

FPGA IMPLEMENTATION OF REAL TIME DIGITAL VIDEO
STABILIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İSMAİL ÖZSARAÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2011

Approval of the thesis:

FPGA IMPLEMENTATION OF REAL TIME DIGITAL VIDEO
STABILIZATION

submitted by İSMAİL ÖZSARAÇ in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen ________________
Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. İlkay ULUSOY ________________
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Tolga ÇİLOĞLU ________________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlkay ULUSOY ________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI ________________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Şenan Ece GÜRAN SCHMIDT ________________
Electrical and Electronics Engineering Dept., METU

Dr. Erkan YAVUZ ________________
Image Processing Department, ASELSAN, MGEO

Date: February 10, 2011

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last Name : İsmail ÖZSARAÇ

 Signature :

iv

ABSTRACT

FPGA IMPLEMENTATION OF REAL TIME DIGITAL VIDEO
STABILIZATION

Özsaraç, İsmail

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. İlkay Ulusoy

February 2011, 95 pages

Video stabilization methods are classified as mechanical and digital. Mechanical

methods are based on motion sensors. Digital methods are computer programs and

classified into two as time domain and frequency domain based on the signal

processing methods used for the motion analysis. Although, mechanical methods

have good real time stabilization performance, they are not suitable for small

platforms such as mobile robots. On the other hand, digital video stabilization

methods are easy to implement on various hardware, however, they require high

computational load and long processing time.

Two different digital video stabilization methods, one frequency and one time

domain algorithms, are implemented on FPGA to realize their real time

performances. Also, the methods are implemented and tested in MATLAB. FPGA

results are compared with MATLAB’s to see the accuracy performance.

v

The input video format is PAL of which frame period is 40ms. The FPGA

implementation is capable of producing new stabilization data at every PAL frame

which allows the implementation to be classified as real time. Also, the simulation

and hardware tests show that FPGA implementation can reach the MATLAB

accuracy performance.

Keywords: Real Time Digital Video Stabilization, Phase Correlation, Full Search,

FPGA

vi

ÖZ

GERÇEK ZAMANLI SAYISAL VİDEO SABİTLEME’NİN FPGA
UYGULAMASI

Özsaraç, İsmail

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. İlkay Ulusoy

Şubat 2011, 95 sayfa

Video sabitleme yöntemleri mekanik ve sayısal olarak sınıflandırılır.Mekanik

yöntemler hareket algılayıcılar üzerine kuruludur. Sayısal yöntemler bilgisayar

programlarıdır ve hareket analizi için kullandıkları sinyal işleme yöntemine göre

zaman bölgesi ve frekans bölgesi olarak iki sınıfa ayrılırlar. Mekanik yöntemler iyi

gerçek zaman sabitleme performansına sahip olmalarına rağmen, hareketli robotlar

gibi küçük platformlar için uygun değillerdir. Diğer taraftan, sayısal video

sabitleme yöntemlerini değişik donanımlarda uygulanmak kolaydır, ancak bunlar

yüksek hesaplama yüküne ve uzun işlem zamanına ihtiyaç duyarlar.

İki farklı sayısal video sabitleme yöntemi, biri frekans diğeri zaman bölgesi

algoritmaları, gerçek zaman performanslarını anlamak için FPGA üzerinde

uygulanır. Ayrıca, yöntemler MATLAB’ta uygulanır ve test edilir. FPGA sonuçları

MATLAB’ınkiler ile doğruluk performansının görülmesi için karşılaştırılır.

vii

Giriş video yapısı çerçeve süresi 40 ms olan PAL’dır. FPGA uygulaması her PAL

çerçevesinde yeni bir sabitleme verisi üretme yeteneğine sahiptir, bu da

uygulamann gerçek zamanlı olarak nitelendirilmesine olanak sağlamaktadır. Ayrıca,

benzetim ve donanım test sonuçları FPGA uygulamasının MATLAB doğruluk

performansına ulaşabildiğini göstermektedir.

Anahtar Kelimeler: Gerçek Zamanlı Sayısal Video Sabitleme, Faz İlintisi, Tam

Arama, FPGA

viii

 To My Wife,

To My Family…

ix

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere thanks to my supervisor Assist. Prof. Dr.

İlkay ULUSOY, for her support, friendly attitude and encouragement at each stage

of this thesis study.

I would like to thank to ASELSAN, MGEO Electronics Design and Image

Processing Departments for the support given throughout this study.

I would like to forward my appreciation to all colleagues for their continuous

encouragement.

I would like to present my thanks to Örsan AYTEKİN for sharing his knowledge.

I would like to thanks to my parents, Hüseyin ÖZSARAÇ and Gülbeyaz

ÖZSARAÇ and my sister Fatma ÇAKIROĞLU and my brother M. Sefa

ÖZSARAÇ for their support and unlimited love.

Lastly, special thanks to my wife, Havva ÖZSARAÇ for all her support, guidance,

sharing her knowledge and help in implementation and for showing great patience

during my thesis.

x

TABLE OF CONTENTS

ABSTRACT... IV

ÖZ .. VI

ACKNOWLEDGMENTS ... IX

TABLE OF CONTENTS.. X

LIST OF TABLES .. XIII

LIST OF FIGURES ..XV

CHAPTERS

1. INTRODUCTION... 1

2. DIGITAL VIDEO STABILIZATION METHODS ... 4

 2.1. MOTION ESTIMATION .. 5

 2.1.1. Frequency Domain ... 5

 2.1.2. Time (Spatial) Domain... 10

 2.2. MOTION EVALUATION... 14

 2.3. FRAME CORRECTION ... 18

xi

3. IMPLEMENTATION OF REAL TIME VIDEO STABILIZATION................ 20

 3.1. REAL TIME VIDEO PROCESSING ENVIRONMENT 20

 3.1.1. Video Inputs ... 21

 3.1.2. Memory Interfaces ... 23

 3.1.3. Processing Units... 26

 3.1.4. Video Outputs .. 28

 3.2. PHASE CORRELATION FPGA IMPLEMENTATION.............................. 32

 3.3. FULL SEARCH FPGA IMPLEMENTATION... 40

4. IMPLEMENTATION RESULTS AND COMPARISONS 49

 4.1. MATLAB IMPLEMENTATION .. 49

 4.1.1. Phase Correlation Results .. 51

 4.1.2. Full Search Results... 59

 4.1.3. Comparison Between Phase Correlation and Full Search.......................... 64

 4.2. FPGA SIMULATION.. 68

 4.3. FPGA IMPLEMENTATION... 76

5. CONCLUSION AND FUTURE WORK ... 84

 5.1. CONCLUSIONS.. 84

xii

 5.2. FUTURE WORK... 86

REFERENCES... 87

APPENDIX A INTERNAL FPGA BLOCKS AND SIGNAL EXPLANATIONS.90

xiii

LIST OF TABLES

TABLES

Table 1 : Calculation of Frequency Domain Shift Values 10

Table 2 : Calculation of Time Domain Shift Values.. 13

Table 3 : Frequency Domain Motion Evaluation Approaches................................. 16

Table 4 : Time Domain Motion Evaluation Steps ... 17

Table 5 : Video Flow and Stabilization Steps.. 32

Table 6 : Phase Correlation Results & Block Size... 51

Table 7 : Phase Correlation Results & Block Location ... 53

Table 8 : Video Stabilization Results with Highest TA Block 54

Table 9 : PC Motion Evaluation Results.. 56

Table 10: Average pSNR and Computation Time Results for PC Motion Evaluation

Methods on Frame Sequence ... 57

Table 11: Average pSNR Results for PC Motion Evaluation Methods on Frame

Sequence .. 58

Table 12 : Full Search Results & Block Size... 60

Table 13: Average pSNR and Computation Time Results for FS Motion Evaluation

Methods on Frame Sequence .. 63

xiv

Table 14: Average pSNR Results for FS Motion Evaluation Methods on Frame

Sequence ... 64

Table 15: Average pSNR and Computation Time Results for Full Search

Approaches with Local Motion.. 66

Table 16: Average pSNR and Computation Time Results for Phase Correlation

Approaches with Local Motion.. 67

Table 17: FPGA Implementation Summary .. 77

Table 18: Full Search FPGA Summary ... 77

Table 19: Phase Correlation FPGA Summary ... 78

Table 20: Full Search FPGA Results ... 81

Table 21 : DDR2 SDRAM Controller Signals... 91

Table 22 : FFT IP Signals .. 94

xv

LIST OF FIGURES

FIGURES

Figure 1: General Digital Video Stabilization Flow .. 4

Figure 2: Sub-Block Size & Texture.. 6

Figure 3: Constant Sub-Block Locations ... 6

Figure 4: Dynamic Sub-Block Location .. 7

Figure 5: The Flow of Phase Correlation... 8

Figure 6: The Shift Directions and Regions of Sub-Blocks....................................... 9

Figure 7: Full Search Algorithm on the Image .. 11

Figure 8: Search Area & Sub-Blocks... 12

Figure 9: Peak Results for Low Texture .. 15

Figure 10: Area of Interest for the Correction ... 18

Figure 11: Reference & Current and Corrected Images... 19

Figure 12: Video Decoder Interface... 22

Figure 13: Video Frame Signals .. 23

Figure 14: SRAM Internal Structure.. 24

Figure 15: SDRAM Internal Structure... 24

xvi

Figure 16: SDRAM Controller .. 25

Figure 17: FPGA Parallel Structure ... 27

Figure 18: Internal FPGA Structure... 27

Figure 19: Video Output Interface ... 28

Figure 20: The Hardware Structure.. 29

Figure 21: FPGA Internal Structure... 30

Figure 22: Image Buffers in SDRAM.. 31

Figure 23: Video Flow in Stabilization.. 31

Figure 24: VSF Internal Structure.. 33

Figure 25: Texture Analysis Block .. 35

Figure 26: Phase Correlation Block ... 35

Figure 27: FFT_RAM Write/Read Sequence .. 36

Figure 28: Normalization Block .. 38

Figure 29: Magnitude Block .. 38

Figure 30: Frame Correction Operation... 40

Figure 31: VST Internal Structure.. 41

Figure 32: Reference Block & Search Area RAMs... 42

Figure 33: Data Flow from SDRAM to Internal RAMs .. 43

Figure 34: Full Search Block ... 44

xvii

Figure 35: Comparison Block .. 45

Figure 36: Reference & Current Block Pixel Value .. 46

Figure 37: Search RAM Read Operation... 46

Figure 38: Row Compare Block Internal Structure ... 47

Figure 39: Block Size & Texture Variation ... 51

Figure 40: Peak Surfaces at Low Texture .. 52

Figure 41: Different Block Locations ... 53

Figure 42: Texture Surface .. 54

Figure 43: Pixel Base Comparison from the Images ... 55

Figure 44: PC Motion Evaluation Results on Frame Sequence 57

Figure 45: PC Motion Evaluation Results on Frame Sequence............................... 58

Figure 46: Reference Sub-Block and Search Area .. 59

Figure 47: Search Areas on the Image ... 61

Figure 48: pSNR & Texture & MAD of Search Areas.. 61

Figure 49: FS Motion Evaluation Results on Frame Sequence 62

Figure 50: FS Motion Evaluation Results on Frame Sequence 63

Figure 51: Frame Sequence with Local Motion... 65

Figure 52: Full Search Approaches Results with Local Motion 66

Figure 53: Phase Correlation Approaches Results with Local Motion.................... 67

xviii

Figure 54: The Current Image and Reference Sub-Blocks 69

Figure 55: Full Search Reference Data Read... 69

Figure 56: Full Search Current Image Search Area Read.. 70

Figure 57: MAD Calculations and Results .. 70

Figure 57: Continuation ... 71

Figure 58: Full Search Calculation on a Frame ... 71

Figure 59: MATLAB & FPGA Full Search Comparison .. 72

Figure 60: Phase Correlation Sub-Blocks on Reference and Current Images 72

Figure 61: Phase Correlation Sub-Blocks Read Operation...................................... 73

Figure 62: Phase Correlation DFT Operation .. 73

Figure 63: Phase Correlation Data Flow.. 73

Figure 64: Phase Correlation FPGA Simulation Results ... 74

Figure 65: MATLAB & FPGA Phase Correlation Comparison.............................. 75

Figure 66: Altera Quartus II Design Environment... 76

Figure 67: Altera Signal Tap Screen.. 78

Figure 68: The Results of the Synthetic Shifts on Reference Image 79

Figure 69: The Search Areas on the Image.. 80

Figure 70: FPGA Implementation & Simulation FFT Inputs 83

Figure 71: FPGA Implementation & Simulation FFT Outputs 83

xix

Figure 72: SDRAM Controller Block Diagram... 90

Figure 73: Write Operation to Write_Port1 ... 92

Figure 74: Read Operation from Read_Port1 .. 93

Figure 75: FFT IP Block Diagram ... 93

Figure 76: FFT IP Input/Output Flow.. 95

1

CHAPTER 1

 INTRODUCTION

Video processing is widely used in many areas such as health, city planning, auto

industry, space and military where accurate image frames are required. For instance,

in a surgical operation where cameras are used, the operator needs real time video

which is stable to understand the correct location of the problem. In a military

system where object tracking is used, consecutive frames should be stable in the

spatial domain, so that tracking algorithm can work properly.

The first and necessary step of all video processing algorithms is to remove the

undesired global movements which can be in translational and rotational formats

[1]. The characteristics of these undesired motions are related with the platform

where the video source is located. In the avionic platforms all the movements

described above can be occurred, however in ground applications where the

motions are in spatial directions, the translational movements are most commonly

encountered [2]. These undesired motions can be removed by different video

stabilization methods.

There are mainly two approaches to stabilize the video frames, which are

mechanical and digital methods [3]. Mechanical methods use sensors (gyros and

accelerometer) to detect the motion and realize the stabilization by changing the

location of the camera against the direction of the movement. Although this

approach is very successful in stabilization and used in many platforms, its complex

and huge structure is not suitable for small robots in laboratory or handy cams.

2

On the other hand, digital video stabilization can be used at every platform where

hardware and software can be implemented.

Digital video stabilization methods have three implementation steps; motion

estimation, motion correction and frame correction. Motion estimation is the most

important and time consuming part. The motion estimation algorithms are mainly

grouped into two according to the information that they use; frequency and time

(spatial) domain [4]. Frequency domain algorithms are less sensitive to local

motions but their computational load is high, so frequency domain approaches are

not preferable for real time applications. There are several spatial domain

approaches which are generally classified as block based and feature based [3]

which have different computation load and calculation accuracies.

In this study, two different digital motion estimation approaches which are

frequency and spatial domain will be implemented in FPGA to see their real time

performance. The results of the methods will be compared according to

computation time, accuracy, and logic usage and power consumption.

Real time implementation requires a strict pipelining of the video processing

applications. Every task in the application list should be finished in a certain time

[5]. Since video stabilization is the first step of the whole video path, it should also

be completed according to real time constraints. In frequency domain

implementation, the sub-block method is used to reduce computation time and

hardware requirements. Because whole frame approach needs high speed external

memories and FPGAs which are not available on all platforms. In spatial domain,

Full Search (FS) algorithm is used which provides the most accurate results among

the other spatial approaches with its high computational load [2]. The computational

load of the FS algorithm can be handled with parallel structure of the FPGA.

This thesis study provides valuable comparison results about the performance of the

two different digital motion estimation approaches. These results are obtained by

3

implementing the algorithms in a real time video stabilization system which is

located on a mobile robot.

This thesis includes five chapters. First Chapter covers the introduction, problem

definition and the main goal of the study. The Second Chapter summarizes the

theoretical background of the proposed video stabilization algorithms. In the Third

Chapter, the elements of the real time video processing environment are mentioned.

Also, in this chapter the FPGA implementation steps of the algorithms are given.

The implementation and comparison results are provided in Chapter Four. Finally,

in Chapter Five the conclusion and future work of this study are given.

4

CHAPTER 2

DIGITAL VIDEO STABILIZATION METHODS

Digital video stabilization methods have three main parts. These methods start with

motion estimation, then the estimated motions are evaluated according to some

constraints and finally the shift on the frame is removed [7]. The stabilization flow

is shown in Figure 1.

Figure 1: General Digital Video Stabilization Flow

Motion estimation is the most critical and time consuming part of the flow [8]. The

results of this part determine the whole accuracy of the stabilization process. There

are different approaches for motion estimation but these approaches can be

generally grouped as time (spatial) and frequency domain. Motion evaluation is the

second part of the flow. The results of the motion estimation process are evaluated

and the incorrect estimations are removed. Frame correction is the last step to

stabilize the frame sequence. This process uses the evaluated motion information

and apply inverse shift to the corrupted video frame.

5

Motion evaluation and frame correction are mainly identical steps for all digital

video stabilization methods but motion estimation may be different in different

methods. In this chapter, two main motion estimation approaches; time and

frequency domain will be explained. For frequency domain, sub-block phase

correlation and for time domain, area based full searched algorithms will be

detailed.

2.1 MOTION ESTIMATION

2.1.1 Frequency Domain

The translational difference between the reference image and current image in time

domain results in phase difference in frequency domain. The basic implementation

of this method which provides the most accurate result uses the whole image frame

for the phase calculation [25]. However, using whole frame requires high

computational load which prevents real time implementation [2]. For that reason,

sub-blocks from the original frame are used in phase calculation.

Texture is the total intensity difference of the neighbor pixels. Since, sub-blocks are

small parts of the whole frame, they contain less texture and low texture may result

in faulty estimations. Therefore, selection of the sub-blocks is very critical for the

accuracy. There are two main criteria in the selection of sub-blocks which are size

and location.

To increase the texture, the size of the sub-block may be increased, but increase in

the size will result in higher computational load. Therefore, the optimum size

should be determined which should contain enough texture and be computable in

real time. Figure 2 is an example for the texture density according to the sub-block

size. The small sub-block contains less texture, and the larger sub-block contains

more texture.

Figure 2: Sub-Block Size & Texture

The second criterion is the location of the sub-block. There are two approaches for

the location; constant and dynamic. The constant sub-blocks are located on pre-

determined location on the image frame. As shown in Figure 3, these sub-blocks

may have different locations and orientations.

Figure 3: Constant Sub-Block Locations

The constant sub-block location method may also suffer from less texture. To solve

this problem, dynamic location method can be used. In this method, the location of

the sub-blocks can be changed according to the texture analysis. In Figure 4,

6

sub-block A contains less texture; however sub-block B contains more, so the sub-

block location is moved to location B.

Figure 4: Dynamic Sub-Block Location

Texture analysis (TA) is done by comparing the neighbour pixels in the sub-block

in both x and y direction.

∑∑∑∑
====

−−+−−=
N

x

N

y

N

x

N

y

xyPxyPxyPxyPTA
1221

),1(),()1,(),((2.1)

The location and size of the sub-blocks are arranged according to the texture

analysis. After that the phase correlation is started with the sub-blocks that have

more texture on the reference and current images.

Let Rsb and Csb represent the sub-blocks in reference and current images

respectively. Assume that there is a translational shift between the sub-blocks:

() ()ΔyΔx,yxCx,yR sbsb ++= . (2.2)

FR and FC are the two-dimensional Discrete Fourier Transforms (DFT) of the

sub-blocks Rsb and Csb. Firstly column DFT which is in x direction is calculated,

then the row DFT in y direction is calculated as follows:

7

dyedxeyxRvuF vyjuxj
sbR

ππ 22)),((),(−−∫∫= , (2.3)

. (2.4) dyedxeyxCvuF vyjuxj
sbC

ππ 22)),((),(−−∫∫=

If we put Csb (x + Δx, y + Δy) instead of Rsb in equation (2.3);

dyedxeyyxxCvuF vyjuxj
sbR

ππ 22)),((),(−−∫∫ Δ+Δ+=

 (2.5)

')')','((),()'(2)'(2 dyedxeyxCvuF yyvjxxuj
sbR

Δ−−Δ−−∫∫= ππ

')')','((),(2'22'2 dyeedxeeyxCvuF yvjvyjxujuxj
sbR

Δ−Δ−∫∫= ππππ

')')','((),('2'2)(2 dyedxeyxCevuF vyjuxj
sb

yvxuj
R

πππ −−Δ+Δ ∫∫=

),(),()(2 vuFevuF C
yvxuj

R
Δ+Δ= π

Thus, the translational shift in time domain, results in a phase difference in

frequency domain. This phase difference can be obtained by the normalized cross

power spectrum:

*

*
)(2

),(),(
),(),(

vuFvuF
vuFvuFe

CR

CRyvxuj =Δ+Δπ . (2.6)

The two dimensional Inverse Discrete Fourier Transform (IDFT) of the normalized

cross power spectrum gives the phase correlation surface P(x, y). Phase correlation

surface has a peak at location (Δx, Δy) due to the delta function in equation (2.7)

[2].

)(),()(21 yxjeFyxP Δ+Δ−= π ,
),(),(yyxxyxP Δ+Δ+= δ . (2.7)

Reference Image

Current Image

xΔ
yΔ

DFT (x)
DFT(y)

TIME DOMAIN

Rsb

Csb

FREQUENCY DOMAIN

),(vuFR

),(vuFC

IDFT (x)
IDFT(y)

Figure 5: The Flow of Phase Correlation

8

Figure 5 shows the whole flow of the phase correlation process. At the end of this

process, amplitudes of the phase correlation surface points are compared and the

maximum value (peak) is found. The location of the peak (Δx, Δy) is used to

estimate the translational shift between the sub-blocks.

The location of the peak gives information about the direction of the shift as well. If

we separate the sub-blocks into four regions, every region has its own shift

direction. Figure 6 shows the possible shift directions and the regions on the sub-

block. For example, if the peak is located in region (1), the shift is in the negative

direction for both x and y. The polarities of the shifts are arranged according to the

frame structures. y direction represents the rows and x direction shows the columns

(pixels). The row number is increasing in +y direction and the pixel number is

increasing in +x direction.

Figure 6: The Shift Directions and Regions of Sub-Blocks

Like the direction, the shift values are also calculated according to the location of

the peak. N is the dimension of the sub-block. The calculation of shift value differs

if the peak location is greater or less than (N/2). Table 1 shows the calculation steps

of the x and y shift values.

9

10

Table 1 : Calculation of Frequency Domain Shift Values

Algorithm
steps Description

1 Calculate the location of the peak value. (Δx, Δy)

2 If Δx is greater than or equal to (N/2). (Δx >= N/2)

 X_SHIFT = N - Δx + 1

3 If Δx is less than (N/2). (Δx < N/2)

 X_SHIFT = 1 - Δx

4 If Δy is greater than or equal to (N/2). (Δy >= N/2)

 Y_SHIFT = N - Δy + 1

5 If Δy is less than (N/2). (Δy < N/2)

 Y_SHIFT = 1 - Δy

2.1.2 Time (Spatial) Domain

There are different methods to calculate motion estimation in time domain. These

methods which are feature based, region based and area based use the similarities in

the reference and current images, respectively. Among these methods, area based

approach which is also called as Full Search (FS) provides the most accurate motion

estimation results [6].

Since reference and current images are translational shifted copies of each other,

they contain similar sub-blocks. FS tries to find the similar sub-blocks and assign

the translational shifts according to the sub-block locations.

FS works on search areas to find the similar sub-blocks. The current image is

divided into sub-search areas (SA). A sub-block is selected from the reference

image which is located at the centre of the search area. This sub-block is called as

reference sub-block. Then, every sub-block on the current image search area which

are called as current sub-block, are compared with the reference sub-block.

According to the comparison results, the shift between the reference and current

sub-blocks are obtained.

Figure 7 shows the search area on the current image, reference sub-block and

possible current sub-blocks around.

Figure 7: Full Search Algorithm on the Image

For the comparison between reference and current sub-blocks, correlation is used.

The correlation is obtained from the pixel intensity values by Mean Absolute

Difference (MAD). In equation (2.7), N is the dimension of the sub-block. Rsb(x, y)

and Csb(x, y) are the pixel intensity values on the reference and current sub-blocks

respectively.

2
1 1

),(),(

N

yxCSByxRSB
MAD

N

x

N

y
∑∑
= =

−
= (2.8)

The reference sub-block is compared with every possible current sub-block by

using MAD. Then the minimum MAD value is selected as the match between the

11

sub-blocks in the reference and current images. In spite of Frequency Domain

approach, the whole image is divided into search areas and every neighbor search

areas are checked. As a result, there occurs several match values between the

reference and current images. This match values contain the shift information. As

shown in Figure 8, search areas are neighbor of each other. This approach provides

accurate matching of the sub-blocks.

Figure 8: Search Area & Sub-Blocks

After finding the matched sub-blocks from reference and current images, the shift

values (motion estimations) are calculated according to the location differences.

Table 2 explains the algorithm for the calculation of shift values in time domain.

With the calculated shift values, like frequency domain, the texture analysis is done

on the reference sub-block. This analysis result is sent to the evaluation part with

the motion estimations and MAD.

12

13

Table 2 : Calculation of Time Domain Shift Values

Algorithm
steps Description

1

Let search area be MxM and block size be NxN
Let Rsb(x, y) be the center of the reference sub-block
Let Csb(x, y) be the center of the current sub-block
Let dx be the shift value in x direction and dy be the shift value
in y direction.
dx is equal to (Rsb (x) - Csb (x)).
dy is equal to (Rsb (y) - Csb (y)).
If dx is positive, then x-shift is negative, vice versa.
If dy is positive, then y-shift is negative, vice versa.

2 Take a search area from current image

3 Take a sub-block from reference image which is at the center of
the selected search area

4 Take a sub-block from current image which starts at the first point
of search area.

5 Set MAD to high value.

6 Calculate the MAD between the reference and current sub-block.

7
If MAD is less than the previous one, set MAD value to
calculated one.
Update dx and dy.

8
If the current sub-block reaches the end of the search area, pass to
the neighbor search area and move to step 9.
Else pass to the neighbor current sub-block and move to step 6.

9
If the search area reaches the end of the image, go to step 10.
Else assign dx and dy values as the shift values between the
reference and current image for this search area.

10 End of the algorithm

14

2.2 MOTION EVALUATION

The calculated translational shift values (motion estimations) between reference and

current images are evaluated according to their accuracy before using them in the

frame correction.

This evaluation is different for frequency and time domain as it is in motion

estimation. The number of frequency domain motion estimation results is less than

time domain results because frequency domain calculations are done on a

predetermined number of sub-blocks while time domain calculations are done for

whole image. Firstly, frequency domain evaluation will be detailed, and then time

domain approach will be explained

For frequency domain motion evaluation, there are two main criteria which are

texture analysis (TA) and the amplitude of the peak. TA and amplitude of the peak

determines how the estimated motion from the related block will effect the frame

correction.

If the texture of the selected sub-block is not high enough, the phase calculation in

frequency domain will not be correct and there occurs several peaks on phase

correlation surface with similar amplitudes as shown in Figure 9. Since the motion

estimations with low texture can not be used for the frame correction, they should

be filtered by a texture threshold (TT). This threshold value can be different

according to the application area. For instance, the threshold value can be lower if

the stabilization is performed on naval or airborne platform where texture is low.

On the other hand, if the stabilization is performed on a mobile robot in the

laboratory where texture is high, TT should be higher.

Figure 9: Peak Results for Low Texture

After the frequency domain motion estimations are filtered by TT, the amplitudes of

the peaks on the phase correlation surface are evaluated. Theoretically, there should

be only one peak on the surface and the other values should be zero. However, in

real time applications there can be blurring between the reference and current

images. Also, the pixel intensity values between the successive image frames can be

different because of the camera performance and the environmental changes.

Therefore, there occur several peaks with different amplitudes on the correlation

surface. The comparison of the highest peak with the other peaks gives valuable

information about the accuracy of the motion estimation. Also, there can be several

higher peaks with similar amplitudes, so the number of peaks which are higher than

a predetermined peak threshold (TP) is also a good data for the accuracy.

There are several approaches to determine the final shift values for frequency

domain by using the TA and peak amplitudes. These approaches require different

computation load according to their complexity and they provide different

accuracies which will be detailed in Chapter-4. Table 3 gives the approaches to

calculate the final shift value.

15

16

Table 3 : Frequency Domain Motion Evaluation Approaches

Abbreviation

NS : Number of Sub-Blocks used in motion estimation
NSF: Number of Sub-Blocks that can pass the filtering.
TT : Texture Threshold
AP : Peak Amplitude
As

PC : Phase Correlation Surface Average
TP : Peak Threshold
PH : Peak with highest amplitude
HPAR: The ratio of the PH to the As

PC.
XT: Sum of x-shift values.
YT: Sum of y-shift values.
XF : Final x-shift value
YF : Final y-shift value

Approach Description

WOTT
(Without TT)

Do not apply filtering by TT.
Calculate XT and YT.
XF = XT / NS;
YF = YT / NS;
(If XF or YF are not integer, they are rounded)

WTT
(With TT)

Apply filterin by TT.
Calculate XT and YT.
XF = XT / NSF;
YF = YT / NSF;

HP
(Highest Peak)

Apply filtering by TT.
Find the sub-block with PH.
Assign XF this sub-block’s x-shift value.
Assign YF this sub-block’s y-shift value.

WPT
(With TP)

Apply filtering by TT.
Apply filtering by TP.
Calculate XT and YT.
XF = XT / NSF;
YF = YT / NSF;

HPAR

Apply filtering by TT.
Apply filtering by TP.
Calculate HPAR for the filtered sub-blocks.
Find the sub-block with highest HPAR.
Assign XF this sub-block’s x-shift value.
Assign YF this sub-block’s y-shift value.

17

In time domain motion estimation, the number of calculated sub-block is related

with the image and sub-block size. Let, the image size is R x C and search area size

is M x M, then approximately (R / M)*(C / M) sub-blocks are used for the motion

estimation. Despite of frequency domain approach, time domain motion estimation

results many x-shift and y-shift values.

These shift values are called as local motion vectors which contain both local and

global motions. Local motions are the movements of the objects and global motion

is the translational shift. Therefore, the local shift values should be filtered to reach

the global values.

Like frequency domain, time domain also uses the texture analysis. Firstly, the

motion estimations are filtered by TT and then they are used in the evaluation. MAD

data shows how the reference and current sub-block match each other. If the MAD

is less, this means that there are not blurring, intensity change and the sub-blocks

are free of local motions. So, a MAD threshold (TMAD) is used to evaluate the

motion estimation values coming from the sub-blocks. Table 4 explains the time

domain motion evaluation steps.

Table 4 : Time Domain Motion Evaluation Steps

Abbreviation

NS : Number of Sub-Blocks used in motion estimation
NSF: Number of Sub-Blocks that can pass the filtering.
TT : Texture Threshold
TMAD : Mean Absolute Difference Threshold
XT: Sum of x-shift values.
YT: Sum of y-shift values.
XF : Final x-shift value
YF : Final y-shift value

Evaluation
Steps Description

1 Apply filterin by TT.

2 Apply filterin by TMAD.

3
Calculate XT and YT.
XF = XT / NSF;
YF = YT / NSF;

2.3 FRAME CORRECTION

Frame correction is realized by reverse shift operation on the current image. The

final shift values which are coming from the motion evaluation step are used in the

correction. Since borders of the image can disappear during the shake, frame

correction can not generate a complete image. Therefore, it is better to use the

images with lower resolution, otherwise some dark areas occurs at the borders.

For instance, if the image has a resolution of 576 (vertical) x 720 (horizontal) which

is PAL format, the resolution can be decreased to 512x512. Then, the correction can

be applied on at maximum of 32 pixels in the vertical and approximately 100 pixels

in the horizontal without losing any pixel. The resolution decrease may be different

between the usage areas. Some applications may require all image resolution and

accept the dark areas at the borders or some of them may use different lower

resolutions. Figure 10 shows the whole image, area of interest and the possible shift

values.

Figure 10: Area of Interest for the Correction

18

The correction is done by controlling the read sequence of the image from the

memory. If there is a shift in +y direction which is equal to Q, the first row is read

from the Qth row. This process results in an inverse shift in –y direction. Or if there

is –y shift between the reference and current image, the frame read starts at –Qth

row. For an image frame, minus row is not possible, so we accept the start row of

the area of interest as the first row. For the minus rows, we read from the upper side

of the area of interest.

Figure 11 shows the reference, current image and corrected images. In this figure,

there is a positive shift in y direction and the correction is realized by changing the

first row location.

Figure 11: Reference & Current and Corrected Images

19

20

CHAPTER 3

IMPLEMENTATION OF REAL TIME VIDEO STABILIZATION

In this thesis study, Phase Correlation (PC) and Full Search (FS) digital video

stabilization algorithms are implemented in Field Programmable Gate Arrays

(FPGA), since FPGAs are suitable processing units for the applications where

computation load is high [9].

The basic advantage of the FPGA structure is its flexibility. Namely, different tasks

which need to be run in parallel can be implemented in FPGA. Also, the tasks in the

FPGA can be changed by loading a new configuration. This is the basic difference

between the ASICs and FPGAs. ASICs can also be used for parallel tasks but they

can not be reconfigured [13].

However, only FPGA is not enough for real time video processing application,

external units are required for data management [10]. To clarify these units, firstly,

the elements of the real time video processing environment will be explained. Then,

the FPGA implementation of PC and FS algorithms will be detailed.

3.1 REAL TIME VIDEO PROCESSING ENVIRONMENT

Real time video processing requires a well defined timing between units. Every task

should be completed in a certain time to match with the real time constraints [12].

21

Also, some tasks should be constructed in a pipeline order to maintain video flow.

Pipelining structure will be explained in 3.1.3 section.

The processing starts with the video inputs. Incoming video frames are stored in

external memories. Then, the stored data is read by processing units and the results

are displayed via video outputs.

3.1.1 Video Inputs

There are mainly two types of video inputs; analog and digital. Analog videos are

widely used in many areas for years. The basic analog video standards are PAL

(Phase Alternation Line-Europe) and NTSC (National Television Standards

Committee-USA) which have been used since the foundation of the color TV [14].

Digital video standards are newer when compared to analog standards. T mheir

usage is increased by the design of high speed interfaces. The well known digital

standards are DVI (Digital Video Interface) and Cameralink [15, 16].

The type of video input is related with the capability of the hardware. In this thesis

study, the daughter card which is located on the main board may receive both

analog (PAL-NTSC) and digital (DVI) video inputs. There are integrated circuits

(ICs) to capture the video signals. Since the cameras produce PAL analog video,

our processing environment is constructed to receive analog video, but future

applications may also use DVI digital video.

PAL analog video which has a resolution of 576 (row) x 720 (pixel) @ 25Hz, is

captured by video decoder IC (Texas Instruments-TVP5154). This IC decodes the

analog video and produces digital signals which are sent to FPGA. There are

internal registers in the video decoder to control its functionality. These registers are

set according to the application, namely the video input may be converted to NTSC.

The registers are controlled by I2C (Inter Integrated Circuit) interface which is

implemented in FPGA [17]. Figure 12 shows the video flow from the cable to

FPGA.

Figure 12: Video Decoder Interface

Digital video signals are used to obtain active video pixels which carry the intensity

values of the captured scene. VSYNC signal indicates the active and blank time of

the video frame. It is high when the video frame is active and it is low in the frame

vertical blank. FIELD signal gives information about the frame field. PAL analogue

video is transmitted in interlace format [14]. Firstly odd lines then even lines are

transmitted. This interlace sequence is also related with FIELD signal, namely,

when FIELD is high, it means that odd field is active and when it is low even field

is active. HSYNC is used for the pixel lines and PIXEL VALID signal covers the

active PIXEL DATA which is 8-bit.

PIXEL DATA is sent to the FPGA in YCbCr format. In this format Y carries the

luminance information and Cb & Cr hold the chrominance data [18]. In this

implementation only Y data will be used, for this reason Y data is separated from

the other data by using the PIXEL VALID and PIXEL CLOCK signals. PIXEL

CLOCK is 27MHz for the digitized PAL video. Figure 13 shows the digital video

frame signals and their orientation according to each other.

22

Figure 13: Video Frame Signals

3.1.2 Memory Interfaces

In digital video stabilization, external memories are used to store data which are the

pixel intensity values before or after processing. There are mainly two types of

memories which are used in real time video processing applications. These

memories are SRAMs (Static Random Access Memory) and SDRAMs

(Synchronous Dynamic Random Access Memory).

SRAMs are formed in address-data format. There are address locations that store

the data which is shown in Figure 14. They provide quick reach to the address

locations, namely write/read operation only takes a few clock. For that reason, they

are suitable for the video processing applications where pixel values from different

line-column locations are required [19]. However, SRAMs suffer from memory

capacity and speed. Most of the SRAM bus interface is not fast as SDRAMs and

there is not large memory space as in SDRAMs.

23

Figure 14: SRAM Internal Structure

SDRAMs are in bank-row-column-data structure. The banks are the main storage

units and every bank is formed by rows which contain columns. The data is stored

in these columns. The internal structure of SDRAM is shown in Figure 15. Since,

SDRAM structure is more complex when compared with SRAMs; their write/read

operations require more clock. First of all, the bank is selected, then the row is

opened and the data can be written in or read from the column. If the write/read

operation continues on the same row, the next operation only takes one clock. So,

SDRAMs are suitable for applications where the same line is written or read. Also,

SDRAMs have high data bandwidth since they can work in high clock frequencies.

In video stabilization, the basic idea is to compare the lines from reference and

current image. Therefore, SDRAMs are more suitable for the stabilization and used

in other stabilization systems [20].

Figure 15: SDRAM Internal Structure

24

There are several internal blocks in FPGA implementation that require write/read

interface with SDRAM. These blocks may try to reach memory at the same time.

Therefore, a memory management block is implemented to control the data flow.

This block is called SDRAM Controller and shown in Figure 16.

Figure 16: SDRAM Controller

SDRAM Controller consists of write/read buffers, SDRAM Arbiter and SDRAM

Interface. Write buffers are used as a pre-cache to prevent data lost. Read buffers

provide continues data flow for the read blocks since arbiter can load the buffers

before they are needed. The total number of write/read buffers is six and the total

number can be changed by slight code modification on the arbiter. The write/read

sequence and signals of these buffers will be detailed at APPENDIX A.

SDRAM arbiter controls the write/read operation to the SDRAM memory. It checks

the buffers for a write or read request one by one. The priority of the SDRAM is for

25

26

write buffers because the incoming data should be stored as quick as possible to

prevent buffer overwrite and data lose.

SDRAM Interface generates the necessary signals for SDRAM memory; it writes or

read according to control signals that come from the arbiter. This SDRAM Interface

is an IP (Intellectual Property) provided by Altera (FPGA Vendor) [21].

3.1.3 Processing Units

The processing unit selection is done according to the application requirements. For

the applications where complex mathematical operations are required DSP (Digital

Signal Processor) can be used [22]. For the algorithms that require iterative

calculations a CPU (Central Computing Unit) is a better selection. The graphic

processor can be adapted for specific video processing applications [23]. Among all

these different processing units, high computation load is a problem, especially

when parallelism is required. FPGAs are dedicated hardware units to solve such

problems [11].

The main sub-unit of an FPGA is LE (Logic Element). LEs can be configured

according to the application. Since, LEs are individual, there can be different

combinations which can work in parallel. This capability makes the FPGAs proper

units that can handle high computational load [9].

Figure 17 shows how FPGA parallel structure works. There are three tasks in the

application, task-1’s and task-2’s outputs are sent to the task-3. Each task is

implemented by different LE combination, so these tasks can be completed at the

same time. Also this is a good example to explain pipeline structure. Each task

receive its input and generate the outputs, outputs of some tasks become the inputs

of another task. Therefore, there exist a pipeline and in every clock cycle, each task

may continue its process.

Figure 17: FPGA Parallel Structure

In this thesis study, Cyclone III EP3C120 FPGA is used as the processing unit. This

FPGA contains 119,088 LEs, 4 PLL (Phase Locked Loop), 3,981,312 internal

memory bits and 576 9x9 dedicated multipliers [19]. PLLs generate different clocks

from the input clock. In an FPGA implementation many different clock domains are

required by different blocks. Internal memory bits are used by the blocks which

need to store small amount of data and can not access to external memories like

SDRAMs. Dedicated multipliers are used for the mathematical operations. In Figure

18, the internal structure of FPGA is given.

I/O
INTERFACE

LEs

PLL

Internal
Memory Multipliers

Figure 18: Internal FPGA Structure

27

3.1.4 Video Outputs

Video outputs are used to display the results of the processing blocks. In video

stabilization, the output is the stabilized video sequence, in stereo matching it is the

disparity map and in object tracking, it is the sign on the object. Like video inputs,

there are two video output types; analog and digital. All video input standards are

also valid for video outputs.

Analog video outputs can be displayed on CRT (Cathode Ray Tubes) monitors,

digital outputs are displayed on digital monitors like LCD (Liquid Crystal Display).

In this thesis study, the output of the stabilization algorithm will be displayed on

LCD via DVI standard. The DVI signals are generated by FPGA and the physical

transmission is handled by DVI transmitter IC (Texas Instruments-TFP410).

Figure 19 shows the video output interface. DVI transmitter receive the necessary

control signals and pixel values from the FPGA and generates the physical

transmission signal according to the standard. There are 4 output channels in the

transmission, these channels are differential. CH-0, CH-1 and CH-2 carry the pixel

values and synchronization signals, CLOCK channel transmits the clock .

Figure 19: Video Output Interface

28

For the real time video processing environment, Altera Cyclone III Development

Board and Bitec HSMC (High Speed Mezzanine Card) daughter cards are used

[19]. Daughter cards provide video input and output interfaces; they are plugged to

the Cyclone III main board. Figure 20 shows the hardware structure and the

components on the cards; also in Figure 21 the internal structure of the FPGA is

given.

Figure 20: The Hardware Structure

The digitized analog video signals are read by the video input interface. Then, this

video is written to the specific location of SDRAM memory by video write

interface. Reference and current images are written to the different part of the

memory and video read blocks are informed about the locations. After video write

block finishes the operation, video read blocks get the reference and current image

from the memory. Video stabilization block processes the data and calculates the

29

shift values between the images. Finally, video output block read the current image

according to the shift values and display it on the screen.

Figure 21: FPGA Internal Structure

There are three input image buffers (IIB) and three output image buffers (OIB) in

SDRAM. IIBs are used to store reference and current images. The incoming video

frames are written to these buffers consecutively. OIBs are used for display

purposes, the current image is displayed from these buffers according to the

calculated shift values. Figure 22 shows the buffers and video connections.

Three buffers method prevents overwrite problem, while two buffers are used for

processing, the other buffer is used to store the incoming video frame. In output

path, the output video may have a different frame rate than input video, so using

three buffers provide opportunity to change frame rate without data lost.

30

Figure 22: Image Buffers in SDRAM

Figure 23: Video Flow in Stabilization

Figure 23 shows the video flow in digital video stabilization and Table 5 explains

the steps.

31

32

Table 5 : Video Flow and Stabilization Steps

Abbreviation

FR : Frame
ref : Reference Image.
cur : Current Image.
VS : Video Stabilization
ME : Motion Estimation
OF : Output Frame.
IIB : Input Image Buffer
OIB : Output Image Buffer

 Steps Description

S1
Write FR-1 to the IIB-1 and OIB-1
FR-1 is the first frame and it is the initial reference image.

S2
Write FR-2 to the IIB-2 and OIB-2
FR-2 is the initial current image.
Set Δx & Δy (shift values) to zero.

S3

Write FR-3 to the IIB-3 and OIB-3
Read OIB-1 (FR-1) according to Δx & Δy for video output display.
Read IIB-1 according to Δx & Δy as reference image (FR-1).
Read IIB-2 as current image (FR-2).
Run ME algorithm and update Δx & Δy .

S4

Write FR-4 to the IIB-1 and OIB-1
Read OIB-2 (FR-2) according to Δx & Δy for video output display.
Read IIB-2 according to Δx & Δy as reference image (FR-2).
Read IIB-3 as current image (FR-3).
Run ME algorithm and update Δx & Δy .

S5

Write FR-5 to the IIB-2 and OIB-2
Read OIB-3 (FR-3) according to Δx & Δy for video output display.
Read IIB-3 as reference image (FR-3).
Read IIB-1 as current image (FR-4).
Run ME algorithm and update Δx & Δy .

3.2 PHASE CORRELATION FPGA IMPLEMENTATION

This section explains the necessary FPGA blocks and signals for the phase

correlation method. FPGA blocks are coded with VHDL (Very High Speed

Integrated Circuit Hardware Description Language). The Video Stabilization block

in Figure 21 is the main block for frequency and time domain. For frequency

domain, this block is named as Video Stabilization Frequency (VSF).

VSF consists of VSF_main_controller, texture_analysis, phase_correlation,

VSF_motion_evaluation and reference¤t internal memories. The connections

between these blocks are shown in Figure 24.

Figure 24: VSF Internal Structure

VSF_main_controller is responsible for the pixel data management. This block

controls the stabilization flow by checking and generating several signals. Frame

ready signal asserted by video write interface (VWI) when it finishes reference and

current frames write operation to the SDRAM. Frame valid signal which is

controlled by video input interface, indicates the start of a new frame and it is the

general control signal for all blocks to restart the operations.

The main controller organizes the whole reference and current image line read

operations from the SDRAM via video read interfaces (VRI). According to the sub-

block location which is described in section 2.1.1, the controller sends the line

numbers to the VRI with new line read signal. After VRI finishes its read operation

33

34

from SDRAM, it writes the pixel data to the reference & current internal ram and

asserts a data ready signal for the main controller. Main controller starts read

operation from internal rams and assert pixel valid signal to inform

texture_analysis and phase_correlation blocks that the coming pixel values will be

inserted into the calculations. Sub-Block valid signal is used to separate different

sub-blocks. It is asserted when a new sub-block is going to start and deasserted

when the sub-block is finished.

Texture analysis (TA) of the sub-block is done by texture_analysis block.

Sub-block valid signal starts a new texture analysis and the analysis result is sent to

the evaluation block by TA values signal. Figure 25 shows the internal structure of

the texture analysis block. Pixel comparison block calculates the pixel differences

as described by equation (2.1). Line FIFOs (First In First Out) hold the previous

reference and current line pixel values which are used in the vertical difference

calculation. When pixel valid signal is asserted, comparison block calculates the

pixel difference between the neighbor pixels among horizontal and vertical

direction. It adds the difference values to the previous one and find the total result.

At the end of the sub-block, the total difference (TA value) is sent to the evaluation

block.

Phase Correlation (PC) block consists of PC_main_controller, 1-D_fft,

ref&cur_ram, line_FIFO, normalization and magnitude block. PC block realizes

the mathematical operation described in section 2.1.1. In Figure 26, the sub-blocks

of PC are shown.

Figure 25: Texture Analysis Block

Figure 26: Phase Correlation Block

35

PC main controller starts the operation with the assertion of sub-block valid signal.

It generates the necessary signals for the 1-D_fft block which performs one

dimensional Discrete Fourier Transform. Reference and current line pixel values

arrive the PC at the same time with pixel valid signal, but only one line can be

processed in 1-D_fft block at a time, so current line pixel values are stored in line

FIFO and processed after reference line is finished. The reason for using only one

fft block is to reduce the total logic usage in FPGA. PC main controller arranges the

data flow and perform all operations which are required DFT and IDFT with one fft

block. 1-D_fft block is an IP which is provided by Altera [24]. It can perform both

DFT and IDFT. The properties of this IP block will be detailed at APPENDIX A.

The numbers in frequency domain has real and imaginary parts, PC main controller

assign reference and current pixel values to real_in signal and set imag_in to zero.

Then 1-D_fft block gives the fft result with real_out and imag_out signals. The

results of the reference and current line DFT are stored in ref_fft_ram and

cur_fft_ram respectively. After, sub-block finishes, the PC main controller starts the

transpose DFT with the stored data in the RAMs. The transpose process is done by

controlling the read sequence. The data is written to the ram in row-column order

which is shown in Figure 27, but it is read in column-row order. This read sequence

is equal to transpose process and there is no need to use another memory for

transpose.

Figure 27: FFT_RAM Write/Read Sequence

36

After PC main controller finishes the transpose DFT of both reference and current

sub-block, it starts the normalization. Let FR(u,v) and FC(u,v) be the 2-D DFT of

reference and current sub-block respectively. Then,

37

jvubvuavuF),(),(),(+=

jvudvucvuF),(),(),(+=

)(*)()*,(),(djcbjavuxFvuF

R (3.1)

C (3.2)

−CR +=

jadbcbdacvuxFvuF)()()*,(),(

+ −+= (3.3) CR

22)()(),(*),(adbcbdacvuFvuF CR −++= (3.4)

The normalized value of FR(u,v) and FC(u,v) is obtained from the division of (3.3)

by (3.4);

22)()(
),(

adbcbdac
FFNorm CR

−++

)()(jadbcbdac + −+
= (3.5)

The normalization block performs the operations which are defined from (3.3) to

(3.5). The internal structure of the normalization block is shown in Figure 28.

The normalization outputs; norm_real and norm_imag values are directly sent to the

inverse Discrete Fourier Transform (IDFT). The results of the inverse fft operation

are written to the ref_fft_ram. The same ram is used to store different operation

results and reusability decreases the internal memory usage which provides

effective usage of FPGA resources. After all IDFT values are stored in the ram,

transpose IDFT starts. The transpose operation is again realized by ram read

sequence as explained in Figure 27.

Figure 28: Normalization Block

The results of the transpose IDFT may have also real and imaginary parts. To

construct the peak surface, the absolute magnitude of these values should be found.

This operation is performed by magnitude block which is shown in Figure 29.

Comp_real and comp_imag signals carry the real and imaginary parts respectively.

Comp_abs gives the absolute magnitude value. Let P(x,y) be the two dimensional

IDFT of the normalization values, then;

jyxfyxeyxP),(),(),(+= (3.6)

22),(feyxP += (3.7)

Figure 29: Magnitude Block

38

39

The magnitude block’s outputs form the peak surface. The peak values contain

information about the shift value. Since the implementation is in real time, there can

be several peaks on the surface due to mismatch between the consecutive frames

which may results from environmental changes such as lightning. To find the

correct peak value and also the shift value, the peak values with their x & y

coordinate are sent to the VSF Motion Evaluation block by comparison valid signal.

Motion evaluation block receive the peak values and texture analysis values for the

calculated sub-blocks. There are different evaluation methods which are explained

in section 2.2. In this FPGA implementation HPAR (The ratio of Highest Peak to

the surface average) method will be used. The selection reason of this method will

be explained in results chapter.

The results of the evaluation block are the x_shift and y_shift values. These values

are sent to the video read and video output interfaces. The video read interface

arrange the number of the requested line by video stabilization block according to

the y_shift value. Also, VRI changes the write start address of the reference internal

ram which is shown in Figure 24, according to x_shift value. These coordinate

changes perform the frame correction operation in real time. The details of frame

correction are explained in section 2.3 and Figure 30 shows the operation. Since, the

video stabilization block continues to read at same locations, the coordinate changes

result in inverse shift of the frame.

REFERENCE INTERNAL RAM

Pixel Number
Correction

original_ram_write
start_address

+x shift-x shift

modified_ram_write
start_address

modified_ram_write
start_address

Figure 30: Frame Correction Operation

3.3 FULL SEARCH FPGA IMPLEMENTATION

The FPGA implementation of full search algorithm will be explained in this

chapter. Like phase correlation, this method is also coded by VHDL. The main

video stabilization block in Figure 21 is called as Video Stabilization Time (VST).

The internal structure of VST is shown in Figure 31. VST_main_controller,

reference_block_RAM, search_area_RAM, full_search and VST_motion_evaluation

are the sub-blocks. VST_main_controller controls the pixel data flow for reference

block and search area. As explained in section 2.1.2, the reference block is located

at the centre of the search area, so the line numbers for the reference block and

search area are different. The main controller arranges the line numbers which are

40

sent to video read interface in order to locate the reference block at the centre of the

search area.

Figure 31: VST Internal Structure

The main controller has two separate processes which are responsible from reading

the necessary reference and search lines from the memory. The read lines are

written to the internal RAMs which are reference_block_RAM and

search_area_RAM. After the processes fill the RAMs with pixel data, main

controller assert the ref_data_ready and search_data_ready signals to inform the

full_search block to start mean of absolute difference (MAD) calculations.

41

The internal structure of the internal RAMs is shown in Figure 32. In this

representation, reference_block_RAM is located on search_area_RAM to show their

orientation. The current image lines which include the search area are written to the

search_area_RAM starting from line-1 to line-M. In this figure the dimensions of

the search area is MxM. Meanwhile, the reference block lines which are read from

the reference image are written to the reference_block_RAM. Reference block is

NxN.

Figure 32: Reference Block & Search Area RAMs

The internal rams are reusable, after all pixel data is processed, the rams are filled

with the new reference and search lines. The VST_main_controller is responsible to

arrange this data flow. It updates the line numbers that are used for the SDRAM

read operation, so when the new data is required, the video read interface switch to

the new pixel data region. This process continues until all the reference and search

regions are finished. The main controller waits for the end of the frame; then, it

starts reading from the first region again. Figure 33 shows the data flow from

SDRAM to internal RAMs.

The full_search block is responsible for the calculations of MAD, TA and shift

values. It starts the operations by the assertion of the ref_data_ready and

search_data_ready signals from the VST_main_controller. During the calculations

cal_status signal remains at high state to indicate that the calculations continue,

when all calculations are finished this signal goes to low state with the calculated

values. The block consists of FS_main_controller, texture_analysis, current_FIFO

42

and comparison sub-blocks. The internal structure and the connections between the

sub-blocks are shown in Figure 34.

Figure 33: Data Flow from SDRAM to Internal RAMs

The FS_main_controller determine the internal ram addresses for the reference

block and search area. As shown in Figure 32, the reference block data is located at

different addresses of the internal ram, so the main control updates the ram

addresses according to the reference block. After ready signals are asserted, main

controller starts read operation. Firstly the reference pixel values are read and sent

to the texture analysis and comparison block. Then, search area pixel values are

read and written to the current_FIFO. This FIFO is used for the pipelining and it

will be detailed while the comparison block is explained.

43

Figure 34: Full Search Block

Texture analysis is generally same with phase correlation with one difference. In

full search only reference block texture analysis is calculated to be used in motion

evaluation. The texture_analysis block is between the main controller and

comparison block, so there is no need to create separate signals for the analysis. The

texture analysis is realized during the data flow which enables the system to work

synchronize.

Comparison block realize the mean absolute difference calculation between the

reference and current blocks. This block contains N row_compare sub-blocks where

N is the dimension of the reference block. Figure 35 shows the internal structure of

the block. The absolute row differences are added and the MAD result is calculated.

44

Figure 35: Comparison Block

Figure 36 shows the reference and current row pixel values; RSB (Reference Sub-

Block), CSB (Current Sub-Block). Reference row values are loaded to

row_compare bocks in line order. After all reference pixel values are loaded, the

row_compare-1 has the first reference row, row_compare-2 has the second

reference row and the other blocks hold the related row values.

The current sub-block row values are initially read from the search_area_RAM by

FS_main_controller in row order. Main controller reads the search ram 1st line - 1st

pixel, then it reads 2nd line -1st pixel and it continues until it finishes all 1st pixel

read operation in the CSB-1(Figure 36). Then, the first pixels are combined and

written to the current_FIFO. Main controller starts second pixel read operation; it

reads all 2nd pixels in the CSB rows and writes them to the current_FIFO. The read

operation is finished by reaching the last pixel location on the search area.

45

Figure 36: Reference & Current Block Pixel Value

Figure 37 shows the flow of the read operation. When the FIFO is filled, FIFO read

operation starts and necessary current row pixel values are sent to the comparison

block. After N read operation from the FIFO, all necessary pixel values are ready

for the current and reference sub-block comparison.

Figure 37: Search RAM Read Operation

46

Each row in the reference and current sub-block is compared with absolute

difference operation. Row_compare block contains N absolute difference

calculators for the pixel values. In Figure 38, absolute difference sub-blocks are

shown. The connection between the absolute difference blocks behave like a shift

register, so after CSB-1, CSB-2 is processed in a one pixel clock. This provides a

pipeline structure which enables to finish all comparison between the search area

and reference block in (M-N) x (M-N) clock.

Figure 38: Row Compare Block Internal Structure

During the comparison between the reference and the current sub-blocks,

FS_main_controller calculates the minimum MAD value and store the x_shift,

y_shift and TA values. At the end of the comparison between the reference block

and search area, the main controller deassert cal_status signal and sent the minimum

MAD, TA, x_shift and y_shift values to the VST_motion_evaluation block.

Time domain motion evaluation will mainly used TA values for the evaluation

because high TA results in correct MAD calculations. In this implementation, the

five highest TA value will be selected. Among these selected values, three lowest

MAD values are selected as the final results. The x_shift and y_shift values are the

average of these final results.

47

48

Frame correction operation is similar with phase correlation. The coordinates of the

required lines and pixels are updated according to the calculated evaluated shift

values as shown in Figure 30.

49

CHAPTER 4

IMPLEMENTATION RESULTS AND COMPARISONS

The frequency and time domain digital video stabilization methods are evaluated

according to accuracy, computation time, logic usage and power consumption. The

accuracy test of the methods firstly realized in MATLAB and the results of this test

determine the FPGA implementation. The accuracy comparison between MATLAB

and FPGA results are obtained by VHDL simulation. Finally, FPGA comparison

results of the selected methods are evaluated on real-time working hardware with

PAL video.

This chapter is composed of three sub-sections. Firstly, the MATLAB results of

phase correlation and full search algorithms will be explained. Then, the VHDL

simulation results will be detailed. Finally, FPGA implementation results will be

explained.

4.1 MATLAB IMPLEMENTATION

There are different parameters in stabilization methods such as block size, block

location, texture analysis (TA), MAD (Mean of Absolute Difference), peak surface

analysis. To see the effect of these parameters on the accuracy, the video

stabilization methods are firstly implemented with MATLAB programming tool. In

this implementation, a new function library is created to make the calculations

similar with FPGA. In MATLAB, the numbers are in double-floating format;

however FPGA works with fix point numbers. Therefore, the floating structure of

MATLAB is converted to fix point to make the calculations similar with FPGA.

The initial algorithm tests are done by synthetically shifted images to see that

algorithms work properly. These tests provide 100 % accuracy for both methods so

they will not be detailed since they do not provide a comparison data.

The comparison tests are conducted with real video sequence which is captured by a

640 x 480 camera, this resolution is similar with PAL format. Since, the shifts

between the frames are real; the results are more similar with real-time working

system. The accuracy of the method is evaluated according to pSNR (Peak Signal to

Noise Ratio-dB) between the reference and corrected current image. In the

following equations, RI is the reference image, CCI is the corrected current image

and MxN is the image resolution.

50

M N

∑∑
= =

−=
y x

yxCCIyxRIError
1 1

),(),((4.1)

NM
ErrorMSE

*
= (Mean Square Error) (4.2)

)255(log*10 10

2

MSE
pSNR = (4.3)

The phase correlation MATLAB test results which are obtained by different

parameter values will be explained first. Then, the results of full search method will

be given. At last, the best results of these two methods which are obtained by

optimum parameter values will be compared.

4.1.1 Phase Correlation Results

The first parameter that affects the phase correlation motion estimation accuracy is

the block size. Figure 39 shows the different block sizes on the reference and

current image and Table 6 gives the phase correlation results with these block sizes.

In this table, TA is the texture analysis result, Peak Value is the magnitude of the

highest peak on the surface and HPAR is the ratio of peak value to peak surface

average.

Table 6 : Phase Correlation Results & Block Size

Block Size 8x8 16x16 32x32 64x64 128x128 256x256

X shift 1 1 1 0 0 2

Y shift 1 1 1 6 6 7

TA 216 503 1479 5022 51287 344247

Peak Value 0 0 0 15 22 27

HPAR NaN NaN NaN 8.6 22.7 35.3

pSNR 19.2 19.2 19.2 20.8 20.8 22.5

Computation Time (s) 0.11 0.13 0.18 0.3 0.9 4.6

Figure 39: Block Size & Texture Variation

Reference Image Current Image

256x256

128x128

64x64

32x32

256x256

128x128

64x64

32x32

51

The texture in the selected block directly affects the quality of estimation. The

increase in the block size also increases the texture. Therefore, the rise in texture

results in better estimation and also higher pSNR. As shown in Figure 40, the low

texture produces a wavy surface that contains many peaks. Some higher peaks have

similar magnitude values and they cause faulty estimation.

Figure 40: Peak Surfaces at Low Texture

The increase in the block size may be a solution for the texture problem but the

increase in the block size requires longer computation time. This is a very critical

issue for real time applications. Therefore, block size increase is a not a suitable

option for this implementation.

The second parameter that affects the phase correlation motion estimation accuracy

is the block location and the number of used blocks. Figure 41 shows totally 9

blocks which are located at different parts of the image. In this test the block size is

64x64. This size is selected, because its time-pSNR performance is better than

others and this size can contain enough texture for the following tests.

52

Figure 41: Different Block Locations

Table 7 : Phase Correlation Results & Block Location

Block
Location 1 2 3 4 5 6 7 8 9

X shift 0 23 0 4 0 0 2 2 3

Y shift 6 0 6 4 6 0 6 6 5

TA 5022 4468 4199 22519 5113 7842 53049 61410 48670

Peak
Value 15 8 21 14 14 21 28 20 29

HPAR 8.6 4.5 12.2 8.1 8.1 12.4 16.9 11.7 17.4

pSNR 20.8 15.4 20.8 20.4 20.8 18.6 23 23 22.3

 Time (s) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Phase correlation method is applied for all 9 sub-blocks and Table 7 gives the

results. The PC results show that changing the block location can be an alternative

to increase the texture. Also, using many sub-blocks provide opportunity to evaluate

different calculation results. However, high block number needs longer computation

time which can be also a problem for real time.

53

Another approach is to find the sub-block that contains the highest texture. Firstly,

all possible sub-blocks in the image are analyzed and texture surface is obtained as

shown in Figure 42. Then, the phase correlation starts at the highest texture location

on the texture surface. Table 8 shows the calculation results for that location.

Figure 42: Texture Surface

Table 8 : Video Stabilization Results with Highest TA Block

 X
shift

Y
shift TA Peak

Value HPAR pSNR Time (s)

Highest
TA Block
(64x64)

2 6 99775 27 16.1 23.08
85.7

85.4 : TA, 0.3 : VS

Highest
TA Block
(128x128)

3 6 252819 24 24.2 22.7
78.8

77.8 : TA, 1 : VS

The texture surface analysis test results show that only texture is not an enough

parameter for the estimation quality, because the pSNR result is similar with some

blocks in Table 7, even though these blocks contain less texture. Also, the

construction of the texture surface requires quite long time which is not feasible for

real-time.

54

Also, other parameters such as peak surface analysis of the phase correlation can be

used for the estimation. There can be pixel intensity differences between reference

and current sub-block due to blurring and environmental changes; as a result the

peak surface may contain many higher peaks even in high texture. Figure 43 shows

the same pixels on the reference and current image which have different intensity

values. Peak characteristics of the surface give information about the quality of the

estimation. In Table 7, the higher peak and HPAR values give the higher pSNR

results. Therefore, peak surface analysis is an alternative opportunity for the

estimation.

Figure 43: Pixel Base Comparison from the Images

For accurate analysis, there are two opportunities. The first one is implementing a

pre-analysis step like texture surface and using less sub-block. Other one is using

several sub-blocks and obtaining many data from those blocks. The first opportunity

is not suitable for real-time but the parallel structure of the FPGA can handle many

sub-blocks in real time constraints. Therefore, the diagonal sub-blocks which are 1,

5, 6, 7, 8 and 9 in Figure 41 are used for the calculations. As a result, there are 6

blocks that generate texture, peak surface information. The phase correlation results

of these sub-blocks are evaluated according to the methods described in section 2.2,

Table 3.

55

56

In WOTT (without texture threshold), all the x & y shift results are used. The

average of the x & y shift results are used as the evaluated results. In WTT (with

texture threshold), firstly a texture threshold is determined. This threshold is the

average of all texture results from the sub-blocks. Then, the x & y shift values of the

sub-blocks whose texture is greater than the threshold are used for the final results

calculation. In HP (highest peak), the sub-block which has the highest peak value is

found and its x & y shift values are used. In WPT (with peak threshold), firstly, the

sub-blocks that can pass texture threshold are found. Then, the average of the

highest peak values of these sub-blocks is selected as the peak threshold. The final

results are obtained from the average of the sub-blocks whose highest peak values

are greater than peak threshold. HPAR is the average of the highest peak to the

surface average. The sub-block with the highest HPAR value gives its x & y shift

values as the final results. Table 9 shows the evaluation results for the described

methods on reference and current frame in Figure 39.

The methods that are related with the peak surface analysis provide higher pSNR

values. In this test, WTT produce the best pSNR but the test is conducted with only

one frame pair and one frame comparison result can not be generalized. Therefore

the tests are conducted with a frame sequence that contains 100 frames.

Table 9 : PC Motion Evaluation Results

 X
shift

Y
shift TT Peak

Value TP HPAR pSNR Time (s)

WOTT 1 5 NA NA NA NA 21.6 1.6

WTT 2 6 30184 NA NA NA 23 1.6

HP 3 5 30184 29 NA NA 22.3 1.6

WPT 3 6 30184 NA 25.6 NA 22.7 1.6

HPAR 3 5 30184 NA 25.6 17.4 22.3 1.7

0 10 20 30 40 50 60 70 80 90 100
14

16

18

20

22

24

26

28

30

32

Frame Sequence

pS
N

R

WOTT
WTT
HP
WPT
HPAR

Figure 44: PC Motion Evaluation Results on Frame Sequence (Constant Reference

Frame)

Table 10: Average pSNR and Computation Time Results for PC Motion Evaluation

Methods on Frame Sequence (Constant Reference Frame)

 WOTT WTT HP WPT HPAR

pSNR
Average 18.1 19.8 21.4 21.2 21.4

Total
Time (s) 153.6 149.3 150.1 149.7 150.5

Figure 44 shows the pSNR evaluation results for the frame sequence according to

different methods and Table 10 gives the average pSNR and computation time. In

this evaluation, reference frame remain same and other frames are corrected

according to it. The average pSNR values show that peak analysis provides better

stabilization performance. There are some rapid drops on the figure, this drops are

due to the blurring effect on the image, even the motion estimation is done correctly

the pSNR calculations give lower values since there are various intensity

differences between reference and corrected current image. Other studies show that

57

usual pSNR values are around 20-25 dB [26], but for a good stabilization the pSNR

should reach 35dB [27].

For the mobile cameras, the reference image should be updated with the corrected

current image. Figure 45 shows the pSNR results for the updated reference image

approach. Table 11 shows that pSNR values are higher than the constant reference

image model. This is logical because neighbour frames have similar intensity

variations.

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

Frame Sequence

pS
N
R

WOTT
WTT
HP
WPT
HPAR

Figure 45: PC Motion Evaluation Results on Frame Sequence (Updated Reference

Frame)

Table 11: Average pSNR Results for PC Motion Evaluation Methods on Frame

Sequence (Updated Reference Frame)

 WOTT WTT HP WPT HPAR

pSNR
Average 29.8 31.1 31.9 32.1 31.4

The frame sequence test shows that WPT has the highest pSNR performance. The

peak surface analysis provides valuable information for the estimation quality.

58

Therefore in FPGA implementation peak surface analysis is used to reach

acceptable stabilization performance.

4.1.2 Full Search Results

This sub-section explains the full search MATLAB test results. The first parameter

for the full search algorithm is the reference block size. The size of the block is

important for the texture analysis which in turn gives idea for the quality of the

motion estimation. Figure 46 shows the reference block and the search area. For

different reference block sizes, search area is 8 pixels bigger in all direction in the

first experiment.

8 pixel

8
pixel

SA

RSB

Figure 46: Reference Sub-Block and Search Area

59

60

Table 12 : Full Search Results & Block Size

Block Size 8x8 16x16 32x32 64x64 128x128 256x256

X shift -8 -8 -8 -8 -8 2

Y shift 8 8 5 -8 -1 7

TA 131 382 1399 4970 51014 364964

MAD 4.6 9.2 12.7 13.1 14.3 15.7

pSNR 17.1 17.1 17.4 16.2 16.9 22.5

Computation Time (s) 0.05 0.06 0.09 0.15 0.3 0.9

Table 12 gives the Block-Size & pSNR test results; the increase in block size

increases the texture and pSNR value. But, even the block size is around 128x128

the pSNR is less than 20dB. The reason for the low pSNR is the location of the

reference block. Since, there are low texture around, increasing the block size do

not provide higher texture.

To solve texture problem, full search algorithm is implemented with several

reference blocks and search areas. In the original full search algorithm every

neighbor reference block is checked, but for FPGA implementation, it is not

feasible with the available resources. So, the method’s main idea is kept same and

only the neighbor search areas are checked. Figure 47 shows the search areas which

are 35 in total, on the image.

Figure 47: Search Areas on the Image

0 5 10 15 20 25 30 35
10

20

30

SA Number

pS
N

R

0 5 10 15 20 25 30 35
0

5000

10000

SA Number

Te
xt

ur
e

0 5 10 15 20 25 30 35
0

10

20

SA Number

M
A

D

Figure 48: pSNR & Texture & MAD of Search Areas

61

Figure 48 shows the pSNR, texture and MAD (Mean of Absolute Difference)

values for the numbered search areas. The pSNR values are higher at the locations

where texture and MAD are both high. The higher pSNR values for higher texture

are predicted results, but MAD values should be lower for the correct match.

However, if we examine the MAD results, the average is small and the maximum

value is around 20. So, it can be said that the higher texture results in higher MAD

results.

The full search results with constant reference frame sequence are shown in

Figure 49 and Table 13 gives the average pSNR and computation time. MAX_TA

assigns the x & y shift values of the block which has the highest texture to the final

values. MIN_MAD finds the block with minimum MAD value and gives its shift

values as the final values. MAX_TA_AVG gets the average of the 5 highest texture

blocks shift values. MAX_TA_MIN_MAD finds the 5 highest texture blocks and

assign the shift values from the minimum MAD block among the highest ones.

pS
N

R

Figure 49: FS Motion Evaluation Results on Frame Sequence (Constant Reference

Frame)

62

Table 13: Average pSNR and Computation Time Results for FS Motion Evaluation

Methods on Frame Sequence (Constant Reference Frame)

 MAX
TA

MIN
MAD

MAX TA
AVG

MAX TA

MIN MAD

pSNR
Average 21.5 14.9 21.7 20.8

Total
Time (s) 1089.7 1133.3 1103.7 1092.7

The average pSNR results show that, MAX_TA_AVG gives the best stabilization

results. This is logical when we compare the texture-estimation relation from

Figure 48. In full search algorithm, high texture prevents mismatches and finds the

correct estimation results. The down peaks on the graph are due to intensity changes

between the frames which are occurred due to blurring and environmental changes.

pS
N

R

Figure 50: FS Motion Evaluation Results on Frame Sequence (Updated Reference

Frame)

63

64

Table 14: Average pSNR Results for FS Motion Evaluation Methods on Frame

Sequence (Updated Reference Frame)

 MAX
TA

MIN
MAD

MAX TA
AVG

MAX TA

MIN MAD

pSNR
Average 31.7 22.6 32.4 29.2

Figure 50 shows the pSNR results with updated reference block and the average

pSNR values are given in Table 14. As in phase correlation, also in full search,

updated reference block approach gives higher pSNR when compared with constant

model. The MAX_TA_AVG method again provides the highest pSNR; this test

shows that MAX_TA_AVG method is the best approach for full search method. In

FPGA implementation, with texture analysis also the MAD values will be used to

find the sub-blocks which are free of local motion. Firstly, the texture analysis is

used to determine the correct sub-blocks then MAD analysis will be used for local-

global motion analysis. The comparison between PC and FS will also contain the

local motion analysis which is obtained from the frame sequences that contains

local motion.

4.1.3 Comparison Between Phase Correlation and Full Search

The previous sections give the stabilization results of phase correlation and full

search algorithms on 100 frame sequence. According to the pSNR results, the

MAX_TA_AVG full search approach reaches 32.4 dB pSNR which is the highest

value among all approaches including phase correlation. In phase correlation, WPT

approach gives 32.2 dB pSNR, it is the highest value in phase correlation. When the

computation time results are examined in Figure 44 and Figure 49, the WPT

approach completes the calculations in 149.7 seconds; on the other hand

MAX_TA_AVG approach uses 1103.7 seconds for the calculations. The phase

correlation time performance is nearly ten times better than full search, so the

accuracy-time ratio which is very critical in real time implementations; is higher in

phase correlation.

The previous tests are conducted with local motion free frame sequences, therefore

in the following comparison tests there will be local motions as shown in Figure 51.

The local motions may result in faulty estimations and this problem decrease the

pSNR performance.

Figure 51: Frame Sequence with Local Motion

The frame sequence is composed of 200 frames which in turn provides more

comparison data between phase correlation and full search. Three approaches from

phase correlation and also from full search are used. These approaches are the most

successful ones according to pSNR results. For phase correlation, HP, WPT and

HPAR and for full search, MAX_TA, MAX_TA_AVG and MAX_TA_MIN_MAD

approaches are used.

65

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Frame Sequence

pS
N

R

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Frame Sequence

pS
N

R

0 20 40 60 80 100 120 140 160 180 200
10

20

30

pS
N

R

Frame Sequence

MAX TA

MAX TA AVG

MAX TA MIN MAD

Figure 52: Full Search Approaches Results with Local Motion

Table 15: Average pSNR and Computation Time Results for Full Search

Approaches with Local Motion

 MAX
TA

MAX TA
AVG

MAX TA

MIN MAD

pSNR
Average 24.6 22.2 23.8

Time(s) 2183 2172 2298

Figure 52 shows the full search approaches’ pSNR values with 200 frame sequences

that contain local motion. Table 15 gives the average pSNR and computation time

for the evaluation methods. The MAX_TA approach gives the highest pSNR

average but when we examine the result plots, MAX_TA_MIN_MAD reaches high

pSNR values. The rapid drops on the curve decrease its average pSNR. The blurring

66

effects prevent MAX_TA_MIN_MAD approach to give high pSNR average. Even

though this method’s average pSNR is not the maximum, it is suitable for

stabilization on local motions. The rapid drops can be filtered in FPGA

implementation by checking the previous results.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Frame Sequence

pS
N

R

HP

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Frame Sequence

pS
N

R

WPT

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Frame Sequence

pS
N

R

HPAR

Figure 53: Phase Correlation Approaches Results with Local Motion

Table 16: Average pSNR and Computation Time Results for Phase Correlation

Approaches with Local Motion

 HP WPT HPAR

pSNR
Average 24.2 24.09 24.1

Time(s) 299.8 300.2 299.5

67

68

The phase correlation approaches give similar average pSNR values. HP approach

provides the highest result. From the graphs in Figure 53, there are less rapid drops

when compared with full search approaches and the average pSNR results of phase

correlation approaches which is shown in Table 16, are similar and higher than full

search.

As a result, phase correlation produces more consistent estimation results when

compared with full search according to local motion test. Even though phase

correlation pSNR results also contain rapid drops, the magnitudes of these drops are

less than full search results. Therefore, it is possible to say, phase correlation can

handle blurring and environmental changes more effectively. The MATLAB results

show that phase correlation is better than full search method according to accuracy-

time ratio, but the implementation structure of phase correlation is more complex

than full search since it requires DFT/IDFT operations. So, the simulation and

FPGA implementation results will show the final comparison results between the

two methods.

4.2 FPGA SIMULATION

FPGA blocks are designed by VHDL code. The written code can be simulated in

computer by Modelsim simulation tool. This tool shows the all signal flow as it is in

FPGA. So, the results of this simulation give information about the performance of

the FPGA implementation since the same code is downloaded to the FPGA.

The accuracy test of the written FPGA code is evaluated with simulation tool,

because the real time working system may receive arbitrary frames and it is

impossible to detect correct shift values. Since, the simulation uses the same VHDL

code with FPGA, the simulation results can be used for accuracy comparison.

The simulation tool can receive frames as a text file, so the frames that are

evaluated in MATLAB are converted to text files. The results of the VHDL

simulations are observed on the signals which are described in section 3.2 and 3.3.

Figure 54: The Current Image and Reference Sub-Blocks

The full search simulation results will be explained firstly, and then phase

correlation results will be detailed. Figure 54 shows the current image and the

reference sub-blocks that are obtained from the reference image. This figure

explains the methodology which is described in section 3.3 with Figure 32 and

Figure 33.

Figure 55: Full Search Reference Data Read

Full search FPGA implementation starts with the reference sub-blocks read

operation from the SDRAM memory. 16 lines are read and sent to the comparison

69

blocks and also ref_ram_ready signal is asserted to inform the blocks that the read

operation is completed. Figure 55 shows the signals and their states for the read

operation. After reference sub-blocks, the search areas are read from the memory.

Since, there are 80 lines for the search area, this operation takes longer time than the

reference block read. In Figure 56, the necessary signals for the search area read

operation are shown. At the end of the read operation search_ram_ready signal is

asserted.

Figure 56: Full Search Current Image Search Area Read

With the completion of all necessary pixel read from the memory, the comparison

operation starts. At every clock, a current sub-block and reference sub-block is

compared and MAD value is calculated. During MAD value calculation also TA

value is obtained from the reference sub-block. At the end of the calculations, the

x_shift and y_shift values are sent to the evaluation block by cal_status signal. The

shift values are 8 bit. The 8th bit is the sign; “1” means negative shift and “0” means

positive shift. The MAD calculations and results are shown in Figure 57.

Figure 57: MAD Calculations and Results

70

Figure 57: Continuation

Figure 58: Full Search Calculation on a Frame

Figure 58 shows the all data flow for the full search method. All calculations finish

in 25 milliseconds where it is approximately 10 seconds in MATLAB

implementation. The results of the FPGA simulations are compared with MATLAB

results. The obtained results are shown in Figure 59. According to the result plots,

the FPGA implementation can reach the accuracy of MATLAB. The same accuracy

is obtained in a shorter time, so the accuracy-time ratio of full search FPGA

implementation is better than MATLAB.

71

After full search FPGA simulation results, phase correlation results will be

explained. In this implementation, high number of sub-blocks approach is used

because texture surface analysis requires longer computation time. Figure 60 shows

the sub-blocks that are located on diagonal of the frame.

Figure 59: MATLAB & FPGA Full Search Comparison

Figure 60: Phase Correlation Sub-Blocks on Reference and Current Images

72

Figure 61: Phase Correlation Sub-Blocks Read Operation

Figure 61 shows the reference and current sub-blocks read operation from the

SDRAM memory. The reference and current sub-block lines are sent to the phase

correlation block for the DFT/IDFT operation.

Figure 62: Phase Correlation DFT Operation

The reference and current sub-block lines are enter into the 1_D_fft block

consecutively. The results of the fft operation are obtained after several clock

cycles. The pc_main_controller block handles the wait time between the fft input

and output. The fft operation is shown in Figure 62.

Figure 63: Phase Correlation Data Flow

73

In Figure 63, the all data flow of phase correlation implementation is shown. After

DFT operation, transpose DFT operation starts. The calculated transpose DFT

results from reference and current sub-blocks are normalized in normalization

block. Then, inverse DFT (IDFT) operation and transpose IDFT operations are

completed. During transpose IDFT operation, the calculated peak surface values are

evaluated with comp_status signal.

Figure 64: Phase Correlation FPGA Simulation Results

At the end of the operations, the shift values, highest peak value (comp_max_abs)

and TA value are obtained and sent to the evaluation block by shift_value_valid

signal. The relation between the signals is given in Figure 64. The formats of the

shift values are same with full search. The phase correlation calculation for all sub-

blocks takes 12.9 milliseconds while it is 2.1 seconds in MATLAB implementation.

The results of the phase correlation FPGA and MATLAB implementation are given

in Figure 65. The FPGA simulation results are same with MATLAB’s. Therefore it

is possible to conclude that, in phase correlation method FPGA can reach the

accuracy of MATLAB in a shorter time.

74

1 2 3 4 5 6 7
0
5

10

Sub-Blocks on the Image

y
sh

ift
 v

al
ue

s

1 2 3 4 5 6 7
-5
0
5

Sub-Blocks on the Image

x
sh

ift
 v

al
ue

s

1 2 3 4 5 6 7
0

20
40

Sub-Blocks on the Image

P
ea

k
V

al
ue

s

1 2 3 4 5 6 7
0
5

10
x 10

4

Sub-Blocks on the Image

TA
 V

al
ue

s

MATLAB Result
FPGA Simulation Result

Figure 65: MATLAB & FPGA Phase Correlation Comparison

The simulation results show that the MATLAB performance comparison between

the full search and phase correlation methods can also be used for FPGA

implementation. In FPGA implementation section, two methods will be compared

in terms of computation time on hardware, logic usage and power consumption.

Also, the results of the real time FPGA implementation on the display while the

camera is shaking will be explained.

75

4.3 FPGA IMPLEMENTATION

The FPGA blocks are designed with Altera Quartus II programming tool. The

VHDL code is written by text editor, then the written VHDL is converted to

schematic symbol for the connection with other blocks. Figure 66 shows the

Quartus design environment. The blocks are connected to other blocks by internal

signals. Design files section show the hierarchy in the implementation. In Figure 66,

VST_FPGA_TOP_V1 is the top block.

Figure 66: Altera Quartus II Design Environment

After all necessary blocks are coded and connecting to each other, the design is

analysed for the coding errors. Then the necessary pin assignment is completed and

full compilation flow is started.

During the compilation, the programming tool generates the routing in the FPGA. It

connects the input/output pins to the related blocks. Also, the timing performance of

the generated routing is tested according to the constraints that the user enters at

start. At the end, this flow generates a bit file which is downloaded to the FPGA.

76

77

The full search and phase correlation methods are implemented in FPGA with the

external blocks such as video and memory interfaces. The compilation report gives

the logic, internal memory and embedded multiplier usage. The power consumption

is measured from the main board. The computation time is measured by the time

counter located in the FPGA code. Table 17 shows the compilation summary. In

this table, the approximate time values are given, because the read operations from

the SDRAM memory determines the computation time, and read operation time can

be changed according to the memory usage by the other FPGA blocks. According to

the tests on the FPGA, these time results are the highest observed values. These

computation time results show that FPGA implementations of the digital video

stabilization methods can finish the calculations less than one frame duration which

is 40 milliseconds.

Table 17: FPGA Implementation Summary

 Computation
Time (ms)

Power
Consumption(W)

Logic
Usage

Internal
Memory

Usage(Kbit)

Embedded
Multiplier
Usage(9x9)

Full Search ~35 0.36 24,648 1788 0

Phase
Correlation ~22 0.23 27,814 1888 44

In sections 4.1 and 4.2, the results for different block sizes and search areas are

examined. In FPGA implementation, these results are evaluated and the final block

sizes are determined. Table 18 and Table 19 give the implementation summary for

full search and phase correlation methods, respectively.

Table 18: Full Search FPGA Summary

 Reference Block
Size

Search Area
Size

Allowed x
Shift (pixel)

Allowed y
Shift (pixel)

Full Search 16 80 +/- 32 +/- 32

Table 19: Phase Correlation FPGA Summary

 Reference Block
Size

Current
Block Size

Allowed x
Shift (pixel)

Allowed y
Shift (pixel)

Phase Correlation 64 64 +/- 32 +/- 32

The methods are firstly tested by synthetic shifts which are generated by the push

buttons on the main board. Different shift values are applied to current image and

the estimated shift values are obtained by the “Signal Tap” tool of Altera. This tool

monitors the signals while the codes are running in the FPGA. Figure 67 shows the

synthetic shift values and the estimated ones on the signal tap screen.

Figure 67: Altera Signal Tap Screen

78

Figure 68: The Results of the Synthetic Shifts on Reference Image

Figure 68 shows the video frames which are captured from DVI monitor by a

camera. These frames are the reference frame and the current frames after the

synthetic shifts. The FPGA calculates the shift values by comparing the reference

and current images.

In full search algorithm, the image is divided in search areas. The shift, TA and

MAD values from these areas are evaluated in order to find the final motion

estimation. Figure 69 shows the search areas on the image and Table 20 gives the

estimation results for the different search areas.

79

Figure 69: The Search Areas on the Image

The results of the full search method shows that, the TA analysis is also important

in real time working system as it is in MATLAB. The search areas with high texture

find the correct shift values. In this example search area-2 contains extremely high

texture when compared with others and its estimation results are correct, on the

other hand, the other blocks from the first region (1,3,4,5,6) can not reach the

correct shift values. The same block which has the highest texture is used for other

shift tests and the results show that FPGA can calculate the exact shift values that

are applied. For, high shift values such as -32 in y direction, the highest texture

region passed to the search area-8, and the results of this area give the correct shift

values.

80

81

Table 20: Full Search FPGA Results

Actual Shift Values Search
Area Estimated Values

y shift x shift Number y shift x shift TA MAD

0 0 1 -3 5 594 262

0 0 2 0 0 10009 2008

0 0 3 -2 0 627 280

0 0 4 0 11 913 429

0 0 5 0 -1 763 383

0 0 6 0 -4 804 375

5 5 1 4 -1 418 223

5 5 2 5 5 8993 1446

10 5 2 10 5 10650 1658

10 10 2 10 10 8700 1347

20 10 2 20 10 9722 1586

20 20 2 20 20 6318 1140

30 30 2 30 30 9156 1334

32 32 2 32 32 9233 1121

-5 0 2 -5 0 9368 1875

-5 10 2 -5 10 3531 565

-10 -15 2 -10 -15 3839 767

-32 -31 8 -32 -31 1337 530

-32 32 8 -32 32 5715 1241

After synthetic shifts, full search method is tested by the real shifts. The camera is

located on a movable platform and shifts in x and y direction are applied. The

results of the search areas are evaluated as explain in MATLAB implementation

part. MAX_TA, MAX_TA_AVG and MAX_TA_MIN_MAD values are tested in

FPGA. MAX_TA reaches the best stabilization performance among others but this

82

approach suffers from the local motions. When there exists a local motion on the

image, this motion increases the texture at that region and this texture increase

results in faulty estimations.

This problem is solved by using a texture analysis in the evaluation part. Many

experiments are conducted and the effects of the local motions on the texture values

are observed. The local motion cause a rapid texture increase which is impossible

by a desired camera movement. Therefore, a comparison between two successive

highest textures is used to prevent local motion effects. However, the FPGA tests

show that the basic evaluation methods which are explained in MATLAB

implementation part are not sufficient for the best evaluation. FPGA can compare

the reference and current sub-blocks correctly but the results of these comparisons

should be evaluated in more complex algorithms like Kalman which are more

suitable for processors.

The phase correlation method is also implemented in FPGA with the external

blocks such as video interfaces and memories. The FPGA tests are started with

synthetic shifts. The results of these tests show that FPGA estimations are not

correct when compared with the applied shifts. The source of the problem is

searched by using a test pattern as a video source. The same pattern is also used in

MATLAB and simulation to see the difference. After the tests, it is observed that,

the FFT IP is not working as in MATLAB and simulation. So, the calculations for

the phase correlation results in faulty estimations.

Figure 70 shows the FFT input which is sent to the IP in real time working FPGA

and simulation, the same data sequence is applied for both FPGA implementation

and FPGA simulation. The results of the FFT block are shown in Figure 71. The

FFT outputs of FPGA simulation are the correct ones and these outputs results in

correct shift values, however the FPGA implementation outputs are wrong and

these wrong outputs prevent to calculate correct shift values. The phase correlation

method produces very good stabilization results in MATLAB and FPGA

simulation, but in FPGA implementation, due to FFT problem, this method can not

reach the desired results.

This problem shows that, in some cases, FPGA implementation on real hardware

may not be the same with the simulations and previous analyses on MATLAB.

There can be differences while the written code is compiled for the FPGA.

Figure 70: FPGA Implementation & Simulation FFT Inputs

Figure 71: FPGA Implementation & Simulation FFT Outputs

83

84

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSIONS

Video processing applications are used in many areas such as consumer electronics

and military areas. Every video processing application has its own initial

requirement from the input video such as video format, resolution and frame rate,

but the common requirement for all applications is the stabilization. Because, the

translational and rotational changes in frame sequence cause faulty results in

processing algorithms. Therefore video stabilization is the first and necessary step

for other video processing applications.

Most of the systems use mechanical stabilization because these types of stabilizers

prevent the undesired motion at the detector of the camera, so there will be no

image loss. However, mechanical approach is not feasible for all platforms due to

its huge and complex structure. Therefore, digital stabilization methods can be used

as an alternative. Digital methods calculate the undesired motion by comparing two

neighbor frames in the sequence. This comparison process requires long

computation time and digital methods are not preferable in real time applications.

The recent advances in hardware elements, such as FPGAs, can handle the high

computational load. The parallel structure of FPGA is configured in order to

process many data at the same time. However, only FPGAs are not enough for all

85

video stabilization flow, some other elements such as video decoders and SDRAMs

are required to construct a full system.

In this thesis, real time video stabilization is the main problem. Due to the platform

which is mobile robot, mechanical methods can not be used. The platform also

requires a real time flow. Since mechanical methods are not a solution and real time

constraints are strict, digital methods are examined.

Firstly, the hardware that the digital video stabilization will be implemented is

selected. Due to its high computation capacity, FPGA is chosen as a processing

unit. The necessary video input & output, memory interfaces are constructed in

FPGA. Then, the possible stabilization algorithms in literature are searched. Two

main method; frequency and time domain approaches are selected as solution

candidates. These methods are implemented in MATLAB to see their performance

before FPGA coding. Since, the final implementation will be in FPGA, the

MATLAB codes are written similar to FPGA. This approach provides more realistic

comparison between the methods. After that, the FPGA (VHDL) codes are written

for both methods. The VHLD codes are tested by simulation and then they are

compiled for the FPGA on the main board. The debug tool (signal tap) is used to

monitor real time working FPGA results. Finally, the stabilized video which is

captured from a PAL video is displayed on DVI monitor.

The FPGA implementation results show that phase correlation method uses more

logic elements than full search which is a disadvantage for small FPGAs. Although

full search uses less logic elements, its power consumption is higher due to many

comparisons in a shorter time, the higher power consumption may be a problem for

the platforms which receive the input power from a battery.

The FPGA implementations of full search and phase correlation are tested by

synthetic and real shifts. Full search synthetic shift tests show that FPGA can

calculate the correct shift values at the search areas where texture is high. In real

86

shifts, this method suffers from blurring effect and environmental changes in the

video frame sequence. Also, the local motions may result in faulty estimations since

the texture analyses fails at the locations where local motions are occurred.

Phase correlation method gives encouraging results in MATLAB and FPGA

simulation, but the FPGA implementation on real hardware shows that, this method

can not work properly while FFT results are not correct. The problem in FFT IP

block prevents this method to be implemented in FPGA successfully. But, the other

parts of the FPGA implementation works correctly, so this method can be also used

for video stabilization after the FFT problem is solved by the IP vendor.

To conclude, the implementation and comparison results show that, FPGAs are

capable to run digital video stabilization methods. FPGA can calculate new

stabilization data at every 40 ms which takes several seconds in MATLAB. The

comparison between simulation and MATLAB results shows that FPGA can also

reach the desired accuracy in motion estimations. The only difference arises at the

motion evaluation part. The basic evaluation approaches gives good results in

synthetic shifts but in real shifts with local motions, these approaches fail in some

cases.

5.2 FUTURE WORK

FPGAs can handle high computational load but they are not suitable for recursive

algorithms. In the motion evaluation part, different filters such as Kalman can

improve the accuracy, but such algorithms are suitable for processors. Therefore, a

processor can be can be used with FPGA to implement more complex evaluation

algorithms.

87

REFERENCES

1. Jesse S. J., Zhigang Z. & Guangyou X., “Digital Video Sequence

Stabilization Based on 2.5D Motion Estimation and Inertial Motion

Filtering.”, Real Time Imaging 7 , 357-365, 2001.

2. Ertürk S., “Digital Image Stabilization with Sub-Image Phase Correlation

Based Global Motion Estimation.”, IEEE Transactions on Consumer

Electronics, vol. 49, no. 4, 2003.

3. Bayrak S., “Video Stabilization: Digital and Mechanical Approaches”, M.S.

Thesis, METU, 2008.

4. Kumar S., Biswas M. & Nguyan T. Q., “Global Motion Estimation in

Frequency and Spatial Domain”, ICASSP, 2004.

5. Özsaraç H., “FPGA Implementation of Graph Cut Method For Real Time

Stereo Matching ”, M.S. Thesis, METU, 2010.

6. Ertürk S., “Real-Time Digital Image Stabilization Using Kalman Filters”,

Real-Time Imaging 8, 317-328, 2002.

7. Tico M. & Vehvilailen M., “Robust Method of Video Stabilization”, 15th

European Signal Processing Conference, 2007.

8. Yang J., Schonfeld D. & Mohamed M., “Robust Video Stabilization Based

on Particle Filter Tracking of Projected Camera Motion“, IEEE Transactions

on Circuits and Systems for Video Technology, Vol 19, No. 7, July 2009.

88

9. Vermeulen E. “Real Time Video Stabilization For Moving Platforms“, 21st

Bristol UAV Systems Conference, April 2007.

10. Klupsch S., Ernst M., Huss S. A., Rumpf M. & Strzodka R., “Real Time

Image Processing based on Reconfigurable Hardware Acceleration”,

Proceedings of IEEE Workshop Heterogeneous reconfigurable Systems on

Chip, 2002.

11. Neoh S. H. & Hazanchuk A., “Adaptive Edge Detection for Real-Time

Video Processing using FPGAs ”, CF-EDG031505-1.0, 2005.

12. Dias A. F., Lavarenne C., Akil M. & Sorel Y., “Optimized Implementation

of Real-Time Image Processing Algorithms on Field Programmable Gate

Arrays“, Fourth International Conference on Signal Processing, ICSP'98,

October 1998.

13. El-Ashmawi A., “Migrating FPGAs to Structured ASICs in Avionics to

Reduce SEU Susceptibility”, OpenSystems Publishing-2007.

14. www.digitalcreationlabs.com , “Digital Video Overview”, last accessed

date: 25.12.2010.

15. Specifications of the Camera Link Interface Standard for Digital Cameras

and Frame Grabbers, October 2000

16. Digital Visual Interface (DVI), Revision 1.0, April 1999

17. The I2C Bus Specification Version 2.1, January 2000

18. Jack K., “YCbCr to RGB Considerations”, Application Note, March 1997.

http://www.digitalcreationlabs.com/

89

19. Altera Corporation, “Cyclone III Development Board Reference Manual”,

March 2008.

20. DynaPel Systems, “DynaPel SteadyEye Digital Real-Time Video Stabilizer

Brochure”, February 2005.

21. Altera Corporation, ”DDR and DDR2 SDRAM High Performance

Controllers and ALTMEMPHY IP User Guide”, February 2010.

22. Altera Corporation White Paper, “FPGA vs DSP Design Reliability and

Maintenance”, ver. 1.1,May 2007.

23. Datar A. & Padhye A. “Graphics Processing Unit Architecture (GPU

Arch)”, presentation, April 2005.

24. Altera Corporation,”FFT MegaCore Function User Guide”, November 2009.

25. Engelsberg A. & Schmidt G., “A comparative review of digital image

stabilizing algorithms for mobile video communications”, IEEE

Transactions Consum. Electron., vol. 45, pp. 591-597,1999.

26. Morimoto C. & Chellappa R., “Evaluation of Image Stabilization

Algorithms”, ICASSP, vol.5, pp. 2789 – 2792, 1998.

27. www.videoclarity.com,“General Video Quality Defined”, last accessed date:

03.01.2010.

APPENDIX A

INTERNAL FPGA BLOCKS AND SIGNAL EXPLANATIONS

DDR2 SDRAM CONTROLLER

w r1_w r_addr[31..0]
w r1_addr_w rreq

w r1_w r_clk
w r1_reset

w r1_w r_data[127..0]
w r1_data_w rreq

w r2_w r_addr[31..0]
w r2_addr_w rreq

clkin_125

w r2_w r_clk

rst_in

w r2_reset

w r2_w r_data[127..0]
w r2_data_w rreq

w r3_w r_addr[31..0]
w r3_addr_w rreq

w r3_w r_clk
w r3_reset

w r3_w r_data[127..0]
w r3_data_w rreq

rd1_w r_addr[31..0]
rd1_addr_w rreq

rd1_w r_clk
rd1_reset

rd1_data_rdreq

rd2_w r_addr[31..0]
rd2_addr_w rreq

rd2_w r_clk
rd2_reset

rd2_data_rdreq

rd3_w r_addr[31..0]
rd3_addr_w rreq

rd3_w r_clk
rd3_reset

rd3_data_rdreq

w r1_addr_full
w r1_data_full

w r1_data_w r_used[6..0]

w r2_addr_full
w r2_data_full

w r2_data_w r_used[6..0]

mem_odt[0..0]
mem_cs_n[0..0]

mem_cke[0..0]
mem_addr[12..0]

mem_ba[1..0]
mem_ras_n
mem_cas_n
mem_w e_n

mem_dm[3..0]

w r3_addr_full
w r3_data_full

w r3_data_w r_used[6..0]

rd1_addr_full
rd1_rd_data[127..0]

rd1_data_empty
rd1_data_rd_used[6..0]

rd2_addr_full
rd2_rd_data[127..0]

rd2_data_empty
rd2_data_rd_used[6..0]

rd3_addr_full
rd3_rd_data[127..0]

rd3_data_empty
rd3_data_rd_used[6..0]

mem_clk[0..0]
mem_clk_n[0..0]

mem_dq[31..0]
mem_dqs[3..0]

ddr2_sdram_controller

ddr2_sdram_controller

Figure 72: SDRAM Controller Block Diagram

90

91

Table 21 : DDR2 SDRAM Controller Signals

 Signal Description

clkin_125MHz
Controller main clock. It is 125MHz in this implementation and the
maximum clock frquency is 150MHz.

rst_in
Controller reset. Reset all blocks inside the controller.
“0”: reset, “1”: normal operation

wr*wr_clk
Write port clock. Port write clocks may be different, the arbiter
handles the clock domain switch operation.

wr*_reset
Write port reset. Reset the selected port buffers.
“1”:reset, “0”:normal operation

wr*_addr_wrreq
Address write request. This signal indicates that a new data packet
has been written to port buffer and it will be transferred to the
SDRAM.

wr*_wr_addr

Addreess. This bus is 32 bit and lower 23 bit shows the write start
address in SDRAM.
Addr (31..23) = Total numbers of written data.
Addr (22..21) = Bank address.
Addr (20..8) = Row address.
Addr (8..0) = Column address.

wr*_data_wrreq Data write request. The data is written to the port buffers.

wr*_wr_data Data. 128 bit

wr*_addr_full
Address write request buffer full indicater. When this signal is ‘1’, it
means that the request buffer is full and a new request should wait
until the arbiter empty it.

wr*_data_full
Data buffer full indicater. When it is “1”, the written data will be
lost.

wr*_data_wr_used Shows the total number of data in the buffer.

rd*_wr_clk
Read port clock. Port read clocks may be different, the arbiter
handles the clock domain switch operation.

rd*_reset
Read port reset. Reset the selected port buffers.
“1”:reset, “0”:normal operation

rd*_addr_wrreq
Address read request. This signal indicates that a new data packet
will be read from the SDRAM. After that signal goes high, arbiter
read the data and write to the read buffers.

Table 21: Continuation.

rd*_wr_addr

Addreess. This bus is 32 bit and lower 23 bit shows the read start
address in SDRAM.
Addr (31..23) = Total numbers of data to be read.
Addr (22..21) = Bank address.
Addr (20..8) = Row address.
Addr (8..0) = Column address.

rd*_data_rdreq Data read request from the buffers.

rd*_rd_data Data. 128 bit

rd*_addr_full Address read request buffer full indicater.

Read data buffer empty signal. When this signal is “1”, there is no
data in the buffer. rd*_data_empty

rd*_data_rd_used Shows the total number of data in the buffer

wr1_data_wrreq

wr1_wr_data

wr1_wr_clk

wr1_addr_wrreq

wr1_wr_addr

Figure 73: Write Operation to Write_Port1

92

Figure 74: Read Operation from Read_Port1

1-D FFT IP Block

clk

reset_n

inv erse

sink_v alid

sink_sop

sink_eop

sink_real[17..0]

sink_imag[17..0]

sink_error[1..0]

source_ready

sink_ready

source_error[1..0]

source_sop

source_eop

source_v alid

source_exp[5..0]

source_real[17..0]

source_imag[17..0]

one_d_f f t

one_D_FFT

FF
T/

IF
FT

IN
P

U
T

FF
T/

IF
FT

O
U

TP
U

T

Figure 75: FFT IP Block Diagram

93

94

Table 22 : FFT IP Signals

 Signal Description

clk FFT block clock input. 27MHz in this application

reset_n
FFT block reset.
“0”: reset, “1”: normal operation

inverse
DFT / IDFT selection
“0”: DFT, “1”: IDFT

sink_valid
FFT block input valid. The data given with this signal is processed in
FFT block.

sink_sop Input data start signal.

sink_eop Input data end signal.

sink_real The real part of the input data. 18 bit.

sink_imag The imaginary part of the input data. 18 bit.

sink_error The error signal for the input data [24].

source_ready FFT block can give the calculation results.

sink_ready FFT block can receive new data packet.

source_error The error signal for the FFT result [24].

source_sop FFT output start signal.

source_eop FFT output end signal.

source_valid FFT output data is valid.

source_exp
FFT output exponantial. This signal is used to scale real and imaginary
parts [24].

sink_real FFT output real part. 18 bit.

sink_imag FFT output imaginary part. 18 bit.

clk

inverse

sink_ready

sink_sop

sink_valid

sink_real

sink_imag

sink_eop

source_ready

source_sop

source_valid

source_real

source_imag

source_eop

source_exp

DFT IDFT

Figure 76: FFT IP Input/Output Flow

95

	 INTRODUCTION
	DIGITAL VIDEO STABILIZATION METHODS
	2.1 MOTION ESTIMATION
	2.1.1 Frequency Domain
	2.1.2 Time (Spatial) Domain

	2.2 MOTION EVALUATION
	2.3 FRAME CORRECTION
	IMPLEMENTATION OF REAL TIME VIDEO STABILIZATION
	3.1 REAL TIME VIDEO PROCESSING ENVIRONMENT
	3.1.1 Video Inputs
	3.1.2 Memory Interfaces
	3.1.3 Processing Units
	3.1.4 Video Outputs

	3.2 PHASE CORRELATION FPGA IMPLEMENTATION
	3.3 FULL SEARCH FPGA IMPLEMENTATION

	IMPLEMENTATION RESULTS AND COMPARISONS
	4.1 MATLAB IMPLEMENTATION
	4.1.1 Phase Correlation Results
	4.1.2 Full Search Results
	4.1.3 Comparison Between Phase Correlation and Full Search

	4.2 FPGA SIMULATION
	4.3 FPGA IMPLEMENTATION

	CONCLUSION AND FUTURE WORK
	5.1 CONCLUSIONS
	5.2 FUTURE WORK

	REFERENCES
	APPENDIX A

