

SERVICE ORIENTED DEVELOPMENT THROUGH AXIOMATIC DESIGN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EBRU KULOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

FEBRUARY 2011

Approval of the thesis:

SERVICE ORIENTED DEVELOPMENT THROUGH AXIOMATIC DESIGN

submitted by EBRU KULOGLU in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Hikmet Dogru
Supervisor, Computer Engineering Dept., METU

Assist. Prof. Dr. Cengiz Togay
Co-supervisor, Computer Eng. Dept., Canakkale Onsekiz Mart Uni.

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Cogar
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Hikmet Dogru
Computer Engineering Dept., METU

Dr. Cevat Sener
Computer Engineering Dept., METU

Ediz Acar
Senior Expert Engineer, ASELSAN

Oguz Oziin
Senior Expert Engineer, ASELSAN

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: EBRU KULOGLU

Signature

ii

ABSTRACT

SERVICE ORIENTED DEVELOPMENT THROUGH AXIOMATIC DESIGN

Kuloglu, Ebru
M.Sc., Department of Computer Engineering
Supervisor : Assoc. Prof. Dr. Ali Hikmet Dogru
Co-Supervisor : Assist. Prof. Dr. Cengiz Togay

February 2011, 61 pages

This research combines the methodology proposed in Axiomatic Design Theory (ADT) with
a service oriented decomposition approach for systematic development of Service Oriented
Architecture compliant systems. A previous study had applied ADT to component oriented
development where simultaneous specification and decomposition of models related to re-
quirements, design, product domain, and components were supported. Recently, Web ser-
vices have gained popularity and they became a more desired alternative to components. This
research sets the foundation for service-oriented modeling and development with ADT sup-
port through enhancing the component oriented work conducted before. The goal is to be able
to consider customer needs viewed in the domain context, together with the requirements and
design so that efficient development can take place based on existing Web services. The sys-
tem under development is viewed as a hierarchy of process models where leaf-level processes

correspond to Web services.

Keywords: Axiomatic design, service-oriented architecture, web service

v

(0Y/

AKSIYOMATIK TASARIM ILE SERVIS YONELIMLI GELISTIRME

Kuloglu, Ebru
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Do¢. Dr. Ali Hikmet Dogru
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Cengiz Togay

Subat 2011, 61 sayfa

Bu ¢alismada, aksiyomatik tasarim metodolojisi servis yonelimli yazilim mimarisiyle uyumlu
sistemlerin tasarimi i¢in kullanilacaktir. Daha Once bilesen yonelimli yazilim mimarisinde
aksiyomatik tasarim metodolojisinin uygulandigi bir calisma yapilmistir. Bu calisma kap-
samunda, miisteri isterleri, iiriin alan tanimi ve bilesen kavramlari desteklenmistir. Giiniimiizde,
web servislerinin popiileritesi artmis ve bilesenlere kiyasla daha fazla tercih edilecek hale
gelmistir. Bu arastirma, aksiyomatik tasarim destegiyle servis yonelimli modelleme ve gelis-
tirme esasl1, daha Once yiiriitiilmiis bilesen yonelimli calismayla desteklenecektir. Hedef, iiriin
alaninda sunulan miigsteri isterlerini, gereksinimleri ve tasarimu birlikte diigiiniip mevcut web
servislerini etkin bir sekilde, gelistirme safthasinda kullanmaktir. Calismada, siire¢ modelleri
hiyerarsik bir yapida sunulmakta, bu yapinin yaprak seviyesindeki siirecleri de mevcut web

servisleri ile kargilanmaktadir.

Anahtar Kelimeler: Aksiyomatik tasarim, servis yonelimli mimari, web servisi

To my Nephew Aybars Kuloglu

vi

ACKNOWLEDGMENTS

First of all, I would like to thank to my advisor Assoc. Prof. Dr. Ali Dogru, and co-advisor
Assist. Prof. Dr. Cengiz Togay, for their help, and technical support. They not only guided

me, but also encouraged me throughout this study.

I would like to give my thanks to my family for giving me the heads up for getting my thesis

done, and to my kitty cat Karamel.

I would also like to thank to Barigs Karadeniz, for his technical support during my thesis

period.

Last, but not the least, I would also like to thank to staff member in CENG department, Perihan

Ilgiin for her willingness, and actual support with the procedures.

vii

TABLE OF CONTENTS

ABSTRACT e iv

OZ . . e A

ACKNOWLEDGMENTS e e e e vii

TABLE OF CONTENTS e viii

LISTOFTABLES e e X

LISTOFFIGURES e e xi
CHAPTERS

1 INTRODUCTION e e e e e e 1

2 BACKGROUND e 3

2.1 Need for Decomposition: A Good Design 3

2.2 Axiomatic Design Theory Methodology 5

2.3 Service Oriented Approach 11

2.3.1 Service Oriented Architecture 11

2.3.2 Web Services 14

2.33 Web Service Orchestration 17

2.4 Business Process Execution Language 19

3 PROPOSED APPROACH: Service Oriented Architecture with Axiomatic De-

SIZN . o e e e e e e e e e e 22
4 ACASESTUDY: DESIGNING AND MODELING A MILITARY DEPLOY-
MENT PLANNING SYSTEM 29
4.1 Domain Description L oL 29
4.2 Software Analysis, System Design and Modeling 31
4.2.1 Introduction to Military Deployment Planning Software
and Reverse Engineering 32
422 Web Service Design L. 34

viii

423 Application Design 37

5 CONCLUSION AND FUTUREWORK 43
REFERENCES e 46
APPENDICES

A ADSO DESIGN AND MODELLINGTOOL 48

Al Adso . . .o 48

A.l.1 Defining a new Web Service into the Application Domain 49

Al12 Constructing the Application FR-DP Design Matrix and
SOSEML representation of the Application 55

A.13 Modeling Processes in BPEL Designer 55

X

LIST OF TABLES

TABLES

Table 2.1 Primitive Activities e 20
Table 2.2 Structured Activities L. 20
Table 2.3 Additional usagesin BPEL 21
Table 4.1 Units and their corresponding task assignments. 31

LIST OF FIGURES

FIGURES

Figure 2.1 Axiomatic Design Procedures tailored for Service-Oriented Software Sys-

tems (The V Model) (Adapted from [4])
Figure 2.2 Axiomatic Design Domains
Figure 2.3 Decomposition by zigzagging (adapted from [6])

Figure 2.4 Probability distribution of a DP; solid line refers to uniform distribution,

while dotted line refers to nonuniform distribution (adapted from [7])
Figure 2.5 Web Services Architectural Model (Adapted from [9])

Figure 2.6 Layers formed in SOA as the Web service orchestration evolved, and
requirements arose. (Layers are numbered in chronological order corresponding

to the improvements in SOA.)
Figure 2.7 Web Service Interface and Invocation
Figure 2.8 Orchestration, and Choreography of Web Services (Adapted from [12])

Figure 2.9 XLANG and WSFL-styles (Adapted from [13])

Figure 3.1 Process, Web service, Web service interface, and link figure samples . . .

Figure 4.1 Design matrix for Get all army corps inventory Web service
Figure 4.2 SOSEML representation for Get all army corps inventory Web service . .
Figure 4.3 Web service list provided at any stage of designing study
Figure 4.4 Application Design Matrix for Military Deployment Planning Software

Figure 4.5 Application SOSEML hierarchy tree for Military Deployment Planning

Software e

Figure 4.6 Application SOSEML hierarchy tree for Military Deployment Planning

Software (continued)

X1

18

19

25

35

36

36

38

Figure 4.7 Application SOSEML hierarchy tree for Military Deployment Planning

Software (continued) 41

Figure 4.8 Application SOSEML hierarchy tree for Military Deployment Planning

Software (continued) 42

Figure A.1 The pop up window to insert the newly defined Web Service name 49

Figure A.2 A partial screen shot to visualize the existing web services depicted on

Web service designtab 50
Figure A.3 The abstract design matrix for the newly added Web service 51
Figure A.4 Demonstration of FR and DP details in the design matrix 52
Figure A.5 Adding a new FR-DP couple to the design matrix 53

Figure A.6 The Web Service FR-DP design matrix and corresponding SOSEML rep-

FESENtatioN e e e e e e e e 54
Figure A7 Design matrix with all FRs coupled by related DPs for the Application . . 56

Figure A.8 Level 1 and 2 decomposition of the Deployment Decision Support Appli-

cationsample L 57

Figure A.9 Level 1 and 2 decomposition of the Deployment Decision Support Appli-

cation sample (continued) 58

Figure A.10 Level 1 and 2 decomposition of the Deployment Decision Support Appli-

cation sample (continued) 59
Figure A.11 The Properties window for a process with no existing bpel file 60

Figure A.12 The BPEL Designer showing “introduce weapon properties”process model,
the process figure on SOSEML tree has its BPEL icon light on, indicating the

process has an existingbpelfile 0oL 61

Figure A.13 The corresponding wsdl file for introduce weapon properties process model

shownin BPEL designer. 61

Xii

CHAPTER 1

INTRODUCTION

Software systems have matured, and become well equipped with the improvement of a variety
of architectures, one of which is Service Oriented Architecture (SOA) [26]. The component
oriented approach has been followed by the service oriented approach, since the physical key

components of service orientation, which are Web services, have supplied the developers with

the standards such as WSDL, UDDI, SOAP, and HTTP;

o gsufficient information contents in the Web service interfaces to explain the Web services

capabilities and functionalities;

e casiness to reach Web services through internet;

e security policies;

e invocation standards defined in their corresponding interfaces in WSDL format, thus
maintaining a control mechanism for no type problems; such as invoking the Web ser-

vice with wrong calls is prohibited by the proposed mechanism [1].

Following a service oriented philosophy, we shall see that the tendency in offering approaches
for service composition and integration cannot reach the maturity level reached in technologi-
cal dimension of SOA [1]. Service oriented development is very important and is too much in
demand. There are some mechanisms that support the development of large software inten-
sive systems that exploit the advantages of web services. The technology stack accompanying
SOA is a good example to such support. However, while the process modeling abstraction
that comes within such environment and is shaped by BPMN and BPEL support the idea to

hierarchically organize the decomposition of the solution; there is not enough guidance for

the methodology to decompose. A different approach had been instrumental in decomposing
the requirements and design spaces concurrently and applied to Object Oriented develop-
ment, was already adopted by component oriented approaches [14]. The missing support for
a methodology to decompose the ‘process’ space so that a developer could start with the sys-
tem specification and arrive at the existing web services in a top-down approach has been the
motivation behind this thesis research. The capability to concurrently decompose the problem
specification model and the solution, as proposed by the Axiomatic Design Theory (ADT) [3],
is employed in this work to support development in the SOA world. This is why we have de-
cided to study a decomposition technique, and a relevant modeling method for integration
purposes on service oriented architectures. This thesis work includes 5 chapters. In Chapter
2, we have given necessary background on ADT, service oriented architecture, Web services,
and business process management, and modeling tool BPEL. In Chapter 3, we have described
our proposed approach on service oriented architecture with axiomatic design. In Chapter 4,
we have provided a case study involving a previous study, and provided an extensive work
through the Axiomatic Design in Service Orientation (ADSO) methodology. Finally in Chap-
ter 5, we have concluded our thesis study, and have given our opinion on possible future
work. We have also provided the implementation details and graphical user interfaces that

would help the ADSO user to understand the concepts on the tool in the appendix section.

CHAPTER 2

BACKGROUND

In this chapter, we shall learn why, and how we could obtain a good design, then we will move
onto the detailed explanations of the key concepts before we get introduced with our proposed
methodology; which are Axiomatic Design Theory (ADT) methodology [4], service oriented
approach, and Business Process Execution Language (BPEL). We will also be provided with
sub topics in service oriented approach part, where we will be introduced with the Service
Oriented Architecture (SOA), Web Service (WS), and Web Service Orchestration (WSO),

Web Service Choreography (WS-Choreography) concepts.

2.1 Need for Decomposition: A Good Design

It has always been a hard work for developers to give support during software debugging, or
software usage process. They sometimes may face a pile of code, getting messy with the code
patches. An exponential mess growth in code while an incremental decline in time left until
deadline may scare the developers more than anything. Another tragic case would be, main
programmer quitting the job, and then the projects end up with being developed from scratch.
These scenarios suggest software development being a science more than an art. It is believed
that good design would lead to a more reliable software development process, giving less
trouble to the developer. There are two approaches to consider a good design to be a budget
controlling mechanism. If the customer needs are well formed, one should not hesitate to
form the design proposed by ADT methodology. But once the requirements become blurry,
there are again two ways to take according to what is in hand. One is, when the hardware
that your software will be running on cost too much, then whether you have the services to

accomplish the blurry requirements or not, your goal would be to quit designing the system

with the indefinite functional requirements, and to start developing a prototype of the system.
Another situation is when the risk of failure does not cost a lot for the designer in this situation,
if the services that are capable of accomplishing a variety of design parameters exist, then the
designer would map those blurry requirements to the existing design parameters, and come
up with some design matrices. Among these design matrices, the designer can pick the most

appropriate matrix to design the system.

The software designers have leaned to finding some ways to understand whether a design is
good or not. This concern has introduced us with the paradigm, the Decision Based Design
(DBD) [2], and with especially the increase in demand on concurrent design support tools,
the researches on DBD has expanded. Understanding the accuracy of design actually relies
on following some validation rules. First of all your design must be logical, since it may
be subjected to some changes in the future according to the customer profile change, or an
extension, or change in customer needs. To be able to keep up with these changes, the results
coming from the design model has to be intuitive. Understanding how much a design is
logical is hard to infer, but a logical design can handle possible change requests in the future,
so intuition is the way to evaluate this qualitative attribute. The second validation rule is the
design should embrace the uncertainty, and provide reliable information. The field experts
should help during the design process, so that would support the reliability of information
content in the system. The design model should also be aware of uncertainties that would lead
to possible errors in the achieved results. This would give the designer to have the confidence
to expect, and courage to handle these results. Another validation rule to be considered is not
interfering with the preferences of the designer. If the designer, utilizing the methodology, is
forced to use a specific preference during the design process, this would result in an influence
on the outcome. However, if the methodology supports the designer to use a set of preferences,
this would give the designers the opportunity to be durable to changes that would occur over
time, since the customers change their goals, and accordingly their needs, in order to stay in
the market [2]. Baring these rules in mind, and considering the advantages, and disadvantages
of possible design methodologies serve, we have decided to use axiomatic design approach

during this study.

2.2 Axiomatic Design Theory Methodology

The ultimate goal of designs is to provide effective systems. These systems may be in engi-
neering fields, as well as business, or government. The systems have been produced empir-
ically, or intuitively, since designers have not been introduced with a formal and theoretical
framework which would support the system design. Qualitative approaches have been used in
design processes, and in order to weigh the robustness of the system, development, and even
testing phases have been completed. These stages cost too much to the companies, and the
results of the systems were unreliable, because they were processed with empirical decisions
[3]. Axiomatic Design Theory (ADT) is a decision support methodology for design, devel-
oped by Dr. Suh Nam Pyo [3]. First ADT usage in software development had been proposed
by Sung-He Do, and Nam Pyo Suh where they have developed the Acclaro [8] design soft-
ware. They had also conducted a case study to apply axiomatic design to object oriented pro-
gramming. Figure 2.1 had been first adapted for object-oriented software for Acclaro design
software case study. Afterwards, axiomatic design has been applied to component-oriented
approach [14], and the V-model has been adapted to show the top-down and bottom-up ap-
proach for component oriented systems. In this study, we have adapted the original V-model

[8] into the V-model that serves for axiomatic design usage on service-oriented applications.

Software designs following ADT are self-consistent, and they contain uncoupled or decoupled
inter-relationships and arrangements among the services. These designs are easy to change,
in forms of omitting some parts, extending the design, or modifying parts within the design.
ADT serves designers to make correct decisions during design process, and come up with the
possibly accurate design resulting in these advantages [4]. ADT adapts a top-down approach,
and decomposes the system into possible smaller grained pieces. The advantage of ADT is it
provides the designer to make simultaneous decomposition. Axiomatic design methodology
encapsulates four concepts. These are domains, hierarchy, zigzagging, and axioms. Domains
are; costumer domain, functional domain, physical domain, and process domain, adapting
customer needs (CN), functional requirements (FR), design parameters (DP), and process

variables (PV) respectively.

Customer needs refer to what customer wants in ADT approach. How customer needs are
accomplished is however in the responsibility of functional requirements. FRs are definitions

of system requirements which aim to satisfy the customer expectations from the software

Getting Customer
Attributes

The Software Froduct

Defining Functional
Requirements

Develop System using
The Ultimate Design

Identifying YWeb Services
&

Wieppimg & Decampesing Establishing Web Service

Interfaces

Building the Service-
Oriented Software
Model
Bottom-up Approach

Building the Software
Hierarchy:
Top-down Approach

Defining Modules

ldentfying the Leaves:
Constructing the Application —

Design Matrix

—

Figure 2.1: Axiomatic Design Procedures tailored for Service-Oriented Software Systems
(The V Model) (Adapted from [4])

product, as shown in Figure 2.2. In other words, FRs should describe the expectations from
the product. In order to define functional requirements, designer starts with the top system
requirement, and decomposes this FR hierarchically. The ADT methodology offers the de-
signer to decompose all four domains concurrently, in order to make use of existing DPs, and
PVs. Concurrent decomposition continues until all leaf FRs in the FR hierarchy are handled
with a corresponding DP. Let us illustrate the idea of decomposing FRs, and DPs with a real
life example. Imagine that we have an application providing the appropriate seaside holiday
locations in between the given arrival and departure dates. This means that we have a corre-
sponding web service in our domain, that satisfies this application. On the other hand, let us
assume that the customer requested an application that provides her with the best period of
time to plant carrots on her land. This customer need does not have a corresponding design
parameter in our domain. This is why, after we embody the customer need into our functional
requirement, we begin to decompose the problem into finer functional requirements, and try
to find a corresponding design parameter by the zigzagging approach in ADT. We have a big
design parameter that satisfies the request for finding cities for seaside holiday for the period

in between the dates the customer provided. When this web service is decomposed, we shall

see various finer web services that satisfy various types of requests, one of which would be
requesting the forecast website for the weather for the user given dates. This web service also
satisfies the customer need for best time to plant carrots, since she would be in need of the
weather report for each day of the year. Our domain would provide us with the weather web

service when our seaside holiday application is decomposed into finer design parameters.

Design parameters are defined as the key physical variables, and process variables are the cor-
responding implementations of design parameters. In our methodology, the process variables
correspond to Web services, while process variables are interfaces of these Web services.

ADT follows a V-model, as in Figure 2.1.

Composing FR-DP DM
Design Matrix

Mapping FRs to DPs
Design Parameters

Mapping CNs to FRs
! Functional Requirements

Establishing
Meetings

Customer Needs

Figure 2.2: Axiomatic Design Domains

The model starts with the top-down approach, and then the finer grains are composed to ful-
fill the full system. Top-down procedure starts with getting the customer attributes, where
customer defines their needs from the system to be designed. These attributes are called cus-
tomer needs in the axiomatic design methodology. Their needs allow us to define the FRs
of the system. Matching the CNs with FRs is type of a translation from customer world to
design world. While the customer needs are being formed, the designer tries to come up with
a corresponding functional requirement from the function domain. If designer provides a pre-
vious work with functional requirements, which is connected to the same domain with the
customer’s problem, then the customer would have an advantage to see different aspects that
they might have missed, but realized via the provided requirements. After customer needs

are matched with the functional requirements, designer concentrates on finding appropriate

design parameters for functional requirements. This mapping task is the following step of
defining FRs in the V-model hierarchy. During this mapping, some FRs would find their
design parameter match in designers’ design domain, but some FRs might not find any ready-
to-use DPs. Once the DPs are chosen, the designers are supposed to go to the process domain
and identify the PVs. These PVs are either existing processes, or are to be introduced to the
domain as new processes. At this point, designers may follow different behaviors. The FRs
might be reviewed and reshaped according to the existing DPs. They may be combined, or
decomposed, following the sense that CNs are still satisfied. Other option would be defining
new DPs in accordance to the FRs given. These DPs are then supposed to be implemented,
and they would appear in designers’ process domain. As we proceed in the axiomatic design
methodology, we actually decompose the system into smaller, affordable units while trying
to map the FRs with DPs. The mapping procedure is followed among DPs and PVs as well.
The interfaces are implemented, and exist in the process domain, ready to be composed for
the whole system at the end of the design procedure. Design parameters are defined as the
interfaces to the real methods. In component-oriented world, these are the component inter-
faces [14], while in the service-oriented approach as we will explore in this study, the DPs
are provided as Web service interfaces. The process continues with a back and forth manner
between functional domain and physical domain. We pick a functional requirement from the
hierarchy we have built, then zig to the physical domain and try to find a corresponding design

parameter.

Although there is a chance that design parameter exists in our library, there is the probability
of not finding any matching DP for the given FR. Then we have to populate a related DP,
and we implement it to get our PV. After we pick a proper DP from the design domain, we
go back to functional domain, in ADT terminology this attempt is called zagging, we make
a link in between the previous design parameter and next functional requirement in the sub

level of functional requirement hierarchy.

This decomposition will occur until the design can be implemented without further decom-
position to create PV, DP, and, FR hierarchies. The decomposition of three domains cannot
be achieved by remaining in a single domain, but through zigzagging between these domains,
[3]. The procedure till now has supported the designer with the simultaneous decomposition
chance, 2.3. And, this simultaneous decomposition is preferred in order to provide the func-

tional requirements with the existing design parameters by considering the decomposition

CN

Customer Functional Physical Process
Domain Domain Domain Domain

Figure 2.3: Decomposition by zigzagging (adapted from [6])

task not only in a single domain, but in multiple domains. In ADT, the relationship among
FRs and DPs are shown in a design matrix. The PV, DP, and, FR hierarchies and their corre-
sponding FR-DP, and DP-PV design matrices form the system design. The rows of this matrix
are functional requirements, while the columns correspond to the design parameters. If there
is a relation in between, we put an X in the related cell in the matrix, if not we put a 0. From
now on, the purpose of the designer is to meet the two axioms ADT asserts; independence
axiom, and information axiom. These axioms are useful designing tools, providing analytical
measures. Independence axiom states that the functional requirements should be independent
from each other. The relation between an FR and a DP is stated in the design matrix, and this
correspondence shall form a square design matrix. In case of FR count exceeding DP count,
this means that the FRs are not satisfied, or the design is coupled. If DP count exceeds FR
count, then this would mean that the solution contains redundant functionality, and in both
cases, the design matrix is not a square matrix [5]. If the FRs are not independent, then they
have to be edited by for example, decomposing the requirements, or changing the content of
a requirement, or gathering some requirements. The coupling among FRs are figured out on
the design matrix, and stated as an uncoupled, decoupled, or coupled matrix. The ideal design
is the uncoupled case, but it is very rare to reach this type of design. In an uncoupled design
matrix, a diagonal design matrix is formed, meaning that each FR is satisfied by exactly one
DP. In such a design, the system processes can be developed concurrently, run in parallel,

since there is no coupling, thus no dependency among DPs. In this case, where all FRs can

be independently satisfied, a single process model, including these entire FRs can be placed
in the corresponding domain for future use. In a decoupled design matrix however, the design
matrix is triangular. This means that a sequence exists. In order satisfy all FRs, the DPs should
be adjusted in a certain order. The last possible form of a design matrix is a coupled design.
In such a case, the matrix is mostly consisted of nonzero elements. This design cannot sug-
gest an independent solution for the FRs. A coupled design can be converted to a decoupled
design, as [5] stated, but it comes at a price. An example solution for converting a coupled
design to a decoupled one can be gathering some services together to satisfy some specific
functionality. Although independence axiom is satisfied, in case of an addition of a new FR to
the system, if the FR set already contains an FR close to the new FR in definition, the old FR
can be replaced by a new FR satisfying both FRs, or a completely different set of FRs can be
selected. In case of such a change in the FR domain, the previous DPs in the design solution
cannot meet the requirements of the new FR set, so a new design solution must be pursued.
The information axiom states that the DPs in the design should contain the least information
possible. This axiom actually provides a mathematical approach to the design matrix. We are
provided the opportunity to decide among the designs satisfying the independence axiom by
comparing the information content of design matrices. For the purpose, we are provided an

equation [7] for information axiom.

t
I = log(systemrange) 1)

commonrange

As stated in Figure 2.4, there exists three terminologies to explain the variance capability of
DPs in different domains. System range is the capability of the system to satisfy the FRs,
while design range is the variation tolerance for DPs, and the common range is the overlap
range between design and system ranges, where the FRs can be met. The design is a better
design, if the equation of information axiom result is closer to zero. This means that the DPs
are probabilistically independent, and the information content is the sum of the information
content of all DPs in the design matrix. Thus, system range and common range collapse, and
the result of the equation of Information Axiom is log/, which is zero. Since an uncoupled
design is the ideal case, Suh proposed another method [6] to compute the information content
of decoupled designs. However, there is not an exact method to compute the information

content of coupled designs, and is thus left out of scope.

10

>

Design Range

Y.

Common
|
i, Range

|

EREEEEEP

Iy L3

ey,

Probability Density

I I DP
€
: System Range)':

Figure 2.4: Probability distribution of a DP; solid line refers to uniform distribution, while
dotted line refers to nonuniform distribution (adapted from [7])

2.3 Service Oriented Approach

During this section, we provide extensive information on Service Oriented Architecture (SOA),

Web Service (WS), and Web Service Orchestration (WSO).

2.3.1 Service Oriented Architecture

Service orientation utilizes services as the constructs to support low-cost, easily composed,
and rapid development of distributed applications. Services are computational units that are
autonomous, and platform independent. Services can perform functionalities ranging from
basic tasks to sophisticated business processes. They reflect a service oriented approach to
programming with their nature of being discoverable and invokable through the network for

compositional purposes, instead of building new applications.

The basic concepts in Service Oriented Architecture (SOA), as shown in Figure 2.5 are com-

posed of the basic services being published, subscribed, and searched via the standard pro-

11

tocols that are already available at the market. In a typical service based scenario, basic in-
teractions involving the description, publishing, finding, and binding of services are handled
by three main parts. One is the service consumer, who finds the service registries, discovers
a service endpoint, and retrieves the service description from the registry, or directly from
the service provider through meta data exchange. The service description is used to either
bind with the service provider, and invoke the service, or interact with the particular service.
The second contributor is the service provider, as the name implies the provider of the ser-
vice, defines a service description of the service and published it to the service consumer, or
a service discovery agency. By publishing the service description to the consumer, or agency,
the service is made discoverable the last contributor is the service linker/ aggregator, which

provides the communication of the service consumer, and the provider.

In SOA, functionality is provided with not a monolithic application, but with the orchestration
of several services. It is both applicable in software environments, and business industries,

since it offers a constructional mechanism for services running at different parties.

Bind
(SOAP/ HTTP)
S —-

Service Provider Service Consumer

Publish
(WsSDL)

Service Registry/ Broker

Figure 2.5: Web Services Architectural Model (Adapted from [9])

After accomplishing the orchestration of basic services, with the help of monitoring, suitabil-

ity checking, and orchestration, and choreography methodologies, composite services were

12

introduced. They are the compositional structures consisting of the basic Web services, and

serve as a Web service themselves.

SERVICE
MANAGEMENT 3
COMPQSITE
SERVICES 2
BASIC

SERVICES 1

Figure 2.6: Layers formed in SOA as the Web service orchestration evolved, and requirements
arose. (Layers are numbered in chronological order corresponding to the improvements in
SOA.)

As the Web service coordination has evolved, new requirements in service management arose,
such as assurance, service rating, and certification services. The health of the applications has
to be constantly monitored since the additions to already existing components may overload
the system, and cause a failure, bringing down many interdependent enterprise applications.
Such an effect may also occur in case of changes in application components. The service
management layer provides us with a variety of activities, ranging from installation and con-
figuration to collecting metrics and tuning to ensure responsive service execution. Service
level agreement negotiation, management, and auditing, monitoring, troubleshooting, service
state management, performance management, and so forth are the rest of the activities service

management layer provides.

The logical service-based architecture is known as extended Service Oriented Architecture,
[17]. As depicted in Figure 2.6, the architectural layers in extended SOA provide a logical
separation of functionality. This serves for the need to separate basic services provided by
services middleware infrastructure and conventional SOA from advanced service function-
ality for dynamic composition of services. This extended SOA also lets us distinguish the
functionality for composing services from the functionality of management of the services,

[19].

Conventional development methodologies like object oriented development (OOD), and com-

13

ponent based development (CBD), can only address some requirements of service oriented
computing applications. Services are subject to continuous maintenance and improvement in
scope and performance, so that they can catch up with increasing number of consumers. Com-
ponents are merely distributable objects, still they carry with them the difficulties of object
modeling, increasing the scale of the model, and yet multiplying the complexity. Compo-
nents also do not allow reuse and dynamic behavior as much as services do. Service oriented
approach on the other hand serves an inter-disciplinary approach. SOA lets OOD and CBD
contribute to general software architecture principles; information hiding, separation of con-
cerns, and modularization, while business modeling in SOA helps in analysis of structuring
of value-added-chains and improvement of processes [19]. The business modeling also helps
workflow implementations being tested via defining how a business functions before they are
designed and implemented. In other words, SOA fuses elements of OOD, and CBD with the

elements of business modeling.

2.3.2 Web Services

Web service technology is an important realizing technology for SOA, and they act as the
servers of today’s developers [11]. Web Service (WS) provides the fulfillment of functionality,

and satisfies applications, and businesses.

WS are accessed, as stated for SOA, through their interfaces by the service consumers, and
express themselves in a standardized way, so that WS invocation can be achieved via using
this standard structure. For this purpose, Web Service Definition Language (WSDL) serves
Web services for defining their interfaces in a standardized way that WS can be invoked
via internet protocols, and Simple Object Access Protocol (SOAP) to access them through

internet protocols, as shown in Figure 2.7.

The ultimate goal of WS has been application integration since the first day. First, it only dealt
with Enterprise Architecture Integration (EAI). The Web service technology was limited to
the field of data and application integration. Then, its concern has shifted towards integrating
business processes, and thus Web services got involved in Business to Business (B2B) en-
vironment. This caused the concern to become, the integration of Web services to business
processes of the market. As stated in the case study given in [10], ideally, according to the

demand on new business services, a comprehensive study is made on the preexisting business

14

Web Service
Interface (defined
with WSDL)

Invocation with
messages (defined
in SOAP)

Web Service

Figure 2.7: Web Service Interface and Invocation

services, and new business services are supplied instead of implementing new applications. In
other words, the ultimate concern of Web services has been shifted towards achieving the in-
tegration of applications and business processes with existing process integration model. The
orchestration of these preexisting business services are to be achieved on the fly, without im-
plementing the integration process. According to this need, support for changes on demand,
legacy changes, or reusability of functionality among services are to be covered in business
process orchestration. To be more precise on expectations from Web service orchestration,
we need to understand what additional requirements would arise if we would like to use this
technology in business field. As stated in [10], here are some issues collected according to a

case study done on governmental Web service technology usage:

e Reusable components and shared services: Participants using the same functionality
could be provided a mechanism, where the functionality can be shared, or borrowed.
This not only causes a decrease in effort for developing the functionality, but also a
faster response time for changes in legacy, or customer needs. This spoken issue would
induce a central mechanism to handle maintenance, as well as control, and update of

available services without duplicating the effort for development in each participant.
e Information sharing aspects: The participants, namely actors in [10], have different

15

kinds of data in their registry. The orchestration mechanism should provide the ability
to share this information among the participants. Then the data repository role would
be maintained by one participant, and other participants would publish this Web ser-
vice supplier for necessary information. For example for personal information validity
checking Web service, information supplying service is needed. Another issue here is
the planning, which Web service leads the other. This control mechanism has to be
maintained by one participant, which means Web service management necessity oc-
curs. The other issue that must be considered is the privacy of the information. If some
information is not relevant to some parties, then that information should not be shared

with the uninvolved participant.

e Accountability and responsibility: Allocation of responsibilities is an important issue
for knowing who to apply for in case of a failure during the progress. This issue cannot
be controlled by the Web service orchestration mechanism, so precautions must be

taken.

These statements prove that although Web service technology is satisfying in Web service
orchestration, some precautions for the organizational issues stated above has to be considered

before Web service technology is applied to governmental usage.

On the other hand, Web services are supported by all major software vendors. So the usage of
Web service technology is hard to reject. They are the first technology to promise universal
inter-operability among applications effectively and widely, running on different platforms.
They can use standard internet protocols, such as HTTP (Hyper Text Transfer Protocol),
SMTP (Simple Mail Transfer Protocol), and FTP (File Transfer Protocol), the communica-
tion among participants having Web service interactions. This universal inter-operability is
achieved via some standards like, SOAP, WSDL, and Universal Description, Discovery and
Integration (UDDI). These standards are written in XML, so messaging, and descriptions are
easy to understand. These standards make Web services appropriate for system integrations,
but further adaption of Web services require higher level standards. The need for consuming,
or publishing services, Web service orchestration is needed. To be able to provide a promis-
ing solution to the problem of coordinating cross departmental processes, combination of Web
services and Web service orchestration, [11], which will be described in the next section, are

recommended to be utilized in the construction of service-oriented compliant systems.

16

2.3.3 Web Service Orchestration

To be able to utilize Web services for constructing the big system, we have to organize them
in the way that the result is the desired system. Business process orchestration had been
used in human activated process coordination before the advent of Web services, and with
the introduction of Web services, business process orchestration has extended, or it is more
correct if we say it shifted its terrain towards Web service integration. The key goal of Web
service integration has been application integration. This all started and was limited with
the Enterprise Application Integration, then Web services were used for Business to Business
integration. In order to use Web services in B2B integration, Web Service Orchestration
(WSO), which is the coordination of executable business processes, was developed. However,
it is stated in [23] that, the full potential of Web services as an integration platform will be
achieved when the application and business processes integrate their complex integrations
via using a standard process integration model. The shift towards on the fly integration has
introduced us with the two concepts; WSO and the other form, WS-Choreography. These two
concepts are often used in place of each other by mistake. The distinction between WSO and
WS-Choreography is on the abstraction level of coordinated processes. As we have stated,
WSO is the coordination of executable business processes, while WS-Choreography is of
abstract business processes. In other words, if coordination of Web services is achieved via
executable business processes, this is called WSO. Executable business processes are involved
in the execution order of constituent activities, the partners that are involved in the message
exchange within the system, and the fault tolerance activities. On the other hand, abstract
business processes, only explain the messaging mechanism among the involved participants,
and not mention the detail about the mechanisms running in any of these participants. WSO
is an application integration technology that is concerned about a single participant, and what
happens at that particular participant is the business of WSO. However, WSO is not widely
used in businesses and government, since its advantages have not been studied enough, and
its newness in the software environment is thus undeniable. Let us introduce you with some
advantages of WSO that has been reached by the research conducted in [11]. WSO has to
be dynamic, flexible, and adaptable to change, in order to meet the changing business needs.
First of all, WSO provides some standards that allow the developers to have less skill sets.
Additionally, WSO also narrows the gap between business analysts, and software developers.

WSO provides portability, and re-use of processes, and with the help of open standards, these

17

capabilities reduce the implementation costs. WSO also reduces the amount of time to deliver
applications, and provide better maintainability, as well as less maintenance costs. The ability
to deliver Information Systems (IS) with reusable software components allow better flexibility
to the software companies, as well as freeing customers from choosing an all-in-one solution.

In order to view a categorized table on the advantages of WSO, we may refer to [24].

WS-Choreography is dealing with the flow mechanism occurring among service supplier, and
demander participants. A visual has been supplied in Figure 2.8 to clear out the distinction

between WSO, and WS-Choreography.

Choreography is the
composition of the message

Choreography ne
flow among participants

Choreography

Orchestration

Orchestration

OlreiesirEition Orchestration ig the

composition of web
services at one participant

Web Service Web Service Vifeh Service Web Service >

Leaf Level is composed of Web Services

Figure 2.8: Orchestration, and Choreography of Web Services (Adapted from [12])

The knowledge of Web services used in a particular participant, the flow of these Web ser-
vices is not a concern for WS-Choreograph. The process flow followed in the subscriber
party to obtain the advice, or the time it takes is not a concern of the consumer party. WS-
Choreography suggests that once a party asks for an advice to the other, the only responsibility
of the subscribed party is to respond to the consumer with the advice. Generally speaking,
WS-Choreography is involved in describing the message flow that can occur between service

agencies.

18

2.4 Business Process Execution Language

Business Process Execution Language for Web Services (BPEL4WS), or Business Process
Execution Language (BPEL) in short, is introduced, and developed by IBM, Microsoft, and
BEA [25]. BPEL is the standard language to be used for realizing WSO, but it also contains
a part for abstract business processes. BPEL is a kind of flow chart that models the behavior
of Web services in a business process interaction [22], providing and XML-based grammar.
BPEL coordinates Web services participating in a process flow via describing their control
logic [21]. BPEL is a layer that is on top of WSDL, and the collaboration is provided such
as, WSDL interface defines the specific operations allowed, while BPEL defines how to se-
quence those specific operations. In WSDL; every BPEL processes’ entry and exit points are
described. WSDL also provides data types to describe the information passing among process
requests. BPEL processes’ external source needs are also provided via WSDL’s capability to
reference external services [21]. BPEL is the combination of two technologies, IBM’s WSFL,
and Microsoft’s XLANG. BPEL gets its block-structured language from XLANG, and graph-

based language from WSFL.

LISTING 1 LISTING 2

1<sequence> 1<flow name="F">

2 <flow> 2 <links>

3 activity1.1 3 <link name="L1"/>

4 activity1.2 4 <link name="L2"/>

5 </flow> 5 </links>

6 activity2 6 activity1.1

7</sequence> 7 <source linkName="L1"/>
8 activity1.2
9 <source linkName="L2"/>
10 activity2
11 joinCondition="L1 AND L2"
12 <target linkName="L1"/>
13 <target linkName="L2"/>
14</flow>

Figure 2.9: XLANG and WSFL-styles (Adapted from [13])

The listing examples in Figure 2.9 give us a perspective through the two different impacts

XLANG, and WSFL provided in BPEL. Listing 1 is in XLANG-style, where routing is

19

through structured activities, while Listing 2 illustrates the link usage, reflecting the WSFL-

style [13]. Just as the example shows, each element in the process is called an activity, and

these activities are either basic (primitive), or structured. Structured activities help sequencing

the activities, while basic activities help explain what happens during the process flow within

a specific activity.

Basic activities can be listed as <invoke> for invoking an operation of a Web service described

in WSDL, <receive> for receiving, <reply> for replying to the operations that the process

itself exposes, <fault> for throwing faults, <wait> for waiting, further activities, you may

refer to Table 2.1.

Table 2.1: Primitive Activities

Basic activity name

Activity

<invoke>

Invoke an operation of one of the Web services described in WSDL

<receive> Wait for a message from an external source
<reply> Reply to an external source

<wait> Wait, remain idle for a while

<assign> Copy data from one variable to another
<throw> Throw execution errors

<fault> Throw faults

<terminate> Terminate the whole service instance
<empty> Do nothing

Table 2.2: Structured Activities

Structured activity name | Activity
<sequence> Define an execution order
<scope> Group activities to be treated by the same
Fault handlers,
Event handlers,
Compensation handlers,
And scoped variable definitions
<flow> Parallel routing
<while> Loop
<switch> Conditional loop
<pick> Non deterministic choice

20

Table 2.3: Additional usages in BPEL

Tag Explanation

<partnerLink> | Execution order can further be controlled through them
Useful to define dependencies between activities

Can be one, or two-sided*

<variable> Store messages that are exchanged between partners
Hold data about the state of the process

*One sided partner link states that either partner or the process act as a pure client of the other.
Two sided partnerLink however is the one where process is invoked by the partner, and also
invokes the partner’s service. On the other hand, structured activities are consisted of other
activities. Those activities are nested within structured activities, and structured activities
impose control over them, and provide them with common properties. Structured activities
can be listed as <sequence> for strict sequencing, <while> for looping, <flow> for parallel
routing, <pick> for non-deterministic choices, <switch> for conditional routing, <scope>
for grouping activities to be treated by the same fault handlers, and for further information,
we may refer to Table 2.2. Besides the activities defined above, BPEL language provides
the specification of relations among Web services in the business process via <partnerLink>.
Additionally, BPEL allows us to declare some variables by using <variable>, shown in Table

2.3 [20].

21

CHAPTER 3

PROPOSED APPROACH: Service Oriented Architecture with

Axiomatic Design

Decomposition has been the target concern for designers, such that different methodologies
have been proposed to comply with the decomposition problem. When the designer is con-
cerned about the implementation process of the system, the decomposition ends up with being
a structural decomposition [15]. On the other hand, if the designers consider the system as
a sum of business processes, and how to implement the processes is not a concern of these
designers, since their company may hire some other companies to realize the system, or de-
signers use remote services, then the consideration is in process level, and is called process
decomposition [16]. Each and every decomposition approach cares about the reusability is-
sue, where the decomposition of the system should be achieved with respect to the existence
of the corresponding implementation units. Additionally, the implementation units in the de-
composition have been subject to change. The decomposition concerns started in the history
with the function emphasis, and then shifted towards objects with the introduction of object-
orientation in the software world, and then it moved on to components, and lastly towards
services. The software environment has recently been introduced with business processes,
where each component in the decomposition is a well defined collection of structured and
related activities, where a specific service for a specific customer domain is satisfied. In our

methodology, both business processes, and services are used as units of decomposition.

A Service Oriented Architecture (SOA) approach has been introduced with the process de-
composition in [12], and what we propose in this research is not only a contribution through
the decomposition process, but also a supporting mechanism for the process integration phase.
In this research, we have extended ADCO [14] with SOA, and introduced a new methodol-

ogy, named as Axiomatic Design in Service Orientation (ADSO). This methodology uses

22

business processes and Web services for different levels of process decomposition. This new
methodology considers the Axiomatic Design Theory (ADT) approach to be used in the de-
velopment of service-oriented architecture compliant systems. Let us introduce the axiomatic
design part of the research, and then we shall move onto ADT introduction with the suggested

service orientation.

In order to comply with the demand and reach a solution, a top-down approach has been
followed, where the big problem has been divided into finer demands. This decomposition
helps the designers to make customer requirements more understandable, and see how much
they can fulfill these requirements with the existing physical solutions. In our methodology,
to fulfill such a top-down approach, ADT has been chosen, and the procedure for ADT is
as follows. Firstly, the system engineers, system designers and the customer meet, and they
agree on the Customer Needs (CN). Then these CNs have to be converted into Functional
Requirements (FR), so the CNs are evaluated in the designers’ and developers’ perspectives,
and corresponding FRs are listed to be resolved for the system solution. Designers represent
the FRs, in other words the system requirements, in a hierarchy. They are required to cover
all the customer expectations. On the other hand, how these expectations are achieved is the
concern of Design Parameters (DP). The DPs are the physical structures, such as components,
services, methods, or Web service interfaces. In ADSO, Web service interfaces correspond to
DPs in ADT. While DPs give out a characterization of the design, the actual implementation
is achieved in Process Variables (PV). In ADSO, the so-called zigzagging process is con-
ducted among function, physical, and process domains as discussed in the ADT definition.
The designers shall decompose the domains while zigzagging bearing in mind the conditions
about the FRs, and existing DPs. If any FRs are existing in hand, but no corresponding DPs
are available, then corresponding DPs, and their actual Web services are to be implemented.
Vice versa, if we are utilizing a better established and engineered domain, we shall decom-
pose our FRs into finer FRs in order to make use of our existing services. Following the
ADT methodology steps, when decomposition and mapping activities are complete, a Design
Matrix (DM) is constructed, where we can keep track of which DP satisfies which FR. The
developers should try to make sure that the FRs are satisfied by independent DPs, in other
words, each DP satisfies only one FR, if possible. In case multiple DPs may satisfy a particu-
lar function, determination of which DP to use can be reached based on the information axiom

of ADT. With the help of independence and information axioms, we identify the design as ap-

23

propriate and the ultimate one, or in need of more decomposition. As stated in the definition
of the independence axiom, the FRs are supposed to be independent from each other. This is
the idea behind the best design, so that when the system is to be modified, and FRs are subject
to change: they can be removed, replaced, or extended without interfering with the other FRs,
and their corresponding DPs. On the other hand, the information axiom states that the design
should have the possibly minimum information content, and this is mathematically evaluated
through the equation given in Equation 2.1. If the independence axiom is achieved within
more than one design matrices, then the information axiom is used to decide which design
matrix proposes a better design. Since we have decomposed the big problem into manageable
pieces, and come up with corresponding independent solutions, we have actually concluded

the first step for the top-down approach in ADSO.

Our next step in ADSO methodology is to conclude the top-down approach with a graphical
representation. The SOSE modeling language [12] is a graphical modeling language that
supports the top down decomposition approach in complex business processes. However,
our approach supports the SOSEML hierarchical representation tree with a design matrix.
Our SOSEML hierarchical representation tree also provides us with a supporting mechanism,
where each process node in the tree can be explained with an activity flow diagram by using a
plugged-in BPEL designer. This activity flow diagram construction job is actually a bottom-
up process support, which will lead us to build the pieces together, and construct the big

system as the final product.

SOSEML defines the system as the root process, and then this process is decomposed into sub
processes to reach the atomic processes. In SOSEML, the atomic processes, which cannot be
decomposed into any more sub processes, are the Web services. Web services declare methods
to serve for the received requests [1], and a web service can have more than one Web service
interface, where each interface can declare more than one method. The process, Web service,

and interface figures in SOSEML tree are presented in Figure 3.1.

In order to make the Web services work together, coordination of Web services is required,
and for the purpose, WSO, and WS-Choreography are used. These coordination mechanisms

are used in the root, and sub processes to specify and order the leaf level processes.

The procedure to apply ADT to service orientation is the last step to explain in our top-down

proposition. As indicated in the ADT definition, the DPs satisfying an FR may be constructed

24

B 00000

FR 1: imnventory procurance

supply_imrentory_procurance

Abstractions

Components ~3] ~5]
SENsOr props weapon props

Sensor Froperies Interface

SJDnsur Properties Interfacs I:IWEh Senvice Interface IJ

11

= [el_Sencor_properes = [el_weapon_propemnes

Link: Used m between two processes
or a process and a Web service

Figure 3.1: Process, Web service, Web service interface, and link figure samples

via using various Web services. At this point, the DPs are used more than once to satisfy var-
ious FRs. Although satisfying an uncoupled or decoupled design matrix is meant to develop
by the end of the top-down approach, this spoken situation is something we will often en-
counter in real life problems. At this point, the SOSEML tree we create is formed using every
aspect of ADT’s design matrix, which contains FRs, DPs, and their relationships. The algo-
rithm we have designed to implement such design matrices is as follows; we had to consider
all functional requirements, and their corresponding design parameters. Considering the re-
lationships among them, we have built sub processes containing relational process variables,
which correspond to existing Web service implementations, and their corresponding inter-
faces. The root node is visualizing the whole process that would realize the ultimate business

goal. Then the functional requirements are abstracted to a comfortable level, where sum of

25

all functional requirements correspond to the whole system. These abstracted functional re-
quirements are linked to the root node as sub processes, and the Web services are linked to
the related functional requirement sub processes with the help of the relational design matrix

we have in hand.

As in the SOSEML tree approach, the root node corresponds to the process node for the
whole application. Then the root process is decomposed into sub processes corresponding to
the functional requirements in the design matrix we have built. Each functional requirement is
solved by using multiple design parameters. These design parameters correspond to different
Web service interfaces, which are defined during Web Service Design, yet the sub processes
corresponding to the functional requirements of the system are decomposed into the Web
services that are able to cover their requirements. With this approach, we will contribute to the
development period in such a way that the SOSEML tree will give the designers a clue about
the process flow that has to be achieved in order to reach the ultimate system design. The
Web services below the sub processes are able to be choreographed in their corresponding
sub processes, since the design matrix reflects all the needs of functional requirements in
its rows. The SOSEML tree is composed of processes, where the leaf level processes use
the existing Web services, thus the processes at the first level are the orchestration of Web
services. The first-level processes include the Web service interactions, variable assignments,
input parameters, and operations which are defined in Web service WSDL files. In SOSEML
tree, the rest of the process nodes; the root and intermediate processes are composed of sub
processes, so the process models of these processes are the choreography of the sub processes.
Since the orchestration of existing Web services done for the leaf level processes compose
composite Web services, the intermediate and root processes actually still orchestrate the

Web services, which are in this case, composite Web services.

The last step of ADSO methodology proposes to support the process integration phase. Al-
though this stage may not be viewed as having full process integration support, the idea behind
this stage is to help the integration of the activities within each process on the SOSEML hi-
erarchical representation tree. The activity flow in each process can be modeled by using a
business process designer. In our case, we have decided to use the BPEL Designer, where
we have delivered the process model to the developer by considering only the Web services
that are connected to that particular process on the SOSEML hierarchical representation tree.

Internal details of each process can be modeled by the developer with the BPEL Designer

26

in ADSO, which is an open source BPEL designer interface provided as an Eclipse plug-in.
Service oriented software engineering recommends the business process modeling phase to
start from the leaf level of SOSEML hierarchical representation tree, thus follow a bottom-up
approach. The reason for leaf level start up is because the web services are composed to form
composite web services, and the newly formed web services can serve for the modeling of the
above level business processes. This process would then end up with the choreography of the

sub level processes, and combine to resemble the system solution.

What is accomplished by the approach is the introduction of a methodology for building soft-
ware systems out of Web services. The support from the ADT is utilized, for simultaneous
decomposition of requirements and design, allowing early modifications to both workspaces
since the “zigzagging” suggests to observe the effect of every individual decomposition ac-
tivity in the other workspace (domain, in ADT terms). Also supported with the Information
axiom to select the better fitting design among alternatives, and the analyses that can be con-
ducted on the design matrix for less coupled designs, this approach comes with additional
advantages. The steps corresponding to the development starting from the requirements anal-

ysis can be summarized as:

1. Decompose requirements

2. See if existing design parameters match the current requirements: decompose design if

not:

(a) If design suggests a different organization of requirements, goto step 1 and recon-

sider previous decomposition of the requirements

(b) If all requirements items are met by the design parameters, both requirements and
design are finalized and they are in agreement. Else goto step 1 for decomposing

the next requirements item.
3. Check the design matrix for coupling- modify for less coupled designs if possible.
4. See if alternative designs can be feasible repeating steps 1 to 3.

5. If there are alternative designs, evaluate them using the Information axiom for the best

fitting set of Web services that have minimal extra functionality.
6. Treat Design parameters as BPEL process models:

27

7. If a process model is a leaf-level (atomic) process, model it as a Web service - it is no

longer a BPEL process.

8. Try to execute the BPEL processes, starting from the bottom ones - to refine and finalize

the BPEL representation
9. Go upwards on the tree, for different BPEL nodes until the root is reached.

10. Composition is finished.

The methodology implies a top-down decomposition along with the problem definition and
supports this activity with matching solutions. Then, the system is composed in a bottom-up
manner. The core of the methodology is thus presented; however, this only represents the two
ADT domains that are the FR and the DP representing requirements and design. A further
reaching support in terms of the lifecycle can be achieved by repeating the zigzagging for
the Customer Needs and the FR domains, and the DP and the PV domains. In the later case,
basically web services will be decomposed to methods - that is especially valid if web service

development is also inevitable.

28

CHAPTER 4

A CASE STUDY: DESIGNING AND MODELING A MILITARY
DEPLOYMENT PLANNING SYSTEM

In this chapter, we will be explaining our methodology with a real life example. First, we will
introduce you with the domain description, where we will provide information on military
deployment planning system, then we will move on to explanations on software Analysis,

system Design and modeling phases.

4.1 Domain Description

In this last chapter, a SOA based software system is modeled with SOSEML to demonstrate
the basics of ADSO methodology. This case study is developed to analyze the system, pro-
pose a design alternative to model the system, create a hierarchy of system’s process models,
and practice the BPEL designer via a process flow study on some of the processes in SOSEML
hierarchy view. Web services may be composed on the Web Service Design part of the ADSO
tool. In this case though, they are just supposed to be existing in the solution domain, and
not actually implemented. We have also supplied the designer with the possibility of using
abstract Web services, and they can be defined in the Application Design part of the ADSO
tool. A SOA based methodology has been introduced by Eren Kocak Akbiyik in his thesis
study, using existing, but not implemented as are in our case study, Web services. Our studies
have shown that the system designed in Akb1yik’s work has been constructed with a top-down
approach, but the design technique which would support this decomposition was missing. In
other words, there was a gap in between customer needs and SOSEML representation. Since
ADSO methodology proposes an approach starting from taking the customer needs until pro-

cess flow representation in BPEL designer, our ADSO methodology is an appropriate match

29

to cover this gap. This case study has been taken from Akbiyik’s study, and re-conducted,
to show the whole process flow from taking customer needs until BPEL representation of
processes in SOSEML hierarchy view. In order to give a complete system management per-
spective, and get a whole picture of the flow, we have conducted a reverse engineering on
the previous study. Then a detailed coverage plan has been made on the Web service inter-
faces that Akbiyik has introduced, and the functional requirements have been obtained. After
obtaining the functional requirements of the system, since we have obtained the necessary
components for applying ADT to the system, we have started to go through ADSO steps.
In the first part, we have applied axiomatic design methodology on the functional require-
ments, and design parameters supplied, and obtained an FR-DP design matrix. Then we have
followed the hierarchy of design parameters that has been formed on the design matrix, and
used this information to implement a graphical representation using SOSEML. Each process
is identified with a corresponding shape, but the flow within a process had to be shown via an

extra designer. At that point, BPEL designer helped us to introduce the process flow.

Let me first introduce you with the system concepts of this case study, [12]. The purpose of
the system is to decide on a deployment plan for the deployment of a number of weapons and
sensors in the air defense operations of the military critical regions. There are two types of
units to perform the air defense activities for a geographical region. These are the weapons,
which have a target line for facing its firing target; the sensors are radar units to track the
air. They are placed at appropriate locations in the zone, and send the tracking information of
tracked air vehicles to the management center for evaluation. The gathered tracking informa-
tion in the management center is used to identify the air vehicles, and classify them as friend,
or foe. According to the identification and classification results, appropriate weapons are en-
gaged to the foe targets, and are fired when the field manager gives the order. A deployment
plan is consisted of the placement information, and task assignments for the weapons and
sensor units. There is also battlefield geometries used to indicate specialized defense areas
within the defense zone. The battlefield geometry placement information is also included in
a deployment plan. Unit placement is a crucial job. Weapons should be placed in the correct
defense positions considering their capabilities, such as target prevention and range capabili-
ties. Placements of the units in the geographical terrain are crucial. On the other hand, sensor
units should be placed in suitable locations considering their radiation and coverage proper-

ties. The correct placement for sensor units may require some analysis accomplished by some

30

geographical information systems support unit. The units, their task assignments, and some

detailed information is given in Table 4.1.

Table 4.1: Units and their corresponding task assignments.

UNIT TASK ASSIGNMENT DETAIL

Weapon Primary target line (PTL) PTL indicates direction in-
formation that weapon is tar-
geted to.

Sensor Radiation segment (SRS) SRS indicates sector regions
sensor is responsible for
tracking.

Battlefield Geometry | Three dimensional visual ge- | Identify critical areas in de-

(BFG) ometry; circle, polygon, cor- | fense zone

ridor, line

In addition to the abstract information given in Table 4.1, according to the working properties
of a sensor, it may track a full circular region, which is a 360 degree horizontal coverage or
several separate sectors. On the other hand, BFGs are defined for both air and land area ge-
ometry visualization to identify the hostile tracks. The prohibited areas, minefields, restricted
zones, and airfields are marked with BFGs and in case of intrusion through these areas, the
management center evaluates this as a hostile intrusion, since air and land forces are aware of
the prohibited areas, and would not violate the areas. The BFGs are valid for certain amount

of time, and updated by air and land forces on a regular basis.

In the next section, ADSO methodology is described on military deployment planning project.
The ADSO methodology steps are applied to the given customer needs, and SOSE model is

depicted for each corresponding Web service, and system processes.

4.2 Software Analysis, System Design and Modeling

In this section, we will introduce the military deployment planning software, and the reverse
engineering phase we have conducted. Then we will provide you with the two designing

phases, which are Web service design, and the application design.

31

4.2.1 Introduction to Military Deployment Planning Software and Reverse Engineer-

ing

The military defense deployment planning software takes the defense region, the weapon, and
sensor inventory, and prohibited area information as the input, and introduces a defense plan
output for the given defense region. The defense plan consists of placing the weapons, and
sensors, and assigning their tasks, or we shall say orders in military terminology for the units.

For more details on military deployment planning software, one should refer to [12].

The ADSO methodology proposes two main steps to evaluate the system. First, develop a
relational diagram consisting of the FRs, and DPs, in other words, the FR-DP design matrix,
then decompose the system into business processes using SOSE modeling technique via using
the relational diagram composed in the first step. In addition to these two steps, we can define
the process flows within each business process using BPEL designer. We shall go into detail

for modeling of the military deployment planning software now.

The military deployment planning software is capable of accessing the services supplied by
multiple army forces, as well as commercial ones. In this study, the Web services are not
actually existing services, but are supposed to be existing in the solution domain. As we
have stated in previous chapter X, the Web service names, and occupations are described in
Akbiyik’s case study, but corresponding functional requirements are not considered. First, we
have considered to what kind of functional requirements the customer domain could have been
mapped; before stepping into the solution domain. Here is a list of functional requirements
delivered from a reverse engineering study on the Web services listed in [12]. We should note
that the X indication for a weapon or sensor throughout the list, corresponds to either a sensor
or a weapon indicated with its identification number to be used in the corresponding service.

An X for an army corps is likewise, an army corps indicated with its identification number.

Possible Functional Requirements List

Get weapon identification numbers

Get sensor identification numbers

Get all army corps inventory identification numbers

Get army corps X’s inventory identification numbers

32

Get army corps X’s weapon identification numbers

Get army corps X’s sensor identification numbers

Get weapon type X’s properties

Get sensor type X’s properties

Set weapon X’s coordinates

Set defense region

Set defense point

Set sensor X in appropriate position

Assign primary target line of weapon X

— Analyze defense region

— Analyze range properties of weapon X

Combine analysis results of

Analyze defense region

Analyze range properties of weapon X

Analyze visibility of sensor X

Analyze coverage of sensor X

Analyze sensor working properties for selected defense region

Get sensor radiation segment for sensor X

Get air area battle field geometries from the air forces

Get land area battle field geometries from the land forces

Get vector sheet for the defense region

Get raster sheet for the defense region

Get relief sheet for the defense region

33

e Prepare map layer presentation

Prepare information layer presentation

Get information and map layers presentation on a GIS panel

Get separate layer presentations on a GIS panel

Since we have defined possible functional requirements for the proposed system, we shall
map the functional requirements with our existing Web service interfaces. From now on, we
will be demonstrating our following steps in our ADSO tool. We will be demonstrating some
of the Web service designs with their design matrices, and SOSEML representations, and then
we will conclude with the application design matrix and application SOSEML hierarchy tree.
A couple of BPEL graphical representations will also be given, yet the whole BPEL graphical

representations can be reached in [12].

4.2.2 Web Service Design

Throughout this case study, since the Web services are assumed to be existing ones, the system
design has been done with Web service interfaces, that were created on-the-fly. In real world,
the designer should have a list of available web service interfaces that belongs to a specific
domain, and their relevant Web services should be ready to use. The application we are
working on, or the actual applications the designers will be applying the ADSO methodology
shall be contained within the previously studied domain. We have chosen Get all army corps
inventory identification numbers functional requirement, and chosen the corresponding Web
service interface we have maintained during our reverse engineering study. A design matrix

as in Figure 4.1 has been constructed.

The get_inventory_ofAllArmyCorps Web service interface is thought to be supplied by multi-
ple army corps Web services. When the relevant get_armyCorps_inventory Web service of an
army corps is invoked, an array of inventory identification numbers are thought to be gotten.
Once the design matrix in Figure 4.1 is saved, the SOSEML hierarchy tree of the Web service

can be required from the ADSO tool, and Figure 4.2 is provided.

34

QOIAIAS QM Atojuaaul sd10o Kulp J1p 320) 10§ X1eW USISA([t 9In31q

4 » »
-
spi Auojuaaul sdioo Awe 23189 T'T'T &
SpoylaiN pausiiand T Tl IE=!
- EREITE T =RV E E A
- *
-
= 1]
= @
- B
‘3 R
=
25
5 o
g 3
=
9
=
E
3
2
[a]
=
=}
- oy
4 »

212120 ¥ wasur G5 ppv [Up3 Wy, anes [

saiadosd uodeam aonposun ¢
saiuadoid Josuas aonposul

1517 0SS GIM
ubisaq onewony
Auojuaaul sdioo Auwue e 1@
suodeam kojdap

s1osuas hojdap

siapdo sys ayy ubisse
S43pdo 71d ay3 ubisse

ubisaq ao1Jas qam

d0-ud

_.__zm_mom | _m:m_mm.n_ onewony [

[Aaopuaany ediod Auie |2 386 (uBisaq adwas gap] B (1

35

|£| ADSO

| Explorer

2| i@ [web Service Design: get all army carps inventory] x]

Application Design| Web Service Design

AloOmMm|

[= 1) Web Service Design

‘iﬁ Axiomatic Design | | SUSEMLél

E=B oy =

40]|=)

s
System

. assign the PTL orders

) assign the SRS orders

, deploy sensors

. deploy weapons

et all army corps inventory
3| Axiomatic Design

i Web Service List

J introduce sensor properties
. introduce weapon properties

get all army corps inventory

=]
get all army corps inventory

;:IWeh Service Interface IJ‘

= QEL_ITvEnTory_OTRTATyC Orps

Figure 4.2: SOSEML representation for Get all army corps inventory Web service

|2/ ADSO

| Explorer

3| i@ [Web Service Design: get all army corps inventory]

=8 BoR >

x]< b][]

Application Design | Web Service Design
SN B 1

4 Axiomatic Design | B SOSEML‘: [; Web Services L|st‘

[=H 1) Weh Service Design
- .. assign the PTL orders
, assign the SRS orders
, deploy sensors
, deploy weapons
et all army corps inventory
11 Axiomatic Design
:
E7 S0SEML
| introduce sensor properties
| introduce weapon properties

=

assign the PTL orders

assign the SRS orders
deploy sensors

deploy weapons

get all army corps inventory
intreduce sensor properties
introduce weapon properties

Figure 4.3: Web service list provided at any stage of designing study

36

While the designer works on her newly introduced Web service creations in Web service
design section, or on the application design, the Web Service List will be providing all the
available Web services that are ready-to-use for the designer. Figure 4.3 provides us with the

current Web service list.

After these stages are complete, the designer may construct the get all army corps inventory
process’s flow by double clicking on the process figure. As shown in Figure 4.2, the icon on
top left of the process figure is off. Once the BPEL graphical representation is constructed,

the icon will be lit.

4.2.3 Application Design

In this section, we will provide you with the ultimate design matrix of the Military Deployment
Planning System software application, and its SOSEML tree representation. The functional
requirements provided in section 4.2.1 are used in the development of Military Deployment

Planning System’s design matrix as depicted in Figure 4.4.

After the basic relationships are inserted into the design matrix, we have also marked the in-
put output relationships on the matrix, which as stated in section 3.2, contributes to the future
integration phases. We have saved the designed matrix via pressing on the Save button, and
double-clicked the SOSEML list item of the corresponding Military Deployment Planning ap-
plication item on the Application Design list. Finally, we meet with our Military Deployment
Planning Software SOSEML hierarchy tree as depicted with the screen shots starting from

Figure 4.5, and following with Figures 4.6, 4.7, and 4.8.

37

arem1jos Suruuelq juswkordo AreiIpN JoJ xmejA uisa(q uonedrddy 44 2In31g

4 » 4 »
A X [o[o[o[o]o[o[o]o[o[o]o[o[of 0 Bl 15ued 19 e uo siade| dew pue ojul Juasald £ TR
[¢] o| [o/o[o|ofo[o/ofo[o|o[o[o]ofo Siake| ojul WasUd T'E'T »
oo o[o[ofo[o|o/o[oo[o[o| o[o] o uoifiau asuayap Jo 5193ys Jallal 196 €' T'E'T # -
o[ol o|o[ofo[o|o/o[oo[o[o| o[o] o uoibas asuayep yo siays Jasel B0 2 TET #
o[0 o|o[ofo[o|o/o[o|o[o[o] o] o 0 uoifias asuajap Jo seays Jopan 386 TTET & :
00 o|ofo[o|of o] o] ofofofof o o] 0 siafe) dew yuasaud 1T 1T £
o/o[o/o[o/o/o/o/ofo[o|o[ofo ueyd ussaud 77 1 -5
o[o/o[c| o] o[o[o] |o[o[o/o[o[o|o[o[o]of0 5948 $80.0) 1@ BpIA0Id ZT'T'T #
o[o/o[o/o/o/o]0 o[o/o/o[o|ojo[o|o[c| o 5948 sa010) pue| apinosd T'T'T #
o[o[o[o|o[0[O o[o/o/o[o|ofo[o]ofcf o salnawoal playameq Addns 21 17
o|o[o[o/o[o/ o[o/ o o 0o o[o/olo[ofo s105u3s Aojdap Z'ET'T &
o|o[o[o/o[o/o[o[o/o o[o/o[® o[o suodeam Aojdep TET'T #
o[o/o[c|o]o[o[o]o[o o[o[o] o[o] X sun Aoydep £'1°T 175
o|o|o[c|o]o|o[o|o[o| x| of o o] |ojo[x o suoisinap 515 386 7T TT
o[o/o[o/o/o/o/ofo[o|o[x o o[x o[o suospap pd 196 11T+ |
o[o[o[o] o/ o[oo[o[o] o] o X o[o/ o[X UnIsap S18pIo §seY T 1T -
o[o[o[o] o] o[o[o] o[o] o] o o] o] o[o o| O] fiojuanur sdiod Auve jje Addns g7 1T ;
o|o[o/o/o[o/o[o/o/o[o]o[o[o] oo 0 saiuadoud uodeam Ajddns 2 T°T°T &
olololo[o[o[c[o[ololclo[o[o[c[o saipadoud Josuas Addns T'T°T°T &
o[o/ o[oo/ o[o[o]o[o| o] o[o/ o] 0[O @oueunzoad Aousaun TTT T 5
o ololoooololoo voddns uoisiep wewdoidep T'T 15
Ad v Buluueyd juawhoidag ey 1 77
N N D
IR o g
.. o [l - ==
Freeernrrdeet el sersl
w i gl d [[=57
[N Rl [R T e Vil e e R
oo wWw Cowo LRrrRrgbRRrgRREELE OGS
SlcorPEe TR WLWEWNE mRrEg T T
SRR LB TR LR e wiveB'a S
T ooy BQWNDD.D...AEEWFD,D.DrN@M
COREEEF 72088 89222253
o5l = 55 2499 — =
S3igpld 59 28F a3p8iig
= T [Wz) [T = e i
v 2Ol R 25 S=42BoSA2
0 Sulliy R 28 0 meﬁ_Du
da9fz2Ms 9F 88 %2 ~<SLgeglhge
o @ o w3 & o o =200 w
73 w) [] ZoT A 2
wh ro@c 9
WE M.. m 3 1517 2021AdRS g3
T Saha ubisaq onewoncy
L] »
— yoddns uoispap juswhojdsp Ml
S18p10 358} 3pPap Ml
amp(Ra X wesul G| ppv [U3 [Pres [ubisaq uoneayddy 7=
lmwo|g
da-d4
_| ufisaq uoieoyddy
_._SmmOm J _ ubisaq onewoney FR

_x [BuiLeld wswdodag Aey ubisaq uoned)ddy] Wl g aoda)

38

aremijos Suruue[q juswho[doq AreIN 10J 921 Ayorerary TINHSOS uoneorddy :¢4 a3

L Siapi0 i UBISSE 4

SCUO0AIM Aioan 3B &

i
M Wu |l aIAS =w>>L4

Wu adjeya ares =w>>—u__

saipadud iosuas1ab &

SCUOOALIIAD AoWan Jab &

|Iepa] NS gk

Vu B8] 8IS s&Sn__

Wu ey RS __Q_SL4

{1 ¥

aIepR)u] BIVUAS GBMA

aIe8)u] 9IVUAS GaAR

S1ap10 11d 8y} ubiisse
B~

7 fuojuanu sd100 fuse e JoR
E~

sanadosd uodeam aonposur

B~ E-

7 S —— 7

fuojuanu sd103 Ausse [Joi
E~

sasadosd uadeam aanposur

B~ B~

7 sapadoud 10Suas 3anpoul

i S18p10 11d 8U) ufitsse

110 ssey jab

uoIsiaap s1pI0 N5} (ZH4)

Uoddns uoisioap Jusussojdap (Jud)

Ainuanu s4100 Aue e yoh

saadoud uodeam aonpoyun

saiuado.d Josuas aanponul

asuenaoid Alopaaur Addns

Aopuanu $4109 Aune e jeh

saadosd uodeam aanpoyu saiado.d Josuas aanponu

asuenaoad Alopaaur Addns

aauemooid Aouasn (JH4)

=
EEfe|

| masos

3
1517 30435 Gap

ubisag onewopey [E
Buuueyq wawAoidag Areyi
poddns uosiap JuswAoidap
513pi0 ysE] 3pPAP

ubisaq uoneoyddy 5]

L X R=li+

ubisag uonedddy

UDIS3(30185 G/ I

[[BuLed juawAoidaq AeyiA uBisaq Loneddy] 8

|

osav [=)

39

(ponunuod) aremijos Suruue[q uewiojdoq AreyiA 10y 9o1 Ayorerory TINASOS uoneorddy :9°4 a3

4 C 1] - »
LasTial &) s105U85 foi0ap 4 ___suodeaminidap __S18DI0TSISTUISSE 4 ___Siapo i uisse « SHOOALIN0 DA A0 4+ S0
Al s_w‘SL __u aJeya] adnas ﬂw‘SL WU adeyau) adas EQE—L __u aJeya] 8IS ﬂw‘SL WU adeyagu) adas EQE—L __u aJeya| 3NIBS ﬂw‘SL adepaju) 28BS qan BILBU| BIAIBS (M w

| i 1 r | r | r 1 r 1 r 1 r 1
las aonposu siosuas fioidap suodeam fojdap s1ap10 SYS auy ufiisse s1ap1o 1d auy ufiisse Aoan sd102 fune e 126 sanuadoud uodeam aanponu sapadoad J0suas asnposu o
- E- B~ E= B~ E- E- B~
Ias aanpo.Lu s1osuas Aoidap suodeam Aojdap S19p10 SYS ay) ufiisse s18p10 11d auy ufiisse Aioyuanu) sdi102 Aune 1e jah saiuado.d uodeam aonponu saadoud Josuas aanpoul Ao

spun~Aodap s1opio sisey joh aaue a0 Aojuaaul Addns

uoisiap s13p10 se). (Zu)

Moddns uo|s1aep JusuDIdap (L)

| masos

3
1517 30435 Gap

ubisag anewony [
Buuueyq wawAoidag Areyi
poddns uosiap JuswAoidap
513pi0 ysE] 3pPAP

ubisaq uoneoyddy 5]

swo|u

ubisag uonedddy

UDIS3(30185 G/ I

[[BuLed juawAoidaq AeyiA uBisaq Loneddy] 8

=
EEfe|

|

osav [=)

40

(ponunuod) aremijos Suruue[q uewiojdoq AreyiA 10 9o1 Ayorerory TINASOS uoneorddy :/ 4 amS3ig

100

aIeR)U] BIVUAS GBS

5948 53010} 118 Adins
[EES

5048 Sa910) 1@ Addns

Sa4g 1196 4

i

sI05U85 f0jdap 4

sundeaw in|dap e

STI0DAULYI0 AoIUBAI B0 &

;

BIBI] BNAIBS QAL

Vu ae1a)u] 8185 s&Sn__

Wu aJepa] aIaS =w>>L4

BIeBI| BNAIBS QAL

—————a
si0suas fiojdap
B

5948 53310} pue| Addns
E=

5948 539104 pue| Addns

5948 53210} 112 ap1oad (zu4)

5948 53210} puej aprosd (L}

SalNaLoal payaed Adins (Zud)

s1osuas Aoidap

spunAojdap

BILLI| BINAIIS QI

BIeBI] BNAIBS Q3N

s10

m adepa)

suodeam Aojdap
[EES

fuojuanul sd100 Al e Jaf

sanadosd uoteam anponul
B~

sanadoud 10suas aanpoul
B~

suodeam Aojdap

fojuaa sdiod Awe e b

syun Aopdap ()

saadoud vodeam aanponu

8aueIno0IdA10jusAu Addns

saadoud Josuas aanpogu

S0

3
1517 30435 Gap

ubisag onewopey [E
Buuueyq wawAoidag Areyi
poddns uosiap JuswAoidap
513pi0 ysE] 3pPAP

ubisaq uonyeoddy

=)

Aulueld wawoidag ey wR)SAS

=
EEfe|

L X R=li+

ubisag uonedddy

| masos

UDIS3(30185 G/ I

[[BuLed juawAoidaq AeyiA uBisaq Loneddy] 8

|

osav [=)

41

(ponunuod) aremijos Suruue[q uewiojdoq AreyiA 10 9o1 Ayorerory TINASOS uoneorddy 84 a3

iy

jaued S19 © uo S1ake) dew pue oy uasaid (GH1)

ueyd yuasad (gyd)

s1afe| o jofi

s1afe) ojut puasaid (Zud)

. Dl 4 . Ciall & S188USI0IIBN18A 4= . Dol & . Dl 4 . 180 ¢
__u a3eLI8)U| BINIAS zm.snA Vu [2e/18)U| BIAIBS B_!sn__ __u a3eLI8)U| BINIAS zm.snA Vu [2e/18)U] BINIBS B_!sn__ __u a3eLI8)U| BINIAS zm.snA Vu 22/18)U] BIINIBS (BAAC
| e Iuog Wasad « —sisdetowussald & I 1 r T P ! i 7 I ! i 7
— - sjaays Jaia. joh s)aays Jaysel Jafi s)aays 10)a0n jaf 38118)U] BINIBS GEM s)8aus Joljal oA spoays Jaysel jofi s)aays J0jaan Joh
E= B~ B~ B E= B~

i ! r |

aopuss §l9 s 1af] Oju1 0B sjaays Joial jah s)88s 1a)Se1)ah s)98Ys 10)28n)b s1ase] oyl jol §)3aUs Jaj|al jah 8]aals 1a)sel yal §188YS 10)38n Jofi

E- E- E=
MBS §I9 s.1aAe] oy 1oh s1afigJdew Juasal

siafedewi uasan

siafe| dew juasaid (LH4)

3
1517 30435 Ga

ubisag onewoney
Buuueyq wawAoidag Areyi
poddns uosiap JuswAoidap
513pi0 ysE] 3pPAP
ubisaq uoneoyddy 5]

=
EEfe|

Twasos [T_m,mma IneLORY j

L X R=li+

ubisag uonedddy

UDIS3(30185 G/ I

_x [BuiuLie|d juawAojdag Adey)|

‘uBIsaq uope)|ddy] .

[

|

osav [=)

42

CHAPTER 5

CONCLUSION AND FUTURE WORK

In ADSO methodology, we have introduced the two concepts ADT, and service-orientation,
and proposed them to work in coherence. A previous study has been conducted for ADT, and
component-orientation, but since the approach towards the usage of web services has become
more popular in the software market, the conjunctions of ADT, and service-orientation has at-
tracted our attention, and we believe that it would find the place it deserves, as more systems
are realized by using this mechanism. What we have intended in this research was not only to
provide a contribution to the decomposition process, but also to supply a support mechanism
for the process integration. To be more specific, in ADSO methodology, we have proposed to
satisfy the reusability issue by using the existing Web services effectively, during the system
decomposition. We have realized this by using axiomatic design approach, where functional
requirements are mapped with the design parameters, and zigzagged among the functional
domain, and physical domain. A simultaneous decomposition in functional domain, physical
domain, and process domain provides the designer to decompose one domain while consid-
ering the solution domain. This supports the designer with the ease of handling customer
needs with existing web services. Our second purpose has been to take integration phase into
consideration during decomposition phase. By this way, we would have supplied a smooth
transition between the decomposition and integration phases. We have realized our method-
ology with the help of ADSO tool that we have constructed. We have considered the multiple
physical variables to realize each and every functional requirement in the design matrix, and
constructed the SOSEML hierarchy tree with the relevant process domain components, which
are the Web services in our ADSO methodology. The initial ADT approach for OO develop-
ment had to consider the methods as the implementation units in the ‘functional domain’. By
replacing these units with web service interfaces, reusability has been achieved. Rather than

being a prescriptive approach to development, targeting code writing, with our contribution

43

ADT can now support compositional development.

ADSO has a product line support understanding starting from the definition of the FRs of the
system, mapping them to the existing, or abstract Web Service interfaces, building the FR-DP
design matrix, graphically introducing the Web service orchestration, and choreography, and
letting the developer model an activity flow for each process in SOSEML representation of
process model hierarchy, via using BPEL designer. Although the promised product line sup-
porting mechanism has been achieved in ADSO, the ability to add Web service interfaces on
the fly on SOSEML model is also implemented. In order to supply further support, the reverse
line can be tailored, where Web service additions made on SOSEML model are reflected to
the domain design via implementing the corresponding Web services, and reconstructing the
design matrix by including the newly introduced Web service interfaces, and their possible
functional requirement fulfillments. Thus, these interfaces would then extend the functional

requirements, supporting a broader customer domain.

Another future work may be adding feature models to the ADSO concept, where the customer
would feel comfortable with the needs she would be providing to the designer, since she would

have a chance to see feature models for similar domains to predict her needs in her application.

Another future work may be building an orchestration engine, where the grammar of BPEL
designer can be executed. This orchestration engine would not only coordinate the activities,
but also compensate the overall process when an error occurs. This may be tailored to cur-
rent ADSO tool as a last step definition. Another future work could be an automatic activity
flow engine, where the process flow would be predicted from the SOSEML representation of
process model, and composed automatically in BPEL designer. In ADSO methodology the
indicated future works have been left as a future work, since our ultimate goal was to define
a supporting tool for the product lines starting from stating the functional requirements until
designing the activity flow of each process in the SOSEML representation of process model
hierarchy. The ADSO methodology we have provided has filled a gap in software environ-
ment. There exist various decomposition approaches in the software world, but with the help
of ADSO, service oriented decomposition has reached a supporting mechanism that handles
the design process starting from taking the customer needs, and decomposing corresponding
functional requirements, and design parameters within a structural visualization, which is the

design matrix. We could have decomposed the function, physical, and design domains con-

44

currently, but we would not be able to show them in a well understood structure unless we had
the user-friendly methodology, the ADSO. We could have started from an earlier phase like
providing the customer with probable customer needs we have collected from existing do-
mains, and give them a feeling for how to approach their problem, and provide the designers

with the customer needs thoroughly.

45

[1]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Akbiyik, E.K., Siiloglu, S.,Togay, C., and Dogru, A.H., Service Oriented System Design
Through Process Decomposition, Proceedings of Integrated Design and Process Tech-
nology, Society for Design and Process Science, June, 2008.

Olewnik, A. T. and Lewis, K., On Validating Engineering Design Decision Support
Tools, Concurrent Engineering, Vol. 13, pp. 111-121, 2005.

Suh, N. P., Axiomatic Design Theory for Systems, Research in Engineering Design, Vol.
10, No. 4, pp. 189-209, 1998.

Suh, N. P,, Do, S., Axiomatic Design of Software Systems, CIRP Annals, Vol. 49, No. 1,
pp- 95-100, 2000.

Guenov, M.D., Barker, S.G., Application of Axiomatic Design and Design Structure Ma-
trix to the Decomposition of Engineering Systems, Proceedings of Systems Engineering
Wiley Periodicals, Inc., Vol. 8, No. 1, 2005

Suh, N.P., Axiomatic Design: Advances and Applications, Oxford University Press, New
York, 2001.

Suh, N.P., The Principles of Design, Oxford University Press, New York, 1990

Suh, N.P,, Do, S., Systematic OO Programming with Axiomatic Design, Integrated En-
gineering, Vol. 32, Issue: 10, pp. 121-124, October, 1999.

Huhns, M. N. and Singh, M. P., Service-oriented computing: Key concepts and princi-
ples, IEEE Internet Computing, 9(1):75-81, 2005.

Gortmaker J., Janssen M., Business Process Orchestration in e-Government: A Gap
Analysis, Proceedings of the 15th IRMA International Conference, New Orleans, LA,
USA, 2004.

Gortmaker, J., Janssen, M., Wagenaar, R. W., The Advantages of Web Service Orches-
tration in Perspective, Proceedings of the 6th International Conference on Electronic
Commerce, ACM, Vol. 60, pp. 506-515, 2004.

Akbiyik, E. K., Service Oriented System Design through Process Decomposition, Master
of Science Thesis, Computer Engineering Department, Middle East Technical Univer-
sity, Turkey, August 2008.

Wohed, P., Aalst, WM.P.v.d., Dumas, M. and Hofstede, A.H.M.t.H, Analysis of Web
Services Composition Languages: The Case of BPELAWS, Web Application Modeling
and Development, Conceptual Modeling - ER 2003, Springer-Verlag Heidelberg, 2003,
200 - 215.

46

[14] Togay, C., Systematic Component-Oriented Development with Axiomatic Design, Doc-
toral Thesis, Computer Engineering Department, Middle East Technical University,
Turkey, July 2008.

[15] Dogru, A.H., and Tanik, M.M., A Process Model for Component-Oriented Software
Engineering, IEEE Software, Vol.20, No.2, pp. 34-41, 2003.

[16] Manzer, A., and Dogru, A.H., Process Integration through Hierarchical Decomposi-
tion, Proceedings of Enterprise Architecture and Integration, ISBN 978-1-59140-889-5
(eBook), pp.75-91, 2007.

[17] Papazoglou, M.P., and Georgakapoulos, G., Service-Oriented Computing, CACM, Oc-
tober 2003, 46(10).

[18] Kreger, H. et. al, Management Using Web Services: A Proposed Architecture and
Roadmap, IBM, HP and Computer Associates, June 2005.

[19] Michael P. Papazoglou, M.P., Traverso,P., Dustdar, S., Leymann, F., Service-Oriented
Computing: A Research Roadmap, International Journal of Cooperative Information
Systems (IJCIS), Vol. 17, Issue: 2, pp. 223-255, 2008.

[20] Curbera, F., Khalaf, R., Nagy, W.A., Weerawarana,S., Implementing BPEL4WS: the ar-
chitecture of a BPEL4WS implementation, Concurrency Computat.: Pract. Exper. 2006;
18:1219-1228

[21] Peltz, C., Web Services and Orchestration and Choreography, Proceedings of IEEE
Computer Society, October 2003.

[22] Weerawarana, S., Francisco, C., Business Process with BPELAWS, Understanding
BPELAWS, Part 1, research report, IBM developerWorks, August, 2002.

[23] Curbera, F., Andrews, T., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, 1., Weerawarana, S., Business Process Ex-
ecution Language for Web Services Version 1.1, BEA Systems, International Business
Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems, 2003.

[24] Themistocleous, M., Justifying the Decisions for EAI Implementations: a Validated
Proposition of Influential Factors, Journal of Enterprise Information Management,
17(2).

[25] Kreger, H., Fulfilling the Web Services Promise, Communications of the ACM, Vol. 46,
Issue: 6, June 2003.

[26] Boh, W. E, Yellin, D.M., Enablers and Benefits of Implementing Service-Oriented Ar-
chitecture: An Empirical Investigation, International Journal of Information Technology
and Management, Vol. 9, Issue: 1, November, 2010.

47

APPENDIX A

ADSO DESIGN AND MODELLING TOOL

A.1 Adso

This procedure has begun with an extensive study on Adco tool provided in [14], and Sosecase
tool provided in [12]. ADSO tool has been implemented to support ADSO methodology.
ADSO tool has the capability to support a product line starting from the decomposition, and
mapping of functional requirements with the design parameters, service composition, and
graphical visualization of composition with SOSE language, and define activities in each
process by using BPEL designer. The ADSO methodology proposes to support a product line
that would include some capabilities of Sosecase, and Adco tool, as well as extending the
coverage by automating the construction of SOSEML representation of process abstraction
hierarchy from the design matrix. We have integrated the SOSE approach in Sosecase [12]
with the Adco tool [14], while excluding the COSE approach in Adco [14]. On the other
hand, Sosecase [12] was designed to form a decomposition tree from scratch. Since we have
defined our design procedure with the help of ADT, we have used the modeling representation
capability of SOSEML to visualize process abstractions in a hierarchy. The ADSO tool has
the capability to create designs for software applications, and help to model the integration

via a hierarchy view representation in SOSEML. There exist four views in ADSO tool:

FR-DP design matrix

Web service list

SOSEML representation for integration support and decomposition visualization

BPEL designer to model the process flow.

48

While constructing an FR-DP design matrix, the designer should select an existing web ser-
vice interface from the existing web services. If a corresponding design parameter is not
found, then the designer shall use the Web Service Design tab to contribute the new design
parameter to the existing Web Service list via defining the same steps as the designer follows

for application design.

A.1.1 Defining a new Web Service into the Application Domain

When the designer wants to add an non existing Web service to the system, she shall press the
+ button on the Web Service Design tab, and then the window appearing in Figure A.1 pops

up on the screen.

New Web Service @

Mame

[OK H Cancel ‘

Figure A.1: The pop up window to insert the newly defined Web Service name

Then the new Web service name is listed at the end of the web service tree on the Web Service

Design tab. You may refer to Figure A.2.

The designer shall double click the Axiomatic Design child below the newly added Web
service name in the list depicted in Figure A.2, and the following abstract design matrix

window is shown in the workspace panel of ADSO tool, Figure A.3.

When either row name, or column name is double clicked, the hierarchy of the FR and DP s

is shown as in Figure A 4.

49

qe) uS1Sop AJTAISS QIAN UO PIoIdop SOOIAISS qam SUIISIXS 9y} AZI[enSIA 0) J0US Uaa10s [ended y 7'y g1

=0

X MOR

W3sos -
151 2o1mdas gap Y
ubisaq oneworoy [
sanJadoid Josuas aonponul
saiuadold uodeam aoNpoJul
faojuanul sdioo Awue e 186
suodeam Aojdap ©
sdosuas Aojdap
slapio 595 oY) ubisse
sipJo 714 ay3 ubisse .
ubisag aowuas gapn 1 -E

=
&3]
&3]
-
&
[

E=E=R+1]+

ubisag aouas gapn

Jauo)d=3
0sav|[=|

50

Q0IAIOS QOA\ PIPPE A[Mau oY) J0J XIjew u3Isap Joensqe Y], 1€’V 2In3Lj

4 » 4 »
e s
- . 7 SIBMAIUT BIIJBS gam T 1T
ES T
—
=
[u]
o
[
(]
=
A
L]
=)
T
T
o
[
[l
-
4 »
219190 ¥ Hesul G| ppy [UP3 wy, anes

151 80WUSS gam

saipadosd Josuss sonpoau 17 -

saipadosd uodeam sonponu

Auojusnur sdiod Awe e 386

suodeam Aojdap

siosuas Aojdap

s1apio 5Y5 ayy ubisse o
siapdo 11d ayy ubisse 7 -

ubisaq sowuas gap -5

40-44

ubisag onewomy [

ewo|y

ubisaq aoaas gam

_x [sanJadoud Josuss sonpo.gu ubisag sanas gap] [&

smuojdx3 |

51

|£ | ADSO \E’

| Explarer 7] (i [vweb Service Design: introduce sensor properties] xl 0=
icati i ﬂﬁ Axiomatic Design |
Web Service Design ﬁ‘
=X X 1
=+ . Web Service Design I Save % Edit @ Add [Insert ¥ Delete

[+ |, assign the PTL orders

[| assign the SRS orders _

| deploy sensors

. deploy weapons

t- |, get all army corps inventory
-\ introduce weapon properties

introduce sensor properties
slAxiomatic Design

i Web Service List

P11 vebh Service Interface

- # 1.1 Method_In

81 Web Service Interface -
“-# 1.1 Published Methods

Figure A.4: Demonstration of FR and DP details in the design matrix

In order to add an FR, and its corresponding DP, once Published Methods name is chosen,
Add icon should be pressed, and the user will be able to define the relational FR-DP couples

by using the pop up window that appears on top of the ADSO tool.

When the user follows the order stated in Figure A.5, the new FR-DP couple will place on the

design matrix.

52

Design Matrix- Row&Column Editor @ Design Matrix- Row&Column Editor @

(%o Column| | Row | Column
Mame Mame |aet sensor propertied
MNotes Motes
| ok || camceL | | ok || cance |

Design Matrix- Row&Column Editor @ Design Matrix- Row&Column Editor @

Row | Column

e [T Load @ Add % Edit £ Rem led Save |7 Load @ Add % Edit 5] Rem

DP DF get_sensor_properties

deploy_sensors
deploy_weapons

»

deploy_sensors -
deploy_weapons

deploy_units deploy_units
get_task_orders = get_task_orders =
get_inventory_ofArmyCorp2 get_inventory_ofArmyCorp2
get_inventory_ofArmyCorpl B get_inventory_ofArmyCorpl i
get_inventory_ofAllArmyCorps get_inventory_ofAllArmyCorps
get_weapon_properties get_weapon_properties
get_sensor_properties - get_sensor_properties -
I
ok || cance | ok || canceL |

Figure A.5: Adding a new FR-DP couple to the design matrix

As shown in Figure A.5, the designer should type in the functional requirement, and some
notes if wanted, then on the row tab, the designer may either find the already implemented
Web service interfaces in the shown list, or add an interface name and click on Add icon,
Load icon, and Save icon respectively. If the designer chooses from the web service interface
list, all she has to do is click on Save icon, and click OK to exit the Design Matrix Row &

Column Editor window.

53

uonejuasardar TNFSOS Surpuodsariod pue Xmew udisop Jq-¥d 991AI0S GO UL 19V InJ1

aJeyal] IaS qaps

E~=

salyadold Josuas aanponu

saljadold 10SUas aanponul

wia)shs

1517 80IJBS g3
ubisaq oieLony
saipadosd Josuss aonpod
saipadosd uodeam aonposjul
Auojuaaur sdico Awue | 326 ¢
suodeam Aojdap ¢

slosuas Aojdap ©

siapJo 55 ay} ubisse
s13plo 714 3y ubisse
ubisag aowaas gapm 1

_x [sapJadosd Josuss aanpo.gur (uBisaq adias gea] B [F

Fwasos L] |[ubisaq snewoney [|

mwo|w

ubisaq aa1ues gam

[EXTEEN

osav (=]

4 »] »
saiuadosd Josuas 386 T'T'T »
SPOUIBIN paysand T Tji =
- - B0BHIAIUL A0IMBS QM T [
~ [He
.
=
*Hs
=Y
- E
5 E
'y Elg
2 o
= o Iw3sos O]
L ® 1517 81uas gan
=
=
@
= saipadosd uodeam aonpouul
“ Aojuaaul sdaoo Awue |2 186
N suodeam Aojdap
1 » sJosuas Aojdap
— 513pJo 545 auyy ubisse
; S1apio 114 3y ubisse
218|120 ¥ Uesul G| ppY [+ |Up3 = anes [uBlsaq@ 82185 gap 11
lmwo|w
40-44
ubisaq a31uas gam
uBisaq oiyeLUoRy m.m.
=l _x [sapJadoad Josuas aanpo.gu (uBisag aajalas gep] M [F o]
osav|[=|

54

The corresponding SOSEML representation of defined Web service FR-DP design matrix
is as in Figure A.6. As you see, the Web service is directly linked to the System process
node, since Web service will be available for any process in the Application design. The
corresponding Web service is depicted with its Web service name on the Web service node.
The web service interface is also indicated with a link to its Web service, and the interface
name is given on the web service interface. Each and every service shall be built by following
the path explained in this section, since the ADSO methodology is for supporting reusability,

yet expecting already defined and implemented Web services.

A.1.2 Constructing the Application FR-DP Design Matrix and SOSEML representa-
tion of the Application

After defining all the Web services that may be needed during the decomposition of the sys-
tem, it is time to construct the FR-DP design matrix for the required system defining func-
tional requirement. The application design tab is used during this procedure. First step to
realize is typing in the FR-DP couples to the design matrix, and then the relations shall be
evaluated for each FR, resulting in a design matrix of DPs covering more than one FR, and
FRs being realized by more than one DP as in Figure A.7. If an FR is solved by many DPs,
they have to be selected from the design matrix via clicking on the zero (0) fields, and choos-

ing X from the drop downs.

This design matrix is evaluated in ADSO tool, and corresponding SOSEML representation
is given by evaluating the Xs on the design matrix, meaning that the solution of the FR is
supplied via X marked Web service interface’s corresponding Web service. The SOSEML
representation is given in Figure A.8, Figure A.9, and Figure A.10 in three parts, since the

SOSEML representation is quite large to display on one screen.

A.1.3 Modeling Processes in BPEL Designer

Once the developer double-clicks any of the process figures, she may model the algorithmic
process flow by taking the SOSEML representation tree into consideration, and handle the
coordination of activities within the process by using the standard business process definition

language in the BPEL designer. The BPEL models for the leaf level processes model the in-

55

uonedrddy ay3 10J sg paje[ar Aq po[dnod Sy [[e PIm X1jew uSIsa(] (LY N3

siosuas Aojdep €T »
suodeam Aojdap T°g'T & -
syun fojdap £°1)
suoisRep s1s 136 77T -
suoisioap pd 136 T°2'T -
UDISDAP SI8PI0 YseY Z°T
Mojuaau szdioo Awie 196 28 T'T &
fuoyuaaur sTduioo Awe 186 17T
Auojuanu sdiod Awae e Aiddns £ 1T
saipadousd uodeam Aiddns ' 1'T »
salyadosd Josuas Alddns T°1'T &
@oueanzold Aojuaau) T

[s][=][=][=][=][=][+]} =]

A - voddns uoispap wawhojdap TR
a
- . -
sesset: S X
[l w Wl Ve [l "}
.E.Ewmc.awoo_.._.._..m
= R W R e =
ﬂDA%wMITﬁﬁb_ﬂ
wm_mm.m._yumtmt_w_m_ww
o289 Y5 w 5L
=2 F35 500 I EIj
o podatzed3
o) o~~~ 3935
@ SELCCZTE
SF “w3ss5FHF9S2
L 50 =)
gL 99 2 5P
= o @ =
St 4o %$9rFL3%
w3] a = O g
@ [meﬂdj
W ZZERBE
[T =
= s
WJIVJWSS_J
S5=9 ©
330
EXE
=}
m m @ Buiuueyd yuswhojdaq Aeyy M-
P Tw3sos OJ
=

1511 801UBS g3

ubisaq JNeLoyY|
yoddns uoisap juswAodsp M=

518P10 y5E] ApIDap W
218120 ¥ uesul G5 ppy [WP wy, anes ubisaq uoneayddy .5

lmwo|w
E ubisag uoneoiddy

ubisag 2oy m.m

_x [340ddns uois|2ap yusw hojdap (uBisag uonedddy] M) g R
osav [+

56

o[dwres uoneosrddy 110ddng uorsioo(q JuswAordo oy Jo uonisodwodap g pue | [9A9T 8V 2In31q

aJela)u| IUBS HBAN

BIeUAU BIVUBS B

BIeUa)U| SIVUBS B

B0EU8)U| BIIBS UBAR

il

aIepau| ILUAS QA

aJela)u| ILUAS B

Aloyuaau sd103 ALe (e jab
S

sanadold uodeam asnpoajul
I

saljadold 10suas ashponul
R

Alopuaaul sd1o0a Aue (e jab
R

sanjadold uodeam asnpoajul
R

salpadold 10suas ashponul
E~

Aoaaul sd102 Auue e 1ab

sapadoid uodeam aanponu

asuenoosd foanul Aiddns

saipadoid J0suas aonpoaul

Aopanul sd102 Auue e 1ab

saadoid uodeam aonponul

asuenaoid Aowanul Addns

asuenaoid Alojuaaul (L Hd)

saipadoid 10Suas aonponul

Buluueyd yuawiodaqg Aaenpw

[
117 201uBS GIM

ubisaq anewonty
poddns uoispap awiojdap
43P0 5B 2pap [N

ubisag uonenddy © .5

w3sos O

LN N+Ji+]

ubisaq so1niss gam | ubisag uoneaddy

_x [340ddns uoisidap Juaiojdap :uBisag uoned) ddy] W (g o3 |

osav [+

57

(ponunuod) ordwes vonesiddy 110ddng uorsioa yuawiojdo ay) Jo uonisodwooap ¢ pue [[9AT 6V 2In31g

0l

] 3105U85A0|dED 4 ; SUOHEBN ADIHEN & 518010”SI5 URISSE 4 21800 N URISSE ¢ SHI0DALNIYIO AMOUBAY 180 e
Vu ae8)| IS e_w-SnA Vu aJeya] NS =ESL4 Vu ERCITEITERTETS e_w-SnA Vu aJeya| NS sESnA Vu ERCITEITERTETS e_w-SnA BIeLB)U| BIIAS G BILLB)U| BINIAS HAM
s108uas Aojdap suodeam Aojdap S1apI0 SYS ay) ubisse S18pI0 1 d ay) ublisse Alopuaaul sd1o0a Aue (e jab sanjadold uodeam asnpoajul salpadold 10suas ashponul
B~ E= B~ B~ [B~ B~
slosuas Aojdap suodeam Aojdap SIIPI0 SYS Yy ubisse SI3PI0 1Ld 2y} ufisse Aopanul sd102 Auue e 1ab saadoid uodeam aonponul saipadoid 10suas aonponul

spun”Aojdap

s1apio sse) jaf

asuenaoid Aowanul Addns

uoISIaap S1apI0 YSe) (Z4d)

yoddns uoisiap wauiodap Jwa)sAs

Buluueyd yuawiodaqg Aaenpw

[
117 201uBS GIM

ubisaq anewonty
poddns uoispap awiojdap
43P0 5B 2pap [N

ubisag uonenddy © .5

_x [340ddns uoisidap Juaiojdap :uBisag uoned) ddy] W (g

w3sos O

LN N+Ji+]

ubisaq so1niss gam | ubisag uoneaddy

s

osav [+

58

(panunuoo) odwes uonesrddy 11oddng uorsioo yuawiorda ay) Jo uonisodwosap g pue [[9AT 0]V N3

S40SUBETANIDED 4 .

SUOHESMADIHEE = ,

Sti0DAULIIMIO OIUBAITIER &

Vu ERLITETERTTAETS swz.nA

Vu aIepIa)| BINIAS =E.>L4

Vu ERLITEN T ERILTCLS =E.>L4

s108Uuas Aojdap
E-

slosuas Aojdap

a0epa| SINUBS q3/R

SI0SUBETADIHEY ¢u ,

suodeam A0ldap s .

Vu aJepa| NS sESnA

Vu aIeLB)| BINIAS aESnA

Vu ERLITETERTTAETS swz.nA

suodeam Aojdap
I

Aroyuaaul sd1o03 Aue ||e jab
S

salpadold uodeam ashpolul
S

sanJadold 10suas asnpoul
S

s10suas fojdap
S

suodeam Aojdap

syun” Aojdap

Aamuamu sdi10a Aune e jaf

Sjun Aojdap (gud)

saipadoid uodeam aanpoap

aouenaoid Aoaau Addns

saadold Josuas aanponul

s10suas Aojdap

suodeam Aojdap
E-

suodeam Aojdap

spun_fojdap

w3sos O

Buluueyd yuawiodaqg Aaenpw

[
117 201uBS GIM

ubisaq anewonty
poddns uoispap awiojdap
43P0 5B 2pap [N

ubisag uonenddy © .5

LN N+Ji+]

ubisaq so1niss gam | ubisag uoneaddy

_x [340ddns uoisidap Juaiojdap :uBisag uoned) ddy] W (g o3 |

osav [+

59

teractions among processes and existing Web services, while higher leveled processes assume
lower level processes as the newly built Web services, and model the interactions among the
processes, yet the whole system is defined in detail. In Figure A.11, the designer would like
to model “introduce weapon properties” process, and the properties window is shown when

the designer double clicks the process figure.

2/ ADSO BB =5
| Explorer 1| {5 [Web Service Design: infrodurs weapon properties] xl (=)
Application Design| Web Service Design | | £ SOSEML |
22 | P
3 \ (=0 N | | [Fo i -
=} Web Service Design System
assign the PTL orders

. assign the SRS orders
deploy sensors
. deploy weapons

DEREEHE

get all army corps inventory Properties @

. introduce sensor properties - OO
introduce weapon properties y) Process Name: =
iﬂ Axiomatic Design introduce weapon properties

|« Web Service List
B m

Create Process Model...]

3

introduce weapon properties

EWeh Senvice Interface j
GET_Weapan_propemies

Figure A.11: The Properties window for a process with no existing bpel file

When the designer presses “Create Process Model...” button, the BPEL Designer, showing the
relevant bpel file pops up. The original bpel file is in XML format, while this designer edits
that XML file in graphical format as shown in Figure A.12.

When the process model is created, corresponding .bpel, and .wsdl files are obtained. The
graphical representation of .bpel is as shown in Figure A.12, and can be edited to provide the
actual corresponding process model, using the relevant introduce weapon properties service
in this sample case. Meanwhile, the wsdl file can also be viewed in this designer, as depicted

in Figure A.13.

60

ADSO

[Bslorer 8] jm [Application Design: cleployment decision support] x|

Application Design | web Service Design

B sosent |

noeam
(= 1. Application Design
decide task orders
deployment decision support
il Axiomatic Design
Web Service List

(m]
i Military Deployment Planning

introduce sensor properties

T} SOSECASE - BPEL Designer
File
. introduceweaponproperties &%

{ — Palette
(FR1) inventory procurance IS Selection Tool
“} Marquee Tool

= Actions |

Empty
Invoke

supply_inventory:_procurance @l Receive

& Control 2
I

@ pick

& -
@ While

introduce weapon properties

® Exit

= Faults 3
[1= Throw

‘ introduce sensor properties

12 Rethrow

‘ introduce weapon properties

Web Service Interface

© Properties

Web Service Intarface ; "
|L" % 2 introduceweaponproperties

= geL_sensor_propemes

= GeLWeanon_nToRemes

Name

Description
Details
Join Behavior

Imports

Target namespace:

main
@] receivelnput

&) replyOutput

@

=0
o Partner Links *x
client
® Variables o x
input
output
@ Correlation Sets %

introduceweaponproperties

http://eclipse.org/bpel/sample

il

!

Figure A.12: The BPEL Designer showing “introduce weapon properties” process model, the

process figure on SOSEML tree has its BPEL icon light on, indicating the process has

existing bpel file

an

Web Service Desian

Py sosem |

“pplication Design

nomm

(=). Application Design
decide task orders
deployment decision support
Axiomatic Design

Web Service List

B
| Military Deployment Planning

{FR1) inventory procurance

supply_inventory_procurance

introduce weapon properties
-5
introduce weapon properties

Weh Service Interface

[4pplication Design: deployment decision suppart] x]

T5) SOSECASE - BPEL Designer
File

£ introduceweaponproperties
<?xml version="1.0"2>

[2) introduceweaponpropertieswsdl &

<definitions name="introduceweaponproperties"

targetNamespac

"http://eclipse.org/bpel/sample”
xmlns:tns="http://eclipse.org/bpel/sample”

[T

xmlns:plnk="http://docs.ocasis—open.org/wsbpel/2.0/plnktype"
xmlns="http://schemas.xmlsoap.org/wsdl/"
>
<I--
TYPE DEFINITION - List of types participating in this BPEL process |
The BPEL Designer will generate default request and response types
but you can define or import any XML Schema type and use them as par
of the message types.
<types>
<schema attributeFormDefault="unqualified" elementFormDefault="qu
targetNamespace="http://eclipse.org/bpel/sample"
zmlns="http://www.w3.org/2001/XMLSchema">
<element name="introdu "propertis T
<complexType>
<sequence>
<element name="input" type="string"/>
</sequence>
</complexType>
</element>
< 1 »
T Properties
Property Value

< | [

il

[0

Figure A.13: The corresponding

shown in BPEL designer.

61

wsdl file for introduce weapon properties process model

