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ABSTRACT 
 

A MEDICAL IMAGE PROCESSING AND ANALYSIS FRAMEWORK 

 

Çevik, Alper 

M.Sc., Department of Biomedical Engineering 
  Supervisor    : Prof. Dr. B. Murat Eyüboğlu 
Co-supervisor: Prof. Dr. Kader Karlı Oğuz 

 
January 2011, 111 Pages 

 

Medical image analysis is one of the most critical studies in field of medicine, 

since results gained by the analysis guide radiologists for diagnosis, 

treatment planning, and verification of administered treatment. Therefore, 

accuracy in analysis of medical images is at least as important as accuracy in 

data acquisition processes.  

Medical images require sequential application of several image post-

processing techniques in order to be used for quantification and analysis of 

intended features. Main objective of this thesis study is to build up an 

application framework, which enables analysis and quantification of several 

features in medical images with minimized input-dependency over results. 

Intended application targets to present a software environment, which 

enables sequential application of medical image processing routines and 

provides support for radiologists in diagnosis, treatment planning and 

treatment verification phases of neurodegenerative diseases and brain 

tumors; thus, reducing the divergence in results of operations applied on 

medical images. 
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In scope of this thesis study, a comprehensive literature review is performed, 

and a new medical image processing and analysis framework - including 

modules responsible for automation of separate processes and for several 

types of measurements such as real tumor volume and real lesion area - is 

implemented. Performance of the fully-automated segmentation module is 

evaluated with standards introduced by Neuro Imaging Laboratory, UCLA; 

and the fully-automated registration module with Normalized Cross-

Correlation metric. Results have shown a success rate above 90 percent for 

both of the modules. Additionally, a number of experiments have been 

designed and performed using the implemented application. 

It is expected for an accurate, flexible, and robust software application to be 

accomplished on the basis of this thesis study, and to be used in field of 

medicine as a contributor by even non-engineer professionals. 

 

Keywords: Medical image processing, image segmentation, image 

registration. 
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ÖZ 
 

TIBBİ GÖRÜNTÜ İŞLEME VE ANALİZ UYGULAMA ÇATISI 

 

Çevik, Alper 

Yüksek Lisans, Biyomedikal Mühendisliği 
 Tez Yöneticisi  : Prof. Dr. B. Murat Eyüboğlu 
Ortak Tez Yöneticisi: Prof. Dr. Kader Karlı Oğuz 

 
Ocak 2011, 111 Sayfa 

 

Tıbbi görüntü analizi, verdiği sonuçlar doğrultusunda radyoloji uzmanlarına 

tanı, tedavi planı ve uygulanan tedavinin doğrulanması aşamalarında yol 

gösterici olduğundan, tıp biliminin en önemli çalışma alanlarından birisidir. Bu 

nedenle, tıbbi görüntülerin doğru analiz edilmesi, en az, veri elde etme 

sürecindeki doğruluk kadar önemlidir. 

Tıbbi görüntülerin analiz edilebilmesi ve hedef özniteliklere ait nicel ölçüm 

bilgilerinin elde edilebilmesi için, görüntülerin bir dizi görüntü işleme tekniği 

uygulamasına tabi tutulması gerekmektedir. Bu tez çalışmasının ana amacı, 

tıbbi görüntüler üzerindeki birçok özniteliğin, sonuçlar üzerindeki kullanıcı 

bağımlılığı etkisinin en aza indirilmesiyle analiz edilmesi ve ölçümlenmesini 

mümkün kılacak bir uygulama çatısı meydana getirmektir. Tasarlanan 

uygulama, tıbbi görüntü işleme rutinlerini sıraya koyarak uygulamaya imkan 

vermeyi; radyoloji uzmanlarına, nörolojik dejeneratif hastalıklar ve beyin 

tümörlerinin tanı, tedavi planı ve tedavi doğrulama süreçlerinde destek olacak 

bir yazılım ortamı sunmayı; böylece, elde edilen sonuçlar üzerindeki 

varyasyonu düşürmeyi hedeflemektedir. 
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Bu tez çalışması kapsamında, kapsamlı bir literatür taraması 

gerçekleştirilmiş, ve işlemlerin otomatikleştirilmesinden ve gerçek tümör 

hacmi ve lezyon alanı gibi ölçümlerin yapılmasından sorumlu ayrık modüllere 

sahip, yeni bir tıbbi görüntü işleme ve analiz uygulama çatısı 

gerçekleştirilmiştir. Tamamen otomatikleştirilmiş bölütleme modülünün 

performansı, UCLA’daki Nörolojik Görüntüleme Laboratuarı’nın standartları 

doğrultusunda; tamamen otomatikleştirilmiş hizalama modülünün 

performansı ise, Normalize Edilmiş Çapraz Korelasyon ölçütü esas alınarak 

değerlendirilmiştir. Sonuçlar her iki işlem için de yüzde 90’ın üzerinde başarı 

oranı göstermiştir. 

Bu tez çalışmasını temel alarak, doğruluk oranı yüksek, esnek ve 

sürdürülebilir, mühendis olmayan alan profesyonelleri tarafından da 

kullanılması mümkün bir yazılım ürününün gerçekleştirilmesi 

amaçlanmaktadır. 

 

Anahtar kelimeler: Tıbbi görüntü işleme, imge bölütleme, imge hizalama. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

1.1. Motivation 

 

Medical imaging is the general name given to the group of techniques and 

processes developed for creating anatomical or functional images of human 

body (partially or as a whole), which are used for both clinical and scientific 

purposes. Medical image analysis is one of the most critical studies in field of 

medicine, since results gained by the analysis lead field professionals for 

diagnosis, treatment planning, and verification of administered treatment. 

Moreover, recent developments in medical imaging and medical image 

processing provided a significant reduction in the requirement for invasive 

intervention in treatment of various diseases or abnormalities.  

Medical images require sequential application of several image post-

processing techniques - such as restoration, regularization, segmentation 

and registration - in order to be used for quantification and analysis of 

intended features. These features may be specific parts of the image - like 

specified tissues, tumors, or lesions - as well as they may be any statistical 

property over the entire image domain or over parts of it.  
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Many application frameworks are developed in order to enable medical 

image data to be processed manually, semi-automated, or fully-automated by 

non-engineer field experts. However, effective use of many of these 

application domains requires remarkable amount of manual interaction. This 

situation creates several negations such as difficulty in use and diversity on 

acquired results. 

In scope of this thesis work, a new medical image processing and statistical 

analysis framework has been developed based on a comprehensive review 

of modern image processing literature. Main motivation behind this thesis 

study was performing the analysis, design, implementation, and validation of 

a fast and robust system, which enables application of several medical image 

processing routines necessary for quantification and analysis of various 

image features in an effective way.  

 

1.2. Objective 

 

Main objective of this thesis study is to build up an application framework and 

a prototype application, which enables analysis and quantification of several 

features in medical images with minimized input-dependency over results. 

Intended application targets providing support for radiologists in diagnosis, 

treatment planning and treatment verification phases of neurodegenerative 

diseases and brain tumors; thus, reducing the divergence in results of 

operations applied on medical images. 

Image filtering, image segmentation, and image registration operations are 

aimed to be handled in scope of the thesis. Also, development of a 3-

dimensional (3D) volumetric medical image viewer is decided to be 

necessary in order to enable selection of “region of interest” (ROI) for 

volumes and regions to be quantified, and visualization of processed volume 

images. 
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Construction of mentioned application framework undoubtedly requires a 

wide exploration of the image processing literature. Literature review 

presented in CHAPTER 2 (Background) is determined to involve modern 

approaches, as well as the traditional methods which are already in practical 

use. Mathematical background is aimed to be used in an optimization 

perspective in automation of purposed operational modules. 

 

1.3. Main Contributions 

 

A comprehensive review of image processing literature is made, and image 

processing routines and mathematical relations among them are deeply 

investigated. Our review directs reader to related previous work on each 

topic, and presents detailed mathematical background behind numerical 

solutions to problems and implementation of chosen methods. 

A prototype tool is constructed using the data structures developed in scope 

of the application framework. This tool is composed of 4 modules, each one 

of which has several functions and capabilities. These modules are: 

 

• Image Filtering Module, 

• Image Segmentation Module, 

• Image Registration Module, and 

• 3D Image Viewer. 

 

Detailed information on implementation, validation, and experiments done 

using these modules is introduced in related chapters. 

Image filtering module enables application of some techniques for restoration 

and regularization on the images. “Linear Diffusion Filter”, “Perona-Malik 
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Filter”, and “Shock Filter” are programmatically implemented and plugged 

into the module in this extent. 

Image segmentation module involves Mumford-Shah based automated 

segmentation of images, and object selection with automated region growing. 

Segmentation operation is followed with 2D cross-sectional area and 3D 

volume computations for selected objects. 

Image registration with known correspondence is provided with several 

transformation models. Also, a top-down fully-automated procedure is 

proposed and performed for global registration with rigid-body transformation 

of 2D and 3D images. 

A 3D image viewer, which shows axial, sagittal, and coronal projections of 

volumetric medical images, is built as a helper for 3D segmentation and 

feature quantification. A volumetric rectangular ROI can be selected and 

operated via using this module. 

Although experimental work is mainly centered upon 2D and 3D (volumetric) 

brain MRI images, it is not obligatory for application to be operated with 

mentioned modality. Any “DICOM” images and MATLAB®

 

 data files with 

“.mat” extension can be opened and processed within the framework. 

1.4. Thesis Outline 

 

First chapter (Introduction) gives a brief explanation of the motivation behind 

this study and the main objectives inside the scope of this thesis. A summary 

of performed work and resulting contributions is presented in Section 1.3, 

and Section 1.4 gives the outline of the thesis. 

Following chapter - Chapter 2 - is entitled as “Background”, and written in 

order to give the mathematical background behind this thesis. Previous work 

related to the topics of our study is also introduced in this chapter. First 
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section (Section 2.1) gives an introduction to the requirement for use of 

image processing in field of medicine. Following sections of the chapter are 

organized in an aspect of classification of main image processing 

procedures, and the subsections give medical applications and mathematical 

background regarding each topic. 

Chapter 3 (Implementation) mainly deals with the problems and solutions in 

construction phase of the application. Sections are categorized with respect 

to the above named (Section 1.3) modules of the applications. For each one 

of the modules, numerical solutions of selected models are presented, and 

programmatic perspectives are tried to be put across. 

Validation methods used for the performance evaluation of parts of the 

application are explained in Chapter 4. Metrics used for evaluation of 

success in image registration and image segmentation operations are 

defined, and validation results are presented. 

Following chapter - Chapter 5 - presents the experiments done on sample 

images ad image sets, their results and interpretations on these results. 

Again, division of sections is based-on operational modules of the 

application, and subsections are categorized in accordance with functions of 

these modules. 

Chapter 6 is the final chapter of, and a conclusion regarding this thesis study 

is introduced here. Conclusion part tries to give answers to some questions, 

such as:  

 

• “What is proposed?”, 

• “What is accomplished?”, and, 

• “What can be done in the future?”. 

  



 

6 
 

 

 

CHAPTER 2 
 
 

BACKGROUND 
 

 

 

Medical imaging is the general name for the widely-used techniques 

developed in order to create images of human body for medical purposes. As 

acquired images could involve complete human body, they can span it 

partially. Medical imaging data is used for revealing normal or abnormal 

physiological and anatomical structures. Medical imaging techniques are also 

employed in diagnosis and treatment planning processes of patients suffering 

from many health problems. Professionals from field of medicine make use of 

medical imaging data in order to guide or avoid medical intervention. 

 

2.1. Medical Image Processing 

 

Image processing is a subfield of signal processing, for which the input signal 

is an image and the outputs are again an image and/or various parameters 

defining the characteristics of the image and applied operations. Medical 

image processing is applied on the images acquired by medical imaging 

techniques, such as CT, Ultrasonography, PET, SPECT, MRI, fMRI and 
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NMR spectroscopy. Medical images are post-processed for many purposes, 

such as denoising, restoration, segmentation, registration, and 2D/3D 

visualization [1,2]. 

Quantitative analysis of medical images is crucial for diagnosis and prognosis 

stages of many diseases and abnormalities. Quantification of radiographic 

information includes various features such as linear measurements, 

estimation of cross section and surface areas, volume quantization, 

estimation tissue density, monitoring tumor growth, verification of treatment, 

and comparison of patient’s data with anatomical atlases [3,4]. 

Medical image data is exposed to degradations and/or deformations during 

data acquisition processes. For instance, MRI intensity inhomogeneities 

occur subject to RF coil imperfections or problems associated with 

acquisition sequences [5]. Hence, quantification of medical image information 

for analysis requires sequential application of several image processing 

operations. These operations can be classified in three main groups which 

are smoothing and restoration of images, segmentation of images, and 

registration of images. Each step of this workflow necessitates user 

interaction at varying levels. Manually operating, semi-automated and even 

automated systems receive numerical, vectorial or optional inputs from the 

user, defining the instantaneous or future behavior of running operations. 

Diversity in the number of user interaction points may cause complete or 

partial failure of the operations, or irregularities or instabilities in the acquired 

results. Even if the processes are completed and reasonable results are 

obtained, sets of these results depending on different users and/or different 

time instants may have high standard deviation values.  

As briefly stated in the introduction part, main objective of this thesis is to 

build an image processing framework which enables application of 

addressed sequential medical image processing operations with minimum 

diversity depending on user interaction in the results. Following sections of 

this chapter introduce previously indicated classes of operations used in 
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medical image processing in the aspects of mathematical methodology and 

applications in the literature.  

 

2.2. Image Smoothing and Restoration 

 

Filtering plays a significant role in image enhancement. Diffusion filters are 

well understood and used as powerful tools in image analysis for several 

decades. Diffusion filters can be grouped as linear and nonlinear, or isotropic 

and anisotropic diffusion filters.  

Formulation of diffusion filtering processes with partial differential equations 

(PDEs) created a solid backbone for a common framework - a top-down 

methodology - for scale-space analysis. References [6] and [7] give 

interesting relations between biological mechanisms behind vision and scale-

space analysis. Morel and Solimini [8] introduced a deep mathematical and 

physical understanding of this methodology for multiscale image smoothing 

and restoration. Mentioned methodology involves four main steps, which are: 

 

• Mathematical modeling of the energy functional to be optimized 

(minimized or maximized according to the nature of the model) , 

• Derivation of the time and space dependent PDEs (Euler-Lagrange 

equations) using “Calculus of Variations”, 

• Intrinsic/extrinsic solution of PDEs in time and space (or frequency) 

domain, and 

• Implementation of numerical solution on the input image (or image 

set). 
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In this aspect, images are treated as continuous signals, carrying the 

information of gray levels depending on space variables (pixel or voxel 

positions in discrete domain) and time variable. Time variable is used 

analogous to evolution of image under physical diffusion concept.  

This section is presented for a review of diffusion filters and other image 

enhancement methods developed in scope of variational approach. 

 

2.2.1. Diffusion Filters 

 

Fick’s 2nd

 

 law of diffusion is known as: 

 𝜕𝑢/𝜕𝑡 = ∇ ∙ (𝐶∇𝑢).       (2.1) 

 

This equation is called “diffusion equation” and is valid for explaining many 

physical transportation models. Since it is appropriate for heat transfer, it is 

also called “heat equation”. In image processing context, 𝑢  is the image 

signal, and 𝐶 is the diffusion coefficient. For the time being, it is convenient to 

assume  𝐶 as a scalar quantity. 𝐶∇𝑢 term creates a flux, and combined with 

the continuity equation, divergence of this flux gives 𝜕𝑢
𝜕𝑡

 with preservation of 

the mass.  

Diffusion filtering guarantees that the operation does not change mean value 

of the pixel (or voxel) intensities. In other words, average grey value remains 

constant independent from the total number of iterations. This has been 

ensured by employing Neumann (or second-type) boundary condition [9] on 

the edges of the image, which creates a reflection of pixels on boundaries 
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beyond the edges. Consequently, neither sources nor sinks can appear on 

the image domain. 

 

2.2.1.1. Linear Isotropic Diffusion 

 

Discrete solution of Equation (2.1) is given in Equation (2.2): 

 

𝑢𝑖,𝑗𝑘+1 = (𝐶∆𝑡/ℎ2)�𝑢𝑖+1,𝑗
𝑘 + 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖,𝑗+1𝑘 + 𝑢𝑖,𝑗−1𝑘 � + (1 − 4𝐶∆𝑡/ℎ2)𝑢𝑖,𝑗𝑘 .

  

         (2.2) 

 

Here, 𝑢𝑖,𝑗𝑘  denotes the intensity of pixel in 𝑖P

th row and 𝑗P

th column of the image 

matrix 𝑢  at 𝑘P

th

 

 iteration. ∆𝑡  is the temporal and ℎ  is the spatial step size. 

Inequality (2.3) shows the stability constraint over Equation (2.2): 

 (1 − 4𝐶∆𝑡/ℎ2) ≥ 0.       (2.3) 

 

Therefore, diffusion weighting factor 𝐶∆𝑡/ℎ2 should be smaller than or equal 

to 0.25, and constant over the image domain over time.  

Linear diffusion filter non-directionally blurs the original image and operates 

as a low-pass filter. As time (number of iterations) goes to infinity, image 

evolves into a uniform gray image with the mean value of pixel intensities of 

original image signal at each one of the pixels.  
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There exists an analogy between convolution of the image with a Gaussian 

bell-shaped curve, and linear diffusion operation. Mathematical relations 

between Gaussian smoothing parameters and linear diffusion parameters are 

reviewed in detail at reference [10]. 

With the intention of understanding linear diffusion operation better, the 

process can be visualized as moving a circle with constant radius, which 

spreads the information on the central point towards the edge points. Rate of 

diffusion (𝐶∆𝑡/ℎ2  term in Equation (2.2)) is proportional with the radius 

(distance from the central point); therefore, it is constant for each one of the 

image pixels on which the circle is located consequently. As long as shape of 

the virtual moving object remains circular, diffusion process is independent 

from direction; therefore, it can be said to be isotropic.  

 

2.2.1.2. Nonlinear Isotropic Diffusion 

 

Perona and Malik [11] proposed the first non-linear diffusion filter model, with 

modifying linear isotropic diffusion expression given in Equation (2.1). In their 

model, diffusion constant 𝐶  is replaced with a scalar function 𝑔(|∇𝑢|2) , 

where:  

 

 𝑔(|∇𝑢|2) = 1 (1 + |∇𝑢|2 𝜆2⁄ )⁄           (𝜆 > 0).   (2.4) 

 

According to the Perona-Malik model given by Equation (2.4), magnitude of 

the diffusion coefficient decreases with increasing gradient on the image. 

Variable 𝜆 is called contrast threshold, and controls the speed of change in 

diffusion coefficient. Diffusion weight is maximized at zero-gradient points, 
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and at approaches to zero as gradient approaches infinite. This provides 

preservation of edges on the image while blurring other parts of it. 

After replacing 𝐶  with 𝑔(|∇𝑢|2) , Inequality (2.3) is valid as the stability 

condition over Perona-Malik model. As time goes to infinity, original image 

evolves into a uniform gray image just like it does in linear diffusion case. 

If the progress is compared with the previously mentioned moving circle 

example, the only difference from linear isotropic diffusion case is the radius 

of the circle being varying with position of center, due to gradient at that point 

in space. Perona and Malik gave the name “Anisotropic Diffusion” to their 

diffusion model when they came up with it. Unfortunately, it is not anisotropic 

since the rate of diffusion does not change with the diffusion direction. 

Although Perona and Malik have corrected later on, this common 

denomination is still present in many scientific resources. 

 

2.2.1.3. Nonlinear Anisotropic Diffusion 

 

Going ahead with the moving circle annotation, anisotropic diffusion can be 

explained by the shape properties of the circle being modified. Purpose of the 

filtering process is not only decreasing the diffusion rate on the edges, and 

also enhancing them with increasing the diffusion rate along the edges. 

Therefore, a moving circle cannot handle the operation. What is necessary is 

an elliptic object with varying eccentricity. 

Equation (2.1) should be modified so that scalar valued 𝐶 is turned into a 

positive definite symmetric matrix. This diffusion tensor can be designed 

according to the objective. Edge enhancing and coherence enhancing 

models and numerical solution methods are introduced in detail on 

references [10,12,13].  
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2.2.2. Shock Filters 

 

Shock filters are developed with the idea of assuming the initial image as the 

output of a diffusion operation. Therefore, modeling of a shock filter involves 

solution of a differential equation satisfying a maximum principle, reversing 

the time variable 𝑡  of Equation (2.1). Upwind scheme is applied in 

discretization of the differential equation.  

Shock filters are generally used in image restoration purposes. Shock filtering 

process gives better results with blurred images. However, it should not be 

preferred applying shock filter on images having “salt & pepper noise” since 

this class of filters have high sensitivity to gradient over signals. 

Osher and Rudin [14] introduced a total-variation preserving shock filter. 

Alvarez and Mazolla [15] defined a class of filters combining shock filters and 

anisotropic diffusion in order to eliminate the noise-amplification effect of 

classical shock filters. More recent approaches employing complex diffusion, 

hybrid procedures, and clustering methods are presented in references 

[16,17,18,19]. 

 

2.2.3. Total Variational Denoising 

 

“Total variation” (TV) on a subset of a function is the largest sum of 

"variations" for any subdivision of that subset. The total variation of a 

continuously differentiable function between points 𝑎 and 𝑏 can be given in 

one dimension as: 

 

 𝑉𝑏𝑎(𝑢(𝑥)) = ∫ |𝑢′(𝑥)|𝑑𝑥𝑏
𝑎 .      (2.5) 
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Equation (2.5) can be rewritten as given below for our case (2D images): 

 

 𝑉(𝑢(𝑥,𝑦),𝑅) = ∫ |∇𝑢(𝑥,𝑦)|𝑅 .     (2.6) 

 

In Equation (2.6), 𝑅  denotes the image domain, 𝑥  and 𝑦  are the spatial 

coordinates of the points on the image domain. 

Image restoration is defined as the process to compensate for or to undo the 

defects which degrade the image. This degradation may come in forms of 

blurring and noise. 

Image function to be restored and regularized is generally defined as given in 

(2.7): 

 

 𝑧 = 𝑢 + 𝜀.        (2.7) 

 

In Equation (2.7), 𝑧 , 𝑢 , and 𝜀  are all 2D image signals and they are the 

expressions for observed image (with noise), true (desired) image, and error 

distribution, respectively. There are several methods [20,21] developed in 

order to be able to reconstruct 𝑢  from 𝑧 , including total variation (TV) 

minimization, which is the subject of this section. It is observed that TV 

minimization methods are effective for recovery of blocky (discontinuous) 

image data [22]. 

In [23], Rudin, Osher, and Fatemi considered the constrained minimization 

problem: 
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 minimize𝑢 ∫ |∇𝑢|𝑑𝑥𝑅 ,       (2.8) 

 

subject to Equation (2.9) 

 

 ‖𝑢 − 𝑧‖2 = 𝜎2.       (2.9) 

 

In Equation (2.9), 𝜎 gives a measure of distortion on the image. 

In [22], Vogel and Oman consider the problem of minimization of TV-

penalized least squares functional: 

 

 𝑓(𝑢) = 1
2
‖𝑢 − 𝑧‖2 +  𝛼 ∫ �|∇𝑢|2 + 𝛽2𝑅 𝑑𝑥 .   (2.10) 

 

In Equation (2.10), the first term is generally called “data fidelity term” and 

defines the measure of goodness to fit the data, and the second term 

depends on the total variation over the image signal and generally named as 

“regularization term”. Positive parameter 𝛼 determines the ratio between the 

efforts given to minimize these two terms. Here, 𝛽 is a real number, which is 

plugged into the term in order to inhibit the regularization term from vanishing 

to zero. 

Minimization of the functional given in Equation (2.10) provides good results 

in restoration of blocky images, because sharp gradients of these 

discontinuity regions help the process to be edge preserving. Various 

algorithms for numerical solution of TV minimization problem are introduced 

in references [24,25,26,27]. 
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2.3. Image Segmentation 

 

Recalling Equation (2.7), the terms 𝑢, and 𝜀 can be redefined as follows: 

 𝒖: “Cartoon” image component composed of distinct smooth sub-regions 

which are separated from each other with respectively high gradient 

boundaries, and have ideally zero gradients inside the boundaries.  

 𝜺:  Summation of relatively small-amplitude high frequency signal 

component called “texture”, and any other form of residual signal 

components, altogether called “noise”. 

Both from the perspectives of clustering and classification, image 

segmentation is an inverse problem solution process, of which the main goal 

is to “cartoonize” the image; in other words, to extract the cartoon component  

𝑢  from the original image 𝑧, which is composed of several - semantically 

meaningful - distinct partitions. 

Above definition of image segmentation can easily be associated with the 

definitions of image denoising and restoration in terms of parameters and 

objectives. For the entire image processing methodology including those 

problems that are recently mentioned, additionally image registration and 

image inpainting subjects, this association is the key concept for 

understanding nature of image processing science. In other words, for the 

problem solution methods which do not employ prior information on image 

features like edges, shapes, or correspondence points, it may not be possible 

to disintegrate image processing procedures straightforwardly. 
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2.3.1. Medical Applications of Image Segmentation 

 

Medical imaging techniques are used in order to gain information on specific 

organs or parts of human body, physiological abnormalities such as tumors 

and cysts, or any other structures like bone, cartilage, and vessels. In 

general, analysis of medical images requires segmentation of the images. 

Reference [28] gives a comprehensive review of application areas and 

methods in medical image segmentation. Image segmentation is methods 

are in practical use in field of radiology in order to assist or automate multiple 

procedures. Significant roles of image segmentation applications in:  

 

• Anatomical research on regular body structure, 

• Quantification of tissues in several metrics like distance, cross-

sectional and surface area, and volume, 

• Classification of several special tissues like white matter and gray 

matter of brain, 

• Diagnostic radiology, 

• Localization of abnormalities, malfunctions, and pathologies, 

• Prognosis and treatment planning, 

• 2D and 3D registration of imaging data acquired at various times, 

• Computer-aided surgery, and 

• Volume correction in functional imaging data, 

 

can be observed from references [3,29,30,31,32,2]. 
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2.3.2. Methods of Medical Image Segmentation 

 

Various traditional methods and modern approaches exist in field of medical 

image segmentation. Straightforward binary segmentation methods such as 

“thresholding” and “region growing” can be preferred on account of the fact 

that they are both easy implemented and fast operated procedures. 

However, these methods suffer from considerable user-dependency over the 

results of operations.  

Thresholding method requires numerical threshold value (or multiple 

threshold values for multi-thresholding situation [33]) as input in order to 

create partitions belonging to different level of intensities. Similarly 

application of region growing method is in need of determination of a seed 

point and intensity similarity metric. Split and merge algorithms are 

mathematically related to region growing, however they do not require seed 

point specification. 

An inclusive survey on classification methods such as use of Bayes 

(maximum likelihood) classifier, and clustering methods like fuzzy c-means 

algorithm, K-means (ISODATA) algorithm, and the expectation-minimization 

(EM) algorithm is presented in reference [28]. One disadvantage of 

employing classification methods for segmentation is that they require 

manual interaction for collection of the training data. Although clustering is an 

unsupervised (self-training) methodology, it requires initial parameters in 

case of segmentation applications. 

Far-reaching information on several other medical image segmentation 

methods such as the watershed algorithm [34,35], artificial neural networks 

[36], Markov random field models [37], level set segmentation methods [38], 

deformable active contour models [39,40], model-fitting methods [41], atlas-

based methods [42,43], and examples of hybrid implementation of mentioned 

methods [44,45,46,47] exist in the literature. 
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As indicated previously, one of the main objectives of this thesis work is to 

minimize the effects of manual interaction, and to narrow down the range of 

attained results with minimum inputs. Therefore, Mumford-Shah based 

segmentation methods are explored deeper in scope of this study. 

Justification of this approach will be clearer with mathematical explanation in 

the following subsection. 

 

2.3.2.1. Mumford-Shah Segmentation 

 

Mumford and Shah [48] defined the segmentation problem as minimization of 

the energy functional: 

 

 𝐸 =  𝛽∬ (𝑢 − 𝑧)2𝑅 + 𝛼∬ |∇𝑢|2𝑅−𝐵 + ∬ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵)𝑅 .  (2.11) 

 

Equation (2.11) defines an energy functional which is formed by summation 

of three terms. Using the same convention with Equation (2.7), 𝑧 and 𝑢 are 

the original image and the segmented image, respectively. 𝑅  denotes the 

image domain. Hence, ∬ (𝑢 − 𝑧)2𝑅  term multiplied by a weighting factor of 𝛽 

(a positive real number), gives a measure of dissimilarity of the segmented 

image to the original data. Therefore, the first term on the right hand side of 

Equation (2.11) is usually called as “data fidelity term”. 

𝐵 defines the set of points which compose the boundaries of the segmented 

image. As a consequence, 𝑅 − 𝐵 domain over which |∇𝑢|2 is integrated is the 

set of non-boundary points in the segmented image. |∇𝑢|2 is obviously an 

inverse measure for smoothness over the distinct partitions separated with 

image boundaries. Ideally (for a pure cartoon image), second term on the 
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right hand side of Equation (2.11) is equal to zero. Multiplied by a positive 

real weighting factor 𝛼, the term is ordinarily named as “regularization term”. 

Third term on the right side of Mumford-Shah energy functional gives the 

total length of the boundaries over the segmented image. Boundaries are the 

features which create high gradient over the segmented image domain. 

Observing from linear diffusion perspective, value of the third term 

approaches to zero with each iteration, and finally vanishes. This banishes 

the image from its original state. Therefore, minimization of the third term 

contradicts with minimization of the data fidelity term. Hence, minimization of 

the Mumford-Shah energy functional as a whole, transfers the image into an 

equilibrium state between restoration and regularization. 

According to Mumford and Shah, solution of equation for minimization of the 

energy functional defined by Equation (2.11) gives the ideal segmented 

image (𝑢 ) for the original image 𝑧 . However, numerical solution of this 

problem is not a straightforward issue because of the existence of several 

local minimum values, non-regularity of the edge term, and discontinuity in 

the domain of the problem. 

Several procedures are proposed for minimization of Mumford-Shah energy 

functional in references [49,50,51,52,53,54,55,56,57,58] and [59]. Given 

references include utilization of simulated annealing, graph cut algorithms, 

level set (spline) methods, convex relaxation approaches, and finite-

difference discretization for segmentation based on minimization of Mumford-

Shah functional. Each of these algorithms work well in practice although they 

have various drawbacks, such as converging to local minimums, not allowing 

open boundary formation, and excessiveness of the number of iterations to 

reach a convergence criterion. 

In [60], Ambrosio and Tortorelli proposed an approximation for the Mumford-

Shah energy functional (Equation (2.11)), which allows formation of open 

boundaries, in this sense, is more appropriate with the nature of the original 

energy, respectively. They proposed to replace the edge-set term by means 
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of defining a 2D function 𝑣 and designed the phase field energy term given 

below: 

 

 𝐿𝑣,𝜌 = ∬ {𝜌|∇𝑣|2 + (1 − 𝑣)2 4𝜌⁄ }𝑑𝒙𝑅 .    (2.12) 

 

In Equation (2.12), 𝜌  denotes a small positive real number and 𝒙  is the 

coordinate vector over 2D image domain. Although function 𝑣 has no explicit 

mathematical definition, it can be defined as given by Equation (2.13): 

 

 lim𝜌→0
1
2∬{𝜌|∇𝑣|2 + 𝑣2 𝜌⁄ } = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵).    (2.13) 

 

If the edge term ∬ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵)𝑅  in original Mumford-Shah energy functional is 

replaced with the phase field energy term 𝐿𝑣,𝜌 given in Equation (2.12), and 

the resulting equation is reorganized such that all terms of integration fall 

onto the same domain, we end up with the Ambrosio-Tortorelli approximation 

of Mumford-Shah energy functional, 𝐸𝐴𝑇 given in Equation (2.14): 

 

 𝐸𝐴𝑇 = ∬[𝛽(𝑢 − 𝑧)2 + 𝛼|∇𝑢|2(1 − 𝑣)2 + (1 2⁄ ){𝜌|∇𝑣|2 + (𝑣2 𝜌)⁄ }]𝑑𝒙. 

       

          (2.14) 

 

Equation (2.14) has discrete numerical solutions for 𝑢  (segmented image) 

and 𝑣 both of which can be factorized in PDE form using implicit scheme. 
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Within the scope of this thesis work, segmentation subject is dealt mainly 

around the concept of solution, implementation and observation of the 

behavior of the aforementioned method. 

 

2.4. Image Registration 

 

Image registration can be defined as the iterative process of searching for the 

best mathematical transformation model, which aligns a 2-dimensional (2-D) 

or 3-D image data to another 2-D or 3-D image data. Main objective of the 

process is to search for the transformation matrix, which gives the optimal 

value according to the decided similarity measure between two image data. 

Input image which is processed to be aligned to another image is called as 

“moving image”. Reference image according to which the moving image is 

aligned is named as “fixed image”. Mathematical similarity measure between 

moving and fixed images is called “metric”. 

Image registration applications can be classified according to several 

different aspects [4]. For example, we can categorize the methods as 

“feature-based” or “area-based” in terms of the features to be aligned, as 

“full-automated”, “semi-automated with known correspondence”, or “manually 

operated” in terms of degree of interactive guidance, and as “rigid-body 

transformation” or “elastic transformation” in terms of the determined 

constraints over the desired transformation model. 

Following subsection gives a brief review of applications of image registration 

in field of medical image processing. 
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2.4.1. Medical Applications of Image Registration 

 

Utilization of image registration techniques is crucial for the accuracy of 

analysis in field of medical imaging. Medical image registration is widely used 

for several purposes; such as, alignment of anatomical and functional images 

from different imaging modality classes, fusion of functional and anatomical 

images of a specific subject, analysis of time series of image data belonging 

to a particular subject, creation of ensemble maps for specific abnormality in 

specific body parts of multiple subjects, and refinement of volumetric data by 

degrading the negative effect of patient movement during acquisition. 

Additionally, treatment verification based on comparison of medical images 

acquired before and after the medical procedure always involves registration 

of medical images.  

Two comprehensive reviews including detailed classification of methods and 

information on applications are presented in references [61,62]. 

Medical image registration is based upon finding correspondences between 

two images to be spatially aligned. Techniques of finding correspondences 

can be classified into two main groups which are feature-based and intensity-

based methods [62]. “Head-and-hat” algorithm [63], “Chamfer matching” 

method [64], and “iterative closest point” (ICP) algorithm [65] may be given 

as the most popular examples of feature-based image registration 

techniques. Major drawback of feature-based image registration techniques 

is that the accuracy of registration is limited with the accuracy of feature 

extraction operations such as image segmentation. Intensity-based methods 

are based on utilization of intensity similarity measures. Some examples to 

these metrics can be stated as “sum of squared differences”, “cross-

correlation”, and “variance ratios” of intensity values [66]. Additionally, there 

exist intensity-based methods based on information theory; such as “joint 

histogram estimation” [67] and “maximization of mutual information (MI)” [68]. 

Compared with the feature-based methods, intensity-based methods make 
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use of much more - generally all - of the available information on the image 

domain. 

Brain is bounded by the skull. Also, long-term changes in the anatomical 

structure of brain are non-effective regarding the shortness of the time 

interval necessary to acquire medical images. Moreover, in prognosis of 

neurodegenerative diseases like multiple sclerosis (MS) and analysis of brain 

tumors, image registration aims to preserve changes in dimensions of lesions 

and tumors over time. In other words, the moving image should be registered 

to the fixed one globally. Regarding given reasons, global implementation of 

“rigid-body transformation model” on the moving image domain is appropriate 

for the registration of brain MRI images. Thus, following subsection deals 

with the mathematical principles behind the rigid-body transformation. 

 

2.4.2. Mathematical Background of the Rigid-Body 
Transformation 

 

Rigid transformation model consists of translation followed by a rotation 

operation. In case of mono-modal or multi-modal registration of brain MRI 

images, scale parameters are inserted to the model. Addition of the scaling 

operation turns the model actually into an “affine transformation” model, 

except from the capability to shear the image features. Although any 

transformation is required to keep the Euclidean distances between any two 

points in the image domain same in order to be respected as rigid, mentioned 

model (consisting of rotation, translation and scaling) is often referred as rigid 

transformation in the literature [62]. 

Mathematical expression for the transformation applied on an image is 

presented in Subsection 2.4.2.1 as the “Forward Problem”. Principles of 

reversing the transformation in order to align the moving image to the fixed 

image are introduced in the next Subsection 2.4.2.2, “Inverse Problem”. 
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Modifications implemented for addition of scaling parameters to the model 

are explained in Subsection 2.4.2.3, namely “Addition of Scaling 

Parameters”.  

 

2.4.2.1. Forward Problem 

 

Rigid transformation (without scaling) can be formulated as: 

 

 𝐓(𝐱) = 𝐑𝐱 + 𝐭.       (2.15) 

 

In Equation (2.15), 𝐓 , 𝐑 , and 𝐭  are all in matrix form, and denote rigid 

transformation matrix, rotation matrix (Equations (2.16) for 2D space and 

(2.17) for 3D space), and translation vector (Equations (2.18) for 2D space 

and (2.19) for 3D space), respectively. 𝐱 is the coordinate point vector, which 

is also expressed in matrix form in Equations (2.20) for 2D space and (2.21) 
for 3D space: 

 

 𝐑𝟐𝐃 = � cos (𝜙) sin (𝜙)
−sin (𝜙) cos (𝜙)�       (2.16) 

 

 𝐑𝟑𝐃 = �
cos(β) cos(𝛾) cos(𝛼) sin(𝛾) + sin(𝛼) sin(𝛽) cos(𝛾) sin(𝛼) sin(𝛾) − cos(𝛼) sin(𝛽) cos(𝛾)
− cos(𝛽) sin(𝛾) cos(𝛼) cos(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾) sin(𝛼) cos(𝛾) + cos(𝛼) sin(𝛽) sin(𝛾)

sin(𝛽) − sin(𝛼) cos(𝛽) cos(𝛼) cos(𝛽)
� 

 

          (2.17) 
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In Equation (2.16) 𝜙 is the rotation angle in 2D space. Similarly, 𝛼, 𝛽, and 𝛾 

parameters in Equation (2.17) denotes rotation angles around 𝑥, 𝑦, and 𝑧 

axes in 3D space. Centre of rotation is assumed as the central point of the 

images for both cases. 

 

 𝐭𝟐𝐃 = (𝑡𝑥, 𝑡𝑦)𝑇       (2.18) 

 

 𝐭𝟑𝐃 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)𝑇       (2.19) 

 

Translation can be defined as the linear movement of the image over the 

coordinate axes as a whole. In Equations (2.18) and (2.19), mathematical 

expressions for 2D and 3D translation are given. 𝑡𝑥 , 𝑡𝑦 , and 𝑡𝑧  give the 

projections of displacement vector over corresponding coordinate axis. 

 

 𝐱𝟐𝐃 = (𝑥,𝑦)𝑇        (2.20) 

 

 𝐱𝟑𝐃 = (𝑥,𝑦, 𝑧)𝑇       (2.21) 

 

In Equations (2.20) and (2.21), 𝑥, 𝑦, and 𝑧 stand for Cartesian coordinates of 

the points in the moving image domain, for the 2D and 3D space cases, 

respectively. 
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2.4.2.2. Inverse Problem 

 

Global image registration with rigid-body transformation is an optimization 

problem of searching the appropriate values for each of the transformation 

parameters, which optimize the similarity metric between the reference image 

and transformed version of the moving image. Thus, it requires solution of an 

inverse problem. In this scope, we assume moving image as an output of a 

transformation operation applied on the target image. Therefore, an inverse 

transformation model should be designed and appropriate values should be 

assigned for model parameters. 

 

𝐓𝐫𝐢𝐠𝐢𝐝 = 𝐓𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝐓𝐭𝐫𝐚𝐧𝐬𝐥𝐚𝐭𝐢𝐨𝐧      (2.22) 

 

Rigid transformation matrix can be expressed as multiplication of rotation and 

translation matrices, definitions of which are given by Equations (2.23) - 

(2.25) (rotation and translation matrices for 2D case) and (2.24) - (2.26) 
(rotation and translation matrices for 3D case): 

 

𝐓𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝟐𝐃 = �
cos (∅) sin (∅) 0
−sin (∅) cos (∅) 0

0 0 1
�     (2.23) 

 

𝐓𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝟑𝐃 =

�

cos(β) cos(𝛾) cos(𝛼) sin(𝛾) + sin(𝛼) sin(𝛽) cos(𝛾) sin(𝛼) sin(𝛾) − cos(𝛼) sin(𝛽) cos(𝛾) 0
− cos(𝛽) sin(𝛾) cos(𝛼) cos(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾) sin(𝛼) cos(𝛾) + cos(𝛼) sin(𝛽) sin(𝛾) 0

sin(𝛽) − sin(𝛼) cos(𝛽) cos(𝛼) cos(𝛽) 0
0 0 0 1

�

          

   

          (2.24) 
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In Equation (2.23), the variable ∅ stands for the rotation angle. 𝛼, 𝛽, and 𝛾 

parameters in Equation (2.24) denotes rotation angles around 𝑥, 𝑦, and 𝑧 

axes in 3D space. Translation matrix is constructed placing the vectorial 

expressions in forward case as the first rows of last column of an identity 

matrix. Dimensions of translation matrices are 3x3 for 2D case, and 4x4 for 

3D case. 

 

 𝐓𝐭𝐫𝐚𝐧𝐬𝐥𝐚𝐭𝐢𝐨𝐧𝟐𝐃 = �
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

�      (2.25) 

 

𝐓𝐭𝐫𝐚𝐧𝐬𝐥𝐚𝐭𝐢𝐨𝐧𝟑𝐃 = �

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

�     (2.26) 

 

Equations (2.27) and (2.28) gives applied mathematical transformation model 

in opened form for 2D and 3D cases, respectively. For 2D case, there exist 2 

parameters for translation and single parameter for rotation. 3D case has 6 

degree of freedom, consisting of 3 translation and 3 rotation parameters. 

Detailed derivation and polar form of the model can be reviewed from 

reference [2]. 

 

 𝐓𝐫𝐢𝐠𝐢𝐝𝟐𝐃(𝐱) = �
cos(∅) sin(∅) 0
− sin(∅) cos(∅) 0

0 0 1
� �

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

� �
𝑥
𝑦
1
�    (2.27) 
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𝐓𝐫𝐢𝐠𝐢𝐝𝟑𝐃(𝐱) =

�

cos(β) cos(𝛾) cos(𝛼) sin(𝛾) + sin(𝛼) sin(𝛽) cos(𝛾) sin(𝛼) sin(𝛾) − cos(𝛼) sin(𝛽) cos(𝛾) 0
− cos(𝛽) sin(𝛾) cos(𝛼) cos(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾) sin(𝛼) cos(𝛾) + cos(𝛼) sin(𝛽) sin(𝛾) 0

sin(𝛽) − sin(𝛼) cos(𝛽) cos(𝛼) cos(𝛽) 0
0 0 0 1

�  

�

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

�  �

𝑥
𝑦
𝑧
1

�        (2.28) 

 

2.4.2.3. Addition of Scaling Parameters 

 

Scaling provides zoom in / zoom out functionality for the registration 

operation. Registration of MRI images may require scaling of moving image 

because of the possible differences in data acquisition parameters. Thus, it is 

appropriate to plug scaling capability into the model, although it makes the 

model fail to be mathematically “rigid” as mentioned previously.  

Scaling is handled by multiplication of the model given at the preceding 

subsection with a diagonal matrix, carrying scale coefficients at its diagonal: 

 

 𝐓𝐬𝐜𝐚𝐥𝐢𝐧𝐠𝟐𝐃 = �
zx 0 0
0 zy 0
0 0 1

�,      (2.29) 

 

𝐓𝐬𝐜𝐚𝐥𝐢𝐧𝐠𝟑𝐃 = �

zx 0 0 0
0 zy 0 0
0 0 zz 0
0 0 0 1

�.     (2.30) 

 

Insertion of scaling matrices to the model raises the degree of freedom to 5 

for 2D case and 9 for 3D case. Therefore, optimal parameter search requires 
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more computational effort and time compared to the rigid transformation 

case.  
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CHAPTER 3 
 
 

IMPLEMENTATION 
 

 

 

A software application has been developed in scope of this thesis study. 

Since it presents an agile programming environment with its built-in functions 

and compact toolboxes, MATLAB®

 

 is selected to be the development 

platform for the application. 

MAIN WINDOW
(CONTROLLER) FILTERING

DIRECTORY 
OF IMAGES FILES PREVIEW 2D

SEGMENTATION

2D / 3D 
REGISTRATION

3D VIEWER & 
3D 

SEGMENTATION
3D RECONSTRUCTION VOLUME 

COMPUTATION

AREA 
COMPUTATION

CHANGE 
VISUALIZATION

 

Figure 3.1 – General block diagram of the application 
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Figure 3.1 shows the overall structure of the application. Independent 

modules are controlled by a main controller, which enables the image 

directory or selected slice to be read and the image and the metadata 

information to be passed to the modules as inputs to be processed.  

Image data, metadata information, and several other necessary parameters 

are passed together to the relevant module in a compact form using 

structured arrays. Application logic behind the computations and graphical 

user interfaces are programmed in separate files, in order to construct a 

layered architecture. 

 

3.1. Filtering Module 

 

Image filtering generally is sequentially the first group of the image 

processing operations. The group of operations can be classified as “pre-

processing” in or scope, since they are not directly employed for analysis of 

images, but for preparing the images for further operations by performing 

some utilization such as elimination of noise and edge sharpening. 

Following subsections explain explanation for three filters implemented within 

the application. 

 

3.1.1. Linear Diffusion Filter 

 

Recalling Equation (2.2), (𝐶∆𝑡/ℎ2) is renamed as 𝜔 - weighting factor - and 

the equation is modified as given below: 
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 𝑢𝑖,𝑗𝑘+1 = 𝜔�𝑢𝑖+1,𝑗
𝑘 + 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖,𝑗+1𝑘 + 𝑢𝑖,−1𝑗𝑘 � + (1 − 4𝜔)𝑢𝑖,𝑗𝑘 , (3.1) 

 

with the constraint: 

 

 𝑘 = 1, . . . , 𝑛;         𝑘 ∈  ℤ,𝑛 ∈ ℤ,     (3.2) 

 

𝑛 is the positive integer iteration count, and 𝑢𝑖,𝑗𝑘+1 expresses the gray level 

intensity of pixel (𝑖, 𝑗) at iteration 𝑘. Therefore, filter has 3 inputs: image itself, 

weighting factor, and the number of iterations. 

There exists two significant points in the implementation. First one is the 

stability condition over the weighting factor, which is given by Inequality (2.3), 
the constraint over 𝜔 to be smaller than or equal to 2.5. In order to maintain 

this condition, user interface is programmed to allow inputs only inside the 

appropriate range. Second one is the programmatic application of “Neumann 

Boundary Condition”, in order to preserve the mean value of the image, 

which is a common requirement arising for most of the modules. For this 

purpose, a helper function which reflects the boundary pixel frame to outside 

and creates a buffer region is generated for 2D and 3D images. 

 

3.1.2. Perona-Malik Filter 

 

Inserting Equation (2.4) into linear isotropic diffusion equation (Equation 

(2.1)) gives the Perona-Malik model - Equation (3.3): 
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 𝑢𝑖,𝑗𝑘+1 = �𝑔�|∇𝑢|2�∆𝑡
ℎ2

� �𝑢𝑖+1,𝑗
𝑘 + 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖,𝑗+1𝑘 + 𝑢𝑖,−1𝑗𝑘 � 

+(1 − 4𝑔(|∇𝑢|2)∆𝑡/ℎ2)𝑢𝑖,𝑗𝑘 .    (3.3) 

 

Here, problem arises from the difficulty of expressing 𝑢𝑖,𝑗𝑘+1 in explicit form, 

because, |∇𝑢|2 on the right-hand-side is the gradient value at the index (𝑖, 𝑗) 

at the 𝑘P

th

 

 iteration. An explicit scheme numerical solution of the model is 

given below: 

 𝑢𝑖,𝑗𝑘+1 =  𝜔�𝐶𝐸𝑢𝑖+1,𝑗
𝑘 + 𝐶𝑊𝑢𝑖−1,𝑗

𝑘 + 𝐶𝑁𝑢𝑖,𝑗+1𝑘 + 𝐶𝑆𝑢𝑖,𝑗−1𝑘 �  

+ (1 − 𝜔(𝐶𝐸 + 𝐶𝑊 + 𝐶𝑁 + 𝐶𝑆))𝑢𝑖,𝑗𝑘 .   (3.4) 

 

In this equation, letter subscripts 𝐸, 𝑊, 𝑁, and 𝑆 stands for the 4 directions, 

east, west, north, and south, and expresses directional gradients at the 

focused point. Equations from (3.5) to (3.8) give the idea in mathematical 

convention. 

 

 𝐶𝐸 = 𝑔(�𝑢𝑖−1,𝑗
𝑘 − 𝑢𝑖,𝑗𝑘 �),      (3.5) 

 

 𝐶𝑊 = 𝑔(�𝑢𝑖+1,𝑗
𝑘 − 𝑢𝑖,𝑗𝑘 �),      (3.6) 

 

 𝐶𝑁 = 𝑔(�𝑢𝑖,𝑗+1𝑘 − 𝑢𝑖,𝑗𝑘 �),      (3.7) 
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 𝐶𝑆 = 𝑔(�𝑢𝑖,𝑗−1𝑘 − 𝑢𝑖,𝑗𝑘 �),      (3.8) 

 

where, function g is given by Equation (2.4). 

Therefore, in addition to the input parameters of linear diffusion case, 

“contrast threshold” (𝜆) should be supplied to the filter manually. 

 

3.1.3. Shock Filter 

 

We start with the partial differential equation: 

 

 𝜕𝑢/𝜕𝑡 =  −𝑠𝑖𝑔𝑛(∇2𝑢) × |∇𝑢|.     (3.9) 

 

“Shock Filter” is based upon the principle adaptive backward / forward 

differencing, namely, “upwind derivatives”.  If the sign of the Laplacian term is 

positive: 

 

 𝜕𝑢/𝜕𝑡 =  −|∇𝑢|,       (3.10) 

 

filter applies erosion around minima, and if the sign of Laplacian term is 

negative: 

 

 𝜕𝑢/𝜕𝑡 =  |∇𝑢|,       (3.11) 
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filter applies dilation around maxima. With these operations filter has an 

effect of sharpening on input image. Numerical expressions for dilation and 

erosion operations are separate and Equations from (3.12) to (3.16) give 

these numerical expressions: 

 

 |∇𝑢| =  �(𝑢𝑥
2 + 𝑢𝑦2) 

2
      (3.12) 

 

where; 

 

 𝑢𝑥2 = �min�(𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗) ℎ𝑥⁄ , 0��
2

+ �max�(𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗) ℎ𝑥⁄ , 0��
2
,  

        

          (3.13) 

 

 𝑢𝑦2 = �min�(𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1) ℎ𝑦⁄ , 0��
2

+ �max�(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) ℎ𝑦⁄ , 0��
2

.

  

 

          (3.14) 

 

Equations (3.13) and (3.14) applies if the sign of Laplacian term is negative 

(operation is dilation). If the operation is erosion, equations (3.15) and (3.16) 
is applied: 
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 𝑢𝑥2 = �max�(𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗) ℎ𝑥⁄ , 0��
2

+ �min�(𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗) ℎ𝑥⁄ , 0��
2
,  

 

          (3.15) 

  

 𝑢𝑦2 = �max�(𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1) ℎ𝑦⁄ , 0��
2

+ �min�(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) ℎ𝑦⁄ , 0��
2
. 

 

          (3.16) 

 

Discrete solution for the Laplacian term is given in Equation (3.17). 

 

 ∇2𝑢 = �𝑢𝑖+1,𝑗 +  𝑢𝑖−1,𝑗  + 𝑢𝑖,𝑗+1  +  𝑢𝑖,𝑗−1 −  4 × 𝑢𝑖,𝑗� ℎ2⁄ . (3.17) 

 

If we combine all of the equations above, and rewrite left-hand-side as: 

 

 𝜕𝑢 𝜕𝑡⁄ = (𝑢𝑖,𝑗𝑘+1 − 𝑢𝑖,𝑗𝑘 )/∆𝑡.      (3.18)  

 

We have an explicit scheme discrete solution for the model of the “Shock 

Filter” given by (3.9). The only trick in the implementation of the code is 

programming mentioned selective behavior with the computation of the 

upwind derivatives (|∇𝑢|). 
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3.2. Image Segmentation Module 

 

Image segmentation module is implemented based on Ambrosio-Tortorelli 

minimization model for the Mumford-Shah energy functional for the reasons 

given in Chapter 2. Derivation of the numerical solution to the Ambrosio-

Tortorelli minimization starting from Mumford-Shah energy functional is given 

in Appendix A. 

 

3.2.1. 2D Image Segmentation 

 

Input parameters for the Ambrosio-Tortorelli segmentation model are: 

 

• Image itself, 

• Regularization coefficient, 

• Data fidelity factor, 

• Edge complexity term, 

• Maximum number of the iterations, and, 

• Saturation tolerance. 

 

“Regularization coefficient”, “data fidelity factor”, and “edge complexity term” 

are the name representations for parameters, 𝛼, 𝛽, and 𝜌 of Equation (A.1), 

respectively.   

As shown on Figure 3.2, the first operation to do is to compute the starting 

values for signals 𝑢  and 𝑣 . Since 𝑢  represents segmented image, it is 

appropriate to choose 𝑢0 as the input image 𝑧. A proper starting value for 𝑣 is 
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given by Equation (3.19). It puts Euler-Lagrange representation of 𝑣 

(Equation (A.4)) into the form of “Heat Equation”. 

 

INITIALIZE u

COMPUTE INITIAL v USING 
u

UPDATE u USING v

UPDATE v USING u

CHECK 
SATURATION 
CONDITION

CHECK 
ITERATION LIMIT

NOT SATURATED

NOT MAX ITERATION
STOP

STOP

INPUT 
PARAMETERS

MAX ITERATION

SATURATED

ORIGINAL 
IMAGE (z)

 

Figure 3.2 – Basic flowchart for the implementation of Ambrosio-Tortorelli segmentation 

 

 𝑣0 =  2𝛼|∇𝑢|2 (2𝛼|∇𝑢|2 + 1)⁄      (3.19) 

 

In the main loop, 𝑢 and 𝑣 values are updated sequentially, according to the 

rules defined by Equations (A.5) and (A.9) using input parameters 𝑧, 𝛼, 𝛽, 

and 𝜌. 
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There exist two criteria to determine whether the computation loop ends or 

continues. First one is the saturation condition defined by Equation (3.20). 
Second is obviously reaching to the maximum number for iterations. As far 

as none of the stopping conditions is not met, application continues to run for 

updating the functions 𝑢 and 𝑣: 

 

 |𝑢𝑡+1 − 𝑢𝑡| < 𝜖|𝑢𝑡|.       (3.20) 

 

As shown by the above equation, saturation - in this context - means 

approach of rate of change of a total measure over image intensity to zero. It 

is appropriate to select 𝜖 (saturation tolerance) relatively small compared to 

average image gray level, for example 10−6 or 10−7. 

 

3.2.2. Feature Area Computation 

 

For the purpose of computing cross-sectional area of an image feature using 

a 2D image, a compositional methodology consisting Mumford-Shah 

segmentation and region growing algorithm is developed. Mumford-Shah 

segmentation procedure is applied as explained above, and it gives the 

output image when saturation condition is met or maximum allowed number 

for the iterations is reached. Additionally, iterations can be stopped manually 

by the user, who can view the instantaneous state of the evolving output 

during the procedure. As a result, an output composed of smoothed regions 

is formed. 

Region growing algorithm is employed for the purpose of selection of the 

desired feature, and creation of a binary form of the output. Neighborhood 

radius is constant and selected as 1 pixel. Threshold range - lying between 0 
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and 1 - is defined by the user. Resulting binary image carries the information 

of the positions for pixels included by selected object (or region). 

Metadata of any DICOM file is read into the memory during the file selection 

state. Built-in function “dicominfo” of MATLAB®

In case of MRI images, existence of a field named “PixelSpacing” is 

obligatory in DICOM metadata. Field stores an n-dimensional vector carrying 

double values, which gives the information of real pixel size for each 

dimension as millimeters. Using binary image formed by region growing and 

pixel spacing information, desired cross-sectional area can be computed as 

pixels and millimeter-squares. 

 Image Processing Toolbox is 

used to acquire DICOM metadata into a structured array containing DICOM 

data fields as its cells. 

A study on validation of the process is given on Chapter 4, and results with 

figures containing screenshots and relevant data are presented in Chapter 5. 

 

3.3. Image Registration Module 

 

As mentioned before, developed application contains an independent module 

for the purpose of registration of two images. Next subsection introduces 

implementation of registration of 2D images with manually acquired known 

correspondence. Following subsection gives the details in implementation of 

the fully-automated 2D and 3D image registration process. 
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3.3.1. Registration with Known Correspondence 

 

FIXED IMAGE MOVING IMAGE

1. SELECTION OF THE CONTROL POINTS

2. CREATION OF THE SPATIAL
TRANSFORMATION

3. PERFORMING THE SPATIAL
TRANSFORMATION

ALIGNED
IMAGE

CHANGE 
VISUALIZATION

 

Figure 3.3 – Flowchart for the implementation of registration with known correspondence 

 

As seen from Figure 3.3, image registration with known correspondence 

involves three consecutive steps after acquisition of 2D images. These three 

steps mainly implemented using proper built-in function for each one. 

First requirement for the procedure is the selection of the control points. 

MATLAB® Image Processing Toolbox function “cpselect” provides a user 

interface customized for interactive point selection, and returns the spatial 

coordinate pairs for sequentially selected correspondence points from the 

image pair. Second, the spatial transformation model is prepared using 

“cp2tform”. This function takes control point pairs, and the desired 
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transformation model as input arguments, and returns the TFORM structure 

ready to use as an input parameter for the built-in function “imtransform”, 

which handles the transformation operation. Minimum number of control point 

pairs to be selected by user varies depending on the transformation type.  

 

Table 3.1 – Transformation types for cp2tform function [69] 

TRANSFORMATION 
TYPE 

DESCRIPTION MINIMUM NUMBER 
OF CONTROL POINTS 

Non-reflective similarity Combination of translation, rotation, and 

scaling. 

2 Pairs 

Similarity Same as “non-reflective similarity” but with 

the addition of optional reflection. 

3 Pairs 

Affine Straight lines remain straight, parallel lines 

remain parallel. Shear functionality is 

added to “similarity” transformation. 

3 Pairs 

Projective Straight lines remain straight, parallel lines 

converge to a vanishing point inside or 

outside image domain. 

4 Pairs 

Polynomial Used when the image are curved. Higher 

order gives better results. 

6 Pairs (Order 2) 

10 Pairs (Order 3) 

15 Pairs (Order 4) 

Piecewise-linear Used when different regions of the image 

looks distorted differently. 

4 Pairs 

Local weighted mean Used when distortion varies locally and 

“piecewise-linear” is not sufficient. 

6 Pairs 

(12 Recommended) 

 

Table 3.1 [69] gives the valid transformation types, brief descriptions for 

them, and the minimum required number of control point pairs for each type 

of transformation. Type of the transformation is selected interactively by the 
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user with given constraint over the number of control point pairs. TFORM 

transformation structure is prepared and applied on the moving image. 

Visualization of change in image is obtained by computing the absolute 

difference between the fixed image and the aligned image. 

 

3.3.2. Fully-Automated Global Image Registration with Rigid-
Body Transformation 

 

Figure 3.4 shows general flow of the steps involved in the automated image 

registration process. 

 

MOVING IMAGE

FIXED IMAGE

INTERPOLATION

METRIC OPTIMIZATION

TRANSFORMATION

fitness value

transformation parameters

 

Figure 3.4 – Fully-automated registration flowchart 

 

3.3.2.1. Interpolation 

 

Interpolation is the process of defining a function that takes on specified 

values at specified points. In digital signal processing, interpolation can be 

defined as the process of estimation of values at the unknown data points 

(non-grid positions) by use of known samples. Moving image is resampled in 

order to be synchronized with the fixed image in terms of dimensions. 
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Various methods can be employed for this purpose, such as, “sinc 

interpolation”, “nearest neighbor interpolation”, “linear interpolation”, 

“quadratic interpolation”, “B-spline interpolation”, “cubic interpolation”, 

“Lagrange interpolation”, and “Gaussian interpolation” [61,70]. In scope of our 

study, “linear interpolation” method is used. 

 

3.3.2.2. Similarity Metric 

 

Metric is the mathematical similarity measure between two functions. In other 

words, metric compares how well the two images match each other. 

Resampled moving image and the reference (fixed) image are compared with 

regard to the predetermined metric. Intensity-based relations like “mean 

squares”, “normalized correlation”, and “mean reciprocal squared difference”; 

information theoretic relations like “mutual information” and “joint entropy”; 

and histogram-based methods like “joint histogram estimation” can be used 

as similarity metric between the image functions. 

Iterations stop when the calculated metric value is equal to or smaller than 

the determined error tolerance; therefore, selected metric decides if the 

instantaneous transformation model provides correctness at sufficient level 

for the registration result. 

In this work, “normalized cross-correlation” is used. Mathematical expression 

for this metric is given on Subsection 4.2.1. 

 

3.3.2.3. Optimization 

 

Calculated similarity measure (metric) is compared with the constant error 

tolerance and if the necessary condition is not met, transformation model is 
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applied to the moving image again. Before the reapplication of transformation 

model, input parameters of the model must be recalculated using the 

feedback from the previous iteration. The component which handles this 

recalculation process and updates the input parameters is called optimizer. 

For the optimization of transform parameters, many well-known “gradient-

descent” or “stochastic-based” optimization algorithms can be used. Selected 

optimization algorithm is the leading factor determining success and 

computational time of the registration process. 

In this thesis study, a built-in function of MATLAB®

71

 Optimization Toolbox 

called “fminsearch” is used in order to minimize the minus of normalized 

cross correlation. Selected method is an implementation of Nelder-Mead 

Simplex Algorithm, which is first published in 1965 [ ]. Details involving use 

of and convergence criteria over this optimization method are given on 

reference [72]. Required additional inputs such as moving image data and 

the bounds for optimization parameters are injected into the optimization 

algorithm using “anonymous function declaration” capability of MATLAB®

 

. 

3.3.2.4. Transformation 

 

Final step of the iteration cycle is the application of transformation model on 

the moving image. This part can simply be defined as the multiplication of the 

moving image with the constructed transformation matrix in order to obtain 

the registered image. Selected transformation model defines the constraints 

on the alterations on moving image during image registration process. In 

other words, scope of the changes on moving image is determined by the 

chosen transformation model. 

As the result of iterations, correct transform input parameters are calculated. 

The transformation model constructed by use of aforesaid parameters is 
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applied onto the original version of the moving image, and the registered 

image is acquired. 

 

 

Figure 3.5 – Visualization of transformation types, taken from reference [61] 

 

Figure 3.5 is taken from the article given in reference [61], and is given in 

order to represent visualizations for different transformation types. As 

mentioned in Subsection 2.4.2, we have implemented 2D and 3D global rigid 

transformation in scope of this thesis work. 

 

Table 3.2 – Number of transformation parameters to be optimized 

 TRANSLATION ROTATION SCALING TOTAL (max) 

2D 2 1 2 5 

3D 3 3 3 9 
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Table 3.2 shows the maximum number of transformation parameters (degree 

of freedom) to be optimized. As mentioned before, high number of 

parameters brings more computational load, therefore results in more 

divergence risk and more computational time. 

Search for scaling parameters are optional. If they strictly rigid registration is 

selected, their value is kept as 1. 

 

3.4. 3D Medical Image Viewer and 3D Image 
Segmentation 

 

A 3D image viewer is implemented as a separate module in order for system 

users to be able to browse volumetric images, focus on desired volumetric 

region, select rectangular region of interest, and apply implemented 

operations over the targeted region. 

 

3.4.1. 3D Medical Image Viewer 

 

Selected set of 2D slices is used for reconstruction of volumetric image. User 

manually selects the image directory, and the orientation (axial, sagittal, or 

coronal) of the volumetric data. During the reconstruction process, pixel 

spacing and slice thickness are read form the DICOM metadata, and ratio 

between them is considered for interpolation in order to view the image in 

real proportional sense. Interpolation is also applied for memory optimization. 

The maximum allowed volumetric image size is pre-defined (arranged 

properly for 32-bit memory) and bigger size images are reconstructed with 

resizing. 
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3D image viewer is utilized with capability of focusing on a user-specified 

point. This can be done simply by clicking on the image window, or browsing 

the image in three projections using the horizontal and vertical scrollbars.  

Selection of a 3D rectangular region of interest is also made possible within 

the viewer. 3D segmentation and visualization of 3D model are applied only 

within the selected region of interest considering the performance and 

memory issues. 

Additionally, thresholding capability is implemented on the screen in order for 

user to be able to eliminate irrelevant texture and focus on the desired region 

quickly and easily. 

Figure 3.6 shows an example use of the 3D medical image viewer module in 

the thresholding mode. 

 

 

Figure 3.6 – A screenshot of the 3D medical image viewer module in thresholding mode. 
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3.4.2. 3D Segmentation 

 

Ambrosio-Tortorelli minimization method for Mumford-Shah segmentation is 

modified in order to handle segmentation of 3 dimensional data. 

Representing the third dimension, 𝑧 is inserted into Equations from (A.1) to 

(A.10), and equations are properly redefined. 

Interpolation procedure mentioned in previous subsection is critical for 3D 

segmentation, because interactions between neighbor voxels are kept 

independent from the direction of neighborhood in modification of the 

equations for 3D case. 

Application of 3D segmentation creates a volumetric output image inside the 

boundaries of region of interest, which is formed of relatively smooth 3d 

regions. These regions can be modeled and viewed as 3D together with 

selection of proper edge and object thresholds, as well as they can be used 

for volume computation separately. Examples of results are presented in 

Chapter 5. 

 

3.4.3. Feature Volume Computation 

 

Similar to the cross-sectional area computation case (Subsection 3.2.2), a 

sequential application of Mumford-Shah segmentation and region growing 

algorithm is utilized in order to be able to quantify volume of selected object. 

After segmentation of the region of interest, a modified 3D version of the 

region growing algorithm is used in order to select the target object. Object is 

selected over a binary representation of the segmented image, and volume is 

calculated using dimensional data in the structured array carrying DICOM file 

metadata. 
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In addition to the “PixelSpacing” vector, “SliceThickness” field of the 

metadata is used as the third dimension. If the MRI image is not acquired as 

volumetric, value for the field “SpacingBetweenSlices” is different from zero, 

and mostly greater than the slice thickness. In this case, value of this field is 

used as the 3rd

As the result of operations, volume of the selected object is given as voxels 

and millimeter cubes. Sample experiments and results are presented on 

 dimension. 

Chapter 5. 
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CHAPTER 4 
 
 

PERFORMANCE EVALUATION 
 

 

 

Performances of two main modules - image segmentation and image 

registration - of the application are evaluated in scope of this thesis study. 

Validation methods and results are given in following sections of this chapter. 

 

4.1. Validation of Image Segmentation Module 

 

4.1.1. Metrics 

 

4.1.1.1. Mean Preservation 

 

As far as “Neumann Boundary Condition” is satisfied, there exists no sinks or 

sources in the image domain with evolving operations. Therefore, average 

intensity value for pixels remains constant. In other words, operation is mean 

preserving: 
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 𝜕𝑦 𝜕𝑛⁄ (𝑥) = ∇𝑦(𝑥) ∙ 𝒏(𝑥).      (4.1) 

 

In Equation (4.1), 𝒏 denotes the normal to the boundary. In order for the dot 

product to be equal to zero, gradient of 𝑦 in the direction of normal vector 

should be equal to zero. As explained in Chapter 3, boundary pixels are 

reflected along the outside frame of the image with a helper function.  

Mean preservation condition is checked during the experiments, in order to 

make sure there has not been any mistakes in the implementation phase 

related to existing sources or sinks on boundaries. Results are presented in 

Subsection 4.1.2 

 

4.1.1.2. Performance Measures 

 

A database of segmented and non-segmented versions of brain MRI images 

which form ground truth information for validation, and the metrics for the 

evaluation of success in image segmentation are presented in references 

[73,74] by Laboratory of Neuro Imaging at UCLA (University of California, Los 

Angeles). In this thesis work, six of given performance measures (metrics) 

are used for evaluation of the segmentation process, which are explained in 

detail in this subsection. 

Each one of these metrics is expressed in terms of regions, formed within the 

interaction of a “truth set” and a “results set”, elements of which are pixel 

positions inside target region over ground truth, and pixel positions inside 

target region over experimental result. As shown on Figure 4.1 [74], domain 

is separated into 4 sub-domains, namely, “true negative (𝑻𝑵)”, “true positive 

(𝑻𝑷)”, “false negative (𝑭𝑵)”, and “false positive (𝑭𝑷)”. 
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“Jaccard similarity index” (also known as “Tanimoto coefficient”) is defined as 

the size of the intersection divided by the size of the union. Equivalently: 

 

 𝐽(𝐴,𝐵) = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|,      (4.2) 

 

for sets 𝐴 and 𝐵 . Value of 𝐽  is ideally 1 for an ideal segmentation of the 

desired region. In our case, 𝐽 can be expressed as:  

 

 𝐽 = 𝑻𝑷/(𝑭𝑷 + 𝑻𝑷 + 𝑭𝑵).      (4.3) 

 

 

Figure 4.1 – Domain of metrics used for validation of segmentation, taken from reference [74] 

 

Another metric measuring “set agreement” is called as “Dice coefficient”, and 

mathematical representation of this measure is given by Equation (4.4). 
Equation (4.5) shows formulation in terms of our domain: 

 

 𝐷(𝐴,𝐵) = 2|𝐴 ∩ 𝐵|/(|𝐴| + |𝐵|),     (4.4) 
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 𝐷 = 2𝑻𝑷/(𝑭𝑷 + 2𝑻𝑷 + 𝑭𝑵).     (4.5) 

 

Obviously, ideal value for “Dice coefficient” is 1, as it is for the “Jaccard 

similarity”. For both of the cases, range of the value is between 0 and 1. 

Equations from (4.6) to (4.9) show other metrics used for performance 

evaluation of segmentation: 

 

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = |𝑻𝑷| |𝑻𝑷 + 𝑭𝑵|⁄ ,     (4.6) 

 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = |𝑻𝑵| |𝑻𝑵 + 𝑭𝑷|⁄ ,     (4.7) 

 

 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = |𝑭𝑵| |𝑭𝑵 + 𝑻𝑷|⁄ = 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, (4.8) 

 

 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = |𝑭𝑷| |𝑻𝑵 + 𝑭𝑷|⁄ = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. (4.9) 

 

As it can be easily observed form the equations, ideal value for 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

and 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  is again 1, and ideal value for 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒  and 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 is 0. 
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4.1.2. Results 

 

Performance evaluation experiments are made on two classes of images 

which are: 

 

• Original and deformed versions of simulated images including arbitrary 

shaped geometrical data, and 

• Original and segmented versions of real MRI data. 

 

 
Figure 4.2 – Original simulated image, taken 

from reference [74] 

 
Figure 4.3 – Deformed simulated image (lower 

SNR), taken from reference [74] 
 

 
Figure 4.4 – Segmented image 

 
Figure 4.5 – Selected region 

 

These samples are provided by reference [74]. Figure 4.2 and Figure 4.3 

shows original and deformed versions of the simulated image, which is 

composed of three uniform regions. Performance is evaluated in terms of 
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mean preservation and the metrics defined above, by the segmentation of 

gray region separating the black background and the white region located at 

the center. 

 

Table 4.1 – Performance evaluation results for simulated data 

Jaccard Dice Sensitivity Specificity FNR FPR 

0.908200 0.951890 0.984190 0.992430 0.015815 0.007571 

 

Figure 4.4 shows the output of segmentation operation applied over complete 

image domain. Inputs are given as “regularization factor=10”, “data fidelity 

coefficient=100”, and, “edge complexity factor=0.035”. Result is taken at 

5000 iterations. Mean value of pixel intensities is observed to be constant 

over time and is equal to 0.2221, which is same with the original image.  

 

 

Figure 4.6 – User interface for area representation and performance evaluation 

 

Table 4.1 presents the performance evaluation metric values for the 

experiment done by the simulated data. As seen from the table, the first four 

measures, which are ideally equal to 1 are all above 0.9 (error < 10%), and 

“false negative rate (FNR)” and “false positive rate (FPR)” metrics are both 

close to 1%. 
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Figure 4.7 – Original MRI image, taken from 

reference [74] 
 

 
Figure 4.8 – Segmented MRI image 

 
Figure 4.9 – Ground truth segmentation, taken 

from reference [74] 

 
Figure 4.10 – Selected Region 

 

The second experiment is implemented with the application of segmentation 

procedure on real T1-MRI brain data belonging to a male subject, which is 

shown on Figure 4.7. Blue rectangle over Figure 4.8 shows selected region 

of interest (ROI). Inputs are given as “regularization factor=10”, “data fidelity 

coefficient=100”, and, “edge complexity factor=0.035”. Result is taken at 

5000 iterations performed in 82 seconds. Mean value of pixel intensities is 

observed to be constant over time and is equal to 0.4735, which is same with 

the original image over selected ROI.  
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Table 4.2 – Performance evaluation results for real MRI data 

Jaccard Dice Sensitivity Specificity FNR FPR 

0.851810 0.919970 0.95418 0.969430 0.045817 0.030574 

 

Table 4.2 introduces the numerical results for the measures of performance 

evaluation. As shown on the table, values for “Dice coefficient”, “Sensitivity”, 

and “Specificity” are above 0.9 and FNR and FPR rates are below 10%. 

 

4.2. Validation of Image Registration Module 

 

Performance of automated image registration is evaluated using an original 

image as “fixed image” and a transformed image (with known parameters) as 

“moving image”. Image visuals, parameters, and results are presented in 

Subsection 4.2.2. 

 

4.2.1. Normalized Cross-Correlation Metric 

 

Value of the similarity measure between the aligned version of the moving 

image and the fixed image constitutes a stopping condition for the cycle of 

iterations. Thus, this value of the metric is also a measure of success of the 

operation. 

Mathematical representation of normalized cross-correlation between signals 

𝑓 and 𝑔 is given below: 

 

 
1

𝑛−1
∑ (𝑓(𝑥,𝑦)−𝑓)(𝑔(𝑥,𝑦)−𝑔)

𝜎𝑓𝜎𝑔𝑥,𝑦  .    (4.10) 
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In Equation (4.10), 𝑓S represents mean value of 𝑓, and 𝜎𝑓 represents standard 

deviation of 𝑓. 𝑛 is the total number of pixels. 

Normalized cross-correlation is numerically implemented for registration of 

2D and 3D images. 

 

4.2.2. Results 

 

 
Figure 4.11 – Fixed image 

 
Figure 4.12 – Moving image 

 

Original and distorted images used as fixed and moving images are shown 

on Figure 4.11 and Figure 4.12, respectively. Rotation, translation, and 

scaling is applied on the fixed image to reproduce the moving image. 

First row of Table 4.3 shows the values of parameters in order to induce 

transformation to the original image. Expected correction values for “rotation” 

and “translation” parameters are additive inverses of the induced values, and 

expected correction values for “scaling (zoom)” parameters are multiplicative 

inverses of the induced values. As seen on the table, results are reasonable. 
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Table 4.3 – Transformation parameters 

 Rotation 
(degrees) 

X-translation 
(pixels) 

Y-translation 
(pixels) 

X-zoom 
(rate) 

Y-zoom 
(rate) 

Induced -3.5 -20 1 1.1 1.1 

Initials -4 10 -10 1 1 

Corrected 3.558 20.7972 -1.1207 0.9107 0.90049 

 

 
Figure 4.13 – Aligned image 

 
Figure 4.14 – Absolute difference of aligned 

and fixed images 
 

Normalized cross-correlation value between the fixed and aligned image is 

computed as 0.97866, as a result of fully-automated registration operation. 

Process is completed in 186 iterations in 95 seconds, with arbitrarily chosen 

initial values given in Table 4.3. Figure 4.13 and Figure 4.14 shows resulting 

(aligned) image and the absolute difference between aligned image and fixed 

image. 
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CHAPTER 5 
 
 

EXPERIMENTAL RESULTS 
 

 

 

Several experiments related to each module has been done and results are 

presented and discussed in this chapter. Related visual demonstrations for 

user interfaces, inputs and outputs are presented with numerical results and 

interpretations for each section. 

 

5.1. Image Smoothing and Restoration 

 

Original brain MRI image given on Figure 5.1 is intentionally degraded with 

different types of noise in order to construct noisy data for filtering 

experiments. Image on Figure 5.2 is created with inserting 2% “salt & pepper 

noise” into the original image. Similarly, the image given as Figure 5.3 is built 

with insertion of “Gaussian white noise” into the original image with zero 

mean and 0.01 variance. Final image (Figure 5.4) shows a combination of 

two mentioned types of noises. 

Experiments involve application of filters onto these images and 

interpretation of the results. 
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Figure 5.1 – Original image, taken from 

reference [75] 
 

 
Figure 5.2 – Image with salt & pepper noise 

 
Figure 5.3 – Image with Gaussian white noise 

 
Figure 5.4 – Image with both salt & pepper 

and Gaussian white noises 
 

5.1.1. Linear Diffusion Filter 

 

Linear diffusion filter (LDF) is basically used for elimination of unwanted noise 

from the image. Main drawback of linear diffusion operation is causing loss of 

meaningful information due to blurring effect. 

Figures Figure 5.6 and Figure 5.7 are acquired by linear diffusion filter 

applied with 100 iterations and with a weighting factor of 0.2 on the image 

with salt & pepper noise. As seen on the second figure, noise is completely 

eliminated. However, in case of medical image processing, operation does 

not give a meaningful result. As it can be observed through the image on the 

right, absolute difference between input and output has high values along 

high gradient regions; in other words, edges. Therefore, it can be said that 

linear diffusion causes loss of edge information over images. 
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Figure 5.5 – Input image with 

salt & pepper noise 

 
Figure 5.6 – Linear diffusion 

output (100 iterations) 

 
Figure 5.7 – Absolute 

difference between input and 
output 

 

 
Figure 5.8 – Linear diffusion output (10000 

iterations) 
 

 
Figure 5.9 – Mean value vs. iterations (LDF) 

 
Figure 5.10 – Standard deviation vs. iterations 

(LDF) 

 
Figure 5.11 – Entropy vs. iterations (LDF) 

 

Figures from Figure 5.8 to Figure 5.11 show output and statistical evaluation 

yielding linear diffusion with 10000 iterations and weighting factor of 0.2. 

Output image is almost a uniform gray image as expected. Constant mean 
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value over time shows correct implementation of “Neumann boundary 

condition”. 

Standard deviation has changed with a pattern of a rapid increase followed 

by exponential decay. The increase can be explained by amplification of 

impulsive pixels caused by salt & pepper noise at early iterations. 

Entropy is a measure of amount of information carried by a signal. Looking at 

Figure 5.11, similar to the standard deviation, iterations up to some instant 

cause increase in the entropy. Afterwards, decay occurs in the entropy value. 

It is reasonable since entropy of a uniform image is equal to zero. 

Finally, “point spread function (PSF)” of LDF is visualized with Figure 5.12. 

Relation between an iterative LDF and Gaussian convolution can easily be 

observed from the figure. 

 

 

Figure 5.12 – Point spread function (PSF) for LDF 

 

PSF is created by applying LDF over a 101 x 101 image which is zero 

everywhere but at the central pixel. Pixel at position (51, 51) carries a value 

of 1. Mathematical relation between “Gaussian convolution” and “linear 

diffusion filtering” is deeply investigated in reference [8]. 
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5.1.2. Perona-Malik Filter 

 

Perona-Malik filter requires three inputs from the user. First one is the 

weighting factor, which affects the process in the same way as it does in 

linear diffusion case. Rate of regularization is proportional with the magnitude 

of the weighting factor, which can have values between zero and 0.25 in 

order not to violate stability constraints. Second input is the number of 

iterations. Filtering operation has no other stopping criterion than the total 

number of iterations. Iteration count symbolizes time parameter in PDEs; so, 

it is expected for image to evolve into a uniform gray image after sufficient 

number of iterations applied. Third input parameter is the contrast threshold, 

which creates a control over diffusion rate depending on gradient at relevant 

position. Increasing the contrast threshold increases diffusion rate, 

consequently causes loss of edge information. Therefore, it is appropriate to 

choose a relatively small value (in the order of 0.001) for contrast threshold. 

Perona-Malik filter (non-linear isotropic filter) can be evaluated as a primitive 

form of manual segmentation, because of its edge preserving property. Of 

course this discourse is valid up to some degree, because as time goes to 

infinity, it is mathematically guaranteed for the filter to convert to image into a 

single gray partition. 

Perona-Malik filter is expected to work well with Gaussian white noise; 

however, it fails in case of salt & pepper noise because of the characteristics 

of that kind of degradation. In order to be able to observe the effects of the 

filter on these two deformation type simultaneously, image given by Figure 

0.4 (Image with both Gaussian whit noise and salt & pepper noise) is used as 

input for the experiments involved in this subsection. 
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Figure 5.13 – Input image deformed by both 

Gaussian white noise and salt & pepper noise 

 
Figure 5.14 – Non-linear isotropic filter output 

with contrast threshold = 0.005 
 

Output image given by Figure 5.14 is acquired by applying Perona-Malik on 

the image on the left-hand-side, with a weighting factor of 0.25, and contrast 

threshold of 0.005, at 200 iterations. Black background is observed to be 

regularized (white noise is eliminated) except impulsive pixels (salt & pepper 

component of the input image). Outer boundaries of the skull have been 

protected from diffusion; however, inner head has been regularized as if it is 

a single object. Edge information related to the tumor region and brain 

boundaries has been completely lost with that particular parameter set.  

In order to preserve the edges of edema region while preserving the 

regularization rate, magnitude of contrast threshold should be decreased. 

Figure 5.15 is produced with contrast threshold value of 0.001 at 3000 

iterations. Edges are preserved but the filter is failed in regularization, as a 

side effect of small contrast threshold value. This is because of the 

amplification of white noise component even it creates small gradient 

compared to salt & pepper component. Amplification is due to small ratio 

between contrast threshold and regularization coefficient. 
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Figure 5.15 – Non-linear isotropic filter output with contrast threshold = 0.001 

 

 

Figure 5.16 – Output with hybrid application of LDF and Perona-Malik 

 

In order to show application of Perona-Malik could be more successful in 

case of a hybrid use with the linear diffusion filter, another experiment is 

done. Image is firstly filtered with linear diffusion filter with weighting factor of 

0.2 at 10 iterations. Secondly, Perona-Malik filter is applied with 

regularization coefficient of 0.25 and contrast threshold of 0.0035 for 100 

iterations and image given by Figure 5.16 is produced. 
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5.1.3. Shock Filter 

 

Shock filter is used for sharpening the image, thus, it is appropriate to apply 

shock filter on blurred images in order to regain the edge information. 

Mathematically, shock filter is derived by applying heat equation in a time 

window starting from zero instant and approaching to minus infinity. Solution 

to that mathematical problem required use of upwind derivatives [15]. 

In order to construct a proper experimental setup, a blurred version of original 

image on Figure 5.1 is created by using LDF with regularization coefficient of 

0.2 at 30 iterations. Created input image is shown on Figure 5.17. 

 

 
Figure 5.17 – Blurred input for 

shock filter 

 
Figure 5.18 – Successful 

output of shock filter 

 
Figure 5.19 – Ringing effect 
caused by high weighting 

factor 
 

Shock filter has two inputs similar to LDF case. These inputs are a weighting 

constant, and iteration count. For the first experiment, weighting constant is 

chosen as 0.01 and operation is done with 100 iterations. Output image on 

Figure 5.18 is produced as a result of this operation. Edges belonging to 

skull, brain and tumor are reconstructed from blurred image. Right-hand-side 

figure (Figure 5.19) shows the result of experiment done with a higher 

weighting factor (0.04) at 100 iterations. 
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As it can be seen on Figure 5.19, main side effect of shock filter is the 

“ringing effect”, which occurs as shiny lines following high gradient positions, 

in case of high weighting factor or high number of iterations. 

It has also been observed that, unlike diffusion filters, shock filter is not 

mean-preserving. Moreover, it is not appropriate to use shock filter for noise 

elimination because it is prone to amplify the magnitude of gradients. 

Following figure shows the result of an application of shock filter on the 

image with salt & pepper noise given on Figure 5.2. 

 

 

Figure 5.20 – Unsuccessful output of shock filter - noisy image case 

 

5.2. 2D Image Segmentation and Area Computation 

 

2D image segmentation experiments are done with 2 2D brain MRI images. 

First one is the image given on Figure 0.1, which belongs to a patient with 

brain tumor. Second image belongs to a patient suffering from multiple 

sclerosis (MS), symptoms of which is create respectively small, light gray 

regions over inner region of the brain image. Original image is given by 

Figure 5.21 and mentioned regions due to MS disease are emphasized by 
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yellow markers on Figure 5.22. MRI Image is supplied by Prof. Dr. Kader 

Karlı Oğuz from Dept. of Radiology, in Hacettepe University. 

 

 
Figure 5.21 –Original brain MRI image with MS 

(multiple sclerosis) 

 
Figure 5.22 – Original image with regions due 

to MS emphasized 
 

Within the scope of segmentation; input image, selected region of interest, 

resulting output and corresponding edge map, original image with segment 

boundaries and binary representation of segmented region are presented by 

a figure set per experiment. Additionally, numerical inputs and outputs are 

given in tabular format for each program run.  

Results are discussed following the representation of images and numerical 

information. 
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Figure 5.23 – Original brain MRI image with 

edema [75] 
 

 
Figure 5.24 – Selected ROI over image domain 

 
Figure 5.25 – Segmented brain MRI image 

with edema 
 

 
Figure 5.26 – Edge map of the segmentation 

 
Figure 5.27 – ROI and boundaries 

 
Figure 5.28 – Binary representation of 

selected area 
 

Input image (Figure 5.23) is narrowed down with selection of a proper ROI. 

For this program run, ROI is selected to cover all of the meaningful 



 

73 
 

information in the image; however, partial elimination of zero intensity 

background provides computational speed for the application. 

As shown by Figure 5.25, application manages to partition the image into 

semantically meaningful smooth sub-regions. Boundaries of brain and tumor 

can easily be examined from the edge map given by Figure 5.26 and they 

are marked by green curve on Figure 5.27. Final figure of above figure group 

shows the image acquired by applying region growing with a seed point 

included inside the boundary surrounding the brain, but outside the tumor 

region. 

In order to be able to compute area by using 2D image, converting the image 

into binary form and dividing the domain into two partitions – selected region 

and complementary region – correctly is crucial. Therefore, it is important at 

first step of segmentation to achieve “cartoonization” with minimum variations 

inside partitions of the image. In this condition, locations of the edges does 

not depend on user-defined region growing parameters such as 

“neighborhood radius” and “threshold range”, and region growing is used just 

for extraction of already defined region from the image. 

Table 5.1 shows the numerical values for inputs and outputs of this 

experiment. All three inputs given are Ambrosio-Tortorelli parameters, which 

can be defined as the weighting factors for three terms of the energy 

functional to be minimized. For this particular program run, inputs are 

selected intentionally to have successful results. Effects of changing 

regularization coefficient and edge complexity factor coefficients are 

investigated in following subsection of this section. 

As it can be seen from both Table 5.1 and Figure 5.29, mean value of the 

intensities of pixels in selected ROI does not change with iterations, as 

expected. Segmentation operation produced decay in both standard 

deviation and entropy of the selected ROI over the image, which is because 

of elimination of high frequency variations over partitions, which are 

composed of noise and texture. 
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Table 5.1 – Numerical information regarding segmentation of image with tumor 

INPUTS 

REGULARIZATION COEFFICIENT 100 

DATA FIDELITY FACTOR 10 

EDGE COMPLEXITY TERM 0.05 

OUTPUTS 

ITERATION COUNT 20000 

RATE OF CHANGE OF SSD 1.2365e-003 9.6946e-006 

MEAN VALUE (ROI) 0.1952 0.1952 

STANDARD DEVIATION (ROI) 0.1642 0.1563 

ENTROPY (ROI) 6.09 4.189 

TOTAL ENERGY 2.263e005 6.231e004 

 

 

Figure 5.29 – Statistical evolution regarding segmentation of image with tumor 

 

Since entropy can be defined as a measure of information carried by the 

image, the segmentation operation seems to reduce the amount of total 

information with increasing number of iterations.  

Although at first glance “reducing the amount of information” sounds odd, this 

is just what is necessary to be able to extract useful information from the 

domain. Therefore, in image segmentation sense, it would not be improper to 

say that “less information is more information”. 
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Figure 5.30 – ROI and boundaries for edema 

region 

 
Figure 5.31 – Binary representation of edema 

region 
 

Two images given above are produced by using same set of input 

parameters, but just changing the seed point of region growing applied at the 

last step. This time, region representing tumor is selected and extracted from 

the input. 

 

Table 5.2 – Numerical information regarding distance and area measurement 

METADATA 

PIXEL X-SIZE 0.79861 mm 

PIXEL Y-SIZE 0.79861 mm 

SLICE THICKNESS 5 mm 

COMPUTATIONS 

MAXIMUM DISTANCE 
ALONG X-AXIS 

40 px 

31.9444 mm 

MAXIMUM DISTANCE 
ALONG Y-AXIS 

57 px 

45.5208 mm 

CROSS-SECTIONAL 
AREA 

1154 px 

735.9978 mm2 

VOLUME ON SLICE 3679.9888 mm3 

 

Using the relevant fields of metadata read from the DICOM image file, sizes 

of the projections of tumor over horizontal and vertical axes, cross-sectional 

area of the tumor, and the volume belonging to tumor over that particular MRI 

slice are computed and results are presented in Table 5.2. 
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Second experiment of this section is done on the 2D brain MRI image 

belonging to a subject suffering from MS disease, as mentioned before. This 

case can be said to be more challenging compared to the tumor case, since 

the target object(s) has (have) respectively lower gradient magnitude at 

boundaries, and has (have) smaller area than the tumor cross-section on the 

first experiment has. 

In order for the iterations to be terminated before meaningful information 

(regions belong MS lesions) is lost by regularization, lower limit for the rate of 

change of sum of squared difference is raised to 1.0e-005 from 1.0e-006

Figure 5.37

. 

Therefore, the operation lasted for less than 20000 iterations. 

 shows binary representation of selected area. Black regions 

surrounded by the white region represent the segmented MS lesions. It can 

be observed from Figure 5.37, meaningful results which can be used for 

diagnosis and prognosis purposes, such as total number of lesions, total area 

of lesions, area of a particular lesion, can be computed by arranging the 

appropriate seed point location. 

Key difference of the implemented segmentation algorithm from widely-used 

techniques such as “region growing” and “thresholding” is the effects of 

changing the inputs over the resulting output. In those traditional methods, 

size and edge positions of distinct regions directly depend on the manual 

preferences; however, varying “Mumford-Shah parameters” is not observed 

to change the edge positions; instead regularization rate inside distinct 

regions, number of resulting distinct partitions, or amount or complexity of 

edge information is affected by applying the algorithm with different input 

combinations. 
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Figure 5.32 – Original brain MRI image with 

multiple sclerosis (MS) 
  

 
Figure 5.33 – Selected ROI over image domain 

 
Figure 5.34 – Segmented brain MRI image 

with MS 
 

 
Figure 5.35 – Edge map of the segmentation 

 

 
Figure 5.36 – ROI and boundaries 

 
Figure 5.37 – Binary representation of 

selected area 
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Region growing technique is only employed to extract the target region from 

the already segmented image with a small threshold range; therefore, does 

not put a constraint over the boundary locations. This is because high 

gradient is already accumulated at boundaries of the image, and high 

frequency variations over boundaries are eliminated by the regularization 

property of Mumford-Shah segmentation. 

Numerical inputs and outputs of the operation are given in Table 5.3. Same 

set of segmentation parameters are used for this experiment. Iterations are 

terminated at the first time when rate of change of SSD drops below 1.0e-005

 

, 

without waiting for the iteration count to reach the maximum number of 

iterations. Similar results are acquired for the statistical outputs of the 

process. 

Table 5.3 – Numerical information regarding segmentation of image with MS lesions 

INPUTS 

REGULARIZATION COEFFICIENT 100 

DATA FIDELITY FACTOR 10 

EDGE COMPLEXITY TERM 0.05 

OUTPUTS 

ITERATION COUNT 8641 

RATE OF CHANGE OF SSD 8.855e-004 9.4959e-006 

MEAN VALUE (ROI) 0.4296 0.4296 

STANDARD DEVIATION (ROI) 0.1745 0.1589 

ENTROPY (ROI) 6.9666 5.5056 

TOTAL ENERGY 1.703e005 3.746e004 
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5.2.1. Analysis of Relation between Ambrosio-Tortorelli 
Energy and Input Parameters 

 

In this subsection, effects of input parameters of Ambrosio-Tortorelli 

segmentation method are analyzed. Analysis is done by the observation of 

values of the data fidelity term of minimized cost functional (Equation (A.1)) 
for varying 𝛼, 𝛽 , and, 𝜌 values. For each input combination, segmentation 

operation is done in 1000 iterations. Result is introduced as a surface plot of 

SSD values depending to the input combinations. On the surface plot, x-axis 

shows values for the regularization coefficient, and y-axis shows values for 

the edge complexity factor. Data fidelity coefficient is kept constant at a value 

of 1. 

First metric is designed as “sum of squared differences (SSD)” between 

segmentation output and a previously segmented reference image. Inputs 

producing small values of SSD are expected to give the best match to the 

reference image. 

 

 

Figure 5.38 – Data Fidelity Metric vs. Regularization & Edge Complexity (beta=1) 
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Figure 5.38 shows values of data fidelity metric at grid positions belonging to 

input combinations. 5 minimum points are marked on the figure. 

Corresponding regularization coefficients, edge complexity terms, 

multiplications of inputs, and SSD values are presented in Table 5.4. It is 

observed that 𝛼 × 𝜌 falls into a narrow domain (0.4394 - 0.7810) for inputs 

producing minimum SSD values. 

 

Table 5.4 – 5 minimum points of SSD plot 

(beta = 1) alpha ro alpha x ro SSD 

1st 2.683 0.2575 0.6909 20.3 

2 6.105 nd 0.1179 0.7198 21.26 

3rd 13.89 0.0540 0.7501 22.92 

4 31.62 th 0.0247 0.7810 24.3 

5th 4394 0.0001 0.4394 25.27 

 

 
Figure 5.39 – Input image 

 

 
Figure 5.40 – Reference segmentation 

 
Figure 5.41 – Output corresponding to the 1st

 
 

minimum 
Figure 5.42 – Output corresponding to the 5th

 

 
minimum 
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Figures from Figure 5.39 to Figure 5.42 show the input (non-segmented) 

image, previously segmented reference image, output (segmented) image 

corresponding to the input set producing 1st minima for SSD, and, output 

(segmented) image corresponding to the input set producing 5th

 

 minima for 

SSD. Output images produced by the input combinations over minimum path 

of the convex surface of SSD values are empirically close to the reference 

segmented version of image.  

5.3. 3D Image Segmentation and Volume Computation 

 

A separate module has been implemented for the purpose of viewing 

volumetric images, and applying 3D segmentation algorithm on 

corresponding images. 

 

 

Figure 5.43 – A screenshot image of 3D Medical Image Viewer module 
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A screenshot of the main window belonging to implemented 3D Medial Image 

Viewer module is given by Figure 5.43. Volumetric brain MRI data is supplied 

by Prof. Dr. Ayşenur Cila from Dept. of Radiology in Hacettepe University. 

Axial and Coronal projections are reproduced using the actual data - sagittal 

slices shown in the centre. Focused point and rectangular volumetric ROI in 

3D space can be selected over any one of the projections. Coordinates of the 

focused point is represented by blue lines, and boundaries of the selected 

volumetric ROI are represented by dashed red lines. 

Volumetric segmentation is applied on selected ROI and intensity values for 

the voxels falling inside the ROI is replaced with the segmentation output, 

after the segmentation operation is completed. 

 

5.3.1. Volumetric Segmentation 

 

 

Figure 5.44 – 3D view of the segmented volumetric image 
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3D segmentation is applied on the volumetric image shown by Figure 5.43. 

Figure 5.44 shows the screenshot of 3D Viewer main window after volumetric 

segmentation. As it can be perceptually observed from all projections, tumor, 

brain and skull seem to be separated into distinct regions. Ambrosio-Tortorelli 

energy is reduced from 3.074e005 to 1.208e005 

 

(reduced by 61%). 

 

Figure 5.45 – Graphical representation of energy vs. iterations 

 

A volumetric visualization of the object including the focused point is done by 

using 3D region growing (it can also be called as volume growing) algorithm. 

Single object is selected by 3D region growing; it is visualized together with 

its voxel size, related metadata information, and computed volume. Figure 

5.45 shows the evolution of the values of the cost function due to iterations. 

Figure 5.46 shows the volume representation of selected object. Table 5.5 

gives the numerical data regarding the volume computation. 
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Table 5.5 – Data regarding volume computation 

Sagittal voxel size 1.875 mm 

Coronal voxel size 1.875 mm 

Axial voxel size 1.3 mm 

Volume 409 voxels 1437.8906 mm3 

 

 

 

Figure 5.46 – Volumetric representation of the selected object (tumor). 

 

5.3.2. Volume Visualization 

 

In addition to the volume computation purpose, module can be used for 

viewing segmented or non-segmented data, with thresholding over 3D model 

view.  
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Two features are employed for this purpose. First one of these is the surface 

painter, which is seen on above figure in green color, and the second one is 

the edge drawer, which is pink and is in form of a mesh grid. 

Threshold values for both edges and the object itself can be manually 

arranged over the model view. Examples of volume visualization within two 

different ROI are presented by following two figures. 

 

 

Figure 5.47 – Volume visualization example-1 

 

Outer surface of skull is shown as “edge” by pink grid lines, and outer surface 

of the tumor regions are shown as “object” with green color in both of the 

examples. 

In second example a larger ROI is selected, and the azimuth angle of view is 

changed. 
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Figure 5.48 – Volume visualization example-2 

 

5.4. 2D Image Registration 

 

5.4.1. Fully-Automated 2D Rigid Registration with Scale 
Parameters 

 

Fully-automated registration of brain MRI images requires minimization of 

minus of normalized cross correlation between the reference and the 

corrected image, by finding the transformation with appropriate input 

parameters. For 2D images, there is 1 input parameter for rotation, and there 

are 2 input parameters for each one of translation and scaling to be searched 

for. 
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Demonstration of fully-automated 2D rigid registration is prepared by the 

application of the algorithm on segmented versions of brain MRI images, 

acquired at different time instants, from the same subject. On one of the 

images, there exists a region showing the cross section of edema occurred 

because of a tumor. In the other image, that region does not appear. 

Segmented images are given by Figures 5.49 and 5.50. 

 

 
Figure 5.49 – Segmented brain MRI image 

with edema 

 
Figure 5.50 – Segmented brain MRI without 

edema 
 

Table 5.6 – Initial and final values for input parameters 

Parameters Rotation 
(degrees) 

X Translation 
(pixels) 

Y Translation 
(pixels) 

X Scaling Y Scaling 

Initial Value 1.0 1.0 1.0 1.0 1.0 

Final Value -0.2191 6.698 12.04 0.9704 0.9628 

 

Image given by the right-hand-side figure is selected as the reference image, 

and the other image (given by left-hand-side figure) is selected as the input 

image to be corrected. Reference image has 512 rows and 512 columns, 

where the moving image has 288 rows and 288 columns. Image intensities 

are normalized in the range of 0.0 and 1.0. For the 2D registration 
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experiment, initial values of the input parameters are assigned arbitrarily as 

given in Table 5.6. 

 

 

Figure 5.51 – Trajectory of rotation angle 

 

Trajectories followed by the parameters during the function evaluations are 

determined by the Nelder-Mead Simplex algorithm implementation in 

MATLAB®

Figure 5.51

 Optimization Toolbox, which is named as “fminsearch”. 

Trajectories of rotation angle, translation parameters, and scaling parameters 

are presented by Figures from  to Figure 5.53. Also, data tips 

showing initial and final values of the variables are inserted into graphical 

figures for each parameter. 

Normalized cross correlation takes values between 0 and 1. Since employed 

algorithm aims to minimize the determined metric, additive inverse of 

normalized cross correlation value is used as the measure of similarity. That 

means, ideal value for our metric is -1, which would be the case between two 

identical images.  
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Figure 5.52 – Trajectory of translation parameters 

 

 

Figure 5.53 – Trajectory of scaling parameters 

 

Application of the transformation with initial parameters on the moving image 

creates a value of -0.7348 for the similarity metric. As shown by Figure 5.54, 

value of the metric is reduced at each update of transformation parameters. 

Finally, when rate of change of the metric value falls below the error 
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tolerance, -0.9346 is accepted as the final value of parameter search. Moving 

image is interpolated to make the two images agree in dimensions, and 

transformation model with found parameters is applied on it. 

Used algorithm is not designed in order to find the global minimum value; 

therefore, there always exists a probability of getting stuck in local minimums. 

This situation is dependent on the initial values of input parameters. 

Absolute value of difference of reference and the moving image is visualized 

before any change is applied over the input image and after the 

transformation is applied with appropriate inputs. Resulting images are given 

by Figure 5.55 and Figure 5.56. It is obviously seen from Figure 5.55 that 

without registration, neither skull nor the boundaries of brain of the subject is 

aligned in different images. Non-existence of those regions and existence of 

the region representing the edema in the second image gives an idea of the 

success in 2D registration operation. 

 

 

Figure 5.54 – Evolution of minus normalized cross correlation 
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Figure 5.55 – Absolute difference between 
reference image and the initial version of 

moving image (input image) 
 

 
Figure 5.56 – Absolute difference between 

reference image and the final version of 
moving image (corrected image) 

 

5.5. 3D Image Registration 

 

5.5.1. Fully-Automated 3D Rigid Registration with Scale 
Parameters 

 

3D registration experiment is done with aligning 2 different 3D head models, 

reconstructed from volumetric coronal MRI datasets belonging to the same 

subject, acquired at different time instants. Reference head model, input data 

to be aligned to the reference, and absolute difference of these two before 

registration is visualized and presented by figures Figure 5.61, Figure 5.62, 

and Figure 5.64, respectively. Two sets of volumetric MRI images are 

provided by Prof. Dr. Ayşenur Cila from Dept. of Radiology in Hacettepe 

University. As it can be seen on third figure, absolute difference, thus, 

squared sum of differences between reference image and the initial state of 

moving image (minimization of which can be used as a metric in image 

registration) is respectively high. 
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Figure 5.57 – Trajectory of rotation parameters 

 

Results are presented in a similar form with the ones in the previous section, 

fully-automated 2D registration case. Figures from Figure 5.57 to Figure 5.59 

show the trajectories followed by the input parameters of transformation 

matrix. Inputs are grouped into three by their modification properties: rotation 

(3 parameters), translation (3 parameters), and scaling (3 parameters). 

Inputs are selected arbitrarily, considering smallness in deviation from 

assumption of two identical images. Starting values of rotation and translation 

parameters are assigned as 0 ± 0.1 and starting values of scaling parameters 

are assigned as 1 ± 0.1. 
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Figure 5.58 – Trajectory of translation parameters 

 

 

Figure 5.59 – Trajectory of scaling parameters 

 

Shape of parameter search trajectories visualizes the “reflection”, 

“expansion”, “contraction” and “shrinking” operations of Nelder-Mead Simplex 

Method. 

Figure 5.60 shows the evolution of similarity metric - additive inverse of 3D 

normalized cross correlation - between reference and moving images. 

Normalized cross correlation is increased from 0.7714 to 0.8464, by 7.5%. 
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Figure 5.60 – Evolution of 3D minus normalized cross correlation 

 

 
Figure 5.61 – Reference 3D image 

 
Figure 5.62 – Initial 3D input image 

 

Figure 5.63 shows the corrected version of the moving image which is the 

output of 3D registration operation. Although it is not so easy to get a 

perceptual idea of the amount of success by looking at this image, it is 

possible to have the idea with the image given by Figure 5.65, which shows 
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the absolute difference between reference and output images. Comparing 

this with Figure 5.64 shows the operation is working towards desired 

direction. 

 

 

Figure 5.63 – Corrected (registered) version of the moving image 

 

 
Figure 5.64 – Visualization of absolute 
difference between reference and input 

images 

 
Figure 5.65 – Visualization of absolute 

difference between reference and corrected 
images 
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Starting and final values of the transformation parameters and the similarity 

metric is presented on following table. It is observed that sign of the 

parameters does not remain constant during search process, which is 

consistent with the theory of Nelder-Mead Simplex Method. 

 

Table 5.7 – Initial and final values for input parameters 

Parameters Initial Values Final Values 

Rotation around x-axis 0.1 degree -0.49021 degree 

Rotation around y-axis -0.1 degree -2.8063 degree 

Rotation around z-axis 0.1 degree 0.26979 degree 

Translation along x-axis -1 pixels -2.4236 pixels 

Translation along y-axis 1 pixels 0.92256 pixels 

Translation along z-axis -1 pixels 1.4499 pixels 

Scaling along x-axis 1.01 1.0079 

Scaling along y-axis 0.99 1.0129 

Scaling along z-axis 1 1.0679 

METRIC -0.7714 -0.8464 
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CHAPTER 6 
 
 

CONCLUSION 
 

 

 

6.1. Conclusions 

 

Medical imaging is one of the key fields of biomedical engineering, which 

aims to apply engineering principles in field of medicine and biology. 

Cumulative development of medical imaging science provides intense 

improvement in diagnosis, prognosis, and therapy. Accuracy in analysis of 

medical imaging data is at least as important as reliability of data acquisition 

process. Analysis of medical imaging data requires application of techniques 

involving image processing, which is one of the most studious topics of 

engineering and computer science. 

Main purpose of this thesis study is to perform a comprehensive review of 

image processing literature, and to implement a generic application 

framework by using the infrastructure retrieved from the literature review. It is 

aimed for the application framework to be composed of independent modules 

which enable half or full automation of common routines and procedures 

used in analysis of medical images by radiologists. In consideration of the 
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literature review and field analysis, main modules and hierarchical structure 

behind those have been designed. 

Literature review is performed involving three main groups of image 

processing, which also constitute main modules of implemented software. 

These three groups can be listed as image filtering, image segmentation and 

image registration. As well as mathematical principles behind these main 

concepts are explored, relations among them are investigated throughout the 

research progress. Consequently, corresponding modules are implemented 

to be controlled by a main controller, which preserves relation between 

modules and enables application of sequential processes. 

As a result, a wide-range literature review covering both fundamental 

concerns and modern approaches has been performed and an extensive 

summary of this exploration is given in Chapter 2. Additionally, a new medical 

image processing and analysis framework has been developed and 

implementations of several filtering, segmentation and registration algorithms 

have been supplemented into the system. “Implementation” chapter gives 

detailed explanation on mapping physical and mathematical expressions into 

terms of computer programming. Technical information is supported with 

visual material in order to consolidate the understanding. Performance 

evaluation regarding the key parts of application has been performed and 

methods and quantitative results have been presented in “Performance 

Evaluation” chapter. Multiple medical image processing experiments have 

been done and results presented in relevant sections of “Experimental 

Results” chapter have been acquired using constructed application. 

Experiments have been designed in order to investigate input-output 

relations, and experimental results have been presented with both numerical 

and perceptual outcomes. Qualitative and quantitative discussions have been 

introduced for each result. 

Resulting software system is a prototype application, which has capabilities 

of reading and writing DICOM images with metadata information, handling 
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sequential processes like image filtering, image restoration, image 

segmentation, image registration, and change detection over images 

acquired at different time instants. Additionally, maximum distances along 

dimensions, cross-sectional area (in 2D images), and amount of volume (in 

3D images) can be computed for target region without any manual interaction 

that significantly affects the results.  

Considering those capabilities, system can be respected as a substantial 

basis for an accurate, fast and robust automation system which can be 

utilized in decision making steps of diagnosis, prognosis, and therapy by the 

experts in field of medicine. Use of the system would definitely be helpful in 

reducing the amount of time and effort spent on common routines of 

radiology; consequently, reducing the rate of possible errors upcoming from 

excessive amount of manual interaction. 

 

6.2. Future Work 

 

Planned future expansions of this thesis study can be listed as follows: 

 

• Filtering module will be enriched by appending implementations of 

various filter classes; such as, histogram-based filters, directional 

filters, and logarithm-based filters. Also, image regularization methods 

based on minimization of total variation will be implemented and 

plugged into the system. 

• Segmentation module will be improved by designing a numerical 

solver which searches for the optimal input parameter sets for 

minimization of Mumford-Shah energy functional. Also, standard user 

presets will be prepared with intuitive selection of input combinations. 
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• Registration module will be developed to be used in registration of 

images belonging to body parts or structures other than brain. That 

requires implementation of deformable / non-global transformation 

models. 

• Final version of the system is planned to be implemented in Java 

platform, adapting to common IEEE software standards, and 

optimizing performance issues. 
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APPENDIX A 
 
 

NUMERICAL SOLUTION OF AMBROSIO-
TORTORELLI MINIMIZATION TO MUMFORD-

SHAH ENERGY FUNCTIONAL 
 

 

 

Recalling Subsection 2.3.2.1 of Background, Ambrosio and Tortorelli 

proposed a minimization method for the Mumford-Shah energy, by replacing 

the edge-set term in Equation (2.11), with a phase field energy term given by 

Equation (2.12). 

When Equation (2.12) is plugged into Equation (2.11), Mumford-Shah energy 

functional is modified as below: 

 

 𝐸𝐴𝑇 = ∬[𝛽(𝑢 − 𝑧)2 + 𝛼|∇𝑢|2(1 − 𝑣)2 + (1 2⁄ ){𝜌|∇𝑣|2 + (𝑣2 𝜌⁄ )}]𝑑𝒙. 

         

          (A.1) 

 

Function 𝑣 of Equation (A.1) can be expressed implicitly as given below: 
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 lim𝜌→0(1 2⁄ )∬{𝜌|∇𝑣|2 + (𝑣2 𝜌⁄ )} = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵).   (A.2) 

 

Euler-Lagrange differential expressions for functions 𝑢 and 𝑣 can be implicitly 

given as: 

 

 𝜕𝑢 𝜕𝑡⁄ = ∇((1 − 𝑣)2∇𝑢) − (𝛽 𝛼⁄ )(𝑢 − 𝑧),    (A.3) 

 

 𝜕𝑣 𝜕𝑡⁄ = ∇(∇𝑣) − ((2𝛼𝜌|∇𝑢|2 + 1) 𝜌2⁄ )(𝑣 − (2𝛼|∇𝑢|2) (2𝛼|∇𝑢|2 + 1)⁄ ). 

     

          (A.4) 

 

Left-hand-sides of Euler-Lagrange equations empirically define the rate of 

change of the intensity values in signals 𝑢  and 𝑣  at specified points with 

respect to time, which - in this context - means the iteration number. 

Therefore these two equations give the characteristics of the evolution in the 

functions with increasing number of iterations. 

𝑢 and 𝑣 can be expressed in numerical form by replacing 𝜕𝑢 𝜕𝑡⁄  and 𝜕𝑣 𝜕𝑡⁄  

with (𝑢𝑖,𝑗𝑘+1 − 𝑢𝑖,𝑗𝑘 )/∆𝑡  and (𝑣𝑖,𝑗𝑘+1 − 𝑣𝑖,𝑗𝑘 )/∆𝑡 , respectively. These expressions 

are given by following equation: 
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         (A.5) 

 

In Equation (A.5), 𝑑 terms define an interpolation of function 𝑣, as presented 

in Equations (A.6) and (A.7): 

 

 𝑑𝑖±0.5,𝑗
𝑡+1 = (𝑑𝑖±1,𝑗

𝑡+1 + 𝑑𝑖,𝑗𝑡+1) 2⁄  ,     (A.6) 

 

 𝑑𝑖,𝑗±0.5
𝑡+1 = (𝑑𝑖,𝑗±1

𝑡+1 + 𝑑𝑖,𝑗𝑡+1) 2⁄  ,     (A.7) 

 

where 𝑑 is defined as: 

 

 𝑑𝑖,𝑗𝑡 =  �1 − 𝑣𝑖,𝑗𝑡 �
2
.       (A.8) 

 

Numerical expression for function 𝑣 can be presented as: 

 

  

         (A.9) 
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where, 

 

 𝐴 =  �∇𝑢𝑖,𝑗𝑡+1�
2

= �(�𝑢𝑖,𝑗+1𝑡+1 − 𝑢𝑖,𝑗−1𝑡+1 �
2

+ �𝑢𝑖+1,𝑗
𝑡+1 − 𝑢𝑖−1,𝑗

𝑡+1 �
2

) (2ℎ)2� �.  

 

          (A.10) 

 

Programmatic implementation of the segmentation procedure is based on 

giving proper initial values to the functions 𝑢 and 𝑣, and updating values by 

iterative sequential solution of these two signals. Details regarding 

implementation are introduced in Section 3.2. In preparation of this Appendix, 

derivations in reference [76] are made use of. 
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