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ABSTRACT 

 
 

DEVELOPMENT OF A TWO-DIMENSIONAL NAVIER-STOKES SOLVER  

FOR LAMINAR FLOWS USING CARTESIAN GRIDS 

 

 

Şahin, Mehmet Serkan 

M.Sc., Department of Mechanical Engineering 

Supervisor : Prof. Dr. M. Haluk Aksel 

 

 

March 2011, 202 pages 

 

 

 A fully automated Cartesian/Quad grid generator and laminar flow solver 

have been developed for external flows by using C++. After defining the input 

geometry by nodal points, adaptively refined Cartesian grids are generated 

automatically. Quadtree data structure is used in order to connect the Cartesian cells 

to each other. In order to simulate viscous flows, body-fitted quad cells can be 

generated optionally. Connectivity is provided by cut and split cells such that the 

intersection points of Cartesian cells are used as the corners of quads at the outmost 

row. Geometry based adaptation methods for cut, split cells and highly curved 

regions are applied to the uniform mesh generated around the geometry. After 

obtaining a sufficient resolution in the domain, the solution is achieved with cell-

centered approach by using multistage time stepping scheme. Solution based grid 

adaptations are carried out during the execution of the program in order to refine the 

regions with high gradients and obtain sufficient resolution in these regions. 

Moreover, multigrid technique is implemented to accelerate the convergence time 

significantly. Some tests are performed in order to verify and validate the accuracy 

and efficiency of the code for inviscid and laminar flows. 
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ÖZ 

 
 
KARTEZYEN HESAPLAMA AĞLARI KULLANILARAK LAMĐNER AKIŞLAR 

ĐÇĐN ĐKĐ BOYUTLU BĐR NAVIER-STOKES ÇÖZÜCÜSÜ GELĐŞTĐRĐLMESĐ 

 

 

Şahin, Mehmet Serkan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. M. Haluk Aksel 

 

 

Mart 2011, 202 sayfa 

 

 

 Dış akış için tamamen otomatikleştirilmiş Kartezyen/Dörtgen hesaplama ağı 

üreticisi ve laminer akış çözücüsü, C++ programlama dili kullanılarak geliştirilmiştir. 

Ağsal noktalar ile geometri tanımlandıktan sonra, uyarlamalı Kartezyen hesaplama 

ağları otomatik olarak yaratılmıştır. Kartezyen hücreleri birbirine bağlamak için 

dörtlü ağaç veri yapısı kullanılmıştır. Viskoz akışları simule etmek için, gövde 

uyumlu dörtgen hücreler isteğe bağlı olarak yaratılmıştır. Hücreler arasındaki ilişki, 

şişirilmiş geometrinin çevresindeki Kartezyen hücrelerin kesim noktalarını en dış 

sıradaki dörtgenlerin köşeleri ile çakıştırarak kurulmuştur. Geometri çevresinde ve 

bu bölgedeki çok eğimli yerlerde, düzenli hesaplama ağına geometri bazlı 

uyarlamalar uygulanmıştır. Çalışma alanında yeterli bir çözünürlük elde edildikten 

sonra, çözüm hücre merkezli bir yaklaşımla, çok kademeli zaman uygulaması 

kullanılarak elde edilmiştir. Yüksek gradyanlı bölgeleri sıklaştırmak ve buralarda 

yeterli bir çözünürlük elde etmek için çözüme bağlı uyarlamalar program çalışırken 

gerçekleştirilmiştir. Ayrıca, yakınsamanın arttırılması için çoklu ağ yöntemi koda 

eklenmiştir. Kodun doğruluğu ve verimliliğini doğrulamak için viskoz olmayan 

akışlar ve laminer akışlar için bazı testler yapılmıştır.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

Fluid flow problems are generally governed by complex equations. Because of the 

nonlinearity in these equations, most problems cannot be solved by analytical 

techniques. Analytical methods are used for some problems where nonlinear terms 

are negligible. However, these terms are not negligible in general so that these 

problems must be solved by using numerical methods. 

 

Computational Fluid Dynamics (CFD), is a branch of fluid mechanics that enables 

solution and analyses of fluid problems by using numerical methods and algorithms. 

Some problems such as problems having high Mach numbers or high temperatures 

cannot be simulated in laboratory conditions using wind tunnels. These problems and 

flows around multi-element complex geometries can be handled by using CFD. In 

the beginning of 1970's, CFD is started to be utilized for the solution of fluid flow 

problems with the evolution of computer technology. The simulations of transonic 

flows based on the non-linear potential equation were the first applications of CFD. 

In the early 1980's, two and three-dimensional Euler equations were solved. The 

rapidly increasing speed of computers and the development of acceleration 

techniques like multigrid enabled to solve inviscid flows around airfoils and inside of 

turbomachines. In the late 1980's, the focus was shifted to viscous flows. Navier-

Stokes equations were solved with the improvement of different turbulence 

modelling techniques such as the direct numerical simulation and large eddy 

simulation in order to analyze the turbulence flows accurately [1].  

 

Nowadays, due to the high speed and large memory computers, it is possible to 

analyze the inviscid or viscous flows in two or three dimensional space around multi-
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element, complex geometries. In order to obtain accurate results by CFD, it is 

important to choose the right numerical technique for flux computations, to choose 

the suitable turbulence model, to have high algorithmic efficiency and to generate a 

grid having sufficient resolution around critical regions such as shock locations, high 

gradient locations, wakes etc.  

 

A CFD code consists of three main elements, namely pre-processor, flow solver and 

post-processor. A pre-processor generates the grid around the geometry which is 

specified by the inputs. In addition, the flow parameters and boundary conditions are 

defined in the pre-processor. Then, flow solver uses the governing equations in order 

to solve the flow around the geometry subjected to the defined pre-conditions by one 

of the three common solution methods which are finite difference, finite element and 

finite volume method. Finally, post-processor forms the output files where results are 

shown in graphical and easy to read format [2].  

 

 

1.1 MESH GENERATION 

 

Mesh generation is a crucial step of CFD. In order to get accurate results, mesh 

resolution must comply with the solution schemes. In other words, an efficient grid 

must be generated in order to minimize the errors while resolving the physical 

properties of the flow. This grid must use as fewer grid points as possible in order to 

use the memory efficiently [3]. In general, there are two types of meshes; structured 

and unstructured meshes. 

 

 

1.1.1 Structured Meshing 

A structured mesh consists of quadrilaterals in two-dimensional space and hexahedra 

in three-dimensional space. The grid points are located in sequentially with the aid of 

an array (i, j, k) so that the connectivity information among them is provided 

implicitly. To illustrate, a neighbor of a grid point which is in the direction of i, j or k 



indexes can be reached by adding 

of the grid point itself

 

Structured grids have some advantages compared to unstructured meshes. 

structure is less complex due to the implicit

memory usage is less 

efficient and simpler codes can be developed by using structured grids. It 

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be 

obtained in the boundary layer which is 

 

 

 

Besides its advantages, there are some disadvantages in comparison to unstructed 

grids. Since the edges 

coordinate axes, transformation from physical to computational space is necessary. 

This task needs more computational power. 

complex, multi-element geometries is a very 
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es can be reached by adding or substracting an integer to or from 

of the grid point itself [4]. 

Structured grids have some advantages compared to unstructured meshes. 

structure is less complex due to the implicit connectivity information. Moreover, 

is less due to the simpler connectivity structure. As a result, more 

efficient and simpler codes can be developed by using structured grids. It 

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be 

undary layer which is the most important region for viscous flows.

Figure 1.1 Illustration of a structured mesh 

Besides its advantages, there are some disadvantages in comparison to unstructed 

grids. Since the edges of the geometry are not in the direction of the prima

coordinate axes, transformation from physical to computational space is necessary. 

This task needs more computational power. Furthermore, grid generation around 

element geometries is a very complex problem. In order 

or substracting an integer to or from i, j or k index 

Structured grids have some advantages compared to unstructured meshes. Data 

connectivity information. Moreover, 

to the simpler connectivity structure. As a result, more 

efficient and simpler codes can be developed by using structured grids. It is also 

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be 

important region for viscous flows. 

 

Besides its advantages, there are some disadvantages in comparison to unstructed 

direction of the primary 

coordinate axes, transformation from physical to computational space is necessary. 

Furthermore, grid generation around 

problem. In order to eliminate 



this problem, some techniques such as Chimera and multi

these are so complicated that the advantages of structured grids 

Whereas structured meshes has numerous advantages, they are not generally 

preferred due to its disadvantages

applied to complex geometries

 

 

1.1.2 Unstructured Mesh

An unstructred mesh consists of triangular or quadrilateral cells in two

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three

space, in an irregular pattern. 

of the connectivity, which leads to a more complex data structure. Moreover, this 

complex data structure causes higher memory usage.
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this problem, some techniques such as Chimera and multi-block is used. However, 

these are so complicated that the advantages of structured grids 

Whereas structured meshes has numerous advantages, they are not generally 

due to its disadvantages, especially the one that meshing 

to complex geometries. 

Unstructured Meshing 

mesh consists of triangular or quadrilateral cells in two

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three

space, in an irregular pattern. Unlike structured grids, unstructured grids require a list 

ectivity, which leads to a more complex data structure. Moreover, this 

complex data structure causes higher memory usage. 

Figure 1.2 Illustration of an unstructured mesh 

block is used. However, 

these are so complicated that the advantages of structured grids diminish [4]. 

Whereas structured meshes has numerous advantages, they are not generally 

, especially the one that meshing cannot easily be 

mesh consists of triangular or quadrilateral cells in two-dimensional 

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three-dimensional 

Unlike structured grids, unstructured grids require a list 

ectivity, which leads to a more complex data structure. Moreover, this 
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With the recent advancements in computer technology, efficiency of a CFD code is 

not affected very much by the high memory requirements. In addition to this, due to 

the capability of handling complex geometries easily, the popularity of unstructured 

meshing is increased among the meshing techniques. 

 

Advancing front and Delaunay triangulation methods are the most widely used 

methods in unstructured meshing. In reference [5], detailed information can be 

found. 

 

 

1.1.3 Cartesian Meshing 

A Cartesian mesh is a special type of unstructured meshing where the cells are 

squares in two-dimensional space and cubes in three-dimensional space. Quadtree 

and octtree data structures are used for two-dimensional and three-dimensional 

spaces, respectively. It was not preferred in the past since it is very hard to handle 

curved boundaries. However, with the recent developing techniques dealing with 

these curved regions, Cartesian meshing becomes more popular. 

 

One important advantage of Cartesian grids is that it requires hardly any user 

interference so that automatic meshes can be generated around even complex and 

multi-element airfoils easily. Denser meshes around shocks, shear layers and wakes 

can be obtained easily without user interference by using solution adaptation. In 

addition, multigrid technique which accelerates the convergence rate can be applied 

very easily since quadtree data structure is used for a two-dimensional Cartesian grid. 

Furthermore, the transformation of physical variables from computational space to 

physical space is applied only for the cells near the boundary since the other cells are 

in the direction of the primary coordinate axes. 
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Figure 1.3 Illustration of a Cartesian mesh 

 

 

Besides its advantages, there are some disadvantages, as well. One of the most 

difficult parts of Cartesian meshing is to deal with the curved parts of the geometry. 

The shapes of the cells which are intersected by the geometry are modified. The 

shape of these cells are not square and they are called irregular cells. It is very 

important to resolve the physical quantities at the irregular cells correctly in order to 

have accurate results. To do this, physical variables must be rotated into physical 

space. Moreover, the smaller sizes in those cells compared to regular Cartesian cells 

can cause deceleration of convergence rate. Local time stepping and multigrid 

technique can eliminate these problems. In addition, in order to model the viscous 

flows, the Cartesian meshing is not sufficient [6]. To have sufficient resolution in 

boundary layer, hybrid grid, which is composed of Cartesian mesh outside the 

boundary layer and body-fitted quad grid inside the boundary layer, is generated. 
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Figure 1.4 Illustration of a hybrid mesh 

 

 

 

1.2 LITERATURE REVIEW 

 

Wang (1998) developed a second-order accurate, cell-centered viscous flow solver 

by using a quadtree-based adaptive Cartesian/quad grid. In mesh generation part, 

first, geometrically-adaptive, body-fitted grids are automatically generated. After 

obtaining a user specified minimum grid resolution by recursively Quadtree divisions 

of a large root cell, Cartesian cells are intersected by the outer boundary of the Quad 

cells. By using cell-cutting method, final computational grid is produced 

automatically. In the solver part, after obtaining converged solutions in a given grid, 

solution-based adaptations are performed [7]. 
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Ye, Mittal, Udaykumar and Shyy (1999) developed a Cartesian grid method for two-

dimensional, unsteady, viscous, incompressible flows around complex immersed 

boundaries. In this method, finite volume method based on second order central 

difference scheme and a two-step fractional-step procedure are used. An 

interpolation procedure is applied for accurate discretization of the governing 

equations in the boundary cells. This procedure allows systematic development of a 

spatial discretization scheme that preserves second-order spatial accuracy of the 

solver. Since the iterative solution is slowing down by the fact that conditioning of 

the linear operators are changed with the presence of immersed boundaries, the 

convergence is accelerated by using a preconditioned conjugate gradient method [8]. 

 

Wang, Cphen, Hariharan, Przekwas and Grove (1999) developed a 2n tree based 

viscous Cartesian grid generation method for complex geometries. With 2n data 

structure, it is easy to handle complex geometries and deal in shocks, shear layers 

and wakes since it supports anisotropic grid adaptations in any of the coordinate 

directions. To resolve boundary layer for viscous flows, a viscous layer grid whose 

thichness is determined according to the expected thickness is added between 

Cartesian grid and body surface through a projection technique. Furthermore, an 

algorithm which detects critical regions has developed and good quality 

computational grids has been produced by avoiding cell-cutting completely [9]. 

 

Tucker and Pan (2000) implemented a Cartesian cut cell method to incompressible 

viscous laminar flows. In this method, some cut cells are created at solid boundary 

surfaces. For these cells, a novel hybrid technique is applied while integrating the 

governing Navier-Stokes equations. This technique consists of surface cell trimming 

and interpolation [10]. 

 

Wang (2000) developed a nested multi-grid solution algorithm for an adaptive 

Cartesian/Quad grid viscous flow solver. Body-fitted quadrilateral grids are produced 

around the solid geometry by the method of surface extrusion. After overlapping 

Quad grids with Cartesian grids, cell-cutting is performed in order to obtain the final 

computational grid. While the Cartesian grid is obtained by a single root using 



9 
 

Quadtree data structure, Quad grids are generated from multiple roots which are 

termed as a forest of Quadtrees representing the coarsest possible Quad grids. The 

coarsening algorithm, which is necessary to produce multi grids, is based on the 

reverse tree of Quadtree data structure. The flow solver is based on Roe's flux 

splitting, finite volume discretization with a cell-centered method, least-squares 

reconstruction and a differentiable limiter. In order to handle very small cut cells, 

local time stepping scheme is used as a time. For multigrid strategy, several cycling 

techniques such as Saw-Tooth Cycle, W-Cycle and V-Cycle are used [11]. 

 

Kirkpatrick, Armfield and Kent (2003) presented a method for representing curved 

boundaries in order to solve the viscous governing equations on a non-uniform, 

staggered, three-dimensional Cartesian grids. The method proposes that Cartesian 

cells at the boundary surface are truncated so that new cells are created and the 

boundary grid fits the shape of the surface completely. In the paper, some problems 

related to the development of a cut cell in staggered grid are discussed in a detailed 

manner. Second order accuracy is provided with the derived flux calculation methods 

through the boundary cell faces. On top of that, a method called "cell-linking" is 

developed in order to overcome the problems originated from the creation of small 

cells while avoiding the complexities resulted from the cell-merging operations [12]. 

 

Russell and Wang (2003) developed a Cartesian grid method for multiple moving 

objects in an incompressible two-dimensional viscous flow. The system is generated 

by regular Cartesian grid and solved by using a vorticity-stream function 

formulation. The no-penetration condition for the moving object and no-slip 

condition are provided by superposing a homogenous solution to the Poisson's 

equation for the stream function and producing vorticity on the surfaces of the 

moving objects [39]. 

 

Gilmanov, Sotiropoulos and Balaras (2003) presented an algorithm for a general 

reconstruction, while analyzing flows with complex three-dimensional immersed 

boundaries using Cartesian grids. In this algorithm, solution in the Cartesian grid 

nodes near the interface of the unstructured, triangular mesh generated by 
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discretizing three-dimensional immersed solid surface is reconstucted by using linear 

interpolation along the local normal to the body. As a result, the overall accuracy of 

the solver is second order [14]. 

 

Sanmiguel-Rojas, Ortega-Casanova, del Pino and Fernandez-Feria (2005) developed 

a method for incompressible two-dimensional viscous flows arround irregular 

geometries which generates a non-uniform Cartesian grid such that all boundary 

points are regular mesh points. The generated non-uniform grid is solved by the 

Navier-Stokes equations using finite difference methods [15]. 

 

Verstappen and Dröge (2005) developed a numerical method for solving unsteady, 

incompressible Navier-Stokes equations on Cartesian grids for arbitrarily-shaped 

boundaries. A novel cut-cell discretization method is introduced. This method 

provides the preservation of the spectral properties of convection and diffusion. A 

skew symmetric operator is used while discretizing convection and a symmetric, 

positive-definite coefficient matrix is used while approximating diffusion. This 

coefficient matrix conserves kinetic energy on any grid if the dissipation is turned off 

[16]. 

 

Singh and Shy (2007) presented three-dimensional adaptive Cartesian grid method 

with conservative interface restructuring and reconstruction. In this method, 

multiphase flows and moving boundaries between different phases are considered. 

The moving boundary is tracked using triangulated surface grids and the flow is 

solved by using governing equations on a stationary Cartesian grid. This grid is 

locally adaptive so that the resolution requirements can be provided. The interface 

resolution is controlled via a conservative restructuring technique which satisfies 

conservation of mass. In addition, a reconstruction algorithm for topology change is 

implemented [17]. 

 

Ito, Lai and Li (2009) developed an augmented method based on a Cartesian grid for 

solving Navier-Stokes equations in irregular domains. A fast Poisson solver is 

utilized in the projection method after embedding the irregular domain into a 
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rectangular one. The jump in the normal derivative of the velocity is set as the 

augmented variable so that ill conditioned system, which is usually produced by the 

methods setting force strengths as unknowns, is avoided. With this approach, 

condition number of the system is improved significantly for the augmented variable. 

In addition, the second order accuracy is provided for the velocity by using immersed 

interface method [18]. 

 

Karagiozis, Kamakoti and Pantano (2010) proposed a numerical method in order to 

solve the compressible Navier-Stokes equations on Cartesian grids. In this method, 

an embedded geometry representation of the objects is used and the governing 

Navier-Stokes equations are approximated with a low numerical dissipation centered 

finite-difference discretization. This method is useful for immersed boundaries, not 

suitable for compressible flows with shocks [19]. 

 

Hartmann, Meinke and Schröder (2010) developed a strictly conservative Cartesian 

cut-cell method for compressible viscous flows on adaptive grids. In this approach, 

finite volume method is used allowing the conservation of mass, momentum and 

energy at the boundaries. Up to 2010, there is not such a proposed method in 

literature for three dimensional compressible flows. While solving the mesh, a linear-

least squares reconstruction is used to rebuild the gradients of the cell centers in 

irregular regions of the mesh and those are employed while calculating the flux at the 

surface. As a result, the accuracy of the solution is second order [20]. 

 

In addition, several researches were done about Cartesian meshing in Department of 

Mechanical Engineering in METU. Siyahhan (2008) solved two-dimensional Euler 

equations by using flux vector splitting methods which are AUSM, AUSMD, 

AUSMV and Van Leer in addition to Roe’s method while the mesh is generated by 

using Cartesian grids. Multistage time stepping is used for temporal discretization. 

Moreover, the flow variables are reconstructed in order to increase the accuracy [22]. 

 

Çakmak (2009) developed an Euler solver on adaptively refined two and three 

dimensional Cartesian grids. The solution is obtained by cell-centered finite volume 
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method. While calculating inviscid fluxes, flux vector splitting and flux difference 

splitting methods are used. In the mesh generation part, a dynamic data structure is 

used together and geometric based adaptations are applied. In addition, solution 

adaptation is applied to the mesh in order to refine the regions with high gradients. In 

order to accelerate the convergence rate, local time stepping and multigrid techniques 

are embedded to the developed code [21]. 

  

 

1.3 ORGANIZATION OF THE THESIS 

 

In this thesis, a flow solver with an adaptive Cartesian or hybrid grid generated 

automatically around simple and complex, one or multi element airfoils is developed. 

The flow solver is capable of analyzing the compressible inviscid or laminar external 

flows. As a solution method, finite volume technique is used. 

 

In Chapter 2, mesh generation is discussed in detail. After quadtree data structure is 

introduced, the steps for Cartesian grid generation which are uniform mesh 

generation, cell type determination and geometric adaptations are discussed in detail. 

Finally, quad grid generation is introduced and hybrid grid generation is explained. 

 

In Chapter 3, governing equations in integral form are introduced for viscous flows. 

Next, discretization of governing equations temporally and spatially are presented. 

Then, inviscid and viscous flux computations are discussed in detail. Reconstruction 

of flow variables is explained. After discussing calculation of non-dimensional 

coefficients, pressure and skin friction coefficients, refinement based on solution 

adaptation is introduced. 

 

In Chapter 4, multigrid method, which is an acceleration technique, is introduced and 

the steps for the application to non-linear problems are discussed in detail. 

Coarsening process of Cartesian and quad grids are explained, which is necessary for 

multigrid applications. Then, the effect of multigrid on inviscid and low Reynolds 

number flows is discussed with tables and graphs. 
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In Chapter 5, inviscid flow around a single element airfoil is validated and the results 

are discussed. Next, low Reynolds number flow is considered by testing two 

different problems. Finally, a multi-element airfoil is considered at a high Reynolds 

number to show the hybrid grid effect. 

 

In Chapter 6, techniques used in the developed code and the obtained results are 

discussed. Then, some suggestions are made, for future works. 
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CHAPTER 2 

 

MESH GENERATION 

 

 

In this chapter, data structure used in the code for Cartesian meshing discussed. 

While quadtree data structure is introduced, stored variables and connectivity 

information for Cartesian cells are given. 

 

Next, generation of Cartesian mesh around an airfoil is explained. Uniform mesh 

generation, cell type determination and geometric adaptations are mentioned in 

detail. As a result of these processes, a good resolution around the geometry is 

obtained and all necessary properties of cells are stored in order to use them in 

solution. 

 

Finally, quad grid generation is introduced. Before quad cells are created, boundary 

layer is set by puffing the geometry up. During this process, some unwanted 

situations are eliminated. After obtaining a good boundary layer, the quad cells are 

created in the layer and the quad cells are connected to Cartesian cells and each 

other. As a result, a hybrid mesh having sufficient resolution at critical regions is 

formed.  

 

 

2.1 DATA STRUCTURE 

 

In this code, domain is divided into cells with Cartesian meshing. Since Cartesian 

meshing is a type of unstructured mesh, the connectivity information between cells is 

not provided simply like structured meshes. In order to store the data of cells and 

provide connectivity information successfully, an appropriate data structure should 
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be used. For two dimensional problems, several data structures can be chosen. The 

main data structure types are linked list, binary tree and quadtree types.  

 

In the developed code, the quadtree data structure is chosen since it is more 

advantageous than the others. It is easy to apply solution adaptation, where the 

dynamic cell number is required; i.e. e. number of cells is changing with solution 

adaptation. Furthermore, multigrid adaptation can be applied without creating new 

coarser grids unlike the others. 

 

In this section, the main properties of quadtree data structure is introduced, first and 

then, the connection of the cells in the domain with each other is discussed. Finally, 

the variables that must be stored are explained in detail. 

 

 

2.1.1 Quadtree Data Structure 

Quadtree data structure is a tree data structure in which each cell has four children. 

The two dimensional space is partitioned recursively by subdividing it into four 

equal quadrants from the mid points of edges, so that four equal size squares are 

generated, until the desired resolution is obtained. 

 

The largest cell covers the whole domain and it is called "root cell". Root cell has 

four children and each of these children have four children and so on. Children are 

separated from each other by naming it according to their location in the larger cell. 

They are named as top left, top right, bottom left and bottom right. The cells which 

have no children are called "leaf cells". These cells are used for solution calculations 

and also called "computational cells". 
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Figure 2.1 Illustration of root cell and its children 

 

 

While the relationship between cells from the largest to smallest is supplied by 

children phenomenon, the inverse relation from the smallest to the largest cells is 

provided by the word "parent". For example, a cell has four children and these four 

children have a parent which is the mentioned cell. Moreover, for providing 

relationship accurately, there is a level concept that every cell has. It shows the 

number of divisions until the cell under consideration is obtained from the root cell. 

The root cell has a level of 0. The level of four children of a cell is assigned a level of 

one higher of their parent cell. While Figure 2.1 illustrates root cell and leaf cells 

considering children parent relations in a 2-D cell, the same relations is shown in a 

tree view with their levels in Figure 2.2. 
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Figure 2.2 Children-parent relationship in a tree view 

 

 

 

2.1.2 Connectivity 

Connectivity of cells is provided by not only children-parent relation, but also by the 

neighborhood relationship. Each cell has four neighbors, namely top neighbor, right 

neighbor, left neighbor and bottom neighbor. In other words, for each cell, four more 

pointers are required in addition to children and parent pointers. Totally, 9 pointers 

are necessary in order to provide the connectivity accurately [21], [22]. 

 

While finding neighbors, the relation between a parent and their children is used. 

Starting from the root cell, neighbors are found. At first, neighbors of children of the 

root cell are found. It can easily be determined by considering the locations of 
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children in the root cell. The determination of the top left child of the root cell is 

shown in Figure 2.3. 

 

 

 

Figure 2.3 Neighbors of top left cell of root 

 

 

When neighbors of first level cells are found, their parents and location of their 

children places are used as shown above. For higher levels, in addition to the location 

of the children of a parent, parent's neighbors are also used. Below, determination of 

neighbors of a second level cell, shown in Figure 2.4, is explained in Table 2.1. 

 

 

   

 

 
  

  

 

   

    
Figure 2.4 Neighbors of a second level cell 
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Table 2.1 Determination of neighbors of a second level cell 

NEIGHBORS DETERMINATION 

Top Neighbor Parent→Top Right Child 

Left Neighbor Parent→Bottom Left Child 

Bottom Neighbor Parent→Bottom Neighbor→Top Right Child 

Right Neighbor Parent→Right Neighbor→Bottom Left Child 

 

 

Since the entire domain is not at the same level, the above illustration is not the only 

case one may meet. The neighboring cells may have lower or higher levels. It is very 

difficult to handle neighboring cells which have more than one level difference. 

Therefore, the code is adjusted that only one level difference can exist between the 

two neighboring cells. This fact is explained in more detailed fashion in Section 

2.2.3.4. 

 

When a cell has a neighbor which is one level higher than itself, nothing changes 

during the determining neighbors. The neighbor of the cell will be the parent of that 

cell having the lower level, since the parent shares the same edge with the cell and 

has the same level. However, when one considers a cell whose neighbor is at one 

level lower less than itself, than a slight change is necessary. The neighbor will not 

be the appropriate child of the appropriate neighbor of the its parent. Since it has no 

child, the neighbor will be directly the parent's appropriate neighbor. 

 

 

2.1.3 Stored Variables 

Storing the correct variables is quite important in order to use the memory 

efficiently. Excessive storage results in inefficient memory usage and slows down 

the computations. On the contrary, while trying to decrease the number of stored 

variables, to calculate the same variable again and again slows down the calculations. 

Therefore, optimization according to today's memory technology is necessary. 
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The pointers identifying the stored variables can be classified into six groups. These 

are geometric pointers that define the cell geometry, connectivity pointers that relate 

the cell with the others, cell type pointers which are used to determine the cell type, 

solution pointers which are necessary for solving the governing equations, solution 

adaptation pointers which are required for the solution refinement and multigrid 

pointers in order to create coarser grids to be used in the solution. In addition to 

primitive types in C++, some classes are defined in order to handle these pointers 

more easily. These user-specified classes have also some stored variables. 

 

While the cells have these pointers, some static variables are also used. With the use 

of these, only one variable is stored instead of a number of cell variables. In other 

words, for each cell, these static variables are calculated and they are used during the 

application of the necessary methods. After that, instead of creating a new variable 

for a new cell, the necessary quantity is recalculated for the new cell and stored at the 

same variable since the old one is no longer used.  

 

In the developed code, all cells have some common geometrical variables. All cells 

have four corners, centroidal coordinates, center coordinates and area. The center and 

the centroid are similar to each other for out cells. However, they are different for cut 

and split cells. While center means the middle point of the Cartesian square cell 

whether the shape of the cell is square or an arbitrary shape, the centroid represents 

the mass center of the shape covering outside the geometry of the Cartesian cell. 

Furthermore, in the developed code, the flux calculations are done through the faces 

so that storage of the faces is very important for leaf cells. 
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Table 2.2 Geometric pointers 

POINTER 

NUMBER 

POINTER 

TYPE 
POINTER NAME 

POINTER 

FOR 
EXPLANATION 

1 CornerPt topLeftCorner All cells Corner point at top left 

1 CornerPt topRightCorner All cells Corner point at top right 

1 CornerPt bottomLeftCorner All cells Corner point at bottom left 

1 CornerPt bottomRightCorner All cells Corner point at bottom right 

1 double area 

All cells 

except 

incells 

Area 

1 Pt center All cells Center point 

1 Pt centroid 

All cells 

except 

incells 

Centroid point 

vector Face faces Leaf cells Face vector 

 

 

Connectivity information between cells is provided with totally 16 pointers. Four of 

them represent the children of the cell while the other four of them denotes the side 

neighbors of the cell. In addition, as discussed earlier, the number of divisions is 

stored with the aid of the "level" pointer and the inverse connection is provided with 

the "parent" pointer. Furthermore, the remaining six pointers are necessary to relate 

the splitToCut type cells with their inclusive cell and quad type cells with their 

inclusive cell directly and inversely. These are mentioned in detailed in Section 2.2 

and 2.3, respectively. 
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Table 2.3 Connectivity pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER  

NAME 

POINTER 

FOR EXPLANATION 

1 Cell topLeft All cells Child cell at top left location 

1 Cell topRight All cells 

Child cell at top right 

location 

1 Cell bottomLeft All cells 

Child cell at bottom left 

location 

1 Cell bottomRight All cells 

Child cell at bottom right 

location 

1 Cell topNeighbor All cells Neighbor cell at top side 

1 Cell bottomNeighbor All cells Neighbor cell at bottom side 

1 Cell leftNeighbor All cells Neighbor cell at left side 

1 Cell rightNeighbor All cells Neighbor cell at right side 

1 Cell parent All cells Parent cell 

1 Cell splitToCut1 

Split cells 

having 2CV 

SplitToCut cell forming with 

the first control volume of 

split cell having 2 control 

volumes 

1 Cell splitToCut2 

Split cells 

having 2CV 

SplitToCut cell forming with 

the second control volume of 

split cell having 2 control 

volumes 

1 Cell quad1 

Cells except out 

and in cells First quad cell 

1 Cell quad2 

Cells except out 

and in cells Second quad cell 

1 Cell inclusiveOfSplits 

Split cells 

having 2CV 

Inclusive cell of the 

splitToCut cell 

1 Cell inclusiveOfQuads 

Cut, split and 

splitToCut cells 

Inclusive Cartesian cell of 

the quad cell 

1 int level All cells Division level 

 

 

Third group pointers are used in order to determine cell type. "type" pointer is an 

enumerator type and determines the cell whether it is an out, in, cut, split, splitToCut, 
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quad or notDefined. If the cell does not have some specific properties, than its type is 

set to notDefined so that it should be refined or the geometry must be shifted in order 

to eliminate these cells. For some split cells, "nodeIn" pointer is used in order to 

present geometry correctly. This pointer defines a nodal point of the input geometry 

in the cell. It is used especially for split cells at highly curved parts of the geometry. 

The pre-determined "IntPt" type vector of "intersections" give the points intersected 

with the geometry. Square and split indices are used for split and cut cells and they 

determine the sub-type of the split or cut cells. In Appendix A, one can see the sub-

types of these cells. Moreover, the usage of these indices is presented in Section 

2.2.2.2. 

 

Table 2.4 Cell type pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER 

NAME POINTER FOR EXPLANATION 

1 enum type All cells 

Type (cut, split, in, out, quad, 

splitToCut, notDefined) 

1 IntPt nodeIn Split cells 

Node point of the geometry in 

the cell 

vector IntPt intersections 

Cut, split and 

splitToCut cells 

Intersection points with the 

geometry 

1 int squareIndex All cells determines the sub-type 

1 int splitIndex 

Cut, split and 

splitToCut cells determines the sub-type 

 

 

Next group is the solution pointers. In this group, two pointers are used to store the 

conserved variables of the cell at the centroid, before and after the iteration. Since the 

one before the iteration is necessary for the new calculations, two of them must be 

stored separately. Additionally, residuals for those variables are stored using "res" 

pointer. The gradients of these variables in x and y directions and viscosity are stored 

with totally 9 pointers. Finally, if reconstruction and gradient limiting are chosen 

(they are mentioned in Chapter 3), then 4 additional pointers are needed for the 

limiters of the four conserved variables. 
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Table 2.5 Solution pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER 

NAME 

POINTER 

FOR 
EXPLANATION 

4 double qOld Leaf cells conserved variables before the iteration 

4 double qNew Leaf cells conserved variables after the iteration 

4 double res Leaf cells residuals of conserved variables 

4 double dqdx Leaf cells x gradient of conserved variables 

4 double dqdy Leaf cells y gradient of conserved variables 

4 double limiter Leaf cells gradient limiters if order of scheme is 2. 

1 double viscosity Leaf cells laminar non-dimensional viscosity 

 

 

As the solution adaptation pointers, two pointers are used. These pointers are for the 

curl and divergence criteria of the solution adaptation for each leaf cell, as mentioned 

in Chapter 3. 

 

Table 2.6 Solution adaptation pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER 

NAME 

POINTER 

FOR 
EXPLANATION 

1 double tau Leaf cells divergence criteria for solution adaptation 

1 double ksi Leaf cells curl criteria for solution adaptation 

 

 

The final group is for the pointers required for the multigrid applications. For the 

application of the multigrid technique, a total of 8 pointers are required. Multigrid is 

a very detailed convergence acceleration technique so that it is explained separately 

in Chapter 4. To summarize, the words "perform" and "meshSpacing" are used for 

the coarsening of the finest mesh. The word "compCell" determines whether the cell 

is a computational cell or not in a given computational grid. Forcing function is used 

in order to correct the residuals using coarser grids. 
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Table 2.7- Multigrid pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER 

NAME 

POINTER 

FOR EXPLANATION 

1 int perform All cells 
determines whether the cell is 

coarsened or not 

1 int meshSpacing All cells determines the step number of mesh 

1 int compCell All cells 
determines whether the cell is 

computational cell 

4 double FF All cells forcing function of conserved variables 

 

 

As mentioned before, some static pointers are used to avoid excessive storage. Eight 

of these are the conserved variables, which are transformed according to the face for 

left and right states. The "stress" pointer determines three stresses, τxx, τyy and τxy, and 

includes the heat fluxes terms, qx and qy. Although the heat fluxes are not stresses, in 

the developed code heat terms are added to stress pointer in order to handle them 

more easily. Finally, the remaining 8 pointers are used for inviscid and viscous fluxes 

at the face of the cell. 

 

Table 2.8 Static pointers 

POINTER 

NUMBER 

POINTER 

TYPE 

POINTER 

NAME 

POINTER 

FOR EXPLANATION 

4 double qLeftBar Leaf cells 

transformed conserved variables of 

left state at the face 

4 double qRightBar Leaf cells 

transformed conserved variables of 

right state at the face 

5 double stress Leaf cells 

stresses and heat flux terms in x and 

y at the face 

4 double faceFlux Leaf cells inviscid fluxes at the face 

4 double faceViscousFlux Leaf cells viscous fluxes at the face 
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2.2 CARTESIAN GRID GENERATION 

 

In the developed code, as mentioned earlier, Cartesian meshing is used. This grid is 

adapted to the code with the quadtree data structure. While generating the Cartesian 

mesh, totally three steps are applied in order. First, uniform mesh is generated around 

the created domain. Then, the types of the cells are found using intersection methods 

and indices. Finally, the geometric adaptation is applied to the uniform mesh so that 

the grid around the geometry becomes finer in order to get accurate results. 

 

 

2.2.1 Uniform Mesh Generation 

The input geometry is specified in terms of the nodal points. By connecting the 

consecutive nodes, the geometry can be obtained. The first and last nodes of a body 

are the same so that a closed loop can be obtained. As a first step, the domain around 

the geometry is built. After the maximum length in x and y directions are obtained by 

subtracting minimum values of x and y coordinates, from their corresponding 

maximum values, the maximum length, whether it is along x or y axis, is multiplied 

with the input outer size factor input to obtain the domain size is calculated. Since 

far-field boundary conditions are simply the free stream values that are mentioned in 

Chapter 3, it is important to set the outer boundary far away from the given 

geometry. Thus, a factor of 18 is taken as the minimum sufficient condition for this 

case. 

 

The geometry is placed at the middle of the domain. The center of the root cell is 

determined according to the center of the geometry which is formed through the 

averaging of minimum and maximum x and y coordinates of the geometry. Using the 

domain size, the corners of the root cell are obtained. 

 

After the creation of the root cell, the uniform mesh can be formed by dividing cells 

successively until the division level of the finest cells reaches the input uniform 

division level. At each cycle, levels of new formed cells are increased by 1, centers 

and corners of these cells are determined according to the location of its children 
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place of their parent. Below, one can see the equations used for setting center 

coordinates of those cells, 

 ��	
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�	 = �����
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where d is the domain size and l is the level of the considered cell. In addition to the 

center calculations, the corners are also computed by using the division level and 

domain size. However, instead of center coordinates of the parent, the center of the 

considered cell is used. The calculations of corner coordinates of a cell can be 

expressed as follows: 
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The uniform mesh is generated with the above calculations and by setting the 

neighbors told at Section 2.1.2, connectivity. With the uniform mesh, a default 

resolution is obtained for the outer cells. The cells near the geometry are then refined 

by geometric adaptation. 
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Figure 2.5 Uniform meshes around a two-element airfoil with 5, 7 and 9 cycles 

 

 

It is important to obtain a sufficient resolution with the uniform mesh. If division 

number for uniform mesh is small, than the smaller geometries, especially flap or slat 

parts of a multi-element airfoil cannot be captured accurately. However, the 

geometric adaptation that will be applied after uniform meshing can solve this 
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problem by refining the cells near the geometry. Yet, it is important to get a good 

resolution at the out cells to get accurate results. On the contrary, a very fine uniform 

mesh leads to a high number of cells so that the solution converges very slowly, 

since the number of cells doubles with one uniform mesh cycle. In the analyses, a 

uniform division level of 4 is used for most of the cases. 

 

Figure 2.5 shows uniform meshes around two-element airfoil with 5, 7 and 9 cycles, 

without applying any geometric adaptation. In the mesh with 5 cycles, the flap is not 

captured totally and the main body is very different than the original one. As shown, 

increase in the number of cycles results in more accurate capture of the given 

geometry. However, cell number increases excessively. In the above figure, since 

comparison between uniform meshes is done, no geometric adaptation is applied. As 

a result, a high level of uniform mesh generation is needed in order to capture the 

geometry accurately. 

 

 

2.2.2 Cell Type Determination 

Type determination is crucial in Cartesian grid for capturing the geometry accurately, 

refining the critical cells near the geometry and multigrid application. While 

determining the types of cells, a number of steps are applied sequentially. First, it is 

determined whether the corner of the cell is inside or outside the geometry by using 

the Ray-Casting technique. Then, intersection points are found and sorted. As a 

result, the type of the cell is determined roughly. According to sorted intersection 

points and in-out indices of corners, square and split indices of the cell are set. By 

using all of this information, the final type of the cell is determined. 

 

2.2.2.1 Corner Index Determination 

Each corner has an index in the developed code. This index determines whether the 

point is inside or outside the geometry. By determination of all corners of a cell, the 

type of the cell can be determined roughly. In other words, if all corners are outside 

the geometry, then the cell is an out-cell. If they are inside the given geometry, the 
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cell type is set to an in- cell. If all corners are neither outside nor inside, than the type 

of the cell may be a cut or a split cell. 

 

While determining this index, there are two common techniques, namely winding 

number method and ray-casting method. Ray-casting method has numerous 

advantages compared to the winding number method. First, the winding method 

works by considering all the line segments of the geometry. However, it is not 

required to visit all segments in ray-casting. It is sufficient to consider only the line 

segments that the considered point is between its start and end nodes in y direction. 

Moreover, unlike the winding method, round-off errors of the floating points do not 

harm ray-casting method [23]. Due to its advantages, Ray-Casting method is chosen 

for inside-outside determination. 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 2.6 Ray-casting method 

 

 

In the ray-casting method, there is a restriction that the bodies to be examined must 

be closed loop. Since the given geometry is formed with closed-loop bodies, this 

method is suitable for the developed code. In this technique, a ray is casted from a 

point along x direction generally. If this point intersects the given geometry odd 
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number times, then this point lies in the geometry. On the other side, if an even 

number is found with the intersections of the cell with the geometry, then the point 

must be outside the geometry. No matter how many bodies there are in the domain, 

this method works successfully. Figure 2.6 summarizes the ray-casting method with 

an example of a cell around a geometry formed by two bodies whose one corner is 

inside and one corner is outside the geometry. The index of corners inside the 

geometry is set to -1, whereas for outside corners, the index is set to 1. 

 

2.2.2.2 Square and Split Indexes 

After ray-casting method is applied and the corner indexes are determined, 

intersection points are found by considering horizontal and vertical edges separately. 

In the developed code, intersection points are stored with the help of "intersections" 

vector and this vector has an object of user-defined class "IntPt". This class has also 

some stored variables. These are two doubles for x and y coordinates, one string for 

its location. The location of a point may be on the edges or on a corner. After finding 

of coordinates and locations of these intersection points, they should be sorted 

according to an order. This order is significant in order to be able to finalize the true 

type of the cell. Sorting of those points is started from the right edge and continues in 

a counterclockwise direction.  

 

 

 

 

 

 

 

 

Figure 2.7 Illustration of sorting intersection points 
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The next step after sorting is setting the square index of the cell. The integers from 0 

to 3 are first assigned to the corners starting from the bottom right corner and 

continuing in counterclockwise direction. In other words, this integer is 0 for bottom 

right corner, while it is 3 for bottom left corner. The square index is then found by 

summing two raised to the power of the index of that corner (an integer 0 to 3) for all 

corners whose in-out index is -1. In the below figure, an example is given for finding 

square index of a cell. The gray region indicates the part inside the geometry.  

 

 

 

 

 

 

 

Figure 2.8 Determination of square index 

 

 

The bottom right, top right and bottom left corners are inside the geometry. If two is 

raised to the power of their corresponding indexes 1, 2 and 8 are obtained, 

respectively. If they are summed up, total square index of this cell is found as 11. If 

all the corners are inside the geometry, the square index can be calculated as 15 by 

using this relation. On the contrary, for out cells whose corners have an in-out index 

of 1, the square index is set to 0 [21].  

 

For all leaf cells in a Cartesian mesh, square indices are calculated by this way. Then 

using the intersection vector and square index, the general type of the cell can be 

determined. If a cell has no intersection point and has a square index of 0, then this 

cell must be an out cell. On the contrary, if a square index of 15 is assigned to a cell 

whose intersection vector is empty, then type of this cell is set to an in cell. If a cell 

has an intersection vector whose size is 1 or 2, and all corners of the cell has an index 

of neither -1 nor 1, then type of the cell is assigned to a "cut". For the other 

situations, except when the number of intersection points is greater than 4, the type 
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of the cell is set to "split". Finally, for the exception case, the type is assigned as 

"notDefined". notDefined type is assigned to cells which cannot be considered in the 

other types. The code does not give an error if these are computational cells. If not, 

then there is a need to modify the mesh generation with some input change. 

           

           

           

     

 

 

 

Figure 2.9 Example to a split cell 

 

 

The cells having 4 intersection points are assigned to split cells. For a special case, 

the intersection point number may be 2 if both intersection points are on the same 

edge. While one or more corner has an in-out index of -1, the square index 

calculation can be done similar to the calculation above, as can be shown in Figure 

2.9. However, it may be possible to have split cells whose all corners are either 

outside or inside the given geometry. Therefore, additional minus square indexes are 

assigned to these cells, as indicated in Figure 2.10. 

 

 

           

           

           

           

     

Figure 2.10 Split cells having minus square indices 
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In addition to square index, one more index should be used to understand the shape 

of the cell exactly. This index is called "split index". For one square index of a type, 

there are various alternatives that a cell has. While some cut cells may have 4 

different alternatives, it may be increased to 18 for a split cell. These alternatives 

may come from the intersection points at the corners since the location variable of an 

intersection point is changed for a corner point. Alternatives of a cut cell having a 

square index of 6 is indicated in Figure 2.11.  

 

 

 

 

 

 

Figure 2.11 Alternatives of a cut cell having a square index of 6 

 

 

Moreover, these may arise from intersection points on different edges for a split cell. 

In Figure 2.12, two alternatives of a split cell are shown with a square index of 6. 

Since the other alternatives have the same logic as the cut cell above, in other words, 

corner intersection points create the other alternatives, they are not illustrated. 

 

 

 

 

 

 

Figure 2.12 Two alternatives of a split cell having square index of 6 

 

 

All alternatives that a cell may have are shown explicitly in Appendix A. 
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2.2.2.3 Split Cells Having Two Control Volumes 

Some split cells have two separate control volumes like the cell having a split index 

of 2 in Figure 2.12. When these cells are encountered, two different cells are created, 

stored with the cell type pointers of "splitToCut1" and "splitToCut2". Each control 

volume is converted to a cut cell and all the calculations are carried out using these 

new cells [21]. The inverse relation among these cells is provided with the 

"inclusiveOfSplits" pointer. This word points the cell having those splitToCut cells. 

This relation is necessary especially for multigrid applications since coarsening is 

required which is discussed in Chapter 4 in detail. In addition, it is important to pay 

attention to order of intersection points for new cells. In Figure 2.13, the conversion 

of a split cell into two cut cells is illustrated. 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2.13 Conversion of split cell into two cut cells 

 

 

2.2.3 Geometric Adaptations 

Geometric adaptation allows high resolution grids around the input geometry. Three 

different adaptations can be applied to the uniform mesh, sequentially. First, box 

adaptation is applied to the mesh. Then, cut and split cells around the input geometry 

Sq. Index: 6 

Sp. Index: 2 
P1 P2 

Second Control Volume First Control Volume 

P3 P4 

P1 P1 

Sq. Index: 7 

Sp. Index: 1 

Sq. Index: 14 

Sp. Index: 1 

P2 P2 



36 
 

can be refined more cut and split adaptation. Finally, highly curved parts can become 

finer with curvature. The amount of these adaptations can be controlled by inputs. 

 

2.2.3.1 Box Adaptation 

In box adaptation, a rectangular box is first determined around the given geometry, 

the size of which is specified by the user. The size of box is specified with two 

inputs, boundary size factor in x and y coordinates. With this factor, x and y 

coordinates of the box can be found using the maximum and minimum coordinates 

of the whole geometry. The distance between the body and box can be found using 

the following relations; 

 "# = $%# − 1' #()*+#(,-�        (2.09) 

 ". = /%. − 10 .()*+.(,-�        (2.10) 

 

where kx and ky are boundary size factors in x and y directions, respectively, 

subscripts "max" and "min" represent the maximum and minimum coordinates 

among all bodies in the geometry, respectively. 

 

After that, the cells in this box are refined to the desired level until the desired 

resolution around the geometry is obtained. This desired level is controlled with an 

input of body division factor. Maximum body dimension, which is either on x axis or 

y axis, is multiplied by this factor. If the sizes of cells are larger than this determined 

size by the multiplication, then the cells in the box are refined. The following relation 

is used as the main criteria; 

 12 34 �#5 ≤ 7��8  "9$:;2<5;'      (2.11) 

 

where D is the domain size, l is the level of the cell with minimum size in the 

domain, n is the body division factor and dmax is expressed as; 
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 4 �# = =� �# − � �� $� �# − � ��' < $� �# − � ��'� �# − � �� $� �# − � ��' ≥ $� �# − � ��'@   (2.12) 

 

The mesh after the application of box adaptation is shown in Figure 2.14. 

 

 

Figure 2.14 Box adaptation around a two-element airfoil 

 

2.2.3.2 Cut-Split Adaptation 

Since the cells near the given geometry can be small enough to get accurate results, 

these can become finer by the use of cut-split adaptation. As it can be understood 

from the name of the adaptation, cut and split cells are considered. In addition, the 
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neighbors of these cells are also refined even if they are out cells. As a result, a 

smooth resolution around the geometry is obtained [21]. The user can specify the 

number of cycles that should be applied in this adaptation according to the desired 

level. In Figure 2.15, one cycle of cut-split adaptation is illustrated after the 

application of box adaptation to a two-element airfoil, NLR 7301. 

 

 

Figure 2.15 Cut-split adaptation around a two-element airfoil 

 

2.2.3.3 Curvature Adaptation 

Some regions of the geometry have highly curved parts. In these parts, there may be 

shear layers, vortices, wakes and similar events like these. Therefore, more resolution 

is required at these locations and this is provided by curvature adaptation.  



39 
 

 

In curvature adaptation, two neighboring cells near the wall boundary are considered. 

If the curvature formed by these geometrical parts in these cells is large enough, then 

these two cells are refined once in one cycle. The amount of curvature is determined 

by the angle between the intersection lines of the cells [22]. Since this angle is found 

by a triangle formed by three different intersection points at two cells, this angle is 

always less than 180 degrees, sometimes directing the outside of the geometry, 

sometimes inside of the geometry. Two examples illustrating these two different 

cases are shown in Figure 2.16, respectively. Note that the gray parts represent the 

geometry and T1, T2 and T3 are the corners of the triangle which is used to 

determine the curvature angle, θcurv, by cosine theorem. 

 

 

 

 

 

 

 

(a) 

 

 

    

 

 

 

(b) 

Figure 2.16 Curvature angle determination directing outside (a) and inside (b)  

of the geometry 

 

 

After determining the curvature angle, it is compared with a threshold angle which is 

set by the user. If this angle is less than this specified threshold angle, then both of 
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the cells are refined. Moreover, the cycle of the adaptation can be controlled by 

another input. Below, curvature adaptation is illustrated after applying box and cut-

split adaptations to uniform mesh around NLR7301.  

 

 

Figure 2.17 Curvature adaptation around a two-element airfoil 

 

2.2.3.4 One Level Rule 

One level rule sets the level difference between two neighborhood cells to 1 at 

maximum. This rule is provided to avoid the complexity of data structure and to 

facilitate the connectivity handling [21]. During the flux computations, 

reconstruction scheme can easily be applied to a mesh generated with the help of one 

level rule. The grid smoothness is also provided by this rule. In the geometric 
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adaptations, which are discussed above, only the single cycle of each adaptation is 

shown since this rule is not yet introduced. For more cycles of a geometric 

adaptation, the grid becomes smoother with the aid of the one level rule. In Figure 

2.18, the level difference between the uniform mesh and cells in the adapted box 

exceeds unity. The cells between box and uniform mesh are refined according to the 

one level rule. Moreover, cut cell adaptation cycle is set to 2 and curvature 

adaptation cycle is set to 4 in this example. Therefore, the effect of the one level rule 

can clearly be seen in the cells neighboring to the adapted cells and this is illustrated 

in Figure 2.19. 

 

 

Figure 2.18 One level rule 
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Figure 2.19 Closer look to the geometry to illustrate one level rule for cut-split and 

curvature adaptations 

 

 

 

2.3 QUAD GRID GENERATION 

 

For viscous flows, in order to obtain sufficient resolution in the boundary layer, quad 

grids can be used optionally. Before the generation of quad cells, the geometry is 

first puffed up by a specified amount. This puffed geometry becomes the geometry 

input for the Cartesian meshing and Cartesian cells are generated outside this puffed 

geometry. In the space lying between the original geometry and the puffed geometry, 

quad cells are created. 
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2.3.1 Boundary Layer Setting 

The boundary layer thickness is set according to Reynolds number of the flow. Using 

the following relation, thickness, δ, can be determined for laminar flows [7]. 

 A = BC�
         (2.13) 

 

For the turbulent or separated with a thicker boundary layer, this thickness is 

multiplied by a factor which is greater than 1 can be multiplied with the thickness. 

Whereas the developed code considers only laminar flows, the thickness found by 

using the relation above can also be multiplied by a factor as a safety factor. 

 

While setting the boundary layer, some corrections may be required to puff the 

geometry up correctly. Highly curved parts must be handled so that thickness has the 

same quantity at all points. In addition, negative volumes should be eliminated, 

which can be formed at some concave surfaces. After the puffing up process, quad 

cells are generated according to the Cartesian cells near the puffed geometry.  

 

2.3.1.1 Setting Puffed Geometry 

The geometry is specified with the nodal points, as mentioned earlier. While setting 

puffed geometry, line segments which are formed by two consecutive nodes are 

used. After forming a line segment, starting and end point for new line segment can 

be created by shifting the nodal points along the normal direction of the line segment 

by an amount equivalent to the determined boundary layer thickness. After forming 

all new line segments, the location of new puffed nodes are found by intersecting the 

two consecutive new line segments. Below, one can see two examples about the 

creation of new puffed node. While elongation of line segments are required to 

obtain the intersection point at the first one, shortening of new line segments is 

necessary for the second one. 
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 2.20 Creation of a new node for puffed geometry 

 

 

2.3.1.2 Handling of Highly Curved Parts 

As it can be seen in Figure 2.20, new line segments must be elongated or shortened 

in order to find the new puffed node. While, the thickness between the original line 

segment and the puffed line segment is the same, the shortened or elongated part of 
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line segment has a smaller or greater amount of thickness, respectively. Although 

this is not a problem for slightly curved parts, it leads to excessive amount of 

thickness for highly curved parts at convex regions of the geometry. This situation is 

illustrated at the trailing edge of the airfoil in Figure 2.21. 

 

 

Figure 2.21 Original and puffed geometry without handling convex parts 
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(b) 

Figure 2.22 Creation of a puffed node for highly curved part 

 

In order to get a good puffed geometry at convex parts, the node is shifted not only to 

one location but also to several other locations by the boundary layer thickness, as 

shown in Figure 2.22. The number of these locations is determined by the angle of 

the convex part. If this angle is less than 60 degrees, five different nodal points are 

created from the original node of the geometry. If the angle is between 60 and 120 

degrees, three different nodes are created. In this case, these three nodes are 

sufficient for obtaining uniform thickness at all points of the boundary layer. If the 

angle is greater than 120 degrees, one puffed node is sufficient since the curved 

region is not sharp enough. Figure 2.22 illustrates the two situations having an angle 

less than 60 degrees and between 60 and 120 degrees at the convex parts. 

 

By shifting the nodal points to several different locations for convex parts, the puffed 

geometry shown in Figure 2.21 can be modified to the one indicated in Figure 2.33. 
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Figure 2.23 Original and puffed geometry with handling convex parts 

 

 

2.3.1.3 Negative Volume Elimination 

On some concave surfaces, it is possible to have negative volumes by direct 

extrusion of the geometry. The reason is that the new line segments are formed by 

connecting wrong nodes after shifting of two consecutive line segments at a certain 

amount, resulting in negative volumes. This situation can be exemplified in Figure 

2.24. 

 

In order to eliminate negative volumes, the intersection point of the intersected line 

segments is accepted as the new puffed node. However, this may cause new negative 

volumes at the parts near to the fixed region. Therefore, elimination of negative 

volumes using this method is continued until none of the line segments intersect each 

other. After elimination process, the airfoil shown in Figure 2.24 has a good puffed 

geometry, as shown in Figure 2.25. 
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Figure 2.24 Negative volume at concave region 

 

 

Figure 2.25 Boundary layer after elimination of negative volumes 
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2.3.2 Quad Cell Generation 

After setting the boundary layer using the puffed geometry, the spacing between two 

geometries is filled with quad cells. Quad grids are connected to the Cartesian cells 

formed outside the boundary layer. With the connectivity information, a smooth 

hybrid grid can be generated. 

While generating quad grids, two inputs are used, namely row number and stretch 

factor. The number of rows in the boundary layer can be specified by user. The 

thicknesses of the quad cells are determined according to the stretch factor which is 

the ratio between quad cells at two consecutive rows. 

 

2.3.2.1 Connectivity 

After row number and thicknesses of quad cells are set, the quad cells can be 

generated with the connection to the Cartesian cells. The connection between quad 

cells and Cartesian cells are provided with two pointers, "quad1" and 

"inclusiveOfQuads". A Cartesian cell may have a quad cell and if it has, then this 

quad cell is stored at "quad1". The opposite connectivity relation is obtained by 

"inclusiveOfQuads" pointer. With this technique, the corner points are forced to 

coincide with the intersection points of the Cartesian cell. In other words, 

interpolation of the flow variables from the Cartesian cells to the quad cells is not 

necessary since fluxes can simply be calculated along the common faces. 

 

 

 

 

 

 

 

Figure 2.26 Relation between a quad cell and a Cartesian cell 

"inclusiveOfQuads" "quad1" 
Cartesian cell 

left 
top 

Quad cell 

right 

bottom  
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Sometimes, a Cartesian cell may have two faces neighboring to the puffed geometry, 

which possesses one control volume. Then, a second pointer, "quad2", is used for 

these situations. While first quad cell is stored at "quad1", "quad2" is used for the 

second one. On the contrary, it is sufficient to use one pointer, "inclusiveOfQuads", 

for the inverse relation, as described before. 

 

 

 

 

 

 

Figure 2.27 Relation between a Cartesian cell and its two quad cells 

 

 

 

Figure 2.28 Hybrid mesh around slat of a three-element airfoil 

Cartesian cell 

1. Quad cell 
2. Quad cell 

1. Quad cell 

Cartesian cell Cartesian cell 

2. Quad cell 

"quad1" "quad2" "inclusiveOfQuads" "inclusiveOfQuads" 
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After providing the connectivity between Cartesian and quad cells, the connectivity 

between quad cells is provided by the neighborhood information. As shown in Figure 

2.26, the neighbors are found according to the specified directions. Thus, all cells 

including quad and Cartesian cells are connected to each other. In Figure 2.28, one 

can see an example to hybrid mesh around a slat of a three element airfoil. 

 

It can be shown in Figure 2.28 that the size of the quad cells is very small near the 

smaller Cartesian cells. Although cut-split and curvature adaptations are applied only 

to Cartesian mesh, since smaller cells lead to smaller quad cells, quad cells become 

automatically finer at the highly curved regions. 

 

It is also important to note that the quad cells are not refined directly during the 

solution adaptation, which is discussed in Chapter 3.7. If a region where a quad cell 

exists needs to be refined through solution adaptation, the inclusive Cartesian cell of 

this quad cell is refined at first. Then, quad cells of the Cartesian cell are deleted and 

new quads are regenerated according to children of the refined Cartesian cell. As a 

result, those regions become finer without refining quad cells. However, with 

solution adaptation, the number of rows is not changed. 
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CHAPTER 3 

 

NUMERICAL SOLUTION 

 

 

In this chapter, first of all, the governing equations are explained in detail. While 

these equations are presented, two dimensional Navier-Stokes equations in integral 

form are introduced. These equations are then non-dimensionalized with suitable 

reference values. Finally, wall and far-field boundary conditions are explained for 

both inviscid and viscous flows. 

 

Secondly, the discretization of these governing equations is discussed. After spatial 

discretization is introduced, the temporal discretization is told by using multistage 

time stepping. Time step calculations are explained later while solving inviscid and 

viscous flows. Furthermore, a cut-back procedure for CFL number is described in 

order to avoid instability in earlier iterations of the execution of the code. 

 

Thirdly, inviscid flux computations are mentioned. Flux vector splitting methods like 

AUSM and its derivatives are discussed. Furthermore, approximate Riemann solver 

of Roe is described. 

 

Fourthly, reconstruction of the primitive flow variables are explained using the least 

squares method. To get more accurate result, this technique is used in some of the 

analyses. However, computational time increases as expected. In addition to this, to 

get more stable results, gradient limiting procedure is introduced. 

 

Fifthly, viscous flux computations are discussed. One reconstruction technique is 

used while calculating viscous fluxes. In this viscous reconstruction technique, 
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viscous flux is computed using both flow variables and gradients obtained by 

inviscid reconstruction at cell centroids. 

 

Sixthly, how to calculate the coefficients of pressure and skin friction are presented. 

These coefficients are used to compare the results with the available data in the 

literature.  

 

Finally, solution adaptation is discussed in detail. With this adaptation, the critical 

grids in the domain become finer so that more accurate solutions can be obtained. 

 

 

3.1 GOVERNING EQUATIONS 

 

Navier-Stokes equations are the governing equations for the flow around bodies. 

These equations can be in integral form or differential form. These equations are 

derived from the conservation of mass, momentum and energy. In the present code, 

non-dimensionalized Navier-Stokes equations are used in integral form, with 

appropriate wall and far-field boundary conditions. 

 

 

3.1.1 Two-Dimensional Governing Equations in Integral Form 

The general compressible integral form of these equations can be represented as; 

 DD	 E F dHI + E $J ∙ L' dM =N E $O ∙ L' dMN       (3.01) 

 

In this equation, Q contains the vector of conserved variables of density, momentum 

and total energy. F is the inviscid flux vector while G is the viscous flux vector. n 

represents the unit vector in the normal direction to the differential area, dS. In two-

dimensional Cartesian coordinates, the conserved variables vector, Q, inviscid flux 

vector, F and viscous flux vector, G can be represented as below. 
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P = Q RRSRTRUV          (3.02) 

 

J = WXX
Y RS Z +  RT [$RS� + \' Z + RST [RST Z +  $RT� + \' [ RS] Z +  \T] [ _̂_̀        (3.03) 

 

a = WX
XY bc## d + c.# ec#. d + c.. e $Sc## + Tc#.  −  f#'d + $Sc.# + Tc..  −  f.' e_̂_̀   (3.04) 

 

Since the unit normal vector can be defined using angle θ between the unit vector 

and x-axis, the dot products of inviscid flux vector and viscous flux vector with the 

unit normal can be written as; 

 

g ∙ h = WXX
Y RS i9jk +  RT j<5k$RS� + \' i9jk + RST j<5kRST i9jk +  $RT� + \' j<5k RS] i9jk +  RT] j<5k _̂_̀     (3.05) 

 

a ∙ h = WX
XY 0c## i9jk +  c.# j<5kc#. i9jk +  c.. j<5k$Sc## + Tc#.  −  f#' i9jk +  $Sc.# + Tc..  −  f.' j<5k_̂_̀ (3.06) 

 

Descriptions of the variables used in Equations (3.02) to (3.05) are as follows. ρ is 

the fluid density, u and v are the x and y components of the fluid velocity, 

respectively. p represents the fluid static pressure, E is the specific total energy while 

H is the specific total enthalpy. τxx, τxy, τyx, and τyy are the stresses. Finally, qx and qy 

represent the heat flux terms in x and y directions, respectively. 
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In order to be capable of solving the above equations, some additional relations are 

required. These relations are formed using thermodynamic relations and the perfect 

gas assumption. Following equations are used to close the system of equations. 

 \ = R:m         (3.07) 

 ; = inm         (3.08) 

 : = i�  −  in         (3.09) 

 o = �p�q          (3.10) 

 

U = ; + rstns�          (3.11) 

 

In the above equations, R is the specific gas constant, cp is the specific heat for a 

constant pressure, cv is the specific heat for a constant volume, e is the specific 

internal energy, T is temperature and γ represents the specific heat ratio. Using these 

equations, specific total enthalpy and static fluid pressure can be expressed as; 

 ] = U + �u         (3.12) 

 

\ = R$o − 1' 3RU − u$rstns'� 8       (3.13) 

 

Since the fluids used in this code are restricted to the Newtonian fluids, the viscous 

stresses are related to the laminar dynamic viscosity, µ, and the velocity gradients 

through the following relations. 

 c## = − �v w 3xrx# + xnx.8 + 2w xrx#      (3.14) 

 c.. = − �v w 3xrx# + xnx.8 + 2w xnx.      (3.15) 
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c#. = c.# = w 3xrx. + xnx#8       (3.16) 

 

In the above equations, since the fluid used in the analyses is air, laminar dynamic 

viscosity is calculated using Sutherland's law [25], which the viscosity is accurately 

related to the temperature. 

 

zz{ = 3 ||{8v �} 3|{t~~�.�|t~~�.� 8       (3.17) 

 

In this equation, µ∞ is the reference dynamic viscosity at the temperature T∞ which is 

taken as 273.15 K. In addition to these, the heat flux components are calculated using 

Fourier's heat conduction law 

 f# = −% x|x#         (3.18) 

f. = −% x|x.         (3.19) 

 

where k is the coefficient of thermal conductivity. 

 

 

3.1.2 Non-Dimensionalization 

The non-dimensionalization is advantageous since it prevents numerical errors 

resulting from the disparity in scale of the conserved variables [26]. Moreover, it 

decreases the number of parameters to be handled and ease the handling of the 

equations. In the present code, the governing equations are made non-dimensional 

with the suitable reference values as follows; 

 �� = #�{  �� = .�{  �� = 	 �{�{      

S� = r�{  T� = nn{  \� = ��{s   (3.23)  

R� = uu{  U� = ��{s  w� = zz{    
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where superscript (') denotes non-dimensional variable. With the use of non-

dimensional Reynolds number, the governing equations can be made non-

dimensional as shown below; 

 

E xF�x	� 4��I + E $g� ∙ h�'4M� =N �{�
{ E $a� ∙ h�'4M�N     (3.24) 

 

where Re∞ is the Reynolds number based on fluid velocity, V, and reference length, 

L∞, 

 :;� = u{I�{z{          (3.25) 

 

and M∞ is the free stream Mach number. 

 

�� = I�{ = Crstns�{         (3.26) 

 

Non-dimensional conserved variables and dot products of inviscid flux vector and 

viscous flux vector with the unit normal vector can be explicitly written as; 

 

F� = WXX
Y R�R�S�R�T�R�U�_̂_̀         (3.27) 

 

g� ∙ h� =
WX
XX
Y R�S� i9jk + R�T� j<5k$R�S�� + \�' i9jk + R�S�T� j<5kR�S�T� i9jk +  $R�T�� + \�' j<5kR�S� 3U� + ��u�8  i9jk +  \�T� 3U� + ��u�8  j<5k_̂_

_̀
   (3.28) 

 

a� ∙ h� = WXX
XY 0c##� i9jk +  c.#� j<5kc#.� i9jk +  c..� j<5k /S�c##� + T�c#.�  − f#�0 i9jk +  $S�c.#� + T�c..�  − f.�' j<5k_̂__̀  (3.29) 
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As it can be seen, non-dimensionalized inviscid flux vector is not different than the 

dimensional one. For inviscid solutions where the viscous flux vector is zero, there is 

no need to use any additional terms. However, the initial guesses should be 

appropriate.  

 

As non-dimensional free-stream values, density is chosen as 1. Static pressure is 

chosen as 1/γ in order to equalize speed of sound to 1. With these initial guesses, it is 

not required to add new terms to non-dimensionalized equations [21]. The initial 

guesses are given below. The subscript "in" denotes the free-stream values. 

 

R��� = 1  \��� = 1 o}   i��� = ��,-��u,-� = 1  (3.30) 

 

When considering viscous terms, non-dimensional stresses are very similar to 

dimensional ones. The ratio of the Mach number to Reynolds number is required for 

the conserved equations. However, heat flux terms are different than the dimensional 

ones since thermal conductivity is non-dimensionalized with another non-

dimensional parameter, i.e. Prandtl number. Prandtl number can be defined as; 

 �� = z�p�          (3.31) 

 

With the use of Prandtl number and non-dimensional variables, heat flux components 

are made non-dimensional as shown below. Since gradient of pressure is calculated 

instead of temperature gradient in the code, the equations are revised according to 

this gradient.  

 

f#� = − �$�+~'�� x��� u�� �x#�        (3.32) 

 

f.� = − �$�+~'�� x��� u�� �x.�        (3.33) 
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From now on, superscript (') is not used for simplicity. The variables without any 

superscripts denote non-dimensional variables unless it is particularly mentioned. 

 

 

3.1.3 Boundary Conditions 

There are two types of boundary conditions for external flow. These are far-field 

boundary conditions and wall boundary conditions. 

 

3.1.3.1 Far-Field Boundary Conditions 

Far-field boundary conditions are used for the outermost cells in the domain. These 

conditions are applied at the faces not having any neighbors. Since in the analyses, 

far-field boundary is located at least 18 chords ahead of the analyzed airfoil, 

boundary conditions here are simply calculated using free-stream values, as shown 

below. These free-stream values are equated to the ghost cell which is created as a 

neighbor to the face having no real neighbor. Moreover, this ghost cell has the same 

size as the considered cell. 

 

 R��
�	 = R��,    \��
�	 = \��   i��
�	 = i��   (3.34) 

 

Using these conditions, velocity components and specific total energy for far-field 

faces can be computed as; 

 S��
�	 = ��i9j/k���
0       (3.35) 

 T��
�	 = ��j<5/k���
0       (3.36) 

 

U��
�	 = �,-u,-$�+~' + r�����stn�����s�       (3.37) 

 

In the figure below, ghost cell of an outermost cell can be seen. 



60 
 

 

Figure 3.1 Far-field boundary conditions 

 

 

3.1.3.2 Wall Boundary Conditions 

Wall boundary conditions are used for the cells near the wall boundary. These cells 

are cut and split cells for inviscid flows, while they can be quad cells or cut and split 

cells for viscous flows depending on quad cell usage. The flux through the interface 

between the wall and fluid is calculated by using the ghost cell technique. The 

created ghost cell has same size as the real cell. Moreover, both for inviscid and 

viscous flows, pressure and density are taken as the same as the ones in the real cell. 

The velocity components on the interface are changed according to the flow type. 

 

While solving inviscid flows, the velocity components at the interface of the real cell 

are found by using the normal angle. Then, the tangential velocity component on the 

interface of the ghost cell is taken as the same as the one in the real cell, whereas the 

normal velocity component has the same size as the one in the real cell, but it is in 

the opposite direction. With these velocity components, the cell-centered components 

of the velocity can easily be calculated using the face normal angle. 

 

 

 

 

 

 

Far-Field Boundary 

Ghost Cell 

Real Cell 

ρghost, Pghost, 

cghost, ughost, 

vghost, Eghost 

ρ, P, 
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Figure 3.2 Wall boundary conditions for inviscid flow 

 

 

For viscous flows, interface velocity components of the ghost cell should be reversed 

in order to provide no-slip condition. In addition to the reversed normal velocity of 

inviscid flow, the tangential velocity of the ghost cell should also be reverse of the 

one in the real cell. Furthermore, constant wall temperature is used while computing 

heat flux terms. In other words, temperature is taken as the same as the one in the 

real cell.  

 

Figure 3.3 Wall boundary conditions for viscous flow 

Real Cell 

Real Cell 
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3.2 SPATIAL AND TEMPORAL DISCRETIZATION 

 

After obtaining non-dimensional Navier-Stokes equations with appropriate boundary 

conditions, some discretization in space and time should be done in order to be 

capable of solving these equations. Finite volume method is used when discretizing 

these equations spatially. Although steady flows are considered, there is a need for 

discretizing time derivative of conserved variables in time in order to equalize it to 

the residuals. Furthermore, time step calculations should be done accurately by 

considering the flow type; inviscid or viscous. In addition to these, a cut-back 

procedure for Courant number is introduced in order to avoid some start-up stability 

problems that may exist during the execution of the code. 

 

 

3.2.1 Spatial Discretization 

By using finite volume method, integral form of Navier-Stokes equation can be 

solved easily. Domain is divided into cells, firstly. These cells become the control 

volumes that do not changed in time. The conserved variables are stored at the cell 

centroids and it can be assumed that variables of a cell remain the same throughout 

the whole cell. In addition to this, integrals of inviscid and viscous fluxes can be 

written as the sum of the fluxes through each face of a cell. Using these assumptions, 

Equation (3.24) can be written in two-dimensions as; 

 � xFx	 + � �3g − �{�
{ a8 ∙ h � ∆j���
� = 0     (3.38) 

 

where A is the area of the cell and ∆s is the edge length of the face. Using the above 

equation, residuals of the cell can be defined as; 

 :;j$F' = � �3g − �{�
{ a8 ∙ h � ∆j���
�      (3.39) 

 

If one combine Equation (3.38) and (3.39), spatially discretized governing equation 

can be rewritten in terms of residuals. 
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xFx	 = − ~� :;j$F'        (3.40) 

 

As a result, spatially discretized governing equations in compact form are obtained in 

terms of residuals, area of the cell and time derivative of the conserved variables. 

 

 

3.2.2 Temporal Discretization 

After the spatial discretization, time derivative of the conserved variables should also 

be discretized. This discretization is called temporal discretization. Although the 

code solves steady-state flow, temporal discretization is necessary in order to obtain 

zero residuals by iterative method. Time derivative can be discretized as the 

difference of the conserved variables of n+1'th time step and n'th time step divided 

by specified time step. 

 

xFx	 = F-��+F-∆	          (3.41) 

 

This discretized equation can simply be equalized to the residuals of the conserved 

variables divided by the cell area by using Equation (3.40). While equalizing, two 

different schemes can be used. If the residuals are calculated using the n'th time step, 

then only unknown will be the conserved variables at the (n+1)'th time step. This is 

called explicit time scheme.  

 

F-��+F-∆	 = − ~� :;j$F�'       (3.42) 

 

 

If it is desired to use residuals at the (n+1)'th time step, then unknowns are placed at 

both sides of the equations. This is called implicit time scheme. 

 

F-��+F-∆	 = − ~� :;j$F�t~'       (3.43) 
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In the implicit scheme, the residuals at the (n+1)'th time step are found using Taylor 

series expansion by neglecting of the higher order derivatives. 

 :;j$F�t~' = :;j$F�' + x�
�$F-'xF $F�t~ − F�'    (3.44) 

 

In the developed solver, explicit time scheme is used. 

 

3.2.2.1 Multistage Time Stepping 

The discretized equations are solved using multistage time stepping method. In order 

to use this method, initial guesses should be made. As initial guesses, conserved 

variables of all cells are taken as the free stream values. Then, using multistage time 

stepping at each iteration, residuals are found. The general m-stage scheme is defined 

as; 

 F$�' = F�           

        F$�' = F$�' − � � ¡	� :;j/F$�+~'0               % = 1, … , ¤   (3.45) 

 F�t~ = F$ '          

  

where υ is the Courant number (CFL Number), αk is the stage coefficient at the k'th 

stage. 

 

In the developed code, three, four and five stage time stepping can be used with the 

first order and second order scheme. In analyses, generally three stage time stepping 

is used. Below, one can see the CFL numbers and stage coefficients according to the 

stage number and scheme type [38]. 
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Table 3.1 CFL numbers and stage coefficients  

for the first order scheme 

stages 
υ α1 α2 α3 α4 α5 

3 1.5 0.1481 0.4000 1.0000   

4 2.0 0.0833 0.2069 0.4265 1.0000  

5 2.5 0.0533 0.1263 0.2375 0.4414 1.0000 

 

 

Table 3.2 CFL numbers and stage coefficients  

for the second order scheme 

stages 
υ α1 α2 α3 α4 α5 

3 0.6936 0.1918 0.4929 1.0000   

4 0.9214 0.1084 0.2602 0.5052 1.0000  

5 1.1508 0.0695 0.1602 0.2898 0.5060 1.0000 

 

 

 

3.2.3 Time Step Calculations 

Calculation of the time step is very important to obtain fast and stable solutions. It 

depends on the cell size and the flow properties directly. If it is chosen very small, 

then solution converges very slowly. On the contrary, if it is taken very large, then 

solution may diverge easily. In addition to this, calculation method is significant in 
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order to determine the appropriate time step. There are two methods for the 

calculation of time steps, namely global and local time stepping methods. 

 

In the global time stepping method, all cells in the domain should be examined and 

minimum time step must be used for all cells. It is necessary while solving unsteady 

flows in order to obtain logical results at any time step. For steady flows, this method 

is impractical since only the final solution is considerable, in other words, the 

solution at any time step is not important. Moreover, with this method, convergence 

time significantly increases. 

 

In the local time stepping method, every cell has its own time step. In order to solve 

steady flows, this method is very useful. While the larger cells have greater time 

steps, the smaller cells have lower time steps. This brings faster convergence to 

larger cells. Since the solutions at the mid-stages are not required to be accurate, this 

method provides an important advantage for the convergence time. Moreover, in the 

code, local time stepping method is used while dealing with steady flows. It is very 

advantageous since Cartesian mesh has large cell size differences. It is important to 

note that the time step for each cell is computed at every iteration since flow 

properties on which the time step calculation depends are changing from one 

iteration to the other. 

 

Two different calculations are used for the local time stepping method. First one is 

used when dealing with inviscid flows, while second one is introduced when dealing 

with viscous flows. In addition to these, a CFL cut-back procedure is used in order to 

eliminate stability problems especially in earlier iterations of the solution if any.  

 

3.2.3.1 Inviscid Time Step Computation 

Local time step of each cell can be computed using the relation below for two-

dimensional inviscid problems [27]. 

 ∆� = �¥*t¥¦         (3.46) 
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Here, φx and φy denotes the convective spectral radii and the absolute values of the 

projection of edges, Sx and Sy, in x and y directions, respectively, are used while 

computing them. 

 §# = ~� $|S| + i' � |M#|���
�        (3.47) 

 §. = ~� $|T| + i' � ©M.©���
�        (3.48) 

 

3.2.3.2 Viscous Time Step Computation 

In order to avoid stability problems in viscous flows, both convective and diffusive 

characteristics of the flow must be considered. Thus, the local time step for each cell 

can be calculated as; 

 ∆� = ∆	ª ∆	q∆	ªt∆	q         (3.49) 

 

where ∆tc is the convective time step and ∆tv is the viscous time step [28]. 

Convective time step is calculated similar to the inviscid time step calculation in the 

previous section. While computing viscous time step, following relation is used. 

 ∆�n = «n �¬q         (3.50) 

 

In this relation, Kv is an empirically determined coefficient which considers the 

relative importance of viscous effects for the final time step expression. It is chosen 

as 0.25 for most cases. For low Reynolds number flows, since viscous effects are 

more dominant, this coefficient may be increased to get more stable results, when 

there are stability problems. The other variable, λv, represents the maximum 

eigenvalue of the diffusive operator of the Navier-Stokes equations and it is a 

discretized and averaged quantity about the boundary of the control volume and 

expressed as: 

 



68 
 

­n = � �{�
 ®¯ � � zu Δj����
�        (3.51) 

 

where dynamic viscosity and density are computed at the face boundary and ∆s 

denotes the face length. 

 

3.2.3.3 CFL Cut-Back Procedure  

Sometimes, initial guesses at the critical locations can cause negative pressure and 

temperatures at the early iterations of the execution. This problem can be solved by 

decreasing the CFL number. However, this increases the solution time considerably. 

To avoid this convergence time increase and also stability problems at the start-up, a 

CFL cut-back procedure may be applied, which limits the maximum relative change 

in density and pressure per time step [29].  

 

In this procedure, first, the maximum relative change in conserved variables of a cell 

is found using residuals at the beginning of each time step. 

 

Δ Q RRSRTRUV = ¡±² Q :;j$R':;j$RS':;j$RT':;j$RU'V       (3.52) 

 

The relative change in pressure can be calculated using the relative changes of 

specific total energy, density and velocity components 

 

Δ\ = $o − 1' �Δ$RU' − /S Δ$ρS' + T Δ$RT'0 + ΔR rstns� �  (3.53) 

 

The relative change in pressure and density can then be written as: 

 ´u = ¡uu          (3.54) 

 



69 
 

´� = ¡µ�          (3.55) 

 

The CFL number may be cut back by making maximum change per time step in 

either the density or pressure to be less than some specified tolerance, εcut. 

 ��r	 = ¶ª·�¸¹º $¶»,¶p'        (3.56) 

 

Then the new CFL number can be obtained by taking the minimum of the original 

CFL number and cut-back CFL number. 

 ��
¼ = min $�, ��r	'        (3.57) 

 

While finding cut-back CFL number, specific tolerance is taken as 0.1. It may be 

thought that convergence time is increased with this procedure. However, it is 

observed that CFL number is cut back at the very early stages of the run. After these 

early stages, CFL number quickly increases back to the maximum allowed. 

 

 

 

3.3 INVISCID FLUX CALCULATIONS 

 

Inviscid flux calculations play very important role while analyzing a problem. In this 

study, four different techniques are used. One Riemann solver and three flux-vector 

splitting methods are used. As Riemann solver, approximate Riemann solver of Roe 

is used. On the other hand, Liou's Advection Upstream Splitting Method, in short, 

AUSM, and two derivatives of it, namely AUSMV and AUSMD are embedded into 

the code.  

 

In these methods, it is required to interpolate the variables of the cell ,whose flux 

value is calculated, to the midpoint of each face. In addition, the neighboring cell 

values should also be interpolated to the values at the face. These cells are denoted as 
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left and right cells, respectively. After the variables are moved accurately to the 

interface of the left and right cells, the inviscid flux vector can be calculated by using 

one technique described below in detail. Finally, found face flux values according to 

the face direction must be transformed to the Cartesian coordinates. 

 

Using the rotational invariance of the governing equations as shown in Equation 

(3.58), one can find the conserved quantities and flux vectors in the normal and 

tangential directions to the face [24]. 

 g ∙ h = À+~g$ÀF' = À+~g/F0      (3.58) 

 

In the above equation, the overbar symbol " ̶ " denotes that the quantity or the vector 

is transformed to the face direction. In addition, T and T-1 are the transformation 

matrix and its inverse respectively, which can be written in explicit form by using the 

face normal angle, θ, as; 

 

À = Q1 0 0 00 cosk sink 00 −sink cosk 00 0 0 1V       (3.59) 

 

À+~ = Q1 0 0 00 cosk −sink 00 sink cosk 00 0 0 1V      (3.60) 

 

As a result, transformed conserved quantities and transformed inviscid flux vector 

become; 

 

F = Q RRSRT\UV         (3.61) 
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g/F0 = WXX
XY RSRS� + \RST\S] _̂__̀        (3.62) 

 

where S and T are the normal and tangential velocities to the face direction and can 

be expressed as; 

 S = S cos k + T sin k       (3.63) 

 T = T cos k − S sin k       (3.64) 

 

The calculations for inviscid flux should be done according to the transformed 

quantities and vectors using a technique available. Then, the found vector must be 

transformed back to the Cartesian coordinates as shown below; 

 À+~g/F0 = g ∙ h        (3.65) 

 

 

3.3.1 Approximate Riemann Solver Of Roe 

In the approximate Riemann solver of Roe [30], the following equation is used in 

general. 

 gÃ$0' = ~� 3gÃ/FÄ0 + gÃ/FÅ08 − ~� � |Æ�|Ç��ΔÈ���É~   % = 1, … ,4 (3.66) 

 

where subscript L denotes the left cell, in other words, the cell whose flux will be 

calculated, subscript R denotes the right cell, i.e. neighboring cell, λ is the eigenvalue 

1x4 matrix, r is the right eigenvector 4x4 matrix and ∆v is the wave strength 1x4 

matrix, k denotes the row number of the flux vector. 

 

The eigenvalue, the right eigenvector and wave strength matrices are calculated by 

using Roe's averaged quantities. These quantities are given below. 
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R�� = ËR�R�         (3.67) 

 

S�� = rÌËuÌtrÍËuÍËuÌtËuÍ          (3.68) 

 

T�� = nÌËuÌtnÍËuÍËuÌtËuÍ         (3.69) 

 

]�� = ÎÌËuÌtÎÍËuÍËuÌtËuÍ         (3.70) 

 

i�� = �$o − 1' 3]�� − rÍÌstnÍÌs� 8      (3.71) 

 

Using these averaged quantities, vectors at the right hand side of Equation (3.66) can 

be calculated using the following relations, 

 

Æ = QS�� − i��S��S��S�� + i��
V        (3.72) 

 

Ç =
WXX
XY 1 1 0 1S�� − i�� S�� 0 S�� + i��T�� T�� 1 T��]�� − S��i�� rÍÌstnÍÌs� T�� ]�� + S��i�� _̂__̀   (3.73) 

 

∆È =
WX
XXX
Y∆�+uÍÌ�ÍÌ∆r��ÍÌs∆R − ∆��ÍÌsR��∆T∆�tuÍÌ�ÍÌ∆r��ÍÌs _̂__

_̀
         (3.74) 

 

where  
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(a) ∆R = R� − R�  (b) ∆� = �� − ��     

 (3.75) 

(c) ∆S = S� − S�  (d) ∆T = T� − T�     

  

 

      

3.3.2 Liou's Advection Upstream Splitting Method (AUSM) 

The AUSM scheme [31], [21], [22] works by splitting the advection and pressure 

terms in the flux of momentum while calculating face flux as; 

 g$0' = ~� Ï�~/�$Ñ� + Ñ�' − ©�~/�©$Ñ� − Ñ�'Ò + \~/�   (3.76) 

 

where M1/2 is the split Mach number, p 1/2 is the split pressure and Ψ is the flux vector 

which is obtained by removing the pressure term. 

 

Flux vector can then be expressed as; 

 

Ó = Q RiRiSRiTRiUV         (3.77) 

 

The split Mach number can be written as follows; 

 �~/� = ��t + ��+        (3.78) 

 

where ��t is the positive part of Mach number using normal component of velocity 

in the face direction of the left state, and ��+ is the negative part of Mach number 

using normal component of velocity in the face direction of the right state. They can 

be expressed as; 
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��t = Ô ~� /�� + 10�
~� /�� + ©��©0@  ©��© ≤ 1©��© > 1     (3.79) 

 

��+ = Ô− ~� /�� − 10�
~� /�� − ©��©0@ ©��© ≤ 1©��© > 1     (3.80) 

 

where ��  and ��  represents left state and right state Mach number based on 

transformed velocity. 

 �� = rÌ�Ì  and �� = rÍ�Í       (3.81) 

 

The split pressure can be written as follows; 

 

Ö×/Ø = Q 0\�t + \�+00 V        (3.82) 

 

where  

\�t = \��� Ô2 − ��1 ��} @  ©��© ≤ 1©��© > 1     (3.83) 

 

\�+ = \��� Ô−2 − ��1 ��} @ ©��© ≤ 1©��© > 1     (3.84) 

 

 

 

3.3.3 AUSMD Method 

AUSMD method [32], [22] is a derivative of AUSM method. This is referred to as 

AUSMD since the numerical flux is calculated similar to the finite difference 
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splitting scheme's (FDS). In this method, splitting of mass flux is used instead of 

mach number splitting as well as the flux vector is modified. In addition to this, 

pressure is also split similar to AUSM method. In this scheme, the interface flux is 

calculated using the following relation; 

 g$0' = ~� Ï$RÙ'~/�$Ñ� + Ñ�' − ©$RÙ'~/�©$Ñ� − Ñ�'Ò + \~/�  (3.85) 

 

where $RÙ'~/� is the splitted mass flux based on splitted velocity defined according 

to left and right values so that the best resolution can be obtained for shock 

discontinuity. φ is the modified flux vector and p 1/2 is the split pressure. 

 

The modified flux vector is defined as; 

 

Ó = Q1ST]V         (3.86) 

 

The mass flux can be expressed in split form as follows; 

 $RÙ'~/� = Ù�tR� + Ù�+R�       (3.87) 

 

where 

 

Ù�t = ÔÚ� �$rÌt�()*'s��()* � + $1 − Ú�' �rÌt|rÌ|� �
rÌt|rÌ|�

@  |S�| ≤ i �#|S�| > i �#  (3.88) 

 

Ù�+ = ÔÚ� �− $rÍ+�()*'s��()* � + $1 − Ú�' �rÍ+|rÍ|� �
rÍ+|rÍ|�

@ |S�| ≤ i �#|S�| > i �#  (3.89) 

 

In these relations, αL, αR and maximum interface sound speed are defined as follows; 
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Ú� = �3�Ì uÌ} 83�Ì uÌ} 8t3�Í uÍ} 8        (3.90) 

 

Ú� = �3�Í uÍ} 83�Ì uÌ} 8t3�Í uÍ} 8        (3.91) 

 i �# = ¤Û�$i� , i�'        (3.92) 

 

The split pressure can be written as follows; 

 

Ö×/Ø = Q 0\�t + \�+00 V        (3.93) 

 

where  

\�t = \� Ô$rÌt�()*'s��()*s 32 − rÌ�()*8
rÌt|rÌ|�rÌ

@  
|S�| ≤ i �#|S�| > i �#   (3.94) 

 

\�+ = \� Ô$rÍ+�()*'s��()*s 32 + rÍ�()*8
rÍ+|rÍ|�rÍ

@  
|S�| ≤ i �#|S�| > i �#   (3.95) 

 

 

3.3.4 AUSMV Method 

AUSMV method [32], [22] is another derivative of AUSM scheme referring to finite 

volume splitting (FVS). This scheme is very similar to the AUSMD except normal 

momentum calculations and splitting computations of pressure and velocity. 

 

Equation (3.85) is used for the calculation of interface flux, again. However, in the 

second column of face flux vector, instead of face flux calculation terms without 

pressure, a new normal momentum calculation is used as follows; 



77 
 

~� Ï$RÙ'~/�$Ñ� + Ñ�' − ©$RÙ'~/�©$Ñ� − Ñ�'Ò ⇒ $RÙ�'~/�  (3.96) 

 

where normal momentum flux at the interface, $RÙ�'~/�, can be expressed as; 

 $RÙ�'~/� = Ù�tR�S� + Ù�+R�S�      (3.97) 

 

In this scheme, the velocity can be split as; 

 

Ù�t = Ô@$rÌt�Ì's��Ì @
rÌt|rÌ|�

@   
|S�| ≤ i�|S�| > i�    (3.98) 

 

Ù�+ = Ô@− $rÍ+�Í's��Í @
rÍ+|rÍ|�

@   
|S�| ≤ i�|S�| > i�    (3.99) 

 

For the interface split pressure, Equation (3.93) can be used with the new split 

computations as shown below; 

 

\�t = \�Ù�t Ô@ ~�Ì 32 − rÌ�Ì8@
~rÌ

@  
|S�| ≤ i�|S�| > i�    (3.100) 

 

\�+ = \�Ù�+ Ô@ ~�Ì 3−2 − rÍ�Í 8@
~rÍ

@  
|S�| ≤ i�|S�| > i�    (3.101) 

 

 

3.4 RECONSTRUCTION 

 

In the code, cell centered approach is used. In other words, the primitive and 

conserved flow variables are calculated and stored at the centroids of each cell. For 

the calculation of inviscid fluxes, primitive flow variables should be estimated at 
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both sides of the interface between two cells. As mentioned before, the cell whose 

flux will be calculated is referred to as the left state, while neighboring cell is named 

as the right state.  

 

As estimation methods of variables at the interface, two schemes can be used, 

namely first order and second order schemes. In first order schemes, the flow 

variables at the cell centroids are simply taken as the flow variables at the face for 

both left and right states. In second order schemes, the cell-centered flow variables 

should be reconstructed in order to use them at the interface. With the reconstruction, 

one may obtain more accurate results whereas the solution time considerably 

increases since gradients must be calculated for all cells at each iteration.  

 

As reconstruction scheme, least squares reconstruction method is used in order to 

calculate the gradients of flow variables at the cell centroids. After gradients are 

found, they are used to estimate the primitive flow variables at the interfaces of the 

cells. 

 

 

3.4.1 Least Squares Reconstruction 

There are two popular reconstruction schemes available in the literature. The least 

squares reconstruction method [7] is used in the developed code since it gives more 

accurate results compared to the second scheme, path integral method [33]. The 

variables at a certain point in a cell can be calculated using primitive variables and 

their gradients at the cell centroids as shown below; 

 Ý$�, �' = Ý�
ÞÞ + �Ý�# $� − ��' + �Ý�. $� − ��'    (3.102) 

 

where subscript 'cell' denotes the centroid of the cell whose gradients are sought, q is 

the vector of primitive variables and can be expressed as; 
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Ý = QRST�V         (3.103) 

 

The gradients of primitive variables can be calculated using the primitive variables at 

the cell centroids of the cell whose gradients are calculated and neighbor cells. In the 

following relations, subscript 'n' denotes the neighbor cells. 

 �Ý�# = ~∆ Ï1.. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ' − 1#. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ'�� Ò 
 (3.104) 

 �Ý�. = ~∆ Ï1#. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ' − 1## � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ'�� Ò 
 (3.105) 

 

where 

 1## = � $�� − ��
ÞÞ'��        (3.106) 

 1.. = � $�� − ��
ÞÞ'��        (3.107) 

 1#. = � $�� − ��
ÞÞ'� $�� − ��
ÞÞ'      (3.108) 

 ∆= 1##1.. − 1#.�        (3.109) 

 

 

3.4.2 Gradient Limiting 

In order to avoid numerical oscillations at steep gradients which may lead to stability 

problems, a limiter can be used for the gradients. With the use of limiter, calculation 

of primitive variables at a certain point in the cell may be modified as follows; 
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Ý$�, �' = Ý�
ÞÞ + ß ��Ý�# $� − ��' + �Ý�. $� − ��'�    (3.110) 

 

where ß is the limiter vector which is a 1x4 matrix for gradients of four primitive 

variables. The limiter value must be between 0 and 1. In order to determine its value, 

one should need the maximum and minimum quantities of primitive variables among 

the considered cell and its neighbors, 

 Ý �# = max$Ý�
ÞÞ, Ý�'         5 = 1, … , ¤	� 5;<âℎä9�  (3.111) Ý �� = min$Ý�
ÞÞ, Ý�'        

  

where m is the number of neighbors of the cell under consideration. To compute 

exact value of the limiter, it is also necessary to know the maximum and minimum 

quantities of primitive variables in the cell. For outside cells, these points are usually 

in the corners. However, for cut and split cells, these points may also be at the 

intersection locations. For each point in a cell, the limiter value is calculated as 

shown below [34],  

 

å� =
æçè
çé1                                          Ý� = Ý�
ÞÞmin 31, /Ý(,-+Ýªê��0$Ý,+Ýªê��' 8       Ý� < Ý�
ÞÞmin 31, $Ý()*+Ýªê��'$Ý,+Ýªê��' 8       Ý� > Ý�
ÞÞ

@  < = 1, … , %  (3.112) 

 

where k is the number of points which are examined in the cell to determine 

maximum and minimum quantities.  

 

After computing all limiter values for all points, the minimum of all is chosen as the 

exact limiter value, 

 å = min $å~, å�, … , å�'       (3.113) 
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For all primitive variables, the same procedure is applied and the limiter vector is 

obtained. 

 

 

3.5 VISCOUS FLUX CALCULATIONS 

 

The viscous flux at a face, denoted as G, can be expressed as a function of flow 

variables at the face and their gradients, 

 a = 2$Ý� , ∇Ý�'        (3.114) 

 

The flow variables at the face can be obtained through the averages of left and right 

state flow variables at the cell centroids. However, for calculating face gradients of 

these variables, different methods are available, some of which gives fast results but 

less accurate, some of which gives more accurate but slower results. 

 

3.5.1 Reconstruction for Viscous Flux 

The face gradients can be obtained by using cell-centered gradients computed by 

inviscid reconstruction and cell-centered flow variables. By adding gradients of 

inviscid reconstruction to the viscous flux computation, data further away from the 

interface are considered so that more accurate results may be acquired [7]. 

 

Along the direction between left and right cells of the interface, the derivative of a 

variable is obtained through transforming the gradients into x and y coordinates, 

which are calculated by averaging the gradients computed by inviscid reconstruction 

at cell centroids. 

 

�Ý�	 = ~� =ì3�Ý�#8� cos k	 + 3�Ý�.8� sin k	í + ì@3�Ý�#8� cos k	 + 3�Ý�.8� j<5 k	 @íî (3.118) 

 

In the above equation, t is the unit vector along the interface, n is the unit vector 

along the direction between left and right cells and k	 is the angle between vector t 
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and x axis. In Figure 3.4, these vectors are illustrated for the interface between two 

regular cells. 

 

 

Figure 3.4 Schematic view of viscous flux computation at a face 

 

 

The derivative of q along n direction can simply be computed using central 

difference as 

 �Ý�� = Ý-ê,��+Ýªê��©Ç-ê,��+Çªê��©        (3.119) 

 

Note that the above relations can also be written in terms of face gradients as 

follows; 

 

 3�Ý�#8� cos k� + 3�Ý�.8� sin k� = 4Ý45      (3.120) 

 @3�Ý�#8� cos k	 + 3�Ý�.8� sin k	 @ = 4Ý4�       (3.121) 

 

where k� is the angle between vector n and x axis. In these relations, the only two 

unknowns are the x and y derivatives of face gradients, so that they can be found 

easily. 

 

For calculating face gradients at the wall boundary, right state is taken at the wall. 

Here, the primitive variable vector can be written as; 
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Ý� = QR�
ÞÞ00\�
ÞÞ
V         (3.122) 

 

The inviscid reconstructed gradients at right state are also necessary in order to 

compute the viscous flux. These are taken as same as inviscid reconstructed gradients 

of the cell itself in order to have the same gradients at the face 

 

 

3.6 CALCULATION OF THE COEFFICIENTS 

 

In order to verify the code's accuracy, two coefficients are used along the chord 

length. While the skin friction coefficient are calculated for viscous flows, pressure 

coefficient are used for both inviscid and viscous flows. These coefficients are 

calculated for the cells near the wall boundary. Then, the graph created from these 

data can be used to compare with the available numerical or experimental data in the 

literature. 

 

3.6.1 Pressure Coefficient 

Pressure coefficient is a non-dimensional quantity which describes the relative 

pressure along the chord length of the airfoil. The difference between stagnation and 

static pressure is non-dimensionalized by the dynamic pressure.  

 i� = �+�{�su{I{s         (3.123) 

 

While the dynamic pressure can be used for inviscid flows, it is not an accurate 

measure for viscous flows. The free-stream Mach number can be used for 

compressible viscous flows. 

 

i� = ���{s 3 ��{ − 18        (3.124) 
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It is important to note that both equations for pressure coefficients lead to same result 

with the non-dimensionalized free-stream values and boundary conditions. 

Therefore, in the code, Equation (3.123) is used. If non-dimensionalization was not 

used in the code, then it would be necessary to compute the coefficient by using 

Equation (3.124). 

 

 

3.6.2 Skin Friction Coefficient 

Skin friction comes from the friction of the "skin" of the wall against the moving 

fluid on it. While calculating skin friction, local wall shear stress, τw, is used. Non-

dimensionalization is realized by dynamic pressure similar to the pressure 

coefficient. 

 i� = ïð�su{I{s         (3.125) 

 

The local shear stress should be taken along the tangential direction to the wall. The 

normal and shear stresses along the faces are calculated with the viscous 

reconstruction as mentioned before. After the shear stresses in the nearest cells to the 

wall are computed, these must be converted to the tangential direction from Cartesian 

coordinates. Mohr circle can be used for this conversion. 

 

Mohr circle can be established by the planar normal stresses, τxx and τyy, and shear 

stress, τxy. Later, using this circle, the transformed stresses can be found at any point 

on the circle. The following relation can be obtained from the Mohr circle in order to 

compute the transformed shear stress at a point which is at an angle of θ away from 

the x axis. 

 c#�.� = − ï**+ï¦¦� sin 2k + c#. cos 2k     (3.126) 

 

 
τxy 
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Figure 3.5 Mohr circle 

 

 

 

3.7 SOLUTION ADAPTATION 

 

Solution adaptation is an important grid adaptation method which is applied during 

the execution of the program when a specified level of convergence is achieved. It is 

applied according to the compressibility and rotationality principles of the flow. The 

critical regions containing discontinuities due to shocks and stagnation points are 

refined so that resolution at these locations is increased to get more accurate results. 

 

The criterion for solution adaptation is based on divergence and curl of velocity [38], 

[22], for determining shock locations and shear layers accurately. A characteristic 

length is used while using these criterion as shown below; 

 c7 = |∇ ∙  ñ|��
ÞÞv/�        (3.127) 

 c! = |∇  ×  ñ|��
ÞÞv/�       (3.128) 

 

σ1 σ2 σ 

τxy 

σavg 



For each cell, these criteria are checked. If one of these criteria is greater than the 

standard deviations of these quantities, 

cell is refined. 

 

ó7 = �� $ïô's-,õ��  

 

ó! = �� $ïö's-,õ��  

 

where n is the total number of cells. In Figure 3.6, one can see an example to the 

solution adaptation. Here, the grids at the shock location, stagnation points and shear 

layers become finer with six cycles of solution adaptation.
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For each cell, these criteria are checked. If one of these criteria is greater than the 

standard deviations of these quantities, σD and σC which are given below, then the 

'
       

'
       

is the total number of cells. In Figure 3.6, one can see an example to the 

solution adaptation. Here, the grids at the shock location, stagnation points and shear 

layers become finer with six cycles of solution adaptation. 

Figure 3.6 An example of solution adaptation 

For each cell, these criteria are checked. If one of these criteria is greater than the 

which are given below, then the 

  (3.129) 

  (3.130) 

is the total number of cells. In Figure 3.6, one can see an example to the 

solution adaptation. Here, the grids at the shock location, stagnation points and shear 
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CHAPTER 4 

 

MULTIGRID METHOD 

 

 

Multigrid is a technique that accelerates the convergence rate by using coarser grids 

in order to eliminate the low frequency errors. It is based on two principles, error 

smoothing and coarse grids. In the first principle, some iterations are performed on 

the finest grid in order to eliminate the high frequency errors. These iterations cannot 

reduce the low frequency errors significantly. In order to smooth the low frequency 

errors, coarse grids are used. The solutions on the finest mesh are transformed to the 

coarser meshes and some iterations are performed on these meshes. As a result, high 

frequency errors for coarser grids are improved. Since these high frequency errors 

are low frequency errors for finest mesh, one may reduce low frequency errors by 

transforming solutions back to the finest grid. Therefore, high and low frequency 

errors are eliminated by multigrid. [35] 

 

Multigrid method can be used for linear and non-linear problems. Brandtl [36] 

developed an effective multigrid method for non-linear problems. This is called Full 

Approximate Storage (FAS) scheme. Then, Jameson [37] and De Zeeuw [38] 

implemented this scheme into Euler solvers. In the developed code, this scheme is 

used.  

 

In this chapter, multigrid concept and its steps are introduced for non-linear 

problems, at first. Next, the coarsening process for Cartesian and quad grids are 

explained in detail. Finally, the effect of multigrid technique both for inviscid and 

viscous flows are investigated with some tables and graphs. 
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4.1 MULTIGRID CONCEPT FOR NON-LINEAR EQUATIONS 

 

The form of a non-linear problem may be presented as shown by the following 

equation , in a discretized way. 

 ÷�Fø� = 0         (4.01) 

 

In this equation, L represents the non-linear differential space operator, Pø  is the 

converged discrete solution and subscript h denotes the mesh spacing for grids. 

While h is the finest step size, 2h, 4h ... and nh represent the coarser step sizes. If one 

use the approximate discrete solution, Pù , the following relation is obtained. 

 ÷�Fù � = :�$Fù �'        (4.02) 

 

In this relation, R denotes the residual function. If Equation (4.01) is subtracted from 

Equation (4.02), one can acquire the following equation: 

 ÷�Fù � − ÷�Fø� = :�$Fù �'       (4.03) 

 

Since the error function is the difference between the approximate solution and the 

exact solution, this equation can be approximated by using the solution which is 

obtained at the coarser grid one step away from the initial grid. To do this, a 

restriction operator which transfers the information from the finer to coarser grid is 

used both for residual function and the approximate solution. 

 ÷��$1���Fø� + ú��' − ÷��1���Fø� = 1���Å�     (4.04) 

 

The error function at the step 2h, which is the only unknown in the equation above, 

can be found. Then, by using the prolongation operator which transfers the 

information from coarser to finer grid, the improved approximate solution is 

obtained. 
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Fø��
¼ = Fø� + 1��� ú��        (4.05) 

 

These equations are adapted to the code in four steps. These are fine grid iterations, 

restriction, prolongation and final iterations with correction. When the second order 

scheme is used, some problems occurred during the application of the multigrid 

scheme. After describing multigrid steps, the modifications done for the second order 

scheme are explained. 

 

 

4.1.1 Fine Grid Iterations 

Some iterations are performed initially in order to decrease the high frequency errors. 

These iterations are done in the finest mesh and simply multistage time stepping is 

used, as described in Chapter 3. 

 

 F�$�' = F��          

       F�$�' = F�$�' − � � ¡	� �:;j3F�$�+~'8 + gg��   % = 1, … , ¤   (4.03) 

 F��t~ = F�$ '          

   

In the equation set above, subscript n denotes the time step and FF represents the 

forcing function. For the fine grid iterations step, forcing function is zero for all 

conserved variables. By using the solutions in the n’th time step, the solutions in the 

(n+1)’th time step are simply found. The high frequency errors are considerably 

reduced while low frequency errors decrease slightly. The number of iterations in 

this step is determined by an input. After all fine grid iterations are performed in one 

cycle, the residuals obtained from the latest results, i.e. Res(Qh
m) are found in order 

to use them in restriction part. 
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4.1.2 Restriction 

In this step, the results obtained in the finest mesh are transferred to the coarser 

meshes with the use of the restriction operator. The obtained approximate solution 

and the final residual in the finest mesh are used to determine the initial guess for the 

computational cells in the coarser grid. Before these, coarser meshes must be 

obtained and the cell relations between the grids must be determined. This process is 

described in Section 4.2 in a detailed manner. At the moment, one may assume that 

the coarser grids are obtained and the cell relations are set. The equivalent cells at 

coarser grids are obtained with coarsening process. If one looks at a coarser cell, it 

may cover four children or one cell which is the coarsened cell itself. In this section, 

each of these finer cells is referred to as the equivalent finer cell. If one looks at a 

finer cell from a coarser cell, the equivalent coarser cell may be the cell itself or the 

parent of the cell according to the coarsening process. These naming is expressed in 

Figure 4.1 in order to be understood well. 

 

 

 

 

 

 

 

 

Figure 4.1 Illustration of “equivalent cell” term 

 

 

In Figure 4.1, cells A and B are shown. Cell A is a computational cell in the mesh 

spacing h while cell B is a computational cell in the mesh spacing 2h. In terms of cell 

relations between two mesh spacings, cell A is an equivalent finer cell for cell B. On 

the other hand, cell B is an equivalent coarser cell for cell A. It can be seen that cell 

B has four equivalent finer cells.  

 

A B 
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After this brief explanation, the equations which are used to calculate the initial 

guesses of the solutions and the forcing function at the coarser step can be written as; 

 F��$�' = 1���F�$ '        (4.04) 

 gg�� = 1û��� �:;j3F�$ '8 + gg�� − :;j3F��$�'8    (4.05) 

 

where 1���  is the volume weighted restriction operator and 1û���  is the residual 

collection operator, which can be expressed as; 

 

1���F�$ ' = � �F�$('��êü·,q)�ê-�ý,-êþ ªê���� ���êü·,q)�ê-�ý,-êþ ªê���
       (4.06) 

 1û����Ú� = � �Ú�
�r�n�Þ
�	���
� �
ÞÞ�        (4.07) 

 

After setting the initial values and forcing functions for coarser grids, some mid step 

iterations are performed, whose number is determined according to the input 

specified by the user. These lead to the improvement of approximate solutions at 

coarser grids. In the equations above, transformation from h to 2h is illustrated. If the 

level number is higher than 1, the approximate solutions for more coarser grids such 

as 4h, 8h, 16h etc. can be obtained using the same methodology after obtaining the 

improved solutions at one mesh spacing size before. In this code, one can use 7 

levels at maximum, providing a coarse mesh of a spacing of 128h.  

 

 

4.1.3 Prolongation 

The aim in this step is to transfer the results obtained in coarser meshes to the actual 

finest mesh and to get an improved result. To do this, a prolongation operator is used 

with the approximate results found in the coarser meshes, as shown by the following 

equation; 
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 F��
¼ = F � + 1��� 3F��$�
¼' − 1���F��$ '8     (4.08) 

 

where 1���  is the prolongation operator and can be written as; 

 1��� $Ú' = Ú         (4.09) 

 

This is referred to as the injection operator for prolongation. As a prolongation 

operator, a gradient operator which is the dot product of the gradient and direction 

vector may be used, as well. However, for simplicity, injection operator is used in the 

developed code. The “new” superscript that is seen in Equation (4.08) represents the 

new results after interpolating the approximate results to the mesh spacing that the 

results are sought. It can be obtained from prolongation. However, if ,for example, 

the level is set to 1, then the new values are taken from the restriction part after mid 

step iterations are performed. 

 

In the developed code, two different cycles are used. These are the Saw-Tooth and 

V-Cycle. The only difference between them are the iterations performed after 

prolongation is applied in the V-Cycle. In the V-Cycle, some iterations are 

performed in each level after the new improved solutions are acquired with the 

transfer of the solutions to the coarser level. Since forcing functions are necessary to 

perform iterations, it is necessary to store all forcing functions found in the 

restriction part for all levels. Since it brings a low efficiency for memory with the 

storage of excessive number of variables, it is expected to have a lower convergence 

rate compared to the Saw-Tooth cycle. The comparison between these two cycles are 

done in the next two sections of this chapter. 

 

 

4.1.4 Correction and Final Iterations 

The final step in the multigrid technique is the correction and final iterations. In this 

step, the improved approximate solutions are corrected with some iterations, like fine 

grid iterations. As an initial guess, the found improved solution after prolongation, 
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i.e. F��
¼, is used. This step is applied only for the finest mesh with a number of 

iterations determined by a seperate input. As a result of all these steps, the solutions 

at the finest mesh are obtained with the elimination of low and high frequency errors 

as much as possible. 

 

 

4.1.5 Modifications for the Second Order Scheme 

While solving flows with a second order and multigrid technique, some problems 

were encountered. In these attempts, the pressure and/or the density were decreased 

to negative values in coarser grids. Therefore, the solutions in the coarser grids are 

obtained by using a first order scheme even if the scheme is second order for the 

finest grid. Only at the fine grid iterations step and the correction and final iterations 

step, the second order scheme is used. With this slight modification, stability during 

the execution of the program is provided.  

 

Whereas solutions are verified in Chapter 5, in order to validate that the pure second 

order solution and the modified solution give the same result, a comparison is done 

around RAE 2822 airfoil, using an inviscid flow at a Mach number of 0.75 and an 

angle of attack of 3 degrees. Furthermore, five cycles of solution adaptation is 

applied to the grid. The pressure coefficient distribution are depicted in Figure 4.2.  

 

As it can be seen, nearly the same distribution is observed for two cases. Moreover, 

the drag coefficient is calculated as 0.0427 for both cases. A slight difference is 

formed for lift coefficient such that seven level multigrid solution calculates the lift 

coefficient as 0.9725 while solution without multigrid gives a lift coefficient of 

0.9720. Since this very small effect can be neglected while using the second order 

scheme, it can be concluded that modifications are useful if the second order scheme 

is used together with the multigrid technique.  

 

Moreover, the multigrid scheme affects solution time significantly. A speed up ratio 

of 19 is obtained in this problem. As described in the next section, a maximum ratio 

of 17 is acquired for this inviscid flow using the first order scheme. The difference 
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can be due to the difference in time required for the execution between the first and 

second order schemes. Second order schemes take more time in comparison to first 

order schemes since gradients and limiters are calculated at each iteration for each 

cell. In multigrid solutions, the second order scheme is used partly. Therefore, the 

convergence time decreases significantly by using with the first order scheme. 

 

 

Figure 4.2 Comparison of pressure coefficient distribution obtained by using partly and 

purely second order scheme around RAE 2822 airfoil 

 

 

 

4.2 COARSENING PROCESS 

 

The coarsening process, which is applied in the restriction part of multigrid 

technique, is presented in detail in this section. First, how to coarsen Cartesian cells 

are presented. Then, the Quad cells are considered for the coarsening process. 
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4.2.1 Coarsening of Cartesian Cells 

During coarsening process, three pointers are used, as discussed briefly in Section 

2.1.3. These are “perform”, “meshSpacing” and “compCell” words. First, the cells 

are flagged with the perform word if all of their children are computational cells for 

one finer grid. As a result of this step, the cells which can be coarsened successfully 

are found. Then, according to the mesh spacing of the grid, the cells’ “meshSpacing” 

word is determined. Finally, using “compCell” pointer, computational cells for 

determined mesh spacing is set according to the one level rule. It is important to note 

that cells in the finer grids are not deleted. By using “compCell” and “meshSpacing” 

words, these finer cells are ignored for the coarser grids so that new computational 

cells are created without any deletion. Figure 4.3 illustrates a grid with one cycle of 

solution adaptation around the RAE 2822 airfoil, which is coarsened to 7 levels. In 

Table 4.1, the cell numbers are presented according to cell types for all grids used in 

multigrid scheme. It can be seen that with the increase in mesh spacing, the total 

coarsening ratio increases significantly whereas the relative coarsening ratio 

decreases and remains at a value of 1.3. 

 

Table 4.1 Cell numbers of grids used in multigrid for RAE 2822 airfoil 

Mesh 
Spacing 

Out 
Cell No 

Cut Cell 
No 

Split Cell 
No 

Total Cell 
No 

Coarsening 
Ratio Acc. To 

h-grid 

Coarsening 
Ratio Acc. 

To One 
Finer Grid 

h 5804 525 5 6334 - - 

2h 1707 263 4 1974 3.2 3.2 

4h 708 134 3 845 7.5 2.3 

8h 326 69 2 397 16.0 2.1 

16h 234 36 2 242 26.2 1.6 

32h 163 19 2 184 34.4 1.3 

64h 129 14 2 145 43.7 1.3 

128h 98 11 0 109 58.1 1.3 



96 
 

 

Figure 4.3 Illustration of grids used in multigrid scheme for RAE 2822 airfoil 

128h-grid 64h-grid 

32h-grid 16h-grid 

8h-grid 

2h-grid 

4h-grid 

h-grid 



97 
 

4.2.2 Coarsening of Quad Cells 

Coarsening of quad cells are different than the Cartesian cells since quads are formed 

according to the Cartesian cells. In a hybrid mesh, Cartesian cells are first coarsened 

at the restriction step. Since cut and split cells are changed compared to the finer 

grid, quad cells which are generated from these newly coarsened cells near the wall 

are automatically coarsened. However, this is not sufficient. The row number in the 

boundary layer is divided by 2 for each mesh spacing so that quad cells are coarsened 

not only horizontally but also vertically. Since quad cells are coarsened by dividing 

the row number by 2 at each level, the user-defined row number is restricted such 

that it must be a power of 2. Moreover, the stretch factor is squared so that the 

coarsened quad cells cover the finer ones completely. When the row number is 1 for 

quad cells at a level, then it remains the same for all coarser levels in order not to 

lose the body-fitted geometry. In Figure 4.4, the hybrid mesh with 16 rows around 

NACA 0012 airfoil can be seen with the other grids used in the multigrid scheme. 

 

 

(a) h-grid 

 

 

(b) 2h-grid 
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(c) 4h-grid 

 

 

(d) 8h-grid 

 

 

(e) 16h-grid 

 

Figure 4.4 Illustration of hybrid grids used in multigrid for NACA 0012 airfoil 
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4.3 MULTIGRID EFFECT ON INVISCID FLOW 

 

In this section, the effect of multigrid method is investigated using the transonic flow 

around RAE 2822 at a Mach number of 0.75 and an angle of attack of 3 degrees. 

Since the results are discussed in Chapter 5, only the residuals are examined in order 

to see the effect of multigrid on the convergence time. For the results in this section 

and in the next section, a work-station is used. This work-station has a four core 

processor at 2.33 GHz and 32 GB Ram. 

 

Four different problems are discussed in this chapter. 25 cases are tested for these 

four problems. In the first problem, the solution adaptation is not used and the 

multigrid level on this coarse mesh are discussed. Secondly, again the level of 

multigrid is examined at a mesh after the application of five cycles of solution 

adaptation. Thirdly, the difference between Saw-Tooth and V-Cycle are shown both 

for solution adapted and non-adapted cases. Finally, the iterations at the steps of the 

multigrid technique are changed and the results are compared. The results are taken 

as a form of a data set formed by the logarithm of the normalization of root mean 

square of continuity residuals and the CPU time. Normalization is done by dividing 

the root mean square to the difference between the maximum and the minimum 

continuity residuals. 

 

 

4.3.1 Level Test Without Solution Adaptation for Inviscid Flow 

In the first problem, the first mesh created before the solution is used. In other words, 

no cycle of solution adaptation is used. Totally 8 tests were done. The number of 

cells for all test cases is 4055. The solver is iterated until the normalized residual 

reaches -10. The flux method is approximate Riemann solver of Roe. The iterations 

for all steps are set to 10 for this problem. Saw-Tooth cycle is used. The only 

different parameter in test cases is the level number of the multigrid. This number is 

changed from 0 to 7 in these cases. The results that are obtained, are shown in Table 

4.2. In addition, the residuals of these tests with respect to the CPU time are 

presented in Figure 4.5. 
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Table 4.2 Level test results without solution adaptation for inviscid flow 

Case 
No Description Time (sec) 

Speed Up 
Ratio 

1 No multigrid  458 - 

2 One level multigrid 298 1.54 

3 Two level multigrid 187 2.45 

4 Three level multigrid 116 3.95 

5 Four level multigrid 85 5.39 

6 Five level multigrid 74 6.19 

7 Six level multigrid 73 6.27 

8 Seven level multigrid 73 6.27 
 

 

 

Figure 4.5 Residuals with respect to CPU time using a non-solution adapted mesh  

around RAE 2822 airfoil 
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As shown above, the solution speeds up with the increase in level. However, when 

the last three cases having levels of 5, 6 and 7 are considered, it can be seen that 

there is not too much difference between them in terms of the convergence time. 

Nonetheless, the maximum speed up ratio is obtained from the seventh and the 

eighth cases, which is 6.27.  

 

 

4.3.2 Level Test With Solution Adaptation for Inviscid Flow 

In this problem, the solution adapted mesh is used while examining the effect of 

levels. Five cycles of solution adapted mesh are used. The cases and the results are 

tabulated in Table 4.3. 

 

Table 4.3 Level test results with solution adaptation for inviscid flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

9 No multigrid  36965 - 

10 One level multigrid 23327 1.58 

11 Two level multigrid 14356 2.57 

12 Three level multigrid 7510 4.92 

13 Four level multigrid 5631 6.56 

14 Five level multigrid 2943 12.56 

15 Six level multigrid 2423 15.26 

16 Seven level multigrid 2177 16.98 
 

 

As it can be seen, the level increase has a great effect on the acceleration for solution 

adapted mesh. Up to five levels, the speed up ratio is doubled approximately. After 

that, while the increase in the ratio is decreasing, the ratio is continuously raising so 

that the maximum ratio, which is nearly 17, is obtained from the final case having a 

level of seven.  

 

In Figure 4.6, the residuals are expressed with respect to the CPU time graphically. 

One can see the closeness of residuals for the 14th, 15th and 16th cases. If one 
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consider the results in the previous section, the level increase brings an enormous 

acceleration rate especially for solution-adapted grids while non-solution adapted 

grids are accelerated at a maximum ratio of 7 with the level increase. 

 

 

Figure 4.6 Residuals with respect to CPU time using a solution adapted mesh  

around RAE 2822 airfoil 

 

 

4.3.3 Cycle Test for Inviscid Flow 

In this problem, two different cycles, namely Saw-Tooth and V-Cycle, are tested 

with and without applying solution adaptation. For all cases, seven level of multigrid 

is used. In the first two cases, the solution adaptation is not used. Then, for the last 

two cases, five cycles of solution refinement are applied to the mesh. The results 

obtained for these cases are presented in Table 4.4. 
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Table 4.4 Cycle test results for inviscid flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

17 Saw-Tooth without solution adaptation 73 6.27 

18 V-Cycle without solution adaptation 98 4.67 

19 Saw-Tooth with five cycles of solution adaptation 2177 16.98 

20 V-Cycle with five cycles of solution adaptation 2365 15.63 
 

 

 

Figure 4.7 Residuals with respect to the CPU time for cycle testing around RAE 2822 airfoil 

 

 

As one can see in Figure 4.7, V-Cycle leads to a more slower convergence compared 

to Saw-Tooth cycle for both grids with and without solution adaptation. As expected, 

the difference between these cycles are not much higher. The reason, why V-Cycle 
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converges slower, may be the increase in the required memory since the forcing 

functions must be stored in order to use them for the iterations at the prolongation 

step. 

 

 

4.3.4 Iteration Test for Inviscid Flow 

Another important input, which affects the convergence time while applying 

multigrid technique is the iteration number in the multigrid steps. In this section, the 

iteration numbers are changed using five cases in order to find the optimum numbers 

for inviscid flow. The same grid with five cycles of solution adaptation and the same 

inputs are used for all cases so that the pure effect of iteration numbers can be 

observed. 

 

Table 4.5 Iteration test results for inviscid flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

21 5 iterations 2165 17.07 

22 10 iterations 2177 16.98 

23 15 iterations 2182 16.94 

24 20 iterations 2418 15.29 

25 25 iterations 2728 13.55 
 

 

In the fine-grid, mid and final steps, the same number of iterations are used. As 

shown in Table 4.5 and Figure 4.8, the decrease in the iteration number enables faster 

convergence rates. Thus, the optimum number for this inviscid flow is 5 iterations at 

each step, providing a speed up ratio of 17.07. However, the amount of increase is 

just a few seconds especially between cases 21, 22 and 23. One can infer that, it is 

not necessary to use a large number of iterations since the low frequency errors can 

be eliminated using a few iterations for inviscid flows. 
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Figure 4.8 Residuals with respect to the CPU time for testing the number of iterations  

around the RAE 2822 airfoil 

 

 

 

4.4 MULTIGRID EFFECT ON VISCOUS FLOW 

 

In this section, the effect of multigrid is investigated using the transonic flow around 

NACA 0012 at a Mach number of 0.5, an angle of attack of 0 degree and a Reynolds 

number of 5000. Only the residuals are presented in this section since the results are 

discussed in the next chapter. 

 

This time, five problems are considered. Firstly, the grid without applying solution 

adaptation is used and the effect of multigrid level number is examined with several 
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test cases. Secondly, the level number is tested using a mesh where three cycles of 

solution adaptation is applied. Thirdly, the difference in cycles are presented both for 

solution adapted and non-solution adapted meshes. Fourthly, the iteration numbers in 

the steps are changed to find the optimum numbers for three cycles of solution 

adapted mesh. Finally, the effect of multigrid is discussed for an hybrid mesh. 

 

 

4.4.1 Level Test without Solution Adaptation for Viscous Flow 

In the first problem, eight cases are tested. The only variable parameter is the 

multigrid level number. The purpose is to see the effect of level increase when 

solution adaptation is not used for viscous flows. While the iteration number at fine 

grid step is 15, 10 is used for the other steps. Saw-Tooth cycle is used for all cases. 

As inviscid flux method, AUSMV is used. As convergence criteria, the solver is 

iterated until the normalized continuity residual reaches -9. As shown in Table 4.6 

and Figure 4.9, the level increase does not provide a significant acceleration rate 

even if seven levels are used. While a speed up ratio up to 6 can be obtained for the 

inviscid flow using a mesh without solution adaptation , a maximum speed up ratio 

of 1.5 is obtained for the laminar flow. 

 

Table 4.6 Level test results without solution adaptation for viscous flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

1 No multigrid  2958 - 

2 One level multigrid 2480 1.19 

3 Two level multigrid 2364 1.25 

4 Three level multigrid 2280 1.30 

5 Four level multigrid 2232 1.33 

6 Five level multigrid 2251 1.31 

7 Six level multigrid 2091 1.41 

8 Seven level multigrid 2002 1.48 
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Figure 4.9 Residuals with respect to CPU time using a non-solution adapted mesh  

around NACA 0012 airfoil 

 

 

 

4.4.2 Level Test with Solution Adaptation for Viscous Flow 

The effect of level increase is also tested in this problem. However, the grid is 

changed such that three cycles of solution adaptation is applied. The results are 

tabulated in Table 4.7. 

 

 

 

 

 



108 
 

Table 4.7 - Level test results with solution adaptation for viscous flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

9 No multigrid  67660 - 

10 One level multigrid 42862 1.58 

11 Two level multigrid 23558 2.87 

12 Three level multigrid 13169 5.14 

13 Four level multigrid 10838 6.24 

14 Five level multigrid 9859 6.86 

15 Six level multigrid 10284 6.58 

16 Seven level multigrid 9582 7.06 
 

 

As it can be seen, level increase leads to a higher speed up ratio for solution adapted 

mesh. Except the 15th case, the convergence time decreases with the increase in the 

level number. In comparison to the previous problem, one can say that the multigrid 

is able to accelerate the solution time significantly by increasing the level number. 

While the ratio is around 1.5 for the coarsest mesh, it can reach 7 for finer meshes, as 

one can see in Table 4.7 and Figure 4.10. 

 

In addition, the increase after five levels does not provide a significant difference in 

terms of the convergence time. While the solution converges after 9859 seconds for 

the 14th case, the final case provides a convergence in 9582 seconds. The difference 

is small if one compares this amount with 67660 seconds which is obtained for the 

case without the application of multigrid. 

 

If the finer mesh while solving the inviscid flow is reconsidered, it can be concluded 

that the multigrid does not provide a sufficient acceleration since a speed up ratio of 

17 can be obtained for inviscid flows. However, it must be considered that the 

viscous flows converge so slowly in contrast to the inviscid flows. Thus, a speed up 

ratio of 7 gives a significant improvement in the convergence time. 
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Figure 4.10 Residuals with respect to the CPU time using a solution adapted mesh  

around NACA 0012 airfoil 

 

 

 

4.4.3 Cycle Test for Viscous Flow 

In this section, V-Cycle and Saw-Tooth cycles are compared using a level of 7 for 

grids with and without solution adaptation. The results obtained for this problem are 

tabulated in Table 4.8. 
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Table 4.8 Cycle test results for viscous flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

17 Saw-Tooth without solution adaptation 2002 1.48 

18 V-Cycle without solution adaptation 2248 1.32 

19 Saw-Tooth with three cycles of solution adaptation 9582 7.06 

20 V-Cycle with three cycles of solution adaptation 14077 4.81 
 

 

The results show that the V-Cycle converges slower than the Saw-Tooth cycle for 

both grids, as shown in Figure 4.11. While there is a slight difference in the grid 

without solution adaptation, it becomes larger when finer mesh is used. 

 

 

Figure 4.11 Residuals with respect to CPU time for cycle testing around NACA 0012 airfoil 
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4.4.4 Iteration Test For Viscous Flow 

In this problem, the grid that three cycles of solution adaptation is applied is used to 

determine the optimum iteration numbers at the steps of multigrid. Thus, six cases 

are tested. On the contrary to the inviscid flow problem, all of the cases does not 

have the same iteration number at all steps. Some cases have more iterations for fine 

grid step. The case descriptions and the results are presented in the Table 4.9. 

 

As one can see in Figure 4.12, the 26th case gives the best results for this viscous 

flow. Besides, the 22th case is not very much different than the 26th case. One can 

infer that it is necessary to iterate more in order to eliminate low frequency errors for 

viscous flows compared to inviscid flows. 

 

 

Figure 4.12 Residuals with respect to CPU time for iteration testing  

around NACA 0012 airfoil 
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Table 4.9 Iteration test results for viscous flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

21 10 fine, 10 intermediate and 10 final iterations 13549 4.99 

22 15 fine, 10 intermediate and 10 final iterations 9582 7.06 

23 15 fine, 15 intermediate and 15 final iterations 14346 4.72 

24 20 fine, 10 intermediate and 10 final iterations 10346 6.54 

25 20 fine, 15 intermediate and 15 final iterations 14572 4.64 

26 20 fine, 20 intermediate and, 20 final iterations 8773 7.71 
 

 

 

4.4.5 Hybrid Mesh Test for Viscous Flow 

The final problem is the test of multigrid on hybrid meshes. As the quad cells are 

used in the boundary layer, the number of cells increases significantly. For example, 

while the mesh without solution adaptation has a cell number of 4040, 14562 cells 

are used for a hybrid mesh when solution adaptation is not used. In other words, even 

the coarsest mesh includes a large number of cells with very small cells in the 

boundary layer. With this huge amount of cells and the large size differences, the 

convergence time is very long compared to the mesh formed only by Cartesian cells. 

Thus, multigrid is very important to decrease the solution time. 

 

For this problem, two cases are tested; multigrid is not used for the first one and a 

seven level multigrid is used for the second one. Iteration numbers are set to 30 at 

each step since a lower number causes divergence in the solution. It can be inferred 

that while using very small cells in the boundary layer, the iteration step needs to be 

larger than the other problems in order to decrease the low frequency errors. Saw-

Tooth cycle is used in the second case. The results are presented in Table 4.10 in 

written and in Figure 4.13. 
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Table 4.10 Hybrid mesh test results for viscous flow 

Case 
No Description Time (s) 

Speed Up 
Ratio 

27 No multigrid 256049 - 

28 Seven level multigrid 55014 4.65 
 

 

 

Figure 4.13 Residuals with respect to the CPU time for hybrid mesh testing  

around NACA 0012 airfoil 

 

 

The case for which no multigrid is used converges approximately 8 times slower than 

the case for which quad cells are not used. Although the effect of multigrid is 

significantly more for finer meshes as before, a seven level multigrid leads to a speed 

up ratio of 4.65 for hybrid mesh and a significant difference occurs between the 
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hybrid and Cartesian grids when solution adaptation is not used, as expected. 

However, the multigrid effect on solution adapted hybrid grids cannot be tested due 

to some problems regarding multigrid usage on hybrid meshes when solution 

adaptation is applied. 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

 

In this chapter, the developed code is validated and verified both for inviscid and 

viscous laminar flows with some tests. These tests are divided into three sub groups. 

First, inviscid flow around an airfoil is tested for two different cases. One of the 

cases is a transonic flow, while the other one is a supersonic flow. Secondly, one 

subsonic flow and one transonic flow at low Reynolds numbers are analyzed in order 

to verify the code for laminar flows. Finally, in order to show the validity of the 

hybrid mesh, one high Reynolds number flow is examined. Since the flow is 

turbulent for this case and the code is not designed to solve turbulence, the results are 

not expected to be accurate. For all problems, the results are compared with the data 

found in the literature which is numerical or experimental. All results are obtained by 

using a work-station. This computer has a single processor with 4 cores each at a 

speed of 2.33 GHz and 32 GB Ram. The operating system is Microsoft Windows XP 

64Bit Edition. 

 

 

5.1 INVISCID FLOW 

 

In this section, two problems are considered. While one of them is a transonic flow, 

the other one is a supersonic flow around a one-element airfoil. The shock locations 

and strengths of these shocks are compared using pressure distribution graphs with 

the data available in the literature. The specifications of these problems are depicted 

in Table 5.1. 
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Table 5.1 Test problems for inviscid flow 

SECTION AIRFOIL M∞ α (degrees) 

5.1.1 RAE 2822 0.75 3 

5.1.2 NACA 0012 1.2 7 
 

 

 

5.1.1 Transonic Flow Around RAE 2822 

The first problem is a transonic flow around a non-symmetric airfoil, i.e. RAE 2822, 

with a Mach number of 0.75 and an angle of attack of 3 degrees. The reason why 

transonic flow is selected is to demonstrate that by using Cartesian approach, 

locations of shocks and strengths of shocks can be captured using a sufficiently finer 

mesh around the shock. 

 

Table 5.2 Common properties for transonic inviscid flow 

MESH INPUTS 

Outer boundary size factor 18 

  

SOLUTION INPUTS 

Flux method Roe 

Refinement cycle interval 20 

log(RMS) for convergence -10 

CFL safety factor 1 

  

MULTIGRID INPUTS 

Multigrid type Saw-Tooth 

Multigrid level 7 

Fine grid iterations 10 

Intermediate step iterations 10 

Final grid iterations 10 
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The results are obtained using six cases. After that, they are compared with the 

results from reference [13], which uses an O-type mesh with 20480 cells. For all 

cases, the outer boundary is located 18 chords ahead of the airfoil. As a flux 

calculating technique, approximate Riemann solver of Roe is used. The solver is 

iterated until the logarithm of root mean square of normalized continuity residual 

reaches -10. In addition, a 7 level multigrid is used to accelerate convergence time. 

The common properties for the test cases in this problem are tabulated in Table 5.2. 

 

Two parameters are changed at the test cases. One of them is the order of the scheme 

and the other one is the number of refinement cycles at solution adaptation. Gradient 

limiting is used in the cases where second order scheme is used to calculate the face 

fluxes. Table 5.3 shows the calculated lift and drag coefficients for these cases and 

the reference case as well as the convergence time. While attempting to obtain results 

using the second order scheme without gradient limiters, the pressure became 

negative and results are not acquired. The reason is that the second order scheme 

leads to fluctuating residuals. While the limiters prevent the excessive change in 

residuals at each iteration, the solutions without using these limiters can cause to 

instability problems. 

 

 

Table 5.3 Comparison of results for transonic inviscid flow around RAE 2822 airfoil 

 

Case 
No Description CD CL 

Cell 
Number Time 

1 
No solution refinement with 

1st order 
0.0663 0.6725 4055 

0 hour 1 minute 
13 seconds 

2 
No solution refinement with 

2nd order 
0.0638 0.7089 4055 

0 hour 9 minutes 
19 seconds 

3 
Three solution refinement 

with 1st order 
0.0444 0.9267 18880 

0 hour 6 minutes 
31 seconds 

4 
Three solution refinement 

with 2nd order 
0.0446 0.9377 17647 

0 hour 24 minutes 
53 seconds 

5 
Five solution refinement with 

1st order 
0.0424 0.9649 61526 

0 hour 36 minutes 
16 seconds 

6 
Five solution refinement with 

2nd order 
0.0427 0.9725 57496 

1 hour 25 minutes 
5 seconds 

7 Reference results [13] 0.0448 1.1044 20480 - 
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As shown in Table 5.3, the results are getting closer to the reference results with the 

increase in the solution refinement cycle. In addition, the second order usage leads to 

more accurate results for a fixed solution adaptation cycle. However, with the second 

order scheme, the convergence time increases greatly. For example, the increasing 

ratio is about 9 if solution refinement is not used, while it is approximately 2.5 for 

five cycles of solution refinement. Nonetheless, the best result is obtained for the 

sixth case, where five cycles of solution adaptation and second order scheme is used. 

The pressure distributions of all the cases compared to the reference case are shown 

in Figure 5.1. 

 

 

Figure 5.1 Pressure coefficient distribution for transonic inviscid flow around RAE 2822 

airfoil 
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As observed from Figure 5.1, the pressure distribution at the upper surface, where a 

shock exists, are underestimated for all cases. One can say that low number of 

solution refinement cycles leads to big difference especially at upper surfaces. 

However, slight differences are occurred at the cases where a solution refinement 

cycle number greater than 3 is used. Nonetheless, with increasing cycle number, the 

solution gets closer to the reference data at a more or less amount. In addition, the 

shock locations are not captured well by all of the cases. Yet, the distribution at the 

below surface are in a good agreement with the reference data. The grids used for 

Case 3 and Case 5 are shown in Figure 5.2. 

 

 

(a)                                                                              (b) 

Figure 5.2 The grids around the RAE 2822 for Case 3 (a) and Case 5 (b)  

for the transonic inviscid flow  
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Figure 5.3 Mach contours of cases where solution adaptation is applied  

around RAE 2822 for the transonic inviscid flow 

 

 

Besides the importance of cycle increase, the second order scheme usage leads to 

slightly more accurate results compared to the first order scheme for all cases, as 

seen in Table 5.3 and Figure 5.1. It can be seen that the best result is obtained from 

the sixth case again. Since it is difficult to see the effect of the order of scheme in 

Figure 5.1 for the cases where solution adaptation is applied, Mach and pressure 

contours are presented in Figures 5.3 and 5.4 both for three cycles and five cycles of 

solution adaptation. One can see the slight differences between the abreast figures. In 

the first row, cases with three cycles of solution refinement are compared while five 

cycles are compared in the second row. 

 

CASE 3 

CASE 5 

CASE 4 

CASE 6 
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Figure 5.4 Pressure contours of cases where solution adaptation is applied  

around RAE 2822 for the transonic inviscid flow 

 

 

 

5.1.2 Supersonic Flow Around NACA 0012 

The second problem is a supersonic flow around a symmetric airfoil at a Mach 

number of 1.2 and an angle of attack of 7 degrees. The aim is to show that bow and 

oblique shocks can be captured accurately.  

 

Eight tests were carried out for this problem. The far-field boundary is located 18 

chords ahead of the airfoil for all cases. In addition, first order scheme is used. 

Multigrid technique is also used with seven levels. The only changing inputs are the 

CASE 3 

CASE 5 

CASE 4 

CASE 6 
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solution refinement cycle and the flux calculation method. One reference case is used 

to compare the test cases. 

 

Table 5.4 Common properties for supersonic inviscid flow 

MESH INPUTS 

Outer boundary size factor 18 

  

SOLUTION INPUTS 

Order of scheme 1 

Refinement cycle interval 20 

log(RMS) for convergence -10 

  

MULTIGRID INPUTS 

Multigrid type Saw-Tooth 

Multigrid level 7 

Fine grid iterations 10 

Intermediate step iterations 10 

Final grid iterations 10 
 

 

The code has four different inviscid flux calculation methods. In this problem, these 

techniques are compared. First, these techniques are compared without applying the 

solution adaptation since it is easy to compare by looking at the pressure distribution 

along the chord length. Second, four cycles of solution adaptation are used while 

obtaining results with different flux methods. The aim is to show that all methods 

give accurate results compared to the reference data [13], which uses an O type grid 

with 20480 cells. Below, one can see the cases and the results obtained from these 

cases. 
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Table 5.5 Comparison of results for supersonic inviscid flow around NACA 0012 airfoil 

Case 
No 

Description CD CL 
Cell 

Number 
Time CFL 

1 
No solution 

refinement with 
AUSM flux method 

0.1688 0.5421 4040 
1 minute 35 

seconds 
0.9 

2 
No solution 

refinement with 
AUSMD flux method 

0.1658 0.5253 4040 
1 minute 21 

seconds 
1 

3 
No solution 

refinement with 
AUSMV flux method 

0.1684 0.5333 4040 1 minute 8 seconds 1 

4 
No solution 

refinement with Roe 
flux method 

0.1648 0.5220 4040 
1 minute 18 

seconds 
1 

5 
Four solution 

Refinement with 
AUSM flux method 

0.1603 0.5218 23753 
15 minutes 59 

seconds 
0.9 

6 
Four solution 

refinement with 
AUSMD flux method 

0.1599 0.5203 25362 
17 minutes 17 

seconds 
1 

7 
Four solution 

refinement with 
AUSMV flux method 

0.1608 0.5209 25331 
15 minutes 8 

seconds 
1 

8 
Four solution 

refinement with Roe 
flux method 

0.1595 0.5193 25178 
21 minutes 15 

seconds 
1 

- Reference results [13] 0.1538 0.5138 20480 - - 

 

 

In the cases, where solution adaptation is not used, Roe's flux calculation method 

gives the closest result to the reference data. It overestimates the drag coefficient by 

7.1 % and the lift coefficient by 1.6 %. On the other hand, AUSM gives the worst 

result among the four cases. Overestimating percent is 5.5% at lift coefficient and 

9.8% at drag coefficient. All the four cases converge at approximately the same time. 

When solution adaptation is applied, four methods approach to the reference results. 

While the minimum overestimating percent is obtained from Roe's method, which is 

3.7 % for drag and 1.15 % for lift coefficient, AUSM gives the maximum 

overestimating percent of 1.6 % for lift and AUSMD gives a maximum percent of 
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4.6 % for drag coefficient. As a result, the solution adaptation plays an important role 

to obtain accurate results for all flux methods in this problem. Moreover, one can 

infer that the difference in results between flux calculation techniques diminishes 

with the increase in the cycle of solution adaptation. In Figure 5.5, the pressure 

distribution of cases where solution adaptation is not applied are presented in 

comparison with the reference data. Then, Figure 5.6 gives the distribution of 

pressure for cases having four cycles of solution adaptation. 

 

 

Figure 5.5 Pressure coefficient distribution of the first four cases for supersonic  

inviscid flow around NACA 0012 airfoil 
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Figure 5.6 Pressure coefficient distribution of the last four cases for supersonic 

inviscid flow around NACA 0012 airfoil 

 

 

It can be seen in Figure 5.5 that AUSM method approach to the reference data at the 

upper surface in the second half of the chord. However, it gives the farthest result at 

the lower surface. On the other hand, Roe's method captures the lower surface 

pressure distribution accurately for the second half of the chord, while it gives 

slightly farther result for the upper surface compared to the other methods. In Figure 

5.6, almost all cases capture the accurate results. The slight differences between these 

methods are difficult to observe. In Figures 5.7 and 5.8, the Mach and pressure 

contours for the cases, where solution adaptation is used, are presented. 
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Figure 5.7 Mach contours of cases where solution adaptation is applied  

around NACA 0012 for supersonic inviscid flow 

 

 

In Figure 5.7, slight differences can be observed among the flux methods. The bow 

shock before the leading edge is captured in all cases. The oblique shock at the upper 

surface of the airfoil is also captured by all of the cases. There are some slight 

differences in the strength and length of the oblique shock. The length is a little 

longer for the AUSM method and it shortens in AUSMD. Moreover, Roe gives the 

shortest length among the four cases while shorter length compared to AUSMD is 

obtained by AUSMV. In Figure 5.8, one can also see the pressure differences at the 

oblique shock for these four methods. 

CASE 5 

CASE 7 

CASE 6 

CASE 8 
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Figure 5.8 Pressure contours of cases where solution adaptation is applied  

around NACA 0012 for supersonic inviscid flow 

 

 

 

5.2 LOW REYNOLDS NUMBER FLOW 

 

In this section, two different problems are examined. While one of them is subsonic, 

a transonic flow is solved at a relatively low Reynolds number. It is expected to get 

accurate results for low Reynolds number flows since the flow regime is laminar for 

those cases. Whereas it is not necessary to use quad grids since Cartesian grids 

provide sufficiently small sizes in the boundary layer, quad grid is used as an 

illustration of hybrid mesh effect for the first test problem. The test problems are 

tabulated below. 

CASE 5 CASE 6 

CASE 8 CASE 7 
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Table 5.6 Test problems for low Reynolds number flow 

SECTION AIRFOIL M∞ α (degrees) Re∞ 

5.2.1 NACA 0012 0.5 0 5000 

5.2.2 NACA 0012 0.8 10 500 
 

 

 

5.2.1 Subsonic Flow around NACA 0012 

The first problem is the laminar flow around a NACA 0012 airfoil at a Mach number 

of 0.5, an angle of attack of 0 degrees and a Reynolds number of 5000. The purpose 

of this test is to show the importance of solution refinement around a symmetrical 

airfoil. In addition, since the angle of attack is zero, the pressure and friction 

distribution must be symmetric at the lower and upper surfaces of the airfoil. 

 

Table 5.7 Common properties of the cases without quad cells for subsonic laminar flow 

MESH INPUTS 

Outer boundary size factor 18 

Quad cell usage No 

  

SOLUTION INPUTS 

Order of the scheme 1 

Flux method AUSMV 

Multistage number 3 

CFL safety factor 1 

Refinement cycle interval 10 

log(RMS) for convergence -9 

  

MULTIGRID INPUTS 

Multigrid type Saw-Tooth 

Multigrid level 5 

Fine grid iterations 15 

Intermediate step iterations 10 

Final grid iterations 10 
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Totally seven different cases where quad cells are not used are discussed at first . For 

all of them, the outer boundary is located 18 chords ahead of the airfoil. For inviscid 

flux calculations, AUSMV flux method is used. The solver is iterated until the 

logarithm of root mean square of normalized density residual reaches -9. 5 level 

multigrid is applied to accelerate the convergence time. In Table 5.7, the common 

properties for the cases without quad cells regarding the laminar subsonic flow can 

be shown. 

 

For the test cases, only changing parameter is the number of solution refinement 

cycle, which is changed from 0 to 6. While applying the solution refinement, the 

interval between two cycles is set to 10. Drag coefficients of test cases and a 

numerical reference, ARC2D developed by NASA, are given in Table 5.8. ARC2D 

is a structured mesh solver which uses a cell-centered method. In addition, time 

elapsed for solution and cell numbers can be seen in Table 5.8. 

 

Table 5.8 Comparison of results without quad cells for subsonic laminar flow  

around NACA 0012 airfoil 

Case 
No Description CD 

Cell 
Number Time 

1 No solution refinement 0.0651 4040 
0 hour 38 minutes 49 

seconds 

2 One solution refinement 0.0483 9442 
0 hour 43 minutes 56 

seconds 

3 Two solution refinement 0.0397 21208 
1 hour 26 minutes 9 

seconds 

4 Three solution refinement 0.0356 46488 
2 hours 44 minutes 

23 seconds 

5 Four solution refinement 0.0328 92486 
4 hours 37 minutes 

41 seconds 

6 Five solution refinement 0.0316 172874 
8 hours 23 minutes 

33 seconds 

7 Six solution refinement 0.0311 335606 
25 hours 25 minutes 

16 seconds 

- Reference (ARC2D) [40] 0.0321 40960 - 
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It can be shown that while the number of solution refinement cycle is increasing, 

drag coefficients are approaching to the numerical reference data. However, the 

convergence time increases greatly. Sixth case gives the closest result for the drag 

coefficient, which underestimates drag coefficient only by 1.6 %. Whereas one more 

solution refinement cycle leads to a distant result with respect to the reference data, it 

gives a slightly close pressure distribution relative to the reference data, as shown in 

Figure 5.9. 

 

Figure 5.9 Pressure coefficient distribution for subsonic laminar flow around NACA 0012 

airfoil 
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Figure 5.10 Skin friction coefficient distribution for subsonic laminar flow around  

NACA 0012 airfoil 

 

 

It can be observed from Figures 5.9 and 5.10 that increasing cycle number results 

more accurate pressure and skin friction distribution. While the peak of pressure 

coefficient cannot be captured accurately, Case 7 gives the most closest result. For 

the initial cases, especially the skin friction coefficients are scattering. With the 

increasing cycle number, the scattering decreases in a considerable amount since the 

cell sizes become smaller with the increase in the solution refinement cycle number. 

As a result, most accurate results are obtained for Case 7. Since it is difficult to 

observe it from Figures 5.9 and 5.10 due to the excessive number of presented test 

cases, Case 7 and ARC2D data are compared separately in Figure 5.11. 
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Figure 5.11 Comparison of Case 7 with the reference data for subsonic laminar flow around  

NACA 0012 airfoil 

 

 

 

Figure 5.12 The grid of Case 7 around NACA 0012 for subsonic laminar flow 
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Case 7 gives a very good result for the pressure coefficient. However, the peak of the 

skin friction coefficient is overestimated by 42 %, while the rest of the friction is in a 

good agreement with the reference data. In Figure 5.10, one can see that with the 

increase in the refinement cycle, the overestimating percent decreases. It can be 

estimated that if the number of refinement cycles is greater than 6, better results can 

be obtained for the peak. Yet, if one looks at the percent increase in time between 

sixth and seventh cases, it is not difficult to conclude that time elapsed for 

convergence increases significantly. 

 

 

Figure 5.13 Mach contours of Case 7 around NACA 0012 for subsonic laminar flow 

 

 

The grid used in Case 7 is shown in Figure 5.12. The finer meshes around leading 

edge, resulted from stagnation points can be seen easily. Moreover, the shear layers 

become finer with the solution adaptation. The grid around the wake formed after the 

trailing edge also become smaller by solution adaptation. In addition, Mach and 
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pressure contours for this case are given in Figure 5.13 and 5.14, respectively. The 

velocity profile at the upper surface is depicted at approximately 30 % of the chord in 

Figure 5.13. 

 

 

Figure 5.14 Pressure contours of Case 7 around NACA 0012 for subsonic laminar flow 

 

 

In addition to the cases where only Cartesian grids are used, two more cases, eighth 

and ninth cases, are considered in order to illustrate the hybrid mesh effect on 

laminar flows. 16 rows of quad cells are used for both cases. While multigrid 

technique is not used for the ninth case due to some problems regarding solution 

adapted grids with multigrid, it is used for the eighth case. The results are tabulated 

in Table 5.9. As shown in Table 5.8 and 5.9, hybrid grid gives a more accurate result 

for the grids where solution adaptation is not applied.  
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Table 5.9 Comparison of results with quad cells for subsonic laminar flow  

around NACA 0012 airfoil 

Case 
No Description CD 

Cell 
Number Time 

8 No solution refinement 0.0590 14562 
15 hours 16 minutes 54 

seconds 

9 Three solution refinement 0.0371 107250 
108 hours 46 minutes 36 

seconds 

- Reference (ARC2D) [40] 0.0321 40960 - 
 

 

In Figure 5.15, one can see the comparison done between grids without solution 

adaptation for pressure and skin friction coefficient distribution. One can say that the 

scattering which comes from different cell sizes in the first case diminishes 

significantly when hybrid mesh is used. Moreover, the peak of the skin friction 

coefficient is nearly captured in the eighth case unlike the first case where quad cells 

are not used. Moreover, the general distribution is closer to the reference result 

compared to the first case. However, the pressure distribution is still far from the 

reference distribution, as expected since the grid is not sufficiently finer at the critical 

regions. 

 

 

Figure 5.15 Comparison of Case 1, Case 8 and ARC2D for subsonic laminar flow  

around NACA 0012 airfoil 
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Figure 5.16 Pressure coefficient distribution which hybrid grid is compared 

with Cartesian grids and reference for subsonic laminar flow  

around NACA 0012 airfoil 

 

 

In Figures 5.16 and 5.17, one can see the comparison of the pressure and skin friction 

distributions of the Case 9 which is a hybrid mesh with three cycles of solution 

adaptation, with Case 3 which is a Cartesian mesh with three cycles of solution 

adaptation, Case 7 which is a Cartesian mesh with six cycles of solution adaptation 

and the reference ARC2D. It can be observed that the best result is obtained by Case 

7 for pressure distribution, whereas Case 9 gives the best result for skin friction 

distribution. The skin friction coefficient distribution along the entire surface is 

captured accurately including the peak at the trailing edge unlike the others. 

However, some deviations are observed at the trailing edge both for pressure and 

skin friction coefficients. As a result, it can be inferred that hybrid mesh gives more 
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accurate and non-scattering results for skin friction coefficients. However, the 

convergence rate increases significantly. In terms of pressure coefficient distribution, 

a significant effect is not observed for hybrid mesh on laminar flows. 

 

 

Figure 5.17 Skin friction coefficient distribution which hybrid grid is compared 

with Cartesian grids and reference for subsonic laminar flow  

around NACA 0012 airfoil 

 

 

 

5.2.2 Transonic Flow Around NACA 0012 

The second problem is the laminar flow around a NACA 0012 airfoil at a Mach 

number of 0.8, an angle of attack of 10 degrees and a Reynolds number of 500. The 

aim of this problem is to show that the code can be capable of solving very small 
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Reynolds number flows around an airfoil. Moreover, the importance of solution 

adaptation can be seen by comparing different solution adaptation cycles. 

 

Similar to the previous problem, seven different test cases are used for the transonic 

flow. For all of them, AUSMV flux calculation technique is used for inviscid flux 

calculations. The far-field boundary is placed 18 chords ahead of the airfoil. The 

interval between two solution refinement cycles is set to 15. Finally, normalized 

density residual at the last residual is set to -9 as the convergence criteria. Since there 

are some problems while using the multigrid technique for very low Reynolds 

numbers, it is not applied for Cases 1 to 6. Therefore, only for the seventh case, the 

multigrid technique is applied using three cycles after problems are fixed.  

 

Table 5.10 Common properties for transonic laminar flow 

MESH INPUTS 

Outer boundary size factor 18 

Quad cell usage No 

  

SOLUTION INPUTS 

Order of scheme 1 

Flux method AUSMV 

Multistage number 3 

CFL safety factor 1 

Refinement cycle interval 15 

log(RMS) for convergence -9 
 

 

In Table 5.11, one can see the coefficients of drag and lift as well as the convergence 

time for each case. Since there is no data found in literature for this problem, the 

comparisons can be done between test cases obtained by the code. However, the 

pressure coefficients and skin friction coefficients along the wall boundary can be 

compared with the reference [41], which is a numerical solver named NSC2KE. The 

mesh used in the reference [41] is a hybrid structured/unstructured mesh with 10924 

triangular cells and 5590 meshpoints. These are presented in Figures 5.18 and 5.19. 
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Table 5.11 Comparison of results for transonic laminar flow around NACA 0012 airfoil 

Case 
No Description CD CL 

Cell 
Number Time 

1 
No solution 
refinement 0.2256 0.6752 4040 

6 hours 38 minutes 26 
seconds 

2 
One solution 
refinement 0.2084 0.6156 7378 

10 hours 49 minutes 25 
seconds 

3 
Two solution 
refinement 0.1942 0.5598 12902 

17 hours 29 minutes 57 
seconds 

4 
Three solution 

refinement 0.1841 0.5195 23411 
28 hours 36 minutes 12 

seconds 

5 
Four solution 

refinement 0.1775 0.4931 45024 
37 hours 18 minutes 49 

seconds 

6 
Five solution 
refinement 0.1718 0.4705 87372 

77 hours 5 minutes 29 
seconds 

7 
Six solution 
refinement 0.1686 0.4589 176059 

34 hours 33 minutes 37 
seconds 

 

 

It can be seen that the drag and lift coefficients decrease while the solution 

refinement cycles increase. Furthermore, the solution time increases as the number of 

cycles increases. For Case 7, since three level multigrid is used as mentioned before, 

the solution time decreases considerably in comparison to Case 6. Since no 

numerical or experimental reference data available, the accuracy of these cases 

cannot be understood by examining the coefficients. However, Figures 5.18 and 5.19 

can be used for this comparison.  
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Figure 5.18 Pressure coefficient distribution for transonic laminar flow  

around NACA 0012 airfoil 

 

 

As it can be seen in Figures 5.18 and 5.19, the increase in the number of cycles leads 

to closer results relative to the reference data. For the initial test cases, the results 

deviated significantly, as the number of cycles is increased by 1. However, the 

difference becomes smaller for the last cases. For example, if one examines the sixth 

and seventh cases, there is a slight difference in pressure and skin friction 

coefficients. Moreover, these two cases give the best results. However, at the regions 

around the leading edge, the pressure coefficients are underestimated so that the peak 

cannot be captured accurately. However, the pressure distribution around the other 

sections of the geometry is in good agreement with the reference data. Moreover, it 
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can be said that the skin friction distribution are captured accurately despite slight 

differences at the lowest and highest points of the reference data. 

 

 

Figure 5.19 Skin friction coefficient distribution for transonic laminar flow around  

NACA 0012 airfoil 
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Figure 5.20 The grid of Case 7 around NACA 0012 for transonic laminar flow 

 

 

The grid used in the seventh case is shown in Figure 5.20. The regions around the 

leading edge become finer since there are large gradients arising from stagnation 

points. Moreover, since the flow is coming with an angle of attack, the wake is 

formed at the upper surface of the airfoil instead of the trailing edge, with an angle 

different than zero. Since some layers are created around the wake, these grids 

become smaller with the solution adaptation, as shown above. 

 

In Figures 5.21 and 5.22, Mach contours are presented for the reference data and 

Case 7, respectively. The similarity between these figures can be seen easily. In 

addition, the pressure contours and temperature contours for Case 7 are presented in 

Figures 5.23 and 5.24, respectively. 
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Figure 5.21 Mach contours of reference [41] around NACA 0012 for transonic laminar flow 

 

 

Figure 5.22 Mach contours for Case 7 around NACA 0012 for transonic laminar flow 
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Figure 5.23 Pressure contours for Case 7 around NACA 0012 for transonic laminar flow 

 

 

Figure 5.24 Temperature contours for Case 7 around NACA 0012 for transonic laminar flow 
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5.3 HIGH REYNOLDS NUMBER FLOW 

 

In this section, one problem is tested. In this problem, a multi-element airfoil is used 

in a subsonic flow. Since the Reynolds number is high, the flow regime is turbulent 

in this problem. Therefore, it is not expected to get close results compared to the 

experimental reference data found in reference [42]. The purpose for considering this 

high Reynolds number flow is to examine the effect of different hybrid meshes 

which composes of body-fitted and sufficiently smaller boundary layer grids and 

Cartesian grids outside the boundary layer. 

 

 

5.3.1 Subsonic Flow Around 30P30N 

In this problem, the subsonic flow around a three-element airfoil, i.e. 30P30N, is 

analyzed at a Mach number of 0.2, an angle of attack of 8 degrees and a Reynolds 

number of 9 million. While almost all parameters are kept to be the same in all test 

cases, the only changing parameter is the row number of the Quad cells. Row 

numbers are changed from 0 to 32 for five test cases and the results obtained from 

these cases are compared with the experimental results found in reference [42].  

 

Table 5.12 Common properties for subsonic high Reynolds number flow 

MESH INPUTS 

Outer boundary size factor 18 

Stretch factor 1.1 

  

SOLUTION INPUTS 

Order of scheme 1 

Flux method AUSMV 

Multistage number 3 

CFL 1 

Refinement cycle number 3 

Refinement cycle interval 15 

log(RMS) for convergence -8 
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For all cases, the inviscid flux calculation method is set to AUSMV. Three cycles of 

solution adaptation is used. The convergence is achieved when the normalized 

residual reaches -8. The relation between quad cells is determined by using a fixed 

stretch factor of 1.1 For this problem, the multigrid technique is not applied. The 

parameters that are kept to be the same for all cases are tabulated in Table 5.12. In 

this table, the test cases and the results obtained from these are presented. 

 

Table 5.13 Comparison of results for subsonic high Reynolds number flow  

around the 30P30N airfoil 

Case 
No Description CD CL 

Cell 
Number Time 

1 No Quad cells 0.2121 1.1911 38254 
6 hours 57 minutes 24 

seconds 

2 4 rows of Quad cells 0.2010 1.2182 62675 
33 hours 43 minutes 

47 seconds 

3 8 rows of Quad cells 0.2115 1.0278 82702 
49 hours 3 minutes 54 

seconds 

4 16 rows of Quad cells 0.2293 1.0181 111051 
97 hours 14 minutes 8 

seconds 

5 32 rows of Quad cells  0.2191  1.0351 172114  
104 hours 47 minutes 

12 seconds  
 

 

As it can be seen, the calculation time increases significantly when quad cells are 

used. Even though the cycle number of solution adaptation is the same for all cases, 

the cell number increases considerably as the number of rows increase It is difficult 

to comment on the drag and lift coefficients due to the fact that the reference results 

do not exist and the flow regime in these test cases is taken as laminar. 

 

In the Figure 5.25, the pressure coefficient distributions of test cases are presented in 

comparison to the experimental results found in the literature. For the first two cases, 

the results at the upper surface are closer to the experimental results even though 

there is a huge difference. With the increase in the row number, the results are 

getting further away from the one in the reference. Since the real flow is turbulent, 

the actual distribution is considerably far away from all of the test cases. It can be 

observed that the distribution cannot be captured totally around the slat. 
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Figure 5.25 Pressure coefficient distribution for subsonic high Reynolds number flow  

around the 30P30N airfoil 

 

 

The mesh used for Case 5 is depicted in Figure 5.26. One can also see the grids 

around the slat and the flap closely. In Figures 5.27 and 5.29, Mach and pressure 

contours from the fifth case are presented, respectively. The velocity profile on the 

upper surface of the main element is also shown at approximately 10% of the chord 

in Figure 5.27. Some streamlines are drawn in Figure 5.28. The vortex near the 

trailing edge of the main element of the airfoil can be observed. 

 

 

 

42 
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Figure 5.26 The mesh of the whole airfoil, the slat and the flap for Case 5 around the 

30P30N airfoil for the subsonic high Reynolds number flow 
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Figure 5.27 Mach contours for Case 5 around the 30P30N airfoil for subsonic high Reynolds 

number flow 

 

 

Figure 5.28 Streamlines for Case 5 around the trailing edge of the main element of the 

30P30N airfoil for the subsonic high Reynolds number flow 
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Figure 5.29 Pressure contours for Case 5 around the 30P30N airfoil  

for the subsonic high Reynolds number flow 
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CHAPTER 6 

 

CONCLUSION 

 

 

In this thesis work, the aim is to develop a two-dimensional laminar Navier-Stokes 

solver which uses finite volume method on Cartesian grids. As viscous flow, only the 

laminar flow regime is considered. Besides, inviscid flows are also considered by 

neglecting the viscous terms. 

 

Two cases are analyzed for the validation of the inviscid flow. In the first case, first 

and second order flux calculation schemes are applied with 0, 3 and 5 cycles of 

solution adaptation. It is observed that second order gives closer result relative to the 

results in the reference data when the number of solution adaptation cycle is low. For 

5 cycles of solution adaptation, nearly the same results are obtained with the first and 

second order schemes. In addition to this, the importance of solution refinement is 

shown for this case. While solution adaptation is not applied, the pressure 

distribution deviates in a considerable manner from the reference. However, with 5 

cycles of solution refinement, the results are getting very close to the reference data 

especially for the upper surface where the shock wave occurs, although the 

convergence rate increases excessively. 

 

In the second case, inviscid flux calculation methods are examined with and without 

the solution adaptation. While using solution refinement, all methods give nearly the 

same pressure distributions. The differences among them can be observed if solution 

refinement technique is not used. In the test cases, where the solution adaptation is 

not applied, Roe's method gives the best result for the lower surface whereas the best 

result for the upper surface is obtained by AUSM. In the test cases, where solution 
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adaptation is applied, the locations of shocks and peak point of pressure coefficients 

are captured very well. 

 

Low Reynolds number flow is tested with two problems. In these problems, 

generally Cartesian grids are used instead of hybrid grids since boundary layer is 

large enough so that Cartesian grids can produce the sufficient resolution for low 

Reynolds numbers. In the first problem, a subsonic flow with a Reynolds number of 

5000 is analyzed at a Mach number of 0.5. Tests are carried out by changing only 

one parameter which is the number of cycles of solution adaptation. It is observed 

that increase in the cycle number leads to more closer results relative to the reference 

data both for pressure and skin friction coefficient distributions. However, 

convergence time increases significantly especially for the last case for which 7 

cycles of solution adaptation is used. Yet, the best result is obtained from this case 

among the cases which quad cells are not used, whereas the peak of the skin friction 

coefficient is slightly overestimated. Moreover, two cases are used in order to 

observe the effect of hybrid grids on laminar flows. It is inferred that one can obtain 

more accurate and non-scattering results especially for skin friction coefficients 

thanks to hybrid grids. 

 

In the second problem for low Reynolds number flows, a transonic non-symmetric 

flow is analyzed at a relatively low Reynolds number of 500, a Mach number of 0.8 

and an angle of attack of 10 degrees around the NACA 0012 airfoil. The aim is to 

show that non-symmetric flows with relatively lower Reynolds numbers can be 

captured by the developed code. With the increase in the number of solution 

adaptation cycles, the results approach to the ones in the reference. In Case 7, where 

6 cycles of solution refinement is applied, the closest results with respect to the 

reference are obtained, whereas the location of the peak of the pressure distribution 

cannot be captured exactly. 

 

High Reynolds number flow is examined with one test problem. Since the flow 

regime is changed from laminar to turbulent at high Reynolds numbers, it is not 

expected to get accurate result with the developed code. The aim is to investigate the 
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hybrid meshes around the 30P30N airfoil. Some differences at the pressure 

distribution are obtained by using higher amounts of quad cells in the boundary 

layer. However, comparing them with the experimental reference result is not 

credible since the developed solver treats the flow laminarly. 

 

To accelerate the convergence rate, multigrid technique is implemented. The affects 

of it for inviscid and viscous flows are investigated according to the level number 

with and without solution adaptation, cycle and iteration number at each step. It is 

observed that level increase causes a larger speed up ratio both for inviscid and 

viscous flows. Moreover, if solution adaptation is applied to the grid, multigrid effect 

becomes more dominant so that the amount of acceleration increases significantly. 

For example, while a maximum acceleration of 6.27 is obtained in a grid, for which 

the solution adaptation is not applied, the speed up ratio increases to 16.98 for a 

solution adapted grid in an inviscid flow. Similarly, the speed up ratio is increased 

from 1.48 to 7.06 for viscous flows when solution adaptation is used.  

 

As a result of cycle tests, slightly slower convergence rates are obtained by the V-

Cycle compared to Saw-Tooth cycle since it requires more memory to store the 

forcing functions which are necessary during the iterations in the prolongation stage. 

Moreover, some iteration tests are performed to determine the optimum number of 

iterations for inviscid and viscous flows. 5 and 20 iterations at each step give the best 

acceleration amounts for inviscid and viscous flow, respectively. Besides, multigrid 

effect on hybrid grids are also investigated. In these tests, a larger speed up ratio 

compared to normal grid is obtained. It is inferred that the multigrid technique is 

more important in hybrid grids, since the cell number is significantly larger even if 

solution adaptation is not applied.  

 

Some problems are encountered when it is tried to use multigrid on hybrid grids 

where solution adaptation is applied. Elimination of these problems can be given as a 

future work. In addition, turbulence models can be added and the code can be 

converted into three-dimensional form as future works. 
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APPENDIX A 

 

CUT AND SPLIT CELLS 

 

 

As mentioned, there are a lot of alternatives available for cut and split cells. In this 

Appendix, the alternatives of cut and split cells are expressed in terms of their square 

and split indices, seperately. The gray regions represents the part inside the geometry 

of the cell. Moreover, the sorted intersection points are indicated with P1 to P4. 

 

 

A.1 CUT CELLS  

 

A.1.1 Square Index of 1 
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A.1.2 Square Index of 2  

 

A.1.3 Square Index of 4  

 

A.1.4 Square Index of 8 

 

A.1.5 Square Index of 3  
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A.1.6 Square Index of 6 

 

A.1.7 Square Index of 9 

 

A.1.8 Square Index of 12 

 

A.1.9 Square Index of 7 
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A.1.10 Square Index of 11 

 

A.1.11 Square Index of 13 

 

A.1.12 Square Index of 14 

 

 

 

 

 

 

 



A.2 SPLIT CELLS

 

A.2.1 Square Index of 1

A.2.2 Square Index of 2

 

 

163 
 

A.2 SPLIT CELLS 

A.2.1 Square Index of 1 

A.2.2 Square Index of 2 
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A.2.3 Square Index of 4 

 

A.2.4 Square Index of 8 

 

 

 

 

 



165 
 

A.2.5 Square Index of 3 

 

A.2.6 Square Index of 6 
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A.2.7 Square Index of 9 

 

A.2.8 Square Index of 12 
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A.2.9 Square Index of 7 
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A.2.10 Square Index of 11 
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A.2.11 Square Index of 13 
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A.2.12 Square Index of 14 
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A.2.13 Square Index of 5 
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A.2.14 Square Index of 10 
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A.2.15 Square Index of -15 

 

A.2.16 Square Index of -20 
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A.2.17 Square Index of -25 
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APPENDIX B 

 

SAMPLE FILE FORMATS 

 

 

B.1 SAMPLE MESH INPUT FILE 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

------------------------------------------------------------------------------------------------------ 

MESH GENERATION INPUTS 

------------------------------------------------------------------------------------------------------ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

A) AIRFOIL SELECTION 

------------------------------------------------------------------------------------------------------ 

NLR7301.dat  :  1) Airfoil Name 

------------------------------------------------------------------------------------------------------ 

 

B) GRID INPUTS 

------------------------------------------------------------------------------------------------------ 

20   :  2) Outer Boundary Size Factor 

8   :  3) Level of Uniform Mesh 

0   :  4) Shift Amount in X Axis 

0   :  5) Shift Amount in Y Axis 

------------------------------------------------------------------------------------------------------ 

 

C) BOX ADAPTATION INPUTS 

------------------------------------------------------------------------------------------------------ 
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1.5   :  6) Boundary Size Factor for X Axis 

2.5   :  7) Boundary Size Factor for Y Axis 

0.05   :  8) Body Division Factor 

------------------------------------------------------------------------------------------------------ 

 

 

D) CUT-SPLIT ADAPTATION INPUTS 

------------------------------------------------------------------------------------------------------ 

0   :  9) Cut-Split Adaptation Cycle 

------------------------------------------------------------------------------------------------------ 

 

E) CURVATURE ADAPTATION INPUTS 

------------------------------------------------------------------------------------------------------ 

0   : 10) Curvature Adaptation Cycle 

170   : 11) Threshold Angle 

------------------------------------------------------------------------------------------------------ 

 

F) BOUNDARY LAYER INPUTS 

------------------------------------------------------------------------------------------------------ 

0   : 12) Quad Cells Usage (1:Yes, 0:No) 

1.1   : 13) Stretch Factor 

16   : 14) Row Number 

------------------------------------------------------------------------------------------------------ 
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B.2 SAMPLE INVISCID SOLUTION INPUT FILE 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

------------------------------------------------------------------------------------------------------ 

SOLUTION INPUTS FOR INVISCID SOLVER 

------------------------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------------------------ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

A) FLOW INPUTS 

------------------------------------------------------------------------------------------------------ 

0.85   :  1) Mach Number 

1.0   :  2) Angle of Attack (in degrees) 

------------------------------------------------------------------------------------------------------ 

 

B) MEDIUM INPUTS 

------------------------------------------------------------------------------------------------------ 

1.4   :  3) Specific Heat Ratio 

------------------------------------------------------------------------------------------------------ 

 

C) SOLVER INPUTS 

------------------------------------------------------------------------------------------------------ 

1   :  4) Order of Scheme (1: First, 2: Second) 

1   :  5) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMV) 

3   :  6) Multistage Number (3: Three, 4: Four, 5: Five) 

1   :  7) CFL Safety Factor (between 0 and 1) 

0   :  8) Gradient Limiting (1:Yes, 0:No) 

------------------------------------------------------------------------------------------------------ 

 

D) SOLUTION ADAPTATION INPUTS 

------------------------------------------------------------------------------------------------------ 

0   :  9) Refinement Cycle (0 to 6) 
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15   : 10) Coefficient of Refinement Based On Residual 

------------------------------------------------------------------------------------------------------ 

 

E) MULTIGRID INPUTS 

------------------------------------------------------------------------------------------------------ 

1   : 11) Multigrid Type (1: Saw-Tooth, 2: v-Type) 

7   : 12) Multigrid Cycle (0 to 7) 

10   : 13) Fine Grid Iteration Cycle 

10   : 14) Mid Step Iteration Cycle 

10   : 15) Final Grid Iteration Cycle 

------------------------------------------------------------------------------------------------------ 

 

F) ITERATION INPUTS 

------------------------------------------------------------------------------------------------------ 

10   : 16) Iteration Interval of Writing to the Screen 

-8.   : 17) Minimum Log of RMS 

------------------------------------------------------------------------------------------------------ 

 

 

B.3 SAMPLE VISCOUS SOLUTION INPUT FILE 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

------------------------------------------------------------------------------------------------------ 

SOLUTION INPUTS FOR VISCOUS SOLVER 

------------------------------------------------------------------------------------------------------ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

A) FLOW INPUTS 

------------------------------------------------------------------------------------------------------ 

0.5   :  1) Mach Number 

0.0   :  2) Angle of Attack (in degrees) 

5000   :  3) Reynolds Number 
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0.72   :  4) Prandtl Number 

------------------------------------------------------------------------------------------------------ 

 

B) MEDIUM INPUTS 

------------------------------------------------------------------------------------------------------ 

1.4   :  5) Specific Heat Ratio 

273.15   :  6) Free Stream Temperature (in Kelvin) 

------------------------------------------------------------------------------------------------------ 

 

C) SOLVER INPUTS 

------------------------------------------------------------------------------------------------------ 

1   :  7) Order of Scheme (1: First, 2: Second) 

2   :  8) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMV) 

3   :  9) Multistage Number (3: Three, 4: Four, 5: Five) 

0.5   : 10) CFL Safety Factor (between 0 and 1) 

0   : 11) Gradient Limiting (1:Yes, 0:No) 

0.25   : 12) Time Step Coefficient 

------------------------------------------------------------------------------------------------------ 

 

 

D) SOLUTION ADAPTATION INPUTS 

------------------------------------------------------------------------------------------------------ 

0   : 13) Refinement Cycle (0 to 6) 

20   : 14) Coefficient of Refinement Based On Residual 

------------------------------------------------------------------------------------------------------ 

 

E) MULTIGRID INPUTS 

------------------------------------------------------------------------------------------------------ 

1   : 15) Multigrid Type (1: Saw-Tooth, 2: v-Type) 

0   : 16) Multigrid Level (0 to 7) 

10   : 17) Fine Grid Iteration Cycle 

10   : 18) Mid Step Iteration Cycle 
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10   : 19) Final Grid Iteration Cycle 

------------------------------------------------------------------------------------------------------ 

 

F) ITERATION INPUTS 

------------------------------------------------------------------------------------------------------ 

10   : 20) Iteration Interval of Writing to the Screen 

-6.   : 21) Minimum Log of RMS 

------------------------------------------------------------------------------------------------------ 

 

 

B.4 SAMPLE MESH OUTPUT FILE 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

------------------------------------------------------------------------------------------------------ 

MESH OUTPUT INFO 

------------------------------------------------------------------------------------------------------ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

NON-ADAPTED GRID 

------------------------------------------------------------------------------------------------------ 

 

H-GRID 

------------------------- 

Out Cell No             : 1883 

Cut Cell No              : 238 

Split Cell No            : 3 (2 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 2124 

Time                     : 0.25 seconds 

 

2H-GRID 
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------------------------- 

Out Cell No              : 680 

Cut Cell No              : 123 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No            : 0 

Total Cell No            : 805 

 

4H-GRID 

------------------------- 

Out Cell No              : 318 

Cut Cell No              : 65 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 385 

 

8H-GRID 

------------------------- 

Out Cell No              : 189 

Cut Cell No              : 37 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 226 

 

16H-GRID 

------------------------- 

Out Cell No              : 159 

Cut Cell No              : 19 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 178 

 

32H-GRID 



182 
 

------------------------- 

Out Cell No              : 130 

Cut Cell No              : 12 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 142 

 

64H-GRID 

------------------------- 

Out Cell No              : 98 

Cut Cell No              : 11 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 109 

 

128H-GRID 

------------------------- 

Out Cell No              : 54 

Cut Cell No              : 7 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 61 

------------------------------------------------------------------------------------------------------ 

 

 

1. ADAPTED GRID 

------------------------------------------------------------------------------------------------------ 

 

H-GRID 

------------------------- 

Out Cell No              : 3271 

Cut Cell No              : 249 
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Split Cell No            : 3 (2 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 3523 

 

2H-GRID 

------------------------- 

Out Cell No              : 932 

Cut Cell No              : 129 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 1063 

 

4H-GRID 

------------------------- 

Out Cell No              : 440 

Cut Cell No              : 66 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No            : 0 

Total Cell No            : 508 

 

8H-GRID 

------------------------- 

Out Cell No              : 209 

Cut Cell No              : 41 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 250 

 

16H-GRID 

------------------------- 

Out Cell No              : 164 

Cut Cell No              : 26 
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Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 190 

 

32H-GRID 

------------------------- 

Out Cell No              : 144 

Cut Cell No              : 16 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 160 

 

64H-GRID 

------------------------- 

Out Cell No              : 110 

Cut Cell No              : 11 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 121 

 

128H-GRID 

------------------------- 

Out Cell No              : 82 

Cut Cell No              : 9 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 91 

------------------------------------------------------------------------------------------------------ 

 

 

2. ADAPTED GRID 

------------------------------------------------------------------------------------------------------ 
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H-GRID 

------------------------- 

Out Cell No              : 5979 

Cut Cell No              : 266 

Split Cell No            : 3 (2 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 6248 

 

2H-GRID 

------------------------- 

Out Cell No              : 1735 

Cut Cell No              : 144 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 1881 

 

4H-GRID 

------------------------- 

Out Cell No              : 544 

Cut Cell No              : 78 

Split Cell No            : 2 (1 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 624 

 

8H-GRID 

------------------------- 

Out Cell No              : 274 

Cut Cell No              : 43 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 317 
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16H-GRID 

------------------------- 

Out Cell No              : 186 

Cut Cell No              : 31 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 217 

 

32H-GRID 

------------------------- 

Out Cell No              : 151 

Cut Cell No              : 24 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 175 

 

64H-GRID 

------------------------- 

Out Cell No              : 124 

Cut Cell No              : 15 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 139 

 

128H-GRID 

------------------------- 

Out Cell No              : 94 

Cut Cell No              : 9 

Split Cell No            : 0 (0 cells have 2 CV's) 

Quad Cell No             : 0 

Total Cell No            : 103 

------------------------------------------------------------------------------------------------------ 
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B.5 SAMPLE SOLUTION OUTPUT FILE 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

------------------------------------------------------------------------------------------------------ 

SOLUTION OUTPUT INFO 

------------------------------------------------------------------------------------------------------ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

DATA 

------------------------------------------------------------------------------------------------------ 

Time                     : 0 hours 5 minutes 56 seconds 

Iteration                : 4410 

log(RMS)                 : -10.02105 

------------------------------------------------------------------------------------------------------ 

 

COEFFICIENTS 

------------------------------------------------------------------------------------------------------ 

Drag Coefficient         : 0.04717 

Lift Coefficient         : 0.96187 

------------------------------------------------------------------------------------------------------ 
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APPENDIX C 

 

AIRFOIL COORDINATES 

 

 

In this appendix, coordinates of three airfoil are given as nodes. In a row, while first 

value is the node number, the second and third one represents the node's x and y 

coordinates, respectively. 

 

 

C.1 NACA 0012 

 

Table C.1 Coordinates of NACA 0012 

NODE X Y 

1 1.00000 0.00000 

2 0.98530 -0.00216 

3 0.96662 -0.00480 

4 0.94288 -0.00806 

5 0.91268 -0.01208 

6 0.87428 -0.01697 

7 0.84541 -0.02045 

8 0.81783 -0.02372 

9 0.79431 -0.02644 

10 0.76315 -0.02988 

11 0.73347 -0.03301 

12 0.70578 -0.03582 

13 0.68691 -0.03764 

14 0.66688 -0.03957 

15 0.64397 -0.04167 

16 0.62271 -0.04355 

17 0.59235 -0.04611 

18 0.56483 -0.04830 
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Table C.1 Coordinates of NACA 0012 (continued) 

19 0.54025 -0.05013 

20 0.51179 -0.05210 

21 0.49094 -0.05344 

22 0.47494 -0.05440 

23 0.45118 -0.05570 

24 0.42719 -0.05687 

25 0.40283 -0.05789 

26 0.36530 -0.05911 

27 0.33031 -0.05980 

28 0.29878 -0.06001 

29 0.26716 -0.05976 

30 0.23892 -0.05909 

31 0.21375 -0.05809 

32 0.18516 -0.05642 

33 0.16156 -0.05454 

34 0.13887 -0.05221 

35 0.12371 -0.05032 

36 0.10329 -0.04727 

37 0.09080 -0.04506 

38 0.07599 -0.04201 

39 0.06628 -0.03971 

40 0.05510 -0.03669 

41 0.04669 -0.03408 

42 0.03916 -0.03145 

43 0.03187 -0.02858 

44 0.02673 -0.02631 

45 0.02310 -0.02456 

46 0.02117 -0.02356 

47 0.01894 -0.02234 

48 0.01681 -0.02109 

49 0.01563 -0.02036 

50 0.01440 -0.01956 

51 0.01340 -0.01887 

52 0.01240 -0.01816 

53 0.01142 -0.01743 

54 0.01030 -0.01654 

55 0.00891 -0.01534 

56 0.00792 -0.01442 

57 0.00728 -0.01379 

58 0.00662 -0.01310 

59 0.00594 -0.01235 
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Table C.1 Coordinates of NACA 0012 (continued) 

60 0.00537 -0.01169 

61 0.00476 -0.01092 

62 0.00424 -0.01022 

63 0.00386 -0.00969 

64 0.00323 -0.00870 

65 0.00261 -0.00763 

66 0.00221 -0.00684 

67 0.00178 -0.00593 

68 0.00137 -0.00492 

69 0.00102 -0.00396 

70 0.00073 -0.00306 

71 0.00051 -0.00227 

72 0.00029 -0.00139 

73 0.00014 -0.00072 

74 0.00000 0.00000 

75 0.00014 0.00072 

76 0.00029 0.00139 

77 0.00051 0.00227 

78 0.00073 0.00306 

79 0.00102 0.00396 

80 0.00137 0.00492 

81 0.00178 0.00593 

82 0.00221 0.00684 

83 0.00261 0.00763 

84 0.00323 0.00870 

85 0.00386 0.00969 

86 0.00424 0.01022 

87 0.00476 0.01092 

88 0.00537 0.01169 

89 0.00594 0.01235 

90 0.00662 0.01310 

91 0.00728 0.01379 

92 0.00792 0.01442 

93 0.00891 0.01534 

94 0.01030 0.01654 

95 0.01142 0.01743 

96 0.01240 0.01816 

97 0.01340 0.01887 

98 0.01440 0.01956 

99 0.01563 0.02036 

100 0.01681 0.02109 
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Table C.1 Coordinates of NACA 0012 (continued) 

101 0.01894 0.02234 

102 0.02117 0.02356 

103 0.02310 0.02456 

104 0.02673 0.02631 

105 0.03187 0.02858 

106 0.03916 0.03145 

107 0.04669 0.03408 

108 0.05510 0.03669 

109 0.06628 0.03971 

110 0.07599 0.04201 

111 0.09080 0.04506 

112 0.10329 0.04727 

113 0.12371 0.05032 

114 0.13887 0.05221 

115 0.16156 0.05454 

116 0.18516 0.05642 

117 0.21375 0.05809 

118 0.23892 0.05909 

119 0.26716 0.05976 

120 0.29878 0.06001 

121 0.33031 0.05980 

122 0.36530 0.05911 

123 0.40283 0.05789 

124 0.42719 0.05687 

125 0.45118 0.05570 

126 0.47494 0.05440 

127 0.49094 0.05344 

128 0.51179 0.05210 

129 0.54025 0.05013 

130 0.56483 0.04830 

131 0.59235 0.04611 

132 0.62271 0.04355 

133 0.64397 0.04167 

134 0.66688 0.03957 

135 0.68691 0.03764 

136 0.70578 0.03582 

137 0.73347 0.03301 

138 0.76315 0.02988 

139 0.79431 0.02644 

140 0.81783 0.02372 

141 0.84541 0.02045 
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Table C.1 Coordinates of NACA 0012 (continued) 

142 0.87428 0.01697 

143 0.91268 0.01208 

144 0.94288 0.00806 

145 0.96662 0.00480 

146 0.98530 0.00216 

147 1.00000 0.00000 

 

 

C.2 RAE 2822 

Table C.2 Coordinates of RAE 2822 

NODE X Y 

1 0.00000 0.00000 

2 0.00060 0.00323 

3 0.00241 0.00642 

4 0.00541 0.00945 

5 0.00961 0.01269 

6 0.01498 0.01579 

7 0.02153 0.01875 

8 0.02923 0.02163 

9 0.03806 0.02445 

10 0.04801 0.02726 

11 0.05904 0.03004 

12 0.07114 0.03280 

13 0.08427 0.03552 

14 0.09840 0.03817 

15 0.11349 0.04073 

16 0.12952 0.04321 

17 0.14645 0.04558 

18 0.16422 0.04778 

19 0.18280 0.04987 

20 0.20215 0.05187 

21 0.22221 0.05377 

22 0.24295 0.05556 

23 0.26430 0.05713 

24 0.28622 0.05848 

25 0.30866 0.05967 

26 0.33156 0.06070 

27 0.35486 0.06155 
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Table C.2 Coordinates of RAE 2822 (continued) 

28 0.37851 0.06220 

29 0.40245 0.06263 

30 0.42663 0.06285 

31 0.45099 0.06286 

32 0.47547 0.06261 

33 0.50000 0.06212 

34 0.52453 0.06135 

35 0.54901 0.06030 

36 0.57336 0.05895 

37 0.59754 0.05733 

38 0.62149 0.05547 

39 0.64514 0.05339 

40 0.66845 0.05112 

41 0.69134 0.04857 

42 0.71378 0.04612 

43 0.73570 0.04338 

44 0.75705 0.04075 

45 0.77778 0.03795 

46 0.79785 0.03514 

47 0.81720 0.03231 

48 0.83578 0.02948 

49 0.85355 0.02670 

50 0.87048 0.02397 

51 0.88651 0.02131 

52 0.90160 0.01874 

53 0.91574 0.01627 

54 0.92886 0.01393 

55 0.94096 0.01170 

56 0.95200 0.00964 

57 0.96194 0.00775 

58 0.97077 0.00606 

59 0.97847 0.00455 

60 0.98502 0.00326 

61 0.99039 0.00218 

62 0.99459 0.00132 

63 0.99759 0.00069 

64 0.99940 0.00030 

65 1.00000 0.00000 

66 0.99940 -0.00001 

67 0.99759 0.00009 

68 0.99459 0.00026 
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Table C.2 Coordinates of RAE 2822 (continued) 

69 0.99039 0.00048 

70 0.98502 0.00071 

71 0.97847 0.00094 

72 0.97077 0.00113 

73 0.96194 0.00125 

74 0.95200 0.00125 

75 0.94096 0.00113 

76 0.92886 0.00081 

77 0.91574 0.00027 

78 0.90160 -0.00049 

79 0.88651 -0.00149 

80 0.87048 -0.00273 

81 0.85355 -0.00422 

82 0.83578 -0.00594 

83 0.81720 -0.00792 

84 0.79785 -0.01013 

85 0.77778 -0.01256 

86 0.75705 -0.01524 

87 0.73570 -0.01812 

88 0.71378 -0.02118 

89 0.69134 -0.02438 

90 0.66845 -0.02770 

91 0.64514 -0.03110 

92 0.62149 -0.03463 

93 0.59754 -0.03791 

94 0.57336 -0.04127 

95 0.54901 -0.04452 

96 0.52453 -0.04761 

97 0.50000 -0.05044 

98 0.47547 -0.05297 

99 0.45099 -0.05515 

100 0.42663 -0.05689 

101 0.40245 -0.05817 

102 0.37851 -0.05893 

103 0.35486 -0.05919 

104 0.33156 -0.05900 

105 0.30866 -0.05843 

106 0.28622 -0.05753 

107 0.26430 -0.05638 

108 0.24295 -0.05498 

109 0.22221 -0.05340 
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Table C.2 Coordinates of RAE 2822 (continued) 

110 0.20215 -0.05167 

111 0.18280 -0.04977 

112 0.16422 -0.04775 

113 0.14645 -0.04561 

114 0.12952 -0.04333 

115 0.11349 -0.04094 

116 0.09840 -0.03844 

117 0.08427 -0.03584 

118 0.07114 -0.03315 

119 0.05904 -0.03042 

120 0.04801 -0.02761 

121 0.03806 -0.02472 

122 0.02923 -0.02180 

123 0.02153 -0.01880 

124 0.01498 -0.01580 

125 0.00961 -0.01273 

126 0.00541 -0.00957 

127 0.00241 -0.00658 

128 0.00060 -0.00317 

129 0.00000 0.00000 

 

 

C.3 30P30N 

 

C.3.1 Coordinates of Main Body 

 

Table C.3 Coordinates of main element of 30P30N 

NODE X Y 

1 0.72270 0.05620 

2 0.72270 0.04620 

3 0.72270 0.03620 

4 0.72270 0.02620 

5 0.72270 0.01620 

6 0.72270 0.00620 

7 0.72270 0.00060 

8 0.71370 -0.00080 

9 0.69440 -0.00460 
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Table C.3 Coordinates of main element of 30P30N (continued) 

10 0.68050 -0.00700 

11 0.66700 -0.00930 

12 0.65390 -0.01160 

13 0.64020 -0.01420 

14 0.62580 -0.01650 

15 0.61130 -0.01910 

16 0.59560 -0.02140 

17 0.57940 -0.02370 

18 0.56080 -0.02630 

19 0.54090 -0.02890 

20 0.51930 -0.03090 

21 0.47890 -0.03510 

22 0.44230 -0.03760 

23 0.41550 -0.03870 

24 0.37110 -0.03960 

25 0.30900 -0.03970 

26 0.25970 -0.03840 

27 0.23060 -0.03740 

28 0.20740 -0.03610 

29 0.18750 -0.03480 

30 0.17080 -0.03400 

31 0.15500 -0.03250 

32 0.12800 -0.02990 

33 0.10330 -0.02760 

34 0.09220 -0.02650 

35 0.08290 -0.02540 

36 0.07280 -0.02420 

37 0.06330 -0.02280 

38 0.05450 -0.02150 

39 0.04650 -0.02040 

40 0.03980 -0.01940 

41 0.03220 -0.01830 

42 0.02550 -0.01690 

43 0.01960 -0.01590 

44 0.01520 -0.01500 

45 0.01060 -0.01380 

46 0.00670 -0.01230 

47 0.00390 -0.01010 

48 0.00190 -0.00720 

49 0.00040 -0.00320 

50 0.00000 0.00000 
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Table C.3 Coordinates of main element of 30P30N (continued) 

51 0.00070 0.00510 

52 0.00230 0.00980 

53 0.00550 0.01520 

54 0.00900 0.01930 

55 0.01320 0.02360 

56 0.01740 0.02710 

57 0.02120 0.02980 

58 0.02440 0.03200 

59 0.02710 0.03370 

60 0.03060 0.03580 

61 0.03360 0.03760 

62 0.04170 0.04170 

63 0.05100 0.04650 

64 0.06020 0.05020 

65 0.07080 0.05380 

66 0.08110 0.05730 

67 0.09490 0.06090 

68 0.10820 0.06400 

69 0.12630 0.06760 

70 0.14670 0.07010 

71 0.18040 0.07290 

72 0.21540 0.07520 

73 0.25190 0.07750 

74 0.27480 0.07900 

75 0.30300 0.08000 

76 0.39250 0.08250 

77 0.41250 0.08250 

78 0.43250 0.08250 

79 0.45250 0.08250 

80 0.47250 0.08250 

81 0.49250 0.08250 

82 0.51060 0.08250 

83 0.56240 0.08120 

84 0.59670 0.07940 

85 0.62530 0.07880 

86 0.64810 0.07740 

87 0.66850 0.07620 

88 0.68810 0.07530 

89 0.70610 0.07390 

90 0.72130 0.07270 

91 0.73660 0.07140 
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Table C.3 Coordinates of main element of 30P30N (continued) 

92 0.75060 0.07020 

93 0.76290 0.06910 

94 0.77630 0.06780 

95 0.78740 0.06650 

96 0.79940 0.06510 

97 0.81250 0.06360 

98 0.82530 0.06230 

99 0.84010 0.06030 

100 0.84960 0.05930 

101 0.85870 0.05770 

102 0.86820 0.05620 

103 0.83820 0.05620 

104 0.80820 0.05620 

105 0.75820 0.05620 

106 0.72270 0.05620 

 

 

C.3.2 Coordinates of Slat 

 

Table C.4 Coordinates of slat of 30P30N 

NODE X Y 

1 -0.10130 -0.06720 

2 -0.10250 -0.07260 

3 -0.10340 -0.07780 

4 -0.10350 -0.08460 

5 -0.10310 -0.08670 

6 -0.10170 -0.09190 

7 -0.10030 -0.09540 

8 -0.09940 -0.09800 

9 -0.09810 -0.09920 

10 -0.09370 -0.10360 

11 -0.09840 -0.10450 

12 -0.10430 -0.10590 

13 -0.11080 -0.10720 

14 -0.11280 -0.10750 

15 -0.12270 -0.10780 

16 -0.12940 -0.10750 

17 -0.13290 -0.10660 
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Table C.4 Coordinates of slat of 30P30N (continued) 

18 -0.13650 -0.10540 

19 -0.13950 -0.10300 

20 -0.14120 -0.10010 

21 -0.14260 -0.09810 

22 -0.14300 -0.09630 

23 -0.14320 -0.09330 

24 -0.14260 -0.08810 

25 -0.14010 -0.08200 

26 -0.13650 -0.07630 

27 -0.13150 -0.06920 

28 -0.12880 -0.06550 

29 -0.12500 -0.06130 

30 -0.12180 -0.05770 

31 -0.11920 -0.05460 

32 -0.11340 -0.04850 

33 -0.10600 -0.04190 

34 -0.10180 -0.03770 

35 -0.09700 -0.03370 

36 -0.09240 -0.02980 

37 -0.08720 -0.02550 

38 -0.08210 -0.02120 

39 -0.07770 -0.01760 

40 -0.07280 -0.01360 

41 -0.06740 -0.00900 

42 -0.07040 -0.01280 

43 -0.07410 -0.01720 

44 -0.07770 -0.02190 

45 -0.08130 -0.02670 

46 -0.08380 -0.03020 

47 -0.08640 -0.03450 

48 -0.08880 -0.03880 

49 -0.09110 -0.04290 

50 -0.09240 -0.04530 

51 -0.09370 -0.04770 

52 -0.09490 -0.05000 

53 -0.09610 -0.05260 

54 -0.09730 -0.05530 

55 -0.09870 -0.05940 

56 -0.10000 -0.06290 

57 -0.10130 -0.06720 
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C.3.3 Coordinates of Flap 

 

Table C.5 Coordinates of flap of 30P30N  

NODE X Y 

1 1.01170 0.01320 

2 1.01520 0.01130 

3 1.01870 0.00910 

4 1.02140 0.00780 

5 1.02490 0.00560 

6 1.03080 0.00220 

7 1.03680 -0.00150 

8 1.04180 -0.00470 

9 1.04660 -0.00800 

10 1.05090 -0.01080 

11 1.05680 -0.01500 

12 1.06280 -0.01920 

13 1.06820 -0.02330 

14 1.07500 -0.02790 

15 1.07950 -0.03180 

16 1.08490 -0.03590 

17 1.09050 -0.04030 

18 1.09660 -0.04510 

19 1.10280 -0.05000 

20 1.11030 -0.05590 

21 1.11710 -0.06170 

22 1.12400 -0.06720 

23 1.12970 -0.07190 

24 1.13750 -0.07870 

25 1.14260 -0.08360 

26 1.14810 -0.08850 

27 1.15540 -0.09500 

28 1.16050 -0.09980 

29 1.16650 -0.10590 

30 1.17080 -0.11000 

31 1.17610 -0.11530 

32 1.18160 -0.12060 

33 1.18630 -0.12540 

34 1.19090 -0.12990 

35 1.19590 -0.13530 

36 1.19000 -0.13080 
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Table C.5 Coordinates of flap of 30P30N (continued) 

37 1.18500 -0.12690 

38 1.17980 -0.12300 

39 1.16040 -0.10880 

40 1.15270 -0.10280 

41 1.14360 -0.09620 

42 1.13400 -0.08980 

43 1.12520 -0.08410 

44 1.10930 -0.07440 

45 1.09680 -0.06730 

46 1.08400 -0.06050 

47 1.07290 -0.05480 

48 1.05910 -0.04790 

49 1.04360 -0.04090 

50 1.02530 -0.03310 

51 1.00690 -0.02560 

52 0.98020 -0.01560 

53 0.96800 -0.01110 

54 0.95330 -0.00630 

55 0.94460 -0.00300 

56 0.93890 -0.00050 

57 0.93240 0.00330 

58 0.92810 0.00740 

59 0.92490 0.01140 

60 0.92170 0.01590 

61 0.92010 0.02050 

62 0.92010 0.02510 

63 0.92140 0.02910 

64 0.92370 0.03270 

65 0.92670 0.03500 

66 0.93040 0.03690 

67 0.93430 0.03770 

68 0.93940 0.03840 

69 0.94530 0.03790 

70 0.94980 0.03730 

71 0.95540 0.03620 

72 0.96110 0.03500 

73 0.96750 0.03270 

74 0.97440 0.03030 

75 0.98010 0.02810 

76 0.98480 0.02620 

77 0.99340 0.02250 
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Table C.5 Coordinates of flap of 30P30N (continued) 

78 0.99800 0.02020 

79 1.00320 0.01760 

80 1.00810 0.01510 

81 1.01170 0.01320 

 

 

 


