DEVELOPMENT OF A TWO-DIMENSIONAL
NAVIER-STOKES SOLVER FOR LAMINAR FLOWS
USING CARTESIAN GRIDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
MEHMET SERKAN SAHIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
MECHANICAL ENGINEERING

MARCH 2011



Approval of the thesis:

DEVELOPMENT OF A TWO-DIMENSIONAL NAVIER-STOKES SOLVER
FOR LAMINAR FLOWS USING CARTESIAN GRIDS

submitted by MEHMET SERKAN SAHIN in partial fulfillment of the
requirements for the degree of Master of Science in Mechanical Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral
Head of Department, Mechanical Engineering

Prof. Dr. M. Haluk Aksel
Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Asst. Prof. Dr. Ciineyt Sert
Mechanical Engineering Dept., METU

Prof. Dr. M. Haluk Aksel
Mechanical Engineering Dept., METU

Prof. Dr. Ahmet S. Ucer
Mechanical Engineering Dept., METU

Asst. Prof. Dr. M. Metin Yavuz
Mechanical Engineering Dept., METU

Prof. Dr. Ismail Hakki Tuncer
Aerospace Engineering Dept., METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
and results that are not original to this work.

Name, Last Name ~ : Mehmet Serkan SAHIN

Signature

il



ABSTRACT

DEVELOPMENT OF A TWO-DIMENSIONAL NAVIER-STOKES SOLVER
FOR LAMINAR FLOWS USING CARTESIAN GRIDS

Sahin, Mehmet Serkan
M.Sc., Department of Mechanical Engineering
Supervisor :  Prof. Dr. M. Haluk Aksel

March 2011, 202 pages

A fully automated Cartesian/Quad grid generator and laminar flow solver
have been developed for external flows by using C++. After defining the input
geometry by nodal points, adaptively refined Cartesian grids are generated
automatically. Quadtree data structure is used in order to connect the Cartesian cells
to each other. In order to simulate viscous flows, body-fitted quad cells can be
generated optionally. Connectivity is provided by cut and split cells such that the
intersection points of Cartesian cells are used as the corners of quads at the outmost
row. Geometry based adaptation methods for cut, split cells and highly curved
regions are applied to the uniform mesh generated around the geometry. After
obtaining a sufficient resolution in the domain, the solution is achieved with cell-
centered approach by using multistage time stepping scheme. Solution based grid
adaptations are carried out during the execution of the program in order to refine the
regions with high gradients and obtain sufficient resolution in these regions.
Moreover, multigrid technique is implemented to accelerate the convergence time
significantly. Some tests are performed in order to verify and validate the accuracy

and efficiency of the code for inviscid and laminar flows.

v



Keywords: Cartesian Grid Generation, Quad Grid Generation, Navier-Stokes
Equations, Least Squares Reconstruction, Flux Vector Splitting, Approximate

Riemann Solver of Roe, Multigrid



(0Y/

KARTEZYEN HESAPLAMA AGLARI KULLANILARAK LAMINER AKISLAR
ICIN IKi BOYUTLU BIR NAVIER-STOKES COZUCUSU GELISTIRILMESI

Sahin, Mehmet Serkan
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. M. Haluk Aksel

Mart 2011, 202 sayfa

Di1s akis i¢in tamamen otomatiklestirilmis Kartezyen/Dortgen hesaplama agi
iireticisi ve laminer akis ¢oziiciisii, C++ programlama dili kullanilarak gelistirilmistir.
Agsal noktalar ile geometri tanimlandiktan sonra, uyarlamali Kartezyen hesaplama
aglar1 otomatik olarak yaratilmistir. Kartezyen hiicreleri birbirine baglamak igin
dortlii agac veri yapist kullanilmistir. Viskoz akislar1 simule etmek i¢in, gdvde
uyumlu dortgen hiicreler istege bagli olarak yaratilmistir. Hiicreler arasindaki iliski,
sigirilmig geometrinin ¢evresindeki Kartezyen hiicrelerin kesim noktalarini en dis
siradaki dortgenlerin koseleri ile gakistirarak kurulmustur. Geometri ¢evresinde ve
bu bolgedeki cok egimli yerlerde, diizenli hesaplama agina geometri bazl
uyarlamalar uygulanmistir. Calisma alaninda yeterli bir ¢oziintirlilk elde edildikten
sonra, ¢Oziim hiicre merkezli bir yaklasimla, ¢ok kademeli zaman uygulamasi
kullanilarak elde edilmistir. Yiiksek gradyanli bolgeleri siklastirmak ve buralarda
yeterli bir ¢ozilniirliik elde etmek i¢in ¢oziime bagli uyarlamalar program calisirken
gergeklestirilmistir. Ayrica, yakinsamanin arttirilmasi i¢in ¢oklu ag yontemi koda
eklenmistir. Kodun dogrulugu ve verimliligini dogrulamak ig¢in viskoz olmayan

akislar ve laminer akislar i¢in bazi testler yapilmstir.

vi



Anahtar Kelimeler: Kartezyen Ag Uretimi, Dortgen Ag Uretimi, Navier-Stokes
Denklemleri, Yeniden Yapilandirma, Aki Vektor Ayristirmasi, Roe'nun Yaklasik

Riemann Coziiciisii, Coklu Ag Y ontemi

vii



Dedicated to my family, Necla, Miisliim, Sercan Sahin
and Aysegiil Baylas...

viil



ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis advisor, Prof. Dr.
Haluk AKSEL for their guidance and supports throughout my research. Besides, I
would like to give my gratitude to Mehtap Cakmak and Bercan Siyahhan. Finally, I
thank to my parents, my brother and my friends (especially Aysegil Baylas) for

supporting me throughout my whole education life.

X



TABLE OF CONTENTS

ABSTRACT ...ttt s v
OF ..o vi
ACKNOWLEDGEMENTS........ooiiiiiieieeeese e ix
TABLE OF CONTENTS.......oooiiieeee ettt X
LIST OF TABLES. ..ottt Xiv
LIST OF FIGURES . ......cooiiiiiiiiiieeeeee ettt XVi
LIST OF SYMBOLS . ...t XX1
CHAPTERS
1. INTRODUCTION.....ccitiiiiiiiiiieteieeeseee ettt s 1
1.1 Mesh GeNeration.........cocueveerueeierieenienienieesee st 2
1.1.1 Structured Meshing...........cccccveeeeiievcieeniieeciee e 2
1.1.2 Unstructured Meshing...........cccceeevvveerieeenieeeeeeeenen. 4
1.1.3 Cartesian Meshing...........ccccveevieviienieeiiienieeieesieeeeens 5
1.2 Literature ReVIEW........coeevuiiierieiieieriieeeete e 7
1.3 Organization of the Thesis..........ccceevevierciieiicieecie e, 12
2. MESH GENERATION.......cooiiiiiiiiee ettt 14
2.1 Data STIUCTUTE. ...c..eeiriiieiiieieeiieeie ettt 14
2.1.1 Quadtree Data Structure..........ccccccevvveeerieecneeeereeeeenen. 15
2.1.2 CONNECLIVILY...veieeiieeeiieeeieeeeteeerireeeeeeeeteeeeaeeeeeree e 17
2.1.3 Stored Variables..........cocceeriiiiiiiiiiiiiieeieeee e 19
2.2 Cartesian Grid Generation............ceccueevueereeenieenieenieenieenieeneens 26
2.2.1 Uniform Mesh Generation...........c.cceeceevereenieeniennenne. 26
2.2.2 Cell Type Determination.............ccceeeeveereeeeeeeneeenenenne 29
2.2.2.1 Corner Index Determination.............cc.......... 29
2.2.2.2 Square and Split Indexes...........cccveerrerenee. 31
2.2.2.3 Split Cells Having Two Control Volumes....35
2.2.3 Geometric Adaptations ...........cceeeeeeeiienieniieenienieeneen. 35



2.2.3.1 Box Adaptation...........ccceceerveenreenreenieennnenn, 36

2.2.3.2 Cut-Split Adaptation............cceeeeerreerueennnnnne. 37

2.2.3.3 Curvature Adaptation............cceeeeveeeeveeennnen. 38

2.2.3.4 One Level Rule.......ccccoooiiniiiiiiniiiienee, 40

2.3 Quad Grid Generation.............cccueeeeveeeeieeeeieeeeeeeeeeeeeeree e e 42
2.3.1 Boundary Layer Setting..........cccceeveevveenveerrenieenneennn. 43

2.3.1.1 Setting Puffed Geometry............cccvveeuvennee. 43

2.3.1.2 Handling of Highly Curved Parts................. 44

2.3.1.3 Negative Volume Elimination...................... 47

2.3.2 Quad Cell Generation............cccoueeeeueeeecneeeeineeeereeeenennn 49

2.3.2.1 CoNNECtIVILY...ccuveeeeciieeeiieeeiieecree e 49

3. NUMERICAL SOLUTION.......cccoiiiiiieieeeeeeeee e 52
3.1 Governing EQUAtioNS..........cceevieeriierieeiiienieeieesiee e eiee e 53

3.1.1 Two-Dimensional Governing Equations In

Integral FOrm.........cccoeeviiieiiiieieeeeeeeee e 53

3.1.2 Non-Dimensionalization..............cccceeevuveeecrveescneeenenenn. 56

3.1.3 Boundary Conditions............c.ccovverveeruienueenneeneeeneennns 59

3.1.3.1 Far-Field Boundary Conditions.................... 59

3.1.3.2 Wall Boundary Conditions............c..cccuveen.... 60

3.2 Spatial and Temporal Discretization...........ccceeeevveercreeercreeennenns 62
3.2.1 Spatial DisCretization..........ccccceeeeeeviienieeeieeneeeeeennen 62

3.2.2 Temporal Discretization............cceevverveerieeneeenieennenne. 63

3.2.2.1 Multistage Time Stepping........cccceeevveereveenns 64

3.2.3 Time Step Calculations..........ccceevevieeeieencieeniieeenenn 65

3.2.3.1 Inviscid Time Step Computation.................. 66

3.2.3.2 Viscous Time Step Computation.................. 67

3.2.3.3 CFL Cut-Back Procedure..........cccccccuereennene 68

3.3 Inviscid Flux Calculations...........ccoceeveeriiiiieniiieienieeeenee 69
3.3.1 Approximate Riemann Solver of Roe......................... 71

3.3.2 Liou's Advection Upstream Splitting Method
(AUSM)..iiiiiiinececeeseetnee et 73
3.3.3 AUSMD Method.......cccooeieirienieininieeeieeeeeeee 74

X1



3.3.4 AUSMYV Method........cccoveniinininininiiiiieicicncncns 76

3.4 RECONSIUCION. ..c..veiieiieiiieiieieeie ettt 77
3.4.1 Least Squares Reconstruction...........cccceeeeevveeecveeennenn. 78
3.4.2 Gradient Limiting..........cccceeevieniiiniieniieienie e 79
3.5 Viscous Flux Calculations............ccceeeuevienenienennenienceieeeene 81
3.5.1 Reconstruction for Viscous FluX.........cccceeeeviiriennennee. 81
3.6 Calculation of the Coefficients...........ccoecueerienieenieisienieecenne 83
3.6.1 Pressure Coefficient.........cccceevienieniiieniiiiieieeeeee, 83
3.6.2 Skin Friction Coefficient..........cccoceeverieneenienieniennene 84
3.7 Solution Adaptation........c.cceeveeierierieeieniereeie e 85
4. MULTIGRID METHOD...........ocoiiiiiieieeeeeeeee e 87
4.1 Multigrid Concept for Non-Linear Equations..............ccceeeuveennn. 88
4.1.1 Fine Grid Iterations.........ccceeeereenierieneenienieneeeneens 89
4.1.2 RESIIICHON. c..eeiieeeeiieciieiteie et 90
4.1.3 Prolongation..........eeecuveeveiieeniieeriee e ceeeeee e 91
4.1.4 Correction and Final Iterations..........cccccceoeeeeviennennee. 92
4.1.5 Modifications for the Second Order of Scheme.......... 93
4.2 Coarsening PrOCESS.........cccvveruiieiiienieeieenie et 94
4.2.1 Coarsening of Cartesian Cells...........ccccvveevievcreennnenn. 95
4.2.2 Coarsening of Quad Cells.........cccccvveevieercieeniieeienns 97
4.3 Multigrid Effect On Inviscid FIOW..........cccoocvieiiieiieniiciee, 99
4.3.1 Level Test Without Solution Adaptation For
Inviscid FIOW.....cccooiiiiiiiiieeeee 99
4.3.2 Level Test With Solution Adaptation For
Inviscid FIOW.....cccoooiiiiiiiieeeee 101
4.3.3 Cycle Test For Inviscid Flow.........cccccoevieiiieniiencnnne. 102
4.3.4 Tteration Test For Inviscid Flow.........ccccceoeviininenne. 104
4.4 Multigrid Effect On Viscous FIoW........cccccocvveiviiienciieniiecies 105
4.4.1 Level Test Without Solution Adaptation For
ViSCoUS FIOW....ccouiiiiiiiiiiiiiiciecceeeeeeee 106
4.4.2 Level Test With Solution Adaptation For
ViScous FIOW......ooiiiiiiiiiiiiiiceeeeee e, 107



4.4.3 Cycle Test For Viscous FIow.........cccccoeeieriieniienenne. 109

4.4.4 Tteration Test For Viscous Flow..........cccceeervinienenne. 111

4.4.5 Hybrid Mesh Test For Viscous Flow.........c..c.cccceee..e. 112

5. RESULTS AND DISCUSSIONS.......oooioieieieeieeee e 115

5.1 InVISCIA FIOW ...ttt 115

5.1.1 Transonic Flow Around RAE 2822........c.cccccveuvnnenne. 116

5.1.2 Supersonic Flow Around NACA 0012....................... 121

5.2 Low Reynolds Number Flow..........cccccueeeiiieiiiieeiieeieeeeeee 127

5.2.1 Subsonic Flow Around NACA 0012......cccccccevvverunenee. 128

5.2.2 Transonic Flow Around NACA 0012........ccccecvevennen. 137

5.3 High Reynolds Number FIow...........ccccovieiiiieiiiiiiieecieeeieea, 145

5.3.1 Subsonic Flow Around 30P30N..........cccceceeiinniinnnen. 145

6. CONCLUSION......oiiiiiiiieeee ettt st 151

REFERENCES........cccoootiitiiiiiieeeeseee ettt 154
APPENDICES

A. CUT AND SPLIT CELLS.......cooiiiiieeeeeeee e 159

AT CUt CellS..ciiiiiiiiiiieieeeeeeee e 159

A2 SPLE CelIIS ittt 163

B. SAMPLE FILE FORMATS.......cooiiiiiieeeeeeeee e 175

B.1 Sample Mesh Input File.......ccccoovieeiiiiiiiiiiieeeee e, 175

B.2 Sample Inviscid Solution Input File..........cccccoeveeiiiininniiannne. 177

B.3 Sample Viscous Solution Input File...........ccccocevniiiniiniiannnne. 178

B.4 Sample Mesh Output File.........cccceeoiieiiiiiiiieeeeeeeeeeen 180

B.5 Sample Solution Output File.......c.ccoovvvvviiiiiiiiiieieeee e, 187

C. AIRFOIL COORDINATES.......c.ooiiiiieeeeeeeeee e 188

C.INACA 0012ttt 188

C.2RAE 2822ttt 192

C.3 30P30N..ciiieee ettt ettt et st 195

Xiii



TABLES

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 5.1
Table 5.2
Table 5.3

Table 5.4

LIST OF TABLES

Determination of neighbors of a second level cell........................... 19
GEOMELTIC POINLETS. .. eeeuviieiieiiieeiieriieeieenieeereeseeeereeneeeebeeaeeseseeneeas 21
CONNECLIVILY POINLETS....cuuvierieriieiieriieeiieniieereesieeereesteeeereeseeseee e 22
Cell tYPEe POINLETS. .. .vvieeiiiieeciiieeiieeeiteeetee e et e e sreeeseaeeeaaeeesaeessbeeenes 23
SOIUtION POINLETS.....vveeeerieeiiieeiieeeiie et e ecre e et e ere e aaeeereeeereeeeenes 24
Solution adaptation POINLETS........cccueervierirerieerieeieeeriie e eree e eeeens 24
MUltigrid POINLETS.....eevieeiieeiiieiieriie ettt ettt et ere e e sereeeee 25
StAtiC POINLETS ...uvvveeirieeiieeeiieeeee e et e e et e et e et e e e seaeeeaaeeeseeessbeeenes 25
CFL numbers and stage coefficients for the first order scheme....... 65
CFL numbers and stage coefficients for the second order scheme.. 65

Cell numbers of grids used in multigrid for RAE 2822 airfoil........ 95

Level test results without solution adaptation for inviscid flow...... 100
Level test results with solution adaptation for inviscid flow........... 101
Cycle test results for inviscid floW.........ccoeevveeviiiriienieiiieiieeieeee 103
Iteration test results for inviscid flow........ccccoeveviiniiiincincnicne 104
Level test results without solution adaptation for viscous flow....... 106
Level test results with solution adaptation for viscous flow............ 108
Cycle test results for viscous flow..........cceecieriieiiinieeiiieiecieeee 110
Iteration test results for viscous flow.........ccceceveevinieninncnienennne. 112
Hybrid mesh test results for viscous flow..........ccceecveeeeiiencieennnens 113
Test problems for inviscid flOW..........cccvveeiciiieiiiieeriiecieececeee s 116
Common properties for transonic inviscid flow..........cccceeeerennene. 116

Comparison of results for transonic inviscid flow around
RAE 2822 airfoil....c..coiiiiiiiiiiiciiicieceeccee 117

Common properties for supersonic inviscid flow..........cccveeenennnee. 122

X1V



Table 5.5

Table 5.6
Table 5.7

Table 5.8

Table 5.9

Table 5.10
Table 5.11

Table 5.12
Table 5.13

Table C.1
Table C.2
Table C.3
Table C.4
Table C.5

Comparison of results for supersonic inviscid flow around

NACA 0012 Irfoil..cccveeseeeierieieeiereeeeeeeee e
Test problems for low Reynolds number flow............cccceeeeveennnnnn.
Common properties of the cases without quad cells

for subsonic laminar flow..........ccooeeveriiniininieneee
Comparison of results without quad cells for subsonic laminar
flow around NACA 0012 airfoil........cccceviiieniiiiiiiiiiieieeieeee
Comparison of results with quad cells for subsonic laminar

flow around NACA 0012 airfoil........ccccoveeverienieniniiniceneeeee,
Common properties for transonic laminar flow..........c..cccceeveneenen.
Comparison of results for transonic laminar flow around

NACA 0012 @IrfOil...ccuieeeeieeieeeieeieeee e
Common properties for subsonic high Reynolds number flow.......
Comparison of results for subsonic high Reynolds number flow
around 30P30N airfoil........ccccooiiiiiiiiiii e,
Coordinates Of NACA 0012....c..coiiiiiiiiiieiieeieeeeeee e
Coordinates Of RAE 2822......cccooviiiiiiiiiiiieieeiecereeeeeeee e
Coordinates of main element of 30P30N.........ccccoovevieniniienieniennene
Coordinates of slat 0f 30P30N.......c.coooiiiiiiiiiieee e,
Coordinates of flap 0f 30P30N........ccooviieeiiieeieeeeeee e

XV



FIGURES

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16

Figure 2.17
Figure 2.18
Figure 2.19

LIST OF FIGURES

Ilustration of a structured Mesh...........cccoeeviiieiiieeiiieceeceeeee, 3
[ustration of an unstructured mesh...........ccooceeveriiiieniieneniineeens 4
[ustration of a Cartesian mesh..........cocoveeviriiniiniiiineceee 6
[lustration of @ hybrid mesh..........ccccceeviiieiiiieeeeeee, 7
[lustration of root cell and its children............ccceeevieeiiieniiienees 16
Children-parent relationship in a tree VieW..........ccceeveevieneeiennenne. 17
Neighbors of top left cell of @ root........coeevveiiiiiiiiiiieiiieeee, 18
Neighbors of a second level cell.........oovviiieviiieiiiiiiiieeeecee, 18
Uniform meshes around a two-element airfoil with

5,7a0d 9 CYCIES...ooiiieiiieiieeiieeeee e 28
Ray-casting method...........cccoeviiiiiiiiiniicieee e 30
[lustration of sorting intersection PoINts..........ccceevveeerveerereeercneeenns 31
Determination of square iINdeX.........c.cceeeveeerieeeiieenieeeeieeeie e 32
Example to a split cell.......cccoocuieriieniiiiiiiiciieeeeee e, 33
Split cells having minus square indiCes..........cccveervrerieenreerieennnennn. 33
Alternatives of a cut cell having a square index of 6....................... 34
Two alternatives of a split cell having a square index of 6.............. 34
Conversion of split cells into two cut cells..........eceeeviienieniienenne. 35
Box adaptation around a two-element airfoil............cccceeeerienennene. 37
Cut-split adaptation around a two-element airfoil........................... 38

Curvature angle determination directing outside (a) and inside (b)

OF the ZEOMELIY....ooiiiiiieeiieie e 39
Curvature adaptation around a two-element airfoil......................... 40
One level TUle......c.oviiiiiiiii e 41

Closer look to the geometry to illustrate one level rule for

cut-split and curvature adaptations...........cccccveeeeveeerieeeiieeseieeenenn 42

XVvi



Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25
Figure 2.26
Figure 2.27
Figure 2.28
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Creation of a new node for puffed geometry.........cccceevvevvervrenncnnne. 44

Original and puffed geometry without handling convex parts......... 45

Creation of a puffed node for highly curved part.............cceeennee. 46
Original and puffed geometry with handling convex parts.............. 47
Negative volume at a Concave reioN........ceevuverveerveerreencveenreenneens 48
Boundary layer after elimination of negative volumes.................... 48
Relation between a quad cell and a Cartesian cell........................... 49
Relation between a Cartesian cell and its two quad cells................. 50
Hybrid mesh around slat of a three-element airfoil......................... 50
Far-field boundary conditions.............cccceeveeeieeniienieenieeieeeeen 60
Wall boundary conditions for inviscid flow...........ccccveevcviienieennneen. 61
Wall boundary conditions for viscous flow..........cccccceeevvieenieennnnen. 61
Schematic view of viscous flux computation at a face.................... 82
IMORT CITCIE. ..ottt 85
An example of solution adaptation.............ccceeeevevercieeniieeeiee e, 86
lustration of "equivalent cell" term..........cccccvveviiiivceeeniieeieeee, 90
Comparison of pressure coefficient distribution for partly and

purely second order around RAE 2822 airfoil...........ccoceevirieneenen. 94
Ilustration of grids used in multigrid for RAE 2822 airfoil............ 96
Ilustration of hybrid grids used in multigrid for NACA 0012

AITTOTL e 98

Residuals with respect to CPU time using a non-solution adapted
mesh around RAE 2822 airfoil.........cccccoviiiiiiiiiiiceee, 100
Residuals with respect to CPU time using a solution adapted mesh
around RAE 2822 airfoil........cccooiiiiiiiiiieee 102
Residuals with respect to CPU time for cycle testing around

RAE 2822 airfoil...c..oooiiiiiiiiiiiiiceceeeeeeeeee e 103
Residuals with respect to CPU time for testing the number of
iterations around RAE 2822 airfoil..........cccooeeiiiiiininii, 105
Residuals with respect to CPU time using a non-solution adapted

mesh around NACA 0012 airfoil.......cooveveeeeeeeeeieieeeieeeiieeeeeeeeeeeeeeeen. 107

Xvil



Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Residuals with respect to CPU time using a solution adapted mesh
around NACA 0012 airfoil.......cccoooeveeiiiiiiniieeeeeeeee 109
Residuals with respect to CPU time for cycle testing around

NACA 0012 @IrfOil..cccvieseieieeieieeieeieieee e 110
Residuals with respect to CPU time for iteration testing around
NACA 0012 QIrfoil..cceeeneeiienieieeereeeeeeeee e 111
Residuals with respect to CPU time for hybrid mesh testing around
NACA 0012 @IrfOil...ccveeeeeieeieiieeeiee e 113
Pressure coefficient distribution for transonic inviscid flow around
RAE 2822 AirfOil...c..oooiiiiiiiiiicieceeeeee e 118
The grids around the RAE 2922 for Case 3 (a) and (b) Case 5

for transonic INVISCId flOW.......c.eeeviiiiiiiiiiieceece e 119
Mach contours of cases where solution adaptation is applied

around RAE 2822 for transonic inviscid flow.........cccceecerveniennennne. 120
Pressure contours of cases where solution adaptation is applied
around RAE 2822 for transonic inviscid flow...........cccceeveveennnnnes 121
Pressure coefficient distribution of the first four cases for

supersonic inviscid flow around NACA 0012 airfoil...................... 124
Pressure coefficient distribution of the last four cases for

supersonic inviscid flow around NACA 0012 airfoil...................... 125
Mach contours of cases where solution adaptation is applied

around NACA 0012 for supersonic inviscid flow...........cccceeveneen. 126
Pressure contours of cases where solution adaptation is applied
around NACA 0012 for supersonic inviscid flow..........c.cccccveenneee. 127
Pressure coefficient distribution for subsonic laminar flow

around NACA 0012 airfoil.......cccoooeveeneniinieniiieneeeeeeeee 130
Skin friction coefficient distribution for subsonic laminar flow

around NACA 0012 airfoil........ccoceeniiiiiiniiiiiieecceeeeee 131
Comparison of Case 7 with the reference data for subsonic laminar
flow around NACA 0012 airfoil........cccceevviieniiiiieniieieeieeieeee 132
The grid of Case 7 around NACA 0012 for subsonic

JAMINAT TlOW ..t ee e 132



Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

Figure 5.23

Figure 5.24

Figure 5.25

Figure 5.26

Figure 5.27

Mach contours of Case 7 around NACA 0012 for subsonic

1aminar flOW......cooueiiiiieiiieee e 133
Pressure contours of Case 7 around NACA 0012 for subsonic

1aminar flOW.......oooiiiiiii e 134
Comparison of Case 1, Case 8 and ARC2D for subsonic laminar

flow around NACA 0012 airfoil........ccccovveevinieneeninienieeceeeeee, 135
Pressure coefficient distribution which hybrid grid is compared

with Cartesian grids and reference for subsonic laminar flow

around NACA 0012 airfoil........ccoooeveeniiiiinieiiiceeeeeeee 136
Skin friction coefficient distribution which hybrid grid is

compared with Cartesian grids and reference for subsonic

laminar flow around NACA 0012 airfoil.........cccoeoeeiiiniiinennnnnen. 137
Pressure coefficient distribution for transonic laminar flow

around NACA 0012 @irfoil........ccooevieriininiiniieneeeseeee 140
Skin friction coefficient distribution for transonic laminar flow
around NACA 0012 airfoil........ccoceeniiiiiiniiiieieeeceeeeeee 141
The grid of Case 7 around NACA 0012 for transonic laminar

FLOW e e 142

Mach contours of reference [41] around NACA 0012 for

transonic laminar flow...........coociiiiiiiiiiii e 143
Mach contours of Case 7 around NACA 0012 for transonic

laminar flOW......cooueiiiiiiiii e 143
Pressure contours of Case 7 around NACA 0012 for transonic
laminar fIOW........ooiiiiiiii e 144
Temperature contours of Case 7 around NACA 0012 for

transonic laminar floW..........cocoeoiriiiniiiinien 144
Pressure coefficient distribution for subsonic high Reynolds

number flow around 30P30N airfoil.........c.ccoooeiiiiiiiniiiiiiiee 147
The mesh of the whole airfoil, the slat and the flap of Case 5 around
30P30N for subsonic high Reynolds number flow............cccceeee. 148
Mach contours of Case 5 around 30P30N for subsonic high

Reynolds number flow..........cocvveeiiieiiiiecieceeee e 149

XiX



Figure 5.28  Streamlines of Case 5 around the trailing edge of the main
element of 30P30N for subsonic high Reynolds number flow........ 149
Figure 5.29  Pressure contours of Case 5 around 30P30N for subsonic high
Reynolds number flow..........ccccvveeiiiiiciiicieee e 150

XX



LIST OF SYMBOLS

ALPHANUMERIC SYMBOLS

[ level of a cell
D,, D, distance between body and box in x and y directions
D domain size
k boundary size factor, coefficient of thermal conductivity
n body division factor
Re Reynolds number
M Mach number
Pr Prandtl number
(0] conserved variables vector
F inviscid flux vector
G viscous flux vector
ds surface area element
u velocity in x direction
v velocity in y direction
E specific total energy
p static pressure
H specific total enthalpy
qx Gy heat flux terms in x and y directions
specific gas constant
T temperature
Cy specific heat for a constant volume
¢ specific heat for a constant pressure, pressure coefficient
cr skin friction coefficient
e specific internal energy
c speed of sound
t time

Xx1



L reference length
Coo free stream speed of sound
Voo free stream velocity
Res, free stream Reynolds number
M., free stream Mach number
Res residual vector
A area of a cell
AP projections of edges
At, convective time step
At, viscous time step
transformation matrix
L non-linear differential space operator
e error function
GREEK SYMBOLS
) boundary layer thickness
Bcurv curvature angle
p density
T Ty Ty stresses
ratio of specific heats
u laminar dynamic viscosity
P free stream density
U free stream laminar dynamic viscosity
) CFL number
o stage coefficient
a angle of attack
Y. ¥ convective spectral radii
Ay maximum eigenvalue of the diffusive operator
& relative change in pressure
&) relative change in density

XX11



CHAPTER 1

INTRODUCTION

Fluid flow problems are generally governed by complex equations. Because of the
nonlinearity in these equations, most problems cannot be solved by analytical
techniques. Analytical methods are used for some problems where nonlinear terms
are negligible. However, these terms are not negligible in general so that these

problems must be solved by using numerical methods.

Computational Fluid Dynamics (CFD), is a branch of fluid mechanics that enables
solution and analyses of fluid problems by using numerical methods and algorithms.
Some problems such as problems having high Mach numbers or high temperatures
cannot be simulated in laboratory conditions using wind tunnels. These problems and
flows around multi-element complex geometries can be handled by using CFD. In
the beginning of 1970's, CFD is started to be utilized for the solution of fluid flow
problems with the evolution of computer technology. The simulations of transonic
flows based on the non-linear potential equation were the first applications of CFD.
In the early 1980's, two and three-dimensional Euler equations were solved. The
rapidly increasing speed of computers and the development of acceleration
techniques like multigrid enabled to solve inviscid flows around airfoils and inside of
turbomachines. In the late 1980's, the focus was shifted to viscous flows. Navier-
Stokes equations were solved with the improvement of different turbulence
modelling techniques such as the direct numerical simulation and large eddy

simulation in order to analyze the turbulence flows accurately [1].

Nowadays, due to the high speed and large memory computers, it is possible to

analyze the inviscid or viscous flows in two or three dimensional space around multi-



element, complex geometries. In order to obtain accurate results by CFD, it is
important to choose the right numerical technique for flux computations, to choose
the suitable turbulence model, to have high algorithmic efficiency and to generate a
grid having sufficient resolution around critical regions such as shock locations, high

gradient locations, wakes etc.

A CFD code consists of three main elements, namely pre-processor, flow solver and
post-processor. A pre-processor generates the grid around the geometry which is
specified by the inputs. In addition, the flow parameters and boundary conditions are
defined in the pre-processor. Then, flow solver uses the governing equations in order
to solve the flow around the geometry subjected to the defined pre-conditions by one
of the three common solution methods which are finite difference, finite element and
finite volume method. Finally, post-processor forms the output files where results are

shown in graphical and easy to read format [2].

1.1 MESH GENERATION

Mesh generation is a crucial step of CFD. In order to get accurate results, mesh
resolution must comply with the solution schemes. In other words, an efficient grid
must be generated in order to minimize the errors while resolving the physical
properties of the flow. This grid must use as fewer grid points as possible in order to
use the memory efficiently [3]. In general, there are two types of meshes; structured

and unstructured meshes.

1.1.1 Structured Meshing

A structured mesh consists of quadrilaterals in two-dimensional space and hexahedra
in three-dimensional space. The grid points are located in sequentially with the aid of
an array (i, j, k) so that the connectivity information among them is provided

implicitly. To illustrate, a neighbor of a grid point which is in the direction of 7, j or k



indexes can be reached by adding or substracting an integer to or from i, j or £ index

of the grid point itself [4].

Structured grids have some advantages compared to unstructured meshes. Data
structure is less complex due to the implicit connectivity information. Moreover,
memory usage is less due to the simpler connectivity structure. As a result, more
efficient and simpler codes can be developed by using structured grids. It is also
advantageous for viscous flows. By adjusting the grid spacing, high resolution can be

obtained in the boundary layer which is the most important region for viscous flows.

Figure 1.1 Illustration of a structured mesh

Besides its advantages, there are some disadvantages in comparison to unstructed
grids. Since the edges of the geometry are not in the direction of the primary
coordinate axes, transformation from physical to computational space is necessary.
This task needs more computational power. Furthermore, grid generation around

complex, multi-element geometries is a very complex problem. In order to eliminate

3



this problem, some techniques such as Chimera and multi-block is used. However,
these are so complicated that the advantages of structured grids diminish [4].
Whereas structured meshes has numerous advantages, they are not generally
preferred due to its disadvantages, especially the one that meshing cannot easily be

applied to complex geometries.

1.1.2 Unstructured Meshing

An unstructred mesh consists of triangular or quadrilateral cells in two-dimensional
space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three-dimensional
space, in an irregular pattern. Unlike structured grids, unstructured grids require a list
of the connectivity, which leads to a more complex data structure. Moreover, this

complex data structure causes higher memory usage.

WA A‘
TR
AR AR
ZaVAYIVAVAVAVAS o LPAVAVAVAVAYAYA
AVAVEAVAV‘_VNAV&uuYAﬂWAVA

AVAVAVAVAV,N)VAYAVAV,y,VAVAVAVAYA
Nmmn%‘;* v

A
4
VA UAVAN hﬁﬂgﬁg
\VAVAVAVAVAYAYAN VAV AVAVAVAVAV
NAVAVAVAVAVAVAVNAVAVAVAV VA,
R
LIPORRSEP

Figure 1.2 Illustration of an unstructured mesh



With the recent advancements in computer technology, efficiency of a CFD code is
not affected very much by the high memory requirements. In addition to this, due to
the capability of handling complex geometries easily, the popularity of unstructured

meshing is increased among the meshing techniques.
Advancing front and Delaunay triangulation methods are the most widely used

methods in unstructured meshing. In reference [5], detailed information can be

found.

1.1.3 Cartesian Meshing

A Cartesian mesh is a special type of unstructured meshing where the cells are
squares in two-dimensional space and cubes in three-dimensional space. Quadtree
and octtree data structures are used for two-dimensional and three-dimensional
spaces, respectively. It was not preferred in the past since it is very hard to handle
curved boundaries. However, with the recent developing techniques dealing with

these curved regions, Cartesian meshing becomes more popular.

One important advantage of Cartesian grids is that it requires hardly any user
interference so that automatic meshes can be generated around even complex and
multi-element airfoils easily. Denser meshes around shocks, shear layers and wakes
can be obtained easily without user interference by using solution adaptation. In
addition, multigrid technique which accelerates the convergence rate can be applied
very easily since quadtree data structure is used for a two-dimensional Cartesian grid.
Furthermore, the transformation of physical variables from computational space to
physical space is applied only for the cells near the boundary since the other cells are

in the direction of the primary coordinate axes.



9§
&

ERELRE T

|
] -_i#up
_:‘:.'r_':r'lIL

- .

Bt e

Figure 1.3 Illustration of a Cartesian mesh

Besides its advantages, there are some disadvantages, as well. One of the most
difficult parts of Cartesian meshing is to deal with the curved parts of the geometry.
The shapes of the cells which are intersected by the geometry are modified. The
shape of these cells are not square and they are called irregular cells. It is very
important to resolve the physical quantities at the irregular cells correctly in order to
have accurate results. To do this, physical variables must be rotated into physical
space. Moreover, the smaller sizes in those cells compared to regular Cartesian cells
can cause deceleration of convergence rate. Local time stepping and multigrid
technique can eliminate these problems. In addition, in order to model the viscous
flows, the Cartesian meshing is not sufficient [6]. To have sufficient resolution in
boundary layer, hybrid grid, which is composed of Cartesian mesh outside the

boundary layer and body-fitted quad grid inside the boundary layer, is generated.



Figure 1.4 Illustration of a hybrid mesh

1.2 LITERATURE REVIEW

Wang (1998) developed a second-order accurate, cell-centered viscous flow solver
by using a quadtree-based adaptive Cartesian/quad grid. In mesh generation part,
first, geometrically-adaptive, body-fitted grids are automatically generated. After
obtaining a user specified minimum grid resolution by recursively Quadtree divisions
of a large root cell, Cartesian cells are intersected by the outer boundary of the Quad
cells. By using cell-cutting method, final computational grid is produced
automatically. In the solver part, after obtaining converged solutions in a given grid,

solution-based adaptations are performed [7].



Ye, Mittal, Udaykumar and Shyy (1999) developed a Cartesian grid method for two-
dimensional, unsteady, viscous, incompressible flows around complex immersed
boundaries. In this method, finite volume method based on second order central
difference scheme and a two-step fractional-step procedure are used. An
interpolation procedure is applied for accurate discretization of the governing
equations in the boundary cells. This procedure allows systematic development of a
spatial discretization scheme that preserves second-order spatial accuracy of the
solver. Since the iterative solution is slowing down by the fact that conditioning of
the linear operators are changed with the presence of immersed boundaries, the

convergence is accelerated by using a preconditioned conjugate gradient method [8].

Wang, Cphen, Hariharan, Przekwas and Grove (1999) developed a 2" tree based
viscous Cartesian grid generation method for complex geometries. With 2n data
structure, it is easy to handle complex geometries and deal in shocks, shear layers
and wakes since it supports anisotropic grid adaptations in any of the coordinate
directions. To resolve boundary layer for viscous flows, a viscous layer grid whose
thichness is determined according to the expected thickness is added between
Cartesian grid and body surface through a projection technique. Furthermore, an
algorithm which detects critical regions has developed and good quality

computational grids has been produced by avoiding cell-cutting completely [9].

Tucker and Pan (2000) implemented a Cartesian cut cell method to incompressible
viscous laminar flows. In this method, some cut cells are created at solid boundary
surfaces. For these cells, a novel hybrid technique is applied while integrating the
governing Navier-Stokes equations. This technique consists of surface cell trimming

and interpolation [10].

Wang (2000) developed a nested multi-grid solution algorithm for an adaptive
Cartesian/Quad grid viscous flow solver. Body-fitted quadrilateral grids are produced
around the solid geometry by the method of surface extrusion. After overlapping
Quad grids with Cartesian grids, cell-cutting is performed in order to obtain the final

computational grid. While the Cartesian grid is obtained by a single root using



Quadtree data structure, Quad grids are generated from multiple roots which are
termed as a forest of Quadtrees representing the coarsest possible Quad grids. The
coarsening algorithm, which is necessary to produce multi grids, is based on the
reverse tree of Quadtree data structure. The flow solver is based on Roe's flux
splitting, finite volume discretization with a cell-centered method, least-squares
reconstruction and a differentiable limiter. In order to handle very small cut cells,
local time stepping scheme is used as a time. For multigrid strategy, several cycling

techniques such as Saw-Tooth Cycle, W-Cycle and V-Cycle are used [11].

Kirkpatrick, Armfield and Kent (2003) presented a method for representing curved
boundaries in order to solve the viscous governing equations on a non-uniform,
staggered, three-dimensional Cartesian grids. The method proposes that Cartesian
cells at the boundary surface are truncated so that new cells are created and the
boundary grid fits the shape of the surface completely. In the paper, some problems
related to the development of a cut cell in staggered grid are discussed in a detailed
manner. Second order accuracy is provided with the derived flux calculation methods
through the boundary cell faces. On top of that, a method called "cell-linking" is
developed in order to overcome the problems originated from the creation of small

cells while avoiding the complexities resulted from the cell-merging operations [12].

Russell and Wang (2003) developed a Cartesian grid method for multiple moving
objects in an incompressible two-dimensional viscous flow. The system is generated
by regular Cartesian grid and solved by using a vorticity-stream function
formulation. The no-penetration condition for the moving object and no-slip
condition are provided by superposing a homogenous solution to the Poisson's
equation for the stream function and producing vorticity on the surfaces of the

moving objects [39].

Gilmanov, Sotiropoulos and Balaras (2003) presented an algorithm for a general
reconstruction, while analyzing flows with complex three-dimensional immersed
boundaries using Cartesian grids. In this algorithm, solution in the Cartesian grid

nodes near the interface of the unstructured, triangular mesh generated by



discretizing three-dimensional immersed solid surface is reconstucted by using linear
interpolation along the local normal to the body. As a result, the overall accuracy of

the solver is second order [14].

Sanmiguel-Rojas, Ortega-Casanova, del Pino and Fernandez-Feria (2005) developed
a method for incompressible two-dimensional viscous flows arround irregular
geometries which generates a non-uniform Cartesian grid such that all boundary
points are regular mesh points. The generated non-uniform grid is solved by the

Navier-Stokes equations using finite difference methods [15].

Verstappen and Droge (2005) developed a numerical method for solving unsteady,
incompressible Navier-Stokes equations on Cartesian grids for arbitrarily-shaped
boundaries. A novel cut-cell discretization method is introduced. This method
provides the preservation of the spectral properties of convection and diffusion. A
skew symmetric operator is used while discretizing convection and a symmetric,
positive-definite coefficient matrix is used while approximating diffusion. This
coefficient matrix conserves kinetic energy on any grid if the dissipation is turned off

[16].

Singh and Shy (2007) presented three-dimensional adaptive Cartesian grid method
with conservative interface restructuring and reconstruction. In this method,
multiphase flows and moving boundaries between different phases are considered.
The moving boundary is tracked using triangulated surface grids and the flow is
solved by using governing equations on a stationary Cartesian grid. This grid is
locally adaptive so that the resolution requirements can be provided. The interface
resolution is controlled via a conservative restructuring technique which satisfies
conservation of mass. In addition, a reconstruction algorithm for topology change is

implemented [17].

Ito, Lai and Li (2009) developed an augmented method based on a Cartesian grid for
solving Navier-Stokes equations in irregular domains. A fast Poisson solver is

utilized in the projection method after embedding the irregular domain into a

10



rectangular one. The jump in the normal derivative of the velocity is set as the
augmented variable so that ill conditioned system, which is usually produced by the
methods setting force strengths as unknowns, is avoided. With this approach,
condition number of the system is improved significantly for the augmented variable.
In addition, the second order accuracy is provided for the velocity by using immersed

interface method [18].

Karagiozis, Kamakoti and Pantano (2010) proposed a numerical method in order to
solve the compressible Navier-Stokes equations on Cartesian grids. In this method,
an embedded geometry representation of the objects is used and the governing
Navier-Stokes equations are approximated with a low numerical dissipation centered
finite-difference discretization. This method is useful for immersed boundaries, not

suitable for compressible flows with shocks [19].

Hartmann, Meinke and Schréder (2010) developed a strictly conservative Cartesian
cut-cell method for compressible viscous flows on adaptive grids. In this approach,
finite volume method is used allowing the conservation of mass, momentum and
energy at the boundaries. Up to 2010, there is not such a proposed method in
literature for three dimensional compressible flows. While solving the mesh, a linear-
least squares reconstruction is used to rebuild the gradients of the cell centers in
irregular regions of the mesh and those are employed while calculating the flux at the

surface. As a result, the accuracy of the solution is second order [20].

In addition, several researches were done about Cartesian meshing in Department of
Mechanical Engineering in METU. Siyahhan (2008) solved two-dimensional Euler
equations by using flux vector splitting methods which are AUSM, AUSMD,
AUSMYV and Van Leer in addition to Roe’s method while the mesh is generated by
using Cartesian grids. Multistage time stepping is used for temporal discretization.

Moreover, the flow variables are reconstructed in order to increase the accuracy [22].

Cakmak (2009) developed an Euler solver on adaptively refined two and three

dimensional Cartesian grids. The solution is obtained by cell-centered finite volume

11



method. While calculating inviscid fluxes, flux vector splitting and flux difference
splitting methods are used. In the mesh generation part, a dynamic data structure is
used together and geometric based adaptations are applied. In addition, solution
adaptation is applied to the mesh in order to refine the regions with high gradients. In
order to accelerate the convergence rate, local time stepping and multigrid techniques

are embedded to the developed code [21].

1.3 ORGANIZATION OF THE THESIS

In this thesis, a flow solver with an adaptive Cartesian or hybrid grid generated
automatically around simple and complex, one or multi element airfoils is developed.
The flow solver is capable of analyzing the compressible inviscid or laminar external

flows. As a solution method, finite volume technique is used.

In Chapter 2, mesh generation is discussed in detail. After quadtree data structure is
introduced, the steps for Cartesian grid generation which are uniform mesh
generation, cell type determination and geometric adaptations are discussed in detail.

Finally, quad grid generation is introduced and hybrid grid generation is explained.

In Chapter 3, governing equations in integral form are introduced for viscous flows.
Next, discretization of governing equations temporally and spatially are presented.
Then, inviscid and viscous flux computations are discussed in detail. Reconstruction
of flow variables is explained. After discussing calculation of non-dimensional
coefficients, pressure and skin friction coefficients, refinement based on solution

adaptation is introduced.

In Chapter 4, multigrid method, which is an acceleration technique, is introduced and
the steps for the application to non-linear problems are discussed in detail.
Coarsening process of Cartesian and quad grids are explained, which is necessary for
multigrid applications. Then, the effect of multigrid on inviscid and low Reynolds

number flows is discussed with tables and graphs.

12



In Chapter 5, inviscid flow around a single element airfoil is validated and the results
are discussed. Next, low Reynolds number flow is considered by testing two
different problems. Finally, a multi-element airfoil is considered at a high Reynolds

number to show the hybrid grid effect.

In Chapter 6, techniques used in the developed code and the obtained results are

discussed. Then, some suggestions are made, for future works.

13



CHAPTER 2

MESH GENERATION

In this chapter, data structure used in the code for Cartesian meshing discussed.
While quadtree data structure is introduced, stored variables and connectivity

information for Cartesian cells are given.

Next, generation of Cartesian mesh around an airfoil is explained. Uniform mesh
generation, cell type determination and geometric adaptations are mentioned in
detail. As a result of these processes, a good resolution around the geometry is
obtained and all necessary properties of cells are stored in order to use them in

solution.

Finally, quad grid generation is introduced. Before quad cells are created, boundary
layer is set by puffing the geometry up. During this process, some unwanted
situations are eliminated. After obtaining a good boundary layer, the quad cells are
created in the layer and the quad cells are connected to Cartesian cells and each
other. As a result, a hybrid mesh having sufficient resolution at critical regions is

formed.

2.1 DATA STRUCTURE

In this code, domain is divided into cells with Cartesian meshing. Since Cartesian
meshing is a type of unstructured mesh, the connectivity information between cells is
not provided simply like structured meshes. In order to store the data of cells and

provide connectivity information successfully, an appropriate data structure should

14



be used. For two dimensional problems, several data structures can be chosen. The

main data structure types are linked list, binary tree and quadtree types.

In the developed code, the quadtree data structure is chosen since it is more
advantageous than the others. It is easy to apply solution adaptation, where the
dynamic cell number is required; i.e. e. number of cells is changing with solution
adaptation. Furthermore, multigrid adaptation can be applied without creating new

coarser grids unlike the others.
In this section, the main properties of quadtree data structure is introduced, first and

then, the connection of the cells in the domain with each other is discussed. Finally,

the variables that must be stored are explained in detail.

2.1.1 Quadtree Data Structure

Quadtree data structure is a tree data structure in which each cell has four children.
The two dimensional space is partitioned recursively by subdividing it into four
equal quadrants from the mid points of edges, so that four equal size squares are

generated, until the desired resolution is obtained.

The largest cell covers the whole domain and it is called "root cell". Root cell has
four children and each of these children have four children and so on. Children are
separated from each other by naming it according to their location in the larger cell.
They are named as top left, top right, bottom left and bottom right. The cells which
have no children are called "leaf cells". These cells are used for solution calculations

and also called "computational cells".

15



root cell

i

leaf
top left 7}
cell of root
(not leaf) bottom left bottom right
cell of root cell of root
(leaf) (leaf)

Figure 2.1 Illustration of root cell and its children

While the relationship between cells from the largest to smallest is supplied by
children phenomenon, the inverse relation from the smallest to the largest cells is
provided by the word "parent". For example, a cell has four children and these four
children have a parent which is the mentioned cell. Moreover, for providing
relationship accurately, there is a level concept that every cell has. It shows the
number of divisions until the cell under consideration is obtained from the root cell.
The root cell has a level of 0. The level of four children of a cell is assigned a level of
one higher of their parent cell. While Figure 2.1 illustrates root cell and leaf cells
considering children parent relations in a 2-D cell, the same relations is shown in a

tree view with their levels in Figure 2.2.

16



root
cell Level 0
\ 4
top top bottom
left right left cell Level 1
cell cell 1y || cell | e
4 Y 4
N
top top bottom| | bottom
left right left cell right Level 2
Ce” Ce” Ce” ------------------------
g
\ 4
top top
left right Level 3
cell cell Tl cell | orremmmrmmmmnieanns

Figure 2.2 Children-parent relationship in a tree view

2.1.2 Connectivity

Connectivity of cells is provided by not only children-parent relation, but also by the
neighborhood relationship. Each cell has four neighbors, namely top neighbor, right
neighbor, left neighbor and bottom neighbor. In other words, for each cell, four more
pointers are required in addition to children and parent pointers. Totally, 9 pointers

are necessary in order to provide the connectivity accurately [21], [22].
While finding neighbors, the relation between a parent and their children is used.

Starting from the root cell, neighbors are found. At first, neighbors of children of the

root cell are found. It can easily be determined by considering the locations of

17



children in the root cell. The determination of the top left child of the root cell is

shown in Figure 2.3.

NULL

top neighbor*
I

ri .
left neJghbor top Ieftnei’Ehbor top right

NULL €—1— cellof —|—>cell of root
root

bottom
neighbor

bottom left
cell of root

Figure 2.3 Neighbors of top left cell of root

When neighbors of first level cells are found, their parents and location of their
children places are used as shown above. For higher levels, in addition to the location
of the children of a parent, parent's neighbors are also used. Below, determination of

neighbors of a second level cell, shown in Figure 2.4, is explained in Table 2.1.

Figure 2.4 Neighbors of a second level cell

18



Table 2.1 Determination of neighbors of a second level cell

NEIGHBORS DETERMINATION
Top Neighbor Parent—Top Right Child
Left Neighbor Parent—Bottom Left Child
Bottom Neighbor Parent—Bottom Neighbor—Top Right Child
Right Neighbor Parent—Right Neighbor—Bottom Left Child

Since the entire domain is not at the same level, the above illustration is not the only
case one may meet. The neighboring cells may have lower or higher levels. It is very
difficult to handle neighboring cells which have more than one level difference.
Therefore, the code is adjusted that only one level difference can exist between the
two neighboring cells. This fact is explained in more detailed fashion in Section

2.2.3.4.

When a cell has a neighbor which is one level higher than itself, nothing changes
during the determining neighbors. The neighbor of the cell will be the parent of that
cell having the lower level, since the parent shares the same edge with the cell and
has the same level. However, when one considers a cell whose neighbor is at one
level lower less than itself, than a slight change is necessary. The neighbor will not
be the appropriate child of the appropriate neighbor of the its parent. Since it has no
child, the neighbor will be directly the parent's appropriate neighbor.

2.1.3 Stored Variables

Storing the correct variables is quite important in order to use the memory
efficiently. Excessive storage results in inefficient memory usage and slows down
the computations. On the contrary, while trying to decrease the number of stored
variables, to calculate the same variable again and again slows down the calculations.

Therefore, optimization according to today's memory technology is necessary.

19



The pointers identifying the stored variables can be classified into six groups. These
are geometric pointers that define the cell geometry, connectivity pointers that relate
the cell with the others, cell type pointers which are used to determine the cell type,
solution pointers which are necessary for solving the governing equations, solution
adaptation pointers which are required for the solution refinement and multigrid
pointers in order to create coarser grids to be used in the solution. In addition to
primitive types in C++, some classes are defined in order to handle these pointers

more easily. These user-specified classes have also some stored variables.

While the cells have these pointers, some static variables are also used. With the use
of these, only one variable is stored instead of a number of cell variables. In other
words, for each cell, these static variables are calculated and they are used during the
application of the necessary methods. After that, instead of creating a new variable
for a new cell, the necessary quantity is recalculated for the new cell and stored at the

same variable since the old one is no longer used.

In the developed code, all cells have some common geometrical variables. All cells
have four corners, centroidal coordinates, center coordinates and area. The center and
the centroid are similar to each other for out cells. However, they are different for cut
and split cells. While center means the middle point of the Cartesian square cell
whether the shape of the cell is square or an arbitrary shape, the centroid represents
the mass center of the shape covering outside the geometry of the Cartesian cell.
Furthermore, in the developed code, the flux calculations are done through the faces

so that storage of the faces is very important for leaf cells.

20



Table 2.2 Geometric pointers

POINTER | POINTER POINTER
POINTER NAME EXPLANATION
NUMBER TYPE FOR
1 CornerPt topLeftCorner All cells Corner point at top left
1 CornerPt topRightCorner All cells Corner point at top right
1 CornerPt bottomLeftCorner All cells Corner point at bottom left
1 CornerPt | bottomRightCorner All cells Corner point at bottom right
All cells
1 double area except Area
incells
1 Pt center All cells Center point
All cells
1 Pt centroid except Centroid point
incells
vector Face faces Leaf cells Face vector

Connectivity information between cells is provided with totally 16 pointers. Four of
them represent the children of the cell while the other four of them denotes the side
neighbors of the cell. In addition, as discussed earlier, the number of divisions is
stored with the aid of the "level" pointer and the inverse connection is provided with
the "parent" pointer. Furthermore, the remaining six pointers are necessary to relate
the splitToCut type cells with their inclusive cell and quad type cells with their
inclusive cell directly and inversely. These are mentioned in detailed in Section 2.2

and 2.3, respectively.

21



Table 2.3 Connectivity pointers

POINTER | POINTER POINTER POINTER
NUMBER TYPE NAME FOR EXPLANATION
1 Cell topLeft All cells Child cell at top left location
Child cell at top right
1 Cell topRight All cells location
Child cell at bottom left
1 Cell bottomLeft All cells location
Child cell at bottom right
1 Cell bottomRight All cells location
1 Cell topNeighbor All cells Neighbor cell at top side
1 Cell bottomNeighbor All cells Neighbor cell at bottom side
1 Cell leftNeighbor All cells Neighbor cell at left side
1 Cell rightNeighbor All cells Neighbor cell at right side
1 Cell parent All cells Parent cell
SplitToCut cell forming with
the first control volume of
Split cells split cell having 2 control
1 Cell splitToCutl having 2CV volumes
SplitToCut cell forming with
the second control volume of
Split cells split cell having 2 control
1 Cell splitToCut2 having 2CV volumes
Cells except out
1 Cell quadl and in cells First quad cell
Cells except out
1 Cell quad2 and in cells Second quad cell
Split cells Inclusive cell of the
1 Cell inclusiveOfSplits having 2CV splitToCut cell
Cut, split and Inclusive Cartesian cell of
1 Cell inclusiveOfQuads | splitToCut cells the quad cell
1 int level All cells Division level

Third group pointers are used in order to determine cell type. "type" pointer is an

enumerator type and determines the cell whether it is an out, in, cut, split, splitToCut,

22



quad or notDefined. If the cell does not have some specific properties, than its type is
set to notDefined so that it should be refined or the geometry must be shifted in order
to eliminate these cells. For some split cells, "nodeIn" pointer is used in order to
present geometry correctly. This pointer defines a nodal point of the input geometry
in the cell. It is used especially for split cells at highly curved parts of the geometry.
The pre-determined "IntPt" type vector of "intersections" give the points intersected
with the geometry. Square and split indices are used for split and cut cells and they
determine the sub-type of the split or cut cells. In Appendix A, one can see the sub-
types of these cells. Moreover, the usage of these indices is presented in Section

22.2.2.

Table 2.4 Cell type pointers

POINTER | POINTER | POINTER
NUMBER TYPE NAME POINTER FOR EXPLANATION
Type (cut, split, in, out, quad,
1 enum type All cells splitToCut, notDefined)
Node point of the geometry in
1 IntPt nodeln Split cells the cell
Cut, split and Intersection points with the
vector IntPt intersections splitToCut cells geometry
1 int squarelndex All cells determines the sub-type
Cut, split and
1 int splitindex splitToCut cells determines the sub-type

Next group is the solution pointers. In this group, two pointers are used to store the
conserved variables of the cell at the centroid, before and after the iteration. Since the
one before the iteration is necessary for the new calculations, two of them must be
stored separately. Additionally, residuals for those variables are stored using "res"
pointer. The gradients of these variables in x and y directions and viscosity are stored
with totally 9 pointers. Finally, if reconstruction and gradient limiting are chosen
(they are mentioned in Chapter 3), then 4 additional pointers are needed for the

limiters of the four conserved variables.

23



Table 2.5 Solution pointers

POINTER | POINTER | POINTER | POINTER
EXPLANATION
NUMBER TYPE NAME FOR
4 double qOl1d Leaf cells conserved variables before the iteration
4 double qNew Leaf cells conserved variables after the iteration
4 double res Leaf cells residuals of conserved variables
4 double dqdx Leaf cells x gradient of conserved variables
4 double dqdy Leaf cells y gradient of conserved variables
4 double limiter Leaf cells gradient limiters if order of scheme is 2.
1 double viscosity Leaf cells laminar non-dimensional viscosity

As the solution adaptation pointers, two pointers are used. These pointers are for the

curl and divergence criteria of the solution adaptation for each leaf cell, as mentioned

in Chapter 3.
Table 2.6 Solution adaptation pointers
POINTER | POINTER | POINTER | POINTER
EXPLANATION
NUMBER TYPE NAME FOR
1 double tau Leafcells | divergence criteria for solution adaptation
1 double ksi Leaf cells curl criteria for solution adaptation

The final group is for the pointers required for the multigrid applications. For the
application of the multigrid technique, a total of 8 pointers are required. Multigrid is
a very detailed convergence acceleration technique so that it is explained separately
in Chapter 4. To summarize, the words "perform" and "meshSpacing" are used for
the coarsening of the finest mesh. The word "compCell" determines whether the cell
is a computational cell or not in a given computational grid. Forcing function is used

in order to correct the residuals using coarser grids.

24



Table 2.7- Multigrid pointers

POINTER | POINTER | POINTER | POINTER
NUMBER TYPE NAME FOR EXPLANATION
) determines whether the cell is
1 int perform All cells
coarsened or not
1 int meshSpacing All cells determines the step number of mesh
) determines whether the cell is
1 int compCell All cells )
computational cell
4 double FF All cells | forcing function of conserved variables

As mentioned before, some static pointers are used to avoid excessive storage. Eight

of these are the conserved variables, which are transformed according to the face for

left and right states. The "stress" pointer determines three stresses, 7y, 7,, and 7, and

includes the heat fluxes terms, g, and g,. Although the heat fluxes are not stresses, in

the developed code heat terms are added to stress pointer in order to handle them

more easily. Finally, the remaining 8 pointers are used for inviscid and viscous fluxes

at the face of the cell.

Table 2.8 Static pointers

POINTER | POINTER POINTER POINTER
NUMBER TYPE NAME FOR EXPLANATION
transformed conserved variables of
4 double qLeftBar Leaf cells left state at the face
transformed conserved variables of
4 double qRightBar Leaf cells right state at the face
stresses and heat flux terms in x and
5 double stress Leaf cells y at the face
4 double faceFlux Leaf cells inviscid fluxes at the face
4 double faceViscousFlux Leaf cells viscous fluxes at the face

25




2.2 CARTESIAN GRID GENERATION

In the developed code, as mentioned earlier, Cartesian meshing is used. This grid is
adapted to the code with the quadtree data structure. While generating the Cartesian
mesh, totally three steps are applied in order. First, uniform mesh is generated around
the created domain. Then, the types of the cells are found using intersection methods
and indices. Finally, the geometric adaptation is applied to the uniform mesh so that

the grid around the geometry becomes finer in order to get accurate results.

2.2.1 Uniform Mesh Generation

The input geometry is specified in terms of the nodal points. By connecting the
consecutive nodes, the geometry can be obtained. The first and last nodes of a body
are the same so that a closed loop can be obtained. As a first step, the domain around
the geometry is built. After the maximum length in x and y directions are obtained by
subtracting minimum values of x and y coordinates, from their corresponding
maximum values, the maximum length, whether it is along x or y axis, is multiplied
with the input outer size factor input to obtain the domain size is calculated. Since
far-field boundary conditions are simply the free stream values that are mentioned in
Chapter 3, it is important to set the outer boundary far away from the given
geometry. Thus, a factor of 18 is taken as the minimum sufficient condition for this

casc.

The geometry is placed at the middle of the domain. The center of the root cell is
determined according to the center of the geometry which is formed through the
averaging of minimum and maximum x and y coordinates of the geometry. Using the

domain size, the corners of the root cell are obtained.

After the creation of the root cell, the uniform mesh can be formed by dividing cells
successively until the division level of the finest cells reaches the input uniform
division level. At each cycle, levels of new formed cells are increased by 1, centers

and corners of these cells are determined according to the location of its children

26



place of their parent. Below, one can see the equations used for setting center

coordinates of those cells,

topLeft arent d
Xc pLeft = x? Y
2 +1

topRight _ _parent d
X = X o

bottomlLeft arent d
X Jt — xP -

C c 21+1
bottomRight _ _parent d
Xc = X, T om

topLeft __ _parent d

Ye =Y + 2l+1
topRight _ _ parent d

Ye =Y + 2l+1
bottomLeft _ parent  d
c - Jc 2l+1
bottomRight _ _parent  d
c - Jc 2l+1

(2.01)

(2.02)

(2.03)

(2.04)

where d is the domain size and [ is the level of the considered cell. In addition to the

center calculations, the corners are also computed by using the division level and

domain size. However, instead of center coordinates of the parent, the center of the

considered cell is used. The calculations of corner coordinates of a cell can be

expressed as follows:

d
XtopLeftCorner — X¢ — S+

_ d
xtopRightCorner = Xc + 2l+1

d
XpottomLeftCorner — X¢ — S

XpottomRightCorner — X¢ + S+

_ d
YtopLeftCOrner =Y + 2l+1

_ d
YtopRightCorner =Y + 2l+1

d
YbottomLeftCorner = Ye¢ — S+

d
YbottomRightCorner = Yc — 21

(2.05)

(2.06)

(2.07)

(2.08)

The uniform mesh is generated with the above calculations and by setting the

neighbors told at Section 2.1.2, connectivity. With the uniform mesh, a default

resolution is obtained for the outer cells. The cells near the geometry are then refined

by geometric adaptation.

27



o
l -
—
- _— ——_
—_— —— -__:e"'“-.
. -
. s
™ I
\ r
" ra
. rd
" rd
____,_:—'— .
i o
—— L
__.—r'__'____ .
| _—
|
II H"'-.
|
fl '\"-.
-
.,
...
. ||I
- _
L T
¢
N —_
- ——
ry _ -_— -
- — T E e -
# = r— . Iy == -
& - i [
- e, iy
& Iy -
& v | -
7
o =t ]
JI' = =
_I—d--.c\ — B
T T—— o P
"

Figure 2.5 Uniform meshes around a two-element airfoil with 5, 7 and 9 cycles

It is important to obtain a sufficient resolution with the uniform mesh. If division
number for uniform mesh is small, than the smaller geometries, especially flap or slat
parts of a multi-element airfoil cannot be captured accurately. However, the
geometric adaptation that will be applied after uniform meshing can solve this

28



problem by refining the cells near the geometry. Yet, it is important to get a good
resolution at the out cells to get accurate results. On the contrary, a very fine uniform
mesh leads to a high number of cells so that the solution converges very slowly,
since the number of cells doubles with one uniform mesh cycle. In the analyses, a

uniform division level of 4 is used for most of the cases.

Figure 2.5 shows uniform meshes around two-element airfoil with 5, 7 and 9 cycles,
without applying any geometric adaptation. In the mesh with 5 cycles, the flap is not
captured totally and the main body is very different than the original one. As shown,
increase in the number of cycles results in more accurate capture of the given
geometry. However, cell number increases excessively. In the above figure, since
comparison between uniform meshes is done, no geometric adaptation is applied. As
a result, a high level of uniform mesh generation is needed in order to capture the

geometry accurately.

2.2.2 Cell Type Determination

Type determination is crucial in Cartesian grid for capturing the geometry accurately,
refining the critical cells near the geometry and multigrid application. While
determining the types of cells, a number of steps are applied sequentially. First, it is
determined whether the corner of the cell is inside or outside the geometry by using
the Ray-Casting technique. Then, intersection points are found and sorted. As a
result, the type of the cell is determined roughly. According to sorted intersection
points and in-out indices of corners, square and split indices of the cell are set. By

using all of this information, the final type of the cell is determined.

2.2.2.1 Corner Index Determination

Each corner has an index in the developed code. This index determines whether the
point is inside or outside the geometry. By determination of all corners of a cell, the
type of the cell can be determined roughly. In other words, if all corners are outside

the geometry, then the cell is an out-cell. If they are inside the given geometry, the

29



cell type is set to an in- cell. If all corners are neither outside nor inside, than the type

of the cell may be a cut or a split cell.

While determining this index, there are two common techniques, namely winding
number method and ray-casting method. Ray-casting method has numerous
advantages compared to the winding number method. First, the winding method
works by considering all the line segments of the geometry. However, it is not
required to visit all segments in ray-casting. It is sufficient to consider only the line
segments that the considered point is between its start and end nodes in y direction.
Moreover, unlike the winding method, round-off errors of the floating points do not
harm ray-casting method [23]. Due to its advantages, Ray-Casting method is chosen

for inside-outside determination.

top right
corner

bottom right
corner

Figure 2.6 Ray-casting method

In the ray-casting method, there is a restriction that the bodies to be examined must
be closed loop. Since the given geometry is formed with closed-loop bodies, this
method is suitable for the developed code. In this technique, a ray is casted from a

point along x direction generally. If this point intersects the given geometry odd

30



number times, then this point lies in the geometry. On the other side, if an even
number is found with the intersections of the cell with the geometry, then the point
must be outside the geometry. No matter how many bodies there are in the domain,
this method works successfully. Figure 2.6 summarizes the ray-casting method with
an example of a cell around a geometry formed by two bodies whose one corner is
inside and one corner is outside the geometry. The index of corners inside the

geometry is set to -1, whereas for outside corners, the index is set to 1.

2.2.2.2 Square and Split Indexes

After ray-casting method is applied and the corner indexes are determined,
intersection points are found by considering horizontal and vertical edges separately.
In the developed code, intersection points are stored with the help of "intersections"
vector and this vector has an object of user-defined class "IntPt". This class has also
some stored variables. These are two doubles for x and y coordinates, one string for
its location. The location of a point may be on the edges or on a corner. After finding
of coordinates and locations of these intersection points, they should be sorted
according to an order. This order is significant in order to be able to finalize the true
type of the cell. Sorting of those points is started from the right edge and continues in

a counterclockwise direction.

P3

P2

P1

P4

Figure 2.7 lllustration of sorting intersection points

31



The next step after sorting is setting the square index of the cell. The integers from 0
to 3 are first assigned to the corners starting from the bottom right corner and
continuing in counterclockwise direction. In other words, this integer is 0 for bottom
right corner, while it is 3 for bottom left corner. The square index is then found by
summing two raised to the power of the index of that corner (an integer 0 to 3) for all
corners whose in-out index is -1. In the below figure, an example is given for finding

square index of a cell. The gray region indicates the part inside the geometry.

P1

2 1
Square Index;
P2 2°+2'+2°=11
3 0

Figure 2.8 Determination of square index

The bottom right, top right and bottom left corners are inside the geometry. If two is
raised to the power of their corresponding indexes 1, 2 and 8 are obtained,
respectively. If they are summed up, total square index of this cell is found as 11. If
all the corners are inside the geometry, the square index can be calculated as 15 by
using this relation. On the contrary, for out cells whose corners have an in-out index

of 1, the square index is set to 0 [21].

For all leaf cells in a Cartesian mesh, square indices are calculated by this way. Then
using the intersection vector and square index, the general type of the cell can be
determined. If a cell has no intersection point and has a square index of 0, then this
cell must be an out cell. On the contrary, if a square index of 15 is assigned to a cell
whose intersection vector is empty, then type of this cell is set to an in cell. If a cell
has an intersection vector whose size is 1 or 2, and all corners of the cell has an index
of neither -1 nor 1, then type of the cell is assigned to a "cut". For the other

situations, except when the number of intersection points is greater than 4, the type

32



of the cell is set to "split". Finally, for the exception case, the type is assigned as
"notDefined". notDefined type is assigned to cells which cannot be considered in the
other types. The code does not give an error if these are computational cells. If not,

then there is a need to modify the mesh generation with some input change.

Square Index;
0, ~3 _
P2 2°+2°=9
P1
3 0

P3 P4

Figure 2.9 Example to a split cell

The cells having 4 intersection points are assigned to split cells. For a special case,
the intersection point number may be 2 if both intersection points are on the same
edge. While one or more corner has an in-out index of -1, the square index
calculation can be done similar to the calculation above, as can be shown in Figure
2.9. However, it may be possible to have split cells whose all corners are either
outside or inside the given geometry. Therefore, additional minus square indexes are

assigned to these cells, as indicated in Figure 2.10.

Sq Index: Sq Index: Sq Index:
-15 -20 -25

Figure 2.10 Split cells having minus square indices

33



In addition to square index, one more index should be used to understand the shape

of the cell exactly. This index is called "split index". For one square index of a type,

there are various alternatives that a cell has. While some cut cells may have 4

different alternatives, it may be increased to 18 for a split cell. These alternatives

may come from the intersection points at the corners since the location variable of an

intersection point is changed for a corner point. Alternatives of a cut cell having a

square index of 6 is indicated in Figure 2.11.

Split Index:
1

P1

P2

Split Index:
2

P1

P2

Split Index:
3

P2
P1

Split Index:
4

Figure 2.11 Alternatives of a cut cell having a square index of 6

Moreover, these may arise from intersection points on different edges for a split cell.

In Figure 2.12, two alternatives of a split cell are shown with a square index of 6.

Since the other alternatives have the same logic as the cut cell above, in other words,

corner intersection points create the other alternatives, they are not illustrated.

Split Index:
1

Split Index:
2

Figure 2.12 Two alternatives of a split cell having square index of 6

All alternatives that a cell may have are shown explicitly in Appendix A.

34




2.2.2.3 Split Cells Having Two Control Volumes

Some split cells have two separate control volumes like the cell having a split index
of 2 in Figure 2.12. When these cells are encountered, two different cells are created,
stored with the cell type pointers of "splitToCutl" and "splitToCut2". Each control
volume is converted to a cut cell and all the calculations are carried out using these
new cells [21]. The inverse relation among these cells is provided with the
"inclusiveOfSplits" pointer. This word points the cell having those splitToCut cells.
This relation is necessary especially for multigrid applications since coarsening is
required which is discussed in Chapter 4 in detail. In addition, it is important to pay
attention to order of intersection points for new cells. In Figure 2.13, the conversion

of a split cell into two cut cells is illustrated.

Sqg. Index: 6
Sp. Index: 2
P2 P1
Second Control Volume First Control Volume
P3 P4
P1 p1
Sq. Index: 14 Sq. Index: 7
Sp. Index: 1 Sp. Index: 1
P2 P2

Figure 2.13 Conversion of split cell into two cut cells

2.2.3 Geometric Adaptations

Geometric adaptation allows high resolution grids around the input geometry. Three
different adaptations can be applied to the uniform mesh, sequentially. First, box

adaptation is applied to the mesh. Then, cut and split cells around the input geometry

35



can be refined more cut and split adaptation. Finally, highly curved parts can become

finer with curvature. The amount of these adaptations can be controlled by inputs.

2.2.3.1 Box Adaptation

In box adaptation, a rectangular box is first determined around the given geometry,
the size of which is specified by the user. The size of box is specified with two
inputs, boundary size factor in x and y coordinates. With this factor, x and y
coordinates of the box can be found using the maximum and minimum coordinates
of the whole geometry. The distance between the body and box can be found using

the following relations;
D, = (ky — 1) e Zmin (2.09)

_ Ymax—Ymin
Dy = (k, — 1) =me=mn (2.10)
where k. and k, are boundary size factors in x and y directions, respectively,
subscripts "max" and "min" represent the maximum and minimum coordinates

among all bodies in the geometry, respectively.

After that, the cells in this box are refined to the desired level until the desired
resolution around the geometry is obtained. This desired level is controlled with an
input of body division factor. Maximum body dimension, which is either on x axis or
y axis, is multiplied by this factor. If the sizes of cells are larger than this determined
size by the multiplication, then the cells in the box are refined. The following relation

is used as the main criteria;

If (dmaxn < %) Do(Refine) @.11)

where D is the domain size, / is the level of the cell with minimum size in the

domain, 7 is the body division factor and d,, is expressed as;

36



dmax — {xmax xmm (:VTYLCLX :me) (xmax xmln) (212)

Ymax — Ymin (:Vmax - :Vmin) = (xmax - xmin)

The mesh after the application of box adaptation is shown in Figure 2.14.

7"-\-\.
!

1
HY
]

!

Figure 2.14 Box adaptation around a two-element airfoil

2.2.3.2 Cut-Split Adaptation

Since the cells near the given geometry can be small enough to get accurate results,
these can become finer by the use of cut-split adaptation. As it can be understood

from the name of the adaptation, cut and split cells are considered. In addition, the

37



neighbors of these cells are also refined even if they are out cells. As a result, a
smooth resolution around the geometry is obtained [21]. The user can specify the
number of cycles that should be applied in this adaptation according to the desired
level. In Figure 2.15, one cycle of cut-split adaptation is illustrated after the

application of box adaptation to a two-element airfoil, NLR 7301.

B o

TR

__.J EL

HH

HHH
e
T

Figure 2.15 Cut-split adaptation around a two-element airfoil

2.2.3.3 Curvature Adaptation

Some regions of the geometry have highly curved parts. In these parts, there may be
shear layers, vortices, wakes and similar events like these. Therefore, more resolution

is required at these locations and this is provided by curvature adaptation.

38



In curvature adaptation, two neighboring cells near the wall boundary are considered.
If the curvature formed by these geometrical parts in these cells is large enough, then
these two cells are refined once in one cycle. The amount of curvature is determined
by the angle between the intersection lines of the cells [22]. Since this angle is found
by a triangle formed by three different intersection points at two cells, this angle is
always less than 180 degrees, sometimes directing the outside of the geometry,
sometimes inside of the geometry. Two examples illustrating these two different
cases are shown in Figure 2.16, respectively. Note that the gray parts represent the
geometry and T1, T2 and T3 are the corners of the triangle which is used to

determine the curvature angle, 6., by cosine theorem.

T2 T3

(b)

Figure 2.16 Curvature angle determination directing outside (a) and inside (b)

of the geometry

After determining the curvature angle, it is compared with a threshold angle which is

set by the user. If this angle is less than this specified threshold angle, then both of

39



the cells are refined. Moreover, the cycle of the adaptation can be controlled by
another input. Below, curvature adaptation is illustrated after applying box and cut-

split adaptations to uniform mesh around NLR7301.

o
maifinam

i

HH,

T
HHHH
Y
""_Il EEE

Figure 2.17 Curvature adaptation around a two-element airfoil

2.2.3.4 One Level Rule

One level rule sets the level difference between two neighborhood cells to 1 at
maximum. This rule is provided to avoid the complexity of data structure and to
facilitate the connectivity handling [21]. During the flux computations,
reconstruction scheme can easily be applied to a mesh generated with the help of one

level rule. The grid smoothness is also provided by this rule. In the geometric

40



adaptations, which are discussed above, only the single cycle of each adaptation is
shown since this rule is not yet introduced. For more cycles of a geometric
adaptation, the grid becomes smoother with the aid of the one level rule. In Figure
2.18, the level difference between the uniform mesh and cells in the adapted box
exceeds unity. The cells between box and uniform mesh are refined according to the
one level rule. Moreover, cut cell adaptation cycle is set to 2 and curvature
adaptation cycle is set to 4 in this example. Therefore, the effect of the one level rule
can clearly be seen in the cells neighboring to the adapted cells and this is illustrated

in Figure 2.19.

Figure 2.18 One level rule

41



q‘"‘“‘-q,___h
EH‘“M
-____q___m__h
——_] |
T A s
—"] -r\. H
1] [T B
s i =
HeH™
+
_w'
|
Hitw
HHE "_“——hﬂ—____ﬁ___
[ — —
—r—

Figure 2.19 Closer look to the geometry to illustrate one level rule for cut-split and

curvature adaptations

2.3 QUAD GRID GENERATION

For viscous flows, in order to obtain sufficient resolution in the boundary layer, quad
grids can be used optionally. Before the generation of quad cells, the geometry is
first puffed up by a specified amount. This puffed geometry becomes the geometry
input for the Cartesian meshing and Cartesian cells are generated outside this puffed
geometry. In the space lying between the original geometry and the puffed geometry,

quad cells are created.

42



2.3.1 Boundary Laver Setting

The boundary layer thickness is set according to Reynolds number of the flow. Using
the following relation, thickness, d, can be determined for laminar flows [7].

5= (2.13)

5
VRe

For the turbulent or separated with a thicker boundary layer, this thickness is
multiplied by a factor which is greater than 1 can be multiplied with the thickness.
Whereas the developed code considers only laminar flows, the thickness found by

using the relation above can also be multiplied by a factor as a safety factor.

While setting the boundary layer, some corrections may be required to puff the
geometry up correctly. Highly curved parts must be handled so that thickness has the
same quantity at all points. In addition, negative volumes should be eliminated,
which can be formed at some concave surfaces. After the puffing up process, quad

cells are generated according to the Cartesian cells near the puffed geometry.

2.3.1.1 Setting Puffed Geometry

The geometry is specified with the nodal points, as mentioned earlier. While setting
puffed geometry, line segments which are formed by two consecutive nodes are
used. After forming a line segment, starting and end point for new line segment can
be created by shifting the nodal points along the normal direction of the line segment
by an amount equivalent to the determined boundary layer thickness. After forming
all new line segments, the location of new puffed nodes are found by intersecting the
two consecutive new line segments. Below, one can see two examples about the
creation of new puffed node. While elongation of line segments are required to
obtain the intersection point at the first one, shortening of new line segments is

necessary for the second one.

43



new node(i)

& ;
16 ;
5 | :
®
< node(i) node(i+1)
) GEOMETRY
node(i-1)
(a)
new node(i) s
E E node(i+1)
i 5
® ' .
node(i-1) node(i)
GEOMETRY
(b)

Figure 2.20 Creation of a new node for puffed geometry

2.3.1.2 Handling of Highly Curved Parts

As it can be seen in Figure 2.20, new line segments must be elongated or shortened
in order to find the new puffed node. While, the thickness between the original line

segment and the puffed line segment is the same, the shortened or elongated part of

44



line segment has a smaller or greater amount of thickness, respectively. Although
this is not a problem for slightly curved parts, it leads to excessive amount of
thickness for highly curved parts at convex regions of the geometry. This situation is

illustrated at the trailing edge of the airfoil in Figure 2.21.

e et L i
. o— —_——

/ﬂ s - -
S
4 L S
= -'\l—\—-
-'\—_-
e
1 -
-*
- —
LY o
Y T =
--‘-'_'-
B -

- — -
- — e o — o —— -

Figure 2.21 Original and puffed geometry without handling convex parts

new node(is)

new node(iz_)_,——"/ \“\\.new node(is)

7
7 N

p N , N
. d \ 7 N
new node(i;)- . 1)
6 ) Ay
N /
’ Sl AN // R
/ ~ \ , - '
~ \ 4 “
’ S ~~. \ / ) \

GEOMETRY

(@)

45



new node(i,)

.

- ~
-

new node(il)’,x”’
®

N
’

hES

“~~._new node(is)
®

1
I
I
I
!
1 7N
4 N
| ,
’ 1 ’ N
4 N \ ’ N
I
I
I
!
1
1
|

s
,
s N
’ N
s

- node(i) s

’

GEOMETRY

(b)

Figure 2.22 Creation of a puffed node for highly curved part

In order to get a good puffed geometry at convex parts, the node is shifted not only to
one location but also to several other locations by the boundary layer thickness, as
shown in Figure 2.22. The number of these locations is determined by the angle of
the convex part. If this angle is less than 60 degrees, five different nodal points are
created from the original node of the geometry. If the angle is between 60 and 120
degrees, three different nodes are created. In this case, these three nodes are
sufficient for obtaining uniform thickness at all points of the boundary layer. If the
angle is greater than 120 degrees, one puffed node is sufficient since the curved
region is not sharp enough. Figure 2.22 illustrates the two situations having an angle

less than 60 degrees and between 60 and 120 degrees at the convex parts.

By shifting the nodal points to several different locations for convex parts, the puffed

geometry shown in Figure 2.21 can be modified to the one indicated in Figure 2.33.

46



4 i . [p—— il i _
e N P 3 el L
DT e
- —

o 2

Figure 2.23 Original and puffed geometry with handling convex parts

2.3.1.3 Negative Volume Elimination

On some concave surfaces, it is possible to have negative volumes by direct

extrusion of the geometry. The reason is that the new line segments are formed by

connecting wrong nodes after shifting of two consecutive line segments at a certain

amount, resulting in negative volumes. This situation can be exemplified in Figure

2.24.

In order to eliminate negative volumes, the intersection point of the intersected line

segments is accepted as the new puffed node. However, this may cause new negative

volumes at the parts near to the fixed region. Therefore, elimination of negative

volumes using this method is continued until none of the line segments intersect each

other. After elimination process, the airfoil shown in Figure 2.24 has a good puffed

geometry, as shown in Figure 2.25.

47



Figure 2.25 Boundary layer after elimination of negative volumes

48




2.3.2 Quad Cell Generation

After setting the boundary layer using the puffed geometry, the spacing between two
geometries is filled with quad cells. Quad grids are connected to the Cartesian cells
formed outside the boundary layer. With the connectivity information, a smooth

hybrid grid can be generated.

While generating quad grids, two inputs are used, namely row number and stretch
factor. The number of rows in the boundary layer can be specified by user. The
thicknesses of the quad cells are determined according to the stretch factor which is

the ratio between quad cells at two consecutive rows.

2.3.2.1 Connectivity

After row number and thicknesses of quad cells are set, the quad cells can be
generated with the connection to the Cartesian cells. The connection between quad
cells and Cartesian cells are provided with two pointers, "quadl" and
"inclusiveOfQuads". A Cartesian cell may have a quad cell and if it has, then this
quad cell is stored at "quadl". The opposite connectivity relation is obtained by
"inclusiveOfQuads" pointer. With this technique, the corner points are forced to
coincide with the intersection points of the Cartesian cell. In other words,
interpolation of the flow variables from the Cartesian cells to the quad cells is not

necessary since fluxes can simply be calculated along the common faces.

Cartesian cell

"quad1” "inclusiveOfQuads"

left h
v

right

bottom

Figure 2.26 Relation between a quad cell and a Cartesian cell

49



Sometimes, a Cartesian cell may have two faces neighboring to the puffed geometry,
which possesses one control volume. Then, a second pointer, "quad2", is used for
these situations. While first quad cell is stored at "quadl", "quad2" is used for the
second one. On the contrary, it is sufficient to use one pointer, "inclusiveOfQuads",

for the inverse relation, as described before.

1. Quad cell
A

2. Quad cell
A

"inclusiveOfQuads" "quad1” inclusiveOfQuads" "quad2"

v Cartesian cell v

Cartesian cell Cartesian cell

Figure 2.27 Relation between a Cartesian cell and its two quad cells

Figure 2.28 Hybrid mesh around slat of a three-element airfoil

50



After providing the connectivity between Cartesian and quad cells, the connectivity
between quad cells is provided by the neighborhood information. As shown in Figure
2.26, the neighbors are found according to the specified directions. Thus, all cells
including quad and Cartesian cells are connected to each other. In Figure 2.28, one

can see an example to hybrid mesh around a slat of a three element airfoil.

It can be shown in Figure 2.28 that the size of the quad cells is very small near the
smaller Cartesian cells. Although cut-split and curvature adaptations are applied only
to Cartesian mesh, since smaller cells lead to smaller quad cells, quad cells become

automatically finer at the highly curved regions.

It is also important to note that the quad cells are not refined directly during the
solution adaptation, which is discussed in Chapter 3.7. If a region where a quad cell
exists needs to be refined through solution adaptation, the inclusive Cartesian cell of
this quad cell is refined at first. Then, quad cells of the Cartesian cell are deleted and
new quads are regenerated according to children of the refined Cartesian cell. As a
result, those regions become finer without refining quad cells. However, with

solution adaptation, the number of rows is not changed.

51



CHAPTER 33

NUMERICAL SOLUTION

In this chapter, first of all, the governing equations are explained in detail. While
these equations are presented, two dimensional Navier-Stokes equations in integral
form are introduced. These equations are then non-dimensionalized with suitable
reference values. Finally, wall and far-field boundary conditions are explained for

both inviscid and viscous flows.

Secondly, the discretization of these governing equations is discussed. After spatial
discretization is introduced, the temporal discretization is told by using multistage
time stepping. Time step calculations are explained later while solving inviscid and
viscous flows. Furthermore, a cut-back procedure for CFL number is described in

order to avoid instability in earlier iterations of the execution of the code.

Thirdly, inviscid flux computations are mentioned. Flux vector splitting methods like
AUSM and its derivatives are discussed. Furthermore, approximate Riemann solver

of Roe is described.

Fourthly, reconstruction of the primitive flow variables are explained using the least
squares method. To get more accurate result, this technique is used in some of the
analyses. However, computational time increases as expected. In addition to this, to

get more stable results, gradient limiting procedure is introduced.

Fifthly, viscous flux computations are discussed. One reconstruction technique is

used while calculating viscous fluxes. In this viscous reconstruction technique,

52



viscous flux is computed using both flow variables and gradients obtained by

inviscid reconstruction at cell centroids.
Sixthly, how to calculate the coefficients of pressure and skin friction are presented.
These coefficients are used to compare the results with the available data in the

literature.

Finally, solution adaptation is discussed in detail. With this adaptation, the critical

grids in the domain become finer so that more accurate solutions can be obtained.

3.1 GOVERNING EQUATIONS

Navier-Stokes equations are the governing equations for the flow around bodies.
These equations can be in integral form or differential form. These equations are
derived from the conservation of mass, momentum and energy. In the present code,
non-dimensionalized Navier-Stokes equations are used in integral form, with

appropriate wall and far-field boundary conditions.

3.1.1 Two-Dimensional Governing Equations in Integral Form

The general compressible integral form of these equations can be represented as;
]
= J,@dv + [(F-n)dS = [(G-n)dS (3.01)

In this equation, Q contains the vector of conserved variables of density, momentum
and total energy. F is the inviscid flux vector while G is the viscous flux vector. n
represents the unit vector in the normal direction to the differential area, dS. In two-
dimensional Cartesian coordinates, the conserved variables vector, Q, inviscid flux

vector, F and viscous flux vector, G can be represented as below.

53



p

Q= pv (3.02)
pE

pui + pvj
_| (w? +p)i+puvj |

F 3.03
puvi + (pv? +p)j 509
puH1i + pvHj
|[ Tyx L -(l)- Tyx J ]|
. xx VX
G= l Tyyl + Ty j J (3.04)
(UTyx + VTxy — q)i + (UTyx +VTyy, — qy) ]

Since the unit normal vector can be defined using angle 6 between the unit vector
and x-axis, the dot products of inviscid flux vector and viscous flux vector with the

unit normal can be written as;

pu cosf + pv sinf
_ | (pu® +p) cosb + puv siné |
| puv cosé + (pv? + p) sind
puH cos@ + pvH sinf

F-n (3.05)

0 ]
T,, COSO + T,, sin@

Txx cosO + Tyx sinf JI (3.06)
xy yy

[
G n= l

l(urxx + UTyy — Qx) cOSO + (utyy +v7y, — qy) sind
Descriptions of the variables used in Equations (3.02) to (3.05) are as follows. p is
the fluid density, # and v are the x and y components of the fluid velocity,
respectively. p represents the fluid static pressure, E is the specific total energy while
H 1s the specific total enthalpy. 7y, 7y, 7,x, and z,, are the stresses. Finally, g, and g,

represent the heat flux terms in x and y directions, respectively.

54



In order to be capable of solving the above equations, some additional relations are
required. These relations are formed using thermodynamic relations and the perfect

gas assumption. Following equations are used to close the system of equations.

p = pRT (3.07)

e =c,T (3.08)

R=c, - c, (3.09)

y =i—z (3.10)
2 2

E=e+22 3.11)

In the above equations, R is the specific gas constant, ¢, is the specific heat for a
constant pressure, ¢, is the specific heat for a constant volume, e is the specific
internal energy, T is temperature and y represents the specific heat ratio. Using these

equations, specific total enthalpy and static fluid pressure can be expressed as;

H=E+% (3.12)

2 2
p=ply—1)(pE ~25) (3.13)

Since the fluids used in this code are restricted to the Newtonian fluids, the viscous
stresses are related to the laminar dynamic viscosity, x4, and the velocity gradients

through the following relations.

2 u v u

r,m_—gﬂ(a+3)+2ya (3.14)
2 u v v

ryy_—gu(£+£)+2u5 (3.15)

55



_ _ du , dv
Ty = Tyx = U 3y | ox

(3.16)
In the above equations, since the fluid used in the analyses is air, laminar dynamic
viscosity is calculated using Sutherland's law [25], which the viscosity is accurately

related to the temperature.

o (L)s/z (Tw+110.4) 317
— lo¥1104 (3.17)

oo Too T+110.4

In this equation, u. is the reference dynamic viscosity at the temperature 7., which is
taken as 273.15 K. In addition to these, the heat flux components are calculated using

Fourier's heat conduction law

Gr = —k > (3.18)
oT
ay = k3 (3.19)

where £ is the coefficient of thermal conductivity.

3.1.2 Non-Dimensionalization

The non-dimensionalization is advantageous since it prevents numerical errors
resulting from the disparity in scale of the conserved variables [26]. Moreover, it
decreases the number of parameters to be handled and ease the handling of the
equations. In the present code, the governing equations are made non-dimensional

with the suitable reference values as follows;

X tc
¥ == yl — e t = 00
Loo Loo Lo
I u ’ v I p
u =— v =— = — 3.23
Coo Voo p Cooz ( )
N =Lt =2
P Poo Coo? H Hoo

56



where superscript (') denotes non-dimensional variable. With the use of non-
dimensional Reynolds number, the governing equations can be made non-

dimensional as shown below;

[,%% s Ldt' + [{(F' - n)dS" === [ (G’ -n')dS’ (3.24)

where Re., is the Reynolds number based on fluid velocity, ¥, and reference length,

Lo,

Re,, = ”jﬂ (3.25)

and M., 1s the free stream Mach number.

M, =Y = (3.26)

Non-dimensional conserved variables and dot products of inviscid flux vector and

viscous flux vector with the unit normal vector can be explicitly written as;

||
Q = p’u’ (3.27)
pIEI
[ p'u’ cos6 + p'v'sind 1
| (p'u'* + p") cos® + p'u'v' sind |
=| p'u'v' cosd + (p'v'? + p ) sm@ | (3.28)
lp —, cos@ + p'v , smGJ
0
[ Txx €0SO + Ty, sind }
G -n = (3.29)

Tyy' €00 + 1), sinf

[(u’rxx’ + V' Ty — qx’) cosd + (u'ty, +v'ty," — qy") sinQJ

57



As it can be seen, non-dimensionalized inviscid flux vector is not different than the
dimensional one. For inviscid solutions where the viscous flux vector is zero, there is
no need to use any additional terms. However, the initial guesses should be

appropriate.

As non-dimensional free-stream values, density is chosen as 1. Static pressure is
chosen as 1/y in order to equalize speed of sound to 1. With these initial guesses, it is
not required to add new terms to non-dimensionalized equations [21]. The initial

guesses are given below. The subscript "in" denotes the free-stream values.

12 ! ! Pin,
P =1 pin’ =1/y ' = |2t =1 (3.30)

7
Pin

When considering viscous terms, non-dimensional stresses are very similar to
dimensional ones. The ratio of the Mach number to Reynolds number is required for
the conserved equations. However, heat flux terms are different than the dimensional
ones since thermal conductivity is non-dimensionalized with another non-

dimensional parameter, i.e. Prandtl number. Prandtl number can be defined as;
Pr =— (3.31)

With the use of Prandtl number and non-dimensional variables, heat flux components
are made non-dimensional as shown below. Since gradient of pressure is calculated
instead of temperature gradient in the code, the equations are revised according to

this gradient.

r_ 4 a(Pl/p') (3.32)

Qx __(y—l)Pr dx'

p' )
1 Y a( p’

G DP ay’ (3.33)

58



From now on, superscript (') is not used for simplicity. The variables without any

superscripts denote non-dimensional variables unless it is particularly mentioned.

3.1.3 Boundary Conditions

There are two types of boundary conditions for external flow. These are far-field

boundary conditions and wall boundary conditions.

3.1.3.1 Far-Field Boundary Conditions

Far-field boundary conditions are used for the outermost cells in the domain. These
conditions are applied at the faces not having any neighbors. Since in the analyses,
far-field boundary is located at least 18 chords ahead of the analyzed airfoil,
boundary conditions here are simply calculated using free-stream values, as shown
below. These free-stream values are equated to the ghost cell which is created as a
neighbor to the face having no real neighbor. Moreover, this ghost cell has the same

size as the considered cell.

Pghost = Pin Pghost = Pin Cghost = Cin (3.34)

Using these conditions, velocity components and specific total energy for far-field

faces can be computed as;

Ughost = Moocos(eface) (3.35)

Vghost = MooSin(Bqce) (3.36)
_ Dbin ughast2+Vghost2

Eghost - pin(y—1) 5 (3.37)

In the figure below, ghost cell of an outermost cell can be seen.

59



1
Pghost Pghzlst;
Ghost Cell 1
Cghost; Ughoke

1
Vghost/ Eghott

1

1

-+

Far-Field Boundgry

pl PI
U Real Cell
v, E <+—!

Figure 3.1 Far-field boundary conditions

3.1.3.2 Wall Boundary Conditions

Wall boundary conditions are used for the cells near the wall boundary. These cells
are cut and split cells for inviscid flows, while they can be quad cells or cut and split
cells for viscous flows depending on quad cell usage. The flux through the interface
between the wall and fluid is calculated by using the ghost cell technique. The
created ghost cell has same size as the real cell. Moreover, both for inviscid and
viscous flows, pressure and density are taken as the same as the ones in the real cell.

The velocity components on the interface are changed according to the flow type.

While solving inviscid flows, the velocity components at the interface of the real cell
are found by using the normal angle. Then, the tangential velocity component on the
interface of the ghost cell is taken as the same as the one in the real cell, whereas the
normal velocity component has the same size as the one in the real cell, but it is in
the opposite direction. With these velocity components, the cell-centered components

of the velocity can easily be calculated using the face normal angle.

60



Hiwal = |'-||.;h'.-'\.|
Real Cell (Vielran

Prear = Pgags
| > -
:"'nl.thh;ﬂ:

T

o = -

Wall Boundary

Figure 3.2 Wall boundary conditions for inviscid flow

For viscous flows, interface velocity components of the ghost cell should be reversed
in order to provide no-slip condition. In addition to the reversed normal velocity of
inviscid flow, the tangential velocity of the ghost cell should also be reverse of the
one in the real cell. Furthermore, constant wall temperature is used while computing
heat flux terms. In other words, temperature is taken as the same as the one in the

real cell.

Datast

Real Cell Preai = Pynost

. ————r -

|I"'I'|r".-|l.
Ghost Cell

!

(Vi) ghast

Wall Boundary

Figure 3.3 Wall boundary conditions for viscous flow

61



3.2 SPATIAL AND TEMPORAL DISCRETIZATION

After obtaining non-dimensional Navier-Stokes equations with appropriate boundary
conditions, some discretization in space and time should be done in order to be
capable of solving these equations. Finite volume method is used when discretizing
these equations spatially. Although steady flows are considered, there is a need for
discretizing time derivative of conserved variables in time in order to equalize it to
the residuals. Furthermore, time step calculations should be done accurately by
considering the flow type; inviscid or viscous. In addition to these, a cut-back
procedure for Courant number is introduced in order to avoid some start-up stability

problems that may exist during the execution of the code.

3.2.1 Spatial Discretization

By using finite volume method, integral form of Navier-Stokes equation can be
solved easily. Domain is divided into cells, firstly. These cells become the control
volumes that do not changed in time. The conserved variables are stored at the cell
centroids and it can be assumed that variables of a cell remain the same throughout
the whole cell. In addition to this, integrals of inviscid and viscous fluxes can be
written as the sum of the fluxes through each face of a cell. Using these assumptions,

Equation (3.24) can be written in two-dimensions as;
aQ Moo —
AE+ZfaceS[(F—@G)-n]AS—O (3.38)

where 4 is the area of the cell and As is the edge length of the face. Using the above

equation, residuals of the cell can be defined as;
Moo
Res(Q) = Yfaces [(F - EG) ‘n ] As (3.39)

If one combine Equation (3.38) and (3.39), spatially discretized governing equation

can be rewritten in terms of residuals.

62



2Q 1
— =~ Res(@) (3.40)

As a result, spatially discretized governing equations in compact form are obtained in

terms of residuals, area of the cell and time derivative of the conserved variables.

3.2.2 Temporal Discretization

After the spatial discretization, time derivative of the conserved variables should also
be discretized. This discretization is called temporal discretization. Although the
code solves steady-state flow, temporal discretization is necessary in order to obtain
zero residuals by iterative method. Time derivative can be discretized as the
difference of the conserved variables of n+1'th time step and n'th time step divided

by specified time step.

aQ QTL+1_QTI.

y I (3.41)

This discretized equation can simply be equalized to the residuals of the conserved
variables divided by the cell area by using Equation (3.40). While equalizing, two
different schemes can be used. If the residuals are calculated using the #'th time step,
then only unknown will be the conserved variables at the (n+1)'th time step. This is

called explicit time scheme.

Qn+1_Qn

—% = —~Res(Q") (3.42)

If it is desired to use residuals at the (n+1)'th time step, then unknowns are placed at

both sides of the equations. This is called implicit time scheme.

n+i_gn 1
Q = Q" _ —ZRQS(Qn+1) (3.43)

63



In the implicit scheme, the residuals at the (n+1)'th time step are found using Taylor

series expansion by neglecting of the higher order derivatives.
Res(@"™1) = Res(@Q") + X5 (@1 — @) (3.44)

In the developed solver, explicit time scheme is used.

3.2.2.1 Multistage Time Stepping

The discretized equations are solved using multistage time stepping method. In order
to use this method, initial guesses should be made. As initial guesses, conserved
variables of all cells are taken as the free stream values. Then, using multistage time
stepping at each iteration, residuals are found. The general m-stage scheme is defined

as;

Q(O) = QTl
Q¥ = @ ua"TAtRes(Q(k‘l)) k=1..,m (3.45)
Qn+1 — Q(m)

where v is the Courant number (CFL Number), a; is the stage coefficient at the k'th

stage.

In the developed code, three, four and five stage time stepping can be used with the
first order and second order scheme. In analyses, generally three stage time stepping
is used. Below, one can see the CFL numbers and stage coefficients according to the

stage number and scheme type [38].

64



Table 3.1 CFL numbers and stage coefficients

for the first order scheme

() a4 a; a3 o4 /73
stage
3 1.5 0.1481 0.4000 1.0000
4 2.0 0.0833 0.2069 0.4265 1.0000
5 2.5 0.0533 0.1263 0.2375 0.4414 1.0000
Table 3.2 CFL numbers and stage coefficients
for the second order scheme
(4 a1 (14) as ay Os
stage
3 0.6936 0.1918 0.4929 1.0000
4 0.9214 0.1084 0.2602 0.5052 1.0000
5 1.1508 0.0695 0.1602 0.2898 0.5060 1.0000

3.2.3 Time Step Calculations

Calculation of the time step is very important to obtain fast and stable solutions. It
depends on the cell size and the flow properties directly. If it is chosen very small,
then solution converges very slowly. On the contrary, if it is taken very large, then

solution may diverge easily. In addition to this, calculation method is significant in

65



order to determine the appropriate time step. There are two methods for the

calculation of time steps, namely global and local time stepping methods.

In the global time stepping method, all cells in the domain should be examined and
minimum time step must be used for all cells. It is necessary while solving unsteady
flows in order to obtain logical results at any time step. For steady flows, this method
is impractical since only the final solution is considerable, in other words, the
solution at any time step is not important. Moreover, with this method, convergence

time significantly increases.

In the local time stepping method, every cell has its own time step. In order to solve
steady flows, this method is very useful. While the larger cells have greater time
steps, the smaller cells have lower time steps. This brings faster convergence to
larger cells. Since the solutions at the mid-stages are not required to be accurate, this
method provides an important advantage for the convergence time. Moreover, in the
code, local time stepping method is used while dealing with steady flows. It is very
advantageous since Cartesian mesh has large cell size differences. It is important to
note that the time step for each cell is computed at every iteration since flow
properties on which the time step calculation depends are changing from one

iteration to the other.

Two different calculations are used for the local time stepping method. First one is
used when dealing with inviscid flows, while second one is introduced when dealing
with viscous flows. In addition to these, a CFL cut-back procedure is used in order to

eliminate stability problems especially in earlier iterations of the solution if any.

3.2.3.1 Inviscid Time Step Computation

Local time step of each cell can be computed using the relation below for two-

dimensional inviscid problems [27].

t=—12 (3.46)

- Pxtey

66



Here, ¢, and ¢, denotes the convective spectral radii and the absolute values of the
projection of edges, S¢ and S,, in x and y directions, respectively, are used while

computing them.
1
Px = E(lul + ) Zfaceslsxl (3.47)

1
Py = E(lvl +¢) Zfaces|Sy| (3.48)

3.2.3.2 Viscous Time Step Computation

In order to avoid stability problems in viscous flows, both convective and diffusive
characteristics of the flow must be considered. Thus, the local time step for each cell

can be calculated as;

At At
At = Sellv
Atc+At,

(3.49)
where Af. is the convective time step and Af#, is the viscous time step [28].
Convective time step is calculated similar to the inviscid time step calculation in the
previous section. While computing viscous time step, following relation is used.

At, = K, (3.50)

&>

In this relation, K, is an empirically determined coefficient which considers the
relative importance of viscous effects for the final time step expression. It is chosen
as 0.25 for most cases. For low Reynolds number flows, since viscous effects are
more dominant, this coefficient may be increased to get more stable results, when
there are stability problems. The other variable, A,, represents the maximum
eigenvalue of the diffusive operator of the Navier-Stokes equations and it is a
discretized and averaged quantity about the boundary of the control volume and

expressed as:

67



Moo
%:gﬁazmm%mz (3.51)

where dynamic viscosity and density are computed at the face boundary and As

denotes the face length.

3.2.3.3 CFL Cut-Back Procedure

Sometimes, initial guesses at the critical locations can cause negative pressure and
temperatures at the early iterations of the execution. This problem can be solved by
decreasing the CFL number. However, this increases the solution time considerably.
To avoid this convergence time increase and also stability problems at the start-up, a
CFL cut-back procedure may be applied, which limits the maximum relative change

in density and pressure per time step [29].

In this procedure, first, the maximum relative change in conserved variables of a cell

is found using residuals at the beginning of each time step.

p Res(p)
pu|  ac|Res(pu)
pv| ~ A |Res(pv)
pE Res(pE)

A (3.52)

The relative change in pressure can be calculated using the relative changes of

specific total energy, density and velocity components

2 2
Ap=(—-1 [A(pE) — (u Alpu) + v A(pv)) + Ap = ;rv ] (3.53)
The relative change in pressure and density can then be written as:
A
%=f (3.54)

68



&p = — (3.55)

The CFL number may be cut back by making maximum change per time step in

either the density or pressure to be less than some specified tolerance, €.

Uoyp = —2— (3.56)

max (&p,&p)

Then the new CFL number can be obtained by taking the minimum of the original

CFL number and cut-back CFL number.

Upew = Min (U, Ugyt) (3.57)
While finding cut-back CFL number, specific tolerance is taken as 0.1. It may be
thought that convergence time is increased with this procedure. However, it is

observed that CFL number is cut back at the very early stages of the run. After these

early stages, CFL number quickly increases back to the maximum allowed.

3.3 INVISCID FLUX CALCULATIONS

Inviscid flux calculations play very important role while analyzing a problem. In this
study, four different techniques are used. One Riemann solver and three flux-vector
splitting methods are used. As Riemann solver, approximate Riemann solver of Roe
is used. On the other hand, Liou's Advection Upstream Splitting Method, in short,
AUSM, and two derivatives of it, namely AUSMV and AUSMD are embedded into
the code.

In these methods, it is required to interpolate the variables of the cell ,whose flux
value is calculated, to the midpoint of each face. In addition, the neighboring cell

values should also be interpolated to the values at the face. These cells are denoted as

69



left and right cells, respectively. After the variables are moved accurately to the
interface of the left and right cells, the inviscid flux vector can be calculated by using
one technique described below in detail. Finally, found face flux values according to

the face direction must be transformed to the Cartesian coordinates.

Using the rotational invariance of the governing equations as shown in Equation
(3.58), one can find the conserved quantities and flux vectors in the normal and

tangential directions to the face [24].
F-n=T 'F(TQ) =T 'F(Q) (3.58)

In the above equation, the overbar symbol "-" denotes that the quantity or the vector
is transformed to the face direction. In addition, T and T are the transformation
matrix and its inverse respectively, which can be written in explicit form by using the

face normal angle, 0, as;

1 0 0 0
_ 10 cos@ sinfd O
T= 0 —sinf cosfd O (3.59)
0 0 0 1
1 0 0 0
1 _|0 cosf@ —sinf O
= 0 sinf cosf® O (3.60)
0 0 0 1

As a result, transformed conserved quantities and transformed inviscid flux vector

become;
p
— pu
Q= - (3.61)
pE

70



(3.62)

where u and v are the normal and tangential velocities to the face direction and can

be expressed as;
u=ucosf+v sinb (3.63)
v=vcosf —u sinf (3.64)
The calculations for inviscid flux should be done according to the transformed

quantities and vectors using a technique available. Then, the found vector must be

transformed back to the Cartesian coordinates as shown below;

T-'F(Q)=F'n (3.65)

3.3.1 Approximate Riemann Solver Of Roe

In the approximate Riemann solver of Roe [30], the following equation is used in

general.

Fi(0) =2 (F(Q0) + Fi(Qz)) — s Biililracdv,  k=1,..4 (3.60)

where subscript L denotes the left cell, in other words, the cell whose flux will be
calculated, subscript R denotes the right cell, i.e. neighboring cell, 4 is the eigenvalue
1x4 matrix, 7 is the right eigenvector 4x4 matrix and Av is the wave strength 1x4

matrix, k£ denotes the row number of the flux vector.

The eigenvalue, the right eigenvector and wave strength matrices are calculated by

using Roe's averaged quantities. These quantities are given below.

71



PrL = +/PLPR

- UL/pL+URyPR
RL m_’_m

- U1/PL+VRPR
RL m_’_m

Ho = Hy\/pL+HR\/pPR
RL \/E“'ﬁ

2+ 2
CrL = J(V -1) (HRL - M)

URp — CRL
Upy,
A=
UpRy,
Ugy, + CRL

FAP—pRLCRLAUT
ZCRLZ
AP

Ap —
Av = p CcrL?
PrLAV

AP+pRriCrLAU

ZCRLZ

where

be calculated using the following relations,

0 1
0 Ugy, + CrL ]
1 VRL

Vg, Hgy + uRLCRLJ

72

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

Using these averaged quantities, vectors at the right hand side of Equation (3.66) can

(3.72)

(3.73)

(3.74)



(@)Ap =pr—pL (b) AP =Pr — P,
(3.75)

(¢) Au = up —uy,, (d) Av = vy — 1y,

3.3.2 Liou's Advection Upstream Splitting Method (AUSM)

The AUSM scheme [31], [21], [22] works by splitting the advection and pressure

terms in the flux of momentum while calculating face flux as;

f(O) = %[MI/Z(IPR + ) — |M1/2|(1PR - 1/’L)] + D12 (3.76)

where M), is the split Mach number, p 1, is the split pressure and ¥ is the flux vector

which is obtained by removing the pressure term.

Flux vector can then be expressed as;

pc
_ |Pex 3.77
V=, (3.77)
pcE

The split Mach number can be written as follows;
—_ I
M1/2 =ML +MR (378)
where MZ is the positive part of Mach number using normal component of velocity
in the face direction of the left state, and M; is the negative part of Mach number

using normal component of velocity in the face direction of the right state. They can

be expressed as;

73



R:1—

M| <1
_ (3.79)
|M,| > 1
|KR| =1 (3.80)
|Mg| > 1

where M, and My represents left state and right state Mach number based on

transformed velocity.

ML = — and MR = — (381)
Cl, CR
The split pressure can be written as follows;
0
+ 4
Pz =" " (3.82)
0
where
+ T Z_ML |ML|Sl
p. = oM, 1/_ — (3.83)
M, |M,| > 1
b= pali] 1, el =1 (3.84)
R - — .
/MR |Mg| > 1

3.3.3 AUSMD Method

AUSMD method [32], [22] is a derivative of AUSM method. This is referred to as

AUSMD since the numerical flux is calculated similar to the finite difference

74



splitting scheme's (FDS). In this method, splitting of mass flux is used instead of
mach number splitting as well as the flux vector is modified. In addition to this,
pressure is also split similar to AUSM method. In this scheme, the interface flux is

calculated using the following relation;

F(0) = %[(pU)l/Z(l/)R + ) — |(PU)1/2|(1/JR - l/)L)] + P12 (3.85)

where (pU);, is the splitted mass flux based on splitted velocity defined according

to left and right values so that the best resolution can be obtained for shock

discontinuity. ¢ is the modified flux vector and p 1, is the split pressure.

The modified flux vector is defined as;

1
u
=|2 3.86
w=|a (3.86)
H
The mass flux can be expressed in split form as follows;
(pU)1j2 = Ui p, + Ugpr (3.87)
where
@L+cmax)® up+ug| _
L U+ U, | > Cmax '
2
(UR—Cmax)? up—|ugl _
Us = R [_ 4Cmax ] + (1 az) [ 2 ] [ugr| < cmax (3.89)
R Ug— [Tzl [ug| > Cmax '

2

In these relations, a;, ag and maximum interface sound speed are defined as follows;

75



2 (PL/ oL)

ap, = (PL/pL)+(PR/pR)

2 (PR/ PR)

R )+ (%)

Cmax = max(CLv CR)

The split pressure can be written as follows;

0
+ —_—
_ |pr T DPr
P12 0
0
where
(UL+Cmax)? (2 _ (3 )
+ _ 4Cmax? Cmax
pPL = DL UL+
2uy,
(UR—Cmax)? UR
Tenss (, , T )
- _ 4Cmax Cmax
Pr = PR g x|
2UR

3.3.4 AUSMYV Method

|HL| S Cmax
|u'L| > Cmax

IﬁRI S Cmax
|uR| > Cmax

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

AUSMYV method [32], [22] is another derivative of AUSM scheme referring to finite

volume splitting (FVS). This scheme is very similar to the AUSMD except normal

momentum calculations and splitting computations of pressure and velocity.

Equation (3.85) is used for the calculation of interface flux, again. However, in the

second column of face flux vector, instead of face flux calculation terms without

pressure, a new normal momentum calculation is used as follows;

76



1
> [(PU)1/2(1/JR +Y) — |(PU)1/2|(1/JR - l/)L)] = (pU?)4,2 (3.96)
where normal momentum flux at the interface, (pU?), /2> can be expressed as;
(PU2)1/2 = U pLuy, + Ug priig (3.97)

In this scheme, the velocity can be split as;

(up+cp)?
ul<c

uL+|uL| |uL| > CL

2

_ (ag—cr)? -

Up| <c
Up ={ _ *r _RZOR (3.99)
uR_luRl |uR| > CR

2

For the interface split pressure, Equation (3.93) can be used with the new split

computations as shown below;

1 uy,
ol Gl 7| <
bt = U} L(i ) s (3.100)
ur
1 Uur
P e Upl <
pi = PrUz a N ) :;‘il;: (3.101)
ug
3.4 RECONSTRUCTION

In the code, cell centered approach is used. In other words, the primitive and
conserved flow variables are calculated and stored at the centroids of each cell. For

the calculation of inviscid fluxes, primitive flow variables should be estimated at

77



both sides of the interface between two cells. As mentioned before, the cell whose
flux will be calculated is referred to as the left state, while neighboring cell is named

as the right state.

As estimation methods of variables at the interface, two schemes can be used,
namely first order and second order schemes. In first order schemes, the flow
variables at the cell centroids are simply taken as the flow variables at the face for
both left and right states. In second order schemes, the cell-centered flow variables
should be reconstructed in order to use them at the interface. With the reconstruction,
one may obtain more accurate results whereas the solution time considerably

increases since gradients must be calculated for all cells at each iteration.

As reconstruction scheme, least squares reconstruction method is used in order to
calculate the gradients of flow variables at the cell centroids. After gradients are
found, they are used to estimate the primitive flow variables at the interfaces of the

cells.

3.4.1 Least Squares Reconstruction

There are two popular reconstruction schemes available in the literature. The least
squares reconstruction method [7] is used in the developed code since it gives more
accurate results compared to the second scheme, path integral method [33]. The
variables at a certain point in a cell can be calculated using primitive variables and

their gradients at the cell centroids as shown below;
d d
q(x,y) = qeeu + 7 (6 = %) + LV = ¥0) (3.102)

where subscript 'cell' denotes the centroid of the cell whose gradients are sought, q is

the vector of primitive variables and can be expressed as;

78



_
Il
T <KD

(3.103)

The gradients of primitive variables can be calculated using the primitive variables at

the cell centroids of the cell whose gradients are calculated and neighbor cells. In the

following relations, subscript 'n' denotes the neighbor cells.

d 1
d—z = n [Iyy Zn(qn - qceu)(xn - xcell) - Ixy Zn(qn - qcell)()’n - ycell)]

dq
dy

where
Ly = Yn(Xn = Xcen)?
Iyy = 20 = Yee)?
Ly = Zn(n — Xcerr) Un = Yeeu)

A= Lyl — Ly)?

3.4.2 Gradient Limiting

(3.104)

- = %[Ixy Zn(qn - qcell)(xn - xcell) - Ixx Zn(qn - qcell)(yn - YCell)]

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

In order to avoid numerical oscillations at steep gradients which may lead to stability

problems, a limiter can be used for the gradients. With the use of limiter, calculation

of primitive variables at a certain point in the cell may be modified as follows;

79



406Y) = oo + |3 (x = x) + L =) (3.110)

where ¢ is the limiter vector which is a 1x4 matrix for gradients of four primitive
variables. The limiter value must be between 0 and 1. In order to determine its value,
one should need the maximum and minimum quantities of primitive variables among

the considered cell and its neighbors,

qmax = max(qcellv qn)

h

n=1,..,m" neighbor (3.111)

qmin = min(qcell' qn)

where m is the number of neighbors of the cell under consideration. To compute
exact value of the limiter, it is also necessary to know the maximum and minimum
quantities of primitive variables in the cell. For outside cells, these points are usually
in the corners. However, for cut and split cells, these points may also be at the
intersection locations. For each point in a cell, the limiter value is calculated as

shown below [34],

1 qdi = qcen
. (qmin_‘Icell)
g, = dmin(LE—2d) g, < gy i=1..k (3.112)
: (@ —qcerr) .
kmln (1’ (qi—qcewr) ) L > el

where k is the number of points which are examined in the cell to determine

maximum and minimum quantities.

After computing all limiter values for all points, the minimum of all is chosen as the

exact limiter value,

¢ = min (¢y, P2, ..., Pr) (3.113)

80



For all primitive variables, the same procedure is applied and the limiter vector is

obtained.

3.5 VISCOUS FLUX CALCULATIONS

The viscous flux at a face, denoted as G, can be expressed as a function of flow

variables at the face and their gradients,

G =15 Vqy) (3.114)

The flow variables at the face can be obtained through the averages of left and right
state flow variables at the cell centroids. However, for calculating face gradients of
these variables, different methods are available, some of which gives fast results but

less accurate, some of which gives more accurate but slower results.

3.5.1 Reconstruction for Viscous Flux

The face gradients can be obtained by using cell-centered gradients computed by
inviscid reconstruction and cell-centered flow variables. By adding gradients of
inviscid reconstruction to the viscous flux computation, data further away from the

interface are considered so that more accurate results may be acquired [7].

Along the direction between left and right cells of the interface, the derivative of a
variable is obtained through transforming the gradients into x and y coordinates,
which are calculated by averaging the gradients computed by inviscid reconstruction

at cell centroids.

% = %{[(%)L cos 6, + (Z—;)L sin Gt] + [(S—Z)R cos O, + (Z—Z)R sin Ht]} (3.118)

In the above equation, ¢ is the unit vector along the interface, n is the unit vector

along the direction between left and right cells and 8, is the angle between vector ¢

81



and x axis. In Figure 3.4, these vectors are illustrated for the interface between two

regular cells.

n
. »

Left Cell Right Cell

L p— —

Figure 3.4 Schematic view of viscous flux computation at a face

The derivative of g along n direction can simply be computed using central

difference as

ﬂ — Ineigh—qcell (3 119)
dn |rneigh_rcell| .

Note that the above relations can also be written in terms of face gradients as

follows;
(Z—Z)f cos O, + (z_;lz)f sin@,, = Z—Z (3.120)
(%)f cos @, + (Z—;’/)f sinf, = dd—‘: (3.121)

where 6, is the angle between vector n and x axis. In these relations, the only two
unknowns are the x and y derivatives of face gradients, so that they can be found

easily.

For calculating face gradients at the wall boundary, right state is taken at the wall.

Here, the primitive variable vector can be written as;

82



Pcell
0
ar=| (3.122)

Pcenl

The inviscid reconstructed gradients at right state are also necessary in order to
compute the viscous flux. These are taken as same as inviscid reconstructed gradients

of the cell itself in order to have the same gradients at the face

3.6 CALCULATION OF THE COEFFICIENTS

In order to verify the code's accuracy, two coefficients are used along the chord
length. While the skin friction coefficient are calculated for viscous flows, pressure
coefficient are used for both inviscid and viscous flows. These coefficients are
calculated for the cells near the wall boundary. Then, the graph created from these
data can be used to compare with the available numerical or experimental data in the

literature.

3.6.1 Pressure Coefficient

Pressure coefficient is a non-dimensional quantity which describes the relative
pressure along the chord length of the airfoil. The difference between stagnation and

static pressure is non-dimensionalized by the dynamic pressure.

Cp = T2 (3.123)

T
EPooVooz

While the dynamic pressure can be used for inviscid flows, it is not an accurate
measure for viscous flows. The free-stream Mach number can be used for

compressible viscous flows.

cp = (L -1) (3.124)

N )/Moo2 Poo

83



It is important to note that both equations for pressure coefficients lead to same result
with the non-dimensionalized free-stream values and boundary conditions.
Therefore, in the code, Equation (3.123) is used. If non-dimensionalization was not
used in the code, then it would be necessary to compute the coefficient by using

Equation (3.124).

3.6.2 Skin Friction Coefficient

Skin friction comes from the friction of the "skin" of the wall against the moving
fluid on it. While calculating skin friction, local wall shear stress, 7z, is used. Non-

dimensionalization is realized by dynamic pressure similar to the pressure

coefficient.
=W 12
Cr = %Poo—%oz (3 5)

The local shear stress should be taken along the tangential direction to the wall. The
normal and shear stresses along the faces are calculated with the viscous
reconstruction as mentioned before. After the shear stresses in the nearest cells to the
wall are computed, these must be converted to the tangential direction from Cartesian

coordinates. Mohr circle can be used for this conversion.

Mohr circle can be established by the planar normal stresses, 7., and 7,, and shear
stress, 7. Later, using this circle, the transformed stresses can be found at any point
on the circle. The following relation can be obtained from the Mohr circle in order to
compute the transformed shear stress at a point which is at an angle of 6 away from

the x axis.

Taryr = =222 5in 26 + T, cos 20 (3.126)

84



rxy

v

(0))) Oave o1 o

Figure 3.5 Mohr circle

3.7 SOLUTION ADAPTATION

Solution adaptation is an important grid adaptation method which is applied during
the execution of the program when a specified level of convergence is achieved. It is
applied according to the compressibility and rotationality principles of the flow. The
critical regions containing discontinuities due to shocks and stagnation points are

refined so that resolution at these locations is increased to get more accurate results.
The criterion for solution adaptation is based on divergence and curl of velocity [38],
[22], for determining shock locations and shear layers accurately. A characteristic
length is used while using these criterion as shown below;
3/2
T = |V - V]dg,Y (3.127)

70 = |V X V]Agey? (3.128)

85



For each cell, these criteria are checked. If one of these criteria is greater than the
standard deviations of these quantities, op and oc which are given below, then the

cell is refined.

n 2

op = [HE (3.129)
n 2

oc = [H=Lres (3.130)

where #n is the total number of cells. In Figure 3.6, one can see an example to the
solution adaptation. Here, the grids at the shock location, stagnation points and shear

layers become finer with six cycles of solution adaptation.

Figure 3.6 An example of solution adaptation

86



CHAPTER 4

MULTIGRID METHOD

Multigrid is a technique that accelerates the convergence rate by using coarser grids
in order to eliminate the low frequency errors. It is based on two principles, error
smoothing and coarse grids. In the first principle, some iterations are performed on
the finest grid in order to eliminate the high frequency errors. These iterations cannot
reduce the low frequency errors significantly. In order to smooth the low frequency
errors, coarse grids are used. The solutions on the finest mesh are transformed to the
coarser meshes and some iterations are performed on these meshes. As a result, high
frequency errors for coarser grids are improved. Since these high frequency errors
are low frequency errors for finest mesh, one may reduce low frequency errors by
transforming solutions back to the finest grid. Therefore, high and low frequency

errors are eliminated by multigrid. [35]

Multigrid method can be used for linear and non-linear problems. Brandtl [36]
developed an effective multigrid method for non-linear problems. This is called Full
Approximate Storage (FAS) scheme. Then, Jameson [37] and De Zeeuw [38]
implemented this scheme into Euler solvers. In the developed code, this scheme is

used.

In this chapter, multigrid concept and its steps are introduced for non-linear
problems, at first. Next, the coarsening process for Cartesian and quad grids are
explained in detail. Finally, the effect of multigrid technique both for inviscid and

viscous flows are investigated with some tables and graphs.

87



4.1 MULTIGRID CONCEPT FOR NON-LINEAR EQUATIONS

The form of a non-linear problem may be presented as shown by the following

equation , in a discretized way.

L,0, =0 (4.01)

In this equation, L represents the non-linear differential space operator, Q is the
converged discrete solution and subscript # denotes the mesh spacing for grids.
While 4 is the finest step size, 24, 44 ... and nh represent the coarser step sizes. If one

use the approximate discrete solution, Q, the following relation is obtained.

LyQn = Ry(Qn) (4.02)

In this relation, R denotes the residual function. If Equation (4.01) is subtracted from

Equation (4.02), one can acquire the following equation:

LyQn — LyQn = Ry(Qr) (4.03)

Since the error function is the difference between the approximate solution and the
exact solution, this equation can be approximated by using the solution which is
obtained at the coarser grid one step away from the initial grid. To do this, a
restriction operator which transfers the information from the finer to coarser grid is

used both for residual function and the approximate solution.

Lon(I5"Qn + €2n) — Lanli"Qn = I;"R), (4.04)
The error function at the step 24, which is the only unknown in the equation above,
can be found. Then, by using the prolongation operator which transfers the

information from coarser to finer grid, the improved approximate solution is

obtained.

88



QY = Qn + I}y (4.05)

These equations are adapted to the code in four steps. These are fine grid iterations,
restriction, prolongation and final iterations with correction. When the second order
scheme is used, some problems occurred during the application of the multigrid
scheme. After describing multigrid steps, the modifications done for the second order

scheme are explained.

4.1.1 Fine Grid Iterations

Some iterations are performed initially in order to decrease the high frequency errors.
These iterations are done in the finest mesh and simply multistage time stepping is

used, as described in Chapter 3.

P = qrp
= @ — v [Res(QY ) + FF,| k=1..,m (403)

_ o™
QR =0,"

In the equation set above, subscript n denotes the time step and FF represents the
forcing function. For the fine grid iterations step, forcing function is zero for all
conserved variables. By using the solutions in the »’th time step, the solutions in the
(n+1)’th time step are simply found. The high frequency errors are considerably
reduced while low frequency errors decrease slightly. The number of iterations in
this step is determined by an input. After all fine grid iterations are performed in one
cycle, the residuals obtained from the latest results, i.e. Res(Q)™) are found in order

to use them in restriction part.

89



4.1.2 Restriction

In this step, the results obtained in the finest mesh are transferred to the coarser
meshes with the use of the restriction operator. The obtained approximate solution
and the final residual in the finest mesh are used to determine the initial guess for the
computational cells in the coarser grid. Before these, coarser meshes must be
obtained and the cell relations between the grids must be determined. This process is
described in Section 4.2 in a detailed manner. At the moment, one may assume that
the coarser grids are obtained and the cell relations are set. The equivalent cells at
coarser grids are obtained with coarsening process. If one looks at a coarser cell, it
may cover four children or one cell which is the coarsened cell itself. In this section,
each of these finer cells is referred to as the equivalent finer cell. If one looks at a
finer cell from a coarser cell, the equivalent coarser cell may be the cell itself or the
parent of the cell according to the coarsening process. These naming is expressed in

Figure 4.1 in order to be understood well.

Figure 4.1 Illustration of “equivalent cell” term

In Figure 4.1, cells A and B are shown. Cell A is a computational cell in the mesh
spacing 4 while cell B is a computational cell in the mesh spacing 24. In terms of cell
relations between two mesh spacings, cell A is an equivalent finer cell for cell B. On
the other hand, cell B is an equivalent coarser cell for cell A. It can be seen that cell

B has four equivalent finer cells.

90



After this brief explanation, the equations which are used to calculate the initial

guesses of the solutions and the forcing function at the coarser step can be written as;

g;g = I,Zth;lm) (4.04)
FFyy, = I2" [Res(Q\™) + FF,| - Res(Q5),) (4.05)

where I2" is the volume weighted restriction operator and I2" is the residual

collection operator, which can be expressed as;

Zequivalent[Q%m)A]

2h (M) __ finercells
Ih Qh B Zequivalent[A] (406)
finer cells
ileh [a] = Zequivalent[a] (4.07)

finer cells

After setting the initial values and forcing functions for coarser grids, some mid step
iterations are performed, whose number is determined according to the input
specified by the user. These lead to the improvement of approximate solutions at
coarser grids. In the equations above, transformation from 4 to 24 is illustrated. If the
level number is higher than 1, the approximate solutions for more coarser grids such
as 4h, 8h, 16h etc. can be obtained using the same methodology after obtaining the
improved solutions at one mesh spacing size before. In this code, one can use 7

levels at maximum, providing a coarse mesh of a spacing of 1284.

4.1.3 Prolongation

The aim in this step is to transfer the results obtained in coarser meshes to the actual
finest mesh and to get an improved result. To do this, a prolongation operator is used
with the approximate results found in the coarser meshes, as shown by the following

equation;

91



Qi = @ + 155 - 17*Q5) (4.08)
where 12}, is the prolongation operator and can be written as;
Ifh(a) =a (4.09)

This is referred to as the injection operator for prolongation. As a prolongation
operator, a gradient operator which is the dot product of the gradient and direction
vector may be used, as well. However, for simplicity, injection operator is used in the
developed code. The “new” superscript that is seen in Equation (4.08) represents the
new results after interpolating the approximate results to the mesh spacing that the
results are sought. It can be obtained from prolongation. However, if ,for example,
the level is set to 1, then the new values are taken from the restriction part after mid

step iterations are performed.

In the developed code, two different cycles are used. These are the Saw-Tooth and
V-Cycle. The only difference between them are the iterations performed after
prolongation is applied in the V-Cycle. In the V-Cycle, some iterations are
performed in each level after the new improved solutions are acquired with the
transfer of the solutions to the coarser level. Since forcing functions are necessary to
perform iterations, it is necessary to store all forcing functions found in the
restriction part for all levels. Since it brings a low efficiency for memory with the
storage of excessive number of variables, it is expected to have a lower convergence
rate compared to the Saw-Tooth cycle. The comparison between these two cycles are

done in the next two sections of this chapter.

4.1.4 Correction and Final Iterations

The final step in the multigrid technique is the correction and final iterations. In this
step, the improved approximate solutions are corrected with some iterations, like fine

grid iterations. As an initial guess, the found improved solution after prolongation,

92



i.e. Qp®”, is used. This step is applied only for the finest mesh with a number of
iterations determined by a seperate input. As a result of all these steps, the solutions
at the finest mesh are obtained with the elimination of low and high frequency errors

as much as possible.

4.1.5 Modifications for the Second Order Scheme

While solving flows with a second order and multigrid technique, some problems
were encountered. In these attempts, the pressure and/or the density were decreased
to negative values in coarser grids. Therefore, the solutions in the coarser grids are
obtained by using a first order scheme even if the scheme is second order for the
finest grid. Only at the fine grid iterations step and the correction and final iterations
step, the second order scheme is used. With this slight modification, stability during

the execution of the program is provided.

Whereas solutions are verified in Chapter 5, in order to validate that the pure second
order solution and the modified solution give the same result, a comparison is done
around RAE 2822 airfoil, using an inviscid flow at a Mach number of 0.75 and an
angle of attack of 3 degrees. Furthermore, five cycles of solution adaptation is

applied to the grid. The pressure coefficient distribution are depicted in Figure 4.2.

As it can be seen, nearly the same distribution is observed for two cases. Moreover,
the drag coefficient is calculated as 0.0427 for both cases. A slight difference is
formed for lift coefficient such that seven level multigrid solution calculates the lift
coefficient as 0.9725 while solution without multigrid gives a lift coefficient of
0.9720. Since this very small effect can be neglected while using the second order
scheme, it can be concluded that modifications are useful if the second order scheme

is used together with the multigrid technique.

Moreover, the multigrid scheme affects solution time significantly. A speed up ratio
of 19 is obtained in this problem. As described in the next section, a maximum ratio

of 17 1is acquired for this inviscid flow using the first order scheme. The difference

93



can be due to the difference in time required for the execution between the first and
second order schemes. Second order schemes take more time in comparison to first
order schemes since gradients and limiters are calculated at each iteration for each
cell. In multigrid solutions, the second order scheme is used partly. Therefore, the

convergence time decreases significantly by using with the first order scheme.

] _W::]nutHG.-s cond order _
e | [ m._ﬁm lﬂeri_nm'll]rcpalj.wrgﬁds

15 i [l [l L ] L [l ] ] L Il [l i i ] L ]

Figure 4.2 Comparison of pressure coefficient distribution obtained by using partly and

purely second order scheme around RAE 2822 airfoil

4.2 COARSENING PROCESS

The coarsening process, which is applied in the restriction part of multigrid
technique, is presented in detail in this section. First, how to coarsen Cartesian cells

are presented. Then, the Quad cells are considered for the coarsening process.

94



4.2.1 Coarsening of Cartesian Cells

During coarsening process, three pointers are used, as discussed briefly in Section
2.1.3. These are “perform”, “meshSpacing” and “compCell” words. First, the cells
are flagged with the perform word if all of their children are computational cells for
one finer grid. As a result of this step, the cells which can be coarsened successfully
are found. Then, according to the mesh spacing of the grid, the cells’ “meshSpacing”
word is determined. Finally, using “compCell” pointer, computational cells for
determined mesh spacing is set according to the one level rule. It is important to note
that cells in the finer grids are not deleted. By using “compCell” and “meshSpacing”
words, these finer cells are ignored for the coarser grids so that new computational
cells are created without any deletion. Figure 4.3 illustrates a grid with one cycle of
solution adaptation around the RAE 2822 airfoil, which is coarsened to 7 levels. In
Table 4.1, the cell numbers are presented according to cell types for all grids used in
multigrid scheme. It can be seen that with the increase in mesh spacing, the total
coarsening ratio increases significantly whereas the relative coarsening ratio

decreases and remains at a value of 1.3.

Table 4.1 Cell numbers of grids used in multigrid for RAE 2822 airfoil

Coarsenin Coarsening
Mesh Out Cut Cell | Split Cell | Total Cell ArSENE | patio Acc.
. Ratio Acc. To
Spacing | Cell No No No No h-orid To One
g Finer Grid
h 5804 525 5 6334 - -

2h 1707 263 4 1974 3.2 3.2
4h 708 134 3 845 7.5 23
8h 326 69 2 397 16.0 2.1
16h 234 36 2 242 26.2 1.6
32h 163 19 2 184 344 1.3
64h 129 14 2 145 43.7 1.3
128h 98 11 0 109 58.1 1.3

95




2h-grid

i i
ik o ST P

TRV IeRTIeNTY
i L P
R B O N o o o | in

i i
1 1 ¥ ] 1 1] 1 E | ]
Ll L

N 4h-grid o | 8h-grid
£l | FTTITIT i 3
' .
& II a L] ;I i (] 1 ] ]
£l u
i 16h-grid T 32h-grid
i1 i
B R W CEAr T
- 2t
v o ; : : A e & : ! ' '
L ik
64h-grid 128h-grid
ik 1 + | ! Je ! + ! !
- B 1 - B
- 2k
a i i s L ] ™ i A& " N i i
L I El a 1 L] 1 ] 3
El =

Figure 4.3 Illustration of grids used in multigrid scheme for RAE 2822 airfoil

96



4.2.2 Coarsening of Quad Cells

Coarsening of quad cells are different than the Cartesian cells since quads are formed
according to the Cartesian cells. In a hybrid mesh, Cartesian cells are first coarsened
at the restriction step. Since cut and split cells are changed compared to the finer
grid, quad cells which are generated from these newly coarsened cells near the wall
are automatically coarsened. However, this is not sufficient. The row number in the
boundary layer is divided by 2 for each mesh spacing so that quad cells are coarsened
not only horizontally but also vertically. Since quad cells are coarsened by dividing
the row number by 2 at each level, the user-defined row number is restricted such
that it must be a power of 2. Moreover, the stretch factor is squared so that the
coarsened quad cells cover the finer ones completely. When the row number is 1 for
quad cells at a level, then it remains the same for all coarser levels in order not to
lose the body-fitted geometry. In Figure 4.4, the hybrid mesh with 16 rows around
NACA 0012 airfoil can be seen with the other grids used in the multigrid scheme.

(a) h-grid
|
| I [ I |
S e i -
.,--—'I-T 1o be T I i .| T ?.fﬁ‘r‘rJH-L"1;ﬁvr L, .- |
LR IR ] AR LT |
: ] =l
f i . i.
..... uiis: i T R ; T st ] TH
! | T e R SRR T T T ] It
| 1 T
.
(b) 2h-grid

97



HHH T | EEEEEEEE
s 1 o AR
- s ] : ] || |!_i u [ 1 ERARREEE §
O 11 T
(c) 4h-grid
= ' A1 1
% S=mmt:
||I -
(d) 8h-grid
| /]
~
el s
ram

(e) 16A-grid

Figure 4.4 Illustration of hybrid grids used in multigrid for NACA 0012 airfoil

98



4.3 MULTIGRID EFFECT ON INVISCID FLOW

In this section, the effect of multigrid method is investigated using the transonic flow
around RAE 2822 at a Mach number of 0.75 and an angle of attack of 3 degrees.
Since the results are discussed in Chapter 5, only the residuals are examined in order
to see the effect of multigrid on the convergence time. For the results in this section
and in the next section, a work-station is used. This work-station has a four core

processor at 2.33 GHz and 32 GB Ram.

Four different problems are discussed in this chapter. 25 cases are tested for these
four problems. In the first problem, the solution adaptation is not used and the
multigrid level on this coarse mesh are discussed. Secondly, again the level of
multigrid is examined at a mesh after the application of five cycles of solution
adaptation. Thirdly, the difference between Saw-Tooth and V-Cycle are shown both
for solution adapted and non-adapted cases. Finally, the iterations at the steps of the
multigrid technique are changed and the results are compared. The results are taken
as a form of a data set formed by the logarithm of the normalization of root mean
square of continuity residuals and the CPU time. Normalization is done by dividing
the root mean square to the difference between the maximum and the minimum

continuity residuals.

4.3.1 Level Test Without Solution Adaptation for Inviscid Flow

In the first problem, the first mesh created before the solution is used. In other words,
no cycle of solution adaptation is used. Totally 8 tests were done. The number of
cells for all test cases is 4055. The solver is iterated until the normalized residual
reaches -10. The flux method is approximate Riemann solver of Roe. The iterations
for all steps are set to 10 for this problem. Saw-Tooth cycle is used. The only
different parameter in test cases is the level number of the multigrid. This number is
changed from 0 to 7 in these cases. The results that are obtained, are shown in Table
4.2. In addition, the residuals of these tests with respect to the CPU time are

presented in Figure 4.5.

99



Table 4.2 Level test results without solution adaptation for inviscid flow

Case Speed Up
No Description Time (sec) Ratio
1 No multigrid 458 -
2 One level multigrid 298 1.54
3 Two level multigrid 187 2.45
4 Three level multigrid 116 3.95
5 Four level multigrid 85 5.39
6 Five level multigrid 74 6.19
7 Six level multigrid 73 6.27
8 Seven level multigrid 73 6.27
it {Level MG
Level MG
Level MG |
Level MG
B SlLevel MG
2 ILevelMG -
% LEVEIM G .....
o ——
°

Figure 4.5 Residuals with respect to CPU time using a non-solution adapted mesh

around RAE 2822 airfoil

100




As shown above, the solution speeds up with the increase in level. However, when
the last three cases having levels of 5, 6 and 7 are considered, it can be seen that
there is not too much difference between them in terms of the convergence time.
Nonetheless, the maximum speed up ratio is obtained from the seventh and the

eighth cases, which is 6.27.

4.3.2 Level Test With Solution Adaptation for Inviscid Flow

In this problem, the solution adapted mesh is used while examining the effect of

levels. Five cycles of solution adapted mesh are used. The cases and the results are

tabulated in Table 4.3.

Table 4.3 Level test results with solution adaptation for inviscid flow

Case Speed Up
No Description Time (s) Ratio
9 No multigrid 36965 -
10 One level multigrid 23327 1.58
11 Two level multigrid 14356 2.57
12 Three level multigrid 7510 4.92
13 Four level multigrid 5631 6.56
14 Five level multigrid 2943 12.56
15 Six level multigrid 2423 15.26
16 Seven level multigrid 2177 16.98

As it can be seen, the level increase has a great effect on the acceleration for solution
adapted mesh. Up to five levels, the speed up ratio is doubled approximately. After
that, while the increase in the ratio is decreasing, the ratio is continuously raising so
that the maximum ratio, which is nearly 17, is obtained from the final case having a

level of seven.

In Figure 4.6, the residuals are expressed with respect to the CPU time graphically.

One can sece the closeness of residuals for the 14th, 15th and 16th cases. If one

101



consider the results in the previous section, the level increase brings an enormous
acceleration rate especially for solution-adapted grids while non-solution adapted

grids are accelerated at a maximum ratio of 7 with the level increase.

2Leve|MG .....
3 Level MG
4 Level MG

T\Leve I.MG .....

log(RMS)

20000 30000

CPU_Time

0 10000

Figure 4.6 Residuals with respect to CPU time using a solution adapted mesh

around RAE 2822 airfoil

4.3.3 Cycle Test for Inviscid Flow

In this problem, two different cycles, namely Saw-Tooth and V-Cycle, are tested
with and without applying solution adaptation. For all cases, seven level of multigrid
is used. In the first two cases, the solution adaptation is not used. Then, for the last
two cases, five cycles of solution refinement are applied to the mesh. The results

obtained for these cases are presented in Table 4.4.

102



Table 4.4 Cycle test results for inviscid flow

Case Speed Up
No Description Time (s) Ratio
17 Saw-Tooth without solution adaptation 73 6.27
18 V-Cycle without solution adaptation 98 4.67
19 | Saw-Tooth with five cycles of solution adaptation | 2177 16.98
20 V-Cycle with five cycles of solution adaptation 2365 15.63

e 20 B0 bl L B _ Saw-T Oth’WIthﬂlﬁls .................. .....
= - B g
o ——.Saw-Tooth, with sol. ref.
» ,With solf. ref.§ :
a o i e e A
= 5
o
""c-n" Lo tBe T Bl Bl B0 B0 S 18
9 N INNHL LN
-8
] ER 1 .
10 1000 1500 2500
CPU_Time

Figure 4.7 Residuals with respect to the CPU time for cycle testing around RAE 2822 airfoil

As one can see in Figure 4.7, V-Cycle leads to a more slower convergence compared
to Saw-Tooth cycle for both grids with and without solution adaptation. As expected,

the difference between these cycles are not much higher. The reason, why V-Cycle

103



converges slower, may be the increase in the required memory since the forcing
functions must be stored in order to use them for the iterations at the prolongation

step.

4.3.4 Iteration Test for Inviscid Flow

Another important input, which affects the convergence time while applying
multigrid technique is the iteration number in the multigrid steps. In this section, the
iteration numbers are changed using five cases in order to find the optimum numbers
for inviscid flow. The same grid with five cycles of solution adaptation and the same

inputs are used for all cases so that the pure effect of iteration numbers can be

observed.
Table 4.5 Iteration test results for inviscid flow
Case Speed Up
No Description Time (s) Ratio
21 5 iterations 2165 17.07
22 10 iterations 2177 16.98
23 15 iterations 2182 16.94
24 20 iterations 2418 15.29
25 25 iterations 2728 13.55

In the fine-grid, mid and final steps, the same number of iterations are used. As
shown in Table 4.5 and Figure 4.8, the decrease in the iteration number enables faster
convergence rates. Thus, the optimum number for this inviscid flow is 5 iterations at
each step, providing a speed up ratio of 17.07. However, the amount of increase is
just a few seconds especially between cases 21, 22 and 23. One can infer that, it is
not necessary to use a large number of iterations since the low frequency errors can

be eliminated using a few iterations for inviscid flows.

104



-4 ] B T i ] 2 " T " : : :ratinns
15 iterations:
=ratmns
g _____________________________________ B
o B
k] )
o
-8
10 A B A N i R

500 1000 1500 2000 2500 3000
CPU_Time

Figure 4.8 Residuals with respect to the CPU time for testing the number of iterations
around the RAE 2822 airfoil

4.4 MULTIGRID EFFECT ON VISCOUS FLOW

In this section, the effect of multigrid is investigated using the transonic flow around
NACA 0012 at a Mach number of 0.5, an angle of attack of 0 degree and a Reynolds
number of 5000. Only the residuals are presented in this section since the results are

discussed in the next chapter.

This time, five problems are considered. Firstly, the grid without applying solution

adaptation is used and the effect of multigrid level number is examined with several

105



test cases. Secondly, the level number is tested using a mesh where three cycles of
solution adaptation is applied. Thirdly, the difference in cycles are presented both for
solution adapted and non-solution adapted meshes. Fourthly, the iteration numbers in
the steps are changed to find the optimum numbers for three cycles of solution

adapted mesh. Finally, the effect of multigrid is discussed for an hybrid mesh.

4.4.1 Level Test without Solution Adaptation for Viscous Flow

In the first problem, eight cases are tested. The only variable parameter is the
multigrid level number. The purpose is to see the effect of level increase when
solution adaptation is not used for viscous flows. While the iteration number at fine
grid step is 15, 10 is used for the other steps. Saw-Tooth cycle is used for all cases.
As inviscid flux method, AUSMYV is used. As convergence criteria, the solver is
iterated until the normalized continuity residual reaches -9. As shown in Table 4.6
and Figure 4.9, the level increase does not provide a significant acceleration rate
even if seven levels are used. While a speed up ratio up to 6 can be obtained for the
inviscid flow using a mesh without solution adaptation , a maximum speed up ratio

of 1.5 is obtained for the laminar flow.

Table 4.6 Level test results without solution adaptation for viscous flow

Case Speed Up
No Description Time (s) Ratio
1 No multigrid 2958 -
2 One level multigrid 2480 1.19
3 Two level multigrid 2364 1.25
4 Three level multigrid 2280 1.30
5 Four level multigrid 2232 1.33
6 Five level multigrid 2251 1.31
7 Six level multigrid 2091 1.41
8 Seven level multigrid 2002 1.48

106



log(RMS)

o

1000

1500
CPU_Time

2000

2500

3000

Figure 4.9 Residuals with respect to CPU time using a non-solution adapted mesh

around NACA 0012 airfoil

4.4.2 Level Test with Solution Adaptation for Viscous Flow

The effect of level increase is also tested in this problem. However, the grid is

changed such that three cycles of solution adaptation is applied. The results are

tabulated in Table 4.7.

107




Table 4.7 - Level test results with solution adaptation for viscous flow

Case Speed Up
No Description Time (s) Ratio
9 No multigrid 67660 -
10 One level multigrid 42862 1.58
11 Two level multigrid 23558 2.87
12 Three level multigrid 13169 5.14
13 Four level multigrid 10838 6.24
14 Five level multigrid 9859 6.86
15 Six level multigrid 10284 6.58
16 Seven level multigrid 9582 7.06

As it can be seen, level increase leads to a higher speed up ratio for solution adapted
mesh. Except the 15th case, the convergence time decreases with the increase in the
level number. In comparison to the previous problem, one can say that the multigrid
is able to accelerate the solution time significantly by increasing the level number.
While the ratio is around 1.5 for the coarsest mesh, it can reach 7 for finer meshes, as

one can see in Table 4.7 and Figure 4.10.

In addition, the increase after five levels does not provide a significant difference in
terms of the convergence time. While the solution converges after 9859 seconds for
the 14th case, the final case provides a convergence in 9582 seconds. The difference
is small if one compares this amount with 67660 seconds which is obtained for the

case without the application of multigrid.

If the finer mesh while solving the inviscid flow is reconsidered, it can be concluded
that the multigrid does not provide a sufficient acceleration since a speed up ratio of
17 can be obtained for inviscid flows. However, it must be considered that the
viscous flows converge so slowly in contrast to the inviscid flows. Thus, a speed up

ratio of 7 gives a significant improvement in the convergence time.

108



log(RMS)

Figure 4.10 Residuals with respect to the CPU time using a solution adapted mesh
around NACA 0012 airfoil

4.4.3 Cycle Test for Viscous Flow

In this section, V-Cycle and Saw-Tooth cycles are compared using a level of 7 for
grids with and without solution adaptation. The results obtained for this problem are

tabulated in Table 4.8.

109



Table 4.8 Cycle test results for viscous flow

Case Speed Up
No Description Time (s) Ratio
17 Saw-Tooth without solution adaptation 2002 1.48
18 V-Cycle without solution adaptation 2248 1.32
19 | Saw-Tooth with three cycles of solution adaptation | 9582 7.06
20 | V-Cycle with three cycles of solution adaptation 14077 4.81

The results show that the V-Cycle converges slower than the Saw-Tooth cycle for
both grids, as shown in Figure 4.11. While there is a slight difference in the grid

without solution adaptation, it becomes larger when finer mesh is used.

- Saw-Tooth| without spl. e
V-Cycle, wi

log(RMS)

@:TT*\“iii; i ihEec ;;;é“

2500 5000 7500 10000 12500 15000
CPU_Time

Figure 4.11 Residuals with respect to CPU time for cycle testing around NACA 0012 airfoil

110




4.4.4 Iteration Test For Viscous Flow

In this problem, the grid that three cycles of solution adaptation is applied is used to
determine the optimum iteration numbers at the steps of multigrid. Thus, six cases
are tested. On the contrary to the inviscid flow problem, all of the cases does not
have the same iteration number at all steps. Some cases have more iterations for fine

grid step. The case descriptions and the results are presented in the Table 4.9.

As one can see in Figure 4.12, the 26th case gives the best results for this viscous
flow. Besides, the 22th case is not very much different than the 26th case. One can
infer that it is necessary to iterate more in order to eliminate low frequency errors for

viscous flows compared to inviscid flows.

15 Fine, 10 Mid, 10 Final iterations
....1.5.Fine.,..15..Mid,.1 5..F.inal.!terajtion;s ......
: 20 Fine, 10 Mid, 10 Final Iterations
B = —20F|ne,15M|d,1 5F|na|lterat|on5 ......
L2 Fie 20 Mid.

log(RMS)

15000

Figure 4.12 Residuals with respect to CPU time for iteration testing
around NACA 0012 airfoil

111



Table 4.9 Iteration test results for viscous flow

Case Speed Up
No Description Time (s) Ratio
21 10 fine, 10 intermediate and 10 final iterations 13549 4.99
22 15 fine, 10 intermediate and 10 final iterations 9582 7.06
23 15 fine, 15 intermediate and 15 final iterations 14346 4.72
24 20 fine, 10 intermediate and 10 final iterations 10346 6.54
25 20 fine, 15 intermediate and 15 final iterations 14572 4.64
26 20 fine, 20 intermediate and, 20 final iterations 8773 7.71

4.4.5 Hybrid Mesh Test for Viscous Flow

The final problem is the test of multigrid on hybrid meshes. As the quad cells are
used in the boundary layer, the number of cells increases significantly. For example,
while the mesh without solution adaptation has a cell number of 4040, 14562 cells
are used for a hybrid mesh when solution adaptation is not used. In other words, even
the coarsest mesh includes a large number of cells with very small cells in the
boundary layer. With this huge amount of cells and the large size differences, the
convergence time is very long compared to the mesh formed only by Cartesian cells.

Thus, multigrid is very important to decrease the solution time.

For this problem, two cases are tested; multigrid is not used for the first one and a
seven level multigrid is used for the second one. Iteration numbers are set to 30 at
each step since a lower number causes divergence in the solution. It can be inferred
that while using very small cells in the boundary layer, the iteration step needs to be
larger than the other problems in order to decrease the low frequency errors. Saw-
Tooth cycle is used in the second case. The results are presented in Table 4.10 in

written and in Figure 4.13.

112




Table 4.10 Hybrid mesh test results for viscous flow

Case Speed Up
No Description Time (s) Ratio
27 No multigrid 256049 -

28 Seven level multigrid 55014 4.65
-2

log(RMS)

0 100000 200000 300000

CPU_Time

Figure 4.13 Residuals with respect to the CPU time for hybrid mesh testing
around NACA 0012 airfoil

The case for which no multigrid is used converges approximately 8 times slower than
the case for which quad cells are not used. Although the effect of multigrid is
significantly more for finer meshes as before, a seven level multigrid leads to a speed

up ratio of 4.65 for hybrid mesh and a significant difference occurs between the

113




hybrid and Cartesian grids when solution adaptation is not used, as expected.
However, the multigrid effect on solution adapted hybrid grids cannot be tested due
to some problems regarding multigrid usage on hybrid meshes when solution

adaptation is applied.

114



CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the developed code is validated and verified both for inviscid and
viscous laminar flows with some tests. These tests are divided into three sub groups.
First, inviscid flow around an airfoil is tested for two different cases. One of the
cases is a transonic flow, while the other one is a supersonic flow. Secondly, one
subsonic flow and one transonic flow at low Reynolds numbers are analyzed in order
to verify the code for laminar flows. Finally, in order to show the validity of the
hybrid mesh, one high Reynolds number flow is examined. Since the flow is
turbulent for this case and the code is not designed to solve turbulence, the results are
not expected to be accurate. For all problems, the results are compared with the data
found in the literature which is numerical or experimental. All results are obtained by
using a work-station. This computer has a single processor with 4 cores each at a
speed of 2.33 GHz and 32 GB Ram. The operating system is Microsoft Windows XP
64Bit Edition.

5.1 INVISCID FLOW

In this section, two problems are considered. While one of them is a transonic flow,
the other one is a supersonic flow around a one-element airfoil. The shock locations
and strengths of these shocks are compared using pressure distribution graphs with
the data available in the literature. The specifications of these problems are depicted

in Table 5.1.

115



Table 5.1 Test problems for inviscid flow

SECTION AIRFOIL M, a (degrees)
5.1.1 RAE 2822 0.75 3
5.1.2 NACA 0012 1.2 7

5.1.1 Transonic Flow Around RAE 2822

The first problem is a transonic flow around a non-symmetric airfoil, i.e. RAE 2822,
with a Mach number of 0.75 and an angle of attack of 3 degrees. The reason why
transonic flow is selected is to demonstrate that by using Cartesian approach,
locations of shocks and strengths of shocks can be captured using a sufficiently finer

mesh around the shock.

Table 5.2 Common properties for transonic inviscid flow

MESH INPUTS
Outer boundary size factor 18
SOLUTION INPUTS
Flux method Roe
Refinement cycle interval 20
log(RMS) for convergence -10
CFL safety factor 1
MULTIGRID INPUTS
Multigrid type Saw-Tooth
Multigrid level 7
Fine grid iterations 10
Intermediate step iterations 10
Final grid iterations 10

116



The results are obtained using six cases. After that, they are compared with the
results from reference [13], which uses an O-type mesh with 20480 cells. For all
cases, the outer boundary is located 18 chords ahead of the airfoil. As a flux
calculating technique, approximate Riemann solver of Roe is used. The solver is
iterated until the logarithm of root mean square of normalized continuity residual
reaches -10. In addition, a 7 level multigrid is used to accelerate convergence time.

The common properties for the test cases in this problem are tabulated in Table 5.2.

Two parameters are changed at the test cases. One of them is the order of the scheme
and the other one is the number of refinement cycles at solution adaptation. Gradient
limiting is used in the cases where second order scheme is used to calculate the face
fluxes. Table 5.3 shows the calculated lift and drag coefficients for these cases and
the reference case as well as the convergence time. While attempting to obtain results
using the second order scheme without gradient limiters, the pressure became
negative and results are not acquired. The reason is that the second order scheme
leads to fluctuating residuals. While the limiters prevent the excessive change in
residuals at each iteration, the solutions without using these limiters can cause to

instability problems.

Table 5.3 Comparison of results for transonic inviscid flow around RAE 2822 airfoil

Case Cell
No Description Cp C Number Time
1 No solution refinement with 0.0663 | 0.6725 4055 0 hour 1 minute
1st order 13 seconds
) No solution refinement with 0.0638 | 0.7089 4055 0 hour 9 minutes
2nd order 19 seconds
3 Three sqlutlon refinement 0.0444 | 0.9267 18880 0 hour 6 minutes
with 1st order 31 seconds
Three solution refinement 0 hour 24 minutes
4 with 2nd order 0.0446 | 0.9377 17647 53 seconds
5 Five solution refinement with 00424109649 | 61526 0 hour 36 minutes
1st order 16 seconds
6 Five solution refinement with 0.0427 | 09725 57496 1 hour 25 minutes
2nd order 5 seconds
7 Reference results [13] 0.0448 | 1.1044 | 20480 -

117




As shown in Table 5.3, the results are getting closer to the reference results with the
increase in the solution refinement cycle. In addition, the second order usage leads to
more accurate results for a fixed solution adaptation cycle. However, with the second
order scheme, the convergence time increases greatly. For example, the increasing
ratio is about 9 if solution refinement is not used, while it is approximately 2.5 for
five cycles of solution refinement. Nonetheless, the best result is obtained for the
sixth case, where five cycles of solution adaptation and second order scheme is used.
The pressure distributions of all the cases compared to the reference case are shown

in Figure 5.1.

0.5

O0DO0OOO0O0

1
e

chord

Figure 5.1 Pressure coefficient distribution for transonic inviscid flow around RAE 2822

airfoil

118



As observed from Figure 5.1, the pressure distribution at the upper surface, where a
shock exists, are underestimated for all cases. One can say that low number of
solution refinement cycles leads to big difference especially at upper surfaces.
However, slight differences are occurred at the cases where a solution refinement
cycle number greater than 3 is used. Nonetheless, with increasing cycle number, the
solution gets closer to the reference data at a more or less amount. In addition, the
shock locations are not captured well by all of the cases. Yet, the distribution at the
below surface are in a good agreement with the reference data. The grids used for

Case 3 and Case 5 are shown in Figure 5.2.

(@) (b)

Figure 5.2 The grids around the RAE 2822 for Case 3 (a) and Case 5 (b)

for the transonic inviscid flow

119



EEEEEEEEiiiﬁﬁﬁﬁﬂiﬁiéiiiiiii =

CASE 4

BrrEREREEERea MR NEES HEREE ¥

BEEEEEREERERIIARERET  dnkREE =

CASE 5 CASE 6

Figure 5.3 Mach contours of cases where solution adaptation is applied

around RAE 2822 for the transonic inviscid flow

Besides the importance of cycle increase, the second order scheme usage leads to
slightly more accurate results compared to the first order scheme for all cases, as
seen in Table 5.3 and Figure 5.1. It can be seen that the best result is obtained from
the sixth case again. Since it is difficult to see the effect of the order of scheme in
Figure 5.1 for the cases where solution adaptation is applied, Mach and pressure
contours are presented in Figures 5.3 and 5.4 both for three cycles and five cycles of
solution adaptation. One can see the slight differences between the abreast figures. In
the first row, cases with three cycles of solution refinement are compared while five

cycles are compared in the second row.

120



T
. e

e e e s
ERENER A D RN NEEA RN

)

FHEEES I ETEREAET IS Fer e VTV R R T
—--.
[T

0 - e 2 B o B 0 0 .

s

T
e 8 -
AR TR T A E SN AT EA N R o

SR b AMEEEEasaaEoaRaEEEE ik
TR A AN R EE RN EEa i a Y B FENA RN ERa e 0

|

| }

[

! I

[ it
! P—h 1
[l
| . i:
[ i
1 Ll 3

CASE 5 CASE 6

Figure 5.4 Pressure contours of cases where solution adaptation is applied

around RAE 2822 for the transonic inviscid flow

5.1.2 Supersonic Flow Around NACA 0012

The second problem is a supersonic flow around a symmetric airfoil at a Mach
number of 1.2 and an angle of attack of 7 degrees. The aim is to show that bow and

oblique shocks can be captured accurately.
Eight tests were carried out for this problem. The far-field boundary is located 18

chords ahead of the airfoil for all cases. In addition, first order scheme is used.

Multigrid technique is also used with seven levels. The only changing inputs are the

121



solution refinement cycle and the flux calculation method. One reference case is used

to compare the test cases.

Table 5.4 Common properties for supersonic inviscid flow

MESH INPUTS
Outer boundary size factor 18
SOLUTION INPUTS
Order of scheme 1
Refinement cycle interval 20
log(RMS) for convergence -10
MULTIGRID INPUTS

Multigrid type Saw-Tooth
Multigrid level 7
Fine grid iterations 10
Intermediate step iterations 10
Final grid iterations 10

The code has four different inviscid flux calculation methods. In this problem, these
techniques are compared. First, these techniques are compared without applying the
solution adaptation since it is easy to compare by looking at the pressure distribution
along the chord length. Second, four cycles of solution adaptation are used while
obtaining results with different flux methods. The aim is to show that all methods
give accurate results compared to the reference data [13], which uses an O type grid
with 20480 cells. Below, one can see the cases and the results obtained from these

cascs.

122



Table 5.5 Comparison of results for supersonic inviscid flow around NACA 0012 airfoil

C;;(S)e Description Cp C Nucnﬁll:er Time CFL
No solution | minute 35
1 refinement with 0.168810.5421| 4040 0.9
AUSM flux method seconds
No solution | minute 21
2 refinement with 0.16580.5253| 4040 1
AUSMD flux method seconds
No solution
3 refinement with 0.1684|0.5333| 4040 |1 minute 8 seconds 1
AUSMYV flux method
No solution | minute 18
4 refinement with Roe |{0.1648]0.5220| 4040 1
flux method seconds
Four solution 15 minutes 59
5 Refinement with [ 0.1603 [0.5218 | 23753 0.9
AUSM flux method seconds
Four solution 17 minutes 17
6 refinement with 0.1599{0.5203 | 25362 1
AUSMD flux method seconds
Four solution 15 minutes 8
7 refinement with 0.1608 | 0.5209 | 25331 1
AUSMYV flux method seconds
Four solution 21 minutes 15
8 refinement with Roe |0.1595/0.5193| 25178 1
flux method seconds
- | Reference results [13] [0.1538|0.5138 | 20480 - -

In the cases, where solution adaptation is not used, Roe's flux calculation method

gives the closest result to the reference data. It overestimates the drag coefficient by

7.1 % and the lift coefficient by 1.6 %. On the other hand, AUSM gives the worst

result among the four cases. Overestimating percent is 5.5% at lift coefficient and

9.8% at drag coefficient. All the four cases converge at approximately the same time.

When solution adaptation is applied, four methods approach to the reference results.

While the minimum overestimating percent is obtained from Roe's method, which is

3.7 % for drag and 1.15 % for lift coefficient, AUSM gives the maximum

overestimating percent of 1.6 % for lift and AUSMD gives a maximum percent of

123




4.6 % for drag coefficient. As a result, the solution adaptation plays an important role
to obtain accurate results for all flux methods in this problem. Moreover, one can
infer that the difference in results between flux calculation techniques diminishes
with the increase in the cycle of solution adaptation. In Figure 5.5, the pressure
distribution of cases where solution adaptation is not applied are presented in
comparison with the reference data. Then, Figure 5.6 gives the distribution of

pressure for cases having four cycles of solution adaptation.

VD)

R
o LAR.

= e

1.6

0O 01 02 03 04 05 06 07 08 089 1
chord

Figure 5.5 Pressure coefficient distribution of the first four cases for supersonic

inviscid flow around NACA 0012 airfoil

124



SMD)|-

k '_"“I'I':"

1.6 &

0O 01 02 03 04 05 06 07 08 09 1
chord

Figure 5.6 Pressure coefficient distribution of the last four cases for supersonic

inviscid flow around NACA 0012 airfoil

It can be seen in Figure 5.5 that AUSM method approach to the reference data at the
upper surface in the second half of the chord. However, it gives the farthest result at
the lower surface. On the other hand, Roe's method captures the lower surface
pressure distribution accurately for the second half of the chord, while it gives
slightly farther result for the upper surface compared to the other methods. In Figure
5.6, almost all cases capture the accurate results. The slight differences between these
methods are difficult to observe. In Figures 5.7 and 5.8, the Mach and pressure

contours for the cases, where solution adaptation is used, are presented.

125



B tE REGmaarEET R

TTRERTEIRIAIICRERIR

CASE 5 CASE 6

'] L]

th %

ik i

it i

s i

i i
CASE 7 CASE 8

Figure 5.7 Mach contours of cases where solution adaptation is applied

around NACA 0012 for supersonic inviscid flow

In Figure 5.7, slight differences can be observed among the flux methods. The bow
shock before the leading edge is captured in all cases. The oblique shock at the upper
surface of the airfoil is also captured by all of the cases. There are some slight
differences in the strength and length of the oblique shock. The length is a little
longer for the AUSM method and it shortens in AUSMD. Moreover, Roe gives the
shortest length among the four cases while shorter length compared to AUSMD is
obtained by AUSMV. In Figure 5.8, one can also see the pressure differences at the

oblique shock for these four methods.

126



ok

e R

T

amEm g 2 m s aail
EETHTETETETE ACETAE R

FETEE =TT

CASE 6

el

e L R o

T FITTE
ETETETE T ETE BT e

-

CASE 7 CASE 8

Figure 5.8 Pressure contours of cases where solution adaptation is applied

around NACA 0012 for supersonic inviscid flow

5.2 LOW REYNOLDS NUMBER FLOW

In this section, two different problems are examined. While one of them is subsonic,
a transonic flow is solved at a relatively low Reynolds number. It is expected to get
accurate results for low Reynolds number flows since the flow regime is laminar for
those cases. Whereas it is not necessary to use quad grids since Cartesian grids
provide sufficiently small sizes in the boundary layer, quad grid is used as an
illustration of hybrid mesh effect for the first test problem. The test problems are
tabulated below.

127



Table 5.6 Test problems for low Reynolds number flow

SECTION AIRFOIL M, a (degrees) Re,
5.2.1 NACA 0012 0.5 0 5000
5.2.2 NACA 0012 0.8 10 500

5.2.1 Subsonic Flow around NACA 0012

The first problem is the laminar flow around a NACA 0012 airfoil at a Mach number
of 0.5, an angle of attack of 0 degrees and a Reynolds number of 5000. The purpose
of this test is to show the importance of solution refinement around a symmetrical
airfoil. In addition, since the angle of attack is zero, the pressure and friction

distribution must be symmetric at the lower and upper surfaces of the airfoil.

Table 5.7 Common properties of the cases without quad cells for subsonic laminar flow

MESH INPUTS
Outer boundary size factor 18
Quad cell usage No
SOLUTION INPUTS
Order of the scheme 1
Flux method AUSMV
Multistage number 3
CFL safety factor 1
Refinement cycle interval 10
log(RMS) for convergence -9
MULTIGRID INPUTS
Multigrid type Saw-Tooth
Multigrid level 5
Fine grid iterations 15
Intermediate step iterations 10
Final grid iterations 10

128



Totally seven different cases where quad cells are not used are discussed at first . For
all of them, the outer boundary is located 18 chords ahead of the airfoil. For inviscid
flux calculations, AUSMV flux method is used. The solver is iterated until the
logarithm of root mean square of normalized density residual reaches -9. 5 level
multigrid is applied to accelerate the convergence time. In Table 5.7, the common
properties for the cases without quad cells regarding the laminar subsonic flow can

be shown.

For the test cases, only changing parameter is the number of solution refinement
cycle, which is changed from 0 to 6. While applying the solution refinement, the
interval between two cycles is set to 10. Drag coefficients of test cases and a
numerical reference, ARC2D developed by NASA, are given in Table 5.8. ARC2D
is a structured mesh solver which uses a cell-centered method. In addition, time

elapsed for solution and cell numbers can be seen in Table 5.8.

Table 5.8 Comparison of results without quad cells for subsonic laminar flow

around NACA 0012 airfoil

Case Cell
No Description Co Number Time
0 hour 38 minutes 49
1 No solution refinement 0.0651 4040 seconds
0 hour 43 minutes 56
2 One solution refinement 0.0483 9442 seconds
1 hour 26 minutes 9
3 Two solution refinement 0.0397 21208 seconds
2 hours 44 minutes
4 Three solution refinement 0.0356 46488 23 seconds
4 hours 37 minutes
5 Four solution refinement 0.0328 92486 41 seconds
8 hours 23 minutes
6 Five solution refinement 0.0316 172874 33 seconds
25 hours 25 minutes
7 Six solution refinement 0.0311 335606 16 seconds
- Reference (ARC2D) [40] 0.0321 40960 -

129



It can be shown that while the number of solution refinement cycle is increasing,
drag coefficients are approaching to the numerical reference data. However, the
convergence time increases greatly. Sixth case gives the closest result for the drag
coefficient, which underestimates drag coefficient only by 1.6 %. Whereas one more
solution refinement cycle leads to a distant result with respect to the reference data, it
gives a slightly close pressure distribution relative to the reference data, as shown in

Figure 5.9.

: _0_ 01 02 _____ 03 : 04 ; 05 : 06 5 07 - 08 . 09 1 i
chord

Figure 5.9 Pressure coefficient distribution for subsonic laminar flow around NACA 0012

airfoil

130



0O 01 02 03 04 05 06 07 08 09 1
chord

1
o
o

Figure 5.10 Skin friction coefficient distribution for subsonic laminar flow around

NACA 0012 airfoil

It can be observed from Figures 5.9 and 5.10 that increasing cycle number results
more accurate pressure and skin friction distribution. While the peak of pressure
coefficient cannot be captured accurately, Case 7 gives the most closest result. For
the initial cases, especially the skin friction coefficients are scattering. With the
increasing cycle number, the scattering decreases in a considerable amount since the
cell sizes become smaller with the increase in the solution refinement cycle number.
As a result, most accurate results are obtained for Case 7. Since it is difficult to
observe it from Figures 5.9 and 5.10 due to the excessive number of presented test

cases, Case 7 and ARC2D data are compared separately in Figure 5.11.

131



[a] ™
(e
B
LE N = | !
CansT
] AERC2ZD
|:F.._ . . . .
CE
1=
S| T L TUIE PP SUPR RPN SOTEN DS DPUOY PSR VR | g | ARAT BRAAE AR RABRE I BAAS DAOAS I NNA BRNEY
0 Oo% C2. {43 04 0B DE SF OB 08 19 o @1 0¥ ©3 D4 B5 08 07 QB 09
chord chord

Figure 5.11 Comparison of Case 7 with the reference data for subsonic laminar flow around

NACA 0012 airfoil

Figure 5.12 The grid of Case 7 around NACA 0012 for subsonic laminar flow

132




Case 7 gives a very good result for the pressure coefficient. However, the peak of the
skin friction coefficient is overestimated by 42 %, while the rest of the friction is in a
good agreement with the reference data. In Figure 5.10, one can see that with the
increase in the refinement cycle, the overestimating percent decreases. It can be
estimated that if the number of refinement cycles is greater than 6, better results can
be obtained for the peak. Yet, if one looks at the percent increase in time between
sixth and seventh cases, it is not difficult to conclude that time elapsed for

convergence increases significantly.

ol S 1

0.56
054
052
0.5

.48
0.45
044
042
0.4

0.38
0.36
0.34
0.3z
0.3

0.28
0.26
024
022
0.2

018
016
014
012
01

0.08
0.06
0.04
0.02

Figure 5.13 Mach contours of Case 7 around NACA 0012 for subsonic laminar flow

The grid used in Case 7 is shown in Figure 5.12. The finer meshes around leading
edge, resulted from stagnation points can be seen easily. Moreover, the shear layers
become finer with the solution adaptation. The grid around the wake formed after the

trailing edge also become smaller by solution adaptation. In addition, Mach and

133



pressure contours for this case are given in Figure 5.13 and 5.14, respectively. The
velocity profile at the upper surface is depicted at approximately 30 % of the chord in
Figure 5.13.

Figure 5.14 Pressure contours of Case 7 around NACA 0012 for subsonic laminar flow

In addition to the cases where only Cartesian grids are used, two more cases, eighth
and ninth cases, are considered in order to illustrate the hybrid mesh effect on
laminar flows. 16 rows of quad cells are used for both cases. While multigrid
technique is not used for the ninth case due to some problems regarding solution
adapted grids with multigrid, it is used for the eighth case. The results are tabulated
in Table 5.9. As shown in Table 5.8 and 5.9, hybrid grid gives a more accurate result

for the grids where solution adaptation is not applied.

134



Table 5.9 Comparison of results with quad cells for subsonic laminar flow

around NACA 0012 airfoil

Case Cell
No Description Cp [Number Time
15 hours 16 minutes 54
8 No solution refinement 0.0590 | 14562 seconds
108 hours 46 minutes 36
9 Three solution refinement | 0.0371 | 107250 seconds
- Reference (ARC2D) [40] | 0.0321 [ 40960 -

In Figure 5.15, one can see the comparison done between grids without solution

adaptation for pressure and skin friction coefficient distribution. One can say that the

scattering which comes from different cell sizes in the first case diminishes

significantly when hybrid mesh is used. Moreover, the peak of the skin friction

coefficient is nearly captured in the eighth case unlike the first case where quad cells

are not used. Moreover, the general distribution is closer to the reference result

compared to the first case. However, the pressure distribution is still far from the

reference distribution, as expected since the grid is not sufficiently finer at the critical

regions.

o
e E
. =
;
[

=T L° %}
Qo d
ARCID

_Cp

=z
T

x
L]
e e el 5 I

Cope 1
(=TS
ARCED

Figure 5.15 Comparison of Case 1, Case 8 and ARC2D for subsonic laminar flow

around NACA 0012 airfoil

135




0.2

S 'Carsé? :
T Cased
e C:seﬂ

g 0.4

0.6

0.8

1.2

0 o1 02 03 04 05 06 07 02 0% 1
chord

1.4

Figure 5.16 Pressure coefficient distribution which hybrid grid is compared
with Cartesian grids and reference for subsonic laminar flow

around NACA 0012 airfoil

In Figures 5.16 and 5.17, one can see the comparison of the pressure and skin friction
distributions of the Case 9 which is a hybrid mesh with three cycles of solution
adaptation, with Case 3 which is a Cartesian mesh with three cycles of solution
adaptation, Case 7 which is a Cartesian mesh with six cycles of solution adaptation
and the reference ARC2D. It can be observed that the best result is obtained by Case
7 for pressure distribution, whereas Case 9 gives the best result for skin friction
distribution. The skin friction coefficient distribution along the entire surface is
captured accurately including the peak at the trailing edge unlike the others.
However, some deviations are observed at the trailing edge both for pressure and

skin friction coefficients. As a result, it can be inferred that hybrid mesh gives more

136



accurate and non-scattering results for skin friction coefficients. However, the
convergence rate increases significantly. In terms of pressure coefficient distribution,

a significant effect is not observed for hybrid mesh on laminar flows.

0.4

0.35

031

o=

00 061 02 03 024 05 06 07 08 09 1

chord

Figure 5.17 Skin friction coefficient distribution which hybrid grid is compared
with Cartesian grids and reference for subsonic laminar flow

around NACA 0012 airfoil

5.2.2 Transonic Flow Around NACA 0012

The second problem is the laminar flow around a NACA 0012 airfoil at a Mach
number of 0.8, an angle of attack of 10 degrees and a Reynolds number of 500. The

aim of this problem is to show that the code can be capable of solving very small

137



Reynolds number flows around an airfoil. Moreover, the importance of solution

adaptation can be seen by comparing different solution adaptation cycles.

Similar to the previous problem, seven different test cases are used for the transonic
flow. For all of them, AUSMYV flux calculation technique is used for inviscid flux
calculations. The far-field boundary is placed 18 chords ahead of the airfoil. The
interval between two solution refinement cycles is set to 15. Finally, normalized
density residual at the last residual is set to -9 as the convergence criteria. Since there
are some problems while using the multigrid technique for very low Reynolds
numbers, it is not applied for Cases 1 to 6. Therefore, only for the seventh case, the

multigrid technique is applied using three cycles after problems are fixed.

Table 5.10 Common properties for transonic laminar flow

MESH INPUTS
Outer boundary size factor 18
Quad cell usage No
SOLUTION INPUTS

Order of scheme 1
Flux method AUSMV
Multistage number 3
CFL safety factor 1
Refinement cycle interval 15
log(RMS) for convergence -9

In Table 5.11, one can see the coefficients of drag and lift as well as the convergence
time for each case. Since there is no data found in literature for this problem, the
comparisons can be done between test cases obtained by the code. However, the
pressure coefficients and skin friction coefficients along the wall boundary can be
compared with the reference [41], which is a numerical solver named NSC2KE. The
mesh used in the reference [41] is a hybrid structured/unstructured mesh with 10924

triangular cells and 5590 meshpoints. These are presented in Figures 5.18 and 5.19.

138



Table 5.11 Comparison of results for transonic laminar flow around NACA 0012 airfoil

Case Cell
No Description Cp CL Number Time

No solution 6 hours 38 minutes 26

1 refinement 0.2256 | 0.6752 4040 seconds
One solution 10 hours 49 minutes 25

2 refinement 0.2084 | 0.6156 7378 seconds
Two solution 17 hours 29 minutes 57

3 refinement 0.1942 | 0.5598 | 12902 seconds
Three solution 28 hours 36 minutes 12

4 refinement 0.1841 | 0.5195 | 23411 seconds
Four solution 37 hours 18 minutes 49

5 refinement 0.1775| 0.4931 | 45024 seconds
Five solution 77 hours 5 minutes 29

6 refinement 0.1718 | 0.4705 | 87372 seconds
Six solution 34 hours 33 minutes 37

7 refinement 0.1686 | 0.4589 | 176059 seconds

It can be seen that the drag and lift coefficients decrease while the solution

refinement cycles increase. Furthermore, the solution time increases as the number of

cycles increases. For Case 7, since three level multigrid is used as mentioned before,

the solution time decreases considerably in comparison to Case 6. Since no

numerical or experimental reference data available, the accuracy of these cases

cannot be understood by examining the coefficients. However, Figures 5.18 and 5.19

can be used for this comparison.

139




1.6 0O 01 02 03 04 05 06 07 08 09 1
chord

Figure 5.18 Pressure coefficient distribution for transonic laminar flow

around NACA 0012 airfoil

As it can be seen in Figures 5.18 and 5.19, the increase in the number of cycles leads
to closer results relative to the reference data. For the initial test cases, the results
deviated significantly, as the number of cycles is increased by 1. However, the
difference becomes smaller for the last cases. For example, if one examines the sixth
and seventh cases, there is a slight difference in pressure and skin friction
coefficients. Moreover, these two cases give the best results. However, at the regions
around the leading edge, the pressure coefficients are underestimated so that the peak
cannot be captured accurately. However, the pressure distribution around the other

sections of the geometry is in good agreement with the reference data. Moreover, it

140



can be said that the skin friction distribution are captured accurately despite slight

differences at the lowest and highest points of the reference data.

08¢
07F
06F
05F
04f
0.3}
02f
01F

0.1F
0.2}
03}
04f
0.5k

0O 01 02 03 04 05 06 07 08 09 1
chord

Figure 5.19 Skin friction coefficient distribution for transonic laminar flow around

NACA 0012 airfoil

141



Figure 5.20 The grid of Case 7 around NACA 0012 for transonic laminar flow

The grid used in the seventh case is shown in Figure 5.20. The regions around the
leading edge become finer since there are large gradients arising from stagnation
points. Moreover, since the flow is coming with an angle of attack, the wake is
formed at the upper surface of the airfoil instead of the trailing edge, with an angle
different than zero. Since some layers are created around the wake, these grids

become smaller with the solution adaptation, as shown above.

In Figures 5.21 and 5.22, Mach contours are presented for the reference data and
Case 7, respectively. The similarity between these figures can be seen easily. In
addition, the pressure contours and temperature contours for Case 7 are presented in

Figures 5.23 and 5.24, respectively.

142



Mach Number Line oot onrs.
NELEM = 27#&7 NEOIA = 134527
Fmax 1.13549

o \ f \r 1MIR1

10211
g4l
A0%71
BEC1
J931
J380
TG0
220
LED
L0ED
10
3949
L2509
LT
LA
JAA5G
J0EG

\\ TR
—1.48 . . f; " . . F'min .CO00
— k3 A8 1.8 a9.18

Figure 5.21 Mach contours of reference [41] around NACA 0012 for transonic laminar flow

Figure 5.22 Mach contours for Case 7 around NACA 0012 for transonic laminar flow

143



=
1.12
1.09
1.06
1.04
1.01
0.98
096
093
090
0.27
0.85
0.8z
P 07o
076
074
0.71
0.68
0.85
083
060
057
0.54
052
0.49
.46

Figure 5.23 Pressure contours for Case 7 around NACA 0012 for transonic laminar flow

T
112
1.11
140
1.09
1.08
1.07
1.06
1.05
1.04
1.02
1.02
1.01
1.00
099
0.98
097
0.96
0.95
0.94
093
092
0.1

Figure 5.24 Temperature contours for Case 7 around NACA 0012 for transonic laminar flow

144



5.3 HIGH REYNOLDS NUMBER FLOW

In this section, one problem is tested. In this problem, a multi-element airfoil is used
in a subsonic flow. Since the Reynolds number is high, the flow regime is turbulent
in this problem. Therefore, it is not expected to get close results compared to the
experimental reference data found in reference [42]. The purpose for considering this
high Reynolds number flow is to examine the effect of different hybrid meshes
which composes of body-fitted and sufficiently smaller boundary layer grids and

Cartesian grids outside the boundary layer.

5.3.1 Subsonic Flow Around 30P30N

In this problem, the subsonic flow around a three-element airfoil, i.e. 30P30N, is
analyzed at a Mach number of 0.2, an angle of attack of 8 degrees and a Reynolds
number of 9 million. While almost all parameters are kept to be the same in all test
cases, the only changing parameter is the row number of the Quad cells. Row
numbers are changed from 0 to 32 for five test cases and the results obtained from

these cases are compared with the experimental results found in reference [42].

Table 5.12 Common properties for subsonic high Reynolds number flow

MESH INPUTS
Outer boundary size factor 18
Stretch factor 1.1
SOLUTION INPUTS

Order of scheme 1
Flux method AUSMV
Multistage number 3
CFL 1
Refinement cycle number 3
Refinement cycle interval 15
log(RMS) for convergence -8

145



For all cases, the inviscid flux calculation method is set to AUSMV. Three cycles of
solution adaptation is used. The convergence is achieved when the normalized
residual reaches -8. The relation between quad cells is determined by using a fixed
stretch factor of 1.1 For this problem, the multigrid technique is not applied. The
parameters that are kept to be the same for all cases are tabulated in Table 5.12. In

this table, the test cases and the results obtained from these are presented.

Table 5.13 Comparison of results for subsonic high Reynolds number flow

around the 30P30N airfoil

Case Cell
No Description Co CL Number Time

6 hours 57 minutes 24
1 No Quad cells 0.2121 | 1.1911 | 38254 seconds

33 hours 43 minutes
2 4 rows of Quad cells | 0.2010 | 1.2182 | 62675 47 seconds

49 hours 3 minutes 54
3 8 rows of Quad cells | 0.2115 | 1.0278 | 82702 seconds

97 hours 14 minutes 8
4 | 16 rows of Quad cells | 0.2293 | 1.0181 | 111051 seconds

104 hours 47 minutes
5 | 32 rows of Quad cells | 0.2191| 1.0351| 172114 12 seconds

As it can be seen, the calculation time increases significantly when quad cells are
used. Even though the cycle number of solution adaptation is the same for all cases,
the cell number increases considerably as the number of rows increase It is difficult
to comment on the drag and lift coefficients due to the fact that the reference results

do not exist and the flow regime in these test cases is taken as laminar.

In the Figure 5.25, the pressure coefficient distributions of test cases are presented in
comparison to the experimental results found in the literature. For the first two cases,
the results at the upper surface are closer to the experimental results even though
there 1s a huge difference. With the increase in the row number, the results are
getting further away from the one in the reference. Since the real flow is turbulent,
the actual distribution is considerably far away from all of the test cases. It can be

observed that the distribution cannot be captured totally around the slat.

146



Figure 5.25 Pressure coefficient distribution for subsonic high Reynolds number flow

around the 30P30N airfoil

The mesh used for Case 5 is depicted in Figure 5.26. One can also see the grids
around the slat and the flap closely. In Figures 5.27 and 5.29, Mach and pressure
contours from the fifth case are presented, respectively. The velocity profile on the
upper surface of the main element is also shown at approximately 10% of the chord
in Figure 5.27. Some streamlines are drawn in Figure 5.28. The vortex near the

trailing edge of the main element of the airfoil can be observed.

147



]l'.! S

Figure 5.26 The mesh of the whole airfoil, the slat and the flap for Case 5 around the
30P30N airfoil for the subsonic high Reynolds number flow

148



BERREEECEREER =

b a5 1
P

Figure 5.27 Mach contours for Case 5 around the 30P30N airfoil for subsonic high Reynolds

number flow

Figure 5.28 Streamlines for Case 5 around the trailing edge of the main element of the

30P30N airfoil for the subsonic high Reynolds number flow

149



oae

RS R R

= =i
|-}-5

E-dedd=a:

PRERRREERARAE=SERRARARAEER

Figure 5.29 Pressure contours for Case 5 around the 30P30N airfoil

for the subsonic high Reynolds number flow

150



CHAPTER 6

CONCLUSION

In this thesis work, the aim is to develop a two-dimensional laminar Navier-Stokes
solver which uses finite volume method on Cartesian grids. As viscous flow, only the
laminar flow regime is considered. Besides, inviscid flows are also considered by

neglecting the viscous terms.

Two cases are analyzed for the validation of the inviscid flow. In the first case, first
and second order flux calculation schemes are applied with 0, 3 and 5 cycles of
solution adaptation. It is observed that second order gives closer result relative to the
results in the reference data when the number of solution adaptation cycle is low. For
5 cycles of solution adaptation, nearly the same results are obtained with the first and
second order schemes. In addition to this, the importance of solution refinement is
shown for this case. While solution adaptation is not applied, the pressure
distribution deviates in a considerable manner from the reference. However, with 5
cycles of solution refinement, the results are getting very close to the reference data
especially for the upper surface where the shock wave occurs, although the

convergence rate increases excessively.

In the second case, inviscid flux calculation methods are examined with and without
the solution adaptation. While using solution refinement, all methods give nearly the
same pressure distributions. The differences among them can be observed if solution
refinement technique is not used. In the test cases, where the solution adaptation is
not applied, Roe's method gives the best result for the lower surface whereas the best

result for the upper surface is obtained by AUSM. In the test cases, where solution

151



adaptation is applied, the locations of shocks and peak point of pressure coefficients

are captured very well.

Low Reynolds number flow is tested with two problems. In these problems,
generally Cartesian grids are used instead of hybrid grids since boundary layer is
large enough so that Cartesian grids can produce the sufficient resolution for low
Reynolds numbers. In the first problem, a subsonic flow with a Reynolds number of
5000 is analyzed at a Mach number of 0.5. Tests are carried out by changing only
one parameter which is the number of cycles of solution adaptation. It is observed
that increase in the cycle number leads to more closer results relative to the reference
data both for pressure and skin friction coefficient distributions. However,
convergence time increases significantly especially for the last case for which 7
cycles of solution adaptation is used. Yet, the best result is obtained from this case
among the cases which quad cells are not used, whereas the peak of the skin friction
coefficient is slightly overestimated. Moreover, two cases are used in order to
observe the effect of hybrid grids on laminar flows. It is inferred that one can obtain
more accurate and non-scattering results especially for skin friction coefficients

thanks to hybrid grids.

In the second problem for low Reynolds number flows, a transonic non-symmetric
flow is analyzed at a relatively low Reynolds number of 500, a Mach number of 0.8
and an angle of attack of 10 degrees around the NACA 0012 airfoil. The aim is to
show that non-symmetric flows with relatively lower Reynolds numbers can be
captured by the developed code. With the increase in the number of solution
adaptation cycles, the results approach to the ones in the reference. In Case 7, where
6 cycles of solution refinement is applied, the closest results with respect to the
reference are obtained, whereas the location of the peak of the pressure distribution

cannot be captured exactly.

High Reynolds number flow is examined with one test problem. Since the flow
regime is changed from laminar to turbulent at high Reynolds numbers, it is not

expected to get accurate result with the developed code. The aim is to investigate the

152



hybrid meshes around the 30P30N airfoil. Some differences at the pressure
distribution are obtained by using higher amounts of quad cells in the boundary
layer. However, comparing them with the experimental reference result is not

credible since the developed solver treats the flow laminarly.

To accelerate the convergence rate, multigrid technique is implemented. The affects
of it for inviscid and viscous flows are investigated according to the level number
with and without solution adaptation, cycle and iteration number at each step. It is
observed that level increase causes a larger speed up ratio both for inviscid and
viscous flows. Moreover, if solution adaptation is applied to the grid, multigrid effect
becomes more dominant so that the amount of acceleration increases significantly.
For example, while a maximum acceleration of 6.27 is obtained in a grid, for which
the solution adaptation is not applied, the speed up ratio increases to 16.98 for a
solution adapted grid in an inviscid flow. Similarly, the speed up ratio is increased

from 1.48 to 7.06 for viscous flows when solution adaptation is used.

As a result of cycle tests, slightly slower convergence rates are obtained by the V-
Cycle compared to Saw-Tooth cycle since it requires more memory to store the
forcing functions which are necessary during the iterations in the prolongation stage.
Moreover, some iteration tests are performed to determine the optimum number of
iterations for inviscid and viscous flows. 5 and 20 iterations at each step give the best
acceleration amounts for inviscid and viscous flow, respectively. Besides, multigrid
effect on hybrid grids are also investigated. In these tests, a larger speed up ratio
compared to normal grid is obtained. It is inferred that the multigrid technique is
more important in hybrid grids, since the cell number is significantly larger even if

solution adaptation is not applied.

Some problems are encountered when it is tried to use multigrid on hybrid grids
where solution adaptation is applied. Elimination of these problems can be given as a
future work. In addition, turbulence models can be added and the code can be

converted into three-dimensional form as future works.

153



REFERENCES

[1] Anderson J.D.Jr., Computational Fluid Dynamics: The Basics with
Applications, McGraw-Hill, 1995.

[2] Versteeg H.K. & Malalasekera W., An Introduction to Computational Fluid
Dynamics: The Finite Volume Method, Pearson/Prentice Hall, 2007.

[3] Potter M.C., Wiggert D.C., Hondzo M., & Shih T.I-P. Mechanics of Fluids,
Brooks/Cole, 2002.

[4] Blazek J., Computational Fluid Dynamics: Principles and Applications,
Elsevier, 2005.

[5] Carey G., Computational Grids: Generation, Adaptation and Solution
Strategies, CRC Press, 1997.

[6] Marshall D.D., Extending the Functionalities of Cartesian Grid Solvers:
Viscous Effects Modeling and MPI Parallelization, PhD Thesis in the Georgia
Institute of Technology, 2002.

[7] Wang Z.J., A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for
Navier-Stokes Equations, Computers & Fluids Vol.27 No.4 pp.529-549, 1998.

[8] Ye T., Mittal R., Udaykumar H.S. & Shyy W., An Accurate Cartesian Grid

Method For Viscous Incompressible Flows with Complex Immersed Boundaries,

Journal of Computational Physics 156, 209-240, 1999

154



[9] Wang Z.J., Cphen R.F., Hariharan N., Przekwas A.J. & Grove D., 4 2" Tree
Based Automated Viscous Cartesian Grid Methodology for Feature Capturing,
ATAA-99-3300, 1999

[10] Tucker P.G. & Pan Z., A Cartesian Cut Cell Method for Incompressible
Viscous Flow, Applied Mathematical Modelling 24, 591-606, 2000

[11] Wang Z.J., A Fast Nested Multigrid Viscous Flow Solver for Adaptive
Cartesian/Quad Grids, International Journal for Numerical Methods in Fluids 2000;
33: 657-680, 2000

[12] Kirkpatrick M.P., Armfield SW. & Kent J.H., 4 Representation of Curved
Boundaries for the Solution of the Navier-Stokes Equations on a Staggered Three-
Dimensional Cartesian Grid, Journal of Computational Physics 184, 1-36, 2003

[13] AGARD Subcommittee C., Test Cases for Inviscid Flow Field Methods,
AGARD Advisory Report 211, 1986.

[14] Gilmanov A., Sotiropoulos F. & Balaras E., A General Reconstruction
Algorithm for Simulating Flows with Complex 3D Immersed Boundaries on

Cartesian Grids, Journal of Computational Physics 191, 660-669, 2003

[15] Sanmigual-Rojas E., Ortega-Casanova J., del Pino C. & Fernandez-Feria R.,
A Cartesian Grid Finite Difference Method for 2D Incompressible Viscous Flows In
Irregular Geometries, Journal of Computational Physics 204, 302-318, 2005

[16] Verstappen R. & Droge M., A Symmetry-Preserving Cartesian Grid Method

for Computing a Viscous Flow Past a Circular Cylinder, C.R. Mechanique 333, 51-
57, 2005

155



[17] Singh R. & Shyy W., Three-Dimensional Adaptive Cartesian Grid Method
with Conservative Interface Restructuring and Reconstruction, Journal of

Computational Physics 224, 150-167, 2007

[18] Ito K., Lai M.C. & Li, Z., A Well-Conditioned Augmented System for Solving
Navier-Stokes Equations in Irregular Domains, Journal of Computational Physics

228, 2616-2628, 2009

[19] Karagiozis K., Kamakoti R. & Pantano C., 4 Low Numerical Dissipation
Immersed Interface Method for the Compressible Navier-Stokes Equations, Journal

of Computational Physics 229, 701-727, 2010

[20] Hartmann D., Meinke M. & Schroder W., 4 Strictly Conservative Cartesian
Cut Cell Method for Compressible Viscous Flows on Adaptive Grids, Computer
Methods in Applied Mechanics and Engineering, 2010

[21] Cakmak M., Development of A Multigrid Accelerated Euler Solver on
Adaptively Refined Two and Three-Dimensional Cartesian Grids, MS Thesis in the
Middle East Technical University, 2009.

[22] Siyahhan B., 4 Two Dimensional Euler Flow Solver on Adaptive Cartesian
Grids, MS Thesis in the Middle East Technical University, 2008.

[23] Hunt J., An Adaptive 3D Cartesian Approach for the Parallel Computation of
Inviscid Flow about Static and Dynamic Configurations, PhD Thesis in the

University of Michigan, 2004.

[24] Toro, E F., Riemann Solvers and Numerical Methods for Fluid Dynamics,
Springer-Verlag, 1999.

[25]  Schlichtig, H., Boundary Layer Theory, McGraw-Hill, 7th Ed., 1979.

156



[26] Lassaline, J.V., A4 Navier-Stokes Equation Solver Using Agglomerated
Multigrid Featuring Directional Coarsening and Line-Implicit Smoothing, PhD
Thesis in the University of Toronto, 2003.

[27] Mavriplis, D.J., Accurate Multigrid Solution of the Euler Equations on
Unstructured and Adaptive Meshes, AIAA paper 88-3707, First National Fluid
Dynamics Congress, Cincinnati, Ohio, July 24-28, 1988.

[28] Mavriplis, D.J., Multigrid Solution of the Navier-Stokes Equations on
Triangular Meshes, ATAA paper 89-0120, 27th Aerospace Sciences Meeting, Reno,
Nevada, January 9-12, 1989.

[29] Coirier W.J., An Adaptively Refined, Cartesian, Cell-Based Scheme for the
Euler and Navier-Stokes Equations, PhD Thesis in the University of Michigan, 1994.

[30] Laney C.B., Computational Gas Dynamics, Cambridge University Press,
1998.

[31] Liou M.S. & Steffen C.J., A New Flux Splitting Scheme, Journal of
Computational Physics, Vol. 107, pp. 23-39, 1993.

[32] Wada, Y. & Liou M.S., 4n Accurate and Robust Flux Splitting Scheme for
Shock and Contact Discontinuities., M S. 3, s.I. : Siam J. Sci. Comput.,1997, Vol. 18,

pp. 633-657.

[33] Aftosmis, M., Gaitonde, D. & Tavares, T.S., AIAA-94-0415, (unpublished),
1994.

[34] Barth T.J., & Jespersen D.C., The Design and Application of Upwind
Schemes on Unstructured Meshes, AIAA Paper ATIAA-89-0366, 1989.

157



[35] Trottenberg U., Oosterlee C.W., Schiiller A., Multigrid, Academic Press,
2001.

[36] Brandt A., Multi-Level Adaptive Solutions to Boundary-Value Problems,
Mathematics for Computation, Vol. 31, pp. 333-390, 1977.

[37] Jameson A., Solution of the Euler Equations for Two-Dimensional Transonic
Flow by a Multigrid Method, Applied Mathematics and Computation, Vol. 13 Issues
3-4, pp. 327-355, 1983.

[38] De Zeeuw D.L., A Quad-Tree Based Adaptively-Refined Cartesian-Grid
Algorithm for the Solution of the Euler Equations, PhD Thesis in the University of
Michigan, 1993.

[39] Russell D. & Wang Z.J., A Cartesian Grid Method for Modeling Multiple
Moving Objects in 2D Incompressible Viscous Flow, Journal of Computational

Physics 191, 177-205, 2003

[40] Gooch C.F., Solution of the Navier-Stokes Equations on Locally-Refined
Cartesian Meshes Using State-Vector Splitting, PhD Thesis in the Stanford
University, 1993.

[41] Bonfiglioli A., Compressible, Viscous (Laminar) Flow Past a NACA 0012
Profile, 1998, at: http://www.unibas.it/utenti/bonfiglioli/node6.html, Last Access On
February 2011.

[42] Sangho K., Alonso J.J., & Jameson A., Design Optimization of High-Lift

Configurations Using a Viscous Continuous Adjoint Method, AIAA Paper AIAA-
2002-0844, 2002.

158



APPENDIX A

CUT AND SPLIT CELLS

As mentioned, there are a lot of alternatives available for cut and split cells. In this

Appendix, the alternatives of cut and split cells are expressed in terms of their square

and split indices, seperately. The gray regions represents the part inside the geometry

of the cell. Moreover, the sorted intersection points are indicated with P1 to P4.

A.1 CUT CELLS

A.1.1 Square Index of 1

p1 F2
P-/ P1 P2 P1 F'I.
Split Index: Split Index: Split Index: Split Index:
1 2 3 4

159



A.1.2 Square Index of 2

&
Pz\ P2 P1 P2 P1
P1
P1
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.3 Square Index of 4
¢
P1 P2 P1 P1 P1
P2 P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.4 Square Index of 8
P1 P1
P2 P2 P1 P2 P1
@
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.5 Square Index of 3
P P2 p2 P
P P1 P1 P
Split Index: Split Index: Split Index: Split Index:
1 2 3 4

160




A.1.6 Square Index of 6

p2 P1 P P2
e /&
2 P
P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.7 Square Index of 9
P2
Se—|
P1 p2
P2 P1 P2 N
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.8 Square Index of 12
P1 P1 1 Pl
P2 P2 2 P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.9 Square Index of 7
P1 2
2
1
2 2 P1
Split Index: Split Index: Split Index: Split Index:
1 2 3 4

161



A.1.10 Square Index of 11

Pl P1 P1 P1
P2 p2
P2 P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.11 Square Index of 13
P2 P2
p2 P2
P1 P1
P1 P
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.1.12 Square Index of 14
P P1
P1 P1
P2 P P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4

162




A.2 SPLIT CELLS

A.2.1 Square Index of 1

P & 2 Pa N P3
P Py
\P}\P y p P1
Split Index: Split Index: Split Index: Split index:
1 2 3 4
3
2 P2
P
P3
N 4
Split Index: Split Index:
5 &
A.2.2 Square Index of 2
//le 2 /5 P M
P3
=)
_ PY/| Ry .
P T / .
AN
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
’ 7@ 1
P
P3 4 3 /pa
Split Index: Split Index:
5 6

163



A.2.3 Square Index of 4

)
a

i
L]
[

<
/i

2
P4 P1 3 \P4 P

Split Index: Split Index: Split Index: Split Index:
1 2 3 4
\7 \d\n\z
M\p’- N
Split Index: Split Index:
5 6
A.2.4 Square Index of 8
1
e Hy——"%] P
P3
1 B
P P4 2 B /
Split Index: Split Index: Split Index: Split index:
1 2 3 4
(73 PE P
P3
P4 P3 P
Split Index: Split Index:
5 6

164



A.2.5 Square Index of 3

P3 / Pl P3 P2 P3
P2
F3
/ \ Pi
p P4 P4 P4 P1
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
2
P3 P2 P1 e
P P
F3
5l
p4a  PI1 \PA p1 1
Split Index: Split Index: Split Index: Split Index:
5 6 7 8
A.2.6 Square Index of 6
/3 P\ P2 pp Pz P2
P - P2 P4 P1 P P1
P1
Y
Split Index: Split Index: Split Index: Split index:
1 2 3 4
P3 P2 P2 P1 P2 P1
P1 P
pa p2
3 3 4 3 [2
Split Index: Split Index: Split Index: Split index:
5 6 7 38

165




A.2.7 Square Index of 9

3 p2
P2 P1 P2 P1 P3 P2
P4 P1
P3 P4 y P1
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
3 P2 P 3 P2
P2 P1
P3 P4
P4 P1 P4 P1 P4 P1
Split Index: Split Index: Split Index: Split Index:
5 & 7 8
A.2.8 Square Index of 12
P P3\ P2 P1 P1
P2 P2
P
3 P3
Pl
P4 P4 P4 P3 P4
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
P2 P1 P3 P.?\p} P3
P2 P2
Pl
Pz P4 P/ i ,pi,_///
Split Index: Split Index: Split Index: Split Index:
5 (3 7 8



A.2.9 Square Index of 7

P P3\ P2 P1 / Pl
P2 p2
P2
3 P3
P1
P pa_~"| pa P3 P4
Split index: Split Index: Split Index: Split Index:
1 2 3 4
P2 P1 P3 Pa\m P3
P2 P2
P1
P3 P4 P/ P4 P4
Split Index: Split Index: Split Index: Split Index:
5 6 7 8
P3 P2 2 P
2
P4 P3 P3 P2
P1 P4 P1 P4 P1 P4 P1
Split Index: Split Index: Split Index: Split Index:
9 10 11 12
P3 p2 \ / P3 p2
P2 P3
p P1 F1
Ny o1 ) / . / . /
Split Index: Split Index: Split Index: Split Index:
13 14 15 16

167



A.2.10 Square Index of 11

P3 P2
P4
P1
Split Index:
4

PB\
P2

PB\\ T P3 P2
P
il pa
.. et |
P1
3 4
Split Index: Split Index: Split Index:
1 2 3
P3 P2 P3 P2 P3\
p1 P4 P2
Pe P4 P1 P1
Split Index: Split Index: Split Index:
5 6 7
P3 P P2
P2 P2 P3
P4 P1 P3 P. P4 P1
Split Index: Split Index: Split Index:
9 i0 11
P2 P1 P2
P3
P2 P3
P4 P1 \{3 P4 \Pd P1
Split Index: Split Index: Split Index:
13 14 15

168

P1
Pd/

Split Index:
8

P2

P3 P

Split Index:

12
P2
P3
P4 P1
Split Index:
16



A.2.11 Square Index of 13

P2 p2 Pz P2 P3 P2
P3 5
4 P1
P4 P1 1
P3 P4 P
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
P3 p2 A3 p2 / P2 /2
P3 P3
P4 P
P4
1 P4 P1 P 1
Split Index: Split Index: Split Index: Split Index:
5 6 7 8
P2 P3 P3 P3
P3
P2 P2 P2
P4 P1 P4 P1 P4 P1 4 Pl
Split Index: Split Index: Split Index: Split Index:
9 10 11 12
P3 P2 P2 P2
P2 P P1 P1
P4 P1 P3 P4 / P3 P4 P3 P4
Split Index: Split Index: Split Index: Split Index:
13 14 15 16

169



A.2.12 Square Index of 14

P3| P2 P
p2 D
R‘g\.\ e \.\
P1 P1
P3
\ i P P3 P4 P3 P4
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
/ P2 & ’ﬂ N
P2 P1
P2
P3 P3
P3 P4 P3 P4 >~ rs >~
Split Index: Split Index: Split Index: Split Index:
5 [ 7 8
P2 P1 P3 P2 P3 P2 P3 P2
P1 F1 Pl
P3
P4 P4 P P4
Split index: Split Index: Split index: Split Index:
9 i0 11 12
p3 P P3j P 2\ P3 Fé P3 2 Z\
P1 P1 Pi
P1
P4 P4 P4 P4
Split Index: Split Index: Split Index: Split Index:
13 14 15 16

170



A.2.13 Square Index of 5

P\{ / P2
P3 P3 P1
P3 4 p2
P1
P1
P4 P4 Y
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
P2 P3 P2 P3 P3 P2
2
P3
P1
1 P1
4 4 4 P1
Split index: Split Index: Split Index: Split Index:
5 6 7 8
P2 P3 P2 P3
3 P4 P3 P4 p2
P2
d s P4 P1 P1
Split Index: Split Index: Split Index: Split Index:
9 10 11 12
P2 P3 P2 3 P2
P4 P3
P3 P1 P1 P2
P/ P-/ P1 P4 P1
Split Index: Split Index: Split Index: Split Index:
i3 14 i5 16
P4 P3 P3 p2
P2
P1 P4 P1
Split Index: Split Index:
17 18

171




A.2.14 Square Index of 10

P2 PZ\ P1 / e,
P1 P3
P-/ \Pd P. P4
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
2 P1 2 2 P2
P1 P1
P3 Pl
P3
P3 P4 P4 P 3 P
Split Index: Split Index: Split Index: Split Index:
5 6 7 8
P2 P2 P2 P2
P1 P1
P. P3 P1
P3
P3 4 2 P3 P4 P4
Split Index: Split Index: Split Index: Split Index:
9 10 11 12
P2 P2 P1 P2 P2 P1
P1 P3 P1 P3
P3 P3
P4 P4 P4 P4
Split Index: Split Index: Split Index: Split Index:
i3 14 15 16
P2 P1 P2
P1
P3 P4 P3 P4
Split Index: Split Index:
17 18



A.2.15 Square Index of -15

P2 \/ P1
% §
P1 P2
P1 P2
Split Index: Split Index: Split Index: Split Index:
1 2 3 4
A.2.16 Square Index of -20
r
P1 P2
P1 2
Split index: Split index: Split Index: Split Index:
1 2 3 4
2 P h P1
P2
P1
1
Split Index: Split Index: Split Index: Split Index:
5 6 7 8
P P 2 P P
1
Split index: Split Index: Split Index: Split Index:
9 10 11 12

173




P1

P2 P P1 2
Split Index: Split Index: Split Index: Split Index:
13 14 15 16
A.2.17 Square Index of -25
2 P 2
1 P2
3
P2
4
\Q‘T & 3 P4 P y/%/
Split index: Split Index: Split Index: Split Index:
1 2 3 4
P3
M
P4
P1
Split index: Split index:
5 6




APPENDIX B

SAMPLE FILE FORMATS

B.1 SAMPLE MESH INPUT FILE

MESH GENERATION INPUTS
A) AIRFOIL SELECTION
NLR7301.dat 1) Airfoil Name
B) GRID INPUTS
20 : 2) Outer Boundary Size Factor
8 : 3) Level of Uniform Mesh
0 : 4) Shift Amount in X Axis
0 : 5) Shift Amount in Y Axis
C) BOX ADAPTATION INPUTS

175



1.5 : 6) Boundary Size Factor for X Axis
2.5 : 7) Boundary Size Factor for Y Axis
0.05 : 8) Body Division Factor

0 : 10) Curvature Adaptation Cycle
170 : 11) Threshold Angle

0 : 12) Quad Cells Usage (1:Yes, 0:No)
1.1 : 13) Stretch Factor
16 : 14) Row Number

176



B.2 SAMPLE INVISCID SOLUTION INPUT FILE

A) FLOW INPUTS

0.85 : 1) Mach Number

1.0 : 2) Angle of Attack (in degrees)

B) MEDIUM INPUTS

1.4 3) Specific Heat Ratio

C) SOLVER INPUTS

1 . 4) Order of Scheme (1: First, 2: Second)

1 : 5) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMYV)
3 : 6) Multistage Number (3: Three, 4: Four, 5: Five)
1 : 7) CFL Safety Factor (between 0 and 1)

0 : 8) Gradient Limiting (1:Yes, 0:No)

0 : 9) Refinement Cycle (0 to 6)

177



15 : 10) Coefficient of Refinement Based On Residual

E) MULTIGRID INPUTS

1 : 11) Multigrid Type (1: Saw-Tooth, 2: v-Type)
7 : 12) Multigrid Cycle (0 to 7)

10 : 13) Fine Grid Iteration Cycle

10 : 14) Mid Step Iteration Cycle

10 : 15) Final Grid Iteration Cycle

F) ITERATION INPUTS

10 : 16) Iteration Interval of Writing to the Screen
-8. : 17) Minimum Log of RMS

B.3 SAMPLE VISCOUS SOLUTION INPUT FILE

A) FLOW INPUTS

0.5 : 1) Mach Number

0.0 : 2) Angle of Attack (in degrees)
5000 : 3) Reynolds Number

178



0.72 : 4) Prandtl Number

B) MEDIUM INPUTS
1.4 . 5) Specific Heat Ratio
273.15 : 6) Free Stream Temperature (in Kelvin)

1 : 7) Order of Scheme (1: First, 2: Second)

2 : 8) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMV)
3 : 9) Multistage Number (3: Three, 4: Four, 5: Five)

0.5 : 10) CFL Safety Factor (between 0 and 1)

0 : 11) Gradient Limiting (1:Yes, 0:No)

0.25 : 12) Time Step Coefficient

0 : 13) Refinement Cycle (0 to 6)
20 : 14) Coefficient of Refinement Based On Residual

1 : 15) Multigrid Type (1: Saw-Tooth, 2: v-Type)
0 : 16) Multigrid Level (0 to 7)

10 : 17) Fine Grid Iteration Cycle

10 : 18) Mid Step Iteration Cycle

179



10 : 19) Final Grid Iteration Cycle

F) ITERATION INPUTS
10 : 20) Iteration Interval of Writing to the Screen
-6. : 21) Minimum Log of RMS

B.4 SAMPLE MESH OUTPUT FILE

MESH OUTPUT INFO
NON-ADAPTED GRID
H-GRID
Out Cell No : 1883
Cut Cell No 1238
Split Cell No : 3 (2 cells have 2 CV's)
Quad Cell No :0
Total Cell No 12124
Time 1 0.25 seconds
2H-GRID

180



Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

4H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

8H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

16H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

32H-GRID

: 680

0123

:2 (1 cells have 2 CV's)
:0

: 805

1318

165

:2 (1 cells have 2 CV's)
:0

: 385

: 189

: 37

: 0 (0 cells have 2 CV's)
:0

1226

: 159

219

: 0 (0 cells have 2 CV's)
:0

1178

181



Out Cell No : 130

Cut Cell No 112

Split Cell No : 0 (0 cells have 2 CV's)
Quad Cell No :0

Total Cell No 1142

64H-GRID

Out Cell No : 98

Cut Cell No 011

Split Cell No : 0 (0 cells have 2 CV's)
Quad Cell No :0

Total Cell No : 109

128H-GRID

Out Cell No 154

Cut Cell No 27

Split Cell No : 0 (0 cells have 2 CV's)
Quad Cell No :0

Total Cell No ;61

1. ADAPTED GRID

H-GRID

Out Cell No 13271

Cut Cell No : 249

182



Split Cell No
Quad Cell No
Total Cell No

2H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

4H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

8H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

16H-GRID

Out Cell No
Cut Cell No

: 3 (2 cells have 2 CV's)
:0
3523

1932

129

: 2 (1 cells have 2 CV's)
:0

: 1063

: 440

1 66

: 2 (1 cells have 2 CV's)
:0

: 508

: 209

141

: 0 (0 cells have 2 CV's)
:0

: 250

1164
126

183



Split Cell No
Quad Cell No
Total Cell No

32H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

64H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

128H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

: 0 (0 cells have 2 CV's)
:0
1190

: 144

116

: 0 (0 cells have 2 CV's)
:0

: 160

2110

211

: 0 (0 cells have 2 CV's)
:0

2121

: 82

19

: 0 (0 cells have 2 CV's)
:0

: 91

184



Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

2H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

4H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

8H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

: 5979

: 266

: 3 (2 cells have 2 CV's)
:0

1 6248

1 1735

: 144

: 2 (1 cells have 2 CV's)
:0

: 1881

: 544

78

:2 (1 cells have 2 CV's)
:0

624

1274

143

0 (0 cells have 2 CV's)
:0

1317

185



16H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

32H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

64H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

128H-GRID

Out Cell No
Cut Cell No
Split Cell No
Quad Cell No
Total Cell No

: 186

131

: 0 (0 cells have 2 CV's)
:0

1217

151

124

: 0 (0 cells have 2 CV's)
:0

2175

1124

215

: 0 (0 cells have 2 CV's)
:0

: 139

194

19

: 0 (0 cells have 2 CV's)
:0

: 103

186



B.S SAMPLE SOLUTION OUTPUT FILE

Time
Iteration

log(RMS)

: 0 hours 5 minutes 56 seconds
14410
:-10.02105

Drag Coefficient
Lift Coefficient

:0.04717
:0.96187

187



APPENDIX C

AIRFOIL COORDINATES

In this appendix, coordinates of three airfoil are given as nodes. In a row, while first

value is the node number, the second and third one represents the node's x and y

coordinates, respectively.

C.1 NACA 0012

Table C.1 Coordinates of NACA 0012

NODE X Y
1 1.00000 0.00000
2 0.98530 -0.00216
3 0.96662 -0.00480
4 0.94288 -0.00806
5 0.91268 -0.01208
6 0.87428 -0.01697
7 0.84541 -0.02045
8 0.81783 -0.02372
9 0.79431 -0.02644
10 0.76315 -0.02988
11 0.73347 -0.03301
12 0.70578 -0.03582
13 0.68691 -0.03764
14 0.66688 -0.03957
15 0.64397 -0.04167
16 0.62271 -0.04355
17 0.59235 -0.04611
18 0.56483 -0.04830

188



Table C.1 Coordinates of NACA 0012 (continued)

19 0.54025 -0.05013
20 0.51179 -0.05210
21 0.49094 -0.05344
22 0.47494 -0.05440
23 0.45118 -0.05570
24 0.42719 -0.05687
25 0.40283 -0.05789
26 0.36530 -0.05911
27 0.33031 -0.05980
28 0.29878 -0.06001
29 0.26716 -0.05976
30 0.23892 -0.05909
31 0.21375 -0.05809
32 0.18516 -0.05642
33 0.16156 -0.05454
34 0.13887 -0.05221
35 0.12371 -0.05032
36 0.10329 -0.04727
37 0.09080 -0.04506
38 0.07599 -0.04201
39 0.06628 -0.03971
40 0.05510 -0.03669
41 0.04669 -0.03408
42 0.03916 -0.03145
43 0.03187 -0.02858
44 0.02673 -0.02631
45 0.02310 -0.02456
46 0.02117 -0.02356
47 0.01894 -0.02234
48 0.01681 -0.02109
49 0.01563 -0.02036
50 0.01440 -0.01956
51 0.01340 -0.01887
52 0.01240 -0.01816
53 0.01142 -0.01743
54 0.01030 -0.01654
55 0.00891 -0.01534
56 0.00792 -0.01442
57 0.00728 -0.01379
58 0.00662 -0.01310
59 0.00594 -0.01235

189



Table C.1 Coordinates of NACA 0012 (continued)

60 0.00537 -0.01169
61 0.00476 -0.01092
62 0.00424 -0.01022
63 0.00386 -0.00969
64 0.00323 -0.00870
65 0.00261 -0.00763
66 0.00221 -0.00684
67 0.00178 -0.00593
68 0.00137 -0.00492
69 0.00102 -0.00396
70 0.00073 -0.00306
71 0.00051 -0.00227
72 0.00029 -0.00139
73 0.00014 -0.00072
74 0.00000 0.00000
75 0.00014 0.00072
76 0.00029 0.00139
77 0.00051 0.00227
78 0.00073 0.00306
79 0.00102 0.00396
80 0.00137 0.00492
81 0.00178 0.00593
82 0.00221 0.00684
83 0.00261 0.00763
84 0.00323 0.00870
85 0.00386 0.00969
86 0.00424 0.01022
87 0.00476 0.01092
88 0.00537 0.01169
89 0.00594 0.01235
90 0.00662 0.01310
91 0.00728 0.01379
92 0.00792 0.01442
93 0.00891 0.01534
94 0.01030 0.01654
95 0.01142 0.01743
96 0.01240 0.01816
97 0.01340 0.01887
98 0.01440 0.01956
99 0.01563 0.02036
100 0.01681 0.02109

190



Table C.1 Coordinates of NACA 0012 (continued)

101 0.01894 0.02234
102 0.02117 0.02356
103 0.02310 0.02456
104 0.02673 0.02631
105 0.03187 0.02858
106 0.03916 0.03145
107 0.04669 0.03408
108 0.05510 0.03669
109 0.06628 0.03971
110 0.07599 0.04201
111 0.09080 0.04506
112 0.10329 0.04727
113 0.12371 0.05032
114 0.13887 0.05221
115 0.16156 0.05454
116 0.18516 0.05642
117 0.21375 0.05809
118 0.23892 0.05909
119 0.26716 0.05976
120 0.29878 0.06001
121 0.33031 0.05980
122 0.36530 0.05911
123 0.40283 0.05789
124 0.42719 0.05687
125 0.45118 0.05570
126 0.47494 0.05440
127 0.49094 0.05344
128 0.51179 0.05210
129 0.54025 0.05013
130 0.56483 0.04830
131 0.59235 0.04611
132 0.62271 0.04355
133 0.64397 0.04167
134 0.66688 0.03957
135 0.68691 0.03764
136 0.70578 0.03582
137 0.73347 0.03301
138 0.76315 0.02988
139 0.79431 0.02644
140 0.81783 0.02372
141 0.84541 0.02045

191



Table C.1 Coordinates of NACA 0012 (continued)

142 0.87428 0.01697
143 0.91268 0.01208
144 0.94288 0.00806
145 0.96662 0.00480
146 0.98530 0.00216
147 1.00000 0.00000

C.2 RAE 2822

Table C.2 Coordinates of RAE 2822

NODE X Y
1 0.00000 0.00000
2 0.00060 0.00323
3 0.00241 0.00642
4 0.00541 0.00945
5 0.00961 0.01269
6 0.01498 0.01579
7 0.02153 0.01875
8 0.02923 0.02163
9 0.03806 0.02445
10 0.04801 0.02726
11 0.05904 0.03004
12 0.07114 0.03280
13 0.08427 0.03552
14 0.09840 0.03817
15 0.11349 0.04073
16 0.12952 0.04321
17 0.14645 0.04558
18 0.16422 0.04778
19 0.18280 0.04987
20 0.20215 0.05187
21 0.22221 0.05377
22 0.24295 0.05556
23 0.26430 0.05713
24 0.28622 0.05848
25 0.30866 0.05967
26 0.33156 0.06070
27 0.35486 0.06155

192



Table C.2 Coordinates of RAE 2822 (continued)

28 0.37851 0.06220
29 0.40245 0.06263
30 0.42663 0.06285
31 0.45099 0.06286
32 0.47547 0.06261
33 0.50000 0.06212
34 0.52453 0.06135
35 0.54901 0.06030
36 0.57336 0.05895
37 0.59754 0.05733
38 0.62149 0.05547
39 0.64514 0.05339
40 0.66845 0.05112
41 0.69134 0.04857
42 0.71378 0.04612
43 0.73570 0.04338
44 0.75705 0.04075
45 0.77778 0.03795
46 0.79785 0.03514
47 0.81720 0.03231
48 0.83578 0.02948
49 0.85355 0.02670
50 0.87048 0.02397
51 0.88651 0.02131
52 0.90160 0.01874
53 0.91574 0.01627
54 0.92886 0.01393
55 0.94096 0.01170
56 0.95200 0.00964
57 0.96194 0.00775
58 0.97077 0.00606
59 0.97847 0.00455
60 0.98502 0.00326
61 0.99039 0.00218
62 0.99459 0.00132
63 0.99759 0.00069
64 0.99940 0.00030
65 1.00000 0.00000
66 0.99940 -0.00001
67 0.99759 0.00009
68 0.99459 0.00026

193



Table C.2 Coordinates of RAE 2822 (continued)

69 0.99039 0.00048
70 0.98502 0.00071
71 0.97847 0.00094
72 0.97077 0.00113
73 0.96194 0.00125
74 0.95200 0.00125
75 0.94096 0.00113
76 0.92886 0.00081
77 0.91574 0.00027
78 0.90160 -0.00049
79 0.88651 -0.00149
80 0.87048 -0.00273
81 0.85355 -0.00422
82 0.83578 -0.00594
83 0.81720 -0.00792
84 0.79785 -0.01013
85 0.77778 -0.01256
86 0.75705 -0.01524
87 0.73570 -0.01812
88 0.71378 -0.02118
89 0.69134 -0.02438
90 0.66845 -0.02770
91 0.64514 -0.03110
92 0.62149 -0.03463
93 0.59754 -0.03791
94 0.57336 -0.04127
95 0.54901 -0.04452
96 0.52453 -0.04761
97 0.50000 -0.05044
98 0.47547 -0.05297
99 0.45099 -0.05515
100 0.42663 -0.05689
101 0.40245 -0.05817
102 0.37851 -0.05893
103 0.35486 -0.05919
104 0.33156 -0.05900
105 0.30866 -0.05843
106 0.28622 -0.05753
107 0.26430 -0.05638
108 0.24295 -0.05498
109 0.22221 -0.05340

194



Table C.2 Coordinates of RAE 2822 (continued)

110 0.20215 -0.05167
111 0.18280 -0.04977
112 0.16422 -0.04775
113 0.14645 -0.04561
114 0.12952 -0.04333
115 0.11349 -0.04094
116 0.09840 -0.03844
117 0.08427 -0.03584
118 0.07114 -0.03315
119 0.05904 -0.03042
120 0.04801 -0.02761
121 0.03806 -0.02472
122 0.02923 -0.02180
123 0.02153 -0.01880
124 0.01498 -0.01580
125 0.00961 -0.01273
126 0.00541 -0.00957
127 0.00241 -0.00658
128 0.00060 -0.00317
129 0.00000 0.00000

C.3 30P30N

C.3.1 Coordinates of Main Body

Table C.3 Coordinates of main element of 30P30N

NODE X Y
1 0.72270 0.05620
2 0.72270 0.04620
3 0.72270 0.03620
4 0.72270 0.02620
5 0.72270 0.01620
6 0.72270 0.00620
7 0.72270 0.00060
8 0.71370 -0.00080
9 0.69440 -0.00460

195



Table C.3 Coordinates of main element of 30P30N (continued)

10 0.68050 -0.00700
11 0.66700 -0.00930
12 0.65390 -0.01160
13 0.64020 -0.01420
14 0.62580 -0.01650
15 0.61130 -0.01910
16 0.59560 -0.02140
17 0.57940 -0.02370
18 0.56080 -0.02630
19 0.54090 -0.02890
20 0.51930 -0.03090
21 0.47890 -0.03510
22 0.44230 -0.03760
23 0.41550 -0.03870
24 0.37110 -0.03960
25 0.30900 -0.03970
26 0.25970 -0.03840
27 0.23060 -0.03740
28 0.20740 -0.03610
29 0.18750 -0.03480
30 0.17080 -0.03400
31 0.15500 -0.03250
32 0.12800 -0.02990
33 0.10330 -0.02760
34 0.09220 -0.02650
35 0.08290 -0.02540
36 0.07280 -0.02420
37 0.06330 -0.02280
38 0.05450 -0.02150
39 0.04650 -0.02040
40 0.03980 -0.01940
41 0.03220 -0.01830
42 0.02550 -0.01690
43 0.01960 -0.01590
44 0.01520 -0.01500
45 0.01060 -0.01380
46 0.00670 -0.01230
47 0.00390 -0.01010
48 0.00190 -0.00720
49 0.00040 -0.00320
50 0.00000 0.00000

196



Table C.3 Coordinates of main element of 30P30N (continued)

51 0.00070 0.00510
52 0.00230 0.00980
53 0.00550 0.01520
54 0.00900 0.01930
55 0.01320 0.02360
56 0.01740 0.02710
57 0.02120 0.02980
58 0.02440 0.03200
59 0.02710 0.03370
60 0.03060 0.03580
61 0.03360 0.03760
62 0.04170 0.04170
63 0.05100 0.04650
64 0.06020 0.05020
65 0.07080 0.05380
66 0.08110 0.05730
67 0.09490 0.06090
68 0.10820 0.06400
69 0.12630 0.06760
70 0.14670 0.07010
71 0.18040 0.07290
72 0.21540 0.07520
73 0.25190 0.07750
74 0.27480 0.07900
75 0.30300 0.08000
76 0.39250 0.08250
77 0.41250 0.08250
78 0.43250 0.08250
79 0.45250 0.08250
80 0.47250 0.08250
81 0.49250 0.08250
82 0.51060 0.08250
83 0.56240 0.08120
84 0.59670 0.07940
85 0.62530 0.07880
86 0.64810 0.07740
87 0.66850 0.07620
88 0.68810 0.07530
89 0.70610 0.07390
90 0.72130 0.07270
91 0.73660 0.07140

197



Table C.3 Coordinates of main element of 30P30N (continued)

92 0.75060 0.07020
93 0.76290 0.06910
94 0.77630 0.06780
95 0.78740 0.06650
96 0.79940 0.06510
97 0.81250 0.06360
98 0.82530 0.06230
99 0.84010 0.06030
100 0.84960 0.05930
101 0.85870 0.05770
102 0.86820 0.05620
103 0.83820 0.05620
104 0.80820 0.05620
105 0.75820 0.05620
106 0.72270 0.05620

C.3.2 Coordinates of Slat

Table C.4 Coordinates of slat of 30P30N

NODE X Y
1 -0.10130 -0.06720
2 -0.10250 -0.07260
3 -0.10340 -0.07780
4 -0.10350 -0.08460
5 -0.10310 -0.08670
6 -0.10170 -0.09190
7 -0.10030 -0.09540
8 -0.09940 -0.09800
9 -0.09810 -0.09920
10 -0.09370 -0.10360
11 -0.09840 -0.10450
12 -0.10430 -0.10590
13 -0.11080 -0.10720
14 -0.11280 -0.10750
15 -0.12270 -0.10780
16 -0.12940 -0.10750
17 -0.13290 -0.10660

198



Table C.4 Coordinates of slat of 30P30N (continued)

18 -0.13650 -0.10540
19 -0.13950 -0.10300
20 -0.14120 -0.10010
21 -0.14260 -0.09810
22 -0.14300 -0.09630
23 -0.14320 -0.09330
24 -0.14260 -0.08810
25 -0.14010 -0.08200
26 -0.13650 -0.07630
27 -0.13150 -0.06920
28 -0.12880 -0.06550
29 -0.12500 -0.06130
30 -0.12180 -0.05770
31 -0.11920 -0.05460
32 -0.11340 -0.04850
33 -0.10600 -0.04190
34 -0.10180 -0.03770
35 -0.09700 -0.03370
36 -0.09240 -0.02980
37 -0.08720 -0.02550
38 -0.08210 -0.02120
39 -0.07770 -0.01760
40 -0.07280 -0.01360
41 -0.06740 -0.00900
42 -0.07040 -0.01280
43 -0.07410 -0.01720
44 -0.07770 -0.02190
45 -0.08130 -0.02670
46 -0.08380 -0.03020
47 -0.08640 -0.03450
48 -0.08880 -0.03880
49 -0.09110 -0.04290
50 -0.09240 -0.04530
51 -0.09370 -0.04770
52 -0.09490 -0.05000
53 -0.09610 -0.05260
54 -0.09730 -0.05530
55 -0.09870 -0.05940
56 -0.10000 -0.06290
57 -0.10130 -0.06720

199



C.3.3 Coordinates of Flap

Table C.5 Coordinates of flap of 30P30N

NODE X Y
1 1.01170 0.01320
2 1.01520 0.01130
3 1.01870 0.00910
4 1.02140 0.00780
5 1.02490 0.00560
6 1.03080 0.00220
7 1.03680 -0.00150
8 1.04180 -0.00470
9 1.04660 -0.00800
10 1.05090 -0.01080
11 1.05680 -0.01500
12 1.06280 -0.01920
13 1.06820 -0.02330
14 1.07500 -0.02790
15 1.07950 -0.03180
16 1.08490 -0.03590
17 1.09050 -0.04030
18 1.09660 -0.04510
19 1.10280 -0.05000
20 1.11030 -0.05590
21 1.11710 -0.06170
22 1.12400 -0.06720
23 1.12970 -0.07190
24 1.13750 -0.07870
25 1.14260 -0.08360
26 1.14810 -0.08850
27 1.15540 -0.09500
28 1.16050 -0.09980
29 1.16650 -0.10590
30 1.17080 -0.11000
31 1.17610 -0.11530
32 1.18160 -0.12060
33 1.18630 -0.12540
34 1.19090 -0.12990
35 1.19590 -0.13530
36 1.19000 -0.13080

200



Table C.5 Coordinates of flap of 30P30N (continued)

37 1.18500 -0.12690
38 1.17980 -0.12300
39 1.16040 -0.10880
40 1.15270 -0.10280
41 1.14360 -0.09620
42 1.13400 -0.08980
43 1.12520 -0.08410
44 1.10930 -0.07440
45 1.09680 -0.06730
46 1.08400 -0.06050
47 1.07290 -0.05480
48 1.05910 -0.04790
49 1.04360 -0.04090
50 1.02530 -0.03310
51 1.00690 -0.02560
52 0.98020 -0.01560
53 0.96800 -0.01110
54 0.95330 -0.00630
55 0.94460 -0.00300
56 0.93890 -0.00050
57 0.93240 0.00330
58 0.92810 0.00740
59 0.92490 0.01140
60 0.92170 0.01590
61 0.92010 0.02050
62 0.92010 0.02510
63 0.92140 0.02910
64 0.92370 0.03270
65 0.92670 0.03500
66 0.93040 0.03690
67 0.93430 0.03770
68 0.93940 0.03840
69 0.94530 0.03790
70 0.94980 0.03730
71 0.95540 0.03620
72 0.96110 0.03500
73 0.96750 0.03270
74 0.97440 0.03030
75 0.98010 0.02810
76 0.98480 0.02620
77 0.99340 0.02250

201



Table C.5 Coordinates of flap of 30P30N (continued)

78 0.99800 0.02020
79 1.00320 0.01760
80 1.00810 0.01510
81 1.01170 0.01320

202



