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ABSTRACT

3+1 ORTHOGONAL AND CONFORMAL DECOMPOSITION OF THE EINSTEIN
EQUATION AND THE ADM FORMALISM FOR GENERAL RELATIVITY

Dengiz, Suat
M.Sc., Department of Physics

Supervisor : Assoc. Prof. Dr. Bayram Tekin

February 2011, 92 pages

In this work, two particular orthogonal and conformal decompositions of the 3+1 dimen-
sional Einstein equation and Arnowitt-Deser-Misner (ADM) formalism for general relativity
are obtained. In order to do these, the 3+1 foliation of the four-dimensional spacetime, the
fundamental conformal transformations and the Hamiltonian form of general relativity that
leads to the ADM formalism, defined for the conserved quantities of the hypersurfaces of the
globally-hyperbolic asymptotically flat spacetimes, are reconstructed. All the calculations up

to chapter 7 are just a review.

We propose a method in chapter 7 which gives an interesting relation between the Cotton
(Conformal) soliton and the static vacuum solutions. The formulation that we introduce can
be extended to find the gradient Cotton soliton and the solutions of Topologically Massive

Gravity (TMG) as well as the gradient Ricci soliton.

Keywords: Hypersurface, Foliation, Conformal transformation, ADM formalism, Cotton soli-

ton, Asymptotically flatness.
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EINSTEIN DENKLEMLERININ 3+1 BOYUTLU DIK VE KONFORMAL
PARCALANMALARI VE GENEL GORELILIK ICIN ADM FORMALISMI

Dengiz, Suat
Yiiksek Lisans, Fizik Bolimii

Tez Yoneticisi : Dog. Dr. Bayram TEKIN

Subat 2011, 92 sayfa

Bu ¢alismada, 3+1 boyutlu Einstein denklemlerinin iki 6zel parcalanma hali olan dikey ve
konformal (ac1 koruyan) doniisiimleri ile genel gorelilige ait olan Arnowitt-Deser-Misner
(ADM) formiilleri elde edilmistir. Bunlar1 yapabilmek i¢in, 4 boyutlu uzay-zamanin 3+1
seklinde dilimlenmesi, temel konformal doniigiimler ve diiz uzay-zamanlara hiperbolik olarak
yakinsayan uzay-zamanlarin hiperyiizeylerin korunan biiytikliiklerini veren ADM formalizmi
yeniden olusturulmustur. 7. boliime kadar olan hesaplar 6nceden yapilmig olanlarin yeniden

gozden gecirilmesidir.

7. boliimde, Cotton (Konformal) solitonlar ve durgun vakum alan denklemlerinin ¢6ziimleri
arasindaki iligkiyi veren denklemler bizim ileri siirdiiglimiiz metot ile elde edilmistir. Ayrica,
tanittigimiz formiiller gradyan Cotton solitonlar1, Topolojik Kiitleli Kiitle Cekim ¢oziimlerini

ve gradyan Ricci solitonlarini bulmak icin genigletilebilir.

Anahtar Kelimeler: Hiperyiizeyler, Dilimleme, Konformal doniisiim, Cotton soliton, Yakinsayan

diizliik.
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CHAPTER 1

INTRODUCTION

In this MS thesis, we have followed Eric Gourgoulhon’s lecture notes titled 3+/ Formalism
and Bases of Numerical Relativity (arXiv:gr-qc/0703035vI” [1] and E. Poisson’s book : A
Relativist’s Toolkit, The Mathematics of Black-Hole Mechanics, Cambridge University Press,
Cambridge (2004)” [4].

Historically, the 3+1 approach has been put forward G. Darmaois (1927)[5], A. Lichnerowicz
(1930-40) [6], [7] and Y. Choquet-Bruhat (1952)[8]. During 1958, 3+1 formalism started to
be used to construct the Hamiltonian form of general relativity by P. A. M. Dirac [9], [10]
and later by R. Arnowitt, S. Deser and C. W. Misner (1962) [16]. The 3+1 formalism became

popular in the numerical relativity community during 1970 [1].

The 3+1 formalism is used to rewrite the Einstein equation as an initial value problem and
construct the Hamiltonian form of the general relativity. This method is based on the concept
of the hypersurface, %;, which is independent of whether the given spacetime is a solution
of the Einstein equation or not. In this formalism, we consider that there is an embedding
mapping ® which maps the points of a hypersurface into the corresponding points of the
four-dimensional manifold M such that M is covered by the continuous set of hypersurfaces
(Z1)ser. Furthermore, the well-known Gauss-Codazzi relations and the 3+1 decomposition of
the spacetime Ricci scalar curvature are the fundamental equations of the 3+1 decompositions
of the spacetime (M, g). And they play a crucial role in the 3+1 decompositions of the
Einstein equation. The Gauss-Codazzi relations are defined on a single hypersurface. On the
other hand, the 3+1 decomposition of the spacetime Ricci scalar is obtained from the flow of
the hypersurfaces. Moreover, the foliation is valid for any spacetime with a Lorentzian metric

so we have to restrict our selves to the globally-hyperbolic spacetimes. And the foliation



kinematics of the globally-hyperbolic spacetimes allow us to construct the Ricci equation
whose contraction with respect to the induced 3-metric gives the last fundamental equation of

the 341 formalism (i.e the 3+1 expression of the spacetime scalar curvature) [1].

The 3+1 decomposition of the Einstein equation is obtained by using the Gauss-Codazzi rela-
tions, the 3+1 decomposition of spacetime Ricci scalar and the 3+1 decomposition of stress-
energy tensor. Basically, the four-dimensional Einstein equation decomposes into three main
equations which are known as: the dynamical Einstein equation, Hamiltonian constraint and
Momentum constraint. The dynamical Einstein equation is obtained from the full projection
of the Einstein equation onto the hypersurface and has 6 independent components, the Hamil-
tonian constraint is obtained from the full projection of Einstein equation along the normal
vector and has 1 independent component and the Momentum constraint is obtained from the
mixed projection of the Einstein equation and it has 3 independent components. Therefore, as
we expect, the total number of independent components are 10 which is exactly the number

of independent components of the Einstein equation in four-dimensional spacetime [1].

The 3+1 dimensional Einstein system is modified to the Cauchy problem (or initial-value
problem) by rewriting it as a set of PDEs (Partial Differential Equations) and specifying with
the help of particular choices of the lapse function N and shift vector 8. Choosing a scalar
field N, a vector field 8 and a spatial coordinate system (x’) on an initial hypersurface allows
us to define a unique coordinate system (x%) within a neighborhood of X such that x* = 0
corresponds X,;. That is , N and 8 are depend on the coordinate systems. And also, the
lapse function N at each point of Xy leads us to define a unique vector m(= N n) which is
used to construct the neighboring hypersurface X5 by Lie dragging each point of Xy along
m. Therefore, the 3+1 dimensional Einstein system can be turned into as a PDEs system by
using tensor components which are expanded with respect to the coordinates (x%) = (¢, x)
adapted to the foliation. The PDEs form of the 3+1 dimensional Einstein system contains
only tensor fields of %, and their time derivatives which implies that they can be taken as a
time evolving tensor fields on a given X,;. The PDEs form of the 3+1 dimensional Einstein
system is a system of second-order, non-linear PDEs for unknown (y;;, K;;, N, /B’i ) when
the matter source terms (E, p;, S;; ) are given. Here v;; is the metric of the hypersurface,
K;; is the extrinsic curvature, E is the energy density, p; is the momentum density and S;; is
the stress tensor. The crucial point is that the PDEs form of the 341 Einstein system contains

neither the time derivative of N nor of 8. This means that they are not dynamical variables



rather they are just quantities associated with the coordinates (x%) = (z, x’) (that is, Lagrange
multipliers). Therefore, PDEs form of the 3+1 Einstein system can be converted into the

initial value problem by choosing particular N and S [1], [4].

Beside the orthogonal decomposition that is used for 3+1 formalism, the conformal decompo-
sition is also used to define the flow of the hypersurfaces by continuously mapping an initial
well-defined conformal background metric ¥;; into the induced 3-metric of ¥;. Lichnerowicz
[6] proposed that by mean of the particular conformal decomposition of the extrinsic curva-
ture, one can arrange the constraint equations which allows us to define initial data for the
Cauchy problem. In addition to this, York has shown that the conformal decompositions can
be used for the time evolution [15]. That’s, he has proved that the two degrees of freedom
of the gravitational field are carried by the conformal equivalence classes of the induced 3-
metric [15]. The Weyl tensor is used to check whether a given spacetime, whose dimension is
greater than 3, is conformally flat or not.And it disappears for lower-dimensional manifolds.
In this case, the Cotton-York tensor {[14], [15], [13]}, C¥, does the same task of the Weyl
tensor in higher dimensional spacetime. Furthermore, the Cotton-York [14], [15], [13] tensor

of weight 5/6, cY = Y0Ci | is conformally invariant.

The Hamiltonian model approaches a physical state at a certain time and gives the evolution
of the state as time varies. This model is being transformed into the gravitational theory as
a state on a particular spacelike hypersurface [9], [10]. Now, the gravitational theory is a
covariant theory and locally has Lorentz symmetry. In order to write the Einstein equations
into the Hamiltonian form, people started to give up the main covariance property of the
gravitational theory by choosing a family of particular coordinate systems such that “ x* =
constant corresponds a spacelike hypersurface. Instead of the set (y;;, K;j, N, B') in the
PDEs form of 3+1 Einstein system, Arnowitt, Deser and Misner have proposed the ADM
formalism of the general relativity in which conjugate momentum of the induced three-metric
Yijs il = W(Kyij — K'7), is used. In the ADM formalism [16], 7'/ and vij are the dynamical
variables and the Lapse function N and the shift vector 8 are taken as Lagrange multipliers

[16]. In the chapter 6, we will see this in detail [1], [4].

The action for the General Relativity (when the boundary term is different than zero) contains
Einstein-Hilbert part and Matter part. The infinitesimal four-dimensional volume element is

taken as the union of two spacelike hypersurfaces X; , ;, which are at the upper and lower



boundaries and a timelike hypersurface 8 between %;,, %;,. Now, 341 decomposition of M
and 2+1 decomposition of the timelike hypersurface with proper choice of vectors lead us
to the conserved quantities of the ADM mass, ADM linear momentum and ADM angular
(by using rotational Killing vectors) of a given hypersurface. However, due to the fact that
global quantities of mass, linear momentum and angular momentum are defined only for
asymptotically flat spacetimes, the ADM formulas are valid just for the spacetimes which
asymptotically converge to well-defined spacetimes such as Minkowski spacetime [1], [4],

[16].

Finally, R. Bartnik and P. Tod introduce [20] the conditions on the intrinsic quantities of the
%;. They ensure whether the %, is a hypersurface of a spacetime which is a solution of the
four-dimensional static vacuum field ( with A = 0) or not. In addition to [20], we introduce
the equations (7.30), (7.31) (for A = 0 case) and (7.28), (7.29) (for A # 0 case). These
equations can be used to find which solutions of the gradient Cotton (Conformal) soliton [21]
are also the solutions of the static vacuum fields equations. However, We have not also been
able to solve the constraint equations and have not found explicit metric. Moreover, we think
that our method can be extended to the Ricci soliton [23] and Topologically Massive Gravity

(TMG) [24], [25], [26].



CHAPTER 2

GEOMETRY OF HYPERSURFACES

Since 3+1 decomposition of the spacetime is constructed by slicing the spacetime with a
continuous set of the hypersurfaces, (Z;);cg, we will deal with the geometrical fundamentals
of the hypersurface. The geometrical results that we will obtain in this chapter are fully
independent of whether the given spacetime is a solution of the Einstein equation or not. The

only constraint is that the spacetime must have Lorentzian metric [1], [2], [3] .

2.1 NOTATIONS AND BASIC GEOMETRICAL TOOLS

2.1.1 Spacetime and Tensor Fields

We assume a real, smooth (i.e. C*) four-dimensional manifold M which endowed a Lorentzian
metric of signature (—, +, +, +) and a connection V. In general, no one can define a global vec-
tor space on manifolds. Therefore, it is considered that at each point of the manifolds there
is a space of vectors 7 ,(M) (titled as tangent space at the point p) and corresponding space
of linear forms 7 ;(M) (titled as dual space or cotangent space at the point p ). Furthermore,
we suppose that all the Greek letters {a, 5,7, ...} run in {0, 1, 2, 3} are free indices , {u, v, o, ...}

are dummy indices and all Latin letters {i, j, k, ...} run in {1, 2, 3} and {a, b, c, ...} run in {2, 3}.

Since the 7,(M) and 7 ;(M) are vector spaces, we consider that there is a set of basis (e”)
which spans 7,(M) and the associated dual set of basis (e,) which spans T; (M) such that
e%(eg) = 0“g. Therefore, any tensor field T of type (2 ) can be expanded with respect to these

bases as

T=T""%g pexn®. Q@@ @, 2.1)



Here T g g , are the related components of T relative to the bases (¢%) and (e,). A tensor
field T with rank (Z ) turns into another tensor field VT with the rank (qfl) when the covariant

derivative acts on it. Therefore, the expansion of VT in these bases is
VT =T g oyeq, ®..0¢, @ @..0f o . (2.2)

The contraction of covariant derivative of the tensor field T with an arbitrary vector field u
gives us the covariant derivative of T along the vector field u which does not change the rank
of tensor fields T

VuT =VT(..,..,0),
™ (2.3)
p +qslots

where 'V, T g g are the components of VT with respect to (¢*) and (eq).

2.1.2 Scalar Products and Metric Duality

In general, we do not know how to relate the elements of 7,(M) (or of 7, (M) ). The concept
of metric is introduced to do this task. Now, the scalar product of two vectors is taken place

by mean of the related metric g of the manifold M

Y(u,v) € T,(M)®T ,(M),

wyv = g(uf'e,,ve,) = u'v'gley, e) = guit!'v’ = u'vy, .

Here the metric g is taken as if it has two slots for inputting vectors. Alternatively, the same

job is done by bracket notation : Y(W,v) € 7;(M) & T ,(M),

<W, V> =< wue, Ve, >
=wy <é e, >
=wyv'el(e,)
=w'ot,
=w .

As we see in equation (2.2), ” Vgwe,e® ® é# ” are the components of the 2-form VW relative to

the bases e? ® €f of 7*(M) ® 7*(M). Then, the directional covariant derivative of a I-form



w along a vector field u,V,w, is a 1-form

VuW = VW(u)
= [Vywlgeﬁe”](u“ev)
= u“Vyw/geB e’ (ey)
= u“VywﬁeB(Y” p

= u“V,,wBeB.

Since the directional derivative, VW, is a 1-form, we use the bracket notation to get a scalar

from it: Y(W,u,v) e T"(M)QT (M) T (M),

Vw(ua,v) =< Vyw, v >
=< M”V#w,geﬁ,vvey >
= u'V,wpy” < &Pe, >
= u“V,Jwﬁv"(SﬁV

— 4
=u"V'V,w,.

Any element of 7,(M) (or 7 ,(M)) can be mapped into 7,;(M) (or 7,(M)) by mean of the
2-form g. That’s, the metric g induces an isometry between 7 ,(M) and 7T, ; (M). Some of

crucial properties of this isometry are

1. The dual of any vector u (€ 7,(M)) is a unique linear form of 7, (M) and denoted by

i such that the scalar product is defined as

YveT,(M), <i,v>=guv). 2.4

2. The dual of any linear form W (€ 7 ,(M)), W, is a unique vector w € 7,(M) such that

Vv e THM), gW,v)=<w,v> .

3.T: 7,(M)®7T,(M) — R (i.e any rank (g) tensor T maps 2-vectors of tangent spaces

at the point p into the space of scalars) .



An endomorphism ? is induced from T such that ? T (M) - T(M) and it satisfies
T(w,v) = uVPT)y6," 55"
= uVITyy0,"
= u"V'Tyreq(e’)
=uV Ty, <€, eq > (2.5)
=u"V'T78(ey, €q)
= &y Ty

= u.?(v).

As we see in the equation (2.1) and because the endomorphism T is a 1-form, 7 are

5
the components of T relative to (ey).

2.1.3 Curvature Tensor

According to gravity, the matter curves the geometry and the geometry determines the motion
of the matter. The rank (;) Riemann curvature tensor measures how much the spacetime is
curved. Basically, it is a map which sends a 1-form and 3 vectors into the real, smooth space

of scalar fields C*°(M, R)
R T MOT (M) — C(M,R),

(W, w,u,v) —< W, VuVyw = Vy Vuw = Vi yw > (2.6)

The Riemann tensor “R is assumed to be machine which has 1 slot for 1-form and 3 slots
for vectors. The relation (2.6) is nothing but a tensor field on M. Furthermore, 4R75aﬂ is the
components of “R with respect to a proper set of basis (e,) and (e”) of 7,(M) and 7, ; M.

Now, the crucial properties of “R are
1. 4Ra'375 (= ga,,4R7575. ) is anti-symmetric between the 1% two terms @ and 8 and be-
tween the 2" two terms y and 6.

2. 4Raﬁy5 satisfies the cyclic property between the last three indices which is known as

second Bianchi identity

4Raﬁ75 + 4Ra,75ﬂ + 4Rm§,37 =0. (27)



3. For the torsion-free spacetime, the well-known relation of the Ricci identity is

[Ve, VoI = *RY yopw* . (2.8)

4. One-times contraction of 4Ryar5ﬁ ,1.e. & = B, leads us to a symmetric, bilinear-form

Ricci tensor *R. The *R is considered to be a machine that has 2 slots for vectors

R TMRT (M) — C(M,R),
2.9)
(u,v) — *R(e*, u, € V).

Also, the trace of the Ricci tensor relative to the dual of g results in the spacetime Scalar

curvature R.

5. The traceless part of the spacetime Riemann tensor titled as Weyl tensor, *C which
gives whether a given spacetime is conformally flat or not is obtained by subtracting
all the trace part (i.e. the Ricci tensor) and the trace-trace part (i.e. the Ricci scalar
4R = g""Ryy . ) of the spacetime Riemann curvature tensor from itself

4C 508 =RV 50 — %(4Rya86,8 — R pgs0 + *Rspd” o — 4R5a57,3)
+ LR850 — g0 =
3 86a0'p — 8op a)-

We need to emphasize that the Weyl tensor , *C, vanishes for spacetime whose dimen-

sion is lower than 4. Thus, in the lower dimensional geometry the spacetime Riemann

tensor can be written in terms of the Ricci tensor, the metric and the scalar curvature

tensor.

2.1.4 Hypersurface Embedded in Spacetime

As we see in the figure (2.1), the set of points, Vp € M, at which the scalar field is constant
corresponds a hypersurface X of the four-dimensional manifold M which is an image of a
three-dimensional manifold £ under the homeomorphism ®. Since the three-dimensional
manifold £ is something like to be embedded into the four-dimensional manifold M, we say

that the mapping @ is an embedding mapping
O:% 5 M. 2.11)

Furthermore, “one-to-one character of the embedding mapping ®© ensures that the hypersur-

faces do not intersect’”.



Figure 2.1: The embedding of 3 into M

The embedding mapping @ induces two well-known mappings of the push-forward mapping,
®,. , and the pull-back mapping, ®*. First, ®, maps the vectors of the tangent space of the

three-dimensional manifold 2, Tp(i), into the corresponding vectors of 7,(M)

D, : THE) — THM),
(2.12)
v=_0V, 1) — O,v=(0,v1,1°).

Here v/ = (v¥, 1, V%) is the components of the vector v with respect to the natural basis 9/0x’
of 7,(M) associated with the coordinates (x). On the other hand, ®* maps the linear forms
of 7;(M) into the corresponding linear forms of 7, <)
O T M) — T,E),
W— W T,E) — R, (2.13)
V—<W,D,v> .

Further insight, the mapping ®* acts on the multilinear forms of 7 ,(M), too
V(V1, e Vi) € Tp(E)", (D T)(V1, ey Vi) = T(Duv1, ey Divy) (2.14)

where T is an n-form. Especially, the pull-back of the 2-form spacetime metric g takes a
great attention. The pull-back of g is called the induced metric, vy, of the hypersurface, X, and

known as the first fundamental form of %,
y =d'g. (2.15)
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Moreover, the scalar product between any two vectors of the tangent space of the hypersurface

is same either by using g or y: Y(u,v) € 7,(2) X 7,(Z) ,

wv=g(uv)=vyuv). (2.16)

2.1.5 Normal Vector

We consider there is a scalar field # on M such that each ”’t =constant” corresponds the hy-
persurface X, of M and the vector V¢ is normal to . Then, the dual of the vector Vt is the

gradient 1-form dt such that the relation between them is
Ve = g™Vt = g™(dr), . 2.17)
and Vv € X, the scalar product vanishes
<dt,v>=0. (2.18)

Furthermore, the type of the normal vector Vt is determined by the type of the hypersurface
%: That’s, if the signature of induced metric y of X is (+,+,+) then X is spacelike and the
corresponding normal vector V¢ is timelike, contrary, if the signature of induced is (-,+,+)
then X is timelike and the corresponding normal vector V¢ is spacelike and, finally, if the

induced metric is degenerate , i.e. has signature of (0,+,+) then either X, or V¢ are null.

Although V7t is a unique normal vector to X, it is not a unit normal vector. Therefore, in the

not-null case, we normalize it to get a unit normal vector of n

PO (2.19)

VEVivt
where the positive sign (+) is used for a timelike hypersurface and the negative sign (-) is used

for a spacelike hypersurface. Thus, the norm of the unit normal vector is

\VAY -1 if X is spacelike

+1 if X is timelike

2.1.6 Intrinsic Curvature

For the not-null case, one can always propose a unique Levi-Civita connection D which is

still torsion-free and metric compatible on a hypersurface X. Moreover, the intrinsic covariant
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derivative D is defined by using the induced metric y. Now, as we see in the relation (2.6),
the Riemann curvature tensor measures the curvature by using the spacetime connection V.
However, in order to measure the curvature of the hypersurface X (i.e. the intrinsic curvature

of the ¥), we replace the spacetime connection V with the intrinsic connection D.
VveT (), [Di, DV =Ry (2.20)

That’s, the intrinsic curvature of a given hypersurface is nothing but the curvature which is
measured (or felt) by anybody moving on the hypersurface. Also, as we did in the equation
(2.9), one-times contraction on the intrinsic curvature tensor gives us the Ricci tensor of the
hypersurface

Rij = R";. (2.21)

Finally, the contraction of the intrinsic Ricci tensor results into the intrinsic scalar curvature
(or Gaussian curvature) of X.

R=7"R;;. (2.22)

2.1.7 Extrinsic Curvature

In 3+1 formalism, the global manifold is assumed to be constructed by a family of embedded
hypersurfaces. Naturally, we expect that there must be a machine (or a tensor field) which will
measure how much the hypersurfaces are bending within the global manifold. Fortunately,
there is one which is known as the extrinsic curvature K. To find the explicit form of K let
us first image a physical case: when a drop of ink is being released orthogonally onto the
surface of water, it spreads over the surface. Therefore, the orthogonal release of the drop is
something related to the spread of it over the surface. By taking this approach as a reference,
we see that we need a vector which is related to the spread of the unit normal vector fi over the
hypersurface . Basically, this is done by endomorphism Weingarten map (or shape operator)
x of T,(%)
X TpE) — T2,
v — Vyi.

In words, the machine y inserts the unit normal vector it into its slot and migrates the direc-
tional derivative of it which is an element of T ,(X)

Vy[i.h] =0.

1
(V) = AV, = 2
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Now, let us deduce the crucial property “self-adjointness with respect to the induced metric y

Zof y: Y(u,v) € T,(2)® T p(2),
uy(v) = u.Vyh = Vy[u.fi] - i.Vyu = —-a.Vyu, (2.23)
We assume that the forsion tensor is zero (Vvu —Vuv-—[u,v] = 0). Then, ( 2.23 ) becomes

wy(v) = —ﬁ.(VuV = [u, V])
= —.Vyv + i.[u, v]
(2.24)
= —Vu(A.v) + v.Vuh + [, v]

=v.Vyi + fi.[u, v].

For the sake of self-adjointness of y, we need to show that the last term of (2.24) disappears

Vt.[u,v] =< dt, [u,v] >

=< dt,(Vyv-Vyu) >

=< dt,Vyv > — <dt,Vyu) >

=< Vytet, WV oes > — < V,te, VWV, iles >

=Vt WV < et es > -Vt VWVl < e, es > (2.25)

=Vt wWVIHs — Vﬂtvvvvu‘sé“(s

=V 'V, =Vt vVt

= [V, (V1) = ¥V, Yt | = Y[V, (' Vut) = 0V, V1

=0,
where we used the fact that v/ is orthogonal to V,z. Thus, we proved that y is really self-
adjoint

Y(u,v) €T,Z)®T p(X), ux(v) = x(u).v, (2.26)

Since the Weingarten map y is self-adjoint, its eigenvalues are taken as the principal curva-
tures, k;, of the hypersurface X and the corresponding eigenvectors are taken as the principal

directions of the hypersurface such that the mean of the «; is known as the mean curvature H,

of X
1 3
H = gzk,-. (2.27)

i=1
Contrary to the intrinsic curvature, k; and H are depend on how the hypersurface is embedded

into M so they are taken as extrinsic character of Z. Now, we are ready to construct the explicit
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mapping of 2-form of the extrinsic curvature K of X by using the Weingarten map y. K is
assumed to be a machine which has two slots for the vectors of 7,(X) and whose output is a

scalar
K:7,2)e7,% — R,
(2.28)
(n,v) — —ux(v) .
This is the well-known relation of the second fundamental form (or the extrinsic curvature

tensor ) of the hypersurface X. Moreover, the relation between the contraction of K with

respect to the induced metric y and the mean curvature, H of X is

K =v"K;j = -3H. (2.29)

Up to now, we dealt with timelike and spacelike hypersurfaces. Now, we will restrict ourself
to spacelike hypersurface in which the signature of the induced metric y is (+,+,+) and we

will define the fundamental geometrical tools for it:

2.1.8 The Orthogonal Projector

The tangent space of M at a point p, 7,(M), can be orthogonally decomposed into the cor-
responding tangent space of the hypersurface X at the point p, 7,(X), and a one-dimensional
vector space of i, Vect(f)

THM) = T(Z) & Vect(ir) . (2.30)

where Vect(fi) is a 1-dimensional vector space for ii. Because in the null case Vect(f) C
T p(Z), the orthogonal decomposition of vector space (2.30) is valid only for spacelike and
timelike hypersurfaces. Now, the orthogonal decomposition (2.30) of 7,(M) allows us to
define an operator 7 which projects the elements of 7,(M) into of 7,(Z)

Y THM) — T,(E)

(2.31)
v — v+ (f.v)il,

here ;/) is known as the orthogonal projection operator. It selects the components of the vector
of ¥ among of M. Therefore, the projection of the unit normal vector fi is equal to zero [i.e.
since fi.h = —1, then, ?(ﬁ) = fi + (A.A)h = 0] and it acts as an identity operator for vectors
of Tp(X) [i.e. VvV eETHZ), ;/)(V) = v+ (fi.v)ii = v]. Further insight, the orthogonal projection

operator ;/) can be expanded relative a set of bases (e,) of 7,(M) and the corresponding
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components are

’}/aﬁ = 5aﬁ + I’lal’llg . (2.32)

We mentioned in (2.12) and (2.13) the embedding @ induces the push-forward mapping,
®,. and the pull-back mapping, ®* in the given direction and does not imply in the reverse
directions. On the other hand, as we illustrated in (2.31) that ;/) carries the elements from
7 p(M) and projects them into of 7,(X). And, it induces another mapping ;/)jw between the

corresponding dual spaces [from 7, ; ) to ‘T; M)]
WeT (D), VET,M), yp: THE) — THM),
W YW THM) — R,

Vo< yaW v > (2.33)

= VW)
= w(y(v).
Also, the induced mapping ;’)j\/t can map arbitrary n-form A of 7 ,(X)
VAETHE", Yot A— Yy A TpM)' — R,
(Vis oo Vi) — YAV s V), (2.34)

= ﬂ(;/}(vl), ey 7(Vn)) .

Particularly, the extension of 2-form induced metric y to M will act on the vectors of 7,(M)
.Then, we denote it with the same symbol, y = ?j\,(y The relation between the extended

induced metric y and the spacetime metric g is
~ ~ _>*
y=g+n®n=1y,y. (2.35)

where fi is a 1-form. As we did before, Y. = gap + nonp are the components of the extended
induced metric y (= ;/)j\,(y) relative to a proper family of basis (e®) of ‘T; (M). Let us take a

look at the action of y on the particular cases:

1. ¥(v,u) € Z, then, the induced metric y and the spacetime metric g will do the same job

on these vectors
—* - -
Yy, v) = gu,v)+ <h,u><n,v>

= g(u’ V) (236)

= gV’ .
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2. On the other hand, if one of these vectors (consider u = Aii) is collinear with fi, then,

the action of y will be zero. That’s, for any v € T),(M)

YU v) = 7y, v)
=Ag(h,v)+ A <, A ><n,V>

= g, v)- <h. ¥ > | (2.37)

:/l{<ﬁ,€'>—<ﬁ,€'>}

=0.

By observing the equation (2.32) and the components of the extended metric y (= ;/)*y ), we
see that the orthogonal projection operator 7 is obtained from the extended metric by raising
its 1*" index. Indeed, we use the same symbol for the extension of the extrinsic curvature K
to M, too:

K=7yK. (2.38)

Finally, with the help of the orthogonal projection operator ;/) any rank-(p+q) tensor T [ €
T (MP @ T *(M)? ] can be converted into another tensor, ;/)*MT, of same type which is still an

element of 7 (M)? @ 7*(M)?. The transformation between their components is by

YD gy =V Y Y Y Ty (2.39)

2.1.9 Relation Between ’K”” and Vj

Up to now we have not said anything about the diffusion of the unit normal vector fi within
the neighborhood of a point p of the hypersurface. We only assumed i to be at points of the
hypersurface. Basically, we will see that deviation of fi leads us to the relation between the
extrinsic curvature K and the covariant derivative along fi. Therefore, we need to define the
acceleration vector a of fi

a=Vah. (2.40)

If we assume that f is a 4-velocity of an observer (since fi is a timelike vector), then, fi is

4-acceleration of the observer . Furthermore, this deviation is an element of 7,(Z),

ValfA] = 0. 2.41)

N =

na=nVyh=

Now, we have emphasized that K can be taken as a machine which has two slots for inputting

vectors. Therefore, let us extend it to M and insert two vectors belonging the tangent space
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of Matp: Y(u,v) € 7,(M),

3 K@, v) = K(7W), 7))

=Y.V i

= —[u+ (WAL V [y q.vah
(2.42)
= —u.Vyii — (h.u)ii.Vyii — (fi.v)(u.a) — (f.v)(fi.u)(h.a)
= —u.Vyh — (i.v)(u.a)
=— < Vi(.,v),u>—-<au><n,v>,
where we used w.v = g(u,v) = g(ut'e,,Vv'e,) = g,u'v' = u'v,. We know that the equation
(2.42) is valid for any pair of tangent vectors of M so we can drop the vectors to get the

compact form as

K=-Vi-agnh= Vi=-K-a®n, (2.43)
here the symbol (7) means dual of the vector. The components of the tensorial equation (2.43)
with respect to a given basis of 7,(M) are

Vgng = —Kap — agng . (2.44)

The equation ( 2.44) is defined onto the four-dimensional manifold M. Then, let us pull-back
itto 7,(%)

Yo 8V = =¥ o¥ 3Ky — ¥ a¥ payny (2.45)
notice that the last term on the right hand side of the equation (2.45) vanishes because the

projection of n, onto X is zero so we get

Yoy 8V = =¥ oy 8Ky » (2.46)
or in compact form
K=7 K=—7 Vii. (2.47)

As we see in the equation (2.47), the projected form of Vii onto X (i.e. —K) is symmetric
though the four-dimensional Vit is not. Now, it is easy to show that the trace of the equation
(2.44) with respect to g% is

K =-Vgi, (2.48)

or in compact form

K=-Vi. (2.49)

The equation (2.49) gives the relation between the scalar extrinsic curvature and the diver-

gence of the unit normal vector.
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2.1.10 Relation between Connections of the Spacetime and of the Hypersurface

Consider a tensor field T onto X. Both the tensor field T and its covariant derivative DT are
tensor fields of M, too. As we implies before, we are able to convert DT into another vector

field of M which is denoted by 5 VT
DT =7 VT, (2.50)

or more precisely,

DT =7 Vy,T. 2.51)

And the related transformation of the components is given by

DT g, g =V ¥,V 3y ¥ 0, Y oV TH 0 L - (2.52)
The crucial properties of the transformation of ( 2.51) are

% %

1. v Vy,(T is a torsion-free connection on X, it satisfies all the defining properties of a
connection [linearity, reduction to gradient for a scalar field, commutes with contraction

and Leibniz rule].

% %

2. v VypT is metric compatible
(7 V) =¥V YV Y
= Vllayvﬁ'ypyvp [g,uv + n,unv]

=YY 5Y Vg + (Vomny + n(Von,)

apy

(2.53)

=0,

where we have used the metric compatibility of g and the fact that the orthogonal pro-

jection of fi onto X vanishes.
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Finally, let us derive the relation between the connections:

YW, v) € TH(D) @ Tp(®). (Duv) = u" Dyt
=u’y oy" VW
=u"y", VW
= w'{6% + n"n, |V, ¥ (2.54)

=u’6", V! + u"'n® n,V,
———

- VWV,n,

=u' V' —uV'n"Von,.

Now, the last term of the equation (2.54) is nothing but the definition of the extrinsic curvature

(2.28). By using this fact, the equation ( 2.54) becomes
Dyv = Vuv + K(u, v)it. (2.55)

That’s, the difference between the directional covariant derivatives Dyv and Vv is given by

the extrinsic curvature K(u,v). Furthermore, the difference is along the unit normal vector it.

2.2 GEOMETRY OF FOLIATION

From now, as we see in the figure (2.2), we will deal with a continuous family of embedded
hypersurfaces (X;);eg Which covers the spacetime (M, g) . However, the spacetime (M, g)
that we are going to foliate (i.e. to slice) is not any type of spacetime rather it is a globally-

hyperbolic spacetime.

2.2.1 Globally Hyperbolic Spacetimes and Foliation

In order to define what the globally-hyperbolic spacetime is, we need to first define the con-
cept of Cauchy Surface: Any spacelike hypersurface which is being intersected by causal
curves (i.e. timelike and null) if and only if one time is called A Cauchy Surface. Now,
any spacetime on which there can be defined a continuous family of Cauchy surface is called
a globally-hyperbolic spacetime [figure (2.2)] . Also, it is obvious that the topology of the

globally-hyperbolic spacetime is essentially X X R. In words, the foliation of the spacetime is
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Figure 2.2: The foliation of (M, g)

that there is assumed to be a smooth scalar field 7 on the four-dimensional manifold M such
that the union of points at which the scalar field is identical construct the related hypersurface
VieR, % ={pe M, ip) =1 = M=z, (2.56)

1€R
where we assume that the gradient of the scalar field is always different than zero (i.e. regular)

which ensures that the hypersurfaces never intersect

%L NE, =0 fort#t¢ . (2.57)

2.2.2 Foliation Kinematics

1. Lapse Function

For convention, let us use the symbol ¢ as the scalar field on M. Then, the vector V¢
is essentially normal to the hypersurface X, and not necessarily a unit normal vector .
Therefore, we suppose that there exists a scalar field N (> 0 and called lapse function

[11]) which is used to re-normalize V7 :

\Y%3 1
n=-Nt=—-—— 5 N= — (2.58)

V=Vi.V: N-Viv:’
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the minus sign in the equation (2.58) guarantees that fi is future-oriented. Because Vit
is a vector, its dual is the gradient 1-form d¢. The crucial point is that the lapse function
makes the df a unit 1-form, too: Suppose that there is a scalar field S such that i = S d¢
so what is S ?,

<n,f>=<Sdt,-NVt >

= SN{— <dt,Vt> }

1 (2.59)
=SN—
N2
=-1,
so S = —N. Thus,
i =—-Ndt. (2.60)

v(t+6t
® (t) Byl (1+51)
ot
dtm(p)
V(1)
p

Figure 2.3: The Lie Dragging of v € 7 (Z,) along m such that £,v € 7 (%,).Here the diffeo-
morphism ® mappings the elements of 7,(Z;) into of 74(Z;)
2. Normal Evolution Vector

Now, when we evaluate the inner product between the vector V¢ and the normal unit
vector i, we will see that it is not equal to 1. This means that the normal unit vector fii
can not follow the flow of the scalar field though it locally does . Then, the modification
of the fi to the evolution of the hypersurfaces seems as a primary condition .Therefore,

we propose a new normal vector m (known as normal evolution vector)
m=/Nn = m.m = -N?, (2.61)

such that the normal evolution vector m is being adapted to the flow of the scalar
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field ¢,

<dt,m > =< dt, Nii >
=N <dt, >

=N <dt,—NVt >
(2.62)

This modification provides the evolution of the hypersurfaces. That’s, all the points of
the initial hypersurface Z; are being carried along the vector 6rm such that the union of
carried points construct the neighbor hypersurface X, [see figure 2.4]. This evolution
of the hypersurface is known as the Lie dragging of hypersurfaces along m. As we see
from the figure (2.3) the Lie dragging along m does not disturb the elements tangent to

%,. That is , they are still the elements tangent to %, after dragging along m:

YWweTZ), LaveT (X). (2.63)

t+8t

Figure 2.4: The Lie Dragging of the Points

. Eulerian Observers

Actually, the unit normal vector fi can be taken as the 4-velocity of the Eulerian
Observer. Then, the world line of Eulerian Observer will intersect the hypersurface
Y, only one time which says that all the simultaneous events at each constant scalar
field (i.e. local) construct the hypersurface X,. Now, assume that there are two points
(=events) p (€ Z;) whose coordinate time is ¢ and p' (€ Z/1s:) whose time coordinate is
t + ot on the world-line of a Eulerian Observer. Then, the elapsed time difference 67

between two events with respect to the observer’s clock is given by

67 = y/—g(6tm,6tm) = +/g(-m, m)ét, (2.64)
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from the equation (2.61), we get
OT =N6t. (2.65)

As in the equation(2.40), the corresponding 4-acceleration of the the Eulerian Observer
is an element of 7, (%)

a=Vsh. (2.66)

Due to the fact that a € 7,(Z;), the 4-acceleration vector a can be rewritten in terms of
the lapse function N:
aq = n'Vyng, = "V, [-NVyt] = =n*(V,N)(Vot) = Ni'V, Vot

= —n”V,lN[—%na] - Nnt'V,V,t

= %nan“(VﬂN) - Nn“Va(—%nﬂ)

= %nanﬂ(vﬂN) + Nn/‘Va(%n,,)

= %n(,n“(V,JN) - N%”””valv + N%”#Va”#

= %nan“(V#N) + %VD,N

= %[6“(,V,JN +nen'V,N] = %

= %yl‘aVﬂN = a, = %DUN =D,InN,

or in compact form

[0Hy + nent 1V N

o
Il

Th
5
=

(2.67)

. Gradient of of the 1-form i and m

We are going to deduce very important two relations of the gradient of it and of m in
terms of the extrinsic curvature and the lapse function . Firstly, the substitution of the

equation (2.67) into the equation (2.43) gives us the gradient of the 1-form ii ,
Vii=-K-DInN®fi = Vgn, = —Kup — Do InNng. (2.68)

Secondly, the equations (2.61) and (2.68) are used to find the gradient of the dual of the

m,
Vi = V(Ni)

= NV(ii) + A ® VN
=N(K—ﬁlnN®ﬁ)+ﬁ®VN

=N(—K—%l~)N®ﬁ)+ﬁ®VN,
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so we get the gradient of the dual of m as
Vin=-K-DN@fi+i®VN. (2.69)
And its vector form as

Vm=-K-DN®n+n® VN = Vﬁma = —NKQB - Da,Nl’lﬁ + naVﬁN . (2.70)

. Evolution of the Induced 3-Metric

Under the flow of the hypersurfaces, the induced 3-metric is being carried by the Lie
derivative along m . With the help of the equation the equation (2.70), the Lie derivative

of y along m is deduced from

LnYaop = m'Vyyop + vugVor + yo, Vem

m"[V,u8ap + Vyu(nang)l + yugl-NK" o — D" Nngy + 1V N]

+’y(w[—NK”ﬁ — D“Nnﬁ + n"VﬁN]

m![(Vuno)ng + no(Vyung)l = NygK* o — y,8D"Nny

+ Y81 Vo N — Nyo K g — you D' Nng + youn*'VgN

N (Vng)ng + Nnon'(Vyng) — NKgy, — DgNng — NKog
— DyNng

= Nagng + Nagn, — 2NK.p — DgNn, — Dy Nng

= ND,InNng + NDgIn Nn, — 2NK,g — DgNn, — DoNng

= DQNn,g + D,gNna - ZNK(,ﬁ - D,gNn(, - D(,Nl’lﬁ ,
so we get

LmYop = —2NKop = Lmy = -2NK. (2.71)

Now,

LmYap = LnYop = N'Vyyap + VugVa(NI) + Yo, V(NH)
= Nn*'V,¥op + VNV ot + ygnt' Vo N + y4, NV
+ Yaul"' VgN (2.72)
= N{t"Vvap + vugVart + vouVpn''}

= N.Ln’y(yﬁ .

Thus, the equations (2.71) and (2.72) lead us to rewrite the extrinsic curvature in terms

of Lie derivative of the induced 3-metric along the unit normal vector:

1 1
-£n7aﬂ = N«Em'}’aﬂ = Ko = _E-En)’aﬁ . (2.73)
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6. Evolution of the Orthogonal Projector

In order to find the evolution of the tensor field T of 7 (X), we need first to show what
happens to the orthogonal projection operator under the flow of the hypersurfaces.
Again, the evolution of the orthogonal projection operator is done by the Lie derivative
along m
Ly p = m'Vyyp =y pVum® + ", Vgm!
= Nn*V,[6"g + n"ng] — y"g[-NK®, — D*Nn, + n"V,N]
+ Y u[-NK¥g — D"Nng + n"VgN] .

Because the projection of the normal vector and its dual onto the hypersurface is zero,

we have
Luny*s = N'Vn)ng + N(*Vung)n® + NKg + (D*N)ng

— n®DgN — NK% — (D°N)ng
= Na"ng + Nagn® — n“(DgN) — (D“N)ng
= N%D“Nnﬁ + N%DﬁNn“ —n"(DgN) = (D*N)ng
=0,
or in compact form
Lmy =0. (2.74)

The equation (2.74) implies that if initially a tensor field T is an element of hyper-
surface, it will remain to be an element of the hypersurface throughout the evolution.
Moreover, let us show this in detail: if a tensor field T is a tensor field belonging to the

hypersurface, then, the orthogonal projection operator acts as an identity operator,
FT=T. (2.75)

Now, we are seeking after the Lie dragging whether there is any projected part of the
carried tensor field of T along the normal unit vector ft or not. If there is any, then,
the Lie dragging will disturb the tensor T which is tangent to X to be still tangent to
during the flow of the hypersurfaces. Therefore, let us show on a simple sample of T

of type (}) Then, the transformation in terms of the components is
Yoy gTH, =T%. (2.76)
Let us carry the transformation along m,
Lnly" ¥ 5T = (LY )Y 5Ty + ¥ (LY ) + V" uy s LT . 2.77)

25



Hence, the property of (2.74) allows to write (2.77) as
Y'Y LTy = LT %, (2.78)

or in compact form

Y LT = LT, (2.79)

Thus, the Lie derivative along m of any tensor field T tangent to Z, is a tensor field

tangent to ;.

2.2.3 The Foliation of Hypersurfaces
2.2.3.1 Foliation of Spacelike Hypersurface X,

The coordinates adapted to the foliation x* = x*(y%) is assumed to be the parametrized curves
where the parametrization is the induced coordinates (y*) of the hypersurface %, [4]. The

projection operator can be written as

g X (2.80)

Since the extended line element of Z,

Ix 0P .
a—’;ady )(a—ybdyb) = hapdy®dy” (2.81)

ds%t = gaﬂdxadxg = ga,g(
so the induced 3-metric is

hap = gaﬁegeﬁ > (2.82)

where A, is the metric component of the spacelike hypersurface %;. Therefore, contravariant

form of the spacetime metric can be decomposed as
af _ _ (ynﬁ hab aeﬁ 2.83
g - n + ea b ( . )

where n, is timelike normal unit vector to X;. Further inside, the spacelike hypersurface can
be decomposed into its spacelike unit normal vector plus its boundary 2-surface S;: suppose
that the induced coordinates y* on X, is parametrized curves where the parametrization is the

coordinates y*(6*) of the S,. Then, the corresponding projection operator can be taken as

(2.84)



The extended line element of S,

ds: = hypdx®dx’ = hab(%def‘)(a—ﬂdel*) = oapd®’de® (2.85)
§,—Ta HOA o968 ’ '
so the induced 2-metric is
o aB = hapeleh. (2.86)

And the decomposition of the spacelike induced 3-metric is
W =1’ + o Besel . (2.87)

Therefore, the contravariant form of the spacetime metric can be written in terms of the time-

like and spacelike unit normal vectors as

g%® = —n"P + h”begeg

= —n%np + [r“rb + O'ABeZeg]eaei

(2.88)
= —n"nB + r'rf + UAB(egeﬁ)(Jieg)
= —n%P +rf + O'ABefZe’; .
Because €7 is tangent to X; and n“ is normal to Z;, we have
To = Ta€y = 1on® = rgean® =0=r, L n%, (2.89)

where n“ is the unit timelike vector which is normal to Z; and r® is the unit spacelike vector

normal to the boundary of %; (that is, S; ).

2.2.3.2 Foliation of the Timelike Hypersurface 5

Let 7' be the coordinates on the timelike hypersurface B [4] and the corresponding projection

operator to %,

el = aai; . (2.90)
The induced 3-metric of B is obtained from the projection of the spacetime metric g:
Yij = 8ape e, . 2.91)
And the contravariant form of the spacetime metric can be decomposed as
g% =" +yller e (2.92)
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Because Z' is arbitrary, let us choose them as 7' = (¢, 8)

dx® = (%) i+ (%)td#‘ = Nn%dr + e%d6" . (2.93)

Here 6" (A = 1,2) are the adapted coordinates of the boundary of the spacelike hypersurface

%,. Then, the extended line element of B is
dsﬁ3 = gaﬂdx“dxﬁ
= gap(Nn"dt + e5d0* )(NiPdt + &3d6")
= ap{N*nnPdr® + Nn it + 6P + NnPeSdr + 6 + e e5de’ de”) (2.94)
= —N2di* + o spd® do®
=v; jdzidzj .
Thus, we get the 2+1 decomposition of the 3-metric of the timelike hypersurface B as

yijdzdz! = —N*df* + o 4pd@*de® . (2.95)

2.3 COORDINATE ADAPTED TO THE FOLIATION

Here, it is assumed that there is a coordinate system (x' = x!, x%,x%) ) on each X, such that it
smoothly varies during the flow of the hypersurfaces. Then, we take [x* = (z, x')] as a proper

coordinate system on M.

3¢

Figure 2.5: The Shift Vector 5

Naturally, these adapted coordinate systems induce another set of coordinate systems for

the 7,(M). Basically, the corresponding partial derivatives are often chosen as the bases
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of 7,(M) :
(2.96)

where (i=1,2,3). Moreover, because of the shift vector that we are going to define, d; does not

have to be a timelike vector.

2.3.1 The Shift Vector S8

In addition to the 7,(M), the coordinates adapted to the foliation also induces a set of basis

gradient 1-form dx for 7, (M) such that it obeys
<dx®, 0 >=6%. (2.97)

Because of < dt,0; >= 1,0, drags the hypersurfaces as m does, too. However, in general,
they do not have to be collinear. They are collinear only if (x') of ¥, are orthogonal to each
other. Otherwise, as in the figure (2.5), there is assumed to be a deviation vector (shift vector
B) [11] between them

d,=m+8. (2.98)

And it is easy to show that the shift vector B is an element of the hypersurface %;. As it is said
before 9, does not have to be timelike. This property is determined by the square of the 3:

From the equation (2.98), the norm of d; is
8,0, =-N>+B.8, (2.99)

- > - >
so the if 8.8 < N? then 0, is a timelike vector, or if 8.8 > N? then 9, is a spacelike vector

and finally, if 8.8 = N? then 0, is a null vector.

2.3.2 341 Form of the Metric

The 3+1 decomposition of the spacetime metric and the 2+1 decomposition of the induced
3-metric of the timelike hypersurface B play a crucial role during the construction of the
Hamiltonian form of the general relativity. Therefore, we need to find the 3+1 form of the
spacetime metric g, too: After defining the suitable coordinate systems adapted to M, let us

expand the induced 3-metric vy relative to these coordinates (x) of X,
y = y;dx @ dx’ . (2.100)
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Because the shift vector 3 is tangent to X,, we can raise its indices with the help of the com-

ponents of the induced 3-metric 7y;; in this coordinate system,
Bi=viiB. (2.101)
Also, the expansion of the spacetime metric g in the corresponding coordinates is
g = gupdx” ®d.

Basically, g can be assumed as a machine which has two-slots for the corresponding vectors.

Therefore, the components of it are obtained by
- =
8ap = 8(0a, 9p). (2.102)

Therefore, with the help of the equations (2.98) and (2.102), the components g, in this coor-

dinate systems are

- - - = ) ;
go0 = 8(0;,0,) = 0,.0,=—-N"+B,5", (2.103)
i R - -
80i =8(0,,0)) = 0,0, =(m+ B).0;
e I e i . =
= m.6,~ + ,B.Gi = /3.8,~ :<,3, ai >
=< Bidx), 8 >=p;<dx), B; > (2.104)
zﬁjafl
=pBi,
— B —
gij=8(0i,0;)=20;.0;=vy. (2.105)

Thus, the 3+1 decomposition of the g,z in matrix representation is

8oo  80j
gQ‘B = =
8i0  &ij

Furthermore, let us evaluate the explicit 3+1 form of spacetime metric:

N2+ BB B ]
Bi Yij

gudy @dx’ = (= N* + B )dt @ dt + B;dt @ dx’ + Bidt ® dx' + y;jdx' ® dx/
= (= N+ B )dt @ dt + y; B dt ® dx’ + y;B'dt @ dx'
+ yijdxi ®dx’,
we get

guvdx ® dx” = —N*dt @ dt + y;j|dx' + fdt| ® [dx! + ] (2.106)

The ability of writing g in terms of its parts(2.106) is something like the beginning of the 3+1

formalism and the Hamiltonian form of general relativity Now, let us find the matrix form of
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the components of the dual spacetime metric g*. Suppose that the dual metric has the form

of
00 ,0j k
o | 8 g e v
8§ = _ U .
gtO gl j vob Jk
The matrix multiplication (In general, A;;B x = Cjx) between the covariant and the contravari-

ant forms of the spacetime metric is given by

-N*+ BBk B; a v | [1 0
Bi yij )\ v bk 0 oi '

The multiplication of the 1* row of g,, with the 1*' column of g** gives

api +yijv =0 = aB; = -v;, (2.107)
(-N*+B)a+by' =1 = (-N*+B,8)a—aB;B’ = 1. (2.108)
From the equations (2.107) and (2.107), we get a = —% and v/ = f]—J . The multiplication

between 2"? row of 8au With the 2" column of g% will give us the components b7*:

BB~

B +yib™ = 6u = yib™ = op — Bt = ou - N

(2.109)

Let us multiply (2.109) with y*,

e BB
Yy b = Yoy — Y=

N2
plk = ok _ BB~
_’y N2 ,

[ =i k—j.
With the help of the previous change of indices, we get

BB

bl‘/ = ’y” - W :

(2.110)

Thus, the decomposition of the components of the dual metric in matrix form is

. j
gh L v
. . i . ini | °
gv gl £ yi-E5

Notice that g;; = v;; but that in general g"/ # v, Alternatively, the dual spacetime metric g%
in matrix form can be obtained from the Cramer’s rule. Now, let us denote the determinant of
v and g as

g =det(gap), (2.111)
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y = det(yij) . (2.112)

Observe that because of the lapse function N and the shift vector S, the related determinants
of y;; and gup are coordinate dependent. Because of this, they are not tensors rather they are

tensor densities. Now, let us evaluate g0 component by using the Cramer’s rule,

M,
o0__Co _Mw_7 (2.113)

o det(gop) g 8
The (2.113) must be equal to the g0 component of the dual spacetime metric that we have

obtained from the matrix multiplication,

1
0_7 . (2.114)
g

— ——2 =
g N
Thus, the relation between the determinant of the induced 3-metric and of the spacetime

metric 1s

V=g =N+7y. (2.115)
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CHAPTER 3

THE GAUSS-CODAZZI RELATIONS AND THE 3+1
DECOMPOSITION OF SPACETIME RICCI SCALAR

In this chapter we will deduce the fundamental relations that are in the center of the 3+1
formalism of general relativity [1]. From now, unless it is emphasized, the hypersurface that
we will work on must be taken as the spacelike hypersurface %, (i.e. whose unit normal vector

1 is timelike ):

3.1 GAUSS AND CODAZZI RELATIONS

3.1.1 Gauss Relations

In order to find the first fundamental equation of the 3+1 formalism (i.e. Gauss relation), we
start with equation (2.20) (or the intrinsic Ricci identity) and use the related transformation

(2.52) between connections of D and V: The Ricci identity on X is

DQDﬁVY - DﬁDav” = Ryﬂalgv“ 5 (31)

here v € 7,(M). Since the second term in the equation (3.1) is obtained by interchanging the

indices of @ and B of the first term, it is better to work just on the 1 term of the equation
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(3.1): With the help of the equation (2.32), the 1*' term of the (3.1) is obtained as follow:
DoDpv” = Do(Dgv?) = Yo7 5y o Vul D1 = Y0 577 pVuly" vy AV
= 72V 8V A (VYT )Y a VeV + Y UV )V o
+ Y7 YAV, V)
= V¥ Y oA Vul6”y + 07 1y 2 Vvt + 7Vl 6 4+ Vot
+ 77V AV, Vo)
= 7 2Y" 87 V67, + (Vunny + 0 (V) 1y 1 Vo v"
+ YT V.1 + (Vg + 0 (V,m)]V o v?
+ 97V AV, o'}
= Y0¥ 8V A (Vun Iy Vv + 07 (Vum, )P 1V vt
+ y‘TV(V,an)nAVU\/I + y‘rvnp(V,Jn,l)V(rvl
+ 77V AV, Vo)
= Yo 8 o (Vun Iy iV oV + ¥ 0y gy on” (Vuny )y aV o v
+ 707 8y oY (Vi IV ev' + ¥4y 5y oy 1 (Vun )V

+ 7?8V oYV AV
Because the projection of the unit normal vector (and its dual) on the hypersurface is zero,

then, the previous equation becomes
DaDgv" = Yoy g ¥ an” (Vum)Vov + ¥y gy oy o (Vurl ua Vv
+ VY 5V 0V Y AV V!
= 7oy Y (V) Vv + ¥y gy o (Vur Jna Vo'
+ yﬂay(’,gymvﬂvgvﬂ
= —Kopy" an" Vo' = K7 oy g, Vo + 0y gy" 2V, Vot
= - aﬁyy,ln‘TV(Tv/l + Kyay"ﬁvﬂvm + y”ayo'ﬁ'yy,lvﬂvgvﬂ
= —KupY” OV + KY ay‘rlgylgvaUn A+ Yy gy /Nﬂvgvﬁ ,
where we used the equation (2.46). Let us interchange the dummy index of & with 4,

DyDpv? = —Kaﬁ)ﬂ’,m‘rvgv/l - KyaKlg,lV/l + y/‘ay‘fﬂynvﬂvgvl. (3.2)

In order to find the 2"¢ of the equation (3.1), it is enough to just interchange the indices @ and

B of the equation (3.2):
DgDyv? = —Kﬁayy/lnavgv’l - KVBKMV/l + y”ﬁy(rayy,lV#ng/l . 3.3)
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If we interchange the indices i and o of (3.3) and then subtract it from the equation ( 3.2), we
will get
Ry‘fa/ﬁvf = [Ky,BKa/l - KyaKﬁ/l]V/l + 'y#aya-ﬁ'yy/l[vﬂvo' - VU'V/,[]V/l .

The last term is nothing but the projection of spacetime curvature tensor. Then, we have
R gopt® = [K'5Koa — KY o KpaV' + ¥ 0¥ 57" 2 * Ry’ (3.4)
We can rewrite v’ as v = ’ypgv‘f . Then, the equation (3.4) becomes
Ry gy Y e "R oV = RV eapV® + (K oKy — K7 gKo a0
YooV Y AY & I puoV £aBY alipa plarlV,
A-=>p,p—o0,0—-Vv,E—0 E—90 A—-06

by changing of the dummy indices, the previous equation turns into

V”QVVm’ypV(T(S 4Rp0'yvv6 = Ryéaﬁvé + [Ky(xKﬁ(S - KyﬁKaé]V6 s (3.5)

since the vector 1/ is arbitrary, then, we can drop it to get the full projection of the spacetime

Riemann curvature tensor *R onto the hypersurface X, as
Yoy 8y 0¥ 6 ‘R oy = R sap + K o Kgs — KV gKys . (3.6)

The equation (3.6) is known as the Gauss relation. Let us continue by contracting the indices

a and y of Gauss relation (3.6):
Yor 5y s R oy = Rep + KKps — KooK . 3.7

The left hand side of the equation (3.7) can be rewritten in terms of the sum of the full projec-
tion of the spacetime Ricci tensor onto X and the mixed projection of the spacetime Riemann

curvature tensor “R:
Yoy Y s R oy = [0 + 111y Y7 5 R oy

= Y5775 Rov + 17" 57" 5 "R v

=765 Ry + 117y 57" 5 *Rogyy

=785 *Rov + 117y 5o *R7 py

T O Up eV

=875 *Rov + Y6y pn"n” *R s . (3.8

The substitution of the equation (3.8) into the equation (3.7) gives
Y875 R + Yusy’ gnn” *R o = Rop + KKgs — KooK 5.

- u 00—« a—u
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By applying the given change of the dummy indices in the previous equation, we get the

well-known relation of contracted Gauss relation as:
Yoy s Ruy + Yau ¥ snn” *R*ps = Rop + KKop — Koy K . (3.9)

Now, let us multiply the equation (3.9) by y?? (i.e. taking trace with the dual induced 3-metric
7*)
YPY oy s Ry + Y PV oV s n” R o = YPRap + Y P KKop
— ¥PKouK's,
it becomes

Y Ry + ¥ ' n” *RY e = R+ K? — Koy K (3.10)

We need to first modify the 1* and 2" terms of the left hand side of the equation (3.10):
o 4R/~tv = [g" + n'n"] 4Ruv =R + n'n” 4Ruv’ (3.11)

and
v o4 v o4
Y un'n? "RY, oo = [0F ) + 1Py In"n? "RY, o
=6 n"n’ 4R“Vm +nPn,n’n” 4R"’Vpg .
Because the Riemann tensor is antisymmetric in its first two and second two indices, the last

term in the previous equation is zero. Therefore, it turns into
V' n” Ry = 007 Ry (3.12)

By substituting the related results of (3.11) and (3.12) into the main equation of (3.10), we

get the another well-known relation of scalar Gauss relation as

*R+2*R,on'n” =R+ K* - K;;K" . (3.13)

3.1.2 Codazzi Relation

In order to find the second fundamental relation of 3+1 formalism (i.e. Codazzi relation), we
start with the Ricci identity of the four-dimensional spacetime for the unit normal vector fi.
And, then, we will project it 3-times onto the hypersurface %, : Now, the Ricci identity in four
dimension is

(VaVs = VgVo) ¥ = *R yopn” . (3.14)
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Let us start by projecting the equation (3.14) three-times onto the hypersurface X,
yﬂayvﬁyyp(vpvv - Vvvy)np = yﬂayvﬂyyp4Rpa'/1vno— . (3.15)

Again, as we did in the part of Gauss relation, let us just work on the 1% term of the equation
(3.15) because the 2"¢ term is obtained simply by interchanging the indices « and g of the 1

term: Therefore,
YoV 8y o Vi Vo = Yoy gy o Vul-K?, — )]
= yﬂayvﬂyyp{_vyl(pv - (Vuap)nv - ap(v/lnv)}
= _Vﬂayvﬂyypvul(pv - Vﬂayvﬁyyp(vuap)nv
Yoy gy pd (Vyuny) .

Since the projection of the dual of the unit vector is zero, the 2"¢ term on the last part of the

previous equation vanishes. Then, it becomes

YoV 8y o VYo = =y ¥ Y o VuK?y = V¥ gy pd (Vyuny)

= _DaKyﬁ - yyayvﬁ'yypap(vunv) >

(3.16)

where we used the general transformation relation (2.52) between connections. Because of

the equation (2.46), the equation (3.16) turns into
yﬂayvﬁyypvyvvnp = _DaKy,B + Kaﬂay . 3.17)

As we said before the interchange of the indices @ and 8 of the projected equation (3.17) of

the 1% term of (3.14) gives the projected version of the 2" term of the equation (3.14),
Yoy Y oV Vun” = —DgK? o + Kpoa” . (3.18)

Finally, the subtraction of (3.18) from (3.17) provides us the famous Codazzi-Mainardi re-
lation:

Y a¥ 5y p R oy’ = DKo — DoK' (3.19)
Now, Let us contract the Codazzi-Mainardi relation (3.19) on the indices @ and y

Yy 3 R oy’ = DgK — Do K%,
[6", + 11,1y 3 * R 5yyn” = DK — Do K%,

Y g8 R o™ + 0 n,n”y 5 R gy = DgK — Do K% .
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Because the multiplication between symmetric and antisymmetric tensors are zero, the second

term on the left hand side of the previous equation vanishes and we get

¥ 6", R 5™ = DK — DK% =y" 3 *Royn” = DK — Do K

(3.20)
ol AR a—-u,
and with the given change of the dummy indices in the equation (3.20), we reach
Yen¥ *R,, = DgK — D, K*g, (3.21)

which is known as the contracted Codazzi relation.

As we deduced above, the Gauss and Codazzi (or Codazzi-Mainardi) relations which are ob-
tained from the various numbers of the projection of the spacetime Riemann curvature tensor

4R onto or normal to a single hypersurface X,. That’s, the full-projection of *R onto the hy-

persurface X; gives the Gauss relation. And the three-times projections of *R onto the %, with

the one-times projection of it along the unit normal vector it gives the Codazzi-Mainardi relation.

3.2 LAST FUNDAMENTAL RELATIONS OF THE 3+1 DECOMPOSITION

3.2.1 The Ricci Equation

Contrary to the Gauss-Codazzi relations, the contraction of the Ricci equation that we will
deduce in this section results in the third fundamental relation of the 3+1 decomposition of the
spacetime Ricci scalar and is essentially based on the flow of the hypersurfaces. Moreover,
we will see that the two-times projection of “R onto X; with the two-times projection of it
along fi will lead us to the Ricci equation. As we did in the previous section, the starting point
is the Ricci identity in four dimension of fi but, here, we will project it two-times onto X, and

one-times along fi: The related four-dimensional Ricci identity for fi is

(V\Vo = VoV = 4R o . (3.22)
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Let us project the equation (3.22) two-times onto X, and one-times along it,

yayno-yvﬁ 4R'upvo—np = yauna-yvﬁ(vvvo- -V, V,)n*
= yauna-'yvﬁ{vv[_Kﬂ(T - D"InNny] - Vs[-K", — D" InNn,]}

= ')/aun(r'yvﬁ{_VvKﬂO' - V,[D*InNng] + V,K¥,

+ V,[D"1nNn,]}
(3.23)
= YotV p{=V, Ky — (V, D" In N)ns — D" InN(V,n)
+V,K*, + (VD" InN)n, + D*In N(V,n,)}
= Yoy pl-n"V,K*» + V(D" InN) + n°V,K*,
+ D*InNn°V,n,},
where we have used the equation (2.68) of the gradient of fi. Because of the relation
nKt, =0= n’V, K", = -K*,V,n?,
the equation (3.23) becomes
Youl”Y 8 R pvor = Yoy piK* o Vo™ + V,(D* In N) + n” VK",
+ (D*InN)(D, In N)}
(3.24)

= Yoy plK"s[-K7, = D InNn,] + V,(D" InN)

+n?VoK*, + (D" InN)(D, InN)} .

Since the projection of dual of the normal vector is zero, the equation (3.24) reduces to

Yo"y g R syt = Yoy v pl—K* o K7, + V,(D* In N) + n7V . K",

+ (D*InN)(D, In N)}

_yauyvﬁKﬂ(TKo-v + yau'yvﬁvv(Dﬂ InN)

+ Yoy gn” Vo K" + vouy s(D* In N)(D,, In N)

—Koo K7 + Dg(Do InN) + ¥4y gn" Vo Kpiy (3.25)

+ (Do In N)(DgIn N)

1 1

~KaoKp = 35 (DgN)(DaN) + 5:DsDeN
1

V0¥ 1" Vo Kyy + 15 (DaN)(DpN)

1
= —K,w-KO—ﬁ + NDﬁDwN + y",ﬁvﬁn‘rv(rl(#v .
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The aim is to find such a projection of “R which is totally composed of the intrinsic quantities

of %,. Therefore, we need to get rid off the last term of the equation (3.25):

LimKop = m'V, Kop + KygVom + Ko Vgm
= Nn*V, Ko + K,g[-NK", — D" Nn, + n"'V,N]
+ Kou[-NK*g — D*Nng + n*VgN] (3.26)

= Nn*V,Kop — NK,gK*, — K,gD"Nny + K, gn* Vo N

— NKy, K*g — KoyD"Nng + Ko n'VgN

= Nn*V,Kop — 2NK,, K" — K gD Nno — Koy D Nng ,
where we have used the fact that the projection of the extrinsic curvature along the unit normal
vector is zero. Due to the property of (2.79), the full projection of the equation (3.26) onto Z,
is

Y LnKop = LmKop

= Nyﬂa'yyﬁno-VO'Kyv - ZNVﬂQ'YVﬁKpJKO-v

(3.27)
- Yoy 3KevD? Nny — v oy" Ko D Ny,
= NY*oy"sn" Vo Ky = 2NV 0y K0 K7,
hence, we obtain
Yoy pn’ VoK, = %LmKaﬁ + 2K K. (3.28)

By substituting the equation (3.28) into the main equation (3.25), we obtain the crucial Ricci

equation as

1 1
Yoy gn” ‘R pyor = Nz:mlq,ﬁ + ND(,DBN + Koo K7p, (3.29)

where we benefited from the fact that the intrinsic connection D is torsion-free (That’s.
D.Dgf = DgD,f ; here, f is a scalar field). Furthermore, we can replace the first term of
the equation (3.29) that is a projection of the spacetime Riemann tensor 4R"pvg with the full
projection of spacetime Ricci tensor 4RW onto X; by using the contracted Gauss relation (3.9):

Now, the contracted Gauss relation that we have found is
yﬂayvﬁ 4R,uv + YQuypﬁn(rnv 4Rﬂvpo- = Raﬁ + KK(Iﬂ - KayK#ﬁ B

then
'}/ay'ypﬁno-ny 4’Rﬂva' = Raﬁ - 'y/la'yV,B 4R;4v + KK(YB - KayKﬂﬂ P (330)
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by interchanging the indices v and p of the previous equation (3.30) and then substituting it

into the Ricci Equation (3.29), we get
4 1 1 "
’y’ua’ypﬁ Rﬂp = _N‘EmKaﬁ - NDQDﬂN + Raﬁ + KKa,ﬁ - 2Ka,ﬂK B- (331)

For convention, let us do the operation of p — v in the first term of the equation (3.31). Then,

it becomes

1 1
Yar's Ry = —LmKap = 5 DaDpN + Rop + KKop = 2K K (3.32)

This is the equation of the full projection of the Ricci tensor onto the hypersurface %;. And

the compact form of the equation (3.32) is given by

-

1 1 _
FIR = —NLmK - NDDN +R+KK-2KK. (3.33)

3.2.2 3+1 Expression of the Spacetime Scalar Curvature

The Einstein equation contains the spacetime scalar curvature tensor *R so we are inevitably
forced to find its 3+1 decomposition. Otherwise, the 3+1 decompositions of the Einstein
equation can not to be constructed. Therefore, let us take the trace of the equation (3.32) with

the dual induced 3-metric y*#:
1 .. 1 . .
YPy oy s Ry = — Y LmKij = TDID'N + R+ K* - 2K; ;K7 (3.34)

it reduces to

1 .. 1 . .
Y 4R,y = — YV LmKij = TDiD'N + R+ K* - 2K;;KV . (3.35)

The 1* term of the equation (3.35) contains y*” and 4Ruv- In order to take the trace of 4R/m

we need to rewrite y*” in terms of g*” which is given in the equation (2.35):
VY 4R,D, = [¢" + n'n"] 4R,JV =%R+ 4R,u,,n“nv . (3.36)

Observe that (3.35) is a scalar equation. Because of this, we need to find the explicit form of

the 2" term of (3.35): Now,
VI LmKij = Ln(YKi)) = KijLmy"” = LK = Kij Ly . (3.37)

The last term of the equation (3.37) contains the Lie derivative of the dual induced 3-metric,

Ly, along the normal evolution vector m but we do not know what £y,y"/, directly. Fortu-
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nately, we know the Lie derivative of the induced 3-metric along m [equation (2.71)]. There-

fore, to find Lmy"/, we will use Lyy;; by starting from the relation y;y*/ = §/; :

Yy = 6/,
(L)Y + yie( Lm¥*) = 0 (3.38)

Yit( L) = =Y (Lnyir) -

Let us multiply the equation (3.38) by !/

Y 1y Lmy) = =V (Lyit) = Ly = —V"Y (Lmyin) »

l->ii—->kk—1l

Ly = =y " Lonyu
= 2Ny*yi Ky (3.39)
= 2NKY .

With this result, the equation (3.37) turns into the form that we want
Y LmKij = LK — 2NK; ;K" . (3.40)
Finally, by substituting the results of (3.36) and (3.40) into the main equation (3.35), we get

1 1
'R+ 4R ' = —N.[jmK - ND,-D’N +R+K>. (3.41)

To find the 3+1 decomposition of the spacetime scalar curvature “R, we need to rewrite the
term in the equation (3.41) which contains the spacetime Ricci tensor. This is done with the

help of the scalar Gauss relation (3.13):

*R+2*R,n'n" =R+ K* - K; ;K"

1 1 1 1 : 7
4 4 2
Rw,n“nv = —5 R+ ER + EK - EKUK” .

(3.42)

Thus, by substituting the results of (3.42) into the equation (3.41), we will get the 3+1 de-

composition of spacetime Scalar curvature as

) 2 .
‘R=R+K*+K;jK' - NLmK - ND,D’N. (3.43)
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CHAPTER 4

THE 3+1 DECOMPOSITION OF EINSTEIN EQUATION

In this chapter, we will suppose that the spacetime that we are going to deal with is a solution

of the Einstein equation with zero cosmological constant. Now, the Einstein equation:
4 1,
R_E Rg=8rT. 4.1)

It can be assumed as an equation of machines where each machine has two slots for inputs.

I 2 . .2

where T stands for the second rank stress-energy tensor and 7 is its trace. Then, by substi-
tuting the corresponding inputs into the slots, one can reach the 3+1 decomposition of the
Einstein equation. In order to find it, as we see from the equations (4.1) and (4.2), we need

first to find what the 3+1 decomposition of the stress-energy tensor T

4.1 THE 3+1 DECOMPOSITION OF THE STRESS-ENERGY TENSOR

Now, the full projection of the T along the unit normal vector ~is nothing but the energy

density E evaluated by the observer,
E =T, i). (4.3)
And the full projection of T onto X; is bilinear form stress tensor S: Y(u,v) € 7 ,(Z,),
S=5T=Tau,v), (4.4)

or in components form

Sap =¥V Tuv- 4.5)
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What the equation (4.5) says is that the action of the component of the force along e, onto the
infinitesimal surface of the normal along eg is given by S 5. Here, e, and e,, are the spacelike

vectors with respect to the frame which does the measurements.

Finally, the mixed projection of T is the p, component of the 1-form momentum density p:
That’s, Vv € 7,(X),
p=-T@,v), (4.6)

or in terms of the components

Pa = _n'u'yyaTuv . 4.7)

Now, let us think reversely. We naturally expect that the stress-energy tensor must be the

union of the corresponding projections of it: That’s,
T=En®i+S+poin+n®p. 4.8)

From the equation (4.8), it is easy to show that the important relation between the traces of T

(i.e. T), S (i.e. §) [with respect to g] and E is given by

T=S-E. (4.9)

4.2 THE PROJECTION OF THE EINSTEIN EQUATION

With the help of the fundamental relations of the 3+1 formalism that we have found in the
previous chapter and the 3+1 decomposition of the stress-energy tensor, we will find the
3+1 decomposition of the Einstein equation which are known as the dynamical Einstein

equation, the Hamiltonian and the Momentum constraint equations.

4.2.1 Full Projection onto X,

First of all, let us start by fully projecting the Einstein equation of (4.2) onto the hypersurface
I
1
VR =82(Y"T - §T7*g). (4.10)

Now, the knowledge of T is equal to the difference between S and E (see the equation 4.9),

the full projection of the T onto X; (the equation 4.4) is S and the full projection of the g is

44



the induced 3-metric y with the equation (3.33) of

1 |
7R = -~ LuK - -DDN + R+ KK - KK

leads us | | |
~ LmK - =DDN + R+ KK - 2KK = 8n(S - 518 - Ely),
leK — Ll pDNIR+KK-2KK + 87r(l[S ~Ely-S), (4.11)
N N 2

LuK = -DDN + NR + KK — 2K XK + 4x([S ~ Ely - 28),

or in the components form

—EmKa/j = _DaﬁDaﬁN + N{Raﬁ + KKaﬁ - ZK(zyK#ﬂ (4 12)
+47([S = Elyap — 2S o)} -

Since the equation (4.12) is totally composed of the quantities of Z;, we can rewrite it in terms

of the spatial indices,

LuKij = -DiD;N + N{R;; + KKij - 2Ky K¥; wis
+47([S = Elyij - 28}

The equation (4.13) is known as the dynamical part of the Einstein equation and it has 6

independent components.

4.2.2 Full Projection Perpendicular to %,

Secondly, let us fully project the Einstein equation (4.1) along the normal unit vector fi
dppra sy L4 PN PO
R, h) — 3 Rg(h,n) = 8xT(h,N). 4.14)
From the equation (4.3), the component form of the equation (4.14) becomes
4 nv 14
Rynt'n” + 3 R = 8nE. (4.15)

By using the scalar Gauss relation (3.13), we get the Hamiltonian constraint part of the
Einstein equation as

R+K* - KiK' = 167E . (4.16)

Since the Hamiltonian constraint equation (4.16) is a scalar equation, it has only 1 indepen-

dent component.
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4.2.3 Mixed Projection

Let us project the Einstein equation (4.1) either one-times onto the hypersurface or one-times
orthogonal to it

‘R(h,7() - 3 Rg(h, Y () = 82T(h,7()) = *R(A, 7 () = 82T(8, 7 ().

From the equation (4.18) we know that the mixed projection of the T is p. By using this

knowledge, the component form of the previous equation becomes
Yo 'Ry = —87p, . 4.17)

Now, by substituting the Contracted Codazzi Relation (3.21) into the equation (4.17), we get
the momentum constraint part of the Einstein equation (or simply Momentum constraint
equation) as

D,K¥y — DoK = 8npq , (4.18)

where (4.18) has 3 independent components. Moreover, it can also be rewritten in terms of
the spatial indices

D;K’; — DiK = 8np;. (4.19)

4.3 THE 3+1 DIMENSIONAL EINSTEIN EQUATION AS A PDEs SYSTEM

Now, the coordinate systems adapted to the flow of the hypersurfaces (2.96) allow us to trans-

form the 3+1 Einstein equation into a set of partial differential equations (PDEs).

4.3.1 Lie Derivatives Along ”’m” as Partial Derivatives

1. For L, K:

The equation (2.98) provides us to decompose the Lie derivative of the extrinsic curva-

ture along m in terms of the Lie derivatives of K along d; and along the shift vector

—

B
LK =L K- LK. (4.20)

The equation (4.20) says that £5 K is also a tensor field of the hypersurface. We wish

to write the tensor components relative to the well-defined coordinates. Then, the £- K

t

46



turns into the partial derivate relative to the time coordinate t

_ 8Kl'j

LgtKij - 7 . (421)

Similarly, the Lie derivative of K along 8 turns into the partial derivatives relative to

the spatial coordinates
.£—>K“ —ﬁk—ij + Ky i— (4 22)
B Y 8xi k '

2. For Ly :

Identically, the equation (2.98) provides us to decompose the Lie derivative L,y as
Lmyij = LE Yij — L;yij = -2NK;;. 4.23)

Again, because of the same reason, the Lie derivative of the induced 3-metric becomes

the partial derivative,

5%';‘
- Vij = —— 4.24
£31,y” ot ’ ( )
and also
LE% i = BDyyij + viiDip* + yuDB*
= ;D" + yuD ;B (4.25)

=DiBj+D;pi.

With the help of the form of the corresponding Lie derivatives (4.20) and (4.23) in the foli-
ation adapted coordinates, we get the 3+1 decomposition of Einstein equation within these
coordinates

0

— — L-yi; = -2NK;;, 4.26
(at Lﬁ)y’ NKij (4.26)

0
(6_t - ,EE)KZ‘J' = —DiDjN + N{Rij + KK,']‘ - 2KikKkj + 47T[(S - E)’yij - ZS,‘J']} . (427)
R+K* - K;;K" = 161E, (4.28)

D,;K’; — DiK = 8np;. (4.29)

This set of equations is known as the 3+1 dimensional Einstein system.
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CHAPTER 5

CONFORMAL DECOMPOSITION OF THE 3+1 EINSTEIN
EQUATION

In the Ricci and Cotton flows [23], [21], the Riemannian metric is being mapped by particular
diffeomorphisms. Furthermore, if the mapped metric is a scale times the initial metric then it
is called the gradient Ricci and the gradient Cotton solitons. As in the Ricci and Cotton flows,
we will examine the evolution of the hypersurfaces as if there is a well-defined Riemannian
conformal background metric ¥ and it is smoothly mapped into the 3-metric of Z, by a positive
scalar field ¥ during the flow. This type of the flow of the metric is known as the conformal

transformation (or flow) of the induced metric of %; ( see Lichnerowicz [6])
_ whs
v=¥"%. (5.1)

Now, let us take a look at what Eric Gourgoulhon [1] says about the York’s publications [14],
[15] which give the importance of the conformal transformation in gravity : ” In 1971 —
72, York has shown that conformal decompositions are also important for the time evolution
problem, by demonstrating that two degrees of freedom of the gravitational field are carried
by the conformal equivalence classes of the 3-metrics. A conformal equivalence is defined as
the set of all metrics that can be related to a given metric ;; by a conformal transformation
like the relation of (5.1)”. Now, we know that the Weyl tensor gives whether a given spacetime
is conformally flat or not [that’s, the background metric in the equation (5.1) is flat] and it is
valid for the spacetimes whose dimension is greater than 3. Here, in the lower dimensional

cases the conformally invariant Cotton tensor, C;jk, [13] takes the role of the Weyl tensor:

Cijk = Dk(Rij - %R%'j) - Dj(Rik - %R%'k)~ (5.2)
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Moreover, the York [14], [15] showed that the Cij is another conformally invariant tensor,
Cl =yoci, (5.3)
where the C is the well-known Cotton-York tensor [14], [15], [13] which is constructed from
the Cotton tensor (5.93) [13] as
ij 1 i mj _ _ikl i1
Cl = e Cury" = € D(R ,—ZR(S,), (5.4)

which satisfies the following properties

1. Symmetric:
€nCl = e DRV - 411 R ")
= (6% 6" — 66" ;) De(R7) % R %)
= Dj(Rn - %R &) = Du(R - %R &'}) (5.5)
= DG
=0.

2. The traceless: The Cotton-York tensor is traceless, then, let us first rewrite this in terms

of the sum of the Einstein tensor:
A A 1. . .
Ci = Ee”de(Rf, - 7R &%) + 5ef’de(R’, - <R&")
L i 1 i L i i
= —€ Dk(GJ] + —-R 5j1) + =€’ Dk(Gll + —R 511)
2 4 2 4 (5.6)

= EEIkIDkGJI + gElkJDkR + EéﬂdeGll + gé'/lekR

1. 1 ‘
= Eflleijl + EEJlekGl[.
By taking the trace of (5.6) with respect to ;;:
TR U ju
yiij = 56 DG + 56" Dijl . (57)
Because of the symmetric and antisymmetric relations in the equation (5.7), we get

yi;C7 = 0. (5.8)

3. Divergence-free, (i.e. transverse). D jCij =0.
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Now, let us prove that the tensor defined in the equation (5.3) is really conformally invariant

under the transformation (5.1) by using the following particular conformal transformations:
Loyij = W4,y - Wyl
2. det(yij)) —» (¥*det(y;;) =y = ¥'%y.

3 e % = el = YOk where y = det(y;)) .

4. Cort = Cppia -

Then
Cf;/ — ,y5/6Cij
1 , :
=~y M C oy

2
1

5/6 S~ .
_ _5[\1,127] / pOgk e, ptymi
5.9
1 .y~ .
— 5/5/6{ _ Eglklcmkllp—él,ymj}
— 5/6¢i]

~ii
=C/.

From here, we are going to find what happens to the 3+1 form of the Einstein equation under
the conformal transformation. Therefore, in order to find the explicit form of the conformal
3+1 expression of the Einstein equation, we first need to find the conformal form of the

fundamental quantities:

5.1 THE CONFORMAL FORM OF THE INTRINSIC QUANTITIES

Because the determinant of y depends upon the choice of coordinates so the conformal factor
is not a scalar field. Thanks to the flat background metric, we achieve to make the conformal

factor a scalar field [1].
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5.1.1 Conformal Connection

Now, suppose that there is a conformal background metric ¥ on the hypersurface whose in-

trinsic connection is metric-compatible

Dy =0.

And associated Christoffel symbols are defined as

o 1~k1{@ i _ 3%‘}‘

2 ow T and (5.10)

ij = 27
Here notice that the partial derivatives are taken with respect to the coordinates (x). Since the
intrinsic covariant derivative of any tensor field T can be taken relative to two connections D
and D, then, it is normal to expect that there must be a transformation between them. And

this transformation is given by

p
iedp . . ) iedp . 1} iedoi,
DT gy Ly = D0y gy + Z CrlT™" jy L,

r=1
q (5.11)

[ iy )
- Z C kj,T pjl...l...jq P
r=1

Here C¥; = Ff.‘j - ff?j. Also, it a tensor field because it is defined as the difference between the

Christoffel symbols. And its explicit form is
k  _ 1k _ &k
Chij =17 -7
—_T*k kT
=T}, = 0"nl7;

1 -
k Kl
= Fl.j + 5(—2)7 F’-’/’-yml

l.

U (O Oy Ovij 1 -
LTI TR T IO
2 oxt  ox)  Ox 2 I (5.12)
1 - - - - - - .
= 57”{ [Devij + Ty + Tyt + [ Dvin + T2yt + T
- [ — Dryij = Tymj - f;';-)’mi] - 21:?}7%1}
Y By — By
= 27 iYij Vil 1Yij(-
Because of the conformal transformation of induced 3-metric and its dual,
vij =Y, (5.13)
y"f = \}"45/’7 . (5.14)
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We can rewrite the equation (5.12) fully in terms of the conformal quantities as

1 - L -
Chj= Eykl{ij + Djyir — ij}

1 4= - ~ - ~ -

= ElP 4ykl{D,-(‘I’4wj) + D (¥*7u) - Dl(qﬂ'}’ij}
| o o~

= SY P D) + D) - 71, D)

" (5.15)
= w46k D,0w) + 64D 9 - D)

1( ., = . _
= 5{5" iDi(In¥*) + 6*:D j(In ) — ;D" (In l1!4)}
= 2{5" iDi(In'P) + 6;D ;(InP) — D*(In P, j} .

The equation (5.15) is playing an important role in the conformal transformation. As a sample,

let us find the relation between the v € T'(%,)
Djvi = Djvi + Cijkvk

=Dp' + 2{vk5" D) +v'Dj(In¥) — v 4. D(In ‘P)} . (5.16)

Let us do the change of j — i in the equation (5.16),
D' = Dpf + 2{vk6il~l~)k(ln ¥) +vDi(In¥) — vy Di(In ‘I’)}
= D' + 2{3kak(ln ¥) + v Di(In'¥) — v* Dy(In ‘I’)} .
k—i k—i
Thus, we get the conformal form of the divergence of the vector tangent to X as

D,‘Vi = D,‘vi + 6viDi InY¥

_ 5.17)
= ¥ 5D, (¥8).
5.1.2 Conformal Transformation of the Intrinsic Ricci Tensor
1. Conformal Relation of the Ricci Tensors in terms of the Tensor Field C
The corresponding Ricci identity is
(D,‘Dj - DjD,')Vk = Rklijvl . (518)

By doing the suitable operation of contraction and change of dummy indices, the equa-
tion (5.18) becomes

R,-jvj = DjD,'Vj - D,-Djvj . (519)
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Now, with the help of the general transformation relation (5.11), the equation (5.19)
can be written in terms of the conformal tensors of R, C and the conformal covariant
derivative of C,
Rijv' = D(Dp’) — C* ;D + CY 3 Dp* — Di(D )
= Dj{D,-vj + Cjikvk} - Ckﬁ{f)kvj + Cjklvl} + ijk{[)ivk + Ck,-lvl}
- D,-{Djvj + ijkvk}
= D;Div/ — DiD v/ + D;Cly* — C*jiClp' + €I Cr i — DiCI g* - (5.20)
= R/ + D;CTyp* — C* ;! + €I CF i’ = DiCY *
k—j l—j = k—j
= Rip! + DeCrip? — CRuClipy? + ClpCripvd — DiCli
Because v/ is an arbitrary vector field, we get

Rij = R,’j + chkij - DiCkkj + Ckijcllk - Ckilclkj . (5.21)

. The Conformal Transformation of the Intrinsic Ricci Tensors in terms of the Con-

formal Factor

The conformal equation (5.21) can be rewritten in terms of the Conformal factor ¥ by
using the equation of (5.15). For simplicity, let us work on the terms of the equation

(5.21) which contain the conformal covariant derivative of tensor field C :

(a) For D,-Ckkj .

k= 2{5’<,~D (In'P) + 8 ;Di(In W) - DK(InP); ,-} . (5.22)
Let us do the change i — k in the equation (5.22), then, it becomes

k= 2{5",43 (In'P) + 6* ;Dy(In'¥) — DX(In W)y, j}

= 2{3D (In'P) + Dj(In'¥) - Dy(In ‘P)} (5.23)
=6D;(In\p),
so we get
D,C*j = 6D:D;(In'P). (5.24)
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(b) For DiC*;; :

DiCt; =D {2{5",-13 (In¥) + &;D;(In¥) — DX(In ¥, J}}

2{D;D(in¥) + D;D(In'¥) - DD (In'¥)7;; (5.25)

=4D;D(In'¥) - 2D DX (In ) .

Let us substitute the results of (5.24), (5.25) and the explicit formula (5.15) for the

components of C into the main equation (5.21)

=
<
Il
]}

DiC*ij — DiC*yj + CFyiCly — CFyCly

j +4D;D(In¥) — 2D, D*(In ¥)y;; — 6D;D;(In ¥)

o
-

Il
>Uz

(In'P) + 6% ;Di(In'P) — D¥(In \P)ylj} X 6Dy In¥
4{85:D(In¥) + 65;D;(In'¥) — D*(In qf)«yi,}x
{5’ D j(In'P) + &' ;Di(In'¥) — D'(In P)y j}
= R;j — 2D;D (In'¥) — 2D, D*(In ¥)¥;; (5.26)
+ 126 (D (In W)(Dr(In ) + 126* (D; In P)(Dy In P)
— 12(D" In¥)(Dy In W)y;; — 46*:6'4(D; In ¥)(D; In\P)
— 46561 (D In P)(Dy In'P) + 46* (D In P)(D' In Py,
— 46516T(D; InP)(D; In'P) — 466! }(D; In ¥)(Dy In \P)
+ 465 1(D; In P)(D' In W)y ; + 461 (DF InW)(D; In P)7y

+ 46 (DX In ) (Dy InP)7i — 4(DF In )(D' In ¥)Furi »

by collecting the identical terms of the equation (5.26) in the each corresponding clus-

ters, we get conformal transformation of the Ricci tensor as

Rij=R;;—2D;D;(In¥) - 2D DF(In P); i+ (DiIn¥)(D;In'P) 527
— 4Dy InP)(D* In P)¥;; .
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5.1.3 Conformal Transformation of the Scalar Intrinsic Curvature

Let us first take the trace of the equation (5.27) with respect to the dual induced 3-metric y"/:
R =7y"R;;
= 45 R
_ l}f—“{«yi‘/iei = 259D;D(In'Y) — 2575, D D¥(In'P) (5.28)
+477(D; InP)(D; In ¥) — 4779, ;(Dy In ¥)(D* In ‘I’)}
= \P—“{R — 8[D:D' In'¥ + (D; In ¥)(D' In ‘I’)]} :

Here we need to modify the term D;D In'¥ of the equation (5.28) :

. i ~ DY “175 7 2R W
D:D'InY = D| | = ¥~ D;D'Y - ¥ D;¥D'¥
¥ (5.29)
=¥ 'D,D'Y — (D;In¥) (D' In¥P).
Thus, the substitution of the equation (5.29) into the equation (5.28) results in the conformal

transformation of the intrinsic scalar curvature of

R=Y"*R-8¥Y7D,D'¥. (5.30)

5.1.4 Conformal Transformation of the Extrinsic Curvature

Since the trace and traceless parts of the 3+1 Dynamical Einstein equation transform differ-
ently under conformal transformation, we need first to decompose the extrinsic curvature into

the trace part and traceless part.

1. The Extrinsic Curvature in terms of Trace and Traceless Parts

Now, the traceless part of the extrinsic curvature is defined as

1
A=K—§K7, (5.31)

such that 1r,A = YYA; ; = 0. Therefore, the covariant and conravariant components of

the extrinsic curvature can be rewritten in terms of the trace and traceless parts,

1 e
Kij=Aij+ 3Kyy and K= A"+ 2KyY. (5.32)
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2. Conformal Transformation of the Traceless Part

As in the conformal transformation of the induced 3-metric ;;, the conformal transfor-

mation of the traceless part of the extrinsic curvature must be something like
AV =AY (5.33)

We will see that the choice @ = —4 gives us the evolution equations for the conformal
factor ¥, the conformal 3-metric ¥;; and its dual. On the other hand, the choice a =

—10 gives the conformal form of the moment constraint equation.

(a) For the 1° choice of @ = —4

The Lie derivative of the induced 3-metric is given by the equation (2.71). Let us
find what happens to it under the conformal transformation by using the equations

(5.13) and (5.32):

Lm'yij = _2NK,J
1
4~
Lun(¥*7:) = —2N{A;; + §Ky,-j} (5.34)
- - 2
T4£m7ij + (-Lm\P4)7ij = —2NAl'j - gNK’}/l‘j s

then 5
Y4 Lon¥ij = —2NA;; — VK - (Lm¥*)71;

2
= ~2NAjj — SNK¥';; — (Lu¥ )7

’ (5.35)
L¥ij = —2NY 4, - 3VKYij — Lm(ln ‘1’4)5’1'1'
2
= —2N‘P_4Aij — §NK5/ij — 4,[,m( In \P)’flij .
Therefore, the equation (5.35) becomes
- 4 2 -
Lm')/ij = -2NY¥ Aij - g{NK + 6.£m( In lP)}’)/ij . (536)

Since the A;; is traceless, let us multiply the equation (5.36) by the conformal dual
3-metric 7'/:
Y Lon¥ij = —2NY 4774, - %{NK +6Lin(1In ‘P)}«y"fy,-‘,
> (5.37)
- _§{NK + 6Lm(ln‘1’)} x3,
so we get

Y Lon¥ij = —2{NK +6Lin(In ‘I’)} . (5.38)
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Now, the variation of the determinant of an invertible matrix A is given by
§(IndetA) = tr(A™" x 6A). (5.39)

Let us do the changes of A — ¥;; and 6 — Ly, in (5.39) so it turns into the left
hand side of the equation (5.38). Then, the left hand side of the equation (5.38)
becomes the Lie derivative of a scalar field along m which allows us to decompose
the Lie derivative along m into the time derivative and the Lie derivative along the

shift vector g
T - 0 -
Y9 Lm¥ij = Lm Indet(¥,;) = (E — Lp)Indet(;)) . (5.40)

Because the time derivative of the scalar field Inder(¥y;;) vanishes, the equation

(5.40) reduces to

L Indet(y;;) = —LgIndet(¥;)) = 7 Lg¥i;
= 5" {ﬁk[)k% j + Y1 DiB* + YD jﬁk}
= -y {)7k DB+ %kbjﬁk} (.41
= -§"«Dip* - 5/kD "
= -2D,8 .
Furthermore, by substituting the result of (5.41) into the equation (5.38), we get
the evolution equation for \Y under conformal transformation as

(% — Lg)In¥ = é(D,ﬁi ~ NK). (542)

By inserting the equation (5.42) into the equation (5.36), it becomes
~ -4 25 ke
-Lm')/ij = -2NY¥Y A,’j - §Dk,3 ’yij . (543)

For consistency in the equation (5.43), we must have such a conformal transfor-

mation of the traceless part of K;; as
Aij=YA, (5.44)

which says that the corresponding « must be -4. Therefore, we find the evolution

equation for conformal metric during the conformal transformation as

F) i 2
(E - Lﬁ)’)’ij = —2NA,‘]' - §Dkﬂ Yij - (5.45)
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Now, the conformal transformation for the contravariant component of the trace-
less part of K%/, A, is obtained by
Aii = )~/ik)~/leij
_ \P4,yik\P4y =44,
o (5.46)
— \P4,ylk,y]lAkl
= PrAl
Finally, let us see how the dual conformal 3-metric 7'/ evolves under the confor-
mal transformation by starting from the equation (5.45) :
o .0 .
PV L = ~2NAY = 2Dy
p N 2
V'k{£m()’ﬂ)’k1) - )’kzﬁm)/ﬂ} = —2NAY - ngﬁk)’”
A ‘ . o0 y
74| Lmds = uLu¥'| = -2NAT - ZDypy (5.47)
, _ 0 .
¥ YuLmy" = -2NAY - 27"
i ~jl vij 2 A ki)
5l-£m7] = 2NAY + §Dk,8 )/] .

Thus, we get
0 i s 2 i
(E — Lp)y" = 2NAT + 3D (5.48)
(b) For the 2"¢ Choice of @ = —10

In this case, we will start with the decomposed form of the conravariant extrinsic

curvature K/ [see the equation (5.32)] and take the divergence of it. That’s,
iy N T . 1.
KY = AY + gKylf = D;K"” = D;A" + EDIK. (5.49)
Now, the equations of (5.11), (5.15) and (5.24) provide to rewrite the term D inj
of the equation (5.49) in terms of the conformal quantities,
DAY = DAY + C' AN + €Ty A*
= DAY +2{6 ;D In'W + 64D, In'¥ - D In'Py JAM
+ 6Dy In PA*
= D;A7 + 26 , AN D In¥ + 264 AYD; In ¥ - 27 ) AMD' In¥  (5.50)
+ 6Dy In PAX
= D;AY + 2A%Dp In'¥ + 24D ; In¥ — 294y ;AN D In ¥

+ 6D; InwA™* .
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Because A/ is traceless, the related term vanishes. Then, (5.50) turns into

DAY = D;AY + 2A%Dy In'¥ + 2AYD; In ¥ + 6D In PA*

(5.51)
k—j k—j
with the given change of indices, we get
D;AY = D;AY + 10AYD;In ¥
- (5.52)
— \P—IODJ(\IjloAl]) .
Notice that for consistency of

AV = @lOAl (5.53)

the corresponding « must be -10.

Finally, let us insert the equation (6.48) into the momentum constraint equation

(4.19):
i 1 i i ij_ 2. i
DjAJ+§DK—DK:87rp =>DjAJ—§DK:87Tp. (5.54)
And let us insert the conformal form of the D inj (5.52) into the equation (5.54):
- .. 2 . .
PI0D,(P0AY) - DK =sap'. (5.55)
Now, the modification of

DK =D;K = y'D;K = D'K = y/D;K

=¥450p K (5.56)
=¥ DK
provides us to rewrite the equation (5.55) as
_ e 2 oy .
PI0D,(p0A) - g‘I’_4D’K = 8np'. (5.57)

Thus, the the conformal transformation of the momentum constraint is

Dj{(AV) - %WD"K = 8n¥'%p' . (5.58)
Finally, let us find the conformal transformation of A; i

Aij = k5l Ak

— (\I;—4yik)(\y—4yjl)(\};10Akl)

o (5.59)
— \PZ,ytk,ylekl ,
= VA,
then, we get
Aij = P?A;. (5.60)
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5.2 THE CONFORMAL FORM OF THE 3+1 DIMENSIONAL EINSTEIN
SYSTEM

As we said before, the trace and traceless part of the 3+1 dynamical Einstein equation (4.13)
transform separately under conformal transformation. Therefore, we need to first deduce the

related decomposition of it. And then, we will be ready to construct their conformal forms.

5.2.1 Trace and Traceless Parts of the 3+1 Dynamical Einstein equation

1. Trace Part of the 3+1 Dynamical Einstein equation

Let us take the trace of the 3+1 dynamical Einstein equation (4.13) with respect to y%/

Y LmKij = ~DiD'N + N{R + K* = 2K;;K" + 4n(S - 3E)} : (5.61)
From the equations (3.40) and (5.61), we have

LK =y LinKij + 2NK; ;K"

= -D;D'N + N{R + K* = 2K;;K" + 4n(S - 3E)} +2NK; K" (5.62)

= -D,D'N + N{R + K* +4n(S - 3E)} .
Now, the Hamiltonian constraint equation (4.16)

R+K* - K;jK" = 16n1E = R + K* = 167E + K;;K" (5.63)

by substituting the previous modification into (5.62), we obtain the trace part of the

dynamical 3+1 Einstein equation as

LnK =-D;D'N + N{Ki K+ 4n(S + E)} : (5.64)

2. Traceless Part of the Dynamical 3+1 Einstein equation

Now, let us now decompose the left hand side of the 3+1 dynamical Einstein equation

(4.13) by using the equation (5.32)

LK = Lm(Aij + lK?’ij)

3
= LmAij + %(.Eml{)y,-j + %K(.Emyij) (5.65)
= LmAjj + %(LmK)y,-j - %NKKU-,
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where we used (2.71). Therefore, the Lie derivative of the traceless part A;; along m is

1 2N
LmAij = LmKij - g(LmK)%’j + 3 KKij. (5.66)
Notice that the first term on the right hand side of (5.66) is the 3+1 dynamical Einstein
equation (4.13) and the second term is the trace part of it (5.62). Then, the explicit form

of (5.66) is

-EmAl’j = —D,'DjN
+ N{Rij + KK,'j - 2K,'kKkj + 471'[(5 - E)’yij - 2S,j]}

1
- §{ — DDFN + N{R + K* + 4n(s - 3E)}}7ij

2N
+ —KK,‘J'
3

= -D;D;N

(5.67)

5 PR N 1
+ N{R,‘j + gKKij - 2K,‘kK i §K Yij — 87T(Sl‘j - gSy,-.,-)}
1
+ §{DkaN -~ NR}yi ;.
Since we wish a totally traceless equation, we need to get rid of the terms that contain

the K :

5 . 1., 5 1
gKKij - 2K,’kK i §K Yij = —K(A,'j + §K7ij)

3
1 1
—2(Ay + =Ky )(A*; + - K6~
1( 3R 550) (5.68)
_§K27ij

1
= 3KA; - 2A5AF; .

Thus, by substituting (5.68) into (5.67), we obtain the traceless part of the dynamical
3+1 Einstein equation as
1 X 1
-EmAij = —D,'D.,'N + N{R,‘j + gKAij — ZA[kA i 87Z'(S,'j — gS’)’,‘j)}

1

(5.69)
+ g{DkaN - NR})/,']' .

After constructing the conformal transformation of the fundamental tools, it is time to con-

struct the conformal transformation of the 3+1 Einstein equation :
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5.2.2 Conformal Decomposition of the Trace and Traceless Parts of the Dynamical 3+1

Einstein equation

We are trying to construct the corresponding time evolution equations. Therefore, we need

use the @ = —4 case.

1. Conformal Form of the Trace Part of the 3+1 Dynamical Einstein Equation

The trace part of the 3+1 dynamical Einstein equation (5.64) is

(gt Lg)K = -D:D'N + N{Ki K7+ 4n(S + E)} (5.70)

For simplicity, let us find only the conformal form of the terms D;D'N and K;;K"/

separately:

(a) The conformal form of the term D;D'N

We have found that the conformal transformation of the divergence of a vector v
(5.17) is given by
D' =¥ OD;(¥5). (5.71)

Since the gradient of a scalar field is a vector field, we will take v/ = DN,
v = D'N = y/D;N = ¥™*5D;N = ¥™*D'N . (5.72)
Let us substitute (5.72) into (5.71),
D;D'N = ¥~°D;(¥°D'N)

i
"D
"Di(¥D
"Di(¥

¥y [ —4D’N])
) (5.73)
2P;D'N + 2¥D; ‘I’D‘N)

=" (D DN +2D; ln‘PDiN).

(b) The explicit decomposition of the term K;;K'"/

Let us use decomposed form of the extrinsic curvature (5.32):

1 1
KiK' = (A + 3Ky,])(A” + §K'y”)
(5.74)
caaii o Y iy L i, Lpa
=A;;AY + 3I()/,]A + SK)/,JA + 9K Yijy? .
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Because the trace of A;; is zero, (5.74) reduces to
y |
KiK'V = Aj;AY + gK2
~ P |
_ 45 —4 Fij 2
= (WHA;)(PAY) + Sk (5.75)
]
= A;;AY + §1(2,
where we used the conformal transformations (5.44) and (5.46).

Finally, by substituting (5.73) and (5.75) into the fundamental equation (5.70), we will

get the conformal form of the trace part of the 3+1 dynamical Einstein equation as

0 N - .
(5 = Lp)Kk = =¥4(D:D'N +2D; In ¥D'N)
ot
| (5.76)
U 5
+ N{AUAJ + §K + 47r(E + S)} .
. Conformal Form of the Traceless Part of the 3+1 Dynamical Einstein Equation
The traceless dynamical 3+1 Einstein equation (5.69) is

1 1
LmAij = -D;D,N + N{R,-j + g KA - 243 AX; = 8n(S ;- §Sy,~j)}

. ) (5.77)
+ g{DkD N — NR}’)/ij .

First, let us find the conformal form of the terms LinA;; and D;D ;N

(a) The conformal form of L,A;;

LunAij = Lm(P*4}))
= P! Lndij + 4V (LnP)A;;
= W' LnAij + 49 (L InP)A; (5.78)
~ 17~ -
= W4 LA + 4‘1’4(6[Dkﬂk — NK|)A;;
~ 2/~ ~

= ‘P4{£mAi i+ §(Dkﬁk — NK)A; j},
where we used the conformal evolution equation of ¥ (5.42) and the conformal
transformations (5.44) and (5.46). Finally, let us use the equation (5.69) of LiyA;;
in the following equation

3 B 2, y
Lmdij =¥ Lmdij - 5(Dif' - NK)A,;

= ‘P‘4{ ~ D;D;N
1 1 (5.79)
k
+ N(R,'j + §KA5J' - ZA,'/(A i 87Z'[Sij - 55%71)
- 25 4 "
+ g(DkD N — NR)YI'J'} - g(Dkﬂ - NK)A,'J' .
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(b) The conformal form of D;D;N

(5.80)

Finally, let us substitute the equations (5.27), (5.73), (5.79) and (5.80) into the equation
of (5.77)

Lok = ‘P‘4{ - ( DN = 2{DiND;InW + D;ND; InW - DND* In'wy, J})
+N (Ri ;= 2D;D(In'¥) — 2D DX(In W)y,
+4(D; InW)(D; In¥) — 4(Dy In ¥)(D* In l}')«y,-l,-)
+ %K[‘I"‘Ai j| - 295 Ay - 8alS ;- %S ¥4y, J]}
+ {7 (DDAN + 2D, 10 WDN)
= NP ~4(R - 8| D D! In'¥ + (D In W)(DF In ‘P)])}‘I"‘?U }

- %[Dkﬁk - NK|Aj;.
(5.81)

After some algebra, we reach the conformal transformation of the traceless part of

the 3+1 dynamical Einstein equation as
Ly = =2 DAy + N{KA - 27 Ay = 897 - 357
+ ‘P‘4{ ~ D;D;N +2D;ND;In¥ + 2D ;ND; In ¥
+ %[Dkz’i’w — 4D In YD N | (5.82)
+ N|R;j - %R«y,-j —2D;D;In¥ +4D; In¥D;In ¥

24 ~ . -
+ g(Dka In¥ - 2D, In YD In ¥)7, J]} :
5.2.3 The Conformal Transformation of the Hamiltonian Constraint

The Hamiltonian Constraint equation (4.16) is
R+K* - KiK' = 167E . (5.83)
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Now, let us substitute the conformal transformation of R (5.30) and the decomposed form of

K;;K'/ (5.75) into the Hamiltonian Constraint equation (5.83),
- Y |
YR - 8¥Y D, DY + K* - A;;AV — §K2 = 167E . (5.84)

From the equation (5.84), we get the Conformal Transformation of the Hamiltonian Con-

straint as
D I el 1 2 5 _
RY + {gAijA L 2rEN =0. (5.85)

Due to the relation of A; j/iij = P-l124; j/iij , the equation (5.85) becomes

—

Lo | PO 1

Diw _ Z A AT . 5 _
DD - cRY + S A ANy +{2nE =K =0, (5.86)
which is known as Lichnerowicz Equation [6] [7].

Thus, the conformal transformation of the 3+1 dimensional Einstein system [1] can be

summarized as,

(g — Ls)In¥ = é([),-/g" - NK), (5.87)
B i 2.
(5; = LoJwii = —2NAi; - SDi';. (5.88)

(% - Ly)K = =¥ }(D:D'N +2D; In ¥D'N)

| (5.89)
Al 2
+ N{A,»J-A’J + §K + 47r(E + S)}
i 20 kq i kg R —4 1.
:LmAij = —ngﬁ Aij + N{KA,']‘ - 2’)/ AikAjl - 87‘1’[‘1" Sij - 55’)/,]]}
+ ‘I’“‘{ ~ D;D;N +2D;ND;In¥ + 2D;ND; In'¥
lr~ = N 3
+ g[DkaN — 4D In YD N1y (5.90)
- 1. I ~ -
+ N[Rl'j - §R5/ij — 2DiDjlan + 4Di1H\PDjlan
+ %(D D! In'® — 2D, In WDF In W)y,
3 k k 71] 1)
DD — LR + LA, AT 4 orE - iKZ} =0 (5.91)
' 8 g Y 12 ’ ‘
~ [ s 2 - .
DAY - gl}'ﬁD’K = 8n¥!%p’. (5.92)
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5.3 THE ISENBERG-WILSON-MATHEWS APPROACH TO GENERAL REL-
ATIVITY (IWM)

In IWM model [17], [18], the spacetime is assumed to be foliated by a continuous set of
(Z1)ser such that the foliation is maximally sliced (K = 0). Here, the induced 3-metric is

conformally flat which means that its conformal background metric is flat,

Yij = fij- (5.93)

(5.93) is implies that the Cotton-York tensor [14],[15], [13] vanishes. Furthermore, the con-

formal Ricci tensor is zero. Thus, the conformal 3+1 Einstein equation turns into,

(gt — Lg)In¥ = éDi,Bi, (5.94)
9 -2
(E — Lp)fij = -2NA;; - 3D S (5.95)
0= -¥~4(D;D'N +2D;InWD'N) + N{A;AV + 4n(E + S )}, (5.96)
9 i 20 akx ki gz x -4 1
(5 - -E,B)Aij = —ngﬂ Aij + N{ — 2f AikAjl - 87‘([\1] Sij — §Sfl]]}

+ l}.—4{ — D;D;N +2D;N D;In¥ + 2D;N D; In ¥
1
+ §[DkaN — 4Dy In DN | f;; (5.97)
+ N| = 2D:D;In'¥ + 4D; In WD, In ¥

+ %(Dka In¥ - 2D, In¥D" In ‘P)f,]}

. 1. ..
D;D'¥ + {gA,- AT+ 2nE =0, (5.98)
DAY + 6AD;In¥ = 87¥*p'. (5.99)

Here the equation (5.99) is obtained by using the relation A,-.,A"j = P24, inj in the momen-
tum constraint equation (5.58). In order to find the IWM conformal system, let us work on

the equation (5.95) : Because of the metric-compatibility, we have

Lgfij = B*Difij + fi;DiB* + fuD B

= fi;Dif* + fuD B .

(5.100)
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Now, since time derivative of the f;; is zero, the equation (5.95) turns into,
T k K 2 k
2NA,‘J' = fij,ﬂ + f,‘ijﬂ - §Dk,3 ﬁj . (5101)
Let us multiply (5.101) by f" f/
- 2
2NA™ = D"B" + D"B" — §Dkﬁ’< fmn (5.102)

By change of the indices m — i, n — j, we can rewrite the equation (5.102) as

oy 1 /- \ij
Al = ﬁ(iﬂ) , (5.103)
where
(£8)" = DIg7 + DI = 2Dy (5.104)

is known as the the conformal Killing derivative operator. Moreover, with the help of (5.103)

the corresponding momentum constraint equation (5.99) can be rewritten as

R . . .
o+ DD + 2AU(6ND;In¥ — D;N) = 167N¥*p' (5.105)

Thus, we get the conformal IWM system as the set of

AN +2D;InWD'N = N(4n(E + §) + A;A7)¥*, (5.106)
1. ...
AY + {gA,- AT + 2nEp = 0, (5.107)
1. . . .
&+ 3D'DB + 2AU(6ND;In'¥ — D;N) = 167N¥*p' (5.108)
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CHAPTER 6

ASYMPTOTIC FLATNESS AND THE ADM FORMALISM
FOR GENERAL RELATIVITY

6.1 THE ASYMPTOTIC FLATNESS

In this chapter, we will deduce the conserved quantities of the ADM mass, linear momentum
and angular momentum of a given hypersurface %,. Since these quantities can be only in the
globally-hyperbolic asymptotically flat spacetimes (i.e. the spacetimes which asymptotically
converge the well-defined spacetimes such as the Minkowski, AdS). Therefore, let us first
see review what the asymptotic flatness is: The asymptotic flat spacetime is such a particular
spacetime for the massive objects in which it is assumed that there is nothing in the universe
except these objects. Now, a globally-hyperbolic spacetime is called asymptotically flat if
each of its Cauchy surface has a background metric £ with signature (+,+,+) such that f is
flat, can be diagonalized in a particular coordinate system on the Z, [1], [14]. Moreover, in
the case of spatial infinity, » — oo, the decay of y;; and their spatial partial derivatives must

be something like

yij = fij+0lr’'], (6.1)

Yij _ 2
=0l (6.2)

And also as r — oo, the decay of K;; and their spatial partial derivatives must obey

Kij = Olr 21, (6.3)
oKij 3
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6.2 THE HAMILTONIAN FORMALISM FOR THE GENERAL RELATIV-
ITY

The Hamiltonian model approaches a physical state at a certain time and gives the evolution
of the state as t varies. This model is being transformed into the gravitational theory as a
state on a particular spacelike hypersurface. Now, the gravitational theory is a covariant
theory and locally has Lorentz symmetry. The first attempts tried to start with the spacelike
hypersurface that is free of choosing coordinates to avoid breaking of the crucial properties
of the gravitational theory [9], [10]. However, it is then hard to define initial state of practical
problems. In order to write the Einstein equations into the Hamiltonian form, people started
to give up the main properties of the gravitational theory by choosing a family of particular
coordinate systems such that ““ x° = constant* corresponds a spacelike hypersurface. Contrary
to the unknowns (y;;, Kij, N, Bi ) in the PDEs form of 3+1 FEinstein system , Arnowitt,
Deser and Misner have proposed the ADM formalism of the General Relativity [16] in which
conjugate momentum of the induced three-metric y;j, nil = W(Kyij — K'J), is used instead of
K;;. Moreover, in the ADM formalism, n'/ and ; ; are the dynamical variables and the Lapse

function N and the shift vector § are taken as Lagrange multipliers [16], [1].

In this section, we will first deduce the corresponding Hamiltonian form of the vacuum field
equation by mean of the 3+1 decomposition of the spacetime metric that we have found in the
1*' chapter (the equation 2.115) and the knowledge that the boundary term is zero. Secondly,
we will deal with the general case. That’s, we will deduce the corresponding Hamiltonian
form of the Einstein equation when the boundary term does not vanish by using the 2+1
decomposition of the timelike B hypersurface that we have found in the 1*' chapter. This
of the general case will lead us to get the explicit form of the famous ADM formulas for

conserved quantities of X, [4].

6.2.1 3+1 Decomposition of the Einstein-Hilbert Action and the corresponding
Hamiltonian Form of the Vacuum Field Equation
1. 3+1 Decomposition of The Einstein-Hilbert Action

The action for the four-dimensional vacuum field equation is of the Einstein-Hilbert
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action [19], [1]
S = f ‘R=gd*x, (6.5)
%

where the infinitesimal volume element V is composed of the union of the neighboring

hypersurfaces %;, and X;,. Symbolically,

V= U 3. (6.6)

Let us substitute the equations (3.43) of the 3+1 form of the spacetime Ricci scalar and

(2.115) of the 3+1 decomposition of g into the action (6.5),

.2 2 .
S = f {R + K2 + Kl'jKU - —LmK - —D,'DlN}N \/?d4x
By N N
(6.7)
= f {N[R + K? + KijK7] = 2LinK — 2Dl~DiN} Vyd'x.
Vv

Let us convert the term L, K into of the boundary and substitute it into the action (6.7)

LinK = m"V,K = Nn"'V,K = N[V, (Kn") — KV,n"] s
= N[V, (Kn*) + K*]. o
Then, the action (6.7) becomes
S = fq/ {N[R + K? + K; ;K] — 2NV, (Kn*) — 2NK* - 2D,-D’N} Vyd*x
- fq/ {N[R + KiK' — K*] - 2D,-D’N} Vyd*x

-2 f NV, (Knt) \Jyd*x .
v (6.9)

Here we need to show that because of the boundary condition, the last integral of the

action (6.9) vanishes:

f NV, (Knt) \Jyd*x = f V. (Kn')—gd*x
Vv v

- [ (VKR (6.10)
la% OxH
=0,
so the action (6.9) reduces to
S = f {N[R + KiK' - K*] - 2D,-D’N} Vydx. 6.11)

Observe that the action (6.11) is fully composed of the intrinsic quantities of %;. This

provides us to decompose the four-dimensional integral into of the spatial one and of
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the time coordinate

S = f " { f (N[R + KiK' - K2 - 2D,~D’N) Wcﬁx}dt. 6.12)

4] %

Again, the boundary term vanishes and we get the 3+1 decomposition of the Einstein-

Hilbert action as

S = ftz {f N(R+ KiK' —KZ)Wd%}dt. (6.13)

1 %

. The Corresponding Hamiltonian Form of the Vacuum Field Equation

The variables of the action in the configuration are g = (y;j, N, B and g = (j/ij, N, Bi)
(6.13) [1]. That’s,

S =SIg, q].
The Lagrangian density contains the extrinsic curvature K;; [see the 3+1 decomposition
of the action (6.13)]. However, in the Hamiltonian approach, it is replaced with the

configuration variables. Now, from the 1% equation (4.26) of the 3+1 dimensional

Einstein system, we have

0 1 )
(é_t - L,B))’ij = -2NK;; = Kij = ﬁ[-fﬂ)’ij - Vij]. (6.14)

We know from the (4.23) that Lgy;; = D;8; + D ;B;. Then, the equation (6.14) becomes

1 , 1 .
Kij = ﬁ[Diﬁj +DjBi - %‘j] = ﬁ['}’jkDiﬁk +yuD;B" - %j] : (6.15)

And the Lagrangian density of the gravitational field (6.13) turns into

L(g.q)=N W(R + KiK' — KZ)
o (6.16)

As we see from (6.16), the Lagrangian density does not depend on the time derivative of
N and B' so they are not dynamical variables. They are just the Lagrange multipliers.

On the other hand, the remaining variable v;; is just the dynamical variable in phase
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space. And the corresponding conjugate momentum of it is

== P —
1 o g

= _ﬁéiaéij W()’lkVﬂ - Vljykl)(éiaéijkl + 5ka51bKij)

1 o y

-= Wéiaéjb{ VYK + ¥y Kij — vy K = ¥y K }

2 (6.17)
=- \/?&&jb{)’ia?’jblfij - y/yK;; }
=- \/?{Kij - y"f'K} :

Thus, we get
ntl = \/;{y"fK - K"f'} . (6.18)

Finally, let us find the corresponding Hamiltonian: The Legendre transformation is

defined as
H =y, - L. (6.19)

Let us substitute the explicit form of 7'/ (6.18) and ;; (6.15) into the Hamiltonian
density (6.19):

H = W(W’K - K"f)( - 2NK;j+ DB + Di8 ,)
-N W(R + K iKY — K2)
= \/;{ - 2NKy'K;; + Ky D,B; + Ky D8 ;2NK;;K"” — KD ;$3;
~ K'D8; — NR — NK; ;K" + NKZ}
= \/7{ ~2NK* + KD/ + KD + 2NK;;K"” — KD ;3;

~ K'D8; — NR — NK;;K" + NKZ}

= W{ NK? +2KDp’ + NK;;K"/ = 2K D ;3; - NR}
- \/7{ N|R + K* - Ki;K"| + 2KD 8 — 2K/;D ]/3}

$I

{ N|R + K* - K;;K'T| + 2| Ky/; - Kf,-]Djﬁ"}

$I

{ - MR+ K = KiK'l| + 2D, Kyl - K

- 28|y/iD;K - D iji]}
W{ N[R+K*-K;;K"|+2D;|Kp/~K';§|-28'| D;K D ;K7; ]} (6.20)
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With the aberrations of Cop = R + K* — K,-J-Kif and C; = DjKj,- — D;K, the Hamiltonian
density (6.20) reduces to

H = W{ ~ NCo +28'C; + 2D [Kp' - Kj,ﬂ’]} . 6.21)
And the related Hamiltonian is obtained by
H= Hdx

L

=- f {NCO - 25"(7,} Vydx+2 f VYD;| KB - KT |dx.
%

%

(6.22)

Due to the boundary condition, the last integral of the (6.22) vanishes and we get the

Hamiltonian of the gravitational vacuum field as

H=- f {NCO - Z,BiCi} N (6.23)
%
where
Co=R+K*-K;;K, (6.24)
Ci=D;K';—DiK. (6.25)

The crucial point is that the constraint equations (6.24) and (6.25) are nothing but exactly
the constraint equations of the energy (4.16) and the momentum (4.18) [for vacuum] that
we deduced during the 3+1 decomposition of the Einstein equation. Moreover, for any
spacetime to be a solution of the Einstein equation the related Hamiltonian equation (6.23)

of it must be zero.

6.2.2 The General Gravitation Hamiltonian and The ADM Formalism

Contrary to the previous section, we will assume that the boundary term is not zero which
with the 2+1 decomposition of the hypersurfaces that we deduced in the 1*' chapter will lead
us to the well-known ADM formalism for the conserved quantities of a given hypersurface Z,.
Here, we will assume that the infinitesimal four dimensional volume element 0V is the union
of two spacelike hypersurfaces X, and %, at the lower and upper boundaries and a timelike

hypersurface B that covers the region between these two spacelike hypersurfaces [4]

ov =3, Jz| 8. (6.26)
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Since the unit normal vector of 9V must be directed outward. However, the unit normal vector
of the hypersurface %, is future-directed so it points inward. Then, with the help of the minus
sign, the unit normal vector of %; will point outward, too. Now, in order to find the ADM

formulas, we need to first deduce the Hamiltonian of this case:

1. The Gravitational Action and The Corresponding Hamiltonian when the Bound-

ary Term is different than zero

The related gravitational action is composed of the Einstein-Hilbert part, the matter (or
boundary) part and a no dynamical part of S that does not have any influence on the

equation of motion [4]:

Sclgl =Sulgl+Salgl—So. (6.27)
Here
1
Sulgl = — f ‘R=gd*x, (6.28)
167’[’ la%
1
Salg) =g oK \Hd'y. (6.29)
871' oV
1
So = —56 eKo \Ihld’y . (6.30)
87'[' Fa%

By substituting the related actions (6.28) and (6.29) into (6.27), the gravitational action
(6.27) becomes

(167r)S(;=f4R\/—_gd4x+256 eK \|nld>y . (6.31)
% oV

Here, y* are adapted coordinates of 0V , h,, are the corresponding induced 3-metric,
n® are the corresponding unit normal vector and K is the scalar extrinsic curvature. As
we mentioned before, because the 0V is the union of two spacelike and one timelike
hypersurfaces so € = n“n, will be +1 or -1 depending on the type of hypersurfaces.

The explicit form of (6.31) is

(16m)S¢ = f ‘R—gd*x+2 f n°noK Vhd’y +2 f n°noK Vhd’y
Vv

%, -5,
+2fr“r(,7(\/—_yd3y
B (6.32)
:f4R\/_—gd4x—2f K\/Ed3y+2f KVhd’y
Vv %, %

+2f7(\/—yd3y,
B
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where we have used n“n, = —1 of the spacelike hypersurface and r*r, = +1 of the
timelike hypersurface. For convention, let us use the following form of the 3+1 decom-

position of the spacetime Ricci scalar,

‘R=R+KPKy - K* = 2n" g —nng) | (6.33)

H:
where ”’;”” denotes the intrinsic covariant derivative. And, we know that the 3+1 de-

composition of the spacetime metric is
v=gd*x=NVhdid’y. (6.34)

Then, the 3+1 decomposition of the Einstein-Hilbert part is

5}
f4R\/_—gd4x=f dt{fR+K“bKab—K2}N«/Ed3y
%

3l %

—Zf {n“;[;n'g—n“nﬁ;ﬁ} d*x
Vv @
5}
:f dt{fR+K“bKab—K2}N\/Ed3y

n P

- 296 {n“;ﬁn'g - n”nﬁ;ﬁ}dZa .
oV
Because of 0V = %, |J (-Z;,) U B, we will decompose the closed integral of the equa-

(6.35)

tion (6.35) into the corresponding integrals of %, , %;, and 8. For simplicity, let us work

on of %, : The spacelike volume element is dZ, = n, vVh d3y, then, we have
-2 fz {I’la;ﬁnﬁ - n"nﬁ;ﬁ}dZa = —2[2 l’l‘B;ﬁ \/I_zd3y
—&n Q|

=-2 | KVhdy,
%

(6.36)

where we used the fact that n®.3 is an element of the hypersurface Z;. Similarly, by

evaluating the corresponding integral on Z,, in the reverse direction, we will get

) f KVhdy. (6.37)
)

)

Observe that the results of (6.36) and (6.37) cancel out the 2" and 3" terms on the right
hand side of the gravitational action (6.37). Thus, the only contribution is coming from
the integral over the timelike hypersurface B: Now, for timelike case 3-dimensional
volume element is d%, = r,+—yd’z and the unit spacelike normal r® of timelike
hypersurface B and the unit timelike vector normal vector n® of the spacelike hyper-

surface X, are orthogonal to each other [that is, n®r, = 0], then,
_ZL{”a;ﬁ”ﬂ _”a”ﬁ;ﬁ}dza = —2Ln“;ﬁnﬁra\/—_yd32

(6.38)
= 2f FapnmP =y d°z.
B
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With the help of (6.38), the gravitational action (6.32) becomes,

(16m)S¢g = ftz dt{f [R+K“bKab _Kz]}N\/ngy
f % (6.39)

+2 L [‘K + ra;ﬁn"nﬂ] =y d*z.
Notice that the the gravitational action (6.39) is composed of the 3+1 decomposition
of the Einstein-Hilbert action and the integral over the timelike hypersurface 8. As we
mentioned before the Einstein-Hilbert part results in the Hamiltonian and momentum
constraints that ensure whether a given spacetime is a solution of the The FEinstein
equation or not. The important point is that the integral over the timelike hypersurface
B will lead us to the conserved quantities of the hypersurfaces. That’s, the boundary
term of B will give the ADM formalism. Therefore, we need to do the decompose the
timelike hypersurface B by assuming that B is being foliated by the boundary of the
spacelike hypersurface X, S, whose topology is supposed to be S>. Now, the 2+1

decomposition of the 3-metric of B is
V=yd’z = N\odtd*o. (6.40)

And scalar extrinsic curvature of B is
K = yij‘K,-j = yij(ra;ﬁe;’eﬁ) = ra;ﬁ(yije;’e?) = ra;/g(g"ﬁ - r"rﬁ). (6.41)

So with the help of (6.40) and (6.40), the integrand of the related integral of (6.39) that

is over B becomes
K+ r(,;ﬁn“nﬁ = ra;ﬁ(g“ﬁ - r“lﬁ) + ra;ﬂnanﬁ
= ra;ﬁ(g“ﬂ P+ n“nﬁ)
= ra;ﬁ(O'ABeZe%)
= oﬁB(ra;Bef{eg)
= 0 Pkyp

=k,

(6.42)

where k is the extrinsic curvature of S,. Thus, by substituting the result of (6.42) into
the gravitational action (6.39), we get the decomposition of the gravitational action

when the boundary term is different than zero:

1 [
Sg = o dt{ f (R + K%K, — KZ)N Vhd’y
n = (6.43)

+2 56 (k = ko)N \/Edze} .
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Here kg is the extrinsic curvature of S; embedded in flat space. The kg is defined so

that the gravitational action is zero for flat spacetime.

After construction of the action, it is time to find the corresponding Hamiltonian of
the system: In chapter 3, we have found that the relation between the extrinsic curvature

and configuration variables
Kus = === hao + Dy + Dif). (6.44)
2N
And the corresponding canonical conjugate momentum is

n = i( V=8Lc). (6.45)
ahab

Due to the fact that the boundary part is independent of hab, the equation (6.45) be-

comes
Ky O
(16m)n% = ,—’"”K (167 v=gLs). (6.46)
Ohyp Bmn
where
167 V=gL; = [R + (henbd - h"bh“’)Kachd]N V.
Then,
1
67 = == SadusN VAR ~ WO |80 Kea + GnednaKa
h , ,
— _g SmaSnb { Bine hnd K.+ Jam hhn K, — AL hcd K.y
_ ]’labhmnKab}
= — VO mabus[ K" " Ky = KB K o |
= -k - Kh**].
So we get
(16mn** = Vh(Kn® - k). (6.47)

In order to find the corresponding Hamiltonian, let us substitute the explicit forms of
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7% (6.44) and hab (6.47) in to the Hamiltonian density:

He = nhay — \—gLc
(16myHg = (16m)n%hg, — (167) V=g LG
= Vh(Kh® = K*°)( = 2NKa» + DafSs DiBa)
—(R+K™Kay— KN Vh
= \/E{zNK“bKa,, - K*DyBy — KD B, — —2NKh K

+ Kh**DyB, + Kh**D,B), — NR — NK°K;, + NKZ} 6.48)

= \/Z{NK“bKab — NK? = NR - 2K’D,3, + 2Kh“bD;,ﬁa}

= —N Vh[R + K* = Ky K| =2 V[ K = Kh* | Dy,

Co

=-NCyVh-2 w/E{D,,[ oK = Kh)| - Ba Dy| K - K| } .

—_———

Cll

Then, by integrating the Hamiltonian density (6.48) over the spacelike hypersurface %;,

we get the Hamiltonian of the system as
(16m)Hg = f 167Hg d°y — 256 (k = ko )N Vor d*6
P Sy
_ f (e - ZﬁaC“} Vi dy (6.49)

%

-2 fz Dy|Bo(K* — Kn®)| Vhdy - 2 S@ (k= ko)N Vo d*.

Thus, by using the general Stokes theorem, we reach our aim of the gravitational

Hamiltonian when the boundary term is different than zero

(16m)Hg = — f {NCo - 2B, Vh dy
> (6.50)
) SE {N(k - ko) + Bo(K* = Kh®)ry} or d®6).
Sy

2. The ADM Formalism

(a) The ADM Mass

In the previous section, we have found the general gravitational Hamiltonian in

the equation (6.50). Due to the convention that we follow, we should do the
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Jfollowing changes in the gravitational Hamiltonian (6.50):

a—i,b—j

h—>y,y—>x

k—«k,k, >k, (6.51)
r—s,0—gq

0—y.

Then, the gravitational Hamiltonian (6.50) turns into

(16m)Hg = — f {NCo-28'Cif vy dPx
> | | (6.52)
~2) [Nk ko) + B - Kys |Gy

where S is the boundary of ¥, and has the topology of S2; x is a well-defined
coordinate system on the X, and vy is the corresponding induced 3-metric on Z; ; «
is the scalar extrinsic curvature of §; embedded in (%;, ¥); ko is the scalar extrinsic
curvature embedded in the flat spacetime (%;, f) ; § is the spacelike unit vector
that is normal to S;; y is a well-defined coordinate system on S; and ¢ is the
corresponding 2-metric on S;.

Now, suppose that a given spacetime is a solution of the Einstein equation. Then,

the corresponding integral of constraints vanishes [ due to Co = 0 and C; = 0] [1],

1 . .
How === § [NGe=s0) + B(Ky - Kyps/| NGy (653)
/4 S,

The total mass of the X, which is measured by an asymptotically inertial observer
(N = 1 and 8 = 0) with a well-defined adapted coordinates of (¢, x') is given by
the famous ADM energy formula [1] of
1 . 2
Mupy = —— lim (k — ko) \gd“y. (6.54)
871' N S,

100
(r—o0)

M pu is the conserved quantity associated the symmetry of the action under time

translation [1] . And, in terms of the intrinsic connection of Z; :

1 . .
Mapy = — lim @ [Dyij = Di(Myi)|s* vady. (6.55)
167 §,—00 S,

Furthermore, as we mentioned before one of the conditions for a spacetime to

be asymptotically flat is that there must be a coordinate system (x') in which the
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background metric f is diagonalized. Now, in this coordinate D; = % and f¥ =

oK. Therefore, the ADM energy formula (6.55) turns into a simpler one in this
specific coordinate [1]:

=—1i — — )i \gd®y. 6.56

Mapu 167 Sll—r>noo 9%1(6)61 ox! )S Vady (6.56)

Finally, the conformal form of the ADM energy [1] is

1 . . 1 . 2
MADM = —g sl,linoo 3 SI(D,"P - gD])/ij) \/gd y. (657)

Figure 6.1: The topology of S2Notice that ¥ is equivalent to S; and n to # in the
Schwarzschild case.

Example: The Schwarzschild spacetime in the adapted coordinates of (x*) =

(t,r,0,9) is

gudxdx = —(1 - 27m)dt2 +(1- sz)_]drz + P|de? + sin*0dg?| . (6.58)

Now, (x') = (1,6, ¢) can be taken as the spatial the coordinates on X,. Then, the
induced 3-metric is

yiy = diag](1 - 22"

72, Psin®d)]. (6.59)
The components of the background metric become

fij = diag(1,r*, r*sin®6), (6.60)

and their duals are,

Y = diag(1,r7%, r 2sin”20). (6.61)
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It is time to start to calculate Mapys :. As we see in the figure (6.1), r=constant
corresponds S ;, the corresponding coordinates on it are y* = (6, ¢). Also, s \/ﬁdzy =
r2sin do d¢ (0,)". Because, the unit spacelike vector t is normal to the S, then,

0,)' = (1,0,0). Therefore, the related integral (6.55) of this case becomes,

1 .
Mupy = — lim |D7y2j = Di(Myi) | sino do dg (6.62)

167—[ r—eo r=const.

In order to evaluate the corresponding My pys that the hypersurface of the Schwarzschild
holds, we have to first evaluate the integrands of the integral (6.62): Let us start

to calculate 2™ integrand,

1 1 2my\-1
kl
=Y+ =Y+t ——Yoo =(1——) +2. 6.63
fya=vy Y00t T3 Yeo ( . ) (6.63)
Since (6.63) is a scalar field, we have
0 2m\-22m
kL, ) _ K, ) —
Do fyu) = 5 (Fya) = =(1-==) "5 (6.64)
Secondly, let us evaluate the 1*' integrand:
Diys; = Dy = Dy + 5 Davin + =D (6.65)
rj rj r)rr I"2 T rzsinzé ¢Vre - .
Now, the non-vanishing Christoffel symbols associated with D are
[, =-r and f;w = —rsin’0, (6.66)
[ =1 —l and T%, = —cosOsinf (6.67)
o=l =~ sy = —cosOsing, .
A L (6.68)
A % " tang ’
With the associated covariant derivatives given by
0 = 0
Dyyyr = % - 2rlrr71r % s (6.69)
D _ 0 = i _ _70 =
O v Ly vio — Tygyri = =g, v00 — Ugg¥er (6.70)
Doyrs = 0 iy = <19y — I 6.71)
oYre = ) é ¢/)’t¢’)’rl = ¢r7¢¢ ¢¢'yrr s .
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the 1% integrand is

. 1 1
Djyrj = Dr7rr + ﬁDGVrG + mD¢7r¢

ay 1 1 =6 -
= = T Tlor} = (v + 1)

=50 = T Bl er - re0- 7))

r2s:n29{ p X 12 sin6 — rsin*0 x (1 - 2Tm)—l} (6.72)
- _Zr_’;(l - 27’")_2 4:1 r —12m
S BRI SIEEY
=20-070-)

With the help of the related results of (6.64) and (6.72), the integrand of the equa-

tion (6.62) is obtained from

D?’rJ_D(fYkl)_ (1—2—m) (1—4—m+1)

r r
_ “r_’z”(l _ 27’”)‘l (6.73)

_4dm
=— when r — .
2

Let us substitute the result (6.73) into the integral equation of Mapys (6.62)

1 .
Mapy = — lim [Dj')’rj - Dr(fklykl)]FZSianG d¢
1671- r—eo r=cons.
2
= " f —r 2 5inf do (6.74)
167r
=m,

which is exactly the mass parameter of the Schwarzschild solution.

(b) The ADM Linear Momentum

We have proposed that one of the condition for a spacetime to be asymptotically
flat is that there must be a Cartesian coordinate system (x’) on each of Cauchy
surface in which the background metric is diagonal and the each diagonal ele-
ment must be 1. Therefore, the induced coordinates (9;)ie(12,3) for the tangent
spaces 7 ,(X) provide three spatial direction for translation in coordinates. Now,
the symmetry of the action under spatial translations provide the 2"¢ family of
conserved quantities, $;, of X;. Because of the symmetry under spatial transla-

tion, we choice an observer for which N = 0 and ﬁi = 1. Then, the components of
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(©)

(d)

related conserved quantities are given by the formula [1] of

[ j K 2
Pi= gadim O (K~ Ky i) @)'s* vad®y. (6.75)

where the index i can take the values of (1,2,3) and it shows which component
of P; will be calculated. In another words, it determines the direction in which
the spatial translation will be done. Furthermore, the #}s are known as the i
component of the ADM linear momentum of the hypersurface %, of the globally-
hyperbolic asymptotically flat spacetime. On the other hand, since the extrinsic
curvature K of the £, embedded in the Schwarzschild spacetime with the standard

and isotropic coordinates vanishes, then, the corresponding ADM linear momen-

tums P; of the hypersurface of the Schwarzschild spacetime vanishes.

The ADM 4-Momentum

The ADM 4-Momentum [1] is defined as
PN = ( - MADM7Pi> , (6.76)

which transform like the components of a 1-form under (x*) — (x'®) during which

the fundamental properties for a spacetime to be asymptotically flat are kept valid.

The ADM Angular Momentum

We suppose that the spacetime that we deal with receives the Killing vectors.
Now, the angular momentum of the X; of a globally-hyperbolic asymptotically
flat spacetime which is related to the rotational symmetry of the action is obtained
by using the rotational Killing vectors of the background metric (¢;);e(1,2,3. In the
Cartesian coordinates (x,y,z), the Killing vectors of the background metric about

the x-axis,y-axis and z-axis are [1]
¢y =y0; — 20y, ¢y = 205 — X0, , ¢, = x0y — y0, . (6.77)
Then, the i component of the angular momentum of the X, can be defined as
L. jok 2
Ji = ¢ lim (K - Ky )@ 's* Vg d?y. (6.78)
Sy

Contrary to what we expect, J; do not transform like the 4-dimensional vectors
under (x*) — (x'®) during which the fundamental properties for a spacetime to

be asymptotically flat are kept valid [1]. That’s, they are coordinate-dependent.
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Because of the coordinate-dependence of .7;, the scientists have tried to put the constraints
on selecting coordinate systems such that ; is invariant under special subset of the related
family of coordinate transformations. That’s, they have being considered particular decays.
For example, York [14] has considered the following decays of the ¥;; relative to the Cartesian
coordinates for the background metric and the scalar extrinsic curvature
Bi ~ opr).
oxt (6.79)
K =0[r7].
They are called the quasi-isotropic gauge and asymptotically maximal gauge, respectively.
These asymptotic gauge conditions are used to select the suitable coordinates. And it rejects
some of well-known coordinates such as the standard Schwarzschild coordinates. Moreover,
York proposed that the angular momentum is carried by the O[r~3] piece of K and is invariant

under the change within this gauge [1].
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CHAPTER 7

RELATION BETWEEN THE COTTON SOLITON AND
STATIC VACUUM SOLUTIONS

This chapter is devoted to an application of the methods described in the previous chapters.

The four-dimensional Einstein equation with a cosmological constant is given by
1
Ry — RSy + Mgy = 87Ty (7.1)
Alternatively, we could rewrite it as

1, A
4
Ry = 8n(TW - E(T - E)gw). (7.2)

By following the same procedure as we did in chapter 4, the corresponding 3+1 Einstein

system with A # 0 becomes

d

(5 = Loy = 2Ky, (73)
d
(E - Lﬁ)Kij = —D,'DjN + N{R,‘j + KK,']' - 2KikKkj

7.4
+47T[(S—E—%)’yij—25,'j]}, ( )
R+ K? - K;jK" = 2A + 167E, (7.5)
D;K’; — DiK = 8np;. (7.6)

The static vacuum equation (y = 0, = 0) obtained from the previous system of equations
is

Ri;=N"'D:D;N + Ay,;, (7.7)
where R = 2A and N™! Ay N = —A [20]. From now, we will use V as the intrinsic Levi-Civita
connection and g;; as the induced 3-metric (i.e. we are making a change of notation y;; — g;;

and D — V). The Cotton-York tensor [14], [15], [13] is

1
Cij = Gqu(VqRip - ZgiquR) . (78)
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Notice that the last term of the Cotton-York tensor (7.8) {[14], [15], [13]} vanishes. Let us

rewrite the Cotton-York tensor of the static vacuum field with A # 0 in terms of the Ricci

tensor:
Cij = €1VRip = €IV, {N"'V,V,,N} (7.9)
1 1 '
= Equ{ - ﬁVqNVlVPN + quVin} s
then
NCij = €| = VyN(N"'ViV,N) + V, ViV, N}
= ] = [Rip — AgiplVyN + Vo V,V,N) 7.10)

= —Equ[Rl’p - Agip]VqN + EquVqV,'VpN
= —"[Rip — Agip]VyN + €/7{[Vy. ViIV,N + VY, V,N} .
Because the multiplication between the anti-symmetric and symmetric tensor is zero, the last

term vanishes yielding

NC,‘J' = —Equ[R,'p - Agip]VqN + Equ[vq, Vi]VpN
= —€;"[Rip — Agip]VyN — €;P1R i ViN (7.11)
= —Equ[R,‘p - Agip]VqN - EquRkpqukN .

In three dimensions, the Weyl tensor is zero, so, the Riemann tensor can be written in terms

of the Ricci tensor, the metric and the scalar curvature as
Ripqi = 28uqRitp + 28piRgi — Rguiq8inp - (7.12)
By using this identity, the equation (7.11) becomes
Cij = —€"1(2Rip0", + gpiR*y — 2Agipd o [N VN . (7.13)
With the definition of Uy = N™'VN,

Cij = —¢/"|2Rip8"y + 8iR"y — 2881p5" | Ui .
= —2¢;"R;, U, - (R g - 2 6} UL .

We can get rid off the anti-symmetric part of (7.14) : Therefore, let us first do the interchange

of the indices i & jin (7.14)
Cij = —26"R;,U, - &Ry - 206"} Uy (7.15)
The anti-symmetric part will drop by adding the equations (7.14) and (7.15), and we will have
Cij=-¢"R;,U, — €"R;,Uy, (7.16)
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or

C';=—€MR;,U, - ™R ,U, . (7.17)

Let us define X7 = —€'P1U, and X ;¥ = —¢;71U,, then,
Clj:leRpj+Rlejp. (7.18)

This can be written as a matrix equation, let us rewrite it in the compact form

C =XR+RX",
(7.19)
" =R"X" + X)"R" .
Since CT = C and R” = R, the equation (7.19) can be written as
C=R"X" + X")"R. (7.20)
By defining A = Rand Y = X’ we have
C=ATY+Y’A. (7.21)
Now, the matrix equation of the type
ATX +X"A =B, (7.22)
has the general solution of
X = LGTBP ™1 -P 1-PHY + (PIZP,A 2
_EG 1+G'B(1-P)+(1-P)Y+ (P, ZPA), (7.23)

where Z is a rank-2 antisymmetric tensor ; P; = GA and P, = AG such that AP; = P,A = A;
AGA = A [22].

By using the equation (7.23), the general solution for our equation (7.21) is
T _ 1o
Y=X = ER C+ZR, (7.24)

or we have

1
X = 5CR—‘ —-RZ. (7.25)

Let us examine this solution for the Cotton flow [21]: The equation of the gradient Cotton
soliton [21] can be taken as

C,‘j + V,‘VjN =0. (7.26)
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By choosing an ansatz, V;V;N = (R;; — A g;;)N, the general solution for the gradient Cotton

soliton [21] becomes

1 1
X = —SNoP + = NR®R Y - R"Z,P
% N (7.27)
= —5N6 + —= R’ = R"Zy",
2 3
since X ;¥ = —€;P1U, = —ejP‘IN‘lVN, we get
VN = Lempaz N 7.28
= EE i np . ( . )

And the corresponding constraint equation in which the rank-2 anti-symmetric tensor Z must

satisfy is
1 ipm n 1 ipmp n 1 n ik—7 p pk—7 i
€ VR Zyy + S €M RV Zyp + o R; Zup(R*Zi” - RP*Zi) = =N (7.29)

For the case of the static vacuum solution with zero cosmological constant, we found the
general solution as

VN = €P"R" Zy, - (7.30)

And the corresponding constraint equation for Z is
€PR"V Zyy = 0. (7.31)

It seems that the results (7.28), (7.29), (7.30) and (7.31) can be used to find which solution of
the static field equation with A (or A = 0) is also a solution of the gradient Cotton soliton [21].
Furthermore, there is only one 3-dimensional Ricci soliton [23] which is known as the Bryant
soliton. However, the explicit metric is not known. We have not also been able to solve the
constraint equations and have not found explicit metrics. But the formulation outlined above
can be used to explore the gradient Cotton solitons [21] and the solutions of Topologically

Massive Gravity (TMG) [24], [25], [26] as well as the gradient Ricci solitons [23].

88



CHAPTER 8

CONCLUSIONS

In this work, we have first learned how to foliate a globally hyperbolic four-dimensional
spacetime by a continuous set of Cauchy surfaces (X;),eg Which, with particular numbers of
the projection onto the hypersurface and along the unit normal vector, provide us the funda-
mental relations of the 3+1 formalism [12]. Furthermore, with the help of these basic relations
as well as the 3+1 decomposition of the stress-energy tensor, we have learned that the full pro-
jection of the Einstein equation onto X gives the dynamical part and the other two projection
give the constraint equations which are used to check whether a given spacetime is a solution
of the Einstein equation or not. Moreover, with the help of the coordinate adapted to the flow

and the shift vector 8, one can convert the 3+1 Einstein system to a set of PDEs [1].

Secondly, we have analyzed the flow of the hypersurfaces as if there is a conformal relation
between a well-defined conformal background metric ¥ and the set of the induced 3-metrics
associated with the hypersurfaces. Moreover, by constructing the fundamental conformal
transformations of the intrinsic quantities of the hypersurface, the 3+1 conformal Einstein
system is constructed. And we have emphasized that the trace and traceless parts of the 3+1
dynamical Einstein equation transform separately under the conformal transformation. Fi-
nally, we have reconstructed the 3+1 Einstein system for the foliation which is maximally
sliced (K = 0). We have seen that the conformal background metric is nothing but a confor-
mally flat background metric and the Cotton-York tensor [13], [14] vanishes in this case. We
have also seen that this particular case leads to the 3+1 IWM system [17], [18] which is the

conformal approximation to the general relativity.

Thirdly, we have reconstructed the Hamiltonian form [9], [10] of the general relativity which

provides us the ADM formalism for the conserved quantity of hypersurfaces of the globally-
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hyperbolic spacetimes which asymptotically approach to the well-defined spacetimes such as
the Minkowski spacetime [16]. Furthermore, we have seen that the quasi-isotropic gauge and
the asymptotically maximal gauge force us to shrink the cluster of the coordinates in which

the ADM angular momentum J; becomes invariant.

Finally, we have proposed a method in chapter 7 which we think will give the relation between
the solutions of the gradient Cotton soliton [21] and of the static vacuum field equations.
Furthermore, we think that this method can be used to find the relation between the solutions
of the gradient Ricci [23] and the Cotton [21] solitons and the solutions of the Topologically
Massive Gravity (TMG) [24], [25], [26].
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