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ABSTRACT 

 

 

CLASSIFICATION OF MOTOR IMAGERY TASKS IN 
EEG SIGNAL AND ITS APPLICATION TO A BRAIN-

COMPUTER INTERFACE FOR CONTROLLING 
ASSISTIVE ENVIRONMENTAL DEVICES 

 

 

Acar, Erman 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Nevzat Güneri Gençer 

 

 

February 2011, 92 Pages 

 

This study focuses on realization of a Brain Computer Interface (BCI) for the 

paralyzed to control assistive environmental devices. For this purpose, different 

motor imagery tasks are classified using different signal processing methods.  

Specifically, band-pass filtering, Laplacian filtering, and common average 

reference (CAR) filtering are used to enhance the EEG signal. For feature 

extraction; Common Spatial Pattern (CSP), Power Spectral Density (PSD), and 

Principal Component Analysis (PCA) are tested. Linear Feature Normalization 

(LFN), Gaussian Feature Normalization (GFN), and Unit-norm Feature Vector 

Normalization (UFVN) are studied in Support Vector Machine (SVM) and 

Artificial Neural Network (ANN) classification. In order to evaluate and compare 

the performance of the methodologies, classification accuracy, Cohen’s kappa 

coefficient, and Nykopp’s information transfer are utilized.  



 

 v

The first experiments on classifying motor imagery tasks are realized on the 3-

class dataset (V) provided for BCI Competition III. Also, a 4-class problem is 

studied using the dataset (IIa) provided for BCI Competition IV. Then, 5 different 

tasks are studied in the METU Brain Research Laboratory to find the optimum 

number and type of tasks to control a motor imagery based BCI. Thereafter, an 

interface is designed for the paralyzed to control assistive environmental devices. 

Finally, a test application is implemented and online performance of the design is 

evaluated.  

 

Keywords: Brain Computer Interface, BCI, Electroencephalography, EEG, 

Environmental Control, Motor Imagery, Event Related Desynchronization - 

Synchronization (ERD - ERS), Power Spectral Density, Common Spatial 

Patterns, Support Vector Machines, Artificial Neural Networks. 
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ÖZ 

 

 

EEG SĐNYALLER ĐNDEKĐ HAREKET DÜŞÜNSEL 
GÖREVLERĐN SINIFLANDIRILMASI VE YARDIMCI 
ÇEVRESEL CĐHAZLARI KONTROL ĐÇĐN BĐR BEYĐN 

BĐLGĐSAYAR ARAYÜZÜNE UYGULANMASI 
 

 

Acar, Erman 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nevzat Güneri Gençer 

 

Şubat 2011, 92 Sayfa 

 

Bu çalışma felçli hastaların yardımcı çevresel cihazları kontrolü için bir Beyin 

Bilgisayar Arayüzü gerçekleştirmeye odaklanmıştır. Bu amaçla, farklı hareket 

düşünsel görevler, farklı işaret işleme yöntemleri kullanılarak 

sınıflandırılmışlardır. Özellikle, EEG işaretini iyileştirmek için; bant geçiren 

süzgeç, Laplace süzgeç ve Genel Ortalama Referans (GOR) süzgeci 

kullanılmıştır. Öznitelik çıkartmak için, Ortak Uzamsal Örüntü (OUÖ), Spektral 

Güç Yoğunluğu (SGY), Ana Bileşenler Analizi (ABA) test edilmiştir. Destek 

Vektör Makinaları (DVM) ve Yapay Sinir Ağları (YSA) ile sınıflandırmada 

Doğrusal Öznitelik Düzgeleme (DÖD), Gauss Öznitelik Düzgeleme (GÖD) ve 

Birim-düzge Öznitelik Vektörü Düzgeleme (BÖVD) çalışılmıştır. Yöntemlerin 

başarımlarını ölçmek ve karşılaştırmak için sınıflandırma doğruluğundan, 

Cohen’in kappa katsayısından ve Nykopp’un bilgi aktarımından faydalanılmıştır.      
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Hareket düşünsel görevlerin sınıflandırılmasına yönelik ilk deneyler 3. BBA 

Yarışması için sağlanan 3-sınıflı veri kümesi (V) ile gerçekleştirilmi ştir. Ayrıca, 

4. BBA Yarışması için sağlanan 4-sınıflı veri kümesi (IIa) de çalışılmıştır. Daha 

sonra hareket düşünsel bir BBA’yı kontrol etmek için en iyi görev türü ve çeşidini 

belirlemeye yönelik, ODTÜ Beyin Araştırmaları Laboratuarında 5 farklı görev   

çalışılmıştır. Sonra, felçli hastaların yardımcı çevresel cihazları kontrol etmesi 

için bir arayüz tasarlanmıştır. Son olarak, bu tasarımın çevrimiçi başarımını 

ölçmeye yönelik bir test uygulaması gerçekleştirilmi ştir.  

 

Anahtar Sözcükler:  Beyin Bilgisayar Arayüzü, BBA, Elektroensefalografi, 

EEG, Çevresel KontrolEnvironmental, Hareket Düşüncesi, Olay Đlişkili 

Desenkronizasyon - Senkronizasyon (OĐD – OĐS), Spektral Güç Yoğunluğu, 

Ortak Uzamsal Örüntü, Destek Vektör Makinaları, Yapay Sinir Ağları. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Interaction with the outside world is one of the main existence reasons of the  

human being. However this interaction cannot be realized by all the people. The 

normal pathways to sense and express may be lost or damaged due to some 

accidents or diseases. For these people, also called as locked-in, Brain Computer 

Interfaces (BCIs)  play an important role in terms of providing alternative 

pathways to interact with the outside world. For that purpose, researchers from 

many fields have been working in this area to improve the quality of life of these 

people. The researches mainly focus on enhancing the accuracy and speed of 

these systems by improving the signal acquisition, understanding 

neurophysiological activity of the brain and optimizing the signal processing 

techniques used in the system.   

 

Several non-invasive and invasive signal acquisition techniques have been used in 

BCI research. In non-invasive electroencephalography (EEG) and 

magnetoencephalography (MEG), the electromagnetic activity of the brain is 

measured by the electrodes placed over the skull. In invasive electrocorticograpy 

(ECoG), single micro-electrode (ME), micro-electrode array (MEA), and local 

field potentials (LFPs), the electrodes are placed surgically inside the skull to 

measure the cortical activity. Functional Magnetic Resonance Imaging (fMRI) 

and Near Infrared Spectroscopy (NIRS), in which regional changes in cerebral 

blood oxygenation levels are detected non-invasively, are also used in BCI 
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research [1], [2]. Among these techniques EEG is preferred in this study, due to 

the hardware’s low cost, low risk and portability. Also its temporal resolution is 

sufficiently high for online BCI applications [3].  

 

There are various neurophysiological mechanisms that have been shown to be 

useful for BCI applications. These mechanisms may be either the response of the 

brain to an event or the activity generated by the subject independent from an 

event. Among these mechanisms sensorimotor rhythms (SMR), which are 

generated  during motor imagery, are studied in this study. In BCI applications, 

SMR are converted to control signals that enable interaction with the outside 

world. Since SMR do not require any visual or auditory stimuli, they are widely 

used in BCI applications [4]. 

 

In order to convert SMR to BCI control signals, several signal processing 

techniques have been used in the literature. These techniques can be analyzed in 

three steps. First one is the signal enhancement step. In that part the quality of 

signal is improved by applying techniques like filtering, down-sampling, etc. 

Second step is feature extraction. In that part, the relevant information for the 

application is obtained from the data. The final step is the classification in which a 

mathematical model is constructed using the normalized features extracted in the 

previous step. The constructed model is used to produce control signals related to 

the application. Specifically in this study, band-pass filtering, Laplacian filtering, 

and common average reference (CAR) filtering are used to enhance the EEG 

signal. For feature extraction; Common Spatial Pattern (CSP), Power Spectral 

Density (PSD), and Principal Component Analysis (PCA) are tested. Linear 

Feature Normalization (LFN), Gaussian Feature Normalization (GFN), and Unit-

norm Feature Vector Normalization (UFVN) are studied in Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) classification. The 

performances of these methods are first evaluated in the datasets provided for BCI 

Competition III and IV. Then, different tasks have been  studied in the METU 
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Brain Research Laboratory to find the optimum number and type of tasks to 

control a motor imagery based BCI.   

 

In this study, a SMR based BCI that assist the paralyzed people for controlling  

environmental devices is designed and a test application for the design is realized.  

The aim of the design is basically make it possible for a subject to select items 

from a menu by the help of motor imagery tasks.  

 

The thesis starts with an introductory chapter presenting the BCI research in the 

literature with the analysis of its building blocks (CHAPTER 2). Then, in 

CHAPTER 3, the signal processing techniques in BCI research will be analyzed 

in detail focusing on the methods used in the study. CHAPTER 4 provides the 

results of the experiments conducted in this study. Finally, in CHAPTER 5, the 

study is summarized and the conclusions on the results is provided.  
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CHAPTER 2 

 

 

BRAIN COMPUTER INTERFACES 

 

 

 

Brain Computer Interfaces (BCIs) are the systems that convert brain signals into 

control signals that are necessary to interact with the outside world. These 

systems may be the only or preferred pathway for  

• “the patients with severe motor disabilities who lost voluntary muscle 

control,  

• the patients with Amyotrophic Lateral Sclerosis (ALS) who has to accept 

artificial ventilation to prolong life as the disease progresses,  

• children and adults with severe cerebral palsy who do not have useful 

muscle control,  

• patients with brainstem strokes who have only minimal eye movement 

control,  

• individuals with severe muscular dystrophies or peripheral neuropathies,  

• people with acute disorders causing extensive paralysis (e.g., Landry-

Guillain- Barré syndrome),  

• patients with high cervical spinal cord injuries” [5].  

Therefore, researchers from many fields have been working in this topic to 

improve the quality of life of these people.   

 

Essential elements and operation of a typical BCI are given in Figure 2-1. These 

elements will be analyzed in detail, step by step in this chapter. At first, 

information about the signal acquisition techniques used in BCI applications will 
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be given. Then the activity of the brain will be analyzed considering the role of 

that activity in a possible BCI application. In the following section the signal 

processing stage in a typical BCI will be explained briefly. Finally the BCI 

applications in the literature will be reviewed.  

 

 

 
Figure 2-1 : The brain computer interface cycle [6]. 
 
 

2.1 Signal Acquisition 

There are several non-invasive and invasive signal acquisition techniques used in 

BCI research. In non-invasive electroencephalography (EEG) and 

magnetoencephalography (MEG), the electromagnetic activity of the brain is 
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measured by the electrodes placed over the skull. In invasive electrocorticograpy 

(ECoG), single micro-electrode (ME), micro-electrode array (MEA), and local 

field potentials (LFPs), the electrodes are placed surgically inside the skull to 

measure the cortical activity. Functional Magnetic Resonance Imaging (fMRI) 

and Near Infrared Spectroscopy (NIRS), in which regional changes in cerebral 

blood oxygenation levels are detected non-invasively, are also used in BCI 

research [1], [2]. A schematic overview of the signal acquisition techniques used 

in BCI research is given in Figure 2-2. 

 

 

 
Figure 2-2 : The spatial and temporal resolution scale of the signal acquisition techniques  
used in the BCI study (EEG: electroencephalography, MEG: magnetoencephalography, 
NIRS: near-infrared spectroscopy, fMRI: functional magnetic resonance imaging, ECoG: 
electrocorticography, LFP: local field potential, MEA: micro-electrode array, ME: 
microelectrode, blue color: non-invasive methods, red color: invasive methods) [7]. 
 
 
A closer look inside EEG, ECoG, ME, MEA, LFPs and MEG will be taken in the 

following subsections, since they have sufficient temporal resolution for a real 

time BCI.  
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2.1.1 Electroencephalography (EEG) 

Electroencephalography (EEG) is the recording of electrical activity within the 

brain using the electrodes placed over the skull [8], [9]. It is invented by Hans 

Berger in 1929. The noisy and low amplitude signal (of the order of 10-4 Volts) is 

filtered and amplified considering the frequency characteristic of the signal to be 

detected and noise (i.e. 50 Hz supply noise) to be suppressed. Then, the signal is 

recorded after being digitalized (Figure 2-3).  

 

 

 
Figure 2-3 : A portable EEG system with a cap on which the electrodes are placed, a 
biopotential amplifier, and a recording/monitoring device [10]. 
 
 

EEG has a temporal resolution sufficiently high for online applications. On the 

other hand, its spatial resolution is low due to the blurring effect of the head 

tissue. Also, the measured EEG signal may contain artifacts originating from the 

movement of the electrodes, eye blink or muscular activity. Furthermore, in most 

of the EEG devices, the electrodes are placed on the skull by applying conductive 

gel in order to decrease the contact impedance. This is also a disadvantage in 
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terms of practical use. Even though, EEG is preferred in most of the BCI studies 

due to its low cost, low risk and portability [3]. For a selection of EEG based BCI 

studies, the reader may refer to [2, 10-12]. 

 

2.1.2 Magnetoencephalography (MEG) 

Magnetoencephalography is a non-invasive technique for measuring the tiny 

magnetic field fluctuations (about 10-14 Tesla) induced by the populations of 

cerebral neurons. Its temporal resolution is  comparable to that of EEG [3].  

 

Since the MEG signals have low amplitude, the measurements must be performed 

in a magnetically shielded room (Figure 2-4b) to avoid the signals being distorted. 

Also, it usually requires a large cooling unit for its sensors. Therefore, MEG 

systems are rather expensive and non-portable (Figure 2-4a) [3]. 

 

 

  

(a) (b) 

Figure 2-4 : (a) Patient undergoing an MEG. (b) Entrance to magnetically shielded MEG 
room [17]. 
 



 

2.1.3 Other Signal Acquisition Techniques

There are also other signal acquisition techniques used in the 

Among these, Electrocorticography (ECoG) 

micro-electrode array (MEA)

invasive signal acquisition techniques in which the brain signals are measured by 

the help of electrodes placed surgically inside the skull. 

 

 

(a)

Figure 2-5 : (a) ECoG electrodes over the cortex 
 

 

These techniques 

compared to EEG [3]

including BCI [11, 12]

surgical operation performed.
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Other Signal Acquisition Techniques 

There are also other signal acquisition techniques used in the 

Electrocorticography (ECoG) (Figure 2-5a), micro

electrode array (MEA) (Figure 2-5b), and local field potentials (LFPs)

invasive signal acquisition techniques in which the brain signals are measured by 

the help of electrodes placed surgically inside the skull. [7].  

 

(a) (b) 

: (a) ECoG electrodes over the cortex [14]. (b) Cortical microelectrode array 

have higher signal-to-noise ratio and spatial resolution 

[3]. Therefore they play an important role in brain research 

[11, 12]. However, they are not widespread due to th

surgical operation performed. 

There are also other signal acquisition techniques used in the BCI research. 

micro-electrode (ME), 

local field potentials (LFPs) are 

invasive signal acquisition techniques in which the brain signals are measured by 

 

. (b) Cortical microelectrode array [15]   

noise ratio and spatial resolution 

they play an important role in brain research 

However, they are not widespread due to the risk in the 
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2.2 Neurophysiologic Signals 

There are various neurophysiological mechanisms that have shown to be useful 

for BCI applications. These mechanisms are categorized into evoked and induced 

responses considering their dependency on a stimulus. Evoked potentials are the 

response of the brain to an event. Therefore the synchronization of the event and 

the EEG signal is important for evoked responses. Induced responses are 

generated by the subject independent from an event.  

 

2.2.1 Evoked Responses 

Evoked responses widely used in BCI applications are P300, Steady-State Visual 

Evoked Potential (SSVEP), and Slow Cortical Potentials (SCPs). In the following 

subsections, these responses will be analyzed in detail. 

 

2.2.1.1 P300 

P300 is a peak that typically occurs 300 ms after an expected, but infrequent, 

random event occurs (Figure 2-2). It is a natural neuromechanism that almost all 

subjects have without requiring any training period. In P300 based BCI 

applications, each stimulus event corresponds to a symbol/picture with a 

particular meaning for the interface (e.g. letters, high level commands). Among 

these symbols, the target of the subject is detected depending on the P300 peak 

occurrence time. 
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Figure 2-6 : Grand average of raw P300 target signal (80 epochs) and non- target signal 
(1120 epochs). The thick lines represent the mean, and thin lines represent the mean plus 
and minus the standard deviation [18]. 
 

 

If a visual stimulus is used in the application, it must be perceptible on the user 

field of view without gazing the specific stimulus. Another disadvantage of P300 

arrives from the fact that the user has to wait for the occurrence of the desired 

(target) stimulus which randomly appears. It is not the user who decides when to 

provide an intention but rather the emergence of the stimulus. Moreover, 

processing algorithms have to run synchronously with the start of the stimuli. 

Also, increasing the number of possible commands (events) decreases the transfer 

rate because each stimulus is flashed less frequently [18].  

 

2.2.1.2 Steady-State Visual Evoked Potential (SSVEP) 

When a stimulus flickering at a constant frequency greater than 5Hz is presented 

to a subject, a potential response at the same frequency and its harmonics is 
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observed at the occipital brain region (visual cortex) of the subject (Figure 2-7). 

This response is called Steady-State Visual Evoked Potential (SSVEP) [19].  

 

 

 
Figure 2-7 : The EEG signal spectrum in response to a visual stimulation with a flickering 
frequency of 7 Hz. The response is observed as the peaks at 7 Hz and its harmonics [19].  
 

 

In SSVEP based BCI applications, the user has to gaze the stimuli (representing 

an action, letter, etc.) positioned in some part of the screen which involves the 

movement of the eyes. Because it depends on the brain’s normal output pathway 

of peripheral nerves and eye muscles it cannot be called a true BCI. 

Notwithstanding this, the interface can be suitable for people with severe motor 

disabilities but still able to perform small eye movements [18]. 

 

2.2.1.3 Slow Cortical Potentials (SCPs) 

Slow cortical potentials are the negative or positive polarizations of the 

electromagnetic activity in the brain. These potentials are generated by the subject 

voluntarily. SCP based BCI applications may require extensive training periods 

depending on the subject’s ability to shift her/his SCP. Also, the modulation of 
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SCPs is relatively slow. Therefore, the amount of information transmitted per unit 

time is limited in SCP-based BCI applications [20]. 

 

2.2.2 Induced Responses 

Induced responses widely used in BCI applications are sensorimotor activity and 

responses to mental tasks. In the following subsections, these responses will be 

analyzed in detail. 

 

2.2.2.1 Sensorimotor Rhythms (SMR)  

One way of describing the brain signals is to divide the rhythmic activity into 

frequency bands. These bands are the delta (δ) band, the theta (θ) band, the alpha 

(α) band, the beta (β) band, the gamma (γ) band and the mu (µ) band. The 

frequency range, related brain region and the mental state they appear are given in 

[9] in detail. Among these, µ and β  bands (8-12 Hz &13-30 Hz respectively) are 

related to sensorimotor activity and they are widely used in BCI applications.  

 

µ and β rhythms originate in the primary sensorimotor cortex. A voluntary 

movement results in a desynchronization in the µ and β bands (event related 

desynchronization, ERD). After the movement, the power in the brain rhythm 

increases (event related resynchronization, ERS) [21]. Similar to real movement 

execution case, imagination of movement can also modify the neuronal activity in 

the sensorimotor cortex. This phenomenon makes it possible for patients with 

severe motor disabilities to use BCI with motor imagery. In these BCI 

applications the type of motor imagery (right/left hand/foot movement) is 

identified by classifying the power in the µ and β bands at electrodes located over 

the primary sensorimotor cortex [22]. 
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The major disadvantage in ERD/ERS based BCIs is the long training period. It 

may take a few months depending on the subject’s ability to control her/his 

sensorimotor rhythms.   

 

2.2.2.2 Responses to Mental Tasks  

In addition to the motor imagery, different non-movement mental tasks (e.g., 

solving a multiplication problem, mental counting, imagining a 3D object) can be 

used in BCI systems. Each task has a specific distribution of EEG frequency 

pattern over the scalp [21]. Compared to motor imagery, these tasks are more 

complicated. Therefore, they are not widely used in practical BCI applications.  

 

2.3 Signal Processing 

Signal processing in BCI applications can be analyzed in three steps. First one is 

the signal enhancement step. In that part the quality of signal is improved by 

applying techniques like filtering, down-sampling, etc. Second step is feature 

extraction. In that part the relevant information for the application is obtained 

from the data. The final step is the classification in which a mathematical model 

is constructed using the normalized features extracted in the previous step. The 

constructed model is used to produce control signals related to the application. A 

review of the signal processing methods used in BCI applications and the detailed 

information about the methods used in the study is given in CHAPTER 3. 
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2.4 BCI Applications 

In this section BCI applications in the literature will be reviewed by dividing into 

groups as applications for communication, environmental control, movement 

control, locomotion, and neurorehabilitation.  

   

2.4.1 Communication 

BCIs for communication focus on selection of icons. These icons vary from low 

level (i.e. letters) to high level (i.e. words, sentences). Selection of these icons has 

been realized depending on different neurophysiologic mechanisms. In [23] 

binary selection among letter-banks is performed using SCPs. The letter groups 

are split into two until a single letter remains. Movement of cursor in 1D or 2D is 

also utilized to select icons. In [24], SMR is used to move cursor in 2D. In the 

experiments with different patients, the best performance is achieved with 92% hit 

rate, 1.9 seconds movement time, and 4.9 movement precision (target size as % of 

workspace). Among all approaches, P300 based BCI for communication has been 

the most popular one. In the spelling paradigm proposed by Farwell and Donchin 

[25], a 6 by 6 matrix of characters is presented to the subject on a computer screen 

(see Figure 2-8). The rows and columns of this matrix are intensified sequentially 

in a random order. When the row or column containing the target character is 

intensified, P300 potential is evoked. Therefore, after a few repetitions the target 

character is determined using the instant at which P300 potential is evoked. In 

[26], which is one of the latest works on P300 spelling paradigm, one character 

per 9.6 sec. speed is obtained with 94.5% accuracy. 
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Figure 2-8 : A 6 by 6 P300 speller matrix. Third row is intensified [27].   
 

 

The reader can find detailed information about current silent speech 

methodologies for normal and disabled individuals in [13]. 

 

2.4.2 Environmental Control 

Controlling devices like air conditioner, power bed, TV, light etc. could greatly 

improve the quality of life of a patient with severe motor disabilities. A pilot 

study in which a system was implemented and validated to allow disabled persons 

to improve their mobility and communication within the surrounding environment 

is reported in [28]. In the integrated framework developed, keyboard, mouse, 

joystick, trackball touchpad, buttons, microphone, and head tracker were also 

utilized. When the user was not able to use any of the these devices, a BCI is 

suggested by the support team. Using a SMR based BCI, average accuracy higher 

than 75% (accuracy expected by chance alone was 50%) is obtained in a binary 

selection task among the icons.  
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2.4.3 Movement Control 

There are many researches on restoration of motor control with robotic and 

prosthetic devices in paralyzed patients. These researches can be divided into two 

groups as invasive and non-invasive. 

 

Invasive methods are mostly applied on animals like rats [29] and monkeys [30]. 

In one of these animal experiments, [30], intracortical microelectrodes were 

implanted in the proximal arm region of the primary motor cortex of a monkey. In 

the experiments the monkey is trained to feed itself with a robotic arm moving in 

3D and 61% success rate (the percentage of attempted trials where the monkey 

succeeded in getting the food into its mouth) is obtained. In a recent pilot study, a 

96-microelectrode array is implanted in primary motor cortex of a tetraplegic 

human to measure neuronal activity. In the study, the patient achieved to open and 

close a prosthetic hand, and to perform rudimentary actions with a multi-jointed 

robotic arm.  

 

Non-invasive researches mainly focus on EEG recordings over the sensorimotor 

cortex. In a SMR based application, [31], a tetraplegic patient achieved to control 

the opening and closing of his normally paralyzed hand by an orthosis using the 

motor imagery of two limbs (e.g left vs. right hand or right hand vs. both feet) 

with nearly 100% accuracy after 5 months of training period. In another motor 

imagery based study, Gernot Müller-Putz and his colleagues performed 

experiments for 3 days with a patient with a spinal cord lesion to control an 

implanted neuroprothesis. In the study, the patient used his EEG to step through 

several phases of a hand grip with 73% best performance [32]. In a recent SSVEP 

based BCI study, seven subjects performed two tasks: moving orthosis through 

four different positions and grasping object. Although none of the subjects had 

any training, six subjects showed good control with a performance higher than 

60% [33]. 
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2.4.4 Locomotion 

Many researches have been done on developing a BCI-driven wheelchair in order 

to provide mobility to the patients. In the EEG based BCI-driven wheelchair 

simulations, Galán and his colleagues used left hand movement imagination to 

turn left, rest to go forward, and word association to turn right. They also used the 

information provided by the wheelchair’s sensors. In the experiments two subjects 

were able to reach 100% (subject 1) and 80% (subject 2) of the final goals along 

the pre-specified trajectory in their best sessions by delivering a mental command 

at every 0.5 sec. Pires and Nunes developed a P300 paradigm (Figure 2-9a) to 

control wheelchair through specific directions and performed some offline tests 

[18]. Palankar and his colleagues used a similar P300 paradigm (Figure 2-9b) for 

real-time control of a wheelchair-mounted robotic arm. In the system developed, 

1 output at every 15 sec. time duration is produced with a performance higher 

than 80% to direct the robot along a step-by-step path to a desired position [34]. 

 

 

(a) (b) 

Figure 2-9 : P300 paradigms used for locomotion [18], [34].  
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2.4.5 Neurorehabilitation 

The aim of BCI applications mentioned up to that point was to improve the 

quality of life of the patient with assistive devices. The aim of the BCI 

applications for neurorehabilitation is to help the patient restore motor function 

after stroke or in other chronic central nervous system (CNS) traumatic injuries or 

disease. There are two strategies for that purpose. In the first strategy the patient is 

trained to produce more normal brain activity which is measured by specific EEG 

features. In the second strategy, the patient uses a device that assists movement 

depending on the brain activity. This strategy improves motor function yielding 

sensory input that induces CNS plasticity. The reader can find detailed 

information about the BCIs in neurological rehabilitation in [5]. 
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CHAPTER 3 

 

 

SIGNAL PROCESSING IN BRAIN COMPUTER 

INTERFACES 

 

 

 

In section 2.3, a brief description about signal processing procedure in a typical 

BCI system is given. In this chapter, the signal processing techniques in BCI 

research will be analyzed in detail focusing on the methods used in the study. 

These methods can be summarized as follows: 

 

• For signal enhancement: band-pass filtering, Laplacian filtering, and 

common average reference (CAR) filtering  

 

• For feature extraction: Common Spatial Pattern (CSP), Power Spectral 

Density (PSD), Principal Component Analysis (PCA) 

 
• For normalization: Linear Feature Normalization (LFN), Gaussian Feature 

Normalization (GFN), Unit-norm Feature Vector Normalization (UFVN)  

 
• For classification: Support Vector Machines (SVM), Artificial Neural 

Networks (ANN) 

 
• For evaluation: classification accuracy, Cohen’s kappa coefficient, 

Nykopp’s information transfer 
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3.1 Signal Enhancement 

As it is mentioned in 2.1.1, EEG has relatively low signal-to-noise ratio. The 

reason is that the signals are spatially blurred due to volume conduction in the 

intervening tissue. Also, the measured EEG signal may contain artifacts 

originating from the movement of the electrodes, eye blink or muscular activity. 

Therefore, signal enhancement plays an important role in the analysis of the EEG 

data.   

 

The most common types of signal enhancement techniques are artifact detection, 

spectral filtering and spatial filtering. Artifact detection attempts to find 

confounding signals from sources outside the brain, such as eye and muscle 

artifacts, and then attempts to remove them. Spectral filtering is used to remove 

noise signals (e.g. line noise) and select the frequency band related to the activity 

of the brain in the application. Spatial filtering also improves the signal-to-noise 

ratio of the signal by re-referencing the EEG channels [7].  

 

In this study, the signal enhancement is provided by spatial and spectral filers. As 

spectral filter, a Butterworth filter is designed using MATLAB Filter Design 

Toolbox. The EEG data is band-pass filtered between 8-30Hz, which is the band 

(µ and β rhythms; 8-12 Hz and13-30 Hz, respectively) related to sensorimotor 

activity [21]. As spatial filter, four different re-referencing techniques are utilized. 

These are standard ear-reference, a common average reference (CAR), a small 

Laplacian (SL) and a large Laplacian (LL). In the standard ear-reference 

technique, all the electrodes are directly referred to the electrodes placed on the 

ears. In the CAR, the entire average of the potentials at the channels is subtracted 

from of each channel. In the Laplacian filtering, the weighted sum of the voltage 

in the surrounding electrodes is subtracted from that of the voltage in the channel 

of interest. The calculation of the Laplacian is performed according formula given 

below. 
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where 
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 (3-2) 

 

��� is the ear-referenced voltage. !� is the set of electrodes surrounding the ith 

electrode, and "�� is the distance between electrodes i and j (where j is a member 

of !�). For the small Laplacian, !� is the set of neighbor electrodes approximately 

3 cm to the center electrode. For the large Laplacian, it is the set of neighbor 

electrodes approximately 6 cm to the center electrode [35]. 

 

3.2 Feature Extraction 

Feature extraction is summarizing the measurements for a classification problem 

while still describing the data with sufficient accuracy. In feature extraction 

process, high dimensional and possibly redundant data is transformed into a 

reduced representation set of feature vectors.  

 

In BCI applications several feature extraction methods are utilized depending on 

the pattern worked on. For a P300 based application, simply a voltage threshold at 

a specific time instant may be a feature. However, in an SMR-based application 

the frequency characteristic of the signal in a specific band may be more 

important. Also in other applications, autoregressive (AR) and adaptive 

autoregressive (AAR) parameters [36,37], time-frequency features [38], and 

inverse model-based features are used [39-41].  

 

In this study Common Spatial Pattern (CSP), Power Spectral Density (PSD), and 

Principal Component Analysis are used to extract feature from the motor imagery 
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related EEG signal. CSP, which analyzes the signal in time domain, is one of the 

most popular feature extraction algorithms in the BCI study [42-44]. PSD 

analyzes the signal in frequency domain and it is also a common method in SMR-

based BCI applications [45-48]. PCA is a classical dimension reduction 

technique, which has applications in the BCI research [45,49,50]. In the following 

subsections these three methods will be analyzed in detail.     

 

3.2.1 Common Spatial Pattern (CSP) 

The goal of common spatial pattern (CSP) analysis is to design spatial filters so 

that the filtered time series have variances optimal for the discrimination. In this 

section, the method will be explained for a 2-class problem. However, the method 

can be extended to multiclass applications [51].  

 

Let the raw EEG data of a single trial is represented by an NxT matrix #, where N 

is the number of channels and T is the number of samples. The normalized spatial 

covariance of the EEG is calculated as follows. 

 

C 	  ##&
trace,##&- (3-3) 

 

where & is the transpose operator and trace,.- is the sum of the diagonal elements 

of .. For each of the two distributions to be separated, the spatial covariances, /0111 

and /2111, are calculated by averaging over the trials of each group. The composite 

spatial covariance is calculated as 

 

/3 	 /0111 4 /2111 (3-4) 

 

Then /3 is factored as /3 	 536353& where 53 represents the matrix of 

eigenvectors and 63 represents the matrix of eigenvalues which are sorted in 
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descending order at the diagonal. Afterwards, the whitening transformation 7 is 

calculated as follows; 

 

7 	 8639�53& (3-5) 

 

This transformation (7) equalizes the variances in the space spanned by 53, i.e., 

all eigenvalues of 7/37&  are equal to one. If /0111 and /2111 are transformed as 

 

:0 	 7/01117&  and  :2 	 7/21117& (3-6) 

 

then :0 and :2 share the same eigenvectors, i.e., 

 

if :0 	 ;60;& then :2 	 ;62;& and 60 4 62 	 < (3-7) 

  

Here, < represents the identity matrix which means the sum of two corresponding 

eigenvalues is always one. Therefore, the eigenvector corresponding to the largest 

eigenvalue of :0 has the smallest eigenvalue for :2 and vice versa. Therefore, the 

eigenvectors ; becomes useful in classifying two distributions. When the EEG 

data is whitened with 7 and projected onto a group of eigenvectors in ;, it 

becomes optimal for separation of two populations in the least squares sense.  

 

With the projection matrix = 	 ,;&7-&, the EEG data is filtered as 

 

> 	 =? (3-8) 

 

The columns of =90 are referred as common spatial patterns. They represent 

time-invariant EEG source distribution vectors. The m first and last rows of > 

(>�  @  A 	 1, … ,2F- are used while calculating the final feature vectors as 

follows;  
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The feature vectors T� are used to train a classifier. The log-transformation is due 

to approximate normal distribution of the data [52]. 

 

In this study, the multiclass extension of CSP is realized by calculating = for 

each two of the U classes, and concatenating the resultant T vectors. For an U-

class problem, there exists VWPX different projection matrices, =. Each projection 

yields a A-dimensional feature vector T. These vectors are concatenated and final 

feature vector of size A VWPX  is obtained. This multiclass extension methodology is 

also utilized by one of the winner algorithms in BCI Competition IV [53].  

 

3.2.2 Power Spectral Density (PSD) 

Power Spectral Density (PSD) is a positive real function which describes 

the power distribution of a signal over frequency. There are several 

parametric and non-parametric approaches for estimation of this distribution. In a 

common parametric technique, an autoregressive model is fitted to the 

observations. A common non-parametric technique is the Welch's periodogram 

method which is also used in the calculation of PSD features classified in this 

study [54].   

 
In Welch's periodogram method, the signal is split up into overlapping segments. 

Then, squared magnitude of discrete Fourier transform of each segment is 

calculated after windowing. The final PSD is estimated taking the average of PSD 

estimation of each segment [55].  
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3.2.3 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a classical statistical method which is 

invented by Pearson K. in 1901 [56]. This linear transform has been widely used 

in data analysis and compression to convert a set of observations of possibly 

correlated variables into a set of values of uncorrelated variables called principal 

components. In this study PCA is used to extract feature from the PSD data. By 

using PCA, PSD data is projected from the higher d-dimensional space to the 

lower k-dimensional eigenspace, which is composed of k eigenvectors, and retain 

the feature information. This reduction in dimension may improve the 

performance and classification accuracy of the classifier used in the problem. The 

calculation of PCA is given step by step below. 

 

Step 1: Compute the mean vector 

 

Y 	 1
Z[N 
 �O

\]^

�R�
 (3-10) 

 

where pi=[ p1…pd]
t  is the ith d-dimensional training sample (i.e., PSD value of all 

channels) and nTr is the number of the training samples. 

 

Step 2: Calculate the covariance matrix 

 

_ 	 
,�O � Y-,�O � Y-]
\]^

�R�
 (3-11) 

 

where _ is a dxd matrix. 

 

Step 3: Find the eigenvectors and corresponding eigenvalues of _ by solving 

 

_` 	 6` (3-12) 
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Let the solution vectors x = {e1, e2,…,ed} represent the eigenvectors, and 6 	{ λ 1, 

λ 2,…, λ d} represent the corresponding eigenvalues in the descending order. e1 is 

called the principle component of the dataset and it represents the most significant 

data dimension. 

 

Step 4: Generate a dxk matrix A whose columns consist of the k eigenvectors 

corresponding to the largest eigenvalues: 

 

A=[ e1,e2,…,ek] (3-13) 

 

Step 5: Represent the data in k-dimensional subspace by performing the 

projection operation;  

 

p’ = At(p-m) (3-14) 

 

where p’= [ p1’…pk’]
T is the PCA feature vector. 

 

When the PCA feature of the testing data is extracted, only the operation in Step 5 

is performed by replacing the training data p with the testing data [45]. 

 

The ratio of the sum of the eigenvalues { λ 1, λ 2,…, λ k} to the sum of all 

eigenvalues { λ 1, λ 2,…, λ d}, represents the information in the space spanned by 

the corresponding eigenvectors. This ratio will be referred as PCA-coefficient and 

will be used in PCA-based feature extraction experiments performed in this study.  
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3.3 Normalization 

Normalization is an important step in terms of the accuracy in the classification 

stage. If the ranges of the features are unbalanced, they may have different 

importance while classifying the data. In order to make the role of the features in 

classification independent from the range of the features, they must be normalized 

identically. One idea for feature normalization is to set the mean of each feature to 

zero, and the variance to one [57]. This is called Gaussian normalization which 

can be formulized as follows: 

 

à 	 ` � b`111111
c`1112  (3-15) 

    
where de111 and fe111P are the mean and variance vectors of the features respectively. 

Another idea is to set the range of each feature to the interval [0,1]. This is called 

linear normalization which is formulized below.  

 

à 	 ` � `Ygh111111111111
`Yi`1111111 � `Ygh111111 (3-16) 

 

where jQke1111111 and jQl\111111 are the maximum and minimum vectors of the features 

respectively.  Normalizing the feature vectors, instead of normalizing the features, 

may also be useful. This can simply be performed by setting the magnitude of 

each feature vector to one. For that reason the feature vectors are divided by their 

norm as follows: 

 

m̀n 	 m̀
om̀o (3-17) 
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3.4 Classification 

Classification is assigning class labels to the features extracted from the 

measurements in the specific problem. This assignment can be performed in a 

supervised or unsupervised way of learning. In unsupervised learning, any 

information about the class labels of the measurements is not available even for a 

small set of data. In supervised learning, there exists a dataset in which the 

measurements have class labels. In a typical supervised learning procedure, this 

dataset is divided into two as training set and test set. Using the training set, a 

classifier is constructed. Then the performance of the classifier is evaluated using 

the test set. This evaluation is sometimes repeated for different parameters of the 

classifier constructed. By that way the parameters of the classifier is optimized. 

After that optimization, the classifier is ready to assign class labels to the features 

with unknown class labels [57]. Supervised learning is more preferred in the BCI 

study.   

 

In this thesis, supervised learning algorithms, support vector machine and feed-

forward artificial neural network is studied due to their popularity and 

performance in the SMR-based BCI research. The reader may refer to [58] for a 

review of classification algorithms used in EEG-based brain computer interfaces.  

 

3.4.1 Support Vector Machines (SVMs) 

In this section Support Vector Machines (SVMs) will briefly be explained. To 

begin with, consider a two class classification problem with 2-dimentional 

features. Let the circles and triangles in Figure 3-1 represent observations 

belonging to two different classes. Using these observations, many separating 

hyperplanes can be selected as classifier for the problem as it is seen in the figure.    

 

 



 

Figure 3-1 : Separating
 

Among all these hyperplanes, SVMs try to find the optimum one which is called 

Optimum Separating Hyperplane (H

and robustness. It discriminates the classes such that the margin between the class 

boundaries is maximized. The class boundaries are determined by the 

observations closest to H

Hosh, and the margin width are shown in 
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Separating hyperplanes possible to be selected as classifier for the problem

Among all these hyperplanes, SVMs try to find the optimum one which is called 

Optimum Separating Hyperplane (Hosh). Hosh is optimum in terms of its generality 

and robustness. It discriminates the classes such that the margin between the class 

boundaries is maximized. The class boundaries are determined by the 

observations closest to Hosh which are called support vectors. Support vectors, 

, and the margin width are shown in Figure 3-2.  

 
hyperplanes possible to be selected as classifier for the problem 

Among all these hyperplanes, SVMs try to find the optimum one which is called 

is optimum in terms of its generality 

and robustness. It discriminates the classes such that the margin between the class 

boundaries is maximized. The class boundaries are determined by the 

ors. Support vectors, 



 

Figure 3-2 : Optimum sep
the support vectors. 
 

The objective function of the SVM algorithm to be minimized can be expressed 

as follows:  

where  

p : The margin width,

qr : The distance of the misclassified observation to its class boundary (see 

Figure 3-3), 

s  : Tradeoff parameter between the 

The first term in (3-18

is to minimize the distance of the misclassified observatio

boundary. s, the tradeoff parameter between the terms, is selected by hand 

according to the problem. 
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: Optimum separating hyperplane maximizes the margin width determined by 

The objective function of the SVM algorithm to be minimized can be expressed 

1
p 4 s 
 qr

 

rR�
 

: The margin width, 

: The distance of the misclassified observation to its class boundary (see 

: Tradeoff parameter between the addends.  

18) is due to maximize the margin width and the second term 

is to minimize the distance of the misclassified observations to their class 

, the tradeoff parameter between the terms, is selected by hand 

according to the problem.  

 
arating hyperplane maximizes the margin width determined by 

The objective function of the SVM algorithm to be minimized can be expressed 

(3-18) 

: The distance of the misclassified observation to its class boundary (see 

is due to maximize the margin width and the second term 

ns to their class 

, the tradeoff parameter between the terms, is selected by hand 



 

Figure 3-3 : The objective of the SVM algorithm is to maximize the margin width and 
minimize the distance of the misclassified observations to their class boundary.  
 

When the observations are separable, they are separated in their original space by 

the Hosh. Otherwise, they can be mapped to a higher dimensional space in which 

they are separable. This situation is illustrated for 1

below. The observations in 

not the case in 1D for the observations in 

when they are mapped to a higher dimensional space as it is seen in 

 

Figure 3-4 : Observations separable in 1D
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: The objective of the SVM algorithm is to maximize the margin width and 
minimize the distance of the misclassified observations to their class boundary.  

When the observations are separable, they are separated in their original space by 

wise, they can be mapped to a higher dimensional space in which 

they are separable. This situation is illustrated for 1-dimensional feature case 

below. The observations in Figure 3-4 are separable by a 1D Hosh

not the case in 1D for the observations in Figure 3-5. They become separabl

when they are mapped to a higher dimensional space as it is seen in 

Observations separable in 1D 

 
: The objective of the SVM algorithm is to maximize the margin width and 

minimize the distance of the misclassified observations to their class boundary.   

When the observations are separable, they are separated in their original space by 

wise, they can be mapped to a higher dimensional space in which 

dimensional feature case 

osh. However it is 

. They become separable only 

when they are mapped to a higher dimensional space as it is seen in Figure 3-6.  

 



 

Figure 3-5 : Observations not separable in 1D
 

Figure 3-6 : Observations that are not separable in 1D being separable in 2D.
 

The functions that map the observations to a higher dimensional space are called 

Kernel functions. Some examples of the Kernel functions used in SVM are given 

below. 

 

• Linear Kernel:  

 

 

• Polynomial Kernel: 

 

tVj
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: Observations not separable in 1D 

: Observations that are not separable in 1D being separable in 2D.

The functions that map the observations to a higher dimensional space are called 

Kernel functions. Some examples of the Kernel functions used in SVM are given 

 

tVj� , j�X 	 j�]j� 

Polynomial Kernel:  

Vj� , j�X 	 ,uj�]j�  4  N-� , u v 0 

 

 
: Observations that are not separable in 1D being separable in 2D. 

The functions that map the observations to a higher dimensional space are called 

Kernel functions. Some examples of the Kernel functions used in SVM are given 

(3-19) 

(3-20) 



 

• Radial Basis Function Kernel: 

 

tVj�,
  

• Sigmoid Function:

 

 

Here, u, N, and "
classification problem 

 

In this thesis study, a well

classification [60]. 

 

3.4.2 Artificial Neural 

Artificial Neural Networks (ANNs) are one of the non

algorithms. There are several ANN topologies used in the literature. In this thesis 

a three-layer feed-forward ANN with one hidden layer and one output layer is 

implemented and used. The topology of the network is shown in 

 

Figure 3-7 : Three layer feed
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Radial Basis Function Kernel:  

V , j�X 	 exp ,�uzj� � j�zP- , u v 0 

Sigmoid Function: 

tVj�, j�X 	 tanh ,uj�]j� 4 N- 

" are kernel parameters to be adjusted for the specific 

classification problem [59]. 

In this thesis study, a well-known SVM toolbox, LIBSVM, is utilized for SVM 

Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are one of the non-linear classification 

algorithms. There are several ANN topologies used in the literature. In this thesis 

forward ANN with one hidden layer and one output layer is 

emented and used. The topology of the network is shown in Figure 

: Three layer feed-forward artificial neural network  

(3-21) 

(3-22) 

to be adjusted for the specific 

known SVM toolbox, LIBSVM, is utilized for SVM 

linear classification 

algorithms. There are several ANN topologies used in the literature. In this thesis 

forward ANN with one hidden layer and one output layer is 

Figure 3-7. 
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The terms kIn, nHid, and kOut in Figure 3-7 represent the number of input nodes 

(i.e. feature dimension), the number of hidden nodes, and the number of output 

nodes (i.e. number of classes in the problem) respectively. The network has two 

modes of operation. The first one is the feed-forward mode. It consists of 

presenting a pattern to the input nodes and passing the signals through the 

network in order to get output. The second mode of operation is learning which 

consists of presenting input patterns and finding the network parameters (weights) 

that minimize the distance between the computed output and the desired output.  

 

3.4.2.1 Feed-forward Operation 

In this operation mode, an input pattern is applied to the input layer. Each feature 

of the pattern is multiplied with a weight and distributed to each unit in the hidden 

layer. Then, the weighted sum of the features are transformed by a nonlinear 

activation function. In this study the sigmoid function given in (3-23) is used as 

the activation function.  

 

G,j- 	 1
1 4 }9e (3-23) 

 

Afterwards, the output of the hidden layer is multiplied with the network weights 

again and transferred to the output layer. Similar to the hidden layer, a summation 

and activation operation is performed in the output layer to produce the output 

vector. The output vector represents the classes in the problem. This 

representation is performed by unit vectors of which element are 1 only for the 

related class. For example, for a three class problem, the output vectors 

representing the classes are [1 0 0], [0 1 0], and [0 0 1].  

 



 

3.4.2.2 Learning

In order the ANN to be used in feed

network, Wxh and W

propagation algorithm using the observations in the training data set. Back 

propagation is a batch training algorithm in which weights are only updated after 

all the inputs and targets are present

network output and the desired network output is defined as the error function. 

The algorithm tries to minimize that function using gradient descent algorithm. 

The error is a function of network weights. Therefore the

function with respect to the network weights is calculated and used in the gradient 

descent algorithm. The error function to be minimized is given in 

 

 

where ~� is the desired output and 

error, E, with respect to the weight from neuron k to j, w

the error, E, with respect to the weight from neuron i to k, w

and (3-26) respectively for the network part given in 

 

Figure 3-8 : ANN piece
 
 

�
�
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Learning 

In order the ANN to be used in feed-forward operation mode, the weights in the 

and Why, must be calculated. This calculation is performed by back 

propagation algorithm using the observations in the training data set. Back 

propagation is a batch training algorithm in which weights are only updated after 

all the inputs and targets are presented. The difference between the current 

network output and the desired network output is defined as the error function. 

The algorithm tries to minimize that function using gradient descent algorithm. 

The error is a function of network weights. Therefore the derivative of the error 

function with respect to the network weights is calculated and used in the gradient 

descent algorithm. The error function to be minimized is given in 

� 	 1
2 ,~� � �m-P 

is the desired output and �m is the current output. The derivative of the 

error, E, with respect to the weight from neuron k to j, wjk, and 

the error, E, with respect to the weight from neuron i to k, wki, are given in 

respectively for the network part given in Figure 3-8. 

: ANN piece 

��H

���r
	  ,J�H,1 � J�H--,��H � J�H-�rH 

forward operation mode, the weights in the 

, must be calculated. This calculation is performed by back 

propagation algorithm using the observations in the training data set. Back 

propagation is a batch training algorithm in which weights are only updated after 

ed. The difference between the current 

network output and the desired network output is defined as the error function. 

The algorithm tries to minimize that function using gradient descent algorithm. 

derivative of the error 

function with respect to the network weights is calculated and used in the gradient 

descent algorithm. The error function to be minimized is given in (3-24). 

(3-24) 

is the current output. The derivative of the 

, and the derivative of 

, are given in (3-25) 

 

 

(3-25) 
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��H

��r�
	  ,JrH,1 � JrH--,
,J�H,1 � J�H--,��H � J�H-��r-

�

�R�
��H (3-26) 

 

The derivative terms in (3-25) and (3-26) are calculated for each observation in 

the training set and subtracted from the related weights. The operation continues 

iteratively until the error term becomes insignificant. The reader may refer to [57] 

for the derivation and detailed information about the algorithm. 

 

3.5 Evaluation 

In order to analyze the performance of BCI systems, several evaluation techniques 

can be used. In this study classification accuracy, Cohen’s Kappa Coefficient, and 

Nykopp’s information transfer are used to analyze the performance in the 

experiments. They are commonly used in the BCI competitions to compare the 

results of different research groups [61,62]. The definitions of these evaluation 

methods are given in the following subsections after defining the terminology in a 

confusion matrix. 

 

3.5.1 The Confusion Matrix 

The confusion matrix consists of elements, nij, which represent the number of  

samples of class i predicted as class j. The diagonal elements of the matrix, nii, 

show the number of correctly classified samples. The number of samples is 

calculated as:  

 

U 	 
 
 Z��
�

�R�

�

�R�
 (3-27) 
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Although confusion matrices give an idea about the performance of the BCI 

system, they are rarely presented. The summary statistics such as classification 

accuracy and Cohen’s Kappa Coefficient are much more preferred [63]. 

 

3.5.2 Classification Accuracy 

The classification accuracy (���) is the simplest and most widely used way of 

evaluating a BCI. It is calculated as follows. 

 

��� 	 ∑ Z����R�
U  (3-28) 

 

On the other hand, there are some limitations of the classification accuracy. First 

of all it does not consider the off-diagonal elements in the confusion matrix. Also 

the weight of a class in the calculation depend on the number of samples from that 

class [63].  

 

3.5.3 Cohen’s Kappa Coefficient 

When the limitations of the classification accuracy is considered, Cohen’s kappa 

coefficient, κ, serves a more reliable and sensitive evaluation criteria. In the 

calculation of κ, the classification accuracy, ��� (overall agreement), and the 

chance agreement,A�, is used together. The definition of A� is given below. 

 

A� 	 ∑ Z:�Z�:��R�
UP  (3-29) 

 

where Z:� and Z�: are the sum of the ith column and the ith row of the confusion 

matrix, respectively. Then, the kappa coefficient, κ, is calculated as it is given 

below. 
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κ 	  A� � A�1 � A�  (3-30) 

 

The maximum value that the kappa coefficient can take is 1 (perfect 

classification). The value changes depending on the correlation between the 

predicted classes and the actual classes [63].  

 

3.5.4 Nykopp’s Information Transfer 

BCIs are alternative communication channels between the brain and the 

environment. Therefore, the information transfer in that communication channels 

must be quantified. For that purpose, Nykopp derived information transfer for a 

general confusion matrix as given below [63][64].  

 

�,�; �- 	 �,�- � �,�|�- (3-31) 

 

where �,j- represents the entropy of the discrete random variable j. Specifically; 

 

�,�- 	 � 
 AV��X  .  logP A,��-
�

�R�
 (3-32) 

 

with 

 

AV��X 	 
 A,j�- .  AV��zj�X
�

�R�
 (3-33) 

 

and 

 

�,�|�- 	 � 
 
 A,j�- . AV��zj�X . logP A,��|j�- 
�

�R�

�

�R�
 (3-34) 



 

40 

In the equations above, the random variable X models the user intention and the 

random variable Y models the classifier output. M is the number of classes. A,j�-  
is the a priori probability for class j�, AV��X  is the probability of classifier output 

to be class  ��, and  AV��zj�X is the probability to classify  j� as  ��  .  
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CHAPTER 4 

 

 

EXPERIMENTS AND RESULTS 

 
 

 

4.1 Experiments on BCI Competition III: Dataset V 

In this section the experiments performed on the dataset provided by IDIAP 

Research Institute [65] for BCI Competition III [61] is presented. The dataset 

contains EEG of three mental tasks which are  

 

1. Imagination of repetitive self-paced left hand movements, 

2. Imagination of repetitive self-paced right hand movements, 

3. Generation of words beginning with the same random letter. 

 

4.1.1 Explanation of the Experiment 

Three normal subjects sitting in a normal chair with relaxed arms resting on their 

legs attended 4 non-feedback sessions. The first three sessions are provided as 

training data with class labels in order to be used to construct a classifier. The 

final session is provided as test data in order to be used to evaluate the 

performance of the classifier. The class labels of the test data is announced after 

the deadline of the competition.  

 

In the experiments, each subject attended 4 sessions separated with 5-10 minutes 

breaks on the same day. Each session lasted 4 minutes. The subject performed a 



 

task randomly requested by  the operator 

the next task requested by the operator without giving any break. 

 

32 electrodes Biosemi system 

are located according to the 

EEG signal is sampled at

employed on the data

 

 

Figure 4-1 : The placement of the electrodes in the experiment
 

 

The data for classification 

feature vectors and the second one is the raw EEG signals.
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domly requested by  the operator for about 15 seconds 

the next task requested by the operator without giving any break. 

32 electrodes Biosemi system [66] is used to record the EEG data. The electrodes 

are located according to the International 10-20 system [67] (see 

EEG signal is sampled at 512 Hz. Any artifact rejection or correction was

on the data.  

: The placement of the electrodes in the experiment 

for classification are provided in two ways. First one is the precomputed 

feature vectors and the second one is the raw EEG signals. 

 then switched to 

the next task requested by the operator without giving any break.  

ord the EEG data. The electrodes 

(see Figure 4-1). The 

artifact rejection or correction was not  

 

are provided in two ways. First one is the precomputed 
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4.1.2 Precomputed Features 

4.1.2.1 Explanation of the features 

Precomputed features are useful in terms of focusing into the classification stage 

of the EEG signal processing problem without considering the signal 

enhancement and feature extraction stages. These already extracted features 

basically summarize the related frequency content of the EEG data. While 

extracting these features, a surface Laplacian filter [35] was employed on the 

EEG data first. Then, the power spectral density (PSD) of the filtered EEG data 

was calculated in the 8-30 Hz band at every 62.5 ms using the last second of the 

data. The frequency resolution was 2 Hz and the number of electrodes used in 

PSD calculation was 8 (C3, Cz, C4, CP1, CP2, P3, Pz, P4). As a result, 96 

dimensional feature vectors (8 channels times 12 frequency components) were 

obtained.  

 

4.1.2.2 Results on Precomputed Features 

In this part the results obtained using the normalization and classification 

techniques mentioned in CHAPTER 3 will be presented. For normalization, 

Linear Feature Normalization (LFN), Gaussian Feature Normalization (GFN), and 

Unit-norm Feature Vector Normalization (UFVN) are tested. In the classification 

step, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) are 

studied. Also Principal Component Analysis (PCA) is utilized in order to reduce 

the dimension of the precomputed PSD features.  

 

The resultant performance of the methodologies is evaluated on the test data. This 

strategy enables a comparison of the results with the other methodologies 

evaluated on the same test data in the scope of the competition. All the parameter 

optimizations of the methodologies are performed in the training data. For that 

purpose, randomly selected 75% of the training data is used to construct a 

classifier and the remaining 25% is used to validate the performance of the model 
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for the given parameters. While dividing the training data into partitions, uniform 

distribution of the features for different classes is considered. The final 

classification model is constructed with the parameters giving maximum 

validation result using whole training data. Then, the performance of the model is 

evaluated on the test data.  

 

In the evaluation step, a classification output for each input feature vector, 

computed 16 times per second, is generated first. Then the average of 8 

consecutive outputs is calculated in order to produce a response at every 0.5 

seconds. Finally, classification accuracy is calculated for these responses as 

mentioned in the requirements of the competition.  

 

Validation Results for SVM Classification 

In SVM classification, the RBF kernel is preferred since it is reported to provide 

the best results in terms of the classification performance [68]. For the PCA based 

RBF kernel SVM classification, there are three parameters to be optimized. First 

one is the u coefficient of the RBF kernel, second one is the regularization 

parameter C, and the third one is the PCA-Coefficient. Since there is no direct 

analytical way of finding the optimum values of these parameters, validation 

accuracy is calculated in the training data for different u, C, and PCA-Coefficient 

combinations. The combination giving the maximum validation accuracy is used 

to construct the final classification model. In this study u and C values are grown 

exponentially in order to enlarge the search space. u is varied between 29�� and 

2� while C is varied between 29� and 2�. An example validation accuracy table is 

given in Table 4-1. In the table, validation accuracies for different subjects under 

the same normalization and PCA procedures are given.     
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Table 4-1 : Validation accuracies for all subjects and different � & C combinations. The 
PCA-Coefficient is 99 and unit norm feature vector normalization and no feature 
normalization is used.  
 log(γ): -31 -27 -23 -19 -15 -11 -7 -3 1 5 

subject log(C) 

1 

-1 39,36 39,36 39,36 39,36 39,36 39,36 70,33 74,05 97,23 39,97 

3 39,36 39,36 39,36 39,36 39,36 70,21 72,23 84,08 99,58 50,80 

7 39,36 39,36 39,36 39,36 70,21 72,07 74,09 93,09 99,58 50,80 

  

2 

-1 38,77 38,77 38,77 38,77 38,77 38,77 56,96 65,35 98,23 39,19 

3 38,77 38,77 38,77 38,77 38,77 57,15 63,31 81,62 99,69 43,62 

7 38,77 38,77 38,77 38,77 57,19 63,19 66,31 92,54 99,69 43,62 

  

3 

-1 49,03 49,03 46,42 46,62 46,66 46,66 54,00 58,94 98,56 33,86 

3 49,03 49,03 46,42 46,62 46,66 54,16 55,95 75,04 99,81 73,56 

7 49,03 49,03 46,42 46,62 54,16 55,83 58,71 89,66 99,81 73,56 

 

 

It is seen that C value does not affect the validation accuracy as much as the u 

value. It is also seen that the optimum u&C combination does not depend on the 

subject. However, it is seen in Table 4-2 that the optimum u&C combination 

depend on the feature vector normalization (FVN) and feature normalization (FN) 

methods. In the table, the validation accuracies for different normalization 

methods and u&C combinations for subject 1 with PCA-Coefficient 99.  
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Table 4-2 : The validation accuracies for different normalization methods and �&C 
combinations for subject 1 with PCA coefficient 99. 
 log(γ): -31 -27 -23 -19 -15 -11 -7 -3 1 5 

FVN-FN log(C)  
         

NoFVN-

GFN 

-1 39,36 39,36 39,36 39,36 39,36 55,40 76,37 98,10 39,36 39,36 

3 39,36 39,36 39,36 39,36 55,55 72,45 88,72 99,62 41,98 39,36 

7 39,36 39,36 39,36 55,51 71,85 77,51 94,98 99,62 41,98 39,36 

 
         

NoFVN-

LFN 

-1 39,36 39,36 39,36 39,36 39,36 39,36 53,84 72,95 92,90 42,52 

3 39,36 39,36 39,36 39,36 39,36 54,45 72,19 79,64 99,09 71,77 

7 39,36 39,36 39,36 39,36 54,56 72,07 72,95 89,78 99,13 71,77 

 
         

NoFVN-

NoFN 

-1 39,36 39,36 39,36 39,36 56,61 72,87 85,30 87,84 39,36 39,36 

3 39,36 39,36 39,36 56,69 72,72 74,89 97,68 99,43 39,40 39,36 

7 39,36 39,36 56,69 72,68 72,99 85,49 98,63 99,43 39,40 39,36 

 
          

 
         

UFVN- 

GFN 

-1 39,36 39,36 39,36 39,36 70,02 92,02 42,78 39,36 39,36 39,36 

3 39,36 39,36 39,36 69,79 78,42 99,16 76,33 39,36 39,36 39,36 

7 39,36 39,36 69,87 72,64 88,68 99,16 76,33 39,36 39,36 39,36 

 
         

UFVN- 

LFN 

-1 39,36 39,36 39,36 39,36 39,36 39,36 69,34 72,87 96,47 40,20 

3 39,36 39,36 39,36 39,36 39,36 69,45 71,77 82,22 99,54 55,32 

7 39,36 39,36 39,36 39,36 69,45 71,81 72,80 91,83 99,58 55,32 

 
         

UFVN- 

NoFN 

-1 39,36 39,36 39,36 39,36 39,36 39,36 70,33 74,05 97,23 39,97 

3 39,36 39,36 39,36 39,36 39,36 70,21 72,23 84,08 99,58 50,80 

7 39,36 39,36 39,36 39,36 70,21 72,07 74,09 93,09 99,58 50,80 

 

 

In Table 4-3 the validation accuracies for different PCA-Coefficients and u&C 

combinations for subject 1 is given. For the results in the table, the feature 

normalization type is Gaussian and no feature vector normalization is employed. 

It is seen in the table that the optimum u&C combination strongly depend on the 

PCA-Coefficient. This situation is the reason of searching optimum u&C 

combination in a range that wide.   
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Table 4-3 : The validation accuracies for different PCA-Coefficients and �&C combinations 
for subject 1. The feature normalization type is Gaussian and no feature vector 
normalization is employed. 
 log(γ): -31 -27 -23 -19 -15 -11 -7 -3 1 5 

PCA-

Coeff. log(C)           

97 

-1 39,36 39,36 39,36 39,36 39,36 39,36 62,20 64,44 64,44 64,36 

3 39,36 39,36 39,36 39,36 39,36 62,35 64,70 64,89 64,86 64,13 

7 39,36 39,36 39,36 39,36 62,39 64,78 64,51 64,29 64,93 64,10 

  
          

97,5 

-1 39,36 39,36 39,36 39,36 39,36 41,19 67,21 68,88 69,87 70,10 

3 39,36 39,36 39,36 39,36 41,19 67,36 67,71 69,22 70,63 66,49 

7 39,36 39,36 39,36 41,19 67,33 67,44 68,96 69,22 70,86 64,36 

  
          

98 

-1 39,36 39,36 39,36 39,36 39,36 48,48 68,35 72,15 82,26 39,36 

3 39,36 39,36 39,36 39,36 48,56 68,31 70,44 75,95 87,92 42,06 

7 39,36 39,36 39,36 48,56 68,35 69,15 71,73 78,69 87,65 42,06 

  
          

98,5 

-1 39,36 39,36 39,36 39,36 39,36 49,43 70,59 83,85 46,16 39,36 

3 39,36 39,36 39,36 39,36 49,51 69,83 74,39 93,35 83,78 39,40 

7 39,36 39,36 39,36 49,51 69,60 71,09 79,71 93,66 83,78 39,40 

  
          

99 

-1 39,36 39,36 39,36 39,36 39,36 55,40 76,37 98,10 39,36 39,36 

3 39,36 39,36 39,36 39,36 55,55 72,45 88,72 99,62 41,98 39,36 

7 39,36 39,36 39,36 55,51 71,85 77,51 94,98 99,62 41,98 39,36 

  
          

99,5 

-1 39,36 39,36 39,36 39,36 39,36 63,41 86,36 53,53 39,36 39,36 

3 39,36 39,36 39,36 39,36 62,46 76,90 97,68 98,06 39,36 39,36 

7 39,36 39,36 39,36 62,16 74,32 87,39 98,18 98,06 39,36 39,36 

  
          

100 

-1 49,85 66,95 94,49 39,48 39,36 39,36 39,36 39,36 39,36 39,36 

3 65,20 86,47 99,58 46,66 39,36 39,36 39,36 39,36 39,36 39,36 

7 77,81 96,69 99,58 46,66 39,36 39,36 39,36 39,36 39,36 39,36 

 

Another property observed in Table 4-3 is the general tendency to increase in the 

maximum validation accuracies which are marked with boxes. This is expected 

since the feature vector dimension and the percent of information represented by 

feature vectors increases while the PCA-Coefficient is increasing. However, the 

maximum validation accuracy is obtained for the PCA-Coefficient 99. The reason 

is the fact that some part of the information lost in PCA is noise. This is the main 
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advantage of using PCA in classification problems. For smaller PCA-

Coefficients, the percentage of noise in the lost information decreases. Therefore 

a decrease in the validation accuracy is observed. However, PCA may still be 

preferred in the cases where high dimensionality is a problem in terms of 

generating fast responses.  

 

In Table 4-4, the feature vector dimensions for different PCA-Coefficients are 

given for each subject. The PCA coefficient is a measure of percent information 

maintained after the PCA operation. For example, the 97% percent of the 

information in 96-dimensional feature space can be represented in 2-dimensional 

feature space for the subject 1. The situation is similar for the other subjects. This 

shows the high correlation between the features. This correlation arises from the 

blurring of the EEG signal in the skull and low spatial resolution of the signal 

acquisition methodology.    

 

 

Table 4-4 : Feature vector sizes for different PCA-Coefficients. 

subject/PCA-coefficient 97 97,5 98 98,5 99 99,5 100 

1 2 4 9 17 36 59 96 

2 4 6 12 23 39 61 96 

3 3 6 12 25 39 63 96 

 

 

Validation Results for ANN Classification 

For ANN classification, there are two parameters to be optimized. First one is the 

number of nodes in the hidden layer, nHidden, of the three layer feed-forward 

network and the second one is the PCA-Coefficient. For that purpose, validation 

accuracy is calculated in the training data for different nHidden and PCA-

Coefficient combinations. The combination giving the maximum validation 

accuracy is used to construct the final classification model. In this study nHidden 

is varied between 5 and 33 with step size 4. In Table 4-5, validation accuracies for 

different subjects and nHidden & PCA-Coefficient combinations are given. For 
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the results in the table, linear feature normalization and unit norm feature vector 

normalization is used. 

 

 

Table 4-5 : The validation accuracies for different subjects and nHidden & PCA-Coefficient 
combinations. Linear feature normalization and unit norm feature vector normalization is 
used. 
 PCA-Coefficient: 97 97,5 98 98,5 99 99,5 

subject nHidden 
      

1 

5 61,97 66,11 62,99 68,47 70,55 73,59 

9 61,70 66,19 65,81 68,35 69,30 75,11 

13 61,44 66,45 65,01 68,77 70,06 74,13 

17 61,74 66,38 65,65 68,69 70,52 75,15 

21 61,63 66,45 66,87 69,26 70,48 74,58 

25 61,85 66,95 66,83 69,76 70,02 74,77 

29 61,51 66,38 66,26 68,92 70,10 75,27 

33 61,85 66,64 66,68 68,85 70,29 75,76 

  
      

2 

5 54,27 54,12 54,15 55,58 61,54 63,85 

9 54,65 54,77 54,58 59,00 62,65 64,08 

13 54,73 54,08 54,38 57,96 62,04 63,15 

17 54,77 54,27 55,38 57,58 62,27 63,73 

21 54,65 54,15 55,12 58,54 62,65 63,81 

25 54,42 54,38 55,54 58,35 62,73 64,31 

29 55,00 54,69 55,42 58,73 62,00 64,73 

33 54,92 54,46 55,69 58,38 62,58 64,46 

  
      

3 

5 44,79 45,92 46,54 51,24 47,47 52,18 

9 45,88 46,31 46,85 51,44 52,72 55,25 

13 45,72 46,73 46,31 51,87 53,34 55,37 

17 45,65 46,50 47,12 51,83 55,40 55,68 

21 46,11 46,70 46,81 51,67 54,16 56,18 

25 45,10 46,19 47,67 52,33 53,46 55,64 

29 45,10 46,93 47,78 52,33 54,20 56,69 

33 45,61 46,46 47,55 53,15 54,74 56,10 

 
 

It is seen in Table 4-5 that there is a general tendency to increase in the validation 

values with the increasing nHidden and PCA-Coefficient values. However, it is 

seen that the validation accuracy value does not change that much for nHidden 
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values greater than 20 under the same PCA procedure. 21 hidden nodes seem to 

be enough to perform the required classification operation in the problem. Any 

nHidden value greater than 20 may give the maximum validation accuracy as it is 

marked with boxes in the table.  

 

The training of an ANN with back propagation algorithm is an iterative procedure 

as it is mentioned in section 3.4.2. In these iterations, the validation accuracy must 

be checked against memorization of the neural network. Memorization occurs 

when the classification model is too complex to classify all the data in the training 

set with losing its generality. Due to this loss in generality, the network becomes 

useless for any other data except from the training set. Validation accuracy gives 

an idea about the generality of the model since it is calculated using data different 

from the data training the ANN. In Figure 4-2, the root-mean-square error 

(RMSE) calculated using 75% of the training data; in Figure 4-3, validation 

accuracy calculated using the remaining 25% at each iteration is given for subject 

1. The formulation of RMSE is given in (4-1).  

 

RMSE 	 1
nF 
 
 ,t�� � y��-P

¢£¤¥

�R�

¢¦

�R�
 (4-1) 

 

where nF is the number of features, nOut is the number of output nodes (which is 

3 since there are 3 output classes in this problem), t�� is the current output of the 

network and y�� is the desired output of the network.   
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Figure 4-2 : RMS Error calculated at each iteration for subject 1 under linear feature 
normalization and unit norm feature vector normalization with PCA-Coefficient 99.5.  
      

 

 
Figure 4-3 : Validation accuracy calculated at each iteration for subject 1 under linear 
feature normalization and unit norm feature vector normalization with PCA-Coefficient 
99.5.  
 

The non-decreasing characteristic of the validation accuracy curve in Figure 4-3 

shows that there is no memorization problem while the RMSE of the training set 

is decreasing. This may be due to the large number of feature vectors in the 
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training set. As a result, constant and sufficient number of iterations can be used 

as stopping criteria in the training procedure. 1500 iterations is used in the 

experiments which seem to be sufficient in the Figure 4-3.  

 

Overall Evaluation Results 

After optimizing the parameters using validation accuracies in the training set; the 

normalization, feature extraction and classification methodology is evaluated in 

the test set. The number of NN and SVM calculations in this optimization process 

are given in Table 4-6. 

 

Table 4-6 : The number of parameters and total number of combinations.   
nHidden γ C FVN FN PCA Total # of combinations 

NN 8 - - 2 3 7 336 

SVM - 10 3 2 3 7 1260 

 

 

With the parameters giving the maximum validation accuracy, each methodology 

is evaluated. In Table 4-7, the classification accuracies calculated using the 

responses computed 16 times per second (16 Hz accuracy results); in Table 4-8, 

the classification accuracies calculated using the responses computed 2 times per 

second (2 Hz accuracy results) from the average of 8 consecutive outputs are 

given.  
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Table 4-7 : Classification accuracy calculated using the responses computed 16 times per 
second 
 FN: GFN LFN NO 

PCA: YES NO YES NO YES NO 

FVN: NO UFVN NO NO UFVN NO NO UFVN NO 

classifier subject 
         

NN 1 72,29 71,26 65,04 74,14 74,34 74,14 72,15 73,74 69,86 

NN 2 57,40 56,19 51,73 60,54 59,53 60,54 57,03 58,99 53,92 

NN 3 49,40 47,91 42,57 50,72 52,32 50,72 48,45 52,67 47,39 

NN Avg 59,70 58,45 53,11 61,80 62,07 61,80 59,21 61,80 57,06 

 
          

SVM 1 69,75 71,18 64,33 73,57 74,34 73,57 72,03 75,14 72,03 

SVM 2 53,60 54,41 51,70 59,76 56,45 59,76 57,89 57,57 57,89 

SVM 3 46,39 46,96 46,39 48,68 49,97 48,68 47,33 49,68 47,33 

SVM Avg 56,58 57,51 54,14 60,67 60,26 60,67 59,09 60,80 59,09 

 

 

Table 4-8 : Classification accuracy calculated using the responses computed 2 times per 
second from the average of 8 consecutive outputs  
 FN: GFN LFN NO 

 PCA: YES NO YES NO YES NO 

 FVN: NO UFVN NO NO UFVN NO NO UFVN NO 

classifier subject 
         

NN 1 76,03 73,74 70,09 76,71 77,40 75,34 76,48 76,26 71,46 

NN 2 60,37 61,75 54,15 61,75 60,83 61,75 60,83 61,06 55,07 

NN 3 52,98 52,75 41,51 53,67 55,50 52,52 51,61 55,28 48,62 

NN Avg 63,13 62,75 55,25 64,04 64,58 63,21 62,97 64,20 58,38 

  
         

SVM 1 73,52 73,97 67,58 75,57 78,54 75,57 75,11 79,68 75,11 

SVM 2 55,76 56,68 53,23 62,90 59,91 62,90 58,76 61,06 58,76 

SVM 3 50,92 49,08 50,92 51,83 53,90 51,83 51,61 51,83 51,61 

SVM Avg 60,06 59,91 57,24 63,44 64,12 63,44 61,83 64,19 61,83 

 

 

It is obvious in the resulting tables that the averaging operation increases the 

classification accuracy. However, the 16 Hz accuracy results are more sensitive 

and useful while comparing the methodologies. 
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Maximum evaluation accuracy is obtained with NN employing PCA in the feature 

extraction, with linear feature normalization (LFN) and unit-norm feature vector 

normalization (UFVN). PCA and UFVN give good results also in SVM 

classification.  

      

4.1.3 Raw EEG Signals 

In addition to the precomputed features, the 32 channel EEG recordings, that the 

PSD features are extracted from, are also provided in the competition. These 

signals enable to test different preprocessing and feature extraction techniques.  

 

4.1.3.1 Explanation of the features 

In the experiments on raw EEG signals, CSP features are extracted using different 

spatial filtering, temporal filtering and normalization techniques. Then the results 

are compared with the results on precomputed PSD features.  

 

Similar to the PSD feature extraction strategy, CSP features are calculated at 

every 62.5 ms (i.e., 16 times per second) over the last second of data using the 

same EEG channels (C3, Cz, C4, CP1, CP2, P3, Pz, and P4). The other electrode 

recordings provided are only used in the spatial filtering step.  

 

4.1.3.2 Results on Raw EEG signals 

In this section the results obtained using different spatial filtering, temporal 

filtering, feature normalization, feature vector normalization and classification 

techniques will be presented. The list of the techniques utilized with different 

combinations is given in Table 4-9. 
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Table 4-9 : The signal processing techniques used to classify the CSP features extracted from 
the raw EEG signal   
Spatial filter (SF): Common Average Reference (CAR) filter 

 Large Laplacian (LL) filter 

 Small Laplacian (SL) filter 

 no (NO) filter 

Temporal filter (TF): 8-30 Hz bandpass filter (YES) 

no (NO) filtering 

Feature Normalization (FN): Linear Feature Normalization (LFN) 

Gaussian Feature Normalization (GFN) 

No (NO) Normalization 

Feature Vector Normalization 

(FVN): 

Unit-norm Feature Vector Normalization 

(UFVN) 

Classification: SVM, ANN 

 

 

The validation and the evaluation procedure is same with the procedure followed 

for the precomputed PSD features.  

 

For CSP based SVM classification, there are three parameters to be optimized. 

First one is the u coefficient of the RBF kernel, second one is the regularization 

parameter C, and the third one is A which is the number of eigenvectors used to 

construct the CSP filter ©. In order to optimize these parameters, randomly 

selected 75% of the training data is used to construct a classifier and the 

remaining 25% is used to validate the performance of the model for the given the 

u - C -  A combination. While dividing the training data into partitions, uniform 

distribution of the features for different classes is considered.  

 

For CSP based NN classification, there are two parameters to be optimized. First 

one is the number of hidden nodes, nHidden, and the second one is A. These 

parameters are optimized in the same way with the CSP based SVM 

classification.   
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The final classification model is constructed with the parameters giving maximum 

validation accuracy value using whole training data. Then, the performance of the 

model is evaluated on the evaluation data. The evaluation results with SVM for 

different filtering and normalization techniques are given in Table 4-10 and the 

evaluation results with ANN for different filtering and normalization techniques 

are given in Table 4-11.  

 

 
Table 4-10 : Evaluation results with SVM for different filtering and normalization 
techniques  

TF: YES YES YES YES NO NO NO NO 

Subject: 1 2 3 Avg. 1 2 3 Avg. 

SF FN FVN         

CAR GFN NO 77,92 61,89 51,15 63,66 56,26 54,32 43,19 51,26 

CAR GFN UFVN 78,77 58,95 50,94 62,89 54,56 49,68 41,51 48,59 

CAR LFN NO 78,13 63,79 55,14 65,69 57,32 55,37 42,35 51,68 

CAR LFN UFVN 77,92 63,58 54,93 65,47 54,14 50,32 39,20 47,89 

CAR NO NO 78,34 63,16 52,20 64,57 56,69 53,26 41,93 50,63 

CAR NO UFVN 76,01 58,74 52,20 62,32 52,87 51,79 38,16 47,60 

LL GFN NO 60,30 50,95 48,85 53,36 40,76 45,47 40,04 42,09 

LL GFN UFVN 66,24 50,95 47,80 55,00 41,19 44,84 41,93 42,65 

LL LFN NO 63,06 49,68 48,43 53,72 40,55 43,79 39,41 41,25 

LL LFN UFVN 62,00 51,58 48,22 53,93 43,74 42,11 42,77 42,87 

LL NO NO 65,39 52,21 47,38 54,99 44,37 44,21 40,67 43,09 

LL NO UFVN 66,88 52,84 45,28 55,00 43,31 44,63 44,03 43,99 

NO GFN NO 67,94 56,84 49,06 57,95 40,55 45,68 38,36 41,53 

NO GFN UFVN 66,03 56,42 46,75 56,40 48,20 47,58 41,09 45,62 

NO LFN NO 72,40 56,21 49,48 59,36 42,89 46,74 39,62 43,08 

NO LFN UFVN 71,76 56,42 50,94 59,71 47,56 46,53 41,30 45,13 

NO NO NO 71,34 56,84 47,38 58,52 44,59 46,32 39,62 43,51 

NO NO UFVN 70,91 57,89 49,48 59,43 48,41 45,68 40,25 44,78 

SL GFN NO 58,81 54,95 49,48 54,41 40,13 50,32 39,20 43,22 

SL GFN UFVN 61,78 55,58 46,96 54,77 45,86 46,74 43,40 45,33 

SL LFN NO 61,36 54,53 50,10 55,33 40,55 46,74 43,40 43,56 

SL LFN UFVN 62,85 54,74 50,73 56,11 48,41 46,11 44,03 46,18 

SL NO NO 66,67 53,26 48,64 56,19 40,34 47,16 46,75 44,75 

SL NO UFVN 66,03 54,53 49,48 56,68 45,86 45,89 36,27 42,67 
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Table 4-11 : Evaluation results with ANN for different filtering and normalization 
techniques 

TF: YES YES YES YES NO NO NO NO 

Subject: 1 2 3 Avg. 1 2 3 Avg. 

SF FN FVN         

CAR GFN NO 81,10 66,32 58,07 68,50 60,30 55,79 48,01 54,70 

CAR GFN UFVN 80,68 65,47 60,17 68,77 56,69 54,95 52,20 54,61 

CAR LFN NO 81,10 63,37 59,96 68,14 64,33 54,11 50,73 56,39 

CAR LFN UFVN 81,95 65,68 59,33 68,99 54,14 54,53 47,59 52,09 

CAR NO NO 83,44 69,68 59,75 70,96 50,96 47,58 48,64 49,06 

CAR NO UFVN 81,10 63,79 57,65 67,52 48,62 45,68 48,01 47,44 

LL GFN NO 69,64 54,95 48,43 57,67 45,44 47,58 48,22 47,08 

LL GFN UFVN 68,79 53,05 48,43 56,76 49,26 45,05 44,86 46,39 

LL LFN NO 70,91 55,79 50,10 58,94 46,07 48,00 49,69 47,92 

LL LFN UFVN 71,97 55,16 49,90 59,01 46,28 44,42 47,17 45,96 

LL NO NO 71,76 53,05 51,36 58,73 48,41 41,26 47,38 45,68 

LL NO UFVN 71,13 57,05 50,73 59,64 44,80 48,84 44,03 45,89 

NO GFN NO 78,56 61,05 51,36 63,66 51,80 50,32 45,91 49,34 

NO GFN UFVN 77,28 60,42 51,15 62,95 50,32 49,89 46,54 48,92 

NO LFN NO 81,53 59,16 50,52 63,74 56,26 52,42 44,03 50,90 

NO LFN UFVN 80,04 59,37 51,15 63,52 47,77 49,47 42,77 46,67 

NO NO NO 80,47 62,53 53,04 65,34 49,68 50,53 42,77 47,66 

NO NO UFVN 80,89 59,37 51,57 63,94 40,34 47,58 45,70 44,54 

SL GFN NO 69,64 58,11 53,46 60,40 48,41 55,79 45,28 49,83 

SL GFN UFVN 68,79 59,58 53,88 60,75 49,47 53,05 44,65 49,06 

SL LFN NO 74,10 59,16 51,57 61,61 46,07 54,95 41,51 47,51 

SL LFN UFVN 73,89 60,00 52,83 62,24 47,77 51,79 43,61 47,72 

SL NO NO 73,25 60,00 54,51 62,59 44,16 53,26 40,04 45,82 

SL NO UFVN 74,52 60,63 50,52 61,89 40,34 53,89 41,30 45,18 

 

 

It is obvious in the evaluation results that the temporal filtering increases the 

classification accuracy as expected. Among the spatial filtering techniques, CAR, 

also increases the accuracy both for SVM and ANN classifiers. However, the 

normalization techniques does not affect the accuracy as much as the filtering 

techniques. The best results are obtained using band-pass filter and CAR filter for 

both SVM and ANN classifiers.  
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4.1.4 Conclusion 

The maximum accuracy values obtained in this experiment are given with the 

summary of the methods attended the competition in Table 4-12.    

 

Table 4-12 : The results of BCI competition III 

group Avg. 
Subject 

Method 
1 2 3 

METU BCI 70.96 83.44 69.68 59.75 CSP+NN 

1 68.65 79.60 70.31 56.02 PSD + Distance Based Discriminator 
2 68.50 78.08 71.66 55.73 PSD + Feature selection, SVM 
Cheng & 

Ming [45] 
68.35 78.31 70.27 56.46 

PSD + PCA + improved particle swarm 
optimization-NN 

3 65.90 77.85 66.36 53.44 PSD + Radial Basis Network, SVM 
METU BCI 65.69 78.13 63.79 55.14 CSP+SVM 

4 65.67 76.03 69.36 51.61 PSD + Fisher’s Discriminant Analysis 

5 64.91 78.08 63.83 52.75 
PSD + Regularized Discriminant 
Analysis 

6 64.60 81.05 73.04 39.68 PSD + Minimum Mahalanobis Distance 
METU BCI 64.58 77.40 60.83 55.50 PCA+PSD+NN 
METU BCI 64.19 79.68 61.06 51.83 PCA+PSD+SVM 

7 64.04 76.06 64.83 51.18 
PSD + SVM, CART Decision Tree, 
LVQ, Naive Bayes 

8 63.91 77.40 63.83 50.46 PSD + NN, Linear Discriminant Analysis 
 

CSP features give better results for both SVM and ANN classifications. The best 

result is obtained with classification of CSP features with ANN. However the 

SVM results for CSP features are also comparable with the other results in the 

competition. Furthermore, the training and testing duration of SVM is observed to 

be 4-5 times shorter than ANN. This makes SVM preferable in online 

applications considering short response time.   
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4.2 Experiments on BCI Competition IV: Dataset IIa 

In this section the experiments performed on the dataset provided by Graz 

University of Technology for BCI Competition IV [62] is presented. The dataset 

contains EEG of four different mental tasks which are  

 

1. Imagination of  left hand movements, 

2. Imagination of right hand movements, 

3. Imagination of feet movements, 

4. Imagination of tongue movements. 

 

4.2.1 Explanation of the Experiment 

9 subjects sitting in a comfortable armchair attended two sessions on different 

days. Each session consists of 6 runs separated by short breaks. In each run, the 

mental tasks were performed 12 times in random order. Therefore, one session 

contains 288 trials (6 runs x 4 tasks x 12 repetitions). The timing scheme of a 

single trial is explained below and illustrated in Figure 4-4 [69].  

 

t = 0 s : The subject is warned with an acoustic sound 

t = 0-2 s : A fixation cross is presented to the subject  

t = 2-3.25 s : A cue related to the task to be performed is presented.  

t = 3.25-6 s : The fixation cross is presented.   

t = 6-7.5 s : Break before the next trial. The screen is black.  
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Figure 4-4 : The timing scheme for a single trial of the experiment [69].   
 

 

The EEG data was recorded using 22 electrodes located at the positions shown in 

Figure 4-5. The sampling rate was 250 Hz and the EEG signal was band-pass 

filtered at 0.5-100 Hz. Also a 50 Hz notch filter was used to suppress the line 

noise [69].  

 

 
Figure 4-5 : Electrode configuration used in the experiment [69].   



 

4.2.2 Explanation of the Data

Among the provided two sessions the first session is used as training data and the 

second one is used as evaluation data.

features for training and evaluation data is shown 

 

 

Figure 4-6 : The time segments used in feature extraction for training and evaluation data
(adapted from [69]). 
 

 

CSP features extracted from the 2s

trial of the training data

evaluation features are extracted using the sliding 2s windows 

t=6s in each trial of the 

produces an output between 

by 10 samples in the 

per second. This timing scheme is also preferred

competition [70].     
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Explanation of the Data 

Among the provided two sessions the first session is used as training data and the 

second one is used as evaluation data. The time segments used to extract CSP 

features for training and evaluation data is shown in Figure 4-6.   

The time segments used in feature extraction for training and evaluation data

extracted from the 2s window between t=2.5s and 

training data are used to construct SVM classification model.

evaluation features are extracted using the sliding 2s windows between 

s in each trial of the evaluation data.  Therefore, the classification model 

produces an output between t=3s and t=6s with a delay of 2s. The windows slide 

in the evaluation data. By this way, an output is generated 25 times 

per second. This timing scheme is also preferred by the winner algorithm of the 

  

Among the provided two sessions the first session is used as training data and the 

egments used to extract CSP 

 

 
The time segments used in feature extraction for training and evaluation data 

and t=4.5s in each 

are used to construct SVM classification model. The 

between t=1s and 

Therefore, the classification model 

The windows slide 

an output is generated 25 times 

by the winner algorithm of the 
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4.2.2.1 Results 

Validation Results 

The validation and the evaluation procedure is same with the procedure followed 

in the experiments on BCI Competition III dataset V (section 4.1).  The sets of 

parameters used in the validation process are given below. 

 

u : {2-10, 2-8, … , 22}  

C : {2-1, 23, 27} (4-2) 

A : {2,4,…,10}  

 

An example validation accuracy table is given in Table 4-13. In the table, 

validation kappa values for different u - C -  A combinations are given for subject 

A09 with CAR spatial filtering, 6-8Hz band-pass filtering, linear feature 

normalization and no feature vector normalization. As it is seen in the table, there 

exists 3 different maximum values for the validation kappa value. The values are 

marked with boxes. In such cases, the combination with the minimum parameter  

values is selected considering the computational performance in the classification 

stage.   
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Table 4-13 : Validation kappa values for subject A01 with different � - C -  � combinations. 
(spatial filtering: CAR, temporal filtering: 6-8Hz band-pass, feature normalization: linear,  
feature vector normalization: No) 
 log(γ): -10 -8 -6 -4 -2 0 2 

 
log(C) 

       

2 

-1 0,63 0,63 0,74 0,80 0,83 0,81 0,81 

3 0,74 0,80 0,83 0,85 0,87 0,85 0,80 

7 0,83 0,85 0,87 0,81 0,81 0,83 0,80 

 
 

       

4 

-1 0,54 0,54 0,63 0,70 0,76 0,78 0,39 

3 0,63 0,72 0,81 0,81 0,81 0,83 0,80 

7 0,81 0,80 0,81 0,74 0,78 0,83 0,80 

 
 

       

6 

-1 0,65 0,65 0,72 0,78 0,80 0,80 0,54 

3 0,72 0,80 0,85 0,81 0,81 0,81 0,65 

7 0,87 0,81 0,83 0,83 0,80 0,81 0,65 

 
 

       

8 

-1 0,50 0,52 0,63 0,67 0,74 0,78 0,19 

3 0,63 0,72 0,83 0,74 0,81 0,80 0,57 

7 0,83 0,74 0,70 0,70 0,81 0,80 0,57 

 
 

       

10 

-1 0,61 0,65 0,74 0,78 0,78 0,70 0,39 

3 0,74 0,78 0,83 0,76 0,76 0,78 0,59 

7 0,83 0,74 0,76 0,78 0,76 0,78 0,59 

 
 

Overall Evaluation Results 

After optimizing the parameters using validation kappa values in the training set; 

the methodology is evaluated using the test set. The methodologies used in the 

experiment are given in Table 4-14. 
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Table 4-14 : The signal processing techniques used to classify the CSP features extracted 
from the BCI Competition IV data   
Spatial filter (SF): Common Average Reference (CAR) filter 

 no (NO) filter 

Temporal filter (TF): 8-30 Hz bandpass filter (YES) 

no (NO) filtering 

Feature Normalization (FN): Linear Feature Normalization (LFN) 

Gaussian Feature Normalization (GFN) 

No (NO) Normalization 

Feature Vector Normalization 

(FVN): 

Unit-norm Feature Vector Normalization 

(UFVN) 

Classification: SVM 

 
 

For evaluation Cohen’s kappa coefficient is used as desired in the competition.  In 

Table 4-15, the kappa coefficient values are given for each subject under different 

filtering, and normalization conditions. 

 

The temporal filtering operation increases the kappa coefficient as it is seen in 

Table 4-15. The spatial filtering method CAR also increases the performance 

slightly. If the normalization techniques are considered, only one linear 

normalization seems to be sufficient. This may be either UFVN or LFN.  

 

Under UFVN and CAR conditions, the kappa coefficient value for subject A05 is 

0.15 while it is 0.59 for the subject A09. This shows the subject dependency of 

the BCI procedures. 
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Table 4-15 : The kappa coefficient values for different subject, filtering, and normalization 
types.   

SF TF FVN FN A01 A02 A03 A04 A05 A06 A07 A08 A09 AVG 

CAR NO NO GFN 0,39 0,14 0,48 0,16 0,00 0,12 0,02 0,46 0,35 0,24 

CAR NO NO LFN 0,43 0,20 0,50 0,20 0,07 0,14 0,28 0,50 0,45 0,31 

CAR NO NO NO 0,43 0,20 0,51 0,18 0,01 0,15 0,29 0,51 0,52 0,31 

CAR NO UFVN GFN 0,27 0,00 0,09 0,00 0,00 0,03 0,00 0,28 0,05 0,08 

CAR NO UFVN LFN 0,42 0,18 0,51 0,16 0,01 0,18 0,30 0,53 0,52 0,31 

CAR NO UFVN NO 0,43 0,20 0,53 0,20 0,08 0,15 0,28 0,53 0,51 0,32 

CAR YES NO GFN 0,45 0,17 0,48 0,34 0,07 0,17 0,41 0,48 0,50 0,34 

CAR YES NO LFN 0,56 0,25 0,57 0,41 0,18 0,22 0,44 0,54 0,58 0,42 

CAR YES NO NO 0,56 0,26 0,55 0,40 0,15 0,22 0,44 0,54 0,59 0,41 

CAR YES UFVN GFN 0,01 0,01 0,01 0,00 0,00 0,02 0,11 0,14 0,26 0,06 

CAR YES UFVN LFN 0,56 0,24 0,57 0,35 0,14 0,21 0,52 0,52 0,57 0,41 

CAR YES UFVN NO 0,56 0,26 0,56 0,39 0,15 0,22 0,46 0,55 0,59 0,42 

NO NO NO GFN 0,39 0,10 0,47 0,19 0,02 0,12 0,28 0,44 0,50 0,28 

NO NO NO LFN 0,41 0,15 0,51 0,21 0,07 0,15 0,27 0,49 0,47 0,30 

NO NO NO NO 0,42 0,14 0,52 0,21 0,06 0,16 0,28 0,52 0,51 0,31 

NO NO UFVN GFN 0,33 0,07 0,36 0,13 0,00 0,08 0,23 0,35 0,39 0,21 

NO NO UFVN LFN 0,40 0,15 0,51 0,20 0,01 0,17 0,28 0,51 0,51 0,31 

NO NO UFVN NO 0,39 0,18 0,52 0,21 0,06 0,16 0,26 0,50 0,53 0,31 

NO YES NO GFN 0,44 0,14 0,47 0,30 0,10 0,23 0,46 0,54 0,47 0,35 

NO YES NO LFN 0,55 0,22 0,55 0,36 0,14 0,23 0,45 0,54 0,58 0,40 

NO YES NO NO 0,53 0,24 0,54 0,39 0,13 0,24 0,51 0,55 0,59 0,41 

NO YES UFVN GFN 0,41 0,08 0,37 0,20 0,04 0,18 0,32 0,53 0,48 0,29 

NO YES UFVN LFN 0,53 0,15 0,56 0,32 0,13 0,22 0,49 0,54 0,53 0,38 

NO YES UFVN NO 0,54 0,22 0,56 0,37 0,12 0,23 0,54 0,54 0,61 0,41 

 

 

4.2.3 Conclusion 

The maximum kappa value obtained in this experiment is given with results of the 

other research groups attended the competition in Table 4-16. The average of the 

kappa values obtained for each subject is comparable with the other results. The 

maximum kappa value is obtained for subject A09. This kappa value is almost 

equal to the best two results in the competition.    
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Table 4-16 : The results of BCI competition IV 

group Avg. 
Subject 

A01 A02 A03 A04 A05 A06 A07 A08 A09 

1 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 

2 0.52 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 

METU BCI 0,42 0,56 0,25 0,57 0,41 0,18 0,22 0,44 0,54 0,58 

3 0.31 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 

4 0.30 0.46 0.25 0.65 0.31 0.12 0.07 0.00 0.46 0.42 

5 0.29 0.41 0.17 0.39 0.25 0.06 0.16 0.34 0.45 0.37 

 

4.3 METU Brain Research Laboratory BCI Experiments 

Depending on the experiments performed on BCI competition III dataset V and 

BCI competition IV dataset IIa, CSP based SVM classification found suitable to 

be used in BCI studies due to accuracy and performance considerations. 

Therefore, it has been the main classification algorithm used in Brain Research 

Laboratory BCI experiments. These experiments can be grouped into to as offline 

and online experiments. In the offline experiments it is aimed to find suitable 

number and type of tasks to control a motor imagery based BCI. Then, the 

application developed depending on the offline experiment results is tested in the 

online experiment. 

4.3.1 Offline Experiments 

In the offline experiments conducted in METU Brain Research Laboratories, it is 

aimed to determine the number and types of motor imagery tasks for a specific 

subject (subject A) to control a BCI. For that reason five different motor imagery 

tasks are studied. These tasks are;   

 

1. Imagination of tongue movements, 

2. Imagination of  left hand movements, 

3. Imagination of right hand movements, 

4. Imagination of left foot movements,  

5. Imagination of right foot movements. 
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4.3.1.1 Explanation of the Experiment 

The subject A, a 27 year old male, attended 5 runs separated by short breaks on 

the same day. One run consists of 60 trials (12 for each of the five possible 

classes), yielding a total of 300 trials. 

 

In the experiments, the subject A was sitting relaxed in an ordinary armchair in 

front of a computer screen. The timing scheme of the trials is the same with the 

BCI Competition IV dataset 2a (see section 4.2.1). The same paradigm is 

extended to five classes. The images representing each class and the fixation cross 

used in the trials are given in Figure 4-7. 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4-7 : The images representing (a) tongue, (b) left hand, (c) right hand, (d) left foot, (e) 
right foot movement imagination and (f) the fixation cross used in the trials.  
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The data acquisition is performed by 10-channel EEG developed for BCI studies 

in METU Brain Research Laboratory. The electrodes are placed on the skull with 

a standard EEG cap by applying conductive gel in order to decrease the contact 

impedance. The montage of the electrodes is given in Figure 4-8 according to the 

10-20 electrode system. 

 

 
Figure 4-8 : Electrode configuration used in the experiment.  
 

 

All signals were recorded monopolarly with the mastoids serving as reference. 

The signals were band-pass filtered between 0.1Hz and 40 Hz via the analog 

hardware. Also, an additional 50Hz analog notch filter was enabled to suppress 

the line noise. Then, the signals were sampled at 1000Hz with an amplification 

factor of 10000 [71].  

   

4.3.1.2 Evaluation of the Data 

5-fold cross validation is utilized to evaluate the performance in classifying 

different motor imagery tasks. For that purpose, each run has served as the test 

data for evaluating the classifier constructed with the remaining runs. The overall 

performance is calculated taking the average of 5 performance results. The 
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classification accuracy, Cohen’s kappa coefficient, and Nykopp’s information 

transfer are used as performance measures in the experiments are. However; 

Nykopp’s information transfer have been more significant while selecting the 

suitable number and types of task for an motor imagery based BCI application.   

      

4.3.1.3 Results 

In order to optimize the parameters u, C, and A in CSP based SVM classification, 

randomly selected 75% of the training data is used to construct a classifier and the 

remaining 25% is used to validate the performance of the model for the given the 

u - C -  A combination. While dividing the training data into partitions, uniform 

distribution of the features for different classes is considered. The final 

classification model is constructed with the parameters giving maximum 

validation kappa value using whole training data. Then, the performance of the 

model is evaluated on the evaluation data. The process is repeated 5 times for 5 

different evaluation data selections (i.e. for each of 5 runs). The average of the 

repetitions will be referred as 5-fold cross validation performance. In Table 4-17, 

the validation accuracy results; in Table 4-18 validation kappa coefficient results; 

in Table 4-19, validation information transfer results obtained for each validation 

process with different runs are given. In Table 4-20, Table 4-21, and Table 4-22 

the average (5-fold cross validation) accuracy, kappa and information transfer 

values for different motor imagery task combinations are given respectively. In 

the motor imagery task combinations, each task is represented with a number. 

These numbers and corresponding motor imagery tasks are given below. 

 

1: Imagination of tongue movements, 

2: Imagination of  left hand movements, 

3: Imagination of right hand movements, 

4: Imagination of left foot movements, 

5: Imagination of right foot movements. 
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Validation Results: 

 

 

Table 4-17 : Validation accuracy results obtained for each validation process with different 
runs. 
  
Run: 1 2 3 4 5 Average 

Tasks      
 

1  2  60,38 69,20 69,77 66,34 74,59 68,06 

1  3  63,15 71,00 72,63 78,51 76,14 72,29 

1  4  63,64 66,26 77,94 77,37 74,43 71,93 

1  5  64,13 75,49 75,11 67,73 78,35 72,16 

2  3  51,88 62,50 72,04 65,20 67,97 63,92 

2  4  53,84 68,06 46,81 45,34 54,41 53,69 

2  5  50,00 55,07 59,25 51,47 67,65 56,69 

3  4  51,39 59,48 69,22 62,91 60,87 60,77 

3  5  54,00 59,64 68,45 63,48 58,09 60,73 

4  5  60,62 64,54 53,54 54,25 64,62 59,51 

1  2  3  43,85 52,18 62,13 59,91 60,73 55,76 

1  2  4  38,13 58,12 46,02 46,30 56,26 48,97 

1  2  5  37,31 46,95 53,05 45,42 62,47 49,04 

1  3  4  48,09 52,56 60,28 61,87 56,37 55,84 

1  3  5  41,34 51,53 56,00 51,69 55,56 51,22 

1  4  5  36,76 53,16 48,35 50,65 51,36 48,06 

2  3  4  32,79 49,18 45,83 43,08 42,54 42,68 

2  3  5  33,61 38,02 45,21 48,64 44,28 41,95 

2  4  5  31,75 43,90 34,79 43,68 46,95 40,22 

3  4  5  41,67 49,56 39,16 41,72 40,09 42,44 

1  2  3  4  27,29 43,50 42,30 39,13 47,79 40,00 

1  2  3  5  32,84 41,59 43,27 44,69 42,57 40,99 

1  2  4  5  26,80 42,08 38,21 38,11 45,71 38,18 

1  3  4  5  31,74 45,71 39,73 44,04 40,69 40,38 

2  3  4  5  27,49 36,52 29,16 32,31 35,83 32,26 

1  2  3  4  5  21,73 35,49 34,38 37,75 38,63 33,60 

      
Average 43,32 53,51 53,18 52,37 55,57 51,59 
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Table 4-18 : Validation kappa coefficient results  obtained for each validation process with 
different runs 
Run: 1 2 3 4 5 Average 

Tasks 
      

1  2  0,21 0,38 0,40 0,33 0,49 0,36 

1  3  0,26 0,42 0,45 0,57 0,52 0,44 

1  4  0,27 0,33 0,56 0,55 0,49 0,44 

1  5  0,28 0,51 0,51 0,35 0,57 0,44 

2  3  0,04 0,25 0,44 0,30 0,36 0,28 

2  4  0,08 0,36 -0,06 -0,09 0,09 0,07 

2  5  0,00 0,10 0,16 0,03 0,35 0,13 

3  4  0,03 0,19 0,38 0,26 0,22 0,22 

3  5  0,08 0,19 0,37 0,27 0,16 0,21 

4  5  0,21 0,29 0,06 0,08 0,29 0,19 

1  2  3  0,16 0,28 0,43 0,40 0,41 0,34 

1  2  4  0,07 0,37 0,19 0,19 0,34 0,23 

1  2  5  0,06 0,20 0,29 0,18 0,44 0,23 

1  3  4  0,22 0,29 0,40 0,43 0,35 0,34 

1  3  5  0,12 0,27 0,34 0,28 0,33 0,27 

1  4  5  0,05 0,30 0,23 0,26 0,27 0,22 

2  3  4  -0,01 0,24 0,19 0,15 0,14 0,14 

2  3  5  0,00 0,07 0,18 0,23 0,16 0,13 

2  4  5  -0,02 0,16 0,02 0,16 0,20 0,10 

3  4  5  0,13 0,24 0,08 0,13 0,10 0,13 

1  2  3  4  0,03 0,25 0,23 0,19 0,30 0,20 

1  2  3  5  0,10 0,22 0,24 0,26 0,23 0,21 

1  2  4  5  0,02 0,23 0,18 0,17 0,28 0,18 

1  3  4  5  0,09 0,28 0,20 0,25 0,21 0,21 

2  3  4  5  0,03 0,15 0,05 0,10 0,14 0,10 

1  2  3  4  5  0,02 0,19 0,18 0,22 0,23 0,17 

      
Average 0,10 0,26 0,26 0,24 0,30 0,23 
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Table 4-19:  Validation information transfer results obtained for each validation process 
with different runs 
Run: 1 2 3 4 5 Average 

Tasks 
      

1  2  0,03 0,11 0,46 0,09 0,20 0,18 

1  3  0,06 0,13 0,45 0,26 0,21 0,22 

1  4  0,06 0,09 0,29 0,27 0,22 0,18 

1  5  0,16 0,20 0,20 0,09 0,25 0,18 

2  3  0,01 0,05 0,16 0,07 0,10 0,08 

2  4  0,02 0,11 0,05 0,07 0,01 0,05 

2  5  0,02 0,02 0,03 0,00 0,09 0,03 

3  4  0,02 0,03 0,11 0,05 0,03 0,05 

3  5  0,01 0,03 0,10 0,07 0,02 0,05 

4  5  0,03 0,07 0,01 0,01 0,06 0,04 

1  2  3  0,06 0,15 0,26 0,26 0,26 0,20 

1  2  4  0,03 0,21 0,77 0,22 0,33 0,31 

1  2  5  0,10 0,12 0,21 0,14 0,28 0,17 

1  3  4  0,09 0,18 0,26 0,31 0,19 0,21 

1  3  5  0,06 0,45 0,19 0,32 0,28 0,26 

1  4  5  0,04 0,16 0,20 0,24 0,50 0,23 

2  3  4  0,09 0,14 0,16 0,10 0,11 0,12 

2  3  5  0,08 0,02 0,09 0,14 0,08 0,08 

2  4  5  0,07 0,11 0,03 0,05 0,12 0,08 

3  4  5  0,07 0,11 0,04 0,05 0,03 0,06 

1  2  3  4  0,07 0,29 0,22 0,39 0,25 0,24 

1  2  3  5  0,13 0,21 0,22 0,25 0,23 0,21 

1  2  4  5  0,07 0,16 0,18 0,36 0,65 0,28 

1  3  4  5  0,11 0,24 0,17 0,53 0,40 0,29 

2  3  4  5  0,08 0,08 0,14 0,09 0,12 0,10 

1  2  3  4  5  0,12 0,35 0,23 0,52 0,26 0,30 

      
0,06 0,15 0,20 0,19 0,20 0,16 
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Overall Evaluation Results: 

 

Table 4-20 : Average (5-fold cross validation) classification accuracies for different motor 
imagery task combinations  

 
CAR CAR NO NO 

 
LFN UFVN LFN UFVN 

1  2 63,42 64,54 68,92 68,06 

1  3 68,11 66,33 70,75 72,29 

1  4 69,33 68,32 71,03 71,93 

1  5 69,77 70,29 71,47 72,16 

2  3 61,76 62,73 62,35 63,92 

2  4 58,12 59,38 54,00 53,69 

2  5 59,48 58,66 57,00 56,69 

3  4 62,48 62,60 62,99 60,77 

3  5 59,18 61,17 59,35 60,73 

4  5 57,21 56,66 59,09 59,51 

1  2  3 52,87 52,55 54,23 55,76 

1  2  4 46,68 46,46 48,80 48,97 

1  2  5 48,99 50,25 50,26 49,04 

1  3  4 50,32 52,00 54,86 55,84 

1  3  5 51,41 51,48 52,79 51,22 

1  4  5 47,17 49,96 49,82 48,06 

2  3  4 43,17 44,70 40,83 42,68 

2  3  5 43,46 44,09 43,49 41,95 

2  4  5 39,21 39,96 38,47 40,22 

3  4  5 43,17 42,48 41,28 42,44 

1  2  3  4 40,03 40,36 40,10 40,00 

1  2  3  5 40,70 41,83 39,01 40,99 

1  2  4  5 36,48 37,16 37,26 38,18 

1  3  4  5 39,69 40,60 40,10 40,38 

2  3  4  5 33,13 33,06 30,87 32,26 

1  2  3  4  5 32,41 33,06 31,30 33,60 

     
Average: 50,68 51,18 51,17 51,59 
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Table 4-21 : Average (5-fold cross validation) kappa values for different motor imagery task 
combinations  
 CAR CAR NO NO 

 
LFN UFVN LFN UFVN 

1  2 0,27 0,29 0,38 0,36 

1  3 0,36 0,32 0,42 0,44 

1  4 0,39 0,37 0,42 0,44 

1  5 0,39 0,41 0,43 0,44 

2  3 0,24 0,26 0,25 0,28 

2  4 0,16 0,19 0,08 0,07 

2  5 0,19 0,17 0,14 0,13 

3  4 0,25 0,25 0,26 0,22 

3  5 0,18 0,22 0,19 0,21 

4  5 0,14 0,13 0,18 0,19 

1  2  3 0,29 0,29 0,31 0,34 

1  2  4 0,20 0,20 0,23 0,23 

1  2  5 0,23 0,25 0,25 0,23 

1  3  4 0,25 0,28 0,32 0,34 

1  3  5 0,27 0,27 0,29 0,27 

1  4  5 0,21 0,25 0,25 0,22 

2  3  4 0,15 0,17 0,11 0,14 

2  3  5 0,15 0,16 0,15 0,13 

2  4  5 0,09 0,10 0,08 0,10 

3  4  5 0,15 0,14 0,12 0,13 

1  2  3  4 0,20 0,20 0,20 0,20 

1  2  3  5 0,21 0,22 0,19 0,21 

1  2  4  5 0,15 0,16 0,16 0,18 

1  3  4  5 0,20 0,21 0,20 0,21 

2  3  4  5 0,11 0,11 0,08 0,10 

1  2  3  4  5 0,16 0,16 0,14 0,17 

     
Average: 0,21 0,22 0,22 0,23 
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Table 4-22 : Average (5-fold cross validation) information transfer values for different 
motor imagery task combinations 

CAR CAR NO NO 

LFN UFVN LFN UFVN 

1  2  0,07 0,10 0,11 0,18 

1  3  0,10 0,12 0,14 0,22 

1  4  0,12 0,12 0,16 0,18 

1  5  0,14 0,15 0,15 0,18 

2  3  0,10 0,07 0,07 0,08 

2  4  0,05 0,05 0,07 0,05 

2  5  0,05 0,04 0,05 0,03 

3  4  0,05 0,05 0,05 0,05 

3  5  0,03 0,05 0,04 0,05 

4  5  0,02 0,03 0,03 0,04 

1  2  3  0,19 0,15 0,18 0,20 

1  2  4  0,11 0,15 0,17 0,31 

1  2  5  0,25 0,26 0,17 0,17 

1  3  4  0,17 0,18 0,20 0,21 

1  3  5  0,20 0,20 0,23 0,26 

1  4  5  0,14 0,16 0,16 0,23 

2  3  4  0,07 0,08 0,10 0,12 

2  3  5  0,09 0,15 0,12 0,08 

2  4  5  0,08 0,09 0,08 0,08 

3  4  5  0,06 0,07 0,06 0,06 

1  2  3  4  0,17 0,16 0,19 0,24 

1  2  3  5  0,20 0,22 0,26 0,21 

1  2  4  5  0,17 0,17 0,19 0,28 

1  3  4  5  0,18 0,24 0,24 0,29 

2  3  4  5  0,10 0,12 0,09 0,10 

1  2  3  4  5  0,19 0,31 0,31 0,30 

Average: 0,12 0,13 0,14 0,16 
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If the average of the accuracy, kappa and information transfer values for different 

motor imagery task combinations are analyzed in Table 4-20, Table 4-21, Table 

4-22; it is seen that the maximum average values are obtained for no spatial 

filtering and unit-norm feature vector normalization. CAR filtering did not 

contribute the results as in the experiments on BCI III and IV competition dataset. 

The improvement that CAR filtering provided the results was biggest in the BCI 

Competition III experiments. It also provided a slight improvement in the BCI 

Competition IV experiments. However the results are better without using a CAR 

filter in this experiment. This may be due to the number of electrodes used in the 

calculation of the CAR filter. It was 32 in BCI Competition III experiments, 22 in 

BCI Competition IV experiments and 8 in this experiment. The common average 

calculated using more number of electrodes gives a more reliable reference. 

 

It is observed in Table 4-20 and Table 4-21 that the average kappa and accuracy 

values decrease while the number of tasks are increasing as expected. However 

the case may be different for information transfer. With no spatial filtering and 

UFVN, which is the best considering the average evaluation criteria values, the 

information transfer is maximum for the tasks 1, 2, and 4 which are tongue, left 

hand, right hand movement imaginations respectively. Therefore these tasks have 

been studied in the online experiments. 
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4.3.2 Online Experiments 

In these experiments a BCI that assist the paralyzed people for controlling  

environmental devices is designed and a test application for the design is realized.  

The aim of the design is to basically make it possible for a subject to select items 

from a menu by the help of motor imagery tasks. 

 

There are several BCI based icon selection applications in the literature. An 

overview of these applications is given in section 2.4. In this study, a menu of 

icons is designed in the form of a tree with 2 levels. In the first level, device 

selection is performed and in the second level the command related to the device 

is selected. The elements in the first level and the related commands for these 

elements are summarized in Table 4-23. The first and second levels of the menu 

are shown in Figure 4-9 and Figure 4-10 respectively. 

 

Table 4-23 : The elements and commands for the menu designed. 
Level 1: Bed TV WC Clima Light 

Level 2: -Up -Channel Up  -Temperature Up -Light On 

 -Down -Channel Down  -Temperature Down -Light Off 

  -Volume up    

  -Volume down    

 

For each element in the menu, there exists icons representing different motor 

imagery tasks at the upper left corner of each element. For each element there are 

two tasks to be performed consecutively. The reason of using multiple tasks is to 

increase the number of possible selections. The timing of the tasks is 

synchronized by the icon at the center of upper half of the windows. The motor 

imagery tasks are performed when this icon is shown. The type and number of 

tasks are selected according to the offline experiments performed with subject A.  
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Figure 4-9 : The first level of the menu. The elements are selected by performing the tasks 
symbolized with small icons at the top left corner of each element.   
 
 
 

  

(a) (b) 

  

(c) (d) 

Figure 4-10 The second level of the menu. The commands for (a) motorized bed, (b) TV, (c) 
air conditioner, (d) light bulb are selected by performing the tasks symbolized with small 
icons at the top left corner of each element.  
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To test the interface designed, an application is implemented in Visual Studio 

.NET 2008 using C# language. The application is integrated with the 10-channel 

EEG data acquisition system developed for BCI studies in METU Brain Research 

Laboratory [71] for online experiments. In the experiments, the first level of the 

design given above is tested. For that purpose, randomly selected one of the five 

elements in the first level of the menu is presented to the subject at the beginning 

of each trial. The subject perceives the icons representing the tasks to select the 

element. Then the element disappears and synchronization icon appears after a 

short time. The subject performs the imagery task during the synchronization icon 

is visible. After the imagination, the synchronization icon disappears and the same 

element appears in order to remind the second task to be performed to select the 

element. Then the synchronization icon is presented again for the imagination of 

second task. The time scheme for a single trial is illustrated in Figure 4-12.   

 

In the application,  three motor imagery tasks have been used to make selection 

among 5 icons shown in Figure 4-11. These tasks are selected to be imagination 

of tongue movements, imagination of left hand movements, and imagination of 

left foot movements since that combination has provided the best transfer rate in 

the offline experiments with subject A. The classification model constructed for 

these tasks in the offline experiments have been used in the online experiments. 

 

The experiment is comprised of 4 runs separated by short breaks. In a single run, 

each element in Figure 4-11 is presented 4 times in random order. This yields a 

total of 20 trials per run. The success of the subject to perform the task couple to 

select the element in the trial is shown in the lower left corner of the interface for 

each task separately.  
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Figure 4-11 : The interface of the test application implemented. The EEG dataflow is 
checked before and after each run from the window in upper right corner. 
 

The imagination period in each trial can be repeated to increase the classification 

accuracy. In this experiment 1 and 2 repetitions are tested. More repetitions are 

not tried since increasing time results in fatigue and concentration loss in the 

subject. The time scheme of a single trial for N repetitions is given in Figure 4-12.   

 

 



 

Figure 4-12 : The time scheme of a single trial for 
 
 
 
The results for the tasks related to the elements of the menu are recorded 

separately and given in 
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The time scheme of a single trial for N repetitions. 

The results for the tasks related to the elements of the menu are recorded 

separately and given in Table 4-24.  

 

The results for the tasks related to the elements of the menu are recorded 
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Table 4-24 : The accuracy results of the online experiments. 

Run no Number of repetitions 
Accuracy 

Task 1 Task 2 

1 1 6/20 8/20 

2 1 9/20 6/20 

3 2 13/20 9/20 

4 2 7/20 11/20 

  

The random accuracy for selecting one of three tasks is 33.3%. In this experiment, 

this selection is performed with  maximum 65% accuracy in the 2-repetitions 

case. Although, this accuracy is low in terms of controlling a BCI perfectly, the 

value may increase with the training of the subject regularly.    
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CHAPTER 5 

 

 

CONCLUSION 

 
 
 
In this study, different motor imagery tasks are classified in EEG signal using 

several signal processing techniques. These techniques can be summarized as 

follows: 

 

• Signal enhancement: band-pass filtering, Small Laplacian (SL) filtering, 

Large Laplacian (SL) filtering and common average reference (CAR) 

filtering  

 

• Feature extraction: Common Spatial Pattern (CSP), Power Spectral 

Density (PSD), Principal Component Analysis (PCA) 

 
• Normalization: Linear Feature Normalization (LFN), Gaussian Feature 

Normalization (GFN), Unit-norm Feature Vector Normalization (UFVN)  

 
• Classification: Support Vector Machines (SVM), Artificial Neural 

Networks (ANN) 

 
• Evaluation: classification accuracy, Cohen’s kappa coefficient, Nykopp’s 

information transfer 

 

All these methodologies are experimented on the dataset provided for BCI 

Competition III. In the experiments it is observed that CSP features give better 

results than PSD for both SVM and ANN classifications. Therefore it is preferred 
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in the experiments on BCI Competition IV dataset and METU Brain Research 

Laboratory experiments. 

 

It is also observed that CAR filtering enhances the quality of the EEG signal 

compared to the no filtering, LL filtering, and SL filtering cases. However, the 

contribution of the CAR filtering to the classification accuracy decreased with the 

decreasing number of electrodes. The improvement that CAR filtering provided to 

the results was highest in the BCI Competition III experiments in which CAR is 

calculated using 32 electrodes.  It also provided a slight improvement in the BCI 

Competition IV dataset experiments in which 22 electrodes are used. However, 

the results were better without using a CAR filter in the experiments conducted in 

METU Brain Research Laboratories with 10 electrodes. The common average 

calculated using more number of electrodes gave a more reliable reference. 

 

Another observation in the experiments is the effect of temporal filtering. 

Filtering the EEG signal in the pass band 8-30Hz increased the classification 

accuracy in the experiments. This is expected since it is the frequency band 

related to the motor imagery.  

 

The best result is obtained with CSP-based  ANN in BCI competition III. An 

average accuracy of 70,96% is obtained among three subjects. This result is better 

than the winner of the competition. However the SVM results for CSP features 

were also comparable with the other results in the competition. Furthermore, the 

training and testing duration of SVM was observed to be 4-5 times shorter than 

ANN. This makes SVM preferable in the experiments and online applications  

considering short response time. The CSP-based SVM is also tested on the BCI 

Competition IV data which includes EEG of 4 different motor imagery tasks. 

According to the obtained results, CSP-based SVM has the 3rd rank among the 

participants of the competition with the average kappa value of 0.42 for all 

subjects.  
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After experimenting the methodologies on the data recorded from different 

subjects for BCI Competition III and IV, some experiments have also been 

conducted in the METU Brain research laboratory. In the offline part of these 

experiments, 5 different motor imagery tasks are studied with subject A. 

Depending on the information transfer calculated for different combinations of 

these tasks, tongue movement imagination, left hand movement imagination, left 

foot movement imagination tasks found suitable for subject A to control a motor 

imagery based BCI.  Considering this specific offline experiment, an interface is 

designed for subject A to control assistive environmental devices. Then, a test 

application is implemented and online performance of the design is evaluated. 

The subject A achieved to select one of the three tasks with a maximum accuracy 

of 65% in one of the runs. Although, this accuracy is low in terms of controlling a 

BCI perfectly, the value may increase with the training of the subject regularly.    

 

To summarize, the building blocks of a BCI system are studied step by step, 

focusing on a SMR-based environmental control system in the scope of the thesis.   

One of the major contributions of the thesis to the literature is the use of 

multiclass extension of CSP features together with a 3 layer feed-forward ANN to 

classify SMR. With employing CAR, and 8-30 Hz band-pass filter together with 

this classification approach, it is achieved to classify 3-class EEG data provided in 

BCI Competition III with an average accuracy of 70,96%. This result is 2,31% 

better than the winner of the competition. Another contribution is the SMR-based 

BCI design for controlling assistive environmental devices. In the early online 

experiments to evaluate the potential of the design, promising results are obtained.     
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