mg and Mg-Ti. The size 

which is initially in the order of 140 nm for Mg decreases to a value of 80 nm after 

the fourth pass, i.e. a true strain of ε=4.0. This decrease in the size of the 

coherently diffracting volumes is also true for Mg-Ti, Mg is reduced down to 72 nm 

and Ti had a size of 41 nm at the end of fourth pass.  

Table 4.1 and Table 4.2 also contain data from mechanically milled powders. The 

crystallite sizes of Mg and Mg-Ti, determined after 5 hours of milling, are 80 and 70 

nm in the respective order. Thus, in terms of coherently diffracting volumes, i.e. 

crystallite size, both ECAP deformation and mechanical milling leads to similar sizes. 

It can therefore be concluded that ECAP deformation is as efficient as mechanical 

milling in terms of size reduction in coherently diffracting volumes. 
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Figure 4.2. X-ray diffractogram (Rietveld refined)  of Mg ECAP deformed to a 

true strain of ε=4.0. 

 
Table 4.1. Structural characteristics of Mg powder compacts ECAP deformed to 

true strains of ε=1, 2, 3 and 4. The same mixture milled for 5 hours are also 

included for comparison 

 

 
  ECAP deformation  (ε) 

 
 

Milled 

  0 1 2 3 4 
 

5h 

Crystallite 
size 
(nm) 

 

Mg 138.8 118.8 100.2 89.6 77.6  79.7 

Volume 
fraction of 

phases 

 
Mg 

 
98.0 98.6 98.6 98.5 98.5  97.6 

 
MgO 

 
2.0 1.4 1.4 1.5 1.5  2.4 

Lattice 
Parameters 

(Å) 
 

Mg 
(a) 3.21(6) 3.21(5) 3.21(5) 3.21(4) 3.21(4)  3.21(4)

Mg 
(c) 5.22(1) 5.21(7) 5.21(6) 5.21(7) 5.21(7)  5.21(7)



51 

 

Table 4.2. Structural characteristics of Mg-10 vol%Ti powder compacts ECAP 

deformed to true strains of ε=1, 2,3, and 4.The same  mixture milled for 5 

hours are also includedfor comparison. 

 

 
  ECAP deformation  (ε) 

 
powder 

  0 1 2 3 4 
 

5 h 

Crystallite 
size 
(nm) 

 

Mg 140.2 97.39 75.51 72.06 69.85 
 

72.0 

Ti 179.3 57.66 56.35 47.98 40.4 
 

70.8 

. 
Volume 

fraction of 
phases 

Mg 
 91.09 90.10 89.95 90.06 89.79 

 
90.35 

Ti 
 8.18 8.41 8.51 8.63 8.93 

 
7.85 

MgO 
 0.73 1.49 1.54 1.31 1.27 

 
1.79 

Lattice 
Parameters 

(Å) 
 

Mg 
(a) 3.21(2) 3.21(0) 3.21(1) 3.21(2) 3.21(3) 

 
3.21(4) 

Mg 
(c) 5.21(4) 5.21(4) 5.21(3) 5.21(6) 5.21(7) 

 
5.21(6) 

Ti 
(a) 2.95(3) 2.95(2) 2.95(2) 2.95(3) 2.95(4) 

 
2.95(5) 

Ti 
(c) 4.68(7) 4.68(6) 4.68(6) 4.68(8) 4.69(0) 

 
4.68(8) 

 

It should be pointed out that the crystallite sizes reported above are not unlike to 

those reported for ECAP deformed solid samples (Dinkel et al. 2008, Mathis et al. 

2005). For instance Mathis et al. has deformed cast AZ91 alloy (Mg-9 wt % Al) with 

a 90° die and found a crystallite size of approx. 60 nm after a total strain of ε= 9.2, 

i.e. 8 passes. To check this, a fully dense Mg sample was prepared from the current 

Mg powders. The sample hot compacted under 200 MPa at 350 °C for 3 hours, was 

subjected to 4 passes using the single zone die. The sample has yielded a crystallite 
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increases in subsequent passes reaching a value of 2.073 gr/cm3 after the fourth 

pass. The value is quite close to the density of the hot compacted sample 

(2.0997gr/cm3) shown by the horizontal line in Figure 4.4. Consolidation of powder 

compacts via ECAP deformation is a well known phenomenon that has been 

previously reported for Mg (Wu et al. 2007, Moss et al. 2007) as well as for the 

other powder systems (Xia et al. 2005, Quang et al. 2007). 

Observations reported above imply that feeding of material in powder form does not 

significantly modify the nature of ECAP deformation. The powders are sufficiently 

consolidated even in the first pass so that the process results in the formation of 

nanosize volumes in much the same way as in the solid samples.  

Microstructures in the ECAP processed powder compacts are given Figure 4.5 and 

Figure 4.6. Figure 4.5 (b) refers to a longitudinal section of a pure Mg after the 

 

 

Figure 4.4. The variation of density in Mg-10 vol.%Ti with ECAP deformation. 

Note that the density increase in the first pass is quite high. 
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fourth pass. Here grains originating from the powder particles which are initially 

equiaxed, Figure 4.5 (a), seem to have been inclined at an angle to the shear 

(longitudinal) direction. Angular distortions of grains are also apparent. 

Microstructure of the same sample at the transverse section is given in Figure 4.5 

(c). It is worth noting that in Figure 4.5 (c) is still comparable to that of Figure 4.5 

(a). This is despite the fact that the latter sample was subjected to a very high 

strain (ε=4).  

Microstructures in Mg-Ti display similar features. Figure 4.6(a) and (c) refer to the 

transverse section of the sample before and after ECAP deformation, respectively. 

Here, the length scales are again quite comparable to each other, despite the heavy 

strain imposed. In addition, Ti particles seem to have been deformed less than Mg. 

This is quite clear in Figure 4.6 (b), which shows the longitudinal section of the 

deformed sample. Here, Ti particles seem to have been translated without much 

sign of distortion. Inset in Figure 4.6 (b) shows a locality in this sample, where Mg 

was subjected to a complex flow pattern, presumably to accommodate the Ti 

particles that remains un-deformed or deformed less.  

Particulate structures resulting from milling of Mg are shown in Figure 4.7 (a) to (e). 

It should be noted that the milling does not reduce the particle size. The Mg 

particles seem to have been agglomerated and have sizes which are in fact larger 

than the starting powder, as shown in Figure 4.8Figure 4.8. In Mg-Ti, Mg particles 

behaved in a similar manner. Ti particles on the other hand, have been refined quite 

drastically. They appeared as small fragments that have been distributed 

throughout the particulate structure. The agglomeration of Mg particles in the one 

hand and the disintegration of Ti particles, on the other, imply that the structure, 

under the repeated impacts of the balls, is determined by a balance between the 

fragmentation arising from ductile fracture and agglomeration resulting from the 

cold welding process. The result of these repeated impacts is that the particulate 

structure are heavily mixed and refined. This is well illustrated in Figure 4.9 where 

the particulate structure shown refers to Mg-Ti after 1 hour milling. Thus, even 

when Mg is agglomerated Ti has been refined and distributed uniformly over the 

structure. 
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(a) 

 

 

(b) 
 

Figure 4.5. Microstructures in Mg powder compact  a) Initial structure( 

transverse section), b) after ECAP deformation (longitudinal section),  c) after 

ECAP deformation (transverse section)  
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(c) 

 

Figure 4.5. Continued, 

 

 

(a) 

 
Figure 4.6 Microstructures in Mg-10 vol % Ti  powder compact a) Initial 

structure (transverse section), b) after ECAP deformation ε=4(transverse 

section). and c) after ECAP deformation ε=4(logitudinal section) 
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(b) 

 

 

(c) 

 
Figure 4.6. Continued, 
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The size reduction achievable with plastic deformation is not necessarily small. This 

has been well demonstrated in rolling deformation of metal-metal systems (Öztürk 

et al. 1994). For instance, in Fe-Cu multilayer, Shighu et al. (2001) reports a size 

reduction of 1:100 obtained after a rolling deformation of ε=4, i.e. final size of 500 

nm obtained from 45 μm thick layers. The deformation imposed in this study is 

quite comparable to the strain imposed in the present work.  

The preservation of the initial length scale though surprising when contrasted with 

the more conventional processing techniques, is the direct result of simple shear 

deformation. An important parameter in this respect is the interfacial area, i.e. the 

rate with which it increases with the imposed strain. A grain or a phase, cubic in 

shape, for instance when subjected to a true strain of ε=4.0, i.e. the same strain 

that was imposed in this work, the interfacial area increases by a factor of roughly 

8. The same deformation when imposed in for instance in rolling on the other hand, 

the area increases by a factor of more than 100. Thus to reach a similar degree of 

refinement, much higher strain would be needed in ECAP deformation. 

To test this, a Mg-Ti sample was prepared and deformed in parallel ECAP die. A 

total of 10 pair of passes have been imposed which corresponds to a true strain of 

ε=24. Figure 4.10 shows the transverse section of this sample. Here, Mg grains 

seem to have been heavily distorted in a complicated pattern. Ti particles seem to 

have been refined in a manner as if they have been eroded by Mg flow around 

them. This erosion is consistent with the presence of tiny Ti fragments as well as 

rounded shapes of the larger fragments. Thus, the structure obtained after a true 

strain of ε=24 is not unlike to that obtained after milling.  

The mixing and refinement of structure that takes place with heavy ECAP 

deformation were also reported in Mg-Mm-Ni (Loken at al. 2007) and Mg-Ni 

(Skripnyuk et al. 2007 ).In the former study, Loken et al. converted the 

heterogonous as-cast structure into a fine microstructure via ECAP deformation with 

a true strain of ε=8. Moreover, Skripnyuk et al. noting the presence of Ni gradient 

near Mg2Ni particles, implied mixing at much finer scale.  
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Figure 4.10. Microstructure of Mg-Ti deformed to ε= 24 (10 pair of passes) 

using the parallel die 

 

4.3.2. Milling after ECAP deformation 

Since hydrogen storage alloys are used in particulate form, it is necessary to convert 

the consolidated materials resulting from ECAP deformation into a granular form. 

Figure 4.11 shows the particulate structures obtained after mechanical milling of 

ECAP deformed Mg sample. Of these, Figure 4.11 (a) refers to the structure after 30 

minutes of milling. The average particle size has a value of 71 µm. This value is 

significantly less than the sizes obtained with direct milling of Mg powders. To verify 

this, ECAP deformed samples were subjected to the milling operations using the 

same conditions and durations as above. Thus, milling was extended to 5 hours, 

samples being taken after 60 and 120 minutes. Particle size distribution determined 

for these samples are included in Figure 4.8. It is seen that the size distribution of 

milled ECAPed samples centres on values which are significantly less than those 

obtained by direct milling. For instance after 5 hours of milling, milled ECAPed 

sample has dv(0.5)=31 µm. This should be compared with dv(0.5)=88 µm obtained 

with direct milling. 



 

 

Figure 

and  m

 

4.4.  Disc

The adva

embedded

environme

advantage

when exp

refinemen

advantage

synthesis. 

The fact t

and provid

difficult to

increase in

case abov

4.11. SEM m

illed for (a)

cussion 

ntage of E

d in the sam

ent in whi

e in the pr

posed to a

nt and mixi

e implying 

that ECAP d

des a new a

o mill due t

n particle s

ve.  

micrographs

0.5 h (b) 1

ECAP proces

mple, expe

ich the pr

rocessing of

atmosphere

ng of phas

that ECAP

deformed s

approach in

to cold-weld

ize with mi

62

s of Mg pow

h (c) 2 h (d

ssing over 

ect those at

rocessing is

f hydrogen

es that co

ses achieve

P can be 

ample has 

n the milling

ding of par

lling, rather

2 

wder compa

d) 5 h. 

mechanica

t the very s

s carried o

 storage a

ntain O2, 

d in ECAP

employed

a better m

g of ductile 

rticles whic

r than parti

acts ECAP d

al milling is

surface, are

out. This 

lloys since 

H2O etc. 

processing

as a tech

illing ability

powders. D

h leads to 

icle fragme

deformed to

s that the 

e isolated f

is of cons

they are p

Thus the 

 is of cons

hnique of 

y is quite im

Ductile pow

agglomerat

ntation, as 

 

o ε=4 

particles 

from the 

siderable 

poisoned 

efficient 

siderable 

material 

mportant 

wders are 

tion, i.e. 

was the 



63 

 

Based on the observations reported above, a processing route for ductile powders 

might involve two steps. In the first step, the powders in loose form could be fed 

into a die, similar to those depicted in Figure 4.1(b) and subjected to several cycles 

of ECAP deformation. In the second step, the solid piece removed from the die in 

strain hardened form may be subjected to mechanical milling of a short duration.  

4.5. Conclusions 

In the current work, the possibility of employing ECAP processing in lieu of 

mechanical milling was explored for the purpose of both structural refinement and 

material synthesis. Mg and Mg-Ti powder compacts encapsulated in copper were 

subjected to ECAP deformation. The study has shown the following; 

i. ECAP processing leads to consolidation of powder compacts producing 

almost fully dense samples. As a result, the particles in the compact deform 

in much the same way as grains in the bulk material.  

ii. ECAP processing leads to structural refinement of powder particles resulting 

in coherently diffracting volume sizes that are comparable to those obtained 

with mechanical milling. 

In this respect, ECAP processing and mechanical milling are quite similar. ECAP 

processing, however, does not seem to be very efficient in generating or expanding 

the inter-particle boundaries. Thus for efficient mixing of phases, required for such 

purposes as material synthesis, it is necessary to employ extremely high strains. 

Finally, for size reduction, it appears that ECAP processing even with several passes 

may be employed quite usefully for the purpose of the improving the milling ability 

of the powders. 

The last point implies a two step approach in the processing of hydrogen storage 

alloys. The powder mixtures may be first processed with ECAP in open atmosphere 

and then by a short duration of mechanical milling carried out under protective 

atmosphere. 
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CHAPTER 5  

THE PROCESSING OF Mg-Ti FOR HYDROGEN STORAGE; 
PLASMA SYNTHESIS  

5.1.  Introduction 

Hydrogen storage alloys may be synthesized in a variety of ways. Synthesis in the 

liquid state is the most common, i.e. elements in suitable proportions are melted 

together, normally under protective atmosphere, which are then cast into a suitable 

form or preferably pulverized for further processing. An alternative method would 

be solid-state synthesis. This may start from elemental powders (Sakintuna et al. 

2007) or from oxide mixtures. In the latter, the oxides are mixed together in the 

required proportions and then reduced electrochemically in the solid state yielding 

the alloy or compound in powder form (Schlapbach et al. 2001, Tan et al. 2009). 

Final stages in the processing, whether the alloy is produced from the liquid or from 

the solid route, almost always involve mechanical milling. In this case, the 

synthesized alloy mixed with additives, is milled for extended period of 

time(Güvendiren et al. 2004). The aim of the milling is to distribute the additives 

homogenously in the one hand, and refining of the particle size on the other hand. 

The degree of nano-structuring achieved as a result of this milling is extremely 

important, since for a given chemistry, this seems to be the only way to modify the 

hydrogenation characteristics of the alloy.  

Gas-phase synthesis of hydrogen storage alloys, so far, has been confined to thin 

film deposition. Though commercially, thin films have a limited scope, the method is 

highly versatile in that the precise control could be exercised with regard to both the 

composition and the structure of the films. Tailored structures which can be 

produced in this way, have superior storage characteristics. This was demonstrated 
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for Mg where 300 nm thick films, was shown to absorb and desorb hydrogen near 

ambient conditions (Akyıldız and Öztürk 2010). 

Thermal plasma synthesis is a relatively new method which essentially is similar to 

thin film deposition. This method has the added advantage that it can be adapted to 

volume production. In thermal plasma the temperatures are sufficiently high to 

vaporize the starting material which then condenses in the quenching zone of the 

reactor to nano-size powders (Szepvolgyi et al. 1996). The method has been used 

for the synthesis of metallic and ceramic nano-powders for a variety of 

purposes(Suresh et al. 2008, Bystrzejewski et al. 2009).. 

In this study, we process Mg-Ti powder mixture for the purpose of hydrogen 

storage making use of two routes; mechanical milling and thermal plasma synthesis. 

In the former we make use of conditions to ensure efficient milling of the powder 

mixture. In the latter, i.e. in thermal plasma processing, a set of experiments were 

conducted so as to produce Mg powders of extremely small size.  

5.2. Experimental Procedure 

Starting powders were Mg (Alfa Aesar, 99.8 % ) and Ti (Alfa Aesar, 99.5 %) with an 

average particles sizes d(0.5) of 47 and 32 µm, respectively. The powder mixtures 

Mg-10 vol% Ti were prepared and processed via mechanical milling and plasma 

synthesis.  

Mechanical milling was carried out in a planetary ball mill given in Figure 3.5 

(Fritsch-Pulverisette 7 Premium Line) under argon atmosphere. 1 wt % graphite 

was added as anti-sticking agent to the initial powder mixture. 15 mm stainless 

steel balls were used with ball to powder ratio of 10:1. The mill was operated at a 

speed of 700 rpm. Thus, the conditions employed in milling were quite severe. The 

milling was carried out for 1, 5, 10, 15 and 30 hours using a program of 30 minutes 

milling and 30 minutes rest time.  

Thermal plasma processing of the powder mixture was carried out in a Radi-

Frequency(RF) system. The system is made up of a plasma torch (TEKNA Plasma 
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System Inc, PL-35), an RF generator (3-5 MHz, 30kW), a powder feeding system, 

reaction chamber connected to a filter system and a vacuum pump 

A schematic representation of the RF plasma unit is given in Figure 5.1. The plasma 

torch uses five turn induction coil, a water cooled ceramic tube with 36 mm inner 

diameter and another ceramic tube with 40 mm diameter separating plasma gas 

from the sheath gas, Figure 5.1. Plasma (central) gas was a mixture of Ar (15-23 

slpm) and He ( 5-8 slpm) and sheath gas was Ar (35-40 slpm) mixed with H2 (4-5 

slpm). Mixed powders were fed with a carrier gas He (6 slpm) and injected into the 

Ar-He plasma via a water cooled stainless steel probe. The probe was positioned 

axially into the torch down to the first turn of the coil. Reaction chamber, water 

cooled, was cylindrical in shape 200 mm in diameter and 1005 mm in length and 

contains viewing ports for in-situ process observations. Typically, the system and 

the reaction chamber were maintained at a pressure of 900 mbar (absolute). Where 

necessary, quenching was carried out by feeding He gas with 60 slpm at a position 

approx. 70 mm below the fifth (last) turn of the coil.  

 

 
Figure 5.1. Schematic representation of RF plasma system. 



67 

 

The amount of powders processed in each experiment was rather small (typically 15 

g). As a result, powders were collected from the wall of the reaction chamber rather 

than from the filter system. Experimental conditions for each set of sample is given 

in Table 5.1. 

Powders following both mechanical milling and plasma synthesis were characterized 

with respect to their size and structure. Powders in mechanically milled samples 

were rather coarse and were characterized with laser scattering. Wet method was 

employed with 500 mg sample using ethanol as dispersant. Plasma synthesized 

powders characterized by multi-point BET analysis due to their small size. Particles 

were examined in field emission SEMs both in secondary electron and in back –

scattered image mode. The powders were structurally characterized by X-ray 

diffraction using CuKα radiation (typically 40 kV, 40mA). Diffractograms were 

obtained in a step scanning mode (0.02° for 3 seconds) 20° <2θ<80°. Standard Si 

sample was run at each session of X-ray measurements so as to correct angular 

shift that might occur in peak positions. The volume fraction of phases, the lattice 

parameters as well as crystallite size of samples were obtained from the Rietveld 

refinement of X-ray data (Luterotti et al.,1999). 

 
Table 5.1. Experimental conditions for thermal plasma synyhesis 

 

Material 
sheat gas 
flow rate 
(l/min) 

plasma gas 
flow rate 
(l/min) 

carrier gas 
flow rate 
(l/min) 

plate 
voltage 

(kV) 

plate 
current 

(A) 
 

quench 
gas 

(l/min) 

feed 
rate 

g/min 

Ti 35 Ar 
5 H2 

6  He 
15 Ar 6 He 8.4 3.2 - 1.01 

Ti 35 Ar 
5 H2 

5 He 
15 Ar 6 He 7.6 2.8 - 1.166 

Mg 40 Ar 
4 H2 

8 He 
23 Ar 6 He 7.6 2.8 - 2.932 

Mg-10 vol 
% Ti 

40 Ar 
4 H2 

8 He 
23 Ar 6 He 8.3 3.2 - 1.805 

Mg-10 vol 
% Ti 

40 Ar 
4 H2 15.5 Ar 1.8 Ar 8.3 3.2 60 He 1.843 

Mg-10 vol 
% Ti 

40 Ar 
4 H2 15.5 Ar 1.8 Ar 8.3 3.2 60 He 1.843 
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Figure 5.3. Particle size distribution of Mg-10vol% Ti powders milled for 1,5 and 

30 hours. The initial distribution is also shown. 

 

distributions and the median values, dv50, reported indicating that there is an 

increase in particle size. Table 5.2 show little sign of particle refinement by milling. 

The particle size are quite comparable to the initial mixture, compare Figure 5.2 (a) 

and Figure 5.2 (b). In fact dv50 values are larger This is not unexpected since Mg 

powders are quite ductile and can join together during milling, getting larger in size. 

Thus the actual particle size is the result of a balance between fragmentation arising 

from ductile fracture and agglomeration resulting from the cold welding process. 

X-ray diffractogram of the powders after 30 hours of milling is given in Figure 5.5 

together with that of the initial powder mixture. Except a small amount of MgO and 

Fe and an FCC phase, each less than 2 vol%, there is no new phase formation in 

the powder mixture. Thus, the milled powder has two-phase HCP structure, the 

same as the initial powder mixture. The presence of this two- phase structure in 

milled samples is consistent with previous reports made on milling of Mg-Ti by Liang 

and Shultz (2003) and Asano et al. (2009), though in the latter by modifying Ti 

content and the conditions of milling, the formation of new phases with BCC or FCC 

structure was reported. 
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Table 5.2. Structural Characteristics of Mg-10 vol%Ti powders processed via 

mechanical milling 

 
Time (hours)  0 1 5 10 15 30 

Particle size (µm)  50.5 158.6 138.9 196.2 115.7 116.4 

 
Volume fraction of 

phases 

Mg 
 91.24 89.45 87.56 81.29 80.69 81.28 

Ti 
 7.82 8.41 6.82 6.04 5.87 4.8 

MgO 
 0.94 2.24 5.63 10.61 13.12 13.69 

Crystallite size 
(nm) 

 

Mg 140.7 70.1 30.15 26.02 26.71 26.46 

Ti 187 65 23.1 14.2 6.8 7.8 

Lattice Parameters 
(Å) 

 

Mg 
(a) 3.20(7) 3.20(0)

 
3.19(8)

 

 
3.19(8) 

 

 
3.19(5) 

 

 
3.19(4)

 

Mg 
(c) 5.20(7) 5.19(9) 5.19(8) 5.19(6) 5.19(2) 5.19(1)

Ti 
(a) 2.94(9) 2.94(2)

 
2.94(6)

 
2.96(9) 2.96(3) 2.99(5)

Ti 
(c) 4.68(1) 4.68(1) 4.68(3) 4.68(8) 4.68(8) 

 
4.70(3)

 
 

Various structural parameters derived from Rietveld refinement of X-ray data are 

reported in Table 5.2. This shows that the volume fraction of MgO can be as high as 

14 % after 30 hours of milling. This was due to partial oxidation of the sample 

during milling. This, unfortunately, could not be prevented under the current 

experimental conditions, due to less than perfect sealing of the lid. The lattice 

parameter of Mg remains almost the same during milling. Thus, Mg does not 

dissolve Ti to any significant extent. It is known that such dissolution is possible 

under extreme milling conditions, as has been shown by Liang et al. (2003). Unlike 

Mg, the lattice parameter of Ti changes during milling. The lattice volume expands 

presumably due to accommodation of some Mg atoms in Ti crystal lattice.  
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Figure 5.5. X-ray diffractograms of Mg-10vol%Ti (Rietveld refined). (a) the 

initial powder mixture (b) after 30 hours of milling. 
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In conclusion, it appears that mechanical milling yields a particulate structure in 

which Mg powders are quite large, i.e. nearly 0.1 mm. They incorporate Ti particles 

of approx.1 µm in size embedded at their surface and in their volume. It appears 

that the individual Mg particles are made up of coherently diffracting volumes of 

extremely small size, i.e. 26 nm.  

5.3.2. Thermal Plasma Processing 

Thermal plasma processing was carried out first with pure powders and then with 

the powder mixtures. Conditions employed are given in Table 5.3. Here, the 

powders which were fed into the torch melt/vaporize and further below in the 

reaction chamber, condense into solid particles. BET values of plasma processed 

powders are included in Table 5.3. Particle sizes derived from BET values are in the 

range of 75-300 nm. These values are nearly three orders of magnitude smaller 

than those obtained with mechanical milling (90-100 µm). It should be pointed out 

that powders are collected from the walls of the reaction chamber, rather than from 

filters, and the BET values measured are probably less than the real values due to 

improper sampling. Thus, particle sizes are probably much less than the values 

derived from BET measurement. 

SEM micrographs of pure Ti particles processed with 21 kW with a powder feeding 

rate of 3g/min are given in Figure 5.6(a) and (b). It is seen that there is a range of 

particles sizes; some Ti particles are relatively large in size. They are spherical in 

shape and most probably originate from initially coarse Ti particles which are melted 

rather than vaporized. Greater portion of powders obtained from plasma processing, 

however, are quite fine in the order of 80 nm, as shown in Figure 5.6 (b) 

Mg powders which are plasma processed under the same condition are given in 

Figure 5.6(c) Here particles are more homogenous in size. Even though there are 

fine particles comparable to Ti, most are approximately 1 µm in size. 
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Table 5.3. Structural characteristics of mg-10 vol % Ti obtained with plasma 

processing 

Applied 
power/ 

feeding rate 
 

21kW, 
3gr/min 

(Mg) 

21 kw, 
3gr/min 

(Ti) 

27 kw, 
2gr/min 
(Mg-Ti) 

27 kw, 
2gr/min 
(Mg-Ti) 

quenched 

27 kw, 
1gr/min 
(Mg-Ti) 

quenched 

Surface area 
(m2/g)  11.5 11.6 10.3 12.1 28.2 

Particle size 
(BET)  (nm)  299 105 238 182 78.1 

Volume 
fraction of 

phases 

Mg 
 69 - 80.67 70.09 64.69 

Ti 
 - 83.41 4.97 5.58 2.67 

MgO 
 31  14.34 24.33 32.64 

Crystallite 
size 
(nm) 

Mg 215 - 291.6 
 73.1 74.2 

Ti - 90.9 99.8 91.6 98.78 

Lattice 
Parameters 

(Å) 

Mg-
a 3.21(8) - 

 
3.21(0) 

 
3.20(9) 

 
3.20(9) 

 

Mg-
c 5.21(0) - 5.21(2) 5.21(1) 5.20(9) 

Ti-a - 2.96(0) 
 

2.96(1) 
 

2.96(6) 2.94(3) 

Ti-c - 4.67(2) 4.67(4) 4.67(3) 4.67(2) 

 

Initial experiments with plasma processing made use of Mg and Ti powders and 

involved different power loading as well as feeding rates. Accordingly a power 

loading in excess of 20 kW and a feeding rate less than 4 g/min were selected as a 

suitable window for operation. Following initial experiments, the program of study 

undertaken has focused on feeding rate as the main parameter, seeTable 5.3. 

Figure 5.7 refers to a feeding rate of 2 g/min (27 kW) and shows a spheriodized Ti 
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(c) 

 
Figure 5.7. Continued, 

Crystallite sizes calculated for plasma processed powders are given in Table 5.3. 

Here the values are relatively large compared to mechanically milled samples. This 

implies that crystals derived from plasma processing are relatively defect free, i.e. 

coherently diffracting volumes are larger in size. For instance, Mg-10 vol % Ti with a 

2g/min feeding rate yields a crystallite size of 300 nm. This size, however, reduces 

to 74 nm with the use of quenching gas, as shown in Table 5.3.  

It should be pointed out that, where the crystallite size is 74 nm, i.e. with the use of 

quenching gas, the particle size derived from BET analysis has a value of 80 nm. 

These values are quite comparable to each other. This is also true for powders 

obtained without the use of quenching gas. Thus, with plasma processing 

coherently diffraction domain size is nearly equal to the size of particles themselves. 

In conclusion, plasma processing of Mg-10%vol Ti mixture yields Mg powders which 

are extremely small, i.e.< 100 nm. Ti occur as separate particles with sizes that are 

comparable to Mg (though some are as coarse as 10 µm). It appears that both in 

Mg and Ti, coherently diffracting domain sizes are quite large and comparable to the 

size of individual particles implying that the powders are relatively defect free.  
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5.4. Discussion 

The particulate structures resulting in the one hand from mechanical milling, and in 

the other, from plasma processing are therefore quite different. The main difference 

refers to Mg particle size. Mg particles of 95 µm which results from mechanical 

milling are extremely coarse as compared to plasma processed powders where the 

size is nearly three orders of magnitude smaller, i.e. 85 nm. Despite the large size of 

Mg powders, mechanical milling is quite successful in distributing Ti in the form of 

tiny (approx. 1 µm) particles embedded both to the surface and to the volume of 

the Mg particles. It is well established that Ti has a catalytic effect in hydrogen 

sorption i.e. it splits hydrogen molecule into atomic form ready for diffusion into the 

lattice volume. Thus, the decoration of Mg powders with tiny embedded Ti particles 

is highly beneficial in improving the hydrogenation characteristics of milled powders.  

Hydrogenation behavior of Mg-10 vol % Ti powder mixture milled for 30 hours 

studied by measurement of PCT curves (not reported here) shows an enthalpy value 

of 76 kJ/mol. This enthalpy, calculated from Van’t Hoff plot, which refers to the 

dissociation of of MgH2 into Mg and H2 corresponds to a hydrogen release 

temperature of 280 °C (under 1 bar of hydrogen pressure). This value is not far off 

the lowest desorption temperature reported by Oelerich et al.(2001) for powder 

processed Mg based alloys. 

Powders obtained with plasma processing are extremely fine. How this reduction in 

size would affect the hydrogenation behavior of Mg powders has not yet been 

studied. Since the current powders obtained with plasma processing were air 

exposed, no attempts have been made, in this study, to investigate their 

hydrogenation behavior. Thin film studies; however, come close to this size, as they 

cover a variety of film thicknesses ranging from 50-60 nm up to 1 µm. It is known 

that Mg films (covered with a thin Pd layer) that are less 100 nm in size readily 

sorbs( absorbs and desorbs) hydrogen near ambient conditions. Thus the reduction 

in size leads to a reduction in the stability of MgH2. 

Similar destabilization of MgH2 may be expected with plasma processing. Powders of 

74 nm size are extremely fine and assuming that the substrate plays no role in 

hydrogenation, they could react with hydrogen in a similar manner as has been the 
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case with the thin film. The favorable hydrogenation characteristics of powders (as 

well as thin films) require the presence of a catalytic overlayer. Without the 

presence of catalytic overlayers, the production of Mg in the form of nanopowders 

may not be enough to have a sufficiently destabilized MgH2.  

It appears that processing conditions that would yield Mg nanopowders, of the 

same size as has been produced in the current work, which are doped or covered 

with a catalytic layer would be highly desirable for hydrogen storage purposes. This, 

together with conditions that would allow the incorporation of Ti or other additional 

elements into the body of nanopowder, would be highly beneficial for designing 

novel hydrogen storage alloys.  

5.5. Conclusions 

In this study, Mg-10 vol% Ti powder mixtures were processed for hydrogen storage 

purposes using two routes: mechanical milling and plasma synthesis. Mechanical 

milling was carried out with a high speed planetary mill for extended period of time. 

Plasma processing was carried out with an RF torch of 25-27 kW applied power, the 

powders being fed axially into the torch. The study has shown the followings;  

i. Mechanical milling of Mg-10 vol% Ti yields large Mg aggolorates, 95-100 µm, 

with embedded Ti fragments of approximately 1 µm in size uniformly 

distributed within the agglomerates.  

ii. Mg agglomerates that arise as a result of mechanical milling are made of 

coherently diffracting volumes of small size. These volumes, determined with 

X-ray diffraction analysis, can be as small as 26 nm after 30 hours of milling.  

iii. Plasma processing yields Mg powders of extremely small size, <100 nm. 

Both Mg and Ti occur as separate particles without much sign of dissolution 

in each other. The powders have coherently diffracting volumes that are 

comparable to the size of the particles themselves indicating that plasma 

processing yields relatively defect free crystals.  
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It appears that the thermal plasma synthesis provides an easy mean for the 

production of metallic nanopowders, which is expected to yield hydrides of reduced 

stability. It further appears that conditions that would allow the dissolution of 

elements in each other or to the formation of covered nanopowders would be highly 

beneficial for designing novel hydrogen storage alloys.  
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CHAPTER 6  

CONCLUSIONS 

In the preceding chapters, Mg-Ti has been processed with a variety of methods, 

namely; mechanical milling, reactive milling, ECAP and thermal plasma method. In 

this chapter, we conclude these studies with respect to conditions that would yield 

Mg-Ti alloy with most favorable hydrogenation properties. As already been 

mentioned, these properties are altered by the nature of particulate structure that 

evolves during the processing. Conclusions drawn from each of these processing 

routes refer to the following parameters; size reduction, the size of coherently 

diffracting volume, and the distribution of Ti catalyst.  

 
Table 6.1. Structural parameters in Mg-Ti following different processing routes. 

 

 Mechanical 
milling 

Reactive 
milling ECAP 

Thermal 
plasma 

synthesis 
Laser particle 

size (µm) 116.4  (31)*  

Surface 
area(m2/g) 1.76 9.86  28.2 

Particle 
size(µm)(BET

) 
1.26 0.44  0.078 

Crystallite 
size(nm) 20.78 25.09 

(20.05)MgH2 
69.85 74.2 

Ti distribution homogeneou
s 

homogeneou
s 

less 
homogeneous irregular 

*ECAP followed by 5 hours of milling 
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Size reduction; 

Particle size values of Mg obtained by different processing routes are collected 

together in Table 6.1. As seen in the table, the size of Mg particles vary over a wide 

range; from 116.4 µm to 78 nm. Largest size is obtained with mechanical milling 

which is even larger than the size of the starting powder (44µm). This size 

measured by laser scattering should be treated with care. In fact particle size 

measured for the same sample converted from BET analysis yield a value which is 

two orders of magnitude smaller (1.26µm). This implies that large size Mg 

agglomerates contain channels or ducts, running through them, formed as a result 

of cold welding and fracturing process. Thus, in terms of gas-metal reaction, the 

effective particle diameter in mechanical milling is probably much less than 116.4 

µm measured by laser scattering.  

ECAP processing is a bulk method and therefore, it cannot yield particulate 

structures. However, as seen in Table 6.1, ECAP processed material when 

mechanically milled yields improved size reduction. The particle size obtained in this 

way has a value of 31 µm which should be compared with 116.4 µm with direct 

milling. Considering the difficulty of size reduction in ductile powders, this method 

can provide a new approach for the milling of such powders. The method would 

involve several passes of ECAP deformation followed by mechanical milling of short 

duration. Reactive milling and plasma synthesis are clearly more effective processes 

in terms of size reduction. The particle size resulting from the reactive milling of Mg 

is in the submicron range,i.e. 0.44µm.  

Of the four processing routes, thermal plasma synthesis result in powders with 

smallest particle size. This process yields particles spherical in shape with sizes less 

than 100 nm. 

Coherently diffracting volume; 

Crystallite size values reported in Table 6.1 are all less than 100 nm. This means 

that in mechanically milled powders, where the particle size is in the order of 100 

µm or so, each particle is made up of a large number of coherently diffracting 

subvolumes. The number is typically 1011 in the case of mechanical milling. This 
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number reduces to 104 in the case of reactive milling, where the subvolumes are 

typically 20 nm.  Plasma processed powders have coherently diffracting volumes 

that are quite large. It is worth emphasizing that this volume size is quite close to 

particle size, which implies that plasma processing yields particles which are defect 

free. 

Distribution of Ti catalyst;  

As in the size reduction and coherently diffracting volumes, the processing routes 

also lead to differences in Ti distribution. This additive is homogeneously distributed 

on and within Mg particles generated by mechanical milling. This is also true for 

reactive milling where Ti, transforming to TiH2 and is milled as effectively as MgH2. 

Smallest sized Ti particles have been produced by plasma processing, e.g. 20 nm. 

The size, however, was not homogeneous. Such fine particles occurred together 

with particles which were as large as 1µm. 

Of the four alternative processing routes, the emphasis may be places on the route 

of thermal plasma synthesis. This process produces Mg particles of smallest size and 

also capable of yielding Ti particles which are at a fraction of Mg particle size. Thus 

the process seems to be capable of yielding small Mg particles decorated with Ti 

catalyst.  

To employ thermal plasma synthesis, as the main route in the processing of Mg-Ti 

and the other similar hydrogen storage alloy, it is necessary to improve the process 

in such a manner that particles have much more homogeneous size distribution. In 

this respect, significant improvement would be needed with respect to Ti whose size 

distribution is very important. 
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