
PARALLELIZATION OF FUNCTIONAL FLOW TO PREDICT PROTEIN FUNCTIONS

A THESIS SUBMITED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRAH AKKOYUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF MEDICAL INFORMATICS

JANUARY 2011

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assist. Prof. Dr. Didem GÖKÇAY

 Head of Department

This is to certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Tolga CAN

 Supervisor

Examining Committee Members

Assist. Prof. Dr. Didem GÖKÇAY (METU, II) ___________________

Assist. Prof. Dr. Tolga CAN (METU, CENG) ___________________

 Assist. Prof. Dr. Özlen KONU (Bilkent U, BIO) ___________________

Assist. Prof. Dr. Yeşim Aydın SON (METU,II) ___________________

Dr. Cevat Şener (METU, CENG) ___________________

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this wok.

Name, Last name : Emrah, Akkoyun

 Signature : ___________

iv

ABSTRACT

PARALLELIZATION OF FUNCTIONAL FLOW TO PREDICT PROTEIN FUNCTIONS

Emrah Akkoyun

M.Sc., Department of Medical Informatics

Supervisor: Assistant. Prof. Dr. Tolga Can

January 2011, 51 pages

Protein-protein interaction networks provide important information about what the

biological function of proteins whose roles are unknown might be in a cell. These

interaction networks were analyzed by a variety of approaches by running them on a

single computer and the roles of the proteins identified were used to predict the

function of the proteins unidentified. The functional flow is an approach that takes

the network connectivity, distance effect, topology of the network with local and

global views into account. With these advantages, that the functional flow produces

more accurate results on the prediction of protein functions was presented by the

previos conducted researches. However, the application implemented for this

v

approach could not be practically applied on the large and complex network

produced for the complex species because of memory limitation. The purpose of this

thesis is to provide a new application be implemented on the high computing

performance where the application can be scaled on the large data sets. Therefore,

Hadoop, one of the open source map/reduce environments, was installed on 18 hosts

each of which has eight cores.

Method; the first map/reduce job distributes the protein interaction network as a

format which allows parallel distributed computing to all the worker nodes, the other

map/reduce job generates flows for each known protein function and the role of the

proteins unidentified are predicted by accumulating all of these generated flows. It

has been observed in the experiments we performed that the application requiring

high performance computing can be decomposed into worker nodes efficiently and

the application can provide better performance as the resources increase.

Keywords: protein-protein interactions, functional flow, parallel and distributed

computing, map/reduce, Hadoop

vi

ÖZ

PROTEİN FONKSİYON TAHMİNLEMESİ İÇİN FONKSİYONEL AKIŞ YÖNTEMİNİN

PARALELLEŞTİRİLMESİ

Emrah Akkoyun

Yüksek Lisans, Sağlık Bilişimi

Tez Yöneticisi: Yard. Doç. Tolga Can

Ocak 2011, 51 sayfa

Protein-protein etkileşim ağları, işlevleri bilinmeyen proteinlerin bir hücrede

biyolojik fonksiyonlarının ne olabileceği ile ilgili önemli bilgiler sağlarlar. Bu

etkileşim ağları, çeşitli yaklaşımların tek bir bilgisayar üzerinde koşturulması ile

analiz edilmiş ve işlevleri bilinen proteinlerden bilinmeyenler tahmin edilmeye

çalışılmıştır. Fonksiyonel akış; ağ bağlantısallığını, uzaklık etkisini, yerel ve global

ağ topolojisini hesaba alma avantajına sahip bir yaklaşımdır. Bu avantajlarıyla

protein fonksiyonlarının tahminlenmesinde daha başarılı sonuçlar ürettiği bundan

önceki çalışmalarda gösterilmiştir. Ancak, bu yaklaşım için gerçekleştirilen

vii

uygulama, gelişmiş canlılar için üretilmekte olan karmaşık ve büyük etkileşim ağları

üzerinde bellek yetersizliği nedeniyle pratikte uygulanamamaktadır. Bu tez

çalışmasındaki amacımız, Fonksiyonel akış yaklaşımının yüksek başarımlı

hesaplama kümesi üzerinde gerçekleştireceğimiz yeni uygulama ile büyük veri setleri

üzerinde ölçeklenebilirliğini sağlamaktır. Bu nedenle her biri sekiz çekirdekten

oluşan 18 makine üzerine açık kaynak kodlu bir eşle/indirge ortamı olan Hadoop

kurulmuştur.

Yöntem; ilk eşle/indirge işiyle protein etkileşim ağı, paralel dağıtık hesaplamaya izin

verecek formatta tüm hesaplama uçlarına dağıtılır, bir başka eşle/indirge işiyle

fonksiyonu bilinen her bir protein için akış üretilir ve üretilen tüm bu akışlar

biriktirilerek bilinmeyen herbir protein için fonksiyon tahminlemesinde bulunulur.

Yaptığımız deneylerde yüksek hesaplama gerektiren uygulamanın herbir hesaplama

ucuna etkili bir şekilde dağıtıldığı ve kaynakların artırılmasıyla uygulamanın yüksek

başarımla çalıştığı gözlemlenmiştir.

Anahtar Kelimeler: protein-protein etkileşimleri, fonksiyonel akış, paralel ve dağıtık

hesaplama, eşle/indirge, Hadoop

viii

To my family

ix

ACKNOWLEDGEMENTS

First and foremost, I am heartily thankful to my supervisor, Assist.Prof. Dr. Tolga

Can, whose encouragement, valuable guidance, friendly attitude and continuous

support throughout my research enabled me to complete my study.

I also thank Assist.Prof. Dr. Didem Gökçay and Assist.Prof. Dr. Tuğba Taşkaya

Temizel for their guidance and suggestions.

I would like to show my gratitude to my family for their love, patience and emotional

support throughout my life. Without them, this thesis would never be finished.

I would like to thank all my colleagues and friends, especially to Onur Temizsoylu

and Aydın Emre Ceviz, who always encouraged me with their understanding and

valuable comments.

I am greatly appreciative to Ali Kantar, Ayse Ceylan and Sibel Gülnar in the institute

for their kindness since the beginning of my M.Sc. study.

Finally, it is a pleasure to thank TUBITAK ULAKBIM, High Performance and Grid

Computing Center (TR-Grid e-Infrastructure) where the numerical calculations

reported in this paper were performed.

This thesis work is conducted as a part of TUBITAK Career Project # 106E128.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

DEDICATION……………………………………………………………………………...viii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ..x

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ...xv

CHAPTER

INTRODUCTION ..1

1.1 Problem Definition and Motivation ..1

1.2. Related Work ...3

1.2.1. Computational Techniques for Protein Function Prediction3

1.2.2. Hadoop Map/Reduce Programming for High Performance Computing4

1.2.3. Parallel Approaches for analyzing large-scale interactome5

1.3. Contributions ...6

1.4. Thesis Outline ..7

BACKGROUND ..8

2.1. Proteomics and Interactome ...8

2.2. Protein-protein Interaction Network ..9

2.3. Functional Flow ...12

2.4. Parallel Computing ..14

2.4.1. Terminology of Parallel Computing ...15

2.4.2. Benefits of the Parallel Computing ...17

2.4.3. Memory Architecture ..18

2.4. Parallel and Distributed Computing with Hadoop ...20

2.4.1. Hadoop Distributed File System (HDFS) ...20

2.4.2. MapReduce Engine ...22

2.5. Hadoop Computing Cluster and Architecture Employed in this Thesis Work23

xi

2.6. Monitoring Tool for HPC Cluster - Ganglia ..24

MATERIALS AND METHODS ..27

3.1. Data Sets ..27

3.1.1 Weighted Protein-Protein Interaction Network ...28

3.1.2 Gene Ontology ...29

3.2 User Interface of Hadoop for evaluating performance ...30

3.3 Debugging Hadoop Applications ..31

3.4 Overview ...32

3.5 Pre-processing operations for Hadoop to propagate flows individually32

3.6 Generating a hash table for a PPI network ..34

3.7 Mapping a hash table to all memories on the computing nodes34

3.8 Propagation Flows in Parallel ...35

3.9 Accumulating all flows and making prediction ..37

RESULTS ...39

4.1 The Computational Complexity of the Problem ...39

4.3 The Evaluation of Hadoop Performance by Ganglia ..44

CONCLUSION AND FUTURE WORK ...46

5.1 Conclusion ..46

5.2. Future Works ...47

REFERENCES ...49

xii

LIST OF TABLES

Table 2.1 Classified biological function with their label id ...11

Table 3.1.1.1 Format of the text-based file representing all interactions29

Table 3.1.1.2 Format of the text-based file representing a list of known functions29

Table 3.6.5 Annotation of proteins with a biological function ..38

Table 4.2.1 The relation of map tasks and core numbers on the performance43

xiii

LIST OF FIGURES

Figure 2.1 Fractions of the annotated proteins against to whole ones according to GO

annotations ..10

Figure 2.2 Correlation between protein functional distance and network distance. The

proteins which are close to each other has more similarities than the proteins far from to each

other. ...10

Figure 2.3 A subgraph of the protein interaction network of the yeast Saccharomyces

cerevisiae. The simple technique to assign a protein function to unannotated proteins was

demonstrated. ..11

Figure 2.4 Visualization of protein interaction network in Yeast. The small circles show the

proteins and the lines between the circles show interaction between these proteins.12

Figure 2.5 The representation of shared memory architecture (Uniform Memory Access) ..19

Figure 2.6 The representation of distributed memory architecture ..19

Figure 2.7 The representation of hybrid distributed-shared memory.....................................20

Figure 2.8 The view of fundamental services running on the file system in Hadoop21

Figure 2.9 A demonstration the work flow of a process on Hadoop23

Figure 2.10 The average resource usage for a week at Tier-2 center. The number of running

jobs, the total CPU and memory load and internal network traffic is represented in real time

by Ganglia. ..24

Figure 3.3.1 The web based user interface of Hadoop gives information about the status of

submitted jobs. Therefore, a user can monitor its own job. ..30

Figure 3.3.2 The web based user interface of Hadoop can provide information about the

cluster configuration and application utilization ...31

Figure 3.5.1 A simple example of a weighted protein-protein interaction network. The red

circles show the annotated proteins, while the black circles show the unannotated proteins.

The line shows the interaction with the weight value. ..33

Figure 3.6.2 The demonstration of generating a hash table by using a file stores all the

interactions between proteins in a PPI Network ...34

Figure 3.6.4 Propagating flows by regarding to previously given PPI network example. At

each time step, there are a number of flows propagated for defined biological function id. ..37

Figure 4.1.1 The change on the number of flows according to iteration numbers. The flow

number shows the complexity of the problem and iteration number indicates the time step. 40

Figure 4.1.2 The change on the running time of the application according to the iteration

numbers. As the iteration number increases, the time for application to be completed is

increased as well. ..41

Figure 4.2.1 The performance of the Hadoop cluster. The number of map tasks indicates the

amount of computing power dedicated to solve the problem. As the computing resource is

increased, the running time of the application is decreased. ...42

xiv

Figure 4.2.2 The performance effect of the number of map tasks on the number of cores on

the Hadoop Cluster. Hadoop provides better performance under all the experiments, when

the map task number has been set to twice the core number. ...43

Figure 4.3.1 The load of worker nodes during the running job. It shows that the dedicated

computing nodes are utilized fairly and precisely. ...44

Figure 4.3.2 Historical CPU load of the dedicated hosts. The initialization and completion

time are successfully kept short and the hosts are utilized equally. ..45

xv

LIST OF ABBREVIATIONS

PPI Protein-Protein Interaction Network

HPC High Performance Computing

GFS Google File System

HDFS Hadoop Distributed File System

GO Gene Ontology

PC Personal Computer

SMP Symmetric Multi-Processor

UMA Uniform Memory Access

NUMA Non-Uniform Memory Access

WLCG Worldwide LHC Computing Grid

DIP Database of Interacting Proteins

IB Infiniband

QDR Quad Date Rate

1

CHAPTER 1

INTRODUCTION

Firstly, the definition and motivation of the problem was given. By investigating the

related works, the weakness and powerful points of the previously conducted

researches were examined and what our contributions are indicated clearly in this

chapter.

1.1 Problem Definition and Motivation

A protein cannot accomplish its biological function when it is completely isolated.

Rather, it usually interacts with other proteins in order to perform vital part of the

biological function such as cell growth, rRNA and tRNA synthesis, transcriptional

control and cell polarity. The structure of the interactions with the proteins can be

abstracted by a graph which is called the protein-protein interaction (PPI) network.

There is a variety of protein interaction networks which are obtained by various

experimental techniques. They are generated for different species; as a result the

number of proteins and interaction between the proteins are various. However, these

datasets have high noise which means the linkage of the protein shown by the

2

network may not really exist biologically. Furthermore, most of the proteins in many

PPI networks are not associated with any biological functions. The species which has

most biologically identified proteins is the baker’s yeast (Saccharomyces cerevisiae)

although about one-fourth of the proteins remain uncharacterized. The biological

techniques are not sufficient to associate all proteins with a biological function in a

cell, therefore a number of computational techniques have been applied to

understand proteins whose tasks are not known well [1,2,3,4,5]. However, noisy and

incomplete PPI datasets makes the problem of function prediction using PPI

networks a challenge.

There are many methods which are applied to predict function from a protein

interaction network, and these grouped into categories based on neighborhood,

global optimization, clustering and association by Pandey et al [1]. Functional flow

by Nabieva et al [6] is one of these methods that takes the network connectivity,

distance effect, topology of the network with local and global views into account,

leading to significant advantages for more accurate function prediction.

The Functional flow is based on a well known network flow where the annotated

proteins behave as source nodes, while the unannotated ones behave as destination

nodes and the flow is propagated by the source proteins to the destination proteins

throughout the edges like a conduit over the discrete of time. The amount of flow

that enters the destination protein determines the biological function of the

unannotated proteins. The computational time required for annotating proteins will

be increased sharply, when the time steps and the number of the interactions or

biologically known functions increase, which is a typical scenario especially for

genome-scale networks. Therefore, the prediction of all the unannotated proteins in

genome-scale protein interaction networks requires very long time when it is running

on a single computer.

Hadoop is an open source project that enables users to run their application on a

reliable, scalable and distributed computing environment with thousand of nodes and

petabytes of data. It was inspired by Google's Map Reduce and Google File System

(GFS) papers and used by many organizations to run large distributed computations.

It is a kind of map & reduce programming model that rapidly processes vast amount

of data in a parallel way on large clusters of compute nodes.

3

There are a few methods to predict protein function in a parallel way by utilizing the

high performance computing technology. These methods are based on the protein

sequence alignment that studies on the primary structure of a single protein or a

small complex. In this thesis, we implemented a novel application on a number of

powerful computers which are arranged by running together for protein function

prediction by using interactomes. The functional flow was applied on the dataset and

focused on the computational performance provided by the Hadoop platform instead

of investigating the prediction results. The reason for this is that we applied a well

known algorithm (Functional Flow) by previous researchers which provides accurate

predictions for unannotated proteins. In order to evaluate the performance of Hadoop

cluster, we installed it on 18 hosts with 144 cores which have the same operating

system (Scienific Linux 4.7 - Beryllium) and middleware (hadoop_0.20-2). We run

our parallel implementation of Functional Flow with various numbers of cores on the

cluster. By examining the results with the distributed monitoring system for high-

performance computing, it has been shown that significant performance has been

gained. We also showed that all the resources installed on the cluster have been

utilized by Hadoop platform very well. We examined that the Hadoop platform can

facilitate bioinformatics studies which require high performance computation.

1.2. Related Work

Previously conducted researches which are related to our study were grouped by the

computational techniques to predict protein function and Hadoop as a high

performance computing platform.

1.2.1. Computational Techniques for Protein Function Prediction

There are several approaches that attempt to predict protein function from a protein

interaction network. Majority method proposed by Schwikowski et al.[2], which is

one of the neighborhood-based approaches, looks at the neighboring interactions and

takes the three most frequent annotations. This is a basic method which can be

applied easily. However, it is not good at prediction when there are quite a lot of

unannotated neighbors, for the majority method only promotes the immediate

4

neighbors within any sub-network. Hishigaki et al.[3] extends the Majority rule by

looking at all proteins within an area bordered by a certain radius. It annotates

proteins with a function which is mostly found in the set that includes the frequencies

of all the function inside a particular area. It takes advantage of the underlying

network structure as well as the interactions beyond the immediate linkage; however,

it is insufficient to promote any aspect of network topology. While it considers the

number of functional annotations, it does not consider the linkage within the local

neighborhood. Vazquez et al.[4] and Karaoz et al.[5] proposed a new method that

exploits the global topological structure of the interaction network. It is a kind of

well-known multiway k-cut algorithm that tries to cluster the interaction network by

taking dense regions in the network into account. Then, proteins are labeled by one

of the functions within the module. The size of the module might be large and a few

numbers of annotated proteins might exist, and as a result, all the proteins might be

labeled as one of these functions. This might cause incorrect function predictions.

Nabieva et al. [6] proposed a method based on a well-known network flow, which is

mostly applied for the graph cutting problem. There will be a flow from source nodes

to the destination nodes over the edges in the PPI graph. It promotes both the

underlying topology of the graph and multiple edge-disjoint interaction paths

between two proteins. Furthermore, it takes the network topology into account. Thus,

an algorithm has been proposed to overcome the weakness of the previous methods.

From these methods, numerous innovative methods can be obtained to predict

functions from protein interaction networks in computer science. It is also expected

to adapt new techniques in computer science, such as social network mining and web

search.

1.2.2. Hadoop Map/Reduce Programming for High Performance Computing

Hadoop, which is a kind of open source framework written in Java, is mainly for

large-scale distributed batch processing infrastructure which runs on commodity

computers [14]. The main advantage of Hadoop is its ability to scale to hundreds or

thousands of nodes in a cluster. Furthermore, it can handle vast amount of data

efficiently over a set of computers.

5

Hadoop Distributed File System (HDFS) splits large amounts of data into many

smaller parts which are distributed separately across multiple nodes. It is comprised

of a name node, which stores all metadata such as file name, permissions and the

distribution information, and data nodes, which store the part of the data called as

chunks. The name node coordinates the distribution of files, as well as monitors the

possible failures which might occur on data nodes.

Hadoop is mostly appropriate for the applications with large data processing tasks

such as searching and indexing, for it can distribute chunks of data to nodes in the

cluster reliably and cheaply, and computation is done where data is stored.

A Hadoop-cluster might consist of thousands of nodes; therefore, it is highly

probable that various troubles might occur. As a result, the framework should have a

high degree of fault tolerance, detect the trouble automatically and fix it as soon as

possible.

MapReduce is a commonly used paradigm which is available in many programming

languages. Map basically applies a function to a set of elements and returns a set of

results, whereas Reduce basically applies a function to a set of elements by

considering the current result and the next element in the set. A map/reduce job is

usually monitored by one JobTracker and a TaskTracker per data node.

Many organizations such as Yahoo, Amazon, Rackspace, Facebook and Wikia are

using Hadoop for searching assist and data mining, searching index, session analytics

and log processing.

1.2.3. Parallel Approaches for analyzing large-scale interactome

Due to fundamental physical limitations and power constraints on a single computer,

the use of multicore algorithmic techniques is required to analyze large-scale protein-

interaction networks in an efficient way. Although there are a variety of

computational techniques to predict protein functions, none of them is implemented

by utilizing the high performance computing technology.

6

There are a few computational methods to analyze large-scale interactomes for

clustering them into sub-networks or inferring the evolution of proteins instead of

directly predicting protein function. The first method proposed by Yang et al [22]

analyzed the size of large interactome in order to cluster it in a parallel way. Their

method is based on the edge betweenness clustering algorithm whose remarkable

performance in discovering clustering structures in several networks was already

showed by Girvan et al [23]. The clustering tool was written in C++ under Linux

with the requirement of LAM software and Boost Graph Library and they achieved

almost linear speed-up for up to 32 processors. However, clustering the interactome

for protein function prediction is not suitable because it might cause incorrect

function prediction, when the size of a sub-network is large and the sub-network has

a few annotated proteins. The other method proposed by Bader et al [24] is the

analysis of the degree–betweenness centrality correlation in the human protein

interaction network to elucidate essentiality and evolutionary age of a protein. They

designed a portable parallel implementation by using thread programming. The

thread computing allows application to utilize all the processors on multi-core

computers; however, utilizing more than a single computer is not possible.

Therefore, the complex problem cannot scale on the number of computers running

together to solve large problem.

In this study, we implemented a novel application on a number of powerful

computers which are running together for protein function prediction. By using the

Hadoop platform, the successful implementation of functional flow can be deployed

on hundreds of computers without any change on the application.

1.3. Contributions

Our contributions in this thesis are:

1. The method of the functional flow for protein function prediction has been

implemented by Java on a single computer. It is not possible to run the same

implementation on Hadoop platform in a parallel way, therefore the method

has been implemented again by taking MapReduce paradigm into account.

7

2. The complexity of the problem has been investigated in detail. To do that,

several PPI networks with different sizes have been used as an input and the

program has been run with various metrics to understand their effects on the

running time well.

3. A new Hadoop cluster with 144 cores has been installed and tested by

submitting a simple run which uses a number of cores concurrently.

Furthermore, a tool for monitoring distributed computing cluster, which is

commonly used by the High Performance Computing Centers, has been

deployed and the performance provided by Hadoop has been shown from

different perspectives.

4. It is important for the HPC platform to utilize the dedicated resources

efficiently. How the dedicated resources have been facilitated has been

represented with the graphs. Furthermore, the optimal configuration for

Hadoop in order to gain the best performance has been shown.

5. For any PPI networks whose size are so large and/or complex that it is

impractical or impossible to solve them on a single commodity computer

because of limited computer memory, a new implementation on Hadoop has

been proposed for solving the problem with multiple compute resources.

1.4. Thesis Outline

This thesis is organized as follows: In Chapter 2, we provide the necessary

background knowledge to understand the problem domain and the solutions. In

Chapter 3, datasets are described and technical details of the implementation are

given. In Chapter 4, experimental results which demonstrate the performance of

Hadoop are shown. In Chapter 5, the thesis is concluded with summary and future

directions.

8

CHAPTER 2

BACKGROUND

The basic topics which help readers to understand well were covered in this chapter.

Firstly, the biological backgrounds of the study were introduced, and then the

algorithm which is applied to dataset was formulated and defined step by step.

Furthermore, the characteristics of the parallel and distributed computing with their

benefits were indicated. Finally, the fundamental services running on Hadoop

platform were introduced.

2.1. Proteomics and Interactome

Proteomics can be defined as a large-scale study of proteins especially in terms of

their structures and functions. Furthermore, whole set of molecular interactions in

cells is called as interactome and identifying proteins interactions is one goal of the

proteomics [7].

Molecular interactions can occur between molecules which belong to various

biochemical families, such as proteins, nucleic acids, lipids and carbonbydrates. The

interactome contain several thousands of binary interactions for a given species.

However, none of them is presently completed and their sizes are still condensable.

9

The most complete interactome produced until now is for Budding yeast with

170,000 gene interactions and 54 million two-gene comparisons [8].

Sequencing whole genomes for organisms is not sufficient to predict what functions

of proteins in the complex biological pathways of the cell are. After that, scientists

start to investigate how proteins interact with their neighborhood to get a clue about

their roles, and Proteomics emerged as a new field in Biology. Identifying the

interactions between proteins is an important task for annotating functions. It might

be useful to explore new biomarkers or to find new drugs for treatment of human

diseases.

2.2. Protein-protein Interaction Network

A protein cannot accomplish its biological function when it is completely isolated.

Rather, it usually interacts with other proteins in order to perform its function. A

protein generally interacts with much more than one other protein and the structure

of the interactions with the proteins can be abstracted by a graph which is called

protein-protein interaction (PPI) network. The network of interactions between

proteins is represented as an undirected graph G= (V, E) where V is the set of nodes

indicating the proteins and E is the set of the edges indicating the interactions. If u

and v are the proteins where u,v∈V and there exists an edge between u and v, the

corresponding proteins interact physically. Furthermore, the reliability of the edge

are shown as a weight w(u,v) where u and v are the interacting proteins. These are the

significant terms that define any undirected and weighted graph.

Most of the proteins in existing PPI networks are not associated with any biological

function. Figure 2.1 shows the rate of the proteins with unknown functions against to

whole proteins in the network for different species [R. Sharan et al]. As it is shown,

the species which have most biologically identified proteins are yeast (S.cerevisiae),

although about one-fourth of the proteins remain uncharacterized.

10

Figure 2.1 Fractions of the annotated proteins against to whole ones according to

GO annotations

It is widely accepted by the researchers that it is highly possible the proteins which

lie closer to one another in a PPI network have similar function. The following graph

in Figure 2.2 shows the correlation between network distance and functional distance

[Lord et al]. As the graph shows, the closer the proteins in the network are, the more

similarities are observed regarding to biological function.

Figure 2.2 Correlation between protein functional distance and network distance.

The proteins which are close to each other has more similarities than the proteins far

from to each other.

A subgraph of a PPI network is given in Figure 2.3 [Vazques et al]. Demonstration of

a simple method for predicting protein function is represented here as an example.

Proteins in gray boxes are unannotated, while the proteins in other boxes are

annotated and their associated functions are given in the brackets. The classified

functions with their random label ids are given below in Table 2.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Biological Process Molecular Function Cellular Component

GO Annotations

P
e

rc
e

n
ta

g
e

e

S.cerevisiae

C.elegans

D.melanogaster

A.thaliana

M.musculus

H.sapiens

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Si
m

ila
ri

ti
e

s

Network Distance

11

Table 2.1 Classified biological function with their label id

Label Biological Function Label Biological Function

1 cell growth 7 tRNA synthesis

2 budding, cell polarity and

filament formation

8 transcriptional control

3 pheromone response, mating-

type determination, sex-specific

proteins

9 other transcription activities

4 cell cycle checkpoint proteins 10 other pheromone response

activities

5 Cytokinesis 11 stress response

6 rRNA synthesis 12 nuclear organization

In order to predict one of the unannotated proteins such as YNL127W, simply, it is

required to have a look at the known functions which the surrounded annotated

proteins have and the shared functions by the neighbors (function 2 for protein

YNL127W in this example) can be basically assigned to the unannotated protein.

Figure 2.3 A subgraph of the protein interaction network of the yeast Saccharomyces

cerevisiae. The simple technique to assign a protein function to unannotated proteins

was demonstrated.

12

The following representation shows a larger set of interactions between the proteins

for yeast [Wagner et al].

Figure 2.4 Visualization of protein interaction network in Yeast. The small circles

show the proteins and the lines between the circles show interaction between these

proteins.

2.3. Functional Flow

The algorithm [6] is based on well known network flow which is mostly applied for

the purpose of graph cutting. Given a graph, network flow simulates a flow from

source nodes to the destination nodes over the edges. In a PPI network, the annotated

proteins behave as source nodes, while the unannotated proteins behave as

destination nodes. The flow is propagated by the source proteins to the destination

proteins throughout the edges like as conduit over the discrete of time. It is expected

that the close proteins to the annotated proteins have more similarities than the

proteins that are far from the source ones. Therefore, the effect of each annotated

protein on any unannotated ones depends on the distance separating these two

proteins and it is called as distance effect. Another constraint that the algorithm

defines is the capacity of the edge. It determines the maximum amount of flow which

can pass through the edge over time. Thus, it takes into account the network

connectivity. If any unannotated protein has more paths to the source, it means that

13

the protein will obtain more flow. Furthermore, it prevents any protein to propagate

too much flow to another protein in the network. After a fixed number of iterations,

each protein has a flow which comes from various annotated proteins that finds out

the functional score used to predict functions of unannotated proteins. If there is no

flow that enters the protein, the functional score will be zero and it will not be

associated with this function.

Reservoir defines the maximum amount of flow that a node can pass on to the

neighbors, while the capacity defines the amount of flow that an edge can pass on.

The annotated proteins have infinite reservoir that enables them to propagate flow to

the surrounded proteins as long as it requires. At each iteration, the reservoir amounts

of the proteins are updated. There will be always flows from proteins which have

more filled reservoir to the proteins which have less filled reservoirs (downhill).

For each protein u in the interaction network,
 value represents the amount of

reservoir for function a, at time 0 for protein u. The value of the reservoir is infinite,

in case protein u is one of the annotated proteins.

 , if u is annotated with a

0, otherwise
 (Equation 1)

 represents the amount of flow from the source protein v to destination protein u,

or from source protein u to destination protein v at time t for function a. At initial

step (t=0), there is no flow on the edges, therefore the g value is 0. The amount of

reservoir is updated for each iteration or time step by calculating the amount of flow

that both enters and leaves the nodes.

 (Equation 2)

At each iteration, the flow will proceed downhill and satisfy the capacity constraints.

It cannot exceed the maximum capacity of the edges which have been already

determined in the PPI network. Furthermore, the flow can be propagated only if the

amount of reservoir that the source protein has higher than the amount of reservoir

that the destination protein has.

14

 (Equation 3)

Finally, value is calculated in order to predict functions of unannotated

proteins. It defines the amount of flow that enters the protein u for function a over d

iteration steps.

 (Equation 4)

2.4. Parallel Computing

Software has been traditionally implemented in serial computations where a problem

is broken into a discrete series of instructions executed one after another on a single

computer with one CPU. Only one of these instructions can be executed during the

serial computation. On the other hand, parallel computing is to concurrently use

multiple computing resources, such as a single computer with multiple CPUs and/or

a number of computers connected by network, in order to solve a computational

problem. A problem is broken into discrete set of instructions which are executed

simultaneously on different numbers of CPUs. By executing multiple instructions at

any moment time, the computation problem is solved in less time with multiple

computing resources than with a single computer.

Beowulf, one of the projects begun at NASA, has opened the door for low-cost, high

performance computing cluster built from commodity PCs which are arranged to

work together to solve scientific problems with the use of Linux and Open Source

software. By this project, new standards and tools have been developed to make

parallel computing making easier for developers to build scalable and portable

parallel computer applications. After that, many research institutes, universities and

companies started to build their own computing clusters whose costs are kept low,

while computing performance is increased.

The prominent components of a computer cluster are multiple computers (nodes),

operating systems, fast network switches, network interface cards, fast

15

communication protocols and cluster middleware. All of them can be formed into a

single system the users of which gain great benefits.

Parallel computing is used for modeling difficult scientific and engineering problems

existing in the real world. Earth, environment, biotechnology, genetics, molecular

sciences, seismology, circuit design and microelectronics are some examples.

Furthermore, the applications, which require processing large amount of data, utilize

parallel computing. Data mining, oil exploration, web search engines, medical

imaging and diagnosis, financial and economic modeling are some examples of these

applications. As given examples by Barney et al [6] show, a high number of

disciplines are using parallel computing to solve large and complex scientific

problems.

2.4.1. Terminology of Parallel Computing

There are numbers of terms associated with parallel computing should be covered in

order to give a brief overview. The terms listed below are defined by Barney et al [6].

Task

 “A logically discrete section of computational work. A task is typically a

program or program-like set of instructions that is executed by a processor.”

Parallel Task

 “A task that can be executed by multiple processors safely (yields correct

results)”

Serial Execution

 “Execution of a program sequentially, one statement at a time. In the simplest

sense, this is what happens on a one processor machine. ”

Parallel Execution

 “Execution of a program by more than one task, with each task being able to

execute the same or different statement at the same moment in time.”

16

Symmetric Multi-Processor (SMP)

 “Hardware architecture where multiple processors share a single address

space and access to all resources; shared memory computing.”

Communications

 “Parallel tasks typically need to exchange data. There are several ways this

can be accomplished, such as through a shared memory bus or over a network.”

Synchronization

 “The coordination of parallel tasks in real time, very often associated with

communications. Synchronization usually involves waiting by at least one task, and

can therefore cause a parallel application's wall clock execution time to increase.”

Granularity

 “In parallel computing, granularity is a qualitative measure of the ratio of

computation to communication.

Coarse: relatively large amounts of computational work are done between

communication events

Fine: relatively small amounts of computational work are done between

communication events”

Parallel Overhead

 “The amount of time required to coordinate parallel tasks, as opposed to

doing useful work. Parallel overhead can include factors such as:

 Task start-up time

 Synchronizations

 Data communications

 Software overhead imposed by parallel compilers, libraries, tools,

operating system, etc.

 Task termination time”

17

Massively Parallel

 “Refers to the hardware that comprises a given parallel system - having many

processors. The meaning of "many" keeps increasing, but currently, the largest

parallel computers can be comprised of processors numbering in the hundreds of

thousands.”

Embarrassingly Parallel

 “Solving many similar, but independent tasks simultaneously; little to no

need for coordination between the tasks.”

Multi-core Processors

 “Multiple processors (cores) on a single chip.”

Cluster Computing

 “Use of a combination of commodity units (processors, networks or SMPs) to

build a parallel system.”

Supercomputing / High Performance Computing

 “Use of the world's fastest, largest machines to solve large problems.”

2.4.2. Benefits of the Parallel Computing

Saves time and money: By arranging a number of computers to work together will

shorten its time to completion. Furthermore, a cluster can be built from commodity

computers with open-source software cheaply.

Solves larger problems: It is not possible to solve complex scientific problems

which require large memory or processing huge amount of data on a single computer

practically. Therefore, parallel computing is an obligation for these kinds of

problems to solve.

Provides Concurrency: The parallel computing provides the concurrency by

running discrete set of instructions on multiple computing resources simultaneously.

The Access Grid (www.accessgrid.org) is a good example for a global collaboration

network where people from around the world meet and conduct work.

18

Uses Computing Resources Effectively: A set of idle computers within a network

can be used efficiently by assigning a number of tasks of any large problem.

Overcomes the Limitation of Serial Computing: The technology reached the

physical limits of the processors design as regards to transmission speed,

miniaturization and economic developments. The data cannot move faster than light

speed through hardware and a certain number of transistors can be placed on a chip

because of electronic limitations. Furthermore, it has become expensive to design a

single processor faster.

The technological improvements on the network connectivity making the

communication between nodes much faster and cheaper, as well as computers with

multi-processors show that parallelism will become more important in the future.

2.4.3. Memory Architecture

The memory can be categorized with three groups such as shared memory,

distributed memory and hybrid distributed-shared memory.

Shared Memory

A number of CPUs shared the same memory resources as global address space and

only one processor can reach the shared memory location at any moment time.

Therefore, synchronization is required for managing the tasks which are attempting

to read and write the same location. It is categorized into two groups in terms of

memory access time.

Uniform Memory Access (UMA): It is mostly found on SMP machines where

access time to memory by all CPUs is equal.

Non-Uniform Memory Access (NUMA): Linking two or more SMP computers can

be called as NUMA. A CPU can also access to memory which is located another

SMP, but the access time is slower. Therefore, all the processors can reach the

memory with various access times.

19

Figure 2.5 The representation of shared memory architecture (Uniform Memory

Access)

There are two main advantages of shared memory computers. First, it is easy for

developers to use memory efficiently. Second, data sharing among the tasks is fast

due to speed of memory access. However, the cost of building these kinds of

computers is high with increasing number of processors. Furthermore,

synchronization is vital part of the parallel application in order to use global memory

correctly.

Distributed Memory

The processors are operating independently, because of having their own memory. A

change on the memory does not effect the other memory. There is a link among the

inter-processor memory such as Ethernet, Infiniband for the tasks to share data by

using message passing.

Figure 2.6 The representation of distributed memory architecture

Extending the computer resources with commodity, off-the-shelf processors and

networking is less expensive and each processor can rapidly access their own

memory without any interference. On the other hand, the data communication

between CPUs is a challenge for the programmers.

20

Hybrid Distributed-Shared Memory

The processors on a SMP machine can access their memory as global. Furthermore,

they can access the memory on another SMP by moving data through network

communications established between the multiple SMPs. Thus, it takes both

advantage of the shared and the distributed memory architecture.

Figure 2.7 The representation of hybrid distributed-shared memory

2.4. Parallel and Distributed Computing with Hadoop

Hadoop is one of the parallel and distributed computing platforms which enables

users to process vast amount of data in a parallel way. Any scientific problem,

running on a single computer, could not be handled because of memory limitation or

taking terribly long time to be solved. However, it can be figured out by Hadoop

reliably and efficiently with using multiple computing resources simultaneously.

Hadoop is composed of two fundamental parts which are Hadoop Distributed File

System (HDFS) and MapReduce Engine. HDFS is responsible for managing

hundreds to thousands terabytes of data with high reliability, whereas MapReduce

Engine is responsible for resource allocation and job management with automatic

recovery of failure.

2.4.1. Hadoop Distributed File System (HDFS)

The file system consists of single NameNode, which records meta-data information

of files, and a variety of DataNodes which store blocks of data. The large amount of

data that has been split into many blocks, whose default size is 64MB, are replicated

on three different data nodes. If one of them goes DOWN, blocks of data, stored on

21

the down node, can be recovered with accessing the replicated data which has

already stored on the other data node. Thus, Hadoop platform can handle failure of

data nodes in the cluster. On the other hand, it could not run an application whenever

the name node, which is single, was down (single point of failure). Because of this

reason, it is important to take snapshots of the name node's directory information in

order to recover any failure without replaying the entire journal of file systems which

might take long time. Secondary node is responsible for this process on the cluster. It

regularly connects the name node and backs up to directory information. A system

admin can restart the name node by using checkpointed images which are produced

by the secondary node. Figure 2.8 shows the general view of a file system in

Hadoop.

Figure 2.8 The view of fundamental services running on the file system in Hadoop

It is a great advantage for assigning tasks to the nodes on which the processed data

has already stored, instead of copying data to where the tasks will be executed. It

prevents high usage of internal network which might cause congestion on data

transfer between data nodes. Furthermore, Hadoop takes internal network traffic into

account regarding to location of nodes during automatic recovery of failure process.

Initially, the node, which is located into same rack with the down one, is used to

recover the lost or corrupted file, due to the fact that speed of transfers between the

nodes on the same rack is much faster than the nodes on located on different racks.

The other node on different rack will be used, in case both of the nodes on the same

rack are down.

22

2.4.2. MapReduce Engine

There are two fundamental components of MapReduce Engine. The first one is a

single JobTracker which manages the discrete of tasks on multiple computing

resources in a cluster. The second one is a number of TaskTrackers which are running

on each computing node in order to execute its own tasks. JobTracker is a vital part

of the cluster, because the cluster goes down, when it fails. However, Hadoop can

handle a variety of TaskTrackers failure with scheduling the failed work to the other

TaskTracker. If it is a rack aware system, the JobTracker prefers the TaskTracker,

located in the same rack, to execute failed tasks in order to reduce network traffic

inside a cluster.

Any application, running on Hadoop platform, contains at least three pieces; a map

function which takes a set of data and generates key/value pairs during the execution,

a reduce function which obtains the generated key/value pairs and reduces the list of

pairs in terms of their key and a main function which is responsible for job control

and input/output file.

Developers need to make their code running on Hadoop platform, and then submit

applications to the cluster. Firstly, JobTracker obtains information of input and

output directories which is provided by HDFS. The number of tasks which will be

executed on TaskTracker is determined by JobTracker with using knowledge about

blocks of file. After that the hadoop application as well as its related part of file

blocks is copied to every computing node. Finally, the tasks are started to process

their blocks of file and reports status of the progress to the JobTracker. Figure 2.9

shows a work flow on Hadoop.

23

Figure 2.9 A demonstration the work flow of a process on Hadoop

Data communication between computing nodes (internal network traffic) affects the

performance of parallel computing in a cluster. In this regard, Hadoop platform gives

importance to keep amount of storage which will be moved low in order to gain high

computing performance. To do that, it moves the processing to the storage, instead of

moving storage to the processing.

2.5. Hadoop Computing Cluster and Architecture Employed in this

Thesis Work

In any computing cluster, it is important for worker nodes to have same architecture

and operating system, as well as middleware. Therefore, the Hadoop cluster has been

installed on 18 hosts with 144 cores which have the same operating system (Scienific

Linux 4.7 - Beryllium) and hadoop 0.20-2, which is the latest version as a

middleware. Scientific Linux is one of the Redhat releases that is widely installed on

the sites all over the world. Nearly all the computing centers under WLCG

(Worldwide LHC Computing Grid) use Scientific Linux as an operating system.

WLCG is an e-infrastructure for grid computing that provides a great number of

computing clusters with various sizes in order to satisfy the scientists’ requirements.

Each worker node has Quad-Core AMD Opteron Processor - 2356 with 2.3Ghz and

16 GB memory. This is a kind of multi-processors products where a number of

processors (cores) are placed on a single chip. The hosts are connected to each other

with ethernet technology. A node is assigned to computing element which runs the

24

NameNode and JobTracker services for managing the tasks and distributed data over

the cluster. This is called master, while the other nodes are called slaves which run

the DataNode and TaskTracker service to manage their individual tasks.

2.6. Monitoring Tool for HPC Cluster - Ganglia

Ganglia is just one of the widely used distributed monitoring systems for high-

performance computing, such as cluster and grid computing. In order to evaluate the

performance of the Hadoop cluster well, Ganglia is beneficial to monitor the CPU

usage of the all worker nodes on the cluster. It gives a web-based result which is a

user friendly environment with useful graphs to show historical usage of the

resources. Ganglia has been deployed on a variety of the HPC sites all over the

world. It is also available for the Hadoop cluster.

TR-03-METU is one of the computing centers which belongs to TR-Grid (High

Performance and Grid Computing Center) e-infrastructure. It supports the CERN

experiment as Tier-2 center which has a lot of jobs submitted daily by high energy

physics users for their monte-carlo production. As a result, nearly all the resources

are fully utilized by the physics community. Therefore, TR-03-METU is selected to

describe the facilities provided by Ganglia. The following snapshots represent the

web-based result for the resource usage for a week at METU.

Figure 2.10 The average resource usage for a week at Tier-2 center. The number of

running jobs, the total CPU and memory load and internal network traffic is

represented in real time by Ganglia.

25

Ganglia shows the number of worker nodes with their status and the total number of

cores in real time. According to this result, there are 77 worker nodes available and

all of them are UP. Thus, the available core number is totally 308, because each

worker nodes has a processor with four cores. The average load of the site is also

given by Ganglia periodically. The average load for last 15, 5 and 1 minutes is 99%,

100% and 100%. The graph shows past usage during the last week with various

metrics.

The first one is related to number of running jobs on the time zone. The red line

shows the number of maximum concurrent running processes, whereas the green line

shows the number of the UP hosts. The green one is straight which indicates that no

problem occurs on the cluster, because no hosts were DOWN during this particular

week. The blue wavy line shows the number of simultaneously running jobs over the

time. As it is shown, the cluster is fully populated with the submitted jobs on the last

days of the week, whereas there are many idle nodes at the beginning of the week.

The second graph titled TR-03-METU CPU last week shows the CPU load by the

users. The CPU usage by the system processes is very low according to CPU usage

by the users. Furthermore, the wavy line is very similar to first graph, since the CPU

load mostly depends on the running of jobs on the cluster.

The third graph titled TR-03-METU Memory last week shows the status of the

memory during the previous week. It is very important for the system administrators

to understand the requirements of the memory that the worker nodes should have.

The characteristics of the submitted jobs to the cluster might be very different from

each others; therefore, their memory requirements are various as well. If the memory

is not sufficient to run jobs on the worker nodes, the swapped memory will be used,

which causes a sharp performance loss. Therefore, the metric of memory swapped

should be investigated and there should be memory update, if the usage of the

swapped area is high. Furthermore, the graph gives the information about cache and

buffered memory usage as well as sharing memory usage. The red line shows the

total amount of the memory the cluster has.

The final graph titled TR-03-METU Network last week shows the internal network

traffic inside the cluster. Tier-2 center has a central storage system that has a great

26

amount of disk space where all the worker nodes can reach. It is a kind of shared file

system over the nodes in the cluster. The jobs submitted by physicists analyze about

1.5 GB file for MC production; therefore, it requires to copy file from storage

element to worker node, which causes the internal network traffic. Any congestion or

problem on the transfer can be detected. As it is shown, the higher the number of

running processes, the higher the internal network traffic are.

Figure 2.11 The physical views of the worker nodes. The properties of the

computing nodes as well as the current usage of the resources such as CPU and hard

disk were presented.

The historical usage of the worker node is also available on the Ganglia with fully

view mode. However, the above figure shows the worker nodes at physical view.

Firstly, it gives the total number of CPUs and available memory, as well as total

amount of hard disk on the cluster. The usage of the disk on the node is an important

metric, since the jobs fail when it is full. Therefore, Ganglia shows the node whose

disk usage is the highest over the other nodes. Furthermore, it gives information

about the worker nodes such as CPU architecture, the number of cores and memory.

The most important part is the load value, because the hosts are expected to have a

maximum of 4.0, since it has Intel architecture with 4 cores. If the load value is much

higher than the number of cores, there is a misconfiguration on the site and the job

could not be well partitioned over the cluster. It is a good metric to set optimum

number of maps for each node in this study.

27

CHAPTER 3

MATERIALS AND METHODS

In this chapter, the implementation of the application utilizing the high computing

performance provided by Hadoop was described in detail. Furthermore, the results of

the application provided by Hadoop user interface were analyzed and the

performance of Hadoop were monitored by Ganglia which is an external tool that

provides information about historical usage of the dedicated resources.

3.1. Data Sets

There are a variety of protein-protein interaction networks for different species.

These networks have high noise which means that some interactions between

proteins might not really exist. Furthermore, the networks are not complete meaning

that a lot of true interactions may not be present in the network. This situation

prevents an accurate function prediction for unannotated proteins. Scientists use

various techniques to estimate the reliability of the linkage between proteins.

Investigating the amino acid sequence of proteins is just one of used methods.

Furthermore, computational techniques such as data mining have also been used to

determine the confidence of an interaction. This technique simply looks at a number

of shared neighbors and assigns a value depending on the shared neighbors of both

proteins [Chen et al. 2007; Pandey et al. 2007]. Another example of these techniques

28

is to combine various sets of interactions obtained by experimental techniques, such

as the two-hybrid method, the protein chip method and the tandem affinity

purification method. As a result, a network associated with confidence value for each

interaction is generated and it is called a weighted protein-protein interaction

network.

3.1.1 Weighted Protein-Protein Interaction Network

In this study, a weighted PPI network where the weight values on the edges are

initialized with 1.0 is used. The used PPI network was compiled by DIP [26]

database on 4 Nov 2007. The total number of proteins is 9224 and the number of

interactions between these proteins is 17491. The weight value has a significant

impact on the prediction results, but there is no effect on the computing performance.

Thus, all the weights on the edges are assumed to be 1.0. However, it can take any

single precision number. Instead of investigating the biological accuracy of

prediction results, this study focuses on the computational performance provided by

the Hadoop platform, because a well known algorithm (Functional Flow) [Nabieva et

al. 2005] has already been applied by previous researchers, which provides accurate

predictions for unannotated proteins. Furthermore, the number of proteins annotated

is 1281 according to the annotation data that was obtained for yeast from

geneontology.org. The annotated proteins mean that their biological functions are

already known.

The binary interactions between proteins as well as their weight information are

stored in a text based file where each line corresponds to a linkage, while annotated

proteins and their associated function IDs are stored in another text based file where

each line defines a biological function and lists proteins that have this biological

function. The contents of the input files are shown in the following tables (Table

3.1.1.1 and Table 3.1.1.2).

29

Table 3.1.1.1 Format of the text-based file representing all interactions

Protein A ID Protein B ID

YMR056C YBR217W

YMR056C YJL124C

Table 3.1.1.2 Format of the text-based file representing a list of known functions

Biological

Function ID

Protein A ID Protein B ID Protein C ID Protein D ID …

51219 YNL229C YDR130C

32184 YHR079C YLL001W YER148W YDR054C

8017 YDR285W

3.1.2 Gene Ontology

It is very important to unify the representation of genes and gene product attributes

across all the species in order to find any functionally equivalent terms easily. For

example, if one database describes a set of molecules as a translation, whereas

another describes it as a protein synthesis, it will be difficult for people and

computers to search molecules associated with the similar functional term. Thus,

Gene Ontology (GO) becomes a bioinformatics initiative providing consistent

descriptions of gene products in different databases.

The first aim of the Gene Ontology collaboration group is to maintain and further

develop a generic vocabulary of gene and gene product attributes. The second aim is

to annotate genes, and assimilate and disseminate annotation data. Another aim is to

provide a number of useful tools using the dataset provided by GO.

In this thesis, the file of gene annotations with biological functions has been prepared

by using the recent yeast GO annotation file. We use the “Molecular Function”

subset of the three main GO hierarchies: “Molecular Function”, “Subcellular

Component”, and “Biological Process”.

30

3.2 User Interface of Hadoop for evaluating performance

There are two ways to understand the status of the jobs submitted to the Hadoop

cluster. The first is to track the output which is produced by the Hadoop user

interface on the console. It is a text based interaction system where users can manage

their jobs. Another way to check the job status is a web based environment which is

more user friendly. After a job has been submitted to the Hadoop cluster, both text

and web based user interfaces basically show the current status of the job, the

percentage of the task competition, total time for applications to be completed,

information about the number of maps and reduces setting by the job configuration

and the amount of data read and written by the HDFS. Figure 3.3.1 shows the

information provided by the Hadoop user interface for an example job.

Figure 3.3.1 The web based user interface of Hadoop gives information about the

status of submitted jobs. Therefore, a user can monitor its own job.

The information about completed jobs can be classified under three main groups,

such as Job Counters, File System Counters and Map-Reduce Framework. The

number of reduce tasks as well as map tasks is important for evaluating the

performance of the Hadoop cluster. The map and reduce number can be arranged

according to the number of cores and the processor architecture the worker nodes

have. Increasing the number of tasks means that the benefits of computing resources

will be increased; consequently, the CPU running time for applications is expected to

be decreased. This kind of information can be found under Job Counters. The other

group is File System Counter which gives the information about bytes of file read

and written by HDFS. Another group is Map-Reduce Framework, where given

numbers might be a clue for determining the complexity of the calculations. It shows

the number of records that map input and output operations have. The number of

31

records will be high, in case large amount of computation is required. Figure 3.3.2

shows an example web based user interface output.

Figure 3.3.2 The web based user interface of Hadoop can provide information about

the cluster configuration and application utilization

3.3 Debugging Hadoop Applications

As is the case with other computing platforms, debug operations on the

implementation are not easy on the Hadoop computing platform either. There are a

variety of maps that work concurrently and it is not possible to take a control over

these individual operations. However, Hadoop provides developers to run their

application on a single map. It means that a developer can run their implementation

on any cluster by using only a map on a single core, and debug it. The standard

output of the application can be reached by the console that gives developers a great

convenience and control on their own application. For this purpose, the following

parameter should be set in the job configuration class. In this study, therefore, the

debug mode of the application was implemented as well.

 conf.set("mapred.job.tracker", "local");

32

3.4 Overview

This section presents the overview of the algorithm used in this thesis. The major

steps of the algorithm are as follows:

1. Transform input files provided by protein interaction database and gene

ontology to a new text-based format that computers can process in a parallel

way.

2. Generate a hash table which holds all interactions and distribute it to all

computing nodes.

3. Start a number of processes concurrently to perform their own operations

and generate key-value pairs where each one shows an individual flow by

considering well defined formulas in the functional flow algorithm. Each

process considers only one biological function and propagates a variety of

flows assigned for that function.

4. Accumulate all the propagated flows and combine them in order to

calculate the total amount of flows that enter an individual protein for each

biological function in the network.

5. Compare the total amount of flows coming from each biological functions

and annotate proteins with a function which has the highest value.

3.5 Pre-processing operations for Hadoop to propagate flows

individually

A PPI network is represented as a graph which is composed of nodes and edges. For

the parallel implementation, we use two input files for the set of interactions and

functional annotations, as it has been stated in the previous sections. We preprocess

one of the input files for the parallel implementation (details given below).

In the functional flow algorithm, each flow which is propagated from different

annotated (source) proteins can be processed independently. It means that any protein

u which is associated with function a and any protein v which is associated with

33

function b propagate their flows to the surrounding proteins connected individually.

Different flows do not interact; as a result they can be processed separately. Each line

of the input file is processed concurrently in a Hadoop computing platform.

Therefore, all annotated proteins are categorized with respect to their function IDs.

Unfortunately, the protein interaction database cannot provide the annotated proteins

in that format. Therefore, it is required to process the input file in order to transform

a new format that Hadoop can process in a parallel way. The preprocess operation is

easily implemented. Therefore, the computing cost can be ignored compared to the

total computation cost.

Figure 3.6.1 is a very simple demonstration of a PPI network. The annotated proteins

are surrounded with red circles and numbers on the edges indicate weight values. The

letters in the circle show the IDs of proteins and f1 and f2 values represent the

function ID of the known proteins.

Figure 3.5.1 A simple example of a weighted protein-protein interaction network.

The red circles show the annotated proteins, while the black circles show the

unannotated proteins. The line shows the interaction with the weight value.

The text based representation of the graph is given below. The first one stores the set

of interactions with weight values, while the second one stores annotated proteins

with biological function ids. After processing, it has been transformed into a new

format which Hadoop can process independently.

allInteraction.txt annotatedProteins.txt
a b 0.3 f1 a

b c 0.2 f2 e

c d 0.3 f1 d

c e 0.5

b g 0.5

34

3.6 Generating a hash table for a PPI network

In this implementation, two jobs have been submitted sequentially. The first one is a

simple job which runs on a host and a single core is enough for it in order to

complete its own task quickly. The task of this job is to generate a hash table which

holds all the interactions as well as their weight information. It takes the file which

contains the PPI network as an edge list as input and maps it on the memory with the

appropriate hash table in an efficient way. It is also possible to complete this task by

using many numbers of cores, but this will not speed application up, since the task is

very simple.

In the map class, each edge of the PPI network has been processed one by one and

generates key & value pairs for each line with weight information. Then, the reduce

class collects all the key value pairs and generates the PPI network like as

demonstrated in the following example.

Figure 3.6.2 The demonstration of generating a hash table by using a file stores all

the interactions between proteins in a PPI Network

The PPI network generated by the first job is important, because it stores all the

interactions as well as their weight values. Whenever there is a flow propagated, this

PPI network is used because the properties of linkages between proteins are defined

here. The generated file which stores PPI network will be the input of the second job.

3.7 Mapping a hash table to all memories on the computing nodes

Each edge in the input PPI network is processed by the second job separately.

Therefore, the number of maps should be defined in accordance with the number of

edges. For each function, there will be flow propagated to surrounding proteins by

35

looking at the PPI network information. Thus, the PPI network should be published

all over the computing nodes in the Hadoop cluster and mapped on their memory in

order to increase computing efficiency. To distribute any files all over the computing

nodes, the cache is used as follows:

DistributedCache.addCacheFile(new Path("/user/emrah/hash-output/part-

00000").toUri(), conf2);

DistributedCache.createSymlink(conf2);

 hdfs://tekir10.ulakbim.gov.tr:8020//user/emrah/hash-output/part-00000

In the functional flow algorithm, the total weight is mainly used to find out the

amount of flow propagated. Hence, if the PPI network also stores the total weight

information, this should increase the computing performance. During the map

operation on the memory, the total weight information is also added to the hash table.

As a result, it is not required to compute total weight information again and again for

calculating all the amount of flow.

The amount of reservoir should be set as an infinite value, when the functions of the

proteins already known are called source proteins. The annotated proteins can be

seen as having infinite value of reservoir during all the updates. According to the

formula of functional flow, the amount of reservoir of the annotated proteins will be

decreased proportionally with respect to the amount of flow leaving from the source

protein.

3.8 Propagation Flows in Parallel

The reservoir table holds the amount of reservoir that proteins have. There will be

always a flow whenever the interacted protein pairs have reservoirs that are not the

same. A flow will be propagated from a protein with higher amount of reservoir to a

protein with less amount of reservoir. To detect whether there will be flow or not, the

reservoir table is used for all the iterations.

The iteration number determines the number of time steps that the flow will be

36

propagated. When this number is set to a high value, it sharply increases the time the

application takes to be completed. In order to understand Hadoop performance well,

this number was set as high value in this study, although this may not be biologically

meaningful. In the Functional Flow paper, this value has been set to 6, which is

enough for a biological investigation.

For the initial step, the reservoir table is initialized with infinite values, because only

annotated proteins exist in the hash table. After this, the flow is started to propagate

until the time step reaches the iteration number the user has set. At each time step,

the reservoir table is updated and the flow is propagated properly. The flows are

collected into a result hash table within each map as follows:

<protein ID><function ID><amount of flow>

When the destination protein has a flow at any previous time step and there is a new

flow, the value of the protein in the result hash table increases by the amount of the

new flow appropriately. Thus, there is also a reduce operation inside a map in order

to increase the computing performance.

Figure 3.6.4 is a demonstration of functional flow for function F1. The time step t

shows the current iteration number, Ra shows the amount of reservoir that protein a

has. D => C, F1: 0.3 means that there is a flow which is propagated from protein D

to protein C for function F1 and the amount of flow value is 0.3 The reservoir of

annotated proteins are 6000 and this has not changed. Since the portion of change is

too small, it can be ignored.

37

Figure 3.6.4 Propagating flows by regarding to previously given PPI network

example. At each time step, there are a number of flows propagated for defined

biological function id.

3.9 Accumulating all flows and making prediction

All the flows that each protein has from various functions are collected into a result

hash table inside a map operation. However, there are also other flows collected

inside other maps and all of them must be combined in order to predict function of

the unannotated proteins. In order to collect all results produced by a number of

maps, the reduce operation has been applied by Hadoop. With the help of Hadoop,

the reduce operations are also done in a parallel way to increase the performance.

Table 3.6.5 shows the final results produced by the application on Hadoop for the

given example. F1, 1.4 shows that the protein B has 1.4 unit flows by function

F1 in total. As the table indicates, protein B has more flow from function F1 than

function F2. As a result, it will be annotated with function F1.

38

Table 3.6.5 Annotation of proteins with a biological function

Protein ID Biological Function Amount of Flow Prediction of protein function

B F1 1.4

B F2 0.4 B will be associated with function F1

C F1 1.4 C will be associated with function F2

C F2 1.5

D F2 0.6 D will be associated with function F2

E F1 1.0 E will be associated with function F1

G F1 1.0 G will be associated with function F1

Finally, all the unannotated proteins will be predicted to have one of the functions

according to total amount of flow that protein has.

39

CHAPTER 4

RESULTS

In this chapter, we present the experimental results of our method applied on the

yeast interactome whose properties are indicated in Chapter 3.

4.1 The Computational Complexity of the Problem

In this part of the study, some of the metrics for the application remain constant,

while the others are changed in order to investigate the nature of the problem and the

performance of the implementation as well as the utilizing the dedicated resources by

Hadoop platform.

The application requires three parameters for assigning functions to the unannotated

proteins in the network. The first parameter is a file which stores the information

about the interactions between the proteins with the confidence weights. The second

parameter is a file which stores the list of various biologically known functions for a

given organism. The final one is a value which determines the number of time steps

that the functional flow will be applied.

40

The complexity of the problem mostly depends on the number of iterations (time

steps). It also depends on the amount of the interactions and the set of biologically

known functions. However, they do not have a great impact on the running time as

much as the number of iterations has. When the time steps is set to a high value, the

running time required to annotate the proteins will be increased sharply, In order to

clarify this statement well, the number of iterations has been changed, whereas the

number of the interactions and the known functions remain the same (the input files

are kept constant for all trials) and we analyze the value of Reduce Input Records

provided by the Hadoop user interface. This record indicates the number of key &

value pairs which holds an individual flow. High value shows that a great number of

flows have been produced. As a result, the large amount of computation is required to

apply the algorithm that is an indicator of the complexity of a problem.

Figure 4.1.1 demonstrates the effect of various iteration numbers on the number of

flows. There is an increment on the flow numbers sharply, until the hop number is set

to 14. Then, the increment of the flow numbers is nearly smooth, due to the fact that

the input files are not sufficient for growing computational complexity of the

problem, regardless of the high iteration numbers.

Figure 4.1.1 The change on the number of flows according to iteration numbers. The

flow number shows the complexity of the problem and iteration number indicates the

time step.

The time requiring the application to complete its task is continuously increased by

the number of iterations, as it has been presented by Figure 4.1.2. Initially, there is no

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

2 4 6 8 10 12 14 16 18 20

Iteration Numbers

Flow Numbers

41

great distinction on the increment of the running time, when the iterations number is

set to a low value because the time for initializing of the jobs is relatively high

according to the total running time. On the other hand, when the iterations number is

set to a high value, the running time of the application is too high that the time for

initializing the tasks can be ignored. The experimental results show that the number

of iterations has a great effect on the flows number and the running time.

Figure 4.1.2 The change on the running time of the application according to the

iteration numbers. As the iteration number increases, the time for application to be

completed is increased as well.

4.2 The Evaluation of the Hadoop Performance by User Interface

 Hadoop is one of the high performance computing (HPC) platforms where the

running time of the applications are expected to be decreased in accordance with the

number of cores installed into cluster is increased. Furthermore, it is expected to

utilize all the dedicated resources fairly and precisely. Thus, each core should have a

single map task at least. For example, a worker node with 8 cores should have 8 map

tasks. In this part of the study, the Hadoop performance has been investigated with

the same application under various number of the map tasks. Figure 4.2.1 shows the

running time depending on the number of map tasks running on the cluster where

each worker nodes has 8 cores and 16 GB shared memory.

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14

Time (Sec)

Iteration Numbers

42

Figure 4.2.1 The performance of the Hadoop cluster. The number of map tasks

indicates the amount of computing power dedicated to solve the problem. As the

computing resource is increased, the running time of the application is decreased.

A nice improvement on the performance of the application has been observed, when

the number of the map tasks is arranged to smaller numbers. The observations show

that the running time decreases sharply, when the number of cores is increased.

However, any remarkable effect on the performance could not be observed, when the

number of the map tasks is arranged to greater numbers. Actually, this is expected

because the initialization time will be increased with the number of the map tasks.

For example, when the number of the map tasks is set to 48, there will be at least 6

different worker nodes running together on the cluster. They are connected to each

other with Ethernet technology. Therefore, initializing and utilizing all of these

worker nodes takes significant amount of time comparing to CPU wall time. As a

result, the performance of the Hadoop has been dropped.

Hadoop allows the system administrators to set map task number more than the core

number the worker nodes have. The performance has been evaluated by setting map

task number twice the core number. Furthermore, both numbers are set to the same

value and the performance has been evaluated as well. Figure 4.2.2 compares the

result of these operations and shows that Hadoop provides better performance under

all the experiments with the different core numbers, if the map task number has been

set to twice the core number.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60

Time (Sec)

The number of map tasks

43

Figure 4.2.2 The performance effect of the number of map tasks on the number of

cores on the Hadoop Cluster. Hadoop provides better performance under all the

experiments, when the map task number has been set to twice the core number.

It is not a good choice to set the number of map tasks more than twice the core

numbers for productions of AMD processors. It causes the worker nodes to be fully

loaded and performance lost on the cluster. Table 4.2.1 shows the changes on the

performance of the implementation according to the different number of maps,

whereas the core number remains constant. There is a performance lost on the

cluster, when the number of map tasks is set to three times the number of cores. As a

result, it is important to set number of map tasks optimally by taking into account the

number of cores.

Table 4.2.1 The relation of map tasks and core numbers on the performance

Number Of Cores Number of Maps Time Iteration Numbers

48 48 7 min 53 sec 17491

48 96 6 min 34 sec 17491

48 144 8 min 2 sec 17491

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Map Number (2*Cores)

Map Number (1* Cores)

Time (Sec)

44

4.3 The Evaluation of Hadoop Performance by Ganglia

Ganglia is a good monitoring tool to evaluate the performance of Hadoop. In the

previous section, the performance of the Hadoop was examined by the running time

of the applications over the various numbers of maps and cores. It is mostly based on

the information provided by the Hadoop user interface. However, it is not sufficient

to understand how well the resources can be utilized. It would neither give any

information about the performance of any specific worker nodes in the Hadoop

cluster nor about the specific cores in a node. Therefore, it is difficult to detect

whether the problem is well partitioned over the clusters and all the cores as well as

whether the worker nodes are well utilized by the platform. As a result, Ganglia is

used to conduct these detailed analyses.

A number of jobs have been submitted to a cluster formed by setting it to the various

numbers of cores and map tasks. Furthermore, all of the running jobs on the cluster

have been monitored by Ganglia. Figure 4.3.1 shows one of the results generated by

the Ganglia for the jobs running on 64 map tasks over 32 cores. This job has been

utilized from four hosts simultaneously (32 cores and 64 GB memory) where the

number of map tasks was set to twice the number of cores all the worker nodes have

in total.

Figure 4.3.1 The load of worker nodes during the running job. It shows that the

dedicated computing nodes are utilized fairly and precisely.

The host names of the dedicated worker nodes are tekir10, tekir11, tekir12 and

tekir13 where each one runs 16 map tasks in order to perform a large amount of

computation in a parallel way. These hosts are marked with a red color which

indicates that they are fully loaded. Since the number of map tasks was set to twice

the number of cores the worker node has, the loads of these worker nodes were high,

as it was expected. Furthermore, Ganglia represents all of the dedicated worker

nodes with red colors. This means that Hadoop is capable of utilizing all of the

45

dedicated resources fairly and precisely. If a part of the dedicated hosts were fully

loaded while the other group of hosts was idle, there would be considerable trouble

affecting the performance. On the other hand, tekir4, tekir5, tekir6 and tekir9 are the

host names represented by the graph. They are in the idle state during the calculation

because they are not dedicated to solve this problem by Hadoop. Therefore, they are

marked with a blue color which indicates that their loads are very close to zero.

The initialization time is an important issue in the field of high performance

computing because it dramatically affects the performance of computing platforms.

At the beginning of the application run time, some of the hosts might be idle because

these hosts could not be utilized well during the initialization operation. When the

initialization operation takes a long time, the running time of the application

increases and the dedicated resources cannot be utilized fairly. Ganglia is a very

useful tool in order to detect initialization time as well as historical load of the

worker nodes.

Figure 4.3.2 presents the CPU load for the dedicated hosts during the running time.

The number of map tasks and cores the worker node has were set to the same values.

Therefore, the loads of the hosts are not very high. The job was submitted at 17.00

and the graph was obtained as soon as the computation was completed (about 20

minutes). As the figure shows, the Hadoop platform is successful for keeping

initialization time short and for utilizing the hosts well because no idle hosts are

available during the running time. The other results of the several job submissions

with different number of maps and cores show similar results as well.

Figure 4.3.2 Historical CPU load of the dedicated hosts. The initialization and

completion time are successfully kept short and the hosts are utilized equally.

46

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this chapter, the results of the study were interpreted by presenting their

underlying meaning and overall significance. Furthermore, it comprises of the

recommendations for future researches in the same area.

5.1 Conclusion

Determining protein functions is one of the most important problems of the post-

genomic era. The most classical methods for this task predict function from sequence

homology by using programs such as FASTA and BLAST. However, a growing

interest in biology has shifted from a study of a single protein or a small complex to

an entire proteome generated via the large-scale and high-throughput techniques.

Exploiting function information from a whole network of proteins brings about the

necessity of high performance computing on a robust computing infrastructure.

Functional Flow is one of the well known methods for predicting protein functions

and it requires a large amount of computations according to the size of interaction

network and the iteration number for each given protein function. In this thesis, we

devised a new algorithm on a parallel and distributed computing platform in order to

apply this method to the Hadoop platform. Thus, a new application that enables

researchers to study the large proteome generated for the complex organisms has

47

been implemented in an efficient way. It provides a convenient environment where

the researchers can set their scientific parameters properly and can quickly obtain the

results of a number of trials quickly.

A protein-protein interaction network can be abstracted as an undirected graph. It is

important to know the performance of the Hadoop platform on processing complex

graphs because Hadoop is mainly developed for the kind of search engines and text

mining applications. In this thesis, we evaluate the application performance by

running various numbers of jobs and using a specific tool designed for a distributed

computing platform. Utilization of the dedicated computing resources, initialization

time, communication overheads and synchronizations were investigated and we

present that Hadoop is convenient for bioinformatics problems as well.

For the algorithm implemented in this thesis, partitioning, generating and

accumulating flows, and prediction are all written as Map/Reduce jobs. This helps

scaling the computations horizontally with the cluster size. We show that our method

provides an increasing performance as the number of dedicated resources is

increased when the network size is large.

5.2. Future Works

The installed cluster has been formed with a number of computers having 8 cores

(AMD CPU's) and the Ethernet technology to enable the computers to communicate

with each other. However, the technology on the computing as well as network

communication has rapidly evolved. Therefore, the application can be run on a new

cluster having the most recent technology. Now, a single computer might have 48

cores and Infiniband technology enables data communication between the computers

with 40Gbps speed (QDR). The new generation of the technology might constitute a

Hadoop cluster where the application can efficiently be run on a very large

proteomics dataset. Especially, the IB technology will dramatically increase the

performance of the application because the transfer speed is very important during

mapping and reducing operations.

48

In a single computer, it is not possible to handle all the flows propagated for each of

the defined function because of the computer memory restriction. However, a

scientist can handle all of these flows and make an operation in a Hadoop computing

properly. Thus, they can improve the formula of Functional Flow algorithm. For

example, a person can define a new statement in the formula that can control the total

amount of flow on the edge. The amount of flows for various known functions which

are propagated through the same edge can be arranged according to confidence value

of this edge in order to increase the prediction accuracy. Thereby, we might achieve

not only a remarkable increase on the computing performance but also more accurate

protein function predictions.

The application was one of the embarrassingly parallel implementations in that the

problem can be partitioned into a number of small parts and these parts can be

processed independently. Hadoop is not only a single computing platform where

these kinds of scientific problems can be solved. Grid computing might also be an

alternative for the scientists in case they need to run the application on a great

number of large and complex datasets which requires thousands of computers. A grid

infrastructure is composed of a various number of computing clusters geographically

distributed over the world and it can be used for this purpose.

49

REFERENCES

[1] G. Pandey, M.Steinbach, R. Gupta, T. Garg and V. Kumar. Association Analysis-

based Transformations for Protein Interaction Networks: A Function Prediction Case

Study. In KDD ’07: Proceedings of the 13th ACM SIGKDD international, 2007

[2] Schwikowski,B., Uetz,P. and Fields,S. (2000) A network of protein–protein

interactions in yeast. Nat. Biotechnol., 18, 1257–1261.

[3] Hishigaki,H., Nakai,K., Ono,T., Tanigami,A. and Takagi,T. (2001) Assessment

of prediction accuracy of protein function from protein–protein interaction data.

Yeast, 18, 523–531.

[4] Vazquez,A., Flammini,A., Maritan,A. and Vespignani,A. (2003) Global protein

function prediction from protein–protein interaction networks. Nat. Biotechnol., 21,

697–700.

[5] Karaoz,U., Murali,T.M., Letovsky,S., Zheng,Y., Ding,C., Cantor,C.R. and

Kasif,S. (2004) Whole-genome annotation by using evidence integration in

functional-linkage networks. Proc. Natl Acad. Sci. USA, 101, 2888–2893.

[6] Nabieva E., et al. Whole-proteome prediction of protein function via graph-

theoretic analysis of interaction maps. Bioinformatics 2005;21 Suppl. 1:i302-i310.

[7] Lawrence Livermore National Laboratory. Introduction to Parallel

Computing. https://computing.llnl.gov/tutorials/parallel_comp/, last visited on

10/11/2009

[8] Anderson NL, Anderson NG (1998). "Proteome and proteomics: new

technologies, new concepts, and new words". Electrophoresis 19 (11): 1853–61.

doi:10.1002/elps.1150191103. PMID 9740045.

[9] Costanzo M, Baryshnikova A, Bellay J, et al. (2010-01-22). "The genetic

landscape of a cell". Science 327 (5964): 425–431.

[10] Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein

function. Molecular Systems Biology 3: 1–13

[11] Lord PW, Stevens RD, Brass A, Goble CA (2003) Investigating semantic

similarity measures across the Gene Ontology: the relationship between sequence

and annotation. Bioinformatics 19: 1275–1283

https://computing.llnl.gov/tutorials/parallel_comp/

50

[12] Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein

function prediction from protein–protein interaction networks. Nat Biotechnol 21:

697–70

[13] Wagner A (2001) The yeast protein interaction network evolves rapidly and

contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292

[14] A. S. Foundation. Hadoop core project. http://hadoop.apache.org/, last visited on

20/10/2010

[15] IBM Developer Work. Distributed computing with Linux and

Hadoop. http://www.ibm.com/developerworks/linux/library/l-hadoop/, last visited on

22/10/2010

[16] Javier De Las Rivas, Celia Fontanillo. Protein–Protein Interactions Essentials:

Key Concepts to Building and Analyzing Interactome Networks. PLos

Computational Biology. Vol 6:Issue 6 e1000807, 2010.

[17] A Distributed Graph Mining Framework Based On Mapreduce, Master’s thesis,

Computer Engineering Department, Middle East Technical University, 2010.

[18] Cormen,T.H., Leiserson,C.E. and Rivest,R.L. (1990) Introduction to

Algorithms. MIT Press, Cambridge, MA.

[19] Mewes,H.W., Frishman,D., Guldener,U., Mannhaupt,G., Mayer,K.,Mokrejs,M.,

Morgenstern,B., Münsterkötter,M., Rudd,S. and Weil,B. (2002) MIPS: a database for

genomes and protein sequences. Nucleic Acids Res., 30, 31–34.

[20] Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,Cherry,J.M.,

Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al. (2000) Gene Ontology: tool

for the unification of biology. The Gene Ontology Consortium. N t. Genet., 25, 25–

29.

[21] Running Hadoop On Ubuntu Linux (Multi-Node Cluster). http://www.michael-

noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/, last visited

on 22/10/2010

[22] Yang Q, Lonardi S (2007) A parallel edge-betweenness clustering tool for

protein-protein interaction networks.International Journal of Data Mining and

Bioinformatics, 1(3):241-247.

 [23] Newman, M. and Girvan, M. (2004) Finding and evaluating community

structure in networks, Physical Review E, Vol. 69, pp.026113 (15 pages).

[24] David A. Bader, Kamesh Madduri (2008) A graph-theoretic analysis of the

human protein-interaction network using multicore parallel algorithms, Parallel

Computing 34 627–639

http://hadoop.apache.org/
http://www.ibm.com/developerworks/linux/library/l-hadoop/

51

[25] M.L. Massie, B.N.Chun, and D.E.Culler (2004) The ganglia distributed

monitoring system: design, implementation, and experience, Parallel Computing, 30,

817-840

[26] L. Salwinski et al.(2004) The database of interacting proteins: 2004 update,

Nucleic Acids Research, 32 (Database issue):D449-51

