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ABSTRACT 

FPGA IMPLEMENTATION OF REAL TIME DIGITAL VIDEO 
STABILIZATION 

 

Özsaraç, İsmail 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Assist. Prof. Dr. İlkay Ulusoy 

 

February 2011, 95 pages 

Video stabilization methods are classified as mechanical and digital. Mechanical 

methods are based on motion sensors. Digital methods are computer programs and 

classified into two as time domain and frequency domain based on the signal 

processing methods used for the motion analysis. Although, mechanical methods 

have good real time stabilization performance, they are not suitable for small 

platforms such as mobile robots. On the other hand, digital video stabilization 

methods are easy to implement on various hardware, however, they require high 

computational load and long processing time. 

Two different digital video stabilization methods, one frequency and one time 

domain algorithms, are implemented on FPGA to realize their real time 

performances. Also, the methods are implemented and tested in MATLAB. FPGA 

results are compared with MATLAB’s to see the accuracy performance. 
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The input video format is PAL of which frame period is 40ms. The FPGA 

implementation is capable of producing new stabilization data at every PAL frame 

which allows the implementation to be classified as real time. Also, the simulation 

and hardware tests show that FPGA implementation can reach the MATLAB 

accuracy performance. 

Keywords: Real Time Digital Video Stabilization, Phase Correlation, Full Search, 

FPGA 
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ÖZ 

GERÇEK ZAMANLI SAYISAL VİDEO SABİTLEME’NİN FPGA 
UYGULAMASI  

Özsaraç, İsmail 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. İlkay Ulusoy 

 

 

Şubat 2011, 95 sayfa 

Video sabitleme yöntemleri mekanik ve sayısal olarak sınıflandırılır.Mekanik 

yöntemler hareket algılayıcılar üzerine kuruludur. Sayısal yöntemler bilgisayar 

programlarıdır ve hareket analizi için kullandıkları sinyal işleme yöntemine göre 

zaman bölgesi ve frekans bölgesi olarak  iki sınıfa ayrılırlar. Mekanik yöntemler iyi 

gerçek zaman sabitleme performansına sahip olmalarına rağmen, hareketli robotlar 

gibi küçük platformlar için uygun değillerdir. Diğer taraftan, sayısal  video 

sabitleme yöntemlerini değişik donanımlarda uygulanmak kolaydır, ancak bunlar 

yüksek hesaplama yüküne ve uzun işlem zamanına ihtiyaç duyarlar. 

İki farklı sayısal video sabitleme yöntemi, biri frekans diğeri zaman bölgesi 

algoritmaları, gerçek zaman performanslarını anlamak için FPGA üzerinde 

uygulanır. Ayrıca, yöntemler MATLAB’ta uygulanır ve test edilir. FPGA sonuçları 

MATLAB’ınkiler  ile doğruluk performansının görülmesi için karşılaştırılır. 
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Giriş video yapısı çerçeve süresi 40 ms olan PAL’dır. FPGA uygulaması her PAL 

çerçevesinde yeni bir sabitleme verisi üretme yeteneğine sahiptir, bu da 

uygulamann gerçek zamanlı olarak nitelendirilmesine olanak sağlamaktadır. Ayrıca, 

benzetim ve donanım test sonuçları FPGA uygulamasının MATLAB doğruluk 

performansına ulaşabildiğini göstermektedir. 

Anahtar Kelimeler: Gerçek Zamanlı Sayısal Video Sabitleme, Faz İlintisi, Tam 

Arama, FPGA 
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CHAPTER 1  

  INTRODUCTION 

 

Video processing is widely used in many areas such as health, city planning, auto 

industry, space and military where accurate image frames are required. For instance, 

in a surgical operation where cameras are used, the operator needs real time video 

which is stable to understand the correct location of the problem. In a military 

system where object tracking is used, consecutive frames should be stable in the 

spatial domain, so that tracking algorithm can work properly.  

The first and necessary step of all video processing algorithms is to remove the 

undesired global movements which can be in translational and rotational formats 

[1]. The characteristics of these undesired motions are related with the platform 

where the video source is located. In the avionic platforms all the movements 

described above can be occurred, however in ground applications where the 

motions are in spatial directions, the translational movements are most commonly 

encountered [2]. These undesired motions can be removed by different video 

stabilization methods.  

There are mainly two approaches to stabilize the video frames, which are 

mechanical and digital methods [3]. Mechanical methods use sensors (gyros and 

accelerometer) to detect the motion and realize the stabilization by changing the 

location of the camera against the direction of the movement. Although this 

approach is very successful in stabilization and used in many platforms, its complex 

and huge structure is not suitable for small robots in laboratory or handy cams.     
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On the other hand, digital video stabilization can be used at every platform where 

hardware and software can be implemented. 

Digital video stabilization methods have three implementation steps; motion 

estimation, motion correction and frame correction. Motion estimation is the most 

important and time consuming part. The motion estimation algorithms are mainly 

grouped into two according to the information that they use; frequency and time 

(spatial) domain [4]. Frequency domain algorithms are less sensitive to local 

motions but their computational load is high, so frequency domain approaches are 

not preferable for real time applications. There are several spatial domain 

approaches which are generally classified as block based and feature based [3] 

which have different computation load and calculation accuracies.        

In this study, two different digital motion estimation approaches which are 

frequency and spatial domain will be implemented in FPGA to see their real time 

performance. The results of the methods will be compared according to 

computation time, accuracy, and logic usage and power consumption. 

Real time implementation requires a strict pipelining of the video processing 

applications. Every task in the application list should be finished in a certain time 

[5]. Since video stabilization is the first step of the whole video path, it should also 

be completed according to real time constraints. In frequency domain 

implementation, the sub-block method is used to reduce computation time and 

hardware requirements. Because whole frame approach needs high speed external 

memories and FPGAs which are not available on all platforms. In spatial domain, 

Full Search (FS) algorithm is used which provides the most accurate results among 

the other spatial approaches with its high computational load [2]. The computational 

load of the FS algorithm can be handled with parallel structure of the FPGA.  

This thesis study provides valuable comparison results about the performance of the 

two different digital motion estimation approaches. These results are obtained by 
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implementing the algorithms in a real time video stabilization system which is 

located on a mobile robot. 

This thesis includes five chapters. First Chapter covers the introduction, problem 

definition and the main goal of the study. The Second Chapter summarizes the 

theoretical background of the proposed video stabilization algorithms. In the Third 

Chapter, the elements of the real time video processing environment are mentioned. 

Also, in this chapter the FPGA implementation steps of the algorithms are given. 

The implementation and comparison results are provided in Chapter Four. Finally, 

in Chapter Five the conclusion and future work of this study are given.  
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CHAPTER 2  

DIGITAL VIDEO STABILIZATION METHODS 

 

Digital video stabilization methods have three main parts. These methods start with 

motion estimation, then the estimated motions are evaluated according to some 

constraints and finally the shift on the frame is removed [7]. The stabilization flow 

is shown in Figure 1. 

 

Figure 1: General Digital Video Stabilization Flow 

Motion estimation is the most critical and time consuming part of the flow [8]. The 

results of this part determine the whole accuracy of the stabilization process. There 

are different approaches for motion estimation but these approaches can be 

generally grouped as time (spatial) and frequency domain. Motion evaluation is the 

second part of the flow. The results of the motion estimation process are evaluated 

and the incorrect estimations are removed. Frame correction is the last step to 

stabilize the frame sequence. This process uses the evaluated motion information 

and apply inverse shift to the corrupted video frame. 
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Motion evaluation and frame correction are mainly identical steps for all digital 

video stabilization methods but motion estimation may be different in different 

methods. In this chapter, two main motion estimation approaches; time and 

frequency domain will be explained. For frequency domain, sub-block phase 

correlation and for time domain, area based full searched algorithms will be 

detailed. 

2.1 MOTION ESTIMATION 

2.1.1 Frequency Domain 

The translational difference between the reference image and current image in time 

domain results in phase difference in frequency domain. The basic implementation 

of this method which provides the most accurate result uses the whole image frame 

for the phase calculation [25]. However, using whole frame requires high 

computational load which prevents real time implementation [2]. For that reason, 

sub-blocks from the original frame are used in phase calculation. 

Texture is the total intensity difference of the neighbor pixels. Since, sub-blocks are 

small parts of the whole frame, they contain less texture and low texture may result 

in faulty estimations. Therefore, selection of the sub-blocks is very critical for the 

accuracy. There are two main criteria in the selection of sub-blocks which are size 

and location.  

To increase the texture, the size of the sub-block may be increased, but increase in 

the size will result in higher computational load. Therefore, the optimum size 

should be determined which should contain enough texture and be computable in 

real time. Figure 2 is an example for the texture density according to the sub-block 



size. The small sub-block contains less texture, and the larger sub-block contains 

more texture. 

 

Figure 2: Sub-Block Size & Texture 

The second criterion is the location of the sub-block. There are two approaches for 

the location; constant and dynamic. The constant sub-blocks are located on pre-

determined location on the image frame. As shown in Figure 3, these sub-blocks 

may have different locations and orientations. 

 

Figure 3: Constant Sub-Block Locations 

The constant sub-block location method may also suffer from less texture. To solve 

this problem, dynamic location method can be used. In this method, the location of 

the sub-blocks can be changed according to the texture analysis. In Figure 4,              
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sub-block A contains less texture; however sub-block B contains more, so the sub-

block location is moved to location B.  

 

Figure 4: Dynamic Sub-Block Location 

Texture analysis (TA) is done by comparing the neighbour pixels in the sub-block 

in both x and y direction.  
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The location and size of the sub-blocks are arranged according to the texture 

analysis. After that the phase correlation is started with the sub-blocks that have 

more texture on the reference and current images. 

Let Rsb and Csb represent the sub-blocks in reference and current images 

respectively. Assume that there is a translational shift between the sub-blocks: 

( ) ( )ΔyΔx,yxCx,yR sbsb ++= .                                                                                    (2.2) 

FR and FC are the two-dimensional Discrete Fourier Transforms (DFT) of the      

sub-blocks Rsb and Csb. Firstly column DFT which is in x direction is calculated, 

then the row DFT in y direction is calculated as follows: 
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dyedxeyxRvuF vyjuxj
sbR

ππ 22 )),((),( −−∫∫= ,                 (2.3) 

.                                                           (2.4) dyedxeyxCvuF vyjuxj
sbC

ππ 22 )),((),( −−∫∫=

If we put Csb (x + Δx, y + Δy) instead of Rsb in equation (2.3); 

dyedxeyyxxCvuF vyjuxj
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ππ 22 )),((),( −−∫∫ Δ+Δ+=  

                                  (2.5) 
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Thus, the translational shift in time domain, results in a phase difference in 

frequency domain. This phase difference can be obtained by the normalized cross 

power spectrum: 

*

*
)(2

),(),(
),(),(

vuFvuF
vuFvuFe

CR

CRyvxuj =Δ+Δπ .                                                                           (2.6) 

The two dimensional Inverse Discrete Fourier Transform (IDFT) of the normalized 

cross power spectrum gives the phase correlation surface P(x, y). Phase correlation 

surface has a peak at location (Δx, Δy) due to the delta function in equation (2.7) 

[2].  

)(),( )(21 yxjeFyxP Δ+Δ−= π ,                                                      
),(),( yyxxyxP Δ+Δ+= δ .                                                                                  (2.7) 
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Figure 5: The Flow of Phase Correlation 
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Figure 5 shows the whole flow of the phase correlation process. At the end of this 

process, amplitudes of the phase correlation surface points are compared and the 

maximum value (peak) is found. The location of the peak (Δx, Δy) is used to 

estimate the translational shift between the sub-blocks.  

The location of the peak gives information about the direction of the shift as well. If 

we separate the sub-blocks into four regions, every region has its own shift 

direction. Figure 6 shows the possible shift directions and the regions on the sub-

block. For example, if the peak is located in region (1), the shift is in the negative 

direction for both x and y. The polarities of the shifts are arranged according to the 

frame structures. y direction represents the rows and x direction shows the columns 

(pixels). The row number is increasing in +y direction and the pixel number is 

increasing in +x direction. 

 

Figure 6: The Shift Directions and Regions of Sub-Blocks 

Like the direction, the shift values are also calculated according to the location of 

the peak. N is the dimension of the sub-block. The calculation of shift value differs 

if the peak location is greater or less than (N/2).  Table 1 shows the calculation steps 

of the x and y shift values.  
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Table 1 : Calculation of Frequency Domain Shift Values 

Algorithm 
steps Description 

1 Calculate the location of the peak value. (Δx, Δy) 

2 If Δx is greater than or equal to (N/2). (Δx >= N/2 ) 

                      X_SHIFT = N - Δx + 1 

3 If Δx is less than (N/2). (Δx < N/2 ) 

                      X_SHIFT = 1 - Δx 

4 If Δy is greater than or equal to (N/2). (Δy >= N/2 ) 

                     Y_SHIFT = N - Δy + 1 

5 If Δy is less than (N/2). (Δy < N/2 ) 

                     Y_SHIFT = 1 - Δy 

2.1.2  Time (Spatial) Domain 

There are different methods to calculate motion estimation in time domain. These 

methods which are feature based, region based and area based use the similarities in 

the reference and current images, respectively. Among these methods, area based 

approach which is also called as Full Search (FS) provides the most accurate motion 

estimation results [6].   

Since reference and current images are translational shifted copies of each other, 

they contain similar sub-blocks. FS tries to find the similar sub-blocks and assign 

the translational shifts according to the sub-block locations. 

FS works on search areas to find the similar sub-blocks. The current image is 

divided into sub-search areas (SA). A sub-block is selected from the reference 

image which is located at the centre of the search area. This sub-block is called as 

reference sub-block. Then, every sub-block on the current image search area which 

are called as current sub-block, are compared with the reference sub-block. 



According to the comparison results, the shift between the reference and current 

sub-blocks are obtained.  

Figure 7 shows the search area on the current image, reference sub-block and 

possible current sub-blocks around.  

 
Figure 7: Full Search Algorithm on the Image 

For the comparison between reference and current sub-blocks, correlation is used. 

The correlation is obtained from the pixel intensity values by Mean Absolute 

Difference (MAD). In equation (2.7), N is the dimension of the sub-block. Rsb(x, y) 

and Csb(x, y) are the pixel intensity values on the reference and current sub-blocks 

respectively. 

2
1 1
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N

yxCSByxRSB
MAD

N

x

N

y
∑∑
= =

−
=                                                                   (2.8) 

The reference sub-block is compared with every possible current sub-block by 

using MAD. Then the minimum MAD value is selected as the match between the 
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sub-blocks in the reference and current images. In spite of Frequency Domain 

approach, the whole image is divided into search areas and every neighbor search 

areas are checked. As a result, there occurs several match values between the 

reference and current images. This match values contain the shift information. As 

shown in Figure 8, search areas are neighbor of each other. This approach provides 

accurate matching of the sub-blocks. 

 

Figure 8: Search Area & Sub-Blocks 

After finding the matched sub-blocks from reference and current images, the shift 

values (motion estimations) are calculated according to the location differences.    

Table 2 explains the algorithm for the calculation of shift values in time domain. 

With the calculated shift values, like frequency domain, the texture analysis is done 

on the reference sub-block. This analysis result is sent to the evaluation part with 

the motion estimations and MAD.  
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Table 2 : Calculation of Time Domain Shift Values 

Algorithm 
steps Description 

1 

Let search area be MxM and block size be NxN 
Let Rsb(x, y) be the center of the reference sub-block 
Let Csb(x, y) be the center of the current sub-block 
Let dx be the shift value in x direction and dy be the shift value    
in y direction.  
dx is equal to ( Rsb (x) - Csb (x) ). 
dy is equal to ( Rsb (y) - Csb (y) ).  
If dx is positive, then x-shift is negative, vice versa.  
If dy is positive, then y-shift is negative, vice versa. 

2 Take a search area from current image 

3 Take a sub-block from reference image which is at the center of 
the selected search area 

4 Take a sub-block from current image which starts at the first point 
of search area. 

5 Set MAD to high value. 

6 Calculate the MAD between the reference and current sub-block. 

7 
If MAD is less than the previous one, set MAD value to 
calculated one. 
Update dx and dy. 

8 
If the current sub-block reaches the end of the search area, pass to 
the neighbor search area and move to step 9. 
Else pass to the neighbor current sub-block and move to step 6.  

9 
If the search area reaches the end of the image, go to step 10. 
Else assign dx and dy values as the shift values between the 
reference and current image for this search area. 

10 End of the algorithm 
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2.2 MOTION EVALUATION 

The calculated translational shift values (motion estimations) between reference and 

current images are evaluated according to their accuracy before using them in the 

frame correction.  

This evaluation is different for frequency and time domain as it is in motion 

estimation. The number of frequency domain motion estimation results is less than 

time domain results because frequency domain calculations are done on a 

predetermined number of sub-blocks while time domain calculations are done for 

whole image. Firstly, frequency domain evaluation will be detailed, and then time 

domain approach will be explained 

For frequency domain motion evaluation, there are two main criteria which are 

texture analysis (TA) and the amplitude of the peak. TA and amplitude of the peak 

determines how the estimated motion from the related block will effect the frame 

correction. 

If the texture of the selected sub-block is not high enough, the phase calculation in 

frequency domain will not be correct and there occurs several peaks on phase 

correlation surface with similar amplitudes as shown in Figure 9. Since the motion 

estimations with low texture can not be used for the frame correction, they should 

be filtered by a texture threshold (TT). This threshold value can be different 

according to the application area. For instance, the threshold value can be lower if 

the stabilization is performed on naval or airborne platform where texture is low. 

On the other hand, if the stabilization is performed on a mobile robot in the 

laboratory where texture is high, TT should be higher. 



 

Figure 9: Peak Results for Low Texture 

After the frequency domain motion estimations are filtered by TT, the amplitudes of 

the peaks on the phase correlation surface are evaluated.  Theoretically, there should 

be only one peak on the surface and the other values should be zero. However, in 

real time applications there can be blurring between the reference and current 

images. Also, the pixel intensity values between the successive image frames can be 

different because of the camera performance and the environmental changes. 

Therefore, there occur several peaks with different amplitudes on the correlation 

surface. The comparison of the highest peak with the other peaks gives valuable 

information about the accuracy of the motion estimation. Also, there can be several 

higher peaks with similar amplitudes, so the number of peaks which are higher than 

a predetermined peak threshold (TP) is also a good data for the accuracy. 

There are several approaches to determine the final shift values for frequency 

domain by using the TA and peak amplitudes. These approaches require different 

computation load according to their complexity and they provide different 

accuracies which will be detailed in Chapter-4.  Table 3 gives the approaches to 

calculate the final shift value. 
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Table 3 : Frequency Domain Motion Evaluation Approaches 

Abbreviation 

NS  : Number of Sub-Blocks used in motion estimation 
NSF: Number of Sub-Blocks that can pass the filtering. 
TT : Texture Threshold 
AP : Peak Amplitude 
As

PC : Phase Correlation Surface Average 
TP : Peak Threshold 
PH : Peak with highest amplitude 
HPAR: The ratio of the PH to the As

PC. 
XT: Sum of x-shift values. 
YT: Sum of y-shift values. 
XF : Final x-shift value 
YF : Final y-shift value 

Approach Description 

WOTT 
(Without TT) 

Do not apply filtering by TT. 
Calculate XT and YT. 
XF = XT / NS; 
YF = YT / NS; 
(If XF or YF are not integer, they are rounded) 

WTT 
(With TT) 

Apply filterin by TT. 
Calculate XT and YT. 
XF = XT / NSF; 
YF = YT / NSF; 

HP 
(Highest Peak) 

Apply filtering by TT. 
Find the sub-block with PH. 
Assign XF this sub-block’s x-shift value. 
Assign YF this sub-block’s y-shift value. 

WPT 
(With TP) 

Apply filtering by TT. 
Apply filtering by TP. 
Calculate XT and YT. 
XF = XT / NSF; 
YF = YT / NSF; 

HPAR 

Apply filtering by TT. 
Apply filtering by TP. 
Calculate HPAR for the filtered sub-blocks. 
Find the sub-block with highest HPAR. 
Assign XF this sub-block’s x-shift value. 
Assign YF this sub-block’s y-shift value. 
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In time domain motion estimation, the number of calculated sub-block is related 

with the image and sub-block size. Let, the image size is R x C and search area size 

is M x M, then approximately (R / M)*(C / M) sub-blocks are used for the motion 

estimation. Despite of frequency domain approach, time domain motion estimation 

results many x-shift and y-shift values.  

These shift values are called as local motion vectors which contain both local and 

global motions. Local motions are the movements of the objects and global motion 

is the translational shift. Therefore, the local shift values should be filtered to reach 

the global values. 

Like frequency domain, time domain also uses the texture analysis. Firstly, the 

motion estimations are filtered by TT and then they are used in the evaluation. MAD 

data shows how the reference and current sub-block match each other. If the MAD 

is less, this means that there are not blurring, intensity change and the sub-blocks 

are free of local motions. So, a MAD threshold (TMAD) is used to evaluate the 

motion estimation values coming from the sub-blocks. Table 4 explains the time 

domain motion evaluation steps.  

Table 4 : Time Domain Motion Evaluation Steps 

Abbreviation 

NS  : Number of Sub-Blocks used in motion estimation 
NSF: Number of Sub-Blocks that can pass the filtering. 
TT : Texture Threshold 
TMAD : Mean Absolute Difference Threshold 
XT: Sum of x-shift values. 
YT: Sum of y-shift values. 
XF : Final x-shift value 
YF : Final y-shift value 

Evaluation 
Steps Description 

1 Apply filterin by TT. 

2 Apply filterin by TMAD. 

3 
Calculate XT and YT. 
XF = XT / NSF; 
YF = YT / NSF; 



2.3 FRAME CORRECTION 

Frame correction is realized by reverse shift operation on the current image. The 

final shift values which are coming from the motion evaluation step are used in the 

correction. Since borders of the image can disappear during the shake, frame 

correction can not generate a complete image. Therefore, it is better to use the 

images with lower resolution, otherwise some dark areas occurs at the borders. 

For instance, if the image has a resolution of 576 (vertical) x 720 (horizontal) which 

is PAL format, the resolution can be decreased to 512x512. Then, the correction can 

be applied on at maximum of 32 pixels in the vertical and approximately 100 pixels 

in the horizontal without losing any pixel. The resolution decrease may be different 

between the usage areas. Some applications may require all image resolution and 

accept the dark areas at the borders or some of them may use different lower 

resolutions. Figure 10 shows the whole image, area of interest and the possible shift 

values. 

 

Figure 10: Area of Interest for the Correction 
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The correction is done by controlling the read sequence of the image from the 

memory. If there is a shift in +y direction which is equal to Q, the first row is read 

from the Qth row. This process results in an inverse shift in –y direction. Or if there 

is –y shift between the reference and current image, the frame read starts at –Qth 

row. For an image frame, minus row is not possible, so we accept the start row of 

the area of interest as the first row. For the minus rows, we read from the upper side 

of the area of interest.   

Figure 11 shows the reference, current image and corrected images. In this figure, 

there is a positive shift in y direction and the correction is realized by changing the 

first row location. 

 

Figure 11: Reference & Current and Corrected Images 
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CHAPTER 3  

IMPLEMENTATION OF REAL TIME VIDEO STABILIZATION 

 

In this thesis study, Phase Correlation (PC) and Full Search (FS) digital video 

stabilization algorithms are implemented in Field Programmable Gate Arrays 

(FPGA), since FPGAs are suitable processing units for the applications where 

computation load is high [9].  

The basic advantage of the FPGA structure is its flexibility. Namely, different tasks 

which need to be run in parallel can be implemented in FPGA. Also, the tasks in the 

FPGA can be changed by loading a new configuration. This is the basic difference 

between the ASICs and FPGAs. ASICs can also be used for parallel tasks but they 

can not be reconfigured [13]. 

However, only FPGA is not enough for real time video processing application, 

external units are required for data management [10]. To clarify these units, firstly, 

the elements of the real time video processing environment will be explained. Then, 

the FPGA implementation of PC and FS algorithms will be detailed.  

3.1 REAL TIME VIDEO PROCESSING ENVIRONMENT 

Real time video processing requires a well defined timing between units. Every task 

should be completed in a certain time to match with the real time constraints [12]. 
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Also, some tasks should be constructed in a pipeline order to maintain video flow. 

Pipelining structure will be explained in 3.1.3 section. 

The processing starts with the video inputs. Incoming video frames are stored in 

external memories. Then, the stored data is read by processing units and the results 

are displayed via video outputs. 

3.1.1 Video Inputs 

There are mainly two types of video inputs; analog and digital. Analog videos are 

widely used in many areas for years. The basic analog video standards are PAL 

(Phase Alternation Line-Europe) and NTSC (National Television Standards 

Committee-USA) which have been used since the foundation of the color TV [14]. 

Digital video standards are newer when compared to analog standards. T mheir 

usage is increased by the design of high speed interfaces. The well known digital 

standards are DVI (Digital Video Interface) and Cameralink [15, 16]. 

The type of video input is related with the capability of the hardware. In this thesis 

study, the daughter card which is located on the main board may receive both 

analog (PAL-NTSC) and digital (DVI) video inputs. There are integrated circuits 

(ICs) to capture the video signals. Since the cameras produce PAL analog video, 

our processing environment is constructed to receive analog video, but future 

applications may also use DVI digital video. 

PAL analog video which has a resolution of 576 (row) x 720 (pixel) @ 25Hz, is 

captured by video decoder IC (Texas Instruments-TVP5154). This IC decodes the 

analog video and produces digital signals which are sent to FPGA. There are 

internal registers in the video decoder to control its functionality. These registers are 

set according to the application, namely the video input may be converted to NTSC. 



The registers are controlled by I2C (Inter Integrated Circuit) interface which is 

implemented in FPGA [17]. Figure 12 shows the video flow from the cable to 

FPGA. 

 

Figure 12: Video Decoder Interface 

Digital video signals are used to obtain active video pixels which carry the intensity 

values of the captured scene. VSYNC signal indicates the active and blank time of 

the video frame. It is high when the video frame is active and it is low in the frame 

vertical blank. FIELD signal gives information about the frame field. PAL analogue 

video is transmitted in interlace format [14]. Firstly odd lines then even lines are 

transmitted. This interlace sequence is also related with FIELD signal, namely, 

when FIELD is high, it means that odd field is active and when it is low even field 

is active. HSYNC is used for the pixel lines and PIXEL VALID signal covers the 

active PIXEL DATA which is 8-bit.  

PIXEL DATA is sent to the FPGA in YCbCr format. In this format Y carries the 

luminance information and Cb & Cr hold the chrominance data [18]. In this 

implementation only Y data will be used, for this reason Y data is separated from 

the other data by using the PIXEL VALID and PIXEL CLOCK signals. PIXEL 

CLOCK is 27MHz for the digitized PAL video. Figure 13 shows the digital video 

frame signals and their orientation according to each other.  
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Figure 13: Video Frame Signals 

3.1.2 Memory Interfaces 

In digital video stabilization, external memories are used to store data which are the 

pixel intensity values before or after processing. There are mainly two types of 

memories which are used in real time video processing applications. These 

memories are SRAMs (Static Random Access Memory) and SDRAMs 

(Synchronous Dynamic Random Access Memory). 

SRAMs are formed in address-data format. There are address locations that store 

the data which is shown in Figure 14. They provide quick reach to the address 

locations, namely write/read operation only takes a few clock. For that reason, they 

are suitable for the video processing applications where pixel values from different 

line-column locations are required [19]. However, SRAMs suffer from memory 

capacity and speed. Most of the SRAM bus interface is not fast as SDRAMs and 

there is not large memory space as in SDRAMs.  
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Figure 14: SRAM Internal Structure 

SDRAMs are in bank-row-column-data structure. The banks are the main storage 

units and every bank is formed by rows which contain columns. The data is stored 

in these columns. The internal structure of SDRAM is shown in Figure 15. Since, 

SDRAM structure is more complex when compared with SRAMs; their write/read 

operations require more clock. First of all, the bank is selected, then the row is 

opened and the data can be written in or read from the column. If the write/read 

operation continues on the same row, the next operation only takes one clock. So, 

SDRAMs are suitable for applications where the same line is written or read. Also, 

SDRAMs have high data bandwidth since they can work in high clock frequencies. 

In video stabilization, the basic idea is to compare the lines from reference and 

current image. Therefore, SDRAMs are more suitable for the stabilization and used 

in other stabilization systems [20].  

 

Figure 15: SDRAM Internal Structure 
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There are several internal blocks in FPGA implementation that require write/read 

interface with SDRAM. These blocks may try to reach memory at the same time. 

Therefore, a memory management block is implemented to control the data flow. 

This block is called SDRAM Controller and shown in Figure 16.  

 

Figure 16: SDRAM Controller  

SDRAM Controller consists of write/read buffers, SDRAM Arbiter and SDRAM 

Interface. Write buffers are used as a pre-cache to prevent data lost. Read buffers 

provide continues data flow for the read blocks since arbiter can load the buffers 

before they are needed. The total number of write/read buffers is six and the total 

number can be changed by slight code modification on the arbiter. The write/read 

sequence and signals of these buffers will be detailed at APPENDIX A. 

SDRAM arbiter controls the write/read operation to the SDRAM memory. It checks 

the buffers for a write or read request one by one. The priority of the SDRAM is for 
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write buffers because the incoming data should be stored as quick as possible to 

prevent buffer overwrite and data lose. 

SDRAM Interface generates the necessary signals for SDRAM memory; it writes or 

read according to control signals that come from the arbiter. This SDRAM Interface 

is an IP (Intellectual Property) provided by Altera (FPGA Vendor) [21].   

3.1.3 Processing Units 

The processing unit selection is done according to the application requirements. For 

the applications where complex mathematical operations are required DSP (Digital 

Signal Processor) can be used [22]. For the algorithms that require iterative 

calculations a CPU (Central Computing Unit) is a better selection. The graphic 

processor can be adapted for specific video processing applications [23]. Among all 

these different processing units, high computation load is a problem, especially 

when parallelism is required. FPGAs are dedicated hardware units to solve such 

problems [11]. 

The main sub-unit of an FPGA is LE (Logic Element). LEs can be configured 

according to the application. Since, LEs are individual, there can be different 

combinations which can work in parallel. This capability makes the FPGAs proper 

units that can handle high computational load [9].   

Figure 17 shows how FPGA parallel structure works. There are three tasks in the 

application, task-1’s and task-2’s outputs are sent to the task-3. Each task is 

implemented by different LE combination, so these tasks can be completed at the 

same time. Also this is a good example to explain pipeline structure. Each task 

receive its input and generate the outputs, outputs of some tasks become the inputs 

of another task. Therefore, there exist a pipeline and in every clock cycle, each task 

may continue its process. 



 

Figure 17: FPGA Parallel Structure 

In this thesis study, Cyclone III EP3C120 FPGA is used as the processing unit. This 

FPGA contains 119,088 LEs, 4 PLL (Phase Locked Loop), 3,981,312 internal 

memory bits and 576 9x9 dedicated multipliers [19]. PLLs generate different clocks 

from the input clock. In an FPGA implementation many different clock domains are 

required by different blocks. Internal memory bits are used by the blocks which 

need to store small amount of data and can not access to external memories like 

SDRAMs. Dedicated multipliers are used for the mathematical operations. In Figure 

18, the internal structure of FPGA is given.  

I/O 
INTERFACE

LEs

PLL

Internal 
Memory Multipliers

 

Figure 18: Internal FPGA Structure 
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3.1.4 Video Outputs 

Video outputs are used to display the results of the processing blocks. In video 

stabilization, the output is the stabilized video sequence, in stereo matching it is the 

disparity map and in object tracking, it is the sign on the object. Like video inputs, 

there are two video output types; analog and digital. All video input standards are 

also valid for video outputs. 

Analog video outputs can be displayed on CRT (Cathode Ray Tubes) monitors, 

digital outputs are displayed on digital monitors like LCD (Liquid Crystal Display). 

In this thesis study, the output of the stabilization algorithm will be displayed on 

LCD via DVI standard. The DVI signals are generated by FPGA and the physical 

transmission is handled by DVI transmitter IC (Texas Instruments-TFP410).  

Figure 19 shows the video output interface. DVI transmitter receive the necessary 

control signals and pixel values from the FPGA and generates the physical 

transmission signal according to the standard. There are 4 output channels in the 

transmission, these channels are differential. CH-0, CH-1 and CH-2 carry the pixel 

values and synchronization signals, CLOCK channel transmits the clock .    

 

Figure 19: Video Output Interface 
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For the real time video processing environment, Altera Cyclone III Development 

Board and Bitec HSMC (High Speed Mezzanine Card) daughter cards are used 

[19]. Daughter cards provide video input and output interfaces; they are plugged to 

the Cyclone III main board. Figure 20 shows the hardware structure and the 

components on the cards; also in Figure 21 the internal structure of the FPGA is 

given. 

 

Figure 20: The Hardware Structure 

The digitized analog video signals are read by the video input interface. Then, this 

video is written to the specific location of SDRAM memory by video write 

interface. Reference and current images are written to the different part of the 

memory and video read blocks are informed about the locations. After video write 

block finishes the operation, video read blocks get the reference and current image 

from the memory. Video stabilization block processes the data and calculates the 
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shift values between the images. Finally, video output block read the current image 

according to the shift values and display it on the screen. 

 

Figure 21: FPGA Internal Structure 

There are three input image buffers (IIB) and three output image buffers (OIB) in 

SDRAM. IIBs are used to store reference and current images. The incoming video 

frames are written to these buffers consecutively. OIBs are used for display 

purposes, the current image is displayed from these buffers according to the 

calculated shift values. Figure 22 shows the buffers and video connections. 

Three buffers method prevents overwrite problem, while two buffers are used for 

processing, the other buffer is used to store the incoming video frame. In output 

path, the output video may have a different frame rate than input video, so using 

three buffers provide opportunity to change frame rate without data lost.  
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Figure 22: Image Buffers in SDRAM  

 

Figure 23: Video Flow in Stabilization 

Figure 23 shows the video flow in digital video stabilization and Table 5 explains 

the steps. 
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Table 5 : Video Flow and Stabilization Steps 

Abbreviation 

FR : Frame 
ref  :  Reference Image. 
cur  :  Current Image. 
VS  : Video Stabilization 
ME : Motion Estimation 
OF  : Output Frame. 
IIB  : Input Image Buffer 
OIB : Output Image Buffer 

 Steps Description 

S1 
Write FR-1 to the IIB-1 and OIB-1 
FR-1 is the first frame and it is the initial reference image. 

S2 
Write FR-2 to the IIB-2 and OIB-2 
FR-2 is the initial current image. 
Set Δx & Δy (shift values) to zero. 

S3 

Write FR-3 to the IIB-3 and OIB-3 
Read OIB-1 (FR-1) according to Δx & Δy for video output display. 
Read IIB-1 according to Δx & Δy as reference image (FR-1). 
Read IIB-2 as current image (FR-2). 
Run ME algorithm and update Δx & Δy . 

S4 

Write FR-4 to the IIB-1 and OIB-1 
Read OIB-2 (FR-2) according to Δx & Δy for video output display. 
Read IIB-2 according to Δx & Δy as reference image (FR-2). 
Read IIB-3 as current image (FR-3). 
Run ME algorithm and update Δx & Δy . 

S5 

Write FR-5 to the IIB-2 and OIB-2 
Read OIB-3 (FR-3) according to Δx & Δy for video output display. 
Read IIB-3 as reference image (FR-3). 
Read IIB-1 as current image (FR-4). 
Run ME algorithm and update Δx & Δy . 

3.2 PHASE CORRELATION FPGA IMPLEMENTATION 

This section explains the necessary FPGA blocks and signals for the phase 

correlation method. FPGA blocks are coded with VHDL (Very High Speed 

Integrated Circuit Hardware Description Language).  The Video Stabilization block 

in Figure 21 is the main block for frequency and time domain. For frequency 

domain, this block is named as Video Stabilization Frequency (VSF). 



VSF consists of VSF_main_controller, texture_analysis, phase_correlation, 

VSF_motion_evaluation and reference&current internal memories. The connections 

between these blocks are shown in Figure 24.  

 

Figure 24: VSF Internal Structure 

VSF_main_controller is responsible for the pixel data management. This block 

controls the stabilization flow by checking and generating several signals. Frame 

ready signal asserted by video write interface (VWI) when it finishes reference and 

current frames write operation to the SDRAM. Frame valid signal which is 

controlled by video input interface, indicates the start of a new frame and it is the 

general control signal for all blocks to restart the operations.  

The main controller organizes the whole reference and current image line read 

operations from the SDRAM via video read interfaces (VRI). According to the sub-

block location which is described in section 2.1.1, the controller sends the line 

numbers to the VRI with new line read signal. After VRI finishes its read operation 
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from SDRAM, it writes the pixel data to the reference & current internal ram and 

asserts a data ready signal for the main controller. Main controller starts read 

operation from internal rams and assert pixel valid signal to inform  

texture_analysis and phase_correlation blocks that the coming pixel values will be 

inserted into the calculations. Sub-Block valid signal is used to separate different 

sub-blocks. It is asserted when a new sub-block is going to start and deasserted 

when the sub-block is finished.  

Texture analysis (TA) of the sub-block is done by texture_analysis block.          

Sub-block valid signal starts a new texture analysis and the analysis result is sent to 

the evaluation block by TA values signal. Figure 25 shows the internal structure of 

the texture analysis block. Pixel comparison block calculates the pixel differences 

as described by equation (2.1). Line FIFOs (First In First Out) hold the previous 

reference and current line pixel values which are used in the vertical difference 

calculation. When pixel valid signal is asserted, comparison block calculates the 

pixel difference between the neighbor pixels among horizontal and vertical 

direction. It adds the difference values to the previous one and find the total result. 

At the end of the sub-block, the total difference (TA value) is sent to the evaluation 

block.   

Phase Correlation (PC) block consists of PC_main_controller, 1-D_fft, 

ref&cur_ram, line_FIFO, normalization and magnitude block. PC block realizes 

the mathematical operation described in section 2.1.1. In Figure 26, the sub-blocks 

of PC are shown. 

 



 

Figure 25: Texture Analysis Block 

 

Figure 26: Phase Correlation Block 
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PC main controller starts the operation with the assertion of sub-block valid signal. 

It generates the necessary signals for the 1-D_fft block which performs one 

dimensional Discrete Fourier Transform. Reference and current line pixel values 

arrive the PC at the same time with pixel valid signal, but only one line can be 

processed in 1-D_fft block at a time, so current line pixel values are stored in line 

FIFO and processed after reference line is finished. The reason for using only one 

fft block is to reduce the total logic usage in FPGA. PC main controller arranges the 

data flow and perform all operations which are required DFT and IDFT with one fft 

block. 1-D_fft block is an IP which is provided by Altera [24]. It can perform both 

DFT and IDFT. The properties of this IP block will be detailed at APPENDIX A.  

The numbers in frequency domain has real and imaginary parts, PC main controller 

assign reference and current pixel values to real_in signal and set imag_in to zero. 

Then 1-D_fft block gives the fft result with real_out and imag_out signals. The 

results of the reference and current line DFT are stored in ref_fft_ram and 

cur_fft_ram respectively. After, sub-block finishes, the PC main controller starts the 

transpose DFT with the stored data in the RAMs. The transpose process is done by 

controlling the read sequence. The data is written to the ram in row-column order 

which is shown in Figure 27, but it is read in column-row order. This read sequence 

is equal to transpose process and there is no need to use another memory for 

transpose.  

 

Figure 27: FFT_RAM Write/Read Sequence 
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After PC main controller finishes the transpose DFT of both reference and current 

sub-block, it starts the normalization. Let FR(u,v) and FC(u,v) be the 2-D DFT of 

reference and current sub-block respectively. Then, 
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The normalized value of FR(u,v) and FC(u,v) is obtained from the division of (3.3) 

by (3.4); 
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The normalization block performs the operations which are defined from (3.3) to 

(3.5). The internal structure of the normalization block is shown in  Figure 28.   

The normalization outputs; norm_real and norm_imag values are directly sent to the 

inverse Discrete Fourier Transform (IDFT). The results of the inverse fft operation 

are written to the ref_fft_ram. The same ram is used to store different operation 

results and reusability decreases the internal memory usage which provides 

effective usage of FPGA resources. After all IDFT values are stored in the ram, 

transpose IDFT starts. The transpose operation is again realized by ram read 

sequence as explained in  Figure 27.  

 



 

Figure 28: Normalization Block 

The results of the transpose IDFT may have also real and imaginary parts. To 

construct the peak surface, the absolute magnitude of these values should be found. 

This operation is performed by magnitude block which is shown in Figure 29. 

Comp_real and comp_imag signals carry the real and imaginary parts respectively. 

Comp_abs gives the absolute magnitude value. Let P(x,y) be the two dimensional 

IDFT of the normalization values, then;  

jyxfyxeyxP ),(),(),( +=                                                                                   (3.6) 

22),( feyxP +=                                                                                               (3.7) 

 

Figure 29: Magnitude Block 
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The magnitude block’s outputs form the peak surface. The peak values contain 

information about the shift value. Since the implementation is in real time, there can 

be several peaks on the surface due to mismatch between the consecutive frames 

which may results from environmental changes such as lightning. To find the 

correct peak value and also the shift value, the peak values with their x & y 

coordinate are sent to the VSF Motion Evaluation block by comparison valid signal. 

Motion evaluation block receive the peak values and texture analysis values for the 

calculated sub-blocks. There are different evaluation methods which are explained 

in section 2.2. In this FPGA implementation HPAR (The ratio of Highest Peak to 

the surface average) method will be used. The selection reason of this method will 

be explained in results chapter.  

The results of the evaluation block are the x_shift and y_shift values. These values 

are sent to the video read and video output interfaces. The video read interface 

arrange the number of the requested line by video stabilization block according to 

the y_shift value. Also, VRI changes the write start address of the reference internal 

ram which is shown in Figure 24, according to x_shift value. These coordinate 

changes perform the frame correction operation in real time. The details of frame 

correction are explained in section 2.3 and Figure 30 shows the operation. Since, the 

video stabilization block continues to read at same locations, the coordinate changes 

result in inverse shift of the frame.  
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Figure 30: Frame Correction Operation 

3.3 FULL SEARCH FPGA IMPLEMENTATION 

The FPGA implementation of full search algorithm will be explained in this 

chapter. Like phase correlation, this method is also coded by VHDL. The main 

video stabilization block in Figure 21 is called as Video Stabilization Time (VST). 

The internal structure of VST is shown in Figure 31. VST_main_controller, 

reference_block_RAM, search_area_RAM, full_search and VST_motion_evaluation 

are the sub-blocks. VST_main_controller controls the pixel data flow for reference 

block and search area. As explained in section 2.1.2, the reference block is located 

at the centre of the search area, so the line numbers for the reference block and 

search area are different. The main controller arranges the line numbers which are 
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sent to video read interface in order to locate the reference block at the centre of the 

search area.  

 

Figure 31: VST Internal Structure 

The main controller has two separate processes which are responsible from reading 

the necessary reference and search lines from the memory. The read lines are 

written to the internal RAMs which are reference_block_RAM and 

search_area_RAM. After the processes fill the RAMs with pixel data, main 

controller assert the ref_data_ready and search_data_ready signals to inform the 

full_search block to start mean of absolute difference (MAD) calculations.  
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The internal structure of the internal RAMs is shown in Figure 32. In this 

representation, reference_block_RAM is located on search_area_RAM to show their 

orientation. The current image lines which include the search area are written to the 

search_area_RAM starting from line-1 to line-M. In this figure the dimensions of 

the search area is MxM. Meanwhile, the reference block lines which are read from 



the reference image are written to the reference_block_RAM. Reference block is 

NxN.  

 

Figure 32: Reference Block & Search Area RAMs 

The internal rams are reusable, after all pixel data is processed, the rams are filled 

with the new reference and search lines. The VST_main_controller is responsible to 

arrange this data flow. It updates the line numbers that are used for the SDRAM 

read operation, so when the new data is required, the video read interface switch to 

the new pixel data region. This process continues until all the reference and search 

regions are finished. The main controller waits for the end of the frame; then, it 

starts reading from the first region again. Figure 33 shows the data flow from 

SDRAM to internal RAMs. 

The full_search block is responsible for the calculations of MAD, TA and shift 

values. It starts the operations by the assertion of the ref_data_ready and 

search_data_ready signals from the VST_main_controller. During the calculations 

cal_status signal remains at high state to indicate that the calculations continue, 

when all calculations are finished this signal goes to low state with the calculated 

values. The block consists of FS_main_controller, texture_analysis, current_FIFO 
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and comparison sub-blocks. The internal structure and the connections between the 

sub-blocks are shown in Figure 34. 

 

 

Figure 33: Data Flow from SDRAM to Internal RAMs 

The FS_main_controller determine the internal ram addresses for the reference 

block and search area. As shown in Figure 32, the reference block data is located at 

different addresses of the internal ram, so the main control updates the ram 

addresses according to the reference block. After ready signals are asserted, main 

controller starts read operation. Firstly the reference pixel values are read and sent 

to the texture analysis and comparison block. Then, search area pixel values are 

read and written to the current_FIFO. This FIFO is used for the pipelining and it 

will be detailed while the comparison block is explained.  
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Figure 34: Full Search Block  

Texture analysis is generally same with phase correlation with one difference. In 

full search only reference block texture analysis is calculated to be used in motion 

evaluation. The texture_analysis block is between the main controller and 

comparison block, so there is no need to create separate signals for the analysis. The 

texture analysis is realized during the data flow which enables the system to work 

synchronize.  

Comparison block realize the mean absolute difference calculation between the 

reference and current blocks. This block contains N row_compare sub-blocks where 

N is the dimension of the reference block.  Figure 35 shows the internal structure of 

the block. The absolute row differences are added and the MAD result is calculated. 
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Figure 35: Comparison Block 

Figure 36 shows the reference and current row pixel values; RSB (Reference Sub-

Block), CSB (Current Sub-Block). Reference row values are loaded to 

row_compare bocks in line order. After all reference pixel values are loaded, the 

row_compare-1 has the first reference row, row_compare-2 has the second 

reference row and the other blocks hold the related row values. 

The current sub-block row values are initially read from the search_area_RAM by 

FS_main_controller in row order. Main controller reads the search ram 1st line - 1st 

pixel, then it reads 2nd line -1st pixel and it continues until it finishes all 1st pixel 

read operation in the CSB-1(Figure 36). Then, the first pixels are combined and 

written to the current_FIFO. Main controller starts second pixel read operation; it 

reads all 2nd pixels in the CSB rows and writes them to the current_FIFO. The read 

operation is finished by reaching the last pixel location on the search area. 
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Figure 36: Reference & Current Block Pixel Value 

Figure 37 shows the flow of the read operation. When the FIFO is filled, FIFO read 

operation starts and necessary current row pixel values are sent to the comparison 

block. After N read operation from the FIFO, all necessary pixel values are ready 

for the current and reference sub-block comparison.   

  

Figure 37: Search RAM Read Operation 
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Each row in the reference and current sub-block is compared with absolute 

difference operation. Row_compare block contains N absolute difference 

calculators for the pixel values. In Figure 38, absolute difference sub-blocks are 

shown. The connection between the absolute difference blocks behave like a shift 

register, so after CSB-1, CSB-2 is processed in a one pixel clock. This provides a 

pipeline structure which enables to finish all comparison between the search area 

and reference block in (M-N) x (M-N) clock.  

 

Figure 38: Row Compare Block Internal Structure 

During the comparison between the reference and the current sub-blocks, 

FS_main_controller calculates the minimum MAD value and store the x_shift, 

y_shift and TA values. At the end of the comparison between the reference block 

and search area, the main controller deassert cal_status signal and sent the minimum 

MAD, TA, x_shift and y_shift values to the VST_motion_evaluation block. 

Time domain motion evaluation will mainly used TA values for the evaluation 

because high TA results in correct MAD calculations. In this implementation, the 

five highest TA value will be selected. Among these selected values, three lowest 

MAD values are selected as the final results. The x_shift and y_shift values are the 

average of these final results.   

 
47



 
48

Frame correction operation is similar with phase correlation. The coordinates of the 

required lines and pixels are updated according to the calculated evaluated shift 

values as shown in Figure 30. 
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CHAPTER 4  

IMPLEMENTATION RESULTS AND COMPARISONS 

 

The frequency and time domain digital video stabilization methods are evaluated 

according to accuracy, computation time, logic usage and power consumption. The 

accuracy test of the methods firstly realized in MATLAB and the results of this test 

determine the FPGA implementation. The accuracy comparison between MATLAB 

and FPGA results are obtained by VHDL simulation. Finally, FPGA comparison 

results of the selected methods are evaluated on real-time working hardware with 

PAL video. 

This chapter is composed of three sub-sections. Firstly, the MATLAB results of 

phase correlation and full search algorithms will be explained. Then, the VHDL 

simulation results will be detailed. Finally, FPGA implementation results will be 

explained.  

4.1 MATLAB IMPLEMENTATION 

There are different parameters in stabilization methods such as block size, block 

location, texture analysis (TA), MAD (Mean of Absolute Difference), peak surface 

analysis. To see the effect of these parameters on the accuracy, the video 

stabilization methods are firstly implemented with MATLAB programming tool. In 

this implementation, a new function library is created to make the calculations 

similar with FPGA. In MATLAB, the numbers are in double-floating format; 



however FPGA works with fix point numbers. Therefore, the floating structure of 

MATLAB is converted to fix point to make the calculations similar with FPGA. 

The initial algorithm tests are done by synthetically shifted images to see that 

algorithms work properly. These tests provide 100 % accuracy for both methods so 

they will not be detailed since they do not provide a comparison data.  

The comparison tests are conducted with real video sequence which is captured by a 

640 x 480 camera, this resolution is similar with PAL format. Since, the shifts 

between the frames are real; the results are more similar with real-time working 

system. The accuracy of the method is evaluated according to pSNR (Peak Signal to 

Noise Ratio-dB) between the reference and corrected current image. In the 

following equations, RI is the reference image, CCI is the corrected current image 

and MxN is the image resolution. 
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The phase correlation MATLAB test results which are obtained by different 

parameter values will be explained first. Then, the results of full search method will 

be given. At last, the best results of these two methods which are obtained by 

optimum parameter values will be compared. 



4.1.1 Phase Correlation Results 

The first parameter that affects the phase correlation motion estimation accuracy is 

the block size. Figure 39 shows the different block sizes on the reference and 

current image and Table 6 gives the phase correlation results with these block sizes. 

In this table, TA is the texture analysis result, Peak Value is the magnitude of the 

highest peak on the surface and HPAR is the ratio of peak value to peak surface 

average. 

Table 6 : Phase Correlation Results & Block Size 

Block Size 8x8 16x16 32x32 64x64 128x128 256x256 

X shift 1 1 1 0 0 2 

Y shift 1 1 1 6 6 7 

TA 216 503 1479 5022 51287 344247 

Peak Value 0 0 0 15 22 27 

HPAR NaN NaN NaN 8.6 22.7 35.3 

pSNR 19.2 19.2 19.2 20.8 20.8 22.5 

Computation Time (s) 0.11 0.13 0.18 0.3 0.9 4.6 
 

Figure 39: Block Size & Texture Variation 
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The texture in the selected block directly affects the quality of estimation. The 

increase in the block size also increases the texture. Therefore, the rise in texture 

results in better estimation and also higher pSNR. As shown in Figure 40, the low 

texture produces a wavy surface that contains many peaks. Some higher peaks have 

similar magnitude values and they cause faulty estimation.   

 

Figure 40: Peak Surfaces at Low Texture 

The increase in the block size may be a solution for the texture problem but the 

increase in the block size requires longer computation time. This is a very critical 

issue for real time applications. Therefore, block size increase is a not a suitable 

option for this implementation. 

The second parameter that affects the phase correlation motion estimation accuracy 

is the block location and the number of used blocks. Figure 41 shows totally 9 

blocks which are located at different parts of the image. In this test the block size is 

64x64. This size is selected, because its time-pSNR performance is better than 

others and this size can contain enough texture for the following tests.  
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Figure 41:  Different Block Locations 

Table 7 : Phase Correlation Results & Block Location 

Block 
Location 1 2 3 4 5 6 7 8 9 

X shift 0 23 0 4 0 0 2 2 3 

Y shift 6 0 6 4 6 0 6 6 5 

TA 5022 4468 4199 22519 5113 7842 53049 61410 48670 

Peak 
Value 15 8 21 14 14 21 28 20 29 

HPAR 8.6 4.5 12.2 8.1 8.1 12.4 16.9 11.7 17.4 

pSNR 20.8 15.4 20.8 20.4 20.8 18.6 23 23 22.3 

 Time (s) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

 

Phase correlation method is applied for all 9 sub-blocks and Table 7 gives the 

results. The PC results show that changing the block location can be an alternative 

to increase the texture. Also, using many sub-blocks provide opportunity to evaluate 

different calculation results. However, high block number needs longer computation 

time which can be also a problem for real time.  
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Another approach is to find the sub-block that contains the highest texture. Firstly, 

all possible sub-blocks in the image are analyzed and texture surface is obtained as 

shown in Figure 42. Then, the phase correlation starts at the highest texture location 

on the texture surface. Table 8 shows the calculation results for that location. 

 

Figure 42: Texture Surface 

Table 8 : Video Stabilization Results with Highest TA Block  

 X 
shift 

Y 
shift TA Peak 

Value HPAR pSNR Time (s) 

Highest 
TA Block 
(64x64) 

2 6 99775 27 16.1 23.08 
85.7 

85.4 : TA, 0.3 : VS 
 

Highest 
TA Block 
(128x128) 

3 6 252819 24 24.2 22.7 
78.8 

77.8 : TA, 1 : VS 
 

The texture surface analysis test results show that only texture is not an enough 

parameter for the estimation quality, because the pSNR result is similar with some 

blocks in Table 7, even though these blocks contain less texture. Also, the 

construction of the texture surface requires quite long time which is not feasible for 

real-time.  
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Also, other parameters such as peak surface analysis of the phase correlation can be 

used for the estimation. There can be pixel intensity differences between reference 

and current sub-block due to blurring and environmental changes; as a result the 

peak surface may contain many higher peaks even in high texture. Figure 43 shows 

the same pixels on the reference and current image which have different intensity 

values. Peak characteristics of the surface give information about the quality of the 

estimation. In Table 7, the higher peak and HPAR values give the higher pSNR 

results. Therefore, peak surface analysis is an alternative opportunity for the 

estimation. 

 

Figure 43: Pixel Base Comparison from the Images 

For accurate analysis, there are two opportunities. The first one is implementing a 

pre-analysis step like texture surface and using less sub-block. Other one is using 

several sub-blocks and obtaining many data from those blocks. The first opportunity 

is not suitable for real-time but the parallel structure of the FPGA can handle many 

sub-blocks in real time constraints. Therefore, the diagonal sub-blocks which are 1, 

5, 6, 7, 8 and 9 in Figure 41 are used for the calculations. As a result, there are 6 

blocks that generate texture, peak surface information. The phase correlation results 

of these sub-blocks are evaluated according to the methods described in section 2.2, 

Table 3. 
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In WOTT (without texture threshold), all the x & y shift results are used. The 

average of the x & y shift results are used as the evaluated results. In WTT (with 

texture threshold), firstly a texture threshold is determined. This threshold is the 

average of all texture results from the sub-blocks. Then, the x & y shift values of the 

sub-blocks whose texture is greater than the threshold are used for the final results 

calculation. In HP (highest peak), the sub-block which has the highest peak value is 

found and its x & y shift values are used. In WPT (with peak threshold), firstly, the 

sub-blocks that can pass texture threshold are found. Then, the average of the 

highest peak values of these sub-blocks is selected as the peak threshold. The final 

results are obtained from the average of the sub-blocks whose highest peak values 

are greater than peak threshold.  HPAR is the average of the highest peak to the 

surface average. The sub-block with the highest HPAR value gives its x & y shift 

values as the final results. Table 9 shows the evaluation results for the described 

methods on reference and current frame in Figure 39.  

The methods that are related with the peak surface analysis provide higher pSNR 

values. In this test, WTT produce the best pSNR but the test is conducted with only 

one frame pair and one frame comparison result can not be generalized. Therefore 

the tests are conducted with a frame sequence that contains 100 frames. 

Table 9 : PC Motion Evaluation Results  

 X 
shift 

Y 
shift TT Peak 

Value TP HPAR pSNR Time (s) 

WOTT 1 5 NA NA NA NA 21.6 1.6 

WTT 2 6 30184 NA NA NA 23 1.6 

HP 3 5 30184 29 NA NA 22.3 1.6 

WPT 3 6 30184 NA 25.6 NA 22.7 1.6 

HPAR 3 5 30184 NA 25.6 17.4 22.3 1.7 
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Figure 44: PC Motion Evaluation Results on Frame Sequence (Constant Reference 

Frame) 

Table 10: Average pSNR and Computation Time Results for PC Motion Evaluation 

Methods on Frame Sequence (Constant Reference Frame) 

 WOTT WTT HP WPT HPAR 

pSNR 
Average 18.1 19.8 21.4 21.2 21.4 

Total  
Time (s) 153.6 149.3 150.1 149.7 150.5 

 

Figure 44 shows the pSNR evaluation results for the frame sequence according to 

different methods and Table 10 gives the average pSNR and computation time. In 

this evaluation, reference frame remain same and other frames are corrected 

according to it. The average pSNR values show that peak analysis provides better 

stabilization performance. There are some rapid drops on the figure, this drops are 

due to the blurring effect on the image, even the motion estimation is done correctly 

the pSNR calculations give lower values since there are various intensity 

differences between reference and corrected current image. Other studies show that  
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usual pSNR values are around 20-25 dB [26], but for a good stabilization the pSNR 

should reach 35dB [27]. 

For the mobile cameras, the reference image should be updated with the corrected 

current image. Figure 45 shows the pSNR results for the updated reference image 

approach. Table 11 shows that pSNR values are higher than the constant reference 

image model. This is logical because neighbour frames have similar intensity 

variations. 
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Figure 45: PC Motion Evaluation Results on Frame Sequence (Updated Reference 

Frame)  

Table 11: Average pSNR Results for PC Motion Evaluation Methods on Frame 

Sequence (Updated Reference Frame) 

 WOTT WTT HP WPT HPAR 

pSNR 
Average 29.8 31.1 31.9 32.1 31.4 

The frame sequence test shows that WPT has the highest pSNR performance. The 

peak surface analysis provides valuable information for the estimation quality. 
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Therefore in FPGA implementation peak surface analysis is used to reach 

acceptable stabilization performance. 

4.1.2 Full Search Results 

This sub-section explains the full search MATLAB test results. The first parameter 

for the full search algorithm is the reference block size. The size of the block is 

important for the texture analysis which in turn gives idea for the quality of the 

motion estimation. Figure 46 shows the reference block and the search area. For 

different reference block sizes, search area is 8 pixels bigger in all direction in the 

first experiment. 

8 pixel

8 
pixel

SA

RSB

 

Figure 46: Reference Sub-Block and Search Area 
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Table 12 : Full Search Results & Block Size 

Block Size 8x8 16x16 32x32 64x64 128x128 256x256 

X shift -8 -8 -8 -8 -8 2 

Y shift 8 8 5 -8 -1 7 

TA 131 382 1399 4970 51014 364964 

MAD 4.6 9.2 12.7 13.1 14.3 15.7 

pSNR 17.1 17.1 17.4 16.2 16.9 22.5 

Computation Time (s) 0.05 0.06 0.09 0.15 0.3 0.9 

 

Table 12 gives the Block-Size & pSNR test results; the increase in block size 

increases the texture and pSNR value. But, even the block size is around 128x128 

the pSNR is less than 20dB. The reason for the low pSNR is the location of the 

reference block. Since, there are low texture around, increasing the block size do 

not provide higher texture. 

To solve texture problem, full search algorithm is implemented with several 

reference blocks and search areas. In the original full search algorithm every 

neighbor reference block is checked, but for FPGA implementation, it is not 

feasible with the available resources. So, the method’s main idea is kept same and 

only the neighbor search areas are checked. Figure 47 shows the search areas which 

are 35 in total, on the image.  



 

Figure 47: Search Areas on the Image 
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Figure 48: pSNR & Texture & MAD of Search Areas 
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Figure 48 shows the pSNR, texture and MAD (Mean of Absolute Difference) 

values for the numbered search areas. The pSNR values are higher at the locations 

where texture and MAD are both high. The higher pSNR values for higher texture 

are predicted results, but MAD values should be lower for the correct match. 

However, if we examine the MAD results, the average is small and the maximum 

value is around 20. So, it can be said that the higher texture results in higher MAD 

results.  

The full search results with constant reference frame sequence are shown in    

Figure 49  and Table 13 gives the average pSNR and computation time. MAX_TA 

assigns the x & y shift values of the block which has the highest texture to the final 

values. MIN_MAD finds the block with minimum MAD value and gives its shift 

values as the final values. MAX_TA_AVG gets the average of the 5 highest texture 

blocks shift values. MAX_TA_MIN_MAD finds the 5 highest texture blocks and 

assign the shift values from the minimum MAD block among the highest ones.   
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Figure 49: FS Motion Evaluation Results on Frame Sequence (Constant Reference 

Frame) 
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Table 13: Average pSNR and Computation Time Results for FS Motion Evaluation 

Methods on Frame Sequence (Constant Reference Frame) 

 MAX 
TA 

MIN 
MAD 

MAX TA 
AVG 

MAX TA  

MIN MAD 

pSNR 
Average 21.5 14.9 21.7 20.8 

Total  
Time (s) 1089.7 1133.3 1103.7 1092.7 

 

The average pSNR results show that, MAX_TA_AVG gives the best stabilization 

results. This is logical when we compare the texture-estimation relation from  

Figure 48. In full search algorithm, high texture prevents mismatches and finds the 

correct estimation results. The down peaks on the graph are due to intensity changes 

between the frames which are occurred due to blurring and environmental changes. 
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Figure 50: FS Motion Evaluation Results on Frame Sequence (Updated Reference 

Frame)  
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Table 14: Average pSNR Results for FS Motion Evaluation Methods on Frame 

Sequence (Updated Reference Frame) 

 MAX 
TA 

MIN 
MAD 

MAX TA 
AVG 

MAX TA  

MIN MAD 

pSNR 
Average 31.7 22.6 32.4 29.2 

 

Figure 50 shows the pSNR results with updated reference block and the average 

pSNR values are given in Table 14. As in phase correlation, also in full search, 

updated reference block approach gives higher pSNR when compared with constant 

model. The MAX_TA_AVG method again provides the highest pSNR; this test 

shows that MAX_TA_AVG method is the best approach for full search method. In 

FPGA implementation, with texture analysis also the MAD values will be used to 

find the sub-blocks which are free of local motion. Firstly, the texture analysis is 

used to determine the correct sub-blocks then MAD analysis will be used for local-

global motion analysis. The comparison between PC and FS will also contain the 

local motion analysis which is obtained from the frame sequences that contains 

local motion. 

4.1.3 Comparison Between Phase Correlation and Full Search 

The previous sections give the stabilization results of phase correlation and full 

search algorithms on 100 frame sequence. According to the pSNR results, the 

MAX_TA_AVG full search approach reaches 32.4 dB pSNR which is the highest 

value among all approaches including phase correlation. In phase correlation, WPT 

approach gives 32.2 dB pSNR, it is the highest value in phase correlation. When the 

computation time results are examined in Figure 44 and Figure 49, the WPT 



approach completes the calculations in 149.7 seconds; on the other hand 

MAX_TA_AVG approach uses 1103.7 seconds for the calculations. The phase 

correlation time performance is nearly ten times better than full search, so the 

accuracy-time ratio which is very critical in real time implementations; is higher in 

phase correlation. 

The previous tests are conducted with local motion free frame sequences, therefore 

in the following comparison tests there will be local motions as shown in Figure 51. 

The local motions may result in faulty estimations and this problem decrease the 

pSNR performance.  

 

Figure 51: Frame Sequence with Local Motion 

The frame sequence is composed of 200 frames which in turn provides more 

comparison data between phase correlation and full search. Three approaches from 

phase correlation and also from full search are used. These approaches are the most 

successful ones according to pSNR results. For phase correlation, HP, WPT and 

HPAR and for full search, MAX_TA, MAX_TA_AVG and MAX_TA_MIN_MAD 

approaches are used.  
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Figure 52: Full Search Approaches Results with Local Motion 

Table 15: Average pSNR and Computation Time Results for Full Search 

Approaches with Local Motion 

 MAX 
TA 

MAX TA 
AVG 

MAX TA  

MIN MAD 

pSNR 
Average 24.6 22.2 23.8 

Time(s) 2183 2172 2298 

Figure 52 shows the full search approaches’ pSNR values with 200 frame sequences 

that contain local motion. Table 15 gives the average pSNR and computation time 

for the evaluation methods. The MAX_TA approach gives the highest pSNR 

average but when we examine the result plots, MAX_TA_MIN_MAD reaches high 

pSNR values. The rapid drops on the curve decrease its average pSNR. The blurring 
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effects prevent MAX_TA_MIN_MAD approach to give high pSNR average. Even 

though this method’s average pSNR is not the maximum, it is suitable for 

stabilization on local motions. The rapid drops can be filtered in FPGA 

implementation by checking the previous results. 
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Figure 53: Phase Correlation Approaches Results with Local Motion 

Table 16: Average pSNR and Computation Time Results for Phase Correlation 

Approaches with Local Motion 

 HP WPT HPAR 

pSNR 
Average 24.2 24.09 24.1 

Time(s) 299.8 300.2 299.5 
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The phase correlation approaches give similar average pSNR values. HP approach 

provides the highest result. From the graphs in Figure 53, there are less rapid drops 

when compared with full search approaches and the average pSNR results of phase 

correlation approaches which is shown in Table 16, are similar and higher than full 

search. 

As a result, phase correlation produces more consistent estimation results when 

compared with full search according to local motion test. Even though phase 

correlation pSNR results also contain rapid drops, the magnitudes of these drops are 

less than full search results. Therefore, it is possible to say, phase correlation can 

handle blurring and environmental changes more effectively. The MATLAB results 

show that phase correlation is better than full search method according to accuracy-

time ratio, but the implementation structure of phase correlation is more complex 

than full search since it requires DFT/IDFT operations. So, the simulation and 

FPGA implementation results will show the final comparison results between the 

two methods. 

4.2 FPGA SIMULATION 

FPGA blocks are designed by VHDL code. The written code can be simulated in 

computer by Modelsim simulation tool. This tool shows the all signal flow as it is in 

FPGA. So, the results of this simulation give information about the performance of 

the FPGA implementation since the same code is downloaded to the FPGA. 

The accuracy test of the written FPGA code is evaluated with simulation tool, 

because the real time working system may receive arbitrary frames and it is 

impossible to detect correct shift values. Since, the simulation uses the same VHDL 

code with FPGA, the simulation results can be used for accuracy comparison. 



The simulation tool can receive frames as a text file, so the frames that are 

evaluated in MATLAB are converted to text files. The results of the VHDL 

simulations are observed on the signals which are described in section 3.2 and 3.3. 

 

Figure 54: The Current Image and Reference Sub-Blocks 

The full search simulation results will be explained firstly, and then phase 

correlation results will be detailed. Figure 54 shows the current image and the 

reference sub-blocks that are obtained from the reference image. This figure 

explains the methodology which is described in section 3.3 with Figure 32 and 

Figure 33.  

 

Figure 55: Full Search Reference Data Read 

Full search FPGA implementation starts with the reference sub-blocks read 

operation from the SDRAM memory. 16 lines are read and sent to the comparison 
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blocks and also ref_ram_ready signal is asserted to inform the blocks that the read 

operation is completed. Figure 55 shows the signals and their states for the read 

operation. After reference sub-blocks, the search areas are read from the memory. 

Since, there are 80 lines for the search area, this operation takes longer time than the 

reference block read. In Figure 56, the necessary signals for the search area read 

operation are shown. At the end of the read operation search_ram_ready signal is 

asserted. 

 

Figure 56: Full Search Current Image Search Area Read 

With the completion of all necessary pixel read from the memory, the comparison 

operation starts. At every clock, a current sub-block and reference sub-block is 

compared and MAD value is calculated. During MAD value calculation also TA 

value is obtained from the reference sub-block. At the end of the calculations, the 

x_shift and y_shift values are sent to the evaluation block by cal_status signal. The 

shift values are 8 bit. The 8th bit is the sign; “1” means negative shift and “0” means 

positive shift. The MAD calculations and results are shown in Figure 57. 

 

Figure 57: MAD Calculations and Results 
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Figure 57: Continuation 

 

Figure 58: Full Search Calculation on a Frame 

Figure 58 shows the all data flow for the full search method. All calculations finish 

in 25 milliseconds where it is approximately 10 seconds in MATLAB 

implementation. The results of the FPGA simulations are compared with MATLAB 

results. The obtained results are shown in Figure 59. According to the result plots, 

the FPGA implementation can reach the accuracy of MATLAB. The same accuracy 

is obtained in a shorter time, so the accuracy-time ratio of full search FPGA 

implementation is better than MATLAB. 
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After full search FPGA simulation results, phase correlation results will be 

explained. In this implementation, high number of sub-blocks approach is used 

because texture surface analysis requires longer computation time. Figure 60 shows 

the sub-blocks that are located on diagonal of the frame. 

     

Figure 59: MATLAB & FPGA Full Search Comparison 

 

Figure 60: Phase Correlation Sub-Blocks on Reference and Current Images 
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Figure 61: Phase Correlation Sub-Blocks Read Operation 

Figure 61 shows the reference and current sub-blocks read operation from the 

SDRAM memory. The reference and current sub-block lines are sent to the phase 

correlation block for the DFT/IDFT operation. 

 

Figure 62: Phase Correlation DFT Operation 

The reference and current sub-block lines are enter into the 1_D_fft block 

consecutively. The results of the fft operation are obtained after several clock 

cycles. The pc_main_controller block handles the wait time between the fft input 

and output. The fft operation is shown in Figure 62. 

 

Figure 63: Phase Correlation Data Flow 
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In Figure 63, the all data flow of phase correlation implementation is shown. After 

DFT operation, transpose DFT operation starts. The calculated transpose DFT 

results from reference and current sub-blocks are normalized in normalization 

block. Then, inverse DFT (IDFT) operation and transpose IDFT operations are 

completed. During transpose IDFT operation, the calculated peak surface values are 

evaluated with comp_status signal. 

 

Figure 64: Phase Correlation FPGA Simulation Results 

At the end of the operations, the shift values, highest peak value (comp_max_abs) 

and TA value are obtained and sent to the evaluation block by shift_value_valid 

signal. The relation between the signals is given in Figure 64. The formats of the 

shift values are same with full search. The phase correlation calculation for all sub-

blocks takes 12.9 milliseconds while it is 2.1 seconds in MATLAB implementation. 

The results of the phase correlation FPGA and MATLAB implementation are given 

in Figure 65. The FPGA simulation results are same with MATLAB’s. Therefore it 

is possible to conclude that, in phase correlation method FPGA can reach the 

accuracy of MATLAB in a shorter time. 

 

 
74



1 2 3 4 5 6 7
0
5

10

Sub-Blocks on the Image

y 
sh

ift
 v

al
ue

s

1 2 3 4 5 6 7
-5
0
5

Sub-Blocks on the Image

x 
sh

ift
 v

al
ue

s

1 2 3 4 5 6 7
0

20
40

Sub-Blocks on the Image

P
ea

k 
V

al
ue

s

1 2 3 4 5 6 7
0
5

10
x 10

4

Sub-Blocks on the Image

TA
 V

al
ue

s

MATLAB Result
FPGA Simulation Result

 

Figure 65: MATLAB & FPGA Phase Correlation Comparison 

The simulation results show that the MATLAB performance comparison between 

the full search and phase correlation methods can also be used for FPGA 

implementation. In FPGA implementation section, two methods will be compared 

in terms of computation time on hardware, logic usage and power consumption. 

Also, the results of the real time FPGA implementation on the display while the 

camera is shaking will be explained.  
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4.3 FPGA IMPLEMENTATION 

The FPGA blocks are designed with Altera Quartus II programming tool. The 

VHDL code is written by text editor, then the written VHDL is converted to 

schematic symbol for the connection with other blocks. Figure 66 shows the 

Quartus design environment. The blocks are connected to other blocks by internal 

signals. Design files section show the hierarchy in the implementation. In Figure 66, 

VST_FPGA_TOP_V1 is the top block. 

 

Figure 66: Altera Quartus II Design Environment 

After all necessary blocks are coded and connecting to each other, the design is 

analysed for the coding errors. Then the necessary pin assignment is completed and 

full compilation flow is started.  

During the compilation, the programming tool generates the routing in the FPGA. It 

connects the input/output pins to the related blocks. Also, the timing performance of 

the generated routing is tested according to the constraints that the user enters at 

start. At the end, this flow generates a bit file which is downloaded to the FPGA. 
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The full search and phase correlation methods are implemented in FPGA with the 

external blocks such as video and memory interfaces. The compilation report gives 

the logic, internal memory and embedded multiplier usage. The power consumption 

is measured from the main board. The computation time is measured by the time 

counter located in the FPGA code. Table 17 shows the compilation summary. In 

this table, the approximate time values are given, because the read operations from 

the SDRAM memory determines the computation time, and read operation time can 

be changed according to the memory usage by the other FPGA blocks. According to 

the tests on the FPGA, these time results are the highest observed values. These 

computation time results show that FPGA implementations of the digital video 

stabilization methods can finish the calculations less than one frame duration which 

is 40 milliseconds.  

Table 17: FPGA Implementation Summary 

 Computation 
Time (ms) 

Power 
Consumption(W) 

Logic 
Usage 

Internal 
Memory 

Usage(Kbit) 

Embedded 
Multiplier 
Usage(9x9) 

Full Search ~35 0.36 24,648 1788 0 

Phase 
Correlation ~22 0.23 27,814 1888 44 

In sections 4.1 and 4.2, the results for different block sizes and search areas are 

examined. In FPGA implementation, these results are evaluated and the final block 

sizes are determined. Table 18 and Table 19 give the implementation summary for 

full search and phase correlation methods, respectively. 

Table 18: Full Search FPGA Summary 

 Reference Block 
Size 

Search Area 
Size 

Allowed x 
Shift (pixel) 

Allowed y 
Shift (pixel) 

Full Search 16 80 +/- 32 +/- 32 

 



Table 19: Phase Correlation FPGA Summary 

 Reference Block 
Size 

Current 
Block Size 

Allowed x 
Shift (pixel) 

Allowed y 
Shift (pixel) 

Phase Correlation 64 64 +/- 32 +/- 32 

The methods are firstly tested by synthetic shifts which are generated by the push 

buttons on the main board. Different shift values are applied to current image and 

the estimated shift values are obtained by the “Signal Tap” tool of Altera. This tool  

monitors the signals while the codes are running in the FPGA. Figure 67 shows the 

synthetic shift values and the estimated ones on the signal tap screen. 

 

Figure 67: Altera Signal Tap Screen 
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Figure 68: The Results of the Synthetic Shifts on Reference Image 

Figure 68 shows the video frames which are captured from DVI monitor by a 

camera. These frames are the reference frame and the current frames after the 

synthetic shifts. The FPGA calculates the shift values by comparing the reference 

and current images. 

In full search algorithm, the image is divided in search areas. The shift, TA and 

MAD values from these areas are evaluated in order to find the final motion 

estimation. Figure 69 shows the search areas on the image and Table 20 gives the 

estimation results for the different search areas. 
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Figure 69: The Search Areas on the Image 

The results of the full search method shows that, the TA analysis is also important 

in real time working system as it is in MATLAB. The search areas with high texture 

find the correct shift values. In this example search area-2 contains extremely high 

texture when compared with others and its estimation results are correct, on the 

other hand, the other blocks from the first region (1,3,4,5,6) can not reach the 

correct shift values. The same block which has the highest texture is used for other 

shift tests and the results show that FPGA can calculate the exact shift values that 

are applied. For, high shift values such as -32 in y direction, the highest texture 

region passed to the search area-8, and the results of this area give the correct shift 

values. 
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Table 20: Full Search FPGA Results 

Actual Shift Values Search 
Area Estimated Values 

y shift x shift Number y shift x shift TA MAD 

0 0 1 -3 5 594 262 

0 0 2 0 0 10009 2008 

0 0 3 -2 0 627 280 

0 0 4 0 11 913 429 

0 0 5 0 -1 763 383 

0 0 6 0 -4 804 375 

5 5 1 4 -1 418 223 

5 5 2 5 5 8993 1446 

10 5 2 10 5 10650 1658 

10 10 2 10 10 8700 1347 

20 10 2 20 10 9722 1586 

20 20 2 20 20 6318 1140 

30 30 2 30 30 9156 1334 

32 32 2 32 32 9233 1121 

-5 0 2 -5 0 9368 1875 

-5 10 2 -5 10 3531 565 

-10 -15 2 -10 -15 3839 767 

-32 -31 8 -32 -31 1337 530 

-32 32 8 -32 32 5715 1241 

After synthetic shifts, full search method is tested by the real shifts. The camera is 

located on a movable platform and shifts in x and y direction are applied. The 

results of the search areas are evaluated as explain in MATLAB implementation 

part. MAX_TA, MAX_TA_AVG and MAX_TA_MIN_MAD values are tested in 

FPGA. MAX_TA reaches the best stabilization performance among others but this 
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approach suffers from the local motions. When there exists a local motion on the 

image, this motion increases the texture at that region and this texture increase 

results in faulty estimations.  

This problem is solved by using a texture analysis in the evaluation part. Many 

experiments are conducted and the effects of the local motions on the texture values 

are observed. The local motion cause a rapid texture increase which is impossible 

by a desired camera movement. Therefore, a comparison between two successive 

highest textures is used to prevent local motion effects. However, the FPGA tests 

show that the basic evaluation methods which are explained in MATLAB 

implementation part are not sufficient for the best evaluation. FPGA can compare 

the reference and current sub-blocks correctly but the results of these comparisons 

should be evaluated in more complex algorithms like Kalman which are more 

suitable for processors. 

The phase correlation method is also implemented in FPGA with the external 

blocks such as video interfaces and memories. The FPGA tests are started with 

synthetic shifts. The results of these tests show that FPGA estimations are not 

correct when compared with the applied shifts. The source of the problem is 

searched by using a test pattern as a video source. The same pattern is also used in 

MATLAB and simulation to see the difference. After the tests, it is observed that, 

the FFT IP is not working as in MATLAB and simulation. So, the calculations for 

the phase correlation results in faulty estimations. 

Figure 70 shows the FFT input which is sent to the IP in real time working FPGA 

and simulation, the same data sequence is applied for both FPGA implementation 

and FPGA simulation. The results of the FFT block are shown in Figure 71. The 

FFT outputs of FPGA simulation are the correct ones and these outputs results in 

correct shift values, however the FPGA implementation outputs are wrong and 

these wrong outputs prevent to calculate correct shift values. The phase correlation 



method produces very good stabilization results in MATLAB and FPGA 

simulation, but in FPGA implementation, due to FFT problem, this method can not 

reach the desired results.  

This problem shows that, in some cases, FPGA implementation on real hardware 

may not be the same with the simulations and previous analyses on MATLAB. 

There can be differences while the written code is compiled for the FPGA. 

 

Figure 70: FPGA Implementation & Simulation FFT Inputs 

 

Figure 71: FPGA Implementation & Simulation FFT Outputs 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSIONS 

Video processing applications are used in many areas such as consumer electronics 

and military areas. Every video processing application has its own initial 

requirement from the input video such as video format, resolution and frame rate, 

but the common requirement for all applications is the stabilization. Because, the 

translational and rotational changes in frame sequence cause faulty results in 

processing algorithms. Therefore video stabilization is the first and necessary step 

for other video processing applications.    

Most of the systems use mechanical stabilization because these types of stabilizers 

prevent the undesired motion at the detector of the camera, so there will be no 

image loss. However, mechanical approach is not feasible for all platforms due to 

its huge and complex structure. Therefore, digital stabilization methods can be used 

as an alternative. Digital methods calculate the undesired motion by comparing two 

neighbor frames in the sequence. This comparison process requires long 

computation time and digital methods are not preferable in real time applications. 

The recent advances in hardware elements, such as FPGAs, can handle the high 

computational load. The parallel structure of FPGA is configured in order to 

process many data at the same time. However, only FPGAs are not enough for all 
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video stabilization flow, some other elements such as video decoders and SDRAMs 

are required to construct a full system. 

In this thesis, real time video stabilization is the main problem. Due to the platform 

which is mobile robot, mechanical methods can not be used. The platform also 

requires a real time flow. Since mechanical methods are not a solution and real time 

constraints are strict, digital methods are examined. 

Firstly, the hardware that the digital video stabilization will be implemented is 

selected. Due to its high computation capacity, FPGA is chosen as a processing 

unit. The necessary video input & output, memory interfaces are constructed in 

FPGA. Then, the possible stabilization algorithms in literature are searched. Two 

main method; frequency and time domain approaches are selected as solution 

candidates. These methods are implemented in MATLAB to see their performance 

before FPGA coding. Since, the final implementation will be in FPGA, the 

MATLAB codes are written similar to FPGA. This approach provides more realistic 

comparison between the methods. After that, the FPGA (VHDL) codes are written 

for both methods. The VHLD codes are tested by simulation and then they are 

compiled for the FPGA on the main board. The debug tool (signal tap) is used to 

monitor real time working FPGA results. Finally, the stabilized video which is 

captured from a PAL video is displayed on DVI monitor. 

The FPGA implementation results show that phase correlation method uses more 

logic elements than full search which is a disadvantage for small FPGAs. Although 

full search uses less logic elements, its power consumption is higher due to many 

comparisons in a shorter time, the higher power consumption may be a problem for 

the platforms which receive the input power from a battery.  

The FPGA implementations of full search and phase correlation are tested by 

synthetic and real shifts. Full search synthetic shift tests show that FPGA can 

calculate the correct shift values at the search areas where texture is high. In real 
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shifts, this method suffers from blurring effect and environmental changes in the 

video frame sequence. Also, the local motions may result in faulty estimations since 

the texture analyses fails at the locations where local motions are occurred.  

Phase correlation method gives encouraging results in MATLAB and FPGA 

simulation, but the FPGA implementation on real hardware shows that, this method 

can not work properly while FFT results are not correct. The problem in FFT IP 

block prevents this method to be implemented in FPGA successfully. But, the other 

parts of the FPGA implementation works correctly, so this method can be also used 

for video stabilization after the FFT problem is solved by the IP vendor.   

To conclude, the implementation and comparison results show that, FPGAs are 

capable to run digital video stabilization methods. FPGA can calculate new 

stabilization data at every 40 ms which takes several seconds in MATLAB. The 

comparison between simulation and MATLAB results shows that FPGA can also 

reach the desired accuracy in motion estimations. The only difference arises at the 

motion evaluation part. The basic evaluation approaches gives good results in 

synthetic shifts but in real shifts with local motions, these approaches fail in some 

cases.    

5.2 FUTURE WORK 

FPGAs can handle high computational load but they are not suitable for recursive 

algorithms. In the motion evaluation part, different filters such as Kalman can 

improve the accuracy, but such algorithms are suitable for processors. Therefore, a 

processor can be can be used with FPGA to implement more complex evaluation 

algorithms. 
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APPENDIX A 

INTERNAL FPGA BLOCKS AND SIGNAL EXPLANATIONS 

DDR2 SDRAM CONTROLLER 

w r1_w r_addr[31..0]
w r1_addr_w rreq

w r1_w r_clk
w r1_reset

w r1_w r_data[127..0]
w r1_data_w rreq

w r2_w r_addr[31..0]
w r2_addr_w rreq

clkin_125

w r2_w r_clk

rst_in

w r2_reset

w r2_w r_data[127..0]
w r2_data_w rreq

w r3_w r_addr[31..0]
w r3_addr_w rreq

w r3_w r_clk
w r3_reset

w r3_w r_data[127..0]
w r3_data_w rreq

rd1_w r_addr[31..0]
rd1_addr_w rreq

rd1_w r_clk
rd1_reset

rd1_data_rdreq

rd2_w r_addr[31..0]
rd2_addr_w rreq

rd2_w r_clk
rd2_reset

rd2_data_rdreq

rd3_w r_addr[31..0]
rd3_addr_w rreq

rd3_w r_clk
rd3_reset

rd3_data_rdreq

w r1_addr_full
w r1_data_full

w r1_data_w r_used[6..0]

w r2_addr_full
w r2_data_full

w r2_data_w r_used[6..0]

mem_odt[0..0]
mem_cs_n[0..0]

mem_cke[0..0]
mem_addr[12..0]

mem_ba[1..0]
mem_ras_n
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mem_w e_n
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w r3_data_w r_used[6..0]
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rd2_addr_full
rd2_rd_data[127..0]
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ddr2_sdram_controller

ddr2_sdram_controller  

Figure 72: SDRAM Controller Block Diagram 
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Table 21 : DDR2 SDRAM Controller Signals 

 Signal Description 

clkin_125MHz 
Controller main clock. It is 125MHz in this implementation and the 
maximum clock frquency is 150MHz. 

rst_in 
Controller reset. Reset all blocks inside the controller.                    
“0”: reset,  “1”: normal operation 

wr*wr_clk 
Write port clock. Port write clocks may be different, the arbiter 
handles the clock domain switch operation. 

wr*_reset 
Write port reset. Reset the selected port buffers.                           
“1”:reset, “0”:normal operation 

wr*_addr_wrreq 
Address write request. This signal indicates that a new data packet 
has been written to port buffer and it will be transferred to the 
SDRAM. 

wr*_wr_addr 

Addreess. This bus is 32 bit and lower 23 bit shows the write start 
address in SDRAM. 
Addr (31..23) = Total numbers of written data. 
Addr (22..21) = Bank address. 
Addr (20..8)   = Row address. 
Addr (8..0)     = Column address. 

wr*_data_wrreq Data write request. The data is written to the port buffers. 

wr*_wr_data Data. 128 bit 

wr*_addr_full 
Address write request buffer full indicater. When this signal is ‘1’, it 
means that the request buffer is full and a new request should wait 
until the arbiter empty it. 

wr*_data_full 
Data buffer full indicater. When it is “1”, the written data will be 
lost. 

wr*_data_wr_used Shows the total number of data in the buffer.  

rd*_wr_clk 
Read port clock. Port read clocks may be different, the arbiter 
handles the clock domain switch operation. 

rd*_reset 
Read port reset. Reset the selected port buffers.                               
“1”:reset, “0”:normal operation 

rd*_addr_wrreq 
Address read request. This signal indicates that a new data packet 
will be read from the SDRAM. After that signal goes high, arbiter 
read the data and write to the read buffers. 

 

 



Table 21: Continuation. 

rd*_wr_addr 

Addreess. This bus is 32 bit and lower 23 bit shows the read start 
address in SDRAM. 
Addr (31..23) = Total numbers of data to be read. 
Addr (22..21) = Bank address. 
Addr (20..8)   = Row address. 
Addr (8..0)     = Column address. 

rd*_data_rdreq Data read request from the buffers. 

rd*_rd_data Data. 128 bit 

rd*_addr_full Address read request buffer full indicater.  

Read data buffer empty signal. When this signal is “1”, there is no 
data in the buffer. rd*_data_empty 

rd*_data_rd_used Shows the total number of data in the buffer 

 

wr1_data_wrreq

wr1_wr_data

wr1_wr_clk

wr1_addr_wrreq

wr1_wr_addr
 

Figure 73: Write Operation to Write_Port1 
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Figure 74: Read Operation from Read_Port1 
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Figure 75: FFT IP Block Diagram 
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Table 22 : FFT IP Signals 

 Signal Description 

clk FFT block clock input. 27MHz in this application 

reset_n 
FFT block reset.  
“0”: reset,  “1”: normal operation 

inverse 
DFT / IDFT selection 
“0”: DFT,  “1”: IDFT 

sink_valid 
FFT block input valid. The data given with this signal is processed in 
FFT block. 

sink_sop Input data start signal. 

sink_eop Input data end signal. 

sink_real The real part of the input data. 18 bit. 

sink_imag The imaginary part of the input data. 18 bit. 

sink_error The error signal for the input data [24]. 

source_ready FFT block can give the calculation results. 

sink_ready FFT block can receive new data packet. 

source_error The error signal for the FFT result [24]. 

source_sop FFT output start signal. 

source_eop FFT output end signal. 

source_valid FFT output data is valid. 

source_exp 
FFT output exponantial. This signal is used to scale real and imaginary 
parts [24]. 

sink_real FFT output real part. 18 bit. 

sink_imag FFT output imaginary part. 18 bit. 
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Figure 76: FFT IP Input/Output Flow 
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