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Protein-protein interaction networks provide important information about what the 

biological function of proteins whose roles are unknown might be in a cell. These 

interaction networks were analyzed by a variety of approaches by running them on a 

single computer and the roles of the proteins identified were used to predict the 

function of the proteins unidentified. The functional flow is an approach that takes 

the network connectivity, distance effect, topology of the network with local and 

global views into account. With these advantages, that the functional flow produces 

more accurate results on the prediction of protein functions was presented by the 

previos conducted researches. However, the application implemented for this 
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approach could not be practically applied on the large and complex network  

produced for the complex species because of memory limitation. The purpose of this 

thesis is to provide a new application be implemented on the high computing 

performance where the application can be scaled on the large data sets. Therefore, 

Hadoop, one of the open source map/reduce environments, was installed on 18 hosts  

each of which has eight cores. 

Method; the first map/reduce job distributes the protein interaction network as a 

format which allows parallel distributed computing to all the worker nodes, the other 

map/reduce job generates flows for each known protein function and the role of the 

proteins unidentified are predicted by accumulating all of these generated flows. It 

has been observed in the experiments we performed that the application requiring 

high performance computing can be decomposed into worker nodes efficiently and 

the application can provide better performance as the resources increase. 

 

Keywords: protein-protein interactions, functional flow, parallel and distributed 

computing, map/reduce, Hadoop 
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Protein-protein etkileşim ağları, işlevleri bilinmeyen proteinlerin bir hücrede 

biyolojik fonksiyonlarının ne olabileceği ile ilgili önemli bilgiler sağlarlar. Bu 

etkileşim ağları, çeşitli yaklaşımların tek bir bilgisayar üzerinde koşturulması ile 

analiz edilmiş ve işlevleri bilinen proteinlerden bilinmeyenler tahmin edilmeye 

çalışılmıştır. Fonksiyonel akış; ağ bağlantısallığını, uzaklık etkisini, yerel ve global 

ağ topolojisini hesaba alma avantajına sahip bir yaklaşımdır. Bu avantajlarıyla 

protein fonksiyonlarının tahminlenmesinde daha başarılı sonuçlar ürettiği bundan 

önceki çalışmalarda gösterilmiştir. Ancak, bu yaklaşım için gerçekleştirilen 
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uygulama, gelişmiş canlılar için üretilmekte olan karmaşık ve büyük etkileşim ağları 

üzerinde bellek yetersizliği nedeniyle pratikte uygulanamamaktadır. Bu tez 

çalışmasındaki amacımız, Fonksiyonel akış yaklaşımının yüksek başarımlı 

hesaplama kümesi üzerinde gerçekleştireceğimiz yeni uygulama ile büyük veri setleri 

üzerinde ölçeklenebilirliğini sağlamaktır. Bu nedenle her biri sekiz çekirdekten 

oluşan 18 makine üzerine açık kaynak kodlu bir eşle/indirge ortamı olan Hadoop 

kurulmuştur.  

Yöntem; ilk eşle/indirge işiyle protein etkileşim ağı, paralel dağıtık hesaplamaya izin 

verecek formatta tüm hesaplama uçlarına dağıtılır, bir başka eşle/indirge işiyle 

fonksiyonu bilinen her bir protein için akış üretilir ve üretilen tüm bu akışlar 

biriktirilerek bilinmeyen herbir protein için fonksiyon tahminlemesinde bulunulur. 

Yaptığımız deneylerde yüksek hesaplama gerektiren uygulamanın herbir hesaplama 

ucuna etkili bir şekilde dağıtıldığı ve kaynakların artırılmasıyla uygulamanın yüksek 

başarımla çalıştığı gözlemlenmiştir. 

 

Anahtar Kelimeler: protein-protein etkileşimleri, fonksiyonel akış, paralel ve dağıtık 

hesaplama, eşle/indirge, Hadoop 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Firstly, the definition and motivation of the problem was given. By investigating the 

related works, the weakness and powerful points of the previously conducted 

researches were examined and what our contributions are indicated clearly in this 

chapter. 

 

1.1 Problem Definition and Motivation 

A protein cannot accomplish its biological function when it is completely isolated. 

Rather, it usually interacts with other proteins in order to perform vital part of the 

biological function such as cell growth, rRNA and tRNA synthesis, transcriptional 

control and cell polarity. The structure of the interactions with the proteins can be 

abstracted by a graph which is called the protein-protein interaction (PPI) network.  

There is a variety of protein interaction networks which are obtained by various 

experimental techniques. They are generated for different species; as a result the 

number of proteins and interaction between the proteins are various. However, these 

datasets have high noise which means the linkage of the protein shown by the 
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network may not really exist biologically. Furthermore, most of the proteins in many 

PPI networks are not associated with any biological functions. The species which has 

most biologically identified proteins is the baker’s yeast (Saccharomyces cerevisiae) 

although about one-fourth of the proteins remain uncharacterized. The biological 

techniques are not sufficient to associate all proteins with a biological function in a 

cell, therefore a number of computational techniques have been applied to 

understand proteins whose tasks are not known well [1,2,3,4,5]. However, noisy and 

incomplete PPI datasets makes the problem of function prediction using PPI 

networks a challenge.  

There are many methods which are applied to predict function from a protein 

interaction network, and these grouped into categories based on neighborhood, 

global optimization, clustering and association by Pandey et al [1]. Functional flow 

by Nabieva et al [6] is one of these methods that takes the network connectivity, 

distance effect, topology of the network with local and global views into account, 

leading to significant advantages for more accurate function prediction. 

The Functional flow is based on a well known network flow where the annotated 

proteins behave as source nodes, while the unannotated ones behave as destination 

nodes and the flow is propagated by the source proteins to the destination proteins 

throughout the edges like a conduit over the discrete of time. The amount of flow 

that enters the destination protein determines the biological function of the 

unannotated proteins. The computational time required for annotating proteins will 

be increased sharply, when the time steps and the number of the interactions or 

biologically known functions increase, which is a typical scenario especially for 

genome-scale networks. Therefore, the prediction of all the unannotated proteins in 

genome-scale protein interaction networks requires very long time when it is running 

on a single computer. 

Hadoop is an open source project that enables users to run their application on a 

reliable, scalable and distributed computing environment with thousand of nodes and 

petabytes of data. It was inspired by Google's Map Reduce and Google File System 

(GFS) papers and used by many organizations to run large distributed computations. 

It is a kind of map & reduce programming model that rapidly processes vast amount 

of data in a parallel way on large clusters of compute nodes. 
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There are a few methods to predict protein function in a parallel way by utilizing the 

high performance computing technology. These methods are based on the protein 

sequence alignment that studies on the primary structure of a single protein or a 

small complex. In this thesis, we implemented a novel application on a number of 

powerful computers which are arranged by running together for protein function 

prediction by using interactomes. The functional flow was applied on the dataset and 

focused on the computational performance provided by the Hadoop platform instead 

of investigating the prediction results. The reason for this is that we applied a well 

known algorithm (Functional Flow) by previous researchers which provides accurate 

predictions for unannotated proteins. In order to evaluate the performance of Hadoop 

cluster, we installed it on 18 hosts with 144 cores which have the same operating 

system (Scienific Linux 4.7 - Beryllium) and middleware (hadoop_0.20-2). We run 

our parallel implementation of Functional Flow with various numbers of cores on the 

cluster. By examining the results with the distributed monitoring system for high-

performance computing, it has been shown that significant performance has been 

gained. We also showed that all the resources installed on the cluster have been 

utilized by Hadoop platform very well. We examined that the Hadoop platform can 

facilitate bioinformatics studies which require high performance computation. 

 

1.2. Related Work 

Previously conducted researches which are related to our study were grouped by the 

computational techniques to predict protein function and Hadoop as a high 

performance computing platform. 

 

1.2.1. Computational Techniques for Protein Function Prediction 

There are several approaches that attempt to predict protein function from a protein 

interaction network. Majority method proposed by Schwikowski et al.[2], which is 

one of the neighborhood-based approaches, looks at the neighboring interactions and 

takes the three most frequent annotations. This is a basic method which can be 

applied easily. However, it is not good at prediction when there are quite a lot of 

unannotated neighbors, for the majority method only promotes the immediate 



4 
 

neighbors within any sub-network. Hishigaki et al.[3] extends the Majority rule by 

looking at all proteins within an area bordered by a certain radius. It annotates 

proteins with a function which is mostly found in the set that includes the frequencies 

of all the function inside a particular area. It takes advantage of the underlying 

network structure as well as the interactions beyond the immediate linkage; however, 

it is insufficient to promote any aspect of network topology. While it considers the 

number of functional annotations, it does not consider the linkage within the local 

neighborhood. Vazquez et al.[4] and Karaoz et al.[5] proposed a new method that 

exploits the global topological structure of the interaction network. It is a kind of 

well-known multiway k-cut algorithm that tries to cluster the interaction network by 

taking dense regions in the network into account. Then, proteins are labeled by one 

of the functions within the module. The size of the module might be large and a few 

numbers of annotated proteins might exist, and as a result, all the proteins might be 

labeled as one of these functions. This might cause incorrect function predictions. 

Nabieva et al. [6] proposed a method based on a well-known network flow, which is 

mostly applied for the graph cutting problem. There will be a flow from source nodes 

to the destination nodes over the edges in the PPI graph. It promotes both the 

underlying topology of the graph and multiple edge-disjoint interaction paths 

between two proteins. Furthermore, it takes the network topology into account. Thus, 

an algorithm has been proposed to overcome the weakness of the previous methods. 

From these methods, numerous innovative methods can be obtained to predict 

functions from protein interaction networks in computer science. It is also expected 

to adapt new techniques in computer science, such as social network mining and web 

search. 

 

1.2.2. Hadoop Map/Reduce Programming for High Performance Computing 

Hadoop, which is a kind of open source framework written in Java, is mainly for 

large-scale distributed batch processing infrastructure which runs on commodity 

computers [14]. The main advantage of Hadoop is its ability to scale to hundreds or 

thousands of nodes in a cluster. Furthermore, it can handle vast amount of data 

efficiently over a set of computers.  
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Hadoop Distributed File System (HDFS) splits large amounts of data into many 

smaller parts which are distributed separately across multiple nodes. It is comprised 

of a name node, which stores all metadata such as file name, permissions and the 

distribution information, and data nodes, which store the part of the data called as 

chunks. The name node coordinates the distribution of files, as well as monitors the 

possible failures which might occur on data nodes. 

Hadoop is mostly appropriate for the applications with large data processing tasks 

such as searching and indexing, for it can distribute chunks of data to nodes in the 

cluster reliably and cheaply, and computation is done where data is stored. 

A Hadoop-cluster might consist of thousands of nodes; therefore, it is highly 

probable that various troubles might occur. As a result, the framework should have a 

high degree of fault tolerance, detect the trouble automatically and fix it as soon as 

possible. 

MapReduce is a commonly used paradigm which is available in many programming 

languages. Map basically applies a function to a set of elements and returns a set of 

results, whereas Reduce basically applies a function to a set of elements by 

considering the current result and the next element in the set. A map/reduce job is 

usually monitored by one JobTracker and a TaskTracker per data node. 

Many organizations such as Yahoo, Amazon, Rackspace, Facebook and Wikia are 

using Hadoop for searching assist and data mining, searching index, session analytics 

and log processing. 

 

1.2.3. Parallel Approaches for analyzing large-scale interactome 

Due to fundamental physical limitations and power constraints on a single computer, 

the use of multicore algorithmic techniques is required to analyze large-scale protein-

interaction networks in an efficient way. Although there are a variety of 

computational techniques to predict protein functions, none of them is implemented 

by utilizing the high performance computing technology.  
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There are a few computational methods to analyze large-scale interactomes for 

clustering them into sub-networks or inferring the evolution of proteins instead of 

directly predicting protein function. The first method proposed by Yang et al [22] 

analyzed the size of large interactome in order to cluster it in a parallel way. Their 

method is based on the edge betweenness clustering algorithm whose remarkable 

performance in discovering clustering structures in several networks was already 

showed by Girvan et al [23]. The clustering tool was written in C++ under Linux 

with the requirement of LAM software and Boost Graph Library and they achieved 

almost linear speed-up for up to 32 processors. However, clustering the interactome 

for protein function prediction is not suitable because it might cause incorrect 

function prediction, when the size of a sub-network is large and the sub-network has 

a few annotated proteins. The other method proposed by Bader et al [24] is the 

analysis of the degree–betweenness centrality correlation in the human protein 

interaction network to elucidate essentiality and evolutionary age of a protein. They 

designed a portable parallel implementation by using thread programming. The 

thread computing allows application to utilize all the processors on multi-core 

computers; however, utilizing more than a single computer is not possible. 

Therefore, the complex problem cannot scale on the number of computers running 

together to solve large problem. 

In this study, we implemented a novel application on a number of powerful 

computers which are running together for protein function prediction. By using the 

Hadoop platform, the successful  implementation of functional flow can be deployed 

on hundreds of computers without any change on the application. 

 

1.3. Contributions 

Our contributions in this thesis are: 

1. The method of the functional flow for protein function prediction has been 

implemented by Java on a single computer. It is not possible to run the same 

implementation on Hadoop platform in a parallel way, therefore the method 

has been implemented again by taking MapReduce paradigm into account.  



7 
 

2. The complexity of the problem has been investigated in detail. To do that, 

several PPI networks with different sizes have been used as an input and the 

program has been run with various metrics to understand their effects on the 

running time well. 

3. A new Hadoop cluster with 144 cores has been installed and tested by 

submitting a simple run which uses a number of cores concurrently. 

Furthermore, a tool for monitoring distributed computing cluster, which is 

commonly used by the High Performance Computing Centers, has been 

deployed and the performance provided by Hadoop has been shown from 

different perspectives. 

4. It is important for the HPC platform to utilize the dedicated resources 

efficiently. How the dedicated resources have been facilitated has been 

represented with the graphs. Furthermore, the optimal configuration for 

Hadoop in order to gain the best performance has been shown. 

5. For any PPI networks whose size are so large and/or complex that it is 

impractical or impossible to solve them on a single commodity computer 

because of limited computer memory, a new implementation on Hadoop has 

been proposed for solving the problem with multiple compute resources.  

 

1.4. Thesis Outline  

This thesis is organized as follows: In Chapter 2, we provide the necessary 

background knowledge to understand the problem domain and the solutions. In 

Chapter 3, datasets are described and technical details of the implementation are 

given. In Chapter 4, experimental results which demonstrate the performance of 

Hadoop are shown. In Chapter 5, the thesis is concluded with summary and future 

directions. 
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CHAPTER 2 

 

 

BACKGROUND 

 

 

 

The basic topics which help readers to understand well were covered in this chapter. 

Firstly, the biological backgrounds of the study were introduced, and then the 

algorithm which is applied to dataset was formulated and defined step by step. 

Furthermore, the characteristics of the parallel and distributed computing with their 

benefits were indicated. Finally, the fundamental services running on Hadoop 

platform were introduced. 

 

2.1. Proteomics and Interactome 

Proteomics can be defined as a large-scale study of proteins especially in terms of 

their structures and functions. Furthermore, whole set of molecular interactions in 

cells is called as interactome and identifying proteins interactions is one goal of the 

proteomics [7].  

Molecular interactions can occur between molecules which belong to various 

biochemical families, such as proteins, nucleic acids, lipids and carbonbydrates. The 

interactome contain several thousands of binary interactions for a given species. 

However, none of them is presently completed and their sizes are still condensable. 
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The most complete interactome produced until now is for Budding yeast with 

170,000 gene interactions and 54 million two-gene comparisons [8]. 

Sequencing whole genomes for organisms is not sufficient to predict what functions 

of proteins in the complex biological pathways of the cell are. After that, scientists 

start to investigate how proteins interact with their neighborhood to get a clue about 

their roles, and Proteomics emerged as a new field in Biology. Identifying the 

interactions between proteins is an important task for annotating functions. It might 

be useful to explore new biomarkers or to find new drugs for treatment of human 

diseases. 

 

2.2. Protein-protein Interaction Network 

A protein cannot accomplish its biological function when it is completely isolated. 

Rather, it usually interacts with other proteins in order to perform its function. A 

protein generally interacts with much more than one other protein and the structure 

of the interactions with the proteins can be abstracted by a graph which is called 

protein-protein interaction (PPI) network. The network of interactions between 

proteins is represented as an undirected graph G= (V, E) where V is the set of nodes 

indicating the proteins and E is the set of the edges indicating the interactions. If u 

and v are the proteins where u,v∈V and there exists an edge between u and v, the 

corresponding proteins interact physically. Furthermore, the reliability of the edge 

are shown as a weight w(u,v) where u and v are the interacting proteins. These are the 

significant terms that define any undirected and weighted graph. 

Most of the proteins in existing PPI networks are not associated with any biological 

function. Figure 2.1 shows the rate of the proteins with unknown functions against to 

whole proteins in the network for different species [R. Sharan et al]. As it is shown, 

the species which have most biologically identified proteins are yeast (S.cerevisiae), 

although about one-fourth of the proteins remain uncharacterized. 
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Figure 2.1 Fractions of the annotated proteins against to whole ones according to 

GO annotations 

It is widely accepted by the researchers that it is highly possible the proteins which 

lie closer to one another in a PPI network have similar function. The following graph 

in Figure 2.2 shows the correlation between network distance and functional distance 

[Lord et al]. As the graph shows, the closer the proteins in the network are, the more 

similarities are observed regarding to biological function. 

 

Figure 2.2 Correlation between protein functional distance and network distance. 

The proteins which are close to each other has more similarities than the proteins far 

from to each other. 

A subgraph of a PPI network is given in Figure 2.3 [Vazques et al]. Demonstration of 

a simple method for predicting protein function is represented here as an example. 

Proteins in gray boxes are unannotated, while the proteins in other boxes are 

annotated and their associated functions are given in the brackets. The classified 

functions with their random label ids are given below in Table 2.1. 
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Table 2.1 Classified biological function with their label id  

Label  Biological Function Label Biological Function 

1 cell growth 7 tRNA synthesis 

2 budding, cell polarity and 

filament formation 

8 transcriptional control 

3 pheromone response, mating-

type determination, sex-specific 

proteins 

9 other transcription activities 

4 cell cycle checkpoint proteins 10 other pheromone response 

activities 

5 Cytokinesis 11 stress response 

6 rRNA synthesis 12 nuclear organization 

In order to predict one of the unannotated proteins such as YNL127W, simply, it is 

required to have a look at the known functions which the surrounded annotated 

proteins have and the shared functions by the neighbors (function 2 for protein 

YNL127W in this example) can be basically assigned to the unannotated protein. 

 

Figure 2.3 A subgraph of the protein interaction network of the yeast Saccharomyces 

cerevisiae. The simple technique to assign a protein function to unannotated proteins 

was demonstrated.  
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The following representation shows a larger set of interactions between the proteins 

for yeast [Wagner et al]. 

 
Figure 2.4 Visualization of protein interaction network in Yeast. The small circles 

show the proteins and the lines between the circles show interaction between these 

proteins. 

 

2.3. Functional Flow 

The algorithm [6] is based on well known network flow which is mostly applied for 

the purpose of graph cutting. Given a graph, network flow simulates a flow from 

source nodes to the destination nodes over the edges. In a PPI network, the annotated 

proteins behave as source nodes, while the unannotated proteins behave as 

destination nodes. The flow is propagated by the source proteins to the destination 

proteins throughout the edges like as conduit over the discrete of time. It is expected 

that the close proteins to the annotated proteins have more similarities than the 

proteins that are far from the source ones. Therefore, the effect of each annotated 

protein on any unannotated ones depends on the distance separating these two 

proteins and it is called as distance effect. Another constraint that the algorithm 

defines is the capacity of the edge. It determines the maximum amount of flow which 

can pass through the edge over time. Thus, it takes into account the network 

connectivity. If any unannotated protein has more paths to the source, it means that 
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the protein will obtain more flow. Furthermore, it prevents any protein to propagate 

too much flow to another protein in the network. After a fixed number of iterations, 

each protein has a flow which comes from various annotated proteins that finds out 

the functional score used to predict functions of unannotated proteins. If there is no 

flow that enters the protein, the functional score will be zero and it will not be 

associated with this function.      

Reservoir defines the maximum amount of flow that a node can pass on to the 

neighbors, while the capacity defines the amount of flow that an edge can pass on. 

The annotated proteins have infinite reservoir that enables them to propagate flow to 

the surrounded proteins as long as it requires. At each iteration, the reservoir amounts 

of the proteins are updated. There will be always flows from proteins which have 

more filled reservoir to the proteins which have less filled reservoirs (downhill). 

For each protein u in the interaction network,   
    value represents the amount of 

reservoir for function a, at time 0 for protein u. The value of the reservoir is infinite, 

in case protein u is one of the annotated proteins. 

  
      

 , if u is annotated with a

0, otherwise
    (Equation 1) 

  
  represents the amount of flow from the source protein v to destination protein u, 

or from source protein u to destination protein v at time t for function a. At initial 

step (t=0), there is no flow on the edges, therefore the g value is 0. The amount of 

reservoir is updated for each iteration or time step by calculating the amount of flow 

that both enters and leaves the nodes. 

  
         

      
         

   
         

         (Equation 2) 

At each iteration, the flow will proceed downhill and satisfy the capacity constraints. 

It cannot exceed the maximum capacity of the edges which have been already 

determined in the PPI network.  Furthermore, the flow can be propagated only if the 

amount of reservoir that the source protein has higher than the amount of reservoir 

that the destination protein has. 
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              (Equation 3) 

Finally,       value is calculated in order to predict functions of unannotated 

proteins. It defines the amount of flow that enters the protein u for function a over d 

iteration steps. 

       
   

 

 
         

  
        (Equation 4) 

 

2.4. Parallel Computing 

Software has been traditionally implemented in serial computations where a problem 

is broken into a discrete series of instructions executed one after another on a single 

computer with one CPU. Only one of these instructions can be executed during the 

serial computation. On the other hand, parallel computing is to concurrently use 

multiple computing resources, such as a single computer with multiple CPUs and/or 

a number of computers connected by network, in order to solve a computational 

problem. A problem is broken into discrete set of instructions which are executed 

simultaneously on different numbers of CPUs. By executing multiple instructions at 

any moment time, the computation problem is solved in less time with multiple 

computing resources than with a single computer. 

Beowulf, one of the projects begun at NASA, has opened the door for low-cost, high 

performance computing cluster built from commodity PCs  which are arranged to 

work together to solve scientific problems with the use of Linux and Open Source 

software. By this project, new standards and tools have been developed to make 

parallel computing making easier for developers to build scalable and portable 

parallel computer applications. After that, many research institutes, universities and 

companies started to build their own computing clusters whose costs are kept low, 

while computing performance is increased. 

The prominent components of a computer cluster are multiple computers (nodes), 

operating systems, fast network switches, network interface cards, fast 
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communication protocols and cluster middleware. All of them can be formed into a 

single system the users of which gain great benefits.  

Parallel computing is used for modeling difficult scientific and engineering problems 

existing in the real world. Earth, environment, biotechnology, genetics, molecular 

sciences, seismology, circuit design and microelectronics are some examples. 

Furthermore, the applications, which require processing large amount of data, utilize 

parallel computing. Data mining, oil exploration, web search engines, medical 

imaging and diagnosis, financial and economic modeling are some examples of these 

applications. As given examples by Barney et al [6] show, a high number of 

disciplines are using parallel computing to solve large and complex scientific 

problems. 

 

2.4.1. Terminology of Parallel Computing 

There are numbers of terms associated with parallel computing should be covered in 

order to give a brief overview. The terms listed below are defined by Barney et al [6]. 

Task 

 “A logically discrete section of computational work. A task is typically a 

program or program-like set of instructions that is executed by a processor.” 

Parallel Task 

 “A task that can be executed by multiple processors safely (yields correct 

results)” 

 

Serial Execution 

 “Execution of a program sequentially, one statement at a time. In the simplest 

sense, this is what happens on a one processor machine. ” 

 

Parallel Execution 

 “Execution of a program by more than one task, with each task being able to 

execute the same or different statement at the same moment in time.” 
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Symmetric Multi-Processor (SMP) 

 “Hardware architecture where multiple processors share a single address 

space and access to all resources; shared memory computing.” 

 

Communications 

 “Parallel tasks typically need to exchange data. There are several ways this 

can be accomplished, such as through a shared memory bus or over a network.” 

 

Synchronization 

 “The coordination of parallel tasks in real time, very often associated with 

communications.  Synchronization usually involves waiting by at least one task, and 

can therefore cause a parallel application's wall clock execution time to increase.” 

 

Granularity 

 “In parallel computing, granularity is a qualitative measure of the ratio of 

computation to communication. 

Coarse: relatively large amounts of computational work are done between 

communication events 

Fine: relatively small amounts of computational work are done between 

communication events” 

 

Parallel Overhead 

 “The amount of time required to coordinate parallel tasks, as opposed to 

doing useful work. Parallel overhead can include factors such as: 

 Task start-up time 

 Synchronizations 

 Data communications 

 Software overhead imposed by parallel compilers, libraries, tools, 

operating system, etc. 

 Task termination time” 
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Massively Parallel 

 “Refers to the hardware that comprises a given parallel system - having many 

processors. The meaning of "many" keeps increasing, but currently, the largest 

parallel computers can be comprised of processors numbering in the hundreds of 

thousands.” 

 

Embarrassingly Parallel 

 “Solving many similar, but independent tasks simultaneously; little to no 

need for coordination between the tasks.” 

 

Multi-core Processors 

 “Multiple processors (cores) on a single chip.” 

 

Cluster Computing 

 “Use of a combination of commodity units (processors, networks or SMPs) to 

build a parallel system.” 

 

Supercomputing / High Performance Computing 

 “Use of the world's fastest, largest machines to solve large problems.” 

 

2.4.2. Benefits of the Parallel Computing 

Saves time and money: By arranging a number of computers to work together will 

shorten its time to completion. Furthermore, a cluster can be built from commodity 

computers with open-source software cheaply. 

Solves larger problems: It is not possible to solve complex scientific problems 

which require large memory or processing huge amount of data on a single computer 

practically. Therefore, parallel computing is an obligation for these kinds of 

problems to solve. 

Provides Concurrency: The parallel computing provides the concurrency by 

running discrete set of instructions on multiple computing resources simultaneously. 

The Access Grid (www.accessgrid.org) is a good example for a global collaboration 

network where people from around the world meet and conduct work. 
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Uses Computing Resources Effectively: A set of idle computers within a network 

can be used efficiently by assigning a number of tasks of any large problem. 

Overcomes the Limitation of Serial Computing: The technology reached the 

physical limits of the processors design as regards to transmission speed, 

miniaturization and economic developments. The data cannot move faster than light 

speed through hardware and a certain number of transistors can be placed on a chip 

because of electronic limitations. Furthermore, it has become expensive to design a 

single processor faster.  

The technological improvements on the network connectivity making the 

communication between nodes much faster and cheaper, as well as computers with 

multi-processors show that parallelism will become more important in the future.  

 

2.4.3. Memory Architecture 

The memory can be categorized with three groups such as shared memory, 

distributed memory and hybrid distributed-shared memory. 

 

Shared Memory 

A number of CPUs shared the same memory resources as global address space and 

only one processor can reach the shared memory location at any moment time. 

Therefore, synchronization is required for managing the tasks which are attempting 

to read and write the same location. It is categorized into two groups in terms of 

memory access time.  

Uniform Memory Access (UMA): It is mostly found on SMP machines where 

access time to memory by all CPUs is equal.  

Non-Uniform Memory Access (NUMA): Linking two or more SMP computers can 

be called as NUMA. A CPU can also access to memory which is located another 

SMP, but the access time is slower. Therefore, all the processors can reach the 

memory with various access times. 
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Figure 2.5 The representation of shared memory architecture (Uniform Memory 

Access) 

There are two main advantages of shared memory computers. First, it is easy for 

developers to use memory efficiently. Second, data sharing among the tasks is fast 

due to speed of memory access. However, the cost of building these kinds of 

computers is high with increasing number of processors. Furthermore, 

synchronization is vital part of the parallel application in order to use global memory 

correctly. 

 

Distributed Memory 

The processors are operating independently, because of having their own memory. A 

change on the memory does not effect the other memory. There is a link among the 

inter-processor memory such as Ethernet, Infiniband for the tasks to share data by 

using message passing. 

 

 

 

 

Figure 2.6 The representation of distributed memory architecture 

Extending the computer resources with commodity, off-the-shelf processors and 

networking is less expensive and each processor can rapidly access their own 

memory without any interference. On the other hand, the data communication 

between CPUs is a challenge for the programmers. 
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Hybrid Distributed-Shared Memory 

The processors on a SMP machine can access their memory as global. Furthermore, 

they can access the memory on another SMP by moving data through network 

communications established between the multiple SMPs. Thus, it takes both 

advantage of the shared and the distributed memory architecture. 

 

 

 

Figure 2.7 The representation of hybrid distributed-shared memory 

 

2.4. Parallel and Distributed Computing with Hadoop 

Hadoop is one of the parallel and distributed computing platforms which enables 

users to process vast amount of data in a parallel way. Any scientific problem, 

running on a single computer, could not be handled because of memory limitation or 

taking terribly long time to be solved. However, it can be figured out by Hadoop 

reliably and efficiently with using multiple computing resources simultaneously. 

Hadoop is composed of two fundamental parts which are Hadoop Distributed File 

System (HDFS) and MapReduce Engine. HDFS is responsible for managing 

hundreds to thousands terabytes of data with high reliability, whereas MapReduce 

Engine is responsible for resource allocation and job management with automatic 

recovery of failure.  

 

2.4.1. Hadoop Distributed File System (HDFS) 

The file system consists of single NameNode, which records meta-data information 

of files, and a variety of DataNodes which store blocks of data. The large amount of 

data that has been split into many blocks, whose default size is 64MB, are replicated 

on three different data nodes. If one of them goes DOWN, blocks of data, stored on 
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the down node, can be recovered with accessing the replicated data which has 

already stored on the other data node. Thus, Hadoop platform can handle failure of 

data nodes in the cluster. On the other hand, it could not run an application whenever 

the name node, which is single, was down (single point of failure). Because of this 

reason, it is important to take snapshots of the name node's directory information in 

order to recover any failure without replaying the entire journal of file systems which 

might take long time. Secondary node is responsible for this process on the cluster. It 

regularly connects the name node and backs up to directory information. A system 

admin can restart the name node by using checkpointed images which are produced 

by the secondary node. Figure 2.8 shows the general view of a file system in 

Hadoop. 

 

Figure 2.8 The view of fundamental services running on the file system in Hadoop 

It is a great advantage for assigning tasks to the nodes on which the processed data 

has already stored, instead of copying data to where the tasks will be executed. It 

prevents high usage of internal network which might cause congestion on data 

transfer between data nodes. Furthermore, Hadoop takes internal network traffic into 

account regarding to location of nodes during automatic recovery of failure process. 

Initially, the node, which is located into same rack with the down one, is used to 

recover the lost or corrupted file, due to the fact that speed of transfers between the 

nodes on the same rack is much faster than the nodes on located on different racks. 

The other node on different rack will be used, in case both of the nodes on the same 

rack are down. 
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2.4.2. MapReduce Engine 

There are two fundamental components of MapReduce Engine. The first one is a 

single JobTracker which manages the discrete of tasks on multiple computing 

resources in a cluster. The second one is a number of TaskTrackers which are running 

on each computing node in order to execute its own tasks. JobTracker is a vital part 

of the cluster, because the cluster goes down, when it fails. However, Hadoop can 

handle a variety of TaskTrackers failure with scheduling the failed work to the other 

TaskTracker.  If it is a rack aware system, the JobTracker prefers the TaskTracker, 

located in the same rack, to execute failed tasks in order to reduce network traffic 

inside a cluster.  

Any application, running on Hadoop platform, contains at least three pieces; a map 

function which takes a set of data and generates key/value pairs during the execution, 

a reduce function which obtains the generated key/value pairs and reduces the list of 

pairs in terms of their key and a main function which is responsible for job control 

and input/output file. 

Developers need to make their code running on Hadoop platform, and then submit 

applications to the cluster. Firstly, JobTracker obtains information of input and 

output directories which is provided by HDFS. The number of tasks which will be 

executed on TaskTracker is determined by JobTracker with using knowledge about 

blocks of file. After that the hadoop application as well as its related part of file 

blocks is copied to every computing node. Finally, the tasks are started to process 

their blocks of file and reports status of the progress to the JobTracker. Figure 2.9 

shows a work flow on Hadoop.   
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Figure 2.9 A demonstration the work flow of a process on Hadoop 

Data communication between computing nodes (internal network traffic) affects the 

performance of parallel computing in a cluster. In this regard, Hadoop platform gives 

importance to keep amount of storage which will be moved low in order to gain high 

computing performance. To do that, it moves the processing to the storage, instead of 

moving storage to the processing. 

 

2.5. Hadoop Computing Cluster and Architecture Employed in this 

Thesis Work 

In any computing cluster, it is important for worker nodes to have same architecture 

and operating system, as well as middleware. Therefore, the Hadoop cluster has been 

installed on 18 hosts with 144 cores which have the same operating system (Scienific 

Linux 4.7 - Beryllium) and hadoop 0.20-2, which is the latest version as a 

middleware. Scientific Linux is one of the Redhat releases that is widely installed on 

the sites all over the world. Nearly all the computing centers under WLCG 

(Worldwide LHC Computing Grid) use Scientific Linux as an operating system. 

WLCG is an e-infrastructure for grid computing that provides a great number of 

computing clusters with various sizes in order to satisfy the scientists’ requirements. 

Each worker node has Quad-Core AMD Opteron Processor - 2356 with 2.3Ghz and 

16 GB memory. This is a kind of multi-processors products where a number of 

processors (cores) are placed on a single chip. The hosts are connected to each other 

with ethernet technology. A node is assigned to computing element which runs the 
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NameNode and JobTracker services for managing the tasks and distributed data over 

the cluster. This is called master, while the other nodes are called slaves which run 

the DataNode and TaskTracker service to manage their individual tasks. 

 

2.6. Monitoring Tool for HPC Cluster - Ganglia 

Ganglia is just one of the widely used distributed monitoring systems for high-

performance computing, such as cluster and grid computing. In order to evaluate the 

performance of the Hadoop cluster well, Ganglia is beneficial to monitor the CPU 

usage of the all worker nodes on the cluster. It gives a web-based result which is a 

user friendly environment with useful graphs to show historical usage of the 

resources. Ganglia has been deployed on a variety of the HPC sites all over the 

world. It is also available for the Hadoop cluster. 

TR-03-METU is one of the computing centers which belongs to TR-Grid (High 

Performance and Grid Computing Center) e-infrastructure. It supports the CERN 

experiment as Tier-2 center which has a lot of jobs submitted daily by high energy 

physics users for their monte-carlo production. As a result, nearly all the resources 

are fully utilized by the physics community. Therefore, TR-03-METU is selected to 

describe the facilities provided by Ganglia. The following snapshots represent the 

web-based result for the resource usage for a week at METU. 

Figure 2.10 The average resource usage for a week at Tier-2 center. The number of 

running jobs, the total CPU and memory load and internal network traffic is 

represented in real time by Ganglia. 
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Ganglia shows the number of worker nodes with their status and the total number of 

cores in real time. According to this result, there are 77 worker nodes available and 

all of them are UP. Thus, the available core number is totally 308, because each 

worker nodes has a processor with four cores. The average load of the site is also 

given by Ganglia periodically. The average load for last 15, 5 and 1 minutes is 99%, 

100% and 100%. The graph shows past usage during the last week with various 

metrics.  

The first one is related to number of running jobs on the time zone. The red line 

shows the number of maximum concurrent running processes, whereas the green line 

shows the number of the UP hosts. The green one is straight which indicates that no 

problem occurs on the cluster, because no hosts were DOWN during this particular 

week. The blue wavy line shows the number of simultaneously running jobs over the 

time. As it is shown, the cluster is fully populated with the submitted jobs on the last 

days of the week, whereas there are many idle nodes at the beginning of the week.  

The second graph titled TR-03-METU CPU last week shows the CPU load by the 

users. The CPU usage by the system processes is very low according to CPU usage 

by the users. Furthermore, the wavy line is very similar to first graph, since the CPU 

load mostly depends on the running of jobs on the cluster.  

The third graph titled TR-03-METU Memory last week shows the status of the 

memory during the previous week. It is very important for the system administrators 

to understand the requirements of the memory that the worker nodes should have. 

The characteristics of the submitted jobs to the cluster might be very different from 

each others; therefore, their memory requirements are various as well. If the memory 

is not sufficient to run jobs on the worker nodes, the swapped memory will be used, 

which causes a sharp performance loss. Therefore, the metric of memory swapped 

should be investigated and there should be memory update, if the usage of the 

swapped area is high. Furthermore, the graph gives the information about cache and 

buffered memory usage as well as sharing memory usage. The red line shows the 

total amount of the memory the cluster has.  

The final graph titled TR-03-METU Network last week shows the internal network 

traffic inside the cluster. Tier-2 center has a central storage system that has a great 
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amount of disk space where all the worker nodes can reach. It is a kind of shared file 

system over the nodes in the cluster. The jobs submitted by physicists analyze about 

1.5 GB file for MC production; therefore, it requires to copy file from storage 

element to worker node, which causes the internal network traffic. Any congestion or 

problem on the transfer can be detected. As it is shown, the higher the number of 

running processes, the higher the internal network traffic are. 

Figure 2.11 The physical views of the worker nodes. The properties of the 

computing nodes as well as the current usage of the resources such as CPU and hard 

disk were presented. 

The historical usage of the worker node is also available on the Ganglia with fully 

view mode. However, the above figure shows the worker nodes at physical view. 

Firstly, it gives the total number of CPUs and available memory, as well as total 

amount of hard disk on the cluster. The usage of the disk on the node is an important 

metric, since the jobs fail when it is full. Therefore, Ganglia shows the node whose 

disk usage is the highest over the other nodes. Furthermore, it gives information 

about the worker nodes such as CPU architecture, the number of cores and memory. 

The most important part is the load value, because the hosts are expected to have a 

maximum of 4.0, since it has Intel architecture with 4 cores. If the load value is much 

higher than the number of cores, there is a misconfiguration on the site and the job 

could not be well partitioned over the cluster. It is a good metric to set optimum 

number of maps for each node in this study. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

 

In this chapter, the implementation of the application utilizing the high computing 

performance provided by Hadoop was described in detail. Furthermore, the results of 

the application provided by Hadoop user interface were analyzed and the 

performance of Hadoop were monitored by Ganglia which is an external tool that 

provides information about historical usage of the dedicated resources. 

 

3.1. Data Sets 

There are a variety of protein-protein interaction networks for different species. 

These networks have high noise which means that some interactions between 

proteins might not really exist. Furthermore, the networks are not complete meaning 

that a lot of true interactions may not be present in the network. This situation 

prevents an accurate function prediction for unannotated proteins. Scientists use 

various techniques to estimate the reliability of the linkage between proteins. 

Investigating the amino acid sequence of proteins is just one of used methods. 

Furthermore, computational techniques such as data mining have also been used to 

determine the confidence of an interaction. This technique simply looks at a number 

of shared neighbors and assigns a value depending on the shared neighbors of both 

proteins [Chen et al. 2007; Pandey et al. 2007]. Another example of these techniques 
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is to combine various sets of interactions obtained by experimental techniques, such 

as the two-hybrid method, the protein chip method and the tandem affinity 

purification method. As a result, a network associated with confidence value for each 

interaction is generated and it is called a weighted protein-protein interaction 

network. 

 

3.1.1 Weighted Protein-Protein Interaction Network 

In this study, a weighted PPI network where the weight values on the edges are 

initialized with 1.0 is used. The used PPI network was compiled by DIP [26] 

database on 4 Nov 2007. The total number of proteins is 9224 and the number of 

interactions between these proteins is 17491. The weight value has a significant 

impact on the prediction results, but there is no effect on the computing performance. 

Thus, all the weights on the edges are assumed to be 1.0. However, it can take any 

single precision number. Instead of investigating the biological accuracy of 

prediction results, this study focuses on the computational performance provided by 

the Hadoop platform, because a well known algorithm (Functional Flow) [Nabieva et 

al. 2005] has already been applied by previous researchers, which provides accurate 

predictions for unannotated proteins. Furthermore, the number of proteins annotated 

is 1281 according to the annotation data that was obtained for yeast from 

geneontology.org. The annotated proteins mean that their biological functions are 

already known.  

The binary interactions between proteins as well as their weight information are 

stored in a text based file where each line corresponds to a linkage, while annotated 

proteins and their associated function IDs are stored in another text based file where 

each line defines a biological function and lists proteins that have this biological 

function. The contents of the input files are shown in the following tables (Table 

3.1.1.1 and Table 3.1.1.2). 
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Table 3.1.1.1 Format of the text-based file representing all interactions  

Protein A ID Protein B ID 

YMR056C YBR217W 

YMR056C YJL124C 

 

Table 3.1.1.2 Format of the text-based file representing a list of known functions  

Biological 

Function ID 

Protein A ID Protein B ID Protein C ID Protein D ID … 

51219 YNL229C YDR130C    

32184 YHR079C YLL001W YER148W YDR054C  

8017 YDR285W     

 

3.1.2 Gene Ontology 

It is very important to unify the representation of genes and gene product attributes 

across all the species in order to find any functionally equivalent terms easily. For 

example, if one database describes a set of molecules as a translation, whereas 

another describes it as a protein synthesis, it will be difficult for people and 

computers to search molecules associated with the similar functional term. Thus, 

Gene Ontology (GO) becomes a bioinformatics initiative providing consistent 

descriptions of gene products in different databases. 

The first aim of the Gene Ontology collaboration group is to maintain and further 

develop a generic vocabulary of gene and gene product attributes. The second aim is 

to annotate genes, and assimilate and disseminate annotation data. Another aim is to 

provide a number of useful tools using the dataset provided by GO. 

In this thesis, the file of gene annotations with biological functions has been prepared 

by using the recent yeast GO annotation file. We use the “Molecular Function” 

subset of the three main GO hierarchies: “Molecular Function”, “Subcellular 

Component”, and “Biological Process”. 
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3.2 User Interface of Hadoop for evaluating performance 

There are two ways to understand the status of the jobs submitted to the Hadoop 

cluster. The first is to track the output which is produced by the Hadoop user 

interface on the console. It is a text based interaction system where users can manage 

their jobs. Another way to check the job status is a web based environment which is 

more user friendly. After a job has been submitted to the Hadoop cluster, both text 

and web based user interfaces basically show the current status of the job, the 

percentage of the task competition, total time for applications to be completed, 

information about the number of maps and reduces setting by the job configuration 

and the amount of data read and written by the HDFS. Figure 3.3.1 shows the 

information provided by the Hadoop user interface for an example job. 

Figure 3.3.1 The web based user interface of Hadoop gives information about the 

status of submitted jobs. Therefore, a user can monitor its own job. 

The information about completed jobs can be classified under three main groups, 

such as Job Counters, File System Counters and Map-Reduce Framework. The 

number of reduce tasks as well as map tasks is important for evaluating the 

performance of the Hadoop cluster. The map and reduce number can be arranged 

according to the number of cores and the processor architecture the worker nodes 

have. Increasing the number of tasks means that the benefits of computing resources 

will be increased; consequently, the CPU running time for applications is expected to 

be decreased. This kind of information can be found under Job Counters. The other 

group is File System Counter which gives the information about bytes of file read 

and written by HDFS. Another group is Map-Reduce Framework, where given 

numbers might be a clue for determining the complexity of the calculations. It shows 

the number of records that map input and output operations have. The number of 
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records will be high, in case large amount of computation is required. Figure 3.3.2 

shows an example web based user interface output. 

 

 

 

 

 

 

 

Figure 3.3.2 The web based user interface of Hadoop can provide information about 

the cluster configuration and application utilization  

 

3.3 Debugging Hadoop Applications 

As is the case with other computing platforms, debug operations on the 

implementation are not easy on the Hadoop computing platform either. There are a 

variety of maps that work concurrently and it is not possible to take a control over 

these individual operations. However, Hadoop provides developers to run their 

application on a single map. It means that a developer can run their implementation 

on any cluster by using only a map on a single core, and debug it. The standard 

output of the application can be reached by the console that gives developers a great 

convenience and control on their own application. For this purpose, the following 

parameter should be set in the job configuration class. In this study, therefore, the 

debug mode of the application was implemented as well. 

 conf.set("mapred.job.tracker", "local"); 
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3.4 Overview  

This section presents the overview of the algorithm used in this thesis. The major 

steps of the algorithm are as follows: 

1. Transform input files provided by protein interaction database and gene 

ontology to a new text-based format that computers can process in a parallel 

way. 

2. Generate a hash table which holds all interactions and distribute it to all 

computing nodes. 

3. Start a number of processes concurrently to perform their own operations 

and generate key-value pairs where each one shows an individual flow by 

considering well defined formulas in the functional flow algorithm. Each 

process considers only one biological function and propagates a variety of 

flows assigned for that function. 

4. Accumulate all the propagated flows and combine them in order to 

calculate the total amount of flows that enter an individual protein for each 

biological function in the network. 

5. Compare the total amount of flows coming from each biological functions 

and annotate proteins with a function which has the highest value. 

 

3.5 Pre-processing operations for Hadoop to propagate flows 

individually 

A PPI network is represented as a graph which is composed of nodes and edges. For 

the parallel implementation, we use two input files for the set of interactions and 

functional annotations, as it has been stated in the previous sections. We preprocess 

one of the input files for the parallel implementation (details given below). 

In the functional flow algorithm, each flow which is propagated from different 

annotated (source) proteins can be processed independently. It means that any protein 

u which is associated with function a and any protein v which is associated with 
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function b propagate their flows to the surrounding proteins connected individually. 

Different flows do not interact; as a result they can be processed separately. Each line 

of the input file is processed concurrently in a Hadoop computing platform. 

Therefore, all annotated proteins are categorized with respect to their function IDs. 

Unfortunately, the protein interaction database cannot provide the annotated proteins 

in that format. Therefore, it is required to process the input file in order to transform 

a new format that Hadoop can process in a parallel way. The preprocess operation is 

easily implemented. Therefore, the computing cost can be ignored compared to the 

total computation cost. 

Figure 3.6.1 is a very simple demonstration of a PPI network. The annotated proteins 

are surrounded with red circles and numbers on the edges indicate weight values. The 

letters in the circle show the IDs of proteins and f1 and f2 values represent the 

function ID of the known proteins.  

 

  

  

 

 

Figure 3.5.1 A simple example of a weighted protein-protein interaction network. 

The red circles show the annotated proteins, while the black circles show the 

unannotated proteins. The line shows the interaction with the weight value. 

The text based representation of the graph is given below. The first one stores the set 

of interactions with weight values, while the second one stores annotated proteins 

with biological function ids. After processing, it has been transformed into a new 

format which Hadoop can process independently.  

allInteraction.txt  annotatedProteins.txt 
a b 0.3  f1 a 

b c 0.2  f2 e 

c d 0.3  f1 d 

c e 0.5 

b g 0.5 
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3.6 Generating a hash table for a PPI network 

In this implementation, two jobs have been submitted sequentially. The first one is a 

simple job which runs on a host and a single core is enough for it in order to 

complete its own task quickly. The task of this job is to generate a hash table which 

holds all the interactions as well as their weight information. It takes the file which 

contains the PPI network as an edge list as input and maps it on the memory with the 

appropriate hash table in an efficient way. It is also possible to complete this task by 

using many numbers of cores, but this will not speed application up, since the task is 

very simple. 

In the map class, each edge of the PPI network has been processed one by one and 

generates key & value pairs for each line with weight information. Then, the reduce 

class collects all the key value pairs and generates the PPI network like as 

demonstrated in the following example.  

 

 

 

Figure 3.6.2 The demonstration of generating a hash table by using a file stores all 

the interactions between proteins in a PPI Network 

The PPI network generated by the first job is important, because it stores all the 

interactions as well as their weight values. Whenever there is a flow propagated, this 

PPI network is used because the properties of linkages between proteins are defined 

here. The generated file which stores PPI network will be the input of the second job. 

 

3.7 Mapping a hash table to all memories on the computing nodes 

Each edge in the input PPI network is processed by the second job separately. 

Therefore, the number of maps should be defined in accordance with the number of 

edges. For each function, there will be flow propagated to surrounding proteins by 
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looking at the PPI network information. Thus, the PPI network should be published 

all over the computing nodes in the Hadoop cluster and mapped on their memory in 

order to increase computing efficiency. To distribute any files all over the computing 

nodes, the cache is used as follows: 

DistributedCache.addCacheFile(new Path("/user/emrah/hash-output/part-

00000").toUri(), conf2); 

DistributedCache.createSymlink(conf2); 

 

 hdfs://tekir10.ulakbim.gov.tr:8020//user/emrah/hash-output/part-00000 

In the functional flow algorithm, the total weight is mainly used to find out the 

amount of flow propagated. Hence, if the PPI network also stores the total weight 

information, this should increase the computing performance. During the map 

operation on the memory, the total weight information is also added to the hash table. 

As a result, it is not required to compute total weight information again and again for 

calculating all the amount of flow. 

The amount of reservoir should be set as an infinite value, when the functions of the 

proteins already known are called source proteins. The annotated proteins can be 

seen as having infinite value of reservoir during all the updates. According to the 

formula of functional flow, the amount of reservoir of the annotated proteins will be 

decreased proportionally with respect to the amount of flow leaving from the source 

protein. 

 

3.8 Propagation Flows in Parallel 

The reservoir table holds the amount of reservoir that proteins have. There will be 

always a flow whenever the interacted protein pairs have reservoirs that are not the 

same. A flow will be propagated from a protein with higher amount of reservoir to a 

protein with less amount of reservoir. To detect whether there will be flow or not, the 

reservoir table is used for all the iterations. 

The iteration number determines the number of time steps that the flow will be 
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propagated. When this number is set to a high value, it sharply increases the time the 

application takes to be completed. In order to understand Hadoop performance well, 

this number was set as high value in this study, although this may not be biologically 

meaningful. In the Functional Flow paper, this value has been set to 6, which is 

enough for a biological investigation. 

For the initial step, the reservoir table is initialized with infinite values, because only 

annotated proteins exist in the hash table. After this, the flow is started to propagate 

until the time step reaches the iteration number the user has set. At each time step, 

the reservoir table is updated and the flow is propagated properly. The flows are 

collected into a result hash table within each map as follows: 

<protein ID><function ID><amount of flow>   

When the destination protein has a flow at any previous time step and there is a new 

flow, the value of the protein in the result hash table increases by the amount of the 

new flow appropriately. Thus, there is also a reduce operation inside a map in order 

to increase the computing performance. 

Figure 3.6.4 is a demonstration of functional flow for function F1. The time step t 

shows the current iteration number, Ra shows the amount of reservoir that protein a 

has. D => C, F1: 0.3 means that there is a flow which is propagated from protein D 

to protein C for function F1 and the amount of flow value is 0.3 The reservoir of 

annotated proteins are 6000 and this has not changed. Since the portion of change is 

too small, it can be ignored. 
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Figure 3.6.4 Propagating flows by regarding to previously given PPI network 

example. At each time step, there are a number of flows propagated for defined 

biological function id. 

 

3.9 Accumulating all flows and making prediction  

All the flows that each protein has from various functions are collected into a result 

hash table inside a map operation. However, there are also other flows collected 

inside other maps and all of them must be combined in order to predict function of 

the unannotated proteins. In order to collect all results produced by a number of 

maps, the reduce operation has been applied by Hadoop. With the help of Hadoop, 

the reduce operations are also done in a parallel way to increase the performance. 

Table 3.6.5 shows the final results produced by the application on Hadoop for the 

given example. <B> F1, 1.4 shows that the protein B has 1.4 unit flows by function 

F1 in total. As the table indicates, protein B has more flow from function F1 than 

function F2. As a result, it will be annotated with function F1. 
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Table 3.6.5 Annotation of proteins with a biological function 

Protein ID Biological Function Amount of Flow Prediction of protein function 

B F1 1.4  

B F2 0.4 B will be associated with function F1 

C F1 1.4 C will be associated with function F2 

C F2 1.5  

D F2 0.6 D will be associated with function F2 

E F1 1.0 E will be associated with function F1 

G F1 1.0 G will be associated with function F1 

Finally, all the unannotated proteins will be predicted to have one of the functions 

according to total amount of flow that protein has. 
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CHAPTER 4 

 

 

RESULTS 

 

 

 

In this chapter, we present the experimental results of our method applied on the 

yeast interactome whose properties are indicated in Chapter 3. 

 

4.1 The Computational Complexity of the Problem  

In this part of the study, some of the metrics for the application remain constant, 

while the others are changed in order to investigate the nature of the problem and the 

performance of the implementation as well as the utilizing the dedicated resources by 

Hadoop platform. 

The application requires three parameters for assigning functions to the unannotated 

proteins in the network. The first parameter is a file which stores the information 

about the interactions between the proteins with the confidence weights. The second 

parameter is a file which stores the list of various biologically known functions for a 

given organism. The final one is a value which determines the number of time steps 

that the functional flow will be applied. 
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The complexity of the problem mostly depends on the number of iterations (time 

steps). It also depends on the amount of the interactions and the set of biologically 

known functions. However, they do not have a great impact on the running time as 

much as the number of iterations has. When the time steps is set to a high value, the 

running time required to annotate the proteins will be increased sharply, In order to 

clarify this statement well, the number of iterations has been changed, whereas the 

number of the interactions and the known functions remain the same (the input files 

are kept constant for all trials) and we analyze the value of Reduce Input Records 

provided by the Hadoop user interface. This record indicates the number of key & 

value pairs which holds an individual flow. High value shows that a great number of 

flows have been produced. As a result, the large amount of computation is required to 

apply the algorithm that is an indicator of the complexity of a problem.  

Figure 4.1.1 demonstrates the effect of various iteration numbers on the number of 

flows. There is an increment on the flow numbers sharply, until the hop number is set 

to 14. Then, the increment of the flow numbers is nearly smooth, due to the fact that 

the input files are not sufficient for growing computational complexity of the 

problem, regardless of the high iteration numbers. 

 

Figure 4.1.1 The change on the number of flows according to iteration numbers. The 

flow number shows the complexity of the problem and iteration number indicates the 

time step. 

The time requiring the application to complete its task is continuously increased by 

the number of iterations, as it has been presented by Figure 4.1.2. Initially, there is no 
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great distinction on the increment of the running time, when the iterations number is 

set to a low value because the time for initializing of the jobs is relatively high 

according to the total running time. On the other hand, when the iterations number is 

set to a high value, the running time of the application is too high that the time for 

initializing the tasks can be ignored. The experimental results show that the number 

of iterations has a great effect on the flows number and the running time. 

 

Figure 4.1.2 The change on the running time of the application according to the 

iteration numbers. As the iteration number increases, the time for application to be 

completed is increased as well. 

 

4.2 The Evaluation of the Hadoop Performance by User Interface 

 Hadoop is one of the high performance computing (HPC) platforms where the 

running time of the applications are expected to be decreased in accordance with the 

number of cores installed into cluster is increased. Furthermore, it is expected to 

utilize all the dedicated resources fairly and precisely. Thus, each core should have a 

single map task at least. For example, a worker node with 8 cores should have 8 map 

tasks. In this part of the study, the Hadoop performance has been investigated with 

the same application under various number of the map tasks. Figure 4.2.1 shows the 

running time depending on the number of map tasks running on the cluster where 

each worker nodes has 8 cores and 16 GB shared memory. 

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14

Time (Sec)

Iteration Numbers



42 
 

 

Figure 4.2.1 The performance of the Hadoop cluster. The number of map tasks 

indicates the amount of computing power dedicated to solve the problem. As the 

computing resource is increased, the running time of the application is decreased. 

A nice improvement on the performance of the application has been observed, when 

the number of the map tasks is arranged to smaller numbers. The observations show 

that the running time decreases sharply, when the number of cores is increased. 

However, any remarkable effect on the performance could not be observed, when the 

number of the map tasks is arranged to greater numbers. Actually, this is expected 

because the initialization time will be increased with the number of the map tasks. 

For example, when the number of the map tasks is set to 48, there will be at least 6 

different worker nodes running together on the cluster. They are connected to each 

other with Ethernet technology. Therefore, initializing and utilizing all of these 

worker nodes takes significant amount of time comparing to CPU wall time. As a 

result, the performance of the Hadoop has been dropped.  

Hadoop allows the system administrators to set map task number more than the core 

number the worker nodes have. The performance has been evaluated by setting map 

task number twice the core number. Furthermore, both numbers are set to the same 

value and the performance has been evaluated as well. Figure 4.2.2 compares the 

result of these operations and shows that Hadoop provides better performance under 

all the experiments with the different core numbers, if the map task number has been 

set to twice the core number.   
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Figure 4.2.2 The performance effect of the number of map tasks on the number of 

cores on the Hadoop Cluster. Hadoop provides better performance under all the 

experiments, when the map task number has been set to twice the core number. 

It is not a good choice to set the number of map tasks more than twice the core 

numbers for productions of AMD processors. It causes the worker nodes to be fully 

loaded and performance lost on the cluster. Table 4.2.1 shows the changes on the 

performance of the implementation according to the different number of maps, 

whereas the core number remains constant. There is a performance lost on the 

cluster, when the number of map tasks is set to three times the number of cores. As a 

result, it is important to set number of map tasks optimally by taking into account the 

number of cores. 

Table 4.2.1 The relation of map tasks and core numbers on the performance 

Number Of Cores Number of Maps Time Iteration Numbers 

48 48 7 min 53 sec 17491 

48 96 6 min 34 sec 17491 

48 144 8 min 2 sec 17491 
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4.3 The Evaluation of Hadoop Performance by Ganglia 

Ganglia is a good monitoring tool to evaluate the performance of Hadoop. In the 

previous section, the performance of the Hadoop was examined by the running time 

of the applications over the various numbers of maps and cores. It is mostly based on 

the information provided by the Hadoop user interface. However, it is not sufficient 

to understand how well the resources can be utilized. It would neither give any 

information about the performance of any specific worker nodes in the Hadoop 

cluster nor about the specific cores in a node. Therefore, it is difficult to detect 

whether the problem is well partitioned over the clusters and all the cores as well as 

whether the worker nodes are well utilized by the platform. As a result, Ganglia is 

used to conduct these detailed analyses. 

A number of jobs have been submitted to a cluster formed by setting it to the various 

numbers of cores and map tasks. Furthermore, all of the running jobs on the cluster 

have been monitored by Ganglia. Figure 4.3.1 shows one of the results generated by 

the Ganglia for the jobs running on 64 map tasks over 32 cores. This job has been 

utilized from four hosts simultaneously (32 cores and 64 GB memory) where the 

number of map tasks was set to twice the number of cores all the worker nodes have 

in total. 

Figure 4.3.1 The load of worker nodes during the running job. It shows that the 

dedicated computing nodes are utilized fairly and precisely. 

The host names of the dedicated worker nodes are tekir10, tekir11, tekir12 and 

tekir13 where each one runs 16 map tasks in order to perform a large amount of 

computation in a parallel way. These hosts are marked with a red color which 

indicates that they are fully loaded. Since the number of map tasks was set to twice 

the number of cores the worker node has, the loads of these worker nodes were high, 

as it was expected. Furthermore, Ganglia represents all of the dedicated worker 

nodes with red colors. This means that Hadoop is capable of utilizing all of the 
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dedicated resources fairly and precisely. If a part of the dedicated hosts were fully 

loaded while the other group of hosts was idle, there would be considerable trouble 

affecting the performance. On the other hand, tekir4, tekir5, tekir6 and tekir9 are the 

host names represented by the graph. They are in the idle state during the calculation 

because they are not dedicated to solve this problem by Hadoop. Therefore, they are 

marked with a blue color which indicates that their loads are very close to zero. 

The initialization time is an important issue in the field of high performance 

computing because it dramatically affects the performance of computing platforms. 

At the beginning of the application run time, some of the hosts might be idle because 

these hosts could not be utilized well during the initialization operation. When the 

initialization operation takes a long time, the running time of the application 

increases and the dedicated resources cannot be utilized fairly. Ganglia is a very 

useful tool in order to detect initialization time as well as historical load of the 

worker nodes.  

Figure 4.3.2 presents the CPU load for the dedicated hosts during the running time. 

The number of map tasks and cores the worker node has were set to the same values. 

Therefore, the loads of the hosts are not very high. The job was submitted at 17.00 

and the graph was obtained as soon as the computation was completed (about 20 

minutes). As the figure shows, the Hadoop platform is successful for keeping 

initialization time short and for utilizing the hosts well because no idle hosts are 

available during the running time. The other results of the several job submissions 

with different number of maps and cores show similar results as well. 

 

 

 

 

Figure 4.3.2 Historical CPU load of the dedicated hosts. The initialization and 

completion time are successfully kept short and the hosts are utilized equally. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this chapter, the results of the study were interpreted by presenting their 

underlying meaning and overall significance. Furthermore, it comprises of the 

recommendations for future researches in the same area. 

 

5.1 Conclusion 

Determining protein functions is one of the most important problems of the post-

genomic era. The most classical methods for this task predict function from sequence 

homology by using programs such as FASTA and BLAST. However, a growing 

interest in biology has shifted from a study of a single protein or a small complex to 

an entire proteome generated via the large-scale and high-throughput techniques. 

Exploiting function information from a whole network of proteins brings about the 

necessity of high performance computing on a robust computing infrastructure.  

Functional Flow is one of the well known methods for predicting protein functions 

and it requires a large amount of computations according to the size of interaction 

network and the iteration number for each given protein function. In this thesis, we 

devised a new algorithm on a parallel and distributed computing platform in order to 

apply this method to the Hadoop platform. Thus, a new application that enables 

researchers to study the large proteome generated for the complex organisms has 
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been implemented in an efficient way. It provides a convenient environment where 

the researchers can set their scientific parameters properly and can quickly obtain the 

results of a number of trials quickly. 

A protein-protein interaction network can be abstracted as an undirected graph. It is 

important to know the performance of the Hadoop platform on processing complex 

graphs because Hadoop is mainly developed for the kind of search engines and text 

mining applications. In this thesis, we evaluate the application performance by 

running various numbers of jobs and using a specific tool designed for a distributed 

computing platform. Utilization of the dedicated computing resources, initialization 

time, communication overheads and synchronizations were investigated and we 

present that Hadoop is convenient for bioinformatics problems as well. 

For the algorithm implemented in this thesis, partitioning, generating and 

accumulating flows, and prediction are all written as Map/Reduce jobs. This helps 

scaling the computations horizontally with the cluster size. We show that our method 

provides an increasing performance as the number of dedicated resources is 

increased when the network size is large.     

 

5.2. Future Works 

The installed cluster has been formed with a number of computers having 8 cores 

(AMD CPU's) and the Ethernet technology to enable the computers to communicate 

with each other. However, the technology on the computing as well as network 

communication has rapidly evolved. Therefore, the application can be run on a new 

cluster having the most recent technology. Now, a single computer might have 48 

cores and Infiniband technology enables data communication between the computers 

with 40Gbps speed (QDR). The new generation of the technology might constitute a 

Hadoop cluster where the application can efficiently be run on a very large 

proteomics dataset. Especially, the IB technology will dramatically increase the 

performance of the application because the transfer speed is very important during 

mapping and reducing operations. 
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In a single computer, it is not possible to handle all the flows propagated for each of 

the defined function because of the computer memory restriction. However, a 

scientist can handle all of these flows and make an operation in a Hadoop computing 

properly. Thus, they can improve the formula of Functional Flow algorithm. For 

example, a person can define a new statement in the formula that can control the total 

amount of flow on the edge. The amount of flows for various known functions which 

are propagated through the same edge can be arranged according to confidence value 

of this edge in order to increase the prediction accuracy. Thereby, we might achieve 

not only a remarkable increase on the computing performance but also more accurate 

protein function predictions. 

The application was one of the embarrassingly parallel implementations in that the 

problem can be partitioned into a number of small parts and these parts can be 

processed independently. Hadoop is not only a single computing platform where 

these kinds of scientific problems can be solved. Grid computing might also be an 

alternative for the scientists in case they need to run the application on a great 

number of large and complex datasets which requires thousands of computers. A grid 

infrastructure is composed of a various number of computing clusters geographically 

distributed over the world and it can be used for this purpose. 
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