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ABSTRACT

CLASSIFICATION OF MOTOR IMAGERY TASKS IN
EEG SIGNAL AND ITS APPLICATION TO A BRAIN-
COMPUTER INTERFACE FOR CONTROLLING
ASSISTIVE ENVIRONMENTAL DEVICES

Acar, Erman
M.Sc., Department of Electrical and Electronics iBegring

Supervisor: Prof. Dr. Nevzat Guneri Genger

February 2011, 92 Pages

This study focuses on realization of a Brain Corapubterface (BCI) for the
paralyzed to control assistive environmental devideor this purpose, different
motor imagery tasks are classified using differsiginal processing methods.
Specifically, band-pass filtering, Laplacian fiitey, and common average
reference (CAR) filtering are used to enhance tleGEsignal. For feature
extraction; Common Spatial Pattern (CSP), PowerctsgeDensity (PSD), and
Principal Component Analysis (PCA) are tested. &mEeature Normalization
(LFN), Gaussian Feature Normalization (GFN), andtddarm Feature Vector
Normalization (UFVN) are studied in Support Vectdtachine (SVM) and
Artificial Neural Network (ANN) classification. lorder to evaluate and compare
the performance of the methodologies, classificatacuracy, Cohen’s kappa

coefficient, and Nykopp’s information transfer andized.



The first experiments on classifying motor imageagks are realized on the 3-
class dataset (V) provided for BCl Competition Wlso, a 4-class problem is
studied using the dataset (Ila) provided for BChpetition IV. Then, 5 different
tasks are studied in the METU Brain Research Ldbopyao find the optimum
number and type of tasks to control a motor imadersed BCI. Thereafter, an
interface is designed for the paralyzed to cordsslistive environmental devices.
Finally, a test application is implemented and malperformance of the design is
evaluated.

Keywords: Brain Computer Interface, BCI, Electroencephalpbya EEG,
Environmental Control, Motor Imagery, Event RelatB&synchronization -
Synchronization (ERD - ERS), Power Spectral DensiBommon Spatial
Patterns, Support Vector Machines, Artificial NdiNatworks.



Oz

EEG ISNYALLERINDEKI HAREKET DUSUNSEL
GOREVLERN SINIFLANDIRILMASI VE YARDIMCI
CEVRESEL GHAZLARI KONTROL ICIN BIR BEYIN

BILGISAYAR ARAYUZUNE UYGULANMASI

Acar, Erman
Yuksek Lisans, Elektrik-Elektronik MihendigliBolumu
Tez Yoneticisi: Prof. Dr. Nevzat Guneri Genger

Subat 2011, 92 Sayfa

Bu calgma felcli hastalarin yardimci ¢evresel cihazlamtkoll icin bir Beyin

Bilgisayar Araylzu gercekygrmeye odaklanmgtir. Bu amacla, farkli hareket
disinsel  gorevler, farkli saret kleme  yontemleri  kullanilarak
siniflandinimglardir. Ozellikle, EEG saretini iyilestirmek icin; bant geciren
suzgeg, Laplace slizge¢ ve Genel Ortalama Refer&d@®R) sizgeci
kullanilmistir. Oznitelik ¢ikartmak icin, Ortak Uzamsal Orur@UQO), Spektral
Gu¢ Yazunlugu (SGY), Ana Bilgenler Analizi (ABA) test edilngtir. Destek

Vektor Makinalart (DVM) ve Yapay Sinir @ar (YSA) ile siniflandirmada
Dogrusal Oznitelik Diizgeleme (DOD), Gauss OznitelikzBéleme (GOD) ve
Birim-diizge Oznitelik Vektori Diuzgeleme (BOVD) galmistir. Yontemlerin

basarimlarini  dlgmek ve kandastirmak icin siniflandirma dgwulugundan,

Cohen’in kappa katsayisindan ve Nykopp’un bilgeakhindan faydalanilrgtir.

Vi



Hareket dglnsel gorevlerin siniflandiriimasina yonelik ilk négler 3. BBA
Yarismasi i¢in sglanan 3-sinifli veri kiimesi (V) ile gercekteilmistir. Ayrica,
4. BBA Yarsmasi icin sglanan 4-sinifli veri kimesi (lla) de calmistir. Daha
sonra hareket guinsel bir BBA'y1 kontrol etmek icin en iyi gorevriiive ¢aidini
belirlemeye yonelik, ODTU Beyin Agarmalari Laboratuarinda 5 farkl gorev
calisilmistir. Sonra, felgli hastalarin yardimci ¢evreselaziari kontrol etmesi
icin bir araylz tasarlangtir. Son olarak, bu tasarimin ¢evrimici saamini

olcmeye yonelik bir test uygulamasi gercstitdmi stir.

Anahtar So6zcukler: Beyin Bilgisayar Arayuzl, BBA, Elektroensefalofyra
EEG, Cevresel KontrolEnvironmental, Hareket sDxicesi, Olay iliskili

Desenkronizasyon - SenkronizasyoniO- OIS), Spektral Gii¢ Yaunlugu,

Ortak Uzamsal Oriintii, Destek Vektor Makinalari, Sinir Aglari.
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CHAPTER 1

INTRODUCTION

Interaction with the outside world is one of theimeaxistence reasons of the
human being. However this interaction cannot béize by all the people. The
normal pathways to sense and express may be lodamaged due to some
accidents or diseases. For these people, alsal @dléocked-in, Brain Computer
Interfaces (BCls) play an important role in termwf providing alternative
pathways to interact with the outside world. Faattpurpose, researchers from
many fields have been working in this area to imprthe quality of life of these
people. The researches mainly focus on enhanciegaticuracy and speed of
these systems by improving the signal acquisitioonderstanding
neurophysiological activity of the brain and optzing the signal processing

techniques used in the system.

Several non-invasive and invasive signal acquisitechniques have been used in
BCl research. In non-invasive electroencephalograptEEG) and
magnetoencephalography (MEG), the electromagnetivity of the brain is
measured by the electrodes placed over the skuihviasive electrocorticograpy
(ECoG), single micro-electrode (ME), micro-eleceodrray (MEA), and local
field potentials (LFPs), the electrodes are plasedjically inside the skull to
measure the cortical activity. Functional Magnd@esonance Imaging (fMRI)
and Near Infrared Spectroscopy (NIRS), in whichioegl changes in cerebral

blood oxygenation levels are detected non-invagjvare also used in BCI



research [1], [2]. Among these techniques EEG é&fegpred in this study, due to
the hardware’s low cost, low risk and portabiliptso its temporal resolution is

sufficiently high for online BCI applications [3].

There are various neurophysiological mechanisms hhae been shown to be
useful for BCI applications. These mechanisms magither the response of the
brain to an event or the activity generated by ghbject independent from an
event. Among these mechanisms sensorimotor rhytf@MR), which are

generated during motor imagery, are studied is $hudy. In BCI applications,
SMR are converted to control signals that enabteraction with the outside
world. Since SMR do not require any visual or aamgitstimuli, they are widely

used in BCI applications [4].

In order to convert SMR to BCI control signals, el signal processing
techniques have been used in the literature. Tteetmiques can be analyzed in
three steps. First one is the signal enhancemept Bt that part the quality of
signal is improved by applying techniques likeeiilhg, down-sampling, etc.
Second step is feature extraction. In that pa#, rilevant information for the
application is obtained from the data. The finapss the classification in which a
mathematical model is constructed using the nomedlfeatures extracted in the
previous step. The constructed model is used tdyme control signals related to
the application. Specifically in this study, banaisp filtering, Laplacian filtering,
and common average reference (CAR) filtering aredu® enhance the EEG
signal. For feature extraction; Common Spatial éat{CSP), Power Spectral
Density (PSD), and Principal Component Analysis APGre tested. Linear
Feature Normalization (LFN), Gaussian Feature Nématon (GFN), and Unit-
norm Feature Vector Normalization (UFVN) are stddiem Support Vector
Machine (SVM) and Artificial Neural Network (ANN) lassification. The
performances of these methods are first evaluatéuki datasets provided for BCI
Competition Ill and IV. Then, different tasks haween studied in the METU



Brain Research Laboratory to find the optimum numéed type of tasks to

control a motor imagery based BCI.

In this study, a SMR based BCI that assist thelyeed people for controlling
environmental devices is designed and a test agjicfor the design is realized.
The aim of the design is basically make it possiblea subject to select items

from a menu by the help of motor imagery tasks.

The thesis starts with an introductory chapter gméng the BCI research in the
literature with the analysis of its building blockKEHAPTER 2). Then, in

CHAPTER 3, the signal processing techniques in BSearch will be analyzed
in detail focusing on the methods used in the st@YAPTER 4 provides the
results of the experiments conducted in this stédiyally, in CHAPTER 5, the

study is summarized and the conclusions on thdtsasiprovided.



CHAPTER 2

BRAIN COMPUTER INTERFACES

Brain Computer Interfaces (BCIs) are the systeras ¢bnvert brain signals into

control signals that are necessary to interact lith outside world. These

systems may be the only or preferred pathway for

“the patients with severe motor disabilities whatlowoluntary muscle
control,

the patients with Amyotrophic Lateral Sclerosis GLwho has to accept
artificial ventilation to prolong life as the dissaprogresses,

children and adults with severe cerebral palsy wbonot have useful
muscle control,

patients with brainstem strokes who have only malimye movement
control,

individuals with severe muscular dystrophies orgesral neuropathies,
people with acute disorders causing extensive ysigal(e.g., Landry-
Guillain- Barré syndrome),

patients with high cervical spinal cord injurie$§].|

Therefore, researchers from many fields have beerkimg in this topic to

improve the quality of life of these people.

Essential elements and operation of a typical B€lgaven in Figure 2-1. These

elements will be analyzed in detail, step by stapthis chapter. At first,

information about the signal acquisition techniqused in BCI applications will



be given. Then the activity of the brain will bealjized considering the role of
that activity in a possible BCI application. In tf@lowing section the signal
processing stage in a typical BCI will be explainedefly. Finally the BCI
applications in the literature will be reviewed.

Signal acquisition Signal Processing Device
EEG Commands

,_EQQE._«\LLJHH}mmnﬂmmnmmﬁmnm- aos-Seis ool

Single Unit Digitized Extraction
2ngte O i mim

Raw signal

Communication Environmental control

Movement control Locomotion

l Feeback

Figure 2-1 : The brain computer interface cyclg6].

2.1 Signal Acquisition

There are several non-invasive and invasive sigoquisition techniques used in
BCl research. In non-invasive electroencephalograptEEG) and

magnetoencephalography (MEG), the electromagnativitg of the brain is



measured by the electrodes placed over the skuihviasive electrocorticograpy
(ECoG), single micro-electrode (ME), micro-eleceodrray (MEA), and local
field potentials (LFPs), the electrodes are plasedjically inside the skull to
measure the cortical activity. Functional Magnd@esonance Imaging (fMRI)
and Near Infrared Spectroscopy (NIRS), in whichioegl changes in cerebral
blood oxygenation levels are detected non-invagjvare also used in BCI
research [1], [2]. A schematic overview of the silgacquisition techniques used

in BCl research is given in Figure 2-2.

=
o
|
1

- EES NIRS

E T MEG

“g" 14 ECoG fMRI

z

S -+ LFP

o

= MEA

s 1

g

1%5) T ME

.01 e B N B B m— —
.001 .01 ki 1 10
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Figure 2-2 : The spatial and temporal resolution sale of the signal acquisition techniques
used in the BCI study (EEG: electroencephalographyMEG: magnetoencephalography,
NIRS: near-infrared spectroscopy, fMRI: functional magnetic resonance imaging, ECoG:
electrocorticography, LFP: local field potential, MEA: micro-electrode array, ME:
microelectrode, blue color: non-invasive methodsred color: invasive methods)7].

A closer look inside EEG, ECoG, ME, MEA, LFPs an&®lwill be taken in the
following subsections, since they have sufficieemporal resolution for a real
time BCI.



2.1.1 Electroencephalography (EEG)

Electroencephalography (EEG) is the recording etteical activity within the
brain using the electrodes placed over the skiJI[. It is invented by Hans
Berger in 1929. The noisy and low amplitude sigoéthe order of 13 Volts) is
filtered and amplified considering the frequencyreltteristic of the signal to be
detected and noise (i.e. 50 Hz supply noise) teumpressed. Then, the signal is

recorded after being digitalized (Figure 2-3).

intendiX " ®

Figure 2-3 : A portable EEG system with a cap on wikh the electrodes are placed, a
biopotential amplifier, and a recording/monitoring device[10].

EEG has a temporal resolution sufficiently high émline applications. On the
other hand, its spatial resolution is low due te thurring effect of the head
tissue. Also, the measured EEG signal may contaifacts originating from the
movement of the electrodes, eye blink or muscutéivity. Furthermore, in most
of the EEG devices, the electrodes are placed @skhll by applying conductive

gel in order to decrease the contact impedances iBhalso a disadvantage in



terms of practical use. Even though, EEG is pretem most of the BCI studies
due to its low cost, low risk and portability [For a selection of EEG based BCI
studies, the reader may refer to [2, 10-12].

2.1.2 Magnetoencephalography (MEG)

Magnetoencephalography is a non-invasive techniguemeasuring the tiny
magnetic field fluctuations (about 10Tesla) induced by the populations of
cerebral neurons. Its temporal resolution is caaipa to that of EEG [3].

Since the MEG signals have low amplitude, the megsents must be performed
in a magnetically shielded room (Figure 2-4b) toieduhe signals being distorted.
Also, it usually requires a large cooling unit fits sensors. Therefore, MEG

systems are rather expensive and non-portabler@-iyda) [3].

(@) (b)

Figure 2-4 : (a) Patient undergoing an MEG. (b)Entrance to magnetically shielded MEG
room [17].



2.1.3 Other Signal Acquisition Technique:

There are also other signal acquisition techniquesd in theBCl research.
Among theseElectrocorticography (ECoC(Figure 2-5a)micrc-electrode (ME),
micro-electrode array (ME/ (Figure 2-5b), andbcal field potentials (LFP are
invasive signal acquisition techniques in which binain signals are measured
the help of electrodes placed surgically insidesthal. [7].

Figure 2-5: (a) ECoG electrodes over the corte[14]. (b) Cortical microelectrode array [15]

These techniqgueshave higher signal-tooise ratio and spatial resoluti
compared to EEG3]. Thereforethey play an important role in brain resea
including BCI[11, 12. However, they are not widespread due e risk in the

surgical operation performe



2.2 Neurophysiologic Signals

There are various neurophysiological mechanismshhae shown to be useful
for BCI applications. These mechanisms are categorintoevokedandinduced
responsesonsidering their dependency on a stimulus. Evgkaeéntials are the
response of the brain to an event. Therefore thelsgnization of the event and
the EEG signal is important for evoked responsesluded responses are

generated by the subject independent from an event.

2.2.1 Evoked Responses

Evoked responses widely used in BCI applicatioesR800, Steady-State Visual
Evoked Potential (SSVEP), and Slow Cortical PotsitfSCPSs). In the following

subsections, these responses will be analyzedai.de

2.2.1.1P300

P300 is a peak that typically occurs 300 ms afteregpected, but infrequent,
random event occurs (Figure 2-2). It is a natuealramechanism that almost all
subjects have without requiring any training peridd P300 based BCI
applications, each stimulus event corresponds teymbol/picture with a
particular meaning for the interface (e.g. lettdrigh level commands). Among
these symbols, the target of the subject is detedtpending on the P300 peak

occurrence time.
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Figure 2-6 : Grand average of raw P300 target signg80 epochs) and non- target signal

(1120 epochs). The thick lines represent the meaand thin lines represent the mean plus
and minus the standard deviation18].

If a visual stimulus is used in the applicationmitist be perceptible on the user
field of view without gazing the specific stimulusnother disadvantage of P300
arrives from the fact that the user has to waitth@ occurrence of the desired
(target) stimulus which randomly appears. It is tha& user who decides when to
provide an intention but rather the emergence & #timulus. Moreover,

processing algorithms have to run synchronoushh whie start of the stimuli.

Also, increasing the number of possible commanden(s) decreases the transfer

rate because each stimulus is flashed less frelgy&si.

2.2.1.2Steady-State Visual Evoked Potential (SSVEP)

When a stimulus flickering at a constant frequegmater than 5Hz is presented

to a subject, a potential response at the sameidrey and its harmonics is

11



observed at the occipital brain region (visual eytof the subject (Figure 2-7).
This response is called Steady-State Visual Evél@dntial (SSVEP) [19].

400
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‘g
& 100 +
0 1 1 1 ]
0 5 10 15 20 25
Frequency

Figure 2-7 : The EEG signal spectrum in response ta visual stimulation with a flickering
frequency of 7 Hz. The response is observed as theaks at 7 Hz and its harmonic$19].

In SSVEP based BCI applications, the user has ze fa stimuli (representing
an action, letter, etc.) positioned in some parthaf screen which involves the
movement of the eyes. Because it depends on ti@dreormal output pathway
of peripheral nerves and eye muscles it cannot biledc a true BCI.

Notwithstanding this, the interface can be suitdblepeople with severe motor

disabilities but still able to perform small eye vements [18].

2.2.1.3Slow Cortical Potentials (SCPs)

Slow cortical potentials are the negative or puesitipolarizations of the
electromagnetic activity in the brain. These patdsatare generated by the subject
voluntarily. SCP based BCI applications may reqexéensive training periods
depending on the subject’s ability to shift her/BEP. Also, the modulation of

12



SCPs is relatively slow. Therefore, the amounnéirmation transmitted per unit

time is limited in SCP-based BCI applications [20].

2.2.2 Induced Responses

Induced responses widely used in BCI applicatiarssansorimotor activity and
responses to mental tasks. In the following submext these responses will be

analyzed in detalil.

2.2.2.1Sensorimotor Rhythms (SMR)

One way of describing the brain signals is to ddviie rhythmic activity into
frequency bands. These bands are the d&ltaand, the thetebf band, the alpha
(a) band, the betaB] band, the gammay)( band and the mupj band. The
frequency range, related brain region and the rhetdte they appear are given in
[9] in detail. Among thesq) and[3 bands (8-12 Hz &13-30 Hz respectively) are

related to sensorimotor activity and they are wideded in BCI applications.

i and B rhythms originate in the primary sensorimotor errtA voluntary
movement results in a desynchronization in thand 3 bands ¢vent related
desynchronizationERD). After the movement, the power in the braigthim
increasesgvent related resynchronizatioBRS) [21]. Similar to real movement
execution case, imagination of movement can alsdifnthe neuronal activity in
the sensorimotor cortex. This phenomenon make®ssiple for patients with
severe motor disabilities to use BCI with motor gegy. In these BCI
applications the type of motor imagery (right/ldfand/foot movement) is
identified by classifying the power in tipeand bands at electrodes located over

the primary sensorimotor cortex [22].
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The major disadvantage in ERD/ERS based BCls idaihg training period. It
may take a few months depending on the subjectistyako control her/his

sensorimotor rhythms.

2.2.2.2Responses to Mental Tasks

In addition to the motor imagery, different non-reavent mental tasks (e.qg.,
solving a multiplication problem, mental countimgagining a 3D object) can be
used in BCI systems. Each task has a specificilalision of EEG frequency

pattern over the scalp [21]. Compared to motor enpgthese tasks are more
complicated. Therefore, they are not widely usepractical BCI applications.

2.3 Signal Processing

Signal processing in BCI applications can be arelyin three steps. First one is
the signal enhancemenrdtep. In that part the quality of signal is impedvby
applying techniques like filtering, down-samplingic. Second step iature
extraction In that part the relevant information for the kggdion is obtained
from the data. The final step is tbRssificationin which a mathematical model
is constructed using the normalized features etedam the previous step. The
constructed model is used to produce control sggredhted to the application. A
review of the signal processing methods used in &plications and the detailed
information about the methods used in the studyvisn in CHAPTER 3.
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2.4 BCI Applications

In this section BCI applications in the literatuvél be reviewed by dividing into
groups as applications for communication, enviromiae control, movement

control, locomotion, and neurorehabilitation.

2.4.1 Communication

BCls for communication focus on selectioniobns These icons vary from low
level (i.e. letters) to high level (i.e. words, smtes). Selection of these icons has
been realized depending on different neurophysiolagechanisms. In [23]
binary selection among letter-banks is performedguSCPs. The letter groups
are split into two until a single letter remainsowtment of cursor in 1D or 2D is
also utilized to select icons. In [24], SMR is ugedmove cursor in 2D. In the
experiments with different patients, the best penfnce is achieved with 92% hit
rate, 1.9 seconds movement time, and 4.9 movemeaispn (target size as % of
workspace). Among all approaches, P300 based BGQ@dimmunication has been
the most popular one. In the spelling paradigm psed by Farwell and Donchin
[25], a 6 by 6 matrix of characters is presentethéosubject on a computer screen
(see Figure 2-8). The rows and columns of this imnate intensified sequentially
in a random order. When the row or column contgrtime target character is
intensified, P300 potential is evoked. Therefoftgeraa few repetitions the target
character is determined using the instant at wR8A0 potential is evoked. In
[26], which is one of the latest works on P300 kpglparadigm, one character

per 9.6 sec. speed is obtained with 94.5% accuracy.
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Figure 2-8 : A 6 by 6 P300 speller matrix. Third rav is intensified[27].

The reader can find detailed information about enfrr silent speech

methodologies for normal and disabled individual§li3].

2.4.2 Environmental Control

Controlling devices like air conditioner, power bdd/, light etc. could greatly
improve the quality of life of a patient with segemotor disabilities. A pilot
study in which a system was implemented and vadiad allow disabled persons
to improve their mobility and communication wittime surrounding environment
is reported in [28]. In the integrated frameworkveleped, keyboard, mouse,
joystick, trackball touchpad, buttons, microphoaed head tracker were also
utilized. When the user was not able to use anthefthese devices, a BCI is
suggested by the support team. Using a SMR basédaB€rage accuracy higher
than 75% (accuracy expected by chance alone wa3 B0ébtained in a binary

selection task among the icons.
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2.4.3 Movement Control

There are many researches on restoration of maiotrad with robotic and
prosthetic devices in paralyzed patients. Thesearekes can be divided into two

groups as invasive and non-invasive.

Invasive methods are mostly applied on animalsrgtes [29] and monkeys [30].

In one of these animal experiments, [30], intracatt microelectrodes were
implanted in the proximal arm region of the primargtor cortex of a monkey. In
the experiments the monkey is trained to feedfitsgh a robotic arm moving in
3D and 61% success ratihd percentage of attempted trials where the monkey
succeeded in getting the food into its mQughobtained. In a recent pilot study, a
96-microelectrode array is implanted in primary amotortex of a tetraplegic
human to measure neuronal activity. In the studsy patient achieved to open and
close a prosthetic hand, and to perform rudimengations with a multi-jointed

robotic arm.

Non-invasive researches mainly focus on EEG rengsdpver the sensorimotor
cortex. In a SMR based application, [31], a teg patient achieved to control
the opening and closing of his normally paralyzedchby an orthosis using the
motor imagery of two limbs (e.g left vs. right handright hand vs. both feet)

with nearly 100% accuracy after 5 months of tragnperiod. In another motor

imagery based study, Gernot Mduller-Putz and hisleagues performed

experiments for 3 days with a patient with a spioatd lesion to control an

implanted neuroprothesis. In the study, the patieseid his EEG to step through
several phases of a hand grip with 73% best petgooa [32]. In a recent SSVEP
based BCI study, seven subjects performed two tasksing orthosis through

four different positions and grasping object. Alligh none of the subjects had
any training, six subjects showed good control vétiperformance higher than
60% [33].
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2.4.4 Locomotion

Many researches have been done on developing alB&R wheelchair in order

to provide mobility to the patients. In the EEG déh<BCI-driven wheelchair

simulations, Galan and his colleagues used leftd ranvement imagination to

turn left, rest to go forward, and word associatomurn right. They also used the
information provided by the wheelchair's sensonsthle experiments two subjects
were able to reach 100% (subject 1) and 80% (suBjeof the final goals along

the pre-specified trajectory in their best sesslondelivering a mental command
at every 0.5 sec. Pires and Nunes developed a pa@@igm (Figure 2-9a) to

control wheelchair through specific directions gretformed some offline tests
[18]. Palankar and his colleagues used a simil@R#&radigm (Figure 2-9b) for
real-time control of a wheelchair-mounted robotimaln the system developed,
1 output at every 15 sec. time duration is produegt a performance higher
than 80% to direct the robot along a step-by-stgp o a desired position [34].
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Figure 2-9 : P300 paradigms used for locomotiofi8], [34].
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2.4.5 Neurorehabilitation

The aim of BCI applications mentioned up to thatnpavas to improve the
quality of life of the patient with assistive desgc The aim of the BCI
applications for neurorehabilitation is to help th&tient restore motor function
after stroke or in other chronic central nervoustay (CNS) traumatic injuries or
disease. There are two strategies for that purpogke first strategy the patient is
trained to produce more normal brain activity whigimeasured by specific EEG
features. In the second strategy, the patient as#svice that assists movement
depending on the brain activity. This strategy iayass motor function yielding
sensory input that induces CNS plasticity. The eeadan find detailed

information about the BCls in neurological rehahtion in [5].
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CHAPTER 3

SIGNAL PROCESSING IN BRAIN COMPUTER
INTERFACES

In section 2.3, a brief description about signacessing procedure in a typical
BCI system is given. In this chapter, the signalcpssing techniques in BCI
research will be analyzed in detail focusing on thethods used in the study.
These methods can be summarized as follows:

* For signal enhancement: band-pass filtering, Laghadiltering, and

common average reference (CAR) filtering

» For feature extraction. Common Spatial Pattern (CH®wer Spectral

Density (PSD), Principal Component Analysis (PCA)

* For normalization: Linear Feature Normalization R)FFGaussian Feature
Normalization (GFN), Unit-norm Feature Vector Notipation (UFVN)

* For classification: Support Vector Machines (SVMtificial Neural
Networks (ANN)

* For evaluation: classification accuracy, Cohen’spgaa coefficient,

Nykopp’s information transfer
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3.1 Signal Enhancement

As it is mentioned in 2.1.1, EEG has relatively Igwnal-to-noise ratio. The
reason is that the signals are spatially blurred uvolume conduction in the
intervening tissue. Also, the measured EEG signay ncontain artifacts
originating from the movement of the electrodes biink or muscular activity.
Therefore, signal enhancement plays an importdatincthe analysis of the EEG

data.

The most common types of signal enhancement tegbsigre artifact detection,
spectral filtering and spatial filtering. Artifactletection attempts to find
confounding signals from sources outside the brauth as eye and muscle
artifacts, and then attempts to remove them. Sgleftitering is used to remove
noise signals (e.g. line noise) and select theugaqy band related to the activity
of the brain in the application. Spatial filteria¢so improves the signal-to-noise

ratio of the signal by re-referencing the EEG clesii7].

In this study, the signal enhancement is providgedgatial and spectral filers. As
spectral filter, a Butterworth filter is designeding MATLAB Filter Design
Toolbox. The EEG data is band-pass filtered betws80Hz, which is the band
(1 and B rhythms; 8-12 Hz and13-30 Hz, respectively) relate sensorimotor
activity [21]. As spatial filter, four different reeferencing techniques are utilized.
These are standard ear-reference, a common avertggence (CAR), a small
Laplacian (SL) and a large Laplacian (LL). In theanslard ear-reference
technique, all the electrodes are directly refetedhe electrodes placed on the
ears. In the CAR, the entire average of the patbnét the channels is subtracted
from of each channel. In the Laplacian filterinige tweighted sum of the voltage
in the surrounding electrodes is subtracted froat ¢ the voltage in the channel
of interest. The calculation of the Laplacian isfpened according formula given

below.
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VERis the ear-referenced voltag®. is the set of electrodes surrounding the i
electrode, and;; is the distance between electrodes i and j (wher@a member

of S;). For the small Laplaciars; is the set of neighbor electrodes approximately
3 cm to the center electrode. For the large Laalgctt is the set of neighbor
electrodes approximately 6 cm to the center eldetf85].

3.2 Feature Extraction

Feature extraction is summarizing the measurenfenta classification problem
while still describing the data with sufficient acacy. In feature extraction
process, high dimensional and possibly redundatda @atransformed into a

reduced representation set of feature vectors.

In BCI applications several feature extraction rodthare utilized depending on
the pattern worked on. For a P300 based applicagiomply a voltage threshold at
a specific time instant may be a feature. Howewegn SMR-based application
the frequency characteristic of the signal in acgme band may be more
important. Also in other applications, autoregressi(AR) and adaptive
autoregressive (AAR) parameters [36,37], time-feeqpy features [38], and

inverse model-based features are used [39-41].

In this study Common Spatial Pattern (CSP), Povwac8al Density (PSD), and

Principal Component Analysis are used to extraafuie from the motor imagery
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related EEG signal. CSP, which analyzes the signtine domain, is one of the
most popular feature extraction algorithms in th€l Bstudy [42-44]. PSD
analyzes the signal in frequency domain and itss a common method in SMR-
based BCI applications [45-48]. PCA is a classiciiension reduction
technique, which has applications in the BCI rede{5,49,50]. In the following

subsections these three methods will be analyzddtal.

3.2.1 Common Spatial Pattern (CSP)

The goal of common spatial pattern (CSP) analygsi® idesign spatial filters so
that the filtered time series have variances ogtiorathe discrimination. In this
section, the method will be explained for a 2-classlem. However, the method

can be extended to multiclass applications [51].

Let the raw EEG data of a single trial is represdriy arNxT matrix E, whereN
is the number of channels amds the number of samples. The normalized spatial

covariance of the EEG is calculated as follows.

= EE'

~ trace(EE") (3-3)
where' is the transpose operator amdce(x) is the sum of the diagonal elements
of x. For each of the two distributions to be separatsel spatial covariance€,
andC,, are calculated by averaging over the trials achegroup. The composite

spatial covariance is calculated as

C.=C1+C; (3-4)

Then C, is factored asC.= U.A.U,/ where U, represents the matrix of

eigenvectors and, represents the matrix of eigenvalues which ar¢éedon
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descending order at the diagonal. Afterwards, théening transformatiorP is

calculated as follows;

P= AU, (3-5)

This transformationK) equalizes the variances in the space spanndd,.bye.,

all eigenvalues oPC_ P’ are equal to one. &f; andC, are transformed as
S, = PC,P' andS, = PC,P’ (3-6)
thenS; ands, share the same eigenvectors, i.e.,
if $; = BA;B' thenS, = BA,B' andA; + 4, =1 (3-7)

Here,I represents the identity matrix which means the stitwo corresponding
eigenvalues is always one. Therefore, the eigeavectresponding to the largest
eigenvalue of; has the smallest eigenvalue ¥y and vice versa. Therefore, the
eigenvectorsB becomes useful in classifying two distributionshéd the EEG
data is whitened withP and projected onto a group of eigenvectorsBinit

becomes optimal for separation of two populationthe least squares sense.
With the projection matri# = (B'P)’, the EEG data is filtered as

Z=WE (3-8)
The columns oW~ are referred as common spatial patterns. Theyesept
time-invariant EEG source distribution vectors. Thdirst and last rows of

(Z, : p=1,..,2m) are used while calculating the final feature vextas

follows;

24



var(Z,)
b= 5 Sprvarzn) @)

The feature vectorg,, are used to train a classifier. The log-transfdiomais due

to approximate normal distribution of the data [52]

In this study, the multiclass extension of CSPealized by calculatinyy/ for

each two of theV classes, and concatenating the resulfanéectors. For amv-
class problem, there exis@) different projection matricedy/. Each projection
yields ap-dimensional feature vectgi. These vectors are concatenated and final
feature vector of sizp (’;’) is obtained. This multiclass extension methodpisg

also utilized by one of the winner algorithms inIBtbmpetition IV [53].

3.2.2 Power Spectral Density (PSD)

Power Spectral Density (PSD)is a positive realcfiom which describes
the power distribution of a signal over frequencf¥here are several
parametric and non-parametric approaches for estimaf this distribution. In a
common parametric technique, an autoregressive Imaslefitted to the

observations. A common non-parametric techniquéhésWelch's periodogram
method which is also used in the calculation of H8&tures classified in this
study [54].

In Welch's periodogram method, the signal is ggditinto overlapping segments.
Then, squared magnitude of discrete Fourier tramsfof each segment is
calculated after windowing. The final PSD is estieastaking the average of PSD

estimation of each segment [55].
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3.2.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classi¢atistical method which is

invented by Pearson K. in 1901 [56]. This lineangsform has been widely used
in data analysis and compression to convert a sefbservations of possibly
correlated variables into a set of values of uredated variables called principal
components. In this study PCA is used to extraatufe from the PSD data. By
using PCA, PSD data is projected from the highelindensional space to the
lower k-dimensional eigenspace, which is compodddeigenvectors, and retain
the feature information. This reduction in dimemsionay improve the

performance and classification accuracy of thesdias used in the problem. The

calculation of PCA is given step by step below.

Step 1. Compute the mean vector

nTr

1
m= WZ Di (3-10)
1=

wherepi=[ p;...pd" is the " d-dimensional training sample (i.e., PSD valualbf

channels) and nTr is the number of the trainingm@am

Step 2: Calculate the covariance matrix

nTr

£= (- m)@p—m)’ (3-11)
i=1
whereZ is a dxd matrix.
Step 3: Find the eigenvectors and correspondirgngaues of by solving
Ix = 2Ax (3-12)
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Let the solution vectors = {e, &,... g4} represent the eigenvectors, ahek{ 1 4,
Aa..., Ad} represent the corresponding eigenvalues in theedding ordere; is
called theprinciple componentf the dataset and it represents the most sigiific

data dimension.

Step 4: Generate dxk matrix A whose columns consist of tikeeigenvectors

corresponding to the largest eigenvalues:

A=[e,e,...8] (3-13)

Step 5: Represent the data kadimensional subspace by performing the

projection operation;
p = Al(p-m) (3-14)
wherep'=[ py...p<] " is the PCA feature vector.

When the PCA feature of the testing data is ex@yabnly the operation in Step 5
is performed by replacing the training dptaith the testing data [45].

The ratio of the sum of the eigenvalugdi, A,,..., A} to the sum of all
eigenvalue§ 11, A,,..., A4}, represents the information in the space spanned by
the corresponding eigenvectors. This ratio wilrékerred as PCA-coefficient and

will be used in PCA-based feature extraction expents performed in this study.
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3.3 Normalization

Normalization is an important step in terms of #oeuracy in the classification
stage. If the ranges of the features are unbalantey may have different
importance while classifying the data. In ordentake the role of the features in
classification independent from the range of thauies, they must be normalized
identically. One idea for feature normalizationiaset the mean of each feature to
zero, and the variance to one [57]. This is calBalissian normalization which

can be formulized as follows:

— (3-15)

whereJr, anda,* are the mean and variance vectors of the featesgsectively.
Another idea is to set the range of each featutbaanterval [0,1]. This is called

linear normalization which is formulized below.

R (3-16)

where X,,,, andx,,,, are the maximum and minimum vectors of the feature
respectively. Normalizing the feature vectorstead of normalizing the features,
may also be useful. This can simply be performedsétying the magnitude of
each feature vector to one. For that reason therfeaectors are divided by their

norm as follows:

=)
I

T (3-17)
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3.4 Classification

Classification is assigning class labels to thetuies extracted from the
measurements in the specific problem. This assighroan be performed in a
supervised or unsupervised way of learning. In pastsed learning, any
information about the class labels of the measungsris not available even for a
small set of data. In supervised learning, therstexa dataset in which the
measurements have class labels. In a typical sigeedr¥earning procedure, this
dataset is divided into two as training set and $e$. Using the training set, a
classifier is constructed. Then the performancthefclassifier is evaluated using
the test set. This evaluation is sometimes repédatedifferent parameters of the
classifier constructed. By that way the parametérthe classifier is optimized.
After that optimization, the classifier is readyassign class labels to the features
with unknown class labels [57]. Supervised learngngore preferred in the BCI
study.

In this thesis, supervised learning algorithms,psupvector machine and feed-
forward artificial neural network is studied due tbeir popularity and
performance in the SMR-based BCI research. Theereméy refer to [58] for a

review of classification algorithms used in EEG4zhbrain computer interfaces.

3.4.1 Support Vector Machines (SVMs)

In this section Support Vector Machines (SVMs) vitiefly be explained. To
begin with, consider a two class classification bpean with 2-dimentional
features. Let the circles and triangles in Figur& Bepresent observations
belonging to two different classes. Using theseeolsions, many separating
hyperplanes can be selected as classifier forribielgm as it is seen in the figure.
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Figure 3-1 : Separatinc hyperplanes possible to be selected as classifier the problem

Among all these hyperplanes, SVMs try to find tipimum one which is calle
Optimum Separating Hyperplanesy). HoshiS optimum in terms of its generali
and robustness. It discriminates the classes $attitte margin between the cl:
boundaries is maximized. The class boundaries astermdined by thi
observations closest to,sp Which are called support vees. Support vector:

Hosh and the margin width are shownFigure 3-2.
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Figure 3-2: Optimum separating hyperplane maximizes the margin width detemined by
the support vectors.

The objective function of the SVM algorithm to bénimized can be express

as follows:

R
1
ute kzl Sk (3-18)

where

M : The margin widtl

&, The distance of the misclassified observatioitstalass boundary (st
Figure 3-3),

C : Tradeoff parameter between faddends.
The first term in (3t8) is due to maximize the margin width and the sedench
is to minimize the distance of the misclassifiedsatatins to their clas
boundary.C, the tradeoff parameter between the terms, isctgleby hant

according to the probler
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feature-1
A

class - 0y

& M:margin width
class- A

L

> feature-2

Figure 3-3 : The objective of the SVM algorithm is to maximizethe margin width and
minimize the distance of the misclassified observians to their class boundary.

When the observations are separable, they areatedan their original space |
the Hg, Othewise, they can be mapped to a higher dimensioradespn whick
they are separable. This situation is illustrated I-dimensional feature ca:
below. The observations Figure 3-4 are separable by a 1yHHowever it is
not the case in 1D for the observationiFigure 3-5 They become separe only

when they are mapped to a higher dimensional spadds seen iFigure 3-6.

Q0 » feature-l

BT o ey
-

Figure 3-4 : Observations separable in 1!
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A PN [ T o T N PN > feature-l

r

Figure 3-5: Observations not separable in 1l

(feature-1F
A

feature-1

Figure 3-6: Observations that are not separable in 1D beingeparable in 2D
The functions that map the observations to a higimeensional space are call
Kernel functions. Some examples of the Kernel fimmst used in SVM are give
below.
* Linear Kernel:
— AT
K (xi,%7) = x{ %, (3-19)

* Polynomial Kernel:

K(x,x)=@xIx + 1%, y>0 (3-20)

33



» Radial Basis Function Kernel:
K(x;, x;) = exp (—y|x; — xj|2) , y>0 (3-21)
» Sigmoid Function:
K(x;, x;) = tanh (yx[x; + 1) (3-22)

Here, y, r, and d are kernel parameter®d be adjusted for the speci
classification problern59].

In this thesis study, a w-known SVM toolbox, LIBSVM, is utilized for SVI
classification [60].

3.4.2 Artificial Neural Networks (ANNS)

Artificial Neural Networks (ANNs) are one of the n-linear classificatior
algorithms. There are several ANN topologies usethe literature. In this thes
a three-layer feetbrward ANN with one hidden layer and one outputelais

implemented and used. The topology of the networkasvalin Figure3-7.

Input Layer Hidden Layer Output Layer
Figure 3-7: Three layer feec-forward artificial neural network
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The terms kIn, nHid, and kOut in Figure 3-7 repnésbe number of input nodes
(i.e. feature dimension), the number of hidden sp@d®d the number of output
nodes (i.e. number of classes in the problem) otisqedy. The network has two
modes of operation. The first one is the feed-fedvenode. It consists of
presenting a pattern to the input nodes and pag$iegsignals through the
network in order to get output. The second modepsration is learning which
consists of presenting input patterns and findireggrietwork parameters (weights)

that minimize the distance between the computepdub@nd the desired output.

3.4.2.1Feed-forward Operation

In this operation mode, an input pattern is appleethe input layer. Each feature
of the pattern is multiplied with a weight and distited to each unit in the hidden
layer. Then, the weighted sum of the features mmestormed by a nonlinear
activation function. In this study the sigmoid ftina given in (3-23) is used as

the activation function.

f(x) = (3-23)

1+e™*
Afterwards, the output of the hidden layer is nplid with the network weights
again and transferred to the output layer. Sintdethe hidden layer, a summation
and activation operation is performed in the outlpyer to produce the output
vector. The output vector represents the classestha problem. This
representation is performed by unit vectors of Wwhatement are 1 only for the
related class. For example, for a three class enmoplthe output vectors
representing the classes are [1 0 0], [0 1 O],[ar@d1].
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3.4.2.2Learning

In order the ANN to be used in fe-forward operation mode, the weights in
network, W, and Wy, must be calculated. This calculation is perforrogdack
propagation algorithm using the observations in ttening data set. Bac
propagation is a batch training algorithm in whiwekights are only updated aft
all the inputs and targets are preed. The difference between the curr
network output and the desired network output indd as the error functiol
The algorithm tries to minimize that function usiggadient descent algorithi
The error is a function of network weights. Therefthe derivative of the erro
function with respect to the network weights iscagdted and used in the gradi

descent algorithm. The error function to be mineizs given ir(3-24).

1
E=-(@-0)° (3-24)

wheret is the desired output aro is the current output. The derivative of -
error, E, with respect to the weight from neurotok, wy, andthe derivative of
the error, E, with respect to the weight from neurto k, w, are given ir(3-25)
and (3-26Yyespectively for the network part givenFigure 3-8.

i I Wi
' /
Figure 3-8: ANN piece
JEP _
G = (0f (1= o) —oP)i, (3-25)
J
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0E?
el CACES oi’))(Z(o”(l PN — PIw i (3-26)

The derivative terms in (3-25) and (3-26) are daled for each observation in
the training set and subtracted from the relatemjiw®. The operation continues
iteratively until the error term becomes insigraiit. The reader may refer to [57]

for the derivation and detailed information abdg algorithm.

3.5 Evaluation

In order to analyze the performance of BCI systesageral evaluation techniques
can be used. In this study classification accur@ohen’s Kappa Coefficient, and
Nykopp’s information transfer are used to analyhe performance in the
experiments. They are commonly used in the BCI aiipns to compare the
results of different research groups [61,62]. Teénitions of these evaluation
methods are given in the following subsectionsrafedining the terminology in a

confusion matrix.

3.5.1 The Confusion Matrix

The confusion matrix consists of elementg, which represent the number of
samples of class predicted as clags The diagonal elements of the matnm,
show the number of correctly classified samplese Humber of samples is
calculated as:

M M
N = Zznu (3-27)

i=1j=1
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Although confusion matrices give an idea about pleeformance of the BCI
system, they are rarely presented. The summarigtgtatsuch as classification

accuracy and Cohen’s Kappa Coefficient are mucterpoeferred [63].

3.5.2 Classification Accuracy

The classification accuracyifc) is the simplest and most widely used way of

evaluating a BCI. It is calculated as follows.

2?4:1 LT

Acc =
cc N

(3-28)

On the other hand, there are some limitations efdhssification accuracy. First
of all it does not consider the off-diagonal eletsan the confusion matrix. Also

the weight of a class in the calculation depenthemumber of samples from that
class [63].

3.5.3 Cohen’s Kappa Coefficient

When the limitations of the classification accuragyonsidered, Cohen’s kappa
coefficient, x, serves a more reliable and sensitive evaluatiiteri@. In the
calculation ofxk, the classification accuracylcc (overall agreement), and the

chance agreemept, is used together. The definitiongf is given below.

_ Zi\il n.in;;,

Pe = =13 (3-29)

wheren,; andn;. are the sum of thé"icolumn and the" row of the confusion
matrix, respectively. Then, the kappa coefficiagtis calculated as it is given

below.
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Po — Pe
1_pe

K=

(3-30)

The maximum value that the kappa coefficient caketas 1 (perfect
classification). The value changes depending on dheelation between the

predicted classes and the actual classes [63].

3.5.4 Nykopp’s Information Transfer

BCls are alternative communication channels betwé&s®m brain and the
environment. Therefore, the information transfethat communication channels
must be quantified. For that purpose, Nykopp derivdormation transfer for a

general confusion matrix as given below [63][64].
I(X;Y) =H(Y)—-H(Y|X) (3-31)

whereH (x) represents the entropy of the discrete randonabiark. Specifically;

M

H) == p(y) - log: p(y) (3-32)
=
with
M
p(y;) = Z p(x) . p(yj|x:) (3-33)
and
M M
HY|X) = —Z p(x) . p(yj|x:) -logz p(y;1x) (3-34)
1=1j=1
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In the equations above, the random variable X nsothed user intention and the

random variable Y models the classifier output.sMhie number of classes(x;)
is the a priori probability for class, p(yj) is the probability of classifier output

to be classy;, and p(;|x;) is the probability to classify; as y; .
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Experiments on BCI Competition Ill: Dataset V

In this section the experiments performed on thias#d provided by IDIAP
Research Institute [65] for BClI Competition lll [6k presented. The dataset
contains EEG of three mental tasks which are

1. Imagination of repetitive self-paced left hand nmoeats,
2. Imagination of repetitive self-paced right hand mments,
3. Generation of words beginning with the same rantiitar.

4.1.1 Explanation of the Experiment

Three normal subjects sitting in a normal chaithwelaxed arms resting on their
legs attended 4 non-feedback sessions. The firse teessions are provided as
training datawith class labels in order to be used to constauctassifier. The

final session is provided atest datain order to be used to evaluate the
performance of the classifier. The class labeltheftest data is announced after

the deadline of the competition.

In the experiments, each subject attended 4 sesseparated with 5-10 minutes

breaks on the same day. Each session lasted 4asinthe subject performed a
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task ramlomly requested by the operafor about 15 secondfen switched to

the next task requested by the operator withounhgiany break

32 electrodes Biosemi syste[66] is used to remrd the EEG data. The electroc
are located according to tlinternational 10-20 system [6{3eeFigure 4-1). The
EEG signal is sampled 512 Hz. Anyartifact rejection or correction w not

employedon the dat.

FCE < FC8
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Figure 4-1: The placement of the electrodes in the experime

The datdor classificatiorare provided in two ways. First one is the precoteqg

feature vectors and the second one is the raw Hgi@ls

42



4.1.2 Precomputed Features

4.1.2.1Explanation of the features

Precomputed features are useful in terms of fogusito the classification stage
of the EEG signal processing problem without coeisidy the signal

enhancement and feature extraction stages. Thesadgl extracted features
basically summarize the related frequency contdnthe EEG data. While

extracting these features, a surface Laplaciaarfi{lB5] was employed on the
EEG data first. Then, the power spectral densi§O0Pof the filtered EEG data
was calculated in the 8-30 Hz band at every 62.5usngg the last second of the
data. The frequency resolution was 2 Hz and thebeurof electrodes used in
PSD calculation was 8 (C3, Cz, C4, CP1, CP2, P3,F2}. As a result, 96

dimensional feature vectors (8 channels times &3uiency components) were
obtained.

4.1.2.2Results on Precomputed Features

In this part the results obtained using the noma#ilbn and classification
techniques mentioned in CHAPTER 3 will be presentédr normalization,
Linear Feature Normalization (LFN), Gaussian FeaNiormalization (GFN), and
Unit-norm Feature Vector Normalization (UFVN) asestied. In the classification
step, Support Vector Machines (SVM), and Artifidgural Networks (ANN) are
studied. Also Principal Component Analysis (PCA)igized in order to reduce

the dimension of the precomputed PSD features.

The resultant performance of the methodologiesatuated on the test data. This
strategy enables a comparison of the results whih ather methodologies
evaluated on the same test data in the scope abtheetition. All the parameter
optimizations of the methodologies are performedhim training data. For that
purpose, randomly selected 75% of the training dataised to construct a

classifier and the remaining 25% is used to vadidaé performance of the model
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for the given parameters. While dividing the tragnidata into partitions, uniform
distribution of the features for different classes considered. The final
classification model is constructed with the partre giving maximum

validation result using whole training data. Théme performance of the model is

evaluated on the test data.

In the evaluation step, a classification output &ach input feature vector,
computed 16 times per second, is generated fireenTthe average of 8
consecutive outputs is calculated in order to pceda response at every 0.5
seconds. Finally, classification accuracy is catad for these responses as

mentioned in the requirements of the competition.

Validation Results for SVM Classification

In SVM classification, the RBF kernel is prefer&dce it is reported to provide
the best results in terms of the classificatiorigrarance [68]. For the PCA based
RBF kernel SVM classification, there are three paeters to be optimized. First
one is they coefficient of the RBF kernel, second one is thgutarization
parameter C, and the third one is the PCA-Coefiici€ince there is no direct
analytical way of finding the optimum values of skeparametersyalidation
accuracyis calculated in the training data for differgntC, and PCA-Coefficient
combinations. The combination giving the maximurfidadion accuracy is used
to construct the final classification model. Instlstudyy and C values are grown
exponentially in order to enlarge the search spads.varied betwee2 3! and
25 while C is varied betwee2i ! and2”. An example validation accuracy table is
given in Table 4-1. In the table, validation acaiea for different subjects under

the same normalization and PCA procedures are given
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Table 4-1 : Validation accuracies for all subjectsand different y & C combinations. The
PCA-Coefficient is 99 and unit norm feature vector normalization and no feature
normalization is used.

log(y): 31 -27 -23 -19 -15 -11 -7 -3 1 5
subject |og(C)

-1 39,36 39,36 39,36 39,36 39,36 39,36 70,33 74,05 97,23 39,97
1 3 39,36 39,36 39,36 39,36 39,36 70,21 72,23 84,08 99,58 50,80
7 39,36 39,36 39,36 39,36 70,21 72,07 74,09 93,09 99,58 50,80
-1 38,77 38,77 38,77 38,77 38,77 38,77 56,96 65,35 98,23 39,19
2 3 38,77 38,77 38,77 38,77 38,77 57,15 63,31 81,62 99,69 43,62
7 38,77 38,77 38,77 38,77 57,19 63,19 66,31 92,54 99,69 43,62
-1 49,03 49,03 46,42 46,62 46,66 46,66 54,00 58,94 98,56 33,86
3 3 49,03 49,03 46,42 46,62 46,66 54,16 55,95 75,04 99,81 73,56
7 49,03 49,03 46,42 46,62 54,16 55,83 58,71 89,66 99,81 73,56

It is seen that C value does not affect the vabdaaccuracy as much as the
value. It is also seen that the optimy&C combination does not depend on the
subject. However, it is seen in Table 4-2 that dpgimum y&C combination
depend on the feature vector normalization (FVN) ature normalization (FN)
methods. In the table, the validation accuracies different normalization
methods angt&C combinations for subject 1 with PCA-Coefficiedf.
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Table 4-2 : The validation accuracies for different normalization methods and y&C
combinations for subject 1 with PCA coefficient 99.

log(y): -31 27 -23 -19 -15 -11 -7 -3 1 5
FVN-FN log(C)
-1 39,36 39,36 39,36 39,36 39,36 55,40 76,37 98,10 39,36 39,36

EELVN_ 39,36 39,36 39,36 39,36 55,55 72,45 88,72 99,62 41,98 39,36
39,36 39,36 39,36 55,51 71,85 77,51 94,98 99,62 41,98 39,36

NoFVN -1 39,36 39,36 39,36 39,36 39,36 39,36 53,84 72,95 92,90 42,52
LFON © 3 39,36 39,36 39,36 39,36 39,36 54,45 72,19 79,64 99,09 71,77
7 39,36 39,36 39,36 39,36 54,56 72,07 72,95 89,78 99,13 71,77

NoFVN -1 39,36 39,36 39,36 39,36 56,61 72,87 85,30 87,84 39,36 39,36
NgFN ) 39,36 39,36 39,36 56,69 72,72 74,89 97,68 99,43 39,40 39,36
39,36 39,36 56,69 72,68 72,99 85,49 98,63 99,43 39,40 39,36

UFVN -1 39,36 39,36 39,36 39,36 70,02 92,02 42,78 39,36 39,36 39,36
GEN -3 39,36 39,36 39,36 69,79 78,42 99,16 76,33 39,36 39,36 39,36
7 39,36 39,36 69,87 72,64 88,68 99,16 76,33 39,36 39,36 39,36

UFVN -1 39,36 39,36 39,36 39,36 39,36 39,36 69,34 72,87 96,47 40,20
LEN -3 39,36 39,36 39,36 39,36 39,36 69,45 71,77 82,22 99,54 55,32
7 39,36 39,36 39,36 39,36 69,45 71,81 72,80 91,83 99,58 55,32

UEVN -1 39,36 39,36 39,36 39,36 39,36 39,36 70,33 74,05 97,23 39,97
NoFN- 3 39,36 39,36 39,36 39,36 39,36 70,21 72,23 84,08 99,58 50,80
7 39,36 39,36 39,36 39,36 70,21 72,07 74,09 93,09 99,58 50,80

In Table 4-3 the validation accuracies for diffar&CA-Coefficients ang/&C
combinations for subject 1 is given. For the resuft the table, the feature
normalization type is Gaussian and no feature vewbomalization is employed.
It is seen in the table that the optimg&C combination strongly depend on the
PCA-Coefficient. This situation is the reason ofareking optimumy&C

combination in a range that wide.
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Table 4-3 : The validation accuracies for differentPCA-Coefficients andy&C combinations
for subject 1. The feature normalization type is Gassian and no feature vector
normalization is employed.

log(y): -31 -27 -23 -19 -15 -11 -7 -3 1 5

PCA-
Coeff. log(C)

-1 39,36 39,36 39,36 39,36 39,36 39,36 62,20 64,44 64,44 64,36
97 3 39,36 39,36 39,36 39,36 39,36 62,35 64,70 64,86 64,13

39,36 39,36 39,36 39,36 62,39 64,78 64,51 64,29 64,93 64,10

-1 39,36 39,36 39,36 39,36 39,36 41,19 67,21 68,88 69,87 70,10
97,5 3 39,36 39,36 39,36 39,36 41,19 67,36 67,71 69,22 70,63 66,49
39,36 39,36 39,36 41,19 67,33 67,44 68,96 69,22 70,86 | 64,36

-1 39,36 39,36 39,36 39,36 39,36 48,48 68,35 72,15 82,26 39,36
98 3 39,36 39,36 39,36 39,36 48,56 68,31 70,44 75,95 (87,92 (42,06
39,36 39,36 39,36 48,56 68,35 69,15 71,73 78,69 87,65 42,06

-1 39,36 39,36 39,36 39,36 39,36 49,43 70,59 83,85 46,16 39,36
98,5 3 39,36 39,36 39,36 39,36 49,51 69,83 74,39 93,35 83,78 39,40
39,36 39,36 39,36 49,51 69,60 71,09 79,71 |93,66 83,78 39,40

-1 39,36 39,36 39,36 39,36 39,36 55,40 76,37 98,10 39,36 39,36
99 3 39,36 39,36 39,36 39,36 55,55 72,45 88,72 99,62 41,98 39,36
39,36 39,36 39,36 55,51 71,85 77,51 94,98 (99,62 (41,98 39,36

-1 39,36 39,36 39,36 39,36 39,36 63,41 86,36 53,53 39,36 39,36
99,5 3 39,36 39,36 39,36 39,36 62,46 76,90 97,68 98,06 39,36 39,36
39,36 39,36 39,36 62,16 74,32 87,39 |98,18 98,06 39,36 39,36

-1 49,85 66,95 94,49 39,48 39,36 39,36 39,36 39,36 39,36 39,36

100 3 65,20 86,47 99,58 46,66 39,36 39,36 39,36 39,36 39,36 39,36
7 77,81 96,69 |99,58 (46,66 39,36 39,36 39,36 39,36 39,36 39,36

Another property observed in Table 4-3 is the galnndency to increase in the
maximum validation accuracies which are marked wibikes. This is expected
since the feature vector dimension and the peraemformation represented by
feature vectors increases while the PCA-Coefficisntcreasing. However, the
maximum validation accuracy is obtained for the PCaefficient 99. The reason
is the fact that some part of the information insPCA is noise. This is the main
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advantage of using PCA in classification problentor smaller PCA-
Coefficients, the percentage of noise in the Io&irmation decreases. Therefore
a decrease in the validation accuracy is obseredvever, PCA may still be
preferred in the cases where high dimensionalitya iproblem in terms of

generating fast responses.

In Table 4-4, the feature vector dimensions fofedént PCA-Coefficients are
given for each subject. The PCA coefficient is aasuge of percent information
maintained after the PCA operation. For example #7% percent of the
information in 96-dimensional feature space camdpgesented in 2-dimensional
feature space for the subject 1. The situatiomidar for the other subjects. This
shows the high correlation between the featuregs @drrelation arises from the
blurring of the EEG signal in the skull and low salaresolution of the signal

acquisition methodology.

Table 4-4 : Feature vector sizes for different PCACoefficients.

subject/PCA-coefficient 97 97,5 98 98,5 99 99,5 100
1 2 4 9 17 36 59 96
2 4 6 12 23 39 61 96
3 3 6 12 25 39 63 96

Validation Results for ANN Classification

For ANN classification, there are two parameterbemptimized. First one is the
number of nodes in the hidden layer, nHidden, ef tiree layer feed-forward
network and the second one is the PCA-Coefficieat.that purpose, validation
accuracy is calculated in the training data forfedént nHidden and PCA-
Coefficient combinations. The combination givinge timaximum validation

accuracy is used to construct the final classificatodel. In this study nHidden
is varied between 5 and 33 with step size 4. Inerdkb, validation accuracies for

different subjects and nHidden & PCA-Coefficienindmnations are given. For
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the results in the table, linear feature normalmabnd unit norm feature vector

normalization is used.

Table 4-5 : The validation accuracies for differentsubjects and nHidden & PCA-Coefficient
combinations. Linear feature normalization and unit norm feature vector normalization is
used.

PCA-Coefficient: 97 975 98 985 99 995

subject nHidden
5 6197 6611 62,99 6847 7055 73,59
9 61,70 6619 6581 6835 6930 75,11
13 61,44 6645 6501 6877 70,06 74,13
17 61,74 6638 6565 6869 7052 75,15

! 21 61,63 6645 6687 6926 7048 74,58
25 61,85 6695 6683 6976 70,02 74,77
29 6151 6638 6626 6892 70,10 7527
33 6185 6664 66,68 6885 70,29
5 5427 54,12 5415 5558 6154 6385
9 54,65 54,77 5458 59,00 62,65 64,08
13 5473 54,08 5438 57,96 62,04 63,15
17 5477 5427 5538 57,58 6227 63,73

2 21 54,65 54,15 5512 5854 62,65 6381
25 5442 5438 5554 5835 62,73 64,31
29 5500 5469 5542 5873 62,00
33 5492 5446 5569 5838 6258 64,46
5 44,79 4592 4654 5124 47,47 52,18
9 4588 4631 4685 51,44 5272 5525
13 4572 46,73 4631 51,87 5334 5537
17 45,65 4650 47,12 51,83 5540 5568

> 21 46,11 46,70 4681 51,67 5416 5618
25 45,10 46,19 47,67 52,33 53,46 5564
29 45,10 4693 47,78 52,33 5420
33 45,61 46,46 47,55 53,15 5474 56,10

It is seen in Table 4-5 that there is a generaléany to increase in the validation
values with the increasing nHidden and PCA-Coddfitivalues. However, it is

seen that the validation accuracy value does nangd that much for nHidden
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values greater than 20 under the same PCA procedireidden nodes seem to
be enough to perform the required classificatioerapon in the problem. Any
nHidden value greater than 20 may give the maximahaation accuracy as it is

marked with boxes in the table.

The training of an ANN with back propagation algjom is an iterative procedure
as it is mentioned in section 3.4.2. In these iteng, the validation accuracy must
be checked against memorization of the neural mtwidemorization occurs
when the classification model is too complex tssity all the data in the training
set with losing its generality. Due to this lossgenerality, the network becomes
useless for any other data except from the traisgtg Validation accuracy gives
an idea about the generality of the model sincedtlculated using data different
from the data training the ANN. In Figure 4-2, th@ot-mean-square error
(RMSE) calculated using 75% of the training data;Figure 4-3, validation
accuracy calculated using the remaining 25% at @addtion is given for subject
1. The formulation of RMSE is given in (4-1).

nF nOut

1

i=1 j=1

wherenF is the number of featuresQut is the number of output nodes (which is
3 since there are 3 output classes in this problgmy the current output of the

network andy;; is the desired output of the network.
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Figure 4-2 : RMS Error calculated at each iteration for subject 1 under linear feature
normalization and unit norm feature vector normalization with PCA-Coefficient 99.5.

80

70 /
60

40

30

Validation Accuracy

20
10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

Figure 4-3 : Validation accuracy calculated at eachteration for subject 1 under linear
feature normalization and unit norm feature vector normalization with PCA-Coefficient
99.5.

The non-decreasing characteristic of the validatioouracy curve in Figure 4-3
shows that there is no memorization problem whike RMSE of the training set

is decreasing. This may be due to the large numbdeature vectors in the
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training set. As a result, constant and sufficieminber of iterations can be used
as stopping criteria in the training procedure. A5&rations is used in the

experiments which seem to be sufficient in the Fegl+3.

Overall Evaluation Results

After optimizing the parameters using validatiocwacies in the training set; the
normalization, feature extraction and classificatrnethodology is evaluated in
the test set. The number of NN and SVM calculationis optimization process

are given in Table 4-6.

Table 4-6 : The number of parameters and total numer of combinations.
nHidden y |C FVN FN PCA Total # of combinations
NN 8 - - 2 3 7 336
SVM |- 10 3 2 3 7 1260

With the parameters giving the maximum validatioouaacy, each methodology
is evaluated. In Table 4-7, the classification aacies calculated using the
responses computed 16 times per second (16 Hzaagcresults); in Table 4-8,
the classification accuracies calculated usingrésponses computed 2 times per
second (2 Hz accuracy results) from the averag8 obnsecutive outputs are

given.
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Table 4-7 : Classification accuracy calculated uson the responses computed 16 times per
second

FN: GFN LFN NO

PCA: YES NO YES NO YES NO

FVN: NO UFVN |NO NO UFVN | NO NO UFVN |NO
classifier | subject
NN 1 72,29 | 71,26 | 65,04 | 74,14 | 74,34 | 74,14 | 72,15 | 73,74 | 69,86
NN 2 57,40 | 56,19 | 51,73 |60,54 | 59,53 | 60,54 |57,03 | 58,99 |53,92
NN 3 49,40 |47,91 |42,57 |50,72 | 52,32 |50,72 | 48,45 |52,67 | 47,39
NN Avg 59,70 | 58,45 | 53,11 | 61,80 | 62,07 | 61,80 (59,21 | 61,80 | 57,06
SVM 1 69,75 | 71,18 | 64,33 | 73,57 | 74,34 | 73,57 | 72,03 | 75,14 | 72,03
SVM 2 53,60 | 54,41 |51,70 | 59,76 | 56,45 |59,76 | 57,89 |57,57 | 57,89
SVM 3 46,39 | 46,96 | 46,39 48,68 | 49,97 | 48,68 | 47,33 | 49,68 |47,33
SVM Avg 56,58 | 57,51 | 54,14 | 60,67 | 60,26 | 60,67 |59,09 | 60,80 |59,09

Table 4-8 : Classification accuracy calculated usmn the responses computed 2 times per
second from the average of 8 consecutive outputs

FN: GFN LFN NO

PCA: YES NO YES NO YES NO

FVN: NO UFVN |NO NO UFVN |NO NO UFVN |NO
classifier | subject
NN 1 76,03 | 73,74 | 70,09 | 76,71 | 77,40 | 75,34 | 76,48 | 76,26 |71,46
NN 2 60,37 | 61,75 |54,15 | 61,75 | 60,83 | 61,75 | 60,83 |61,06 |55,07
NN 3 52,98 (52,75 | 41,51 | 53,67 | 55,50 | 52,52 |51,61 | 55,28 |48,62
NN Avg 63,13 | 62,75 | 55,25 | 64,04 164,58 | 63,21 (62,97 | 64,20 | 58,38
SVM 1 73,52 | 73,97 | 67,58 | 75,57 | 78,54 | 75,57 | 75,11 | 79,68 | 75,11
SVM 2 55,76 | 56,68 | 53,23 162,90 [59,91 | 62,90 58,76 | 61,06 | 58,76
SVM 3 50,92 | 49,08 |50,92 (51,83 |53,90 (51,83 (51,61 [51,83 |51,61
SVM Avg 60,06 {59,91 | 57,24 63,44 64,12 | 63,44 (61,83 | 64,19 |61,83

It is obvious in the resulting tables that the agéng operation increases the
classification accuracy. However, the 16 Hz acour&sults are more sensitive

and useful while comparing the methodologies.
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Maximum evaluation accuracy is obtained with NN é&wgwmg PCA in the feature
extraction, with linear feature normalization (LFBR)d unit-norm feature vector
normalization (UFVN). PCA and UFVN give good resuldlso in SVM

classification.

4.1.3 Raw EEG Signals

In addition to the precomputed features, the 32wBBEEG recordings, that the
PSD features are extracted from, are also providethe competition. These

signals enable to test different preprocessingfeatdire extraction technigues.

4.1.3.1Explanation of the features

In the experiments on raw EEG signals, CSP featanegxtracted using different
spatial filtering, temporal filtering and normalimn techniques. Then the results

are compared with the results on precomputed P8Drkes.

Similar to the PSD feature extraction strategy, G&&tures are calculated at
every 62.5 ms (i.e., 16 times per second) overabesecond of data using the
same EEG channels (C3, Cz, C4, CP1, CP2, P3, BAR4n The other electrode

recordings provided are only used in the spatit@ring step.

4.1.3.2Results on Raw EEG signals

In this section the results obtained using differspatial filtering, temporal
filtering, feature normalization, feature vectorrmalization and classification
techniques will be presented. The list of the tepines utilized with different

combinations is given in Table 4-9.
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Table 4-9 : The signal processing techniques usedl tlassify the CSP features extracted from
the raw EEG signal

Spatial filter (SF): Common Average Reference (CARYr
Large Laplacian (LL) filter

Small Laplacian (SL) filter

no (NO) filter

Temporal filter (TF): 8-30 Hz bandpass filter (YES)
no (NO) filtering

Feature Normalization (FN): Linear Feature Normetlan (LFN)
Gaussian Feature Normalization (GFN)
No (NO) Normalization

Feature Vector NormalizationUnit-norm Feature Vector Normalization
(FVN): (UFVN)

Classification: SVM, ANN

The validation and the evaluation procedure is saitie the procedure followed
for the precomputed PSD features.

For CSP based SVM classification, there are thaameters to be optimized.
First one is thes coefficient of the RBF kernel, second one is thgufarization
parameter C, and the third onepisvhich is the number of eigenvectors used to
construct the CSP filtel. In order to optimize these parameters, randomly
selected 75% of the training data is used to coaotsta classifier and the
remaining 25% is used to validate the performarid@e@model for the given the

y - C - p combination. While dividing the training data irpartitions, uniform

distribution of the features for different classesonsidered.

For CSP based NN classification, there are tworpatars to be optimized. First
one is the number of hidden nodes, nHidden, andséoend one i®. These
parameters are optimized in the same way with tHe8P Cbased SVM

classification.
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The final classification model is constructed whle parameters giving maximum
validation accuracy value using whole training ddtzen, the performance of the
model is evaluated on the evaluation data. Theuatiah results with SVM for

different filtering and normalization technique® ajiven in Table 4-10 and the
evaluation results with ANN for different filteringnd normalization techniques

are given in Table 4-11.

Table 4-10 : Evaluation results with SVM for different filtering and normalization
techniques

TF: YES YES YES YES NO NO NO NO

Subject: 1 2 3 Avg. 1 2 3 Avg.
SF FN  FUN
CAR  GFN  NO 77,92 61,89 51,15 63,66 5626 54,32 43,19 51,26
CAR  GFN  UFVN 7877 5895 50,94 62,89 54,56 49,68 4151 48,59
CAR LFN  NO 78,13 63,79 55,14 [65,69]57,32 5537 42,35 5168
CAR  LFN  UFVN 77,92 6358 54,93 6547 54,14 50,32 39,20 47,89
CAR  NO  NO 78,34 63,16 52,20 64,57 56,69 53,26 4193 50,63
CAR  NO  UFVN 7601 5874 52,20 6232 52,87 51,79 38,16 47,60
LL GFN  NO 60,30 50,95 48,85 53,36 40,76 4547 40,04 42,09
LL GFN  UFVN 66,224 50,95 47,80 55,00 41,19 44,84 41,93 42,65
LL LFN  NO 63,06 49,68 4843 53,72 40,55 43,79 39,41 41,25
LL LFN  UFVN 6200 51,58 48,22 5393 43,74 42,11 42,77 42,87
LL NO  NO 6539 52,21 47,38 54,99 4437 44,21 40,67 43,09
LL NO  UFVN 6688 52,84 4528 5500 43,31 44,63 44,03 43,99
NO  GFN  NO 67,94 56,84 49,06 57,95 40,55 45,68 3836 41,53
NO  GFN  UFVN 6603 56,42 46,75 56,40 4820 47,58 41,09 45,62
NO  LFN  NO 72,40 5621 49,48 59,36 42,89 46,74 39,62 43,08
NO  LFN  UFVN 71,76 56,42 5094 59,71 47,56 46,53 41,30 45,13
NO  NO  NO 71,34 56,84 47,38 5852 44,559 46,32 39,62 4351
NO  NO  UFVN 7091 57,89 49,48 59,43 48,41 4568 40,25 44,78
sL GFN  NO 58,81 54,95 49,48 54,41 40,13 50,32 39,20 43,22
sL GFN  UFVN 61,78 5558 4696 54,77 45,86 46,74 43,40 45,33
sL LFN  NO 61,36 54,53 50,10 55,33 40,55 46,74 43,40 43,56
sL LFN  UFVN 62,85 5474 50,73 56,11 48,41 46,11 44,03 46,18
sL NO  NO 66,67 5326 48,64 56,19 4034 47,16 46,75 44,75
sL NO  UFVN 6603 5453 49,48 56,68 4586 4589 3627 42,67
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Table 4-11 : Evaluation results with ANN for different filtering and normalization
techniques

TF: YES YES YES YES NO NO NO NO

Subject: 1 2 3 Avg. 1 2 3 Avg.
SF FN FVN
CAR GFN  NO 81,10 66,32 58,07 68,50 60,30 55,79 48,01 54,70
CAR GFN  UFVN 80,68 6547 60,17 6877 56,69 54,95 52,20 54,61
CAR LFN  NO 81,10 63,37 59,96 68,14 64,33 54,11 50,73 56,39
CAR LFN  UFVN 81,95 6568 59,33 68,99 54,14 54,53 47,59 52,09
CAR NO NO 83,44 69,68 59,75 [70,96|50,96 47,58 48,64 49,06
CAR NO UFVN 81,10 63,79 57,65 67,52 48,62 45,68 48,01 47,44
LL GFN  NO 69,64 54,95 48,43 57,67 4544 47,58 4822 47,08
LL GFN  UFVN 68,79 53,05 48,43 56,76 49,26 4505 44,86 46,39
LL LFN  NO 70,91 55,79 50,10 58,94 46,07 48,00 49,69 47,92
LL LFN  UFVN 71,97 5516 49,90 59,01 4628 44,42 47,17 45,96
LL NO NO 71,76 53,05 51,36 58,73 48,41 41,26 47,38 45,68
LL NO UFVN 71,13 57,05 50,73 59,64 44,80 48,84 44,03 45,89
NO GFN  NO 78,56 61,05 51,36 63,66 51,80 50,32 4591 49,34
NO GFN  UFVN 77,28 60,42 51,15 62,95 50,32 49,89 46,54 48,92
NO LFN  NO 81,53 59,16 50,52 63,74 56,26 52,42 44,03 50,90
NO LFN  UFVN 80,04 59,37 51,15 63,52 47,77 49,47 42,77 46,67
NO NO NO 80,47 62,53 53,04 6534 49,68 50,53 42,77 47,66
NO NO UFVN 80,89 59,37 51,57 63,94 40,34 47,58 4570 44,54
sL GFN  NO 69,64 5811 53,46 60,40 48,41 55,79 4528 49,83
sL GFN  UFVN 6879 59,58 53,88 60,75 49,47 53,05 44,65 49,06
sL LFN  NO 74,10 59,16 51,57 61,61 46,07 54,95 41,51 47,51
sL LFN  UFVN 73,89 60,00 52,83 62,24 47,77 51,79 43,61 47,72
sL NO NO 73,25 60,00 54,51 62,59 44,16 53,26 40,04 45,82
sL NO UFVN 74,52 60,63 50,52 61,89 40,34 53,89 41,30 45,18

It is obvious in the evaluation results that theperal filtering increases the
classification accuracy as expected. Among thei@ddtering techniques, CAR,
also increases the accuracy both for SVM and AN&ssifiers. However, the
normalization techniques does not affect the acyues much as the filtering
techniques. The best results are obtained using-pass filter and CAR filter for
both SVM and ANN classifiers.
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4.1.4 Conclusion

The maximum accuracy values obtained in this erpamt are given with the

summary of the methods attended the competitidrable 4-12.

Table 4-12 : The results of BCI competition Il

group Avg. 1 Sulc;ject 3 Method

METU BCI | 70.96 | 83.44 | 69.68 | 59.75 | CSP+NN

1 68.65 | 79.60 | 70.31 | 56.02 | PSD + Distance Based Discriminator

2 68.50 | 78.08 | 71.66 | 55.73 | PSD + Feature selection, SVM

Cheng & PSD + PCA + improved patrticle swarm

Mingg[45] 6835 | 7831|7027 | 5646 | N P P

3 65.90 | 77.85 | 66.36 | 53.44 |PSD + Radial Basis Network, SVM

METU BCI | 65.69 | 78.13 | 63.79 | 55.14 | CSP+SVM

4 65.67 | 76.03 | 69.36 | 51.61 | PSD + Fisher’s Discriminant Analysis

s 6a.91 | 78.08 | 63.83 | 59.75 PSD ot Regularized  Discriminant
Analysis

6 64.60 | 81.05 | 73.04 | 39.68 | PSD + Minimum Mahalanobis Distance

METU BCI | 64.58 | 77.40 | 60.83 | 55.50 | PCA+PSD+NN

METU BCI | 64.19 | 79.68 | 61.06 | 51.83 | PCA+PSD+SVM

7 64.04 | 76.06 | 64.83 | 51.18 | oD * SVM, CART Decision Treg,
LVQ, Naive Bayes

8 63.91 | 77.40 | 63.83 | 50.46 | PSD + NN, Linear Discriminant Analysis

CSP features give better results for both SVM aiNAclassifications. The best

result is obtained with classification of CSP featuwith ANN. However the

SVM results for CSP features are also comparable thie other results in the

competition. Furthermore, the training and testingation of SVM is observed to
be 4-5 times shorter than ANN. This makes SVM pedie in online
applications considering short response time.
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4.2 Experiments on BCI Competition IV: Dataset lla

In this section the experiments performed on theastd provided by Graz
University of Technology for BClI Competition IV [$2s presented. The dataset
contains EEG of four different mental tasks whioh a

Imagination of left hand movements,
Imagination of right hand movements,

Imagination of feet movements,

p w0nN R

Imagination of tongue movements.

4.2.1 Explanation of the Experiment

9 subjects sitting in a comfortable armchair ateghdwo sessions on different
days. Each session consists of 6 runs separatstidsy breaks. In each run, the
mental tasks were performed 12 times in randomroifeerefore, one session
contains 288 trials (6 runs x 4 tasks x 12 remets). The timing scheme of a

single trial is explained below and illustratedrigure 4-4 [69].

t = 0 s: The subject is warned with an acoustimsgo

t = 0-2 s : A fixation cross is presented to thiejsct

t = 2-3.25 s : A cue related to the task to beqreréd is presented.
t = 3.25-6 s : The fixation cross is presented.

t = 6-7.5 s : Break before the next trial. The soris black.
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Beep

Cue
Fixation cross

|
0 1 2 3 4 5 6 # 8 t(s)

Figure 4-4 : The timing scheme for a single trial bthe experiment[69].

The EEG data was recorded using 22 electrodeseld@dtthe positions shown in
Figure 4-5. The sampling rate was 250 Hz and th& Bignal was band-pass
filtered at 0.5-100 Hz. Also a 50 Hz notch filtemsvused to suppress the line
noise [69].

0,
ofoNoRoNo
© 0.0 0.0 0.0
ofcNcRoNe
® 00
®

Figure 4-5 : Electrode configuration used in the eperiment [69].
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4.2.2 Explanation of the Date

Among the provided two sessions the first sessamsed as training data and
second one is used as evaluation ' The time sgments used to extract C

features for training and evaluation data is shin Figure 4-6.

Beep

train time segment

25t04.5
Cue
Fixation cross
o
0 1 2 3 4 5 6 7 8 t(s)
2s windows

< >

evaluation time segment
2.5t04.5

Figure 4-6 : The time segments used in feature extraction for &#ining and evaluation dat:
(adapted from [69]).

CSP featuregxtracted from the | window between t=2.5andt=4.5s in each
trial of the training date are used to construct SVM classification mc The
evaluation features are extracted using the sli@smgvindowsbetweent=1s and
t=6s in each trial of theevaluation data Therefore, the classification moc
produces an output betwet=3s and t=6s with a delay of ZEhe windows slidt
by 10 samples theevaluation dataBy this way,an output is generated 25 tirr
per second. This timing scheme is also prefc by the winner algorithm of th

competition [70].
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4.2.2.1Results

Validation Results
The validation and the evaluation procedure is saitte the procedure followed
in the experiments on BCI Competition 1l datase{séction 4.1). The sets of

parameters used in the validation process are dngtw.

y: {2 2% .. A
Cc:{2% 2 2% (4-2)
p:{2,4,...,10}

An example validation accuracy table is given inbl€a4-13. In the table,
validation kappa values for differept- C - p combinations are given for subject
A09 with CAR spatial filtering, 6-8Hz band-passtdiing, linear feature
normalization and no feature vector normalizatids.it is seen in the table, there
exists 3 different maximum values for the validati@appa value. The values are
marked with boxes. In such cases, the combinatidim tve minimum parameter
values is selected considering the computationdbpeance in the classification
stage.
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Table 4-13 : Validation kappa values for subject AQ with different y - C - p combinations.
(spatial filtering: CAR, temporal filtering: 6-8Hz band-pass, feature normalization: linear,
feature vector normalization: No)

log(y): -10 -8 -6 -4 -2 0 2
log(C)
-1 0,63 0,63 0,74 0,80 0,83 0,81 0,81

2 3 074 08 08 08 |08 |08 080
7 083 08 (087 |08l 08 08 080

1 054 054 063 070 076 078 039
4 3 063 072 08 08l 08 08 080
7 081 08 08 074 078 08 080
1 065 065 072 078 08 08 054
6 3 072 08 08 08 08 08 065
7 081 08 08 08 08l 065
-1 050 052 063 067 074 078 0,19
8 3 063 072 08 074 08 08 057
7 08 074 070 070 08 08 057
-1 061 065 074 078 078 070 039
10 3 074 078 08 076 076 078 059
7 08 074 076 078 076 078 059

Overall Evaluation Results

After optimizing the parameters using validatiorpja values in the training set;
the methodology is evaluated using the test sed. mkthodologies used in the
experiment are given in Table 4-14.
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Table 4-14 : The signal processing techniques uséd classify the CSP features extracted

from the BCI Competition IV data

Spatial filter (SF):

Common Average Reference (CARYr
no (NO) filter

Temporal filter (TF):

8-30 Hz bandpass filter (YES)
no (NO) filtering

Feature Normalization (FN):

Linear Feature Nornetian (LFN)
Gaussian Feature Normalization (GFN)
No (NO) Normalization

Feature Vector NormalizationUnit-norm Feature Vector Normalizatiq
(FVN): (UFVN)
Classification: SVM

n

For evaluation Cohen’s kappa coefficient is usedessred in the competition. In

Table 4-15, the kappa coefficient values are gieereach subject under different

filtering, and normalization conditions.

The temporal filtering operation increases the lkappefficient as it is seen in

Table 4-15. The spatial filtering method CAR alsmreases the performance

slightly. If the normalization techniques are caoesed, only one linear

normalization seems to be sufficient. This may ibeee UFVN or LFN.

Under UFVN and CAR conditions, the kappa coeffitieslue for subject AO5 is
0.15 while it is 0.59 for the subject A09. This alsothe subject dependency of

the BCI procedures.
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Table 4-15 : The kappa coefficient values for diffeent subject, filtering, and normalization
types.

SF |[TF |FVN [FN AO1 | AO2 |AO3 |AO4 | AO5 |AO6 |AO7 | AOS | AO9 |AVG
CAR[NO [NO |GFN 0,39(0,14 | 0,48|0,16 | 0,00 | 0,12 0,02 | 0,46 | 0,35 | 0,24
CAR|[NO [NO |LFN 0,43(0,200,50|0,20|0,07 | 0,14 | 0,28|0,50 | 0,45 | 0,31
CAR|[NO [NO |NO 0,43(0,20/0,51|0,18|0,01|0,15|0,29|0,51 | 0,52 | 0,31
CAR [NO | UFVN | GFN 0,27 0,00 |0,09|0,00 | 0,00 |0,03|0,00|0,28 | 0,05 | 0,08
CAR [NO | UFVN | LFN 0,42(0,18|0,51|0,16|0,01|0,180,30|0,53 | 0,52 | 0,31
CAR |NO | UFVN | NO 0,43(0,200,53|0,20|0,08|0,15|0,28|0,53 | 0,51 | 0,32
CAR|YES|NO |GFN 0,45 (0,17 |0,48|0,34 0,07 |0,17|0,41|0,48 | 0,50 | 0,34
CAR|YES|NO |LFN 0,56 (0,25 |0,57|0,41|0,18 |0,22 | 0,44 |0,54 | 0,58] 0,42
CAR|YES|NO |NO 0,56 [0,26 | 0,55|0,40| 0,15 | 0,22 | 0,44 |0,54 | 0,59 | 0,41
CAR | YES | UFVN | GFN 0,01 (0,01 |0,01|0,00|0,00|0,02|0,11|0,14 | 0,26 | 0,06
CAR | YES | UFVN | LFN 0,56 (0,24 |0,57|0,35|0,14 |0,210,52|0,52 | 0,57 | 0,41
CAR | YES | UFVN | NO 0,56 [0,26 0,56 0,39 | 0,15 | 0,22 | 0,46 | 0,55 | 0,59] 0,42
NO |NO |NO |[GEN 0,39(0,10|0,47|0,19|0,02 |0,12|0,28 | 0,44 [ 0,50 | 0,28
NO |NO |[NO |[LFN 0,41(0,15|0,51|0,21|0,07 |0,15|0,27|0,49 | 0,47 | 0,30
NO |NO |[NO [NO 0,42 (0,14 |0,52|0,21|0,06 | 0,16 |0,28|0,52 | 0,51 | 0,31
NO |NO | UFVN | GFN 0,33(0,07/0,36|0,13|0,00|0,08|0,23|0,35|0,39 | 0,21
NO |NO | UFVN |LFN 0,40(0,15|0,51|0,20|0,01|0,17|0,28|0,51|0,51 | 0,31
NO |NO | UFVN |NO 0,39(0,18|0,52|0,21|0,06 | 0,16 |0,26|0,50 | 0,53 | 0,31
NO |YES|NO |GFN 0,44 (0,14 |0,47|0,30|0,10 | 0,23 | 0,46 |0,54 | 0,47 | 0,35
NO |YES|NO |[LFN 0,55 (0,22 |0,55|0,36 | 0,14 | 0,23 0,45 | 0,54 | 0,58 | 0,40
NO |YES|NO [NO 0,53 (0,24 |0,54|0,39|0,13 0,24 |0,51|0,55 | 0,59 | 0,41
NO | YES|UFVN | GEN 0,41(0,080,37|0,20|0,04 |0,18|0,32|0,53 0,48 | 0,29
NO |YES|UFVN |LFN 0,53 (0,15 |0,56|0,32 0,13 |0,22|0,49|0,54 (0,53 | 0,38
NO |YES|UFVN |NO 0,54 (0,22 0,56|0,37|0,12|0,23|0,54|0,54 | 0,61 | 0,41

4.2.3 Conclusion

The maximum kappa value obtained in this experinsegiven with results of the

other research groups attended the competitiorabiel4-16. The average of the
kappa values obtained for each subject is companaith the other results. The
maximum kappa value is obtained for subject AO9s Happa value is almost

equal to the best two results in the competition.
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Table 4-16 : The results of BCI competition IV

Subject
group Avg.

AO1 | AO2 | AO3 | AO4 | ADO5 | AO6 | AD7 | AO08 | A09

1 0.57 | 0.68 | 042 | 0.75 | 0.48 | 0.40 | 0.27 | 0.77 | 0.75 | 0.61

2 052 | 0.69 | 0.34 | 0.71 | 044 | 0.16 | 0.21 | 0.66 | 0.73 | 0.69
METUBCI| 0,42 | 0,56 | 0,25 | 0,57 | 0,41 | 0,18 | 0,22 | 0,44 | 0,54 | 0,58
3 0.31 | 0.38 | 0.18 | 0.48 | 0.33 | 0.07 | 0.24 | 0.29 | 0.49 | 0.44

4 0.30 | 0.46 | 0.25 | 0.65 | 0.31 | 0.12 | 0.07 | 0.00 | 0.46 | 0.42

5 0.29 | 041 | 0.17 | 0.39 | 0.25 | 0.06 | 0.16 | 0.34 | 0.45 | 0.37

4.3 METU Brain Research Laboratory BCI Experiments

Depending on the experiments performed on BCI caoinpe Il dataset V and
BCI competition IV dataset lla, CSP based SVM dfasdion found suitable to
be used in BCI studies due to accuracy and perfocenaconsiderations.
Therefore, it has been the main classification rilgm used in Brain Research
Laboratory BCI experiments. These experiments @grbuped into to as offline
and online experiments. In the offline experimeintss aimed to find suitable
number and type of tasks to control a motor imadgemged BCI. Then, the
application developed depending on the offline expent results is tested in the

online experiment.

4.3.1 Offline Experiments

In the offline experiments conducted in METU Br&esearch Laboratories, it is
aimed to determine the number and types of motagery tasks for a specific
subject (subject A) to control a BCI. For that wasive different motor imagery

tasks are studied. These tasks are;

Imagination of tongue movements,
Imagination of left hand movements,
Imagination of right hand movements,

Imagination of left foot movements,

ok w0 b

Imagination of right foot movements.
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4.3.1.1Explanation of the Experiment

The subject A, a 27 year old male, attended 5 sapsrated by short breaks on
the same day. One run consists of 60 trials (12efwh of the five possible

classes), yielding a total of 300 trials.

In the experiments, the subject A was sitting rethin an ordinary armchair in

front of a computer screen. The timing scheme efttlals is the same with the
BCI Competition IV dataset 2a (see section 4.2The same paradigm is

extended to five classes. The images represeraicly @ass and the fixation cross
used in the trials are given in Figure 4-7.

YNNI

(@) (b) (©)
(d) (e) (f)

Figure 4-7 : The images representing (a) tongue, Xteft hand, (c) right hand, (d) left foot, (e)
right foot movement imagination and (f) the fixation cross used in the trials.
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The data acquisition is performed by 10-channel Ele@eloped for BCI studies
in METU Brain Research Laboratory. The electrodespdaced on the skull with
a standard EEG cap by applying conductive gel deoto decrease the contact
impedance. The montage of the electrodes is givéfigure 4-8 according to the
10-20 electrode system.

Figure 4-8 : Electrode configuration used in the eperiment.

All signals were recorded monopolarly with the mads serving as reference.
The signals were band-pass filtered between 0.1z 40 Hz via the analog
hardware. Also, an additional 50Hz analog notcterfilvas enabled to suppress
the line noise. Then, the signals were sampledd@0Hz with an amplification
factor of 10000 [71].

4.3.1.2Evaluation of the Data

5-fold cross validation is utilized to evaluate therformance in classifying
different motor imagery tasks. For that purposeheain has served as the test
data for evaluating the classifier constructed i remaining runs. The overall

performance is calculated taking the average ofeHopmance results. The
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classification accuracy, Cohen’s kappa coefficiaantd Nykopp’s information
transfer are used as performance measures in {herieents are. However;
Nykopp’s information transfer have been more sigaiit while selecting the

suitable number and types of task for an motor emagased BCI application.

4.3.1.3Results

In order to optimize the parametersC, andp in CSP based SVM classification,
randomly selected 75% of the training data is usembnstruct a classifier and the
remaining 25% is used to validate the performarid@emodel for the given the
vy - C - p combination. While dividing the training data irpartitions, uniform

distribution of the features for different classes considered. The final

classification model is constructed with the partarse giving maximum

validation kappa value using whole training dathef, the performance of the
model is evaluated on the evaluation data. Thega®es repeated 5 times for 5
different evaluation data selections (i.e. for eaftb runs). The average of the
repetitions will be referred as 5-fold cross valida performance. In Table 4-17,
the validation accuracy results; in Table 4-18datiion kappa coefficient results;
in Table 4-19, validation information transfer riéswbtained for each validation
process with different runs are given. In Table04-RPable 4-21, and Table 4-22
the average (5-fold cross validation) accuracy,pleapnd information transfer
values for different motor imagery task combinasiare given respectively. In
the motor imagery task combinations, each taslepesented with a number.

These numbers and corresponding motor imagery taskgiven below.

1: Imagination of tongue movements,

2: Imagination of left hand movements,
3: Imagination of right hand movements,
4: Imagination of left foot movements,

5: Imagination of right foot movements.
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Validation Results:

Table 4-17 : Validation accuracy results obtaineddr each validation process with different
runs.

Run: 1 2 3 4 5 Average
Tasks

12 60,38 69,20 69,77 66,34 74,59 68,06
13 63,15 71,00 72,63 78,51 76,14 72,29
14 63,64 66,26 77,94 77,37 74,43 71,93
15 64,13 75,49 75,11 67,73 78,35 72,16
23 51,88 62,50 72,04 65,20 67,97 63,92
24 53,84 68,06 46,81 45,34 54,41 53,69
25 50,00 55,07 59,25 51,47 67,65 56,69
34 51,39 59,48 69,22 62,91 60,87 60,77
35 54,00 59,64 68,45 63,48 58,09 60,73
45 60,62 64,54 53,54 54,25 64,62 59,51
123 43,85 52,18 62,13 59,91 60,73 55,76
124 38,13 58,12 46,02 46,30 56,26 48,97
125 37,31 46,95 53,05 45,42 62,47 49,04
134 48,09 52,56 60,28 61,87 56,37 55,84
135 41,34 51,53 56,00 51,69 55,56 51,22
145 36,76 53,16 48,35 50,65 51,36 48,06
234 32,79 49,18 45,83 43,08 42,54 42,68
235 33,61 38,02 45,21 48,64 44,28 41,95
245 31,75 43,90 34,79 43,68 46,95 40,22
345 41,67 49,56 39,16 41,72 40,09 42,44
1234 27,29 43,50 42,30 39,13 47,79 40,00
1235 32,84 41,59 43,27 44,69 42,57 40,99
1245 26,80 42,08 38,21 38,11 45,71 38,18
1345 31,74 45,71 39,73 44,04 40,69 40,38
2345 27,49 36,52 29,16 32,31 35,83 32,26
12345 21,73 35,49 34,38 37,75 38,63 33,60
Average 43,32 53,51 53,18 52,37 55,57 51,59
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Table 4-18 : Validation kappa coefficient results obtained for each validation process with
different runs

Run: 1 2 3 4 5 Average
Tasks

12 0,21 0,38 0,40 0,33 0,49 0,36
13 0,26 0,42 0,45 0,57 0,52 0,44
14 0,27 0,33 0,56 0,55 0,49 0,44
15 0,28 0,51 0,51 0,35 0,57 0,44
23 0,04 0,25 0,44 0,30 0,36 0,28
24 0,08 0,36 -0,06 -0,09 0,09 0,07
25 0,00 0,10 0,16 0,03 0,35 0,13
34 0,03 0,19 0,38 0,26 0,22 0,22
35 0,08 0,19 0,37 0,27 0,16 0,21
45 0,21 0,29 0,06 0,08 0,29 0,19
123 0,16 0,28 0,43 0,40 0,41 0,34
124 0,07 0,37 0,19 0,19 0,34 0,23
125 0,06 0,20 0,29 0,18 0,44 0,23
134 0,22 0,29 0,40 0,43 0,35 0,34
135 0,12 0,27 0,34 0,28 0,33 0,27
145 0,05 0,30 0,23 0,26 0,27 0,22
234 -0,01 0,24 0,19 0,15 0,14 0,14
235 0,00 0,07 0,18 0,23 0,16 0,13
245 -0,02 0,16 0,02 0,16 0,20 0,10
345 0,13 0,24 0,08 0,13 0,10 0,13
1234 0,03 0,25 0,23 0,19 0,30 0,20
1235 0,10 0,22 0,24 0,26 0,23 0,21
1245 0,02 0,23 0,18 0,17 0,28 0,18
1345 0,09 0,28 0,20 0,25 0,21 0,21
2345 0,03 0,15 0,05 0,10 0,14 0,10
12345 0,02 0,19 0,18 0,22 0,23 0,17
Average 0,10 0,26 0,26 0,24 0,30 0,23
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Table 4-19: Validation information transfer results obtained for each validation process
with different runs

Run: 1 2 3 4 5 Average
Tasks
12 0,03 0,11 0,46 0,09 0,20 0,18
13 0,06 0,13 0,45 0,26 0,21 0,22
14 0,06 0,09 0,29 0,27 0,22 0,18
15 0,16 0,20 0,20 0,09 0,25 0,18
23 0,01 0,05 0,16 0,07 0,10 0,08
24 0,02 0,11 0,05 0,07 0,01 0,05
25 0,02 0,02 0,03 0,00 0,09 0,03
34 0,02 0,03 0,11 0,05 0,03 0,05
35 0,01 0,03 0,10 0,07 0,02 0,05
45 0,03 0,07 0,01 0,01 0,06 0,04
123 0,06 0,15 0,26 0,26 0,26 0,20
124 0,03 0,21 0,77 0,22 0,33 0,31
125 0,10 0,12 0,21 0,14 0,28 0,17
134 0,09 0,18 0,26 0,31 0,19 0,21
135 0,06 0,45 0,19 0,32 0,28 0,26
145 0,04 0,16 0,20 0,24 0,50 0,23
234 0,09 0,14 0,16 0,10 0,11 0,12
235 0,08 0,02 0,09 0,14 0,08 0,08
245 0,07 0,11 0,03 0,05 0,12 0,08
345 0,07 0,11 0,04 0,05 0,03 0,06
1234 0,07 0,29 0,22 0,39 0,25 0,24
1235 0,13 0,21 0,22 0,25 0,23 0,21
1245 0,07 0,16 0,18 0,36 0,65 0,28
1345 0,11 0,24 0,17 0,53 0,40 0,29
2345 0,08 0,08 0,14 0,09 0,12 0,10
12345 0,12 0,35 0,23 0,52 0,26 0,30
0,06 0,15 0,20 0,19 0,20 0,16
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Overall Evaluation Results:

Table 4-20 : Average (5-fold cross validation) claffication accuracies for different motor
imagery task combinations

CAR CAR NO NO

LFN UFVN LFN UFVN
12
13
14
15
23
24
25
34
35
45
123
124
125
134
135
145
234 43,17 44,70 40,83 42,68
235 43,46 44,09 43,49 41,95
245 39,21 39,96 38,47 40,22
345 43,17 42,48 41,28 42,44
1234 40,03 40,36 40,10 40,00
1235 40,70 41,83 39,01 40,99
1245 36,48 37,16 37,26 38,18
1345 39,69 40,60 40,10 40,38
2345 33,13 33,06 30,87 32,26
12345 32,41 33,06 31,30 33,60
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Table 4-21 : Average (5-fold cross validation) kapp values for different motor imagery task
combinations

CAR CAR NO NO
LFN UFVN LFN UFVN
12
13
14
15
23
24
25
34
35
45
123
124
125
134
135
145
234 0,15 0,17 0,11 0,14
235 0,15 0,16 0,15 0,13
245 0,09 0,10 0,08 0,10
345 0,15 0,14 0,12 0,13
1234
1235
1245 0,15 0,16
1345
2345 0,11 0,11 0,08 0,10
12345 0,16 0,16 0,14 0,17

Average: 021 02 02 023
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Table 4-22 : Average (5-fold cross validation) infomation transfer values for different
motor imagery task combinations

CAR CAR NO NO
LFN UFVN LFN UFVN
12 0,07 0,10
13 0,10
14
15
23 0,10 0,07 0,07 0,08
2 4 0,05 0,05 0,07 0,05
25 0,05 0,04 0,05 0,03
34 0,05 0,05 0,05 0,05
35 0,03 0,05 0,04 0,05
45
123
124
125
134
135
145
234
235
245 0,08 0,09 0,08 0,08
345
1234
1235
1245
1345
2345
12345
Average:
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If the average of the accuracy, kappa and infownatiansfer values for different
motor imagery task combinations are analyzed inlelfdb20, Table 4-21, Table
4-22; it is seen that the maximum average valuesoftained for no spatial
filtering and unit-norm feature vector normalizatioCAR filtering did not
contribute the results as in the experiments on I[B@ind IV competition dataset.
The improvement that CAR filtering provided theuks was biggest in the BCI
Competition Il experiments. It also provided agkli improvement in the BCI
Competition IV experiments. However the resultstatier without using a CAR
filter in this experiment. This may be due to thenter of electrodes used in the
calculation of the CAR filter. It was 32 in BC| Cqetition 11l experiments, 22 in
BCI Competition IV experiments and 8 in this expgnt. The common average

calculated using more number of electrodes give®e reliable reference.

It is observed in Table 4-20 and Table 4-21 thatdlierage kappa and accuracy
values decrease while the number of tasks aredsitrg as expected. However
the case may be different for information transW®ith no spatial filtering and
UFVN, which is the best considering the averagduat@n criteria values, the
information transfer is maximum for the tasks 1a8d 4 which are tongue, left
hand, right hand movement imaginations respectivehgrefore these tasks have

been studied in the online experiments.

76



4.3.2 Online Experiments

In these experiments a BCI that assist the pardlyzeople for controlling
environmental devices is designed and a test aicfor the design is realized.
The aim of the design is to basically make it palssior a subject to select items

from a menu by the help of motor imagery tasks.

There are several BCl based icon selection apmitatin the literature. An
overview of these applications is given in sectiba. In this study, a menu of
icons is designed in the form of a tree with 2 Isvén the first level, device
selection is performed and in the second levectmramand related to the device
is selected. The elements in the first level arel ridated commands for these
elements are summarized in Table 4-23. The firdtsstond levels of the menu

are shown in Figure 4-9 and Figure 4-10 respedgtivel

Table 4-23 : The elements and commands for the menigesigned.

Level 1: | Bed TV WC| Clima Light
Level 2: | -Up -Channel Up -Temperature Up -Light On
-Down | -Channel Down -Temperature Down  -Light Off
-Volume up
-Volume down

For each element in the menu, there exists icopsesenting different motor
imagery tasks at the upper left corner of each etgnt-or each element there are
two tasks to be performed consecutively. The reasarsing multiple tasks is to
increase the number of possible selections. Theanginof the tasks is
synchronized by the icon at the center of uppef dfathe windows. The motor
imagery tasks are performed when this icon is shoMre type and number of

tasks are selected according to the offline expamisiperformed with subject A.
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Figure 4-9 : The first level of the menu. The elenmes are selected by performing the tasks
symbolized with small icons at the top left corneof each element.
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Figure 4-10 The second level of the menu. The comms for (a) motorized bed, (b) TV, (c)

air conditioner, (d) light bulb are selected by peforming the tasks symbolized with small
icons at the top left corner of each element.
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To test the interface designed, an applicationmplémented in Visual Studio
.NET 2008 using C# language. The application isgrdated with the 10-channel
EEG data acquisition system developed for BCI stith METU Brain Research
Laboratory [71] for online experiments. In the ebipents, the first level of the
design given above is tested. For that purpose&loraty selected one of the five
elements in the first level of the menu is presgmtethe subject at the beginning
of each trial. The subject perceives the iconsesgmting the tasks to select the
element. Then the element disappears and synchtmrizicon appears after a
short time. The subject performs the imagery taskd the synchronization icon
is visible. After the imagination, the synchroniraticon disappears and the same
element appears in order to remind the secondttabk performed to select the
element. Then the synchronization icon is preseaggain for the imagination of

second task. The time scheme for a single tridllistrated in Figure 4-12.

In the application, three motor imagery tasks hia@en used to make selection
among 5 icons shown in Figure 4-11. These taskselezted to be imagination
of tongue movements, imagination of left hand moeets, and imagination of
left foot movements since that combination has iolexy the best transfer rate in
the offline experiments with subject A. The classifion model constructed for

these tasks in the offline experiments have beed ursthe online experiments.

The experiment is comprised of 4 runs separateshbyt breaks. In a single run,
each element in Figure 4-11 is presented 4 timegandom order. This yields a
total of 20 trials per run. The success of the etitjo perform the task couple to
select the element in the trial is shown in thedoVeft corner of the interface for
each task separately.
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Figure 4-11 : The interface of the test applicationimplemented. The EEG dataflow is
checked before and after each run from the windowni upper right corner.

The imagination period in each trial can be repbabeincrease the classification
accuracy. In this experiment 1 and 2 repetitiores tasted. More repetitions are
not tried since increasing time results in fatigared concentration loss in the

subject. The time scheme of a single trialNarepetitions is given in Figure 4-12.
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Figure 4-12 : The time scheme of a single trial foN repetitions.

The results for the tasks related to the elemeftsh® menu are recorde
separately and given Table 4-24.
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Table 4-24 : The accuracy results of the online egpiments.

- Accuracy
Run no Number of repetitions
Task 1 Task 2
1 1 6/20 8/20
2 1 9/20 6/20
3 2 13/20 9/20
4 2 7120 11/20

The random accuracy for selecting one of threestasB3.3%. In this experiment,
this selection is performed with maximum 65% aacyrin the 2-repetitions
case. Although, this accuracy is low in terms afitoalling a BCI perfectly, the

value may increase with the training of the subjegularly.
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CHAPTER 5

CONCLUSION

In this study, different motor imagery tasks arasslified in EEG signal using
several signal processing techniques. These tesbsigan be summarized as

follows:

» Signal enhancement: band-pass filtering, Small agiph (SL) filtering,
Large Laplacian (SL) filtering and common averagéemrence (CAR)

filtering

* Feature extraction: Common Spatial Pattern (CSR)WweP Spectral
Density (PSD), Principal Component Analysis (PCA)

* Normalization: Linear Feature Normalization (LFNJaussian Feature
Normalization (GFN), Unit-norm Feature Vector Notipation (UFVN)

» Classification: Support Vector Machines (SVM), Adial Neural
Networks (ANN)

» Evaluation: classification accuracy, Cohen’s kappafficient, Nykopp’s

information transfer

All these methodologies are experimented on theseat provided for BCI
Competition Ill. In the experiments it is observibdt CSP features give better
results than PSD for both SVM and ANN classificaioTherefore it is preferred
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in the experiments on BCI Competition IV datasetl AMETU Brain Research

Laboratory experiments.

It is also observed that CAR filtering enhances doality of the EEG signal
compared to the no filtering, LL filtering, and Siltering cases. However, the
contribution of the CAR filtering to the classiftean accuracy decreased with the
decreasing number of electrodes. The improvementGAR filtering provided to
the results was highest in the BClI Competitionebtperiments in which CAR is
calculated using 32 electrodes. It also providetight improvement in the BCI
Competition IV dataset experiments in which 22 wtetes are used. However,
the results were better without using a CAR filtethe experiments conducted in
METU Brain Research Laboratories with 10 electroddse common average

calculated using more number of electrodes gavera neliable reference.

Another observation in the experiments is the e¢ffet temporal filtering.
Filtering the EEG signal in the pass band 8-30Hzdased the classification
accuracy in the experiments. This is expected sihge the frequency band

related to the motor imagery.

The best result is obtained with CSP-based ANNB@1 competition Ill. An

average accuracy of 70,96% is obtained among sulgects. This result is better
than the winner of the competition. However the SY#dults for CSP features
were also comparable with the other results incthrapetition. Furthermore, the
training and testing duration of SVM was observed¢ 4-5 times shorter than
ANN. This makes SVM preferable in the experimemsl anline applications
considering short response time. The CSP-based BVdso tested on the BCI
Competition IV data which includes EEG of 4 diffetenotor imagery tasks.
According to the obtained results, CSP-based SVMtha & rank among the
participants of the competition with the averagepa value of 0.42 for all

subjects.
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After experimenting the methodologies on the dateorded from different
subjects for BClI Competition Il and IV, some expeznts have also been
conducted in the METU Brain research laboratorythe offline part of these
experiments, 5 different motor imagery tasks aredistl with subject A.
Depending on the information transfer calculated ddferent combinations of
these tasks, tongue movement imagination, left modement imagination, left
foot movement imagination tasks found suitablesiaibject A to control a motor
imagery based BCI. Considering this specific ofliexperiment, an interface is
designed for subject A to control assistive envinental devices. Then, a test
application is implemented and online performantehe design is evaluated.
The subject A achieved to select one of the thaskstwith a maximum accuracy
of 65% in one of the runs. Although, this accureckpw in terms of controlling a

BCI perfectly, the value may increase with thertirag of the subject regularly.

To summarize, the building blocks of a BCI systera studied step by step,
focusing on a SMR-based environmental control sysitethe scope of the thesis.
One of the major contributions of the thesis to therature is the use of
multiclass extension of CSP features together widhlayer feed-forward ANN to

classify SMR. With employing CAR, and 8-30 Hz bagraks filter together with

this classification approach, it is achieved tssify 3-class EEG data provided in
BCI Competition 1ll with an average accuracy of 3&¥%. This result is 2,31%
better than the winner of the competition. Anotbentribution is the SMR-based
BCI design for controlling assistive environmendivices. In the early online

experiments to evaluate the potential of the deggrmising results are obtained.
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