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ABSTRACT  

 

3D OBJECT RECOGNITION USING SCALE SPACE OF CURVATUR ES 

 

 

Erdem AKAGÜNDÜZ 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Asst. Dr. İlkay ULUSOY 

 

January 2011, 136 pages 

 

In this thesis, a generic, scale and resolution invariant method to extract 3D features from 

3D surfaces, is proposed. Features are extracted with their scale (metric size and 

resolution) from range images using scale-space of 3D surface curvatures. Different from 

previous scale-space approaches; connected components within the classified curvature 

scale-space are extracted as features. Furthermore, scales of features are extracted 

invariant of the metric size or the sampling of the range images. Geometric hashing is 

used for object recognition where scaled, occluded and both scaled and occluded versions 

of range images from a 3D object database are tested. The experimental results under 

varying scale and occlusion are compared with SIFT in terms of recognition capabilities. 

In addition, to emphasize the importance of using scale space of curvatures, the 

comparative recognition results obtained with single scale features are also presented. 

 

Keywords: 3D Object Recognition, 3D Feature Extraction, 3D Pattern Recognition 
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ÖZ 

 

EĞRİLİK ÖLÇEK UZAYI KULLANARAK 3B NESNE TANIMA 

 

 

Erdem AKAGÜNDÜZ 

Doktora, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Dr. İlkay ULUSOY 

 

Ocak 2011, 136 sayfa 

 

Bu tezde, 3B yüzeylerden ölçek ve çözünürlükten bağımsız bir 3B öznitelik çıkarım 

yöntemi önerilmiştir. Öznitelikler, 3B yüzey eğrilikleri kullanılarak ölçek bilgileri (metrik 

boy ve çözünürlük) kaybedilmeden çıkarılmaktadır. Önceki ölçek uzayı yaklaşımlarından 

farklı olarak, sınıflandırılmış ölçek eğrilik uzayındaki bileşik elemanlar öznitelik olarak 

kullanılmıştır. Bu öznitelikler metrik uzunluk ve örneklemeden bağımsız 

çıkarılmaktadırlar. Geometrik kıyım yöntemi, nesne tanıma amacıyla kullanılmış ve farklı 

ölçeklerde, engelli nesneler içeren 3B yüzey veri tabanlarıyla test edilmiştir. Deney 

sonuçları nesne tanıma kabiliyetleri bakımından SIFT ile karşılaştırılmıştır. Ölçek uzayı 

kullanmanın önemini göstermek için yöntem hem ölçek uzayı kullanılarak hem de 

kullanılmadan çalıştırılıp, sonuçlar karşılaştırılmıştır.  

 

 

Anahtar Kelimeler: 3B Nesne Tanıma, 3B Öznitelik Çıkarımı, 3B Örüntü Tanıma 
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CHAPTER 1 

 

 

INTRODUCTION 
 
 
 
 
 
 
Mankind’s curiosity on the nature and science has led him from the invention of the wheel 

to this very age of unmanned machines. Each and every day, numerous new clever 

systems are being introduced to our lives. They are able to see, comprehend and act 

according to our needs. I personally choose to call this an invasion. I strongly believe that 

this “intelligent” and technological invasion will linger until mankind is able to create his 

alike. In other words, until he is satisfied with playing God, if he will ever be… 

On our part of playing God, we are interested in visual understanding, the most intimate 

ability, the tremendous divine gift we are given. Computer vision, the science of 

mimicking this ability, will be our main concern in this dissertation. Moreover, we will be 

specifically examining 3D object representation, the key human ability that enables him to 

understand and differentiate real world objects.  

Although quite young for a scientific field, computer vision has surprisingly had fruitful 

fifty years of past. With the increasing availability of various digital imaging systems, first 

image processing then computer vision have become one of the most promising scientific 

fields in signal processing. Moreover, the field has advanced so fast that even the 

academicians sometimes find it difficult to catch up with the new advances. For instance 

face detection, once a very hot topic of the field, is now a simple application in a low-cost 

cellular phone. 

Since it is highly a practical field, the achievements in imaging technology profoundly 

affect the direction of research. For instance, some problems like segmentation of human 

body movements from short distances, which was hot and difficult problem for 2D 

imagery, is now a simple and solved problem using time-of-flight cameras, and has 
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several usages in game industry. This is a single example among several, which shows the 

increasing usage of 3D information in computer vision. 

Processing 3D information, namely point 3D clouds of 3D surfaces, is not always simpler 

than the conventional 2D image processing, as in the human body segmentation example. 

3D image processing and 3D object representation are relatively new problems and have 

various open points. However since they promise acquisition of the real world with depth 

information, (not fully practically) independent of illumination and with metric size 

information; they may offer easier solutions compared to their corresponding solutions in 

2D.  

3D information can be acquired using different devices such as, 3D range scanners, stereo 

systems, lidar scanners, time-of-flight cameras, satellite imagery, etc. The acquired signal 

is usually a grid or cloud of 3D points. The signal carries vast amount of information 

which is difficult to process in real-time. Thus, methods to transform this data into a 

sparse representation are usually needed and are common problems of the field. 

Furthermore some repeatability properties of signal processing are inherited for their 3D 

versions as well, such as transform invariance, scale invariance, and robustness to noise 

because finding repeatable salient points or regions over 3D surfaces (point clouds) is a 

basic prerequisite for 3D object detection, recognition and even matching similar objects, 

namely registration. 

In this thesis, we aim at constructing a representation method for 3D object surfaces. We 

propose a feature extraction method which is scale, sampling and orientation invariant. In 

this chapter, we commence by the problem definition, our motivation and contribution.  

 

1.2 Problem Definition 

Finding repeatable, robust and invariant salient points and/or regions, is one of the very 

important problems of visual pattern recognition. These salient points and/or regions, 

usually called features, can be used to represent an object or match similar objects. 

Depending on the signal type, the feature extraction method may change. In order to 

evaluate a feature extraction method, some basic properties may be defined. [Tuytelaars 

and Mikolajczyk 2007] propose a number of basic properties feature detectors. These are 

repeatability (invariance and robustness), distinctiveness, locality, quantity, accuracy and 

efficiency. Most of these are competing properties, such that it is impossible to satisfy all 
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of them simultaneously. Usually, a method is designed or selected according to the 

application needs and signal type. 

Scale and sampling invariance of a feature detector implies that the detector is capable of 

providing the same salient point or region for the scaled and re-sampled versions of a 

signal. Extracting feature sizes (radii or effective regions) covariant to scaling is another 

ability strongly related to scale invariance, which implies that the extracted size of the 

feature is covariant with the size or sampling of the signal. In other words, for a rescaled 

version of a signal, the same features are detected and for each detected feature, their sizes 

are scaled covariant to the scaling ratio.  

Representing the meaningful portion of information within a signal is crucial. For this 

reason, representing an object within a 3D point cloud is an important and difficult 

problem. The basic needs of a representation are being sparse, repeatability and 

distinctiveness.  

In this thesis, we deal with the above problems of 3D point cloud processing. In particular, 

we focus on obtaining higher levels of scale and sampling invariance in feature extraction. 

Furthermore we struggle to construct a sparse yet repeatable 3D object representation. We 

particularly chose these problems since they are still open problems of 3D computer 

vision.  

 

1.2 Motivation 

In the previous decade, some important approaches on feature extraction from 3D point 

clouds and 3D object representation can be found in the literature. The related studies are 

given in the next chapter. Two important open points in the literature can be summarized 

as feature extraction with full scale invariance and a generalized object representation 

scheme that can be used by different applications.  

Little work on the limits of scale invariance on 3D feature extraction is reported. More 

importantly, for the reported scale invariant 3D feature extractors, none to our knowledge 

deal with the problem of covariant feature size extraction on scale varying databases. 

Therefore we analyze the existing scale space approaches and seek for a way to achieve 

higher scale invariance, by manipulating the construction of the signal scale-space. By this 

way, we also look for a method to achieve signals with their effective region size.  
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Second, a generic transform invariant topological 3D surface representation standard is 

missing. For these reasons we are motivated on finding a generic 3D representation for 3D 

objects with better scale invariance properties compared to methods from the literature.  

 

1.3 Contribution 

Although the problems referred in the problem definition section are comprehensively 

examined, and still being examined in the literature, there are still open points. In this 

thesis we propose solutions for some of these problems such as the ones indicated in the 

previous section. 

The proposed feature extraction method is novel in the sense that it constructs the signal 

scale-spaces with a different strategy than the previous approaches, as it will be explained 

later in detail later. Via controlled experiments on artificial surfaces, we show that our 

approach might be beneficial in terms of accuracy and robustness to noise. 

Secondly, as it will be explained later in the succeeding chapters, surfaces can be 

classified into certain types using different curvature spaces. For instance using Gaussian 

(K) and Mean (H) curvatures or using Shape Index (S) and Curvedness (C), surfaces are 

classified into the same eight types (pit, peak, etc.). Since shape index is scale invariant, 

previous comparisons show that using SC classification gives better results. However, 

using a scale-space approach, we show that HK classification gives better results in object 

recognition, which is a valuable clue for surface curvatures in scale space. 

We propose a transform invariant topological surface representation which can be used to 

recognize, register or detect objects. The representation is defined within a feature vector, 

which is experimented for object recognition and detection. 

Last, but not the least, we show that using surface curvatures in Digital Elevation Models 

(DEMs) provide fast and efficient methods for landslide region detection, compared to 

slow conventional methods.  

 

1.4 Outline of the thesis 

We commence this thesis by examining the related work in chapter 2. Previous studies on 

3D feature extraction, 3D face detection and 3D object recognition using range images are 

given in this chapter.  
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The essential definitions of 3D signal processing are presented in chapter 3, “Processing 

3D Information”. Basic 3D surface data formats are introduced and basic methods on pre-

processing 3D data for the purpose of cleansing common defects such as noise are 

discussed.   

The next chapter, “Surface Curvatures” gives fundamental 3D curvatures definitions, such 

as: principal curvatures (κ1, κ2), mean curvature (H), Gaussian curvature (K), shape index 

(S), curvedness (C). In addition, the classification capabilities of these curvature 

definitions are described and discussed. 

Chapter 5, “Scale Space of 3D Surfaces and 3D Curvature”, dives into to the principal 

discussion in the thesis. Methods to obtain scale-spaces of 3D surfaces and curvature 

values from 3D surfaces, is analyzed. Crucial clues for scale and resolution invariant 

object recognition are obtained from the behaviour of 3D curvature values in scale-space. 

The key technique proposed in this thesis is described in Chapter 6,  “Feature Extraction 

and Object Representation”. As its title implies, the method to extract transform invariant 

features from 3D surfaces is given in detail. Moreover the construction of transform 

invariant topologies using the extracted features is given in detail.  Finally, a number of 

descriptors to define local regions around the extracted features are introduced. 

The succeeding chapter, “Experimental Work” provides all implementations we have 

done using the proposed feature extraction and object representation techniques. The first 

subsection “3D Face Detection” gives the implementation of the proposed 3D feature 

extraction technique on 3D face detection and 3D facial pose estimation. Detection of 

facial surfaces is tested on Bosporus Database [Bosporus Database 2007] and compared to 

four main methods from the literature [Lu and Jain 2005], [Lu and Jain 2006], [Chang et. 

al. 2006], and [Colombo et. al. 2005]. Then the implementation of the main subject of this 

thesis is given in “3D Object Recognition”. Using more than ten thousand range images 

from Stuttgart range image database [Stuttgart Database], object category recognition tests 

are carried out. Furthermore, comparisons between, multi-scale vs. single Scale features 

and recognition capabilities of HK and SC curvature definitions are given. Most 

importantly our proposed method is compared to 2D SIFT. In addition, the qualities of the 

extracted scale invariant features are evaluated for the purpose of 3D registration. Finally 

in “Landslide Region Detection Using Curvature values obtained from DEMs”, using 

scale space of curvatures, regions with possible landslide activity are extracted from 

digital elevation models (DEMs). The proposed method is compared to a conventional, 

high computation cost technique [Multi-Watershed].   
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Finally, Chapter 8 concludes the dissertation. Final discussions are given and possible 

future directions are evaluated. 
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CHAPTER 2 

 

 

RELATED WORK 
 
 
 
 
 
 
As introduced in the previous chapter, in this dissertation, we discuss major issues of 

feature extraction and object representation. We also intend to propose novel techniques 

for them. Furthermore, the proposed techniques are evaluated on various applications such 

as, 3D facial recognition, 3D object recognition and 3D registration. Considerable 

numbers of studies and contributions, which are related to the theory and the experiments 

provided in this thesis, have been reported. For the sake of clarity, literature on each 

subject is examined separately in this chapter.  

 

2.1 3D Feature Extraction 

Feature extraction is one of the basic topics in image processing. Feature is a salient 

region on a signal, which locally defines or represents the signal behaviour. For example, 

corner is a good feature for 2D images since experiments show that removing the corners 

from images intensely impedes human recognition [Biederman 1987].  

The main problem in this thesis, extracting features from 3D surfaces, is strongly 

correlated to the 2D feature extraction literature. For a detailed analysis on 2D invariant 

feature extraction, reader may refer to [Tuytelaars and Mikolajczyk, 2007]. For 3D surface 

change is related to surface curvatures. We commence by 3D surface curvatures, and then 

we continue with scale invariance concept in 3D pattern recognition. Finally we visit the 

literature on describing 3D surface behaviour locally.  
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2.1.1 3D Surface Curvatures 

Using surface curvatures on range images for the purpose of image recognition and image 

segmentation [Fan et. al. 1986, Fan et. al. 1989, Besl and Jain 1986, Ittner and Jain 1985] 

dates back to 1980s, when range image acquisition started to become available. The 

practical side of the problem, estimating true curvature values from acquired range image 

is also studied in this era [Flynn and Jain 1989].  In the following years, mean and 

Gaussian curvatures are preferred methods in 3D surface classification literature. 

However, this representation lacks the notion of scale invariance, and the shape index (S) 

and curvedness (C) [Koenderink and Doorn 1992] are proposed, which are also based on 

principle curvature values.  

Using H and K values or S and C values, HK and SC curvature spaces are constructed in 

order to classify surface patches into types such as: pits, peaks, saddles, parabolas, 

hyperbolas or planes. Since both HK and SC spaces classify surface patches in to similar 

types, their classification capabilities are comparable. For this reason, there is an ongoing 

debate on the advantages and disadvantages of using mean & Gaussian (HK) or shape 

index & curvedness (SC) curvature spaces for object recognition applications. In [Cantzler 

and Fisher 2001], HK and SC curvature descriptions are compared in terms of 

classification, impact of thresholds and impact of noise levels and it is concluded that SC 

approach has some advantages at low thresholds, in complex scenes and in dealing with 

noise. However in that study the curvatures are calculated only at the lowest scale, i.e. the 

given resolution. Scale-spaces of the surfaces or the curvatures are not defined. Another 

comparative study has been carried out in [Li and Hancock 2004] where curvature values 

obtained from the shading in 2D images are used and HK and SC histograms are created. 

The comparison results show that SC histograms are slightly more successful in terms of 

classification. Yet again, the tested resolution is the pixel resolution of the 2D image and 

the effect of sampling is ignored. 

 

2.1.2 3D Scale Invariant Features 

In the previous decade, scale concept has become common in computer vision. [Lindeberg 

1998]’s work on automatic scale selection in feature point detection and same author’s 

renowned book on scale space [Lindeberg 1994] attracted so much attention that, the very 

famous scale invariant feature transform [Lowe 2004] was discovered in the following 

years. However, for that decade, nearly all of the studies on scale concept were on 2D 

image processing. Although shape index [Koenderink and Doorn 1992] was introduced 
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for 3D surfaces, scale invariant feature extraction from surfaces or range images did not 

attract much attention until recent years.  

Recently [Li and Guskov 2007] extracts multi-scale salient features using only two scale 

levels of the surface normals and analyzes its performance on object recognition for the 

Stuttgart range image database. [Pauly et. al. 2003] extracts multi-scale features which are 

classified based on surface variation estimation using covariance analysis of local 

neighbourhoods, in order to construct line features. [Lo and Sieberta 2009] define the 

2.5D SIFT, the direct implementation of SIFT [Lowe 2004] framework on range images, 

however they present their comparison with simple match matrices and avoid giving a 

comparison of recognition capabilities. All of these methods construct a scale space of the 

surface using difference of Gaussians (DoG) and seek for the maxima within this scale 

space. In addition, although these studies all promise scale invariance, none of them, or 

any other study to our knowledge, test the recognition ability of their proposed scale 

invariant 3D representation technique using a scale varying database of 3D models.  

The other crucial requirement for 3D recognition, namely robustness under occlusion, has 

been issued in various ways previously [Johnson and Hebert 1999], [Merchán et. al. 

2008]. Yet again to our knowledge, no particular study has been reported on testing the 

recognition capabilities with respect to both scale and occlusion in range image databases. 

 

2.1.3 3D Descriptors 

Range images, which have been usually processed as 2D images, carry both the 3D metric 

and geometric information of objects in the scene. Several local or global 3D point 

features and 3D descriptors are derived from these sampled surfaces and used for 3D 

object recognition, 3D object category recognition, 3D surface matching and 3D 

registration. Some of these features are SIFT [Lowe 2004] (as directly applied to 2D 

rendered range images), 2.5D SIFT [Lo and Sieberta 2009], multi-scale features [Li and 

Guskov 2007], [Pauly et. al. 2003], spin images [Johnson and Hebert 1999], 3D point 

signatures [Chua and Jarvis 1997], 3D shape context [Frome et. al. 2004], surface depth, 

normal and curvature histograms [Hetzel et. al. 2001], 3D point fingerprints [Sun et. al. 

2001], extended Gaussian images [Horn 1984] or density-based 3D shape descriptors 

[Akgül et. al. 2007]. 

3D descriptors or histograms generally define the whole or a part of an object, using 

different properties of the surfaces such as curvatures, normal directions, distances to a 
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base point etc. They are very powerful in representing a surface patch for recognition 

purposes. However when they are globally defined, they are brittle against occlusion. On 

the other hand, local descriptors are defined around feature points.  However, detecting 

feature points and estimating the effect region of the local descriptor around a feature 

point are serious problems. Using fixed sized local descriptors obtained from random 

points on the surface [Johnson and Hebert 1999] is one of the earlier approaches.   

 

2.2 3D Object Representation 

The concept of representing a designated element on a signal, for example an object in an 

image, is application-based and application-dependent. Thus any proposed method related 

to the application field actually defines its own representation in some certain manner. For 

this reason, it is difficult to mention about a homogenous object representation literature. 

However there is still an observable evolution of 3D object representation methods in the 

literature.  

This pioneering studies on 3D object recognition focus on model-based approached since 

first applications are on CAD-based vision systems. [Arman and Aggarwal 1993] present 

a dense review on these type approaches. Since these approaches generally define an 

object using basic shapes, like cubes, cylinders, etc.; the applications were limited to 

industrial objects where object is clearly acquired, and there is no need for segmentation. 

However as the need for detecting objects in a cluttered 3D scene rises up, more curvature 

based methods are required. As explained in the previous sections, curvature based 

approaches locally define shapes using surface behaviour. Approaches to represent objects 

using curvature values can be found in the literature [Flynn and Jain 1988]. These 

approaches are followed by feature based studies, which use curvature information over 

the surface to detect repeatable and invariant salient points and regions. 

Advanced representations of 3D surfaces can be divided into two major branches. The 

first one is using different surface descriptors as defined in the previous sub-section. Other 

approach is using topologies where the spatial information of salient regions is taken into 

consideration. This topological representation may be considered both local and global. 

Furthermore various proposed methods provide robustness under occlusion for topological 

(or graph-based) 3D object representations.  
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2.2.1 3D Object Recognition 

 
Similar to face detection, the literature on 2D object recognition is highly populated. 

However it is difficult to say that it is saturated, because there are still many open 

problems for both 2D and 3D object recognition. Reader may refer to [Edelman 1997, 

Roth and Winter 2008] for a detailed survey on 2D object recognition. 

3D object recognition literature is mainly the combination of the studies on 3D surface 

curvatures, 3D feature extractors, 3D descriptors and 3D object representation. For this 

reason the major approaches on the subject is already given within the previous 

subsections. There are a couple of good survey papers on the subject [Osman et. al. 2004, 

Campbell and Flynn 2001]. It is quite expected that updated versions of these reports will 

soon be published since new developments quickly affect the field, such as probabilistic 

models’ increasing usage in object recognition [Simon and Seitz 2007, Hu and Zhu 2010]. 

 

2.2 3D Facial Detection 

2D face detection and recognition have attracted so much attention for the last forty years 

that the research in these fields is fairly saturated. For a review of 2D face detection and 

recognition algorithms, reader may refer to [Yang et. al. 2002] and [Zhao et. al. 2000] 

respectively. Although it is recently reported that 2D and 3D face recognition algorithms 

are comparable [Chang et. al. 2005], studies on 3D face detection and recognition methods 

have shown a remarkable progress in the last few years as 3D scanners become more and 

more available. For detailed surveys of 3D face recognition, reader may refer to [Kittler 

et. al. 2005] and [Bowyer et. al. 2004].  

Most of the 3D face detection and recognition approaches are based on local facial 

features such as eyes, mouth, nose, profile, silhouette and face boundary. Success of these 

approaches depends highly on the success of the feature detection algorithms. Since, in 

this study, we also present a method for local feature extraction and we apply our method 

for face detection, we would rather summarize literature for 3D facial feature extraction 

and face detection.  

Previous studies show that, nose tip and inner eye pits have usually been selected as 

anchor points on faces. [Colbry et. al. 2005] use “shape index” [Koenderink and Doorn 

1999] for determining the anchor points. Chang and Bowyer [Chang et. al. 2006] also use 

shape index for the detection of inner eye pits and the nose tip is detected by using the eye 

pit locations. [Colombo et. al. 2005] find anchor point candidates by using shape index 
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values and PCA is used in order to classify the anchor points. In addition shape index has 

also been used to recognize objects other than faces [Worthington and Hancock 2001]. 

[Nagamine et.al. 1992] finds five feature points by using a similar method of [Colombo et. 

al. 2005] and use those feature points to standardize face pose. [Lu and Jain 2005] first 

extract nose tip as the closest point to the camera. Secondly, possible locations of the two 

inner eye pit points are selected by using shape index and cornerness measure extracted 

from the face surface. Anchor point detection is performed in a similar way for rotated 3D 

data in [Lu and Jain 2006]. 

 

2.4 3D Object Registration 

Surface registration is an intermediate but crucial step within the computer vision systems 

workflow. The goal of registration is to find the Euclidian motion between a set of range 

images of a given object taken from different positions in order to represent them all with 

respect to a reference frame. Registration in general can be divided into two: coarse 

registration and fine registration [Salvi et. al. 2006]. In coarse registration, the main goal is 

to compute an initial estimation of the grid motion between two clouds of 3D points using 

correspondences between both surfaces. In fine registration, the goal is to obtain the most 

accurate solution as possible. Needless to say that the latter method usually uses the output 

of the former one as an initial estimate so as to represent all range image points with 

respect to a common reference system. Then it refines the transformation matrix by 

minimizing the distance between the temporal correspondences, known as closest points.  

In coarse registration, which is the main type of registration we intend to accomplish in 

this thesis, uses point-to-point correspondences, such as the [Chua and Jarvis 1997, 

Johnson and Hebert 1999]. An important aspect of coarse registration is the way of 

computing the motion when correspondences are found. Robustness in the presence of 

noise is another important property, because there are usually no corresponding regions 

between views.  Studies on using a (partial) graph-to-graph approach on range images, 

instead of point-to-point correspondences, is not reported to our knowledge. 

For a wide literature survey on registration of range images reader may refer to [Salvi et. 

al. 2006]. 
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CHAPTER 3 

 

 

PROCESSING 3D INFORMATION 
 
 
 
 
 
 
In this chapter, different formats of 3D information are investigated. Since raw output of 

3D scanners is used as the main source of 3D information, methods to cleanse certain 

defects from these types of data are also examined.  

 

3.1 3D Information Formats 

The 3D information can be found in various forms. Basically it is a point cloud of vertices 

in a three-dimensional coordinate system.  However depending on the type of the signal, 

3D information take different names.  

 

3.1.1 Range Images 

Range image (scan) is a 2.5D image showing the distance to points in a scene from a 

specific point, normally associated with some type of sensor device. The resulting image 

has pixel values which correspond to the distance. If the scanner which is used to produce 

the range image is properly calibrated, the pixel values can be given exactly in physical 

units such as meters. 

The sensors used to obtain range images are usually called 3D scanners. The raw output of 

these 3D scanners is a regular grid of 3D points lying on a u-by-v mesh, namely a depth 

image (map) of the scene. This representation is known as the Graph Representation 

[Flynn and Jain 1989], where a single 3D point on the surface is given by: 

        [ ]),(),(),(),( vuzvuyvuxvu =X      (1) 
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In Figure 1, a 2D demonstration of a range image is seen. Each pixel value indicates the 

distance of that pixel from the scanner. However a range image encapsulates more 

information than a 2D image since for each pixel coordinate (u, v), there are three metric 

values: x(u, v), y(u, v) and z(u, v).  For this reason, they are also referred as 2.5D data. The 

regions with zero pixel value are invalid regions. These regions have no valid depth values 

thus no valid 3D coordinates. 

 

 

Figure 1. Sample range image: “bunny” from [Stuttgart Database] 

 

There are several types of 3D scanners such as laser, ultrasound and optical. Each 

technology comes with its own limitations, advantages and costs. For pattern recognition 

and robot vision applications using real world objects, 3D optical scanners are usually 

preferred.  

The range image is the most basic form of 3D data. This regular data may be manipulated 

in different ways for different applications. The next subsection briefly goes over some 

other frequently used 3D data formats. 

 

3.1.2 Polygonal Data 

For visualization purposes, computer graphics based applications require a set of 

polygonal surfaces. For instance, if the valid points are extracted from a range image and 

vertex groups that form a plane are found, the 3D information within the range image is 

converted to 3D polygonal data.  Polygonal data is crucial since most commercial 3D 

graphical interfaces used in today’s computers are designed to process polygonal meshes.  
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Unlike range images, polygonal data may include a complete model of the object. When a 

range image of an object is taken, only the 3D points across the viewing angle are 

captured. However combining various range images of an object taken from different 

viewing angles, a polygonal mesh of the complete model of the object can be constructed 

(Figure 2). 

 

Figure 2. The polygonal form of the object in Figure 1 is obtained by combining the valid 

vertices obtained from different range scans of the object. 

 

The resolution of polygonal models may be altered without losing 3D shape information. 

For example, an area with low curvatures (e.g. a planar area) may be represented using 

few vertices. However depending on the data acquisition technique, this area might be full 

of 3D points, which are mostly redundant. In this case, a process called decimation is 

applied on polygonal meshes. Regions with low curvature value are found and the 

sampling around these regions is reduced using several techniques. 

 

3.1.3 Parametric Representations 

Some computer vision based techniques and graphics applications require a continuous 

representation of 3D data in order to apply analytic methods instead of numeric ones. For 

this reason methods like spline fitting may be applied to 3D scanner outputs in accordance 

with the required application. In these methods the main motivation is to transform the 

digitized data into continuous and parametric form by fitting a certain type of function to 

the valid vertices of the object surface. Having continuous surface functions and 

derivatives are the benefits of this technique. Regression and spline fitting are some the 

examples of parametric representations.  
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3.1.4 Digital Elevation Models 

A digital elevation model (DEM) is a digital representation of ground surface topography 

or terrain (Figure 3). It is also widely known as a digital terrain model (DTM). A DEM 

can be represented as a raster (a grid of squares) or as a triangular irregular network. 

DEMs are commonly built using remote sensing techniques; however, they may also be 

built from land surveying. DEMs are used often in geographic information systems, and 

are the most common basis for digitally-produced relief maps. 

 

         a)       b) 

Figure 3.  a) The DEM image is depicted. b) The 3D render of the DEM image is shown. 

 

DEMs are similar to 2D images where the pixel intensity designates the elevation in 

metric coordinates. Usually each pixel is captured with a fixed metric sampling rate (such 

as using 20m intervals), thus the horizontal coordinates also represent metric coordinates 

and the information is actually 2.5D.  

The quality of a DEM is a measure of how accurate elevation is at each pixel and how 

accurately is the morphology presented. Several factors play an important role for quality 

of DEM-derived products, such as: terrain roughness, sampling density, grid resolution or 

pixel size, interpolation algorithm, vertical resolution and terrain analysis algorithm.  

DEMs are very similar to range scans in the sense that the depth and the pixel size are in 

metric coordinates. Thus 3D curvatures techniques can be applied to them as well. In 

chapter 8, a method to detect landslide regions using curvature information of DEMs is 

proposed.  

There are a number of other 3D data formats, such as volumetric representations. We 

chose not to mention them here, since the four formats mentioned above, namely range 

scans, polygonal data, parametric representations and DEMs are the basic formats that will 

be used in this thesis. Range scans will be our basic source signal on which we will 

process our feature extraction techniques. We will sometimes convert them to polygonal 
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data for visualization purposes since most 3D visualization software and hardware use 3D 

polygonal formats. Parametric representations will be needed for finding surface gradients 

on local surface patches. Splines will be fit on small local regions and surface gradients 

will be extracted from their explicit analytical equations. Finally surface curvatures will be 

calculated on scale-spaces of DEMs in order to automatically detect landslide regions.  

 

3.2 Common Defects of 3D Scanner Outputs 

3D scanners can send trillions of light photons toward an object and receive only a small 

percentage of those photons back via the optics that they use. For widely used optical 

scanners, a lighter surface will reflect lots of light where a darker surface will reflect only 

a small amount. For this reason more specular and darker regions, such as dark hair, might 

not be detected by these types of scanners and might be marked as invalid on the scan. 

Moreover, physical limitations of the sensor may lead to noise on the acquired data set. 

Sample points can be corrupted by quantization noise or motion artefacts. Furthermore 

multiple reflections and heavy noise can produce off surface points (outliers). Besides, 

holes on the model surface occur due to occlusion, critical reflectance properties, 

constraints in the scanning path or limited sensor resolution. Many scanners tend to create 

ghost geometry when the scanned object is textured. In this section some common defects 

of 3D scanner are investigated.  

 

3.2.1 False Holes (False Invalid Points) 

Due to various reasons, 3D scanners may mark regions as invalid. 3D scanners usually 

work on optical principles to calculate 3D coordinates of points on their image planes. 

However for example, dark hair may reflect light photons like a mirror and the scanning 

system may be unable calculate valid coordinates for that region. Then, the scanner marks 

points in this particular region as invalid. It is clearly seen in 3D facial databases 

[Bosporus Database 2007] that the, hairy regions such as: dark hair, eyebrows, eyelashes, 

darker facial hair are usually marked as invalid by the optical scanner used (Figure 4). 
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Figure 4. A facial scan taken from FRGC v1.a 3D database is shown. Invalid regions 

around eyebrows are marked as invalid in the depth image. 

 

3.2.2 Exploded/Imploded Regions 

Optical scanners tend to create spikes mostly because of similar reasons why they create 

holes. For regions with critical reflectance properties (such as specular regions like dark 

hair as mention in the previous subsection) the reflected light on image planes might be 

localized incorrectly. Thus instead of having invalid coordinates, these points might have 

valid flag, but they carry incorrect depth values. 

In Figure 5, a spike on the iris of a facial scan from FRGC v1.a 3D facial database is seen. 

Since iris is a highly specular region, one particular pixel depth is incorrectly calculated 

and a spike is formed.  

 

 

Figure 5. A spike on the iris of a facial scan from FRGC 3D facial database. 

 

These incorrectly calculated points are not necessarily outwards the direction of the 

camera. The might be imploded inwards the 3D surface. In addition these regions are not 
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necessarily single points; they might be a group of points if the reflectance is critical for 

that whole region (Figure 6). 

 

 

Figure 6. Nose is imploded in the 3D range scan (left) because of extreme illumination on 

the nose tip (FRGC v1.a). 

 

3.2.3 Noise 

For any remote sensing device, from a radio receiver to 3D scanner, some kind of noise is 

observed on the output signal. Transmitting media or the components of the device itself 

may cause the noise. Despite any effort to neutralize this noise, it is impossible to 

completely cleanse it from any electronic remote sensing device. 

 

    a)   b)             c)         d) 

Figure 7. a) 3D artificial surface without noise b) Normal directions over the noise-free 

surface. c) 3D artificial surface with noise. d) Normal directions over the noisy surface 

[Bozkurt et. al. 2009]. 

 

Since most 3D scanners use optics to acquire the signal, the type of noise is similar to 2D 

noise. 3D scanner outputs experience amplifier noise, which is highly Gaussian. There is 

also powerful quantization noise if the resolution of the scanner is relatively low [Bozkurt 
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2008]. 2D noise is convolved within the intensity of the pixels. 3D noise disturbs the 3D 

coordinates of the points in the point cloud. A demonstration of noise over an artificial 

surface is depicted in Figure 7.  

 

3.3 Processing 3D range scans 

In order to neutralize the defects of 3D range scans, a processing on the 3D point cloud 

may be needed. Unsurprisingly, depending on the type of the defect, the processing 

method varies. Only after these defects are neutralized, the range scan is properly prepared 

for the required application. In this section, methods to process these defects are inspected. 

 

3.3.1 Processing False Holes 

Theoretically holes are invalid marked points, which actually belong to a group of points 

with valid 3D coordinates. In Figure 4, a good example is given from FRGC database, 

where some point on the eyebrows of a 3D facial scan are marked as invalid. However 

these so called holes may belong to the image background, or an actual hole which sees 

through the image background (Figure 8), which should have invalid coordinates.  

 

 

Figure 8. The “hub” object from the Stuttgart 3D range image database is shown. There is 

no defect on the range scan; however the object possesses a number of actual holes. 

 

The range image in Figure 8, has no defects, however the object possesses a variety of 

actual holes. Thus, before processing the image for false invalid points, one should decide 

if the invalid marked points is a defect or not. In order to solve this problem manual and 
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automatic methods are used. The manual methods are not feasible when thousands of 

range image are concerned, where automatic methods have no guarantee of truly 

discriminating false holes among invalid points. Most 3D scanners come up with a 

software which can be used to manually fill these holes. These interfaces help the user to 

mark the region encapsulating the false hole, and interpolate it using the neighbouring 

valid points. The interpolation could be linear or quadratic. On the other hand a fully 

automatic method would detect the false holes by means of some intelligent criterion. This 

criterion could be as simple as the size of the hole, or as complex as a model-based 

approach guessing where the object might have an actual hole. 

In this thesis, we have completed our experiments on FRGC v.1a 3D facial database 

[FRGC1a], Bosporus 3D facial database [Bosporus Database 2007] and Stuttgart 3D range 

image database [Stuttgart Database]. These databases include near twenty thousand range 

images in total. FRGC database includes the raw scanner outputs which are noisy and full 

of false holes. We have applied automatic processing to these holes, where holes having a 

certain size smaller than a threshold were considered false, and interpolated linearly using 

the neighbouring valid points (Figure 9).  

 

 

Figure 9. a) Texture for the 3D Scan. b) Black areas denote the background. Red areas 

denote the invalid points selected to be extrapolated. Blue areas denote the neighbouring 

valid points used for extrapolation. White areas denote valid points. c) Processed point 

cloud. 

 

The same process was also applied to Bosporus database although a manual processing 

was applied to this database during the acquisition. Stuttgart database is an artificial 

database, which is constructed artificially by obtaining range images from 3D objects by 
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virtually scanning them. For this reason this database is free of defects and does not need 

any processing. 

 

3.3.2 Processing Exploded/Imploded Regions 

It is nearly impossible to construct a decision system which will detect any incorrect valid 

point, because the structure of the scanned surface is usually unknown. For example a 

spike on the surface may very well be a valid surface structure if the scanned surface 

includes a needle. For this reason widely used techniques to process these regions are 

manual. Similar to manual hole filling software, there are several programs which provide 

semiautomatic tools to cleanse these defects from 3D range images.  

On the other hand, if there is preliminary structural knowledge about the scanned surface, 

then certain model-based automatic methods may be applied. For example, Nesli Bozkurt, 

a former graduate student from our computer vision laboratory in METU, constructed a 

facial defect cleansing system which uses the symmetry information of the face. So for 

facial scans, a lateral symmetry criterion is sought over the 3D facial surface and any 

element (a hole or a spike) violating this criterion is considered as a defect and handled 

properly [Bozkurt 2008].  

 

3.3.3 Processing Noise 

3D scanner outputs experience amplifier noise, which is highly Gaussian. There is also 

powerful quantization noise if the resolution of the scanner is relatively low [Bozkurt 

2008]. This noise can be partially removed by using a Gaussian smoothing filter. However 

Gaussian filters experience problems with preserving the edge details. Among numerous 

methods, Bilateral Filtering is proven to be a powerful yet simple, non-iterative scheme 

for edge-preserving smoothing in 2D [Bozkurt 2008]. This image processing technique 

has been successfully extended to 3D by making small modifications in the application. 

Bilateral filter is distinguished from Gaussian blur by its additional “range” term. In this 

case, not only the distances between positions matter, but also the variation of the 

intensities are also taken into account in order to keep the features from derogation. 

Consequently, the edges where high intensity differences occur are successfully preserved. 

In 2D, the intensity values are a function of position values, whereas in 3D the position in 

fact, is the signal itself. Hence, the modification of bilateral filter to be applied to 3D data 

is not very straightforward. Like most image processing algorithms that are extended to 
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surfaces, normal information at each point of the surface can be used to form an intensity 

space like in images. 

The effect of noise cleaning using 3D bilateral filtering is depicted in Figure 10, which is 

taken from [Bozkurt 2008]. As seen from the figure, the edges are properly preserved in 

3D bilateral filtering (Figure 10). 

 

 

Figure 10. Surfaces de-noised with Gaussian (left) and Bilateral (right) filters [Bozkurt 

2008]. 

 

When the bilateral filter is applied to original scans from the FRGC v1.a database, the 

results show that the edge details around the eye is well preserved whereas the facial 

surface is cleared off the noise (Figure 11). 

 

   

Figure 11. The result of the bilateral filtering on a FRGC sample. . 
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CHAPTER 4 

 

 

SURFACE CURVATURES 
 
 
 
 
 
 
In order to construct intelligent systems capable of classifying different shapes, one should 

find a way to understand or model the behaviour of a solid shape. When it comes to 3D 

shapes and surfaces, the surface curvatures are the key concept defining this behaviour. 

For a general review of surface curvatures and surface behaviour, reader may refer to 

Koenderink’s renowned book on solid shapes [Koenderink 1990]. 

In this chapter the general concepts of surface curvatures, such as: surface gradients, 

principal curvatures (κ1, κ2), Mean curvatures (H) and Gaussian curvatures (K), shape 

index (S) and curvedness (C) are reminded. In addition, the transform invariance and the 

effects of scaling and sampling on these curvatures are discussed. By the end of the 

chapter, a theoretical comparison of HK and SC fundamental shape definitions is 

presented. We commence by discussing the most reliable way to obtain a curvature of a 

digitized surface. 

 

4.1 Reliable Curvature Estimation 

The behaviour of the surface may be calculated by the first partial derivative of the surface 

function. In the previous chapter, the general digital surface data format is analyzed 

specified as 2.5D data or the Monge Patch, which is defined as: 

[ ] { } RX εvuvufvuvu ,;),(),( =      (2) 

As it is previously stated, u and v parameters are matched to x and y coordinates and this 

surface can be specified as the height f (u, v) above the so-called support plane defined by 

the two coordinates (u, v). At any point p on this continuous surface, we can choose two 

orthogonal vectors in the tangent plane and examine the surface’s behaviour in those 
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directions. The vectors in the direction of the orthogonal parameters (u, v) are called the 

surface gradients and are equal to:  

∂X(u, v)/∂u = [ 1   0   fu ] , ∂X(u, v)/∂v = [ 0   1   fv ]   (3) 

fu and fv are the partial derivatives of the height function f (u, v) with respect to u and v. 

Accordingly the surface normal n, which is orthogonal to surface gradients at point p, is 

defined as: 

[ ]1vu ff
vu

−−=
∂
∂×

∂
∂= XX

n      (4) 

Theoretical computation of the surface gradients is simple when an explicit definition of 

the continuous surface function is known. However this is not the case when you are 

dealing with digitized scans in real world problems. For this reason a digital version of all 

functions or kernels must be used. There are different methods of obtaining partial 

derivates from a digital signal. [Flynn and Jain 1989] focuses on reliable digital curvature 

estimation using different types of these methods and strives to find a conclusion on the 

best method in order to estimate surface gradients of discrete surfaces. They implement 

analytical methods such as: fitting orthogonal polynomials and splines and linear 

regression around the point at which the gradient estimates are done. In addition they 

implement numerical estimates where finite difference is used. 

This pioneering study emphasises on the importance of Gaussian smoothing before any 

digital curvature estimation. They check the robustness of all methods against noise and 

indicate that pre-smoothing enhances the estimation success profoundly. For this reason in 

this study all of the surfaces are pre-smoothed in order to lower the effect of any type of 

noise. 

In their study, Flynn and Jain use 7x7 or 5x5 patches around the interest point, according 

to the method implemented. Needless to say that when estimating digital curvature this 

neighbouring patch size is of extreme importance since the discrete derivatives highly 

depend on the sampling rate. For this reason, even though they make very important 

indications in their study; it is difficult to rely on some of their observations since the data 

they use is very much lower in resolution compared to today’s digitized scans.  

One of the main motivations of this thesis is to eliminate the effect of sampling or the 

neighbouring patch selection when estimating the digital curvatures for object recognition. 

In this study, 3x3 patches are used and quadratic functions are fit to estimate curvatures. 
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However these curvatures are investigated in a scale space of the surface. The details of 

these procedures are given in the succeeding sections.  

 

4.2 Principal Curvatures 

In differential geometry, the two principal curvatures at a given point of a surface measure 

how the surface bends by different amounts in different directions at that point. At each 

point p of a differentiable surface in 3D Euclidean space one may choose a unique unit 

normal vector. A normal plane at p is one that contains the normal, and will therefore also 

contain a unique direction tangent to the surface and cut the surface in a plane curve. This 

curve will in general have different curvatures for different normal planes at p. The 

principal curvatures at p, denoted κ1 and κ2, are the maximum and minimum values of this 

curvature. The figure below depicts these curvatures and their normal planes. 

 

 

a)         b)         c) 

Figure 12. a) The normal plane with the maximum curvature is seen. b) The normal plane 

with the minimum curvature is seen c)  κ1 = 1.56 and κ2 = -2.37. The surface is a patch 

from a monkey saddle: z(x,y) = x3 - 3•x•y2. 

 

The principal curvature values and the principle directions of the curvatures are calculated 

by taking the eigenvalue decomposition of the Hessian Matrix which is defined as: 
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The eigenvalues of this symmetric matrix give the principal curvatures κ1 and κ2, where 

the eigenvectors give the principle curvature directions. Surface points can be classified 

according to their principal curvature values at that point. A point on a surface is called: 

Elliptic: (κ1 · κ2 > 0) if both principal curvatures have the same sign. The surface is locally 

convex or concave. 

Umbilic: (κ1 = κ2) if both principal curvatures are equal and every tangent vector can be 

considered a principal direction (and Flat-Umbilic if κ1 = κ2 = 0). 

Hyperbolic: (κ1 · κ2 < 0) if the principal curvatures have opposite signs. The surface will 

be locally saddle shaped. 

Parabolic: (κ1 = 0, κ2 ≠ 0) if one of the principal curvatures is zero. Parabolic points 

generally lie in a curve separating elliptical and hyperbolic regions. 

This is the basic classification for surfaces according to their principal curvatures. 

Examples of these types of shapes can be seen in Figure 13. 

Mean (H) and Gaussian (K) curvatures, shape index (S) and curvedness (C) are also 

calculated using the principal curvatures and more essential classification are made 

according to their values. 

 

4.3 Mean (H) and Gaussian (K) Curvatures 

Using principal curvatures, Mean (H) and Gaussian (K) Curvatures are calculated as: 

2
21 κκ +=H , 21 κκ ⋅=K      (6) 

H is the average of the maximum and the minimum curvature at a point, thus it gives a 

general idea on how much the point is bent. K is the multiplication of the principal 

curvatures and its sign indicates whether the surface is locally elliptic or hyperbolic. [Besl 

1986] was the first to use HK values for the purpose of surface segmentation. Using HK 

values, the regions are defined as in 



28 
 

Table 1. Shape Classification in HK curvature space. Corresponding examples of surface 

regions are seen in Figure 13. 

 K>0 K=0 K<0 

H<0 
Convex (1) 

(Elliptic or Umbilic) 

Ridge (2) 

(Convex Parabolic) 

Saddle Ridge (3) 

(Hyperbolic) 

H=0 (Not possible)(4) Planar (5) Minimal (6) 

H>0 
Concave (7) 

(Elliptic or Umbilic) 

Valley (8) 

(Concave Parabolic) 

Saddle Valley (9) 

(Hyperbolic) 

 

 

Figure 13. Shape types in correspondence with Table 1 Shapes at rightmost column are 

hyperbolic and from top to bottom they have the properties: κ1 + κ2 < 0, κ1 + κ2 = 0 and   

κ1 + κ2 > 0. The centre column show parabolic or flat-umbilic (planar) shapes where one 

of the principal curvatures is equal to zero (κ1 = 0 ∪ κ2 = 0). The leftmost column show 

the elliptic shapes where both principal curvatures have the same sign. The upper is 

convex elliptic (a peak: κ1 < 0 ∩ κ2 < 0) and the lower one is concave elliptic                    

(pit: κ1 > 0 ∩ κ2 > 0). 
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Because of noise and other reasons it is impossible to have an exact zero value for HK 

values. Thus zero-thresholds are used to decide if a value is zero or not. Everything below 

this threshold is considered as zero. 

 

( ) ( )
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
 >++

=
otherwiseo

Hif
H zero22 2121 κκκκ

, 

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=
otherwiseo

Kif
K zero2121 κκκκ

    (7) 

In order to better comprehend the relation between the HK values and the principal 

curvatures κ1 and κ2, the regions in Table 1 are drawn on the (κ1, κ2) plane in the figure 

above: 

 

Figure 14. The HK classification on the (κ1, κ2) plane. Region colours (and the numbers) 

correspond to Table 1. The separating lines are the zero-thresholds for H values and their 

equations are: (κ1 + κ2) / 2 = +Hzero and (κ1 + κ2) / 2 = -Hzero. The separating curves are the 

zero-threshold for K values with the equation: (κ1• κ2) > +Kzero and (κ1• κ2) > -Kzero. 

 

 

 
κ1 

 

H>0 ∩ K<0 

H<0 ∩ K>0 

H=0 ∩ K<0 

H=0 ∩ K<0 

H>0 ∩ K>0 

H>0 ∩ K<0 

H>0 ∩ K=0 H<0 ∩ K=0 H=0 ∩ K=0 

H<0 ∩ K<0 

H<0 ∩ K<0 

κ2 
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As discussed in [Cantzler and Fisher 2001], there are two main ambiguities in HK 

representation. The planar region is not symmetric and the parabolic region gets narrower 

for higher curvatures.  

Most importantly H and K values are very much dependent on thresholds. Shifting the 

thresholds directly changes the regions on the (κ1, κ2) plane. Since for a scaled or re-

sampled version of a surface patch, κ1 and κ2 values will differ. Thus HK values are not 

scale or resolution invariant. However since they depend on κ1 and κ2 values (which are 

orientation invariant) they are also orientation invariant. 

 

4.4 Shape Index (S) and Curvedness (C) 

[Koenderink and Doorn 1992] defines an alternative curvature representation using the 

principal curvatures. This approach defines two measures: the shape index (S) and the 

curvedness (C). Shape index (S) defines the shape type and curvedness (C) decides if the 

shape is locally planar or not. 

( ),arctan
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
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



−
+
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2

2
2

2
1 κκ +=C     (8) 

The shape index value of a point is independent of the scaling of that shape and it changes 

between [-1,+1]. However C is not scale or resolution invariant. Both S and C are 

orientation invariant. A discussion on transform, scale and resolution independency of all 

curvature types are given in the next subsection. 

[Koenderink and Doorn 1992] uses S value in order to classify a point. S values changes 

between [-1,+1] where -1 defines cup shapes (convex elliptical) and + 1 defines cap 

shapes (concave elliptical). All other types of local shape correspond to real number 

between [-1,+1] (Table 2). 

 

Table 2. Shape Index Classification. Colours are consistent with the previous figures 

 

 

 

 

     -1      -5/8       -3/8                0      +3/5      +5/8           +1 

  “Cup”          “Valley”          “Saddle”           “Ridge”          “Cap” 
           “Trough”    “Saddle Valley”    “Saddle Ridge”  “Dome”      
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Table 3. Shape Index and Curvedness Classification. Colours are consistent with the 

previous figures. 

Convex (Elliptic) (1) S∈[+5/8,1] ∩ C>Czero 

Convex (Parabolic) (2) S∈[+3/8,+5/8] ∩ C>Czero 

Saddle Ridge (3) S∈[+3/16,+3/8] ∩ C>Czero 

Planar (5) C<Czero 

Hyperbola (6) S∈[-3/16,+3/16] ∩ C>Czero 

Concave (Elliptic) (7) S∈[-1,-5/8] ∩ C>Czero 

Concave (Parabolic) (8) S∈[-5/8,-3/8] ∩ C>Czero 

Saddle Valley (6) S∈[-3/16,+3/16] ∩ C>Czero 

 

 

Figure 15. The SC classification on the (κ1, κ2) plane. Region colours correspond 

to Table 3. The separating lines are the constant S values: S = ±5/8, ±3/8 and 

±3/16. The circle around the origin is the zero-threshold for C values and its 

equation is: ( ) 22
2

2
1 κκ + = Czero. 
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[Koenderink and Doorn 1992] defines constant shape index values in order to define 

shape types. These values are given in Table 3above. However their original classification 

does not differentiate hyperbolic regions into three different types (yellow-orange-red 

region, i.e. saddle valley, hyperbola and saddle ridge). For this reason we define another 

constant shape index value (3/16) for this purpose in the table above. The Curvedness (C) 

values are used to understand if the region is planar or not. For planar regions C value is 

very close to zero (i.e. below the zero threshold Czero).  

In order to better comprehend the classification of S and C values, it is a good idea to 

observe them on the (κ1, κ2) plane. The regions are coloured (and numbered) 

correspondent to Table 3 (and the previous figures). 

 

4.5 Transform Invariance of Curvatures 

The curvature values obtained from a surface is independent of any 3D rotation. In other 

words for the same surface, when rotated in 3D space the principal curvature values stay 

the same. This is a very important property since when recognizing objects, local surfaces 

on that object may be captured in an arbitrary orientation and provided that the principal 

curvature values stay the same; the features obtained from principal curvature are said to 

be orientation invariant. Thus the value H, K, S and C are independent of translation and 

rotation in 3D space.  

Unfortunately when it comes to scaling, things get complicated. Since scaling changes the 

finite difference between each digital sample, the discrete partial derivatives on the 

surface also changes for a scaled version of the same surface. Given that the principal 

curvatures are calculated from the Hessian, i.e. the second order partial derivatives of a 

surface; κ1 and κ2 are directly dependent to scaling and vary proportionally when the 

surface is scaled in 3D space. In addition since the 3D scans are discrete surfaces, the 

sampling rate also directly affects the principal curvature values. Obviously while 

principal curvature values are affected, any other type curvature will also be affected. For 

this reason H, K and C values are not scale or resolution invariant. However S values, due 

to their mathematical design, are independent of scale and resolution. The effect of scaling 

and sampling (resolution) is profoundly analysed in the next subsection.  

 



33 
 

4.5.1 Effect of Scale and Sampling on Curvature – Scale/Resolution Ratio 

In this subsection the scale and resolution invariance of the four curvature types (H, K, S, 

C) are practically tested. Although their scale/resolution independency or dependency is 

theoretically or mathematically proven, the empirical tests are observed for a better 

understanding of the concept of scale/resolution ratio, which will be introduced within 

this subsection.  

Shape Index is theoretically (mathematically) proven and designed to be scale invariant. 

In order to test the scale invariance of S practically, the simplest test would be having 

different scaled versions of a digitized surface (a Monge Patch) and comparing their S 

maps. Imagine we have two versions of the surface, one of which is 10 times bigger than 

the other in x, y and z coordinates (10 times scaled version). However their resolutions are 

exactly the same: 100x100 (Figure 16). 

 

      

       a)           b)       c) 

Figure 16. a) Two scaled version of the same shape. Bigger one (1) is 10 times larger than 

the other. (Smaller one (2) is barely seen on the lower–left of the bigger one). b) Two S 

maps are identical (in both S maps a grey scale level is mapped to a distinct real value. So 

having same intensities on each SI map proves that they have the same real S values) c) C 

(curvedness) map intensities (i.e. the C values) are different. For the small shape, the 

curvedness is barely detected. For H and K maps, the effect would be similar to C. 

 

It is seen that both shapes have identical S maps but different C maps. All grey level 

intensities are calibrated such that, a grey level indicates a distinct real curvature value. 

Thus, if two maps are of the same grey values, then the real values corresponding to those 

maps are exactly the same just like in Figure 16.b. 

In order to see the resolution (sampling) invariance of the shape index S, we make another 

test using three different sampled versions of the same shape from the previous figure: one 

digitized with 25x25 resolution, other with 50x50 and the original surface with 100x100. 
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Note that the shapes have identical size, which means they occupy the same size in 3D 

space.  

 

 

         a)        b) 

 

 

c) 

Figure 17. a) 25x25 sampled surface. b) 50x50 sampled surface. c) On the left S map for 

the 25x25 sampled surface is seen. In the middle S map for 50x50 sampled surface is seen. 

On the right we have the S map for the original 100x100 sampled surface. As the surface 

resolution gets lower and lower, the S map resolution also changes but the S values (the 

grey level intensities) do not get affected. 

 

In Figure 17.c we have the S map for the three surfaces. As the surface resolution gets 

lower and lower, the S map resolution also changes but the S values (the grey level 

intensities) do not get affected, which means shape index is independent of resolution 

even though the principal curvatures values are not.  

Needless to say that if the same test was carried out for H, K and C maps, the values 

would have been affected and thus H, K and C are not resolution invariant. However 

there’s a way to get the same principal curvature values, thus the same H, K and C values 

for different sampled or scaled versions of the same shape. It can be mathematically 

proven that if the scale/resolution ratio is held constant for different scaled and sampled 

versions of the same shape, the principal curvature values also stay the same. Thus, H, K 

and C may also become scale and resolution invariant. In order to prove this idea 

practically, we prepare our final test on three different versions of the same shape. In this 

test the scale and the resolution is modified correspondingly. When the scale is halved, 
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then the resolution is also exactly halved. So the scale/resolution ratio stays constant for 

each surface. 

 

   

a)      b) 

Figure 18.  a) The original surface (1) with 100x100 resolution; Surface 2 with 50x50 

resolution scaled by ½; Surface  3 with 25x25 resolution scaled by ¼; b) H maps for each 

surface is depicted. Intensities (e.g. real H values) do not change for different scaled H 

maps, since scale/resolution ratio is constant. 

 

This test shows that if we keep the scale/resolution ratio constant for a surface patch, the 

principal curvature values becomes independent of scale and resolution and so the H, K 

and C values. Thus thresholds we use for H, K and C in any recognition system also 

become universal if we keep the scale/resolution ratio constant. However this ratio is 

affected by many things such as: the settings and type of the digitizer (scanner) and even 

the distance of the object from the digitizer. This ratio must be set to a constant value 

before any threshold is used. For this purpose in this thesis any 3D scan is re-sampled into 

a constant scale/sampling ratio of 0.5mm/sample in each u and v directions.  

Furthermore by settings the scale/resolution values constant and by making H, K, and C 

values independent of scale and resolution, the advantage of S as a natural scale invariant 

values vanishes. Consequently a proper comparison of HK and SC spaces can be made 

since both spaces become independent of scale and resolution. The next section makes an 

introductory comparison of the two curvature spaces and introduces a coupled version of 

the two. 
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4.5.2 Rule for Thresholding 

As proven in the previous subsection, a constant scale/resolution ratio will make H, K and 

C thresholds universal. However these universal threshold values depend on the fixed 

scale/resolution ratio. In our studies the fixed scale/resolution ratio is 0.5mm/sample. The 

threshold values for H, K and C are 0.03, 0.0009 and 0.03 respectively. If a different 

scale/resolution ratio will be used; in order to get the same classification results, the 

threshold should be decided consistent with the formulas below: 

Let new scale/sampling ratio be ratioss; 

( )
( )2

5.003.0

zerozero

sszerozero

HK

ratioCH

=

×==
    (9) 

 

4.6 Comparison of HK and SC Curvature Spaces 

There has been an ongoing debate on the advantages and disadvantages of using HK 

(Mean – Gaussian) or SC (shape index – curvedness) curvatures for object recognition 

applications. [Cantzler and Fisher 2001] make a comparison of HK and SC curvature 

descriptions in terms of classification, impact of thresholds and impact of noise levels. 

They conclude that SC approach has some advantages at low thresholds, complex scenes 

and dealing with noise. However they calculate the curvatures at the lowest scale, e.g. the 

given resolution. Scale-spaces of the surfaces or the curvatures are not defined. Another 

comparative study have been carried out in [Li and Hancock 2004] where using curvature 

values obtained from the shading in 2D images, HK and SC histograms are created. The 

comparison results show that SC histograms are slightly more successful in terms of 

classification. Yet again the tested resolution is the pixel resolution of the 2D image, and 

the effect of sampling is ignored. 

When calculating the H, K and C values, the scale/resolution ratio is highly effective. 

However due to its scale invariant nature shape index (S) values are independent of the 

resolution or the scale. Thus it is no wonder that SC methods give better results against 

HK when the comparison is carried out at an uncontrolled scale/resolution level. As 

explained in the previous subsection, in order to make H, K and C values scale invariant 

the scale/resolution ratio must be set to a constant value for the whole database. In 

addition a scale space of the surface should be constructed so that all features obtained by 

using H, K, S and C values will also carry the scale level information. Obtaining the 

absolute scales of these features is a crucial ability for 3D object representation and the 
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only way of achieving such information is constructing the scale-spaces of the surfaces 

and the scale-space of the curvature values. There have been different attempts at 

constructing a scale-space of the surface and defining scale-invariant features however to 

our knowledge, there have been no study on comparison of HK and SC classification 

capabilities using scale-spaces of the surface in the database. 

In this thesis, our main motivation and contribution is to make both theoretical 

(mathematical) and empirical comparisons of HK (Mean/Gaussian) and SC (Shape 

Index/Curvedness) curvature descriptions in a scale-space of the targeted surface. By 

doing this we also aim at comparing the scale parameter obtained by using HK and SC, on 

a local surface element. For this purpose we calculate the scale spaces of the given 

surfaces and the curvatures. The details of this part are given in the next chapter. Then we 

make empirical comparison on the classification results of scale invariant HK and SC for 

the Stuttgart database. This comparison is given in the results chapter. Before concluding 

this chapter, a mathematical comparison of HK and SC spaces is given below. 

 

 

Figure 19.  The difference in region description of HK and SC spaces over the (κ1, κ2) 

plane is depicted. Each number designates a region which is described in Table 4. The 

shape index thresholds are ±5/8, ±3/8, ±3/16, as it is for Figure 4. The other thresholds are 

selected such that Kzero = H2
zero and Czero = Hzero. 

4.6.1 Mathematical Comparison of HK and SC Curvature Spaces 

In this chapter mathematical analysis of HK and SC curvature spaces are given over the 

(κ1, κ2) plane. Eight fundamental types of regions are indicated for both of the methods. 

Since both HK and SC values are obtained from (κ1, κ2) values by using different 
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mathematical operators, the eight fundamental regions have slight differences for the two 

curvatures spaces. Actually these slight differences play the decisive role on their success 

for object classification. In Figure 19, the differences in region definition over (κ1, κ2) 

planes are seen. Each region is indicated by a number, which is listed in Table 4. 

 

Table 4. The definition of the regions seen in Figure 19 

Reg
. 

No. 
HK Definition SC Definition Mathematical Definition 

1 Plane Convex Parabolic H<|Hzero| ∩ K<|Kzero| ∩ S∈[-5/8,-3/8] ∩ C>Czero 

2 Plane Convex Elliptic H<|Hzero| ∩ K<|Kzero| ∩ S∈[-1,-5/8] ∩ C>Czero 

3 Convex Parabolic Convex Elliptic H>+|Hzero| ∩ K<|Kzero|∩ S∈[-1,-5/8] ∩ C>Czero 

4 Convex Elliptic Convex Parabolic H>+|Hzero| ∩ K>+|Kzero| ∩ S∈[-5/8,-3/8] ∩ C>Czero 

5 Plane Saddle Valley H<|Hzero| ∩ K<|Kzero|∩ S∈[-3/8,-3/16] ∩ C>Czero 

6 Saddle Valley Convex Parabolic H>+|Hzero| ∩ K<-|Kzero| ∩ S∈[-5/8,-3/8] ∩ C>Czero 

7 Hyperbolic Saddle Valley H<|Hzero| ∩ K<-|Kzero| ∩ S∈[-3/8,-3/16] ∩ C>Czero 

8 Hyperbolic Convex Parabolic H<|Hzero| ∩ K<-|Kzero| ∩ S∈[-5/8,-3/8] ∩ C>Czero 

9 Plane Hyperbolic H<|Hzero| ∩ K<|Kzero|∩ S∈[-3/8,+3/8] ∩ C>Czero 

10 Plane Concave Parabolic H<|Hzero| ∩ K<|Kzero| ∩ S∈[+3/8,+5/8] ∩ C>Czero 

11 Plane Concave Elliptic H<|Hzero| ∩ K<|Kzero| ∩ S∈[+5/8,+1] ∩ C>Czero 

12 
Concave 
Parabolic 

Concave Elliptic H<-|Hzero| ∩ K<|Kzero|∩ S∈[+5/8,+1] ∩ C>Czero 

13 Concave Elliptic Concave Parabolic H<-|Hzero| ∩ K>+|Kzero| ∩ S∈[+3/8,+5/8] ∩ C>Czero 

14 Plane Saddle Ridge H<|Hzero| ∩ K<|Kzero|∩ S∈[+3/16,+3/8] ∩ C>Czero 

15 Saddle Ridge Concave Parabolic H<-|Hzero| ∩ K<-|Kzero| ∩ S∈[+3/8,+5/8] ∩ C>Czero 

16 Hyperbolic Saddle Ridge H<|Hzero| ∩ K<-|Kzero| ∩ S∈[+3/16,+3/8] ∩ C>Czero 

17 Hyperbolic Concave Parabolic H<|Hzero| ∩ K<-|Kzero| ∩ S∈[+3/8,+5/8] ∩ C>Czero 

 

In order to make the two spaces similar to each other, the zero-thresholds are arranged 

such that of the threshold lines and curves of HK and SC spaces are tangent to each other, 

when it is possible. Similar to [Cantzler and Fisher 2001]’s approach, Hzero and Czero are 

taken equal, so that the line H=Hzero is tangent to the circle C=Czero. In addition Kzero = 

H2
zero, so that the hyperbola K=Kzero is tangent to the circle C=Czero. Although, the regions 

defined by the curvature spaces become very similar after these arrangements, there are 

still fundamental differences in region definitions. 
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The planar region definition for SC space is a circle centred on the (κ1, κ2) plane origin 

and thus it is symmetric. However the planar region definition for HK space is different 

and not symmetric according to κ1= κ2 line, although it is symmetric according to κ1=- κ2 

line. For this reason for the planar region defined by HK space, is defined much 

differently by the SC space (regions 1, 2, 5, 9, 10, 11, 14).  

Different definitions of elliptic and parabolic regions for the two curvature spaces also get 

diverse when the principal curvature values get larger. There are regions defined as 

parabolic for one curvature space and elliptic for the other curvature space (regions 4, 6, 

13, 15). The parabolic region for HK curvature space get narrower for larger principal 

curvature values, while it gets wider for the SC curvature space. There are also other 

regions (regions 3, 7, 8, 12, 16, 17) where the definitions are ambiguous.  

 

4.6.2 HK&SC Coupled Curvature Space 

On the other hand there are regions where the region definitions are the same for the both 

curvature spaces. For this reason in Figure 19, the regions for which both HK and SC 

curvature spaces definitions are the same are seen. We name this combined space of HK 

and SC curvatures, the HK&SC coupled curvature space. The mathematical definitions 

are given in Table 5. 

This new curvature space do not cover all the regions over the (κ1, κ2) plane. The regions 

which are ambiguous, in other words which are classified different in HK and SC spaces, 

are excluded from the classification. So if a local surface patch is classified as one of the 

regions in Table 5, then they are classified same in both HK and SC curvature spaces.  

It is very difficult to decide which classification is best by just making a theoretical 

comparison among the curvature spaces. It is difficult to conclude on the best method 

without experimentation. One region may be classified as planar by HK curvature space, 

convex parabolic as SC curvature space, and may not be classified by the HK&SC 

coupled curvature space (region 1 in Figure 20). However the effect on classification 

success can only be understood by experimental study. In this thesis we compare the first 

two curvature spaces for object recognition purposes. In addition we do this using the 

scale-space of the surface and curvatures. The next chapter gives the details on 

constructing these scale-spaces.  
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Figure 20. The HK&SC coupled space classification in (κ1, κ2) plane. The colours and 

numbers are correspondent with Table 5. 

 

Table 5. HK&SC coupled space Classification. Colours are consistent with the previous 

figures 

Convex (Elliptic) (1) H<-|Hzero| ∩ K>+|Kzero| ∩ S∈[+5/8,1] ∩ C>Czero 

Convex (Parabolic) (2) H<-|Hzero| ∩ K<|Kzero| ∩ S∈[+3/8,+5/8] ∩ C>Czero 

Saddle Ridge (3) H<-|Hzero| ∩ K<-|Kzero| ∩ S∈[+3/16,+3/8] ∩ C>Czero 

Planar (5) H<|Hzero| ∩ K<|Kzero| ∩ C<Czero 

Hyperbola (6) H<|Hzero| ∩ K<-|Kzero| ∩ S∈[-3/16,+3/16] ∩ C>Czero 

Concave (Elliptic) (7) H>+|Hzero| ∩ K>+|Kzero| ∩ S∈[-1,-5/8] ∩ C>Czero 

Concave (Parabolic) (8) H>+|Hzero| ∩ K<|Kzero| ∩ S∈[-5/8,-3/8] ∩ C>Czero 

Saddle Valley (6) H>+|Hzero| ∩ K<-|Kzero| ∩ S∈[-3/16,+3/16] ∩ C>Czero 
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CHAPTER 5 

 

 

SCALE-SPACE OF CURVATURES 
 
 
 
 
 
 
The scale-space representation is the formal theory of handling an n-dimensional signal at 

different scales, such that a one-parameter family of the smoothed versions of that signal 

is constructed. In the next subsection, the use of scale space theory in the field of 

computer vision is briefly summarized.  

 

5.1 Scale-Space Theory in Computer Vision 

Typically, an object contains structures at many different scales. Thus a true 

representation may only be constructed using the information obtained from different 

scales of the object. In this section the formal definition of scale in computer vision is 

given. For further reading, reader should refer to Tony Lindeberg’s renowned book on 

scale-space theory in computer vision [Lindeberg 1994]. 

Computer vision deals with deriving meaningful or useful information from 2D, 2.5D or 

3D images. The digital equipments used to obtain such images provide this information as 

discrete signals, which have certain sampling rates (resolutions). However the useful 

information within the image resides independent of this sampling rate. Scale-space theory 

provides some directions to overcome this dependency by constructing different scales 

levels of the image. In this manner, scale levels are constructed as different stages of 

sampling of the original image; so that an operator will deal with different useful features 

residing in different scale levels.  

The most common method to obtain higher scales for an image is pyramiding. A pyramid 

representation of a signal is a set of successively smoothed and sub-sampled 

representations of the original signal organized in such a way that the number of pixels 
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decreases with a constant factor from one layer to another [Lindeberg 1994]. The next 

section summarizes the most common pyramiding method: Gaussian pyramiding.  

 

5.2 Gaussian Pyramiding 

Similar to other low-pass pyramiding approaches, Gaussian pyramiding is a type of multi-

scale signal representation, in which a signal or an image is subject to repeated Gaussian 

smoothing; so that a linear scale space of that signal is constructed.  

In [Burt and Adelson 1983] Gaussian pyramids of 2D images are constructed by reducing 

an image into its half resolution (Figure 21). For this purpose “Reduce” and “Expand” 

operations are defined such that at each “Reduce” operation the data is smoothed and 

down sampled into half, and similarly at each “Expand” operation the data is up-sampled 

into double resolution by Gaussian smoothing [Burt and Adelson 1983].  

 

 

           a)              b) 

Figure 21. a) Gaussian pyramiding over a 1D signal, (higher scale levels towards the 

bottom). b) Gaussian Pyramiding on a 2D image. In each step, the image is both down-

sampled and smoothed (higher scale levels towards the right) [Burt and Adelson 1983]. 

 

The main motivation behind reducing a signal is to obtain down-sampled version of that 

signal, so that the size of an applied operator becomes independent of the resolution of 

that signal. For example, if a 3x3 kernel is convolved over the image, only features fitting 

inside 3x3 region could be detected. But if the kernel is applied to all reduced levels, 

larger features can also detected using the same operator.  
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5.2.1 Gaussian Pyramiding over 3D Surface Scans 

In this thesis, Gaussian pyramiding is applied to 3D surface scans and 3D curvatures in 

order to obtain scale-space representations of 3D objects. However it is not a 

straightforward procedure to apply these operations to 3D, since there is an ambiguity in 

the definitions of scale and resolution for 3D scans. Before understanding the “scale” and 

“resolution” (or the sampling rate) of a 3D scan, it is beneficial to examine their meanings 

in 2D. 

For 2D images, the notion of scale is the same as resolution. In other words, the size of the 

signal is calculated by its sampling rate because a metric size within an image is not 

defined. For this reason, when a scale-space of a 2D signal is constructed, at each scale 

level the image is solely sub-sampled.   

On other hand, the sampled points carry metric information for 3D scans. In other words 

independent of the sampling rate of the 3D scan, the metric distances between points on 

the signal are absolute. For this reason, two scans of the same object taken from different 

distances, will sample the object in different resolutions; however the object surface 

within the 3D scan will carry the same absolute metric size.  This little detail may seem 

insignificant; however it plays a profound role in construction of scale-space for 3D scans.  

Gaussian kernel and its derivatives are singled out as the only possible smoothing kernels 

[Lindeberg 1994]. Pyramid approach for multi-resolution is usually chosen because in 

Gaussian pyramiding, image size decreases exponentially with the scale level and hence 

also the amount of computation required to process the data. But it also has some 

drawbacks such as a coarse quantization along the scale direction which makes it 

algorithmically hard to relate image structures across scales [Lindeberg 1994]. 

 

 

Figure 22. Gaussian Pyramiding on 3D scans is seen. In each scale level, the sampling rate 

is halved, but the metric distances are preserved. 
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As seen Figure 22, a Gaussian Pyramid of a 3D scan is depicted. At each scale level the 

sampling rate is halved as expected. But the metric distances within the image stay 

unaffected.  

 

5.2.2 Invalid Points in 3D Surface Pyramids 

As it was discussed thoroughly in Chapter 2, there are invalid points on 3D scans, which 

are either background or simply invalid since they could not been acquired properly by the 

scanner. For most 3D data processing methods, these invalid points are simply ignored 

and calculations are carried out using only the valid points. However if a pyramid of a 3D 

range image, which contains a group of invalid points, is to be constructed; these invalid 

points should be handled properly.  

 

 

Figure 23. The scale levels of a depth image constructed by Gaussian pyramiding are seen. 

The black regions are the invalid points. Around the valid point boundaries the smoothing 

filter avoids blending with invalid points so that the sharp boundaries are preserved. 

 

When constructing a pyramid for a 2D intensity image as in Figure 21.b, the Gaussian 

operator is convolved throughout the image with no exceptions. However in order to 

convolve a Gaussian filter over a depth image, including invalid points; it is possible that 

one might experience difficulties in boundary regions where valid and invalid points are 

next to each other. In these occasions, the segments of the Gaussian filter, which 

corresponds to invalid points, should be omitted.  This way the true shape of the object 
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may be preserved in higher scales. In Figure 23, the scale space of a surface is constructed 

using Gaussian pyramiding. Around the valid point boundaries the smoothing filter avoids 

blending with invalid points. This way, sharp boundaries of an object can be preserved. 

A similar approach was carried out by [Lo and Sieberta 2009] in order to avoid false key 

points which would be resulted as a consequence of applying a standard Gaussian mask 

over the sharp boundaries on the range image. Instead they applied a Gaussian-tapered 

segmentation mask in order to isolate the area of interest while avoiding sharp boundaries.  

 

5.3 Scale Space of Curvatures 

In this section, the scale levels of a depth signal are analyzed. In the previous figure, scale 

levels of a range image were given. In Figure 24, the same range image is seen from a 

different angle. It is clearly seen that, as we go up the scale axis, the smaller elements 

vanish and only the larger elements reside. This is the basic motivation behind 

constructing a scale space.  

 

 

Figure 24. The smaller elements vanish as we go up the scale axis. 

 

The normal directions of each scale level are shown in Figure 25. In this figure, red values 

correspond to x components, green values correspond to y components and blue 

components correspond to z components of the surface normals. It is also seen from the 

normal scale-space that smaller elements vanish in higher scales. The thin edge which is 

denoted by 1 in Figure 25, is visible in lower scales but vanishes in higher scales, since 

this element is relative small.  

 



46 
 

 

Figure 25. The scale-space of the surface normals. Red values correspond to x 

components, green values correspond to y components and blue components correspond 

to z components of the surface normals. 

 

The benefit of constructing a scale space of a range image is more clearly seen, if the 

curvatures obtained from different scale levels are analyzed. The next subsections 

emphasize on constructing different curvature scale-spaces.  

 

5.3.1 Curvatures in Scale-Space 

As explained in Chapter 3, the curvatures are calculated using surface gradients. Thus they 

give basic information on surface behaviour. In order to calculate surface gradients 

analytically, explicit surface functions may be used. However in real world applications, 

the 3D surfaces are digitized into sampled points and there’s no global explicit function of 

the surface. Hence, the surface gradients are calculated within a neighbourhood of 

sampled points. For this reason the calculated curvatures are local approximations, which 

are valid at a certain scale. Therefore the curvatures are calculated for each scale level, 

and the curvature scale-spaces are constructed.  

In this section different curvature values obtained from different scale levels are depicted, 

so that the general idea of curvature scale-space can be properly comprehended. First, in 

Figure 26, the scale space of mean curvature values are seen. The concave regions, which 

have positive mean curvature values, are painted in red, where convex regions with 
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negative mean curvature values are painted in blue. For both regions the magnitude of the 

curvature is demonstrated by colour intensity. 

 

 

Figure 26. The scale-space of mean curvature values. The concave regions which have 

positive mean curvature values, are painted in red, where convex regions with negative 

mean curvature values are painted in blue. 

 

 

Figure 27. The scale-space of Gaussian curvature values. The parabolic regions with 

positive Gaussian curvature values are painted in red colour, where the hyperbolic regions 

with negative Gaussian curvature values are painted in blue colour. 
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As seen from the figure, the convex region denoted by number 1 is designated as a peak in 

higher scales since this element is relative large for the given resolution of the 3D scan.  

Similarly if we examine the Gaussian curvature values, again the larger features are 

observed in higher scales. In Figure 27, the Gaussian curvature values obtained from 

different scales of the surface are depicted. The parabolic regions with positive Gaussian 

curvature values are painted in red, where the hyperbolic regions with negative Gaussian 

curvature values are painted in blue. For both regions the magnitude of the curvature is 

demonstrated by colour intensity. 

Moreover, when the shape index values obtained from different scale levels of the surface 

are examined, the affect of scale-space is clearly seen. Since shape index value is capable 

of classifying the surface into the fundamental surface types (except planes), the scale-

space of the shape index values clearly demonstrate the scale coordinates of the surface 

features. . In Figure 28, the shape index values obtained from different scales of the 

surface are depicted. The shape index values and colour is mapped according to Table 2 in 

Chapter 3. 

 

 

Figure 28. The scale-space of shape index values. The shape index values and colour is 

mapped according to Table 2 in Chapter 3. 

 

As seen from the figure, the convex region denoted by number 1 is designated as a peak in 

higher scales and is not existent in lower scales.  
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Finally if we examine the curvedness values obtained from different scale levels of the 

surface, we clearly extract the planar regions in the scale-space. Curvedness values can be 

used to detect planar regions, since regions having sufficiently small curvedness values 

are defined as planes. In Figure 29, the gray level intensities designates the curvedness 

values, where zero curvedness value corresponds to black. 

 

 

Figure 29.  The scale-space of curvedness values. The gray level intensities designate the 

curvedness values,  where zero curvedness value corresponds to black. 

 

The region denoted by numbers 1, 2, 3 and 4 in different scale levels corresponds to a 

planar region on the surface and it is designated as plane in the first four scale levels in the 

curvedness scale –space. However in the fifth curvedness scale-space level is it not 

designated as plane, since in this scale, the region is designated as pit.  

In this chapter the concept scale-space is defined for 3D surfaces. Moreover, it is clearly 

shown that larger features can only be extracted using the scale-space of 3D surfaces and 

curvatures. In the next chapter, the details of feature extraction from the scale-space of 3D 

surfaces and curvatures are presented. 
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CHAPTER 6 

 

 

FEATURE EXTRACTION AND OBJECT 
REPRESENTATION 

 
 
 
 
 
 
In this chapter, the proposed method to extract scale and orientation invariant features 

using scale-spaces of 3D surfaces and curvatures is explained. There are previous methods 

which focus on extracting features from scale-space of different types of signals [Lowe 

2004]. For this reason, certain aspects of the proposed method, such as scale-space 

localization are given in comparison with the previous scale-space techniques. 

 

6.1 Construction of the UVS Volume 

As it was stated in the previous chapter, estimating surface feature labels at the given 

resolution of the original surface restricts us to find the features only at the lowest scale 

(the given resolution). In order to detect other curvatures which have higher scales, a scale 

space representation must be introduced. For this purpose, the Gaussian pyramid of the 

input surface may be generated. It should be remembered that Gaussian pyramiding does 

not change the absolute size of the model surface, but the resolution of the surface halves 

as we go up the scale space. In other words, the absolute metric information is kept.  

Subsequently the curvature values for each scale are calculated and H, K, S and C maps 

for each pyramid level are obtained. Towards the higher levels of a scale-space 

representation, the smaller surface elements vanish and bigger elements reside. For 

example in Figure 30, eye pits and chin peak vanish at the third pyramid level but nose 

peak and nose saddle still reside. 
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Figure 30. Three levels from the HK pyramid of a face model surface. 

 

Subsequently, the higher levels of each curvature pyramid is up-sampled to the original 

size by using “Expand” (the inverse of “Reduce”) as explained in Chapter 4. After this 

expansion, any label on the sth level of the pyramid will widen 2s times in resolution. Thus 

all levels of the curvature pyramid will have the same resolution. An example of such an 

equalized curvature scale-space was introduced in the previous chapter. Putting each level 

of the expanded pyramid on top of each other, we obtain a 3D volume which we call as 

UVS space where u and v are the surface dimensions and s is the scale dimension. 

Afterwards suing different curvature UVS volumes (all of which have the same 

resolution), the voxels are classified as explained in Chapter 3. For instance, using H and 

K values, HK classification is carried out and for each voxel, a feature label (or type) is 

obtained (Figure 31). 

 

 

Figure 31. The HK UVS volume after morphological operations printed above the surface 

patch. The features are indicated with their surface shapes as colours (blue for peaks, cyan 

for pits, red for saddle ridges, etc.). 
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For each classification type (HK or SC) a different classified UVS volume is obtained. We 

refer to them as the HK UVS volume or the SC UVS volume. The process of UVS volume 

construction is depicted in Figure 32.  

 

 

Figure 32. UVS Volume Construction. 

 

Within the UVS Volume, each voxel is classified according to its curvature value. As it 

was stated in Chapter 3, the voxels are classified by thresholding. Unsurprisingly some the 

curvature values are much higher so that their value above the threshold is higher than the 

others. For this reason, a weight value is assigned to each voxel using the amount of 

curvature values that exceed the thresholds. The location and scale of a feature in the UVS 

volume are estimated using these weights. For the HK UVS volume, the weights are taken 

as the 2nd norm of the absolute differences of the curvature values from the applied 

threshold values: 

( ) ( )( )2

1
22

, Kji,Hji, KH ∈−+∈−=jiw      (10) 

In Figure 33, the weights are demonstrated within the HK UVS volume. The bigger the 

weight is the lighter the colour becomes. For example, the weights of the eye pit feature 

can be observed from its colour which changes from light cyan at the smaller scales to 

dark cyan at the larger scales.  
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Figure 33. The weights are demonstrated in the HK UVS volume. The bigger the weight is 

the lighter the colour becomes 

 

For the SC UVS volume, the weights are simply taken as the curvedness (C) values.  

These weights can very-well be calculated in different manners. In the next subsections, 

we thoroughly discuss the reasons why we have selected equation, since it profoundly 

affects scale-space localization.  

 

6.2 Extraction of Features 

In order to extract scale invariant features (features with their scale information) from a 

UVS Volume, several steps are followed. First, each voxel of a UVS volume is checked 

for its similarity within its 10 neighbours (8 at the same scale level, 2 up and down 

through scale). If all labels of the neighbours have the same surface shape label (pit, peak 

etc.), the centre voxel continues to carry its label. Otherwise it becomes a blank voxel. 

After voxel relabeling, a single opening (erosion and dilation respectively) operation is 

applied where 3×3×3 sized kernels are used. Then we extract connected labels in the UVS 

space. Finally, each connected component represents a feature on the surface which will 

later become a node of a topology graph. In Figure 34, it is clearly seen that a feature 

element, for example the handle of the screwdriver, has components at a number of 

successive scale layers (the orange hyperbolic surface patch). 
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Figure 34. Labelled layers of UVS space constructed by HK values where scale level is 

increasing from left to right. The original surface level is indicated by “S=0”. Labels are 

given by colours. (peak: blue, saddle ridge: red, convex cylinder: purple, pit: cyan, saddle 

valley: yellow, concave cylinder: green, hyperbolic: orange, plane: gray.) 

 

Inside the classified scale-space, each connected component consists of the same type of 

voxels and is considered as a feature element on the surface. This particular classification 

type such as pit, peak, and plane; is considered as the type of that feature element (ti). The 

total number of voxels inside the connected component represents the feature’s volume 

(vi).  

When the curvature scale spaces are calculated, the corresponding scale-space of surface 

coordinates and scale-space of surface normals are also constructed. Thus, for each 

connected component, using the corresponding voxels within the scale space of surface 

coordinates; the centre of mass of the connected component is also calculated and called 

as the positional centre of the feature (xi). Remember that this centre of mass is calculated 

by averaging the voxels using the corresponding weights calculated in (9). 

Similarly using the scale-space of the surface normals, a weighted average of the normal 

direction for each connected component can be found (ni). This vector designates the 

average orientation of the feature in 3D world.  

In addition, since a connected component may have different number of elements in 

different scales, a weighted average of the scale value is calculated for each connected 

component as the actual scale of that feature (si).  
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Although a connected component may have various numbers of elements in different scale 

levels, it has the biggest number of elements on the scale which is closest to its actual 

scale.  The area (Ai) of the connected component at this layer is used to calculate the 

radius (ri) (10) which also defines the size of that fundamental element. 

π⋅= 4
Ar        (10) 

Finally, for each feature element extracted from the surface, the following attributes are 

obtained: the type (ti), the volume (vi), the positional centre of mass (xi), the orientation 

vector (ni), the scale (si) and the size (r i) (Figure 35). 

 

 

Figure 35. Ten largest extracted features are shown as squares where the feature center 

(xi) is given by the square center, the feature size (radius) (ri) is given by the square size 

and the feature type is given by its colour. 

 

6.3 Scale-Space Localization of the Features 

Since we use Gaussian smoothing to construct the scale-space volume, the relation 

between the smoothing kernel size (σ) and the scale dimension (s) between two scale 

layers (A and B) of the UVS volume is as follows: 

( )BA SS

A

B −= 2
σ
σ

     (11) 

This relation is verified on synthetic Gaussian surfaces having different scales as follows. 

Figure 36 shows UVS spaces for three synthetically generated unit volume Gaussian 
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surface models. Each Gaussian surface has the half standard deviation of the one on its 

right, i.e. σA= σK, σB= 2*σK, σC= 4*σK.  

 

 

Figure 36. Three unit volume Gaussian surfaces at different scales (σA= σK, σB= 2*σK,    

σC= 4*σK) and their respective UVS volumes. 

 

Then according to (3) the scale values for these Gaussian surfaces must have the following 

relation: 

( ) 122 =−→== −
BA

SS

A

B SSBA

σ
σ

   (12) 

After computing the weighted averages we observe that the estimated locations are the 

centers of the synthetic Gaussians and scales satisfy the relation given in (4) where SA = 

3.86, SB = 2.80 and SC = 1.92. These values are consistent with Equation (4).  

As stated by [Lindeberg 1994], the scale, at which a scale space blob assumes its 

maximum normalized grey-level blob volume over scales, is likely to be a relevant scale 

for representing that blob. In order to do so, the scale should be normalized. However, in 

3D data where we actually know the metric measurements, all data is normalized if 

sampling is the same for all and in that case normally the scale layer for which the blob 

extends the most can be taken as the scale of that blob. Based on this idea, we did not take 

the maximum extending layer but a weighted average over the layers so that we could 

interpolate between the layers which helps us in reaching a better resolution in scale 

dimension.  

The localization of the features in the UVS volume and on the surface is crucial. This 

localization should be robust to noise and any type of transformations. For example in 

[Lowe 2004], the SIFT descriptor is sought in a scale space of different octaves, where all 
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local maxima (or minima) is selected as a feature. Instead of using the weighted averages, 

a similar approach to [Lowe 2004] may be applied to our method where a single 

maximum for each connected component in the UVS space is found. However, as it is 

seen in Figure 37, this approach will fail under noise or in complex scenes. Imagine we 

have a simple surface with a single peak and its noisy version. When the centre of the 

peaky feature is sought over the surface with noise, it is seen that a local maximum value 

inside a connected component may divert the centre from its original position although the 

surface is smoothed in higher scales (Figure 37.c). Our method localizes the features 

correctly (Figure 37.b) and is robust to noise. 

 

 

               a)     b)              c) 

Figure 37. Localization of the peak feature (a) using both methods (top: weighted average, 

bottom: single maximum). b) For the ideal surface both methods localize the peak feature 

correctly. c) For the noisy surface, the feature is still correctly localized using weighted 

averages (top) but the localization fails under noise when the single maximum method is 

used (bottom). 

 

Our approach is tested on the three face scans shown in Figure 38 with their HK UVS 

volumes. Table 6 lists the estimated UVS coordinates of the features for all three faces. As 
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can be seen in the table, scales of the features are nearly the same for all faces. Locations 

of the features for frontal face and for expressional face are very close to each other as can 

be expected. Absolute coordinates (x,y,z) are computed from the UV coordinates and they 

coincide with the correct locations of the features on the facial surface. 

 

 

a.   b.    c. 

Figure 38. UVS volumes for a. rotated towards left, b. frontal and c. expressional 

(disgusted) faces. 

 

Table 6. Extracted features from the surfaces given in Figure 38 with their locations in 

UVS space 

 U V S U V S U V S 

L.Eye 75 122 2.5 123 121 2.5 118 124 2.5 

R.Eye 35 123 2.5 71 123 2.5 66 124 2.4 

Nose 43 92 2.9 97 91 2.9 90 95 3 

Saddle 52 123 2.7 97 122 2.7 91 124 2.5 

 a. rotated face b. frontal face c. expressional face 

 

 

6.4 Transform Invariant Topology Construction 

In this section, using the feature elements extracted from the UVS space, a global 3D 

object representation is constructed. A scale and orientation invariant representation is 
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proposed, where the spatial topology of the object is given as a graph structure which 

carries the relative information among the features over the 3D surface. The relativity is 

not only in terms of spatial information but in terms of orientation and scaling as well. 

As explained in the previous subsection, for each feature element the following attributes 

are obtained: the type (ti), the volume (vi), the positional centre of mass (xi), the 

orientation vector (ni), the scale (si) and the size (r i). If each feature is referred as a node in 

a topology graph where the nodes carry the feature element’s attributes and the links 

between the nodes carry some relative information; a topological representation may be 

obtained.  

In order to make this representation orientation and scale invariant, the links between the 

nodes must carry “relative” or in other words “normalized” information. An example of 

this type of relation could be the length between two nodes normalized using a scale 

invariant measure specific for that topology. The relative 3D direction between two nodes 

might also be used. Furthermore scale difference between the nodes would carry scale 

invariant information. These relative link attributes can be listed such as: 

• Normalized distance from Node A to B: As
ABAAB orr 2xxxx

rrrr −− . The 

distance between two nodes can be normalized using the scale or the size of a base 

node (A) in the topology. Thus this relation stays invariant under scaling and 

orientation of the source signal. 

• Link Vectors or Link Angles: ABAB xxxx
rrrr −− )( : The unit vector from a node (B) 

to a specific base node (A) in the topology will also remain invariant under scale. 

However this link vector will be variant under orientation. In order to make this 

information both scale and orientation invariant, the angles between these unit vectors 

might be used. For an n-node topology there would be n-1 unit vectors. For any two 

these unit vectors, an angle can be calculated. This angle will be invariant of both 

scale and orientation. For n-1 number of unit vectors, we would obtain C(n-1,2) 

number of angles, which is also equal to (n-1)·(n-2)/2. The angle can be calculated as: 

[ ] [ ]( )ACACABABCABBAC xxxxxxxx
T rrrrrrrr −−⋅−−== − )()(cos 1αα  

• Normal Vector Difference: AB nn
rr

− : The difference vector between the unit normal 

vector of node B (nB) and unit normal vector of the specific base node A (nA) will stay 

invariant of orientation and scale.  
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• Feature Scale Difference and Size Ratio: ABAB rrss &− : As explained in the 

previous chapter, the scale difference between two nodes is invariant to scaling. The 

ratio of the size of a node (B) (which is strongly related to scale of that feature) to the 

size a specific base node (A) will stay invariant of scaling as well.  

Imagine we have a four-node topology with nodes A, B, C and D. Assume that node A is 

defined as the base node of the topology. Then the following vector will be scale and 

orientation invariant: 

[
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AD
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λ

    (13) 

This feature vector λi has 16 elements (as scalars or vectors). For an n-node topology, the 

number of elements in this vector will be n+3·(n-1)+(n-1)·(n-2)/2. This four-node relation 

may also be shown on a topological chart as shown in Figure 38. Node A is called the 

base node because the link relations are calculated relative to this node.  

 

Figure 38. Four-node, scale and orientation invariant feature vector is shown in a 

topological chart. 

 

This vector is orientation and scale invariant since all relations are defined relative to node 

A. However for some applications, orientation and/or scale invariance may not be desired. 

For example, if the metric size of the object to be recognized is known, then scale 

invariance is unnecessary. Similarly if the orientation of the object relative to the sensor 

 tA 

 

 tD 

 

 tB 

 

 tC 
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device is fixed, then orientation invariance capability of a recognition system will be 

redundant. For this reason orientation and/or scale dependent versions of this vector may 

be defined. 

[

]DCBA
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−−−

=

ααα

λ

    (14)  

The Equation 14 is an example of an orientation invariant but not scale invariant feature 

vector representing a four-node topology, since the link lengths and feature sizes are not 

normalized according to the base node A. On the other hand the feature vector in Equation 

15 is scale invariant but not orientation invariant because the feature normal vectors and 

link vectors are not normalized according to node A. 
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    (15)  

In Figure 39, a simple demonstration of scale invariance of the proposed method is 

demonstrated. The smaller surface has half the scale of the bigger one. The radii of the 

peaks and pits extracted from both of the surfaces are given in the figure. It is clearly seen 

that the scale ratio is kept constant. In addition the radii are halved for the smaller surface, 

which is exactly half of the bigger surface in all axes.  
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Figure 39. The feature extraction algorithm is scale invariant since the extracted features 

numerically depend on the scaling ratio of a surface. The numbers are the radii of the 

extracted feature elements. 

 

Using the equations (13), (14) or (15) a feature vector from n-nodes may be obtained. 

However excessive number of nodes might be (actually are usually) extracted from a 

range image. Therefore, many n-node combinations may be obtained from a range image 

and these different n-node feature vectors represents different parts of the 3D surface. The 

algorithm to obtain a complete set of feature vectors which represents the whole 3D 

surface is given below: 

1. Extract all feature elements from the surface: 

Node1:  (t1), (v1), (x1), (n1), (s1), (r1) 

Node2:  (t2), (v2), (x2), (n2), (s2), (r2) 

Node3:  (t3), (v3), (x3), (n3), (s3), (r3) 

Node4:  … 

2. Select M nodes with M largest radii (r i) OR volume (vi). 

3. Order these selected M largest nodes according to the criteria below: 

a. Order them according to their type. 

b. If there is more than one occurrence of a type, order them according to 

their radius (r i) OR volume (vi). 

4. For the ordered M nodes do the following: 
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a. Select node group size n: (2<n<M) 

b. Obtain all possible (k number of) combinations of node groups of n 

among the M ordered nodes: k=C(M,n) 

c. Among each n-node combination, keep the order of the nodes according 

to 3. 

5. For all k combinations,  

a. Select the first feature as the base node. 

b. Extract the feature vectors λi using (13), (14) or (15) 

c. Then stack these row vectors in a feature matrix Λ = [λT
 λ2

T
 λ3

T … λk
T]T.  

This feature matrix Λ will be a scale and/or orientation representation depending on the 

equation used to calculate the feature vectors (13), (14) or (15) 

 

6.5 Importance of Scale Space Search 

In order to show the significance of scale space search, the feature extraction results with 

and without scale-space search are depicted in this subsection. 

When the scale-space search is omitted, the curvatures are found only at the given 

resolution. Even though scale/sampling ratio is controlled (usually it is not controlled 

since this ratio changes even when the distance between the 3D scanner and the object 

changes), the types and the sizes of the features are detected wrong when only the given 

resolution is considered. In Figure 40, the extracted features of the original screwdriver 

object and its scaled version (by 0.8), both with and without scale-space search, are 

depicted. The features extracted from the original and the scaled versions of the 

screwdriver object using only the given resolution are usually mislabelled (Figure 40.a,b). 

For example, only some planar features are located on the handle of the object and the 

actual shape of the handle could not be extracted. Thus, most surface structures are 

generally labelled as planes when only the given resolution is considered. Since the 

original resolutions of 3D images are very high, even inside a peaky region, a point may 

be considered as a plane because the neighbouring points are very close to each other. As 

a result, many small planar regions are detected in large concave areas. Thus, only when a 

scale space search is performed, the real types and sizes of the surface features could be 

extracted (Figure 40.c,d). 
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Second of all, the feature sizes can only be correctly extracted if scale-space search is 

used. Since Figure 40.d is 0.8 times resized version of Figure 40.c, the radius of a feature 

found in Figure 40.d is also 0.8 times smaller than the radius of the corresponding feature 

found in Figure 40.c (the numerical values are given in Table 7). However, this property 

of robustness under scaling cannot be observed when only the given resolution is used for 

feature detection. Although most features are correspondent in Figure 40.a and Figure 

40.b, their radii are faulty. The shape in Figure 40.b is smaller than the one in Figure 40.a 

by a ratio of 0.8, however the radii of the features numbered as 1 and 2 in Figure 40.b are 

larger than the radii of the corresponding features in Figure 40.a (Table 7). Thus it is 

clearly seen that in order to extract features with their size properties, scale-space search is 

a must. 

 

 

Figure 40. Ten largest features extracted using a) original image without scale-space 

search, b) scaled image (by 0.8) without scale-space search, c) original image with scale-

space search, d) scaled image (by 0.8) with scale-space search. 

 

As seen in Figure 41, the scaled versions are created for various objects and the features 

are extracted from each one of them. For each object, the original object is in the middle, 

while 1.2 times and 0.8 times scaled versions lie on the left and the right side of the 
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original respectively. For each object, ten largest extracted features are depicted as squares 

on the objects. Some features are numbered to help for better visualization and the radii of 

these numbered features are given in Table 7. 

For all object triples, the majority of the extracted features can be detected in all versions. 

Also, the radius of each feature changes according to the size of the feature, i.e. the object 

(Table 7). Of course, some other features appear or disappear among different sizes as 

expected. An artificially created bumpy surface and its scaled version are given in Figure 

41.a and only a peak in the center of the shape surface is extracted as a feature for each 

version. The radii of these extracted features are given in the first row of Table 7. The 

radius values are consistent with the sizes of the features and the objects. Similarly, some 

features are also labelled on the original and the scaled versions of screwdriver (Figure 

41.b), pig (Figure 41.c) and duck (Figure 41.d) and corresponding radii values are listed in 

Table 7 also. All feature sizes are detected in consistency with the amount of scaling. 

 

Table 7. The radius values (in mm) of the extracted features in Figure 41 

    Object / Feature x 1.2 Original x 0.8 

Figure 5.a / 1 28.7 24.5 21.1 

Figure 5.b / 1 17,15 14,16 10.64 

Figure 5.b / 2 32,71 26,66 22.71 

Figure 5.b / 3 23,20 18,08 13,36 

Figure 5.b / 4 18,17 15,83 12,41 

Figure 5.c / 1 83,91 69,35 57,70 

Figure 5.c / 2 54,37 46,33 38,87 

Figure 5.d / 1 67,19 51,96 39,89 

Figure 5.d / 2 113,86 93,36 77,47 

Figure 5.d / 3 31,68 26,44 21,40 
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         a)          b)              c)       d) 

Figure 41. Ten largest extracted features from four different object surfaces. For each 

object the original (middle), 1.2 times scaled (left) and 0.8 times scaled (right) versions 

are given. The feature types and sizes are given by colour and square size respectively 

(peak: blue, saddle ridge: red, convex cylinder: purple, pit: cyan, saddle valley: yellow, 

concave cylinder: green, hyperbolic: orange, plane: gray). 

 

6.6 Feature Extraction Robustness under Noise 

In order to see the affect of noise, the noisy versions of the three objects with different 

levels of noise are created (Figure 42). Subsequently, features are obtained from the noisy 

versions. It is easily seen that similar features could generally be extracted from all 

versions and thus noise does not affect the feature extraction procedure drastically. Even 

when the there’s %60 noise over the image, features which are found in the higher scales 

of the UVS space are extracted clearly. Since Gaussian filters are used for each scale-

space level  construction, noise vanish in higher scales and thus features large enough to 

be found on higher scale levels are extracted without error.  

In Figure 43, the average of the interest point center localization error is given for 

different noise levels. If a feature could be extracted from both the noisy version and the 

original (more than %90 of features were correspondent in the original and noisy versions) 

the average of error between the original feature centers and the centers obtained from the 

noisy version are calculated and this average error for each noise level is depicted (Figure 

43.a). In addition, the error of feature size (radius) calculation for each noisy version is 

depicted separately in Figure 43.b. As seen from the figures, very high noise levels do not 

affect interest point localization and radius calculation noticeably. 
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  a)         b)        c)           d) 

Figure 42. Ten largest extracted features from the noisy versions of the objects: 

screwdriver (top), duck (middle) and pig (bottom). a) %15 noise b) %30 noise c) %45 

noise d) %60 noise. 

 

 

a)            b) 

Figure 43. a) Interest point center localization error in mm for different noise levels. b) 

Radius calculation error in mm for different noise levels. 
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6.7 Local Region Descriptions 

As stated in the previous subsections, the 3D surface may be globally or locally 

represented using scale and orientation feature points. This is a quite robust and efficient 

way to recognize categories of objects. For example; two different facial surfaces will 

both have two eye pits, one nose peak and a nose saddle. Thus, in order to detect 3D facial 

surfaces, a simple four-node topology including these facial features could be trained. 

However, so as to recognize a certain 3D facial surface among a database of facial 

surfaces; a global topology might not provide sufficient representation. For this reason 

many 3D recognition approaches attempt to make global or regional definitions of 3D 

surfaces. 

Histogram representation is a compact and efficient method to globally or partially define 

a 3D surface. A part or whole of a 3D surface or a 3D scene may be represented with 

different histogram methods such as, depth histograms, normal histograms, curvature 

histograms or spin images. 

In this chapter, four of the well-known histogram representations for 3D surfaces is 

reviewed. The representations will later be used to define local regions around the 

extracted feature points. These representations are depth histograms, normal histograms, 

shape index histograms and spin images. There several other local descriptors in the 

literature, namely splash [Stein and Medioni 1992], cyclic images of radial contours 

(CIRCON) [Torre-Ferrero et.al 2009], point signatures [Chua and Jarvis 1997], intrinsic 

point signatures [Zhong 2009], 3D point fingerprints [Sun et.al. 2001], 3D shape context 

(3DSC) [Frome et.al. 2004], spherical spin images [Ruiz-Correa 2001] etc. It is beyond 

the scope of this thesis to decide which one is the best. Thus the selected four, which are 

implemented and tested for object recognition, are briefly explained in the succeeding 

subsections. 

 

6.7.1 Depth Histograms 

This is simplest histogram that can be obtained from a range image. Since pixel intensities 

directly correspond to depth values (distance from the sensor device), this is simply a grey 

level histogram of the range image. This intensity distribution provides valuable cues 

about the shape of the 3D surface.  

If normalized, these histograms stay invariant under scale changes. They are also invariant 

under translation and image plane rotation. However they can be very sensitive to the 
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perceived depth range. If there are large and abrupt changes in the depth range, e.g. due to 

occlusion effects, the whole histogram will be shifted and recognition might no longer be 

guarantee. For this reason, intensity histograms can only be relied on for the recognition of 

surfaces with sufficient depth range [Hetzel et. al. 2001]. 

[Hetzel et. al. 2001] uses depth histograms of the whole range scans for object 

recognition. Although this is a scale and image plane rotation invariant manner, it is very 

sensitive to occlusions. In Figure 44, a range image and its %25 occluded version are 

depicted. The depth histograms obtained from each image are shown as well. The effect of 

occlusion on the depth histograms is clearly seen. 

 

       

a)    b) 

 

c) 

Figure 44. a) The original range image taken from [Stuttgart Database]. b) %25 occluded 

version of the range image in (a). c) The depth histogram of the original range image 

(blue) and the  %25 occluded image (red). 
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In order to make depth histograms more robust to occlusion, local depth histograms can be 

calculated. For this purpose, a feature centre point and feature size should be provided for 

each local histogram obtained from the range image. Using the scale and orientation 

invariant feature points as histogram centres and their radii as the regions of interest; a 

local histogram representation which is robust to occlusions may be proposed. In this 

representation, for each node extracted from the UVS volume, a depth histogram of the 

region within the radius of the feature centre is introduced as a new feature element: 

Nodei:  (ti), (vi), (xi), (ni), (si), (r i), [HistDepth,i]     (16) 

In Figure 45.b, a local depth histogram obtained from the feature in Figure 44.a is 

depicted.  

 

    

a)     b) 

Figure 45. a) Nose is a feature element of peak type. Its radius is the radius of the blue 

circle around the feature. The local depth histogram of the region within the radius of the 

feature centre is depicted. 

 

6.7.2 Normal Histograms 

As it was explained in chapter 2, surface normals are calculated from the first order 

derivatives of the surface. A unit normal vector carries two independent variables. There 

are two main representations commonly used for this purpose. The first just discards the z-

component of the normal vector and represents it as a pair (x, y). This corresponds to a 

projection of the orientation hemisphere on the unit circle. The second possibility is a 

representation as a pair of angles (θ, φ) in sphere coordinates. The angles can be 

calculated as follows: 
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[Hetzel et. al. 2001] uses normal histograms of the whole range scans for object 

recognition. They use a 2D histogram of (θ, φ) values. Although this is a scale and image 

plane rotation invariant manner, it is very sensitive to occlusions. In Figure 46, a range 

image and its %25 occluded version are depicted. The normal histograms obtained from 

each image are shown as well. The effect of occlusion on the normal histograms is clearly 

seen. 

       

a)    b) 

 

c) 

Figure 46. a) The original range image taken from [Stuttgart Database]. b) The 2D normal 

histogram of the original range image. c) %25 occluded version of the range image in (a). 

d) The 2D normal histogram of the %25 occluded image. 
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In order to make normal histograms more robust to occlusion, local normal histograms can 

be calculated. For this purpose, similar to local depth histograms, a feature centre point 

and feature size should be provided for each local histogram obtained from the range 

image. Using the scale and orientation invariant feature points as histogram centres and 

their radii as the regions of interest; a local histogram representation which is robust to 

occlusions may be proposed. In this representation, for each node extracted from the UVS 

volume, a normal histogram of the region within the radius of the feature centre is 

introduced as a new feature element: 

Nodei:  (ti), (vi), (xi), (ni), (si), (r i), [HistNormal,i]      (18) 

In Figure 47.b, a local normal histogram obtained from the feature in Figure 46.a is 

depicted.  

   

     a)           b) 

Figure 47. a) The nose is a feature element of peak type. Its radius is the radius of the blue 

circle around the feature. The local normal histogram of the region within the radius of the 

feature centre is depicted. 

 

6.7.3 Curvature Histograms 

Curvature histograms simply carry the curvature distribution information of the input 3D 

surface. This curvature value might be κ1, κ2, H, K, C, S or another value derived from the 

first or second derivatives of the surface. [Hetzel et. al. 2001] uses shape index (S) 

histograms of whole range scans for object  recognition purposes. They experimentally 

prove that shape index histograms are better in representing range images compared to 

depth or normal histograms [Hetzel et. al. 2001]. Furthermore they are advantageous 

compared to other curvature histograms since a single shape index values can classify a 

local region (or pixel) into all fundamental types except planes. No other curvature 

definition is that much discriminative in terms of classification. 
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Shape index histograms are scale and orientation variant by nature. This representation is 

even robust to some degree of off-plane rotation. However if the histogram belongs to a 

whole range scan of the object, sensitiveness to occlusion is inherited. In Figure 48.a and 

c, a range image and its %25 occluded version are depicted. Shape index histograms 

obtained from each image are shown as well. The dramatic effect of occlusion on shape 

index histograms is clearly seen. 

 

   

a)    b) 

  

c) 

Figure 48. a) The original range image taken from [Stuttgart Database]. b) %25 occluded 

version of the range image in (a). c) The shape index histogram of the original range 

image (blue) and the shape index histogram of the %25 occluded image (red). 

 

In a similar manner to the previous approach on depth and normal histograms, shape index 

histograms may be altered to become more robust to occlusion by calculating local 

histograms. For this purpose, similar to local depth and normal histograms, a feature 

centre point and feature size should be provided for each local histogram obtained from 

the range image. Using the scale and orientation invariant feature points as histogram 
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centres and their radii as the regions of interest; a local histogram representation which is 

robust to occlusions may be proposed. In this representation, for each node extracted from 

the UVS volume, a shape index histogram of the region within the radius of the feature 

centre is introduced as a new feature element: 

Nodei:  (ti), (vi), (xi), (ni), (si), (r i), [HistShapeIndex,i]     (19) 

 

In Figure 49.b, a local shape index histogram obtained from the feature in Figure 48.a is 

depicted.  

     

    a)              b) 

Figure 49. a) The nose is a feature element of peak type. Its radius is the radius of the blue 

circle around the feature. The local shape index histogram of the region within the radius 

of the feature centre is depicted. 

 

6.7.4 Spin Images 

Spin Image is another mapping of nearby points on a surface from 3D to 2D [Johnson and 

Hebert 1999]. The spin-image for point p is found by recording the distance of all nearby 

points x from the surface normal n (α - alpha) and the distance from x to p along n (β - 

beta). Corresponding points from different views have similar spin-images, thus spin 

image is an orientation invariant representation (Figure 50). 
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Figure 50. The spin images of point p from different views are shown. The spin images 

are similar [Johnson and Hebert 1999]. 

 

Since spin images are found by using the distances from the neighbouring points, there is 

no notion of scale invariance. On the other hand there is the notion of resolution 

invariance which if affected by quantization noise if resolution difference is extreme. 

However with minor modifications, it is possible to construct resolution and scale 

invariant spin images. If a patch of a surface is normalized to unity area beforehand, the 

calculated spin image will stay independent of scaling. More importantly when the patch 

area is normalized, the distances α and β will be fixed to certain limits, which is crucial in 

defining α max and βmax. The 2D resolution of the spin image is defined according to α max 

and βmax.  Very similarly, if the normalized surface patch is re-sampled to fixed resolution, 

the spin image becomes utterly invariant under resolution changes. In addition the 

scale/sampling ratio is controlled by this way, which is extremely crucial for our feature 

point extraction algorithm.  

Up to now, the theory behind scale and orientation invariant feature extraction using scale-

space of curvatures and defining local regions using different histogram types are 

introduced. Beginning with the next chapter, the experiments and comparisons carried out 

to evaluate the proposed methods are given. 
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CHAPTER 7 

 

 

EXPERIMENTAL WORK 
 
 
 
 
 
 
In this chapter, all the experimental work performed using the proposed feature extraction 

method and object representation method is presented. The experiments are formed of 

mainly three parts. The first part focuses on the 3D face detection problem. The second 

part, which is considerably richer than the others, concentrates on object representation 

and recognition. This part includes curvature classification comparisons, object 

recognition on various databases and object registration. Finally the third part presents an 

application on a different discipline, where surface curvatures of DEMs are used to detect 

landslide regions. In all experiments, results are compared with methods from the 

literature.  

 

7.1 Face Detection and Pose Estimation 

In our first experiment, we make our first attempt to test the feature extraction algorithm 

proposed in this thesis. The features are extracted from facial scans in order to detect the 

location and the orientation (pose) of the face using the HK UVS classification. The 

feature elements used to categorize a face are two inner eye pits, a nose peak and a nose 

saddle (nose bridge). These points are chosen because they are enough to estimate the 

pose of the face so that the orientation of the face can be detected. Also, these points are 

easily detected by our algorithm and are the ones which are not severely affected by facial 

gestures. These four elements are later used to construct graph representation using the 

equation (15) from the previous chapter.  

In order to test our representation for face localization, Bosporus 3D face database 

[Bosporus Database 2007] is used. Bosporus 3D face database includes more than 20 

different poses and facial expressions of 78 subjects and that is why it is very suitable for 
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testing the proposed method against various transformations. The neutral and frontal poses 

of the subjects are used for training. 17 different poses and expressions are used for 

testing. In order to test our method on facial pose estimation, 35 artificially rotated 

versions of five different facial scans from the FRGC v1.a database [FRGCv1a] are 

created.  

The proposed method is compared with four different techniques. Only the feature and 

face detection parts of the algorithms are considered for the compared four algorithms. 

The compared algorithms are Colombo, Cusano and Schettini’s “3D Face Detection Using 

Curvature Analysis” [Colombo et. al. 2006], Lu and Jain’s “Automatic Feature Extraction 

for Multiview 3D Face Recognition” [Lu and Jain 2006], Lu and Jain’s “Multimodal 

Facial Feature Extraction for Automatic 3D Face Recognition” [Lu and Jain 2005] and 

Chang et al.’s “Multiple Nose Region Matching for 3D Face Recognition under Varying 

Facial Expression” [Chang et al 2006].  

In the next section, we commence by defining the feature vector used to represent the 

facial topology. 

 

7.1.1 Transform Invariant Four-Node Face Topology  

In order to define a representation for a facial surface, salient and meaningful features 

should be designated. The significant features on human face are the nose, eyes, chin etc. 

Thus, any feature set globally defining a face must encompass some of them. For this 

purpose, we have chosen a four node graph for our facial topology representation, where 

the nose peak (N), the left eye pit (EL), the right eye pit (ER) and the nose saddle (S) form 

the nodes. These features are chosen because they are the most stable features against 

facial expressions. We indicate the nose peak (N) as the base node (since it is the single 

peak inside the topology). Accordingly, using equation (20) from the previous chapter, a 

scale and orientation invariant feature vector is defined as: 
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For the any facial feature set λFACE, the types (tN,tEL, tER, tS) are predetermined as peak, pit, 

pit and saddle ridge. Thus they are redundant in the feature vector. In addition for a human 

face, the normal orientation of most of the features are frontal. For this reason, not much 

information will be lost, if the normal differences are excluded from the feature vector. 

Consequently the feature vector can be simplified into: 
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7.1.2 Face Detection on Bosporus Database 

[Bosporus Database 2007] is 3D facial database including 21 different poses of 78 

different subjects. In this section, the 3D facial detection experiments on this database are 

presented.  

 

7.1.2.1 Learning the Four-Node Topology 

In this study, the four-node face topology given in (21), is modelled by a single Gaussian 

with a diagonal covariance matrix. In the training phase, feature vectors extracted from the 

frontal and neutral pose of the Bosporus 3D face database are used. Other poses and 

expressions of the database are used in testing. The complete workflow of the training 

phase is depicted in Figure 51. 
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In training face, first of all, data is processed in order to fill the gaps and remove the noise. 

Then, the features from the 78 neutral and frontal faces are obtained. Among these 

fundamental elements, one of the one-peak, one-saddle, two-pit combination corresponds 

to the true combination of the nose, nose saddle and the two eyes. Using the true 

combinations of the neutral facial scans, we extract 78 scale and orientation invariant 

feature vectors using (21). These 78 feature vectors are used to train a Gaussian with 

diagonal covariance matrix where the data is first normalized to zero mean and unit 

variance. In the database, the facial components such as nose pit, inner eye corners were 

marked manually also. These manual markings are compared with detected points during 

testing in order to qualitatively check the performance of the algorithms. (Since nose 

saddle was not marked in the database, we don’t check detection performance for nose 

saddle.) The facial components were marked on 2D texture images of 3D scans because 

localizing them on 2D images are easy for humans. However, they may not be the actual 

centres of the pits and peaks. For example, the nose tip was marked as the nose in the 

database. However the centre of the nose peak does not occur at the nose tip but at 

Traiing Set 
(78 Subjects) 

Post Processing 

UVS calculation 
and 3D feature 

extraction 

Training 
Vector 
(78x9) 

Mean and 
Variance Calc. 

Normalized  
Training Vector 

(78x9) 

µ (1x9) 
σ2 (1x9) 

Gaussian 
Modelling  

Manually Marked 
Fiducial Points over 

the Training Set 

Difference  
Calculation 

Mean  
Difference  

Vector (1x9) 
(Table 3)  

- 

Figure 51. The training phase. 
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somewhere else on the nose surface. Our system locates the actual centres of the surface 

peaks and pits. Since the difference between the marked point and the calculated centre 

has a characteristic, for example the nose peak centre location computed by our method 

and the marked nose tip differ with a specific vector distance (Figure 52), we simply 

calculated the mean of these difference vectors from all training facial scans (Table 8). 

Then, this mean is used as an additive constant to the results obtained from our method 

during testing. 

 

 

Figure 52. a) The marked nose tip. b) The calculated nose peak centre. c) The marked 

inner right eye pit. d) The calculated inner right eye pit centre. e) The marked inner left 

eye pit. f) The calculated inner left eye pit centre. 

 

Table 8. Mean of the differences between the marked and calculated features for the nose 

tips and inner eye pits in the training set 

µ (mm) X-axis Y-axis Z-axis 

Nose Tip 0.6705 0.4239 3.0322 

Left inner Pit 1.3376 -1.1215 1.6762 

Right inner Pit 0.2556 -0.1047 2.0832 

 

7.1.2.2 Testing the Four-Node Topology 

The complete workflow for the testing phase is given in Figure 53. First post processing is 

applied. The noised is cleared and the false holes are filled. The scans are re-sampled and 

the scale/sampling ratio is fixed to 0.5mm/sample. Then HK UVS space is constructed 
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and features over the facial topology are located for each scan. Among these features, for 

all combinations of one peak, two pits and one saddle ridge, four-node topology vectors 

are obtained as candidates or face. These vectors are also normalized by mean and 

variance values obtained during training. Next, the vector with the highest probability is 

selected as the best candidate. Finally, the training mean and variance are used to un-

normalize the best candidate vector in order to achieve the actual location. Also, the 

difference vector (Table Table 8), which is calculated in the training phase, is added to the 

computed locations for nose peaks and eye pits in order to be able to make comparisons 

with the manual markings. The resulting x-y-z coordinates are taken as the coordinates of 

the nose tip, inner eye pits and the nose saddle but we evaluate the results only for the 

nose tip and the inner eye pits. 

 

 

 

Test Set  
(1323 Subjects) 

Test Vector (1323x9xn)  
n combinations 

Normalized Test 
Vector (1323x9xn) 

µ (1x9), σ2 (1x9) 

Gaussian Testing 

- 

Post Processing 
UVS calculation and 3D 

feature extraction 

Vector with the 
highest probability 

(1323x9) 

µ (1x9), σ2 (1x9) 

+ 

Mean Difference 
Vector (1x9)  + 

Calculated x-y-z coordinates for the nose tip and the 
inner eye pits (1323x9) 

 

Figure 53. The testing phase. 
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7.1.3 Experimental Work on 3D Face Detection 

In this section the experimental results on Bosporus database are demonstrated. These 

experiments consist of testing the model on 1323 scans which include poses different from 

the train poses. Within the database, the anchor points like nose tip, eye pits etc. were 

marked for test scans as well. Using this as the ground truth we have evaluated our 

algorithm for detection accuracy in terms of percentage and anchor point localization error 

in millimetres. In addition to these, we have implemented four other 3D face detection and 

facial feature point localization methods from the literature. We have tested these methods 

with the same database and compared our success rates with theirs. In this section we 

explain the test set. Then other implemented methods are summarized and comparative 

results are tabulated and visualized. 

 

Table 9. Tested poses and number of facial points included for each pose. 

Type of the Pose Nose Tip Inner Left Eye Pit 
Inner Right Eye 

Pit 

Smile 69 70 71 

Disgust 68 68 68 

Mouth Open 66 67 67 

Eyebrows Up 69 70 70 

With Glasses 68 67 67 

Hand on one Eye 70 70 28 

Hand on mouth 68 68 68 

Look Right 30º 70 70 70 

Look Right 45º 70 70 67 

Look Right 60º 68 69 43 

Look Right 75º 58 69 5 

Look Up 15º 70 70 70 

Look Up 30º 69 70 70 

Look Down 15º 70 70 70 

Look Down 30º 67 68 68 

Look Right & Up 45º 69 70 25 

Look Right & Down 45º 61 70 30 
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7.1.3.1 Test Set 

Among many different poses in the Bosporus database, some poses such as smile, disgust, 

mouth opened, eyebrows up, eye glasses worn, hand on one eye, and hand on mouth are 

selected to be tested. In addition to these, rotated scans such as look 30º right, 45º right, 

60º right, 75º right, 15º up, 30º up, 15º down, 30º down, 45º right and up and 45º right and 

down are also included. These various poses include orientation changes (e.g. look 45º 

right), shape deformations (e.g. disgust face) and occlusions (e.g. hand on one eye). Thus, 

the model is tested for all these conditions and variations. 

The tested poses are listed in Table 9. As seen from the table, for some poses (e.g. look 

right 75 º) very few number of test data (e.g. the inner right eye pit) exist. The reason is 

that when the face is rotated right for more than 45º, the inner eye pit may disappear and 

become impossible to be marked.  

 

7.1.3.2 Post-Processing on 3D Facial Scans 

Bosporus 3D face database [Bosporus Database 2007] is acquired by Inspeck Mega 

Capturor II [Inspeck-web]. Fortunately, during the construction of the data-base, almost 

all existing problems such as holes and spikes were cleaned manually from the models 

using scanner’s built in 3D scan cleaning software. However, 3D models in the database 

still have considerable amount of holes around dark hair, eye-brows, and eyelids. By holes 

we mean 3D points labelled as invalid. In addition, some spiky outliers are also resident 

near some extremely specular regions like eye pupils. In all models, background is also 

labelled as invalid by default. 

To begin with, the connected components of points which were labelled invalid are 

detected. Among these connected ‘holes’, we select the ones having areas smaller than a 

threshold (100 in this case) assuming that the background will be the biggest connected 

component. Using the valid coordinates of the points neighbouring these selected holes we 

extrapolate the values of these invalid points and thus fill the holes (Figure 54). 

As seen in Figure 54.b, this regular grid also includes some invalid points. If the scanner 

output is to be used to construct a polygonal mesh, the points with invalid labels can be 

automatically discarded by methods like Delaunay triangulation which is used to construct 

polygonal data. However in this study, it is crucial for us that the regular grid form of the 

3D point cloud is preserved due to “Gaussian Pyramiding Reduce and/or Expand” 

operations. For this reason, we have chosen not to discard these invalid points but to fill 

them by assigning the minimal valid z coordinate value to the invalid z coordinate. Then 
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again for invalid x and y coordinates, we linearly extrapolate their values using the valid x 

and y coordinates that reside on the same row and column respectively. As a result, we 

obtain a regular grid of valid 3D points as seen in Figure 12.c. 

After filling holes, the 3D surface is needed to be smoothed using a Gaussian-like operator 

because reliable curvature estimation on 3D data is very sensitive to quantization and 

sensor noise [Flynn and Jain 1989]. Therefore we have applied a 5-by-5 Gaussian operator 

on the grid for smoothing noise and spiky regions.  

 

 

a)        b)       c) 

Figure 54. a) Texture for the 3D Scan. b) Black areas denote the background. Red areas 

denote the invalid points selected to be extrapolated. Blue areas denote the neighbouring 

valid points used for extrapolation. White areas denote valid points. c) Cleaned cropped 

and re-sampled point cloud. 

 

Finally we resample the smoothed 3D point cloud into an M-by-N regular grid of 3D 

points, such that the average scale/sampling ratio will be 0.5 mm per point. Since each 

face has different metric size, each image is re-sampled into a different resolution, which 

will satisfy average 0.5 mm scale/sampling ratio. It should be remembered that re-

sampling the data does not change the metric distances. Since the 3D scanner output has 

absolute 3D coordinates, the relative distances maintain their original values even after re-

sampling. 
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7.1.3.3 Compared Methods 

We evaluate our results in comparison with four other methods we have implemented. 

These four methods are: M1) Xiaoguang and Jain’s “Multimodal Facial Feature 

Extraction for Automatic 3D Face Recognition” [Lu and Jain 2005], M2) Xiaoguang and 

Jain’s “Automatic Feature Extraction for Multiview 3D Face Recognition” [Lu and Jain 

2006], M3) Chang et al.’s “Multiple Nose Region Matching for 3D Face Recognition 

under Varying Facial Expression” [Chang et. al. 2006], and M4) Colombo, Cusano and 

Schettini’s “3D Face Detection Using Curvature Analysis” [Colombo et.al. 2005]. 

M1 assumes that the scan is frontal and each row of the depth image is searched for the 

maximum z value. For each column, the number of maximum z value positions is counted 

and the column with the maximum number is selected as the midline. Then, nose tip 

candidates are assumed to be located on the midline and a vertical Z profile analysis is 

done on this line. Since nose bridge presents a contiguous increase in z values, nose tip is 

defined as the last point of one of the three non-decreasing continuous series over the 

midline. After detecting three-candidate nose tips, a horizontal z profile analysis is done 

for these three points. Sum of the differences between candidate points and their 

neighbours are calculated and the point with maximum difference is selected as the nose 

tip. After detecting the nose tip, possible locations of the two inner eye pit points are 

calculated statistically. In search region, shape index and corner analysis is done. Needless 

to say, the method is not orientation invariant. If the subject looks upwards during 

scanning, for example, the chin may be detected as the nose. Also, the method depends on 

lots of heuristics which may not be satisfied all the time. 

M2 attempts to find the nose tip as the first step also. In order to find the nose tip, 3D data 

is rotated around Y- axis (axis perpendicular to the horizontal plane) from –90º to 90º with 

2º intervals. For each rotated version, the point with maximum z value is selected as the 

nose tip candidate. The best three candidates are selected to be analyzed by PCA. 

However, since we obtain high success in locating the correct nose position, PCA is not 

applied but best candidate is selected by sum of differences between candidate points and 

their neighbours as described in M1. After finding the nose tip, possible locations of the 

two inner eye pit points are calculated statistically similarly as explained for M1. 

However, different from M1, search regions for pit regions vary among different poses. 

The method is partially orientation invariant however it has the potential tendency to 

detect spiky regions as the nose and the method is still fragile under rotation of face 

around X and Z axes.  
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M3 attempts to find the inner eye pits first.  They use H and K values. The nose tip is 

expected to be a peak and the inner eye points are expected to be pit-like regions. First, 

small pit regions are removed. Then, pairs of pit regions with small differences in both Y 

and Z directions are selected as candidate eye pit regions. The nose tip is found next. Over 

the line drawn perpendicular to the midpoint of the line formed by the two pit regions, the 

point with maximum z value is selected as the nose tip. Unsurprisingly this method is not 

scale and resolution invariant and very brittle under spiky noise. Also, the method is not 

robust to in plane rotations. 

In all these methods, first of all, the location for a type of anchor point is estimated 

independently and then other anchor points are located based on the first detected one. 

Thus, the spatial structure of anchor points is not considered efficiently. In contrast to this, 

M4 attempts to find possible anchor point triangles (i.e. nose tip, inner left eye, inner right 

eye). The method uses H and K values to find the anchor point candidates. A nose tip is 

expected to be a peak and the inner eye points are expected to be pit-like regions. After 

finding all candidate points, impossible triangles are removed in order to decrease 

computational complexity. In doing this, distances between anchor points are thresholded 

by some values defined based on the training data. 50 face triangles are manually labelled 

for 50 training faces and the area inside the triangles are analyzed by PCA in order to 

learn a face model. For test images, the triangular area is extracted for each candidate 

anchor point triangle and analyzed by the same principle components. This method is 

similar to our method in the sense that the feature combinations are searched; however it 

is variant under scale and resolution. Also, our method estimates the face location based 

on only the features extracted from a scale space and their spatial layout but M4 applies 

PCA analysis to the part of the face defined by the candidate anchor points. Since this is 

done for each candidate triangle it is very time consuming. 

 

7.1.3.4 Comparative Results 

For evaluation purposes, we have prepared two tables including the results from our 

method and the four other methods from the literature. The first table depicts the 

percentage accuracies of the methods in locating the anchor points. If the detected point is 

in the 2 cm radius of its manually marked position, then the detection is considered to be 

correct (Table 10). 2 cm is very high but we intended to accept as many detection results 

as possible in the first step, because the localization accuracy is investigated later among 

these detections. 17 poses and 3 landmark points for each pose (3x17=51 results in total) 
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are tabulated for each method in the table. The best detection rates are underlined and 

bolded. We see that our method has the best rating for 35 out of all 51 results. M4 has the 

best rate for 15 out of 51 results, which are mostly for the detection of the nose tip. M1 

and M2 each have the best results in 2 cases. M3 has not given any best result among all 

poses and landmarks. M4 and our method are highly robust against facial expressions 

(smile, disgust, mouth open, eyebrows up) and present over %97 success in anchor point 

detection. For nose detection M4 is slightly better, 1.5 % more than ours. But for eye 

detection, our method is much better (by more than 30%) than M4 for various facial 

expressions. Methods M1, M2 and M3 are not robust against facial expressions and show 

less performance than others. 

Again M4 and our method achieve well for in plane rotations up to 600. All of the 

methods fail for rotations greater than 600. For rotations around Y-axis, M3 has nearly no 

correct detection, whereas M1 and M2 have severely decreasing success as the amount of 

rotation increases. For rotations around X axis, M1 is better than M2 and M3. For 

complex rotations around X and Y axis, our method performs the best where others show 

no performance at all. For all kinds and amounts of rotations, our method performs much 

better for eye detection than all of the other methods.   

For occlusion scenarios, our method and M4 perform the best. We can also say that M4 is 

better for nose detection but our algorithm is much better for eye detection. 

In the second table (Table 11), the detection accuracies in millimetres are examined. For 

all five methods, only the successfully detected scans are considered and the error is 

computed as the absolute distance between the marked points and the calculated points. 

The means and the standard deviations of the error are compared in Table 6 and the lowest 

ones are bolded and underlined. Since only the successfully detected landmarks are 

considered even though the detection rates were not very successful for a method, the 

localization results may seem successful. Thus, to evaluate a method’s success better we 

should consider the methods which have both the lowest error mean in Table 6 and the 

best detection success in Table 5. These methods are also indicated in Table 6 with white 

font colour over dark grey background. Our method has both the lowest error mean and 

the best detection rate in 31 out of 51 cases where method M4 has such a success only for 

5 of the cases. The other methods could not achieve this success for any pose. 

When we compare precision of the algorithms, i.e. the exact locations of the anchor 

points, although M4 performs slightly (1 mm on the average) better than our algorithm for 

nose localization, our algorithm performs much better (4 mm on the average) for eye 
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localization. The reason for this is that M4 aims to find the nose tip and the manual 

markings were done for the nose tip also. However, our method aims to find the center of 

the nose peak which is different from the nose tip. Although we tried to compensate the 

difference between the nose peak center and the nose tip by adding a mean difference 

vector obtained during training (Table 8) to our results, due to different nose shapes this 

usually causes a little correction. For eye pits, the problem is not as severe as the nose case 

because our algorithm aims pit centers and manual markings were done for pit centers 

also. Thus, our algorithm’s success becomes more obvious for eye pits. 

Now, we will compare the algorithms pose by pose. When we check the algorithms for 

neutral and frontal poses, M1 and M2 have acceptable rates since they have some 

assumptions which are valid only for frontal neutral poses. M3 has the worst performance 

since an error in detecting the pit region misleads the detection of nose peak. M4 has the 

best rate for nose detection but there is a noticeable decrease in the eye pit detection. This 

is caused because of the rotation applied to each candidate triangle since pits on both sides 

of the mouth may also be selected as eye pits.  Our method performs the best for both nose 

and eye detection for frontal poses. 

For mouth open pose, success rates of M1 and M3 increase and success rate of M2 

decreases when compared to frontal and neutral pose.  M4 performs the best for nose but 

the worst for the eye pits and the reason is the same as explained above for the neutral 

pose. Our method performs the best for both nose and eye detection. For disgust pose, M3 

and M4 are severely affected especially in eye detection since eye pits are severely 

deformed in this pose. Our algorithm performs the best among all for especially eye 

detection. For eyebrows up pose, our method performs the best and M2 is the least 

affected one among the others. For smile pose, success rates of all methods decrease and 

M4 is the most affected one especially for the eye pits. Again, our method performs the 

best among all in the average. For yaw rotations only our method presents a performance 

for rotations more than 450 and all others fail. For various yaw rotations, M3 is the most 

severely affected one and our method performs the best especially for eyes. For look 

upwards and downwards poses, all the methods except ours are severely affected.  For 

look bottom right and upper right poses, although our method performs the best, all of the 

methods have decreased success rates. For hand on one eye pose, all of the methods are 

affected. But M4 performs the best for nose detection and our algorithm performs the best 

for eye detection. 



89 
 

 

Table 10. Detection percentage of the nose and the inner eye pits for various poses are listed for all 
methods. The first column from left (ours) in each main column is the proposed method. Then M1, 
M2, M3 and M4 are given in the columns from left to right respectively. Best results for each pose 
are underlined and bolded. 

Nose Left Eye Right Eye 

% 
Ours M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours M1 M2 M3 M4 

Mouth 
Open 

99,8 97 75,8 80,3 100 100 97 77,3 87,9 75,8 100 97 74,2 84,8 75,8 

Disgust 99,3 89,7 92,6 58,8 100 98,7 91,2 92,6 69,1 63,2 98,7 91,2 92,6 77,9 64,7 

Eyebrows 
Up 

100 79,7 92,8 68,1 100 100,0 79,7 92,8 63,8 72,5 100,0 81,2 92,8 72,5 71 

Smile 97,1 82,6 78,3 65,2 98,6 99,3 82,6 78,3 72,5 62,3 99,3 85,5 79,7 78,3 68,1 

Look 
Right 30º 

99,3 70 81,4 4,3 100 99,3 81,4 81,4 54,3 64,3 99,3 75,7 80 8,6 68,6 

Look 
Right 45º 

94,3 48,6 72,9 7,1 100 94,3 65,7 72,9 41,4 72,9 94,3 55,2 67,2 7,5 71,6 

Look 
Right 60º 

82,9 7,4 54,4 0 60,9 86,5 10,1 55,1 24,6 63,8 83,5 9,3 39,5 2,3 44,2 

Look 
Right 75º 

28,3 0 32,2 0 2,9 34,5 0 42,6 14,7 39,7 60,0 0 0 0 0 

Look Up 
30º 

96,8 78,3 43,5 39,1 97,1 95,9 76,8 44,9 71 68,1 95,9 76,8 44,9 75,4 76,8 

Look Up 
15º 

99,7 95,7 82,9 61,4 100 99,6 88,6 82,9 71,4 68,6 99,6 90 82,9 70 74,3 

Look 
Down 
15º 

98,6 81,4 52,9 75,7 100 100 87,1 52,9 88,6 74,3 100 87,1 51,4 81,4 80 

Look 
Down 
30º 

92,2 59,7 17,9 40,3 98,5 98,1 77,6 14,9 92,5 76,1 98,1 76,1 16,4 88,1 80,6 

Look 
Right & 
Down 
45º 

49,7 14,3 22,2 4,7 35,7 44,9 24,3 28,6 11,4 41,4 64,7 20,1 26,7 10,3 53,3 

Look 
Right & 
Up 45º 

74,6 16,2 51,5 0 22,9 77,6 20 58,6 32,9 42,9 77,6 20,1 44,1 4,4 32,1 

Hand on 
one Eye 

72,0 53,6 23,2 57,9 95,7 71,3 59,4 26,1 59,4 65,2 76,4 60,7 25 64,3 75 

Hand on 
mouth 

96,6 59,7 14,9 16,4 100 96,8 62,7 14,9 74,6 82,1 96,6 62,7 14,9 59,7 79,1 

With 
Glasses 

88,8 89,7 30,9 75 100 86,3 92,5 31,3 67,2 83,6 88,5 91 29,9 59,7 79,1 
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Table 11. Detection errors are compared for all methods. The mean and the standard deviation of 
the error (the absolute distance between the marked points and the calculated points) are given. 
The values are in millimetres. The mean is written over the standard deviation. 

Nose Left Eye Right Eye 
µ (mm) 
σ (mm) 

Ours’ M1 M2 M3 M4 Ours M1 M2 M3 M4 Ours’ M1 M2 M3 M4 

Mouth 
Open 

3,01 
2,57 

3,96 
2,54 

5,35 
2,40 

4,27 
2,94 

3,05 
1,71 

3,07 
1,72 

6,08 
2,95 

6,91 
3,99 

8,51 
4,09 

7,57 
4,86 

2,61 
1,42 

6,13 
3,23 

5,55 
3,17 

11,30 
3,84 

5,98 
4,55 

Disgust 
4,50 
3,20 

6,09 
3,51 

6,20 
3,01 

7,38 
4,88 

4,34 
2,67 

3,16 
1,76 

5,94 
4,49 

5,69 
4,08 

9,41 
5,00 

7,60 
5,15 

3,11 
,154 

5,56 
3,72 

5,12 
2,97 

11,16 
4,29 

6,71 
4,24 

Eyebro
ws Up 

3,05 
1,94 

3,80 
2,80 

5,29 
2,92 

4,51 
2,87 

3,21 
2,16 

2,79 
1,50 

6,36 
3,10 

6,38 
3,17 

9,35 
4,54 

7,01 
4,42 

2,72 
1,72 

6,17 
3,02 

5,91 
2,96 

11,36 
4,07 

7,40 
5,16 

Smile 
4,02 
2,60 

5,65 
3,85 

5,09 
2,47 

6,58 
4,25 

3,90 
2,12 

3,12 
1,78 

6,21 
3,92 

6,37 
3,86 

8,74 
4,41 

6,60 
3,99 

3,19 
1,68 

5,84 
3,00 

5,52 
2,98 

10,36 
3,93 

6,88 
4,84 

Look 
Right 
30º 

4,93 
2,77 

7,39 
3,97 

4,61 
2,99 

9,58 
1,05 

4,65 
2,88 

2,77 
1,65 

7,51 
3,95 

7,66 
3,89 

14,51 
3,48 

7,91 
4,22 

3,65 
2,53 

5,84 
3,94 

5,25 
2,93 

13,58 
4,70 

7,69 
5,52 

Look 
Right 
45º 

7,75 
2,49 

10,93 
4,87 

5,66 
3,71 

15,10 
3,85 

7,78 
3,86 

3,40 
2,17 

7,85 
4,04 

6,86 
3,27 

12,61 
4,38 

8,69 
4,62 

5,54 
4,18 

7,68 
4,13 

7,91 
4,92 

13,34 
4,22 

7,64 
5,34 

Look 
Right 
60º 

9,90 
2,97 

10,44 
3,81 

8,45 
3,85 

- 
9,81 
3,98 

3,94 
1,72 

6,94 
5,15 

6,71 
3,29 

12,93 
5,84 

9,85 
5,95 

7,47 
5,21 

11,19 
5,07 

7,78 
3,62 

19,20 
- 

7,04 
4,95 

Look 
Right 
75º 

12,48 
3,14 

- 
13,73 
4,46 

- 
13,7

6 
7,69 

4,21 
2,23 

- 
8,23 
5,19 

11,42 
6,63 

9,28 
5,31 

2,89 
0,75 

- - - - 

Look Up 
30º 

4,27 
2,20 

3,48 
2,71 

6,06 
2,93 

4,53 
2,77 

3,44 
2,41 

3,65 
1,67 

8,75 
4,97 

5,57 
2,72 

9,29 
3,99 

6,55 
4,07 

3,82 
1,94 

8,49 
4,14 

5,14 
3,27 

11,24 
4,16 

7,12 
4,69 

Look Up 
15º 

3,32 
1,80 

3,48 
3,00 

4,74 
2,24 

4,84 
3,21 

3,07 
2,12 

2,99 
1,67 

6,30 
2,92 

5,28 
2,87 

9,33 
4,18 

7,80 
4,60 

3,01 
1,71 

6,27 
3,52 

5,35 
3,22 

11,21 
3,43 

6,71 
4,44 

Look 
Down 

15º 

4,13 
2,42 

6,17 
3,90 

5,72 
3,00 

5,46 
3,24 

4,10 
2,42 

2,98 
1,52 

6,19 
3,80 

7,03 
4,17 

7,29 
4,02 

6,29 
4,42 

2,97 
1,43 

6,03 
4,10 

5,95 
3,33 

9,20 
3,96 

5,34 
3,84 

Look 
Down 

30º 

4,58 
3,10 

7,46 
5,32 

5,83 
2,59 

6,04 
3,75 

4,61 
2,48 

3,42 
1,52 

4,67 
3,71 

4,64 
3,92 

6,87 
3,40 

4,74 
3,24 

3,32 
1,31 

5,42 
3,47 

5,47 
3,70 

7,51 
3,50 

4,47 
3,23 

Look 
Right & 
Down 

45º 

8,63 
3,08 

11,46 
4,77 

8,87 
4,00 

14,14 
4,80 

8,78 
4,11 

4,64 
1,71 

8,24 
4,93 

7,24 
4,27 

10,10 
4,84 

6,62 
4,36 

5,94 
3,61 

10,09 
4,22 

7,38 
4,05 

7,35 
4,51 

7,51 
5,15 

Look 
Right & 
Up 45º 

11,59 
3,61 

13,53 
4,23 

9,22 
4,41 

- 
11,3

5 
4,28 

4,13 
2,27 

9,99 
4,36 

7,37 
4,44 

12,47 
4,79 

9,32 
5,26 

7,58 
4,84 

11,7 
6,57 

8,84 
6,69 

11,37 
- 

5,47 
3,18 

Hand on 
one Eye 

2,89 
1,85 

5,29 
3,85 

6,01 
2,20 

5,40 
3,75 

3,82 
2,22 

2,65 
1,50 

7,39 
4,02 

7,42 
5,35 

9,90 
4,96 

6,62 
4,33 

5,83 
3,78 

5,98 
3,42 

4,48 
2,02 

10,06 
5,11 

8,06 
4,72 

Hand on 
mouth 

3,72 
2,58 

4,76 
3,35 

5,52 
2,68 

7,69 
5,59 

3,98 
2,36 

2,93 
1,82 

6,05 
3,46 

7,70 
3,73 

10,48 
4,84 

6,68 
4,05 

2,82 
1,37 

5,24 
3,30 

5,76 
4,26 

12,65 
4,50 

6,17 
4,11 

With 
Glasses 

2,90 
1,96 

4,33 
2,75 

5,14 
2,58 

4,49 
2,66 

3,03 
1,70 

3,47 
2,49 

7,16 
4,01 

6,41 
3,04 

10,63 
4,82 

7,49 
3,90 

3,92 
2,79 

7,38 
4,31 

7,82 
3,67 

11,94 
4,38 

7,61 
4,13 
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7.1.3.5 Comparison in terms of Complexity 

When an algorithm is implemented, computation load is the other important criteria which 

should always be considered besides its success. Computational load can be measured in 

terms of complexity. We investigate complexities of the five algorithms in terms of  Big-

O notation. Our method, M1, M2 and M3 each has the same complexity of O(MN) where 

M and N are the sizes of the 3D data grid. M4’s complexity is O(MNmn2) where m is the 

number of possible nose peak candidates and n is the number of possible eye pit 

candidates. As can easily concluded from the values, M4 requires much more computation 

than other algorithms and our algorithm requires the same amount of computation as M1, 

M2 and M3 although its success is much better than those. 

 

7.1.3.6 Problematic Cases 

Even though the results of our method are apparently better than other methods, we still 

can point out some problematic cases for our method. Since the method proposed is scale 

and transform invariant, for frontal poses and poses rotated less than 45º, success rates 

higher than 98% were achieved. 100% were achieved for a majority. However when the 

face is rotated over 45º, nose tip and eye pits may become invisible. When an element is 

occluded because of rotation and other reasons (like hand over one eye), the method may 

fail to find the correct one-peak, two-eyes and one-saddle combination. For these over 

rotated faces, the nose usually loses its fundamental property of becoming a peak and is 

not selected among the best combination. Similarly when one eye is occluded with a hand 

or glasses in front of it, the eye pit vanishes and correct combination is again lost. For 

these reasons the success rates for these types of poses are relatively lower than other 

poses, but they are still higher than the other compared methods. Such cases are shown in 

Figure 55. In Figure 55.e. for faces rotated 45º rights and down, two results are depicted. 

For the upper figure the face is successfully registered, however for the lower figure the 

method fails since no right eye pit could be detected because of occlusion. Similarly in 

Figure 55.d. for faces rotated 75º rights, two results are depicted. Again for the upper 

figure, the eye pits, the nose peak and the nose saddle are detected and the method is 

successful. However for the lower figure inner right eye pit is invisible and is not detected, 

thus causing the GMM to select a bad combination.  

However for frontal poses and poses rotated less than 45º, where success rates over 98% 

were achieved, there are very rare occasions where false combinations are selected. Some 

examples of these rare occasions are given in Figure 55.a. for the pose with glasses. The 
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optical scanners are very sensitive to specular surfaces and lenses. The eye glasses may 

cause false spikes or holes over the surface, which cannot be easily overcome by post 

processing. For the lower figure the glasses cause a false peak over the right eye and a 

false combination is selected. In Figure 55.b. where the mouth open faces are scanned, a 

false combination is selected for the lower figure. The eye pits are found correctly but, 

somehow the upper lip is selected instead of the nose tip. Actually this is the single false 

detection case for this pose. Yet again for Figure 55.c. the right eye is occluded with the 

right hand. For the upper figure the inner right eye pit is still visible and the method 

succeeds, however for the lower figure the pit is completely occluded, thus causing the 

method to fail. 

 

 

Figure 55. A successful and a problematic case for the poses a) with glasses. b) Mouth 

open  c) Hand on one eye d) Look right 75º e) Look right and down 45º 

 

7.1.4 3D Facial Pose Estimation 

As another attempt to evaluate the quality and capability of the extracted features, a pose 

estimation algorithm is proposed in this section. Using the 3D features extracted from the 

HK UVS volume; poses of rotated faces are estimated. So as to make the experiments 

numerically comparable, virtually rotated versions of 3D frontal facial models form the 

FRGC ver1.a are used. 
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7.1.4.1 Construction of Artificially Rotated 3D Facial models 

In order to make controlled tests on pose estimation virtually rotated versions of FRGC 

v1.a frontal facial scans are created using a software constructed in our laboratory, 

METU-CVIS. The software is a 3D virtual scanner program where, different scenes using 

different object formats such as range images or 3D object models, can be created and 

exported in range scan format. The software is created by Nesli Bozkurt, as a part of her 

M.Sc. thesis [Bozkurt 2008].  

For this purpose, 35 surface models are artificially created by applying 7 different space 

transformations to 5 original (frontal) surfaces from the FRGC v1.a database. These 

transformations are rotation around Y-axis by +10º, +20º,-10º,-20º, rotation around X-axis 

by +15º,-15º and rotation around Z-axis by +45º. A set of artificially created range scans 

are given in Figure 56. 

 

  

Figure 56. Artificially created facial scans. Leftmost scan is the original scan from FRGC 

database. Other scans are created by applying the following transformations respectively 

from left to right: rotation around Y-axis by +10º,+20º,-10º,-20º, rotation around X-axis 

by +15º,-15º and rotation around Z-axis by +45º. 

 

The four-node facial topology given in the previous subsection is sought in the original 

and artificially created models by using the feature vector FACEλ  given in (21). Again, all 

four-node, “peak-pit-pit-saddle” combinations are extracted and the best candidate (the 

one with the highest probability distribution within the GMM) is selected as the actual 

facial four-node topology.  

When the facial nodes (nose peak, eye pits and nose bridge) are detected on the original 

and the rotated scans, the 3D locations of these nodes are known. Using this data, the 

amount of rotation of a rotated 3D facial scan might be calculated with respect to the 

original frontal 3D facial scan. So as to do this, transformation matrix from extracted 

nodes of the rotated scan to the extracted nodes of the original frontal scan must be 

calculated. In other words, this transformation matrix gives the relations between 3D 
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reference frames of the rotated and original 3D scans. If we define the rotated reference 

frame CR and original reference frame CO, the transformation matrix can be calculated as: 

[ ] [ ] 1
ORxOxR CCTCTC −⋅=⇒⋅= 4444      (22) 

Figure 57 shows the estimation results. Range images, HK UVS volume depictions and 

the estimated angles for the rotated scans are given. It is seen from the figure that for 

rotation around the Y-axis, the estimates are bad since localization of the eye pits become 

weak as they get occluded behind the nose saddle. However for rotation around the X-axis 

better estimates are obtained since the eye pits and the nose peak do not get occluded. 

Similarly the estimates for rotation around the Z-axis are good as no occlusion occurs. 

 

 

7.1.5 Conclusion on 3D Facial Detection and Pose Estimation 

In this chapter, the scale invariant features are extracted from facial range images for the 

purpose of face detection and pose estimation. Four-node facial graph topology is 

Original (Frontal) Scans 

    

Rotated +10º by Y 

 
Estimated +8.84º by 

Y 

 
Estimated +8.43º by 

Y 

 
Estimated +11.37º by 

Y 

 
Estimated +8.62º by 

Y 

Rotated +15º by X 

 
Estimated +14.84º by 

X 

 
Estimated +13.79 by 

X 

 
Estimated +16.21º by 

X 

 
Estimated +14.55º by 

X 

Rotated +45º by Z 

 
Estimated+46.14º by 

Z 

 
Estimated +48.17 by 

Z 

 
Estimated +47.01º by 

Z 

 
Estimated +43.26º by 

Z 

Figure 57. Virtually created facial scans and their estimated pose angles 
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constructed using  a peak, two pits and a saddle ridge feature element. Using this 3D 

topological element the locations of facial features are detected and the facial pose is 

found.  

The detection method is compared with four representative methods in the literature. 

These methods are selected because some of them are only applicable to faces whereas 

some of them are for general object detection methods applied to faces. 

The methods are trained using 78 neutral and frontal scans and tested using 1323 scans of 

17 different poses of various rotation, expression and occlusion.  The results show that the 

proposed method is more successful in terms of detection percentage, localization 

accuracy and computational efficiency compared to the other methods.  

The main reasons that the proposed method is more powerful in detection and localization 

are the scale and transform invariance in detecting the anchor points and the same 

invariance in constructing the spatial graph structure. The method easily overcomes false 

positive results caused by spiky noises, rotation and scale. Since the proposed method 

requires no prior compulsory poses (like frontal pose or a side view), the detection rates 

are high for any kind of pose. As long as the nose-eyes-nose bridge quadruple is detected, 

the face is detected for many poses, with near 100% success. 

For frontal poses with different expressions such as, mouth opened, smile, disgust, 

eyebrows up and hand on mouth near 100% success is achieved. For poses with rotation 

less than 45º, the percentage success rates are still over 97%. For occluded poses such as 

with glasses and hand on one eye, the results are acceptable and better than the compared 

methods.  

For our proposed method, the detection accuracy in millimetres is also better than the 

existing methods. A few millimetres of error mean and variance are achieved for rotations 

less than 45º. Considering that the database was manually marked, a few millimetres of 

mean error can be regarded as absolute success because human marking error is also not 

negligible. 

The facial detection is brittle for cases where one of the anchor points is not visible 

because of rotation or occlusion. If the eye pit is occluded with a hand or because of high 

degrees of rotation, its detection fails and the correct quadruple is not located. 

The pose estimation is carried out on artificially rotated versions of five FRGC1.a facial 

scans. The rotations in x, y and z axes are estimated with around ±2º error x, y and ±4º 

error in z axes. The proposed method is extremely powerful for pose estimation since it is 
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invariant in any type of transformation including rotation, scaling, re-sampling. The 

method is also robust to noise since the features are found within a scale-space where 

extreme amounts of smoothing are performed. 

 

7.2 3D Object Recognition 

In this chapter, we finally arrive at the core subject of this dissertation, 3D object 

recognition. Using the proposed feature extraction method and 3D topology model, 

objects are classified and/or categorized. We commence by defining the n-node topology 

derived from the definitions in Chapter 5. Then the method used in this study to classify 

objects, namely geometric hashing, will be given in detail. Tests carried out in Stuttgart 

Database [Stuttgart Database], will be covered and discussions and performance 

comparison to other methods are also given in this chapter. 

 

7.2.1 Transform Invariant n-Node Topology 

The method to extract transform invariant features and construct a transform invariant 

topology model is thoroughly covered in Chapter 5. In this subsection we simply give the 

details of the topological model derived from the proposed model. The general model for 

an n-node topology can be formulized as: 

[
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NMNBNA

NDCBAi
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,...,,,,...
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xxxxxx

rrrrrr

rrrrrr

−−−

−−−

=

αααα

λ

   (23) 

In this vector there are n number of type values (first row), n-1 number of link lengths, 

C(n,2) number of angles, n-1 number of normal difference vectors and n number of radii, 

totally (n2+8n-5)/2 number of values.  
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On the other hand in its scale invariant version, the link lengths and radii are normalized 

according to the radius of the base vector. The base vector is selected as the node having a 

certain type (e.g. peak) with the largest radius. This vector is defined as: 

[
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   (24) 

This vector is used to represent a range image, and consequently to classify the object 

within a database. It is impossible to know which element of this vector carries better 

classification quality, unless proper experiments are completed. In addition the nodes, or 

in other word, the extracted features could be obtained using the HK or SC curvature 

classification types. Thus, choosing the appropriate feature classification method is 

another important issue for object recognition. In the next subsections, all these issues will 

be handled with certain test procedures. However, before that, the next subsection gives 

the details of the topology classification method, which basically decides which topology 

belongs to which object or which category of objects. 

Similar feature vectors to (23) and (24) can be constructed by using SIFT if all range 

images are rendered to gray scale images, where the depth value designates the gray level 

intensity. By using the SIFT feature attributes, namely the pixel location (xi :{u i ,vi}), the 

scale (σi), the orientation (θi) and the descriptor (di), a feature vector similar to (24) can be 

created: 

In Equation (25), |xi-xj|/σj designates the normalized distance, αi-j-k designates the link 

angles, θi-θj designates the orientation difference and σi/σj designates the size ratio and di 

designates the SIFT descriptor. 
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7.2.2 Learning the n-node Topology – Geometric Hashing 

The feature vector  used in this study can be considered as a partial topology of a general 

topology, where each part contains N elements out of total W (W>N) elements on a range 

image. This feature vector resembles to a partial graph belonging to a global graph. For 

each range image, U largest features (W>U>N) in terms of radius are selected and all N-

tuple combinations of these k features (totally C(U,N) feature vectors) are used to 

construct the feature vectors defining that range image (Table 12).  

 

Table 12. C(U,N) number of features obtained from k largest features, using N-node 

topology. For the sake of simplicity the last node is chosen as the base node. 
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In this study, these feature vectors are used in a geometric hashing method for object 

recognition purpose. The main reason behind using geometric hashing is that it allows 

partial matching of small topologies in a general topology so that the recognition process 

becomes robust to noise, rotation and even occlusion. In our hashing method, indexing is 

done by the types of the n-tuples and each entry includes the feature vector of the triplet 

besides the code of the pose and the object. In other words, for a range image the C(U,N) 

long feature vector is constructed.  At the pre-processing stage of hashing, for each range 

image in the training set of category of object (for example range images of bunny taken 

from various angles), the feature vectors are calculated. Thus we obtain Num_Tri number 

of feature vectors for the object i with Num_Tri number of training range image in the 

database.   This database construction stage can be computed offline. For various range 

image training sets belonging to different objects, this operation is completed. 

Consequently at the recognition stage, features of the test model (i.e. the model to be 
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recognized) are extracted and then related hash table indexes are obtained. By comparing 

the hash table entries using a similarity measure between the feature vectors, matching 

features are found. Corresponding to the indexes in the training sets, matched model’s 

vote is incremented by one for a particular training set. Finally, the database model which 

receives the greatest number of votes is taken as the match of the test object. 

 

               

         a)                b) 

 

c) 

Figure 58. Demonstration of geometric hashing: All the topologies constructed from a 

range image are compared to the topology vectors in the database. The database model 

which receives the greatest number of votes is taken as the match of the test object. 

 

Figure 58 demonstrates the geometric hashing procedure. For a range image (bunny, 

Figure 58.a) the feature are extracted. Largest U (6 in this case) features are selected. Then 

combination of all N-tuples (3) are found and the feature vector is constructed (totally 

C(6,3) = 20 feature vectors). Then for each range image in all of the training sets in the 

database, this feature vector is matched. For each correct match the vote of that training 

set is incremented and the object is recognized by final voting. 
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7.2.2.1 Similarity Measure 

The similarity measure defined distance between two feature vectors. For two features to 

be compared, they must have the same types feature points. It is not logical to compare 

two pits and a saddle with two peaks and a saddle. For any groups of feature points with 

the same type combinations, the definition of a similarity measure is proper.  

For comparable feature vectors, if the distance between any corresponding feature 

element, namely the difference between the normal directions or the difference between 

the angles of each triple or the difference between two link length ratios etc., is below a 

given threshold then the two vectors are referred as similar.  

The threshold values that indicate the similarity between two feature vectors are found by 

making many experiments on the data. The fine-tuned threshold values are given in the 

next subsection. 

 

7.2.3 HK-SC Curvature Space Classification Comparison and Threshold Fine 

Tuning 

Since both HK and SC spaces classify surface patches in to similar types, their 

classification capabilities are comparable. For this reason, there is an ongoing debate on 

the advantages and disadvantages of using mean & Gaussian (HK) or shape index & 

curvedness (SC) curvature spaces for object recognition applications. In [Cantzler and 

Fisher 2001], HK and SC curvature descriptions are compared in terms of classification, 

impact of thresholds and impact of noise levels and it is concluded that SC approach has 

some advantages at low thresholds, in complex scenes and in dealing with noise. However 

in that study the curvatures are calculated only at the lowest scale, i.e. the given 

resolution. Scale-spaces of the surfaces or the curvatures are not defined. Another 

comparative study has been carried out in [Li and Hancock 2004] where curvature values 

obtained from the shading in 2D images are used and HK and SC histograms are created. 

The comparison results show that SC histograms are slightly more successful in terms of 

classification. Yet again, the tested resolution is the pixel resolution of the 2D image and 

the effect of sampling is ignored. 

When calculating H, K, C and S values, the scale/resolution ratio is highly effective. 

However due to its scale invariant nature, shape index (S) values are independent of the 

resolution or the scale. Thus it is no wonder that SC methods give better results than HK 

methods when the comparison is carried out at an uncontrolled scale/resolution level. In 
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order to make H, K and C values also scale invariant, the scale/resolution ratio of the scan 

must be set to a constant value for the whole database. In addition to this, a scale space of 

the surface should be constructed so that the features which also carry the scale level 

information can be obtained by using H, K, S and C values. Obtaining the absolute scales 

of these features is crucial for 3D object representation and the only way of achieving 

such information is constructing the scale-spaces of the surfaces in terms of curvature 

values.  

There have been different attempts at constructing a scale-space of a surface and defining 

scale-invariant features [Akagündüz and Ulusoy 2007]. However, there has been no study 

which uses a scale-space approach for the comparison of HK and SC for their 

classification capabilities. For this experiment, our main motivation and contribution is to 

make both mathematical and experimental comparisons of HK and SC curvature 

descriptions in their scale-spaces. For this purpose we calculate the scale spaces of the 

curvatures of the given surfaces for each method separately. Then we extract scale and 

orientation invariant features from each space. By this we mean that features are extracted 

with their scale information both in SC scale space and HK scale space. Finally, we use 

these features in an object recognition task and compare the performances of the methods 

so as to decide which curvature space is better in terms of feature quality and object 

recognition. In addition, in order to optimize the parameters and examine the effect of 

parameters on each method, several tests are run using different parameters values.  

The mathematical comparison of HK and SC spaces are given in Chapter 3. Furthermore 

the proposed feature extraction and topology construction method is given in Chapter 4 

and Chapter 5. The recognition method to test the feature vectors are generalized in the 

previous subsections. In this subsection we first give the details of the recognition method 

and then proceed with the experiments.  

To begin with, For each range image, ten largest features in terms of volume are selected 

and all triple combinations of these 10 features (totally C(10,3)=120 feature vectors) are 

used to construct the feature vectors defining that range image. As explained previously, 

at the pre-processing stage of hashing, invariant features are extracted and saved to the 

hash table for each pose and each training model range image. Consequently at the 

recognition stage, features of the test model (i.e. the model to be recognized) are extracted 

and then related hash table indexes are obtained. By comparing the hash table entries 

using the similarity measure given before, corresponding to these indexes, matched 

model’s vote is incremented by one. Finally, the database model which receives the 
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greatest number of votes is taken as the match of the test object. In this study, Stuttgart 

database [Stuttgart Database] is used where there are 256 scans for 42 objects. As defined 

in the web page of the database, 66 poses of each object is used for training and the rest of 

the poses are used for testing. 

In this study, two groups of experiments are performed. First group of experiments is 

carried out in order to decide on the best threshold values and features. When comparing 

two feature vectors, we first check if the types of the three features are identical. If so, we 

check if the absolute difference between the angles (αi,j,k) is at most thr_ang degrees. Then 

similarly, we check if the absolute difference between the norms of distances ((d2
i,j,+ d2

j,k 

+ d2
i,j)

½) of the compared feature vectors is at most thr_dist mm. A series of experiments 

are held both on HK and SC methods in order to decide on the values of these parameters 

for each method. The second group of tests is carried out in order to compare HK and SC 

in object recognition against the number of objects in the database. For the sake of 

simplicity and speed, the first group of tests is carried out using only 5 objects but the 

object recognition tests are run for various number of objects. 

 

7.2.3.1 Experiments for Thresholds 

It is an important and difficult task to decide on similarity thresholds. There are two 

similarity measures defined for our feature vector: the angle similarity and the distance 

similarity. The angle similarity is the absolute difference between the angle attributes of 

the two feature vectors. The threshold value for absolute angle difference is set to 3˚, 5˚, 

10˚, 20˚ and the recognition performances are observed separately for HK and SC 

methods (Figure 59), while the distance threshold is fixed to 20 mm. The recognition 

performance is defined as the percentage of correctly recognized poses among all test 

poses. The HK method is robust for the angle thresholds. Both methods perform the best 

when the angle threshold is 10˚. Similarly, the distance threshold is set to 5, 10, 20, 30 

mm, while the angle threshold is fixed to 10˚ and the performances of both methods are 

given in Figure 60. The HK method is robust for different distance thresholds. But both 

methods perform the best when the distance threshold is 20 mm. 
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Figure 59. Angle threshold tests for both methods. 

 

 

Figure 60. Length threshold tests for both methods. 

 

7.2.3.2 Experiments for Types 

Both methods classify regions into eight fundamental types, namely peak (1), convex 

cylinder (2), saddle ridge (3), plane (5), hyperbola (6), pit (7), concave cylinder (8) and 

saddle valley (9). Some of these types are more useful where some types are even 

unreliable. Different groups of types are included in the feature vector and tested for each 

method (Figure 61). The HK method is robust against different type combinations but the 

best results for both are obtained when only the types 1, 3, 5, 7 and 9 are included in the 

feature vector. 

 

  

Figure 61. Type tests for both methods. 
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7.2.3.3 Experiments for Feature Numbers 

In our method, a number of features with the largest volumes are selected for each range 

image and triple combinations among these features are found in order to construct the 

feature vectors. Taking fewer numbers of features would speed up the process. However, 

good quality features may be omitted. On the other hand, taking more features will slow 

down the process and some bad quality features may be included. Thus we search for the 

optimum number of features by testing different numbers such as 6, 10, 14, 16 and 18 

(Figure 62). The HK method is stable against different number of features but the SC 

method is severely affected by the feature number. When ten largest features are selected 

from each range image, both methods perform the best.  

 

 

Figure 62. Feature number tests for both methods. 

 

7.2.3.4 Experiments for Database Size 

After deciding on the threshold values and the feature vector content, three experiments 

are run where database size is increased from 5 objects to 42 (all) objects. By this way the 

robustness of each method is tested under varying number of objects in the database 

(Figure 63). The performance of the SC method decreases linearly with the size of the 

database where the performance of the HK method decreases logarithmically. 

  

 

Figure 63. Database size tests for both methods. 
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When compared with a scale-space approach, the HK method outperforms the SC method 

in all tests. We think that the main reason behind this is the definition of planar regions in 

the HK method. This definition embraces many ambiguous regions more consistent than 

SC’s. In addition, the SC method is less robust to feature type changes and database size. 

As the number of selected features for a range image increases, the quality of features 

reduces faster for the SC method. All results confirm that the HK method is more 

successful. 

 

7.2.4 3D Object Recognition Tests 

In this subsection the object recognition capability of the proposed 3D feature are tested. 

Es mentioned before, multi-scale features are extracted from sampled surfaces and then 

used to construct a scale and orientation invariant topological representation of object 

categories. Features are located over the surface with their metric size irrespective of the 

surface resolution. Stuttgart Range Image database [Stuttgart Database] is used for testing 

the proposed features in object category recognition. Originally this database contains 42 

objects with 258 different virtual scans of each (totally 10836 scans). However the 

database does not include scale varying or occluded scans. In this study, for the sake of 

testing the scale invariance and occlusion robustness limits of the proposed method, ¼ 

scaled, %25 occluded and both ¼ scaled and %25 occluded versions of these scans are 

virtually created and tested. In order to classify the object categories, geometric hashing 

[Lamdan and Wolfson 1988] is used. Besides, the results are compared to SIFT [Lowe 

2004], for which each original, scaled or occluded range image is rendered to a gray scale 

image. 

For the sake of observing the benefits of using multi-scale features, the 3D features are 

extracted with and without scale-space search. First, the features are extracted using the 

conventional method, in which the surface is classified using the H and K curvatures 

obtained from the given resolution. This method will be referred to as single scale feature 

extraction method (SSFE). Then, the features are extracted using the proposed multi-scale 

feature extraction method where the scale-space of curvatures is used. This method will be 

referred to as multi-scale feature extraction method (MSFE). The feature vectors are 

obtained as in (24) and hashing is applied as explained above for both methods (SSFE and 

MSFE) separately. 

In order to see the benefits of using feature point descriptors, spin images around the 

feature centers are also extracted and appended to the feature vector as in (25) for both 
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SSFE and MSFE separately. We will refer to these methods as ‘SSFE+spin’ and 

‘MSFE+spin’. As explained in the previous section, the effect regions of the spin images 

are designated by the radii of the features. 

Finally the SIFT features are obtained from the gray scale images which are obtained by 

rendering the range image surfaces. Then (23) is used to construct the feature vectors by 

the SIFT features. This method will be referred to as SIFT. 

All methods (i.e. SSFE, SSFE+spin, MSFE, MSFE+spin, SIFT) are tested for object 

recognition. Four groups of experiments are carried out to test for orientation invariance, 

scale invariance and robustness to occlusions.  8 objects from the Stuttgart database (auto, 

bunny, chicken, ente, hub, eager, rocker, screwdriver) are used. For each model, 66 

original range scans are used for training. 192 original, 192 scaled, 192 occluded and 192 

both scaled and occluded range scans are used for testing. For eight objects, a total of 

6672 range scans are used in these experiments. 

 

7.2. 4.1 Recognition under Rotation 

The database originally includes 192 testing images scanned from angles different than the 

66 training images. Thus experimenting on the original training and testing models 

provides results on recognition performance of rotated models. Previously, [Li and 

Guskov 2007] and [Hetzel et.al. 2001] carried out these experiments on Stuttgart database 

and achieved recognition rates over %98 and %93 respectively. As seen from Table 13 

and Figure 64, SSFE and SSFE+spin achieve similar performance. MSFE and MSFE+spin 

are very close, however the performance of SIFT is dramatically behind the other 

methods.  

 

7.2.4.2 Recognition under Scaling 

In the second part of the experiments, scaled versions of range images are used for testing. 

Each test image is scale to its ¼ area, by scaling each axis by ½. As seen from Table 13 

and Figure 65, MSFE and MSFE+spin perform much better than SSFE and SSFE+spin 

since they use scale space of curvatures, i.e., they are scale invariant. Although SIFT is 

scale invariant as well, its performance is much behind, proving that SIFT is not 

descriptive for gray scale rendered range images. 
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Figure 64. Confusion matrices of the methods: SSFE, SSFE+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Original testing images are used. 
 
 

   

     
Figure 65. Confusion matrices of the methods: SSFE, SSFE+spin, MSFE, MSFE+spin,
SIFT, from left to right respectively. Scaled versions of the testing images are used.  
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Figure 66. Confusion matrices of the methods: SSFE, SSFE+spin, MSFE, MSFE+spin, 
SIFT, from left to right respectively. Occluded versions of the testing images are used. 
 
 

   

     
Figure 67. Confusion matrices of the methods: SSFE, SSFE+spin, MSFE, MSFE+spin, 
SIFT, from left to right respectively. Scaled and occluded versions of the testing images 
are used. 
 

Table 13.  Average Recognition Rates for All Methods in All Experiments 

 SSFE SSFE+spin MSFE MSFE+spin SIFT 
under rotation 99,37% 99,76% 94,71% 96,02% 75,91% 
under scaling 54,55% 59,50% 83,58% 84,39% 62,79% 
under occlusion 98,06% 98,64% 79,07% 85,32% 62,31% 
under scaling and occlusion 45,30% 49,85% 63,71% 65,55% 51,70% 
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7.2.4.3 Recognition under Occlusion 

The third part of the experiments analyzes the methods’ robustness to occlusion, where 

%25 occluded version of each testing image is used. For each testing range image, 

randomly selected ¼th area of the range scan is occluded. Results (Table 13 and Figure 66) 

show that, SSFE and SSFE+spin performs tremendously good, since the test set is not 

scale varying and feature based methods are robust to occlusions. The performance of 

MSFE+spin shows that for occluded images, adding spin image descriptor to the feature 

vector affects the recognition performance considerably. The performance of SIFT on the 

other hand, is still behind other methods. 

 

7.2.4.4 Recognition under both Scaling and Occlusion 

The final stage of the experiments investigates the recognition performance of the 

methods under both scaling and occlusion. Each test image is first scaled by ¼th of its 

surface area and then occluded by ¼ of its area. Since testing under both scaling and 

occlusion is quite challenging, all methods are affected significantly. Still, having the 

advantage of being both scale invariant and local feature based (thus robust to occlusions) 

MSFE and MSFE+spin performs better than the other methods. SSFE’s and SSFE+spin’s 

performances are below %50 where SIFT’s performance is close to theirs (Table 13 and 

Figure 67). 

 

7.2.5 3D Object Registration Experiments 

Surface registration is an intermediate but crucial step within the computer vision systems 

workflow. The goal of registration is to find the Euclidian motion between a set of range 

images of a given object taken from different positions in order to represent them all with 

respect to a reference frame. Registration in general can be divided into two: coarse 

registration and fine registration [Salvi et. al. 2006]. In coarse registration, the main goal is 

to compute an initial estimation of the grid motion between two clouds of 3D points using 

correspondences between both surfaces. In fine registration, the goal is to obtain the most 

accurate solution as possible. Needless to say that the latter method usually uses the output 

of the former one as an initial estimate so as to represent all range image points with 

respect to a common reference system. Then it refines the transformation matrix by 

minimizing the distance between the temporal correspondences, known as closest points. 
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For a wide literature survey on registration of range images reader may refer to [Salvi et. 

al. 2006]. 

In this thesis we perform coarse registration using the proposed scale invariant features. 

The homogenous transformation, which includes 3D rotation, translation and scaling 

between two range images, is estimated. However different from previous approaches not 

single features are matched as correspondences, instead the triples that were used to 

recognize object categories are used.  

 

7.2.5.1 Triplet Correspondences 

In the previous sections, n-node topologies of scale invariant features were constructed. 

Using these n-node topologies, transform invariant object recognition was performed and 

analyzed. The topology set included n=3 number of nodes (features), since experiments 

have proved that it is empirically the optimum. Up to now, only the best match, in other 

words the quantity of the all matches, between a set of training range images and a testing 

image was taken into consideration, since the problem was to recognize object categories. 

However for registration the quality of the matched features are also important. Only a 

general consensus between all matched triplets would give the true transformation and 

prove that the matched triplets are actually true features that represent the objects.  

For this purpose using the extracted triplets in the previous subsection, a coarse 

registration is carried out using “random sample consensus” (RANSAC) method.  

 

7.2.5.2 Random Sample Consensus (RANSAC) on Triplets 

RANSAC is an abbreviation for "RANdom SAmple Consensus". It is an iterative method 

to estimate parameters of a mathematical model from a set of observed data which 

contains outliers. It is a non-deterministic algorithm in the sense that it produces a 

reasonable result only with a certain probability, with this probability increasing as more 

iterations are allowed. The algorithm was first published by [Fischler and Bolles 1981]. 

A basic assumption is that the data consists of "inliers", i.e., data whose distribution can 

be explained by some set of model parameters, and "outliers" which are data that do not fit 

the model. In addition to this, the data can be subject to noise. The outliers can come, e.g., 

from extreme values of the noise or from erroneous measurements or incorrect hypotheses 

about the interpretation of data. RANSAC also assumes that, given a (usually small) set of 
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inliers, there exists a procedure which can estimate the parameters of a model that 

optimally explains or fits this data. 

The RANSAC algorithm is often used in computer vision, e.g., to simultaneously solve 

the correspondence problem and estimate the fundamental matrix related to a pair of 

stereo cameras. 

In this thesis, very similar to solving the correspondence problem in stereo images, the 

method is used to estimate the homogeneous transformation between two range images. 

Instead of using candidate point matches, candidate triplet matches are used. As explained 

in the previous section, the triplets are matched by some well-defined similarity measures. 

In order to eliminate the false matches, and obtained the transformation only between the 

true triplet matches, RANSAC is run.  

RANSAC also requires a similarity measure to test for the homogenous transformation 

between two triplet matches. However for RANSAC, different from the similarity 

measures used the find candidate matches, only the spatial information is used. In other 

words, at any iteration of RANSAC, if there is candidate transformation, the absolute 

Euclidian difference between the first triplet and the transformed second triplet is used. 

The output of the RANSAC is a homogenous transformation vector, which defines the 

transformation between any two corresponding points on the registered range images, 

such that: 
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7.2.5.3 3D Object Registration Results 

In this subsection some experiments on registration using the proposed feature are 

presented. The first experiments is the simplest case, where there is only in-plane rotation 

between two artificial surfaces. There’s 135º in-plane rotation between the surfaces 

(Figure 68). 

The result of RANSAC is given below together with the ideal transformation matrix. The 

results prove a quite successful coarse registration. In Figure 69, the matched features can 

also be seen. Colours, as usual, designate different feature types.  
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RANSAC result:  
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Figure 68. Two artificial surfaces with a Gaussian peak and a Gaussian pit, which are 135º 

in-plane rotated (rotation around z-axis) of each other. 

 

    

Figure 69. Matched features from the registered artificial range images. 

 

The same experiment was also performed on range images from the Stuttgart database. 

Since these images are not captured with controlled rotation, we have chosen two images 

with rotation on a single axis. However the exact amount of rotation is unknown (Figure 

70). 
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Figure 70. Two range images of the screwdriver from Stuttgart database. There is rotation 

around y-axis. 

 

The result of RANSAC is given below together with the ideal transformation matrix. The 

results on Stuttgart database also prove a quite successful coarse registration. In Figure 71, 

the matched features can also be seen. Colours, as usual, designate different feature types.  

RANSAC result: 
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Figure 71. Matched features from the registered range images from Stuttgart Database. 

 

Since the extracted features are scale invariant (and so as the triplets), it is possible to 

register scaled versions of range images and calculated the scaling ratio between to 

objects. For this purpose using the %25 scaled versions of the Stuttgart database objects 

(vs. the originals), registration is performed. The result of RANSAC is given below 



114 
 

together with the ideal transformation matrix. The results on scaled range images 

demonstrate successful scale invariant coarse registration. In Figure 72, the matched 

features can also be seen. Colours, as usual, designate different feature types.  

RANSAC result: 
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Figure 72. Matched features from the registered range images from Stuttgart Database. 

The surfaces are scaled versions of the same range image. 

 

7.2.6 Conclusions on 3D Object Recognition and Registration 

In order to test the scale invariance and occlusion robustness limits of the proposed 

method, ¼ scaled, %25 occluded and both ¼ scaled and %25 occluded versions of these 

scans are virtually created and tested. In order to classify the object categories, geometric 

hashing is used. So as to show the importance of scale space search of surface curvatures, 

in addition to multi-scale features, single scale features are also extracted and tested using 

the same classification method. Moreover, the results are also compared with SIFT, for 

which each original, scaled or occluded range image is rendered to a gray scale image. 

If there is no scaling, single scale feature based methods (SSFE or SSFE+spin) are quite 

powerful for recognition on range images. Results prove that for scale varying databases, 

multi-scale features perform much better. The proposed method (MSFE+spin) performs 

best for experiments 2 and 4, where scaled range images are tested. Under occlusion, 
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feature based recognition is hardly affected. On the other hand, SIFT shows poor 

performance. Although known to be quite potent for textured images, SIFT proves the 

opposite for gray scale rendered range images. 

Results also show that using surface descriptors, such as spin images, may positively 

affect the performance of the extracted features. In experiment three, where occluded 

range images are tested, the performance of MSFE+spin is considerably higher than 

MSFE. When the range image is occluded, there are not enough quality features to 

represent the image. However, describing local surfaces with spin images when accurate 

effective regions are defined, the performance upgrades. This is not the case for SSFE and 

SSFE+spin, because the effective size extracted with single-scale features is not accurate. 

Thus, the surface description with spin images is faulty for the single-scale case. 

 

7.3 Delineation of Slope Units Based On Scale And Resolution Invariant 3D 

Curvature Extraction 

Landslides, which are one of the major geo-hazards threatening the settlements, occur on 

the slopes of the terrain.  In order to predict landslide occurrences, previously occurring 

landslides are related with several landslide susceptibility parameters and landslide 

susceptibility maps are obtained.  Preparation of a landslide susceptibility map requires 

selection of appropriate slope mapping unit, which can be regular grids (pixels), slope 

units, unique condition areas or some morphological features.  Among these mapping 

units, use of slope units has several advantages over other mapping units.  As the 

landslides occur on the slopes grid (pixel)-based approaches let the analyzer to consider 

the areas which are not prone to landslides and hence decrease the performance of 

susceptibility mapping algorithms.  Using slope units as landslide susceptibility mapping 

unit overcomes this problem.   

Slope unit is a method used to subdivide the space into regions based on certain 

hydrological criteria. Physically the slope unit can be considered as the left or right side of 

a sub-basin of a watershed. Therefore, slope unit can be identified by the intersection of a 

ridge line and a valley line. Usually partitioning of a region into sub-basins or slope-units 

is virtually impossible and such a partitioning requires high computational effort.  Hence 

in this study, a scale and resolution invariant, fully automatic method using scale space of 

3D curvature values is proposed for creating slope units to be used in landslide 

susceptibility mapping. All process as explained in the subsections is automatic. The 
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performance of the proposed method is tested by comparing it with a conventional method 

of obtaining slope units.  

At this point we would like to thank Dr. Arzu Erener and Dr. H. Şebnem B. Düzgün from 

Geodetic and Geographic Information Technologies Department at Middle East Technical 

University for their cooperation in this study. They helped us build the conventional 

method which is compared to our proposed landslide detection technique. 

 

7.3.1 Slope Unit Generation by Conventional Method  

A GIS-based hydrologic analysis and modelling tool, Arc Hydro [Maidment 2002], is 

employed to draw the dividing lines for identifying slope units. In this approach, the 

outline of the watershed polygon is obtained from digital elevation model (DEM) by using 

the hydraulic model tool, where the watershed boundary is the watershed divides or ridge 

line. The low elevation areas in the DEM which are surrounded by higher terrain and 

disrupting the flow of water in the path are filled in order to form watershed boundaries. 

The flow direction is calculated by examining the eight neighbours of a cell according to 

the eight direction pour point method [Multi-Watershed]. 

Then the associated flow accumulation grid is computed, which contains the accumulated 

number of cells upstream, for each cell in the input grid. In addition, a grid representing a 

stream network is created by querying the flow-accumulation for cell values above a 

certain threshold. This threshold is defined either as a number of cells or as a drainage 

area in square kilometers. In general, the recommended size for stream threshold 

definition is 1% of the maximum flow accumulation.  Small threshold values result in 

denser stream network with large number of delineated catchments.  Then the DEM and 

the flow accumulation are used to determine backward flow direction to identify cells that 

drain through a given outlet.  In this backward tracing, the cells with homogeneous flow 

accumulation values are classified as watershed boundaries, which are later converted to 

polygons (Figure 73.a). After obtaining watershed boundaries, the next step is overlaying 

the watershed boundary by the drainage lines (Figure 73.b). 

There is a need to divide the watershed polygon by the drainage line to obtain two slope 

units. Hence the drainage line is obtained by using reverse of the DEM, which is obtained 

by turning the high DEM values into low values, or vice versa.  This process makes the 

original drainage line to be transformed into a watershed divide [Xie et. Al 2004]. The 

combination of the watershed deduced from DEM and watershed deduced from reverse 
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DEM gives the slope units (Figure 73.d).  As can be seen from the procedure, the 

conventional method for obtaining slope units requires usage of GIS tools and operations 

with several stages. 

 

 

 a)      b)        c)    d)  

Figure 73. a) Watershed boundaries determined using the DEM. b) Drainage line overlaid 

with watershed of the region c) Watershed boundaries determined using the reverse DEM 

(shown with red lines) overlaid with watershed boundaries which are present on both the 

left and right side of a sub-basin. d) Slope unit of region obtained in 3D. 

 

7.3.2 The Proposed Method 

In this study, a scale and resolution invariant fully automatic method which is based on 3D 

curvature values is proposed for slope unit generation. The method considers the digital 

elevation model (DEM) of the terrain as a regular grid of 3D points lying over a u-by-v 

mesh (u being the latitude and v, the longitude), namely a depth map of the surface. On 

this 3D regular grid surface, first drainage lines and ridge lines are segmented according to 

their mean (H) curvature values and normal directions (n) in the scale space of the surface 

grid. Then these lines are connected in order to define the polygons of slope units. All the 

steps within the method are automatic and sequential. The method is detailed below step 

by step. 

 

7.3.2.1 Re-sampling 

Since the 3D coordinates are absolute in DEMs, the size information is always preserved 

on the surface. However,  3D curvature values computed over the surface are highly 

effected by the sampling (e.g. resolution) of the surface. Thus, a scale and resolution 

invariant method is required in order to compute curvature values for the points over the 

surface. For this reason, first the grid surface is re-sampled according to its scale (e.g. m 

meters / n points). In this study, the sample data has both latitude and longitude scale-
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resolution ratio of 20m/sample points. Thus if the proposed method is applied to a DEM 

surface with different  sampling rate (resolution), then  its scale-resolution ratio should be 

converted to  20m/points. 

 

7.3.2.2 Scale Space of Curvatures 

Surface curvature is simply the change in surface gradients. Both Mount Everest and a 

small hill may have the same curvature values at different scales but their curvature values 

at the same scale level are different. In order to examine a given surface at different scale 

levels, a scale pyramid is constructed. In this study Burt and Adelson’s Gaussian Pyramid 

method is applied [Burt and Adelson 1983] in order to extract a scale space of the surface. 

In this scale space, different sized elements become visible in different scales. For 

example, Mount Everest will be visible in a much higher scale than the small hill which 

will be visible in a lower one.  

The drainage lines and the ridge lines over DEMs are similar sized structures and they 

reside at a certain layer of the scale space. Smaller or bigger structures having similar 

shapes (that is shapes having similar curvature values but different sizes) vanish in the 

scale level where they exist, and vice versa. For this reason, it was searched through the 

scale space and found out that the fourth level of Gaussian Pyramid (which was obtained 

by applying four successive Reduce [Burt and Adelson 1983] and four successive Expand 

[Burt and Adelson 1983] operations to the surface) includes the drainage and ridge lines. 

The original surface patch and its 4th level scale surface are shown in Figure 74.a and 

Figure 74.b. 

 

7.3.2.3 Ridge and Drainage Line Extraction 

The proposed method uses value H and vector n to determine if an area is a ridge line or a 

drainage line or neither of them. H and n at the fourth scale level for all points on the 

reduced surface are calculated.  Then candidate ridge and drainage lines are obtained by 

thresholding as follows: 
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n

         (27) 

Here nz is the z component of the surface normal assuming that the z direction is always 

altitude (elevation) in the DEM. The selected regions are depicted in Figure 74.c. In order 
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to obtain the actual ridge and drainage lines, thinning is applied over the candidate regions 

(Figure 74.c) and actual drainage and ridge lines are obtained (Figure 74.d). However 

some outlier lines are also resulted from small regions. In order to eliminate them, length 

of each connected line is calculated and small ones (smaller than 50 points for this case) 

are deleted (Figure 74.e).  

 

 

a)   b)   c)   d) 

 

e)   f)   g)   h) 

Figure 74. a) Original Surface Patch. b) 4th Scale Level of the surface patch c) Candidate 

ridge and drainage lines are shown in black. d) Ridge and drainage lines after thinning. e) 

Final ridge and drainage lines after the elimination of outliers. f) Detected line tips and 

corners are shown in pink and an example interest region for a tip is shown by a triangle. 

g) Line tips connected to available corners and tips are shown in green. h) Segmented 

landslide regions are shown in different colours. 

 

7.3.2.4 Obtaining Polygons of Slope Units 

In order to find slope unit candidates, the closed regions are extracted from these lines by 

using a very simple approach. First the corners and tips on each line are found by applying 

kernels over the binary image. Then for each tip, a tip direction is determined. Finally, a 

tip is connected to the closest corner which resides inside a region around the tip direction 

vector (i.e. ±30º degrees around the direction vector). If a corner does not exist in this 

region, then the tip is connected to the closest tip existing in this region. If a tip does not 

exist in the region, then no connection is made (Figure 74.f and Figure 74.g).  
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After line tips are connected to line corners and line tips, the slope unit regions surrounded 

by drainage and ridge lines are determined. Finally by finding the connected components 

and their contours, candidate regions are segmented and labelled as shown in Figure 74.h. 

 

7.3.3 Results and Comparison 

The conventional and proposed methods are overlaid at a small test area which is 

approximately 25 km2 to represent the different and matching regions of generated slope 

units. Figure 3 presents the matching and different regions. The matching regions occupy 

1.2 km2 (Table 14).  The proposed method occupies larger area of detailed slope units as 

compared to the conventional method (Figure 75). The 3D visualization of slope units 

from both methods is illustrated in Figure 76.  

The proposed method is tested by using MATLAB® with an Intel Centrino® Duo 

Computer in windows XP®. It takes less than a minute to make all the calculations 

including re-sampling, obtaining the 4th scale, curvature calculations, thresholding, 

morphological operations and region labeling for a surface patch including 512x256 

points of nearly 50km2 area. On the other hand in the conventional method the process of 

DEM filling, flow direction, flow accumulation, stream network determination and 

watershed boundary determination requires use of different GIS tools which may take 

longer time depending on the resolution of the DEM and area of the study region. 

Considering that further performance optimization on codes is plausible and the 

complexity of the algorithm is O(n2) in Big-O notation, clearly the method is far faster 

than the conventional methods.  

 

 

 

Figure 75. The overlay of conventional and proposed method outputs. Legend: black line: 

conventional slope unit, pink line: proposed method slope unit, yellow colour: similar 

regions, blue colour: generalized units of conventional method or detailed units of 
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proposed method, green colour: detailed units of conventional method or generalized units 

of proposed method. 

 

 

Figure 76.  3D view of slope units from proposed and conventional methods Legend: 

black line: conventional slope unit, pink line: proposed method slope unit. 

 

Table 14. Similar and different slope unit areas. 

Slope Unit 
Area 

(km2) 

Matching 1.2 

Detailed in Conventional Method Detail but generalized in Proposed Method 9.55 

Generalized in Conventional Method general but detailed in Proposed method 14.62 

Sum 25.37 
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CHAPTER 8 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 
 
 
 

8.1 Conclusions 

In this thesis, a generic, scale and resolution invariant method to extract 3D features from 

3D surfaces, is proposed. The method extracts features from 3D surfaces using scale 

spaces of surface curvatures.  The basic idea behind the technique is to extract features 

independent of their scale and/or resolution, without losing the metric size information. 

The extracted features are tested for their registration, pose estimation and various 

classification capabilities. 

Studies, which use scale-space of 3D surfaces or 3D curvatures, tried to extract features 

independent of scale and/or sampling. Many of these studies followed the path of SIFT, 

thus applied the “difference of Gaussian” (DoG) approach when creating the scale-space. 

In this thesis, we approach the problem from another perspective, where connected 

components of voxels within the curvature scale-space are used. We discuss the 

advantages of using this method, and conclude that it may have advantages in terms of 

better localization and robustness to noise, according to the controlled experiments 

performed on artificial scans.  

Furthermore, the metric information, such as the metric size of a bump on a 3D surface in 

millimetres, is necessarily required for certain applications like robotics, 3D-slam or 

object recognition. Since range images provide the metric size, a feature obtained from 

these signals can have metric information. The proposed feature extraction method also 

provides this metric size information, independent of the resolution of the original image 

or the type of the scanner. Therefore, the extracted features are not just salient points on 

the 3D surface, but meaningful structures with their type, size, and orientation 

information.  
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Using the proposed scale invariant feature detector, a transform invariant surface topology 

representation was proposed. The topological representation consisted the relative 

properties of the nodes extracted from the object surface, thus it was covariant under 

certain transformations like rotation and scaling. Using this representation, we 

experimented on a number of implementations.   

Our first experiments were on 3D face detection. We have used the Bosporus database 

which includes more than 20 different poses and facial expressions of 78 subjects, which 

was very suitable for testing the proposed method against various transformations. The 

method was compared with four representative methods in the literature. The results show 

that the proposed method is more successful in terms of detection percentage, localization 

accuracy and computational efficiency compared to the other methods. 

Using another well-known 3D facial database, the FRCG v1.a, we have tested the pose 

estimation capabilities of our feature extraction method. In order to make controlled tests 

on pose estimation, virtually rotated versions of FRGC v1.a, frontal facial scans were 

created using a software constructed in our laboratory, METU-CVIS. The software was a 

3D virtual scanner program, where range scanner output can be created and exported. The 

rotations were estimated with around ±2º error in x and y axes  and ±4º error in z axes. 

Although the estimation capabilities were not fine, but coarse; the results showed that the 

representation allowed us to make a quick and efficient pose estimation of 3D faces.  

In order to test the recognition capabilities of the proposed method, a transform invariant 

n-node topology definition was also proposed. Using n largest nodes extracted from the 

3D surface, a transform invariant topology was defined. Each node represented an 

extracted feature, thus encapsulated type, size and orientation information. Before using 

this transform invariant n-node topology for recognition tests, we sought for the correct 

way to construct our curvature scale space. Since surface type definitions (such as pit, 

peak) may be defined using HK or SC curvatures, we did an initial study to compare the 

recognition capabilities of the two curvature scale spaces. Although shape index (S) was 

scale invariant in nature and mostly preferred in the literature, if curvature scale space 

were used to extract surface features, we have observed that HK curvature space gave 

better results. As a consequence of these results we have used HK curvature scale space in 

extracting our 3D surface curvatures in our succeeding experiments.  

In order to test the scale invariance and occlusion robustness limits of the proposed 

method, ¼ scaled, %25 occluded and both ¼ scaled and %25 occluded versions of these 

scans are virtually created and tested. In order to classify the object categories, geometric 
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hashing is used. So as to show the importance of scale space search of surface curvatures, 

in addition to multi-scale features, single scale features are also extracted and tested using 

the same classification method. Moreover, the results are also compared with 2D SIFT, for 

which each original, scaled or occluded range image is rendered to a gray scale image. 

For the sake of observing the benefits of using multi-scale features, the 3D features are 

extracted with and without scales-space search. First, the features are extracted using the 

conventional method, in which the surface is classified using the H and K curvatures 

obtained from the given resolution (SSFE method). Then, the features are extracted using 

the proposed multi-scale feature extraction method (MSFE method). In order to see the 

benefits of using feature point descriptors, spin images around the feature centres are also 

extracted and appended to the feature vector for both SSFE and MSFE separately. 

(‘SSFE+spin’ and ‘MSFE+spin’).  The effect regions of the spin images are designated by 

the radii of the features. 

Results prove that for scale varying databases, multi-scale features perform much better. 

The proposed method (MSFE) performs best for experiments, in which scaled range 

images are tested. If there is no scaling, single scale feature based methods (SSFE or 

SSFE+spin) are quite powerful for recognition on range images. On the other hand, 2D 

SIFT shows poor performance. Although known to be quite potent for textured images, 

SIFT proves the opposite for gray scale rendered range images. 

Results also show that using surface descriptors, such as spin images, may positively 

affect the performance of the extracted features. In experiment three, where occluded 

range images are tested, the performance of MSFE+spin is considerably higher than 

MSFE. When the range image is occluded, there are not enough quality features to 

represent the image. However, describing local surfaces with spin images when accurate 

effective regions are defined, the performance upgrades. This is not the case for SSFE and 

SSFE+spin, because the effective size extracted with single-scale features is not accurate 

and so as the surface description with spin images.  

We have also run a couple of experiments in order to evaluate the proposed representation 

for 3D object registration. For this purpose, a modified version of RANSAC algorithm 

was proposed, which used triplets of nodes. Similar to facial pose estimation, the results 

were no fine, but showed that the technique is suitable for coarse object registration. 

Finally we have used scale space of curvatures in order to detect landslide regions from 

digital elevation models. This method was compared to a conventional method 
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(watershed) which was computationally very expensive. Result showed that the curvature 

scale-spaces provide valuable enough information for successful landslide detection. 

In our final conclusions in this thesis, it is important to note that scale-space approach is 

crucial for any pattern recognition application. Recent studies show that the use of multi-

scale features is increasing. Not only the academics society but also industry is showing 

more interest in the concept. In addition, the depth information is becoming more 

important and many new hardware are being used by important industrial application, 

such as time-of-flight (ToF) cameras. Consequently, we strongly believe that research on 

this field will continue to have importance for a while. In the next section, possible future 

directions are discussed. 

 

8.2 Future Directions 

The fields of pattern recognition and computer vision have considerable number of open 

problems. In this thesis, we seek answers to some particular problems such as improved 

feature scale invariance and more robust object representations. We apply the proposed 

solutions to certain applications. Firstly, it would be a good idea to test the proposed 

methods for robotics applications where succeeding scenes are to be registered to each 

other or objects in a real-world scene are to be recognized. ToF cameras can be used for 

such experiments and capabilities of the proposed method can be evaluated. 

The experiments in thesis compares the results to 2D SIFT, using gray scaled rendered 

range images. Another way to benchmark the proposed methods would be to make 

comparisons to recently proposed methods. Although none of the recently proposed 

methods have yet become a standard as the original SIFT, such a comparison might give 

better clues on performance. 

Another important contribution to the literature would be the construction of a scaled 

database, where real-world objects in cluttered environments are scanned. There are such 

samples of range images, however evaluating methods using a few images is generally not 

the sufficient way to understand their capabilities. Thus massive range images or ToF 

sequence databases of scaled objects within cluttered scenes will enable the researcher to 

build proper methods that can be used in real world robotics applications. 
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