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ABSTRACT  

   

 

APPLICATION, COMPARISON, AND IMPROVEMENT OF KNOWN 

RECEIVED SIGNAL STRENGTH INDICATION (RSSI) BASED INDOOR 

LOCALIZATION AND TRACKING METHODS USING ACTIVE RFID 

DEVICES 

 ÖZKAYA, Bora                                                                                                                  

M.Sc., Department of Electrical and Electronics Engineering                                 

Supervisor: Dr. Arzu KOÇ                                                                                                  

Co-Supervisor: Prof. Dr. Sencer KOÇ 

February 2011, 151 pages 

 

Localization and tracking objects or people in real time in indoor environments have 

gained great importance. In the literature and market, many different location 

estimation and tracking solutions using received signal strength indication (RSSI) are 

proposed. But there is a lack of information on the comparison of these techniques 

revealing their weak and strong behaviors over each other. There is a need for the 

answer to the question; “which localization/tracking method is more suitable to my 

system needs?”. So, one purpose of this thesis is to seek the answer to this question. 

Hence, we investigated the behaviors of commonly proposed localization methods, 

mainly nearest neighbors based methods, grid based Bayesian filtering and particle 

filtering methods by both simulation and experimental work on the same test bed. 

The other purpose of this thesis is to propose an improved method that is simple to 

install, cost effective and moderately accurate to use for real life applications. Our 

proposed method uses an improved type of sampling importance resampling (SIR) 

filter incorporating automatic calibration of propagation model parameters of log-



v 
 

distance path loss model and RSSI measurement noise by using reference tags. The 

proposed method also uses an RSSI smoothing algorithm exploiting the RSSI 

readings from the reference tags.  

We used an active RFID system composed of 3 readers, 1 target tag and 4 reference 

tags in a home environment of two rooms with a total area of 36 m². The proposed 

method yielded 1.25 m estimation RMS error for tracking a mobile target.    

 

Keywords: Localization, tracking, RSSI, active RFID, nearest neighbors, Bayesian 

filter, particle filter 
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ÖZ 

 

 

ĐÇ ORTAMDA, ALINAN SĐNYAL GÜCÜ (RSSI) TABANLI, BĐLĐNEN YER 

BULMA VE TAK ĐP YÖNTEMLERĐNĐN, AKTĐF RFID KULLANARAK 

UYGULAMA, KAR ŞILAŞTIRMA VE GELĐŞTĐRĐLMESĐ  

ÖZKAYA, Bora                                                                                                             

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü                                                  

Tez Yöneticisi: Dr. Arzu KOÇ                                                                                                

Ortak Tez Yöneticisi: Prof. Dr. Sencer KOÇ 

Şubat 2011, 151 sayfa 

 

Günümüzde, iç ortamlarda insanların ve eşyaların konumlandırılabilmesi ve 

izlenebilmesi büyük önem kazanmıştır.  Gerek  literatürde gerekse piyasada alınan 

sinyal gücü (RSSI) yöntemini kullanan birçok konum kestirme ve izleme yöntemi 

ortaya konulmuştur. Ancak önerilen bu yöntemleri karşılaştırarak birbirlerine göre 

güçlü ve zayıf yönlerini açıkça ortaya koyan bir çalışma bulunmamasının eksikliği 

yaşanmaktadır. Dolayısıyla “mevcut sistem gereksinimlerine en uygun yöntem 

hangisidir?” sorusunun cevabına ihtiyaç duyulmaktadır. Bu nedenle bu çalışmada, en 

sık önerilen “Nearest Neighbors” yöntemleri, Bayes filtrelemesi ve parçacık 

filtreleme yöntemlerini simülasyon ve deneysel gerçekleme kullanarak inceledik.   

Tezimizin bir başka amacı da günlük uygulamalar için uygulaması kolay, uygun 

fiyatlı ve kabul edilebilir doğrulukta geliştirilmi ş bir yöntem ortaya koymaktır. 

Önerdiğimiz yöntem temel olarak sampling importance resampling (SIR) filtreleme 

yönteminin geliştirilmi ş hali olmakla birlikte “log-distance path loss” dalga yayılım 

modelinin parametrelerinin ve RSSI ölçüm gürültüsünün, referans vericiler 

kullanarak  otomatik olarak kalibre edilmesini içerir ve referans vericilerden elde 
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edilen RSSI bilgileri yardımıyla özgün bir RSSI düzgünleştirme algoritmasını 

kullanır. 

Tez kapsamındaki uygulama çalışmaları 3 adet aktif RFID okuyucusu, 1 adet hedef 

tag ve 4 adet referans tag’den oluşan bir sistemle toplam 36 m2 lik iki odadan oluşan 

bir ev ortamında gerçekleştirildi. Hareketli bir hedefin izlenmesinde, önerdiğimiz 

yöntem ile bu ortamda 1.25 m’lik RMS hata performansına ulaştık.  

 

Anahtar Kelimeler: Konumlandırma, Takip, RSSI, aktif RFID, nearest neighbor, 

Bayes filtresi, parçacık filtresi 
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CHAPTER 1 

 

 INTRODUCTION 
 

 

 

Locating objects or people close to real time with acceptable precision has always 

been an important part of any industry, especially in manufacturing, healthcare, and 

logistics. For manufacturing, the need is real time monitoring of the production 

process by tracking the location of semi-products and also real time tracking of the 

inventory. In healthcare, mobile devices in the hospital, the personnel, and the 

patients are usually needed to be monitored. In logistics, assets and vehicles are 

monitored for decreasing the time consumption and also for avoiding human faults in 

the visibility process. So, recently, practical, easy to deploy, cost effective, small in 

size real time locating systems (RTLS) and tracking systems have gained great 

importance.  Systems that map the longitude and attitude of an object are geo-

location systems and generally use the Global Positioning System (GPS) for location 

mapping. GPS could be used as the location determination portion of an RTLS 

system but GPS signals do not penetrate buildings well and thus GPS will in general 

not work well inside buildings and in dense areas [1]. Thus, there is a need for RTLS 

systems that work individually in those environments that are especially indoor 

environments. In order to locate objects accurately in indoor environments, a lot of 

work has been conducted and different solutions have been proposed over the years 

in the market and literature.  

Different technologies have been proposed for indoor localization including infrared 

(IR), ultrasound, and radio frequency (RF) [2] systems. The technique selection 

depends on the type and scale of the environment and whether the line of sight (LOS) 



2 
 

is required or not. Infrared and ultrasound sensors require LOS and are short range 

devices. Therefore, they are not appropriate for large scale and obstacle filled 

environments. At this point systems using RF become popular because RF systems 

do not require LOS and can communicate in long ranges depending on the power of 

the signal. So the most popular of these localization technologies is RF systems 

which vary in the localization method used. The most popular of these are received 

signal strength indication (RSSI), time of arrival (TOA), time difference of arrival 

(TDOA) or angle of arrival (AOA) [3]. The main idea of all these localization 

methods is that, in order to localize nodes, distance of the nodes to reference points, 

distance between nodes or angle according to reference points need to be calculated 

or estimated first. However, the methods except RSSI need complicated hardware or 

antenna which drastically increases the system cost [4]. This leads us to use RSSI 

based localization methods in our work. 

RSSI based location estimation and tracking problems usually make use of wireless 

local area network (WLAN) infrastructure, wireless sensor network (WSN) 

infrastructure or radio frequency identification (RFID) technology. All three 

technologies can be used for indoor localization and we choose to use RFID 

technology which is the most popular RTLS system for indoor use due to its 

advantages of being practical, cost effective, small in size, and easy to deploy [5], 

[6], [7]. RFID devices compose of transmitters (or transceivers) called tag and 

receivers called reader which are cost effective, small size, and low power devices. 

RFID systems that are developed and supplied by many different commercial 

enterprises are studied for localization and tracking purposes in the literature [8], [9], 

[2], [10], [11], [7], [12], [6], [5].  

Compared with an outdoor propagation environment, indoor environments are more 

complex in terms of RF signal propagation. Radio signals are subject to reflections, 

diffractions, and scattering in complex environments. These result in multipath or 

shadowing effect, thus the relationship between the distance and received signal 

strength (RSS) in indoor environments becomes much more complicated than that in 

outdoor environments [2]. In RSSI based localization techniques, since location 
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estimation makes use of RSS – distance relationship, good modeling of the signal 

propagation behavior of the environment is a crucial step for decreasing the resulting 

location estimation error. Since RSSI measurements are prone to large errors in 

complicated indoor environments, range information might not be derived 

deterministically from the RSSI measurements [2], [5]. So, in recent years besides 

deterministic localization methods, probabilistic (Bayesian) localization methods 

taking the RSSI-range variability and a priori knowledge of the target motion into 

account have been proposed in the literature [5], [8], [13], [14], [15], [1], [2], [10], 

[9], [3] so as to improve localization performance. Investigating the localization and 

tracking literature on RSSI based localization and robotics, we have come up with 

different localization methods including deterministic and Bayesian solutions. These 

methods have different variations in the subcategories each having weak and strong 

aspects over another that are given in Chapters 3 and 4. 

This work implements different deterministic and probabilistic Bayesian location 

estimation methods to be able to compare them and propose several improvements 

on the existing applications.  In order to compare these methods in different aspects, 

the best way is to make empirical experiments on the same test bench with the same 

experimental variables like measurement noise, receiver position, size of the target 

area, experimental locations of the target etc. and to make simulations of the methods 

with the same simulation models. In the literature such a complete experimental or 

simulation comparison that runs on the same environment could not be found. So, 

one aim of this thesis is to supply comparisons between different localization 

methods that are often cited in the literature by giving both simulation and 

experimental results. The methods that we implemented are given in Section 7.1. The 

behaviors of each mentioned method with varying environmental parameters (e.g., 

measurement noise) and system parameters (e.g., process noise properties, grid 

spacing, number of particles, etc.) were also investigated for completeness. 

As we stated above, since RSSI readings are not reliable measure of the distance 

information in complex environments, having an accurate signal propagation model 

of the target environment is very important to yield accurate location estimation for 
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any type of localization method. The RSSI modeling is done through the training 

phase of localization systems and several methods are proposed for this training 

phase. There are mainly two methods: i) deriving the propagation parameters 

(propagation parameter based approach) to estimate RSSI – range relation. ii) 

creating the RSSI pattern/map (pattern based approach) of the environment. In the 

first method the parameters can be derived empirically in an offline training phase or 

they can be calibrated automatically during the estimation steps using additional 

reference tags. In this work we implemented both approaches to have a comparison. 

Automatic calibration method [16], [5] can be very attractive for especially large 

target area since it does not need an extra offline training phase and it may lead to 

more accurate RSSI modeling by adapting the parameters to the dynamically 

changing (moving objects, people etc.) environment at the expense of additional 

system cost. We exploited automatic calibration of propagation parameters in this 

thesis to come up with a practical method and also it is important to note that this 

thesis is the only work using automatic calibration of propagation parameters for 

indoor localization using an RFID system. 

In the second method two different approaches are found in the literature. One is 

creating the RSSI map with offline empirical measurements taken at discrete 

locations all over the target environment [17]. The other one is creating the RSSI 

map with an online phase by using reference tags placed at different known locations 

in the environment [11]. Both of these approaches are reported to give more accurate 

localization results but the former needs a great amount of human labor for large 

target area and the latter needs a large number of reference tags that is usually not 

practical to implement and increases the system cost. In this thesis we also 

implemented the offline creation of the propagation map but because of insufficient 

number of RFID tags we could not implement the online approach. 

Another aim of this thesis is to propose a localization method that is robust and easy 

to deploy for practical implementations in a complex indoor environment. [5] and [9] 

are important studies to combine reference tag approach and Bayesian filtering 

algorithms and form the basis of this work. Our proposed method exploits a WAF 
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(wall attenuation factor) propagation model with automatic calibration of 

propagation parameters and measurement noise via reference tags and an improved 

version of SIR (sampling importance resampling) particle filtering localization 

method. In addition, a custom RSSI smoothing algorithm by the use of reference tags 

is implemented to further increase the estimation accuracy as a contribution of this 

work. 

In this work, considering practical applicability and popularity in both literature and 

commercial researches, we preferred to use RFID devices exploiting RSSI 

measurements. Patch antenna for the RFID readers is designed and application and 

user interface software running localization algorithms is developed in C# language 

in the context of the thesis. For investigating the localization algorithms simulation 

work was carried out on MATLAB and empirical experiments were run in a home 

environment containing two rooms of a 36 m² total area with a wall between and 

many different furniture inside. We used 3 RFID readers, 1 target tag and 4 reference 

tags throughout our experimental work.  

In this thesis, theory of localization methods and signal propagation issues will be 

given in Chapters 2-5. In Chapter 6, details of RSSI measurements taken in the target 

area, used signal propagation model, calibration methods of the propagation 

parameters will be given. Chapter 7 will detail the localization methods used from 

the literature and additional approaches of our work to these methods, our simulation 

work and the results, experimental work and the results, and the analysis of both 

simulation and experimental work.  We will conclude with the conclusion in Chapter 

8. In Appendix A Cramer Rao Lower Bound (CRLB) is derived for our localization 

problem. 
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CHAPTER 2 

 

 WIRELESS LOCALIZATION METHODS 
 

 

 

Wireless localization methods depending on the type of the physical parameters read 

by the sensors can be investigated in four different categories which are received 

signal strength indication (RSSI), time of arrival (TOA), time difference of arrival 

(TDOA), and angle of arrival (AOA). In this chapter we will give brief information 

on TOA, TDOA, and AOA based wireless localization methods and we will give 

more detailed information and literature review about the RSSI based localization 

methods being the subject of our work. 

2.1 TIME OF ARRIVAL (TOA) METHODS  
 

The distance between a reference point and the target is proportional to the 

propagation time of signal [1]. TOA based systems need at least three different 

measuring units to perform a lateration for 2-D positioning. However, they also 

require that all transmitters and receivers are precisely synchronized and that the 

transmitting signals include time stamps in order to accurately evaluate the traveled 

distances.  

 

This approach is reasonably successful in indoor environments such as with concrete 

walls and floors and it has a relatively high accuracy compared to other methods. 

But, an ideal TOA system requires costly accurate clocks because in order to attain a 

more precise distance measurement a timing precision up to the nanosecond scale is 
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a requirement, which results in a more elaborate clock synchronization system. The 

clock offset and clock drift corrupt the ranging accuracy [1]. 

2.2 TIME DIFFERENCE OF ARRIVAL (TDOA) METHODS  
 

The principle of TDOA lies on the idea of determining the relative location of a 

targeted transmitter by using the difference in time at which the signal emitted by a 

target arrives at multiple measuring units. Three fixed receivers give two TDOAs and 

thus provide an intersection point that is the estimated location of the target. This 

method requires a precise time reference between the measuring units. Like TOA, 

TDOA often suffers from multipath effects which affect the time of flight of the 

signals. So different signal processing techniques are used to improve the accuracy of 

the estimation. Some of these techniques that are used for the solution of the emitter 

location problem include the iterative least-squares (ILS) method and the maximum 

likelihood (ML) estimation technique [3]. 

2.3 ANGLE OF ARRIVAL (AOA) METHODS  
 

AOA consists in calculating the intersection of several direction lines, each 

originating from a beacon station or from the target [1]. The angle of arrival 

information is obtained by getting the phase difference of the source signals.  At least 

two angles, measured with directional antenna or with an array of antennas and 

converted in direction lines, are needed to find the 2-D location of a target.  

 

As TOA and TDOA methods, this technique also suffers from shadowing and 

multipath reflections, and it is an expensive method that requires complex and 

expensive equipments like antenna arrays.  

2.4 RECEIVED SIGNAL STRENGTH INDICATION (RSSI) METHODS 
 

RSSI based measurement techniques can be broadly divided into deterministic and 

probabilistic techniques which will be detailed in Chapters 3 and 4, respectively. In 
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this section first we will give brief information on the classification of these methods 

and then a review of the related literature that we used will be given.  

 

In deterministic methods, lateration (geometry) based or nearest neighbor(s) (NN) 

(also referred to as scene analysis) approaches can be used. In lateration based 

approaches, distance to RSSI relation is assumed to be deterministic and the obtained 

distance estimation is used for triangulation solutions to estimate the location [18]. 

On the other hand, NN approaches assign RSSI vector signatures (fingerprints) to the 

equally spaced grid locations all over the target area. This can be done by empirically 

storing the data or by signal propagation modeling techniques. After obtaining the 

RSSI fingerprints, pattern matching methods are used to find the most likely grid 

location(s) (nearest neighbor(s)) which will lead to the location determination of the 

target [17].  

 

In probabilistic positioning techniques a probability distribution of the user’s location 

is defined over the area of the movement. In general a Bayesian belief model is 

established with a preset number of discretized location possibilities which will be 

called grid cells. The Bayesian model is established with the a priori probability 

distribution of a user being at a given location and by the conditional probabilities 

(likelihood model) with which a given RSSI is measured at that location. By using 

the a priori and likelihood models one can derive the conditional probabilities (and 

thus the a posteriori distribution over locations) of a user being at each cell given the 

current RSSI reading. In order to apply Bayesian filters in location estimation 

problems, different filtering algorithms are used which include Kalman filtering [8], 

[10], grid based Bayesian inference [2], [5], and sequential Monte Carlo localization 

(MCL) [19], [9] which is also called particle filtering.   

 

In this thesis we will investigate and work on both deterministic and probabilistic 

methods to derive pros and cons of each, but our main goal is to integrate and 

develop both methods to obtain a novel solution to localization problems. 
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2.4.1 Literature Survey on RSSI Based Localization Methods 

 

In general, RSSI based positioning includes two phases: i) the training phase where 

the wireless map of the environment is determined by field measurements and ii) the 

localization phase where location calculation is performed based on the wireless 

map. Note that the training phase is an offline or online process and as such it needs 

to be redone if there have been major changes occurred affecting the wireless 

propagation environment for the offline case.  

 

Accurate modeling of the environment is crucial in the accuracy of the location 

estimation. For the training phase there are several approaches to model the signal 

propagation of the environment. We can group the modeling approaches into two 

main categories.  One is, modeling the propagation behavior of the signal in the 

target area using a suitable fading model described in Chapter 5. For this approach 

empirical measurements or floor plan modeling techniques can be used to drive a 

good estimate of target to source distance from the RSSI information. This is more 

flexible and easy to derive but suffers from dynamic environmental changes. This 

modeling is usually used in lateration (geometry) based localization solutions [18]. 

Or it can be used to create virtual RSSI map/pattern of the environment to be used in 

NN or probabilistic based location estimation techniques [17], [10]. The second 

approach is creating the RSSI map of the environment by empirical measurements at 

many different locations over the target area. Details on RSSI map will also be given 

in Chapter 5. This method is shown to be more accurate but it needs more human 

labor and is less flexible since it must be redone for any changes in the environment 

structure or receiver position. This method can either assign deterministic RSS 

signature vectors (fingerprints) to each grid locations to be used for NN solutions or 

RSS probability distributions for each grid cell to be used for probabilistic solutions. 

In order to compensate dynamic changes in the environment and remove the heavy 

human labor in the training phase automatic parameter calibration techniques are 

proposed in the literature.  
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Among the WLAN based localization literature RADAR [17] is one of the most cited 

work. RADAR uses WLAN based systems for location and tracking users inside 

buildings. It was the first system to propose the use of an RF map of the area. RSSI 

for each WLAN base station is stored as a fingerprint in a database for each point in 

a dense grid covering the floor. When querying the database, a nearest neighbor 

match in the fingerprint space provides candidates for mobile's position. Two 

approaches for position estimation are offered: using an empirical database which is 

based on a large number of RSS data stored in a database, or a model of RF 

propagation in the floor inferred from it. In [14] wireless signal strength maps for the 

positioning filter are obtained by a two-step parametric and measurement driven ray-

tracing approach to account for absorption and reflection characteristics of various 

obstacles. Location estimates are then computed using Bayesian filtering on sample 

sets derived by Monte Carlo sampling. [13] estimates the location of a WLAN user 

in a statistical approach. In this approach the physical properties of the signal 

propagation are not taken into account directly. Instead the location estimation is 

regarded as a machine learning problem in which the task is to model how the signal 

strengths are distributed in different geographical areas based on a sample of 

measurements collected at several known locations. Then a probabilistic framework 

for solving the location estimation problem is presented. There are many other 

literature using WLAN based systems to estimate position but the ones mentioned 

above are selected as examples which exploit different localization methods.  

 

Due to advantages such as small size, low power and low cost, the Radio Frequency 

Identification (RFID) sensors are widely used for detection and tracking purposes in 

a large variety of sectors. With the capability of providing RSS information advanced 

RFID systems have become a potential candidate for mass localization. Several 

RFID based systems have been proposed for tracking and localization objects in 

indoor environments. SpotON [18] and LANDMARC [11] are two of these systems. 

SpotON uses an aggregation algorithm for three-dimensional localization. The tags 

use RSS information to obtain inter-tag distances based on empirical mapping 

between the two. SpotON assumes deterministic mapping between RSS and 
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distances and does not account for the range measurement uncertainty caused by the 

varying environments. LANDMARC utilizes RSS measurement information to 

locate objects using kNN nearest reference tags. It is in a way similar to RADAR [17] 

scheme, except that the RF map is built by previously placed active tags. In 

LANDMARC, 4 readers and 16 reference tags (spaced 1 m) are used in a 40 m² 

single room area to give a median of 1m position estimation error. To diminish the 

uncertainty of the detected range caused by the varying environments, there must be 

a large number of reference tags distributed in the environment. This seems 

impractical and expensive for most of the indoor scenarios. A simultaneous 

localization and mapping (SLAM) system for robot navigation based on RFID tags is 

presented by Haehnel et al [20]. The mobile robot carries a pair of patch (directive) 

antennas with which it can determine the range and angular position of detected tags 

relative to its current position. The range – angular dependence of the RSSI is 

modeled statistically and then a Bayesian filter is used for position estimation. The 

approach in [8] also utilizes reference tags along with Kalman filtering. The first step 

consists of calculating the distance between each reference tag and the target tag by 

using RSS measurements from two readers. The location of the tag is obtained by the 

minimum mean squared error algorithm. The second step consists of building a 

probabilistic map of the error measurement for the readers’ detection area. The first 

step is applied for each reference tag in order to calculate their corresponding error 

probability distribution function with the help of their estimated location and their 

real location. The Kalman filter is then used iteratively on this online map to reduce 

the effect of RSS measurement error and thus to improve the accuracy of the 

localization. SCOUT [5] belongs to the family of probabilistic localization 

techniques and uses grid based Bayesian filtering. This method also utilizes reference 

tags. Active tags are localized following three steps. First, the propagation 

parameters are calibrated using on-site reference tags. Second, the distances between 

the target tag and the readers are estimated with a probabilistic RSS model. Finally, 

the location of the tag is determined by applying Bayesian inference. Iteratively, 

predicted beliefs are calculated and then corrected with observations until a good 

model is obtained resulting in an estimation area. [9] also belongs to the probabilistic 
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RFID localization family and uses particle filtering method as well as the reference 

tag idea.  

 

In our work we implement most of the major methods given in the literature, 

compare them and integrate them to have an improved method of localization.  
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CHAPTER 3 

 

 DETERMINISTIC INDOOR LOCALIZATION 

METHODS 
 

 

 

In this chapter we will give details of deterministic indoor localization methods that 

do not take probabilistic behavior of RSSI observation into account. Also they do not 

consider the a priori knowledge of the location of the target. Nearest neighbors (NN) 

and lateration (geometry) methods are two main subclasses of deterministic 

localization methods. Geometry method is a traditional method that is usually used 

for GPS, AOA, TOA, and TDOA technologies and rarely for RSS based 

technologies [4]. NN based localization is the most used deterministic method in the 

literature. Therefore, we used NN based approaches in our work.  

3.1 NEAREST NEIGHBORS (NN) METHODS 
 

Nearest neighbors method, also known as scene analysis method was first introduced 

by J. G. Skellam [21]. The distances of the observed data set to the expected data sets 

are used to determine the most probable location(s). A distance function E 

(Euclidean distance in our case) that gives the RSS data vectors’ distances is used to 

determine the closest vector match.  

 

Suppose that there are m cell locations and thus m RSS pattern vectors. R =�R� , R�, … , R	
  in which each pattern vector R�  consists of  signal signatures 

(R� = �R�� , R��, … , R
��) at location j, (j=1,2,…,m). kRDR is the number of readers 
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(access point, station or receiver) in the system. Rt is the target RSS vector obtained 

at each measurement where vector Rt  consists of kRDR signal signatures (Rt =�Rt� , Rt�, … , Rt

). E is calculated for the jth cell’s RSS data set as follows [11]: 

E� = � � ( R�� − Rt�)�����
���  

 
 

(3.1) 
 
 

where kRDR is the number of readers, Rt� is the RSS of the target measured by the 

reader i, and R�� is the RSS of the cell j measured by the reader i. R�� can be obtained 

either by propagation pattern based approach or by propagation parameter based 

approach which are explained below. E denotes the distance between each cell and 

the target RSSI vectors. The kNN nearest cells’ coordinates are then averaged to 

localize the target estimate (�� , ��) as follows [11]: 

(�� , ��) = � w�(x�,y�)�""
���  

 
(3.2) 

 

 

where w� is the weighting factor of each neighboring cell and calculated as [11] 

 

w� = 1 E��$∑ E���""���      
(3.3) 

 
 

[22] reported that estimation error decreases as kNN increases up to a number, then the 

error increases.  

In NN method the cells’ RSS data vectors are obtained by either propagation pattern 

based or propagation parameter based approaches. 

3.1.1 Propagation Pattern (Empirical) Based Approach 

 

We can investigate propagation pattern based approach in two main categories. One 

creates the RSSI pattern in an offline phase by storing the data as in RADAR [17], 
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the other one obtains the pattern in an online phase by using reference transmitters 

located at the training grid locations as in LANDMARC [11]. For both approaches, 

estimation accuracy depends heavily on the density of the training grids, accuracy 

increases as more grid cells (i.e., the number of reference transmitters in the online 

approach) are used in the target area. 

 

In the first approach the predefined cells’ data sets (in our case, the RSS 

measurement vectors Rj ) are stored previously from empirical measurements [17] 

which are called fingerprints. In order to obtain the training data set, cell locations 

are defined first (e.g., each 1 m step) and then at each cell location a certain number 

of training data samples are stored. Increasing number of cell locations increases the 

accuracy of the location estimation. This method needs a serious human labor and 

also suffers from flexibility since the RSS model has to be reestablished all over 

again in case of any change in the environment or in the locations of the readers. In 

[17] it is reported that the median error is 2.9 m, in a floor area of 980 m2, consisting 

of 50 rooms. 

 

In the second approach LANDMARC [11] introduced the concept of reference tag 

(transmitter) in order to establish the online pattern vector with the reference tags 

fixed at predefined cell locations thus removing the time consuming data storage 

phase. LANDMARC method is also flexible in terms of both the dynamic 

environmental changes and the reader positions. But it has its own drawbacks on 

practical implementation and system cost. The median error is about 1.8 m in an area 

of 20 m2, in a single room, with 16 reference tags and 3 readers. 

3.1.2   Propagation Parameter Based Approach 

 

In this approach  RSS pattern vectors at each cell in the concerned area are not stored 

empirically as in the propagation pattern based approach but instead they are created 

by using the signal propagation parameters and the distance d of the cell location to 

each reader location using the below formula [17] 
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R�� = α − 10 ∗ n ∗ log - dd/0 − c�� ∗ WAF (3.14) 

where R��  is the RSS of the cell j, measured by the reader i. α  and n  are the 

parameters to be determined. d/ is a constant dummy distance chosen in advance. 

WAF is the wall attenuation factor to be determined. c��  is the number of walls 

between the jth cell and the ith reader. In fact [17] reports that the attenuation factor 

makes a difference when c�� is smaller than a certain number which is found to be 4 

in that paper. 

 

In this case the parameters can be determined using two different methods: One is 

offline determination of the parameters as in [17]. In a training phase RSS 

measurements are taken at different distances from each reader with or without walls 

between. Then using different curve fitting algorithms, required parameters are 

obtained and used after the training phase. This method is simpler than the pattern 

based approach, more flexible but in [17] it is reported that accuracy is worse than 

that of the pattern based approach. The median errors are, respectively, 4.3 and 2.9 

m, in a floor area of 980 m2, consisting of 50 rooms. This approach is still time 

consuming and cannot accommodate environmental changes in the estimation phase. 

So another method that is automatic calibration of the parameters is proposed by 

several authors [16], [5]. 

 

In this work we implemented both pattern based and parameter based approaches but 

our main attention is on the parameter based approach. For online calibration of 

parameters “reference tags” or “reference access points” are used. This method 

eliminates the time consuming training phase and also can accommodate 

environmental changes up to a limit.  

3.2 LATERATION (GEOMETRY) METHOD 
 

The lateration approach, illustrated in Figure 3.1 estimates the position of the target 

by evaluating its distances from at least three reference points. In [18] multiple base 
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stations provide signal strength measurements mapping to an approximate distance. 

A central server then aggregates the values to triangulate the precise position of the 

tagged object. Finally, the computed object positions are published to client 

applications. 

 

Figure 3.1. Trilateration: the estimated location corresponds to the intersection point 
of three circles. 

 

[13] states that propagation based approaches are competitive against the traditional 

geometry method. 
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CHAPTER 4 

 

   PROBABILISTIC INDOOR LOCALIZATION 

METHODS 
 

 

 

Probabilistic approaches’ arising point is that, the propagation of RF signals in 

indoor environments is almost impossible to model exactly. So the relationship of 

RSS information with range is not deterministic. Probabilistic methods try to handle 

this uncertainty and errors in signal measurements. Moreover probabilistic methods 

incorporate the a priori knowledge about the possible/impossible locations in the 

interested area also taking the previous location into consideration. Probabilistic 

approaches use Bayesian inference which estimates the location as a probability 

distribution over the area of interest [1].  

 

Bayes filters assume that the environment is Markov, that is, past and future data are 

(conditionally) independent if one knows the current state. The Markov assumption 

is stated explicitly below.  

 

In the following formulations the notations explained below will be used. L6: The location of the transmitter at time t. s6: The sensor data (being RSSI in our problem) at time t. s�,….,6: Denotes the sensor data sequence from time 1 to time t : �s�, … , s6 
  
 

The key idea of Bayes filtering is to estimate a posterior probability density function 

(pdf) p:L6;s�,….,6< over the state space L6 , conditioned on the sensor measurement 

data  s�,….,6 up to time t. The initial density of the state vector is p(L/) at time zero 
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when there are no measurements. Then the posterior density p:L6;s�,….,6< will be 

obtained recursively using the previous posterior pdf  p(L6=�| s�,….,6=�) and the most 

recent measurement data s6 in two stages which are prediction and update stages. 

Suppose that at time t − 1 the posterior pdf p(L6=�| s�,….,6=�) is available.  

 

At the prediction stage, process model explained below is used to obtain the prior pdf 

(or prediction density) p(L6| s�,….,6=�)  at time t via the Chapman-Kolmogorov 

equation [23]. 

 

p(L6| s�,….,6=�) = ? p(L6 |L6=�)p(L6=�| s�,….,6=�)  dL6=�   (4.1) 

 

The process (also called system, action, motion or mobility) model is [23] 

 L6 = f6=�(L6=�, AB=�)                       (4.2) 
 

 

where f6=� is a known function of the state L6=� and the process noise AB=� . Process 

noise is any mismodeling or disturbances in the process model. For example, for a 

moving target with constant  speed C , L6 = L6=� + C + AB=� .  The noise AB=�  is 

assumed to be white with known probability density function. 

 

The transitional density p(L6 |L6=�) in (4.1) is simplified from p(L6 |L6=�,  s�,….,6=�) 

since it is a Markov process of order one. The density p(L6 |L6=�) is defined by the 

process model (4.2) and the known statistics of AB=� . The transitional density p(L6 |L6=�) is sometimes called process model in the literature [14]. 

 

Update stage is applied at time step t when a measurement s6 is taken. At this stage 

the prior density p(L6| s�,….,6=�) is updated to form the posterior density p:L6;s�,….,6< 

using the Bayesian rule as [23] 
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p:L6;s�,….,6< = p:L6;s6, s�,….,6=�< (4.3) 
 

p:L6;s�,….,6< = p:s6;L6, s�,….,6=�<p:L6;s�,….,6=�<p:s6;s�,….,6=�<  

 
(4.4) 

 
 

 

 p:s6;L6, s�,….,6=�< term in (4.4) simplifies to p(s6|L6) in (4.5) since s6 measurement 

only depends on the location state L6. In (4.4) and (4.5)  p:s6;s�,….,6=�<  term is the 

normalizing constant which is [23] 

p:s6;s�,….,6=�< = ? p(s6|L6)p(L6| s�,….,6=�)  dL6   
(4.6) 

 p(s6|L6) term in (4.5) and (4.6) is referred to as likelihood function which is defined 

by the measurement model as explained below, and the known statistics of 

measurement noise w6. p(s6|L6) is sometimes referred to as the measurement model 

in the literature [14].  

 

The measurements are related to the location state L6 via the following measurement 

(observation) model  

s6 = h6(L6, FB) (4.7) 

where h6 is a known function and FB is the measurement noise which is assumed to 

be white, with known probability density function. This model is generated 

empirically from a large set of measurements obtained in different locations in the 

area of interest. 

 

Knowing the posterior density p(L6|s�,….,6)  one can compute a location estimate with 

any criterion. Most common used ones are the minimum mean square error (MMSE) 

estimate and maximum a posteriori (MAP) estimate [23].  

p:L6;s�,….,6< = p(s6|L6)p:L6;s�,….,6=�<p:s6;s�,….,6=�<      
(4.5) 
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MMSE estimate is the conditional mean of GB. 

 

MAP estimate is the maximum of p(L6|s�,….,6). 

 LH6|6IJK ≜   p(L6|s�,….,6)MNO
P	OQ  (4.9) 
 

 

In order to implement the conceptual solution to the posterior density in (4.5) there 

exist several optimal or suboptimal Bayesian algorithms. The optimal algorithms can 

be the Kalman filters if the noise distributions are Gaussian or the grid based 

Bayesian method if the state space is discrete and finite. But Kalman filter typically 

fails when the Gaussian assumption breaks down and in a localization problem either 

the process noise or the measurement noise can be non-Gaussian distributions [23]. 

 

In our localization problem the state space is continuous and the motion model can 

be any type of distribution in real life applications. So we will use approximate or 

suboptimal methods. Our interest will be on approximate grid-based method (also 

known as Markov localization) which is a numerical approximation method, and the 

particle filter which is in fact sequential Monte Carlo sampling approach of Bayesian 

filters. Markov localization [24] and particle filters [25] are promising Bayesian 

filters that are also used in robot localization problems. 

4.1 APPROXIMATE GRID BASED BAYESIAN FILTERING 
 

This approach is also referred to as Markov localization in the literature [24]. In this 

numerical approximation of Bayesian filter, the integrals in equations (4.1) and (4.6) 

are solved by numerical integration where the integration is replaced by summation 

and the integration variables are discretized.  

 

LH6|6IIRS ≜ E�L6|s�,….,6� = ? L6. p(L6|s�,….,6)dL6 (4.8) 
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The continuous location space in this approach is sliced into m location cells. Then 

the approximate discrete posterior probability is typically called the belief and 

denoted by  

Bel(L6) = p(L6|s�,….,6) (4.10) 

 

where L6 is the location at time t and s�,….,6 is sensor measurement data up to time t. 

The belief function of being at location l at time t without any assumptions is 

 

Bel(L6 = l) = P:s6;L6 = l, s�,….,6=�<P(L6 = l | s�,….,6=�)P:s6;s�,….,6=�<  

  

 

(4.11) 

 

 

In (4.11) using the “independence of sensor readings”, the probability P:s6;L6 = l, s�,….,6=�<  simplifies to P(s6|L6 = l)  and is referred to as the 

measurement model or the likelihood function. It states the probability of taking 

the measurement s6 when the target is at location l.  
 

In (4.11) P(L6 = l | s�,….,6=�) describes the probability of being at location l at time t 

before the sensor measurement is taken at time t. Here using the Markov assumption 

and conditioning on the previous state L6=� we get  

P(L6 = l |L6=� = l′) term here is called the process model. 

 

By using the belief definition in (4.10), P(L6=� = l′; s�,….,6=�) can be written as the 

belief at time t-1 Bel(L6=� = l′). Also we can rewrite P(L6 = l | s�,….,6=�) as P(L6 =l Lt−1) since it only depends on the previous state Lt−1 to give  

 

P(L6 = l | s�,….,6=�) = ∑ P(L6 = l |L6=� = lW)P(L6=� = lW| s�,….,6=�)XY   
 

(4.12) 
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P(L6 = l |L6=�) = � P(L6 = l |L6=� = lW)Bel(L6=� = lW)XY  (4.13) 
 

  

Integrating all the assumptions and simplifications explained above, we can rewrite 

(4.11) as 

 

Bel(L6 = l) = P(s6|L6 = l)P(L6 = l |L6=�)P:s6;s�,….,6=�<  (4.14) 
 

 

The denominator here is nothing but a normalizing coefficient which supplies Bel(L6 = l) sums up to one over all possible locations  l  in the state space. So we can 

rewrite  

where  β  is a normalizing coefficient. 

 

In this method, the grids must be sufficiently dense to get a good approximation to 

the continuous state space. As the state space dimension increases, the computational 

cost of the approach and the computation time dramatically increase. However, the 

method can be used successfully with a moderate computational cost for localization 

applications that do not need much precision and that are for small area 

environments.    

4.2 PARTICLE FILTERING  
 

Particle filters perform sequential Monte Carlo (SMC) estimation based particle (or 

point mass) representation of probability densities. Detailed information can be 

found in [23], [1], [3], [26], [27], [28], [29]. Sequential importance sampling (SIS) 

which is the basic idea of SMC was introduced in 1950s [23]. But these methods had 

several disadvantages when implemented purely. Particle filters were made useful in 

Bel(L6 = l) = βP(s6|L6 = l)P(L6 = l |L6=�)  
(4.15) 
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practice when the resampling step is included. Sampling importance resampling 

(SIR) filter is one of the filters exploiting resampling stage. In our work we used SIR 

filter and added several improvements on it. So in this section we will give details of 

the SIS approach which is the basis of SIR, the SIR filter, and improvements on SIR 

proposed in the literature. 

4.2.1   Sequential Importance Sampling (SIS)  

 

It is the basis for most of the SMC methods. It implements sequential Bayesian filter 

using MC simulations. The key idea is to represent the required posterior density 

function by a set of random samples with associated weights and to compute 

estimates based on these samples and weights. As the number of samples becomes 

very large, this MC characterization becomes an equivalent representation to the 

usual functional description of the posterior pdf, and the SIS filter approaches the 

optimal Bayesian estimate [23], [28].  

The posterior pdf p:Lt;s1,….,t< is approximated by N discrete points of masses called 

particles �:Lt
j ,wt

j<� as shown in (4.16) where "≈" notation will be used to denote not 

equality but approximation.  

p:Lt;s1,….,t<≈�:Lt
j ,wt

j<�,        j = 1, … , N 
 

(4.16) 
 

where Lt
j  is the location of the jth particle at time t and wt

j  is the normalized, 

nonnegative weight of the jth particle. wt  is called the importance factor that 

approximates the distribution probability at location l. The weights are chosen using 

the principle of importance sampling which is explained below. 

 

Suppose p(x)  is a probability density of a random variable x, from which it is 

difficult to draw samples. Instead the samples can be drawn from an arbitrary density 

q(x) which is similar to p(x) and q(x) is called the importance or proposal density. 

Then a correct weighting of the sample set still makes the Monte Carlo estimation 
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possible. Here the similarity of q(x)  can be expressed by the condition: 

p(x)>0   =>  q(x)>0  for all x for which p(x) is non zero which means that p(x) and 

q(x)  have the same support. Let  x�~q(x), j = 1, … , N  be the samples that are 

generated from the importance density where “~” notation is used to denote that �` 

is sampled from q(x), then a weighted approximation to the density p(x) is given by 

 

p(x) ≈� w�δ(x − x�)"
���  (4.17) 

 

 

where  

w� ∝ p:x�<q(x�) 
(4.18) 

 

 

is the normalized weight of the jth particle and “∝” is used for proportionality. 

Returning to (4.16), if the samples Lt
j  are drawn from an importance density  q(L6|s�,….,6) then by using (4.18) we can write  

 

Now suppose that at time step t − 1 we have samples forming p:L6=�;s�,….,6=�< and 

when we take a measurement s6 at time t we need to form a new set of samples 

approximating p:L6;s�,….,6<. If the importance density is chosen to factorize such that  

then one can obtain samples Lt
j~q:L6;s�,….,6< by augmenting each of the existing 

samples  L
t-1
j ~q:L6=�;s�,….,6=�< with the new state Lt

j~q:L6;s6,s�,….,6=�<. To derive the 

update equations the pdf p:L6;s�,….,6< is first expressed as 

wt
j ∝ p:Lt

j;s�,….,6<q:Lt
j;s�,….,6< (4.19) 

 

q:L6;s�,….,6< = q(L6|L6=�  , s6)q:L6=�;s�,….,6=�< (4.20) 
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p:L6;s�,….,6< = p:s6;L6, s�,….,6=�<p:L6;s�,….,6=�<p:s6;s�,….,6=�<     (4.21) 
 

 

 = p(s6|L6)p:L6;s�,….,6=�<p:s6;s�,….,6=�<   (4.22) 
 

 

 

 

By substituting (4.24) and (4.20) into (4.19) the weight update equation can be 

written as 

 

Using the weights wt
j the filtered posterior density p:Lt;s1,….,t< can be approximated 

as 

p:Lt;s1,….,t< ≈ � wt
jδ(L6 − L6� )"

���  (4.27) 
 

Here δ  is the Dirac delta function. So filtering via SIS consists of recursive 

propagation of importance weights and the particle locations. The pseudo code for 

SIS algorithm is given in Table 4.1.  

= p(s6|L6)p(L6|L6=�)p:s6;s�,….,6=�<  p:L6=�;s�,….,6=�< (4.23) 
 

 ∝   p(s6|L6)p(L6|L6=�) p:L6=�;s�,….,6=�< 
 

(4.24) 
 

 

wt
j ∝ p:s6;L6� <p:L6� ;L6=�� < p:L6=�� ;s�,….,6=�<q:L6� ;L6=�� , s6<q:L6=�� ;s�,….,6=�<  

 
(4.25) 

 
 

wt
j ∝ wt-1

j p:s6;L6� <p:L6� ;L6=�� < q:L6� ;L6=�� , s6<  (4.26) 
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A common problem with the SIS particle filter is the degeneracy phenomenon, 

where after a few iterations, most of the particles will have negligible weight. It is 

stated in [28] that the variance of the importance weights can only increase over 

time, and thus, it leads to the degeneracy phenomenon which has a harmful effect on 

the accuracy. This degeneracy implies that a large computational effort is devoted to 

updating particles whose contribution to the approximation p:L6;s�,….,6< is almost 

zero. A suitable measure of degeneracy of the algorithm is the effective sample size Ndee  [28] and can be approximated as  

Ndee = 1∑ (wt
j)�"���  (4.28) 

 

Hence Ndee  ≤ N  and large weight results in small Ndee  which indicates severe 

degeneracy and vice versa. Considering extreme cases: if the weights are uniform, 

i.e., wt
j = �"  for all j, Ndee = N. If one of the weights is “1” but all others are “0” then Ndee = 1. 

 

Table 4.1 SIS Algorithm 

Algorithm: SIS Particle Filter 

[jLt
j ,wt

jk���" ] = SIS[jLt-1
j ,wt-1

j k���" , s6] 
FOR j=1:N 

   Draw L6� ~q oL6pL6=�� , s6q 

  Assign the particle a weight wt
j  according to (4.26) 

END FOR 

  Normalize the weight coefficients. 
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One approach to reducing degeneracy effect is to use a very large N. This is often 

impractical; therefore, we rely on other two methods: good choice of importance 

density and use of resampling. 

 

In choice of importance density, the first method involves choosing the importance 

density to minimize the variance of the weights so that Ndee  is maximized. The 

optimal importance density function that minimizes the variance of the true weights 

conditioned on L6=��  and s6 is given to be [28] 

 

Thus substituting (4.30) into (4.26) the weight is  

 

 

But it is usually not easy to sample from the density p:L6;L6=�� , s6< and to evaluate 

the integral in (4.32). So it is often more convenient to use the importance density as 

the prior density 

q:L6;L6=�� , s6< = p:L6;L6=�� < 
 

(4.33) 
 

Substituting (4.33) into (4.26) gives 

q:L6;L6=�� , s6<rs6 = p:L6;L6=�� , s6< 
 

(4.29) 
 

=  p:s6;L6, L6=�� <p:L6;L6=�� < p:s6;L6=�� <  (4.30) 
 

wt
j  ∝ wt-1

j  p:s6;L6=�� < (4.31) 
 

wt
j = wt-1

j ? p(s6|L6)p:L6;L6=�� < dL6 (4.32) 
 

wt
j ∝ wt-1

j p:s6;L6� < 
 

(4.34) 
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This would seem to be the most common choice of importance density since it is 

intuitive and simple to implement. However, there are many other densities that can 

be used. 

 

The second method by which the effects of degeneracy can be reduced is to use 

resampling whenever a significant degeneracy is observed (i.e., when Ndee  falls 

below some N6 threshold ). The basic idea of resampling is to eliminate particles that 

have small weights and to concentrate on particles with large weights. The 

resampling step involves generating a new set  �L6� 
���" , where i denotes the new index 

of the new resampled particle, by resampling (with replacement) N times from an 

approximate discrete representation of p:L6;s�,….,6< given by 

 

The resulting sample is in fact an i.i.d. sample from the discrete density (4.35) 

therefore the weights are now reset to wt
i = 1/N .  

 

A direct implementation of a resampling would consist of generating N i.i.d. 

variables from the uniform distribution, sorting them in an ascending order and 

comparing them with the cumulative sum of normalized weights (CSW).  The best 

sorting algorithm has a complexity of O(N log N) and this is the major limit in 

practical implementations. However, it is possible to implement this resampling 

procedure in O(N) operations by sampling N ordered uniform variables using an 

algorithm based on order statistics [28]. It must be noted that other efficient (in terms 

of reduced MC variation) resampling schemes such as stratified sampling and 

residual sampling [28], may be applied as alternatives to this algorithm. Systematic 

resampling is the scheme often preferred in the literature since it is simple to 

implement, it takes O(N) operations and minimizes the MC variation. Its operation is 

described in Table 4.2 [28]. 

 

p:L6;s�,….,6<≈� wt
jδ(L6 − L6� )"

���  (4.35) 
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Although the resampling step reduces the effects of the degeneracy problem, it 

introduces other practical problems. First, it limits the opportunity to parallelize since 

all the particles must be combined.  

 

Table 4.2 Resampling Algorithm by Systematic Resampling Scheme 

Algorithm: Resampling Algorithm [�Lt
i ,wt

i����" ] = RESAMPLE[�Lt
j ,wt

j����" ] 
Initialize the CDF(cumulative density function): c� = 0 

FOR j=2:N 

    Construct CDF: c� = c�=� + wt
j 

END FOR 

    Start at the bottom of the CDF: j=1 

                Draw a starting point: u�~U[0, �"]    // sample 

//u�from the uniform distribution U[0, �"] on the interval [0, �"] 
FOR  i=1:N 

     Move along the CDF: u� = u� + �" ∗ (i − 1) 

     WHILE (u� > c�) 
             j=j+1 

     END WHILE 

     Assign new sample: Lt
i = Lt

j 

     Assign weight to the new sample : wt
i = �" 

END FOR 

 

Second, the particles that have high weights are statistically selected many times. 

This leads to a loss of diversity among the particles as the resultant sample will 

contain many repeated points. This problem, which is known as sample 
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impoverishment, is severe in the case of small process noise. In fact, for the case of 

very small process noise, all particles will collapse to a single point within a few 

iterations. If the process noise is zero, then using a particle filter is not entirely 

appropriate. Particle filtering is a method well suited to the estimation of dynamic 

states. If static states, which can be regarded as parameters, need to be estimated then 

alternative approaches are necessary. Third, since the diversity of the paths of the 

particles is reduced, any smoothed estimates based on the particles’ paths degenerate. 

Schemes exist to counteract this effect. One approach considers the states for the 

particles to be predetermined by the forward filter and then obtains the smoothed 

estimates by recalculating the particles’ weights via a recursion from the final to the 

first time step [30]. Another approach is to use the Markov Chain Monte Carlo 

(MCMC) [31] method.  

 

There have been some systematic techniques proposed recently to solve the problem 

of sample impoverishment. One such technique is the resample move algorithm. 

Although this technique draws conceptually on the same technologies of importance 

sampling resampling and MCMC sampling, it avoids sample impoverishment [28]. It 

does this in a rigorous manner that ensures the particles asymptotically approximate 

samples from the posterior and, therefore, it is the often used method in the literature. 

An alternative solution to the same problem is regularization [28]. Also by 

introducing an additional noise to the samples the impoverishment problem can be 

reduced. This technique is called jittering or roughening [32]. 

 

After describing SIS, choice of importance density and resampling, we can now 

define a generic particle filter algorithm which is given in Table 4.3 [28].  
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Table 4.3 Generic Particle Filter 

Algorithm: Generic Particle Filter 

[ �Lt
j ,wt

j����" ] = PF[ �Lt-1
j ,wt-1

j ����" , s6 ] 
FOR j=1:N 

     Draw particle samples L6� ~q:L6;L6=�� , s6<  // sample from the importance    

//density q(.). 

     Assign the particle L6�  a weight wt
j  according to (4.26) 

END FOR 

Normalize wt
j 

Calculate Ndee using (4.28) 

IF Ndee < Nt       // Nt being a user defined threshold 

      Resample using: 

      [�Lt
j ,wt

j����" ] = RESAMPLE[�Lt
j,wt

j����" ] 
 END IF 

 

 

First we initialize the particles by drawing samples from the initial distribution p:L6;s�,….,6=�< thus sample L/� ~p(L/) with uniform weights (w/� = 1/N), where t=0, 

and there is no measurements. In the following iterations we draw the samples from 

an appropriate importance density (L6� ~q:L6;L6=�� , s6<) where the particles will be 

�Lt
j ,wt

j����"
 approximating the prior density p:L6;s�,….,6=�<  when there is no 

measurement data (s6). This step is also called the prediction step. Then we update 
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the weights using the measurement s6 by the likelihood function p(s6|L6) via (4.26). 

The result here is a discrete set of particles �Lt
j,wt

j����"
 which approximates the 

posterior density p:L6;s�,….,6<.  Then go on with the resampling step if Ndee < Nt 
where Nt can be chosen as 2N/3 [32]. Or resampling may be run in every iteration as 

in sampling importance resampling (SIR) filter. Here particles still approximate the 

posterior. At this step one can estimate the location using (4.8) or (4.9).  Then iterate 

to the time step t+1 starting with the prediction step.  

 

There are many types of particle filters which mainly rely on SIS approach but differ 

especially in the choice or modification of importance sampling density and the 

resampling step. Most widespread of those are sampling importance resampling 

(SIR) filter, auxiliary sampling importance resampling (ASIR) filter, and regularized 

particle filter (RPF). Note that these filters can be combined or altered. We will 

explain here the basic one, SIR filter, in detail and give brief information on the other 

types which are in fact modified versions of SIR filter.  

 

4.2.2   Sampling Importance Resampling (SIR) Filter  

 

The SIR filter was first proposed under the name “Bayesian bootstrap filter” which is 

very close in spirit to the sampling importance resampling (SIR) filter developed 

independently in statistics by different researchers, with a slight difference on the 

resampling scheme [33]. So bootstrap and SIR filters are treated as the same class. 

The key idea of SIR filter is to introduce the resampling step between two 

importance sampling steps. The resampling step is aimed to eliminate the samples 

with small importance weights and duplicate the samples with large weights. The 

generic principle of SIR proceeds as in Table 4.4 [28].  
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Table 4.4 Sampling importance resampling (SIR) Filter 

Algorithm: SIR Filter 

[ �Lt
j ,wt

j����" ] = SIR[ �Lt-1
j ,wt-1

j ����" , s6 ] 
FOR j=1:N 

     Draw particle samples L6� ~p:L6;L6=�� < from the importance density 

that is chosen as the prior density p:L6;L6=�� < 

     Assign the particle L6�  a weight: wt
j = p:s6;L6� <  using the likelihood 

END FOR 

Normalize wt
j 

Resample using: 

    [�Lt
j ,wt

j����" ] = RESAMPLE[�Lt
j,wt

j����" ] 
 

 

Here the resampling scheme can be chosen of any type according to the system 

needs. The constraints of using the SIR filter are very weak. The process and 

measurement model functions need to be known, and it is required to be able to 

sample realizations from the process noise distribution of AB=� and from the prior 

distribution. Also, the likelihood function p:s6;L6� <   needs to be available for 

pointwise evaluation. The SIR algorithm can be easily derived from the SIS 

algorithm by an appropriate choice of the importance density and applying the 

resampling step at every time index. In SIR the importance density is chosen to be 

the prior density (also called the transitional density) p:L6;L6=�� <. For this particular 

choice of importance density, using (4.26) it is evident that the weights are  
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wt
j ∝ wt-1 

j p:s6;L6� < (4.36) 
 

But, since resampling is applied at every time index  w
t-1 
j will be 1/N for all j and 

since wt
j is normalized as they sum up to 1 for all j:1 to N, (4.36) simplifies to  

wt
j = p:s6;L6� < 

 
(4.37) 

 

As the importance sampling density for the SIR filter is independent of measurement, 

the state space is explored without any knowledge of the observations. Therefore, 

this filter can be inefficient and is sensitive to outliers for some cases. Also in an SIR 

filter, as resampling is applied at every iteration, this can result in rapid loss of 

diversity in particles. However, the SIR method does have the advantage that the 

importance weights are easily evaluated and that the importance density can be easily 

sampled. By simple modifications on the importance sampling and resampling 

stages, the weaknesses of the SIR filter can be improved. 

 

Improvements on SIR Filters:  

 

In the literature, many efforts have been devoted to improving the particle filters’ 

performance (see [33] for a detailed list of literature). Here, we only focus on the 

improved schemes on efficient sampling/resampling and variance reduction which 

include the ASIR and RPF type particle filters.  

In order to alleviate the sample impoverishment problem, three simple strategies 

were proposed by Gordon et al. which are jittering, prior boosting and prior editing 

[33]. In jittering , the main idea is to add a random noise (namely, Gaussian) to the 

state of each particle after sampling from the posterior before it is propagated to the 

next time step. As a result, if replicas of particles with high weights exist they will be 

replaced by different but similar particles so as to decrease the effect of sample 

impoverishment. Note that this would be a very important contribution if the process 

noise is small. Jittering is in fact adding an extra noise to the process model at each 
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time step and the variance of the added jitter can be chosen by the user taking the 

system model into consideration.  

In prior boosting algorithm [33], in the sampling from the importance density step, 

one can increase the number of simulated samples drawn from the importance, such 

that draw M>N samples; but in the resampling step, only N particles are preserved. 

The idea behind this adaption is that by increasing the number of particles in the 

prior samples, the probability of resampling replicas will be smaller. However, in 

[33] it is shown that standard SIR filter with M particles (not N) will give more 

accurate results.  

Prior editing  algorithm [33] is also a modification on the prior samples. After the 

samples are drawn from the proposal distribution, particles with small weights are 

rejected and another sample for each rejected particle is generated from the same 

distribution instead. As a result, the samples better approximate the posterior density. 

Thus more than N samples may be generated. Its effect is very similar to the prior 

boosting but it is more efficient in terms of computational cost.   

In another approach suggested to improve SIR filter,  the original particle set �Lt
j ,wt

j����"
 is replaced by a new particle set �Lt

i ,wt
i����"

 in resampling stage, which is 

generated as follows [33]: 

• For i=1,…,N,  Lt
i  replaces Lt

j  with probability proportional to a� , 
• The associated new weights are updated as wt

i = wt
j/a�, 

where the selection of a� is flexible and can be chosen to be a�=}wt
j   in order to 

prevent the sample impoverishment problem. 

 

Auxiliary SIR (ASIR)  filter is another improvement that was proposed as a variant 

of the standard SIR filter. Compared with the SIR filter, the advantage of the ASIR 

filter is that it naturally generates points from the sample at t-1, which, conditioned 

on the current measurement, are most likely to be close to the true state. If the 

process noise is small then ASIR is often not so sensitive to outliers as SIR. 
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However, if the process noise is large, a single point does not characterize p:L6;L6=�� < 

well and in such scenarios, the use of ASIR then degrades performance [28]. 

 

Regularized particle filter (RPF) which is again a modified version of SIR filter 

was proposed as a potential solution to the sample impoverishment problem. The 

RPF is identical to the SIR filter, except for the resampling stage. The RPF resamples 

from a continuous approximation of the posterior density, whereas the SIR resamples 

from the discrete approximation. Specifically, in the RPF, samples are drawn from 

the approximation which uses Kernel density. When the process noise is small, RPF's 

performance is better than that of the SIR [28]. 
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CHAPTER 5 

 

  RF SIGNAL PROPAGATION MODELS  
 

 

 

In this chapter we will give details on RF signal propagation properties along with 

propagation modeling equations and parameters and also creation of RSSI map of the 

environment which are important to understand and model to have a favorable 

location estimation. We can divide RSS propagation modeling into two main 

categories which are small-scale and large-scale fading models. Large scale fading 

predicts the mean signal strength usually for large receiver-transmitter separation 

distances. Small scale fading explains the fluctuating characteristics of propagation 

over short distances where signals are usually affected by multipath phenomenon.  

 

In location estimation applications usually large scale fading models, which include 

log-distance path loss model and floor attenuation path loss model, are used to model 

the signal propagation. They are simple and successful in estimating the average 

value of  RSSI for a given range or vice versa.    

5.1 RF SIGNAL PROPAGATION PROPERTIES 
 

RSS is a measure of the power received by the receiver from a transmitter and 

provides information about the distance of the object carrying it. According to Friis’ 

formula, RSS is expressed in the following form [5]: 

 

Pr = Pt – PL(d) + Gr + Gt    
 

(5.1) 
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where Pr is the received signal power (dBm), Pt is the transmitted signal power 

(dBm), PL(d) is the path loss (dB), and Gr and Gt are receiving and transmitting 

antenna gains, respectively. So the RSS information at the receiver is affected by the 

antenna types, orientation of the receiver-transmitter antennas, transmitted power and 

the path loss which is almost impossible to model in indoor complex environments.  

 

The propagation is greatly affected by the environment between the source and 

destination. So in indoor environments, furniture, electrical devices, metal objects, 

machinery, shelves, walls result in multipath effects which make the indoor position 

estimation very challenging. Multipath effect is caused by the signal reaching the 

destination via multiple paths as the signal reflects, diffracts or scatters on the path. 

Multipath causes fluctuations in the received signal envelope and phase. Thus the 

signal components arriving from direct and indirect paths are combined to produce a 

distorted version of the transmitted signal [17]. 

 

The propagation of the radio wave mainly depends on the obstacles’ properties 

(surface roughness, size, shape, material) on or around the propagation path as well 

as the antenna and signal wavelength properties. Obstacle’s size is one of the most 

important factors that affect the propagation. When obstacle’s size is larger than the 

wavelength, reflections (change of direction) could occur when the radio wave 

impinges on the surface of the obstacle.  

 

When there is an obstacle which usually has sharp irregularities and with size larger 

than the wavelength, blocking the LOS between the transmitter and the receiver, 

diffraction may occur. Diffraction is the bending of the signal around the obstacle or 

the spreading out from an opening. The secondary waves resulting from the 

obstructive surface are present throughout the space and even behind the obstacle, 

even when an LOS path does not exist between the transmitter and the receiver. At 

high frequencies, diffraction, like reflection, depends more upon the geometry of the 

object, as well as the amplitude, phase and polarization of the incident wave at the 

point of diffraction [4]. 
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If there are objects with size on the order of wavelength or smaller, the signal may 

radiate in many different directions around the object. This is called scattering. These 

mechanisms are illustrated in Figure 5.1. 

 

Figure 5.1 RF Signal Propagation Mechanisms [4] 

 

5.1.1 Small Scale Fading  

 

Small scale fading is explained by the fact that, the instantaneous received signal 

strength is a sum of many contributions coming from different directions due to  

many reflections of the transmitted signal reaching the receiver [34]. Since the 

phases are random, the sum of contributions varies widely. The amplitude of the 

received signal obeys a Rayleigh or Rician fading distribution. In small-scale fading, 

the received signal power may vary by as much as three or four orders of magnitude 

(30 or 40 dB) when the receiver is moved on the order of only a fraction of a 

wavelength. In Figure 5.2 a particular example of measured signal in a multipath 

environment is given [35]. In this example the signal frequency is 910 MHz and the 

wavelength is about 33 cm. Over distances as small as half the wavelength, 20 dB 

RSS variation can be observed due to multipath effects. 
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Figure 5.2 Amplitude of the received signal as a function of the range [35] 

 

There are two important small-scale fading models: Rayleigh fading and Rician 

fading. Rayleigh distributions are used to model dense scatterers without an LOS 

component, while Rician distributions model small scale fading with stronger LOS 

component [4]. In Figure 5.3 the small scale fading follows Rician distribution for 

receiver 2, where it follows Rayleigh distribution for receiver 1. 

 

 

Figure 5.3 Propagation with and without LOS [4] 
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Rayleigh fading model was first proposed in a comment paper written by Lord 

Rayleigh in 1889, describing the resulting signal if many violinists in an orchestra 

play in unison, long before its application to mobile radio reception was recognized. 

The basic model of Rayleigh fading assumes a received multipath signal consisting 

of a large number (theoretically infinite) of reflected waves with independent and 

identically distributed in phase and quadrature amplitudes [17]. The mobile antenna 

receives a large number, say N, reflected and scattered waves. Because of wave 

cancellation effects, the instantaneous received power seen by a moving antenna 

becomes a random variable, dependent on the location of the antenna. Thus both the 

in phase and quadrature components, I(t) and Q(t), respectively, can be interpreted as 

the sum of many (independent) small contributions. Each contribution is due to a 

particular reflection, with its own amplitude and phase. For sufficiently many 

reflections (large N), the Central Limit Theorem now says that the in phase and 

quadrature components tend to a Gaussian distribution of their amplitude. I(t) and 

Q(t) appear to be independent and identically distributed (i.i.d). If there is no 

dominant component arriving at the receiver, the process will have zero mean with 

phase evenly distributed between 0 and 2π. The envelope of the channel response 

will therefore be Rayleigh distributed [4]. 

 

A sample of a Rayleigh fading signal is given in Figure 5.4 which shows signal 

amplitude (in dB) versus distance for an antenna moving at a constant velocity. 

Notice the deep fades that occur occasionally. Although fading is a random process, 

deep fades have a tendency to occur approximately every half a wavelength of 

motion. 

 

In Rician fading, the amplitude gain is characterized by a Rician distribution. The 

Rician distribution occurs when a strong path exists in addition to the low level 

scattered path [17]. This strong component may be the LOS path or a path that 

encounters much less attenuation than others. The Rayleigh distribution is a special 

case of the Rician distribution; when the strong path is eliminated, the amplitude 

distribution becomes Rayleigh. While the model is intuitively appealing, it is very 
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difficult to determine the model parameters (i.e., the local mean of the scattered 

power and the power of the dominant component) precisely as this requires 

physically isolating the direct wave from the scattered components.  

 

 

Figure 5.4 Small scale fading with moving antenna [4] 

 

5.1.2 Large Scale Fading  

 

Large scale fading is explained by the gradual loss of received signal power (since it 

propagates in all directions) with transmitter-receiver separation distance. To have an 

insight into large-scale fading, the first natural step is to consider propagation in free 

space, i.e., a medium that has no obstructer [4]. The free space propagation model is 

used to predict received signal strength when the transmitter and receiver are 

separated by a medium that has absolutely no obstacles. As such, it has been found 

that this model also holds when the transmitter and receiver have a clear, 

unobstructed LOS path between them. Satellite communication systems and 

microwave LOS radio links typically undergo free-space propagation [34]. Friis free 

space formula is given as [10] 
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where Pr is the received signal power (dBm), Pt is the transmitted signal power 

(dBm), 10~�� o���� q�
 is the path loss which will be denoted as PL(d)  (dB), Gr and 

Gt are receiving and transmitting antenna gains, respectively, d is the distance 

between receiver and transmitter antennas and �  is the wavelength of the signal 

transmitted. In Figure 5.5 theoretical RSS values vs. measurement values in an 

outdoor environment are given [10]. Free space assumption is used for the calculated 

RSS values. It is seen that measured RSSI data in outdoor environment fits quite well 

to the free space propagation model. 

 

 

       Figure 5.5 Comparison of theoretical and empirical RSS values in outdoor [10] 

 

For indoor environments, log-distance path loss model, among different path loss 

models, in its simplest form often used for electromagnetic signals, can be expressed 

as [5] 

Pr = Pt – 10~�� o���� q�
+ Gr + Gt  

(5.2) 
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where d represents the distance between the transmitter and receiver, PL(d)�������� is the 

average propagation loss (in dB) measured at distance d, n is the path loss exponent 

which indicates the decreasing rate of signal strength in an environment, �/  is a 

reference distance normally chosen close to the transmitter (e.g., 1m), and PL(d/)��������� is 

usually empirically measured average path loss which occurs at d/  distance. In 

general, the exponent n is environment dependent. In free space, n is equal to 2. In 

more complicated environments, n will generally be larger meaning high signal path 

loss. n may range from 1.2 to 8 as given in [4]. It must be noted that the model 

introduced in (5.3) does not consider small scale fading, namely, the variable factors 

in the surrounding environment such as shadowing. Thus the path loss can only be 

considered as an average value. Shadowing, also referred to as log-normal 

shadowing, represents the effects of different propagation paths due to the 

obstructions, antenna orientation, moving objects in the environment, leading to 

different RSS measurements at different locations with the same distance to the 

transmitter. To take these factors into consideration, it has been shown that the 

received signal strength usually demonstrates a log-normal distribution where it has a 

mean received power in dBm and standard deviation σ in dB. Hence, we take a 

probabilistic approach and model the path loss at distance d as a random variable 

PL(d) as given in (5.4) by using a Gaussian random variable ��~N(0, σ�) with zero 

(dBm) mean and standard deviation σ in dB [5]. 

With a given transmitting antenna power Pt, transmitting antenna gain Gt, and 

receiving antenna gain Gr, the received signal strength Pr(d) (in dBm) at distance d is 

given in (5.6) combining (5.5) and (5.4). 

PL(d)�������� = PL(d/)��������� + 10~�� - dd/0�
 (5.3) 

 

 PL(d) = PL(d)�������� + �� = PL(d/)��������� + 10nlog - dd/0 + �� 

 

(5.4) 
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We can rewrite (5.6) as in (5.7) since the first four terms are constant for a given 

transmitter – receiver pair in a certain environment. 

 

Here α is a constant in dBm which will be determined empirically in the concerned 

environment. It is equal to the median received signal power at d/ which is usually 

taken to be 1 m. n is also to be determined by a set of calibration measurements since 

it changes according to the surroundings of the transmitter- receiver pair. In  

complicated environments n will be larger since the signal will attenuate faster as it 

travels through obstacles. σ , the standard deviation is also dependent on the 

environment. The smaller σ  is the more accurate the measurements are. In 

complicated environments σ is expected to be larger. Table 5.1 gives n and σ values 

in different indoor environments [4]. 

 

By using (5.7) we can derive that, given an actual distance d between transmitter and 

receiver, the received power Pr(d) is a random variable with log-normal distribution 

with mean α − 10nlog o ���q (dBm) and standard deviation σ dB. So the probability 

distribution model of observing a certain RSSI value at distance d can be written as 

[5], [2] 

Pr(d) = Pt + Gt + Gr − PL(d) 
 

(5.5) 
 

Pr(d) = Pt + Gt + Gr − PL(d/)��������� − 10nlog - dd/0 − �� (5.6) 
 

Pr(d) = α − 10nlog - dd/0 − �� (5.7) 
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p(RSSI|d) = 1√2�� exp
���
��− �RSSI − � + 10nlog - dd/0��

2�� ���
��
 

(5.8) 
 

 

where p(RSSI|d) is the conditional probability density function of the observed RSSI 

value given the distance d. 

 

Table 5.1 Path Loss Exponent (n) and Standard Deviation (σ) in different indoor 

environments for log-distance path loss model [4] 

Environment Frequency(MHz) n σ(dB) 

Retail Store 914 2.2 8.7 

Office, hard 

partition 

1500 3.0 7.0 

Office, soft 

partition 

1900 2.6 14.1 

Chemical 

factory(obstructed) 

4000 2.1 9.7 

Chemical 

factory(LOS) 

4000 2.1 7.0 

Suburban home 900 3.0 7.0 

 

Floor attenuation factor propagation model takes floors and partitions (i.e., walls) 

into account as well as the large scale path loss [17]. So it gives more accurate results 

than the log-distance path loss model. The model is given as [17] 

 

PL(d)�������� = PL(d/)��������� + 10nlog - dd/0 + FAF + � PAF (5.9) 
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where FAF is the floor attenuation factor that represents the loss between the floors 

of the building in dB. PAF is the partition attenuation factor that represents the loss 

caused by obstructions on the path between the transmitter and the receiver antennas 

in dB. Some typical FAF and PAF values are given in Table 5.2 [4] and Table 5.3 

[36], respectively. 

 

Table 5.2 Average Floor Attenuation Factors in dB in two different buildings [4] 

Buildings(Office 

Building) 

FAF(dB) 

Building 1 

FAF(dB) 

Building 2 

Through one floor 16.2 12.9 

Through two floors 27.5 18.7 

Through three floors 31.6 24.4 

 

Table 5.3 Partition Attenuation Factors for different building materials [36]  

 Attenuation (dB) 

Elevator 23 

Building wall 3 

Wooden doors with 

windows 

1 

Separating Floors 22 

 

In our work we used an adapted version of this model including only the PAF which 

consists of wall attenuation factor (WAF) as suggested in [17]. The simplified wall 

attenuation factor propagation model is 

PL(d)�������� = PL(d/)��������� + 10nlog - dd/0 + nW ∙ WAF 
 

(5.10) 
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where nW is the number of walls on the path between the transmitter and the receiver 

and WAF represents the wall attenuation factor in dB. The value of WAF is 

calculated to be about 3 dB for WLAN applications in the literature [36], [17]. 

However it may change according to the wall material and thickness as well as the 

RF signal frequency, so it should be determined empirically.  

 

As a result rewriting (5.8) using WAF propagation model yields  

 

In order to compensate dynamic changes in the environment and to remove the heavy 

human labor in the training phase, automatic parameter calibration techniques are 

proposed in the literature [37], [5]. [37] uses IEEE 802.15.4 sensor network in indoor 

environment and exploits RSSI measurements from pair of anchors to obtain the 

automatic calibrated parameters. It assumes WAF propagation modeling and 

calibrates the parameters of n and WAF automatically while obtains � parameter in 

advance. [5] proposes an outdoor localization method with auto calibration of the 

parameters and making use of reference tags. In [5] log-distance path loss model is 

used and the parameters �, n, and � are estimated automatically. 

 

Details related to our work will be given in Chapter 6. 

 

5.1.3 RSSI Pattern (Map) 

 

For applying nearest neighbor(s) (NN) or probabilistic approaches to the indoor 

localization problem, RSSI pattern/map of the related environment is usually created 

in a training phase. The RSSI map represents the signature of the RSSI readings at 

different locations or continuously distributed in the area. The performance of the 

p(RSSI|d) = 1√2�� exp ���
�− -RSSI − � + 10nlog - dd/0 − nW ∙ WAF0�

2�� ���
�
 

  

(5.11) 
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localization algorithm is theoretically limited by the precision and accuracy of RSSI 

map. There are two different means of creating the map. One method is predicting 

the propagation behavior to estimate the signal strength over a target area using the 

detailed floor plan and the propagation models described above. To apply this 

method, one can carry out empirical measurements to derive �, n, WAF, and � 

parameters for probabilistic approaches and �, n, WAF  only for NN approaches. It is 

important to take measurements of RSSI at different distances by considering  

dynamic environmental changes, target antenna orientation, and other types of 

ambiguities. These measurements can be averaged for certain distances and curve 

fitting algorithms can be used to calibrate the related parameters. Alternatively, 

propagation prediction tools can also be used to estimate these parameters. Then for 

every location the RSSI map, in fact vector sets of RSSI values, can be created. 

Other method of RSSI map creation is the empirical method. In this approach signal 

strength distribution over the area is estimated based on the measured data at 

different locations. Experimental studies suggest that empirical method is better than 

the first method in terms of accuracy since propagation models are insufficient in 

precision to predict the signal propagation behavior [4]. 

 

One important step in the empirical method is how to collect the training data over 

the target area. One way is to take samples of RSSI data at predetermined grid cells 

that are equal in size forming the target area as in [17] and [13]. In this approach, a 

number of measurements are taken in an offline training phase to form the signature 

belonging to that grid. In LANDMARC [11] the RSSI map is created with an online 

training phase where reference transmitters (tag) are used to obtain the RSSI 

signature at certain locations. In order to use in probabilistic localization methods, 

Kernel based approaches [13], [10] or histogram approach [13] can be used to obtain 

the probabilistic behavior (likelihood) of each grid. In Kernel method [13], a 

Gaussian probability density of the RSSI observations s is assigned to each grid 

location l  (see (5.12)). The density is a mixture of nX  equally weighted density 

functions where  nX denotes the number of training RSSI vectors in location l. 
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p(s|l) = 1�� � 1√2�� exp �−:s − s�<�2��  ¡¢
`��  (5.12) 

 

 

In (5.12) σ is an adjustable parameter that determines the width of the density and s� 
is each of the observed values of RSSI in the training set at location l. [13] states that, 

this one dimensional formula can be extended to multivariate observations, e.g., 

received power from several access points, by multiplying the individual 

probabilities, which amounts for an assumption of independence of the observations. 

 

In [10], a similar idea is used but this time the RSSI observation density in grid 

location l is distributed around the sample mean μX that is obtained in l. Also RSSI 

sample std. σ is evaluated by computing the std. for the sample measurements in 

each grid cell. In order to obtain the likelihood function p(s|l)  for multiple 

dimensions or access points, independence assumption is made and all conditional 

probabilities are multiplied together. (5.13) is given as an example to a system with 3 

access points. 

 

The histogram method [13] is closely related to discretization of continuous values to 

discrete ones. The method requires that we fix a set of bins, i.e., a set of non-

overlapping intervals that cover the whole range of the variable from the minimum to 

the maximum. The number of the bins is an adjustable parameter. The density 

estimate is then a piecewise constant function where the density is constant within 

each of the bins that counts the frequency of occurrence of signal samples that fall 

within the range of each bin. Another way to collect data samples is taking the 

measurements while walking. In this way only one data sample can be obtained at 

each location but this time sample locations’ precision is higher since many locations 

are involved. In order to create the area propagation map, the sampled locations are 

p(s|l) = ¤ 1√2���� exp ¥−(s� − ¦��)�2���� §¨
���  (5.13) 
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grouped into clusters where each cluster is composed of a sufficient number of 

locations [4].  

 

In this thesis we used the method in [17] to create the RSSI map to use for the pattern 

based NN localization method. 
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CHAPTER 6 

 

 RSSI CALIBRATION IN THE TARGET 

ENVIRONMENT 

 

 

 

In this chapter experimental environment properties will be given and WAF 

propagation model and calibration of its parameters along with RSSI measurements 

taken in this environment will be explained. Also the method of automatic calibration 

of parameters by using reference tags will be proposed and the method of RSSI map 

creation will be given. The derived parameters and proposed methods will be used in 

both simulation and experimental phases of the thesis. 

 

The experimental environment consists of two rooms with sizes of 4 m x 3 m and 4m 

x 6m and 36 m² total area which is shown in Figure 6.1.  

 

The rooms have a bricked wall between and wooden and metal furniture and 

electrical devices inside. There are 3 RFID readers used in the system one (R3) in the 

small sized room and two (R1, R2) in the large sized room as shown in Figure 6.1. 

The readers are placed at the corners of the rooms in order to cover most of the area 

by the readers’ patch antennas. The reference tags (T1, T2, T3, T4) used for 

automatic calibration and smoothing purposes are distributed in the area two in one 

and two in the other room towards the central region of the overall area. The used 

RFID products' RF frequency is 868 MHz, data rate is 250 kbaud, BW is 540 KHz 

where the tags transmit with 5 dBm output power and readers receive with -90 dBm 

sensitivity level.  
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Figure 6.1 Experimental environment 

 

6.1 OFFLINE CALIBRATION OF PARAMETERS 
 

First we rewrite the WAF propagation model for convenience 

PL(d)�������� = PL(d/)��������� + 10nlog - dd/0 + nW ∙ WAF 
 

(6.1) 
 

where d represents the distance between the transmitter and receiver, PL(d)�������� is the 

average propagation loss (in dB) measured at distance d, n is the path loss exponent 

which indicates the decreasing rate of signal strength in an environment, d/  is a 

reference distance normally chosen close to the transmitter (e.g., 1 m), PL(d/)��������� is 
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usually empirically measured average path loss which occurs at d/ distance, nW is 

the number of walls between the receiver and the transmitter, WAF is the wall 

attenuation factor in dB. 

We rewrite (6.2) for convenience for the received signal strength Pr(d) (in dBm) at 

distance d  

Pr(d) = Pt + Gt + Gr − PL(d) 
 

(6.2) 
 

with a given transmitting antenna power Pt, transmitting antenna gain Gt, receiving 

antenna gain Gr, and path loss PL(d) at distance d. Then combining with (6.1) by 

taking d/ reference distance as 1 m and adding zero (dBm) mean Gaussian noise �� to the received signal power, (6.3) is obtained 

Pr(d) = α − 10nlog(d) − nW ∙ WAF + �� 
 

(6.3) 
 

where α = Pt + Gt + Gr − PL(d/)��������� . Then the mean received power Pr(d)�������  can be 

written as 

Pr(d)������� = α − 10nlog(d) − nW ∙ WAF 
 

(6.4) 
 

In the offline training phase the parameters in (6.3) will be found to be used in the 

experiments and the simulations. α is a constant in dBm that denotes the mean value 

of received signal power at 1 m distance. It will be found for each reader since it is 

also affected by the reader and tag antenna gains and antennas may not be identical. 

n is the mean value of path loss exponent that depends on the propagation 

environment. It will be found for each reader since the position of the readers and 

surrounding objects may affect n value. nW is the number of walls between 

transmitter and receiver (T-R). This will be “0” if the tag and the reader are in the 

same room and “1” if they are in different rooms in our system. WAF is the wall 

attenuation factor in dB that is the loss of power when there is a wall between T-R 

when they are at the same distance. WAF should be equal for all readers since it only 
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depends on the type of the wall material. ��  is the Gaussian assumed [10] RSSI 

measurement noise with zero (dBm) mean and σ dB standard deviation that stems 

from signal propagation variations due to multipath effects, antenna orientation, and 

moving objects in the target area.  

For calibrating the parameters mentioned above we have run a set of experiments 

with one tag at different locations for each reader. The readers were located at the 

corners of the rooms with a 45 ˚ angle to the walls at 1.2 m height. The height was 

determined so as to have as much as LOS region with the target tag which was 

located at 1 m height. The height of the tag was determined as 1 m in order to model 

the case when a person or a medium sized box carrying it. To derive the mean 

parameters except WAF we took measurements at different distances to the reader in 

the same room and at line of sight. To find WAF value we took measurements at 3 m 

distance in the same room with the reader and in the other room. In our experiments, 

knowing that RSSI at a fixed distance is affected by the location of the tag, 

orientation of the tag antenna, and moving objects in the surrounding environment, 

we created these noise sources while measuring RSSI values. We took measurements 

at fixed distances on a circular radius as illustrated by the stars in Figure 6.2. 

 

 

Figure 6.2 Illustration of measurement points for propagation parameter calibration 
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At each location we took about 100 measurements with 8 different orientation of the 

tag being vertical while creating random human movements around the tag and the 

reader. For each distance we experimented at 4 different locations thus having totally 

400 measurements for each distance. As an example the histogram of RSSI readings 

at 1, 2 and 3 m distances are given in Figure 6.3. 

 

 

Figure 6.3 RSSI histograms at 1m, 2m, and 3m, respectively. 

 

As can be seen in the above figures RSSI observation varies significantly at the same 

distances but at different location and orientation. We assume that the RSSI 

observation at the same distance is Gaussian distributed. By analyzing the 400 

measurement data at each distance we find the standard deviation of RSSI readings at 

that distance. Then taking the average standard deviation values for all of the 

experimented distances we get the mean standard deviation (std.) value σ over the 

target area which is approximately 5.2 dBm. [14] reports that σ in a home is 3 dB and 

[4] reports to be 7 dB in a suburban home. Taking these literature values into 

consideration, we cannot have a consistent σ value that can be a reference value for 

us to compare our finding with.  That is not surprising in fact because surely, the 

experimental methods, the antenna type, the physical properties of the environment 
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are crucial here to get the σ value. Comparing our finding 5.2 dB with the sample 

literature values we can at least comment that our finding seems reasonable. In order 

to obtain the other mean propagation parameters we took the average of 400 

measurements to give Pr(d)������� at distance d. After obtaining mean RSSI values at 

different distance values we used the curve fitting tool of MATLAB exploiting least 

squares (LS) algorithm to find the n and α parameters in (6.4) for each of the readers. 

To find WAF we took measurements at the same distances to a reader in two rooms. 

Then taking the average of the RSSI readings in each room we just took the 

difference of average RSSI values found in two separate rooms to find WAF value in 

dB. We found WAF as 2 dB. In [17] it is reported to be 3.3 dB and in [36] 3 dB 

which are close to our finding. Calculated parameter values for each reader are given 

in Table 6.1. 

 

Table 6.1 Propagation parameters for 3 readers 

 α (dBm) n WAF(dB) �(dB) 

Reader 1 -42 2.3 2 5.3 

Reader 2 -52 2.3 2 5.2 

Reader 3 -45 2.5 2 5 

 

 

In Figures 6.4 - 6.6 average RSSI measurement values for each reader at different 

distances and theoretical path loss model curves with the calculated parameters are 

given. 

 

In Figure 6.6, measurements taken in the across room of reader 3 are given to show 

the effect of the wall attenuation. The readings at 1 m, 1.5 m, 2 m, 2.5 m and 3 m are 

at the same room with the reader where the ones at 3.8 m, 5 m and 6 m are in the 

other room. So drawing the curve exploiting (6.4) with nW=1 fits well to the real 

RSSI measurements through the wall.  
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In our location estimation simulations and experiments we used the parameters given 

in this section for the methods with offline calibration.  

 

 

Figure 6.4 Measured and modeled RSSI values for Reader 1 

 

 

Figure 6.5 Measured and modeled RSSI values for Reader 2 
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Figure 6.6 Measured and modeled RSSI values for Reader 3 

 

6.2 AUTOMATIC CALIBRATION WITH REFERENCE TAGS 
 

In propagation parameter based localization applications calibration of the 

propagation parameters is very important in order to decrease the localization error. 

Usually calibration process is a preliminary offline process that needs human 

intervention and it suffers from the changes in the environment that may affect the 

parameters significantly. In order to remove the human intervention and make the 

parameters adaptive to environmental changes, several automatic calibration 

procedures are proposed in the literature [38], [39], [40], [16], [5]. These calibration 

techniques are mostly used for wireless sensor network systems [38], [40], [16].  [5] 

is the only literature work that exploits automatic calibration for RFID systems but it 

is proposed for outdoor localization problem. So our work is the only one which uses 

automatic calibration procedure for indoor localization problem using RFID system. 

For this purpose we use reference tags that beacon every one second and located at 

known fixed points in the target environment. 
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We know that for estimating an accurate propagation parameter set it is important to 

sample the target area by choosing the experimental grid locations as many as 

possible. Sufficient sampling gets crucial especially for complicated indoor 

environments. So for calibrating the parameters we need as many reference tags as 

possible which is not feasible for real applications. So our one purpose here is to be 

able to estimate the parameters with an acceptable accuracy with respect to the 

offline calibration technique using a feasible number of reference tags. In this work 

we used 4 reference tags in an area of 36 m² including two rooms. We evaluated the 

accuracy of the parameters by comparing the location estimation results with that of 

the offline calibrated parameters given in the Section 7.3. Our another aim is to have 

a flexible system that is adaptive to moving objects, environmental changes or 

changes in the reader antenna position or orientation that may affect the propagation 

parameters in the environment. As well as using reference tags for calibration we 

also used limiting values for α and n parameters (refer to (6.3)) that are obtained by 

adding a range to the values found by offline calibration.  

 

[16] suggests n and WAF parameters to be automatically calibrated and states that 

there is no need to calibrate α  automatically because it is only affected by the 

hardware. But in fact α as being the received power at reference distance (e.g., 1 m) 

it may be affected by the reader antenna orientation and height as well as the 

surrounding objects or obstacles that affect the signal propagation. So it is necessary 

to automatically calibrate the α parameter in order to take these effects into account. 

We calibrated α and n for each reader as proposed in [5]. On the other hand WAF is 

a parameter that only depends on the wall properties which do not change thus WAF 

parameter can be obtained a priori and used as a fixed parameter during the 

application. For probabilistic applications we propose to calibrate the standard 

deviation of filter measurement model σ by estimating the RSSI measurement noise 

using reference tags. To sum up, we propose to calibrate the parameters α, n, and σ 

automatically while using a priori calculated WAF parameter. 
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Least Squares (LS) or Least Mean Squares (LMS) [38], [39], [40], [16] are suggested 

in the literature to calibrate the signal propagation parameters. We used LS algorithm 

to calibrate α and n parameters. For the solution we need to find the parameters that 

minimize (6.5) for each reader j. 

 

©̀ = �:ª««¬�` − ª««¬�Ẁ <�
�  (6.5) 

 

 

Where i=�1,2,3,4
 indicating the reference tag index, j=�1,2,3
 indicating the reader 

index, RSSI�� is the RSS value measured from the ith tag at the jth reader and  RSSI��W  is 

the calculated RSS value from the ith tag at the jth reader with the parameters  α and 

n. The equation relating RSSI��W  with α , n parameters, and d�� , that is the known 

distance from the ith reference tag to the jth reader, is given in (6.6). 

ª««¬�Ẁ = ὰ − 10 ∙ ǹ ∙ log:d�`< − nW ∙ WAF 
 

(6.6) 
 

In order to find the estimates of ὰ  and ǹ  for the jth reader we iterate α from -40 dBm 

to -55 dBm and n from 1.5 to 3.  

 

After estimating the parameters α� and n� we can estimate σ by finding the standard 

deviation of the RSSI readings obtained between each reference tag i and reader j 

pair as in (6.7). Here we use RSSI��W  as the mean RSSI value from tag i to reader j 

using (6.6). 

 

By using the proposed methods the calibrated parameters found in the static 

experiment environment are given in Table 6.2. 

 

� = � 112 � � :ª««¬�` − ª««¬�Ẁ <��
���

¨
`��   (6.7) 
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Table 6.2 Automatically calibrated propagation parameters and RSSI std. 

 α (dBm) n � 

(dB) 

Reader 1 -45 2.3 

5.3 Reader 2 -49 2.7 

Reader 3 -42 2.5 

 

 

Despite estimated parameters seem quite close to the ones found in the offline 

calibration, automatic and offline calibrated parameters will be compared in detail in 

Chapter 7 by using the location estimation error statistics. 

6.3 RSSI MAP CREATION 
 

In the propagation pattern based localization method does, we use the method 

described in [17] that finds the best matches of RSSI pattern (nearest neighbors) 

stored in the offline training phase. In RADAR mean of RSSI vectors for two 

different orientations of the transmitters are stored at each training grid location. In 

our work we store randomly placed tags’ RSSI values during the storing process in 

one grid cell to model as many different orientations’ RSSI values as possible. We 

randomly moved the tag in a 20 cm x 20 cm area and also changed the orientation of 

the tag placing always vertical to the ground. 

 

At each grid we stored 40 RSSI measurement vectors composing of RSSI 

observations for the 3 readers. Then we take the mean RSSI values for the 

corresponding grid cells. We defined 32 furniture dependent grid locations which are 

approximately 1 m spaced as our training locations in our target area of 36 m². The 

grids are equally spaced at 1 m distance. In the test set up, readers are placed at 1.2 m 

height and tags are placed at 1 m height that are also used in the estimation 

experiments. 
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CHAPTER 7 

 

 SIMULATIONS AND EXPERIMENTAL WORK 
 

 

 

In this chapter, first the applied localization and tracking methods both in simulation 

and experimental work and the proposed contributions are given in Section 7.1. Then 

the details and results of simulation and experimental work will be explained in 

Sections 7.2 and 7.3, respectively. To conclude, in Section 7.4, analysis of simulation 

and experimental work will be given.  

7.1 APPLIED LOCALIZATION AND TRACKING METHODS 
 

7.1.1 Propagation Pattern Based Nearest Neighbors (NN) Method 

 

As mentioned in Section 3.1.1 pattern matching algorithms are very successful in 

location estimation accuracy but have several practical drawbacks. The propagation 

pattern of the environment can be created in an offline phase storing a large amount 

of data at densely spaced grid locations or in an online phase using densely spaced 

reference transmitters in the area. We could not apply and compare the online 

method because of insufficient number of reference tags. We generated an offline 

propagation map using 32 grid locations as defined in Section 6.3 and recorded the 

mean RSSI vector for each grid. After generating the map we applied the method in 

our experimental work to compare with the other methods. But we do not go into 

details of this method since we seek a more practical, easy to deploy and cost 

effective method for real life applications.  
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7.1.2  Propagation Parameter Based Nearest Neighbors (NN) Method 

 

As mentioned in Section 3.1.2, the propagation pattern of the environment is 

generated virtually using different propagation models. The used propagation model 

is often log-distance path loss model which is also used in this work. In this method 

propagation parameters of the log-distance path loss model (n, α) can be calibrated in 

an offline training phase (see Section 6.1) or reference transmitters at known 

locations can be used to automatically calibrate the parameters (see in Section 6.2). 

We investigate the offline approach in simulations and both approaches in 

experimental work in details. We especially stress on the automatic calibration 

approach and use it for the other localization methods in this thesis. In general 

parameter based NN methods are very simple to set up and implement, but less 

accurate compared to the pattern based approaches.  

7.1.3 Grid Based Bayesian Filtering  

 

Details of the algorithm were given in Section 4.1. It was implemented both in 

simulation and experimental work and the behaviors of the filter for differing grid 

resolution, RSSI measurement noise, and process model were investigated and 

compared with the other methods. Grid based Bayesian filtering is simple and 

accurate to use for tracking applications with low precision needs in moderate sized 

environments. But if the size of the area and the precision need increase, the grid 

resolution and number have to be increased which causes a large load of 

computational work.  

7.1.4 Sampling Importance Resampling (SIR) Particle Filtering  

 

Details of the filter were given in Section 4.2.2. We simulated and implemented the 

basic SIR filter algorithm experimentally and also applied two different 

modifications in the resampling stage which were proposed in the literature. One is 

smoothing the importance factor w at the beginning of the resampling stage by taking 
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the square root of the importance factor of  each current particle. This smoothing 

avoids sample impoverishment problem. The other improvement is to resample not 

at every recursion step but when the Ndee value is smaller than a threshold Nt value.  

We simulated the effects of the proposed improvements for different conditions and 

also investigated the behavior for different measurement noise, process model, 

number of particles N, and the Nt value. SIR filter is very easy to apply, 

computationally more efficient and more accurate for some cases than the grid based 

Bayesian filter. 

7.1.5 Additional Approaches To Conventional Localization Methods 

 

We mainly applied three different approaches to the conventional 

localization/tracking methods which are detailed below. Automatic calibration of 

propagation parameters and filter measurement noise std. (σ) approach is proposed in 

the literature, but this thesis work is the first work that applies this approach to RFID 

based indoor localization problem as far as we know. RSSI smoothing algorithm 

using the reference tags can be accepted to be a contribution to the literature since we 

could not find such an approach in the literature.  

7.1.5.1 Automatic and Online Calibration of The Propagation Parameters 

 

We found very little information about the automatic calibration of the propagation 

model parameters for localization methods in the literature. It is expected that using 

denser reference transmitters would yield a closer approximation of the real 

propagation parameters. But we investigated the estimation results when only 4 

reference tags were used for calibration. We calibrate the n and α parameters of the 

log-distance path loss model automatically and also instantaneously at each step of 

RSSI observation from all of the reference tags so we call it “online calibration” as 

well as "automatic calibration". The details of the calibration were given in Section 

6.2. We apply automatic calibration approach to each of the localization method. But 

first we apply it to NN method and compare the location estimation results with that 
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of NN method using offline calibration in experimental work to observe the effects 

of online calibration. 

7.1.5.2 Automatic and Online Calibration of Filter Measurement Noise σ 

 

For the Bayesian filters, using an accurate measurement noise model is important. 

We assume Gaussian distributed RSSI measurement noise and propose automatic 

calibration of the standard deviation σ to be used in the measurement model of the 

Bayesian filter. We calibrate the parameter automatically and online by using the 

reference tags as explained in Section 6.2. By calibrating σ automatically in an online 

phase it can adapt to the changes in the environment such as people moving around 

and so we claim that online calibration of σ may improve estimation accuracy 

especially in the case of dynamic RSSI measurement errors. Also it is a very simple 

and practical method to apply. We applied this approach to the grid based Bayesian 

and SIR filters in the experimental work and tested for different conditions yielding 

the outperforming estimation results.   

7.1.5.3 RSSI Smoothing By Using Reference Tags 

 

Using the RSSI readings from the reference tags with known locations, we propose 

an algorithm to smooth the RSSI readings from the target tag when it is determined 

to be in a certain range to one of the reference tags. In order to determine the 

closeness of the target to the reference tags, we find the Euclidean distance of the 

target to all of the reference tags and then obtain the weighting factor for each 

reference tag as also calculated for NN methods. If the weighting factor for any of 

the reference tags is larger than 0.4, the target is determined to be close to that 

reference tag. Knowing the real locations, we calculate the expected RSSI vectors of 

the reference tags using the log-distance path loss propagation model and obtain 

RSSI error vectors by taking the difference of the expected and observed RSSI 

vectors. In the last step, if the target is determined to be close to one of the reference 

tags, the calculated RSSI error vector for that reference tag is multiplied with the 
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weighting factor and then subtracted from the observed RSSI vector of the target to 

give the smoothed RSSI vector. The idea is that if the target is close to the reference 

tag, a correlated measurement error is added to the target RSSI measurement. We 

claim that for the tested locations of the target tag that are close to the reference tags, 

the estimation error is decreased significantly by the RSSI smoothing algorithm. To 

observe the effect we applied this approach to grid based Bayesian and SIR filters in 

the experimental work and tested with different conditions yielding the improving 

effect of the algorithm.  

7.2 SIMULATIONS 
 

In the simulation phase of our work, several of the localization methods explained in 

Section 7.1 were applied before the experimental phase in order to compare the 

methods and investigate the effects of different models and parameters. Since it is 

sometimes very difficult and time consuming to run experiments to yield statistical 

data, we have run simulations to determine the detailed plan of our experimental 

work in advance. It is not possible to model the real environment and noise 

parameters by simulations but simulation work gives us the theoretical results 

explaining weak and strong behaviors of localization methods and the behavior of 

the methods with changing parameters (e.g., grid resolution, number of kNN nearest 

neighbors, etc.). Simulations of parameter based NN method with offline calibration 

of the propagation parameters, grid based Bayesian and SIR filtering methods are 

described in this section. 

 

In Section 7.2.1 we will give details of the environment models and the simulated 

methods and parameters. In Section 7.2.2 the simulation results of different 

localization methods with the effects of different parameters, and in Section 7.2.3 

comparisons and analysis of the simulated methods will be given.  

 

In Appendix A, the Cramer Rao Lower Bound (CRLB) for our localization problem 

is derived. Before starting simulation results we will give the important results of the 

CRLB. 
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By investigating the resulting equation of the lower bound, it is seen that the location 

estimation lower bound depends on 

• RSSI measurement noise standard deviation �/ 

• Signal propagation log-distance path loss parameter n 

• Number of readers kRDR used in the localization system 

• The relative target location (�, �) and the reader locations (�̀ , �̀ ).   

 

We give the CRLB for the RMS distance error with changing RSSI noise std. and 

number of readers in Figure 7.1. 

 

In the figure it is seen that RMS error lower bound increases with increasing σ and 

decreasing number of readers as expected. 

 

 

Figure 7.1 RMS error CRLB with changing σ and number of readers 
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7.2.1 Simulation Setup and Models 

 

For all simulations a single room model with sizes 5 m x 8 m is used. Unless 

otherwise stated:  

For each simulation, 1000 simulation runs were carried out to yield location 

estimation statistics. The simulated target emits signal with log-distance path loss 

propagation model with zero mean Gaussian noise added. For each run, the target is 

placed randomly at any location within the limits of the modeled room. For the 

Bayesian methods, for each simulation run, location estimation will be done after a 

certain number of recursions that will be given for the fixed target simulations and 

estimation will be done for every step if the target is mobile.  

 

Unless otherwise stated the related parameters are used as below: 

• Filter measurement model is Gaussian with standard deviation σ=5.2 dB and RSSI 

measurement noise is Gaussian with standard deviation �/=5.2 dB  

Note: σ is used as a parameter of the filter indicating the measurement model 

noise std. where �/  will denote the std. of the noise added on the RSSI 

measurement from the target in the following sections. 

• Log-distance path loss exponent (n) = 2.3 

• Reference RSSI at 1 m distance (α) = -52 dBm 

• Number of readers (kRDR): 3 (shown in Figure 7.2)  

• Filter process (motion) model is Gaussian with zero mean and std. D = 0.5 m and 

target motion is Gaussian with zero mean and std. D/ = 0.5 m.  

• Number of particles in particle filter (N): 250 

• Grid spacing of grid cells in NN and grid based methods: 1 m (shown in Figure 

7.2.) 

• Grid cell size: 1 m² with the centers located on the circles shown in Figure 7.2. 

• Number of grid cells (kCELL): 28  
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Figure 7.2 Center of grid cells with circles and reader locations with squares  

 

For each simulation run location estimation error is calculated as the Euclidean 

distance of the estimated (x,y) position to the given target (x,y) position in meters. 

From total estimation error data we calculate the mean (average) of absolute error, 

root mean square error (RMSE), and standard deviation (std.) of the error. We also 

obtain the cumulative distribution function (CDF) of the error distribution which is 

mostly used for comparison in the literature and using CDF plot we give median (50 

percentile) error and 90 percentile error. 50 percentile error can be explained as 50 

percent of the total error data is smaller than the given 50 percentile error thus the 

error is smaller than the given 50 percentile error with probability of 0.5. 90 

percentile error can be commented as a measure of the maximum distance error 

statistics since it means that 90 percent of the total error data is smaller than the 

given 90 percentile error. In the related literature, one or several of the mentioned 

statistics is used, so we will give all of the error metrics for each simulation. The 

error statistics used in this thesis are absolute error statistics. 
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7.2.2 Simulation Results 

 

In the following sections each simulated method and details will be given. For each 

simulated localization method different parameters’ effects will be investigated.  

7.2.2.1 Parameter Based NN Method with Offline Calibration  

 

Parameter based NN method simulations can give us important ideas about the 

behavior of other types of NN methods. So this simulation is investigated deeply. 

RSSI measurement noise std.( �/), number of readers (kRDR), grid number (kCELL), 

and number of k nearest neighbors (kNN), target environment area, and reader 

location configuration are varied to simulate their effects.  

 

A. Changing Number of Grid Cells 

The parameters are used as below: 

kCELL =6, 8, 16, 28, 56, 98, 112, kNN =3, 4, 8, 14, 28, 49, 56 (respectively for kCELL 

values), �/=5.2 dB, kRDR =3 

Changing the number of grid cells, the resulting error statistics are given in Table 7.1 

where CRLB=0.80 m. 

Table 7.1 Error statistics for changing kCELL for NN method 

kCELL RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

6 1.87 1.63 1.47 2.89 0.92 

8 1.80 1.59 1.48 2.72 0.84 

16 1.78 1.57 1.44 2.73 0.84 

28 1.79 1.59 1.51 2.65 0.81 

56 1.78 1.59 1.49 2.62 0.79 

98 1.78 1.59 1.49 2.61 0.80 

112 1.77 1.57 1.47 2.66 0.82 
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It is seen that increasing the grid number, increases the accuracy significantly first. 

But further increasing the number does not significantly affect the accuracy since 

increasing grid cell number means only increasing the precision of the location 

space. So we prefer to use kCELL =28 for our simulation work. 

 

B. Changing The Number of Readers 

 

Changing number of readers, the resulting error statistics are given in Table 7.2.  

 

The parameters are used as below: 

kRDR =3, 4, �/=5.2 dB, kCELL =28, kNN =4 

 

Table 7.2 Error statistics for changing number of readers for NN method 

kRDR RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error 

std. (m) 

CRLB 

(m) 

3 1.95 1.66 1.46 3.09 1.0 0.80 

4 1.74 1.49 1.30 2.76 0.91 0.64 

 

 

For NN methods, increasing number of readers decreases estimation RMS, mean, 

median, 90 percentile errors and also the std. of the errors as in Table 7.2. This result 

is an expected result which is also stated by CRLB, since increasing number of 

readers increases the information that we have about location of the target. 

 

C. Changing RSSI Measurement Noise Std. �/ 

 

The parameters are used as below: �/=3, 5.2, 7, 9 dB, kRDR =3, kCELL =28, kNN =4 
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Changing the �/ value, resulting error statistics are given in Table 7.3 and RMS error 

vs. �/ graph is given in Figure 7.3.  

 

Simulation results show that increasing RSSI measurement noise decreases the 

estimation accuracy as CRLB also states. 

 

Table 7.3 Error statistics for changing RSSI measurement noise std. for NN method �/ RMSE 

(m) 

Mean 

error 

(m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

CRLB 

(m) 

3 1.38 1.18 1.01 2.21 0.71 0.46 

5.2 1.95 1.66 1.46 3.09 1.0 0.80 

7 2.29 1.95 1.74 3.61 1.20 1.08 

9 2.57 2.2 2.00 4.10 1.33 1.38 

 

 

Figure 7.3 Pattern Based NN method RMSE and CRLB with changing �/ 
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D. Changing Number of Nearest Neighbors 

 

The parameters are used as below: 

kNN =1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 23, 25, 28, �/=5.2, 11 dB, kRDR =3, kCELL =28 

 

Changing the number of nearest neighbors, the resulting error statistics are given in 

Table 7.4 and Figure 7.4 for �/=5.2 dB where CRLB=0.80 m 

 

Table 7.4 Error statistics for changing kNN for NN method with �/=5.2 dB 

kNN RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

1 2.17 1.86 1.65 3.3 1.12 

2 2.07 1.77 1.55 3.23 1.06 

3 2.01 1.73 1.49 3.16 1.03 

4 1.95 1.66 1.46 3.09 1.00 

5 1.92 1.66 1.44 3.02 0.97 

6 1.91 1.65 1.40 2.95 0.96 

7 1.89 1.64 1.41 2.87 0.95 

10 1.83 1.6 1.44 2.82 0.89 

15 1.79 1.6 1.51 2.65 0.81 

20 1.79 1.61 1.59 2.64 0.77 

23 1.82 1.65 1.60 2.63 0.75 

25 1.84 1.68 1.64 2.64 0.75 

28 1.87 1.72 1.66 2.69 0.75 

 

Investigating the results in Table 7.4 and Figure 7.4 we notice that RMSE decreases 

up to a level (1.79 m) with increasing kNN to 15, then RMSE starts to increase as 

kNN further increases. But, 90 percentile error decreases until we increase kNN up to 

23, then 90 percentile error starts to increase as kNN further increases. From these 

statistics we can conclude that, when kNN increases from 15 to 23, average 
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estimation error increases slightly while maximum error decreases. So in a real 

application, it is a matter of choice which error to decrease so as to optimize kNN 

number. 

 

Figure 7.4 RMS error and 90 percentile error with changing kNN for �/=5.2 dB where 
CRLB=0.80 m 

 

We also simulated the kNN effect with �/ =11 dB in order to see the behavior of the 

estimation method in more noisy environments where CRLB=1.70 m. The related 

results are given in Figure 7.5.  
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In a more complicated environment with �/=11 dB and with 28 grid cells, it is seen that the 

maximum error is minimum when kNN is 28 (all of the grid cells) where RMS error decreases 

until kNN reaches 20.  

 

Figure 7.5 RMS error and 90 percentile error with changing kNN for �/=11 dB, where 
CRLB=1.70 m 

 

The simulations we have run are only for giving idea about how to chose kNN value 

in an application. We can say that optimum kNN value is affected by different 

parameters of the localization system and the environment, so it is feasible to 

determine kNN application specific. 

 

E. Changing the Reader Location Configuration 

Our aim is to investigate the estimation accuracy if we place the readers with a 

different separation in the same target environment. So we chose the separation as 

half of the default separation as shown in Figure 7.6. Tested readers separations are 

2.5 m and 4 m. The error statistics are given in Table 7.5. 
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The parameters are used as below : 

kCELL =28 (1m grid spacing), kNN =14, �/=5.2 dB, kRDR =3 

 

Figure 7.6 Reader configuration with half of the default reader separation 

 

Table 7.5 Error statistics for readers separated with half of the default separations for 
NN method 

Reader sep. RMSE 

(m) 

Mean 

error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

CRLB 

(m) 

Half of the 

default 

1.52 1.32 1.19 2.32 0.76 0.76 

default 1.79 1.59 1.51 2.65 0.81 0.80 
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It is seen that choosing the reader separations smaller, significantly decreases the 

estimation error. So in real applications, it is better not to place the readers to the 

boundaries of the environment but to inner region of the environment if the reader 

antenna is omnidirectional.    

 

F. Changing the Target Area 

Using the parameters below for a larger environment of size 10 m x 16 m the 

estimation results in Table 7.6 were found.  

kCELL =135 (1m grid spacing), kNN =68, �/=5.2 dB, kRDR =3,4 

 

Table 7.6 Error statistics for a larger area for NN method 

Target 

Area 

(m²) 

kRDR RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. 

(m) 

CRLB 

(m) 

160 3 3.73 3.32 3.10 5.58 1.69 1.20 

4 3.39 3.07 2.98 4.92 1.44 0.92 

40 3 1.95 1.66 1.46 3.09 1.0 0.80 

4 1.74 1.49 1.30 2.76 0.91 0.64 

 

RFID range is approximately 20 m in indoor environments and for our default 

environment of 40 m², reader separations are 5 m and 8 m. In real applications, 

reader separation is chosen up to 20 m in larger environments. So we investigated the 

behavior of the localization method in a larger area by choosing the reader separation 

as twice of the default reader separations in a twice sized environment of 10 m x 16 

m. As given in the table above, estimation error statistics are also approximately 

twice of that of default settings.    
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7.2.2.2 Grid Based Bayesian Filtering 

 

Investigating grid based Bayesian filter characteristics will give us important notion 

about behavior of overall Bayesian filters including the particle filter. So the 

simulation results given in this section will also be the basis for the next particle filter 

section. 

 

In this section we will investigate the effects of important parameters of the grid 

based Bayesian filters which are 

i. Recursion time (rt) 

ii.  Number of readers (kRDR) 

iii.  Filter measurement model std. (σ) and RSSI measurement  noise 

Note: σ is used as the filter parameter. RSSI measurement noise is the 

simulated noise added on the transmit power noise of the target which is 

also assumed Gaussian but the std. will be denoted as σ/  and unless 

otherwise stated σ/ = σ. For some cases it may be taken zero.  

iv. Filter process (motion) model std. (D) and target motion 

Note: D is used as the filter parameter. If the target is simulated mobile, it 

moves with a Gaussian motion model and the std. will be denoted as D/. D/=D unless otherwise stated. 

v. Number of grid cells (kCELL) 

 

The transitional density p(L6 |L6=�) forming the process model in our problem is 

assumed Gaussian with mean L6=� and variance D² that means the process noise is 

Gaussian with zero mean and D standard deviation over the previous location L6=�. 

D =0.5 m will be used as default parameter for our simulation and empirical work 

unless otherwise stated.  

 

We will denote recursion time by rt which is the number of times we execute the 

recursive Bayesian filter to estimate the location of the tracked object. In recursive 

Bayesian filters D and σ parameters affect the recursion time needed for the filter to 
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settle which will be called settling time. So, in order to investigate the effects of other 

parameters, we will start with finding a suitable rt value sufficient for the filter to 

settle when the target is fixed. 

 

During this section and the next particle filter section, unless otherwise stated, 

moving target with Gaussian motion model will be assumed with std. D/=0.5 m. The 

target will start its motion from a randomly chosen location within the area and make 

1 motion for each recursion time. At the end of each recursion, estimation will be 

made and the target will be tracked for rt recursion time. Then the target will start its 

motion from another randomly chosen location and this sequence will be run for 

1000 times. For fixed target cases, first the target is randomly located in the area, 

then estimation is done at the end of rt recursion time, and the sequence is repeated 

for 1000 times. Bayesian filtering estimation may diverge from the real location 

when the target stops moving for few recursion steps for large RSSI measurement 

noise case. So, in this section and the next particle filter section we also illustrate 

estimation results for fixed target case which is a worst case scenario in addition to 

the mobile target cases. 

 

During this section, unless otherwise stated, we use control parameters as given 

below: 

kRDR =3, σ=σ/=5.2 dB, kCELL =28, D=D/=0.5 m, rt=10 

 

But before we start it is necessary to give location estimation results of MAP and 

MMSE estimates (which are given in Table 7.7) to determine which approach to use 

throughout simulation and empirical work. For the simulations, we used the control 

parameters above. 

 

As seen in the table, MAP estimate is worse than MMSE estimate for different 

measurement noise values, and therefore we use MMSE estimate throughout our 

simulations and experimental work. 
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Table 7.7 RMS error for MAP and MMSE estimates of grid based Bayesian filtering 

 RMS Error with 

σ = �/= 1 dB 

RMS Error with 

σ = �/= 3 dB 

RMS Error with 

σ = �/ = 5.2 dB 

MAP Estimate 0.67 1.06 1.40 

MMSE Estimate 0.57 0.97 1.22 

CRLB 0.15 0.46 0.80 

 

 

A. Changing Number of Grid Cells 

The parameters are used as below: 

kCELL =8 (grid spacing 2 m), 28 (grid spacing 1 m), 112 (grid spacing 0.5 

m), σ=�/=5.2 dB, kRDR =3, D=°/=0.5 m, rt=10 

The effect of changing number of grid cells is given in Table 7.8. It is seen that 

increasing grid cells from 8 to 28 and 112 makes improvement on the estimation 

accuracy as expected but it also dramatically increases the computation time which 

makes the grid based Bayesian filtering unfeasible to use in real life applications. So 

we prefer to use kCELL =28 for our simulation and experimental work. 

 

Table 7.8 Error statistics with changing number of grid cells where CRLB=0.80 m 

kCELL RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

8 1.30 1.15 1.11 1.89 0.56 

28 1.22 1.09 1.02 1.81 0.54 

112 1.16 1.01 0.94 1.72 0.56 
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B. Recursion Time  

 

Depending on the RSSI measurement noise added on the target transmit power, the 

location estimation may converge to the target location or diverge from the real 

location as recursion time increases. So, in order to find the mean recursion time for 

the filter to settle we add no RSSI noise on the target transmit power and assume 

target is fixed in this simulation run. For a fixed target, when there is no RSSI 

measurement noise, the Bayesian filter is expected to converge to the target location 

as the recursion time increases. Figure 7.7 shows how the mean estimation error 

varies with increasing rt for randomly placed fixed target all over the area with the 

parameters kRDR =3, σ=5.2 dB, kCELL =28, D=0.5 m, with zero RSSI measurement 

noise. 

 

Figure 7.7 Estimation mean error with changing recursion time with no RSSI 

noise added to the target transmit power and the target is fixed 
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From Figure 7.7 it can be seen that approximately 6 recursions are sufficient for the 

estimation to settle for σ=5.2 dB and D=0.5 m. But for obtaining the results in the 

simulations with σ=5.2 dB and D=0.5 m we use rt as 10 to guarantee the filter to 

settle.  

 

To investigate the settling time with changing D and σ we simulate a target at a fixed 

location ( (x,y)=(2, 2) ) with zero RSSI measurement noise with the parameters 

kRDR=3, kCELL =28. The resulting graphs are given in Figure 7.8 (σ=5.2 dB) and 

Figure 7.9 (D=0.5 m), respectively. 

In Figure 7.8 it can be seen that the settling time increases as D decreases which also 

means that the filter can track a displacing target more slowly as D gets smaller. 

Because, D is in fact a parameter inserted in the filter that is proportional to the 

allowable range for the target to displace so that, a filter with small D value 

suppresses large displacements in a recursion. 

 

 

Figure 7.8 Recursion time for settling with changing filter process model std. D 
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In Figure 7.9 it can be seen that settling time increases with increasing σ value as 

expected.  

In the following simulations, we make use of the results shown in Figure 7.8 and 

Figure 7.9 to wait for a sufficient recursion time for the filter to settle for different D 

and σ values. 

 

Figure 7.9 Recursion time for settling with changing filter measurement model std. σ 

 

C. Changing Number of Readers 

In order to show the effect of number of readers we give the results in Table 7.9 with 

the parameters below: 

kRDR =3,4, kCELL =28, σ=�/=5.2 dB, D=°/=0.5 m, rt=10 

From Table 7.9, it can be seen that the effect of increasing the number of readers to 

the estimation accuracy is significant as CRLB states. 
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Table 7.9 Error statistics for changing kRDR for grid based Bayesian method 

kRDR RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

CRLB 

(m) 

3 1.22 1.09 1.02 1.81 0.54 0.80 

4 1.12 0.97 0.92 1.64 0.49 0.64 

 

  

D. Changing Filter Measurement Model Std. σ and RSSI Measurement Noise Std. �/ 

The detailed error statistics for a moving target with different σ=�/ values are given 

in Table 7.10 using the parameters below: 

σ=�/=1, 3, 5.2, 7, 9 dB, kRDR =3, kCELL =28, D=°/=0.5 m, rt=8, 8, 10, 12, 

16 (respectively for the given σ values) 

 

Table 7.10 Error statistics for a mobile target with changing σ=�/ values 

σ=�/ RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

CRLB 

(m) 

1 0.57 0.49 0.49 0.80 0.24 0.15 

3 0.97 0.84 0.77 1.44 0.42 0.46 

5.2 1.22 1.09 1.02 1.81 0.54 0.80 

7 1.34 1.18 1.12 1.96 0.58 1.08 

9 1.51 1.33 1.29 2.20 0.62 1.38 

 

In Table 7.10, estimation error increases as the measurement noise increases as 

expected. 
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After giving the results for a mobile target, we also find it notable to give the 

estimation error statistics in Table 7.11 for a target that is fixed which illustrates the 

worst case scenario. We use the parameters below: 

σ=�/=1, 3, 5.2, 7, 9 dB, kRDR =3, kCELL =28, D=0.5 m, rt=8, 8, 10, 12, 16 

(respectively for the σ values) 

Investigating the results in Table 7.11 we notice that for a fixed target, estimation 

error drastically increases as measurement noise increases as compared to the mobile 

target case. It is a known handicap of Bayesian filters. 

 

Table 7.11 Error statistics for a fixed target with changing σ=�/ values 

σ RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

CRLB 

(m) 

1 0.65 0.55 0.47 0.97 0.35 0.15 

3 1.36 1.17 1.05 2.13 0.70 0.46 

5.2 1.83 1.54 1.34 2.91 0.98 0.80 

7 2.07 1.77 1.54 3.33 1.07 1.08 

9 2.34 2.00 1.83 3.86 1.21 1.38 

 

 

E. Changing Filter Process Model Std. D and Target Motion 

Table 7.12 gives the estimation results for a mobile target with the parameters 

D=°/=0.1, 0.5, 1 m, σ=�/=5.2 dB, kRDR =3, kCELL =28, rt=16, 12, 10 respectively for 

the given D values. 

Results show that increasing the process noise increases the estimation error as 

expected. 
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Table 7.12 Error statistics for different D=°/ values where CRLB=0.80 m 

D=°/ RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

0.1 0.79 0.70 0.64 1.23 0.38 

0.5 1.22 1.09 1.02 1.81 0.54 

1 1.55 1.34 1.25 2.24 0.66 

 

After giving the results for a mobile target, we also give the estimation error statistics 

with different filter process model std. D in Table 7.13 for a fixed target which 

illustrates the worst case scenario. We use the parameters below: 

D=0.1, 0.5, 1 m, infinite, σ=�/=5.2 dB, kRDR =3, kCELL =28, rt=16, 12, 10, 8 

respectively for the given D values. 

 

Table 7.13 Error statistics for changing filter process model std. D where 
CRLB=0.80 m 

D RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

0.1 1.95 1.68 1.50 3.02 0.99 

0.5 1.88 1.57 1.34 2.99 1.00 

1 1.83 1.54 1.34 2.91 0.98 

infinity 1.74 1.55 1.48 2.61 0.79 

 

 

In Table 7.13 it can be seen that for a fixed target, estimation error decreases as D 

increases. The best result is obtained when the filter process noise is uniform (where 

D is infinite) for fixed target case which means that, adding no a priori knowledge to 

the filter works better if measurement noise is large and the target process noise is 

small (e.g., it is fixed). This can be explained as follows; for a fixed target with large 

measurement noise, smaller D value of the filter causes large error in the location 



89 
 

estimation. As a result, we can say that Bayesian filters are suitable to use for 

tracking mobile targets. 

In order to observe the effect of the D parameter of the filter on the dynamic RSSI 

measurement noise, we simulated a fixed target at only one location with RSSI 

measurement error applied on the target transmit power at rt=3 and rt=7. Dynamic 

RSSI noise means that large changes in RSSI readings occur in time on a fixed target 

due to the moving objects or people in the environment. We expect that, decreasing 

D helps better to suppress dynamic RSSI measurement noise since decreasing D does 

not allow rapid changes in the location estimation as shown in Figure 7.10. 

 

Figure 7.10 Dynamic noise filtering behavior with changing D 

 

In Figure 7.10, at recursion times 3 and 7 it is seen that estimation error jump is 

larger for larger D values which shows that a filter with smaller D value can filter 

dynamic RSSI measurement noise better.  
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7.2.2.3 SIR Particle Filter  

 

In this section, simulation results of basic SIR filtering location estimation with 

different conditions and parameters will be given first. Then several improvements 

on the SIR filter will be investigated.  

 

The parameters of SIR filtering that will be investigated are  

i. Number of particles (N) 

ii.  Recursion time (rt) 

iii.  Filter measurement model std. (σ) and RSSI measurement noise 

Note: σ is used as a parameter of the filter. RSSI measurement noise is 

added on the transmit power of the target which is assumed Gaussian with �/  std. or it may be taken zero for some cases. Unless otherwise stated 

σ=�/. 

iv. Filter proposal density (called process model in the general Bayesian case) 

and target motion 

Note: If the proposal density of the filter is assumed to be Gassian, the std. 

is denoted as D. If the target moves with a Gaussian proposal distribution, 

the std. will be denoted as D/ and D=D/ unless otherwise stated. 

For improving the error performance of the basic SIR filter, following approaches 

will be simulated: 

i. Smoothing the importance factor (w) of each particle in the resampling 

stage by taking the square root of the current w of each particle and 

normalizing them to sum up to 1. 

ii.  Instead of resampling at every recursion, resampling when the effective 

sample size Ndee is less than a threshold Nt. 

 

During simulations in this section, the control parameters will be used as below 

unless otherwise stated: 

kRDR =3, σ=5.2 dB, �/=5.2 dB, N=250, rt=10, D=0.5 m, °/=0.5 m 
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Also σ = �/ and D=°/ if there is no other explanation. 

 

But before we start, we will give the simulation results of MAP estimate and MMSE 

estimate of the SIR filter in Table 7.14 in order to determine which one to use for 

estimation. 

 

Table 7.14 RMS Error for MAP and MMSE Estimate 

 RMS Error with 

σ = �/= 1 

RMS Error with 

σ = �/= 3 

RMS Error with 

σ = �/ = 5.2 

MAP Estimate 0.64 1.41 2.06 

MMSE Estimate 0.53 0.97 1.14 

CRLB (m) 0.15 0.46 0.80 

 

 

Although MAP estimate may converge to the accuracy of MMSE estimate for small 

σ = �/ , MMSE estimate's accuracy is always better than that of MAP estimate, so 

we use MMSE estimate throughout our simulation and empirical applications. 

A. Number of Particles (N) 

 

In order to determine the effect of N, we simulated a case where the simulated target 

is fixed and there is no transmit power noise added. The simulation result of the 

effect of N on the mean estimation error is given in Figure 7.11. 

 

For our simulation environment and localization problem, mean estimation error 

decreases as N increases up to 250. So we use N as 250 during our simulation work. 
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Figure 7.11 Mean estimation error with changing N when the target is at a fixed 
point with no transmit power noise 

 

 

B. Recursion Time  

 

In order to determine the effect of recursion time we simulated a fixed target located 

randomly with no transmit power noise. The relation of the recursion time and mean 

estimation error is given in Figure 7.12. 

 

Estimation settles after about 7 recursions when the target is fixed. For fixed target 

simulations we will use rt as 10 to guarantee the filter to settle. 

 

In Figure 7.13 and Figure 7.14 effects of D and σ on settling time are given, 

respectively. 
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Figure 7.12 Mean estimation error with changing rt when target location is fixed and 
distributed randomly. 

 

The results in Figure 7.13 and Figure 7.14 are used for determining sufficient rt for 

different D and σ values in the following simulations.  

 

Figure 7.13 Settling time with changing D 
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Figure 7.14 Settling time with changing σ 

 

C. Filter Measurement Model Std. σ and RSSI Measurement Noise Std. �/ 

D.  

In Table 7.15, estimation results of SIR filter with changing σ= �/ values are given 

when the target is fixed but filter proposal density is assumed Gaussian with D=0.5 

m. For the simulations, for σ=1, 3, 5.2, 7, 9 dB, rt= 6, 8, 10, 16, 20 are used, 

respectively. 

 

Table 7.15 Error statistics of SIR filter with changing σ when target is fixed 

σ= �/ RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error 

std. (m) 

CRLB 

(m) 

1 0.63 0.53 0.46 0.97 0.34 0.15 

3 1.48 1.29 1.22 2.23 0.73 0.46 

5.2 2.00 1.70 1.51 3.09 1.07 0.80 

7 2.38 2.06 1.86 3.65 1.20 1.08 

9 2.55 2.18 1.92 4.19 1.32 1.38 
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Estimation error increases as the measurement noise increases as expected. We know 

that, for a fixed target with large transmit power noise added, Bayesian filter 

estimation may diverge from the real target location because Bayesian filters 

converge to the location where the likelihood of the RSSI measurement is highest for 

smaller D values and if the measurement is erroneous, estimated location will have a 

large error. While tracking a mobile target, there is a possibility that the target stops 

at a location where RSSI measurement has large error with the fading effects. If the 

target stops at that location for a time, the tracking filter may estimate the location 

with a large error. So, in the next simulation of a mobile target we will see that the 

SIR filter gives better results as we stated also in the grid based Bayesian case. 

 

In Table 7.16, error statistics of a randomly moving target with Gaussian proposal 

distribution of zero mean and °/ std where °/ = ° = 0.5 m. For σ=1, 3, 5.2, 7, 9 dB, 

rt= 6, 8, 10, 16, 20 are used, respectively. 

 

Table 7.16 Error statistics of SIR filter with changing σ when target moves with 
Gaussian motion model with °/ 

σ= �/ RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

CRLB 

(m) 

1 0.53 0.43 0.37 0.84 0.27 0.15 

3 0.97 0.83 0.77 1.44 0.45 0.46 

5.2 1.14 0.98 0.88 1.77 0.54 0.80 

7 1.38 1.21 1.13 2.11 0.67 1.08 

9 1.45 1.27 1.23 2.18 0.68 1.38 

 

 

When the SIR filter is used for tracking a moving target the results are significantly 

better than those of the fixed target case. The estimation error increases gradually 

while σ increases as expected. 
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E. Filter Proposal Density (Process Model) and Target Motion 

 

In this subsection we investigate 

i. the behavior of SIR filter for two different proposal density models; 1) 

Gaussian with zero mean and std. D, 2) Gaussian with a mean of known 

speed in known direction and std. D, 

ii.  the behavior of the filter when target motion is not compatible with the 

assumed proposal density,   

iii.  the behavior of the filter when there is an extra information on the non-

accessible  target locations, 

iv. the behavior of the filter when there is an extra information on the initial 

location of the target. 

 

In Table 7.17 proposal density and the target motion are Gaussian with zero mean 

and changing D=°/.  

 

Table 7.17 Error statistics of SIR filter with changing D=°/ where CRLB=0.80 m 

D=°/ RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

0.1 0.83 0.74 0.65 1.31 0.45 

0.5 1.14 0.98 0.88 1.77 0.54 

1 1.45 1.24 1.17 2.16 0.65 

2 1.73 1.43 1.27 2.65 0.82 

4 1.86 1.46 1.32 2.90 0.93 

 

 

It is seen that as °/  increases, estimation error increases as expected since the 

target’s location uncertainty increases. 
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In order to see the effect of D parameter of the filter on the estimation when the 

target stops, we simulated fixed target and the results are given in Table 7.18. 

D=infinity illustrates the case where the proposal density is uniformly distributed 

over the target area meaning there is no a priori information about the motion of the 

target. 

 

Table 7.18 Error statistics of SIR filter with changing D, when the target is simulated 
fixed where CRLB=0.80 m 

D RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

0.1 2.02 1.76 1.57 3.22 1.00 

0.5 2.00 1.70 1.51 3.09 1.07 

1 1.96 1.67 1.50 3.00 1.02 

2 1.93 1.61 1.48 2.96 0.99 

infinity 1.67 1.49 1.40 2.48 0.74 

 

 

As mentioned in the grid based Bayesian filtering, smaller D results in larger errors 

in estimation when the target stops at a fixed location with large RSSI measurement 

noise. This is because filter with smaller D can converge closer to the location at 

which likelihood of the RSSI measurement is highest and if the measurement is 

faulty, estimated location has a large error in a few recursion time.  

 

In order to see the effect of lack of motion information we give the results in Table 

7.19.  
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Table 7.19 Lack of motion information for Gaussian target motion model 

Filter Proposal Density Target Motion RMSE (m) 90 per. error 

(m) 

Gaussian with D=0.5 Gaussian with °/ =0.5 1.14 1.77 

Uniform over the area Gaussian with °/ = 0.5 1.32 2.04 

 

 

Uniform filter proposal density means that there is no a priori information about the 

motion of the target, i.e, it can be anywhere within the area given the previous 

location. So this table is given to demonstrate that lacking motion information gives 

larger estimation error. 

 

In order to see the effect of adding speed and direction information to the estimation 

system we simulated a target moving with 0.5 m/recursion in y direction. It moves 

from y=1 m to y=6 m in 10 rt, starting from a random x coordinate. For the proposal 

density of the filter we used Gaussian process noise with D=0.5 m added to the 

known speed and direction. To demonstrate the differing effect of adding extra 

information to the filter model we also simulated the case when the filter has no 

knowledge of the speed and direction, instead it uses a proposal density model of 

zero mean Gaussian noise on the previous location with D=0.5.The results are given 

in Table 7.20. 

 

Comparing the first result in the table with that of Gaussian motion model with 

D=0.5 in Table 7.17, it is seen that for target with known speed and direction the 

filter gives more accurate results than that of when the target moves randomly 

Gaussian since the uncertainty is larger in the Gaussian case. Comparing the first and 

second results in Table 7.20, it is seen that lacking information of the speed and 

direction in the filter proposal density model results in larger estimation error as also 

illustrated in Table 7.19. 
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Table 7.20 Target moving with a known speed and direction  

Filter Proposal 

Density 
Target 

Motion 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. 

(m) 

Gaussian with 

mean of known 

velocity and std. 

D=0.5  

Constant 

velocity 
1.09 0.95 0.84 1.63 0.51 

Gaussian with zero 

mean and std. 

D=0.5  

Constant 

velocity 
1.46 1.27 1.21 2.08 0.66 

 

 

In Table 7.21, target with known initial location was simulated for investigating the 

effect of additional initial state information. Initial state information is added to two 

types of target motion models (random Gaussian and constant speed in y direction) to 

illustrate the effect. 

 

For both motion models, it is evidently seen that, knowing the initial location of the 

target increases the tracking accuracy of the filter as expected. 

 

If available, adding information of non-accessible regions for the target is also 

expected to give more accurate estimation results. In order to illustrate this, we 

simulated a target with the mentioned control parameters with Gaussian motion 

model where the target is only allowed up to 1 m distance to the surrounding walls. 

The results are given in Table 7.22. 

 

 

 



100 
 

Table 7.21 Target moving with known initial location  

Filter Proposal 

Density 

Target 

Motion 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. 

(m) 

Gaussian with zero 

mean and D= 0.5 

Gaussian 

with °/=0.5 

1.14 0.98 0.88 1.77 0.54 

Gaussian with zero 

mean and D= 0.5- 

knowing the initial 

location 

Gaussian 

with °/=0.5 

1.07 0.93 0.86 1.58 0.50 

Gaussian with 

mean of known 

velocity and std. 

D=0.5 

Constant 

velocity 
1.09 0.95 0.84 1.63 0.51 

Gaussian with 

mean of known 

velocity and std. 

D=0.5 -knowing 

the initial location 

Constant 

velocity 
1.04 0.90 0.82 1.58 0.47 

 

Table 7.22 Adding non-accessible regions for the moving target with Gaussian 
model  

Filter 

Burden 

Target 

Motion 

Burden 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. (m) 

Up to 

walls 

1 m from 

walls 
1.23 1.06 0.97 1.88 0.57 

1 m from 

walls 

1 m from 

walls 
1.09 0.93 0.87 1.66 0.51 
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In the table, it is seen that if the target is allowed up to 1 m distance to the walls and 

this information is known by the filter, then the estimation accuracy is better than 

that of the case the information is not known by the filter as expected. 

 

F. Improvements on Particle Filtering 

 

The most important handicap of Bayesian filters is that, if the target stops for a few 

iteration time, the location estimation may diverge from the real location if the 

transmit power disturbance is large and the filter process noise is small. 

 

Resampling at every recursion may cause the particles to collapse to a point of 

location very rapidly if the process noise is small which is called sample 

impoverishment problem as mentioned earlier. So we applied two different 

approaches to reduce this problem which are 

i.  Resampling not at every recursion but when ±�²²  is smaller than a 

threshold value Nt so that the impoverishment effect slows down,  

ii.  Smoothing the importance factor w by taking the square root so that we 

avoid the weight of particles to become very large for certain samples and 

thus avoid collapsing to a single point in the resampling phase. 

 

First we start with giving the results for smoothing the importance factor w for 

moving and fixed target cases in Table 7.23.  

 

It is seen that smoothing w results in reduction of estimation error for the fixed target 

case, especially 90 percentile error decreases significantly where estimation error 

increases slightly for the moving target case when w smoothing is used. Because 

smoothing w in the resampling stage avoids the particles to collapse to a very small 

area and in a way has an effect of increasing process noise variation.  
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Table 7.23 Effect of smoothing w for tracking moving and fixed targets 

Filter Proposal 

Density 

Target 

Motion 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 

per. 

error 

(m) 

Error 

std. 

(m) 

Gaussian with D= 0.5 
Gaussian 

with °/=0.5 
1.14 0.98 0.88 1.77 0.54 

Gaussian with D= 0.5, 

Smoothed w 

Gaussian 

with °/=0.5 
1.21 1.08 0.99 1.83 0.58 

Gaussian with D= 0.5 Fixed 2.00 1.70 1.51 3.09 1.07 

Gaussian with D= 0.5, 

Smoothed w 
Fixed 1.82 1.53 1.43 2.75 0.98 

 

 

In Table 7.24, effect of resampling using Neff is illustrated for moving and fixed 

target cases. Also for investigating the effect of Nt value, Nt=0.5 and Nt=0.3 values 

are used in the simulations. 

 

For the fixed target case, using Nt=0.5 significantly reduces the estimation error 

especially the 90 percentile error where it slightly increases the error for the moving 

target case. On the other hand using Nt=0.3 does not result in a significant error 

reduction compared with the results of using Nt=0.5, also it increases estimation 

error significantly for moving target case. Because decreasing Nt causes the filter to 

resample less often and after a point we observe the unfavorable results of this in the 

estimation accuracy. As a result we have chosen to use Nt=0.5 during our empirical 

work. 
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Table 7.24 Effect of resampling when Ndee<Nt for tracking moving and fixed targets 

Filter Proposal 

Density 

Target 

Motion 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. 

(m) 

Gaussian with D= 0.5 Gaussian 

with °/=0.5 

1.14 0.98 0.88 1.77 0.54 

Gaussian with D= 0.5, 

Resample when ±�²²<0.5 

Gaussian 

with °/=0.5 

1.17 1.02 0.92 1.79 0.57 

 

 

 

 

 

 

 

Gaussian with D= 0.5, 

Resample when ±�²²<0.3 

Gaussian 

with °/=0.5 

1.28 1.10 0.99 1.85 0.64 

Gaussian with D= 0.5 

 
Fixed 2.00 1.70 1.51 3.09 1.07 

Gaussian with D= 0.5, 

Resample when ±�²²<0.5 

Fixed 1.92 1.62 1.46 2.78 1.03 

Gaussian with D= 0.5, 

Resample when ±�²²<0.3 

Fixed 1.89 1.59 1.42 2.78 1.02 

 

 

In Table 7.25, we illustrate the effect of using both approaches for moving and fixed 

target cases. 
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Table 7.25 Effect of w smoothing and resampling using ±�²² for moving and fixed 
target cases 

Filter Proposal 

Density 

Target 

Motion 

RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 

per. 

error 

(m) 

Error 

std. 

(m) 

Gaussian with D= 0.5 

 

Gaussia

n with °/=0.5 

1.14 0.98 0.88 1.77 0.54 

Gaussian with D= 0.5, 

Resampling when ±�²²<0.5, and w 

smoothing 

Gaussia

n with °/=0.5 

1.37 1.20 1.09 2.04 0.64 

Gaussian with D= 0.5 fixed 2.00 1.70 1.51 3.09 1.07 

Gaussian with D= 0.5, 

Resampling when ±�²²<0.5, and w 

smoothing 

fixed 1.73 1.51 1.34 2.64 0.83 

 

 

In the table it is seen that using both approaches in the filter significantly decreases 

the estimation error for the fixed target case, whereas it significantly increases 

estimation error for the moving target case. So it is a matter of choice for the 

implementer to determine which approach to use with which parameter according to 

the system needs. 

7.2.3 Analysis of Simulation Results 

 

In this section we will analyze the simulated methods’ weak and strong behaviors 

and compare them in different aspects.  
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First we start giving the graphs in Figure 7.15 and Figure 7.16 in order to compare  

i. CRLB, 

ii.  Parameter based NN method, 

iii.  Grid based Bayesian filter, 

iv. SIR particle filter, 

v. Improved SIR filter by w smoothing and resampling using Ndee 
for different RSSI measurement noise. 

 

For the simulations the parameters are used as below: 

kRDR =3, kCELL =28, kNN =14, D=0.5 m, N=250, Nt=0.5 

 

For Figure 7.15 the target is fixed and for Figure 7.16 the target motion model is zero 

mean Gaussian with std °/=0.5 m. 

 

For the fixed target case it is notable that for small (�/) measurement noise, Bayesian 

based methods (grid based Bayesian, SIR and improved SIR particle filters) give 

better estimation accuracy. But for measurement noise larger than 3 dB improved 

SIR filter and parameter based NN method have less estimation error than grid based 

Bayesian and SIR filters and SIR filtering has larger error than the others. Improved 

SIR filter has significantly less estimation error than the basic SIR filter especially 

for growing measurement noise. 

 

Switching to the mobile target case, it can be seen that Bayesian based methods give 

significantly better results for all given measurement noise cases. For �/ > 3 dB cases 

improved SIR filter is worse than basic SIR and grid based Bayesian filters. SIR and 

grid based Bayesian filters’ estimation results do not differ significantly and 

converge to the CRLB for growing measurement noise for mobile target case. 
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Figure 7.15 RMS error with varying �/ for a fixed target 
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Figure 7.16 RMS error with varying �/ for a mobile target 

 

Analyzing the results of the figures given above and the simulation results given in 

Section 7.2.2 following conclusions can be drawn: 

 

i. If the target is known to be fixed, using classical Bayesian based methods 

does not give good results if the measurement noise is large. But if the static 

measurement noise (�/) is small and dynamic noise (e.g., moving people 

around) is large, using Bayesian filters works well to suppress the dynamic 

RSSI errors.  

ii.  If the target has a known motion characteristic, a Bayesian filter with a good 

model of motion works well compared to the deterministic (NN) methods.  
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iii.  The more information the Bayesian filter has the better estimation accuracy 

we have. Knowing the initial position of the target, knowing the velocity of 

the target, knowing the non-accessible regions for the target in the area 

increase the estimation accuracy of the Bayesian filter and for these cases 

using Bayesian approaches outperforms deterministic approaches. 

iv. Although the estimation performances of basic SIR and grid based Bayesian 

filters are very similar for mobile targets, SIR filters are simple to apply and 

need less computation time. Also many different improvements for particle 

filters are proposed in literature for different applications two of which are 

illustrated in simulations. So particle filters may be more flexible to adapt to 

the system needs. 

v. Increasing grid resolution further does not contribute much to the estimation 

accuracy for our case but increases dramatically computation complexity, so 

1 m grid spacing is sufficient to use for NN methods and grid based 

Bayesian filter in our test configurations. 

vi. Optimum kNN  value yielding the best RMS error result changes according to 

the grid spacing and RSSI measurement noise in the environment. For �/=5.2 dB, optimum kNN  is found to be about half the kCELL value for the 

NN methods.  

vii.  MMSE estimate is found to be better than MAP estimate for all localization 

methods for our test configurations. 

viii.  Placing the readers not to the corners but to the inner side of the area 

making the reader separation smaller yields better estimation accuracy for 

omnidirectional antenna. 

ix. If the size of the environment area increases, the estimation accuracy 

decreases when the number of readers is the same. So placing more readers 

in large environments will increase estimation accuracy in real life 

applications. 
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7.3 EXPERIMENTAL WORK 
 

In this section our aims can be emphasized as follows: 

i. To give experimental results of conventional deterministic and probabilistic 

localization and tracking methods (parameter based NN method, grid based 

Bayesian filtering, and improved SIR filtering) that were also investigated in 

Section 7.2.2 via their simulation results,  

ii.  To give experimental results of pattern based (empirical) NN method,  

iii.  To apply automatic online calibration of propagation parameters using 

reference tags and to give the resulting effects, 

iv. To apply automatic online calibration of filter measurement noise std. σ 

using reference tags and to give the resulting effects, 

v. To apply the RSSI smoothing algorithm using the reference tags and to give 

the resulting effects. 

 

Before giving these results in Section 7.3.2, the experimental environment, hardware 

and software system setup, and the used localization methods and details of applied 

experiments will be given in Section 7.3.1. 

7.3.1 Experimental Setup 

 

In Section 7.3.1.1 experimental environment properties will be given. In Section 

7.3.1.2 details of active RFID hardware and software used in the experimental work 

will be explained. In Section 7.3.1.3, the localization methods, used parameters, and 

applied experiments will be detailed. 

7.3.1.1 Experimental Environment 

 

For the ske of completeness we give the experimentl environment in Figure 7.17 

again. Two rooms of 3 m x 4 m and 4 m x 6 m with total area of 36 m² is used for the 

experiments as shown in Figure 7.17. Whole area is divided into 36 equal grid cells 

with 1 m grid spacing for the NN methods and grid based Bayesian method. 3 
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readers are placed at the corners of the rooms with 45˚ angles with the walls in order 

to have a sight of approximately all of the target area. Readers are placed at 1.2 m 

height. The height was determined so as to have as much as line of sight (LOS) 

region with the target tag which was located at 1 m height. The height of the tag was 

determined as 1 m in order to model the case when a person or a medium sized box 

carrying it. 

 

In the figure, R1, R2, and R3 represent the three readers and T1, T2, T3, and T4 are 

the four reference tags used in the experimental work. 

7.3.1.2 System Setup 

 

For the experimental work, active RFID products of EG Elektronik Company shown 

in Figure 7.18 which were designed and developed with the research fund of 

TUBITAK were modified to use.  

 

Antenna of each tag must be uniform to transmit at the same power and at the same 

polarization to have a reliable test bed. In order to achieve this we changed the wired 

antenna of the tags with PCB mount quarter wave monopole JJB antenna of Antenna 

Factor Company. After mounting the antennas we tested and calibrated the antenna 

of each tag to give the same output power and being omnidirectional when the tags 

are placed perpendicular to the ground.  

 

On the other hand, we determined to design a circularly polarized antenna for the 

readers in order to be able to compensate for multipath effects and change in the 

polarization of the tag antenna. So we designed a nearly square shaped patch antenna 

and manufactured the antenna PCB in electromagnetic laboratory of METU EE 

department with the great help Prof. Dr. Sencer KOÇ.  
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Figure 7.17 Illustration of the experimental environment 

 

 

Figure 7.18 Active RFID products of EG Elektronik  
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Information about the used tags and readers are given below: 

 

Tags (shown in Figure 7.19): 

• 868 MHz RF frequency 

• Manchester coded MSK modulated RF communication 

• 250 kbaud RF data rate 

• 5 dBm output power 

• Listen-before-talk technology 

• Beacon ID per 1 second 

• 3.3 V coin battery 

• 4 years battery life 

• Tag antenna: Small JJB antenna-smaller quarter wave monopole antenna, 

vertically polarized 

 

 

Figure 7.19 Active RFID tag with JJB antenna attached 

 

Readers (shown in Figure 7.20): 

• 868 MHz RF frequency 

• -90 dBm RF sensitivity level 

• RS485 external communication interface 

• Digital RSSI data output with 1 dBm resolution 

• 12 V DC input  

• Antenna: Nearly square shaped 83 mm x 81.5 mm circularly polarized patch 

antenna designed and manufactured in the framework of this thesis. 
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Figure 7.20 Active RFID reader and patch antenna used in the experimental work 

 

In the experimental system we use 3 RFID readers, 1 tag as the target and 4 tags as 

the reference tags. In order to communicate with the readers we used a USB to 

RS485 converter that we designed for this thesis work. 

For processing and storing the received data from the readers we developed a 

software and user interface on Microsoft Visual Studio 2008 using C# language. The 

developed software estimates the current location by running the localization 

algorithms at each instant when it receives all of the RSSI readings from every reader 

and every tag. Then it stores the estimated coordinates, received RSSI readings, 

calculated estimation distance error values, calibrated propagation parameter values, 

and calibrated measurement noise values. 

7.3.1.3 Experimental Methods 

 

Used localization methods in the experimental work are given below:  

1. Pattern based (empirical) NN method 

2. Parameter based NN method with offline calibration of propagation 

parameters  

3. Parameter based NN method with propagation parameters that are online 

and automatically calibrated using the reference tags 
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4. Grid based Bayesian filtering method with online and automatically 

calibrated propagation parameters  

5. Grid based Bayesian filtering method with online and automatically 

calibrated propagation parameters and with filter measurement noise std. 

that is automatically calibrated using the reference tags 

6. Grid based Bayesian filtering method with online and automatically 

calibrated propagation parameters and with smoothed RSSI using reference 

tags 

7. Improved SIR particle filter with w smoothing by taking the square root of 

w and resampling when Ndee < Nt.  

Used parameters are as below unless otherwise stated: 

kNN =36 (1 m grid spacing), kCELL=36, σ=5.2, N=10000, Nt=0.5, process noise is 

zero mean Gaussian with std. D=0.5, for mobile target experiment process noise is 

Gaussian with mean 0.5 m/rt and std. D0=0.5 m. 

The error statistics given in this work are absolute error statistics. CRLB for the 

experimented system setup is 0.76 m. 

Following experiments were implemented in order to be able to compare the 

localization methods in different aspects. 

Fixed target experiments:  

The experimental results are obtained for the fixed target at 25 different points which 

are furniture dependent covering the target area as shown in Figure 7.21. Locations 

of reference tags and the readers can also be seen in the figure. 
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Figure 7.21 Coordinate axis illustration of the experimental environment, locations 

of fixed target experiments, location of readers and reference tags 

 

At each point, 30 estimations were made with randomly oriented target but the 

antenna being always vertically polarized. Also at the time of experiments there 

exists a random dynamic RSSI noise in the environment caused by the movements of 

experimenter person within the target area. The statistics were drawn from a total of 

750 estimation data. The experimented points start from 1 m distance from the 

surrounding walls. 

Mobile target experiments: 

For investigating the behavior of Bayesian we moved the target with constant 

velocity of 0.5 m/rt in y direction from y=0 m to y=3.5 m in the small sized room, 

and from y=0 m to y=4 m in the large sized room as shown in Figure 7.22. It was 

very challenging to move the target with zero mean Gaussian process noise and 

inputting the real target location at each time instant to the PC software in order to 

calculate the estimation errors.  That is why we used constant velocity process model 

for the experimental work.  
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Figure 7.22 Target moving with constant velocity (0.5 m/rt) for mobile target 

experiment 

 

Dynamic RSSI measurement error experiment: 

In order to investigate the behavior of automatic propagation parameter calibration, 

automatic σ calibration, and conventional Bayesian filters for the case of dynamic 

measurement errors we made an individual experiment where the target is fixed in 

the central location of the area. Then dynamic measurement error was generated with 

moving people around the target and the readers. We repeated this experiment for 3 

different target locations. After obtaining 30 estimation results at each location we 

obtain the statistics for 90 estimation data. 

Obstructed reader experiment: 

We prepared another individual test setup for searching the effects of online 

calibration of propagation parameters (n, α) and RSSI smoothing on estimation 

accuracy in case of environmental changes, e.g., changing the position of an object in 

the target environment. In order to test this effect, we placed large metal based 
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objects in front of each 3 readers and we repeated the experiment for 3 different 

target locations and obtained 30 for each and a total of 90 estimation data. 

7.3.2 Experimental Results 

 

In this section, the results of localization methods for different experiments 

mentioned in Section 7.3.1.3 will be detailed.   

7.3.2.1 Deterministic Localization Methods 

 

In this section comparison of pattern based and parameter based NN localization 

methods will be given and effect of kNN value for NN methods will be investigated. 

7.3.2.1.1 Pattern Based (Empirical) vs. Parameter Based (offline) NN Methods 

 

Empirical pattern based NN method proposed in RADAR is compared to the offline 

calibrated parameter based NN method which was also proposed in RADAR. The 

estimation results of both methods for fixed target experiment is given in Table 7.26. 

kNN =36 is used for this experiment. 

 

Table 7.26 Experimental results of pattern based and offline parameter based NN 
methods for fixed target 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error 

std. (m) 

Pattern Based NN 1.32 1.16 0.9 2.0 0.67 

Offline Parameter 

based NN 

1.68 1.46 1.4 2.8 0.83 

 

Pattern based approach is seen to outperform the parameter based approach for our 

environment as also stated in RADAR. This is an expected result since the obtained 
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propagation map/pattern contains a large information of the continuous space 

propagation behavior of the environment. Known localization methods with the best  

error performance are based on this technique. But since our aim is to find ways of 

simple, affordable, applicable, and flexible localization solutions we do not prefer to 

use pattern based solutions and so we do not search it in details.    

7.3.2.1.2 Effect of kNN parameter for NN methods 

 

In the simulation work for �/=5.2 dB, kNN value giving the best RMS error was 

found to be approximately half of the number of kCELL value. For the experimental 

work we tested the effect of kNN value by fixed target experiments and obtained the 

results in Table 7.27. 

 

Table 7.27 Effect of kNN on estimation error using offline parameter based NN 
method for the fixed target case 

kNN RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

4 2.2 1.85 1.5 3.6 1.2 

18 1.70 1.46 1.3 2.95 0.95 

36 1.68 1.46 1.4 2.8 0.83 

 

Experimental results are not matching with the simulation results for kNN value. In 

the experimental work the RMS errors are approximately the same for kNN=18 and 

kNN=36 whereas 90 percentile error is significantly better for kNN=36. The differing 

results of simulation and experimental work may stem from the misestimating the 

RSSI measurement noise of the environment. Because the measurement error is in 

fact not an exact Gaussian distribution, but we assume it to be Gaussian as it is 

commonly used in the literature.    

After evaluating these results we used kNN=36 for the rest of our experimental work. 
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7.3.2.1.3 Effect of Automatic Online Calibration of Propagation Parameters (n, 

α) Using Reference Tags 

 

By automatically and online calibrating the propagation parameters n and α, it is 

expected that the parameters are adapted according to the changing environment 

(e.g., a new obstacle placed in the room, change in the position of the reader, moving 

people around, etc.). Therefore, localization methods using online calibrated 

parameters are expected to give better estimation results than that of offline 

calibrated parameters in an environment with dynamic RSSI measurement error and 

obstructed readers. But for a static environment, offline calibration methods are 

expected to give better results since many samples of RSSI measurements are taken 

for offline calibration where only 4 samples are taken for the online calibration.  

For investigating the general effect of online calibration, a comparison of parameter 

based NN method with offline calibrated parameters and parameter based NN 

method with online calibrated parameters is given in Table 7.28.  

 

Table 7.28 Effect of automatic online calibration of propagation parameters for fixed 
target experiment 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Offline 

NN 

1.68 1.46 1.4 2.8 0.83 

Online NN 1.63 1.44 1.3 2.5 0.76 

 

It is seen that 90 percentile error for online calibrated NN method is significantly 

smaller than that of offline calibrated method for the fixed target experiments. If the 

fixed target experiments would have been made in static environment we could not 

explain this improved effect. But, since there exists randomly generated dynamic 

RSSI noise at the time of experiments caused by the movements of the experimenter 
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person, it can be explained as that online method is able to adaptively calibrate the 

parameters so as to decrease estimation errors.   

For dynamic measurement error experiments, the obtained mean standard deviation 

of the estimation errors is 0.50 m for online method and 0.57 m for offline method. 

This result shows that, localization methods using online calibration of propagation 

parameters are less affected by the dynamic RSSI errors compared to offline 

calibration methods.   

In addition, for obstructed reader experiment, the mean error for online calibration 

NN method is 1.35 m where it is 1.62 m for offline calibration method. This result 

shows that online calibration is also useful for adapting the parameters to work in 

changing environmental conditions. 

After testing automatic calibration method by using parameter based NN approach 

we used online calibrated propagation parameters for the other estimation methods in 

the experimental work. 

7.3.2.2 Probabilistic Localization Methods 

 

In this section we will investigate the behavior of deterministic and probabilistic 

localization approaches in different cases. For comparison we will give the 

estimation results in fixed target case, mobile target case, and dynamic RSSI 

measurement error case. We expect that probabilistic methods are worse than the 

deterministic methods for fixed target cases, but they outperform deterministic 

methods for tracking mobile target and dynamic errors in RSSI measurement cases. 

In order to compare deterministic and probabilistic methods we will give the results 

of online calibrated parameter based NN as a deterministic method and grid based 

Bayesian and improved SIR filters as probabilistic methods. 

We start by giving the estimation results of fixed target experiments in Table 7.29. 
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Table 7.29 Comparison of parameter based NN, grid based Bayesian and improved 
SIR particle filter for fixed target case 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Parameter 

based 

Online NN 

1.63 1.44 1.3 2.5 0.76 

Grid 

Based 

Bayesian 

2.04 1.77 1.6 3.1 1.03 

Improved 

SIR 

1.72 1.48 1.3 2.6 0.87 

 

It is seen that for fixed target case deterministic method outperforms the probabilistic 

methods as expected, but improved SIR filter estimation errors are close to the NN 

method's errors as given in the simulations. 

The results of mobile target experiments are given in Table 7.30. 

 

Table 7.30 Comparison of parameter based NN, grid based Bayesian and improved 
SIR particle filter for moving target with known velocity 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Parameter 

based Online 

NN 

1.73 1.53 1.49 2.50 0.82 

Grid Based 

Bayesian 

1.58 1.37 1.22 2.39 0.8 

Improved 

SIR 

1.32 1.16 1.10 2.09 0.64 
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For the mobile target experiments it is seen that probabilistic methods outperform the 

deterministic method. In addition improved SIR filter performs better than the grid 

based Bayesian filter for mobile target tracking. 

To illustrate the tracking performance of a deterministic localization method and a 

probabilistic filter we give a graphical illustration of parameter based NN method 

and grid based Bayesian filter in Figure 7.23 when they are used to track a constant 

velocity target which is one of the applied mobile target experiments. It is seen that 

the Bayesian filter tracks the route while the NN method may make random 

estimations away from the target route. 

 

 

Figure 7.23 Graphical illustration of NN based method vs. Bayesian filtering for 
target tracking 

 

In order to investigate the behavior of probabilistic methods in environments with 

dynamic RSSI noise we give the results of the dynamic RSSI measurement error 

experiments in Table 7.31.  
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Table 7.31 Error std. comparison of parameter based NN, grid based Bayesian and 
improved SIR particle filter for dynamic measurement noise experiment 

 Parameter based 
Online NN 

Grid Based 
Bayesian 

Improved SIR 

Error Std. 
(m) 

0,50 0,41 0,36 

 

Error standard deviation gives us an idea about the deviation of the estimation error 

from the mean so that smaller std can be commented as that method is less affected 

by the dynamic noise giving a more stable estimation result. Also, an example 

illustration of the dynamic noise experiments is given in Figure 7.24 where the target 

is fixed at only one location and RSSI error is generated randomly in time. As a 

result, it is seen that probabilistic localization methods give more stable estimation 

results in environments of dynamic measurement noise and improved SIR is slightly 

better than the grid based Bayesian filter. 

 

 

Figure 7.24 Graphical illustration of parameter based NN, grid based Bayesian and 
improved SIR particle filter for dynamic measurement noise experiment 
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7.3.2.3 Effect of Automatic Online Calibration of Filter Me asurement Noise 

Std. (σ) Using Reference Tags 

 

In order to investigate the effect of automatic and online calibration of σ we applied 

this technique to grid based Bayesian filtering and in this section basic grid based 

Bayesian filter will be compared to the Bayesian filter with online calibrated σ for 

fixed target case, mobile target case and dynamic RSSI error case.  

In Table 7.32, estimation results of the mentioned methods are given for the fixed 

target experiments. 

For the fixed target case, online calibration of σ slightly increases the overall 

estimation accuracy.  

 

Table 7.32 Effect of automatic calibration of filter measurement noise σ for fixed 
target case 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Grid Based 

Bayesian 

2.04 1.77 1.6 3.1 1.03 

Grid Based 

Bayesian 

with auto σ 

1.98 1.70 1.5 3.0 1.02 

 

Table 7.33 gives the estimation error statistics of the grid based Bayesian and online 

calibration of σ methods for mobile target case. 

Similar to the fixed target case, online calibration of σ gives slightly better estimation 

results for mobile target case. 
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Table 7.33 Effect of automatic calibration of σ for mobile target case 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Grid Based 

Bayesian 

1.58 1.37 1.22 2.39 0.8 

Grid Based 

Bayesian with 

auto σ 

1.50 1.30 1.20 2.20 0.75 

 

Table 7.34 and Figure 7.25 are given to illustrate the effect of online calibrated σ 

method in environments with dynamic RSSI measurement error. In Figure 7.25, an 

experiment result with the target fixed at only one location is given as an illustrative 

example. 

 

Table 7.34 Error std. comparison of grid based Bayesian and grid based Bayesian 
with automatic calibration of σ for dynamic RSSI measurement error experiment 

 Grid Based Bayesian Grid Based Bayesian 
with auto σ 

Error Std. 
(m) 

0.41 0.34 

 

For the dynamic RSSI measurement error experiments online calibration of σ gives 

more stable estimation results.  
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Figure 7.25 Graphical illustration of effect of automatic calibration of σ for dynamic 
RSSI measurement error 

 

7.3.2.4 Effect of Online RSSI Smoothing Using Reference Tags 

 

In order to investigate the effect of RSSI smoothing algorithm  we applied the 

algorithm to the grid based Bayesian filtering, so we will give results and comparison 

of simple grid based Bayesian filter and grid based Bayesian with RSSI smoothing in 

this section. It is expected that the smoothing gives better estimation accuracy for the 

experimented target locations that are close to the reference tag locations.  

 

Results of fixed target experiments are given in Table 7.35 and it is seen that the 

overall error performance of the localization method with RSSI smoothing algorithm 

is better for the fixed target case.    

 

From the fixed target experiments, the results of the experimented points in 1.5 m 

neighborhood of the reference tags are chosen to give the mean errors in Table 7.36. 

It is seen that the smoothing algorithm is very successful near the reference tags. So, 
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it can be noted that, in order to increase the overall estimation error accuracy more 

reference tags can be used. 

 

Table 7.35 Effect of online RSSI smoothing using reference tags for fixed target case 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error 

std. (m) 

Grid Based Bayesian 2.04 1.77 1.6 3.1 1.03 

Grid Based Bayesian 

with RSSI 

Smoothing 

1.87 1.58 1.3 3.0 0.99 

 

Table 7.36 Effect of  RSSI smoothing at locations near the reference tags for the 
fixed target case 

 Grid Based Bayesian Grid Based Bayesian 
with RSSI smoothing 

Mean 
Estimation 
Error (m) 

2.13 1.55 

 

In Table 7.37, it is seen that smoothing algorithm has also improving effect on the 

estimation accuracy for the mobile target case.  

 

Obstructed reader experiments of the RSSI smoothing algorithm support the above 

results. 2 of the 3 experimented target locations in obstructed reader experiments are 

the neighbor locations of reference tags. So in the obstructed reader case, the results 

in Table 7.38 show the predominating effect of RSSI smoothing.  
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Table 7.37 Effect of online RSSI smoothing using reference tags for mobile target 
case 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Grid Based 

Bayesian 

1.58 1.37 1.22 2.39 0.8 

Grid Based 

Bayesian 

with RSSI 

smoothing 

1.37 1.21 1.05 1.98 0.66 

 

Table 7.38 Effect of  RSSI smoothing for obstructed reader case 

 Grid Based Bayesian Grid Based Bayesian 
with RSSI smoothing 

Mean Estimation 
Error (m) 

1.55 1.20 

 

7.3.2.5 Effect of Online Calibration of σ and RSSI Smoothing Using Reference 

Tags 

 

After giving the effects of online calibration of σ and RSSI smoothing individually 

by applying them to the grid based Bayesian filter, now we will give the results of 

improved SIR filter with online calibration of σ and RSSI smoothing applied together 

for mobile target experiments. In Table 7.39, results of the application are given with 

comparison of grid based Bayesian and improved SIR filters.  

As seen in the table application of both approaches to the improved SIR filter makes 

a further improvement to the improved SIR filter for mobile target experiments. 

Especially the 90 percentile error decreases significantly with the application. As a 

result we can claim that improved SIR method with online calibration of σ and RSSI 
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smoothing gives outperforming results for mobile target case as compared with all 

the other methods we investigated.  

 

Table 7.39 Effect of online calibration of σ and RSSI smoothing together for mobile 
target case 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Grid Based 

Bayesian 

1.58 1.37 1.22 2.39 0.8 

Improved SIR 1.32 1.16 1.10 2.09 0.64 

Improved SIR 

with online σ 

and RSSI 

smoothing 

1.25 1.12 1.05 1.82 0.56 

 

7.3.2.6 Using Monopole Antenna For The Readers Instead of Patch Antenna 

 

At the beginning of our thesis work we proposed to use circularly polarized reader 

antenna instead of monopole antenna for decreasing RSSI measurement errors that 

are caused by multipath effect and unmatched polarization of the target and reference 

tags’ antennas. After obtaining our results by using the patch antenna, we switched to 

the monopole antenna which is vertically polarized to observe the difference in 

estimation accuracy. So we tested only the mobile target experiments with the 

monopole antenna to show the difference. The estimation results are seen in Table 

7.40. 
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Table 7.40 Effect of reader antenna on localization accuracy: monopole antenna vs. 
patch antenna for mobile target case 

Reader 

Antenna 

Method RMSE 

(m) 

Mean 

error 

(m) 

Median 

error 

(m) 

90 per. 

error 

(m) 

Error 

std. 

(m) 

Circularly 

polarized 

patch 

Parameter based 

Online NN 

1.73 1.53 1.49 2.50 0.82 

Grid Based 

Bayesian 

1.58 1.37 1.22 2.39 0.8 

Grid Based 

Bayesian with 

online σ 

1.50 1.30 1.20 2.20 0.75 

Improved SIR 1.32 1.16 1.10 2.09 0.64 

Improved SIR 

with online σ and 

RSSI smoothing 

1.25 1.12 1.05 1.82 0.56 

Vertically 

polarized 

monopole 

Parameter based 

Online NN 

1.86 1.64 1.62 2.96 0.86 

Grid Based 

Bayesian 

1.93 1.74 1.62 2.76 0.82 

Grid Based 

Bayesian with 

online σ 

1.57 1.42 1.44 2.20 0.66 

Improved SIR 1.73 1.56 1.50 2.54 0.75 

Improved SIR 

with online σ and 

RSSI smoothing 

1.49 1.33 1.26 2.16 0.67 

 

Investigating the results, estimation accuracy for all of the localization methods are 

seen to be worse for the monopole antenna case. Also note that, for the monopole 

antenna case grid based Bayesian estimation error is larger than that of the NN 
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method where it is vice versa for the patch antenna case. Searching the reason we 

noticed that σ/ found by auto calibration had an average of 7.5 dB for the monopole 

antenna experiments thus σ parameter was calibrated to an average value of 7.5 dB 

where it was about 5.2 dB for the patch antenna case. But we used σ =5.2 dB for the 

grid based Bayesian and the improved SIR filters for the monopole antenna 

experiments. That is why there is a significant decrease in the estimation error for the 

methods using online calibration of σ for the monopole antenna experiments. To sum 

up, we can say that using monopole antenna for the readers when the tag antenna is 

also monopole, causes larger RSSI measurement noise resulting in larger estimation 

error. But since the monopole antenna is omnidirectional and the patch antenna is 

directional, for a larger area that we need more than 3 readers, we must use more 

patch antennas than monopole antennas to cover the whole area as shown  in Figure 

7.26 and Figure 7.27.  

 

Figure 7.26 Sample monopole antenna placement configuration 

 

 

Figure 7.27 Sample patch antenna placement configuration 
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For the illustrated environment, 5 monopole antennas are used whereas 8 patch 

antennas are needed to cover the whole target area which increase the system cost. 

So the implementer should choose which type to use according the system needs. 

A summary and analysis of the experimental results will be given in the next section 

with comparison of the simulation results. 

7.4 ANALYSIS OF SIMULATION AND EXPERIMENTAL RESULTS  
 

In this section experimental and simulation results  of the applied localization 

methods are given together in order to be able to see the behavior of the methods as a 

whole in differing experimental conditions. Experimental results of fixed target 

experiments (Table 7.41), mobile target experiments (Table 7.42), dynamic RSSI 

measurement error experiments (Table 7.43), and obscured reader experiments 

(Table 7.44) are given below individually. Simulation results of fixed target case 

(Table 7.45) and mobile target case (Table 7.46) are given again for completeness. In 

the experimental and simulation work, all of the experimental conditions were not 

applied to all of the localization methods. So, in the tables, only the related methods 

mentioned in the simulation results section of 7.2 and experimental results section of 

7.3 are given. For the experimental and simulation work, improved SIR filter 

contains the improvements by w smoothing and resampling when ±�²² < 0.5. 

First evaluating the pattern based and parameter based NN methods in the 

experimental work we verified that pattern based approaches outperform parameter 

based approaches as stated in the literature. But for the NN method and probabilistic 

localization methods we used parameter based approach to obtain the environment 

signal propagation behavior in order to use simple, affordable, fast solutions for real 

applications. We preferred not to simulate the pattern based NN method since it is 

very challenging to have an accurate model. 

For improving parameter calibration and make it simpler we proposed the approach 

of automatic and online calibration of propagation parameters and tested this 

approach by applying it to the NN method and claimed several advantages over the 
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offline calibration approach. The advantages can be seen in Table 7.41 to Table 7.44 

for all of the experimented conditions by comparing offline and online NN methods. 

To sum up, it can be claimed that for dynamic RSSI measurement errors and 

changing environments, adaptively calibrating the parameters in online phase 

improves the estimation accuracy and also it is much simpler than the offline 

calibration method despite an added system cost by using the reference tags. 

 

Table 7.41 Experimental error statistics for all used localization methods for fixed 
target experiments where CRLB=0.76 m 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

Pattern Based NN 1.32 1.16 0.9 2.0 0.67 

Parameter based Offline 

NN 

1.68 1.46 1.4 2.8 0.83 

Parameter based Online 

NN 

1.63 1.44 1.3 2.5 0.76 

Grid Based Bayesian 2.04 1.77 1.6 3.1 1.03 

Grid Based Bayesian 

with auto σ 

1.98 1.70 1.5 3.0 1.02 

Grid Based Bayesian 

with RSSI Smoothing 

1.87 1.58 1.3 3.0 0.99 

Improved SIR 1.72 1.48 1.3 2.6 0.87 
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Table 7.42 Experimental error statistics for all used localization methods for mobile 
target experiments where CRLB=0.76 m 

Method RMSE 

(m) 

Mean 

error (m) 

Median 

error (m) 

90 per. 

error 

(m) 

Error 

std. (m) 

Parameter based Offline 

NN 

1.84 1.61 1.59 2.87 0.84 

Parameter based Online 

NN 

1.73 1.53 1.49 2.50 0.82 

Grid Based Bayesian 1.58 1.37 1.22 2.39 0.8 

Grid Based Bayesian 

with auto σ 

1.50 1.30 1.20 2.20 0.75 

Grid Based Bayesian 

with RSSI Smoothing 

1.37 1.21 1.05 1.98 0.66 

Improved SIR 1.32 1.16 1.10 2.09 0.64 

Improved SIR with 

online σ and RSSI 

smoothing 

1.25 1.12 1.05 1.82 0.56 

 

 

Table 7.43 Experimental error std for all localization methods for dynamic RSSI 
measurement error experiments 

 Parameter 
based 

Offline 
NN 

Parameter 
based 
Online 

NN 

Grid 
Based 

Bayesian 

Grid 
Based 

Bayesian 
with 

auto σ 

Grid 
Based 

Bayesian 
with RSSI 
Smoothing 

Improved 
SIR 

Error 
Std. 
(m) 

0.57 0.50 0.41 0.34 0.39 0.36 
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Table 7.44 Mean estimation error for related localization methods for obstructed 
reader experiments 

 Parameter 
based Offline 

NN 

Parameter 
based Online 

NN 

Grid Based 
Bayesian 

Grid Based 
Bayesian 
with RSSI 
smoothing 

Mean 
Estimation 
Error (m) 

1.62 1.35 1.55 1.20 

 

 

Table 7.45 Simulation results of all simulated localization methods for fixed target 
case where CRLB=0.80 m 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Parameter based 

Offline NN 

1.79 1.59 1.51 2.65 0.81 

Grid Based 

Bayesian 

1.83 1.54 1.34 2.91 0.98 

Basic SIR 2.00 1.70 1.51 3.09 1.07 

Improved SIR 1.73 1.51 1.34 2.64 0.83 

 

 

Table 7.46 Simulation results of simulated probabilistic localization methods for 
mobile target case where CRLB=0.80 m 

Method RMSE 

(m) 

Mean error 

(m) 

Median 

error (m) 

90 per. 

error (m) 

Error std. 

(m) 

Grid Based 

Bayesian 

1.22 1.09 1.02 1.81 0.54 

Basic SIR 1.14 0.98 0.88 1.77 0.54 

Improved SIR 1.37 1.20 1.09 2.04 0.64 
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Then we proposed to use probabilistic localization/tracking methods for mobile 

targets and for environments with dynamic RSSI noise. Improved SIR filter is more 

successful for both mobile target tracking and for the estimation stability in noisy 

environments. But for mobile target case, simulation results show that grid based 

Bayesian filter is better than the improved SIR filter. Simulation results also show 

that basic SIR filter is the best of Bayesian filters for mobile target case. We did not 

experimented basic SIR filter since the estimation results for the fixed target case are 

not satisfactory, but if it is known that the target does not stop while moving in the 

real application then using basic SIR filter may give more accurate results. For the 

fixed target case the estimation error of improved SIR filter is close to that of NN 

method and grid based Bayesian filtering has larger estimation errors both for 

simulation and experimental work. In addition to these results, as the simulation 

suggests, the more information the Bayesian filters have the better estimation 

accuracy we have. Knowing the initial position of the target, knowing the speed and 

direction of the target, knowing the non-accessible regions for the target in the area 

increase the estimation accuracy of the Bayesian filters and for these cases using 

Bayesian approaches outperforms deterministic approaches. 

By using the reference tags we also proposed to calibrate σ of the Bayesian filters 

automatically and online at each step of estimation. We applied this approach to grid 

based Bayesian filter individually in the experimental work to investigate the effect. 

After experimenting we claim that online calibration of σ improves the estimation 

accuracy for fixed and mobile target cases and it improves the estimation stability in 

noisy environment. This approach is applied to the improved SIR filtering along with 

the RSSI smoothing approach. 

We propose to add an extra information to the estimation system by calibrating the 

RSSI readings of the target by using the RSSI readings of reference tags. This 

approach is a contribution of this thesis as far as we know. We applied this approach 

again to the grid based Bayesian filter individually and we claim that using this 

smoothing can improve the estimation accuracy significantly for the near locations of 

the reference tags for any applied experimental condition. The overall effect could be 
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improved by adding more reference tags and this approach can be applied to the 

other localization methods easily. 

Online calibration of σ and RSSI smoothing approaches were applied together to the 

improved SIR filter and tested with the mobile target experiment. Comparing with 

the other applied localization methods, this approach gives the best estimation 

accuracy.  

In the simulation work it was given that the separation of the readers and thus the 

size of the environment affect the estimation accuracy very significantly. Increasing 

the separation between the readers increases the estimation error. Also we showed 

that the antenna type of the readers is another important factor which affects the 

estimation accuracy. In our experiments using circularly polarized reader antenna 

increased the estimation accuracy while increasing the system cost. So, type of the 

antenna and reader separation are to be determined according to the system needs 

and the system cost.  

In conclusion, it can be claimed that, application of the automatic calibration of σ and 

other propagation parameters, RSSI smoothing algorithm, and any other information 

about the behavior of the target motion to the Bayesian filters would yield an 

outperforming result for all of the experimental conditions. Also it is seen that 

applying these approaches to the improved SIR filter would yield more robust and 

accurate estimation results. 
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CHAPTER 8 

  

 CONCLUSIONS 
 

 

 

The need for indoor localizing and tracking people or objects in real time has been 

grown recently especially in manufacturing, healthcare, and logistics. As these needs 

grow, real time locating and tracking systems (RTLS) gain great importance and 

different solutions using especially Wi-Fi devices, wireless sensor networks (WSN), 

and radio frequency identification (RFID) devices exploiting received signal strength 

indication (RSSI) have been proposed and developed in both academic and business 

world. Investigating the proposed techniques in the literature we have noticed the 

lack of information on the advantages and disadvantages of these techniques which 

are applied in the same test bed for different test conditions. Also, since indoor 

environment is usually a complicated environment causing multipath and fading 

effects on the RF signal, location estimation has still problems to be worked on. We 

think that two important of them are i) increasing the estimation accuracy ii) 

decreasing the system complexity and time consumption and hence decreasing the 

system cost of the RTLS system. Therefore, our aim in this thesis work was to 

evaluate the most common localization methods on the same test bed both with 

simulation and experimental analyses and yield their weak and strong behaviors in 

different test conditions. Also we propose an integrated and modified method that is 

simple to install, cost effective, and moderately accurate to use for real life 

applications. 
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We used an active RFID system composed of 3 readers, 1 target tag, and 4 reference 

tags in an environment of two rooms with 12 m² and 24 m² areas in a home where the 

RSSI measurement noise standard deviation is found to be 5.2 dB for our 

experimental work. RFID is a small sized, cost effective, and commonly used system 

for real life RTLS applications. We designed and produced circularly polarized patch 

antenna for the readers in order to decrease RSSI measurement errors caused by the 

multipath effect and mis-orientation effect of the monopole tag antenna. For 

developing the PC software that processes and stores the data and for developing the 

user interface we used C#.  

We mainly applied and tested pattern/map based nearest neighbors (NN) (also called 

pattern matching or fingerprinting) and parameter based NN approaches (in this 

approach pattern matching method is used but the pattern is generated virtually by 

using the signal propagation models) as deterministic localization methods, and grid 

based Bayesian filter and sampling importance resampling (SIR) particle filter as 

probabilistic localization methods which are studied in the literature for localization 

and tracking purposes. We investigated the behaviors of each for different 

environmental and system parameters and compared them with each other on the 

same test bed for using in RFID based localization and tracking system. For the NN 

methods we investigated the effects of number of nearest neighbors used for location 

estimation and grid resolution are investigated. For the grid based Bayesian filtering 

effect of grid resolution on the estimation accuracy is investigated. For SIR filtering 

effect of number of particles is investigated and two improvements proposed in the 

literature are implemented to the basic SIR filter to observe their effects. One is 

resampling not at every recursion step but when the effective sample size Ndee is 

smaller than a threshold Nt. Second one is smoothing the importance factor w by 

taking the square root of the current w at the beginning of each resampling stage. For 

the general location estimation problem we tested the effects of number of readers 

and separation between the readers used for the localization system, size of the target 

environment, RSSI measurement noise of the environment, and target motion 

characteristics by using simulation analysis. For the Bayesian methods, we also 

searched the effects of filter process noise model and filter measurement noise 
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model. We also tested the behaviors of the Bayesian filters if additional information 

about the target motion is added to the filter models such as the velocity of the target, 

initial location of the target, and non-accessible locations in the area. For real life 

applications we tested the effect of the used reader antenna (patch antenna and 

monopole antenna) in the system.   

Our simulation and experimental work yielded that deterministic methods are usually 

better to localize a fixed target than the Bayesian methods if the RSSI measurement 

noise of the environment is large (> 3 dB). Results of the deterministic methods 

showed that empirical pattern based NN method outperforms the parameter based 

NN method since it has a more accurate propagation map of the environment. But 

pattern based approaches need an important amount of human labor and time for the 

system setup for especially large sized environments and if there is a change in the 

environment (e.g., changing the location of an obstacle in the environment) or system 

setup (e.g., location of a reader) the system has to be reinstalled. So we preferred not 

to search details of pattern based approaches. For mobile target scenarios, both 

simulation and experimental work showed that Bayesian methods outperform the 

deterministic methods and SIR particle filter generally works better than the grid 

based Bayesian filter. The advantage of the Bayesian filters is that any information 

about the environment and the motion of the target can be added to the estimation 

system and results in an increased estimation accuracy. For example, for a 

production control case, the initial location and the route of the goods in production 

are known which will yield the Bayesian filters work very well, outperforming the 

deterministic methods. Another advantage of the Bayesian filters is that the 

estimation is more stable in environments with dynamic RSSI noise compared to the 

deterministic localization methods. 

We assumed large-scale log-distance path loss signal propagation model for the 

environment. In order to obtain the signal propagation parameters of the log- distance 

model and the measurement noise std. σ for the Bayesian filters we made offline 

calibration experiments and also implemented an automatic calibration system using 

reference tags. This is the only work in the literature using automatic calibration of 
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the propagation parameters and measurement noise for indoor localization using an 

RFID system as far as we know. After testing both approaches in the experimental 

phase with different test conditions, we claim that the localization methods using 

automatic calibration give better estimation results than the offline calibrated 

methods for the environments with dynamic RSSI measurement errors (e.g., people 

moving around). Since the system is adaptive, if there is a change in the environment 

there is no need to calibrate the propagation parameters again as in the case of offline 

calibration. 

We propose to add an extra information to the estimation system by calibrating the 

RSSI readings of the target by using the RSSI readings of reference tags. We call this 

algorithm RSSI smoothing and this is the only work in the literature using such an 

approach for localization purpose. The experimental results showed that using this 

smoothing can improve the estimation accuracy significantly for the near locations of 

the reference tags for any applied experimental condition. The overall effect could be 

improved by adding more reference tags and this approach can be applied to both 

deterministic and probabilistic localization methods easily.   

In addition to these results, a few more words should be mentioned about real life 

applications. First of all, the experimental results that we give in this thesis are only 

for illustrating the comparison of the localization methods and the effects of the 

environmental and system parameters on the localization accuracy. Using the same 

methods one can obtain different results in another application since the estimation 

results are very much affected by the environment properties and the antenna of the 

RF devices.  

In conclusion, we claim that, implementation of the automatic calibration of σ and 

other propagation parameters, RSSI smoothing algorithm, and adding any other 

information about the behavior of the target motion to the Bayesian filters, 

especially, to the improved SIR filter yield an outperforming result for mobile target 

cases and it also works robust for fixed target cases compared to the grid based 

Bayesian filter.  
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As a future work, this study can be implemented in a larger experimental 

environment and by using different number of readers with different reader 

separations to yield the estimation accuracy of the localization methods in a more 

real application environment. Also, using multiple directional (patch) antennas for 

each reader can be studied which is expected to improve the estimation accuracy by 

adding the direction information of the target. Increasing the number of reference 

tags can be implemented as a future work to increase the accuracy.  

Antenna diversity is known to improve the quality and reliability of the wireless link. 

So, for further development in the estimation accuracy, different antenna diversity 

techniques (e.g., spatial diversity, polarization diversity) can be used to decrease the 

multipath distortion in indoor environments inspite of increased system cost. For 

such a system the readers must have at least two antennas seperated from each other 

by a certain distance. But it must be noted that such a system requires additional 

hardware and processing complexity on the receiver.  
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 APPENDICES 

 

 APPENDIX A: CRAMER-RAO LOWER BOUND (CRLB) 

FOR LOCALIZATION  

 

 

 

In Appendix A we derive CRLB for comparison reason. We will only give the 

derivation of the important steps, not the intermediate steps. For the detailed 

information and derivation refer to [3], [41].  

 

CRLB provides a lower bound on the covariance matrix of any estimator of 

parameter θ. CRLB is the inverse of the Fisher information matrix ³(θ). In our case 

the parameter θ= l=[x y] is the (x,y) coordinate location of the target and lµ can be 

estimated from the observations s� that are the RSSI measurements from the target to 

the jth reader in our localization problem.  

 

Then the Fisher information matrix can be written as 

 

 ³(l) = ¶©·· ©·¸©̧ · ©̧ ¸¹ (A.1) 
 

 

For our case Fisher information matrix is calculated as 
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³(l) = ���
��−º �»�~� ¼(s|l)»�»� � −º �»�~� ¼(s|l)»�»� �
−º �»�~� ¼(s|l)»�»� � −º �»�~� ¼(s|l)»�»� ����

��
 (A.2) 

 

 

where p(s|l) is the probability density of the observation vector s conditioned on the 

target location l that is to be estimated. The observation vector is s = �s�, … , s

, 

where r is the number of RFID readers in the system. 

 

For � coordinate of the target, CRLB states the inequality  

 A½¾(�¿) ≥ [³(l)=�]·· = ©··©··©̧ ¸ − ©·¸� (A.3) 
 

 

For � coordinate of the target, CRLB states the inequality  

 

 A½¾(�¿) ≥ [³(l)=�]¸¸ = ©̧ ¸©··©̧ ¸ − ©·¸� (A.4) 
 

 

For l location of the target, CRLB states the inequality  

 

 A½¾:lµ< = A½¾(�¿) + A½¾(�¿) ≥ ©·· + ©̧ ¸©··©̧ ¸ − ©·¸� (A.5) 
 

 

So, in order to calculate the elements of Fisher information matrix in (9.2) that are FQQ, FÁÁ, and FQÁ we start with writing the density p(s|l).  
 

¼(s|l) = ¤ 1√2�� exp
���
��− �Ầ − � + 10nlog -�̀d/0��

2�� ���
��Ã

`��  (A.6) 
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where �̀ is the distance from the target location (�, �) to the jth reader location 

(�̀ , �̀ ). 

 �̀ = }:�̀ − �<� + :�̀ − �<�
 (A.7) 

 

We denote the mean value of the RSSI observation from the jth reader as sÄÅ.  

 ÂÆÅ = � − 10nlog ��̀d/� (A.8) 
 

Taking the natural logarithm of the density p(s|l) we get 

 ~� ¼(s|l) = ~� - 1√2��0¨ − 12�� �  :Ầ − ÂÆÅ<�Ã
`��  (A.9) 

 

 

Then we find the expected value of the second derivatives of the natural logarithm to 

give the Fisher information matrix elements as: 

 

 ©·· = −º �»�~� ¼(s|l)»�»� � = - 10 �� ~� 10 0�  � � :�̀ − �<�
:�̀ − �<� + :�̀ − �<� Ã

`��  (A.10) 
 

 

 ©̧ ¸ = −º �»�~� ¼(s|l)»�»� � = - 10 �� ~� 10 0�  � � :�̀ − �<�
:�̀ − �<� + :�̀ − �<� Ã

`��  (A.11) 
 

 

 ©·¸ = ©̧ · = −º �»�~� ¼(s|l)»�»� � = - 10 �� ~� 10 0�  � � :�̀ − �<:�̀ − �<:�̀ − �<� + :�̀ − �<� Ã
`��  (A.12) 

 

 

 

A½¾:lµ< ≥ o� ~� 10 10 � q� Ç∑ � :�̀ − �<�
:�̀ − �<� + :�̀ − �<�  + ∑ � :�̀ − �<�

:�̀ − �<� + :�̀ − �<� È
∑ � :�̀ − �<�

:�̀ − �<� + :�̀ − �<�  ∑ � :�̀ − �<�
:�̀ − �<� + :�̀ − �<�  − É∑ � :�̀ − �<:�̀ − �<:�̀ − �<� + :�̀ − �<� Ê� (A.13) 
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By the equations of CRLB it is seen that the location estimation lower bound 

depends on 

• RSSI measurement noise standard deviation σ0 

• Signal propagation log-distance path loss parameter n 

• Number of readers kRDRused in the localization system 

• The relative target location (�, �) and the reader locations (�̀ , �̀ ).   

Square root of (A.13) is used in the thesis to compare with RMS error. 
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