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Single Nucleotide Polymorphisms (SNPs) are the most frequent genomic variations and the main 

basis for genetic differences among individuals and many diseases. As genotyping millions of 

SNPs at once is now possible with the microarrays and advanced sequencing technologies, SNPs 

are becoming more popular as genomic biomarkers. Like other high-throughput research 

techniques, genome wide association studies (GWAS) of SNPs usually hit a bottleneck after 

statistical analysis of significantly associated SNPs, as there is no standardized approach to 

prioritize SNPs or to select representative SNPs that show association with the conditions under 

study. In this study, a java based integrated system that makes use of major public databases to 

prioritize SNPs according to their biological relevance and statistical significance has been 

constructed. The Analytic Hierarchy Process, has been utilized for objective prioritization of 

SNPs and a new emerging methodology for second-wave analysis of genes and pathways related 

to disease associated SNPs based on a combined p-value approach is applied into the 

prioritization scheme. Using the subset of SNPs that is most representative of all SNPs associated 

with the diseases reduces the required computational power for analysis and decreases cost of 
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following association and biomarker discovery studies. In addition to the proposed prioritization 

system, we have developed a novel feature selection method based on Simulated Annealing (SA) 

for representative SNP selection. The validity and accuracy of developed model has been tested 

on real life case control data set and produced biologically meaningful results. The integrated 

desktop application developed in our study will facilitate reliable identification of SNPs that are 

involved in the etiology of complex diseases, ultimately supporting timely identification of 

genomic disease biomarkers, and development of personalized medicine approaches and targeted 

drug discoveries. 

 

Keywords: Biomarkers Discovery, SNP-Complex Disease Association, Representative SNP 

Selection, SNP Prioritization, Pathway Discovery 
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Tek Nükleotit Polymorfizmi (SNP) en yaygın olarak görülen genom çeşitliliği ve kişiler 

arasındaki genetik farklılıkların ve birçok hastalığın temel nedenidir. Günümüzde milyonlarca 

SNP genotipinin bir seferde belirlenmesi mikro dizilim ve ileri sekanslama teknolojileri 

sayesinde mümkündür. Yüksek verimli teknolojilerin kullanıma girmesi ile SNPler gözde 

biyolojik göstergeler arasına girmiştir. SNPlerin genom boyutunda ilişkilendirme çalışmalarında 

istatistiksel analiz safhasından sonra gerek SNPlerin önceliklendirilmesinde gerekse temsilci bir 

SNP kümesinin seçilmesinde mevcut standart bir yöntem olmadığı için bir darboğazla 

karşılaşılmaktadır. Bu çalışmada, SNPleri biyolojik ve istatistiksel önemlerine göre 

önceliklendirilmesinde kullanılabilecek java tabanlı bütünleşik bir sistem oluşturulmuştur. 

SNPlerin objektif olarak önceliklendirilebilmesi için Analitik Hiyerarşi Prosesinden 

yararlanılmıştır. Ek olarak birleşik p-değeri yöntemine dayanan ve hastalıkla ilgili SNPlerle 

ilişkili gen ve biyolojik yolakların ikincil analizinde yeni kullanılmaya başlanan bir yöntem de 

önceliklendirme esnasında kullanılmıştır. Hastalıkla ilişkili bütün SNPler için temsilci bir SNP 

alt kümesinin seçilmesi daha az kapasiteli bilgisayarlarla ve daha ucuza analiz ve ardıl 

ilişkilendirme ve biyolojik gösterge bulma işlemlerinin yapılabilmesini sağlar. Bu amaçla 

temsilci SNP seçimi için Benzetilmiş Tavlama algoritmasına dayalı yenilikçi bir algoritma 
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geliştirilmiştir. Geliştirilen yöntemlerin geçerliliği ve doğruluğu gerçek bir vaka-kontrol 

çalışmasından alınan verilerle kontrol edilmiş, biyolojik olarak anlamlı sonuçlara ulaşılmıştır. Bu 

çalışmada geliştirilen bütünleşik masaüstü uygulamasının karmaşık hastalıklarla ilişkili SNPlerin 

güvenilir bir biçimde belirlenmesinde büyük rolü olacaktır ve ileride hastalıkla ilişkili biyolojik 

göstergelerin ortaya çıkarılmasını ve kişiselleştirilmiş ve hedefe yönelik ilaçların keşfedilmesini 

destekleyeceğini öngörmekteyiz. 

 

Anahtar Kelimeler: Biyolojik Gösterge Bulma, SNP-Karmaşık Hastalık İlişkilendirmesi, 

Temsilci SNP Seçimi, SNP Önceliklendirmesi, Biyolojik Yolak Bulma 
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CHAPTER 1 
 

 
 

INTRODUCTION 

 

 

 

1.1 Motivation 

 Bioinformatics is the science of analyzing, extracting, and interpreting information from 

biological sequences and molecules. Upon completion of human genome project in April 2003, 

this area has drawn even more attention. With more projects undertaken, such as sequencing 

projects of other genomes and mapping of human haplotype of genomic variations, data in the 

field is exponentially growing. Facing this huge amount of data, the biologist cannot simply use 

the traditional analysis techniques in biology. In order to extract useful and meaningful 

information from this precious data, instead, information technologies are needed. 

 One of the recent areas that draw attention in bioinformatics field is to try to find a 

solution to the problem of identifying genetic variations that are the major reasons of complex 

diseases. Our understanding of the genetic etiology of human disease is limited because of the 

massive number of genetic variations on the human genome, as well as the complex relationships 

between multiple genes and environmental factors underlying disease. An association study is a 

widely used and potentially very powerful strategy for finding genetic and environmental risk 

factors causing human diseases. The underlying principle is a very simple one: if a DNA variant 

or an environmental factor increases disease susceptibility, it is expected to be observed more 

frequently among those who are affected than those who are not. An association is said to be 

found between two variables if it can be shown that their values are correlated, i.e. they are 

dependent on each other.  

 With the completion of Human Genome Project in 2003, it is now possible to convey 

research studies to associate genetic variations in the human genome with common and complex 

diseases. The approach in these studies is to scan markers within DNA, or genomes, of many 

people for finding genetic and environmental risk factors underlying human diseases and 

quantitative traits. In an association analysis, the aim is to identify a particular variant whose 

alleles or haplotypes are observed significantly more frequent in cases than controls therefore 
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signalling an association with disease phenotype. A large percentage of association studies 

concentrate on candidate genes that are thought to be biologically relevant to a disease through 

linkage analysis. Main downside of candidate gene approach is that its success mainly depends 

on proper selection of candidate genes by biological judgment. Apart from these, somewhat 

biased ways of associating genetic markers with complex diseases, another approach is to use 

“most of the genome” to investigate variants. These studies are called Genome-wide Association 

Studies (GWAS).  

 SNPs are the most frequently observed genetic variations and they are heavily used in 

GWAS alongside with microsatellites, copy number variation (CNV) and other markers. The 

studies related to other markers than SNPs are beyond the scope of this work. Recent 

developments in genotyping technologies, ability to access genetic information held within 

public databases and the start of the International HapMap Project [1, 2] have facilitated the 

implementation of SNP based genome-wide association studies. The main objective of the 

HapMap was to genotype SNPs with sufficient density across the human genome, eventually 

achieving a resolution of one SNP in every one to two kilobases. With the help of this, the 

scientific community is now able to collect valuable genome sequence and SNP data and gain 

insights on etiology and pathogenesis of various complex genetic diseases, which would in turn 

have great effects through drug development. 

 Number of SNPs and required sample size of individuals are relatively larger for a 

typical research study, in which genetic factors associated with complex diseases are investigated 

because of the contribution of multiple genes on the disease phenotype. This is not unusual as the 

number of SNPs under study and genotyped individuals have a significant effect on the statistical 

power of the study. However this is not an easy task because genotyping that much SNPs and 

individuals is not only very expensive but also suffers from various problems such as 

missingness, accuracy etc.  It is therefore desirable to select a SNP subset, which is free from 

biological and statistical redundancy. 

 In this research, we have developed two novel methods for prioritizing and selecting 

SNPs consecutively for stronger association with complex disease after following an integrative 

biological scoring and filtering approach for supporting Genome-Wide Association Studies. A 

java based integrated system, Most Efficient Tagging Utility for SNPs (METU-SNP), which 

makes use of major public databases to prioritize SNPs according to their biological and 

statistical relevance has been constructed. The Analytic Hierarchy Process (AHP), a well-known 

Multi-Criteria Decision Making Method, has been utilized for objective prioritization of SNPs. 

Along with the integrated prioritization system; a novel feature selection method based on 

Simulated Annealing (SA) has been developed for informative SNP selection. In this chapter a 

brief overview of the dissertation work will be presented.  
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1.2 Prioritization and Representative SNP Selection 

 The human genome can be represented as an array of 3.3 billion letters and each letter is 

from the set of {A, C, G, T} representing nucleotides Adenine, Cytosine, Guanine and Thymine. 

The nucleotide sequence does not differ across the population in more than 99% of the positions 

on the genome. However, people possess a unique genetic composition in about 1% of their 

genome [3]. Those genetic variations include different nucleotide occurrences, called (if occurred 

at least 1% of a given population) Single Nucleotide Polymorphisms (SNPs – pronounced 

„snips‟), deletion/insertion of one or more nucleotides, or variations in the number of multiple 

nucleotide repetitions.  

 Recent research on molecular epidemiology has focused on finding genetic biomarkers 

that contribute to disease and act as decent predictors of the disease phenotypes. Usually multiple 

genetic loci are involved in complex disease development as well as environmental factors. 

Therefore, one needs to search through all polymorphisms present in the biologically more 

relevant (functionally important) regions  of candidate genes as well as utilizing the information 

about biological pathways (such as cellular adhesion, inflammation, lipid metabolism, etc.), 

which can be regarded as gene networks, constituting biological systems of great importance for 

thorough analysis of these kinds of diseases [4-6].  

 Association studies are among promising ways of dealing with the problem of finding 

disease causing variants and such association studies typically make use of SNPs as they are the 

most common form of genetic variations and they can represent an individual‟s genetic 

variability in greatest detail [7]. However, the enormous number of SNPs (estimated more than 

11 million) makes it infeasible to gather information and perform analysis on all the SNPs in the 

human genome. Therefore in order to save resources and make problem computationally feasible 

while keeping the power of the statistical tests at acceptable levels genetics researcher would 

prefer working on a “considerably smaller” subset of the entire SNP set for performing an 

association study.  In order to come up with such a SNP subset it is required to first prioritize the 

SNPs according to well defined criteria so that informative SNPs are not overlooked. An 

intelligent way of performing prioritization task is needed to calculate a score for each SNP under 

study that would reflect SNP‟s biological and statistical relevance and rank SNPs accordingly. 

Following prioritization task, feature selection mechanisms should be applied to select the SNP 

subset with best prediction performance. In summary, finding a subset of SNPs that is 

informative enough to perform association studies but still small enough to reduce the analysis 

workload, to which we refer as prioritization and representative SNP selection, has become an 

important step for disease-gene association studies. 

 

 



 4 

1.3 Thesis Statement and Contributions of the Thesis 

 The ultimate goal of this research is to advance the state-of-the-art in SNP-complex 

disease association studies by introducing an integrated system that would be used for Genome-

Wide Association Studies (GWAS), case-control studies in particular. We aim to provide 

researches with a tool that would enable them to prioritize and select representative SNPs among 

massive SNP sets for subsequent GWAS. By integrating pathway based analysis and feature 

selection schemes we believe that we will enable the comprehensive analysis of SNP genotype 

data. We expect the new methods, introduced throughout this thesis, to provide an advanced SNP 

selection framework for facilitating disease-gene association studies. We hope that results of this 

research will support timely diagnosis, personalized treatments, and targeted drug design, 

through facilitating reliable identification of SNPs that are involved in the etiology of common 

and complex diseases. In the following sections we briefly introduce key contributions of this 

research study. 

1.3.1 AHP Based Prioritization Scheme for Multi-Hierarchical Filtering of 

Informative SNPs after Genome-Wide Association Study 

 A typical approach in a Genome Wide Association Study (GWAS) is to repeat the study 

on an independent sample by genotyping the top signals. It is evident that this approach would be 

facilitated by incorporating information from biological databases so as to give SNPs that has the 

potential to possess biological relevance higher priorities. We introduce a method that would be 

used to achieve this strategy in a structured way by combining information on genomic location, 

biological significance and evolutionary conservation alongside with statistical evidence of 

genotype–phenotype correlation. Our approach is based on the well known multi-criteria decision 

making method called Analytic Hierarchy Process (AHP) [8], which is a structured technique for 

dealing with complex decisions. 

 Selecting functionally and biologically important SNPs associated with a particular 

complex disease is set as a goal and we create a hierarchy tree to compare SNPs accordingly. 

Our AHP study is combined with a Delphi technique [9] as we perform the study with inputs 

from five different biologists. We have created a hieararchy tree that structurized SNP 

prioritization process. We calculate scores for each SNP depending on p-values of association 

and we combine this information with SNP‟s biological importance depending on three different 

criteria: (1) Evolutionary Conservation, (2) Gene Association and (3) Genomic Location. In order 

to calculate scores for SNPs we integrate information from major databases listed in Section 

1.2.1. Our method is a novel one as it integrates pathway based information in SNP prioritization 

process and makes use of a very well known technique, AHP, to the best of our knowledge for 

the first time in this domain. 
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1.3.2 Simulated Annealing Based Feature Selection Scheme for Representative 

SNP Selection 

 In a disease association study, the goal is to identify genetic factors that contribute to 

disease. The common and basic approach to finding genotype-phenotype associations is to apply 

statistical hypothesis-testing procedures. Another, somewhat more advanced, approach is making 

use of classification models, in which the different genotypes for a SNP can be regarded as inputs 

(attributes) and the phenotype (disease under study) can be regarded as the class to be predicted. 

Various machine learning techniques, such as logistic regression or support vector machines can 

be used for this purpose. Feature selection procedures are thought to be useful to enhance the 

prediction performance of multi-SNP models and are suggested for reducing the dimension of 

highly-correlated SNPs [10]. 

 One can define the problem of feature selection in Representative SNP selection context 

as to find a minimum set of SNPs S = { SNP1 , ..., SNPk } out of n SNPs in a particular genomic 

location (a chromosome or haplotype) such that k < n and S can predict the remaining unselected 

SNPs with minimum error. To tackle this problem, we introduce a Simulated Annealing (SA) 

based Informative SNP selection algorithm in which we create a random binary coding of size n 

as an initial solution and test the accuracy of the solution using Naive Bayes by calculating the 

mean error for n - k supervised learning iterations. We use a trade of between accuracy and the 

number of SNPs in the SNP set. Therefore, we also try to minimize the number of chosen SNPs 

k. 

1.3.3 METU-SNP: An Integrated Software System for SNP-Complex Disease 

Association Analysis 

 There are various tools for use in GWAS and analysis of SNP genotype data for Case-

Control studies such as PLINK [11], BEAGLE [12], SNPTEST [13], GENABEL [14] etc. 

Among those tools, although being really capable, some of them are far from being user-friendly 

and based on Command Line Interface (CLI). Others are introduced as desktop applications or 

web based applets but usually lacks the functionality for a comprehensive analysis or presented 

as R packages, which are far from being efficient. Having analyzed the available tools, we 

decided to come up with an Integrated Software System, which is specifically designed for use in 

GWAS and equipped with only the necessary analysis schemes. We call this tool METU-SNP 

and we believe that as the name implies it will be regarded as Most Effective Tagging Utility 

among researchers of molecular epidemiology.  

 METU-SNP is a java based desktop application: it can be used in various platforms. It 

make use of data from major public databases such as dbSNP [15], Entrez Gene [16], KEGG 

[17], Gene Ontology [18] etc. It is equipped with a state-of-the-art novel SNP prioritization and 

Gene Set Enrichment Analysis frameworks. It also has the ability to select informative SNPs by 

making use of machine learning algorithms. Ability of comprehensive SNP-complex disease 
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association analysis, modularity and extendibility gives METU-SNP a great advantage over 

existing platforms.   

1.4 Experiment Data Sets 

 During this research study, one of the major drawbacks has been finding proper data sets 

for evaluating the performance of the suggested analysis methods and algorithms. As the proper 

data for analysis consists of DNA data collected from individuals, it has usually been regarded as 

classified and therefore related parties have shown reluctance to share the data. One of major 

milestones for this study, therefore, has been achieved when we get a hand on first data DVD, 

which has been shared with us with the courtesy Dr. Jean W. Maccluer, head of Genetics 

Department of Southwest Foundation for Biomedical Research.  

 We used two data sets for evaluation purposes. The first data set is whole genome 

association Rheumatoid Arthritis (RA) data from the North American Rheumatoid Arthritis 

Consortium (NARAC) including 868 cases and 1,194 controls. The data was used in Genetic 

Analysis Workshop 16 (GAW 16). It consists of 501,463 SNP-genotype fields from the Illumina 

550K chip. The second data set, a relatively smaller one compared to the first one, is whole 

genome association data for Alzheimer‟s disease (AD). The data was obtained from the 

Alzheimer‟s disease Neuroimaging Initiative (ADNI) database
1
. The used subset of the ADNI 

data includes 149 AD cases and 182 controls. It consists of 555,850 SNP-genotype fields from 

the Illumina 610Quad chip. We used the former data set to test the performance of METU-SNP 

in Chapter 6. The latter one has been used in Chapter 3 and 4 to test the performance of the 

algorithms developed. 

1.5 Thesis Organization 

 This thesis is composed of seven main chapters and an Appendix. Brief contents are 

given below: 

 Chapter 1 introduces the problem we aim to tackle during this research study and 

outlinesmajor contributions of this dissertation. 

 Chapter 2 provides biological background relevant to disease-association studies. 

 Chapter 3 depicts the fundementals of AHP and presents our SNP prioritization 

process. 

 Chapter 4 starts with an extensive literature review on Representative SNP 

Selection methods and introduces our Simulated Annealing based selection scheme. 

 Chapter 5 explains our integrated software application METU-SNP in detail.  

 Chapter 6 provides experimental results and throws performance of our 

contributions into sharp relief. 

                                                 
1 http://www.loni.ucla.edu/ADNI 
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 Chapter 7 concludes the dissertation work and outlines possible directions for 

future research. 
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CHAPTER 2 
 

 

 

BIOLOGICAL BACKGROUND 

 

 

 

 In this chapter a brief biological background on SNPs and why they are associated with 

complex diseases will be discussed. In particular the basic concepts in genetics and molecular 

epidemiology that are relevant to SNP-Complex Disease Association studies will be explained. 

First a brief overview on human genome will be presented. Then, variations on human genome 

and SNPs will be introduced and how SNPs influence a person‟s health by introducing the types 

of SNPs and their functional effects will be explained. Following that, we will explore an 

important feature of human genome called Linkage Disequilibrium (LD). Next, complex diseases 

and association studies that map SNPs and those diseases will be addressed. Lastly, the 

introduction to Biological Pathways will be given and how this concept is related to complex 

disease association studies will be explained.  

2.1 Human Genome: Set of Instructions for Life  

 Human genome can be regarded as the set of instructions for life. It consists of chemical 

molecules (nucleotides) acting as building blocks. A nucleotide is composed of a nucleobase   

from the set {Adenine, Cytosine, Thymine, Guanine} (See Figure 2.1- used with the permission 

of [19]), phosphate groups (number changes from one to three) and a five-carbon sugar 

(deoxyribose). Together, nucleotides form a linear chain, a long continuous molecule, containing 

roughly 3.2 billion chemical bases, which is known as deoxyribonucleic acid (DNA). Nucleotides 

contain two types of nucleobases: purines (Adenine (A), Guanine (G)) and pyrimidines (Cytosine 

(C), Thymine (T)). Specific hydrogen bonds are formed between the bases (A pairs with T and C 

pairs with G) so as to stabilize the structure of the DNA, which is called  “the double helix”. 

Since hydrogen bonds are not covalent they can be broken and rejoined easily hence giving DNA 

a unique dichotomious feature. 
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Figure 2. 1 Structures of DNA building blocks A, C, G, and T.  

   

 Double helix structure consists of two strands arranged so that paired bases meet in the 

middle and backbones run up the outside edges. This special structure shown in Figure 2.2 (used 

with the permission of  [20]) is the key to pairing of DNA, which forms the basis for protein 

encoding and gene functioning. The DNA encodes the proteins and defines who we are 

biologically. Except for red blood cells, human genome is located in nucleus of cells in the body 

in which it is organized into 46 chromosomes. 

 

Figure 2. 2 Double helix structure of DNA. 

 

 The genetic information in a genome is held within order of nucleotides, which 

constitutes the genomic sequence, and the complete set of this information in an organism is 

called its genotype. Only about 3 percent of the information human genome carries is actually 

translated into biologically active molecules. These regions are called coding regions, or in other 

words genes, and they are scattered throughout the chromosomes. A gene is a unique DNA 

sequence within a chromosome that ultimately directs the building of a specific protein with a 

specific function that influences a particular characteristic in an organism. Close to each gene is a 

regulatory sequence of DNA, which is able to turn the gene on or off. Remaining 97 percent of 
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the genome, areas which are known as noncoding regions or junk DNA, has no defined function 

yet.  

 Transition from DNA to proteins, also known as central dogma of molecular biology, 

follows a specific path of molecular processes: Transcription – Splicing – Translation (See Figure 

2.3 - used with the permission of [21]). Transcription is the first step leading to gene expression. 

During transcription, RNA complementary to DNA sequence of the coding region is created. 

Only one strand of the DNA corresponding to that gene (known as the template strand) is copied 

into an RNA molecule. During the second step, which is called splicing, a modification of an 

RNA after transcription, in which introns (non-coding sections within a gene that is not translated 

into protein) are removed and exons (contains part of the open reading frame that codes for a 

specific portion of the complete protein) are joined. During the last step messenger RNA 

(mRNA) produced in transcription is translated into a specific amino acid chain, called 

polypeptide that will later form an active protein.  

 

Figure 2. 3 Typical eukaryotic protein-coding gene. 

 There are twenty different amino acid building blocks used to make proteins in human 

cell. Three bases in a row (called codon) are “read” to specify a single amino acid. Each codon 

specifies the incorporation of one and only one amino acid. There are a total of 64 codon 

combinations but the total number of amino acids is only 20. So we can incur that some amino 

acids such as methionine can be encoded by only one codon, AUG, but some amino acids such as 

leucine can be designated by as many as six different codons [19]. The codon AUG is the start 

codon and codes for an amino acid called methionine that always signals the start of protein 

building. UAG, UGA, and UAA are stop codons and do not code for any amino acid. Instead, 

they act as a signal to stop the transcription of DNA into RNA. 

 Whenever the order of the bases in the DNA sequence changes a variation occurs. 

Variations can involve only one base or many bases.  How they affect the biological functioning 

can vary from no alteration in biological activity to serious malfunctioning that can be the 
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molecular basis of a disease. Combined variations in particular sections of the human genome 

alongside with environmental effects can be regarded as the reason for complex diseases as they 

may trigger folding of different proteins than expected or proteins functionality may be affected. 

2.2 Mutations and Variations in the Human Genome 

 Compared to the huge size of the genome, variation in the DNA sequence only accounts 

for a small portion. When the genome of one person is compared to that of another, of the 3.2 

billion bases, roughly 99.9 percent are the same. It is the variation in the remaining 0.1 percent of 

the genome that makes a person unique. This small amount of variation determines attributes 

such as how a person looks or tendency to develop complex diseases. 

 A mutation is a stable and heritable change in the genome of an organism, which refers 

to a change in the sequence of the DNA. Mutations include changes from one base pair to 

another (for example, A-T to G-C), deletion of one or more base pairs, or insertion of one or 

more bases. Depending on where mutations occur, they may affect if and when, where, how 

much a gene will be transcriped and translated into a protein and if it will code for an altered 

product. 

 There are many mutations that accumulate on genome, changing the DNA sequence. 

These mutations can be classified into 5 types depending on their effect on protein sequence [22]: 

 A frameshift mutation is caused by insertion or deletion of a number of nucleotides that 

disturbs the triplet nature of a codon, therefore causing mistranslation of the reading 

frame that code for the protein sequence. Frameshift mutations result in a completely 

different translation from the original protein sequence. 

 A nonsense mutation occurs when a premature stop codon or a nonsense codon is 

coded as a result of an exchange of a single nucleotide for another in the transcribed 

mRNA. These mutations often result in truncated and nonfunctional protein products. 

 A missense mutation (nonsynonymous mutation) is a type of mutation caused by 

change of a single nucleotide, which results in substitution of a different amino acid in 

the protein sequence. This would result in protein malfunction.  

 A neutral mutation occurs in the coding region of a gene, which results in the use of a 

different, but chemically similar, amino acid in the protein sequence. The similarity 

between the two is enough that little or no change occurs in the protein structure or 

function. 

 A silent mutation does not result in a change of the amino acid sequence of a protein. 

They may occur in a non-coding region or within a codon but they do not alter the final 

amino acid sequence. 

 

http://en.wikipedia.org/wiki/Nucleotide
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2.3 Single Nucleotide Polymorphism 

 Among 3.2 billion nucleotides that build our genome, there is only a 0.1% difference or 

variation between two randomly selected individuals. These variations arise from mutations and 

are called polymorphisms if observed in more than 1% of a given population. The simplest form 

of DNA variation among individuals is the substitution of one single nucleotide for another at a 

homologous site in a population. This type of change is called single nucleotide polymorphism 

(SNP-pronounced snip) and they classify 90% of all variations seen between individuals (See 

Figure 2.4 - used with the permission of [23]). The nucleotide at a position in which a SNP 

occurs is called an allele. The allele with the dominant occurrence within a population is called 

the major allele, while those occurring less frequently are called the minor alleles [24]. 

 
 

Figure 2. 4 A C/T polymorphism between two DNA molecules. 

 

 One may expect to observe a single-nucleotide difference between two haploid genomes 

in the range of one in every 100–300 base pairs. This means that entire human genome hosts 

approximately 10 to 30 million potential SNPs. National Center for Biotechnology Information‟s 

(NCBI) current SNP variation database (dbSNP build 131) holds more than 14 million validated 

SNPs out of estimated 30 million potential SNPs within the human genome [25]. As of 

September 2010 over 1.6 million common SNPs between 11 different populations have been 

genotyped within the scope of International HapMap Project (HapMap3) [26]. Although the vast 

majority of SNPs are shared between populations [27], it is evident that many are specific to 

populations or continental grouping of populations that share recent history.   

 SNPs exist both within coding regions and non-coding regions of the entire human 

genome. SNPs present in non-coding regions can occur in intergenic regions, intronic regions, 5‟-

UTR (untranslated) or 3‟-UTR regions, and associated non-coding regions such as transcription 

factor binding sites, promoters, upstream and downstream sequences. Those falling  within  
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coding  regions  can  be  further  categorized  into  two groups: synonymous (silent)  and 

nonsynonymous (see Table 2.1 for various types) [28]. Both coding and non-coding SNPs can be 

utilized as genomic biomarkers. If a particular SNP is located near a gene (linked to the gene), 

every time that gene is inherited, the SNPs are passed along with the linked allele of the gene. 

This enables researchers to assume that when they find the same SNP profiles in a group of 

individual genomes, the associated allele for the gene is also present. 

 A synonymous SNP‟s impact on gene function is mostly via effect on mRNA splicing. 

This is well documented in the literature [29, 30] and can result in distinct phenotypes, 

underlying many diseases [31]. The structure of mRNA is crucial for its functioning and it is 

mainly determined by its primary nucleotide sequence. SNPs that perturbates mRNA stability 

and translation also affects gene expression [32]. Additionally, it has been shown that SNPs have 

an influence on protein folding and ultimate protein function [33]. 

 

Table 2. 1 Frequency of various types of single nucleotide polymorphisms (NCBI Database, Human 

Genome). 

Nucleotide change Coding 

synonymous

Coding 

nonsynonymous

Intron Splice site mRNA UTR Flanking 

2000 up/500 down

Outside 

coding regions 

Total

A-C 3,701 8,855 438,464 62 13,992 26,104 810,028 1,301,206

A-G 29,049 30,783 1,694,999 176 48,035 91,977 2,928,878 4,823,897

A-T 1594 4,924 360,280 40 9,361 18,367 695,762 1,090,328

C-G 4,416 11,620 447,12 68 14,732 30,048 753,613 1,261,617

C-T 31,706 28,366 1,692,412 326 48,426 93,000 2,929,112 4,823,348

G-T 3,329 9,018 440,620 98 13,170 25,745 810,560 1,302,540

A/C/G 75 220 2485 4 130 247 5,885 9,046

A/C/T 60 114 2166 0 108 191 5,570 8,209

A/G/T 65 146 2047 3 86 193 5,556 8,096

C/G/T 78 160 2444 0 135 255 5,806 8,878

All others 

(including deletions) 1,735 13,542 1,328,009 300 34,160 74,582 1,806,707 3,259,035

Total 75,808 107,748 6,411,225 1,077 182,361 360,737 10,757,498 17,896,454

 

 The complete list of functional types for SNPs that has potential for deleterious effects 

are listed below [34]. 

 SNPS on coding region: 

 Non-synonymous SNPs (also known as missense mutation) - SNPs that are located in 

protein coding regions and lead to an amino acid change in an encoded protein sequence. 

 Synonymous SNPs (also known as silent mutation) - SNPs that are located in protein 

coding regions, but do not result in a change of an amino acid sequence. 

 Frameshift variations (also known as nonsense mutation) - SNPs that are located in 

protein coding regions, and result in a frameshift. 

 Stop lost (also known as nonsense mutation) - SNPs that are located in protein coding 

regions, and result in the loss of a stop codon. 
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 Stop gained (also known as nonsense mutation) - SNPs that are located in protein 

coding regions, and result in the gain of a stop codon. As a result, these SNPs lead to a 

curtailed protein sequence. 

SNPS on non-coding region: 

 Essential splice site - SNPs that are located in the first two or the last two base pairs of 

an intron. 

 Splice site - SNPs that are located in 1-3 base pairs into an exon or 3-8 base pairs into an 

intron. 

 Upstream variations - SNPs that are located within a 5 kb (kilo base) upstream region 

of the 5-prime end of a transcript. 

 Regulatory region variations - SNPs that are located in regulatory regions, annotated 

by Ensembl or dbSNP. 

 5-prime UTR variations - SNPs that are located in the 5-prime untranslated region 

(UTR). 

 Intronic variations - SNPs that are located in an intron. 

 3-prime UTR variations - SNPs that are located in the 3-prime UTR. 

 Downstream variations - SNPs that are located within a 5 kb downstream region of the 

3-prime end of a transcript. 

 Intergenic variations - SNPs that are located more than 5 kb either upstream or down- 

stream of a transcript. 

2.4 Block Structure of Human Genome 

 For each of the SNPs on a chromosome, every individual has two alleles, one on the 

paternal chromosome and the other on the maternal chromosome. Each of consecutive SNPs 

present on the same chromosome for a particular individual is referred to as a haplotype. It is a 

set of closely linked alleles (SNPs) inherited as a unit. If we assume that there is a gene with 

three SNPs and represent two alleles of each SNP with A and B, the number of possible 

combinations of the three SNPs is eight (as listed here: A-A-A, A-A-B, A-B-A, A-B-B, B-A-A, 

B-A-B, B-B-A, B-B-B). However, the total number of common (i.e., frequency > 5%) haplotypes 

in the population usually much less than eight, for example, it can be three (A-A-A, A-B-B, B-B- 

A).  The number of common haplotypes varies depending on the chromosome regions. Due to 

high cost and lengthy processing time it is difficult to distinguish the paternal and maternal origin 

of each allele (therefore haplotypes) for long DNA sequences (Even most efficient methods are 

limited to 10 to 20 kilobase pairs of DNA) [35]. Instead, the usual procedure is to simply 

associate the two alleles with the SNP position without determining which one of the two 

chromosomes carries which allele. The combined allele information for a particular locus is 

called a genotype, and the experimental procedure used for extracting the genotype information 

is called genotyping. Figure 2.5 (used with the permission of [36]) represents the difference 
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between haplotypes and genotypes, where gray boxes indicate major allele and black boxes 

indicates minor allele for haplotypes.  

 

Figure 2. 5 Haplotypes and genotypes. 

  

 In a population, certain combinations of genomic variations, like SNPs, may occur with a 

different frequency than would be expected from a random distribution of haplotypes based on 

their allelic frequencies. This observation has been described as Linkage Disequilibrium (LD), 

which is the result of the non-random association of alleles at two or more loci, on the same or 

different chromosomes. Basically LD measures the difference between observed and expected 

random distributions for allelic frequencies, thus non-random associations between 

polymorphisms for different loci is determined.. To give a mathematical definition of the degree 

of LD, let SNP1 and SNP2 be two SNPs at under study. Let |SNP1| and |SNP2| represent the 

cardinality of allele set for corresponding SNPs. Let s1i denote the i
th

 allele of SNP1, and s2j 

denote the j
th

 allele of SNP2. If SNP1 and SNP2 were to be independent then we would say the 

joint probability of s1i and s2j to occur for all i,  j is Pr(s1i, s2j) = Pr(s1i). Pr(s2j). When this equation 

does not hold, say if Pr(s1i, s2j) = Pr(s1i). Pr(s2j) + D,  we conclude that two alleles are not 

independent and consequently they are in a state of LD and degree of LD is denoted by D[37]. 

Several measures of pairwise LD are routinely used when describing marker–marker correlation 

and are central to SNP tagging. The two most commonly used are D‟ (standardized LD 

coefficient, D) and r
2
 (correlation coefficient) [38]. 

 In general, SNPs physically close to each other are hypothesized to be in high LD, as the 

recombination probability is higher where two SNPs are distant to each other [39]. Therefore, 

SNPs close to each other tend to be inherited together to descendants from their ancestor. This 

phenomenon results in their alleles often being highly correlated with each other, and therefore 

number of unique haplotypes containing these SNPs is considerably smaller than one may expect 

under the independence assumption as explained above.  
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2.5 Complex Diseases 

 Genetic disorders are caused by the unusual characteristics of genes or chromosomes 

within certain individuals. Those disorders, which can be attributed to observable defects in 

chromosomes and mutations that negatively affect specific function of a single gene are classified 

as Mendelian diseases (over 1,500 detected). These are fairly rare diseases and can be usually 

identified by specific patterns of transmission: dominant, recessive, sex linkage [40].                                                                                                                                         

Various other chronic diseases usually show different characteristics than Mendelian family 

patterns and they are thought to be caused by interplay of multiple genes, as well as involvement 

of environmental factors. Among such diseases are hypertension, coronary heart disease, obesity, 

diabetes, Parkinson‟s disease, Alzheimer‟s disease, Epilepsy, various cancers, and others [41]. 

These diseases are called complex diseases and occur commonly in the population and are a 

major source of disability and death worldwide. Complex diseases are characterized by the 

following features [42]: 

 Multiple genes are thought to be involved, 

 Caused also by both environmental factors and behaviors that elevate the risk of disease, 

 Susceptibility  alleles  have  a  high  population  frequency, 

 Non-Mendelian. 

 As genetics studies fastly approach to completing the human genome project, an exciting 

era with a great potential to associate DNA sequence variation with disease susceptibility comes 

into play. SNPs are the most common of all DNA sequence variations. SNPs may occur within 

coding sequences of genes, noncoding regions of genes, or in the regions between genes. 

Although the vast majority of the SNPs are found in noncoding regions of the genome and most 

of the SNPs found  in  coding  regions are silent or have subtle functional effects, SNPs are 

thought to be the basis for much of the genetic variation found in humans from physical 

appearance to susceptibility to disease.  

 In the following subsections we will explain two complex diseases that are studied for 

GWAS in this thesis work: Alzheimer‟s Disease (AD) and Rheumatoid Arthritis (RA). 

2.5.1 Alzheimer’s Disease 

 AD is an incurable, degenerative and terminal disease (fewer than three percent of 

individuals live more than fourteen years after diagnosis) characterized by the deposition into the 

brain of amyloid peptide, which originates a cascade of inflammatory events leading to neuronal 

death (see Figure 2.6 - used with the permission of [43]). It is expected that in year 2050 1 of 

every 85 individuals will suffer from this disease. AD usually slowly progresses and results in 

memory loss, alterations of emotional stability, higher intellectual function, and cognitive 

abilities [44]. 
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Figure 2. 6 Comparison of a normal aged brain and an Alzheimer's patient's brain. 

 AD has very complex genetic roots involving both gene–gene and gene–environment 

interactions. As for the environmental risk factors that would be regarded as major causes of AD, 

we can count injuries related with head. Serious head injuries increases future risk of 

Alzheimer‟s, especially when trauma occurs repeatedly or involves loss of consciousness. 

Additionally, the risk of developing AD is thought to be increased by many conditions that 

damage the heart or blood vessels. One can count diabetes, heart disease, high blood pressure, 

stroke, and high cholesterol among such conditions.  

 Among genetic causes, scientists have discovered variations that directly cause AD in 

the genes coding three proteins: amyloid precursor protein (APP), presenilin-1 (PS-1) and 

presenilin-2 (PS-2). Also, several risk genes implicated in Alzheimer's disease have been 

identified in past years. The risk gene with the strongest influence is called apolipoprotein E-e4 

(APOE-e4) [45]. 

2.5.2 Rheumatoid Arthritis 

 RA is a chronic and systemic inflammatory disorder. It is a major cause of disability 

affecting about 1 per cent of world‟s population (women three times more often than men). This 

disability results from changes in the anatomy and functioning of the synovial joints (See Figure 

2.6 - used with the permission of [46]) caused by autoreactive tissue-destructive immune 

response(s). The main symptoms individuals with RA report are pain, stiffness, joint swelling 

and fatigue. As the disease progresses joint tissue may become permanently damaged. The 

combined effects of inflammation and joint damage result in progressive disability.  
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Figure 2. 7 Effect of RA on a joint. 

 The exact causes of RA are, as yet, unknown. It is generally considered an auto-immune 

disease, but factors that trigger this destructive response of the body‟s immune system are not 

clear. Some research evidence supports exposure to infection as a trigger for RA (e.g. Epstein–

Barr virus, parvovirus and some bacteria such as Proteus and Mycoplasma). In [47], it is 

suggested that conditions that effects level of female hormones such as using oral contraceptive 

pill or pregnancy may be somewhat protective for developing RA; for example, the use of the 

and pregnancy are both associated with a decreased risk. However, it is also possible that such 

phenomena are secondary to the exposure with RA [48]. It is however clear that triggered T-cells, 

which are normally part of the body‟s adaptive immune system and which normally respond 

against foreign bodies, are induced to attack the individual‟s joints in the case of RA [49]. 

 Apart from mentioned environmental factors, genetic basis of RA has been subject of 

extensive research in the past years [47, 50, 51]. Majority of the performed analysis focus genes 

within the major histocompatibility complex (MHC) class II (HLA-DR - human leukocyte 

antigen) chromosomal region (located on the short arm of chromosome 6 - 6p21.3) [52]. Other 

studies identified non-MHC genes such as corticotrophin releasing hormone [53], CYP19 

(estrogen synthase) [54], IFN-γ [55] and other cytokines [56] linked to RA. Possibility that 

association with RA for other genetic regions linked to other autoimmune diseases, such as 

insulin-dependent diabetes [57], was also investigated.  

 Although the precise etiology of RA is not yet known, it is clearly multifactorial and 

complex, with contributions from both genetic and non-genetic factors.   
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2.6 SNP - Complex Disease Association: Genome-wide Association 

Studies 

 SNPs are by far the most common of genetic variations and they are promising genomic 

biomarkers
2
 for population genetic studies and for spotting genetic variations responsible for 

complex diseases. Most of the complex diseases are assumed to be attributable to deleterious 

effects of SNPs on protein functionality and/or change in the regulation of genes. A number of 

instances are known for where a particular nucleotide change at a SNP locus (i.e., a particular 

SNP allele) is associated with an individual‟s propensity to develop a disease [58]. There have 

also been a number of reports that show some SNPs in certain genes can determine whether a 

drug can treat a disease more effectively in individual with certain genotypes compared to those 

who do not carry such SNPs [59]. 

 The completion of human genome project as well as introduction of the high throughput 

genotyping technologies allow researchers to analyze the DNA sequences to select a set of 

single-nucleotide polymorphisms (SNPs), which represents the entire haplotype, and utilize these 

SNPs to assess genetic variation between individuals. Two types of approaches have been 

commonly utilized for locating genetic factors that are responsible for or associated with the 

disease: Candidate-gene-based approaches and Genome-wide Association Studies (GWAS). 

In the formation of Candidate-gene-based approach a hypothesis is involved so as to associate 

genes with a disease. In order to do that, gene should be sequenced in case-control groups and the 

variant that differentiates cases and controls are investigated. Genome-wide association studies 

on the other hand are unbiased in their attempt to identify disease causing variants as search is 

done across most of the genome. They have the capability to test few thousands to more than 

million markers at a time. They are hypothesis-free, and aimed at the discovery of novel disease-

casual variants. In this research study we will refer to GWAS when we mention genotype-

phenotype association studies (See Appendix A for glossary of terms frequently used in GWAS).    

 National Institutes of Health (NIH) defines GWAS as a study of common genetic 

variations across the entire human genome, designed to identify genetic associations with 

observable traits [60]. In a typical GWAS, researcher follows a common 5 step process: (1) a 

large number of individuals with disease or another trait of interest alongside with a suitable 

comparison group is selected; (2) in order to assure high genotyping quality, DNA isolation, 

genotyping and data review is performed; (3) statistical tests are applied to observe the 

association between SNPs and disease/trait; (4) identified associations are replicated in an 

independent population sample, (5) Fine mapping to DNA locus and biological interpretation is 

applied. Figure 2.8 summarizes the process (used with the permission of [61]).  

 

                                                 
2
 DNA sequence with a known location on a chromosome and associated with a particular gene or trait. 
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Figure 2. 8 Process steps for a GWAS. 

 The major study design used in a typical GWAS is the “case-control” study approach in 

which allele frequencies in patients with the disease of interest are compared to those in a 

disease-free comparison group. The other design types are “cohort”, in which baseline 

information in a large number of individuals is collected and these individuals are then monitored 

to identify disease in subgroups defined by and “trio”, which includes the affected case 

participant and both of his/her parents. Assumptions, advantages and disadvantages in using 

different design patterns are depicted in Table 2.2 [60]. In this research study, we are only 

interested in case-control design and our analysis is developed for this type of design. Figure 2.9 

depicts a case-control GWAS (used with the permission of [62]).  
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Table 2. 2 Commonly used design types for a typical GWAS. 

 

 

 In Figure 2.9, in Panel A genotyping process is depicted. Two SNPs from chromosome 9 

is genotyped. In Panel B association between SNPs genotyped throughout the entire genome (at 

least 100,000 SNPs should be used) and the observed disease/trait is calculated. In this particular 

example SNP1 and SNP2 is highly associated with the phenotype with p-values 10
-12 

and 10
-8

 

respectively. Panel C shows the p-values for al genotyped SNPs  that have survived a quality 

control screen, where each chromosome is shown in a different color. The results implicate a 

highly associated locus on chromosome 9. 
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Figure 2. 9 An example case-control GWAS 

  

 As it will be covered in Chapter 4 in greater detail, one of the major problems related 

with a GWAS is the enormous number of simultaneous statistical tests that needs to be applied 

and the boosted false positive results following the tests. To account for this problem, usual 

approach is to perform multi-stage designs in which after performing an initial genome-wide scan 

on case-control participants, a smaller number of associated SNPs is replicated in a second or 

third group of participants. Initially, a small number of participants with a large number of SNPs 

are used in some studies to minimize the false negative results. Other studies begin with more 

participants and carry forward a smaller proportion of associated SNPs. Table 2.3 shows 

examples of multi-stage designs. 

 

Table 2. 3 Example of multi-stage designs in GWAS 
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 GWAS has been a popular way of identifying disease causing variants but it comes with 

certain challenges in terms of logistical and technical requirements. Firstly, a suitable disease 

should be selected for the analysis and this is not an easy task as the selection should favor 

specifically diagnosable and measurable phenotype for a successful analysis. Additionally for 

such studies, extremely large sample sizes (in thousands) are required for cases and controls, 

which make it hard to collect and manage genetic data. Table 2.4 presents benefits, 

misconceptions and limitations regarding GWAS [61]. 

 

Table 2. 4 Benefits, misconceptions and limitations of GWAS 

   

2.7 Biological Pathways 

 Biological pathways are networks of complex reactions at the molecular level. They 

model how biological molecules interact to perform a biological function in response to each 

other and their environment. One can represent pathway as a collection of biochemical entities 

serving as the nodes of a network. The edges, in this context, then can be thought as interaction 

between these entities in the form of protein – protein interactions or protein – DNA binding 

interactions, regulation events or modifications. In this representation, the global bimolecular 

network acts as a graph containing all cellular molecular entities and all possible molecular 

events linking them and a pathway can be regarded as a subgraph. Importantly, not every 

particular subgraph can be a pathway. There needs to be an actual flow of information (signal) 

and/or chemical reaction flow that would turn part of the network into a pathway. Signals can be 
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involved in chemical reactions, turning genes on or off, or regulating the cell function and 

determine cell‟s faith [63]. Figure 2.10 (excerpted from KEGG website) depicts the mitogen-

activated protein kinase (MAPK) pathway, which is involved in various cellular functions, 

including cell proliferation, differentiation and migration. 

 

 

Figure 2. 10 MAPK Signaling Pathway 

 Recently, there has been a focus on investigating pathogenetic effects of pathways and 

identifying involvement of certain functional and mechanistic pathways in a variety of disease 

processes [61, 64]. MAPK Signaling Pathway shown in Figure 2.10, for example, is found out to 

be significantly overrepresented for RA [65]. During our analysis, we regard a pathway as a 

collection of genes. In our SNP prioritization algorithm, we have integrated pathway based data 

into GWAS. The process is described in greater detail in the next chapter.  

2.8 Conclusion 

In this chapter, we aimed to introduce the biological concepts that are important for the 

development of the ideas that will shape the rest of this research work. We carefully tried to 

avoid getting into deep towards biological terms to a level that would distract the reader. Instead, 

we introduced and mentioned the most relevant terms such as mutations, SNPs, genes, complex 

diseases, GWAS and biological pathways. More specific terms and concepts are explained in 

subsequent chapters when needed.      
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CHAPTER 3 
 

 

 

ANALYTIC HIERARCHY PROCESS BASED 

PRIORITIZATION SCHEME FOR MULTI-

HIERARCHICAL FILTERING OF INFORMATIVE SNPS 

AFTER GENOME-WIDE ASSOCIATION STUDY 

 

 

 A typical approach in a Genome Wide Association Study (GWAS) is to repeat the study 

on an independent sample by genotyping the top signals. It is evident that this approach would be 

facilitated by incorporating information from biological databases to determine and rank the 

SNPs that has the highest potential to effect biological functions. In this chapter, we introduce a 

method that would be used to achieve this strategy in an objective and structured way by 

combining information on genomic location, biological significance and evolutionary 

conservation alongside with statistical evidence of genotype–phenotype correlation. Our 

approach is based on the well-known multi-criteria decision making method called Analytic 

Hierarchy Process (AHP), which is a structured technique for dealing with complex decisions. 

3.1 Introduction 

 In a biomarker discovery study, the major aim is to identify potentially significant 

differential variants, such as gene expressions or protein production, in a large set of variables 

(i.e. potential biomarkers) across control and case groups. The number of variables changes from 

hundreds to thousands in a typical biomarker discovery study. If we consider that thousands of 

SNPs may be tested in a study scanning hundreds of genes in a candidate pathway or that 

hundreds of thousands may be tested in a GWAS, it quickly becomes clear that high numbers of 

falsified associations would be detected at common thresholds of statistical significance (such as 

p = 0.05) because the simultaneous testing of hundreds of thousands of SNP markers means that 

a high number of hits would occur by chance [66]. This type of analysis is called as multiple-

hypotheses testing and it hinders the replicability of findings in follow-up association studies. 

Standard procedures that are used to cope with the boost of false positives as a result of multiple-
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hypothesis testing (such as Bonferroni correction) are considered too conservative for GWAS, as 

they tend to ignore the dependency between markers such as those in LD with each other [67]. 

 On the other hand, even if the disadvantages of multiple hypothesis testing are taken care 

of, the resulting p-values alone should be interpreted with utmost caution. For example, it is a 

common practice for many researchers to make excessive use of the term “significant” without 

taking neither statistical nor research domain contexts into consideration. Usually, any findings 

with p-values below 0.05 are automatically defined and reported as significant. It may often be 

the case for many researchers to ignore those findings falling above this threshold, because they 

are simply not significant. A better way would be to understand the meaning of the parameters 

and the outcomes of the hypothesis testing process and to interpret them considering the goals, 

limitations, assumptions and characteristics of the investigation. Another common mistake is to 

believe that a p-value solely represents the probability of not significance, or the probability that 

the null hypothesis is true. On the contrary, it should be remembered that p-value is a measure for 

the “strength of the evidence found against the null hypothesis”. Moreover, hypothesis testing 

results with p-values below 0.05 may not necessarily represent strong evidence against the null 

hypothesis [10].  

 The usual approach after an initial GWAS run is to replicate the findings in an 

independent sample to prove that the association observed was not random and it is reproducible. 

However performing a second full GWAS is very costly with limited genotyping resources. Even 

if unlimited resources are provided, the prioritization of SNPs is still required in order to select a 

subset of SNPs for cost reduction in downstream functional experiments, which aims to extract 

the exact molecular genetic mechanism responsible for the disease, such as the effect of the 

genetic variant on transcription, structure of the protein product, or regulatory mechanism [68, 

69].  

 Additionally, focusing on the statistical evidence alone is not a valid approach for SNP 

biomarker discovery in a GWAS setting because of Linkage Disequibrium (LD). As a result of 

the strong physical association between certain SNPs (LD proxies), it is highly unlikely to spot 

the true causal polymorphisms by looking at only the p-values of association as the genotypes 

will be very similar. Then, the necessity of prioritizing and selecting a subset of SNPs for 

subsequent GWAS studies and/or functional experiments brings forward the question of what is 

the best approach to prioritize SNPs. In the literature, alongside with statistical evidence, use of 

biological information such as functional effects of SNPs is favored for this purpose [6-12].  In 

fact many software tools have been proposed recently to systematically prioritize SNPs based on 

the wealth of biological information available in public databases such as SPOT [69], FunctSNP 

[70], FASTSNP [71], SNPLogic [72], SNPinfo [73] and SNPit [74]. 

 In this chapter a novel method for SNP biomarker scoring and prioritizing based on the 

well-known multi-criteria decision making method Analytic Hierarchy Process (AHP) will be 

introduced. The proposed hierarchy tree and the scoring system to structurize SNPs for objective 
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prioritization will be presented. SNP biomarker scoring system is based on both p-values of 

association and the biological importance of SNPs depending on three different criteria: (1) 

Evolutionary Conservation, (2) Gene Association and (3) Genomic Location. In order to 

calculate scores for SNPs the information from major public databases are integrated. In the 

subsequent sections we will review the prioritization approaches in the literature, explain the 

major public databases on which our scoring mechanism is constructed, discuss available tools 

for prioritization and give details of our novel prioritization scheme proposed for the first time in 

this study.  

3.2 Prioritizing SNPs after GWAS 

 Individual SNP based association analysis should only be regarded as a means to an end 

for revealing the etiology of complex diseases.  Recently Hardy et al. [75] state that the genetics 

of complex diseases can be visualized as a jigsaw puzzle and by performing an individual SNP 

based analysis one only constructs the frame of the puzzle by putting the edges and corners. To 

complete the puzzle the preliminary genetic information available for additional analysis by 

statistical procedures that accumulate evidence should be used effectively. After the preliminary 

step, secondary analyses should be performed to prioritize SNPs so as to guide subsequent 

studies and experiments. Cantor et al. [76] present a very detailed review on the techniques that 

can be used for prioritizing SNPs after a GWAS. Meta-analysis and pathway analysis are 

suggested as the available approaches. 

 Meta-analysis is a statistical technique that can be used to combine the results of 

independent studies, which examine the same research hypothesis. As it does not require use of 

original data, it introduces considerable advantage and is advocated as a proper method to 

increase power in genetic analysis [77-79]. In recent studies, use of meta-analysis is also favored 

for prioritizing genes and SNPs for subsequent studies [80-82]. Combining test statistics from 

comparable studies have been proposed for application of meta-analysis and among proper 

statistics, Fisher‟s method of combining p-values [83] is widely used [84-86]. Converting test 

statistics into z scores [84, 87-89] and using odds ratios and regression coefficients is another 

approach favored by many researchers. There are various methods for use in SNP prioritization 

following a meta-analysis. Some of them are based solely on meta-analysis p-values [82, 88] 

whereas others use predetermined decision rules as prior evidence in addition to meta-analysis 

results to guide the decision [84, 89].  

 Second method available for prioritization based on GWAS pathway analysis 

(GWASPA), which integrates results of a GWAS and the genes in a known biological pathway to 

test whether the pathway is associated with the disorder or not. This approach is promising 

because it enables combination of statistical results via use of pathways and suggests a biological 

interpretation. Various analytical methods have been proposed to calculate measures that would 

be used to rank SNPs in a GWASPA. Subramanian et al. [90] propose gene-set enrichment 
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analysis algorithm for combining p-values in which genes in the pathway are ranked according to 

the strongest empirical p-value statistic.  A running sum similar to Kolmogorov-Smirnov is used 

to calculate test statistics for genes within pathway. Yu et al. [91] introduce an analysis based on 

adaptive rank truncated product statistic p value, which aims to select n most significant genes or 

genes satisfying a user defined threshold. Baranzini et al. [92] define a test statistic calculated 

over a two-step procedure. First, p-value of each gene is converted into a z score and then z 

scores are accumulated over the genes in the pathway contributing to the overall score. Once the 

significant genes and pathways are found through calculation of test statistics and measures, most 

frequent approach is to select a single SNP with the strongest association signal from each gene.  

 During our analysis phase in order to find statistically significant (enriched) genes and 

pathways we have followed the approach stated in [85]. In order to combine p-values of all SNPs 

within a gene we used Fisher‟s combination test, in which the statistic for combining K SNPs is 

given by 

                                                                          
 
   ,                                                            (3.1) 

which follows    
  distribution. Following that to search for overrepresentation of significantly 

associated genes among all genes in a pathway we used Hypergeometric test (Fisher‟s exact test). 

Assuming that total number of genes is N, number of genes that are significantly associated with 

the disease is S and the number of genes in the pathway is m; p-value of observing k-significant 

genes in the pathway is calculated by:  
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 In order to calculate the aforementioned statistics, one has to have access to the relevant 

biological information. Fortunately, recent studies enabled collection of such information within 

web-based databases. Most of these databases are publicly accessible. Our AHP based 

prioritization scheme requires integration of primary public databases because of the need of 

mappings for:  

 SNP to Gene, 

 Gene to Disease, 

 Gene to Biological Pathway. 

 

3.2.1 SNP and Gene Repositories 

 The International HapMap Project [1, 2] has been identifying patterns of DNA sequence 

variation (linkage disequilibrium (LD)) in human, since it was initiated in 2002. Generated data 

has been used to assist researchers in the mapping of loci associated with disease, drug response 

and other human features. Genotype data, allele and genotype frequencies, LD data, phase 

information, SNP assay details, protocols and sample documentations are available for download 

from the HapMap website. Novel SNPs identified by the HapMap Project have been submitted to 
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the public databases such as dbSNP
3
 [15] and JSNP [93], and the data incorporated into Ensembl 

[94] and the UCSC Generic Genome Browser [95]. See Table 3.1 for HapMap based databases.  

 

Table 3. 1 Publicly available databases incorporating HapMap data. 

Database Description URL

HapMap Primary data source http://www.hapmap.org

dbSNP Individual genotypes, allele and genotype frequencies, LD plots http://www.ncbi.nlm.nih.gov

JSNP Genotype frequencies http://snp.ims.u-tokyo.ac.jp

Ensembl

Individual genotypes, allele and genotype frequencies, LD plots, 

tag SNP identification http://www.ensembl.org

UCSC Genome Browser

Recombination rates, hotspots, sequencing coverage and allele 

frequencies in encode regions http://genome.ucsc.edu

 
 Among other heavily used data repositories are SNP500 [96], Environmental Genome 

Project (EGP) [97], Seattle SNPs [98] and Human Gene Mutation Database (HGMD) [99]. The 

SNP500 database is almost entirely a gene-centric database and is home to the resequencing data 

from genes thought to be of importance in cancer. It aims to provide a framework to the 

molecular epidemiologists for the design of cancer-based association studies. The premise of the 

EGP is to identify polymorphic variations in candidate genes that are believed to be at the 

interface between genetics and response to environmental stimulus. Seattle SNPs concentrates on 

genes with relevance to inflammation, but also clotting and heart, lung and blood-related 

phenotypes. It provides assay conditions and resources for assay design. HGMD aims to collate 

data on genetic variation pertaining to human disease.  

 As for the gene information the most relied source is NCBI Entrez Gene [16]. It is 

NCBI's repository for gene-specific information such as gene symbol, alias names, chromosomal 

location, and gene type. The gene centric information is provided through the NCBI ENTREZ 

and the information about a single gene, associated sequences, structures, variations, and more 

for around 38,550 human genes are also visualized through its genome browsers. The gene 

record offers a summary information about the genomic region/transcripts/products, genomic 

context, a bibliography, interaction data, general gene and protein information, references 

sequences and more. See Appendix B for Entity-Relationship Diagram of Entrez Gene. 

 

3.2.2 Gene and Disease Repositories 

 Genetic disorders are result of the unusual characteristics of genes or chromosomes 

within certain individuals. Genetic disorders can be classified into Mendelian diseases in which 

chromosomal defects interfere with functions of a single gene. A catalog of Mendelian diseases 

can be found at the Online Mendelian Inheritance in Man (OMIM) database. In case of complex 

diseases, the interplay of multiple genes alongside with environmental factors triggers disease 

                                                 
3 The most recent build for human SNPs is build 131 and it is dated 25.03.2010. It provides annotation 

for 12,017,369 validated human SNPs. 
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status. Coronary heart disease, hypertension, diabetes, obesity, various cancers, Alzheimer‟s 

disease, Parkinson‟s disease, Epilepsy are among complex diseases [41]. 

 NCBI‟s Genes and Disease
4
 is a rich and comprehensive resource providing information 

on genes and the diseases that they cause. The genetic disorders are organized, so that they are 

grouped by the parts of the body that they affect. A list of 85 human genetic disorders, 

categorized by the 16 body parts that they affect is presented. Figure 3.1(excerpted from KEGG 

website) provides an example in which a couple of genetic disorders are mapped to chromosome 

4. A much more detailed (gene – disease) mapping is provided for each chromosome. 

 
Figure 3. 1 A sample mapping from NCBI's genes and disease. 

 NCBI‟s OMIM database
5
 [100] provides users with very detailed information of human 

genes and genetic phenotypes. OMIM contains information on all known Mendelian disorders 

and over 12,000 genes. It can be regarded as a great source to map genes to diseases. 

Additionally, the Genetic Association Database
6
 can be used to exploit human genetic association 

studies of complex diseases and disorders. The data is presented in a gene centric fashion and is 

extracted from published scientific papers. Data fields common to genetic association studies 

such as disease phenotypes, sample sizes, significance values, population information and allele 

descriptions are identified. Recently disease annotations using GeneRIF is suggested as a 

promising approach for increased accuracy in disease identification [101]. A GeneRIF (Gene 

Reference into Function) is a brief (up to 255 characters) annotation to a gene in the NCBI 

database. It contains gene specific information including disease associations. To provide disease 

to gene annotation, the Disease Ontology (DO) is used to identify the relevant diseases in 

                                                 
4 http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gnd 
5http:// www.ncbi.nih.gov/omim/ 
6 http://geneticassociationdb.nih.gov/ 
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GeneRIFs. Mappings are stored in the Open Biomedical Ontologies
7
. Table 3.2 shows a sample 

mapping. 

 

Table 3. 2 A sample Disease Ontology - GeneRIF mapping. 

Do ID Disease Name Gene ID Gene Name GeneRIF

7148  Rheumatoid arthritis 11278 Kruppel-like factor 12
KLF12 as a new susceptibility gene for 

rheumatoid arthritis.

7148  Rheumatoid arthritis 10563 Chemokine (C-X-C motif) ligand 13

CCL23, M-CSF, TNFRSF9, TNF-alpha, and 

CXCL13 are predictive of rheumatoid arthritis 

disease activity and may be useful in the 

definition of disease subphenotypes and in the 

measurement of response to therapy in clinical 

studies.

 

3.2.3 Biological Pathway Databases 

 Biological pathways are networks of complex molecular level interactions of living cells. 

They model how biological molecules interact to perform specific functions in respond to the 

biological and environmental signals. A pathway therefore can be formally thought of as a 

collection of “nodes” representing biochemical entities, connected by edges that represent 

interactions, regulation events or modifications. A comprehensive list of recently identified 

pathway resources can be found in the Pathguide
8
.  

 Kyoto Encyclopedia of Genes and Genomes (KEGG) [17] is a widely utilized database 

providing gene lists, diagrams, and pathway classification tools for many aspects of biology. It is 

an integrated database resource consisting of 16 main databases, categorized into systems 

information, genomic information, and chemical information. An alternative source is Gene 

Ontology (GO) [18], which contains ontology, gene product, sequence, and manual annotation 

data. Mainly three domains are covered by GO:  

 Cellular component, the parts of a cell or its environment, 

 Molecular function, the elemental activities of a gene product at the molecular level,  

 Biological process, operations or sets of molecular events with a defined beginning and 

end. 

 BioCyc [102], BioCarta
9
 and Wikipathways [103] are among other relevant pathway 

resources. The BioCyc collection of Pathway/Genome Databases (PGDBs) provides information 

on the genomes and metabolic pathways of sequenced organisms. BioCyc databases are 

integrated with other biological databases containing protein and nucleic-acid sequence data, 

bibliographic data, protein structures, and descriptions of different strains.  BioCarta provides 

graphical tools for observing how genes interact in metabolic pathways and signaling pathways. 

                                                 
7 http://www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology 
8 Pathguide contains information about 325 biological pathway related resources and molecular 

interaction related resources: http://www.pathguide.org/ 
9 http://www.biocarta.com/ 
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It contains important resources providing information for over 120,000 genes from multiple 

species. WikiPathways is another online resource for biological pathway information. It acts as a 

platform for community-based curation. As of December 2010, WikiPathways contains more 

than 600 pathways, representing species including bacteria, fungi, plants and animals.  

 

3.2.4 Available Tools for SNP Prioritization 

 There have been extensive number studies on exploring and analyzing the data gathered 

in database repositories listed in previous sections. This resulted in various software tools and 

integrated systems that can be used for prioritizing SNPs before or after GWAS using statistical 

data alongside with biological data.  Among those tools are SPOT [69], SNPLogic [72], 

FunctSNP [70], FastSNP [71] and Pupasuite [104].  

 SPOT recently introduced the genomic information network (GIN) method, which is a 

directed graph whose nodes are features from a biological database. The GIN process begins with 

a SNP and ends in the terminal node with the calculation of its overall prioritization score S. The 

overall score is formed by biological relevance obtained by combining information from multiple 

databases. For example, if a SNP is in a gene this will increase the overall score.  Once the 

overall score S determined, they rank SNPs from a GWAS for further study by 
 

   .  

 SNPLogic is a web service, which can be used for SNP selection, annotation and 

prioritization. The integrated information sheds light upon the genetic context of SNPs, genotypic 

data, functional predictions, biological pathways and gene - disease associations. The interface 

facilitates construction of SNP lists and user defined scoring rules would be used to rank those 

SNP lists. The lists can be stored and accessed indefinitely. One major problem related to the 

approach of “user defined scoring” is the lack of objective evaluation criteria for standardization 

of SNP scoring and prioritization. For most users, biologists or bioinformaticians, the process of 

defining which criteria should outweigh the other is a complicated decision and assigning a 

biological relevance score between the criteria is a much more confusing task. 

 FunctSNP is an R-Package backed up with integrated databases for five different species 

including Homo sapiens. Its aim is to efficiently screen and select the GWAS significant SNPs 

which are more likely to be reliable as DNA markers and link GWAS derived SNPs to biological 

pathways and gene networks. Screening of SNPs is made possible by determining physical 

location of SNPs with respect to genes and finding evidence for a functional role of the 

significant SNPs. 

 FastSNP is a web server that allows identification and prioritization of high-risk SNPs 

according to their phenotypic risks and deleterious functional effects. It extracts the information 

from 11 external web servers, which makes always up-to-date querying of relevant biological 

information possible. It provides reporting facilities for genomic information, SNP functional 

effects, transcription regulatory, alternative splicing regulatory, mRNA/protein domain effects 

and protein structure effects. It utilizes a decision tree approach to assign risk rankings for SNP 
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prioritization. The decision tree utilized by the system is depicted in Figure 3.2 (used with the 

permission of [71]). The tree structure used for the prioritization only depends on genomic 

location of SNPs and lacks the essential information such as evolutionary conservation, gene 

association and biological pathways. Depending on the functional effects, each SNP is assigned a 

risk factor and ranking is done accordingly. Therefore compared to hierarchy tree proposed in our 

AHP study, the decision tree utilized by FastSNP is fairly simple and not suitable for 

comprehensive analysis.  

 

 

Figure 3. 2 FastSNP decision tree. 

 Pupasuite is a web tool that can be used to select SNPs with possible effect on different 

phenotypes. It aims to facilitate large scale genotyping studies. It integrates various 

heterogeneous resources and provides pre-calculated predictions for selection of optimal SNP 

sets. Selection is based on different characteristics of SNPs such as type, frequency, validation 

status, deleterious functional properties, LD parameters etc.   

 Table 3.3 summarizes features of these tools: 

 

Table 3. 3 SNP prioritization tools comparison. 

Function/ Application SPOT SNPLOGIC FunctSNP FASTSNP Pupasuite

SNP Prioritization

Genomic Location NO YES YES YES YES

SNP effect miRNA target sequences NO NO NO NO NO

SNP effect on promoter CpG Islands NO NO NO NO NO

Biological Associations

  via Gene YES LIMITED YES LIMITED YES

  via Pathway NO NO YES NO NO

  via Linkage Disequilibrium YES NO YES NO YES

Evolutionary Conservation YES YES NO NO YES

Pathway Mapping of Prioritized SNPs NO NO NO NO NO

Application Features

Desktop Application NO NO YES NO NO

Web based server YES NOT RELIABLE NO YES NO

Frequently updated , maintained databases YES NO PARTLY YES NO  
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3.3 AHP Based Prioritization Scheme 

3.3.1 AHP Method Basics 

 AHP first proposed in 1980 for addressing complex decision making problems with 

multiple criteria [8]. It is very well suited to cases in which evaluation criteria can be organized 

into sub-criteria in a hierarchical way. In AHP studies, the decision making problem is divided 

into a four stage process [105]: 

1. Hierarchical structuring of the problem, 

2. Data input, 

3. Relative weights estimation for evaluation criteria, 

4. An overall evaluation of the alternatives through combination of the relative weights. 

 In the first stage, the problem at hand is represented as a multi-hierarchy structure. 

Figure 3.3 depicts a general form of such a structure. The top level of the hierarchy represents the 

general objective or goal of the problem. The second level includes evaluation criteria. Each 

criterion is analyzed in the subsequent levels into sub-criteria. Finally, the last level of the 

hierarchy contains the objects to be evaluated. 

 
Figure 3. 3 The hierarchical structure of a decision making problem in AHP context. 

 Once the hierarchy is formed, next step is to perform a pairwise comparison of all 

elements at each level of the hierarchy. Each of these comparisons is based on the elements of the 

upper level of the hierarchy. For instance, as the first level involves only one element, 

considering the general hierarchy of Figure 2, no comparisons are required. In the second level, 

representing the evaluation criteria, all elements are compared in a pairwise fashion based on the 

objective of the problem stated at the first level of the hierarchy. Then, similarly the sub-criteria 

of the third level are compared each time from a different point of view depending on each 

criterion of the second level of the hierarchy. It is easy to see that if n sub-criterion is present 

under a particular criterion, there will be   
 
  comparisons.  This process is continued until all 

elements of the hierarchy are compared. The objective of all these comparisons is to find out the 

relative significance of all elements of the hierarchy in a structured way for making the final 
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decision according to the initial objective. The usual way of making comparisons is to use a 9-

point scale depicted in Table 3.4. 

 
Table 3. 4 Pairwise comparison scale for element i vs j in an AHP hierarchy. 

Intensity Definition Explanation

1 i and j has equal importance Two elements contribute equally to the objective

3 i has modarate importance over j Experience and judgement slightly favor i over j

5 i has strong importance over j Experience and judgement strongly favor i over j

7 i has very strong importance over j i is favored very strongly over j; its dominance is demonstrated in practice

9 i has extreme importance over j The evidence favoring i over j is of the highest possible order of affirmation

Intensities of 2, 4, 6 and 8 can be used to express immediate values. Intensities 1.1, 1.2, 1.3, etc. can be used for elements 

that are very close in importance.

 
 The results of the comparisons are used to form a comparison matrix of size nxn for 

every comparison performed in each level. Let Ck denotes the comparison matrix. Then Ck is 

defined as: 

 1 pk1/pk2 ......... pk1/pkn 

 pk2/pk1 1 ......... pk2/pkn 

Ck = . . ......... . 

 . . ......... . 

 pkn/pk1 pkn/pk2 ......... 1 

 

 

 

where pk = (pk1,pk2,...,pkn) denotes the actual weights assigned to each element included at level k 

of the hierarchy as opposed to a specific element of level (k-1). Under the assumption of 

consistent comparisons one can estimate the weights through the solution of following system of 

linear equalities:  

 

                                                                                  .                                                             (3.3) 

 

This relation can be used to solve for pk if Ck is known. Providing a non-zero solution to this 

problem is known as the Eigen value problem and it is represented as: 

 

                                                                       
    

         
 ,                                                          (3.4)       

where   
  is the matrix formed by making use of the comparisons,      is the largest Eigen value 

of   
  (      ), which is also known as priority vector and   

  is the vector of the estimates of 

the actual weights.  

 As a last step, weights defined in the previous stage are combined to account for an 

overall evaluation of the elements belonging in the final level of the hierarchy (level k). The 

combination is based on the initial objective of the analysis (first level of the hierarchy) and 

represented as:  

 

                                                              
 
   ,                                                                    (3.5) 
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where     is a vector of the global evaluations for the elements of level k and Wj is a matrix of 

the weights of the elements in level j as opposed to the elements of level (j – 1) [105].   

 

3.3.2 AHP Based SNP Prioritization Scheme 

 In this study we have proposed a novel AHP based prioritization scheme for objective 

and structured prioritization of SNP biomarkers. We first constructed the hierarchy tree by setting 

Functionally and Biologically Important SNPs Associated with the Condition as our objective. In 

addition to the biological information we have incorporated GWAS results into prioritization 

mechanism unlike another recently proposed decision tree based approach [74]. The tree 

structure is depicted in Appendix C and described in Table 3.5 in detail. Formation of this tree 

structure has been directed by the type of information we can access via biological databases, 

relevance of the criteria for achieving the objective and ability to make meaningful and smooth 

pairwise comparisons for the criteria on the same level. The current tree structure has been 

optimized after comprehensive evaluation on six different versions. To the best of our 

knowledge, our tree structure has been the most detailed one as, apart from functional effects of 

SNPs: we have integrated pathway based data, disease annotation data and statistical information 

simultaneously for the first time in this domain. SNPs that are overlapping with 5‟UTR CpG 

islands or 3‟UTR miRNA binding sites are also integrated in the AHP structure for scoring, as 

recent studies have shown the effect of the regulatory structures on gene function.   

 

Table 3. 5 AHP tree details. 

Node Description Explanation Source 

0 GWAS Results 
Statistical relevance of the SNPs are 

compared 
GWAS 

1 Biological Facts 
Biological significance of the SNPs are 

compared 
Biological Databases 

0.1 Individual SNP 
Represents GWAS p-values for 

individual SNPs 
GWAS 

0.2 Significant Gene 
SNPs related with significant genes 

according to combined p-value 
GWAS, Pearson's Chi-Square 

0.2.1 
Significant Gene - Via 

LD 

SNP-to-Significant Gene association 

through another SNP in high LD 
Entrez Gene, dbSNP, HapMap 

0.2.2 
Significant Gene - Via 

Direct 

Direct SNP-to-Significant Gene 

association 
Entrez Gene, dbSNP 

0.2.3 
Significant Gene - Via 

Pathway 

SNPs related with significant genes 

present in significant pathways 

according to combined p-value 

KEGG, GO, Biocyc, Biocarta, 

Wikipathways 

0.3 Significant Pathway Gene 
SNPs related with significant pathways 

according to combined p-value 

KEGG, GO, Biocyc, Biocarta, 

Wikipathways 

0.3.1 
Significant Pathway Gene 

- Via LD 

SNP-to-Significant Pathway Gene 

association through another SNP in 

high LD 

KEGG, GO, Biocyc, Biocarta, 

Wikipathways, HapMap 

0.3.2 
Significant Pathway Gene 

- Via Direct 

Direct SNP-to-Significant Pathway 

Gene association 

KEGG, GO, Biocyc, Biocarta, 

Wikipathways 

0.3.3 
Significant Pathway Gene 

- Via Pathway 

SNPs related with significant pathway 

genes present in significant pathways 

according to combined p-value 

KEGG, GO, Biocyc, Biocarta, 

Wikipathways 

1.1 
Evolutionary 

Conservation 

Favor SNPs in evolutionary conserved 

regions 
ECRBase 
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Table 3.5 (cont.) 
  

1.1.1 Vertebrate 
Evolutionary conserved region in 

vertebrate 
ECRBase 

1.1.2 Mammalian 
Evolutionary conserved region in 

mammalian 
ECRBase 

1.1.2.1 
Mammalian - Significant 

Mouse ECR 

Evolutionary conserved region in 

mammalian, ECRBase 

ECR > 0.8 in mouse 

1.1.2.2 
Mammalian - Other 

Mammalian 

Evolutionary conserved region in 

mammalian, ECRBase 

ECR < 0.8 in mouse 

1.2 Gene Association Favor SNPs associated with genes Entrez Gene, dbSNP 

1.2.1 Disease Gene 

SNPs associated with genes proven to 

be associated with complex disease 

under consideration 

GeneRIF, DO 

1.2.1.1 Disease Gene - Via LD 
SNP-to-Disease Gene association  

through another SNP in high LD 

GeneRIF, DO, HapMap, 

Entrez Gene 

1.2.1.2 Disease Gene - Via Direct 
Direct SNP-to-Disease Gene 

association  
GeneRIF, DO, Entrez Gene 

1.2.1.3 
Disease Gene - Via 

Pathway 

SNPs related  with genes which are in 

the same pathway with a disease gene 

GeneRIF, DO, Pathway 

databases 

1.2.2 Other Gene 

SNPs associated with genes not proven 

to be associated with complex disease 

under study 

Entrez Gene, dbSNP 

1.2.2.1 
Other Gene - Other 

Disease 

SNPs associated with genes proven to 

be associated with another complex 

disease 

Entrez Gene, dbSNP, 

GeneRIF, DO 

1.2.2.1.1 
Other Gene - Other 

Disease - Via LD 

SNP-to-Disease Gene association  

through another SNP in high LD 

Entrez Gene, dbSNP, 

GeneRIF, DO, HapMap 

1.2.2.1.2 
Other Gene - Other 

Disease - Via Direct 

Direct SNP-to-Disease Gene 

association  

Entrez Gene, dbSNP, 

GeneRIF, DO 

1.2.2.1.3 
Other Gene - Other 

Disease - Via Pathway 

SNPs related  with genes which are in 

the same pathway with a disease gene 

Entrez Gene, dbSNP, 

GeneRIF, DO, Pathway 

databases 

1.2.2.2 Other Gene - Neutral 
SNPs associated with genes not proven 

to be associated with any disease 
Entrez Gene, dbSNP 

1.2.2.2.1 
Other Gene - Neutral - 

Via LD 

SNP-to-Gene association  through 

another SNP in high LD 
Entrez Gene, dbSNP, HapMap 

1.2.2.2.2 
Other Gene - Neutral - 

Via Direct 
Direct SNP-to-Gene association  Entrez Gene, dbSNP 

1.2.2.2.3 
Other Gene - Neutral - 

Via Pathway 

SNPs related  with genes which are in 

the same pathway with a neutral gene 

Entrez Gene, dbSNP, Pathway 

databases 

1.3 Genomic Location Favor SNPs with functional effects dbSNP, PolyPhen 

1.3.1 Non-Coding   dbSNP 

1.3.1.1 Non-Coding- UTR-3 3 prime untranslated region dbSNP 

1.3.1.1.1 
Non-Coding- UTR-3 - 

MiRNA Prediction 

3 prime untranslated region with 

MiRNA Prediction 
dbSNP 

1.3.1.1.2 
Non-Coding- UTR-3 - No 

MiRNA Prediction 

3 prime untranslated region and no 

MiRNA Prediction 
dbSNP 

1.3.1.2 Non-Coding- UTR-5 5 prime untranslated region dbSNP 

1.3.1.2.1 
Non-Coding- UTR-5 - 

CpG Island 

5 prime untranslated region near CpG 

Island 
dbSNP 

1.3.1.2.2 
Non-Coding- UTR-5 - No 

CpG Island 

5 prime untranslated region not near 

CpG Island 
dbSNP 

1.3.1.3 Non-Coding - Intronic 

The variation is in the intron of a gene 

but not in the first two or last two bases 

of the intron 

dbSNP 

1.3.1.4 
Non-Coding - Near Gene 

3 
Within 3' 0.5kb to a gene. dbSNP 

1.3.1.5 
Non-Coding - Near Gene 

5 
Within 5' 2kb to a gene dbSNP 
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Table 3.5 (cont.) 
  

1.3.1.5.1 
Non-Coding - Near Gene 

5 - CpG Island 

Within 5' 2kb to a gene and near CpG 

Island 
dbSNP 

1.3.1.5.2 
Non-Coding - Near Gene 

5 - No CpG Island 

Within 5' 2kb to a gene and not near 

CpG Island 
dbSNP 

1.3.1.6 Non-Coding - Splice3 
The variation is in the first two  bases 

of the intron 
dbSNP 

1.3.1.7 Non-Coding - Splice 5 
The variation is in the last two bases of 

the intron 
dbSNP 

1.3.2 Coding 
Variation is in the coding region of the 

gene 
dbSNP 

1.3.2.1 Coding - Frameshift Indel SNP causing frameshift dbSNP 

1.3.2.2 Coding - CDS Non Syn Nonsynonymous change dbSNP 

1.3.2.2.1 
Coding - CDS Non Syn - 

Polyphen Benign 

Nonsynonymous change and polyphen 

benign 
dbSNP, PolyPhen 

1.3.2.2.2 
Coding - CDS Non Syn - 

Possibly Damaging 

Nonsynonymous change and possibly 

damaging 
dbSNP, PolyPhen 

1.3.2.2.3 
Coding - CDS Non Syn - 

Probably Damaging 

Nonsynonymous change and probably 

damaging 
dbSNP, PolyPhen 

1.3.2.2.4 
Coding - CDS Non Syn - 

Completely Determine 

Nonsynonymous change and complete 

deleterious effect 
dbSNP, PolyPhen 

 
  
 After the formation of the tree structure, pairwise associations for each level of the tree 

are performed. Inspired by Kelder et al. [106], we have performed an AHP-Delphi study with 

inputs from 5 biologists trained in bioinformatics to improve the reliability. Pairwise comparison 

tables and related summary statistics for each node in the tree are presented in Appendix D. The 

priority vectors for each evaluation for different experts are presented in Table 3.6. 

 

Table 3. 6 Priority vectors for each node of the AHP tree. 

Node Description Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

0 Gwas Results 0.33 0.25 0.83 0.14 0.36 

1 Biological Facts 0.67 0.75 0.17 0.86 0.64 

0.1 Individual SNP 0.07 0.07 0.08 0.16 0.06 

0.2 Significant Gene 0.64 0.64 0.19 0.75 0.27 

0.2.1 Significant Gene - Via LD 0.06 0.11 0.07 0.07 0.11 

0.2.2 Significant Gene - Via Direct 0.66 0.63 0.75 0.81 0.33 

0.2.3 Significant Gene - Via Pathway 0.28 0.26 0.18 0.12 0.56 

0.3 Significant Pathway Gene 0.28 0.28 0.72 0.09 0.67 

0.3.1 Significant Pathway Gene - Via LD 0.06 0.11 0.08 0.11 0.11 

0.3.2 Significant Pathway Gene - Via Direct 0.66 0.63 0.69 0.7 0.33 

0.3.3 Significant Pathway Gene - Via Pathway 0.28 0.26 0.23 0.19 0.56 

1.1 Evolutionary Conservation 0.06 0.12 0.26 0.31 0.11 

1.1.1 Vertebrate 0.33 0.17 0.9 0.13 0.25 

1.1.2 Mammalian 0.67 0.83 0.1 0.88 0.75 

1.1.2.1 Mammalian - Significant Mouse ECR 0.67 0.83 0.25 0.75 0.8 

1.1.2.2 Mammalian - Other Mammalian 0.33 0.17 0.75 0.25 0.2 

1.2 Gene Association 0.66 0.32 0.63 0.62 0.58 

1.2.1 Disease Gene 0.9 0.83 0.88 0.9 0.88 

1.2.1.1 Disease Gene - Via LD 0.06 0.11 0.09 0.23 0.11 
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Table 3.6 (cont.) 
 

 

   
1.2.1.2 Disease Gene - Via Direct 0.66 0.63 0.75 0.68 0.33 

1.2.1.3 Disease Gene - Via Pathway 0.28 0.26 0.16 0.08 0.56 

1.2.2 Other Gene 0.1 0.17 0.13 0.1 0.13 

1.2.2.1 Other Gene - Other Disease 0.75 0.88 0.75 0.75 0.88 

1.2.2.1.1 Other Gene - Other Disease - Via LD 0.06 0.11 0.08 0.46 0.11 

1.2.2.1.2 Other Gene - Other Disease - Via Direct 0.66 0.63 0.69 0.28 0.33 

1.2.2.1.3 Other Gene - Other Disease - Via Pathway 0.28 0.26 0.23 0.26 0.56 

1.2.2.2 Other Gene - Neutral 0.25 0.13 0.25 0.25 0.13 

1.2.2.2.1 Other Gene - Neutral - Via LD 0.06 0.11 0.08 0.46 0.11 

1.2.2.2.2 Other Gene - Neutral - Via Direct 0.66 0.63 0.69 0.28 0.33 

1.2.2.2.3 Other Gene - Neutral - Via Pathway 0.28 0.26 0.23 0.26 0.56 

1.3 Genomic Location 0.27 0.56 0.11 0.08 0.31 

1.3.1 Non-Coding 0.13 0.13 0.17 0.1 0.13 

1.3.1.1 Non-Coding- UTR-3 0.07 0.05 0.09 0.09 0.1 

1.3.1.1.1 Non-Coding- UTR-3 - MiRNA Prediction 0.88 0.88 0.13 0.5 0.9 

1.3.1.1.2 Non-Coding- UTR-3 - No MiRNA Prediction 0.13 0.13 0.88 0.5 0.1 

1.3.1.2 Non-Coding- UTR-5 0.1 0.11 0.14 0.06 0.2 

1.3.1.2.1 Non-Coding- UTR-5 - CpG Island 0.83 0.83 0.83 0.42 0.9 

1.3.1.2.2 Non-Coding- UTR-5 - No CpG Island 0.17 0.17 0.17 0.58 0.1 

1.3.1.3 Non-Coding - Intronic 0.03 0.03 0.03 0.07 0.03 

1.3.1.4 Non-Coding - Near Gene 3 0.04 0.08 0.06 0.13 0.03 

1.3.1.5 Non-Coding - Near Gene 5 0.15 0.12 0.12 0.16 0.15 

1.3.1.5.1 Non-Coding - Near Gene 5 - CpG Island 0.75 0.83 0.75 0.83 0.9 

1.3.1.5.2 Non-Coding - Near Gene 5 - No CpG Island 0.25 0.17 0.25 0.17 0.1 

1.3.1.6 Non-Coding - Splice3 0.22 0.3 0.27 0.24 0.19 

1.3.1.7 Non-Coding - Splice 5 0.39 0.3 0.29 0.24 0.3 

1.3.2 Coding 0.88 0.88 0.83 0.9 0.88 

1.3.2.1 Coding - Frameshift 0.74 0.6 0.8 0.74 0.73 

1.3.2.3 Coding - CDS Non Syn 0.26 0.4 0.2 0.26 0.27 

1.3.2.3.1 Coding - CDS Non Syn - Polyphen Benign 0.05 0.04 0.06 0.05 0.05 

1.3.2.3.2 Coding - CDS Non Syn - Possibly Damaging 0.15 0.14 0.09 0.09 0.12 

1.3.2.3.3 Coding - CDS Non Syn - Probably Damaging 0.3 0.27 0.19 0.17 0.22 

1.3.2.3.4 Coding - CDS Non Syn - Completely Determine 0.5 0.55 0.66 0.69 0.61 

 
 Relative weights for each leaf node after taking the arithmetic averages is calculated by 

using Equation 3.5 and presented in Table 3.7. For example, the weight for Intronic (WL1.3.1.3) is 

calculated by WL1.3.1.3                                                                 

         . 

 

Table 3. 7 Weights for the leaf nodes of the hierarchy tree. 

  Leaf  Description Score 

G
W

A
S

 

R
E

L
A

T
E

D
 

0.1 Individual SNP 0.033616 

0.2.1 Significant Gene - Via LD 0.01598 

0.2.2 Significant Gene - Via Direct 0.12099 
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Table 3.7 (cont.) 
 

0.2.3 Significant Gene - Via Pathway 0.053266 

0.3.1 Significant Pathway Gene - Via LD 0.01465 

0.3.2 Significant Pathway Gene - Via Direct 0.093825 

0.3.3 Significant Pathway Gene - Via Pathway 0.04738 

1.2.1.1 Disease Gene - Via LD 0.036593 

1.2.1.2 Disease Gene - Via Direct 0.186016 

1.2.1.3 Disease Gene - Via Pathway 0.081725 

1.2.2.1.1 Other Gene - Other Disease - Via LD 0.005756 

1.2.2.1.2 Other Gene - Other Disease - Via Direct 0.01818 

1.2.2.1.3 Other Gene - Other Disease - Via Pathway 0.011161 

1.2.2.2.1 Other Gene - Neutral - Via LD 0.00145 

1.2.2.2.2 Other Gene - Neutral - Via Direct 0.004579 

1.2.2.2.3 Other Gene - Neutral - Via Pathway 0.002811 

G
E

N
E

T
IC

 

1.1.1 Vertebrate 0.037841 

1.1.2.1 Mammalian - Significant Mouse ECR 0.04532 

1.1.2.2 Mammalian - Other Mammalian 0.023347 

1.3.1.1.1 Non-Coding- UTR-3 - MiRNA Prediction 0.001142 

1.3.1.1.2 Non-Coding- UTR-3 - No MiRNA Prediction 0.000604 

1.3.1.2.1 Non-Coding- UTR-5 - CpG Island 0.002017 

1.3.1.2.2 Non-Coding- UTR-5 - No CpG Island 0.00063 

1.3.1.3 Non-Coding - Intronic 0.000825 

1.3.1.4 Non-Coding - Near Gene 3 0.001476 

1.3.1.5.1 Non-Coding - Near Gene 5 - CpG Island 0.002467 

1.3.1.5.2 Non-Coding - Near Gene 5 - No CpG Island 0.000571 

1.3.1.6 Non-Coding - Splice3 0.005295 

1.3.1.7 Non-Coding - Splice 5 0.006597 

1.3.2.1 Coding - Frameshift 0.103733 

1.3.2.3.1 Coding - CDS Non Syn - Polyphen Benign 0.001997 

1.3.2.3.2 Coding - CDS Non Syn - Possibly Damaging 0.004713 

1.3.2.3.3 Coding - CDS Non Syn - Probably Damaging 0.009187 

1.3.2.3.4 Coding - CDS Non Syn - Completely Determine 0.024045 

 
 In order to calculate the final score, which will guide the ranking of SNPs in the 

prioritization process, we first define an indicator function          as follows: 

           
                                                          
                                                                                    

 . 

For example, if a SNP is found out to cause frameshift mutation, then                    for this 

particular SNP. Here, we slightly shift from AHP methodology, for which a pairwise comparison 

using a 9-point scale is also suggested for the leaf nodes in the tree. However, considering the 

binary nature of the SNPs (either relevant or not relevant) even if one does a pairwise 

comparison, the relevant SNPs should be favored to the extremes by using 9 as intensity of 

importance over not relevant ones. This would lead a negligible priority vector value for those 

SNPs, which are not relevant for comparison. Therefore we chose to approximate using the 
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specified indicator function. Since the number of SNPs that will be prioritized after a GWAS is in 

the scale of hundreds of thousands, without this approximation a scoring would be 

computationally highly complex, if not uncomputable, as one would need almost 5 billion 

comparisons for a single node even if 100,000 SNPs are being studied. This being said, the final 

score         can be calculated for a particular SNP by using: 

                                                             
 
    for i = 1,..., m,                                  (3.6) 

where n is the number of leaf nodes, m is the total number of SNPs and Wk is the weights 

specified in Table 3.7. 

3.4 Experimental Study 

 In order to evaluate the performance of our AHP based prioritization algorithm we 

performed a comparative study against SPOT. We have used Alzheimer Disease data introduced 

in Chapter 1 and separated 15% of the overall data for testing purposes (another 15% is separated 

for selection process explained in Chapter 4). We performed an initial quality control based 

filtering by using following thresholds: Minor Allele Frequency = 0.05, SNP Missingness Rate = 

0.1, Individual Missingness Rate = 0.1, Hardy Weinberg Equilibrium = 0.001. 

 We apply BEAGLE based imputation (details of which are presented in Chapter 5) by 

using 0.95 as allelic r
2 

threshold. By doing that the number of SNPs is decreassed from 555,850 

to 517,003. In this training data set, there were 112 cases and 121 controls whereas test data set 

for prioritization consisted of 22 cases and 27 controls.  

 Following initial pass of quality control based on filtering and imputation, the GWAS is 

performed. We have chosen to use 0.05 as p-value threshold. Uncorrected p-values (not corrected 

for multiple testing) are preferred as correction via Bonferroni [107] or False Discovery Rate 

(FDR) [108] left no statistically relevant SNPs even with higher p-value thresholds. We used 

0.05 thresholds for combined p-values for both Fisher‟s combination test (genes) and Fisher‟s 

exact test (pathways) for finding significant genes and pathways. Table 3.8 depicts first 20 SNPs 

with smallest p-value of association. It is evident from the p-values that correction for multiple 

testing has been too conservative for this data set.  Table 3.9 presents top 10 significant genes and 

Table 3.10 presents top 10 significant pathways according to the calculated combined p-values. 

  

Table 3. 8 Individual SNP p-values of association of GWAS for Alzheimer’s Disease. 

CHR SNP UNADJ BONF FDR 

17 rs4795895 8.27E-07 0.4277 0.2186 

17 rs1233651 1.27E-06 0.6558 0.2186 

17 rs885691 1.27E-06 0.6558 0.2186 

18 rs12457258 1.84E-06 0.9487 0.2372 

17 rs6505403 4.91E-06 1 0.4329 

16 rs7191801 6.55E-06 1 0.4329 

18 rs12605132 6.71E-06 1 0.4329 
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Table 3.8 (cont.) 

   5 rs10941091 7.43E-06 1 0.4329 

10 rs7911085 7.54E-06 1 0.4329 

18 rs11660401 1.19E-05 1 0.6151 

2 rs6729218 1.60E-05 1 0.657 

2 rs13006848 1.79E-05 1 0.657 

17 rs3138039 2.03E-05 1 0.657 

22 rs17365991 2.21E-05 1 0.657 

19 rs2075650 2.32E-05 1 0.657 

10 rs2394109 2.45E-05 1 0.657 

10 rs1915633 2.56E-05 1 0.657 

5 rs6859143 2.57E-05 1 0.657 

5 rs2548032 2.68E-05 1 0.657 

5 rs7443549 2.73E-05 1 0.657 

 
Table 3. 9 Top 10 significant genes according to combined p-value of GWAS for AD data. 

Entrez Gene ID Full Name Location P-Value

220963 Solute carrier family 16, member 9 (monocarboxylic acid transporter 9) 10q21.2 ~0.0

10665 Chromosome 6 open reading frame 10 6p21.3 ~0.0

84679 Solute carrier family 9 (sodium/hydrogen exchanger),  member 7 Xp11.3-p11.23 ~0.0

83891 Sorting nexin 25 4q35.1 ~0.0

84182 Family with sequence similarity 188,  member B 7p14.3 ~0.0

9951 Heparan sulfate (glucosamine) 3-O-sulfotransferase 4 16p11.2 ~0.0

654463 Fer-1-like 6 (C. elegans), null 8q24.1 ~0.0

8854 Aldehyde dehydrogenase 1 family,  member A2 15q21.3 ~0.0

202559 KH domain containing, RNA binding, signal transduction associated 2 6q11.1 ~0.0

81792 ADAM metallopeptidase with thrombospondin type 1 motif, 12 5q35 ~0.0

 
Table 3. 10 Top 10 significant pathways according to combined p-value of GWAS for AD data. 

Pathway System Pathway Title Gene Count P-Value

KEGG 3-Chloroacrylic acid degradation 15 5.09E-06

WikiPathways IL-1 NetPath 13 11 4.19E-04

WikiPathways Ribosomal Proteins 88 4.3E-04

GO Component Golgi apparatus 187 4.39E-04

GO Component Cell junction 199 6.75E-04

KEGG Metabolism of xenobiotics by cytochrome P450 70 6.87E-04

GO Function ATP binding 229 7.19E-04

GO Process Regulation of cell shape 41 7.31E-04

GO Process Organic anion transport 13 0.0124

GO Process Regulation of Rho protein signal transduction 68 0.0133  
  

 Next step of our analysis involved running AHP based prioritization algorithm. To 

perform a comparative study we used individual p-values of association and calculated combined 

p-values for genes and pathways and ran our prioritization algorithm for those SNPs with p-value 

less than 0.05. This way we calculated AHP scores for 26,545 SNPs. We selected first 10,000 

SNPs for ranking for computational limitations. Then, by using individual p-values of association 

for SNPs we ran SPOT‟s prioritization algorithm. To compare the performance we have again 

selected first 10,000 SNPs from SPOT‟s list. Table 3.11 lists first 20 SNPs for AHP based 

prioritization and SPOT based prioritization. Appendix F presents the scoring details of AHP 

based analysis for SNPs.   
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Table 3. 11 Top 20 SNPs according to SPOT and AHP prioritization of GWAS for AD data. 

 SPOT Ranking AHP Ranking 

RANK CHR SNP P-value P-Value Rank CHR SNP P-value P-Value Rank 

1 17 rs4795895 8.3E-07 1 1 rs4651138 0.03702 19,320 

2 22 rs17365991 2.2E-05 14 11 rs2070045 0.02771 14,429 

3 1 rs3795263 0.00125 690 1 rs4652769 0.02968 15,460 

4 2 rs4426564 0.00228 1,213 8 rs3779870 0.04915 25,918 

5 19 rs2075650 2.3E-05 15 8 rs10808738 0.02714 14,117 

6 18 rs12605132 6.7E-06 7 8 rs4395923 0.02714 14,119 

7 6 rs9268368 0.00235 1,273 11 rs4936637 0.02771 14,428 

8 5 rs10941091 7.4E-06 8 1 rs6424883 0.04604 23,915 

9 11 rs667782 0.00508 2,644 1 rs10752893 0.04604 23,920 

10 17 rs885691 1.3E-06 3 X rs1800464 0.03104 16,393 

11 17 rs1233651 1.3E-06 2 15 rs1606659 0.00546 2,853 

12 12 rs5442 0.00533 2,763 5 rs2966952 0.00215 1,141 

13 3 rs12489170 0.00539 2,797 2 rs17561 0.00276 1,472 

14 2 rs6729218 1.6E-05 11 5 rs1532268 0.0381 19,848 

15 2 rs13006848 1.8E-05 12 3 rs2280294 0.00581 3,039 

16 18 rs12457258 1.8E-06 4 8 rs1986181 0.00909 4,726 

17 20 rs6020624 0.00071 386 3 rs9881879 0.0097 5,009 

18 11 rs4935801 7.2E-05 47 11 rs1010158 0.0156 8,164 

19 7 rs3735080 0.00792 4,114 21 rs2830052 0.02168 11,293 

20 18 rs3862683 8E-05 52 8 rs4486246 0.03844 20,080 

 

 Table 3.12 presents prediction performance of AHP based list and SPOT based list via 5-

fold Cross Validation (CV) run using Naive Bayes classifier as the supervised learning scheme. 

In order to evaluate the prediction performance of two prioritization algorithms we used 

following measures:  

 Accuracy: (TP + TN) / (P + N), 

 Recall: TP / (TP + FN), 

 Negative Predictive Value (NPV): TN / (TN + FN),  

 Precision: TP / (TP + FP),  

 Specificity: TN / (FP + TN),  

where TP denotes True Positive, TN denotes True Negative, FP denotes False Positive and FN 

denotes False Negative for a     confusion matrix.  

Table 3. 12 5-fold Cross Validation results for AHP and SPOT based list of SNPs over disease trait for AD 

data. 

  Accuracy Recall NPV Precision Specificity 

AHP 0,571 0,636 0,636 0,519 0,519 

SPOT 0,490 0,444 0,444 0,545 0,545 
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 From Table 3.12 it is evident that AHP based prioritization outperform SPOT in most of 

the classification measures even though we used the same number of SNPs in analysis. From the 

selected list of SNPs it can also be seen that SPOT list highly depends on p-values of association 

although SPOT also makes use of various biological databases. AHP method on the other hand 

makes use of p-values in a much more effective way by integrating combined p-values for genes 

and pathways and enhancing this with data from biological databases. To compare the biological 

relevance of the selected SNPs for both methods, we have checked whether top ranking SNPs 

have been identified as significantly associated with an OMIM gene or not. Next, the SNP‟s 

association with previously described AD loci is investigated through the OMIM genes they are 

linked. We have found that only 50% of the SPOT list of SNPs are associated with an OMIM 

gene, whereas this proportion is 95% for AHP based list. It has also been verified that of the 20 

SNPs in AHP list, 6 of them are experimentally associated with AD. None of the SNPs in SPOT 

list has been identified as associated with AD in the literature. Therefore we can conclude that 

our algorithm offers a much more reliable list of SNPs prioritized based on biological factors and 

therefore we suggest it should be preferred over SPOT for subsequent GWAS analysis. Table 

3.13 summarizes our discussion.   

Table 3. 13 Comparison of biological relevance of SPOT and AHP lists for AD. 

  SPOT List AHP List 

RANK SNP OMIM Gene AD Association SNP OMIM Gene AD Association 

1 rs4795895     rs4651138 LAMC1   

2 rs17365991 TEF    rs2070045 SORL2 Yes 

3 rs3795263 ACTRT2   rs4652769 LAMC1   

4 rs4426564 ADRA2B   rs3779870 CYP7B3   

5 rs2075650 TOMM40    rs10808738  CYP7B1   

6 rs12605132     rs4395923 CYP7B4   

7 rs9268368     rs4936637 SORL2 Yes 

8 rs10941091 ADAMTS12   rs6424883 LAMC1   

9 rs667782 HYLS1   rs10752893 LAMC1   

10 rs885691     rs1800464 MAOA   

11 rs1233651     rs1606659 CHRNA7   

12 rs5442 GNB3   rs2966952     

13 rs12489170 PARP15   rs17561 IL1A Yes 

14 rs6729218     rs1532268  MTRR   

15 rs13006848     rs2280294 MFI2   

16 rs12457258     rs1986181 CYP7B2   

17 rs6020624     rs9881879 MME Yes 

18 rs4935801 UBASH3B   rs1010158 SORL1 Yes 

19 rs3735080     rs2830052 APP Yes 

20 rs3862683 DCC   rs4486246 CYP7B5   
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3.5 Conclusion 

 In this chapter we have presented a novel prioritization algorithm that can be used to find 

a biologically and statistically relevant set of SNPs for use in the subsequent GWAS. The 

backbone of the algorithm is based on well-known multi-criteria decision making method 

Analytic Hierarchy Process. We have developed a hierarchy tree, whose nodes represent 

biological and statistical criteria that would be used to evaluate the SNPs. In each node we have 

specified weights by following AHP methodology and this allowed us to calculate a final score 

for each SNP depending on p-values of association and functional information gathered from 

major biological databases. Then, we sorted SNPs according to the prioritization scores. The 

prediction performance of the prioritized SNP set is an important measure for utilization of the 

proposed approach in subsequent studies. Therefore, the performance of AHP is measured and 

compared to an alternative application, SPOT, by applying 5-fold Cross Validation using Naive 

Bayes as supervised learning scheme. When the classification performance measures are 

compared we have shown that AHP based SNPs outperformed SPOT‟s prediction performance. 

Following that, we compared the biological relevance of top ranking SNPs in SPOT based and 

AHP based lists. We have found out that AHP offers a much more reliable prioritization as it 

points us to SNPs, which are highly associated with OMIM genes and loci proven to be 

associated with AD in the literature. Therefore we are suggesting that the novel AHP based 

prioritization scheme steps forward as a reliable and effective method for use in GWAS bringing 

a new, objective and structured approach to SNP biomarker scoring and ranking considering 

overall functional effects of the SNP in a biological system. 
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CHAPTER 4 

 
 
 

SELECTION OF REPRESENTATIVE SNP SETS FOR 

GENOME-WIDE ASSOCIATION STUDIES:                          

A METAHEURISTIC APPROACH 

 

 

 After the completion of Human Genome Project in 2003, it is now possible to convey the 

research studies to associate genetic variations in the human genome with common and complex 

diseases. The Single Nucleotide Polymorphism (SNP) biomarkers across the complete sets of 

DNA, or genomes, of 11 different populations are scanned for revealing genetic risk factors and 

quantitative traits associated with human diseases. The current challenge is to utilize the genome 

data efficiently and to develop tools that improve our understanding of etiology of complex 

diseases. Many of the algorithms needed to solve these problems are strongly supported by 

management science and operations research (OR) methods. One application is to select a subset 

of SNPs from the whole SNP set that is informative and small enough to convey subsequent 

association studies. In this chapter, we present an OR application for representative SNP 

selection that makes use of our novel Simulated Annealing (SA) based feature selection 

algorithm.  

4.1 Introduction 

 Recently, the research focus in molecular epidemiology is to find genetic markers, 

haplotypes
10

, and potentially other variables that together contribute to a disease and serve as 

good predictors of the disease phenotypes. Complex diseases are typically associated with 

multiple genetic loci and several environmental factors. Therefore, it is essential to investigate all 

polymorphisms located in the functional regions of candidate genes [4, 5] and integrate the 

information about the network of genes involved in biological systems of major physiological 

importance [6] for thorough analysis of these biologically complex diseases.  

                                                 
10 A haplotype is a combination of alleles (DNA sequences) at different places (loci) on 

the chromosome that are transmitted together. A haplotype may be one locus, several loci, or an entire 

chromosome. 

http://en.wikipedia.org/wiki/Locus_(genetics)


 47 

Association studies are among the promising ways of dealing with the problem of 

finding disease causing variants and such association studies typically make use of SNPs as they 

are the most common form of genetic variations and they can represent an individual‟s genetic 

variability in greatest detail [7]. However, the enormous number of SNPs (estimated up to 30 

million) makes it infeasible to gather information and perform analysis on all of the SNPs in the 

human genome. Thus, while performing a disease association study, the geneticist would prefer 

to experimentally test for association by only considering a subset of the entire SNP set instead of 

all of the SNPs, thereby considerably saving resources (alternatively, increasing the power of the 

statistical tests by increasing the number of individuals) as well as making the problem 

computationally feasible. Therefore, selecting a subset of SNPs that is informative enough to 

perform association studies but still small enough to reduce the analysis workload, to which we 

refer as representative SNP selection, has become an important step for disease-gene association 

studies. 

Reducing biological and statistical redundancy from hundreds of thousands of SNPs is 

the key for representative SNP selection. Dealing with many dependent association tests is one of 

the emerging issues on the statistical and computational side. SNP vs. disease data, in addition to 

being large, redundant, diverse and distributed, has three important characteristics posing 

challenges for the data analysis and modeling: (1) heterogeneity, (2) a constantly evolving 

biological nature and (3) complexity. Therefore intelligent methods are needed to find SNPs 

associated with the disease and extract biologically relevant subsets. The problem of SNP 

selection has been proven to be NP-hard (i.e., non-deterministic polynomial-time hard, harder 

than those problems that a non-deterministic turing machine can solve in polynamial time) in 

general [109] and current selection methods possess certain restrictions and require use of 

heuristics for reducing the complexity of the problem. OR methods have been used recently to 

the problem of representative SNP selection [110-114]. 

 In this chapter, we will present a method for selecting representative SNP subset for 

stronger association with complex disease after following an integrative biological scoring and 

filtering approach. An OR class novel feature selection method based on Simulated Annealing 

(SA) has been developed for representative SNP selection, in which we try to maximize tagged 

SNP prediction while minimizing cardinality of the selected SNP subset. 

4.2 Problem Definition 

 The aim of the representative SNP selection approach is to find a minimal subset of 

SNPs, whose allele
11

 information can explain the whole set of SNPs in the candidate region 

under study (a whole chromosome, or a target region) to the greatest detail. A formal definition 

of the problem can be stated as follows: Let S  = { SNP1 , ..., SNPn } be a set of n SNPs in a 

candidate region and G = {g1, ..., gm} be a data set of m genotypes, where each genotype gi 

                                                 
11 An allele is defined as one of two or more forms of the DNA sequence of a particular gene.  
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consists of the consecutive allele information of the n SNPs: SNP1 , ... , SNPn. For simplicity we 

represent gi  ∈ G be a vector of size n whose vector element is 0 when the allele of a SNP is 

homozygous dominant
12

, 1 when it is heterozygote
13

 and 2 when it is homozygous recessive
14

. 

Alternatively, data can be gathered from a case-control study. In this case, researcher would also 

have a hand on the phenotype data for the particular patient and this information can be matched 

with genotype information. Phenotype variable will be represented by P and it takes the value -1 

if it belongs to case group and 1 if it belongs to control group. Matrix A in Figure 4.1 represents 

such data.  

 Suppose that the maximum number of SNPs that can be selected is k (which can be 

alternatively be a variable for the problem), and a function f(R|G,P) evaluates how well the allele 

information of SNPs in subset R  ⊂  S  retains the allele information of all SNPs in S based on the 

genotype data G and classification performance of selected set R on disease phenotype are. 

 

SNP1 SNP2 SNP3 ........ SNPn P

g1 0 0 0 ........ 1 1

g2 2 1 1 ........ 1 1

g3 2 0 0 ........ 2 -1

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

gm 1 0 2 ........ 1 1  

Figure 4. 1 SNP-Genotype Matrix A. 

Given S, G, P and k the Representative SNP Selection problem is the following 

optimization problem: 

max F(R|G,P) 

subject to:  R ⊂  S, 

                  |R | ≤ k, 

                  k > 0, 

                  k integer. 

To solve Representative SNP Selection problem, one needs to find an optimal subset of 

SNPs, R, of size less than or equal to k, based on the given evaluation function F(R|G,P). From a 

set theoretic point of view, it is computationally intractable to examine all possible subsets of the 

given set of SNPs to select a set of representative markers, except for very small data sets. The 

problem is proven to be NP-hard [110]. To cope with this difficulty, it is possible to divide 

                                                 
12 An individual that is homozygous dominant for a particular trait carries two copies of the allele 

that codes for the dominant trait. 
13 A person possessing two different forms of a particular gene, one inherited from each parent. 
14 An individual that is homozygous recessive for a particular trait carries two copies of the allele that 

codes for the recessive trait. 
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Representative SNP selection into three largely independent steps: (1) identifying genomic 

segments where the selection will be performed, (2) defining a measure to quantify how well a 

set of SNPs can predict all observed and/or unobserved SNPs and (3) searching a minimum set of 

Representative SNPs that meets a desired threshold. 

4.3 Related Work 

 Application of statistical hypothesis-testing procedures is the basic approach for finding 

genotype-phenotype associations. The null hypothesis to be tested is that there is no difference 

between two study groups with respect to the genotype frequencies (i.e., genotype proportions) 

observed in each group. The chi-square and Fisher‟s exact tests may be applied in this task [115]. 

Odds-ratios are also commonly used to indicate differences between groups on the basis of their 

genotype frequencies. Methods for multiple testing (such as Bonferroni or False Discovery Rate) 

in high-dimensional settings can be applied when many SNPs are considered simultaneously. 

 In addition to statistical hypothesis testing in which causative SNPs are identified, one 

may choose to use classification models for genotype-phenotype association modeling. This can 

be done by representing different genotypes for a particular SNP as inputs and phenotype as 

label. Different statistical and machine learning techniques, such as logistic regression and 

support vector machines, can be applied for this purpose. Not only the genotype information 

extracted from multiple SNPs but also information related to environmental exposure factors and 

other biomarkers can be incorporated by introducing multivariable statistical and machine 

learning models in this context. Tagging and different feature selection procedures are useful to 

improve the prediction performance of multiple-SNPs models. The former can be applied to 

problems with a large number of SNPs in which haplotype data is present. Feature selection is 

recommended to reduce the number of highly-correlated SNPs, in which high Linkage 

Disequibrium
15

 (LD) makes it difficult to select true disease causing variant. These methods are 

presented in the subsequent sections. 

 

4.3.1 Statistical Methods 

 In order to select a subset of SNPs in genome-wide complex disease association studies, 

various statistical measures and testing based approaches have been introduced specific to the 

problem domain. The paper [116] proposes a sliding window approach, which made use of 

combination of p-values from multiple independent tests by making use of 

                                                                      
  

   
.                                                    (4.1) 

 Here,    denotes p-value of association between      and disease presence and m is the 

number of SNPs in the sliding window. It is shown that test statistic    follows a Chi-square 

distribution with 2m degrees of freedom. The basic advantage of this approach is that it takes into 

                                                 
15 Linkage disequilibrium is the non-random association of alleles at two or more loci. 
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account the ordering of SNPs on the chromosome and allows detection of chromosome regions 

with significant associations by merging adjacent windows [117, 118]. However an implicit 

assumption is made that the distance between any two adjacent SNPs is constant.  

 Other scan statistics have been developed that also considers the ordering and spacing of 

SNPs on the chromosome [119-122]. For example in [119] a two-step procedure was presented 

for calculating chromosomal scan statistic: (1) identify SNP clusters and (2) extract clusters with 

significant disease association.  

 It is assumed here that position of each SNP follows a Poisson distribution. Therefore 

length between two adjacent SNPs is assumed to have exponential distribution and distance 

between two particular SNP is assumed to follow a Gamma distribution. Using these assumptions 

one can identify the clusters of SNPs by testing the hypothesis that whether the observed length 

between a set of SNPs is equal or less than the expected length. If the hypothesis is rejected then 

this group of SNPs is identified as a cluster. Then to test the significance of disease association 

for a particular cluster Pearson Chi-square p-values are calculated. However this type of scan 

approaches has the disadvantage that they do no incorporate gene-gene interactions.  

 

4.3.2 Tagging and Machine Learning Methods 

 One obvious observation from the formal definition of representative SNP selection 

problem is the selected subset‟s dependence on the function F. In the literature, various objective 

functions have been defined to represent the allele information of genotypes in G using SNPs in S 

and solve the problem accordingly. One can classify the proposed approaches into three 

categories according to how they try to measure the allele information of genotypes: (1) 

Haplotype Diversity based approaches, (2) Pairwise Association based approaches and (3) 

Predicting Tagged SNPs.     

Haplotype Diversity based approaches are inspired by the fact that DNA can be 

partitioned into discrete blocks such that within each block high LD is observed and between 

blocks low LD is observed [123, 124]. As a result of this feature, number of distinct haplotypes 

consisting of the SNPs is very small across a population. Hence, one would try to find the subset 

of SNPs, which are responsible for the “limited haplotype diversity” in order to find the 

representative SNP set. Different studies have been conveyed to see how well diverse haplotypes 

can be distinguished depending on a selected “diversity measure” and chose the best one. A 

detailed explanation on the different types of measures used in the literature has been provided in 

[125-128]. The usual approach among these methods is to exhaustively list and search SNPs 

through every subsets of the set of haplotypes. Therefore, only a small number of SNPs can be 

analyzed. To cope with this problem, efficient heuristics have been proposed using Dynamic 

Programming [111-113], Principal Component Analysis [129-131] and Greedy Algorithm [132]. 

Although haplotype diversity based methods are simple to implement they depend on the block 
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partitioning method used for a target locus. In addition, the union of the candidate SNP sets for 

each block may not be an optimal set for the overall locus. 

Pairwise Association based approaches are based on the principle that all the SNPs in the 

target locus are highly associated with at least one of the SNPs in the selected SNP subset. This 

way, although a SNP that can be used to predict a disease causing variant may not be selected as 

a representative SNP, the association may be indirectly assumed from the selected SNP that is 

highly associated with it. The associations between SNPs can be estimated using LD. The 

common solution approach for these methods is to cluster the SNPs into different subsets and 

choose a representative SNP (or SNPs) from each cluster [133-135]. Although with their O(cgs
2
) 

complexity (c being number of clusters, g being number of  genotypes and s being number of 

SNPs) pairwise association methods are so much faster than haplotype diversity based methods, 

they have a major shortcoming as they cannot explain multi-SNP dependencies [109] and they 

tend to select more tag SNPs [136]. 

Predicting Tagged SNPs is motivated by the idea of reconstructing the genotype data 

from an initial set of selected SNPs in order to minimize the error of prediction for unselected 

SNPs. Those prediction methods have a certain advantage over Pairwise Association methods as 

they would take multi-SNP dependencies into consideration. Bafna et al. [109] proposes a 

measure called “Informativeness” and used dynamic programming to solve the problem of 

finding the optimal subset of SNPs that can best predict the remaining (tagged) SNPs. Let E
s
i,j  be 

the event that genotypes gi and gj  have a different allele at SNP s, and E
S
i,j be the event that 

genotypes gi and gj have a different allele at some SNP in S. To measure how well a set of SNPs, 

S = {SNP1, ...,SNPk}, can predict the SNP, s, the used measure is as follows:  

                                             I(S,s) = Pi≠j(E
S
i,j |E

s
i,j).                                                      (4.2) 

A more recent approach with using dynamic programming is proposed by Halperin [110] 

through fixing the number of representative SNPs for each tagged SNP to 2. Lee et al. [137] 

proposed a heuristic algorithm that uses the probabilistic framework of Bayesian networks to 

effectively identify a set of predictive SNPs. The heuristic approach improves the tag SNP 

selection compared to the current predicting based methods by allowing multi-allelic prediction 

(instead of bi-allelic) and not restricting the number of representative SNPs.  

Our proposed algorithm is among the methods that utilizes a heuristic approach as in the 

last example and explained in detail in Section 4.4. 

4.4 Proposed Methodology 

 The proposed representative SNP set selection methodology in this research can be 

divided into 4 consecutive steps based on the working SNP set (1) Initial Set, (2) Filtered Set, (3) 

Biologically and Statistically Relevant Set (4) Representative SNP set as presented in Figure 4.2. 

At first step the initial filtering based on quality control measures Minor Allele Frequency, 

missingness and Hardy-Weinberg equilibrium is applied. Next, the calculations for multiple 
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testing adjusted p-values of association are performed and then biologically most relevant SNPs 

using the AHP procedure is selected as explained in Chapter 3. Finally, the proposed SA feature 

selection algorithm is applied for each individual chromosome and the selected SNP subsets are 

merged to reveal the final representative SNP set. 

 

 
 

Figure 4. 2 Process steps for finding representative SNP set. 

 In Section 4.2, it has been stated that the optimal SNP subset depends on the selected 

evaluation function. It is also pointed out that maximizing the prediction accuracy of selected 

SNPs over unselected SNPs is an approach used in the literature for representative SNP selection. 

We set our goal as to find a minimum size set of representative SNPs and a prediction algorithm, 

such that the prediction error is minimized. Then our objective function becomes: 

                                                  
   

   
   

                  ,                           (4.3) 

where GR denotes genotype data related with representative SNP set R,    
 denotes genotype data 

related with     ∈     and  

                               NaiveBayes(F,L) =                             
   ,                (4.4) 

denotes a Naive Bayes classifier where F is the feature set (SNP set in our context) and L is the 

label. We calculate 5-fold Cross Validation (CV) based classification and find classification 

accuracy.  

In order to solve our problem, we used Simulated Annealing (SA) [138], which is a local 

search algorithm that strives for the best solution starting from a randomly created solution. Each 

step of the SA algorithm replaces the current solution by a "nearby" solution. The new solutions 

are chosen depending on an evaluation function and a global parameter T (temperature). T value 

is gradually decreased during the process. We have proposed to utilize the SA, for the first time, 

as a feature selection approach for selecting representative SNP set. Fundamental to the SA 

structure is the binary coding scheme. Let Ci represents i
th

 coding where each code containing n 
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SNPs (dimension). Each code of  the  length n  is  a  sequence  over  {0,  1}
n
  (0  represents a 

non-selected SNP and 1 represents a selected SNP). For example, assume there is a code 

represented by Ci = {1, 0, 1, 0, 0, 1, 0}. In this encoding scheme SNP1, SNP3 and SNP6 are 

selected SNPs. A neighbor for a coding scheme Ci is another coding scheme, which is one bit 

different than Ci. 

A random binary coding of size n as an initial solution is created and the accuracy of the 

solution using Naive Bayes by calculating the mean classification error for (n-k) supervised 

learning iterations, where k is the number of selected SNPs in a particular iteration have been 

tested. The proposed SA algorithm runs for a certain amount of steps (user defined), with a 

tradeoff between accuracy and the number of SNPs in the representative SNP set. Therefore we 

have also tried to minimize the number of chosen SNPs (k).  The pseudocode of the proposed 

algorithm is given in Algorithm 4.1. 

 
Algorithm 4. 1 Simulated Annealing based representative SNP selection. 

 

Input: 
s0     initial randomly selected SNP set 

t       simulated annealing parameter temperature.  

d      simulated annealing parameter decreasing factor.  

cmax   number of iterations.  

 

Output: 

sbest   representative SNP set 

 

1. 0 ; ( )s s e E s   

2. best;bests s e e   

3. For   max1 to  c c  

neighbor( ) news s  

( )new newe E s  

4. new beste eif    then  

5. ;best new best news s e e   

6. ( , )if  random()  then newP e t   

7. ; ; *  new news s e e t t d    

8. cNext    

9. return bests  
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 Here, s0 is the initial randomly selected SNP set (R) and E(s) is an evaluation function 

denoted by:  

                         
   

   
   

                           ,                

(4.5) 

presenting our objective function.  Cardinality of the representative SNP set is denoted by k. We 

have used two user specified arguments for the algorithm: cmax denotes the number of iterations 

and w         denotes weight that specifies tradeoff. If a w value smaller than 0.5 is 

chosen, decreasing the cardinality of representative SNP set is favored over classification 

performance of the SNP set. One need to note that, while other parameters are the same, use of a 

smaller w does not necessarily mean to have a set with smaller cardinality as a random set of 

SNPs at initialization step is chosen. The simulated annealing parameters are represented as t, d 

and P(E(S), t) (energy), where temperature is denoted by t and decreasing factor is denoted by d. 

P(E(S),t) is calculated by: 

                                                                         
    

 
 .                                                 (4.6) 

4.5 Experimental Study 

 In order to test the prediction performance of the representative SNP set, we first applied 

an initial split (70% training, 15% test for AHP based prioritization and 15% test for SA 

selection) on the experimental genotyping data as described in Chapter 3. Therefore 112 cases 

and 121 controls for training data set and 15 cases and 34 controls for test data set for 

representative SNP selection are denoted. AHP based prioritization is performed where first 

10,000 SNPs are selected for subsequent analysis of representative SNP selection. Following 

that, we ran our simulated annealing based representative SNP selection algorithm on the training 

set. As the algorithm is based on the idea of selecting the subset of SNPs, which best predicts the 

genotypic profile of the remaining SNPs for a particular genomic region; we ran the algorithm for 

each chromosome individually and merged the selected representative SNP sets as the final 

representative SNP set. For computational reasons we ended the algorithm if evaluation function 

value does not change in 40 SA step in a row. The prediction performance (average accuracy) of 

the selected SNPs on unselected SNPs is presented in Tables 4.1 for each chromosome and for 

different w values (0.3, 0.5 and 0.7, respectively). 

Table 4. 1 Prediction performance of representative SNP selection algorithm:  t = 10, d = 0.1, cmax = 1,000. 

  w = 0.3 w = 0.5 w = 0.7 

CHR INI SEL ACA INI SEL ACA INI SEL ACA 

1 773 65 0.607 773 61 0.627 773 106 0.665 

2 699 46 0.593 699 56 0.638 699 109 0.675 
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3 786 53 0.597 786 70 0.624 786 115 0.657 

4 521 32 0.601 521 50 0.644 521 78 0.689 

Table 4.1 (cont.) 

5 592 45 0.627 592 46 0.668 592 70 0.683 

6 688 47 0.639 688 45 0.663 688 83 0.682 

7 614 30 0.608 614 46 0.628 614 91 0.669 

8 571 25 0.621 571 56 0.648 571 76 0.666 

9 413 19 0.609 413 24 0.641 413 60 0.674 

10 473 24 0.621 473 52 0.646 473 61 0.67 

11 504 37 0.6 504 43 0.639 504 66 0.667 

12 492 21 0.583 492 34 0.619 492 69 0.658 

13 250 9 0.632 250 13 0.653 250 41 0.709 

14 328 23 0.618 328 20 0.649 328 43 0.682 

15 297 15 0.622 297 15 0.648 297 37 0.681 

16 332 23 0.616 332 24 0.656 332 50 0.671 

17 373 22 0.588 373 29 0.606 373 50 0.649 

18 300 22 0.621 300 23 0.651 300 54 0.703 

19 232 5 0.609 232 19 0.627 232 23 0.633 

20 286 17 0.614 286 29 0.654 286 57 0.71 

21 150 2 0.614 150 15 0.68 150 24 0.72 

22 148 8 0.627 148 6 0.67 148 28 0.733 

X 178 6 0.633 178 11 0.649 179 12 0.641 

TOTAL/AVERAGE   596 0.613   787 0.645   1403 0.678 
 

CHR: Chromosome number, SEL: Selected number, ACA: Average classification accuracy. 

 

Using representative SNP selection algorithm we have managed to decrease the 

dimensions considerably. For example for w = 0.5 the number of SNPs is decreased from 10,000 

to 787 for AD data. Average classification accuracy for the representative SNP set over 

unselected for each chromosome is 0.645. This means that although the dimension is decreasing 

more than 90%, we are not introducing a significant information loss (in terms of classification 

accuracy over unselected SNPs). To observe the prediction performance of the selected set over 

the disease phenotype, we have compared the performance against two filtering based attribute 

selection scheme from the WEKA tool set (Relief-F and Chi-Square). In order to achieve that, we 

have selected the same set of SNPs used as the training set for the test sets and applied a 10-fold 

Cross Validation run using Naive Bayes classifier as the supervised learning scheme. 

Classification measures are explained in Chapter 3 in greater detail. Results are as presented in 

Table 4.2. 
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Table 4. 2 Prediction performance comparison for SA algorithm and WEKA based algorithms. 

Measure SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F

Accuracy 0.5306 0.6327 0.4898 0.4898 0.6327 0.4898 0.4694 0.4898 0.4898

Recall 0.5333 0.6667 0.6000 0.3333 0.6000 0.6000 0.4000 0.4000 0.4667

NPV 0.7200 0.8077 0.7143 0.6552 0.7857 0.7143 0.6538 0.6667 0.6800

Precision 0.3333 0.4348 0.3214 0.2500 0.4286 0.3214 0.2609 0.2727 0.2917

Specificity 0.5294 0.6176 0.4412 0.5588 0.6471 0.4412 0.5000 0.5294 0.5000

w = 0.3, 596 SNPs w = 0.5, 787 SNPs w = 0.7, 1403 SNPs

 

 The comparison between the SA and WEKA algorithms revealed that the proposed SA 

based algorithm outperforms Relief-F for w = 0.3 and it shows comparative performance to 

WEKA based attribute selection schemes for high dimensional data. For greater values of cmax we 

expect to have better results in terms of classification performance, especially if the premature 

endings, which are applied to gain time, are omitted. Still it is important to note that even though 

SA algorithm performs better with high dimensional data, it is also very demanding and time 

consuming. 

4.6 Conclusion 

 In this chapter, we have presented a novel representative SNP Selection algorithm based 

on the idea of maximizing prediction accuracy of selected SNP set over non-selected. We have 

developed a methodology based on SA in order to select a representative set among the top 

10,000 prioritized SNPs after GWAS. We have performed biological prioritization and SNP 

selection on real life data belonging to Alzheimer‟s disease and showed that the proposed SA 

based algorithm is capable of reducing the dimension of the data without much information loss. 

We have performed a comparative study with two well-known attribute selection schemes. Our 

algorithm performed reasonably well against filtering based approaches.  

 We have showed the benefits of exploring alternative analysis methods in the 

representative SNP selection while introducing a new research and application are for operational 

research (OR) in field of applied mathematics. We hope that our work will encourage OR 

community to expand their studies to representative SNP selection and other topics in biomarker 

research and suggest other advanced OR methods such as conic programming, multi-objective 

optimization, stochastic programming, and optimization in data mining and in computational 

statistics for research topic in bioinformatics. 
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CHAPTER 5 
 

 

 

METU-SNP: AN INTEGRATED SOFTWARE SYSTEM 

FOR SNP-COMPLEX DISEASE ASSOCIATION 

ANALYSIS 

 

 

 We have implemented the ideas stated in the previous chapters to build a java based 

Integrated Software System (ISS), which is specifically designed as an all-in-one GWAS 

application. We call this tool METU-SNP and we believe that as the name implies it will be 

regarded as Most Effective Tagging Utility among researchers of molecular epidemiology. It 

makes use of data from major public databases such as dbSNP, Entrez Gene, KEGG, Gene 

Ontology etc. It is equipped with a state-of-the-art AHP based SNP prioritization and Gene Set 

Enrichment Analysis frameworks. It also has the ability to select representative SNPs by making 

use of SA based machine learning algorithms. Modularity and extendibility give METU-SNP a 

great advantage over existing platforms.  In this chapter we will introduce the software and 

details of the functionality. 

5.1 System Architecture 

 METU-SNP is a desktop application written in Java. The program was written with Java 

Swing GUI (Graphical User Interface) architecture using JDBC to interact with the database (See 

Figure 5.1). Java Swing is routed in a slightly modified version of classical model-view-

controller (MVC) design: model-delegate pattern. The model-delegate pattern combines the 

view and the controller into a single object that presents information to and interacts with the user 

and that object delegates to its model, which holds data specific to the application. This 

architecture allows: 

 Cross-platform consistency and easy maintenance,  

 Plugging of various custom implementations for extendibility, 

 Customization through fine control over the details of rendering of a component, 

 Changing look and feel at runtime and therefore configurability. 

 In the delegator object, there exist algorithms related with data imputation, association 

analysis, SNP prioritization and selection written with Java via partly involvement of 3rd party 
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tools alongside with the User Interface (UI). Model object holds biological data incorporated 

from major repositories resides in a relational database. The application can be installed and run 

on a standalone computer in which Java Run Time Environment and MySQL database is 

previously installed.    

 

 

Figure 5. 1 System architecture for METU-SNP. 

5.2 Third Party Tools 

 METU-SNP utilizes functionality offered by 3rd party tools: PLINK [11], BEAGLE 

[139] and WEKA [140]. The logical flow of the METU-SNP system that also shows involvement 

of third party tools is presented in Figure 5.2. 

 

5.2.1 PLINK 

 Developed by Shaun Purcell at the Center for Human Genetic Research, PLINK is an 

open-source whole genome association analysis toolset that offers immense set of functions for 

GWAS including: data management, summary statistics for quality control, population 

stratification detection, basic association testing, copy number variant analysis, meta-analysis, 

result annotation and reporting. PLINK can be regarded as the Swiss-army-knife of the genetic 

epidemiologist as there is little that cannot be done with it. However sadly, PLINK is offered as 

single executable program, that needs to be run from command line. This definitely isn‟t the most 

user friendly approach for the researcher. The functionality is offered in a set of operations, 

which can be cumbersome to excel to the fullest if the user is not computer-savvy. In fact it is 

quite easy to get lost within the set of commands and sometimes finding the right command to 

perform the required function takes time. Therefore we used PLINK as a callable executable file 

to perform the required operations: 
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1. To divide the overall data set into chromosomes to be used as input to BEAGLE (for 

imputation). 

2. To perform quality control based filtering including the removal of those SNPs or 

individuals that does not comply with user defined thresholds. 

3. To perform association analysis 

4. To perform certain data management tasks (extract set of SNPs, individuals etc.) that 

would be otherwise hard because of the size of the data sets (in gigabytes). 

 

Figure 5. 2 Logic flow of METU-SNP software system. 

 PLINK is crucial within our framework as we rely on it for two major steps of the 

analysis process: (1) Quality control based filtering and (2) association analysis. In the former 

step the user is allowed to filter out those SNPs and individuals that do not conform to the user 

defined thresholds. Related thresholds are for missingness, minimum allele frequency and Hardy-

Weinberg equilibrium (See Appendix E for mathematical background of the relevant processes). 

We have also allowed the user to perform a multiple adjusted (corrected) association analysis 

using functionality offered by PLINK. User is given the option to select (1) uncorrected p-value, 

(2) Bonferroni single-step adjusted p-value [107] or (3) step up False Discovery Rate (FDR) 

control p-value [108] with appropriate thresholds for further analysis.     
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5.2.2 BEAGLE 

 Imputation is a statistical method to substitute a calculated value for a missing data point. 

In order to increase the power of existing marker sets in GWAS, various methods have been 

proposed to predict sporadic missing data by imputation [141]. Imputation can be used to replace 

missing/un-genotyped data when genotyping percentage has failed (by exceeding a certain 

threshold specified by the researcher) in certain number of the typed SNPs in order to expand the 

coverage of SNPs in case control data sets beyond what has been genotyped. Lately, imputation 

is becoming a part of the GWAS and it has been used in the meta-analysis of different diseases 

and traits [142, 143]. Several software programs have been developed so far to account for the 

missing data in genetic data sets. Among those are BEAGLE, IMPUTE [13], MACH [144], 

fastPHASE [145] and PLINK.  Recently, it has been stated that BEAGLE, IMPUTE and MACH 

step forward in terms of accuracy and execution time [141, 146]. We have chosen to integrate 

BEAGLE as it is presented as a standalone executable java archive (jar) file and it uses a very 

similar data format as input to that of PLINK‟s, which has been used for association studies 

within the METU-SNP framework. 

 BEAGLE is a software program that can be used for genotype imputation, haplotype 

phase inferring, and genetic association analysis. It can be effectively and efficiently used for 

data sets with the order of hundreds of thousands markers and thousands of samples. BEAGLE is 

written in Java and runs on most computing platforms (e.g., Windows, Unix, Linux, Solaris, and 

Mac). We offer imputation functionality via integration of executable jar file of the BEAGLE 

within our framework. We used scripts that allowed us to convert PLINK outputs to BEAGLE 

inputs and vice and versa. BEAGLE assumes that the supplied genotype data is on the same 

strand for each individual and crashes otherwise; therefore the same assumption is used for 

METU-SNP. A python script that allows strand-checking and switching is offered in BEAGLE 

website
16

.  

 In the METU-SNP framework the whole genome genotyping data is split into individual 

chromosome files to be used as input files for BEAGLE. After imputation process, BEAGLE 

provides three output files for each chromosome: (1) phased file (.phased.gz), (2) genotype 

probabilities file (.gprobs.gz) and (3) allelic r
2 

file (.r2). Phased file gives imputed missing data, 

whereas the other two files indicate how accurate the imputation process has been for a particular 

marker. Allelic r
2 

file contains two columns: the marker identifier and estimated squared 

correlation (0 ≤ r
2
≤ 1) between the allele dosage with highest posterior probability in the 

genotype probabilities file and the true allele dosage for the marker. Larger values of allelic r
2 

indicate more accurate genotype imputation. METU-SNP allows users to specify a threshold 

(default being 0.95), providing a flexibility to include only “well” imputed markers in subsequent 

analysis.  

 

                                                 
16 http://www.stat.auckland.ac.nz/~browning/beagle/strand_switching/strand_switching.html 
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5.2.3 WEKA 

 WEKA is an open source machine learning and data mining tool developed and 

maintained by University of Waikato, New Zealand. An extensive set of algorithms for pre-

processing, classification, regression, clustering and association is included within the WEKA 

collection and can be directly applied to a data set using the GUI offered by the software or 

calling from an independent java code. We used the latter approach and used WEKA‟s 

executable jar file for evaluating the prediction accuracy of the selected SNP sets after AHP 

based prioritization and simulated annealing based informative SNP selection steps via Cross 

Validation. WEKA is also used for comparison purposes via filtering based attribute selection 

schemes Relief-F and Chi-square as presented in detail in Chapter 4.  

5.3 The METU-SNP Database 

 METU-SNP database is MySQL 5 based relational database that incorporates data from 

major biological databases. Entity-Relationship diagram of the database that presents table details 

can be found in Figure 5.3. Sources of data for individual SNPs, genes, pathways and diseases is 

discussed in detail under the corresponding subtitles.  
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Figure 5. 3 ER diagram of METU-SNP relational database. 
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5.3.1 SNP Data 

 Our SNP related information is mainly based on SNPLogic‟s integrated database [72]. 

Annotation information is presented in detail in Table 5.1.  

Table 5. 1 SNP Annotation sources integrated into METU-SNP. 

Resource   

Description of extracted 

annotations   
SNPs annotated 

dbSNP, build 128  

SNPs rs IDs and basic 

annotations  
11,833,664 

HapMap  

Allele frequencies from HapMap 

project  
3,967,349 

Tagger (HapMap)  

Haplotype tags in CEU (0.8 r2 

cutoff)  

tags 695,153,tagged 

2,009,725 

Tagger (HapMap)  

Haplotype tags in CHB (0.8 r2 

cutoff)  

tags 580,509,tagged 

1,908,721 

Tagger (HapMap)  

Haplotype tags in JPT (0.8 r2 

cutoff)  

tags 562,741,tagged 

1,883,580 

Tagger (HapMap)  

Haplotype tags in YRI (0.8 r2 

cutoff)  

tags 1,282,451,tagged 

1,571,139 

UCSC  

PhastCons conserved elements, 

28-way vertebrate  
434,235 

UCSC  

PhastCons conserved elements, 

28-way mammal  
322,704 

Delta-MATCH  

Transcription factor binding 

sites, scored by ΔZ  
2,456,473 

PupaSuite  

Transcription factor binding 

sites (Transfac)  
81,293 

PupaSuite  

Transcription factor binding 

sites (JASPER)  
60,082 

PupaSuite  DNA triplex sequences  439,350 

PupaSuite  Exonic splicing enhancers (ESE)  153,523 

PupaSuite  Exonic splicing silencers (ESS)  22,926 

PupaSuite  miRNA sequences  20,716 

PupaSuite  New splice site formation  13,415 

PupaSuite  Splice site disruption  1574 

Affymetrix  

Genome-Wide Human SNP 

Array 6.0 (+11 others)  
924,216 

Illumina  

Human 1M BeadChip (+7 

others)  
1,126,075 

Polyphen  Structure-based predictions  53,720 

SNP3D  Structure-based predictions  4792 

SNP3D  Sequence-based predictions  28,136 

 

 Reference SNP IDs (rsID) assigned by dbSNP is used as a primary key for SNP related 

tables of our database as rsID uniquely identifies particular SNPs. Basic annotations for all 

human SNPs were extracted from dbSNP [15] and among these annotations most important ones 

to our AHP based scoring scheme were function class, associated gene ID and symbol. 

Additionally, PupaSuite [104] annotations allowed scoring of SNPs based on their overlap with 
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splicing regulatory elements, miRNA and conserved regions in the genome. UCSC [147] 

provides genomic coordinates of highly conserved elements across multiple species, allowing for 

identification of SNPs overlapping with evolutionarily conserved regions of the human 

genome
17

. Additionally database
18

 tables of SPOT [69] online prioritization tool related with 

linkage disequilibrium correlation values (r
2
) (originally extracted from HapMap) and SNPs with 

significant (greater than 0.8) mouse ECR (Evolutionary ConservedRegions) values (originally 

extracted from ECRBase) are integrated into METU-SNP database. SPOT offers the option to 

specify a certain population for LD correlations. Instead, in order to identify the SNPs with high 

LD we have used SNP Source-Proxy pairs with        in each population.  

5.3.2 Gene Data 

 Entrez Gene ID is used as the primary key for identifying a particular gene.  Most gene 

related information is integrated from SPOT database, which is originally extracted from NCBI 

Entrez Gene. Also SNP-Gene associations are extracted from NCBI and dbSNP. 45,379 genes 

are annotated and relevant information is organized in the database as presented in detail in Table 

5.2.  

Table 5. 2 Gene based annotation from NCBI Entrez Gene. 

Field Description 

Entrez Symbol NCBI Entrez Gene official gene symbol    

Entrez Gene ID  NCBI Entrez Gene ID     

Gene type Gene type: protein-coding, tRNA, etc.     

Entrez full name  Full name from NCBI Entrez Gene   

Chr Chromosome 

Start Pos (bp) Start Position in base pairs (NCBI Mapview)   

Stop Pos (bp) Stop Position in base pairs (NCBI Mapview)   

Size (kb) Size of transcript in kb (NCBI Mapview)   

Cytogenetic Pos. Cytogenetic Position        

  

5.3.3 Pathway Data 

 Pathway-based analysis of GWA data is emerging as a useful tool for discovery of 

underlying molecular mechanisms of diseases associated with particular SNP biomarkers. In 

second wave GWAS studies where combined p-value approach is used to identify associated 

genes and pathways to a phenotype through SNP genotyping, it is assumed that markers 

underlying a disease or phenotype are enriched in genes belonging to the same pathway. Thus, 

the gene and pathway information in METU-SNP database is integrated data from major 

                                                 
17 The data from the major databases are integrated into a single SQL dump file and we acknowledge 

the help of SNPLogic developers for sharing this file with us. 
18 https://spot.cgsmd.isi.edu/doc/gin_primary_2.sql.gz 
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biological repositories following the same assumption. A summary of the integrated resources is 

presented in Table 5.3.   

Table 5. 3 Biological pathway resources used for annotation. 

Resource   Description of extracted annotations Number of Pathways Total Number of Distinct Genes

Gene Ontology Molecular Function term associations via genes 2,479 10,644

Gene Ontology Biological Process term associations via genes 3,066 10,793

Gene Ontology Cellular Component term associations via genes 636 6,236

KEGG Pathway associations via genes 177 3,901

WikiPathways Pathway associations via genes 106 3,089

BioCarta Pathway associations via genes 314 1,375

BioCyc Pathway associations via genes 179 452

 

 For each particular pathway residing in a pathway system METU-SNP provides the gene 

IDs within the pathway and an URL link to the listed pathway that would help researcher to 

browse the page and visualize the pathway in better detail. 

5.3.4 Disease Data 

 We have utilized a recently suggested GeneRIF-Disease Ontology (DO) mapping 

approach [101, 148] to construct our gene-disease association tables. It is suggested that this 

approach performs better when the prediction performances are compared with OMIM. Mapping 

process is illustrated in Figure 5.4 (used with the permission of [101]). In the figure, (A) the use 

of MetaMap Transfer tool to annotate GeneRIFs with DO and (B) association between Gene ID: 

7040 and DO ID: 2585 are shown. We have incorporated the same mapping that has been 

provided in a relational database format at DO-RIF project page of Northwestern University
19

. 

The summary statistics of the annotation data residing in our database is presented in Table 5.4

                                                 
19 http://projects.bioinformatics.northwestern.edu/do_rif/ 
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Figure 5. 4 Diagram of disease ontology annotation of the human genome. 

6
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Table 5. 4 Annotation statistics related with disease data. 

Annotations METU-SNP 

# of Disease 14,889 

# of Diseases with at least one mapping 1,851 

# Genes with at least one mapping 4,070 

Average mappings per disease 14.64 

5.4 Utilized Algorithms  

 METU-SNP‟s logical flow depicted in Figure 5.2 also gives some hints on the utilized 

algorithms within SNP prioritization and representative SNP selection framework. One can 

classify the functionality offered by METU-SNP into four: (1) preprocessing, (2) association, (3) 

prioritization and (4) selection. 

5.4.1 Preprocessing 

 In the first step of the analysis the required input files for PLINK, pedigree file and map 

file, are uploaded and imputation and quality control based filtering are applied. Output is 

provided in the form of PLINK based binary data file, which holds the imputed genotype data 

that satisfies quality thresholds.  Preprocessing algorithm is presented in Algorithm 5.1.  

 

Algorithm 5. 1 Preprocessing genotype data - METU-SNP 

 

Input: 
P       Genotype data in pedigree format, all data in the same strand.  

M      Map data.  

maf   Minor allele frequency threshold. 

Sm    SNP missingness rate threshold. 

Im     Individual missingness rate threshold. 

H     Hardy Weinberg equilibrium threshold. 

rsq   Allelic r2 threshold. 

Output: 
Cleaned Quality controlling applied SNP set. 

 

1.        

2.   If  impute =  true Then 

3.  While Chromosome i in M 

4.                         

5.                      //imputation performed 

6.  count++ 

7.  Next i 

8             
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8.  For j = 1 to count 

Algorithm 5.1 (cont.) 

9.                       

10. Next j 

11.                               

12.  Else                               

13. Return Cleaned 

 

5.4.2 Association 

 Second step of the analysis involves a genome-wide association run that identifies the 

SNP biomarkers that are “significantly” associated with the disease phenotype. Using the 

calculated p-values of the SNPs found to be associated in the initial step, the significantly 

associated gene and pathways are investigated based on the combined p-value approach during 

the second-wave analysis [85].   Algorithm 5.2 presents details of this step.  

 

Algorithm 5. 2 Two-wave genome-wide association run - METU-SNP 

 

Input: 
Cleaned   Quality controlling applied SNP set. 

Type         Individual SNP p-value type: Bonferroni, FDR or uncorrected. 

pSNP                p-value threshold for significance for SNPs. 

pGENE            p-value threshold for significance for genes. 

pPATH            p-value threshold for significance for pathways. 

 

Output: 
signSNP       Statistically significant SNP set. 

signGENE    Statistically significant gene set. 

signPATH      Statistically significant pathway set. 

S                List of SNPs and p-values. 

 

1                                                                  

2.                           

3    countS = | S | 

4.   For i = 1 to countS  

5.                                                   // Database integration SNP-Gene 

6.   If                Then                         

7.   Next i 

8.  countG = |GeneList| 

9.  For j = 1 to countG 
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10.                                                                   // Database 

integration Gene-Pathway 

Algorithm 5.2 (cont.) 

11 .  If                                                               
                  

   
 <    

     pGENE   Then                             // One-tail probability of Chi-square distribution 

12.  Next j 

13.  countP = |PathwayList| 

14. For l = 1 to countP 

15.                           

16.                                      

17.  If       
 
        

 
   

               
   

 

 
      

 
 

 
   ) <      ) Then                   

                

18. Next l 

19. Return [signSNP, signGENE, signPATH, S ]  

 

5.4.3 Prioritization 

 In the third step of our analysis we utilize the information of statistically significant 

SNPs, genes and pathways to determine the prioritized set of SNPs as explained in detail in 

Chapter 3. Shortly, the AHP methodology is followed for scoring of genotyped SNPs and the 

SNPs are ranked according to their AHP scores. User is given the option to filter relevant SNPs 

either depending on the calculated p-values or AHP scores or both. The algorithm related to this 

step is presented in Algorithm 5.3.   

Algorithm 5. 3 AHP based prioritization - METU-SNP 

 

Input: 
signSNP                      Statistically significant SNP set. 

signGENE                    Statistically significant gene set. 

signPATH                              Statistically significant pathway set. 

disease                     Complex disease under study  

 pSNP                                        p-value threshold for prioritization for SNPs. 

rank                          Number of SNPs to select 

S                               List of SNPs and p-values of selected type in previous step. 

AHPscore                Table that holds AHP scores for each SNP (rsID) in {0, 1} format based on   

                                 biological properties (independent of GWAS) of the particular SNP as well as    

                                 calculated scores on run time. 

LD                           Table that holds SNP pairs with LD r2 of 0.8 in each HapMap population.  

GenePwayGene      Table that holds gene pairs sharing (reside in) at least one pathway together. 

GeneDisease           Table that holds gene-disease association. 
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Genes                      Table that holds gene set. 

AHPweights            Table 3.7- Weights for leaf nodes. 

Algorithm 5.3 (cont.) 

 

Output: 
prioritizedSNP           Prioritized SNP set. 

Totalscores              Table that holds total AHP scores for each SNP (rsID). Score is between 0 and 1. 

 

1.                                                                  

                                                                    

                                                                         

                                                               

                                                                  
2.    countS = | S | 

3.   For i = 1 to countS  

4.   If                Then Break 

5.   If          ∈          Then                           

6.   If                              ∈            Then                             

7.   If                          ∈            Then                             

8.   If                                                       Then  

                                 

9.   |signPATH | = countP 

10. For  j = 1 to countP 

11. If           
                                           Then  

                                  

12. Next j 

13. For  j = 1 to countP 

14. If           
                                       Then  

                                 

15. Next j 

16. For  j = 1 to countP 

17. If           
                                                    Then  

                                 

18. Next j 

19.  If                                                       Then  

                                    

20.  If                                                   Then                       

21.  If                                                                    Then  
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22.  If                                                        Then  

                                       

 

Algorithm 5.3 (cont.) 

 

23.  If                                                     Then  

                                      

24.  If                                                                     Then  

                                      

25.                                           

26.  If                                              Then  

                                      

27.  If                                          Then  

                                       

28.  If                                                           Then  

                                      

29.                                                                   

30.  Next i 

31.  AHPscore.sortdescending(scores) 

32. While k < rank                                                      

33. Return [              , Totalscores] 

 

5.4.4 Selection 

 In the last step of our METU-SNP application, Simulated Annealing based SNP 

selection algorithm, presented in great detail in Chapter 4, is applied to the AHP based prioritized 

set of SNPs to select a representative SNP set. The algorithm related to this step is based on 

Algorithm 4.1 and presented in detail in Algorithm 5.4.   

 

Algorithm 5. 4 Simulated Annealing based selection - METU-SNP 

 
Input: 

                           Prioritized SNP set. 

t                             Simulated annealing parameter temperature.  

d                            Simulated annealing parameter decreasing factor.  

cmax                                          Number of iterations.  

w                           Weight for specifying tradeoff between SNP number and accuracy 

P                           Phenotype vector 

 

Output: 

selectedSNP              Representative SNP set. 
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1.    ∈                

 

Algorithm 5.4 (cont.) 

 

2.                  

3. For c = 1 to cmax 

                              

                                 

                  

                                   
   

   
   

                           k 

          if            then 

                                

         if        
    

 
 . < random() then 

                              

     Next c 

4. selectedSNP  =       

5. return selectedSNP 

 

5.5 User Interface 

 METU-SNP User Interface (UI) is designed so as to guide the user through analysis 

process. UI consists of 6 tabs corresponding to 6 steps of the analysis: (1) configuration, (2) 

preprocess, (3) genome-wide association, (4) SNP prioritization, (5) SNP selection and (6) 

performance. 

5.5.1 Configuration  

 Configuration tab is depicted in Figure 5.5. This tab allows the user to enter database 

properties such as database name, user name and password that will allow METU-SNP to 

connect with MySQL database. User may also specify maximum number of connections that will 

be used for threading for database read/write. Once the database properties are set, user can 

connect to the database and select the disease under study from drop down menu.  
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Figure 5. 5 Configuration tab - METU-SNP. 

 Current version of METU-SNP only accepts data files in Pedigree and Map format
20

 

compatible with PLINK. Map format is either 3 column (chromosome number, reference 

sequence ID for SNP and base pair location) or 4 column (additionally genetic distance in 

centimorgans) and user is expected to specify this using Genetic Distance check box. User is also 

given the option to separate test data for prioritization and selection steps. “Percentage” of the 

overall data that is required to be separated for testing can be entered into appropriate text box. 

Since METU-SNP makes use of 3rd party software, lot of files are created during algorithm runs, 

therefore it is suggested to create a work repository for output files.  

5.5.2 Preprocess 

 Preprocess tab is depicted in Figure 5.6. After configuration step, user can start on the 

analysis phase and the first step of the analysis is the preprocessing of the data at hand. This 

involves quality control (QC) based filtering (offered by PLINK) and imputation (offered by 

BEAGLE). For QC thresholds user is given the option to filter out those SNPs/individuals 

according to minor allele frequency, missingness and Hardy Weinberg equilibrium. A 

comprehensive guide containing further information on the thresholds is provided on PLINK 

website
21

. Mathematical background of the process is explained in greater detail in Appendix E. 

Default values for the analysis (0.05 for Minor Allele Frequency, 0.1 for SNP Missingness Rate, 

                                                 
20 http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml 
21 http://pngu.mgh.harvard.edu/~purcell/plink/thresh.shtml 



 74 

0.1 for Individual Missingness Rate and 0.001 for Hardy Weinberg equilibrium) that are 

commonly used in various GWAS studies are set.  

 

 

Figure 5. 6 Preprocess tab - METU-SNP. 

 After specifying QC thresholds, user is given the option to impute the data for 

missingness. Imputation must be applied to perform SNP selection phase, as the algorithm 

crashes in the presence of missing values. However, if only prioritization is to be applied, user 

may choose not to impute as the process takes considerably long time. As stated in section 5.2.2 

user can specify a threshold for allelic r
2
 (default being 0.95) in order to include only “well” 

imputed markers in subsequent analysis. To get a basic idea on the data at hand, user may choose 

to view the descriptive statistics files (freq.frq, missing.imiss, missing.lmiss, hardy.hwe) created 

during PLINK based QC analysis. Table 5.5 explains descriptive statistics files. 
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Table 5. 5 Descriptive statistics files. 

File Field Name Description

CHR Chromosome

SNP SNP identifier

A1 Allele 1 code (minor allele)

A2 Allele 2 code (major allele)

MAF Minor allele frequency

NCHROBS Non-missing allele count

FID Family ID

IID Individual ID

MISS_PHENO  Missing phenotype? (Y/N)

N_MISS Number of missing SNPs

N_GENO Number of non-obligatory missing genotypes

F_MISS Proportion of missing SNPs

SNP SNP identifier

CHR Chromosome

N_MISS Number of individuals missing this SNP

N_GENO Number of non-obligatory missing genotypes

F_MISS Proportion of sample missing for this SNP

SNP SNP identifier

TEST Code indicating sample

A1 Minor allele code

A2 Major allele code

GENO Genotype counts: 11/12/22

O(HET) Observed heterozygosity

E(HET) Expected heterozygosity

P H-W p-value

freq.frq

missing.imiss

missing.lmiss

hardy.hwe

 

 Depending on the user specifications, initial pedigree and map files are preprocessed and 

a cleaned and imputed binary file is created at the end of this step. 

5.5.3 Genome-wide Association 

 Genome-wide association tab is depicted in Figure 5.7. At this step of the analysis user 

runs an association analysis to find SNPs significantly associated with disease/trait under study. 

Depending on user‟s choice, three different methods can be used to calculate p-values: (1) 

uncorrected, (2) Bonferroni and (3) False Discovery Rate. The latter two approaches include 

adjusting for multiple testing, which is explained in greater detail in Chapter 3. Depending on the 

threshold set by the user, SNPs are labeled as significant or not. Most widely accepted threshold 

for p-value is 0.05, however according to the requirements of the analysis, it is possible to specify 

any threshold value using the text boxes provided.  
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Figure 5. 7  Genome-wide association tab - METU-SNP. 

 This step of the analysis also includes identifying “significant” genes and pathways, 

which will be used in SNP prioritization phase. To label a gene as significant user can use three 

thresholds: (1) combined p-value, (2) min SNP p-value and (3) max SNP p-value. Combined p-

value for a gene is calculated using Fisher‟s combination test, which is explained in Section 3.2 

and used in Algorithm 5.2. If combined value for the gene is less than the threshold, gene is 

labeled as significant. As the gene is regarded as a combination of SNPs in our analysis, one may 

choose to specify thresholds regarding the p-values of individual SNPs associated with the gene. 

It is therefore possible to limit how big the minimum p-value of the SNPs or max p-value of the 

SNPs associated with the gene. In order to determine if a pathway is significant user also has 

three thresholds: (1) combined p-value, (2) number of significant genes and (3) proportion of 

significant genes. Combined p-value for a gene is calculated using Fisher‟s exact test 

(hypergeometric test), which is explained in Section 3.2 and used in Algorithm 5.2. If combined 

value for the pathway is less than the threshold, pathway is labeled as significant. We regard 

pathways as a combination of genes. Therefore, it is possible to value the significance of the 

pathway by evaluating how many significant genes there are within the pathway (2) or proportion 

of significant genes over all the genes associated with the pathway (3). Following this step, three 

files are created: (1) snp.txt, (2) gene.txt and (3) pathway.txt. Table 5.6 explains contents of these 

files.     
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Table 5. 6 Files created during GWAS. 

File Field # Description

1 SNP rs ID (as in dbSNP)

2 p-value (according to the specified type of test)

3 Significance (0 = not significant, 1 = significant)

1 Entrez gene ID

2 p-value (according to the specified threshold)

3 Significance (0 = not significant, 1 = significant)

1 pathway ID (as in MySQL database)

2 p-value / significant gene info (according to the specified threshold)

3 Significance (0 = not significant, 1 = significant)

snp.txt

gene.txt

pathway.txt

 

5.5.4 SNP Prioritization 

 SNP prioritization tab is depicted in Figure 5.8. The functionality depends on Algorithm 

5.3. AHP scores are created for those SNPs meeting the individual SNP p-value threshold (less 

than or equal to the specified p-value) specified by the user. User may also set a limit on the 

number of SNPs to be used for subsequent analysis after prioritization. This can be done by 

entering a value (default is 10,000) in the SNP ranking text box. This way if there are more than 

10,000 SNPs, which satisfy p-value threshold, only first 10,000 of them are listed according to 

the ranking done with respect to AHP scores and p-values.     

 Most significant SNPs, genes and pathways can be viewed in results panel after the 

prioritization run. In SNPs panel, SNP rsID, p-value and significance is written for the first n 

SNPs (n is user defined via text box) as in snp.txt file. In Genes panel Entrez gene ID, full name 

and cytolocation are listed for the most significant genes. In Pathways panel, pathway ID, 

pathway system (database), full pathway title, pathway URL (web site for the particular pathway 

if exists) and gene count for the pathway are listed.  
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Figure 5. 8 SNP prioritization tab - METU-SNP. 

  

5.5.5 SNP Selection 

 SNP selection tab is depicted in Figure 5.9. The functionality depends on the 

Algorithm 5.4. User enters Simulated Annealing algorithm parameters and s/he can specify the 

classifier that will be used for supervised learning step. Default classifier is Naive Bayes. 

However, user is given the option to use different classifiers offered by WEKA. For a complete 

list of classifiers, please refer to WEKA website
22

. Full weka path should be specified, therefore 

user should enter full path specified as in weka.classifiers package (for example functions.SMO 

should be entered for sequential minimal optimization (SMO) classifier implemented in package 

weka.classifiers.functions.SMO). One needs to note that only those WEKA classifiers, which 

support multi-valued nominal attributes, are supported for METU-SNP. 

 User may choose to include (classification accuracy) or not to include (tagged 

prediction) phenotype data for the algorithm. If “Show Resulting SNP set” option is selected user 

can view the list of rsIDs for representative SNP set (featuresSelected.txt). 

                                                 
22 http://weka.sourceforge.net/doc/weka/classifiers/Classifier.html 
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Figure 5. 9 SNP selection tab - METU-SNP. 

5.5.6 Performance 

 Last tab in UI of METU-SNP is the performance tab, which aims to measure the 

prediction performance of the prioritization and selection step. Performance tab is depicted in 

Figure 5.10. In order to evaluate the performance of the algorithms, user has to separate a test set 

at the configuration step. User is given the option to perform a k-fold cross validation using 

classifiers offered by WEKA. As in the SNP selection step, full WEKA path for the classifier 

should be entered in appropriate text box.   

 If user chooses to measure the prediction performance of SNP set created at 

prioritization step, a text file (prioritization_performance.txt) is created that contains certain 

classification measures such as correctly classified instances, incorrectly classified instances, 

Kappa statistic, mean absolute error, root mean squared error, root relative square error and 

confusion matrix. Similarly, if selection performance is to be measured, three text files are 

created.(selection_performance.txt,.selection_performance_relieff.txt.and.selection_performance

_chisquare.txt)..The.content.of.these.files.are.similar.to prioritization_performance.txt and allow 

user to compare the performance of Simulated Annealing based selection with WEKA based 

attribute selection schemes Chi-square and Relief F.  
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Figure 5. 10 Performance tab - METU-SNP. 

5.6 Conclusion 

 In this chapter we have introduced a java based integrated software system, METU-SNP, 

which can be effectively used for GWAS and post-GWAS analysis of case-control based data for 

SNP-complex disease association.  It makes use of data from major public databases such as 

dbSNP, Entrez Gene, KEGG, Gene Ontology etc. It offers state-of-the-art AHP based SNP 

prioritization and Gene Set Enrichment Analysis frameworks. METU-SNP integrates well known 

3rd party tools such as PLINK and BEAGLE, which are well-known tools for GWAS. However, 

these are command line tools requiring a deeper knowledge and experience on various commands 

to get benefit from the functionality offered. METU-SNP, as an all-in-one GWAS application, 

offers a user friendly Graphical User Interface to manage 3rd party tools and it is equipped with 

necessary functionality to prioritize and filter the most relevant SNPs from a massive initial SNP 

set. We believe that METU-SNP will facilitate reliable identification of SNPs that are involved in 

the etiology of complex diseases and ultimately supporting timely identification of genomic 

disease biomarkers, and development of personalized medicine approaches and targeted drug 

discoveries. 
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CHAPTER 6 
 

 
 

A CASE STUDY: USE OF METU-SNP TO ANALYZE 

GWAS CASE-CONTROL DATA FOR RHEUMATOID 

ARTHRITIS 

 

 

 In this chapter we will demonstrate the functionality offered by METU-SNP with the 

analysis of the case control data for Rheumatoid Arthritis (RA) disease. The details of the 

features of the experimental data have been explained in Chapter 1.  The quality control based 

filtering and imputation has been performed to increase data quality. Then the overall data has 

been split into three: training set (%60) and 2 different test sets for AHP based prioritization 

(%20) and SA based representative SNP selection (%20). The comparisons of the analysis results 

with SPOT for prioritization and with WEKA based Relief and Chi-square attribute selection 

schemes for the representative SNP selection have been presented. Additionally, the SNPs, genes 

and pathways associated with RA have been identified. The genes and pathways revealed by 

METU-SNP analysis results were in confirmation with previous molecular genetics research 

described in the literature on the molecular basis of RA. The overall analysis of the results 

confirms that the integrated all-in-one METU-SNP application is an effective and user friendly 

tool for use in GWAS.  

6.1 Data Preprocessing and Cleaning 

 First step of our analysis involves performing PLINK based quality control filtering and 

imputation via BEAGLE. Details of the process are explained in greater detail in Chapter 5. 

Before frequency and genotyping pruning, there were 501,463 SNPs studied on 868 cases and 

1,194 controls of which 569 were males and 1,493 were females. Table 6.1-4 represents 

summary statistics of the data at hand. 
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Figure 6. 1 Number of SNPs per chromosome for RA data. 

 

Figure 6. 2 Minor Allele Frequency distribution for SNPs for RA data. 

 

 

Figure 6. 3 SNP missingness rate for RA data. 
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Figure 6. 4 Individual missingness rate for RA data. 

 In order to handle with the missingness we applied imputation via BEAGLE. During the 

imputation process 910 SNPs with allelic r
2
 frequency less than 0.95 have been removed and 

500,553 SNPs remained available for the downstream applications. Among these SNPs, 36 SNPs 

are excluded based on Hardy Weinberg Equilibrium threshold (       ). Additionally 26,904 

SNPs are removed due to failure to comply with frequency test (         ). At the end of the 

preprocessing step, 473,613 SNPs from the RA genotyping data are selected for subsequent 

analysis. The overall data is split into three: training set, test set for prioritization and test set for 

selection. For training data set we had 522 cases and 716 controls (325 males, 913 females). For 

test set for prioritization we had 180 cases and 232 controls (129 males, 283 females). 166 cases 

and 246 controls (115 males, 297 females) are reserved for test set for selection. 

6.2 GWAS for RA Data 

 In the second step of METU-SNP based analysis, the preprocessed RA data has been 

used for GWAS. The multiple testing adjusted p-values (False Discovery Rate) is selected for the 

statistical analysis. The threshold p-value is specified as 0.05 for measuring statistical 

significance of individual SNPs. Same threshold was also used for combined p-value threshold 

for genes (Fisher‟s combination) and pathways (Hypergeometric test).  

 The overall results of the association analysis have been presented in the Figure 6.5, 

where the negative logs of p-values versus chromosome distributions are plotted. It is clearly 

observed that chromosome 6 is highly associated with the RA disease phenotype chromosome 

(which is also pointed out in Chapter 2) as a large portion of SNPs with lowest p-value 

association are located on to this chromosome. Additionally chromosomes 1, 9 and 10 host SNPs 

that are significantly associated with RA. 
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Figure 6. 5 Plot of negative logarithm p-value of association for individual SNPs and their distribution on 

individual chromosomes. 

 Table 6.1 depicts the top 20 SNPs found to be significantly associated with RA. The 

SNPs with smallest p-value are rs2395175 (p-value = 1.02E-67), rs660895 (p-value = 7.10E-66),   

rs2395163 (p-value = 2.04E-52) and rs6910071 (p-value = 1.34E-50), which are also shown to be 

in association with RA in previous studies in the literature [149-152]. All of these SNPs are 

located around the HLA-DRB1 gene in chromosome 6. As explained in Chapter 2, this locus is 

suspected to constitute the genetic basis for the etiology of RA. So, the integrated analysis 

approach we have applied through METU-SNP was able to reveal the SNPs with previously 

established association to the RA disease phenotype, supporting the literature.  

 

Table 6. 1 Individual SNP p-values of association of GWAS for RA data. 

RANK CHR SNP FDR 

1 6 rs2395175 1.02E-67 

2 6 rs660895 7.10E-66 

3 6 rs2395163 2.04E-52 

4 6 rs6910071 1.34E-50 

5 6 rs3763309 1.96E-46 

6 6 rs3763312 6.22E-46 

7 6 rs9275224 3.45E-45 

8 6 rs6457617 7.41E-42 

9 6 rs2395185 6.96E-34 

10 6 rs9275555 6.60E-33 

11 6 rs2516049 9.23E-33 

12 6 rs477515 1.56E-32 

13 6 rs9275595 1.53E-31 

14 6 rs3817973 1.99E-28 

15 6 rs4424066 3.27E-28 
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Table 6.1 (cont.) 

16 6 rs9275406 3.27E-28 

17 6 rs9275374 3.27E-28 

18 6 rs9275407 3.27E-28 

19 6 rs9275393 3.27E-28 

20 6 rs9275418 3.27E-28 

 

 Following this first step of GWAS run, using the calculated p-values for individual 

SNPs, as a second-wave analysis we calculated combined p-values for genes and pathways as 

explained in Chapter 3 in greater detail. Table 6.2 and 6.3 presents top 20 statistically significant 

genes and pathways found out to be in association with RA as well as calculated p-values using 

Fisher‟s combination test (for genes) and Hypergeometric test (for pathways). As in individual 

SNP based analysis, those genes and pathways with calculated p-value less than 0.05 are labeled 

as “significant”. For practical reasons those pathways consisting of a single gene are removed 

from the list. 

 

Table 6. 2 Top 20 significant genes according to combined p-value of GWAS for RA data. 

Entrez Gene ID Full Name Location P-Value

177 Advanced glycosylation end product-specific receptor 6p21.3 ~0.0

7916 HLA-B associated transcript 2 6p21.3 ~0.0

3122 Major histocompatibility complex\, class II\, DR alpha 6p21.3 ~0.0

6891 Transporter 2\, ATP-binding cassette\, sub-family B (MDR/TAP) 6p21.3 ~0.0

7148 Tenascin XB 6p21.3 ~0.0

731881 Hypothetical protein LOC731881 6p21 ~0.0

6048 Ring finger protein 5 6p21.3 ~0.0

4855 Notch homolog 4 (Drosophila) 6p21.3 ~0.0

629 Complement factor B 6p21.3 ~0.0

1388 Activating transcription factor 6 beta 6p21.3 6.21E-13

3118 Major histocompatibility complex\, class II\, DQ alpha 2 6p21.3 1.74E-10

3113 Major histocompatibility complex\, class II\, DP alpha 1 6p21.3 4.09E-10

534 ATPase\, H+ transporting\, lysosomal 13kDa\, V1 subunit G2 6p21.3 5.75E-10

135644 Tripartite motif-containing 40 6p22.1 8.94E-10

199 Allograft inflammatory factor 1 6p21.3 1.01E-09

10107 Tripartite motif-containing 10 6p21.3 1.12E-09

10919 Euchromatic histone-lysine N-methyltransferase 2 6p21.31 1.15E-09

8859 Serine/threonine kinase 19 6p21.3 1.39E-09

80741 Lymphocyte antigen 6 complex\, locus G5C 6p21.33 1.46E-09

259215 Lymphocyte antigen 6 complex\, locus G6F 6p21 4.98E-09  
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Table 6. 3 Top 20 significant pathways according to combined p-value of GWAS for RA data. 

Pathway System Pathway Title Gene Count P-Value

GO Function MHC class II receptor activity 15 2.16E-19

GO Process
Antigen processing and presentation of peptide or polysaccharide 

antigen via MHC class II 18 6.23E-16

GO Component MHC class II protein complex 18 6.23E-16

KEGG Antigen processing and presentation 83 4.79E-15

WFINFLAM Phagocytosis-Ag presentation 39 8.23E-13

GO Process Immune response 213 7.71E-12

KEGG Cell adhesion molecules (CAMs) 133 3.03E-11

GO Process Antigen processing and presentation 43 1.38E-10

GO Process
Antigen processing and presentation of peptide antigen via MHC 

class I 10 5.06E-6

GO Function MHC class I receptor activity 16 2.31E-5

GO Component MHC class I protein complex 25 9.22E-5

BioCarta Antigen Processing and Presentation 8 3.45E-4

KEGG Natural killer cell mediated cytotoxicity 132 0.0011471107821786515

WikiPathways Proteasome Degradation 61 0.001277085041951397

BioCarta Complement Pathway 16 0.0014370939116066014

BioCarta Cytokines and Inflammatory Response 26 0.0037603559574841813

GO Process Hemopoiesis 27 0.004047214907128023

GO Function
ATPase activity, coupled to transmembrane movement of 

substances 31 0.005288289156148929

WFINFLAM Natural Killer Cell Signaling 31 0.005288289156148929

WFINFLAM Complement Cascade 6 0.0086  

 

 As expected, genes that are found significantly associated with RA during our analysis 

were all located 6p.21 region in chromosome 6. All of the genes listed are MHC based genes 

which is one of the main underlying pathways in RA etiology. Association of MHC loci with the 

RA disease has already been established in previous studies as published in the literature [153-

161]. Similarly significant pathways are also associated with MHC class genes. Antigen 

processing and presentation and MHC class pathways are listed on the top ranks of the list, which 

are also the main focus of current studies on the etiology of RA in the recent publications [64], 

[162, 163]. Additionally Cell Adhesion Molecules [164, 165] and Immune Response [166, 167] 

are also labeled as significantly associated genes, which are again well studied pathways for the 

pathogenesis of RA.   

 These findings suggest that the newly developed METU-SNP application was able to 

integrate the second-wave GWAS approach after initial GWAS to reveal significantly associated 

genes and pathways and can be regarded as an integrated all-in-one tool for GWAS. 

 6.3 SNP Prioritization 

 Following GWAS, we have performed the AHP based SNP prioritization approach 

proposed in this study and compared the prediction performance of the proposed prioritization 

algorithm with that of SPOT‟s. METU-SNP based prioritization scheme was explained in greater 

detail in Section 5.5.4. AHP based prioritization algorithm makes use of genetic information that 

is held in the METU-SNP database as well as statistical information populated after GWAS run. 
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Using these, AHP scores are calculated for each SNP. As this step can be very demanding in 

terms of computational run time, user is given the option to run AHP algorithm (and calculate 

scores) for a subset of the overall set. This can be done by utilizing the thresholds related with p-

value and number of SNPs to be selected. 

Using the user defined options (number of SNPs for which AHP scores are greater than 

zero and p-value < 0.5) provided through METU-SNP‟s prioritization tab, we have selected 

7,155 SNPs out of the prioritized lists for the 5-fold cross validation by using Naive Bayes as the 

supervised learning scheme. The results of the 5-fold cross validation has been presented in Table 

6.4 and it is evident that AHP based prioritization outperform SPOT in all of the classification 

measures even though we have used the same number of SNPs in the analysis.  

Table 6. 4 5-fold Cross Validation results for AHP and SPOT based list of SNPs over disease trait for RA 

data. 

  Accuracy Recall NPV Precision Specificity 

AHP 0.786 0.733 0.800 0.767 0.828 

SPOT 0.779 0.722 0.793 0.760 0.823 

 

 From the chromosomal distribution of the prioritized SNPs it can be seen that the 

distributions follow an almost parallel structure. However AHP based list signals relatively 

higher number of SNPs from chromosome 6, which has been shown to be significantly associated 

loci with RA in the literature. Figure 6.6 and 6.7 depict chromosomal distribution of the 

prioritized SNPs for AHP and SPOT based list respectively. 

 

Figure 6. 6 Chromosomal distributions of prioritized SNPs via AHP algorithm for RA data. 

 

 
 
Figure 6. 7 Chromosomal distributions of prioritized SNPs via SPOT for RA data. 
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 Table 6.5 depicts first 20 SNPs chosen by each prioritization scheme. As noted in 

Chapter 3, SPOT‟s list heavily depends on individual p-values whereas our AHP scheme 

integrates an evidence based biological functionality for determining relevance to a greater level. 

 

Table 6. 5 Top 20 SNPs according to SPOT and AHP prioritization of GWAS for RA data. 

 SPOT Ranking AHP Ranking 

RANK CHR SNP P-value P-Value Rank CHR SNP P-value P-Value Rank 

1 6 rs2395175 1.02E-67 1 6 rs2070600 1.18E-11 89 

2 6 rs660895 7.10E-66 2 6 rs2256175 3.37E-4 148 

3 6 rs2395163 2.04E-52 3 6 rs3134943 0.001351 248 

4 6 rs6910071 1.34E-50 4 6 rs3134940 0.0001395 209 

5 6 rs3763309 1.96E-46 5 6 rs3093662 0.0002165 218 

6 6 rs3763312 6.22E-46 6 6 rs2256028 0.01838 388 

7 6 rs9275224 3.45E-45 7 6 rs2074488 9.82E-8 101 

8 6 rs6457617 7.41E-42 8 6 rs1063355 8.27E-05 204 

9 6 rs2395185 6.96E-34 9 6 rs9264536 0.3904 5,759 

10 6 rs9275555 6.60E-33 10 6 rs2395471 0.2843 2,568 

11 6 rs2516049 9.23E-33 11 6 rs1051794 0.3928 5,888 

12 6 rs477515 1.56E-32 12 1 rs2476601 3.19E-3 164 

13 6 rs9275595 1.53E-31 13 9 rs17611 0.2412 1,872 

14 6 rs2076530 2.61E-27 31 6 rs1041981 0.4779 11,098 

15 6 rs3817973 1.99E-28 14 9 rs1468673 0.2468 1,941 

16 6 rs4424066 3.27E-28 15 9 rs10818500 0.2767 2,413 

17 6 rs9275374 3.27E-28 17 6 rs2075800 1.32E-3 161 

18 6 rs9275390 3.27E-28 21 6 rs2227956 0.007967 339 

19 6 rs9275393 3.27E-28 19 6 rs7383287 0.007007 333 

20 6 rs9275406 3.27E-28 16 9 rs7037673 0.0174 384 

 

 Finally the biological functionality of the top 20 SNPs listed by AHP versus SPOT based 

prioritization algorithms are compared through OMIM gene and associated loci analysis. Table 

6.6 presents the associations between selected SNPs and OMIM genes which have been 

experimentally proven to be associated with RA, thus highlighting the algorithm‟s performance 

in prioritization of biologically relevant SNPs. As summarized in Table 6.6, it is evident that 

AHP based prioritization outperforms SPOT‟s approach in terms of biological relevance. Among 

top ranking 20 SNPs, only 2% of the SNPs in SPOT list are associated with an OMIM gene, 

whereas it is 70% for AHP based list. It has also been verified that out of the 20 SNPs in AHP 

list, 2 of them are experimentally associated with RA, while none of the SNPs in SPOT list has 

been identified as associated with RA in the literature. Details of our AHP based analysis can be 

found in Appendix F. 

 



 89 

Table 6. 6 Comparison of biological relevance of SPOT and AHP lists for RA. 

  SPOT List AHP List 

RANK SNP OMIM Gene RA Association SNP OMIM Gene RA Association 

1 rs2395175     rs2070600 AGER   

2 rs660895     rs2256175     

3 rs2395163     rs3134943 RNF5   

4 rs6910071     rs3134940 AGER   

5 rs3763309     rs3093662 TNF YES 

6 rs3763312     rs2256028     

7 rs9275224     rs2074488     

8 rs6457617     rs1063355 HLA-DQB1   

9 rs2395185     rs9264536     

10 rs9275555     rs2395471     

11 rs2516049     rs1051794 MICA   

12 rs477515     rs2476601 PTPN22 YES 

13 rs9275595     rs17611 CC5D   

14 rs2076530 BTNL2   rs1041981 LTA   

15 rs3817973     rs1468673 CC5D   

16 rs4424066     rs10818500 CC5D   

17 rs9275374     rs2075800 HSPA1L   

18 rs9275390     rs2227956 HSPA1L   

19 rs9275393     rs7383287     

20 rs9275406     rs7037673 CC5D   

 

 Interestingly, the top listing SNP in our analysis, rs2070600, has been investigated in a 

previous study [168] for its relationship with type 2 diabetes mellitus (T2DM) and insulin 

resistance. The relationship between RA and T2DM has been questioned recently in [169]. 

Additionally, few of the SNPs (rs1063355,  rs2070600, rs3134940) in AHP list have been found 

to be linked to diabetes mellitus loci previously. So, AHP based SNP prioritization is supporting 

the recent literature on the novel association suggested between RA and T2DM and insulin 

resistance. 

While AHP based prioritization is offering a more viable prioritized SNP list for 

subsequent GWAS by integrating significant genes and pathway information from GWAS and 

backing this up with a scoring mechanism that integrates disease data and disease-disease 

interactions , here we have also presented its power for suggesting novel associations between 

SNPs, genes and disease phenotypes. To further prove these suggestions ideally, large-scale, 

prospective studies are needed. One of the major goals of SNP association studies is to reveal 

such SNP-phenotype associations to help researcher build new hypothesis and conduct studies.  
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6.4 SNP Selection 

Following prioritization process, as a last step of our study we ran our SA based 

representative SNP selection algorithm on the training set. Similar to the analysis performed in 

Chapter 4 we ran the algorithm for each chromosome and merged the selected SNPs as the 

overall representative SNP set. For computational reasons, the algorithm is stopped if the 

evaluation function value does not change in 40 SA step in a row. The prediction performance 

(average accuracy) of the selected SNPs on unselected SNPs and phenotype for each 

chromosome is presented in Tables 6.7 below for different w values (0.3, 0.5 and 0.7, 

respectively). 

 

Table 6. 7 Prediction performance of representative SNP selection algorithm:  t = 10, d = 0.1, cmax = 1,000 

for RA data. 

  w = 0.3 w = 0.5 w = 0.7 

CHR INI SEL ACA INI SEL ACA INI SEL ACA 

1 470 20 0.613 470 30 0.641 470 63 0.691 

2 552 43 0.635 552 34 0.673 552 52 0.686 

3 439 26 0.633 439 30 0.651 439 59 0.696 

4 353 19 0.62 353 23 0.637 353 49 0.688 

5 337 14 0.609 337 19 0.63 337 48 0.694 

6 1,036 70 0.699 1,036 85 0.729 1,036 142 0.759 

7 376 32 0.676 376 32 0.676 376 52 0.696 

8 489 43 0.697 489 43 0.697 489 84 0.746 

9 360 29 0.671 360 29 0.671 360 48 0.704 

10 336 27 0.655 336 27 0.655 336 48 0.701 

11 339 20 0.645 339 20 0.645 339 43 0.701 

12 306 22 0.667 306 22 0.667 306 35 0.704 

13 231 20 0.679 231 20 0.679 231 40 0.738 

14 206 20 0.667 206 20 0.667 206 33 0.722 

15 242 18 0.727 242 18 0.727 242 27 0.74 

16 229 14 0.649 229 14 0.649 229 31 0.701 

17 161 6 0.636 161 6 0.636 161 19 0.686 

18 159 10 0.649 159 10 0.649 159 19 0.704 

19 114 7 0.62 114 7 0.62 114 11 0.645 

20 167 11 0.659 167 11 0.659 167 19 0.686 

21 117 6 0.671 117 6 0.671 117 21 0.741 

22 73 2 0.632 73 2 0.632 73 9 0.66 

X 63 2 0.703 63 2 0.703 63 6 0.735 

TOTAL/AVERAGE   481 0.657   510 0.664   958 0.705 
 

CHR: Chromosome number, SEL: Selected number, ACA: Average classification accuracy. 

 

Using representative SNP selection algorithm we managed to decrease the dimensions 

considerably. For example for w = 0.5 the number of SNPs is decreased from 7,155 to 510 for 
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RA data. Average classification accuracy for the representative SNP set over unselected for each 

chromosome is 0.664. Similar to Chapter 4, we did not observe a considerable information loss 

(in terms of classification accuracy over unselected SNPs). To observe the classification 

performance of the selected set over the disease phenotype, we compared the performance 

against Relief-F and Chi-Square. In order to achieve that, we have selected the same set of SNPs 

for the test sets to that of training sets‟ and applied a 10-fold Cross Validation run using Naive 

Bayes classifier as the supervised learning scheme. Results are presented in Table 6.8. 

 

Table 6. 8 Prediction performance comparisons for SA algorithm and WEKA based algorithms. 

Measure SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F

Accuracy 0.7160 0.7306 0.7039 0.7209 0.7354 0.7039 0.7136 0.7330 0.7209

Recall 0.6265 0.7108 0.6988 0.6265 0.7169 0.6988 0.6627 0.7108 0.7108

NPV 0.7549 0.7922 0.7768 0.7569 0.7965 0.7768 0.7667 0.7931 0.7885

Precision 0.6541 0.6519 0.6170 0.6624 0.6575 0.6170 0.6395 0.6556 0.6378

Specificity 0.7764 0.7439 0.7073 0.7846 0.7480 0.7073 0.7480 0.7480 0.7276

w = 0.3, 481 SNPs w = 0.5, 510 SNPs w = 0.7, 958 SNPs

 

 Table 6.8 reveals that our SA based algorithm outperforms Relief-F in most of the cases. 

In terms of precision and specificity SA performs way much better than Relief-F and Chi-Square 

based attribute selection. It is also noteworthy that even if we decrease the dimension 

considerably, prediction performance of the selected set is still considerably good. 

  

6.5 Conclusion 

 In this chapter we have presented the performance of integrated METU-SNP application 

as an all-in-one GWAS over the real life data of Rheumatoid Arthritis consisting of 501,463 

SNPs taken from 2,062 patients (868 cases and 1,194 controls). The whole analysis is done by 

using the newly developed software platform METU-SNP. Analysis also involved use of two 

novel algorithms developed in the course of this research study: (1) AHP based prioritization and 

(2) Simulated Annealing based representative SNP selection. Additionally we have integrated 

state-of-the-art enrichment methods for genes and biological pathways. Results reveal that by 

using METU-SNP we are able to identify significant signals associated disease phenotypes. We 

were able to identify significant SNPs as well as genes and pathways, which showed statistically 

and biologically significant contribution on RA disease phenotype. Our findings are in parallel to 

current literature on the etiology of Rheumatoid Arthritis. Therefore we conclude that presented 

software platform METU-SNP is an effective and a reliable tool for GWAS, integrating 

standardized analysis methods and novel algorithms. We hope that through its easy to use GUI 

the novel algorithms proposed here will be utilized by SNP biomarker researchers and will lead 

to discovery of SNP-gene-pathway associations for many more diseases. 
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CHAPTER 7 
 

 

 

CONCLUSION AND FUTURE RESEARCH 

DIRECTIONS 

 
 

 

 In this thesis work, we aimed to find a solution to the problem of identifying genetic 

variations that are the major reasons of complex diseases. In Chapter 1, we have presented the 

problem, our proposed methods and major contributions of this dissertation. We have also 

introduced the experimental data sets that have been utilized for measuring the performance of 

the algorithms and systems proposed. In Chapter 2, the biological concepts that are utilized for 

development of the ideas that shaped our research work are introduced.  We have explored the 

human genome and defined the SNPs, which are mutations caused by substitution of one single 

nucleotide for another at homologous sites in a population, as the most frequently observed 

genetic variations. Additionally, features of complex diseases are summarized and two complex 

diseases: (1) Alzheimer‟s Disease (AD) and (2) Rheumatoid Arthritis (RA), for which we 

performed extensive analysis are presented. Next, we have showed how GWAS make use of 

SNPs in an attempt to identify disease causing variants and introduced biological pathways and 

stating why they are important for the etiology of complex diseases. In Chapter 3, the novel 

prioritization algorithm for finding biologically and statistically relevant set of SNPs for use in 

subsequent GWAS has been proposed. The algorithm was based on the well-known multi-criteria 

decision making method Analytic Hierarchy Process (AHP). We presented a scoring scheme 

based on the weights assigned to the developed hierarchy tree structure. Based on the calculated 

final scores, individual SNPs were ranked and prioritization was made accordingly. We showed 

that our prioritization algorithm outperformed a similar algorithm, SPOT, which was proposed 

recently, in terms of prediction performance over disease phenotype and biological relevance of 

the top ranking SNPs. In Chapter 4, we proposed another novel algorithm to tackle the 

representative SNP selection problem. Our algorithm was based on Simulated Annealing (SA) 

and it performed reasonably well against two filtering based algorithm presented by WEKA 

machine learning tool. The newly developed METU-SNP application has been introduced in 

Chapter 5. METU-SNP is a java based all-in-one software system with MySQL back-end, which 

is specifically designed for GWAS. METU-SNP database integrated biological information from 
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major databases and makes use of this valuable information in SNP prioritization process. Well-

known 3rd party tools such as PLINK and BEAGLE are also integrated to the application. 

Integration with these tools enabled METU-SNP to perform comprehensive analysis for GWAS. 

Quality control based preprocessing, association analysis for individual SNPs and second-wave 

GWAS through gene set enrichment framework, AHP based prioritization and SA based 

representative SNP selection are among the analysis options offered by METU-SNP. In Chapter 

6, METU-SNP‟s functionality on real life case control data for RA has been presented. Results 

showed that METU-SNP was able to identify significant signals towards disease phenotype. It 

was able to identify significant SNPs, genes and pathways and findings were in parallel to current 

etiology of RA. In the following sections we will summarize our contributions, state difficulties 

faced during the course of this research and present young researchers with possible future 

research directions in this field. 

7.1 Contributions 

This section aims to provide a summary of contributions of this thesis: 

 First and foremost contribution of our research study is our AHP based prioritization 

scheme for SNP selection after a GWAS.  We stated that focusing on the statistical 

evidence alone is not a valid approach for biomarker discovery in a GWAS setting. It is 

highly unlikely to spot the true causal polymorphisms by looking at only the p-values of 

association. Therefore, there is a need to prioritize and select a subset of SNPs for 

subsequent GWAS studies and/or functional experiments. In the literature, alongside 

with statistical evidence, use of biological information is favored. With this in mind we 

introduced a novel method for SNP biomarker scoring and prioritizing based on the 

well-known multi-criteria decision making method Analytic Hierarchy Process. We 

created a hierarchy tree to structurize the SNP prioritization process. We combined 

statistical information (p-values for SNPs and additionally combined p-values for genes 

and pathways) with SNP‟s biological importance depending on three different criteria: 

(1) Evolutionary Conservation, (2) Gene Association and (3) Genomic Location. In 

order to calculate scores for SNPs we integrate information from major public databases. 

Our algorithm steps forward as one of few algorithms presented in the literature that 

aims to prioritize SNPs. We performed a comparative study with one of mostly cited 

approaches in the literature: SPOT. Our algorithm outperformed SPOT in prediction 

performance.  

 Next, we presented a Simulated Annealing based representative SNP selection 

algorithm. We stated that the enormous number of SNPs makes it difficult to perform an 

extensive analysis on all the SNPs in the human genome. Thus, while performing a 

disease association study, it is desired to work with a subset of the entire SNP set and not 

all SNPs, thereby considerably saving limited resources. Therefore, selecting a subset of 
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SNPs that is informative enough to perform association studies but still small enough to 

reduce the analysis workload, to which we refer as representative SNP selection, has 

become an important step for disease-gene association studies. The major aim for 

representative SNP selection is reducing the biological and statistical redundancy from 

hundreds of thousands of SNPs. To solve this problem, we present an OR class novel 

feature selection method based on Simulated Annealing (SA). In this method, we try to 

maximize tagged SNP prediction while minimizing cardinality of the selected SNP 

subset. We performed a comparative study with two filtering based attribute selection 

methods offered by WEKA tool: Relief-F and Chi-square. Our algorithm performed well 

against these algorithms especially if classification accuracy is favored over SNP 

number. 

 Lastly, we have developed a java based integrated desktop software, which is 

specifically designed as an all-in-one application for use in GWAS: METU-SNP. Our 

software aims to present researchers with an effective and handy tool to help during their 

endeavors to find SNPs that are significantly associated with complex diseases. It makes 

use of data from major public databases such as dbSNP, Entrez Gene, KEGG, Gene 

Ontology etc. It is equipped with a state-of-the-art Gene Set Enrichment Analysis and 

pathway discovery methods. Additionally we have implemented the algorithms 

developed based on AHP based SNP prioritization and Simulated Annealing based 

representative SNP selection within METU-SNP framework. To us, METU-SNP is the 

very first version of a much more detailed analysis tool that will be shaped within 

METU Bioinformatics labs. We hope that it will be a common tool of choice for GWAS 

and it will ultimately support timely identification of genomic disease biomarkers, and 

development of personalized medicine approaches and targeted drug discoveries. 

7.2 Major Drawbacks 

In this section, we list the difficulties faced during the course of this research study: 

 Accessing to real experimental genotyping data has been one of the major difficulties. 

This even became a bottleneck as without knowing the structure of the data set 

commonly used for GWAS we could not continue developing our algorithms. The data 

is usually regarded as classified, therefore to get a hand on a real data set we had to wait 

for a long time until we have convinced the Genetic Analysis Workshop organizers. 

 The genotyping data we had gain access to analyze was too large. In many occasions, 

analyzing the data, which is in gigabytes range, has put a computational burden to our 

work many times. At some point we had to change the structure of our database and SNP 

prioritization algorithm as we had to prematurely end a single SQL query that took 5 

days to run at an Intel 2 Duo, 2.26 GHz and 2.86 GB RAM machine. Editing the data 
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was required scripting as common text editors are unable to “even” open the data at 

hand.  

 The databases that needed to be integrated required tens of gigabytes of disk storage. 

Storing the whole data in a local computer hasn‟t been feasible and we, unfortunately, 

could not get access to a dedicated server in METU premises during the course of this 

study. Therefore we decided to use a compact, integrated SQL dump we acquired from 

the developers of SNPLogic tool and SPOT. We have optimized the MySQL database to 

work with our algorithms: however this resulted in a tradeoff for maintainability. One 

needs to further process and update the data to keep current with literature for new 

versions of the METU-SNP.  

7.3 Future Research 

This section aims to guide interested graduate students for possible future research: 

 During our analysis we found significant genes and pathways by using enrichment 

analysis. One could try to integrate haplotype based association and identify significant 

haplotypes. Significant haplotype information can also be used to restructure the AHP 

tree. BEAGLE presents users with the functionality of calculating haplotype based 

associations.  

 It is a fact that different individuals diagnosed with the same complex disease may have 

different reasons for disease development. Therefore one may try to divide case data into 

different clusters and perform simultaneous association runs on different clusters. That is 

because some SNPs would cause disease in some of the patients but not in others and 

catching these not-so-strong signals in the overall data is not an easy task. We think that 

biclustering
23 

will be a good fit for this purpose. One may try to integrate different 

biclustering algorithms into METU-SNP and apply a biclustering run before GWAS 

step. It would be interesting to compare the performance of SNP prioritization with and 

without biclustering application. 

 We stated that imputation is important for increasing the quality of GWAS. We have 

integrated BEAGLE‟s standard imputation methodology, which is based on hidden 

markov model. One may try to apply different imputation methods and compare the 

performance with BEAGLE. 

 METU-SNP version 1.0 is a java based desktop application with a MySQL back-end. 

The database includes biological data incorporated from different major databases such 

as dbSNP, Entrez Gene and others. The database currently lacks an automated update 

functioning and it is designed so as to optimize the performance of AHP algorithm. 

Therefore if one wants to update the database lots of manual tasks are needed. Hence, it 

                                                 
23 Biclustering, co-clustering, or two-mode clustering is a data mining technique which allows 

simultaneous clustering of the rows and columns of a matrix. 
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would be quite useful to implement a similar mechanism to that of dbAutoMaker
24 

and 

run periodical updates for the database. Additionally, disease database that is based on 

Disease Ontology and GeneRIF dates back to 2008. It is therefore required to integrate 

an updated version. Lastly, a web based version of the METU-SNP that would be hosted 

on a dedicated “secure” server within METU premises would help researchers 

worldwide to use the functionality offered by METU-SNP and would permit 

collaborations that would initiate productive research.  

 For intelligent filtering of the massive SNP data we have used an AHP based 

prioritization algorithm and we developed a Simulated Annealing based selection 

algorithm for representative SNP selection. One could work on a different, improved 

version of the AHP tree and perform Delphi Study with a different and extended group 

of biology experts. With current version of METU-SNP, it is not possible to change the 

AHP scores of the leaf nodes. It would be a good add on to allow the user to “fine-tune” 

the scores according to user‟s choice. For supervised learning step of selection algorithm 

we used Naive Bayes classifier because it is fast. It is possible to use different classifiers 

offered by WEKA, as METU-SNP allows use of other WEKA based classifiers and 

perform a comparative study. For Simulated Annealing based selection, the performance 

of our algorithm depends hardly on initial random selection of SNPs. One enhancement 

would be to integrate AHP scores or any other intelligent method to modify the 

initialization part of the algorithm so that more relevant SNPs are selected at first step. 

 Current version of METU-SNP lacks graphical representation of the analysis results. 

Haploview
25

 is a great tool that offers visualization and plotting of PLINK based 

analysis. One may try to implement functionality offered by Haploview to complete an 

important shortcoming of METU-SNP. Another important add-on to the current version 

of METU-SNP would be giving the user an option to populate gene-disease table in the 

database with the results of the analysis, which is currently being run. Genes that are 

found out to be statistically relevant for a particular disease will be favored in subsequent 

GWAS studies for the very same disease.  

 Lastly, a noteworthy enhancement would be to allow use of different input file formats 

by integrating a file format conversion tool. This way data gathered from different 

sources can be converted into PLINK ready ped and map files. Additionally, presenting 

user with the ability to perform other relevant analysis, presented by PLINK, such as 

family based association or population stratification could be added as functionality.    

                                                 
24 http://www.csiro.au/science/dbAutoMaker.html 
25 http://www.broadinstitute.org/haploview 

http://www.csiro.au/science/dbAutoMaker.html
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APPENDICES 

 

 

 

APPENDIX A: GLOSSARY FOR GWAS 

 
Alleles: Alternate forms of a gene or chromosomal locus that differ in DNA sequence 

Annotation catalog: A map denoting the function of specific genomic regions, such as sites to 

which noncoding RNA or transcription factors bind. 

Candidate gene: A gene believed to influence expression of complex phenotypes due to known 

biological and/or physiological properties of its products, or to its location near a region of 

association or linkage 

Common disease–common variant hypothesis: A theory that many common diseases are 

caused by common alleles that individually have little effect but in concert confer a high risk. 

Complex disease: A disorder in which the cause is considered to be a combination of genetic 

effects and environmental influences. 

Copy number variants: Stretches of genomic sequence of roughly 1 kb to 3 Mb in size that are 

deleted or are duplicated in varying numbers 

Deep resequencing: A technique for sequencing a gene in several thousand subjects, typically 

with the use of high-throughput sequencing. 

Epigenetics: The study of heritable changes to DNA structure that does not alter the underlying 

sequence; well-known examples are DNA methylation and histone modification. 

Exome: All the expressed messenger RNA sequences in any tissue. 

False discovery rate: Proportion of significant associations that are actually false positives 

False-positive report probability: Probability that the null hypothesis is true, given a 

statistically significant finding 

Fine mapping: The precise mapping of a locus after it has been identified by genetic linkage or 

association. The initial localization is determined within megabases of DNA in genetic linkage 

studies and within tens of kilobases in genetic association studies. In genetic association studies, 

fine mapping implies finding all the variants at the locus and trying to determine which changes 

may be related to pathogenesis 

with the use of statistical, functional, or bioinformatic methods. 

Functional studies: Investigations of the role or mechanism of a genetic variant in causation of a 

disease or trait 
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Gene-environment interactions: Modification of gene-disease associations in the presence of 

environmental factors 

Genetic association: A relationship that is defined by the nonrandom occurrence of a genetic 

marker with a trait, which suggests an association between the genetic marker (and/or a marker 

close to it) and disease pathogenesis. 

Genetic linkage: A relationship that is defined by the coinheritance of a genetic marker with 

disease in a family with multiple disease-affected members. 

Genome-wide association study: Any study of genetic variation across the entire human 

genome 

designed to identify genetic association with observable traits or the presence or absence of a 

disease, usually referring to studies with genetic marker density of 100,000 or more to represent a 

large proportion of variation in the human genome 

Genotyping call rate: Proportion of samples or SNPs for which a specific allele SNP can 

be reliably identified by a genotyping method 

Haplotype: A group of specific alleles at neighboring genes or markers that tends to be inherited 

together 

Haplotypic structure: The general underlying segmentation of the genome. As a result of 

recombination events occurring throughout the history of a population, contiguous segments of 

DNA are shared by persons within a population. Chromosomes can thus be broken down into 

contiguous segments, containing haplotypes common to members of particular populations. 

HapMap: Genome-wide database of patterns of common human genetic sequence variation 

among multiple ancestral population samples 

Hardy Weinberg equilibrium: Population distribution of 2 alleles (with frequencies p and q) 

such that the distribution is stable from generation to generation and genotypes occur at 

frequencies of p
2
, 2pq, and q

2
 for the major allele homozygote, heterozygote, and minor allele 

homozygote, respectively 

Heritability: The proportion of inter-individual differences (variance) in a trait that is the result 

of genetic factors; often estimated on the basis of parent–offspring correlations for continuous 

traits or the ratio of the incidence in first-degree relatives of affected persons to the incidence in 

first-degree relatives of unaffected persons. 

High-throughput sequencing: Several new techniques that since 2005 have increased the speed 

and decreased the cost of DNA sequencing by two orders of magnitude. 

Human Genome Project: A coordinated international effort that led to the consensus sequence 

of the human genome 

Intergenic regions: Segments of DNA that do not contain or overlap genes. 

Introns: The portions of a gene that are removed (spliced out) before translation to a protein. 

Introns may contain regulatory information that is critical to appropriate gene expression. 
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Inversion: A chromosomal segment that has been broken off and reinserted in the same place, 

but with the genetic sequence in reverse order. 

Linkage disequilibrium: Association between 2 alleles located near each other on a 

chromosome, such that they are inherited together more frequently than expected by chance 

Mendelian disease: Condition caused almost entirely by a single major gene, such as cystic 

fibrosis orHuntington‟sdisease, inwhichdisease ismanifested in only 1 (recessive) or 2 (dominant) 

of the 3 possible genotype groups 

Minor allele: The allele of a biallelic polymorphism that is less frequent in the study population 

Minor allele frequency: Proportion of the less common of 2 alleles in a population (with 2 

alleles carried by each person at each autosomal locus) ranging from less than 1% to less than 

50% 

Modest effect: Association between a gene variant and disease or trait that is statistically 

significant but carries a small odds ratio (usually < 1.5) 

Monogenic disease: A disorder caused by a mutation in a single gene (also called a Mendelian 

disease). 

Noncoding RNAs: Segments of RNA that are not translated into amino acid sequences but may 

be involved in the regulation of gene expression. 

Non-Mendelian disease (also “common” or “complex” disease): Condition influenced by 

multiple genes and environmental factors and not showing Mendelian inheritance patterns 

Nonsynonymous SNP: Apolymorphismthat results in achangein theaminoacid sequence of a 

protein (and therefore may affect the function of the protein) 

Platform: Arrays or chips on which high-throughput genotyping is performed 

Polymorphic: A gene or site with multiple allelic forms. The term polymorphism 

usually implies a minor allele frequency of at least 1%. 

Population attributable risk: Proportion of a disease or trait in the population that is due to a 

specific cause, such as a genetic variant 

Population stratification (also “population structure”): A form of confounding in genetic 

association studies caused by genetic differencesbetweencasesandcontrols unrelated to disease 

but due to sampling them from populations of different ancestries 

Positional cloning: An approach for determining the position of a gene that, when mutated, 

causes monogenic disease. In families with disease, genetic markers from every chromosome are 

typed in both affected and unaffected members. Markers that are co-inherited with disease 

indicate the chromosomal position of the genetic defect, and then genes at that position are 

sequenced to find the pathogenic mutation, which in turn indicates the causative gene. 

Power: A statistical term for the probability of identifying a difference between 2 groups in a 

study when a difference truly exists. 

Rare variant: A genetic variant with a minor-allele frequency of less than 1%. Rare variants are 

typically single-nucleotide substitutions but can also be structural variants. 
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RNA interference: The inhibition of gene expression by noncoding RNA molecules. 

Sequence motif: DNA sequences whose functions can be inferred because they are similar to 

sequences whose function has been biologically determined. 

Single-nucleotide polymorphism: Most common form of genetic variation in the genome, in 

which 

a single-base substitution has created 2 forms of a DNA sequence that differ by a single 

nucleotide. 

Structural genomic variation: Variation within the genome that results from deletion or 

duplication (both referred to as copy-number variation) or from inversion of genomic segments. 

Although common large variants (of more than one kilobase) exist, the majority of such variants 

are rare. 

Tag SNP: A readily measured SNP that is in strong linkage disequilibrium with multiple other 

SNPs so that it can serve as a proxy for these SNPs on large-scale genotyping platforms. 

Transcription factor: A protein that binds to gene regulatory regions in DNA and helps to 

control gene expression. 

Translocation: A chromosomal segment that has been broken off and reinserted in a different 

place in the genome. 

Trio: Genetic study design including an affected offspring and both parents. 

1000 Genomes Project: A whole-genome resequencing of 1000 subjects from the original and 

extended HapMap populations, which was started in 2008, with funding from an international 

research consortium. 
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APPENDIX B: ENTITY-RELATIONSHIP DIAGRAM OF 

ENTREZ-GENE 
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APPENDIX C: AHP-TREE STRUCTURE 
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APPENDIX D: AHP SCORING DETAILS 

 

Consistency Check 

[8], it has been proven that for a consistent comparison matrix, the largest Eigen Value ( max) is equal 

to the size of the matrix n. Then a measure of consistency, called Consistency Index (CI) has been 

proposed such that:  

   
       

   
 

[8] also suggested that CI should be compared with an appropriate one to check consistency so a 

Random Consistency Index (RI) is calculated by taking the average of CI for 500 randomly created 

matrices. RI is depicted in the table below: 

 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

Following that, a measure called Consistency Ratio is proposed such that: 

   
  

  
 

 If the value of Consistency Ratio is smaller or equal to 10%, the inconsistency is acceptable; 

otherwise one has to revise the judgement. 

 

Expert 1 
 
Pairwise comparisons made by Expert 1 are depicted below:  

CRITERIA MORE IMPORTANT  

(A OR B) 

INTENSITY 

(SCALE FROM 1 TO 9) 
A B 

0 1 B 2,0 

0.1 0.2 B 7,0 

0.1 0.3 B 5,0 

0.2 0.3 A 3,0 

0.2.1 0.2.2 B 9,0 

0.2.1 0.2.3 B 6,0 

0.2.2 0.2.3 A 3,0 

0.3.1 0.3.2 B 9,0 

0.3.1 0.3.3 B 6,0 

0.3.2 0.3.3 A 3,0 

1.1 1.2 B 8,0 

1.1 1.3 B 6,0 

1.2 1.3 A 3,5 

1.1.1 1.1.2 B 2,0 
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1.1.2.1 1.1.2.2 A 2,0 

1.2.1 1.2.2 A 9,0 

1.2.1.1 1.2.1.2 B 9,0 

1.2.1.1 1.2.1.3 B 6,0 

1.2.1.2 1.2.1.3 A 3,0 

1.2.2.1 1.2.2.2 A 3,0 

1.2.2.1.1 1.2.2.1.2 B 9,0 

1.2.2.1.1 1.2.2.1.3 B 6,0 

1.2.2.1.2 1.2.2.1.3 A 3,0 

1.2.2.2.1 1.2.2.2.2 B 9,0 

1.2.2.2.1. 1.2.2.2.3 B 6,0 

1.2.2.2.2 1.2.2.2.3 A 3,0 

1.3.1 1.3.2 B 7,0 

1.3.1.1 1.3.1.2 B 4,0 

1.3.1.1 1.3.1.3 A 6,0 

1.3.1.1 1.3.1.4 A 5,5 

1.3.1.1 1.3.1.5 B 3,0 

1.3.1.1 1.3.1.6 A 4,0 

1.3.1.1 1.3.1.7 A 3,0 

1.3.1.1.1 1.3.1.1.2 A 7,0 

1.3.1.2 1.3.1.3 A 9,0 

1.3.1.2 1.3.1.4 A 8,0 

1.3.1.2 1.3.1.5 A 3,0 

1.3.1.2 1.3.1.6 A 7,0 

1.3.1.2 1.3.1.7 A 5,0 

1.3.1.2.1 1.3.1.2.2 A 5,0 

1.3.1.3 1.3.1.4 B 2,0 

1.3.1.3 1.3.1.5 B 8,0 

1.3.1.3 1.3.1.6 B 3,0 

1.3.1.3 1.3.1.7 B 5,0 

1.3.1.4 1.3.1.5 B 7,0 

1.3.1.4 1.3.1.6 B 3,0 

1.3.1.4 1.3.1.7 B 5,0 

1.3.1.5 1.3.1.6 A 6,0 

1.3.1.5 1.3.1.7 A 4,0 

1.3.1.5.1 1.3.1.5.2 A 3,0 

1.3.1.6 1.3.1.7 B 3,0 

1.3.2.1 1.3.2.2 A 9,0 

1.3.2.1 1.3.2.3 A 6,0 

1.3.2.2 1.3.2.3 B 4,0 

1.3.2.3.1 1.3.2.3.2 B 3,0 

1.3.2.3.1 1.3.2.3.3 B 7,0 

1.3.2.3.1 1.3.2.3.4 B 9,0 

1.3.2.3.2 1.3.2.3.3 B 2,0 

1.3.2.3.2 1.3.2.3.4 B 3,0 

1.3.2.3.3 1.3.2.3.4 B 2,0 
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Resulting comparison matrices are presented below: 
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Expert 2 

Pairwise comparisons made by Expert 2 are depicted below:  

CRITERIA MORE IMPORTANT  

(A OR B) 

INTENSITY 

(SCALE FROM 1 TO 9) 
A B 

0 1 B 3 
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0.1 0.2 B 7 

0.1 0.3 B 5 

0.2 0.3 A 3 

0.2.1 0.2.2 B 5 

0.2.1 0.2.3 B 3 

0.2.2 0.2.3 A 3 

0.3.1 0.3.2 B 5 

0.3.1 0.3.3 B 3 

0.3.2 0.3.3 A 3 

1.1 1.2 B 3 

1.1 1.3 B 4 

1.2 1.3 B 2 

1.1.1 1.1.2 B 5 

1.1.2.1 1.1.2.2 A 5 

1.2.1 1.2.2 A 5 

1.2.1.1 1.2.1.2 B 5 

1.2.1.1 1.2.1.3 B 3 

1.2.1.2 1.2.1.3 A 3 

1.2.2.1 1.2.2.2 A 7 

1.2.2.1.1 1.2.2.1.2 B 5 

1.2.2.1.1 1.2.2.1.3 B 3 

1.2.2.1.2 1.2.2.1.3 A 3 

1.2.2.2.1 1.2.2.2.2 B 5 

1.2.2.2.1. 1.2.2.2.3 B 3 

1.2.2.2.2 1.2.2.2.3 A 3 

1.3.1 1.3.2 B 7 

1.3.1.1 1.3.1.2 B 3 

1.3.1.1 1.3.1.3 A 3 

1.3.1.1 1.3.1.4 B 3 

1.3.1.1 1.3.1.5 B 3 

1.3.1.1 1.3.1.6 B 5 

1.3.1.1 1.3.1.7 B 5 

1.3.1.1.1 1.3.1.1.2 A 7 

1.3.1.2 1.3.1.3 A 5 

1.3.1.2 1.3.1.4 A 3 

1.3.1.2 1.3.1.5 B 4 

1.3.1.2 1.3.1.6 B 4 

1.3.1.2 1.3.1.7 B 4 

1.3.1.2.1 1.3.1.2.2 A 5 

1.3.1.3 1.3.1.4 B 4 

1.3.1.3 1.3.1.5 B 4 

1.3.1.3 1.3.1.6 B 6 

1.3.1.3 1.3.1.7 B 6 

1.3.1.4 1.3.1.5 B 1 

1.3.1.4 1.3.1.6 B 5 

1.3.1.4 1.3.1.7 B 5 
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1.3.1.5 1.3.1.6 B 5 

1.3.1.5 1.3.1.7 B 5 

1.3.1.5.1 1.3.1.5.2 A 5 

1.3.1.6 1.3.1.7 A 1 

1.3.2.1 1.3.2.2 A 7 

1.3.2.1 1.3.2.3 A 2 

1.3.2.2 1.3.2.3 B 7 

1.3.2.3.1 1.3.2.3.2 B 5 

1.3.2.3.1 1.3.2.3.3 B 7 

1.3.2.3.1 1.3.2.3.4 B 8 

1.3.2.3.2 1.3.2.3.3 B 3 

1.3.2.3.2 1.3.2.3.4 B 5 

1.3.2.3.3 1.3.2.3.4 B 3 

 
Resulting comparison matrices are presented below: 
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Expert 3 

Pairwise comparisons made by Expert 3 are depicted below:  

CRITERIA MORE IMPORTANT  
(A OR B) 

INTENSITY 
(SCALE FROM 1 TO 9) 

A B 

0 1 A 5,00 

0.1 0.2 B 3,00 

0.1 0.3 B 7,00 

0.2 0.3 B 5,00 

0.2.1 0.2.2 B 9,00 

0.2.1 0.2.3 B 3,00 

0.2.2 0.2.3 A 5,00 

0.3.1 0.3.2 B 9,00 

0.3.1 0.3.3 B 3,00 

0.3.2 0.3.3 A 3,00 

1.1 1.2 B 3,00 

1.1 1.3 A 3,00 

1.2 1.3 A 5,00 

1.1.1 1.1.2 A 9,00 

1.1.2.1 1.1.2.2 B 3,00 

1.2.1 1.2.2 A 7,00 

1.2.1.1 1.2.1.2 B 8,00 

1.2.1.1 1.2.1.3 B 2,00 

1.2.1.2 1.2.1.3 A 5,00 

1.2.2.1 1.2.2.2 A 3,00 

1.2.2.1.1 1.2.2.1.2 B 9,00 

1.2.2.1.1 1.2.2.1.3 B 3,00 

1.2.2.1.2 1.2.2.1.3 A 3,00 

1.2.2.2.1 1.2.2.2.2 A 1,00 

1.2.2.2.1. 1.2.2.2.3 A 1,00 

1.2.2.2.2 1.2.2.2.3 A 1,00 

1.3.1 1.3.2 B 5,00 

1.3.1.1 1.3.1.2 B 2,00 
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1.3.1.1 1.3.1.3 A 3,00 

1.3.1.1 1.3.1.4 A 2,00 

1.3.1.1 1.3.1.5 B 2,00 

1.3.1.1 1.3.1.6 B 3,00 

1.3.1.1 1.3.1.7 B 3,00 

1.3.1.1.1 1.3.1.1.2 B 7,00 

1.3.1.2 1.3.1.3 A 5,00 

1.3.1.2 1.3.1.4 A 3,00 

1.3.1.2 1.3.1.5 A 2,00 

1.3.1.2 1.3.1.6 B 5,00 

1.3.1.2 1.3.1.7 B 5,00 

1.3.1.2.1 1.3.1.2.2 A 5,00 

1.3.1.3 1.3.1.4 B 2,00 

1.3.1.3 1.3.1.5 B 4,00 

1.3.1.3 1.3.1.6 B 9,00 

1.3.1.3 1.3.1.7 B 9,00 

1.3.1.4 1.3.1.5 B 2,00 

1.3.1.4 1.3.1.6 B 2,00 

1.3.1.4 1.3.1.7 B 5,00 

1.3.1.5 1.3.1.6 B 2,00 

1.3.1.5 1.3.1.7 B 2,00 

1.3.1.5.1 1.3.1.5.2 A 3,00 

1.3.1.6 1.3.1.7 B 1,00 

1.3.2.1 1.3.2.2 A 9,00 

1.3.2.1 1.3.2.3 A 4,00 

1.3.2.2 1.3.2.3 B 2,00 

1.3.2.3.1 1.3.2.3.2 B 2,00 

1.3.2.3.1 1.3.2.3.3 B 3,00 

1.3.2.3.1 1.3.2.3.4 B 9,00 

1.3.2.3.2 1.3.2.3.3 B 3,00 

1.3.2.3.2 1.3.2.3.4 B 7,00 

1.3.2.3.3 1.3.2.3.4 B 5,00 
 

Resulting comparison matrices are presented below: 
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Expert 4 

Pairwise comparisons made by Expert 4 are depicted below:  

CRITERIA MORE IMPORTANT  
(A OR B) 

INTENSITY 
(SCALE FROM 1 TO 9) 

A B 

0 1 B 6 

0.1 0.2 B 5 

0.1 0.3 A 2 

0.2 0.3 A 8 

0.2.1 0.2.2 B 9 

0.2.1 0.2.3 B 2 

0.2.2 0.2.3 A 9 

0.3.1 0.3.2 B 5 

0.3.1 0.3.3 B 2 

0.3.2 0.3.3 A 5 

1.1 1.2 B 2 

1.1 1.3 A 4 

1.2 1.3 A 8 

1.1.1 1.1.2 B 7 

1.1.2.1 1.1.2.2 A 3 

1.2.1 1.2.2 A 9 

1.2.1.1 1.2.1.2 B 4 
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1.2.1.1 1.2.1.3 A 4 

1.2.1.2 1.2.1.3 A 6 

1.2.2.1 1.2.2.2 A 3 

1.2.2.1.1 1.2.2.1.2 A 2 

1.2.2.1.1 1.2.2.1.3 A 2 

1.2.2.1.2 1.2.2.1.3 A 1 

1.2.2.2.1 1.2.2.2.2 A 1 

1.2.2.2.1. 1.2.2.2.3 A 1 

1.2.2.2.2 1.2.2.2.3 A 1 

1.3.1 1.3.2 B 9 

1.3.1.1 1.3.1.2 A 2 

1.3.1.1 1.3.1.3 A 1 

1.3.1.1 1.3.1.4 B 3 

1.3.1.1 1.3.1.5 A 2 

1.3.1.1 1.3.1.6 B 3 

1.3.1.1 1.3.1.7 B 3 

1.3.1.1.1 1.3.1.1.2 A 1 

1.3.1.2 1.3.1.3 A 1 

1.3.1.2 1.3.1.4 B 3 

1.3.1.2 1.3.1.5 B 5 

1.3.1.2 1.3.1.6 B 3 

1.3.1.2 1.3.1.7 B 3 

1.3.1.2.1 1.3.1.2.2 B 1 

1.3.1.3 1.3.1.4 B 3 

1.3.1.3 1.3.1.5 B 5 

1.3.1.3 1.3.1.6 B 2 

1.3.1.3 1.3.1.7 B 3 

1.3.1.4 1.3.1.5 B 2 

1.3.1.4 1.3.1.6 B 3 

1.3.1.4 1.3.1.7 B 3 

1.3.1.5 1.3.1.6 B 3 

1.3.1.5 1.3.1.7 B 3 

1.3.1.5.1 1.3.1.5.2 A 5 

1.3.1.6 1.3.1.7 A 1 

1.3.2.1 1.3.2.2 A 9 

1.3.2.1 1.3.2.3 A 4 

1.3.2.2 1.3.2.3 B 5 

1.3.2.3.1 1.3.2.3.2 B 2 

1.3.2.3.1 1.3.2.3.3 B 5 

1.3.2.3.1 1.3.2.3.4 B 9 

1.3.2.3.2 1.3.2.3.3 B 2 

1.3.2.3.2 1.3.2.3.4 B 8 

1.3.2.3.3 1.3.2.3.4 B 7 
 

Resulting comparison matrices are presented below: 
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Expert 5 

Pairwise comparisons made by Expert 5 are depicted below:  

CRITERIA MORE IMPORTANT  
(A OR B) 

INTENSITY 
(SCALE FROM 1 TO 9) 

A B 
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0 1 B 1,75 

0.1 0.2 B 5,00 

0.1 0.3 B 9,00 

0.2 0.3 B 3,00 

0.2.1 0.2.2 B 3,00 

0.2.1 0.2.3 B 5,00 

0.2.2 0.2.3 B 1,70 

0.3.1 0.3.2 B 3,00 

0.3.1 0.3.3 B 5,00 

0.3.2 0.3.3 B 1,70 

1.1 1.2 B 5,00 

1.1 1.3 B 3,00 

1.2 1.3 A 2,00 

1.1.1 1.1.2 B 3,00 

1.1.2.1 1.1.2.2 A 4,00 

1.2.1 1.2.2 A 7,00 

1.2.1.1 1.2.1.2 B 3,00 

1.2.1.1 1.2.1.3 B 5,00 

1.2.1.2 1.2.1.3 B 1,70 

1.2.2.1 1.2.2.2 A 7,00 

1.2.2.1.1 1.2.2.1.2 B 3,00 

1.2.2.1.1 1.2.2.1.3 B 5,00 

1.2.2.1.2 1.2.2.1.3 B 1,70 

1.2.2.2.1 1.2.2.2.2 B 3,00 

1.2.2.2.1. 1.2.2.2.3 B 5,00 

1.2.2.2.2 1.2.2.2.3 B 1,70 

1.3.1 1.3.2 B 7,00 

1.3.1.1 1.3.1.2 B 2,00 

1.3.1.1 1.3.1.3 A 4,00 

1.3.1.1 1.3.1.4 A 4,00 

1.3.1.1 1.3.1.5 B 3,00 

1.3.1.1 1.3.1.6 B 2,00 

1.3.1.1 1.3.1.7 B 2,50 

1.3.1.1.1 1.3.1.1.2 A 9,00 

1.3.1.2 1.3.1.3 A 7,00 

1.3.1.2 1.3.1.4 A 5,00 

1.3.1.2 1.3.1.5 A 3,00 

1.3.1.2 1.3.1.6 B 1,40 

1.3.1.2 1.3.1.7 B 1,80 

1.3.1.2.1 1.3.1.2.2 A 9,00 

1.3.1.3 1.3.1.4 B 1,30 

1.3.1.3 1.3.1.5 B 6,00 

1.3.1.3 1.3.1.6 B 7,00 

1.3.1.3 1.3.1.7 B 8,00 

1.3.1.4 1.3.1.5 B 5,00 

1.3.1.4 1.3.1.6 B 5,50 
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1.3.1.4 1.3.1.7 B 7,50 

1.3.1.5 1.3.1.6 B 2,00 

1.3.1.5 1.3.1.7 B 2,00 

1.3.1.5.1 1.3.1.5.2 A 9,00 

1.3.1.6 1.3.1.7 B 3,00 

1.3.2.1 1.3.2.2 A 5,00 

1.3.2.1 1.3.2.3 A 3,00 

1.3.2.2 1.3.2.3 B 2,00 

1.3.2.3.1 1.3.2.3.2 B 3,00 

1.3.2.3.1 1.3.2.3.3 B 4,00 

1.3.2.3.1 1.3.2.3.4 B 9,00 

1.3.2.3.2 1.3.2.3.3 B 3,00 

1.3.2.3.2 1.3.2.3.4 B 5,00 

1.3.2.3.3 1.3.2.3.4 B 4,00 

 
Resulting comparison matrices are presented below: 
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lambda max   3,01 

consistency index (CI)   0,47% 

consistency ratio (CR)   0,80% 
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Summary Statistics  

 
The summary statistics related to the performed AHP study is as follows:  
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Node Description
Arithmetic 

Means

Geometric 

Means Min Median Max

0 Gwas Results 0,382 0,322 0,14 0,33 0,83

1 Biological Facts 0,618 0,543 0,17 0,67 0,86

0.1 Individual SNP 0,088 0,082 0,06 0,07 0,16

0.2 Significant Gene 0,498 0,436 0,19 0,64 0,75

0.2.1 Significant Gene - Via LD 0,084 0,081 0,06 0,07 0,11

0.2.2 Significant Gene - Via Direct 0,636 0,608 0,33 0,66 0,81

0.2.3 Significant Gene - Via Pathway 0,28 0,245 0,12 0,26 0,56

0.3 Significant Pathway Gene 0,408 0,321 0,09 0,28 0,72

0.3.1 Significant Pathway Gene - Via LD 0,094 0,091 0,06 0,11 0,11

0.3.2 Significant Pathway Gene - Via Direct 0,602 0,581 0,33 0,66 0,7

0.3.3 Significant Pathway Gene - Via Pathway 0,304 0,282 0,19 0,26 0,56

1.1 Evolutionary Conservation 0,172 0,145 0,06 0,12 0,31

1.1.1 Vertebrate 0,356 0,277 0,13 0,25 0,9

1.1.2 Mammalian 0,646 0,516 0,1 0,75 0,88

1.1.2.1 Mammalian - Significant Mouse ECR 0,66 0,608 0,25 0,75 0,83

1.1.2.2 Mammalian - Other Mammalian 0,34 0,291 0,17 0,25 0,75

1.2 Gene Association 0,562 0,544 0,32 0,62 0,66

1.2.1 Disease Gene 0,878 0,878 0,83 0,88 0,9

1.2.1.1 Disease Gene - Via LD 0,12 0,108 0,06 0,11 0,23

1.2.1.2 Disease Gene - Via Direct 0,61 0,587 0,33 0,66 0,75

1.2.1.3 Disease Gene - Via Pathway 0,268 0,221 0,08 0,26 0,56

1.2.2 Other Gene 0,126 0,124 0,1 0,13 0,17

1.2.2.1 Other Gene - Other Disease 0,802 0,800 0,75 0,75 0,88

1.2.2.1.1 Other Gene - Other Disease - Via LD 0,164 0,122 0,06 0,11 0,46

1.2.2.1.2 Other Gene - Other Disease - Via Direct 0,518 0,484 0,28 0,63 0,69

1.2.2.1.3 Other Gene - Other Disease - Via Pathway 0,318 0,300 0,23 0,26 0,56

1.2.2.2 Other Gene - Neutral 0,202 0,192 0,13 0,25 0,25

1.2.2.2.1 Other Gene - Neutral - Via LD 0,164 0,122 0,06 0,11 0,46

1.2.2.2.2 Other Gene - Neutral - Via Direct 0,518 0,484 0,28 0,63 0,69

1.2.2.2.3 Other Gene - Neutral - Via Pathway 0,318 0,300 0,23 0,26 0,56

1.3 Genomic Location 0,266 0,210 0,08 0,27 0,56

1.3.1 Non-Coding 0,132 0,130 0,1 0,13 0,17

1.3.1.1 Non-Coding- UTR-3 0,08 0,078 0,05 0,09 0,1

1.3.1.1.1 Non-Coding- UTR-3 - MiRNA Prediction 0,658 0,539 0,13 0,88 0,9

1.3.1.1.2 Non-Coding- UTR-3 - No MiRNA Prediction 0,348 0,237 0,1 0,13 0,88

1.3.1.2 Non-Coding- UTR-5 0,122 0,113 0,06 0,11 0,2

1.3.1.2.1 Non-Coding- UTR-5 - CpG Island 0,762 0,736 0,42 0,83 0,9

1.3.1.2.2 Non-Coding- UTR-5 - No CpG Island 0,238 0,195 0,1 0,17 0,58

1.3.1.3 Non-Coding - Intronic 0,038 0,036 0,03 0,03 0,07

1.3.1.4 Non-Coding - Near Gene 3 0,068 0,060 0,03 0,06 0,13

1.3.1.5 Non-Coding - Near Gene 5 0,14 0,139 0,12 0,15 0,16

1.3.1.5.1 Non-Coding - Near Gene 5 - CpG Island 0,812 0,810 0,75 0,83 0,9

1.3.1.5.2 Non-Coding - Near Gene 5 - No CpG Island 0,188 0,178 0,1 0,17 0,25

1.3.1.6 Non-Coding - Splice3 0,244 0,241 0,19 0,24 0,3

1.3.1.7 Non-Coding - Splice 5 0,304 0,300 0,24 0,3 0,39

1.3.2 Coding 0,874 0,874 0,83 0,88 0,9

1.3.2.1 Coding - Frameshift 0,722 0,719 0,6 0,74 0,8

1.3.2.3 Coding - CDS Non Syn 0,278 0,271 0,2 0,26 0,4

1.3.2.3.1 Coding - CDS Non Syn - Polyphen Benign 0,05 0,050 0,04 0,05 0,06

1.3.2.3.2 Coding - CDS Non Syn - Possibly Damaging 0,118 0,115 0,09 0,12 0,15

1.3.2.3.3 Coding - CDS Non Syn - Probably Damaging 0,23 0,225 0,17 0,22 0,3

1.3.2.3.4 Coding - CDS Non Syn - Completely Determine 0,602 0,598 0,5 0,61 0,69  
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APPENDIX E: MATHEMATICAL AND STATISTICAL 

BACKGROUND FOR SNP - COMPLEX DISEASE 

ASSOCIATION ANALYSIS 

 

Hardy-Weinberg Equilibrium 

Suppose we have a marker with alleles 1,…,k having frequencies p1,…,pk. We may write the 

genotype count for alleles i and j as nij. Due to phase ambiguity, if i ≠ j, we count occurrences of 

allele i on the first chromosome and allele j on the second chromosome, along with occurrences 

of allele j on the first chromosome and allele i on the second chromosome in both the notations nij 

and nji. 

 Thus, we may write the count for allele i as              
 
       . We may also 

express the genotype frequency for allele i occurring homozygously as     
   

 
 and the genotype 

frequency for heterozygous alleles i and j as     
   

 
, where n is the population count. The 

frequency of allele i may be expressed as    
  

  
      

 

 
     

 
       . 

 We wish to check the agreement of pii with pi
2
 and the agreement of pij, where i ≠ j, with 

2pipj. We multiply by two because of how we deal with the phase ambiguity (see above). Thus, 

we will define the Hardy-Weinberg equilibrium coefficient Dii or Dij for alleles i and j such that  

pii = pi
2
 + D ii 

  

pij = 2pipj − 2Dij (for i ≠ j). 
  

(It may be shown that for a bi-allelic marker, D11 = D12 = D22.) 

Call Rate 

The call rate is the fraction of genotypes present and not missing for the given marker: 

          
                                            

                         
 

 

Minor Allele Frequency (MAF) 

The minor allele frequency is the fraction of the total alleles of the given marker that are minor 

alleles:  
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Chi-Squared Test (Pearson) 

This is the most-often used way to obtain a p-value for (the extremeness of) an (unordered) m×n 

contingency table, to know whether to reject the null hypothesis that the proportions in the rows 

and columns of the table differ from the proportions of the margin column totals and the margin 

row totals, respectively as much as they do by chance alone. If the contingency table with 

elements xij has N observations, we make an “expected” contingency table based on the marginal 

totals as     
    

 
. We then obtain a p-value from the fact that  

     
          

 

   
 

approximates a chi-squared distribution with (m − 1)(n − 1) degrees of freedom. 

Fisher’s Exact Test 

The output of this test is the sum of the probabilities of all contingency tables whose marginal 

sums are the same as those of the observed contingency table and which are as extreme or more 

extreme (equally probable or less probable) than the observed contingency table. The probability 

of a 2 × r contingency table with elements xrc and row totals rc and column totals cr and N 

elements is given by  

  
                      

               
 

 

Odds Ratio  

For the purposes of this method‟s description, we define a 2 × 2 contingency table as being 

organized as “(Case/Control) vs. (Yes/No)” demonstrated in the table below.  

 

Yes  No  Total  
    

Case  ycase  ncase  ycase + ncase  
    

Control ycontrol  ncontrol  ycontrol + ncontrol 
    

Total  ycase + ycontrol ncase + ncontrol N  

 The odds ratio is defined as the ratio of the odds for “Case” among the Yes‟s to the odds 

for “Case” among the No‟s, or equivalently the ratio of the odds for “Yes” among the cases to the 

odds for “Yes” among the controls, or equivalently  

   
             

             
 

False Discovery Rate 

When testing multiple hypotheses, there is always the possibility one or more tests have appeared 

significant just by chance. Various techniques have been proposed to adjust the p-values or to 

otherwise correct for multiple testing issues. Among these are the Bonferroni adjustment and the 

False Discovery Rate.  
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 Suppose that m hypotheses are tested, and R of them is rejected (positive results). Of the 

rejected hypotheses, suppose that V of them are really false positive results, that is V is the 

number of type I errors. The False Discovery Rate is defined as       
 

 
              

that is, the expected proportion of false positive findings among all rejected hypotheses times the 

probability of making at least one rejection. 

 Suppose we are rejecting (the null hypothesis) on the basis of the p-values p1,…,pm from 

these m tests, specifically, when a p-value is less than a parameter γ. If we can treat the p-values 

as being independent, then we can estimate Pr(p ≤ γ) as            
           

 
  where R(γ) is 

the number of pi less than or equal to γ, and use this to estimate the False Discovery Rate FDR as  

        
 

         
  

 When this is computed for γ equal to any particular p-value, these expressions simplify 

to            
    

 
 and         

  

    
 

  

 
 where j is the number of p-values less than or 

equal to γ. 
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APPENDIX F: METU-SNP BASED ANALYSIS 

Alzheimer’s Disease 

AHP Scoring Details 
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5-fold Cross Validation Performance of AHP Based List of SNPs  

 

Cross validate train data----------------------------------- 

 

Correctly Classified Instances         228               97.8541 % 

Incorrectly Classified Instances         5                2.1459 % 

Kappa statistic                          0.9569 

Mean absolute error                      0.0215 

Root mean squared error                  0.1465 

Relative absolute error                  4.2979 % 

Root relative squared error             29.3177 % 

Total Number of Instances              233      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 121   0 |   a = control 

   5 107 |   b = case 

 

Train and test --------------------------------------------- 

 

Correctly Classified Instances          28               57.1429 % 

Incorrectly Classified Instances        21               42.8571 % 

Kappa statistic                          0.1517 

Mean absolute error                      0.4302 

Root mean squared error                  0.6499 

Relative absolute error                 86.9175 % 

Root relative squared error            130.6521 % 

Total Number of Instances               49      

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 14 13 |  a = control 

  8 14 |  b = case 

 

5-fold Cross Validation Performance of SPOT Based List of SNPs  

Cross validate train data----------------------------------- 

 

Correctly Classified Instances         229               98.2833 % 

Incorrectly Classified Instances         4                1.7167 % 

Kappa statistic                          0.9656 

Mean absolute error                      0.0172 

Root mean squared error                  0.131  

Relative absolute error                  3.4383 % 

Root relative squared error             26.2225 % 

Total Number of Instances              233      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 121   0 |   a = control 

   4 108 |   b = case 
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Train and test --------------------------------------------- 

 

Correctly Classified Instances          24               48.9796 % 

Incorrectly Classified Instances        25               51.0204 % 

Kappa statistic                         -0.0099 

Mean absolute error                      0.5007 

Root mean squared error                  0.7025 

Relative absolute error                101.1489 % 

Root relative squared error            141.236  % 

Total Number of Instances               49      

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 12 15 |  a = control 

 10 12 |  b = case 
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Rheumatoid Arthritis 

AHP Scoring Details 
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5-fold Cross Validation Performance of AHP Based List of SNPs 
 
Cross validate train data----------------------------------- 

 

Correctly Classified Instances        1162               93.8611 % 

Incorrectly Classified Instances        76                6.1389 % 

Kappa statistic                          0.875  

Mean absolute error                      0.0617 

Root mean squared error                  0.2469 

Relative absolute error                 12.6496 % 

Root relative squared error             50.0004 % 

Total Number of Instances             1238      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 664  52 |   a = control 

  24 498 |   b = case 

 

Train and test --------------------------------------------- 

 

Correctly Classified Instances         324               78.6408 % 

Incorrectly Classified Instances        88               21.3592 % 

Kappa statistic                          0.5637 

Mean absolute error                      0.2146 

Root mean squared error                  0.4592 

Relative absolute error                 43.6164 % 

Root relative squared error             92.5865 % 

Total Number of Instances              412      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 192  40 |   a = control 

  48 132 |   b = case 

 

5-fold Cross Validation Performance of SPOT Based List of SNPs  

Cross validate train data----------------------------------- 

 

Correctly Classified Instances        1155               93.2956 % 

Incorrectly Classified Instances        83                6.7044 % 

Kappa statistic                          0.8636 

Mean absolute error                      0.0661 

Root mean squared error                  0.2533 

Relative absolute error                 13.5493 % 

Root relative squared error             51.2996 % 

Total Number of Instances             1238      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 660  56 |   a = control 

  27 495 |   b = case 
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Train and test --------------------------------------------- 

 

Correctly Classified Instances         321               77.9126 % 

Incorrectly Classified Instances        91               22.0874 % 

Kappa statistic                          0.5486 

Mean absolute error                      0.2188 

Root mean squared error                  0.4638 

Relative absolute error                 44.4693 % 

Root relative squared error             93.5058 % 

Total Number of Instances              412      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 191  41 |   a = control 

  50 130 |   b = case  
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