

DEVELOPMENT OF A TWO-DIMENSIONAL
NAVIER-STOKES SOLVER FOR LAMINAR FLOWS

USING CARTESIAN GRIDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
MEHMET SERKAN ŞAHĐN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

MARCH 2011

Approval of the thesis:

DEVELOPMENT OF A TWO-DIMENSIONAL NAVIER-STOKES SOLVER
FOR LAMINAR FLOWS USING CARTESIAN GRIDS

submitted by MEHMET SERKAN ŞAHĐN in partial fulfillment of the
requirements for the degree of Master of Science in Mechanical Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral
Head of Department, Mechanical Engineering

Prof. Dr. M. Haluk Aksel
Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Asst. Prof. Dr. Cüneyt Sert
Mechanical Engineering Dept., METU

Prof. Dr. M. Haluk Aksel
Mechanical Engineering Dept., METU

Prof. Dr. Ahmet Ş. Üçer
Mechanical Engineering Dept., METU

Asst. Prof. Dr. M. Metin Yavuz
Mechanical Engineering Dept., METU

Prof. Dr. Đsmail Hakkı Tuncer
Aerospace Engineering Dept., METU

 Date:

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
and results that are not original to this work.

 Name, Last Name : Mehmet Serkan ŞAHĐN

 Signature :

iv

ABSTRACT

DEVELOPMENT OF A TWO-DIMENSIONAL NAVIER-STOKES SOLVER

FOR LAMINAR FLOWS USING CARTESIAN GRIDS

Şahin, Mehmet Serkan

M.Sc., Department of Mechanical Engineering

Supervisor : Prof. Dr. M. Haluk Aksel

March 2011, 202 pages

 A fully automated Cartesian/Quad grid generator and laminar flow solver

have been developed for external flows by using C++. After defining the input

geometry by nodal points, adaptively refined Cartesian grids are generated

automatically. Quadtree data structure is used in order to connect the Cartesian cells

to each other. In order to simulate viscous flows, body-fitted quad cells can be

generated optionally. Connectivity is provided by cut and split cells such that the

intersection points of Cartesian cells are used as the corners of quads at the outmost

row. Geometry based adaptation methods for cut, split cells and highly curved

regions are applied to the uniform mesh generated around the geometry. After

obtaining a sufficient resolution in the domain, the solution is achieved with cell-

centered approach by using multistage time stepping scheme. Solution based grid

adaptations are carried out during the execution of the program in order to refine the

regions with high gradients and obtain sufficient resolution in these regions.

Moreover, multigrid technique is implemented to accelerate the convergence time

significantly. Some tests are performed in order to verify and validate the accuracy

and efficiency of the code for inviscid and laminar flows.

v

Keywords: Cartesian Grid Generation, Quad Grid Generation, Navier-Stokes

Equations, Least Squares Reconstruction, Flux Vector Splitting, Approximate

Riemann Solver of Roe, Multigrid

vi

ÖZ

KARTEZYEN HESAPLAMA AĞLARI KULLANILARAK LAMĐNER AKIŞLAR

ĐÇĐN ĐKĐ BOYUTLU BĐR NAVIER-STOKES ÇÖZÜCÜSÜ GELĐŞTĐRĐLMESĐ

Şahin, Mehmet Serkan

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. M. Haluk Aksel

Mart 2011, 202 sayfa

 Dış akış için tamamen otomatikleştirilmiş Kartezyen/Dörtgen hesaplama ağı

üreticisi ve laminer akış çözücüsü, C++ programlama dili kullanılarak geliştirilmiştir.

Ağsal noktalar ile geometri tanımlandıktan sonra, uyarlamalı Kartezyen hesaplama

ağları otomatik olarak yaratılmıştır. Kartezyen hücreleri birbirine bağlamak için

dörtlü ağaç veri yapısı kullanılmıştır. Viskoz akışları simule etmek için, gövde

uyumlu dörtgen hücreler isteğe bağlı olarak yaratılmıştır. Hücreler arasındaki ilişki,

şişirilmiş geometrinin çevresindeki Kartezyen hücrelerin kesim noktalarını en dış

sıradaki dörtgenlerin köşeleri ile çakıştırarak kurulmuştur. Geometri çevresinde ve

bu bölgedeki çok eğimli yerlerde, düzenli hesaplama ağına geometri bazlı

uyarlamalar uygulanmıştır. Çalışma alanında yeterli bir çözünürlük elde edildikten

sonra, çözüm hücre merkezli bir yaklaşımla, çok kademeli zaman uygulaması

kullanılarak elde edilmiştir. Yüksek gradyanlı bölgeleri sıklaştırmak ve buralarda

yeterli bir çözünürlük elde etmek için çözüme bağlı uyarlamalar program çalışırken

gerçekleştirilmiştir. Ayrıca, yakınsamanın arttırılması için çoklu ağ yöntemi koda

eklenmiştir. Kodun doğruluğu ve verimliliğini doğrulamak için viskoz olmayan

akışlar ve laminer akışlar için bazı testler yapılmıştır.

vii

Anahtar Kelimeler: Kartezyen Ağ Üretimi, Dörtgen Ağ Üretimi, Navier-Stokes

Denklemleri, Yeniden Yapılandırma, Akı Vektör Ayrıştırması, Roe'nun Yaklaşık

Riemann Çözücüsü, Çoklu Ağ Yöntemi

viii

Dedicated to my family, Necla, Müslüm, Sercan Şahin

and Ayşegül Baylas...

ix

ACKNOWLEDGEMENTS

 I would like to express my sincere appreciation to my thesis advisor, Prof. Dr.

Haluk AKSEL for their guidance and supports throughout my research. Besides, I

would like to give my gratitude to Mehtap Çakmak and Bercan Siyahhan. Finally, I

thank to my parents, my brother and my friends (especially Ayşegül Baylas) for

supporting me throughout my whole education life.

x

TABLE OF CONTENTS

 ABSTRACT.. iv

 ÖZ.. vi

 ACKNOWLEDGEMENTS.. ix

 TABLE OF CONTENTS.. x

 LIST OF TABLES... xiv

 LIST OF FIGURES... xvi

 LIST OF SYMBOLS... xxi

 CHAPTERS

 1. INTRODUCTION... 1

 1.1 Mesh Generation.. 2

 1.1.1 Structured Meshing... 2

 1.1.2 Unstructured Meshing... 4

 1.1.3 Cartesian Meshing... 5

 1.2 Literature Review... 7

 1.3 Organization of the Thesis... 12

 2. MESH GENERATION... 14

 2.1 Data Structure.. 14

 2.1.1 Quadtree Data Structure.. 15

 2.1.2 Connectivity.. 17

 2.1.3 Stored Variables.. 19

 2.2 Cartesian Grid Generation... 26

 2.2.1 Uniform Mesh Generation.. 26

 2.2.2 Cell Type Determination... 29

 2.2.2.1 Corner Index Determination......................... 29

 2.2.2.2 Square and Split Indexes.............................. 31

 2.2.2.3 Split Cells Having Two Control Volumes.... 35

 2.2.3 Geometric Adaptations ... 35

xi

 2.2.3.1 Box Adaptation... 36

 2.2.3.2 Cut-Split Adaptation..................................... 37

 2.2.3.3 Curvature Adaptation 38

 2.2.3.4 One Level Rule... 40

 2.3 Quad Grid Generation.. 42

 2.3.1 Boundary Layer Setting.. 43

 2.3.1.1 Setting Puffed Geometry.............................. 43

 2.3.1.2 Handling of Highly Curved Parts................. 44

 2.3.1.3 Negative Volume Elimination...................... 47

 2.3.2 Quad Cell Generation.. 49

 2.3.2.1 Connectivity... 49

 3. NUMERICAL SOLUTION.. 52

 3.1 Governing Equations.. 53

 3.1.1 Two-Dimensional Governing Equations In

 Integral Form.. 53

 3.1.2 Non-Dimensionalization... 56

 3.1.3 Boundary Conditions... 59

 3.1.3.1 Far-Field Boundary Conditions.................... 59

 3.1.3.2 Wall Boundary Conditions........................... 60

 3.2 Spatial and Temporal Discretization.. 62

 3.2.1 Spatial Discretization.. 62

 3.2.2 Temporal Discretization.. 63

 3.2.2.1 Multistage Time Stepping............................ 64

 3.2.3 Time Step Calculations... 65

 3.2.3.1 Inviscid Time Step Computation.................. 66

 3.2.3.2 Viscous Time Step Computation.................. 67

 3.2.3.3 CFL Cut-Back Procedure............................. 68

 3.3 Inviscid Flux Calculations... 69

 3.3.1 Approximate Riemann Solver of Roe......................... 71

 3.3.2 Liou's Advection Upstream Splitting Method

 (AUSM)... 73

 3.3.3 AUSMD Method... 74

xii

 3.3.4 AUSMV Method... 76

 3.4 Reconstruction... 77

 3.4.1 Least Squares Reconstruction..................................... 78

 3.4.2 Gradient Limiting.. 79

 3.5 Viscous Flux Calculations... 81

 3.5.1 Reconstruction for Viscous Flux................................. 81

 3.6 Calculation of the Coefficients.. 83

 3.6.1 Pressure Coefficient.. 83

 3.6.2 Skin Friction Coefficient... 84

 3.7 Solution Adaptation... 85

 4.MULTIGRID METHOD... 87

 4.1 Multigrid Concept for Non-Linear Equations............................ 88

 4.1.1 Fine Grid Iterations... 89

 4.1.2 Restriction... 90

 4.1.3 Prolongation.. 91

 4.1.4 Correction and Final Iterations.................................... 92

 4.1.5 Modifications for the Second Order of Scheme.......... 93

 4.2 Coarsening Process.. 94

 4.2.1 Coarsening of Cartesian Cells..................................... 95

 4.2.2 Coarsening of Quad Cells... 97

 4.3 Multigrid Effect On Inviscid Flow... 99

 4.3.1 Level Test Without Solution Adaptation For

 Inviscid Flow... 99

 4.3.2 Level Test With Solution Adaptation For

 Inviscid Flow... 101

 4.3.3 Cycle Test For Inviscid Flow...................................... 102

 4.3.4 Iteration Test For Inviscid Flow.................................. 104

 4.4 Multigrid Effect On Viscous Flow... 105

 4.4.1 Level Test Without Solution Adaptation For

 Viscous Flow... 106

 4.4.2 Level Test With Solution Adaptation For

 Viscous Flow... 107

xiii

 4.4.3 Cycle Test For Viscous Flow...................................... 109

 4.4.4 Iteration Test For Viscous Flow.................................. 111

 4.4.5 Hybrid Mesh Test For Viscous Flow.......................... 112

 5. RESULTS AND DISCUSSIONS.. 115

 5.1 Inviscid Flow.. 115

 5.1.1 Transonic Flow Around RAE 2822............................ 116

 5.1.2 Supersonic Flow Around NACA 0012 121

 5.2 Low Reynolds Number Flow... 127

 5.2.1 Subsonic Flow Around NACA 0012.......................... 128

 5.2.2 Transonic Flow Around NACA 0012......................... 137

 5.3 High Reynolds Number Flow.. 145

 5.3.1 Subsonic Flow Around 30P30N.................................. 145

 6. CONCLUSION.. 151

 REFERENCES.. 154

 APPENDICES

 A. CUT AND SPLIT CELLS.. 159

 A.1 Cut Cells.. 159

 A.2 Split Cells.. 163

 B. SAMPLE FILE FORMATS... 175

 B.1 Sample Mesh Input File.. 175

 B.2 Sample Inviscid Solution Input File.. 177

 B.3 Sample Viscous Solution Input File.. 178

 B.4 Sample Mesh Output File.. 180

 B.5 Sample Solution Output File... 187

 C. AIRFOIL COORDINATES... 188

 C.1 NACA 0012... 188

 C.2 RAE 2822.. 192

 C.3 30P30N.. 195

xiv

LIST OF TABLES

TABLES

Table 2.1 Determination of neighbors of a second level cell........................... 19

Table 2.2 Geometric pointers... 21

Table 2.3 Connectivity pointers... 22

Table 2.4 Cell type pointers... 23

Table 2.5 Solution pointers.. 24

Table 2.6 Solution adaptation pointers... 24

Table 2.7 Multigrid pointers.. 25

Table 2.8 Static pointers .. 25

Table 3.1 CFL numbers and stage coefficients for the first order scheme.......65

Table 3.2 CFL numbers and stage coefficients for the second order scheme.. 65

Table 4.1 Cell numbers of grids used in multigrid for RAE 2822 airfoil........ 95

Table 4.2 Level test results without solution adaptation for inviscid flow...... 100

Table 4.3 Level test results with solution adaptation for inviscid flow........... 101

Table 4.4 Cycle test results for inviscid flow... 103

Table 4.5 Iteration test results for inviscid flow.. 104

Table 4.6 Level test results without solution adaptation for viscous flow....... 106

Table 4.7 Level test results with solution adaptation for viscous flow............ 108

Table 4.8 Cycle test results for viscous flow... 110

Table 4.9 Iteration test results for viscous flow... 112

Table 4.10 Hybrid mesh test results for viscous flow.. 113

Table 5.1 Test problems for inviscid flow... 116

Table 5.2 Common properties for transonic inviscid flow............................. 116

Table 5.3 Comparison of results for transonic inviscid flow around

 RAE 2822 airfoil.. 117

Table 5.4 Common properties for supersonic inviscid flow............................ 122

xv

Table 5.5 Comparison of results for supersonic inviscid flow around

 NACA 0012 airfoil... 123

Table 5.6 Test problems for low Reynolds number flow................................. 128

Table 5.7 Common properties of the cases without quad cells

for subsonic laminar flow.. 128

Table 5.8 Comparison of results without quad cells for subsonic laminar

flow around NACA 0012 airfoil.. 129

Table 5.9 Comparison of results with quad cells for subsonic laminar

flow around NACA 0012 airfoil.. 135

Table 5.10 Common properties for transonic laminar flow............................... 138

Table 5.11 Comparison of results for transonic laminar flow around

 NACA 0012 airfoil... 139

Table 5.12 Common properties for subsonic high Reynolds number flow....... 145

Table 5.13 Comparison of results for subsonic high Reynolds number flow

 around 30P30N airfoil.. 146

Table C.1 Coordinates of NACA 0012... 188

Table C.2 Coordinates of RAE 2822.. 192

Table C.3 Coordinates of main element of 30P30N... 195

Table C.4 Coordinates of slat of 30P30N... 198

Table C.5 Coordinates of flap of 30P30N.. 200

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Illustration of a structured mesh... 3

Figure 1.2 Illustration of an unstructured mesh... 4

Figure 1.3 Illustration of a Cartesian mesh... 6

Figure 1.4 Illustration of a hybrid mesh.. 7

Figure 2.1 Illustration of root cell and its children.. 16

Figure 2.2 Children-parent relationship in a tree view...................................... 17

Figure 2.3 Neighbors of top left cell of a root... 18

Figure 2.4 Neighbors of a second level cell.. 18

Figure 2.5 Uniform meshes around a two-element airfoil with

 5, 7 and 9 cycles... 28

Figure 2.6 Ray-casting method.. 30

Figure 2.7 Illustration of sorting intersection points... 31

Figure 2.8 Determination of square index... 32

Figure 2.9 Example to a split cell.. 33

Figure 2.10 Split cells having minus square indices... 33

Figure 2.11 Alternatives of a cut cell having a square index of 6....................... 34

Figure 2.12 Two alternatives of a split cell having a square index of 6.............. 34

Figure 2.13 Conversion of split cells into two cut cells...................................... 35

Figure 2.14 Box adaptation around a two-element airfoil................................... 37

Figure 2.15 Cut-split adaptation around a two-element airfoil........................... 38

Figure 2.16 Curvature angle determination directing outside (a) and inside (b)

 of the geometry.. 39

Figure 2.17 Curvature adaptation around a two-element airfoil......................... 40

Figure 2.18 One level rule... 41

Figure 2.19 Closer look to the geometry to illustrate one level rule for

 cut-split and curvature adaptations.. 42

xvii

Figure 2.20 Creation of a new node for puffed geometry................................... 44

Figure 2.21 Original and puffed geometry without handling convex parts.........45

Figure 2.22 Creation of a puffed node for highly curved part............................. 46

Figure 2.23 Original and puffed geometry with handling convex parts.............. 47

Figure 2.24 Negative volume at a concave region.. 48

Figure 2.25 Boundary layer after elimination of negative volumes.................... 48

Figure 2.26 Relation between a quad cell and a Cartesian cell........................... 49

Figure 2.27 Relation between a Cartesian cell and its two quad cells.................50

Figure 2.28 Hybrid mesh around slat of a three-element airfoil......................... 50

Figure 3.1 Far-field boundary conditions.. 60

Figure 3.2 Wall boundary conditions for inviscid flow.................................... 61

Figure 3.3 Wall boundary conditions for viscous flow..................................... 61

Figure 3.4 Schematic view of viscous flux computation at a face.................... 82

Figure 3.5 Mohr circle... 85

Figure 3.6 An example of solution adaptation.. 86

Figure 4.1 Illustration of "equivalent cell" term... 90

Figure 4.2 Comparison of pressure coefficient distribution for partly and

 purely second order around RAE 2822 airfoil................................. 94

Figure 4.3 Illustration of grids used in multigrid for RAE 2822 airfoil............ 96

Figure 4.4 Illustration of hybrid grids used in multigrid for NACA 0012

 airfoil.. 98

Figure 4.5 Residuals with respect to CPU time using a non-solution adapted

 mesh around RAE 2822 airfoil.. 100

Figure 4.6 Residuals with respect to CPU time using a solution adapted mesh

 around RAE 2822 airfoil.. 102

Figure 4.7 Residuals with respect to CPU time for cycle testing around

 RAE 2822 airfoil.. 103

Figure 4.8 Residuals with respect to CPU time for testing the number of

iterations around RAE 2822 airfoil.. 105

Figure 4.9 Residuals with respect to CPU time using a non-solution adapted

 mesh around NACA 0012 airfoil... 107

xviii

Figure 4.10 Residuals with respect to CPU time using a solution adapted mesh

 around NACA 0012 airfoil.. 109

Figure 4.11 Residuals with respect to CPU time for cycle testing around

 NACA 0012 airfoil... 110

Figure 4.12 Residuals with respect to CPU time for iteration testing around

 NACA 0012 airfoil... 111

Figure 4.13 Residuals with respect to CPU time for hybrid mesh testing around

 NACA 0012 airfoil... 113

Figure 5.1 Pressure coefficient distribution for transonic inviscid flow around

 RAE 2822 airfoil.. 118

Figure 5.2 The grids around the RAE 2922 for Case 3 (a) and (b) Case 5

for transonic inviscid flow... 119

Figure 5.3 Mach contours of cases where solution adaptation is applied

 around RAE 2822 for transonic inviscid flow................................. 120

Figure 5.4 Pressure contours of cases where solution adaptation is applied

 around RAE 2822 for transonic inviscid flow................................. 121

Figure 5.5 Pressure coefficient distribution of the first four cases for

 supersonic inviscid flow around NACA 0012 airfoil...................... 124

Figure 5.6 Pressure coefficient distribution of the last four cases for

 supersonic inviscid flow around NACA 0012 airfoil...................... 125

Figure 5.7 Mach contours of cases where solution adaptation is applied

 around NACA 0012 for supersonic inviscid flow........................... 126

Figure 5.8 Pressure contours of cases where solution adaptation is applied

 around NACA 0012 for supersonic inviscid flow........................... 127

Figure 5.9 Pressure coefficient distribution for subsonic laminar flow

 around NACA 0012 airfoil.. 130

Figure 5.10 Skin friction coefficient distribution for subsonic laminar flow

 around NACA 0012 airfoil.. 131

Figure 5.11 Comparison of Case 7 with the reference data for subsonic laminar

 flow around NACA 0012 airfoil.. 132

Figure 5.12 The grid of Case 7 around NACA 0012 for subsonic

 laminar flow... 132

xix

Figure 5.13 Mach contours of Case 7 around NACA 0012 for subsonic

 laminar flow... 133

Figure 5.14 Pressure contours of Case 7 around NACA 0012 for subsonic

 laminar flow... 134

Figure 5.15 Comparison of Case 1, Case 8 and ARC2D for subsonic laminar

flow around NACA 0012 airfoil.. 135

Figure 5.16 Pressure coefficient distribution which hybrid grid is compared

with Cartesian grids and reference for subsonic laminar flow

 around NACA 0012 airfoil.. 136

Figure 5.17 Skin friction coefficient distribution which hybrid grid is

 compared with Cartesian grids and reference for subsonic

 laminar flow around NACA 0012 airfoil... 137

Figure 5.18 Pressure coefficient distribution for transonic laminar flow

 around NACA 0012 airfoil... 140

Figure 5.19 Skin friction coefficient distribution for transonic laminar flow

 around NACA 0012 airfoil.. 141

Figure 5.20 The grid of Case 7 around NACA 0012 for transonic laminar

 flow.. 142

Figure 5.21 Mach contours of reference [41] around NACA 0012 for

 transonic laminar flow... 143

Figure 5.22 Mach contours of Case 7 around NACA 0012 for transonic

 laminar flow... 143

Figure 5.23 Pressure contours of Case 7 around NACA 0012 for transonic

 laminar flow... 144

Figure 5.24 Temperature contours of Case 7 around NACA 0012 for

 transonic laminar flow... 144

Figure 5.25 Pressure coefficient distribution for subsonic high Reynolds

 number flow around 30P30N airfoil.. 147

Figure 5.26 The mesh of the whole airfoil, the slat and the flap of Case 5 around

 30P30N for subsonic high Reynolds number flow.......................... 148

Figure 5.27 Mach contours of Case 5 around 30P30N for subsonic high

 Reynolds number flow... 149

xx

Figure 5.28 Streamlines of Case 5 around the trailing edge of the main

 element of 30P30N for subsonic high Reynolds number flow........ 149

Figure 5.29 Pressure contours of Case 5 around 30P30N for subsonic high

 Reynolds number flow... 150

xxi

LIST OF SYMBOLS

ALPHANUMERIC SYMBOLS

l level of a cell

Dx, Dy distance between body and box in x and y directions

D domain size

k boundary size factor, coefficient of thermal conductivity

n body division factor

Re Reynolds number

M Mach number

Pr Prandtl number

Q conserved variables vector

F inviscid flux vector

G viscous flux vector

dS surface area element

u velocity in x direction

v velocity in y direction

E specific total energy

p static pressure

H specific total enthalpy

qx, qy heat flux terms in x and y directions

R specific gas constant

T temperature

cv specific heat for a constant volume

cp specific heat for a constant pressure, pressure coefficient

cf skin friction coefficient

e specific internal energy

c speed of sound

t time

xxii

L∞ reference length

c∞ free stream speed of sound

v∞ free stream velocity

Re∞ free stream Reynolds number

M∞ free stream Mach number

Res residual vector

A area of a cell

Sx, Sy projections of edges

∆tc convective time step

∆tv viscous time step

T transformation matrix

L non-linear differential space operator

e error function

GREEK SYMBOLS

δ boundary layer thickness θcurv curvature angle

ρ density

τxx, τxy, τyy stresses

γ ratio of specific heats

µ laminar dynamic viscosity

ρ∞ free stream density

µ∞ free stream laminar dynamic viscosity

υ CFL number

αk stage coefficient

α angle of attack

Ψx, Ψy convective spectral radii

λv maximum eigenvalue of the diffusive operator

εp relative change in pressure

ερ relative change in density

1

CHAPTER 1

INTRODUCTION

Fluid flow problems are generally governed by complex equations. Because of the

nonlinearity in these equations, most problems cannot be solved by analytical

techniques. Analytical methods are used for some problems where nonlinear terms

are negligible. However, these terms are not negligible in general so that these

problems must be solved by using numerical methods.

Computational Fluid Dynamics (CFD), is a branch of fluid mechanics that enables

solution and analyses of fluid problems by using numerical methods and algorithms.

Some problems such as problems having high Mach numbers or high temperatures

cannot be simulated in laboratory conditions using wind tunnels. These problems and

flows around multi-element complex geometries can be handled by using CFD. In

the beginning of 1970's, CFD is started to be utilized for the solution of fluid flow

problems with the evolution of computer technology. The simulations of transonic

flows based on the non-linear potential equation were the first applications of CFD.

In the early 1980's, two and three-dimensional Euler equations were solved. The

rapidly increasing speed of computers and the development of acceleration

techniques like multigrid enabled to solve inviscid flows around airfoils and inside of

turbomachines. In the late 1980's, the focus was shifted to viscous flows. Navier-

Stokes equations were solved with the improvement of different turbulence

modelling techniques such as the direct numerical simulation and large eddy

simulation in order to analyze the turbulence flows accurately [1].

Nowadays, due to the high speed and large memory computers, it is possible to

analyze the inviscid or viscous flows in two or three dimensional space around multi-

2

element, complex geometries. In order to obtain accurate results by CFD, it is

important to choose the right numerical technique for flux computations, to choose

the suitable turbulence model, to have high algorithmic efficiency and to generate a

grid having sufficient resolution around critical regions such as shock locations, high

gradient locations, wakes etc.

A CFD code consists of three main elements, namely pre-processor, flow solver and

post-processor. A pre-processor generates the grid around the geometry which is

specified by the inputs. In addition, the flow parameters and boundary conditions are

defined in the pre-processor. Then, flow solver uses the governing equations in order

to solve the flow around the geometry subjected to the defined pre-conditions by one

of the three common solution methods which are finite difference, finite element and

finite volume method. Finally, post-processor forms the output files where results are

shown in graphical and easy to read format [2].

1.1 MESH GENERATION

Mesh generation is a crucial step of CFD. In order to get accurate results, mesh

resolution must comply with the solution schemes. In other words, an efficient grid

must be generated in order to minimize the errors while resolving the physical

properties of the flow. This grid must use as fewer grid points as possible in order to

use the memory efficiently [3]. In general, there are two types of meshes; structured

and unstructured meshes.

1.1.1 Structured Meshing

A structured mesh consists of quadrilaterals in two-dimensional space and hexahedra

in three-dimensional space. The grid points are located in sequentially with the aid of

an array (i, j, k) so that the connectivity information among them is provided

implicitly. To illustrate, a neighbor of a grid point which is in the direction of i, j or k

indexes can be reached by adding

of the grid point itself

Structured grids have some advantages compared to unstructured meshes.

structure is less complex due to the implicit

memory usage is less

efficient and simpler codes can be developed by using structured grids. It

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be

obtained in the boundary layer which is

Besides its advantages, there are some disadvantages in comparison to unstructed

grids. Since the edges

coordinate axes, transformation from physical to computational space is necessary.

This task needs more computational power.

complex, multi-element geometries is a very

3

es can be reached by adding or substracting an integer to or from

of the grid point itself [4].

Structured grids have some advantages compared to unstructured meshes.

structure is less complex due to the implicit connectivity information. Moreover,

is less due to the simpler connectivity structure. As a result, more

efficient and simpler codes can be developed by using structured grids. It

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be

undary layer which is the most important region for viscous flows.

Figure 1.1 Illustration of a structured mesh

Besides its advantages, there are some disadvantages in comparison to unstructed

grids. Since the edges of the geometry are not in the direction of the prima

coordinate axes, transformation from physical to computational space is necessary.

This task needs more computational power. Furthermore, grid generation around

element geometries is a very complex problem. In order

or substracting an integer to or from i, j or k index

Structured grids have some advantages compared to unstructured meshes. Data

connectivity information. Moreover,

to the simpler connectivity structure. As a result, more

efficient and simpler codes can be developed by using structured grids. It is also

advantageous for viscous flows. By adjusting the grid spacing, high resolution can be

important region for viscous flows.

Besides its advantages, there are some disadvantages in comparison to unstructed

direction of the primary

coordinate axes, transformation from physical to computational space is necessary.

Furthermore, grid generation around

problem. In order to eliminate

this problem, some techniques such as Chimera and multi

these are so complicated that the advantages of structured grids

Whereas structured meshes has numerous advantages, they are not generally

preferred due to its disadvantages

applied to complex geometries

1.1.2 Unstructured Mesh

An unstructred mesh consists of triangular or quadrilateral cells in two

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three

space, in an irregular pattern.

of the connectivity, which leads to a more complex data structure. Moreover, this

complex data structure causes higher memory usage.

Figure 1.2

4

this problem, some techniques such as Chimera and multi-block is used. However,

these are so complicated that the advantages of structured grids

Whereas structured meshes has numerous advantages, they are not generally

due to its disadvantages, especially the one that meshing

to complex geometries.

Unstructured Meshing

mesh consists of triangular or quadrilateral cells in two

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three

space, in an irregular pattern. Unlike structured grids, unstructured grids require a list

ectivity, which leads to a more complex data structure. Moreover, this

complex data structure causes higher memory usage.

Figure 1.2 Illustration of an unstructured mesh

block is used. However,

these are so complicated that the advantages of structured grids diminish [4].

Whereas structured meshes has numerous advantages, they are not generally

, especially the one that meshing cannot easily be

mesh consists of triangular or quadrilateral cells in two-dimensional

space, hexahedral, prismoidal, pyramidal and tetrahedral cells in three-dimensional

Unlike structured grids, unstructured grids require a list

ectivity, which leads to a more complex data structure. Moreover, this

5

With the recent advancements in computer technology, efficiency of a CFD code is

not affected very much by the high memory requirements. In addition to this, due to

the capability of handling complex geometries easily, the popularity of unstructured

meshing is increased among the meshing techniques.

Advancing front and Delaunay triangulation methods are the most widely used

methods in unstructured meshing. In reference [5], detailed information can be

found.

1.1.3 Cartesian Meshing

A Cartesian mesh is a special type of unstructured meshing where the cells are

squares in two-dimensional space and cubes in three-dimensional space. Quadtree

and octtree data structures are used for two-dimensional and three-dimensional

spaces, respectively. It was not preferred in the past since it is very hard to handle

curved boundaries. However, with the recent developing techniques dealing with

these curved regions, Cartesian meshing becomes more popular.

One important advantage of Cartesian grids is that it requires hardly any user

interference so that automatic meshes can be generated around even complex and

multi-element airfoils easily. Denser meshes around shocks, shear layers and wakes

can be obtained easily without user interference by using solution adaptation. In

addition, multigrid technique which accelerates the convergence rate can be applied

very easily since quadtree data structure is used for a two-dimensional Cartesian grid.

Furthermore, the transformation of physical variables from computational space to

physical space is applied only for the cells near the boundary since the other cells are

in the direction of the primary coordinate axes.

6

Figure 1.3 Illustration of a Cartesian mesh

Besides its advantages, there are some disadvantages, as well. One of the most

difficult parts of Cartesian meshing is to deal with the curved parts of the geometry.

The shapes of the cells which are intersected by the geometry are modified. The

shape of these cells are not square and they are called irregular cells. It is very

important to resolve the physical quantities at the irregular cells correctly in order to

have accurate results. To do this, physical variables must be rotated into physical

space. Moreover, the smaller sizes in those cells compared to regular Cartesian cells

can cause deceleration of convergence rate. Local time stepping and multigrid

technique can eliminate these problems. In addition, in order to model the viscous

flows, the Cartesian meshing is not sufficient [6]. To have sufficient resolution in

boundary layer, hybrid grid, which is composed of Cartesian mesh outside the

boundary layer and body-fitted quad grid inside the boundary layer, is generated.

7

Figure 1.4 Illustration of a hybrid mesh

1.2 LITERATURE REVIEW

Wang (1998) developed a second-order accurate, cell-centered viscous flow solver

by using a quadtree-based adaptive Cartesian/quad grid. In mesh generation part,

first, geometrically-adaptive, body-fitted grids are automatically generated. After

obtaining a user specified minimum grid resolution by recursively Quadtree divisions

of a large root cell, Cartesian cells are intersected by the outer boundary of the Quad

cells. By using cell-cutting method, final computational grid is produced

automatically. In the solver part, after obtaining converged solutions in a given grid,

solution-based adaptations are performed [7].

8

Ye, Mittal, Udaykumar and Shyy (1999) developed a Cartesian grid method for two-

dimensional, unsteady, viscous, incompressible flows around complex immersed

boundaries. In this method, finite volume method based on second order central

difference scheme and a two-step fractional-step procedure are used. An

interpolation procedure is applied for accurate discretization of the governing

equations in the boundary cells. This procedure allows systematic development of a

spatial discretization scheme that preserves second-order spatial accuracy of the

solver. Since the iterative solution is slowing down by the fact that conditioning of

the linear operators are changed with the presence of immersed boundaries, the

convergence is accelerated by using a preconditioned conjugate gradient method [8].

Wang, Cphen, Hariharan, Przekwas and Grove (1999) developed a 2n tree based

viscous Cartesian grid generation method for complex geometries. With 2n data

structure, it is easy to handle complex geometries and deal in shocks, shear layers

and wakes since it supports anisotropic grid adaptations in any of the coordinate

directions. To resolve boundary layer for viscous flows, a viscous layer grid whose

thichness is determined according to the expected thickness is added between

Cartesian grid and body surface through a projection technique. Furthermore, an

algorithm which detects critical regions has developed and good quality

computational grids has been produced by avoiding cell-cutting completely [9].

Tucker and Pan (2000) implemented a Cartesian cut cell method to incompressible

viscous laminar flows. In this method, some cut cells are created at solid boundary

surfaces. For these cells, a novel hybrid technique is applied while integrating the

governing Navier-Stokes equations. This technique consists of surface cell trimming

and interpolation [10].

Wang (2000) developed a nested multi-grid solution algorithm for an adaptive

Cartesian/Quad grid viscous flow solver. Body-fitted quadrilateral grids are produced

around the solid geometry by the method of surface extrusion. After overlapping

Quad grids with Cartesian grids, cell-cutting is performed in order to obtain the final

computational grid. While the Cartesian grid is obtained by a single root using

9

Quadtree data structure, Quad grids are generated from multiple roots which are

termed as a forest of Quadtrees representing the coarsest possible Quad grids. The

coarsening algorithm, which is necessary to produce multi grids, is based on the

reverse tree of Quadtree data structure. The flow solver is based on Roe's flux

splitting, finite volume discretization with a cell-centered method, least-squares

reconstruction and a differentiable limiter. In order to handle very small cut cells,

local time stepping scheme is used as a time. For multigrid strategy, several cycling

techniques such as Saw-Tooth Cycle, W-Cycle and V-Cycle are used [11].

Kirkpatrick, Armfield and Kent (2003) presented a method for representing curved

boundaries in order to solve the viscous governing equations on a non-uniform,

staggered, three-dimensional Cartesian grids. The method proposes that Cartesian

cells at the boundary surface are truncated so that new cells are created and the

boundary grid fits the shape of the surface completely. In the paper, some problems

related to the development of a cut cell in staggered grid are discussed in a detailed

manner. Second order accuracy is provided with the derived flux calculation methods

through the boundary cell faces. On top of that, a method called "cell-linking" is

developed in order to overcome the problems originated from the creation of small

cells while avoiding the complexities resulted from the cell-merging operations [12].

Russell and Wang (2003) developed a Cartesian grid method for multiple moving

objects in an incompressible two-dimensional viscous flow. The system is generated

by regular Cartesian grid and solved by using a vorticity-stream function

formulation. The no-penetration condition for the moving object and no-slip

condition are provided by superposing a homogenous solution to the Poisson's

equation for the stream function and producing vorticity on the surfaces of the

moving objects [39].

Gilmanov, Sotiropoulos and Balaras (2003) presented an algorithm for a general

reconstruction, while analyzing flows with complex three-dimensional immersed

boundaries using Cartesian grids. In this algorithm, solution in the Cartesian grid

nodes near the interface of the unstructured, triangular mesh generated by

10

discretizing three-dimensional immersed solid surface is reconstucted by using linear

interpolation along the local normal to the body. As a result, the overall accuracy of

the solver is second order [14].

Sanmiguel-Rojas, Ortega-Casanova, del Pino and Fernandez-Feria (2005) developed

a method for incompressible two-dimensional viscous flows arround irregular

geometries which generates a non-uniform Cartesian grid such that all boundary

points are regular mesh points. The generated non-uniform grid is solved by the

Navier-Stokes equations using finite difference methods [15].

Verstappen and Dröge (2005) developed a numerical method for solving unsteady,

incompressible Navier-Stokes equations on Cartesian grids for arbitrarily-shaped

boundaries. A novel cut-cell discretization method is introduced. This method

provides the preservation of the spectral properties of convection and diffusion. A

skew symmetric operator is used while discretizing convection and a symmetric,

positive-definite coefficient matrix is used while approximating diffusion. This

coefficient matrix conserves kinetic energy on any grid if the dissipation is turned off

[16].

Singh and Shy (2007) presented three-dimensional adaptive Cartesian grid method

with conservative interface restructuring and reconstruction. In this method,

multiphase flows and moving boundaries between different phases are considered.

The moving boundary is tracked using triangulated surface grids and the flow is

solved by using governing equations on a stationary Cartesian grid. This grid is

locally adaptive so that the resolution requirements can be provided. The interface

resolution is controlled via a conservative restructuring technique which satisfies

conservation of mass. In addition, a reconstruction algorithm for topology change is

implemented [17].

Ito, Lai and Li (2009) developed an augmented method based on a Cartesian grid for

solving Navier-Stokes equations in irregular domains. A fast Poisson solver is

utilized in the projection method after embedding the irregular domain into a

11

rectangular one. The jump in the normal derivative of the velocity is set as the

augmented variable so that ill conditioned system, which is usually produced by the

methods setting force strengths as unknowns, is avoided. With this approach,

condition number of the system is improved significantly for the augmented variable.

In addition, the second order accuracy is provided for the velocity by using immersed

interface method [18].

Karagiozis, Kamakoti and Pantano (2010) proposed a numerical method in order to

solve the compressible Navier-Stokes equations on Cartesian grids. In this method,

an embedded geometry representation of the objects is used and the governing

Navier-Stokes equations are approximated with a low numerical dissipation centered

finite-difference discretization. This method is useful for immersed boundaries, not

suitable for compressible flows with shocks [19].

Hartmann, Meinke and Schröder (2010) developed a strictly conservative Cartesian

cut-cell method for compressible viscous flows on adaptive grids. In this approach,

finite volume method is used allowing the conservation of mass, momentum and

energy at the boundaries. Up to 2010, there is not such a proposed method in

literature for three dimensional compressible flows. While solving the mesh, a linear-

least squares reconstruction is used to rebuild the gradients of the cell centers in

irregular regions of the mesh and those are employed while calculating the flux at the

surface. As a result, the accuracy of the solution is second order [20].

In addition, several researches were done about Cartesian meshing in Department of

Mechanical Engineering in METU. Siyahhan (2008) solved two-dimensional Euler

equations by using flux vector splitting methods which are AUSM, AUSMD,

AUSMV and Van Leer in addition to Roe’s method while the mesh is generated by

using Cartesian grids. Multistage time stepping is used for temporal discretization.

Moreover, the flow variables are reconstructed in order to increase the accuracy [22].

Çakmak (2009) developed an Euler solver on adaptively refined two and three

dimensional Cartesian grids. The solution is obtained by cell-centered finite volume

12

method. While calculating inviscid fluxes, flux vector splitting and flux difference

splitting methods are used. In the mesh generation part, a dynamic data structure is

used together and geometric based adaptations are applied. In addition, solution

adaptation is applied to the mesh in order to refine the regions with high gradients. In

order to accelerate the convergence rate, local time stepping and multigrid techniques

are embedded to the developed code [21].

1.3 ORGANIZATION OF THE THESIS

In this thesis, a flow solver with an adaptive Cartesian or hybrid grid generated

automatically around simple and complex, one or multi element airfoils is developed.

The flow solver is capable of analyzing the compressible inviscid or laminar external

flows. As a solution method, finite volume technique is used.

In Chapter 2, mesh generation is discussed in detail. After quadtree data structure is

introduced, the steps for Cartesian grid generation which are uniform mesh

generation, cell type determination and geometric adaptations are discussed in detail.

Finally, quad grid generation is introduced and hybrid grid generation is explained.

In Chapter 3, governing equations in integral form are introduced for viscous flows.

Next, discretization of governing equations temporally and spatially are presented.

Then, inviscid and viscous flux computations are discussed in detail. Reconstruction

of flow variables is explained. After discussing calculation of non-dimensional

coefficients, pressure and skin friction coefficients, refinement based on solution

adaptation is introduced.

In Chapter 4, multigrid method, which is an acceleration technique, is introduced and

the steps for the application to non-linear problems are discussed in detail.

Coarsening process of Cartesian and quad grids are explained, which is necessary for

multigrid applications. Then, the effect of multigrid on inviscid and low Reynolds

number flows is discussed with tables and graphs.

13

In Chapter 5, inviscid flow around a single element airfoil is validated and the results

are discussed. Next, low Reynolds number flow is considered by testing two

different problems. Finally, a multi-element airfoil is considered at a high Reynolds

number to show the hybrid grid effect.

In Chapter 6, techniques used in the developed code and the obtained results are

discussed. Then, some suggestions are made, for future works.

14

CHAPTER 2

MESH GENERATION

In this chapter, data structure used in the code for Cartesian meshing discussed.

While quadtree data structure is introduced, stored variables and connectivity

information for Cartesian cells are given.

Next, generation of Cartesian mesh around an airfoil is explained. Uniform mesh

generation, cell type determination and geometric adaptations are mentioned in

detail. As a result of these processes, a good resolution around the geometry is

obtained and all necessary properties of cells are stored in order to use them in

solution.

Finally, quad grid generation is introduced. Before quad cells are created, boundary

layer is set by puffing the geometry up. During this process, some unwanted

situations are eliminated. After obtaining a good boundary layer, the quad cells are

created in the layer and the quad cells are connected to Cartesian cells and each

other. As a result, a hybrid mesh having sufficient resolution at critical regions is

formed.

2.1 DATA STRUCTURE

In this code, domain is divided into cells with Cartesian meshing. Since Cartesian

meshing is a type of unstructured mesh, the connectivity information between cells is

not provided simply like structured meshes. In order to store the data of cells and

provide connectivity information successfully, an appropriate data structure should

15

be used. For two dimensional problems, several data structures can be chosen. The

main data structure types are linked list, binary tree and quadtree types.

In the developed code, the quadtree data structure is chosen since it is more

advantageous than the others. It is easy to apply solution adaptation, where the

dynamic cell number is required; i.e. e. number of cells is changing with solution

adaptation. Furthermore, multigrid adaptation can be applied without creating new

coarser grids unlike the others.

In this section, the main properties of quadtree data structure is introduced, first and

then, the connection of the cells in the domain with each other is discussed. Finally,

the variables that must be stored are explained in detail.

2.1.1 Quadtree Data Structure

Quadtree data structure is a tree data structure in which each cell has four children.

The two dimensional space is partitioned recursively by subdividing it into four

equal quadrants from the mid points of edges, so that four equal size squares are

generated, until the desired resolution is obtained.

The largest cell covers the whole domain and it is called "root cell". Root cell has

four children and each of these children have four children and so on. Children are

separated from each other by naming it according to their location in the larger cell.

They are named as top left, top right, bottom left and bottom right. The cells which

have no children are called "leaf cells". These cells are used for solution calculations

and also called "computational cells".

16

 S

Figure 2.1 Illustration of root cell and its children

While the relationship between cells from the largest to smallest is supplied by

children phenomenon, the inverse relation from the smallest to the largest cells is

provided by the word "parent". For example, a cell has four children and these four

children have a parent which is the mentioned cell. Moreover, for providing

relationship accurately, there is a level concept that every cell has. It shows the

number of divisions until the cell under consideration is obtained from the root cell.

The root cell has a level of 0. The level of four children of a cell is assigned a level of

one higher of their parent cell. While Figure 2.1 illustrates root cell and leaf cells

considering children parent relations in a 2-D cell, the same relations is shown in a

tree view with their levels in Figure 2.2.

leaf

leaf leaf

leaf

leaf

top right

cell of root

(leaf)

root cell

leaf leaf

top left

cell of root

(not leaf) bottom left

cell of root

(leaf)

bottom right

cell of root

(leaf)

17

Figure 2.2 Children-parent relationship in a tree view

2.1.2 Connectivity

Connectivity of cells is provided by not only children-parent relation, but also by the

neighborhood relationship. Each cell has four neighbors, namely top neighbor, right

neighbor, left neighbor and bottom neighbor. In other words, for each cell, four more

pointers are required in addition to children and parent pointers. Totally, 9 pointers

are necessary in order to provide the connectivity accurately [21], [22].

While finding neighbors, the relation between a parent and their children is used.

Starting from the root cell, neighbors are found. At first, neighbors of children of the

root cell are found. It can easily be determined by considering the locations of

root

cell Level 0

top

left

cell

top

right

cell

bottom

left cell

bottom

right

cell
Level 1

top

left

cell

top

right

cell

bottom

left cell

bottom

right

cell

Level 2

top

left

cell

top

right

cell

bottom

left cell

bottom

right

cell
Level 3

18

children in the root cell. The determination of the top left child of the root cell is

shown in Figure 2.3.

Figure 2.3 Neighbors of top left cell of root

When neighbors of first level cells are found, their parents and location of their

children places are used as shown above. For higher levels, in addition to the location

of the children of a parent, parent's neighbors are also used. Below, determination of

neighbors of a second level cell, shown in Figure 2.4, is explained in Table 2.1.

Figure 2.4 Neighbors of a second level cell

NULL

top neighbor

left neighbor

NULL

top left

cell of

root

bottom

neighbor

right

neighbor

bottom left

cell of root

top right

cell of root

19

Table 2.1 Determination of neighbors of a second level cell

NEIGHBORS DETERMINATION

Top Neighbor Parent→Top Right Child

Left Neighbor Parent→Bottom Left Child

Bottom Neighbor Parent→Bottom Neighbor→Top Right Child

Right Neighbor Parent→Right Neighbor→Bottom Left Child

Since the entire domain is not at the same level, the above illustration is not the only

case one may meet. The neighboring cells may have lower or higher levels. It is very

difficult to handle neighboring cells which have more than one level difference.

Therefore, the code is adjusted that only one level difference can exist between the

two neighboring cells. This fact is explained in more detailed fashion in Section

2.2.3.4.

When a cell has a neighbor which is one level higher than itself, nothing changes

during the determining neighbors. The neighbor of the cell will be the parent of that

cell having the lower level, since the parent shares the same edge with the cell and

has the same level. However, when one considers a cell whose neighbor is at one

level lower less than itself, than a slight change is necessary. The neighbor will not

be the appropriate child of the appropriate neighbor of the its parent. Since it has no

child, the neighbor will be directly the parent's appropriate neighbor.

2.1.3 Stored Variables

Storing the correct variables is quite important in order to use the memory

efficiently. Excessive storage results in inefficient memory usage and slows down

the computations. On the contrary, while trying to decrease the number of stored

variables, to calculate the same variable again and again slows down the calculations.

Therefore, optimization according to today's memory technology is necessary.

20

The pointers identifying the stored variables can be classified into six groups. These

are geometric pointers that define the cell geometry, connectivity pointers that relate

the cell with the others, cell type pointers which are used to determine the cell type,

solution pointers which are necessary for solving the governing equations, solution

adaptation pointers which are required for the solution refinement and multigrid

pointers in order to create coarser grids to be used in the solution. In addition to

primitive types in C++, some classes are defined in order to handle these pointers

more easily. These user-specified classes have also some stored variables.

While the cells have these pointers, some static variables are also used. With the use

of these, only one variable is stored instead of a number of cell variables. In other

words, for each cell, these static variables are calculated and they are used during the

application of the necessary methods. After that, instead of creating a new variable

for a new cell, the necessary quantity is recalculated for the new cell and stored at the

same variable since the old one is no longer used.

In the developed code, all cells have some common geometrical variables. All cells

have four corners, centroidal coordinates, center coordinates and area. The center and

the centroid are similar to each other for out cells. However, they are different for cut

and split cells. While center means the middle point of the Cartesian square cell

whether the shape of the cell is square or an arbitrary shape, the centroid represents

the mass center of the shape covering outside the geometry of the Cartesian cell.

Furthermore, in the developed code, the flux calculations are done through the faces

so that storage of the faces is very important for leaf cells.

21

Table 2.2 Geometric pointers

POINTER

NUMBER

POINTER

TYPE
POINTER NAME

POINTER

FOR
EXPLANATION

1 CornerPt topLeftCorner All cells Corner point at top left

1 CornerPt topRightCorner All cells Corner point at top right

1 CornerPt bottomLeftCorner All cells Corner point at bottom left

1 CornerPt bottomRightCorner All cells Corner point at bottom right

1 double area

All cells

except

incells

Area

1 Pt center All cells Center point

1 Pt centroid

All cells

except

incells

Centroid point

vector Face faces Leaf cells Face vector

Connectivity information between cells is provided with totally 16 pointers. Four of

them represent the children of the cell while the other four of them denotes the side

neighbors of the cell. In addition, as discussed earlier, the number of divisions is

stored with the aid of the "level" pointer and the inverse connection is provided with

the "parent" pointer. Furthermore, the remaining six pointers are necessary to relate

the splitToCut type cells with their inclusive cell and quad type cells with their

inclusive cell directly and inversely. These are mentioned in detailed in Section 2.2

and 2.3, respectively.

22

Table 2.3 Connectivity pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME

POINTER

FOR EXPLANATION

1 Cell topLeft All cells Child cell at top left location

1 Cell topRight All cells

Child cell at top right

location

1 Cell bottomLeft All cells

Child cell at bottom left

location

1 Cell bottomRight All cells

Child cell at bottom right

location

1 Cell topNeighbor All cells Neighbor cell at top side

1 Cell bottomNeighbor All cells Neighbor cell at bottom side

1 Cell leftNeighbor All cells Neighbor cell at left side

1 Cell rightNeighbor All cells Neighbor cell at right side

1 Cell parent All cells Parent cell

1 Cell splitToCut1

Split cells

having 2CV

SplitToCut cell forming with

the first control volume of

split cell having 2 control

volumes

1 Cell splitToCut2

Split cells

having 2CV

SplitToCut cell forming with

the second control volume of

split cell having 2 control

volumes

1 Cell quad1

Cells except out

and in cells First quad cell

1 Cell quad2

Cells except out

and in cells Second quad cell

1 Cell inclusiveOfSplits

Split cells

having 2CV

Inclusive cell of the

splitToCut cell

1 Cell inclusiveOfQuads

Cut, split and

splitToCut cells

Inclusive Cartesian cell of

the quad cell

1 int level All cells Division level

Third group pointers are used in order to determine cell type. "type" pointer is an

enumerator type and determines the cell whether it is an out, in, cut, split, splitToCut,

23

quad or notDefined. If the cell does not have some specific properties, than its type is

set to notDefined so that it should be refined or the geometry must be shifted in order

to eliminate these cells. For some split cells, "nodeIn" pointer is used in order to

present geometry correctly. This pointer defines a nodal point of the input geometry

in the cell. It is used especially for split cells at highly curved parts of the geometry.

The pre-determined "IntPt" type vector of "intersections" give the points intersected

with the geometry. Square and split indices are used for split and cut cells and they

determine the sub-type of the split or cut cells. In Appendix A, one can see the sub-

types of these cells. Moreover, the usage of these indices is presented in Section

2.2.2.2.

Table 2.4 Cell type pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME POINTER FOR EXPLANATION

1 enum type All cells

Type (cut, split, in, out, quad,

splitToCut, notDefined)

1 IntPt nodeIn Split cells

Node point of the geometry in

the cell

vector IntPt intersections

Cut, split and

splitToCut cells

Intersection points with the

geometry

1 int squareIndex All cells determines the sub-type

1 int splitIndex

Cut, split and

splitToCut cells determines the sub-type

Next group is the solution pointers. In this group, two pointers are used to store the

conserved variables of the cell at the centroid, before and after the iteration. Since the

one before the iteration is necessary for the new calculations, two of them must be

stored separately. Additionally, residuals for those variables are stored using "res"

pointer. The gradients of these variables in x and y directions and viscosity are stored

with totally 9 pointers. Finally, if reconstruction and gradient limiting are chosen

(they are mentioned in Chapter 3), then 4 additional pointers are needed for the

limiters of the four conserved variables.

24

Table 2.5 Solution pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME

POINTER

FOR
EXPLANATION

4 double qOld Leaf cells conserved variables before the iteration

4 double qNew Leaf cells conserved variables after the iteration

4 double res Leaf cells residuals of conserved variables

4 double dqdx Leaf cells x gradient of conserved variables

4 double dqdy Leaf cells y gradient of conserved variables

4 double limiter Leaf cells gradient limiters if order of scheme is 2.

1 double viscosity Leaf cells laminar non-dimensional viscosity

As the solution adaptation pointers, two pointers are used. These pointers are for the

curl and divergence criteria of the solution adaptation for each leaf cell, as mentioned

in Chapter 3.

Table 2.6 Solution adaptation pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME

POINTER

FOR
EXPLANATION

1 double tau Leaf cells divergence criteria for solution adaptation

1 double ksi Leaf cells curl criteria for solution adaptation

The final group is for the pointers required for the multigrid applications. For the

application of the multigrid technique, a total of 8 pointers are required. Multigrid is

a very detailed convergence acceleration technique so that it is explained separately

in Chapter 4. To summarize, the words "perform" and "meshSpacing" are used for

the coarsening of the finest mesh. The word "compCell" determines whether the cell

is a computational cell or not in a given computational grid. Forcing function is used

in order to correct the residuals using coarser grids.

25

Table 2.7- Multigrid pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME

POINTER

FOR EXPLANATION

1 int perform All cells
determines whether the cell is

coarsened or not

1 int meshSpacing All cells determines the step number of mesh

1 int compCell All cells
determines whether the cell is

computational cell

4 double FF All cells forcing function of conserved variables

As mentioned before, some static pointers are used to avoid excessive storage. Eight

of these are the conserved variables, which are transformed according to the face for

left and right states. The "stress" pointer determines three stresses, τxx, τyy and τxy, and

includes the heat fluxes terms, qx and qy. Although the heat fluxes are not stresses, in

the developed code heat terms are added to stress pointer in order to handle them

more easily. Finally, the remaining 8 pointers are used for inviscid and viscous fluxes

at the face of the cell.

Table 2.8 Static pointers

POINTER

NUMBER

POINTER

TYPE

POINTER

NAME

POINTER

FOR EXPLANATION

4 double qLeftBar Leaf cells

transformed conserved variables of

left state at the face

4 double qRightBar Leaf cells

transformed conserved variables of

right state at the face

5 double stress Leaf cells

stresses and heat flux terms in x and

y at the face

4 double faceFlux Leaf cells inviscid fluxes at the face

4 double faceViscousFlux Leaf cells viscous fluxes at the face

26

2.2 CARTESIAN GRID GENERATION

In the developed code, as mentioned earlier, Cartesian meshing is used. This grid is

adapted to the code with the quadtree data structure. While generating the Cartesian

mesh, totally three steps are applied in order. First, uniform mesh is generated around

the created domain. Then, the types of the cells are found using intersection methods

and indices. Finally, the geometric adaptation is applied to the uniform mesh so that

the grid around the geometry becomes finer in order to get accurate results.

2.2.1 Uniform Mesh Generation

The input geometry is specified in terms of the nodal points. By connecting the

consecutive nodes, the geometry can be obtained. The first and last nodes of a body

are the same so that a closed loop can be obtained. As a first step, the domain around

the geometry is built. After the maximum length in x and y directions are obtained by

subtracting minimum values of x and y coordinates, from their corresponding

maximum values, the maximum length, whether it is along x or y axis, is multiplied

with the input outer size factor input to obtain the domain size is calculated. Since

far-field boundary conditions are simply the free stream values that are mentioned in

Chapter 3, it is important to set the outer boundary far away from the given

geometry. Thus, a factor of 18 is taken as the minimum sufficient condition for this

case.

The geometry is placed at the middle of the domain. The center of the root cell is

determined according to the center of the geometry which is formed through the

averaging of minimum and maximum x and y coordinates of the geometry. Using the

domain size, the corners of the root cell are obtained.

After the creation of the root cell, the uniform mesh can be formed by dividing cells

successively until the division level of the finest cells reaches the input uniform

division level. At each cycle, levels of new formed cells are increased by 1, centers

and corners of these cells are determined according to the location of its children

27

place of their parent. Below, one can see the equations used for setting center

coordinates of those cells,

 ��	
��
�	 = �����
�	 − ����� ��	
��
�	 = �����
�	 + ����� (2.01)

 ��	
�����	 = �����
�	 + ����� ��	
�����	 = �����
�	 + ����� (2.02)

 ���
		
 �
�	 = �����
�	 − ����� ���
		
 �
�	 = �����
�	 − ����� (2.03)

 ���
		
 ����	 = �����
�	 + ����� ���
		
 ����	 = �����
�	 − ����� (2.04)

where d is the domain size and l is the level of the considered cell. In addition to the

center calculations, the corners are also computed by using the division level and

domain size. However, instead of center coordinates of the parent, the center of the

considered cell is used. The calculations of corner coordinates of a cell can be

expressed as follows:

 �	
��
�	!
��
� = �� − ����� �	
��
�	!
��
� = �� + ����� (2.05)

 �	
�����	!
��
� = �� + ����� �	
�����	!
��
� = �� + ����� (2.06)

 ��
		
 �
�	!
��
� = �� − ����� ��
		
 �
�	!
��
� = �� − ����� (2.07)

 ��
		
 ����	!
��
� = �� + ����� ��
		
 ����	!
��
� = �� − ����� (2.08)

The uniform mesh is generated with the above calculations and by setting the

neighbors told at Section 2.1.2, connectivity. With the uniform mesh, a default

resolution is obtained for the outer cells. The cells near the geometry are then refined

by geometric adaptation.

28

Figure 2.5 Uniform meshes around a two-element airfoil with 5, 7 and 9 cycles

It is important to obtain a sufficient resolution with the uniform mesh. If division

number for uniform mesh is small, than the smaller geometries, especially flap or slat

parts of a multi-element airfoil cannot be captured accurately. However, the

geometric adaptation that will be applied after uniform meshing can solve this

29

problem by refining the cells near the geometry. Yet, it is important to get a good

resolution at the out cells to get accurate results. On the contrary, a very fine uniform

mesh leads to a high number of cells so that the solution converges very slowly,

since the number of cells doubles with one uniform mesh cycle. In the analyses, a

uniform division level of 4 is used for most of the cases.

Figure 2.5 shows uniform meshes around two-element airfoil with 5, 7 and 9 cycles,

without applying any geometric adaptation. In the mesh with 5 cycles, the flap is not

captured totally and the main body is very different than the original one. As shown,

increase in the number of cycles results in more accurate capture of the given

geometry. However, cell number increases excessively. In the above figure, since

comparison between uniform meshes is done, no geometric adaptation is applied. As

a result, a high level of uniform mesh generation is needed in order to capture the

geometry accurately.

2.2.2 Cell Type Determination

Type determination is crucial in Cartesian grid for capturing the geometry accurately,

refining the critical cells near the geometry and multigrid application. While

determining the types of cells, a number of steps are applied sequentially. First, it is

determined whether the corner of the cell is inside or outside the geometry by using

the Ray-Casting technique. Then, intersection points are found and sorted. As a

result, the type of the cell is determined roughly. According to sorted intersection

points and in-out indices of corners, square and split indices of the cell are set. By

using all of this information, the final type of the cell is determined.

2.2.2.1 Corner Index Determination

Each corner has an index in the developed code. This index determines whether the

point is inside or outside the geometry. By determination of all corners of a cell, the

type of the cell can be determined roughly. In other words, if all corners are outside

the geometry, then the cell is an out-cell. If they are inside the given geometry, the

30

cell type is set to an in- cell. If all corners are neither outside nor inside, than the type

of the cell may be a cut or a split cell.

While determining this index, there are two common techniques, namely winding

number method and ray-casting method. Ray-casting method has numerous

advantages compared to the winding number method. First, the winding method

works by considering all the line segments of the geometry. However, it is not

required to visit all segments in ray-casting. It is sufficient to consider only the line

segments that the considered point is between its start and end nodes in y direction.

Moreover, unlike the winding method, round-off errors of the floating points do not

harm ray-casting method [23]. Due to its advantages, Ray-Casting method is chosen

for inside-outside determination.

Figure 2.6 Ray-casting method

In the ray-casting method, there is a restriction that the bodies to be examined must

be closed loop. Since the given geometry is formed with closed-loop bodies, this

method is suitable for the developed code. In this technique, a ray is casted from a

point along x direction generally. If this point intersects the given geometry odd

top right

corner

P3 P2 P1

bottom right

corner

P2' P1'

31

number times, then this point lies in the geometry. On the other side, if an even

number is found with the intersections of the cell with the geometry, then the point

must be outside the geometry. No matter how many bodies there are in the domain,

this method works successfully. Figure 2.6 summarizes the ray-casting method with

an example of a cell around a geometry formed by two bodies whose one corner is

inside and one corner is outside the geometry. The index of corners inside the

geometry is set to -1, whereas for outside corners, the index is set to 1.

2.2.2.2 Square and Split Indexes

After ray-casting method is applied and the corner indexes are determined,

intersection points are found by considering horizontal and vertical edges separately.

In the developed code, intersection points are stored with the help of "intersections"

vector and this vector has an object of user-defined class "IntPt". This class has also

some stored variables. These are two doubles for x and y coordinates, one string for

its location. The location of a point may be on the edges or on a corner. After finding

of coordinates and locations of these intersection points, they should be sorted

according to an order. This order is significant in order to be able to finalize the true

type of the cell. Sorting of those points is started from the right edge and continues in

a counterclockwise direction.

Figure 2.7 Illustration of sorting intersection points

P3

P2

P1

P4

32

The next step after sorting is setting the square index of the cell. The integers from 0

to 3 are first assigned to the corners starting from the bottom right corner and

continuing in counterclockwise direction. In other words, this integer is 0 for bottom

right corner, while it is 3 for bottom left corner. The square index is then found by

summing two raised to the power of the index of that corner (an integer 0 to 3) for all

corners whose in-out index is -1. In the below figure, an example is given for finding

square index of a cell. The gray region indicates the part inside the geometry.

Figure 2.8 Determination of square index

The bottom right, top right and bottom left corners are inside the geometry. If two is

raised to the power of their corresponding indexes 1, 2 and 8 are obtained,

respectively. If they are summed up, total square index of this cell is found as 11. If

all the corners are inside the geometry, the square index can be calculated as 15 by

using this relation. On the contrary, for out cells whose corners have an in-out index

of 1, the square index is set to 0 [21].

For all leaf cells in a Cartesian mesh, square indices are calculated by this way. Then

using the intersection vector and square index, the general type of the cell can be

determined. If a cell has no intersection point and has a square index of 0, then this

cell must be an out cell. On the contrary, if a square index of 15 is assigned to a cell

whose intersection vector is empty, then type of this cell is set to an in cell. If a cell

has an intersection vector whose size is 1 or 2, and all corners of the cell has an index

of neither -1 nor 1, then type of the cell is assigned to a "cut". For the other

situations, except when the number of intersection points is greater than 4, the type

2 1
P1

Square Index;

2
0
 + 2

1
+ 2

3
 = 11

P2

0 3

33

of the cell is set to "split". Finally, for the exception case, the type is assigned as

"notDefined". notDefined type is assigned to cells which cannot be considered in the

other types. The code does not give an error if these are computational cells. If not,

then there is a need to modify the mesh generation with some input change.

Figure 2.9 Example to a split cell

The cells having 4 intersection points are assigned to split cells. For a special case,

the intersection point number may be 2 if both intersection points are on the same

edge. While one or more corner has an in-out index of -1, the square index

calculation can be done similar to the calculation above, as can be shown in Figure

2.9. However, it may be possible to have split cells whose all corners are either

outside or inside the given geometry. Therefore, additional minus square indexes are

assigned to these cells, as indicated in Figure 2.10.

Figure 2.10 Split cells having minus square indices

Square Index;

2
0

+ 2
3
 = 9

P2

P1

3 0
P4 P3

Sq Index:

-25

Sq Index:

-15

Sq Index:

-20

34

In addition to square index, one more index should be used to understand the shape

of the cell exactly. This index is called "split index". For one square index of a type,

there are various alternatives that a cell has. While some cut cells may have 4

different alternatives, it may be increased to 18 for a split cell. These alternatives

may come from the intersection points at the corners since the location variable of an

intersection point is changed for a corner point. Alternatives of a cut cell having a

square index of 6 is indicated in Figure 2.11.

Figure 2.11 Alternatives of a cut cell having a square index of 6

Moreover, these may arise from intersection points on different edges for a split cell.

In Figure 2.12, two alternatives of a split cell are shown with a square index of 6.

Since the other alternatives have the same logic as the cut cell above, in other words,

corner intersection points create the other alternatives, they are not illustrated.

Figure 2.12 Two alternatives of a split cell having square index of 6

All alternatives that a cell may have are shown explicitly in Appendix A.

P2 P2 P1 P1

P1
P2

Split Index:

4

Split Index:

3

Split Index:

2

Split Index:

1

P2

P1

Split Index:

2

Split Index:

1

35

2.2.2.3 Split Cells Having Two Control Volumes

Some split cells have two separate control volumes like the cell having a split index

of 2 in Figure 2.12. When these cells are encountered, two different cells are created,

stored with the cell type pointers of "splitToCut1" and "splitToCut2". Each control

volume is converted to a cut cell and all the calculations are carried out using these

new cells [21]. The inverse relation among these cells is provided with the

"inclusiveOfSplits" pointer. This word points the cell having those splitToCut cells.

This relation is necessary especially for multigrid applications since coarsening is

required which is discussed in Chapter 4 in detail. In addition, it is important to pay

attention to order of intersection points for new cells. In Figure 2.13, the conversion

of a split cell into two cut cells is illustrated.

Figure 2.13 Conversion of split cell into two cut cells

2.2.3 Geometric Adaptations

Geometric adaptation allows high resolution grids around the input geometry. Three

different adaptations can be applied to the uniform mesh, sequentially. First, box

adaptation is applied to the mesh. Then, cut and split cells around the input geometry

Sq. Index: 6

Sp. Index: 2
P1 P2

Second Control Volume First Control Volume

P3 P4

P1 P1

Sq. Index: 7

Sp. Index: 1

Sq. Index: 14

Sp. Index: 1

P2 P2

36

can be refined more cut and split adaptation. Finally, highly curved parts can become

finer with curvature. The amount of these adaptations can be controlled by inputs.

2.2.3.1 Box Adaptation

In box adaptation, a rectangular box is first determined around the given geometry,

the size of which is specified by the user. The size of box is specified with two

inputs, boundary size factor in x and y coordinates. With this factor, x and y

coordinates of the box can be found using the maximum and minimum coordinates

of the whole geometry. The distance between the body and box can be found using

the following relations;

 "# = $%# − 1' #()*+#(,-� (2.09)

 ". = /%. − 10 .()*+.(,-� (2.10)

where kx and ky are boundary size factors in x and y directions, respectively,

subscripts "max" and "min" represent the maximum and minimum coordinates

among all bodies in the geometry, respectively.

After that, the cells in this box are refined to the desired level until the desired

resolution around the geometry is obtained. This desired level is controlled with an

input of body division factor. Maximum body dimension, which is either on x axis or

y axis, is multiplied by this factor. If the sizes of cells are larger than this determined

size by the multiplication, then the cells in the box are refined. The following relation

is used as the main criteria;

 12 34 �#5 ≤ 7��8 "9$:;2<5;' (2.11)

where D is the domain size, l is the level of the cell with minimum size in the

domain, n is the body division factor and dmax is expressed as;

37

 4 �# = =� �# − � �� $� �# − � ��' < $� �# − � ��'� �# − � �� $� �# − � ��' ≥ $� �# − � ��'@ (2.12)

The mesh after the application of box adaptation is shown in Figure 2.14.

Figure 2.14 Box adaptation around a two-element airfoil

2.2.3.2 Cut-Split Adaptation

Since the cells near the given geometry can be small enough to get accurate results,

these can become finer by the use of cut-split adaptation. As it can be understood

from the name of the adaptation, cut and split cells are considered. In addition, the

38

neighbors of these cells are also refined even if they are out cells. As a result, a

smooth resolution around the geometry is obtained [21]. The user can specify the

number of cycles that should be applied in this adaptation according to the desired

level. In Figure 2.15, one cycle of cut-split adaptation is illustrated after the

application of box adaptation to a two-element airfoil, NLR 7301.

Figure 2.15 Cut-split adaptation around a two-element airfoil

2.2.3.3 Curvature Adaptation

Some regions of the geometry have highly curved parts. In these parts, there may be

shear layers, vortices, wakes and similar events like these. Therefore, more resolution

is required at these locations and this is provided by curvature adaptation.

39

In curvature adaptation, two neighboring cells near the wall boundary are considered.

If the curvature formed by these geometrical parts in these cells is large enough, then

these two cells are refined once in one cycle. The amount of curvature is determined

by the angle between the intersection lines of the cells [22]. Since this angle is found

by a triangle formed by three different intersection points at two cells, this angle is

always less than 180 degrees, sometimes directing the outside of the geometry,

sometimes inside of the geometry. Two examples illustrating these two different

cases are shown in Figure 2.16, respectively. Note that the gray parts represent the

geometry and T1, T2 and T3 are the corners of the triangle which is used to

determine the curvature angle, θcurv, by cosine theorem.

(a)

(b)

Figure 2.16 Curvature angle determination directing outside (a) and inside (b)

of the geometry

After determining the curvature angle, it is compared with a threshold angle which is

set by the user. If this angle is less than this specified threshold angle, then both of

T1

θcurv

T2

T3

T2 T3

T1

θcurv

40

the cells are refined. Moreover, the cycle of the adaptation can be controlled by

another input. Below, curvature adaptation is illustrated after applying box and cut-

split adaptations to uniform mesh around NLR7301.

Figure 2.17 Curvature adaptation around a two-element airfoil

2.2.3.4 One Level Rule

One level rule sets the level difference between two neighborhood cells to 1 at

maximum. This rule is provided to avoid the complexity of data structure and to

facilitate the connectivity handling [21]. During the flux computations,

reconstruction scheme can easily be applied to a mesh generated with the help of one

level rule. The grid smoothness is also provided by this rule. In the geometric

41

adaptations, which are discussed above, only the single cycle of each adaptation is

shown since this rule is not yet introduced. For more cycles of a geometric

adaptation, the grid becomes smoother with the aid of the one level rule. In Figure

2.18, the level difference between the uniform mesh and cells in the adapted box

exceeds unity. The cells between box and uniform mesh are refined according to the

one level rule. Moreover, cut cell adaptation cycle is set to 2 and curvature

adaptation cycle is set to 4 in this example. Therefore, the effect of the one level rule

can clearly be seen in the cells neighboring to the adapted cells and this is illustrated

in Figure 2.19.

Figure 2.18 One level rule

42

Figure 2.19 Closer look to the geometry to illustrate one level rule for cut-split and

curvature adaptations

2.3 QUAD GRID GENERATION

For viscous flows, in order to obtain sufficient resolution in the boundary layer, quad

grids can be used optionally. Before the generation of quad cells, the geometry is

first puffed up by a specified amount. This puffed geometry becomes the geometry

input for the Cartesian meshing and Cartesian cells are generated outside this puffed

geometry. In the space lying between the original geometry and the puffed geometry,

quad cells are created.

43

2.3.1 Boundary Layer Setting

The boundary layer thickness is set according to Reynolds number of the flow. Using

the following relation, thickness, δ, can be determined for laminar flows [7].

 A = BC�
 (2.13)

For the turbulent or separated with a thicker boundary layer, this thickness is

multiplied by a factor which is greater than 1 can be multiplied with the thickness.

Whereas the developed code considers only laminar flows, the thickness found by

using the relation above can also be multiplied by a factor as a safety factor.

While setting the boundary layer, some corrections may be required to puff the

geometry up correctly. Highly curved parts must be handled so that thickness has the

same quantity at all points. In addition, negative volumes should be eliminated,

which can be formed at some concave surfaces. After the puffing up process, quad

cells are generated according to the Cartesian cells near the puffed geometry.

2.3.1.1 Setting Puffed Geometry

The geometry is specified with the nodal points, as mentioned earlier. While setting

puffed geometry, line segments which are formed by two consecutive nodes are

used. After forming a line segment, starting and end point for new line segment can

be created by shifting the nodal points along the normal direction of the line segment

by an amount equivalent to the determined boundary layer thickness. After forming

all new line segments, the location of new puffed nodes are found by intersecting the

two consecutive new line segments. Below, one can see two examples about the

creation of new puffed node. While elongation of line segments are required to

obtain the intersection point at the first one, shortening of new line segments is

necessary for the second one.

44

(a)

(b)

Figure 2.20 Creation of a new node for puffed geometry

2.3.1.2 Handling of Highly Curved Parts

As it can be seen in Figure 2.20, new line segments must be elongated or shortened

in order to find the new puffed node. While, the thickness between the original line

segment and the puffed line segment is the same, the shortened or elongated part of

δ

δ

new node(i)

node(i+1) node(i)

GEOMETRY

node(i-1)

new node(i)

δ

δ node(i+1)

node(i-1)
node(i)

GEOMETRY

45

line segment has a smaller or greater amount of thickness, respectively. Although

this is not a problem for slightly curved parts, it leads to excessive amount of

thickness for highly curved parts at convex regions of the geometry. This situation is

illustrated at the trailing edge of the airfoil in Figure 2.21.

Figure 2.21 Original and puffed geometry without handling convex parts

(a)

new node(i3)

new node(i4)
new node(i2)

δ δ
δ new node(i5)

new node(i1)

δ δ

node(i)

α < 60

GEOMETRY

46

(b)

Figure 2.22 Creation of a puffed node for highly curved part

In order to get a good puffed geometry at convex parts, the node is shifted not only to

one location but also to several other locations by the boundary layer thickness, as

shown in Figure 2.22. The number of these locations is determined by the angle of

the convex part. If this angle is less than 60 degrees, five different nodal points are

created from the original node of the geometry. If the angle is between 60 and 120

degrees, three different nodes are created. In this case, these three nodes are

sufficient for obtaining uniform thickness at all points of the boundary layer. If the

angle is greater than 120 degrees, one puffed node is sufficient since the curved

region is not sharp enough. Figure 2.22 illustrates the two situations having an angle

less than 60 degrees and between 60 and 120 degrees at the convex parts.

By shifting the nodal points to several different locations for convex parts, the puffed

geometry shown in Figure 2.21 can be modified to the one indicated in Figure 2.33.

new node(i2)

new node(i3) new node(i1)

δ

δ
δ

node(i)

α < 120

GEOMETRY

47

Figure 2.23 Original and puffed geometry with handling convex parts

2.3.1.3 Negative Volume Elimination

On some concave surfaces, it is possible to have negative volumes by direct

extrusion of the geometry. The reason is that the new line segments are formed by

connecting wrong nodes after shifting of two consecutive line segments at a certain

amount, resulting in negative volumes. This situation can be exemplified in Figure

2.24.

In order to eliminate negative volumes, the intersection point of the intersected line

segments is accepted as the new puffed node. However, this may cause new negative

volumes at the parts near to the fixed region. Therefore, elimination of negative

volumes using this method is continued until none of the line segments intersect each

other. After elimination process, the airfoil shown in Figure 2.24 has a good puffed

geometry, as shown in Figure 2.25.

48

Figure 2.24 Negative volume at concave region

Figure 2.25 Boundary layer after elimination of negative volumes

49

2.3.2 Quad Cell Generation

After setting the boundary layer using the puffed geometry, the spacing between two

geometries is filled with quad cells. Quad grids are connected to the Cartesian cells

formed outside the boundary layer. With the connectivity information, a smooth

hybrid grid can be generated.

While generating quad grids, two inputs are used, namely row number and stretch

factor. The number of rows in the boundary layer can be specified by user. The

thicknesses of the quad cells are determined according to the stretch factor which is

the ratio between quad cells at two consecutive rows.

2.3.2.1 Connectivity

After row number and thicknesses of quad cells are set, the quad cells can be

generated with the connection to the Cartesian cells. The connection between quad

cells and Cartesian cells are provided with two pointers, "quad1" and

"inclusiveOfQuads". A Cartesian cell may have a quad cell and if it has, then this

quad cell is stored at "quad1". The opposite connectivity relation is obtained by

"inclusiveOfQuads" pointer. With this technique, the corner points are forced to

coincide with the intersection points of the Cartesian cell. In other words,

interpolation of the flow variables from the Cartesian cells to the quad cells is not

necessary since fluxes can simply be calculated along the common faces.

Figure 2.26 Relation between a quad cell and a Cartesian cell

"inclusiveOfQuads" "quad1"
Cartesian cell

left
top

Quad cell

right

bottom

50

Sometimes, a Cartesian cell may have two faces neighboring to the puffed geometry,

which possesses one control volume. Then, a second pointer, "quad2", is used for

these situations. While first quad cell is stored at "quad1", "quad2" is used for the

second one. On the contrary, it is sufficient to use one pointer, "inclusiveOfQuads",

for the inverse relation, as described before.

Figure 2.27 Relation between a Cartesian cell and its two quad cells

Figure 2.28 Hybrid mesh around slat of a three-element airfoil

Cartesian cell

1. Quad cell
2. Quad cell

1. Quad cell

Cartesian cell Cartesian cell

2. Quad cell

"quad1" "quad2" "inclusiveOfQuads" "inclusiveOfQuads"

51

After providing the connectivity between Cartesian and quad cells, the connectivity

between quad cells is provided by the neighborhood information. As shown in Figure

2.26, the neighbors are found according to the specified directions. Thus, all cells

including quad and Cartesian cells are connected to each other. In Figure 2.28, one

can see an example to hybrid mesh around a slat of a three element airfoil.

It can be shown in Figure 2.28 that the size of the quad cells is very small near the

smaller Cartesian cells. Although cut-split and curvature adaptations are applied only

to Cartesian mesh, since smaller cells lead to smaller quad cells, quad cells become

automatically finer at the highly curved regions.

It is also important to note that the quad cells are not refined directly during the

solution adaptation, which is discussed in Chapter 3.7. If a region where a quad cell

exists needs to be refined through solution adaptation, the inclusive Cartesian cell of

this quad cell is refined at first. Then, quad cells of the Cartesian cell are deleted and

new quads are regenerated according to children of the refined Cartesian cell. As a

result, those regions become finer without refining quad cells. However, with

solution adaptation, the number of rows is not changed.

52

CHAPTER 3

NUMERICAL SOLUTION

In this chapter, first of all, the governing equations are explained in detail. While

these equations are presented, two dimensional Navier-Stokes equations in integral

form are introduced. These equations are then non-dimensionalized with suitable

reference values. Finally, wall and far-field boundary conditions are explained for

both inviscid and viscous flows.

Secondly, the discretization of these governing equations is discussed. After spatial

discretization is introduced, the temporal discretization is told by using multistage

time stepping. Time step calculations are explained later while solving inviscid and

viscous flows. Furthermore, a cut-back procedure for CFL number is described in

order to avoid instability in earlier iterations of the execution of the code.

Thirdly, inviscid flux computations are mentioned. Flux vector splitting methods like

AUSM and its derivatives are discussed. Furthermore, approximate Riemann solver

of Roe is described.

Fourthly, reconstruction of the primitive flow variables are explained using the least

squares method. To get more accurate result, this technique is used in some of the

analyses. However, computational time increases as expected. In addition to this, to

get more stable results, gradient limiting procedure is introduced.

Fifthly, viscous flux computations are discussed. One reconstruction technique is

used while calculating viscous fluxes. In this viscous reconstruction technique,

53

viscous flux is computed using both flow variables and gradients obtained by

inviscid reconstruction at cell centroids.

Sixthly, how to calculate the coefficients of pressure and skin friction are presented.

These coefficients are used to compare the results with the available data in the

literature.

Finally, solution adaptation is discussed in detail. With this adaptation, the critical

grids in the domain become finer so that more accurate solutions can be obtained.

3.1 GOVERNING EQUATIONS

Navier-Stokes equations are the governing equations for the flow around bodies.

These equations can be in integral form or differential form. These equations are

derived from the conservation of mass, momentum and energy. In the present code,

non-dimensionalized Navier-Stokes equations are used in integral form, with

appropriate wall and far-field boundary conditions.

3.1.1 Two-Dimensional Governing Equations in Integral Form

The general compressible integral form of these equations can be represented as;

 DD	 E F dHI + E $J ∙ L' dM =N E $O ∙ L' dMN (3.01)

In this equation, Q contains the vector of conserved variables of density, momentum

and total energy. F is the inviscid flux vector while G is the viscous flux vector. n

represents the unit vector in the normal direction to the differential area, dS. In two-

dimensional Cartesian coordinates, the conserved variables vector, Q, inviscid flux

vector, F and viscous flux vector, G can be represented as below.

54

P = Q RRSRTRUV (3.02)

J = WXX
Y RS Z + RT [$RS� + \' Z + RST [RST Z + $RT� + \' [RS] Z + \T] [_̂_̀ (3.03)

a = WX
XY bc## d + c.# ec#. d + c.. e $Sc## + Tc#. − f#'d + $Sc.# + Tc.. − f.' e_̂_̀ (3.04)

Since the unit normal vector can be defined using angle θ between the unit vector

and x-axis, the dot products of inviscid flux vector and viscous flux vector with the

unit normal can be written as;

g ∙ h = WXX
Y RS i9jk + RT j<5k$RS� + \' i9jk + RST j<5kRST i9jk + $RT� + \' j<5k RS] i9jk + RT] j<5k _̂_̀ (3.05)

a ∙ h = WX
XY 0c## i9jk + c.# j<5kc#. i9jk + c.. j<5k$Sc## + Tc#. − f#' i9jk + $Sc.# + Tc.. − f.' j<5k_̂_̀ (3.06)

Descriptions of the variables used in Equations (3.02) to (3.05) are as follows. ρ is

the fluid density, u and v are the x and y components of the fluid velocity,

respectively. p represents the fluid static pressure, E is the specific total energy while

H is the specific total enthalpy. τxx, τxy, τyx, and τyy are the stresses. Finally, qx and qy

represent the heat flux terms in x and y directions, respectively.

55

In order to be capable of solving the above equations, some additional relations are

required. These relations are formed using thermodynamic relations and the perfect

gas assumption. Following equations are used to close the system of equations.

 \ = R:m (3.07)

 ; = inm (3.08)

 : = i� − in (3.09)

 o = �p�q (3.10)

U = ; + rstns� (3.11)

In the above equations, R is the specific gas constant, cp is the specific heat for a

constant pressure, cv is the specific heat for a constant volume, e is the specific

internal energy, T is temperature and γ represents the specific heat ratio. Using these

equations, specific total enthalpy and static fluid pressure can be expressed as;

] = U + �u (3.12)

\ = R$o − 1' 3RU − u$rstns'� 8 (3.13)

Since the fluids used in this code are restricted to the Newtonian fluids, the viscous

stresses are related to the laminar dynamic viscosity, µ, and the velocity gradients

through the following relations.

 c## = − �v w 3xrx# + xnx.8 + 2w xrx# (3.14)

 c.. = − �v w 3xrx# + xnx.8 + 2w xnx. (3.15)

56

c#. = c.# = w 3xrx. + xnx#8 (3.16)

In the above equations, since the fluid used in the analyses is air, laminar dynamic

viscosity is calculated using Sutherland's law [25], which the viscosity is accurately

related to the temperature.

zz{ = 3 ||{8v �} 3|{t~~�.�|t~~�.� 8 (3.17)

In this equation, µ∞ is the reference dynamic viscosity at the temperature T∞ which is

taken as 273.15 K. In addition to these, the heat flux components are calculated using

Fourier's heat conduction law

 f# = −% x|x# (3.18)

f. = −% x|x. (3.19)

where k is the coefficient of thermal conductivity.

3.1.2 Non-Dimensionalization

The non-dimensionalization is advantageous since it prevents numerical errors

resulting from the disparity in scale of the conserved variables [26]. Moreover, it

decreases the number of parameters to be handled and ease the handling of the

equations. In the present code, the governing equations are made non-dimensional

with the suitable reference values as follows;

 �� = #�{ �� = .�{ �� = 	 �{�{

S� = r�{ T� = nn{ \� = ��{s (3.23)

R� = uu{ U� = ��{s w� = zz{

57

where superscript (') denotes non-dimensional variable. With the use of non-

dimensional Reynolds number, the governing equations can be made non-

dimensional as shown below;

E xF�x	� 4��I + E $g� ∙ h�'4M� =N �{�
{ E $a� ∙ h�'4M�N (3.24)

where Re∞ is the Reynolds number based on fluid velocity, V, and reference length,

L∞,

 :;� = u{I�{z{ (3.25)

and M∞ is the free stream Mach number.

�� = I�{ = Crstns�{ (3.26)

Non-dimensional conserved variables and dot products of inviscid flux vector and

viscous flux vector with the unit normal vector can be explicitly written as;

F� = WXX
Y R�R�S�R�T�R�U�_̂_̀ (3.27)

g� ∙ h� =
WX
XX
Y R�S� i9jk + R�T� j<5k$R�S�� + \�' i9jk + R�S�T� j<5kR�S�T� i9jk + $R�T�� + \�' j<5kR�S� 3U� + ��u�8 i9jk + \�T� 3U� + ��u�8 j<5k_̂_

_̀
 (3.28)

a� ∙ h� = WXX
XY 0c##� i9jk + c.#� j<5kc#.� i9jk + c..� j<5k /S�c##� + T�c#.� − f#�0 i9jk + $S�c.#� + T�c..� − f.�' j<5k_̂__̀ (3.29)

58

As it can be seen, non-dimensionalized inviscid flux vector is not different than the

dimensional one. For inviscid solutions where the viscous flux vector is zero, there is

no need to use any additional terms. However, the initial guesses should be

appropriate.

As non-dimensional free-stream values, density is chosen as 1. Static pressure is

chosen as 1/γ in order to equalize speed of sound to 1. With these initial guesses, it is

not required to add new terms to non-dimensionalized equations [21]. The initial

guesses are given below. The subscript "in" denotes the free-stream values.

R��� = 1 \��� = 1 o} i��� = ��,-��u,-� = 1 (3.30)

When considering viscous terms, non-dimensional stresses are very similar to

dimensional ones. The ratio of the Mach number to Reynolds number is required for

the conserved equations. However, heat flux terms are different than the dimensional

ones since thermal conductivity is non-dimensionalized with another non-

dimensional parameter, i.e. Prandtl number. Prandtl number can be defined as;

 �� = z�p� (3.31)

With the use of Prandtl number and non-dimensional variables, heat flux components

are made non-dimensional as shown below. Since gradient of pressure is calculated

instead of temperature gradient in the code, the equations are revised according to

this gradient.

f#� = − �$�+~'�� x��� u�� �x#� (3.32)

f.� = − �$�+~'�� x��� u�� �x.� (3.33)

59

From now on, superscript (') is not used for simplicity. The variables without any

superscripts denote non-dimensional variables unless it is particularly mentioned.

3.1.3 Boundary Conditions

There are two types of boundary conditions for external flow. These are far-field

boundary conditions and wall boundary conditions.

3.1.3.1 Far-Field Boundary Conditions

Far-field boundary conditions are used for the outermost cells in the domain. These

conditions are applied at the faces not having any neighbors. Since in the analyses,

far-field boundary is located at least 18 chords ahead of the analyzed airfoil,

boundary conditions here are simply calculated using free-stream values, as shown

below. These free-stream values are equated to the ghost cell which is created as a

neighbor to the face having no real neighbor. Moreover, this ghost cell has the same

size as the considered cell.

 R��
�	 = R��, \��
�	 = \�� i��
�	 = i�� (3.34)

Using these conditions, velocity components and specific total energy for far-field

faces can be computed as;

 S��
�	 = ��i9j/k���
0 (3.35)

 T��
�	 = ��j<5/k���
0 (3.36)

U��
�	 = �,-u,-$�+~' + r�����stn�����s� (3.37)

In the figure below, ghost cell of an outermost cell can be seen.

60

Figure 3.1 Far-field boundary conditions

3.1.3.2 Wall Boundary Conditions

Wall boundary conditions are used for the cells near the wall boundary. These cells

are cut and split cells for inviscid flows, while they can be quad cells or cut and split

cells for viscous flows depending on quad cell usage. The flux through the interface

between the wall and fluid is calculated by using the ghost cell technique. The

created ghost cell has same size as the real cell. Moreover, both for inviscid and

viscous flows, pressure and density are taken as the same as the ones in the real cell.

The velocity components on the interface are changed according to the flow type.

While solving inviscid flows, the velocity components at the interface of the real cell

are found by using the normal angle. Then, the tangential velocity component on the

interface of the ghost cell is taken as the same as the one in the real cell, whereas the

normal velocity component has the same size as the one in the real cell, but it is in

the opposite direction. With these velocity components, the cell-centered components

of the velocity can easily be calculated using the face normal angle.

Far-Field Boundary

Ghost Cell

Real Cell

ρghost, Pghost,

cghost, ughost,

vghost, Eghost

ρ, P,

c, u,

v, E

61

Figure 3.2 Wall boundary conditions for inviscid flow

For viscous flows, interface velocity components of the ghost cell should be reversed

in order to provide no-slip condition. In addition to the reversed normal velocity of

inviscid flow, the tangential velocity of the ghost cell should also be reverse of the

one in the real cell. Furthermore, constant wall temperature is used while computing

heat flux terms. In other words, temperature is taken as the same as the one in the

real cell.

Figure 3.3 Wall boundary conditions for viscous flow

Real Cell

Real Cell

62

3.2 SPATIAL AND TEMPORAL DISCRETIZATION

After obtaining non-dimensional Navier-Stokes equations with appropriate boundary

conditions, some discretization in space and time should be done in order to be

capable of solving these equations. Finite volume method is used when discretizing

these equations spatially. Although steady flows are considered, there is a need for

discretizing time derivative of conserved variables in time in order to equalize it to

the residuals. Furthermore, time step calculations should be done accurately by

considering the flow type; inviscid or viscous. In addition to these, a cut-back

procedure for Courant number is introduced in order to avoid some start-up stability

problems that may exist during the execution of the code.

3.2.1 Spatial Discretization

By using finite volume method, integral form of Navier-Stokes equation can be

solved easily. Domain is divided into cells, firstly. These cells become the control

volumes that do not changed in time. The conserved variables are stored at the cell

centroids and it can be assumed that variables of a cell remain the same throughout

the whole cell. In addition to this, integrals of inviscid and viscous fluxes can be

written as the sum of the fluxes through each face of a cell. Using these assumptions,

Equation (3.24) can be written in two-dimensions as;

 � xFx	 + � �3g − �{�
{ a8 ∙ h � ∆j���
� = 0 (3.38)

where A is the area of the cell and ∆s is the edge length of the face. Using the above

equation, residuals of the cell can be defined as;

 :;j$F' = � �3g − �{�
{ a8 ∙ h � ∆j���
� (3.39)

If one combine Equation (3.38) and (3.39), spatially discretized governing equation

can be rewritten in terms of residuals.

63

xFx	 = − ~� :;j$F' (3.40)

As a result, spatially discretized governing equations in compact form are obtained in

terms of residuals, area of the cell and time derivative of the conserved variables.

3.2.2 Temporal Discretization

After the spatial discretization, time derivative of the conserved variables should also

be discretized. This discretization is called temporal discretization. Although the

code solves steady-state flow, temporal discretization is necessary in order to obtain

zero residuals by iterative method. Time derivative can be discretized as the

difference of the conserved variables of n+1'th time step and n'th time step divided

by specified time step.

xFx	 = F-��+F-∆	 (3.41)

This discretized equation can simply be equalized to the residuals of the conserved

variables divided by the cell area by using Equation (3.40). While equalizing, two

different schemes can be used. If the residuals are calculated using the n'th time step,

then only unknown will be the conserved variables at the (n+1)'th time step. This is

called explicit time scheme.

F-��+F-∆	 = − ~� :;j$F�' (3.42)

If it is desired to use residuals at the (n+1)'th time step, then unknowns are placed at

both sides of the equations. This is called implicit time scheme.

F-��+F-∆	 = − ~� :;j$F�t~' (3.43)

64

In the implicit scheme, the residuals at the (n+1)'th time step are found using Taylor

series expansion by neglecting of the higher order derivatives.

 :;j$F�t~' = :;j$F�' + x�
�$F-'xF $F�t~ − F�' (3.44)

In the developed solver, explicit time scheme is used.

3.2.2.1 Multistage Time Stepping

The discretized equations are solved using multistage time stepping method. In order

to use this method, initial guesses should be made. As initial guesses, conserved

variables of all cells are taken as the free stream values. Then, using multistage time

stepping at each iteration, residuals are found. The general m-stage scheme is defined

as;

 F$�' = F�

 F$�' = F$�' − � � ¡	� :;j/F$�+~'0 % = 1, … , ¤ (3.45)

 F�t~ = F$ '

where υ is the Courant number (CFL Number), αk is the stage coefficient at the k'th

stage.

In the developed code, three, four and five stage time stepping can be used with the

first order and second order scheme. In analyses, generally three stage time stepping

is used. Below, one can see the CFL numbers and stage coefficients according to the

stage number and scheme type [38].

65

Table 3.1 CFL numbers and stage coefficients

for the first order scheme

stages
υ α1 α2 α3 α4 α5

3 1.5 0.1481 0.4000 1.0000

4 2.0 0.0833 0.2069 0.4265 1.0000

5 2.5 0.0533 0.1263 0.2375 0.4414 1.0000

Table 3.2 CFL numbers and stage coefficients

for the second order scheme

stages
υ α1 α2 α3 α4 α5

3 0.6936 0.1918 0.4929 1.0000

4 0.9214 0.1084 0.2602 0.5052 1.0000

5 1.1508 0.0695 0.1602 0.2898 0.5060 1.0000

3.2.3 Time Step Calculations

Calculation of the time step is very important to obtain fast and stable solutions. It

depends on the cell size and the flow properties directly. If it is chosen very small,

then solution converges very slowly. On the contrary, if it is taken very large, then

solution may diverge easily. In addition to this, calculation method is significant in

66

order to determine the appropriate time step. There are two methods for the

calculation of time steps, namely global and local time stepping methods.

In the global time stepping method, all cells in the domain should be examined and

minimum time step must be used for all cells. It is necessary while solving unsteady

flows in order to obtain logical results at any time step. For steady flows, this method

is impractical since only the final solution is considerable, in other words, the

solution at any time step is not important. Moreover, with this method, convergence

time significantly increases.

In the local time stepping method, every cell has its own time step. In order to solve

steady flows, this method is very useful. While the larger cells have greater time

steps, the smaller cells have lower time steps. This brings faster convergence to

larger cells. Since the solutions at the mid-stages are not required to be accurate, this

method provides an important advantage for the convergence time. Moreover, in the

code, local time stepping method is used while dealing with steady flows. It is very

advantageous since Cartesian mesh has large cell size differences. It is important to

note that the time step for each cell is computed at every iteration since flow

properties on which the time step calculation depends are changing from one

iteration to the other.

Two different calculations are used for the local time stepping method. First one is

used when dealing with inviscid flows, while second one is introduced when dealing

with viscous flows. In addition to these, a CFL cut-back procedure is used in order to

eliminate stability problems especially in earlier iterations of the solution if any.

3.2.3.1 Inviscid Time Step Computation

Local time step of each cell can be computed using the relation below for two-

dimensional inviscid problems [27].

 ∆� = �¥*t¥¦ (3.46)

67

Here, φx and φy denotes the convective spectral radii and the absolute values of the

projection of edges, Sx and Sy, in x and y directions, respectively, are used while

computing them.

 §# = ~� $|S| + i' � |M#|���
� (3.47)

 §. = ~� $|T| + i' � ©M.©���
� (3.48)

3.2.3.2 Viscous Time Step Computation

In order to avoid stability problems in viscous flows, both convective and diffusive

characteristics of the flow must be considered. Thus, the local time step for each cell

can be calculated as;

 ∆� = ∆	ª ∆	q∆	ªt∆	q (3.49)

where ∆tc is the convective time step and ∆tv is the viscous time step [28].

Convective time step is calculated similar to the inviscid time step calculation in the

previous section. While computing viscous time step, following relation is used.

 ∆�n = «n �¬q (3.50)

In this relation, Kv is an empirically determined coefficient which considers the

relative importance of viscous effects for the final time step expression. It is chosen

as 0.25 for most cases. For low Reynolds number flows, since viscous effects are

more dominant, this coefficient may be increased to get more stable results, when

there are stability problems. The other variable, λv, represents the maximum

eigenvalue of the diffusive operator of the Navier-Stokes equations and it is a

discretized and averaged quantity about the boundary of the control volume and

expressed as:

68

­n = � �{�
 ®¯ � � zu Δj����
� (3.51)

where dynamic viscosity and density are computed at the face boundary and ∆s

denotes the face length.

3.2.3.3 CFL Cut-Back Procedure

Sometimes, initial guesses at the critical locations can cause negative pressure and

temperatures at the early iterations of the execution. This problem can be solved by

decreasing the CFL number. However, this increases the solution time considerably.

To avoid this convergence time increase and also stability problems at the start-up, a

CFL cut-back procedure may be applied, which limits the maximum relative change

in density and pressure per time step [29].

In this procedure, first, the maximum relative change in conserved variables of a cell

is found using residuals at the beginning of each time step.

Δ Q RRSRTRUV = ¡±² Q :;j$R':;j$RS':;j$RT':;j$RU'V (3.52)

The relative change in pressure can be calculated using the relative changes of

specific total energy, density and velocity components

Δ\ = $o − 1' �Δ$RU' − /S Δ$ρS' + T Δ$RT'0 + ΔR rstns� � (3.53)

The relative change in pressure and density can then be written as:

 ´u = ¡uu (3.54)

69

´� = ¡µ� (3.55)

The CFL number may be cut back by making maximum change per time step in

either the density or pressure to be less than some specified tolerance, εcut.

 ��r	 = ¶ª·�¸¹º $¶»,¶p' (3.56)

Then the new CFL number can be obtained by taking the minimum of the original

CFL number and cut-back CFL number.

 ��
¼ = min $�, ��r	' (3.57)

While finding cut-back CFL number, specific tolerance is taken as 0.1. It may be

thought that convergence time is increased with this procedure. However, it is

observed that CFL number is cut back at the very early stages of the run. After these

early stages, CFL number quickly increases back to the maximum allowed.

3.3 INVISCID FLUX CALCULATIONS

Inviscid flux calculations play very important role while analyzing a problem. In this

study, four different techniques are used. One Riemann solver and three flux-vector

splitting methods are used. As Riemann solver, approximate Riemann solver of Roe

is used. On the other hand, Liou's Advection Upstream Splitting Method, in short,

AUSM, and two derivatives of it, namely AUSMV and AUSMD are embedded into

the code.

In these methods, it is required to interpolate the variables of the cell ,whose flux

value is calculated, to the midpoint of each face. In addition, the neighboring cell

values should also be interpolated to the values at the face. These cells are denoted as

70

left and right cells, respectively. After the variables are moved accurately to the

interface of the left and right cells, the inviscid flux vector can be calculated by using

one technique described below in detail. Finally, found face flux values according to

the face direction must be transformed to the Cartesian coordinates.

Using the rotational invariance of the governing equations as shown in Equation

(3.58), one can find the conserved quantities and flux vectors in the normal and

tangential directions to the face [24].

 g ∙ h = À+~g$ÀF' = À+~g/F0 (3.58)

In the above equation, the overbar symbol " ̶ " denotes that the quantity or the vector

is transformed to the face direction. In addition, T and T-1 are the transformation

matrix and its inverse respectively, which can be written in explicit form by using the

face normal angle, θ, as;

À = Q1 0 0 00 cosk sink 00 −sink cosk 00 0 0 1V (3.59)

À+~ = Q1 0 0 00 cosk −sink 00 sink cosk 00 0 0 1V (3.60)

As a result, transformed conserved quantities and transformed inviscid flux vector

become;

F = Q RRSRT\UV (3.61)

71

g/F0 = WXX
XY RSRS� + \RST\S] _̂__̀ (3.62)

where S and T are the normal and tangential velocities to the face direction and can

be expressed as;

 S = S cos k + T sin k (3.63)

 T = T cos k − S sin k (3.64)

The calculations for inviscid flux should be done according to the transformed

quantities and vectors using a technique available. Then, the found vector must be

transformed back to the Cartesian coordinates as shown below;

 À+~g/F0 = g ∙ h (3.65)

3.3.1 Approximate Riemann Solver Of Roe

In the approximate Riemann solver of Roe [30], the following equation is used in

general.

 gÃ$0' = ~� 3gÃ/FÄ0 + gÃ/FÅ08 − ~� � |Æ�|Ç��ΔÈ���É~ % = 1, … ,4 (3.66)

where subscript L denotes the left cell, in other words, the cell whose flux will be

calculated, subscript R denotes the right cell, i.e. neighboring cell, λ is the eigenvalue

1x4 matrix, r is the right eigenvector 4x4 matrix and ∆v is the wave strength 1x4

matrix, k denotes the row number of the flux vector.

The eigenvalue, the right eigenvector and wave strength matrices are calculated by

using Roe's averaged quantities. These quantities are given below.

72

R�� = ËR�R� (3.67)

S�� = rÌËuÌtrÍËuÍËuÌtËuÍ (3.68)

T�� = nÌËuÌtnÍËuÍËuÌtËuÍ (3.69)

]�� = ÎÌËuÌtÎÍËuÍËuÌtËuÍ (3.70)

i�� = �$o − 1' 3]�� − rÍÌstnÍÌs� 8 (3.71)

Using these averaged quantities, vectors at the right hand side of Equation (3.66) can

be calculated using the following relations,

Æ = QS�� − i��S��S��S�� + i��
V (3.72)

Ç =
WXX
XY 1 1 0 1S�� − i�� S�� 0 S�� + i��T�� T�� 1 T��]�� − S��i�� rÍÌstnÍÌs� T��]�� + S��i�� _̂__̀ (3.73)

∆È =
WX
XXX
Y∆�+uÍÌ�ÍÌ∆r��ÍÌs∆R − ∆��ÍÌsR��∆T∆�tuÍÌ�ÍÌ∆r��ÍÌs _̂__

_̀
 (3.74)

where

73

(a) ∆R = R� − R� (b) ∆� = �� − ��

 (3.75)

(c) ∆S = S� − S� (d) ∆T = T� − T�

3.3.2 Liou's Advection Upstream Splitting Method (AUSM)

The AUSM scheme [31], [21], [22] works by splitting the advection and pressure

terms in the flux of momentum while calculating face flux as;

 g$0' = ~� Ï�~/�$Ñ� + Ñ�' − ©�~/�©$Ñ� − Ñ�'Ò + \~/� (3.76)

where M1/2 is the split Mach number, p 1/2 is the split pressure and Ψ is the flux vector

which is obtained by removing the pressure term.

Flux vector can then be expressed as;

Ó = Q RiRiSRiTRiUV (3.77)

The split Mach number can be written as follows;

 �~/� = ��t + ��+ (3.78)

where ��t is the positive part of Mach number using normal component of velocity

in the face direction of the left state, and ��+ is the negative part of Mach number

using normal component of velocity in the face direction of the right state. They can

be expressed as;

74

��t = Ô ~� /�� + 10�
~� /�� + ©��©0@ ©��© ≤ 1©��© > 1 (3.79)

��+ = Ô− ~� /�� − 10�
~� /�� − ©��©0@ ©��© ≤ 1©��© > 1 (3.80)

where �� and �� represents left state and right state Mach number based on

transformed velocity.

 �� = rÌ�Ì and �� = rÍ�Í (3.81)

The split pressure can be written as follows;

Ö×/Ø = Q 0\�t + \�+00 V (3.82)

where

\�t = \��� Ô2 − ��1 ��} @ ©��© ≤ 1©��© > 1 (3.83)

\�+ = \��� Ô−2 − ��1 ��} @ ©��© ≤ 1©��© > 1 (3.84)

3.3.3 AUSMD Method

AUSMD method [32], [22] is a derivative of AUSM method. This is referred to as

AUSMD since the numerical flux is calculated similar to the finite difference

75

splitting scheme's (FDS). In this method, splitting of mass flux is used instead of

mach number splitting as well as the flux vector is modified. In addition to this,

pressure is also split similar to AUSM method. In this scheme, the interface flux is

calculated using the following relation;

 g$0' = ~� Ï$RÙ'~/�$Ñ� + Ñ�' − ©$RÙ'~/�©$Ñ� − Ñ�'Ò + \~/� (3.85)

where $RÙ'~/� is the splitted mass flux based on splitted velocity defined according

to left and right values so that the best resolution can be obtained for shock

discontinuity. φ is the modified flux vector and p 1/2 is the split pressure.

The modified flux vector is defined as;

Ó = Q1ST]V (3.86)

The mass flux can be expressed in split form as follows;

 $RÙ'~/� = Ù�tR� + Ù�+R� (3.87)

where

Ù�t = ÔÚ� �$rÌt�()*'s��()* � + $1 − Ú�' �rÌt|rÌ|� �
rÌt|rÌ|�

@ |S�| ≤ i �#|S�| > i �# (3.88)

Ù�+ = ÔÚ� �− $rÍ+�()*'s��()* � + $1 − Ú�' �rÍ+|rÍ|� �
rÍ+|rÍ|�

@ |S�| ≤ i �#|S�| > i �# (3.89)

In these relations, αL, αR and maximum interface sound speed are defined as follows;

76

Ú� = �3�Ì uÌ} 83�Ì uÌ} 8t3�Í uÍ} 8 (3.90)

Ú� = �3�Í uÍ} 83�Ì uÌ} 8t3�Í uÍ} 8 (3.91)

 i �# = ¤Û�$i� , i�' (3.92)

The split pressure can be written as follows;

Ö×/Ø = Q 0\�t + \�+00 V (3.93)

where

\�t = \� Ô$rÌt�()*'s��()*s 32 − rÌ�()*8
rÌt|rÌ|�rÌ

@
|S�| ≤ i �#|S�| > i �# (3.94)

\�+ = \� Ô$rÍ+�()*'s��()*s 32 + rÍ�()*8
rÍ+|rÍ|�rÍ

@
|S�| ≤ i �#|S�| > i �# (3.95)

3.3.4 AUSMV Method

AUSMV method [32], [22] is another derivative of AUSM scheme referring to finite

volume splitting (FVS). This scheme is very similar to the AUSMD except normal

momentum calculations and splitting computations of pressure and velocity.

Equation (3.85) is used for the calculation of interface flux, again. However, in the

second column of face flux vector, instead of face flux calculation terms without

pressure, a new normal momentum calculation is used as follows;

77

~� Ï$RÙ'~/�$Ñ� + Ñ�' − ©$RÙ'~/�©$Ñ� − Ñ�'Ò ⇒ $RÙ�'~/� (3.96)

where normal momentum flux at the interface, $RÙ�'~/�, can be expressed as;

 $RÙ�'~/� = Ù�tR�S� + Ù�+R�S� (3.97)

In this scheme, the velocity can be split as;

Ù�t = Ô@$rÌt�Ì's��Ì @
rÌt|rÌ|�

@
|S�| ≤ i�|S�| > i� (3.98)

Ù�+ = Ô@− $rÍ+�Í's��Í @
rÍ+|rÍ|�

@
|S�| ≤ i�|S�| > i� (3.99)

For the interface split pressure, Equation (3.93) can be used with the new split

computations as shown below;

\�t = \�Ù�t Ô@ ~�Ì 32 − rÌ�Ì8@
~rÌ

@
|S�| ≤ i�|S�| > i� (3.100)

\�+ = \�Ù�+ Ô@ ~�Ì 3−2 − rÍ�Í 8@
~rÍ

@
|S�| ≤ i�|S�| > i� (3.101)

3.4 RECONSTRUCTION

In the code, cell centered approach is used. In other words, the primitive and

conserved flow variables are calculated and stored at the centroids of each cell. For

the calculation of inviscid fluxes, primitive flow variables should be estimated at

78

both sides of the interface between two cells. As mentioned before, the cell whose

flux will be calculated is referred to as the left state, while neighboring cell is named

as the right state.

As estimation methods of variables at the interface, two schemes can be used,

namely first order and second order schemes. In first order schemes, the flow

variables at the cell centroids are simply taken as the flow variables at the face for

both left and right states. In second order schemes, the cell-centered flow variables

should be reconstructed in order to use them at the interface. With the reconstruction,

one may obtain more accurate results whereas the solution time considerably

increases since gradients must be calculated for all cells at each iteration.

As reconstruction scheme, least squares reconstruction method is used in order to

calculate the gradients of flow variables at the cell centroids. After gradients are

found, they are used to estimate the primitive flow variables at the interfaces of the

cells.

3.4.1 Least Squares Reconstruction

There are two popular reconstruction schemes available in the literature. The least

squares reconstruction method [7] is used in the developed code since it gives more

accurate results compared to the second scheme, path integral method [33]. The

variables at a certain point in a cell can be calculated using primitive variables and

their gradients at the cell centroids as shown below;

 Ý$�, �' = Ý�
ÞÞ + �Ý�# $� − ��' + �Ý�. $� − ��' (3.102)

where subscript 'cell' denotes the centroid of the cell whose gradients are sought, q is

the vector of primitive variables and can be expressed as;

79

Ý = QRST�V (3.103)

The gradients of primitive variables can be calculated using the primitive variables at

the cell centroids of the cell whose gradients are calculated and neighbor cells. In the

following relations, subscript 'n' denotes the neighbor cells.

 �Ý�# = ~∆ Ï1.. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ' − 1#. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ'�� Ò
 (3.104)

 �Ý�. = ~∆ Ï1#. � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ' − 1## � $Ý� − Ý�
ÞÞ'$�� − ��
ÞÞ'�� Ò
 (3.105)

where

 1## = � $�� − ��
ÞÞ'�� (3.106)

 1.. = � $�� − ��
ÞÞ'�� (3.107)

 1#. = � $�� − ��
ÞÞ'� $�� − ��
ÞÞ' (3.108)

 ∆= 1##1.. − 1#.� (3.109)

3.4.2 Gradient Limiting

In order to avoid numerical oscillations at steep gradients which may lead to stability

problems, a limiter can be used for the gradients. With the use of limiter, calculation

of primitive variables at a certain point in the cell may be modified as follows;

80

Ý$�, �' = Ý�
ÞÞ + ß ��Ý�# $� − ��' + �Ý�. $� − ��'� (3.110)

where ß is the limiter vector which is a 1x4 matrix for gradients of four primitive

variables. The limiter value must be between 0 and 1. In order to determine its value,

one should need the maximum and minimum quantities of primitive variables among

the considered cell and its neighbors,

 Ý �# = max$Ý�
ÞÞ, Ý�' 5 = 1, … , ¤	� 5;<âℎä9� (3.111) Ý �� = min$Ý�
ÞÞ, Ý�'

where m is the number of neighbors of the cell under consideration. To compute

exact value of the limiter, it is also necessary to know the maximum and minimum

quantities of primitive variables in the cell. For outside cells, these points are usually

in the corners. However, for cut and split cells, these points may also be at the

intersection locations. For each point in a cell, the limiter value is calculated as

shown below [34],

å� =
æçè
çé1 Ý� = Ý�
ÞÞmin 31, /Ý(,-+Ýªê��0$Ý,+Ýªê��' 8 Ý� < Ý�
ÞÞmin 31, $Ý()*+Ýªê��'$Ý,+Ýªê��' 8 Ý� > Ý�
ÞÞ

@ < = 1, … , % (3.112)

where k is the number of points which are examined in the cell to determine

maximum and minimum quantities.

After computing all limiter values for all points, the minimum of all is chosen as the

exact limiter value,

 å = min $å~, å�, … , å�' (3.113)

81

For all primitive variables, the same procedure is applied and the limiter vector is

obtained.

3.5 VISCOUS FLUX CALCULATIONS

The viscous flux at a face, denoted as G, can be expressed as a function of flow

variables at the face and their gradients,

 a = 2$Ý� , ∇Ý�' (3.114)

The flow variables at the face can be obtained through the averages of left and right

state flow variables at the cell centroids. However, for calculating face gradients of

these variables, different methods are available, some of which gives fast results but

less accurate, some of which gives more accurate but slower results.

3.5.1 Reconstruction for Viscous Flux

The face gradients can be obtained by using cell-centered gradients computed by

inviscid reconstruction and cell-centered flow variables. By adding gradients of

inviscid reconstruction to the viscous flux computation, data further away from the

interface are considered so that more accurate results may be acquired [7].

Along the direction between left and right cells of the interface, the derivative of a

variable is obtained through transforming the gradients into x and y coordinates,

which are calculated by averaging the gradients computed by inviscid reconstruction

at cell centroids.

�Ý�	 = ~� =ì3�Ý�#8� cos k	 + 3�Ý�.8� sin k	í + ì@3�Ý�#8� cos k	 + 3�Ý�.8� j<5 k	 @íî (3.118)

In the above equation, t is the unit vector along the interface, n is the unit vector

along the direction between left and right cells and k	 is the angle between vector t

82

and x axis. In Figure 3.4, these vectors are illustrated for the interface between two

regular cells.

Figure 3.4 Schematic view of viscous flux computation at a face

The derivative of q along n direction can simply be computed using central

difference as

 �Ý�� = Ý-ê,��+Ýªê��©Ç-ê,��+Çªê��© (3.119)

Note that the above relations can also be written in terms of face gradients as

follows;

 3�Ý�#8� cos k� + 3�Ý�.8� sin k� = 4Ý45 (3.120)

 @3�Ý�#8� cos k	 + 3�Ý�.8� sin k	 @ = 4Ý4� (3.121)

where k� is the angle between vector n and x axis. In these relations, the only two

unknowns are the x and y derivatives of face gradients, so that they can be found

easily.

For calculating face gradients at the wall boundary, right state is taken at the wall.

Here, the primitive variable vector can be written as;

83

Ý� = QR�
ÞÞ00\�
ÞÞ
V (3.122)

The inviscid reconstructed gradients at right state are also necessary in order to

compute the viscous flux. These are taken as same as inviscid reconstructed gradients

of the cell itself in order to have the same gradients at the face

3.6 CALCULATION OF THE COEFFICIENTS

In order to verify the code's accuracy, two coefficients are used along the chord

length. While the skin friction coefficient are calculated for viscous flows, pressure

coefficient are used for both inviscid and viscous flows. These coefficients are

calculated for the cells near the wall boundary. Then, the graph created from these

data can be used to compare with the available numerical or experimental data in the

literature.

3.6.1 Pressure Coefficient

Pressure coefficient is a non-dimensional quantity which describes the relative

pressure along the chord length of the airfoil. The difference between stagnation and

static pressure is non-dimensionalized by the dynamic pressure.

 i� = �+�{�su{I{s (3.123)

While the dynamic pressure can be used for inviscid flows, it is not an accurate

measure for viscous flows. The free-stream Mach number can be used for

compressible viscous flows.

i� = ���{s 3 ��{ − 18 (3.124)

84

It is important to note that both equations for pressure coefficients lead to same result

with the non-dimensionalized free-stream values and boundary conditions.

Therefore, in the code, Equation (3.123) is used. If non-dimensionalization was not

used in the code, then it would be necessary to compute the coefficient by using

Equation (3.124).

3.6.2 Skin Friction Coefficient

Skin friction comes from the friction of the "skin" of the wall against the moving

fluid on it. While calculating skin friction, local wall shear stress, τw, is used. Non-

dimensionalization is realized by dynamic pressure similar to the pressure

coefficient.

 i� = ïð�su{I{s (3.125)

The local shear stress should be taken along the tangential direction to the wall. The

normal and shear stresses along the faces are calculated with the viscous

reconstruction as mentioned before. After the shear stresses in the nearest cells to the

wall are computed, these must be converted to the tangential direction from Cartesian

coordinates. Mohr circle can be used for this conversion.

Mohr circle can be established by the planar normal stresses, τxx and τyy, and shear

stress, τxy. Later, using this circle, the transformed stresses can be found at any point

on the circle. The following relation can be obtained from the Mohr circle in order to

compute the transformed shear stress at a point which is at an angle of θ away from

the x axis.

 c#�.� = − ï**+ï¦¦� sin 2k + c#. cos 2k (3.126)

τxy

85

Figure 3.5 Mohr circle

3.7 SOLUTION ADAPTATION

Solution adaptation is an important grid adaptation method which is applied during

the execution of the program when a specified level of convergence is achieved. It is

applied according to the compressibility and rotationality principles of the flow. The

critical regions containing discontinuities due to shocks and stagnation points are

refined so that resolution at these locations is increased to get more accurate results.

The criterion for solution adaptation is based on divergence and curl of velocity [38],

[22], for determining shock locations and shear layers accurately. A characteristic

length is used while using these criterion as shown below;

 c7 = |∇ ∙ ñ|��
ÞÞv/� (3.127)

 c! = |∇ × ñ|��
ÞÞv/� (3.128)

σ1 σ2 σ

τxy

σavg

For each cell, these criteria are checked. If one of these criteria is greater than the

standard deviations of these quantities,

cell is refined.

ó7 = �� $ïô's-,õ��

ó! = �� $ïö's-,õ��

where n is the total number of cells. In Figure 3.6, one can see an example to the

solution adaptation. Here, the grids at the shock location, stagnation points and shear

layers become finer with six cycles of solution adaptation.

86

For each cell, these criteria are checked. If one of these criteria is greater than the

standard deviations of these quantities, σD and σC which are given below, then the

'

'

is the total number of cells. In Figure 3.6, one can see an example to the

solution adaptation. Here, the grids at the shock location, stagnation points and shear

layers become finer with six cycles of solution adaptation.

Figure 3.6 An example of solution adaptation

For each cell, these criteria are checked. If one of these criteria is greater than the

which are given below, then the

 (3.129)

 (3.130)

is the total number of cells. In Figure 3.6, one can see an example to the

solution adaptation. Here, the grids at the shock location, stagnation points and shear

87

CHAPTER 4

MULTIGRID METHOD

Multigrid is a technique that accelerates the convergence rate by using coarser grids

in order to eliminate the low frequency errors. It is based on two principles, error

smoothing and coarse grids. In the first principle, some iterations are performed on

the finest grid in order to eliminate the high frequency errors. These iterations cannot

reduce the low frequency errors significantly. In order to smooth the low frequency

errors, coarse grids are used. The solutions on the finest mesh are transformed to the

coarser meshes and some iterations are performed on these meshes. As a result, high

frequency errors for coarser grids are improved. Since these high frequency errors

are low frequency errors for finest mesh, one may reduce low frequency errors by

transforming solutions back to the finest grid. Therefore, high and low frequency

errors are eliminated by multigrid. [35]

Multigrid method can be used for linear and non-linear problems. Brandtl [36]

developed an effective multigrid method for non-linear problems. This is called Full

Approximate Storage (FAS) scheme. Then, Jameson [37] and De Zeeuw [38]

implemented this scheme into Euler solvers. In the developed code, this scheme is

used.

In this chapter, multigrid concept and its steps are introduced for non-linear

problems, at first. Next, the coarsening process for Cartesian and quad grids are

explained in detail. Finally, the effect of multigrid technique both for inviscid and

viscous flows are investigated with some tables and graphs.

88

4.1 MULTIGRID CONCEPT FOR NON-LINEAR EQUATIONS

The form of a non-linear problem may be presented as shown by the following

equation , in a discretized way.

 ÷�Fø� = 0 (4.01)

In this equation, L represents the non-linear differential space operator, Pø is the

converged discrete solution and subscript h denotes the mesh spacing for grids.

While h is the finest step size, 2h, 4h ... and nh represent the coarser step sizes. If one

use the approximate discrete solution, Pù , the following relation is obtained.

 ÷�Fù � = :�$Fù �' (4.02)

In this relation, R denotes the residual function. If Equation (4.01) is subtracted from

Equation (4.02), one can acquire the following equation:

 ÷�Fù � − ÷�Fø� = :�$Fù �' (4.03)

Since the error function is the difference between the approximate solution and the

exact solution, this equation can be approximated by using the solution which is

obtained at the coarser grid one step away from the initial grid. To do this, a

restriction operator which transfers the information from the finer to coarser grid is

used both for residual function and the approximate solution.

 ÷��$1���Fø� + ú��' − ÷��1���Fø� = 1���Å� (4.04)

The error function at the step 2h, which is the only unknown in the equation above,

can be found. Then, by using the prolongation operator which transfers the

information from coarser to finer grid, the improved approximate solution is

obtained.

89

Fø��
¼ = Fø� + 1��� ú�� (4.05)

These equations are adapted to the code in four steps. These are fine grid iterations,

restriction, prolongation and final iterations with correction. When the second order

scheme is used, some problems occurred during the application of the multigrid

scheme. After describing multigrid steps, the modifications done for the second order

scheme are explained.

4.1.1 Fine Grid Iterations

Some iterations are performed initially in order to decrease the high frequency errors.

These iterations are done in the finest mesh and simply multistage time stepping is

used, as described in Chapter 3.

 F�$�' = F��

 F�$�' = F�$�' − � � ¡	� �:;j3F�$�+~'8 + gg�� % = 1, … , ¤ (4.03)

 F��t~ = F�$ '

In the equation set above, subscript n denotes the time step and FF represents the

forcing function. For the fine grid iterations step, forcing function is zero for all

conserved variables. By using the solutions in the n’th time step, the solutions in the

(n+1)’th time step are simply found. The high frequency errors are considerably

reduced while low frequency errors decrease slightly. The number of iterations in

this step is determined by an input. After all fine grid iterations are performed in one

cycle, the residuals obtained from the latest results, i.e. Res(Qh
m) are found in order

to use them in restriction part.

90

4.1.2 Restriction

In this step, the results obtained in the finest mesh are transferred to the coarser

meshes with the use of the restriction operator. The obtained approximate solution

and the final residual in the finest mesh are used to determine the initial guess for the

computational cells in the coarser grid. Before these, coarser meshes must be

obtained and the cell relations between the grids must be determined. This process is

described in Section 4.2 in a detailed manner. At the moment, one may assume that

the coarser grids are obtained and the cell relations are set. The equivalent cells at

coarser grids are obtained with coarsening process. If one looks at a coarser cell, it

may cover four children or one cell which is the coarsened cell itself. In this section,

each of these finer cells is referred to as the equivalent finer cell. If one looks at a

finer cell from a coarser cell, the equivalent coarser cell may be the cell itself or the

parent of the cell according to the coarsening process. These naming is expressed in

Figure 4.1 in order to be understood well.

Figure 4.1 Illustration of “equivalent cell” term

In Figure 4.1, cells A and B are shown. Cell A is a computational cell in the mesh

spacing h while cell B is a computational cell in the mesh spacing 2h. In terms of cell

relations between two mesh spacings, cell A is an equivalent finer cell for cell B. On

the other hand, cell B is an equivalent coarser cell for cell A. It can be seen that cell

B has four equivalent finer cells.

A B

91

After this brief explanation, the equations which are used to calculate the initial

guesses of the solutions and the forcing function at the coarser step can be written as;

 F��$�' = 1���F�$ ' (4.04)

 gg�� = 1û��� �:;j3F�$ '8 + gg�� − :;j3F��$�'8 (4.05)

where 1��� is the volume weighted restriction operator and 1û��� is the residual

collection operator, which can be expressed as;

1���F�$ ' = � �F�$('��êü·,q)�ê-�ý,-êþ ªê���� ���êü·,q)�ê-�ý,-êþ ªê���
 (4.06)

 1û����Ú� = � �Ú�
�r�n�Þ
�	���
� �
ÞÞ� (4.07)

After setting the initial values and forcing functions for coarser grids, some mid step

iterations are performed, whose number is determined according to the input

specified by the user. These lead to the improvement of approximate solutions at

coarser grids. In the equations above, transformation from h to 2h is illustrated. If the

level number is higher than 1, the approximate solutions for more coarser grids such

as 4h, 8h, 16h etc. can be obtained using the same methodology after obtaining the

improved solutions at one mesh spacing size before. In this code, one can use 7

levels at maximum, providing a coarse mesh of a spacing of 128h.

4.1.3 Prolongation

The aim in this step is to transfer the results obtained in coarser meshes to the actual

finest mesh and to get an improved result. To do this, a prolongation operator is used

with the approximate results found in the coarser meshes, as shown by the following

equation;

92

 F��
¼ = F � + 1��� 3F��$�
¼' − 1���F��$ '8 (4.08)

where 1��� is the prolongation operator and can be written as;

 1��� $Ú' = Ú (4.09)

This is referred to as the injection operator for prolongation. As a prolongation

operator, a gradient operator which is the dot product of the gradient and direction

vector may be used, as well. However, for simplicity, injection operator is used in the

developed code. The “new” superscript that is seen in Equation (4.08) represents the

new results after interpolating the approximate results to the mesh spacing that the

results are sought. It can be obtained from prolongation. However, if ,for example,

the level is set to 1, then the new values are taken from the restriction part after mid

step iterations are performed.

In the developed code, two different cycles are used. These are the Saw-Tooth and

V-Cycle. The only difference between them are the iterations performed after

prolongation is applied in the V-Cycle. In the V-Cycle, some iterations are

performed in each level after the new improved solutions are acquired with the

transfer of the solutions to the coarser level. Since forcing functions are necessary to

perform iterations, it is necessary to store all forcing functions found in the

restriction part for all levels. Since it brings a low efficiency for memory with the

storage of excessive number of variables, it is expected to have a lower convergence

rate compared to the Saw-Tooth cycle. The comparison between these two cycles are

done in the next two sections of this chapter.

4.1.4 Correction and Final Iterations

The final step in the multigrid technique is the correction and final iterations. In this

step, the improved approximate solutions are corrected with some iterations, like fine

grid iterations. As an initial guess, the found improved solution after prolongation,

93

i.e. F��
¼, is used. This step is applied only for the finest mesh with a number of

iterations determined by a seperate input. As a result of all these steps, the solutions

at the finest mesh are obtained with the elimination of low and high frequency errors

as much as possible.

4.1.5 Modifications for the Second Order Scheme

While solving flows with a second order and multigrid technique, some problems

were encountered. In these attempts, the pressure and/or the density were decreased

to negative values in coarser grids. Therefore, the solutions in the coarser grids are

obtained by using a first order scheme even if the scheme is second order for the

finest grid. Only at the fine grid iterations step and the correction and final iterations

step, the second order scheme is used. With this slight modification, stability during

the execution of the program is provided.

Whereas solutions are verified in Chapter 5, in order to validate that the pure second

order solution and the modified solution give the same result, a comparison is done

around RAE 2822 airfoil, using an inviscid flow at a Mach number of 0.75 and an

angle of attack of 3 degrees. Furthermore, five cycles of solution adaptation is

applied to the grid. The pressure coefficient distribution are depicted in Figure 4.2.

As it can be seen, nearly the same distribution is observed for two cases. Moreover,

the drag coefficient is calculated as 0.0427 for both cases. A slight difference is

formed for lift coefficient such that seven level multigrid solution calculates the lift

coefficient as 0.9725 while solution without multigrid gives a lift coefficient of

0.9720. Since this very small effect can be neglected while using the second order

scheme, it can be concluded that modifications are useful if the second order scheme

is used together with the multigrid technique.

Moreover, the multigrid scheme affects solution time significantly. A speed up ratio

of 19 is obtained in this problem. As described in the next section, a maximum ratio

of 17 is acquired for this inviscid flow using the first order scheme. The difference

94

can be due to the difference in time required for the execution between the first and

second order schemes. Second order schemes take more time in comparison to first

order schemes since gradients and limiters are calculated at each iteration for each

cell. In multigrid solutions, the second order scheme is used partly. Therefore, the

convergence time decreases significantly by using with the first order scheme.

Figure 4.2 Comparison of pressure coefficient distribution obtained by using partly and

purely second order scheme around RAE 2822 airfoil

4.2 COARSENING PROCESS

The coarsening process, which is applied in the restriction part of multigrid

technique, is presented in detail in this section. First, how to coarsen Cartesian cells

are presented. Then, the Quad cells are considered for the coarsening process.

95

4.2.1 Coarsening of Cartesian Cells

During coarsening process, three pointers are used, as discussed briefly in Section

2.1.3. These are “perform”, “meshSpacing” and “compCell” words. First, the cells

are flagged with the perform word if all of their children are computational cells for

one finer grid. As a result of this step, the cells which can be coarsened successfully

are found. Then, according to the mesh spacing of the grid, the cells’ “meshSpacing”

word is determined. Finally, using “compCell” pointer, computational cells for

determined mesh spacing is set according to the one level rule. It is important to note

that cells in the finer grids are not deleted. By using “compCell” and “meshSpacing”

words, these finer cells are ignored for the coarser grids so that new computational

cells are created without any deletion. Figure 4.3 illustrates a grid with one cycle of

solution adaptation around the RAE 2822 airfoil, which is coarsened to 7 levels. In

Table 4.1, the cell numbers are presented according to cell types for all grids used in

multigrid scheme. It can be seen that with the increase in mesh spacing, the total

coarsening ratio increases significantly whereas the relative coarsening ratio

decreases and remains at a value of 1.3.

Table 4.1 Cell numbers of grids used in multigrid for RAE 2822 airfoil

Mesh
Spacing

Out
Cell No

Cut Cell
No

Split Cell
No

Total Cell
No

Coarsening
Ratio Acc. To

h-grid

Coarsening
Ratio Acc.

To One
Finer Grid

h 5804 525 5 6334 - -

2h 1707 263 4 1974 3.2 3.2

4h 708 134 3 845 7.5 2.3

8h 326 69 2 397 16.0 2.1

16h 234 36 2 242 26.2 1.6

32h 163 19 2 184 34.4 1.3

64h 129 14 2 145 43.7 1.3

128h 98 11 0 109 58.1 1.3

96

Figure 4.3 Illustration of grids used in multigrid scheme for RAE 2822 airfoil

128h-grid 64h-grid

32h-grid 16h-grid

8h-grid

2h-grid

4h-grid

h-grid

97

4.2.2 Coarsening of Quad Cells

Coarsening of quad cells are different than the Cartesian cells since quads are formed

according to the Cartesian cells. In a hybrid mesh, Cartesian cells are first coarsened

at the restriction step. Since cut and split cells are changed compared to the finer

grid, quad cells which are generated from these newly coarsened cells near the wall

are automatically coarsened. However, this is not sufficient. The row number in the

boundary layer is divided by 2 for each mesh spacing so that quad cells are coarsened

not only horizontally but also vertically. Since quad cells are coarsened by dividing

the row number by 2 at each level, the user-defined row number is restricted such

that it must be a power of 2. Moreover, the stretch factor is squared so that the

coarsened quad cells cover the finer ones completely. When the row number is 1 for

quad cells at a level, then it remains the same for all coarser levels in order not to

lose the body-fitted geometry. In Figure 4.4, the hybrid mesh with 16 rows around

NACA 0012 airfoil can be seen with the other grids used in the multigrid scheme.

(a) h-grid

(b) 2h-grid

98

(c) 4h-grid

(d) 8h-grid

(e) 16h-grid

Figure 4.4 Illustration of hybrid grids used in multigrid for NACA 0012 airfoil

99

4.3 MULTIGRID EFFECT ON INVISCID FLOW

In this section, the effect of multigrid method is investigated using the transonic flow

around RAE 2822 at a Mach number of 0.75 and an angle of attack of 3 degrees.

Since the results are discussed in Chapter 5, only the residuals are examined in order

to see the effect of multigrid on the convergence time. For the results in this section

and in the next section, a work-station is used. This work-station has a four core

processor at 2.33 GHz and 32 GB Ram.

Four different problems are discussed in this chapter. 25 cases are tested for these

four problems. In the first problem, the solution adaptation is not used and the

multigrid level on this coarse mesh are discussed. Secondly, again the level of

multigrid is examined at a mesh after the application of five cycles of solution

adaptation. Thirdly, the difference between Saw-Tooth and V-Cycle are shown both

for solution adapted and non-adapted cases. Finally, the iterations at the steps of the

multigrid technique are changed and the results are compared. The results are taken

as a form of a data set formed by the logarithm of the normalization of root mean

square of continuity residuals and the CPU time. Normalization is done by dividing

the root mean square to the difference between the maximum and the minimum

continuity residuals.

4.3.1 Level Test Without Solution Adaptation for Inviscid Flow

In the first problem, the first mesh created before the solution is used. In other words,

no cycle of solution adaptation is used. Totally 8 tests were done. The number of

cells for all test cases is 4055. The solver is iterated until the normalized residual

reaches -10. The flux method is approximate Riemann solver of Roe. The iterations

for all steps are set to 10 for this problem. Saw-Tooth cycle is used. The only

different parameter in test cases is the level number of the multigrid. This number is

changed from 0 to 7 in these cases. The results that are obtained, are shown in Table

4.2. In addition, the residuals of these tests with respect to the CPU time are

presented in Figure 4.5.

100

Table 4.2 Level test results without solution adaptation for inviscid flow

Case
No Description Time (sec)

Speed Up
Ratio

1 No multigrid 458 -

2 One level multigrid 298 1.54

3 Two level multigrid 187 2.45

4 Three level multigrid 116 3.95

5 Four level multigrid 85 5.39

6 Five level multigrid 74 6.19

7 Six level multigrid 73 6.27

8 Seven level multigrid 73 6.27

Figure 4.5 Residuals with respect to CPU time using a non-solution adapted mesh

around RAE 2822 airfoil

101

As shown above, the solution speeds up with the increase in level. However, when

the last three cases having levels of 5, 6 and 7 are considered, it can be seen that

there is not too much difference between them in terms of the convergence time.

Nonetheless, the maximum speed up ratio is obtained from the seventh and the

eighth cases, which is 6.27.

4.3.2 Level Test With Solution Adaptation for Inviscid Flow

In this problem, the solution adapted mesh is used while examining the effect of

levels. Five cycles of solution adapted mesh are used. The cases and the results are

tabulated in Table 4.3.

Table 4.3 Level test results with solution adaptation for inviscid flow

Case
No Description Time (s)

Speed Up
Ratio

9 No multigrid 36965 -

10 One level multigrid 23327 1.58

11 Two level multigrid 14356 2.57

12 Three level multigrid 7510 4.92

13 Four level multigrid 5631 6.56

14 Five level multigrid 2943 12.56

15 Six level multigrid 2423 15.26

16 Seven level multigrid 2177 16.98

As it can be seen, the level increase has a great effect on the acceleration for solution

adapted mesh. Up to five levels, the speed up ratio is doubled approximately. After

that, while the increase in the ratio is decreasing, the ratio is continuously raising so

that the maximum ratio, which is nearly 17, is obtained from the final case having a

level of seven.

In Figure 4.6, the residuals are expressed with respect to the CPU time graphically.

One can see the closeness of residuals for the 14th, 15th and 16th cases. If one

102

consider the results in the previous section, the level increase brings an enormous

acceleration rate especially for solution-adapted grids while non-solution adapted

grids are accelerated at a maximum ratio of 7 with the level increase.

Figure 4.6 Residuals with respect to CPU time using a solution adapted mesh

around RAE 2822 airfoil

4.3.3 Cycle Test for Inviscid Flow

In this problem, two different cycles, namely Saw-Tooth and V-Cycle, are tested

with and without applying solution adaptation. For all cases, seven level of multigrid

is used. In the first two cases, the solution adaptation is not used. Then, for the last

two cases, five cycles of solution refinement are applied to the mesh. The results

obtained for these cases are presented in Table 4.4.

103

Table 4.4 Cycle test results for inviscid flow

Case
No Description Time (s)

Speed Up
Ratio

17 Saw-Tooth without solution adaptation 73 6.27

18 V-Cycle without solution adaptation 98 4.67

19 Saw-Tooth with five cycles of solution adaptation 2177 16.98

20 V-Cycle with five cycles of solution adaptation 2365 15.63

Figure 4.7 Residuals with respect to the CPU time for cycle testing around RAE 2822 airfoil

As one can see in Figure 4.7, V-Cycle leads to a more slower convergence compared

to Saw-Tooth cycle for both grids with and without solution adaptation. As expected,

the difference between these cycles are not much higher. The reason, why V-Cycle

104

converges slower, may be the increase in the required memory since the forcing

functions must be stored in order to use them for the iterations at the prolongation

step.

4.3.4 Iteration Test for Inviscid Flow

Another important input, which affects the convergence time while applying

multigrid technique is the iteration number in the multigrid steps. In this section, the

iteration numbers are changed using five cases in order to find the optimum numbers

for inviscid flow. The same grid with five cycles of solution adaptation and the same

inputs are used for all cases so that the pure effect of iteration numbers can be

observed.

Table 4.5 Iteration test results for inviscid flow

Case
No Description Time (s)

Speed Up
Ratio

21 5 iterations 2165 17.07

22 10 iterations 2177 16.98

23 15 iterations 2182 16.94

24 20 iterations 2418 15.29

25 25 iterations 2728 13.55

In the fine-grid, mid and final steps, the same number of iterations are used. As

shown in Table 4.5 and Figure 4.8, the decrease in the iteration number enables faster

convergence rates. Thus, the optimum number for this inviscid flow is 5 iterations at

each step, providing a speed up ratio of 17.07. However, the amount of increase is

just a few seconds especially between cases 21, 22 and 23. One can infer that, it is

not necessary to use a large number of iterations since the low frequency errors can

be eliminated using a few iterations for inviscid flows.

105

Figure 4.8 Residuals with respect to the CPU time for testing the number of iterations

around the RAE 2822 airfoil

4.4 MULTIGRID EFFECT ON VISCOUS FLOW

In this section, the effect of multigrid is investigated using the transonic flow around

NACA 0012 at a Mach number of 0.5, an angle of attack of 0 degree and a Reynolds

number of 5000. Only the residuals are presented in this section since the results are

discussed in the next chapter.

This time, five problems are considered. Firstly, the grid without applying solution

adaptation is used and the effect of multigrid level number is examined with several

106

test cases. Secondly, the level number is tested using a mesh where three cycles of

solution adaptation is applied. Thirdly, the difference in cycles are presented both for

solution adapted and non-solution adapted meshes. Fourthly, the iteration numbers in

the steps are changed to find the optimum numbers for three cycles of solution

adapted mesh. Finally, the effect of multigrid is discussed for an hybrid mesh.

4.4.1 Level Test without Solution Adaptation for Viscous Flow

In the first problem, eight cases are tested. The only variable parameter is the

multigrid level number. The purpose is to see the effect of level increase when

solution adaptation is not used for viscous flows. While the iteration number at fine

grid step is 15, 10 is used for the other steps. Saw-Tooth cycle is used for all cases.

As inviscid flux method, AUSMV is used. As convergence criteria, the solver is

iterated until the normalized continuity residual reaches -9. As shown in Table 4.6

and Figure 4.9, the level increase does not provide a significant acceleration rate

even if seven levels are used. While a speed up ratio up to 6 can be obtained for the

inviscid flow using a mesh without solution adaptation , a maximum speed up ratio

of 1.5 is obtained for the laminar flow.

Table 4.6 Level test results without solution adaptation for viscous flow

Case
No Description Time (s)

Speed Up
Ratio

1 No multigrid 2958 -

2 One level multigrid 2480 1.19

3 Two level multigrid 2364 1.25

4 Three level multigrid 2280 1.30

5 Four level multigrid 2232 1.33

6 Five level multigrid 2251 1.31

7 Six level multigrid 2091 1.41

8 Seven level multigrid 2002 1.48

107

Figure 4.9 Residuals with respect to CPU time using a non-solution adapted mesh

around NACA 0012 airfoil

4.4.2 Level Test with Solution Adaptation for Viscous Flow

The effect of level increase is also tested in this problem. However, the grid is

changed such that three cycles of solution adaptation is applied. The results are

tabulated in Table 4.7.

108

Table 4.7 - Level test results with solution adaptation for viscous flow

Case
No Description Time (s)

Speed Up
Ratio

9 No multigrid 67660 -

10 One level multigrid 42862 1.58

11 Two level multigrid 23558 2.87

12 Three level multigrid 13169 5.14

13 Four level multigrid 10838 6.24

14 Five level multigrid 9859 6.86

15 Six level multigrid 10284 6.58

16 Seven level multigrid 9582 7.06

As it can be seen, level increase leads to a higher speed up ratio for solution adapted

mesh. Except the 15th case, the convergence time decreases with the increase in the

level number. In comparison to the previous problem, one can say that the multigrid

is able to accelerate the solution time significantly by increasing the level number.

While the ratio is around 1.5 for the coarsest mesh, it can reach 7 for finer meshes, as

one can see in Table 4.7 and Figure 4.10.

In addition, the increase after five levels does not provide a significant difference in

terms of the convergence time. While the solution converges after 9859 seconds for

the 14th case, the final case provides a convergence in 9582 seconds. The difference

is small if one compares this amount with 67660 seconds which is obtained for the

case without the application of multigrid.

If the finer mesh while solving the inviscid flow is reconsidered, it can be concluded

that the multigrid does not provide a sufficient acceleration since a speed up ratio of

17 can be obtained for inviscid flows. However, it must be considered that the

viscous flows converge so slowly in contrast to the inviscid flows. Thus, a speed up

ratio of 7 gives a significant improvement in the convergence time.

109

Figure 4.10 Residuals with respect to the CPU time using a solution adapted mesh

around NACA 0012 airfoil

4.4.3 Cycle Test for Viscous Flow

In this section, V-Cycle and Saw-Tooth cycles are compared using a level of 7 for

grids with and without solution adaptation. The results obtained for this problem are

tabulated in Table 4.8.

110

Table 4.8 Cycle test results for viscous flow

Case
No Description Time (s)

Speed Up
Ratio

17 Saw-Tooth without solution adaptation 2002 1.48

18 V-Cycle without solution adaptation 2248 1.32

19 Saw-Tooth with three cycles of solution adaptation 9582 7.06

20 V-Cycle with three cycles of solution adaptation 14077 4.81

The results show that the V-Cycle converges slower than the Saw-Tooth cycle for

both grids, as shown in Figure 4.11. While there is a slight difference in the grid

without solution adaptation, it becomes larger when finer mesh is used.

Figure 4.11 Residuals with respect to CPU time for cycle testing around NACA 0012 airfoil

111

4.4.4 Iteration Test For Viscous Flow

In this problem, the grid that three cycles of solution adaptation is applied is used to

determine the optimum iteration numbers at the steps of multigrid. Thus, six cases

are tested. On the contrary to the inviscid flow problem, all of the cases does not

have the same iteration number at all steps. Some cases have more iterations for fine

grid step. The case descriptions and the results are presented in the Table 4.9.

As one can see in Figure 4.12, the 26th case gives the best results for this viscous

flow. Besides, the 22th case is not very much different than the 26th case. One can

infer that it is necessary to iterate more in order to eliminate low frequency errors for

viscous flows compared to inviscid flows.

Figure 4.12 Residuals with respect to CPU time for iteration testing

around NACA 0012 airfoil

112

Table 4.9 Iteration test results for viscous flow

Case
No Description Time (s)

Speed Up
Ratio

21 10 fine, 10 intermediate and 10 final iterations 13549 4.99

22 15 fine, 10 intermediate and 10 final iterations 9582 7.06

23 15 fine, 15 intermediate and 15 final iterations 14346 4.72

24 20 fine, 10 intermediate and 10 final iterations 10346 6.54

25 20 fine, 15 intermediate and 15 final iterations 14572 4.64

26 20 fine, 20 intermediate and, 20 final iterations 8773 7.71

4.4.5 Hybrid Mesh Test for Viscous Flow

The final problem is the test of multigrid on hybrid meshes. As the quad cells are

used in the boundary layer, the number of cells increases significantly. For example,

while the mesh without solution adaptation has a cell number of 4040, 14562 cells

are used for a hybrid mesh when solution adaptation is not used. In other words, even

the coarsest mesh includes a large number of cells with very small cells in the

boundary layer. With this huge amount of cells and the large size differences, the

convergence time is very long compared to the mesh formed only by Cartesian cells.

Thus, multigrid is very important to decrease the solution time.

For this problem, two cases are tested; multigrid is not used for the first one and a

seven level multigrid is used for the second one. Iteration numbers are set to 30 at

each step since a lower number causes divergence in the solution. It can be inferred

that while using very small cells in the boundary layer, the iteration step needs to be

larger than the other problems in order to decrease the low frequency errors. Saw-

Tooth cycle is used in the second case. The results are presented in Table 4.10 in

written and in Figure 4.13.

113

Table 4.10 Hybrid mesh test results for viscous flow

Case
No Description Time (s)

Speed Up
Ratio

27 No multigrid 256049 -

28 Seven level multigrid 55014 4.65

Figure 4.13 Residuals with respect to the CPU time for hybrid mesh testing

around NACA 0012 airfoil

The case for which no multigrid is used converges approximately 8 times slower than

the case for which quad cells are not used. Although the effect of multigrid is

significantly more for finer meshes as before, a seven level multigrid leads to a speed

up ratio of 4.65 for hybrid mesh and a significant difference occurs between the

114

hybrid and Cartesian grids when solution adaptation is not used, as expected.

However, the multigrid effect on solution adapted hybrid grids cannot be tested due

to some problems regarding multigrid usage on hybrid meshes when solution

adaptation is applied.

115

CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the developed code is validated and verified both for inviscid and

viscous laminar flows with some tests. These tests are divided into three sub groups.

First, inviscid flow around an airfoil is tested for two different cases. One of the

cases is a transonic flow, while the other one is a supersonic flow. Secondly, one

subsonic flow and one transonic flow at low Reynolds numbers are analyzed in order

to verify the code for laminar flows. Finally, in order to show the validity of the

hybrid mesh, one high Reynolds number flow is examined. Since the flow is

turbulent for this case and the code is not designed to solve turbulence, the results are

not expected to be accurate. For all problems, the results are compared with the data

found in the literature which is numerical or experimental. All results are obtained by

using a work-station. This computer has a single processor with 4 cores each at a

speed of 2.33 GHz and 32 GB Ram. The operating system is Microsoft Windows XP

64Bit Edition.

5.1 INVISCID FLOW

In this section, two problems are considered. While one of them is a transonic flow,

the other one is a supersonic flow around a one-element airfoil. The shock locations

and strengths of these shocks are compared using pressure distribution graphs with

the data available in the literature. The specifications of these problems are depicted

in Table 5.1.

116

Table 5.1 Test problems for inviscid flow

SECTION AIRFOIL M∞ α (degrees)

5.1.1 RAE 2822 0.75 3

5.1.2 NACA 0012 1.2 7

5.1.1 Transonic Flow Around RAE 2822

The first problem is a transonic flow around a non-symmetric airfoil, i.e. RAE 2822,

with a Mach number of 0.75 and an angle of attack of 3 degrees. The reason why

transonic flow is selected is to demonstrate that by using Cartesian approach,

locations of shocks and strengths of shocks can be captured using a sufficiently finer

mesh around the shock.

Table 5.2 Common properties for transonic inviscid flow

MESH INPUTS

Outer boundary size factor 18

SOLUTION INPUTS

Flux method Roe

Refinement cycle interval 20

log(RMS) for convergence -10

CFL safety factor 1

MULTIGRID INPUTS

Multigrid type Saw-Tooth

Multigrid level 7

Fine grid iterations 10

Intermediate step iterations 10

Final grid iterations 10

117

The results are obtained using six cases. After that, they are compared with the

results from reference [13], which uses an O-type mesh with 20480 cells. For all

cases, the outer boundary is located 18 chords ahead of the airfoil. As a flux

calculating technique, approximate Riemann solver of Roe is used. The solver is

iterated until the logarithm of root mean square of normalized continuity residual

reaches -10. In addition, a 7 level multigrid is used to accelerate convergence time.

The common properties for the test cases in this problem are tabulated in Table 5.2.

Two parameters are changed at the test cases. One of them is the order of the scheme

and the other one is the number of refinement cycles at solution adaptation. Gradient

limiting is used in the cases where second order scheme is used to calculate the face

fluxes. Table 5.3 shows the calculated lift and drag coefficients for these cases and

the reference case as well as the convergence time. While attempting to obtain results

using the second order scheme without gradient limiters, the pressure became

negative and results are not acquired. The reason is that the second order scheme

leads to fluctuating residuals. While the limiters prevent the excessive change in

residuals at each iteration, the solutions without using these limiters can cause to

instability problems.

Table 5.3 Comparison of results for transonic inviscid flow around RAE 2822 airfoil

Case
No Description CD CL

Cell
Number Time

1
No solution refinement with

1st order
0.0663 0.6725 4055

0 hour 1 minute
13 seconds

2
No solution refinement with

2nd order
0.0638 0.7089 4055

0 hour 9 minutes
19 seconds

3
Three solution refinement

with 1st order
0.0444 0.9267 18880

0 hour 6 minutes
31 seconds

4
Three solution refinement

with 2nd order
0.0446 0.9377 17647

0 hour 24 minutes
53 seconds

5
Five solution refinement with

1st order
0.0424 0.9649 61526

0 hour 36 minutes
16 seconds

6
Five solution refinement with

2nd order
0.0427 0.9725 57496

1 hour 25 minutes
5 seconds

7 Reference results [13] 0.0448 1.1044 20480 -

118

As shown in Table 5.3, the results are getting closer to the reference results with the

increase in the solution refinement cycle. In addition, the second order usage leads to

more accurate results for a fixed solution adaptation cycle. However, with the second

order scheme, the convergence time increases greatly. For example, the increasing

ratio is about 9 if solution refinement is not used, while it is approximately 2.5 for

five cycles of solution refinement. Nonetheless, the best result is obtained for the

sixth case, where five cycles of solution adaptation and second order scheme is used.

The pressure distributions of all the cases compared to the reference case are shown

in Figure 5.1.

Figure 5.1 Pressure coefficient distribution for transonic inviscid flow around RAE 2822

airfoil

119

As observed from Figure 5.1, the pressure distribution at the upper surface, where a

shock exists, are underestimated for all cases. One can say that low number of

solution refinement cycles leads to big difference especially at upper surfaces.

However, slight differences are occurred at the cases where a solution refinement

cycle number greater than 3 is used. Nonetheless, with increasing cycle number, the

solution gets closer to the reference data at a more or less amount. In addition, the

shock locations are not captured well by all of the cases. Yet, the distribution at the

below surface are in a good agreement with the reference data. The grids used for

Case 3 and Case 5 are shown in Figure 5.2.

(a) (b)

Figure 5.2 The grids around the RAE 2822 for Case 3 (a) and Case 5 (b)

for the transonic inviscid flow

120

Figure 5.3 Mach contours of cases where solution adaptation is applied

around RAE 2822 for the transonic inviscid flow

Besides the importance of cycle increase, the second order scheme usage leads to

slightly more accurate results compared to the first order scheme for all cases, as

seen in Table 5.3 and Figure 5.1. It can be seen that the best result is obtained from

the sixth case again. Since it is difficult to see the effect of the order of scheme in

Figure 5.1 for the cases where solution adaptation is applied, Mach and pressure

contours are presented in Figures 5.3 and 5.4 both for three cycles and five cycles of

solution adaptation. One can see the slight differences between the abreast figures. In

the first row, cases with three cycles of solution refinement are compared while five

cycles are compared in the second row.

CASE 3

CASE 5

CASE 4

CASE 6

121

Figure 5.4 Pressure contours of cases where solution adaptation is applied

around RAE 2822 for the transonic inviscid flow

5.1.2 Supersonic Flow Around NACA 0012

The second problem is a supersonic flow around a symmetric airfoil at a Mach

number of 1.2 and an angle of attack of 7 degrees. The aim is to show that bow and

oblique shocks can be captured accurately.

Eight tests were carried out for this problem. The far-field boundary is located 18

chords ahead of the airfoil for all cases. In addition, first order scheme is used.

Multigrid technique is also used with seven levels. The only changing inputs are the

CASE 3

CASE 5

CASE 4

CASE 6

122

solution refinement cycle and the flux calculation method. One reference case is used

to compare the test cases.

Table 5.4 Common properties for supersonic inviscid flow

MESH INPUTS

Outer boundary size factor 18

SOLUTION INPUTS

Order of scheme 1

Refinement cycle interval 20

log(RMS) for convergence -10

MULTIGRID INPUTS

Multigrid type Saw-Tooth

Multigrid level 7

Fine grid iterations 10

Intermediate step iterations 10

Final grid iterations 10

The code has four different inviscid flux calculation methods. In this problem, these

techniques are compared. First, these techniques are compared without applying the

solution adaptation since it is easy to compare by looking at the pressure distribution

along the chord length. Second, four cycles of solution adaptation are used while

obtaining results with different flux methods. The aim is to show that all methods

give accurate results compared to the reference data [13], which uses an O type grid

with 20480 cells. Below, one can see the cases and the results obtained from these

cases.

123

Table 5.5 Comparison of results for supersonic inviscid flow around NACA 0012 airfoil

Case
No

Description CD CL
Cell

Number
Time CFL

1
No solution

refinement with
AUSM flux method

0.1688 0.5421 4040
1 minute 35

seconds
0.9

2
No solution

refinement with
AUSMD flux method

0.1658 0.5253 4040
1 minute 21

seconds
1

3
No solution

refinement with
AUSMV flux method

0.1684 0.5333 4040 1 minute 8 seconds 1

4
No solution

refinement with Roe
flux method

0.1648 0.5220 4040
1 minute 18

seconds
1

5
Four solution

Refinement with
AUSM flux method

0.1603 0.5218 23753
15 minutes 59

seconds
0.9

6
Four solution

refinement with
AUSMD flux method

0.1599 0.5203 25362
17 minutes 17

seconds
1

7
Four solution

refinement with
AUSMV flux method

0.1608 0.5209 25331
15 minutes 8

seconds
1

8
Four solution

refinement with Roe
flux method

0.1595 0.5193 25178
21 minutes 15

seconds
1

- Reference results [13] 0.1538 0.5138 20480 - -

In the cases, where solution adaptation is not used, Roe's flux calculation method

gives the closest result to the reference data. It overestimates the drag coefficient by

7.1 % and the lift coefficient by 1.6 %. On the other hand, AUSM gives the worst

result among the four cases. Overestimating percent is 5.5% at lift coefficient and

9.8% at drag coefficient. All the four cases converge at approximately the same time.

When solution adaptation is applied, four methods approach to the reference results.

While the minimum overestimating percent is obtained from Roe's method, which is

3.7 % for drag and 1.15 % for lift coefficient, AUSM gives the maximum

overestimating percent of 1.6 % for lift and AUSMD gives a maximum percent of

124

4.6 % for drag coefficient. As a result, the solution adaptation plays an important role

to obtain accurate results for all flux methods in this problem. Moreover, one can

infer that the difference in results between flux calculation techniques diminishes

with the increase in the cycle of solution adaptation. In Figure 5.5, the pressure

distribution of cases where solution adaptation is not applied are presented in

comparison with the reference data. Then, Figure 5.6 gives the distribution of

pressure for cases having four cycles of solution adaptation.

Figure 5.5 Pressure coefficient distribution of the first four cases for supersonic

inviscid flow around NACA 0012 airfoil

125

Figure 5.6 Pressure coefficient distribution of the last four cases for supersonic

inviscid flow around NACA 0012 airfoil

It can be seen in Figure 5.5 that AUSM method approach to the reference data at the

upper surface in the second half of the chord. However, it gives the farthest result at

the lower surface. On the other hand, Roe's method captures the lower surface

pressure distribution accurately for the second half of the chord, while it gives

slightly farther result for the upper surface compared to the other methods. In Figure

5.6, almost all cases capture the accurate results. The slight differences between these

methods are difficult to observe. In Figures 5.7 and 5.8, the Mach and pressure

contours for the cases, where solution adaptation is used, are presented.

126

Figure 5.7 Mach contours of cases where solution adaptation is applied

around NACA 0012 for supersonic inviscid flow

In Figure 5.7, slight differences can be observed among the flux methods. The bow

shock before the leading edge is captured in all cases. The oblique shock at the upper

surface of the airfoil is also captured by all of the cases. There are some slight

differences in the strength and length of the oblique shock. The length is a little

longer for the AUSM method and it shortens in AUSMD. Moreover, Roe gives the

shortest length among the four cases while shorter length compared to AUSMD is

obtained by AUSMV. In Figure 5.8, one can also see the pressure differences at the

oblique shock for these four methods.

CASE 5

CASE 7

CASE 6

CASE 8

127

Figure 5.8 Pressure contours of cases where solution adaptation is applied

around NACA 0012 for supersonic inviscid flow

5.2 LOW REYNOLDS NUMBER FLOW

In this section, two different problems are examined. While one of them is subsonic,

a transonic flow is solved at a relatively low Reynolds number. It is expected to get

accurate results for low Reynolds number flows since the flow regime is laminar for

those cases. Whereas it is not necessary to use quad grids since Cartesian grids

provide sufficiently small sizes in the boundary layer, quad grid is used as an

illustration of hybrid mesh effect for the first test problem. The test problems are

tabulated below.

CASE 5 CASE 6

CASE 8 CASE 7

128

Table 5.6 Test problems for low Reynolds number flow

SECTION AIRFOIL M∞ α (degrees) Re∞

5.2.1 NACA 0012 0.5 0 5000

5.2.2 NACA 0012 0.8 10 500

5.2.1 Subsonic Flow around NACA 0012

The first problem is the laminar flow around a NACA 0012 airfoil at a Mach number

of 0.5, an angle of attack of 0 degrees and a Reynolds number of 5000. The purpose

of this test is to show the importance of solution refinement around a symmetrical

airfoil. In addition, since the angle of attack is zero, the pressure and friction

distribution must be symmetric at the lower and upper surfaces of the airfoil.

Table 5.7 Common properties of the cases without quad cells for subsonic laminar flow

MESH INPUTS

Outer boundary size factor 18

Quad cell usage No

SOLUTION INPUTS

Order of the scheme 1

Flux method AUSMV

Multistage number 3

CFL safety factor 1

Refinement cycle interval 10

log(RMS) for convergence -9

MULTIGRID INPUTS

Multigrid type Saw-Tooth

Multigrid level 5

Fine grid iterations 15

Intermediate step iterations 10

Final grid iterations 10

129

Totally seven different cases where quad cells are not used are discussed at first . For

all of them, the outer boundary is located 18 chords ahead of the airfoil. For inviscid

flux calculations, AUSMV flux method is used. The solver is iterated until the

logarithm of root mean square of normalized density residual reaches -9. 5 level

multigrid is applied to accelerate the convergence time. In Table 5.7, the common

properties for the cases without quad cells regarding the laminar subsonic flow can

be shown.

For the test cases, only changing parameter is the number of solution refinement

cycle, which is changed from 0 to 6. While applying the solution refinement, the

interval between two cycles is set to 10. Drag coefficients of test cases and a

numerical reference, ARC2D developed by NASA, are given in Table 5.8. ARC2D

is a structured mesh solver which uses a cell-centered method. In addition, time

elapsed for solution and cell numbers can be seen in Table 5.8.

Table 5.8 Comparison of results without quad cells for subsonic laminar flow

around NACA 0012 airfoil

Case
No Description CD

Cell
Number Time

1 No solution refinement 0.0651 4040
0 hour 38 minutes 49

seconds

2 One solution refinement 0.0483 9442
0 hour 43 minutes 56

seconds

3 Two solution refinement 0.0397 21208
1 hour 26 minutes 9

seconds

4 Three solution refinement 0.0356 46488
2 hours 44 minutes

23 seconds

5 Four solution refinement 0.0328 92486
4 hours 37 minutes

41 seconds

6 Five solution refinement 0.0316 172874
8 hours 23 minutes

33 seconds

7 Six solution refinement 0.0311 335606
25 hours 25 minutes

16 seconds

- Reference (ARC2D) [40] 0.0321 40960 -

130

It can be shown that while the number of solution refinement cycle is increasing,

drag coefficients are approaching to the numerical reference data. However, the

convergence time increases greatly. Sixth case gives the closest result for the drag

coefficient, which underestimates drag coefficient only by 1.6 %. Whereas one more

solution refinement cycle leads to a distant result with respect to the reference data, it

gives a slightly close pressure distribution relative to the reference data, as shown in

Figure 5.9.

Figure 5.9 Pressure coefficient distribution for subsonic laminar flow around NACA 0012

airfoil

131

Figure 5.10 Skin friction coefficient distribution for subsonic laminar flow around

NACA 0012 airfoil

It can be observed from Figures 5.9 and 5.10 that increasing cycle number results

more accurate pressure and skin friction distribution. While the peak of pressure

coefficient cannot be captured accurately, Case 7 gives the most closest result. For

the initial cases, especially the skin friction coefficients are scattering. With the

increasing cycle number, the scattering decreases in a considerable amount since the

cell sizes become smaller with the increase in the solution refinement cycle number.

As a result, most accurate results are obtained for Case 7. Since it is difficult to

observe it from Figures 5.9 and 5.10 due to the excessive number of presented test

cases, Case 7 and ARC2D data are compared separately in Figure 5.11.

132

Figure 5.11 Comparison of Case 7 with the reference data for subsonic laminar flow around

NACA 0012 airfoil

Figure 5.12 The grid of Case 7 around NACA 0012 for subsonic laminar flow

133

Case 7 gives a very good result for the pressure coefficient. However, the peak of the

skin friction coefficient is overestimated by 42 %, while the rest of the friction is in a

good agreement with the reference data. In Figure 5.10, one can see that with the

increase in the refinement cycle, the overestimating percent decreases. It can be

estimated that if the number of refinement cycles is greater than 6, better results can

be obtained for the peak. Yet, if one looks at the percent increase in time between

sixth and seventh cases, it is not difficult to conclude that time elapsed for

convergence increases significantly.

Figure 5.13 Mach contours of Case 7 around NACA 0012 for subsonic laminar flow

The grid used in Case 7 is shown in Figure 5.12. The finer meshes around leading

edge, resulted from stagnation points can be seen easily. Moreover, the shear layers

become finer with the solution adaptation. The grid around the wake formed after the

trailing edge also become smaller by solution adaptation. In addition, Mach and

134

pressure contours for this case are given in Figure 5.13 and 5.14, respectively. The

velocity profile at the upper surface is depicted at approximately 30 % of the chord in

Figure 5.13.

Figure 5.14 Pressure contours of Case 7 around NACA 0012 for subsonic laminar flow

In addition to the cases where only Cartesian grids are used, two more cases, eighth

and ninth cases, are considered in order to illustrate the hybrid mesh effect on

laminar flows. 16 rows of quad cells are used for both cases. While multigrid

technique is not used for the ninth case due to some problems regarding solution

adapted grids with multigrid, it is used for the eighth case. The results are tabulated

in Table 5.9. As shown in Table 5.8 and 5.9, hybrid grid gives a more accurate result

for the grids where solution adaptation is not applied.

135

Table 5.9 Comparison of results with quad cells for subsonic laminar flow

around NACA 0012 airfoil

Case
No Description CD

Cell
Number Time

8 No solution refinement 0.0590 14562
15 hours 16 minutes 54

seconds

9 Three solution refinement 0.0371 107250
108 hours 46 minutes 36

seconds

- Reference (ARC2D) [40] 0.0321 40960 -

In Figure 5.15, one can see the comparison done between grids without solution

adaptation for pressure and skin friction coefficient distribution. One can say that the

scattering which comes from different cell sizes in the first case diminishes

significantly when hybrid mesh is used. Moreover, the peak of the skin friction

coefficient is nearly captured in the eighth case unlike the first case where quad cells

are not used. Moreover, the general distribution is closer to the reference result

compared to the first case. However, the pressure distribution is still far from the

reference distribution, as expected since the grid is not sufficiently finer at the critical

regions.

Figure 5.15 Comparison of Case 1, Case 8 and ARC2D for subsonic laminar flow

around NACA 0012 airfoil

136

Figure 5.16 Pressure coefficient distribution which hybrid grid is compared

with Cartesian grids and reference for subsonic laminar flow

around NACA 0012 airfoil

In Figures 5.16 and 5.17, one can see the comparison of the pressure and skin friction

distributions of the Case 9 which is a hybrid mesh with three cycles of solution

adaptation, with Case 3 which is a Cartesian mesh with three cycles of solution

adaptation, Case 7 which is a Cartesian mesh with six cycles of solution adaptation

and the reference ARC2D. It can be observed that the best result is obtained by Case

7 for pressure distribution, whereas Case 9 gives the best result for skin friction

distribution. The skin friction coefficient distribution along the entire surface is

captured accurately including the peak at the trailing edge unlike the others.

However, some deviations are observed at the trailing edge both for pressure and

skin friction coefficients. As a result, it can be inferred that hybrid mesh gives more

137

accurate and non-scattering results for skin friction coefficients. However, the

convergence rate increases significantly. In terms of pressure coefficient distribution,

a significant effect is not observed for hybrid mesh on laminar flows.

Figure 5.17 Skin friction coefficient distribution which hybrid grid is compared

with Cartesian grids and reference for subsonic laminar flow

around NACA 0012 airfoil

5.2.2 Transonic Flow Around NACA 0012

The second problem is the laminar flow around a NACA 0012 airfoil at a Mach

number of 0.8, an angle of attack of 10 degrees and a Reynolds number of 500. The

aim of this problem is to show that the code can be capable of solving very small

138

Reynolds number flows around an airfoil. Moreover, the importance of solution

adaptation can be seen by comparing different solution adaptation cycles.

Similar to the previous problem, seven different test cases are used for the transonic

flow. For all of them, AUSMV flux calculation technique is used for inviscid flux

calculations. The far-field boundary is placed 18 chords ahead of the airfoil. The

interval between two solution refinement cycles is set to 15. Finally, normalized

density residual at the last residual is set to -9 as the convergence criteria. Since there

are some problems while using the multigrid technique for very low Reynolds

numbers, it is not applied for Cases 1 to 6. Therefore, only for the seventh case, the

multigrid technique is applied using three cycles after problems are fixed.

Table 5.10 Common properties for transonic laminar flow

MESH INPUTS

Outer boundary size factor 18

Quad cell usage No

SOLUTION INPUTS

Order of scheme 1

Flux method AUSMV

Multistage number 3

CFL safety factor 1

Refinement cycle interval 15

log(RMS) for convergence -9

In Table 5.11, one can see the coefficients of drag and lift as well as the convergence

time for each case. Since there is no data found in literature for this problem, the

comparisons can be done between test cases obtained by the code. However, the

pressure coefficients and skin friction coefficients along the wall boundary can be

compared with the reference [41], which is a numerical solver named NSC2KE. The

mesh used in the reference [41] is a hybrid structured/unstructured mesh with 10924

triangular cells and 5590 meshpoints. These are presented in Figures 5.18 and 5.19.

139

Table 5.11 Comparison of results for transonic laminar flow around NACA 0012 airfoil

Case
No Description CD CL

Cell
Number Time

1
No solution
refinement 0.2256 0.6752 4040

6 hours 38 minutes 26
seconds

2
One solution
refinement 0.2084 0.6156 7378

10 hours 49 minutes 25
seconds

3
Two solution
refinement 0.1942 0.5598 12902

17 hours 29 minutes 57
seconds

4
Three solution

refinement 0.1841 0.5195 23411
28 hours 36 minutes 12

seconds

5
Four solution

refinement 0.1775 0.4931 45024
37 hours 18 minutes 49

seconds

6
Five solution
refinement 0.1718 0.4705 87372

77 hours 5 minutes 29
seconds

7
Six solution
refinement 0.1686 0.4589 176059

34 hours 33 minutes 37
seconds

It can be seen that the drag and lift coefficients decrease while the solution

refinement cycles increase. Furthermore, the solution time increases as the number of

cycles increases. For Case 7, since three level multigrid is used as mentioned before,

the solution time decreases considerably in comparison to Case 6. Since no

numerical or experimental reference data available, the accuracy of these cases

cannot be understood by examining the coefficients. However, Figures 5.18 and 5.19

can be used for this comparison.

140

Figure 5.18 Pressure coefficient distribution for transonic laminar flow

around NACA 0012 airfoil

As it can be seen in Figures 5.18 and 5.19, the increase in the number of cycles leads

to closer results relative to the reference data. For the initial test cases, the results

deviated significantly, as the number of cycles is increased by 1. However, the

difference becomes smaller for the last cases. For example, if one examines the sixth

and seventh cases, there is a slight difference in pressure and skin friction

coefficients. Moreover, these two cases give the best results. However, at the regions

around the leading edge, the pressure coefficients are underestimated so that the peak

cannot be captured accurately. However, the pressure distribution around the other

sections of the geometry is in good agreement with the reference data. Moreover, it

141

can be said that the skin friction distribution are captured accurately despite slight

differences at the lowest and highest points of the reference data.

Figure 5.19 Skin friction coefficient distribution for transonic laminar flow around

NACA 0012 airfoil

142

Figure 5.20 The grid of Case 7 around NACA 0012 for transonic laminar flow

The grid used in the seventh case is shown in Figure 5.20. The regions around the

leading edge become finer since there are large gradients arising from stagnation

points. Moreover, since the flow is coming with an angle of attack, the wake is

formed at the upper surface of the airfoil instead of the trailing edge, with an angle

different than zero. Since some layers are created around the wake, these grids

become smaller with the solution adaptation, as shown above.

In Figures 5.21 and 5.22, Mach contours are presented for the reference data and

Case 7, respectively. The similarity between these figures can be seen easily. In

addition, the pressure contours and temperature contours for Case 7 are presented in

Figures 5.23 and 5.24, respectively.

143

Figure 5.21 Mach contours of reference [41] around NACA 0012 for transonic laminar flow

Figure 5.22 Mach contours for Case 7 around NACA 0012 for transonic laminar flow

144

Figure 5.23 Pressure contours for Case 7 around NACA 0012 for transonic laminar flow

Figure 5.24 Temperature contours for Case 7 around NACA 0012 for transonic laminar flow

145

5.3 HIGH REYNOLDS NUMBER FLOW

In this section, one problem is tested. In this problem, a multi-element airfoil is used

in a subsonic flow. Since the Reynolds number is high, the flow regime is turbulent

in this problem. Therefore, it is not expected to get close results compared to the

experimental reference data found in reference [42]. The purpose for considering this

high Reynolds number flow is to examine the effect of different hybrid meshes

which composes of body-fitted and sufficiently smaller boundary layer grids and

Cartesian grids outside the boundary layer.

5.3.1 Subsonic Flow Around 30P30N

In this problem, the subsonic flow around a three-element airfoil, i.e. 30P30N, is

analyzed at a Mach number of 0.2, an angle of attack of 8 degrees and a Reynolds

number of 9 million. While almost all parameters are kept to be the same in all test

cases, the only changing parameter is the row number of the Quad cells. Row

numbers are changed from 0 to 32 for five test cases and the results obtained from

these cases are compared with the experimental results found in reference [42].

Table 5.12 Common properties for subsonic high Reynolds number flow

MESH INPUTS

Outer boundary size factor 18

Stretch factor 1.1

SOLUTION INPUTS

Order of scheme 1

Flux method AUSMV

Multistage number 3

CFL 1

Refinement cycle number 3

Refinement cycle interval 15

log(RMS) for convergence -8

146

For all cases, the inviscid flux calculation method is set to AUSMV. Three cycles of

solution adaptation is used. The convergence is achieved when the normalized

residual reaches -8. The relation between quad cells is determined by using a fixed

stretch factor of 1.1 For this problem, the multigrid technique is not applied. The

parameters that are kept to be the same for all cases are tabulated in Table 5.12. In

this table, the test cases and the results obtained from these are presented.

Table 5.13 Comparison of results for subsonic high Reynolds number flow

around the 30P30N airfoil

Case
No Description CD CL

Cell
Number Time

1 No Quad cells 0.2121 1.1911 38254
6 hours 57 minutes 24

seconds

2 4 rows of Quad cells 0.2010 1.2182 62675
33 hours 43 minutes

47 seconds

3 8 rows of Quad cells 0.2115 1.0278 82702
49 hours 3 minutes 54

seconds

4 16 rows of Quad cells 0.2293 1.0181 111051
97 hours 14 minutes 8

seconds

5 32 rows of Quad cells 0.2191 1.0351 172114
104 hours 47 minutes

12 seconds

As it can be seen, the calculation time increases significantly when quad cells are

used. Even though the cycle number of solution adaptation is the same for all cases,

the cell number increases considerably as the number of rows increase It is difficult

to comment on the drag and lift coefficients due to the fact that the reference results

do not exist and the flow regime in these test cases is taken as laminar.

In the Figure 5.25, the pressure coefficient distributions of test cases are presented in

comparison to the experimental results found in the literature. For the first two cases,

the results at the upper surface are closer to the experimental results even though

there is a huge difference. With the increase in the row number, the results are

getting further away from the one in the reference. Since the real flow is turbulent,

the actual distribution is considerably far away from all of the test cases. It can be

observed that the distribution cannot be captured totally around the slat.

147

Figure 5.25 Pressure coefficient distribution for subsonic high Reynolds number flow

around the 30P30N airfoil

The mesh used for Case 5 is depicted in Figure 5.26. One can also see the grids

around the slat and the flap closely. In Figures 5.27 and 5.29, Mach and pressure

contours from the fifth case are presented, respectively. The velocity profile on the

upper surface of the main element is also shown at approximately 10% of the chord

in Figure 5.27. Some streamlines are drawn in Figure 5.28. The vortex near the

trailing edge of the main element of the airfoil can be observed.

42

148

Figure 5.26 The mesh of the whole airfoil, the slat and the flap for Case 5 around the

30P30N airfoil for the subsonic high Reynolds number flow

149

Figure 5.27 Mach contours for Case 5 around the 30P30N airfoil for subsonic high Reynolds

number flow

Figure 5.28 Streamlines for Case 5 around the trailing edge of the main element of the

30P30N airfoil for the subsonic high Reynolds number flow

150

Figure 5.29 Pressure contours for Case 5 around the 30P30N airfoil

for the subsonic high Reynolds number flow

151

CHAPTER 6

CONCLUSION

In this thesis work, the aim is to develop a two-dimensional laminar Navier-Stokes

solver which uses finite volume method on Cartesian grids. As viscous flow, only the

laminar flow regime is considered. Besides, inviscid flows are also considered by

neglecting the viscous terms.

Two cases are analyzed for the validation of the inviscid flow. In the first case, first

and second order flux calculation schemes are applied with 0, 3 and 5 cycles of

solution adaptation. It is observed that second order gives closer result relative to the

results in the reference data when the number of solution adaptation cycle is low. For

5 cycles of solution adaptation, nearly the same results are obtained with the first and

second order schemes. In addition to this, the importance of solution refinement is

shown for this case. While solution adaptation is not applied, the pressure

distribution deviates in a considerable manner from the reference. However, with 5

cycles of solution refinement, the results are getting very close to the reference data

especially for the upper surface where the shock wave occurs, although the

convergence rate increases excessively.

In the second case, inviscid flux calculation methods are examined with and without

the solution adaptation. While using solution refinement, all methods give nearly the

same pressure distributions. The differences among them can be observed if solution

refinement technique is not used. In the test cases, where the solution adaptation is

not applied, Roe's method gives the best result for the lower surface whereas the best

result for the upper surface is obtained by AUSM. In the test cases, where solution

152

adaptation is applied, the locations of shocks and peak point of pressure coefficients

are captured very well.

Low Reynolds number flow is tested with two problems. In these problems,

generally Cartesian grids are used instead of hybrid grids since boundary layer is

large enough so that Cartesian grids can produce the sufficient resolution for low

Reynolds numbers. In the first problem, a subsonic flow with a Reynolds number of

5000 is analyzed at a Mach number of 0.5. Tests are carried out by changing only

one parameter which is the number of cycles of solution adaptation. It is observed

that increase in the cycle number leads to more closer results relative to the reference

data both for pressure and skin friction coefficient distributions. However,

convergence time increases significantly especially for the last case for which 7

cycles of solution adaptation is used. Yet, the best result is obtained from this case

among the cases which quad cells are not used, whereas the peak of the skin friction

coefficient is slightly overestimated. Moreover, two cases are used in order to

observe the effect of hybrid grids on laminar flows. It is inferred that one can obtain

more accurate and non-scattering results especially for skin friction coefficients

thanks to hybrid grids.

In the second problem for low Reynolds number flows, a transonic non-symmetric

flow is analyzed at a relatively low Reynolds number of 500, a Mach number of 0.8

and an angle of attack of 10 degrees around the NACA 0012 airfoil. The aim is to

show that non-symmetric flows with relatively lower Reynolds numbers can be

captured by the developed code. With the increase in the number of solution

adaptation cycles, the results approach to the ones in the reference. In Case 7, where

6 cycles of solution refinement is applied, the closest results with respect to the

reference are obtained, whereas the location of the peak of the pressure distribution

cannot be captured exactly.

High Reynolds number flow is examined with one test problem. Since the flow

regime is changed from laminar to turbulent at high Reynolds numbers, it is not

expected to get accurate result with the developed code. The aim is to investigate the

153

hybrid meshes around the 30P30N airfoil. Some differences at the pressure

distribution are obtained by using higher amounts of quad cells in the boundary

layer. However, comparing them with the experimental reference result is not

credible since the developed solver treats the flow laminarly.

To accelerate the convergence rate, multigrid technique is implemented. The affects

of it for inviscid and viscous flows are investigated according to the level number

with and without solution adaptation, cycle and iteration number at each step. It is

observed that level increase causes a larger speed up ratio both for inviscid and

viscous flows. Moreover, if solution adaptation is applied to the grid, multigrid effect

becomes more dominant so that the amount of acceleration increases significantly.

For example, while a maximum acceleration of 6.27 is obtained in a grid, for which

the solution adaptation is not applied, the speed up ratio increases to 16.98 for a

solution adapted grid in an inviscid flow. Similarly, the speed up ratio is increased

from 1.48 to 7.06 for viscous flows when solution adaptation is used.

As a result of cycle tests, slightly slower convergence rates are obtained by the V-

Cycle compared to Saw-Tooth cycle since it requires more memory to store the

forcing functions which are necessary during the iterations in the prolongation stage.

Moreover, some iteration tests are performed to determine the optimum number of

iterations for inviscid and viscous flows. 5 and 20 iterations at each step give the best

acceleration amounts for inviscid and viscous flow, respectively. Besides, multigrid

effect on hybrid grids are also investigated. In these tests, a larger speed up ratio

compared to normal grid is obtained. It is inferred that the multigrid technique is

more important in hybrid grids, since the cell number is significantly larger even if

solution adaptation is not applied.

Some problems are encountered when it is tried to use multigrid on hybrid grids

where solution adaptation is applied. Elimination of these problems can be given as a

future work. In addition, turbulence models can be added and the code can be

converted into three-dimensional form as future works.

154

REFERENCES

[1] Anderson J.D.Jr., Computational Fluid Dynamics: The Basics with

Applications, McGraw-Hill, 1995.

[2] Versteeg H.K. & Malalasekera W., An Introduction to Computational Fluid

Dynamics: The Finite Volume Method, Pearson/Prentice Hall, 2007.

[3] Potter M.C., Wiggert D.C., Hondzo M., & Shih T.I-P. Mechanics of Fluids,

Brooks/Cole, 2002.

[4] Blazek J., Computational Fluid Dynamics: Principles and Applications,

Elsevier, 2005.

[5] Carey G., Computational Grids: Generation, Adaptation and Solution

Strategies, CRC Press, 1997.

[6] Marshall D.D., Extending the Functionalities of Cartesian Grid Solvers:

Viscous Effects Modeling and MPI Parallelization, PhD Thesis in the Georgia

Institute of Technology, 2002.

[7] Wang Z.J., A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for

Navier-Stokes Equations, Computers & Fluids Vol.27 No.4 pp.529-549, 1998.

[8] Ye T., Mittal R., Udaykumar H.S. & Shyy W., An Accurate Cartesian Grid

Method For Viscous Incompressible Flows with Complex Immersed Boundaries,

Journal of Computational Physics 156, 209-240, 1999

155

[9] Wang Z.J., Cphen R.F., Hariharan N., Przekwas A.J. & Grove D., A 2
n
 Tree

Based Automated Viscous Cartesian Grid Methodology for Feature Capturing,

AIAA-99-3300, 1999

[10] Tucker P.G. & Pan Z., A Cartesian Cut Cell Method for Incompressible

Viscous Flow, Applied Mathematical Modelling 24, 591-606, 2000

[11] Wang Z.J., A Fast Nested Multigrid Viscous Flow Solver for Adaptive

Cartesian/Quad Grids, International Journal for Numerical Methods in Fluids 2000;

33: 657-680, 2000

[12] Kirkpatrick M.P., Armfield S.W. & Kent J.H., A Representation of Curved

Boundaries for the Solution of the Navier-Stokes Equations on a Staggered Three-

Dimensional Cartesian Grid, Journal of Computational Physics 184, 1-36, 2003

[13] AGARD Subcommittee C., Test Cases for Inviscid Flow Field Methods,

AGARD Advisory Report 211, 1986.

[14] Gilmanov A., Sotiropoulos F. & Balaras E., A General Reconstruction

Algorithm for Simulating Flows with Complex 3D Immersed Boundaries on

Cartesian Grids, Journal of Computational Physics 191, 660-669, 2003

[15] Sanmigual-Rojas E., Ortega-Casanova J., del Pino C. & Fernandez-Feria R.,

A Cartesian Grid Finite Difference Method for 2D Incompressible Viscous Flows In

Irregular Geometries, Journal of Computational Physics 204, 302-318, 2005

[16] Verstappen R. & Dröge M., A Symmetry-Preserving Cartesian Grid Method

for Computing a Viscous Flow Past a Circular Cylinder, C.R. Mechanique 333, 51-

57, 2005

156

[17] Singh R. & Shyy W., Three-Dimensional Adaptive Cartesian Grid Method

with Conservative Interface Restructuring and Reconstruction, Journal of

Computational Physics 224, 150-167, 2007

[18] Ito K., Lai M.C. & Li, Z., A Well-Conditioned Augmented System for Solving

Navier-Stokes Equations in Irregular Domains, Journal of Computational Physics

228, 2616-2628, 2009

[19] Karagiozis K., Kamakoti R. & Pantano C., A Low Numerical Dissipation

Immersed Interface Method for the Compressible Navier-Stokes Equations, Journal

of Computational Physics 229, 701-727, 2010

[20] Hartmann D., Meinke M. & Schröder W., A Strictly Conservative Cartesian

Cut Cell Method for Compressible Viscous Flows on Adaptive Grids, Computer

Methods in Applied Mechanics and Engineering, 2010

[21] Çakmak M., Development of A Multigrid Accelerated Euler Solver on

Adaptively Refined Two and Three-Dimensional Cartesian Grids, MS Thesis in the

Middle East Technical University, 2009.

[22] Siyahhan B., A Two Dimensional Euler Flow Solver on Adaptive Cartesian

Grids, MS Thesis in the Middle East Technical University, 2008.

[23] Hunt J., An Adaptive 3D Cartesian Approach for the Parallel Computation of

Inviscid Flow about Static and Dynamic Configurations, PhD Thesis in the

University of Michigan, 2004.

[24] Toro, E F., Riemann Solvers and Numerical Methods for Fluid Dynamics,

Springer-Verlag, 1999.

[25] Schlichtig, H., Boundary Layer Theory, McGraw-Hill, 7th Ed., 1979.

157

[26] Lassaline, J.V., A Navier-Stokes Equation Solver Using Agglomerated

Multigrid Featuring Directional Coarsening and Line-Implicit Smoothing, PhD

Thesis in the University of Toronto, 2003.

[27] Mavriplis, D.J., Accurate Multigrid Solution of the Euler Equations on

Unstructured and Adaptive Meshes, AIAA paper 88-3707, First National Fluid

Dynamics Congress, Cincinnati, Ohio, July 24-28, 1988.

[28] Mavriplis, D.J., Multigrid Solution of the Navier-Stokes Equations on

Triangular Meshes, AIAA paper 89-0120, 27th Aerospace Sciences Meeting, Reno,

Nevada, January 9-12, 1989.

[29] Coirier W.J., An Adaptively Refined, Cartesian, Cell-Based Scheme for the

Euler and Navier-Stokes Equations, PhD Thesis in the University of Michigan, 1994.

[30] Laney C.B., Computational Gas Dynamics, Cambridge University Press,

1998.

[31] Liou M.S. & Steffen C.J., A New Flux Splitting Scheme, Journal of

Computational Physics, Vol. 107, pp. 23-39, 1993.

[32] Wada, Y. & Liou M.S., An Accurate and Robust Flux Splitting Scheme for

Shock and Contact Discontinuities., M S. 3, s.l. : Siam J. Sci. Comput.,1997, Vol. 18,

pp. 633-657.

[33] Aftosmis, M., Gaitonde, D. & Tavares, T.S., AIAA-94-0415, (unpublished),

1994.

[34] Barth T.J., & Jespersen D.C., The Design and Application of Upwind

Schemes on Unstructured Meshes, AIAA Paper AIAA-89-0366, 1989.

158

[35] Trottenberg U., Oosterlee C.W., Schüller A., Multigrid, Academic Press,

2001.

[36] Brandt A., Multi-Level Adaptive Solutions to Boundary-Value Problems,

Mathematics for Computation, Vol. 31, pp. 333-390, 1977.

[37] Jameson A., Solution of the Euler Equations for Two-Dimensional Transonic

Flow by a Multigrid Method, Applied Mathematics and Computation, Vol. 13 Issues

3-4, pp. 327-355, 1983.

[38] De Zeeuw D.L., A Quad-Tree Based Adaptively-Refined Cartesian-Grid

Algorithm for the Solution of the Euler Equations, PhD Thesis in the University of

Michigan, 1993.

[39] Russell D. & Wang Z.J., A Cartesian Grid Method for Modeling Multiple

Moving Objects in 2D Incompressible Viscous Flow, Journal of Computational

Physics 191, 177-205, 2003

 [40] Gooch C.F., Solution of the Navier-Stokes Equations on Locally-Refined

Cartesian Meshes Using State-Vector Splitting, PhD Thesis in the Stanford

University, 1993.

[41] Bonfiglioli A., Compressible, Viscous (Laminar) Flow Past a NACA 0012

Profile, 1998, at: http://www.unibas.it/utenti/bonfiglioli/node6.html, Last Access On

February 2011.

[42] Sangho K., Alonso J.J., & Jameson A., Design Optimization of High-Lift

Configurations Using a Viscous Continuous Adjoint Method, AIAA Paper AIAA-

2002-0844, 2002.

159

APPENDIX A

CUT AND SPLIT CELLS

As mentioned, there are a lot of alternatives available for cut and split cells. In this

Appendix, the alternatives of cut and split cells are expressed in terms of their square

and split indices, seperately. The gray regions represents the part inside the geometry

of the cell. Moreover, the sorted intersection points are indicated with P1 to P4.

A.1 CUT CELLS

A.1.1 Square Index of 1

160

A.1.2 Square Index of 2

A.1.3 Square Index of 4

A.1.4 Square Index of 8

A.1.5 Square Index of 3

161

A.1.6 Square Index of 6

A.1.7 Square Index of 9

A.1.8 Square Index of 12

A.1.9 Square Index of 7

162

A.1.10 Square Index of 11

A.1.11 Square Index of 13

A.1.12 Square Index of 14

A.2 SPLIT CELLS

A.2.1 Square Index of 1

A.2.2 Square Index of 2

163

A.2 SPLIT CELLS

A.2.1 Square Index of 1

A.2.2 Square Index of 2

164

A.2.3 Square Index of 4

A.2.4 Square Index of 8

165

A.2.5 Square Index of 3

A.2.6 Square Index of 6

166

A.2.7 Square Index of 9

A.2.8 Square Index of 12

167

A.2.9 Square Index of 7

168

A.2.10 Square Index of 11

169

A.2.11 Square Index of 13

170

A.2.12 Square Index of 14

171

A.2.13 Square Index of 5

172

A.2.14 Square Index of 10

173

A.2.15 Square Index of -15

A.2.16 Square Index of -20

174

A.2.17 Square Index of -25

175

APPENDIX B

SAMPLE FILE FORMATS

B.1 SAMPLE MESH INPUT FILE

++

--

MESH GENERATION INPUTS

--

++

A) AIRFOIL SELECTION

--

NLR7301.dat : 1) Airfoil Name

--

B) GRID INPUTS

--

20 : 2) Outer Boundary Size Factor

8 : 3) Level of Uniform Mesh

0 : 4) Shift Amount in X Axis

0 : 5) Shift Amount in Y Axis

--

C) BOX ADAPTATION INPUTS

--

176

1.5 : 6) Boundary Size Factor for X Axis

2.5 : 7) Boundary Size Factor for Y Axis

0.05 : 8) Body Division Factor

--

D) CUT-SPLIT ADAPTATION INPUTS

--

0 : 9) Cut-Split Adaptation Cycle

--

E) CURVATURE ADAPTATION INPUTS

--

0 : 10) Curvature Adaptation Cycle

170 : 11) Threshold Angle

--

F) BOUNDARY LAYER INPUTS

--

0 : 12) Quad Cells Usage (1:Yes, 0:No)

1.1 : 13) Stretch Factor

16 : 14) Row Number

--

177

B.2 SAMPLE INVISCID SOLUTION INPUT FILE

++

--

SOLUTION INPUTS FOR INVISCID SOLVER

--

--

++

A) FLOW INPUTS

--

0.85 : 1) Mach Number

1.0 : 2) Angle of Attack (in degrees)

--

B) MEDIUM INPUTS

--

1.4 : 3) Specific Heat Ratio

--

C) SOLVER INPUTS

--

1 : 4) Order of Scheme (1: First, 2: Second)

1 : 5) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMV)

3 : 6) Multistage Number (3: Three, 4: Four, 5: Five)

1 : 7) CFL Safety Factor (between 0 and 1)

0 : 8) Gradient Limiting (1:Yes, 0:No)

--

D) SOLUTION ADAPTATION INPUTS

--

0 : 9) Refinement Cycle (0 to 6)

178

15 : 10) Coefficient of Refinement Based On Residual

--

E) MULTIGRID INPUTS

--

1 : 11) Multigrid Type (1: Saw-Tooth, 2: v-Type)

7 : 12) Multigrid Cycle (0 to 7)

10 : 13) Fine Grid Iteration Cycle

10 : 14) Mid Step Iteration Cycle

10 : 15) Final Grid Iteration Cycle

--

F) ITERATION INPUTS

--

10 : 16) Iteration Interval of Writing to the Screen

-8. : 17) Minimum Log of RMS

--

B.3 SAMPLE VISCOUS SOLUTION INPUT FILE

++

--

SOLUTION INPUTS FOR VISCOUS SOLVER

--

++

A) FLOW INPUTS

--

0.5 : 1) Mach Number

0.0 : 2) Angle of Attack (in degrees)

5000 : 3) Reynolds Number

179

0.72 : 4) Prandtl Number

--

B) MEDIUM INPUTS

--

1.4 : 5) Specific Heat Ratio

273.15 : 6) Free Stream Temperature (in Kelvin)

--

C) SOLVER INPUTS

--

1 : 7) Order of Scheme (1: First, 2: Second)

2 : 8) Flux Method (1: Roe, 2: AUSM, 3: AUSMD, 4: AUSMV)

3 : 9) Multistage Number (3: Three, 4: Four, 5: Five)

0.5 : 10) CFL Safety Factor (between 0 and 1)

0 : 11) Gradient Limiting (1:Yes, 0:No)

0.25 : 12) Time Step Coefficient

--

D) SOLUTION ADAPTATION INPUTS

--

0 : 13) Refinement Cycle (0 to 6)

20 : 14) Coefficient of Refinement Based On Residual

--

E) MULTIGRID INPUTS

--

1 : 15) Multigrid Type (1: Saw-Tooth, 2: v-Type)

0 : 16) Multigrid Level (0 to 7)

10 : 17) Fine Grid Iteration Cycle

10 : 18) Mid Step Iteration Cycle

180

10 : 19) Final Grid Iteration Cycle

--

F) ITERATION INPUTS

--

10 : 20) Iteration Interval of Writing to the Screen

-6. : 21) Minimum Log of RMS

--

B.4 SAMPLE MESH OUTPUT FILE

++

--

MESH OUTPUT INFO

--

++

NON-ADAPTED GRID

--

H-GRID

Out Cell No : 1883

Cut Cell No : 238

Split Cell No : 3 (2 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 2124

Time : 0.25 seconds

2H-GRID

181

Out Cell No : 680

Cut Cell No : 123

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 805

4H-GRID

Out Cell No : 318

Cut Cell No : 65

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 385

8H-GRID

Out Cell No : 189

Cut Cell No : 37

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 226

16H-GRID

Out Cell No : 159

Cut Cell No : 19

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 178

32H-GRID

182

Out Cell No : 130

Cut Cell No : 12

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 142

64H-GRID

Out Cell No : 98

Cut Cell No : 11

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 109

128H-GRID

Out Cell No : 54

Cut Cell No : 7

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 61

--

1. ADAPTED GRID

--

H-GRID

Out Cell No : 3271

Cut Cell No : 249

183

Split Cell No : 3 (2 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 3523

2H-GRID

Out Cell No : 932

Cut Cell No : 129

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 1063

4H-GRID

Out Cell No : 440

Cut Cell No : 66

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 508

8H-GRID

Out Cell No : 209

Cut Cell No : 41

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 250

16H-GRID

Out Cell No : 164

Cut Cell No : 26

184

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 190

32H-GRID

Out Cell No : 144

Cut Cell No : 16

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 160

64H-GRID

Out Cell No : 110

Cut Cell No : 11

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 121

128H-GRID

Out Cell No : 82

Cut Cell No : 9

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 91

--

2. ADAPTED GRID

--

185

H-GRID

Out Cell No : 5979

Cut Cell No : 266

Split Cell No : 3 (2 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 6248

2H-GRID

Out Cell No : 1735

Cut Cell No : 144

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 1881

4H-GRID

Out Cell No : 544

Cut Cell No : 78

Split Cell No : 2 (1 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 624

8H-GRID

Out Cell No : 274

Cut Cell No : 43

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 317

186

16H-GRID

Out Cell No : 186

Cut Cell No : 31

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 217

32H-GRID

Out Cell No : 151

Cut Cell No : 24

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 175

64H-GRID

Out Cell No : 124

Cut Cell No : 15

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 139

128H-GRID

Out Cell No : 94

Cut Cell No : 9

Split Cell No : 0 (0 cells have 2 CV's)

Quad Cell No : 0

Total Cell No : 103

--

187

B.5 SAMPLE SOLUTION OUTPUT FILE

++

--

SOLUTION OUTPUT INFO

--

++

DATA

--

Time : 0 hours 5 minutes 56 seconds

Iteration : 4410

log(RMS) : -10.02105

--

COEFFICIENTS

--

Drag Coefficient : 0.04717

Lift Coefficient : 0.96187

--

188

APPENDIX C

AIRFOIL COORDINATES

In this appendix, coordinates of three airfoil are given as nodes. In a row, while first

value is the node number, the second and third one represents the node's x and y

coordinates, respectively.

C.1 NACA 0012

Table C.1 Coordinates of NACA 0012

NODE X Y

1 1.00000 0.00000

2 0.98530 -0.00216

3 0.96662 -0.00480

4 0.94288 -0.00806

5 0.91268 -0.01208

6 0.87428 -0.01697

7 0.84541 -0.02045

8 0.81783 -0.02372

9 0.79431 -0.02644

10 0.76315 -0.02988

11 0.73347 -0.03301

12 0.70578 -0.03582

13 0.68691 -0.03764

14 0.66688 -0.03957

15 0.64397 -0.04167

16 0.62271 -0.04355

17 0.59235 -0.04611

18 0.56483 -0.04830

189

Table C.1 Coordinates of NACA 0012 (continued)

19 0.54025 -0.05013

20 0.51179 -0.05210

21 0.49094 -0.05344

22 0.47494 -0.05440

23 0.45118 -0.05570

24 0.42719 -0.05687

25 0.40283 -0.05789

26 0.36530 -0.05911

27 0.33031 -0.05980

28 0.29878 -0.06001

29 0.26716 -0.05976

30 0.23892 -0.05909

31 0.21375 -0.05809

32 0.18516 -0.05642

33 0.16156 -0.05454

34 0.13887 -0.05221

35 0.12371 -0.05032

36 0.10329 -0.04727

37 0.09080 -0.04506

38 0.07599 -0.04201

39 0.06628 -0.03971

40 0.05510 -0.03669

41 0.04669 -0.03408

42 0.03916 -0.03145

43 0.03187 -0.02858

44 0.02673 -0.02631

45 0.02310 -0.02456

46 0.02117 -0.02356

47 0.01894 -0.02234

48 0.01681 -0.02109

49 0.01563 -0.02036

50 0.01440 -0.01956

51 0.01340 -0.01887

52 0.01240 -0.01816

53 0.01142 -0.01743

54 0.01030 -0.01654

55 0.00891 -0.01534

56 0.00792 -0.01442

57 0.00728 -0.01379

58 0.00662 -0.01310

59 0.00594 -0.01235

190

Table C.1 Coordinates of NACA 0012 (continued)

60 0.00537 -0.01169

61 0.00476 -0.01092

62 0.00424 -0.01022

63 0.00386 -0.00969

64 0.00323 -0.00870

65 0.00261 -0.00763

66 0.00221 -0.00684

67 0.00178 -0.00593

68 0.00137 -0.00492

69 0.00102 -0.00396

70 0.00073 -0.00306

71 0.00051 -0.00227

72 0.00029 -0.00139

73 0.00014 -0.00072

74 0.00000 0.00000

75 0.00014 0.00072

76 0.00029 0.00139

77 0.00051 0.00227

78 0.00073 0.00306

79 0.00102 0.00396

80 0.00137 0.00492

81 0.00178 0.00593

82 0.00221 0.00684

83 0.00261 0.00763

84 0.00323 0.00870

85 0.00386 0.00969

86 0.00424 0.01022

87 0.00476 0.01092

88 0.00537 0.01169

89 0.00594 0.01235

90 0.00662 0.01310

91 0.00728 0.01379

92 0.00792 0.01442

93 0.00891 0.01534

94 0.01030 0.01654

95 0.01142 0.01743

96 0.01240 0.01816

97 0.01340 0.01887

98 0.01440 0.01956

99 0.01563 0.02036

100 0.01681 0.02109

191

Table C.1 Coordinates of NACA 0012 (continued)

101 0.01894 0.02234

102 0.02117 0.02356

103 0.02310 0.02456

104 0.02673 0.02631

105 0.03187 0.02858

106 0.03916 0.03145

107 0.04669 0.03408

108 0.05510 0.03669

109 0.06628 0.03971

110 0.07599 0.04201

111 0.09080 0.04506

112 0.10329 0.04727

113 0.12371 0.05032

114 0.13887 0.05221

115 0.16156 0.05454

116 0.18516 0.05642

117 0.21375 0.05809

118 0.23892 0.05909

119 0.26716 0.05976

120 0.29878 0.06001

121 0.33031 0.05980

122 0.36530 0.05911

123 0.40283 0.05789

124 0.42719 0.05687

125 0.45118 0.05570

126 0.47494 0.05440

127 0.49094 0.05344

128 0.51179 0.05210

129 0.54025 0.05013

130 0.56483 0.04830

131 0.59235 0.04611

132 0.62271 0.04355

133 0.64397 0.04167

134 0.66688 0.03957

135 0.68691 0.03764

136 0.70578 0.03582

137 0.73347 0.03301

138 0.76315 0.02988

139 0.79431 0.02644

140 0.81783 0.02372

141 0.84541 0.02045

192

Table C.1 Coordinates of NACA 0012 (continued)

142 0.87428 0.01697

143 0.91268 0.01208

144 0.94288 0.00806

145 0.96662 0.00480

146 0.98530 0.00216

147 1.00000 0.00000

C.2 RAE 2822

Table C.2 Coordinates of RAE 2822

NODE X Y

1 0.00000 0.00000

2 0.00060 0.00323

3 0.00241 0.00642

4 0.00541 0.00945

5 0.00961 0.01269

6 0.01498 0.01579

7 0.02153 0.01875

8 0.02923 0.02163

9 0.03806 0.02445

10 0.04801 0.02726

11 0.05904 0.03004

12 0.07114 0.03280

13 0.08427 0.03552

14 0.09840 0.03817

15 0.11349 0.04073

16 0.12952 0.04321

17 0.14645 0.04558

18 0.16422 0.04778

19 0.18280 0.04987

20 0.20215 0.05187

21 0.22221 0.05377

22 0.24295 0.05556

23 0.26430 0.05713

24 0.28622 0.05848

25 0.30866 0.05967

26 0.33156 0.06070

27 0.35486 0.06155

193

Table C.2 Coordinates of RAE 2822 (continued)

28 0.37851 0.06220

29 0.40245 0.06263

30 0.42663 0.06285

31 0.45099 0.06286

32 0.47547 0.06261

33 0.50000 0.06212

34 0.52453 0.06135

35 0.54901 0.06030

36 0.57336 0.05895

37 0.59754 0.05733

38 0.62149 0.05547

39 0.64514 0.05339

40 0.66845 0.05112

41 0.69134 0.04857

42 0.71378 0.04612

43 0.73570 0.04338

44 0.75705 0.04075

45 0.77778 0.03795

46 0.79785 0.03514

47 0.81720 0.03231

48 0.83578 0.02948

49 0.85355 0.02670

50 0.87048 0.02397

51 0.88651 0.02131

52 0.90160 0.01874

53 0.91574 0.01627

54 0.92886 0.01393

55 0.94096 0.01170

56 0.95200 0.00964

57 0.96194 0.00775

58 0.97077 0.00606

59 0.97847 0.00455

60 0.98502 0.00326

61 0.99039 0.00218

62 0.99459 0.00132

63 0.99759 0.00069

64 0.99940 0.00030

65 1.00000 0.00000

66 0.99940 -0.00001

67 0.99759 0.00009

68 0.99459 0.00026

194

Table C.2 Coordinates of RAE 2822 (continued)

69 0.99039 0.00048

70 0.98502 0.00071

71 0.97847 0.00094

72 0.97077 0.00113

73 0.96194 0.00125

74 0.95200 0.00125

75 0.94096 0.00113

76 0.92886 0.00081

77 0.91574 0.00027

78 0.90160 -0.00049

79 0.88651 -0.00149

80 0.87048 -0.00273

81 0.85355 -0.00422

82 0.83578 -0.00594

83 0.81720 -0.00792

84 0.79785 -0.01013

85 0.77778 -0.01256

86 0.75705 -0.01524

87 0.73570 -0.01812

88 0.71378 -0.02118

89 0.69134 -0.02438

90 0.66845 -0.02770

91 0.64514 -0.03110

92 0.62149 -0.03463

93 0.59754 -0.03791

94 0.57336 -0.04127

95 0.54901 -0.04452

96 0.52453 -0.04761

97 0.50000 -0.05044

98 0.47547 -0.05297

99 0.45099 -0.05515

100 0.42663 -0.05689

101 0.40245 -0.05817

102 0.37851 -0.05893

103 0.35486 -0.05919

104 0.33156 -0.05900

105 0.30866 -0.05843

106 0.28622 -0.05753

107 0.26430 -0.05638

108 0.24295 -0.05498

109 0.22221 -0.05340

195

Table C.2 Coordinates of RAE 2822 (continued)

110 0.20215 -0.05167

111 0.18280 -0.04977

112 0.16422 -0.04775

113 0.14645 -0.04561

114 0.12952 -0.04333

115 0.11349 -0.04094

116 0.09840 -0.03844

117 0.08427 -0.03584

118 0.07114 -0.03315

119 0.05904 -0.03042

120 0.04801 -0.02761

121 0.03806 -0.02472

122 0.02923 -0.02180

123 0.02153 -0.01880

124 0.01498 -0.01580

125 0.00961 -0.01273

126 0.00541 -0.00957

127 0.00241 -0.00658

128 0.00060 -0.00317

129 0.00000 0.00000

C.3 30P30N

C.3.1 Coordinates of Main Body

Table C.3 Coordinates of main element of 30P30N

NODE X Y

1 0.72270 0.05620

2 0.72270 0.04620

3 0.72270 0.03620

4 0.72270 0.02620

5 0.72270 0.01620

6 0.72270 0.00620

7 0.72270 0.00060

8 0.71370 -0.00080

9 0.69440 -0.00460

196

Table C.3 Coordinates of main element of 30P30N (continued)

10 0.68050 -0.00700

11 0.66700 -0.00930

12 0.65390 -0.01160

13 0.64020 -0.01420

14 0.62580 -0.01650

15 0.61130 -0.01910

16 0.59560 -0.02140

17 0.57940 -0.02370

18 0.56080 -0.02630

19 0.54090 -0.02890

20 0.51930 -0.03090

21 0.47890 -0.03510

22 0.44230 -0.03760

23 0.41550 -0.03870

24 0.37110 -0.03960

25 0.30900 -0.03970

26 0.25970 -0.03840

27 0.23060 -0.03740

28 0.20740 -0.03610

29 0.18750 -0.03480

30 0.17080 -0.03400

31 0.15500 -0.03250

32 0.12800 -0.02990

33 0.10330 -0.02760

34 0.09220 -0.02650

35 0.08290 -0.02540

36 0.07280 -0.02420

37 0.06330 -0.02280

38 0.05450 -0.02150

39 0.04650 -0.02040

40 0.03980 -0.01940

41 0.03220 -0.01830

42 0.02550 -0.01690

43 0.01960 -0.01590

44 0.01520 -0.01500

45 0.01060 -0.01380

46 0.00670 -0.01230

47 0.00390 -0.01010

48 0.00190 -0.00720

49 0.00040 -0.00320

50 0.00000 0.00000

197

Table C.3 Coordinates of main element of 30P30N (continued)

51 0.00070 0.00510

52 0.00230 0.00980

53 0.00550 0.01520

54 0.00900 0.01930

55 0.01320 0.02360

56 0.01740 0.02710

57 0.02120 0.02980

58 0.02440 0.03200

59 0.02710 0.03370

60 0.03060 0.03580

61 0.03360 0.03760

62 0.04170 0.04170

63 0.05100 0.04650

64 0.06020 0.05020

65 0.07080 0.05380

66 0.08110 0.05730

67 0.09490 0.06090

68 0.10820 0.06400

69 0.12630 0.06760

70 0.14670 0.07010

71 0.18040 0.07290

72 0.21540 0.07520

73 0.25190 0.07750

74 0.27480 0.07900

75 0.30300 0.08000

76 0.39250 0.08250

77 0.41250 0.08250

78 0.43250 0.08250

79 0.45250 0.08250

80 0.47250 0.08250

81 0.49250 0.08250

82 0.51060 0.08250

83 0.56240 0.08120

84 0.59670 0.07940

85 0.62530 0.07880

86 0.64810 0.07740

87 0.66850 0.07620

88 0.68810 0.07530

89 0.70610 0.07390

90 0.72130 0.07270

91 0.73660 0.07140

198

Table C.3 Coordinates of main element of 30P30N (continued)

92 0.75060 0.07020

93 0.76290 0.06910

94 0.77630 0.06780

95 0.78740 0.06650

96 0.79940 0.06510

97 0.81250 0.06360

98 0.82530 0.06230

99 0.84010 0.06030

100 0.84960 0.05930

101 0.85870 0.05770

102 0.86820 0.05620

103 0.83820 0.05620

104 0.80820 0.05620

105 0.75820 0.05620

106 0.72270 0.05620

C.3.2 Coordinates of Slat

Table C.4 Coordinates of slat of 30P30N

NODE X Y

1 -0.10130 -0.06720

2 -0.10250 -0.07260

3 -0.10340 -0.07780

4 -0.10350 -0.08460

5 -0.10310 -0.08670

6 -0.10170 -0.09190

7 -0.10030 -0.09540

8 -0.09940 -0.09800

9 -0.09810 -0.09920

10 -0.09370 -0.10360

11 -0.09840 -0.10450

12 -0.10430 -0.10590

13 -0.11080 -0.10720

14 -0.11280 -0.10750

15 -0.12270 -0.10780

16 -0.12940 -0.10750

17 -0.13290 -0.10660

199

Table C.4 Coordinates of slat of 30P30N (continued)

18 -0.13650 -0.10540

19 -0.13950 -0.10300

20 -0.14120 -0.10010

21 -0.14260 -0.09810

22 -0.14300 -0.09630

23 -0.14320 -0.09330

24 -0.14260 -0.08810

25 -0.14010 -0.08200

26 -0.13650 -0.07630

27 -0.13150 -0.06920

28 -0.12880 -0.06550

29 -0.12500 -0.06130

30 -0.12180 -0.05770

31 -0.11920 -0.05460

32 -0.11340 -0.04850

33 -0.10600 -0.04190

34 -0.10180 -0.03770

35 -0.09700 -0.03370

36 -0.09240 -0.02980

37 -0.08720 -0.02550

38 -0.08210 -0.02120

39 -0.07770 -0.01760

40 -0.07280 -0.01360

41 -0.06740 -0.00900

42 -0.07040 -0.01280

43 -0.07410 -0.01720

44 -0.07770 -0.02190

45 -0.08130 -0.02670

46 -0.08380 -0.03020

47 -0.08640 -0.03450

48 -0.08880 -0.03880

49 -0.09110 -0.04290

50 -0.09240 -0.04530

51 -0.09370 -0.04770

52 -0.09490 -0.05000

53 -0.09610 -0.05260

54 -0.09730 -0.05530

55 -0.09870 -0.05940

56 -0.10000 -0.06290

57 -0.10130 -0.06720

200

C.3.3 Coordinates of Flap

Table C.5 Coordinates of flap of 30P30N

NODE X Y

1 1.01170 0.01320

2 1.01520 0.01130

3 1.01870 0.00910

4 1.02140 0.00780

5 1.02490 0.00560

6 1.03080 0.00220

7 1.03680 -0.00150

8 1.04180 -0.00470

9 1.04660 -0.00800

10 1.05090 -0.01080

11 1.05680 -0.01500

12 1.06280 -0.01920

13 1.06820 -0.02330

14 1.07500 -0.02790

15 1.07950 -0.03180

16 1.08490 -0.03590

17 1.09050 -0.04030

18 1.09660 -0.04510

19 1.10280 -0.05000

20 1.11030 -0.05590

21 1.11710 -0.06170

22 1.12400 -0.06720

23 1.12970 -0.07190

24 1.13750 -0.07870

25 1.14260 -0.08360

26 1.14810 -0.08850

27 1.15540 -0.09500

28 1.16050 -0.09980

29 1.16650 -0.10590

30 1.17080 -0.11000

31 1.17610 -0.11530

32 1.18160 -0.12060

33 1.18630 -0.12540

34 1.19090 -0.12990

35 1.19590 -0.13530

36 1.19000 -0.13080

201

Table C.5 Coordinates of flap of 30P30N (continued)

37 1.18500 -0.12690

38 1.17980 -0.12300

39 1.16040 -0.10880

40 1.15270 -0.10280

41 1.14360 -0.09620

42 1.13400 -0.08980

43 1.12520 -0.08410

44 1.10930 -0.07440

45 1.09680 -0.06730

46 1.08400 -0.06050

47 1.07290 -0.05480

48 1.05910 -0.04790

49 1.04360 -0.04090

50 1.02530 -0.03310

51 1.00690 -0.02560

52 0.98020 -0.01560

53 0.96800 -0.01110

54 0.95330 -0.00630

55 0.94460 -0.00300

56 0.93890 -0.00050

57 0.93240 0.00330

58 0.92810 0.00740

59 0.92490 0.01140

60 0.92170 0.01590

61 0.92010 0.02050

62 0.92010 0.02510

63 0.92140 0.02910

64 0.92370 0.03270

65 0.92670 0.03500

66 0.93040 0.03690

67 0.93430 0.03770

68 0.93940 0.03840

69 0.94530 0.03790

70 0.94980 0.03730

71 0.95540 0.03620

72 0.96110 0.03500

73 0.96750 0.03270

74 0.97440 0.03030

75 0.98010 0.02810

76 0.98480 0.02620

77 0.99340 0.02250

202

Table C.5 Coordinates of flap of 30P30N (continued)

78 0.99800 0.02020

79 1.00320 0.01760

80 1.00810 0.01510

81 1.01170 0.01320

