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ABSTRACT

ADAPTIVE CONTROL OF GUIDED MISSILES

Tiryaki Kutluay, Kadriye
Ph.D., Department of Aerospace Engineering
Supervisor: Asst. Prof. Dr. Ilkay Yavrucuk

February 2011, 147 Pages

This thesis presents applications and an analysis of various adaptive control
augmentation schemes to various baseline flight control systems of an air to ground
guided missile. The missile model used in this research has aerodynamic control
surfaces on its tail section. The missile is desired to make skid to turn maneuvers by
following acceleration commands in the pitch and yaw axis, and by keeping zero roll
attitude.

First, a linear quadratic regulator baseline autopilot is designed for the control of the
missile acceleration in pitch axis at a single point in the flight envelope. This baseline
autopilot is then augmented with a Direct Model Reference Adaptive Control (D-
MRAC) scheme using Neural Networks for parameter estimation, and an L1
Adaptive Control scheme. Using the linearized longitudinal model of the missile at
the design point, simulations are performed to analyze and demonstrate the
performance of the two adaptive augmentation schemes. By injecting uncertainties to
the plant model, the effects of adaptive augmentations on the linear baseline autopilot

are examined.



Secondly, a high fidelity simulation software of the missile is used in order to
analyze the performance of the adaptive augmentations in 6 DoF nonlinear flight
simulations. For the control of the missile in three axis, baseline autopilots are
designed using dynamic inversion at a single point in the flight envelope. A
linearizing transformation is employed during the inversion process. These coarsely
designed baseline autopilots are augmented with L1 adaptive control elements. The
performance of the adaptive control augmentation system is tested in the presence of
perturbations in the aerodynamic model and increase in input gain, and the

simulation results are presented.

Keywords: L1 Adaptive Control, Model Reference Adaptive Control, Adaptive

Control Augmentation, Dynamic Inversion, Control of Guided Missiles.
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GUDUMLU FUZELERIN ADAPTIF KONTROLU

Tiryaki Kutluay, Kadriye
Doktora, Havacilik ve Uzay Miihendisligi Boliimii
Tez Yoneticisi : Yrd. Dog. Dr. Ilkay Yavrucuk

Subat 2011, 147 Sayfa

Bu tez havadan karaya giidiimlii bir fiizenin ana ugus kontrol sistemine cesitli
adaptif kontrol destek yapilarinin uygulanmalarin1 ve analizini sunmaktadir. Bu
aragtirmada kullanilan fiize modeli, kuyruk kisminda aerodinamik kontrol
ylizeylerine sahiptir. Fiizenin yunuslama ve yana donme eksenlerinde ivme
komutlar1 izleyerek ve yuvarlanma yonelimini sifirda tutarak kayarak-donme

manevralar1 yapmasi istenmektedir.

Ik olarak, fiizenin yunuslama eksenindeki kontrolii icin, ucus zarfindaki tek bir
noktada, dogrusal kuadratik diizenleyici yontemi ile bir ana otopilot tasarlanmugtir.
Daha sonra bu ana otopilot, parametre kestiriminde Yapay Sinir Aglar1 kullanan
Dogrudan Modele Dayali Uyarlamali Kontrol yapist ve L1 Uyarlamali Kontrol
yapist ile desteklenmistir. Fiizenin tasarim noktasindaki dogrusallastirilmis boyuna
modeli kullanilarak, bu iki adaptif destek yapisinin performansini analiz etmek i¢in
benzetimler yapilmistir. Fiize modeline belirsizlikler verilerek uyarlamali destek

yapilarinin ana otopilot tizerindeki etkileri incelenmistir.

Vi



Ikinci olarak, adaptif desteklerin 6 serbestlik dereceli dogrusal olmayan ugus
benzetimlerindeki performansini analiz etmek igin, fiizenin yiiksek giivenilirlik
seviyesindeki bir benzetim yazilimi kullanilmistir. Fiizenin ti¢ eksendeki kontrolii
icin ugus zarfindaki tek bir noktada dinamik tersine c¢evrim ydntemi ile ana
otopilotlar tasarlanmistir. Tersine c¢evrim isleminde dogrusallastirma doniisiimii
uygulanmistir. Daha sonra kabaca tasarlanmis olan bu ana otopilotlar L1 uyarlamali
kontrol elemanlar1 ile desteklenmistir. Uyarlamali kontrol destek sisteminin
performanst aerodinamik modelde hatalar olmasi ve girdi kazancinin artmasi

durumunda test edilmis ve benzetim sonuglar1 sunulmustur.

Anahtar Kelimeler: L1 Uyarlamali Kontrol, Modele Dayali Uyarlamali Kontrol,

Uyarlamal1 Kontrol Destegi, Dinamik Tersine Cevrim, Giidiimlii Fiize Kontrolii.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Flight control of guided munitions has been a challenging area for control
engineers. As the agility, speed and skills of guided munitions increase, related
control problems became more challenging. However, besides its challenges,
guided missiles serve as perfect platforms for testing novel control architectures.
Most of the guided missiles are cheaper than other flying platforms such as aircraft,
spacecraft or Unmanned Aerial Vehicles (UAV). Moreover, because of their
unmanned nature, guided munitions provide more flexibility to test novel control
architectures for the first time. As the maturity of knowledge about adaptive control
methods increase, more of them started to be applied and flight tested on guided
missiles. With the help of adaptive control algorithms, a very common problem in
flight control, the dependency of controller performance on aerodynamic
parameters, is desired to be solved. Very successful results have been obtained for

various systems.

This research takes its motivation to find adaptive controller solutions for guided
missiles. The research consists of a detailed survey on state of the art in adaptive
control methods. Applications of these methods on missile systems and robustness

issues of these controllers are studied.



1.2 Dynamic Model Inversion Control

Flight control systems have to cope with the nonlinear and time varying nature of
flight vehicles, as well as the uncertainties and un-modeled dynamics in the system

and physical environment around them.

Gain scheduling has been a popular flight control methodology for guided missiles.
This method is composed of designing linear controllers at pre-specified trim
conditions inside the flight envelope, scheduling the pre-calculated gains in a table,
and interpolating between these gains for the corresponding flight condition during
the flight. Although gain scheduling has served to flight control community with
success for long years, the design process can be very time consuming. Also the
aerodynamic data should be accurate and cover the whole flight envelope. This

increases time and cost in the controller design phase.

Feedback linearization has emerged as a nonlinear control method that can
eliminate the need for extensive gain scheduling and simplify the controller design
process. By dynamically recasting the nonlinear system into a linear form, this
method allows the calculation of the nonlinear control signal from an inverse
transformation. In [1] autopilot design of an air to air missile with dynamic model
inversion method is given. [2], [3], [4] and [5] presents various applications of
dynamic model inversion method for flight control of missiles. [6] and [7] deals
with stability and robustness issues of missile autopilots designed with dynamic

inversion.

A problem dealt with in literature is the fact that dynamic inversion cannot be
applied to non-minimum phase systems. In [1] and [4] different approaches to deal

with this problem is presented.

Another complication of dynamic model inversion is that the stability and
performance of the controller depends on an accurate plant model. Since, most of

the time, the system parameters are not exactly known and the plant inversion is not

2



perfect, dynamic inversion controllers may possess performance degradation. In
literature, in order to overcome the potential performance degradations of a
dynamic inversion controller due to imperfect inversion or non-accurate

aerodynamics, the control loop is augmented with adaptive elements.

1.3 Adaptive Control Augmentation

There has been an increasing interest in the adaptive control of flight vehicles.
Throughout the years the experience and progress has grown rapidly. Recently, in
addition to stand alone adaptive controller schemes [8], adaptive elements are also

used as augmentations to roughly designed baseline controllers.

Neural networks, known for their capability of modeling highly nonlinear functions,
are a powerful tool for the estimation of modeling errors, uncertainties, etc. Hence,
neural networks are frequently used for parameter estimation purposes in adaptive
control. [9]-[12] present pioneering research on the application of neural network
augmentation to baseline dynamic inversion controllers for air to air missiles,
aircraft, tilt-rotor and helicopter. In [13] and [14] an implementation and application
of an online learning neural network augmentation to a dynamic inversion based
acceleration autopilot of a family of guided munition is given. Flight test results
showed that the adaptive augmentation eliminate the inversion errors of an

approximate plant model.

In [15], the back-stepping design approach is used to improve the transient
performance of a dynamic inversion missile autopilot. Adaptive control
augmentation examples were concentrated on the application to dynamic inversion
based autopilots. In [16], Sharma et.al., proposed a new method of augmenting
existing linear controllers, including several classical and modern forms and MIMO

dynamic compensators, with neural networks.

On the other hand, Model Reference Adaptive Control (MRAC) is an architecture
used to control linear systems with unknown coefficients [17]. Here, a reference

3



model with the desired closed loop response is used to shape the control signal and
consequently the closed loop response of the plant. The objective is to take the error

between the outputs of the reference system and the plant go asymptotically zero.

In 2005 Boeing Company has implemented a direct adaptive model reference
control to a modified version of the MK82 JDAM flight control system. The
baseline controller was a gain scheduled controller designed with linear quadratic
regulator approach. In this work, the controller is augmented with an adaptive
element in order to compensate for the changes due to modifications made on the
external configuration. The flight tests carried out in 2006, using adaptive

augmentation were successful.

Yet, some drawbacks are present in the adaptive controller application. In [18] some
problems about the application of direct adaptive model reference control to aircraft

and weapon systems are stated.

It is rather hard to show stability margins in adaptive control schemes analytically.
The behavior of adaptive controllers during transient phases like gust, turbulence, or
in the face of perturbed aerodynamics, is prone to produce large or high frequency
control signals. The solutions to these problems like dead-zone or adaptive learning

rates are conservative most of the times.

In [19] and [20], Hovakimyan et.al., applied a low pass filter to the adaptive signal,
which allows the arbitrary increase of the adaptation gain. This L1 adaptive
controller scheme enabled controlled adaptive signals while eliminating high
frequency adaptive signal output during transients. In [19] and [20], the weaknesses
of present adaptive control architectures during the transient phase compared to the
L1 controller is presented. The L1 controller is shown to have guaranteed
robustness in the tracking errors during the transient phase. In addition to the
asymptotic stability characteristics of the controller, this new architecture
guarantees that the control signal is in a low-frequency range. This new architecture
produces an adaptive control signal which makes the input and output of an

4



uncertain linear system track the input and output of a desired linear system during

the transient phase, in addition to asymptotic tracking.

1.4 L1 Adaptive Control

The control architecture proposed for L1 adaptive control is a cascaded system
which is composed of a desired closed loop reference system, a low pass filter, an
adaptation law and the plant itself. The desired closed loop reference system, which
Is actually a passive identifier allows for the incorporation of a low pass filter in the
feedback loop. The adaptive control signal is passed through the low pass filter,
which gives the freedom to increase the adaptation gain arbitrarily to enforce the
desired transient response within the limits of the bandwidth of the control channel,

without causing any high frequency in the control signal

A systematic design procedure is presented for the L1 adaptive control architecture.

The elements of L1 adaptive controller are expressed below:

State Predictor: The state predictor defines the desired closed loop system which

will serve as a reference system for the plant.

Adaptation Law: Adaptive law defines the formulation for the calculation of the

unknown parameters used in the system equation.

Control Law: Control law defines the formulation of the adaptive control signal.
The adaptive control signal formulation involves the adaptive elements calculated
by the adaptation law, the low pass filter and the reference signal.

In [19] and [20], L1 adaptive control architecture formulation is given for systems

with bounded, matched system uncertainties. In [21] and [22] the formulation is

extended to systems with unknown time varying parameters and bounded

disturbances. In [23] the L1 adaptive controller methodology for parametric strict

feedback systems is presented. The output feedback formulation of L1 adaptive

controller is presented in [24] for systems with time-varying unknown parameters
5



and bounded disturbances. In [25] and [26] an L1 based neural network adaptive
control architecture is proposed. In 2008, L1 adaptive controller formulation is
extended for MIMO systems in the presence of unmatched disturbances in [27], and

for a class of systems with unknown nonlinearities in [28].

L1 adaptive control has been studied for various platforms, and some of them are
flight tested. In [29] L1 adaptive controller is designed for the pitch channel control
of miniature air vehicles. Other design examples were missile longitudinal autopilot
design in [30], [31], L1 adaptive output feedback controller for aerospace vehicles
in [32], flexible space launch vehicle control in [33], simulator testing of
longitudinal flying qualities of a fighter with L1 adaptive control in [34],
application to UCAV and Aerial Refueling problem in [35], application to NASA
AIrSTAR Flight Test Vehicle in [8]. In these examples, the L1 adaptive controller
was serving as the baseline control architecture for the flight vehicle. L1 adaptive
control is also reformulated to be an adaptive augmentation element on top of a
baseline autopilot to serve as an aiding and correcting control element. In [36]
commercial autopilots are augmented by L1 adaptive control for 3D path following
for small UAVs. In [37] the dynamic inversion based autopilots of X-48B aircraft is

augmented with L1 adaptive control augmentation system.

The L1 adaptive controllers are also verified through flight tests. Some results are
presented in [8], [33], [35], [38].

This thesis work includes applications of L1 adaptive control theory.

Implementations of this theory on flight control of a guided missile are studied.

1.5 Contributions of This Thesis Work

This thesis work involves an analysis and applications of adaptive control
augmentation systems to a guided missile.

The contributions of this thesis work can be stated as follows:



Design of a linear quadratic regulator based autopilot for the control of a missile in
longitudinal axis. Augmentation of this baseline autopilot with direct MRAC and
L1 adaptive control. Demonstration of performance of these two adaptive control

schemes on a linear missile model.

Design of a Dynamic Model Inversion (DMI) controller with two time-scale
separation method for the control a missile in 6DoF. Augmentation of this DMI
controller with novel L1 adaptive Control Augmentation System (CAS).
Demonstration of the performance of augmented DMI controller on a missile model
with nonlinear 6 DoF flight simulations. L1 adaptive CAS was tested through

nonlinear simulations for the first time.

Desing of a Dynamic Model Inversion (DMI) controller with output redefinition for
the control of a missile in 6DoF with L1 adaptive CAS. Demonstration of the
performance of this controller with nonlinear 6 DoF flight simulations. L1 adaptive

CAS was tested through nonlinear simulations.

1.6 Thesis Outline

In Chapter 1 the motivation of the thesis study is stated. A literature survey about
the dynamic inversion control, adaptive control methods concentrating on guided
missiles, and the evolution and state of the art of the novel L1 adaptive control

method is presented.

In Chapter 2, the design methodology of a dynamic inversion controller is
presented. The design steps of a cascade two time-scale separation dynamic
inversion controller for the acceleration control of a missile are explained. Then the
non-minimum phase behavior of tail controlled missiles is discussed and the
“Output Redefinition” methodology is presented. The design of a cascade dynamic
inversion controller with output redefinition for the acceleration control of a missile

is expressed.



In Chapter 3, the theory of Model Reference Adaptive Control and novel L1
adaptive control is explained. L1 adaptive controller design methods for different

class of systems are presented.

In Chapter 4, design of a linear quadratic regulator based autopilot for the
longitudinal control of a missile is presented. Augmentation of this baseline
autopilot with direct MRAC and L1 adaptive control is demonstrated. Linear

simulation results of these augmentation schemes are presented.

In Chapter 5, design of dynamic model inversion controllers for the control of a
missile in longitudinal, directional and lateral axes is presented. Two time scale
separation and output redefinition design options are applied. Augmentation of
these baseline autopilots with L1 adaptive control augmentation system is
demonstrated. Nonlinear, 6 DoF flight simulation results of these augmentation

schemes are presented.

In Chapter 6, conclusions and recommendations for future work is given.



CHAPTER 2

DYNAMIC MODEL INVERSION CONTROL

The most widely studied approach of nonlinear control design is feedback
linearization. This technique involves the use of a nonlinear coordinate
transformation to recast the nonlinear system into a linear time invariant form.
Linear tools can then be applied for the control synthesis. A specific case of
feedback linearizing control is known as “dynamic inversion”. Since the 1980’s
dynamic model inversion is applied in flight control problems. Comprehensive
investigations of dynamic inversion in flight control applications are provided in
[39], [40].

In this chapter, firstly the generalized methodology of dynamic inversion based
control is given. Then, in the following sections, the design process of a dynamic
inversion based acceleration autopilot of a missile with two time scale separation
and output redefinition methods will be explained. Lastly, the design process of a

dynamic inversion based roll attitude autopilot is described.
2.1 Problem Formulation
The nonlinear system dynamics can be expressed by using a set of nonlinear

differential equations. A MIMO nonlinear dynamic system can be written in such a

form as follows [4]:



x=f(x)+gxu (1)

where x € R" is the state vector, u € R™ is the control, f(x) and g(x) denote

nonlinear functions. It is assumed that g(x) is invertible and x is perfectly known.

For the missile control problem, u is the control signal, which denotes the effective
control surface deflections in three axes. For the missile under consideration, this
includes the elevator, rudder and aileron deflections. y is the selected control
variable. For the missile under consideration the control variables are the body

accelerations in pitch and yaw axes, and the roll attitude in roll axis.

The system in (1) can be transformed into a linear system as follows:

X=v )

Then, the control u can be computed as :

u=gx)"v-fx)] (3)

The variable v is a new control for the transformed system. v is called as pseudo
control in some references [13], [14]. The real control u is computed by (3), hence
the linearizing transformation technique can be used if the dynamics are known, all
the states are measured, and g(x)~! is invertable for all values of x. It is assumed

that g(x) is square where g(x) € R™ ™ and the number of controls are equal to the

10



number of states, i.e. n = m. Figure 1 shows the block diagram of the linearizing

transformation.

—» g) - f)] —* fl)+gu >

Figure 1 Dynamic Inversion Architecture

2.2 Application to Missile Autopilot Design

Dynamic inversion technique explained in the previous section is applied to the
autopilot design of a guided missile. The missile under consideration is a tail
controlled, skid-to-turn missile with axis-symmetric external geometry. During the
flight, roll attitude of the missile is kept at 0 deg, and the body accelerations are

controlled in the pitch and yaw axis.

One drawback of dynamic model inversion is that it cannot be applied to non-
minimum phase systems due to the inversion process employed during the
calculation of the control signal. For tail-controlled missiles the transfer function
from control surface deflection to acceleration is inherently non-minimum phase.
Hence, it is not possible to directly design a dynamic inversion controller for the
acceleration control. In this thesis, two different methods are used to overcome this
problem. One way to control the missile acceleration with dynamic model inversion
is to first design a dynamic inversion controller for the inner loop by using a state

variable which has minimum phase transfer function. The state variables like pitch

11



rate, ¢ and yaw rate, r or the angle-of-attack, «, and sideslip, £ which have

minimum-phase transfer functions with control surface deflection are trivial
candidates for the inner loop control. Then an outer loop controller can be designed
with classical methods for the acceleration control. This methodology is called as
two timescale separation design in the literature [1], [4]. However, state variables
may have undesirable zero dynamics, which may degrade the performance of

dynamic inversion controller due to inversion process employed.

Another method offered in literature to deal with the non-minimum phase
characteristics of acceleration control with dynamic inversion is “Output
Redefinition”. In this method a new inner loop variable with favorable zero
dynamics is formed and inversion is applied to this variable. Then a classically

designed outer acceleration loop is closed around this inner loop controller.

Since the missile under consideration has an axis symmetric geometry, and skid-to-
turn maneuver is used, the autopilot design for the directional axis is essentially
identical in form to the autopilot design for the longitudinal axis. Hence, for

simplicity only the longitudinal axis design is considered in the following sections.

2.2.1 Missile Dynamics

The linearized rigid body equations of motion in the missile body axis are used to
design the dynamic inversion autopilots. Aerodynamic, inertial and kinematic cross
couplings are neglected and small angle assumptions are made whenever
applicable. The resulting linear dynamics of the open loop plant used to design the

baseline controllers are as follows:

Longitudinal Dynamics:

12



q=Mya+ Myq+ M(geSe

(5)
a, = Up(a—q) (6)

Lateral Dynamics:
T = NBIB + NrT' + N5r67' (8)
a, = UO(B +7) )

Roll Dynamics:

p = Lpp + L5a6a (10)
$=p (11)

where Zy, Zs,, My, Ms,, My, Yg, Y5, Ng, Ns_, Ny, L,, Ls, are the dimensional
aerodynamic derivatives which are formulated as given in Appendix A, « is the

angle of attack, g is the sideslip angle, ¢ is the roll attitude, p, g, r are the roll,
pitch and yaw rates and o,, J,, 6, are the control surface deflections effective in

roll, pitch and yaw axes respectively.

The nonlinear aerodynamic coefficients of the missile are taken to be functions of

Mach number, M, angle of attack, « and sideslip angle, g as C(M, a, ).
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2.2.2 DMI Based Control of Lateral and Longitudinal Accelerations

2.2.2.1 Dynamic Inversion Based Acceleration Autopilot Design with Two

Timescale Separation

It is noted in [1] and [4] that in the two timescale separation approach the inner loop
and outer loops are separated into fast and slow dynamics. In the design approach of
this thesis the pitch rate g and the yaw rate r corresponds to the fast states. The fast
states are controlled through three equivalent control surface deflections known as
elevator, rudder and aileron deflections. After designing a fast state inversion
controller for the rates, an outer loop inversion controller is designed for the slow
states which are the angle of attack, a, and sideslip, §. The slow states are
controlled by using the commands for g and r as control inputs. The effect of
control surface deflections on the slow states is assumed to be negligible. Then a
classically designed acceleration loop is closed around these two inner loops as

shown in Figure 2.

. R »
Slow ' Fast 6 D.o.F
Missile

Dynamics Dynamics| Dynamics

Figure 2 Dynamic Inversion Based Acceleration Control with Two Timescale

Separation
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In Figure 2, it is seen that there are two dynamic inversion controllers in this
architecture. One is from slow states to fast states (« to g and £ to r) and the other

one is from fast states to control (g to §, and r to §,.).

In different phases of flight of a guided munition, different control variables may be
required to be commanded. For example, after safe separation phase, rate autopilots
can be used to damp the high rates caused by the separation effects. Then, during
the guided flight angle of attack and sideslip autopilots, or acceleration autopilots
can be used to realize the desired maneuvers. This selected architecture allows the
use of the inner rate loops, the outer « and S loops, and the acceleration loops
independently, which allows for the control of different variables in a single

architecture.

Here the methods stated in [1], [3], [4] and [13] is followed for the controller

design.
Dynamic Model Inversion for Pitch Rate Control

In order to be able to make the linearizing transformation explained in Section 2.1 ,
a desired linear system dynamics should be selected. Since in the following
sections, dynamic inversion controller will serve as a baseline control which will be
augmented with adaptive control elements, desired dynamics is selected to be first
order in order to make the dynamic inversion controller design process as simple

and straightforward as possible.

The desired closed loop dynamics for the pitch rate is modeled to be a first order

system as:

q(s) _  wq
q:(s) s+ g (12)
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which results in the following differential equation:

da = Wy @c—9q) (13)

Here g, is the desired pitch acceleration, w, is the desired closed loop bandwidth of
the g loop, q. is the commanded pitch rate calculated from the outer angle of attack

loop. The longitudinal linearized dynamics for g was given as:

q=Mya+ Myq+ Ms,é, (14)

Hence, given the desired pitch acceleration g4, the elevator deflection is calculated
from (13) and (14) as:

8¢ = wqqc — (wg — Mg)q — Moa/Ms, (15)

Dynamic Model Inversion for Angle of Attack Control

Following a similar way of design as the pitch rate loop, the desired closed loop

dynamics for the angle of attack is modeled to be a first order system as:

g = we(a. —a) (16)
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Here @, is the desired angle of attack rate, w, is the desired closed loop bandwidth
of the a loop, a. is the commanded angle of attack calculated from the acceleration

loop.

The linearized dynamics for a was given as:

¢ = Zoa + Z5,6, + q 17

In the two time scale approach, the fast states dynamics is assumed to perfectly
track their commanded values. Hence the effect of control surface deflection on the
slow states is assumed to be negligible. For the missile model under

consideration, Zs_ is inherently small and ZZ—“ > 1. Hence this derivative will be
Se

safely neglected and regarded as a disturbance that will be reduced by the feedback
loop of angle of attack. Given the desired angle of attack rate ¢, the pitch rate
command g, for the inner pitch rate control loop can be calculated from (16) and
(17) as:

e = Wat, — (Wg + Zy)a (18)

Acceleration Control

For the acceleration loop, the acceleration commands should be transformed to

angle of attack commands. Hence, a proper transformation is needed.

At steady-state & = ¢ = 0. Hence, from (6), the steady-state expression of pitch

rate can be written as:

17



=7y, (19)

Eliminating the term 6, in (4) and (5), and substituting (19), the normal acceleration

and angle of attack can be related through the following equation:

Z(qu a, Z(gMa
1-—e 1) 2=z, —=¢
< M%>% (“ M,, )” (20)

Since Zs, term is small compared to Ms_, (20) can be rewritten for the angle of

attack as:

UOZa (21)

Hence, given an acceleration command, the commanded angle of attack can be
directly computed from (21). To reduce the steady-state error possibly caused by

the uncertainty in K _in the closed loop controller, an integral controller is added.

The open loop acceleration control is given in Figure 3.
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Figure 3 Open Loop Acceleration Control

This ends the dynamic inversion based acceleration autopilot design for the pitch

axis. The same methodology is followed for the yaw axis control design.

2.2.2.2 Dynamic Inversion Based Acceleration Autopilot Design with Output

Redefinition

As explained in the previous section, dynamic inversion method inverts the open
loop transfer function from the control to the output being controlled to calculate
the desired control signal. Therefore, non-minimum phase plants cannot be inverted

because of the destabilizing right half plane zero dynamics in the numerator.

State variables are the trivial candidates to be used as the inner loop control
variables. However, the zero dynamics of the transfer functions of tail controlled
guided missiles from control surface deflection to inner loop variables, like g and r
or a and B have zero dynamics which has undesirable characteristics for the
inversion process. The transfer functions from control surface deflection to
aerodynamic angles have a zero, which is far in the left half plane. It is stated in
[13] that if the inversion is not exact, this zero results in undesirable transient
response and increases the sensitivity to time delays. On the other hand, the transfer
function from control surface deflections to body rates has a zero, which is very

close to the origin. This results in a slow mode and threatens the stability of the
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controller in front of parameter errors. A solution to overcome the disadvantages of
this undesirable zero dynamics is offered in [3], which is called “Output
Redefinition”. Output redefinition offers an alternative inner loop control variable
with desirable zero dynamics. Here, this alternative approach from [3] and [13] will
be explained and used for the longitudinal control of a missile. In this approach, the
inner loop variable is defined as a linear combination of the state variables. This
allows the designer to place the zero of the associated transfer function at a
desirable location. Thus, for example a combination of both angle of attack and

pitch rate could be used to define the commanded inner loop variable.

Here, the redefined output for the longitudinal axis given in [13] is used and taken

as follows:

yE=a+(yq 22)

The proof of the derivation of the redefined control variable is given in [3]:

From (4) and (5) the following transfer functions can be derived as follows:

Mazﬁe _
a(s) _ % <S+( Ms, Z“)> 23)
Se(s) D(s)

Z s,
a(s) “o (”K)

5.0 . DG @4
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where D(s) = s% — (Z, + My)s — My + Z,M,,.

Substituting (23) and (24) into (22), the transfer function for the newly defined

output variable y is obtained as follows:

where

y(s) Ky(s+zy)
e(s)  D(s)

Zy Ky
M, Z
a, = ( até, _ Za>
M5e
a Ms,
a A
Se

(25)

(26)

(27)

(28)

(29)

Using the output y, it is aimed to select C, so that the zero of the transfer function

of the new output, z,, has an order of one, 0(1). From (26) and (27), C, can be

calculated as:

_ Z(Se(aa - Zy)
1 Z5e(Zy — aq)

Dynamic Inversion with Output Redefinition

(30)

The block diagram of pitch axis acceleration autopilot with the newly defined inner

loop variable y is given in Figure 4.
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Figure 4 Dynamic Inversion Based Acceleration Control

The desired dynamics for the redefined output variable y is taken to be of first order

as follows:

Va :wy(yc_y) =u, (31)

Here w,, is the desired bandwidth of the inner loop, y, is the commended inner loop

variable produced by the outer acceleration loop.

From (22) y can be written as:

y=d+Chq (32)

For a given y. command, the control surface deflection command &, can be
calculated by substituting (4), (5), and (31) into (32) as follows:
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Uy, —q— Cq(Maa + qu) —Zya

o, =
e (Zs, + UgCyMs,) (33)

where u, is the corresponding pseudocontrol (desired rate of change of y)

2.2.3 Dynamic Inversion Based Roll Attitude Autopilot

For the roll attitude control, first an inner loop controller is designed with dynamic
inversion method for the roll rate control. Then a proportional outer loop controller

is designed for the roll attitude, which produces the roll rate commands for the inner
loop.

The block diagram of the roll attitude control is given in Figure 5.

@, ) PLISF &, 6§D.OF. [
—— s i @I—» Controller| —— p{ issile |
& F Y Poma for Dynamics
@ 7 P @

Figure 5 Dynamic Inversion Based Roll Attitude Control

23



The desired dynamics for the roll rate is taken to be of first order as follows:

Pa = kp(pc -p) (34)

Here p, is the desired roll acceleration, p. is the commanded roll rate calculated
from the outer roll attitude loop. Substituting (34) into (10), for a given desired roll

rate, 5, can be calculated as follows:

Ls (35)

Neglecting all aerodynamic, kinematic and inertial cross couplings, the linearised

roll angle dynamics is as follows:

¢ =0p (36)

Let the desired dynamics for the roll angle be:

(i)d = Wy (bc — d) (37)

Hence the commanded roll rate for the inner loop can be calculated as:
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Pc = (i)d = Wy (bc — @) (38)

The methodology followed in dynamic inversion based acceleration and roll attitude
autopilots are explained. In Chapter 5, this methodology will be applied to the
missile model under consideration. Then L1 adaptive control augmentation will be
applied to the dynamic inversion based autopilots to increase the robustness of these

autopilots to uncertainties. Numerical simulation results will be given.
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CHAPTER 3

L1 ADAPTIVE CONTROL

Adaptive controllers are desired to adapt to uncertainties in the system by producing
a realizable control signal. Most adaptive control architectures are shown to be
asymptotically stable by Lyapunov stability theory. Various improvements have
been suggested for robustness and enhanced performance properties of these
architectures. However, in practical applications, these architectures suffered from
poor robustness characteristics especially during transient dynamics. The fast nature
of transients requires fast and robust adaptation. Hovakimyan et.al. addressed this
problem and enabled fast adaptation without sacrificing robustness [18], [19], [20],
[21], [24]. This novel architecture ensures uniformly bounded transient response for
both the input and output signals. The architecture employs a low pass filter in the
feedback loop, which provides control designer the ability to calibrate between
performance and robustness, within the bandwidth of the control loop. The name
“L1 Adaptive Control” stems from the stability criteria of this novel control
architecture which uses Small Gain Theorem [42], written for L1 gain. The stability

criteria is given in (69).

In this part of the thesis, an introductory theory of the L1 adaptive control is
explained. Then the problem formulation, stability and convergence results of the
initial form of the L1 adaptive controller are presented. Similarly, the design issues
of the L1 adaptive controllers are mentioned. During the evolution of L1 Adaptive
Control, the controller design formulation was presented for several different

classes of systems. In this chapter, L1 adaptive Controller for SISO systems in the

26



presence of matched uncertainties and disturbances will be explained. Then, L1
Adaptive Controller for multi-input multi-output systems in the presence of
nonlinear unmatched uncertainties will be described according to [43]. This
architecture is later used in the augmentation of a baseline controller of a missile in
Chapter 4 and Chapter 5.

3.1 Model Reference Adaptive Controller (MRAC)

The objective of Model Reference Adaptive Control is to define an adaptive control
signal for the control of a closed loop system, the output of which tracks the output
of a desirable reference system, even in the presence of uncertainties or variations in

plant parameters.

Here, the system dynamics considered is single input single output and linear time
invariant as follows [43]:

x(t) = Ax(t) + bu(t), y(t) = cTx(t), x(0) = x, (39)

where x(t) € R" is the system state vector (measurable), u(t) € R is the control
signal, b,c € R™ are known constant vectors, A is an unknown n X n matrix,

y(t) € Ris the regulated output.

During the formulation of MRAC design, the following assumptions will be in

effect:

Assumption 1: There exist a Hurwitz matrix A,, € R™" and a vector of ideal
parameters & € R™ such that (4,,,b) is controllable and A,, — A = bOT. A,

defines the desired reference dynamics for the closed loop system.

27



Assumption 2: The unknown parameter € belongs to a given compact convex set 0,
i.e.6 €0.

Assumption 3: The reference input r(.) is piecewise continuous and bounded in R.

According to Assumption 1, the system dynamics can be rewritten as follows:

x(t) = Ax(t) + bu(t) — bOTx(t), y() = cTx(t), x(0) =x, (40)

The ideal controller for this system dynamics that will eliminate the uncertainties

and provide tracking of the reference input is:

u (t) = 07x(t) + kyr(t) (41)

1

where k, = — —o1 can be used to have zero steady state error to step reference
m

inputs. Here, it is assumed that the desired reference dynamics A,,, is selected such
that cTA;lb # 0.

The ideal controller reduces the system dynamics to the reference model dynamics

as follows:

X () = Apxm(t) + bkgr(8),  ym () = cTxp (1) (42)
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where x,,(t) € R" is the state of the reference model and y,,,(t) € R™ is the output

vector.

The model reference adaptive controller is defined as:

u(t) = 0T(O)x(t) + kyr(t) (43)

where @(t) € R™ are the adaptive parameters, which are the estimates of the ideal

parameters 6 (t). And the corresponding adaptive law is given as:

8(t) = TProj(8(), x(t)e™ (©)Pb),  6(0) = B, (44)

Here, T' = I,up, I > 0 is the adaptation gain, P = PT > 0 is the solution of the
algebraic Lyapunov equation AL P + PA,, = —Q for arbitrary Q >0, e(t) =
x,, (t) — x(t) is the tracking error between the reference dynamics in (42) and the
system dynamics in (40).Proj is a projection based mathematical operator used to
keep the adaptive parameters bounded [46]. The projection operator is explained in
detail in Appendix B. Hence, to achieve the control objective, a control architecture

as shown in Figure 6 is used [43].
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Figure 6 Model Reference Adaptive Controller Architecture

The closed loop tracking error dynamics of the MRAC can be written as follows:

~ T
é(t) = Ame(®) = b (8(t) - 6(1)) x(D)

Considering the Lyapunov function candidate:

v (e(t),8(t)) = e (t)Pe(t) + 87 (Or 14 (t)

where 8(t) = 8(t) — 0(t)

It can be verified that:
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V(t) = —eT(t)Qe(t) + 2T ()PhOT ()x(t) + %éT(t)é(t)
= —eT(t)Qe(t) + 287 (t) (%é(t) + x(t)eT(t)Pb)
=—eT(t)Qe(t) <0

V(t) = —eT(t)Qe(t) <0 (47)

This result implies that the signals e(t) and 8(t) are bounded. In order to verify
asymptotic stability of the error dynamics, second derivative of the Lyapunov

function is computed as follows:

V(t) = —2e"()Qé(r) (48)

Since e(t) = x,,(t) — x(t) is found to be bounded and the state of the closed loop
reference dynamics in (42), x,,(t), is also bounded, then it can be concluded that
x(t) is bounded. Hence, from (47), é(t) is bounded. From (48) V(t) is also

bounded, which implies that V(t) is uniformly continuous.

From Barbalat’s Lemma it follows that:

gim V() =0

which implies that:
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gim e(t) =0

Hence the tracking error goes to zero asymptotically as t — oo which means that the
output of the closed loop system will asymptotically converge to the output of the
reference system. This completes the stability proof of model reference adaptive

control architecture.

Although MRAC provides asymptotic stability for the tracking error dynamics,
asymptotic stability of the parameters is not guaranteed. It is hard to talk about the
behaviour of the closed loop system during the transient phase in case of system
uncertainties. Large transient errors can cause, large adaptive gains, which in turn
causes high frequency control signal. MRAC can cause unpredictable/undesirable
situations involving control signals of high frequency or large amplitudes, large

transient errors or slow convergence rate of tracking errors during transient phase.

3.2 Model Reference Adaptive Controller with State Predictor

In this section a control architecture which is equivalent to Model Reference
Adaptive Control (MRAC) architecture is presented. Then this architecture is used

to explain the novel L1 adaptive controller architecture.

Given the system in (40), a state predictor model which can be thought as an

identifier to the system in (40) is defined as follows:

£(t) = A, 2(t) + bu(t) — b8 x(t),
P(t) = cT2(t), £(0) = x, (49)
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where Z(t) € R™ is the state of the predictor, and 8(t) is the estimated value of the

unknown parameter 6(t).

Compared to the MRAC architecture, this companion system can be thought as

equivalent to the reference model dynamics in MRAC. The MRAC with state

predictor is given in Figure 7 [43].
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Figure 7 MRAC with State Predictor Architecture

The error dynamics between (40) and (42) can be written as:

X(t) = A,,%(t) + bOT ()x(t), ¥(0) =0

Adaptive Law

F WY
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where #(t) 2 2(t) —x(t) and () 2 (t) — 6(t). It is seen that the error

dynamics in (50) is in the same structure with the error dynamics in (45).

Given a bounded reference input signal r(t) of interest to track, the following direct

adaptive controller is used:

u(t) = 0T(Ox(t) + kyr(t) (51)

with the following update law for the parameter estimates:

8(t) = IProj(8(6), x(OZT(t)Pb),  8(0) =, 52)

where 4(t) € R™ are the adaptive parameters, I' = I.I,,,, I > is the adaptation
gain, P =PT >0 is the solution of the algebraic Lyapunov equation AT P +
PA,, = —Q for arbitrary Q > 0, ¥(t) = x(t) — x(t) is the tracking error between
the state predictor dynamics and the system dynamics in (40). With the following

choice of Lyapunov function candidate:

% (f(t),é(t)) = T (OP%() + T (O)r14(t) (53)

it is ensured that lim,_., X¥(t) = 0. Thus, the model reference adaptive control
architecture with state predictor leads to the same tracking error dynamics with

MRAC, if they start from the same initial condition.
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3.3  Error Bound for MRAC and MRAC with State Predictor

From equations (46), (53), and the asymptotic stability results, the following

inequality can be obtained for the error states:

o ’ Omax
”X(t)” < Fomin(P)T fort >0 (54)

Here 0,0 = MaxXgee Yieq 467, and A,,;,, (P) is the minimum eigenvalue of P.

From (54) it is seen that as the adaptation gain is increased, the error state can be
decreased arbitrarily. However the increase in T results in high frequency control
signals according to (43), (44), (51) and (52).

3.4 L1 Adaptive Controller

The L1 adaptive controller introduces a filtering technique for MRAC with state
predictor architecture, which enables to prove fast adaptation and robustness at the
same time. L1 adaptive control not only deals with the magnitude and frequency
characteristics of the output tracking error, but also with these characteristics of the
input signal to the system [18], [19], [20], [43]. The architecture of L1 adaptive

controller is given in Figure 8 [43].
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Figure 8 L1 Adaptive Controller Architecture

Instead of (51), L1 adaptive control theory offers the following control design for
(40) and (49):

u(s) = C(s)(F(s) + kyr(s)) (55)

where  7(t) = 0T()x(t), and 7(s), r(s), u(s), £(s) are the Laplace
transformations of 7(t), r(t), u(t), £(t), k, is a pre-specified design gain and
C(s) is a low pass filter with low pass gain 1. With this control law, the adaptive
control signal is filtered by a low pass filter before it is introduced to the system

dynamics.
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3.5 L1 Gain Requirement

In the derivation of L1 adaptive control theory L1 Small Gain Theorem is used to

define the limits for the filter design.

The closed loop MRAC model with state predictor in (49) can be written as an LTI

system with two inputs r(t) and 7(t) as follows:

£(s) = G()T(s) + G(s)r(s) (56)

Where G(s) = Ho(s)(C(s) — 1), G(s) = kyHo(s)C(s), Ho(s) = (sI = Ap)'b.

For the stability of the MRAC with state predictor dynamics small gain theorem is
used to define the following L1 gain requirement [45]:

||G_(s)”1:19max <1 (57)

where ||G(s)||£1 is the £, gain of G(s). The £, gain of a stable proper SISO system
G (s) is defined in [50] as :

1G ()., =f0 |g()|dt (58)

where g(t) is the impulse response of G (s). The £, gain of a stable proper m input

n output system G (s) is defined as:
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m
16Nz, = max Zlnaij @I, (59)
j:
Opmax 1S defined as follows:

n
Omax = rggg( 2 16| (60)
i=1

Where 6; is the i*" element of 6, © is the compact unknown parameter set.

The block diagram of L1 gain requirement is given in Figure 9.

max

G(s) [+——

Figure 9 Block diagram for L1 gain requirement
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The requirement in (57) is used to determine the bandwidth of the low-pass filter
C(s).

Now that, all the components of L1 Adaptive Controller are defined. The following

theorem concludes the basic form of L1 Adaptive Controller according to [19], [20].
Theorem:

Given the system in (40) and the L1 adaptive controller defined by, (49), (52) and
(55) subject to (57), the tracking error converges to zero asymptotically

lim;_ ., X(t) = 0.

3.6 L1 Adaptive Controller for SISO Systems in the Presence of Matched
Time Varying Uncertainties and Disturbances with Uncertain System

Input Gain

In this section, a theoretical extension of the L1 adaptive control theory for SISO
systems in the presence of matched time varying uncertainties and disturbances
with uncertain system input gain is explained [43]. In Chapter 4, this architecture is
referenced for the adaptive control augmentation of a missile autopilot.

The system dynamics of a SISO system with unmatched nonlinear uncertainties can

be modeled as follows:

x(t) = Apx () + b(wu(®) + 0 x(t) + o (b))
y(t) = cTx(t) (61)

where x € R" is the state vector, u € R is the control input, y € R is the output. 4,,
is a known, Hurwitz n xn matrix which represents the desired closed loop

dynamics. w models the unknown input gain, 6(t) € R" is a vector of time varying
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unknown parameters and o(t) models the unknown disturbances in the missile

dynamics.

For the adaptive control design the following assumptions are done on the

uncertainties:
0(t)EOB,a(t) <Ajforvt=>0andw € Qy £ [Wi0 Wyo] Where 0 < w;g < Wypg-

Also 6(t) and a(t) are assumed to be continuously differentiable with uniformly

bounded derivatives:
16| < do < o0, ll6() | < dy < 00, fOrve=0.

For the systems that can be modeled as in (61) , the following adaptive controller is

offered.

State Predictor:

£(6) = An(6) + b (Du(t) + AT x(6) + 6(6))

@) =c"2(t) ¢
Adaptive Laws:
d(t) = ToProj(A(t), —xT (t)Pbx(t)) (63)
&(t) = [,Proj(6(t), —%7 (t)Pb) (64)
®(t) = I,Proj(@, —%7 (t)Pbu(t)) (65)

where Ty, I;, T, are the positive definite adaptation rates, ¥ = £ — x is the error
between the states of the state predictor and reference dynamics. P is the positive

definite solution of the algebraic Lyapunov equation:

Tp — _
PAm + ATP = —Q (66)
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Q is symmetric positive definite matrix. Proj(.,.) is the “Projection Operator”
which is a mathematical operator used to keep the adaptive parameters bounded.

[46] The projection operator is explained in detail in Appendix B.

Control Law:

u(s) = —kD(s)(H(s) — kgT'(S)) (67)

where /() 2 du(t) + OO x(t) + 6(t), kg = — ===, k > 0 iis a feedback gain

cTazl

and D(s) is a strictly proper transfer function leading to the following strictly

proper stable transfer function for the low pass filter

Cls) & wkD(s)
~ 1+ wkD(s) (68)

Simplest choice for D(s) =§. Here, it is assumed that A,, is selected that

cTAGb #0

The L1 controller defined by (62)-(67) is subject to the following condition:

||G(5)”L1L <1 (69)

where G(s) = H(s)(1 — C(s)), H(s) = (s — A,;)) b and L £ maxgeell0]l;
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3.7 L1 Adaptive Controller for Multi-Input Multi-Output Systems in the

Presence of Nonlinear Unmatched Uncertainties

In this section, a theoretical extension of the L1 adaptive control theory for multi-
input multi-output systems in the presence of nonlinear unmatched uncertainties is
explained [26], [43]. In Chapter 5, this architecture is referenced for the adaptive

control augmentation of a missile autopilot.

The system dynamics of a MIMO system with unmatched nonlinear uncertainties

can be modeled as follows:

%(t) = Apx(t) + By (wu(t) + f(x(0), z(t), 1))
+ Bum f2(x(2), z(t), t), x(0) = x, (70)

z(t) = go(x,(t), 1)
%, (8) = g0 (0),x(0), 1), x,(0) = Xz

y(t) = Cx(t)

where x(t) € R™ is the measured system state vector, u(t) € R™ is the control
signal, y(t) € R™ is the regulated output, 4,,, is a known, Hurwitz, n X n matrix
that defines the desired dynamics for the closed loop system, B,, € R™™ is a
known constant matrix,(4,,, B,,) controllable, B,,,,, € R™™~™) js a constant matrix
such that BEB,,, = 0 and rank(B,,, B,,) = n, C € R™™ is a known full-rank
constant matrix, (4,,, C) observable, w is the system input gain matrix,z(t) and
x,(t) are the output and the state vector of the internal un-modeled dynamics

(), f2(), go(.) and g(.) are unknown nonlinear functions. In this problem
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formulation f; (.) represents the matched part of the uncertainties, whereas the term

B,m f2(.) represents the unmatched part of the uncertainty dynamics.

For the L1 adaptive controller architecture to be valid for this kind of system

dynamics, the assumptions that the system in (70) should satisfy are listed below:

Assumption 1: The z dynamics are bounded input bounded output stable, i.e. there
exist L,; > 0andL,, > 0suchthatforallt >0

||Zt||Lc>c> < Lz1||xt||z;oo + Ly,

Assumption 2: Let X(¢) 2 [xT(t) zT(t) ]*. For arbitrary § > 0, there exist positive
K15’ K25 and Bi such that

Ifi (X1, ©) — fi(X2, Ol < K511 X1 () — X2 ()|l eo,
I£:(0,0)] < B; =12
Forall || X;(t)]le < 8, i = 1,2, uniformly in ¢.

Assumption 3: The system input gain matrix w is assumed to be an unknown (non-
singular) strictly row diagonally dominant matrix with sgn(w;;) known. Also, it is
assumed that there exists a known compact convex set , such that w € Q

R™ ™ and that a nominal system input gain w, € Q is known.
Assumption 4: The transmission zeros of the transfer matrix

H,,(s) = C(sl — A,;;) "B, lie on the open left half plane.
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3.7.1 L1 Adaptive Controller Architecture
L1 adaptive controller for MIMO systems in the presence of unmatched nonlinear
uncertainties consists of the following components [26]:

State Predictor:

£(8) = Ap2(E) + BpKgr () + B (taa(t) + G (0))
+ BymGum (t), £(0) = xg (71)

y() = Cx(¢)

where G,,(t) € R™ and 6,,,,,(t) € R™*™™ are the adaptive estimates of the nonlinear

functions defined in (70).
Adaptive Laws:

The adaptive parameters are calculated by the following piecewise constant

adaptive law:

om(t) = Om (kTs), Gum(t) = Gum (kTy), t € [kTs, (k + 1)Ts]

[ 6m (kTS) _ _[Bm Bum]—1¢—1(Ts)eAstgz(kTs), k

Gum (KT,) a2
=0,1,2,..

where T; is the sampling rate of the model, ¢(T,) = A, (e4mTs — 1) and %(t) =

x(t) — x(t) is updated every T.

Control Law:

Uaa = =C1 ()G (5) = Co(HT " (5)Ha (5)Gum (5) (73)
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where
Hy(s) = C(sl - Am)_le
HZ(S) = C(SI - Am)_lBum

C;(s) is a strictly proper stable transfer function and C,(s) is selected to ensure that
C,(s)H{1(s)H,(s) is also proper and stable. Furthermore the transmission zeros of
H,(s) sholuld lie on the open left half plane. C,(s) and C,(s) are filtering out the
high frequencies from the adaptive control signal. Therefore they serve as a trade-
off between robustness and performance. As the bandwidth of these filters is
increased the performance of the adaptive controller will increase but the time delay
margin will eventually decrease. On the other hand, if the bandwidth of the filters is
decreased the robustness of the adaptive controller will increase with an increase in
time delay, but the performance of the controller will eventually degrade.

The stability proof for this architecture is given in [26].
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CHAPTER 4

ADAPTIVE CONTROL AUGMENTATION TO A LINEAR MISSILE
LONGITUDINAL AUTOPILOT WITH NEURAL NETWORKS AND L1
ADAPTIVE CONTROL

In this chapter, adaptation characteristics of a neural network based adaptive control
augmentation design, and L1 adaptive control augmentation design will be
demonstrated on the same baseline linear autopilot of a missile in longitudinal axis.
Firstly, the baseline linear autopilot design method will be explained. Model
Reference Adaptive Control augmentation design of the baseline linear autopilot
will be presented. Then, L1 adaptive control augmentation design of the same
baseline linear autopilot will be explained. Finally linear simulation results of these
two augmentation schemes will be presented.

4.1 Baseline Linear Autopilot Design: Robust Servomechanism Linear

Quadratic Regulator with Projective Control

In this section, the elements of the baseline linear autopilot architecture used for the
adaptive control augmentation are presented. The closed loop dynamics with the
baseline autopilot will serve as the reference model in the adaptive model following
augmentation design. Hence the formulation of closed loop baseline dynamics will

be given in order to be used later in the adaptive augmentation design.

The aim of the baseline autopilot is to control the missile acceleration in
longitudinal direction, i.e. a,. The acceleration control is achieved by a cascade
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architecture, which allows for the control of the pitch rate, g , in the inner loop, and
the normal acceleration,a, in the outer loop. A block diagram of this architecture is

given in Figure 10.

The inner loop design is performed by “Robust Servomechanism Linear Quadratic

Regulator Methodology” with “Projective Control”.[41], [47].

Robust servomechanism linear quadratic regulator architecture employs an optimal
full state feedback gain matrix. And an integral control action is added to the plant

dynamics for zero steady state error.

Projective control is used to retain the dominant eigen-structure of a linear quadratic
regulator with state feedback by using the states that are available for feedback.
Namely, projective control transforms the full state feedback architecture into
output feedback architecture by preserving the dominant performance and

robustness characteristics of the full state feedback control.

These two methods, i.e. RSLQR and Projective Control forms a robust control
architecture that uses the available outputs for feedback while providing a

performance that approximates the performance of the full state feedback design.

After designing the inner loop, the outer loop gain is found by Root Locus method.

4.1.1 Inner Loop Design Method: Robust Servomechanism Linear Quadratic

Regulator Design

An open-loop linear plant can be described as follows [41]:

x(t) = Ax(t) + Bu(t) + Ew(t)
y(t) = Cx(t) + Du(t) + Fw(t)

74
z(t) = Fy () ()
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where x(t) € R" is the state vector, u(t) € R™ is the control vector, C =[I 0],
y(t) € R" is the output vector , w(t) is an unmeasurable disturbance, z(t) € R is
the vector of controlled outputs, (A, B) controllable and (4, C) observable. The
command input vector r(t) € R? has dimension less than the outputs, and it is

assumed that kt" differential equation for r(t) is known.

For the derivation of RSLQR, an error signal between the controlled outputs and the
inputs is defined as follows:

e(t) = ye(t) = (1) 75)

where y.(t) is a subset of the output vector y(t). The output vector is divided into

y.(t), i.e the controlled outputs and, y,.(t),i.e. the non-controlled outputs.

y(©) = yy((?)] =[cc]x® (76)

The objective in RSLQR is to make the error e(t) = 0 as t — oo, in the presence of

unmeasurable disturbances w.

In RSLQR methodology a new state vector is defined as follows:
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e
7 = :
o=1) (77)
X
Hence z dynamics becomes:
where
0 I 0 0 0
y 0 0 00 o
A= : : , B=]|":
el eyl al C, D, (79)
0 0 0 A B
du(t)
o) = =g (80)

RSLQR is obtained by applying linear quadratic regulator theory to (78). By this
formulation, g outputs in y(t), i.e. y.(t), is forced to follow r(t), while integral

control action is applied to the error signal.

The performance index used to apply the LQR theory is as follows:

J= f(ZTQZ+.UTRﬂ) (81)
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By solving the Algebraic Ricatti Equation using Q and R, the optimal control u(t)

is found as follows:

u(t) = f/,t(t)dt =— chz(t)dt = —K; f e (t) dt — K,x (t) (82)

The basic design steps of an LQR controller with full state feedback and integral
action on error signal is given. A detailed derivation of RSLQR is given in [41]. To
be able to use the formulation in (82), all of the states must be available for
feedback. But usually this is not possible for the missile systems. Hence, in the next

section a design methodology to employ output feedback is given.
4.1.2 RSLQR with Projective Control
For the system defined in (74), an LQR state feedback control can be written as

follows:

u(t) = —R7IBTSx(t) = —Kx(t) (83)

T _ -1pT —
ATS + SA—SBR™BTS+Q =0 (34)

where Q > 0, R > 0, and the pair (4, Q/?) observable and S is the solution of(84).
Substituting (83) into (74), the closed loop system can be described by:
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x(t) = (A — BRBS)x(t) = (A — BK)x(t) (85)

If the number of available outputs for feedback is r, (y € R"), Projective Control
Theory states that,  eigenvalues (4,.) and their associated eigenvectors (V,.) can be
retained by applying the following transformation on the full state feedback gain

matrix K:

Kproj = KV;‘(CVT)_l (86)

where

(4 = BKyrojC)Vy = Vdy, W € R™ 87)

Now that the full state feedback gains are transformed into output feedback gains
which contain the dominant performance and robustness properties of the full state
feedback design. Similarly, projective control can be applied to the robust

servomechanism linear quadratic regulator control signal given in (82).

If the number of states available for feedback or the resulting output feedback
design is not adequate to retain the desired performance and robustness properties,
then a dynamic observer can be designed. However, for the missile under
consideration, the states available for feedback were adequate to obtain the desired
performance and robustness characteristics according to (86). Hence, dynamic

observer design will not be dealt within the scope of this section.
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4.1.3 Baseline Closed Loop Dynamics

In order to be used in the adaptive augmentation design, the closed loop dynamics

of the baseline autopilot will be presented.

The plant dynamics can be written as follows:

Xp = Apxp + Byu
y = Cyxp + Dpu

z, =Fy

(88)

where x,, is the plant state dynamics, u is the input signal, yis the sensor

measurements, and z, is the subset of plant outputs that are to be controlled.

The controller dynamics of the cascaded inner and outer loop can be written as

follows:

X, =A.x, + Bz, + Bzzczp
u = Cex. + Di .z, + D}z, (89)

where x, is the controller state vector, z. is the outer loop commands and z, is the

system controlled output.

Substituting the open loop plant dynamics into controller dynamics, and solving for

the control signal u, the following expression is obtained for the nominal controller:
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-1
u = (I-D4FD,) (Ccx.+ Df.z. + D5.FCyx,) (90)

The extended system dynamics containing both the controller and plant dynamics is
given by:

X A 0 /x B 0
()= bz, 2)6D* (azrn,)nt (aa) =
X B3.FC, A NS B3.FD, Bi.z.

A x B, B,
y = (Cp O)x + Dpu (91)
C
u=KIx+Klz,

Hence the closed loop reference dynamics can be represented as follows:

x=(A+BKI)x + (B,KI + B,) z,

Aref Bref
y = (C+ DyKT) x + DK z, (92)
Cref Dref

4.2 Neural Network Augmentation Design of Baseline Linear Autopilot

The adaptive augmentation scheme used to augment the baseline autopilot designed
in the previous section is a direct model-reference adaptive control architecture
given in [47]. In the baseline architecture the actuator dynamics is removed and
system matched uncertainties are introduced to the baseline architecture. The

resulting open loop system can be interpreted as:
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% = Ax + A (u + k(xp) ) + Boze (93)

Here A is a diagonal matrix that models the uncertainties in control effectiveness or
control surface failure, and x(x,, ) is a function, which can be nonlinear, that models
the system matched uncertainties. If the uncertainties are omitted, i.e. if A =1, and

k(x,) = 0, (93) coincides with the reference model.

The aim of the adaptive augmentation is to cancel the effects of the uncertainties A
and K(xp) by making proper augmentations to the control signal u, and restore the

reference dynamics performance in the presence of these uncertainties.
4.2.1 Adaptive Control Input, Function Approximation and Update Law

The adaptive control input is formulated as follows:

U= Uy +Ugqg = KIx + K]z, + kIx + klz. — R(x)) (94)

Here kI are the incremental feedback gains, kI are the incremental feedforward
gains, and ;%(xp) is the online approximation of the matched system uncertainties.
A multilayer Neural Network (NN) is used for the approximation of ;%(xp). The

neural network structure used in this study is a feedforward neural network that uses
Radial Basis Functions (RBF) in its hidden inner layer which is formulated as

follows:
K(x,) = 0T (xp) + £o(xp) (95)
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Here O is the ideal outer layer NN weights matrix, ¢ (x,) is the radial basis function
vector, €y(xp) is the approximation tolerance. For a sufficient number of RBF
neurons, there exits an ideal © matrix that allows K (x,,) to be approximated within

the tolerance g, (xp). [49]

Since the ideal weights matrix,0, is not known an estimation of this matrix, ® will

be used. The function approximation for K (x,,) becomes:

K(xp) = 0Tdb(xp) (96)

Similarly the incremental feedback and feedforward gains are not known. The

update law used for the estimation of the unknown parameters is as follows:

I’éx = l"XProj(lEx, —xeTPB,) (97)
k, = I,Proj(k,, —z.eTPB;) (98)
© = IoProj(, ¢ (x,)e"PB;) (99)

In (3)-(4) Iy, I, T are the positive definite adaptation rate matrices, e = x — x,.¢¢
is the error between the states of the closed loop dynamics and reference dynamics.

P is the positive definite solution of the algebraic Lyapunov equation:
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PAypes + Al P = —Q (100)

Q is symmetric positive definite matrix. Proj(.,.) is the “Projection Operator”
which is a mathematical operator used to keep the adaptive parameters bounded
[46]. The projection operator is explained in detail in Appendix B. The baseline
controller is designed with the nominal plant information. Hence, as long as the
uncertainties in the missile model are small, and the error dynamics is kept small,
there is no need for the adaptive elements to augment the control signal of the
baseline controller. Moreover the adaptive elements may produce unwanted
augmentation signal due to noise in the signals. Therefore in order to prevent the
adaptive elements to make unnecessary and undesired augmentation “Dead-Zone
Modification” is used. Dead-zone modification is simply to freeze the adaptation
process when the magnitude of tracking error is less than a pre-specified value.

4.3 L1 Adaptive Augmentation of Baseline Linear Autopilot

In order to augment the baseline linear controller with L1 adaptive control, the L1
adaptive controller formulation explained in Chapter 3, Section 3.6 will be used.
The aim is to formulate an adaptive control signal, which will be added to the

baseline control signal, that can be calculated by the formulation given in (67).

This section presents the design steps to convert the stand alone L1 adaptive
controller into an adaptive augmentation element to the baseline autopilot given in
Section 4.1. The method given in [48] is adopted for the adaptive augmentation
design of the particular baseline autopilot used in this study.

Consider the SISO plant dynamics:

x(t) = Ax(t) + b(wu(t) + 6(6)Tx(t) + o (1))
y(t) = cTx(t) (101)
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where x € R™ is the state vector, u € R is the control input, y € R is the output
vector. The states are assumed to be available for feedback. A is a known n X n
matrix which represents the plant dynamics. w models the unknown input gain,
6(t) is a vector of time varying unknown parameters and o (t) models the unknown

disturbances in the missile dynamics.

When the uncertainties and disturbances are omitted, i.e. w =1, 8 =0, 0 = 0 the
baseline closed loop system is obtained by applying the baseline control signal

uy; (t) as follows:

£(t) = Ax(t) + bup () (102)

The aim of the adaptive augmentation is to produce the control signal that will make
the system converge to baseline closed loop dynamics, the ideal controller for (101)

can be written as:

1
u(®) == p(t) = 6(O)"x() = a (1)) (103)

Subtracting the baseline control signal u,;(t) from u(t), the portion of the ideal
control signal that should be produced by the adaptive augmentation can be

calculated as follows:

1
Uaageat(t) = = (1 = @up () = 6O (6) = 7 (1)) (104)
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Hence

u(t) = ubl(t) + Ugd,ideal () (105)

The next step in the augmentation design is to split the baseline control signal as

follows:

up (t) = up (t) — Kx(t) (106)

K can be selected to make A — bK has poles close to the baseline closed loop

dynamics.

Substituting (105) and (106) into (101), and making the necessary modifications to

be able to use L1 adaptive controller formulation, the system dynamics becomes:

#(6) = Ax(t) + b(w (i (8) — Kx(8) + Ugaiaear (D))

F 1 () F Kx(t) + 0()Tx(t) (107)
+ o(t)

(107) can be written as :

X(t) = Apepx(t) + bl (t) + b(WUgqg igear () + 0O x(t)
+a(t)) (108)
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where
Aves = A— DK
() =06(t) + (1 —w)KT
a(t) = a(t) + (@ — Dy (t)

The system dynamics and the control signal for which the L1 adaptive control

design formulation given in Chapter 3, Section 3.6 is rewritten here to setup the

analogy:
X(t) = Apesx(t) + b(wuga (1) + 6()"x(t) + o (t))
y(®) = c"x(t) (109)
u(t) = kD) (kg (t) — d(Ou(t) — () x(t) - 6(1)) (110)

The system given in (108) has the same system structure with the system given in
(109) , except for the term b, (t). This term can be regarded as doing the effect of
kg7 in (110) and the effect of this term can be compensated by defining the adaptive

control signal augmentation term as follows:

Uga(t) = —kD (p) (Duaq(t) + ()T x(t) + 6(2) (111)

Hence the adaptive control signal that can be used to augment a baseline linear

controller is derived to be used in the missile longitudinal autopilot design.
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4.4  Application to Missile Longitudinal Autopilot

In this section, the application of the baseline autopilot design method described in
Section 4.1 to a missile longitudinal autopilot is presented. Then, application of the
adaptive augmentation designs presented in Section 4.2 and 4.3 to the baseline
missile autopilot is explained. The baseline autopilot design is performed with the
nominal data of the missile at a single point in the flight envelope. The performance
of the baseline controller and the effect of the adaptive augmentation designs is
demonstrated with linear simulations. Aerodynamic model uncertainties are
introduced to the simulation model. The performance of the two adaptive

augmentation schemes is compared.

4.4.1 Baseline Autopilot Design

Baseline autopilot architecture is given in Figure 10.[44]

':Ix.:.' + + + A g £l

°
=
|8

Figure 10 Baseline RSLQR Autopilot Architecture
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Pitch rate is controlled in the inner loop of this architecture. Robust
servomechanism linear quadratic regulator combined with projective control is used
to design the inner loop. The outer acceleration loop is designed with Root Locus
method. In the outer feedback loop pitch rate is combined with normal acceleration
to obtain the normal acceleration at center of percussion. This treatment changes the
zeros of the acceleration transfer function and improves the stability margins. A
detailed information about this treatment is given in [44]. LA gain in Figure 10
stands for the lever arm between the center of gravity and IMU location. LA = 0.5

is used for the missile under consideration.
4.4.1.1 Inner Loop Design

The baseline missile autopilot design is performed with the aerodynamic data of the

missile at a single flight condition of Mach = 0.9, « = 0 deg, h = 5000m.

The linearized missile dynamic equations in the longitudinal channel are used for

the design:

a = Zaa + 26353 + q (112)

q = Mga + Mqq + Ms, 6, (113)

The control actuator system of the missile is modeled with a second order transfer
function having a natural frequency of wng,s = 75rad/s, and damping of
& =0.707 as follows:

Se (@n CAS)2

Oec T2+ 28wn 68+ (Wnps)? (114)
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The state vector used in RSLQR design is:

x:Ueth a q &, Se] (115)

where e, = q. —q.

The performance index used in the LQR state feedback design is:

J = Of @[ eqdy? +u"w 116

Here, q; is selected to be the only design parameter to be adjusted for the

performance and robustness requirements.

The stability, performance and robustness criteria for the selection of g; is to make
the closed loop system stable, satisfy a minimum of 0.2 seconds for 63% risetime,
satisfy a maximum of 300 deg/s &, for 1 radians of pitch rate command, and satisfy
a minimum of 6 dB gain margin, 30 deg phase margin for the open loop transfer

function.

q;, satisfying these criterias is selected and the corresponding full state feedback
gains are calculated. For the missile under consideration, the pitch rate q and the
pitch acceleration a, are the measured variables. Hence in (115), 2 of the 5 state
variables, g and feth, are available for feedback. Using projective control, and

selecting the 2 most dominant poles to be retained the inner loop design is
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completed. for the design condition the gains are found as K, = —0.1837, and

K; = 1.235.
4.4.1.2 Outer Loop Design

The outer loop gain is designed by the well known Root Locus method. For the
design condition K,, = —0.0187 gives a desired step response and provides a gain

margin greater than 6 dB, and a phase margin of 30 deg.
4.4.2 MRAC Adaptive Augmentation

The longitudinal dynamics of the missile will be modeled according to (93) for the
NN augmentation design:

a a
(q) =A (q) + B;A(8, + k(a,q)) + B, ((ZZC) (117)
C.Il' qi ‘

The control signal with the adaptive augmentation becomes:

8¢ = 8e)p1 + 6e)aa
= K;q; — Kyq + koo + koyq + kig; (118)
—k(a,q)

where k(a, q) = 0Td(a, q).
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The adaptive elements in (118), k, and © are calculated by the adaptation laws

given in (97) and (99). No feedforward gains are used, hence k, = 0.

ke
kq
k;
B\ e Zs, (119)
= [xProj kq y T <q> (a— Aref 4 —Gref qi — Qiref)P MV
k qi Se
qi 0
Z(ge
= A ~ V
0= F@PTO] 0, (I)(O(, Q) (0( — Qref 4 —Qref qi — qiref)P M5e (120)
0

The design parameters to be determined for the simulations are the adaptation rates
I, [ and the positive definite symmetric matrix Q. For the simulations Q = I35 IS

used, and the adaptive parameters are determined by trial and error as:
I = 1001343

Ie = [0.001 0.002 0.003 0.004 0.005] I5ys

4.4.3 L1 Adaptive Control Augmentation

The longitudinal missile dynamics will be modeled according to (101) for L1

adaptive augmentation design.

64



(3) = 4(y) +b(w8, + 0@ x(D) + 0() (121)

y(®) = cTx(t)

where

0¢ = 8¢)p1 t 8¢)aa

. kD@@W® () +6(1) 122
= Kiqi — Kqq (1 + kD(p)®) .

For the adaptive augmentation design, the baseline controller is divided into two

portions
8e)p1 = 5_e)bl — Kx(t)

The reference closed loop dynamics for the baseline autopilot architecture presented
in Figure 10 can be derived and adopted to the system definitions in Section 4.3 as

follows:

(3) =4 (3) +béen (123)
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For the given control architecture g; can be written as follows:

qi = fKaz(azc - (az - qLA)) —q dt (125)
a, should be replaced with its definition formed by the state variables a and gq.

a; = Up(@ —q) (126)

where U, is the freestream velocity.

Substituting (126) into (125) and taking the Laplace transform of this new g;

equation, the baseline control input takes the following form:

K; K; a
8e)bt = |—Kq,K; Uy Kaz?l (Uo + LAs) — ?l - KCI] [q]

Ky

(127)

Substituting (127) into (123) the closed loop system equation for the baseline

controller takes the form
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<3) = (A +Dky) (3) + Kzzc (128)

The output y can be written as:

y =[Ups —1] (3) (129)

In order to select the feedback vector K, the closed loop eigenvalues of the system

given in (128) and (129) should be found. These eigen-values are found as:
Ai234 =[0 —5.3828+8.4463i —5.3828 —8.44631 —4.8369]
for the missile model at the given design condition.

The feedback vector K can be selected, in order A — bK to have poles at the same
locations with the baseline closed loop dynamics. The baseline closed loop
characteristics is dominated by the poles at 4, = —4.8369 and 1,3 = —5.3828 +
8.4463i . In this application, K is designed to have a reference dynamics which has
two poles at A;, = —4.8369. By this selection, the effects of the complex
eigenvalues are disregarded and a reference dynamics which has better performance
characteristics than the reference baseline closed is preferred. Pole placement is
done using Ackermann’s method and the following feedback vector is obtained at

the design point K = [—0.3149 0.1024].For this application k = 35 and D(s) =
% is selected which forms a low pass filter of C(s) = %for the adaptive control

signal. A bandwidth of 35 rad/s is selected for the low pass filter in order not to
interfere with and be realizable by the control actuation system bandwidth which
has a bandwidth of 75 rad/s.
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0

Adaptation gains are selected as Iy = [100 10

] and ', = I; = 10. These gains are

determined by trial and error.

45 Simulation Results

In this section, the acceleration tracking performance of the missile longitudinal
autopilot with and without adaptive augmentation designs is presented. The
simulations are performed using the linearized models of the missile at specified
flight conditions. For a given commanded acceleration signal, the performance of
the autopilots with nominal and perturbed aerodynamic data cases will be presented.

4.5.1 Input Data

A pulse type normal acceleration input is used for the simulations. The input signal
has an amplitude of 10 m/s? and a period of 5 seconds. Both the Model Reference
Adaptive Control augmentation and L1 adaptive augmentation designs are
performed by using the baseline closed loop dynamics as their reference dynamics.
Hence the adaptive augmentation autopilots are desired to retain the tracking
performance of baseline autopilot to the given input signal. In Figure 12-Figure 20

the tracking performance of these autopilots are presented.
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az-command (rn.fsz}
10

time(s)

Figure 11 Variation of Normal acceleration Command

The control effectiveness of the missile is decreased by 75 %, and the stability
derivative and damping derivative are multiplied by zero. Hence the open loop

system is made marginally stable.

The baseline controller becomes unstable and loses control in front of these severe
uncertainties given to the aerodynamic coefficients of the missile. These
perturbations in the aerodynamic coefficients cause highly nonlinear effects on the
response of the missile. Under these circumstances, the performance of the adaptive
control augmentation schemes is tested. Below, the simulation results are given for

direct MRAC and L1 adaptive control augmentations.

4.5.2 Simulation Results for Direct MRAC Augmented Design

In Figure 12-Figure 16 the response of the pitch acceleration autopilot to the input
signal given in Figure 11 is presented. The autopilot is designed with RSLQR and
augmented with direct MRAC.
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Figure 12 Variation of Normal Acceleration for MRAC Adaptive Augmentation
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Figure 13 Variation of Control Signals for MRAC Augmentation
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Figure 14 Variation of Control Signal Rates for MRAC Augmentation
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Figure 15 Variation of Incremental Adaptive Feedback Gains for MRAC

Augmentation
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Figure 16 Variation of Adaptive Parameters for MRAC Augmentation

4.5.3 Simulation Results for L1 Augmented Design

In Figure 17-Figure 20 the response of the pitch acceleration autopilot to the input
signal given in Figure 11 is presented. The autopilot is designed with RSLQR and
augmented with L1 Adaptive Control.
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Figure 17 Variation of Normal Acceleration for L1 Adaptive Augmentation
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Figure 18 Variation of Control Signals for L1 Adaptive Augmentation
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Figure 19 Variation of Control Signal Rates for L1 Adaptive Augmentation
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Figure 20 Variation of Adaptive Parameters for L1 Adaptive Augmentation
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4.6 Remarks on Simulation Results

Simulation results show that, for the given uncertainties on the plant model, the
baseline autopilot loses stability and control. On the other hand, both of the adaptive
augmentations are successful in stabilizing the missile and satisfy a good tracking

performance in front of severe perturbations in the missile model.

For the MRAC design closed loop dynamics with the baseline autopilots serves as
the reference dynamics for the adaptive augmentation. It is seen from the simulation
results with MRAC that the missile acceleration successfully tracks the reference
dynamics acceleration. The overshoots in the transients are caused by the tuning of
the adaptation rates. Fast adaptation can be obtained by increasing the adaptation
rates, however the transient response characteristics of MRAC adaptive
augmentation degrades as the adaptation rate is increased. MRAC adaptive control
has well defined asymptotic stability proof. However there are no well defined
guidelines for the transient behaviour of this adaptation scheme. Hence a trial and

error methodology is followed for tuning the design parameters of this scheme.

For L1 Adaptive Augmentation design, it is seen in Figure 17 that, the tracking
performance is very good both in transient and steady state. This graph proves the
fast and robust adaptation features of L1 adaptive control scheme for this example

problem.

It is seen Figure 13 and Figure 18 that the magnitude characteristics of the adaptive
control signal that is produced by both of the adaptive schemes is realizable and
small. However, comparing the control surface deflection rates given in Figure 14
and Figure 19, it is seen that L1 adaptive augmentation produced lower control
surface deflection rates than MRAC augmentation. Especially at the beginning of
the simulation, when the magnitude of the error signal is high, MRAC augmentation
causes a faster control surface deflection rate, which caused the initial oscillatory

behaviour seen in Figure 12.
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CHAPTER 5

L1 ADAPTIVE CONTROL AUGMENTATION TO DYNAMIC INVERSION
BASED AUTOPILOTS

In this chapter, an application of the L1 adaptive control augmentation to a missile
autopilot that was designed with dynamic inversion method will be presented.
Firstly, the missile model used for the autopilot design is explained and the flight
simulation environment is described. Then, the design of a dynamic inversion
autopilot for the control of this missile in longitudinal, directional and lateral axes is
presented. The design will be done with the aerodynamic data of a single point in
the flight envelope. Hence, the dynamic inversion autopilot will only serve as a
nominal controller with limited operation envelope. Then, augmentation of these
dynamic inversion baseline autopilots with the L1 adaptive control will be shown.
The performance and robustness characteristics of the autopilots are tested by high
fidelity, 6 DoF, nonlinear flight simulation of the missile. The simulation scenarios

and the resulting variation of the flight variables will be presented.

5.1 Missile Model

The missile model used for the implementation of controller designs is a generic, air
to ground, guided missile with axis-symmetric geometry and aerodynamic controls
on tail section. With this moment producing control surfaces on tail, the missile is
designed to follow acceleration commands by making skid to turn maneuvers in the
pitch and yaw axis. The roll attitude of the missile is aimed to be kept at 0 deg by

the lateral autopilot. Hence, for the control of missile in longitudinal and directional
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axes acceleration autopilots will be designed. And for the control of missile in

lateral axis, a roll attitude autopilot will be designed.

5.2 Simulation Environment

In order to perform the flight simulations of the missile, a high fidelity, nonlinear, 6
degrees of freedom flight simulation environment established in Matlab/ Simulink

is used.

The aerodynamic coefficients of the missile are stored in a 3-D look-up tables as a
nonlinear function of Mach number,M, angle of attack, a, and sideslip . The
aerodynamic forces and moments acting on the missile are also calculated in this
block.

The aerodynamic data of the missile is valid in +30 deg. angle of attack and sideslip
range. This range covers the assumed nominal flight envelope of the missile. Hence,
if the angle of attack or sideslip of the missile exceeded 30 degrees during a

simulation it would stop.

The 6 DoF nonlinear equations of motion and navigation equations, environmental
models of atmosphere and wind disturbance, guidance and autopilot algorithms, a

second order nonlinear control actuation system are also modeled.

5.3 Dynamic Inversion Based Autopilot Design Application

5.3.1 Design Point

The purpose of this study is to demonstrate the effects of L1 adaptive control

augmentation on a coarsely designed baseline autopilot. It is desired to see the

effectiveness of adaptive augmentation in front of minimum model information,

perturbation on aerodynamic coefficients and input gain alteration. The baseline
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autopilot is designed at a single point in the flight envelope. This design point is

selected as:
M =09,a =0deg, =0deg

The baseline autopilot design method used in this thesis is dynamic inversion.
Hence, dynamic inversion based autopilot design applications explained in the
following sections are performed by using the aerodynamic data of this single

design point.

5.3.2 Dynamic Inversion Based Roll Attitude Autopilot Design

For the roll attitude control, first an inner loop controller is designed with dynamic
inversion for the roll rate control. Then a proportional outer loop controller is
designed for the roll attitude, which produces the roll rate commands for the inner

loop.

The block diagram of the roll attitude control is given in Figure 21.

DI 6 D.oF.

Controller | | Missile
for p Dynamics []2 |@

Figure 21 Dynamic Inversion Based Roll Attitude Control
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5.3.2.1 Desired Bandwidth Selection for Roll Channel

The desired dynamics for the roll rate is taken to be of first order as follows:

Pa = wp(pc - D) (130)

Here p, is the desired roll acceleration, p, is the commanded roll rate calculated

from the outer roll attitude loop, p is the roll rate, w, is the desired bandwidth of the

roll rate loop.

The missile is desired to make skid to turn maneuvers. Hence the roll autopilot will
be designed to keep the roll attitude of the missile at O degrees at all times. This
brings the requirement that the roll loop should be faster than the pitch and yaw
loops, so that pitch and yaw maneuvers will be realized in the correct plane.
Keeping this requirement in mind, the desired closed loop bandwidth for roll rate
channel is selected to be the maximum bandwidth that will not interfere with the
control actuation system bandwidth and the structural modes. The control actuation
system used in flight simulations is selected to have a bandwidth of w.,s =
75 rad/s. The structural modes of the missile model under consideration are much
higher than 75 rad/s. Hence the desired bandwidth of the roll rate loop is selected
to be w, = 16 rad/s, which is nearly 5 times slower than the control actuation
system bandwidth. This selection of the roll rate loop bandwidth is low enough to

allow effective operation of the control actuation system.

5.3.2.2 Roll Attitude Control Design

The desired dynamics for the roll attitude is defined as follows:
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d)d = Wy (pc — d) (131)

Desired bandwidth of the roll attitude loop is selected to be wy = 8 rad/s, which

is sufficiently lower than the desired bandwidth of the roll rate loop.

5.3.3 Dynamic Inversion Based Acceleration Autopilot Design: Two Time

Scale Separation Approach

As mentioned before in Chapter 2, in the two timescale approach the inner loop and
outer loops are separated into fast and slow dynamics. Here, the pitch rate g and the
yaw rate r correspond to the fast states. The fast states in pitch and yaw axes are
controlled through two equivalent control surface deflections known as elevator and
rudder deflections respectively. The slow states are the angle of attack and sideslip.
The slow states are controlled by the using the commands for g and r as control
inputs. Then a classically designed acceleration loop is closed around the angle of

attack loop as shown in Figure 22.

d
o] 4. ol e |
Controller .
Controller ) % p o g Dynamics [ 19|/,
c

for ¢f

Figure 22 Acceleration Control with Dynamic Inversion, Two Time Scale

Approach
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5.3.3.1 Desired Bandwidth Selection for Pitch and Yaw Rate Control

The desired closed loop dynamics for the pitch rate and yaw rate are modeled to be

first order as follows:

qa = Wy Gc—q) (132)

Tg = wp (1. — 1) (133)

Here g, and 7;are the desired pitch and yaw acceleration, w, and w, are the desired

closed loop bandwidth of these control loops, g. and r. are the commanded pitch

and yaw rate calculated from the slow dynamics control law as shown in Figure 22.

Since the missile makes skid to turn maneuvers, the roll autopilot is designed to
keep the roll attitude of the missile at O degrees. Therefore the roll loop should be
faster than the pitch and yaw loops, so that pitch and yaw maneuvers will be
realized in the correct plane. According to this requirement, the desired closed loop
bandwidth for pitch and yaw rate channels are selected to be the maximum
bandwidth that will not interfere with the roll rate loop, the control actuation system
bandwidth and the structural modes. In Section 5.3.2.1 the bandwidth of the roll rate
loop is selected as w, = 16 rad/s, and it is mentioned that the bandwidth of the
control actuation system and structural modes are much higher than roll rate loop
bandwidth Hence desired bandwidth of the pitch and yaw rate loops is selected to

be wg = w, = 8rad/s, which is slow enough not to interfere with the roll rate

loop, or the control actuation system and structural modes.
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5.3.3.2 Desired Bandwidth Selection for Angle of Attack and Sideslip Control

The desired closed loop dynamics for the angle of attack and sideslip are modeled

as a first order system as follows:

g = we(a. —a) (134)

Pa = wp(Be = B) (135)

Here ¢, and B, are the desired angle of attack and sideslip rate, w, and wp are the

desired closed loop bandwidth of the system, a. and . are the commanded angle of

attack and sideslip calculated from the acceleration loop control law.

Desired bandwidth of the angle of attack and sideslip loops are selected to be
wy = wg = 4rad/s, so that these two loops will not interfere with the faster inner

pitch rate and yaw rate loops.
5.3.3.3 Acceleration Loop Control Design

The acceleration loop is desired to produce angle of attack and side-slip commands
for the inner slow dynamics loop. The derivation of the angle of attack command
from the acceleration loop is explained in Chapter 2. According to this derivation,

acceleration and angle of attack can be related through the following expression:

Zé‘Mq a, Z5Ma
1-2ea) 2 _ (g DD
( M, >U0 <“ My, )© (136)

e
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At the design point, M = 0.9,a = 0deg, = 0deg, the missile has a Zs, =
0.033, and M, = 27.5. Since Zs, term is very small compared to Ms_, (136) can

be safely decreased to the following expression for the angle of attack as:

(137)

The numerical value of K for the design point is found to be K = —0.07.

Hence, given an acceleration command, the commanded angle of attack can be
directly computed from (137). To reduce the steady-state error possibly caused by
the uncertainty in K, an integral controller is added to the control loop. The open
loop acceleration control architecture is given in Figure 23.

=

az,
az

Figure 23 Open Loop Acceleration Control Architecture

T
.

The integral gain K; is designed with classical control methods.
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If the inversion is exact in pitch rate and angle of attack loops, the dynamic
inversion controller simply reduces to an integral action. Hence, assuming perfect
inversion of dynamics, at the design point, M = 0.9,a = 0deg, 8 = 0 deg, the

root locus of the outer acceleration loop given in Figure 22 is as follows:

Root Locus
100 T T T T T

Imaginary Axis
[=]

100 1 1 1 1 i 1 1 1

Figure 24 Root Locus Plot of Acceleration Loop

Zooming in the root locus plot for gain selection, Figure 25 is obtained.
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Figure 25 Zoomed Root Locus Plot of Acceleration Loop

A selection of K; = 0.0819 provides a frequency of 1.45 rad/s and damping of
0.728.

5.3.4 Dynamic Inversion Based Acceleration Autopilot Design: Output
Redefinition Approach

In Chapter 2, the motivation and use of output redefinition methodology has been
explained. Here numerical examples for the output redefinition design will be

shown.
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At the design point, M = 0.9, = 0 deg, f = 0 deg, the zeros of the pitch rate and

angle of attack transfer functions are calculated by the following transfer functions

as follows:

5e(s) D(s)
M;,
a(s) 2 (5 + Zae)
5e(5) D(s)

where D(s) = s% — (Z, + My)s — My + Z,M,,.

the numerical evaluation of the zero of q(s) transfer function is:

8e(s)

MaZSe
% =\, —Z, | =0.0456

(138)

(139)

Hence it is seen that the zero of the transfer function from pitch rate to control

surface deflection is very small. Upon inversion of this transfer function for the

calculation of the control signal, this zero will be moved to the denominator of the

transfer function. Since the inversion is performed after a linearization process, it is

not exact. Also, due to the inexactness of the model parameters, the small zero
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value appearing at the denominator of the control input formulation may cause an

overly slow mode, and threaten stability.

At the design point, (M = 0.9,a = 0,8 = 0), the numerical evaluation of the zero

of as) transfer function is:
Se(s)

M
%e _ 821.9

Ay, =

8e
The zero of the transfer function from angle of attack to control surface deflection is
large. Because of the same reasons mentioned for the inversion of pitch rate transfer
function, this zero appearing at the denominator of control input formulation may

cause high frequency transients in control signal, sensitivity to time delay etc.

Therefore, in order to get rid of the possible undesired effects of the zero locations
of pitch rate and angle of attack transfer functions in the dynamic inversion process,
a new output variable is defined according to the output redefinition methodology.
This new output variable is formulated as a linear combination of the angle of attack

and pitch rate as follows:

yEa+Cyq

A desirable zero of the transfer function from this new variable to control input is
order of one. Such a zero location will prevent the undesirable effects due to
inversion. Hence the design variable C, should be selected to ensure a desired value
for the zero of this transfer function. As derived in Chapter 2, C, can be calculated

by the following equation:

_ Z(Se(aa - Zy)
17 Ms,(zy, — ag) (140)
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Here Zs, and M, are the dimensional derivatives, a, and a, are the zeros of the
angle of attack and pitch rate transfer functions respectively, and z,, is the desired

location of the zero of the transfer function for the new output variable y.

Since a, = 821.9 » z,, and a, = 0.045 K z,, C, will be approximated as:

The objective of output redefinition is to make the designer be able to attain a
desired zero location for the inner loop transfer function which is order of one. In

this design, the following values are attained for the zero location z, and C,:

5.3.4.1 Desired dynamics for the new output variable y

The block diagram of pitch axis autopilot with the newly defined inner loop

variable y is given in Figure 26.

D Oe 6 D.o.F.

Controller [————w Missil
for 1V Dynamics

Figure 26 Dynamic Inversion Based Acceleration Control with Output Redefinition
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The desired dynamics for the redefined output variable y is taken to be of first

order:

Ya = wy(yc - y) =uy (141)

The desired bandwidth w, of the inner loop is selected to be smaller than the
bandwidth of the roll rate loop, control actuation system bandwidth, and structural
modes bandwidth. In Section 5.3.2.1, the bandwidth of the roll rate channel is
selected as w, = 16 rad/s. Hence w, = 5rad/s is selected, so that this loop will
not to interfere with the roll rate loop, or the control actuation system and structural

modes
5.3.4.2 Acceleration Loop Control Design

The inner control loop, which is designed with dynamic inversion method provides
fast tracking of the commanded new output variable y.. The outer acceleration loop
can be designed with classical control methods. For the control design of the outer
loop, the inner loop will be assumed to provide perfect tracking of the commanded
variable. Namely, the dynamic inversion block in Figure 26 will serve as an integral

actionand y; = y.

In order to be able to plot the root locus of the control architecture in Figure 26, the

az(s)

should be found.
y(s)

transfer function

The pitch axis acceleration can be expressed as follows:

a, =Up(a—q) (142)
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Hence:

az(s) = Up(sa(s) — q(s)) (143)

The linearized equation for angle of attack is:

0'(=Zaa+Z(ge(S‘e+q (144)

As mentioned before, Zs, is very small and will be neglected. Hence (144) can be

written as:

q(s) = (s = Zz)a(s) (145)

Substituting (145) into the new output variable y , it takes the following form:

y(s) = (1 + Cgs = CgZa)a(s) (146)

a

Substituting (145) and (146) into (143), the transfer function yzés)) can be found as

follows:
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az(s) _ UOZoc
y(s)  (1+Cys—CyZy) (147)

Hence, the loop transfer function for the architecture in Figure 26 becomes:

—K,UpZqwy(s + K;)

OO = W)+ Cs = CZ0) (148)

. 1-C4Z, . . . .
A choice of K; = % will result in a pole zero cancellation in the loop transfer
q

function, and will simplify the analysis. Now a desired second order transfer
function can be used to make pole placement, and calculate the rest of the unknown

parameters.

Wy = 280n (149)
K = Cqwn
P 28U,Z, (150)

Since the desired bandwidth of the inner y loop was decided to be w, = 5rad/s,

the desired natural frequency of the outer loop w,, can be calculated from (149), by
selecting a damping ratio. For ¢ = 0.707, w,, = 3.54rad/s is calculated. From
(150), K;, = 0.044 is found.
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5.4 L1 Adaptive Control Augmentation of a Dynamic Inversion Based
Autopilot

In this section, the implementation of the novel L1 adaptive control augmentation
system to a dynamic inversion based missile autopilots is presented. In Section 5.3,
autopilots were designed with dynamic inversion method for the control of a missile
in roll, pitch and yaw axes. These autopilots were designed at a single point in the
flight envelope to simplify the baseline autopilot design phase, hence they are not
expected to poses desired performance throughout the flight. The L1 adaptive
control augmentation system will serve to generate an aiding control signal that will
fulfill the deficient control signal generated by the baseline dynamic inversion

autopilot.

The deficiency of the baseline dynamic inversion autopilots can be summarized in
two points: One is the inexactness of the inversion process carried out by making
linearization assumptions. The other is the single point design implementation. In
addition to these forcing conditions, matched and unmatched perturbations are
given to the aerodynamic model of the missile. L1 adaptive control augmentation is

expected to augment the control signal so as to discard these effects.

5.4.1 Problem Formulation

The inner loop dynamics of the autopilot architectures given in Figure 21, Figure 22
and Figure 26 will be augmented with L1 adaptive control.
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5.4.2 L1 Adaptive Control Augmentation of Dynamic Inversion Based Roll
Attitude Autopilot

In the inner loop of the dynamic inversion based roll attitude autopilot, the roll rate
is controlled. Hence, the inner loop dynamics given in (70) can be applied to roll

rate channel as follows:

x(t) = p(t), r(t) = pc(0)

The desired dynamics that should be defined for the L1 adaptive control
augmentation is taken from the desired dynamics defined for the dynamic inversion
autopilot. The desired dynamics for the roll rate channel was given as follows:

Pa = (Up(pc —p)
Which results in 4,, = —w,,, By, = wp,, C = 1.

Hence, (70) can be written for the roll rate channel as follows:

p(t) = _(Upp(t) + wngpc(t)
+ wp (uga () + f1(x(0), 2(0), 1))
+ By f2(x(t), z(t),t), p(0) = py (151)

With (151) and the equations given in (71), (72) and (73) L1 adaptive control
augmentation is implemented to roll rate channel. The control architecture is shown

in Figure 27.
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Figure 27 Roll Attitude Control with L1 Adaptive Control Augmentation

The low pass filters C; (s) and C,(s) used in L1 adaptive control are chosen to be of
first order for simplicity. The bandwidth of the filters is selected to be as high as the
control actuation system can handle. The control actuation system bandwidth is
wcas = 75Tad/s. Hence wyryrer = 357ad/s is selected so that the adaptive
control augmentation will generate control signal frequency that is high enough to
handle high frequency transient dynamics and low enough to be carried out by the

existing control actuation system.

Ci(s) = Cy(s) = s+ 35

With L1 adaptive control, the bandwidth of the filters can be changed according to

the system dynamics, and performance/ robustness requirements.
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5.4.3 L1 Adaptive Control Augmentation of a Dynamic Inversion Based
Acceleration Autopilot

5.4.3.1 Two Timescale Separation Method

The inner loop dynamics given in (70) can be applied to pitch rate channel as

follows:
Pitch channel:

The inner loop dynamics of the pitch channel

2@ = [20] r© = @

The desired dynamics for the pitch rate and angle of attack was given as:
qa = Wq @c—9q) (152)

dg = we(a; — a) (153)

0 —Wy,

A M EE N

Hence, (70) can be written for the pitch rate channel as follows:
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B [_wq(wa +Zg) —Wq

LA R

+ Wy (Uga(®) + f1(x(1), z(t), 1))
+ Bymf2(x(t), z(t),t), q(0) = qo, a(0)

C'I(t)]

0 _wa] q(t)
a(t)

a(t)

(154)

With the L1 adaptive control augmentation, the control architecture takes the form

shown in Figure 28.

o — 1
o, —»| Controller

Longitudinal
q— "
Dl DI, Oe 6D.o.F.
Controller Controller Missile .
3 Dynamics | ||| @
! for ¢/ for ¢ y ,

Figure 28 Acceleration Control with L1 Adaptive Control Augmentation

The low pass filters used in L1 adaptive control are selected as follows:

35
s+ 35

Ci(s) = Cy(s) =
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5.4.3.2 Output Redefinition Method

In the inner loop of the dynamic inversion based acceleration autopilot with output
redefinition, the newly defined output is controlled. Hence, the inner loop dynamics
given in (70) can be applied to new inner loop channel as follows:

x(t) = y (), r(t) = y:()

The desired dynamics that should be defined for the L1 adaptive control
augmentation is taken from the desired dynamics defined for the dynamic inversion

autopilot. The desired dynamics for the newly defined output was given as follows:
Va = wy(yc -y)

Which results in 4,, = —w,,, By, = 0y, C = 1.

yi
Hence, the inner loop channel with redefined output as follows:
y(t) = _(Uyy(t) + wngyc(t)

+ Wy (Uuga () + f1(x(8), 2(1), 1))
+ Bumfz (X(t), Z(t), t), }’(0) = yO

(155)

5.5 Simulation Results

In order to examine the performance of dynamic inversion based autopilot designs
in three axes, and the effect of the L1 adaptive control augmentation on the baseline
control, 6 DoF nonlinear guided flight simulations of the missile are performed. A
guidance algorithm is designed to produce proportional navigation based
acceleration commands. The missile is desired to follow these guidance acceleration
commands by making skid to turn maneuvers in the pitch and yaw axis. The roll
attitude of the missile is aimed to be kept at O deg by the lateral autopilot. Since the
missile under consideration is an air to ground missile, the simulation scenario starts
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with release of the missile from an altitude with given initial conditions. After the
release, the missile is controlled with aerodynamic control surfaces at the tail
section. Finally the missile is desired to reach a pre-specified target location. At the
final phase the acceleration autopilots are closed, and the inner loop autopilots are
taken into action in order to make the angle of attack and sideslip of the missile

ZEro.

The aerodynamic data of the missile is valid in +30 deg. angle of attack and sideslip
range. This range covers the assumed nominal flight envelope of the missile. Hence,
if the angle of attack or sideslip of the missile exceeded 30 degrees during a

simulation it would stop.
In this section results of example simulations are presented.

The simulation results will consist of the time variation plots of horizontal and
vertical trajectories, flight parameters such as pitch and yaw axis accelerations,
angle of attack, angle of sideslip, roll axis body rate and attitude, control surface

deflections, baseline and adaptive input signals.

Release conditions and target location are given for each simulation.

5.5.1 Simulation I: Nominal Aerodynamics

In this scenario the nominal aerodynamic model is used. Hence, the aerodynamic
model used for the simulation is the same as the aerodynamic model used for the
design of baseline autopilot. In this simulation, performance of the baseline

autopilot designed with output redefinition method is presented.

Release Position:(0, 0, -10660) m, Release Mach: 0.9, Target: (12200, 2300, -1000) m.
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From Figure 29-Figure 36, it is seen that the dynamic inversion based autopilot is
successful in controlling the missile to reach its target. From the commanded and
realized acceleration point of view, there exist some degradation in performance,
the effect of which was compensated by the correcting guidance loop. The baseline
autopilot is designed with the aerodynamic data of a single point in the flight
envelope which was not a trim condition. During the flight the dynamic conditions
of the missile change continuously. Hence, there is a possibility of failure of the
stand alone baseline autopilot. It is seen in Figure 29 - Figure 36 that L1 adaptive
control augmentation improved the tracking performance of the baseline autopilot.
The adaptive control signal works for the compensation of distorting effects which
causes the baseline autopilot not being able to correct the error signals. It is seen
that the effect of adaptive control input on the control surface deflections is smooth
and realizable. With the filtering mechanism introduced in L1 adaptive control high

frequency control signals are eliminated. Fast and robust adaptation is provided.

5.5.2 Simulation Il: Perturbed Aerodynamics & Increased Input Gain

In the second set of simulations, perturbed aerodynamics and increased input gain
cases are examined. For the first simulation the control effectiveness derivatives of
the missile are decreased by 50%, and the force and moment coefficients, which are
modeled to be functions of Mach number, angle of attack, a, and sideslip, fare

decreased by 50 %. Baseline autopilot with output redefinition design is used.

In the second simulation nominal aerodynamics is used. However the outer
acceleration loop gain is increased to 5 times of the design value. Here, the baseline

autopilot with two time-scale separation is used.

5.5.2.1 Results for Output Redefinition Method

Release Position:(0, 0, -10660) m, Release Mach: 0.9, Target: (12200, 2300, -1000) m.
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Figure 38 Variation of Pitch Acceleration with Time
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5.5.2.2 Results for Two Timescale Separation Method
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From Figure 37- Figure 53, it is seen that dynamic inversion based autopilots show
performance degradation in front of aerodynamic perturbations and input gain
variation. This was an expected result, since the baseline dynamic inversion
autopilots are designed with the aerodynamic data of a single point in the flight

envelope. As the missile flies to its target, the velocity, angle of attack, sideslip,



altitude and dynamic pressure continuously change. By the help of the correcting
guidance loop, dynamic inversion autopilots did well in front of these changes for
the nominal aerodynamics case. However, for perturbed aerodynamics or increase
in input gain cases, degradation in baseline autopilot performance is much probable.
In Figure 37-Figure 45 at the final phase of the flight, oscillations started during the
control with baseline autopilot. In this scenario, L1 adaptive control augmentation
achieved to recover a smooth, non oscillatory control, and provided adequate
tracking of the commanded variables. For the second perturbed simulation in Figure
46-Figure 53, the outer loop gain is increased until the baseline control is unstable.
The baseline simulation stops due to exceeding of the sideslip angle, 30 deg. For
this scenario, L1 adaptive control augmentation eliminates the destabilizing effects
of input gain variation, and provides successful tracking of the commanded

variable.

For both of the simulations with L1 adaptive control, the effect of adaptive input
signal on the control surface deflections is smooth and realizable. The filtering
mechanisation employed in L1 adaptive control forces the adaptive input stay

within a realizable bandwidth for the system.
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CHAPTER 6

CONCLUSION & RECOMMENDED FUTURE WORK

The motivation of this research was to demonstrate the effects and performance of
adaptive control augmentations to baseline controllers which are designed with very
limited model data, on a realistic guided missile model. For this purpose, baseline
controllers are designed for a missile model with linear and nonlinear control
methods. Adaptive control augmentation research has been focused on Model
Reference Adaptive Control and L1 Adaptive Control methodologies. Adaptive
control augmentation schemes utilizing these methods have been applied to the
baseline controllers. Simulations are performed with the linearized models and
nonlinear 6 DoF simulation software of the missile. The controllers have been

analyzed in the presence of model uncertainties and disturbances.

First, a baseline longitudinal autopilot is designed for the missile by using linear
quadratic regulator with projective control method. This design is performed at a
single point in the flight envelope. Then, adaptive augmentation of this baseline
autopilot with MRAC scheme and L1 adaptive control scheme has been performed.
The adaptive augmentations have been constructed to maintain the performance of
the baseline controller in the presence of model uncertainties, external disturbances
and control failures. A linear simulation environment is formed to test the
performance of the controllers. Then, severe model uncertainties have been
introduced by which the stability of the baseline closed loop dynamics has been
corrupted. The pitching moment coefficient of the missile and pitching moment

control derivative is decreased by 75 %. Simulations have been performed with the
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linearized model of the missile. The simulation results showed that both of the
adaptive control augmentation schemes have been successful in re-stabilizing the
system with realizable control inputs. In addition to providing satisfactory stability
characteristics, the adaptive augmentation schemes is expected to restore the
tracking performance of the baseline autopilot without uncertainties. When the
tracking performance of MRAC and L1 adaptive control are examined it is seen that
both schemes provide satisfactory tracking of the desired reference dynamics.
However in particular, transient response characteristics of L1 adaptive control has
been better than MRAC. While there are overshoots and oscillations in the transient
part of MRAC response, L1 adaptive control achieved smooth and precise tracking.
In MRAC architecture the speed of response to uncertainties or failures is mostly
dependent on the adaptation rate which appears in the formulation of adaptive
parameter estimation formulation. When the adaptation rate is increased, the
adaptive controller tries to adapt fastly to the disturbing effect. However, fast
adaptation brings adverse effects like oscillations, overshoots, high frequency
control signals, etc. On the other hand, when the adaptation rate is lowered, the
adaptation may not be effective or too slow to compensate for the disturbing effects.
Hence, selection of the adaptation rate is an important issue to be considered about
the performance of MRAC architecture. During the design, the best adaptation rate
has been found by trial and error. Comparing the control surface deflection rates of
MRC and L1 schemes, it is seen that L1 adaptive augmentation produced lower
control surface deflection rates than MRAC augmentation. Especially at the
beginning of the simulation, when the magnitude of the error signal is high, MRAC
augmentation produces a faster control surface deflection rate, which caused the
initial oscillatory behaviour. On the other hand, the filtering mechanism used in L1
adaptive control decreases the burden of adaptation rate determination to a trade-off
between performance and robustness. L1 adaptive control allows for the use of a
low pass filter in the feedback loop of adaptive control signal. The bandwidth of the
low pass filter can be adjusted to give better performance or to provide better

robustness characteristics. In L1 design, the bandwidth of the low pass filter is
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selected to be half of the bandwidth of the control actuation system of the missile so
that adaptive control signal can be easily realized. By this way, the adaptation rate
used in L1 adaptive control can be increased arbitrarily without worrying about high
frequency control signal, and the adaptive control signal can shaped to force for the
best transient performance that can be realized within the bandwidth of the low pass
filter. These properties of L1 adaptive control explain the better performance of L1
adaptive control in transient and steady state tracking. The linear simulations of
adaptive control augmentation schemes gave promising results for the adaptive
control augmentation of the missile in 6 DoF, nonlinear environment. Hence,
autopilots are designed for the control of the missile in roll, pitch and yaw axes.
Baseline autopilots are designed with dynamic inversion method, and the adaptive
augmentation design is performed with L1 adaptive control method.

The L1 adaptive control augmentation scheme used in the linear application was
compensating for system matched uncertainties, unknown input signal and time
varying disturbances affecting through the control channel. However, for the
nonlinear simulations, an L1 adaptive control augmentation scheme compensating
for both matched and unmatched uncertainties is applied to baseline autopilots of
the missile. The baseline autopilot design was performed by using the data of the
missile at a single point in the flight envelope using dynamic inversion method.

Hence, matched and unmatched uncertainties were present in this environment.

The flight simulations demonstrated that, with the nominal aerodynamic model,
dynamic inversion autopilots may show slightly degraded performance due to single
point design and inexactness of the inversion. Although the guidance loop can
compensate for some model uncertainties, it was shown by simulations that L1
adaptive augmentation supports the tracking performance and decreases the

magnitude of error states.

The performance of the autopilots with L1 adaptive augmentation is also tested
when the aerodynamic model of the missile is perturbed, and when the acceleration

loop integrator gain is increased to a destabilizing value. The flight simulations
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showed that, at certain aerodynamic perturbation degrees, or when the outer loop
gain is increased, the baseline dynamic inversion autopilot shows oscillations and
experiences a decrease in stability. On the other hand, when these simulations are
performed with L1 adaptive augmented autopilot, the missile was able to handle the
oscillations and have better stability and tracking performance. In this study,
adaptive control augmentation to baseline autopilots was analyzed on a realistic
missile model, with high fidelity flight simulation software and found to provide
promising results for increasing robustness to system uncertainties and increase the
performance of a roughly designed baseline autopilot. It is known that the
performance and robustness of most of the conventional autopilot design methods is
very much dependent on the model data. And model uncertainties and disturbances
are inevitable in real life problems. The analysis performed in this thesis was a
demonstration of the applicability and effects of adaptive control augmentation to a

realistic missile control problem.

The baseline autopilot architectures and adaptive control augmentation schemes
analyzed in this thesis can be applied to other flying platforms, and their
performance can be evaluated for these platforms. Within the scope of this thesis
the autopilots are tested in front of aerodynamic data perturbation and high input
gain cases. As a future study, the performance of these autopilots can be studied in
control surface failure, or control actuation system saturation cases. Since the L1
adaptive control augmentation scheme applied in Chapter 5 accounts for matched
and unmatched uncertainties in the system, control failure and saturation cases can

be analyzed with this scheme.

In this thesis effective control surface deflections in roll, pitch and yaw axes are
considered in the control design. However, a flight vehicle may have redundant
control surfaces and control allocation may be required to be applied to the system.
If the control allocation is not performed in an optimal manner, the critical support
of adaptive control augmentation systems to the baseline autopilots may be lost
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during non-optimal allocations. Analysis of the performance of adaptive control

augmentation schemes with optimal control allocation can also be a future work.

The filter design is an important feature of L1 adaptive control. With the filtering
mechanization, L1 adaptive control defines the tradeoff between performance and
robustness. In the applications of this thesis, simple first order transfer functions are
used as low pass filters for L1 control design. However, optimization of the filter
design is a recommended future research area. The effects of different filtering
schemes on robustness and performance can be analyzed in depth to increase the

overall performance of the controller.

The adaptive augmentation scheme studied in this thesis, for the control of missile
in 6 DoF, is applied through augmenting the inner loop control signal only. For the
two time-scale separation design of dynamic inversion based autopilot, there are
two cascade loops on which the adaptive augmentation can be applied. There are
examples of cascade adaptive control augmentation in the literature. L1 adaptive
control system augmentation system formulation can also be extended for a cascade
augmentation scheme and comparison of the performance of this new scheme with

the existing one can also be a new research direction.
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APPENDIX A

DEFINITIONS OF DIMENSIONAL AERODYNAMIC DERIVATIVES
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where Q, is the dynamic pressure defined as follows:

Q4 = %pVZ, here p is the air density, V is the free stream velocity.

Ayer is the reference area, d,.r is the reference length used in the non-

dimensionalization of the aerodynamic forces and moments.

Ly, Iy, 1., are the inertias of the missle about the center of gravity.
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APPENDIX B

PROJECTION OPERATOR

Projection operator is a mathematical operator used to keep the adaptive parameters

bounded. Projection operator is formulated as follows:

Proj(6,y)

RAOION
=T T IV @IP

yf(®), if f(6) >0 and y"Vf(6) > 0 (156)
y , if not

where the function f(8) defines prespecified parameter domain boundary. The

parameter domain boundary used in this thesis is expressed as:

”0”2 - erglax

2
€o emax

f(6) = (157)

0 are the parameters which has the property ||8|] < 0,max, Omax SPECIfies boundary

and g, specifies the boundary tolerance.

If f(6) <0 = |[|6] <64y, then 6 is within bounds.

fO<f(@ <1 = [I6ll <\/1+ &bnax,then @ is within (/1 + &) percent of

bounds.

If f(6)>1 = ||6] >1+ &y0max , then 6 is outside of bounds.
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The gradient of £(0) is as follows:

26
€00%ax (158)

Vio) =
In (63)-(65) and (97)-(99), by using the projection operator, the derivative of

adaptive parameters is calculated such that the adaptive parameters stay within a

pre-specified boundary value.
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