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ABSTRACT 

 

 

ANALYSIS OF LAMINATED GLASS ARCHES AND CYLINDRICAL SHELLS  
 

 

 

DURAL, Ebru 

Ph. D, Department of Engineering Sciences 

Supervisor:   Prof. Dr. M. Zülfü AŞIK 

 

January 2011, 244 pages 

 
 

In this study, a laminated glass unit which consists of two glass sheets bonded 

together by PVB is analyzed as a curved beam and as a cylindrical shell. Laminated 

glass curved beams and shells are used in architecture, aerospace, automobile and 

aircraft industries. Curved beam and shell structures differ from straight structures 

because of their initial curvature. Because of mathematical complexity most of the 

studies are about linear behavior rather than nonlinear behavior of curved beam and 

shell units. Therefore it is necessary to develop a mathematical model considering 

large deflection theory to analyze the behavior of curved beams and shells. 

Mechanical behavior of laminated glass structures are complicated because they can 

easily perform large displacement  since they are very thin and the materials with the 

elastic modulus have order difference. To be more precise modulus of elasticity of 

glass is about 7*104 times greater than the modulus of elasticity of PVB interlayer. 

Because of the nonlinearity, analysis of the laminated glass has to be performed by 

considering large deflection effects. The mathematical model is developed for curved 

beams and shells by applying both the variational and the minimum potential energy 

principles to obtain nonlinear governing differential equations. The iterative 

technique is employed to obtain the deflections. Computer programs are developed 
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to analyze the behavior of cylindrical shell and curved beam. For the verification of 

the results obtained from the developed model, the results from finite element models 

and experiments are used. Results used for verification of the model and the 

explanation of the bahavior of  the laminated glass curved beams and shells are 

presented in figures. 

Keywords: Laminated Glass, large deflection, curved beam, shell, nonlinear 

behavior. 
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ÖZ 

 

 

LAMİNA CAM EĞRİSEL KİRİŞ VE SİLİNDİRİK KABUKLARIN 

ÇÖZÜMLEMESİ 

 

 
DURAL, Ebru 

Doktora., Mühendislik Bilimleri Bölümü 

Tez yöneticisi: Prof. Dr. M. Zülfü AŞIK 

 

Ocak 2011, 244 sayfa 

 
 

 
Bu çalışmada PVB ile birbirine bağlanmış iki cam levhadan oluşan lamina cam 

eğrisel kiriş ve silindirik kabuk yapının çözümlenmesi yapılmıştır. Lamina cam 

eğrisel kiriş ve kabuklar mimari, havacılık, otomobil ve uçak endüstrisinde 

kullanılırlar. Eğrisel kirişler ve kabuk yapılar eğrilikleri nedeniyle düzlemsel 

yapılardan farklıdırlar. Matematiksel karmaşıklıkları nedeniyle yapılan çalışmaların 

bir çoğu eğrisel kiriş ve kabuk elemanların doğrusal olmayan davranışlarından 

ziyade doğrusal olan davranışları ile ilgilidir. Dolayısıyla eğrisel kiriş ve kabukların 

davranışını çözümlemek için büyük yerdeğiştirmeler kuramını dikkate alan bir 

matematiksel model geliştirilmesi gerekmektedir. Lamina cam yapılar ince olmaları 

nedeniyle kolayca büyük yerdeğiştirmeler gösterdiklerinden ve malzemelerin 

elastisite modülleri arasındaki büyük farktan dolayı mekanik davranışları 

karmaşıktır. Daha açıklayıcı şekilde ifade edilirse camın elastisite modülü PVB 

aratabakanın elastisite modülünden yaklaşık 7*104 kez daha büyüktür. Doğrusal 

olamayan davranışları nedeniyle  lamina camların gerçekçi çözümlemesi büyük 

yerdeğiştirmelerin etkisi gözönüne alınarak yapılması gerektiğinden eğrisel kiriş ve 
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kabukların doğrusal olmayan hakim denklemlerini elde etmek için değişim ve 

minimum potensiyel enerji ilkeleri kullanılarak matematiksel model geliştirilmiştir. 

Yerdeğiştirmeleri elde etmek için tekrarlamalı çözüm yöntemi  kullanılmıştır. 

Türetilen doğrusal olmayan denklemleri sayısal çözmek için bilgisayar programı 

geliştirilmiştir ve elde edilen sayısal sonuçları doğrulamak için yapılan deneylerden 

ve sonlu elemanlar yönteminden elde edilen sonuçlar kullanılmıştır.  Eğrisel kiriş ve 

kabukların davranışını açıklayan ve geliştirilen modelleri doğrulayan sonuçlar 

grafikler halinde verilmiştir. 

Anahtar Kelimeler: Lamina cam, büyük yer değiştirme, eğrisel kiriş, kabuk, 

doğrusal olmayan davranış. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 
 

1.1 Laminated Glass 
 
Laminated glass is an architectural unit which is a combination of two or more thin 

glass sheets and a soft interlayer PVB (Polyvinyl Butyral) or resin which bonds them 

together.  Polyvinyl Butyral can be produced with varying plasticizer contents by 

different manufacturers. 

 

Figure 1.1  Laminated glass 

Laminated glasses have long been used in the manufacturing of aircraft and 

automobile windscreens and nowadays they are widely used in the architectural 

components of the buildings. 

 

Laminated glass is used in architectural glazing industry because of its properties like 

safety, security, sound control, ultraviolet screening, solar energy control, durability, 

protection from bomb blast and natural disasters like hurricane, earthquake, etc. 
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Laminated glass can help to provide protection from injury, and prevents property 

damage from man made and natural disasters by keeping the glass intact within the 

frame. When laminated glass is broken, the polyvinyl butyral interlayer keeps the  

 

glass shards together. The interlayer is also advantageous in other respects. Because 

of shear damping performance of the PVB, laminated glass is an effective sound 

control product. The ability of interlayer to reflect and/or absorb and re-radiate much 

of the solar UV radiation, solar control can also be accomplished. 

 

Laminated glass has some disadvantages: it has relatively low bending strength 

compared with monolithic glass of the same overall thickness due to the presence of 

the plastic interlayer. 

Laminated glass units are used in architectural glazing products such as overhead 

glazing, safety glazing and insulating glass because of their resistance to a wide 

range of loading and environmental conditions. Laminated glass units have the 

advantage of withstanding blast pressures, high wind pressures or missile impact 

rather than ordinary glass units such as tempered, annealed or heat-strengthened 

laminated glass. 

Behavior of laminated glass unit is highly complicated because of two different types 

of materials, glass and PVB. The modulus of elasticity of glass about 104 times 

greater than the elasticity modulus of polyvinyl butyral and laminated glass unit is 

very thin, and can easily show large displacement. Therefore, the equilibrium 

equations governing their behavior are based on large deflection theory. 

Glass unit used as a structural member could be layered, laminated or monolithic. 

Layered glass consists of two glass sheets with no friction between them. Stress 

distribution of each ply is symmetric with respect to their individual neutral axis. The 

glass sheets share the load equally. ‘Plane sections before deformation remain plane 

after deformation’ assumption is not valid for layered glass units because centers of 

curvature of two plies are different. 
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Monolithic glass consists of one glass sheet. Stress distribution of monolithic glasses 

is symmetric around the neutral axis of the glass unit. Because of single center of 

curvature, ‘plane sections remain plane’ assumption is valid for monolithic glass 

units. 

Laminated glass consists of two or more glass sheets connected with an interlayer. 

Stress distribution in the cross section of laminated glass is formed as constant  

coupling stress of interlayer and the two triangular stress distribution of a layered 

glass, which is symmetrical about the neutral axes of each ply. The size of coupling 

stress depends on the shear modulus of the interlayer. While coupling stress is 

compressive at the top ply, it is tensile at the bottom ply when pressure is applied 

towards top ply.  

 

1.2 Previous Research 
 
In literature, there are many studies concerned with behavior of laminated glass unit. 

A brief summary of the studies is listed below. 

 

1.2.1    Hooper’s Analytical and Experimental Studies 
 

Hooper (1973) conducted the first study about laminated glass beams.  In his study, a 

mathematical model for the bending of laminated glass beams under four point 

loading was derived. The relevant differential equation in terms of applied bending 

moment and the axial force in one of the plies were solved using Laplace transform.  

Hooper plotted three influence factors K1, K2 and K3 respectively proportional to the 

axial force in one of the plies, shear strain in the interlayer and central deflection. He 

noted that shear modulus of PVB can be written as a function of time which 

approaches zero as time increases, since PVB is a viscoelastic material. 

Hooper carried out two types of experiments. At first, tests on laminated glass beam 

with soft and hard PVB interlayer under short and long loading durations was 

conducted. For short-term loading tests, he bonded strain gages with thin lead wires 

to inner and outer glass sheets of laminated glass beam. Then he placed the plastic 
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interlayer between the gaged glass layers and laminated them. He loaded the beams 

via universal testing machine at an ambient temperature of o21 C. Gage readings 

were taken at several loads. Short-term loading tests took about 3 minutes. Bending 

stresses across the laminated glass section and central deflections were obtained. The 

changes in shear modulus versus temperature were plotted for soft and hard 

interlayer cases. 

While load deformation curves were linear and creep deformation was negligible for 

beams containing a soft interlayer they were slightly nonlinear and creep deformation 

occurred for beams containing a hard interlayer. Results of strain gage readings were 

in good agreement with the results of computed strains. Hooper found that shear 

strain of the unit was increasing as the interlayer thickness was decreasing. Another 

phenomenon observed was the modulus of hard interlayer being ten times higher 

than that of soft interlayer. 

In addition to above experiments Hooper also conducted creep experiments. In creep 

experiments, the applied loads were in the form of dead weights and located at the 

quarter points of small laminated glass beams at various temperatures. The 

experiment duration was 80 days and measurements of central deflection and 

ambient temperature were taken at intervals throughout this period.  As results of 

creep experiments Hooper plotted shear modulus- temperature graphs and he noted 

that the severe degradation of shear modulus of soft interlayer began between 10-20 

degrees Celsius whereas it began between 30-40 degrees Celsius for hard interlayer. 

Hooper concluded that response of architectural laminated glass unit subjected to 

sustained loading for long-term was the same for all types of PVB interlayer. If a 

short-term load was applied to the already loaded section, then the stress field could 

be calculated by using the combination of sustained and transient loading stresses. 

Shear modulus of the soft and hard interlayer at different temperatures were 

calculated and shear modulus-temperature graphs were plotted. 

The results Hooper (1973) deduced from these studies were that bending resistance 

of laminated glasses principally depend upon the thickness and shear modulus of the 

interlayer. Creep deformation took place within the plastic interlayer if the applied 

loads were sustained except at relatively low temperatures, which allowed the glass 
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layers to deflect as layered glass. But laminated glass would respond as a composite 

member having an interlayer shear modulus appropriate to its temperature if it was 

undergoing sustained loading. 

 

Hooper advised that for the structural design, architectural laminates, which were  

subjected to sustained loads like snow or self-weight loading, should be considered 

as layered glass. For short term loading like wind loading, glass bending stresses 

might be estimated on the basis of interlayer shear modulus corresponding to the 

maximum temperature at which such loading was likely to occur, remembering that 

solar radiation might well raise the temperature of glazed laminate to well above that 

of surrounding atmosphere. If laminates were subjected to both sustained and 

transient loading, the resulting stresses might be calculated by superposition method. 

 

1.2.2 Mathematical Model Developed by Vallabhan 

 

Vallabhan et al. (1983) determined that Von Karman plate theory assumptions were 

acceptable for the nonlinear behavior of thin glass plates. Boundary conditions were 

prescribed as simply supported. A computer model was developed by Vallabhan et 

al. to analyze the nonlinear behavior of monolithic glass plates using finite difference 

method.  They compared nonlinear behavior of monolithic and layered glass using 

the finite difference solution incorporating Von Karman plate theory. 

Vallabhan et al. (1987) developed a nonlinear model for two plates placed without an 

interlayer to determine the limits of laminated glass units. 

Strength factor of glass unit/plate geometries for a wide range of pressures were 

considered by them. Nonlinear theory of thin rectangular plates was used for strength 

factor analysis. The ratio of maximum principal tensile stress in monolithic glass 

system to the maximum principal tensile stress in layered glass system was defined 

as the strength factor. 

In analysis, they used nondimensional parameters of load, deflection, stress and 

aspect ratio. They found that strength factor began to increase nonlinearly, starting 

from the linear value of 0.5 to approach and exceed 1, when the pressure increased.  
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In 1993 Vallabhan et al. developed a new mathematical model for the nonlinear 

analysis of laminated glass units using the principle of minimum potential energy 

and variational calculus. Because of symmetry with respect to x and y axes only a  

quarter of plate was considered. Five nonlinear governing differential equations and 

boundary conditions were obtained via variational and energy methods. Von Karman 

nonlinear plate theory was used for modelling the glass plates. The glass plies were 

assumed to have both bending and membrane strain energies while the interlayer has 

only shear strain energy. Finite difference method was used to solve the nonlinear 

differential equations. All the nonlinear terms were collected on the right hand side 

of the differential equation so the left hand side was obtained as linear. To verify the 

results obtained from the mathematical model, detailed full-scale exp 

eriments were conducted in the Glass Research and Testing Laboratory at Texas 

Tech University. They conducted a series of tests on a special laminated unit size 

(152.4152.4 cm.). The thicknesses of glass plies and interlayer are 0.47625 cm. and 

0.1524 cm., respectively. To provide simply supported boundary conditions they 

used round teflon fasteners. The results of mathematical model and experiments were 

quite close. 

 

Asik and Vallabhan (1995) studied the convergence of nonlinear plate solutions. 

They solved nonlinear plate equations by using two methods. For both of the 

methods they used classical Von Karman assumptions and finite difference method. 

In the first method they used  (Airy stress function) and w (lateral displacement) of 

the plate to convert the plate equations. In the second method the same equations 

were converted into displacements (u, v, w) of the middle surface of the plate. 

Although the above two methods have the same assumptions, convergence 

characteristics of them were different. As a conclusion they observed that both 

methods yielded the same solution but first method’s convergence was faster than the 

second one. They also observed that second model not only converged slowly but 

also could diverge after a particular load. For coarser mesh as the displacement 

diverged from the actual path the method stopped even at low pressures. However, 

when they made fine mesh they could not observe this behavior. 
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Asik (2003) improved Vallabhan’s et al. model (1993) by using modified strongly 

implicit (MSI) procedure to avoid the storage of full matrix that needed large 

memory and to provide less calculation time. Minimizing the total potential energy  

of the laminated glass unit with respect to five displacement parameters, the in-plane 

displacements in x and y directions of the two plates and the common lateral 

displacement, five nonlinear partial differential equations were obtained as in the 

study of Vallabhan et al. (1993). 

To write these governing differential equations in discrete form central finite 

difference method was used. The discrete form of these equations was written in 

matrix form. While symmetric banded coefficient matrix was obtained for lateral 

displacement, full coefficient matrices were obtained for each one of in plane 

displacements. 

He used variable underrelaxation parameter for lateral displacement w while 

overrelaxation factor was used for in plane displacements to overcome the 

convergence difficulties and to decrease the number of iterations to reach the 

solution. 

Asik used modified strongly implicit (MSI) procedure for in-plane displacements. 

Instead of full coefficient matrix with 2*(nx+1)2*(ny+1)2 elements, the coefficients of 

finite difference equations were stored as vectors with totally 2*5*(nx+1)*(ny+1) 

elements. 

As a conclusion, he applied special solvers that provide advantage in storage and 

computation time for nonlinear governing differential equations of a laminated glass. 

The results of his study dictated that nonlinearity have to be considered for the 

analysis of the behavior of laminated glass units. He observed that location of 

maximum stress started to travel at the center and moved towards the corner of the 

plate when the nonlinear terms in governing equations start to be affected under 

increasing pressure. 
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1.2.3 Experimental Studies conducted by Behr 

 

Behr et al. conducted a series of experiments in 1985 on layered, monolithic and 

laminated glass units, to verify the theoretical model for a laterally loaded, thin plates  

developed by Vallabhan and Wang (1983). 

The experiments were conducted using laminated glass units having dimensions of 

152.4243.84 cm. To obtain uniformly distributed load, air was evacuated from the 

chamber using vacuum control. To represent the ideal support conditions in the 

theoretical model round teflon beads which permit rotation and in-plane 

displacement were used. To evaluate the structural behavior of laminated glass unit 

tests were performed at temperatures between 0 C and 77 C. As a result of the 

experiments, it is concluded that: 

1-Stresses in the layered glass unit were larger near the corner and smaller near the 

center than comparable stresses in the monolithic glass plate. 

2-The maximum principle tensile stress near the corner of laminated glass unit at 

room temperature and below were smaller than theoretically predicted stress in a 

monolithic glass. 

3-At levels above the room temperature, corner stress in laminated glass increased 

when temperature was increasing. On the contrary, maximum principle tensile stress 

at the center of laminated glass decreased with increasing temperature. 

4-Larger principal stresses in layered and laminated glass unit at 77 C were %50 

larger than the largest principal stresses of monolithic glass. 

Finally, it was observed that stresses in layered glass were larger near the corner and 

smaller near the center than monolithic glass plates. It was also observed that at room 

temperature and below maximum principal stresses near the corner of laminated unit 

were slightly smaller than the theoretically predicted stresses at the same location in 

a monolithic glass plate. 

It can be said that at room temperature laminated glass unit behaved like a 

monolithic glass plate, whereas at higher temperatures it behaved like a layered glass 

unit. So the behavior of laminated glass unit was bounded by these two limiting 
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cases. His test results also verified the accuracy of the Vallabhan’s et al. theoretical 

model (1983). 

Behr et al. (1986) conducted some experiments to consider laminated glass unit  

 

structural behavior for different interlayer thickness and load durations. They 

performed multiphased theoretical and experimental research program to develop 

and verify analytical models, which define the behavior of laminated glass units used 

in building application. Their research included the analysis of laminated glass unit 

for a wide range of geometries, failure criteria definition of glass and the effects of 

temperature, load duration, chemical and mechanical abrasion and ultraviolet 

radiation to the failure criteria and analyze method. 

To consider the effect of the interlayer thickness laminated glass unit with two 

interlayer thicknesses 0.0762 cm and 0.1524 cm were tested for simply supported 

boundary conditions and uniform lateral pressure. 

It was concluded that the glass unit with a thicker interlayer have reduced flexural 

stiffness. Interlayer thickness affected magnitude of the maximum stress by less than 

%10 while the maximum difference in these two deflections was %5. As a result, it is 

concluded that the effect of interlayer thickness on laminated glass unit did not 

appear to be significant. 

To consider the effect of long duration loading on laminated glass units a 152.4  

243.80.71 cm unit was subjected to a lateral pressure of 1.4 kPa for 3500 seconds 

or 1 hour. The tests were performed at C22 , C49  and C77 . 

As a result of long duration loading tests at different temperatures they concluded 

that, for all three test temperatures there was 20 % increase for corner stress, while 

maximum lateral deflection at the center of the unit increased by 10 %. Conversely, 

principal stresses at the center of laminated glass unit decreased slightly. 

Behr et al. (1993) reported the results of theoretical and experimental studies 

conducted over a 20-year time period by several researchers. Their objectives were to 

review and assess information about the structural behavior of architectural 

laminated glass and to provide a compendium of research results. They considered 

the major structural characteristics of laminated glass like load deflection behavior, 
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load stress relationships, temperature effects, duration of loading, interlayer thickness 

and aspect ratio. 

They noted that temperature effect was significant for the behavior of laminated  

glass units at 77 oC, but were not significant at room temperatures. Conversely, 

Hooper’s test (1973) showed a severe degradation in effective shear modulus of 

interlayer below the room temperature. Differences in PVB chemistry and 

differences between the experiment procedures could explain the differences 

between the results of Hooper and Behr. 

They also considered the relationship of surface stress to lateral pressure in the 

structural behavior of laminated, layered and monolithic glass. They concluded that 

similarities existed between monolithic and laminated glass stresses at room 

temperature and below but at elevated temperatures stresses of laminated glass 

moved towards layered glass stresses. 

The effect of duration of loading on the structural behavior of laminated glass was 

considered by Behr et al. While dead loads and snow loads produce long duration 

loading, wind loads produce load durations measured in seconds. Hooper (1973) 

performed creep tests on small scale laminated glass beams under four point loading 

of 49 o C, 25 o C and 14 o C. They observed very small amount of creep over the 80 

day loading period and the behavior of laminated glass was nearly layered at 25 o C 

while they observed no creep and layered behavior at 49o C. At 14 o C the behavior of 

laminated glass unit was completely monolithic and substantial creep was observed 

at 80 days load duration. So Hooper concluded that substantial creep was observed at 

low temperatures. 

Behr (1986) performed full scale creep tests under 1 hour on a laminated glass at 

temperatures 22 o C, 49 o C and 77 o C. They made the following observations as a 

result of their test: 

1.   The increase in corner stress was 22 % at 77o C and 49o C while it was 18% at 22o 

C. 

2. There was a decrease at the center principal stresses of laminated glass unit for all 

three test temperatures over the 1 hour loading duration. 
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3.  The increase in maximum lateral deflection at the corner of laminated glass unit 

was 10% for all three test temperatures over the 1 hour load duration. 

The results of Behr’s full scale laminated glass plate tests were different from the  

Hooper’s small scale test results. The creep was pronounced for small scale 

laminated glass beams. This difference was attributable to the difference in PVB 

chemistry. 

Behr noted that the impact resistance of laminated glass units increased when the 

thickness of PVB interlayer increased. 

Hooper (1973) observed a reduction in effective shear modulus of hard PVB as the 

result of small scale beam tests. As the interlayer thickness increased from 0.38 mm 

to 1.02 mm the shear modulus decreased from 15.2 MPa to 11.7 MPa. They did not 

investigate the effect of interlayer thickness for soft PVB interlayer. 

Behr et al. (1986) conducted tests on laminated glass unit with interlayer thicknesses 

of 0.76 mm and 1.52 mm. They observed small differences in the stress and 

deformation responses of the units. Laminated glass unit with 1.52 mm interlayer 

thickness had higher stresses and deflections than laminated glass unit  with 0.76 mm 

interlayer thickness. The differences in maximum stresses were less than 10% while 

they were below 5% for deflections. 

In order to examine the structural behavior of laminated glass unit with large aspect 

ratios, experiments were conducted at 0o C, 23o C and 49o C. 

While center deflections of laminated glass beam specimens tested at 0o C were 

lower than those in monolithic beams, they were almost equal at 23o C. At 49o C the 

central deflections of laminated units were higher than the deflections of monolithic 

beams but significantly less than those in layered beams. They sustained the 

maximum load for 1 minute and they observed 11%, 18% and 9% increases for the 

central deflections of laminated glass beams tested at 49o C, 23o C and 0o C, 

respectively. 

They observed that at room temperature and below, the stresses in laminated units 

were equal to or lower than those in monolithic glass beams; While they were higher 

than the stresses of monolithic glass beam at 49o C. Increase of stresses were 

observed as 8%, 6% and 4% at 49o C, 23o C and 0o C, respectively when the constant 



 12

2.8 kPa load was held constant for sixty seconds. It was concluded that even at high 

aspect ratios, under short term loading and below room temperature laminated glass 

appeared to behave like monolithic glass. 

 

1.2.4 Norville developed a theoretical model 

 

Norville et al. (1999) developed a theoretical model, which explained the behavior of 

laminated glass. The model was based on mechanics of materials and indicated that 

the interlayer in laminated glass provided an increase in effective section modulus 

with respect to monolithic glass beam having the same nominal thickness. The 

increase in effective shear modulus resulted in lower flexural stresses and higher 

fracture strengths. PVB’s function in laminated glass unit was assumed to maintain 

spacing between the glass plies and transferring a fraction of the horizontal shear 

force between the glass plies. Effective section modulus for laminated glass under 

uniform loading as a function of the fraction of horizontal shear force transferred by 

the PVB interlayer could be computed by using this model. The horizontal shear 

force transferred by the interlayer between the glass plies was expressed as the 

product of a shear force transfer parameter and the horizontal shear force of middle 

fiber of monolithic glass beam. The laminated glass beam acted as a layered glass 

beam when this parameter was zero. It behaved as a monolithic glass beam when the 

parameter was 1. 

Norville et al. performed laminated glass beam test to verify measurements of center 

deflection reported by Behr (1993). The results were in close agreement and 

deflections predicted by this model strongly supported the model’s validity. They 

also performed laminated glass lite tests and observed that laminated glass series 

with varying thickness, dimension and loading displayed mean fracture stress 

ranging from 98% to 230% that of monolithic series of the same dimensions. 

As a conclusion, they developed a theoretical model to investigate the behavior of 

laminated glass under uniform loading. PVB was assumed to transfer a horizontal 

shear force between the glass plies. They observed that, for the laminated glass, to  
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produce equivalent or greater section modulus than monolithic glass, the fraction of 

shear force transfer was less than 1, and at 49oC behavior of the laminated glass was 

far below the layered glass model.  At room temperature, under short duration (<60 

sec.) uniform loading, laminated glass constructions indicated lower stresses. In 

addition, laminated glass units had equivalent or higher fracture strengths than 

monolithic glass units with the same dimensions and thickness. 

 

1.2.5 Van Duser developed a finite element model 

 

Van Duser et al. (1999) presented a three dimensional finite element model based on 

large deformation for stress analysis of laminated units. The analysis had capability 

to predict the stress generated during biaxial flexure. They solved a laminated glass 

subjected to uniform pressure using the commercial finite element model ABAQUS 

(1997) to demonstrate the accuracy of their approach. They solved the models tested 

by Vallabhan et al. (1993) to be able to compare their results. They also combined 

stress analysis with a Weibull statistical probability of failure, to describe the load 

bearing capacity of laminates of arbitrary shape and size under specific loading 

conditions. As a result of their study they concluded that laminated glass polymer 

units behaved in a complex manner due to large difference between stiffness of 

materials, nonlinearity, large deflection, polymer viscoelasticity and additional 

stiffening effect of polymer thickness. They also observed that stress development 

might fall outside of the monolithic and layered limit because of the membrane 

stresses of plate. The other finding of their study was that stress development was 

influenced by temperature. At higher temperatures and loads principal stresses 

shifted systematically towards the corner. They concluded that under almost all 

conditions Weibull effective stress was lower for laminated plates than for the 

equivalent monolithic one. 
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1.2.6   Minor conducted experiments about failure strength 

Minor et al. (1990) conducted some tests to make comparisons between failure 

strengths of monolithic and laminated glass units. They selected three sizes of 

annealed monolithic glass samples: 152.4243.840.635 cm; 96.52193.040.635 

cm and 167.64167.640.635 cm. These samples were used to evaluate the failure 

strengths as function of several variables like; temperature, glass type (heat 

treatment) and surface conditions. Laminated glass samples were selected as heat 

strengthened and fully tempered. To apply uniform pressure to test specimens, an 

accumulator was used to evacuate air from vacuum chamber. As a result, failure 

strengths of laminated glass and annealed monolithic glass samples were compared. 

At room temperature laminated glass strengths and monolithic glass strengths were 

found to be equal whereas the strength of laminated glass decreased when 

temperature were elevated. It is also observed that fully tempered and heat 

strengthened laminated glass samples were 3 or 5 times stronger than annealed 

laminated and monolithic glass samples. 

 

1.2.7 Studies about Shell Structures 

 

There are no studies about nonlinear behavior of laminated glass shell structures. But 

some of the studies about shell structures are summarized below. 

Turkmen (1999) studied cylindrically curved laminated composite panels subjected 

to the blast shock wave. He obtained numerical and theoretical results for this 

problem and considered the effect of curvature and fiber orientation angle. Love’s 

theory for thin elastic shells was used for mathematical modeling. The resulting 

equations were solved by using Runga-Kutta method. In addition to the numerical 

analysis (Runge–Kutta Method), finite element program ANSYS was used to obtain 

results for cylindrically curved shell. The results were compared and a good 

agreement was found. Turkmen concluded that the central deflection of the clamped 

cylindrical laminated shell decreased and response frequency of the panel increased 

while the stiffness of the panel was increasing. Also the effect of damping and 

loading conditions considered for this composite panel. 
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Schimmels and Plazatto (1994) analyzed nonlinear geometric behavior of laminated 

shell geometry by using orthogonal curvilinear coordinates. They applied 

transformation between Cauchy and Lagrangian coordinate system for isotropic and 

composite shells. Using nonlinear strain displacement relations and minimum 

potential energy theory nonlinear algebraic equations were obtained for 

displacements. To solve the nonlinear equations they were converted to linear 

equations and finite element method was used to solve these equations. 

They verified their model by using the results of Sabir (1972). It is observed that the 

fiber rotations became large enough to affect the material transformation matrix 

when the shell displacement reached three times of the shell thickness. 

 

Aksogan and Sofiyev (2001) considered the dynamic stability of a laminated 

truncated conical shell with variable modulus of elasticity and densities in the 

thickness direction subject to a uniform external pressure, which is a power function 

of time. Analytical solutions were obtained for the critical dynamic and static loads 

and pertinent wave numbers. To verify the results, the critical dynamic loads for a 

truncated conical shell with a single layer, found analytically in the present study 

were compared with those found experimentally by Sachenkov and Klementev 

(1980). They also considered nonlinear free vibration of laminated non- homogenous 

orthotropic cylindrical shells. The equations and basic relations were based on the 

Donnel-Musthari shell equations. By using Galerkin method frequency of the 

cylindrical shell was obtained from Donnel-Musthari shell equations as a function of 

shell displacement and compared with the results in literature. It was observed that 

the number and ordering of the layers affect the values of vibration frequencies both 

in the homogenous and non-homogenous cases.  

 

1.2.8 Studies about curved beam 

 

D. J. Dawe (1974) presented finite element model for the solution of a circular arch 

with radius R and thickness t. The strain energy of the system was written in terms of  
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tangential and normal components of displacements. To obtain the differential 

equations which govern the behavior of the arch, the first variation of the energy was 

used. By solving two differential equations, tangential and radial displacements were 

obtained. Five circular arch models, which are given below where numerically 

solved. Those models were: 

i) Quintic-quintic model with twelve independent coefficients in the expressions of 

displacement. Six of them were for normal displacement u and six for tangential 

displacement w. 

ii) Cubic-quintic model with ten independent coefficients in the expressions of 

displacements (6 independent coefficients four u and 4 for w). 

iii) Quintic-cubic model with 4 independent coefficients for tangential displacement 

and 6 independent coefficients for normal displacement. 

iv) Cubic-cubic model with 4 independent coefficients for tangential displacement 

and normal displacement. 

v) A constant strain, linear curvature  element based on the coupled displacement 

field. 

To apply the described models a computer program which double precision 

arithmetic throughout was used to solve arch problems. He obtained the 

displacements, moments, force distribution of a deep clamped arc carrying a point 

load. As a result of study he improved an independently interpolated model by 

increasing the order of assumed displacement from cubic to quintic.  

Rajasekaran and Padmanabhan (1989) derived the governing equations for curved 

beams by employing large displacement theory. To obtain the governing equations 

they ignored shear strains due to shear stress and shear strains in the planes normal to 

middle surface. In the solution procedure, the large displacements and the small 

strains were also assumed, and the length of the member was much larger than the 

depth. To start the derivation they used three-dimensional small strain large 

displacement relations in cylindrical coordinate system by ignoring the nonlinear 

terms associated with displacement in z direction (w), since it was much smaller 

compared to the displacement in x and y directions. They wrote the equilibrium 
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equations and boundary conditions by integrating the principle of virtual 

displacement as the product of Kirchhoff stress tensor and Green’s strain tensor. 

Palani and Rajasekaran (1992) presented a model for static and stability analysis of 

thin walled curved beams made of composites by using straight beam element. In the 

study, they used Euler-Lagrange equilibrium equations and the associated boundary  

conditions derived by Rajasekaran and Padmanabhan (1989). To derive flexural 

stiffness matrix they used straight beam element by employing suitable 

transformations. While lateral displacement and angle of twist were represented by 

first order Hermitian polynomial, axial displacement was represented by zeroth order 

Hermitian polynomial for static analysis. The new curved beam model, which was 

obtained by using straight beam, required less computational effort, and the results 

were accurate and could be implemented in the programs like SAP. To verify the 

model they compared their results obtained for curved beam subjected to uniformly 

distributed radial loads with the results of Timoshenko and Gere (1961) and 

Rajasekaran and Padmanabhan (1989).  

 

Kang and Yoo (1994) presented a consistent formulation for thin walled curved 

beams. They derived equilibrium equations governing the linear, large displacement 

and buckling behavior using the principle of minimum potential energy. In their 

study, it is assumed that: 

1. Cross sections retained their original shapes. 

2. The displacements were finite. 

3. The shear stresses and strains were negligibly small. 

4. The shear stress strains along the middle surface were negligibly 

small. 

5. The length of beam was much larger than the other dimensions of the 

beam. 

6. The radius of curvature was large. 

To obtain the governing differential equations the total potential energy of the system 

was defined as the summation of strain energy and potential energy due to applied  
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loads. By neglecting the nonlinear term of the equations, they obtained the equations 

for linear behavior of a curved beam. The governing coupled differential equations of 

displacement (i.e. longitudinal, radial and vertical displacement) and boundary 

conditions of the curved beam were obtained via the first variation of total potential 

energy. In their derivation, the curvature effect was included. Analytical solution to  

the coupled equations obtained was not easy: In order to solve the equations an 

approximation based on the binomial series was adopted by ignoring the higher order 

terms. The derivation was more reliable than the previous derivation because of the 

following three advantages: First, they preferred energy method instead of free body 

method because free body method involved possibility of omitting some significant 

terms. Secondly, their interpretations were appropriate for thin walled curved beam. 

Lastly, their approximation was explicit and consistent. 

 

Lin and Heish (2006) developed a closed form analytical solution for in plane 

laminated curved beam of variable curvatures. Before their study there were only a 

few paper devoted to laminated composite materials. Most of the studies were about 

the isotropic beam. To analyze curved beams numerically and analytically, 

approximate methods were applied for the displacement field by the previous 

researchers. They obtained the set of equations, which were the general solutions of 

axial force, shear force, moment, rotation angle and displacement field for laminated 

curved beam in terms of angle of tangential slope.  

To show the validity of the model they compared the results of their study with the 

results of published articles for isotropic material. Also they solved various curved 

laminated beams such as cycloid, exponential spiral, catenary, parabola and elliptic 

under various loading cases. 

 

1.3 Object and Scope of Thesis 

 

Because of the high difference between the elasticity modulus of glass sheets and 

interlayer, the classic assumption that ‘plane section for the whole system before 

deformation remains plane after deformation’ is not realistic for laminated glass 
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units. Therefore, the existing theories in the literature cannot be employed for the 

analysis of laminated curved glass beam and shell structures. 

The aim of the present study is to investigate the behavior of laminated curved glass 

beams and cylindrical shells. To develop a more realistic model it is assumed that  

plane section before bending remains plane after bending for each individual sheet  

and the interlayer translate a certain amount of shear between the glass sheets. 

Deflection and stress resultant values, the level of nonlinearity on the bending 

behavior and the effect of boundary conditions, strength factor of laminated curved 

glass beams and shells are obtained. Mathematical model and computer program are 

developed to analyze the nonlinear behavior of curved beams and shells. The model 

is based on minimum potential energy principle and variational approach. To verify 

the results of developed model nonlinear finite element analyses are performed for 

curved beam and shell structures. Besides, results of curved beam experiments 

previously conducted by Uzhan (2010) are used to verify the developed model. 

Chapter 1, provides an introduction to the thesis and gives information about 

laminated glass units and background for the studies of laminated glass unit. 

Chapter 2, Laminated curved glass beams are analyzed. The total potential energy of 

curved beam is expressed in terms of radial and circumferential displacement. 

Minimum potential energy principle and variational approach are used to obtain three 

nonlinear governing differential equations and boundary conditions. The equations 

are converted into matrix form by using finite difference method. Using iterative 

solution technique, the equations are solved. The results are verified by using finite 

element method and by comparing with the results obtained from experiments 

conducted in Experimental Mechanics Laboratory in the Department of Engineering 

Sciences at Middle East Technical University by Uzhan (2010). The results of study 

are given in graphs and interpreted in conclusion.  

Chapter 3, Laminated glass shell structures are analyzed. The total potential energy 

of shell is expressed in terms of radial and circumferential displacement. Minimum 

potential energy principle and variational approach are used to obtain the five 

nonlinear governing differential equations and boundary conditions. The equations 

are converted into matrix form by using finite difference method. Using iterative 
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solution technique, the equations are solved. The results are verified by using finite 

element method. The results of the study are given in graphs and interpreted in 

conclusion.  

Chapter 4, conclusions and recommendations obtained as result of study are given 
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CHAPTER 2 
 
 
 

BEHAVIOR OF LAMINATED CURVED GLASS BEAMS 
 
 
 
 
 

2.1 Introduction to Theory of Curved Beams 

 
 

It has been quite a time since laminated glasses are in use. First laminated glasses 

with flat shapes were used as their production was easy, and design parameters were 

available. Nowadays, curved laminated glasses are also used in many modern 

buildings. Also curved elements can be used for spring design, electrical machinery 

blades, aerospace structures, design of arch bridges and highway constructions.  

 Curved beams are two dimensional structures which span the spaces. They are used 

to support loads from above. Because of the downward pressure, curved beams can 

carry much greater load than a straight beam. According to their structural behavior, 

curved beams are classified as fixed, hinged, two-hinged or tree-hinged. To satisfy 

fixed boundary conditions at the supports rotation is prevented. Fixed ended curved 

beams are more suitable for large spans than hinged ended curved beams because of 

their greater stiffness. 

 Because of lack of information about structural behavior of curved beams, they have 

not been employed much in practice. A curved beam differs from a straight beam due 

to its initial curvature. Because of mathematical complexity, most of the studies are 

about the linear behavior rather than the nonlinear behavior of curved beams. 
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Therefore, it is necessary to develop a mathematical model considering large 

deflection theory to predict the strength and behavior of curved beams.  

 
In the present study, the behavior of the laminated glass curved beams is investigated 

since the curved glass units are being used in modern buildings nowadays and to 

author’s knowledge, there is not any significant research on the laminated glass 

curved beams. Mathematical model is developed to predict the deflections and 

stresses developing in the unit in polar coordinates. Minimum potential energy 

principle is used to minimize the total potential energy which is the summation of  

the bending and membrane energies in glasses and the energy due to the shear 

deformation in the soft interlayer and force potential. Three nonlinear coupled 

differential equations are derived through variational principles. Numerical model is 

developed to solve the continuous form of the governing equations. Finite difference 

method is employed for the discretization of the nonlinear partial differential 

equations, and then those equations are solved iteratively. The model is verified by 

using the data obtained from the finite element model and using previously done 

experimental results by Uzhan [27]. Results are presented by the figures for the 

verification of the model and the prediction of the behavior. Moreover, the behavior 

of laminated glass beams is presented in comparison to the behavior of the 

monolithic and layered glass beams as limiting cases since the design charts are 

available only for monolithic glasses. 

2.2 Mathematical Modeling 

Behavior of the laminated curved beam- shown in Figure 2.1-, which contains two 

thin glass sheets and an interlayer PVB placed in between the glass sheets, can be 

represented by three nonlinear partial differential equations obtained for three 

displacement components. Two of these equations are used to represent 

circumferential displacements and the third one is for the radial displacement of the 

unit. 
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Therefore, total potential energy of the unit, shown in Figure 2.1, is written as the 

summation of bending, membrane, shear and force potential energies to obtain the 

governing differential equations in terms of displacements. Because of the nature of 

the problem, the bending and membrane strain energies of the glass layers and the 

shear strain energy of the PVB interlayer are only considered. Then the first variation 

of the total potential energy of the unit with respect to the circumferential and radial 

displacements gives the governing differential equations. 

 

Figure 2.1  Laminated glass curved beam with an interlayer PVB 
 

For mathematical modeling of glass sheets, the following assumptions are made: 

1. The beam material is completely homogenous and isotropic. 

2. The beam material is elastic and obeys Hooke’s law. 

3. Because of the small thicknesses of the glass beams, shear deformation is ignored.                         

4. Plane sections initially normal to the mid surface remain plane and normal to the 

mid surface during bending for each glass ply but not for a unit. 
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5. For nonlinear behavior, because of in-plane displacement derivatives are so small, 

the higher powers of the in-plane displacement derivatives and their products are 

ignored. 

6.  For the laminated glass unit, it is assumed that radial deflection does not change 

in the cross section since the layers are thin. 

For the interlayer the following assumptions are made: 

1. Plane section before deformation remains plane after deformation. 

2. Material is homogenous and isotropic. 

3. Material is elastic and obeys Hooke’s law. 

4. Linear shear strains are assumed instead of finite strains to introduce a 

simplification 

5. No slip occurs between the adjacent faces of the plies and interlayer. 

6. PVB interlayer only transfers shear and has a negligible compression in transverse 

direction. 

Using the above assumptions, which are given for interlayer and glass layers, the 

total potential energy of the system can be written as: 

                                                                                                                                 (2.1)       

                                                          

where 1
mU , 2

mU  are the membrane strain energies and 1
bU , 2

bU  are the bending strain 

energies for the inner and outer glass arches, respectively; UI is the shear strain 

energy of  the PVB interlayer, and Ω is the potential energy due to the applied loads. 

Here,   is written in terms of the radial displacement w, and circumferential 

displacements u1 and u2 as follows 
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                                                                                                                     (2.2)         

 

 

 

where 

 

 

 

 

 

Shear strain of the unit is obtained from deformed and undeformed geometry as seen 

in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Deformed and undeformed sections of laminated glass unit 
 

Shear strain for the interlayer is:  
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Therefore the total potential energy of the system in extended form is: 

 

 

                                                                                                               

                                                                                                                                 (2.3)                        

 

 

Variation of total potential energy  with respect to radial displacement, w, and 

circumferential displacements, u1 and u2, gives following stationary equations. 
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  02u   

 

  0w   

Therefore, three nonlinear coupled differential equations and boundary conditions for 

a laminated glass curved beam are obtained: 
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in which  
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where N1 and N2 are the outer and inner circumferential forces in glass arches, 

respectively. I  is the shear strain in the interlayer; G is the shear modulus of 

interlayer; E is the elasticity modulus of glass; h1 and h2 are the thicknesses of outer 

and inner glass arches; A1 and A2 are the cross section areas of outer and inner glass 

arches, respectively; b is the width of the unit; q is a uniformly distributed load; and I 

is the moment of inertia of the glass arches.  

The governing equations (2.4) to (2.6) in terms of displacements are: 
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Boundary equations of curved beam could be obtained as follows: 

At 1   and 2   (at supports of curved unit) for Equation (2.4)  
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where 
~
V  is the applied shear force, 

~
M is the applied moment and

~
1N ,

~
2N are the  

applied axial forces for outer and inner glass arches, respectively. 

For a simply supported laminated curved glass beam without applied forces at the 

ends, as a special case, boundary conditions take the following form: 

at 1   and 2    (at the supports):                   w = 0 and 0
d

wd
2

2




                                                 

                              01u   and 02u   
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For a fixed supported laminated curved glass beam without applied forces at the 

ends, as a special case, boundary conditions take the following form: 

at 1   and 2    (at the supports):                   w = 0 and 0
d

dw



                                                   

                              01u   and 02u   

Analytic solution of three governing nonlinear differential equations (2.9)-(2.11) is 

difficult. Therefore, the numerical Finite Difference Method (FDM) is used to solve 

the governing equations (2.9)-(2.11). The solution procedure given by Asik [24] is 

modified for a curved beam. The nonlinear differential equations are converted into 

algebraic equations by using central finite difference method and written in matrix 

form. All nonlinear terms in the equations are placed on the right hand side. Then, 

governing equations become: 

  


 RwA                                                                                                             (2.12)                       

where A  is a qui-diagonal matrix, and only the elements belonging to five diagonals 

are stored as vectors. The right hand side vector, R  includes applied load and other 

terms are calculated at every discrete point on the right hand side of Equation (2.9). 

Iterative procedure is employed since the equations are coupled and nonlinear. The 

equations are modified at the boundaries of the unit. Applied load is considered in 

small increments for convergence, where: 

 w = the radial displacement vector, 

[A]=coefficient matrice for radial displacement. 

 

For the radial deflection, the finite difference mesh size is chosen to be  , n is the 

number of subdivisions in the θ directions. In order to reduce the total number of 

equations the radial deflection values at the fixed supported edges which are zero, are 

not incorporated. Central finite difference expression of the field equation for the 

radial deflection in the domain is: 
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for  i=1, 2,…, n-1. 
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where 
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Steps of iterative solution procedure for every load increment can be written as: 

1) assume 

w , 


1u , 


2u , 

2) calculate R , 

3) obtain w(i) from Eq. (2.14), 

4) w(i)= w(i)+(1- )wo(i), 

5) if tol
wnum

iwoiw
i 


)*(

)()(

max

 then stop, 

6) calculate the right hand side of the Eq. (2.10) and obtain 1u , 

 

7) calculate the right hand side of the Eq. (2.11) and obtain 2u , 

8) go to step 2, 

In this iterative procedure   is the variable under relaxation parameter. It is 

calculated by interpolation regarding the nondimensional maximum deflection 

2*w(max)/(h1+h2) as a result of numerical experiment, and wo(i) is the radial 

deflection calculated in the previous step. 
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2.3   Numerical tests for the optimized number of divisions and 

tolerance 

 
In the solution procedure, number of divisions and tolerance are very important.  For 

this reason, first numerical test is carried out to determine the number of divisions n 

along the unit and tolerance which gives good approximation. Laminated glass 

model, shown in Figure 2.1 with the physical properties given in Table 2.1, is used to 

analyze number of divisions and tolerance. Results are presented in Figures 2.3 and 

2.4. It is observed from Figure 2.3 that there is a big difference between the results of 

different tolerance values. The displacement value, which is obtained for 1E-4 

tolerance value, is more than 3 times of that 1E-3 tolerance value. Displacements are 

getting closer to each other while the tolerance values are getting smaller. From the 

figures, it is observed that results obtained with 5000 and 10000 divisions and results 

obtained with 1E-6 and 1E-7 tolerances are very close to each other. It is decided that 

5000 divisions and 1E-7 tolerance are sufficient to obtain a good approximation. 

Therefore, 5000 divisions and 1E-7 tolerance are used in all calculations. As shown 

in Figure 2.5 unlike curved beam the displacements for different tolerance values are 

almost the same for straight laminated glass beam. 

 

Table 2.1 Physical properties of laminated glass curved beam 

 

Dimensions (mm) Modulus 
  Thickness Width Radius Arc Length E G 

Glass 1 5 100 1000 3140 72 GPa  28.8 GPa 
PVB 0.76 100 997.12 3140 3000 kPa 1000 kPa 

Glass 2 5 100 994.24 3140 72 GPa  28.8 GPa 
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Figure 2.3 Deflection versus load for laminated glass curved beam 
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Figure 2.4 Displacement versus load for laminated glass curved beam for different 

tolerances 
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Figure 2.5 Displacement versus load for laminated glass straight beam for different 

tolerances 
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2.4    Experimental technique and verification of the model for the 

curved beam 

 

2.4.1 Finite Element Investigation 

 

In order to verify the developed mathematical model, results are compared with those 

of the finite element model for fixed end conditions. The two-dimensional model 

developed for the finite element method is developed and solved with ABAQUS 

version 6.7-1. Load is concentrated at midspan. Eight node plane stress element 

(CPS8R) is used in meshing since it gives more accurate results where large 

deformations are involved and leads to faster convergence. The dimensions of the 

laminated glass model are 1m outer glass radius, 100 mm width and 5+0.76+5 mm 

thickness. The physical properties of laminated glass curved beam are given in Table 

2.1. To achieve perfect bound between the layers the surfaces constrained to each 

other by using tie option. The Young’s modulus and Poisson’s ratio of glass are 

taken to be 72 GPa and 0.25, respectively; but the shear modulus and Poisson’s ratio 

of the interlayer are taken as 1000 kPa and 0.29, respectively. To achieve the fixed 

end boundary condition for the model, vertical and horizontal degrees of freedom of 

all the nodes at both ends of the beams are set to zero. Large deformation analysis is 

performed by using nonlinear geometry. 

A comparison of the deflections and stresses for laminated fixed supported beam are 

presented in Table 2.2 and Figures 2.6 and 2.7. It is observed from Figure 2.6 that 

there is almost no difference between the central deflections of the present and finite 

element model; maximum error (difference) is about 4.68 %. Comparison of stresses 

is presented in Figure 2.7. It is observed Figure 2.7 that the stresses in the finite 

element model are higher than those in the model; however, this difference is 3.77% 

at most. Therefore, the model developed to analyze the laminated glass beams gives 

reliable results for the fixed supported laminated glass curved beams showing 

nonlinear behavior. 
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Table 2.2 Comparison of the results for the fixed supported laminated curved 

beam 

 Displacement (mm) Maximum Stress (MPa) 

Point 
Load (N) FEM Model % Error FEM Model % Error 

0 0.00 0.00 0.00 0.00 0.00 0.00 
100 3.06 2.94 3.79 12.86 12.64 1.74 
200 6.02 5.78 3.88 25.92 25.07 3.28 
300 8.89 8.54 3.95 38.07 37.31 2.00 
400 11.67 11.20 4.05 50.44 49.36 2.14 
500 14.36 13.78 4.06 62.66 61.23 2.28 
600 16.98 16.28 4.15 74.73 72.93 2.41 
700 19.52 18.70 4.21 86.66 84.46 2.54 
800 21.99 21.05 4.28 98.40 95.83 2.61 
900 24.38 23.33 4.31 110.10 107.04 2.78 

1000 26.71 25.54 4.36 121.60 118.11 2.87 
1100 28.97 27.70 4.40 133.00 129.02 2.99 
1200 31.17 29.79 4.44 144.30 139.80 3.12 
1300 33.31 31.82 4.47 155.40 150.44 3.19 
1400 35.40 33.80 4.52 166.40 160.95 3.28 
1500 37.43 35.72 4.56 177.30 171.33 3.37 
1600 39.40 37.60 4.58 188.10 181.58 3.47 
1700 41.33 39.42 4.62 198.80 191.71 3.56 
1800 43.20 41.20 4.63 209.40 201.73 3.66 
1900 45.03 42.93 4.66 219.90 211.63 3.76 

2000 46.81 44.62 4.68 230.10 221.43 3.77 
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Figure 2.6 Central deflection values in the fixed supported laminated glass curved 

beam 
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Figure 2.7 Maximum stress values in the fixed supported laminated glass curved 

beam 

While comparison of deflection values for monolithic simply supported beam are 

presented in Figure 2.8, comparison of the resulting deflections and stresses for 

laminated simply supported beam, which are obtained by finite element method and 

current model, are presented in Table 2.3, Figures 2.9 and 2.10. It is observed from 

Figure 2.9 that there is almost no difference between the central deflections; 

maximum error (difference) is about 2.18 %. Comparison of stresses is presented in 

Figure 2.10 and the error percentage is about 6.26% at most. Therefore, the model 

developed to analyze the curved laminated glass beams gives reliable results for the 

simply supported laminated case, too. It is observed from figures that behavior of 

laminated curved beam is not linear. 
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Figure 2.8 Central deflection values in the monolithic simply supported curved beam 
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Table 2.3 Comparison of results for the laminated simply supported curved beam 

 
 Displacement (mm) Maximum Stress (MPa) 

Point 
Load (N) FEM Model % Error FEM Model % Error 

0 0.00 0.00 0.00 0.00 0.00 0.00 

100 3.48 3.53 -1.66 14.08 13.40 4.81 

200 6.83 6.94 -1.55 27.94 26.58 4.88 

400 13.52 13.40 0.92 55.04 52.28 5.01 

500 16.32 16.46 -0.84 68.30 64.83 5.09 

600 19.29 19.42 -0.65 81.38 77.18 5.16 

800 24.98 25.04 -0.26 107.00 101.33 5.30 

1000 30.37 30.32 0.17 132.00 124.78 5.47 

1200 35.48 35.27 0.60 156.40 147.59 5.63 

1400 40.33 39.92 1.01 180.20 169.79 5.78 

1500 42.66 42.15 1.20 191.90 180.68 5.85 

1600 44.94 44.31 1.40 203.50 191.43 5.93 

1800 49.34 48.45 1.80 226.30 212.53 6.08 

2000 53.53 52.36 2.18 248.70 233.13 6.26 
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Figure 2.9 Central deflection values in the laminated simply supported curved beam 
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Figure 2.10 Maximum stress values in the laminated simply supported curved beam 

 

Deformed and undeformed shapes of ABAQUS model are illustrated in Figure 2.11. 

While the radial displacements are stretching out near the center, they are stretching 

in near the boundaries of the beam. A view of meshed model is illustrated in Figure 

2.12. The effect of shear is observable for PVB interlayer from Figure 2.12. 

 

Figure 2.11 Deformed and undeformed shapes of the beam 
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Figure 2.12 A view of meshed finite element model 
 

2.4.2 Experimental Investigation 
 
 
Uzhan (2010) conducted experiments on curved laminated glass with glass thickness 

5+5 mm, PVB thickness of 1.52 mm, outer glass radius of 1000 mm, inner glass 

radius of 993.48 mm and interlayer radius of 996.74 mm. He conducted experiments 

on 7 test specimens with physical properties given in Table 2.4. The dimensions of 

test specimen shown in Figure 2.13 are 680 mm in length with 700 mm arc length, 

10 cm width. He applied different forces to the specimens. The experiments were 

conducted at 22-23 degrees Celsius.  The Young’s modulus of glass and shear 

modulus of interlayer PVB are taken to be 70 GPa and 1000 kPa, respectively. To 

collect data for every load value he used strain gages, material testing machine and 

data logger. To apply quasi simply supported boundary conditions he left 6 cm from 

both sides free. Radial degrees of freedom of all nodes of the boundaries are set as 

zero while circumferential deflection and rotation are set to free at the boundaries. So 

the boundary conditions can be expressed as: 
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Table 2.4 Physical properties of laminated glass unit 

Dimensions (mm) Modulus 
  Thickness Width Radius Arc Length E G 

Glass 1 5 100 1000 700 70 GPa  28.8 GPa 
PVB 1.52 100 996.74 700 3000 kPa 1000 kPa 

Glass 2 5 100 993.48 700 70 GPa  28.8 GPa 
 

at 1   and 2    (at the supports):   w = 0 and 0
2

2


d

wd
                                                         

              01N
~

  and 02N
~

  

  

Figure 2.13  Laminated glass beam (Dimensions in mm) 
 

To verify the performance of current model the results are compared with the 

experimental results conducted by Uzhan at the Experimental Mechanics Laboratory 

in the Department of Engineering Sciences at Middle East Technical University. 

Comparison of the maximum stress, which are obtained from the experiment and 

current model, are presented in Table 2.5 and Figure 2.14. It is observed from Table 

2.5 and Figure 2.14 that the differences in stress values between the experiment and 

mathematical model are not more than 2%.  
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Table 2.5 Comparison of central maximum stresses for experimental and 

mathematical model results 

 Maximum Stress(MPa) 

Load (N) Experiment Model Std. Dev. Error (%) 

0 0 0 0 0 

50 7.37 7.27 0.04 1.36 

100 14.84 14.55 0.31 1.95 

150 22.17 21.82 0.2 1.58 

200 29.45 29.11 0.36 1.15 

250 36.33 36.39 0.99 -0.17 

300 44.03 43.68 0.62 0.79 

350 50.33 50.97 1.92 -1.27 

400 59.8 58.27 0.89 2.56 

450 66.62 65.56 1.03 1.59 

500 73.9 72.87 0.95 1.39 
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Figure 2.14  Comparison of the stresses at the center and on the bottom surface of 

the laminated glass curved beam. (Strain gage 4) 
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2.5   Numerical Results 

Geometric and material properties of the unit shown in Figure 2.1 are given as  r1=1 

m,  =3.14, width of unit b=0.1 m,  h1=h2=5 mm, interlayer thickness t=0.76 mm, 

E=72x106 kPa, G=500 and 1000 kPa. Concentrated load P=2 kN is assumed at the 

mid point of the outer glass arch. Load is applied in increments of 0.002 kN to have a 

convergent sequence. Variable SOR parameter is very helpful to have a convergent 

solution. Radial displacement w is interpolated by using SOR parameter   which 

changes with the ratio of 
h

w max . 

 
2.5.1 Simply Supported Curved Beam 
 

Boundary conditions of a simply supported curved beam are given as follows. Figure 

2.15 presents the pictorial presentation of simply supported curved beam.  

At 1   and 2    (at the supports):                   w = 0 and 0
d

wd
2

2




                                                

                              01u   and 02u   

 

Figure 2.15 Pictorial presentation of boundary conditions for the simply supported 

curved beam 

 

Figure 2.16 shows the comparison of linear and nonlinear approach to predict the 

behavior of the simply supported laminated glass beam. Linear and nonlinear 



 42

solution results are plotted as normalized deflection versus load. The level of 

nonlinearity may be defined as the 
h

wmax  ratio, where maxw  is the deflection at the 

center of a beam, and h  is the thickness of the single glass beam. Separation between 

linear and nonlinear solutions starts when
h

w max  is about 2.0. It can be said that 

nonlinear solution should be considered when the ratio of maximum deflection to 

thickness of a single glass beam is greater than 2.0. It is observed that this ratio (the 

level of nonlinearity) is about 10.4 for a load P=2 kN in Figure 2.16. The central 

deflection obtained from linear approach is almost one and a half times of the 

deflection obtained by nonlinear approach at load P=2 kN. 
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Figure 2.16 Normalized maximum deflection ( )max

h

w
versus load for the simply 

supported beam 
 
Figures 2.17 and 2.18 are plotted to compare the behavior of simply supported 

laminated glass curved beam with those of monolithic glass arch having thickness of 

10 mm and layered glass curved beam consisting of two glass layers with the 

thickness of 5 mm each and having no bonding between the glass layers. The 

developed model is able to predict the behavior of monolithic, layered and laminated 

curved glass beams. Two laminated glass units with the PVB having shear modulus  
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of  500 and 1000 kPa are considered to have an idea about PVB’s effect on the 

behavior of laminated glass unit.  Figures 2.17 and 2.18 are showing deflection and 

maximum stress versus load, respectively. The behavior of laminated glass beam is 

close to the behavior of monolithic glass beam as can be seen in Figures 2.17 and 

2.18. Their behavior is bounded by two limiting cases, which are monolithic and 

layered behavior. As the shear modulus of PVB interlayer gets smaller, the behavior 

of laminated glass gets closer to the behavior of layered glass unit. Deflection of 

curved laminated glass, which has 1000 kPa interlayer shear modulus, is nearly half 

of that layered unit. 
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Figure 2.17 Maximum displacement versus load 
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Figure 2.18 Maximum stresses versus load 
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Figures 2.19 to 2.22 are plotted to observe the behavior along the arc length of the 

laminated glass curved beam.  While circumferential displacements of the top and 

bottom glass unit along the arc length of the beam for different load values are given 

in Figure 2.19 and 2.20, respectively, radial displacements along the beam for 

different load values are presented in Figure 2.21. From Figures 2.19 and 2.20 it is 

observed that circumferential deflections at the center and at the ends of the arch are 

zero. While circumferential deflections are in positive direction at the left hand side 

of the beam, they are in negative direction at the right hand side of the arch. As 

expected, maximum radial deflection is at the center of the unit and at the boundaries 

of the unit radial deflection is zero because of the boundary conditions.  
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Figure 2.19 Circumferential displacement (u1) of the top glass along the arc length 

of the beam 
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Figure 2.20 Circumferential displacement (u2) of the bottom glass along the arc 

length of the beam 
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Figure 2.21 Radial displacements for different load values 

 

Figure 2.22 is plotted to compare the radial displacement of laminated, monolithic 

and layered glass unit at load P=2 kN. Behavior of laminated glass is close to the 

behavior of monolithic unit. The maximum value of radial deflection of layered glass 

unit is 1.82 times of deflection of laminated glass unit. The sign of circumferential 

and radial deflections along the arc length of beam are changing as seen in figures 

because of double curvature occurrence when load is applied since beam has initial 

curvature. 
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Figure 2.22 Displacements along the arc length of simply supported beam at load 

P=2 kN 
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The term GbrIγ in Equations 2.5 and 2.6 represents the distributed load between the 

two plies in circumferential direction. The shear strain is contributed by the PVB 

interlayer. Because of the applied shear strain relative rotation and motion in plane 

direction occurs in glass plies. When shear strain is applied to the interlayer, between 

the glass plies, a distributed force is transmitted to the top and bottom glass plies in 

opposite directions.  

If we integrate Equation 2.5  

0
1

 IIGbr
d

dN 


 

dAdA)(Gd)(Gbr1N I     

Thus, the in-plane force of glass plies obtained by integrating shear stress along the 

area. Function of shear stress along the arc length of the simply supported curved 

beam beam is plotted in Figure 2.23 for the applied loads. Shear stresses take their 

maximum value at the supports and zero at the middle of the beam as observed from 

the figure. Shear stresses change their sign at every quarter of the beam arc length. 
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Figure 2.23 Variation of shear stress along the arc length of the beam 
 

The stresses at surfaces of the plies are obtained by combination of membrane and 

bending stresses.  
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Bending and membrane stresses at the center of curved beam on each surface of 

glass plies are illustrated in Figures 2.24-2.27. Membrane stress is smaller than 

bending stress as seen in the following figures. While membrane and bending stress 

on the top surface of the top glass are tension, they are compression on the bottom 

surface of the bottom glass. 
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Figure 2.24 Membrane and bending stresses at the center of curved beam for the top 
surface of the top ply 

 

-200

-150

-100

-50

0

50

100

0 0,5 1 1,5 2

Load (kPa)

S
tr
es

s 
(M

P
a)

Bending Stress Membrane Stress

 

Figure 2.25 Membrane and bending stresses at the center of curved beam for the 
bottom surface of the top ply 
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Figure 2.26 Membrane and bending stresses at the center of curved beam for the top 
surface of the bottom ply 
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Figure 2.27 Membrane and bending stresses at the center of curved beam for the 
bottom surface of the bottom ply 

 

Figures 2.28-2.31 illustrate how maximum stress changes along the θ direction of 

curved beam for different load levels. Maximum stress from Figures 2.28 and 2.30 

are observed as compression at the bottom surfaces of the top and bottom glasses. 

The value of maximum compression stress at bottom surface of the unit is nearly 230 

MPa for applied 2 kN load. Stress curves are getting closer to each other when 

pressure is decreased. From the Figures 2.29 and 2.31, maximum stresses at the top 

surfaces of top and bottom glass units are observed as tension. The maximum value 

of tension stress at top surface for applied 2 kN load is 230 MPa. Because of the 

perfect bound between the glass sheets and interlayer, the stresses at bottom surface 
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of top glass and the stresses at top surface of bottom glass are equal to the top and 

bottom surface stresses of PVB interlayer, respectively. The maximum stress value 

for 2 kN load is nearly 140 MPa. The maximum stresses along θ direction change 

their sign at two points as observed in Figures 2.28-2.31. Because of the membrane 

stresses at the boundaries of unit, it is observed that the stresses at the boundaries of 

unit are not zero. 
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Figure 2.28 Stresses on the bottom surface of the top glass along the arc length of 

the simply supported beam 
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Figure 2.29 Stresses on the top surface of the top glass along the arc length of the 

simply supported beam 
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Figure 2.30 Stresses on the bottom surface of the bottom glass along the arc length 

of the simply supported beam 
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Figure 2.31 Stresses on the top surface of the bottom glass along the arc length of 

the simply supported beam 

 

Figure 2.32 gives the relationship between the applied radial force and the maximum 

stress at the surfaces of glass sheets. While maximum stress on the top surface of the 

top glass (top-top) and on the top surface of the bottom glass units (bot-top) are 

tension, maximum stress on the bottom surface of the top glass (top-bot) and on the 

bottom surface of the bottom glass units (bot-bot) are compression. From Figure 2.32 

it is observed that the maximum stress on the top and bottom surfaces of interlayer is 
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nearly half of the stresses of top surface of the top glass and bottom surface of 

bottom glass. 
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Figure 2.32 Maximum stresses versus load of the laminated glass 
 

Maximum stresses on the top and bottom surfaces of the glass unit at load 2 kN are 

given in Figures 2.33 and 2.34. Compression stresses are developing at the bottom 

surface while tension stresses are developing at the top surface of the curved beam as 

expected. Stresses in monolithic and laminated curved glass beam are close to each 

other while the stresses in layered glass beam are moving away from their stress 

curves. Stresses reach their maximum values at the midpoint of the laminated glass 

unit. Stresses change their sign at two points along θ direction. The points, which the 

stresses change their sign, are the same for layered and laminated units at the top and 

bottom surfaces. The stresses near the boundary are compression at top surface. On 

the other hand, stresses near the boundary are tension at the bottom surface of the 

unit. The sign of stresses along the arc length are changing as seen in the figures 

because of double curvature occurrence when load is applied since beam has initial 

curvature. Therefore compression and tension stresses are taking place along the 

laminated glass curved beam at the top and bottom surfaces. Stresses along the beam 

for top and bottom surfaces have absolutely same shape. It is interesting that the 

behavior of laminated glass beam is close to the behavior of monolithic glass beam 

along the arc length but its behavior along the arc length also lies between the  
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monolithic and layered cases as seen in Figures 2.33 and 2.34. Because of PVB 

interlayer membrane stresses of laminated glass unit are higher than the membrane 

stresses of layered and monolithic glass units. For this reason, the stresses at the 

boundaries of layered and monolithic curved laminated glass beam is very small with 

respect to boundary stresses of laminated glass unit. 
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Figure 2.33 Stresses on the top surface of the top glass along the arc length of the 

simply supported beam at load P=2 kN 
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Figure 2.34 Stresses on thebottom surface of the bottom glass along the arc length of 

the simply supported beam at load P=2kN 
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The ratio of maximum principal tensile stress in monolithic glass system to the 

maximum principal tensile stress in laminated glass system is defined as strength 

factor. Strength factor analyses are made to establish the limits of laminated glass 

behavior. Strength factor of simply supported curved beam is nearly 0.8. Strength 

factor for laminated glass arch is presented in Figure 2.35. 
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Figure 2.35 Variation of strength factor of simply supported curved beam 
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2.5.2 Fixed Supported Curved Beam 

 

To consider the effect of boundary conditions the glass arch with the physical 

properties given in Table 2.1 is solved  for different boundary conditions. Nonlinear 

coupled differential equations derived for laminated glass beams by using large 

deflection theory are used to predict the behavior of a fixed supported laminated 

glass curved beam. The pictorial presentation of fixed supported curved beam is 

presented in Figure 2.36. Boundary conditions for a fixed supported unit are as 

follows: 

At 1   and  2   (at the supports):        w = 0 and 0
dx

dw
                                                         

                    01u   and 02u   

 

Figure 2.36 Pictorial presentation of boundary conditions for the fixed supported 

curved beam 

Hereafter the laminated glass unit considered as an example has the radius of 1 m 

and  =3.14. The thickness of each glass beam is h1 = h2 = h = 5 mm. and the width 

of the unit is 0.1 m. Modulus of elasticity of the glass is given as E = 72 GPa. Shear 

modulus of elasticity and the thickness of interlayer PVB are taken as 1000 kPa and 

0.76 mm, respectively. Point load P is applied at the midpoint of a beam as tension. 

Figure 2.37 shows the comparison of linear and nonlinear approach to predict the 

behavior of the fixed supported laminated glass beam. Linear and nonlinear solution 

results are plotted as normalized deflection versus load. Separation between linear 
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and nonlinear solutions starts when
h

w max  about 1.85. It can be said that nonlinear 

solution should be considered when the ratio of maximum deflection to thickness of 

a single glass beam is greater than 1.85. It is observed that this ratio (the level of 

nonlinearity) is about 8.92 for a load P=2 kN in Figure 2.37. The central deflection 

obtained from linear approach is almost 1.3 times of the deflection obtained by 

nonlinear approach at load P=2 kN. 
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Figure 2.37 Normalized maximum deflection ( )max

h

w
versus load for fixed supported 

beam 
 

Figures 2.38-2.39 are plotted in a comparative approach. Results of monolithic, 

layered and laminated glass beams with interlayer shear modulus of 500 and 1000 

kPa, are presented together. It may be concluded that the behavior of simply 

supported laminated glass beam presented in Figures 2.17 and 2.18 is closer to that 

of layered glass beam which is contrary to the behavior of fixed supported laminated 

curved glass beam presented in Figures 2.38 and 2.39. Figures 2.40, 2.41 and 2.42 

are plotted to investigate the circumferential and radial deflections along the arc 

length of the fixed supported beam. Circumferential displacements of top and bottom 

glass sheets are zero at the boundaries and at the center of the unit because of the 

geometry and boundary conditions of glass unit. While they are positive at the left 

hand side of the center, they take negative values at the right hand side of the center 

of the unit. The absolute values of circumferential deflection at left hand side and 
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right hand side are equal in accordance with symmetry of unit. Because of the effect 

of geometric nonlinearity displacement curves are getting closer to each other for 

increasing load levels. Radial deflections of laminated layered and monolithic curved 

glass beams for applied 2 kN load are shown in Figure 2.43. While the difference 

between maximum radial displacement of monolithic and laminated glass unit for 

simply supported beam is nearly 12 mm, it is nearly 20 mm for fixed supported 

beam. Therefore, it can be concluded that behavior of simply supported laminated 

and monolithic curved glass beams are closer to each other than that of the behavior 

fixed supported units. 
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Figure 2.38  Maximum displacements versus load 
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Figure 2.39 Maximum stress versus load 
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Figure 2.40 Circumferential displacement (u1) of the top glass along the arc length 

of the beam 
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Figure 2.41 Circumferential displacement (u2) of the bottom glass along the arc 

length of the beam 
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Figure 2.42 Radial Displacement for different load values 
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Figure 2.43 Comparison of displacements along the arc length of the fixed supported 

beam at load P=2 kN 

 

Function of shear stress along θ direction from the left boundary to the right 

boundary of fixed supported curved beam is plotted in Figure 2.44 for the applied 

pressure levels. Shear stresses are zero at the boundaries and at every quarter of the 

beam. While shear stresses take their maximum value at the left and right hand side 

of center for fixed supported beam, they take their maximum value at the boundaries 

for simply supported beam. The maximum value of shear stress is nearly 70 kPa for 

simply supported beam, while it is nearly 55 kPa for fixed supported beam. 
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Figure 2.44  Variation of shear stress along the arc length of the beam 

 

Stresses along the arc length at the surfaces curved beam for different load values are 

given in Figures 2.45-2.48. While the maximum stresses at the bottom surface of the 

top and bottom glass units are in compression, stresses on the top surface of the top 

and bottom glass units are tension. The boundary stresses of fixed supported beam 

are greater than that of simply supported beam. The stress curves are getting closer to 

each other when load is increased. Figure 2.49 is plotted for the maximum stress 

(which is at the center) versus load P at the center at every surface of glass layers. 

While maximum stress on the top surface of the top glass (top-top) and on the top 

surface of the bottom glass units (bot-top) are tension, maximum stress on the bottom 

surface of the top glass (top-bot) and on the bottom surface of the bottom glass units 

(bot-bot) are compression. Figures 2.50 and 2.51 are plotted for the comparison of 

stress distribution along the arc length on the top and bottom surfaces of the curved 

beam. Stresses on the top surface of the top glass beam are in tension at midpoint and 

at support of the beam. Stresses at the bottom surface of the bottom glass beam show 

a reverse pattern, i.e. stress patterns on top and bottom surfaces show an anti-

symmetric distribution. From Figures 2.50 and 2.51 it is observed that for the bottom 

surface of the bottom glass beam, it is interesting to note that the stress curve for the 

laminated glass beam starts with a stress value almost equal to the stress value of the 

layered glass beam at midpoint and ends with a stress value almost equal to a stress 
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value of monolithic glass beam at support. For the top surface of the top glass beam, 

the stress curve for the laminated glass beam shows a reverse pattern.  
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Figure 2.45 Stresses on the bottom surface of the bottom glass along the arc length 

of the fixed supported beam 
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Figure 2.46 Stresses on the top surface of the bottom glass along the arc length of 

the fixed supported beam 
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Figure 2.47 Stresses on the bottom surface of the top glass along the arc length of 

the fixed supported beam 
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Figure 2.48 Stresses on the top surface of the top glass along the arc length of the 

fixed supported beam 
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Figure 2.49 Maximum stresses versus load of the laminated glass 
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Figure 2.50 Stresses on the top surface of the top glass along the arc length of fixed 

supported beam at load P=2 kN 
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Figure 2.51 Stresses on the bottom surface of the bottom glass along the arc length 

of the fixed supported beam at load P=2kN 
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Strength factor of fixed supported curved beam is nearly 0.7 as seen in Figure 2.52, 

while it is nearly 0.8 for simply supported curved beam.  
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Figure 2.52 Variation of strength factor for fixed supported curved beam 
 

 

 

2.5.3   Fixed-Simply Supported Curved Beam 

 

Boundary conditions of fixed simply supported curved beam with the physical 

properties given in Table 2.1 are given as follows and the pictorial presentation of 

them is given in Figure 2.53. 

At 1   and   (at the left support):      w = 0 and 0
d

dw



                                                         

            01u   and 02u   

At 2    (at the right support):          w = 0 and 0
d

wd
2

2




                                                         

            01u   and 02u   
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Figure 2.53 Pictorial presentation of boundary conditions for fixed and simply 

supported curved beam 

The same beam is solved as, fixed at one end and simply supported at the other end, 

to consider the effect different boundary conditions to the behavior of curved beam. 

Figures 2.54 and 2.55 are plotted to compare the behavior of laminated, layered and 

monolithic beams. Circumferential and radial displacement and stresses along the 

glass surface of laminated beam are seen in Figures 2.56-2.62. Strength factor of the 

beam is 0.75 as shown in Figure 2.63.  
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Figure 2.54 Maximum displacements versus load for fixed and simply supported 

beam 
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Figure 2.55 Maximum displacements versus load for fixed and simply supported 

beam 
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Figure 2.56 Radial displacements along the arc length of the beam  fixed at one end 

and simply supported at the other end for different load values 
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Figure 2.57 Circumferential displacement (u1) of the top glass along the arc length 

of the beam 
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Figure 2.58 Circumferential displacement (u2) of the bottom glass along the arc 

length of the beam 
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Figure 2.59 Stresses on the top surface of the top glass along the arc length of the 

fixed at one end and simply supported at the other end beam 

 

-240

-200

-160

-120

-80

-40

0

40

80

0 0,5 1 1,5 2 2,5 3 3,5

Distance (m)

S
tr

es
s 

(M
P

a)

P=0.5 kN

P=1.0 kN

P=1.5 kN

P=2.0 kN

 

 

Figure 2.60 Stresses on the bottom surface of  the top glass along the arc length of 

the fixed at one end and simple supported at the other end beam 
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Figure 2.61 Stresses on the top surface of the bottom glass along the arc length of 

the fixed at one end and simple supported at the other end beam  
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Figure 2.62 Stresses on the bottom surface of the bottom glass along the arc length 

of the fixed at one end and simple supported at the other end beam 
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Figure 2.63 Variation of strength factor with load of the laminated curved beam 

fixed at one end and simply supported at the other end 

 

Comparisons of boundary conditions are given below. Comparison of deflection and 

stress values for different boundary conditions are presented in Figures 2.64 and 

2.65. Deflection and stress of simply supported beam is higher than those of fixed 

and simple-fixed beams. The behavior of fixed- simple supported beam is bounded 

by the behaviors of simple-simple and fixed-fixed supported beams. While the 

behavior of fixed-simple supported beam is close to the behavior of fixed supported 

beam at left hand side of the beam, it is close to the behavior of simple supported 

beam on the right hand side of the beam, as expected. 
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Figure 2.64 Comparison of maximum displacements for different boundary 

conditions 
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Figure 2.65 Comparison of maximum stresses for different boundary conditions 

 

Comparison of radial deflections, top and bottom surface stresses for 2 kN load along 

the arc length of curved beam are given in Figures 2.66, 2.67 and 2.68, respectively. 

Strength factor values for different boundary conditions are given in                                                    

Figure 2.69. 
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Figure 2.66 Comparison of  radial deflections along the arc length of the beam 
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Figure 2.67 Comparison of maximum stresses on the top surface of the top glass 

along the arc length of the beam 
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Figure 2.68 Comparison of maximum stresses on the bottom surface of the bottom 

glass along the arc length of the beam 
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Figure 2.69 Comparison of strength factor 
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2.6 Summary and Conclusion 

 
A mathematical model with nonlinear partial differential equations and a numerical 

solution technique are developed to predict the linear and nonlinear behavior of a 

laminated glass curved beam. Governing nonlinear coupled differential equations 

involving circumferential displacements u1 and u2 and radial displacement w are 

derived by using minimum potential energy theorem and variational approach. To 

develop nonlinear model and to obtain field and boundary equations large deflection 

theory is used.  In the numerical solution of the nonlinear partial differential 

equations convergence difficulties are faced and to overcome these convergence 

difficulties variable SOR (here is named as SUR: Successive Under Relaxation) 

parameter is used. It also needs higher number of divisions and tolerance value than 

those for straight beams. Model is verified by test results conducted by Uzhan [27] in 

the mechanics laboratory of the Department of Engineering Sciences and by 

generating and solving a commercial finite element program. The comparison of 

results obtained from the current theoretical model, finite element model and 

experiments on laminated glass curved beam are matching quite well.  

 
The developed model simulates the layered and monolithic glass cases successfully. 

Although the behavior of a laminated glass curved beam is bounded by the behavior 

of monolithic and layered curved glass beams these bounds are violated at some parts 

of the beam along its arc length, which is not the case in the behavior of straight 

beams. On the other hand, the behavior of a curved laminated glass beam depends on 

the shear modulus of interlayer PVB. It is possible to make the laminated glass arch 

stronger than the monolithic glass arch by increasing the shear modulus of interlayer. 

The present model provides valuable insight to the general behavior of laminated 

glass curved beam. The effect of PVB’s shear modulus, the level of nonlinearity, 

displacement, moment and stress functions are observed. To consider the effect of 

boundary conditions to the behavior of curved beam the model is solved for different 

boundary conditions. The results are compared in figures. Nonlinearity level of 

simply supported beam is found to be higher than that of fixed supported beam.  
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Strength factor, which is employed to adjust laminated strengths by using available 

design charts, is obtained for curved beams. Strength factor of fixed supported 

laminated curved beam is found to be higher than that of simply supported beam. 

While strength factor of simply supported curved beam is nearly 0.8, strength factor 

of fixed supported curved beam is nearly 0.7.  
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CHAPTER 3 

 

BEHAVIOR OF LAMINATED GLASS CYLINDRICAL 

SHELLS 

 

3.1 Introduction to Theory of Shells 

 

Shell structures are load carrying elements which have a great importance in 

engineering and in particular, in civil, mechanical, architectural and marine 

engineering. Large span roofs, water tanks, concrete arch domes, liquid retaining 

structures are examples of shell structures.  A shell is said to be a curved structural 

element whose thickness is small when compared with the other dimensions of shell 

and with its radius of the curvature. Examples of the shell structures include pipes, 

pressure vessels, roofs, dooms, sheds, airplane wings, car sheds, turbine disks and 

bulkheads. Mid surface of the shell can be defined as the plane bisecting the shell 

thickness. To describe the shape of the shell we specify the geometry of middle 

surface and the thickness of the shell at each point.  

When thickness of the shell is one-twentieth of radius of curvature or less they are 

defined as thin otherwise they are defined as thick shells.  

To analyze the shell structures, equations of elasticity, membrane and bending theory 

are applied. Membrane forces are obtained for the given loading and then 

superimposed on the bending theory for edge loads. The solution procedure of shell 

is based on the following Love shell theory assumptions: 

1- the shell is thin, 

2- the displacement and rotations are small, 

3- the normal shell datum surface before deformation remains normal after 

deformation, 
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4- the transverse normal stress is negligible.  

The above assumptions are often called Kirchhoff-Love shell theory, which is an 

extension of Kirchhoff flat-plate theory.  

 

3.2 Nonlinear Behavior of Shells    

 

In the general case, nonlinearities are present when describing the response of a solid 

body. There are two types of nonlinearities due to material and geometry. Material 

nonlinearity is a result of changing material properties with the applied loads or 

force-displacement or stress-strain law, which is not linear. 

 Geometric nonlinearity is a result of nonlinear kinematic quantities such as the 

strain- displacement relations. Large strains, large displacements and large rotations 

can cause geometric nonlinearity. 

The lateral deflection of the shell is not small when compared with the thickness of 

the shell. For this reason the mid-plane of the shell, develop stresses and the 

differential equations become nonlinear. 

The geometry of a cylindrical glass shell unit may be layered, laminated or 

monolithic. 

Layered glass consists of two glass sheets with no friction between them. Stress 

distribution of each ply is symmetric with respect to their individual neutral axis. The 

glass sheets share the load equally. ‘Plane sections before deformation remain plane 

after deformation’ assumption is not valid for layered glass units because curvature 

centers of plies are different. 

Monolithic glass consists of one glass sheet. Stress distribution of monolithic glasses 

is symmetric around the neutral axis of the glass unit. Because of single center of 

curvature, ‘plane sections remain plane’ assumption is valid for monolithic glass 

units. 

Laminated glass consists of two or more glass sheets connected with an interlayer. 

Stress distribution of laminated glass is the summation of constant coupling stress of 

interlayer and the two triangular stress distribution of a layered beam, which is  
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symmetrical about the neutral axes of each ply. The size of coupling stress is 

depending on the shear modulus of the interlayer. While coupling stress is 

compressive at the top ply, it is tensile at the bottom ply.  

 

3.3 Mathematical Model for Laminated Glass Shell Unit 

 

Laminated glass unit consists of two thin glass shells and an interlayer placed in 

between the glass sheets. The behavior of laminated glass unit which is subjected to 

the radial pressures is highly nonlinear since the maximum value of radial 

displacement in the units becomes larger than the thickness of it and shear modulus 

of the interlayer is very small when compared with that of the glass shell. The effect 

of nonlinear behavior is considered in the derivation of the field equations and 

boundary conditions. Because of nonlinearity, the classic assumption that ‘plane 

section before deformation remains plane after deformation’ is no longer valid. For 

this reason, the existing theories can not be employed satisfactorily and a more 

realistic new model is needed. Therefore, a new nonlinear shell theory has been 

developed for the analysis of laminated glass shells by using minimum potential 

energy theorem. The minimum potential energy theorem is a possible tool to obtain 

the field equations and boundary conditions for the considered problem. 

For mathematical modeling of glass shells, the following assumptions are made: 

1. The shell material is completely homogenous and isotropic. 

2. The material of the shell is elastic and obeys Hooke ’s law. 

3. Because of small thickness of the shell shear deformation is ignored. 

4. Normal to the mid-plane of the shell before deformation remains normal after 

deformation. 

5. For nonlinear behavior, in-plane displacement derivatives are so small that the 

higher powers of the in-plane displacement derivatives and values of their product 

are ignored. 

6. For nonlinear behavior, membrane stresses are developed in the mid-plane, but are 

still small when compared with the other shell dimensions. This causes the mid-plane 

to be stretched under the effect of radial loads. 
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For the interlayer the following assumptions were made: 

1. Plane section before deformation remains plane after deformation. 

2. Material is homogenous and isotropic. 

3. Material is elastic and obeys Hooke’s law and the interlayer shear modulus is 

constant. 

4. Linear shear strains are assumed instead of finite strains to introduce a 

simplification. The radial deflection of the top ply is considered as that of the bottom 

ply, because when the radial deflection of the whole system is compared, the 

interlayer thickness is very small and the compressibility of the interlayer is 

disregarded. 

5. No slip occurs between the adjacent faces of the plies and interlayer. 

6. The energy that is stored in the interlayer due to the normal stresses is disregarded 

as compared to the shear strain energy. 

 

Figure 3.1 Laminated glass cylindrical shell 

Laminated cylindrical shell unit and reference axes that are considered in this study 

are shown in Figure 3.1. Because of symmetry only a quarter part of this shell is 

taken into consideration. 
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Using the above assumptions, which are given for glass layers and interlayer, the 

total potential energy Π of the system, can be written as:    

VUΠ   

 

ΩUUUUUUΠ I
r

I
yr

2
b

1
b

2
m

1
m                                               (3.1)                       

 

where, 

 

1
mU , 2

mU   =   membrane strain energy for the top and bottom shells, respectively, 

 

1
bU , 2

bU    =   bending strain energy for the top and bottom shells, respectively, 

 

I
r

I
yr U,U   = shear strain energy of the interlayer in y-r and r-θ planes, respectively, 

 

      =   potential energy function due to applied loads. 

 

According to Langhaar (1962), the bending strain energy functions are given as: 
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In the above equation 1 , y1 , y1 and 2 , y2 , y2  are the bending strains for the 

top and bottom shells, respectively and they  can be expressed as follows: 
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The membrane strain energy functions can be expressed in terms of strains and they 

are given as follows: 
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where, 

 1 , y1 , y1 and  2 , y2 , y2   are the nonlinear membrane strains and for 

the top and bottom shell units, respectively.They can be expressed in terms of the 

displacement as follows: 
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The average shear strains r  and yr  are obtained from Figure 2.2 which is plotted to 

show deformed and undeformed sections of the shell unit 
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Making use of the shear strain equations, interlayer shear strain energy expressions 

are written as: 
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                                                                                                                                 (3.6)                        

                                                                                           

                                                                                                                        

 

                                                                                                                                            

                          (3.7)                        

                                                    

                                                                             

This problem has a uniformly distributed load and the load potential function can be 

written as: 

 
 


1

1

a

a

1 dydqwr




                                                                                                (3.8)                       

 

  where, 

 i    =   1, 2 denotes the top and bottom shells, respectively, 

 E   =   Young modulus of the glass shells, 

G   =   interlayer shear modulus,   

 ih   =   thickness of the shell, 

ir   =   radius of the shell, 

    =   Poisson’s ratio of the glass, 

Ir   =   radius of the interlayer, 

 t  =    thickness of the interlayer, 

w =   radial deflection of laminated glass unit for the top and bottom shell, 

1u , 2u  = circumferential displacements of top and bottom glass shells, respectively. 

1v ,  2v  =   axial displacements of top and bottom glass shells, respectively 
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The total potential energy   of the system is written by substituting the Equations 

(3.2), (3.3), (3.4), (3.5), (3.7) and (3.8)  into Equation (3.1). 
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Here F can be expressed as: 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum potential energy theorem, which states that corresponding to the 

satisfaction of stable equilibrium of all geometric possible configurations of a body is 

identified by minimum value for the potential energy, and variational approach are 

used to solve this problem. The total potential energy of the system is written respect 

to the radial and in plane displacements 1u , 2u , 1v , 2v  and w. Euler Equation which 

is given by Langhaar (1962), is applied to the total potential energy to obtain the 

governing differential equations of the system. 
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Euler Equation in its most general form is: 
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where, 

ui     denotes  1u , 2u , 1v , 2v and w respectively, 

 

ui   is the first derivative of  ui  with respect to θ, 

 

yui   is the first derivative of  ui  with respect to y, 

 

ui   is the second derivative of  ui  with respect to θ, 

 

yyui   is the second derivative of  ui  with respect to y, 

 

yui   is the second order cross derivative of  ui . 

 

Mathematical calculations give the following five nonlinear governing equations of 

laminated glass shell unit, which are obtained with respect to radial and in-plane 

displacement: 
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                                                                                                                               (3.11)                        

                                

                                                                                                      

                                                                                                                              (3.12) 
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The governing equations in extended form are as follows. 
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In the above equations, the left hand side contains only the linear terms. All the 

nonlinear terms are collected on the right hand side of the equation to be able to 

employ the iterative finite difference method which will be presented in the next 

chapter. 
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Because of symmetry, only a quarter of the shell is considered. For the case of fixed 

supported shell subjected to uniform pressure, the obtained boundary conditions are 

as follows. And the pictorial presentation of boundary conditions of fixed supported 

cylindrical shell is given Figure 3.2. 

 

Boundary Condition along the centerline θ=0  

01u       02u       0
1v






     0
2v






     0
w





        Symmetry      

 

Boundary Condition along the edge θ=θ1 

01u         02u       01v         02v       0w       0
w





  

 

Boundary Condition along the centerline y=0  

0
y

1u





     0
y

2u





     01v       02v       0
y

w





         Symmetry      

 

Boundary Condition along the edge y=y1 

01u         02u       01v         02v       0w       0
y

w





  

 

Figure 3.2 Pictorial presentation of boundary conditions for the fixed supported 

laminated cylindrical glass shell 
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3.4 Finite Difference Expressions for Field and Boundary Equations 

and The Iterative Solution Technique 

 

3.4.1   Application of Finite Difference Method (FDM) 

Due to symmetry of geometry only one quarter of the shell is considered in the 

analysis. The governing differential equations of laminated glass shell unit are given 

in Equations 3.7 through 3.11. It is found that the differential equations of u1, u2, v1 

and v2 are linear while the field equation for radial displacement , w, is nonlinear. 

Close form solution of these nonlinear governing differential equations is not known. 

Therefore, to solve the equations an iterative technique has to be adopted. 

Finite difference method is used to convert the governing differential equations into 

discrete values of u1, u2, v1, v2 and w at every point of the finite difference mesh. 

Nonlinear partial differential equations are arranged in such a way that the left-hand 

side of the governing equations becomes linear; all the nonlinear terms are collected 

on the right hand side of the equality. The equations in the matrix form are obtained 

for radial and in-plane displacements. While full coefficient matrices are obtained for 

in-plane displacements, symmetric banded coefficient matrix is obtained for radial 

displacement. Because of the large memory necessity, the modified strongly implicit 

procedure, which was proposed by Schneider and Zedan (1981) is employed for the 

in plane displacements. 

The algebraic equations for the radial displacement are stored in matrix A. Therefore, 

the system of equation can be written as: 

 

    )2v,1v,2u,1u,w(fqwA 1  

where, 

 w = the radial displacement vector, 

q= applied pressure magnitude, 

[A] = coefficient matrix for radial displacement. 
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 [A] is symmetric and banded coefficient matrix, and the elements are stored in 

banded forms. The right-hand side vector includes applied load and the other terms 

calculated at every point inside the domain. 

In this chapter, the coefficient matrices, and the corresponding right-hand side 

vectors inside the domain as well as those at the boundaries are presented. For the 

radial deflection, the finite difference mesh size is chosen to be nθ x ny,  where nθ and 

ny being the number of subdivisions in the θ and y directions, respectively. The size 

of coefficient matrix A is (nθny, 2nθ+1). In order to reduce the total number of 

equations the radial deflection value at the fixed supported edges which is zero, is not 

incorporated. Finite difference expression for radial deflection field equation inside 

the domain is: 

 

For i=3,4,...nθ-2,  j=3,4,...ny-2 

 

      (3.14) 
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The general equation is modified at the shell boundaries and the following equations 

are obtained for fixed supported shell:  

 

 

For i=1, j=1 

 

422224
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For i=1, j=2 
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For i=2, j=ny-1 
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jijijijijijijijiji

RHSFwFw

FwFwGwJwJwHwBwBwwHC

,1,11,1

1,11,12,1,1,,2,1,1,)(







  

For i=2, j=ny 

 

jijijijijijijijiji RHSFwFwGwJwHwBwBwwHGC ,1,11,12,1,,2,1,1,)(  

 

For i=3,4.… .nθ-2, j=1 

 

222222
,

1,11,12,1,,2,2,1,1,

ji

jijijijijijijijiji

RHS
FwFwGwJww

H
w

H
w

B
w

B
w

C
    

For i=nθ-1, j=1 

 

22222
,

1,11,12,1,,2,1,1,
ji

jijijijijijijiji

RHS
FwFwGwJww

H
w

B
w

B
w

C
   

 

For i=nθ-1, j=3,4...ny-2 

 

j,i1j,1i1j,1i

1j,1i1j,1i2j,i2j,i1j,i1j,ij,2ij,1ij,1ij,i

RHSFwFw

FwFwGwGwJwJwHwBwBwCw









 

 For i=nθ, j=3,4,...ny-2 

 

j,i1j,1i

1j,1i2j,i2j,i1j,i1j,ij,2ij,1ij,i

RHSFw

FwGwGwJwJwHwBww)HC(







  

 

For i=nθ, j=ny-1 

 

jijijijijijijijiji RHSFwFwGwJwJwHwBwwHC ,1,11,12,1,1,,2,1,)(    
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For i=nθ, j=1 

 

2

RHS
FwGwJww

2

H
w

2

B
w)

2

HC
( j,i

1j,1i2j,i1j,ij,2ij,1ij,i 


  

 

For i=nθ-1, j=2 

 

j,i1j,1i!j,1i1j,1i

1j,1i2j,i1j,i1j,ij,2ij,1ij,1ij,i

RHSFwFwFw

FwGwJwJwHwBwBww)GC(







  

 

For i=nθ, j=2 

 

j,i1j,1i

1j,1i2j,i1j,i1j,ij,2ij,1ij,i

RHSFw

FwGwJwJwHwBww)HGC(







  

 

For i=nθ, j=ny 

 

jijijijijijiji RHSFwGwJwHwBwwHGC ,1,12,1,,2,1,)(    

 

For i=nθ-1, j=ny-1 

 

jijiji

jijijijijijijijiji

RHSFwFw

FwFwGwJwJwHwBwBwCw

,1,11,1

1,11,12,1,1,,2,1,1,







  

 

For i=3,4,...nθ-2, j=2 

 

j,i1j,1i1j,1i1j,1i1j,1i

2j,i1j,i1j,ij,2ij,2ij,1ij,1ij,i

RHSFwFwFwFw

GwJwJwHwHwBwBww)GC(







   
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For i=3,4,...nθ-2, j=ny-1 

 

j,i1j,1i1j,1i1j,1i1j,1i

2j,i1j,i1j,ij,2ij,2ij,1ij,1ij,i

RHSFwFwFwFw

GwJwJwHwHwBwBwCw







  

 

For i=3,4,...nθ-2, j=ny 

 

j,i1j,1i1j,1i

2j,i1j,ij,2ij,2ij,1ij,1ij,i

RHSFwFw

GwJwHwHwBwBww)GC(







  

 

For i=nθ-1, j=ny 

 

j,i1j,1i

1j,1i2j,i1j,ij,2ij,1ij,1ij,i

RHSFw

FwGwJwHwBwBww)GC(







  

 

Equations (3.13)-(3.16) given below are modified at the boundaries of the laminated 

unit with respect to boundary conditions. Because of the nature of the problem, full 

coefficient matrices are obtained for circumferential and axial displacements. To 

provide decrease in computation time and storage Asik (2003) stored the coefficients 

of circumferential and axial displacement as column vectors. To obtain the 

circumferential and axial displacement Modified Strongly Implicit Method (MSI), 

which is proposed by Schinder and Zedan (1981), is employed.  

Finite difference mesh size for the in-plane displacement is nθny. If full coefficient 

matrix is used to obtain the axial and circumferential displacement total number of 

elements of coefficient matrix will be 2
y

2 )1n()1n(2   . But if the coefficients 

are stored in vectors and MSI method is employed to obtain the circumferential and 

axial displacements, total number of elements in coefficient vectors will be 

)1n()1n(52 y   .  
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)j,i(1FU
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u
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
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
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                            (3.15) 

 

)j,i(2FU
j,1i2

u
j,i
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

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                            (3.16) 

 

)j,i(1FV
j,1i1

v
j,i

1AEV
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v
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v
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v
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









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                               (3.17) 
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                               (3.18) 
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In the above equations h is the increment in θ direction and yh is the increment in y  

direction. )j,i(1FU , )j,i(2FU , )j,i(1FV  and )j,i(2FV are the right hand sides of 
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governing equations of 1u , 2u , 1v  and 2v , respectively at each discrete point. 

These are the governing equations and boundary conditions for the cylindrical shell.  

The general equations for circumferential displacement (u1) are modified at the shell 

boundaries and the following equations are obtained for fixed supported shell: 

 

For i=2, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i 1FU1u1AEU1u1ASU1ANU1u1APU    

 

For i=3,4,.…nθ-1,  j=1  

              

     j,ij,1ij,i

j,1ij,i1j,ij,ij,ij,ij,i

1FU1u1AWU

1u1AEU1u1ASU1ANU1u1APU







 
 

 

For i=nθ,  j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i 1FU1u1AWU1u1ASU1ANU1u1APU    

 

For i=2,  j=2,3,.….ny-1  

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 1FU1u1AEU1u1ASU1u1ANU1u1APU    

 

For i=2, j=ny  

             j,ij,1ij,i1j,ij,ij,ij,i 1FU1u1AEU1u1ASU1u1APU    

 

For i=3,4,.…nθ-1 . j=2,3,.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

1FU1u1AEU

1u1AWU1u1ASU1u1ANU1u1APU








 

 

For i=3,4,.…nθ-1,  j= ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 1FU1u1AEU1u1AWU1u1ASU1u1APU    
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For i=nθ,  j=2,3,.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 1FU1u1AWU1u1ASU1u1ANU1u1APU    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i 1FU1u1AWU1u1ASU1u1APU    

 

The general equations for circumferential displacement (u2) are obtained for fixed 

supported shell as  follows: 

 

For i=2, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i 2FU2u2AEU2u2ASU2ANU2u2APU    

 

For i=3,4,.…nθ-1,  j=1  

              

     j,ij,1ij,i

j,1ij,i1j,ij,ij,ij,ij,i

2FU2u2AWU

2u2AEU2u2ASU2ANU2u2APU







 
 

 

For i=nθ,  j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i 2FU2u2AWU2u2ASU2ANU2u2APU    

 

For i=2,  j=2,3,.….ny-1  

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 2FU2u2AEU2u2ASU2u2ANU2u2APU    

 

For i=2, j=ny  

             j,ij,1ij,i1j,ij,ij,ij,i 2FU2u2AEU2u2ASU2u2APU    

 

For i=3,4,.…nθ-1 . j=2,3,.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

2FU2u2AEU

2u2AWU2u2ASU2u2ANU2u2APU








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For i=3,4,.…nθ-1,  j= ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 2FU2u2AEU2u2AWU2u2ASU2u2APU    

 

For i=nθ,  j=2,3,.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 2FU2u2AWU2u2ASU2u2ANU2u2APU    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i 2FU2u2AWU2u2ASU2u2APU    

 

Modified axial displacement (v1) at the shell boundaries are obtained for fixed 

supported shell as follows: 

 

For i=1, j=2  

                j,ij,1ij,ij,i1j,ij,ij,ij,i 1FV1v1AWV1AEV1v1ANV1v1APV    

 

For i=2,3,.…nθ-1, j=2  

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 1FV1v1AEV1v1AWV1v1ANV1v1APV    

 

For i=nθ,  j=2  

             j,ij,1ij,i1j,ij,ij,ij,i 1FV1v1AWV1v1ANV1v1APV    

 

For i=1,  j=3,4,.….ny-1  

                  

 j,i

j,1ij,ij,i1j,ij,i1j,ij,ij,ij,i

1FV

1v1AWV1AEV1v1ANV1v1ASV1v1APV



   
 

 

For i=1, j=ny  

                j,ij,1ij,ij,i1j,ij,ij,ij,i 1FV1v1AWV1AEV1v1ASV1v1APV     
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For i=2,3,.…nθ-1, j=3,4,.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

1FV1v1AEV

1v1AWV1v1ANV1v1ASV1v1APV








 

 

For i=2,3,.…nθ-1, j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 1FV1v1AEV1v1AWV1v1ASV1v1APV    

 

For i=nθ, j=3,4,.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 1FV1v2AWV1v2ANV1v1ASV1v1APV    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i 1FV1v1AWV1v1ASV1v1APV    

 

Modified axial displacement (v2) at the shell boundaries are obtained for fixed 

supported shell as follows: 

 

For i=1, j=2  

                j,ij,1ij,ij,i1j,ij,ij,ij,i 2FV2v2AWV2AEV2v2ANV2v2APV    

 

For i=2,3,.…nθ-1, j=2  

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 2FV2v2AEV2v2AWV2v2ANV2v2APV    

 

For i=nθ, j=2  

             j,ij,1ij,i1j,ij,ij,ij,i 2FV2v2AWV2v2ANV2v2APV    

 

For i=1, j=3.4.….ny-1  

                  

 j,i

j,1ij,ij,i1j,ij,i1j,ij,ij,ij,i

2FV

2v2AWV2AEV2v2ANV2v2ASV2v2APV



   
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For i=1, j=ny  

                j,ij,1ij,ij,i1j,ij,ij,ij,i 2FV2v2AWV2AEV2v2ASV2v2APV     

 

For i=2,3,.…nθ-1, j=3,4,.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

2FV2v2AEV

2v2AWV2v2ANV2v2ASV2v2APV








 

 

For i=2,3,.…nθ-1, j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i 2FV2v2AEV2v2AWV2v2ASV2v2APV    

 

For i=nθ, j=3,4,.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i 2FV2v2AWV2v2ANV2v2ASV2v2APV    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i 2FV2v2AWV2v2ASV2v2APV    

 
3.4.2 Solution Algorithm 
 
Using finite difference method, governing differential equations 3.7 through 3.11 are 

converted into algebraic equations at every point of the domain. The equations are 

obtained in matrix form as: 

     )k(

)i(1
)k(
)i( )2v,1v,2u,1u,w(fqwA                                                                    (3.19) 

In above equations {w} denotes the radial displacement vector while {U} denotes the 

in-plane displacement vector for u1, u2, v1, v2and q designates the applied pressure. 

Subscripts (i) denote the iteration number while superscripts (k) designate the 

increment number. 

Coefficient matrice [A] is linear while the right hand side vectors f1 is nonlinear. To 

transform nonlinear algebraic equations into the set of quasi linear equations the 

values of w, u1, u2, v1 and v2 from the (i-1)th iteration are put into right hand side of 

equation 3.17 of the ith iteration. Value of radial displacement w for i th iteration is 
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obtained from equation 3.17. The new value of radial displacement is used to 

calculate the right hand side of equation of equation of u1, u2, v1 and v2. Then 

equations are solved to obtain u1, v1, and v2.  The solution procedure is repeated 

until convergence is achieved.  

The steps of an iterative procedure are listed below: 

1. assume w, u1, u2, v1, v2, 

2. calculate RHS of governing equation for the radial displacement, 

3. obtain w(i.j) from   


 RwA  

4. recalculate ),,()1(),(),( 0 jiwjiwjiw    

where   is under relaxation parameter. This parameter is used in order to overcome 

convergence difficulties.   is calculated by interpolation regarding the non-

dimensional maximum displacement )/(*2 21)1,1( hhw   as a result of numerical 

experiment and ),(0 jiw is the radial displacement that is calculated in the previous 

step. Radial displacement w is interpolated by using 







h

wmax  and in-plane 

displacement is extrapolated by using 4.1  

5. if  
   

  tol
wnum

ww
ji

jioji




max

,
,,

*
 then stop the iteration, 

6. calculate )j,i(1FU and 1u  from governing equation of 1u , 

7. calculate )j,i(2FU and 2u  from governing equation of 2u , 

8. calculate )j,i(1FV and 1v  from governing equation of 1v , 

9. calculate )j,i(2FV and 2v  from governing equation of 2v , 

10. back to step 2. 

 

The described iterative procedure is implemented by developing a computer code, 

which is written in FORTRAN.  

 

 



 103

3.5 Verification of Model 
 
To verify the present model first monolithic glass is considered. Results obtained 

from the analysis for clamped cylindrical shell under lateral pressure are compared 

with the results, which are obtained using finite element package program 

(ABAQUS version 6.7.1) and with the published results in literature for monolithic 

case. The length and radius of the model considered are 0.508 m and 2.54 m, 

respectively. The thickness of the monolithic unit is 3.175 mm. The values of 

Young’s modulus of elasticity and Poisson’s ratio of glass are assumed as 

410*03.31E  kPa and 30.0 , respectively. The same model was solved by 

Plazotto [37] for several mesh arrangement by using finite element method. 

Plazotto’s results for different mesh values, Abaqus results and current model’s 

result are presented in Table 3.1. It is observed that when the load is increased center 

displacement begins to increase. Comparison of the results obtained by using the 

present model, Plazotto’s model and ABAQUS is taking place in Figure 3.3. Results 

match quite well for monolithic case. 

 

Table 3.1 Comparison of the deflections for the monolithic cylindrical shell 

Load Plazotto's Solution (mm) Abaqus Model 

(kN/m2) 4*4L 8*8L 4*4Q 4*6Q 8*8Q (mm) (mm) 
0.276 0.303 0.305 0.311 0.308 0.308 0.306 0.301 
0.552 0.639 0.652 0.659 0.653 0.659 0.656 0.646 
0.827 1.018 1.063 1.054 1.052 1.078 1.076 1.058 
1.103 1.454 1.589 1.516 1.533 1.622 1.632 1.608 
1.379 1.971 2.391 2.077 2.162 2.505 2.624 2.645 
1.655 2.606 4.317 2.802 3.132 5.048 5.601 5.997 
1.931 3.417 6.455 3.818 4.912 7.047 7.345 7.740 
2.206 4.448 7.719 5.245 6.603 8.206 8.430 8.796 
2.482 5.591 8.641 6.691 7.735 9.065 9.257 9.607 

2.758 6.634 9.383 7.804 8.585 9.762 9.937 10.279 
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Figure 3.3  Comparison of central deflection values for monolithic case 

 
Present model is developed to analyze the laminated glass shell, which consists of 

two glass shells and an interlayer. To verify the developed for the laminated glass 

shell, finite element method is used. The laminated glass shell unit considered has a 

length of 0.508 m and a radius of 2.54 m. Each glass shell has a thickness of 2.5 mm. 

The thickness of the inner core is 0.76 mm. The total thickness of the unit is 5.76 

mm. The Young’s modulus and Poisson’s ratio of glass are taken to be 72 GPa and 

0.25, respectively; but the shear modulus and Poisson’s ratio of the interlayer are 

taken as 1000 kPa and 0.29, respectively. The physical properties of laminated glass 

shell unit are given in Table 3.2. The three dimensional finite element model is 

generated and solved with ABAQUS version 6.7. Load is uniformly distributed. To 

perform large deformation analysis ‘‘geometric nonlinearity’’ option is used. Twenty 

node quadratic brick elements (C3D20R) are used in meshing because the program 

gives more accurate results where large deformations are involved and leads to faster 

convergence. Because of the symmetry only a quarter of the shell unit is solved. The 

boundaries are modeled as clamped edge. At the fixed ends of the unit, vertical and 

horizontal degrees of freedom of all the nodes of the unit are set to be zero. The unit 

is divided into nearly 2000 elements to obtain convergence. Comparison of the 

results of finite element model and current model is taking place in Table 3.3, 

Figures 3.4 and 3.5. The difference between the stress and displacement results is 

11% at most. A view of contours of radial deflection obtained from ABAQ 
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US is seen in Figures 3.6. From Figure 3.6 it can be seen that radial deflection takes 

its maximum value at the center of unit.  

 

Table 3.2 Physical properties of laminated glass shell unit 

Dimensions (mm) Modulus 
  Thickness Length Radius  θ E G 

Glass 1 2,5 508 2540 0,2 72 GPa  28.8 GPa
PVB 0.76 508 2538,37 0,2 2900 kPa 1000 kPa

Glass 2 2,5 508 2537,74 0,2 72 GPa  28.8 GPa
 

Table 3.3 Comparison of the results for the fixed supported laminated cylindrical 

shell 

  Displacement (mm) Maximum Stress (MPa) 

Load 
(kPa) FEM Model % Error FEM Model % Error 

0 0.000 0.000 0 0.000 0.000 0 

0.1 0.003 0.003 8.8 0.120 0.112 6.5 

0.2 0.005 0.006 8.8 0.240 0.225 6.5 

0.3 0.008 0.009 8.9 0.361 0.337 6.5 

0.4 0.010 0.012 8.9 0.481 0.449 6.5 

0.5 0.013 0.015 8.9 0.607 0.562 7.4 

0.6 0.016 0.017 8.9 0.721 0.674 6.5 

0.7 0.019 0.020 9 0.841 0.786 6.5 

0.8 0.021 0.023 9 0.961 0.898 6.5 

0.9 0.024 0.026 8.9 1.081 1.011 6.5 

1 0.026 0.029 9 1.216 1.123 7.7 

2 0.053 0.058 9.1 2.430 2.242 7.7 

3 0.078 0.086 9.3 3.640 3.358 7.7 

4 0.104 0.115 9.4 4.846 4.472 7.7 

5 0.129 0.142 9.5 6.050 5.582 7.7 

6 0.154 0.170 9.6 7.251 6.689 7.7 

7 0.178 0.198 9.7 8.449 7.794 7.8 

8 0.203 0.225 9.8 9.644 8.896 7.8 

9 0.227 0.252 9.9 10.840 9.995 7.8 

10 0.250 0.278 10 12.030 11.091 7.8 

20 0.476 0.533 10.7 23.880 21.871 8.4 

30 0.685 0.771 11.1 36.010 32.549 9.6 

40 0.881 0.994 11.4 48.170 42.995 10.7 

50 1.067 1.202 11.3 60.330 53.286 11.7 
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Figure 3.4 Comparison of the central deflection values for laminated cylindirical  

glass shell 
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Figure 3.5 Comparison of the stress values for the laminated cylindrical glass shell 
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Figure 3.6 A view of contours of radial deflection obtained from ABAQUS 
 
 
 
 
3.6 Numerical Solution and Results 
 
 
3.6.1 Numerical Results for Fixed Supported Cylindrical Shell 

Subjected to Uniform Distributed Load Towards Out of the 

Top Shell Surface 

 

Fixed laminated glass shell tested has 0.508 m in length and 2.54 m radius. It is 

consisting of two glass shells and each of them has a thickness of 2.5 mm. The 

thickness of the inner core is 0.76 mm. The total thickness of the unit is 5.76 mm. 

The Young’s modulus and Poisson’s ratio of glass are taken to be 72 GPa and 0.25, 

respectively.  Shear modulus and Poisson’s ratio of the interlayer are taken as 1000 

kPa and 0.29, respectively. Physical properties of laminated unit are given in Table 

3.2. Figures 3.7 and 3.8 show the comparison of linear and nonlinear approach to 

predict the behavior of the clamped cylindrical shell. Linear and nonlinear solution 
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results are plotted as normalized deflection versus load in Figure 3.7.  The level of 

nonlinearity may be defined as  
h

wmax  ratio, where maxw  is the deflection at the center 

of the shell, and h  is the thickness of the single glass sheets. Separation between 

linear and nonlinear solutions starts when 08.0max 
h

w
. It can be said that nonlinear 

solution should be considered when the ratio of maximum deflection to thickness of 

a single glass shell is greater than 0.08. It is observed that this ratio (the level of 

nonlinearity) is about 0.5 for a load P=50 kPa in Figure 3.7. The central deflection 

obtained from the linear approach is almost 1.2 times of the deflection obtained by 

nonlinear approach at load P=50 kPa. Figure 3.8 is plotted to observe stress versus 

load for linear and nonlinear behavior. In contrary to the deflection values, stress 

values of nonlinear behavior are higher than stress values, which are obtained for 

linear behavior. Because there are ignored nonlinear terms in stress formulation of 

linear approach. 
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Figure 3.7 Normalized maximum deflection ( )max

h

w
versus load for clamped 

cylindrical shell 
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    Figure 3.8 Stress versus load for clamped cylindrical shell. 

The developed model is able to predict the behavior of monolithic, layered and 

laminated glass shells.  

Figures 3.9 and 3.10 are plotted to compare the behavior of true monolithic, 

equivalent monolithic, laminated and layered glass shells. In the figures below, the 

origin of coordinate system is considered at the center of the laminated glass shell. 

Figures 3.9 and 3.10 are the deflection and maximum stress versus load graphs, 

respectively. The behavior of laminated glass shell is close to the behavior of layered 

glass shell as seen in Figures 3.9 and 3.10. Their behavior is bounded by two limiting 

cases which are monolithic and layered behavior. While layered glass, which has two 

glass sheets with no connection between them, is found to be the upper bound of 

laminated glass behavior; true monolithic glass, which has only one glass sheet with 

thickness equal to the total thickness of glass sheets plus the interlayer thickness in 

laminated shell unit, is found to be the lower bound, rather than that of an equivalent 

monolithic glass which has a glass sheet having the thickness equal to the total glass 

thickness of laminated glass unit. 
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Figure 3.9 Maximum deflection versus load 
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Figure 3.10 Maximum stress versus load 

 
 
Figures 3.11 and 3.12 represent the circumferential deflection in θ direction (u1 and 

u2) along the centerline at y=0 for top and bottom glass units, respectively. 

Circumferential deflections are zero at θ=0 and θ=θ1. Circumferential deflections in θ 

direction take their maximum values close to the midpoint of the quarter shell. There 

is a slight difference between the circumferential deflections of top and bottom glass 

sheets. Circumferential deflection of the top glass is larger than the bottom glass. 

Both of them are negative. When the load is increased the deflection curves are 
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getting closer to each other and the curvature of deflection lines increases. The ratio 

of maximum deflection value at 10 kPa to that at 5 kPa is nearly 2, while it is nearly 

1 for those at  50 kPa and at  45 kPa. The reason of this behavior is the nonlinearity 

of the shell unit. 
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Figure 3.11 Circumferential displacement of the top glass unit along the center line 

at y=0  
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Figure 3.12 Circumferential displacement of the bottom glass unit along the 

centerline at y=0  
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Figures 3.13 and 3.14 are plotted to represent the axial deflections (v1 and v2) along 

the center line at θ=0 for top and bottom glass units, respectively. Axial deflections 

v1 and v2 are zero at along the center line at y=0 and at the edge y=y1 in accordance 

with the geometry of shell unit. Axial deflections take the value of zero also at a node 

inside the domain. The location of zero point is found to shift toward the edge for 

high values of applied pressure on top surface. From Figure 3.14 it is observed that 

zero point of bottom glass sheet inside the domain is the same for all load values. 

They take their maximum values at the midpoint of the quarter laminated glass unit. 

Axial deflections v1 and v2 along the center line at θ=0 take both positive and 

negative values. Axial deflection at the top shell is nearly half of that of the bottom 

shell.  Radial deflections along the center line at y=0 are illustrated in Figure 3.15 for 

different load levels. Radial displacements take their maximum value at the center of 

the unit while they are zero at the shell boundaries. Because of the nonlinearity, 

radial deflections are getting closer to each other when the load is increased. 
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Figure 3.13 Axial displacement of the top glass unit along the center line at θ=0 
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Figure 3.14 Axial displacement of the bottom glass unit along the center line at θ=0 
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Figure 3.15 Radial  displacement of the unit along the centerline at y=0 

  

 
Figures 3.16-3.20 illustrate the radial, circumferential and axial displacements along 

the diagonal of the laminated glass shell unit. Radial displacements take their 

maximum value at the center of the unit. The circumferential displacement of the top 

glass ply in θ direction is larger than the axial displacement of the bottom glass ply as 

seen in Figures 3.17 and 3.18. Axial displacements are zero at the center and at the 

corner of the shell. In addition to the center and corner of the unit, axial deflections 

along the diagonal are zero at a point inside the domain as it is observed from 
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Figures 3.19 and 3.20. The point shifts toward the center while the load is 

decreasing. They take positive values near the center while they are negative near the 

corner of the unit. The negative values are absolutely greater than the positive values. 

The circumferential displacement (u1) of the top glass ply is larger than the 

circumferential displacement of the bottom glass ply.  The effect of geometric 

nonlinearity is observed since displacement curves for increasing load values are 

getting closer to each other.  
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Figure 3.16 Radial  displacement of the shell along the diagonal  
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Figure 3.17 Circumferential displacement of the top glass shell along the diagonal   
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Figure 3.18 Circumferential displacement of the bottom glass  shell along the 

diagonal   
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Figure 3.19 Axial displacement of the top glass  shell along the diagonal   
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Figure 3.20 Axial displacement of the bottom glass shell along the diagonal  
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Figures 3.21-3.24 are plotted to consider the maximum and minimum principal 

stresses for the top surface of the top shell and for the bottom surface of the bottom 

shell of laminated glass unit. Figures 3.21 and 3.22 represent maximum and 

minimum principal stresses at top surface of the top glass unit along the center line at 

y=0 for different load values, respectively. Maximum and minimum principal 

stresses from Figures 3.21 and 3.22 are observed as tension at the top surface of the 

top glass. They take their maximum values at the support of the unit at θ=θ1. The 

value of maximum principal stress at top surface is 50 MPa for the applied 50 kPa 

load while it is 28 MPa for bottom surface.  

Maximum and minimum principal stresses of the bottom surface of the bottom glass 

along the centerline at y =0 are presented in Figures 3.23 and 3.24, respectively. 

While principal stresses of the bottom surface of the bottom glass are tension at the 

center, they are compression at the boundary of the unit. Unlike maximum stresses 

on the top surface, maximum stresses on the bottom surface take their maximum 

value at the center of the shell.  
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Figure 3.21 Maximum stresses on the top surface of the top glass along the center 

line at y=0  
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Figure 3.22 Minimum  stresses on the top surface of the top  glass along the center 

line at y=0  
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Figure 3.23 Maximum stresses on the bottom surface of the bottom glass along the 

center line at y=0  
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Figure 3.24 Minimum stresses on the bottom surface of the bottom glass along the 

center line at y=0  
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Figures 3.25 and 3.28 are plotted to illustrate the maximum and minimum principal 

stresses at the bottom surface of the top shell and on the top surface of the bottom 

shell along θ direction of the laminated shell unit. Because of the perfect bound 

between the glass sheets and PVB film, stress at top surface of PVB interlayer is 

equal to the stress at the bottom surface of the top glass sheets and stress at the 

bottom surface of PVB interlayer is equal to the stress at the top surface of the 

bottom glass sheet. Figures 3.25 and 3.26 present the maximum principal stress on 

the top and bottom surface of PVB interlayer, respectively. While maximum 

principal stresses on the bottom surface of interlayer are tension along the center line 

at y=0, they are both tension and compression at the bottom surface of top shell. 

Maximum principal stress at the bottom surface of interlayer is nearly twice of 

maximum principal stress on top surface of interlayer PVB. Figures 3.27 and 3.28 

show minimum principal stress on the bottom surface of the top shell and on the top 

surface of the bottom shell along the center line at y=0, respectively. Minimum 

principal stresses on the bottom surface of the top shell are tension till a point which 

is 0.003 m away from the edge of the unit. They take their maximum value as tension 

at the center of unit. Minimum principal stresses on the top surface of the bottom 

shell are tension along θ direction. They take their maximum value at the edge of the 

unit. Minimum principal stresses on the top surface of the bottom shell are slightly 

higher than that of the bottom surface of the top shell. 
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Figure 3.25 Maximum stresses on the bottom surface of the top shell along the 

center line at y=0 
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Figure 3.26 Maximum stresses on the top surface of the bottom shell along center 

line at y=0 
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Figure 3.27 Minimum stresses on the bottom surface of the top shell along center 

line at y=0 
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Figure 3.28 Minimum stresses on the top surface of the bottom shell along center 

line at y=0 

 
Figure 3.29-3.32 are plotted to represent the maximum and minimum principal 

stresses on the top surface of the top glass unit and on the bottom surface of the 

bottom glass unit, respectively along the center line at θ=0 of the shell unit. 

Maximum stress on the top surface of the shell is tension; it takes its maximum value 

at the boundary of the unit. As it is seen from Figure 3.29 maximum stresses on the 

top surface of the top glass is tension along the center line at θ=0  . They take their 

maximum value at the boundary of unit.  Figure 3.30 illustrates how minimum 

principal stress changes on top surface along the y-axis. At the origin, they are 

tension and they change their sign at a point close to 0.1 while the load is increasing. 

Close to boundary of unit, they change their sign again and they become tension. At 

the point where maximum principal stress is minimum, minimum principal stress 

makes a peak. They take their maximum value at the boundary. As it is seen from 

Figure 3.31 maximum stress of bottom surface is tension near the center while it is 

compression near the edge. Maximum stress lines on top face of top ply are nearly 

straight because they get smaller very slowly till a point which is 0.042 away from 

the boundary. At that point, they take their minimum value. After that point they start 

to increase and at the boundary they take their maximum value. Minimum stress 

lines at the bottom surface of the unit along the center line at θ=0 are illustrated in 
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Figure 3.32. It is observed that minimum stresses on bottom surface of the unit take 

their maximum value at the center of the shell as compression.  

Figures 3.33-3.36 show how maximum and minimum principal stresses change along 

the diagonal of the shell unit on the top and bottom surfaces, respectively. While 

minimum principal stresses on the bottom surface are tension near the center, they 

are compression near the edges. Figures 3.33 and 3.35 illustrate maximum principal 

stresses as tension on the top and bottom surfaces.  It should be underlined that, in 

Figures 3.34 and 3.36, absolute minimum stresses on the top surface occur as 

compression, while it is tension at the bottom surface. 
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Figure 3.29 Maximum stresses on the top surface of the top  glass along the center 

line at θ=0 
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Figure 3.30 Minimum stresses on the top surface of the top glass along the center 

line at θ=0 



 122

-15

-10

-5

0

5

10

15

20

25

30

0 0,05 0,1 0,15 0,2 0,25

Distance (m)

S
tr
es

s 
(M

P
a)

q=50 kPa

q=45 kPa

q=40 kPa

q=35 kPa

q=30 kPa

q=25 kPa

q=20 kPa

q=15 kPa

q=10 kPa

q=5 kPa

 
Figure 3.31 Maximum stresses on the bottom surface of the bottom shell along the 

center line at θ=0 
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Figure 3.32 Minimum stresses on the bottom surface of the bottom shell along the 

center line at θ=0 
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Figure 3.33 Maximum stresses on the top surface of the top shell along the diagonal  
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Figure 3.34 Minimum stresses on the top surface of the top shell along the diagonal  
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Figure 3.35 Maximum stresses on the bottom surface of the bottom shell along the 

diagonal  
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Figure 3.36 Minimum stresses on the bottom surface of the bottom shell along the 

diagonal  
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Function of shear stress of interlayer along the center line at y=0 and along the 

centerline at θ=0 is plotted in Figures 3.37 and 3.38. For fixed supported shell, it is 

observed that shear stress is maximum close to the supports and zero at the center 

and boundaries. Shear stress at the center and at the boundaries of unit is zero 

because of the geometry of unit as we expected. 
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Figure 3.37 Shear stresses along θ direction 
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Figure 3.38 Shear stresses along y direction 

 
In order to have detailed information, the contour of the radial deflection is given for 

the quarter of the shell unit. Radial deflection contours are plotted for applied 

pressure q=10, 20, 30, 40 and 50 kPa in Figures 3.39-3.43. Maximum radial 

deflection is at the center of the unit. They are getting smaller towards the corner of 
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the unit. The numbers, which are seen on horizontal and vertical axes, are the 

distances from the center. 

 
Figure 3.39 Contours of radial displacement (mm) for q=10 kPa 

 
Figure 3.40 Contours of radial displacement (mm) for q=20  kPa 
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Figure 3.41 Contours of radial displacement (mm) for q=30  kPa 

 
Figure 3.42 Contours of radial displacement (mm) for q=40  kPa 
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Figure 3.43 Contours of radial displacement (mm) for q=50  kPa 

Figures 3.44-3.55 illustrate principal stress contours for the first quarter of laminated 

glass shell unit. Principal stress contours are plotted for applied pressure q= 10, 30, 

50, 70, 90, 100 kPa. Contours of maximum principal stress on the top face of top 

glass unit are given in Figures 3.44-3.49 and minimum principal stress on the top 

surface of the top glass are given in Figures 3.50-3.55. Maximum principal stresses 

on the top surface take their maximum value at the intersection of upper boundary 

and symmetry axes of the unit. Maximum principal stresses on the top surface are in 

tension at every point of the shell unit. They are zero at the corner of the unit. 

Minimum principal stresses on the top surface of the top glass take their maximum 

value at the intersection of upper boundary and center line of the unit. The place of 

minimum value of minimum principal stress move horizontally towards the corner of 

the unit for increasing load levels. Minimum principal stress at the top surface of the 

top glass could be tension or compression as observed in Figures 3.50-3.55.  They 

take zero values at the corner of unit.  
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Figure 3.44 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 10 kPa. 

 
Figure 3.45 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 30 kPa. 
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Figure 3.46 Contours of maximum principal stresses (*104 kPa) on the top  surface 

of the top shell for q= 50  kPa. 

 

Figure 3.47 Contours of maximum principal stresses (*104 kPa) on the  top surface 

of the top shell for q= 70 kPa. 
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Figure 3.48 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 90 kPa 

 

Figure 3.49 Contours of maximum principal stresses (*104 kPa) on the top  surface 

of the top shell for q= 100  kPa 
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Figure 3.50 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 10 kPa 

 
Figure 3.51 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 30 kPa 
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Figure 3.52 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 50 kPa 

 

Figure 3.53 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 70 kPa 



 133

 

Figure 3.54 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 90 kPa 

 

Figure 3.55 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the top shell for q= 100  kPa 
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Maximum principal stresses at bottom surface of bottom glass are illustrated in 

Figures 3.56-3.62 for q=5, 20, 30, 50, 70, 90, 100 kPa. Maximum principal stresses 

on the bottom surface of the bottom glass surface take their maximum value close to 

the center of the unit as shown in Figure 3.56 for q=5 kPa which can be accepted as 

linear behavior. It moves on the y-axis while load is increasing. Figures 3.56-3.62 

illustrate that maximum principal stress could be tension or compression on the 

bottom surface of the bottom glass sheet. While they are compression near the 

boundaries, they are tension around the center. Maximum stresses at the bottom 

surface of the bottom glass take their minimum value at the left hand side of the 

upper bound.  

 
Figure 3.56 Contours of maximum principal stresses (*104 kPa) on the bottom  

surface of the bottom shell for q= 5  kPa 
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Figure 3.57 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 20 kPa 

 
Figure 3.58 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30 kPa 
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Figure 3.59 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50  kPa 

 

Figure 3.60 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70  kPa                                                   
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Figure 3.61 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 90  kPa 

 

Figure 3.62 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 100  kPa 
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Contours of minimum principal stress on the bottom face of the bottom glass are 

illustrated in Figures 3.63- 3.68. Minimum principal stresses take both positive and 

negative values. They are compression close to boundaries of the shell unit. The 

maximum negative value of minimum principal stress is at the intersection of center 

and top boundary of the unit. The maximum positive value of minimum principal 

stress moves toward the top boundary for higher pressure values. 

 
Figure 3.63 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 10  kPa 
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Figure 3.64 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30 kPa 

 
Figure 3.65 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50  kPa 
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Figure 3.66 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70  kPa 

 

Figure 3.67 Contours of minimum principal stresses (*104 kPa) on the bottom  

surface of the bottom shell for q= 90  kPa 
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Figure 3.68 Contours of minimum principal stresses (*104 kPa) on the bottom  

surface of the bottom shell for q= 100  kPa 

 

Because of the perfect bound between the polyvinyl butyral interlayer and glass 

sheets, stress on bottom surface of top glass is equal to the stress on the top surface 

of interlayer and stress on the bottom surface of PVB interlayer. Maximum principal 

stress contours for applied pressure q= 10, 30, 50, 70, 90, 100 kPa are illustrated in 

Figures3.69-3.74 on the bottom surface of the top shell and in Figures 3.75-3.81 on 

the top surface of the bottom shell. Maximum principal stress on the bottom surface 

of the top shell is at the center in Figure 3.69 for q= 10 kPa which can be accepted as 

linear behavior. It moves away from x and y-axis towards the corner of quarter shell 

for higher load values. Maximum principal stress on the bottom surface of the top 

shell could be tension or compression. They are in compression along the boundaries 

of the unit. Maximum principal stresses on the top surface of the bottom shell take 

their maximum value at upper left corner of the unit for applied load till 100 kPa. For 

100 kPa load they take their maximum value at the right boundary. Maximum 
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principal stresses are on tension for every load value and at everywhere of the shell 

unit. They take their minimum value at the upper right corner of the unit.  

Minimum principal stress contours for applied pressure q= 10, 30, 50, 70, 90, 100 

kPa are illustrated in Figures3.82-3.87 on the bottom surface of the top shell and in 

Figures 3.88-3.93 on the top surface of the bottom shell.  Minimum principal stresses 

on the bottom surface of the top shell take their maximum value at the middle of the 

left center line while they take their minimum value at the upper left corner. They 

could be both tension and compression. They are on tension near the boundaries of 

quarter shell. Minimum principal stresses on the top surface of the bottom shell take 

their maximum value at the upper left corner.  They take their minimum value close 

to the center of quarter shell for q=10 kPa, it moves towards the corner for higher 

load values. Minimum principal stress on the top surface of the bottom shell could be 

tension or compression. They take zero value inside the domain. 

 
 

Figure 3.69 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 10 kPa 
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Figure 3.70 Contours of maximum principal stresses (*104 kPa) on the bottom  

surface of the top shell for q= 30 kPa 

 
Figure 3.71 Contours of maximum principal stresses (*104 kPa) on the bottom  

surface of the top shell for q= 50  kPa 
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Figure 3.72 Contours of maximum principal stresses (*104 kPa) on the  bottom 

surface of the top shell for q= 70 kPa 

 

Figure 3.73 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 90 kPa 
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Figure 3.74 Contours of maximum principal stresses (*104 kPa) on the bottom  

surface of the top shell for q= 100  kPa 

 
Figure 3.75 Contours of maximum principal stresses (*104 kPa) on the top  surface 

of the bottom shell for q= 10  kPa 
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Figure 3.76 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 20 kPa 

 
Figure 3.77 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 30 kPa 
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Figure 3.78 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 50  kPa 

 

Figure 3.79 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 70  kPa             
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Figure 3.80 Contours of maximum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 90  kPa 

 

Figure 3.81 Contours of maximum principal stresses (*104 kPa) on the top  surface 

of the bottom shell for q= 100  kPa 
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Figure 3.82 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 10 kPa 

 
Figure 3.83 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 30 kPa 
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Figure 3.84 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 50 kPa 

 

Figure 3.85 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 70 kPa 
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Figure 3.86 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 90 kPa 

 

Figure 3.87 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the top shell for q= 100  kPa 
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Figure 3.88 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 10  kPa 

 
Figure 3.89 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 30 kPa 
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Figure 3.90 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 50  kPa 

 

Figure 3.91 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 70  kPa 



 154

 

Figure 3.92 Contours of minimum principal stresses (*104 kPa) on the top surface of 

the bottom shell for q= 90  kPa 

 

Figure 3.93 Contours of minimum principal stresses (*104 kPa) on the top  surface 

of the bottom shell for q= 100  kPa 
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3.6.2 Strength Factor Analysis of Laminated Glass Unit 

 

Theoretical stress analyses of monolithic and laminated glass units are conducted in 

order to establish the limits of behavior of laminated glass units. The strength factor 

(type factor) is defined as the ratio of maximum principal stress in monolithic glass 

unit to the maximum principal stress in laminated glass unit. If the PVB interlayer is 

strong enough to transfer 100 percent of shear between the glass sheets, then strength 

factor 1.0 will mean that radial pressure resistance of monolithic and laminated glass 

units are similar. Displacements and stress of laminated and monolithic glass units 

are compared as in order to access the strength factor value of laminated glass unit. 

The strength factor value for laminated unit is computed by using the formula below. 

 

Unit Glass Laminated in  StressPrincipal Maximum

Unit Glass c Monolithiin  StressPrincipal Maximum
Factor Strength   

 

Because of large deformations in addition to the bending stresses, membrane stresses 

occur while the radial pressures are increasing and this causes variation to the 

strength factor.  

 

For monolithic and laminated glass units, which have the same nominal glass 

thickness, strength factor values are assigned in Table 3.4 below: 

 

Table 3.4   Strength Factor values in building codes 

Code    Strength Factor 
Uniform Building Code 1985  

Basic/National Building Code 1984 
0.6 

Standart Building Code 1986  
Uniform Building Code 1988  
Basic/National Building Code 1987  

Standart Building Code 1988  

0.75 
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Strength factor value for fixed shell unit varies between 1.03-1.07 as shown in Figure 

3.94. Strength factor value gets smaller while the load is increasing.  
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Figure 3.94 Strength factor for the fixed supported laminated cylindrical shell 

 
 
3.6.3 Numerical Results for Fixed Supported Cylindrical Shell 

Subjected to Uniformly Distributed Load Towards the Top 

Shell Surface 

 

To consider the effect of load on the behavior of laminated glass shell, the same unit 

is solved for the same geometry by applying the load as pressure. Fixed laminated 

glass shell tested has 0.508 m in length and 2.54 m radius. It is consisting of two 

glass shells and each of them has a thickness of 2.5 mm. The thickness of the inner 

core is 0.76 mm. The total thickness of the unit is 5.76 mm. The Young’s modulus 

and Poisson’s ratio of glass are taken to be 72 GPa and 0.25, respectively.  Shear 

modulus and Poisson’s ratio of the interlayer are taken as 1000 kPa and 0.29, 

respectively. Physical properties of laminated unit are given in Table 3.2. The results 

are verified by using the results of finite element package program ABAQUS. As 

seen in Table 3.5, Figures 3.95 and 3.96 the results are seen in good agreement till 35 

kPa. Between 35 kPa and 40 kPa load, the difference between the current model and 
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the finite element model is between 20% and 37%. Except 35-40 kPa the results are 

very close to each other. The difference is less than 10%. View of radial deflection 

contours is given in Figure 3.97. From Figure 3.97 it can be seen that they take their 

maximum value at the boundaries of the unit. 

 
Table 3.5 Comparison of the results for the fixed supported laminated cylindrical 

shell 

  Displacement (mm) Maximum Stress (MPa) 

 Load 
(kN/m2) FEM Model % Error FEM Model % Error 

0 0.000 0.000 0.000 0.000 0.000 0.000 
1 -0.031 -0.029 5.202 1.304 1.095 16.036 
2 -0.062 -0.059 5.289 2.619 2.198 16.076 
3 -0.094 -0.089 5.413 3.945 3.310 16.108 
4 -0.127 -0.120 5.496 5.282 4.430 16.130 
5 -0.159 -0.150 5.643 6.631 5.560 16.154 
6 -0.192 -0.181 5.493 7.887 6.699 15.058 
7 -0.226 -0.213 5.880 9.244 7.849 15.089 
8 -0.261 -0.245 6.078 10.610 9.010 15.083 
9 -0.296 -0.277 6.242 12.000 10.182 15.153 

10 -0.331 -0.310 6.402 13.850 11.366 17.938 
20 -0.734 -0.670 8.722 28.860 24.084 16.549 
30 -1.314 -1.131 13.907 47.950 40.309 15.936 
35 -1.830 -1.458 20.310 61.940 55.934 9.696 
40 -3.284 -2.046 37.707 94.440 127.219 -34.709 
45 -5.138 -4.669 9.128 146.000 165.810 -13.568 
50 -6.162 -6.026 2.199 185.800 197.769 -6.442 
60 -7.506 -7.511 -0.061 248.700 252.222 -1.416 
70 -8.470 -8.512 -0.495 304.800 299.167 1.848 
80 -9.241 -9.298 -0.619 355.000 341.159 3.899 
90 -9.894 -9.955 -0.614 401.100 379.423 5.404 

100 -10.460 -10.520 -0.577 443.700 414.642 6.549 
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Figure 3.95 Comparison of the central deflection values for laminated glass shell 
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Figure 3.96 Comparison of the stress values for laminated glass shell 
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Figure 3.97 A view of radial deflection contours obtained from ABAQUS 
 

The behavior of laminated shell unit changes according to dimension of load. If the 

load is applied as pressure double curvature can be seen in Figure 3.98. The behavior 

of monolithic shell is different from layered and laminated units because double 

curvature is not observable for monolithic shell.  For the applied tensile load there is 

only one curvature and the behavior of laminated, layered and monolithic glass units 

are very close to each other.  

 
         

Figure 3.98 Comparison of displacement of the laminated glass subjected to uniform 

tension and compressive load 

Figures 3.99 and 3.100 are plotted to compare the behavior of monolithic, laminated 

and layered glass beams. The developed model is able to predict the behavior of 

monolithic, layered and laminated glass shells. In Figures 3.99 and 3.100, the origin 
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of coordinate system is considered at the center of the laminated glass shell. The 

behavior of laminated glass shell is similar to the behavior of layered glass shell as 

seen in Figures 3.99 and 3.100. Their behavior is bounded by two limiting cases, 

which are monolithic and layered behavior. Behavior of monolithic glass shell is 

different from layered and laminated glass shell. Double curvature is not observed 

for monolithic case. The deflection value of laminated shell unit which is obtained 

for 100 kPa pressure is nearly 5 times of the same shell under 100 kPa tensile load. 
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  Figure 3.99 Comparison of maximum displacements of monolithic, laminated and 

layered glass units 
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Figure 3.100 Comparison of maximum stresses of monolithic, laminated and layered 

glass units 
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Figures 3.101 and 3.102 are the circumferential displacements (u1 and u2) along the 

centerline at y=0 for top and and glass shells, respectively. Circumferential 

displacements are zero at θ=0 and θ=θ1 as we expected. The behavior of unit changes 

after 40 kPa load. Circumferential displacements take their maximum values close to 

the midpoint of the quarter laminated glass unit for pressures under 40 kPa. The 

maximum deflection moves toward the center of the unit for higher pressures than 40 

kPa. The deflections of the top glass ply are slightly higher than the deflections of the 

bottom ply. The effect of nonlinearity can be seen from the below figures clearly.  
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Figure 3.101 Circumferential displacement of the top glass unit along the center line 

at y=0  
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Figure 3.102 Circumferential displacement of the bottom glass unit along the center 

line at y=0 
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Figures 3.103 and 3.104 show the axial displacements (v1 and v2) along the center  

line at θ=0 for top and bottom glass units, respectively. Axial displacements v1 and 

v2 are zero along the center line at y=0 and y=y1 as we expected. In-plane 

displacements of the top glass ply take positive values for pressures under 30 kPa. 

For pressures higher than 30 kPa they take negative values close to the boundary of 

the unit.  The place of maximum displacement moves toward the center of the unit 

while the applied pressure is increasing. Axial displacements of the bottom glass ply 

take negative values along the length of the shell for 5 and 10 kPa loads. After 10 

kPa load, they take both positive and negative values. The place of maximum 

displacement moves toward the center as the load is increasing. The maximum 

values, which are obtained for the top glass ply, are higher than that of the bottom 

glass ply.  Figure 3.105 shows the radial displacement at the center of the shell unit 

along the θ direction for different load values. Radial displacements take their 

maximum value along the center line at θ=0 while they are zero along center line at 

θ=θ1. Radial displacements are negative for applied pressure under 45 kPa; they take 

positive values close to boundary of the unit for pressures higher than 45 kPa.  
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Figure 3.103 Axial displacement of the top glass unit at the center the center line at 

θ=0 
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Figure 3.104 Axial displacement of the bottom glass unit along the center line at θ=0 
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Figure 3.105 Radial  displacement of the unit at the center along the center line at 

y=0    

 
Figures 3.106-3.110 are the radial, circumferential and axial displacements along the 

diagonal of the laminated glass shell unit. While radial displacements take their 

maximum value along the center line at θ=0, circumferential and axial displacements 

are zero along the center line at θ=0. It is observed from the Figures 3.106 and 3.110 

that when the curvature changes because of high nonlinearity, the behavior of 

displacement lines also changes.  
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Figure 3.106 Radial  displacement of the unit along the diagonal  of shell   
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Figure 3.107 Circumferential displacement of the top glass shell along the diagonal    
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Figure 3.108 Circumferential  displacement of the bottom glass shell along the 

diagonal 
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Figure 3.109 Axial displacement of the top glass shell along the diagonal   
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Figure 3.110 Axial displacement of the bottom glass shell along the diagonal   

Figures 3.111 and 3.112 are plotted to represent the maximum principal stresses on 

the top and bottom surface of glass unit along the center line at y=0 for different load 

values. The maximum principal stresses on the top surface of the top glass are 

compression along the center line at y=0 till 20 kPa pressure. Between 25 and 40 kPa 

pressure applied they can be both tension and compression. While they are tension 

around the center, they take compression values at the boundary and around the 

boundary. Till 45 kPa, pressure they take their maximum value at the boundary of 

the unit as compression. For pressures higher than 45 kPa, they take their maximum 

value at the center as tension. On the bottom surface of the bottom glass the 

maximum principal stresses are compression along the center line at y=0 direction 

till 40 kPa pressure and they take their maximum value at the center of glass shell as 
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compression. For pressures higher than 40 kPa, the maximum principal stress takes 

both positive and negative values. They change their sign at two points along the 

center line at y=0 and they take their maximum value at a point close to half of the 

quarter unit as tension. Figures 3.113 and 3.114 represent the minimum principal 

stresses at the top and bottom glass unit, respectively. The minimum principal 

stresses on the top and bottom surface of glass unit are compression along the center 

line at y=0 for applied pressure till 40 kPa. For pressures higher than 40 kPa, 

minimum principal stresses can be both tension and compression.  
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Figure 3.111 Maximum stresses on the top surface of the top glass along the center 

line at y=0 
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Figure 3.112 Maximum stresses on the bottom surface of the bottom glass along the 

center line at y=0 
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Figure 3.113 Minimum stresses on the top surface of the top glass along the center 

line at y=0 
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Figure 3.114 Minimum stresses on the bottom surface of the bottom glass along the 

center line at y=0 

 
Figures 3.115 and 3.118 are maximum and minimum principal stresses along the 

center line at y=0 for clamped laminated cylindrical shell which is subjected to 

uniform distributed load as pressure for the bottom surface of the top shell and for 

the top surface of the bottom shell. Maximum principal stresses at the bottom surface 

of the top glass shell are compression along the center line at y=0 till 35 kPa pressure 

as seen in Figure 3.115. For pressures higher than 35 kPa, they could be both tension 

and compression. While maximum principal stresses take their maximum value at 

θ=0 as compression; for pressures under 45 kPa, they take their maximum value 0.06 

m away from the center as tension for pressures 45 and 50 kPa. Maximum principal 
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stresses at the top surface of the bottom glass shell are plotted in Figure 3.116 for 

different load values. Maximum principal stresses at the top surface of the bottom 

glass shell are compression along the center line at y=0 for pressures less than 35 kPa 

and they take their maximum value at the edge of the unit as compression. Pressures 

could be both tension and compression for the values higher than 35 kPa they and 

they take their maximum value as tension at the center of the unit. Minimum 

principal stresses at the top and bottom surface of the interlayer are plotted in Figures 

3.117 and 3.118, respectively. Minimum principal stresses on the bottom surface of 

the top glass sheel are compression along the center line at y=0. They take their 

maximum value at θ=0. Minimum principal stresses on the top surface of glass shell 

are compression for pressures less than 45 kPa and they take their maximum value at 

the edge of the unit for pressures higher than 45 kPa which could be both tension and 

compression. They take their maximum value 0.06 m away from the center as 

compression. 
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Figure 3.115 Maximum stresses at the bottom surface of the top shell along the 

center line at y=0 
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Figure 3.116 Maximum stresses at the top surface of the bottom shell along the 

center line at y=0 
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Figure 3.117 Minimum  stresses at the bottom surface of the top shell along the 

center line at y=0 
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Figure 3.118 Minimum stresses at the top surface of the bottom shell along the 

center line at y=0 
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Figures 3.119 and 3.120 are plotted to represent the maximum principal stresses on 

the top and bottom surfaces of the glass shell unit along the center line at θ=0, 

respectively. The maximum stresses on the bottom surface are compression till a 

point close to boundary. After that point the stresses become tension. The point 

moves toward the center of the unit while the load is increasing. They take their 

maximum value at center line at y=0. The maximum stresses at the top surface are 

tension till a point which is 0.2 m away from the center of the unit for pressures 

under 45 kPa. After that point they take negative values. The maximum stress occurs 

at the boundary of the unit as compression. For applied pressures higher than 40 kPa 

the point moves toward the boundary while the load is increasing and they take their 

maximum value at the center of the unit. Figures 3.121 and 3.122 show the minimum 

principal stresses at the top and bottom surface along the y direction of glass unit, 

respectively. Minimum principal stresses at the top surface are compression along 

the center line at θ=0  till 45 kPa. 45 and 50 kPa pressures take both positive and 

negative values. While the minimum principal stresses take their maximum values at 

the boundary of the unit for top surface of the unit, they take their maximum value 

along the center line at y=0 for the bottom surface of unit. 
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Figure 3.119 Maximum stresses on the top surface of the top glass along the center 

line at θ=0 
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Figure 3.120 Maximum stresses on the bottom   surface of the bottom glass along 

the center line at θ=0 

-120

-100

-80

-60

-40

-20

0

20

40

60

80

0 0,05 0,1 0,15 0,2 0,25

Distance (m)

S
tr
es

s 
(M

P
a)

q= -50 kPa

q= -45 kPa

q= -40 kPa

q= -35 kPa

q= -30 kPa

q= -25 kPa

q= -20 kPa

q= -15 kPa

q= -10 kPa

q= -5 kPa

Fi

gure 3.121 Minimum stresses on the top surface of the top glass along the center line 

at θ=0 
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Figure 3.122 Minimum stresses on the bottom surface of the bottom glass along the 

center line at θ=0 
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Figures 3.123-3.127 are plotted in order to have detailed information about the 

contour of radial displacement for the quarter of the shell. Radial displacements are 

given for applied pressure q= 10, 20, 30, 40, 50 kPa.  It is observable from the 

figures below that for pressures higher than 40 kPa the characteristic of contours 

change. It is also observed that there is a zero deflection region for pressures higher 

than 40 kPa. The radial deflection takes its maximum value at the center of the unit.  

 
Figure 3.123 Contours of radial displacement (mm) for q=10 kPa 
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Figure 3.124 Contours of radial displacement (mm) for q=20  kPa 

 
 
                   Figure 3.125 Contours of radial displacement (mm) for q=30  kPa 



 174

 
Figure 3.126 Contours of radial displacement (mm) for q=40  kPa 

 

 
Figure 3.127 Contours of radial displacement (mm) for q=50 kPa 
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Figures 3.128-3.155 are plotted for the quarter of the laminated glass shell in order to 

have detailed information about the contour of maximum and minimum principal 

stress values at the top and bottom surfaces. Maximum principal stress contours are 

given for applied pressure q=10, 30, 40, 50, 70, 100 kPa in Figures 3.128-3.134 for 

the top of the unit and in Figures 3.135-3.141 for the bottom of the unit. Maximum 

principal stress on the top surface is close to the center of quarter shell for pressures 

under 50 kPa, and then it moves away from x and y-axes towards the center of the 

unit. For pressures higher than 50 kPa maximum principal stress on the top surface of 

the top glass takes place at the center of glass shell unit. Maximum principal stress 

on the bottom surface of the bottom glass is at the boundary of the unit. Maximum 

principal stress on the top and bottom surfaces of glass could be tension or 

compression as observed in Figures 3.128-3.141. It is observed that there is a zero 

stress region on the top and bottom plate. The characteristics of contours change for 

pressure higher than 40 kPa. Minimum principal stress contours for applied pressure 

are given at the top and bottom surfaces in Figures 3.142-3.148 and Figures 3.149-

3.155, respectively. 

 
Figure 3.128 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 10 kPa 



 176

 
Figure 3.129 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 30 kPa 

 
Figure 3.130 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 40  kPa 
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Figure 3.131 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 50  kPa 

 

Figure 3.132 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 70 kPa 
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Figure 3.133 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 90 kPa 

 

Figure 3.134 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 100  kPa 
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Figure 3.135 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 10 kPa 

 
Figure 3.136 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30 kPa 
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Figure 3.137 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 40  kPa 

 
Figure 3.138 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50  kPa 
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Figure 3.139 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70 kPa 

 

Figure 3.140 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 90 kPa 
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Figure 3.141 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 100 kPa 

 

Figure 3.142 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 10 kPa 
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Figure 3.143 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 30 kPa 

 

Figure 3.144 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 40 kPa 
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Figure 3.145 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 50 kPa 

 

Figure 3.146 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 70 kPa 



 185

 

Figure 3.147 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 90 kPa 

 

Figure 3.148 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 100 kPa 
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Figure 3.149 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 10 kPa 

 

Figure 3.150 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30 kPa 
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Figure 3.151 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 40 kPa 

 

Figure 3.152 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50 kPa 
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Figure 3.153 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70 kPa 

 

Figure 3.154 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 90 kPa 
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Figure 3.155 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 100 kPa 

 
3.6.4 Numerical Results for Hinged Supported Cylindrical Shell 

Subjected to  Uniform Distributed Load Towards Out of the 

Top Shell Surface 

 

To consider the effect of boundary conditions on the behavior of laminated glass 

shell unit, the same model is verified for hinged boundary conditions. Hinged 

laminated glass shell tested has 0.508 m in length and 2.54 m radius. It is consisting 

of two glass shells and each of them has a thickness of 2.5 mm. The thickness of the 

inner core is 0.76 mm. The total thickness of the unit is 5.76 mm. The Young’s 

modulus and Poisson’s ratio of glass are taken to be 72 GPa and 0.25, respectively.  

Shear modulus and Poisson’s ratio of the interlayer are taken as 1000 kPa and 0.29, 

respectively. Physical properties of laminated unit are given in Table 3.2. 
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The same governing equations (3.7)-(3.11) which are obtained for radial, 

circumferential and axial deflections are also valid for hinged supported shell glass. 

Because of symmetry, a quarter of shell is considered. For the case of hinged 

supported shell subjected to uniform pressure, the boundary conditions are as 

follows. And the pictorial presentation of boundary conditions of hinged supported 

cylindrical shell is given Figure 3.156. 

Boundary Condition along the centerline θ=0  
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Figure 3.156 Pictorial presentation of boundary conditions for the hinged supported 

laminated cylindrical glass shell 
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The general equation is modified at the shell boundaries and the following equations 

are obtained for hinged supported shell: 
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For i=2, j=3....ny-2 
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For i=nθ, j=ny-1 
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For i=3...nθ-2, j=ny 
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The general equations for circumferential displacements (u1) are modified at the 

shell boundaries and the following equations are obtained for hinged supported shell. 

 

For i=2, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i
1FU1u1AEU1u 1ASU1ANU1u1APU    

 

For i=3.4…nθ-1,  j=1  

              

     j,ij,1ij,i

j,1ij,i1j,ij,ij,ij,ij,i

1FU1u1AWU

1u1AEU1u 1ASU1ANU1u1APU








 

 

For i=nθ, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i
1FU1u1AWU1u 1ASU1ANU1u1APU    

 

For i=2, j=2.3.….ny-1  

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
1FU1u1AEU1u1ASU1u1ANU1u1APU    

 

For i=2, j=ny  

             j,ij,1ij,i1j,ij,ij,ij,i
1FU1u1AEU1u1ASU1u1APU    

 

For i=3.4.…nθ-1 , j=2.3.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

1FU1u1AEU

1u1AWU1u1ASU1u1ANU1u1APU








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For i=3.4.…nθ-1, j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
1FU1u1AEU1u1AWU1u1ASU1u1APU    

 

For i=nθ, j=2.3.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
1FU1u1AWU1u1ASU1u1ANU1u1APU    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i
1FU1u1AWU1u1ASU1u1APU    

The general equations for circumferential displacements (u2) are modified at the 

shell boundaries and the following equations are obtained for hinged supported shell. 

For i=2, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i
2FU2u2AEU2u 2ASU2ANU2u2APU  

 

 

For i=3.4.…nθ-1, j=1  

              

     j,ij,1ij,i

j,1ij,i1j,ij,ij,ij,ij,i

2FU2u2AWU

2u2AEU2u 2ASU2ANU2u2APU








 

 

For i=nθ, j=1  

                j,ij,1ij,i1j,ij,ij,ij,ij,i
2FU2u2AWU2u 2ASU2ANU2u2APU    

 

For i=2, j=2.3.….ny-1  

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
2FU2u2AEU2u2ASU2u2ANU2u2APU    

 

For i=2, j=ny  

             j,ij,1ij,i1j,ij,ij,ij,i
2FU2u2AEU2u2ASU2u2APU    

 

For i=3.4.…nθ-1 , j=2.3.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

2FU2u2AEU

2u2AWU2u2ASU2u2ANU2u2APU








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For i=3.4.…nθ-1,  j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
2FU2u2AEU2u2AWU2u2ASU2u2APU  

 

For i=nθ,  j=2.3.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
2FU2u2AWU2u2ASU2u2ANU2u2APU    

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i
2FU2u2AWU2u2ASU2u2APU    

 

Modified axial displacements (v1) at the shell boundaries are obtained for hinged 

supported shell as shown below: 

 

For i=1, j=2  

                j,ij,1ij,ij,i1j,ij,ij,ij,i
1FV1v 1AWV1AEV1v1ANV1v1APV  

 

 

For i=2.3.…nθ-1, j=2  

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
1FV1v1AEV1v1AWV1v1ANV1v1APV    

 

For i=nθ, j=2  

             j,ij,1ij,i1j,ij,ij,ij,i
1FV1v1AWV1v1ANV1v1APV    

 

For i=1, j=3.4.….ny-1  

                  

 j,i

j,1ij,ij,i1j,ij,i1j,ij,ij,ij,i

1FV

1v 1AWV1AEV1v1ANV1v1ASV1v1APV



 
 

 

For i=1, =ny  

                j,ij,1ij,ij,i1j,ij,ij,ij,i
1FV1v 1AWV1AEV1v1ASV1v1APV    

 

For i=2.3.…nθ-1, =3.4.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

1FV1v1AEV

1v1AWV1v1ANV1v1ASV1v1APV








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For i=2.3.…nθ-1, j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
1FV1v1AEV1v1AWV1v1ASV1v1APV  

 

 

For i=nθ, j=3.4.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
1FV1v1AWV1v1ANV1v1ASV1v1APV    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i
1FV1v1AWV1v1ASV1v1APV    

 

Modified axial displacements (v2) at the shell boundaries are obtained for hinged 

supported shell as shown below: 

For i=1, j=2  

                j,ij,1ij,ij,i1j,ij,ij,ij,i
2FV2v 2AWV2AEV2v2ANV2v2APV  

 

 

For i=2.3.…nθ-1, j=2  

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
2FV2v2AEV2v2AWV2v2ANV2v2APV    

 

For i=nθ,  j=2  

             j,ij,1ij,i1j,ij,ij,ij,i
2FV2v2AWV2v2ANV2v2APV    

 

For i=1, j=3.4.….ny-1  

                  

 j,i

j,1ij,ij,i1j,ij,i1j,ij,ij,ij,i

2FV

2v 2AWV2AEV2v2ANV2v2ASV2v2APV



 
 

For i=1, =ny  

                j,ij,1ij,ij,i1j,ij,ij,ij,i
2FV2v 2AWV2AEV2v2ASV2v2APV    

 

For i=2.3.…nθ-1, =3.4.….ny-1 

               

     j,ij,1ij,i

j,1ij,i1j,ij,i1j,ij,ij,ij,i

2FV2v2AEV

2v2AWV2v2ANV2v2ASV2v2APV








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For i=2.3.…nθ-1, j=ny 

                 j,ij,1ij,ij,1ij,i1j,ij,ij,ij,i
2FV2v2AEV2v2AWV2v2ASV2v2APV  

 

 

For i=nθ, j=3.4.….ny-1 

                 j,ij,1ij,i1j,ij,i1j,ij,ij,ij,i
2FV2v2AWV2v2ANV2v2ASV2v2APV    

 

For i=nθ, j=ny 

             j,ij,1ij,i1j,ij,ij,ij,i
2FV2v2AWV2v2ASV2v2APV    

 

In order to verify the mathematical model for hinged supported cylindrical shell, 

results are compared with the results of finite element model. The three dimensional 

model is generated and solved with finite element package program ABAQUS. The 

dimensions and mechanical properties of the model is the same with that of the fixed 

supported cylindrical shell. Comparison of displacements and central stress obtained 

from current model and finite element model are presented in Figures 3.157 and 

3.158. The difference between the deflections is 6.29 % and 6.88 % for central stress 

at most. Therefore, the model developed to analyze the nonlinear behavior of the 

laminated glass hinged cylindrical shell gives reliable results. The view of radial 

deflection contours obtained from ABAQUS is presented in Figure 3.159. Radial 

deflection takes its maximum value at the center of the unit. 
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Figure 3.157 Central deflection values for hinged cylindrical shell 
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Figure 3.158 Central stress values for hinged cylindrical shell 
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Figure 3.159 A view of radial deflection contour for hinged supported shell 

 

Figures 3.160 and 3.161 show the comparison of linear and nonlinear approaches to 

predict the behavior of the cylindrical shell. Linear and nonlinear solution results are 

plotted as normalized deflection versus load in Figure 3.160.  The level of 

nonlinearity may be defined as 
h

wmax  ratio, where maxw  is the deflection at the center 

of the shell, and h  is the thickness of the single glass sheets. Separation between 

linear and nonlinear solutions starts when 15.0
h

w
max  . It can be said that nonlinear 

solution should be considered when the ratio of maximum deflection to thickness of 

a single glass beam is greater than 0.15. It is observed that this ratio (the level of 

nonlinearity) is about 0.8 for a load P=50 kPa in Figure 3.160. The central deflection 

obtained from linear approach is almost 1.25 times of the deflection obtained by 

nonlinear approach at load P=50 kPa. Figure 3.161 is plotted to observe stress versus 

load for linear and nonlinear behavior. 
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Figure 3.160 Normalized maximum deflection  versus load for hinged supported 

shell 
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Figure 3.161 Stress versus load for hinged supported shell 

Comparison of the behavior of monolithic, layered and laminated glass shells are 

given in Figures 3.162 and 3.163. For fixed supported shell unit the behavior of 

laminated glass unit is bounded by the behaviors of layered and monolithic glass 

units. While layered glass unit is found to be upper bound of laminated glass 

behavior, monolithic glass is found to be lower bound of laminated glass shell 

behavior. The behavior is different for hinged supported shell unit. For hinged 

supported shell unit the behavior of layered glass unit takes place between the 

behaviors of laminated and monolithic glass units. In contrary to the fixed supported 
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shell deflection and stress values of hinged supported monolithic glass unit is found 

to be higher than that of layered and laminated glass units. The same results are 

obtained by using finite element results.  
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Figure 3.162 Comparison of maximum displacements of monolithic, laminated and 

layered glass units 
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Figure 3.163 Comparison of maximum stress of monolithic, laminated and layered 
glass units 

 
Figures 3.164 and 3.165 represent the circumferential deflection (u1 and u2) along 

the center line at y=0. Circumferential deflections are zero at the boundary and at 

θ=0 and θ=θ1 as we expected. Circumferential deflections in θ direction take their 

maximum values close to the midpoint of the quarter shell. There is a slight 
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difference between the circumferential deflections of the top and bottom glass sheets. 

Circumferential deflection of the top glass is larger than the bottom one. When the 

load is increased, deflection curves get closer to each other and the curvature of 

deflection lines increase. The ratio of maximum deflection value at 10 kPa to that at 

5 kPa is nearly 2, while it is nearly 1 for 50 kPa and 45 kPa. The reason of this 

behavior is the nonlinearity of the shell unit. Radial deflections at the center of the 

shell unit along the θ direction for different load levels are illustrated in Figure 3.166. 

Radial displacements take their maximum value along the center line at θ=0 while 

they are zero at θ=θ1. Because of the nonlinearity, radial deflections are getting 

closer to each other when the load is increased. Radial deflections of hinged 

supported shell are smaller than radial deflections of fixed supported shell. 
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Figure 3.164 Circumferential displacement of the top glass unit along the center line 

at y=0   
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Figure 3.165 Circumferential displacement of the bottom glass unit along the center 

line at y=0 
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Figure 3.166 Radial deflection along the center line at y=0 

 

Figures 3.167 and 3.168 are plotted to represent the axial deflections (v1 and v2) 

along the center line at θ=0 for top and bottom glass units, respectively. Axial 

deflections in y direction are zero at the boundary and at the center of the unit. While 

axial deflections at the top surface take both positive and negative values for loads 

under 25 kPa, they take only positive values for loads higher than 20 kPa. Axial 

deflections at the bottom surface take positive values. Axial deflections of the bottom 

glass are higher than axial deflections of top glass. Axial deflections, v1 and v2, for 

hinged supported shell take their maximum value at a point close to edge. Axial 

deflections of fixed supported shell unit are smaller than that of hinged supported 

shell. Unlike axial deflections of hinged supported shell, axial deflections of fixed 

supported shell change their sign at a point inside the domain for every load value 

and at top and bottom surface of the unit.  
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Figure 3.167 Axial displacement of the top glass unit along the center line at θ=0 
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Figure 3.168 Axial displacement of the top glass unit at the center along the center 

line at θ=0 

Figures 3.169-3.173 illustrate the radial, circumferential and axial displacements 

along the diagonal of the laminated glass shell unit. Radial displacements take their 

maximum value at the center of the unit and they are zero at θ=θ1. Axial 

displacements are zero along the center line at θ=0 and θ=θ1. The circumferential 

displacement (u1) of the top glass ply is larger than the circumferential displacement 

(u2) of the bottom glass ply as seen in Figures 3.168 and 3.169. In addition to the 

θ=0 and θ=θ1 axial deflections (v1 and v2) are zero at a point in the domain as it is 

observable from Figures 3.172 and 3.173. The point shifts toward the corner of the 

unit while the load is increasing. Axial deflections (v1 and v2) are positive near the 

center they are negative near the edge for bottom and top glass sheets. The effect of 

geometric nonlinearity is observed since displacement curves for increasing load 

values are getting closer to each other. 
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Figure 3.169 Radial displacement along the diagonal 
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Figure 3.170 Circumferential displacement of the top glass shell along the diagonal 
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Figure 3.171 Circumferential displacement of the bottom glass shell along the 

diagonal 
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Figure 3.172 Axial displacement of the top glass shell along the diagonal 
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Figure 3.173 Axial displacement of the bottom glass shell along the diagonal 

Maximum and minimum principal stress values are obtained by summing or 

subtracting the bending and membrane stresses. Figures 3.174 and 3.175 represent 

maximum and minimum principal stresses along the center line at y=0 on the top 

surface of the top glass unit for different load values, respectively. Maximum and 

minimum principal stresses from Figures 3.174 and 3.175 are observed as tension at 

the top surface of the top glass. Maximum principal stresses at the top surface take 

their maximum values close to the boundary of the unit but minimum principal 

stresses at top surface take their maximum values at the center of the unit. The value 

of maximum principal stress at top surface is 23 MPa for the applied 50 kPa load 

while it is 28 MPa for the bottom surface. Maximum and minimum principal stresses 

of bottom surface of bottom glass along the center line at y=0 are presented in 

Figures 3.176 and 3.177, respectively. Maximum and minimum principal stresses on 

the bottom surface of the bottom glass are tension along the line. Unlike maximum 

stresses on the top surface, maximum stresses on the bottom surface take their 

maximum value at the center of the shell. While maximum principal stresses of fixed 

supported shell are greater than that of hinged supported shell on the top surface, 

maximum principal stresses of fixed and hinged supported shell units are almost 

equal at bottom surface of the unit. Unlike principal stresses of hinged supported 

shell, principal stresses of fixed supported shell could be tension or compression at 

bottom surface of the unit.  
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Figure 3.174 Maximum stresses at the top surface of the top  glass along the θ 

direction of hinged supported shell 
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Figure 3.175 Minimum stresses at the top surface of the top  glass along the θ 

direction of hinged supported shell 

0

5

10

15

20

25

30

0 0,02 0,04 0,06 0,08 0,1

Distance (m)

S
tr
es

s 
(M

P
a)

q=50 kPa

q=45 kPa

q=40 kPa

q=35 kPa

q=30 kPa

q=25 kPa

q=20 kPa

q=15 kPa

q=10 kPa

q=5 kPa

 
Figure 3.176 Maximum stresses at the bottom   surface of the bottom glass along the 

θ direction of hinged supported shell 
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Figure 3.177 Minimum stresses at the bottom   surface of the bottom glass along the 

θ direction of hinged supported shell 

Figures 3.178-3.181 are plotted to observe the maximum and minimum principal 

stresses at the bottom surface of top glass shell andat the top surface of the bottom 

glass shell along the center line at y=0 for hinged supported laminated cylindrical 

shell.  It is observed from Figures 3.178 and 3.180 that maximum principal stresses 

on the top surface of the bottom glass shell and bottom surface of the top glass shell 

are tension. While they take their maximum value at θ=0 for the bottom surface of 

the top glass shell, they take their maximum value at a point close to the edge at top 

surface of the bottom glass shell. The maximum principal stress at the bottom surface 

of the top glass shell is slightly higher than that top surface of the bottom glass shell.  

Minimum principal stresses at the top surface of the bottom glass shell and at the top 

surface of the bottom glass shell are illustrated in Figures 3.179 and 3.181, 

respectively. They take their maximum value along the center line at θ=0 of the unit. 

Minimum principal stresses at the bottom surface of the top glass shell are slightly 

higher than that of the top surface of the bottom glass shell.  
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Figure 3.178 Maximum stresses at the bottom surface of the top glass shell along the 

centerline at y=0 
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Figure 3.179 Minimum stresses at the bottom surface of the top glass shell along the 

centerline at y=0 
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Figure 3.180 Maximum stresses at the top surface of the bottom glass shell along the 

centerline at y=0 
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Figure 3.181 Minimum stresses at the top surface of the bottom glass shell along the 

centerline at y=0 

Figures 3.182-3.185 are plotted to represent the maximum and minimum principal 

stresses at the top surface of top glass unit and bottom surface of the bottom glass 

unit along the center line at θ=0 . Maximum stress at the top and bottom surfaces of 

the shell is tension; they take their maximum value close to the midpoint of the line. 

Maximum stress lines at top surface of top ply are nearly straight till the half of the 

line. They take their minimum value 8 mm away from the boundary. Figure 3.181 

illustrates how minimum principal stress changes along the center line at θ=0 on the 

top surface of the top glass shell. At the origin, they are tension and they change their 

sign at a point close to the middle of the line. Close to boundary of the unit they 

change their sign again and they become tension. Minimum principal stresses at the 

top surface take their maximum value as compression. Figures 3.186-3.189 show 

how maximum and minimum principal stresses change along the diagonal of the 

shell unit at top and bottom surfaces. Maximum principal stresses from Figures 3.186 

and 3.188 are observed as tension at the top and bottom shell, but minimum principal 

stresses at the top and bottom shell from Figures 3.187 and 3.189 are observed as 

they change their sign. While minimum principal stresses at the top surface change 

their sign close to middle of diagonal length, minimum principal stresses at the 

bottom surface change their sign at a point close to the corner.  
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Figure 3.182 Maximum stresses at the top surface of the top glass along the center 

line at θ=0 
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Figure 3.183 Minimum stresses at the top surface of the top  glass along the center 

line at θ=0 
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Figure 3.184 Maximum stresses at the bottom surface of the bottom glass along the 

center line at θ=0 
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Figure 3.185 Minimum stresses at the bottom surface of the bottom glass along the 

center line at θ=0 
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Figure 3.186 Maximum stresses at the top surface of the top glass shell along the 

diagonal 
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Figure 3.187 Minimum stresses at the top surface of the top glass shell along the 

diagonal 
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Figure 3.188 Maximum stresses at the bottom surface of the bottom glass shell along 

the diagonal 
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Figure 3.189 Minimum stresses at the bottom surface of bottom glass shell along the 

diagonal 

Axial force on the two plies can be represented by the term Gbγ. Shear stress is 

contributed by the interlayer. Axial force is transmitted to top and bottom plies in 

opposite direction when shear strain is applied to the interlayer. Function of shear 

stress of PVB interlayer of the center of shell unit along the θ and y axis is plotted in 

Figures 3.190 and 3.191. For hinged supported shell, it is observed that shear stress is 

maximum at the supports and zero at the middle as is observable from these graphs. 

It is observed that shear stress at the upper support of shell unit is higher than the 

shear stress at the right support. Shear stress along the center line at θ=0 is zero 

because of the geometry of unit.  
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Coupled and bending stresses in θ and y direction for applied 10 kPa load are plotted 

in Figures 3.192 and 3.193 along the center line at y=0 and in Figures 3.194 and 

3.195 along the center line at θ=0.  
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Figure 3.190 Shear stresses of the interlayer along the center line at y=0 
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Figure 3.191 Shear stresses of the interlayer along along the center line at θ=0 
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Figure 3.192 Membrane stresses along the center line at y=0 for 10 kPa 
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Figure 3.193 Bending stresses along the center line at y=0 for 10 kPa 
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Figure 3.194 Membrane stresses along the center line at θ=0 for 10 kPa 
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Figure 3.195 Bending stresses along the center line at θ=0 for 10 kPa 

 
Strength factor value, which is calculated by dividing maximum principal stress of 

monolithic glass unit to maximum principal stress of laminated glass unit for hinged 

supported shell unit, varies between 0.859-0.863 as shown in Figure 3.196. Strength 

factor value gets smaller while the load is decreasing. It is observed that strength 

factor value of fixed supported shell is smaller than strength factor value of hinged 

supported shell. While strength factor value of fixed supported shell is between 1.03-

1.07, it is between 1.15-1.16 for hinged supported shell unit.  
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Figure 3.196 Strength factor versus load for hinged supported shell 
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Figures 3.197-3.201 are plotted in order to have detailed information about the 

contour of radial displacement for the quarter of the shell. Radial displacements are 

given for applied pressure q= 10, 20, 30, 40, 50 kPa.  The radial deflections take their 

maximum value at the center of the unit.  

 
Figure 3.197 Contours of radial displacement (mm) for q=10 kPa 
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Figure 3.198 Contours of radial displacement (mm) for q=20 kPa 

 
Figure 3.199 Contours of radial displacement (mm) for q=30 kPa 
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Figure 3.200 Contours of radial displacement (mm) for q=40 kPa 

 
Figure 3.201 Contours of radial displacement (mm) for q=50 kPa 
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Fig 3.202-3.229 are plotted for the quarter of the laminated glass shell in order to 

have detailed information about the contour of maximum and minimum principal 

stress values at the top and bottom surfaces. Maximum principal stress contours are 

given for applied pressure q=10, 30, 40, 50, 70, 100 kPa in Figures 3.200-3.206 for 

the top of the unit and in Figures 3.209-3.215 for the bottom of the unit. Maximum 

principal stress on the top surface is at the right boundary of quarter shell. Maximum 

principal stress on the bottom surface of bottom glass is close to the center of the unit 

for small loads, but it moves toward the center of the unit horizontally.  Maximum 

principal stress on the top surface and bottom surface of glass are tension at the shell 

surface as observed in Figures 3.202-3.215. Minimum principal stress contours for 

applied pressure are given at top and bottom surfaces in Figures 3.216-3.222 and 

Figures 3.223-3.229, respectively. Minimum principal stresses on the top and bottom 

surface could be tension or compression. The maximum value of minimum stress on 

the top surface is at the right boundary for pressures under 30 kPa. Then it moves to 

the center of the unit for loads greater than 30 kPa. The place of maximum value of 

minimum principal stresses move toward the left edge for higher load values. The 

minimum value of minimum principal stress at the bottom surface is at the corner of 

the unit.  

 
 
Figure 3.202 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 10 kPa 
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Figure 3.203  Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 30  kPa 

 
Figure 3.204 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 40  kPa 
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Figure 3.205 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 50  kPa 

 
Figure 3.206 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 70  kPa 
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Figure 3.207 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 90  kPa 

 
Figure 3.208 Contours of maximum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 100  kPa 
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Figure 3.209 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 10  kPa 

 
Figure 3.210 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30  kPa 
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Figure 3.211 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 40  kPa 

 
Figure 3.212 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50  kPa 
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Figure 3.213 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70  kPa 

 
Figure 3.214 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 90  kPa 



 228

 
Figure 3.215 Contours of maximum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 100  kPa 

 
Figure 3.216 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 10 kPa 
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Figure 3.217 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 30 kPa 

 
Figure 3.218 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 40 kPa 
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Figure 3.219 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 50 kPa 

 
Figure 3.220 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 70 kPa 
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Figure 3.221 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 90 kPa 

 
Figure 3.222 Contours of minimum principal stresses (*104 kPa) on the top surface 

of the top shell for q= 100 kPa 
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Figure 3.223 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 10 kPa 

 
Figure 3.224 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 30 kPa 
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Figure 3.225 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 40 kPa 

 
Figure 3.226 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 50 kPa 
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Figure 3.227 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 70 kPa 

 
Figure 3.228 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 90 kPa 
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Figure 3.229 Contours of minimum principal stresses (*104 kPa) on the bottom 

surface of the bottom shell for q= 100 kPa 
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CHAPTER 4 

 

 

SUMMARY AND CONCLUSIONS 
 

 

 

In this study, analysis of laminated glass curved beam and shell units is carried out 

by using a mathematical model. Laminated glass units with two thin glass sheets and 

an interlayer PVB which connects them undergo very complex and highly nonlinear 

behavior under applied loads. Therefore, nonlinear theory has to be used for the true 

behavior of laminated units.  Nonlinearity is due to the geometry of the unit that 

causes membrane stresses when the unit undergoes large deflection. The steps of the 

analysis go through the stages of writing total potential energy of laminated glass 

unit in terms of displacements, deriving the nonlinear governing differential 

equations using variational approach and minimum potential energy theorem, 

converting the nonlinear equations from continuous form to discrete form by using 

finite difference method and solving the equations by using special solvers that 

provide advantages in storage and computation time. For the circumferential 

displacements modified strongly implicit (MSI) procedure that provides substantial 

decrease in storage and computation time by storing only the finite difference 

coefficients is used. To overcome the convergence difficulties variable 

underrelaxation parameter is used for radial deflection w. Underrelaxation factor 

helps to generate a convergent sequence for the solution and to decrease the number 

of iterations to reach the solution. And also load needs to be applied in incremental 

steps for the convergent solution. From the results of the analysis, it is observed that 

nonlinear analysis is necessary for the true behavior of laminated glass curved beam 

and shell units.  

 Computer programs based on the derived formulation are developed for laminated 

glass curved beams and cylindrical shells. To verify the results of the developed 
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model for curved beams experimental results and finite element results are used. The 

finite element model is generated and solved by using finite element package 

program ABAQUS. Results of developed model reasonably agree with the finite 

element results and experimental results.  

 

The developed models are capable of simulating layered and monolithic units in 

addition to the laminated units by equating shear modulus of interlayer to zero. To 

determine the strength of laminated glass curved beams and shells deflections, 

moments and stress functions of laminated glass unit are obtained. It is observed that 

the behavior of laminated glass curved beam units approach to the behavior of 

monolithic glass unit for high values of the interlayer shear modulus. The behavior of 

laminated glass arch is bounded by the behavior of monolithic and layered curved 

glass arches. However, these bounds are violated at some parts of the curved beam 

along its length, which is not the case in the behavior of straight beams. While the 

behavior of laminated glass unit is bonded by two limiting cases, which are 

monolithic and layered behavior, for the fixed supported cylindrical shell, the 

behavior of layered glass unit takes place between the behaviors of laminated and 

monolithic units for the hinged supported cylindrical shell unit. In contrary to the 

behavior of the fixed supported monolithic glass unit stress and deflection values of 

the hinged supported monolithic glass unit are found to be higher than that of layered 

and laminated glass units.  These results are agree with the results obtained by using 

the finite element method. It is possible to conclude that the monolithic systems enter 

the nonlinear region later than the layered and laminated glass systems. For the 

laminated glass curved beams, the effect of PVB’s shear modulus, the level of 

nonlinearity, displacement, moment and stress functions are investigated. To 

consider the effect of the boundary conditions to the behavior of the curved beam the 

model is solved for different boundary conditions. The comparison of results are 

given in figures. Nonlinearity level of simply supported beam is found to be higher 

than that of fixed supported beam. Strength factor, which is employed to adjust 

laminated strengths by using available design charts, is obtained for curved beams. It 

is observed that strength factor of the fixed supported laminated curved beam is 
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higher than that of the simply supported beam. While the strength factor of the 

simply supported curved beam is nearly 0.8, the strength factor of the fixed 

supported curved beam is nearly 0.7.  

Because of high nonlinearity levels, double curvature is observed for laminated 

shells at high-pressure levels when applied towards to the top surface of the top glass 

shell. Stress and displacement contours are plotted for laminated shell unit. Because 

of nonlinearity it is observed form the figures that when the pressure is increasing, 

location of maximum principal stress changes. It immigrates towards the corner of 

laminated unit as the nonlinearity increases. To provide additional insight to the 

behavior of laminated glass curved beams and shells strength factor which is defined 

as the ratio of maximum principal stress in monolithic glass to the maximum 

principal tensile stress in laminated glass is analyzed. By adjusting strength factor, 

strength of laminated glass unit can be obtained by glass design charts, which are 

available for monolithic and annealed glasses. Strength factor for the fixed supported 

cylindrical glass shell is between 1.03-1.07, while it is between 1.15-1.16 for the 

hinged supported cylindrical glass shell. 

 

 

4.1 Recommendations for future work 

 

The present model may be modified for laminated glass shells, which have curvature 

in two directions. Experiments for the verification of developed model may be 

conducted. The effect of delamination in the laminated glass may be investigated. 

The effects of temperature, aspect ratio, interlayer thickness, glass thickness and 

applied loads on the behavior of laminated curved glass beams and shells may be 

studied. Dynamic model can be developed for the laminated glass curved beams and 

shells. The behavior of the laminated glass shells and curved beams under impact 

load may be analyzed for future studies. 
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