
PARALLEL SOLUTION OF SOIL-STRUCTURE INTERACTION PROBLEMS ON PC
CLUSTERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNÇ BAHÇECİOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

FEBRUARY 2011

Approval of the thesis:

PARALLEL SOLUTION OF SOIL-STRUCTURE INTERACTION PROBLEMS ON PC

CLUSTERS

submitted by TUNÇ BAHÇECİOĞLU in partial fulfillment of the requirements for the
degree of Master of Science in Civil Engineering Department, Middle East Technical
University by,

Prof. Dr. CANAN ÖZGEN
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Güney Özcebe
Head of Department, Civil Engineering

Prof. Dr. Kemal Önder Çetin
Supervisor, Civil Engineering Dept., METU

Assist. Prof. Dr. Özgür Kurç
Co-supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Kemal Önder Çetin
Civil Engineering Dept., METU

Assist. Prof. Dr. Özgür Kurç
Civil Engineering Dept., METU

Prof. Dr. Yener Özkan
Civil Engineering Dept., METU

Assist. Prof. Dr. Yalın Arıcı
Civil Engineering Dept., METU

Dr. H. Tolga Bilge
Turkish Military Academy

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: TUNÇ BAHÇECİOĞLU

Signature :

iii

ABSTRACT

PARALLEL SOLUTION OF SOIL-STRUCTURE INTERACTION PROBLEMS ON PC
CLUSTERS

Bahçecioğlu, Tunç

M.Sc., Department of Civil Engineering

Supervisor : Prof. Dr. Kemal Önder Çetin

Co-Supervisor : Assist. Prof. Dr. Özgür Kurç

February 2011, 85 pages

Numerical assessment of soil structure interaction problems require heavy computational ef-

forts because of the dynamic and iterative (nonlinear) nature of the problems. Furthermore,

modeling soil-structure interaction may require finer meshes in order to get reliable results.

Latest computing technologies must be utilized to achieve results in reasonable run times.

This study focuses on development and implantation of a parallel dynamic finite element anal-

ysis method for numerical solution of soil-structure interaction problems. For this purpose

first, an extensible parallel finite element analysis library was developed. Then this library

was extended with algorithms that implement the parallel dynamic solution method. Parallel

dynamic solution algorithm is based on Implicit Newmark integration algorithm. This algo-

rithm was parallelized using MPI (Message Passing Interface). For numerical modeling of

soil material an equivalent linear material model was used. Additional numerical verifica-

tion of the implemented equivalent linear material model was shown by comparisons with

EduShake software. Several tests were done to benchmark and demonstrate parallel perfor-

mance of implemented algorithms.

iv

Keywords: Linear Dynamic Analysis, Equivalent Linear Method, High Performance Com-

puting, Parallel Computation, Soil-Structure Interaction

v

ÖZ

ZEMİN-YAPI ETKİLEŞİMİ PROBLEMLERİNİN BİLGİSAYAR KÜMELERİNDE
PARALEL ÇÖZÜMLENMESİ

Bahçecioğlu, Tunç

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Önder Çetin

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Özgür Kurç

Şubat 2011, 85 sayfa

Zemin yapı etkileşimi problemlerinin sayısal değerlendirilmesi problemlerin dinamik ve yi-

nelemeli (doğrusal olmayan) yapısı nedeniyle ağır hesaplama yükü gerektirir. Ayrıca, zemin-

yapı etkileşiminin modellenmesi güvenilir sonuçlar için daha sıkı ağ yapılarını gerektirebilir.

Makul yürütme zamanı içinde sonuçlar elde etmek için en son bilgisayar teknolojileri kul-

lanılmalıdır.

Bu çalışma zemin yapı etkileşimi problemlerinin sayısal çözümü için paralel dinamik sonlu

elemanlar analizi yönteminin geliştirilmesi ve uygulanmasını hedefler. Bu amaçla öncelikle,

genişletilebilir bir paralel sonlu elemanlar analizi kütüphanesi geliştirilmiştir. Daha sonra bu

kütüphaneye paralel dinamik çözüm yöntemini uygulayan algoritmalar eklenmiştir. Paralel

dinamik çözüm algoritması örtük Newmark integral algoritması üzerine kuruludur. Bu al-

goritma MPI (Message Passing Interface - Mesaj Geçme Arayüzü) kullanılarak paralel hale

getirilmiştir. Toprak malzemesinin sayısal modellenmesi için doğrusala eşdeğer malzeme

modeli kullanılmıştır. Uygulanan doğrusala eşdeğer malzeme modelinin ilave doğrulama test-

leri EduShake programı ile yapılan karşılaştırılmalarla gösterilmiştir. Çeşitli testler yapılarak

uygulanan algoritmalar değerlendirilmiş ve paralel performansı gösterilmiştir.

vi

Anahtar Kelimeler: Doğrusal Dinamik Analiz, Doğrusala Eşdeğer Yöntem, Yüksek Perfor-

manslı Hesaplama, Paralel Hesaplama, Zemin-Yapı Etkileşimi

vii

To my family.

viii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors Assist. Prof. Dr. Özgur Kurç and

Prof. Dr. Kemal Önder Çetin. They always pushed me towards perfection, opened the paths

of success and tolerated my unusual working habits. Without their support, confidence and

guidance this study could not be completed.

I also would like to thank my dear friends and colleagues Semih Özmen, Andaç Lüleç, Er-

dem Efek and Güray Erteği for their encouragements and enlightening discussions during

researching and writing this work. It was and will be a pleasure to work with them.

I wish to thank my family for their love and support without this research as well as everything

in my life would not come to life.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF SYMBOLS . xix

LIST OF ACRONYMS . xx

CHAPTERS

1 Introduction . 1

1.1 Statement of the Problem . 1

1.2 Research Statement . 1

1.3 Thesis Outline . 2

2 Literature Review . 3

2.1 Parallel Computing . 3

2.1.1 Introduction . 3

2.1.2 Shared Memory Architecture 4

2.1.3 GPGPU Architecture . 5

2.1.4 Distributed Memory Architecture 7

2.2 Soil-Structure Interaction . 8

2.2.1 Numerical Methods . 8

2.2.2 Absorbent Boundaries 9

x

2.2.3 Wave Propagation in Finite Element Mesh 11

2.2.4 Parallel Soil-Structure Interaction Applications 11

3 An Extensible Parallel Finite Element Analysis Environment: Panthalassa . . 13

3.1 Introduction . 13

3.2 Object Oriented Design . 14

3.2.1 Domain Class . 15

3.2.2 Finite Element Model Classes 16

3.2.2.1 FEMObject Class 16

3.2.2.2 Node Class 17

3.2.2.3 Element Class 18

3.2.2.4 MaterialModel Class 19

3.2.2.5 Damper Class 21

3.2.2.6 Load Classes 21

3.2.2.7 Structure Class 22

3.2.3 Utility Classes . 23

3.2.3.1 FEMObjectWithOptions Class 23

3.2.3.2 Container Classes 24

3.2.3.3 Mathematical Data Structures 25

3.2.3.4 ParallelInfo Class 26

3.2.4 Analysis Classes . 26

3.2.4.1 Analyzer and Algorithm Classes 26

Algorithm Helper Classes 28

3.2.4.2 TimeTable Class 28

3.2.5 Partitioning Classes . 29

3.2.5.1 Domain Decomposition 29

3.2.5.2 PtlGraph Class 30

3.2.5.3 Grapher Class 32

3.2.5.4 Partitioner Class 32

3.2.5.5 Syncer Class 33

3.2.6 Input and Output Classes 34

xi

3.2.6.1 Tracker Class 34

3.2.6.2 ModelBuilder Class 35

3.2.7 Plug-in Architecture: Pugg Library 35

3.2.7.1 Introduction 35

3.2.7.2 Server Driver System 36

3.2.7.3 Object Oriented Design of Pugg Library . . . 37

3.3 Parallel Execution . 37

4 Parallel Implementation of Linear Dynamic Analysis for Soil-Structure Inter-
action . 41

4.1 Introduction . 41

4.2 Theory . 42

4.2.1 Implicit Newmark Method 42

4.2.2 Finite Elements . 43

4.2.3 Boundary Conditions . 46

4.2.4 Equivalent Linear Soil Model 47

4.3 Implementation . 51

4.3.1 Analysis . 51

4.3.1.1 ImplicitNewmark Class 51

4.3.1.2 NodalDOFNumberer Class 54

4.3.1.3 LinearDynamicAnalyzer class 55

4.3.2 Material Model . 55

5 Verification Problems . 59

5.1 Introduction . 59

5.2 Problem 1: 1-D Wave Propagation 59

5.3 Problem 2: Rayleigh Wave Velocity 62

5.4 Problem 3: 1D Translation Function 64

5.5 Problem 4: Equivalent Linear Material Model 68

6 Parallel Tests . 72

6.1 Introduction . 72

6.2 Case Studies . 72

6.2.1 Linear Tests . 72

xii

6.2.2 Equivalent Linear Tests 75

7 Summary and Conclusion . 78

7.1 Summary . 78

7.2 Conclusion . 78

xiii

LIST OF TABLES

TABLES

Table 3.1 Virtual Functions Defining Specific Element Behavior 19

Table 3.2 Implemented Elements . 20

Table 3.3 List of classes that has plug-in support in Panthalassa 36

Table 4.1 Velocity and Displacement equations for a single degree of freedom system

(Implicit Newmark Method). 42

Table 4.2 Shape Functions for the Bilinear Quadrilateral 45

Table 4.3 Shape Functions for the Linear Hexahedron 45

Table 4.4 Matrices and Vectors used in the Implementation of Implicit Newmark Method 52

Table 4.5 Material Properties of NONLED . 57

Table 5.1 Verification Problem 1: 1-D Wave Propagation, Model Parameters 61

Table 5.2 Verification Problem 2: Rayleigh Wave Propagation, Model Parameters . . 63

Table 5.3 Verification Problem 3: 1D Translation Function, Model Parameters 65

Table 5.4 Verification Problem 4: Equivalent Linear Material Model, Model Parameters 70

Table 5.5 Verification Problem 4: Accelerations Computed at the Top of the Soil Layer 70

Table 6.1 Mesh Sizes of Models Analyzed with Parallel Solution Procedure 73

Table 6.2 Acceleration at Top of Soil Layer Computed with Different Number Pro-

cesses, Linear Solution . 73

Table 6.3 Time Spent In Solution Steps For Linear Analyses 75

Table 6.4 Highest Speed-Up Values Achieved by Parallel Equivalent Linear Solution . 76

Table 6.5 Acceleration at Top of Soil Layer Computed with Different Number Pro-

cesses, Equivalent Linear Solution . 76

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Intel Quad-Core Processor Architecture 4

Figure 2.2 Nvidia Fermi Architecture (Nvidia Fermi Architecture Whitepaper [10]) . 6

Figure 2.3 Distributed Memory Architecture . 8

Figure 2.4 Triangle Finite Element With Three Nodes 9

Figure 2.5 A Finite Element Mesh and Its BEM Representation (Aliabadi [22]) 10

Figure 2.6 Disconnected Substructuring Representation of an SSI System (Yerli et al.

[26]). 12

Figure 3.1 Panthalassa Components . 15

Figure 3.2 Domain Class Diagram . 16

Figure 3.3 FEMObject Class Diagram . 17

Figure 3.4 Node Class Diagram . 17

Figure 3.5 Element Class Diagram . 18

Figure 3.6 MaterialModel Class Diagram . 20

Figure 3.7 Load Classes Class Diagram . 22

Figure 3.8 Load Classes Connections . 22

Figure 3.9 Structure Class Diagram . 23

Figure 3.10 Classes that can Use User Options . 24

Figure 3.11 GlobalMatrix Class Diagram . 25

Figure 3.12 Analyzer Algorithm System . 27

Figure 3.13 TimeTable Class Diagram . 29

Figure 3.14 Partitioning Classes . 30

Figure 3.15 Example Graph with Four Vertices and Six Edges 31

xv

Figure 3.16 PtlGraph Class Diagram . 31

Figure 3.17 Grapher Class Diagram . 32

Figure 3.18 An Arbitrary Structure and Its Nodal Graph 33

Figure 3.19 Partitioner Class Diagram . 33

Figure 3.20 Syncer Class Diagram . 34

Figure 3.21 Server Driver System Example . 37

Figure 3.22 Pugg Class Diagram . 38

Figure 3.23 Panthalassa Lifeline . 39

Figure 4.1 Bilinear Quadrilateral . 44

Figure 4.2 Linear Hexahedron . 44

Figure 4.3 Hysteresis Loop and Secant and Tangent Shear Modulus 48

Figure 4.4 Shear Modulus Reduction Curves for Soils with Different PI (Vucetic and

Dobry [56]) . 49

Figure 4.5 Damping Curves for Soils with Different PI (Vucetic and Dobry [56]) . . . 49

Figure 4.6 Rayleigh Damping vs Frequency Independent Damping Behavior 50

Figure 4.7 NLElasticMaterialModel Class Diagram 56

Figure 5.1 Verification Problem 1: 1-D Wave Propagation, Fixed and Absorbent Bound-

ary Models . 60

Figure 5.2 Verification Problem 1: 1-D Wave Propagation, Finite Element Mesh . . . 61

Figure 5.3 Time Displacement Curves for Mid Point A 62

Figure 5.4 Verification Problem 2: Rayleigh Wave Propagation, Finite Element Model 63

Figure 5.5 Verification Problem 2: Rayleigh Wave Propagation, Finite Element Mesh 64

Figure 5.6 Time Displacement Curves for Points A and B 65

Figure 5.7 Verification Problem 3: 1D Translation Function, Model 66

Figure 5.8 Time Acceleration Curve for Loma Prieta Earthquake 67

Figure 5.9 Fourier Spectrum for Loma Prieta Earthquake 67

Figure 5.10 Analytical Amplification Curve D = 0.05 68

Figure 5.11 Comparison of Analytical and Computed Amplification Curves 69

xvi

Figure 5.12 Verification Problem 4: Equivalent Linear Material Model 69

Figure 5.13 Absolute Maximum Accelerations vs Depth Curves for Linear Solution . . 71

Figure 5.14 Absolute Maximum Accelerations vs Depth Curves for Equivalent Linear

Solution . 71

Figure 6.1 Timings and Speed-Ups, Parallel Linear Analyses 74

Figure 6.2 Timings and Speed-Up Values, Parallel Equivalent Linear Analyses 77

xvii

LIST OF SYMBOLS

˙ Time Differentiation.
[] Matrix.
[]T Matrix Transpose.
{} Vector.

A Area; Acceleration; Amplitude.
α Rayleigh Damping Constant.

β Implicit Newmark Algorithm Constant; Rayleigh
Damping Constant.

D Damping Ratio.
∆t Time Step.

E Young’s Modulus.
ε Strain.

f Frequency.

G Shear Modulus.
g Gravity Acceleration.
γ Strain; Implicit Newmark Algorithm Constant.
Gsec Secant Shear Modulus.
Gtan Tangent Shear Modulus.

H Height.

λ Wavelength; Lagrange Multiplier; Damping Ratio.

[B] Spatial Derivatives of Field Variables.
[C] Damping Matrix.
[E] Constitutive Matrix.
[K] Stiffness Matrix.
[Ke f f] Effective Stiffness Matrix.
[M] Mass Matrix.
[N] Shape Function Matrix.
Mw Earthquake Magnitude.

N Shape Function.

π Ratio of Circumference of Circle to Its Diameter.

ρ Mass Density.

σ Stress.

τ Value of Time Between a Typical Time Step; Shear
Stress.

u Displacement.
u̇ Velocity.
ü Acceleration.
u̇n Normal Velocity.
u̇t Tangential Velocity.

V Velocity.
v Poisson’s Ratio.
{D} Displacement Vector.

xviii

{Ḋ} Velocity Vector.
{D̈} Acceleration Vector.
{F} Force Vector.
{Rext} External Force Vector.
{Rint} Internal Force Vector.
Vp Pressure Wave Velocity.
Vr Rayleigh Wave Velocity.
Vs Shear Wave Velocity.

W Energy.
w Circular Frequency.

x, y, z Cartesian Coordinates.

ζ, η, ξ Reference Coordinates of Isoparametric Elements.

xix

LIST OF ACRONYMS

BEM Boundary Element Method.

CPU Central Processing Units.
CUDA Compute Unified Device Architecture.

DOF Degree Of Freedom.

FDM Finite Difference Method.
FEM Finite Element Method.

GFLOP Giga Floating Point Operations.
GPGPU General Purpose computation on Graphics Processing

Units.
GPU Graphics Processing Units.

LEMON Library for Efficient Modeling and Optimization in
Networks.

MPI Message Passing Interface.
MPICH2 Message Passing Interface Chameleon 2.
MSDN Microsoft Developer Network.
MS-MPI Microsoft Message Passing Interface.
MUMPS MUltifrontal Massively Parallel Sparse direct Solver.

OpenCL Open Computing Language.
OpenMP Open Multi Processing.

PI Plasticity Index.
PVM Parallel Virtual Machine.

RAM Random Access Memory.

SM Symmetric Multiprocessor.
SMP Symmetric Multi Processing.
SPU Symmetric Processor Unit.
SSI Soil-Structure Interaction.

xx

CHAPTER 1

Introduction

1.1 Statement of the Problem

Numerical solution of problems soil-structure interaction (SSI) problems carry an important

role in geotechnical engineering. Modeling soil media and simulating seismic wave propa-

gation has its own difficulties. Mesh requirements of modeling wave propagation through an

infinite soil layer can strain the memory limits of computers. Nonlinear and dynamic nature

of the problem requires solving a system of linear equations repeatedly which can result in

unbearable analysis times.

Today’s computers are equipped with processors composed of multiple cores which are ac-

tually individual processors. For effective usage of modern processors applications must be

developed by the help of parallel programming techniques. Although utilizing all cores of a

processor is a big step in developing effective applications, for some problems it might not be

enough. For applications that require more computing power utilizing computers connected

to each other becomes the next step.

Numerical solution of SSI problems require the latest computing technologies to be utilized.

In order to achieve solutions in reasonable times and solve problems with larger number of

unknowns parallel computing technologies must be applied to SSI problems.

1.2 Research Statement

This study aims to develop a parallel dynamic finite element analysis algorithm that can be

used to solve dynamic SSI problems. For this purpose first a general extensible parallel finite

1

element library was developed. Then, the library was extended with a parallel dynamic solu-

tion algorithm and an equivalent linear material model which enable solution of SSI problems.

Several verification tests were performed to verify and benchmark the parallel performance

of the implemented software.

1.3 Thesis Outline

In Chapter 2, a literature survey about parallel computing and SSI is given. In Section 2.1,

parallel computing hardware and software implementations to use this hardware are classi-

fied. Methods for numerical analysis of SSI problems and parallel implementations of these

methods are presented in Section 2.2.

Chapter 3 presents the implemented general purposed extensible parallel finite element li-

brary: Panthalassa. Class architecture of the library is detailed.

Implemented parallel algorithms for parallel linear dynamic and equivalent linear analysis are

given in Chapter 4. Both theory behind these algorithms and details of the implementations

are presented in this chapter.

In Chapter 5, results of a series of verification problems that benchmark the dynamic linear

and equivalent linear analysis methods are given.

Chapter 6 presents results of a series of tests that verifies and benchmarks the performance

of parallel dynamic linear and dynamic equivalent linear implementations. In addition to the

results a discussion on the performance of implementations is given.

Finally, Chapter 7 gives a brief summary of this study and outlines the conclusions that can

be made from the study.

2

CHAPTER 2

Literature Review

2.1 Parallel Computing

2.1.1 Introduction

Parallel computing is a term indicating two or more computations executed in the same time.

The idea of parallel computing was proposed by researchers around mid-1950s (Wilson, G.V.

[1]) but the idea became a reality when Burroughs Corp. introduced D825, a four-processor

computer that accessed up to 16 memory modules via a crossbar switch (Anthes, G. [2]).

Parallel computing continued to develop and today parallel computers are being utilized fre-

quently as almost every computer comes with processors composed of more than one core.

Parallel computation is implemented by different architectures, with unique advantages and

disadvantages. Every architecture aims to increase speed-up (increase in speed versus a se-

quential architecture) and scalability (keeping constant speed with growing problem size)

(Trobec, R. [3]). Parallel architectures can be categorized according to different properties.

According to the type of memory access of processors parallel architectures are divided in

two divisions: Shared memory and distributed memory architectures. Another specialized ar-

chitecture that is recently put into use is the GPGPU (General-Purpose Computing on Graph-

ics Processing Units) architecture. GPGPU architecture utilizes GPUs (Graphics Processing

Units) for computations. In the next sections these architectures are discussed in detail.

3

2.1.2 Shared Memory Architecture

In the shared memory architecture processors use a single RAM (Random Access Memory)

space. This architecture type is widely used in today’s laptop and desktop systems. Figure

2.1 presents INTEL quad core architecture as an example to shared memory architectures. In

this system processing units are named as cores and four cores are combined to create the

processor. Every core has its own working memory space called L1 cache. In addition to the

the L1 cache there is a separate memory space shared by every two cores called the L2 cache.

RAM can be accessed by all cores. Cache space is very small compared to RAM, however

it is much faster. Caches are internally used by processors for storing data from RAM before

computation and connecting to each other and generally not available to programmers. This

type of architecture which consists of cores is also known as the multicore architecture.

Core

L1 Cache

Core

L1 Cache

L2 Cache

Core

L1 Cache

Core

L1 Cache

L2 Cache

RAM

Figure 2.1: Intel Quad-Core Processor Architecture

Another example to the shared memory architecture is the SMP (Symmetric Multi Processing)

architecture. SMP architecture uses processors instead of cores and processors are connected

via a bus instead of cache memory.

Programming for shared memory architecture involves an application creating execution units

called threads. Threads are controlled by the operating system and executed by cores or pro-

cessors depending on the architecture. Applications initiate parallel execution by creating a

number of threads, usually equal to the number of processing units. Ideally, every thread com-

4

putes data from different parts of the RAM and writes the result to a different part of RAM.

If threads need to access the same location of the RAM, reading or writing from RAM be-

comes sequential since RAM cannot be accessed by more than one processing unit. Problems

that occur from un-enforced dependence of threads similar to this situation are known as race

conditions (Sottile et al. Chapter 3.1.1 [4]).

Every programming language comes with different methods to execute and control threads.

OpenMP (Open Multi Processing [5]) is the most common method for C++ and Fortran lan-

guages. OpenMP introduces new keywords to C++ and Fortran languages to support threads.

Other methods usually rely on operating system level functions to control threading. Libraries

are developed to ease the use of these functions. C++0x which is the latest standard of the

C++ language adds a threading library to the standard libraries ([6]). Other languages like C#

and JAVA have already threading support in their standard libraries.

Beside using threads another way of programming the shared memory architecture is to use

message passing. In this method more than one process for an application is executed. Pro-

cesses communicate to each other by using message passing libraries. If libraries that are spe-

cially designed for shared memory systems are used, overhead of passing messages between

processes is minimized. Several implementations of the MPI (Message Passing Interface [7])

interface can be used for this purpose like MS-MPI (Microsoft MPI [8]) or MPICH2 (Mes-

sage Passing Interface Chameleon 2 Library [9]). Message passing between processes for

parallelism is also used for programming distributed memory architectures. This flexibility is

a major advantage if applications need to be run in both architectures.

2.1.3 GPGPU Architecture

Computer graphics and animations require heavy usage of floating point operations. With

the boom of game industry the prices of GPUs fell down and they became gradually more

advanced. It is suddenly realized that they can be used for general purpose applications.

GPUs differ vastly from CPUs (Central Processing Units) in design. Figure 2.2 presents the

Nvidia Fermi architecture. Main execution unit of Fermi architecture is the CUDA (Compute

Unified Device Architecture) cores (dark green rectangles in Figure 2.2). Every 32 CUDA

cores are grouped as SMs (Streaming Multiprocessors). In Figure 2.2 32 SMs combine for

5

512 CUDA cores. CUDA cores execute instructions in groups of 32 which are called warps.

CUDA cores have access to a small memory local memory called registers. Every SMs host

a bigger memory block called shared memory. This shared memory can be accessed by every

CUDA core in the SM. ALL SMs have access to one big but slow memory block called the

global memory. Since both shared memory and global memory can only be accessed sequen-

tially race conditions are a big platform in GPU architecture. ATI GPU design is somewhat

similar to the Nvidia design however the main processing unit is called SPUs (Streaming

Processor Units).

Figure 2.2: Nvidia Fermi Architecture (Nvidia Fermi Architecture Whitepaper [10])

Unique design of GPUs allow for incredibly fast floating point operations. For example

Nvidia GTX 460 GPU can compute 900 GFLOP (Giga Floating Point Operations) a sec-

ond whereas a similarly priced INTEL CPU, the Intel Core i5 760 can only compute around

50 GFLOP a second. However using all the processing power of a GPU is harder than a

CPU. Since GPU has a different global memory than CPU problem and solution data has to

be transfered from main RAM to the global memory of GPU. Also programming the GPU

has its own unique challenges because of the special design of processing units and internal

6

memory. Another issue is although GPUs are very fast at computing single precision floating

point arithmetic, they are much slower at computing double precision floating point arithmetic

which is a must for some of the scientific applications.

Currently there are three methods for programming GPUs for general purpose applications:

CUDA (Compute Unified Device Architecture [11]), OpenCL (Open Computing Language

[12]) and DirectCompute (Microsoft DirectCompute [13]). All methods are composed of

special libraries and a software language similar to C (Language is different for every method).

CUDA can only be used with Nvidia GPUs whereas OpenCL and DirectCompute can be used

for programming both Nvidia and ATI GPUs. OpenCL can also be used for programming

CPUs. Discussions on these methods can be found in the following papers: Kindratenko et

al. [14] and Karimi et al. [15].

2.1.4 Distributed Memory Architecture

Figure 2.3 presents an example for the distributed memory architecture. In this architecture

type processors that have access to their own memory space are connected by a network. If the

processors are regular computer devices, the system is called a computer cluster. Clusters with

computers connected through the Internet are called grids (Sterling, T. L. [16]). If processors

are specially designed to be a one large computer the system is called a massively parallel

processor (Potter, J. L. [17]). Processors of a distributed memory architecture can also be

shared memory or GPGPU devices. As of 24-12-2010 fastest super computer in the world is

a distributed memory system that connects Nvidia GPUs (Top500 [18]).

Since every processor in a distributed memory architecture has its own memory space pro-

gramming this type of architecture needs message passing through a network. There are two

standards for message passing libraries today: PVM (Parallel Virtual Machine [19]) and MPI.

A comparison of theses standards can be found in Geist, G. A. and Kohl, J.A. [20]. Freely

available and more advanced message passing libraries that use the MPI standard made MPI

the popular interface in the last ten years.

Message passing libraries have special applications that can start processes at every processor

of a distributed memory architecture. In this way an application can be executed at every

processor and solve a problem in parallel by passing messages with each other.

7

Processor

RAM

Processor

RAM

Processor

RAM

Processor

RAM

Processor

RAM

Processor

RAM

NETWORK

Figure 2.3: Distributed Memory Architecture

2.2 Soil-Structure Interaction

2.2.1 Numerical Methods

For numerical solution of static and dynamic SSI problems three methods are used: Finite el-

ement method (FEM), finite difference method (FDM) and boundary element method (BEM).

All these methods are actually used for solution of differential equations. They are applied to

mechanical problems usually through a discretized continuum.

In the finite element method mechanical problem is discretized using geometrical structures

called finite elements. Connection points of finite elements are called nodes (Figure 2.4).

In each finite element, variation of variables that describe the nature of the problem (dis-

placement, velocity, temperature etc.) are expressed as simple spatial variations commonly

described by polynomial terms. Numerical unknowns, which are values of variables described

by finite elements, at nodes are calculated using spatial variations.(Cook et al. [21])

8

Figure 2.4: Triangle Finite Element With Three Nodes

In the finite difference method derivatives in a function that describes a quantity in a specific

problem is replaced by its approximations. Then continuum can be discretized as points and

values of the approximated variable at points can be calculated.

Boundary element method is based on discretization of boundaries of the problem. Problem

definition is reduced to its boundaries which is one dimension less than the problem. For ex-

ample Figure 2.5 presents an area mesh reduced to its boundaries: a line mesh. This property

of BEM is a major advantage as it greatly simplifies the solution procedure. However BEM

cannot be used to solve all types of differential equations. Green functions are used to move

the problem to its boundary, thus for differential equations that are solvable with BEM Green

function of the problem must be calculatable.

2.2.2 Absorbent Boundaries

In order to model infinite soil media absorbent boundaries that absorb waves are used. Bound-

ary conditions for normal and shear stresses at an absorbent boundary are given in the follow-

9

Figure 2.5: A Finite Element Mesh and Its BEM Representation (Aliabadi [22])

ing equations (Lysmer and Kuhlemeyer [23]):

σ = aρVpu̇n (2.1)

τ = bρVsu̇t (2.2)

In these equations a and b are constant parameters, ρ is density, Vp and Vs are velocities

of pressure and shear waves, u̇n and u̇t are normal and tangential velocities at the boundary.

Equation 2.1 give perfect absorption in one dimension when only pressure waves are consid-

ered with a = 1. A detailed discussion on parameters a and b can be found in White et al.

[24].

Absorbent boundary conditions can be applied in numerical calculations either by lumped for-

mulation at boundaries or by using consistent matrices calculated at finite elements. Lumped

formulation is easy to implement in software, however causes significant errors in calculations

(Chow [25]).

10

2.2.3 Wave Propagation in Finite Element Mesh

Largest finite element size that transmits a wave with wavelength λ is given by Equation 2.3

(Lysmer and Kuhlemeyer [23]).

∆l =
λ

10
(2.3)

In terms of frequency of the wave:

f =
V
λ

(2.4)

∆l =
V

10 f
(2.5)

In Equations 2.4 and 2.5, V is the velocity of wave and f is the largest frequency of wave

that is transmitted by a finite element with size ∆l. Finite element meshes should be created

according to Equation 2.5 for accurate results.

2.2.4 Parallel Soil-Structure Interaction Applications

Several studies for parallel solution of SSI problems exist in literature. Some of them are

specifically developed for SSI problems, others are developed as general numerical solution

procedures for mechanical problems and can be utilized for SSI problems as well.

In Yerli et al. [26] SSI system is divided into individual parts and solved by multiple proces-

sors using the finite element method (Figure 2.6). Substructures create a separate system of

linear equations for the interface known as Schur Complement equation. Both substructure

and interface equations are solved in parallel using PVM.

Several parallel implementations of the explicit Newmark integration method can also be

given as examples to parallel SSI applications. Explicit Newmark integration method im-

plemented with finite element method enables element by element solution of SSI problems

(Hughes and Liu [27]). Finite elements that make up the problem’s mesh are partitioned to

processors and solved in parallel. Solutions are then combined using parallel computing tech-

niques. The first examples used PVM for parallelization of the algorithm. For example Krysl

and Belytschko [28] came up with an object oriented parallelization algorithm that used Non-

linear Explicit Integration and PVM to solve structural dynamics problems. As MPI replaced

PVM, researchers used different algorithms using MPI to parallelize the dynamic integration.

Krysl and Bittnar [29] used MPI with different decomposition techniques for the solution of

11

Figure 2.6: Disconnected Substructuring Representation of an SSI System (Yerli et al. [26]).

dynamic finite element problems. Some GPGPU implementations of the explicit Newmark

integration method are also available. Noe and Sorensen [30] presented a real time simulation

of nonlinear elastic material properties using Total Lagrangian Explicit Dynamic finite ele-

ment method running on GPU. Komatitsch et. al. [31] used second order Newmark dynamic

integration equations to model seismic wave propagation on a large GPU cluster. In this study

MPI was used to parallelize the algorithm on computer networks.

12

CHAPTER 3

An Extensible Parallel Finite Element Analysis Environment:

Panthalassa

3.1 Introduction

Panthalassa1 is a computer library, intended to solve general finite element problems. Al-

though Panthalassa can be used for solving any type of finite element problem, current imple-

mentation is focused on structural and geotechnical ones. Panthalassa was developed in c++

language, with state of the art object oriented design techniques. Panthalassa was built upon

the idea of using more than one processor for computation, thus it provides data structures and

a base foundation for parallel computing. Panthalassa was developed as a core finite element

library; in other words, it provides necessary data structures and methods for the numerical

solution of finite element problems, on the other hand it does not provide any implementation

of necessary algorithms. Finite elements, material models, solution algorithms are added on

the core system, by the help of plug-ins 2. In this way, any type of modeling and solution

algorithm, can be implemented without modifying the core library.

Panthalassa was solely based on object oriented design. All components of the library were

programmed as classes and techniques like inheritance and polymorphism were used in the

design of the library. Section 3.2 explains details of the object oriented data structure of

Panthalassa.

Object oriented design of Panthalassa was also used in the plug-in architecture of the library.

Base classes provided by Panthalassa can be inherited and extended for specific algorithms

1 Vast global ocean that surrounded the super-continent Pangaea, during the late Paleozoic and the early
Mesozoic years (Wikipedia [32])

2 An accessory program designed to be used in conjunction with an existing application program to extend its
capabilities or provide additional functions (Houghton Mifflin Harcourt [33]).

13

as plug-ins. Plug-ins are developed separate from Panthalassa to extend the functionality of

the core library. To add plug-in functionality to Panthalassa, a computer library called Pugg 3

was developed. Details of Pugg library and plug-in architecture of Panthalassa are discussed

in section 3.2.7.

Panthalassa follows the MPI standards for parallel programming. MPI standards provide a

set of function definitions for interprocess communication, along processes from computers

connected by special networking hardware. Panthalassa uses the MPICH2 implementation of

MPI standards. MPICH2 is a widely known open source implementation of MPI standards,

focusing on homogeneous hardware. Since applications based on MPI standards can be used

sequentially, Panthalassa can be used in single processor systems without any modifications.

3.2 Object Oriented Design

Object oriented design of Panthalassa, can be assorted into several subgroups as presented in

Figure 3.1.

The first subgroup is solely composed of the Domain class. Domain class hosts and main-

tains objects in memory and directs the execution of Panthalassa. Second subgroup, Finite

Element Model Classes, represent components of a finite element model. Entities like finite

elements and nodes of a finite element model are programmed as classes in this group. The

third subgroup, Analysis Classes, include classes that represent solution procedures for the

finite element method. Subgroup, Input-Output classes, is responsible for reading user input

and outputting solution results to disk. Lifeline of classes from Finite Element Model Classes,

Analysis Classes and Input-Output Classes are maintained by the Domain class. Subgroups,

Utility classes and Pugg Library, aid the implementation of data structures defined in Pantha-

lassa. Utility Classes are used by the classes that belong to above defined three subgroups for

service purposes. Pugg Library was developed to implement plug-in system into Panthalassa.

Plug-ins developed bu users are loaded and maintained by classes from the Pugg Library.

3 Named after the dog breed pug.

14

FE Model Classes Analysis Classes

Domain Maintaines FE Model, Analysis and Input-Output Classes

Utility Classes Pugg

Utility Classes and Pugg Library Aid the Implement of Panthalassa Data structures

Domain

Input-Output Classes

1

0..*

1

0..*

1

0..*

Figure 3.1: Panthalassa Components

3.2.1 Domain Class

Domain class is the backbone of Panthalassa. It is responsible for creation and maintenance

of all Finite Element Model, Analysis and Input-Output Classes as presented in Figure 3.2.

Objects from Analysis Classes are held in special containers discussed in Section 3.2.3.2. Ob-

jects from Finite Element Model Classes are held in a Structure object. This Structure object

holds and maintains other Finite Element Model Classes as explained in Section 3.2.2.7.

In addition to maintenance of objects, Domain class directs the execution of Panthalassa.

Domain object loads plug-ins available to the system, using the Pugg Library, to initiate the

execution. Next, user input is read from a text file. This text file consists of statements

described in a special language called Ptl. Every statement indicates either the creation of

an object or a value to define an already created one. Dictated by these statements Domain

object creates and initializes objects of classes from Panthalassa Library and loaded plug-ins.

15

Domain

Analyzer

Algorithm

Tracker

Partitioner

ModelBuilder

Structure

Grapher

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1 1

0..1

0..*

FE Model Classes

1

0..*

Figure 3.2: Domain Class Diagram

At last, control of the system is given to the Analyzer object (section 3.2.4.1) created by the

user in order to start the solution process.

3.2.2 Finite Element Model Classes

3.2.2.1 FEMObject Class

FEMObject is the superclass for all finite element model classes. It is implemented in order

to group common properties of finite element model classes (Figure 3.3).

FEMObject class has two important attributes: id and partition. Attribute id is an unsigned

integer,determined by the user to distinguish different objects from one another. Panthalassa

includes special container classes (section 3.2.3.2) that have unique functions for objects that

have the id attribute. Attribute partition is used in order distinguish the partition that the object

belongs in case a domain decomposition process is applied to the system (Section 3.2.5).

16

+getID()

+setID()

+getPartition()

+setPartition()

-myID

-myPartition

FEMObject

FE Model Classes

Figure 3.3: FEMObject Class Diagram

3.2.2.2 Node Class

Node class represents a node of a finite element model. Nodes are used to define the coor-

dinate geometry of finite elements. Figure 3.4 presents attributes of the Node class and its

relationship with the Element class.

FEMObject

+getXYZ()

+setXYZ()

Node

+elements

+displacement

+velocitiy

+acceleration

+equationNumbers

-x

-y

-z

Element

+nodes

-elements

0..*

-nodes 0..*

Figure 3.4: Node Class Diagram

Node class has pointers to its connected Element objects (Element objects have a similar

17

attribute, nodes, for its connected Node objects), that can be used in different algorithms

such as DOF numbering or partitioning. Node class stores the coordinates, displacements,

velocities and accelerations of the node corresponding to the current step in analysis. Equation

numbers of DOFs are also stored in the Node object.

3.2.2.3 Element Class

Element class represents a finite element of a finite element model. Element objects are de-

fined by a number of connected nodes, a Property object and a MaterialModel object. Element

class is an abstract class. It is inherited to implement different types of finite elements (Figure

3.5).

FEMObject

+computeStiffness()

+computeConsistentMass()

+computeLumpedMass()

+computeStressesAtNodes()

+computeStrainsAtNodes()

+computeStressesAtGaussPoints()

+computeStrainsAtGaussPoints()

+computeNodalForces()

+computeResidualForces()

+computeNodalLoadsForSelfWeight()

+nodes

+property

+materialModel

Element

+elements

Nodes

Property

MaterialModel

-elements0..*

-nodes

0..*

-property1

1

-materialModel

1

1

Figure 3.5: Element Class Diagram

Element geometry is defined by a series of Node objects connected to the element by the

user. Geometric properties of an element (thickness, area etc.) are defined by connecting

18

a Property object to it. Property is a user defined object that can store a number of double

values. The meaning of these numbers are specific to each element type. Element gets its

material properties, density and the constitute relationship, from a MaterialModel object.

MaterialModel class is discussed in section 3.2.2.4.

The main purpose of a finite element is to define its stiffness, mass, and unique relationships

between displacement, strain and stress states. Element class has a number of virtual func-

tions returning different matrices defining these relationships (Table 3.1). Inheritors of the

Element class override these functions to implement the new finite element type. Another

responsibility of an Element object is to compute the equivalent nodal forces to its connected

Elemental forces as Panthalassa can only work with loads connected to nodes.

Table 3.1: Virtual Functions Defining Specific Element Behavior

Function Explanation

computeStiffness Returns the Stiffness Matrix
computeConsistentMass Computes the Consistent Mass Matrix
computeLumpedMass Computes the Lumped Mass Matrix
computeStressesAtNodes Computes Stresses of the Element at its Nodes
computeStrainsAtNodes Computes Stresses of the Element at its Gauss Points
computeStressesAtGaussPoints Computes Strains of the Element at its Nodes
computeStrainsAtGaussPoints Computes Strains of the Element at its Gauss Points
computeNodalForces Computes the Total Forces of the element at its Nodes
computeResidualForces Computes the Residual Forces of the Elements at its Nodes
computeNodalLoadsForSelfWeight Computes Equal Nodal Forces to Elemental Forces

New finite element types can be added on Panthalassa using the plug-in system. Finite element

types that are added in this way are listed in Table 3.2.

3.2.2.4 MaterialModel Class

In the finite element method, constitutive properties of a finite element is represented by the

constitutive matrix. In simple terms, it is the relationship between the stress and the strain

state of an integration point of a finite element and expressed as (Potts and Zdravkovic [34]):

{σ} = [E]{ε} (3.1)

19

Table 3.2: Implemented Elements

Element Type Class Name

8 Node Solid Brick
4 Node Quadrilateral Quad4
6 Node Wedge Wedge
Timoshenko Beam Beam
Truss Truss
NonLinear Green Truss GreensTruss
NonLinear Corotational Truss CorotationalTruss
Rectangular Thick Shell ThickShell
Rectangular Thin Shell ThinShell
Triangular Thick Shell ThickShellT
Triangular Thin Shell ThinShellT

In this equation {σ} is the stress vector, {ε} is the strain vector and [E] is the constitutive

matrix. In the object oriented structure of Panthalassa, constitutive properties of an element

is represented by the MaterialModel class.

MaterialModel class is an abstract class, different material models are implemented by inher-

iting this class and overriding its virtual functions (Section 4.3.2). An implementation of the

equivalent linear material model will be discussed in section 4.3.2.

+CalculateConstitutiveMatrix()

+InitElement()

+UpdateElement()

+CommitElement()

MaterialModel

Analysis Classes

Element

-ComputeConstitutiveMatrix

1

1..*

«call»

Analysis Classes allow MaterialModel to track element history.

Element gathers its constitutive matrix from MaterialModel

Figure 3.6: MaterialModel Class Diagram

Every Element object is connected to a MaterialModel object by the user. Elements call the

calculateConstitutiveMatrix function in order to gather their constitutive matrix specific to

20

their stress and strain states. Some material models not only consider the current state of

elements but take into account the stress or strain history of the elements. Three functions:

initElement, updateElement and commitElement are called by the analyzer classes to allow

the MaterialModel object track the history of Element objects. initElement function is called

in the beginning of the analysis, whereas updateElement function is called at every step of

the analysis. In some cases where the analysis process is applied more than one time to the

model commmitElement function is called at the end of every analysis cycle. MaterialModel

tracks the necessary element output to compute the constitutive matrix at the next step of the

analysis.

3.2.2.5 Damper Class

Dampers are useful tools for modeling infinite surfaces in finite element models. Damper

class is implemented to represent viscous dampers (Lysmer and Kuhlemeyer [23]).

Damper class gets three values from user to identify damping constants in three directions:

x,y,z. These values are directly assigned to the viscous damping matrix in the analysis at

places identified by the connected nodes of the damper.

3.2.2.6 Load Classes

Load classes represent different types of excitations, applied to the model. A combination of

excitations is represented by the Loading class. Loading class holds different types of Load

classes and computes the combined impact of these during the analysis phase.

Panthalassa employs three load classes that identifies with different load types: NodalLoad,

ElementLoad and DynamicLoad as presented in figures 3.7 and 3.8. The first of these, the

NodalLoad class, represents a static force applied on a specific node of the model. Element-

Load is similar to NodalLoad except it defines a surface or a body force acting on a finite

element. In contrast to first two load types, DynamicLoad represent an excitation applied

dynamically on the model. Excitation represented by the DynamicLoad class can be force,

displacement, velocity or acceleration. Since magnitudes of the excitation change over time

they are defined by the user with discretized points of a function f (time).

21

Loading

Load

NodalLoadElementLoad DynamicLoad

1

0..*

1

0..*

1

0..*

Figure 3.7: Load Classes Class Diagram

+connectedNode

NodalLoad

+connectedElement

ElementLoad

+connectedNode

DynamicLoad

Element

Node

-connectedElement

0..* 1

-connectedNode

0..*

1..*

-connectedNode

0..*

1

Figure 3.8: Load Classes Connections

3.2.2.7 Structure Class

Structure class represents a finite element model. Depending on how the finite element prob-

lem is modeled, one structure object or a series of them are used to represent the model in

memory. Structure hosts any type of object from the finite element model classes, including

other Structure objects, to describe the model (Figure 3.9). Algorithms using domain decom-

position or substructuring methods (Kurç, Ö. [35]) can use this feature of Structure class to

22

model a hierarchy of Structure objects.

StructureGlobalStructureObjectHolder

MaterialModel Property

ElementNode

Damper

Loading11

1

0..*

1

0..*

1 0..*

1

0..*
0..*

11

0..*

10..*

Figure 3.9: Structure Class Diagram

Property and MaterialModel objects created by the user are shared by every Structure defined

in the system. These objects are stored in a storage class called GlobalStructureObjectHolder.

Every structure has a pointer to a unique GlobalStructureObjectHolder object. This sharing

allows the user to define elements having the same properties and/or material models that

belong to separate Structure objects.

3.2.3 Utility Classes

3.2.3.1 FEMObjectWithOptions Class

FEMObjectWithOptions class is an abstract class inherited from FEMObject class that adds

the ability to gather extra information from user to its sub-classes. Statements used for creat-

ing objects in the Ptl language includes only general information about the properties of the

soon to be created object. Specific information related to the type of object is not included.

Objects gather the required extra information from user with user options.

For example, a 2D membrane Element object can get information about its geometric behavior

(plane stress, plane strain or axisymmetric) from user. Statements that create an instance of

23

this element type are given below:

// Create a hypothetical element with id 1, connected to property with id 2,

// MaterialModel with id 4, connected to Nodes with ids: 22 23 24 25

Create.Element "2DMembrane" 1 2 4 22 23 24 25

// Set Behavior option to axisymmetric

Set.Option element 1 // set options for the element with id 1

{

"Behavior" = "axisymmetric"

}

Classes that user can assign options are shown in figure 3.10.

FEMObjectWithoptions

Element

MaterialModel

Analyzer Algorithm

TrackerModelBuilder

Grapher

Partitioner

Figure 3.10: Classes that can Use User Options

3.2.3.2 Container Classes

Container classes are generic classes that hold and manipulate subclasses of the FEMObject

class in memory. They are implemented in order to collect objects of the same type from

Finite Element Model classes.

There are two different container classes defined in Panthalassa : IDObjectVector and IDOb-

jectMap.

The IDObjectMap class maps an unsigned integer (id of the FemObject class) to every stored

object. This storage type achieves fast random access but relatively slow sequential access to

24

the stored objects. Objects that need random access during analysis like objects from analyzer

Classes and Node objects are stored by using IDObjectMap objects.

IDObjectVector class implements a vector of objects, stored as an array. Array type storage,

increases the speed of accessing objects in a sequential manner.Objects that need sequential

access during analysis like Element objects are stored with IDObjectVector objects.

3.2.3.3 Mathematical Data Structures

Finite element method is based on a mathematical foundation. Mathematical structures like

vectors and matrices, have to be created and manipulated through the solution. Panthalassa

handles these data structures on two levels: element and global.

At the element level, small matrices and vectors that hold elemental information are required.

To hold such data, Panthalassa uses the Matrix and Vector structures from uBLAS library

[36]. These structures holds data in memory in full matrices. Results of elemental operations

like stiffness matrix of a finite element are stored in memory by the help of these structures.

At the global level large matrices and vectors have to be used. These matrices and vectors

are usually a combination of elemental matrices and vectors (see Cook et al. [21] section

2.5). They are used in the analysis procedure to implement algorithms dealing with the whole

finite element model, not just one element. Special data storage models might be needed for

different types solution methods. Panthalassa provides this required flexibility by the help of

the GlobalMatrix class.

+add()

+set()

+get()

+clear()

+getSize()

GlobalMatrix

Matrix Structure

Panthalassa

«call»«call»

Figure 3.11: GlobalMatrix Class Diagram

GlobalMatrix class is an abstract class, that provides virtual functions for the implementation

25

of basic interactions with a general matrix structure and Panthalassa library (Figure 3.11).

These interactions are, collecting information about the dimensions of a matrix or vector

and manipulating the matrix data. Users can bind the matrix and vector from libraries to a

global matrix structure by writing a sub-class of the GlobalMatrix class. Subclasses override

the related methods of GlobalMatrix class to bind the functionality of the real implemented

matrix structure.

3.2.3.4 ParallelInfo Class

ParallelInfo class is a static class, that provides unique information about parallel state of

processes and the analysis phase. Static classes and class members are used to create data

and functions that can be accessed without creating an instance of the class (MSDN [37]). In

this way, information stored in the ParallelInfo class can be used by any object without any

instantiation.

In addition to data that define the parallel state of Panthalassa like the total number of pro-

cesses or the rank of the current process, general information about the analysis like the type

of analysis (linear or nonlinear) is stored in the ParallelInfo class.

3.2.4 Analysis Classes

3.2.4.1 Analyzer and Algorithm Classes

Panthalassa includes two classes to represent a solution algorithm for a finite element prob-

lem: Analyzer and Algorithm (Figure 3.12). Users can program different solution algorithms

to a finite element problem by inheriting these classes. Both of these classes have access to

the whole data structure of the finite element model. This means, subclasses of both are able

to implement any type of solution algorithm. The difference in two classes appear in their

application.

Algorithm class represent the mathematical base of a finite element model solution, whereas

Analyzer class is used to implement similar functionality needed for different mathematical

algorithms. For example, let’s have two linear static solution algorithms that differ in only the

26

factorization process during the solution of equation:

[K]{D} = {F} (3.2)

Both algorithms include common processes like the assembly of stiffness matrix [K] and

force vector {F}. These processes are implemented in an Analyzer class to prevent repetitive

coding. The dissimilarities between two algorithms are implemented in separate algorithm

classes.

Analyzer class executes common tasks between algorithms. These common tasks include but

not limited to processes like matrix and vector assembly, time and solution control, output

of results to hard disk. Analyzer class has access to the selected Algorithm object and its

members to control these actions as well as the finite element model.

+Analyze()

Analyzer Algorithm

AlgorithmHelper Classes

1

0..*

«call»

«call»

+Factorize()

+Solve()

Solver

+Iterate()

IterativeAlgorithm

+executeAlgorithm()

OnseStepAlgorithm

Figure 3.12: Analyzer Algorithm System

Both of the Analyzer and the Algorithm classes are abstract ones. Inheritors of the Analyzer

class override the analyze function which is called by the Domain object to initiate the anal-

ysis. Panthalassa library contains three different subclasses of the Algorithm class. These

subclasses are abstract classes like the Algorithm class, but they have additional virtual func-

tions that can be usable for different algorithm types. Users choose one of these sub-classes

or the original Algorithm class to inherit and implement their algorithm.

First of these subclasses is the Solver class which provides two virtual functions: Factorize

27

and Solve. It was implemented specifically for solution of static problems. Factorize function

is overridden to implement the factorization phase and Solve functions is overridden to imple-

ment the back substitution phase of a static solution. Second subclass, IterativeAlgorithm was

implemented for algorithms that are based on an iteration cycle. Iterate function of the Iter-

ativeAlgorithm class is overridden in order to implement a step from the iteration cycle. Last

of the subclasses of Algorithm class is the OneStepAlgorithm class. It was implemented for

algorithms that can finish the analysis with a single step. Inheritors of the OneStepAlgorithm

class override the executeAlgorithm function to implement the single step computation.

Algorithm Helper Classes Algorithm and Analyzer classes are linked through a series of

classes called Algorithm Helper classes. These abstract classes represent common tasks re-

quired in a solution procedure. Common tasks implemented with these classes, are executed

by the Analyzer class. Algorithm class defines which implementation of these classes to be

used.

Algorithm Helper classes consist of two classes: DOFNumberer and GlobalMatrixAssembler.

DOFNumberer class is used to order the system of equations of a finite element model in

order to reduce the number operation for solution. A subclass called NodalDOFNumberer

which, numbers degree of freedoms of the model according to node numbers, is discussed in

section 4.3.2.

GlobalMatrixAssembler class is an abstract class used for the assembly of global matrices.

Different type of assembly methods can be represent by inheriting this class.

3.2.4.2 TimeTable Class

Timetable class provides methods and members for discretization of time during the solution

process of a finite element problem. TimeTable class discretized durations of time with struc-

tures called timelines as presented in Figure 3.13. Every timeline holds two variables: sithe

and delta. Sithe is the duration of timeline and delta is the time difference between steps of

discretization. TimeTable includes functions that allow to travel through the discretized time.

Algorithm class and Tracker class uses TimeTable objects to define points in the solution

process to execute their implementation.

28

TimeTable

Algorithm

Tracker

«datatype»

TimeLine

1 1..*

1

1

1

1

Figure 3.13: TimeTable Class Diagram

3.2.5 Partitioning Classes

3.2.5.1 Domain Decomposition

Domain decomposition is the process of partitioning the components of a finite element

model, to be analyzed separately. There are numerous different solution algorithms depending

on domain decomposition in literature. Domain decomposition process is generally executed

in three steps:

1. Create a graph from finite element model.

2. Partition the graph.

3. Create sub-domains from the partitioned graph.

Panthalassa provides a data structure composed of three classes: PtlGraph, Grapher and

Partitioner for the implementation of these steps (Figure 3.14). PtlGraph class represents

the mathematical structure, graph. Grapher is responsible for creating finite element models

from graphs and vice verse. Partitioner class partitions the graphs represented by PtlGraph

objects. In addition to these classes a class named Syncer, responsible for information transfer

between processes is provided.

29

Syncer

Grapher

Structure

PtlGraph

Partitioner

1

0..*

«becomes» «becomes»

Grapher Transforms PtlGraph and Structure to eachother

Partitioner Partitiones PtlGraph

Syncer Syncronizes Structures

Figure 3.14: Partitioning Classes

3.2.5.2 PtlGraph Class

Any object involving points and connections between them may be called graphs (Gross and

Yellen [38]). Figure 3.15 presents an example graph. Intuitively, a graph is a diagram consist-

ing of dots and lines, where each line joins some pair of dots, and two dots may be joined by

no lines or any number of lines. Formally dots are called vertices and lines are called edges

(Meng et. al. [39]).

Graphs are generally used for representing relations between objects from a collection. In the

finite element method, graphs are used to represent relations between elements and nodes of

finite element models.

In Panthalassa graphs are represented by the PtlGraph class (Figure 3.16). To implement

general capabilities of a graph diagram LEMON (Library for Efficient Modeling and Opti-

30

Figure 3.15: Example Graph with Four Vertices and Six Edges

mization in Networks [40]) library was used. LEMON is a general graph library developed

in C++ language. Panthalassa uses a specific graph type called smart graph that does not

allow manipulation of graph components once the graph is created. Manipulation of graphs

are done by creating new graphs. The advantage of smart graph type is, very fast access to

the graph components.

-myGraph

-myNodetoWeightMap

-myNodetoPartitionMap

-myNodetoFemObjectIdMap

-myFemObjectIDtoNodeMap

-myEdgetoWeightMap

PtlGraph

SmartGraph
-myGraph

1
1

Figure 3.16: PtlGraph Class Diagram

PtlGraph class provides special containers that connect the ids of FEMObject classes to ver-

tices and edges of a graph. In this way, any sub-class of the FEMObject class can be connected

to a vertex or an edge of a graph. Furthermore, vertices and edges can hold integer weights

that emphasize the importance of the vertex or edge related to the other vertices or edges of

the graph.

31

3.2.5.3 Grapher Class

Grapher class is responsible for transformations between PtlGraph and Structure classes.

Grapher class is an abstract class and should be inherited to provide functionality (Figure

3.17). Grapher class provides two virtual functions: createGraphfromStructure and creat-

eStructurefromGraph to handle transformations. Inheritors initialize the attached Syncer ob-

ject by sending the ids of shared vertices (vertices from different PtlGraph objects that are

connected to the same FEMObject object).

+createGraphfromStructure()

+createStructurefromGraph()

Grapher

+createGraphfromStructure()

+createStructurefromGraph()

NodalGrapher

+addSendNode()

+addRecieveNode()

Syncer«call»

Figure 3.17: Grapher Class Diagram

Panthalassa includes a Grapher implementation, NodalGrapher class, that utilizes nodal

graphs to represent finite element models. A nodal graph represents the nodes of a finite

element model with vertices and the finite elements with edges (Figure 3.18).

3.2.5.4 Partitioner Class

Partitioner class is responsible for partitioning of graphs. Partitioner class is an abstract class.

Inheritor classes take the graph to be partitioned and the number of partitions as parameters,

and partitions the graph accordingly by overriding the virtual partition function (Figure 3.19).

At the end of the partitioning process partition numbers are assigned to the vertices of the

graph.

Panthalassa includes a partitioner class called ParMetisPartitioner that uses the ParMetis li-

brary (Parallel Graph Partitioning and Sparse Matrix Ordering Library [41]) for partitioning

32

(a) Structure (b) Nodal Graph

Figure 3.18: An Arbitrary Structure and Its Nodal Graph

+partition()

Partitioner

+partition()

ParMetisPartitioner

Figure 3.19: Partitioner Class Diagram

of graphs. ParMetis is an MPI-based parallel library that implements a variety of algorithms

for partitioning and repartitioning unstructured graphs. The algorithms in ParMetis library

are based on the multilevel partitioning and fill-reducing ordering algorithms that are imple-

mented in the serial graph partitioning library METIS (Karypis and Kumar [42]). The algo-

rithms in METIS are based on multilevel graph partitioning described in Karypis and Kumar

[43], [44] and [45] (Karypis et. al. [46]).

3.2.5.5 Syncer Class

Syncer class holds the shared vertices between PtlGraph objects and provides ways to transfer

necessary information between processors. Syncer is provided as an abstract class that only

holds shared vertices. Inheritors provide the functionality of transferring information.

Panthalassa provides a subclass called AdditiveSyncer to be used by Algorithm objects (Syncer

33

3.20). AdditiveSyncer class synchronizes information between the nodes of different sub-

structures by adding up the elements of a GlobalMatrix object. Algorithms can use this class

to synchronize displacements, velocities or accelerations between sub-structures.

+addSendNode()

+addRecieveNode()

+syncGlobalMatrix()

Syncer

+syncGlobalMatrix()

AdditiveSyncer

Figure 3.20: Syncer Class Diagram

3.2.6 Input and Output Classes

Panthalassa uses hard disk files to read the information of a finite element model and write

the results of the finite element solution. Tracker and ModelBuilder classes are utilized for

this purpose.

3.2.6.1 Tracker Class

Tracker class is an abstract class used to write output to files. Track method of the class is

called by the Analyzer object at every step of the analysis phase. Tracker class has access to

every component of the model and analysis, thus can gather every piece of information in the

memory. Low level interaction with files is left to the implementors.

Panthalassa does not save information between steps of the analysis, so relevant information

to the user must be written to hard disk at every step. Tracker class has access to a TimeTable

object. By winding this TimeTable object, user can choose at which steps information will be

written.

Panthalassa includes several implementations of the Tracker class that track elemental and

nodal information during analysis and users can implement their unique tracker implementa-

tion by inheriting the Tracker class.

34

3.2.6.2 ModelBuilder Class

As default, Panthalassa reads user input based on the Ptl language, but input files of any format

can be read and used to create the finite element problem. ModelBuilder class is an abstract

class that is inherited to implement this feature.

Subclasses of ModelBuilder class override the BuildModel function, in order to create the

finite element problem using the data structures explained in this section.

3.2.7 Plug-in Architecture: Pugg Library

3.2.7.1 Introduction

Pugg is a c++ library for automatic loading and management of plug-ins. Pugg was devel-

oped exclusively for Panthalassa, however in time it became an open-source project and has

been used by many developers around the world. In this section main concepts behind Pugg

framework are explained. Detailed examples about usage of the library can be found on Pugg

website [47].

Pugg enforces a certain procedure for implementing plug-ins. Plug-ins developed according

to this procedure can be automatically loaded at run time by Pugg. Pugg looks for libraries

including a special function called registerPlugin and loads the library according to the special

initialization code defined in this function.

In Pugg’s framework system, a plug-in consists of classes that inherit from superclasses de-

fined in the main application. These sub-classes are mapped to string identifiers. Main appli-

cation uses these identifiers to create objects of the subclasses and add functionality to itself.

Panthalassa uses this string-class mapping system to load specific classes that are defined in

the user input file.

Panthalassa allow many super-classes to be inherited with plug-ins. List of classes that has

plug-in support is given in Table 3.3.

35

Table 3.3: List of classes that has plug-in support in Panthalassa

Class Type

Element
Analyzer
Tracker
Grapher
Algorithm
MaterialModel
Partitioner
ModelBuilder

3.2.7.2 Server Driver System

Pugg is capable of loading more than one type of class from a single plug-in library. To

manage different types of classes Pugg uses classes called Server. Main application creates a

Server object for every superclass type that supports a plug-in system.

Subclasses defined in plug-ins are hosted by servers through object factories. An object fac-

tory is a class that instantiates another class at run time. An extensive discussion about object

factories can be found in Alexandrescu [48]. Pugg uses the early mentioned string mapping

system to gather the intended Driver object from server and uses this Driver object to create

an instance of the associated sub-class.

Figure 3.21 presents an example to the server driver system described above. In this example,

2DMembrane class is binded a Server object through 2DMembraneDriver class. In order to

gather a pointer to a new instance of the 2DMembrane class, first getDriver function of the

ElementServer class is called and a pointer to the 2DMembraneDriver object is gathered. In

this process, the name associated with the 2DMembraneDriver class is used as parameter.

Then, createElement function of the 2dMembraneDriver is called to gather a pointer to a new

instance of the 2DMembrane object.

36

+getEngineName()

+getEngineVersion()

+getDriver()

Server

+getName()

Driver

+createElement()

2DMembraneDriverElementServer

2DMembrane

1

1

1 *

Figure 3.21: Server Driver System Example

3.2.7.3 Object Oriented Design of Pugg Library

Pugg consists of four classes: Kernel, Plugin, Server and Driver (Figure 3.22). Kernel class

is the management class of the library. It stores instances of the Plug-in and Server classes. It

has functions to automatically load subclasses from plug-in files. Main application creates an

instance of Kernel class and uses it to load and control plug-in libraries.

Plugin class represents a plug-in file. It is responsible for loading and initialization of the

plug-in libraries. Plugin class uses low level Windows functions (LoadLibrary and FreeLi-

brary functions MSDN [49]) for this purpose.

Remaining two classes: Server and Driver are used to implement the server driver system

described in Section 3.2.7.2.

3.3 Parallel Execution

Execution timeline of a parallel program differs significantly from a sequential one. A parallel

program has to run with more than one processor at a time. This necessity requires special

37

Kernel Plugin

+getEngineName()

+getEngineVersion()

+getDriver()

Server

+getName()

Driver

1 0..*

1

0..*

1 0..*

Figure 3.22: Pugg Class Diagram

initialization and finalization code inserted into program code. In addition, information stored

in memory have to be shared, or transferred between processes during execution.

As a parallel program itself, lifeline of Panthalassa was designed to deal with above men-

tioned problems and can be studied in four phases: initialization, model creation, analysis

and finalization (Figure 3.23).

Initialization of Panthalassa starts with a step called process spawning. Process spawning is

the creation of several processes from an application. MPICH2 has a special application called

MPIEXEC for this purpose. MPIEXEC is a command line application that gets the properties

of the spawning process (name of the application’s executable file, number of processes to

spawn etc.) as parameters.

MPICH2 not only creates and starts the processes, but it opens a channel between them as

well. A channel is a software technology, used for interprocess communication. Processes,

executed by different processors, exchange information using channels.

For every processor that is to be used in calculations, a copy of the Panthalassa process must

be spawned. Panthalassa executes special code to initialize the channel between processes.

Every process gathers an id called rank from MPICH2. Ranks are used by processes while

communicating with each other. Process with rank zero is called the master and other pro-

cesses are called slaves. Master process of Panthalassa ends the initialization phase by reading

the user input from a file and sending it to slaves for execution.

38

Process Spawning

Master Slave 1 Slave 2 Slave n

Create Memory Model

Read Input File and
Send to Slaves

Analysis Phase

Finalization

Figure 3.23: Panthalassa Lifeline

After the initialization phase, Panthalassa starts creating data structures that represents the

finite element problem in memory. Two approaches can be used for this purpose; either the

whole data model is created in memory on all processes, or every process creates a small part

of the model. Panthalassa uses the first approach. Creating whole model in memory on every

process eliminates any communication requirement before solution phase. Every process has

a copy of every data structure, thus no data transferring is necessary along processes. Imple-

menting algorithms is vastly simplified with this type of data storage model. Disadvantage of

39

this approach is that it increases memory requirements. If more than one process is spawned

on a single computer, memory of the system is filled with copies of the same data.

After the finite element problem is created in memory, Panthalassa starts the analysis phase.

In the analysis phase algorithms created by the user through plug-ins are executed. These al-

gorithms are implemented through several classes, examined in section 3.2.4. Parallelization

of these algorithms are left to the implementor.

Finally Panthalassa closes the communication channel between processes and frees the mem-

ory occupied by the internal data structure in the finalization phase.

40

CHAPTER 4

Parallel Implementation of Linear Dynamic Analysis for

Soil-Structure Interaction

4.1 Introduction

Solution of SSI problems using the finite element method, has to overcome two main diffi-

culties: Dynamic solution of a large domain and the mathematical representation of the soil

material. Dynamic nature of the SSI problems requires the fundamental dynamic equilibrium

equation (Equation 4.1) to be solved. This second order differential equation can be solved by

numeric integration methods such as central difference, trapezoidal rule, Newmark methods.

In this study implicit Newmark method (Newmark [50] and Wilson [51]) was employed for

the solution of Equation 4.1.

[M]{D̈} + [C]{Ḋ} + {Rint} = {Rext} (4.1)

In the process of solving SSI problems, modeling soil material behavior under cyclic loading

conditions possesses great importance. Nonlinear material behavior of soil must be approxi-

mated to a reasonable degree in order to attain realistic and accurate solutions. In this study

the equivalent linear model (Seed and Idriss [52]), which approximates nonlinear material

behavior parameters with linear approximations, was utilized.

Modeling of soil often results in large models because large geographies must be modeled and

restrictions to the mesh size must be enforced for successful propagation of waves through soil

material (Lysmer and Kuhlemeyer [23]). In order to solve large-scale SSI problems parallel

algorithms that utilizes multi-processor technologies offer advantages in terms of speed and

memory capacity. Because of this reason, the parallel versions of the linear dynamic solution

41

for the SSI problems was implemented in this study.

4.2 Theory

4.2.1 Implicit Newmark Method

In the fundamental dynamic equilibrium equation (Equation 4.1) {D̈} and {Ḋ} vectors repre-

sent acceleration and velocity of the system, respectively; [M] is the mass matrix and [C] is

the damping matrix of the system. Internal and external forces are represented by vectors

{Rint} and {Rext} . Considering linear analysis, internal forces of the system can be expressed

further as the multiplication of stiffness matrix [K] and displacement vector {D}:

{Rint} = [K]{D} (4.2)

Implicit Newmark algorithm solves Equation 4.1 by making an assumption for acceleration

over a time step. Acceleration value for time = τ (τ is a value of time between a typical time

step ∆t = tn+1 − tn) for average and linear acceleration assumptions are

ü (τ) =
1
2

(ün+1 + ün+1) (4.3)

ü (τ) =
τ

∆t
(ün+1 − ün+1) (4.4)

Velocities and displacements are computed at time step n+1 by equating τ to ∆t and integrat-

ing above equations with initial conditions u̇(τ) = u̇n at τ = 0 and u(τ) = un at τ = 0 (Table

4.1).

Table 4.1: Velocity and Displacement equations for a single degree of freedom system (Im-
plicit Newmark Method).

Average Acceleration Linear Acceleration

u̇n+1 = u̇n +
1
2∆t(ün+1 + ün) u̇n+1 = u̇n +

1
2∆t(ün+1 + ün)

un+1 = un + ∆tu̇n +
1
4∆t2(ün+1 + ün) un+1 = un + ∆tu̇n + ∆t2(1

6 ün+1 +
1
3 ün)

These equations are implicit as they depend on information from step n+1 (ün+1). Equations

presented at Table 4.1 can be generalized for MDOF systems in the following way:

{Ḋ}n+1 = {Ḋ}n + ∆t
[
γ{D̈}n+1 + (1 − γ){D̈}n

]
(4.5)

42

{D}n+1 = {D}n + ∆t{Ḋ}n +
1
2
∆t2

[
2β{D̈}n+1 + (1 − 2β){D̈}n

]
(4.6)

Numerical factors γ and β control the characteristics of the algorithm.Average acceleration

and linear acceleration assumptions can be achieved by setting γ = 1
2 ,β = 1

4 and γ = 1
2 ,β = 1

6

respectively.

By solving Equation 4.6 for {D̈}n+1 then substituting this expression into Equation 4.5, the

following equations were obtained:

{D̈}n+1 =
1
β∆t2

(
{D}n+1 − {D}n − ∆t{Ḋ}n

)
−

(
1

2β
− 1

)
{D̈}n (4.7)

{Ḋ}n+1 =
γ

β∆t
({D}n+1 − {D}n) −

(
γ

β
− 1

)
{Ḋ}n − ∆t

(
γ

2β
− 1

)
{D̈}n (4.8)

These equations are then inserted into the fundamental equation of motion and solved for

{D}n+1. This gives the fundamental equation for implicit Newmark methods presented below:

[Ke f f]{D}n+1 = {Rext}n+1 + [M]
{

1
β∆t2 {D}n +

1
β∆t
{Ḋ}n +

(
1

2β
− 1

)
{D̈}n

}
+[C]

{
γ

β∆t
{D}n +

(
γ

β
− 1

)
{Ḋ}n + ∆t

(
γ

2β
− 1

)
{D̈}n

} (4.9)

where

[Ke f f] =
1
β∆t2 [M] +

γ

β∆t
[C] + [K] (4.10)

[Ke f f] cannot be a diagonal matrix as it contains [K]. Thus, a factorization process is required

to solve equation 4.9. It can be shown that implicit Newmark method is unconditionally stable

(Hughes [53]) when,

2β ≥ γ ≥
1
2

(4.11)

Unconditionally stable algorithms do not diverge no matter how large the time step ∆t is, thus

allows obtaining the solution with less times steps when compared to conditionally stable

algorithms. It must be noted that a larger ∆t increases the error in calculations.

4.2.2 Finite Elements

There are two types of finite elements used in this study: bilinear quadrilateral and linear

hexahedron. Bilinear quadrilateral is an isoparametric 2-D plane element (Figure 4.1) and

43

linear hexahedron (Figure 4.2) is an isoparametric 3-D element. Shape functions of these

finite elements are presented in tables 4.2 and 4.3.

y,ζ

x,η

y,ζ

x,η

z,ξ

Figure 4.1: Bilinear Quadrilateral

y,ζ

x,η

y,ζ

x,η

z,ξ

Figure 4.2: Linear Hexahedron

44

Table 4.2: Shape Functions for the Bilinear Quadrilateral

Shape Function

N1 =
1
4 (1 − ζ)(1 − η)

N2 =
1
4 (1 + ζ)(1 − η)

N3 =
1
4 (1 + ζ)(1 + η)

N4 =
1
4 (1 − ζ)(1 + η)

Table 4.3: Shape Functions for the Linear Hexahedron

Shape Function

N1 =
1
8 (1 − ζ)(1 − η)(1 − ξ)

N2 =
1
8 (1 + ζ)(1 − η)(1 − ξ)

N3 =
1
8 (1 − ζ)(1 + η)(1 − ξ)

N4 =
1
8 (1 + ζ)(1 + η)(1 − ξ)

N5 =
1
8 (1 − ζ)(1 − η)(1 + ξ)

N6 =
1
8 (1 + ζ)(1 − η)(1 + ξ)

N7 =
1
8 (1 − ζ)(1 + η)(1 + ξ)

N8 =
1
8 (1 + ζ)(1 + η)(1 + ξ)

Elemental stiffness matrix [K]e and elemental mass matrix [M]e are computed with the fol-

lowing equations:

[K]e =

∫
[B]T [E][B]dV (4.12)

[M]e =

∫
ρ[N]T [N]dV (4.13)

In these equations, ρ is density, [E] is the constitutive matrix that defines the relationship

between strains and stresses of the element; [N] is the shape function matrix of the finite

element and [B] matrix defines the relationship between displacements and strains of the

element. [B] matrix is computed by differentiating the [N] matrix. Bilinear quadrilateral

element is a plane strain element that uses the constitutive matrix given in Equation 4.14. On

the other hand, linear hexahedron element uses general 3D stress strain relationship given in

Equation 4.15. In these equations E and v represent Young’s Modulus and Poisson’s Ratio

respectively.

45

[E] =
E

(1 + v)(1 − 2v)

1 − v v 0

v 1 − v 0

0 0 1−2v
2

 (4.14)

[E] =
E

(1 + v)

1 − v v v 0 0 0

v 1 − v v 0 0 0

v v 1 − v 0 0 0

0 0 0 1
2 − v 0 0

0 0 0 0 1
2 − v 0

0 0 0 0 0 1
2 − v

(4.15)

4.2.3 Boundary Conditions

Boundary conditions are applied to Equation 4.9 by two different methods. Boundary condi-

tions that are equal to zero are totally omitted from vectors and matrices. Boundary conditions

that change with time (i.e. an earthquake) are added to the system as constraints using the La-

grange Multipliers Method.

Lagrange Multipliers Method is used to define constraints between DOFs of the system. Every

constraint is defined by introducing an extra row and column to the solution system. For

example, equality between the first and the second DOFs of a three DOF static system can be

achieved as:

u1 − u2 = 0 (4.16)

k1,1 k1,2 k1,3 1

k2,1 k2,2 k2,3 −1

k3,1 k3,2 k3,3 0

1 −1 0 0

u1

u2

u3

λ

=

F1

F2

F3

0

(4.17)

λ can be interpreted as the force of the applied constraint (Cook et al. [21]). In the same way,

fixed displacements d1 and d2 can be applied to the system as:

u1 = d1

u2 = d2

(4.18)

46

k1,1 k1,2 k1,3 1 0

k2,1 k2,2 k2,3 0 1

k3,1 k3,2 k3,3 0 0

1 0 0 0 0

0 1 0 0 0

u1

u2

u3

λ1

λ2

=

F1

F2

F3

d1

d2

(4.19)

Although Lagrange Multipliers Method slows down the solution as it increases the number of

equations that has to be solved, it makes up for it by speeding up the assembly of displacement

constraints as only the force vector has to be assembled at every time step.

4.2.4 Equivalent Linear Soil Model

Soil exhibits nonlinear material behavior, even when subjected to small strains. This behavior

escalates in large, cyclic strain situations especially on soft soils (Beresnev and Kuo-liang

[54]). Different numerical models were proposed to represent this behavior of soil in literature

and the equivalent linear method, which was efficient and simple, was utilized in this study.

Equivalent linear method is based on linearization of nonlinear material characteristics of soil.

Under cyclic loading, stress-strain behavior of soil material can be illustrated with a hysteresis

loop as presented in Figure 4.3. As seen from the figure, tangent shear modulus, Gtan, takes

different values at every point on the shear strain axis. On the contrary, secant shear modulus,

Gsec is constant and equal to

Gsec =
τc
γc

(4.20)

where τc and γc represent the maximum values of shear stress and strain of the loop. Gsec

represents a linear approximation for Gtan.

Damping of the soil, represented as the area enclosed by the hysteresis loop, can be described

by the damping ratio (Kramer [55]) in the following way:

λ =
WD

4πWS
=

1
2π

Aloop

Gsecγ
2
c

(4.21)

In the above equation, WD is the dissipated energy; WS is the maximum strain energy and

Aloop is the area enclosed by the hysteresis loop. Parameters Gsec and λ, known as equivalent

linear parameters, can be used to describe the behavior of soil material.

47

τ

γ

Gsec

Gtan

Figure 4.3: Hysteresis Loop and Secant and Tangent Shear Modulus

Equivalent linear parameters for different shear strain levels, was estimated for different types

of soil by different researchers in literature (Vucetic and Dobry [56], Ishibashi and Zhang

[57]). These estimations are generally depicted by two graphs, showing the variations of shear

modulus and damping ratio against shear strain. Variation of shear modulus is represented

by the variation of Gsec
Gmax

against shear strain, and known as the modulus reduction curve.

Gmax, the maximum shear modulus, is the shear modulus of material at small strain situations.

Equivalent linear parameter curves are dependent on plasticity index (PI) for clays (Vucetic

and Dobry [56]) and confining shear stress for sands (Seed and Idriss [52]). Figures 4.4 and

4.5 presents equivalent linear parameter curves for soils with different PI.

It must be noted that, this soil model, only takes elastic strains into account; plastic deforma-

tions are ignored. Thus, this soil model can only be utilized for cases where plastic deforma-

tions do not hold big importance. Although some of the equivalent linear material curves in

literature, took plasticity of soil material into account (Vucetic and Dobry [56]); these curves

defined the effects of plasticity on equivalent linear parameters but not yield points or surfaces

outlining non-recoverable strain levels.

Solution of the fundamental equation of Implicit Newmark Method (Equation 4.9) requires

the assembly of [Ke f f], [M] and [C] matrices. These global matrices are computed from

48

10−4 10−3 10−2 10−1 100 101

0.2

0.4

0.6

0.8

1

Shear Strain (%)

G
/G

m
ax

PI = 0
PI = 15
PI = 30
PI = 50

PI = 100
PI = 200

Figure 4.4: Shear Modulus Reduction Curves for Soils with Different PI (Vucetic and Dobry
[56])

10−4 10−3 10−2 10−1 100 101

5

10

15

20

25

Shear Strain (%)

D
am

pi
ng

R
at

io
(%

)

PI = 0
PI = 15
PI = 30
PI = 50

PI = 100
PI = 200

Figure 4.5: Damping Curves for Soils with Different PI (Vucetic and Dobry [56])

49

elemental matrices:

[Ke f f] =
∑ 1
β∆t2 [M]e +

γ

β∆t
[C]e + [K]e (4.22)

[C] =
∑

[C]e =
∑
α[M]e + β[K]e (4.23)

[M] =
∑

[M]e (4.24)

Constants α and β of equation 4.23 are known as Rayleigh damping constants and gathered

from the MaterialModel class associated with the element. In the Rayleigh damping for-

mulation damping matrix is computed by combining mass and stiffness matrices. α and β

coefficients determine contributions from mass and stiffness matrices respectively. Rayleigh

damping coefficients are computed in order to fix the material’s critical damping values at the

frequencies specified by the user (Figure 4.6), using equations 4.25.

f1 f2

Rayleigh Damping

Soil Damping

frequency

 λ

Figure 4.6: Rayleigh Damping vs Frequency Independent Damping Behavior

α =
2λw1w2

w1 + w2

β =
2λ

w1 + w2

(4.25)

Rayleigh damping formulation overdamps frequencies smaller than f1 and frequencies larger

than f2 while it underdamps frequencies between two frequencies. Exact soil damping be-

havior is only experiences at frequencies f1 and f2. Definition of these two frequencies have

extreme influence on analysis results. A discussion on determining the frequencies will be

held on chapter 5.

50

4.3 Implementation

4.3.1 Analysis

Implementation of the Implicit Newmark method, adhered the described methodology in sec-

tion 3.2.4, analysis classes. Analyzer and Algorithm classes were inherited and added on Pan-

thalassa using the plug-in architecture. Furthermore an algorithm helper class called NodalD-

OFNumberer was created and binded to the algorithm class to be used in numbering DOFs in

the model.

ImplicitNewmark class, an inheritor of the Algorithm class, executes the numerical compu-

tations, described in last section, in order to solve the general dynamic equilibrium equation

(equation 4.1). LinearDynamicAnalyzer class, inheritor of the Analyzer class, creates a loop

dictated by the user and ImplicitNewmark class repeatedly while execution other ancillary

tasks.

4.3.1.1 ImplicitNewmark Class

Time stepping solution prescribed with the Implicit Newmark Method, was implemented via

the ImplicitNewmark class. Panthalassa requires all iterative and time stepping algorithms,

to be inherited from the IterativeAlgorithm class (section 3.2.4.1). Iterate function of the

IterativeAlgorithm class, is called by the analyzer object at every step of the analysis. Implic-

itNewmark class overrides the Iterate function, to compute a step from Equation 4.9. At every

time step equation 4.9 is constructed in memory and solved by the parallel sparse symmetric

solver library MUMPS (MUltifrontal Massively Parallel Sparse direct Solver [58]). In addi-

tion to the Iterate function, Init function of the Algorithm class is also overridden to execute

initialization tasks for the implementation.

Initialization code defined in the Init function, performs two important steps. First, it instan-

tiates the NodalDOFNumberer class, discussed later in this section, that is used to number

DOFs of the finite element model. Instantiated NodalDOFNumberer object is used by the

analyzer in terms with the Analyzer- Algorithm-AlgorithmHelper methodology discussed in

section 3.2.4.1. Second, it creates the data structures, vectors and matrices, used to hold

members of the implicit Newmark method in memory. For this reason, ImplicitNewmark

51

utilizes vectors and coordinate sparse matrices from uBLAS library. Sparse matrices hold

only the non-zero values in memory; thus they decrease the required memory space. Global

matrices [Ke f f], [M] and [C] are hold as sparse matrices to take advantage of this special

memory schema of sparse matrices. Vectors that define forces, displacements, velocities and

accelerations of the system are held by vectors.

Table 4.4: Matrices and Vectors used in the Implementation of Implicit Newmark Method

Matrix or Vector Definition

[Ke f f] Effective Stiffness Matrix (equation 4.10)
[M] Global Mass Matrix
[C] Global Damping Matrix
{F} External Load Vector
{Dn} Displacement Vector at time step = n
{Dn−1} Displacement Vector at time step = n - 1
{Vn} Velocity Vector at time step = n
{Vn−1} Velocity Vector at time step = n - 1
{An} Acceleration Vector at time step = n
{An−1} Acceleration Vector at time step = n - 1

At every time step, Analyzer object calls the Iterate function of ImplicitNewmark class. Im-

plicitNewmark class checks the ParallelInfo (section 3.2.3.4) object to determine if the as-

sembly of matrices and vectors is necessary. If only linear material models are defined in

the system, assembly process is executed only once at the beginning of analysis; whereas if

equivalent linear or nonlinear material models are present in the model assembly of equations

are necessary at each time step.

To take advantage of parallelism, every processor creates only a part of the global matrices,

[Ke f f], [M] and [C]. Parallel assembly of global matrices among processors is initiated by

assigning equal numbers of elements to each processor. Then, each computer simultaneously

assembles their assigned portions of global matrices dictated by their assigned elements. The

replicated degrees of freedoms that exist at the portions of the stiffness matrix are assembled

during the solution without the need of additional communication. Thus, such an assembly

approach requires no communication during assembly and creates a linear speed up.

After the assembly of global matrices, right hand side of Equation 4.9 is calculated: As

[Ke f f], [M] and [D] are distributed among processes, calculated {Re f f } vector is also dis-

52

tributed among processes. In order to solve Equation 4.9, MUMPS library requires the {Re f f }

vector to be held in master processor fully. Thus, as a next step, {Re f f } vector from every pro-

cess is transformed into a full {Re f f } vector held in the master process using the MPI Reduce

function [59]. MPI Reduce function gathers vectors from all processes, sums them up and

send the result to the master. [Ke f f] is then factorized and solved for {Re f f } to calculate

displacements {D} using the multifrontal solver of MUMPS library.

MUMPS is a software package for solving systems of linear equations by utilizing multi-

frontal approach. Multi-frontal methods simultaneously perform computations on multiple

independent fronts which are obtained by the sequence of partial factorizations. These fronts

are named as frontal matrices and factorized by highly optimized dense matrix solvers which

significantly improve the performance of multi-frontal solvers. Depending whether the ma-

trix is symmetric or not, LU or LDLT type solution method is utilized in MUMPS . For the

positive definite symmetric matrices, the solution is performed in three main steps: analysis,

factorization, and solution.

During the analysis step, first stiffness matrix equations are ordered with various ordering

algorithms such as AMD (Amestoy et.al. [60]), QAMD (Amestoy [61]), AMF (an approxi-

mate minimum fill-in ordering), PORD (Schulze [62]), METIS (Karypis and Kumar [42]) and

symbolic factorization is performed. It is also possible to have MUMPS choose the type of

ordering method for the given matrix. Among these several ordering algorithms, the nested-

dissection algorithm METIS library usually outperformed the other ordering algorithms for

the matrices tested in this study and hence METIS was utilized during the solution of the

structural models. As the symbolic factorization is finalized, its results are sent to other pro-

cessors from the master processor and the factorization phase initiates. The computations

during the analysis step are performed on a single computer.

In multi-frontal methods, the parallel factorization sequence is described by the elimination

tree which is obtained during equation ordering. Based on this elimination tree, dense frontal

matrices are created simultaneously and factorization of such matrices is performed by uti-

lizing the dense matrix solvers of ScaLAPACK (Netlib [63]) library. Once the factorizations

ends, solution step initiates by broadcasting of the right hand side (the force matrix) from

master computer to others where the forward and back substitutions are computed utilizing

the distributed factors. As the displacements are obtained, they are collected at the master

53

computer.

Mumps gives back the displacements only to the master processor. In order to calculate ve-

locities and accelerations at every process displacements are distributed to the slaves from the

master process. Velocities and accelerations are then calculated using Equations 4.8 and 4.7

respectively. To prepare for the next step calculated displacements, velocities and accelera-

tions are copied to the vectors representing values for the last step:

{Dn−1} = {Dn} (4.26)

{Vn−1} = {Vn} (4.27)

{An−1} = {An} (4.28)

4.3.1.2 NodalDOFNumberer Class

Task of numbering DOFs of the finite element model is accomplished by the NodalDOFNum-

berer class. NodalDOFNumberer class, a sub-class of the DOFNumberer class, gives an in-

teger number, sequentially starting from zero, to maximum number of DOFs of the model.

Moreover, NodalDOFNumberer class adds DOF numbers to implement the constrains on the

system using the Lagrange multipliers method.

NodalDOFNumberer takes its name as it loops around all nodes of the system in the order of

their ids to number the associated DOFs. The numbering process is presided by another loop

around nodes of the model to define the active DOfs of the system.

In the first loop, NodalDOFNumberer finds the DOFs used by the connected elements. If the

DOF’s direction is not activated by the user, -2 is assigned to the corresponding DOF. In the

absence of this condition, assigned value to the DOF retains its default value 0. In the second

loop, NodalDOFNumberer class checks every DOF of the system and gives equation numbers

starting from zero if the DOF’s preassigned value is not equal to -2.

After the numeration of DOFs of the system is finished, NodalDOFNumberer finds the total

number of Lagrange multipliers needed to represent constrains held on the system and stores

it in memory to be used in the assembly process.

54

4.3.1.3 LinearDynamicAnalyzer class

LinearDynamicAnalyzer class implements a general time stepping structure that can be used

with dynamic algorithms. In addition to the general analyzer tasks, discussed in section

3.2.4.1, LinearDynamicAnalyzer class creates a loop within the limits of timetable assigned

to the connected algorithm.

Before the beginning of time steps, LinearDynamicAnalyzer calls the DOFNumberer object

created by the Algorithm to number DOFs of the system. At every cycle of the loop, a number

of tasks are executed. First LinearDynamicAnalyzer checks if a GlobalMatrixAssembler is

instantiated by the algorithm; if an instance exists, it is called to assemble global matrices and

vectors of the Algorithm. If an instance does not exist, it is assumed that either global matrix

assembly is not neccesarry or is done internally by the Algorithm. After the assembly process

Iterate function of the algorithm is called to execute a step from the time integration. Next,

LinearDynamicAnalyzer updates the displacements, velocities and accelerations of nodes of

the finite element model. UpdateElement function of MaterialModel class is also called for

every element of the model, to update stress-strain state of material models. At last Tracker

objects assigned to the analyzer are called in order to write output.

4.3.2 Material Model

Equivalent linear material model was implemented by a class called NLElasticMaterialModel,

that inherits the MaterialModel class (Figure 4.7). The name NLElasticMaterialModel comes

from the implementation’s ability to represent elastic properties, linear or nonlinear, of a

material. Change of material model characteristics are linked to the shear strain level of finite

elements.

NLElasticMaterialModel class gathers values of properties that define characteristics of the

material model, from user. Main properties like the Poisson’s ratio υ and maximum shear

modulus Gmax of the material are gathered in the form of a vector consisting of double val-

ues; whereas names of two files, containing discretized shear modulus reduction and critical

damping curves of soil material model, are gathered in the form of user options. An example

of material model definition in ptl language is given below.

55

MaterialModel

+CalculateConstitutiveMatrix
+GetRayleighDampingParameters
+InitElement
+UpdateElement

NLElasticMaterialModel

+CalculateConstitutiveMatrix
+GetRayleighDampingParameters
+InitElement
+UpdateElement

«inherits»

Element

Analysis Classes

«call»

Element gathers constitutive
matrix from MaterialModel

«call»

Analysis Classes initializes and updates the
MaterialModel and gathers the damping

parameters from it

Figure 4.7: NLElasticMaterialModel Class Diagram

// Create a material model tagged with id 1

// Gmax = 6700, v = 0.3, density = 6.7, f1 = 0.4, f2 = 1.33

Create.MaterialModel "NonLED" 1 6700 0.3 6.7 0.4 1.33

Set.Option materialModel 1 // set options for material model tagged with id 1

{

"modulusFile" = "modulus_reduction.txt"

"dampingFile" = "critical_damping.txt"

}

Parameters, taken from user, are summarized in Table 4.5. Poisson’s ratio υ and maximum

shear modulus Gmax parameters indicate the strength of the material model at small strain

conditions. Density is returned to the connected elements, to be used in computation of mass

matrices and self weight element loads.

Damping formulated by the Equation 4.21 is independent of frequency. This type of damping

characteristic is impossible to model with time domain analysis. NLElasticMaterialModel

class approximates this damping behavior utilizing Rayleigh damping formulation (Equa-

tion 4.23). Two frequencies are gathered from user in order to compute Rayleigh damping

coefficients using equations 4.25. Computed Rayleigh damping coefficients are returned to

56

Analysis classes with function GetRayleighDampingParameters.

Table 4.5: Material Properties of NONLED

Property Definition

Gmax Maximum Shear Modulus of soil material
υ Poisson’s ratio of soil material
Density Density of Soil material
f1 frequency 1
f2 frequency 2

Curves describing the modulus reduction and critical damping behavior of the material are

constructed from discrete points defined in text files prepared by user; values between the

discrete points are linearly approximated. At every point of the analysis, shear modulus and

critical damping of soil material can be found using these curves and the average strain level

of finite elements. Since Panthalassa does not record strain levels of finite elements during

analysis, they must be computed and recorded to memory at every step of the analysis.

In order to allow tracking of shear strain levels of finite elements by the NLElasticMate-

rialModel class, functions initElement and updateElement are called by Analysis classes.

Function initElement is called once, before the beginning of the analysis for every element.

NLElasticMaterialModel creates a map, an associative container, between the id’s of elements

and a double value which is used for storing the shear strain values. Function updateElement

is called at every step of the analysis for every finite element. NLElasticMaterialModel calcu-

lates the average strain value for the element and stores in the map structure described above.

Average shear strain of the finite elements are found by averaging the maximum shear strain

calculated at nodes of the element.

The main use of an inheritor of the MaterialModel class is to compute constitutive matrices

for connected elements. NLElasticMaterialModel class accomplish this task in the Calculate-

ConstitutiveMatrix function. Whenever an element object calls the the CalculateConstitutive-

Matrix function, shear strain value of the element is read from memory. This strain value

is used to calculate equivalent linear parameters from user defined modulus reduction curve.

Then constitutive matrix is is generated using the relationships given in Equations 4.14 and

4.15.

57

In addition to calculating constitutive matrices from shear strain values calculated at every

time step, maximum shear strain computed up to the analysis time might be used to calcu-

late constitute matrices as well. In this calculation type, maximum shear strain computed is

multiplied with a constant value to get an average effective shear strain value. Equation 4.29

(ProShake Manual [64]) presents this relationship.

γ =
Mw − 1

10
γmax (4.29)

In this Equation Mw is the magnitude of the input earthquake motion and given by the user. If

this value is not available Equation 4.30 is used instead of Equation 4.29.

γ = 0.65γmax (4.30)

0.65 is an empirical value suggested in Lysmer et al. [65].

58

CHAPTER 5

Verification Problems

5.1 Introduction

The developed software program, Panthalassa was tested with four different problems in order

to verify the results of the linear and equivalent linear dynamic analyses. First two problems,

benchmarked the dynamic behavior of bilinear quadrilateral and linear hexahedron elements.

Third problem, benchmarked one dimensional earthquake wave propagation with Rayleigh

damping. The last problem, benchmarked the implemented equivalent linear material model

with EduShake (EduPro Civil Systems [66]) program which performs equivalent linear anal-

ysis in frequency domain.

5.2 Problem 1: 1-D Wave Propagation

In order to verify the dynamic solution procedure first, wave propagation speed in an infinite

soil column was compared with a one dimensional analytical solution. To model this problem

a soil column with 10 m. of height was subjected to a vertical displacement of 0.001 m. at

the top. Then, the speed of pressure waves were computed at the mid point of the soil column

(Figure 5.1). Two different models, one with fixed boundary at the bottom and one with

absorbent boundaries surrounding the soil column, were used in the test. This problem was

adopted from Plaxis Dynamics Manual Chapter 4.1 [67]. Linear hexahedron elements were

used to in the finite element model (Figure 5.2). Table 5.1 summarizes the material and mesh

properties of the model.

59

Figure 5.1: Verification Problem 1: 1-D Wave Propagation, Fixed and Absorbent Boundary
Models

Pressure wave speed of a 1D soil column can be calculated using Equation 5.1.

Vp =

√
E(1 − v)

(1 + v)(1 − 2v)ρ
(5.1)

In this equation E is the elastic modulus, v is the Poisson’s Ratio and ρ is the density of the

soil calculated by dividing the soil weight to the gravity acceleration (ρ = γ
g). Using this

equation, Vp traveling in this soil column was calculated to be 99 m/s2.

Figure 5.3 presents the time-displacement curve computed at the mid-point of the soil column

for two finite element models and the analytical solution. In the analytical solution, pressure

waves reached to the mid point at 0.05 s. and dissipated without any reflection through the

infinitely deep soil column. In both finite element models mid-point started moving around

0.05 s. Displacement curves were not as steady as the analytical one however, at average both

models captured the expected behavior. Model with fixed boundaries at the bottom, showed

60

Table 5.1: Verification Problem 1: 1-D Wave Propagation, Model Parameters

Parameter Value

E (Elastic Modulus) 18000 kPa
v (Poisson’s Ratio) 0.2
γ (Soil Weight) 20 kN/m2

g (Gravity Acceleration) 9.81 m/s2

Model Size 10 m x 0.2 m x 0.2 m
Element Size 0.1 m x 0.1 m x 0.1 m

Figure 5.2: Verification Problem 1: 1-D Wave Propagation, Finite Element Mesh

the effects of wave reflection. Pressure waves reflected from the fixed boundaries, reached

the mid-point at around 0.15 s. (0.1 s. to reach the fixed boundary and 0.05 s. to reach the

mid-point). Pressure waves were then reflected from top and reached the mid-point again.

61

0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

·10−3

Time (s)

D
is

pl
ac

em
en

t(
m

)

Fixed Boundary
Absorbent Boundary

Analytical

Figure 5.3: Time Displacement Curves for Mid Point A

This cycle was repeated infinitely. Absorbent boundaries solved the reflection problem as

only a small part of pressure waves were reflected from them. In the first cycle almost all of

pressure waves were dissipated, and in the second cycle all reflection was erased.

5.3 Problem 2: Rayleigh Wave Velocity

Figure 5.4 presents the second verification problem which compared the speed of Rayleigh

waves generated by an instantaneous load at the surface of a solid body computed by a finite

element model with the analytical calculation. Finite element model for the soil body has 5

m. of height and 10 m. of width and meshed with bilinear quadrilateral elements (Figure

5.5). Soil body was surrounded by absorbent boundaries. Material and mesh properties are

presented in Table 5.2. This problem was also adopted from Plaxis Dynamics Manual Chapter

4.3 [67].

Ratio of speed of Rayleigh wave and pressure wave for a solid material can be calculated for

different Poisson’s ratios, for v = 0.25, Vr
Vp
= 0.54 (Kramer Chapter 5.3.1.1) [55]. Pressure

wave velocity, Vp, can be calculated from Equation 5.1 and using model parameters from

Table 5.2 Rayleigh wave velocity, Vr was calculated as 13.23 m/s.

62

Instantaneous

Load = 100 kN

5m

10m

A

B

1m

Figure 5.4: Verification Problem 2: Rayleigh Wave Propagation, Finite Element Model

Table 5.2: Verification Problem 2: Rayleigh Wave Propagation, Model Parameters

Parameter Value

E (Elastic Modulus) 1000 kPa
v (Poisson’s Ratio) 0.25
γ (Soil Weight) 19.6 kN/m2

g (Gravity Acceleration) 9.81 m/s2

Model Size 0.025 m x 0.05 m
Element Size 0.1 m x 0.1 m x 0.1 m

Using the finite element model, time displacement curves for Points A and B that are 1m apart

from each other were calculated. From Figure 5.6 it was observed that Rayleigh waves travel

from Point A to Point B in 0.076 s. Then Vr =
distance

time = 1m
0.076s = 13.16m/s which is in good

agreement with the analytical value of 13.23 m/s.

63

Figure 5.5: Verification Problem 2: Rayleigh Wave Propagation, Finite Element Mesh

5.4 Problem 3: 1D Translation Function

Figure 5.7 presents the third verification problem. In this problem, an earthquake motion was

given to a one dimensional soil column model in one direction at the bottom and amplification

of the earthquake waves were computed at the top. Measurements were compared with the

analytical solution. Finite element model consists of a soil layer of 24 m. deep. Soil layer has

a shear wave velocity of 200 m/s. Model parameters are presented in Table 5.3.

East-west component from Treasure Island record of Loma Prieta Earthquake was used in the

model. Figures 5.8 and 5.9 present the time-acceleration and Fourier spectrum curves of the

earthquake. As seen from the second graph earthquake experiences most of its acceleration

in 0-5Hz frequency range and after 10Hz motion gradually vanishes. Earthquake data used in

this study was composed of 2000 data points 0.02s apart that lasts for 40 seconds.

64

0 5 · 10−2 0.1 0.15 0.2
−4

−3

−2

−1

0

1

·10−3

∆t = 0.076s

Time (s)

D
is

pl
ac

em
en

t(
m

)

Point A
Point B

Figure 5.6: Time Displacement Curves for Points A and B

Table 5.3: Verification Problem 3: 1D Translation Function, Model Parameters

Parameter Value

E (Elastic Modulus) 100000 kPa
v (Poisson’s Ratio) 0.25
Vs (Shear Modulus) 200 m/s
γ (Soil Weight) 20.0 kN/m2

g (Gravity Acceleration) 9.81 m/s2

Model Size 1 m x 24 m
Element Size 0.5 m x 0.5 m

For a one dimensional soil layer on rigid bedrock amplification ratio is given by equation 5.2

(Roesset J.M. [68]).

A(f) =
1√

cos2(2π H
Vs

f) + (2πHD
Vs

f)2
(5.2)

In this equation f is the frequency that the amplification ratio applies to, H is the depth of soil

column, D is the damping ratio and Vs is the shear wave velocity which is calculated by the

following equations:

Vs =

√
G
p

(5.3)

G =
E

2(1 + v)
(5.4)

where G is the shear modulus. For a damping ratio of 0.05 amplification ratio curve for the

65

Loma Prieta

EQ

24m

1m

Figure 5.7: Verification Problem 3: 1D Translation Function, Model

soil site is given in Figure 5.10.

In order to include damping in the model, Rayleigh damping was used with a frequency range

1.5-5 Hz. This range covers both the important frequency range of the Loma Prieta earthquake

and analytical amplification curve. Figure 5.11 presents the comparison of the analytical curve

and computed amplification ratio from the finite element model. Computed amplification

curve almost exactly matches with the analytical amplification curve in 0-3 Hz range, however

it is overdamped for higher frequencies. This is due to the stiffness proportional part of the

Rayleigh damping (Figure 4.6). This behavior is acceptable for this model as Loma Prieta

earthquake does not include high amplitude motion in higher frequencies. However different

66

0 10 20 30
−0.15

−0.1

− 5 · 10−2

0

5 · 10−2

0.1

Time (s)

A
cc

el
er

at
io

n
(g

)

Loma Prieta EQ

Figure 5.8: Time Acceleration Curve for Loma Prieta Earthquake

0 5 10 15 20

2

4

6

·10−3

Frequency (Hz)

A
cc

el
er

at
io

n
(g

)

Loma Prieta EQ

Figure 5.9: Fourier Spectrum for Loma Prieta Earthquake

67

0 2 4 6 8 10

2

4

6

8

10

12

Frequency (Hz)

A
m

pl
ifi

ca
tio

n
R

at
io

Figure 5.10: Analytical Amplification Curve D = 0.05

frequency ranges should be investigated for problems with different input motions or soil

sites with different material properties. A more detailed discussion on the effect of Rayleigh

damping parameters on 1D amplification can be found in Visone et.al. [69].

5.5 Problem 4: Equivalent Linear Material Model

In this Section, performance of the implemented equivalent linear material model was bench-

marked. The benchmark was performed against EduShake program. EduShake implements

the equivalent linear material model like Panthalassa, however solves the problem in fre-

quency domain. In the frequency domain solution input motion is represented as the sum

of a series of sine waves of different amplitudes and response of the soil profile to the input

motion is calculated (ProShake User’s Manual [64]). Other differences between the analysis

of EduShake and Panthalassa are EduShake performs the solution in one dimension and uses

frequency independent damping. Frequency independent damping used in EduShake is de-

pendent on shear strain of soil whereas Rayleigh damping is dependent on frequency (Section

4.2.4).

Figure 5.12 presents the model used in this problem. A soil deposit with 50 m. depth was

subjected to Loma Prieta earthquake that was used in the previous problem. Soil model was

surrounded with absorbent boundaries. In order to avoid two dimensional wave reflections

68

0 2 4 6 8 10

2

4

6

8

10

12

Frequency (Hz)

A
m

pl
ifi

ca
tio

n
R

at
io

Analytical
Computed

Figure 5.11: Comparison of Analytical and Computed Amplification Curves

that may not be observed by absorbent boundaries soil model was extended to 800 m. width.

Loma Prieta EQ

800m

50m

Figure 5.12: Verification Problem 4: Equivalent Linear Material Model

Properties of soil and mesh used in this problem are presented in Table 5.4. Shear modulus

reduction and damping curves used in this problem were taken from from Vucetic and Dobry

[56] (Figure 4.5). Mesh properties of the model were determined using Equation 2.5. Since

Loma Prieta earthquake does not have significant amplitude in frequencies higher than 10 Hz.

mesh length of 2 m. in vertical direction is enough to transmit earthquake waves from bottom

to top. However since equivalent linear material model predicts shear modulus reduction, 0.5

m mesh length which, takes a 25x shear modulus reduction into account, was selected.

In order to test mesh properties and establish a base comparison between time domain and

frequency domain solutions first a linear test with 5% damping was performed. Figure 5.13

69

Table 5.4: Verification Problem 4: Equivalent Linear Material Model, Model Parameters

Parameter Value

E (Elastic Modulus) 200000 kPa
v (Poisson’s Ratio) 0.25
Vs (Shear Modulus) 200 m/s
γ (Soil Weight) 19.6 kN/m2

g (Gravity Acceleration) 9.81 m/s2

PI (Plasticity Index) 100
Rayleigh Damping Frequency 1 1.5
Rayleigh Damping Frequency 2 4.5
Model Size 50 m x 800 m
Element Size 0.5 m x 10 m

presents absolute maximum accelerations computed at different depths by two methods. Time

domain solution results in about 0.02g higher results than the frequency solution. Nonlinear

curve of the time domain solution is a result of two dimensional mesh and Rayleigh damping.

After the linear analysis, an equivalent linear analysis was performed. In this analysis equiv-

alent linear method based on both shear strain at every time step (γ = γtτ) and maximum

shear strain obtained up to the time step (γ = max(γt<tτ)) were used. Figure 5.14 presents ab-

solute maximum accelerations computed at different depths by three methods for equivalent

linear analysis. Similar to the results of the linear analysis, time domain solutions result in

slightly larger acceleration values than the frequency domain solution. For all solution meth-

ods, equivalent linear analysis results in lower accelerations (Table 5.5) than linear analysis.

This observation confirms the results of the implemented equivalent linear material model.

Table 5.5: Verification Problem 4: Accelerations Computed at the Top of the Soil Layer

Time Domain Frequency Domain

Linear 0.3306 0.3112
Equivalent Linear (γ = γtτ) 0.3146 0.3012
Equivalent Linear (γ = max(γt<tτ)) 0.3036

70

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

10

20

30

40

50

Acceleration (g)

D
ep

th
(m

)

Time Domain
Frequency Domain

Figure 5.13: Absolute Maximum Accelerations vs Depth Curves for Linear Solution

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

10

20

30

40

50

Acceleration (g)

D
ep

th
(m

)

Time Domain (γ = γtτ)
Time Domain (γ = max(γt<tτ))

Frequency Domain

Figure 5.14: Absolute Maximum Accelerations vs Depth Curves for Equivalent Linear Solu-
tion

71

CHAPTER 6

Parallel Tests

6.1 Introduction

The Parallel efficiency of the developed software platform was tested with two large scale

models. The first model was the fourth verification problem that is presented in Section 5.5.

The second model was a three dimensional adaptation of the first model. Dimensions of the

first model was changed to 240 m x 240 m x 50 m in the second model. Linear hexahedron

element was used in this model. Tests were performed on a cluster of 8 computers with Intel

Core2 Quad Q9300 CPUs and 3GB of RAM running on Windows XP operation system.

6.2 Case Studies

Case Study models were analyzed with both linear and equivalent linear methods using par-

allel processing. Output of solutions with different number of processes were compared in

order to verify the parallel solution procedure. Performances of the solutions were analyzed

for different meshes and number of elements. Every test was performed three times and aver-

age solution time was taken into account. Tests were performed using 1, 2, 4, 8, 16, and 32

processes. Note that, to use more than eight processes more than one core of a processor were

utilized.

6.2.1 Linear Tests

Figure 6.1 presents timings and speed-ups achieved with parallel linear dynamic analyses.

Model 6, which is the biggest model with 72000 elements, could not be solved using a single

72

Table 6.1: Mesh Sizes of Models Analyzed with Parallel Solution Procedure

Model No Model Size Element Size # DOFs

1 800 m x 50 10 m x 0.50 m 16000
2 800 m x 50 10 m x 0.25 m 32000
3 800 m x 50 10 m x 0.10 m 81000
4 240 m x 240 m x 50 20 m x 20 m x 0.50 m 51200
5 240 m x 240 m x 50 20 m x 20 m x 0.25 m 101900
6 240 m x 240 m x 50 20 m x 20 m x 0.10 m 254000

processor because of memory exhaustion. In order to calculate speed-up values for Model 6,

run time for the solution of Model 6 for this case was estimated by multiplying the speed-up

value from Model 5 achieved using 2 processors by the run time for the solution of Model 6

achieved using 2 processors. For first three models speed-ups achieved were below one. For

models 4, 5 and 6 speed-ups more than one were achieved.

Top accelerations computed with linear tests for the first three models are presented in Table

6.2. All values are the same as the sequential solution from Section 5.5 which verifies the

parallel solution.

Table 6.2: Acceleration at Top of Soil Layer Computed with Different Number Processes,
Linear Solution

Processes 1 2 4 8 16 24 32

Top Acceleration (g) 0.3306 0.3306 0.3306 0.3306 0.3306 0.3306 0.3306

As discussed in Section 4.3.1 linear solution procedure is composed of two main parts. First

part consists of assembly of solution space and factorization. The task of solution space is

parallelized as each process partition a part of the solution space. Factorization is parallelized

using the MUMPS library. Second part consists of forward and back substitutions for every

time step of the analysis. Second part cannot be parallelized easily as it involves vector

addition and multiplication with real numbers which are processes with short running times.

In the second step overhead of message passing becomes large enough that little or no gain

can be expected. Table 6.3 presents time spent in these two parts for linear analyses. For

linear analysis first part is executed only once however second part reoccurs at every time

73

5 10 15 20 25 30

200

400

600

Processes

Ti
m

e
(s

)

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

5 10 15 20 25 30

0.5

1

1.5

2

Processes

Sp
ee

d-
up

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Figure 6.1: Timings and Speed-Ups, Parallel Linear Analyses

74

step. For dynamic analysis with many time steps (2000 for this problem) second part of the

solution procedure takes up most of the analysis time. For this reason, there was no run

time improvement for small two dimensional models. Although speed-ups over one were

experienced for bigger three dimensional models, parallel efficiency achieved was poor and

only eight processors could be used effectively.

Table 6.3: Time Spent In Solution Steps For Linear Analyses

Processes 1 2 4 8 16 24 32

Model 1
Part I (s) 0.607 0.350 0.223 0.187 0.352 0.627 0.857
Part II (s) 15.675 24.197 32.918 41.595 60.257 73.357 94.410
Model 2
Part I (s) 1.231 0.691 0.424 0.302 0.284 0.499 0.757
Part II (s) 31.535 41.543 54.888 66.245 89.966 94.563 135.696
Model 3
Part I (s) 3.128 1.803 1.071 0.752 0.640 0.785 0.933
Part II (s) 84.872 99.306 110.085 116.498 146.125 217.730 345.645
Model 4
Part I (s) 24.617 12.203 6.094 3.000 1.578 1.062 0.875
Part II (s) 137.430 117.984 111.531 128.218 174.516 171.078 238.750
Model 5
Part I (s) 49.985 24.813 12.328 6.078 3.046 2.078 1.656
Part II (s) 292.983 232.483 184.888 175.906 218.642 266.209 383.157
Model 6
Part I (s) x 62.266 30.921 15.250 7.609 5.172 4.000
Part II (s) x 570.406 410.141 349.172 445.266 523.906 618.016

6.2.2 Equivalent Linear Tests

Figure 6.2 presents timings and speed-up values achieved with parallel equivalent linear anal-

yses. Similar to linear analyses Model 6 could not be solved with a single processor because

of memory exhaustion and run time for this case was estimated using the same procedure

with the one used in linear analyses in order to calculate speed-ups for Model 6. In equivalent

linear analyses speed-up values over 1 were achieved for all test cases. Table 6.4 presents the

highest speed-up factors for all models. Analysis of the smallest model, Model 1, continued

to get faster up to 8 processes. Medium sized models: Model 4, 5 and 6 achieved their highest

speed-up with 16 processors. Model 5 continued to get faster up to 24 processors. All of 32

75

processors could be efficiently utilized for the solution of the largest model: Model 6. As the

analyzed model got bigger speed-up values and the number of processes it was achieved with

got bigger.

Table 6.4: Highest Speed-Up Values Achieved by Parallel Equivalent Linear Solution

Model # Processes Speed-Up

Model 1 8 3.24
Model 2 16 4.34
Model 3 16 4.88
Model 4 16 7.05
Model 5 24 8.50
Model 6 32 11.51

Top accelerations computed with equivalent linear tests for the first three models are presented

in Table 6.5. All values are the same as the sequential solution from Section 5.5 which verifies

the parallel solution.

Table 6.5: Acceleration at Top of Soil Layer Computed with Different Number Processes,
Equivalent Linear Solution

Processes 1 2 4 8 16 24 32

Top Acceleration (g) 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146 0.3146

In the equivalent linear solution procedure, both solution steps discussed in Section 6.2.1

are performed for every time step. Since parallelization is effective for solution space as-

sembly and factorization, more effective parallelization compared to linear analyses could be

achieved.

76

5 10 15 20 25 30

1,000

2,000

3,000

4,000

5,000

6,000

Processes

Ti
m

e
(s

)

Model 1
Model 2
Model 3

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

·105

Processes

Ti
m

e
(s

)

Model 4
Model 5
Model 6

5 10 15 20 25 30

1

2

3

4

Processes

Sp
ee

d-
up

Model 1
Model 2
Model 3

5 10 15 20 25 30

2

4

6

8

10

Processes

Sp
ee

d-
up

Model 4
Model 5
Model 6

Figure 6.2: Timings and Speed-Up Values, Parallel Equivalent Linear Analyses

77

CHAPTER 7

Summary and Conclusion

7.1 Summary

Within the confines of this study, a parallel finite element library called Panthalassa was de-

veloped in order to analyze dynamic SSI problems using parallel computing. Panthalassa is

a general purposed library which is extensible using plug-ins. A series of plug-ins were de-

veloped and added to the library in order to extend the capabilities of the library to parallel

dynamic analysis with the implicit Newmark method and the use of equivalent linear material

model.

Four verification problems were solved to benchmark the implemented algorithms. First three

problems compared computations of the implemented dynamic analysis algorithm with ana-

lytical values. The last problem compared the implemented equivalent material model with a

one dimensional frequency domain solution that uses the same material model.

In order to test the parallel implementation, the last of the verification problems was solved

using linear and equivalent linear models in parallel on a cluster composed of eight computers.

Verifications of the parallel solutions and performance analysis of solutions were performed.

A discussion of the results were given.

7.2 Conclusion

Based on the performed parallel tests the following conclusions could be made about the

implementations and their parallel performance:

78

• Implemented equivalent linear model results matched well with both analytical and

well-based existing numerical solutions.

• Implemented parallel linear dynamic algorithm performed poorly in terms of scalability

and performance gain from parallel computing.

• Implemented equivalent linear dynamic algorithm gave good results in terms of scal-

ability and performance gain from parallel computing, achieving up to 11.51 times

speed-up using 32 processes.

• Factorization and solution space assembly steps of the dynamic analysis are major parts

that can be parallelized.

• Algorithms that need to execute factorization and solution space assembly steps many

times, like equivalent linear analysis in time domain, nonlinear static and nonlinear

dynamic analyses can be parallelized with a similar strategy to the implementation

carried out in this study.

• Algorithms that need to execute factorization and solution space assembly steps only

once and use the factorized matrices many times may not be good candidates to be

parallelized with a similar strategy used in this study depending on time spent on parts

other than factorization.

• As the number of processors used in an analysis gets bigger, the size of the problem

needs to get bigger as well for good parallel performance.

79

Bibliography

[1] G. V. Wilson. The History of the Development of Parallel Computing. url: http:

//ei.cs.vt.edu/˜history/Parallel.html (visited on 12/23/2010).

[2] G. Anthes. The Power of Parallelism. url: http://www.computerworld.com/s/

article/65878/The_Power_of_Parallelism (visited on 12/23/2010).

[3] R. Trobec. Parallel computing: Numerics, Applications and Trends. Springer, 2009.

[4] M. J. Sottile, T. G. Mattson, and C. E. Rasmussen. Introduction to Concurrency in

Programming Languages. Chapman and Hall, 2010.

[5] OpenMP. Open Multi Processing. url: http://openmp.org (visited on 11/14/2010).

[6] c++0x. The C++ Standards Committee. url: http://www.open-std.org/jtc1/

sc22/wg21/ (visited on 11/14/2010).

[7] Message Passing Forum. The Message Passing Interface Standard. url: http://www.

mcs.anl.gov/research/projects/mpi (visited on 11/14/2010).

[8] MS-MPI. Microsoft MPI. url: http://msdn.microsoft.com/en-us/library/

bb524831(v=vs.85).aspx (visited on 11/14/2010).

[9] Message Passing Interface Chameleon 2 Library. url: http://www.mcs.anl.gov/

research/projects/mpich2 (visited on 11/14/2010).

[10] Nvidia. Nvidia Fermi Architecture Whitepaper. Nvidia. 2010.

[11] Nvidia. CUDA Zone. url: http://www.nvidia.com/object/cuda_home_new.

html (visited on 11/14/2010).

[12] Khronos. OpenCL, The Open Standard for Parallel Programming of Heterogeneous

Systems. url: http://www.khronos.org/opencl/ (visited on 11/14/2010).

[13] Microsoft. Microsoft DirectX Developer Center. url: http://msdn.microsoft.

com/en-us/directx (visited on 11/14/2010).

80

[14] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, and W.

Hwu. “GPU Clusters for High-Performance Computing”. In: International Conference

on Cluster Computing. 2009.

[15] K. Karimi, N. G. Dickson, and F. Hamze. “A Performance Comparison of CUDA and

OpenCL”. In: arXiv.org (2010).

[16] T. L. Sterling. Beowulf cluster computing with Linux. The MIT Press, 2002.

[17] J. L. Potter. The Massively Parallel Processor. The MIT Press, 1985.

[18] TOP500. TOP500 Super Computer Sites. url: http://www.top500.org/ (visited on

11/14/2010).

[19] PVM. Parallel Virtual Machine. url: http://www.csm.ornl.gov/pvm/ (visited on

11/14/2010).

[20] G. A. Geist and J.A. Kohl. “PVM and MPI: a Comparison of Features”. In: Calcula-

teurs Paralleles, Vol. 8, pp. 137-150 (2009).

[21] R. D. Cook, D.S. Malkus, and M.E. Plesha. Concepts and Applications of Finite Ele-

ment Analysis. 3rd ed. John Wiley and Sons, 2007.

[22] M. H. Aliabadi. The Boundary Element Method Volume 2 Applications in Solids and

Structures. John Wiley and Sons, 2002.

[23] J. Lysmer and R. Kuhlemeyer. “Finite Dynamic Model for Infinite Media”. In: Journal

of the Engineering Mechanics Division Proceedings of the American Society of Civil

Engineers, Vol. 95, Issue 4 (1969).

[24] W. White, S. Valliappan, and I. Lee. “A Unified Boundary for Finite Dynamic Models”.

In: Journal of the Engineering Mechanics Division, Vol. 103, No. 5 (1976).

[25] Y.K. Chow. “Accuracy of Consstent and Lumped Viscous Dampers in Wave Propaga-

tion Problems”. In: International Journal for Numerical Methods in Engineering, Vol.

21, pp. 723- 732 (1985).

[26] H.R. Yerli, S. Kacin, and S. Kocak. “A Parallel Finite-Infinite Element Model for Two

Dimensional Soil-Structure Interaction Problems”. In: Soil Dynamics and Earthquake

Engineering Vol. 23, Issue 4, pp. 249-253 (2002).

[27] T. J. R. Hughes and Liu W. K. “Implicit-Explicit Finite Elements in Transient Analysis:

Implementation and Numerical Examples”. In: Journal of Applied Mechanics, Vol. 45,

Issue 2, pp. 375-379 (1978).

81

[28] P. Krysl and T. Belytschko. “Object-Oriented Parallelization of Explicit Structural Dy-

namics with PVM”. In: Computers and Structures Vol. 66, Issues 2-3 (1998).

[29] P. Krysl and Z. Bittnar. “Parallel Explicit Finite Element Solid Dynamics with Domain

Decomposition and Message Passing: Dual Partitioning Scalability”. In: Computers

and Structures Vol. 79, Issues 3 (2001).

[30] K. O. Noe and T. S. Sorensen. “Solid Mesh Registration for Radiotherapy Treatment

Planning”. In: Lecture Notes in Computer Science, Vol. 5958, pp. 59-70 (2010).

[31] D. Komatitsch, G. Erlebacher, D. Goddeke, and D. Michea. “High-order Fnite-Element

Seismic Wave Propagation Modeling with MPI on a Large GPU Cluster”. In: Journal

of Computational Physics Vol. 229, Issue 20 (2010).

[32] Wikipedia. Panthalassa. url: http://en.wikipedia.org/wiki/Panthalassa

(visited on 11/14/2010).

[33] Editors of the American Heritage Dictionaries, ed. Dictionary of Computer and Inter-

net Words: An A to Z Guide to Hardware, Software, and Cyberspace. Houghton Mifflin

Harcourt, 2001.

[34] D.M. Potts and L. Zdravkovic. Finite Element Analysis in Geotechnical Engineering:

Theory. Thomas Telford Publishing, 1999.

[35] O. Kurc. “A Substructure Based Parallel Solution Framework for Solving Linear Sys-

tems with Multiple Loading Conditions”. PhD thesis. Georgia Institute of Technology,

2005.

[36] BOOST. uBLAS library. url: http://www.boost.org/doc/libs/1_44_0/libs/

numeric/ublas/doc/index.htm (visited on 11/14/2010).

[37] Microsoft Developer Network. Static (C++). url: http://msdn.microsoft.com/

en-us/library/s1sb61xd.aspx (visited on 11/14/2010).

[38] L. J. Gross and J. Yellen, eds. Handbook of Graph Theory. CRC Press, 2003.

[39] K. K. Meng, D. Fengming, and E. T. Guan. Introduction to Graph Theory. World Sci-

entific Publishing, 2007.

[40] LEMON. Library for Efficient Modeling and Optimization in Networks. url: http:

//lemon.cs.elte.hu/trac/lemon (visited on 11/14/2010).

82

[41] ParMetis. Parallel Graph Partitioning and Sparse Matrix Ordering Library. url:

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview (visited

on 11/14/2010).

[42] G. Karypis and V. Kumar. METIS A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Ma-

trices Version 4.0. University of Minnesota, Department of Computer Science and En-

gineering Army HPC Research Center. 1998.

[43] G. Karypis and V. Kumar. “Multilevel algorithms for Multi-Constraint Graph Partition-

ing”. In: Proceedings of Supercomputing. 1998.

[44] G. Karypis and V. Kumar. “Multilevel K-Way Partitioning Scheme for Irregular

Graphs”. In: Journal of Parallel and Distributed Computing, Vol. 48, pp. 96-129

(1998).

[45] G. Karypis and V. Kumar. “Parallel Multilevel K-Way Partitioning Scheme for Irregu-

lar Graphs”. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

1996.

[46] G. Karypis, K. Schloegel, and V. Kumar. ParMetis: Parallel Graph Partitioning and

Sparse Matrix Ordering Library. University of Minnesota, Department of Computer

Science and Engineering Army HPC Research Center. 2003.

[47] T. Bahcecioglu. Pugg. url: http : / / pugg . sourceforge . net (visited on

11/14/2010).

[48] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns

Applied. Addison-Wesley Professional, 2001.

[49] Microsoft Developer Network. Dynamic-Link Library Functions. url: http://msdn.

microsoft.com/en-us/library/ms682599\%28v=VS.85\%29.aspx (visited on

11/14/2010).

[50] N. M. Newmark. “A Method of Computation for Structural Dynamics”. In: ASCE Jour-

nal of the Engineering Mechanics Division, Vol. 85, No. EM3. (1959).

[51] E. L. Wilson. “Dynamic Response by Step-By-Step Matrix Analysis”. In: Proceedings,

Symposium on the Use of Computers in Civil Engineering, Labortotio Nacional de

Engenharia Civil, Lisbon, Portugal, October 1-5 (1962).

83

[52] H. B. Seed and I. M. Idriss. Soil Moduli and Damping Factors for Dynamic Response

Analysis. Tech. rep. Earthquake Engineering Research Center, 1970.

[53] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Prentice Hall, Englewood Cliffs, 1987.

[54] I. A. Beresnev and K. Wen. “Nonlinear Soil Response A Reality ?” In: Bulletin of the

Seismological Society of America, Vol. 86, No. 6, pp. 1964-1978, December (1996).

[55] S. Kramer. Geotechnical Earthquake Engineering. Prentice-Hall International Series

in Civil Engineering and Engineering Mechanics, 1996.

[56] M. Vucetic and R. Dobry. “Effect of Soil Plasticity on Cyclic Response”. In: Journal

of Geotechnical Engineering, Vol. 117, No. 1, pp. 89-107 (1991).

[57] I. Ishibashi and X. Zhang. “Unified Dynamic Shear Moduli and Damping Ratios of

Sand and Clay”. In: Soils Found., Vol. 33, No. 1, pp. 182-191 (1993).

[58] P. R. Amestoy, I. S. Duff, and J.Y. L’Excellent. “Multifrontal Parallel Distributed Sym-

metric and Unsymmetric Solvers”. In: Comput. Methods Appl. Mech. Eng Vol. 184 pp.

501-520 (1998).

[59] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. Mes-

sage Passing Interface Forum. 2009.

[60] P.R. Amestoy, T.A. Davis, and I.S. Duff. “An Approximate Minimum Degree Ordering

Algorithm”. In: SIAM Journal on Matrix Analysis and Applications, Vol. 17, no 4, pp.

886-905 (1996).

[61] P.R. Amestoy. “Recent Progress in Parallel Multifrontal Solvers for Unsymmetric

Sparse Matrices”. In: Proceedings of the 15th World Congress on Scientific Compu-

tation, Modeling and Applied Mathematics, IMACS 97 (1997).

[62] J. Schulze. “Towards a Tighter Coupling of Bottom-Up and Top-Down Sparse Ma-

trix Ordering Methods”. In: BIT Numerical Mathematics, Vol. 41, no. 4, pp. 800-841

(2001).

[63] Netlib. ScaLAPACK Library. url: http://www.netlib.org/scalapack/ (visited

on 11/14/2010).

[64] ProShake Ground Response Analysis Program Version 1.1 Users Manual. EduPro Civil

Systems, Inc. 2007.

84

[65] J. Lysmer, T. Udaka, C. F. Tsai, and H. B. Seed. FLUSH: A Computer Program for

Approximate 3-D Analysis of Soil-Structure Interaction Problems. College of Engi-

neering, Engineering University of California. 1975.

[66] EduPro Civil Systems Inc. EduShake. url: http://www.proshake.com/ (visited on

11/14/2010).

[67] PLAXIS Version 8 Dynamic Manual. Plaxis. 2009.

[68] J. M. Roesset. “Fundamentals of Soil Amplification, in: Seismic Design for Nuclear

Power Plants”. In: The MIT Press, Cambridge, pp. 183-244 (1970).

[69] C. Visone, E. Bilotta, and F. Santucci. “Remarks on Site Response Analysis by Using

Plaxis Dynamic Module”. In: Plaxis Bulletin (2008).

85

