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ABSTRACT

3D OBJECT RECOGNITION USING SCALE SPACE OF CURVATURES

Erdem AKAGUNDUZ
Ph.D., Department of Electrical and ElectronicsiBegring

Supervisor: Asst. Dilkay ULUSOY

January 2011, 136 pages

In this thesis, a generic, scale and resolutioarnant method to extract 3D features from
3D surfaces, is proposed. Features are extractdld their scale (metric size and
resolution) from range images using scale-spa@bafurface curvatures. Different from
previous scale-space approaches; connected conipowéhin the classified curvature
scale-space are extracted as features. Furtherrsoates of features are extracted
invariant of the metric size or the sampling of tage images. Geometric hashing is
used for object recognition where scaled, occluatedi both scaled and occluded versions
of range images from a 3D object database aredte$tee experimental results under
varying scale and occlusion are compared with SiFferms of recognition capabilities.
In addition, to emphasize the importance of usitgles space of curvatures, the

comparative recognition results obtained with srgglale features are also presented.

Keywords: 3D Object Recognition, 3D Feature Exiagt3D Pattern Recognition



Oz

EGRILIK OLCEK UZAYI KULLANARAK 3B NESNE TANIMA

Erdem AKAGUNDUZ
Doktora, Elektrik Elektronik Muhendigi Bolumu

Tez Yoneticisi: Yrd. Drilkay ULUSOY

Ocak 2011, 136 sayfa

Bu tezde, 3B yizeylerden olcek ve c¢ozunurlUktedimaiz bir 3B 6znitelik cikarim
yontemi onerilmitir. Oznitelikler, 3B yiizey grilikleri kullanilarak élgek bilgileri (metrik
boy ve ¢oziiniirliik) kaybedilmeden cikariimaktadincéki 6lgcek uzay yakkamlarindan
farkll olarak, siniflandiriingi 6lcek erilik uzayindaki bilgik elemanlar 6znitelik olarak
kullaniimistir.  Bu  6znitelikler metrik uzunluk ve 6rneklemederbagimsiz
cikariimaktadirlar. Geometrik kiyim yontemi, nesaeima amaciyla kullaniimve farkli
Olceklerde, engelli nesneler iceren 3B ylizey vabanlariyla test ediltir. Deney
sonugclari nesne tanima kabiliyetleri bakimindanTSIE kasilastiriimistir. Olgek uzayi
kullanmanin 6nemini gdstermek icin yéntem hem Olgeday! kullanillarak hem de

kullaniimadan cagtirihp, sonuclar kasnlastiriimistir.

Anahtar Kelimeler: 3B Nesne Tanima, 3B (")znitelikéjlml, 3B Oriuntli Tanima
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CHAPTER 1

INTRODUCTION

Mankind’s curiosity on the nature and science kdsim from the invention of the wheel
to this very age of unmanned machines. Each andy ed&y, numerous new clever
systems are being introduced to our lives. Theyaie to see, comprehend and act
according to our needs. | personally choose totkelan invasion. | strongly believe that
this “intelligent” and technological invasion wilhger until mankind is able to create his

alike. In other words, until he is satisfied witlaying God, if he will ever be...

On our part of playing God, we are interested sual understanding, the most intimate
ability, the tremendous divine gift we are givenon@puter vision, the science of
mimicking this ability, will be our main concern this dissertation. Moreover, we will be
specifically examining 3D object representatiom, kley human ability that enables him to

understand and differentiate real world objects.

Although quite young for a scientific field, computvision has surprisingly had fruitful
fifty years of past. With the increasing availailof various digital imaging systems, first
image processing then computer vision have becoraeobthe most promising scientific
fields in signal processing. Moreover, the fields hadvanced so fast that even the
academicians sometimes find it difficult to catghwith the new advances. For instance
face detection, once a very hot topic of the fidchow a simple application in a low-cost

cellular phone.

Since it is highly a practical field, the achievertgein imaging technology profoundly
affect the direction of research. For instance,spnoblems like segmentation of human
body movements from short distances, which was dmat difficult problem for 2D

imagery, is now a simple and solved problem usingeof-flight cameras, and has



several usages in game industry. This is a singleyple among several, which shows the

increasing usage of 3D information in computeronsi

Processing 3D information, namely point 3D clouti8D surfaces, is not always simpler
than the conventional 2D image processing, asdrhtiman body segmentation example.
3D image processing and 3D object representatienmedatively new problems and have
various open points. However since they promiseliaitopn of the real world with depth
information, (not fully practically) independent dfumination and with metric size
information; they may offer easier solutions congglato their corresponding solutions in
2D.

3D information can be acquired using different desisuch as, 3D range scanners, stereo
systems, lidar scanners, time-of-flight cameratellga imagery, etc. The acquired signal
is usually a grid or cloud of 3D points. The sigealries vast amount of information
which is difficult to process in real-time. Thusgthods to transform this data into a
sparse representation are usually needed and arenao problems of the field.
Furthermore some repeatability properties of sigmatessing are inherited for their 3D
versions as well, such as transform invariancdesocaariance, and robustness to noise
because finding repeatable salient points or regmrer 3D surfaces (point clouds) is a
basic prerequisite for 3D object detection, rectigniand even matching similar objects,

namely registration.

In this thesis, we aim at constructing a represiemtanethod for 3D object surfaces. We
propose a feature extraction method which is ssalepling and orientation invariant. In

this chapter, we commence by the problem definitbom motivation and contribution.

1.2 Problem Definition

Finding repeatable, robust and invariant salienibtpcand/or regions, is one of the very
important problems of visual pattern recognitiome3e salient points and/or regions,
usually called features, can be used to represenmbbgect or match similar objects.

Depending on the signal type, the feature extracti®ethod may change. In order to
evaluate a feature extraction method, some basigepties may be defined. [Tuytelaars
and Mikolajczyk 2007] propose a humber of basigprtes feature detectors. These are
repeatability (invariance and robustness), distieaess, locality, quantity, accuracy and

efficiency. Most of these are competing propertigh that it is impossible to satisfy all



of them simultaneously. Usually, a method is desiyor selected according to the

application needs and signal type.

Scale and sampling invariance of a feature detactplies that the detector is capable of
providing the same salient point or region for Hualed and re-sampled versions of a
signal. Extracting feature sizes (radii or effeetiegions) covariant to scaling is another
ability strongly related to scale invariance, whiadhplies that the extracted size of the
feature is covariant with the size or samplinglef signal. In other words, for a rescaled
version of a signal, the same features are detactédor each detected feature, their sizes

are scaled covariant to the scaling ratio.

Representing the meaningful portion of informatisithin a signal is crucial. For this
reason, representing an object within a 3D poioudlis an important and difficult
problem. The basic needs of a representation aneg bgparse, repeatability and

distinctiveness.

In this thesis, we deal with the above problem3®foint cloud processing. In particular,
we focus on obtaining higher levels of scale amd@img invariance in feature extraction.
Furthermore we struggle to construct a sparseegetatable 3D object representation. We
particularly chose these problems since they abeogten problems of 3D computer

vision.

1.2 Motivation

In the previous decade, some important approachdsaiure extraction from 3D point

clouds and 3D object representation can be fouriddriterature. The related studies are
given in the next chapter. Two important open intthe literature can be summarized
as feature extraction with full scale invarianced an generalized object representation

scheme that can be used by different applications.

Little work on the limits of scale invariance on 3Bature extraction is reported. More

importantly, for the reported scale invariant 3@tfee extractors, none to our knowledge
deal with the problem of covariant feature sizeraotion on scale varying databases.
Therefore we analyze the existing scale space appes and seek for a way to achieve
higher scale invariance, by manipulating the carsion of the signal scale-space. By this

way, we also look for a method to achieve signalbk their effective region size.



Second, a generic transform invariant topologidal S«irface representation standard is
missing. For these reasons we are motivated omfjralgeneric 3D representation for 3D

objects with better scale invariance propertiespamed to methods from the literature.

1.3 Contribution

Although the problems referred in the problem d#éin section are comprehensively
examined, and still being examined in the literatihere are still open points. In this
thesis we propose solutions for some of these gnablsuch as the ones indicated in the

previous section.

The proposed feature extraction method is novéhénsense that it constructs the signal
scale-spaces with a different strategy than theigue approaches, as it will be explained
later in detail later. Via controlled experiments artificial surfaces, we show that our

approach might be beneficial in terms of accurawyr@bustness to noise.

Secondly, as it will be explained later in the seding chapters, surfaces can be
classified into certain types using different ctiava spaces. For instance using Gaussian
(K) and Mean (H) curvatures or using Shape Indgxaf#l Curvedness (C), surfaces are
classified into the same eight types (pit, pea&,)eBince shape index is scale invariant,
previous comparisons show that using SC clasgficagives better results. However,
using a scale-space approach, we show that HKifatasi®n gives better results in object

recognition, which is a valuable clue for surfacevatures in scale space.

We propose a transform invariant topological swefegpresentation which can be used to
recognize, register or detect objects. The reptasen is defined within a feature vector,

which is experimented for object recognition antedgon.

Last, but not the least, we show that using surfareatures in Digital Elevation Models
(DEMSs) provide fast and efficient methods for lditks region detection, compared to

slow conventional methods.

1.4 Outline of the thesis
We commence this thesis by examining the related wochapter 2. Previous studies on
3D feature extraction, 3D face detection and 3@ adijecognition using range images are

given in this chapter.



The essential definitions of 3D signal processirg @esented in chapter 3, “Processing
3D Information”. Basic 3D surface data formats iateoduced and basic methods on pre-
processing 3D data for the purpose of cleansingnommdefects such as noise are

discussed.

The next chapter, “Surface Curvatures” gives funefaal 3D curvatures definitions, such
as: principal curvaturex{, k,), mean curvature (H), Gaussian curvature (K), shiagex
(S), curvedness (C). In addition, the classificatioapabilities of these curvature

definitions are described and discussed.

Chapter 5, “Scale Space of 3D Surfaces and 3D @ue/a dives into to the principal
discussion in the thesis. Methods to obtain sgadeas of 3D surfaces and curvature
values from 3D surfaces, is analyzed. Crucial clizgsscale and resolution invariant

object recognition are obtained from the behavaf8D curvature values in scale-space.

The key technique proposed in this thesis is desdrin Chapter 6, “Feature Extraction
and Object Representation”. As its title implidg tmethod to extract transform invariant
features from 3D surfaces is given in detail. Moe¥othe construction of transform
invariant topologies using the extracted featusegiven in detail. Finally, a number of

descriptors to define local regions around theaexéd features are introduced.

The succeeding chapter, “Experimental Work” prosidal implementations we have
done using the proposed feature extraction anccblgpresentation techniques. The first
subsection “3D Face Detection” gives the implemonaof the proposed 3D feature
extraction technique on 3D face detection and 3fdafgpose estimation. Detection of
facial surfaces is tested on Bosporus DatabasepfBos Database 2007] and compared to
four main methods from the literature [Lu and J20®5], [Lu and Jain 2006], [Chang et.
al. 2006], and [Colombo et. al. 2005]. Then thelamentation of the main subject of this
thesis is given in “3D Object Recognition”. Usingra than ten thousand range images
from Stuttgart range image database [Stuttgartlidaes], object category recognition tests
are carried out. Furthermore, comparisons betweetij-scale vs. single Scale features
and recognition capabilites of HK and SC curvatwefinitions are given. Most
importantly our proposed method is compared to #EX SIn addition, the qualities of the
extracted scale invariant features are evaluatethéopurpose of 3D registration. Finally
in “Landslide Region Detection Using Curvature ‘esuobtained from DEMS”, using
scale space of curvatures, regions with possibeslede activity are extracted from
digital elevation models (DEMs). The proposed mdtigcompared to a conventional,

high computation cost technique [Multi-Watershed].



Finally, Chapter 8 concludes the dissertation. IFiiscussions are given and possible

future directions are evaluated.



CHAPTER 2

RELATED WORK

As introduced in the previous chapter, in this @itgtion, we discuss major issues of
feature extraction and object representation. V8e adtend to propose novel techniques
for them. Furthermore, the proposed techniquegweabkiated on various applications such
as, 3D facial recognition, 3D object recognitiondaBD registration. Considerable
numbers of studies and contributions, which arateel to the theory and the experiments
provided in this thesis, have been reported. Ferghke of clarity, literature on each

subject is examined separately in this chapter.

2.1 3D Feature Extraction

Feature extraction is one of the basic topics iagen processing. Feature is a salient
region on a signal, which locally defines or représ the signal behaviour. For example,
corner is a good feature for 2D images since exparis show that removing the corners
from images intensely impedes human recognitioedBrman 1987].

The main problem in this thesis, extracting featufeom 3D surfaces, is strongly
correlated to the 2D feature extraction literatler a detailed analysis on 2D invariant
feature extraction, reader may refer to [Tuytelaard Mikolajczyk, 2007]. For 3D surface
change is related to surface curvatures. We comeney&D surface curvatures, and then
we continue with scale invariance concept in 30gpatrecognition. Finally we visit the

literature on describing 3D surface behaviour ligcal



2.1.1 3D Surface Curvatures

Using surface curvatures on range images for theose of image recognition and image
segmentation [Fan et. al. 1986, Fan et. al. 1983] &1d Jain 1986, Ittner and Jain 1985]
dates back to 1980s, when range image acquisitémed to become available. The
practical side of the problem, estimating true atwve values from acquired range image
is also studied in this era [Flynn and Jain 198% the following years, mean and
Gaussian curvatures are preferred methods in 3DPacgurclassification literature.
However, this representation lacks the notion afesinvariance, and the shape index (S)
and curvedness (C) [Koenderink and Doorn 1992Jpapposed, which are also based on
principle curvature values.

Using H and K values or S and C values, HK and &@ature spaces are constructed in
order to classify surface patches into types sukhpits, peaks, saddles, parabolas,
hyperbolas or planes. Since both HK and SC spdassify surface patches in to similar
types, their classification capabilities are comapé. For this reason, there is an ongoing
debate on the advantages and disadvantages of m&iag & Gaussian (HK) or shape
index & curvedness (SC) curvature spaces for obgatignition applications. In [Cantzler
and Fisher 2001], HK and SC curvature descriptiams compared in terms of
classification, impact of thresholds and impachoise levels and it is concluded that SC
approach has some advantages at low thresholdsmplex scenes and in dealing with
noise. However in that study the curvatures areutatied only at the lowest scale, i.e. the
given resolution. Scale-spaces of the surfaceecurvatures are not defined. Another
comparative study has been carried out in [Li amdddck 2004] where curvature values
obtained from the shading in 2D images are used-#dnd SC histograms are created.
The comparison results show that SC histogramslayetly more successful in terms of
classification. Yet again, the tested resolutiothis pixel resolution of the 2D image and

the effect of sampling is ignored.

2.1.2 3D Scale Invariant Features

In the previous decade, scale concept has becommao in computer vision. [Lindeberg
1998]'s work on automatic scale selection in featpoint detection and same author’s
renowned book on scale space [Lindeberg 1994|ctétlaso much attention that, the very
famous scale invariant feature transform [Lowe 2004s discovered in the following
years. However, for that decade, nearly all of shalies on scale concept were on 2D

image processing. Although shape index [Koendesiné Doorn 1992] was introduced



for 3D surfaces, scale invariant feature extracfrom surfaces or range images did not

attract much attention until recent years.

Recently [Li and Guskov 2007] extracts multi-sceddient features using only two scale
levels of the surface normals and analyzes itsopmdnce on object recognition for the
Stuttgart range image database. [Pauly et. al.]200QBacts multi-scale features which are
classified based on surface variation estimatiomgugovariance analysis of local
neighbourhoods, in order to construct line featufee and Sieberta 2009] define the
2.5D SIFT, the direct implementation of SIFT [Lo®@04] framework on range images,
however they present their comparison with simpltam matrices and avoid giving a
comparison of recognition capabilities. All of tkasethods construct a scale space of the
surface using difference of Gaussians (DoG) an#t fmethe maxima within this scale
space. In addition, although these studies all merscale invariance, none of them, or
any other study to our knowledge, test the recagniability of their proposed scale

invariant 3D representation technique using a saaiging database of 3D models.

The other crucial requirement for 3D recognitioamely robustness under occlusion, has
been issued in various ways previously [Johnson ldadert 1999], [Merchan et. al.
2008]. Yet again to our knowledge, no particulardgthas been reported on testing the

recognition capabilities with respect to both seaid occlusion in range image databases.

2.1.3 3D Descriptors

Range images, which have been usually process2id asages, carry both the 3D metric
and geometric information of objects in the sceBeveral local or global 3D point

features and 3D descriptors are derived from ttsesepled surfaces and used for 3D
object recognition, 3D object category recognitidd) surface matching and 3D

registration. Some of these features are SIFT [L@@@4] (as directly applied to 2D

rendered range images), 2.5D SIFT [Lo and Siel#969], multi-scale features [Li and

Guskov 2007], [Pauly et. al. 2003], spin imageshhdmn and Hebert 1999], 3D point
signatures [Chua and Jarvis 1997], 3D shape coffeamne et. al. 2004], surface depth,
normal and curvature histograms [Hetzel et. al.1208D point fingerprints [Sun et. al.

2001], extended Gaussian images [Horn 1984] origebased 3D shape descriptors
[Akgul et. al. 2007].

3D descriptors or histograms generally define theles or a part of an object, using

different properties of the surfaces such as cureat normal directions, distances to a



base point etc. They are very powerful in représgna surface patch for recognition
purposes. However when they are globally definleely tare brittle against occlusion. On
the other hand, local descriptors are defined atdeature points. However, detecting
feature points and estimating the effect regiorthef local descriptor around a feature
point are serious problems. Using fixed sized labeécriptors obtained from random

points on the surface [Johnson and Hebert 1998asof the earlier approaches.

2.2 3D Object Representation

The concept of representing a designated elemeatsignal, for example an object in an
image, is application-based and application-depeinddius any proposed method related
to the application field actually defines its ovapresentation in some certain manner. For
this reason, it is difficult to mention about a hmyanous object representation literature.
However there is still an observable evolution Df &bject representation methods in the
literature.

This pioneering studies on 3D object recognitiocuBbon model-based approached since
first applications are on CAD-based vision systefAsman and Aggarwal 1993] present
a dense review on these type approaches. Since #mwoaches generally define an
object using basic shapes, like cubes, cylindexs; the applications were limited to
industrial objects where object is clearly acquiraad there is no need for segmentation.
However as the need for detecting objects in desledd 3D scene rises up, more curvature
based methods are required. As explained in theique sections, curvature based
approaches locally define shapes using surfacevimiraApproaches to represent objects
using curvature values can be found in the liteeatiFlynn and Jain 1988]. These
approaches are followed by feature based studieishwise curvature information over
the surface to detect repeatable and invariargrdgghoints and regions.

Advanced representations of 3D surfaces can beletivinto two major branches. The
first one is using different surface descriptorsleBned in the previous sub-section. Other
approach is using topologies where the spatiakrinéion of salient regions is taken into
consideration. This topological representation rbhayconsidered both local and global.
Furthermore various proposed methods provide rakastunder occlusion for topological

(or graph-based) 3D object representations.
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2.2.1 3D Object Recognition

Similar to face detection, the literature on 2D ealbjrecognition is highly populated.
However it is difficult to say that it is saturatebecause there are still many open
problems for both 2D and 3D object recognition. d&gamay refer to [Edelman 1997,
Roth and Winter 2008] for a detailed survey on 2icot recognition.

3D object recognition literature is mainly the canation of the studies on 3D surface
curvatures, 3D feature extractors, 3D descriptoig 3D object representation. For this
reason the major approaches on the subject isdgirgazen within the previous
subsections. There are a couple of good surveyrpapethe subject [Osman et. al. 2004,
Campbell and Flynn 2001]. It is quite expected thzdated versions of these reports will
soon be published since new developments quickbctthe field, such as probabilistic

models’ increasing usage in object recognition [@irand Seitz 2007, Hu and Zhu 2010].

2.2 3D Facial Detection

2D face detection and recognition have attractechsoh attention for the last forty years
that the research in these fields is fairly saggaFor a review of 2D face detection and
recognition algorithms, reader may refer to [Yahgat 2002] and [Zhao et. al. 2000]
respectively. Although it is recently reported tB&t and 3D face recognition algorithms
are comparable [Chang et. al. 2005], studies ofa8B detection and recognition methods
have shown a remarkable progress in the last fensy@s 3D scanners become more and
more available. For detailed surveys of 3D facegeiion, reader may refer to [Kittler
et. al. 2005] and [Bowyer et. al. 2004].

Most of the 3D face detection and recognition apphes are based on local facial
features such as eyes, mouth, nose, profile, stit@and face boundary. Success of these
approaches depends highly on the success of thardedetection algorithms. Since, in
this study, we also present a method for localufeagxtraction and we apply our method
for face detection, we would rather summarize ditiere for 3D facial feature extraction

and face detection.

Previous studies show that, nose tip and inner ptgehave usually been selected as
anchor points on faces. [Colbry et. al. 2005] usieape index” [Koenderink and Doorn
1999] for determining the anchor points. Chang Badiyer [Chang et. al. 2006] also use
shape index for the detection of inner eye pitsthedhose tip is detected by using the eye

pit locations. [Colombo et. al. 2005] find anchairg candidates by using shape index
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values and PCA is used in order to classify thénanpoints. In addition shape index has
also been used to recognize objects other thars faerthington and Hancock 2001].
[Nagamine et.al. 1992] finds five feature pointsusyng a similar method of [Colombo et.
al. 2005] and use those feature points to standaifdice pose. [Lu and Jain 2005] first
extract nose tip as the closest point to the cangeondly, possible locations of the two
inner eye pit points are selected by using shageximnd cornerness measure extracted
from the face surface. Anchor point detection idgrened in a similar way for rotated 3D
data in [Lu and Jain 2006].

2.4 3D Object Registration

Surface registration is an intermediate but crusti@p within the computer vision systems
workflow. The goal of registration is to find thei@idian motion between a set of range
images of a given object taken from different posg in order to represent them all with
respect to a reference frame. Registration in génsan be divided into two: coarse
registration and fine registration [Salvi et. @0B]. In coarse registration, the main goal is
to compute an initial estimation of the grid motioetween two clouds of 3D points using
correspondences between both surfaces. In finstragon, the goal is to obtain the most
accurate solution as possible. Needless to sayhbdatter method usually uses the output
of the former one as an initial estimate so asefmasent all range image points with
respect to a common reference system. Then ite®fithe transformation matrix by

minimizing the distance between the temporal cpwrdences, known as closest points.

In coarse registration, which is the main type egistration we intend to accomplish in
this thesis, uses point-to-point correspondencesh sas the [Chua and Jarvis 1997,
Johnson and Hebert 1999]. An important aspect afrsgo registration is the way of
computing the motion when correspondences are foRotustness in the presence of
noise is another important property, because thegeusually no corresponding regions
between views. Studies on using a (partial) grtapgraph approach on range images,

instead of point-to-point correspondences, is apbrted to our knowledge.

For a wide literature survey on registration ofgammages reader may refer to [Salvi et.
al. 2006].
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CHAPTER 3

PROCESSING 3D INFORMATION

In this chapter, different formats of 3D informatiare investigated. Since raw output of
3D scanners is used as the main source of 3D iaftom methods to cleanse certain

defects from these types of data are also examined.

3.1 3D Information Formats

The 3D information can be found in various formasRally it is a point cloud of vertices
in a three-dimensional coordinate system. Howelepending on the type of the signal,

3D information take different names.

3.1.1 Range Images

Range image (scan) is a 2.5D image showing thardistto points in a scene from a
specific point, normally associated with some tgpeensor device. The resulting image
has pixel values which correspond to the distalicke scanner which is used to produce
the range image is properly calibrated, the pix@les can be given exactly in physical

units such as meters.

The sensors used to obtain range images are usadiyl 3D scanners. The raw output of
these 3D scanners is a regular grid of 3D pointglpn a u-by-v mesh, namely a depth
image (map) of the scene. This representation @vknas the Graph Representation

[Flynn and Jain 1989], where a single 3D pointlendurface is given by:

X(v) =[xuv) yuv) Zuv) (1)
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In Figure 1, a 2D demonstration of a range imageeen. Each pixel value indicates the
distance of that pixel from the scanner. Howeveraage image encapsulates more
information than a 2D image since for each pixardmate(u, v), there are three metric
values:x(u, v) y(u, v)andz(u, v) For this reason, they are also referred as 8&B. The
regions with zero pixel value are invalid regiohkese regions have no valid depth values

thus no valid 3D coordinates.

Figure 1. Sample range image: “bunny” from [Stutt@zatabase]

There are several types of 3D scanners such as, lals&sound and optical. Each
technology comes with its own limitations, advaes@nd costs. For pattern recognition
and robot vision applications using real world cbge 3D optical scanners are usually

preferred.

The range image is the most basic form of 3D d&tés regular data may be manipulated
in different ways for different applications. Thext subsection briefly goes over some

other frequently used 3D data formats.

3.1.2 Polygonal Data

For visualization purposes, computer graphics baapgdlications require a set of
polygonal surfaces. For instance, if the valid poire extracted from a range image and
vertex groups that form a plane are found, the i@Drination within the range image is
converted to 3D polygonal data. Polygonal datarigial since most commercial 3D

graphical interfaces used in today’s computersiasggned to process polygonal meshes.
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Unlike range images, polygonal data may includerapiete model of the object. When a
range image of an object is taken, only the 3D fgosrcross the viewing angle are
captured. However combining various range imagearofobject taken from different
viewing angles, a polygonal mesh of the completéehof the object can be constructed
(Figure 2).

Figure 2. The polygonal form of the object in Figuris obtained by combining the valid

vertices obtained from different range scans ofibject

The resolution of polygonal models may be alterdtiaut losing 3D shape information.
For example, an area with low curvatures (e.g.amal area) may be represented using
few vertices. However depending on the data adgpnisiechnique, this area might be full
of 3D points, which are mostly redundant. In thése, a process called decimation is
applied on polygonal meshes. Regions with low dumea value are found and the

sampling around these regions is reduced usingaeeehniques.

3.1.3 Parametric Representations

Some computer vision based techniques and graplpigcations require a continuous
representation of 3D data in order to apply analytethods instead of numeric ones. For
this reason methods like spline fitting may be sggpto 3D scanner outputs in accordance
with the required application. In these methods rtteén motivation is to transform the
digitized data into continuous and parametric fdayrfitting a certain type of function to
the valid vertices of the object surface. Havinghtowous surface functions and
derivatives are the benefits of this technique.rBegjon and spline fitting are some the

examples of parametric representations.
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3.1.4 Digital Elevation Models

A digital elevation model (DEM) is a digital repezgation of ground surface topography
or terrain (Figure 3). It is also widely known asligital terrain model (DTM). A DEM

can be represented as a raster (a grid of squares3 a triangular irregular network.
DEMs are commonly built using remote sensing tegpies; however, they may also be
built from land surveying. DEMs are used often e@ographic information systems, and

are the most common basis for digitally-producedigéfrenaps.

a) b)

Figure 3. a) The DEM image is depicted. b) Ther8bder of the DEM image is shown.

DEMs are similar to 2D images where the pixel istendesignates the elevation in
metric coordinates. Usually each pixel is captusétt a fixed metric sampling rate (such
as using 20m intervals), thus the horizontal cowatdis also represent metric coordinates
and the information is actually 2.5D.

The quality of a DEM is a measure of how accurdeation is at each pixel and how
accurately is the morphology presented. Severséfaiplay an important role for quality
of DEM-derived products, such as: terrain roughneaspling density, grid resolution or

pixel size, interpolation algorithm, vertical restibn and terrain analysis algorithm.

DEMs are very similar to range scans in the selnaethe depth and the pixel size are in
metric coordinates. Thus 3D curvatures techniquas e applied to them as well. In
chapter 8, a method to detect landslide regionsgusiirvature information of DEMs is

proposed.

There are a number of other 3D data formats, sgcholumetric representations. We
chose not to mention them here, since the four dsmentioned above, namely range
scans, polygonal data, parametric representatisth®&Ms are the basic formats that will
be used in this thesis. Range scans will be ouic lamurce signal on which we will

process our feature extraction techniques. We smithetimes convert them to polygonal
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data for visualization purposes since most 3D Vigation software and hardware use 3D
polygonal formats. Parametric representationstwélheeded for finding surface gradients
on local surface patches. Splines will be fit oralirfocal regions and surface gradients
will be extracted from their explicit analyticalwations. Finally surface curvatures will be

calculated on scale-spaces of DEMs in order toraatically detect landslide regions.

3.2 Common Defects of 3D Scanner Outputs

3D scanners can send trillions of light photonsamvan object and receive only a small
percentage of those photons back via the optidsthiey use. For widely used optical
scanners, a lighter surface will reflect lots ghli where a darker surface will reflect only
a small amount. For this reason more specular arleedregions, such as dark hair, might
not be detected by these types of scanners and tmghmarked as invalid on the scan.
Moreover, physical limitations of the sensor magddo noise on the acquired data set.
Sample points can be corrupted by quantizationenorsmotion artefacts. Furthermore
multiple reflections and heavy noise can produdesuofface points (outliers). Besides,
holes on the model surface occur due to occlusaitical reflectance properties,
constraints in the scanning path or limited semssolution. Many scanners tend to create
ghost geometry when the scanned object is textlmetlis section some common defects

of 3D scanner are investigated.

3.2.1 False Holes (False Invalid Points)

Due to various reasons, 3D scanners may mark regiennvalid. 3D scanners usually
work on optical principles to calculate 3D coordesof points on their image planes.
However for example, dark hair may reflect lighbfns like a mirror and the scanning
system may be unable calculate valid coordinatethéd region. Then, the scanner marks
points in this particular region as invalid. It ¢dearly seen in 3D facial databases
[Bosporus Database 2007] that the, hairy regioch s: dark hair, eyebrows, eyelashes,

darker facial hair are usually marked as invalidh®y optical scanner used (Figure 4).
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Figure 4. A facial scan taken from FRGC vl.a 3Dabase is shown. Invalid regions

around eyebrows are marked as invalid in the diepige.

3.2.2 Exploded/Imploded Regions

Optical scanners tend to create spikes mostly Isecatisimilar reasons why they create
holes. For regions with critical reflectance prdigsr (such as specular regions like dark
hair as mention in the previous subsection) thieetdd light on image planes might be
localized incorrectly. Thus instead of having indatoordinates, these points might have

valid flag, but they carry incorrect depth values.

In Figure 5, a spike on the iris of a facial scamf FRGC vl.a 3D facial database is seen.
Since iris is a highly specular region, one paléicpixel depth is incorrectly calculated

and a spike is formed.

Figure 5. A spike on the iris of a facial scan frBRGC 3D facial database.

These incorrectly calculated points are not necigseutwards the direction of the

camera. The might be imploded inwards the 3D sarfataddition these regions are not
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necessarily single points; they might be a groupaifts if the reflectance is critical for

that whole region (Figure 6).

S S )

p < o

L pg 7
Figure 6. Nose is imploded in the 3D range scdit) iecause of extreme illumination on
the nose tip (FRGC vl.a).

3.2.3 Noise

For any remote sensing device, from a radio recétv8D scanner, some kind of noise is
observed on the output signal. Transmitting medithe components of the device itself
may cause the noise. Despite any effort to nemg&athis noise, it is impossible to
completely cleanse it from any electronic remotess®y device.

Figure 7. a) 3D artificial surface without noise Myrmal directions over the noise-free
surface. ¢) 3D artificial surface with noise. d)rial directions over the noisy surface
[Bozkurt et. al. 2009].

Since most 3D scanners use optics to acquire gmalsithe type of noise is similar to 2D
noise. 3D scanner outputs experience amplifierenaigich is highly Gaussian. There is
also powerful quantization noise if the resolutadrthe scanner is relatively low [Bozkurt
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2008]. 2D noise is convolved within the intensifytioe pixels. 3D noise disturbs the 3D
coordinates of the points in the point cloud. A destration of noise over an artificial

surface is depicted in Figure 7.

3.3 Processing 3D range scans

In order to neutralize the defects of 3D range scarprocessing on the 3D point cloud
may be needed. Unsurprisingly, depending on the typthe defect, the processing
method varies. Only after these defects are nézérhlthe range scan is properly prepared

for the required application. In this section, noeth to process these defects are inspected.

3.3.1 Processing False Holes

Theoretically holes are invalid marked points, whactually belong to a group of points
with valid 3D coordinates. In Figure 4, a good ep#aris given from FRGC database,
where some point on the eyebrows of a 3D faciah sta@ marked as invalid. However
these so called holes may belong to the image Ipagkd, or an actual hole which sees

through the image background (Figure 8), which &hbave invalid coordinates.

Figure 8. The “hub” object from the Stuttgart 3Mga image database is shown. There is

no defect on the range scan; however the objesiegses a number of actual holes.

The range image in Figure 8, has no defects, hawteobject possesses a variety of
actual holes. Thus, before processing the imagéafse invalid points, one should decide

if the invalid marked points is a defect or not.oier to solve this problem manual and
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automatic methods are used. The manual methodsatréeasible when thousands of
range image are concerned, where automatic methage no guarantee of truly
discriminating false holes among invalid points. di@D scanners come up with a
software which can be used to manually fill theske$r These interfaces help the user to
mark the region encapsulating the false hole, aterpolate it using the neighbouring
valid points. The interpolation could be linear quadratic. On the other hand a fully
automatic method would detect the false holes bana®f some intelligent criterion. This
criterion could be as simple as the size of thee,hol as complex as a model-based

approach guessing where the object might have taaldwle.

In this thesis, we have completed our experimemtsFBRGC v.1la 3D facial database
[FRGC1a], Bosporus 3D facial database [Bosporuslhzste 2007] and Stuttgart 3D range
image database [Stuttgart Database]. These datalvasede near twenty thousand range
images in total. FRGC database includes the rannscaoutputs which are noisy and full
of false holes. We have applied automatic procgdsirthese holes, where holes having a
certain size smaller than a threshold were consiti&lse, and interpolated linearly using

the neighbouring valid points (Figure 9).

Figure 9. a) Texture for the 3D Scan. b) Black srdanote the background. Red areas
denote the invalid points selected to be extrapdlaBlue areas denote the neighbouring
valid points used for extrapolation. White areaaade valid points. ¢) Processed point

cloud.

The same process was also applied to Bosporusad&taiithough a manual processing
was applied to this database during the acquisititnttgart database is an artificial

database, which is constructed artificially by atiteg range images from 3D objects by
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virtually scanning them. For this reason this dasabis free of defects and does not need

any processing.

3.3.2 Processing Exploded/Imploded Regions

It is nearly impossible to construct a decisionteyswhich will detect any incorrect valid
point, because the structure of the scanned suréaosually unknown. For example a
spike on the surface may very well be a valid srfatructure if the scanned surface
includes a needle. For this reason widely usedniquls to process these regions are
manual. Similar to manual hole filling softwareetb are several programs which provide

semiautomatic tools to cleanse these defects fidmafge images.

On the other hand, if there is preliminary struatlnowledge about the scanned surface,
then certain model-based automatic methods maypjpléeed. For example, Nesli Bozkurt,
a former graduate student from our computer visadmoratory in METU, constructed a
facial defect cleansing system which uses the symnieformation of the face. So for
facial scans, a lateral symmetry criterion is saumler the 3D facial surface and any
element (a hole or a spike) violating this critaris considered as a defect and handled

properly [Bozkurt 2008].

3.3.3 Processing Noise

3D scanner outputs experience amplifier noise, wichighly Gaussian. There is also
powerful quantization noise if the resolution oktthcanner is relatively low [Bozkurt
2008]. This noise can be partially removed by usirgaussian smoothing filter. However
Gaussian filters experience problems with presgrtive edge details. Among numerous
methods, Bilateral Filtering is proven to be a pduleyet simple, non-iterative scheme
for edge-preserving smoothing in 2D [Bozkurt 200Bhis image processing technique
has been successfully extended to 3D by makingl snaalifications in the application.
Bilateral filter is distinguished from Gaussian bhy its additional “range” term. In this
case, not only the distances between positionsemaliut also the variation of the
intensities are also taken into account in ordekdep the features from derogation.
Consequently, the edges where high intensity diffees occur are successfully preserved.
In 2D, the intensity values are a function of gositvalues, whereas in 3D the position in
fact, is the signal itself. Hence, the modificatmfrbilateral filter to be applied to 3D data

is not very straightforward. Like most image prageg algorithms that are extended to
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surfaces, normal information at each point of thdage can be used to form an intensity
space like in images.

The effect of noise cleaning using 3D bilaterakfing is depicted in Figure 10, which is
taken from [Bozkurt 2008]. As seen from the figuitee edges are properly preserved in
3D bilateral filtering (Figure 10).

Figure 10. Surfaces de-noised with Gaussian @eit) Bilateral (right) filters [Bozkurt
2008].

When the bilateral filter is applied to originalass from the FRGC vl.a database, the
results show that the edge details around the ®yweell preserved whereas the facial
surface is cleared off the noise (Figure 11).

Figure 11. The result of the bilateral filtering @afrRGC sample. .
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CHAPTER 4

SURFACE CURVATURES

In order to construct intelligent systems capalbleassifying different shapes, one should
find a way to understand or model the behavioua gblid shape. When it comes to 3D
shapes and surfaces, the surface curvatures aieyheoncept defining this behaviour.
For a general review of surface curvatures andasarbehaviour, reader may refer to

Koenderink’s renowned book on solid shapes [KoanBer990].

In this chapter the general concepts of surfaceatures, such as: surface gradients,
principal curvaturesxg, k), Mean curvatures (H) and Gaussian curvatures gKkape
index (S) and curvedness (C) are reminded. In @ddlithe transform invariance and the
effects of scaling and sampling on these curvataresdiscussed. By the end of the
chapter, a theoretical comparison of HK and SC d&ummehtal shape definitions is
presented. We commence by discussing the mosblelgay to obtain a curvature of a

digitized surface.

4.1 Reliable Curvature Estimation

The behaviour of the surface may be calculatedhbyitst partial derivative of the surface
function. In the previous chapter, the generaltdigsurface data format is analyzed

specified as 2.5D data or the Monge Patch, whideimed as:
Xuv=u v fuvl{uver )

As it is previously statedj andv parameters are matchedxtandy coordinates and this
surface can be specified as the hefdit \) above the so-called support plane defined by
the two coordinatesu( V). At any pointp on this continuous surface, we can choose two

orthogonal vectors in the tangent plane and exarttiresurface’s behaviour in those
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directions. The vectors in the direction of thehogonal parametersi,(\) are called the

surface gradients and are equal to:
oX(u,Wou=[1 0 f,],0X(u,Yov=[0 1 f,] (3)

f, andf, are the partial derivatives of the height functiqa, V) with respect tar andv.
Accordingly the surface normal n, which is orthogbto surface gradients at pointis

defined as:

n=%xX oof 5, 1 (4)
ou ov
Theoretical computation of the surface gradientsingple when an explicit definition of
the continuous surface function is known. Howeves is not the case when you are
dealing with digitized scans in real world problerfer this reason a digital version of all
functions or kernels must be used. There are diftemethods of obtaining partial
derivates from a digital signal. [Flynn and Jair8QBfocuses on reliable digital curvature
estimation using different types of these methaus strives to find a conclusion on the
best method in order to estimate surface gradightliscrete surfaces. They implement
analytical methods such as: fitting orthogonal polyials and splines and linear
regression around the point at which the gradistimates are done. In addition they

implement numerical estimates where finite diffeeeis used.

This pioneering study emphasises on the importafiddaussian smoothing before any
digital curvature estimation. They check the robess of all methods against noise and
indicate that pre-smoothing enhances the estimationess profoundly. For this reason in
this study all of the surfaces are pre-smootheorder to lower the effect of any type of

noise.

In their study, Flynn and Jain use 7x7 or 5x5 pagchround the interest point, according
to the method implemented. Needless to say thahvelseémating digital curvature this
neighbouring patch size is of extreme importanceesithe discrete derivatives highly
depend on the sampling rate. For this reason, éweuagh they make very important
indications in their study; it is difficult to relgn some of their observations since the data

they use is very much lower in resolution compdcetbday’s digitized scans.

One of the main motivations of this thesis is tnalate the effect of sampling or the
neighbouring patch selection when estimating tigéalicurvatures for object recognition.

In this study, 3x3 patches are used and quadnatictibns are fit to estimate curvatures.
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However these curvatures are investigated in & sgace of the surface. The details of

these procedures are given in the succeeding Bectio

4.2 Principal Curvatures

In differential geometry, the two principal curveda at a given point of a surface measure
how the surface bends by different amounts in difie directions at that point. At each
point p of a differentiable surface in 3D Euclidean spane may choose a unique unit
normal vector. A normal plane ptis one that contains the normal, and will therefalso
contain a unique direction tangent to the surfamkaut the surface in a plane curve. This
curve will in general have different curvatures fiifferent normal planes gi. The
principal curvatures ai, denotedk; andk,, are the maximum and minimum values of this

curvature. The figure below depicts these curvatarel their normal planes.

i
R,
AR
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SO

a) b) c)

Figure 12. a) The normal plane with the maximunvature is seen. b) The normal plane
with the minimum curvature is seen &) = 1.56 andc, = -2.37. The surface is a patch

from a monkey saddle: z(x,y) = x3exey".

The principal curvature values and the principledions of the curvatures are calculated

by taking the eigenvalue decomposition of the HesMatrix which is defined as:
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The eigenvalues of this symmetric matrix give thiegipal curvaturex; andk,, where
the eigenvectors give the principle curvature diops. Surface points can be classified

according to their principal curvature values at hoint. A point on a surface is called:

Elliptic: (x; -k, > 0) if both principal curvatures have the sangm.siThe surface is locally

convex or concave.

Umbilic: (x; = «p) if both principal curvatures are equal and eviangent vector can be
considered a principal direction (aBtht-Umbilic if k; =, = 0).

Hyperbolic (k; - k, < 0) if the principal curvatures have oppositensigThe surface will
be locally saddle shaped.

Parabolic (x; = 0, x, # 0) if one of the principal curvatures is zero. @slic points

generally lie in a curve separating elliptical dygerbolic regions.

This is the basic classification for surfaces adowy to their principal curvatures.

Examples of these types of shapes can be seegureFi3.

Mean (H) and Gaussian (K) curvatures, shape indxafd curvedness (C) are also
calculated using the principal curvatures and meseential classification are made
according to their values.

4.3 Mean (H) and Gaussian (K) Curvatures

Using principal curvatures, Mean (H) and GausskigrQurvatures are calculated as:

H :K1+K2

K=k, K, (6)

H is the average of the maximum and the minimunvature at a point, thus it gives a
general idea on how much the point is bent. K is thultiplication of the principal
curvatures and its sign indicates whether the sari@locally elliptic or hyperbolic. [Besl
1986] was the first to use HK values for the pugpobsurface segmentation. Using HK

values, the regions are defined as in
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Table 1. Shape Classification in HK curvature sp&mresponding examples of surface

regions are seen in Figure 13.

Convex® Ridge? Saddle Ridgé’
(Elliptic or Umbilic) (ConvexParabolic) (Hyperbolig

(Not possibl€f Planar®

Saddle Valley”
(Hyperbolig

Concave”
(Elliptic or Umbilic)

H>0

Figure 13. Shape types in correspondence with Tht®bhapes at rightmost column are
hyperbolic and from top to bottom they have thepprties:k; + k, < 0,x; + x, = 0 and

K1 + k2 > 0. The centre column show parabolic or flat-Uiok{planar) shapes where one
of the principal curvatures is equal to zexg £ 0 1 k, = 0). The leftmost column show

the elliptic shapes where both principal curvatunese the same sign. The upper is
convex elliptic (a peakx; < 0 N x, < 0) and the lower one is concave elliptic

(p|t K1 > on Ky > 0)
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Because of noise and other reasons it is imposgibl&ve an exact zero value for HK
values. Thus zero-thresholds are used to dec@eafue is zero or not. Everything below

this threshold is considered as zero.

H = (K1+K2)/2 If |(K1+K2)/2|>Hzero K = KID(Z i.I:|K1D(2|>Kzero (7)
0 otherwise ' 0 otherwise
In order to better comprehend the relation betwkerHK values and the principal
curvaturesc; andk,, the regions in Table 1 are drawn on the ;) plane in the figure

above:

H>0 N K<0

H>0 N K>0

H>0 N K<0

iy K1

B 0.5 0 0.5 1 1.5 2
Figure 14. The HK classification on the,(«;) plane. Region colours (and the numbers)
correspond to Table 1. The separating lines areehethresholds for H values and their
equations arex{ + «y) / 2 = +Hernand k1 + x2) / 2 = -Hero The separating curves are the

zero-threshold for K values with the equatian® ) > +K,ero@nd k1° ko) > -Kyero
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As discussed in [Cantzler and Fisher 2001], theae tavo main ambiguities in HK
representation. The planar region is not symmaeinit the parabolic region gets narrower

for higher curvatures.

Most importantly H and K values are very much dejegn on thresholds. Shifting the
thresholds directly changes the regions on tie«;) plane. Since for a scaled or re-
sampled version of a surface patehandxk, values will differ. Thus HK values are not
scale or resolution invariant. However since thegahd orxl andx2 values (which are

orientation invariant) they are also orientatiovanant.

4.4 Shape Index (S) and Curvedness (C)

[Koenderink and Doorn 1992] defines an alternatiuevature representation using the
principal curvatures. This approach defines two suess: the shape index (S) and the
curvedness (C). Shape index (S) defines the slygeeaind curvedness (C) decides if the
shape is locally planar or not.

+
S= 2 &rctarﬁuj (/(1 > /(2), andc - [k’ + K, (8)
m K, =K, 2

The shape index value of a point is independetite@&caling of that shape and it changes
between [-1,+1]. However C is not scale or resohutinvariant. Both S and C are
orientation invariant. A discussion on transforiwgle and resolution independency of all

curvature types are given in the next subsection.

[Koenderink and Doorn 1992] uses S value in ordetlassify a point. S values changes
between [-1,+1] where -1 defines cup shapes (coreligatical) and + 1 defines cap
shapes (concave elliptical). All other types ofdloshape correspond to real number
between [-1,+1] (Table 2).

Table 2. Shape Index Classification. Colours areisbent with the previous figures

“Cup” “Valley” “Saddle” “Ridge” “Cap”
“Trough” “Saddle Valley” “Saddle idge” “Dome”

-1 -5/8 -3/8 0 +3/5 +5/8 +1

-
L
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Table 3. Shape Index and Curvedness Classificafiolnurs are consistent with the

previous figures.
Convex (Elliptic) S [+5/8,1] N C>Cpero

Convex (Parabolicf’ S [+3/8,+5/8]N C>Coero

Saddle Ridgé” S [+3/16,+3/8]N C>Cyero
Planar® C<Cero

Hyperbola® S [-3/16,+3/16]N C>Cyero

Saddle Valley® SLI[-3/16,+3/16]N C>Cyero

2 15 -1 0.5 0 0.5 1 15 2 K1

Figure 15. The SC classification on the, (k2) plane. Region colours correspond
to Table 3. The separating lines are the constamal@es: S = +5/8, +3/8 and
+3/16. The circle around the origin is the zerceesinold for C values and its

2 2
equation is:V (Kl T )/2 = Cero
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[Koenderink and Doorn 1992] defines constant shiapex values in order to define
shape types. These values are given in Tadl®8e However their original classification
does not differentiate hyperbolic regions into ¢éhdifferent types (yellow-orange-red
region, i.e. saddle valley, hyperbola and saddige). For this reason we define another
constant shape index value (3/16) for this purpogke table above. The Curvedness (C)
values are used to understand if the region isaplannot. For planar regions C value is

very close to zero (i.e. below the zero threshqld)C

In order to better comprehend the classificatiorSadnd C values, it is a good idea to
observe them on thexy «,) plane. The regions are coloured (and numbered)

correspondent to Table 3 (and the previous figures)

4.5 Transform Invariance of Curvatures

The curvature values obtained from a surface iepaddent of any 3D rotation. In other
words for the same surface, when rotated in 3Desplae principal curvature values stay
the same. This is a very important property sinbemwrecognizing objects, local surfaces
on that object may be captured in an arbitrarynbaigon and provided that the principal
curvature values stay the same; the features @uotdiom principal curvature are said to
be orientation invariant. Thus the value H, K, @ &are independent of translation and

rotation in 3D space.

Unfortunately when it comes to scaling, things gmnplicated. Since scaling changes the
finite difference between each digital sample, tiscrete partial derivatives on the
surface also changes for a scaled version of thee saurface. Given that the principal
curvatures are calculated from the Hessian, ie.sdtond order partial derivatives of a
surface;k; andk, are directly dependent to scaling and vary pramoatly when the
surface is scaled in 3D space. In addition sinee3D scans are discrete surfaces, the
sampling rate also directly affects the principalrvature values. Obviously while
principal curvature values are affected, any otiyee curvature will also be affected. For
this reason H, K and C values are not scale otuso invariant. However S values, due
to their mathematical design, are independentatsand resolution. The effect of scaling

and sampling (resolution) is profoundly analysethignext subsection.
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4.5.1 Effect of Scale and Sampling on Curvature —c8le/Resolution Ratio

In this subsection the scale and resolution inmaegeof the four curvature types (H, K, S,
C) are practically tested. Although their scaledheson independency or dependency is
theoretically or mathematically proven, the empiritests are observed for a better
understanding of the concept stale/resolution ratipwhich will be introduced within

this subsection.

Shape Index is theoretically (mathematically) proamd designed to be scale invariant.
In order to test the scale invariance of S prallyicthe simplest test would be having
different scaled versions of a digitized surfaceM@nge Patch) and comparing their S
maps. Imagine we have two versions of the surface,of which is 10 times bigger than

the other in X, y and z coordinates (10 times stadrsion). However their resolutions are

exactly the same: 100x100 (Figure 16).
) c)

a) b

Figure 16. a) Two scaled version of the same siBigger one (1) is 10 times larger than
the other. (Smaller one (2) is barely seen on diaeei—left of the bigger one). b) Two S
maps are identical (in both S maps a grey scakd Ilsxmapped to a distinct real value. So
having same intensities on each SI map provedhbgthave the same real S values) c) C
(curvedness) map intensities (i.e. the C values)diiferent. For the small shape, the

curvedness is barely detected. For H and K mapsftlect would be similar to C.

It is seen that both shapes have identical S mapslifferent C maps. All grey level
intensities are calibrated such that, a grey lewdicates a distinct real curvature value.
Thus, if two maps are of the same grey values, themeal values corresponding to those

maps are exactly the same just like in Figure 16.b.

In order to see the resolution (sampling) invaréaotthe shape index S, we make another
test using three different sampled versions oktmae shape from the previous figure: one
digitized with 25x25 resolution, other with 50x50dathe original surface with 100x100.
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Note that the shapes have identical size, whichnextlaey occupy the same size in 3D
space.
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Figure 17. a) 25x25 sampled surface. b) 50x50 saanglirface. c) On the left S map for
the 25x25 sampled surface is seen. In the midateysfor 50x50 sampled surface is seen.
On the right we have the S map for the originalxil@® sampled surface. As the surface
resolution gets lower and lower, the S map resmusiiso changes but the S values (the

grey level intensities) do not get affected.

In Figure 17.c we have the S map for the threeasad. As the surface resolution gets
lower and lower, the S map resolution also chargdsthe S values (the grey level
intensities) do not get affected, which means shiagex is independent of resolution

even though the principal curvatures values are not

Needless to say that if the same test was carugedoo H, K and C maps, the values
would have been affected and thus H, K and C atergswlution invariant. However
there’s a way to get the same principal curvatatees, thus the same H, K and C values
for different sampled or scaled versions of the esahape. It can be mathematically
proven that if the scale/resolution ratio is hetshstant for different scaled and sampled
versions of the same shape, the principal curvatalges also stay the same. Thus, H, K
and C may also become scale and resolution invarlanorder to prove this idea
practically, we prepare our final test on thrededént versions of the same shape. In this

test the scale and the resolution is modified spwadingly. When the scale is halved,
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then the resolution is also exactly halved. Sositede/resolution ratio stays constant for

each surface.

a) b)

Figure 18. a) The original surface (1) with 100&I@solution; Surface 2 with 50x50
resolution scaled by %2; Surface 3 with 25x25 netsmh scaled by ¥4; b) H maps for each
surface is depicted. Intensities (e.g. real H @l not change for different scaled H

maps, since scale/resolution ratio is constant.

This test shows that if we keep the scale/resalutatio constant for a surface patch, the
principal curvature values becomes independentalesand resolution and so the H, K
and C values. Thus thresholds we use for H, K and &ny recognition system also

become universal if we keep the scale/resolutidio reonstant. However this ratio is

affected by many things such as: the settings yoel of the digitizer (scanner) and even
the distance of the object from the digitizer. Trasio must be set to a constant value
before any threshold is used. For this purposhigmthesis any 3D scan is re-sampled into

a constant scale/sampling ratio of 0.5mm/samp&athu andv directions.

Furthermore by settings the scale/resolution vatmestant and by making H, K, and C

values independent of scale and resolution, thargtdge of S as a natural scale invariant
values vanishes. Consequently a proper comparit¢tKoand SC spaces can be made
since both spaces become independent of scaleeaallition. The next section makes an
introductory comparison of the two curvature spaaed introduces a coupled version of

the two.
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4.5.2 Rule for Thresholding

As proven in the previous subsection, a constaatesesolution ratio will make H, K and
C thresholds universal. However these universastiold values depend on the fixed
scale/resolution ratio. In our studies the fixedlsfresolution ratio is 0.5mm/sample. The
threshold values for H, K and C are 0.03, 0.0008 @®3 respectively. If a different
scale/resolution ratio will be used; in order ta ffge same classification results, the

threshold should be decided consistent with thenfites below:

Let new scale/sampling ratio be ratio

H =C = 003x (05/ ratioss)

zZero zZero

9
Kzero = (H zer0)2 ( )

4.6 Comparison of HK and SC Curvature Spaces

There has been an ongoing debate on the advanamgeslisadvantages of using HK
(Mean — Gaussian) or SC (shape index — curvedressatures for object recognition
applications. [Cantzler and Fisher 2001] make apaomeon of HK and SC curvature
descriptions in terms of classification, impacttifesholds and impact of noise levels.
They conclude that SC approach has some advardadms thresholds, complex scenes
and dealing with noise. However they calculatedinvatures at the lowest scale, e.g. the
given resolution. Scale-spaces of the surfaceecurvatures are not defined. Another
comparative study have been carried out in [Li Hladicock 2004] where using curvature
values obtained from the shading in 2D images, HH &C histograms are created. The
comparison results show that SC histograms arétblignore successful in terms of
classification. Yet again the tested resolutiothes pixel resolution of the 2D image, and

the effect of sampling is ignored.

When calculating the H, K and C values, the soadelution ratio is highly effective.
However due to its scale invariant nature shapexn®) values are independent of the
resolution or the scale. Thus it is no wonder B@t methods give better results against
HK when the comparison is carried out at an unallett scale/resolution level. As
explained in the previous subsection, in order &ikenH, K and C values scale invariant
the scale/resolution ratio must be set to a cohstalue for the whole database. In
addition a scale space of the surface should bstmmted so that all features obtained by
using H, K, S and C values will also carry the sdalvel information. Obtaining the

absolute scales of these features is a cruciatyafk 3D object representation and the
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only way of achieving such information is constigtthe scale-spaces of the surfaces
and the scale-space of the curvature values. Thawe been different attempts at
constructing a scale-space of the surface andidgfatale-invariant features however to
our knowledge, there have been no study on congrar$é HK and SC classification

capabilities using scale-spaces of the surfadearmatabase.

In this thesis, our main motivation and contriboties to make both theoretical
(mathematical) and empirical comparisons of HK (N&aussian) and SC (Shape
Index/Curvedness) curvature descriptions in a sejgdee of the targeted surface. By
doing this we also aim at comparing the scale pat@anobtained by using HK and SC, on
a local surface element. For this purpose we calleuthe scale spaces of the given
surfaces and the curvatures. The details of thisgpa given in the next chapter. Then we
make empirical comparison on the classificationltssof scale invariant HK and SC for
the Stuttgart database. This comparison is givaherresults chapter. Before concluding
this chapter, a mathematical comparison of HK a@dg@aces is given below.

Figure 19. The difference in region descriptionH¥ and SC spaces over they, (k)
plane is depicted. Each number designates a regich is described in Table 4. The
shape index thresholds are +5/8, +3/8, +3/16, &sfdr Figure 4. The other thresholds are

selected such that,k, = H%eoand Gero = Hyero

4.6.1 Mathematical Comparison of HK and SC Curvatue Spaces

In this chapter mathematical analysis of HK andcs@ature spaces are given over the
(x1, x2) plane. Eight fundamental types of regions arécatdd for both of the methods.

Since both HK and SC values are obtained fram «,) values by using different
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mathematical operators, the eight fundamental regimve slight differences for the two

curvatures spaces. Actually these slight differermlay the decisive role on their success

for object classification. In Figure 19, the diffeces in region definition ovek( «»)

planes are seen. Each region is indicated by a eymihich is listed in Table 4.

Table 4. The definition of the regions seen in Feglo

zeg HK Definition SC Definition Mathematical Definition

0.

1 Plane Convex Parabolic H<|H,erd N K<|K,erd N SL[-5/8,-3/8] N C>Coero
2 Plane Convex Elliptic H<|H.erd N K<|Kerd N SO[-1,-5/8] N C>Ceo

3 | Convex Parabolic Convex Elliptic H>+|H,erd N K<|KerdN SO[-1,-5/8] N C>Chero

4 | Convex Elliptic | Convex Parabolit H>+|H,erd N K>+|Kyerd N SO[-5/8,-3/8] N C>Chero
5 Plane Saddle Valley | H<|H,erd N K<|KzerdN ST[-3/8,-3/16]N C>Chero
6 Saddle Valley | Convex ParabollcH>+|H,ed N K<-|K,erd N SO[-5/8,-3/8] N C>Coero
7 Hyperbolic Saddle Valley | H<|Hzerd N K<-|K,erd N SO[-3/8,-3/16]N C>Ciero
8 Hyperbolic Convex Parabolic H<|H,e,d N K<-|K,erd N SO[-5/8,-3/8] N C>Chero
9 Plane Hyperbolic H<|Herd N K<|KerdN SO[-3/8,+3/8] N C>Cyero
10 Plane Concave ParabolicH<|H,ed N K<|Kyerd N SO[+3/8,+5/8]N C>Cero
11 Plane Concave Elliptiq  H<|H,erd N K<|Kerd N SO[+5/8,+1]1 N C>Cye
12| SOMCAY€ | Concave Elliptic | H<-|Hyerd N K<IKzed SU[+5/8,+1]N C>Coaro
13 | Concave Ellipticic Concave Parabolibl<-|H,erd N K>+|K,erd N SO[+3/8,+5/8]N C>Coero
14 Plane Saddle Ridge | H<|H,erd N K<|KerdN SO[+3/16,+3/8]N C>Coero
15| Saddle Ridge | Concave Parabgliel<-|H,ed N K<-|K,erd N SLI[+3/8,+5/8] N C>Cero
16 Hyperbolic Saddle Ridge | H<|H,erd N K<-|Kzerd N SL[+3/16,+3/8]N C>Cyero
17 Hyperbolic Concave ParabolicH<|H,e;d N K<-|K,erd N SL[+3/8,+5/8]N C>Cpero

In order to make the two spaces similar to eaclerotine zero-thresholds are arranged

such that of the threshold lines and curves of HH 8C spaces are tangent to each other,

when it is possible. Similar to [Cantzler and FisB801]'s approach, H, and G, are

taken equal, so that the line HzH is tangent to the circle Cz6, In addition Ke =

H2,.., SO that the hyperbola Kk, is tangent to the circle Cz&, Although, the regions

defined by the curvature spaces become very siraftar these arrangements, there are

still fundamental differences in region definitions
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The planar region definition for SC space is aleikentred on thex(, k,) plane origin
and thus it is symmetric. However the planar reglefinition for HK space is different
and not symmetric according tg= «, line, although it is symmetric accordinggg=- «.,
line. For this reason for the planar region defined HK space, is defined much
differently by the SC space (regions 1, 2, 5, 9,110 14).

Different definitions of elliptic and parabolic riegs for the two curvature spaces also get
diverse when the principal curvature values gegelar There are regions defined as
parabolic for one curvature space and elliptictf@ other curvature space (regions 4, 6,
13, 15). The parabolic region for HK curvature spaet narrower for larger principal

curvature values, while it gets wider for the SCGvaeture space. There are also other

regions (regions 3, 7, 8, 12, 16, 17) where thendieins are ambiguous.

4.6.2 HK&SC Coupled Curvature Space

On the other hand there are regions where thenalginitions are the same for the both
curvature spaces:or this reason in Figure 19, the regions for whidth HK and SC

curvature spaces definitions are the same are ¥éemame this combined space of HK
and SC curvatures, the HK&SC coupled curvature espibe mathematical definitions

are given in Table 5.

This new curvature space do not cover all the regmver thex,, «,) plane. The regions
which are ambiguous, in other words which are diassdifferent in HK and SC spaces,
are excluded from the classification. So if a logaiface patch is classified as one of the

regions in Table 5, then they are classified sanm®th HK and SC curvature spaces.

It is very difficult to decide which classificatiors best by just making a theoretical
comparison among the curvature spaces. It is diffio conclude on the best method
without experimentation. One region may be clasgifais planar by HK curvature space,
convex parabolic as SC curvature space, and maybactlassified by the HK&SC

coupled curvature space (region 1 in Figure 20)wéier the effect on classification
success can only be understood by experimentay.studhis thesis we compare the first
two curvature spaces for object recognition purpose addition we do this using the
scale-space of the surface and curvatures. The deapter gives the details on

constructing these scale-spaces.
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Figure 20. The HK&SC coupled space classificatiofkl, k2) plane. The colours and

numbers are correspondent with Table 5.

Table 5. HK&SC coupled space Classification. Cadoare consistent with the previous
figures
Convex (Elliptic)® H<-|Hzerd N K>+|Kyerd NS [+5/8,1] N C>Crero
Convex (Parabolicf H<-|Herd N K<[Kzerd NS [+3/8,+5/8]N C>Cyero
Saddle Ridgé’ H<-|Hyerd N K<-[Kzerd N'S [+3/16,+3/8]N C>Chero
Planar® H<|Hzerd N K<|Kzerd N C<Crero

Hyperbola® H<[Hzerd N K<-|Kzerd NS [-3/16,+3/16]N C>Coero

Saddle Valley® H>+|Hyerd N K<-|Kyerd N SLI[-3/16,+3/16]N C>Crero
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CHAPTER 5

SCALE-SPACE OF CURVATURES

The scale-space representation is the formal thefomandling am-dimensional signal at
different scales, such that a one-parameter faofilhe smoothed versions of that signal
is constructed. In the next subsection, the usescale space theory in the field of

computer vision is briefly summarized.

5.1 Scale-Space Theory in Computer Vision

Typically, an object contains structures at manyfetent scales. Thus a true
representation may only be constructed using tifi@rnration obtained from different
scales of the object. In this section the formdiniteon of scale in computer vision is
given. For further reading, reader should refeftmy Lindeberg’s renowned book on

scale-space theory in computer vision [Lindeber@4]9

Computer vision deals with deriving meaningful @eful information from 2D, 2.5D or
3D images. The digital equipments used to obtaoh smages provide this information as
discrete signals, which have certain sampling rétesolutions). However the useful
information within the image resides independerthef sampling rate. Scale-space theory
provides some directions to overcome this dependégcconstructing different scales
levels of the image. In this manner, scale levets @nstructed as different stages of
sampling of the original image; so that an operatitirdeal with different useful features

residing in different scale levels.

The most common method to obtain higher scalearidmage is pyramiding. A pyramid
representation of a signal is a set of successivatyoothed and sub-sampled

representations of the original signal organizeduoh a way that the number of pixels
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decreases with a constant factor from one layanther [Lindeberg 1994]. The next

section summarizes the most common pyramiding ndetBaussian pyramiding.

5.2 Gaussian Pyramiding

Similar to other low-pass pyramiding approachesjssen pyramiding is a type of multi-
scale signal representation, in which a signalmingage is subject to repeated Gaussian

smoothing; so that a linear scale space of thatbig constructed.

In [Burt and Adelson 1983] Gaussian pyramids ofi@iages are constructed by reducing
an image into its half resolution (Figure 21). Fois purpose Reducé and “Expand

operations are defined such that at eaRbeduce operation the data is smoothed and
down sampled into half, and similarly at ea&xpand operation the data is up-sampled

into double resolution by Gaussian smoothing [Bund Adelson 1983].

Figure 21. a) Gaussian pyramiding over a 1D sig(tdgher scale levels towards the
bottom). b) Gaussian Pyramiding on a 2D image.achestep, the image is both down-

sampled and smoothed (higher scale levels towhadgght) [Burt and Adelson 1983].

The main motivation behind reducing a signal i®hbtain down-sampled version of that
signal, so that the size of an applied operatootmes independent of the resolution of
that signal. For example, if a 3x3 kernel is comedl over the image, only features fitting
inside 3x3 region could be detected. But if thenkéris applied to all reduced levels,
larger features can also detected using the sagratop.
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5.2.1 Gaussian Pyramiding over 3D Surface Scans

In this thesis, Gaussian pyramiding is applied BosBirface scans and 3D curvatures in
order to obtain scale-space representations of Bjects. However it is not a
straightforward procedure to apply these operatiori3D, since there is an ambiguity in
the definitions of scale and resolution for 3D scdBefore understanding the “scale” and
“resolution” (or the sampling rate) of a 3D scdnsibeneficial to examine their meanings
in 2D.

For 2D images, the notion of scale is the samesdution. In other words, the size of the
signal is calculated by its sampling rate becauseetiic size within an image is not
defined. For this reason, when a scale-space @ aighal is constructed, at each scale

level the image is solely sub-sampled.

On other hand, the sampled points carry metricrinftion for 3D scans. In other words
independent of the sampling rate of the 3D scamntbtric distances between points on
the signal are absolute. For this reason, two sohti®e same object taken from different
distances, will sample the object in different tagons; however the object surface
within the 3D scan will carry the same absoluterioedize. This little detail may seem
insignificant; however it plays a profound rolecionstruction of scale-space for 3D scans.

Gaussian kernel and its derivatives are singledasuhe only possible smoothing kernels
[Lindeberg 1994]. Pyramid approach for multi-resin is usually chosen because in
Gaussian pyramiding, image size decreases expaftgemntith the scale level and hence
also the amount of computation required to prodéss data. But it also has some
drawbacks such as a coarse quantization along dake slirection which makes it

algorithmically hard to relate image structuresasrscales [Lindeberg 1994].

Figure 22. Gaussian Pyramiding on 3D scans is $e@ach scale level, the sampling rate

is halved, but the metric distances are preserved.
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As seen Figure 22, a Gaussian Pyramid of a 3D iscdapicted. At each scale level the
sampling rate is halved as expected. But the meligstances within the image stay

unaffected.

5.2.2 Invalid Points in 3D Surface Pyramids

As it was discussed thoroughly in Chapter 2, tlegesinvalid points on 3D scans, which
are either background or simply invalid since theyld not been acquired properly by the
scanner. For most 3D data processing methods, theakd points are simply ignored
and calculations are carried out using only thédvabints. However if a pyramid of a 3D

range image, which contains a group of invalid fmiis to be constructed; these invalid

points should be handled properly.

Figure 23. The scale levels of a depth image cocttd by Gaussian pyramiding are seen.
The black regions are the invalid points. Aroune ¥alid point boundaries the smoothing

filter avoids blending with invalid points so ththe sharp boundaries are preserved.

When constructing a pyramid for a 2D intensity imags in Figure 21.b, the Gaussian
operator is convolved throughout the image withexaeptions. However in order to
convolve a Gaussian filter over a depth imageuniiclg invalid points; it is possible that
one might experience difficulties in boundary regavhere valid and invalid points are
next to each other. In these occasions, the segmanthe Gaussian filter, which

corresponds to invalid points, should be omittddis way the true shape of the object
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may be preserved in higher scales. In Figure 28stlale space of a surface is constructed
using Gaussian pyramiding. Around the valid pomtitdaries the smoothing filter avoids

blending with invalid points. This way, sharp boarids of an object can be preserved.

A similar approach was carried out by [Lo and Sieb2009] in order to avoid false key
points which would be resulted as a consequen@pjoliying a standard Gaussian mask
over the sharp boundaries on the range image.alhsteey applied a Gaussian-tapered

segmentation mask in order to isolate the areatefest while avoiding sharp boundaries.

5.3 Scale Space of Curvatures

In this section, the scale levels of a depth sigmalanalyzed. In the previous figure, scale
levels of a range image were given. In Figure Bé, same range image is seen from a
different angle. It is clearly seen that, as weugothe scale axis, the smaller elements
vanish and only the larger elements reside. Thisthes basic motivation behind

constructing a scale space.

Figure 24. The smaller elements vanish as we gbeipcale axis.

The normal directions of each scale level are shiowrigure 25. In this figure, red values
correspond to x components, green values corresgong components and blue
components correspond to z components of the surfaomals. It is also seen from the
normal scale-space that smaller elements vanistiglrer scales. The thin edge which is
denoted by 1 in Figure 25, is visible in lower ssabut vanishes in higher scales, since

this element is relative small.
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Figure 25. The scale-space of the surface norméd values correspond to X
components, green values correspond to y compor@dtdblue components correspond

to z components of the surface normals.

The benefit of constructing a scale space of agdnmge is more clearly seen, if the
curvatures obtained from different scale levels amalyzed. The next subsections

emphasize on constructing different curvature sspéees.

5.3.1 Curvatures in Scale-Space

As explained in Chapter 3, the curvatures are tatled using surface gradients. Thus they
give basic information on surface behaviour. Ineordo calculate surface gradients
analytically, explicit surface functions may be diselowever in real world applications,
the 3D surfaces are digitized into sampled pointsthere’s no global explicit function of
the surface. Hence, the surface gradients are latdduwithin a neighbourhood of
sampled points. For this reason the calculatedaturgs are local approximations, which
are valid at a certain scale. Therefore the cureatare calculated for each scale level,

and the curvature scale-spaces are constructed.

In this section different curvature values obtaifredn different scale levels are depicted,
so that the general idea of curvature scale-spaegée properly comprehended. First, in
Figure 26, the scale space of mean curvature valgeseen. The concave regions, which

have positive mean curvature values, are paintededy where convex regions with
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negative mean curvature values are painted in Bloieboth regions the magnitude of the

curvature is demonstrated by colour intensity.

Figure 26. The scale-space of mean curvature valiles concave regions which have
positive mean curvature values, are painted in wdtre convex regions with negative

mean curvature values are painted in blue.

Figure 27. The scale-space of Gaussian curvatugeesiaThe parabolic regions with

positive Gaussian curvature values are painteddrcolour, where the hyperbolic regions

with negative Gaussian curvature values are paintbtiie colour.
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As seen from the figure, the convex region denbiedumber 1 is designated as a peak in

higher scales since this element is relative léogéhe given resolution of the 3D scan.

Similarly if we examine the Gaussian curvature galuagain the larger features are
observed in higher scales. In Figure 27, the Ganssurvature values obtained from
different scales of the surface are depicted. Tdralwlic regions with positive Gaussian
curvature values are painted in red, where the riogie regions with negative Gaussian
curvature values are painted in blue. For bothoregithe magnitude of the curvature is

demonstrated by colour intensity.

Moreover, when the shape index values obtained tifi@rent scale levels of the surface
are examined, the affect of scale-space is clesdy. Since shape index value is capable
of classifying the surface into the fundamentalfesre types (except planes), the scale-
space of the shape index values clearly demongdtratscale coordinates of the surface
features. . In Figure 28, the shape index valudaimdd from different scales of the
surface are depicted. The shape index values dadrae mapped according to Table 2 in
Chapter 3.

Figure 28. The scale-space of shape index values.shape index values and colour is

mapped according to Table 2 in Chapter 3.

As seen from the figure, the convex region denbtedumber 1 is designated as a peak in

higher scales and is not existent in lower scales.
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Finally if we examine the curvedness values obthiinem different scale levels of the
surface, we clearly extract the planar regionqh@dcale-space. Curvedness values can be
used to detect planar regions, since regions hasiifiiciently small curvedness values

are defined as planes. In Figure 29, the gray letehsities designates the curvedness

values, where zero curvedness value corresporidadk.

Figure 29. The scale-space of curvedness vallesgiay level intensities designate the

curvedness values, where zero curvedness valussponds to black

The region denoted by numbers 1, 2, 3 and 4 iremfft scale levels corresponds to a
planar region on the surface and it is designasqulane in the first four scale levels in the
curvedness scale —space. However in the fifth clmees scale-space level is it not

designated as plane, since in this scale, thenggidesignated as pit.

In this chapter the concept scale-space is defie8D surfaces. Moreover, it is clearly
shown that larger features can only be extractewjube scale-space of 3D surfaces and
curvatures. In the next chapter, the details diufeaextraction from the scale-space of 3D

surfaces and curvatures are presented.
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CHAPTER 6

FEATURE EXTRACTION AND OBJECT
REPRESENTATION

In this chapter, the proposed method to extraciesaad orientation invariant features
using scale-spaces of 3D surfaces and curvatueegplained. There are previous methods
which focus on extracting features from scale-spacdifferent types of signals [Lowe
2004]. For this reason, certain aspects of the ggeg method, such as scale-space

localization are given in comparison with the pogsd scale-space techniques.

6.1 Construction of the UVS Volume

As it was stated in the previous chapter, estingatinrface feature labels at the given
resolution of the original surface restricts udita the features only at the lowest scale
(the given resolution). In order to detect othawvatures which have higher scales, a scale
space representation must be introduced. For tihigoge, the Gaussian pyramid of the
input surface may be generated. It should be reraprdithat Gaussian pyramiding does
not change the absolute size of the model surfadgethe resolution of the surface halves

as we go up the scale space. In other words, g@wb metric information is kept.

Subsequently the curvature values for each sceleaculated and H, K, S and C maps
for each pyramid level are obtained. Towards thghdr levels of a scale-space
representation, the smaller surface elements vaaigh bigger elements reside. For
example in Figure 30, eye pits and chin peak vaatstme third pyramid level but nose

peak and nose saddle still reside.
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Figure 30. Three levels from the HK pyramid of edfanodel surface.

Subsequently, the higher levels of each curvatyramid is up-sampled to the original
size by using “Expand” (the inverse of “Reduce”)eaplained in Chapter 4. After this
expansion, any label on th8 level of the pyramid will widen*imes in resolution. Thus
all levels of the curvature pyramid will have there resolution. An example of such an
equalized curvature scale-space was introducdueiprtevious chapter. Putting each level
of the expanded pyramid on top of each other, waiota 3D volume which we call as
UVS space where u and v are the surface dimensiadss is the scale dimension.
Afterwards suing different curvature UVS volumedl (af which have the same
resolution), the voxels are classified as explaime@hapter 3. For instance, using H and
K values, HK classification is carried out and &ach voxel, a feature label (or type) is
obtained (Figure 31).

b il N

Figure 31. The HK UVS volume after morphologicakogtions printed above the surface

patch. The features are indicated with their s@rfgttapes as colours (blue for peaks, cyan

for pits, red for saddle ridges, etc.).
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For each classification type (HK or SC) a differelatssified UVS volume is obtained. We
refer to them as the HK UVS volume or the SC UV&Ine. The process of UVS volume

construction is depicted in Figure 32.

Calculate H,

Gausssan : — — K, Sand C for
Pyramldlng ‘. . & CEE § all scale

3D Range Scan

Expanding HK and - v &
SC _sp?ces k?afk td - Finding connected .
original resolution \ components S
> > v
UVS Volume HK & SC UVS Volumes

Figure 32. UVS Volume Construction.

Within the UVS Volume, each voxel is classified @cling to its curvature value. As it
was stated in Chapter 3, the voxels are clasdifjetthresholding. Unsurprisingly some the
curvature values are much higher so that theirevahove the threshold is higher than the
others. For this reason, a weight value is assigoegach voxel using the amount of
curvature values that exceed the thresholds. Tdaitm and scale of a feature in the UVS
volume are estimated using these weights. For h&JMS volume, the weights are taken
as the 2 norm of the absolute differences of the curvatuméues from the applied

threshold values:

Wi :((Hi,J_DH)2+(Ki,J_DK)2)% (10)

In Figure 33, the weights are demonstrated withen HK UVS volume. The bigger the
weight is the lighter the colour becomes. For eXemihe weights of the eye pit feature
can be observed from its colour which changes flight cyan at the smaller scales to

dark cyan at the larger scales.
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Figure 33. The weights are demonstrated in the MSWolume. The bigger the weight is

the lighter the colour becomes

For the SC UVS volume, the weights are simply takethe curvedness (C) values.

These weights can very-well be calculated in d#férmanners. In the next subsections,
we thoroughly discuss the reasons why we have tedlesquation, since it profoundly
affects scale-space localization.

6.2 Extraction of Features

In order to extract scale invariant features (fezgtuwith their scale information) from a
UVS Volume, several steps are followed. First, eamkel of a UVS volume is checked
for its similarity within its 10 neighbours (8 ate same scale level, 2 up and down
through scale). If all labels of the neighboursénthe same surface shape label (pit, peak
etc.), the centre voxel continues to carry its lagherwise it becomes a blank voxel.
After voxel relabeling, a single opening (erosiord alilation respectively) operation is
applied where 3x3x3 sized kernels are used. Theexivact connected labels in the UVS
space. Finally, each connected component repreadmeisture on the surface which will
later become a node of a topology graph. In Figd#eit is clearly seen that a feature
element, for example the handle of the screwdritas components at a number of

successive scale layers (the orange hyperboliasigatch).
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Figure 34. Labelled layers of UVS space construtiediK values where scale level is
increasing from left to right. The original surfalexel is indicated by “S=0". Labels are
given by colours. (peak: blue, saddle ridge: reshvex cylinder: purple, pit: cyan, saddle

valley: yellow, concave cylinder: green, hyperboticange, plane: gray.)

Inside the classified scale-space, each connectieganent consists of the same type of
voxels and is considered as a feature elementeautiace. This particular classification
type such as pit, peak, and plane; is consideréldestype of that feature elemenj.(The

total number of voxels inside the connected compbnepresents the feature’s volume

(Vi)

When the curvature scale spaces are calculatedotiresponding scale-space of surface
coordinates and scale-space of surface normalsalace constructed. Thus, for each
connected component, using the corresponding vaxighén the scale space of surface
coordinates; the centre of mass of the connectetpapent is also calculated and called
as the positional centre of the featurg. Remember that this centre of mass is calculated

by averaging the voxels using the correspondingiteicalculated in (9).

Similarly using the scale-space of the surface atsma weighted average of the normal
direction for each connected component can be fduard This vector designates the

average orientation of the feature in 3D world.

In addition, since a connected component may hafferent number of elements in
different scales, a weighted average of the scaleevis calculated for each connected

component as the actual scale of that featuje (s
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Although a connected component may have variousdetsrof elements in different scale
levels, it has the biggest number of elements ensttale which is closest to its actual
scale. The area (Aof the connected component at this layer is usedalculate the
radius (f) (10) which also defines the size of that fundataleglement.

r= \/%T (10)

Finally, for each feature element extracted from shirface, the following attributes are

obtained: the typet], the volume ), the positional centre of mass)( the orientation

vector ), the scaleq) and the sizer{) (Figure 35).

Figure 35. Ten largest extracted features are shasvequares where the feature center
(xi) is given by the square center, the feature §iadius) (ri) is given by the square size

and the feature type is given by its colour.

6.3 Scale-Space Localization of the Features

Since we use Gaussian smoothing to construct #le-space volume, the relation
between the smoothing kernel sizg¢ &nd the scale dimension (s) between two scale

layers (A and B) of the UVS volume is as follows:

ﬁ = 2(SA_SB)

Ia (11)

This relation is verified on synthetic Gaussiarfategs having different scales as follows.

Figure 36 shows UVS spaces for three synthetiogdigerated unit volume Gaussian
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surface models. Each Gaussian surface has thesthalflard deviation of the one on its

right, i.e.oa= ok, 6g= 2*ck, 6c= 4*ok.

k4

....l
11X

Figure 36. Three unit volume Gaussian surfacesffarent scalesdA= oK, oB= 2*cK,

oC= 4*¢K) and their respective UVS volumes.

Then according to (3) the scale values for thesgs&an surfaces must have the following

relation:

(12)

After computing the weighted averages we obserag ttie estimated locations are the
centers of the synthetic Gaussians and scalesysttesrelation given in (4) where SA =
3.86, SB = 2.80 and SC = 1.92. These values agstent with Equation (4).

As stated by [Lindeberg 1994], the scale, at whéclscale space blob assumes its
maximum normalized grey-level blob volume over ssais likely to be a relevant scale
for representing that blob. In order to do so,gbale should be normalized. However, in
3D data where we actually know the metric measunésneall data is normalized if
sampling is the same for all and in that case nityntize scale layer for which the blob
extends the most can be taken as the scale dbltiatBased on this idea, we did not take
the maximum extending layer but a weighted averags the layers so that we could
interpolate between the layers which helps us aching a better resolution in scale

dimension.

The localization of the features in the UVS voluared on the surface is crucial. This
localization should be robust to noise and any tgpé&ransformations. For example in

[Lowe 2004], the SIFT descriptor is sought in alecpace of different octaves, where all
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local maxima (or minima) is selected as a featimgtead of using the weighted averages,
a similar approach to [Lowe 2004] may be appliedotor method where a single
maximum for each connected component in the UV®esiim found. However, as it is
seen in Figure 37, this approach will fail undeiseoor in complex scenes. Imagine we
have a simple surface with a single peak and itsyneersion. When the centre of the
peaky feature is sought over the surface with ndise seen that a local maximum value
inside a connected component may divert the cémne its original position although the
surface is smoothed in higher scales (Figure 3Dcy. method localizes the features

correctly (Figure 37.b) and is robust to noise.

a) b) C)

Figure 37. Localization of the peak feature (ahgdioth methods (top: weighted average,
bottom: single maximum). b) For the ideal surfaothbmethods localize the peak feature
correctly. ¢) For the noisy surface, the featurgtilscorrectly localized using weighted
averages (top) but the localization fails undesaaivhen the single maximum method is

used (bottom).

Our approach is tested on the three face scanssindvigure 38 with their HK UVS
volumes. Table 6 lists the estimated UVS coordmateghe features for all three faces. As
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can be seen in the table, scales of the featueaesearly the same for all faces. Locations
of the features for frontal face and for expresaidace are very close to each other as can
be expected. Absolute coordinatgg/(2 are computed from the UV coordinates and they

coincide with the correct locations of the featusaghe facial surface.

Figure 38. UVS volumes for a. rotated towards Idft, frontal and c. expressional

(disgusted) faces.

Table 6. Extracted features from the surfaces giweRigure 38 with their locations in

UVS space

u|/v (S |U |V |[S |U \Y S
L.Eye | 75|122|2.5|123|121|25| 118 | 124 | 2.5
R.Eye | 35| 123| 25|71 | 123|2.5| 66 124 | 2.4
Nose 43|92 (29|97 |91 |29]|90 95 3
Saddle| 52 | 123 | 2.7 |97 | 122|2.7| 91 124 | 2.5

a. rotated face b. frontal face | c. expressional fac

¢

6.4 Transform Invariant Topology Construction

In this section, using the feature elements extthétom the UVS space, a global 3D
object representation is constructed. A scale amhtation invariant representation is
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proposed, where the spatial topology of the obigdaiven as a graph structure which
carries the relative information among the featuresr the 3D surface. The relativity is

not only in terms of spatial information but inrnes of orientation and scaling as well.

As explained in the previous subsection, for eaetiure element the following attributes
are obtained: the typet)( the volume ¥), the positional centre of masg)( the

orientation vectorr(), the scaleq) and the sizer|). If each feature is referred as a node in
a topology graph where the nodes carry the featlement’s attributes and the links
between the nodes carry some relative informatotgpological representation may be

obtained.

In order to make this representation orientatiod secele invariant, the links between the
nodes must carry “relative” or in other words “nalired” information. An example of

this type of relation could be the length betweeon nhodes normalized using a scale
invariant measure specific for that topology. Takative 3D direction between two nodes
might also be used. Furthermore scale differen¢evdmn the nodes would carry scale

invariant information. These relative link attribatcan be listed such as:

* Normalized distance from Node A to Ij)”(B _XA|/rA or |>*(B —Y(A|/23A. The

distance between two nodes can be normalized ubagcale or the size of a base
node (A) in the topology. Thus this relation stapsariant under scaling and

orientation of the source signal.

 Link Vectors or Link Angles(X, —Y(A)/|7<B —7(A| : The unit vector from a node (B)

to a specific base node (A) in the topology wikalremain invariant under scale.
However this link vector will be variant under oriation. In order to make this
information both scale and orientation invariahg angles between these unit vectors
might be used. For amnode topology there would bel unit vectors. For any two
these unit vectors, an angle can be calculateds ahgle will be invariant of both
scale and orientation. Far-1 number of unit vectors, we would obtainn€k,2

number of angles, which is also equa(nel)(n-2)/2 The angle can be calculated as:
Qgpc =0cpg = COS_I([(Y(B - XA)/|XB - XA| ]T l:!j()ﬁ(c - XA)/|XC - XA| ])

« Normal Vector Differenceri; — 1 ,: The difference vector between the unit normal

vector of node Br(g) and unit normal vector of the specific base nada,) will stay

invariant of orientation and scale.
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« Feature Scale Difference and Size Rati& —S, & ry/r,: As explained in the

previous chapter, the scale difference betweenrnwaes is invariant to scaling. The
ratio of the size of a node (B) (which is strongdated to scale of that feature) to the

size a specific base node (A) will stay invariahscaling as well.

Imagine we have a four-node topology with node8AC and D. Assume that node A is
defined as the base node of the topology. Therfdb@wing vector will be scale and
orientation invariant:

rA(or 2°) ' M Ia
(13)

"aBAC’aBAD'aDAC
iy =T i =T g A =T, ..

"'rB/rA(OrSB_SA)'rC/rA’rD/rA ]

This feature vectak; has 16 elements (as scalars or vectors). Forrate topology, the
number of elements in this vector will he3-(n-1)+(n-1)(n-2)/2 This four-node relation
may also be shown on a topological chart as showrRigure 38. Node A is called the

base node because the link relations are calculatatilve to this node.

Figure 38. Four-node, scale and orientation inwarieature vector is shown in a
topological chart.

This vector is orientation and scale invariant siat relations are defined relative to node
A. However for some applications, orientation andtale invariance may not be desired.
For example, if the metric size of the object to reeognized is known, then scale

invariance is unnecessary. Similarly if the ori¢iota of the object relative to the sensor
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device is fixed, then orientation invariance caliigbbf a recognition system will be
redundant. For this reason orientation and/or sdependent versions of this vector may
be defined.

(14)

el o ]

The Equation 14 is an example of an orientatiomiiiant but not scale invariant feature
vector representing a four-node topology, sincelitlelengths and feature sizes are not
normalized according to the base node A. On therdthnd the feature vector in Equation
15 is scale invariant but not orientation invariaetause the feature normal vectors and

link vectors are not normalized according to node A

A= totete ity v

Re =%l [Kc =X Ko =X
I’A rA A
o (15)
._(XB _XA),(XC _XA) ' (XD _XA)
‘)—(B_)—(A‘ ‘XC_XA‘ ‘)—(D_)—(A‘
A, Ng, M, hp,
N ) RN AL N YA N ]

In Figure 39, a simple demonstration of scale iiavere of the proposed method is
demonstrated. The smaller surface has half the sifalhe bigger one. The radii of the
peaks and pits extracted from both of the surfacegiven in the figure. It is clearly seen
that the scale ratio is kept constant. In additt@radii are halved for the smaller surface,

which is exactly half of the bigger surface inatks.
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150 T - i ) 200
Figure 39. The feature extraction algorithm is edalariant since the extracted features
numerically depend on the scaling ratio of a swfathe numbers are the radii of the

extracted feature elements.

Using the equations (13), (14) or (15) a featuretarefrom n-nodes may be obtained.
However excessive number of nodes might be (agtaat usually) extracted from a
range image. Therefore, mamnode combinations may be obtained from a ranggema
and these differemt-node feature vectors represents different parteeBD surface. The
algorithm to obtain a complete set of feature vectwwhich represents the whole 3D

surface is given below:

1. Extract all feature elements from the surface:

Node: (ty), (V1), (X2), (a), (s0), (ra)
Nodé: (t2), (V2), (x2), (N2), (S2), (r2)
Nodé: (ta), (Va), (X3), (N3), (Sa), (rs)
Nodé:

2. SelectM nodes withM largestradii (r;) OR volume(v)).
3. Order these selectdd largest nodes according to the criteria below:
a. Order them according to their type.

b. If there is more than one occurrence of a typeemtdem according to
theirradius (r;) ORvolume(v,).

4. For the ordere®! nodes do the following:
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a. Select node group size (2<n<M)

b. Obtain all possible K number df combinations of node groups of
among theM ordered node&=C(M,n)

c. Among eacm-node combination, keep the order of the nodesrduoup
to 3.

5. For allk combinations,
a. Select the first feature as the base node.
b. Extract the feature vectoisusing (13), (14) or (15)
c. Then stack these row vectors in a feature matrix[1 1, 43" ... 4']".

This feature matrixA will be a scale and/or orientation representatiepending on the

equation used to calculate the feature vectors (18) or (15)

6.5 Importance of Scale Space Search

In order to show the significance of scale spaegcée the feature extraction results with

and without scale-space search are depicted irstibisection.

When the scale-space search is omitted, the cuestare found only at the given
resolution. Even though scale/sampling ratio istradled (usually it is not controlled
since this ratio changes even when the distanceeket the 3D scanner and the object
changes), the types and the sizes of the featueededected wrong when only the given
resolution is considered. In Figure 40, the exaddeatures of the original screwdriver
object and its scaled version (by 0.8), both witid avithout scale-space search, are
depicted. The features extracted from the origiaald the scaled versions of the
screwdriver object using only the given resolutiza usually mislabelled (Figure 40.a,b).
For example, only some planar features are locatethe handle of the object and the
actual shape of the handle could not be extractéds, most surface structures are
generally labelled as planes when only the givesoltgion is considered. Since the
original resolutions of 3D images are very higheminside a peaky region, a point may
be considered as a plane because the neighbouwintg are very close to each other. As
a result, many small planar regions are detectéatge concave areas. Thus, only when a
scale space search is performed, the real typesiaesl of the surface features could be

extracted (Figure 40.c,d).

63



Second of all, the feature sizes can only be ctiyrextracted if scale-space search is
used. Since Figure 40.d is 0.8 times resized wemsid-igure 40.c, the radius of a feature
found in Figure 40.d is also 0.8 times smaller tthanradius of the corresponding feature
found in Figure 40.c (the numerical values are miveTable 7). However, this property
of robustness under scaling cannot be observed wigrthe given resolution is used for
feature detection. Although most features are spordent in Figure 40.a and Figure
40.b, their radii are faulty. The shape in Figudebdis smaller than the one in Figure 40.a
by a ratio of 0.8, however the radii of the featunembered as 1 and 2 in Figure 40.b are
larger than the radii of the corresponding feature&igure 40.a (Table 7). Thus it is
clearly seen that in order to extract features withr size properties, scale-space search is

a must.

-20 ] 20 40 &0 &l 100 120 140

Figure 40. Ten largest features extracted usingraginal image without scale-space
search, b) scaled image (by 0.8) without scaleesgaarch, c) original image with scale-

space search, d) scaled image (by 0.8) with sgaleessearch.

As seen in Figure 41, the scaled versions areeartdat various objects and the features
are extracted from each one of them. For each plijex original object is in the middle,

while 1.2 times and 0.8 times scaled versions liettee left and the right side of the
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original respectively. For each object, ten largedtacted features are depicted as squares
on the objects. Some features are numbered tddreljetter visualization and the radii of

these numbered features are given in Table 7.

For all object triples, the majority of the extredtfeatures can be detected in all versions.
Also, the radius of each feature changes accotditige size of the feature, i.e. the object
(Table 7). Of course, some other features appeaisappear among different sizes as
expected. An artificially created bumpy surface @adcaled version are given in Figure
41.a and only a peak in the center of the shagacsuris extracted as a feature for each
version. The radii of these extracted featuresgaren in the first row of Table 7. The
radius values are consistent with the sizes of@htures and the objects. Similarly, some
features are also labelled on the original andstteded versions of screwdriver (Figure
41.b), pig (Figure 41.c) and duck (Figure 41.d) eadesponding radii values are listed in

Table 7 also. All feature sizes are detected irsistency with the amount of scaling.

Table 7. The radius values (in mm) of the extraé¢adiures in Figure 41

Object / Feature x 1.2 | Original | x0.8
Figure5.a/1 28.7 24.5 21.1
Figure 5.b /1 17,15 14,16 10.64
Figure 5.b /2 32,71 26,66 22.71
Figure 5.b /3 23,20 18,08 13,36
Figure5.b/4 18,17 15,83 12,41
Figure 5.c/1 83,91 69,35 57,70
Figure 5.c/ 2 54,37 46,33 38,87
Figure5.d/1 67,19 51,96 39,89
Figure 5.d/ 2 113,86 | 93,36 77,47
Figure 5.d/ 3 31,68 26,44 21,40
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Figure 41. Ten largest extracted features from fditferent object surfaces. For each
object the original (middle), 1.2 times scaledtfleind 0.8 times scaled (right) versions
are given. The feature types and sizes are givecolyur and square size respectively
(peak: blue, saddle ridge: red, convex cylinderpfgy pit: cyan, saddle valley: yellow,
concave cylinder: green, hyperbolic: orange, planay).

6.6 Feature Extraction Robustness under Noise

In order to see the affect of noise, the noisy ieess of the three objects with different
levels of noise are created (Figure 42). Subsetyydeatures are obtained from the noisy
versions. It is easily seen that similar featuresla generally be extracted from all
versions and thus noise does not affect the feaxtraction procedure drastically. Even
when the there’s %60 noise over the image, featuhesh are found in the higher scales
of the UVS space are extracted clearly. Since Gamdfiters are used for each scale-
space level construction, noise vanish in higltates and thus features large enough to

be found on higher scale levels are extracted withaor.

In Figure 43, the average of the interest pointterefocalization error is given for
different noise levels. If a feature could be ectied from both the noisy version and the
original (more than %90 of features were correspanh the original and noisy versions)
the average of error between the original featerdgers and the centers obtained from the
noisy version are calculated and this average éoragach noise level is depicted (Figure
43.a). In addition, the error of feature size (uaflicalculation for each noisy version is
depicted separately in Figure 43.b. As seen frafitfures, very high noise levels do not

affect interest point localization and radius c&dton noticeably.
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Figure 42. Ten largest extracted features from mloésy versions of the objects:
screwdriver (top), duck (middle) and pig (bottora). %15 noise b) %30 noise c) %45

noise d) %60 noise.
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Figure 43. a) Interest point center localizatioroein mm for different noise levels. b)

Radius calculation error in mm for different noleeels.
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6.7 Local Region Descriptions

As stated in the previous subsections, the 3D eserfamay be globally or locally
represented using scale and orientation featumrggorhis is a quite robust and efficient
way to recognize categories of objects. For exammle different facial surfaces will
both have two eye pits, one nose peak and a ndgéesahus, in order to detect 3D facial
surfaces, a simple four-node topology includingsthéacial features could be trained.
However, so as to recognize a certain 3D faciafasar among a database of facial
surfaces; a global topology might not provide sifit representation. For this reason
many 3D recognition approaches attempt to makeaglob regional definitions of 3D

surfaces.

Histogram representation is a compact and effigiegithod to globally or partially define
a 3D surface. A part or whole of a 3D surface @Dascene may be represented with
different histogram methods such as, depth histogranormal histograms, curvature

histograms or spin images.

In this chapter, four of the well-known histogrampresentations for 3D surfaces is
reviewed. The representations will later be useddé@ine local regions around the
extracted feature points. These representationslegth histograms, normal histograms,
shape index histograms and spin images. There adegther local descriptors in the
literature, namely splash [Stein and Medioni 1998jclic images of radial contours
(CIRCON) [Torre-Ferrero et.al 2009], point sighasi{Chua and Jarvis 1997], intrinsic
point signatures [Zhong 2009], 3D point fingerpsifBun et.al. 2001], 3D shape context
(3DSC) [Frome et.al. 2004], spherical spin imadesif-Correa 2001] etc. It is beyond
the scope of this thesis to decide which one isb#st. Thus the selected four, which are
implemented and tested for object recognition, laiefly explained in the succeeding

subsections.

6.7.1 Depth Histograms

This is simplest histogram that can be obtaineohfeorange image. Since pixel intensities
directly correspond to depth values (distance ftoensensor device), this is simply a grey
level histogram of the range image. This intensiistribution provides valuable cues

about the shape of the 3D surface.

If normalized, these histograms stay invariant ursdale changes. They are also invariant

under translation and image plane rotation. Howdkiey can be very sensitive to the
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perceived depth range. If there are large and alshgnges in the depth range, e.g. due to
occlusion effects, the whole histogram will be whdfand recognition might no longer be
guarantee. For this reason, intensity histogramsaody be relied on for the recognition of

surfaces with sufficient depth range [Hetzel et2@01].

[Hetzel et. al. 2001] uses depth histograms of Wiwle range scans for object
recognition. Although this is a scale and image@leotation invariant manner, it is very
sensitive to occlusions. In Figure 44, a range gnagd its %25 occluded version are
depicted. The depth histograms obtained from eaelye are shown as well. The effect of

occlusion on the depth histograms is clearly seen.

Figure 44. a) The original range image taken fr@twttgart Database]. b) %25 occluded
version of the range image in (a). ¢) The depthogram of the original range image

(blue) and the %25 occluded image (red)
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In order to make depth histograms more robust ttusion, local depth histograms can be
calculated. For this purpose, a feature centret@oid feature size should be provided for
each local histogram obtained from the range imaggng the scale and orientation
invariant feature points as histogram centres aei radii as the regions of interest; a
local histogram representation which is robust ¢elusions may be proposed. In this
representation, for each node extracted from th& Welume, a depth histogram of the

region within the radius of the feature centrentsaduced as a new feature element:
Nodé: ), (), (), (), (8), (1), [HisStoepn] (16)

In Figure 45.b, a local depth histogram obtainemmfrthe feature in Figure 44.a is
depicted.

a) b)

Figure 45. a) Nose is a feature element of peak.titp radius is the radius of the blue
circle around the feature. The local depth histogod the region within the radius of the

feature centre is depicted.

6.7.2 Normal Histograms

As it was explained in chapter 2, surface normaés calculated from the first order
derivatives of the surface. A unit normal vectorries two independent variables. There
are two main representations commonly used forpiwpose. The first just discards the z-
component of the normal vector and represents & pair (x, y). This corresponds to a
projection of the orientation hemisphere on thet ginicle. The second possibility is a
representation as a pair of anglés ¢) in sphere coordinates. The angles can be

calculated as follows:
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[Hetzel et. al. 2001] uses normal histograms of Wigle range scans for object
recognition. They use a 2D histogram @f¢) values. Although this is a scale and image
plane rotation invariant manner, it is very semsitio occlusions. In Figure 46, a range
image and its %25 occluded version are depicted. Aidrmal histograms obtained from

each image are shown as well. The effect of oamtusih the normal histograms is clearly
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Figure 46. a) The original range image taken fr&tuttgart Database]. b) The 2D normal
histogram of the original range image. c) %25 odetliversion of the range image in (a).

d) The 2D normal histogram of the %25 occluded imag
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In order to make normal histograms more robusttbusion, local normal histograms can
be calculated. For this purpose, similar to loagtd histograms, a feature centre point
and feature size should be provided for each lbgstbgram obtained from the range
image. Using the scale and orientation invariaatuiee points as histogram centres and
their radii as the regions of interest; a locakddsam representation which is robust to
occlusions may be proposed. In this representafiiorgach node extracted from the UVS
volume, a normal histogram of the region within tfalius of the feature centre is

introduced as a new feature element:
Nodé: (t), (v), (i), (N3, (s), (ri), [HisStnorma ] (18)

In Figure 47.b, a local normal histogram obtainesht the feature in Figure 46.a is
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depicted.

a) b)

Figure 47. a) The nose is a feature element of pgrk Its radius is the radius of the blue
circle around the feature. The local normal hisdogof the region within the radius of the

feature centre is depicted.

6.7.3 Curvature Histograms

Curvature histograms simply carry the curvaturérithistion information of the input 3D

surface. This curvature value mightihex,, H, K, C, S or another value derived from the
first or second derivatives of the surface. [Heteel al. 2001] uses shape index (S)
histograms of whole range scans for object redimgnpurposes. They experimentally
prove that shape index histograms are better iresepting range images compared to
depth or normal histograms [Hetzel et. al. 2004]rtlkermore they are advantageous
compared to other curvature histograms since dessttippe index values can classify a
local region (or pixel) into all fundamental typescept planes. No other curvature

definition is that much discriminative in termsadéssification.
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Shape index histograms are scale and orientatioantaby nature. This representation is
even robust to some degree of off-plane rotatiamwéter if the histogram belongs to a
whole range scan of the object, sensitiveness ¢lusion is inherited. In Figure 48.a and
c, a range image and its %25 occluded version apécttd. Shape index histograms
obtained from each image are shown as well. Thatia effect of occlusion on shape

index histograms is clearly seen.

Figure 48. a) The original range image taken fr@twttgart Database]. b) %25 occluded
version of the range image in (a). ¢) The shapexngistogram of the original range

image (blue) and the shape index histogram of tBg &ecluded image (red)

In a similar manner to the previous approach orldapd normal histograms, shape index
histograms may be altered to become more robusicttusion by calculating local

histograms. For this purpose, similar to local Hephd normal histograms, a feature
centre point and feature size should be providecd&zh local histogram obtained from

the range image. Using the scale and orientatigariant feature points as histogram
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centres and their radii as the regions of inteestical histogram representation which is
robust to occlusions may be proposed. In this sgpration, for each node extracted from
the UVS volume, a shape index histogram of theoregyithin the radius of the feature

centre is introduced as a new feature element:

NOdéZ (ti), (Vi), (Xi), (ni)y (S). (ri)v [HiStShapelndex]i (19)

In Figure 49.b, a local shape index histogram olethifrom the feature in Figure 48.a is

depicted.

a) b)

Figure 49. a) The nose is a feature element of pgek Its radius is the radius of the blue
circle around the feature. The local shape indstogram of the region within the radius

of the feature centre is depicted.

6.7.4 Spin Images

Spin Image is another mapping of nearby points saréace from 3D to 2D [Johnson and
Hebert 1999]. The spin-image for pomis found by recording the distance of all nearby
pointsx from the surface normal (o - alpha) and the distance fromto p along n § -
betg. Corresponding points from different views hawmikr spin-images, thus spin

image is an orientation invariant representatiagufe 50).
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Figure 50. The spin images of point p from différeiews are shown. The spin images

are similar [Johnson and Hebert 1999].

Since spin images are found by using the distaftoesthe neighbouring points, there is
no notion of scale invariance. On the other hanerethis the notion of resolution
invariance which if affected by quantization noigeaesolution difference is extreme.
However with minor modifications, it is possible tonstruct resolution and scale
invariant spin images. If a patch of a surfaceasmalized to unity area beforehand, the
calculated spin image will stay independent ofiagalMore importantly when the patch
area is normalized, the distaneeandf will be fixed to certain limits, which is cruciai
defining o maxandPmax. The 2D resolution of the spin image is definedoading toa max
andBmax Very similarly, if the normalized surface paishre-sampled to fixed resolution,
the spin image becomes utterly invariant under lo¢éism changes. In addition the
scale/sampling ratio is controlled by this way, ethis extremely crucial for our feature

point extraction algorithm.

Up to now, the theory behind scale and orientatioariant feature extraction using scale-
space of curvatures and defining local regionsgudifferent histogram types are
introduced. Beginning with the next chapter, thpezinents and comparisons carried out

to evaluate the proposed methods are given.
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CHAPTER 7

EXPERIMENTAL WORK

In this chapter, all the experimental work perfodmesing the proposed feature extraction
method and object representation method is preseiitee experiments are formed of
mainly three parts. The first part focuses on tBef&ce detection problem. The second
part, which is considerably richer than the othemjcentrates on object representation
and recognition. This part includes curvature df@sgion comparisons, object
recognition on various databases and object ragjtr. Finally the third part presents an
application on a different discipline, where sudatrvatures of DEMs are used to detect
landslide regions. In all experiments, results acenpared with methods from the

literature.

7.1 Face Detection and Pose Estimation

In our first experiment, we make our first attertiptest the feature extraction algorithm
proposed in this thesis. The features are extrdoted facial scans in order to detect the
location and the orientation (pose) of the facengighe HK UVS classification. The
feature elements used to categorize a face aréntven eye pits, a nose peak and a nose
saddle (nose bridge). These points are chosen $edhay are enough to estimate the
pose of the face so that the orientation of the f@an be detected. Also, these points are
easily detected by our algorithm and are the orféshnare not severely affected by facial
gestures. These four elements are later used w&traoh graph representation using the

equation (15) from the previous chapter.

In order to test our representation for face laedion, Bosporus 3D face database
[Bosporus Database 2007] is used. Bosporus 3D database includes more than 20

different poses and facial expressions of 78 stbjmaed that is why it is very suitable for
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testing the proposed method against various tramsfions. The neutral and frontal poses
of the subjects are used for training. 17 differposes and expressions are used for
testing. In order to test our method on facial pesémation, 35 artificially rotated

versions of five different facial scans from the GR vl.a database [FRGCvla] are

created.

The proposed method is compared with four diffetectniques. Only the feature and
face detection parts of the algorithms are coneitidor the compared four algorithms.
The compared algorithms are Colombo, Cusano aneit@8uls “3D Face Detection Using
Curvature Analysis” [Colombo et. al. 2006], Lu akan’s “Automatic Feature Extraction
for Multiview 3D Face Recognition” [Lu and Jain &)QLu and Jain’s “Multimodal
Facial Feature Extraction for Automatic 3D Face d&gation” [Lu and Jain 2005] and
Chang et al.’s “Multiple Nose Region Matching fdd Face Recognition under Varying
Facial Expression” [Chang et al 2006].

In the next section, we commence by defining treuie vector used to represent the

facial topology.

7.1.1 Transform Invariant Four-Node Face Topology

In order to define a representation for a faciafazie, salient and meaningful features
should be designated. The significant featureswmnam face are the nose, eyes, chin etc.
Thus, any feature set globally defining a face marstompass some of them. For this
purpose, we have chosen a four node graph foramialftopology representation, where
the nose peak (N), the left eye pit YBhe right eye pit (B and the nose saddle (S) form
the nodes. These features are chosen becauserthélyeamost stable features against
facial expressions. We indicate the nose peak §\ha base node (since it is the single
peak inside the topology). Accordingly, using eduai(20) from the previous chapter, a

scale and orientation invariant feature vectorengd as:
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(20)

e [ry(Orsg =Sy )iTe, /T Fs /My ]

For the any facial feature Saixce, the types ((teL, ter, ts) are predetermined as peak, pit,
pit and saddle ridge. Thus they are redundantdrighture vector. In addition for a human
face, the normal orientation of most of the feadumee frontal. For this reason, not much
information will be lost, if the normal differencese excluded from the feature vector.

Consequently the feature vector can be simplifieo: i

AFACE = [

(21)
O g O g s O s -

e, [TuiTe, [Tafs/Ty ]

7.1.2 Face Detection on Bosporus Database

[Bosporus Database 2007] is 3D facial databaseudinudy 21 different poses of 78
different subjects. In this section, the 3D faciatection experiments on this database are

presented.

7.1.2.1 Learning the Four-Node Topology

In this study, the four-node face topology giver(2d), is modelled by a single Gaussian

with a diagonal covariance matrix. In the trainpitase, feature vectors extracted from the
frontal and neutral pose of the Bosporus 3D fadaldese are used. Other poses and
expressions of the database are used in testirg.cdmplete workflow of the training

phase is depicted in Figure 51.
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Figure 51. The training phase.

In training face, first of all, data is processearder to fill the gaps and remove the noise.
Then, the features from the 78 neutral and frofaaks are obtained. Among these
fundamental elements, one of the one-peak, ondesasb-pit combination corresponds
to the true combination of the nose, nose saddte the two eyes. Using the true
combinations of the neutral facial scans, we ekt scale and orientation invariant
feature vectors using (21). These 78 feature vecioe used to train a Gaussian with
diagonal covariance matrix where the data is firstmalized to zero mean and unit
variance. In the database, the facial componeris as nose pit, inner eye corners were
marked manually also. These manual markings argawed with detected points during
testing in order to qualitatively check the perfamoe of the algorithms. (Since nose
saddle was not marked in the database, we donttkctietection performance for nose
saddle.) The facial components were marked on Mire images of 3D scans because
localizing them on 2D images are easy for humarmsveyer, they may not be the actual
centres of the pits and peaks. For example, the tipswas marked as the nose in the

database. However the centre of the nose peak mmtesccur at the nose tip but at
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somewhere else on the nose surface. Our systeresott®e actual centres of the surface
peaks and pits. Since the difference between th&edagoint and the calculated centre
has a characteristic, for example the nose peatkectwtation computed by our method
and the marked nose tip differ with a specific vedlistance (Figure 52), we simply
calculated the mean of these difference vectons fadi training facial scans (Table 8).
Then, this mean is used as an additive constatitet@esults obtained from our method

during testing.

Figure 52. a) The marked nose tip. b) The calcdlatese peak centre. ¢) The marked
inner right eye pit. d) The calculated inner riglye pit centre. €) The marked inner left

eye pit. f) The calculated inner left eye pit centr

Table 8. Mean of the differences between the masketcalculated features for the nose

tips and inner eye pits in the training set

u (mm) X-axis Y-axis Z-axis
Nose Tip 0.6705 | 0.4239 | 3.0322
Left inner Pit 1.3376 | -1.1215 | 1.6762
Right inner Pit 0.2556 | -0.1047 | 2.0832

7.1.2.2 Testing the Four-Node Topology
The complete workflow for the testing phase is giire Figure 53. First post processing is
applied. The noised is cleared and the false hatedilled. The scans are re-sampled and

the scale/sampling ratio is fixed to 0.5mm/sampleen HK UVS space is constructed
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and features over the facial topology are locatecebich scan. Among these features, for
all combinations of one peak, two pits and one addge, four-node topology vectors
are obtained as candidates or face. These vecter@also normalized by mean and
variance values obtained during training. Next, betor with the highest probability is
selected as the best candidate. Finally, the trginiean and variance are used to un-
normalize the best candidate vector in order taeaehthe actual location. Also, the
difference vector (Table Table 8), which is caltedain the training phase, is added to the
computed locations for nose peaks and eye pitsdardo be able to make comparisons
with the manual markings. The resulting x-y-z cooates are taken as the coordinates of
the nose tip, inner eye pits and the nose saddlevelevaluate the results only for the

nose tip and the inner eye pits.

........................

[ Test Set !

L_El?Z_S_S_uk_Jj?c:csz |:> Post Processit
UVS calculation and 3D
feature extraction

! Test Vector (1323x9xn)
n combinations !

| Normalized Test : _ _
Vector (1323x9xn) Gaussian Testir |

Vector with the
highest probability

.........................

Mean Difference |
Vector (1x9) !

Figure53. The testing phas
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7.1.3 Experimental Work on 3D Face Detection

In this section the experimental results on Bospatatabase are demonstrated. These
experiments consist of testing the model on 1328sevhich include poses different from
the train poses. Within the database, the anchmtgpbke nose tip, eye pits etc. were
marked for test scans as well. Using this as tlourgt truth we have evaluated our
algorithm for detection accuracy in terms of petaga and anchor point localization error
in millimetres. In addition to these, we have inmpénted four other 3D face detection and
facial feature point localization methods from titerature. We have tested these methods
with the same database and compared our successwih theirs. In this section we

explain the test set. Then other implemented metlawd summarized and comparative

results are tabulated and visualized.

Table 9. Tested poses and number of facial panaisided for each pose.

Type of the Pose Nose Tip | Inner Left Eye Pit I::er Right Eye
Smile 69 70 71
Disgust 68 68 68
Mouth Open 66 67 67
Eyebrows Up 69 70 70
With Glasses 68 67 67
Hand on one Eye 70 70 28
Hand on mouth 68 68 68
Look Right 30° 70 70 70
Look Right 45° 70 70 67
Look Right 60° 68 69 43
Look Right 75° 58 69 5
Look Up 15° 70 70 70
Look Up 30° 69 70 70
Look Down 15° 70 70 70
Look Down 30° 67 68 68
Look Right & Up 45° 69 70 25
Look Right & Down 45° 61 70 30
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7.1.3.1 Test Set

Among many different poses in the Bosporus datalsasee poses such as smile, disgust,
mouth opened, eyebrows up, eye glasses worn, hawnt® eye, and hand on mouth are
selected to be tested. In addition to these, mtatans such as look 30° right, 45° right,
60° right, 75° right, 15° up, 30° up, 15° down, @®#n, 45° right and up and 45° right and

down are also included. These various poses inauigatation changes (e.g. look 45°

right), shape deformations (e.g. disgust face)a@udusions (e.g. hand on one eye). Thus,

the model is tested for all these conditions andatians.

The tested poses are listed in Table 9. As seen the table, for some poses (e.g. look
right 75 ©) very few number of test data (e.g. itheer right eye pit) exist. The reason is
that when the face is rotated right for more th&# ¢he inner eye pit may disappear and

become impossible to be marked.

7.1.3.2 Post-Processing on 3D Facial Scans

Bosporus 3D face database [Bosporus Database 200a¢quired by Inspeck Mega

Capturor Il [Inspeck-web]. Fortunately, during tbenstruction of the data-base, almost
all existing problems such as holes and spikes wi@ned manually from the models
using scanner’s built in 3D scan cleaning softwatewever, 3D models in the database
still have considerable amount of holes around #ark eye-brows, and eyelids. By holes
we mean 3D points labelled as invalid. In additisome spiky outliers are also resident
near some extremely specular regions like eye gpupilall models, background is also

labelled as invalid by default.

To begin with, the connected components of pointéclv were labelled invalid are
detected. Among these connected ‘holes’, we séhecbnes having areas smaller than a
threshold (100 in this case) assuming that the drackd will be the biggest connected
component. Using the valid coordinates of the moigighbouring these selected holes we

extrapolate the values of these invalid pointstand fill the holes (Figure 54).

As seen in Figure 54.b, this regular grid alsoudeks some invalid points. If the scanner
output is to be used to construct a polygonal mtsh points with invalid labels can be
automatically discarded by methods like Delaunangulation which is used to construct
polygonal data. However in this study, it is crbé@a us that the regular grid form of the
3D point cloud is preserved due to “Gaussian Pydamgi Reduce and/or Expand”
operations. For this reason, we have chosen ndistard these invalid points but to fill

them by assigning the minimal valid z coordinatkigao the invalid z coordinate. Then
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again for invalid x and y coordinates, we lineaktrapolate their values using the valid x
and y coordinates that reside on the same row ahona respectively. As a result, we

obtain a regular grid of valid 3D points as seeRigure 12.c.

Atfter filling holes, the 3D surface is needed tosb@oothed using a Gaussian-like operator
because reliable curvature estimation on 3D dateeig sensitive to quantization and
sensor noise [Flynn and Jain 1989]. Therefore we lagplied a 5-by-5 Gaussian operator

on the grid for smoothing noise and spiky regions.

a) b) c)

Figure 54. a) Texture for the 3D Scan. b) Blackaardenote the background. Red areas
denote the invalid points selected to be extrapdlaBlue areas denote the neighbouring
valid points used for extrapolation. White areasade valid points. ¢) Cleaned cropped

and re-sampled point cloud.

Finally we resample the smoothed 3D point cloud iah M-by-N regular grid of 3D
points, such that the average scale/sampling wetidbe 0.5 mm per point. Since each
face has different metric size, each image is repdad into a different resolution, which
will satisfy average 0.5 mm scale/sampling ratio.should be remembered that re-
sampling the data does not change the metric distarSince the 3D scanner output has
absolute 3D coordinates, the relative distancestaiaitheir original values even after re-

sampling.
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7.1.3.3 Compared Methods

We evaluate our results in comparison with foureotmethods we have implemented.
These four methods are: M1) Xiaoguang and Jain'sultibodal Facial Feature

Extraction for Automatic 3D Face Recognition” [LadaJain 2005], M2) Xiaoguang and
Jain’s “Automatic Feature Extraction for Multivie8D Face Recognition” [Lu and Jain
2006], M3) Chang et al.’s “Multiple Nose Region Miinhg for 3D Face Recognition

under Varying Facial Expression” [Chang et. al. &0@nd M4) Colombo, Cusano and
Schettini’'s “3D Face Detection Using Curvature Amséd” [Colombo et.al. 2005].

M1 assumes that the scan is frontal and each ratwveotlepth image is searched for the
maximum z value. For each column, the number ofimam z value positions is counted
and the column with the maximum number is seleetedhe midline. Then, nose tip
candidates are assumed to be located on the migifidea vertical Z profile analysis is
done on this line. Since nose bridge presents agtmus increase in z values, nose tip is
defined as the last point of one of the three necrehsing continuous series over the
midline. After detecting three-candidate nose ta$orizontal z profile analysis is done
for these three points. Sum of the differences betwcandidate points and their
neighbours are calculated and the point with marindifference is selected as the nose
tip. After detecting the nose tip, possible locasicof the two inner eye pit points are
calculated statistically. In search region, shaygex and corner analysis is done. Needless
to say, the method is not orientation invariant.thé subject looks upwards during
scanning, for example, the chin may be detectddeanose. Also, the method depends on

lots of heuristics which may not be satisfied ld time.

M2 attempts to find the nose tip as the first stlsp. In order to find the nose tip, 3D data
is rotated around Y- axis (axis perpendicular #hbrizontal plane) from —90° to 90° with
2° intervals. For each rotated version, the poiith waaximum z value is selected as the
nose tip candidate. The best three candidates e&deetad to be analyzed by PCA.
However, since we obtain high success in locatimggdorrect nose position, PCA is not
applied but best candidate is selected by sumff#redhces between candidate points and
their neighbours as described in M1. After findihg nose tip, possible locations of the
two inner eye pit points are calculated statistycaimilarly as explained for M1.
However, different from M1, search regions for q@gions vary among different poses.
The method is partially orientation invariant howevt has the potential tendency to
detect spiky regions as the nose and the methadillidragile under rotation of face

around X and Z axes.
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M3 attempts to find the inner eye pits first. These H and K values. The nose tip is
expected to be a peak and the inner eye pointexgrected to be pit-like regions. First,
small pit regions are removed. Then, pairs of gifions with small differences in both Y

and Z directions are selected as candidate eyegiins. The nose tip is found next. Over
the line drawn perpendicular to the midpoint of lihe formed by the two pit regions, the
point with maximum z value is selected as the ripsdJnsurprisingly this method is not

scale and resolution invariant and very brittle emspiky noise. Also, the method is not

robust to in plane rotations.

In all these methods, first of all, the locatiorr fo type of anchor point is estimated
independently and then other anchor points aretddchased on the first detected one.
Thus, the spatial structure of anchor points iscooisidered efficiently. In contrast to this,
M4 attempts to find possible anchor point triandies nose tip, inner left eye, inner right
eye). The method uses H and K values to find tleh@mpoint candidates. A nose tip is
expected to be a peak and the inner eye pointexgrected to be pit-like regions. After
finding all candidate points, impossible trianglagee removed in order to decrease
computational complexity. In doing this, distanbegween anchor points are thresholded
by some values defined based on the training 8atéace triangles are manually labelled
for 50 training faces and the area inside the giies1are analyzed by PCA in order to
learn a face model. For test images, the triangatlaa is extracted for each candidate
anchor point triangle and analyzed by the sameciplimn components. This method is
similar to our method in the sense that the featorabinations are searched; however it
is variant under scale and resolution. Also, outhme estimates the face location based
on only the features extracted from a scale spadetteeir spatial layout but M4 applies
PCA analysis to the part of the face defined byddwedidate anchor points. Since this is

done for each candidate triangle it is very timastoning.

7.1.3.4 Comparative Results

For evaluation purposes, we have prepared two daibleuding the results from our
method and the four other methods from the liteeata'he first table depicts the
percentage accuracies of the methods in locat@@ichor points. If the detected point is
in the 2 cm radius of its manually marked positithren the detection is considered to be
correct (Table 10). 2 cm is very high but we intethdo accept as many detection results
as possible in the first step, because the lodadizaaccuracy is investigated later among

these detections. 17 poses and 3 landmark pointsafth pose (3x17=51 results in total)
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are tabulated for each method in the table. The¢ detection rates are underlined and
bolded. We see that our method has the best rtir@p out of all 51 results. M4 has the
best rate for 15 out of 51 results, which are myofsti the detection of the nose tip. M1
and M2 each have the best results in 2 cases. BlBdtagiven any best result among all
poses and landmarks. M4 and our method are higitlyst against facial expressions
(smile, disgust, mouth open, eyebrows up) and pteseer %97 success in anchor point
detection. For nose detection M4 is slightly betteb % more than ours. But for eye
detection, our method is much better (by more tB@#o) than M4 for various facial

expressions. Methods M1, M2 and M3 are not robgatret facial expressions and show

less performance than others.

Again M4 and our method achieve well for in plamgations up to 600. All of the
methods fail for rotations greater than 600. Féations around Y-axis, M3 has nearly no
correct detection, whereas M1 and M2 have sevel@tyeasing success as the amount of
rotation increases. For rotations around X axis, illbetter than M2 and M3. For
complex rotations around X and Y axis, our methedgms the best where others show
no performance at all. For all kinds and amounteotdtions, our method performs much

better for eye detection than all of the other rod¢h

For occlusion scenarios, our method and M4 perfiierbest. We can also say that M4 is

better for nose detection but our algorithm is mhetter for eye detection.

In the second table (Table 11), the detection awieis in millimetres are examined. For
all five methods, only the successfully detectednscare considered and the error is
computed as the absolute distance between the dhadiats and the calculated points.
The means and the standard deviations of the areotompared in Table 6 and the lowest
ones are bolded and underlined. Since only theesgbaly detected landmarks are
considered even though the detection rates werevargt successful for a method, the
localization results may seem successful. Thugyviduate a method’s success better we
should consider the methods which have both thedbwrror mean in Table 6 and the
best detection success in Table 5. These methedslsr indicated in Table 6 with white
font colour over dark grey background. Our methed hoth the lowest error mean and
the best detection rate in 31 out of 51 cases winetéod M4 has such a success only for

5 of the cases. The other methods could not achievesuccess for any pose.

When we compare precision of the algorithms, e éxact locations of the anchor
points, although M4 performs slightly (1 mm on theerage) better than our algorithm for

nose localization, our algorithm performs much drefd mm on the average) for eye
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localization. The reason for this is that M4 aimosfind the nose tip and the manual
markings were done for the nose tip also. Howemar method aims to find the center of
the nose peak which is different from the nose Aithough we tried to compensate the
difference between the nose peak center and the timdy adding a mean difference
vector obtained during training (Table 8) to ousulés, due to different nose shapes this
usually causes a little correction. For eye pits, groblem is not as severe as the nose case
because our algorithm aims pit centers and manaakings were done for pit centers

also. Thus, our algorithm’s success becomes marewbfor eye pits.

Now, we will compare the algorithms pose by poséeWwwe check the algorithms for

neutral and frontal poses, M1 and M2 have acceptasles since they have some
assumptions which are valid only for frontal nebpases. M3 has the worst performance
since an error in detecting the pit region misletgsdetection of nose peak. M4 has the
best rate for nose detection but there is a ndileedecrease in the eye pit detection. This
is caused because of the rotation applied to eactlidate triangle since pits on both sides
of the mouth may also be selected as eye pits.n@tinod performs the best for both nose

and eye detection for frontal poses.

For mouth open pose, success rates of M1 and M&dse and success rate of M2
decreases when compared to frontal and neutral pdgeperforms the best for nose but
the worst for the eye pits and the reason is tineesas explained above for the neutral
pose. Our method performs the best for both nodeege detection. For disgust pose, M3
and M4 are severely affected especially in eye afiete since eye pits are severely
deformed in this pose. Our algorithm performs tlestbamong all for especially eye
detection. For eyebrows up pose, our method pedgaime best and M2 is the least
affected one among the others. For smile posegsaaates of all methods decrease and
M4 is the most affected one especially for the pye Again, our method performs the
best among all in the average. For yaw rotatiortg oar method presents a performance
for rotations more than 450 and all others failr #axious yaw rotations, M3 is the most
severely affected one and our method performs #st bspecially for eyes. For look
upwards and downwards poses, all the methods exceptare severely affected. For
look bottom right and upper right poses, althoughroethod performs the best, all of the
methods have decreased success rates. For hantt @ye pose, all of the methods are
affected. But M4 performs the best for nose datecéind our algorithm performs the best

for eye detection.
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Table 10. Detection percentage of the nose anthtteg eye pits for various poses are listed for all
methods. The first column from left (ours) in eashin column is the proposed method. Then M1,
M2, M3 and M4 are given in the columns from leftright respectively. Best results for each pose
are underlined and bolded.

Nose Left Eye Right Eye
%
ours | ML | M2 | M3 | M4 | ours | ML| M2 | M3| M4 | ous | M1 M2 M3 M4
'\(")%lg:]‘ 99,8 | 97 | 758 | 80,3| 1200 | 1200 | 97 | 77,3 | 87,9| 758 100 | 97 | 742 | sas | 758
Disgust | 99,3 | 89,7 | 926 | 588 | 100 | 987 | 91.2| 926 | 69,1 632 987 | 912 | 926 | 77.9 | 647
Eyeﬁ)[;ows 100 | 797 | 92,8 | 68,1 | 100 | 1000 | 79,7 | 928 | 638 725| 1000 | 812 | 928 | 725 | 71
Smile | 97,1 | 82,6 | 783 | 652 | 986 | 993 | 826 | 783 | 725 62,3 993 | 855 | 79,7 | 783 | 68,1
Look
Right 30° 993 | 70 | 814 | 43 | 100 | 993 | 81,4 | 814 | 543 643 993 | 757 80 8,6 68,6
Look
Rightase | 943 | 486 | 729 | 7.1 | 100 | 943 | 657 | 729 | 414 729 943 | 552 | 67.2 | 75 | 716
Look
Right 60° 829 | 74 | 544 0 60,9 | 865 | 10,1 | 551 | 246 63,8/ 835 9,3 39,5 23 44,2
Look
Right7se | 283 | © [ 822 | 0 | 28 | 345 | 0 | 426 | 147| 397 | 600 0 0 0 0
Logl(;oUp 96,8 | 783 | 435 | 391 | 971 | 959 | 768 | 449 | 71| 681| 959 | 768 | 449 | 754 | 768
L°2‘gou'° 99,7 | 957 | 829 | 61,4 | 100 | 996 | 88,6 | 829 | 714 686 99.6 90 82,9 70 74,3
Look

Down 986 | 81,4 | 529 | 757 | 100 | 100 | 871 | 529 | 886 743/ 100 | 871 | 514 | 814 | 80
15°

Look
Down 922 | 59,7 | 17,9 | 403 | 985 | 981 | 77.6| 149 | 925 761 981 | 761 | 164 | 881 | 806
300
Look
Right &
Down | 427 | 143 | 222 | 47 | 357 | 249 | 243| 286| 114 414| 647 | 201 | 267 | 103 | 533
45°
Look
Right& | 746 | 162 | 515 | 0 | 229 | 776 | 20 | 586 | 329| 429| 776 | 201 | 441 | 44 | 321
Up 45°
Handon | 2, | 536 | 232 | 57,0 | 957 | 703 | 594 | 261 | 504| 652 764 | 607 | 25 | 643 | 75
one Eye
Hrﬁ?,ﬂtﬁ” 96,6 | 59,7 | 14,9 | 16,4 | 100 | 96.8 | 62,7 | 149 | 746 821 966 | 627 | 149 | 59,7 | 791
With

88,8 | 89,7 | 309 | 75 | 100 | 86,3 | 925| 31,3 | 67.2| 83,6| 885 | 91 | 299 | 597 | 791
Glasses = =
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Table 11. Detection errors are compared for alhaes. The mean and the standard deviation of
the error (the absolute distance between the mgrvkeds and the calculated points) are given.
The values are in millimetres. The mean is writtgar the standard deviation.

Nose Left Eye Right Eye

p (mm)
o (mm)

Ours’ M1 M2 M3 M1 M2 M3 M4 M1 M2 M3 M4

Mouth | 301 | 396 | 535 | 4,27
open | 257 | 2554 | 240 | 294

6,08 | 6,91 | 8,51 7,57
2,95 | 3,99 | 4,09 4,86

6,13 | 5,555 | 11,30 | 5,98
3,23 | 3,17 | 3,84 | 4,55

4,50 6,09 6,20 7,38
3,20 3,51 3,01 4,88

594 | 569 | 941 7,60
4,49 | 4,08 | 500 | 515

556 | 512 | 11,16 | 6,71

Disgust 3,72 | 297 | 4,29 | 4,24

Eyebro
ws Up

3,80 5,29 4,51
2,80 2,92 2,87

6,36 | 6,38 | 9,35 | 7,01
3,10 | 3,17 | 454 | 4,42

6,17 | 591 | 11,36 | 7,40
3,02 | 2,96 | 4,07 | 516

4,02 5,65 5,09 6,58 6,21 | 6,37 | 8,74 6,60 5,84 | 552 | 10,36 | 6,88

Smie | 260 | 385 | 247 | 425 3,92 | 386 | 441 | 3,99 3,00 | 298| 3,93 | 4,84
Look

Right | 498 | 7.39 | 461 | 958 751 | 7,66 | 14,51 | 7,91 584 | 525 | 13,58 | 7,69
300 2,77 | 397 | 299 | 1,05 3,95 | 3,89 | 3,48 | 4,22 394 | 2,93 | 4,70 | 5,52
Look

Right | ~7% | 1098 566 | 15,10 7,85 | 6,86 | 12,61 | 8,69 7,68 | 7,91 | 13,34 | 7,64
450 2,49 | 487 | 371 | 385 4,04 | 327 | 438 | 4,62 413 | 492 | 422 | 534
Look

Right | 290 | 10441 845 : 6,94 | 6,71 | 12,93 | 9,85 11,19 | 7,78 | 19,20 | 7,04
600 297 | 381 | 385 515 | 3,29 | 584 | 595 507 | 362 - | 495
|Ii?or|1(t l248| | 1373 | | 823 11,42 9,28 ) ) ) )
7%0 3,14 4,46 519 | 6,63 | 5,31

Look Up | 4,27 3,48 6,06 4,53
30° 2,20 2,71 2,93 2,77

8,75 | 557 | 9,29 6,55
497 | 2,72 | 3,99 4,07

8,49 | 514 | 11,24 7,12
4,14 | 3,27 | 4,16 | 4,69

Look Up | 3,32 3,48 4,74 4,84 6,30 | 528 | 9,33 | 7,80 6,27 | 535 | 11,21 | 6,71

15° 1,80 3,00 2,24 3,21 2,92 | 287 | 4,18 4,60 3,52 3,22 | 3,43 | 4,44
Look
Down 4,13 6,17 5,72 5,46 6,19 | 7,03 | 7,29 6,29 6,03 | 595 | 9,20 | 534
150 2,42 3,90 3,00 3,24 3,80 | 4,17 | 4,02 4,42 4,10 3,33 | 3,96 | 3,84
Look
Down 4,58 7,46 5,83 6,04 4,67 | 4,64 | 6,87 4,74 542 | 547 | 7,51 | 4,47
300 3,10 5,32 2,59 8,19 3,71 | 3,92 | 3,40 3,24 3,47 3,70 | 3,50 | 3,23
Look

Right & [ENxM| 11,46 | 8,87 | 14,14
Down 3,08 4,77 4,00 4,80
45°

8,24 | 7,24 | 10,10 | 6,62
4,93 | 427 | 484 | 436

10,09 | 7,38 | 7,35 | 7,51
4,22 | 405 | 451 | 515

Rli_of?tk& 11,59 | 13,53 | 9,22 ) 9,99 | 7,37 | 12,47 | 9,32 11,7 | 8,84 | 11,37 | 547
Ug45° 3,61 4,23 4,41 4,36 | 444 | 4,79 5,26 6,57 | 6,69 - 3,18

739 | 7,42 | 9,90 | 6,62
4,02 | 535 | 4,96 4,33

598 | 4.48 | 10,06 | 8,06

Handon | 289 | 529 | 6,01 | 540
1,85 342 | 202 511 | 472

one Eye 3,85 2,20 3,75

6,05 | 7,70 | 10,48 | 6,68
3,46 | 3,73 | 4,84 4,05

5,24 | 5,76 | 12,65 | 6,17

Handon | 372 | 4,76 | 552 | 7,69
2,58 3,30 | 426 | 450 | 4,11

mouth 3,35 2,68 5159

7,16 | 6,41 | 10,63 | 7,49 3,92 7,38 | 7,82 | 11,94 | 7,61

With 290 | 433 | 514 | 4,49
1,96 401 | 304 | 482 | 390 | 279 | 431 | 367 | 438 | 4,13

Glasses 2,75 2,58 2,66
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7.1.3.5 Comparison in terms of Complexity

When an algorithm is implemented, computation ligathe other important criteria which
should always be considered besides its successpiational load can be measured in
terms of complexity. We investigate complexitiestod five algorithms in terms of Big-
O notation. Our method, M1, M2 and M3 each hasstirae complexity of O(MN) where
M and N are the sizes of the 3D data grid. M4’s glaxity is O(MNmMn2) where m is the
number of possible nose peak candidates and neisnttmber of possible eye pit
candidates. As can easily concluded from the vaMdsrequires much more computation
than other algorithms and our algorithm requiresghme amount of computation as M1,

M2 and M3 although its success is much better thase.

7.1.3.6 Problematic Cases

Even though the results of our method are apparbetter than other methods, we still
can point out some problematic cases for our metBode the method proposed is scale
and transform invariant, for frontal poses and pasgated less than 45°, success rates
higher than 98% were achieved. 100% were achiesed fnajority. However when the
face is rotated over 45°, nose tip and eye pits begpme invisible. When an element is
occluded because of rotation and other reasores Iliad over one eye), the method may
fail to find the correct one-peak, two-eyes and-saedle combination. For these over
rotated faces, the nose usually loses its fundahenvperty of becoming a peak and is
not selected among the best combination. SimikeHgn one eye is occluded with a hand
or glasses in front of it, the eye pit vanishes aodect combination is again lost. For
these reasons the success rates for these typesse$ are relatively lower than other
poses, but they are still higher than the otherpgamed methods. Such cases are shown in
Figure 55. In Figure 55.e. for faces rotated 48Rts and down, two results are depicted.
For the upper figure the face is successfully tegesl, however for the lower figure the
method fails since no right eye pit could be det@dbiecause of occlusion. Similarly in
Figure 55.d. for faces rotated 75° rights, two ltesare depicted. Again for the upper
figure, the eye pits, the nose peak and the noddlesare detected and the method is
successful. However for the lower figure inner tighe pit is invisible and is not detected,

thus causing the GMM to select a bad combination.

However for frontal poses and poses rotated lems 415°, where success rates over 98%
were achieved, there are very rare occasions wWhkse combinations are selected. Some

examples of these rare occasions are given in &ighra. for the pose with glasses. The
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optical scanners are very sensitive to speculdases and lenses. The eye glasses may
cause false spikes or holes over the surface, wtacimot be easily overcome by post
processing. For the lower figure the glasses caufsdse peak over the right eye and a
false combination is selected. In Figure 55.b. whte mouth open faces are scanned, a
false combination is selected for the lower figurbe eye pits are found correctly but,
somehow the upper lip is selected instead of thee tip. Actually this is the single false
detection case for this pose. Yet again for Fidaie. the right eye is occluded with the
right hand. For the upper figure the inner righe eyt is still visible and the method
succeeds, however for the lower figure the pitdmpletely occluded, thus causing the
method to fail.

Figure 55. A successful and a problematic casdhferposes a) with glasses. b) Mouth
open c¢) Hand on one eye d) Look right 75° e) Logit and down 45°

7.1.4 3D Facial Pose Estimation

As another attempt to evaluate the quality and luiéipaof the extracted features, a pose
estimation algorithm is proposed in this sectiosing the 3D features extracted from the
HK UVS volume; poses of rotated faces are estima®edas to make the experiments
numerically comparable, virtually rotated versiais3D frontal facial models form the

FRGC verl.a are used.
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7.1.4.1 Construction of Artificially Rotated 3D Falcmodels

In order to make controlled tests on pose estimaticdually rotated versions of FRGC
vl.a frontal facial scans are created using a swéwconstructed in our laboratory,
METU-CVIS. The software is a 3D virtual scannergyaom where, different scenes using
different object formats such as range images oroBJ@ct models, can be created and
exported in range scan format. The software istedehy Nesli Bozkurt, as a part of her
M.Sc. thesis [Bozkurt 2008].

For this purpose, 35 surface models are artificiateated by applying 7 different space
transformations to 5 original (frontal) surfacesnir the FRGC vl.a database. These
transformations are rotation around Y-axis by +#29°,-10°,-20°, rotation around X-axis
by +15°,-15° and rotation around Z-axis by +45%eA of artificially created range scans

are given in Figure 56.

Figure 56. Artificially created facial scans. Letist scan is the original scan from FRGC
database. Other scans are created by applyinglibeving transformations respectively
from left to right: rotation around Y-axis by +1620°,-10°,-20°, rotation around X-axis

by +15°,-15° and rotation around Z-axis by +45°,

The four-node facial topology given in the previaudsection is sought in the original

and artificially created models by using the featuectorA.,.. given in (21). Again, all

four-node, “peak-pit-pit-saddle” combinations apdracted and the best candidate (the
one with the highest probability distribution withtihe GMM) is selected as the actual
facial four-node topology.

When the facial nodes (nose peak, eye pits and loridge) are detected on the original
and the rotated scans, the 3D locations of thesesare known. Using this data, the
amount of rotation of a rotated 3D facial scan rhigh calculated with respect to the
original frontal 3D facial scan. So as to do thignsformation matrix from extracted
nodes of the rotated scan to the extracted nodekeobriginal frontal scan must be

calculated. In other words, this transformation nragives the relations between 3D
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reference frames of the rotated and original 3hscH we define the rotated reference

frame G and original reference frame,Qhe transformation matrix can be calculated as:
_ _ -1
CR - [T4><4] |:(]:O = [T4X4] - CR I:(DO (22)

Figure 57 shows the estimation results. Range imagk UVS volume depictions and
the estimated angles for the rotated scans arenglves seen from the figure that for
rotation around the Y-axis, the estimates are bazedocalization of the eye pits become
weak as they get occluded behind the nose saddigever for rotation around the X-axis
better estimates are obtained since the eye pitsthen nose peak do not get occluded.

Similarly the estimates for rotation around thexsare good as no occlusion occurs.
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Figure 57. Virtually created facial scans and tlesiimated pose angles

7.1.5 Conclusion on 3D Facial Detection and PosetHsation

In this chapter, the scale invariant features ateaeted from facial range images for the

purpose of face detection and pose estimation. -Rrode facial graph topology is
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constructed using a peak, two pits and a sadderfeature element. Using this 3D
topological element the locations of facial featusre detected and the facial pose is

found.

The detection method is compared with four repriedgie methods in the literature.
These methods are selected because some of theomlgrapplicable to faces whereas

some of them are for general object detection nustlapplied to faces.

The methods are trained using 78 neutral and frentmns and tested using 1323 scans of
17 different poses of various rotation, expressiod occlusion. The results show that the
proposed method is more successful in terms ofctiete percentage, localization

accuracy and computational efficiency comparedhéoather methods.

The main reasons that the proposed method is nwverful in detection and localization

are the scale and transform invariance in detectireg anchor points and the same
invariance in constructing the spatial graph stmect The method easily overcomes false
positive results caused by spiky noises, rotatiod scale. Since the proposed method
requires no prior compulsory poses (like frontas@aor a side view), the detection rates
are high for any kind of pose. As long as the r®ges-nose bridge quadruple is detected,

the face is detected for many poses, with near 1008c¢ess.

For frontal poses with different expressions sueh mouth opened, smile, disgust,
eyebrows up and hand on mouth near 100% succeshisved. For poses with rotation
less than 45°, the percentage success rates lhoweti97%. For occluded poses such as
with glasses and hand on one eye, the resultscaeptable and better than the compared

methods.

For our proposed method, the detection accuraayililiimetres is also better than the
existing methods. A few millimetres of error meant aariance are achieved for rotations
less than 45°. Considering that the database wasatiy marked, a few millimetres of

mean error can be regarded as absolute successsbdaaman marking error is also not

negligible.

The facial detection is brittle for cases where ofighe anchor points is not visible
because of rotation or occlusion. If the eye pitgsluded with a hand or because of high

degrees of rotation, its detection fails and theemd quadruple is not located.

The pose estimation is carried out on artificiatiyated versions of five FRGC1.a facial
scans. The rotations in x, y and z axes are esianatth around +2° error x, y and +4°

error in z axes. The proposed method is extremalyepful for pose estimation since it is
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invariant in any type of transformation includingtation, scaling, re-sampling. The
method is also robust to noise since the featuredaund within a scale-space where

extreme amounts of smoothing are performed.

7.2 3D Object Recognition

In this chapter, we finally arrive at the core sdjof this dissertation, 3D object
recognition. Using the proposed feature extractivethod and 3D topology model,
objects are classified and/or categorized. We camemdy defining the n-node topology
derived from the definitions in Chapter 5. Then thethod used in this study to classify
objects, namely geometric hashing, will be giverdatail. Tests carried out in Stuttgart
Database [Stuttgart Database], will be covered amtussions and performance

comparison to other methods are also given inciépter.

7.2.1 Transform Invariant n-Node Topology

The method to extract transform invariant featumed construct a transform invariant
topology model is thoroughly covered in Chaptelnthis subsection we simply give the
details of the topological model derived from thepgmsed model. The general model for

an n-node topology can be formulized as:

A =] ta, tootestp mely

(23)

0 O Y AR 0 ]

In this vector there are n number of type valuest(fow), n-1 number of link lengths,
C(n,2) number of angles, n-1 number of normal déffice vectors and n number of radii,

totally (rf+8n-5)/2 number of values.
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On the other hand in its scale invariant versibe, link lengths and radii are normalized
according to the radius of the base vector. The kiastor is selected as the node having a

certain type (e.g. peak) with the largest radilss Tector is defined as:

A=[ ty oty e o menty

(24)

This vector is used to represent a range image,candequently to classify the object
within a database. It is impossible to know whidbneent of this vector carries better
classification quality, unless proper experimemts @mpleted. In addition the nodes, or
in other word, the extracted features could beinbthusing the HK or SC curvature
classification types. Thus, choosing the approgritgature classification method is
another important issue for object recognitionthié next subsections, all these issues will
be handled with certain test procedures. Howewefigrb that, the next subsection gives
the details of the topology classification methattjch basically decides which topology

belongs to which object or which category of olgect

Similar feature vectors to (23) and (24) can bestosted by using SIFT if all range
images are rendered to gray scale images, whewetith value designates the gray level
intensity. By using the SIFT feature attributesnedy the pixel location (x{u; ,v}), the
scale §;), the orientation€() and the descriptor {d a feature vector similar to (24) can be

created:

In Equation (25), jx;|/o; designates the normalized distanagy designates the link
angles 9i-6; designates the orientation difference aid; designates the size ratio and di
designates the SIFT descriptor.

[ ‘)—(B _)—(A‘ ‘)—(c _)—(A‘ ‘)—(N —Xal.

L=

O Oa On

aBAC'aBAD """ aMAN; (25)
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7.2.2 Learning the n-node Topology — Geometric Hasfg

The feature vector used in this study can be densd as a partial topology of a general
topology, where each part contains N elements btdtal W (W>N) elements on a range
image. This feature vector resembles to a parteghly belonging to a global graph. For
each range image, U largest features (W>U>N) ims$eof radius are selected and all N-
tuple combinations of these k features (totally ®(JUfeature vectors) are used to

construct the feature vectors defining that ranggge (Table 12).

Table 12. C(U,N) number of features obtained fronaigest features, using N-node

topology. For the sake of simplicity the last niglehosen as the base node.

Feature ta, tg te to oot s Xa = X011 Xs = Xn b X —Xnls

1 O pngr O ane A anp » O a0 g — Ny Ng =Ry =N Ma T Mol
Feature ta toto b entouXe =Xo | [Ke =Kol Xy =Ko,

2 Qoc:Acopr Tpoe - Tyon Mg —Ng,Ne =N,y =N, Mg, e, Mpeenlo
Feature ettty Rs =Xy | Ry =%y,
C(U,N) Al pys, A syr - Ng =Ny, A =0 g, T, T

In this study, these feature vectors are used geanetric hashing method for object
recognition purpose. The main reason behind use@mgtric hashing is that it allows
partial matching of small topologies in a geneoglalogy so that the recognition process
becomes robust to noise, rotation and even occlusioour hashing method, indexing is
done by the types of the n-tuples and each entiydes the feature vector of the triplet
besides the code of the pose and the object. br etbrds, for a range image the C(U,N)
long feature vector is constructed. At the prespesing stage of hashing, for each range
image in the training set of category of object @gample range images of bunny taken
from various angles), the feature vectors are tatied. Thus we obtain Num_;Tmumber

of feature vectors for the object i with Num; fiumber of training range image in the
database. This database construction stage caonhyguted offline. For various range
image training sets belonging to different objecthis operation is completed.

Consequently at the recognition stage, featuretheftest model (i.e. the model to be
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recognized) are extracted and then related hash itadexes are obtained. By comparing
the hash table entries using a similarity measetevden the feature vectors, matching
features are found. Corresponding to the indexethéntraining sets, matched model’s
vote is incremented by one for a particular trajnéet. Finally, the database model which

receives the greatest number of votes is takelhneasatch of the test object.

c)

Figure 58. Demonstration of geometric hashing: th# topologies constructed from a
range image are compared to the topology vectotheérdatabase. The database model

which receives the greatest number of votes isntakehe match of the test object.

Figure 58 demonstrates the geometric hashing pwoeedror a range image (bunny,
Figure 58.a) the feature are extracted. Large$t id this case) features are selected. Then
combination of all N-tuples (3) are found and teatfire vector is constructed (totally
C(6,3) = 20 feature vectors). Then for each ramggge in all of the training sets in the
database, this feature vector is matched. For eakct match the vote of that training

set is incremented and the object is recognizefihayvoting.
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7.2.2.1 Similarity Measure

The similarity measure defined distance betweenfeature vectors. For two features to
be compared, they must have the same types faaints. It is not logical to compare
two pits and a saddle with two peaks and a saéidieany groups of feature points with

the same type combinations, the definition of alaitity measure is proper.

For comparable feature vectors, if the distance/den any corresponding feature
element, namely the difference between the norinatiibns or the difference between
the angles of each triple or the difference betwaenlink length ratios etc., is below a

given threshold then the two vectors are refereesimilar.

The threshold values that indicate the similargyween two feature vectors are found by
making many experiments on the data. The fine-twhexshold values are given in the

next subsection.

7.2.3 HK-SC Curvature Space Classification Comparizn and Threshold Fine

Tuning

Since both HK and SC spaces classify surface patcheto similar types, their
classification capabilities are comparable. Fos tigiason, there is an ongoing debate on
the advantages and disadvantages of using meanu&saa (HK) or shape index &
curvedness (SC) curvature spaces for object regognapplications. In [Cantzler and
Fisher 2001], HK and SC curvature descriptionscam@pared in terms of classification,
impact of thresholds and impact of noise levels iamsl concluded that SC approach has
some advantages at low thresholds, in complex scame in dealing with noise. However
in that study the curvatures are calculated onlytha&t lowest scale, i.e. the given
resolution. Scale-spaces of the surfaces or theatures are not defined. Another
comparative study has been carried out in [Li amadddck 2004] where curvature values
obtained from the shading in 2D images are usedHkhdnd SC histograms are created.
The comparison results show that SC histogramslayetly more successful in terms of
classification. Yet again, the tested resolutiothis pixel resolution of the 2D image and

the effect of sampling is ignored.

When calculating H, K, C and S values, the scaelwion ratio is highly effective.
However due to its scale invariant nature, shagexnS) values are independent of the
resolution or the scale. Thus it is no wonder 8@tmethods give better results than HK

methods when the comparison is carried out at @ontrolled scale/resolution level. In
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order to make H, K and C values also scale invgrtae scale/resolution ratio of the scan
must be set to a constant value for the whole datalin addition to this, a scale space of
the surface should be constructed so that the resatwhich also carry the scale level
information can be obtained by using H, K, S andaflies. Obtaining the absolute scales
of these features is crucial for 3D object represt@n and the only way of achieving
such information is constructing the scale-spadeth® surfaces in terms of curvature

values.

There have been different attempts at constru@iegale-space of a surface and defining
scale-invariant features [Akagindiz and Ulusoy 208@wever, there has been no study
which uses a scale-space approach for the compam$oHK and SC for their
classification capabilities. For this experimenir main motivation and contribution is to
make both mathematical and experimental comparisam$dK and SC curvature
descriptions in their scale-spaces. For this pwpes calculate the scale spaces of the
curvatures of the given surfaces for each methpdragéely. Then we extract scale and
orientation invariant features from each spaceth3ywe mean that features are extracted
with their scale information both in SC scale spand HK scale space. Finally, we use
these features in an object recognition task amspeoe the performances of the methods
so as to decide which curvature space is bettderims of feature quality and object
recognition. In addition, in order to optimize tharameters and examine the effect of

parameters on each method, several tests are inghdifferent parameters values.

The mathematical comparison of HK and SC spacegiaes in Chapter 3. Furthermore
the proposed feature extraction and topology coostm method is given in Chapter 4
and Chapter 5. The recognition method to test ¢ladufe vectors are generalized in the
previous subsections. In this subsection we firgt the details of the recognition method

and then proceed with the experiments.

To begin with, For each range image, ten largesufes in terms of volume are selected
and all triple combinations of these 10 featuresa(ly C(10,3)=120 feature vectors) are
used to construct the feature vectors defining thagle image. As explained previously,
at the pre-processing stage of hashing, invarieatufes are extracted and saved to the
hash table for each pose and each training modweramage. Consequently at the
recognition stage, features of the test model tfie model to be recognized) are extracted
and then related hash table indexes are obtaingdoBiparing the hash table entries
using the similarity measure given before, corresigny to these indexes, matched

model's vote is incremented by one. Finally, théadase model which receives the
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greatest number of votes is taken as the matcheofdst object. In this study, Stuttgart
database [Stuttgart Database] is used where ther25& scans for 42 objects. As defined
in the web page of the database, 66 poses of dgett & used for training and the rest of

the poses are used for testing.

In this study, two groups of experiments are pentmt. First group of experiments is
carried out in order to decide on the best thraskialues and features. When comparing
two feature vectors, we first check if the typeshs three features are identical. If so, we
check if the absolute difference between the an@leg is at most thr_ang degrees. Then
similarly, we check if the absolute difference beén the norms of distancesz((,eL dzj,k

+ ;)" of the compared feature vectors is at most tist_im. A series of experiments
are held both on HK and SC methods in order tod#geon the values of these parameters
for each method. The second group of tests isethout in order to compare HK and SC
in object recognition against the number of objeotghe database. For the sake of
simplicity and speed, the first group of tests asried out using only 5 objects but the

object recognition tests are run for various nundjerbjects.

7.2.3.1 Experiments for Thresholds

It is an important and difficult task to decide emilarity thresholds. There are two
similarity measures defined for our feature vectbe angle similarity and the distance
similarity. The angle similarity is the absolutdfeiience between the angle attributes of
the two feature vectors. The threshold value f@oalie angle difference is set to 3°, 5°,
10°, 20° and the recognition performances are eobseseparately for HK and SC
methods (Figure 59), while the distance threshsldixed to 20 mm. The recognition
performance is defined as the percentage of ctyreetognized poses among all test
poses. The HK method is robust for the angle tllesh Both methods perform the best
when the angle threshold is 10°. Similarly, thetatise threshold is set to 5, 10, 20, 30
mm, while the angle threshold is fixed to 10° ahe performances of both methods are
given in Figure 60. The HK method is robust forfeliént distance thresholds. But both
methods perform the best when the distance thrésh@0 mm.
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Figure 59. Angle threshold tests for both methods.
100 ~ o »
os ] T
- — = -1 — - =
%o 96 - _ A
- —— HK
94 - -7
e - -5C
o2
thr_dist=3mm |[thr_dist=10mm |thr_dist=20mm |thr_dist=30mm

Figure 60. Length threshold tests for both methods.

7.2.3.2 Experiments for Types

Both methods classify regions into eight fundamietypes, namely peak (1), convex

cylinder (2), saddle ridge (3), plane (5), hypeab(d), pit (7), concave cylinder (8) and

saddle valley (9). Some of these types are moréuluséhere some types are even

unreliable. Different groups of types are includedhe feature vector and tested for each
method (Figure 61). The HK method is robust agadif§trent type combinations but the

best results for both are obtained when only tipesyl, 3, 5, 7 and 9 are included in the
feature vector.
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Figure 61. Type tests for both methods.
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7.2.3.3 Experiments for Feature Numbers

In our method, a number of features with the largekimes are selected for each range
image and triple combinations among these featarefound in order to construct the
feature vectors. Taking fewer numbers of featurealevspeed up the process. However,
good quality features may be omitted. On the oliaard, taking more features will slow
down the process and some bad quality featuresbmagcluded. Thus we search for the
optimum number of features by testing different bens such as 6, 10, 14, 16 and 18
(Figure 62). The HK method is stable against deifernumber of features but the SC
method is severely affected by the feature numiren ten largest features are selected

from each range image, both methods perform the bes

—— HK
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Figure 62. Feature number tests for both methods.

7.2.3.4 Experiments for Database Size

After deciding on the threshold values and theui@at/ector content, three experiments
are run where database size is increased fromegtsiijo 42 (all) objects. By this way the
robustness of each method is tested under varyumgbar of objects in the database
(Figure 63). The performance of the SC method dese linearly with the size of the

database where the performance of the HK methogtases logarithmically.
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Figure 63. Database size tests for both methods.
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When compared with a scale-space approach, the etkod outperforms the SC method
in all tests. We think that the main reason belinslis the definition of planar regions in
the HK method. This definition embraces many ambiguregions more consistent than
SC’s. In addition, the SC method is less robudeature type changes and database size.
As the number of selected features for a range eéniagreases, the quality of features
reduces faster for the SC method. All results confthat the HK method is more

successful.

7.2.4 3D Object Recognition Tests

In this subsection the object recognition capabiit the proposed 3D feature are tested.
Es mentioned before, multi-scale features are etelafrom sampled surfaces and then
used to construct a scale and orientation invariepblogical representation of object
categories. Features are located over the surfébetiveir metric size irrespective of the
surface resolution. Stuttgart Range Image datalsigstigart Database] is used for testing
the proposed features in object category recogmitriginally this database contains 42
objects with 258 different virtual scans of eacbtglly 10836 scans). However the
database does not include scale varying or occlsdads. In this study, for the sake of
testing the scale invariance and occlusion robsstienits of the proposed method, Y4
scaled, %25 occluded and both ¥ scaled and %2%bdeatlversions of these scans are
virtually created and tested. In order to clasHiy object categories, geometric hashing
[Lamdan and Wolfson 1988] is used. Besides, thaltesire compared to SIFT [Lowe
2004], for which each original, scaled or occludaxge image is rendered to a gray scale

image.

For the sake of observing the benefits of usingtirsohle features, the 3D features are
extracted with and without scale-space searcht, Five features are extracted using the
conventional method, in which the surface is cfabiusing the H and K curvatures

obtained from the given resolution. This method b referred to as single scale feature
extraction method (SSFE). Then, the features araa®d using the proposed multi-scale
feature extraction method where the scale-spacargftures is used. This method will be

referred to as multi-scale feature extraction metliISFE). The feature vectors are

obtained as in (24) and hashing is applied as egalaabove for both methods (SSFE and
MSFE) separately.

In order to see the benefits of using feature pdawcriptors, spin images around the

feature centers are also extracted and appendtr tieature vector as in (25) for both
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SSFE and MSFE separately. We will refer to thesdhaus as ‘SSFE+spin’ and
‘MSFE+spin’. As explained in the previous sectitie effect regions of the spin images

are designated by the radii of the features.

Finally the SIFT features are obtained from theygeale images which are obtained by
rendering the range image surfaces. Then (23)ad tes construct the feature vectors by
the SIFT features. This method will be referredsdSIFT.

All methods (i.e. SSFE, SSFE+spin, MSFE, MSFE+sfilkT) are tested for object
recognition. Four groups of experiments are caroetto test for orientation invariance,
scale invariance and robustness to occlusionsje®ts from the Stuttgart database (auto,
bunny, chicken, ente, hub, eager, rocker, screwdriare used. For each model, 66
original range scans are used for training. 19@imai, 192 scaled, 192 occluded and 192
both scaled and occluded range scans are useeédiimg For eight objects, a total of

6672 range scans are used in these experiments.

7.2. 4.1 Recognition under Rotation

The database originally includes 192 testing imagasined from angles different than the
66 training images. Thus experimenting on the pabitraining and testing models
provides results on recognition performance of testamodels. Previously, [Li and
Guskov 2007] and [Hetzel et.al. 2001] carried btetse experiments on Stuttgart database
and achieved recognition rates over %98 and %93otisely. As seen from Table 13
and Figure 64, SSFE and SSFE+spin achieve sineldonmnance. MSFE and MSFE+spin
are very close, however the performance of SIFTdramatically behind the other

methods.

7.2.4.2 Recognition under Scaling

In the second part of the experiments, scaled messdf range images are used for testing.
Each test image is scale to its ¥4 area, by scaliwyy axis by ¥2. As seen from Table 13
and Figure 65, MSFE and MSFE+spin perform muchebattan SSFE and SSFE+spin
since they use scale space of curvatures, i.gf,abe scale invariant. Although SIFT is
scale invariant as well, its performance is muchnifet proving that SIFT is not

descriptive for gray scale rendered range images.
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Figure 64. Confusion matrices of the methods: SSFH;E+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Original teg) images are used.
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Figure 65. Confusion matrices of the methods: SSFH;E+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Scaled verss of the testing images are used.
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Figure 66. Confusion matrices of the methods: SSFH;E+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Occluded si@ns of the testing images are used.

1.2

9.7 [36 3021186 23 0.4 27 0.4 B

1622162 0.8 4-3. 1.6
1.9 205 0.8 7 62

]

31 35 54 1.2 N 101

0.4 27.9 26 08 14 31

-3.5 EEWd 16 04 12 54 16 08
85 143 1.6 54 55.0 K]

i
-1.611.613.6 27 19 04 31 ﬁl
» EIRIER-L K11 - LA REXL KN - X REICL K

..163 12 101 19 147 12 23 124 19 16 04 14 12 8.1 171 04 16 27 23

163 47 31 47 04 27

5 13262 93 08 04 62

19 174 16 58 19 19 248 04 54 27 1. 19.8 14.3 04 35 12 08

54 39 27 47 12 27 39 35 47 28319 19 08 16 12

78 7

43 202 23 12 39 19 23 27 14 19 47 Ml 0.4

47 78 19 16 74 66 08 97 54 39 04 376 12 182 322

174 81 16 66 8.1 08 62

186171 1.2 62 0.8 174 78 04

7 124155 62 93 116128 16 81 97 47 16 81 81 1.9

.1.2 23 23 27 08 04 o.s -2.7 16 16 1.9

Figure 67. Confusion matrices of the methods: SSFH;E+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Scaled armctloded versions of the testing images
are used.
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Table 13. Average Recognition Rates for All Methad All Experiments

SSFE SSFE+spin MSFE  MSFE+spin  SIFT
under rotation 99,37% 99,76% 94,719 96,02% 75,91%
under scaling 54,55% 59,50% 83,58% 84,39% 62,79%
under occlusion 98,06% 98,64% 79,07% 85,32% 62,31%
under scaling and occlusion | 45,30% 49,85% 63,719 65,55% 51,70%

108



7.2.4.3 Recognition under Occlusion

The third part of the experiments analyzes the odshrobustness to occlusion, where
%25 occluded version of each testing image is ufed. each testing range image,
randomly selected ¥area of the range scan is occluded. Results (Ti&bsnd Figure 66)
show that, SSFE and SSFE+spin performs tremendaasy, since the test set is not
scale varying and feature based methods are rebustclusions. The performance of
MSFE+spin shows that for occluded images, adding ispage descriptor to the feature
vector affects the recognition performance consiolgr The performance of SIFT on the

other hand, is still behind other methods.

7.2.4.4 Recognition under both Scaling and Occlusio

The final stage of the experiments investigates rbeognition performance of the
methods under both scaling and occlusion. Eachiresge is first scaled by %of its
surface area and then occluded by %2 of its areaeSiesting under both scaling and
occlusion is quite challenging, all methods aree@#d significantly. Still, having the
advantage of being both scale invariant and laeaiiufe based (thus robust to occlusions)
MSFE and MSFE+spin performs better than the otrethads. SSFE’s and SSFE+spin’s
performances are below %50 where SIFT’s performamodose to theirs (Table 13 and
Figure 67).

7.2.5 3D Object Registration Experiments

Surface registration is an intermediate but crusiiep within the computer vision systems
workflow. The goal of registration is to find thei@idian motion between a set of range
images of a given object taken from different pos# in order to represent them all with
respect to a reference frame. Registration in génsan be divided into two: coarse
registration and fine registration [Salvi et. @08B]. In coarse registration, the main goal is
to compute an initial estimation of the grid motioetween two clouds of 3D points using
correspondences between both surfaces. In finstragon, the goal is to obtain the most
accurate solution as possible. Needless to sayhedatter method usually uses the output
of the former one as an initial estimate so asefmasent all range image points with
respect to a common reference system. Then ite®fthe transformation matrix by

minimizing the distance between the temporal cpwadences, known as closest points.
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For a wide literature survey on registration ofgammages reader may refer to [Salvi et.
al. 2006].

In this thesis we perform coarse registration usheg proposed scale invariant features.
The homogenous transformation, which includes 3Rtian, translation and scaling

between two range images, is estimated. Howevtardift from previous approaches not
single features are matched as correspondencdeadnghe triples that were used to

recognize object categories are used.

7.2.5.1 Triplet Correspondences

In the previous sections, n-node topologies ofesgabariant features were constructed.
Using these n-node topologies, transform invargdojéct recognition was performed and
analyzed. The topology set included n=3 numberaafes (features), since experiments
have proved that it is empirically the optimum. tdpnow, only the best match, in other
words the quantity of the all matches, betweent @fsiaining range images and a testing
image was taken into consideration, since the prolWas to recognize object categories.
However for registration the quality of the matclHedtures are also important. Only a
general consensus between all matched tripletsdvgive the true transformation and

prove that the matched triplets are actually teagres that represent the objects.

For this purpose using the extracted triplets ie frevious subsection, a coarse

registration is carried out using “random samplesemsus” (RANSAC) method.

7.2.5.2 Random Sample Consensus (RANSAC) on Sriplet

RANSAC is an abbreviation for "RANdom SAmple Conses!'. It is an iterative method

to estimate parameters of a mathematical model feoset of observed data which
contains outliers. It is a non-deterministic alggum in the sense that it produces a
reasonable result only with a certain probabiltyth this probability increasing as more

iterations are allowed. The algorithm was firstl@i®d by [Fischler and Bolles 1981].

A basic assumption is that the data consists dietsY, i.e., data whose distribution can
be explained by some set of model parameters, @uttiers" which are data that do not fit
the model. In addition to this, the data can bgestlio noise. The outliers can come, e.g.,
from extreme values of the noise or from erronguaasurements or incorrect hypotheses

about the interpretation of data. RANSAC also agsuthat, given a (usually small) set of
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inliers, there exists a procedure which can esémhe parameters of a model that

optimally explains or fits this data.

The RANSAC algorithm is often used in computer asisie.g., to simultaneously solve
the correspondence problem and estimate the fundammatrix related to a pair of

stereo cameras.

In this thesis, very similar to solving the corresgdence problem in stereo images, the
method is used to estimate the homogeneous tramsfion between two range images.
Instead of using candidate point matches, candidatet matches are used. As explained
in the previous section, the triplets are matcheddme well-defined similarity measures.
In order to eliminate the false matches, and obththe transformation only between the

true triplet matches, RANSAC is run.

RANSAC also requires a similarity measure to testthe homogenous transformation
between two triplet matches. However for RANSACffedent from the similarity

measures used the find candidate matches, onlgpaital information is used. In other
words, at any iteration of RANSAC, if there is catale transformation, the absolute
Euclidian difference between the first triplet ahe transformed second triplet is used.
The output of the RANSAC is a homogenous transftionavector, which defines the

transformation between any two corresponding poamtsthe registered range images,

such that:

(26)
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7.2.5.3 3D Object Registration Results

In this subsection some experiments on registratisimg the proposed feature are
presented. The first experiments is the simplese¢,cahere there is only in-plane rotation
between two artificial surfaces. There’'s 135° ian@ rotation between the surfaces
(Figure 68).

The result of RANSAC is given below together wille ideal transformation matrix. The
results prove a quite successful coarse registraliioFigure 69, the matched features can

also be seen. Colours, as usual, designate difflsature types.
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-06627 06479 -0.1149| 431966

RANSAC result: -0.6896 -0.6807 0.0394 | 156433],
0.0342 01096 0.9344 | -5.0095
0 0 0 10772

-07071 07071 0| 45

and the ideal result; -0.7071 -0.7071 0| 155
0 0 1| -5
0 0 0| 1

E] ) 150 El

Figure 68. Two artificial surfaces with a Gausgi@ak and a Gaussian pit, which are 135°
in-plane rotated (rotation around z-axis) of eattten

Figure 69. Matched features from the registerdaticiat range images.

The same experiment was also performed on ranggesniom the Stuttgart database.
Since these images are not captured with controdieation, we have chosen two images
with rotation on a single axis. However the exanbant of rotation is unknown (Figure
70).
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E]

Figure 70. Two range images of the screwdriver f@tottgart database. There is rotation

around y-axis.

The result of RANSAC is given below together witle ideal transformation matrix. The
results on Stuttgart database also prove a quiteeseful coarse registration. In Figure 71,

the matched features can also be seen. Colouwsuas designate different feature types.

0.8616 -0.0265 0.2065 | 0.06336

RANSAC result: -0.0032 0.9691 -0.0105|-0.4065],
-0.1914 0.0068 0.8159 | 8.8006
0 0 0 | 10042
cos(~a) 0 sin(~a) | O
and the ideal resultf of rotation assumed): 0 1 0 0
sin(~a) 0 cos(~a) |T,
0 0 0 |1

Figure 71. Matched features from the registeredeamages from Stuttgart Database.

Since the extracted features are scale invariard é@ as the triplets), it is possible to
register scaled versions of range images and eadmlithe scaling ratio between to
objects. For this purpose using the %25 scaledoreyf the Stuttgart database objects

(vs. the originals), registration is performed. Tiesult of RANSAC is given below
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together with the ideal transformation matrix. Thesults on scaled range images
demonstrate successful scale invariant coarsetraig®. In Figure 72, the matched

features can also be seen. Colours, as usual ndésidifferent feature types.

[0.9442 -0.0143 -0.0623| 0.6810

RANSAC result: 0.0349 0.9899 -0.0204| 0.4130|,
0.0519 -0.0067 0.9449 | 0.6304
0 0 0 0.4955

and the ideal result;

Figure 72. Matched features from the registered@gamages from Stuttgart Database.

The surfaces are scaled versions of the same narage.

7.2.6 Conclusions on 3D Object Recognition and Resgiation

In order to test the scale invariance and occlusmbustness limits of the proposed
method, ¥4 scaled, %25 occluded and both ¥ scalkd@&d occluded versions of these
scans are virtually created and tested. In ordetassify the object categories, geometric
hashing is used. So as to show the importanceabé space search of surface curvatures,
in addition to multi-scale features, single scalatfires are also extracted and tested using
the same classification method. Moreover, the tesare also compared with SIFT, for

which each original, scaled or occluded range imagendered to a gray scale image.

If there is no scaling, single scale feature basethods (SSFE or SSFE+spin) are quite
powerful for recognition on range images. Results/@ that for scale varying databases,
multi-scale features perform much better. The psedomethod (MSFE+spin) performs

best for experiments 2 and 4, where scaled ranggdm are tested. Under occlusion,
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feature based recognition is hardly affected. Oa tither hand, SIFT shows poor
performance. Although known to be quite potenttixtured images, SIFT proves the

opposite for gray scale rendered range images.

Results also show that using surface descriptarcsh ®s spin images, may positively
affect the performance of the extracted featureseXperiment three, where occluded
range images are tested, the performance of MSHi-#spconsiderably higher than

MSFE. When the range image is occluded, there ateenough quality features to

represent the image. However, describing localased with spin images when accurate
effective regions are defined, the performance aghgs. This is not the case for SSFE and
SSFE+spin, because the effective size extractddsingle-scale features is not accurate.

Thus, the surface description with spin imagesuisty for the single-scale case.

7.3 Delineation of Slope Units Based On Scale AnceBolution Invariant 3D

Curvature Extraction

Landslides, which are one of the major geo-haztindsatening the settlements, occur on
the slopes of the terrain. In order to predicdiiade occurrences, previously occurring
landslides are related with several landslide qigsumbty parameters and landslide

susceptibility maps are obtained. Preparation ta#naslide susceptibility map requires

selection of appropriate slope mapping unit, whielm be regular grids (pixels), slope
units, unique condition areas or some morpholodieatures. Among these mapping
units, use of slope units has several advantages ather mapping units. As the

landslides occur on the slopes grid (pixel)-baggor@aches let the analyzer to consider
the areas which are not prone to landslides andeh@ecrease the performance of
susceptibility mapping algorithms. Using slopetsirs landslide susceptibility mapping

unit overcomes this problem.

Slope unit is a method used to subdivide the spat® regions based on certain
hydrological criteria. Physically the slope unihdae considered as the left or right side of
a sub-basin of a watershed. Therefore, slope anite identified by the intersection of a
ridge line and a valley line. Usually partitioninfa region into sub-basins or slope-units
is virtually impossible and such a partitioning uggs high computational effort. Hence
in this study, a scale and resolution invariarity fautomatic method using scale space of
3D curvature values is proposed for creating slopés to be used in landslide

susceptibility mapping. All process as explainedthe subsections is automatic. The
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performance of the proposed method is tested byadny it with a conventional method

of obtaining slope units.

At this point we would like to thank Dr. Arzu Erarend Dr. H.Sebnem B. Duzgin from
Geodetic and Geographic Information Technologiegddenent at Middle East Technical
University for their cooperation in this study. Hheelped us build the conventional

method which is compared to our proposed landsledection technique.

7.3.1 Slope Unit Generation by Conventional Method

A GIS-based hydrologic analysis and modelling tddic Hydro [Maidment 2002], is

employed to draw the dividing lines for identifyirgjope units. In this approach, the
outline of the watershed polygon is obtained fragitdl elevation model (DEM) by using

the hydraulic model tool, where the watershed baonis the watershed divides or ridge
line. The low elevation areas in the DEM which aterounded by higher terrain and
disrupting the flow of water in the path are filladorder to form watershed boundaries.
The flow direction is calculated by examining thighe¢ neighbours of a cell according to

the eight direction pour point method [Multi-Watleesl].

Then the associated flow accumulation grid is caeghuwhich contains the accumulated
number of cells upstream, for each cell in the irgrid. In addition, a grid representing a
stream network is created by querying the flow-auaglation for cell values above a
certain threshold. This threshold is defined eithgra number of cells or as a drainage
area in square kilometers. In general, the recordewnsize for stream threshold
definition is 1% of the maximum flow accumulatiorSmall threshold values result in
denser stream network with large number of delaeaatchments. Then the DEM and
the flow accumulation are used to determine baattilawv direction to identify cells that
drain through a given outlet. In this backwarciing, the cells with homogeneous flow
accumulation values are classified as watersheddaoies, which are later converted to
polygons (Figure 73.a). After obtaining watershedrdaries, the next step is overlaying

the watershed boundary by the drainage lines (Eigarb).

There is a need to divide the watershed polygothbydrainage line to obtain two slope
units. Hence the drainage line is obtained by usiwgrse of the DEM, which is obtained
by turning the high DEM values into low values,vice versa. This process makes the
original drainage line to be transformed into aesstied divide [Xie et. Al 2004]. The

combination of the watershed deduced from DEM amtershed deduced from reverse
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DEM gives the slope units (Figure 73.d). As candeen from the procedure, the
conventional method for obtaining slope units reggiusage of GIS tools and operations

with several stages.

Figure 73. a) Watershed boundaries determined usen@EM. b) Drainage line overlaid
with watershed of the region c) Watershed boundatetermined using the reverse DEM
(shown with red lines) overlaid with watershed bdames which are present on both the
left and right side of a sub-basin. d) Slope ufiegion obtained in 3D.

7.3.2 The Proposed Method

In this study, a scale and resolution invarianyfalitomatic method which is based on 3D
curvature values is proposed for slope unit geigeralhe method considers the digital
elevation model (DEM) of the terrain as a regulad @f 3D points lying over a u-by-v
mesh (u being the latitude and v, the longitudemely a depth map of the surface. On
this 3D regular grid surface, first drainage limesl ridge lines are segmented according to
their mean (H) curvature values and normal diresti(m) in the scale space of the surface
grid. Then these lines are connected in order finel¢he polygons of slope units. All the
steps within the method are automatic and sequieftia method is detailed below step

by step.

7.3.2.1 Re-sampling

Since the 3D coordinates are absolute in DEMssite information is always preserved

on the surface. However, 3D curvature values caetpwver the surface are highly

effected by the sampling (e.g. resolution) of theface. Thus, a scale and resolution
invariant method is required in order to computevature values for the points over the
surface. For this reason, first the grid surfaceeisampled according to its scale (e.g. m

meters / n points). In this study, the sample dats both latitude and longitude scale-
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resolution ratio of 20m/sample points. Thus if greposed method is applied to a DEM
surface with different sampling rate (resolutidingn its scale-resolution ratio should be

converted to 20m/points.

7.3.2.2 Scale Space of Curvatures

Surface curvature is simply the change in surfaeglignts. Both Mount Everest and a
small hill may have the same curvature valuesfédredint scales but their curvature values
at the same scale level are different. In ordem@mine a given surface at different scale
levels, a scale pyramid is constructed. In thighstBurt and Adelson’s Gaussian Pyramid
method is applied [Burt and Adelson 1983] in ordeextract a scale space of the surface.
In this scale space, different sized elements becwoisible in different scales. For
example, Mount Everest will be visible in a muchher scale than the small hill which

will be visible in a lower one.

The drainage lines and the ridge lines over DEMssamilar sized structures and they

reside at a certain layer of the scale space. 8mail bigger structures having similar

shapes (that is shapes having similar curvatureesabut different sizes) vanish in the

scale level where they exist, and vice versa. Rigrreason, it was searched through the
scale space and found out that the fourth lev&adssian Pyramid (which was obtained
by applying four successive Reduce [Burt and Adels@83] and four successive Expand
[Burt and Adelson 1983] operations to the surfaneludes the drainage and ridge lines.
The original surface patch and its 4th level ssaldace are shown in Figure 74.a and
Figure 74.b.

7.3.2.3 Ridge and Drainage Line Extraction

The proposed method uses value H and vector ntéondi@e if an area is a ridge line or a
drainage line or neither of them. H and n at thartfo scale level for all points on the

reduced surface are calculated. Then candidage add drainage lines are obtained by

thresholding as follows:

drainageline if (H >+0.0002& (codn,)> 07)
ridgeline if (H <-0.0009& (codn,)> 07) 27)
none if otherwise

Here n is the z component of the surface normal assuthiagthe z direction is always

altitude (elevation) in the DEM. The selected regiare depicted in Figure 74.c. In order
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to obtain the actual ridge and drainage linesnihigpis applied over the candidate regions
(Figure 74.c) and actual drainage and ridge limesabtained (Figure 74.d). However
some outlier lines are also resulted from smalioreg In order to eliminate them, length
of each connected line is calculated and small ¢smsaller than 50 points for this case)

are deleted (Figure 74.e).

e) f) 9) h)
Figure 74. a) Original Surface Patch. b) 4th Staleel of the surface patch c) Candidate

ridge and drainage lines are shown in black. dpRia@nd drainage lines after thinning. e)

Final ridge and drainage lines after the elimimatas outliers. f) Detected line tips and
corners are shown in pink and an example inteeggon for a tip is shown by a triangle.
g) Line tips connected to available corners and #ipe shown in green. h) Segmented

landslide regions are shown in different colours.

7.3.2.4 Obtaining Polygons of Slope Units

In order to find slope unit candidates, the closegions are extracted from these lines by
using a very simple approach. First the cornerstigscdn each line are found by applying
kernels over the binary image. Then for each tipip alirection is determined. Finally, a
tip is connected to the closest corner which residside a region around the tip direction
vector (i.e. £30° degrees around the directionargctf a corner does not exist in this
region, then the tip is connected to the clos@sexisting in this region. If a tip does not

exist in the region, then no connection is madguf& 74.f and Figure 74.9).
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After line tips are connected to line corners dnd tips, the slope unit regions surrounded
by drainage and ridge lines are determined. Firall§inding the connected components

and their contours, candidate regions are segmamigthbelled as shown in Figure 74.h.

7.3.3 Results and Comparison

The conventional and proposed methods are ovedaid small test area which is
approximately 25 kito represent the different and matching regiongesferated slope
units. Figure 3 presents the matching and differegions. The matching regions occupy
1.2 knf (Table 14). The proposed method occupies lange af detailed slope units as
compared to the conventional method (Figure 75 BD visualization of slope units

from both methods is illustrated in Figure 76.

The proposed method is tested by using MATLAB® with Intel Centrino® Duo
Computer in windows XP®. It takes less than a n@ntd make all the calculations
including re-sampling, obtaining the "4scale, curvature calculations, thresholding,
morphological operations and region labeling foswface patch including 512x256
points of nearly 50kfmarea. On the other hand in the conventional methegrocess of
DEM filling, flow direction, flow accumulation, stam network determination and
watershed boundary determination requires use fédreint GIS tools which may take
longer time depending on the resolution of the DEBNU area of the study region.
Considering that further performance optimization oodes is plausible and the
complexity of the algorithm is Ofpin Big-O notation, clearly the method is far fast
than the conventional methods.

Figure 75. The overlay of conventional and propasethod outputs. Legend: black line:
conventional slope unit, pink line: proposed mettstape unit, yellow colour: similar
regions, blue colour: generalized units of conwerdl method or detailed units of
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proposed method, green colour: detailed units of/entional method or generalized units

of proposed method.

Figure 76. 3D view of slope units from proposed aonventional methods Legend:
black line: conventional slope unit, pink line: posed method slope unit.

Table 14. Similar and different slope unit areas.

. Area

Slope Unit N
(km)

Matching 1.2

Detailed in Conventional Method Detail but genemedi in Proposed Method | 9.55

Generalized in Conventional Method general butietéan Proposed method| 14.62

Sum 25.37
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

In this thesis, a generic, scale and resolutioariant method to extract 3D features from
3D surfaces, is proposed. The method extracts risatirom 3D surfaces using scale
spaces of surface curvatures. The basic idea dehantechnique is to extract features
independent of their scale and/or resolution, witHosing the metric size information.

The extracted features are tested for their redistr, pose estimation and various

classification capabilities.

Studies, which use scale-space of 3D surfaces ocusizatures, tried to extract features
independent of scale and/or sampling. Many of tistsdies followed the path of SIFT,

thus applied the “difference of Gaussian” (DoG) ragh when creating the scale-space.
In this thesis, we approach the problem from anotherspective, where connected
components of voxels within the curvature scalezgpare used. We discuss the
advantages of using this method, and concludeithmay have advantages in terms of
better localization and robustness to noise, aaogrdo the controlled experiments

performed on artificial scans.

Furthermore, the metric information, such as thé&imsize of a bump on a 3D surface in
millimetres, is necessarily required for certairplagations like robotics, 3D-slam or
object recognition. Since range images providentie¢ric size, a feature obtained from
these signals can have metric information. The gseg feature extraction method also
provides this metric size information, independeinthe resolution of the original image
or the type of the scanner. Therefore, the extdaftatures are not just salient points on
the 3D surface, but meaningful structures with rthigipe, size, and orientation

information.
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Using the proposed scale invariant feature deteatoansform invariant surface topology
representation was proposed. The topological reptason consisted the relative
properties of the nodes extracted from the objectase, thus it was covariant under
certain transformations like rotation and scalingsing this representation, we

experimented on a number of implementations.

Our first experiments were on 3D face detection. Wege used the Bosporus database
which includes more than 20 different poses andhfaxpressions of 78 subjects, which
was very suitable for testing the proposed methgainst various transformations. The
method was compared with four representative metirothe literature. The results show
that the proposed method is more successful instefrdetection percentage, localization

accuracy and computational efficiency comparedhéoather methods.

Using another well-known 3D facial database, th&€€BRv1.a, we have tested the pose
estimation capabilities of our feature extractioetinod. In order to make controlled tests
on pose estimation, virtually rotated versions &Qc vl.a, frontal facial scans were

created using a software constructed in our laboyaMETU-CVIS. The software was a

3D virtual scanner program, where range scanngubgin be created and exported. The
rotations were estimated with around £2° error iankl y axes and +4° error in z axes.
Although the estimation capabilities were not fibat coarse; the results showed that the

representation allowed us to make a quick andieffigpose estimation of 3D faces.

In order to test the recognition capabilities of firoposed method, a transform invariant
n-node topology definition was also proposed. Usinigrgest nodes extracted from the
3D surface, a transform invariant topology was rkfi Each node represented an
extracted feature, thus encapsulated type, sizeodadtation information. Before using
this transform invariant n-node topology for recition tests, we sought for the correct
way to construct our curvature scale space. Sindace type definitions (such as pit,
peak) may be defined using HK or SC curvaturesdigdean initial study to compare the
recognition capabilities of the two curvature scgbaces. Although shape index (S) was
scale invariant in nature and mostly preferredha literature, if curvature scale space
were used to extract surface features, we havenadzs¢hat HK curvature space gave
better results. As a consequence of these resaltsawe used HK curvature scale space in

extracting our 3D surface curvatures in our sucogeexperiments.

In order to test the scale invariance and occlusmbustness limits of the proposed
method, ¥4 scaled, %25 occluded and both ¥ scaldd@&d occluded versions of these

scans are virtually created and tested. In ordefassify the object categories, geometric
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hashing is used. So as to show the importanceabé space search of surface curvatures,
in addition to multi-scale features, single scalatfires are also extracted and tested using
the same classification method. Moreover, the tesuk also compared with 2D SIFT, for

which each original, scaled or occluded range imagendered to a gray scale image.

For the sake of observing the benefits of usingtirsahle features, the 3D features are
extracted with and without scales-space searcht, Fite features are extracted using the
conventional method, in which the surface is cfesbiusing the H and K curvatures
obtained from the given resolution (SSFE methotienT the features are extracted using
the proposed multi-scale feature extraction metfM8FE method). In order to see the
benefits of using feature point descriptors, spiages around the feature centres are also
extracted and appended to the feature vector fon ISSFE and MSFE separately.
(‘SSFE+spin’ and ‘MSFE+spin’). The effect regiarfsthe spin images are designated by

the radii of the features.

Results prove that for scale varying databasesti-sudle features perform much better.
The proposed method (MSFE) performs best for ewparts, in which scaled range
images are tested. If there is no scaling, singldesfeature based methods (SSFE or
SSFE+spin) are quite powerful for recognition ongaimages. On the other hand, 2D
SIFT shows poor performance. Although known to bitegpotent for textured images,

SIFT proves the opposite for gray scale rendemeger@mages.

Results also show that using surface descriptarcsh ®s spin images, may positively
affect the performance of the extracted featureseXperiment three, where occluded
range images are tested, the performance of MSHi-#spconsiderably higher than

MSFE. When the range image is occluded, there ateenough quality features to

represent the image. However, describing localased with spin images when accurate
effective regions are defined, the performance aghgs. This is not the case for SSFE and
SSFE+spin, because the effective size extractdd siiigle-scale features is not accurate

and so as the surface description with spin images.

We have also run a couple of experiments in omlevaluate the proposed representation
for 3D object registration. For this purpose, a ified version of RANSAC algorithm
was proposed, which used triplets of nodes. Sin&acial pose estimation, the results

were no fine, but showed that the technique isblétfor coarse object registration.

Finally we have used scale space of curvaturesdardo detect landslide regions from

digital elevation models. This method was compateda conventional method
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(watershed) which was computationally very expemsiResult showed that the curvature

scale-spaces provide valuable enough informatiosdfocessful landslide detection.

In our final conclusions in this thesis, it is inm@nt to note that scale-space approach is
crucial for any pattern recognition application.cBet studies show that the use of multi-
scale features is increasing. Not only the acadesuciety but also industry is showing
more interest in the concept. In addition, the keptformation is becoming more
important and many new hardware are being usedrippritant industrial application,
such as time-of-flight (ToF) cameras. Consequenily strongly believe that research on
this field will continue to have importance for &ile. In the next section, possible future

directions are discussed.

8.2 Future Directions

The fields of pattern recognition and computeronshave considerable number of open
problems. In this thesis, we seek answers to saréplar problems such as improved

feature scale invariance and more robust objeceseptations. We apply the proposed
solutions to certain applications. Firstly, it wdube a good idea to test the proposed
methods for robotics applications where succeedoenes are to be registered to each
other or objects in a real-world scene are to lbegeized. ToF cameras can be used for

such experiments and capabilities of the proposettioa can be evaluated.

The experiments in thesis compares the resultDt&ET, using gray scaled rendered
range images. Another way to benchmark the propaesethods would be to make
comparisons to recently proposed methods. Althonghe of the recently proposed
methods have yet become a standard as the origiR@l such a comparison might give

better clues on performance.

Another important contribution to the literature wla be the construction of a scaled
database, where real-world objects in clutteredrenments are scanned. There are such
samples of range images, however evaluating metisidg a few images is generally not
the sufficient way to understand their capabilitifdus massive range images or ToF
sequence databases of scaled objects within ddtsenes will enable the researcher to

build proper methods that can be used in real wolhdtics applications.
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