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ABSTRACT 

A HEURISTIC APPROACH FOR PROFIT ORIENTED DISASSEMBLY 

LOT-SIZING PROBLEM  
  

 

 

Kaya, Melike 

M.Sc., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Z. Pelin Bayındır 

Co-Supervisor: Assist. Prof. Dr. Ferda Can Çetinkaya 

 

February 2011, 68 pages 

 

In this thesis, we work on a disassembly lot-sizing problem for multiple products 

with parts commonality, i.e., general product structure. We assume that supply of 

discarded products is infinite. When a product (or a subassembly) is disassembled, 

all its immediate child items are obtained, i.e., complete disassembly case. 

Intermediate and leaf items obtained are demanded by external suppliers or 

remanufacturers. The maximum possible sales for each intermediate and leaf item 

are known. Sales of the intermediate and leaf items are the revenue sources. The 

discarded products are purchased at a unit purchasing cost. The disassembly 

operation incurs a fixed and a variable disassembly cost. Due to this cost structure, 

intermediate and leaf items can be stocked incurring an inventory holding cost. We 

develop an integer programming formulation to determine the time and quantity of 

the discarded products to be purchased; the time and quantity of the discarded 

products and the intermediate items to be disassembled; and the time and quantity of 

intermediate and leaf items to be sold in order to maximize the total profit over a 

finite planning horizon.  

 

We state that our problem is NP-hard by refering the study of Kim et. al. (2009). We  
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propose a heuristic solution approach that solves the problem in a reasonable 

computational time and generates near optimal solutions. The solution approach is 

based on the idea of sequentially solving a relaxed version of the problem and one-

period integer programming models. In a computational study, the performance of 

the heuristic approach is assessed for a number of randomly generated problem 

instances. The results of the computational study show that the solutions of the 

heuristic approach are very close to the optimal and the best feasible solutions 

obtained within the time limit.  

 

Keywords: Part/Material Recovery, Disassembly Lot-Sizing, Integer Programming
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ÖZ 

KAR AMAÇLI DEMONTAJ PARTİ BÜYÜKLÜĞÜ PROBLEMİ İÇİN 

SEZGİSEL YÖNTEM 

 

Kaya, Melike 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

   Tez Yöneticisi: Yrd. Doç. Dr. Z. Pelin Bayındır 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Ferda Can Çetinkaya 

 

 

Şubat 2011, 68 sayfa 

 

Bu çalışmada ortak parça içeren çoklu ürün yapıları için demontaj (söküm) parti 

büyüklüğü problemi ele alınmıştır. Parçalarına ayrılacak ürünlerin arzının sınırsız 

olduğunu varsaydık. Bir ürün parçalarına ayrıldığında, o ürünün bir alt seviyedeki 

tüm parçaları elde edilir. Elde edilen ara ürünler ve son seviyedeki parçalar tedarikçi 

ya da yeniden üreticiler tarafında talep edilir. Ara ve son seviyedeki parçaların 

mümkün olan en yüksek satış miktarları bilinmektedir. Ara ve son seviyedeki 

parçaların satışı gelir kaynaklarıdır. Parçalarına ayrılacak ürünler birim satın alma 

maliyeti ile alınır. Söküm operasyonu bir bağımsız sabit ve bir değişken söküm 

maliyetleri ile yapılır. Bu maliyet yapısından dolayı, ara ve son seviyedeki parçalar 

envanter taşıma maliyeti karşılığında stokta tutulabilir. Parçalarına ayrılacak 

ürünlerin satın alınma zamanı ve miktarını, parçalarına ayrılacak ürünlerin demonte 

edilme zamanı ve miktarını, ara ve son seviyedeki parçaların satış miktarlarını 

belirleyen, belirli planlama ufku için toplam karı da enbüyükleyen bir tam sayı 

programı oluşturuldu. 

 

Problemimizin polinom olmayan zor bir problem olduğunu Kim et. al. (2009)  
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çalışmasına dayanarak gösterdik. Problemi makul bir sürede ve en iyi çözüme yakın 

çözebilecek bir sezgisel çözüm yaklaşımı önerdik. Çözüm yaklaşımı, gevşetilmiş 

problem yapısı ve tek dönemlik tam sayı problemlerini sırayla çözme fikrine dayanır. 

Deneysel çalışmada sezgisel yaklaşımın performansı rassal olarak oluşturulan örnek 

problemler için test edildi. Test sonuçları, sezgisel yöntemin optimal çözümlere ve 

zaman sınırı içinde mümkün olan en iyi tamsayı çözümlere çok yakın olduğunu 

göstermiştir.  

 

Anahtar Kelimeler: Parça/Malzeme Gerikazanımı, Demontaj Parti Büyüklüğü, Tam 

Sayı Programlaması 
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CHAPTER 1 

INTRODUCTION 

Disassembly is a methodical extraction of parts and materials from discarded 

products through a series of operations. Disassembly is the first step of all product 

recovery options. Retrieved components can be reused and materials are recycled. 

Value hidden in discarded products encourages producers to be engaged in product 

and material recovery. Therefore producers should make effective plans to recover 

all possible value and increase the profitability of the recovery practice.  

 

Disassembly can be complete if the product is fully disassembled or partial if only 

some parts and subassemblies are removed (Güngör and Gupta, 1999). The 

disassembly operation can be destructive (products are destroyed/damaged because 

of focusing on materials recovery) or non-destructive (causing no damage on the 

products or the parts because of focusing on components recovery). The disassembly 

process can be supply or demand driven. In the demand-driven disassembly, the 

discarded products are disassembled to fulfill the demand with regard of cost 

efficiency. In the supply-driven disassembly, the discarded products are to be 

disassembled but it is not necessary to meet all demand.  

 

Compared to the assembly, the disassembly has the characteristic that a product 

diverges into multiple demand sources of parts/components. (Note that 

parts/components converge into the single demand source of a product in the 

assembly system.) This makes the disassembly problems more complex than the 

ordinary production planning problems in assembly systems (Gupta and Taleb,1994). 
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As in the case of assembly process, planning tools are needed to manage disassembly 

operations more profitably.   

 

In this study, we consider a disassembly firm that receives the discarded products 

and disassemble them into their components to satisfy the demand of external parties 

that use these components in building new products; remanufacturing and 

refurbishing activities. The discarded products (that are referred to as root items 

throughout the thesis) are purchased from external collectors incurring a unit 

purchasing cost. We assume that the supply is ample for them. The demand occurs 

for both subassemblies (intermediate items in the bill-of-material structure) and leaf 

items (parts that are at the lowest level of the bill-of-material structure. Note that they 

cannot be further disassembled.). We assume a complete disassembly structure, that 

is, when a product (or a subassembly) is disassembled, all its immediate child items 

are obtained. When a root or an intermediate item is disassembled, a fixed and a 

variable cost are incurred. Due to this cost structure, immediate and leaf items can be 

stocked incurring an inventory holding cost in the system.  

 

We specifically study the disassembly lot-sizing problem that aims to maximize total 

profit over a finite planning horizon. It is assumed the the supply of root items is 

infinite. There is no capacity restriction on the disassembly operation. Maximum 

possible sales for the disassembled items in each period are known. No defective 

items are obtained during the disassembly operations, i.e. all parts are of perfect in 

quality. The demand, cost and revenue parameters are deterministic and known. Cost 

and revenue parameters are time invariant.  

 

The rest of the thesis is organized as follows: in Chapter 2, we review the studies in 

the literature that are most related with our study. Uncapacitated problems with 

assembly structures, uncapacitated problems with general structure and capacitated 

problems with assembly structures are reviewed. We define our problem and give its 

mathematical formulation in Chapter 3. The assumptions in the model formulation 
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are provided and the mathematical formulation for the problem considered is 

described. We state that our problem is NP-hard by refering the study of Kim et. al. 

(2009). When the size of the problem is increased (by increasing the number of 

periods in the planning time horizon and the number of items), the solution time of 

the integer programming model is exponentially increased. Therefore, a heuristic 

algorithm is presented to find near optimal solutions to the problem within 

reasonable computational time. The proposed heuristic is based on the idea of 

sequentially solving a relaxed problem and the original integer programming model 

for a single period. Since the relaxed problem generates near optimal solutions, we 

round down the fractional solutions into integer variable and use them as bounds for 

the variables in the one-period integer model. Thus, we can reach near optimal 

solutions using the heuristic approach. In Chapter 4, we present the computational 

study carried out and discuss the performance of the solution approach. We conclude 

the study and give suggestions for future research in Chapter 5.  
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, we explain the product structures considered, define the disassembly 

lot-sizing problem and review the most related studies with our study in the 

disassembly lot-sizing literature.  

 

In a product structure, the root item represents the end-of-use/life product to be 

purchased and disassembled, and the leaf items are the parts or components not to be 

disassembled further. Different parents can have the same child item(s). More than 

one unit of a child item can be obtained when a parent is disassembled. The former 

situation is called commonality, and the later is called multiplicity feature of a 

product structure. Disassembly scheduling problems in the literature considers (i) a 

single product structure without parts commonality (assembly product structures); or 

(ii) multiple products with parts commonality (general product structures). 

 

Figure 2.1 shows an example for assembly structure in which item 0 denote the root 

item. Items 1, 2, and 3 are the intermediate items and items 4-8 are the leaf items. 

The example does not include any common items. Figure 2.2 shows an example for 

general product structure, in which items 0 and 1 denote the root items and items 2–9 

except item 3 denote leaf items. Item 3 is an intermediate item. The numbers in 

parenthesis represent the number of units (yield) of a certain child item obtained 

when one unit of its parent is disassembled. Items 4 and 9 are the common items: 

Items 0 and 1; and items 1 and 3 are the parent items of items 4 and 9, respectively.  
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Disassembly lot-sizing is a problem of determining the number of root and  
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Figure 2.1. An example for assembly structure 

Figure 2.2. An example for general product structure 
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Disassembly lot-sizing is a problem of determining the number of root and 

intermediate items to be disassembled to fulfill the demand for leaf items over a 

given finite planning horizon with discrete time periods. The possible objectives are 

minimizing total cost, minimizing the quantity of discarded products to be 

disassembled and maximizing total profit. Cost minimization objective is more 

extensively studied in the literature. 

 

A recent literature review on disassembly-lot sizing problem is presented by Kim et. 

al. (2007). Problem characteristics of all studies related to the disassembly lot-sizing 

and solution approaches are discussed. Problem types are categorized and some 

possible extensions and integrated decision problems are described with future 

research directions. In the review, disassembly lot-sizing problem are classified as 

follows: 

 Uncapacitated problem with assembly structure (basic problem) 

 Uncapaciteted problems with general structure 

 Capacitated problem with assembly structure 

 Problems with uncertainity 

 

We review the studies that are in the first three classes above which are  most related 

to our study.  

2.1. Uncapacitated problem with the assembly structure  

 

The basic problem considers a single product without parts commonality. Capacity 

issue is not considered in the basic problem. It is first studied by Taleb and Gupta in 

1994. A reverse material requirement planning (MRP) problem is presented to 

determine the quantity and schedule of the root item to be disassembled in order to 

fulfill the demand for components over a finite planning horizon. The assumptions 

employed are similar to the assumptions of MRP:  
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(i) gross requirements for the leaf items, scheduled receipts from external 

sources are known with certainty,  

(ii) lead times are constant and irrespective of the lot-size,  

(iii) perfect disassembly is assumed, i.e. no defective parts are generated, 

(iv) capacity is not considered explicitly.  

 

The algorithm suggested starts with calculations for leaf item for the first period. Its 

net requirement, on hand before disassembly, gross requirement disassembled for its 

parent item, schedule receipts from disassembly and on hand after disassembly for its 

brother items are calculated. Then time index is increased by one. If it is not the last 

planning period, the procedure is applied to the remaining brother items. If it reaches 

the last planning period, disassembly schedule is calculated for the parent item. Then 

calculation is made for the other end items. Therefore, schedules for all parent items 

are calculated over the planning horizon. The disassembly schedule for the root item 

is determined by using disassembly schedule of its child items. The algorithm is 

applied to a disassembly structure by a spreadsheet implementation. 

 

Adenso-Diaza et.al. (2008) address the lot sizing problem in reverse Material 

Requirement Planning (MRP) for scheduling disassembly. The data needed for 

reverse MRP problem are information about the product structure, disassembly lead 

times for each parent item, ordering lead time for the root item, and the planning 

horizon. Gross requirement for leaf items, external scheduled receipts and 

inventories at the beginning of the planning horizon, set-up cost for parent items and 

ordering cost for root items are known. They apply the period order quantity (POQ) 

lot-sizing technique to the items from the bottom level (leaf item) to the upper level 

(root item). Developed scenarios are experimented using three additional lot-sizing 

methods: lot for lot (LFL), best disassembly schedule in each subassembly (BIES) 

and best combination (BC). BIES corresponds to choosing the best disassembly 

option (based on cost) at each subassembly and at the root item independently. BC 

refers to choosing the best disassembly schedules by considering all the possible 
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combinations of lot sizes and choosing the combination with the lowest global cost. 

In their study, lot-sizing techniques are determined for disassembly levels. Different 

lot-sizing rules behave differently when applied at various levels in the Bill-of-

Material (BOM) structure. They design full factorial experiments for randomly 

generated product structures. They divide the BOM into four parts, viz., lot-sizing 

policy in the level just below the components with external demand (factor LS1), the 

intermediate subassemblies (factor LS2), in the disassembly process of the final 

product (factor LS3), and in the ordering of the final product from suppliers (factor 

LS4). They consider two disassembly levels, three set-up cost levels, three inventory 

cost levels and one ordering cost for the root item. Number of levels, set-up cost, 

total cost (TC) and LS factors are the factors tested and their interactions are 

analyzed. 

The results are summarized as follows:   

 LFL, Economic Order Quantity (EOQ) and POQ show significant differences 

relative to TC in factors LS1 and LS3. However, for intermediate 

subassemblies (LS2), no significant differences between EOQ and LFL or 

POQ exist. 

 For the upper level of the BOM (LS1), the interaction between the three lot-

sizing rules (LFL, EOQ, POQ) and the number of levels in BOM show that as 

the number of levels increases, so does the TC for all the lot-sizing rules 

tested, especially LFL, which is the worst alternative, independently of the 

complexity of the structure. POQ turns out to be the best option, followed by 

EOQ. 

 Lot-sizing rules POQ and EOQ are cost-effective in planning disassembly 

operations at upper levels, while LFL is the worst performer. 

 At the intermediate levels, the lot-sizing rule chosen to organize the 

production plan does not play a significant role to reduce the system costs. 

 At the highest level (final product disassembly), LFL turns out to be the most 

effective rule, especially in simple structures. When the complexity of the 

structure increases, LFL or POQ are both economically viable. 
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 The way the final products are ordered (LS4) has no significant effect on cost 

effectiveness. 

 

Lee et. al. (2004a) present on three integer programming models that are for the case 

of a single product type without parts commonality, the case of a single product type 

with parts commonality and the case of multiple product types with parts 

commonality. This study starts with the basic problem formulation and the remaining 

two problems are formulated considering multiple products and the commonality 

feature. Following assumptions are employed. 

 

 Disassembly structure is given in advance from the corresponding 

disassembly process plan that specifies all parts/subassemblies. 

 There is no shortage of the root items; i.e. products can be obtained whenever 

they are ordered. 

 The demand for the leaf items is given and deterministic. 

 Disassembly lead times with discrete time scale are given and deterministic.  

 Backlogging is not allowed and hence demands are satisfied on time.  

 Parts/components are perfect in quality, i.e. no defective parts are considered. 

 

The objective of all models is to minimize the sum of root purchasing cost, set-up 

cost, and inventory holding cost for all items and disassembly operation costs. In 

order to test the performance of the integer programming models, firstly the problem 

instances given by Taleb and Gupta (1997) are used. Solution of integer 

programming models is compared with the solution of heuristic approach presented 

by Taleb and Gupta (1997). Optimal solutions for the existing problems are obtained 

in reasonable computational times. Secondly, randomly generated problem instances 

from small to medium sizes are used to test the performance of integer programming 

models more generally. Performance measures are the number of problems solved 

optimally in 3600 second time limit, CPU seconds and percentage deviation from the 

lower bound (for problems that cannot be solved in 3600 seconds). 825 problem 
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instances out of 900 problems are solved optimally by CPLEX 6.5 in 3600 seconds 

time limit. As the number of items and/or the number of periods increase, per cent 

deviation from the lower bound and the computational times increase. The 

percentage deviations from the lower bounds are within 1 % on the average. 

Lee et.al. (2004b) develop a two-stage heuristic algorithm for the problem 

considered. Assumptions and the objective of the integer programming model are the 

same with the study of Lee et. al. (2004a). They develop a two-stage heuristic which 

finds the initial feasible solution using Gupta and Taleb (1997) (GT) algorithm at the 

first stage. In the second stage, backward and extreme (pairwise) move improves the 

initial solution by considering trade-offs among different cost factors. In this method, 

a later disassembly operation is moved to an earlier period. It is extreme because the 

all disassembly quantity of a later period is moved to an earlier period. After all, an 

improvement procedure is applied in order to find best backward and extreme 

movement. Backward and extereme move can result in backlogging for items. 

Therefore, feasibility of the new disassembly schedule is checked. New feasible 

disassembly schedule gives new ordering schedule and new inventory levels. 

Random problem instances are generated to measure the performance of the two-

stage heuristic algorithm. Time variant and time invariant purchasing costs are 

considered in the computational experiments. Results of the heuristic algorithm are 

very close to optimal solutions within very short computational times. Solution 

quality for the case of time-invariant purchasing cost is better (very close to the 

optimal solution) than the case of time-variant purchasing cost. 

 

Kim et. al. (2009) consider the problem that minimizes the total cost that is sum of 

set-up cost and inventory holding cost. It is proved that the problem is NP-hard by 

reducing it to the Joint Replenishment Problem (JRP). Two properties of the optimal 

solution are derived. The first one is the extended zero inventory property that if at 

least one of the children of a parent has positive inventory on hand, then the parent 

cannot be disassembled for the following period. The second property describes the 

condition that the disassembly of a parent item in a period implies the disassembly 
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(or demand) of its child items in that period. It is an extension of the nestedness 

property. An integer programming model is reformulated by eliminating the 

inventory variables and adding a constraint, that is, the disassembly quantity of a 

parent item should at least be equal to the demand of its succeeding leaf items.   

 

They suggest a branch and bound algorithm that incorporates the Lagrangean 

relaxation technique to obtain good lower and upper bounds. As in the ordinary 

branch and bound algorithms, each node of the branch and bound tree is fathomed, if 

the lower bound at the node is greater than or equal to the incumbent solution value. 

In order to test the performance of the algorithm, problem instances are randomly 

generated and solved. Branch and bound algorithm provides optimal solution up to 

moderate-sized problems within a reasonable amount of computational time. It 

requires less computational time than a standard solver (CPLEX). CPU time 

increases as the problem size increases and also lower bound gets tighter. When set-

up cost is high, the subproblems may have tighter lower bounds and so can be 

fathomed earlier. Lagrangean heuristic is suggested as an alternative for large-sized 

problems. Computational results show the Lagrangean heuristic outperforms other 

heuristics which are Taleb and Gupta (1994)-reverse MRP and Lee et. al. (2004b)-

two stage heuristic.  

2.2. Uncapacitated problems with general structure 

 

In this case, multiple products with parts commonality are considered. Capacity 

restrictions are still ignored. 

 

Taleb and Gupta (1997) extend the study of Taleb and Gupta (1994) by considering 

cost issues and more complex product structures. The demand for each leaf item is 

known. Ordering lead time for root items and disassembly lead time for parent items 

are given. Cost parameters are item cost (acquisition cost), separation cost for parent 

items, and disposal cost for the leaf items. Total cost is to be minimized over a finite 

planning horizon. Two consecutive algorithms, core and allocation algorithms, are 
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developed to solve the problem. Core Algorithm determines the number of root items 

to be disassembled by minimizing the total cost. It determines the minimal 

disassembly order for each root items based on Gross Requirements of non-common 

leaves. Then, it determines unfulfilled requirements for all common leaves. Parent 

items are decided to be disassembled to satisfy common leaves by considering cost 

benefit ratio that is the cost over total number of yields obtained. Then, a feasible 

schedule is determined. In order to find a better solution, the feasible solution is 

improved by decreasing disassembly order by using improvement factor which is 

based on improvement in objective function. Release of root items are scheduled 

over the planning horizon. Allocation Algorithm determines a disassembly schedule 

by delaying disassembly as much as possible. Therefore it implicitly minimizes the 

holding cost. The algorithm first determines the nearest time period with net 

requirements for the leaf items. Next, most attractive root items which result in the 

most decrease in requirements of leaf items are selected. After that, the requirements 

of leaves are updated. The procedure continues until all requirements are fulfilled for 

that time period. The entire procedure is repeated for all periods. Finally, it provides 

a disassembly schedule for the subassemblies. In order to evaluate the performance 

of the heuristic algorithm, they randomly generate 25 problem instances. The 

proposed algorithm solves 19 cases optimally. The deviations from the optimal 

solution for the remaining problem instances are between 1.4% and 3.8%.       

 

Langella (2007) considers the problem given in Gupta and Taleb (1997). Since Core 

and Allocation Algorithm by Taleb and Gupta (1997) can sometimes give infeasible 

solutions, additional parameters and options are considered by Langella (2007). 

Demand for leaf items can be satisfied by the procured leaf items in addition to the 

disassembled parts. In this study, it is also considered that all items can be held in 

inventory and all items except the root items can be disposed of. An integer 

programming model is formulated to determine the quantity of discarded products 

procured, disassembled, the quantity of leaf item procured and the quantity of 

intermediate and leaf items held or disposed of. The model aims to minimize total 
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cost that includes root procurement cost, leaf procurement cost, disassembly cost, 

holding cost and disposal cost over a finite planning horizon. Constraints are as 

follows: 

 

 Initial inventory levels  

 Inventory balance constraints 

 Limited supply of root items  

 Upper bounds on ending inventory of intermediate and leaf items  

 

Langella (2007) presents Integral Algorithm that incorporates holding cost, external 

leaf procurement and leaf holding versus disposal. Leaf procurement is preferred if 

the sum of the purchasing cost of leaves is less than the additional cost of 

disassembly. Holding cost versus disposal of a leaf is recommended as a remedy. 

The algorithm starts with calculations of the net requirements for the first period. A 

ratio that is amount of demand satisfied by root over additional costs is calculated for 

each feasible root (available in time that is met demand). The quantity of the root 

item to be disassembled with the highest ratio is increased by one. Then, it is decided 

whether procuring leaves externally is considered or not. Net requirements of the 

items are updated for the following time period. The algorithm continues until all 

requirements are satisfied. Performance of the heuristic is tested on randomly 

generated problem instances. Average cost deviation from the optimal solution is 

around 4.5 %. More specifically, in 147 out of 250 problem instances the deviation 

from the optimal solution is less than 5%; with an average of 1.2%. However the 

heuristic exhibits poor performance in some problem instances. In 41 problem 

instances, the deviation from the optimal solution is more than 10% with an average 

of 15%. 

 

Kim et. al. (2006a) develop a two-phase heuristic for the problem of disassembly 

scheduling. Integer programming model for the problem aims at minimizing the sum 

of set-up, disassembly operation and inventory-holding costs. In the proposed 
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solution approach, linear programming relaxation gives the initial solution in the first 

stage. Continuous variables in the relaxed solution are rounded down. The rounded 

down solution may violate the inventory balance constraints. In order to satisfy the 

feasibility, values of the decision variables are increased or decreased by considering 

the cost changes. The procedure starts with the last item and finishes when the root 

item is reached. In the second stage, a dynamic programming algorithm with look-

ahead check is used to improve the initial solution. Dynamic programming model 

improves the current feasible solution by solving v-period sub problem in the 

forward direction (starting from period v=1 and ending in period v=T), and find the 

new disassembly schedule of an item. Possible cost changes are calculated for the 

possible disassembly schedules and the schedule which provides more improvement 

on the current feasible solution is chosen. This procedure is applied to all parent 

items, starting from the root item. If there is no further improvement to be made for 

all parent items, the second stage is terminated. Randomly generated problem 

instances from small to large sizes are used to test the performance of the solution 

approach. The second phase of the solution approch improves the initial feasible 

solution by 6.6%, 4.8% and 3.6% on the average for the cases of 10, 20, and 30 

periods for high set-up cost case, respectively. The initial solution is significantly 

improved in the second phase. For the problem instances with 30-period, overall 

average deviations from the optimal solution (or lower bound) is 0%, 0.3% and 1.6% 

for the case of low, medium and high set-up cost, respectively. Computation time for 

the initial phase is between 0.01 and 0.17 seconds, while the second phase requires 

time between 0.01 and 7.43 seconds. Computational experiments show that the 

second phase solution time is slightly longer than the first phase solution time. 

2.3. Capacitated problem with the assembly structure 

 

The basic problem is extended by considering resource capacity constraint. The 

capacity restriction is considered in the form of time limit for the disassembly 

operations performed in that period. There is an upper limit on the available time in 
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each period of the planning horizon and each disassembly operation assigned to a 

period consumes a portion of the available time. 

 

 Lee et. al. (2006) develop an integer programming model considering capacity 

restriction explicitly. The objective is to minimize the number of products 

disassembled. Total operation time for a planning period is limited with processing 

time capacity in each period of the planning horizon. A two stage solution approach 

is proposed. In the first stage, uncapacitated disassembly scheduling problem is 

solved by relaxing the capacity constraint. Initial solution is obtained by the Taleb 

and Gupta (1994) algorithm. An initial solution is called minimal latest disassembly 

schedule since it satisfies the demands of leaf items as late as possible with the 

minimum disassembly quantities. In the second stage, current disassembly schedule 

is changed by considering the capacity constraint. Disassembly quantities are moved 

to earlier time periods without increasing initial objective function value. Quantity of 

moved items is chosen without violating time capacity for that period. Computational 

experiment consists of a case study and randomly generated problem instances. 

Loose and tight capacity options are considered in the computational study. Solution 

time of the algorithm is very short for the case study, i.e. within 0.005 seconds on 

average. Results show that the tight capacity option requires more computation time 

than the loose capacity option. All problem instances are solved to optimality. 

Heuristic algorithm also requires much smaller computation time -from 0.3 to 11 

seconds- to solve the randomly generated.  

  

Kim et. al. (2006b) consider the same environment studied by Lee et. al. (2006) with 

the objective of minimizing sum of set-up, disassembly operation, and inventory 

holding costs. A two stage heuristic approach is proposed. In the first step, 

Lagrangean relaxation technique is used. Capacity constraint and demand constraint 

are relaxed. Then, the model is reformulated by rewritten demand constraint to make 

a stronger formulation. After the relaxation, the model turns into several single-item 

lot sizing problems. Lower bounds are obtained by solving single-item lot sizing 
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problems. Subgradient optimization technique improves the solution. However, the 

solution may not be feasible due to demand and capacity constraint violation. In 

order to get a feasible solution backward and forward moves are applied to the initial 

solution. In backward and forward move, overloaded disassembly quantities are 

moved to earlier periods or to later periods, respectively. In both movements the best 

movement is chosen by considering minimum cost increase. It is an iterative 

procedure repeated until a feasible solution is obtained. Performance of the algorithm 

is tested by solving randomly generated problem instances. Two capacity cases, 

loose capacity and tight capacity, are analyzed. Results show that solution quality of 

the algorithm is affected a little by the capacity tightness. Overall percentage 

deviations from the optimal solutions are 0.18% and 0.46% for the cases of loose and 

tight capacity, respectively. The algorithm gives better solutions for longer planning 

horizon problem instances. Computation time of the heuristic algorithm is very short 

(4-5 seconds on the average) while many problem instances require 7200 seconds to 

reach optimal solutions.   

 

Up to now, we have reviewed the most related studies to our study. The studies 

assume yield of the products known with certainty. Quality uncertainty, results in the 

fact that when we disassemble a certain core, we are not sure how many “good 

quality” leaves we will obtain. It is an important issue for remanufacturing and other 

recovery operations. Recently, Inderfurth et. al. (2006) consider product structure 

with multiple roots with parts commonality for complete disassembly case with 

stochastic yield.  

 

Profit related issues are rarely studied in literature. Clegg et. al. (1995) and Spengler 

et. al. (2003) study profit-based disassembly lot-sizing problems. These studies 

consider integrated sytems. Clegg et. al. (1995) consider a remanufacturing facility 

where discarded products are totally or partially disassembled or disposed of. 

Disassembled parts are recovered and used as components and materials can be 

recycled. Disassembled components are sent to the assembly line for 



 

 

17 

remanufacturing. In addition to remanufacturing, new products are also produced on 

the assembly line.  

 

Spengler et. al. (2003) presents a case study on electronic scrap recovery. A short 

term (daily) integrated recovery planning problem is worked on. They consider a 

system limited to a recovery center, not including the storage center. The first step is 

the disassembly operation which is composed of manual and partially automated 

processes. The second step is bulk recycling designed to recover precious fractions 

from mixed electronic scrap. The scrap disassembled is either used internally in bulk 

recycling or marketed externally. A mixed-integer linear programming (MILP) 

model is formulated to determine the amount of scrap to be recovered, disassembled 

and used in internal or external operations to maximize marginal income. 

    

In addition to profit-based studies, multi objective issue is also studied in the 

disassembly lot-sizing literature. Kongar and Gupta (2002) consider a disassembly-

to-order (DTO) system where end-of-life products are procured from the final users 

and collected products are disassembled in a disassembly plant. Destructive and non-

destructive disassembly processes are both considered. After the destructive 

disassembly, components are either recycled or disposed of. On the other hand, 

components are either reused, stored, recycled or disposed of after the non-

destructive disassembly operation. The aim is to determine the best combination of 

multiple products to selectively disassemble to meet the demand for items and 

materials under a variety of physical, financial and environmental constraints and 

goals. Preemptive goals to be achieved are the followings:   

 

 maximum total profit, 

 maximum sales from materials,  

 minimum number of disposed items, 

 minimum number of stored items,  

 minimum cost of disposal  
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 minimum cost of preparation, in that order. 

 

In our study, we consider multiple products with parts commonality, i.e. general 

product structure. The most closely related study to ours is the study by Kim et. al. 

(2006a). Our study differs from their study in the followings. 

 

 We consider demand for intermediate items in addition to the demand for 

leaf items.  

 Demand for intermediate and leaf item is the maximum possible sales 

quantity of these items. It is not required to satisfy the demand fully.  

 There is no explicit cost of not satisfying demand other than lost profit 

margin.  

 Kim et. al. (2006a) aim to minimize the total cost which is sum of set-up 

cost, disassembly operation cost and inventory-holding costs over a finite 

planning time horizon. In addition to these parameters, we consider unit 

purchasing cost of root items and unit sales price for intermediate and leaf 

items.  

 Our study aims to maximize total profit over a finite planning time horizon.   
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CHAPTER 3 

PROBLEM DEFINITION AND SOLUTION APPROACH 

In this chapter, we describe our problem environment and define the problem. In 

Section 3.1, we give the assumptions of the disassembly lot-sizing problem 

considered. In Section 3.2, an integer programming formulation for the problem is 

provided. In Section 3.3, the proposed heuristic solution approach for the problem is 

given and discussed. Finally, we illustrate our solution algorithm on a numarical 

example in Section 3.4.  

 

In this study, we consider a disassembly firm that receives collected used products 

and disassembles them to satisfy the demand for their components which are the 

items that occur in the lower levels of BOM structure of used products. The root 

items are purchased from external collectors incurring a unit purchasing cost. We 

assume that the supply of them is ample. The root items are not kept in stock; they 

are disassembled at the time that they are purchased since their supply is ample and 

there is no fixed purchasing cost. These items have general structures, i.e. both parts 

commonality and multiplicity which are the features of a product structure defined at 

the beginning of Chapter 2. When an item (a root or an intermediate one) is 

disassembled, all of its immediate child items are obtained. Intermediate items can be 

either directly sold to the customers or disassembled further to obtain the items that 

are at the lower levels of BOM structure. The disassembly operation incurs a fixed 

and a unit variable cost. Fixed disassembly operation costs are independent. Due to 

this cost structure, it is allowed to stock intermediate items incurring an inventory 

holding cost per unit per period basis. Intermediate and leaf items are demanded by 

external suppliers or remanufacturers for building new products; remanufacturing 
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and refurbising activities. Sales of the intermediate and leaf items are the sources of 

revenue. Unit price of the disassembled items are set by the market. The demand 

forecasts for intermediate and leaf items over a finite planning horizon are available. 

In this study, these forecasts are treated as the maximum possible sales quantities. 

There is no penalty cost of not satisfying maximum demand other than the lost profit. 

Demand, cost and revenue parameters are known and deterministic. The cost and 

revenue parameters are time invariant.  

 

We consider the problem that maximizes the total profit which is the difference 

between total revenue and total cost, over a given planning horizon with discrete 

periods. The basic decisions at each planning period are as follows:  

 

 The quantity of the root items purchased and disassembled  

 The quantity of intermediate items disassembled  

 The quantity of all items except the root items kept in inventory 

 The quantity of the intermediate and leaf items sold     

 

3.1. Assumptions 

 

The following assumptions are employed in the model formulation.  

 

A1. The supply of root items is infinite. 

 

A2. Complete disassembly case is considered. When an item is disassembled, all of 

its immediate child items are obtained.  

 

A3. The demand quantities, cost and revenue parameters are deterministic and 

known. Cost and revenue parameters are time invariant, i.e., they don’t change from 

one period to another. 

A4. Backlogging is not allowed. Unsatisfied demand is lost. 
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A5. Root items are purchased and immediately disassembled. Since the supply of the 

root items is infinite and there is no fixed purchasing cost, they are not kept in 

inventory. Only intermediate and leaf items are kept in inventory due to assumed 

disassembly cost structure.  

 

A6. There is no capacity constraint on disassembly operations. 

 

A7. No defective intermediate and leaf items are obtained during the disassembly 

operations, i.e. parts are of perfect in quality. 

 

A8.  There is no yield loss, i.e. we release all intermediate and leaf items which exist 

in BOM of the root items.  

 

A9.  All disassembly lead times are less than a period. 

3.2. Mathematical Model  

 

In this section, we first define the indices, parameters and decision variables. Then, 

we give the mathematical programming model of the problem. 

 

Indices and sets 

 

t = index for periods, t  = 1, 2, …, T ,                                           where T is the 

length of the planning horizon           

ri = index for the last root item 

li = index for the first leaf item 

i = index for items, i  = 1, 2, ..., ri , 1ri  , ..., 1li  , li , 1li  , ...., ,N   where  is theN  

total number of items  

)(i = set of immediate-parents of item i   

( )H i = set of immediate-children of item i  
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Parameters 

0iI = initial inventory of item i  

ki = quantity of item i  obtained from disassembling one unit of item k  

itd = demand for item i  in period t   

ih = unit inventory holding cost per period for item i  

ip = unit disassembly cost for item i  

ia = unit purchasing/acquisition cost of root item i  

if = fixed cost of disassembly for (parent) item i  

ir = unit sales price of item i  

M = a large positive number  

 

Decision variables  

itX = quantity of item i  disassembled in period  t  

itI = inventory of item  i  at the end of period t  

itS = quantity of item i  sold in period t  

1 if a disassembly set-up is done for item   in period   i.e., if 0. 

0  otherwise

it

it

i t X
Y


 


     

 

Integer programming model (P) of the problem is given below: 
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, 1

( )

it i t ki kt it

k i

I I X S



        for i  = li , li +1, ..., N  and t  = 1, 2, ..., T           (3.3)  

     

it itX MY                                   for i  = 1, 2, ..., li -1 and t  = 1, 2, ..., T                (3.4)  

                 

it itS d                                       for i  = ri +1, ri +2, ..., N  and t  = 1, 2, ..., T       (3.5)  

  

0itX     and integer                  for i  = 1, 2, ..., li -1  and t  = 1, 2, ..., T               (3.6) 

                 

0itI      and integer                  for i  = ri +1, ri  2, ..., N  and t  = 1, 2, ..., T      (3.7)  

           

0itS      and integer                  for i  = ri +1, ri +2, ..., N  and t  = 1, 2, ..., T        (3.8)  

        

 0,1itY                                     for i  = 1, 2, ..., li -1  and t  = 1, 2, ..., T               (3.9)              

 

The objective function (3.1) maximizes total profit which is the difference between 

total revenue and total cost, over the planning horizon. The total revenue is obtained 

from the sales of the intermediate and leaf items. The total cost consists of 

purchasing cost of the root items, fixed and variable disassembly costs of root and 

intermediate items, and inventory holding cost of the intermediate and leaf items. 

Constraint sets (3.2) and (3.3) represent the inventory balance equations for the 

intermediate and leaf items, respectively. As it is stated in equation (3.2), the 

inventory level for each intermediate item is increased by the disassembly quantity of 

its parent(s) multiplied by the associated yield, and decreased by the sales quantity 

and disassembly quantity of the item further. The inventory balance equation (3.3) 

for each leaf item is the same with the equation (3.2) except the disassembled 

quantity of the item since the leaf items cannot be disassembled further. Constraint 

set (3.4) guarantees that a disassembly set up is made in a period when there is a 

disassembly operation in that period. Constraint set (3.5) represents that the limit on 
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the sales quantity of the intermediate and leaf items cannot exceed the corresponding 

demand. Finally, constraint sets (3.6) through (3.9) represent non-negativity and 

integrality restrictions on the decision variables. The quantity of disassembled items, 

stocked items and, sold items are the integer variables and, set-up variables are 

binary.  

 

The integer programming model includes ( 1li  )T +2( rN i )T integer variables and 

( 1li   )T  binary variables; and in total 2( 1r lN i i   )T  decision variables. The 

model consists of ( 1li  )T +2 ( rN i )T  constraints.  

 

kiDue to the fact that, the parameters, λ  are integer and the inventory balance equations, 

it is possible to relax the integrality constraints in 7-8. Under these relaxations, the 

solution to (P) is integer. In other words, representing the disassembly quantities, 

X ,as integer variable is enough to obtain an integer solution to (P).it

 

Since the disassembly variable has still integrality restriction, it may require more 

computational time to solve the problems optimally. We do not choose this case in 

the computational study since we cannot guarantee to get benefits in terms of CPU 

time for the case. In the computational study, we solve (P) model that includes all 

integrality restrictions on all decision variables.      

 

Selecting the value of parameter M  in the constraint set (3.4) affects the 

computational burden for the model, since it defines the feasible region. One should 

restrict the value of parameter M  with the smallest possible number in order to 

reduce the feasible region. 

 

Let itc
 
be the cumulative future demand for item i  in period t as given in Equation 

3.10.    
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  for  1,  2,  ...,  and 1,  2,  ,                                      (3.10)
T

it it r r

t

c d i i i N t T         

Let itM  be a big-M value for item i at period t. itM  is calculated using cumulative 

future demand and yield information. 

                         

( )
max       for 1,  2,  ...,  1 and =1, 2, ..., .   (3.11)

where 0 for ,  1,  ...,   and =1, 2, ..., .

jt jt

it l
j H i

ij

it l l

c M
M i i t T

M i i i N t T



   
    

    

  

 

In the computational study, we take M  as 
itM  that is calculated for the 

disassembled item i  in period t by the Equation (3.11). Here, the calculations start 

from the parent items of the leaf items and reaches to the first root item at the end.                                     

3.3. Problem Complexity  

 

Kim et. al. (2009) consider the disassembly lot-sizing problem for single product 

type without parts commonality whereas we consider the problem for multiple 

product types with parts commonality. They prove that their problem is NP-hard by 

reducing it to the Joint Replenishment Problem (JRP). We can reduce our problem to 

the problem studied by Kim et. al.(2009) by considering single product without parts 

commonality and a case of constant sales revenue of our problem. Thus, our problem 

is reduced to cost minimization problem. As a result, our disassembly lot-sizing 

problem is also NP-hard. While commonality and multiplicity make very good sense 

from an economic and environmental standpoint, they certainly complicate the 

planning decisions. In our problem, intermediate items are also demanded in addition 

to the leaf items. The demand is just an upper bound for the sales quantity. It 

generates a larger feasible region since we cannot satisfy the demand in full. 

Objective function of our problem includes sales revenue, purchasing cost of root 

items and disassembly operation cost in addition to inventory holding cost and set-up 

cost. Our aim is to maximize total profit by selling obtained items from the 
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disassembled items. As a result, our problem is more complex than the problem 

considered by Kim et. al. (2009).  

Complexity of integer programming (P) formulation increases exponentially with 

increasing the number of items (root, intermediate, and leaf) and the number of 

periods in the planning horizon. Therefore, it discourages us using the exact methods 

for solving the problem optimally. Thus, we provide a heuristic solution approach in 

order to find near optimal solutions in reasonable computational time.              

3.4. Solution Approach 

 

In this section, we propose a heuristic solution algorithm for the problem introduced 

in Section 3.2. At first, we present relaxed problem used in the solution algorithm. 

Before the desciption of the solution algorithm, we give the additional parameters 

and variables used in the algorithm. Then, the proposed solution algorithm is 

described.    

  

We note that the problem (P) is a pure integer programming model that requires high 

computational time since it includes integer and binary decision variables. In order to 

reduce the computational time for the problem, we relax the integer variables which 

are disassembly variables ( itX ), inventory variables (
itI ), sales variables ( itS ), and 

keep the set-up variables ( itY ) as binary. Specifically, we remove the integrality 

restrictions in (3.6), (3.7) and (3.8) of the model (P) and keep the non-negativity 

restrictions in (3.6), (3.7) and (3.8)  as of the relaxed problem (RP). The non-

negativity restrictions of the problem (RP) are represented by 

(3.11), (3.12) and (3.13).   

 

 RP  Max    (3.1) 

 

         s.t.  (3.2), (3.3), (3.4), (3.5), (3.9)  and 
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0itX        for i  = 1, 2, ..., li -1               and t  = 1, 2, ..., T                       (3.12)   

 

         
0itI         for  i  = ri +1, ri  2, ..., N     and t  = 1, 2, ..., T                       (3.13)  

 

           
0itS           for i  = ri +1, ri +2, ..., N    and t  = 1, 2, ..., T                          (3.14)

 

 

Our solution algorithm consists of T many (RP) problems and T many one-period (P) 

problems with additional restrictions on the decision variables which are the quantity 

of disassembly ( )itX  and quantity of sales ( )itS . The algorithm is based on the idea 

of sequentially solving the problem (RP) and one-period problem (P). The problem 

(RP), a relaxed version of the problem (P), is solved from period t to T. The solution 

of RP is an upper bound on the problem (P). We round down the fractional values of 

the solution to the problem (RP) in period t. The problem (P) is solved for that period 

(one-period) with the additional constraints which are obtained from the rounded-

down solution to the problem (RP). We keep and save the solutions to T one-period 

(P) problems in order to obtain our heuristic solution.     

 

We define the following additional parameters and variables used in the proposed 

heuristic solution. 

 

'

itS = rounded-down sales quantity of the problem (RP) for item i in time t 

'

itX = rounded-down disassembly quantity of the problem (RP) for item i in time t 

*

itS = optimal sales quantity of one-period problem (P) for item i in period t 

*

itX = optimal disassembly quantity of one-period problem (P) for item i in period t 

*

itI = optimal inventory level of one-period problem (P) for item i in period t 

*

tz = optimal objective function value for one-period integer programming model (P) 

for period t 

*z = optimal objective function value for -T period integer programming model (P) 



 

 

28 

Hz = objective function value for the heuristic solution  

 

The solution algorithm is given below. 

 

Step 0: Set t =1. Initialize the decision variables ,  ,  and it it itX S I for all  and .i t  

 

Step 1: (Relaxation of problem (P)) 

Note that for period 1,t   
*

,0 0iI 
 
which is the beginning inventory for initial 

period provided as an assumption (A9) in Section 3.1. 

                         
 

 1.1: Construct the relaxed problem (RP) by adding the optimal quantity of  

                  items  kept in stock at the end of the previous period 1t  , *

, 1i tI  , as a 

                  beginning inventory for period t . Solve the problem (RP) for the 

                  planning horizon from t  to T and obtain its solution, ,  ,  and .it it itX I S  If 

                 1,t   go to Step (1.2), otherwise go to Step (1.3).    

 

 1.2: If ,  ,  and it it itX I S  for all i and t are integers, stop. The solution is optimal 

                 to the original problem (P). Set the solution * *,  ,  and it it it itX X I I   

                *

it itS S . If the solution to the problem (RP) includes decision variables
 

                 which have fractional values, go to Step (1.3).   
  

 

   

 1.3: Round down the fractional values of the solution to (RP) for period ,t  i.e.  

                  set '

, ,   i t i tX X    for  1,  2, ..., 1li i   and 
'

, ,    i t i tS S    for   

                  1,  2,  ...,  ,r ri i i N  

where  is the largest integer less than or equal to     . 

 

Step 2: (Single period (P) problem with additional restrictions) 
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Use rounded-down values for period t , 
'

,i tX  and '

,i tS , as parameters to restrict the 

decision variables ,i tX  and 
,i tS  in the one-period model (P) for  period t . Additional 

restrictions are as follows. 

 

When 
'

,i tX  has a positive value, add the following constraint as a lower bound on 

variable
,i tX : 

              
 

               
'

, ,               for =1,  2,  ...,  1i t i t lX X i i    

 

 When
'

,i tX is equal to zero, add the constraint , 0i tX   for item i . An upper bound 

on the sales variable ,i tS  is as follows: 

 

              
'

, ,i t i tS S
   

for   i  = ri +1, ri +2, ..., N   

 

 Solve integer programming model (P) for that period  (one-period problem)t  after 

adding the constraints above and the previous period’s optimal inventory quantity, 

*

, 1i tI  , as a beginning inventory for period t . Determine optimal values of the 

variables
*

,i tX , *

,i tI  and *

,i tS  for the period t  and the objective function value, *

tz . 

Keep the objective function value, *, tz and optimal values of the variables
*

,i tX , *

,i tI  

and *

,i tS
 
to construct the heuristic solution.  Set t  = t +1. If t T , go to Step 1.1; 

else, stop. Calculate the objective function value for the heuristic algorithm by 

summing up the objective function values, * * *

1 2 ...H Tz z z z    . 

 

The algorithm starts with the solution to the problem (RP) in Step 1. Since we relax 

integer variables and keep the binary decision variables, the problem (RP) provide 

the solution which is close to the optimal solution to the problem (P). Therefore, we 
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do not want to be far away from the solution to (RP). The relaxed variables are 

rounded down in order to obtain possible large integer values on the variables. The 

rounded down values are used as parameters to construct additional bounds on the 

decision variables of the problem (P). Specifically, we use rounded-down 

disassembly quantity in the solution to the problem (RP), 
'

,i tX , as a lower bound on 

the quantity of items to be disassembled for the problem (P) in Step 2. It means that 

the disassembly quantity can be more than the value of 
'

,i tX . Larger quantity of 

items to be disassembled creates more items. Therefore, quantity of items to be sold 

can be increased to the possible maximum sales quantity. We cannot allow to change 

the case where the problem (RP) gives the quantity of disassembled item is zero. 

These disassembly quantities are equal to zero in the solution to the problem (P). We 

use rounded-down sales quantity in the solution to the problem (RP), 
'

,i tS , as an 

upper bound on the quantity of items to be sold for the problem (P) in Step 2.  

Rounded-down sales quantity is the possible maximum quantity of an item for that 

period to be sold. These additional restrictions force the problem (P) for the solution 

which is close to rounded-down values. Thus, the heuristic solution can be close to 

the optimal solution. 
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3.5. A Numerical Example 

 

In this section we present an example problem to illustrate the solution algorithm. 

Figure 3.1 shows the disassembly structure for a four-period example problem. Root 

items to be disassembled are numbered 1 and 2. Items 3-6 are the leaf items to be 

sold or stocked. Item 4 is a common item that is the child of items 1 and 2. 

 

 

 

 

 

The demand quantities for the leaf items; and cost and revenue parameters are given 

in Tables 3.1 and 3.2, respectively. 

 

 

 
Table 3.1. The demand quantities for the leaf items 

 

 Periods 

Items 1 2 3 4 

3 102 0 70 59 

4 54 200 0 126 

5 69 148 186 0 

6 72 58 65 0 

 

  

 1  2 

 3  5  6 

       (2)   (2) 
(3) 

(2) (1) 

 4 

Figure 3.1. The disassembly structure for the example problem 
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Table 3.2. Cost and revenue parameters for the items 

 

 
Items 

1 2 3 4 5 6 

Unit Purchasing 

Cost 
131 120 - - - - 

Unit Inventory 

Holding Cost 
- - 10 9 8 10 

Unit Disassembly 

Cost 
81 70 - - - - 

Fixed Set-up Cost 5000 6000 - - - - 

Unit Sales Price - - 72 75 50 54 

 

 

We first calculate cumulative demand for the leaf items by using Equation 3.1. We 

calculate the required parameter, 
itM , by using Equation 3.2 and Equation 3.3. 

itM  

values for the disassembled items are shown in Table 3.3. 

 

 
Table 3.3. Mit values for the disassembled items 

 

 Periods 

Items 1 2 3 4 

1 190 163 65 63 

2 195 163 65 63 

 

First, we solve the problem (P) optimally using Cplex 10.1. The optimal solution to 

the problem is given in Table 3.4. Total profit of the optimal solution, *z ,  is  9876. 

81.2% of total demand is satisfied in the optimal solution.  
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Table 3.4. Optimal solution to the example problem 

 

 Periods 

Items 1 2 3 4 

Number of items purchased and 

disassembled 

1 79 - - - 

2 - 111 - - 

 

Number of items 

kept in stock 

3 56 56 - - 

4 104 126 126 - 

5 - 185 - - 

6 - 53 - - 

 

Number of items  

sold 

3 102 - 56 - 

4 54 200 - 126 

5 - 148 185 - 

6 - 58 53 - 

 

 

 

Then, we apply our heuristic solution algorithm for the example problem as follows. 

 

Step 0. Set t =1. 

 

Step 1.1. Solve the problem RP from period 1 to the end period T=4. (Solution for 4-

periods). 

 

Step 1.3. The relaxed solution of disassembly quantity is 1,1X =78.67, the quantities 

of items kept in stock are 3,1I =55.33, 4,1I =103.33 and sales quantities are 3,1S =102.0, 

4,1S =54.0. Rounded-down disassembly quantity is 
'

1,1X =78; quantities of items kept 

in stock are 
'

3,1I =55, 
'

4,1I =103; and sales quantities are 
'

3,1S =102, 
'

4,1S =54. The 

remaining variables for period t =1 are equal to zero.  
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Step 2. Additional constraints are 
1,1X   78,

 2,1X =0, 
3,1S 102, 

4,1S  54, 
5,1S  0, 

and 
6,1S  0. We add these constraints and then solve the model (P) for period 1t   

and determine the optimal solution to one-period (P). Optimal quantities are 
*

1,1X

=78, 
*

2,1X =0, 
*

3,1I =54, 
*

4,1I =102, 
*

3,1S =102, 
*

4,1S =54. The remaining variables are 

equal to zero. The total profit for period t =1 is *

1z = -9968. 

 

Set t =2.   

Step 1.1. We add the following constraints to the problem (RP). 

*

3,1I =54, 
*

4,1I =102, 
*

5,1I =0, and 
*

6,1I =0. 

   

Step 1.3. We solve the (RP) from period 2 to the end period T=4. Rounded-down 

disassembly quantities are 
'

1,2X =0, 
'

2,2X =111; the quantities of items kept in stock 

'

3,2I =54, 
'

4,2I =124, 
'

5,2I =186, 
'

6,2I =53; and the sales quantities are 
'

3,2S =0, 
'

4,2S

=200, 
'

5,2S =148, 
'

6,2S =58.  

 

Step 2. Additional constraints are 1,2X =0, 2,2X   111, 3,2S  0, 4,2S 200, 5,2S 

148, and 6,2S  58.  We also add the constraint *
,1iI  and solve (P) for period t =2. 

Optimal quantities are 
*

1,2X =0, 
*

2,2X =111, 
*

3,2I =54, 
*

4,2I =124, 
*

5,2I =185, 
*

6,2I =53, 

*

3,2S =0, 
*

4,2S =200, 
*

5,2S =148, and 
*

6,2S =58. The total profit for the second period is 

*

2z =-5224.  

 

Set t =3.   

Step 1.1. Additional constraints are: 
*

3,2I =54,
 

*

4,2I =124,
 

*

5,2I =185 and 
*

6,2I =53. 

Step 1.3. Rounded-down quantities of the solution to (RP) are 
'

1,3X =0, 
'

2,3X =0, 
'

3,3I

=0, 
'

4,3I =124, 
'

5,3I =0, 
'

6,3I =0, 
'

3,3S =54, 
'

4,3S =0, 
'

5,3S =185, and 
'

6,3S =53.  
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Step 2. Additional constraints are 
1,3X =0,

 2,3X = 0,
 3,3S 54,

 4,3S  0,
 5,3S 185, and

6,3S  53. We also add the constraints *
,2iI  and and solve (P) for period t =3. Optimal 

quantities are 
*

1,3X =0, 
*

2,3X =0, 
*

3,3I =0, 
*

4,3I =124, 
*

5,3I =0, 
*

6,3I =0, 
*

3,3S =54, 
*

4,3S

=0, 
*

5,3S =185, and 
*

6,3S =53. The total profit for the third period is *

3z =15748.  

 

Set t =4.  

Step 1.1. 
*

3,3I =0,
 

*

4,3I =124,
 

*

5,3I =0, and
*

6,3I =0 are the additional constraints for the 

problem (RP). 

   

Step 1.3. We solve the RP for the last period t T =4. Rounded-down quantities are 

'

1,4X =0, 
'

2,4X =0, 
'

3,4I =0, 
'

4,4I =0, 
'

5,4I =0, 
'

6,4I =0, 
'

3,4S =0, 
'

4,4S =124, 
'

5,4S =0, and 

'

6,4S =0. 

 

Step 2. Additional constraints are 1,4X =0,
 2,4X = 0,

 3,4S  0,
 4,4S 124,

 5,4S  0, 

6,4S  0. We also add the constraints *
,3iI  and and solve (P) for period t =4. Optimal 

quantities are 
*

1,4X =0, 
*

2,4X =0,
*

3,4I =0, 
*

4,4I =0, 
*

5,4I =0, 
*

6,4I =0, 
*

3,4S =0, 
*

4,4S

=124, 
*

5,4S =0, 
*

6,4S =0. The total profit for the fourth period is *

4z =9300. 

The heuristic solution to the example problem is given in Table 3.5. 

 

We sum up the objective function values of four integer programming models solved 

in Step 2 in order to obtain total profit for our heuristic solution. 

Hz = -9968-5224+15748+9300 

Hz =9856 is the total profit for the heuristic solution. The heuristic solution deviates 

0.2 % from the optimal solution and satisfies 80.9% of the total demand.  
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Table 3.5. Heuristic solution to the example problem 

 

 Periods 

Items 1 2 3 4 

Number of items 

purchased and 

disassembled 

1 78 - - - 

2 
- 111 - - 

 

Number of items  

kept in stock 

3 54 54 - - 

4 102 124 124 - 

5 - 185 - - 

6 - 53 - - 

 

Number of items 

sold 

3 102 - 54 - 

4 54 200 - 124 

5 - 148 185 - 

6 - 58 53 - 
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CHAPTER 4 

COMPUTATIONAL STUDY 

We conduct a computational study to measure the performance of the heuristic 

solution algorithm. The main performance measures are Central Processing Unit 

(CPU) in seconds, percent deviation of the heuristic solution from the optimal 

solution or the best integer solution found within the time limits set and service level. 

Computational tests are performed on randomly generated problems. Integer 

programming model (P) and the heuristic algorithm are solved by Cplex 10.1 and test 

is done in personal computer with Inter(R) Core(TM)2 Duo CPU E8400 @2.99 GHz, 

3.49 GB of RAM.  

  

We compute the percent deviation of the heuristic solution from the optimal solution, 

PD, as follows: 

PD=
*

100H

H

z z

z

 
 

 
. 

 

Service level,  , is defined as the percent of the demand fulfilled under a solution. It 

is calculated under for both the heuristic and the optimal solution. The total sales 

quantity of the items for the entire planning horizon is divided by the total demand 

quantity for the items for the planning horizon. 

1 1

1 1

r

r

N T

it

i i t

N T

it

i i t

S

d
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We adopt the computational setting used by Kim et. al. (2006a) to generate the 

problem instances studied. Three levels for number of items are considered: 10, 30, 

and 50. For each of these three cases, we generate five different product structures. 

For each product structure 10 different problem instances that differ in cost and 

revenue parameters are generated. The number of child items for each parent and the 

corresponding yield quantities are generated from DU (2, 5) and DU (1, 3), 

respectively. (DU(a, b) is the discrete uniform distribution in intervel (a, b)). The 

number of root items is generated from DU (1, 2), DU (1, 4) and DU (1, 6) for the 

problems with 10, 30 and 50 items, respectively. The number of common items is 

generated from DU (1, 3), DU (1, 6) and DU (1, 9) for the problems with 10, 30 and 

50 items, respectively.  

 

Unit disassembly operation costs are generated from DU (50, 100) and inventory 

holding costs are generated from DU (5, 10). Set-up cost is generated by multiplying 

the three parameters as follows: 

   s= the factor used to adjust the magnitude of the set-up cost 

  p = the average disassembly operation cost= 

1

1 .
1

li

i

i

l

p

p
i







                                                                                            

    v= is a parameter used to incorporate the randomness in the set-up cost. 

 

We set s to 1, 5 and 10 for the cases of low, medium and high set-up costs, 

respectively, and v is generated from U (5, 15), i.e. the uniform distribution between 

5 and 15.  

 

The fixed disassembly cost,  fi  for item 1,  2,  ...,  1li i   is generated as follows: 

                              fi = s. p .v                  for  i  = 1, 2, ..., li -1.                                                

                    

Three different length of planning horizon values are considered: 10, 20 and 30 

periods. We first generate the problems for T=30. We take the demand of the first 10 
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and the first 20 periods of the 30-period problems and to construct the problem 

instances for T=10, T=20, respectively. Demands for the intermediate and leaf items 

are set to 0 or DU (50, 200) with probabilities 0.1 and 0.9, respectively. Initial 

inventory is set to 0 in the test problems.   

 

Our model includes cost and revenue parameter which are not included in the study 

by Kim et. al. (2006a). Purchasing cost of root items are generated from DU (100, 

150). Unit sales price of non-root items are generated using the variable cost of 

disassembly and the yield information. First, we calculate the unit cost added to the 

items using Equation (4.1) and (4.2). Low sales price is generated by multiplying 

unit cost with a U(1.2, 1,5) random variable whereas high sales price is generated by 

multiplying unit cost with a U(1.7, 2.0) random variable.    

 

Let 
iu is a unit variable cost added to obtain child item i by its parent item (root 

item), and 
eu is a unit variable cost added to obtain child item e by its parent item 

(non-root parent item).  

 

We calculate 
iu  by considering purchasing cost of the associated root items and 

disassembly cost of the root item. It is given in Equation 4.1.  

 

                                               ( )

    for ( )
j j

i

jk

k H j

a p
u i H j





 


                                   

(4.1) 

Unit cost added to child items of the non-root parent items is calculated by using 

Equation 4.2.              

                                            ( )

  for ( )i i
e

ig

g H i

u p
u e H i





 


                                         

(4.2)

 

where iu  is the unit variable cost added to parent item of child item e. Here, we 

calculate unit costs added to the items level-by-level. We start from the calculation of 

unit cost added to the child of the root items and at the end, we reach last leaf item.      
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Unit sales price for the child items of root and non-root items for low price case are 

generated as follows: 

 

            
Low sales price : (1.2,  1.5)

Low sales price : (1.2,  1.5)

i i

e e

r u U

r u U

 

 
 

 

where ir  is the sales price for the child items of the root items 

           er  is the sales price for the child items of the non-root items 

 

Unit sales price for the child of the non-root items for high price case are calculated 

as follows: 

          
High sales price : (1.7,  2.0)

High sales price : (1.7,  2.0)

i i

e e

r u U

r u U

 

 
 

            

Note that the unit sales price generation above is valid for the non-common items. 

Since a non-common item has one parent item, corresponding cost parameters of its 

parent item are used to generate the sales price of the non-common item. For 

common items, a parent item is randomly selected and the unit sales price of the 

common item is generated by using the cost parameters of the selected parent item.   

 

We generate three levels of number of items (10, 30, and 50), five different product 

structures for each level of number of items and each five cases include ten problem 

instances. We also consider the three different length of planning horizon values (10, 

20, and 30), two levels of sales price (low, high), and three levels of set-up cost (low, 

mid, high). In total, 2700 problem instances are generated and solved.  

 

We use CPLEX 10.1 to solve the integer programming model (P) optimally. We 

limit the CPU time with 3-hours. For the problems that cannot be solved within 3 

hours optimally, the objective function value of the best integer solution found within 

an hour and 3 hours are reported. The heuristic solutions are compared with both of 

these to assess the benefits of increasing the CPU time limit.  
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For some problem instances, the heuristic algorithm requires high computational 

times. The most demanding part of the developed heuristic in terms of computational 

effort is the solution of (RP) which is a mixed integer programming model. In the 

case that the heuristic solution cannot be obtained within an hour, we divide the 

planning horizon into small pieces, and create subproblems. Then the heuristic 

algorithm is applied to the subproblems sequentially. The RP problem with shorter 

planning horizon requires less computational time than the RP problem with longer 

planning horizon.  

  

Especially, problem instances with complex product structures and/or long planning 

horizons require high computational time even if the proposed heuristic solution is 

employed for the solution. Different schemes for dividing the entire planning horizon 

to smaller ones are considered. First, we divide 30-period problems into two 15-

period problems. This scheme reduces the computational time. However, for some 

problem instances, this division does not yield a total run time which is less than an 

hour. Then, we divide 30-period problems into six 5-period problems. This scheme 

requires very low computational time. However, the heuristic solution deviates from 

the optimal or best integer solution by 15-20%. Finally, we decide to divide T-period 

RP problem into 10-period problems. For instance, we obtain three 10-period 

problems for a problem instance with a planning horizon of 30. This scheme yields a 

total run time which is less than an hour and the heuristic solution deviates from the 

optimal or best integer solution between 0.1-5%. 

 

We test the behavior of the objective function with the changing time limit. 

Specifically, we test the change in the objective function value of the best integer 

solution within an hour. We record the objective function value of the best integer 

solution in every 5 minutes for the problem instances cannot be solved optimally 

within 3 hours. We classify the observations on the behavior of the objective 

function values recorded to as follows. 
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 There is no change in the objective function value with the increasing time 

limit. The objective function value which is obtained in the first 5 minutes 

does not change through 60 minutes.  

 The first 15 minute of run time are enough to reach the best solution obtained 

in 60 minutes. In other words, solution obtained at 15 minutes is very close 

(less than 1 %) to the solution at 60 minutes.  

 The objective function value increases as the run time from 5 minutes to 60 

minutes. 

 

When we analyze the results tested, we conclude that the first two cases dominate the 

last one. 37%, 45%, and, 18% of the problem instances behave as case one, case two 

and case three, respectively. These cases are affects of the number of items and the 

planning time horizon. Especially, the problem instances with the less number of 

items and the short planning horizon time behave as the first case. The problem 

instances with longer planning behave as the second and third case. We show these 

cases on three problem instances with 10, 30 and 50 items for 30 periods of planning 

horizon. Figure 4.1, 4.2 and 4.4 shows the behavior of total profit with changing time 

limit for each three cases. Horizontal axis shows the time limit from 5 minutes to 60 

minutes and vertical axis shows the objective function value (total profit). We also 

report the percent deviations of the solutions for a certain time limit from the best 

solution obtained at 1 hour in Figure 4.3 and 4.5. 

 

The first case of the behavior of the objective function can be seen in Figure 4.1. It 

shows that increasing time limit yields no improvement on the total profit. In this 

case, increasing time limit to an hour is unnecessary. For some problem instances, 

objective function value can be improved with increasing time limit by ignorable 

amount. We include these problem instances in first case of the behavior of the 

objective function.   
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Figure 4.1. Total profit vs. time limit for N=10, T=30 with high sales price level and low 

set-up cost 
  

 

The second case for the behavior of the objective function is given in Figure 4.2. The 

objective function value increases as the time limit increases within the first 15 

minutes and it is stable after 30 minutes. As it can be seen in Figure 4.3, total profit 

at 15 minutes deviates nearly 0.1% from the total profit at 1 hour. At the 30 minutes, 

it reaches to the solution obtained at 1 hour. Since the objective function yields 

significant improvement within first 15 minutes and ignorable improvement after 15 

minutes, 15 minutes time limit is sufficient for this situation.  

 

The third case for the behavior of the objective function is given in Figure 4.4. As the 

time limit increases, the total profit increases. As it can be seen in Figure 4.5, the 

solution obtained within first 10 minutes deviates nearly 2.5-3% from the solution 

obtained at 1 hour. The deviation is stable on the 1.5% between 20-35 minutes. The 

solution at 40 minutes deviates more than 1% from the solution at 1 hour. At 45 

minutes, the solution is close to the solution in 60 minutes. 

If the objective function still yields significant improvement from 15 minutes to 60 

minutes, we include this situation in case three for the behavior of the objective 

function.      
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Figure 4.2. Total profit vs. time limit for N=30, T=30 with high sales price level and 

high set-up cost 

 

 

 

Figure 4.3. Percent deviation of the solutions from the best feasible solution at 1 hour 

for N=30, T=30 with high sales price level and high set-up cost 
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Figure 4.4. Total profit vs. time limit for N=50, T=30 with low sales price level and 

medium set-up cost 

 
 

 
 

Figure 4.5. Percent deviation of the solutions from the best feasible solution at 1 hour 

for N=50, T=30 with low sales price level and medium set-up cost 
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4.1. Discussion of the Results 

 

CPU times in seconds, percent deviation from the optimal solution and service level 

are the performance measures considered. We report the maximum, the minimum 

and the average value of these performance measures. In addition to these measures, 

we also report the number of problem instances solved optimally within 1-hour and 

3-hour time limit. Number of problem instances solved optimally for three levels of 

number of items 10, 20 and 30; three different set-up cost magnitude; and two levels 

of sales price are given in Table 4.1. The total number of problem instances solved 

optimally is 1155. 1100 of them are solved within an hour; and 55 problem instances 

are solved optimally within the additional 2 hours. Additional two hours do not 

provide a significant increase on the number of problems solved optimally. Empty 

cells in Table 4.1 shows no problem instances solved optimally. 

 

 
Table 4.1. Number of problem instances solved optimally 

 

Sales price low high 

Set-up cost low mid high low mid high 

CPU time limit 

(hr)  

1 

 

3 1 3 

 

1 3 1 

 

3 1 

 

3 1 

 

3 

  T=10 50 - 50 - 50 - 50 - 50 - 50 - 

N=10 T=20 45 2 50 - 45 4 41 1 47 2 35 7 

  T=30 28 2 27 2 24 1 27 2 22 2 21 - 

  T=10 43 3 48 2 47 2 43 1 49 1 40 4 

N=30 T=20 - - 6 2 13 4 - - - - - - 

  T=30 - - - - - - - - - - - - 

  T=10 19 2 22 1 20 1 9 2 16 2 13 3 

N=50 T=20 - - - - - - - - - - - - 

  T=30 - - - - - - - - - - - - 

Total 185 9 203 7 199 12 170 6 184 7 159 14 
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The effects of the parameters on the number of problem instances solved optimally 

are as follows. 

 

 As the number of item increases, the number of problem instances that are 

solved optimally within the given time limit decreases. Specifically, 737, 308 

and 110 problem instances for 10, 30 and 50 item problems, respectively.  

 

 We cannot say that as the set-up cost increases, the number of problem 

instances solved optimally decreases. The number of the problem instances is 

solved optimally with three set-up cost levels are as follows.  

 

 In the case of medium set-up cost, more problem instances are solved 

optimally when we compare low and high set-up cost levels, in the overall. 

Specifically, 370, 401, and 384 problem instances for low, medium and high 

set-up cost levels, respectively. For the case of low set-up cost, the solver 

(Cplex) may not prove optimality of the solutions obtained. Therefore, less 

number of problem instances is solved optimally for low set-up cost level 

compared to the medium and high set-up costs levels.   

 

 As the length of the planning horizon increases, the number of problem 

instances solved optimally decreases. It can be seen in Table 4.1, none of the 

problem instances with 50 items when T=30 and with 50 items when T=20 

are solved optimally. 693, 304 and 158 problem instances for a palnning 

horizon of length 10, 20 and 30, respectively. 
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 As the sale price level increases, the number of problem instances solved 

optimally decreases. In the overall, 615 and 540 of the problem instances 

solved optimally in the cases of low and high sales prices, respectively.  

 

 As it can be observed in Table 4.1, the number of problem instances that 

could not be solved optimally within the time limit increases as 

 The number of items increases 

 The number of periods increases 

 The sales price increases. 

 

We report the percent improvement on the total profit when the time limit is 

extended to 3 hours from 1 hour in Table 4.2. All problem instances with 10 items 

and 10 periods are solved optimally. Therefore, we do not report these cases in Table 

4.2.  The percent improvement on the total profit decreases as 

 

 The number of items increases 

 The number of periods increases 

 

The maximum improvement is 2.02 %. The best feasible solution can be improved 

less than 1% on the average. Especially, for some problem instances with 50 items, 

the best feasible solution cannot be improved within an additional 2 hours time limit. 

Therefore, we conclude that the effect of extending the time limit from 1 hour to 3 

hours is not significant. 
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Table 4.2. Percent improvement on the total profit of the best feasible solution obtained 

extending the time limit from 1 hour to 3 hours 

 

Number  10 30 50 

of items                 

 

T=20 T=30 T=10 T=20 T=30 T=10 T=20 T=30 

min 0.03 0.00 0.01 0.02 0.00 0.00 0.00 0.00 

avg 0.65 0.53 0.68 0.58 0.50 0.35 0.29 0.26 

max 0.94 0.94 2.02 0.91 0.51 0.96 0.82 0.49 

 

We report CPU time in seconds for the optimal solutions in Table 4.3. There are 

some missing rows and empty cells in Table 4.3 since no problem can be solved 

optimally in these cases. 

 

The effects of the parameters on the CPU time of the optimal solution are as follows. 

 As the number of items increases, the CPU time required to get the optimal 

solution increases.  

 

 As the length of the planning horizon increases, the CPU time to get the 

optimal solution increases. We expect that the CPU times increase 

exponentially as the number of periods increase. It can be seen in Table 4.3, 

as the length of the planning horizon increases from 10 to 20 periods for 10-

item problems, the average CPU time increases exponentially. For the other 

cases, the increase is not as significant as this case.  

 

 As the set-up cost increases, the CPU time to get the optimal solution 

increases. There is no so much difference in the CPU time of low, medium 

and high set-up costs, on the average. Since we cannot solve same number of 

problem instances for each case, average CPU time can be close to each 

other. As the sales price increases, the CPU time to get the optimal solution 

increases.  
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Table 4.3. CPU times in seconds of optimally solved problem instances 

 

  Sales price low high 

  Set-up cost low mid high low mid high 

    min 0.01 0.04 0.04 0.01 0.05 0.06 

  T=10 avg 3.62 4.28 4.35 3.65 4.54 4.91 

    max 3.84 4.54 4.59 6.23 7.73 8.11 

    min 0.05 0.06 0.11 0.06 0.14 0.30 

N=10 T=20 avg 1441.44 1611.54 1898.02 1580.97 1803.22 1951.90 

    max 3888.91 3149.60 3871.35 4377.40 4739.97 4967.94 

    min 0.08 0.11 0.17 0.11 0.23 0.36 

  T=30 avg 2266.94 2280.06 2370.74 2356.53 2464.76 2991.23 

    max 4308.82 5609.70 4020.14 4461.49 4269.87 3241.93 

    min 0.69 0.72 0.41 1.34 1.28 6.67 

  T=10 avg 2032.52 2232.40 2685.29 2147.90 2250.08 2778.28 

N=30   max 3799.91 3899.05 4631.45 3781.29 3947.37 4431.48 

    min - 209.04 238.75 - - - 

  T=20 avg - 3633.91 3759.36 - - - 

    max - 4541.06 4742.26 - - - 

    min 21.20 30.84 32.56 36.34 37.92 39.01 

N=50 T=10 avg 2834.48 2961.71 3053.37 3168.19 3337.29 4161.88 

    max 4314.72 4674.39 4865.91 6283.69 6302.46 8807.33 

 

The generated problem instances solved optimally are also solved using the proposed 

heuristic approach. We report the CPU time in seconds for the heuristic solutions in 

Table 4.4. Since some problem instances cannot be solved within an hour by the 

heuristic approach and they are not reported in Table 4.4, increase in CPU time can 

be less than we expect. 
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Table 4.4. CPU times in seconds of heuristic solutions for optimally solved problem 

instances 

 

  Sales price low high 

  Set-up cost low mid high low mid high 

    min 0.10 0.17 0.15 0.12 0.14 0.14 

  T=10 avg 0.25 0.43 0.53 0.26 0.44 0.71 

    max 0.67 1.15 1.45 0.60 1.90 3.65 

    min 0.31 0.13 0.70 0.42 0.69 0.19 

N=10 T=20 avg 0.94 16.69 26.95 2.82 28.87 38.08 

    max 4.12 138.01 131.98 6.36 338.13 215.26 

    min 0.81 1.26 1.51 0.72 2.12 2.66 

  T=30 avg 54.74 66.92 86.80 57.80 75.32 93.12 

    max 210.00 226.70 168.54 69.20 385.19 348.02 

    min 0.20 0.67 0.53 0.30 1.20 1.53 

  T=10 avg 0.73 3.13 4.43 0.81 9.23 11.66 

N=30   max 1.26 7.25 8.50 6.89 81.14 51.08 

    min - 4.78 3.74 - - - 

  T=20 avg - 22.12 40.31 - - - 

    max - 226.30 243.42 - - - 

    min 0.36 0.72 1.22 0.52 1.91 2.69 

N=50 T=10 avg 1.80 9.41 16.26 2.04 102.89 107.69 

    max 3.64 20.45 18.00 12.64 138.94 137.23 

 

 

The effects of the parameters on the CPU time of the heuristic solution are as 

follows.   

 

In general, as the number of item increases, the CPU time of the heuristic solution 

increases. However, the maximum CPU time for the problem instances with 50 items 

for the ones with 10 and 30 items. Since some problem instances with 50 items 

cannot be solved within an hour. For those problems, we decompose the planning 

horizon to solve them within an hour. The heuristic with decomposition is explained 

in this chapter.  
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As the lenght of the planning horizon increases, the CPU time of the heuristic 

solution increases. As in the optimal solution, the average CPU times of heuristic 

solution increases exponentially.  

As the set-up cost increases, the CPU time of the heuristic solution increases.  

As the sales price increases, the CPU time of the heuristic solution increases.  

 

Based on Table 4.3 and Table 4.4, we compare the heuristic solution with the optimal 

ones.  

The heuristic approach solves the problems within less computational time than the 

optimal ones.  

 

 For 10-period problems with 10 items, CPU times for the optimal and the 

heuristic solution are close on the average. Since they are short planning 

period problem instances, the optimal solution can be easily obtained.  

 

 When the length of the planning horizon increases to 20 and 30, the heuristic 

solutions are obtained within less computational time than the optimal 

solutions for all levels of set-up cost and sales price.  

 

 For the problem instances with 30 and 50 items, the heuristic approach also 

solves the problems within low computational time. While the optimal 

solutions are obtained within high computational time. As a result, we benefit 

of using the heuristic approach in terms of CPU time. 

 

When we solve (RP) problem, we obtain upper bound on the problem (P). We report 

the percent deviation of the upper bound from the optimal solution. As it can be 

observed in Table 4.5, the percent deviation of the upper bound from the optimal 

solution decreases as  

  



 

 

53 

 

 Sales price increases 

 Set-up cost increases 

 Number of item decreases 

 The length of the planning horizon increases  

 

 Maximum deviation of the upper bound from the optimal solution is 0.697%.   

 Average deviations of upper bound from the optimal solution are less than 

0.5%. 

 Overall average deviation of upper bound from the optimal solution is 

0.09%.

 As a result, (RP) problem gives sharp upper bounds on the optimal solutions. 

Thus it affects the quality of the heuristic solution to obtain near optimal 

solution. 
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Table 4.5. Percent deviation of upper bound from the optimal solution 

 

Sales price low high 

Set-up cost   low mid high low mid high 

    min 0.002 0.000 0.000 0.000 0.000 0.000 

  T=10 avg 0.110 0.093 0.089 0.078 0.065 0.052 

    max 0.697 0.649 0.564 0.395 0.373 0.336 

    min 0.003 0.001 0.000 0.001 0.000 0.000 

N=10 T=20 avg 0.092 0.090 0.082 0.068 0.064 0.050 

    max 0.479 0.359 0.279 0.241 0.238 0.182 

    min 0.004 0.000 0.000 0.001 0.000 0.000 

  T=30 avg 0.091 0.088 0.080 0.060 0.045 0.044 

    max 0.219 0.208 0.191 0.195 0.178 0.144 

    min 0.037 0.024 0.017 0.028 0.022 0.010 

  T=10 avg 0.113 0.094 0.090 0.081 0.068 0.053 

    max 0.199 0.187 0.178 0.185 0.144 0.156 

    min - 0.068 0.062 - - - 

N=30 T=20 avg - 0.091 0.085 - - - 

    max - 0.250 0.192 - - - 

    min - - - - - - 

  T=30 avg - - - - - - 

    max - - - - - - 

    min 0.119 0.090 0.017 0.101 0.053 0.012 

  T=10 avg 0.204 0.153 0.132 0.154 0.126 0.105 

    max 0.380 0.347 0.324 0.189 0.177 0.155 

    min - - - - - - 

N=50 T=20 avg - - - - - - 

    max - - - - - - 

    min - - - - - - 

  T=30 avg - - - - - - 

    max - - - - - - 

 

 

Percent deviations of the heuristic solution from the optimal solution are summarized 

in Table 4.6. It is reported for all level of number of items, number of periods, sales 

price and set-up costs.  
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Table 4.6. Percent deviations of heuristic solutions from the optimal solutions 

 

  Sales price low high 

 

Set-up cost low mid high low mid high 

 

 

 

N=10 

 

 

 

 

 

  min 0.00 0.00 0.00 0.01 0.00 0.00 

T=10 avg 0.33 0.28 0.20 0.24 0.20 0.18 

  max 0.72 0.61 0.43 0.45 0.47 0.43 

  min 0.01 0.02 0.00 0.00 0.01 0.02 

T=20 avg 0.29 0.24 0.19 0.22 0.18 0.17 

  max 0.60 0.50 0.42 0.48 0.47 0.40 

  min 0.01 0.00 0.00 0.01 0.00 0.01 

T=30 avg 0.28 0.20 0.17 0.20 0.17 0.16 

  max 0.52 0.44 0.40 0.47 0.41 0.40 

 

 

N=30 

 

 

 

  min 0.11 0.06 0.00 0.13 0.02 0.02 

T=10 avg 0.35 0.31 0.30 0.30 0.24 0.20 

  max 0.74 0.61 0.48 0.50 0.51 0.50 

  min - 0.10 0.08 - - - 

T=20 avg - 0.29 0.25 - - - 

  max - 0.50 0.50 - - - 

 

N=50 

 

  min 0.24 0.13 0.08 0.22 0.12 0.09 

T=10 avg 0.41 0.39 0.32 0.35 0.30 0.28 

  max 0.87 0.84 0.97 0.86 0.52 0.60 

  

 

As it can be observed that in Table 4.6, the average percent deviation of heuristic 

solution from the optimal solution decreases as  

 Sales price increases 

 Set-up cost increases 

 Number of items decreases 

 The length of the planning horizon increases  

The heuristic approach gives near optimal results. The heuristic solution deviates less 

than 0.5% on the average. The maximum deviations is less than 1% for all cases.  

Percent deviations of the heuristic solution from the best feasible solution within 3-

hour time limit are given in Table 4.7 for the instances that cannot be solved in 3 

hours. The heuristic solution is close to the feasible solution obtained within 3 hours. 

The percent deviation is less than 1% on the average. The heuristic solution can 
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reach to the best feasible solution which is obtained within 3 hours time limit. As it 

can be observed that in Table 4.7, the average percent deviation of the heuristic 

solution from the best feasible solution decreases as  

  

 Sales price increases 

 Set-up cost increases 

 Number of item decreases 

 The length of the planning horizon increases      

 

Table 4.7. Percent deviations of the heuristic solutions from the best feasible solution 

within 3 hours 

 

Sales price low high 

Set-up cost  low mid high low mid high 

    min 0.18 - 0.25 0.21 0.26 0.15 

  T=20 avg 0.29 - 0.26 0.28 0.26 0.20 

N=10   max 0.55 - 0.97 0.73 0.26 0.50 

    min 0.18 0.17 0.07 0.11 0.13 0.15 

  T=30 avg 0.30 0.28 0.26 0.28 0.25 0.24 

    max 0.63 0.94 0.88 0.59 0.83 0.84 

    min 0.30 - 0.32 0.17 - 0.31 

  T=10 avg 0.37 - 0.32 0.33 - 0.26 

    max 0.64 - 0.32 0.41 - 0.90 

    min 0.09 0.02 0.04 0.16 0.11 0.21 

N=30 T=20 avg 0.34 0.32 0.27 0.32 0.30 0.24 

    max 0.58 1.29 1.30 0.42 1.09 0.97 

    min 0.00 0.02 - 0.03 0.22 0.22 

  T=30 avg 0.31 0.30 - 0.29 0.27 0.26 

    max 0.64 0.92 - 0.51 0.80 0.72 

    min 0.20 0.08 0.10 0.11 0.07 0.00 

  T=10 avg 0.39 0.38 0.33 0.34 0.32 0.28 

    max 0.58 0.53 0.96 0.48 0.48 0.73 

    min 0.10 0.09 0.00 0.07 - - 

N=50 T=20 avg 0.38 0.36 0.29 0.33 - - 

    max 0.60 0.62 0.90 0.45 - - 

    min 0.04 0.03 0.05 0.03 - - 

  T=30 avg 0.32 0.31 0.26 0.30 - - 

    max 0.45 0.82 0.80 0.43 - - 
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As the number of items and periods increase, the heuristic approach requires a 

computational time more than an hour. The number of these problem instances is 

given in Table 4.8. In total, 726 of the problem instances out of 2700 cannot be 

solved within an hour using the heuristic solution approach. For these problem 

instances, we provide the heuristic with decomposition to solve the problems within 

less than an hour. The planning horizons of 20 and 30 periods are divided into 2 and 

3 equal planning horizons, respectively. 

 

 
Table 4.8. Number of problem instances cannot be solved optimally within 3-hour 

 

  

Sales price low high 

Set-up cost low mid high low mid high 

N=10 T=30 - 10 9 - 5 12 

N=30 

  

T=20 - 40 16 - 10 16 

T=30 - 46 50 - 40 39 

N=50 

  

T=20 7 40 40 22 50 50 

T=30 10 43 46 25 50 50 

Total 17 179 161 47 155 167 

 

 

The CPU time in seconds for the heuristic with decomposition scheme is given in 

Table 4.9.  

 Most of the problem instances with 50 items are solved by the heuristic 

approach with decomposition.  

 The problems with 10 items are solved within a few seconds for the case of 

low sales price.  

 As the number of items, number of periods, setup cost and sales price 

increase, the average CPU time of the heuristic approach with decomposition 

increases.  

 The maximum CPU time of the heuristic with decomposition is 2023.89 

seconds which is still less than an hour.    
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We also report the percent deviations of the heuristic solution with decomposition 

from the best feasible solution obtained within 3 hours. As it can be observed that in 

Table 4.10., the average percent deviation of the heuristic solution with 

decomposition from the best feasible solution increases as  

 Sales price increases 

 Set-up cost increases 

 Number of item increases 

 The length of the planning horizon increases      

 

Table 4.9. CPU times in seconds for the heuristic solutions with decomposition 

 

  

Sales price low high 

Set-up cost low mid high low mid high 

    min - 2.33 1.44 - 1.52 1.86 

N=10 T=30 avg - 2.78 3.14 - 8.66 11.18 

    max - 4.25 6.53 - 87.87 205.91 

  

  

N=30 

  

  

  

  min - 0.93 4.22 - 6.75 4.38 

T=20 avg - 7.88 11.42 - 32.05 36.45 

  max - 20.59 24.56 - 283.14 258.80 

  min - 4.29 4.56 - 8.17 9.57 

T=30 avg - 12.83 13.23 - 37.69 67.10 

  max - 66.99 99.26 - 193.75 536.59 

  

  

N=50 

  

  

  

  min 4.95 4.59 5.23 0.13 3.73 7.06 

T=20 avg 14.40 134.93 57.12 18.26 451.72 598.18 

  max 67.28 773.70 248.86 59.69 645.43 1107.26 

  min 2.95 2.29 4.78 2.50 5.84 11.64 

T=30 avg 19.20 145.19 505.17 18.55 629.54 986.75 

  max 77.37 937.64 886.66 163.51 1293.28 2023.89 

  

 

 Although the maximum deviation is 5%, the heuristic approach with 

decomposition deviates between 0.57%-1.53% from the best feasible solution on 

the average. 
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 Average deviations are reasonable for hard problems. For example, the 

maximum of the average deviation is 1.53% for problem instances with 50 items 

for 30 periods, high set-up cost and high sales price case. 

 The minimum percent deviations are very low; in some cases of 50 items 

with 30 periods, the heuristic solution is close to the optimal solutions. 

 

 
 

Table 4.10. Percent deviations of the heuristic solution with decomposition from the 

best feasible solution obtained within 3 hours 

 

 

Sales price low high 

Set-up cost low mid high low mid high 

    min - 0.20 0.21 - 0.22 0.24 

N=10 T=30 avg - 1.05 1.13 - 1.08 1.17 

    max - 1.20 1.30 - 1.40 1.80 

  

  

N=30 

  

  

  

  min - 0.03 0.05 - 0.04 0.27 

T=20 avg - 0.97 1.15 - 1.24 1.40 

  max - 1.77 3.08 - 4.00 4.20 

  min - 0.22 0.23 - 0.27 0.29 

T=30 avg - 1.12 1.17 - 1.26 1.51 

  max - 3.05 3.70 - 4.30 4.51 

  

  

N=50 

  

  

  

  min 0.09 0.09 0.10 0.10 0.13 0.02 

T=20 avg 0.57 1.12 1.20 0.60 1.26 1.48 

  max 1.20 3.68 3.45 1.25 4.04 4.32 

  min 0.11 0.09 0.13 0.18 0.03 0.02 

T=30 avg 0.61 1.21 1.25 0.71 1.32 1.53 

  max 1.21 4.63 3.45 1.26 5.00 4.71 

 

 

 

We report the service levels for the problem instances in Tables 4.11, 4.12 and 4.13. 

In Table 4.11, service levels under the optimal and the heuristic solutions are given. 

Service levels of the heuristic solutions are close to the optimal ones. It other words, 

the percentages of demand fulfilled in the optimal and heuristic solutions are close to 

each other. Service level of the heuristic solution and the best feasible solution 

obtained within 3 hours is given in Table 4.12. Table 4.13 shows the service level 

under the solution of the heuristic approach with decomposition. 
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The following observations are made based on Table 4.11. 

 Service levels are between 64%-91% and 64%-88% for optimal and heuristic 

solutions, respectively.  

 As the number of items increases, the service level increases. 

 As the set-up cost increases, the service level decreases. 

 As the sales price increases, the service level under the solution increases. 

The amount of increase is between 0.01 and 0.07 unit in percent.  

 

The following observations are made based on Table 4.12. 

 

 The service level of the heuristic solution is close to the service level of the 

best feasible solution, and the effects of the parameters on the service level is 

the same as in the cases that the optimal solutions can be found within 3 

hours.  

  Service levels are between 71%-91% and 70%-90% for the best feasible 

solution and heuristic solutions, respectively.  

 

The following observations are made based on Table 4.13. 

Since the maximum deviations of the heuristic solutions with decomposition to some 

problem instances are near to 5% which is reported in Table 4.10, the maximum and 

minimum service levels of the solutions of the heuristic with decomposition are not 

close to each other. 

 

We cannot satisfy the demand for the items fully, i.e., service level which all is less 

than 100%. As a result, service level shows the importance of profit maximization 

rather than cost minimization.  
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Table 4.11. Service level of the optimal and heuristic solutions 

 

  
Sales  price low high 

 

Set-up cost low mid high low mid high 

 

Optimal vs.Heuristic  OPT HEUR OPT HEUR OPT HEUR OPT HEUR OPT HEUR OPT HEUR 

    min 0.69 0.69 0.67 0.67 0.65 0.65 0.76 0.75 0.74 0.72 0.73 0.70 

  T=10 avg 0.72 0.71 0.71 0.70 0.69 0.67 0.78 0.76 0.75 0.74 0.75 0.72 

    max 0.74 0.72 0.73 0.71 0.70 0.68 0.79 0.78 0.78 0.76 0.76 0.75 

    min 0.70 0.70 0.68 0.68 0.65 0.65 0.72 0.72 0.72 0.70 0.71 0.70 

N=10 T=20 avg 0.73 0.72 0.72 0.70 0.66 0.64 0.74 0.73 0.73 0.71 0.72 0.71 

    max 0.74 0.73 0.73 0.71 0.68 0.67 0.75 0.75 0.74 0.73 0.74 0.72 

    min 0.72 0.72 0.72 0.72 0.70 0.70 0.76 0.75 0.76 0.75 0.75 0.73 

  T=30 avg 0.74 0.73 0.73 0.73 0.74 0.72 0.78 0.76 0.77 0.77 0.76 0.75 

    max 0.75 0.75 0.74 0.74 0.75 0.74 0.79 0.78 0.79 0.78 0.78 0.78 

    min 0.73 0.73 0.72 0.72 0.70 0.70 0.77 0.76 0.72 0.72 0.73 0.73 

  T=10 avg 0.74 0.74 0.74 0.74 0.73 0.71 0.78 0.77 0.77 0.74 0.76 0.75 

N=30   max 0.76 0.75 0.75 0.75 0.74 0.73 0.80 0.78 0.78 0.75 0.77 0.76 

    min - - 0.74 0.72 0.72 0.72 - - - - - - 

  T=20 avg - - 0.75 0.74 0.74 0.73 - - - - - - 

    max - - 0.77 0.76 0.75 0.74 - - - - - - 

    min 0.86 0.84 0.84 0.82 0.80 0.80 0.88 0.85 0.85 0.85 0.82 0.82 

N=50 T=10 avg 0.87 0.85 0.85 0.83 0.82 0.80 0.90 0.86 0.87 0.86 0.85 0.84 

    max 0.89 0.88 0.87 0.86 0.83 0.81 0.91 0.88 0.88 0.88 0.86 0.85 

 

6
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Table 4.12. Service level of the heuristic solution and the best feasible solution obtained within 3 hours 

 
  Sales  price low high 

 

Set-up cost low mid high low mid high 

 

Feas vs. Heur  FEAS HEUR FEAS HEUR FEAS HEUR FEAS HEUR FEAS HEUR FEAS HEUR 

    min 0.75 0.75 - - 0.74 0.73 0.78 0.77 0.78 0.76 0.77 0.76 

  T=20 avg 0.76 0.76 - - 0.75 0.74 0.79 0.79 0.79 0.77 0.79 0.78 

N=10   max 0.78 0.77 - - 0.77 0.76 0.81 0.80 0.80 0.79 0.80 0.80 

    min 0.78 0.76 0.77 0.75 0.75 0.75 0.80 0.79 0.79 0.77 0.77 0.76 

  T=30 avg 0.79 0.78 0.79 0.78 0.78 0.76 0.82 0.82 0.80 0.79 0.79 0.77 

    max 0.80 0.79 0.80 0.79 0.80 0.79 0.83 0.83 0.81 0.80 0.80 0.79 

    min 0.75 0.74 - - 0.71 0.68 0.78 0.76 - - 0.74 0.71 

  T=10 avg 0.77 0.76 - - 0.73 0.72 0.79 0.78 - - 0.75 0.73 

    max 0.79 0.78 - - 0.74 0.73 0.80 0.79 - - 0.76 0.74 

    min 0.76 0.76 0.74 0.74 0.71 0.70 0.78 0.75 0.75 0.74 0.75 0.73 

N=30 T=20 avg 0.79 0.77 0.75 0.75 0.75 0.73 0.79 0.77 0.77 0.77 0.76 0.74 

    max 0.80 0.79 0.77 0.76 0.76 0.75 0.81 0.80 0.78 0.78 0.77 0.76 

    min 0.83 0.83 0.82 0.82 0.80 0.79 0.83 0.83 0.86 0.85 - - 

  T=30 avg 0.85 0.84 0.83 0.83 0.82 0.82 0.88 0.86 0.87 0.87 - - 

    max 0.86 0.86 0.85 0.84 0.84 0.84 0.90 0.88 0.89 0.88 - - 

 

  min 0.86 0.83 0.85 0.85 0.83 0.82 0.87 0.85 0.84 0.84 0.80 0.78 

T=10 avg 0.88 0.85 0.86 0.86 0.84 0.83 0.99 0.87 0.85 0.85 0.81 0.80 

  max 0.90 0.87 0.88 0.87 0.86 0.86 0.90 0.88 0.88 0.87 0.83 0.82 

N=50 

  min 0.85 0.85 0.81 0.81 0.82 0.82 0.84 0.84 - - - - 

T=20 avg 0.87 0.86 0.85 0.84 0.85 0.83 0.89 0.85 - - - - 

  max 0.88 0.88 0.86 0.85 0.87 0.86 0.90 0.87 - - - - 

 

  min 0.86 0.84 0.81 0.81 0.82 0.82 0.88 0.84 - - - - 

T=30 avg 0.88 0.87 0.86 0.84 0.85 0.83 0.90 0.89 - - - - 

  max 0.90 0.89 0.86 0.85 0.87 0.86 0.91 0.90 - - - - 

6
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Table 4.13. Service level of the heuristic solution with decomposition 

 

  

Sales price low high 

Set-up cost low mid high low mid high 

    min - 0.70 0.68 - 0.73 0.72 

N=10 T=30 avg - 0.75 0.71 - 0.77 0.74 

    max - 0.77 0.75 - 0.79 0.76 

  

  

N=30 

  

  

  

  min - 0.74 0.73 - 0.71 0.62 

T=20 avg - 0.76 0.73 - 0.77 0.75 

  max - 0.78 0.76 - 0.80 0.79 

  min - 0.74 0.71 - 0.74 0.73 

T=30 avg - 0.82 0.79 - 0.83 0.80 

  max - 0.83 0.81 - 0.87 0.86 

  

  

N=50 

  

  

  

  min 0.69 0.63 0.61 0.74 0.67 0.62 

T=20 avg 0.72 0.71 0.69 0.75 0.74 0.71 

  max 0.75 0.73 0.70 0.77 0.76 0.74 

  min 0.68 0.67 0.65 0.71 0.70 0.68 

T=30 avg 0.72 0.71 0.69 0.75 0.82 0.80 

  max 0.80 0.78 0.75 0.82 0.79 0.77 
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CHAPTER 5 

CONCLUSIONS AND FURTHER RESEARCH ISSUES 

Profitability is the main driver for disassembly systems as regular production 

systems. Value hidden in the discarded products encourages the producers to be 

engaged in the part and material recovery operations. A producer wants to maximize 

the profit by gaining all possible value from the discarded products. Therefore, 

effective disassembly plans are required to reach the possible profitability of the 

disassembly systems.  

 

In this thesis, we study a disassembly lot-sizing problem that is a medium (or short) 

term production planning problem. We consider the problem of determining the time 

and quantity of discarded products and intermediate items to be disassembled while 

maximizing total profit by selling the intermediate and leaf items over a finite 

planning horizon. The case of multiple product types with parts commonality is 

considered. It is assumed that the supply of discarded products is infinite. The 

purchased discarded products are immediately disassembled. When an item is 

disassembled, all its immediate child items are obtained, i.e. complete disassembly 

case is considered. Obtained intermediate and leaf items can be sold or kept in stock. 

Intermediate items can be disassembled further. Sales of intermediate and leaf items 

are the revenue sources. The considered cost items are purchasing cost of discarded 

products, fixed and variable disassembly costs and inventory holding cost. 

 

We formulate the problem as an integer programming model. We state that the 

problem is NP-hard by referring to the study of Kim et. al. (2009). As the number of 

items and the length of the planning horizon increase, the solution time required by 
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the integer programming model increases exponentially. Therefore, we propose a 

heuristic solution approach to solve the problem within reasonable computational 

times. The heuristic includes relaxed models (RP) and integer models with single 

planning horizon. (RP) is a relaxed version of problem (P) obtained by relaxing 

integer variables and keeping binary variables.  The relaxed and single period integer 

models are sequentially solved. Results of the relaxed models are used in single 

period integer models as bounds for the sales and disassembly quantities. In order to 

measure the performance of the heuristic approach, we randomly generate 2700 

problem instances. 1155 problem instances out of 2700 are solved optimally; and 819 

problems out of 2700 cannot be solved optimally within 3-hour time limit. Percent 

deviations of the heuristic solution from the optimal solution or best feasible solution 

within 3-hour time limit are reported. Percent deviation is less than 1% on the 

average. Average CPU time of the optimal solution is 2064.98 seconds, whereas the 

average CPU times for heuristic solution is 27.63 seconds. However, the heuristic 

solution requires more than an hour for 726 problems out of 2700. Since the relaxed 

problems are still mixed integer programming model, it sometimes requires high 

computational time. In this case, we decompose the planning horizon into 10-period 

equally in order to reduce the solution time. The solution time is reduced and 1.229% 

overall deviation on the average from the best feasible solution is obtained. The other 

performance measure which is service level defined as the percentage of demand 

fulfilled.  On the average, 76% and 74% of the demand is satisfied in the optimal and 

heuristic solutions, respectively.     

 

As a future study, one can deal with stronger formulations of the problem (P). It is 

possible that the formulation can be made tighter by adding some valid inequalities 

to our integer programming model or reformulating the model. 

  

In the lot-sizing literature, meta heuristics are extensively used to solve hard 

problems in reasonable computational time. One can work on meta heuristic 

approaches to the problem (P) in a reasonable computational time. When all integer 
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variables including binary variables of problem (P) are relaxed, a linear 

programming (LP) model is obtained. The LP model is easily solved. Then, some 

binary variables can be fixed to zero or one by using meta heuristic approaches. 

Restricted integer programming model (P) with fixed binary decisions is re-solved. 

Therefore, the problem (P) can be solved quickly.    

 

As a future work, one can make the environment more realistic by considering the 

capacity limits. Most of the disassembly operations are manual, therefore the labor is 

the most important resource for the disassembly firms. Defining labor hours for each 

disassembly operation and considering an aggregate available labor hours a 

capacitated version of our problem can be defined. The capacitated version is harder 

than the uncapacitated one. Providing heuristic solutions are important to solve the 

capacitated problem.  

 

The assumption A4 which is backlogging not allowed given in Section 3.1 is 

employed to simplify the problem. Backlogging can be allowed to make the 

environment more realistic. Since the demand can be allowed to meet in following 

time periods, the feasible region of the problem with backlogging is larger. The 

problem consists of more decision variables and larger big-M values for 

disassembled items. Thus, allowing backlogging makes the problem harder.  

 

In the study, we do not consider the cost of lost demand other than lost profit. 

Unsatisfied demand can be penalized with unit variable cost. The additional cost 

parameter is used in the objective function of the (P) model. The effects of the cost of 

lost demand can be tested on the problem instances.  
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