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ABSTRACT

APPLICATION, COMPARISON, AND IMPROVEMENT OF KNOWN
RECEIVED SIGNAL STRENGTH INDICATION (RSSI) BASED INOOR
LOCALIZATION AND TRACKING METHODS USING ACTIVE RFID
DEVICES

OZKAYA, Bora
M.Sc., Department of Electrical and Electronics iBegring
Supervisor: Dr. Arzu KOC
Co-Supervisor: Prof. Dr. Sencer KOC

February 2011, 151 pages

Localization and tracking objects or people in t@ak in indoor environments have
gained great importance. In the literature and etarknany different location
estimation and tracking solutions using receivgaal strength indication (RSSI) are
proposed. But there is a lack of information on tenparison of these techniques
revealing their weak and strong behaviors over edbbr. There is a need for the
answer to the question; “which localization/trackimethod is more suitable to my
system needs?”. So, one purpose of this thesisgsdk the answer to this question.
Hence, we investigated the behaviors of commonbp@sed localization methods,
mainly nearest neighbors based methods, grid bRAagdsian filtering and particle
filtering methods by both simulation and experinaéntork on the same test bed.
The other purpose of this thesis is to proposargraved method that is simple to
install, cost effective and moderately accurateige for real life applications. Our
proposed method uses an improved type of samptipgpiitance resampling (SIR)

filter incorporating automatic calibration of pragaion model parameters of log-
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distance path loss model and RSSI measurement bpiasing reference tags. The
proposed method also uses an RSSI smoothing digoréxploiting the RSSI

readings from the reference tags.

We used an active RFID system composed of 3 reatldéesget tag and 4 reference
tags in a home environment of two rooms with altataa of 36 m2. The proposed

method yielded 1.25 m estimation RMS error forknag a mobile target.

Keywords: Localization, tracking, RSSI, active RFIearest neighbors, Bayesian

filter, particle filter



Oz

IC ORTAMDA, ALINAN SINYAL GUCU (RSSI) TABANLI, BILINEN YER
BULMA VE TAK IP YONTEMLERININ, AKTIF RFID KULLANARAK
UYGULAMA, KAR SILASTIRMA VE GELISTIRILMESI

OZKAYA, Bora
Yuksek Lisans, Elektrik-Elektronik MihendigliBolumu
Tez Yoneticisi: Dr. Arzu KOC
Ortak Tez Yoneticisi: Prof. Dr. Sencer KOC

Subat 2011, 151 sayfa

Gunumuzde, i¢ ortamlarda insanlarin vegyatarin konumlandirilabilmesi ve
izlenebilmesi buylk énem kazarytm. Gerek literatirde gerekse piyasada alinan
sinyal guct (RSSI) yontemini kullanan birgcok konikestirme ve izleme yontemi
ortaya konulmsgtur. Ancak Onerilen bu yontemleri kaestirarak birbirlerine gore
guclu ve zayif yonlerini acikga ortaya koyan bitigaa bulunmamasinin eksigi
yasanmaktadir. Dolayisiyla “mevcut sistem gereksinimk en uygun yontem
hangisidir?” sorusunun cevabina ihtiya¢ duyulmaitd®u nedenle bu ¢camada, en
sik ©onerilen “Nearest Neighbors” yontemleri, BayBbrelemesi ve parcacik
filtreleme yontemlerini similasyon ve deneysel g&leme kullanarak inceledik.
Tezimizin bir bgka amaci da gunlik uygulamalar igcin uygulamasi kolaygun
fiyath ve kabul edilebilir dgrulukta gelgtiriimis bir yontem ortaya koymaktir.
Onerdgimiz yontem temel olarak sampling importance redamgpSIR) filtreleme
yonteminin gektirilmis hali olmakla birlikte “log-distance path loss” dal yayilim
modelinin parametrelerinin ve RSSI 06lgum gurultiigiin referans vericiler

kullanarak otomatik olarak kalibre edilmesini iceve referans vericilerden elde
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edilen RSSI bilgileri yardimiyla 6zgin bir RSSI dunletirme algoritmasini

kullanir.

Tez kapsamindaki uygulama gahalar 3 adet aktif RFID okuyucusu, 1 adet hedef
tag ve 4 adet referans tag’densaln bir sistemle toplam 367tik iki odadan olgan
bir ev ortaminda gerceldérildi. Hareketli bir hedefin izlenmesinde, 6nefuiz

yontem ile bu ortamda 1.25 m’lik RMS hata perforsiaa ulatik.

Anahtar Kelimeler: Konumlandirma, Takip, RSSI, BRFID, nearest neighbor,

Bayes filtresi, parcacik filtresi
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CHAPTER 1

INTRODUCTION

Locating objects or people close to real time vatteptable precision has always
been an important part of any industry, especiallpnanufacturing, healthcare, and
logistics. For manufacturing, the need is real timenitoring of the production
process by tracking the location of semi-products also real time tracking of the
inventory. In healthcare, mobile devices in the gia$, the personnel, and the
patients are usually needed to be monitored. Imstiog, assets and vehicles are
monitored for decreasing the time consumption asal far avoiding human faults in
the visibility process. So, recently, practicalsy#o deploy, cost effective, small in
size real time locating systems (RTLS) and trackaygtems have gained great
importance. Systems that map the longitude antu@st of an object are geo-
location systems and generally use the Global iBasig System (GPS) for location
mapping. GPS could be used as the location detatioim portion of an RTLS
system but GPS signals do not penetrate buildirejsamd thus GPS will in general
not work well inside buildings and in dense arelgsThus, there is a need for RTLS
systems that work individually in those environnsemiat are especially indoor
environments. In order to locate objects accuratelypdoor environments, a lot of
work has been conducted and different solution® lmeen proposed over the years
in the market and literature.

Different technologies have been proposed for indocalization including infrared
(IR), ultrasound, and radio frequency (RF) [2] sys$. The technique selection
depends on the type and scale of the environmehivaether the line of sight (LOS)
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is required or not. Infrared and ultrasound sensegsiire LOS and are short range
devices. Therefore, they are not appropriate fogelascale and obstacle filled
environments. At this point systems using RF becpoular because RF systems
do not require LOS and can communicate in long eardgpending on the power of
the signal. So the most popular of these locabratechnologies is RF systems
which vary in the localization method used. The tmpular of these are received
signal strength indication (RSSI), time of arri(@lOA), time difference of arrival

(TDOA) or angle of arrival (AOA) [3]. The main ideaf all these localization

methods is that, in order to localize nodes, distanf the nodes to reference points,
distance between nodes or angle according to referpoints need to be calculated
or estimated first. However, the methods exceptIR®8d complicated hardware or
antenna which drastically increases the system [d@dsiThis leads us to use RSSI

based localization methods in our work.

RSSI based location estimation and tracking problesually make use of wireless
local area network (WLAN) infrastructure, wirelessensor network (WSN)

infrastructure or radio frequency identification HIR) technology. All three

technologies can be used for indoor localizatioml ave choose to use RFID
technology which is the most popular RTLS system ifa@oor use due to its
advantages of being practical, cost effective, bmasize, and easy to deploy [5],
[6], [7]. RFID devices compose of transmitters (oansceivers) called tag and
receivers called reader which are cost effectivelkssize, and low power devices.
RFID systems that are developed and supplied byynthffierent commercial

enterprises are studied for localization and tragldurposes in the literature [8], [9],
[2], [10], [11], [7], [12], [6]. [S]-

Compared with an outdoor propagation environmemntoor environments are more
complex in terms of RF signal propagation. Radgnals are subject to reflections,
diffractions, and scattering in complex environngerthese result in multipath or
shadowing effect, thus the relationship between distance and received signal
strength (RSS) in indoor environments becomes muate complicated than that in

outdoor environments [2]. In RSSI based localizattechniques, since location
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estimation makes use of RSS — distance relationgloipd modeling of the signal
propagation behavior of the environment is a ctwtigp for decreasing the resulting
location estimation error. Since RSSI measuremargsprone to large errors in
complicated indoor environments, range informatiamght not be derived
deterministically from the RSSI measurements [3], 5o, in recent years besides
deterministic localization methods, probabilistBagesian) localization methods
taking the RSSI-range variability and a priori kieglge of the target motion into
account have been proposed in the literature §8),[13], [14], [15], [1], [2], [10],
[9], [3] soO as to improve localization performantevestigating the localization and
tracking literature on RSSI based localization amlobtics, we have come up with
different localization methods including determiiisand Bayesian solutions. These
methods have different variations in the subcaiegagach having weak and strong

aspects over another that are given in Chaptensi 3la

This work implements different deterministic andlpabilistic Bayesian location
estimation methods to be able to compare them amgbpe several improvements
on the existing applications. In order to compaese methods in different aspects,
the best way is to make empirical experiments enstime test bench with the same
experimental variables like measurement noise,ivecosition, size of the target
area, experimental locations of the target etc.tanmdake simulations of the methods
with the same simulation models. In the literatsweh a complete experimental or
simulation comparison that runs on the same ennissn could not be found. So,
one aim of this thesis is to supply comparisonsnvbeh different localization
methods that are often cited in the literature bying both simulation and
experimental results. The methods that we impleatkate given in Section 7.1. The
behaviors of each mentioned method with varyingirenmental parameters (e.g.,
measurement noise) and system parameters (e.gessranoise properties, grid
spacing, number of particles, etc.) were also itigated for completeness.

As we stated above, since RSSI readings are niablelmeasure of the distance
information in complex environments, having an aatel signal propagation model

of the target environment is very important to gialccurate location estimation for
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any type of localization method. The RSSI modelimglone through the training
phase of localization systems and several methoglp@posed for this training
phase. There are mainly two methods: i) deriving firopagation parameters
(propagation parameter based approach) to estiR&8l — range relation. ii)
creating the RSSI pattern/map (pattern based agpyad the environment. In the
first method the parameters can be derived empyizaan offline training phase or
they can be calibrated automatically during themestion steps using additional
reference tags. In this work we implemented botbr@qches to have a comparison.
Automatic calibration method [16], [5] can be veitractive for especially large
target area since it does not need an extra offtenaing phase and it may lead to
more accurate RSSI modeling by adapting the paemdb the dynamically
changing (moving objects, people etc.) environmanthe expense of additional
system cost. We exploited automatic calibratiorpdpagation parameters in this
thesis to come up with a practical method and &l$® important to note that this
thesis is the only work using automatic calibratmipropagation parameters for

indoor localization using an RFID system.

In the second method two different approaches awed in the literature. One is
creating the RSSI map with offline empirical measnents taken at discrete
locations all over the target environment [17]. Tdteer one is creating the RSSI
map with an online phase by using reference tagsepl at different known locations
in the environment [11]. Both of these approacheg@ported to give more accurate
localization results but the former needs a greadunt of human labor for large

target area and the latter needs a large numbesfeence tags that is usually not
practical to implement and increases the systent. dosthis thesis we also

implemented the offline creation of the propagatmap but because of insufficient

number of RFID tags we could not implement therankpproach.

Another aim of this thesis is to propose a locéilimamethod that is robust and easy
to deploy for practical implementations in a compledoor environment. [5] and [9]
are important studies to combine reference tagagmbr and Bayesian filtering

algorithms and form the basis of this work. Ourgmeed method exploits a WAF
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(wall attenuation factor) propagation model with tcamatic calibration of
propagation parameters and measurement noise fei@mee tags and an improved
version of SIR (sampling importance resampling)tipkr filtering localization
method. In addition, a custom RSSI smoothing allgoriby the use of reference tags
is implemented to further increase the estimaticcueacy as a contribution of this

work.

In this work, considering practical applicabilitpcgapopularity in both literature and
commercial researches, we preferred to use RFIDicelevexploiting RSSI
measurements. Patch antenna for the RFID readelessigned and application and
user interface software running localization altons is developed in C# language
in the context of the thesis. For investigating libealization algorithms simulation
work was carried out on MATLAB and empirical expeents were run in a home
environment containing two rooms of a 36 m? totalaawith a wall between and
many different furniture inside. We used 3 RFIDd&®, 1 target tag and 4 reference
tags throughout our experimental work.

In this thesis, theory of localization methods amghal propagation issues will be
given in Chapters 2-5. In Chapter 6, details of RE8asurements taken in the target
area, used signal propagation model, calibratiorthots of the propagation
parameters will be given. Chapter 7 will detail thealization methods used from
the literature and additional approaches of outkworthese methods, our simulation
work and the results, experimental work and thelltgsand the analysis of both
simulation and experimental work. We will conclugigh the conclusion in Chapter
8. In Appendix A Cramer Rao Lower Bound (CRLB) &rigled for our localization

problem.



CHAPTER 2

WIRELESS LOCALIZATION METHODS

Wireless localization methods depending on the bfpibe physical parameters read
by the sensors can be investigated in four diffecertegories which are received
signal strength indication (RSSI), time of arri(@lOA), time difference of arrival
(TDOA), and angle of arrival (AOA). In this chapter will give brief information
on TOA, TDOA, and AOA based wireless localizatioethods and we will give
more detailed information and literature review @bthe RSSI based localization

methods being the subject of our work.

2.1 TIME OF ARRIVAL (TOA) METHODS

The distance between a reference point and theettasy proportional to the

propagation time of signal [1]. TOA based systersgdhat least three different
measuring units to perform a lateration for 2-D ipasing. However, they also

require that all transmitters and receivers areipety synchronized and that the
transmitting signals include time stamps in oradeat¢curately evaluate the traveled
distances.

This approach is reasonably successful in indoeir@mments such as with concrete
walls and floors and it has a relatively high aecyr compared to other methods.
But, an ideal TOA system requires costly accurédeks because in order to attain a

more precise distance measurement a timing precigicto the nanosecond scale is



a requirement, which results in a more elaboratekckynchronization system. The

clock offset and clock drift corrupt the rangingaacy [1].

2.2 TIME DIFFERENCE OF ARRIVAL (TDOA) METHODS

The principle of TDOA lies on the idea of determipithe relative location of a
targeted transmitter by using the difference inetiat which the signal emitted by a
target arrives at multiple measuring units. Thiged receivers give two TDOAs and
thus provide an intersection point that is thenested location of the target. This
method requires a precise time reference betwesmimsuring units. Like TOA,
TDOA often suffers from multipath effects which edt the time of flight of the
signals. So different signal processing techniguesused to improve the accuracy of
the estimation. Some of these techniques thatseéd for the solution of the emitter
location problem include the iterative least-sqaditeS) method and the maximum

likelihood (ML) estimation technique [3].

2.3ANGLE OF ARRIVAL (AOA) METHODS

AOA consists in calculating the intersection of ex& direction lines, each
originating from a beacon station or from the tar§g. The angle of arrival
information is obtained by getting the phase dédfere of the source signals. At least
two angles, measured with directional antenna dh \an array of antennas and

converted in direction lines, are needed to firel2kD location of a target.

As TOA and TDOA methods, this technique also ssffeom shadowing and
multipath reflections, and it is an expensive mdttibat requires complex and

expensive equipments like antenna arrays.

2.4RECEIVED SIGNAL STRENGTH INDICATION (RSSI) METHODS

RSSI based measurement techniques can be broattiedlinto deterministic and

probabilistic techniques which will be detailed@mapters 3 and 4, respectively. In
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this section first we will give brief informatiomahe classification of these methods

and then a review of the related literature thaused will be given.

In deterministic methods, lateration (geometry)doasr nearest neighbor(s) (NN)
(also referred to as scene analysis) approachesbeansed. In lateration based
approaches, distance to RSSI relation is assumied deterministic and the obtained
distance estimation is used for triangulation sohg to estimate the location [18].
On the other hand, NN approaches assign RSSI veigioatures (fingerprints) to the
equally spaced grid locations all over the targeaaThis can be done by empirically
storing the data or by signal propagation modeteghniques. After obtaining the
RSSI fingerprints, pattern matching methods ared usefind the most likely grid
location(s) (nearest neighbor(s)) which will leadthie location determination of the
target [17].

In probabilistic positioning techniques a probabitiistribution of the user’s location
is defined over the area of the movement. In gérerBayesian belief model is
established with a preset number of discretizedtion possibilities which will be
called grid cells. The Bayesian model is estabtishéth the a priori probability
distribution of a user being at a given locationl d&ry the conditional probabilities
(likelihood model) with which a given RSSI is megeii at that location. By using
the a priori and likelihood models one can derive tonditional probabilities (and
thus the a posteriori distribution over locationp user being at each cell given the
current RSSI reading. In order to apply Bayesidteré in location estimation
problems, different filtering algorithms are uselieh include Kalman filtering [8],
[10], grid based Bayesian inference [2], [5], aediential Monte Carlo localization
(MCL) [19], [9] which is also called particle filteng.

In this thesis we will investigate and work on bakbterministic and probabilistic
methods to derive pros and cons of each, but oun meal is to integrate and
develop both methods to obtain a novel solutiolo¢alization problems.



2.4.1Literature Survey on RSSI Based Localization Method

In general, RSSI based positioning includes twacsphai) the training phase where
the wireless map of the environment is determineflddd measurements and ii) the
localization phase where location calculation isfgrened based on the wireless
map. Note that the training phase is an offlin@mline process and as such it needs
to be redone if there have been major changes rectuaffecting the wireless
propagation environment for the offline case.

Accurate modeling of the environment is crucialtie accuracy of the location
estimation. For the training phase there are see@@aroaches to model the signal
propagation of the environment. We can group theletiog approaches into two
main categories. One is, modeling the propagabenavior of the signal in the
target area using a suitable fading model describethapter 5. For this approach
empirical measurements or floor plan modeling tepes can be used to drive a
good estimate of target to source distance fromRB8&I information. This is more
flexible and easy to derive but suffers from dymamnvironmental changes. This
modeling is usually used in lateration (geometrgdd localization solutions [18].
Or it can be used to create virtual RSSI map/patéthe environment to be used in
NN or probabilistic based location estimation taghes [17], [10]. The second
approach is creating the RSSI map of the environtgmempirical measurements at
many different locations over the target area. etan RSSI map will also be given
in Chapter 5. This method is shown to be more ateubput it needs more human
labor and is less flexible since it must be redfmmeany changes in the environment
structure or receiver position. This method carmegitassign deterministic RSS
signature vectors (fingerprints) to each grid looad to be used for NN solutions or
RSS probability distributions for each grid celllde used for probabilistic solutions.
In order to compensate dynamic changes in the @mwvient and remove the heavy
human labor in the training phase automatic paramedlibration techniques are

proposed in the literature.



Among the WLAN based localization literature RADAR] is one of the most cited
work. RADAR uses WLAN based systems for locatiom @aracking users inside
buildings. It was the first system to propose tee af an RF map of the area. RSSI
for each WLAN base station is stored as a fingatpn a database for each point in
a dense grid covering the floor. When querying da¢abase, a nearest neighbor
match in the fingerprint space provides candiddtes mobile's position. Two
approaches for position estimation are offeredhgisin empirical database which is
based on a large number of RSS data stored in abakd, or a model of RF
propagation in the floor inferred from it. In [14jreless signal strength maps for the
positioning filter are obtained by a two-step pagtme and measurement driven ray-
tracing approach to account for absorption ancecdfin characteristics of various
obstacles. Location estimates are then computed) lBayesian filtering on sample
sets derived by Monte Carlo sampling. [13] estimdle location of a WLAN user
in a statistical approach. In this approach thespay properties of the signal
propagation are not taken into account directlgtdad the location estimation is
regarded as a machine learning problem in whichasle is to model how the signal
strengths are distributed in different geographiaedas based on a sample of
measurements collected at several known locatibimsn a probabilistic framework
for solving the location estimation problem is @ne®d. There are many other
literature using WLAN based systems to estimatdtiposbut the ones mentioned

above are selected as examples which exploit diftdocalization methods.

Due to advantages such as small size, low powetandost, the Radio Frequency
Identification (RFID) sensors are widely used fetettion and tracking purposes in
a large variety of sectors. With the capabilitypodviding RSS information advanced
RFID systems have become a potential candidatami@ss localization. Several
RFID based systems have been proposed for trackidlglocalization objects in

indoor environments. SpotON [18] and LANDMARC [1dre two of these systems.
SpotON uses an aggregation algorithm for three-dgaal localization. The tags
use RSS information to obtain inter-tag distancasedd on empirical mapping

between the two. SpotON assumes deterministic mgpgietween RSS and
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distances and does not account for the range nerasuat uncertainty caused by the
varying environments. LANDMARC utilizes RSS measoeat information to
locate objects usingyk nearest reference tags. It is in a way simildRADAR [17]
scheme, except that the RF map is built by prelyoypsaced active tags. In
LANDMARC, 4 readers and 16 reference tags (spacend) hre used in a 40 mz
single room area to give a median of 1m positidimegion error. To diminish the
uncertainty of the detected range caused by thgngaenvironments, there must be
a large number of reference tags distributed in ém@ironment. This seems
impractical and expensive for most of the indooensgios. A simultaneous
localization and mapping (SLAM) system for robovigation based on RFID tags is
presented by Haehnel et al [20]. The mobile rolaoties a pair of patch (directive)
antennas with which it can determine the rangeaagiilar position of detected tags
relative to its current position. The range — aagudependence of the RSSI is
modeled statistically and then a Bayesian filteused for position estimation. The
approach in [8] also utilizes reference tags alith Kalman filtering. The first step
consists of calculating the distance between eaefdrance tag and the target tag by
using RSS measurements from two readers. The docatithe tag is obtained by the
minimum mean squared error algorithm. The secoeg sbnsists of building a
probabilistic map of the error measurement forréreders’ detection area. The first
step is applied for each reference tag in orderatoulate their corresponding error
probability distribution function with the help dlieir estimated location and their
real location. The Kalman filter is then used itengly on this online map to reduce
the effect of RSS measurement error and thus taowepthe accuracy of the
localization. SCOUT [5] belongs to the family of opabilistic localization
techniques and uses grid based Bayesian filtefing. method also utilizes reference
tags. Active tags are localized following three pste First, the propagation
parameters are calibrated using on-site refereag®e Second, the distances between
the target tag and the readers are estimated witblzabilistic RSS model. Finally,
the location of the tag is determined by applyingy®&sian inference. lteratively,
predicted beliefs are calculated and then correati#éld observations until a good

model is obtained resulting in an estimation af@palso belongs to the probabilistic
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RFID localization family and uses particle filtegimethod as well as the reference

tag idea.

In our work we implement most of the major methaggen in the literature,
compare them and integrate them to have an impnmettod of localization.
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CHAPTER 3

DETERMINISTIC INDOOR LOCALIZATION
METHODS

In this chapter we will give details of determimgsindoor localization methods that
do not take probabilistic behavior of RSSI obseorainto account. Also they do not
consider the a priori knowledge of the locatiortted target. Nearest neighbors (NN)
and lateration (geometry) methods are two main lasbes of deterministic

localization methods. Geometry method is a tradéianethod that is usually used
for GPS, AOA, TOA, and TDOA technologies and rardlyyr RSS based

technologies [4]. NN based localization is the mas#d deterministic method in the

literature. Therefore, we used NN based approachasr work.

3.1NEAREST NEIGHBORS (NN) METHODS

Nearest neighbors method, also known as scenesanatgthod was first introduced
by J. G. Skellam [21]The distances of the observed data set to the e¢data sets
are used to determine the most probable locatiorfs)distance function E
(Euclidean distance in our case) that gives the 888 vectors’ distances is used to

determine the closest vector match.

Suppose that there are m cell locations and thuRS%& pattern vector® =

{R1,Ry, ...,Rp} in which each pattern vectd; consists of signal signatures

(R; ={Ryj, Ry}, ...,Ry}) at location j, (j=1,2,...,m)krpris the number of readers
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(access point, station or receiver) in the systnis the target RSS vector obtained
at each measurement where vedorconsists of kpr signal signatures Rt =
{Rt;, Rt,, ..., Rt,}). E is calculated for thd'jcell's RSS data set as follows [11]:

kRDR

where lgpr is the number of reademt; is the RSS of the target measured by the
reader i, and;; is the RSS of the cell ] measured by the read&f can be obtained
either by propagation pattern based approach oprbpagation parameter based
approach which are explained below. E denotes igtartte between each cell and
the target RSSI vectors. Thenknearest cells’ coordinates are then averaged to

localize the target estimafe,, y,) as follows [11]:

kNN

(ke ¥e) = D wilxiy0) (3.2)

wherew; is the weighting factor of each neighboring celll@alculated as [11]

1
/Eiz
Wi = T 5

_ (3.3)
SN

[22] reported that estimation error decreasdsagcreases up to a number, then the

error increases.

In NN method the cells’ RSS data vectors are obthiny either propagation pattern

based or propagation parameter based approaches.

3.1.1Propagation Pattern (Empirical) Based Approach

We can investigate propagation pattern based agiprioatwo main categories. One
creates the RSSI pattern in an offline phase bynstdhe data as in RADAR [17],
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the other one obtains the pattern in an online @lysusing reference transmitters
located at the training grid locations as in LANDME& [11]. For both approaches,
estimation accuracy depends heavily on the dem$ithe training grids, accuracy
increases as more grid cells (i.e., the numbeefgfrence transmitters in the online

approach) are used in the target area.

In the first approach the predefined cells’ datds sén our case, the RSS
measurement vectors; Rare stored previously from empirical measurem¢ht

which are called fingerprints. In order to obtane ttraining data set, cell locations
are defined first (e.g., each 1 m step) and thezael cell location a certain number
of training data samples are stored. Increasingbaurof cell locations increases the
accuracy of the location estimation. This methoddsea serious human labor and
also suffers from flexibility since the RSS modelshto be reestablished all over
again in case of any change in the environment dhe locations of the readers. In
[17] it is reported that the median error is 2.9ima floor area of 980 fmconsisting

of 50 rooms.

In the second approach LANDMARC [11] introduced ttwcept of reference tag
(transmitter) in order to establish the online g@attvector with the reference tags
fixed at predefined cell locations thus removing time consuming data storage
phase. LANDMARC method is also flexible in terms bbth the dynamic

environmental changes and the reader positions.itBuds its own drawbacks on
practical implementation and system cost. The nmeelieor is about 1.8 m in an area

of 20 nf, in a single room, with 16 reference tags anda8lees.

3.1.2 Propagation Parameter Based Approach

In this approach RSS pattern vectors at eachrcélle concerned area are not stored
empirically as in the propagation pattern baseda@ggh but instead they are created
by using the signal propagation parameters andligtence d of the cell location to

each reader location using the below formula [17]
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d
Rjj = a—10 *n*log <d—> — ¢jj * WAF (3.14)
0

whereR;; is the RSS of the cell j, measured by the readerandn are the
parameters to be determingd.is a constant dummy distance chosen in advance.
WAF is the wall attenuation factor to be determingdis the number of walls
between the] cell and the' reader. In fact [17] reports that the attenuafetor

makes a difference Wheng] is smaller than a certain number which is fountheéo4

in that paper.

In this case the parameters can be determined twsmglifferent methods: One is
offine determination of the parameters as in [1[f]. a training phase RSS
measurements are taken at different distances éamh reader with or without walls
between. Then using different curve fitting aldomits, required parameters are
obtained and used after the training phase. Thihaodels simpler than the pattern
based approach, more flexible but in [17] it isoided that accuracy is worse than
that of the pattern based approach. The mediamseare, respectively, 4.3 and 2.9
m, in a floor area of 980 Mconsisting of 50 rooms. This approach is stifidi
consuming and cannot accommodate environmentabelsan the estimation phase.
So another method that is automatic calibratiorthef parameters is proposed by

several authors [16], [5].

In this work we implemented both pattern basedEardmeter based approaches but
our main attention is on the parameter based apprdéor online calibration of
parameters “reference tags” or “reference accesstgjoare used. This method
eliminates the time consuming training phase ando atan accommodate

environmental changes up to a limit.

3.2LATERATION (GEOMETRY) METHOD

The lateration approach, illustrated in Figure &slimates the position of the target
by evaluating its distances from at least threeregfce points. In [18] multiple base
16



stations provide signal strength measurements mggpi an approximate distance.
A central server then aggregates the values toguiate the precise position of the
tagged object. Finally, the computed object pos#icare published to client

applications.

Radius 2

Radius 1'X

Radius 2

Figure 3.1. Trilateration: the estimated locationresponds to the intersection point
of three circles.

[13] states that propagation based approachesoanpeatitive against the traditional

geometry method.
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CHAPTER 4

PROBABILISTIC INDOOR LOCALIZATION
METHODS

Probabilistic approaches’ arising point is thate thropagation of RF signals in
indoor environments is almost impossible to modelcdy. So the relationship of
RSS information with range is not deterministicolfabilistic methods try to handle
this uncertainty and errors in signal measuremeévitseover probabilistic methods
incorporate the a priori knowledge about the pdsBibpossible locations in the
interested area also taking the previous locatido consideration. Probabilistic
approaches use Bayesian inference which estimhtedotation as a probability

distribution over the area of interest [1].

Bayes filters assume that the environment is Markmat is, past and future data are
(conditionally) independent if one knows the cutrstate. The Markov assumption

is stated explicitly below.

In the following formulations the notations expkdhbelow will be used.
L¢: The location of the transmitter at time t.
st The sensor data (being RSSI in our problem)nae ti.

s;,...t. Denotes the sensor data sequence from timeithéott{s,, ..., s; }

The key idea of Bayes filtering is to estimate atpoor probability density function
(pdf) p(Le|sy..c) over the state spadg, conditioned on the sensor measurement

data s; . up to time t. The initial density of the state \@dsp(L,) at time zero
18



when there are no measurements. Then the postﬁ'rmityp(Ldsl,___,t) will be
obtained recursively using the previous posteritfr p(L;_1| s;._t—1) and the most
recent measurement datain two stages which are prediction and updateestag

Suppose that at tinte— 1 the posterior pdp(L_4| s;._¢—1) iS available.

At the prediction stage, process model explaindoMbes used to obtain the prior pdf
(or prediction density)p(L|s; t—1) at time t via the Chapman-Kolmogorov

equation [23].

p(Lel s1,..c-1) = fp(Lt |Le—1)p(Le—1l s1,..6-1) dLe—q (4.1)
Theprocess &lso called system, action, motion or mob)lityodel is [23]
Ly = fioq (Lem1, V1) (4.2)

wheref,_; is a known function of the stakg_; and theprocess noise;_; . Process
noise is any mismodeling or disturbances in thegss model. For example, for a
moving target with constant speedL,=L;_;+c+v,_,. The noisev;_, is

assumed to be white with known probability dengityction.

The transitional density(L; |L;—,) in (4.1) is simplified fronp(L; [L¢—1, S1,._t-1)
since it is a Markov process of order one. The idep$L, |L._,) is defined by the
process model (4.2) and the known statisticsv,of . The transitional density

p(L; |L,—,) is sometimes called process model in the liteeafis].

Update stage is applied at time stephen a measuremesytis taken. At this stage
the prior densitp(L¢| s; 1) is updated to form the posterior dengiff..|s; . ;)

using the Bayesian rule as [23]
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p(Lt|Sl,....,t) = p(Lt|st, S1,.....t—1) (4.3)

p(Lelsy.0) = p(se|Le s1,..e-1)p(Lefss,...e-1) (4.4)
p(st|sl,....,t—1)
p(s¢lL)p(Le|s,..t—

p(Lt|Sl,._"'t) = tit ( tl 1.t 1) (45)

p(5t|51,....,t—1)

p(st|Le s1,..t-1) term in (4.4) simplifies t@(s|Ly) in (4.5) sinces; measurement
only depends on the location state In (4.4) and (4.5)p(s¢|s;..c_1) term is the

normalizing constant which is [23]

p(5t|51,....,t—1) = fp(stlLt)p(Ltl S1,..t—1) dL¢ (4.6)

p(s¢|L¢) term in (4.5) and (4.6) is referred tolé&®lihood function which is defined
by the measurement model as explained below, aedktfown statistics of
measurement noise.. p(s¢|L;) is sometimes referred to as theasurement model

in the literature [14].

The measurements are related to the location Istatia the followingmeasurement

(observation) model

st = he(Le wy) 4.7)

whereh;, is a known function and; is themeasurement noisevhich is assumed to
be white, with known probability density functiorthis model is generated
empirically from a large set of measurements olethim different locations in the

area of interest.

Knowing the posterior density(L¢|s; _.+) one can compute a location estimate with
any criterion Most common used ones are the minimum mean squane(BIMSE)

estimate and maximum a posteriori (MAP) estima8j.[2
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MMSE estimate is the conditional meanLef

-~

MMSE
Lt|t = E{Ltlsl,....,t} = f Le. p(Lelsy,...0)dL¢ (4.8)

MAP estimate is the maximum pfL|s; ).

~ MAP
t|t = argmi( p(Lilsy,...t) (4.9)

In order to implement the conceptual solution te posterior density in (4.5) there
exist several optimal or suboptimal Bayesian athars. The optimal algorithms can
be the Kalman filters if the noise distributionse aGaussian or the grid based
Bayesian method if the state space is discretefinite. But Kalman filter typically
fails when the Gaussian assumption breaks downnaadocalization problem either

the process noise or the measurement noise caonb@&awussian distributions [23].

In our localization problem the state space isicoous and the motion model can
be any type of distribution in real life applicat® So we will use approximate or
suboptimal methods. Our interest will be on apprate grid-based method (also
known as Markov localization) which is a numeriapproximation method, and the
particle filter which is in fact sequential Monteu@® sampling approach of Bayesian
filters. Markov localization [24] and particle ®its [25] are promising Bayesian

filters that are also used in robot localizatioolpems.

4.1 APPROXIMATE GRID BASED BAYESIAN FILTERING

This approach is also referred to as Markov loadilin in the literature [24]. In this
numerical approximation of Bayesian filter, theegmals in equations (4.1) and (4.6)
are solved by numerical integration where the irgeggn is replaced by summation

and the integration variables are discretized.
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The continuous location space in this approachieedsinto m location cells. Then
the approximate discrete posterior probability ypidally called thebelief and

denoted by

Bel(Ly) = p(Lelsy,...0) (4.10)

whereL, is the location at time t arsd _, is sensor measurement data up to time t.

The belief function of being at locatidmt time t without any assumptions is

P(St|]-‘t =1, Sl,....,t—l)P(Lt =1] S1,...t—1)
P(St|sl,....,t—1) (4.11)

Bel(L; =1) =

In (4.11) using the ‘“independence of sensor readinghe probability
P(s¢|Lc =1s1,..c1) simplifies to P(s{L;=1) and is referred to as the
measurement modelor thelikelihood function. It states the probability of taking

the measurement when the target is at locatidn

In (4.11)P(L, = 1] sy t—1) describes the probability of being at locatiat time t
before the sensor measurement is taken at timeré #sing the Markov assumption

and conditioning on the previous state; we get

P(L,=1] 51,....,t—1) =Yy P(L¢ =1Ly =1)P(L—q =1'] S1,....,':—1) (4-12)
P(L, =1|L,_; =1) term here is called th@ocess model
By using the belief definition in (4.109(L,_, = 1'| S1,..t—-1) can be written as the

belief at time t-Bel(L;_; =1). Also we can rewrit®(L, =1]s;_ ) asP(L; =

1 Lt—1) since it only depends on the previous slatel to give
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P(Ly =1|Li_q) = Z P(L; =1|L—y =1)Bel(L_; =1) (4.13)
ll

Integrating all the assumptions and simplificatiexplained above, we can rewrite
(4.11) as

P(s¢|L; = DP(L; =1L ) (4.14)

Bel(Ly =1) =
el(Ly =1 P(st|S1,....,t—1)

The denominator here is nothing but a normalizimgfficient which supplies
Bel(L; = 1) sums up to one over all possible locatidni the state space. So we can

rewrite

Bel(Ly = 1) = BP(s¢|L¢ = DP(L¢ = 1|L¢—q) (4.15)

where B is a normalizing coefficient.

In this method, the grids must be sufficiently dets get a good approximation to
the continuous state space. As the state spacasiomeincreases, the computational
cost of the approach and the computation time diaally increase. However, the
method can be used successfully with a moderatget@monal cost for localization
applications that do not need much precision andt thre for small area

environments.

4.2PARTICLE FILTERING

Particle filters perform sequential Monte Carlo (SMestimation based particle (or
point mass) representation of probability densitibgtailed information can be
found in [23], [1], [3], [26], [27], [28], [29]. Sguential importance sampling (SIS)
which is the basic idea of SMC was introduced iBA9[23]. But these methods had
several disadvantages when implemented purelyicleafitters were made useful in
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practice when the resampling step is included. Siampmportance resampling
(SIR) filter is one of the filters exploiting resating stage. In our work we used SIR
filter and added several improvements on it. Sthigs section we will give details of
the SIS approach which is the basis of SIR, the i, and improvements on SIR

proposed in the literature.

4.2.1 Sequential Importance Sampling (SIS)

It is the basis for most of the SMC methods. Itlenpents sequential Bayesian filter
using MC simulations. The key idea is to repregbet required posterior density
function by a set of random samples with associateights and to compute
estimates based on these samples and weights.eAsuthber of samples becomes
very large, this MC characterization becomes anvatgnt representation to the
usual functional description of the posterior paifid the SIS filter approaches the

optimal Bayesian estimate [23], [28].

The posterior pdf @_t|s1 t) is approximated by N discrete points of masse®dall

particles {(L},w})} as shown in (4.16) whete" notation will be used to denote not

equality but approximation.

p(Lys. )={(LUw)}),  j=1,...N (4.16)

where L’t is the location of the™j particle at time t and {w’s the normalized,
nonnegative weight of the"jparticle. w is called theimportance factor that
approximates the distribution probability at looatl. The weights are chosen using

the principle oimportance samplingwhich is explained below.

Suppose p(x) is a probability density of a randoamiable x, from which it is
difficult to draw samples. Instead the samplestmadrawn from an arbitrary density
g(x) which is similar to p(x) and q(x) is callecettmportance or proposal density.

Then a correct weighting of the sample set stilkesathe Monte Carlo estimation

24



possible. Here the similarity of q(x) can be expess by the condition:
p(x)>0 => q(x)>0 for all x for which p(x) is nozero which means that p(x) and
q(x) have the same support. Leti~q(x), j=1,..,N be the samples that are
generated from the importance density whe¥& riotation is used to denote thalt

is sampled fromy(x), then a weighted approximation to the density Exjiven by

N
POO= ) wid(x - x)) (4.17)
j=1
where
o p(x') (4.18)

q(x))

is the normalized weight of thd jparticle and &” is used for proportionality.

Returning to (4.16), if the sampleé are drawn from an importance density

q(L¢|ss,...¢) then by using (4.18) we can write

i o P(Uss,..0) (4.19)
t Q(th|51,....,t)

Now suppose that at time step 1 we have samples formingL;_4[s; ¢ 1) and
when we take a measuremepat timet we need to form a new set of samples

approximatingp(L¢|s; ;). If the importance density is chosen to factosaeh that

q(Lt|51,....,t) = q(L¢|Le—4 :St)Q(Lt—1|51,....,t—1) (4.20)

then one can obtain sampld&t;(LJsl’_wt) by augmenting each of the existing
samples L1~q(Lt—1|51,.....t—1) with the new statelt-q(L¢|ses; ;). To derive the

update equations the pplfLi|s,,_ ) is first expressed as
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p(Lefsi. ) = p(st|Le s1,.t—1)P(Le|s1, . t-1) (4.21)

p(5t|51,....,t—1)
_ p(st|Lt)p(Lt|51,....,t—1) (4.22)
p(5t|51,....,t—1)
p(selL)p(LelLe—1)
= Li_+ls _ (423)
p(st|51,....,t—1) p( ’ 1| Bt 1)
o« p(s¢|L)p(LelLe—q) p(Lt—llsl,....,t—l) (4.24)

By substituting (4.24) and (4.20) into (4.19) theight update equation can be
written as

PGP ) p(thoyfsn.n) (4.25)
q(L]tlL]t—y St)q(L]t—1 | Sl,.--.,t—l)

W oc w p(se|Lo)p(Lh|Lh_,)

) ZAm (4.26)
o q(L]tlL]t—rSt)

as

p(Lilss, ) ~ ) whs(Le— 1) (4.27)

Here § is the Dirac delta function. So filtering via Sk®nsists of recursive
propagation of importance weights and the partietations. The pseudo code for

SIS algorithm is given in Table 4.1.
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A common problem with the SIS particle filter isetdegeneracy phenomenon,
where after a few iterations, most of the particlels have negligible weight. It is
stated in [28] that the variance of the importamaaghts can only increase over
time, and thus, it leads to the degeneracy phenomesich has a harmful effect on
the accuracy. This degeneracy implies that a laogeputational effort is devoted to
updating particles whose contribution to the apjnationp(L¢|s;..¢) is almost
zero. A suitable measure of degeneracy of the ithgoris theeffective sample size
Nesr [28] and can be approximated as

1

Nett = sy =75
=1 (W)?

(4.28)

HenceNqs <N and large weight results in smallLs which indicates severe

degeneracy and vice versa. Considering extremes:.cdsthe weights are uniform,
ie., V\{ = % forallj, Neg = N. If one of the weights is “1” but all others ai@' ‘then

Neff = 1

Table 4.1 SIS Algorithm

Algorithm: SIS Particle Filter

. AN . . AN
i — i
[{LUWIt}j:l] = SIS[{Lt_l,WLl}j:l ,Stl
FOR j=1:N
DI‘aWth~q (Ltlet_l, st)
Assign the patrticle a weighﬂwccording to (4.26)

END FOR

Normalize the weight coefficients.
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One approach to reducing degeneracy effect is eéoaugery large N. This is often
impractical; therefore, we rely on other two metstogood choice of importance

density and use of resampling.

In choice of importance densitythe first method involves choosing the importance
density to minimize the variance of the weightstkat N.¢ is maximized. The

optimal importance density function that minimizee variance of the true weights

conditioned orth_1 ands; is given to be [28]

q(Lt|th—1'5t)opt = p(Lefth_y 50) (4.29)
_ p(stlLtl th—1)P(Lt|th—1) (4.30)
p(stlL]t—1)

Thus substituting (4.30) into (4.26) the weight is

Wl ocwl, p(sdLl,) (4.3

Wlt = th-1f p(StILt)p(Lt|th—1) dL¢ (4.32)

But it is usually not easy to sample from the dgns{L|L\_,,s.) and to evaluate
the integral in (4.32). So it is often more conestito use the importance density as

the prior density

a(Let_y,se) = p(Le|Li_y) (4.33)

Substituting (4.33) into (4.26) gives

w oWl p(s|1)) (4.34)
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This would seem to be the most common choice ofontapce density since it is
intuitive and simple to implement. However, there many other densities that can

be used.

The second method by which the effects of degemetao be reduced is to use
resampling whenever a significant degeneracy iems (i.e., whelN. falls
below someN; threshold ). The basic idea of resampling is imiekte particles that
have small weights and to concentrate on particleh large weights. The
resampling step involves generating a new{sk}\ ,, wherei denotes the new index
of the new resampled particle, by resampling (wéplacement) N times from an

approximate discrete representatiomp(t.|s, ;) given by

N
p(Lt|Sl,....,t):z thS(Lt - th) (4.35)
=1

The resulting sample is in fact an i.i.d. samplenfrthe discrete density (4.35)

therefore the weights are now reset to=wl /N .

A direct implementation of a resampling would cehsof generating N i.i.d.

variables from the uniform distribution, sortingeth in an ascending order and
comparing them with the cumulative sum of normalizeeights (CSW). The best
sorting algorithm has a complexity of O(N log N)dathis is the major limit in

practical implementations. However, it is possibdeimplement this resampling
procedure in O(N) operations by sampling N ordemedorm variables using an
algorithm based on order statistics [28]. It mushibted that other efficient (in terms
of reduced MC variation) resampling schemes suclstestified sampling and

residual sampling [28], may be applied as altevestito this algorithm. Systematic
resampling is the scheme often preferred in therditire since it is simple to
implement, it takes O(N) operations and minimizes MC variation. Its operation is
described in Table 4.2 [28].
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Although the resampling step reduces the effectshef degeneracy problem, it
introduces other practical problems. First, it térthe opportunity to parallelize since

all the particles must be combined.

Table 4.2 Resampling Algorithm by Systematic Redargscheme

Algorithm: Resampling Algorithm
i N . i N
[{Liw}_,] = RESAMPLE[{Li W} _ ]
Initialize the CDF(cumulative density functior): = 0
FOR j=2:N
Construct CDFej = ¢4 + vv’t

END FOR
Start at the bottom of the CDF: j=1

Draw a starting point; ~UJ[O0, %] /Il sample

/lu; from the uniform distribution UJO0, %] on the interval0, %]

FOR i=1:N
Move along the CDFRy; = u; + % *x(1—-1)
WHILE (u; > ¢;)
=il
END WHILE
Assign new samplei = L{
Assign weight to the new sample!:= %

END FOR

Second, the particles that have high weights atsstally selected many times.
This leads to a loss of diversity among the pasichs the resultant sample will

contain many repeated points. This problem, whish known as sample
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impoverishment, is severe in the case of small process noisead for the case of
very small process noise, all particles will colapto a single point within a few
iterations. If the process noise is zero, then qusinparticle filter is not entirely
appropriate. Particle filtering is a method wellted to the estimation of dynamic
states. If static states, which can be regardghesneters, need to be estimated then
alternative approaches are necessary. Third, sheealiversity of the paths of the
particles is reduced, any smoothed estimates lmas#te particles’ paths degenerate.
Schemes exist to counteract this effect. One appreansiders the states for the
particles to be predetermined by the forward filkad then obtains the smoothed
estimates by recalculating the particles’ weighgsasrecursion from the final to the
first time step [30]. Another approach is to use tarkov Chain Monte Carlo
(MCMC) [31] method.

There have been some systematic techniques propeseatly to solve the problem
of sample impoverishment. One such technique isrésample move algorithm.
Although this technique draws conceptually on thmea technologies of importance
sampling resampling and MCMC sampling, it avoidsigke impoverishment [28]. It
does this in a rigorous manner that ensures thelearasymptotically approximate
samples from the posterior and, therefore, itésdaften used method in the literature.
An alternative solution to the same problem is laggation [28]. Also by
introducing an additional noise to the samplesithgoverishment problem can be
reduced. This technique is called jittering or roeiging [32].

After describing SIS, choice of importance densityd resampling, we can now

define a generic particle filter algorithm whichgisen in Table 4.3 [28].
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Table 4.3 Generic Particle Filter

Algorithm: Generic Particle Filter
Wl 7= o
[{Lt, t}]-=1] = PF[ {Ly, t-1}j=1'5t]
FOR j=1:N

Draw particle sampldd~q(L¢|L._,,s.) // sample from the importan

/ldensity q(.).
Assign the particllajt a weightvv{ according to (4.26)
END FOR
Normalize v{/
CalculateN.¢ using (4.28)
IF Ngge < Nt /INt being a user defined threshold
Resample using:
.. N . N
[{Liwi}_,] = RESAMPLE[{Ltw} ]

END IF

First we initialize the particles by drawing sangplEom the initial distribution
p(Le|sy, . ¢—1) thus sample L},~p(Lo) with uniform weights ¢} = 1/N), where t=0,
and there is no measurements. In the followingiiens we draw the samples from
an appropriate importance density,4q(L¢|L._,,s;)) where the particles will be
{L{,W{}j:l approximating the prior densitp(L¢|s;. (1) When there is no
measurement data.]. This step is also called the prediction steperTive update
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the weights using the measuremgriby the likelihood functiomp(s,|L;) via (4.26).
The result here is a discrete set of partl({Ie{s,vv't}],=1 which approximates the
posterior densitp(Lt|sL_.__,t). Then go on with the resampling stej < Nt
whereNt can be chosen as 2N/3 [32]. Or resampling mayiberr every iteration as
in sampling importance resampling (SIR) filter. Elgrarticles still approximate the
posterior. At this step one can estimate the looatising (4.8) or (4.9). Then iterate

to the time step t+1 starting with the predictiteps

There are many types of particle filters which nanely on SIS approach but differ
especially in the choice or modification of importa sampling density and the
resampling step. Most widespread of those are sagpiportance resampling
(SIR) filter, auxiliary sampling importance resaingl (ASIR) filter, and regularized
particle filter (RPF). Note that these filters cha combined or altered. We wiill
explain here the basic one, SIR filter, in detad give brief information on the other

types which are in fact modified versions of SIkefi

4.2.2 Sampling Importance Resampling (SIR) Filter

The SIR filter was first proposed under the namay#&sian bootstrap filter” which is
very close in spirit to the sampling importancearepling (SIR) filter developed
independently in statistics by different researshevith a slight difference on the
resampling scheme [33]. So bootstrap and SIR diltee treated as the same class.
The key idea of SIR filter is to introduce the magding step between two
importance sampling steps. The resampling stepmedito eliminate the samples
with small importance weights and duplicate the @am with large weights. The

generic principle of SIR proceeds as in Table 28].]
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Table 4.4 Sampling importance resampling (SIREFilt

Algorithm: SIR Filter
w7 = o N
[{Lt, t}jzl] = SIR[ {L4, t-1}]-=1' St ]
FOR j=1:N

Draw particle sampldd~p(L¢|L)._,) from the importance density

that is chosen as the prior dengif.|L._,)
Assign the particle], a weightw) = p(s¢|L}) using the likelihood
END FOR

Normalize w

Resample using:

Here the resampling scheme can be chosen of amy agpording to the system
needs. The constraints of using the SIR filter aeey weak. The process and
measurement model functions need to be known, & required to be able to
sample realizations from the process noise digtohuofv,_; and from the prior
distribution. Also, the likelihood functiop(s|L.) needs to be available for
pointwise evaluation. The SIR algorithm can be Igadierived from the SIS
algorithm by an appropriate choice of the imporéamensity and applying the
resampling step at every time index. In SIR theartgnce density is chosen to be
the prior density (also called the transitional sig) p(L¢|L_, ). For this particular

choice of importance density, using (4.26) it iglent that the weights are
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th x ijt-l p(stlet) (4.36)
But, since resampling is applied at every time inm%_lwill be 1/N for all j and

since v{/ Is normalized as they sum up to 1 for all j:1 to(436) simplifies to
w = p(se|)) (4.37)

As the importance sampling density for the SIRefils independent of measurement,
the state space is explored without any knowledgth® observations. Therefore,

this filter can be inefficient and is sensitiveouatliers for some cases. Also in an SIR
filter, as resampling is applied at every iteratidims can result in rapid loss of
diversity in particles. However, the SIR method siteve the advantage that the
importance weights are easily evaluated and tlaintiportance density can be easily
sampled. By simple modifications on the importarsampling and resampling

stages, the weaknesses of the SIR filter can beoiwef.
Improvements on SIR Filters:

In the literature, many efforts have been devotedrtproving the particle filters’
performance (see [33] for a detailed list of litera). Here, we only focus on the
improved schemes on efficient sampling/resamplind @ariance reduction which

include the ASIR and RPF type patrticle filters.

In order to alleviate the sample impoverishmentbfmm, three simple strategies
were proposed by Gordon et al. which are jitterger boosting and prior editing
[33]. In jittering , the main idea is to add a random noise (namedysS&ian) to the
state of each particle after sampling from the grist before it is propagated to the
next time step. As a result, if replicas of paescivith high weights exist they will be
replaced by different but similar particles so asdecrease the effect of sample
impoverishment. Note that this would be a very intguat contribution if the process

noise is small. Jittering is in fact adding an axtoise to the process model at each
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time step and the variance of the added jitter marchosen by the user taking the

system model into consideration.

In prior boosting algorithm [33], in the sampling from the importandensity step,
one can increase the number of simulated sampéeendirom the importance, such
that draw M>N samples; but in the resampling stepy N particles are preserved.
The idea behind this adaption is that by increasheynumber of particles in the
prior samples, the probability of resampling regsiowill be smaller. However, in
[33] it is shown that standard SIR filter with Mrpales (not N) will give more

accurate results.

Prior editing algorithm [33] is also a modification on the pramples. After the
samples are drawn from the proposal distributiartigles with small weights are
rejected and another sample for each rejectedcfeais generated from the same
distribution instead. As a result, the samplesaoetpproximate the posterior density.
Thus more than N samples may be generated. Itstefferery similar to the prior

boosting but it is more efficient in terms of congiional cost.

In another approach suggested to improve SIR filtéhe original particle set
. . N L

{L{,W{}j:l is replaced by a new particle $Et,w‘t}iN=1 in resampling stage, which is

generated as follows [33]:

e Fori=1,...,N, LL replaces Lwith probability proportional ta ,

* The associated new weights are updated{asw@/ai,

where the selection of is flexible and can be chosen to #e th in order to

prevent the sample impoverishment problem.

Auxiliary SIR (ASIR) filter is another improvement that was proposed aariant

of the standard SIR filter. Compared with the Siled, the advantage of the ASIR
filter is that it naturally generates points fronetsample at t-1, which, conditioned
on the current measurement, are most likely to Ibsecto the true state. If the

process noise is small then ASIR is often not sesitige to outliers as SIR.
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However, if the process noise is large, a singlatmoes not characterizdL,|L}_,)

well and in such scenarios, the use of ASIR theratkes performance [28].

Regularized particle filter (RPF) which is again a modified version of SIR filter
was proposed as a potential solution to the sammb®verishment problem. The
RPF is identical to the SIR filter, except for ttesampling stage. The RPF resamples
from a continuous approximation of the posteriangiy, whereas the SIR resamples
from the discrete approximation. Specifically, metRPF, samples are drawn from
the approximation which uses Kernel density. Whengrocess noise is small, RPF's

performance is better than that of the SIR [28].
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CHAPTER 5

RF SIGNAL PROPAGATION MODELS

In this chapter we will give details on RF signabgagation properties along with
propagation modeling equations and parameterslancteeation of RSSI map of the
environment which are important to understand arwtleh to have a favorable
location estimation. We can divide RSS propagatmadeling into two main
categories which are small-scale and large-scalmdgamodels. Large scale fading
predicts the mean signal strength usually for lamgmeiver-transmitter separation
distances. Small scale fading explains the fluatgatharacteristics of propagation
over short distances where signals are usuallgtaifieby multipath phenomenon.

In location estimation applications usually largals fading models, which include
log-distance path loss model and floor attenugpatt loss model, are used to model
the signal propagation. They are simple and sufidess estimating the average

value of RSSI for a given range or vice versa.

5.1RF SIGNAL PROPAGATION PROPERTIES

RSS is a measure of the power received by thewuwacdiom a transmitter and
provides information about the distance of the ctbgarrying it. According to Friis’

formula, RSS is expressed in the following form [5]

Pr = Pt — PL(d) + Gr + Gt (5.1)
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where Pr is the received signal power (dBm), Pthes transmitted signal power
(dBm), PL(d) is the path loss (dB), and Gr and €& @eceiving and transmitting
antenna gains, respectively. So the RSS informatidhe receiver is affected by the
antenna types, orientation of the receiver-trarteméntennas, transmitted power and
the path loss which is almost impossible to modéhdoor complex environments.

The propagation is greatly affected by the envirenmbetween the source and
destination. So in indoor environments, furnitueigctrical devices, metal objects,

machinery, shelves, walls result in multipath eeghich make the indoor position

estimation very challenging. Multipath effect isusad by the signal reaching the
destination via multiple paths as the signal réflediffracts or scatters on the path.
Multipath causes fluctuations in the received sigravelope and phase. Thus the
signal components arriving from direct and indineaths are combined to produce a
distorted version of the transmitted signal [17].

The propagation of the radio wave mainly dependsthen obstacles’ properties
(surface roughness, size, shape, material) oncamdrthe propagation path as well
as the antenna and signal wavelength propertiestaClp’s size is one of the most
important factors that affect the propagation. Whbstacle’s size is larger than the
wavelength, reflections (change of direction) coolctur when the radio wave

impinges on the surface of the obstacle.

When there is an obstacle which usually has shegpularities and with size larger
than the wavelength, blocking the LOS between thasmitter and the receiver,
diffraction may occur. Diffraction is the bendinfitbe signal around the obstacle or
the spreading out from an opening. The secondaryesvaesulting from the
obstructive surface are present throughout theespad even behind the obstacle,
even when an LOS path does not exist between dnsritter and the receiver. At
high frequencies, diffraction, like reflection, adems more upon the geometry of the
object, as well as the amplitude, phase and pal@wiz of the incident wave at the
point of diffraction [4].
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If there are objects with size on the order of vewgth or smaller, the signal may
radiate in many different directions around theecbj This is called scattering. These

mechanisms are illustrated in Figure 5.1.
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Figure 5.1 RF Signal Propagation Mechanisms [4]

5.1.1Small Scale Fading

Small scale fading is explained by the fact thig instantaneous received signal
strength is a sum of many contributions coming frdiffierent directions due to
many reflections of the transmitted signal reachihg receiver [34]. Since the
phases are random, the sum of contributions vavidsly. The amplitude of the
received signal obeys a Rayleigh or Rician fadistyiution. In small-scale fading,
the received signal power may vary by as much @etbr four orders of magnitude
(30 or 40 dB) when the receiver is moved on thesomf only a fraction of a
wavelength. In Figure 5.2 a particular example @&asured signal in a multipath
environment is given [35]. In this example the siginequency is 910 MHz and the
wavelength is about 33 cm. Over distances as smsafialf the wavelength, 20 dB

RSS variation can be observed due to multipaticestfe
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Figure 5.2 Amplitude of the received signal asrection of the range [35]

There are two important small-scale fading mod&ayleigh fading and Rician
fading. Rayleigh distributions are used to modelsgescatterers without an LOS
component, while Rician distributions model smathls fading with stronger LOS
component [4]. In Figure 5.3 the small scale fadioiipws Rician distribution for

receiver 2, where it follows Rayleigh distributitor receiver 1.
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Figure 5.3 Propagation with and without LOS [4]
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Rayleigh fading model was first proposed in a comtmgaper written by Lord
Rayleigh in 1889, describing the resulting sigriahany violinists in an orchestra
play in unison, long before its application to meb&adio reception was recognized.
The basic model of Rayleigh fading assumes a redemultipath signal consisting
of a large number (theoretically infinite) of refted waves with independent and
identically distributed in phase and quadrature lgoges [17]. The mobile antenna
receives a large number, say N, reflected and esedttwaves. Because of wave
cancellation effects, the instantaneous receiveslepseen by a moving antenna
becomes a random variable, dependent on the locatithe antenna. Thus both the
in phase and quadrature components, I(t) and @@pectively, can be interpreted as
the sum of many (independent) small contributidéach contribution is due to a
particular reflection, with its own amplitude andhgse. For sufficiently many
reflections (large N), the Central Limit Theoremwnsays that the in phase and
quadrature components tend to a Gaussian disuibwti their amplitude. I(t) and
Q(t) appear to be independent and identically ibisted (i.i.d). If there is no
dominant component arriving at the receiver, thecess will have zero mean with
phase evenly distributed between O amd Phe envelope of the channel response
will therefore be Rayleigh distributed [4].

A sample of a Rayleigh fading signal is given img¥e 5.4 which shows signal
amplitude (in dB) versus distance for an antennaimgoat a constant velocity.
Notice the deep fades that occur occasionally. Qlgih fading is a random process,
deep fades have a tendency to occur approximatadyyehalf a wavelength of

motion.

In Rician fading, the amplitude gain is charactdizy a Rician distribution. The
Rician distribution occurs when a strong path exist addition to the low level
scattered path [17]. This strong component mayhee lOS path or a path that
encounters much less attenuation than others. Byéeigh distribution is a special
case of the Rician distribution; when the stron¢hpa eliminated, the amplitude

distribution becomes Rayleigh. While the modelntuitively appealing, it is very
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difficult to determine the model parameters (itbg local mean of the scattered
power and the power of the dominant component) ipeBc as this requires

physically isolating the direct wave from the ses#ti components.

LR LR R AN LR
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[

Signal strength (dB)
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Figure 5.4 Small scale fading with moving anterdia [

5.1.2Large Scale Fading

Large scale fading is explained by the gradual tdgeceived signal power (since it
propagates in all directions) with transmitter-igee separation distance. To have an
insight into large-scale fading, the first natustdp is to consider propagation in free
space, i.e., a medium that has no obstructer 4. ffee space propagation model is
used to predict received signal strength when thesmitter and receiver are
separated by a medium that has absolutely no dbstaks such, it has been found
that this model also holds when the transmitter aadeiver have a clear,
unobstructed LOS path between them. Satellite comation systems and
microwave LOS radio links typically undergo freeasp propagation [34]. Friis free

space formula is given as [10]
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4md (5.2)

Pr = Pt-10log (T)2+ Gr + Gt

where Pr is the received signal power (dBm), Pthes transmitted signal power

2
(dBm), 10l0g (22) " is the path loss which will be denoted as PL(dB)( Gr and

Gt are receiving and transmitting antenna gainspeetively, d is the distance
between receiver and transmitter antennas Aarsdthe wavelength of the signal
transmitted. In Figure 5.5 theoretical RSS valuss measurement values in an
outdoor environment are given [10]. Free spacemapsan is used for the calculated
RSS values. It is seen that measured RSSI datatdoar environment fits quite well

to the free space propagation model.

Theoretical Values Vs Maaswed Values
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Figure 5.5 Comparison of theoretical and ieicgd RSS values in outdoor [10]

For indoor environments, log-distance path loss ehodmong different path loss
models, in its simplest form often used for electagnetic signals, can be expressed
as [5]
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n

PL(d) = PL(dg) + 10log (di) (5.3)
0

where d represents the distance between the trtiesrand receive®L(d) is the
average propagation loss (in dB) measured at aistenn is the path loss exponent
which indicates the decreasing rate of signal gttenn an environment, is a
reference distance normally chosen close to thmestnitter (e.g., 1m), aneL(d,) is
usually empirically measured average path loss lWwhiccurs ad, distance. In
general, the exponent n is environment dependerfteé space, n is equal to 2. In
more complicated environments, n will generallyldrger meaning high signal path
loss. n may range from 1.2 to 8 as given in [4]mlist be noted that the model
introduced in (5.3) does not consider small scatenig, namely, the variable factors
in the surrounding environment such as shadowihgisTthe path loss can only be
considered as an average value. Shadowing, alsarredf to as log-normal
shadowing, represents the effects of different pgapion paths due to the
obstructions, antenna orientation, moving objeatshe environment, leading to
different RSS measurements at different locationth Whe same distance to the
transmitter. To take these factors into considematit has been shown that the
received signal strength usually demonstrates -adwmal distribution where it has a
mean received power in dBm and standard deviation dB. Hence, we take a
probabilistic approach and model the path lossisthiace d as a random variable
PL(d) as given in (5.4) by using a Gaussian ranglariableX;~N(0, 6%) with zero

(dBm) mean and standard deviatmim dB [5].

PL(d) = PL(d) + X, = PL(dy) + 10nlog (di) + X, (5.4)

With a given transmitting antenna power Pt, tram$ng antenna gain Gt, and
receiving antenna gain Gr, the received signahgtrePr(d) (in dBm) at distance d is
given in (5.6) combining (5.5) and (5.4).
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Pr(d) = Pt + Gt + Gr — PL(d) (5.5)

—_ d
Pr(d) = Pt + Gt + Gr — PL(dy) — 10nlog <d—) — Xy (5.6)
0

We can rewrite (5.6) as in (5.7) since the firairfeterms are constant for a given

transmitter — receiver pair in a certain environtnen

Pr(d) = a — 10nlog <di) — X5 (5.7)

Herea is a constant in dBm which will be determined emcplly in the concerned
environment. It is equal to the median receiveaaigower atl, which is usually
taken to be 1 m. n is also to be determined by afsmlibration measurements since

it changes according to the surroundings of thestratter- receiver pair. In
complicated environments n will be larger since dlgmal will attenuate faster as it
travels through obstacles., the standard deviation is also dependent on the
environment. The smalles is the more accurate the measurements are. In
complicated environmentsis expected to be larger. Table 5.1 gives n@amdlues

in different indoor environments [4].

By using (5.7) we can derive that, given an actiistnce d between transmitter and

receiver, the received power Pr(d) is a randomatéei with log-normal distribution
with meana — 10nlog (di) (dBm) and standard deviatiendB. So the probability

0
distribution model of observing a certain RSSI eaht distance d can be written as

[5], [2]
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2
1 |[— <RSSI — a + 10nlog <d£>>
0
RSSI|d) = ex
p(RSSI|d) o p[ 53

wherep(RSSI|d) is the conditional probability density functiontbe observed RSSI

value given the distance d.

Table 5.1 Path Loss Exponent (n) and Standard Bewié) in different indoor

environments for log-distance path loss model [4]

Environment Frequency(MH2z) n o(dB)
Retail Store 914 2.2 8.7
Office, hard 1500 3.0 7.0
partition
Office, soft 1900 2.6 14.1
partition
Chemical 4000 2.1 9.7
factory(obstructed
Chemical 4000 2.1 7.0
factory(LOS)
Suburban home 900 3|0 7.0

Floor attenuation factor propagation model takesri and partitions (i.e., walls)
into account as well as the large scale path [bgk Fo it gives more accurate results

than the log-distance path loss model. The modgiven as [17]

(5.9)

d
PL(d) = PL(dy) + 10nlog (d—) + FAF + Z PAF
0
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where FAF is the floor attenuation factor that es@nts the loss between the floors
of the building in dB. PAF is the partition attetioa factor that represents the loss
caused by obstructions on the path between thenni#tier and the receiver antennas

in dB. Some typical FAF and PAF values are gived able 5.2 [4] and Table 5.3
[36], respectively.

Table 5.2 Average Floor Attenuation Factors in dBwo different buildings [4]

Buildings(Office FAF(dB) FAF(dB)
Building) Building 1 Building 2
Through one floor 16.2 12.9
Through two floors 27.5 18.7
Through three floors 31.6 24.4

Table 5.3 Partition Attenuation Factors for differeuilding materials [36]

Attenuation (dB)
Elevator 23
Building wall 3
Wooden doors with 1
windows
Separating Floors 22

In our work we used an adapted version of this rhimdéuding only the PAF which
consists of wall attenuation factor (WAF) as sugggsn [17]. The simplified wall

attenuation factor propagation model is

d
PL(d) = PL(dg) + 10nlog (d—) + nW - WAF (5.10)
0
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where nW is the number of walls on the path betwbkernransmitter and the receiver
and WAF represents the wall attenuation factor Bt dhe value of WAF is
calculated to be about 3 dB for WLAN applicatioms the literature [36], [17].
However it may change according to the wall makemal thickness as well as the
RF signal frequency, so it should be determinediecafly.

As a result rewriting (5.8) using WAF propagationdsl yields

2
- (RSSI — a + 10nlog (di) —nW- WAF)
0

p(RSSI|d) = o= (5.11)

exp

1
\V2mo

In order to compensate dynamic changes in the @mvient and to remove the heavy
human labor in the training phase, automatic paramealibration techniques are
proposed in the literature [37], [5]. [37] uses EEB02.15.4 sensor network in indoor
environment and exploits RSSI measurements from gfaanchors to obtain the
automatic calibrated parameters. It assumes WAMpggation modeling and
calibrates the parameters of n and WAF automayicaliile obtainsx parameter in
advance. [5] proposes an outdoor localization neetivdh auto calibration of the
parameters and making use of reference tags. ltofBlistance path loss model is

used and the parametersn, ando are estimated automatically.

Detalils related to our work will be given in Chapge

5.1.3RSSI Pattern (Map)

For applying nearest neighbor(s) (NN) or probatiisapproaches to the indoor
localization problem, RSSI pattern/map of the edagnvironment is usually created
in a training phase. The RSSI map represents gmatire of the RSSI readings at

different locations or continuously distributed time area. The performance of the
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localization algorithm is theoretically limited lblye precision and accuracy of RSSI
map. There are two different means of creatingntlagp. One method is predicting
the propagation behavior to estimate the signahgth over a target area using the
detailed floor plan and the propagation models rlesd above. To apply this
method, one can carry out empirical measurementsietive a, n, WAF,and o
parameters for probabilistic approaches ang WAF only for NN approaches. It is
important to take measurements of RSSI at differdistances by considering
dynamic environmental changes, target antenna tatien, and other types of
ambiguities. These measurements can be averagezkfiain distances and curve
fitting algorithms can be used to calibrate theated parameters. Alternatively,
propagation prediction tools can also be used timat these parameters. Then for
every location the RSSI map, in fact vector setR8fSI values, can be created.
Other method of RSSI map creation is the empirneadhod. In this approach signal
strength distribution over the area is estimatedetiaon the measured data at
different locations. Experimental studies suggeat empirical method is better than
the first method in terms of accuracy since propagamodels are insufficient in

precision to predict the signal propagation behajvib

One important step in the empirical method is hovedllect the training data over
the target area. One way is to take samples of [R&@lat predetermined grid cells
that are equal in size forming the target areand44] and [13]. In this approach, a
number of measurements are taken in an offlinaitrgiphase to form the signature
belonging to that grid. In LANDMARC [11] the RSSlam is created with an online
training phase where reference transmitters (tag) wsed to obtain the RSSI
signature at certain locations. In order to us@robabilistic localization methods,

Kernel based approaches [13], [10] or histogranragugh [13] can be used to obtain
the probabilistic behavior (likelihood) of each dyriln Kernel method [13], a

Gaussian probability density of the RSSI observatiois assigned to each grid
location] (see (5.12)). The density is a mixture mfequally weighted density

functions wheren; denotes the number of training RSSI vectors iatioal.
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(5.12)

1w
p(sll) = aZ
j=1

In (5.12)c is an adjustable parameter that determines ththwidthe density ansi
is each of the observed values of RSSI in theitrgiget at locatioh [13] states that,
this one dimensional formula can be extended totivawiate observations, e.g.,
received power from several access points, by plyitig the individual

probabilities, which amounts for an assumptiomaiependence of the observations.

In [10], a similar idea is used but this time th&3R observation density in grid
locationl is distributed around the sample m@athat is obtained ih Also RSSI
sample stdo is evaluated by computing the std. for the sammpéasurements in
each grid cell. In order to obtain the likelihoodnétion p(s|l) for multiple
dimensions or access points, independence assunmptimade and all conditional
probabilities are multiplied together. (5.13) isan as an example to a system with 3

access points.

_(Sl .ull) l (5.13)

3
1
s|l =1_[ ex
p(siD) | |70, o

The histogram method [13] is closely related t@idigzation of continuous values to
discrete ones. The method requires that we fix taokeins, i.e., a set of non-
overlapping intervals that cover the whole rangéhefvariable from the minimum to
the maximum. The number of the bins is an adjustgi@rameter. The density
estimate is then a piecewise constant function vliee density is constant within
each of the bins that counts the frequency of geage of signal samples that fall
within the range of each bin. Another way to cdlldata samples is taking the
measurements while walking. In this way only oneadsample can be obtained at
each location but this time sample locations’ ieti is higher since many locations

are involved. In order to create the area propagatap, the sampled locations are
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grouped into clusters where each cluster is conmpagea sufficient number of
locations [4].

In this thesis we used the method in [17] to crda@eRSSI map to use for the pattern
based NN localization method.
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CHAPTER 6

RSSI CALIBRATION IN THE TARGET
ENVIRONMENT

In this chapter experimental environment properti@g be given and WAF

propagation model and calibration of its parame#éosg with RSSI measurements
taken in this environment will be explained. Alde imethod of automatic calibration
of parameters by using reference tags will be pgegand the method of RSSI map
creation will be given. The derived parameters prmgposed methods will be used in

both simulation and experimental phases of thaghes

The experimental environment consists of two roantl sizes of 4 m x 3 m and 4m

X 6m and 36 m? total area which is shown in Fidgufe

The rooms have a bricked wall between and woodeh raetal furniture and
electrical devices inside. There are 3 RFID readsesl in the system one (R3) in the
small sized room and two (R1, R2) in the large ¢im@om as shown in Figure 6.1.
The readers are placed at the corners of the raomigler to cover most of the area
by the readers’ patch antennas. The reference (fBys T2, T3, T4) used for
automatic calibration and smoothing purposes astilduited in the area two in one
and two in the other room towards the central regbthe overall area. The used
RFID products' RF frequency is 868 MHz, data rat@50 kbaud, BW is 540 KHz
where the tags transmit with 5 dBm output power @adiers receive with -90 dBm

sensitivity level.
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Figure 6.1 Experimental environment

6.1 OFFLINE CALIBRATION OF PARAMETERS

First we rewrite the WAF propagation model for cenence

d
PL(d) = PL(dy) + 10nlog (d—) + nW - WAF 6.1)
0

where d represents the distance between the trdesrand receiveRL(d) is the
average propagation loss (in dB) measured at aistdnn is the path loss exponent
which indicates the decreasing rate of signal gtfenn an environment], is a

reference distance normally chosen close to thestniter (e.g., 1 mPL(dy) is
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usually empirically measured average path loss lhwbitcurs atl, distance, nW is
the number of walls between the receiver and thasmitter, WAF is the wall
attenuation factor in dB.

We rewrite (6.2) for convenience for the receiveghal strength Pr(d) (in dBm) at

distance d

Pr(d) = Pt + Gt + Gr — PL(d) (6.2)

with a given transmitting antenna power Pt, trattng antenna gain Gt, receiving
antenna gain Gr, and path loss PL(d) at distancEhdn combining with (6.1) by
takingd, reference distance as 1 m and adding zero (dBnann@aussian noise

X to the received signal power, (6.3) is obtained

Pr(d) = a — 10nlog(d) — nW - WAF + X (6.3)

wherea = Pt + Gt + Gr — PL(d,) . Then the mean received powi(d) can be

written as

Pr(d) = a — 10nlog(d) — nW - WAF (6.4)

In the offline training phase the parameters i8)&vill be found to be used in the
experiments and the simulationsis a constant in dBm that denotes the mean value
of received signal power at 1 m distance. It wél found for each reader since it is
also affected by the reader and tag antenna gathsm@tennas may not be identical.
n is the mean value of path loss exponent that rikpeon the propagation
environment. It will be found for each reader sittlse position of the readers and
surrounding objects may affect n value. nW is thember of walls between
transmitter and receiver (T-R). This will be “0” tiie tag and the reader are in the
same room and “1” if they are in different roomsor system. WAF is the wall
attenuation factor in dB that is the loss of powten there is a wall between T-R
when they are at the same distance. WAF shouldjbal ¢or all readers since it only

55



depends on the type of the wall materdgl. is the Gaussian assumed [10] RSSI
measurement noise with zero (dBm) mean @d& standard deviation that stems
from signal propagation variations due to multipatfects, antenna orientation, and

moving objects in the target area.

For calibrating the parameters mentioned above awe un a set of experiments
with one tag at different locations for each readdre readers were located at the
corners of the rooms with a 45 ° angle to the wail4.2 m height. The height was
determined so as to have as much as LOS region theéthtarget tag which was
located at 1 m height. The height of the tag wderdgned as 1 m in order to model
the case when a person or a medium sized box wgriyi To derive the mean
parameters except WAF we took measurements atetiffelistances to the reader in
the same room and at line of sight. To find WAFuealve took measurements at 3 m
distance in the same room with the reader anderother room. In our experiments,
knowing that RSSI at a fixed distance is affectgd the location of the tag,
orientation of the tag antenna, and moving objectthe surrounding environment,
we created these noise sources while measuring Rigds. We took measurements

at fixed distances on a circular radius as illusttdby the stars in Figure 6.2.

Measurement
.* -\\ e

/ * points
Y */ .
\* f/f’ ‘Ill ~Tag
§
" b

\ — Reader

Figure 6.2 lllustration of measurement points fapgagation parameter calibration
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At each location we took about 100 measurements 8vdifferent orientation of the

tag being vertical while creating random human nmosets around the tag and the
reader. For each distance we experimented at drelift locations thus having totally
400 measurements for each distance. As an exampleigtogram of RSSI readings

at 1, 2 and 3 m distances are given in Figure 6.3.

70 -60 &0 40  dBm 0 £ =) 40 dBm! 41 dBm

Figure 6.3 RSSI histograms at 1m, 2m, and 3m, otisedy.

As can be seen in the above figures RSSI observatines significantly at the same
distances but at different location and orientatide assume that the RSSI
observation at the same distance is Gaussian kdisgd. By analyzing the 400
measurement data at each distance we find theasthddviation of RSSI readings at
that distance. Then taking the average standardhatiav values for all of the
experimented distances we get the mean standardtidev(std.) value over the
target area which is approximately 5.2 dBm. [14jorts thato in a home is 3 dB and
[4] reports to be 7 dB in a suburban home. Takingsé literature values into
consideration, we cannot have a consistevdlue that can be a reference value for
us to compare our finding with. That is not swjmg in fact because surely, the
experimental methods, the antenna type, the pHysioperties of the environment
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are crucial here to get tlevalue. Comparing our finding 5.2 dB with the saenpl
literature values we can at least comment thafinding seems reasonable. In order
to obtain the other mean propagation parameterstook the average of 400
measurements to giver(d) at distance d. After obtaining mean RSSI values at
different distance values we used the curve fittow of MATLAB exploiting least
squares (LS) algorithm to find the n amgarameters in (6.4) for each of the readers.
To find WAF we took measurements at the same distato a reader in two rooms.
Then taking the average of the RSSI readings irh gaom we just took the
difference of average RSSI values found in two spaooms to find WAF value in
dB. We found WAF as 2 dB. In [17] it is reportedlie 3.3 dB and in [36] 3 dB
which are close to our finding. Calculated paramestues for each reader are given
in Table 6.1.

Table 6.1 Propagation parameters for 3 readers

a (dBm) n WAF(dB) o(dB)
Reader 1 -42 2.3 2 5.3
Reader 2 -52 2.3 2 5.2
Reader 3 -45 2.5 2 5

In Figures 6.4 - 6.6 average RSSI measurement vdoreeach reader at different
distances and theoretical path loss model curvés the calculated parameters are

given.

In Figure 6.6, measurements taken in the across faeader 3 are given to show
the effect of the wall attenuation. The readings at, 1.5 m, 2 m, 2.5 mand 3 m are
at the same room with the reader where the on8s3at, 5 m and 6 m are in the
other room. So drawing the curve exploiting (6.4hwW=1 fits well to the real
RSSI measurements through the wall.
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In our location estimation simulations and expentseve used the parameters given

in this section for the methods with offline cadbion.

Log-Distance Path Loss Model vs RSSI Measurements for Reader 1

; —  Path Loss Model
42k ® Measuremenis

B B
o .
T 1

-
y.

Ea
o
L

RSS! (dbm)
g o 5

-

£81 \N\"‘“\.

E%.S 1 14 2 25 3 s 4 45 5
T-R Distance {(m)

Figure 6.4 Measured and modeled RSSI values fodétela
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Figure 6.5 Measured and modeled RSSI values fodétea
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WAF RSSI Model vs Measurements for Reader 3
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Figure 6.6 Measured and modeled RSSI values fodé&tea

6.2AUTOMATIC CALIBRATION WITH REFERENCE TAGS

In propagation parameter based localization appdica calibration of the
propagation parameters is very important in ordeddcrease the localization error.
Usually calibration process is a preliminary offlirprocess that needs human
intervention and it suffers from the changes in éngironment that may affect the
parameters significantly. In order to remove thenhn intervention and make the
parameters adaptive to environmental changes, aewartomatic calibration
procedures are proposed in the literature [38]], [B®], [16], [5]. These calibration
techniques are mostly used for wireless sensorarktaystems [38], [40], [16]. [5]
is the only literature work that exploits automatadibration for RFID systems but it
is proposed for outdoor localization problem. Sowark is the only one which uses
automatic calibration procedure for indoor locdii@a problem using RFID system.
For this purpose we use reference tags that beaeny one second and located at

known fixed points in the target environment.
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We know that for estimating an accurate propaggtemameter set it is important to
sample the target area by choosing the experimenmidl locations as many as
possible. Sufficient sampling gets crucial espécidbr complicated indoor
environments. So for calibrating the parametersheed as many reference tags as
possible which is not feasible for real applicaioB8o our one purpose here is to be
able to estimate the parameters with an acceptddaracy with respect to the
offline calibration technique using a feasible nembf reference tags. In this work
we used 4 reference tags in an area of 36 m?2 imgudvo rooms. We evaluated the
accuracy of the parameters by comparing the locastimation results with that of
the offline calibrated parameters given in the ®eac?.3. Our another aim is to have
a flexible system that is adaptive to moving olgeanvironmental changes or
changes in the reader antenna position or orientatiat may affect the propagation
parameters in the environment. As well as usingregice tags for calibration we
also used limiting values forand n parameters (refer to (6.3)) that are obdabne

adding a range to the values found by offline catibn.

[16] suggests n and WAF parameters to be autontigticalibrated and states that
there is no need to calibrateautomatically because it is only affected by the
hardware. But in faat as being the received power at reference distégge 1 m)

it may be affected by the reader antenna oriemtaéind height as well as the
surrounding objects or obstacles that affect theadipropagation. So it is necessary
to automatically calibrate theparameter in order to take these effects into @awico
We calibratedx and n for each reader as proposed in [5]. On tiher diand WAF is

a parameter that only depends on the wall progevildch do not change thus WAF
parameter can be obtained a priori and used axeal fparameter during the
application. For probabilistic applications we poep to calibrate the standard
deviation of filter measurement modeby estimating the RSSI measurement noise
using reference tags. To sum up, we propose tbrasdi the parameteos n, ando

automatically while using a priori calculated WA&rameter.
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Least Squares (LS) or Least Mean Squares (LMS) [38], [40], [16] are suggested
in the literature to calibrate the signal propagaparameters. We used LS algorithm
to calibratex and n parameters. For the solution we need tothedparameters that

minimize (6.5) for each reader |.

7 \2
F; = Z(Rssh- j — RSSI)) (6.5)

1

Where i{1,2,3,4} indicating the reference tag index{1;2,3} indicating the reader
index, RSSI;; is the RSS value measured from tReag at the'] reader andRSSIj; is
the calculated RSS value from tffetag at the' reader with the parametersand
n. The equation relatinBSSIj; with a, n parameters, ant};, that is the known

distance from thé'ireference tag to th& jeader, is given in (6.6).
RSSIj; = o; — 10 - n; - log(d;;) — nW - WAF (6.6)

In order to find the estimates af andn; for the fh reader we iterate from -40 dBm

to -55 dBm and n from 1.5 to 3.

After estimating the parametexsandn; we can estimate by finding the standard
deviation of the RSSI readings obtained betweem eeference tag i and reader |
pair as in (6.7). Here we uBSSI;; as the mean RSSI value from tag i to reader j

using (6.6).

3

1 4
o= —Z Z (RSSI;; — RSSI,,)’ 6.7)
12 i=1 /

j=1

By using the proposed methods the calibrated pasasdound in the static

experiment environment are given in Table 6.2.
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Table 6.2 Automatically calibrated propagation paeters and RSSI std.

a (dBm) n o
(dB)
Reader 1 -45 2.3
Reader 2 -49 2.7 5.3
Reader 3 -42 2.5

Despite estimated parameters seem quite closeetmiles found in the offline
calibration, automatic and offline calibrated paedens will be compared in detail in

Chapter 7 by using the location estimation erratistics.

6.3RSSI MAP CREATION

In the propagation pattern based localization nebtdoes, we use the method
described in [17] that finds the best matches oSR@attern (nearest neighbors)
stored in the offline training phase. In RADAR meah RSSI vectors for two

different orientations of the transmitters are atbat each training grid location. In
our work we store randomly placed tags’ RSSI valsng the storing process in
one grid cell to model as many different orientasioRSSI values as possible. We
randomly moved the tag in a 20 cm x 20 cm areaadswlchanged the orientation of

the tag placing always vertical to the ground.

At each grid we stored 40 RSSI measurement vectorsposing of RSSI
observations for the 3 readers. Then we take thannf®®SSI| values for the
corresponding grid cells. We defined 32 furnituependent grid locations which are
approximately 1 m spaced as our training locationsur target area of 36 m2. The
grids are equally spaced at 1 m distance. In ttestd up, readers are placed at 1.2 m
height and tags are placed at 1 m height that e ased in the estimation

experiments.
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CHAPTER 7

SIMULATIONS AND EXPERIMENTAL WORK

In this chapter, first the applied localization aratking methods both in simulation
and experimental work and the proposed contribstame given in Section 7.1. Then
the details and results of simulation and experialework will be explained in

Sections 7.2 and 7.3, respectively. To conclud&gction 7.4, analysis of simulation

and experimental work will be given.

7.1 APPLIED LOCALIZATION AND TRACKING METHODS

7.1.1Propagation Pattern Based Nearest Neighbors (NN) Mieod

As mentioned in Section 3.1.1 pattern matching ritlgms are very successful in

location estimation accuracy but have several actirawbacks. The propagation
pattern of the environment can be created in dmefphase storing a large amount
of data at densely spaced grid locations or in@me phase using densely spaced
reference transmitters in the area. We could naiyapnd compare the online

method because of insufficient number of referetags. We generated an offline
propagation map using 32 grid locations as define8ection 6.3 and recorded the
mean RSSI vector for each grid. After generatirgrttap we applied the method in
our experimental work to compare with the otherhmds. But we do not go into

details of this method since we seek a more pidcteasy to deploy and cost

effective method for real life applications.
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7.1.2 Propagation Parameter Based Nearest Neighbors (NWJethod

As mentioned in Section 3.1.2, the propagationepattof the environment is
generated virtually using different propagation med The used propagation model
is often log-distance path loss model which is alsed in this work. In this method
propagation parameters of the log-distance pathrtozdel (np) can be calibrated in
an offline training phase (see Section 6.1) orrezfee transmitters at known
locations can be used to automatically calibragepghrameters (see in Section 6.2).
We investigate the offline approach in simulatioaed both approaches in
experimental work in details. We especially stress the automatic calibration
approach and use it for the other localization m@s$hin this thesis. In general
parameter based NN methods are very simple to peind implement, but less

accurate compared to the pattern based approaches.

7.1.3Grid Based Bayesian Filtering

Details of the algorithm were given in Section 4itlwas implemented both in
simulation and experimental work and the behavaidrthe filter for differing grid
resolution, RSSI measurement noise, and processlmeere investigated and
compared with the other methods. Grid based BayeSligering is simple and
accurate to use for tracking applications with lpregcision needs in moderate sized
environments. But if the size of the area and trexipion need increase, the grid
resolution and number have to be increased whidhsesa a large load of

computational work.

7.1.4Sampling Importance Resampling (SIR) Particle Filteing

Details of the filter were given in Section 4.2\¥e simulated and implemented the
basic SIR filter algorithm experimentally and alsapplied two different
modifications in the resampling stage which wereppsed in the literature. One is

smoothing the importance factor w at the beginmihthe resampling stage by taking
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the square root of the importance factor of eaateat particle. This smoothing
avoids sample impoverishment problem. The otherawgment is to resample not

at every recursion step but when thg; value is smaller than a threshold Nt value.

We simulated the effects of the proposed improvesfar different conditions and
also investigated the behavior for different measwent noise, process model,
number of particles N, and the Nt value. SIR filter very easy to apply,
computationally more efficient and more accuratesfume cases than the grid based
Bayesian filter.

7.1.5Additional Approaches To Conventional LocalizationMethods

We mainly applied three different approaches to thenventional
localization/tracking methods which are detailedolse Automatic calibration of
propagation parameters and filter measurement stisg) approach is proposed in
the literature, but this thesis work is the firgirwthat applies this approach to RFID
based indoor localization problem as far as we kn@®SI smoothing algorithm
using the reference tags can be accepted to betabeion to the literature since we
could not find such an approach in the literature.

7.1.5.1 Automatic and Online Calibration of The Propagation Parameters

We found very little information about the autorsatalibration of the propagation
model parameters for localization methods in tterdiure. It is expected that using
denser reference transmitters would yield a closgproximation of the real
propagation parameters. But we investigated themasbn results when only 4
reference tags were used for calibration. We catiéthen anda parameters of the
log-distance path loss model automatically and alstantaneously at each step of
RSSI observation from all of the reference tagsveccall it “online calibration” as
well as "automatic calibration". The details of ttedibration were given in Section
6.2. We apply automatic calibration approach tdhe#cahe localization method. But

first we apply it to NN method and compare the tmraestimation results with that
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of NN method using offline calibration in experint@nwork to observe the effects

of online calibration.

7.1.5.2 Automatic and Online Calibration of Filter Measurement Noisec

For the Bayesian filters, using an accurate measeme noise model is important.
We assume Gaussian distributed RSSI measuremesg aoid propose automatic
calibration of the standard deviatiento be used in the measurement model of the
Bayesian filter. We calibrate the parameter autarably and online by using the
reference tags as explained in Section 6.2. Byiclngo automatically in an online
phase it can adapt to the changes in the environsush as people moving around
and so we claim that online calibration efmay improve estimation accuracy
especially in the case of dynamic RSSI measureereots. Also it is a very simple
and practical method to apply. We applied this apphn to the grid based Bayesian
and SIR filters in the experimental work and tedtaddifferent conditions yielding

the outperforming estimation results.

7.1.5.3 RSSI Smoothing By Using Reference Tags

Using the RSSI readings from the reference tagls knbwn locations, we propose
an algorithm to smooth the RSSI readings from #ngett tag when it is determined
to be in a certain range to one of the referengs.tén order to determine the
closeness of the target to the reference tags,ndetlie Euclidean distance of the
target to all of the reference tags and then obtlaé weighting factor for each
reference tag as also calculated for NN methodthefweighting factor for any of
the reference tags is larger than 0.4, the tagetetermined to be close to that
reference tag. Knowing the real locations, we dateuthe expected RSSI vectors of
the reference tags using the log-distance path pospagation model and obtain
RSSI error vectors by taking the difference of theected and observed RSSI
vectors. In the last step, if the target is detagdito be close to one of the reference
tags, the calculated RSSI error vector for tha¢nexice tag is multiplied with the
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weighting factor and then subtracted from the olekiRSSI vector of the target to
give the smoothed RSSI vector. The idea is thttaftarget is close to the reference
tag, a correlated measurement error is added tdatiget RSSI measurement. We
claim that for the tested locations of the targetthat are close to the reference tags,
the estimation error is decreased significantlythy RSSI smoothing algorithm. To
observe the effect we applied this approach to lgasked Bayesian and SIR filters in
the experimental work and tested with differentdibans yielding the improving

effect of the algorithm.

7.2SIMULATIONS

In the simulation phase of our work, several ofldealization methods explained in
Section 7.1 were applied before the experimentalsphn order to compare the
methods and investigate the effects of differendet® and parameters. Since it is
sometimes very difficult and time consuming to experiments to yield statistical
data, we have run simulations to determine theilddtglan of our experimental

work in advance. It is not possible to model thal renvironment and noise
parameters by simulations but simulation work givwes the theoretical results
explaining weak and strong behaviors of localizatmethods and the behavior of
the methods with changing parameters (e.g., gsdlugion, number of ¥ nearest

neighbors, etc.). Simulations of parameter basedmdéthod with offline calibration

of the propagation parameters, grid based BayemiahSIR filtering methods are

described in this section.

In Section 7.2.1 we will give details of the envinoent models and the simulated
methods and parameters. In Section 7.2.2 the dimmlaesults of different
localization methods with the effects of differggarameters, and in Section 7.2.3

comparisons and analysis of the simulated methatdbevgiven.

In Appendix A, the Cramer Rao Lower Bound (CRLB) éwr localization problem
is derived. Before starting simulation results wi# give the important results of the

CRLB.
68



By investigating the resulting equation of the loweund, it is seen that the location
estimation lower bound depends on

* RSSI measurement noise standard deviatjon

» Signal propagation log-distance path loss paranmeter

* Number of readersggr used in the localization system

« The relative target location,(y) and the reader locations;(y;).

We give the CRLB for the RMS distance error witlaeging RSSI noise std. and
number of readers in Figure 7.1.

In the figure it is seen that RMS error lower bouncreases with increasingand

decreasing number of readers as expected.

16 T T T

—4—with 3 readers
—+—with 4 readers
1.4+ —&— with 5 readers %

RIS Distance Error CRELE {m)

Elz 1 1 1 1 1
3

RSS! noise std. (dB)

Figure 7.1 RMS error CRLB with changiegand number of readers
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7.2.1Simulation Setup and Models

For all simulations a single room model with siZzesn x 8 m is used. Unless

otherwise stated:

For each simulation, 1000 simulation runs were iedrrout to yield location

estimation statistics. The simulated target emugsad with log-distance path loss

propagation model with zero mean Gaussian noisedadeébr each run, the target is

placed randomly at any location within the limité the modeled room. For the

Bayesian methods, for each simulation run, locaéistimation will be done after a

certain number of recursions that will be given floe fixed target simulations and

estimation will be done for every step if the tangemobile.

Unless otherwise stated the related parameternssackas below:

Filter measurement model is Gaussian with standevditions=5.2 dB and RSSI
measurement noise is Gaussian with standard devigf+5.2 dB

Note: o is used as a parameter of the filter indicating theasurement model
noise std. wheres, will denote the std. of the noise added on the IRSS
measurement from the target in the following sexgio

Log-distance path loss exponent (n) = 2.3

Reference RSSI at 1 m distanog € -52 dBm

Number of readers fgr): 3 (shown in Figure 7.2)

Filter process (motion) model is Gaussian with zaeman and std. D = 0.5 m and
target motion is Gaussian with zero mean andixfda: 0.5 m.

Number of particles in particle filter (N): 250

Grid spacing of grid cells in NN and grid based moels: 1 m (shown in Figure
7.2)

Grid cell size: 1 m2 with the centers located amdhicles shown in Figure 7.2.
Number of grid cells (ks ): 28
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Figure 7.2 Center of grid cells with circles andder locations with squares

For each simulation run location estimation err®rcalculated as the Euclidean
distance of the estimated (x,y) position to theegitarget (x,y) position in meters.
From total estimation error data we calculate tream(average) of absolute error,
root mean square error (RMSE), and standard dewidstd.) of the error. We also
obtain the cumulative distribution function (CDR)tbe error distribution which is

mostly used for comparison in the literature andgi€DF plot we give median (50

percentile) error and 90 percentile error. 50 petiteeerror can be explained as 50
percent of the total error data is smaller thangiven 50 percentile error thus the
error is smaller than the given 50 percentile emoth probability of 0.5. 90

percentile error can be commented as a measurkeombximum distance error
statistics since it means that 90 percent of thal wrror data is smaller than the
given 90 percentile error. In the related literatiubne or several of the mentioned
statistics is used, so we will give all of the erroetrics for each simulation. The

error statistics used in this thesis are absolute statistics.
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7.2.2Simulation Results

In the following sections each simulated method details will be given. For each
simulated localization method different parametefcts will be investigated.

7.2.2.1 Parameter Based NN Method with Offline Calibration

Parameter based NN method simulations can givemy®riant ideas about the
behavior of other types of NN methods. So this &tmn is investigated deeply.
RSSI measurement noise sta,], number of readers gkg), grid number (kg.L),
and number of k nearest neighbors)k target environment area, and reader

location configuration are varied to simulate tredfects.

A. Changing Number of Grid Cells
The parameters are used as below:

kceLL =6, 8, 16, 28, 56, 98, 112,k=3, 4, 8, 14, 28, 49, 56 (respectively ferk
values),0,=5.2 dB, lgpr =3

Changing the number of grid cells, the resultingrestatistics are given in Table 7.1
where CRLB=0.80 m.

Table 7.1 Error statistics for changingelk. for NN method

KceLL RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
6 1.87 1.63 1.47 2.89 0.92
8 1.80 1.59 1.48 2.72 0.84
16 1.78 1.57 1.44 2.73 0.84
28 1.79 1.59 1.51 2.65 0.81
56 1.78 1.59 1.49 2.62 0.79
98 1.78 1.59 1.49 2.61 0.80
112 1.77 1.57 1.47 2.66 0.82
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It is seen that increasing the grid number, in@eadke accuracy significantly first.
But further increasing the number does not sigaifity affect the accuracy since
increasing grid cell number means only increasimg precision of the location

space. So we prefer to usg:k =28 for our simulation work.
B. Changing The Number of Readers

Changing number of readers, the resulting erraissitss are given in Table 7.2.

The parameters are used as below:
kRDR :3, 4,0'0:5.2 dB, I‘@ZELL :28, K\IN =4

Table 7.2 Error statistics for changing numbereaiders for NN method

kror| RMSE Mean Median 90 per.| Error CRLB
(m) error (m) | error (m) | error (m) | std. (m) | (m)
1.95 1.66 1.46 3.09 1.0 0.8
4 1.74 1.49 1.30 2.76 0.91 0.64

For NN methods, increasing number of readers dseseastimation RMS, mean,
median, 90 percentile errors and also the stchektrors as in Table 7.2. This result
is an expected result which is also stated by CR&iB¢e increasing number of

readers increases the information that we havetdbcation of the target.
C. Changing RSSI Measurement Noise 3td.

The parameters are used as below:
0'0:3, 52, 7, 9 dB, ﬂ&)R :3, I@ELL :28, K\IN =4
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Changing thes, value, resulting error statistics are given inl€ah3 and RMS error

VS. g, graph is given in Figure 7.3.

Simulation results show that increasing RSSI mesmsant noise decreases the

estimation accuracy as CRLB also states.

Table 7.3 Error statistics for changing RSSI measent noise std. for NN method

o RMSE | Mean | Median |90 per.| Error | CRLB
(m) error | error (m) | error std. (m)| (m)
(m) (m)
3 1.38 1.18 1.01 2.21 0.71 0.46
5.2 1.95 1.66 1.46 3.09 1.0 0.8D
7 2.29 1.95 1.74 3.61 1.20 1.08
9 2.57 2.2 2.00 4.10 1.33 1.38

3 T T T T T

—&— MM Based Method RMS
—+— CRLE

245

g
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—

Estimation RM3 Errar ()
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0.54

RSS! Noise std. (dE)

Figure 7.3 Pattern Based NN method RMSE and CRUB ghanging,
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D. Changing Number of Nearest Neighbors

The parameters are used as below:
knn =1, 2, 3, 4,5, 6, 7, 10, 15, 20, 23, 25,28;5.2, 11 dB, kpr =3, keer =28

Changing the number of nearest neighbors, thetnegudrror statistics are given in
Table 7.4 and Figure 7.4 fop=5.2 dB where CRLB=0.80 m

Table 7.4 Error statistics for changingyor NN method withsy=5.2 dB

Knn RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
1 2.17 1.86 1.65 3.3 1.12
2 2.07 1.77 1.55 3.23 1.06
3 2.01 1.73 1.49 3.16 1.03
4 1.95 1.66 1.46 3.09 1.00
5 1.92 1.66 1.44 3.02 0.97
6 191 1.65 1.40 2.95 0.96
7 1.89 1.64 141 2.87 0.95
10 1.83 1.6 1.44 2.82 0.89
15 1.79 1.6 1.51 2.65 0.81
20 1.79 1.61 1.59 2.64 0.77
23 1.82 1.65 1.60 2.63 0.75
25 1.84 1.68 1.64 2.64 0.75
28 1.87 1.72 1.66 2.69 0.75

Investigating the results in Table 7.4 and Figuewe notice that RMSE decreases
up to a level (1.79 m) with increasing kNN to 1ben RMSE starts to increase as
KNN further increases. But, 90 percentile errordases until we increase KNN up to
23, then 90 percentile error starts to increaskNds further increases. From these

statistics we can conclude that, when kNN increasesn 15 to 23, average
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estimation error increases slightly while maximumoe decreases. So in a real
application, it is a matter of choice which errordecrease so as to optimize kNN

number.

35 T T T T T
——80 per. Error
—+—RM3S Error

3.4

28 a

24 4

Estimation Distance Error (m)

22 —

1.8F .

15 | | | |
a 5 10 15 20 25 30
kMM number of Mearest Meighbors

Figure 7.4 RMS error and 90 percentile error whihrging ky for 0,=5.2 dB where
CRLB=0.80m

We also simulated thie,y effect witho, =11 dB in order to see the behavior of the
estimation method in more noisy environments wi@rRi B=1.70 m. The related

results are given in Figure 7.5.
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In a more complicated environment witf=11 dB and with 28 grid cells, it is seen that the
maximum error is minimum whenykis 28 (all of the grid cells) where RMS error de=ases

until kyy reaches 20.

45 T T : -
—4— RMS error
\ —&—90 percentile arror
4+ \ H
E .
E 35} \9\8 i
£ i
E e
§ ‘6\9
E 3} |
E
11
i \\ |
2 : : : : ;
0 g 10 15 20 25 30

kNN Mumber of Nearest Neighbors

Figure 7.5 RMS error and 90 percentile error whhrging ki for o,=11 dB, where
CRLB=1.70 m

The simulations we have run are only for givingaigdout how to choseyk value
in an application. We can say that optimumy kvalue is affected by different
parameters of the localization system and the enmient, so it is feasible to

determine kn application specific.

E. Changing the Reader Location Configuration

Our aim is to investigate the estimation accurdcwe place the readers with a
different separation in the same target environm8otwe chose the separation as
half of the default separation as shown in Figufe Tested readers separations are

2.5 m and 4 m. The error statistics are given iblda.5.
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The parameters are used as below :

Kcel =28 (1m grid spacing) Nk =14,0,=5.2 dB, kpr =3

S
® tested reader configuration
7l o o 2 center of grid cells
#  default reader configuration
B O . o o o
L o o L] o
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E 4F a @] & o
]
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ar o o o o
2F oo o L] * O
1r a @] & o
D-. | | | 1 | |
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# axis (m)
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Figure 7.6 Reader configuration with half of théaadt reader separation

Table 7.5 Error statistics for readers separatéd kalf of the default separations for

NN method
Reader sepi RMSE Mean | Median |90 per.| Error std.| CRLB
(m) error | error (m) | error (m) | (m) (m)
(m)
Half of the | 1.52 1.32 1.19 2.32 0.76 0.76
default
default 1.79 1.59 1.51 2.65 0.81 0.80
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It is seen that choosing the reader separationdlesmsignificantly decreases the
estimation error. So in real applications, it igté&enot to place the readers to the

boundaries of the environment but to inner regibthe environment if the reader

antenna is omnidirectional.

F. Changing the Target Area

Using the parameters below for a larger environn@nsize 10 m x 16 m the

estimation results in Table 7.6 were found.

Kcer =135 (1m grid spacing)nk =68,0,=5.2 dB, kpr =3,4

Table 7.6 Error statistics for a larger area for iMithod

Target| krpr | RMSE | Mean | Median | 90 per.| Error | CRLB
Area (m) error | error error std. (m)

(m?) (m) | (m) (m) (m)

160 3 3.73 3.32 3.10 5.58 169 1.20
4 3.39 3.07 2.98 4.92 144  0.92
40 3 1.95 1.66 1.46 3.09 1.0 0.80
4 1.74 1.49 1.30 2.76 091 0O.c4

RFID range is approximately 20 m in indoor envir@amts and for our default
environment of 40 m2, reader separations are 5 dh8&m. In real applications,
reader separation is chosen up to 20 m in largar@mments. So we investigated the
behavior of the localization method in a largeradng choosing the reader separation
as twice of the default reader separations in aewized environment of 10 m x 16
m. As given in the table above, estimation erratistics are also approximately

twice of that of default settings.
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7.2.2.2 Grid Based Bayesian Filtering

Investigating grid based Bayesian filter charast@$ will give us important notion
about behavior of overall Bayesian filters incluglithe particle filter. So the
simulation results given in this section will alse the basis for the next particle filter

section.

In this section we will investigate the effects iofportant parameters of the grid
based Bayesian filters which are
i. Recursion time (rt)
ii.  Number of readers §gr)
iii. Filter measurement model std) @nd RSSI measurement noise
Note: ¢ is used as the filter parameter. RSSI measuremeise is the
simulated noise added on the transmit power noigheotarget which is
also assumed Gaussian but the std. will be denatesi, and unless
otherwise stated, = 0. For some cases it may be taken zero.
iv. Filter process (motion) model std. (D) and targetion
Note: D is used as the filter parameter. If thgeais simulated mobile, it
moves with a Gaussian motion model and the std.beildenoted aB,.
Dy=D unless otherwise stated.

v. Number of grid cells (&)

The transitional densityp(L; |L;—;) forming the process model in our problem is
assumed Gaussian with mdan, and variance D? that means the process noise is
Gaussian with zero mean and D standard deviatien e previous locatioh_; .

D =0.5 m will be used as default parameter for siomulation and empirical work
unless otherwise stated.

We will denote recursion time by rt which is thenmher of times we execute the

recursive Bayesian filter to estimate the locatdrihe tracked object. In recursive

Bayesian filters D and parameters affect the recursion time needed fofiltier to
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settle which will be called settling time. So, irder to investigate the effects of other
parameters, we will start with finding a suitabtevalue sufficient for the filter to

settle when the target is fixed.

During this section and the next particle filterctsen, unless otherwise stated,
moving target with Gaussian motion model will bewased with stdD,=0.5 m. The
target will start its motion from a randomly chodeaation within the area and make
1 motion for each recursion time. At the end ofheascursion, estimation will be
made and the target will be tracked for rt recurdime. Then the target will start its
motion from another randomly chosen location and fequence will be run for
1000 times. For fixed target cases, first the targeandomly located in the area,
then estimation is done at the end of rt recursime, and the sequence is repeated
for 1000 times. Bayesian filtering estimation mayedge from the real location
when the target stops moving for few recursion stigp large RSSI measurement
noise case. So, in this section and the next parfiiter section we also illustrate
estimation results for fixed target case which isast case scenario in addition to

the mobile target cases.

During this section, unless otherwise stated, we cmntrol parameters as given
below:
kRDR :3,0200:5.2 dB, l@ELL =28, D:DO:O.S m, rt=10

But before we start it is necessary to give logatstimation results of MAP and
MMSE estimates (which are given in Table 7.7) teedaine which approach to use
throughout simulation and empirical work. For th@wdations, we used the control

parameters above.
As seen in the table, MAP estimate is worse than Q#\Vestimate for different

measurement noise values, and therefore we use M&sHmate throughout our

simulations and experimental work.
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Table 7.7 RMS error for MAP and MMSE estimates odl ¢pased Bayesian filtering

RMS Error with

RMS Error with

RMS Error with

c=0,=1dB c=0,=3dB c=0g,=5.2dB
MAP Estimate 0.67 1.06 1.40
MMSE Estimate | 0.57 0.97 1.22
CRLB 0.15 0.46 0.80

A. Changing Number of Grid Cells

The parameters are used as below:

kceL =8 (grid spacing 2 m), 28 (grid spacing 1 m), {d2d spacing 0.5
m), 6=0,=5.2 dB, lkpr =3, D=D,=0.5 m, rt=10

The effect of changing number of grid cells is giviea Table 7.8. It is seen that
increasing grid cells from 8 to 28 and 112 makeprowement on the estimation
accuracy as expected but it also dramatically es®e the computation time which
makes the grid based Bayesian filtering unfeagibhese in real life applications. So

we prefer to usedg . =28 for our simulation and experimental work.

Table 7.8 Error statistics with changing numbegrad cells where CRLB=0.80 m

KceLL RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)

8 1.30 1.15 1.11 1.89 0.56

28 1.22 1.09 1.02 1.81 0.54

112 1.16 1.01 0.94 1.72 0.56
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B. Recursion Time

Depending on the RSSI measurement noise addededariet transmit power, the
location estimation may converge to the targettlonaor diverge from the real
location as recursion time increases. So, in ai@énd the mean recursion time for
the filter to settle we add no RSSI noise on thgdiatransmit power and assume
target is fixed in this simulation run. For a fix¢éarget, when there is no RSSI
measurement noise, the Bayesian filter is expect@bnverge to the target location
as the recursion time increases. Figure 7.7 shaws the mean estimation error
varies with increasing rt for randomly placed fixiglget all over the area with the
parameters gor =3, 0=5.2 dB, kg =28, D=0.5 m, with zero RSSI measurement

noise.
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Figure 7.7 Estimation mean error with changing rsiom time with no RSSI
noise added to the target transmit power and tigeti#s fixed
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From Figure 7.7 it can be seen that approximateigc@rsions are sufficient for the
estimation to settle fos=5.2 dB and D=0.5 m. But for obtaining the resuttghe
simulations withc=5.2 dB and D=0.5 m we use rt as 10 to guarantediltker to

settle.

To investigate the settling time with changing @ anve simulate a target at a fixed
location ( (x,y)=(2, 2) ) with zero RSSI measureimanise with the parameters
Kror=3, kceLL =28. The resulting graphs are given in Figure (6:85.2 dB) and
Figure 7.9 (D=0.5 m), respectively.

In Figure 7.8 it can be seen that the settling tinceeases as D decreases which also
means that the filter can track a displacing targete slowly as D gets smaller.
Because, D is in fact a parameter inserted in ilker that is proportional to the
allowable range for the target to displace so tlaffilter with small D value

suppresses large displacements in a recursion.
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Figure 7.8 Recursion time for settling with charpfitter process model std. D

84



In Figure 7.9 it can be seen that settling timeaeases with increasing value as

expected.

In the following simulations, we make use of theules shown in Figure 7.8 and
Figure 7.9 to wait for a sufficient recursion tirioe the filter to settle for different D

andoc values.
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Filter Measurerment model std.

Figure 7.9 Recursion time for settling with champfiter measurement model stsl.

C. Changing Number of Readers

In order to show the effect of number of readergyive the results in Table 7.9 with

the parameters below:
kRDR :3,4, KZELL :28,020'0:5.2 dB, D:DOZO.S m, rt=10

From Table 7.9, it can be seen that the effechofeasing the number of readers to

the estimation accuracy is significant as CRLBestat
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Table 7.9 Error statistics for changingpk for grid based Bayesian method

KrDR RMSE Mean | Median 90 per.| Error CRLB
(m) error (m) | error (m) | error std. (m) | (m)
(m)
1.22 1.09 1.02 1.81 0.54 0.80
1.12 0.97 0.92 1.64 0.49 0.64

D. Changing Filter Measurement Model Sécand RSSI Measurement Noise Stgl.

The detailed error statistics for a moving targéhwlifferentes=0, values are given

in Table 7.10 using the parameters below:

16 (respectively for the givemvalues)

6=0,=1, 3, 5.2, 7, 9 dB,dor =3, keeL =28, D=D,=0.5 m, rt=8, 8, 10, 12,

Table 7.10 Error statistics for a mobile targetmahangings=o, values

0=0, RMSE Mean | Median 90 per.| Error CRLB
(m) error (m) | error (m) | error std. (m) | (m)
(m)
1 0.57 0.49 0.49 0.80 0.24 0.1%5
3 0.97 0.84 0.77 1.44 0.42 0.46
5.2 1.22 1.09 1.02 1.81 0.54 0.80
7 1.34 1.18 1.12 1.96 0.58 1.08
9 151 1.33 1.29 2.20 0.62 1.38

In Table 7.10, estimation error

expected.
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After giving the results for a mobile target, wesalfind it notable to give the
estimation error statistics in Table 7.11 for ay¢drthat is fixed which illustrates the

worst case scenario. We use the parameters below:

0=0y=1, 3,5.2, 7, 9 dB,dpr =3, keerL =28, D=0.5 m, rt=8, 8, 10, 12, 16

(respectively for the values)

Investigating the results in Table 7.11 we noticat tfor a fixed target, estimation
error drastically increases as measurement nogseages as compared to the mobile

target case. It is a known handicap of Bayesiaer§l

Table 7.11 Error statistics for a fixed target watiangings=0,, values

o RMSE Mean | Median 90 per.| Error CRLB
(m) error (m) | error (m) | error std. (m) | (m)
(m)

1 0.65 0.55 0.47 0.97 0.35 0.1%
3 1.36 1.17 1.05 2.13 0.70 0.46
5.2 1.83 1.54 1.34 291 0.98 0.80
7 2.07 1.77 1.54 3.33 1.07 1.08
9 2.34 2.00 1.83 3.86 1.21 1.38

E. Changing Filter Process Model Std. D and Targetidhot

Table 7.12 gives the estimation results for a neol#rget with the parameters
D=D,=0.1, 0.5, 1 mg=0,=5.2 dB, kpr =3, ke =28, rt=16, 12, 10 respectively for

the given D values.

Results show that increasing the process noiseases the estimation error as

expected.
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Table 7.12 Error statistics for different Dgvalues where CRLB=0.80 m

D=D, RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)

0.1 0.79 0.70 0.64 1.23 0.38

0.5 1.22 1.09 1.02 1.81 0.54

1 1.55 1.34 1.25 2.24 0.66

After giving the results for a mobile target, weapive the estimation error statistics
with different filter process model std. D in Tabfel3 for a fixed target which

illustrates the worst case scenario. We use thenpeters below:

D=0.1, 0.5, 1 m, infinitec,s200=5.2 dB, lﬁDR =3, |'Q:E|_|_ =28, rt=16, 12, 10, 8
respectively for the given D values.

Table 7.13 Error statistics for changing filter pges model std. D where

CRLB=0.80 m
D RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
0.1 1.95 1.68 1.50 3.02 0.99
0.5 1.88 1.57 1.34 2.99 1.00
1 1.83 1.54 1.34 291 0.98
infinity 1.74 1.55 1.48 2.61 0.79

In Table 7.13 it can be seen that for a fixed targstimation error decreases as D
increases. The best result is obtained when tteg process noise is uniform (where
D is infinite) for fixed target case which meanattradding no a priori knowledge to
the filter works better if measurement noise igéaand the target process noise is
small (e.g., it is fixed). This can be explained@®ws; for a fixed target with large
measurement noise, smaller D value of the filtarsea large error in the location
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estimation. As a result, we can say that Bayesiterd are suitable to use for

tracking mobile targets.

In order to observe the effect of the D parametahe filter on the dynamic RSSI
measurement noise, we simulated a fixed targetnbt one location with RSSI
measurement error applied on the target transmiepat rt=3 and rt=7. Dynamic
RSSI noise means that large changes in RSSI readoayr in time on a fixed target
due to the moving objects or people in the envireninWe expect that, decreasing
D helps better to suppress dynamic RSSI measuremesd since decreasing D does

not allow rapid changes in the location estimatisrshown in Figure 7.10.
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Figure 7.10 Dynamic noise filtering behavior witeaging D

In Figure 7.10, at recursion times 3 and 7 it isnséhat estimation error jump is
larger for larger D values which shows that a ffilth smaller D value can filter
dynamic RSSI measurement noise better.

89



7.2.2.3 SIR Patrticle Filter

In this section, simulation results of basic SlRefing location estimation with

different conditions and parameters will be givestf Then several improvements

on the SIR filter will be investigated.

The parameters of SIR filtering that will be inugated are

Number of particles (N)
Recursion time (rt)
Filter measurement model std) @nd RSSI measurement noise

Note: o is used as a parameter of the filter. RSSI measeme noise is
added on the transmit power of the target whicassumed Gaussian with
o, std. or it may be taken zero for some cases. Ynitlserwise stated

6=0y.

Filter proposal density (called process model | general Bayesian case)
and target motion

Note: If the proposal density of the filter is asmd to be Gassian, the std.
is denoted as D. If the target moves with a Gaunsgraposal distribution,

the std. will be denoted &g and DD, unless otherwise stated.

For improving the error performance of the basiB $lter, following approaches

will be simulated:

Smoothing the importance factor (w) of each paeticl the resampling
stage by taking the square root of the current weath particle and
normalizing them to sum up to 1.

Instead of resampling at every recursion, resargplilmen the effective

sample sizéN.¢ is less than a threshold Nt.

During simulations in this section, the control graeters will be used as below

unless otherwise stated:

Kror =3,06=5.2 dB,0,=5.2 dB, N=250, rt=10, D=0.5 ni,=0.5 m
90



Also o =g, and D3, if there is no other explanation.

But before we start, we will give the simulatiosués of MAP estimate and MMSE
estimate of the SIR filter in Table 7.14 in orderdetermine which one to use for

estimation.

Table 7.14 RMS Error for MAP and MMSE Estimate

RMS Error with| RMS Error with| RMS Error with
c=0p=1 c=0,=3 c=0y=5.2
MAP Estimate 0.64 1.41 2.06
MMSE Estimate | 0.53 0.97 1.14
CRLB (m) 0.15 0.46 0.80

Although MAP estimate may converge to the accuddyIMSE estimate for small
o =g, , MMSE estimate's accuracy is always better timan of MAP estimate, so
we use MMSE estimate throughout our simulation @mgirical applications.

A. Number of Particles (N)

In order to determine the effect of N, we simuladéechse where the simulated target
is fixed and there is no transmit power noise addéw simulation result of the

effect of N on the mean estimation error is giveffrigure 7.11.

For our simulation environment and localization ljeon, mean estimation error

decreases as N increases up to 250. So we us@%Dakiring our simulation work.
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Figure 7.11 Mean estimation error with changing hewthe target is at a fixed
point with no transmit power noise

B. Recursion Time
In order to determine the effect of recursion tiwee simulated a fixed target located
randomly with no transmit power noise. The relatddrihe recursion time and mean

estimation error is given in Figure 7.12.

Estimation settles after about 7 recursions whentainget is fixed. For fixed target

simulations we will use rt as 10 to guarantee ilerfto settle.

In Figure 7.13 and Figure 7.14 effects of D amdn settling time are given,
respectively.
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Figure 7.12 Mean estimation error with changinghen target location is fixed and

distributed randomly.

The results in Figure 7.13 and Figure 7.14 are tisedetermining sufficient rt for

different D ands values in the following simulations.

Settling Time

1 1 1
0 045 1 148 2 2.5 3 3Aa
Process noise std. D

=B

Figure 7.13 Settling time with changing D
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Figure 7.14 Settling time with changing

C. Filter Measurement Model Std.and RSSI Measurement Noise Stgl.

D.

In Table 7.15, estimation results of SIR filter kvithangings= o, values are given
when the target is fixed but filter proposal densst assumed Gaussian with D=0.5
m. For the simulations, fos=1, 3, 5.2, 7, 9 dB, rt= 6, 8, 10, 16, 20 are used,

respectively.

Table 7.15 Error statistics of SIR filter with clgamg o when target is fixed

o= 0, RMSE Mean | Median |90 per.| Error CRLB
(m) error (m) | error (m) | error (m) | std. (m) | (m)
1 0.63 0.53 0.46 0.97 0.34 0.1%
3 1.48 1.29 1.22 2.23 0.73 0.46
5.2 2.00 1.70 151 3.09 1.07 0.80
7 2.38 2.06 1.86 3.65 1.20 1.08
9 2.55 2.18 1.92 4.19 1.32 1.38
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Estimation error increases as the measurement maiseases as expected. We know
that, for a fixed target with large transmit poweoise added, Bayesian filter
estimation may diverge from the real target locatioecause Bayesian filters
converge to the location where the likelihood & BSSI measurement is highest for
smaller D values and if the measurement is errasiesstimated location will have a
large error. While tracking a mobile target, thexe possibility that the target stops
at a location where RSSI measurement has large witto the fading effects. If the
target stops at that location for a time, the tiagHKilter may estimate the location
with a large error. So, in the next simulation ahabile target we will see that the

SIR filter gives better results as we stated aisihé grid based Bayesian case.

In Table 7.16, error statistics of a randomly mgvtarget with Gaussian proposal
distribution of zero mean arg, std whereD, = D = 0.5 m. Fob=1, 3, 5.2, 7, 9 dB,
rt= 6, 8, 10, 16, 20 are used, respectively.

Table 7.16 Error statistics of SIR filter with clgamg c when target moves with
Gaussian motion model wiiby,

o= 0, RMSE Mean | Median 90 per.| Error CRLB
(m) error (m) | error (m) | error std. (m) | (m)
(m)

0.53 0.43 0.37 0.84 0.27 0.1%
3 0.97 0.83 0.77 1.44 0.45 0.46
5.2 1.14 0.98 0.88 1.77 0.54 0.80
7 1.38 1.21 1.13 2.11 0.67 1.08
9 1.45 1.27 1.23 2.18 0.68 1.38

When the SIR filter is used for tracking a moviagget the results are significantly
better than those of the fixed target case. Thienasbn error increases gradually

while ¢ increases as expected.
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E. Filter Proposal Density (Process Model) and Takdation

In this subsection we investigate
i. the behavior of SIR filter for two different promdsdensity models; 1)
Gaussian with zero mean and std. D, 2) Gaussiam avinean of known

speed in known direction and std. D,
ii. the behavior of the filter when target motion ist mompatible with the

assumed proposal density,
iii. the behavior of the filter when there is an extrfbimation on the non-

accessible target locations,
iv. the behavior of the filter when there is an extrfbimation on the initial

location of the target.

In Table 7.17 proposal density and the target moéiee Gaussian with zero mean

and changing DB,.

Table 7.17 Error statistics of SIR filter with clyamg D=D, where CRLB=0.80 m

D=D, RMSE Mean Median 90 per.| Error std.
(m) error (m) | error (m) error (m) | (m)

0.1 0.83 0.74 0.65 1.31 0.45

0.5 1.14 0.98 0.88 1.77 0.54

1 1.45 1.24 1.17 2.16 0.65

1.73 1.43 1.27 2.65 0.82

4 1.86 1.46 1.32 2.90 0.93

It is seen that a®, increases, estimation error increases as expested the

target’s location uncertainty increases.
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In order to see the effect of D parameter of thierfion the estimation when the
target stops, we simulated fixed target and theltesare given in Table 7.18.
D=infinity illustrates the case where the propodahsity is uniformly distributed

over the target area meaning there is no a pnéorination about the motion of the

target.

Table 7.18 Error statistics of SIR filter with clgamg D, when the target is simulated
fixed where CRLB=0.80 m

D RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)

0.1 2.02 1.76 1.57 3.22 1.00

0.5 2.00 1.70 151 3.09 1.07

1 1.96 1.67 1.50 3.00 1.02

2 1.93 1.61 1.48 2.96 0.99

infinity 1.67 1.49 1.40 2.48 0.74

As mentioned in the grid based Bayesian filterisigaller D results in larger errors
in estimation when the target stops at a fixedtlooawith large RSSI measurement
noise. This is because filter with smaller D camvayge closer to the location at
which likelihood of the RSSI measurement is highastl if the measurement is

faulty, estimated location has a large error iewa fecursion time.

In order to see the effect of lack of motion infaton we give the results in Table

7.19.
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Table 7.19 Lack of motion information for Gaussiarget motion model

Filter Proposal Density Target Motion RMSE (m) 96r.perror
(m)

Gaussian with D=0.5| Gaussian with =0.5 1.14 1.77

Uniform over the area| Gaussian with= 0.5 1.32 2.04

Uniform filter proposal density means that thereasa priori information about the
motion of the target, i.e, it can be anywhere witkhe area given the previous
location. So this table is given to demonstraté kheking motion information gives

larger estimation error.

In order to see the effect of adding speed andtilire information to the estimation
system we simulated a target moving with 0.5 mison in y direction. It moves

from y=1 m to y=6 m in 10 rt, starting from a rangda coordinate. For the proposal
density of the filter we used Gaussian processenwaigh D=0.5 m added to the
known speed and direction. To demonstrate the rdiffeeffect of adding extra

information to the filter model we also simulatdte tcase when the filter has no
knowledge of the speed and direction, instead éfsus proposal density model of
zero mean Gaussian noise on the previous locatitn@w0.5.The results are given
in Table 7.20.

Comparing the first result in the table with thdt @aussian motion model with

D=0.5 in Table 7.17, it is seen that for targethmkihown speed and direction the
filter gives more accurate results than that of nvitlee target moves randomly
Gaussian since the uncertainty is larger in thesGian case. Comparing the first and
second results in Table 7.20, it is seen that terknformation of the speed and
direction in the filter proposal density model rksuin larger estimation error as also
illustrated in Table 7.19.
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Table 7.20 Target moving with a known speed anection

D=0.5

Filter Proposal T . RMSE | Mean | Median | 90 per.| Error
arge
Density g (m) error | error error std.
Motion
(m) | (m) (m) (m)
Gaussian with
mean of known | Constant
_ _ 1.09 0.95 0.84 1.63 0.51
velocity and std. | velocity
D=0.5
Gaussian with zero
Constant
mean and std. _ 1.46 1.27 1.21 2.08 0.66
velocity

In Table 7.21, target with known initial locatiorag/ simulated for investigating the
effect of additional initial state information. tial state information is added to two

types of target motion models (random Gaussiancandtant speed in y direction) to

illustrate the effect.

For both motion models, it is evidently seen tlkapwing the initial location of the

target increases the tracking accuracy of the fdseexpected.

If available, adding information of non-accessibegions for the target is also
expected to give more accurate estimation resuitorder to illustrate this, we
simulated a target with the mentioned control pat&ns with Gaussian motion

model where the target is only allowed up to 1 stafice to the surrounding walls.

The results are given in Table 7.22.
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Table 7.21 Target moving with known initial locatio

Filter Proposal Target | RMSE | Mean | Median | 90 per.| Error
Density Motion (m) error | error error std.
(m) | (m) (m) (m)
Gaussian with zerg Gaussian
mean and D=0.5| with 1.14 0.98 0.88 1.77 0.54
Dy=0.5
Gaussian with zero )
Gaussian
mean and D= 0.5- _
_ o with 1.07 0.93 0.86 1.58 0.50
knowing the initial
_ Dy=0.5
location
Gaussian with
mean of known | Constant
_ _ 1.09 0.95 0.84 1.63 0.51
velocity and std. | velocity
D=0.5
Gaussian with
mean of known
) Constant
velocity and std. _ 1.04 0.90 0.82 1.58 0.47
_ velocity
D=0.5 -knowing
the initial location

Table 7.22 Adding non-accessible regions for theingtarget with Gaussian

model
Filter Target RMSE Mean Median | 90 per. | Error
Burden Motion (m) error error error | std. (m)
Burden (m) (m) (m)
Upto 1 m from
1.23 1.06 0.97 1.88 0.57
walls walls
1 mfrom | 1 mfrom
1.09 0.93 0.87 1.66 0.51
walls walls
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In the table, it is seen that if the target is\abd up to 1 m distance to the walls and
this information is known by the filter, then thetienation accuracy is better than

that of the case the information is not known kg/fitier as expected.

F. Improvements on Particle Filtering

The most important handicap of Bayesian filtertha, if the target stops for a few
iteration time, the location estimation may diverigem the real location if the

transmit power disturbance is large and the fpr@rcess noise is small.

Resampling at every recursion may cause the pestitd collapse to a point of
location very rapidly if the process noise is smualhich is called sample
impoverishment problem as mentioned earlier. So applied two different
approaches to reduce this problem which are
i.  Resampling not at every recursion but whén, is smaller than a
threshold value Nt so that the impoverishment éfémvs down,
ii.  Smoothing the importance factor w by taking theasguroot so that we
avoid the weight of particles to become very laigecertain samples and

thus avoid collapsing to a single point in the negbng phase.

First we start with giving the results for smoothithe importance factor w for

moving and fixed target cases in Table 7.23.

It is seen that smoothing w results in reductioesifmation error for the fixed target
case, especially 90 percentile error decreasesfisagnly where estimation error

increases slightly for the moving target case wivesmoothing is used. Because
smoothing w in the resampling stage avoids theghastto collapse to a very small

area and in a way has an effect of increasing geoneise variation.
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Table 7.23 Effect of smoothing w for tracking mayiand fixed targets

Filter Proposal Target RMSE | Mean | Median | 90 Error
Density Motion (m) error | error | per. std.
(m) (m) error | (m)
(m)
_ . Gaussian
Gaussian with D=0.5 1.14 0.98 0.88 1.77 0.54
with D,=0.5
Gaussian with D= 0.5, Gaussian
_ 1.21 1.08 0.99 1.83 0.58
Smoothed w with D,=0.5
Gaussian with D= 0.5 Fixed 2.00 1.7 15 3/09 1407
Gaussian with D= 0.5 _
Fixed 1.82 1.53 143 2756 0.98
Smoothed w

In Table 7.24, effect of resampling using Neff lisstrated for moving and fixed

target cases. Also for investigating the effecNofvalue, Nt=0.5 and Nt=0.3 values

are used in the simulations.

For the fixed target case, using Nt=0.5 signifibameduces the estimation error

especially the 90 percentile error where it slighticreases the error for the moving

target case. On the other hand using Nt=0.3 doésesaolt in a significant error

reduction compared with the results of using Ntz@ko it increases estimation

error significantly for moving target case. Becadsereasing Nt causes the filter to

resample less often and after a point we observeitfavorable results of this in the

estimation accuracy. As a result we have choserseéoNt=0.5 during our empirical

work.
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Table 7.24 Effect of resampling whaiRg<Nt for tracking moving and fixed targets

Filter Proposal Target | RMSE | Mean | Median | 90 per.| Error

Density Motion (m) error | error error std.

(m) | (m) (m) (m)

Gaussian with D= 0.5 Gaussian

with 1.14 | 0.98 0.88 1.77 0.54
D,=0.5
Gaussian with D= 0.5, Gaussian 1.17 1.02 0.92 1.79 0.57

Resample when with
Neff<05 D0=0.5

Gaussian with D= 0.5, Gaussian

Resample when with 1.28 1.10 0.99 1.85 0.64
Neff<03 D0=0.5

Gaussian with D= 0.5
Fixed 2.00 1.70 1.51 3.09 1.07

Gaussian with D= 0.5

Resample when Fixed 1.92 1.62 1.46 2.78 1.038
Ngs<0.5

Gaussian with D= 0.5,

Resample when Fixed 1.890 | 1.59 1.42 2.78 1.0
Ngs<0.3

In Table 7.25, we illustrate the effect of usindghbapproaches for moving and fixed
target cases.
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Table 7.25 Effect of w smoothing and resamplingn@ai, s for moving and fixed
target cases

Filter Proposal Target | RMSE | Mean | Median| 90 Error

Density Motion (m) error error | per. std.
(m) (m) |error | (M)
(m)

Gaussian with D= 0.5 Gaussid
n with 1.14 0.98 0.88 1.77 0.54

Dy=0.5
Gaussian with D= 0.5,
, Gaussia
Resampling when
n with 1.37 1.20 1.09 2.04 0.64
Nesr<0.5, and w
Dy,=0.5

smoothing
Gaussian with D= 0.5 fixed 2.00 1.7C 1.51 3.09 1.07

Gaussian with D= 0.5,

Resampling when
fixed 1.73 1.51 1.34 2.64 0.83
Nesr<0.5, and w

smoothing

In the table it is seen that using both approaaheke filter significantly decreases
the estimation error for the fixed target case, i@l it significantly increases
estimation error for the moving target case. Sdsia matter of choice for the
implementer to determine which approach to use witich parameter according to

the system needs.

7.2.3Analysis of Simulation Results

In this section we will analyze the simulated mefioveak and strong behaviors

and compare them in different aspects.
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First we start giving the graphs in Figure 7.15 &iglre 7.16 in order to compare
i. CRLB,
ii. Parameter based NN method,
li.  Grid based Bayesian filter,
iv. SIR particle filter,
v. Improved SIR filter by w smoothing and resamplirsgng N¢r

for different RSSI measurement noise.

For the simulations the parameters are used awbelo
kRDR :3, |'Q:E|_|_ :28, k\lN 214, D=0.5 m, N:250, Nt=0.5

For Figure 7.15 the target is fixed and for Figargé the target motion model is zero

mean Gaussian with sf)=0.5 m.

For the fixed target case it is notable that foaifr,) measurement noise, Bayesian
based methods (grid based Bayesian, SIR and imghr8¥e particle filters) give

better estimation accuracy. But for measuremengentarger than 3 dB improved
SIR filter and parameter based NN method havedsssation error than grid based
Bayesian and SIR filters and SIR filtering has éargrror than the others. Improved
SIR filter has significantly less estimation ertban the basic SIR filter especially

for growing measurement noise.

Switching to the mobile target case, it can be skahBayesian based methods give
significantly better results for all given measusgrnoise cases. Fog > 3 dB cases
improved SIR filter is worse than basic SIR andidrased Bayesian filters. SIR and
grid based Bayesian filters’ estimation results wiat differ significantly and
converge to the CRLB for growing measurement nfaisenobile target case.
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Figure 7.15 RMS error with varying, for a fixed target
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Figure 7.16 RMS error with varying, for a mobile target

Analyzing the results of the figures given abovd #me simulation results given in

Section 7.2.2 following conclusions can be drawn:

i. If the target is known to be fixed, using classiBalyesian based methods
does not give good results if the measurement neisege. But if the static
measurement noisary) is small and dynamic noise (e.g., moving people
around) is large, using Bayesian filters works velsuppress the dynamic
RSSI errors.

ii. If the target has a known motion characteristiBagesian filter with a good

model of motion works well compared to the deteistia (NN) methods.
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Vi.

Vii.

viii.

The more information the Bayesian filter has thadrseestimation accuracy
we have. Knowing the initial position of the targlkehowing the velocity of
the target, knowing the non-accessible regionstlier target in the area
increase the estimation accuracy of the Bayesltar find for these cases
using Bayesian approaches outperforms determirappcoaches.

Although the estimation performances of basic SiR grid based Bayesian
filters are very similar for mobile targets, SIRdrs are simple to apply and
need less computation time. Also many differentrismpments for particle
filters are proposed in literature for differentpéipations two of which are
illustrated in simulations. So patrticle filters miagr more flexible to adapt to
the system needs.

Increasing grid resolution further does not comtigomuch to the estimation
accuracy for our case but increases dramaticaltypcation complexity, so
1 m grid spacing is sufficient to use for NN metboand grid based
Bayesian filter in our test configurations.

Optimum ky value yielding the best RMS error result changesmting to
the grid spacing and RSSI measurement noise inetivronment. For
0,=5.2 dB, optimum ky is found to be about half theg. . value for the
NN methods.

MMSE estimate is found to be better than MAP estinfar all localization
methods for our test configurations.

Placing the readers not to the corners but to fimeri side of the area
making the reader separation smaller yields bett&imation accuracy for
omnidirectional antenna.

If the size of the environment area increases, éb@mation accuracy
decreases when the number of readers is the sanm@a@&ng more readers
in large environments will increase estimation aacy in real life

applications.
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7.3EXPERIMENTAL WORK

In this section our aims can be emphasized asaWsllo

To give experimental results of conventional deterstic and probabilistic
localization and tracking methods (parameter ba#ddnethod, grid based
Bayesian filtering, and improved SIR filtering) tiveere also investigated in
Section 7.2.2 via their simulation results,

To give experimental results of pattern based (eogh) NN method,

To apply automatic online calibration of propagatiparameters using
reference tags and to give the resulting effects,

To apply automatic online calibration of filter nseaement noise stdy
using reference tags and to give the resultingceffe

To apply the RSSI smoothing algorithm using thenm&ice tags and to give

the resulting effects.

Before giving these results in Section 7.3.2, tkgeemental environment, hardware

and software system setup, and the used localizatiethods and details of applied

experiments will be given in Section 7.3.1.

7.3.1Experimental Setup

In Section 7.3.1.1 experimental environment praeerivill be given. In Section

7.3.1.2 details of active RFID hardware and sofemased in the experimental work

will be explained. In Section 7.3.1.3, the locdii@a methods, used parameters, and

applied experiments will be detailed.

7.3.1.1 Experimental Environment

For the ske of completeness we give the experimamtlronment in Figure 7.17

again. Two rooms of 3 m x 4 m and 4 m x 6 m witlatarea of 36 m2 is used for the

experiments as shown in Figure 7.17. Whole arefvided into 36 equal grid cells

with 1 m grid spacing for the NN methods and grakdd Bayesian method. 3
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readers are placed at the corners of the roomsasittangles with the walls in order
to have a sight of approximately all of the targeta. Readers are placed at 1.2 m
height. The height was determined so as to havewash as line of sight (LOS)
region with the target tag which was located at hewght. The height of the tag was
determined as 1 m in order to model the case whsrson or a medium sized box

carrying it.

In the figure, R1, R2, and R3 represent the theaglers and T1, T2, T3, and T4 are
the four reference tags used in the experimentat.wo

7.3.1.2 System Setup

For the experimental work, active RFID product&@ Elektronik Company shown
in Figure 7.18 which were designed and developeth whe research fund of
TUBITAK were modified to use.

Antenna of each tag must be uniform to transmihatsame power and at the same
polarization to have a reliable test bed. In otdeschieve this we changed the wired
antenna of the tags with PCB mount quarter waveapole JJB antenna of Antenna
Factor Company. After mounting the antennas weateand calibrated the antenna
of each tag to give the same output power and bammgidirectional when the tags
are placed perpendicular to the ground.

On the other hand, we determined to design a argyupolarized antenna for the
readers in order to be able to compensate for pahi effects and change in the
polarization of the tag antenna. So we designeebalyysquare shaped patch antenna
and manufactured the antenna PCB in electromagiatioratory of METU EE

department with the great help Prof. Dr. Sencer KOC
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Figure 7.17 lllustration of the experimental enuineent

Figure 7.18 Active RFID products of EG Elektronik
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Information about the used tags and readers aen dielow:

Tags (shown in Figure 7.19):
* 868 MHz RF frequency
* Manchester coded MSK modulated RF communication
» 250 kbaud RF data rate
* 5 dBm output power
» Listen-before-talk technology
* Beacon ID per 1 second
* 3.3V coin battery
* 4 years battery life
» Tag antenna: Small JJB antenna-smaller quarter wawgopole antenna,

vertically polarized

Figure 7.19 Active RFID tag with JJB antenna attach

Readers (shown in Figure 7.20):

* 868 MHz RF frequency

e -90 dBm RF sensitivity level

* RS485 external communication interface

» Digital RSSI data output with 1 dBm resolution

* 12V DC input

* Antenna: Nearly square shaped 83 mm x 81.5 mmlangypolarized patch
antenna designed and manufactured in the frameeafdHks thesis.
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Figure 7.20 Active RFID reader and patch antenmea urs the experimental work

In the experimental system we use 3 RFID readetag s the target and 4 tags as
the reference tags. In order to communicate with rbaders we used a USB to

RS485 converter that we designed for this thesikwo

For processing and storing the received data frben readers we developed a
software and user interface on Microsoft Visualdgi?008 using C# language. The
developed software estimates the current locatignrdnning the localization

algorithms at each instant when it receives athefRSSI readings from every reader
and every tag. Then it stores the estimated coatekn received RSSI readings,
calculated estimation distance error values, caldal propagation parameter values,

and calibrated measurement noise values.

7.3.1.3 Experimental Methods

Used localization methods in the experimental warkgiven below:

1. Pattern based (empirical) NN method

2. Parameter based NN method with offline calibrabbpropagation
parameters

3. Parameter based NN method with propagation parasdigt are online

and automatically calibrated using the referengs ta
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4. Grid based Bayesian filtering method with onlinel aatomatically
calibrated propagation parameters

5. Grid based Bayesian filtering method with onlinel automatically
calibrated propagation parameters and with filteagurement noise std.
that is automatically calibrated using the refeestags

6. Grid based Bayesian filtering method with onlinel automatically
calibrated propagation parameters and with smod®&S8l using reference
tags

7. Improved SIR particle filter with w smoothing bykiag the square root of

w and resampling whel.¢ < Nt.
Used parameters are as below unless otherwiselstate

kny =36 (1 m grid spacing),d«..=36, 0=5.2, N=10000, Nt=0.5, process noise is
zero mean Gaussian with std. D=0.5, for mobileglaexperiment process noise is

Gaussian with mean 0.5 m/rt and stg=05 m.

The error statistics given in this work are abssldrror statistics. CRLB for the

experimented system setup is 0.76 m.

Following experiments were implemented in orderb® able to compare the

localization methods in different aspects.

Fixed target experiments

The experimental results are obtained for the fiseedet at 25 different points which
are furniture dependent covering the target areshas/n in Figure 7.21. Locations

of reference tags and the readers can also barsd@enfigure.
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Figure 7.21 Coordinate axis illustration of the estmental environment, locations

of fixed target experiments, location of readerd sgference tags

At each point, 30 estimations were made with rarlgoaniented target but the
antenna being always vertically polarized. Alsotts time of experiments there
exists a random dynamic RSSI noise in the envirgnirogused by the movements of
experimenter person within the target area. Thiestits were drawn from a total of
750 estimation data. The experimented points $tarh 1 m distance from the

surrounding walls.
Mobile target experiments

For investigating the behavior of Bayesian we moved target with constant
velocity of 0.5 m/rt in y direction from y=0 m tc=8.5 m in the small sized room,
and from y=0 m to y=4 m in the large sized roonslaswn in Figure 7.22. It was
very challenging to move the target with zero mé&aussian process noise and
inputting the real target location at each timdansto the PC software in order to
calculate the estimation errors. That is why wedusonstant velocity process model

for the experimental work.
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Figure 7.22 Target moving with constant velocitys(th/rt) for mobile target

experiment

Dynamic RSSI measurement error experiment

In order to investigate the behavior of automatiappgation parameter calibration,
automatico calibration, and conventional Bayesian filters foe case of dynamic
measurement errors we made an individual experimbete the target is fixed in
the central location of the area. Then dynamic megsent error was generated with
moving people around the target and the readerstepeated this experiment for 3
different target locations. After obtaining 30 esttion results at each location we
obtain the statistics for 90 estimation data.

Obstructed reader experiment

We prepared another individual test setup for d$eagc the effects of online
calibration of propagation parameterg ¢) and RSSI smoothing on estimation
accuracy in case of environmental changes, e.gngthg the position of an object in

the target environment. In order to test this dffeee placed large metal based
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objects in front of each 3 readers and we repetitecexperiment for 3 different

target locations and obtained 30 for each andah ¢6190 estimation data.

7.3.2Experimental Results

In this section, the results of localization methofbr different experiments

mentioned in Section 7.3.1.3 will be detailed.

7.3.2.1 Deterministic Localization Methods

In this section comparison of pattern based andmpeatrer based NN localization
methods will be given and effect afkvalue for NN methods will be investigated.

7.3.2.1.1 Pattern Based (Empirical) vs. Parameter Based (offie) NN Methods

Empirical pattern based NN method proposed in RAD&Rompared to the offline
calibrated parameter based NN method which was @isposed in RADAR. The
estimation results of both methods for fixed tamggteriment is given in Table 7.26.

knn =36 is used for this experiment.

Table 7.26 Experimental results of pattern baseldoditine parameter based NN
methods for fixed target

Method RMSE Mean | Median 90 per.| Error
(m) error (m)| error (m) | error (m) | std. (m)
Pattern Based NN 1.32 1.16 0.9 2.0 0.7
Offline Parameter  1.68 1.46 1.4 2.8 0.83
based NN

Pattern based approach is seen to outperform ttaenpter based approach for our

environment as also stated in RADAR. This is aneeigd result since the obtained
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propagation map/pattern contains a large informatod the continuous space

propagation behavior of the environment. Known liaeéion methods with the best

error performance are based on this techniquesBot our aim is to find ways of
simple, affordable, applicable, and flexible lozation solutions we do not prefer to

use pattern based solutions and so we do not seéanathetails.

7.3.2.1.2 Effect of kyn parameter for NN methods

In the simulation work for,=5.2 dB, kn value giving the best RMS error was
found to be approximately half of the number gfk value. For the experimental
work we tested the effect ofk value by fixed target experiments and obtained the

results in Table 7.27.

Table 7.27 Effect of g on estimation error using offline parameter basiid
method for the fixed target case

Knn RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)

4 2.2 1.85 1.5 3.6 1.2

18 1.70 1.46 1.3 2.95 0.95

36 1.68 1.46 14 2.8 0.83

Experimental results are not matching with the $athon results for ky value. In
the experimental work the RMS errors are approxatgathe same for =18 and
knn=36 whereas 90 percentile error is significantlytdrefor kyw=36. The differing
results of simulation and experimental work mayrsfeom the misestimating the
RSSI measurement noise of the environment. Becdugseneasurement error is in
fact not an exact Gaussian distribution, but weumgsit to be Gaussian as it is

commonly used in the literature.

After evaluating these results we useg¥36 for the rest of our experimental work.
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7.3.2.1.3 Effect of Automatic Online Calibration of Propagation Parameters (,

a) Using Reference Tags

By automatically and online calibrating the propama parameters anda, it is
expected that the parameters are adapted accotdlitite changing environment
(e.g., a new obstacle placed in the room, changjeeiposition of the reader, moving
people around, etc.). Therefore, localization méshaising online calibrated
parameters are expected to give better estimatesults than that of offline
calibrated parameters in an environment with dyeaR$S| measurement error and
obstructed readers. But for a static environmefftine calibration methods are
expected to give better results since many sangdl&SS| measurements are taken

for offline calibration where only 4 samples arketa for the online calibration.

For investigating the general effect of online loadtion, a comparison of parameter
based NN method with offline calibrated parametensl parameter based NN

method with online calibrated parameters is givemable 7.28.

Table 7.28 Effect of automatic online calibratidrpoopagation parameters for fixed
target experiment

Method RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Offline 1.68 1.46 14 2.8 0.83
NN
Online NN 1.63 1.44 1.3 2.5 0.76

It is seen that 90 percentile error for online lwated NN method is significantly

smaller than that of offline calibrated method tioe fixed target experiments. If the

fixed target experiments would have been madeaticsénvironment we could not

explain this improved effect. But, since there &xisandomly generated dynamic

RSSI noise at the time of experiments caused byniivements of the experimenter
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person, it can be explained as that online methagble to adaptively calibrate the

parameters so as to decrease estimation errors.

For dynamic measurement error experiments, tharmztamean standard deviation
of the estimation errors is 0.50 m for online meftamd 0.57 m for offline method.
This result shows that, localization methods usintine calibration of propagation
parameters are less affected by the dynamic RS®Fsecompared to offline

calibration methods.

In addition, for obstructed reader experiment, iian error for online calibration
NN method is 1.35 m where it is 1.62 m for offlioalibration method. This result
shows that online calibration is also useful fomatthg the parameters to work in

changing environmental conditions.

After testing automatic calibration method by uspayameter based NN approach
we used online calibrated propagation parametemhéother estimation methods in

the experimental work.

7.3.2.2 Probabilistic Localization Methods

In this section we will investigate the behavior ddterministic and probabilistic
localization approaches in different cases. For pamson we will give the
estimation results in fixed target case, mobilegearcase, and dynamic RSSI
measurement error case. We expect that probabiliséithods are worse than the
deterministic methods for fixed target cases, Whdytoutperform deterministic
methods for tracking mobile target and dynamicrsrio RSSI measurement cases.
In order to compare deterministic and probabilistiethods we will give the results
of online calibrated parameter based NN as a detetic method and grid based
Bayesian and improved SIR filters as probabilistethods.

We start by giving the estimation results of fixatget experiments in Table 7.29.
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Table 7.29 Comparison of parameter based NN, gsedh Bayesian and improved
SIR particle filter for fixed target case

Method RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Parameter 1.63 1.44 1.3 2.5 0.76
based
Online NN
Grid 2.04 1.77 1.6 3.1 1.03

Based
Bayesian
Improved 1.72 1.48 1.3 2.6 0.87

SIR

It is seen that for fixed target case deterministethod outperforms the probabilistic
methods as expected, but improved SIR filter esgtonaerrors are close to the NN

method's errors as given in the simulations.

The results of mobile target experiments are gimefable 7.30.

Table 7.30 Comparison of parameter based NN, gsedb Bayesian and improved
SIR particle filter for moving target with known leeity

Method RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Parameter 1.73 1.53 1.49 2.50 0.82
based Onling
NN
Grid Based| 1.58 1.37 1.22 2.39 0.8
Bayesian
Improved 1.32 1.16 1.10 2.09 0.64
SIR
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For the mobile target experiments it is seen thabgbilistic methods outperform the
deterministic method. In addition improved SIR€iliperforms better than the grid

based Bayesian filter for mobile target tracking.

To illustrate the tracking performance of a detaistic localization method and a
probabilistic filter we give a graphical illustrati of parameter based NN method
and grid based Bayesian filter in Figure 7.23 wiiezy are used to track a constant
velocity target which is one of the applied molideget experiments. It is seen that
the Bayesian filter tracks the route while the NMNethod may make random

estimations away from the target route.

4,5

=¢=—=target

Y axis (m)

online NN

=>¢=grid based Bayesian

1 X

0,5

0 2 4 6 8

X axis (m)

Figure 7.23 Graphical illustration of NN based noetlvs. Bayesian filtering for
target tracking

In order to investigate the behavior of probabdishethods in environments with
dynamic RSSI noise we give the results of the dyodRESI measurement error

experiments in Table 7.31.
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Table 7.31 Error std. comparison of parameter bad¢dgrid based Bayesian and
improved SIR patrticle filter for dynamic measureineoise experiment

Parameter based Grid Based Improved SIR
Online NN Bayesian
Error Std. 0,50 0,41 0,36
(m)

Error standard deviation gives us an idea aboutlédwation of the estimation error

from the mean so that smaller std can be commeagdtat method is less affected
by the dynamic noise giving a more stable estimatiesult. Also, an example

illustration of the dynamic noise experiments igegi in Figure 7.24 where the target
is fixed at only one location and RSSI error is ggated randomly in time. As a

result, it is seen that probabilistic localizatiorethods give more stable estimation
results in environments of dynamic measurementenang improved SIR is slightly

better than the grid based Bayesian filter.

Estimation Error vs time in Noisy
Environment with Fixed Target

4

3,5
E 3
e
2 25
w 5 =@—online NN
c
-2 15 =>e=grid based Bayesian
m 7’
§ improved SIR
g 'L

0,5 /N

1 3 5 7 9 11 13 15 17 19 21 23

Figure 7.24 Graphical illustration of parameterdzbBIN, grid based Bayesian and
improved SIR patrticle filter for dynamic measureineoise experiment
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7.3.2.3 Effect of Automatic Online Calibration of Filter Me asurement Noise

Std. (6) Using Reference Tags

In order to investigate the effect of automatic antine calibration ot we applied
this technique to grid based Bayesian filtering andhis section basic grid based
Bayesian filter will be compared to the Bayesidtefiwith online calibrated for
fixed target case, mobile target case and dynar8isIRrror case.

In Table 7.32, estimation results of the mentionezthods are given for the fixed

target experiments.

For the fixed target case, online calibration cofslightly increases the overall

estimation accuracy.

Table 7.32 Effect of automatic calibration of fillmeasurement noisefor fixed
target case

Method RMSE| Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Grid Based | 2.04 1.77 1.6 3.1 1.03
Bayesian
Grid Based | 1.98 1.70 15 3.0 1.02
Bayesian
with autoo

Table 7.33 gives the estimation error statisticthefgrid based Bayesian and online
calibration ofc methods for mobile target case.

Similar to the fixed target case, online calibratad ¢ gives slightly better estimation

results for mobile target case.
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Table 7.33 Effect of automatic calibrationcofor mobile target case

Method RMSE| Mean | Median 90 per.| Error std.
(m) | error (m) | error (m) error (m) | (M)
Grid Based 1.58 1.37 1.22 2.39 0.8
Bayesian
Grid Based 1.50 1.30 1.20 2.20 0.75
Bayesian with
autoo

Table 7.34 and Figure 7.25 are given to illustthie effect of online calibrated
method in environments with dynamic RSSI measuréragor. InFigure 7.25 an
experiment result with the target fixed at only doeation is given as an illustrative

example.

Table 7.34 Error std. comparison of grid based Bayeand grid based Bayesian
with automatic calibration af for dynamic RSSI measurement error experiment

Grid Based Bayesian  Grid Based Bayesjian
with autoo
Error Std. 0.41 0.34

(m)

For the dynamic RSSI measurement error experinanlise calibration ot gives

more stable estimation results.
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Figure 7.25 Graphical illustration of effect of antatic calibration o6 for dynamic
RSSI measurement error

7.3.2.4 Effect of Online RSSI Smoothing Using Reference Tag

In order to investigate the effect of RSSI smoajhaigorithm we applied the
algorithm to the grid based Bayesian filteringwsowill give results and comparison
of simple grid based Bayesian filter and grid baBagesian with RSSI smoothing in
this section. It is expected that the smoothinggiletter estimation accuracy for the

experimented target locations that are close todfegence tag locations.

Results of fixed target experiments are given iblda’.35 and it is seen that the
overall error performance of the localization metlhath RSSI smoothing algorithm
is better for the fixed target case.

From the fixed target experiments, the resultshef éxperimented points in 1.5 m
neighborhood of the reference tags are choserveotge mean errors in Table 7.36.

It is seen that the smoothing algorithm is verycesgsful near the reference tags. So,
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it can be noted that, in order to increase the alvestimation error accuracy more

reference tags can be used.

Table 7.35 Effect of online RSSI smoothing usinfgrence tags for fixed target case

Method RMSE| Mean | Median |90 per.| Error
(m) error (m) | error (m) | error (m) | std. (m)
Grid Based Bayesian  2.04 1.77 1.6 3.1 1.03
Grid Based Bayesian 1.87 1.58 1.3 3.0 0.99
with RSSI
Smoothing

Table 7.36 Effect of RSSI smoothing at locatioeanthe reference tags for the
fixed target case

Grid Based Bayesian  Grid Based Bayesian
with RSSI smoothing
Mean 2.13 1.55
Estimation
Error (m)

In Table 7.37, it is seen that smoothing algorithas also improving effect on the

estimation accuracy for the mobile target case.

Obstructed reader experiments of the RSSI smoothliggyithm support the above
results. 2 of the 3 experimented target locationshstructed reader experiments are
the neighbor locations of reference tags. So inotheructed reader case, the results
in Table 7.38 show the predominating effect of R&8bothing.
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Table 7.37 Effect of online RSSI smoothing usinigmence tags for mobile target

case
Method RMSE| Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Grid Based | 1.58 1.37 1.22 2.39 0.8
Bayesian
Grid Based | 1.37 1.21 1.05 1.98 0.66
Bayesian
with RSSI
smoothing

Table 7.38 Effect of RSSI smoothing for obstruateaider case

Grid Based Bayesian  Grid Based Bayesian
with RSSI smoothing
Mean Estimation 1.55 1.20

Error (m)

7.3.2.5 Effect of Online Calibration of 6 and RSSI Smoothing Using Reference
Tags

After giving the effects of online calibration efand RSSI smoothing individually
by applying them to the grid based Bayesian filtexw we will give the results of
improved SIR filter with online calibration efand RSSI smoothing applied together
for mobile target experiments. Trable 7.39 results of the application are given with

comparison of grid based Bayesian and improvedfiiéRs.

As seen in the table application of both approathékle improved SIR filter makes
a further improvement to the improved SIR filter fimobile target experiments.
Especially the 90 percentile error decreases sogmifly with the application. As a

result we can claim that improved SIR method withiree calibration ol and RSSI
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smoothing gives outperforming results for mobilegét case as compared with all
the other methods we investigated.

Table 7.39 Effect of online calibration efand RSSI smoothing together for mobile
target case

Method RMSE Mean | Median |90 per.| Error std.
(m) error (m)| error (m) | error (m) | (M)
Grid Based 1.58 1.37 1.22 2.39 0.8
Bayesian
Improved SIR 1.32 1.16 1.10 2.09 0.64
Improved SIR 1.25 1.12 1.05 1.82 0.56
with onlinec
and RSSI
smoothing

7.3.2.6 Using Monopole Antenna For The Readers Instead ofdech Antenna

At the beginning of our thesis work we proposedise circularly polarized reader
antenna instead of monopole antenna for decred®8%) measurement errors that
are caused by multipath effect and unmatched peal#gon of the target and reference
tags’ antennas. After obtaining our results by gigive patch antenna, we switched to
the monopole antenna which is vertically polarizedobserve the difference in
estimation accuracy. So we tested only the molalget experiments with the

monopole antenna to show the difference. The estmaesults are seen in Table
7.40.
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Table 7.40 Effect of reader antenna on localizasicturacy: monopole antenna vs.
patch antenna for mobile target case

Reader Method RMSE| Mean | Median | 90 per.| Error
Antenna (m) error | error error | std.
(m) | (m) (m) | (m)
Circularly | Parameter based 1.73 1.53 1.49 2.50 0.82
polarized Online NN
patch Grid Based 1.58 1.37 1.22 2.39 0.8
Bayesian
Grid Based 1.50 1.30 1.20 2.20 0.75

Bayesian with

onlinec
Improved SIR 1.32 1.16 1.10 2.09 0.64
Improved SIR 1.25 1.12 1.05 1.82 0.56
with onlines and
RSSI smoothing
Vertically | Parameter based 1.86 1.64 1.62 2.96 0.86
polarized Online NN
monopole Grid Based 1.93 1.74 1.62 2.76 0.82
Bayesian
Grid Based 1.57 1.42 1.44 2.20 0.64
Bayesian with

onlinec
Improved SIR 1.73 1.56 1.50 2.54 0.75
Improved SIR 1.49 1.33 1.26 2.16 0.67
with onlinec and
RSSI smoothing

Investigating the results, estimation accuracydibof the localization methods are
seen to be worse for the monopole antenna case. e that, for the monopole

antenna case grid based Bayesian estimation esrtarger than that of the NN
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method where it is vice versa for the patch antesase. Searching the reason we
noticed thai, found by auto calibration had an average of 7.5aBhe monopole
antenna experiments thasparameter was calibrated to an average value5ofiB.
where it was about 5.2 dB for the patch antenna.dst we used =5.2 dB for the
grid based Bayesian and the improved SIR filters tlie monopole antenna
experiments. That is why there is a significantrdase in the estimation error for the
methods using online calibration @ffor the monopole antenna experiments. To sum
up, we can say that using monopole antenna foreéers when the tag antenna is
also monopole, causes larger RSSI measurement resigking in larger estimation
error. But since the monopole antenna is omnidoeat and the patch antenna is
directional, for a larger area that we need mosm t8 readers, we must use more
patch antennas than monopole antennas to covevitble area as shown in Figure
7.26 and Figure 7.27.

A A A

Figure 7.26 Sample monopole antenna placementgroation

/ NS .

SN AN

Figure 7.27 Sample patch antenna placement coafigar
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For the illustrated environment, 5 monopole antenaee used whereas 8 patch
antennas are needed to cover the whole targetwdreh increase the system cost.

So the implementer should choose which type tcaaserding the system needs.

A summary and analysis of the experimental resulisbe given in the next section

with comparison of the simulation results.

7.4 ANALYSIS OF SIMULATION AND EXPERIMENTAL RESULTS

In this section experimental and simulation resultf the applied localization
methods are given together in order to be ableadlse behavior of the methods as a
whole in differing experimental conditions. Expeental results of fixed target
experiments (Table 7.41), mobile target experimémtble 7.42), dynamic RSSI
measurement error experiments (Table 7.43), anduobd reader experiments
(Table 7.44) are given below individually. Simudatiresults of fixed target case
(Table 7.45) and mobile target case (Table 7.46)garen again for completeness. In
the experimental and simulation work, all of theoexmental conditions were not
applied to all of the localization methods. Sotha tables, only the related methods
mentioned in the simulation results section ofahd experimental results section of
7.3 are given. For the experimental and simulatiaork, improved SIR filter

contains the improvements by w smoothing and reBagwhenN,r < 0.5.

First evaluating the pattern based and parametsedodN methods in the
experimental work we verified that pattern basepraegches outperform parameter
based approaches as stated in the literature.oBtihé NN method and probabilistic
localization methods we used parameter based agptoaobtain the environment
signal propagation behavior in order to use simgiimrdable, fast solutions for real
applications. We preferred not to simulate thegsatbased NN method since it is

very challenging to have an accurate model.

For improving parameter calibration and make itenwe proposed the approach
of automatic and online calibration of propagatiparameters and tested this

approach by applying it to the NN method and claireeveral advantages over the
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offline calibration approach. The advantages caedas in Table 7.41 to Table 7.44
for all of the experimented conditions by comparaffiine and online NN methods.
To sum up, it can be claimed that for dynamic R&®&asurement errors and
changing environments, adaptively calibrating therameters in online phase
improves the estimation accuracy and also it is msaenpler than the offline

calibration method despite an added system cossing the reference tags.

Table 7.41 Experimental error statistics for akkdisocalization methods for fixed
target experiments where CRLB=0.76 m

Method RMSE| Mean | Median |90 per.| Error
(m) error (m) | error (m) | error std. (m)
(m)
Pattern Based NN 1.32 1.16 0.9 2.( 0.7
Parameter based Offline 1.68 1.46 1.4 2.8 0.83
NN
Parameter based Online 1.63 1.44 1.3 2.5 0.76
NN
Grid Based Bayesian 2.04 1.77 1.6 3.1 1.03
Grid Based Bayesian| 1.98 1.70 1.5 3.0 1.02
with autoo
Grid Based Bayesian| 1.87 1.58 1.3 3.0 0.99
with RSSI Smoothing
Improved SIR 1.72 1.48 1.3 2.6 0.87
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Table 7.42 Experimental error statistics for akkdisocalization methods for mobile
target experiments where CRLB=0.76 m

Method RMSE| Mean | Median |90 per.| Error
(m) error (m) | error (m) | error std. (m)
(m)
Parameter based Offline 1.84 1.61 1.59 2.87 0.84
NN
Parameter based Online 1.73 1.53 1.49 2.50 0.82
NN
Grid Based Bayesian 1.58 1.37 1.22 2.39 0.8
Grid Based Bayesian| 1.50 1.30 1.20 2.20 0.75
with autoo
Grid Based Bayesian| 1.37 1.21 1.05 1.98 0.66
with RSSI Smoothing
Improved SIR 1.32 1.16 1.10 2.09 0.64
Improved SIR with 1.25 1.12 1.05 1.82 0.56
onlinec and RSSI
smoothing

Table 7.43 Experimental error std for all localiaatmethods for dynamic RSSI
measurement error experiments

Parameter Parameter Grid Grid Grid Improved
based based Based Based Based SIR
Offline Online | Bayesian| Bayesian Bayesian
NN NN with with RSSI
autos | Smoothing
Error 0.57 0.50 0.41 0.34 0.39 0.36
Std.
(m)
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Table 7.44 Mean estimation error for related |azalon methods for obstructed
reader experiments

Parameter Parameter | Grid Based| Grid Based
based Offline| based Online| Bayesian Bayesian
NN NN with RSSI
smoothing
Mean 1.62 1.35 1.55 1.20
Estimation
Error (m)

Table 7.45 Simulation results of all simulated laaion methods for fixed target
case where CRLB=0.80 m

Method RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Parameter based 1.79 1.59 1.51 2.65 0.81
Offline NN
Grid Based 1.83 1.54 1.34 291 0.98
Bayesian
Basic SIR 2.00 1.70 1.51 3.09 1.07
Improved SIR 1.73 1.51 1.34 2.64 0.83

Table 7.46 Simulation results of simulated probatd localization methods for

mobile target case where CRLB=0.80 m

Method RMSE | Mean error| Median 90 per.| Error std.
(m) (m) error (m) error (m) | (m)
Grid Based 1.22 1.09 1.02 1.81 0.54
Bayesian
Basic SIR 1.14 0.98 0.88 1.77 0.54
Improved SIR 1.37 1.20 1.09 2.04 0.64
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Then we proposed to use probabilistic localizatracking methods for mobile
targets and for environments with dynamic RSSIedisiproved SIR filter is more
successful for both mobile target tracking and the estimation stability in noisy
environments. But for mobile target case, simufatiesults show that grid based
Bayesian filter is better than the improved SIRefil Simulation results also show
that basic SIR filter is the best of Bayesian fgtéor mobile target case. We did not
experimented basic SIR filter since the estimatasults for the fixed target case are
not satisfactory, but if it is known that the targees not stop while moving in the
real application then using basic SIR filter mayegmore accurate results. For the
fixed target case the estimation error of impro@&R filter is close to that of NN
method and grid based Bayesian filtering has lamgimation errors both for
simulation and experimental work. In addition tegh results, as the simulation
suggests, the more information the Bayesian filtease the better estimation
accuracy we have. Knowing the initial position lo¢ target, knowing the speed and
direction of the target, knowing the non-accessiblgions for the target in the area
increase the estimation accuracy of the Bayesiterdiand for these cases using

Bayesian approaches outperforms deterministic @gpes.

By using the reference tags we also proposed ibratd ¢ of the Bayesian filters
automatically and online at each step of estimatga applied this approach to grid
based Bayesian filter individually in the experirt@work to investigate the effect.
After experimenting we claim that online calibratiof o improves the estimation
accuracy for fixed and mobile target cases anchjiroves the estimation stability in
noisy environment. This approach is applied toitmgroved SIR filtering along with
the RSSI smoothing approach.

We propose to add an extra information to the edton system by calibrating the
RSSI readings of the target by using the RSSI ngmdiof reference tags. This
approach is a contribution of this thesis as favaknow. We applied this approach
again to the grid based Bayesian filter individyadind we claim that using this
smoothing can improve the estimation accuracy sagmtly for the near locations of

the reference tags for any applied experimentatlitiom. The overall effect could be
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improved by adding more reference tags and thisoagh can be applied to the

other localization methods easily.

Online calibration ot and RSSI smoothing approaches were applied togttibe
improved SIR filter and tested with the mobile &rgxperiment. Comparing with
the other applied localization methods, this apgmogives the best estimation

accuracy.

In the simulation work it was given that the separaof the readers and thus the
size of the environment affect the estimation aacyvery significantly. Increasing
the separation between the readers increases tihetsn error. Also we showed
that the antenna type of the readers is anotheoriaupt factor which affects the
estimation accuracy. In our experiments using &ty polarized reader antenna
increased the estimation accuracy while increatiiegsystem cost. So, type of the
antenna and reader separation are to be deterrageeniding to the system needs

and the system cost.

In conclusion, it can be claimed that, applicatbdithe automatic calibration efand

other propagation parameters, RSSI smoothing @hgoyiand any other information
about the behavior of the target motion to the Baye filters would yield an
outperforming result for all of the experimentalnddions. Also it is seen that
applying these approaches to the improved SIRr filteuld yield more robust and

accurate estimation results.
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CHAPTER 8

CONCLUSIONS

The need for indoor localizing and tracking peomleobjects in real time has been
grown recently especially in manufacturing, healtle¢ and logistics. As these needs
grow, real time locating and tracking systems (R)F'g&in great importance and
different solutions using especially Wi-Fi devicesteless sensor networks (WSN),
and radio frequency identification (RFID) devicepleiting received signal strength
indication (RSSI) have been proposed and developedth academic and business
world. Investigating the proposed techniques in litezature we have noticed the
lack of information on the advantages and disadged of these techniques which
are applied in the same test bed for different testditions. Also, since indoor
environment is usually a complicated environmenisgagy multipath and fading
effects on the RF signal, location estimation halspsoblems to be worked on. We
think that two important of them are i) increasititge estimation accuracy ii)
decreasing the system complexity and time conswm@hd hence decreasing the
system cost of the RTLS system. Therefore, our iinthis thesis work was to
evaluate the most common localization methods enséime test bed both with
simulation and experimental analyses and yieldr tiveiak and strong behaviors in
different test conditions. Also we propose an iraéed and modified method that is
simple to install, cost effective, and moderatelcuaate to use for real life

applications.
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We used an active RFID system composed of 3 reatléasget tag, and 4 reference
tags in an environment of two rooms with 12 m2 2ddn? areas in a home where the
RSSI measurement noise standard deviation is foende 5.2 dB for our
experimental work. RFID is a small sized, cost@fte, and commonly used system
for real life RTLS applications. We designed anddurced circularly polarized patch
antenna for the readers in order to decrease R8&umement errors caused by the
multipath effect and mis-orientation effect of tmeonopole tag antenna. For
developing the PC software that processes andsstiseedata and for developing the

user interface we used C#.

We mainly applied and tested pattern/map basecdsieaeighbors (NN) (also called
pattern matching or fingerprinting) and parametasdal NN approaches (in this
approach pattern matching method is used but ttterpas generated virtually by
using the signal propagation models) as deternunistalization methods, and grid
based Bayesian filter and sampling importance rpam (SIR) particle filter as
probabilistic localization methods which are stadie the literature for localization
and tracking purposes. We investigated the behavmir each for different
environmental and system parameters and compaesd with each other on the
same test bed for using in RFID based localizatiot tracking system. For the NN
methods we investigated the effects of number afest neighbors used for location
estimation and grid resolution are investigated. the grid based Bayesian filtering
effect of grid resolution on the estimation accyracinvestigated. For SIR filtering
effect of number of particles is investigated awd improvements proposed in the
literature are implemented to the basic SIR filigrobserve their effects. One is
resampling not at every recursion step but whenetffiective sample SizN. is
smaller than a threshold Nt. Second one is smogtthe importance factor w by
taking the square root of the current w at the fi@igg of each resampling stage. For
the general location estimation problem we tesheddffects of number of readers
and separation between the readers used for thkziaton system, size of the target
environment, RSSI measurement noise of the enviemmmand target motion
characteristics by using simulation analysis. Hue Bayesian methods, we also

searched the effects of filter process noise maae filter measurement noise
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model. We also tested the behaviors of the Baydstars if additional information

about the target motion is added to the filter ni®dach as the velocity of the target,
initial location of the target, and non-accessiloleations in the area. For real life
applications we tested the effect of the used mead¢enna (patch antenna and

monopole antenna) in the system.

Our simulation and experimental work yielded thetiedministic methods are usually
better to localize a fixed target than the Bayesmathods if the RSSI measurement
noise of the environment is large (> 3 dB). Resoltgshe deterministic methods
showed that empirical pattern based NN method olaipes the parameter based
NN method since it has a more accurate propagatiap of the environment. But
pattern based approaches need an important ambbotm@an labor and time for the
system setup for especially large sized environmand if there is a change in the
environment (e.g., changing the location of an atistin the environment) or system
setup (e.g., location of a reader) the systemdae treinstalled. So we preferred not
to search details of pattern based approaches.miéduile target scenarios, both
simulation and experimental work showed that Baesnethods outperform the
deterministic methods and SIR particle filter gafigrworks better than the grid
based Bayesian filter. The advantage of the Bagddiars is that any information
about the environment and the motion of the tacget be added to the estimation
system and results in an increased estimation acgurFor example, for a
production control case, the initial location ahé toute of the goods in production
are known which will yield the Bayesian filters wovery well, outperforming the
deterministic methods. Another advantage of the eBmy filters is that the
estimation is more stable in environments with ayitaRSSI noise compared to the

deterministic localization methods.

We assumed large-scale log-distance path loss Isgoaagation model for the

environment. In order to obtain the signal propiagaparameters of the log- distance
model and the measurement noise stdor the Bayesian filters we made offline
calibration experiments and also implemented aoraatic calibration system using

reference tags. This is the only work in the litera using automatic calibration of
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the propagation parameters and measurement naisedfmor localization using an

RFID system as far as we know. After testing bgipraaches in the experimental
phase with different test conditions, we claim tha localization methods using
automatic calibration give better estimation resulhan the offline calibrated

methods for the environments with dynamic RSSI| mesament errors (e.g., people
moving around). Since the system is adaptive gfdhs a change in the environment
there is no need to calibrate the propagation patens again as in the case of offline

calibration.

We propose to add an extra information to the edton system by calibrating the
RSSI readings of the target by using the RSSI regdof reference tags. We call this
algorithm RSSI smoothing and this is the only workhe literature using such an
approach for localization purpose. The experimerdgallts showed that using this
smoothing can improve the estimation accuracy sagmitly for the near locations of

the reference tags for any applied experimentatlitmm. The overall effect could be

improved by adding more reference tags and thisoagh can be applied to both

deterministic and probabilistic localization metkahsily.

In addition to these results, a few more words khte mentioned about real life
applications. First of all, the experimental resuhiat we give in this thesis are only
for illustrating the comparison of the localizatiomethods and the effects of the
environmental and system parameters on the lotializaccuracy. Using the same
methods one can obtain different results in anodipglication since the estimation
results are very much affected by the environmeopgrties and the antenna of the

RF devices.

In conclusion, we claim that, implementation of #ngomatic calibration o and
other propagation parameters, RSSI smoothing ahgoyiand adding any other
information about the behavior of the target motitm the Bayesian filters,
especially, to the improved SIR filter yield an petforming result for mobile target
cases and it also works robust for fixed targeesasompared to the grid based

Bayesian filter.
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As a future work, this study can be implemented ainlarger experimental
environment and by using different number of readwith different reader
separations to yield the estimation accuracy oflticalization methods in a more
real application environment. Also, using multigleectional (patch) antennas for
each reader can be studied which is expected toowaghe estimation accuracy by
adding the direction information of the target. remsing the number of reference

tags can be implemented as a future work to iner@saccuracy.

Antenna diversity is known to improve the qualitydaeliability of the wireless link.
So, for further development in the estimation aacyr different antenna diversity
techniques (e.g., spatial diversity, polarizatiovedsity) can be used to decrease the
multipath distortion in indoor environments inspié increased system cost. For
such a system the readers must have at least t@oras seperated from each other
by a certain distance. But it must be noted thahsa system requires additional

hardware and processing complexity on the receiver.
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APPENDICES

APPENDIX A: CRAMER-RAO LOWER BOUND (CRLB)
FOR LOCALIZATION

In Appendix A we derive CRLB for comparison reasdde will only give the
derivation of the important steps, not the interiaid steps. For the detailed

information and derivation refer to [3], [41].

CRLB provides a lower bound on the covariance mati any estimator of
parameted. CRLB is the inverse of the Fisher information mafF(6). In our case
the paramete®=1=[x y] is the (x,y) coordinate location of the tatgand can be
estimated from the observatiosjghat are the RSSI measurements from the target to

the jth reader in our localization problem.

Then the Fisher information matrix can be written a

Fo=[g" 2 (A1)

For our case Fisher information matrix is calcudads
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g d%in p(s|) d%n p(s|l)
_< 6x6x>_< 6x6y>

| |
l_E(azl;lyz;isll)> ~ (a lnp(s|1)>J

wherep(s|l) is the probability density of the observation westconditioned on the

FQ) = (A-2)

target locatiorl that is to be estimated. The observation vectar=s{s,, ..., s;},

wherer is the number of RFID readers in the system.

For x coordinate of the target, CRLB states the inegpali
Fxx

var(@) 2 [F) ' =——"—7— (A.3)
" FucByy — By’
Fory coordinate of the target, CRLB states the inetpali
~ -1 _ Fyy (A 4)
var() 2 [FO " lyy = ——"—— :
xxFyy - ny
Forl location of the target, CRLB states the inequality
< Fex + F
var(1) = var(9) + var(2) = = (A.5)

FxxFyy _nyz

So, in order to calculate the elements of Fish&rmation matrix in (9.2) that are

Fyx Fyy, and Fy,, we start with writing the density(s|D).

i)
[— (sj — a + 10nlog (d_i)>> } A6)

p(s|D) = 1_[\/%0 eXPl 552 J
j=1

yy’
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whered;is the distance from the target locatian ) to the jth reader location

(x5, ¥j)-
2 2 A7
= (=3 + (03 -) (A)
We denote the mean value of the RSSI observatoon the jth reader &s.
5 i (A8)
S, = a — 10nlog :
do
Taking the natural logarithm of the densitis|l) we get
Inp(s|l) =1In ( ! )3 _ ! zr: (s; — §)2 (A.9)
\/EO' 20-2 - ] ]
]:

Then we find the expected value of the second dtvies of the natural logarithm to

give the Fisher information matrix elements as:

- (T - (ot > [ ] e

b= (Tl - (g Y[ ] e
Foy=Fp=—E <62?x—’;§]s“)> (;: ’110> Z (x](i]x)X)-}-(}E]y ] z])z (A.12)
<“faz°f<z[<xf_is‘é:zii_yf ot

- [(xj - Sé :8: - y)z] . [(x] - g] +(-y) ] { (x](i] x)X)Jr(}E]y] yy) ”
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By the equations of CRLB it is seen that the laratestimation lower bound
depends on

* RSSI measurement noise standard deviatjon

» Signal propagation log-distance path loss paranmeter

* Number of readersggrused in the localization system

» The relative target locatiom,(y) and the reader locations;(y;).

Square root of (A.13) is used in the thesis to camapvith RMS error.

151



	baslik_son1.pdf
	baslik_son2.pdf
	Thesis_bora_ozkaya_v5_18.pdf

