

i

UML-BASED FUNCTIONAL SYSTEM TESTING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERHAD SARICA

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2011

ii

Approval of the thesis:

UML-BASED FUNCTIONAL SYSTEM TESTING

Submitted by SERHAD SARICA in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan ÖZGEN

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet ERKMEN

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih BİLGEN

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:
Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih BİLGEN

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlkay ULUSOY

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Ece Güran SCHMIDT

Electrical and Electronics Engineering Dept., METU

Gürhan Günce GÜRSEL, M.Sc.

Manager, ASELSAN Inc.

Date: 27/01/2011

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Serhad SARICA

Signature :

iv

ABSTRACT

UML-BASED FUNCTIONAL SYSTEM TESTING

Sarıca, Serhad

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih Bilgen

January 2011, 106 pages

Effectiveness of system testing, in specific phases such as design verification,
requirements validation, test planning and generation, system integration and
system testing are considered. Software as well as hardware test issues are
reviewed. Metrics related to system testing are specified. The current system
testing processes in a large Turkish military electronic systems manufacturer are
reviewed, specific problems are identified and UML-based behavioral testing is
proposed as an improved process. The current process and the proposed process
are compared in terms of test coverage, test effectiveness and test effort metrics.

Keywords: System testing, test effectiveness, test process.

v

ÖZ

UML TABANLI FONKSİYONEL SİSTEM TESTİ

Sarıca, Serhad

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Ocak 2011, 106 sayfa

Sistem testlerinin etkenliği dizayn ve ister doğrulaması, test planlama ve test
senaryolarının hazırlanması sistem entegrasyon ve sistem testleri safhalarında
değerlendirilmelidir. Literatürde bulunan yazılım ve donanım sistem testlerine
yönelik kaynaklar taranarak, yazılım sistem testlerine yönelik UML tabanlı test
senaryoları hazırlama metotları incelenmiş, donanım bazlı sistemlere adepte
edilmeye çalışılmış ve bu çalışma sonucunda UML tabanlı fonksiyonel sistem test
prosedürü ortaya çıkmıştır. Bir savunma sanayi şirketinde geliştirilip üretilen iki
adet sisteme yönelik sistem testlerinde gözlemlenen problemler ortaya konmuş,
geçmişe yönelik metrik hesapları yapılmıştır. İlgili sistemlere uygulanan UML
tabanlı fonksiyonel sistem test prosedürü sonuçları, daha önceki test süreçleriyle,
test kapsamı, test etkinliği ve test eforu metrikleri göz önünde bulundurularak
karşılaştırılmıştır.

Anahtar sözcükler: Sistem sınama, test etkililiği, sınama süreci.

vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Semih

BİLGEN for his encouragement, guidance, advice and support throughout this

study.

I would like to thank to my colleagues and friends for their continuous

encouragement and valuable advices during this thesis. I am also grateful to

ASELSAN Inc. for the facilities provided for the completion of this thesis.

Finally, I would like to thank to my family, Gizem MESTAV and Ahmed CAMCI

for their encouragement and helps throughout my study.

viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS..viii

LIST OF TABLES ... x

LIST OF FIGURES.. xii

LIST OF ACRONYMS AND ABBREVIATIONS..xiii

CHAPTERS

1. INTRODUCTION... 1

2. LITERATURE REVIEW.. 6

 2.1. SYSTEM TESTING AND SYSTEM ACCEPTANCE TESTING 6

 2.2 CONSTRUCTING TEST CASES... 11

 2.3. TESTING EFFECTIVENESS ... 18

3. UML-BASED BEHAVIORAL SYSTEM TESTING PROCEDURE 28

 3.1. PRELIMINARY WORK BEFORE TEST CASE GENERATION 30

 3.2. TEST CASE GENERATION PROCESS.. 31

4. SYSTEM TESTING PROBLEMS AND PREVIOUS SYSTEM TESTING
 RESULTS ... 40

 4.1 .ACCEPTANCE TESTING/SYSTEM TESTING ACTIVITIES AND
 PROBLEMS.. 42

 4.2. TEST PLANNING ACTIVITIES.. 50

 4.3. ORIGINAL TEST PROCEDURES OF SYSTEMS............................ 52

5. APPLICATION OF UML-BASED BEHAVIORAL SYSTEM TESTING
 PROCEDURE ... 56

ix

 5.1. INVESTIGATION OF ORIGINAL SYSTEM REQUIREMENTS
 DOCUMENT .. 57

 5.2. REVIEW OF SYSTEM REQUIREMENTS DOCUMENT................ 59

 5.3. IDENTIFICATION OF VERIFICATION METHODS 61

 5.4. TEST CASE GENERATION PROCESS.. 63

 5.5. TESTING OF SYSTEMS .. 82

 5.6. TESTING RESULTS... 85

 5.7. COMPARISON OF PREVIOUS TESTING PROCESS AND UBST
 PROCESS ... 88

6. CONCLUSION ... 94

 6.1. CONCLUSIONS.. 94

 6.2. FUTURE WORK ... 100

REFERENCES... 101

APPENDIX: USE CASES, BEHAVIORAL DIAGRAMS AND TEST
SCENARIOS.. 106

x

LIST OF TABLES

TABLES

Table 2-1: System Testing and System Testing Approaches and Advises 11

Table 2-2: Test Case Generation Approaches and Their Applicability 16

Table 2-3: Test Complexity Measures ... 21

Table 2-4: Fault Finding Performances of Functional and Environmental Tests .. 22

Table 3-1: Example of RTM .. 31

Table 3-2: Activity Diagram Semantics... 35

Table 3-3: IFD Semantics .. 36

Table 3-4: Example Test Plan Table .. 35

Table 4-1: Number of Requirements by Verification Status.................................. 53

Table 4-2: Number of Defects Found .. 53

Table 5-1 : Number of Requirements for Each Unit .. 57

Table 5-2: Number of Problematic Requirements ... 59

Table 5-3: Examples of Requirements Review Step.. 60

Table 5-4: Reviewed System Requirements .. 61

Table 5-5: Number of Requirements by Verification Methods 62

Table 5-6: V/UHF T/Rx SYS Opening Scenario Use Case (Textual) 66

Table 5-7: GUARD Receiver Opening Scenario Use Case (Textual) 68

Table 5-8: A Test Scenario for V/UHF T/Rx System Opening Scenario Use Case
.. 80

Table 5-9: A Test Scenario for GUARD Receiver Opening Scenario Use Case... 81

xi

Table 5-10: Requirements by Verification Methods.. 85

Table 5-11: Number of Defects Found by UBST and Prediction of Future Faults
.. 87

Table 5-12: Number of Test Cases, Links and Requirements and Their Ratios.... 88

Table 5-13: Previous Test Metrics vs. UBST Process Test Metrics 89

xii

LIST OF FIGURES

FIGURES

Figure 2-1: Scenarios and requirements... 13

Figure 5-2: GUARD Receiver Use Case Diagram... 68

Figure 5-3: V/UHF T/Rx Opening Scenario Activity Diagram............................. 72

Figure 5-4: GUARD Receiver Opening Scenario Activity Diagram..................... 73

Figure 5-5: V/UHF T/Rx System Opening Scenario IFD...................................... 74

Figure 5-6: GUARD Receiver Opening Scenario IFD .. 75

Figure 5-7: IFG of V/UHF T/Rx System Opening Scenario Use Case 77

Figure 5-8: IFG of GUARD Receiver Opening Scenario Use Case 78

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AT&E : Acceptance Test and Evaluation

COTS : Commercial Off-the-Shelf (Software or Systems)

Dz.K.K.lığı : Navy Forces Headquarters

FAT : Factory Acceptance Tests

FSM : Finite State Machine

HAT : Harbor Acceptance Tests

HF : High Frequency (frequencies between 3 MHz and 30 MHz)

IFD : Interaction Flow Diagram

IFG : Interaction Flow Graph

M&S : Modeling and Simulation

OT&E : Operational Test and Evaluation

PTT : Push-to-Talk

RTM : Requirements Trace Matrix

SAT : Sea Acceptance Tests

SEDNC : Systems Engineering Department of Naval Communications

SPL : Software Product Lines

SRS : System Requirements Specification

xiv

SSM : Undersecretariat of Defense Industry

T&E : Test and Evaluation

TCP : Test Case Prioritization

TCR : Test Case Reduction

TEMP : Test and Evaluation Master Plan

T/Rx : Transmit/Receive

UBST : UML-Based Behavioral System Testing

UHF : Ultra-High-Frequency (frequencies between 300 MHz and 3 GHz)

UML : Unified Modeling Language

VHF : Very-High-Frequency (frequencies between 30 MHz and 300

MHz)

V/UHF : Very and Ultra-High-Frequency (frequencies between 30 MHz

and 3 GHz)

1

CHAPTER 1

INTRODUCTION

System testing verifies that an integrated system meets the system requirements

[1] whereas acceptance testing verifies that it meets user requirements [2].

Another definition is that system testing and acceptance testing can also be named

as system verification and system validation respectively.

These two testing processes are important phases of the system development

lifecycle. Acceptance testing is the first step of system delivery and a step that the

developer gets paid and users get a new system which meets their needs if

acceptance testing is fully or partially successful. System testing is not the last

step for finding system faults, but it is the last step for developer to overcome the

problems by paying lesser costs.

The effectiveness of system testing and system acceptance testing processes are

directly related to fault finding capability of test scenarios and this capability has

become significantly more important for the project lifecycle, considering

prevention of late realization of faults [3] that it provides.

The first prerequisite for having effective system testing and system acceptance

testing processes is having clear and understandable requirements [2][4][5][6].

Furthermore, the importance of communication between user and developer for

solving the problem of ambiguous requirements [2] and for defining acceptance

2

criteria [5] should also be taken seriously during project lifecycle.

For hardware-based system testing, acceptance test and evaluation (AT&E)

[7][8][9], operational test and evaluation (OT&E) [8][9][10] and scenario-driven

testing [11] approaches are investigated. These are all useful information for

conducting a whole system testing process from its planning to its execution, but

the literature is relatively insufficient for defining methods for creation of test

cases and scenarios for hardware-based systems when compared to software

systems.

Lack of a standardized methodology and clearly defined process for creating test

cases brings great risks into system testing and acceptance testing of hardware-

based systems. Lack of a methodology obliges engineers to generate test cases for

only the verification of the system requirements, an approach which can be

summarized as “Create a test scenario to verify a requirement”. But, generating

test cases simply to verify their intended requirements can be risky. In such an

approach, no matter how much the engineer is qualified and experienced, there

will be a high probability of missing some hidden faults that cannot be detected by

only executing scenarios that verify the requirements.

The software systems and hardware-based “system of systems” such as

communications systems of a naval ship are very similar when their project

lifecycles are compared. Test case generation methods such as Finite State

Machine (FSM) based methods [12][13] and Unified Modeling Language (UML)

based methods [14][15][16][17][18][19] are important methods considering theirs

methodological and systematic approaches to test case generation.

The most common hardware-based system testing method is behavioral/functional

system testing. UML-based test case generation approaches for system testing

processes cover the functional behavior of software systems. The test case

generation method which is based on UML sequence diagrams [18][19] covers

both the functional and structural testing sections. Besides, the method which is

3

based on UML use cases and activity diagrams [15] only covers the functional /

behavioral testing section of system testing which includes only the verification of

behavioral characteristics of the systems, mainly system responses to user actions.

In this study, first software system and acceptance testing approaches, hardware-

based system testing approaches, test planning approaches and testing

effectiveness issues are investigated. Then a selected methodological test case

generation method for software system testing that is proposed in the literature is

studied. This method is then improved and adopted to hardware-based systems by

integrating some preliminary requirements management and test planning steps.

Suitable systems from the products of department in which the author is currently

employed are chosen. These are the Very and Ultra-High-Frequency (V/UHF)

Transmit/Receive (T/Rx) System and GUARD Receiver, which have previous

testing data for the calculation of testing metrics of test coverage, test

effectiveness and test effort which are used for measuring testing effectiveness.

Moreover, the problems related to previous system testing effort and system

testing and acceptance testing processes in the company where author is employed

are investigated. The most visible problems can be mentioned as

misunderstanding of requirements, overlooked requirements and operational

scenarios during testing process, as well as insufficient level of system testing and

having no methodological approach for test case generation.

After identifying problems and gathering previous testing effort metric results, the

improved testing procedure is applied to corresponding systems and testing

scenarios are generated by forming UML models and gathering the test cases

systematically from the UML models. The test scenarios which are generated by

the developed procedure are executed by considering the rules which are

formulated for increasing the testing effectiveness. The data gathered during

testing are used for calculation of metrics. The metrics of test coverage, test

effectiveness, test effort and calculations made for measuring test complexity are

4

evaluated. These measurements show that testing effectiveness is improved by the

application of UML-Based Behavioral System Testing (UBST) Procedure.

Beyond this introductory chapter, this thesis document is organized as follows:

In Chapter 2, software system testing and hardware-based system testing

approaches are investigated. The propositions of these approaches are analyzed

and their applicability is discussed. Moreover, studies on test case generation

methods which are developed for software system testing and test effectiveness

issues are also reviewed. For the sake of brevity, concepts and approaches

considered especially significant within the scope of the present study are

presented and compared in a tabular form in different sections of this chapter.

In Chapter 3, the proposed system testing procedure UBST procedure is

introduced. The chosen test case generation method and its advantages over the

other methods are presented in detail. Test case generation with the chosen

method is presented step by step. The additions which are made to this method for

adapting the method to hardware-based systems for handling requirements and

planning test sequence are also discussed.

In Chapter 4, information about the department of the company where author is

employed and its products are presented. The chosen subsystem of

communications system for the application of developed system testing procedure

is described. Furthermore, system acceptance testing approach applied in the

author’s department is presented and problems faced in acceptance testing

processes and system testing processes are determined by interviewing colleagues

and superiors. Furthermore, the previous testing effort is presented in detail,

giving its data and calculation of metric values for the comparison

Chapter 5 includes the information about the application of UBST procedure to

V/UHF T/Rx System and GUARD Receiver. The application of the procedure

includes the reviewing of system requirements specification (SRS) document of

the systems under test, identification of verification methods of requirements and

5

generation of test cases and formation of test scenarios. In addition, the rules

which are created for organizing the execution sequence of test cases and test

scenarios are presented. At the end, test results of the applied procedure are

gathered; metric calculations and calculations which are made to analyze the

complexity of testing process are presented. The chapter concludes with the

metric comparisons and analyses which show that testing effectiveness of system

testing processes of V/UHF T/Rx System and GUARD Receiver are improved

compared to the previous testing efforts.

Chapter 6 provides the summary and the concluding remarks of this study as well

as presenting suggestions for future study.

6

CHAPTER 2

LITERATURE REVIEW

The acceptance and system testing phases are complex stages for both hardware

and software system projects. The whole process should be examined by studying

technical and planning sides of the testing process for successful verification and

validation of the system under test. The related work on software system

acceptance tests, software system tests, hardware-based system acceptance tests,

system tests and system level test planning issues are reviewed in the following

parts of this chapter.

2.1. SYSTEM TESTING AND SYSTEM ACCEPTANCE

TESTING

In this section, first the definition of system acceptance testing and system testing

for software systems, hardware-based systems and system of systems will be

given from literature. Then, some approaches on system testing and system

acceptance testing will be presented and discussed.

2.1.1. Definition
The object of acceptance testing is generally an integrated software system, and

for the successful acceptance of the software system, it should comply with all

user requirements and system specifications [2]. In the behavior-based acceptance

7

testing approach, the major objective of acceptance testing is defined as

demonstrating how well the software system satisfies the customer’s requirements

[13]. Another definition made in [5] is that acceptance testing is a formal testing

conducted to determine whether a system satisfies its acceptance criteria, the

criteria that the system must satisfy to be accepted by the customer. In [20], the

aim of software testing is stated as to minimize the cost of software failures and

defects for the entire lifecycle of the software product. In another source, system

testing is defined a testing process in which tester proves that the system meets all

objectives and system requirements [1]. An interesting definition of system testing

and acceptance testing, emphasizing their difference, is given in [21]. System

testing verifies that the system meets all system specifications which are gathered

from user requirements while system acceptance testing also verifies the

correspondence between the system and user’s expectations [21]. In [1], the

difference of system testing and acceptance testing is also discussed such that

system testing can be referred as verification testing, while acceptance testing can

be renamed as validation testing. Verification testing can be described as

requirements-based testing, while validation is referred as capability-based testing

[22]. A commercial definition is made stating that acceptance testing is a

significant stage in the contractual process, which is likely to operate as a payment

milestone and it will affect the application of any warranty provisions available to

customer [23].

For military project lifecycles, for complex systems, the concept of AT&E is

mentioned in [7]. AT&E is an activity which is shared between project owner and

project developer. AT&E focuses on mainly the system-level requirements

(functional, performance, etc.) contained in such documents as system

specification document and the contract. AT&E is designed to provide

confirmation that the system meets the original user requirements and it is ready

to be accepted by the customer for operational use [7][8][9].

8

Various definitions are mentioned above, but they can all be summarized as

follows: system testing is the verification of system requirements by developer,

whereas acceptance testing is the verification and validation of system

requirements and user requirements (operational requirements) by user and

developer. There are some methods and approaches that can be useful in system

testing and acceptance testing which will be discussed in proceeding parts of this

thesis work.

2.1.2. Understanding Requirements to Test Correctly
One of the challenging problems of system testing is observed as the correlation

between requirements and test cases. When the requirements are clear, easily

understandable and sufficiently explain the system, the test cases can be mapped

to each and every requirement that should be verified before system delivery.

In [2], efficient knowledge accumulation in acceptance test process is proposed.

The user requirements should be clearly specified in user requirements documents

and software should meet those requirements. But in practice, success rate is very

low in determining user requirements accurately and completely. This situation

ends with the lack of knowledge or misunderstanding of user requirements by

developer and misunderstanding of characteristics of software developed by user

until both developer and user meet at accepting test phase.

The acceptance criteria (or verification criteria) is based on the measure of

whether a requirement is satisfied or not [5]. It defines what the system should

achieve in order to meet the requirement [6]. Hence, it is proposed in [5] that

acceptance criteria of system requirements should be measurable; it shouldn’t be

understood differently from person to person. Documenting acceptance criteria

during the requirement analysis can help to confirm that the requirements are

verifiable, and also help to reduce the ambiguity [6]. Moreover, the acceptance

criteria must be defined and agreed upon the negotiations between developer and

customer in the contract meetings, and finally an acceptance criteria document

should be prepared as a part of contract where two sides are both agreed on.

9

Actually, both methods discussed in this section propose similar ways to ensure

that there are no misunderstood requirements or acceptance criteria. Successful

application of the approaches absolutely lead to the ability of making right

decisions in the test design process and render the testing process more effective

and efficient.

2.1.3. Operational Test and Evaluation
Another testing category, namely Operational Testing, gains importance within

the scope of AT&E. The aim of OT&E is operational functionality of the system

[8][9][10]. The design issues are out of consideration in this type of testing

activity [10]. The testing activities are conducted by customer or an organization

which customer has an agreement with. Customer conducts the tests and decides

if the system functionally meets their needs [7]. Tests are conducted to verify that

system meets its specification when subjected to the actual operational

environment [9].

Modeling and Simulation
There are some interesting approaches in OT&E, such as using Modeling &

Simulation (M&S) in the test cases that cannot be tested operationally due to

constraints, such as safety [24][25] and the scenario-driven approach in generation

of test cases in system level testing activities [11].

The OT&E approach of M&S is defined as they are tools that can potentially

augment or complement actual field tests and provide decision makers necessary

information to assess the progress of a system toward fulfilling the operational

needs [24].

M&S helps OT&E process in a way such that it gives important information about

the cause of real world instances of test cases which results in early identification

of critical issues, and gives a chance to make a more informed and efficient

OT&E plan. Moreover, it provides early operational feedback to system designers

and decreases the number of needed field tests [25].

10

2.1.4. Scenario-Driven Approach
According to [11] in which scenario-driven approach is discussed, system

testing’s primary objective is to evaluate the capability and dependability of a

system rather than to detect uncovered bugs. The other objectives of system

testing are determining the validity of the final system with respect to user needs

and requirements, examining and evaluating the system behavior by executing a

set of sample data and reducing the risk of unexpected outcomes. The benefits of

scenario-driven approach are listed in [11] as follows:

• It enables an understanding of system’s behavior through sequences of

system operations.

• It allows identifying which scenarios result in the same system behavior.

So that, it helps test case generation by giving an idea about test case

coverage and it decreases cost of testing activities by preventing

duplication of similar testing scenarios.

In [11], some design considerations are offered in creating test cases for

functional behaviors, interoperability, integrity, availability and performance of

systems. For functional testing of the systems, it is offered that test cases should

be real use scenarios of the system as much as possible. The goal of generated test

cases is to cause sequences of interactions and behaviors in the actual user

environments in order to make the validation of the functional components if they

are truly meaningful in terms of functional user requirements [11].

2.1.5. Evaluation of the Approaches
In this part of the thesis work, the approaches and advices about system testing

and system acceptance testing and its wellness which are discussed above will be

discussed in summary. The concepts of knowledge accumulation, agreed-on

acceptance criteria, scenario-driven testing approach, OT&E and M&S and their

applicability are presented in Table 2-1:

11

Table 2-1: System Testing and System Testing Approaches and Advises

 System Testing System Acceptance Testing

Verifies System Requirements User requirements

Aim
Demonstrate and verify that system
is working right according to system
requirements.

Demonstrate and verify that
developer develop the right system
according to user requirements and
contract.

Knowledge
accumulation [2]

• Information exchange between developer and user, developers and
systems in operation.

• The investigation of systems in operation.

Having clear
requirements
[2][5][6]

• Need for deciding acceptance
criteria

• Need for generation of correct
test scenarios

• Need for effective testing

• Need for deciding acceptance
criteria

• Prevents misunderstandings
• Prevents disagreements in

acceptance (Developer-User)
• Need for generation of correct

test scenarios
• Need for effective testing

Agreed-on
acceptance criteria
[5][6]

• Prevents disagreements in acceptance testing process.
• Need for generation of necessary operational test scenarios.
• Increases the effectiveness of testing process indirectly.

OT&E [8][9][10] -

• Verifies operational
functionality.

• Conducted by user in
operational environment.

M&S [24][25]

• For operational tests which cannot be executed due to constraints.
(Safety, etc.)

• Gives valuable information about real world instances of test cases.
• Have a development cost and time.
• Can be irrelevant for time-intensive projects.

Scenario-driven
approach [11]

• System testing is not intended to find defects is not meaningful.
• Advises real operational scenarios as test cases increases the fault

finding probability.

2.2. CONSTRUCTING TEST CASES

In this part of this thesis work, the test case generation methods, approaches and

advises for software systems given in literature will be presented. FSM-based test

case generation methods, UML-based test case generation methods based on

behavioral diagrams of state machines, sequence diagrams and activity diagrams

12

and the place of software product lines (SPL) in test case generation issue will be

discussed.

2.2.1. FSM-Based Test Case Generation Approaches
An approach to software acceptance testing is behavior-based acceptance testing

[13]. A formal scenario-based acceptance test model for testing the external

behaviors of software systems is proposed.

The scope of the approach in [13] is to build an FSM which includes all scenarios

for a selected test case. All scenarios that are possible to eventuate are covered in

the test plan for corresponding test case. By covering all these scenarios, more test

cases can be generated and fault detection can be more efficient, which makes

system testing and acceptance testing more efficient.

There are some interesting methodological approaches to software testing such as

Black-Box testing, behavioral testing or functional testing [12] which can be

applied to systems. In [12] varying software testing techniques and test case

generation techniques are proposed for software systems.

The method in [12] appears to be similar to the FSM method proposed in [13].

The unique specifications are named as nodes that should be verified with the

generated test case scenarios [12]. Basically, by evaluating the necessary paths

(i.e. scenarios) in the graph that consists of nodes (requirements), the evaluation

of the system can be made. These paths and nodes are illustrated in Figure 2-1.

13

Figure 2-1: Scenarios and requirements

2.2.2. UML-based Test Case Generation Methods
A popular approach, use of UML models for test case generation is discussed in

[14], [15], [16], [17], [18] and [19]. Most of the approaches of UML-based

methods for test case generation are originally developed for automatic generation

of test cases, but they also help to think in a way of applying these methods to

hardware-based system test case generation and come up with a methodological

approach.

The automation of tests requires some standardized models for the generation of

test cases. Scenarios and use cases which are the elements of UML do not only

feed requirements, but they also build the bases for testing [17]. The use case

models are transferred to behavioral diagrams, these diagrams are refined

according to method specifications and these refined diagrams are used to

generate system-level test cases. These methods mainly generate test cases for

black-box testing that is functional behavior of the system [14][17][18][19].

Test Case Generation by using State Machines

In [14], use cases are generated by considering theirs preconditions, post-

conditions, extensions and variations. The scenarios that the use cases contain are

transferred to state diagrams (or state machines). These state machines have

14

transitions specifying pre and post conditions and message transfers between

states and test cases gathered from these state diagrams. In [17] a similar approach

to system testing is advised. Again, use case diagrams and use cases are generated

and these diagrams are converted to state diagrams. The state diagrams are

converted to a defined diagram named as usage graph. A usage graph is a directed

graph with a start node and an end node and usage states between them. Usage

states are connected to each other with transitions which are actually user actions.

Usage models are used in generating test cases by executing the transitions (user

actions) between the usage states. Furthermore, in [17] white-box testing issues

are discussed which are concentrated on structural behavior of software systems

which is out of scope of this thesis work.

Test Case Generation by using Activity Diagrams

The approach described in [15] tests the system from the user’s viewpoint. First,

use cases are gathered from requirements, which are then going to be used to

build activity diagrams. Then, activity diagrams are converted to interaction flow

diagrams (IFD), which can be defined as an intermediate step to generate test

plans. IFD, as it can be understood from its name, reduce the activity diagrams by

subtracting intermediate steps (for example interaction between system modules)

between user interaction steps. At the end, IFDs are converted to interaction flow

graphs (IFG) which are based on a tree structure with no loops in order to have

distinct scenarios for the corresponding use case which can be also defined as test

cases. This test tree is executed based on a Depth-First-Search algorithm which

ensures that each cycle is executed once.

Test Case Generation by using Sequence Diagrams

The approaches in [18] and [19] use UML sequence diagrams, which include the

information of interaction of system with actors, in order to generate test cases.

The approach defines a special diagram gathered from sequence diagram to

clearly define the scenario paths and uses the diagram to cover the user-system

15

interactions. The approaches in [18] and [19] includes the black-box testing and

white-box testing issues together, considering the structural behavior and

functional behavior of the system under test and does not advice a method to

reduce the whole testing issue to a functional system testing process.

Test Case Generation by using Use Cases

Another approach for test case generation from use cases is discussed in [16]. The

approach is based on the rule for test cases that each scenario or instance of a use

case should correspond to a test case and this approach brings the advantage of

preventing the consequences of incomplete, incorrect and missing test cases as

other approaches also provide.

The approach in [16] offers first building a system boundary diagram which

depicts the interfaces between the software being tested and the individuals,

systems and other interfaces; secondly for all actors defined in system boundary

diagram, the use cases are generated. At the end, test cases are generated in a way

that there exist at least two test cases for one use case which are successful

execution of test case and unsuccessful execution of test case [16]. Clearly, much

more test cases can be generated for a use case for exceptions and alternative

courses.

Furthermore, there are also approaches for functional testing for SPL. An SPL is a

set of software intensive systems sharing a common and managed set of features

that satisfy the specific needs of a particular market segment or mission. A large

number of studies have been done for SPL testing which are covering all the

testing levels in the lifecycle of software and unit testing to functional testing. The

most important ones of those works about this thesis work’s scope are functional

testing approaches. A lot of methods are discussed in [26], but mostly studies

have been done using UML diagrams which have already been discussed above.

16

2.2.3. Evaluation of the Approaches
In this part of the thesis work, the approaches and methods about test case

generation of software system testing process and their specifications will be

compared. The approaches of FSM-based and UML-based test case generation

methods using state machines, activity diagrams, sequence diagrams and use cases

and their applicability to system testing of hardware-based systems or system of

systems are presented and compared in Table 2-2:

Table 2-2: Test Case Generation Approaches and Their Applicability

Approach Concentration & Benefits &
Advantages Disadvantages

FSM-Based
Behavior based
approach [13]

• Covers all possible scenarios.
• Increases fault finding

probability.

• Not a standardized method.
• Hard to apply preliminary

steps before converting to
FSM.

• Can be applied to systems that
are produced in a production
line.

FSM-Based
Black-Box approach
[12]

• Requirements Nodes
• Sequences of nodes verified.
• Prevents missing

requirements.

• Modeling, documentation and
application will be time
consuming.

• Becomes inefficient for
system testing of hardware-
based systems.

UML-Based using
State Machines
[14][17]

• Use Cases State Diagrams
• State Diagrams also contain

pre and post-conditions and
extensions

• State Diagrams Usage
Graphs

• Usage Graphs –> Test Cases
• Models functional behavior

• Not as efficient as the other
behavioral diagrams in
modeling sequences of actions
and functional behavior.

• Complex transitions
• Manual application becomes

time consuming.

UML-Based using
Activity Diagrams
[15]

• Activity Diagrams IFD
• IFD includes only user-system

interactions.
• IFD IFG (A directed tree)
• IFG Test Cases
• Models functional behavior
• Easy to apply manually
• Includes all operational

scenarios

All actions should be handled
manually for system testing of
hardware-based systems

17

Table 2-2 Continued

Approach Concentration & Benefits &
Advantages Disadvantages

UML-Based using
Sequence Diagrams
[18][19]

• Sequence Diagrams and Use
Case Diagrams
Intermediate Diagrams

• Intermediate Diagrams
Test Cases

• Covers Black-Box testing

• Many intermediate steps
• Complex manual steps
• Covers also white-box testing
• Not only covers functional

behavior but covers also
structural behavior.

UML-Based using
Use Cases [16]

• Use Cases Test Cases
• Use cases are defined on

system interfaces

• Only covers main success
scenario and failure scenario

• Operational scenarios are not
discussed

• Not a standardized method
considering other UML-based
methods

In addition to the information which is given in Table 2-2, the use of UML models

[14][16][17][18][19] (including use cases) for some system testing and system

acceptance testing activities’ test case generation process can be not as efficient as

it is in software testing issues because of limited test scenario number and limited

input to the scenarios for system testing case. This low number of obvious

scenarios can be obtained without the help of behavioral diagrams. But, having a

systematic and defined way of system developing language, which is

understandable and clear, will help the system developers to develop and specify

systems in graphical models where there is no chance of misunderstanding.

Furthermore, SPL is a very different issue and methodology from the ones that

will be used in the scope of this thesis work. The methods discussed in [26] are

similar to the methods discussed in [14], [15], [16], [17], [18] and [19], but SPL

testing is out of the scope of this thesis study.

.

18

2.3. TESTING EFFECTIVENESS

Until now, some testing techniques of software and hardware based systems

presented in the literature are discussed. But, the point of how we can enhance the

effectiveness of this whole testing issue is the topic of testing effectiveness

assessment. This section discusses the problems that create ineffectiveness of

testing processes, discusses some techniques used in order to assess testing

effectiveness and presents some metrics to measure and compare the effectiveness

of testing activities.

2.3.1. Testing Metrics
A metric is a measure [27]. Test metrics accomplish in analyzing the current level

of maturity in testing and give a projection on how to go about testing activities

by allowing us to see what is wrong and what makes testing process ineffective.

Test metrics that are determined to collect for a system or software should be

measurable, easy to collect, simple and meaningful in order to be beneficial for

improving the testing process.

There are several types of test metrics in software engineering, such as test

coverage, test effectiveness, test effort, test span, test complexity, Mean-Time-To-

Failure, defect density, customer problem metric, customer satisfaction metric and

so on. In following sections, only the metrics that are suitable to scope of this

thesis work will be discussed.

2.3.1.1. Test Coverage

In [28], the first objective of test coverage metric is defined as that it is used to

measure that how many of the requirements is tested. Another definition made in

[27] such that given a set of things to be tested, test coverage is the portion that

was actually tested and given following equation:

100x
TestsTotal

ConductedTestsCoverageTest = (2-1)

19

According to [28], to have a satisfactory test coverage value, it should be

determined that each requirement is linked to at least one test case. Besides in

[27], it is stated that it may be impossible to reach 100 % test coverage in system

level test cases if “Total Tests” value in above equation is not limited by making a

“Test Inventory”. Actually, “Test Inventory” is the total number of tests that

should be executed to verify the system, which can be redefined as total number

of test cases to verify all the requirements. So, the definition given in [28] can be

substituted to the equation given above and the following equation for test

coverage can be obtained:

100x
tsrequiremenAll

casetestoneleastattolinkedsequirementR
CoverageTest = (2-2)

2.3.1.2. Test Effectiveness

The definition of test effectiveness is made as the ability of a test to accurately

emulate the expected mission environment, and reliably detect failure causing

defects before launch in [29]. In [30], it is stated that high test effectiveness is

achieved when more deficiencies of system found in early testing procedures such

as unit testing, subsystem testing and, when only workmanship problems are

occurred during acceptance testing. According to [3], test effectiveness refers to

the ability of the test environment, at operational conditions or in factory, to cost

effectively detect and isolate actual faults in the unit or system. Test effectiveness

is defined simply as bug-finding ability of the test set in [27]. The following

equation is given in [31] for test effectiveness measurement:

100x
userbyreportedDefectstestingbyfoundDefects

testingbyfoundDefectsessEffectivenTest
+

= (2-3)

Evaluating Test Coverage and Test Effectiveness metrics together will give

developer a great measure about the testing effort of system under test. As it is

stated at [27], having 100 % of test coverage will not lead to a high percent of test

effectiveness. Giving an example, a test set may have 50 % test coverage whereas

20

it has a 95 % test effectiveness measure. This means the test designer chooses the

right 50 % of tests from test inventory and makes the whole testing process more

efficient by reducing time and cost.

Test effectiveness with above equation only measures the percentage of the

defects that are found. But, all found defects are not same if the solutions of the

defects are considered. So, a more precise measurement can be done if a variable

value for each defect found will assigned. This variable value can be between 1

and 10 and the developer can grade defects by multiplying them with this variable

value. The above measurement method can be illustrated with the following

equation:

100

1

x
DefectkDefectk

Defectk
essEffectivenTest m

i

n

mj
jjii

m

i
ii

∑ ∑

∑

+=

+
= (2-4)

Here k is the variable that is defined above. This measurement will give us the

idea of test effectiveness by considering solution efforts of the defects.

2.3.1.3. Test Effort

The aim of test effort is defined as minimizing the number of defects that the

users find in the project [27]. This goal is achieved by eliminating defects and

bugs before system delivery. So, the test effort metric can be described as the ratio

of defects eliminated to all defects found and can be represented with the

following equation:

100x
FoundDefectsAll

EliminatedDefects
EffortTest = (2-5)

This metric is useful in projects which have multiple delivery of the system under

test in different times. So, while getting the measurements from first system

21

delivery, the developer can improve the test procedures for upcoming deliveries

by eliminating the defects that are found by user in first system delivery.

2.3.1.4. Test Complexity

In large projects which have many more requirements than small projects,

traceability of requirements to tests should be investigated for excessive and

insufficient testing. In this metric, ratio of links to requirements (L/R), ratio of

links to test cases (L/T) and ratio of requirements to test cases (R/T) are

investigated where a link is a connection between a requirement and a test case

[28]. The measures of L/R, L/T and R/T and the expressions of these measures are

given in Table 2-3:

Table 2-3: Test Complexity Measures

Measure Limit Meaning

R/T >1:1

If close to 1:1:
• Long testing process
• Increases testing cost
If less than 1:1:
• Risk of over testing

L/R >1:1

If less than 1:1:
• Existence of requirements not linked to a test case
• End up with missing verification steps
• Decreases testing effectiveness

L/T -

If too high:
• Test process is too complex
• Traceability becomes hard,
• Probability of excessive testing of requirements

2.3.2. Improving Testing Effectiveness
The above metrics can be used in hardware systems to measure the suitability and

efficiency of testing process. In following sections, the ways of improving testing

effectiveness, efficiency and metrics introduced in previous sections will be

discussed.

22

2.3.2.1. Role of Functional and Environmental Tests in Testing Effectiveness

In [27] and [29], some measures are given about the ratio of faults found during

functional testing in ambient conditions and environmental tests. These ratios are

given in terms of percentages in Table 2-4:

Table 2-4: Fault Finding Performances of Functional and Environmental Tests

Testing Step Fault Finding Percentage

Early Integration Tests [27] 10-25 %

Functional Tests [27] ~ 40 %

Integration Tests at System Level [29] 15-25 %

Environmental Tests including
Thermal and Dynamic Tests [29] 50-60 %

Dynamic Tests [29] 10-25 %

Thermal Tests [29] 20-35 %

Investigating Table 2-4, it is seen that functional and environmental tests are very

important in improving testing effectiveness considering whole testing process of

the system, from unit testing to system acceptance testing. Considering acceptance

testing and system testing, system level functional tests can be also an effective

step of whole testing process of systems. The importance of environmental tests

cannot be underestimated, but the environmental tests are out of scope of this

thesis. It is advised in [29] that for effective testing more functional tests at

ambient conditions, which come with lower risk ratios and lower cost, should be

conducted [29].

2.3.2.2. Late Realization of Deficiencies: Cost Problem

In [3], it is mentioned that the allover testing effectiveness comes to a cost

problem finally. This is because of late detection of deficiencies, problems or

failures in acceptance testing, system-level testing or operational testing levels

23

which bring high risks to system projects and incur cost due to delayed project

finalization.

It is stated in [3] that the problem of testing effectiveness depends on late

realization of deficiencies. That is the concern of engineers is the design problems

that are occurred in acceptance testing level or operational testing level. But, what

are of even greater concern are the faults which cannot be detected in either

acceptance test, operational test or environmental test, and yet may cause serious

loss of function [3]. The problem of hidden failures or deficiencies is hard to solve

because of fragmented solutions that may work on paper or during limited,

controlled demonstrations. But actually, these solutions only postpone the

appearance of deficiencies to operational life of system [3]. For overcoming this

problem, preventions should be taken into account to increase testing

effectiveness of system level testing processes, which is the last step for detecting

and fixing problems without higher costs.

2.3.2.3. Enhancing Testing Effectiveness

Decision Making Systems

In order to achieve a mature test effectiveness decision system, test data, cost data,

performance data and many more test related data of prior testing jobs of similar

systems should be gathered and judged by the above given decisions. In [29],

some industrial firms are investigated for testing effectiveness systems, but there

were no such a full decision system about testing effectiveness. Some

recommendations made for firms in achieving testing effectiveness such as:

• Develop a long range testing effectiveness strategy,

• Improve and integrate data gathered from previous systems,

• Investigate innovative test strategies,

• Conduct test substitution studies,

24

• Develop priority risk assessment to target testing more precisely against

the most serious risks.

Tracing Requirements

For assessment of testing effectiveness, some advices are given in [32]. In the

beginning, requirements to be tested should be clearly identified; they should not

be ambiguous and vague. After identification of requirements, a “Requirements

Trace Matrix” (RTM) should be prepared that is used as a planning tool. This tool

helps determining the number of tests required, verification and test types used,

whether tests can be automated and if there exists any duplication of tests and

reuse capabilities. The second step for assessment process is analyzing existing

testing activities of similar software systems. The RTM of these existing systems

can be helpful for analysis by giving a chance to investigate previously used test

types associated by unique requirements, to investigate equivalence classes of

tests. Equivalence classes of tests corresponds to test cases which may be testing

the same thing, in which if one test passes all the others are treated as passed or

the reverse case. The last step in the assessment process is given as removing the

unnecessary and repeating test steps from test plan. In [32], it is stated that after

going through these steps a more meaningful collection of test steps will be in

hand and tests will have a higher probability of finding undiscovered defects.

Again this results in an increased return on investment, so increased cost

effectiveness.

Reviewing Documents

In [33], making whole test issue effective starts with reviewing requirements and

test plan. Testing tasks in test plan, or if there is not a plan, applying the following

listed questions to requirements can help designers in order to break down testing

tasks.

• What should be tested? : Scope of testing

25

• When should test procedures be developed? : It is suggested to develop

test procedures as soon as requirements are available. After deciding what

to test, the priorities of tests should be determined. High priority tests

should be tested first.

• How should test procedures be designed? : In order to design the

appropriate and effective tests, it is necessary to consider the parts that

make up the system and how they are integrated.

Prototypes

Prototypes also give valuable information about inconsistencies or incompleteness

of design and provide a basis for developing correct, sufficient and effective test

procedures about the system [33].

Exploratory Testing

Furthermore, for discovering system’s functionality and operational boundaries

exploratory testing is advised in [33] in projects where there is not much

knowledge about the system under test or functional requirements are informal or

absent. Exploratory testing identifies test conditions based on an iterative

approach. The problems found early in exploratory testing helps focusing the

direction of later test efforts [33]. Exploratory testing helps engineers to cover the

most important issues in test plans while it is impossible to cover all possible test

scenarios, variations and combinations in limited time.

Software Inspection

Inspection is a process that is used in verification and validation of hardware

based systems. Inspection is also tried to be inserted in software development

processes [20]. Software inspection is a set of methods which evaluate the user

interfaces to find usability problems and is easy to apply and cost-effective.

Software inspection allows finding defects earlier, thus reducing rework cost.

26

Research in [20] reveals that software inspection is as powerful as software testing

in finding defects after changes or new versions of the software. Combining

software inspection and software testing to cost-effectively find and eliminate

defects, and provide reliability. Combination of these processes can also increase

testing effectiveness by decreasing time and cost of testing process and increasing

the test effectiveness metric by finding much more defects that software testing

can miss.

Test Case Prioritization & Reduction

Test Case Prioritization (TCP) introduces the planning of the execution order of

the test cases in order to increase the effectiveness of testing activities by

improving the rate of detection of deficiencies [31]. Another similar definition

made in [34] such that TCP techniques schedule test cases for execution in an

order that attempts to maximize objective function (Fault detection, test coverage,

reliability, etc.). TCP techniques discussed in [34] are mainly code based

techniques. Some metric collection techniques in [31] such as following can be

applied to hardware based systems when applying TCP techniques:

• Test Coverage,

• System failure data for a component by previous test efforts,

• System failure data for a component reported by customers in the field.

Test Case Reduction (TCR) techniques are also discussed in [34]. TCR techniques

help to find out effective subset of test cases during maintenance phase and are

helpful in reducing the testing cost [34]. TCR techniques give the advantage of

spending less time for executing test cases. However, there may be reduction in

fault detection rate while applying TCR techniques [35]. TCR techniques are

generally applied as follows:

• A test suite is selected,

27

• Faults detected by original test suite is written down,

• Test suite is reduced by applying TCR technique,

• Faults detected by reduced test suite is written down,

• Percentage size of reduction and percentage of fault rate detection is

calculated and compared [36].

Another method described in [37] is Cumulative Test Analysis (CTA) technique

which reduces time to find defects by prioritizing and minimizing testing. In this

method, test areas are chosen to target product areas having the highest risk of

defects. By using CTA, it is predicted that test team will run “as few tests as

necessary”, rather than the traditional “as many tests as possible”.

Concluding the effectiveness assessment issue, it is understood that the whole

testing issue from its planning to documentation should be done carefully,

systematically and in a clever way to accomplish efficient use of time and man-

power; and to cost effectively end testing processes by finding all critical

deficiencies that can cause loss of money and time during operational life of

system under consideration because of high maintenance costs.

28

CHAPTER 3

UML-BASED BEHAVIORAL SYSTEM TESTING

PROCEDURE

Systems engineering is about seeing the big picture, specifying and developing

large, complex systems and system of systems [38]. It has been claimed that

SysML which is based on UML 2.0 has all the necessary features for systems

engineering [38][39]. SysML reuses a subset of UML and provides additional

extensions, specifications and rules to satisfy the requirements of system

engineering processes [39].

Using modeling languages like SysML or UML helps systems engineers in

various ways. The most important benefit of using SysML/UML in system

engineering processes is having a standardized and comprehensive system

specification models. This brings consistency between syntax and sub-elements

(requirements, diagrams, models) [38]. Moreover, graphical symbols used in

modeling diagrams have unambiguous meaning considering textual statements

used in conventional system development processes. This will bring a noteworthy

decrease in miscommunication between developers and others (testers, buyers and

users).

This thesis work only covers the system verification issue of the whole system

engineering process. In Chapter 2, literature about the system testing approach

based on UML is investigated. There are methods developed for just structural

29

testing, methods developed for both structural and behavioral testing and methods

developed for only behavioral testing. Structural testing covers the interaction of

inner system modules opposing to the functionality of system whereas behavioral

testing verifies the response of system against the interaction between user and

system.

The objective of this study is to propose an effective process for system

verification and user acceptance testing, based on applying testing methods and

advices that are given in Chapter 2. As it is understood from above paragraphs,

testing methods introducing UML into testing phase are chosen because of their

adaptability to system thinking.

In summary, UBST Procedure, the procedure that is presented throughout this

chapter, is actually an improved test case generation process for hardware-based

systems’ system verification tests. UBST sums up the applicable parts of useful

methods in software testing and system testing processes that are discussed in

Chapter 2 of this thesis work. The systems under tests that are discussed in this

thesis are investigated in their system verification and validation period. Because

of this situation, a planning and extra documentation effort for whole project

lifecycle is considered as unnecessary. So, only planning of testing and necessary

documentation for the system verification an validation (system testing) era are

going to be handled. UBST sums up the applicable parts of useful methods in

software testing and system testing processes that are discussed in Chapter 2 of

this thesis work.

The first step of UBST will be the investigation of requirements and specify their

testability. The next step is the identification of the verification methods of

requirements and handling of necessary test planning and test case generation

processes in order to have a test plan and procedure.

In this chapter, the refinement of requirements and planning issues will be

discussed in summary. But, the chosen UML-based test case generation technique

30

will be given in detail and information will be given about how it will be applied

to hardware-based systems.

3.1. PRELIMINARY WORK BEFORE TEST CASE

GENERATION

In the beginning of Chapter 2, the definitions of acceptance testing and system

testing are given from different sources. The basic definition of the scope of

system testing and acceptance testing that can be gathered from [1], [2], [13] and

[21] is the verification and validation of requirements. The requirements can

successfully be verified if and only if they are clear, unambiguous and verifiable

(measurable, testable) [5]. System requirements should be refined and finalized

until all requirements made unambiguous, verifiable and clear by exchanging

knowledge between developer and user [2].

After requirement refinement process, the verification methods for each

requirement that are going to be verified must be defined with the agreement of

developer and user. Then again with the agreement of developer and user, the

acceptance criteria should be defined for each requirement which the

corresponding verification step should satisfy [5][6].

Whole information discussed above can be put into together in a table which can

also be named as the RTM. RTM contains the information of number of tests

required, verification steps and types of verification steps [32], so does the table

that we advice above. This table can be built as the one given in Table 3-1.

Constructing RTM is the last step before going on with test case generation

process. The requirements are refined, requirements that are going to be tested are

defined and acceptance criteria of requirements are defined. All the information

for building models that are going to be used in test case generation process will

be in hands of developer after building RTM adequately.

31

Table 3-1: Example of RTM

Requirement
No Requirement Verification

Technique
Acceptance
Criteria

Verification
Step

7.2.1

V/UHF Transceiver System will
consist of 1 CU, 1 RFSU, 1
V/UHF Filter and 1 UHF
Amplifier unit.

Inspection

All units
should be
included in
configuration.

xyz

…. …… ……..

…..

3.2. TEST CASE GENERATION PROCESS

The use of UML models in systems engineering process is a popular research

area. A recently published standard likewise UML specification named as SysML

[39] is prepared by the contributions of many large industrial companies and will

be used as a reference document for managing diagrams in a systems engineering

viewpoint. SysML does not advise a way to generate test cases or any other

processes but standardizes the diagrams and elements that are used in system

modeling and development. SysML uses most of UML models, makes some

extensions on the used one or does not make any change and just use them. In this

thesis work, the UML-based approach to system testing is used as the test case

generation step of UBST. While using a hybrid of UML-based approaches

described in [14], [15], [16], [17], [18] and [19] for system test case generation

process, SysML models will be tried to be integrated into this hybrid approach.

3.2.1. Use Cases and Use Case Diagrams
The common base of all the approaches discussed in [14], [15], [16], [17], [18]

and [19] is use cases. In all test case generation processes, first use case diagrams

and corresponding textual use cases are constructed before going on with

sequence, activity or state diagrams.

32

Use case diagrams actually describe the usage of the system from the viewpoint of

users (actors). Use cases can be also viewed as functionality that is accomplished

through the interaction between system and actors [39]. There are three different

relationship commonly used in use case diagrams which are:

• Communication relationship (Straight Line): Actors are connected to use

cases via communication paths,

• Include relationship: Provides a mechanism for describing common

functionality or scenario that is shared between use cases,

• Extend relationship: Provides optional functionality to overcome a use

case’s scenarios other than main success scenario [39].

Textual use cases are generated from use case diagrams keeping its structural

connections and relationships. Textual use case specifies the pre and post

conditions, main success scenario, extensions and variations of the use case

[14][39]. So, it includes all the possible interactions between user (actor) and

system under test. Because of this extensive information included in textual use

cases, they are used in generation of sequence, activity and state diagrams. In

those diagrams, system’s functionality and behavior corresponding to actors’

inputs to the system are covered. Moreover, as it is mentioned before, these

diagrams are used to generate test cases for system testing processes.

The first step in test case generation is to understand the system, its working

scenarios, its specifications, its functional characteristics and its performance

issues. After understanding the system clearly, use case diagram for executing

behavioral system testing should be modeled, the use cases that the actor is in

interaction should be specified and the common use cases included in other use

cases should be revealed for ease of modeling.

33

3.2.2. Choosing the Model
The UML-based test case generation methods are introduced in Chapter 2, and

their applicability is also discussed. But remembering again, generating test cases

from state diagrams [14][17], sequence diagrams [18] and activity diagrams [15]

can be possible.

In general, all the approaches use "use cases" and generate a behavioral diagram,

than make changes and derivations on those behavioral diagram, and finally they

generate test cases from the modified or generated diagrams. Model will be

chosen by investigating the details of the methods.

In Chapter 2, applicability of these models is also discussed. The most important

criterion is the suitability of the method to the system under test in elimination of

the methods. Since in this thesis work, the system under test is a hardware-based

system and scope of this thesis is to make the system testing (system acceptance

testing, functional system testing, behavioral system testing) effective, the test

case generation method should specifically be interested in black-box testing

instead of white-box (structural) testing.

The approaches in [18] and [19] are usable when considering sequence diagrams’

nature. The messaging between modules and system and actor is apparent and

sequentially available. But, in system testing or acceptance testing, the

interactions between modules and units form the system is out of consideration.

Approaches using state diagrams described in [14] and [17] can be both

considerable as successful in generating high-level test cases. But, state diagrams

are more formal diagrams than sequence and activity diagrams. They integrate

complex semantics, which makes them hard to generate and handle compared to

activity and sequence diagrams. Moreover, sequential actions are hard to be

defined and resolved in state diagrams which make it harder to realize the

interaction flow during use case scenarios. Another drawback of approaches

discussed in [14] and [17] is that for both, there are too many manual work and

34

additional effort that test designer should handle which can make generating test

cases for hardware-based systems with a formal approach not as efficient as

generating them without a formal and planned approach.

The most suitable approach for the system of interest in this thesis work is the

UML-based approach by using activity diagrams which is discussed in [15]. The

approach excludes inner system interactions and structural behavior and considers

only functional behavior of system that is responses to actor inputs. This feature

of the approach and the simplicity of application push it one step forward from

other approaches discussed in this section.

3.2.3. Transforming Use Cases to Activity Diagrams
It is advised to build an activity diagram which provides a functional system

model instead of a technical model [15]. Activity diagrams start with a starting

node, which is the initial state of the use case. The below list which are included

in textual use cases should be regenerated as “action nodes” in activity diagrams:

• All the actor action steps,

• System actions which run processes and generate outputs which force the

actor to make a decision.

Moreover, decision nodes are should also be marked. Decision nodes show the

necessary decisions that the actor or system should perform by considering the

outputs of previous actions or inputs. Furthermore some other requirements given

in [15] for building activity diagrams are:

• All objects providing information to a manually executed function are

modeled as input pins of actions,

• Objects, which are changed are modeled as input and output pins of

actions,

35

• Objects created during the execution of an action are modeled as output

pins of actions.

Here, objects can be referred as system responses in our case. The semantics of

activity diagram that are going to be used in this thesis work are given below in

Table 3-2:

Table 3-2: Activity Diagram Semantics [39]

Node Name Semantic (SysML)

Action Node

(with input and output pins)

Decision Node

Initial Node

Final Node

3.2.4. Interaction Flow Diagram – Interaction Flow Graph: The
Intermediate Steps

The activity diagrams become very detailed when the processes which are

executed by systems are added to the diagram. In [15], the viewpoint of user or

tester is considered only in generating test cases, the approach considers the

system as black-box, and is not interested in inner system processes or inter-

module interactions in the system. Hence, these processes should be identified and

eliminated from activity diagram in order to generate a test procedure which will

36

test the behavioral responses of system as a black-box, accepting inputs only from

user or tester and giving outputs only to them.

Interaction Flow Diagrams (IFD) represents the control flow of inputs and outputs

that a tester has to state to the system and expect from the system [15]. Internal

actions defined in activity diagrams are subtracted in IFD. Moreover, IFD is

considered as the starting point to generate test cases as it contains only user

interactions. IFD is simpler than activity diagrams with its reduced syntax and

increases the simplicity of processing the information in it. Elements of IFD are

given in Table 3-3 below:

Table 3-3: IFD Semantics [15]

Node Name Semantic

Action Node

(with input and output pins)

Decision Node

Fork Node

Join Node

Start Node

Stop Node

37

Figure 3-1 shows the mapping between activity diagram and IFD. It is seen that

the action which is not assigned as a user action is not mapped to IFD. This is

because of IFD’s viewpoint. An end user cannot verify the internal functions of

the system.

Figure 3-1: Mapping Activity Diagram (Left) to IFD (Right)

The last step before test case generation process is converting the IFD to IFG. In

spite of IFD, IFG cannot contain any cycles in it. This is achieved by applying a

Depth-First-Search algorithm, which ensures that each cycle and each

combination of cycles are executed only once [15].

The IFG is a directed graph and each path of IFG corresponds to a test scenario.

In our case, these scenarios can be main success scenario, scenarios corresponding

to extensions and scenarios corresponding to variations. So, if IFD has a cycle in

it, IFG will have multiple occurrences of nodes that the cycle contains. A simple

example converting the IFD given in Figure 3-1 is given below in Figure 3-2:

38

As it is seen from the Figure 3-2, decision nodes are not a member of IFG. There

are two distinct paths in IFG, where each path corresponds to a scenario. It can be

seen that, the only cycle that IFD has been included in IFG and executed only

once in a path. Moreover by applying the approach in [15], it can be seen that all

paths coverage is attained, that is all possible scenarios of the corresponding use

case is covered.

A1

A1

A3

A3

Figure 3-2: An example of IFG

3.2.5. Generating Test Cases and Constructing Test Plans
As it is mentioned above, each path of IFG corresponds to a test scenario. Since

the graph has no cycles, these paths can be analyzed and extracted with a Depth

First Algorithm [15].

In hardware-based systems, generally, at least one of those distinct paths

corresponds to the main success scenario and the others to scenarios of extensions

and variations. Moreover, for the case in this thesis work, pre and post conditions

of the action nodes should be specified and this information should be transferred

firstly to IFD, then to IFG and at the end to test plan. Because, execution of some

39

states can only be possible if the needed preconditions are supplied. Table 3-4

gives a format for a test case scenario test plan.

This simple example gives the tester simple instructions to overcome the test

procedure, and verify the system considering the possible outputs. By the

approach in [15], the tester will have a full coverage of operational scenario of the

system, which also helps the tester to decide to verify if the system behaves as

specified in test plan.

Table 3-4: Example Test Plan Table

Use
Case
Name

…………

Scenario
No TS1

Test
Case # Pre-Conditions Input Summary Output

TC1 - Input-1 Action 1 -

TC2 - Input-1 Action 1 -

TC3 - Input-3 Action 3 Output 2

40

CHAPTER 4

SYSTEM TESTING PROBLEMS AND PREVIOUS

SYSTEM TESTING RESULTS

In this chapter, system testing of naval communication systems which are

designed, produced and integrated in the company that the author is employed

will be investigated. Positive and negative properties of whole testing process will

be discussed in terms of testing effectiveness, and metrics calculated from

previous testing activities will be shared. The assessment of current testing

procedures performed will be done, by introducing some senior engineers’ and

managers’ ideas, as obtained in the interviews conducted within the scope of this

study. Specifically, 1 systems engineering manager, 2 senior systems engineers, 2

expert engineers and 2 engineers have been interviewed and the material in the

rest of this chapter mainly reflects their opinions, as synthesized by the author.

Moreover, the testing procedures of previous systems testing activities will be

investigated and metrics from these testing activities will be gathered.

Naval Communication Systems produced for Turkish Navy consist of Internal

Communication Systems such as Sound Powered Telephone System, Telephone

System and Announcing System, and external communication systems such as HF

Subsystems, V/UHF Subsystems and a master switching system which manages

internal and external communication systems.

41

Naval Communication Systems do not have any interface to the other electronic

systems of the ship, except LINK, which is a system that shares information

between ships in a fleet by using V/UHF or HF Transceivers. But this system

interface is kept out of the scope of this chapter.

Naval Communication Systems differ from other systems such as radar systems in

a way that they include many subsystems; some are Commercial Off-the-Shelf

(COTS) products, some are produced by subcontractors and some are designed

and produced in the company that the author is employed. Because of the variety

of subsystems, the probability of finding defects in testing due of integration

problems is very high.

Moreover, another difference of naval communications systems from other

systems is that communication systems are built uniquely for each and every

project, since all different kinds of ships have different system requirements and

each project need development process. It can be understood that mass-production

of naval communication systems is impossible.

Testing of V/UHF Radio System is the main system that will be investigated in

present chapter. The system has 4 configurations namely V/UHF Transceiver AC

and DC configurations, Ultra-High-Frequency (UHF) Transceiver and Guard

Receiver. All configurations have the same radio transceiver, but this transceiver

is adjusted to different modes, in order to meet the related configuration’s

requirements. V/UHF Transceiver configuration consists of a Central Unit which

includes transceiver and controls, a COTS V/UHF Filter, a COTS UHF Amplifier

and a RF switching unit to integrate the COTS products with the transceiver. The

previous version of V/UHF ship configuration mentioned above is still used in the

Turkish Navy in a class of frigates and some design and testing experience was

gathered from the modernization projects of related class of ships. Also, all four

configurations of V/UHF Radio Systems are integrated to a corvette, to a class of

patrol boats and are going to be integrated to some export ships and new ships

planned to be built.

42

4.1. ACCEPTANCE TESTING/SYSTEM TESTING

ACTIVITIES AND PROBLEMS

In the company that the author is employed, in the department of system

engineering, integrated communication systems for naval ships are designed.

Considering these communication systems, they are designed and built specially

for different kinds of ship platforms. That is, a mass production of the

communications systems is not possible. In the acceptance of those systems, there

are 3 steps: First step is Factory Acceptance Tests (FAT), the second step is

Harbor Acceptance Tests (HAT) and the last step is Sea Acceptance Tests (SAT).

After completing the last step successfully, the system is fully accepted by project

owner or it is temporarily accepted. The acceptance type of system changes in

different projects because of contract issues and unsatisfied system requirements.

The acceptance viewpoint of the company’s responsible divisions interested in

naval systems is meeting and satisfying all the system and customer requirements

in the three steps of acceptance tests mentioned above, that are FAT, HAT and

SAT. The functional, non-functional (reliability, maintainability, etc.),

performance and operational requirements are all tested and evaluated with the

contribution of developers, customer and user of the project.

The verification and validation issues planned by systems engineering

departments and confirmed by the user and the project owner are conducted by the

department charged (which changes for different projects) with testing by the

supervision of systems engineering department in FAT, HAT and SAT.

In FAT the end user of system meets for the first time with system and their role

in this step doesn’t go forward from observation for not decreasing the efficiency

of test steps. In this step of acceptance testing, a lot of knowledge accumulation is

performed between the end user and the developers.

43

In HAT and SAT, the end user is encouraged to contribute the test in a role of

operator of system. In HAT and SAT steps, the end user has more knowledge

about the system and its use, because in all integration processes, they are

supervising the integration team of company and before HAT and SAT, developer

organizes a user training which is generally a contract must. From FAT to HAT,

there made some integration tests in ship platforms to be sure that system is ready

for full or temporary acceptance, but those tests are conducted by the company

that the author is employed, so this test steps are not a formal activity between

developer and project owner, and this test steps are controlled only by developer’s

own quality divisions. But these tests give brief information to the user about the

operational and functional use of system that can be a usable knowledge for them

in HAT and SAT if they contribute to tests as observers.

The acceptance testing aim of companies, for different projects and for different

platforms is mainly verifying the system requirements and validating original user

requirements. The verification and testing methods, testing periods, milestones for

testing are all variable issues which are decided differently in various projects for

different naval platforms and for different requirements.

OT&E, at least with this name, is not applied for communications systems in

naval projects of Undersecretariat of Defense Industry (SSM), Navy Force

Headquarters (Dz.K.K.lığı) and National Defense Ministry in Türkiye. But, of

course operational evaluation of communications systems is made by users of

systems that are operator noncommissioned officers and officers that are expert in

communications systems. But, the nature of communications systems makes it

unnecessary to execute long periods of operational testing and evaluation

unnecessary. The communication scenarios that the system offers are

operationally executed a lot of times in test scenarios, from time to time by

contribution of users as operators, to satisfy user during AT&E.

Considering the system testing processes in the department that the author is

employed, it should be noted that there is not a clearly defined procedure and

44

method neither for system engineering process nor quality assurance process. The

sub-systems are generally verified by verifying theirs system requirements one by

one or the verification procedure that is prepared by the responsible engineer of

sub-system based on his/her experience system and system requirements. After

completion of integration process, both in factory and in original environment, a

pre-acceptance test which is conducted to verify system and user requirements by

the developer department in order to be sure that there is no fault left in the system

before acceptance tests.

4.1.1. Problems
So far, in the preceding sections, some methods for conducting system tests have

been discussed. But, the most important element of the system test and evaluation

(T&E) process is always human beings who are engineers generating test cases

and planning the whole testing process. An experienced engineer can create more

efficient test scenarios and test plans than an inexperienced engineer. Forming a

methodology for test case generation and test planning activities can decrease the

level difference between an experienced engineer and inexperienced one. Lack of

a methodology for testing process can be the source of some problems given

below:

4.1.1.1. Missing Requirements and Operational Scenarios

An important problem in acceptance testing and system testing is missing some

test scenarios that should be covered for successful verification and validation of

system under test. The test cases are designed for verifying at least one system

requirement. But, while focusing on single requirement verification, some

prerequisites and post-conditions that should also be provided while verifying that

single requirement can be missed.

For example, in a requirement for V/UHF radios, it is written that the radio should

give an output RF power of 10W in Very-High-Frequency (VHF) band in AM

mode. V/UHF radios designed as a system which consists of transceiver, filter, RF

45

switching and amplifier units which are all separate units. So, it is a mistake to

measure output power from the output of transceiver because the RF signal is

switched to appropriate RF ways by RF switching unit for filtering and

amplification. The appropriate measurement should be performed from the output

of RF switching unit, because the RF signal traveling through different devices

and it is subjected to some attenuation.

The above mistake has been come out due to not considering the requirement as a

system requirement and trying to meet it at an incorrect level thereby missing an

important test scenario. This mistake costs documenting the detailed test plan

again, repeating the test with a true scenario and consequently leading to losses of

effort and time.

4.1.1.2. Insufficient system level tests

As mentioned above, the system testing approach of systems engineering

department is basically “Verify all system requirements”. System level tests are

executed for verification of the systems that will be subject to acceptance tests at

last. But, there is not a clear procedure or technique for determining the test plan

or test methods of system testing. Generally, the responsible engineer of the

system under test writes a test procedure in order to verify system functionality.

This non-methodological way of practicing system level tests sometimes causes

missing some defects that cannot be determined by executing the verification

scenarios. Some defects can appear in operational life of system where every

scenario is possible. This situation reduces the systems reliability and decreases

system testing effectiveness.

4.1.1.3. Who should be responsible for preparing test documents?

One of the engineers in systems engineering department stated that system

requirements, test plan and test cases should be prepared by the same person and

also verified by the same person. This argument was rejected by other colleagues.

It is very dangerous in projects to let one person to carry out all the work

46

mentioned above alone considering lack of a methodological approach for

determining test scenarios of system level testing process. Because, a single

engineer, whoever he is, a manager or a new engineer, may not detect his own

fault. So, all the documents and planning discussed above should be prepared by a

team and should be controlled again and again in order not to miss any

requirements or verification steps.

Another senior engineer mentioned that whole test plan and test procedure should

be prepared and executed by a quality assurance division apart from design

department. In order to support his comment he has also stated that designers can

prepare the test plan and test cases in a way that the system can certainly pass

them. This should be prevented by independent verification divisions or firms

who should control every design stage and should have deep knowledge on

system design and functionality. In this way, a system that meet specifically all

needs of users can be supplied while having a high test effectiveness value. This

argument of one of the colleagues can be considered as meaningful for acceptance

testing process which is verification and validation step between customer and

developer where developer is issued to demonstrate and prove that the system

supplied meets all the system and user requirements. But considering system

testing process which is a verification process conducted for verifying the system

requirements that are derived by developer, this argument becomes partially

meaningless. The test plan and test scenarios should be generated by a test team,

but it is unnecessary to make them generated by a quality assurance division

which cannot determine all the functionality of the system. Besides, quality

assurance divisions should control and approve system testing processes for

procedural suitability and completeness.

4.1.1.4. Duplication of test cases

Here an important problem, duplication of tests which increases testing cost and

testing time is stated by one of the colleagues. An example is given such that two

distinct test scenarios for measuring the output power value and voltage standing

47

wave ratio (VSWR) value of High Frequency (HF) transceivers with a test setup

which measures the two values in the same time. In this example, both test cases

include the same functional and performance characteristics. So, there is no need

to run the same functional verification steps twice which is only waste of time and

manpower.

4.1.1.5. Multiple understandings of requirements

According to a senior engineer working in systems engineering department, the

most important problem in communication systems system level tests is that user

and developer don’t have the same understanding of requirements and acceptance-

criteria. This problem occurs when customer does not force the developer to

follow formal project development documents and milestones, such as SRS,

critical design report, test and evaluation master plan and other engineering

documents that should be shared with customer and also that should be approved

by customer. This situation is mentioned in previous chapters and it can result in

reconstructing test cases, rebuilding test cases and even can force developers to

make design modifications on product.

4.1.1.6. Requirements should be in detailed format

One of the colleagues argued that our system requirements documents are not

prepared in a very detailed format. All operational scenarios or operational

requirements which are not specified in contract are not covered in SRS

documents. Because of unprofessional personnel that are recruited by customer

and end user, generally verification and approval of these documents are done in a

way that the developer wants. This situation results in problems in acceptance

tests and after project delivery between end user and developer. End user

recognize that they should have been covered more functionality than they wrote

years ago in contract and force developer to make necessary modifications and

additions to cover functional needs. So, in order to prevent these problems during

acceptance tests and after delivery, the developer should be in tight

48

communication with end user whilst preparing systems requirements specification

document and they should be both agreed on the document.

Moreover, the manager of system engineering department makes a self-criticism,

stating another problem as not preparing systems requirements in a very detailed

format which are derived from contract. All possible operational and functional

needs, which are not specified in contract, should be covered in SRS document in

order to overcome problems that can occur between user and developer in

acceptance tests.

4.1.1.7. Traceability Matrix

Another problem mentioned by a colleague that, not in our department but, in

other firms, traceability of requirements for successful verification of system

cannot be done very effectively. There can be a missed requirement that is not

verified in acceptance tests, which is a sign of the same requirement never verified

for the system, which brings a great risk to project delivery. This problem can be

solved by using requirement management software tools such as DOORS, where

requirements and their relational links to test documents and other documents can

be easily observed.

4.1.1.8. Lack of supervision on testing process

The manager of systems engineering department finds the company’s testing

concept not cost-effective due to having no formal definition of testing time,

manpower spent for testing, testing schedule, verification standards and there is

no supervision of testing processes. The only important case of testing process is

successful delivery of the system. If the system is successfully delivered to user,

there is no problem and no one examines the project cycles, development process

or testing process deeply. Absence of a formal system development and

verification methodology, a formal documentation and quality management

process bring the problems stated above.

49

The most visible problem reported in the research in recent literature and

information gathered from colleagues is that there is no methodology, a format or

a source that developer can benefit for generation of test cases for user

requirements in hardware-based large systems. It is observed that there are many

test case generation techniques for software systems while there are none for

hardware systems. The methods and techniques surveyed in preceding sections

can be rearranged for use in hardware systems. But, it should be noted that before

test case generation, user requirements should be grouped and sub-system

requirements should be clearly defined which relate to another research area.

4.1.2. Parallel Testing
It is mentioned above that OT&E is not a formal step in naval communication

projects. But, the absence of OT&E in naval projects does not mean that the

testing techniques cannot be used for AT&E processes. One interesting approach

for optimizing operational tests is parallel testing.

Briefly defining parallel testing, it is the ability of performing multiple

simultaneous measurements [40]. In system level, this is the ability of performing

simultaneous test cases.

Communications subsystems are not closely integrated with each other. That is,

advance testing of different subsystems is not considered necessary. So, some

subsystems can be tested parallel to each other. Neither in author’s employer

company nor in the other companies investigated, parallel testing is not

considered in test plans. In the preceding sections, parallel testing was also

discussed from another viewpoint. Here, the problem of lack of evaluators (users,

project owner and others) is discussed. But, a different viewpoint in parallel

testing of separate systems can be obtained in communications systems T&E

activities.

Communications systems consist of some similar subsystems and some distinct

subsystems. For example, HF Transceiver and HF Receiver subsystems are

50

considered as separate systems in contract and in systems engineering documents.

Parallel testing of these separate systems can be achieved by efficiently planning

test cases. Giving a practical example, an HF Receiver’s functional test case of

receiving at 29,999999 MHz in CW mode can be combined with the test case of

an HF Transceiver’s functional test of transmitting at 29,999999 MHz in CW

mode. If the transmitted audio from transceiver can be heard from the receiver, the

two test cases are passed in one step. This kind of approach when developing test

cases for AT&E can shorten AT&E period and improve efficiency, and decrease

the cost of testing activities in manpower.

4.1.3. Applicability of M&S
In the system testing and AT&E processes of naval communications systems, use

of M&S will not be so effective. Firstly, systems engineering design phase mostly

consists of integration work. Secondly, the developed systems vary in many

points but the structure of whole communications systems is not varying much.

So, system level developers of communication systems don’t expect too much

surprises while developing and integrating the system. But, when a totally new

subsystem enters the system, it can be useful to use M&S techniques for

demonstration in system testing process and testing to find probable deficiencies

of subsystem from user requirements. But, the developed M&S should not cost

much and its developing process should not be very long, in order to preserve test

efficiency and cost. Here, a simulation for communication system is diverging a

lot from a weapon system simulation or flight simulator.

4.2. TEST PLANNING ACTIVITIES

Test planning activities start with requirements analysis. Briefly, whole system

decomposed to subsystems, requirements decomposed to logical sub-levels,

testability and measurability of system requirements are determined and

documented.

51

In the company that author is employed, there is not a standard Test and

Evaluation Master Plan (TEMP) document format. Despite this, there are

document formats for detailed test procedures and test plans for separate AT&E

activities such as FAT, HAT and SAT but they give no information about

planning or test case generation, just formats. Test cases are planned and

information about how the test case should be operated, which measurements

should be done and how they should be done are written in a very detailed format

by system engineering department and it is presented to project owner and user to

confirmation. But, of course the planning of testing activities is done at system

level at the beginning of project lifecycle by forming a verification matrix and

stating milestones. This verification matrix is presented to project owner for

confirmation. Then, calendar for acceptance tests are prepared with project owner

and developer.

Aside from the verification matrix discussed in the previous paragraph, in all

stages of acceptance tests, which are FAT, HAT and SAT, an “Acceptance and

Inspection” document is prepared which consists of detailed information about

application of test cases to test subjects, use of test equipment, the connections of

test equipment, duration of test case, the limits of performance characteristics of

test subjects and many other necessary information in order to conduct the test

cases.

TEMP document can be introduced to author’s employer company for naval

projects; there is no obstacle for accomplishing this except possible

administrational rules. Besides, this document is becoming a project must in SSM

projects, but the status of the document cannot be considered as obligatory on

project lifecycle. The context of the document should be reworked and document

should be made useful and obligatory on project lifecycle. Absolutely, the content

of document should be changed from what is offered in [41] which is not suitable

for Turkish naval projects’ operation. The testing activities can be defined, test

equipments, equipments under test, grouping of these equipments, test methods

52

(functional test, performance test, analysis, inspection and other kinds of test

methods that are changeable for different platforms) can be also defined. Already

formed verification matrix can be incorporated with TEMP document, giving

references to system requirements and detailed testing plans that are discussed

above.

Moreover, by not modifying the TEMP, a new document format can be generated

by using TEMP knowledge and suggestions made in [8] and [42] and using

experiences of senior engineers who work in the area of system engineering for

several years. A document format which covers all planning activities for not

missing any important test activity for successful verification and validation issues

can be very helpful in acceptance stage, especially for acceptance of system by

user without a problem and decreasing workmanship costs.

4.3. ORIGINAL TEST PROCEDURES OF SYSTEMS

This part will discuss the test procedure carried out by systems engineering

department to V/UHF-2 Transceiver System and Guard Receiver. There is not a

written document that specifies how to test the corresponding equipment. So, the

verification of design is done by verifying the requirements in SRS document one

by one. As it is discussed before, this procedure is inadequate. The probability of

missing system defects which can only be encountered by running real use case

scenarios is very high in this type of verification and testing procedure.

Table 4-1 gives the data collected during testing process that is based on

verification of requirements in SRS document.

The column of “# of Req. Not Tested” in Table 4-1 corresponds to ambiguous and

not testable, immeasurable, unverifiable requirements. It is seen in Table 4-1 that

verification of design cannot be made completely because of problematic

requirements. Furthermore, every requirement is connected to a unique test case

53

in original testing process. That is the original testing process is not efficient

because of one-to-one match between requirements and tests. This situation

creates an inefficient testing process which includes duplication of test cases, loss

of manpower and time, and also money. In Table 4-2 the numbers of faults and

defects found during and after testing process of V/UHF-2 Transceiver System

and Guard Receiver are given in order to understand the status of testing process

in a more detailed way.

 Table 4-1: Number of Requirements by Verification Status

of

Requirements
Verified

of
Requirements
Not Verified

of
Requirements

Verified by
Testing

of Total
Requirements

V/UHF-2 T/Rx
System General
Requirements

26 3 13 29

CU Functional
Requirements 42 5 13 47

RFSU Functional
Requirements 17 1 9 18

RCU Functional
Requirements 7 3 3 10

Guard Receiver
General
Requirements

13 3 9 16

Guard Receiver
Functional
Requirements

70 3 48 73

Table 4-2: Number of Defects Found

Defects/Faults
Found During

Testing

Defects/Faults
Found After Testing

of Total
Fault/Defects Found

V/UHF-2 Transceiver
System 5 5 10

Guard Receiver 5 5 10

54

Table 4-2 shows that nearly half of the defects and faults were found after testing

process. This situation cannot be acceptable. Because, this data shows that our

testing process is not effective that so many problems cannot be detected by

running it. The faults found after testing process are occurred when real use case

scenarios run on systems. Because of this fact, real use case scenarios will be

considered seriously for verification of requirements in the new version of test

procedure that will be prepared in this thesis work.

Table 4-1 and Table 4-2 gave the necessary data to calculate the testing metrics

given in part 2.3.1. The calculations of corresponding metrics which are

calculated by substituting data gathered in equations (2-1) to (2-3) are given

below:

For V/UHF-2 Transceiver System,

%37100
10184729
391313

=
+++
+++

= xCoverageTest (4-1)

%61100
13
8

== xessEffectivenTest (4-2)

%80100
10
8

== xEffortTest (4-3)

For Guard Receiver,

%64100
7316
489

=
+
+

= xCoverageTest (4-4)

%50100
10
5

== xessEffectivenTest (4-5)

%100100
10
10

== xEffortTest (4-6)

55

The metric results for V/UHF Transceiver System show that while test coverage is

adequate, it is understood that the low value of test effectiveness metric shows

that tests are not adequate to locate the defects and faults of system. On the

contrary, the test coverage metric of Guard Receiver shows that the tests are not

satisfactory to cover and verify all the requirements. Moreover, the test process

which is applied to Guard Receiver is very unsuccessful in finding faults and

defects, more than half of the total faults found after testing process. Both V/UHF

Transceiver System and Guard Receiver test process can be classified as

successful in eliminating defects during test processes when test effort and test

effectiveness values are investigated. But, test effort metric is very low because of

low value of test effectiveness value. The defects are eliminated but the user

found defects which were not detected during testing process.

56

CHAPTER 5

APPLICATION OF UML-BASED BEHAVIORAL

SYSTEM TESTING PROCEDURE

UBST procedure is proposed within the scope of the present study as an improved

testing process for hardware-based systems developed in Systems Engineering

Department of Naval Communications (SEDNC) in the company that the author

is employed. Lack of a standardized testing approach creates problems in system

testing processes, reduces testing effectiveness and increases cost of testing as

discussed in previous chapters. UBST is developed in order to fulfill the

standardized system testing approach necessity of SEDNC to overcome the

problems faced during system testing and system verification processes. In this

study UBST will be applied to V/UHF Transceiver System’s and Guard

Receiver’s system testing processes and the metrics gathered from this new

approach will be compared to the system testing process’ metrics that was applied

to the systems in May, 2009.

In this chapter, first, SRS document of the items mentioned above will be

investigated. The problems of SRS document will be detected and written down.

Afterwards, some test planning activity and determination of verification methods

will be handled. Later, the improved “UML-Based System Testing Procedure

(UBST)” process will be implemented, the test generation procedure introduced in

Chapter 3 will be presented in a detailed format for the reader. After applying the

generated test suite, metrics discussed in Chapter 2 will be obtained to be

57

compared and contrasted with those measured earlier. Hence, the benefits of the

proposed approach will be quantitatively demonstrated.

5.1. INVESTIGATION OF ORIGINAL SYSTEM

REQUIREMENTS DOCUMENT

5.1.1. Overview of System Requirements Document
The SRS document of V/UHF Radio Systems consists of four main parts which

describes the general, functional and electrical requirements of unique systems

which are V/UHF Transceiver System Configuration-1 (DC Configuration),

V/UHF Transceiver System Configuration-2 (AC Configuration), UHF

Transceiver System (Configuration-3) and Guard Receiver (Configuration-4). In

this thesis, testing process of V/UHF Transceiver System Configuration-2 and

Guard Receiver will be investigated. V/UHF Transceiver System consists of one

Central Unit (CU), one RF Switching Unit (RFSU), one Remote Control Unit

(RCU), one COTS V/UHF RF Filter and one COTS UHF Amplifier. On the

contrary, GUARD Receiver is a standalone unit. The CU, RFCU and RCU are

designed and produced in author’s employer company and their system

requirements will be considered separately in the following parts of this chapter.

The properties of requirements document is given in Table 5-1 below:

Table 5-1 : Number of Requirements for Each Unit

Requirement
Type

V/UHF-2
Transceiver

System

V/UHF-2
CU

V/UHF-2
RFSU

V/UHF-2
RCU

GUARD
Receiver

General
Requirements 29 - - - 16

Functional
Requirements - 47 18 10 73

Electrical
Requirements - 6 5 2 3

58

In Table 5-1 “General Requirements” corresponds to general characteristics that

should be met while designing every single unit in the system. In proceeding

parts, these requirements will be closely investigated to determine whether they

are testable and measurable or not. By the help of this investigation, clues for

preparation of better SRS document can be gathered.

5.1.2. Detailed Investigation of V/UHF-2 Transceiver System and Guard
Receiver Requirements

In this part, the requirements of V/UHF-2 Transceiver System and Guard

Receiver will be investigated to determine whether they are measurable, testable

or not. The ambiguous and unclear requirements are determined and marked for

later revisions in order to create a more precise and understandable SRS

document. Below in Table 5-2, the numbers of problematic requirements for

every single unit and systems’ general requirements are given. The requirements

that include statements containing words like “may” are defined not verifiable or

not measurable. Moreover, requirements that do not have clear meaning and

which are not measurable are also marked as not measurable or not verifiable.

Also requirements that have definitions that are not explained anywhere in the

SRS document and which the designer and customer can understand differently

are marked as ambiguous and an example for this situation can be seen by

comparing the old requirement and reviewed requirement as follows:

• Old Requirement: RFSU is going to consist of RF relays, a switching

control card, and a frequency serial-to-parallel converter unit in order to

integrate filter and amplifier for the switching of RF signal of transceiver.

The frequency serial-to-parallel converter unit which is mentioned in above

requirement is not a separate design or product from switching control card. So,

the verification of the requirement will be problematic if it is not revised. The

requirement is re-specified as:

59

• Reviewed Requirement: RFSU is going to consist of RF relays and a

switching control card in order to integrate filter and amplifier for the

switching of RF signal of transceiver.

Table 5-2: Number of Problematic Requirements

Not

Verifiable/
Measurable

Ambiguous Total

V/UHF-2 T/Rx System
General Requirements 2 3 29

CU Functional
Requirements 1 2 47

RFSU Functional
Requirements 0 0 18

RCU Functional
Requirements 1 0 10

Guard Receiver
General Requirements 2 0 16

Guard Receiver
Functional
Requirements

1 0 73

It is seen in Table 5-2 that not many problematic requirements are found in the

original SRS document, but misunderstanding of any one of the problematic

requirements can lead to challenging design problems that may occur in the

acceptance period or after system delivery. By using the methods and suggestions

mentioned in [2] and [5], the problematic requirements found in SRS document

will be revised in order to reach a measurable and clear acceptance criteria

between designer and user.

5.2. REVIEW OF SYSTEM REQUIREMENTS DOCUMENT

The problematic requirements of SRS are detected and classified in section 5.1.

This document is reviewed with a colleague engineer from the systems

engineering department who is familiar with V/UHF Systems and their field use

60

but has not contributed in the development process of these systems. Knowledge

exchange is applied as it is discussed in [41] to overcome the ambiguity and

problems of requirements. For V/UHF Transceiver System’s “General

Requirements”, three “ambiguous” and two “not verifiable” requirements were

reviewed and rewritten and have become verifiable. Similarly, two of Guard

Receiver’s “General Requirements”, five of V/UHF Transceiver System’s

“Functional Requirements” and four of Guard Receiver’s “Functional

Requirements” are revised to make them testable and/or verifiable. Two of

V/UHF RCU’s “Functional Requirements” are eliminated because of updated

design considerations. Moreover, a requirement of V/UHF CU’s “Functional

Requirements” is removed because it is included indirectly in other requirements.

Some examples of these changed, revised and eliminated requirements are given

in Table 5-3:

Table 5-3: Examples of Requirements Review Step

Requirement Reviewed Requirement Reason of
Change

The transceiver of V/UHF T/Rx
System can be controlled from only
one RCU or from computer.

The transceiver of V/UHF T/Rx
System can be controlled from only
one of the following units at the
same time:
• RCU on CU
• From a remote RCU
• From computer

Ambiguous

The connectors of external interfaces
of GUARD Receiver should have
spare connections for possible
development.

10 % of the external interface
connector pins must be reserved for
spare for each connector
considering possible future
improvements in GUARD
Receiver.

How much?
Not verifiable

The “HAZIR LED” is going to be lid
when Filter is adjusted.

Erased.
It is an old requirement and
contained in other functional
requirements such as:
The “HAZIR LED” is going to be
lid when V/UHF T/Rx System is
ready for transmission.

Updated design
considerations.

61

Table 5-3 Continued

Requirement Reviewed Requirement Reason of
Change

GUARD Receiver’s open voice
interfaces will be switched to remote
units of Communications Systems and
the attenuation of these signal levels
will be prevented.

GUARD Receiver’s open voice
interfaces will be switched to
remote units, which can be
connected with a 100 m cable of
0.25 mm2. Necessary design
considerations must be taken into
account for the prevention of the
dropping of the signal level below -
15 dBm.

Not measurable,
Not verifiable.

Considering the above examples and other changes, Table 5-1 can be updated as

follows:

Table 5-4: Reviewed System Requirements

Requirement
Type

V/UHF-2
Transceiver

System

V/UHF-2
CU

V/UHF-2
RFSU

V/UHF-2
RCU

GUARD
Receiver

General
Requirements 29 - - - 16

Functional
Requirements - 46 18 8 73

Electrical
Requirements - 6 5 2 3

Only the “Functional Requirements” of V/UHF-2 CU are reduced by 1 as

discussed in the previous paragraph.

5.3. IDENTIFICATION OF VERIFICATION METHODS

The last step before the application of test case generation steps of UBST will be

the identification of the verification methods of requirements and handling of

necessary test planning and test case generation processes in order to have a test

plan and procedure.

62

Verification methods should be identified in early lifecycle of the project, a short

time after the sides are agreed on the contract. In military contracts, the first

versions of the test and evaluation master plan or test plan is requested from

developer mostly in 30 to 90 days after contract is signed between both sides.

Requirements in revised version of SRS document which is the subject of this

thesis work are investigated in detail and at least one verification method is

assigned to each verifiable requirement. In Table 5-5, the number of requirements

that are planned to be verified by each verification method is given.

If Table 5-4 is revisited, it is seen that the requirement numbers in that table do

not agree with the requirement numbers in Table 5-5. This is because there are

some requirements that are verified by more than one method.

Table 5-5: Number of Requirements by Verification Methods

Number of Requirements
Verification

Method
V/UHF-2

Transceiver
System

Gen.Req.

V/UHF-2
Transceiver

System
Func. Req

GUARD
Receiver
Gen.Req.

GUARD
Receiver

Func.Req.

Inspection 11 21 6 11
Analysis 10 36 4 21
Test 12 23 7 59

It is unnecessary to run a test case generation method for requirements which are

going to be verified by “Inspection” and “Analysis”. Integrating those verification

steps to a model or methodology will only increase the complexity of the work

and increase the possibility of faults during test case generation processes.

Separate verification steps will be added to the test plan for those requirements.

The requirements that should be tested for verification and validation vary in their

test types. Most of the test types that will be used for verification and validation of

the systems is “functional testing” because of the nature of system testing and

acceptance testing. Moreover, some requirements will be verified by performance

63

testing which verifies the measurements taken during tests if they meet the

requirement specifications.

After refining requirements and revising them by exchanging knowledge between

customer and developer, the developer will have a clear and approved document

to develop the necessary system(s) for successful acceptance of the project. The

developer should prepare a test plan and give information about the necessary

developmental and operational test steps, identify them, and connect them to

specific project milestones in order to achieve successful verification of project

from units to system. While preparing detailed test plans, which are much more

detailed than documents like TEMP, the developer should supply RTM which

specifies at and by which test step, the corresponding requirements will be

verified. In this section, we identified the verification methods and in proceeding

chapters, after we build the test steps, we will able to give the resultant RTM.

5.4. TEST CASE GENERATION PROCESS

The test case generation process for V/UHF Transceiver System and Guard

Receiver will be started by generation of use case diagrams and use cases in first

step as it is described in Chapter 3. Than the process will go on by constructing

activity and interaction flow diagrams, which will guide us to construct the IFG

that is the last step before test case generation.

5.4.1. Use Cases and Use Case Diagrams
As it is discussed in Chapter 3, use case diagrams and use cases are the

fundamental elements of all the UML-based test case generation techniques

investigated in Chapter 2. Remembering again, use case diagrams are the most

general diagram that is used in system development. Textual use cases are

developed from use case diagrams considering the connections between actors

with use cases and use cases with use cases.

64

Preparing use case diagrams and textual use cases requires a very good knowledge

of system structure and functional behavior of the system. Developers should

aware of user inputs, expected outputs and erroneous outputs of the system to

specify main success scenario, variations and extensions correctly. Generating test

cases which have good coverage and efficient in finding system defects is mainly

dependent on well defined textual use cases. Textual use cases should be prepared

in a detailed format because of its importance for activity, sequence and state

diagrams. Below in the Figure 5-1, the use case diagram of V/UHF T/Rx System

is given which is the beginning point of test case generation process.

It can be seen that operator can operate the V/UHF T/Rx in eight different modes

and operator can be in a useless mode where the system is adjusted to out of its

working frequency band. It is seen from Figure 5-1 that all the nine use cases

include the same use case which is the use case describing successful opening

scenario of the system. These use cases can be executed sequentially following

one after one, but at least the conditions that are produced at the end of opening

scenario use case should be provided before executing all the use cases. For

example, starting “Operate in VHF” use case with a faulty transceiver (means

unsuccessful opening scenario) is meaningless, because of lack of adequate

preconditions.

65

<<include>>

<<include>>

<<
inc

lud
e>

>

<<
inc

lud
e>

>

<<
in

clu
de

>>
<<

in
cl

ud
e>

>

<<extend>>

<<
in

cl
ud

e>
>

Figure 5-1: Use Case Diagram for V/UHF T/Rx System

For the sake of brevity, only one of corresponding use cases’ textual version will

be presented in this section. The others can be found in the Appendix. The

“V/UHF T/Rx SYS Opening Scenario” use case is presented in Table 5-6 below:

66

Table 5-6: V/UHF T/Rx SYS Opening Scenario Use Case (Textual)

Name V/UHF T/Rx SYS Opening Scenario

Goal This use case describes the opening scenario of the V/UHF
T/Rx system and switching to one of operating modes of
V/UHF T/Rx System.

Pre-conditions The system must be connected to power supply appropriately.
The MODE switch of RCU in the CU should be in OFF
position.
The GÜÇ, RF ANAHTAR and GÜÇ YÜKSELTECİ switches
of CU must be in OFF position.

Post-conditions HAZIR LED becomes ON. ARIZA LED is OFF.

Main Success Scenario 1. Operator powers the CU by switching on the “Güç” switch.

2. Operator sees that the “AÇIK” led in on.

3. Operator switches both “SES KONTROL” and
“KONTROL” switches to “DAHİLİ” positions.

4. Operator switches RCU to T/R mode. RCU opens.

5. The CU runs the BIT Test. The “ARIZA” LED blinks..

6. System displays “R/T OK” message on RCU. The
“ARIZA” led is off.

7. Operator adjusts to a frequency between 118-163 MHz.

8. Operator powers the RFCU and Filter by switching on “RF
Anahtar” switch.

9. Operator controls the frequency scale of filter, sees that it
suits with the frequency of CU.

10. Operator powers the amplifier and sees that amplifier is on.

11. “HAZIR” led becomes on.

Extensions 2a) LED is not on and CU does not start.

2a1) Operator switches off “Güç” switch.

2a2) Operator controls and corrects input voltage.

2a3) Repeat the use case from step 1.

4a) RCU does not open.

4a1) CU fault, end use case.

6a) System displays error message.

6a1) Operator switches off “Güç” switch.

6a2) Repeat the use case from step 1.

67

Table 5-6 Continued

 6b) System displays error message twice or more.

6b1) Transceiver fault. Cancel Use case.

9a) Frequency scale does not match.

9a1) Transceiver must be adjusted to 16 BIT Antenna Info.
Repeat the use case from step 1 after adjustment.

11a) HAZIR LED is OFF.

11a1) CU fault, end use case.

Variations 3a) Operator switches “SES KONTROL” and “KONTROL”
switches to “DAHİLİ” and “HARİCİ” positions respectively.

3b) Operator switches “SES KONTROL” and “KONTROL”
switches to “HARİCİ” and “DAHİLİ” positions respectively.

3c) Operator switches both “SES KONTROL” and
“KONTROL” switches to “HARİCİ” positions.

Included Use Case None.

The use case in Table 5-6 shows the success scenario and its extensions

(unsuccessful scenarios). By specifying unsuccessful scenarios and problematic

states up front in textual use cases, it will be hard to miss important points of

failure while generating test cases from diagrams that are, in turn, generated using

these textual use cases.

The use case diagram of GUARD Receiver which is simpler than V/UHF T/Rx

System’s is given in Figure 5-2.

It can be seen that the operator can operate the GUARD Receiver in four different

modes. It is seen from Figure 5-2 that all the four use cases again include the same

use case which describes the successful opening scenario of the system.

Moreover, two use cases share a common use case named BIT. These use cases

can be executed sequentially following one after one, but at least the conditions

that are produced at the end of the opening scenario use case should be provided

before executing all the use cases, for each and every use case’s successful

68

scenario endings. The textual use case of GUARD Receiver Opening Scenario use

case is given in Table 5-7.

<<
inc

lud
e>

>

Figure 5-2: GUARD Receiver Use Case Diagram

Table 5-7: GUARD Receiver Opening Scenario Use Case (Textual)

Name GUARD Receiver Opening Scenario

Goal This use case describes opening scenario of the GUARD
Receiver

Pre-conditions The system must be shut down.
The system must be connected to power supply appropriately.
(220 VAC ± 10 % 50 Hz ± 10 % Input Voltage.)
The GÜÇ switch of GUARD Receiver must be in OFF position.
The BAND switch should be in UHF position.

Post-conditions ARIZA LED is OFF, selected frequency band’s LED is ON.

Main Success Scenario 1. Operator switches “KONTROL” switch to “DAHİLİ”
position.

2. Operator switches on Power switch.

3. GÜÇ LED is ON.

4. All LEDs on Guard Receiver goes momentarily ON and
then OFF again, except GÜÇ LED.

69

Table 5-7 Continued

Main Success Scenario 5. System enters BITTEST and blinks ARIZA LED while
BITTEST.

6. ARIZA LED becomes OFF after BITTEST ends
successfully.

7. Operator switches BAND switch to VHF.

8. System adjusts its working band considering band select
switch.

9. A BIP sound is heard and selected Band’s LED is ON.

Extensions 3a) GÜÇ LED is OFF

3a1) GUARD Receiver fault, end use case.

4a) All LEDs on Guard Receiver does not go momentarily ON.

4a1) GUARD Receiver fault, end use case.

5a) ARIZA LED is not blinking.

5a1) Guard Receiver fault, end use case.

6a) ARIZA LED continues blinking and does not stop.

6a1) GUARD Receiver fault, end use case.

6b) ARIZA LED is ON.

6b1) Repeat the use case from step 1.

6b2) GUARD Receiver fault, end use case.

9a) No BIP sound or selected band’s LED is OFF or deselected
one’s is ON.

9a1) GUARD Receiver fault, end use case.

9b) Selected Band’s LED is OFF, deselected is OFF.

9b1) GUARD Receiver fault, end use case.

9c) Both band’s LEDs are glowing.

9c1) GUARD Receiver fault, end use case.

Variations 1a) Operator switches the “KONTROL” switch to “HARİCİ”
position.

7a) Operator switches BAND switch to UHF position.

Included Use Case None.

70

The use case in Table 5-7 shows the success scenario, its extensions (unsuccessful

scenarios) and variations. It is seen that step 7 can be executed in two different

ways. For complete verification, these two variations are needed to be covered in

test cases. Again, the problematic states described in “extensions” will be used for

upcoming test generation issues.

5.4.2. Generating Intermediate Steps: Activity & Interaction Flow Diagrams
The textual use cases that are created for V/UHF Transceiver System and Guard

Receiver given in

Table 5‐6 and Table 5-7 are used to produce activity diagrams discussed in

Chapter 3. The activity diagrams are the first graphical artifacts that describe the

functional behavior of the system considering the UBST.

The activity diagram constructed from “V/UHF T/Rx SYS Opening Scenario”

textual use case is given in Figure 5-3. When it is compared with the related use

case, the activity diagram includes all the steps to functionally operate the main

success scenario. Moreover, it also handles the extensions and variations, by using

decision, fork and join nodes. As it is mentioned before, the activity diagram gives

an understandable and clear graphical specification of the whole use case.

Here in the activity diagram given in Figure 5-3, the pre and post conditions of the

use case are not specified in order to prevent complexity on the diagram. This

action prevents the complexity while converting activity diagrams to interaction

diagrams. But it also assigns an extra action for developer or tester which is

tracking preconditions and post-conditions and integrating them in the final step

of UBTS where the test cases are generated.

It can be seen that the actor actions are marked in the activity diagram as

described in Chapter 3 for making it easy to transform activity diagram into

interaction flow diagram. The V/UHF Transceiver System opening scenario and

GUARD Receiver opening scenario given in Figure 5-3 and Figure 5-4 are

composed of a series of operator actions such as powering and mode selection

71

actions. These actions do not force the system to accomplish complicated actions.

The system mostly gives momentary responses immediately after user action.

Only the “BIT TEST” activity that the system runs is considered as important to

specify in activity diagrams.

The next step after generation of activity diagrams is the generation of IFDs. As

discussed before, IFD represents the control flow inputs and outputs that the user

must enter and expect from system. Internal actions that are not requesting inputs

from user and not providing outputs to user for evaluation are kept out of IFDs.

This characteristic of IFDs makes it easier to generate test plans by reducing the

number of nodes and unnecessary system operations that are represented at

activity diagrams. The IFD diagrams of V/UHF T/Rx System and GUARD

Receiver are given in Figure 5-5 and Figure 5-6.

72

Figure 5-3: V/UHF T/Rx Opening Scenario Activity Diagram

73

Power Up

RCU Mode

BIT TEST

SET_BAND

AÇIK = ON
ALL LEDS GO MOMENTARILY ON

Set CONTROL_0

Set CONTROL_1

ARIZA=OFF

AÇIK

KONTROL = 0

KONTROL = 1

GÜÇ=ON

MODE=T/R

BIT RESULT

BAND SWITCH=UHF && UHF LED=ON
OR

BAND SWITCH=VHF && VHF LED=ON

UHF LED
VHF LED

FS2

GUARD RECEIVER Opening
Scenario

Operator

Operator

Operator

AÇIK = OFF OR

VHF LED, UHF LED, ARIZA LED,

ANY OF LEDS DO NOT GO MOMENTARILY ON

System

ARIZA LED

ARIZA LED DOES NOT BLINK

ARIZA LED BLINKS

ARIZA=ON, FCOUNT=1 ARIZA = ON, FCOUNT++

Select_BAND_0

Select_BAND_1

BAND_SWITCH=VHF

BAND_SWITCH=UHF

System

Operator

OTHER POSSIBILITIES

BAND_SWITCH

FS1

Set CONTROL_0
KONTROL = 0

SET_BAND
BAND_SWITCH UHF LED

VHF LED
BIP

BIP=OK
UHF LED = ON
VHF LED = OFF

BIP!=OK
UHF LED = OFF OR

VHF LED = ON

Figure 5-4: GUARD Receiver Opening Scenario Activity Diagram

74

Power Up

RCU MODE

Freq ADJ

Power RFSU

Power Amplifier

GÜÇ=ON
AÇIK LED

AÇIK
LED=OFF

AÇIK LED= ON

MODE=T/R
ARIZA LED

RCU Displays BIT
TEST

RCU does not open OR
ARIZA LED is ON OR

RCU Displays R/T BAD and
ERR. Message for twice

ARIZA LED is ON OR
RCU Displays R/T BAD and ERR.

Message for the first time

<<Operator>>

<<Operator>>

Freq=140000

Filter Freq

HAZIR LED

<<Operator>>
Freq!=Fiter Freq

Freq=Filter Freq

RF ANAHTAR=ON

GÜÇ YÜKSELTECİ=ON

<<Operator>>

RCU opens AND
R/T OK. ARIZA LED is OFF

Set CONTROL_0

Set CONTROL_1

Set CONTROL_2SES_KONTROL = 0

KONTROL = 0

SES_KONTROL = 0

KONTROL = 1

SES_KONTROL = 1

KONTROL = 0

Set CONTROL_3
SES_KONTROL = 1

KONTROL = 1

AMP

HAZIR LED

AMP=OFF OR HAZIR=OFF

AMP=ON AND HAZIR=ON

A1

D1

A2

A3

A4

A5

A6

D2

A7

A8

D3

A9

D4

FS1

FS2

Figure 5-5: V/UHF T/Rx System Opening Scenario IFD

75

Figure 5-6: GUARD Receiver Opening Scenario IFD

76

As it is mentioned before, the IFD should include only user related actions. But

absolutely, there are many actions handled by systems and their outputs are

judged by user. In above and other IFDs, generated for this thesis work, these

outputs are rearranged and connected with the user action which is responsible for

the initiation of corresponding system action. This operation which is done while

transforming from activity diagrams to IFDs makes IFDs easier to read and

analyze for the generation of IFGs and test cases. FS1 and FS2 are the final states

where FS1 represents the main success scenario final state and FS2 represents the

failed test scenario final state. If scenario ends with FS2, test scenario is failed and

necessary modifications should be handled on the system before executing the

corresponding test scenario again.

5.4.3. Generating IFGs and Test Cases
The last step of test case generation process in UBST is generating IFGs and using

them to get the textual test scenarios which will be ready to be executed on the

system. The IFGs of V/UHF T/Rx System Opening Scenario Use Case and

GUARD Receiver Opening Scenario Use Case are given in Figure 5-7 and Figure

5-8.

In Figure 5-7, it is seen that there are four main branches that are coming out of

A1. When these branches are compared, the only difference between them is the

next action of A1, which are actually variations of the same action. There will be

no need to verify again and again the same test steps. But, there should be a rule

to define the verification of the actions which are variations of each other. So as a

rule, the branches should be executed until the first action after the node of

variation is executed successfully. That is, the branch of A2 should be executed

fully, but execution of the branches A3, A4 and A5 should be stopped after having

the successful outcome of A6. By this means, duplication of tests will be avoided

for the corresponding use cases. For whole test procedure, duplication of tests will

be considered and duplications will be handled after the creation of test cases.

77

Coming to the faulty final states, represented as FS2 in activity diagrams IFDs and

IFGs, are the faulty ends of use cases. If there will be an error or fault during the

test scenarios, the extension scenarios defined in textual use cases are executed

and mostly, the scenario directly branches to FS2 which is actually the halting of

test scenario with faults. In theory, for every final state node represented in IFG,

there should be a test scenario ending with the corresponding node. But, in

practice, it will be impossible to cover these faulty final states if the system is

perfect and has no faults. To prevent crowded test sets, if a node has a direct

transition connected to a faulty end state (FS2) because of a faulty system output,

this extension will be defined in a column as “Faulty Output”. By doing this, the

tester will be prepared for the occurrences of faulty outputs and the unnecessary

and/or impossible test executions will be out of consideration.

Figure 5-7: IFG of V/UHF T/Rx System Opening Scenario Use Case

78

Figure 5-8: IFG of GUARD Receiver Opening Scenario Use Case

One generated test scenario for the V/UHF T/Rx Opening Scenario Use Case and

one for the GUARD Receiver Opening Scenario Use Case by considering the

above discussed situations are given in Table 5-8 and Table 5-9. If the IFG of

V/UHF T/Rx System Opening Scenario is analyzed, it will be found that there

should be 77 distinct test scenarios for full coverage of the IFG. But, for this use

case, by accounting the previous discussions, only 5 test scenarios is generated.

When the test scenarios are examined, it is seen that all possible states are covered

at least once.

Examining the test scenario given in Table 5-8, the scenario corresponds to the

path A1-A2-A6-A7-A8-A9-FS1 of IFG given in Figure 5-7. As mentioned before,

scenarios ending with FS2 are not generated as test scenarios. But, it is seen that

in the column of “Faulty Output End Scenario”, in TC1, TC2 and TC3, the

conditions for transition to faulty final state FS2 are given. As it is discussed

before, a scenario which ends with FS2 cannot be executed every time, except

when the unique faults that enable the transition are occurred during the

execution. The addition of corresponding column will be sufficient to cover faulty

79

outputs and direct transition to FS2 final states. This addition also dramatically

decreases the test scenario number.

If the IFG given in Figure 5-8 and one of its scenario given in Table 5-9 are

compared, it can be determined that the scenario corresponding to the path A1-

A3-A1-A3-A4-A5-FS1. Again, in test scenario, the faulty outputs that may occur

are also stated. But, it should be noted that, in the expected output of TC2 row, the

faulty output that leads to the repetition of A1 and A3 instead of the output that

should lead scenario directly to successful final state FS1. This is true for the path

given above, but the question is what if the expected “faulty” output will not

occur while the execution of this test scenario. In theory, the scenario will be

unsuccessful and system will fail the corresponding scenario. But, for the work

done in this thesis work, the paths other than main success scenarios mainly cover

the faulty states that the system may not recover from by the actions of the tester.

Actually these states are the final states that the test scenario should be halted and

the system should be fixed for retesting. Accounting the above discussed

situations for the scenarios generated for a use case, it is reasonable to execute

first the main success scenarios, than to execute the scenarios that repeat some

actions because of some faulty outputs in at least one of their actions.

Noting another decision made during test case generation process, some variations

and extensions that are occurred in a use case are not covered in test cases if the

corresponding variations are going to be tested in the previously generated test

scenarios. Giving an example, VHF and UHF operation scenarios of V/UHF T/Rx

system is very similar to each other, nearly replication of each other except

working frequencies, and the extensions that can be occurred in both operation

modes are not covered in the test scenarios generated for UHF operation. Making

it more specific, if enabling and disabling is working well for VHF mode, than it

will work well for UHF and if it is not working correctly, it should be fixed and

retested before going on with testing scenarios generated for UHF operation

mode.

80

Fa
ul

ty
 O

ut
pu

t
E

nd
 T

es
t S

ce
na

ri
o

"A
Ç

IK
"

LE
D

 is
 n

ot
 O

N
.

- R
C

U
 d

oe
s n

ot
 o

pe
n

O
R

B

IT
TE

ST
 d

oe
s n

ot
 st

ar
t O

R

A
R

IZ
A

 L
ED

 st
ay

s O
FF

 O
R

A

fte
r B

IT
TE

ST
, A

R
IZ

A

do
es

 n
ot

 b
ec

om
e

O
FF

 O
R

A

fte
r B

IT
TE

ST
 “

R
/T

 B
A

D

##
#”

 m
es

sa
ge

 a
pp

ea
rs

 o
n

R
C

U
 sc

re
en

.

- Fi
lte

r F
re

qu
en

cy
 d

oe
s n

ot

eq
ua

l t
o

14
0

M
H

z.

A
m

pl
ifi

er
 is

 n
ot

 p
ow

er
ed

 o
r

H
A

ZI
R

 L
ED

 is
 n

ot
 O

N
.

E
xp

ec
te

d
O

ut
pu

t

"A
Ç

IK
"

LE
D

 is
 O

N
.

- R
C

U
 o

pe
ns

.
B

IT
TE

ST
 st

ar
ts

.
A

R
IZ

A
 L

ED

be
co

m
es

 O
N

.
B

IT
TE

ST
 e

nd
s.

A
R

IZ
A

 L
ED

 is
 O

FF

"R
/T

 O
K

"
m

es
sa

ge

ap
pe

ar
s o

n
R

C
U

di

sp
la

y.

R
C

U
 d

is
pl

ay
s

14
0.

00
0

Fi
lte

r F
re

qu
en

cy
 =

14

0
M

H
z

H
A

ZI
R

 L
ED

=O
N

A
m

pl
ifi

er
 is

po

w
er

ed
.

H
A

ZI
R

 L
ED

=O
N

Su
m

m
ar

y

O
pe

ra
to

r p
ow

er
s t

he
 C

U
 b

y
sw

itc
hi

ng

on
 th

e
"G

Ü
Ç

"
sw

itc
h.

O
pe

ra
to

r s
w

itc
he

s b
ot

h
“S

ES

K
O

N
TR

O
L”

 a
nd

 “
K

O
N

TR
O

L”

sw
itc

he
s t

o
“D

A
H
İL
İ”

 p
os

iti
on

s.

O
pe

ra
to

r s
w

itc
he

s R
C

U
 to

 T
/R

 a
nd

R

C
U

 o
pe

ns
.B

IT
TE

ST
 is

 st
ar

te
d.

A

R
IZ

A
 L

ED
 b

ec
om

es
 O

N
. B

IT
TE

ST

is
 e

nd
ed

. A
R

IZ
A

 L
ED

 is
 O

FF
 a

nd

"R
/T

 O
K

"
m

es
sa

ge
 a

pp
ea

rs
 o

n
R

C
U

di

sp
la

y.

O
pe

ra
to

r s
et

s t
he

 fr
eq

ue
cy

 to
 1

40
.0

00

O
pe

ra
to

r s
w

itc
he

s R
F

A
N

A
H

TA
R

sw

itc
h

to
 O

N
 p

os
iti

on
. R

FS
U

 a
nd

Fi

lte
r i

s p
ow

er
ed

. F
ilt

er
 F

re
qu

en
cy

 is

ad
ju

st
ed

.

O
pe

ra
to

r s
w

itc
he

s G
Ü

Ç

Y
Ü

K
SE

LT
EC

i s
w

itc
h

to
 O

N
 p

os
iti

on
.

U
H

F
am

pl
ifi

er
 is

 p
ow

er
ed

.

In
pu

t

G
Ü

Ç
 S

w
itc

h=
O

N

SE
S

K
O

N
TR

O
L

Sw
itc

h
=

D
A

H
İL
İ

K
O

N
TR

O
L

Sw
itc

h
=

D
A

H
İL
İ

M
O

D
E=

T/
R

Fr
eq

ue
nc

y=
14

0
M

H
z

R
F

A
N

A
H

TA
R

=O
N

G
Ü

Ç
 Y

Ü
K

SE
LT

EC
İ=

O
N

V
/U

H
F

T/
R

x
Sy

st
em

 O
pe

ni
ng

 S
ce

na
rio

 (T
S1

)

S1

Pr
e-

C
on

di
tio

ns

Th
e

sy
st

em
 m

us
t b

e
sh

ut
 d

ow
n.

Th

e
sy

st
em

 m
us

t b
e

co
nn

ec
te

d
to

 p
ow

er

su
pp

ly
 a

pp
ro

pr
ia

te
ly

. (
22

0
V

A
C

 ±
 1

0
%

 5
0

H
z

±
10

 %
 In

pu
t V

ol
ta

ge
.)

Th
e

M
O

D
E

sw
itc

h
of

 R
C

U
 in

 th
e

C
U

 sh
ou

ld

be
 in

 O
FF

 p
os

iti
on

.
Th

e
G

Ü
Ç

, R
F

A
N

A
H

TA
R

 a
nd

 G
Ü

Ç

Y
Ü

K
SE

LT
EC

İ s
w

itc
he

s o
f C

U
 m

us
t b

e
in

O

FF
 p

os
iti

on
.

"A
Ç

IK
"

LE
D

 is
 O

N
.

- A
R

IZ
A

 L
ED

 is
 O

FF
.

- -

Ta
bl

e
5-

8:
 A

 T
es

t S
ce

na
rio

 fo
r V

/U
H

F
T/

R
x

Sy
st

em
 O

pe
ni

ng
 S

ce
na

rio
 U

se
 C

as
e

U
se

 C
as

e
N

am
e

Sc
en

ar
io

 N
o

T
es

t C
as

e

TC
1

TC
2

TC
3

TC
4

TC
5

TC
6

81

Fa
ul

ty
 O

ut
pu

t
E

nd
 T

es
t S

ce
na

ri
o

- *"
A

Ç
IK

"
LE

D
 is

 n
ot

 O
N

 O
R

*A

ll
LE

D
s o

n
G

U
A

R
D

 R
ec

ei
ve

r d
o

no

be
co

m
e

m
om

en
ta

ril
y

O
N

 O
R

*B

IT
TE

ST
 d

oe
s n

ot
 S

TA
R

T
O

R

*A
R

IZ
A

 L
ED

 d
oe

s n
ot

 b
lin

k.

- *"
A

Ç
IK

"
LE

D
 is

 n
ot

 O
N

 O
R

*A

ll
LE

D
s o

n
G

U
A

R
D

 R
ec

ei
ve

r d
o

no

be
co

m
e

m
om

en
ta

ril
y

O
N

 O
R

*B

IT
TE

ST
 d

oe
s n

ot
 S

TA
R

T
O

R

*A
R

IZ
A

 L
ED

 d
oe

s n
ot

 b
lin

k.

*A
R

IZ
A

 L
ED

 is
 O

N
.

- N
o

B
IP

 so
un

d.

V
H

F
LE

D
 is

 O
FF

 O
R

U

H
F

LE
D

 is
 O

N
 O

R

B
ot

h
U

H
F

an
d

V
H

F
LE

D
s a

re
 O

N
 O

R

B
ot

h
U

H
F

an
d

V
H

F
LE

D
s a

re
 O

FF

E
xp

ec
te

d
O

ut
pu

t

- *"
A

Ç
IK

"
LE

D
 is

 O
N

.
*A

ll
LE

D
s o

n
G

U
A

R
D

 R
EC

EI
V

ER
 b

ec
om

e
m

om
en

ta
ril

y
O

N
.

*B
IT

TE
ST

 st
ar

ts
 a

nd
 A

R
IZ

A
 L

ED
 b

lin
ks

.
*B

IT
TE

ST
 e

nd
s a

nd
 A

R
IZ

A
 L

ED
 b

ec
om

es

O
N

.

- *"
A

Ç
IK

"
LE

D
 is

 O
N

.
*A

ll
LE

D
s o

n
G

U
A

R
D

 R
EC

EI
V

ER
 b

ec
om

e
m

om
en

ta
ril

y
O

N
.

*B
IT

TE
ST

 st
ar

ts
 a

nd
 A

R
IZ

A
 L

ED
 b

lin
ks

.
*B

IT
TE

ST
 e

nd
s a

nd
 A

R
IZ

A
 L

ED
 b

ec
om

es

O
FF

.

- A
 B

IP
 so

un
d

is
 h

ea
rd

.
V

H
F

LE
D

 is
 O

N
 a

nd
 U

H
F

LE
D

 is
 O

FF

Su
m

m
ar

y

O
pe

ra
to

r s
w

itc
he

s
“K

O
N

TR
O

L”
 sw

itc
h

to
 “

D
A

H
İL
İ”

po

si
tio

ns
.

O
pe

ra
to

r p
ow

er
s t

he

C
U

 b
y

sw
itc

hi
ng

 o
n

th
e

"G
Ü

Ç
"

sw
itc

h.

O
pe

ra
to

r s
w

itc
he

s
“K

O
N

TR
O

L”
 sw

itc
h

to
 “

D
A

H
İL
İ”

po

si
tio

ns
.

O
pe

ra
to

r p
ow

er
s t

he

C
U

 b
y

sw
itc

hi
ng

 o
n

th
e

"G
Ü

Ç
"

sw
itc

h.

O
pe

ra
to

r s
w

itc
he

s
“K

O
N

TR
O

L”
 sw

itc
h

to
 “

D
A

H
İL
İ”

po

si
tio

n

O
pe

ra
to

r s
w

itc
he

s
B

A
N

D
 sw

itc
h

to

V
H

F
po

si
tio

n.

In
pu

t

K
O

N
TR

O
L

Sw
itc

h
=

D
A

H
İL
İ

G
Ü

Ç

Sw
itc

h=
O

N

K
O

N
TR

O
L

Sw
itc

h
=

D
A

H
İL
İ

G
Ü

Ç

Sw
itc

h=
O

N

K
O

N
TR

O
L

Sw
itc

h
=

D
A

H
İL
İ

B
A

N
D

Sw

itc
h=

V
H

F

G
U

A
R

D
 R

ec
ei

ve
r O

pe
ni

ng
 S

ce
na

rio
 U

se
 C

as
e

S1

Pr
e-

C
on

di
tio

ns

Th
e

sy
st

em
 m

us
t b

e
sh

ut
 d

ow
n.

Th

e
sy

st
em

 m
us

t b
e

co
nn

ec
te

d
to

 p
ow

er

su
pp

ly
 a

pp
ro

pr
ia

te
ly

. (
22

0
V

A
C

 ±
 1

0
%

50

 H
z

±
10

 %
 In

pu
t V

ol
ta

ge
.)

Th
e

G
Ü

Ç
 sw

itc
h

of
 G

U
A

R
D

 R
ec

ei
ve

r
m

us
tb

e
in

O
FF

po
si

tio
n.

"A
Ç

IK
"

LE
D

 is
 O

FF
.

Th
e

sy
st

em
 m

us
t b

e
sh

ut
 d

ow
n.

Th

e
sy

st
em

 m
us

t b
e

co
nn

ec
te

d
to

 p
ow

er

su
pp

ly
 a

pp
ro

pr
ia

te
ly

. (
22

0
V

A
C

 ±
 1

0
%

50

 H
z

±
10

 %
 In

pu
t V

ol
ta

ge
.)

Th
e

G
Ü

Ç
 sw

itc
h

of
 G

U
A

R
D

 R
ec

ei
ve

r
m

us
t b

e
in

 O
FF

 p
os

iti
on

.

A
R

IZ
A

 L
ED

 is
 O

FF
.

- A
R

IZ
A

 L
ED

 m
us

t b
e

O
FF

.

Ta
bl

e
5-

9:
 A

 T
es

t S
ce

na
rio

 fo
r G

U
A

R
D

 R
ec

ei
ve

r O
pe

ni
ng

 S
ce

na
rio

 U
se

 C
as

e
U

se
 C

as
e

N
am

e

Sc
en

ar
io

 N
o

T
es

t C
as

e

TC
1

TC
2

TC
3

TC
4

TC
5

TC
6

82

5.5. TESTING OF SYSTEMS

Until now, the systems are modeled using UBST and generation of test cases and

scenarios driven from these models are introduced. But, having test cases and

scenarios is not adequate to create an effective testing procedure. Test planning

phase is as important as test case generation considering whole system testing

process.

Test planning process applied in this thesis work only covers the preparation of

RTM, identification of verification methods, preparation of testing environment,

planning the execution sequence and appointing special fail, success or “pass with

faults” cases that the tester should obey while executing the test scenarios.

The verification of a system is carried out by applying a procedure which is

created for the execution of verification methods like inspection, analysis, testing

or combination of these methods. In the beginning of this thesis work, considering

the previous testing efforts of the corresponding systems, the verification methods

of the system requirements are determined as it is discussed before this chapter.

Some metrics are gathered by using the previous test efforts’ records and these

metrics represent the whole system verification effectiveness of corresponding

systems. But, the UBST defined in Chapter 3 and applied in this chapter is

developed for generating functional test cases. So, any inspection or analysis

methods mapped to the requirements are not going to be verified with this

process. Because of this situation, the results of verification steps of requirements

which are mapped to analysis or inspection methods are gathered from previous

testing efforts. Because of unchanged electrical and mechanical design of

corresponding systems, these results can be used with no concern; they will all

give the same result on the systems under test.

Test planning steps that are carried out before executing the test scenarios are

presented below.

83

5.5.1. RTM
RTM is actually created in order to be sure that each requirement that was marked

as “Test” for its verification method will be verified with at least one test case.

Furthermore, this matrix will be used later on this thesis work in order to make

some measurements that will be needed to discuss the effectiveness of the system

testing processes of systems under test.

5.5.2. Defined Rules for Test Case Outputs
Before executing test scenarios, some rules for test cases which define theirs

“success”, “fail” or “pass w/fault” criteria. If the examples given in Table 5-8 and

Table 5-9 are examined, the expected and faulty output conditions are given. But,

the question how the tester should behave if he/she comes across with a faulty

output should be answered. A set of rules defined for test scenarios are given

below:

• R1: If tester ends up with faulty output in a test case and faulty condition

does not affect the next test case’s user input and makes it possible to enter

the input, whether if preconditions are not supplied, tester will continue to

execute the test case and mark the faulty test case as “pass w/ faults”.

• R2: If the faulty condition affects the next test case’s user input and makes

it impossible for user to enter the input, the test case and test scenario will

be marked as “fail”.

• R3: If the test scenario ends with no faults, the test scenario will be

marked as “success”.

These rules makes it easier for tester to give the necessary decisions while testing

the systems and give the ability to try more input combinations whether there

exist faults in system. By this way, it becomes possible to find another faults

which have no relations to the faults found before.

84

5.5.3. Execution Sequence
The planning of execution sequence of testing scenarios is becoming very

important in this thesis work. Because, the test scenarios include fail scenarios and

scenarios of variations. The planning of execution sequence of test scenarios is

done by considering the following rules:

• R4: The main success scenario of a use case (S1 of each Test Scenario

(TS) in this thesis work) should be executed firstly.

• R5: If main success scenario of a use case is successful, no major faults is

occurred which are unable to transmit and receive for V/UHF Transceiver

and unable to receive for GUARD Receiver, the unsuccessful test

scenarios should not be executed, the variation scenarios should be

executed.

• R6: If main success scenario (S1) fails, the unsuccessful test scenarios

should be executed in sequence considering theirs scenario number. If

these scenarios also fail, variation scenarios should not be executed.

• R7: If main success scenario (S1) fails, the unsuccessful test scenarios

should be executed in sequence considering theirs scenario number. If

these scenarios successfully finalize, variations should be executed.

These rules enable faster testing and prevent tester from executing unnecessary

scenarios which may end up with meaningless results. By applying these rules, the

tester can verify the system without wasting time.

The testing scenarios of the use cases should be executed in an order considering

the test set number which is given in the format TSx where x is the number of

sequence number of test set. Giving an example, for V/UHF opening scenario test

scenarios which are given in APPENDIX C should be executed in the orders

given below considering the rules given above:

85

• For R4 and R5: TS1-S1 → TS1-S3 → TS1-S4 → TS1-S5

• For R4 and R6: TS1-S1 → TS1-S2

• For R4 and R7: TS1-S1 → TS1-S2 → TS1-S3 → TS1-S4 → TS1-S5

Here TS1-S1 is the main success scenario, TS1-S2 is the fail scenario and TS1-

S3/S4/S5 are variation scenarios.

Until now, the way of testing work which was handled for this thesis work is

discussed. The defined rules which were taking into account during testing of the

systems are introduced and limitations of them are given. The results gathered

from the testing process of V/UHF T/Rx System and GUARD Receiver and the

metrics calculated from these results are going to be presented in the following

parts of this document.

5.6. TESTING RESULTS

In this part of the thesis, the results and numerical measures gathered during and

after the system testing process will be presented. For the V/UHF T/Rx System,

33 test scenarios and for the GUARD Receiver, 8 test scenarios are generated by

the UBST process. 28 of the V/UHF T/Rx System and the entire GUARD

Receiver test scenarios are executed by considering the rules mentioned in the

previous part. Inspection on the RTM leads to the results in Table 5-10.

Table 5-10: Requirements by Verification Methods

 V/UHF T/Rx System GUARD Receiver
Requirements Verified by Testing 31 64
Requirements Verified by Analysis 44 25
Requirement Verified by Inspection 32 17
Requirements that are not covered by
testing 4 2

Requirements that are not verifiable 1 1
Total Requirements 99 89

86

Investigating Table 5-10, for about 35 % of the V/UHF T/Rx System

requirements are verified by testing where this percentage increases to 67 % for

GUARD Receiver system requirements. The ambiguous requirements mentioned

in Chapter 4 have been removed, because they are rewritten and organized to be

verifiable. There remain only two requirements that are not verifiable. These two

requirements actually give information and present definitions of some concepts.

Another note about the table is that the total number of requirements does not

match the sum of the first five rows. The existence of requirements which are

verified by more than one verification methods causes this discrepancy.

The testing process is executed for the verification of the requirements which have

“testing” as their verification method.

During the testing process, 12 unique faults are found for the V/UHF T/Rx

System. Most of these faults have occurred more than once during the testing

process. These faults can be classified as “not critical” meaning they do not affect

the critical functions, namely transmission and receive operation of the V/UHF

T/Rx system. These faults affect the verification process of 20 requirements of the

V/UHF T/Rx System and these requirements are marked as “FAILED”.

Investigating testing process of the GUARD Receiver, 15 faults are found during

testing process. These 15 faults do not affect the critical operation of GUARD

Receiver which is receiving from GUARD Frequencies. But, these faults lead to

failure of 37 requirements of the GUARD Receiver.

As it is mentioned before, the V/UHF T/Rx System and the GUARD Receiver are

operationally in use in Turkish naval vessels. By investigating and using the

previous fault reports which are also used in CHAPTER 4Chapter 4 and

comparing them with the faults that are observed during the testing process of

UBST, it can be estimated whether there will be any faults and what they will be.

In this way, the fault finding performance of UBST can be determined as

presented in Table 5-11:

87

Table 5-11: Number of Defects Found by UBST and Prediction of Future Faults

Defects/Faults
Found During

Testing (UBST)

Prediction of
Defects/Faults

Found After Testing

V/UHF T/Rx System 12 2

Guard Receiver 15 1

The prediction in Table 5-11 is based on the comparison of the faults found by

executing the test scenarios of UBST and previous testing efforts and examining

the faults that are not found during testing process based on the UBST. Table 5-9

and Table 5-11 present the necessary data to calculate the testing metrics given in

part 2.3.1 for the testing process of UBST. Calculation of the corresponding

metrics based on the data gathered in equations (2-1) to (2-4) is presented below:

For V/UHF-2 Transceiver System,

%35100
99
35

== xCoverageTest (5-1)

%86100
14
12

== xessEffectivenTest (5-2)

%86100
14
12

== xEffortTest (5-3)

For Guard Receiver,

%72100
89
64

== xCoverageTest (5-4)

%94100
16
15

== xessEffectivenTest (5-5)

88

%100100
15
15

== xEffortTest (5-6)

In addition, by using the number of requirements that have “test” as their

verification method, the number of test cases to test these requirements and

number of links from these test cases to requirements, we can obtain the needed

information for the analysis of test complexity of the generated testing process. In

Table 5-12 some metrics that are needed for the application of the analysis

mentioned in 2.3.1.4 and [28] are given.

Table 5-12: Number of Test Cases, Links and Requirements and Their Ratios

 V/UHF T/Rx System GUARD Receiver
of Requirement (R)
Verification Method=Test 35 65

of Test Cases (T) 214 32

of Links (From Test Cases to
Requirements) (L) 109 107

L/R 3.11 1.64

L/T 0.51 3.34

R/T 0.16 2.03

5.7. COMPARISON OF PREVIOUS TESTING PROCESS

AND UBST PROCESS

As it is discussed before, previous testing effort of the V/UHF T/Rx System and

the GUARD Receiver System does not have a methodological basis. The previous

testing process was conducted by engineers who have experience in V/UHF

transceivers and knowledge about their operational uses and possible user needs.

UBST Process was developed, test cases were generated, testing rules defined and

test scenarios were conducted by the author of the present thesis. The basis of

UBST and all other UML-based approaches are the clear and detailed use cases

which are created considering the operational use of the systems. After creation of

89

use cases, every intermediate step until the generation of test cases has been

handled methodologically by applying the UBST process. After the application of

this methodological approach, only planning issues of generated test scenarios

were handled. On the contrary, in the previous testing effort, only the

requirements on SRS document of V/UHF T/Rx System and GUARD Receiver

had been tried to be confirmed one by one.

Metrics gathered from both the previous testing efforts and the testing process that

is developed based on UBST are presented in the Table 5-13 for ease of

comparison:

Table 5-13: Previous Test Metrics vs. UBST Process Test Metrics

Previous

V/UHF T/Rx
System (%)

UBST
V/UHF T/Rx
System (%)

Previous
GUARD

Receiver (%)

UBST
GUARD

Receiver (%)

Test Coverage 37 35 64 72

Test Effectiveness 61 86 50 94

Test Effort 80 86 100 100

Table 5-13 shows that while some properties of testing process have improved

after application of the UBST process, some have worsened and some have not

changed. Below, these properties are discussed one by one.

Testing coverage of the previous testing effort is found higher when it is

compared to the corresponding metric value of UBST process for V/UHF T/Rx

System. This small difference is caused by the previous testing effort’s

characteristics. As it was mentioned before, previous testing effort was based on a

“Test Everything Possible” approach and the verification methods of requirements

were decided during testing processes. This ad hoc approach attempted to test

every requirement which was decided as testable during the testing process.

Because of this approach, the previous testing process covers more requirements

when compared to UBST process for V/UHF T/Rx System. It should also be

90

noted that UBST process for V/UHF T/Rx System covered fewer requirements

but ran a higher number of tests than the previous testing effort.

Unlike the V/UHF T/Rx System, test coverage is higher for UBST process for the

GUARD Receiver. This is because of the unplanned previous testing effort.

Remembering again, the verification methods of requirements were defined just

before the verification of requirements and these decisions were not revised. The

UBST process requires the definition of verification methods of requirements to

be one of its early steps and after generation of test scenarios and test cases, links

between test cases and requirements are generated. So, during the application of

UBST process, the requirements were investigated deeply and the ones that could

be verified by testing were defined. Moreover, these definitions are controlled

more than once and revised. Early and controlled definition of verification

methods of requirements leads to have more requirements that have “test” as their

verification methods. The increase in test coverage metric for GUARD Receiver

arises from the situation described in this paragraph.

Covering more requirements within a testing process does not mean that it is an

effective testing process [27]. It is seen in Table 5-13 that the test effectiveness

metrics of UBST process are much higher than the previous testing effort’s for

both V/UHF T/Rx System and GUARD Receiver. This great difference arose

from more than one characteristics of UBST process which are presented below:

• UBST process includes the step of revising of requirement documents in

which ambiguous requirements, unsuitable requirements and requirement

which will cause possible misunderstandings between customer and

developer are eliminated. This step was not covered for the previous

testing process. By this step of UBST process, the developer has a clear

requirements specification that will be used for both creating use cases and

deciding acceptance criteria.

91

• The methodological approach of UBST process brings the advantages of

scenario-driven approach of system testing. By generating and executing

operational test scenarios, the possibility of finding operational faults that

were missed by previous testing effort is increased. By this way, UBST

process discovered the faults that the previous testing process could not

detect.

• UBST process found many faults that the previous testing process missed.

Moreover, the operational boundaries of both V/UHF T/Rx System and

GUARD Receiver were also tested in UBST process and one new fault

had been discovered in an operational boundary which is never

encountered before.

Test effort metric of UBST process is higher when compared to previous testing

effort’s. This result is interesting as the system under test is in its final hardware

configuration. Just the embedded software version that was used during previous

testing effort is reinstalled on system and the tests are executed. So, it is expected

to have the same test effort value for V/UHF T/Rx System considering all

software originated faults are fixed as it is for GUARD Receiver. But, the

difference between UBST and previous testing process is arisen from the

increased effectiveness of testing process which increased the fault finding

capability of testing process. The number of unresolved deficiencies is the same

for UBST and previous testing process, but the amount of faults found makes the

difference. The test effort metric of both UBST process and previous testing

process is 100 %, which means that all the faults which were found during testing

processes are fixed.

The ratios of R/T, L/R and L/T cannot be called as metrics when they are

compared to the ones discussed above. But according to [28], these ratios give

information about the complexity of the testing process to the developer.

92

The R/T value is equal to 0.16 for V/UHF T/Rx System and to 2.03 for GUARD

Receiver. This value seems normal for GUARD Receiver; one test case verifies

two requirements on average. But for V/UHF T/Rx System; there are possible

risks of over testing and duplication of test cases. If the test scenarios of V/UHF

T/Rx System are investigated again, the duplication of test scenario steps can be

seen. Nevertheless, most of them have different previous steps which can give

different outputs to the repeated test step. On the contrary, some of scenarios can

be merged, duplicated actions can be executed once and the steps after variations

can be executed one after another. Unfortunately, UBST process does not control

the duplications of tests and one of the causes of duplications is variations. But,

variations helps to increase the test effectiveness, so duplications are tolerable for

making the whole testing process more effective.

Both L/R values for V/UHF T/Rx System and GUARD Receiver are greater than

1. If this value was lesser than 1, the existence of requirements which are not

verified with a test case would be certain. The UBST process does not seem

problematic in case of L/R value. But, this value does not guarantee that all of the

requirements are linked to a test case, it only gives a general idea about testing

process. As Table 5-10 shows, both UBST processes for V/UHF T/Rx System and

GUARD Receiver has uncovered requirements which should be verified by

testing.

The L/T value measures the complexity of the testing process. In UBST

processes, L/T value is not considered as high to call these processes as complex.

But, an interesting value for L/T which equals to 0.59 is acquired. This value is

occurred because of variations. For example, the illumination of

“GONDERMEDE” LED after pressing Push-to-Talk (PTT) can be verified by

various test cases. The links of these various test cases are counted as 1. Because,

when one of them verifies the requirement, it is unnecessary and costly to verify it

again. So, the L/T value for V/UHF T/Rx System is unexpected, but this value of

L/T is understandable when the above action is considered.

93

In conclusion, the UBST process brings a methodological approach to system

testing process. The most important benefit of this methodological approach is

increasing test effectiveness. By increasing test effectiveness, the risk of late

realization of problems decreases and possible cost problems will be eliminated

by finding more system faults. But making things methodological always brings

documentation load which increases manpower costs. So, this process should be

applied to complex and large systems which have many inner-system and inter-

system interfaces. But, if the UBST process is improved and system designs begin

to be standardized based on UML and SysML, the UBST process will become

easy to apply and it will be automated to some point. This will result in increased

developer confidence about providing high testing effectiveness and ease of

generating test cases. Moreover, by standardizing this process and generating

straightforward, understandable and clear test cases, the testing process is made

easier to conduct and even technicians who have limited knowledge about system

functionality can execute the test cases. Unlike UBST, for previous testing

processes, testing could be conducted only by an engineer who has experience

about system or by the supervision of an experienced engineer.

94

CHAPTER 6

CONCLUSION

This chapter provides the summary and the concluding remarks of this study.

Furthermore, the possible future studies are also suggested.

6.1. CONCLUSIONS

System testing and system acceptance testing have an important role in system

verification and validation in which system and user requirements are verified.

Moreover, these phases are not standalone phases and have relations with

requirements management, project planning and system design phases.

In this thesis work, system testing and acceptance testing approaches and

methodologies for software and hardware-based systems are investigated.

There are lots of work about software system testing approaches and

methodologies in literature. Many approaches attribute high importance to

requirements reviewing for system testing phase. Moreover, determining

verification methods for requirements and acceptance criteria are also stated as

important in literature.

In addition, test case generation methods for software systems are investigated. It

should be noted that for hardware-based systems, there is no methodology found

about test case generation during literature review. Generally, the test case

95

generation methods begin with user requirements and try to design the systems in

a standardized model. Some of these standardized models are based on building

FSM, and UML models which are sequence diagrams, state diagrams and activity

diagrams.

UML approaches to system testing process and SysML extension of UML are also

investigated. Application of UML models to system design and test case

generation methods from these models and automation of these methods are

popular research areas in literature. Applicability of these various UML-based test

case generation processes is evaluated. Some of the methods focus on structural

behavior or both structural and functional behavior and these properties of these

methods make them unnecessarily complicated for the scope of this thesis work.

The method using activity diagrams as basis diagram is chosen because of its

scope “behavioral system testing”. This method differs from the other methods in

suitability of its scope to the scope of this thesis work and ease of application.

The chosen method creates activity diagrams using textual use cases. Then

intermediate diagrams of IFD and IFG are created before the generation of test

cases. These diagrams, especially IFG is created for making automation of test

case generation possible. But, in this thesis work, automation process is not

considered.

Furthermore, metrics that can be used for measuring testing effectiveness of

functional system testing processes are presented. Measures which are specifying

the characteristics of testing process are mentioned. Moreover, some methods for

increasing testing effectiveness are also stated in this thesis work.

After the literature review, a system testing process called UBST process is

developed by using the chosen UML-based test case generation approach. In

developed UBST process, preliminary work before modeling the system, system

modeling and test case generation process are presented in detail.

96

In addition, system testing and acceptance testing process of SEDNC is

investigated and problems of these processes are presented by comparing the

processes to the publications in literature and interviewing colleagues and experts.

The most important problems are stated as requirements that are not detailed, lack

of operational scenarios in system testing procedures, lack of test case generation

methodologies and planning issues.

The previous system testing processes of V/UHF T/Rx System and GUARD

Receiver are investigated and details of these processes are given. Records that are

gathered during the testing processes are presented. These records are used to

calculate metrics of test coverage, test effectiveness and test effort.

After gathering the metric calculations of previous testing process, UBST process

is applied to the V/UHF T/Rx System and GUARD Receiver. SRS document of

these systems is reviewed and revised in order to handle ambiguous requirements

and requirements that are not verifiable. Having understandable and clear

requirements is necessary for determining acceptance criteria for requirements

that are going to be verified. Moreover, making these requirements

understandable and measurable helps the developer to design the product which

really meets the user requirements. In this thesis work, it helped the developer to

model the systems and create correct use cases which is the basis of test case

generation process.

Use case diagrams and textual use cases are created by using the requirements and

considering the operational scenarios. Textual use cases which are written in a

scenario-driven approach are modeled as flow of these scenario activities by using

activity diagrams. These activity diagrams are converted to IFDs which are a

simplified version of activity diagrams and interested only in actions and

responses between system and user, ignoring inter-system actions. At the end of

the process, loop-free IFGs are generated in a tree format and executed using

depth-first algorithm which is resulting in generation of test scenarios in a

scenario-driven approach.

97

The generated test scenarios include success and fail scenarios. In this step, the

need of test scenario prioritization and planning issues steps forward. A decision

making system is developed to be used during executing tests for deciding both

what to do next during execution of test cases and the scenario which will be

executed next. Some rules and instructions included in the decision system are

taken into account for a reasonable and effective sequence of test scenarios.

After executing the test scenarios, the needed data to compare the UBST process

and previous test process is gathered. Considering the main scope of testing,

which is finding faults, the UBST process is reasonably improves the fault finding

capability of system testing process. The difference between test effectiveness

metric values of compared processes proves this argument.

Test coverage metric which measures the number of requirements tested by

testing process shows variation between GUARD Receiver and V/UHF T/Rx

System. The test coverage metric of GUARD Receiver is improved while the

value of V/UHF T/Rx System is dropped. A good testing process should

absolutely cover requirements as much as it can, but test coverage is not very

effective on fault finding capability considering test effectiveness metric results.

This result shows that test coverage metric is not related directly with test

effectiveness.

Test effort metric shows how many of the faults which are found during testing

process are fixed. Test effort of V/UHF T/Rx System is improved because of the

increase in the number of faults found during the UBST process. These faults are

the faults that were not found during testing process and appeared after the tests

were conducted. So these faults were not taken into consideration while

calculating the test effort metric of previous testing process of V/UHF T/Rx

system. Test effort is increased by UBST process with the increase in test

effectiveness.

98

Some measurements are made instead of metrics and it is seen that improvements

should be made for a more effective testing process. But, considering previous

testing effort, UBST process improved the effectiveness of behavioral system

testing applied to V/UHF T/Rx System and GUARD Receiver.

In short, the number of defects found during system testing process (test

effectiveness) is increased and the number of faults fixed which are found during

system testing process (test effort) is increased naturally by the increase in the

number of detected defects whereas the number of requirements verified by

system testing process (test coverage) is not changed meaningfully. It should be

noted again that while test effort is directly related to test effectiveness metric, test

coverage metric is not related to either test effectiveness or test effort metrics.

This thesis study has shown that by a methodological approach, system testing

becomes an effective step for finding faults of systems before system delivery that

have several varying interfaces with other systems and equipments. Moreover, by

applying the UBST process, it is realized that system testing should be more than

just verification of the system requirements one by one. This realization should be

taken seriously and at least a methodological approach for generating testing

scenarios should be integrated to system and acceptance testing processes of

SEDNC which are conducted for the systems that are designed by subcontractors

and company that author is employed. This integration may decrease the cost of

late realization of problems by decreasing the cost of manpower spent for the

solutions of problems which is actually not measured by the company for author’s

department.

The work on this thesis work was begun for improving the system and acceptance

testing of a whole communications system which is actually a system of systems.

The department in which the author is employed is the developer and the

Dz.K.K.lığı is the user for the communications system of a naval platform. But,

because of the difficulty of bringing whole communications system together and

handling system testing process of a very large and varying system, and the lack

99

of data from the previous testing efforts of the whole system, the author has

focused on subsystems of V/UHF T/Rx System and GUARD Receiver as the

systems under test which can be easily tested and have data about the previous

testing efforts. The equipments subject to test in this thesis work are manufactured

in author’s employer company. The design departments are in the role of

subcontractor for the author’s department if the big picture is investigated. In this

thesis work, this viewpoint was the basis of the idea of investigating and

improving the system testing process of V/UHF T/Rx System and GUARD

Receiver. During the development of UBST process, the author has put himself in

the place of the developer and has modeled the systems from a functional

viewpoint and in a scenario-driven approach. Narrowing down the application

scope of the UBST process will not affect its applicability to larger systems and

system of systems such as communications system of a naval ship, from the

viewpoint of UBST process. There will be no difference in modeling of the

systems, generating test scenarios and testing of a system between a sub-system

and system of systems except the complexity of the jobs that should be handled.

UBST process includes some requirements management steps which should not

be in testing phases. However, as it is frequently mentioned in literature review,

for effective testing of systems, user and system requirements should be clear,

verifiable and should not be understood differently by developers and users. For

an effective and non-problematic product lifecycle, the requirements management

steps should be handled in project beginnings not at the beginning of system

testing phase. Moreover, acceptance criteria, test methods and general RTM

should be prepared in the beginning of the projects and these information should

be supplements of TEMP document. These are also covered in the UBST process

in this thesis work for creating a more effective testing process.

100

6.2. FUTURE WORK

In this study, the main aim has been to demonstrate the improvement of the

effectiveness of system testing process by using UML-based system test case

generation methods. System development process and software development

process have many similar phases. This thesis work can be extended by trying to

adapt the UML-based software development phases from requirements

management and modeling up to maintenance period to system development

phases.

Furthermore, the present study only covers the testing part of whole system

verification process. The verification steps with other methods (analysis,

inspection, etc.) can also be handled in a methodological way.

Besides, as a future study, the automation of the UBST process can be achieved

by specifying the inputs, outputs and acceptance criteria in a more formal format

and by directing developer to make decisions while creating the flow models.

101

REFERENCES

[1] Freeman, H., “Software Testing”, IEEE Instrumentation & Measurement

Magazine, September 2002.

[2] Yu, Y., Wu, F., “A Software Acceptance Testing Technique Based on

Knowledge Accumulation”, Ninth Great Lakes Symposium on VLSI Proceedings,

1999.

[3] Scully, J.K., “The Hidden Crises in Test Effectiveness”, AUTOTESTCON

’98, IEEE System Readiness Technology Conference Proceedings, 1998.

[4] Causevic, A., Sundmark, D., Punnekkat, S., “An Industrial Survey on

Contemporary Aspects of Software Testing”, 3rd International Conference on

Software Testing, Verification and Validation, 2010.

[5] Naik, K., Tripathy, P., “Software Testing and Quality Assurance”, Wiley,

2008.

[6] Smith, D., Russell, S., “How to measure effects of systems engineering on

the outcomes of a project”, Systems engineering test and evaluation conference

pp. 1-13 1, 2008.

[7] Faulconbridge, R.I., Ryan, M.J., “Managing Complex Technical Projects:

A Systems Engineering Approach”, Artech House, 2003.

[8] Kossiakoff, A., Sweet, W.N., “Systems Engineering Principles and

Practice”, Wiley, 2003.

102

[9] Technical Board of International Council on Systems Engineering

(INCOSE), “Systems Engineering Handbook A “What to” Guide for All SE

Practitioners”, INCOSE, INCOSE-TP-2003-016-02, Version 2a, 1 June 2004.

[10] Department of Defense, “Systems Engineering Fundamentals”, Defense

Acquisition University Press, January 2001.

[11] Hsueh, M.C., “Large Complex System Test: Objectives & Approaches”,

Proceedings of First IEEE Conference of Engineering of Complex Computer

Systems, IEEE, 1995.

[12] Beizer, B., “Black-Box Testing: Techniques for Functional Testing

of Software and Systems”, Wiley, 1995.

[13] Hsia, P., Gao, J., Samuel, J., Kung, D., Toyoshima, Y., Chen, Y.,

“Behaviour-Based Acceptance Testing of Software Systems: A Formal Scenario

Approach”, Eighteenth Annual International Computer Software and Applications

Conference Proceedings, 1994.

[14] Fröhlich, P., Link, J., “Automated Test Cases Generation from Dynamic

Models”, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp.

472-491 2000.

[15] Heinecke, A., Brückmann, T., Griebe, T., Gruhn, V., “Generating Test

Plans for Acceptance Tests from UML Activity Diagrams”, 17th IEEE

International Conference and Workshops on Engineering of Computer-Based

Systems, 2010.

[16] Perry, W.E., “Effective Methods for Software Testing”, 3rd Edition, Wiley,

2006.

[17] Riebisch, M., Philippow, I., Götze, M., “UML-Based Statistical Test Case

Generation”, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pp.

394-411, 2003.

103

[18] Sarma, M., Kundu, D., Mall, R., “Automatic Test Case Generation from

UML Sequence Diagrams” 15th International Conference on Advanced

Computing and Communications, IEEE, 2007.

[19] Sarma, M., Mall, R., “System Testing using UML Models”, 16th Asian

Test Symposium, IEEE, 2007.

[20] Kumari, M., Sharma, A., Kamboj, V., “Replacement of S/W Inspection

with S/W Testing”, International Journal of Information Technology and

Knowledge Management, July-December 2009, Volume 2, No.2, pp. 257-261,

2009.

[21] Baresi, L., Pezze, M., “An Introduction to Software Testing”, Electronic

Notes in Theoretical Computer Science 148 (2006), pp. 89-111, Elsevier, 2006.

[22] Frederick, J., Jaggard, C., Paglione, M., Baldwin, C., “Verification and

Validation Standards to Test and Evaluate New Complex Systems for the

National Airspace System”, ITEA Journal 2009; 30: 277-287, June 2009.

[23] Atkins, R., “Software contracts and the acceptance testing

procedure”, Computer Law & Security Report, pp. 51-55, 2005.

 [24] Director of OT&E, “Policy for Application of Modeling and Simulation in

support of OT&E”, Washington DC, January 24 1989.

[25] Ramos III, J., “Modeling and Simulation (M&S) Issues in Operational

Test and Evaluation (OT&E)”, Proceedings of the 1994 Winter Simulation

Conference, 1994.

[26] Lamancha, B.P., Usaola, M.P., Velthius, M.P, “Software Product Line

Testing A Systematic Review”, ICSOFT 2009 - 4th International Conference on

Software and Data Technologies, 2009.

[27] Hutcheson, M.L., “Software Testing Fundamentals: Methods and

Metrics”, John Wiley & Sons Inc., 2003.

104

[28] Rosenberg, L.H., Hammer, T.F., Huffman, L.L., “Requirements, Testing,

and Metrics”, 15th Annual Pacific Northwest Software Quality Conference, 1998.

[29] Lang, P., Card, M., Saalwaechter, S., Godkin, T., “Application of Test

Effectiveness in Spacecraft Testing”, Reliability and Maintainability Symposium,

Proceedings, 1995.

[30] Neogy, R., Dharan, H., “Measures of Test Effectiveness in a

Communications Satellite Program”, IEEE Journal on Selected Areas In

Communications, October 1986.

[31] Williams, L., Snipes, W., Meneely, A., “On Increasing System Test

Effectiveness through a Test Case Prioritization Model Using Static Metrics and

System Failure Data”, Reliability Analysis of System Failure Data Workshop,

Cambridge, UK, 2007.

[32] Sneed, H.M., “Measuring the Effectiveness of Software Testing”, First

International Workshop on Software Quality (SOQUA 2004) Proceedings, 2004.

[33] Dustin, E., “Effective Software Testing”, Pearson, 2003.

[34] Khan, S.u.R., Rehman,. I.u., Malik, S.u.R.,”The Impact of Test Case

Reduction and Prioritization on Software Testing Effectiveness”, International

Conference on Emerging Technologies, 2009.

[35] Ronne, J.V., “Test suite minimization: An Empirical Investigation”, June

1999, Retrieved from URL: http://www.cs.utsa.edu/~vonronne/pubs/jvronne-uhc-

thesis.pdf, 12/03/2010.

[36] Harrold, M.J., Gupta, R., Soffa, M.L., “A Methodology for Controlling the

Size of Test Suite”, ACM Transactions on Software Engineering and

Methodology, ACM, 1993.

105

[37] Holden, I., Dalton, D., “Improving Testing Efficiency using Cumulative

Test Analysis”, Proceedings of the Testing: Academic & Industrial Conference –

Practice and Research Techniques, 2006.

[38] Willard, B., “UML for systems engineering”, Computer Standards &

Interfaces, Volume 29, pp. 69-81, Elsevier, January 2007.

[39] “OMG System Modeling Language (OMG SysML) Version 1.2”,

http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf, 16/06/2010.

[40] Heide, C., Hoover, R., “Optimizing Test Systems for Operational Test

Benefits Using Parallel Test Capable Instruments”, IEEE Autotest Conference,

2008.

[41] “Test and Evaluation Management Guide Fourth Edition”, The Defense

Acquisition University Press, November 2001.

[42] Lee, Y.H., Lee, B.G., Lee, J.C., Kim, Y.K., “Preparing Test and

Evaluation Master Plan (TEMP) for the Korean CBTC System Development

Project”, Proceedings of 2nd IEEE International Systems Conference, 2008.

106

APPENDIX

USE CASES, BEHAVIORAL DIAGRAMS AND TEST

SCENARIOS

Supplied CD includes the Use Cases, Behavioral Diagrams and Test Scenarios

which are generated during the application of UBST process on V/UHF T/Rx

System and GUARD Receiver.

