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ABSTRACT 
 

A CLASSIFICATION ALGORITHM USING MAHALANOBIS DISTANCE 

CLUSTERING OF DATA WITH APPLICATIONS ON BIOMEDICAL DATA 

SETS 

 

Durak, Bahadır 

M.S, Industrial Engineering Department 

Supervisor: Assistant Professor Cem Đyigün 

January 2011, 91 pages 

 

 

The concept of classification is used and examined by the scientific community 

for hundreds of years. In this historical process, different methods and algorithms 

have been developed and used. 

Today, although the classification algorithms in literature use different methods, 

they are acting on a similar basis. This basis is setting the desired data into classes 

by using defined properties, with a different discourse; an effort to establish a 

relationship between known features with unknown result. This study was 

intended to bring a different perspective to this common basis. 

In this study, not only the basic features of data are used, the class of the data is 

also included as a parameter. The aim of this method is also using the information 

in the algorithm that come from a known value. In other words, the class, in which 

the data is included, is evaluated as an input and the data set is transferred to a 

higher dimensional space which is a new working environment. In this new 

environment it is not a classification problem anymore, but a clustering problem. 

Although this logic is similar with Kernel Methods, the methodologies are 

different from the way that how they transform the working space. In the 
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projected new space, the clusters based on calculations performed with the 

Mahalanobis Distance are evaluated in original space with two different heuristics 

which are center-based and KNN-based algorithm. In both heuristics, increase in 

classification success rates achieved by this methodology. For center based 

algorithm, which is more sensitive to new input parameter, up to 8% of 

enhancement is observed.  

 

Keywords: Data Mining, Classification, Clustering, Mahalanobis Distance, 

Kernel Function. 
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ÖZ 
 

BĐOMEDĐKAL VERĐ KÜMELERĐ ÜZERĐNDE MAHALANOBIS UZAKLIĞI 

VERĐ KÜMELENMESĐ ĐLE SINIFLANDIRMA ALGORĐTMASI 

 

Durak, Bahadır 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Assist. Prof. Cem Đyigün 

Ocak 2011, 91 sayfa 

 

 

Sınıflandırma  kavramı bilimsel çevrelerce yüzlerce yıldır kullanılmakta ve 

incelenmektedir.  Bu tarihsel süreç içerisinde farklı yöntemler ve algoritmalar 

geliştirilmiş ve kullanılmıştır.  

Bugün literature geçmiş olan sınıflandırma algoritmaları, farklı yöntemler 

kullanmakta olsalar da benzer bir temel üzerinde hareket etmektedirler. Bu temel, 

tanımlı özellikleri kullanarak, istenen verileri belirlenmiş sınıflarda toplama, farklı 

bir söylemle, tanımlanmış nedenler ile sonuç arasında bir ilişki kurabilme 

çabasıdır. Bu çalışma, bugüne kadar kullanılmakta olan bu temele farklı bir bakış 

açısı getirmeyi amaçlamıştır. 

 Bu çalışmada, verilerin sadece temel özellikleri değil, sınıfları da bir parametre 

olarak kullanılmıştır. Söz konusu yöntemdeki amaç, bilinen bir değerden gelecek 

olan bilgiyi de algoritmada kullanma çabasıdır. Diğer bir ifadeyle, verinin dahil 

olduğu sınıf, bir girdi olarak değerlendirilmiş ve veri kümesi üst bir uzaya transfer 

edilerek yeni bir çalışma ortamı yaratılmıştır. Aynı zamanda bu yeni ortamda artık 

problem bir sınıflandırma problemi değil, kümeleme problemidir. Her ne kadar bu 

mantık Kernel Yöntemini çağrıştırsa da, yöntemin kullanılış biçimi tamamen 

farklıdır. Oluşturulan yeni uzayda Mahalanobis Uzaklığı ile yapılan hesaplamalar 



vii 

 

ve oluşturulan kümeler, orijinal uzayda merkez temelli ve KNN temelli 2 farklı 

sınıflandırma algoritması ile değerlendirilmiştir. Bu yeni yöntem ile her iki 

algoritmada da ulaşılan başarı oranlarında artış yakalanmıştır. Yeni yönteme daha 

duyarlı olan merkez temelli algoritma ile başarı oranındaki artışın %8 seviyelerine 

kadar çıktığı gözlenmiştir. 

 

Anahtar Kelimeler:  Veri Madenciliği, Sınıflandırma, Kümeleme, Mahalanobis, 

Kernel. 
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                                          CHAPTER 1 

                                INTRODUCTION 

 

Various classification approaches try to find a function that estimates the class 

labels from the feature-space in a data set. In these methodologies, named 

“supervised learning”, the features are accepted as input while the class labels are 

accepted as output. On the other hand, in the clustering approaches (unsupervised 

learning) there are no class labels. Instead, they try to create groups according to 

similarities of the data points. In this approach there is no class information and 

only feature space is used in clustering process. 

Both classification and clustering approaches do not use the information from 

class labels as a parameter in the process. This study searches a methodology 

which takes this information into consideration. There are two new heuristics 

developed in which the information from the class is integrated: Center based 

algorithm and KNN based algorithm. 

In center based heuristic, information from the class labels is included to feature 

space in training stage. By this, the dimension of feature space increases by one 

and the problem becomes a clustering problem. There are two important processes 

which are hidden in this methodology. First, data points are mapped to a high 

dimensional space, so that kernel logic is used in this methodology. Second the 

classification problem turns into a clustering problem, such that the original 

problem is transformed into a new clustering problem. 

In KNN based heuristic the class information is included in feature space similar 

with center based heuristic. The difference is the algorithm keeps this information 

as class information, too. There is also kernel logic since the original problem 

mapped to a high dimensional space, but the original problem is still a 

classification problem. 
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This new methodology arises new questions. One of these questions is how to 

weight the information from the class labels, which is a new parameter, to 

produce better classification results. The label information can have equal effect 

or the feature can have higher effect with different weights. In order to find the 

effects of new parameter, a compound distance is generated unifying the distance 

in the feature space and class labels. This approach is explained and studied in this 

thesis. 

Other question is which distance measure should be used as a basis of this new 

distance function. The distance measure may differ in various classification 

problems, the content and the application area mostly determines the selection of 

the distance function used. The data types and the relationships between them 

determine the type of the distance measure. For example, in biomedical data sets 

there are some correlations within the features (variables). In this study the data 

sets are numerical and to take into account the correlations, Mahalanobis 

Distance is chosen. In order to measure the effect of this choice, Euclidean 

distance is also used to compare the results. If the variables are not numeric 

(which is common in biological and biomedical data sets), then a suitable 

distance, i.e. hamming distance, need to be used. 

Another question is how the other parameters affect the classification success rate. 

The effect of number of clusters in center based algorithm and number of 

neighbours in KNN based algorithm are investigated. The effects of these 

parameters are explained and illustrated in the study.    
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                                      CHAPTER 2 

                              GENERAL BACKGROUND 

 

2.1. Data 

Observations (data points) are the objects of data mining. Data points are consist 

of different attributes which are in an order. A data point x with m attributes is an 

m-dimensional vector, x = (x1, x2, ... , xm). N data points xi form a set  

   � = ���, ��, … , �	
 	⊂ 		ℝ�                               (1.1) 

Called the data set. � can be represented by an N × m matrix 

   � = �����		                                                (1.2) 

where  ���  is the ��� component of the data point xi. 

2.2.Data mining 

Generally speaking, data mining is the process of extracting or ‘mining’ implicit 

and relevant information from large sets of data. A more precise definition of the 

term would be “the non trivial extraction of implicit, previously unknown, and 

potentially useful knowledge from large volumes of actual data” (Piateski & 

Frawley, 1991, cited by Lee & Kim, 2002, pp. 42) Data mining is also known by 

several other terms depending on the situation and context, such as knowledge 

mining from data, knowledge extraction, data/pattern analysis, data archaeology, 

and data dredging. The primary aim of data mining is to gather sense, or extract 

predictive information, from large amounts of mostly unsupervised data, in a 

particular domain. The largest group of data mining users is businesses, since 

collecting large amount of data and making sense out of it happens to be one of 

their routine activities. (Cios et. al., 2007, pp. 3-4) 
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2.3.Estimation 

Estimating outputs based on input variables is one of the most important problems 

in empirical research. The meaning of estimation is the calculated approximation 

of a result when there is an uncertainty in finding the output or the inputs are not 

known exactly. In a wide range of engineering areas, estimation techniques are 

used. Aerospace systems, communications, manufacturing and biomedical 

engineering are the areas that estimation techniques are mostly used. The 

estimation of the health of a person’s hearth based on an electrocardiogram (ECG) 

is a specific example of usage in biomedical engineering (Kamen & Su, 1999, pp. 

1).  

2.4.Distances 

There are several techniques used for data mining. Several such techniques, for 

instance nearest neighbor classification methods, cluster analysis, and 

multidimensional scaling methods, are based on the measures of similarity 

between objects. Instead of measuring similarity, dissimilarity between the objects 

too will give the same results. For measuring dissimilarity one of the parameters 

that can be used is distance. This category of measures is also known as 

separability, divergence or discrimination measures. (Hand, Mannila, & Smyth, 

2001, pp. 31) A distance metric is a real-valued function d, such that for any 

points x, y, and z: 

���, �
 ≥ 0 , and  ��, �
 = 0 , if and only if  � = �                    (2.1) 

 ���, �
 = 	���, �
           (2.2) 

 ���, �
 	≤ 	���, �
 + 	���, �
            (2.3) 

 

The first property, positive definiteness, assures that distance is always a non-

negative quantity, so the only way distance can be zero is for the points to be the 

same. The second property indicates the symmetry nature of distance. The third 
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property is the triangle inequality, according to which introducing a third point 

can never shorten the distance between two points. (Larose, 2005, pp. 99) There 

are several measures of distance which satisfy the metric properties, some of 

which are discussed below: 

2.4.1. Euclidean distance 

The Euclidean distance is the most common distance metric used in low 

dimensional data sets. It is also known as the L2 norm. The Euclidean distance is 

the usual manner in which distance is measured in real world. In this sense, 

Manhattan distance tends to be more robust to noisy data. 

�� !"�#�$%��, �
 = 	&∑ ��� − )�
��                              (2.4) 

where x and y are m-dimensional vectors and denoted by  x = (x1, x2, x3... xm) and 

y = (y1, y2, y3... ym)  represent the m attribute values of two records. (Larose, 2005, 

pp. 99) While Euclidean metric is useful in low dimensions, it doesn’t work well 

in high dimensions and for categorical variables. The drawback of Euclidean 

distance is that it ignores the similarity between attributes. Each attribute is treated 

as totally different from all of the attributes. (Ertöz, Steinbach & Kumar, 2003, pp. 

49) 

2.4.2. Manhattan distance 

This metric is also known as the L1 norm or the rectilinear distance. This is also 

a common distance metric and gets its name from the rectangular grid patterns of 

streets in midtown Manhattan. Hence, another name for the distance metric is also 

city block distance. It is defined as the sum of distances travelled along each axis. 

The Manhattan distance looks at the absolute differences between coordinates. In 

some situations, this metric is more preferable to Euclidean distance, because the 

distance along each axis is not squared so a large difference in one dimension will 

not dominate the total distance. (Berry & Linoff, 2009: 363) 

 �*$%�$��$%��, �
 = 	∑ |�� − )�|��,�                                    (2.5) 
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2.4.3.  L∞ norm 

The L∞ norm is the maximum of the absolute differences in any single dimension. 

It is also known as sup norm or the maximum norm. Another name for L∞ norm 

is Chebyshev norm. Chebyshev norm is also called as chessboard distance; 

since it is equal to the number of moves it takes a chess king to occupy any other 

point on the chessboard. This distance metric looks only at the measurement on 

which attributes deviates the most. Chebyshev distances are piecewise linear. In 

fact, like the Manhattan distance, the Chebyshev distance examines the absolute 

magnitude of the element-wise differences between the attributes. (Bock & 

Krischer, 1998, pp. 13) 

�-.	��, �
 = 	max�,�,�,…,�|�� −	)�|                           (2.6) 

2.4.4.  Mahalanobis Distance 

Mahalanobis distance is a well known statistical distance function. Here, a 

measure of variability can be incorporated into the distance metric directly. 

Mahalanobis distance is a distance measure between two points in the space 

defined by two or more correlated variables. That is to say, Mahalanobis distance 

takes the correlations within a data set between the variable into consideration. If 

there are two non-correlated variables, the Mahalanobis distance between the 

points of the variable in a 2D scatter plot is same as Euclidean distance. In 

mathematical terms, the Mahalanobis distance is equal to the Euclidean distance 

when the covariance matrix is the unit matrix. This is exactly the case then if the 

two columns of the standardized data matrix are orthogonal. The Mahalanobis 

distance depends on the covariance matrix of the attribute and adequately 

accounts for the correlations. Here, the covariance matrix is utilized to correct the 

effects of cross-covariance between two components of random variable. (Hill & 

Lewicki, 2006, pp. 164) 
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The Mahalanobis distance is the distance between an observation and the center 

for each group in m-dimensional space defined by m variables and their 

covariance. Thus, a small value of Mahalanobis distance increases the chance of 

an observation to be closer to the group’s center and the more likely it is to be 

assigned to that group. Mahalanobis distance between two samples (x, y) of a 

random variable is defined as (McLachlan, 1999, pp. 21): 

�*$�$"$%23�4��, �
 = 	5	�� − �
6	Σ7��� − �
                    (2.7) 

Here, Σ7� is the inverse of covariance matrix. The Mahalanobis metric is defined 

in independence of the data matrix. Unlike most other distance measures, this 

method is not dependent upon the scale on which the variables are measured. 

Mahalanobis distance is a distance in geometrical sense because the covariance 

matrix and its inverse are positive definite matrices. The metric defined by the 

covariance matrix provides a normalization of the data relative to their spread. 

The Mahalanobis distance or its square can be used to measure how close an 

object is from another, when these objects can be characterized by a series of 

numerical measurements. An important property of the Mahalanobis distance is 

that it is normalized. Thus, it is not necessary to normalize the data, provided 

rounding errors in inverting the covariance matrix are kept under control (Besset, 

2001, pp. 618; Eyob, 2009, pp. 272) 

 

In the case of Σ = Ι, Mahalanobis distance is the same with Euclidean distance: 

�*$�$"$%23�4��, �
 = 	&	�� − �
6	I7��� − �
 = 	&	�� − �
� = �� !"�#�$%��, �
      
(2.8) 

In a data set, usage of Euclidean Distance or Mahalanobis Distance affects the 

expected results. The following example illustrates this idea:    
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Example 2.1:  

A data set in ℝ� with N = 200 data points shown in Figure 2.1. The data was 

simulated from normal distributions  ;	�<�	, =�
 with: 

<� = �0, 0
,						=� = >1 0

0 0.2@ ,     (100 points) 

<� = �3, 0
,						=� = >1 0

0 0.2@,      (100 points) 

 

Figure 2-1 – Generated data and selected points A, B 

 

In Figure 2-1 A and B are the points which selected randomly in the data set. Two 

different distance measures, Euclidean distance and Mahalanobis distance, are 

calculated between these points after normalizing data set. The value of 

dEuclidean(A,B)=1.8211 is slightly greater than the value dMahalanobis(A,B)=1.8197.  
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Example 2.2:  

A data set in ℝ�with N = 200 data points shown in Figure 2-1. The data was 

simulated from normal distributions  ;	�<�	, =�
 with: 

<� = �0, 0
,						=� = >1 0

0 0.2@ ,     (100 points) 

<� = �6, 0
,						=� = >1 0
0 0.2@,      (100 points) 

 

Figure 2-2 – Generated data and selected points C, D 

 

In Figure 2-2 C and D are the points which selected randomly in the data set. 

Same with example 2.1, two different distance measures, Euclidean distance and 

Mahalanobis distance, are calculated between these points after normalizing data 

set. Contrary to example 2.1, the value of dEuclidean(C,D) = 1.9099 is now smaller 

than the value dMahalanobis(C,D) = 7.7996.  
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So, it can be seen from the results of examples 2.1 and 2.2 that: 

�E !"�#�$%�A, B
 > 	�*$�$"$%23�4�A, B
                       (2.9) 

But on the contrary, 

�E !"�#�$%�C, D
 < 	�*$�$"$%23�4�C, D
                      (2.10) 

It illustrates the effect of covariance matrix Σ on the distance. Depending on the 

structure of the data, Σ can produce a shorter distance or longer distance than 

Euclidean Distance.  

2.5. Learning 

The term learning refers acquiring knowledge from a set of data or briefly 

understanding the data. The learning process is executed in a partition of the 

original set which is called training set. Since training sets are finite and the future 

is not certain, the performance of the learning process should be measured. This 

can be done by using test set, another partition of original data set. In the area of 

data mining, learning techniques are classified in two classes: 

2.5.1. Supervised Learning  

This is also known as directed data mining. In supervised learning the variables 

that are under investigation are first separated into two groups: input variables, 

and one output variable or more than one output variables (labels). (Taylor & 

Agah, 2008, pp. 50) Pre-classification is a prerequisite for supervised learning. 

That is to say, the variables in the data set need to be already placed in groups or 

assigned some value or result. (Shmueli et. al., 2008, pp. 11) Supervised learning 

is predictive in nature i.e. data is learnt with an answer. The aim of the data 

mining exercise is to find a relationship between these two types of variables. An 

important requirement for supervised learning is that the values of the output 

variable (label) must be known for a sufficiently large part of the data set. 

(Wübben, 2008, pp. 137) 
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2.5.2. Unsupervised Learning  

Unlike for supervised learning, unsupervised learning does not require the target 

variable to be well defined and that a sufficiently large number of values are 

known. In case of unsupervised learning, the target variable is unknown. (Taylor 

& Agah, 2008, pp. 50) Unsupervised learning occurs when the data is not 

previously classified. Here, the data mining process cannot take value decisions. 

The data mining process can find correlations within data, but cannot make any 

inferences on what the patterns mean. (Shmueli et. al., 2008, pp. 11)  

2.5.3. Supervised Learning vs. Unsupervised Learning 

Supervised learning tries to discover a relationship between the input and the 

output by using a set of data (training data) which contains the knowledge of both 

input and output. This relationship can be used as a function to predict the output 

value when the input variables are known. On the contrary, in unsupervised 

learning there is no output to find this kind of function. Unsupervised learning 

tries to discover how the data are organized, so it is descriptive in nature. It is not 

predictive i.e. the data is learnt without any knowledge of the outcome. Compared 

to supervised learning, unsupervised learning is much more exploratory in nature 

and all variable are treated in the same way i.e. there is no distinction between 

explanatory and dependent variables. (Wübben, 2008, pp. 137) 

Table 2.1. -  Supervised Learning vs. Unsupervised Learning 

Supervised Learning Unsupervised Learning 

• Use training data to find a 

relationship and test it 

with test data 

• Data labels are known 

• Use the relationship 

between the input and the 

output variables of data 

points 

• Predictive in nature 

• No training data, use one 

kind of data to discover the 

organization 

• Data labels are unknown 

• Use the 

similarities/differences 

between the input variables 

of different data points 

• Descriptive in nature 
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2.6. Classification Methods 

One of the most commonly applied data mining methods is classification. It is a 

form of predictive modeling and defines groups within the population. The 

process of classification aims to find a model or function describing and 

distinguishing data classes or concepts. The aim of classification is to use the 

derived function to predict label of data points with unknown class labels. Using 

classification method, one can learn functions or rules that form categories of 

data. (Han & Kamber, 2006, pp. 24) The functions or rules are derived by an 

analysis of a set of data objects with known labels which can be called as training 

data. The process of classification has several applications in varied fields such as 

medicine, credit card portfolio and credit ranking, customer purchase behavior, 

and strategic management. (Li and Shi, 2005, pp. 758) 

For classification task, input data is a collection of observations. Each 

observation, also known as example or instance, is denoted by (x, y), where x is 

the vector of attributes and y is the class label or category of the observation. 

Classification is the process of learning a function f that matches each attribute 

vector x with one of previously defined class labels y. This process is shown 

simply in the Figure 2-3.  

 

Input    Output 

Attribute vector 

(x) 

 

Class Label 

(y) 

 

Figure 2-3 – Classification Process 

The probability of a class membership can be predicted by classification models 

which use the information gathered from input variables. The process of 

 

Classification 

Model 
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classification is done in two steps. First, a model is built which describes a 

previously determined set of data classes or concepts; second, the model is used 

for classification. The first step is known as training phase, where algorithms are 

used to learn models to fit training data. The second step is known as testing phase 

where testing data is used on obtained models to measure learning success by 

predicting class labels of this data set. (Leondes, 2005, pp. 117) From the 

description of the process above, two main goals of the classification process can 

be gleaned: an accurate model, which can be used in the prediction; and an 

explanation of the models itself i.e. a comprehensible explanation for human 

experts. Classification focuses primarily on inclusion or exclusion in small set of 

specific categories. In case of classification in data mining, the focus is less on 

model assumptions and more on the model’s ability to actually predict outcomes. 

The classification methods used in data mining are similar, if not identical, to 

those used for statistical inference. These methods are explained in the following 

sections in an order of increasing complexity. (Cerrito, 2007, pp. 242-243) 

2.6.1. K-nearest neighbor algorithm 

The K-nearest neighbor algorithm (KNN) is one of the basic and common 

classification algorithms. No pre-processing of labeled data samples is needed 

before using this algorithm. A dominated class label in K-nearest neighbors of a 

data point is assigned as class label to that data point. A tie occurs when 

neighborhood has same amount of labels from multiple classes. To break the tie, 

the distances of neighbors can be summed up in each class that is tied and vector f 

is assigned to the class with minimal distance. Or, the class can be chosen with the 

nearest neighbor. Clearly, tie is still possible here, in which case an arbitrary 

assignment is taken.  

The KNN algorithm is very easy to implement. It performs well in practice 

provided that the different attributes or dimensions are normalized, and that the 

attributes are independent of one another and relevant to the prediction task at 

hand. The main drawback of the KNN algorithm is that each of the K-nearest 
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neighbors is equally important. However, it is obvious that the closer a neighbor 

is, the more is the possibility of having the vector f in the class of this neighbor. 

Hence, it is better to assign the neighbors with different voting weights based on 

their distance with the vector f. (Thuraisingham, et. al., 2009, pp. 196) 

           

Figure 2-4- Geometrical representation of k-nearest neighbor algorithm 

2.6.2. Neural Networks 

A neural network, when used for classification, is typically a collection of neuron-

like processing units with weighted connections between the units. Artificial 

neural networks (ANN) are simple computer programs which can automatically 

find relationships in data without any predefined model. ANNs are highly 

parameterized nonlinear statistical models. An ANN transforms a real-valued 

vector in the input space to a real-valued vector in some output space. They can be 

used to predict new characteristics e.g. class membership of points in the input 

space. ANNs first linearly transform the input vector by multiplying it with a 

weight matrix (Weight matrix = [L��] in Figure 2-4). Then, a nonlinear function is 

applied to each coordinate of the resulting vector to produce a value. An 

activation function (g in Figure 2-4) produces the output by comparing this value 

with threshold (t in Figure 2-4). This is an example of a single layer network. A 

multilayer network can be constructed by subsequent application to another 

weight matrix and a nonlinear transformation. Training an ANN involves 

determining the weight matrix that minimizes the prediction error for a set of 



 

15 

 

training data for which there is knowledge of what the output vector should be. 

(Han and Kamber, 2006, pp. 327; Maimon and Rokach, 2005, pp. 488) 

The most common application of neural network is to train it on historical data 

and then use this model to predict the outcome for new combinations of inputs. 

The network possibly extracts a general relationship which holds for all 

combination of inputs. In classification problems, the output will have one of two 

values, representing belongs to the set and does not belong to the set, whereas in 

regression problems the output is a continuous variable. Neural networks do not 

give an exact physical model but learn to represent the relationship in terms of the 

activation functions of the neurons. (Maimon and Rokach, 2005, pp. 488) 

 

 

Figure 2-5 - The basic architecture of the feed forward neural network 

 

2.3.3. Support Vector Machine 

Support Vector Machines (SVMs) are one of the most recent additions to machine 

learning algorithms. Basically, the SVM is binary learning with some highly 

elegant property. They calculate a hyperplane between that separates two different 
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classes in the training set. Each object can be transformed as another point in a 

high-dimensional space. Sometimes it is not possible to separate the points of two 

different classes by a hyperplane in the original space. That is why a 

transformation may be needed. Transformed points may be separated by a 

hyperplane in a high-dimensional space. These kind of transformations may not 

be so easy. In SVM, the kernel is introduced so that computing the hyperplane 

becomes very fast. (Hearst, 1998, pp. 19) 

Support vectors are the data vectors with shortest distance to the separating 

hyperplane. Vectors are simply those data points (for the linearly separable case) 

that are the most difficult to classify and optimally separated from each other. 

That’s why the hyperplane which has maximum margin is the best separator. In a 

support vector machine, the selection of basis function is required to satisfy 

Mercer’s theorem; that is, each basis function is in the form of a positive definite 

inner-product kernel:   

  M��N, �O� = 	P��N
 	 ∙ 	P��O
                                     (2.11) 

Here, xi, xj are input vectors examples i and j, and φ is the vector of hidden-unit 

outputs for inputs xj. The hidden (feature) space is chosen as a high dimensional 

space, since transformation of the problem from a nonlinear separable 

classification to a linear separable classification becomes possible. The above 

condition is also known as the kernel trick. When there are K>2 classes, SVMs 

can be used to build K hyperplanes each separating one class from the union of all 

other classes. Classification of a test data point starts with computing its distance 

to each of the K hyperplanes. The data point is assigned to the class for which this 

distance is maximal. (Zhang et. al., 2005, pp. 62)  

SVM is currently the best of all classification techniques available. SVMs are 

usually considered to be non-parametric models, not because they do not have any 

parameters, but because these parameters are not previously defined and their 

number depends on the training data used.  The only drawback of SVM is the 

complexity of training. The SVM also faces problems due to optimization, but this 
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is solved in a dual formulation which makes its size dependent on the number of 

the support vectors and not on the dimensionality of the input space. This allows 

the use of kernel functions in the linearly separable case without increasing the 

algorithmic complexity of the method. These advantages coupled with the sound 

and well developed theoretical foundations in mathematical optimizations make 

SVM one of the most widely implemented classification methods. (Gallus, et. al. 

2008, pp. 62) 

 

 

• Possible hyperplanes that 

separate data 

The hyperplane that has maximum 

margin is the best separator 

Figure 2-6 - Principle of Support Vector Machine 
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Figure 2-7 - Mathematical Expressions of Support Vector Machine 

2.3.4. Kernel Methods 

 Most of the methods usually consider classification as a linear function of the 

training data or a hyperplane that can be defined by a set of linear equations on the 

training data. However, it is also possible that there exists no hyperplane to 

separate the data. As an alternative, a way to build a nonlinear decision surface 

can also be a solution. An extremely useful generalization that can give nonlinear 

surfaces and improved separation of data are possible. The solution given was by 

means of a Kernel Transformation. The Kernel method is to note that there are 

classes of function Ф that satisfy the special property of a kernel function K 

where,  

M��N, �O� = 	P��N
 	 ∙ 	P��O
                                   (2.11) 

Then everywhere that �N ∙ 	�O occurs, it is replaced by M��N, �O�. It is not necessary 

to compute P��
 explicitly. Only Kernel functions need to be computed. In fact, 

an explicit representation of P is not necessary at all, only K is required. A 

function can be defined as a Kernel function if it satisfies Mercer’s condition. 

(Camps-Valls and Bruzzone, 2009, pp. 66-67) 
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Kernel methods are a popular class of algorithms for data mining forming the 

most successfully applied classes of learning algorithms. These methods are a 

special class of instance-based classifiers that allow an instance-based solution for 

the problem of estimating the best separating hyperplane required to train a 

classifier. Instance-based learning algorithms using kernel algorithms are known 

as kernel methods. Mapping the original data into a beneficial space K by using a 

mapping function ∶ S	 → M is the basic idea of kernel methods. In this new space 

it is possible to discover a linear algorithm to cover nonlinear patterns in original 

space. Kernel methods consist of two parts: a kernel function and a kernel-based 

learning algorithm. The kernel function is a positive definite function on the 

instances which isolates the learning algorithm from the instances. The learning 

algorithm does not need to access any particular aspect of an instance – it relies on 

kernels between instances only. Hence, kernel methods can be applied on any data 

structure by defining a suitable kernel function. (Wrobel et. al., 2005, pp. 76-77) 

 

Figure 2-8- Principle of Kernel Methods 
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2.4. Clustering Methods  

Clustering arises as an algorithmic framework for data mining. It is an important 

task in several data mining applications including document retrieval and image 

segmentation. The word clustering is a kind of decomposition of a set of data 

points into natural groups. In other words, it is process of finding and describing 

cluster i.e. homogenous groups of entities, in data sets. There are two aspects to 

this task: the first involves algorithmic issues on how to find such decompositions 

i.e. tractability, while the second concerns quality assignment, i.e. how good is the 

computer decomposition. Clustering was originally introduced to the data mining 

research as the unsupervised classification of patterns into groups. Clustering 

techniques help us to form groups that are internally dense and that are similar 

with each other. (Rastegar et. al., 2005, pp. 144)  

Clustering needs two basic processes. First one is the creation of a similarity 

matrix or distance matrix. A number of techniques can be used to calculate the 

distance metric such as Euclidean distance or the use of a standard correlation 

coefficient.  

2.4.1. Hierarchical Clustering 

Hierarchical clustering is a methodology to form good clusters in the data set 

using a computationally efficient technique. This type of method allows a user to 

ascertain for a comprehensible solution without having to investigate all possible 

arrangements. Hierarchical clustering algorithms include a consecutive process and 

are a type of unsupervised learning. Algorithms are found to figure out how to 

cluster an unordered set of input data without ever being given any training data 

with the correct answer. As the name implies, the output of a hierarchical 

clustering algorithm is a bunch of fully nested sets. The smallest sets are the 

individual sets while the largest is the whole data set. (Minh, et. al, 2006, pp. 160) 

After hierarchical clustering is completed, the results are usually viewed in a type 

of graph called dendogram, which displays the nodes arranged into their 
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hierarchy. A dendogram not only uses connections to show which items ended up 

in each cluster, it also shows how far apart the items were. Figure 2-9 below 

shows a sample dendogram. From the figure, it is clear that the EF cluster is a lot 

closer to the individual E and F items than the BC cluster is to the individual B 

and C items. Rendering the graph this way can help to determine how similar the 

items within a cluster are, which could be interpreted as the tightness of the 

cluster.  

 

Figure 2-9- Sample Dendogram 

Hierarchical clustering techniques can be classified into the following two types 

(In practice, both approaches often result in similar trees): 

2.4.1.1. Agglomerative Hierarchical Approach 

This approach is bottom-up and consists of clumping. In each step of the 

agglomerative hierarchical approach, a new cluster is formed by merging an 

observation into a previously defined cluster. This process is irreversible; in other 

words, any two items merged into a cluster cannot be separated in any following 

steps. The relationship between the two items joined is defined by a metric such 

as the Euclidean distance. In this process, the clusters grow larger while the 

number of cluster shrinks. If one starts with n clusters i.e. individual items, they 

end with one single cluster containing the entire data set. A clustering tree is 

defined by the path taken to achieve the structure.  Agglomerative techniques 

conduce to give more precision at the bottom of a tree. Agglomerative approach is 

the more preferred choice. As the process of hierarchical method is irreversible, 

an optional approach is to carry a hierarchical procedure followed by a 
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partitioning procedure in which items can be moved from one cluster to another. 

(Pedrycz, 2005, pp. 6) The number of ways of partitioning a set of n items into k 

clusters is given by  

      ;�U, V
 = 	 �W! 	∑ �VY
�−1
W7�Y%W�,�                           (2.12) 

Algorithms that are representative of the agglomerative clustering approach 

include the ones given below. The algorithms differ from each other in terms of 

their definition of the distances between two clusters. The closest clusters or the 

clusters with the smallest distance between them are merged (Seber, 2004, pp. 

359). 

 

Algorithm 2.1 - Agglomerative Hierarchical Approach Algorithm 

Step 0. Begin with the disjoint clustering having level L(0) = 0 and  

sequence number m = 0 

Step 1.  Find the least dissimilar pair of clusters, say pair (r), (s):  

d[(r),(s)] = min d[(i),(j)]               for all pairs i ,j where i ≠ j. 

Step 2.   Update m :=m +1. Merge clusters (r) and (s) into a single 

cluster, Set the level of this clustering to L(m) = d[(r),(s)] 

Step 3.  Update the proximity matrix by deleting the rows and columns 

corresponding to clusters (r) and (s) and adding a row and 

column corresponding to the newly formed cluster.  

Step 4.  If all objects are in one cluster, stop. Else, go to step 1. 
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i. Single Linkage 

This is also known as the nearest neighbor algorithm. Here, the distance 

between the closest pair of data points define the distance between the clusters. 

Pairs consisting of one case from each group are used in the calculation. The first 

cluster is formed by merging the two closest groups. The process continues in this 

manner until there is one group. In some cases, single linkage can lead to chaining 

of observations, where those on the ends of the chain might be very dissimilar. 

For two clusters Z[ and Z\, the minimum distance is give by d(Z[, Z\) = min 

{d(��, ��), for �� in Z[ and �� in Z\}. Here, d(��, ��) is the Euclidean distance or 

some other distance between the vectors �� &  �� (Seber, 2004, pp. 360). 

ii. Complete Linkage  

This is also known as the furthest neighbor algorithm. The process for this 

algorithm is similar to single linkage but the clustering criterion is different. 

Instead of the closet pair, the distance between the groups is the most distant pair 

of observations. The logic behind using this type of similarity criterion is that the 

maximum distance represents the smallest sphere that can enclose all of the 

objects in both clusters. Thus, the closest of these cluster pairs should be grouped 

together. The complete linkage method does not have the chaining problem that 

single linkage has. (Seber, 2004, pp. 361) 

iii. Average Linkage  

This method is also similar to the above two algorithms and the cluster distance is 

the average distance between all pairs. In this method, all pairwise distances 

between observations in each cluster are found and average is taken. This linkage 

method tends to combine clusters with small variances and to produce clusters 

with approximately equal variance. Average distance between Z[ and Z\ is 

calculated by: 

��Z[, Z\
 = 	 �
%]%^ 	∑ ∑ ���N, �O
%^�,�

%]�,�                         (2.13)  
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where U[ and U\ refers to number of data points in Z[ and Z\, respectively. 

(Seber, 2004, pp. 363) 

iv. Centroid Linkage  

In this method, the distance between the centers is the distance between the two 

clusters (the m-dimensional sample mean for those observations that belong to the 

different cluster). Whenever clusters are merged together or an observation is 

added to a cluster, the center is recalculated. Distance between two clusters A and 

B is  

                    d�Z[, Z\
 = 	���[___, �\___
                                            (2.14) 

 Here, �[___, �\___ are the mean vectors for the observation vectors in Z[ and 

observation vectors in Z\ respectively. After the two clusters Z[ and Z\ are 

joined, the center of the new cluster Z[\ is given by the weighted average (Seber, 

2004, pp. 362): 

�[\_____ = 	 %]	`]____	a	%^`^____%]a	%^                                              (2.15) 

v. Wald’s Algorithm  

The distance between two clusters is defined as the incremental sum of the 

squares between the two clusters. To merge clusters, the within-group sum-of-

squares (sum of squared distances between all observations in a cluster and its 

center) is minimized over all partitions obtained by combining two clusters. This 

method produces clusters with about the same number of observations in each 

one. (Seber, 2004, pp. 363) 

2.4.1.2. Divisive Hierarchical Approach  

This approach is top-down and consists of splitting. In the initial phase of this 

approach, all items are in one cluster. At each step, one cluster is divided into two 

clusters. The items cannot be moved to another cluster, after the splitting is done.  
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At the end of this approach, there are n clusters and each cluster contains only one 

data point in it. A clustering tree is defined by the path taken to achieve the 

structure. Divisive approach is the less preferred choice. Several analysts however 

consider divisive method to be superior because: the approach begins with the 

maximum information content; divisions till n clusters of one object are available 

is not needed; also if the number of variables/ characteristics is less than the 

objects, the computation needed is less. In case of large n and moderate m, the 

divisive methods are the only realistic option. Divisive techniques offer more 

precision at the top of a tree; better suited for finding few, large cluster. (Pedrycz, 

2005, pp. 6) 

Divisive algorithms are generally of two classes: monothetic and polythetic. 

Division into two groups is based on presence or absence of an attribute. The 

variable is chosen that maximizes a chi-square statistic or an information statistic. 

In a monothetic approach, the division of a group into two subgroups is based on a 

single variable, whereas, the polythetic approach uses all m variables to make the 

split. If the variables are binary, the monothetic approach can easily be applied. 

With divisive methods, dividing the n objects into two groups is the first step. 

There is 2
n-1

-1 different ways to complete this step, so that it is hard to examine 

every such division even with a large computer. Because of that, most of the early 

techniques were monothetic. However, this method was sensitive to errors in 

recording or coding the variable used for the division so that the outliers can lead 

to progression down a wrong branch of the hierarchy. By contrast, agglomerative 

methods are polythetic by nature as the fusion process is based on all the 

variables. A monothetic system can be made polythetic using iterative relocation 

of all objects at each division. According to many researchers, monothetic 

divisive programs are still the only realistic approach to cluster analysis when n is 

very large and m is moderate. However, monothetic divisive programs are not 

favored in taxonomic studies, as they frequently lead to misclassifications. (Seber, 

2004, pp. 377-378) 
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2.4.2. Center-Based Clustering Algorithms 

Center-based clustering algorithms use the distances between the data points and 

centers of the clusters while forming the clusters. The objective of these 

algorithms is minimizing the total distance between the points and their clusters. 

The best-known and most commonly used center-based clustering algorithm, k-

means algorithm, is explained in the following part. (Iyigun, 2010, pp.4-5) 

2.4.2.1. K-means algorithm 

It is also known as the centroid-based technique. The K-means approach is a 

much faster clustering method that is more suitable for large-scale applications. 

K-means is a partitioning method where there are “K” randomly generated seed 

clusters. Each data points associated with each of the clusters based on similarity 

and the mean of each cluster is generated. K-means is a common clustering 

algorithm. Its purpose is to divide n data points (x1, x2, ...., xn) into K clusters. The 

initial clusters centers (c1, c2, ...., ck) are assigned randomly and are updated by a 

concordant method. The main characteristic of the clustering method is that the 

resulting similarity within a cluster is high but the similarity between different 

clusters is low. (Han and Kamber, 2006, pp. 402) The algorithm works as follows: 

Algorithm 2.2. - K-means clustering algorithm 

Step 0. Initialization: Given Data Set b, Decide the number of clusters K and 

assign values to centers (c1, c2, ...., ck) 

Step 1.   Calculate the distances ���N, cd
 for all i and k. 

Step 2.  Assign every data point to the closest cluster 

Step 3. Re-calculate the distances ���N, cd
 for all i and k. 

Step 4. Re-assign every data point to the closest cluster. If the centers have not 

change stop, otherwise go to Step 3. 
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 K-means is advantageous for clustering large data sets due to its faster running 

time O(KnrD), where K is the number of clusters and n is the total number of 

inputs. (Thuraisingham, et. al., 2009, pp. 159) 

K-means is an iterative clustering algorithm that searches from the best splitting 

of the data into a predetermined number of clusters (k). K random points are 

chosen to be the centers of the k clusters at the first iteration and each instance is 

assigned to the closest cluster centre.  The next step is to recalculate the centers of 

each cluster to be the centroid i.e. mean of the instances belonging to the cluster. 

All instances are reassigned again to the closest cluster center. This step is 

repeated until no more reassigning occurs and the cluster centers are established.  

As with all clustering algorithms, a distance function needs to be chosen to 

measure the closeness of the instances to the cluster centers. Here, also Euclidean 

distance is the most commonly used metric; however, the choice of the function 

depends primarily on the problem being solved. For a given value of the 

parameter k, the k-means algorithm with always find k clusters, regardless of the 

quality of clustering. This makes the choice of parameter k very important. In the 

cases when there is no prior knowledge of k, the algorithm might start with a 

minimum two clusters and then the value of k can increase until a certain limit of 

the distance between the centre of a cluster and instances assigned to it is reached. 

The k-means clustering algorithm is very sensitive to choice of the initial cluster 

centers. Since, the sum of distances from each instance to its respective cluster 

center is minimized, only a local minimum can be found. To attempt to find the 

global minimum, the algorithm might have to be run several times for choosing 

the best clustering. 

There are some points that should be decided carefully for the K-means algorithm. 

First, the reassigned K could not be optimal. Even if K is optimal, because the 

initial K centers are selected randomly, it cannot be ensured that the clustering 

result is optimal. In addition, because K-means is essentially a hill-climbing 

algorithm, it is guaranteed to converge on a local optimum, but there is no 
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guarantee for reaching a global optimum. In other words, the quality of the results 

is sensitive to the choices of the initial centers. (Thuraisingham, et. al., 2009, pp. 

159) 

2.4.2.2.  Fuzzy k-means  

Fuzzy k-means algorithm is the adapted k-means algorithm to soft clustering. The 

algorithm has an objective function to be minimized: 

e =	∑ ∑ f�W�gW,�%�,� ��W�                                         (2.16) 

Where f�W are the probabilities that �N belongs to hi, ��W are the distance between 

data point �N and center of hi and m is the fuzzifier that satisfy the conditions 

below (Iyigun, 2010, pp.4-5): 

∑ ∑ f�W = 1gW,�%�,�                                          (2.17) 

f�W ≥ 0 , for all i and k                                    (2.18) 

j ≥ 1                                                   (2.19) 

The centers of the cluster are calculated by: 

kW =	∑  lmn`lolpq
∑  lmnolpq

    , k = 1, … , K.                              (2.20) 

2.5. Validation 

The meaning of term “Validation” is to test to find if the desired specifications are 

met. The specifications are defined before the validation process. During the 

validation, one controls the data according to these specifications. Cases which 

are not consistent with the specifications are accepted as error. If the model is 

unable to satisfy the expected requirements or the error rate is too high to 

confirmation, one should redesign the model. One of the most common validation 

method, and the validation method used in this study, is k fold cross validation. 

The details of this method are explained in the next section. 
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2.5.1. K fold cross validation 

The cross-validation method is one of the most common complexity regulation 

methods for estimating the empirical out-of-sample error. Ideally, if enough data 

was available, a validation set would be set aside and used for asses the 

performance of the prediction mode. (Principe, et. al., 2010, pp. 36) 

However, as data are often scarce, this is usually not possible. K-fold cross-

validation is adopted when the number of instances is small to finesse the 

problem. K-fold cross validation is actually a powerful and common model 

validation procedure in its own right, regardless of the size of the data set. It is an 

extension of the holdout method in that the data set is split for model training and 

testing. Here, part of the available data is used to fit the model, and a different part 

of the data is used to test it. Ten-fold cross-validation is often used i.e. model is 

divided into 10 parts. Model is then trained on nine-tenths of the data before 

calculating the error rate. Once this is complete, the next tenth of the data is held 

back while the model is continued to be trained on the remaining none-tenths. 

Again the error rate is calculated. This process is repeated until all 10 parts have 

been held out and the resultant model will have been trained and evaluated on ten 

different individual data sets. each case will have been included nine times in the 

overall training process and once in the evaluation process. The mean of the 10 

error rates is then calculated to provide an overall estimate of the error. (Priddy 

and Keller, 2005, pp. 102) 

K-fold cross-validation is a common approach to estimating prediction accuracy. 

K-fold cross-validation means that k is left out off the cross validation. Here, the 

data set which comprises on n instances is randomly partitioned into k disjoint 

subsets. k is typically a small number such as 5 or 10. Each of the k parts have 

equal number of observations if n is exactly divisible by k; otherwise the final 

partition will have less observation than the other k-1 parts. At each of these k 

iterations or fold of cross-validation process, k-1 data subsets are used for 

classifier and remaining subset is used for testing, which becomes the test set. 
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That is to say, a total of k runs is carried out in which each of the k parts in turn is 

used as a test set and the other k-1 parts are used as a training set. (Principe, et. al., 

2010, pp. 36) The process is illustrated in the figure below. 

 

Figure 2-10 -  K-fold Cross Validation Process  

While the k test sets in k-fold cross-validation are disjoint, the learning sets may 

overlap. The use of a testing i.e. validation set is necessary to avoid over-learning 

the training data, especially when no statistical significance test is included in the 

learning algorithm. k-fold cross-validation is a costly way to estimate the true 

predictive accuracy of data mining method: It requires building k different 

models, each using a different part of the training set. Due to the high variance of 

cross-validation results, there is a need for running k-fold cross-validation on the 

same data set many and then averaging the obtained validation accuracy. For k-

fold cross validation, it is always recommended to retain a third fraction of the 

complete data set for testing. In other words, some data needs to be held back so 

that the model can be applied to the data that is not a part of the training or the 

testing process. (Principe, et. al., 2010, pp. 36) 
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2.5.2. Type-I and Type-II Error 

The case that an individual is accepted as free of disease when he has the disease 

is different from the case that the individual accepted that has the disease when he 

is free of disease. Because of this difference two types of incorrect results can be 

concluded: 

Type-I Error 

It is also known as “error of the first kind”. In this case the test gives a positive 

result, when actually the truth is not the same. An example of this would be if a 

test shows that a woman is unproductive when in reality she is not. That is why 

type-I error is accepted as “false positive”. 

Type-II Error 

It is also known as “error of the second kind”. In this case the test gives a 

negative result, when actually there is a positive situation. An example of this 

would be if a test shows that a woman is not pregnant when in reality she is. That 

is why type-II error is accepted as “false negative”.  
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                                     CHAPTER 3 

                                 METHODOLOGY 

 

3.1. Terminology 

Every data point, in m dimensional space, is shown as a vector x which has 

parameters (x1, x2, x3, ... , xm). This m dimensional space is denoted as x-space. 

Similarly every data point has a class or label, shown as yi. This 1 dimensional 

space is denoted as y-space.  

 

Table 3.1 - The meanings of x-space and y-space 

x-space (variables) y-space 

 (labels) 

x11  x12  x13     . . .   x1m 

x21  x22  x23     . . .   x2m 

... 

xn1  xn2  xn3     . . .   xnm 

y1 

y2 

... 

yn 

 

The distances, explained in section 2.1. , are shown as d(x1,x2) in the following 

parts. Here, x1 is the x-space parameters of point 1 and x2 is the x-space 

parameters of point 2. So the distance d(x1,x2) is the x-space distance between 

these two points. Similarly we name the distance d(y1,y2) as the y-space distance 
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between the labels y1 and y2 . As a result, the term distance, in this paper, is used 

as a combination of these two distances: 

b��r, �s
 = d��r, �s
 + u	. d�)�, )�
                                   (3.1) 

u	 ≥ 0                                                          (3.2)  

Here, u is the coefficient of y-space distance. In the case of u = 0 the distance is 

equal to x-space distance. In the case of very large u values the effect of x-space 

distance become negligible. But the other cases the distance is affected by both 

x-space distance and y-space distance. The value of  u changes the weights of 

the effects of x-space distance and y-space distance on the distance function.  

Three types of data set can be observed and expressed as follows: 

• Separable Case: Different classes of data set can be separated easily. At least 

one hyperplane (a line in two dimensions) can separate the data into classes. 

Figure 3-1. is the geometrical representation of the following example which is 

a separable case. 

Example 3.1: A data set in ℝ2with N = 200 data points shown in Figure 3-1. The 

data was simulated from normal distributions ;	�<� 	, =�
 with: 

<� = �0, 0
,						=� = >1 0

0 0.2@ ,     (100 points) 

<� = �8, 0
,						=� = >1 0

0 0.2@,      (100 points) 
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Figure 3-1 - Separable Case 

 

• Half-Separable Case: Different classes of data set can be separated with small 

errors. At least one hyperplane (a line in two dimensions) can separate the data 

with a low misclassification rate. Figure 3-2 is the geometrical representation 

of  the following example which is a half - separable case. 

Example 3.2: A data set in ℝ� with N = 200 data points shown in Figure 3-2. The 

data was simulated from normal distributions  ;	�<�	, =�
 with: 

<� = �0, 0
,						=� = >1 0

0 0.2@ ,     (100 points) 

<� = �4, 0
,						=� = >1 0

0 0.2@,      (100 points) 
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Figure 3-2 – Half - Separable Case 

 

• Not-Separable Case: Different classes of data set cannot be separated. Figure 

3-3 is the geometrical representation of an example of not-separable case. 

Example 3.3: A data set in ℝ�with N = 200 data points shown in Figure 3-3. The 

data was simulated from normal distributions  ;	�<�	, =�
 with: 

 

<� = �0, 0
,						=� = >1 0

0 0.2@ ,     (100 points) 

<� = �1, 0
,						=� = >1 0

0 0.2@,      (100 points) 
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Figure 3-3 – Not-Separable Case 

 

3.2. Effect of α and Geometrical Interpretation 

In kernel methods, the not-separable data can be transformed to separable data by 

mapping the data points into a high-dimensional space. The α value has a similar 

effect. By the value α, a new dimension is included to the x-space, so the point is 

mapped to a high-dimensional space. The difference is that there is no 

transformation in the data values, but addition of a new dimension is in question. 

The Figure 3-4, Figure 3-5 and Figure 3-6 are the figures which are demonstrate 

the geometrical effect of value α. Although in the separable case the effect of α is 

relatively small, in the other two cases it is not the same. α transforms the half-

separable and not-separable data to separable data by using another dimension.  
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u = 0 u > 0 

Figure3-4– Effect of u to example 1 (separable case) 

 

u = 0 u > 0 

Figure 3-5 – Effect of u to example 2 (half-separable case) 
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u = 0 u > 0 

Figure 3-6– Effect of u to example 3 (not-separable case) 

3.3. Center Based Algorithm 

Algorithm 3.1. - Center Based Algorithm 

Step 0. Initialization – Assign # of clusters, α value and normalize data matrix 

Step 1. Define training and test data sets 

Step 2. Learning - Find the clusters and their centers by using training data 

Step 3. Prediction – Assign labels to test data 

Step 4. Compare the predicted labels with real labels and find the error rate 

Step 5. If all partitions of data set are used once as test set go to step 6 

Otherwise change the test set and go to Step 2 

Step 6.  Find the average error rate and stop 

 

Before working with data set, it might have to be normalized in order to avoid any 

parameter to dominate the classification. Number of clusters that will be used in 

training part is important and set in initialization step. Optimum number for 



 

39 

 

clusters changes depend on the structure of data set. Addition to that, as it is 

explained in section 3.2, the value α plays an important role. Choosing α as a very 

small number reduces the effect of labels, and the x-space becomes dominant. On 

the contrary, choosing α as very large number become y-space dominant and x-

space negligible. A suitable value of α is crucial for using the information of both 

x-space and y-space.    

Splitting data set into training and test sets is a part of the methodology. The 

normalized data set split into ten parts. Each of them used as test set once and 

remaining parts are used as training set. So the steps 2,3,4 are repeated 10 times in 

the algorithm. This methodology is called ten-fold-cross-validation, which is 

previously explained in section 2.5.1. 

In the learning part, the aim is forming the clusters and giving labels to each one. 

The methodology in this step is k-means clustering which is previously explained 

in section 2.4.2.1. Firstly, we randomly set values to centers of clusters, according 

to the defined number of clusters. Then, assign each data point to the center which 

is the closest one. In order to find the closest center, the algorithm finds the 

distances to the centers by using equation (3.1) and accepts the smallest one. In 

the case of an equation, it assigns the data point to any of the clusters that have the 

smallest distance. Secondly the centers are updated with the information of its 

new data elements. After that, a reassignment of data points to new centered 

clusters takes place. This cycle ends when no data point changes its cluster in the 

reassignment phase. The last process of the learning part is the assignment of 

labels to the clusters. A cluster is labeled the same value with label of data points 

which it contains mostly.  

The previously determined test data is used in prediction part. Only variables in x-

space are considered and algorithm tries to predict the labels (y-space values) of 

the points. The distances to the cluster centers are found by using x-space 

distance. The label of the closest cluster is assigned the data point as predicted 

value. All data points in the test set are processed in the same way. 
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The original labels and the predicted ones are compared in order to find the error. 

The error is then classified type-I error and type-II error. When all the repetitions 

of cross-validation are completed, the average error, type-I error and type-II error 

rates are calculated. These error rates are then analyzed to interpret the efficiency 

of the algorithm with the determined number of clusters and α value.  

3.4. KNN Based Algorithm 

Algorithm 3.2. - KNN Based Algorithm 

Step 0. Initialization – Assign α value, k value of KNN and normalize data 

matrix 

Step 1. Define training and test data sets 

Step 2. Learning – Assign new label to each data point according to its k nearest 

neighbors 

Step 3. If none of the label is changed go to Step 4. 

            Otherwise go to Step 2.   

Step 4. Prediction – Assign labels to test data according to its k nearest neighbor  

Step 5. Compare the predicted labels with real labels and find the error rate 

Step 6.  If all partitions of data set are used once as test set go to step 7 

Otherwise change the test set and go to Step 2 

Step 7.  Find the average error rate and stop 

 

In the algorithm equation (3.1) and (3.2) are used as distance measure, same with 

center based algorithm. Because of that, the assignment of α has a significant 

effect on the result. Different from the center based algorithm, this algorithm 
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requires the value of k for the number of neighborhood. By this assignment the 

algorithm assigns the label to a data point according to the labels of its k nearest 

neighbors. The structure of the data set may require normalizing operation in 

initializing phase.   

Splitting data set into training and test sets is a part of this methodology, too. 

Similar with center based algorithm, the normalized data set split into ten parts. 

Each of them used as test set once and remaining parts are used as training set. So 

the steps 2, 3, 4 and 5 of the algorithm are repeated 10 times in the algorithm. This 

means that ten-fold-cross-validation is used here which is previously explained in 

section 2.5.1. 

Each data point in data set has an original label. This methodology requires 

assigning a new label to each data point, assigned label. k nearest neighbors of 

each data point are taken into consideration and the dominated label is assigned to 

the data point as assigned label. After completing the process for all the data 

points in the data set, we control the number of data points that change its label. If 

there is no data point that changes its label, algorithm continues with the next step. 

Otherwise algorithm repeats the learning phase until the number of data points 

that change its label drops to zero.  

The prediction phase occurs similar with the learning phase, but executed once. 

All data points in the learning phase gather an assigned label from the assigned 

labels of its k nearest neighbors of training set. The difference between the 

assigned labels and the original labels gives the error rate for current loop of 

cross-validation process. After all loops are completed the average error rate can 

be calculated to evaluate the performance of the algorithm.  
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                                   CHAPTER 4 

                                 APPLICATION 

 

Both algorithms are tested with generated data sets presented in Chapter 3. These 

data sets are generated with MATLAB Version 7.5.0.342 (R2007b) by using the 

source code shown in Appendix–B. All cases, named “separated”, “half-

separated”, “not-separated” are tested with different parameter values, using 

center based heuristic and KNN based heuristic. Below, the figure shows the 

classification success rate of center-based heuristic: 

 

 

Center Based, Euclidean Distance, K = 2 

Separable Case 

 

Center Based, Euclidean Distance, K = 2 

Half-Separable Case 

 

Center Based, Euclidean Distance, K = 2 

Not-Separable Case 

Figure 4-1 Classification Success Rates of Center Based Heuristic with Euclidean 

Distance 
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The  u value is not effective on classification success rate in separable and half-

separable data sets. Appendix-C shows the success rates of both heuristics on the 

data sets for different parameters.  

After testing the algorithms by using generated data sets, both heuristics applied 

to real biomedical data sets taken from University of California, Irvine. These data 

sets contain the observations of different parameters in case of disease or health. 

In addition to becoming real data sets, they have different number of dimensions 

and also different numbers of classes (labels). The properties of these data sets are 

shown in Table 4-1. 

Table 4-1 Properties of biomedical data sets 

Name Number of points Dimensions Labels 

Breast Cancer 699 9 2 

Diabetis 768 8 2 

Hepatitis 155 19 2 

Liver Cancer 345 6 2 

Voting 435 16 2 

Wine 178 13 3 

 

In order to test the algorithms with these data sets, both algorithms executed with 

different parameters. For center-based heuristic 2, 3 and 4 clusters are used with 

an α scale. In this scale, α is increasing by 1 from 0 to 100. For KNN based 

heuristic 3 nearest neighbors is used. In this algorithm 100 different α values are 

also examined incrementing between 0 and 100. These experiments are performed 

on a computer that is Pentium(R) Dual Core CPU with 2.20 GHz, 2GB installed 
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memory(RAM) and 32-bit operating system. The execution times are shown in 

Table 4-2. 

Table 4-2 Execution times with biomedical data sets 

Data Set Time with Center-Based 

Algorithm (seconds) 

Time with KNN-Based 

Algorithm (seconds) 

Breast Cancer 11.22 132.99 

Diabetis 14.20 259.57 

Hepatitis 2.88 13.77 

Liver Cancer 5.30 32.70 

Voting 9.25 90.38 

Wine 3.88 8.94 

 

 

Appendix–C gives the classification success rates of heuristics on these data sets. 
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                                                 CHAPTER 5 

                              DISCUSSIONS AND EVALUATIONS 

 

In Chapter 4, two heuristics are applied on real data sets, there are lots of 

experiments on generated data sets investigating the effects of parameters on 

classification success rates. One of these parameters for center based heuristics is 

the number of clusters, K. Although the success rates are changing according to 

K, there is no pattern to conclude for number of clusters; but the only important 

thing is choosing a cluster number greater than or equal to number of labels in the 

data set. If not, there will be at least one label that is not assigned to any of the 

clusters. It means that all data points which should have this particular label will 

be assigned to another label and it cause incorrect predictions. One of the 

biomedical data set “Wine” is a good example for this issue. 

 

 

Wine Data Set, Mahalanobis Distance 

K = 2 

Wine Data Set, Mahalanobis Distance, 

K = 3 

 

Figure 5-1 Classification Success Rates of Wine Data Set (Center Based Heuristic 

with Mahalanobis Distance) 
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Wine data set contains three labels. When two clusters are used in the algorithm, 

the minimum error is around 34%, because all clusters are labeled with dominated 

data points and at the end there are two labeled clusters. So, one or two labels are 

used for labeling the clusters. It means that at least one label is not assigned to a 

cluster. Any data point which has this label is assigned to one of the other labels, 

causing high classification error rate. On the contrary, when 3 clusters are used in 

the algorithm, all labels can be used for labeling the clusters. It provides an 

opportunity to assign all data points to its real clusters. In this case error is 

reduced to 7% (Figure 5-1). 

Similarly choice of K in KNN based heuristic is also important. If K is an even 

number, it can be difficult to find dominated label in a data point’s neighborhood. 

When K is an even number, the points forced to be assigned arbitrarily in the case 

of tie. For this reason the choice of odd number for K, is a better choice in KNN 

based heuristics and K = 3 is used in this thesis. It is also possible to work with 

bigger odd numbers instead of 3, but since all the neighbors have the same 

importance in the heuristic, bigger K values lead to loose the local structure. This 

would be against the logic of KNN based algorithm.  

Since Mahalanobis distance takes the correlations within a data set between the 

variable into consideration, this distance is used in both of the algorithms. The 

main reason for this choice is the structure of biomedical data sets. Correlations 

within the biomedical data sets make this distance type a better option for 

heuristics. In addition to this, Euclidean distance is also used for testing the 

heuristics in generated data sets. 

The most important part of the algorithm, u value, has a strong effect up to a 

level. The main effect of u is to help the clustering in training phase. It maps the 

different labels to different areas in the new space, so classification becomes easy 

comparing with the original space (Figure 3-6).  Small u values means small 

distances, large u values means large distances between these areas. This is why 

the clustering error reduces while u is increasing. In some value of u, the distance 
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between these areas becomes so large which makes the clustering error zero. After 

that value increasing u has no effect on clustering, since clustering error already 

reaches zero. After that point the cluster centers and cluster labels can easily be 

found without any error. This effect can also be seen on the result diagrams of the 

algorithms. Error rates reduce up to a value and after that value, error rates get 

settled down. (See Appendix-C) 

It is also valid for KNN based heuristics. While u maps different labeled data 

groups to different spaces, it increases the distances between different labeled data 

points. This reduces the probability of including any data points to a 

neighborhood of different labeled data point. When u reaches an optimal value, 

this probability and also training error becomes zero. 

The particular value of alpha that makes the training error zero varies according to 

the structure of data set. If the data set contains separable classes, small alpha 

values may be sufficient, since the training error is already very small without any 

u value. On the contrary, half-separable or not-separable cases need higher 

u	values to decrease the classification error in the training set. 

Dimensions of data set also affect the optimal value of u. The way that u supports 

the training phase is adding a new dimension to data set. Adding a new dimension 

to 2-dimensional data set is more effective than adding a new dimension to        

20-dimensional space. Because in the second case there are many other 

parameters that affect the distance calculation, so this additional dimension should 

have more weight to make the same affect with first case, and this weight is u. 

To sum up, u value decreases the error rate in the testing data but it may take 

different values for different sets. Overall, higher the u value is, better the 

classification success rate is. In six biomedical data sets, the error rates are 

reduced by the help of u up to 8% comparing with the algorithms without u value 

(or u = 0).     
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Table 5-1 Enhancement in Center Based Heuristic by u with biomedical data sets 

Data Set α  = 0 α  = 100 ∆ Error 

Breast Cancer  3,86% 3,83% 0,03% 

Wine  7,02% 6,26% 0,76% 

Voting  13,70% 11,46% 2,24% 

Diabetis  34,50% 31,89% 2,61% 

Hepatitis  48,88% 42,71% 6,17% 

Liver Cancer  41,89% 33,77% 8,12% 

 

Table 5-2 Enhancement in KNN Based Heuristic by u with biomedical data sets 

Data Set α  = 0 α  = 100 ∆ Error 

Breast Cancer 3,92% 3,53% 0,39% 

Wine 5,77% 4,26% 1,51% 

Voting 10,71% 9,77% 0,94% 

Diabetis 26,48% 26,42% 0,06% 

Hepatitis 42,49% 42,31% 0,18% 

Liver Cancer 36,91% 34,73% 2,18% 
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                                                        CHAPTER 6 

                     CONCLUSION AND FURTHER STUDIES 

 

In this study, a new classification approach is examined. Information from class 

labels is combined with information from variables (features) by mapping the 

original space to a high dimensional space. In other words, a new kernel function 

is created by using a distance measure combining the feature space and class 

labels. This measure not only considers the distances between features but also the 

distance between class labels with a predefined weight value, u. This approach is 

implemented to two new heuristics which are tested with generated data sets and 

real biomedical data sets. 

In “center based heuristic”, u value does not affect the classification error rates 

significantly in separable data sets. In contrary, u value affects the results on half-

separable and not-separable cases. Up to 8% of enhancement in classification 

error rate is observed in biomedical data sets with center based heuristics. In 

Breast Cancer data set even with zero value for u, high success classification rate 

is obtained and incremented u value is not improving success rate. In Liver 

Cancer data set with  u = 0 classification success rate equals to 58% which is 

improved up to 66% with high u values. Although Voting data set has high 

classification success rate (86%) when u = 0, it also shows similar behavior with 

high u values. 

Changing distance basis from Euclidean distance to Mahalanobis distance also 

increases the classification success rate, since the features are correlated in the 

biomedical data sets. Mahalanobis Distance considering the correlations, works 

better. On the contrary, for generated data sets, the effect of distance basis 

becomes less important since there is no correlation. Unlike u value and distance 

basis, number of clusters has no significant effect on classification success rates. 

While the classification success rate improves with increasing K (number of 
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clusters) in Hepatitis data set, the classification success rate is affected negatively 

with increasing K in Breast Cancer data set.  

In KNN based heuristic, success rates are relatively high for low u values 

comparing with center based algorithm. But the change with u value is not as high 

as the previous algorithm. Similarly in the separable case, it is hard to say that 

there is an effect of u on classification success rates. For not separable case, an 

improvement in success rate is observed by increasing u value, but it is not as 

effective as center based algorithm. The enhancement is up to 2% in biomedical 

data sets. Because of the data structure, changing distance basis from Euclidean to 

Mahalanobis also affects the results on biomedical data sets. Changing number of 

neighbors, determined by the user in advance, in KNN based heuristic, has no 

significant effect. But it is better to choose an odd number for the number of 

neighbors. 

In this study, a projection approach to a higher space (in training set) using a 

compound distance measure combined feature space and class labels is developed. 

The effect of label information, represented by u value, is investigated in 

classification success rate. Although effect of label information measured with u 

is different for center-based and KNN based heuristic, there is a common 

behaviour in both algorithms. The improvement of the classification success rate 

depends on the complexity of data set. In other words, u affects non-separable sets 

more than separable sets. This common behaviour creates a question that should 

be examined in further studies. Can u value be a measure for separability?  

It is observed that only u value is not enough to define separability, but a function 

of u with some other properties of data set, may produce meaningful results for 

this issue. This study shows that the dimensions of data, or number of variables in 

the data set, are important for effect of	u. In addition to this, algorithm used for 

error calculation is also important for effect of	u. These observations give a clue 

to find a separability measure for future research.  
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APPENDICES 

APPENDIX A  

 Algorithms in MATLAB 

 

Center Based Algorithm  

clear all 

gennum = 500; 

mu = [0 0];  

SIGMA = [1 0; 0 0.2];  

data1 = mvnrnd(mu,SIGMA,gennum); 

unit = ones(gennum,1); 

data1 = [data1 unit]; 

mu2 = [1 0]; 

data2 = mvnrnd(mu2,SIGMA,gennum); 

unit = zeros(gennum,1); 

data2 = [data2 unit]; 

data3 = [data1 ; data2] ; 

  

[B,C] = size(data3);                              %% B==number of CMUPDATE = [];                                    

%% Matrix for CMUPDATE2 = [];                                   %% Matrix for 

TRERROR = []; 

TRAVER = []; 

V = 10;                                           %% Number of parts (Cross validation) 

N = 10;                                           %% Number of repeats  (Cross validation) 

  

%% 1) Variables 

K = 3;                                    %% K==number of clusters  

for alfverr = 1 : 100 

  

alf = alfverr / 10; 
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KONTROLX = alfverr 

  

%% 2) Keep The Labels 

  

data = data3 ; 

for i = 1:B 

LABEL(i,1) = i;           

LABEL(i,2) = data(i,C); 

data(i,C) = 0 ; 

end 

  

%% 3) Find STD Of Attributes 

  

    STD_MAT = std(data); 

     

%% 4) Normalize Matrix 

  

for i= 1:C 

    if STD_MAT(1,i)~= 0                           %% To avoid dividing 0. 

        NORM_DATA(:,i) = data(:,i)/STD_MAT(i) ; 

    else 

        NORM_DATA(:,i) = 0 ; 

    end 

end 

  

%% 5) Repeat Cross Vaidation N Times 

  

for h = 1 : N 

  

%% 6)Divide The Set For Cross Validation 
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    part = round(B / V) ;                         %% Find the number of data in each 

part(Total data / # of parts) 

     for dim = 1 : V                             

         DUM(1,dim) = part ;                      %% Matrix controls the # of data in each 

part. 

     end 

    for k = 1 : B 

    CVM (k,2) = 0 ;                               %% CVM (Cross Validation Matrix), keeps 

the part number that the data belongs to   

        while CVM(k,2) == 0 

           num = round(0.5 + V * rand) ;          %% produce random number between 

0.5 and V + 0.5 round it to a number between 1 and V+1. 

           if DUM (1,num) > 0 & num < (V + 1)     %% Controls the # of data in each 

part and get over the risk of producing V+1. 

              CVM (k,1) = k; 

              CVM (k,2) = num; 

              DUM (1,num) = DUM (1,num) - 1; 

           end 

        end 

    end                                           %% End of producing the parts. 

     

     

%% 7)Cross Validation:  Loop V times, in each loop one of V sets will be test set.     

     

for t = 1 : V 

    r = 1 ; 

    s = 1 ; 

    for z = 1 : B 

        if CVM (z,2) ~= t                          %% In each loop all the parts except t. part 

will form the training set 
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            TRAINING (r,:) = NORM_DATA (z,:) ;     %% TRAINIG matrix 

contains training data without labels.  

            TRAINING2 (r,:) = TRAINING (r,:) ; 

            TRAINING2 (r,C) = LABEL (z,2) ;        %% TRAINIG2 matrix contains 

training data with labels. 

            r = r + 1 ; 

        else                                       %% t. part will be the test set 

            TEST (s,:) = NORM_DATA (z,:) ;         %% TEST matrix contains test 

data without labels. 

            TEST2 (s,:) = TEST (s,:) ;  

            TEST2 (s,C) = LABEL (z,2) ;            %% TEST2 matrix contains test data 

with labels. 

            s = s + 1 ; 

        end 

    end 

    r = r - 1;                                     %% # of data in the training set 

    s = s - 1;                                     %% # of data in the test set 

  

%% 8)Initialine The Centers Of The Clusters      

     

    for u = 1 : K                                  %% Initializing the centers or K clusters 

        CENTERS2(u,:) = TRAINING2 (u,:) ;          %% CENTERS2 matrix 

contains centers of clusters with labels. 

        CENTERS(u,:) = CENTERS2(u,:) ;         

        CENTERS(u,C) = 0 ;                         %% CENTERS matrix contains centers 

of clusters without labels. 

    end 

     

    for v = 1 : r 

        CLUSTER(v,2) = 0 ;                         %% Initialize CLUSTER matrix. 

    end 
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%% 9)Produce The Distance Matrix (Initially Covariance Matrix = I)      

  

    CM = eye (C);                                  %% Initialize Covariance Matrix as I. 

       

    for v = 1 : r                                  %% Find the distances by using initial centers 

and I as Covariance Matrix. 

        for w = 1 : K 

        DISTANCE (v,w) = sqrt(abs((TRAINING(v,:) - 

CENTERS(w,:))*(TRAINING(v,:) - CENTERS(w,:))') + alf * 

abs(TRAINING2(v,C) - CENTERS2(w,C))); 

        end 

    end 

  

    counter = 1 ; 

  

%% 10)Determine The Centers Of Clusters 

  

  

   while counter ~= 0                              %% Loop until the centers of clusters will 

be determined. 

    counter = 0 ; 

    for v = 1 : r                                  %% Assign data to the clusters. 

        [dis,cls] = min (DISTANCE (v,:)) ;         %% Find the closest cluster. 

        CLUSTER (v,1) = v ; 

        if CLUSTER (v,2) ~= cls                    %% Control if the data transfers to 

another cluster or not. 

        CLUSTER (v,2) = cls ;                      %% Assing new cluster number to the 

data. 

        counter = counter + 1 ;                    %% Count the changes. 

        end 
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    end                                            %% End of assignments. 

     

    for w = 1 : K                                  %% Update the centers. 

        for z = 1 : C 

        SUM(1,z) = 0 ; 

        end 

        NUMSUM = 0; 

        for v = 1 : r                              %% Find the new center by taking average of 

the dimensions. 

           if CLUSTER (v,2) == w 

            SUM(1,:) = SUM(1,:) + TRAINING2(v,:) ; 

            NUMSUM = NUMSUM + 1; 

            CMUPDATE(NUMSUM,:) = TRAINING(v,:) ; 

                for m = 1 : (C-1) 

                    CMUPDATE2(NUMSUM,m) = CMUPDATE(NUMSUM,m) ; 

                end 

            end 

        end 

        CENTERS2(w,:) = SUM(1,:) / NUMSUM ;        %% Update the centers. 

        CENTERS2(w,C) = round (CENTERS2(w,C)) ;    %% Find the labels of the 

centers. 

        CENTERS (w,:) = CENTERS2 (w,:) ;            

        CENTERS (w,C) = 0 ;                        %% Unlabeled center matrix for 

calculations. 

         

        for z = 1 : (C - 1) 

            TRAINING3(:,z) = TRAINING2(:,z) ;      %% Unlabeled training matrix 

for distance calculations. 

            CENTERS3(:,z) = CENTERS2(:,z) ;        %% Unlabeled center matrix for 

distance calculations. 
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            TEST3(:,z) = TEST2(:,z) ;              %% Unlabeled test matrix for distance 

calculations. 

        end 

        COVMAT (:,:,w) = cov (CMUPDATE2) ;         %% Update Covariance 

Matrix for each cluster w. 

    end 

     

    for v = 1 : r                                  %% Update DISTANCE matrix. 

        for w = 1 : K 

        DISTANCE (v,w) = sqrt(abs((TRAINING3(v,:) - 

CENTERS3(w,:))*(TRAINING3(v,:) - CENTERS3(w,:))') + alf * 

abs(TRAINING2(v,C) - CENTERS2(w,C))); 

        end 

    end  

   end                                             %% Return line 106 until the centers of clusters 

will be determined. 

   

   cntr = 0; 

   terr = 0; 

   TRERROR(alfverr,t) = 0; 

       

   for v = 2 : r 

   if CLUSTER(v,2) == CLUSTER ((v-1),2) 

   else  

       terr = terr + 1; 

   end 

   end 

   TRERROR(alfverr,t) = terr - K + 1; 

  

%% 11)Test: Predict The Classes 

    



 

62 

 

 for v = 1 : s 

        for w = 1 : K 

        CONTROL (v,w) = sqrt(abs((TEST3(v,:) - CENTERS3(w,:))*(TEST3(v,:) - 

CENTERS3(w,:))')); 

        end 

 end 

  

 for v = 1 : s 

        [dis,cls] = min (CONTROL (v,:)) ;          %% Find the minimum distance. 

        PREDIC (v,1) = v ; 

        PREDIC (v,2) = CENTERS2(cls,C) ;           %% Predict the class according 

to the label of cluster. 

 end 

  

%% 12)Find The Errors For The Current Cross Validation 

  

 error = 0 ; 

 type1 = 0 ; 

 type2 = 0 ; 

  

 for v = 1 : s                                     %% Compare the predictions with the real 

data. 

     if PREDIC (v,2) ~= TEST2 (v,C) 

        error = error + 1;                         %% Add the error if there is a mismatch. 

     end 

     if PREDIC (v,2) > TEST2 (v,C) 

        type1 = type1 + 1;                         %% Add the error if there is an 

overestimation. 

     end 

     if PREDIC (v,2) < TEST2 (v,C) 
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        type2 = type2 + 1;                         %% Add the error if there is an 

underestmation. 

     end 

 end 

  

 PERROR(h,t) = error / s ;                         %% Keep the errors for each run. 

 PTYPE1(h,t) = type1 / s ;                         %% Keep the errors for each run. 

 PTYPE2(h,t) = type2 / s ;                         %% Keep the errors for each run. 

  

end 

   TRAVER(alfverr,2) = 0; 

   TRAVER(alfverr,1) = alfverr; 

   for v = 1 : V 

   TRAVER(alfverr,2) = TRAVER(alfverr,2)+ TRERROR(alfverr,V) ; 

   end 

   TRAVER(alfverr,2) = TRAVER(alfverr,2) / (V * r) ; 

end 

 

%% 13)Find The Average Errors   

  

 Avererror = (sum(PERROR(:)) / V) /N ;              %% Find the averages of the 

errors. 

 Avertype1 = (sum(PTYPE1(:)) / V) /N ;              %% Find the averages of the 

errors. 

 Avertype2 = (sum(PTYPE2(:)) / V) /N ;              %% Find the averages of the 

errors. 

 TOTERROR = [Avererror Avertype1 Avertype2];        %% Result Matrix    

     

 Log(alfverr,:) = [alf ([1 1 1] - TOTERROR)] ; 

end 
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plot(Log(:,1)',Log(:,2)',':dg','MarkerFaceColor','g'); 

hold on ; 

plot(Log(:,1)',Log(:,3)',':*b','MarkerFaceColor','b'); 

plot(Log(:,1)',Log(:,4)',':or','MarkerFaceColor','r'); 

hold off; 
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KNN Based Algorithm: 

%% 0) Initialization 

 clear all; 

gennum = 500; 

mu = [0 0];  

SIGMA = [1 0; 0 0.2];  

data1 = mvnrnd(mu,SIGMA,gennum); 

unit = ones(gennum,1); 

data1 = [data1 unit]; 

mu2 = [8 0]; 

data2 = mvnrnd(mu2,SIGMA,gennum); 

unit = zeros(gennum,1); 

data2 = [data2 unit]; 

data3 = [data1 ; data2] ; 

 [B,C] = size(data3);                              %% B==number of data points & 

C==dimension of data set 

CMUPDATE = [];                                    %% Matrix for Updating Covariance 

Matrix (with labels) 

CMUPDATE2 = [];                                   %% Matrix for Updating Covariance 

Matrix (without labels) 

TRERROR = []; 

TRAVER = []; 

V = 10;                                           %% Number of parts (Cross validation) 

N = 10;                                           %% Number of repeats  (Cross validation) 

%% 1) Variables 

K = 3;                                            %% K==number of clusters (KNN) 

%% alf= coefficient in the distance 

for alfverr = 1 : 100 

 alf = alfverr / 10; 

 %% alf = alfverr ; 
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KONTROLX = alfverr 

%% 2) Keep The Labels 

data = data3 ; 

for i = 1:B 

LABEL(i,1) = i;           

LABEL(i,2) = data(i,C); 

data(i,C) = 0 ; 

end 

%% 3) Find STD Of Attributes 

    STD_MAT = std(data); 

%% 4) Normalize Matrix 

for i= 1:C 

    if STD_MAT(1,i)~= 0                           %% To avoid dividing 0. 

        NORM_DATA(:,i) = data(:,i)/STD_MAT(i) ; 

    else 

        NORM_DATA(:,i) = 0 ; 

    end 

end 

%% 5) Repeat Cross Vaidation N Times 

for h = 1 : N 

%% 6)Divide The Set For Cross Validation   

    part = round(B / V) ;                         %% Find the number of data in each 

part(Total data / # of parts) 

     for dim = 1 : V                             

         DUM(1,dim) = part ;                      %% Matrix controls the # of data in each 

part. 

     end 

    for k = 1 : B 

    CVM (k,2) = 0 ;                               %% CVM (Cross Validation Matrix), keeps 

the part number that the data belongs to   

        while CVM(k,2) == 0 
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           num = round(0.5 + V * rand) ;          %% produce random number between 

0.5 and V + 0.5 round it to a number between 1 and V+1. 

           if DUM (1,num) > 0 & num < (V + 1)     %% Controls the # of data in each 

part and get over the risk of producing V+1. 

              CVM (k,1) = k; 

              CVM (k,2) = num; 

              DUM (1,num) = DUM (1,num) - 1; 

           end 

        end 

    end                                           %% End of producing the parts. 

%% 7)Cross Validation:  Loop V times, in each loop one of V sets will be test set.     

for t = 1 : V 

    r = 1 ; 

    s = 1 ; 

    for z = 1 : B 

        if CVM (z,2) ~= t                          %% In each loop all the parts except t. part 

will form the training set 

            TRAINING (r,:) = NORM_DATA (z,:) ;     %% TRAINIG matrix 

contains training data without labels.  

            TRAINING2 (r,:) = TRAINING (r,:) ; 

            TRAINING2 (r,C) = LABEL (z,2) ;        %% TRAINIG2 matrix contains 

training data with labels. 

            r = r + 1 ; 

        else                                       %% t. part will be the test set 

            TEST (s,:) = NORM_DATA (z,:) ;         %% TEST matrix contains test 

data without labels. 

            TEST2 (s,:) = TEST (s,:) ;  

            TEST2 (s,C) = LABEL (z,2) ;            %% TEST2 matrix contains test data 

with labels. 

            s = s + 1 ; 

        end 
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    end 

    r = r - 1;                                     %% # of data in the training set 

    s = s - 1;                                     %% # of data in the test set 

%% 8)Find the labels according to KNN      

             TRAINKNN2 (:,:) = TRAINING2 (:,:) ; 

             for b = 1 : r 

             for a = 1 : C 

             TRAINKNN (b,a) = TRAINKNN2 (b,a) ;              

             end 

             TRAINKNN (b,C+1) = TRAINKNN2 (b,C) ;  

             end 

             for b = 1 : r 

             for a = 1 : (C - 1) 

             TRAINXS (b,a) = TRAINKNN (b,a); 

             end 

             end          

             for i = 1 : r 

                 for j = 1 : r 

             KNN(i,j) = 0 ; 

                 end 

             end 

   m = 1 ;           

   while m ~= 0  

    i = 0 ; 

    j = 0 ; 

    m = 0 ; 

    COVKNN (:,:) = cov (TRAINXS) ; 

             for i = 1 : r 

                 for j = 1 : r 

 KNN(i,j) = sqrt(abs((TRAINXS(i,:) - TRAINXS(j,:)) *(TRAINXS (i,:) - 

TRAINXS (j,:))') + alf * abs(TRAINKNN(i,C+1) - TRAINKNN(j,C+1))) ; 
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                 end  

             end 

    i = 0 ; 

    j = 0 ; 

    u = 0 ; 

    w = 1 ; 

         for i = 1 : r 

             x = 0 ; 

                 for u = 1 : K   

                     v = 1000000 ; 

                      for j = 1 : r 

                          if i ~= j  

                              if KNN (i,j) >= 0 

                                  if KNN (i,j) < v                               

                                     v = KNN (i,j) ; 

                                     w = j;                               

                                  end 

                              end 

                          end 

                      end 

                      if i ~= w 

                      x = x + TRAINKNN (w,C+1) ; 

                      end 

                      KNN (i,w) = -1 ;                

                 end 

                 x = round (x / K) ; 

                 if TRAINKNN (w,C+1) ~= x 

                     m = m + 1 ; 

                     TRAINKNN (w,C+1) = x ; 

                 end 

         end 
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   end 

%% 11)Test: Predict The Classes 

             TESTKNN2 (:,:) = TEST2 (:,:) ; 

             for a = 1 : C 

             TESTKNN (:,a) = TESTKNN2 (:,a) ; 

             end 

             TESTKNN (:,C+1) = TESTKNN2 (:,C) ;  

             for b = 1 : s 

             for a = 1 : (C - 1) 

             TESTXS (b,a) = TESTKNN(b,a); 

             end 

             end 

             COVKNN (:,:) = cov ([TRAINXS;TESTXS]) ; 

             for i = 1 : s 

                 for j = 1 : r 

                      TKNN(i,j) = sqrt(abs((TESTXS(i,:) - TRAINXS (j,:)) 

*(TESTXS(i,:) - TRAINXS (j,:))')); 

                 end  

             end   

    i = 0 ; 

    j = 0 ; 

    u = 0 ; 

    w = 1 ;     

             for i = 1 : s 

             x = 0 ; 

                 for u = 1 : K  

                     v = 1000000 ; 

                      for j = 1 : r 

                          if TKNN (i,j) >= 0 

                             if TKNN (i,j) < v                               

                                v = TKNN (i,j) ; 
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                                w = j;                               

                             end 

                          end 

                      end 

                      x = x + TRAINKNN (w,C+1) ; 

                      TKNN (i,w) = -1 ;  

                 end 

                 x = round (x / K) ; 

                 TESTKNN (i,C+1) = x ; 

                 end                  

%% 12)Find The Errors For The Current Cross Validation 

  error = 0 ; 

  type1 = 0 ; 

  type2 = 0 ; 

  for v = 1 : s                                     %% Compare the predictions with the real 

data. 

     if TESTKNN (v,C) ~= TESTKNN (v,C+1) 

        error = error + 1;                         %% Add the error if there is a mismatch. 

     end 

     if TESTKNN (v,C) > TESTKNN (v,C+1) 

        type1 = type1 + 1;                         %% Add the error if there is an 

overestimation. 

     end 

     if TESTKNN (v,C) < TESTKNN (v,C+1) 

        type2 = type2 + 1;                         %% Add the error if there is an 

underestmation. 

     end 

  end 

  % Training error 

  terror = 0 ; 

  ttype1 = 0 ; 
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  ttype2 = 0 ; 

  for v = 1 : r                                     %% Compare the predictions with the real 

data. 

     if TRAINKNN (v,C) ~= TRAINKNN (v,C+1) 

        terror = terror + 1;                         %% Add the error if there is a mismatch. 

     end 

     if TRAINKNN (v,C) > TRAINKNN (v,C+1) 

        ttype1 = ttype1 + 1;                         %% Add the error if there is an 

overestimation. 

     end 

     if TRAINKNN (v,C) < TRAINKNN (v,C+1) 

        ttype2 = ttype2 + 1;                         %% Add the error if there is an 

underestmation. 

     end 

  end 

  TPERROR(h,t) = terror / r ;                         %% Keep the errors for each run. 

  TPTYPE1(h,t) = ttype1 / r ;                         %% Keep the errors for each run. 

  TPTYPE2(h,t) = ttype2 / r ;                         %% Keep the errors for each run. 

  % End of training error 

  PERROR(h,t) = error / s ;                         %% Keep the errors for each run. 

  PTYPE1(h,t) = type1 / s ;                         %% Keep the errors for each run. 

  PTYPE2(h,t) = type2 / s ;                         %% Keep the errors for each run. 

end 

end 

%% 13)Find The Average Errors   

  % training error 

 Trainerror = (sum(TPERROR(:)) / V) /N ;              %% Find the averages of the 

errors. 

 Traintype1 = (sum(TPTYPE1(:)) / V) /N ;              %% Find the averages of the 

errors. 
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 Traintype2 = (sum(TPTYPE2(:)) / V) /N ;              %% Find the averages of the 

errors. 

 TTRERROR = [Trainerror Traintype1 Traintype2];       %% Result Matrix    

 TLog(alfverr,:) = [alf TTRERROR] ; 

   % training error          

 Avererror = (sum(PERROR(:)) / V) /N ;              %% Find the averages of the 

errors. 

 Avertype1 = (sum(PTYPE1(:)) / V) /N ;              %% Find the averages of the 

errors. 

 Avertype2 = (sum(PTYPE2(:)) / V) /N ;              %% Find the averages of the 

errors. 

 TOTERROR = [Avererror Avertype1 Avertype2];        %% Result Matrix    

Log(alfverr,:) = [alf ([1 1 1] - TOTERROR)] ; 

   %%Log(alfverr,:) = [alf TOTERROR] ; 

end 

plot(Log(:,1)',Log(:,2)',':dg','MarkerFaceColor','g'); 

hold on ; 

plot(Log(:,1)',Log(:,3)',':*b','MarkerFaceColor','b'); 

plot(Log(:,1)',Log(:,4)',':or','MarkerFaceColor','r'); 

hold off; 
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APPENDIX B  

 Source Code for Data Set Generation 

a. Separated Data: 

clear all 

gennum = 500; 

mu = [0 0];  

SIGMA = [1 0; 0 0.2];  

data1 = mvnrnd(mu,SIGMA,gennum); 

unit = ones(gennum,1); 

data1 = [data1 unit]; 

mu2 = [8 0]; 

data2 = mvnrnd(mu2,SIGMA,gennum); 

unit = zeros(gennum,1); 

data2 = [data2 unit]; 

data3 = [data1 ; data2] ; 

b. Half-Separated Data: 

clear all 

gennum = 500; 

mu = [0 0];  

SIGMA = [1 0; 0 0.2];  

data1 = mvnrnd(mu,SIGMA,gennum); 

unit = ones(gennum,1); 

data1 = [data1 unit]; 

mu2 = [4 0]; 

data2 = mvnrnd(mu2,SIGMA,gennum); 

unit = zeros(gennum,1); 

data2 = [data2 unit]; 

data3 = [data1 ; data2] ; 
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c. Not-Separated Data: 

clear all 

gennum = 500; 

mu = [0 0];  

SIGMA = [1 0; 0 0.2];  

data1 = mvnrnd(mu,SIGMA,gennum); 

unit = ones(gennum,1); 

data1 = [data1 unit]; 

mu2 = [1 0]; 

data2 = mvnrnd(mu2,SIGMA,gennum); 

unit = zeros(gennum,1); 

data2 = [data2 unit]; 

data3 = [data1 ; data2] ; 
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APPENDIX C 

Application in MATLAB 

 

C.1.  Center Based Algorithm 

 
 

Center Based, Euclidean Distance, K = 3 

Separable Case 

 

Center Based, Euclidean Distance, K = 3 

Half-Separable Case 

 

Center Based, Euclidean Distance, K = 3 

Not-Separable Case 

 

Figure C-1 - Success Rate vs. u value, Center Based Algorithm with Euclidean 

Distance 
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Success Rate of Separated, Mahalanobis 

Distance, K = 2 

 

 

Success Rate of  Separated, Mahalanobis 

Distance, K = 3. 

 

 
  

Success Rate of Half - Separated, 

Mahalanobis Distance, K = 2 

 

Success Rate of Half - Separated, 

Mahalanobis Distance, K = 3 

 

 
Success Rate of Not-Separated, Mahalanobis 

Distance, K = 2 

Success Rate of Not-Separated, Mahalanobis 

Distance, K = 3 

 

Figure C-2 - Success Rate vs. u value, Center Based Algorithm with Mahalanobis 

Distance 
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Success Rate of Separated, Euclidean 

Distance, u	 = 10 

 

 

 

Success Rate of Separated, Euclidean 

Distance, u	 = 3 

 

 

 
  

Success Rate of Separated, Euclidean 

Distance, u	 = 1 

 

Success Rate of Separated, Euclidean 

Distance, u	 = 0.1 

 

Figure C-3 - Success Rate vs. Number of Clusters, Center Based Algorithm on 

Separated Data with Euclidean Distance 
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Success Rate of Half-Separated, Euclidean 

Distance, u	 = 10 

 

 

Success Rate of Half-Separated, Euclidean 

Distance, u	 = 3 

 

 
  

Success Rate of Half-Separated, Euclidean 

Distance, u	 = 1 

Success Rate of Half-Separated, Euclidean 

Distance, u	 = 0.1 

 

 

Figure C-4 - Success Rate vs. Number of Clusters, Center Based Algorithm on 

Half-Separated Data with Euclidean Distance 
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Success Rate of Not -Separated, Euclidean 

Distance, u	 = 10 

 

Success Rate of Not -Separated, Euclidean 

Distance, u	 = 3 

 
  

Success Rate of Not -Separated, Euclidean 

Distance, u	 = 1 

Success Rate of Not -Separated, Euclidean 

Distance, u	 = 0.1 

 

Figure C-5 - Success Rate vs. Number of Clusters, Center Based Algorithm on  

Not-Separated Data with Euclidean Distance 
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Success Rate of Separated, Mahalanobis 

Distance, u	 = 10 

 

Success Rate of Separated, Mahalanobis 

Distance, u	 = 3 

 
  

Success Rate of Separated, Mahalanobis 

Distance, u	 = 1 

 

Success Rate of Separated, Mahalanobis 

Distance, u	 = 0.1 

 

 

Figure C-6 - Success Rate vs. Number of Clusters, Center Based Algorithm on  

Separated Data with Mahalanobis Distance 
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Success Rate of Half-Separated, 

Mahalanobis Distance, u	 = 10 

Success Rate of Half-Separated, 

Mahalanobis Distance, u	 = 3 

  

Success Rate of Half-Separated, 

Mahalanobis Distance, u	 = 1 

Success Rate of Half-Separated, 

Mahalanobis Distance, u	 = 0.1 

 

 

Figure C-7 - Success Rate vs. Number of Clusters, Center Based Algorithm on  

Half-Separated Data with Mahalanobis Distance 
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Success Rate of Not-Separated, Mahalanobis 

Distance, u	 = 10 

 

Success Rate of Not-Separated, 

Mahalanobis Distance, u	 = 3 

 
  

Success Rate of Not-Separated, Mahalanobis 

Distance, u	 = 1 

Success Rate of Not-Separated, Mahalanobis 

Distance, u	 = 0.1 

 

Figure C-8 - Success Rate vs. Number of Clusters, Center Based Algorithm on  

Not-Separated Data with Mahalanobis Distance 
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C.2.  KNN Based Algorithm 

  
Success Rate of Separated, Euclidean 

Distance,   K = 3 

 

 

Success Rate of Separated, Mahalanobis 

Distance,  K = 3 

 

  

Success Rate of Half-Separated, Euclidean 

Distance, K = 3 

 

Success Rate of Half-Separated, 

Mahalanobis Distance,  K = 3 

 

Success Rate of Not-Separated, Euclidean 

Distance, K = 3 

 

Success Rate of Not-Separated, 

Mahalanobis Distance,  K = 3 

 

Figure C-9 - Success Rate vs. u Value, KNN Based Algorithm  
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C.3.  Center Based Algorithm Results on Biomedical Data sets 

i. Diabetis: 

 

  
 

Success rate of Diabetis, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success rate of Diabetis, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 
  

Success rate of Diabetis, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success rate of Diabetis, Mahalanobis 

Distance, u = 50 

 

Figure C-10 - Success Rate of Diabetis Data Set, Center Based Algorithm with 

Mahalanobis Distance  
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ii. Hepatitis: 

 

  
 

Success rate of Hepatitis, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success rate of Hepatitis, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 
  

Success rate of Hepatitis, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success rate of Hepatitis, Mahalanobis 

Distance, u = 50 

 

Figure C-11 - Success Rate of Hepatitis Data Set, Center Based Algorithm with 

Mahalanobis Distance  
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iii. Liver Cancer: 

 

  
 

Success Rate of Liver Cancer, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success Rate of Liver Cancer, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 
  

Success Rate of Liver Cancer, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success Rate of Liver Cancer, Mahalanobis 

Distance, u = 50 

 

Figure C-12 - Success Rate of Liver Cancer Data Set, Center Based Algorithm 

with Mahalanobis Distance  
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iv. Voting: 

 

  
 

Success Rate of Voting, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success Rate of Voting, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 
  

Success Rate of Voting, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success Rate of Voting, Mahalanobis 

Distance, u = 50 

 

Figure C-13 - Success Rate of Voting Data Set, Center Based Algorithm with 

Mahalanobis Distance  
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v. Wine: 

 

  
 

Success Rate of Wine, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success Rate of Wine, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 
  

Success Rate of Wine, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success Rate of Wine, Mahalanobis 

Distance, u = 50 

 

Figure C-14 - Success Rate of Wine Data Set, Center Based Algorithm with 

Mahalanobis Distance  
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vi. Breast Cancer: 

 

 
 

Success Rate of Breast Cancer, Mahalanobis 

Distance, K = 2, u	Є	[0	100] 
 

 

 

Success Rate of Breast Cancer, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

  

Success Rate of Breast Cancer, Mahalanobis 

Distance, K = 4, u	Є	[0	100] 
 

Success Rate of Breast Cancer, Mahalanobis 

Distance, u = 50 

 

 

Figure C-15 - Success Rate of Breast Cancer Data Set, Center Based Algorithm 

with Mahalanobis Distance  
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C.4.  KNN Based Algorithm Results on Biomedical Data Sets 

 
Success Rate of Diabetis, Mahalanobis 

Distance, K = 3, u	Є	[0	100]  
 

Success Rate of Hepatitis, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

  

Success Rate of Liver Cancer, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

Success Rate of Voting, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 

  
Success Rate of Wine, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

Success Rate of Breast Cancer, Mahalanobis 

Distance, K = 3, u	Є	[0	100] 
 

 

Figure C-16 - Success Rate of Biomedical Data Sets, KNN Based Algorithm with 

Mahalanobis Distance  


