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Information Systems Dept., METU

Dr. Onur Tolga Şehitoğlu
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ABSTRACT

DEVELOPMENT OF A GRID-AWARE MASTER WORKER FRAMEWORK FOR
ARTIFICIAL EVOLUTION

Ketenci, Ahmet

M.Sc., Department of Computer Engineering

Supervisor : Dr. Cevat Şener

December 2010, 66 pages

Genetic Algorithm (GA) has become a very popular tool for various kinds of problems, in-

cluding optimization problems with wider search spaces. Grid search techniques are usually

not feasible or ineffective at finding a solution, which is good enough. The most computa-

tionally intensive component of GA is the calculation of the goodness (fitness) of candidate

solutions. However, since the fitness calculation of each individual does not depend each

other, this process can be parallelized easily.

The easiest way to reach high amounts of computational power is using grid. Grids are com-

posed of multiple clusters, thus they can offer much more resources than a single cluster. On

the other hand, grid may not be the easiest environment to develop parallel programs, because

of the lack of tools or libraries that can be used for communication among the processes.

In this work, we introduce a new framework, GridAE, for GA applications. GridAE uses the

master worker model for parallelization and offers a GA library to users. It also abstracts

the message passing process from users. Moreover, it has both command line interface and

web interface for job management. These properties makes the framework more usable for

developers even with limited parallel programming or grid computing experience. The per-
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formance of GridAE is tested with a shape optimization problem and results show that the

framework is more convenient to problems with crowded populations.

Keywords: Genetic Algorithms, Grid Computing, Master Worker Model
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ÖZ

YAPAY EVRİM İÇİN GRİD TABANLI USTA İŞÇİ ORTAMI GELİŞTİRİLMESİ

Ketenci, Ahmet

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Cevat Şener

Aralık 2010, 66 sayfa

Genetik algoritmalar (GA), geniş arama uzayları olan optimizasyon problemleri de dahil

birçok çeşit problem için çok popüler bir araç halini aldı. Izgara arama yöntemleri, yeterince

iyi bir sonuç bulmada genellikle uygun yada verimli değildir. GA’nın en yoğun hesaplama

gereken parçası aday çözümlerin iyiliğinin hesaplanmasıdır. Ancak, her bir bireyin iyiliğinin

hesaplanması diğerlerinden bağımsız olduğundan, kolaylıkla paralelleştirilebilir.

Yüksek miktarda hesaplama gücüne ulaşmanın en kolay yolu gridi kullanmaktır. Gridler

birçok bilgisayar kümesinin birleşiminden oluştuğu için, tek bir bilgisayar kümesinden çok

daha fazla kaynak sunarlar. Öte yandan, grid, koşut programlar geliştirmek için, işlemler

arasında haberleşmede kullanılabilecek araç veya kütüphane eksikliği sebebiyle, en kolay

ortam olmayabilir.

Bu çalışmada GA uygulamaları için GridAE adında yeni bir uygulama geliştirme ortamı

sunuyoruz. GridAE koşutlaştırma için usta işçi modelini kullanıyor ve kullanıcılara bir GA

kütüphanesi sunuyor. Ayrıca, mesaj geçiş işlemini de kullanıcıdan soyutluyor. Bununla bir-

likte, iş yönetimi için hem komut satırı hem de ağ arayüzlerine sahiptir. Ortamın bu özellikleri

onu, hiç koşut programlama yada grid hesaplama tecrübesi olmayan kullanıcılar için bile

daha kullanışlı kılıyor. GridAE’nin performansı bir şekil iyileştirme problemi ile denendi ve
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sonuçlar gösteriyor ki ortam, kalabalık popülasyonlu problemlere daha uygundur.

Anahtar Kelimeler: Genetik Algoritma, Grid Hesaplama, Usta İşçi Modeli
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CHAPTER 1

INTRODUCTION

The need for computational power is constantly increasing and computer clusters are becom-

ing more affordable for research institutions. Therefore, parallel programming is gaining more

importance and attraction. There are many standards, tools and libraries available for paral-

lel application developers. These provide higher level methods for communication among

parallel threads and/or processes.

There exist various problems where a single cluster sometimes does not provide necessary

computational power. Therefore, the number of parallel processes that should be executed for

these problems, is generally quite high. On the other hand, the number of processors that a

single user can use simultaneously is limited. For some problems, where it is very difficult (if

not impossible) to find the best possible solution, using higher number of processors increases

the quality of solution. Therefore, computer grids are significantly more suitable than clusters

for these kind of problems.

Computational grids are formed by multiple clusters which are connected by high speed net-

working means. A computer grid has three major components, namely computing elements

(CEs), storage elements (SEs) and user interface machines (UIs). CEs are the components

that carry out the computations. Each CE can be considered as a cluster in the grid. They

have a master node that accepts jobs and distributes them to the worker nodes. Moreover,

grids are used for sharing large amounts of data. Researchers working on the same subject

can store their data on SEs and use simultaneously. The storage of data produced by Large

Hadron Collider (LHC) of CERN (European Organization for Nuclear Research) is an exam-

ple of this kind of usage. The collider will produce 15 petabytes of data that scientists can

reach every year [4].
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In order to use the grid resources, one should acquire a grid certificate from a Certificate

Authority and have a user account on a grid UI machine. From a UI, the user can submit a

job on a CE or upload a file to a SE. A job consists of an executable and a file which contains

information about the job, written in Job Description Language (JDL). The job management

is done through the middleware which is a special software installed on grid components

managing the coordination of these resources which are usually heterogeneous.

Genetic Algorithm (GA) is a search technique inspired by Darwinian evolution. Natural se-

lection and survival of the fittest paradigms are used in the algorithm. Candidate solutions

of a problem constitute a population, each of them being an individual in it. The solution is

encoded in a data structure called the chromosome. And, each meaningful component of the

chromosome is called a gene. For instance, if we have an optimization problem at hand, a set

of parameters constitutes a chromosome and each parameter is a gene in that chromosome.

The algorithm starts with generating the first set of individuals which forms the first generation

randomly, which is called initialization of the population. The goodness (fitness) of these

candidate solutions (individuals) are measured with a fitness function which usually generates

a numeric value for each individual, so that they can be compared. Obviously, the fitness

function is always specific to the problem that the algorithm deals with. With the fitness

values at hand, some of the individuals are selected to be the parents of the next generation.

The selection can be performed in many ways, but it should favor the better individuals,

because better individuals are more likely to produce better offsprings. The reproduction

is performed by exchanging genes between chromosome pairs, and this exchange is called

crossover. After the crossover, some of the genes of the offsprings can be modified randomly

by simulating mutation. Like selection, crossover and mutation can be performed in many

different ways. The offsprings constitute the next generation which is to be evaluated by the

fitness function. This process continues until a predefined desired fitness value or a specific

generation count is met.

Depending on the problem, the fitness calculation of an individual may take considerable

amount of time. Most of the real world search problems fall into this category. This is one of

the reasons that GA is preferred to grid search techniques. Moreover, since these calculations

are not dependent on each other, the fitness calculation can be performed parallel on multiple

processors .
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There are three common parallelization models in GA. The first one is called the island model.

The population is divided into subpopulations each of which is assigned to a different proces-

sor and these subpopulations evolve independently for the island model. However, there exist

transfers of individuals between subpopulations during the evolution. The second one is the

master worker model. In this model there is a single population and the master process dis-

tributes the individuals to workers at each generation. Then, the workers calculate the fitnesses

and return back the results. The final model is a hybrid of the first two in which each subpop-

ulation uses master worker model for fitness calculations. The island model is more suitable

to parallel programming since the communication among the processes is limited. However,

this model does not give the best results for all problems.

The research on parallel GA can be classified in three categories according to the architecture

of the computational resource and network connecting them. Peer to peer (P2P) parallel

GA usually uses dedicated processing power of personal computers. The Internet is used

as the network channel for communication. Others use a single cluster to achieve higher

speeds for communication. There are well known GA frameworks that can run on clusters

like Distributed BEAGLE [17] and Parallel GAlib [1]. There are also examples on grid, which

are generally implemented to solve specific problems and require a software to be installed

on CEs. Moreover, researchers usually form their own grids from clusters that are dedicated

to them.

As stated above, there are good parallel GA frameworks for cluster computing. However, for

many real life problems, resources that a single cluster can offer to a single user may not be

enough. Moreover, the amount of computational power can be very important for the quality

of the solution where grid is a better alternative for these kind of problems.

There are two major problems that stand between the application developers and grid. The

first one is the difficulty of parallel programming. The management of the communication

between the processes can be very difficult, bothersome and time consuming especially for

the developers who are inexperienced in parallel programming. This process is even more

difficult on grid since there are not any tools or libraries for the interprocess communication.

The second factor is the unfamiliarity with grid. In order to use grid resources, the developers

should be familiar with the interface of the middleware and the JDL.

With this motivation, a C++ framework, GridAE, is developed aiming to eliminate these

3



factors and make grid more reachable for GA developers. The framework adapts master

worker model and uses the CEs to run the workers. The resources of South East European

Grid (SEE-GRID) and Turkish Grid (TR-Grid) are used. GridAE offers both command line

interface (CLI) and web interface ported on P-GRADE Portal.

In GridAE, the master initializes the population, distributes the individuals as tasks to workers,

performs genetic operations (selection, crossover and mutation) and stops evolution according

to the criteria specified by the user. The workers are only responsible for the fitness calculation

of the individuals they receive. They continue waiting tasks until master instructs them to stop.

Users are provided with high level functions that carry out the communication process which

is performed by means of TCP/IP sockets, internally. The interfaces are designed to address

the issues of users unfamiliar to grid computing and eliminate the need to communicate with

the middleware.

GridAE also offers a GA library that includes common genetic operations (roulette-wheel

selection, rank selection and tournament selection as selection methods, one point, two point

and uniform crossover as crossover methods and finally point and swap mutation as mutation

methods) and supports array chromosomes of integer and real number genes. The users can

also implement and use their own operators. If these operators are suitable for the application

of the user, then the only thing user should provide is the fitness function.

The user should provide two source files to GridAE written in C++ for the master and the

worker processes. In the master’s source file, the type of chromosome should be specified and

the population should be initialized. The functions that GridAE is going to use for selection,

crossover and mutation should be set and evolve method of the library has to be called in the

main function of the master. Furthermore, the worker’s source code has to contain the fitness

function which should be specified in the main, before the do calculate method of the library

is called. Besides, the framework uses a parameter file to configure the GA which contains

parameters like population size, target fitness and worker number that should also be provided

by the user. The details about these three files will be given in the Chapter 3.

This chapter will be followed by background and literature survey in which more details about

GA, parallel programming, grid computing and P-GRADE Portal will be given in addition to

selected works on parallel GA. The next chapter introduces the framework in detail with its

features, architecture and usage. After that, a chapter is reserved for implementation details

4



like the class hierarchy of the GridAE library and implementation approaches for the commu-

nication process. The following chapter explains a missile shape optimization problem which

is used as a test case for GridAE. The problem, its solution and results are discussed in that

chapter. Finally, the last chapter concludes this thesis.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

Nowadays, most of the engineering problems are stated in the form of an optimization prob-

lem. Therefore, lots of optimization algorithms take place to solve these optimization prob-

lems. Genetic algorithm is one of the most popular stochastic optimization algorithms. The

most important property of GA is to use wide search space instead of the deterministic opti-

mization techniques. In this chapter information on genetic algorithms, parallel programming

and grid computing are briefly introduced. In addition to that, the usage and general descrip-

tion of P-GRADE Portal also takes place here, since web interface of GridAE is ported on

P-GRADE Portal. At the end of this chapter some of the selected examples on literature about

parallel genetic algorithms are presented. Overall, this chapter is intended to help the reader

to get a better understanding of this thesis.

2.1 GENETIC ALGORITHMS

Genetic algorithms (GA), introduced in 1975 by Holland [19], is a member of evolutionary

algorithms class in which natural evolution paradigm is adapted to computation. Concepts like

natural selection, crossover (exchanging genes) and mutation are all simulated and applied

over some data structures representing individuals. The algorithm is used in many different

areas where the problem can be specified as an optimization or a search problem.

In GA, a candidate solution of the problem is generally represented with an array of num-

bers or a graph-like data structure which is called a chromosome. Initially, a collection of

chromosomes is randomly generated and it forms the first generation of the so called popula-

tion. Then, the population starts to evolve until the best individual(s) is suitable to be taken

6



as the desired solution. At each generation the following steps are performed to build up the

new generation. The goodness of each chromosome is calculated with the help of a fitness

function which is specific to the problem and the individuals are sorted according to the fit-

ness values. In order to produce the offsprings some of the individuals are selected and there

are many selection techniques available. The most popular selection techniques are rank se-

lection, tournament selection and roulette wheel selection. All of these techniques favor the

better individuals like natural selection. From the selected two individuals, two new individ-

uals are produced with crossover and mutation operations. Crossover is performed between

the individuals and involves exchanging respective parts of their chromosomes. On the other

hand, mutation operation is applied on a single individual and is usually less destructive, like

flipping a value in a boolean array or swapping two values in a permutation array. The aim of

applying crossover and mutation is to enlarge the search space. Both of these operations are

carried out in predefined probabilities.

It was not Holland who first thought of adapting natural evaluation to computation. The idea

first appeared during the late 1950’s and early 1960’s [9] [10]. In these years, this idea was

used to solve optimization problems by researchers.

In 1965, German computer scientist Ingo Rechenberg developed a method and named it as

”evolution strategies” to solve aerodynamic design problems [27]. In this method, he used

only one candidate solution in the population and performed only a mutation operator on

this candidate and kept the better one (among the original and mutated ones) for the next

generation.

The next important step came from Fogel, Owens, and Walsh (1966) [13]. They introduced

the concept of evolving computer programs. Individuals were finite state machines and they

were mutated to generate new individuals. This technique was called ”evolutionary program-

ming”. Again, at the beginning, the population consisted of a single individual. Today, both

evolution strategies and evolutionary programming are active research areas.

The introduction of crossover as a genetic operation along with mutation began with Holland

and in his book, ”Adaptation in Natural and Artificial Systems”, he also developed a theoreti-

cal basis with schemata theory for genetic algorithms. Therefore, he is referred as the inventor

of genetic algorithms [24]. After that, genetic algorithms are used in a wide range of areas

and proved to be very powerful.
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To solve a problem using genetic algorithms, the following items should be stated:

• the representation of the candidate solutions

• the selection method

• the crossover method and the crossover percentage

• the mutation method and the mutation percentage

The following subsections give preliminary information about determination of the items

above.

2.1.1 REPRESENTATION OF INDIVIDUALS

Representation of individuals in genetic algorithms is a very crucial step. Different choices

may lead to unexpected success rates. The genotype of an individual is stored in its chromo-

some. Each piece of information of chromosome comes from a gene. Therefore one should

first decide what a gene in the problem is. For instance, each parameter should be a gene for

an optimization problem. Numeric values can be used to show each gene, thus a floating point

variable in the problem can be assigned to represent this gene.

Once the representation of genes is determined, the data structure to represent the chromo-

some which holds the gene should be determined. Again, for an optimization problem each

gene is represented with a floating point number, thus a floating point array is probably a

good choice. However, representation of genes and chromosomes is not always easy like this,

therefore it is better to introduce the most common examples before deciding on one, starting

with the following paragraph.

Bit strings

Representing individuals with binary encoding is the simplest of all representation methods.

Holland used this representation for developing the theory behind genetic algorithms [24].

Most of the well known genetic operators (crossover and mutation) are convenient with this

representation. Because of these, bit strings are very suitable for educational purposes. On

the other hand, for many problems, this representation is inadequate. An example of a bit

string chromosome can be seen in Figure 2.1.
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1 1 0 1 1 0 0 1

Figure 2.1: An 8-gene bitstring chromosome

Integers and floating point numbers

Most optimization problems are focused on finding the best values of the variables which

usually take integer or real values. Therefore bitstrings are not suitable for this kind of prob-

lems. An array of numbers can represent an individual, where each gene can be integer or a

floating point number. Each gene should be able to take their values from their own range of

numbers. Figure 2.2 demonstrates this kind of chromosome. Range of each gene also has to

be restricted, because it is crucial for the mutation operation. For the example chromosome

in Figure 2.2, range of each gene can be determined as in the Table 2.1.

0.12 74 -1 22.2 3.4 4 -12 0.3

Figure 2.2: An 8-gene chromosome consisting of integers and floating point numbers

Table 2.1: The minimum and maximum values for each gene

Gene min max
Gene 1 0 1
Gene 2 1 100
Gene 3 -1 1
Gene 4 10.5 24.2
Gene 5 2 4.5
Gene 6 1 12
Gene 7 -100 0
Gene 8 0 1

Other data structures

Sometimes candidate solutions are more structured in their nature to be represented by pure

numeric values. Evolving computer programs is an example of that kind of problem, for
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which representing an individual with a tree like data structure is more convenient. The

genetic operators have to be selected properly for the representation.

The theoretical work is mainly on the representation types mentioned here. Also, many well

known genetic operators are suitable for these too. Yet, each particular problem may have its

unique representation which will be easier to adopt and yield better results.

2.1.2 SELECTION METHODS

During the evolution, each generation will leave its place to the next one. This takes place

by generating offsprings from the current population. One should decide which individuals

are going to be used for this process. The natural evolution offers to use the fittest individuals

as much as possible. On the other hand, this may decrease the diversity and the population

may stick at a local maxima. Therefore, the selection method of the individuals has to be

determined carefully. The popular selection methods are briefly discussed below.

Roulette-wheel selection and stochastic universal sampling

In roulette-wheel selection method, probability of an individual to be selected is proportional

to its fitness. The roulette wheel is divided into pieces. The number of the pieces is equal to

the population size, and each of them represents an individual. Though, unlike a fair roulette

wheel, the sizes of these pieces are proportional to the fitnesses of the individuals. Hence,

the individual with the best fitness value has the biggest piece on the wheel and a higher

probability to be selected.

Although roulette-wheel selection seems to be fair and solid, a problem may be encountered.

After an unlucky set of spins of the wheel, the selected individuals may be the ones with

worse fitness values. This more likely takes place when the population size is relatively

small. Stochastic universal sampling is introduced to overcome this problem. The wheel only

spins once in the extended method but there are multiple pointers to select the individuals.

The number of pointers is equal to the number of desired individuals to be selected, and the

pointers are evenly placed on the wheel. With this method, actual selection frequency of an

individual is nearer to its expected value, compared to the roulette-wheel selection.
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Rank selection

Rank selection method is similar to roulette-wheel selection except that the selection proba-

bilities of individuals are proportional to their rank among the others in the generation rather

than their pure fitness values. Therefore the differences between fitness values of individuals

do not matter.

The advantage of this method is that it does not let extremely better individuals dominate the

next generation in the early generations and lead to premature convergence. Moreover, in

the later generations, the differences between the fitness values of individuals may decrease.

When using roulette-wheel selection, this situation decreases the effect of better individuals.

Conversely, rank selection preserves importance of better individuals.

Tournament selection

Tournament selection method is quite different from the methods mentioned up to now. In

this method n (called tournament size) individuals are randomly selected from the population.

The best one according to their fitness values is selected to be a parent for the next generation.

Increasing n will decrease the chance of bad individuals to be selected.

There is also an alternative implementation of this algorithm, where n = 2 and another pa-

rameter (say k) is introduced. k should be chosen between 0 and 1. For each tournament a

random number which is also between 0 and 1 is taken. If this number is smaller than k, the

better of the individuals is selected, and otherwise the worse one. Setting k = 1, will lead to

the same algorithm described above, where n = 2.

Elitism

Elitism is actually not a selection method by itself. However, it can be used with selection

methods to improve the quality of the next generation. Elitism lets some of the best individuals

be carried to the next one without being subjected to crossover or mutation. Although elitism

improves the performance for most of the problems, the amount of individuals that will be

carried the next generation should be decided carefully. Too much elite individuals may

decrease diversity.
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2.1.3 CROSSOVER METHODS

After selection of the individuals, the next generation should be formed by reproduction. The

individuals are coupled to be the parents of the new offsprings. The offsprings take their

chromosomes from their parents. The parents exchange some parts of their chromosomes to

produce new chromosomes. This process is called crossover. With crossover, new individuals

are created without losing the genes yielding better fitness values of the selected individuals.

Therefore, it is one of the most important parts of genetic algorithm.

There are many ways to perform crossover. The most popular methods on array like chromo-

somes are one point crossover, two point crossover and uniform crossover.

1 1 0 1 1 0 0 1

0 1 1 1 1 1 0 0

1 1 0 1 1 1 0 0

Figure 2.3: One point crossover

In one point crossover, position of a gene on the chromosome is randomly selected and the

offspring gets the genes before that position from one of the parent and the rest come from

the second one as shown in Figure 2.3. The number of random positions is two for two point

crossover. The offspring inherits the genes between these positions from one of the parent and

the rest from the second one (Figure 2.4). Finally, uniform crossover takes the genes with odd

numbered position from one of the parent and even numbered from the other one as illustrated

in Figure 2.5.

If the chromosome is encoded with a tree structure, then the methods mentioned up to now

will not work. One of the common crossover methods for trees is exchanging branches. Two
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1 1 0 1 1 0 0 1

0 1 1 1 1 1 0 0

1 1 0 1 1 1 0 1

Figure 2.4: Two point crossover

1 1 0 1 1 0 0 1

0 1 1 1 1 1 0 0

1 1 0 1 1 1 0 0

Figure 2.5: Uniform crossover

random branches are selected from the parents and one of them is replaced with the other one

as shown in Figure 2.6 to form the new individual.

The crossover method has a significant effect on the performance of the genetic algorithm.

However, it is not easy to determine which method gives better performance. Different meth-

ods may lead different results for a problem, even if the same representation is used. It may

be helpful to observe the evolution in the early generations with different methods and decide

which method will be used afterwards, if the whole process takes too much time.
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Figure 2.6: A crossover method on trees

2.1.4 MUTATION METHODS

Using crossover as the only genetic operation is usually not enough. Most of the crossover

methods only change the gene combinations. If the initial population does not have a partic-

ular value on a gene, then it is not possible to see this value on the final solution. Mutation

operation lets the algorithm to introduce new genes to the evolution process. It also decreases

the probability of being stuck around a local maximum with jumps to another place on the

search space.

Mutation is performed on a single chromosome and usually affects a small number of genes.

It can be done in different ways on different chromosome representations. On a bitstring,

inverting the value of a randomly selected gene is the most common way as shown in Figure

2.7. For integer and floating point array representations, the value of a gene can be changed

with another randomly generated number.

1 1 0 1 1 0 0 1

1 1 0 1 1 1 0 1

Figure 2.7: Point mutation
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2.2 PARALLEL PROGRAMMING

In order to shorten the running time of a program, one should either use a faster processor or

multiple processors simultaneously. Multiple processors can only be used, when the running

program is designed and implemented by taking this fact into consideration. Therefore, it

seems easier to run a program on a faster computer but this is not the case. The technological

development of microprocessors is hindered by physical limitations such as the sizes of tran-

sistors and other electronic units and overheating. On the other hand, multi-core technology

progressed rapidly, even more personal computers include two or four core microprocessors

nowadays.

Since it is getting more affordable to acquire a computer cluster, the importance of parallel

programming is increasing. The libraries, tools and APIs are developed in order to help users

parallelize their programs. Some of them, such OpenMP and POSIX threads, are useful for

thread level parallelism to utilize multiple cores of a CPU. Other libraries like PVM and MPI

are developed to benefit from multiple CPUs on different computers within the same network.

There are mainly two different parallelization types, namely data parallelism and task paral-

lelism. In data parallelism, data is fragmented and distributed to the processors to be pro-

cessed. The parallel processes usually do the same thing on the data they receive. Therefore,

this type of parallelism is relatively easier to implement. A GA implementation which dis-

tributes the fitness calculation of individuals is a good example of data parallelism. In order to

achieve task parallelism, the program should be divided into subtasks which does not depend

on the results of each other; but it is usually very difficult (if not impossible) to achieve this.

When discussing the performance of a parallel program, two concepts are usually referred.

First one is speedup which is defined by the following formula:

S n =
T1

Tn
(2.1)

where n is the number of processors, T1 is the running time of program on a single processor

and Tn is the running time of the program with n processors. It is desirable to achieve S n = n

as n increases, which is called linear speedup but it is a very difficult goal to achieve. The

second one is efficiency which is given by:
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En =
S n

n
(2.2)

where n is again the number of processors and S n is the speedup with n processors. Efficiency

is between 0 and 1 and gives an idea about the utilization of the processors.

2.3 GRID COMPUTING

In this section, an introduction to grid computing is given. The grid structure is summarized

with additional information. The usage of grid is also addressed in this section.

2.3.1 DEFINITION AND GENERAL INFORMATION

Computer clusters are formed by connecting computers using a high speed network. These

computers are very close to each other, usually in the same room. A cluster has a single

interface for its users. Through that interface, it operates like a single computer with many

processors. A computer grid can simply be described as a cluster of clusters. It is constituted

by geographically distributed computer clusters and a network connecting them. A more

formal definition of grid comes from Kesselman and Foster [23]: ”A computational grid is

a hardware and software infrastructure that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities.”

Foster stated a three point checklist to clarify which computing systems should be called a

grid system and which ones should not [15]. According to that checklist a grid system should

have the following properties:

• The administration of the resources are distributed which distinguishes grid from local

management systems.

• Standard and open protocols are used which distinguishes grid from the systems that

are specific to an application.

• Nontrivial qualities of service is delivered.
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Middlewares are special softwares used in grid computing that aim to maintain the consis-

tency among the resources that are heterogeneous and managed by different local organiza-

tions. They also provide user interfaces for job and data management. Globus Toolkit, gLite,

UNICORE and ARC are major grid middlewares. Grid systems also include information ser-

vices and resource brokers. The resources of grid are registered to grid information services

and grid resource brokers use these information services in order to answer the users’ needs

when they submit a job with requirements on resources.

The grid structure has three main components. First one is the computing elements (CE). CEs

accept jobs from the job manager and runs the jobs on its working nodes (WN). A CE can be

identified as a cluster which is a part of grid. The second one is the storage elements (SE).

SEs have large amounts of disk space and store data of the users. SEs allow grid to be used

not only for computational purposes, but also for sharing large amounts of data. Multiple

users can have permission to access the data stored by a user. Thus with the help of the grid,

researchers from different locations can work on the same data together. The last one is the

user interface (UI) machines where grid users have accounts on. The users can connect to

these machines remotely and carry out job and data management.

Grids allow many computationally complex problems in different scientific areas including

medicine, astronomy, economics and physics to be solved. Current projects include BIRN

(Biomedical Informatics Research Network) which aims to improve the diagnosis and treat-

ment of human diseases like schizophrenia, depression and brain cancer [22]. There also

exist large scaled projects in order to predict climate changes, better understand the magnetic

fusion and simulate earthquakes.

This project was a part of SEE-GRID2 (South East European Grid) project [6]. Therefore,

during every phase of this research, SEE-GRID resources are used. SEE-GRID2 has eleven

partners, including, Greek Research and Technology Network (GRNET), European Organi-

zation for Nuclear Research (CERN), Institute for Parallel Processing (IPP, Bulgaria), Roder

Boskovic Institute (RBI, Croatia), Faculty of Electrical Engineering Banja Luka (UoBL,

Bosnia and Herzegovina), Parallel and Distributed Systems Laboratory (SZTAKI, Hungary),

Academy of Sciences-Institute of Informatics and Applied Mathematics (ASA-INIMA, Al-

bania), National Institute for Research and Development in Informatics (ICI Bucharest, Ro-

mania), Ss Cyril and Methodius University in Skopje (UKIM, Macedonia), Research and Ed-
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ucational Networking Association of Moldova (RENAM), University of Montenegro (UOM),

University of Belgrade (UOB, Serbia) and The Scientific and Technological Research Council

of Turkey - Turkish Academic Network and Information Center (TUBITAK ULAKBIM).

2.3.2 HOW TO USE GRID

The usage of grid can be described in two parts.

Preliminaries

First of all, the user should introduce himself/herself to the grid community, and prove that

he/she is who he/she claims to be to a certification authority (CA). TUBITAK ULAKBIM is

one of these authorities. The full list of CAs can be found here [7]. The user will be given

an X.509 certificate by the CA. The certificate is usually installed the user’s web browser and

it should be exported. The exported certificate usually has .p12 extension. From this file the

user should generate two files (namely usercert.pem and userkey.pem) using openssl [5].

The next step is acquiring a user account from a grid UI machine. When declaring the request

to use grid, the administrators guide the prospective user on how to get an account. After

getting the account, the files usercert.pem and userkey.pem should be transferred to the UI

machine under the .globus directory which is in the home directory of the user.

After that step, the user should get a membership from a virtual organization (VO). A VO

is actually representing a group of people or institutions sharing resources of grid. These

resources are not only computers but also can be software, data, file and other resources.

The resource sharing has to be defined clearly between the members of the VO and controlled

strictly. The things that can be shared and by whom have to be determined. The purpose of this

sharing and constitution of a VO is usually to solve a problem emerged in industry, science or

engineering [14]. By being a member of a VO, the user can use the resources reserved for this

VO. An example of VOs is the SEE-GRID VO which includes the developers of the projects

that are part of the SEE-GRID2 project.

Finally, a user proxy should be created on the UI machine with voms-proxy-init command.

Although the certificates usually have one year lifetime, the proxies last for twelve hours and

should be renewed when it dies.
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Job management

In order to run a job on a CE of the grid, first of all a file that includes information about

the job has to be prepared. This file has its own syntax and called JDL (Job Description

Language) file. It has .jdl extension and is filled with the lines in the following format:

attribute = expression;

Here is an example of a jdl file:

Executable = "myprog.sh";

Arguments = "inputfile 10";

StdOutput = "out";

StdError = "err";

InputSandbox = {"myprog.sh", "inputfile"};

OutputSandbox = {"out", "err"};

From this JDL file, it can be understood that the files that are going to be transferred to the

CE are myprog.sh and inputfile and the executable is myprog.sh and it will be run with two ar-

guments, inputfile and 10. Moreover, it is indicated that the standard output and error streams

will be redirected to files named out and err respectively and they should be transferred back

to the UI machine. Some of the most common JDL attributes can be found in the Table 2.2.

For a complete list and more information please see here [2].

Once the JDL file is ready, the job can be run on a CE. Grid middleware interfaces are used

for job management and gLite middleware is installed on SEE-GRID. The gLite commands

used for basic job management are detailed in Appendix A.

2.4 P-GRADE PORTAL

P-GRADE Portal is a web based framework for job and data management on grid [21]. The

user can also relate the jobs to each other by defining workflows. It is a free tool to use but

the user should have an account on the portal. The portal has a user-friendly GUI developed

with Java. Before submitting a job, the certificate files of the user have to be uploaded to a
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Table 2.2: Most common JDL attributes and their meanings

Attribute Meaning
Executable The name of the executable
Arguments The arguments of the executable
InputSandbox The files that will be sent to CE
OutputSandbox The files that will be received by UI
StdOutput The name of the output file
StdError The name of the error file
Environment The environment variables and their values
VirtualOrganisation The VO of the user
Requirements Specifies the attributes that the CE should sustain
RetryCount The number of times that the job should be resub-

mitted if it fails after starting running
ShallowRetryCount The number of times that the job should be resub-

mitted if it fails before starting running

myproxy server and a proxy has to be created through the interface. Certificate files should

be ready on the local machine of the user and can be uploaded in the following way:

1. Go to Certificates tab

2. Click the Upload button

3. Click Browse

4. Find your userkey.pem file

5. Write your certificate password

6. Click Browse again

7. Find your usercert.pem file

A proxy can be created from the same tab with clicking Download button. The certificate files

will be on the server until their lifetime expires. Therefore, file uploading is only required

when the portal is used for the first time.

2.5 PARALLEL GA

Parallel GA is classified into three main categories [11]:

20



Single Population Master Worker GA

In this type of GA, there is only one population and all individuals are in it. The parallelism is

used for fitness calculations of individuals. These calculations are carried out by the workers

and selection and recombination are performed by the master. The master is also responsible

for task distribution.

Single Population Fine Grained GA

This type of GA is mostly suited for massively parallel computers. Each processor usually has

one individual and selection and recombination operations are performed with the neighbor

individuals to achieve higher speed.

Multi Population (Deme) Coarse Grained GA (Island Model)

The population is divided into subpopulations (demes) in this type of GA and each subpop-

ulation is evolved on a single processor. The subpopulations usually exchange individuals

which is called migration. This type is the most popular among researchers, mostly because

of the fact that the computation/communication ratio is bigger in this type of GA than the

other types.

The examples of parallel GA applications can be classified in three categories according to

the distribution types of the resources used: (1) Peer to peer (P2P), (2) Cluster and (3) Grid.

2.5.1 EXAMPLES OF PARALLEL GA WITH P2P COMPUTING

There are two notable examples in this category. Both of them are frameworks for distributed

evolutionary algorithms. The first one is named DREAM (Distributed Resource Evolution-

ary Algorithm Machine) [8]. The framework is placed on another framework designed for

distributed applications [20] which uses P2P computing methodology to distribute the com-

putation. It offers a graphical user interface (GUI) to its inexperienced users. With the help

of this interface the users specify the properties of their GA program and then the framework

transforms this information into Java codes. It also lets experienced Java programmers to

implement their GA in Java using offered libraries.

The second example is named Paladin-DEC (Distributed Evolutionary Computing) and uses
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the Internet as the communication mean [28]. The software is Java based and uses Java

Message Service (JMS) for information exchanging and Java Genetic Programming (JGProg)

Package. The island model is used and communication is required during migrations.

One of the drawbacks of these P2P frameworks is that they need other users to donate their

computational power to the ones who need it. Moreover, the denoted computational power

will mostly come from personal home / work computers with relatively slow CPUs and net-

work connections compared to grid resources.

2.5.2 EXAMPLES OF PARALLEL GA ON A SINGLE CLUSTER

First example of this type of parallel GA is Distributed BEAGLE [17]. It is an extension to

Open BEAGLE [16] framework. Open BEAGLE is a C++ evolutionary computation frame-

work which offers many classes and methods for its users. Although the Distributed BEAGLE

uses master slave paradigm, it implements the island model. There are two kinds of workers

in the architecture: (1) evolver carries on the selection and reproduction process of a sub-

population. The number of evolvers is equal to the number of subpopulations. (2) Evaluator

only performs fitness calculation of individuals. The number of evaluators are much more

than the number of evolvers and can be up to the number of individuals in the population. The

communication is handled with TCP/IP sockets and the framework performs well on Beowulf

clusters.

Another example comes with GAlib (Genetic Algorithm Library) [1]. GAlib is a free C++

library that supports most of the common representation types and includes many genetic

operators. It also allows users to define their own chromosome type and methods for selection,

crossover and mutation. The library also supports parallel evolution with the help of PVM.

Both the single population master worker model and the island model can be implemented.

However, the parallel programing part is not abstracted from the user. Therefore, initialization

and message passing have to be dealt with by the user using PVM function calls.

2.5.3 EXAMPLES OF PARALLEL GA ON GRID

Grid and Parallel GA were used together to solve different problems in the past. For instance,

Nebro et al. used GA and solved large DNA fragment assembly problems in feasible times on
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grid [25]. A DNA sequence of 77292 base pairs and 773 fragments, successfully concatenated

within hours with the software (GrAE) they developed. GrAE is a grid based software for

DNA assembly problem. The researchers constructed a grid of up to 150 computers. The

computers in the grid were owned by different people and they had Condor software [29]

installed. Condor lets the owners to contribute to the grid when the CPUs of their computers

are idle. The communication is handled by a library called Master Worker (MW) [18] This

library is installed on top of Condor and offers message passing routines for the developers

who use master worker paradigm for their applications.

Durille et al. formed a grid of 330 processors from the Computer Science Department of the

University of Malaga to investigate the performances of different parallel GA approaches on

multi objective problems [12]. MOPs do not have a simple unique fitness function and the

goodness of individuals depends on multiple objective functions. A better individual accord-

ing to one of the objectives may be worse than the others when other objectives are considered.

Since the authors have administrative privileges on the computers, they could have installed

their software on them. A software tool called Sporrow is used for task management. This

tool is similar to MW except that it is based on Java.

In these two examples, the computers were direct members of the grid rather than being

member of clusters that constitute the grid. However, in this final example, the grid is formed

by clusters. Ng et al. developed a grid based parallel GA framework to solve aerodynamic

airfoil design optimization problems which is based on Globus [26]. They have used the island

model as the design pattern. The architecture of the framework can be summarized as follows:

The subpopulations are assigned to clusters forming the grid. The server communicates to

single nodes of each cluster on which selection and reproduction of subpopulations are carried

out. These master nodes distribute the fitness evaluation task to the other nodes on the same

cluster. Fitness evaluation is performed by software services that run on working nodes.

These services are specific to the problem, therefore they should be provided by the users

of the framework. Since there does not exist a connection among these master nodes, the

migration occurs through the server. The authors had three clusters to use, provided by the

Nanyang Technological University. The master nodes had an agent process running on them,

which handled the job management and genetic operations.

These examples show that parallel GAs are suitable to grid and can be very efficient. However,
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in all of these examples, the researchers were able to manage the computers in the grid; there-

fore, they could install necessary software on them. When we look at the users’ perspective,

it is very difficult to find this many resources to set up a grid for a specific purpose.
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CHAPTER 3

PROPOSED SOLUTION

In this chapter, GridAE is described in detail, beginning with its features. These features

point out the differences between the most similar studies discussed in the previous chapter

and GridAE. Furthermore, the architecture of the framework is detailed and the operation

principle of GridAE is revealed with a section in this chapter. The last section of this chapter

is dedicated for the prospective users, explaining the usage of framework with examples.

3.1 FEATURES

While most of the parallel GA applications and frameworks use the island model, GridAE

uses the master worker model. The island model is usually preferred because of its higher

computation / communication ratio. However, not all problems give good results with this

model. Moreover, most of the serial GA applications use single population evolution. Adapt-

ing those applications to the island model requires additional effort. GridAE is suitable for

these serial GA applications. Additionally, the framework also achieves good scalability in

spite of using the master worker model (see Chapter 5).

GridAE library uses an array of genes to represent the chromosome of an individual. Each

gene may take an integer or a real number value. The genes do not have to be the same type

(integer or real number). The types of all genes and their minimum and maximum values

should be specified by the user. This feature brings flexibility and allows many problems to

be adopted without much effort.

The library also implements most of the common genetic operations, including roulette-wheel

selection, rank selection and tournament selection as selection methods, one point, two point
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and uniform crossover as crossover methods and finally point and swap mutation as mutation

methods. If these methods are not sufficient or not suitable for the user, new genetic operations

can be implemented by the user.

Although parallel programming is gaining more and more popularity, it may still be difficult

for most of the application developers. An important feature of GridAE is that it does not

require parallel programming experience from its users. The communication layer is shielded

from the users. The users only have to specify what their program is going to do with the data

both master and worker receive.

GridAE is placed on top of glite middleware. The middleware has a command line interface

as summarized in Chapter 2. Job management is not very complicated when dealing with a

single job. However, it may be difficult to deal with multiple jobs simultaneously as GridAE

requires. The framework also abstracts the job management process form the user with the

help of its interfaces. The GridAE user does not need to know any of the glite commands.

These properties allow GridAE to be used with ease.

Two of the examples discussed in the previous chapter, that are similar to GridAE with re-

spect to the usage of grid are application specific softwares. Therefore, they are not genuine

alternatives to GridAE. On the other hand, the last software mentioned, which is developed by

Ng et al. [26], is a framework that uses grid architecture to solve GA problems. Its most dis-

tinguishing distinction from GridAE is that the island model is used for GA. The framework

enforces that the fitness calculations have to be carried out by NetSolve software services

that reside on computing nodes. Since this service has to be implemented or provided by the

user, the users who are not very familiar with grid computing may find it difficult which is

a negative factor on the adaptability of the framework to different problems. The component

which is responsible for performing genetic operators on subpopulations is also implemented

as a software service and predefined methods are used. Therefore, users can not use differ-

ent methods for genetic operations. These two restrictions are the main disadvantages of the

framework compared to GridAE.
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3.2 ARCHITECTURE

GridAE has 6 components, namely server, master, worker, instant messaging (IM) layer, web

interface and command line interface (CLI). These components can be seen in Figure 3.1 and

they will be explained in the remaining of this section.

Web Interface Command Line Interface

GridAE Server

GridAE Master GridAE Worker GridAE Worker

GridAE

Instant Messaging

glite

Figure 3.1: Architecture of GridAE

3.2.1 SERVER

The main task of the server is job management. It runs on a UI machine and is composed of

several shell scripts. These scrips are responsible for:

• Preparing the jdl files of the workers: The IP address of the UI on which the master runs

has to be passed as an argument to the worker processes. Therefore, server modifies the

jdl files to include the IP in the Arguments field of the jdl. Moreover, user may need to

send other files with worker that may be necessary for fitness calculation. The names

of these files should be mentioned in the jdl file in the InputSandbox field. This task is

also performed by the server.

• Starting the master: The master should start running on the UI before the workers are

submitted. Server runs the master as a daemon process so that it can start submitting

the workers.
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• Submitting the jobs to grid: Using glite-wms-job-submit command, server submits the

jobs and stores the job identifiers in a file. This file is used while the statuses of the jobs

are checked.

• Checking the statuses of the jobs: This process is needed twice. The first one is right

after the jobs are submitted to determine the jobs that fail to start in a reasonable time

(5 minutes). If a job is still not running after 5 minutes, it is canceled with glite-wms-

job-cancel command and resubmitted. The file that stores the job identifiers is also

modified. The identifiers of the resubmitted jobs are changed in the file. The second

check is done to realize the termination of the jobs. The status check is done with

glite-wms-job-status command.

3.2.2 MASTER

The master runs as a daemon process on a UI machine. The server starts the master before

submitting the workers to grid. The master first, reads the parameter file, configures the GA

according to it and initializes the population with random individuals. Then, the tasks for the

workers are prepared by the master and it waits for connections from the workers. The tasks

are composed of individuals whose fitnesses are going to be evaluated. When a connection

is established, the master sends the tasks with a message starting with the character ’1’ for

that worker. ’1’ indicates that the message is a task message containing individuals. After

sending all the tasks, the master waits for the results. When the results are ready, the master

collects them, performs selection, crossover and mutation with user defined methods to create

the new generation. This cycle is repeated until the stopping criteria is met. This criteria can

be a desired fitness value or a limit on the generation number. Afterwards, the master instructs

the workers to stop, through the same communication channel by sending ’0’ character as a

message. The pseudocode of the master can be found in Algorithm 3.1.

The master is also responsible for keeping logs. At each generation, the average and the best

fitness is logged in addition to the chromosome of the best n individuals. n is specified by

the user in the parameter file. On the other hand, if user does not wish to see the evolution of

the problem (setting n = 0), only the final fitness and best individual is printed along with the

execution time of the whole process.
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1: setSelectionFunction

2: setCrossoverFunction

3: setMutationFunction

4: readParameters

5: initializePopulation

6: initializeConnection

7: repeat

8: performSelection

9: performCrossover

10: performMutation

11: prepareTasks

12: repeat

13: acceptConnection

14: sendTask

15: until all tasks are sent

16: repeat

17: receiveResult

18: closeConnection

19: until all results are received

20: sortPopulation

21: logInfo

22: until bestFitness < targetFitness or genCount < maxGen

23: repeat

24: acceptConnection

25: sendStopMessage

26: closeConnection

27: until all workers are shut down

28: logInfo

ALGORITHM 3.1: Pseudocode of Master
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3.2.3 WORKER

1: setFitnessFunction

2: initializeConnection

3: repeat

4: requestConnection

5: receiveTask

6: calculateFitness

7: sentResult

8: closeConnection

9: until stop message is received

ALGORITHM 3.2: Pseudocode of Worker

The worker’s job is simpler compared to the master’s. The IP address of the master is given as

an argument to the workers and all workers try to establish a connection with the master, when

they start running. When connection is secured, they either receive their task or a message

to stop from the master. If a task message composed of individuals is received, the fitness

values of these individuals are calculated and the results are sent back. The fitness functions

are specific to the problems and supplied by the user. If the message arrived is a stop message,

it means that evolution is over and the worker stops (see Algorithm 3.2).

3.2.4 IM LAYER

IM layer is responsible for the communication between the master and the workers. The

master sends their tasks to workers and results are sent back by the workers, when they are

finished. There are two types of messages that master can send, namely task message and

stop message (Figure 3.2). There are 3 fields in the task message. The first field contains the

character ’1’ indicating the type of the message. The second field also contains an integer n

specifying the number of individuals in that task. The remaining of the message contains the

chromosomes of the individuals. The stop message consists of a single character ’0’. The

message that the master sends can be identified by reading the first character of that message

by the worker. A result message that contains the amount of fitness values in it with these

fitness values is sent back to master for each task message. Implementation details of this

layer is given in Chapter 4.
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(1)

(2)

1 n Ind. 1 Ind. 2 Ind. n

0

(3) n Fit. 1 Fit. 2 Fit. n

Figure 3.2: Message types in IM Layer: (1) Task Message, (2) Stop Message, (3) Result
Message

3.2.5 COMMAND LINE INTERFACE

GridAE includes two script files written in shell script for those users who prefer to use the

framework through the command line. Since the scripts use glite commands, they should run

on UI machines with glite middleware installed. First one is submitJobs.sh which takes at

least 2 arguments:

submitJobs.sh ip numberOfWorkers [file]...

The first argument is the IP address of the computer that the master runs on. The number of

workers going to be submitted is given as the second argument. If the worker process needs

additional files, the names of these files have to be added at the end. The script submits the

jobs and stores the job identifiers in the file named .address.

The second script is named checkJobs.sh which takes only one argument that can be either ’r’

or ’d’:

checkJobs.sh [r|d]

If ’r’ (resubmit) is given as the argument, the script checks the statuses of the jobs in five-

minute intervals and if a job fails to start running it is canceled and resubmitted. When all

jobs start running, the script terminates. If the argument is ’d’ (done), the statuses of the

jobs are checked until all of them are done. The job identifiers are read from the file named

.address and this file is modified if a resubmission occurs.
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3.2.6 WEB INTERFACE

Grid has users from many different disciplines that may find it difficult to use the CLI. There-

fore a web interface is developed for the users who are more comfortable with GUIs. The

interface is implemented as a Java portlet on P-GRADE Portal which is introduced in the

previous chapter. P-GRADE Portal is selected because it offers a nice GUI and already has

many users that are familiar with it. This choice facilitates the usage of GridAE for those

users. Moreover, as explained earlier, it also has an interface for certificate management that

can be used by other portlets like GridAE.

P-GRADE Portal assigns roles like user, developer and administrator to its users. A new role

gridae is defined for the users of GridAE and only these users can see the GridAE tab among

other tabs. These roles can only be assigned by the administrators of the portal. Therefore,

prospective users should initially contact and fill the application form on the web page of the

application [3]. Successful applicants’ GridAE accounts are created afterwards.

GridAE portlet has 5 pages, each of them is designed to manage a step of the process. The first

page is for the project management step in which a new project can be created or an existing

one can be loaded. The files of each project is kept in different directories. If an existing

project is loaded, the source, parameter and input files of that project can be used without

the requirement of reuploading. The next step is for the parameters step which is used for

specifying the parameters that is necessary for the master. The parameter file is prepared by

GridAE according to these user specified values. After the parameters step, the source files

master.cpp and worker.cpp can be uploaded on the file management and compilation page. As

well as the source files, if there is any input file for the workers, they should also be uploaded

on this page. The name of the output file that the master produces has to be specified at the

same page. Moreover, there exists a compilation button on this page and clicking that button

ensures the compilation of the source files provided by the user. The source files are compiled

and linked with the GridAE library by the framework and the output of the compilation is

presented to the user. The source files can be uploaded multiple times, but the last one always

replaces the previous one. Therefore, if compilation results with errors, the source files can be

modified, uploaded again and recompiled. On the next page, the job submission and job status

monitoring can be performed. The framework uses the scripts prepared for CLI to perform

these operations. At the end, on the output page, the output file produced by the master can
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be downloaded to user’s local computer.

3.3 USAGE

The usage of the framework can be summarized in 3 steps. Preparation of the parameter

file that the master requires is the first step. The source files, master.cpp and worker.cpp are

prepared at the second step. At the last step, grid is used via one of the interfaces. This section

tries to clarify these steps.

3.3.1 PARAMETER FILE

GridAE uses a file to store GA parameters, so that users do not have to change the source

code and recompile every time a parameter is needed to be modified. These parameters are

used by the master process. The parameter file should be a text file and the syntax of the file

is quite simple. It includes lines of attribute value pairs. There should be at least one blank

space between an attribute and its value and the sequence of these pairs is not important. The

following 7 attributes (parameters) can be specified in the file:

• ngen the maximum generation limit that GA will continue until (a positive integer)

• tfitness the target fitness that GA will try to achieve (a real number)

• popsize the number of individuals in the population (a positive integer)

• nelite the number of elite individuals that will be in the population(0 or a positive integer

less than popsize)

• pmut the mutation percentage (a real number between 0 and 1)

• verbose the verbose level determining the amount of information that will be logged

during the process (an integer between −1 and popsize which specifies the number of

best individuals that will be logged at each generation. 0 means none and −1 means

whole population)

• workernum the number of worker processes that will be used (a positive integer)
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If both ngen and tfitness parameters are specified, GA will stop if one of them is achieved. An

example of a parameter file can be found in Figure 3.3.

ngen 50

popsize 100

nelite 3

pmut 0.6

verbose 3

workernum 20

Figure 3.3: A parameter file example

3.3.2 PREPARING SOURCE CODES

Two C++ source files have to be supplied to GridAE by the user for master and worker

processes. These files should be named master.cpp and worker.cpp. In master.cpp, basically

the selection, crossover and mutation functions are specified and the population is initialized

and in worker.cpp, the fitness function is specified.

1: #include "individual.h"

2: #include "parameters.h"

3: #include "population.h"

4: #include "ga.h"

5: #include "functions.h"

6:

7: int main () {

8: GA myga;

9: Population mypop;

10: myga.setCrossover_fun(&onePointCrossover);

11: myga.setMutation_fun(&swapMutation);

12: myga.setSelection_fun(&rouletteWheel);

13: mypop.setGa(myga);

14: mypop.readParameters("parameters.txt");

15: mypop.randomFill(5, 5, 0, 10, 0.0, 1.0);

16: mypop.evolve();

17: }

Figure 3.4: An example of master.cpp

Figure 3.4 gives an example of master.cpp file. The first 5 lines include the necessary header
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files and the rest of the file has the main function. Two objects of type GA and Population are

needed in the master and they are declared on lines 8 and 9 respectively. setCrossover fun,

setMutation fun and setSelection fun are all methods of GA class and take a pointer to a

function as an argument. The prototypes of these functions are given in Figure 3.5.

(1) Individual *selectionSample(Individual *, int, int)

(2) int crossoverSample(Individual *, Individual *)

(3) int mutationSample(Individual *)

(4) double fitnessSample(Individual *)

Figure 3.5: Prototypes of (1) selection, (2) crossover, (3) mutation and (4) fitness functions

Selection functions take three arguments, the first one being an array of individuals from

which the selection will occur. The second argument is the size of this array and the last

one determines the number of individuals that will be selected. The array containing the

selected individuals is returned by the function. Crossover and mutation functions take ref-

erences to individuals and return either 0 or -1 indicating success or error respectively. one-

PointCrossover, swapMutation and rouletteWheel are predefined functions in the GridAE li-

brary. GA object is a member of Population class and set on line 13. Then, parameters are

read with the method of Population class. The population is then initialized with randomFill

method that takes 6 arguments, respectively number of integer genes, number of real number

genes, minimum limit for integer genes, maximum limit for integer genes, minimum limit for

real number genes and maximum limit for real number genes. Finally, evolve method which

carries on the evolution process is called.

An example of the second source file, worker.cpp can be found in Figure 3.6. Lines 4–14

contain the definition of sample fitness function that adds up all the gene values and lines 16–

20 contain the main function. The main function of the worker is simpler than the master’s.

It takes one argument which is the IP address of the computer that the master runs on. An

object of type GA is needed and declared on line 17. Then, using the setFitness fun method

of GA, fitness function is specified. Fitness functions take a pointer to the individual whose

fitness will be calculated and return a double precision number (see Figure 3.5). GridAE aims

to achieve higher fitness values. Therefore, a fitness function which returns higher numbers

for better individuals has to be supplied by the user. On the final line in main, do calculate
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1: #include "individual.h"

2: #include "ga.h"

3:

4: double myfitness_func(Individual *myind) {

5: Gene *g = myind->getGenes();

6: double fitness = 0;

7: for(int i = 0; i < myind->getGene_count(); i++) {

8: if(g[i].int_value)

9: fitness += g[i].value_i;

10: else

11: fitness += g[i].value_d;

12: }

13: return fitness;

14: }

15:

16: int main (int argc, char *argv[]) {

17: GA ga;

18: ga.setFitness_fun(&myfitness_func);

19: ga.do_calculate(argv[1]);

20: }

Figure 3.6: An example of worker.cpp

method is called with the IP address given as the only argument.

3.3.3 USING COMMAND LINE INTERFACE

Once the source files are ready, they should be compiled and linked with the GridAE library.

The object files of GridAE are transfered into a dynamic library named libgridae.a. This step

can be carried out with the following commands:

g++ -c master.cpp

g++ -c worker.cpp

g++ -o master -lgridae master.o

g++ -o worker -lgridae worker.o

A successful compilation produces two executable files, master and worker. Before submit-

ting the workers to grid, the master should start running. Master can be executed with the

following command on a terminal:
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./master

Then, on another terminal the workers should be submitted using submitJobs.sh script:

./submitJobs.sh ip numberOfWorkers [file]...

It should be noted that the number of workers given here should be consistent with the work-

ernum parameter in the parameter file. After submission, it is recommended to run the check-

Job.sh with argument r to detect the jobs not starting running and resubmit them automatically.

Figure 3.7: Project page on GridAE

3.3.4 USING WEB INTERFACE

After signing in the P-GRADE Portal, GridAE users will be able to see the ”GridAE” tab

among the other tabs (see Figure 3.7). Before starting to use the framework, user should

create a proxy as explained in Chapter 2. The first page on the GridAE tab is the project page

that user can create a project (on the left in Figure 3.7) or select an existing one (on the right)

to open. Existing projects can also be deleted on this page by clicking ”Delete” button. After

clicking ”Create” or ”Open” buttons, the next page of the framework loads.
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The next page is the parameters page 3.8 and the GA parameters is specified on this page.

After filing the form, a file name has to be given and ”Save” button should be clicked. It

should be noted that the name of the file should be consistent with the file name given as a

parameter to the readParameters method in the master.cpp. If a previously created project is

opened and a parameter file has already been saved during previous usages of GridAE, than

without filling the form, the name of the file can be written in the same text box and ”Load”

button can be clicked to use the same parameters. After loading the parameters, they can also

be modified and saved by the user. However, the file that is lastly loaded or saved will be used

by the framework. If nothing is left to be done on this page, the ”Next Step” button at the

bottom of the page can be clicked to go to the next page.

Figure 3.8: Parameters page on GridAE

On file management and compilation page, the source and input files can be uploaded. The

files can be selected from the user’s local computer with ”Browse” button and uploaded with
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”Upload” buttons. If the master produces any output files, they have to be specified on ”Out-

put File Name(s)” area with one blank space between them.

The compilation has to be done with the ”Compile” button. The output of the compilation

appears on the area below that button. The source files can be uploaded and the compilation

can be performed multiple times. After a successful compilation the user can proceed with

the next step.

Figure 3.9: File management and compilation page on GridAE

The next step after the compilation is the submission step (see Figure 3.10). The workers have

to be submitted with the ”Submit” button. After the submission, ”Check Submission Status”

button is used to check the statuses of the jobs and resubmit automatically, if any of them

fails to start running. When all of the jobs start running, it will be stated on the area below

this button. The final button on this page is the ”Check Job Status” button which is used for

monitoring the statuses of the running jobs to be noticed when they finish executing.

The final page is designed for the outputs of the master process (see Figure 3.11). With the

”Prepare” button the output files which are specified by the user are packed in a single tar ball.

And with the ”Download” button, this file can be transferred to the user’s local computer.
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Figure 3.10: Submit page on GridAE

Figure 3.11: Output page on GridAE

3.4 EXECUTION TIME ANALYSIS

In order to compare the performance of the framework with that of serial GA, the execution

time of both options should be analyzed. In a typical GA, the time consuming steps can be

summarized in 3 items:

1. Initialization

2. Fitness calculation of individuals

3. Genetic operations (selection, crossover, mutation)
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Initialization is only performed once and its running time is a function of population size

(I(populationsize)). The second and third items are performed at each generation and running

time of performing genetic operations is also a function of population size (G(populationsize)).

Assuming that the fitness calculation of each individual takes the same amount of time, then

the total running time of a serial GA application and GridAE are given by the following for-

mulas respectively:

Tserial = I(p) + ngen( f p +G(p)) (3.1)

TGridAE = S (w) + I(p) + ngen(wccost +
f p
w
+G(p)) (3.2)

where, p is the population size, ngen is the number of generations, f is the fitness calculation

time of an individual, w is the number of workers, ccost is the communication cost of each

task and S (w) is the elapsed time between the starting time of submission of the workers and

the time they all start running which depends on the number of workers.

In order to achieve better performance results with GridAE compared to the serial implemen-

tation of the same problem, the following inequality should hold:

TGridAE < Tserial (3.3)

Using Equations 3.1 and 3.2, Equation 3.3 yields to:

S (w) + I(p) + ngen(wccost +
f p
w
+G(p)) < I(p) + ngen( f p +G(p)) (3.4)

After simplifying Equation 3.4, we have the following inequality:

ccost <
f p(w − 1)

w2 − S (w)
wngen

(3.5)

Communication cost is the required time to transfer a task message from the server to the

worker and the respective result message from the worker to the master. The length of the task

message and the distance of the worker from the server are the two main factors determining
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the communication cost. The length of the task message depends on the representation of an

individual and the number of individuals sent within a single task.

Equation 3.3 shows that if population size or fitness calculation time of a single individual

increases, GridAE is more likely to perform well. Moreover, the number of generations de-

creases the effect of the starting time of the workers. Total execution time is proportional

to the number of maximum generations and the starting time required for GridAE is less ef-

fective when the whole process takes more time. The number of workers is another factor

determining the performance. However, the effect of worker number is more complicated

since it both affects the right hand side of the inequality and the communication cost. When

other variables are fixed, increasing the number of workers decreases the communication cost

of a single task. Because the number of individuals in each task decreases.

We can also drive speedup and efficiency formulas with respect to number of workers (w) for

GridAE from Equations 2.1, 2.2, 3.1 and 3.2:

S w =
I(p) + ngen( f p +G(p))

S (w) + I(p) + ngen(wccost + f p
w +G(p))

(3.6)

Ew =
I(p) + ngen( f p +G(p))

w[S (w) + I(p) + ngen(wccost + f p
w +G(p))]

(3.7)
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CHAPTER 4

IMPLEMENTATION DETAILS

In this chapter, details of GridAE library are introduced. Firstly, the class structure is ex-

plained in detail, because the users should know the relations between these classes to make

good use of the library. The latter section describes two approaches in the design of the IM

Layer from the developer’s perspective.

4.1 CLASSES

GridAE library has 5 classes, as summarized in Figure 4.1, which will be explained in detail

one by one in this section.

Gene class

This class does not have any methods and all its members are public. Therefore, it is like a

container. Each instance holds the data of a single gene in a chromosome. The gene holds

either an integer or a real number value. If the boolean variable int value is true then the value

is integer and stored in value i; otherwise it is a real number and stored in value d. The other

members min and max hold the minimum and the maximum limits that the gene value can

take, respectively.

Parameters class

Parameters class holds the GA parameters ngen (maximum generation limit), tfitness (target

fitness), popsize (population size), nelite (number of elite individuals that will be carried to

next generation) and pmut (probability of mutation) as well as workernum (number of workers

that will be used) and verbose (verbose level). These parameters are read from a text file with
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the read method.

Individual class

Each individual is stored in an instance of the Individual class. Apart from the self explanatory

set and get methods, the class implements comparison operators and the equal to operator.

The comparison operators compare the two individuals according to their fitness values. (Only

the bigger than (>) operator is shown in Figure 4.1 for simplicity.) If ’c’ (chromosome) is

given as the second argument, the serialize method takes the socket descriptor and encodes

the chromosome to socket and deserialize takes a character pointer holding the address of the

beginning of the encoded chromosome and decodes it. The other option is ’f’, where instead

of the chromosome, only the fitness value is written or read respectively by these methods.

GA class

The GA class holds all the necessary information about the GA that is going to be used. The

prototypes of the functions for genetic operations are not given in Figure 4.1, this information

can be obtained from Figure 3.5. All of the members and methods of the GA class are self

explanatory except the do calculate method. This method is called in the worker after the

initializations and does the whole work. It establishes the connection and gets the task. It

uses the serialize method of the Individual class during the communication and calculates the

fitness values of the individuals, and finally sends the results using the deserialize method.

This cycle continues inside the do calculate method until the master sends the stop message.

Population class

A Population object holds instances of the Parameters, Individual and GA classes. This class

implements the usual set and get methods and also the getBest method, which returns the

individual with the best fitness value. The readParameters method uses the read method

of the Parameters class. The randomFill method can be used to initialize the population.

To easily reach the best individuals, the population is sorted after each generation and the

quicksort method is used for this purpose. The master process calls the evolve method after the

initializations. This method is responsible for initializing the connection and calling the step

method until the best individual reaches the target fitness or the generation number reaches

the maximum generation limit. When this condition occurs, evolve calls terminate that sends

the stop message to the workers.
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Figure 4.1: Class diagram of GridAE library
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4.2 IMPLEMENTATION OF THE IM LAYER

Communication is the backbone of parallel applications. There are tools like MPI and PVM

that offer efficiency and reliability for cluster computing. However, there are no such tools that

can be used on a grid platform. Therefore, the IM Layer is implemented without help of such

a tool. Our research led us to a C library called lcg util which is used for file management

through SEs. Despite being quite reliable, this library’s performance was under acceptable

limits. Due to this failure, TCP/IP sockets were used to achieve a better performance. The

details of these two approaches will be given in this section.

4.2.1 LCG UTIL LIBRARY

LCG Data Management Tool (lcg util library) is used for file transfer between SEs and other

elements of grid. To be able to use this library in GridAE, each message is written into a file

and the master and the workers copy this file to an SE with a specific name and the receiver

downloads that file. Three functions, namely lcg cp (copy), lcg cr (copy and register) and

lcg del (delete), are frequently used in the library. The prototypes of these functions are given

in Figure 4.2 and their arguments are explained in the Table 4.1.

int lcg_cr (char *src_file, char *dest_file, char *guid, char *lfn,

char *vo, char *relative_path, int nbstreams,

char *conf_file, int insecure, int verbose,

char *actual_guid);

int lcg_cp (char *src_file, char *dest_file, char *vo, int nbstreams,

char *conf_file, int insecure, int verbose);

int lcg_del (char *file, int aflag, char *se, char *vo,

char *conf_file, int insecure, int verbose);

Figure 4.2: Prototypes of frequently used lcg functions

There are more than one way to refer to the files in the grid. Grid Unique Identifiers (GUID)

and Logical File Names (LFN) are two of them. A GUID is a 41 byte randomly generated

string which uniquely identifies a file. LFN is in a more understandable and hierarchical

format:
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Table 4.1: The arguments used in lcg functions

Argument Meaning
src file The source file name
dest file The destination
guid The grid unique identifier
lfn The logical file name associated with the file
vo The virtual organization the user belongs to.
relative path The path relative to the SARoot for the given VO
nbstreams The number of parallel streams
conf file Currently ignored
insecure Currently ignored
verbose Verbose level
actual guid Buffer for actual grid unique identifier
file The logical file name
aflag Non-zero if all replicas will be deleted
se Only the replica on this SE will be deleted

lfn:/grid/<VO>/<directory>/<filename>

The LCG File Catalog holds the links between the lfn addresses and actual files. A file may

have more than one copy (replica) on different SEs. When the file is required, the file on the

nearest SE is downloaded.

GridAE used the lfn:/grid/seegrid/gridae/ directory to store message files. The workers were

enumerated and these numbers were used in the filenames to distinguish the tasks and results.

For instance, the task message for the first worker was in the file named t 1 and respective

result message was in file r 1.

However, even when the nearest SEs were used, the performance of the library was still

disappointing. Transmission of a single message could take more than 3 minutes. Therefore,

an alternative method needed to be used.

4.2.2 TCP/IP SOCKETS

TCP/IP sockets enable interprocess communication through the Internet among processes

which may run on different computers. Therefore, they are suitable for GridAE. In GridAE

implementation, the master behaves like a server and workers act like clients. The master uses
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the following code segment to initialize the socket for getting ready to accept connections:

struct sockaddr_in serv_addr;

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = INADDR_ANY;

serv_addr.sin_port = htons(PORTNO);

sockfd = socket(addr->sin_family, SOCK_STREAM, 0);

bind(sockfd, &serv_addr, sizeof(serv_addr));

listen(sockfd, workernum);

Since SOCK STREAM type sockets are used, the connection should be established before any

data transfer. The listen function call tells the system that the program is ready for connec-

tions. The second argument of listen specifies the number of maximum waiting connection

requests that the system should hold. The rest of the communication code of master is here:

struct sockaddr_in cli_addr;

int newsockfd[workernum];

for(int i = 0; i < workernum; i++) {

newsockfd[i] = accept(sockfd, (struct sockaddr *) &cli_addr,

sizeof(cli_addr));

send(newsockfd[i], buffer, strlen(buffer), 0);

shutdown(newsockfd[i], SHUT_WR);

}

for(int i = 0; i < workernum; i++) {

int n, m = 0;

while ((n = recv(newsockfd[i], recvbuffer, 20000, 0)) != 0) {

strncpy(buffer+m, recvbuffer, n);

m+=n;

}

shutdown(newsockfd[i], SHUT_RDWR);

close(newsockfd[i]);
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}

The accept function returns a file descriptor specific to that connection and they are stored in

an array. After the task message is sent, the write end of the socket is closed. This lets the

receiver understand that no more data will come and the respective recv function returns 0.

Since, recv may not get the whole message at once, it is called in a while loop. When the

result message is received the socket is closed.

The respective worker code is similar. The main difference is that it does not use the listen

and the accept functions; the connect function is called instead.
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CHAPTER 5

TEST CASE

This chapter aims to give an example of how GridAE can be used and to prove that it is

suitable for many problems and performs well. The test problem introduced below is a shape

optimization problem from aeronautical science. The problem is described in the first section.

Its solution and adaptation process to GridAE are given in the next one. Finally, the results

obtained in terms of fitness and execution time are discussed in the final section.

5.1 PROBLEM: SHAPE OPTIMIZATION OF A MISSILE

In this problem, the aim is to obtain an airframe geometry for a missile that provides the

longest possible flight. It is assumed that propulsion, warhead and instruments sections are

previously defined for this experiment. In addition to that, the dimensions of the body and

the nose shape are already determined. Thus, the properties related to the body are taken as

constants, and are not considered in the optimization process. A typical airframe geometry,

with design parameters is given in Figure 5.1.

The configuration is built with a body which has a circular cross section and two sets of

fins. The first fin set (wing section) consists of two panels and the second set (tail section)

consists of cross-oriented four fins. The following parameters are selected as design variables

on cross-sectional plane of each fin set:

• Leading edge sweep angle (Λl)

• Root chord length (cr)
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Figure 5.1: Airframe geometry

• Aspect ratio (A = b2/2S , S : plan-form area)

• Taper ratio (λ = ct/cr)

Each plane has a double wedged cross section. It is assumed that thickness-to-chord ratios

are constant along the half span. On the cross section, the following parameters determine the

geometry of each fin set:

• Thickness-to-chord ratios of wedges (t/c)

• Cone angles for leading edges of wedges (γl)

• Cone angles for trailing edges of wedges (γt)

The wedges are assumed to be symmetric with tu = tl, γul = γll and γut = γlt.

There is one final parameter determining the design:

• Position of leading edge on the body (lw)

To summarize, total of 15 parameters on the missile geometry should be optimized to achieve

the longest flight in terms of distance.
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5.2 SOLUTION APPROACH

GA and GridAE are used to solve this optimization problem. Each parameter given in the

previous section becomes a gene and a parameter set (containing 15 parameters) represented

in a chromosome of an individual. The fitness of an individual is calculated with a simulation

of the flight. This simulation is carried out with a simple aerodynamics simulation software

which uses files for input and output.

Master specifies the genetic operators which are tournament selection uniform crossover and

one point mutation for the experiments. Since, these methods already exist in GridAE library,

the master code is simple. Each gene (parameter) has different minimum and maximum limits

given in the Table 5.1. The initialization is done according to these limits.

Table 5.1: The minimum and maximum values for each parameter

Parameter min max
lw 0.9 1.6
cr (wing & tail) 0.7 1.2
Λl (wing & tail) 30.0 60.0
A (wing & tail) 0.185 0.7
λ (wing & tail) 0.6 0.8
t/c (wing & tail) 0.02 0.04
γl (wing) 7.0 9.0
γl (tail) 8.0 10.0
γt (wing & tail) 9.0 11.0

In the worker, the fitness function is implemented so that it prepares the input file for the

simulation software, runs the software with a system call and reads the output file it produces.

This software simulates the flight with the parameters carried with the individual and deter-

mines the distance that the missile travels, in meters. GridAE CLI is used for managing the

worker jobs. There is one additional file that should be sent with worker to CE which is the

simulator executable. Therefore, submitJobs script is used as follows, ”simulator” being the

name of the executable:

submitJobs.sh ip numberofworkers simulator

The CEs that the worker processes run on are assigned by grid job scheduler and selected
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among 10 sites (given in Table 5.2), according to their availability. Therefore, multiple clus-

ters are used at each experiment. An unbiased job distribution among these clusters is not

observed during the experiments.

Table 5.2: The sites that the experiments are performed on

Sites
ce.seua-cluster.grid.am
cream01.athena.hellasgrid.gr
ce01.athena.hellasgrid.gr
ce.ysu-cluster.grid.am
ce.ysu-cluster2.grid.am
ce01.marie.hellasgrid.gr
ce64.ipb.ac.rs
kalkan1.ulakbim.gov.tr
cr1.ipp.acad.bg
grid01.elfak.ni.ac.rs

5.3 RESULTS AND DISCUSSION

The experiments are performed with different configurations of population size, maximum

generation limit and number of workers. Since all of these parameters can be configured in

the parameter file with the attributes popsize, ngen and workernum, the code need not to be

changed and recompiled. Each experiment is repeated three times and the average of the

results is used in the charts.

The objective of the experiments was to reveal the relation between the execution time and

other parameters. Moreover, the effect of generation number and population size on fitness

is investigated. For these experiments, in addition to the best fitness, average fitness of the

population is viewed too. However, during the evolution some individuals represent unstable

geometries and this is penalized by fitness function. These individuals have 0 fitnesses values

as a result. These unstable individuals affect the population’s fitness average significantly.

Therefore, another ”average” is calculated among the non-zero fitnesses and named non0

average.

In all of the experiments, elitism is used. At every generation, the best individual of the
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previous one is carried to the next generation.

The first experiment is performed to see the convergence of fitness in generations. The evolu-

tion is carried until the 200th generation and obtained fitness values at each 10th generation

is recorded. The population size is fixed at 40 for the experiment. The results can be seen in

Figure 5.2. Although the best fitness continues to improve until the end of the evolution, after

the 50th generation the improvement is not very significant. As it can be seen from Figure 5.2,

the average fitness does not give much information about the convergence. It is continuously

alternating without any correlation with the best fitness. The average non0 fitness is more

parallel with best fitness, although it is maximum at the 130th generation.
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Figure 5.2: Fitness vs. generation (popsize = 40)

Among all the experiments the best fitness for this problem is achieved during this experiment.

In one of the runs, we could get 49147.578 as the final best fitness. The best individual is

corresponding to the parameters in the Table 5.3.

The next thing investigated is the effect of population size on the fitness when maximum

generation is fixed. The population size is 40, 60, 70 and 80 in each run and the evolution

continues till the 100th generation. In Figure 5.3, it can be seen that the increase in the
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Table 5.3: The values of variables with the best individual

Parameter value (wing) value (tail)
lw 1.593
cr 0.7 0.7
Λl 54.9 60.0
A 0.612 0.422
λ 0.676 0.704
t/c 0.0204 0.0202
γl 7.56 9.98
γt 10.9 9.78

population size has a positive effect on the best fitness. The best value is obtained when the

population size is the biggest.
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Figure 5.3: Fitness vs. population size (ngen = 100)

However, an increase in the population size means more fitness calculation and longer running

programs. The execution time of these experiments are given in Figure 5.4. 20 workers are

used for these experiments and as it can be seen from Figure 5.4, running time significantly

increases when the population gets bigger.
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Figure 5.4: Execution time vs. population size (workernum = 20)
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Figure 5.5: Execution time vs. number of workers (ngen = 100)
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With GridAE, longer running times with crowded populations can be shortened by using more

workers. Grid offers much more computing power than a single cluster. The power of GridAE

comes from this fact. In Figure 5.5, the execution times of two populations with population

sizes 40 and 80 respectively with respect to number of workers used are given. When there

are 40 individuals in the population, the framework scales well up to 10 workers (where

each worker deals with 4 individuals at each generation). There is a slight improvement with

doubling the number of workers to 20. However, after that, increasing the number of workers

does not have a visible effect on the running time. On the other hand, with 80 individuals in a

population, significant improvements are seen up to 20 workers.

The experimental speedup and efficiency values are illustrated in Figures 5.6 and 5.7 respec-

tively. The charts show that when the population size is 40 both speedup and efficiency are

better up to the 30 workers which is expected, since the genetic operations take more time

when populations are more crowded. On the other hand, as the number of workers increases

the distance between these two lines lessens. This happens because the number of individuals

per worker drops below 4 when the population size is 40 and the communication cost be-

comes more dominant. Since the individuals are not shared fairly when there are 15 workers,

we experience worse performance compared to the impression given by the charts.

The charts in Figures 5.6 and 5.7 are also consistent with the Equations 3.6 and 3.7. For

instance, when number of generations is 100, population size is 40 and number of workers is

10 we have the following for speedup from Equation 3.6:

S 10 =
I(40) + 100(40 f +G(40))

S (10) + I(40) + 100(10ccost + 4 f +G(40))
(5.1)

And, when the population size is 80, Equation 3.6 becomes as follows:

S 10 =
I(80) + 100(80 f +G(80))

S (10) + I(80) + 100(10ccost + 8 f +G(80))
(5.2)

If we ignore I, and S in Equations 5.1 and 5.2, we have the following equations respectively:

S 10 =
40 f +G(40)

10ccost + 4 f +G(40)
(5.3)
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S 10 =
80 f +G(80)

10ccost + 8 f +G(80)
(5.4)

When the population size is 80, the number of individuals in a single task message is twice

the number in the case when the population size is 40. Therefore, if we assume the commu-

nication cost doubles with the population size, all the factors in the second equation doubles

except G which is the cost of genetic operations and sorting. Since, quicksort has O(nlogn)

complexity, the elapsed time increases more than twice, when the population size doubles.

Therefore, we have simply x
y and 2x+a

2y+a for speedups of population sizes 40 and 80 respec-

tively. Doubling both numerator and denominator does not change the value of a fraction, but

adding a number to both numerator and denominator decreases the value of the fraction if it

is bigger than 1, which is the case here. Therefore, we expect the speedup (and consequently

the efficiency) to be higher when the population size is 40, which is the case in Figure 5.6

(and in Figure 5.7).

Although, the speedup and efficiency give important information about the performance of the

framework, from the user’s perspective, even for one minute decrease in the total execution

time, increasing the number of workers significantly may be preferred. Therefore, Figure 5.5

can be more important than Figures 5.6 and 5.7 for the user.
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Figure 5.6: Speedup vs. number of workers (ngen = 100)
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Figure 5.7: Efficiency vs. number of workers (ngen = 100)
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CHAPTER 6

CONCLUSION

GA is a very popular and successful tool for search and optimization problems. However,

for most of the real life problems the fitness calculation of an individual takes too much time,

Luckily, the fitness calculation of the individuals does not depend on each other, so it is readily

parallelizable.

Since the computational resources on the grid are distributed far from each other, the com-

munication costs are more than the ones on a cluster. Therefore, the research on parallel GA

is mainly focused on cluster computing rather than grid. The examples on grid are usually

designed to solve specific problems and have their own constructed grids in which the com-

puters in the grid are much more nearer to each other than in an ordinary grid. This gives the

researchers the ability to manage and configure the components in their grid. Moreover, it

also improves the performance with reducing the latency.

In this work, we introduced a framework aiming to make it easier for developers using GA

to port their applications to grid that can provide more computational resources for a single

user than a cluster. With this framework, users that are not familiar with either parallel pro-

gramming or grid computing can enjoy the power of parallel programming. Because, GridAE

abstracts the message passing from the user and manages it internally. The users also do not

need to be familiar with the middleware running while using the framework.

GridAE also provides a library that supplies required data structures to represent individual’s

chromosomes. Commonly used genetic operations for selection(roulette wheel and tourna-

ment), crossover (one-point, two-point and uniform) and mutation (point, flip and swap) are

already implemented. If these operations are not suitable for an application, the developer can
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implement her/his methods and use them. The user should also define the fitness function that

the application is going to use.

The framework is tested with a problem from aerospace science. GridAE is used to find the

optimum parameters that define the shape of a missile which can travel the longest distance.

The performance of the framework is examined and shown to be rather high. It also shows

that the applications which have bigger population sizes are more convenient with GridAE.
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APPENDIX A

JOB MANAGEMENT WITH GLITE

In order to perform any job management action the users should communicate with the gLite

middleware installed on UIs. This middleware has a command line interface (CLI) for the

users. To submit a job, the following command is used:

> glite-wms-job-submit -a myjob.jdl

The output of the command will be similar to this:

Connecting to the service https://wms.ulakbim.gov.tr:7443/glite_wms_wm

proxy_server

==================== glite-wms-job-submit Success ====================

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGDdwVTodwwvg

======================================================================

The job identifier is a unique string and useful for getting information about the job from the

system with the following command:

> glite-wms-job-status https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGDdwV
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Todwwvg

===================== glite-wms-job-status Success ===================

BOOKKEEPING INFORMATION:

Status info for the Job : https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGD

dwVTodwwvg

Current Status: Running

Status Reason: Job successfully submitted to Globus

Destination: ce64.ipb.ac.rs:2119/jobmanager-pbs-seegrid

Submitted: Sun Nov 14 18:50:52 2010 EET

======================================================================

Here, we see that our job is running. After some time, if nothing goes wrong we will get the

following output from the glite-wms-job-status command:

===================== glite-wms-job-status Success ===================

BOOKKEEPING INFORMATION:

Status info for the Job : https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGD

dwVTodwwvg

Current Status: Done (Success)

Logged Reason(s):

-

- Job terminated successfully

Exit code: 0

Status Reason: Job terminated successfully

Destination: ce64.ipb.ac.rs:2119/jobmanager-pbs-seegrid

Submitted: Sun Nov 14 18:50:52 2010 EET

======================================================================

Now that our job is finished, we can retreive the output files:

> glite-wms-job-output --dir $PWD https://wms.ulakbim.gov.tr:9000/44CB
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rXjXvuGDdwVTodwwvg

Connecting to the service https://wms.ulakbim.gov.tr:7443/glite_wms_wm

proxy_server

======================================================================

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:

https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGDdwVTodwwvg

have been successfully retrieved and stored in the directory:

/home_eymir/aketenci/aketenci_44CBrXjXvuGDdwVTodwwvg

=======================================================================

With − − dir argument, we specify the directory that the output files will be copied to. If the

user wishes to cancel a job that is not finished yet, the following command should be used:

> glite-wms-job-cancel https://wms.ulakbim.gov.tr:9000/44CBrXjXvuGDdwVT

odwwvg

These four gLite commands are usually enough for job management. If the job fails after

beginning to run, the output can still be retrieved. If this situation occurs, the error file might

be useful to find the source of the problem.
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