

REAL-TIME ARBITRARY VIEW RENDERING FROM STEREO VIDEO AND
TIME-OF-FLIGHT CAMERA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUĞRUL KAĞAN ATEŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2010

Approval of the thesis:

REAL-TIME ARBITRARY VIEW RENDERING FROM STEREO VIDEO AND

TIME-OF-FLIGHT CAMERA

submitted by TUĞRUL KAĞAN ATEŞ in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering, Middle East

Technical University by,

Prof. Dr. Canan Özgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen _____________________

Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan _____________________

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members

Prof. Dr. Uğur Halıcı _____________________

Electrical and Electronics Engineering Dept., METU

Prof. Dr. A. Aydın Alatan _____________________

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar _____________________

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Afşar Saranlı _____________________

Electrical and Electronics Engineering Dept., METU

Uğur Topay, M.Sc. _____________________

TÜBİTAK SAGE

 Date: 17.12.2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last name : Tuğrul Kağan Ateş

Signature :

iv

ABSTRACT

REAL-TIME ARBITRARY VIEW RENDERING FROM STEREO VIDEO AND

TIME-OF-FLIGHT CAMERA

Ateş, Tuğrul Kağan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

December 2010, 69 pages

Generating in-between images from multiple views of a scene is a crucial task for both

computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot

navigation are some of many applications which benefit from arbitrary view synthesis, if it

is achieved in real-time. Most modern commodity computer architectures include

programmable processing chips, called Graphics Processing Units (GPU), which are

specialized in rendering computer generated images. These devices excel in achieving high

computation power by processing arrays of data in parallel, which make them ideal for real-

time computer vision applications. This thesis focuses on an arbitrary view rendering

algorithm by using two high resolution color cameras along with a single low resolution

time-of-flight depth camera and matching the programming paradigms of the GPUs to

achieve real-time processing rates. Proposed method is divided into two stages. Depth

estimation through fusion of stereo vision and time-of-flight measurements forms the data

acquisition stage and second stage is intermediate view rendering from 3D representations

of scenes. Ideas presented are examined in a common experimental framework and

practical results attained are put forward. Based on the experimental results, it could be

concluded that it is possible to realize content production and display stages of a free-

viewpoint system in real-time by using only low cost commodity computing devices.

v

Keywords: free viewpoint television, time-of-flight, graphics processing unit, image based

rendering, video plus depth

vi

ÖZ

İKİ GÖRÜNTÜLÜ VİDEO VE UÇUŞ SÜRESİ KAMERASI İLE GERÇEK

ZAMANLI GELİŞİGÜZEL GÖRÜ İMGESİ OLUŞTURULMASI

Ateş, Tuğrul Kağan

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Aralık 2010, 69 sayfa

Bir sahnenin, çoklu görüntülerinden arada kalan görüntülerini oluşturmak, hem bilgisayarla

görü hem de bilgisayar grafiği alanları için önemli bir iştir. Fotogerçekçi imge oluşturma,

3BTV ve robot yön güdümü, gerçek-zamanlı elde ediliyorsa, gelişigüzel görü imgesi

bireşiminden faydalanan birçok uygulamadan bazılarıdır. Tüketicilere yönelik bilgisayar

mimarilerinin çoğunluğu Grafik İşleme Birimi (GPU) adında, bilgisayarla oluşturulmuş

görüntüler oluşturmak için özelleşmiş, programlanabilir yongalar içermektedir. Bu

aygıtların veri dizilimlerini paralel olarak işleyerek yüksek işlem gücü elde etmede üstünlük

sağlamaları, onları gerçek-zamanlı bilgisayarla görü uygulamalarında tercih edilir kılar. Bu

tezin odağında, iki yüksek çözünürlüklü renk kamerası ile bir düşük çözünürlüklü uçuş-

zamanı derinlik kamerası kullanan ve gerçek zamanda işleme hızını elde etmek için

GPUların programlama tarzlarına eşlenik olan bir gelişigüzel görü imgesi oluşturma

algoritması bulunmaktadır. Önerilen yöntem iki safhaya ayrılmaktadır. İkili görü ve uçuş-

zamanı ölçümleri sayesinde derinlik hesaplama ilk safhayı oluşturur ve ikinci safha

sahnelerin 3B gösterimlerinden ara görü imgesi oluşturulmasıdır. Sunulan fikirler ortak bir

deneysel çerçevede incelenmiş ve elde edilen pratik sonuçlar ortaya konmuştur. Deneysel

sonuçlara dayanarak, bir serbest bakış açısı sisteminin içerik üretimi ve görüntüleme

aşamalarının düşük maliyetli hesaplama cihazları ile gerçek zamanda gerçekleştiriminin

mümkün olduğu çıkarımına varılabilir.

vii

Anahtar Kelimeler: serbest bakış açılı televizyon, uçuş zamanı, grafik işlemci birimi, imge

tabanlı çizim, video artı derinlik

To My Beloved Wife

viii

ix

ACKNOWLEDGMENTS

I would like to express my gratitude and deep appreciation to my supervisor Prof. Dr. A.

Aydın Alatan for his guidance, positive suggestions and also for the great research

environment he had provided.

I would like to also express my thanks for their assistance to Sinan Çanga and Ezgi Can

Ozan. Preparation of this thesis became less tedious with their valuable help.

I would like to thank my friends in Video and Audio Processing Group of Space

Technologies Research Institute for such a friendly research environment they had

provided. I have learned much from their experience and suggestions.

Finally, I would like to thank my wife, Emel, for her never ending love and support. This

thesis is dedicated to her.

x

TABLE OF CONTENTS

ABSTRACT ... IV

ÖZ .. VI

ACKNOWLEDGMENTS ... IX

TABLE OF CONTENTS .. X

LIST OF TABLES .. XII

LIST OF FIGURES .. XIII

CHAPTERS ... 1

1. INTRODUCTION ... 1

1.1 Scope .. 3

1.2 Related Work ... 4

1.3 Outline ... 6

2. IMAGE BASED RENDERING .. 8

2.1 Rendering and Approaches .. 8

2.2 Pinhole Camera Model and Inverse Projection Problem 11

2.3 Stereo Correspondence .. 13

2.4 Applications ... 15

3. TIME-OF-FLIGHT CAMERAS.. 17

3.1 Working Principle .. 18

3.2 Challenges .. 19

3.3 Applications ... 21

4. GRAPHICS PROCESSING UNITS .. 22

4.1 Graphics Pipeline ... 23

4.2 Programmable Pipelines .. 26

xi

4.3 Compute Unified Architectures ... 27

5. PROPOSED METHOD ... 29

5.1 Content Format .. 30

5.2 Problem Formulation ... 32

5.3 Depth Estimation ... 34

5.3.1 Time-of-Flight Depth Warping .. 34

5.3.2 Stereo Matching ... 38

5.3.3 Bilateral Filtering ... 39

5.3.4 Depth Cost Fusion .. 40

5.4 Arbitrary View Rendering ... 42

5.4.1 Video Plus Depth Warping .. 42

5.4.2 Post-Processing .. 43

5.5 Implementation with Graphics Processing Units ... 46

6. EXPERIMENTS .. 48

6.1 Experimental Setup .. 48

6.2 Visual Results .. 49

6.3 Performance of the Algorithm ... 52

6.4 Software Benchmark .. 54

7. CONCLUSIONS.. 55

7.1 Summary .. 55

7.2 Discussions .. 56

7.3 Future Work ... 56

REFERENCES .. 58

xii

LIST OF TABLES

TABLES

Table 1 Quality of the view rendering method in PSNR for different stereo setups and noise

levels. .. 53

Table 2 Average signal preservation in PSNR due to depth warping from source view to

target view and backwards. ... 53

xiii

LIST OF FIGURES

FIGURES

Figure 1 (a) A stereoscope illustration from 1882. Modern variants are (b) anaglyphic, (c)

RealD circularly polarized and (d) ASUS LCD shutter glasses (CC, Wikimedia

Commons). .. 2

Figure 2 (a) Conventional television broadcast architectures versus (b) 3DTV architectures.

(c) Arbitrary view rendering architecture presented in this thesis. 4

Figure 3 Model based rendering from scene description. (icosahedron image, CC,

Wikimedia Commons). ... 9

Figure 4 Image based rendering (icoashedron images, CC, Wikimedia Commons). 10

Figure 5 Perspective projection with pinhole camera model. Placing projection plane

behind the pinhole results in flipped reflections. Hypothetical projection plane

produces non-flipped images of scenes. ... 12

Figure 6 Stereo correspondence for a scene point between a pair of views and respective

epipolar lines for each view. ... 13

Figure 7 Several stereo correspondence pairs for two views of the same scene. 14

Figure 8 Plane sweeping for stereo depth estimation. A number of depth values are tested

by projecting image points on the first view to the second view. 15

Figure 9 (a) SwissRanger SR-4000 by MESA Imaging and (b) PMDvision CamCube (CC,

Wikimedia Commons) .. 18

Figure 10 (a) Depth and (b) intensity maps acquired with SwissRanger SR-3000 camera.

Brighter values indicate less depth and more intensity. .. 20

Figure 11 Graphics rendering pipeline. .. 25

Figure 12 Single frame example for multiview video plus depth content format taken from

ballet studio sequence of Zitnick et al. [95]. Each row of the figure shows the color

and depth map of a single viewpoint. ... 31

Figure 13 Triangulation of depth map into a surface mesh. .. 35

Figure 14 Warping result from a 128x96 depth map (middle) to arbitrary left and right

viewpoints with 512x384 pixel resolution. Breakdancers sequence from Zitnick et

al. [95]. .. 36

xiv

Figure 15 Depth map rendering with triangle suppression. ... 36

Figure 16 Depth estimation result for a stereo pair after stereo matching and bilateral

filtering.. 41

Figure 17 Flowchart for depth estimation stage. .. 41

Figure 18 Arbitrary view generation after (a) warp combining and (b) post-processing from

breakdancers sequence from Zitnick et al. [95]. ... 44

Figure 19 Flowchart for view rendering stage. .. 45

Figure 20 Data acquisition setup used in the experiments. .. 48

Figure 21 Several (a) left, (b) time-of-flight and (c) right frame groups. 49

Figure 22 (a) Depth warping without triangle suppression, (b) depth warping with triangle

suppression and (c) depth estimation through fusion of cost functions. 50

Figure 23 Generated intermediate views for (a) (b) capture obtained from data acquisition

setup, (c) ballet studio sequence and (d) breakdancers sequence. 51

Figure 24 Camera alignments used in breakdancers and ballet studio sequences. (a) Behind

the camera and (b) top view. ... 52

Figure 25 Screenshot from the experimental benchmark. ... 54

CHAPTERS

CHAPTER 1

1. INTRODUCTION

3D television (3DTV) is a display system that offers depth cues beyond 2D planar images

to enable perception of 3D vision in multimedia. Free viewpoint television (FTV) is another

system for viewing video with freely adjustable 3D viewpoints to view the content. 3DTV

and FTV together define a new inventory of commodity display technologies aiming

enriched user experience surpassing those of conventional 2D displays [1]. Research on

these devices combines computer vision, computer graphics, multimedia, human-machine

interaction, optics and many other fields.

Arbitrary view rendering is generation of images for virtual cameras by using 3D video

content and it can be accepted as a common task for certain FTV and 3DTV applications.

Design of an arbitrary view rendering algorithm is closely related to content production,

transmission and display needs along with corresponding technologies.

Devices and gadgets that offer 3D perception of planar images are invented as early as

during 19th century [2]. A stereoscope offers depth perception from two close views of a

scene via crossing of the eyes as illustrated in Figure 1a. 3D perception devices evolved

from stereoscope to parallax stereograms and holograms of 20th century [3]. Contemporary

technologies to display 3D moving pictures build upon foundations of these early attempts.

Stereoscopy refers to all 3D perception systems that employ two views of a scene to be

perceived with respective eyes. Anaglyphic stereoscopy provides two views of the scene

content with different colors. Specialized glasses with red-green or red-cyan spectral filters

are used to pass each image into a different eye to stimulate binocular depth. Polarized

stereoscopy solves the color loss problem of anaglyphic methods by filtering through

passive polarizing filter glasses. A display system for polarized 3D requires two different

types of projectors emitting lights at different orientation of oscillations. LCD shutter

stereoscopy is a different color preserving and filter lens driven 3D technology that utilizes

active viewing gadgets. LCD shutter displays emit two views of a scene with an alternating

1

sequence, synchronized to electronic shutter glasses which pass each view to its respective

eye. Gadgets used for stereoscopic systems are shown in Figure 1.

Autostereoscopy refers to stereoscopic display technologies that do not require special gears

for viewing 3D content. Parallax barrier devices achieve this effect by pointed lights at

two eyes to see different views, if the viewer is positioned in a defined spot in front of the

display. Lenticular lenses are specialized lenses that magnify different colors for different

viewing angles. An array of lenticular lenses is used in an autostereoscopic 3DTV which

provides different views of a scene when viewed from different angles.

(a) (b)

(c) (d)

Figure 1 (a) A stereoscope illustration from 1882. Modern variants are (b) anaglyphic, (c)

RealD circularly polarized and (d) ASUS LCD shutter glasses (CC, Wikimedia Commons).

Free viewpoint television (FTV) or freeview television is any television setup which allows

fine control of view angle and position through a remote control. Freeview paradigm adds

an enhancement of user experience by adding interactivity and choice over the presentation

of video content. FTV can be combined with either traditional 2D displays or 3D

technologies discussed here if 3D content is supplied to the device in appropriate formats.

Free viewpoint, inherently, requires rendering of video content for requested arbitrary

views. However, arbitrary view rendering can supplement display technologies even

2

3

without explicit viewpoint controls. Stereoscopic viewing technologies can benefit from

arbitrary view rendering, if head-tracking is employed to estimate the viewing angle and

position of the viewer; thus, interactive experience of 3D, which is similar to

autostereoscopic displays, is achieved. On the other hand, autostereoscopic devices need to

supply many different views of a scene to achieve acceptable results. Current lenticular lens

based televisions on the market render up-to 46 views of video content. A feasible solution

is dynamic generation of in-between views from multiview content captured with a less

number of cameras.

Handhelds device manufacturers made it possible to watch television, movies and other

video content in these smaller devices. Sizes of these devices make arbitrary view

navigation easier than remote controlled display devices. Viewpoint input through fingers

or device orientation [4] to view multimedia content leads to a new human machine

interaction paradigm.

Advances in display technologies are coupled with advances in image capturing and

generation technologies. 3DTV and FTV are made possible with new data acquisition

devices and practices to create the three dimensional content required for novel display

systems. Acquisition devices, which are aimed at obtaining 3D representations, are

presented in Chapter 3, while Chapter 5 discusses different scene representation alternatives

for transmission to 3D display systems. A broad comparison of 3D technologies and

conventional broadcast systems is given in Figure 2.

1.1 Scope

Multimedia imaging for 3D video is an active topic where standards for content production,

transmission and display are still being stabilized. This thesis work focuses on the scenario

for 3D imaging where scenes are captured through a stereo camera pair and a time-of-flight

camera, transmission is applied in compressed multiview video plus depth format and

arbitrary view rendering is employed for 2D free viewpoint controlled display.

Terminology is given in image based rendering context and strong emphasis is given upon

graphics processing units. GPUs and their programming mindset enable high speed

realization of the proposed algorithm. A summary of the scope of the thesis and comparison

to more generic frameworks are given in Figure 2.

Result of this thesis is a novel framework, which combines several methods in the literature

to achieve real-time 3D capture of scenes and their freeview display. Main contribution of

this work is a reinterpretation of these depth estimation and view rendering algorithms to

match rendering paradigms of GPUs. Each component in the framework is presented in

detail with related alternatives in the literature throughout the thesis.

In this thesis, a depth estimation algorithm through fusion of time-of-flight measurements,

stereo matching and bilateral filtering is proposed. Two color images along with their

estimated depth maps are used in the rendering algorithm which utilizes pixel-by-pixel

post-processing filters in order to create a novel intermediate view. Both depth estimation

and view rendering stages are designed to work in real-time with graphical processing

units. Solutions to common problems for time-of-flight depth measurement and arbitrary

view rendering are formulated taking restrictions of GPUs into account.

An experimental benchmark is also developed as a part of the thesis and results are

presented in this work.

4

(a) (b) (c)

Figure 2 (a) Conventional television broadcast architectures versus (b) 3DTV architectures.

(c) Arbitrary view rendering architecture presented in this thesis.

1.2 Related Work

In computer vision terms, McMillan and Bishop [5] regard arbitrary view rendering as the

estimation of the values of the plenoptic function [6] for a certain viewing angle. The

plenoptic function maps viewing parameters, namely viewing angle, scene location and

2D Display

CRT LCD

2D Data Transmission

Luminance Chroma

2D Content Acquisition

2D Cameras 2D
Animations

3D Display

Stereoscopy Eyewear Lenticular
lenses

3D Data Transmission

Multiview 3D models Depth

3D Content Acquisition

Range
scanners

Depth
estimation

3D
animations

2D Display

Arbitrary view
rendering FTV

3D Data Transmission

3D Content Acquisition

Stereo camera
pair

Time-of-flight
camera

Video plus
depthStereo

5

time, to the amount of light intensity that can be seen. Their plenoptic modeling approach

achieves generation of arbitrary views from projections of interpolation of plenoptic

function observations.

Levoy and Hanrahan [7] decomposes source or target views into light fields that produce

colors. Light field rendering creates intermediate images for aligned views from a database

of color observations of image regions grouped by the orientation of the light rays with

respect to camera axes.

Yang et al. [8,9] generalizes the plane sweep algorithm for stereo disparity estimation to

multiview case, provides an extension to estimate scene views and offers novelties for

optimal utilization of graphics processing units for solving the freeview rendering problem.

Weaknesses of their algorithm at discontinuities are solved by approximative occlusion

handling [10].

Full extraction of 3D information from multiview images is offered in works of Yaguchi

[11] and Ito [12] where volumetric methods are employed to form model based

representations of scenes from correspondences between images, which are required for the

camera calibration problem presented in Chapter 2. Arbitrary views are generated by

rendering obtained models in 3D.

Research in free viewpoint television has led to multiview video plus depth, a content

format presented by Smolic et al. [13]. Arbitrary view rendering is accomplished by

warping color plus depth data from source views to target views.

Jung and Koch [14] offers ray casting on volumetric data to render in between views for

full parallax displays of autostereoscopic televisions. Graphics processing units are utilized

to accelerate generation of huge amounts of data required for proper operation of these

displays.

In computer graphics field, view dependent texture mapping, image based modeling and

virtual reality are some of many problems which require generation of arbitrary views using

several photographs of the scene. These problems are solved under image based rendering

context.

6

Szeliski [15] provides an image mosaicing algorithm for registration and resampling of

views and Kanade et al. [16] employs multi baseline stereo algorithm for generation of

arbitrary depth and color views, both providing discussions on virtual reality applications.

Debevec et al. [17,18] tries to combine traditional model based approaches with image

based algorithms for realistic graphics rendering and presents projective texture mapping

algorithm for view dependent mapping of scene textures. Buehler et al. [19] builds a

common framework for view dependent texture mapping algorithms through unstructured

lumigraph rendering algorithm.

Robotics is a field where generation of depth or color maps for arbitrary views other than

mounted camera orientations is utilized. Uyttendaele et al. [20] offers arbitrary view

rendering for virtual exploration of real world environments with the help of camera

mounted mobile robots. Tanaka et al. [21] applies view rendering to obtain 3D navigation

models from images captured with a mobile robot.

Research incorporating computer vision algorithms and time-of-flight cameras are vast.

3D4YOU is a single and highly related EU funded ongoing project for establishing 3DTV

techniques utilizing ToF sensors and high resolution cameras. Scope of this project spans

from content acquisition and transmission to 3D displays [22].

1.3 Outline

This thesis is organized into seven chapters, four of which focus on a single important

subject of the overall work. These chapters are followed by experimental and conclusive

discussions.

Image based rendering, presented in Chapter 2, is a catalogue of algorithms dealing with

creating novel views of scenes from their image based representations, such as taken

photographs. It is a highly active topic with common grounds in computer vision and

computer graphics and is presented in detail for accurate description of rendering methods

employed in this thesis. Methods to infer 3D scene information from their 2D projections

are given in image based rendering framework. Inverse projection within pinhole camera

model, the core problem occurring in arbitrary view rendering is explained and solutions

proposed in literature are given in stereo correspondence context. Afterwards, applications

that use image based rendering are discussed.

7

Time-of-flight cameras, presented in Chapter 3, are relatively new, low spatial resolution

range sensors capturing planar depth information of scenes at real-time rates. In this thesis,

they are used to obtain supplementary depth cues for 3D modeling of scenes, prior to

arbitrary view rendering. Working principles of ToF range sensors are explained and their

drawbacks are exposed with respective proposed solutions.

Graphics processing units, presented in Chapter 4, are highly parallel microprocessor chips

specialized for digital computer graphics rendering. Ever-increasing throughput rates of

commodity GPUs and their flexibility for adapting new paradigms via stream programming

capabilities make them the ideal choice for 3D content production and display stages

presented in this thesis. Design principles of GPUs are explained to achieve understanding

of the rendering process and discussions on GPU programming are given.

Central discussion on the proposed method of this thesis is explained in Chapter 5, on

foundations of prior chapters. Depth estimation through stereo correspondence is discussed

and methods to fuse time-of-flight depth information are presented. After content

production via depth estimation, rendering from video plus estimated depth data for 3D

display is elaborated.

Chapter 6 provides a presentation of the experimental framework developed as part of this

thesis work and puts forward experimental results obtained.

Finally, Chapter 7 begins with a summary of the thesis and interpretations of obtained

results are given afterwards. The thesis ends with a discussion on possible future extensions

to this work.

8

CHAPTER 2

2. IMAGE BASED RENDERING

Realistic rendering is a commonly sought task under computer graphics and computer

vision fields when digitized representations of artificial scenes are required. Realistic

rendering is achievable with a realistic description of the scene with added details and

complex modeling of illumination.

Image based rendering is a category of algorithms that perform modeling and rendering

using image descriptions of the scene. These images, commonly in the form of photographs

or video streams, provide content for scene description, which becomes complex enough to

enable realism yet too compact to be used with little further processing.

This chapter introduces image based rendering, the backbone of the ideas presented in this

thesis. The first section elaborates on the topic and gives comparison to other rendering

methods. The second section models the mechanics between scenes and their photographic

representations and introduces the inverse projection problem whereas the third section

extends this discussion to stereo imaging case. Finally, the fourth section discusses

applications in which image based rendering becomes useful.

2.1 Rendering and Approaches

In computer graphics, the term rendering denotes the process of creating digital images

with computers, using the description of a scene, artificial or real-world. Rendering process

is traditionally accepted as the final step in any computer graphics application following the

production of the scene description.

Digital images created by digital rendering can have a variety of forms. In this work, digital

rendering approaches which produce artificially realistic images from 3D scenes are

considered.

Scene description consists of the geometry of objects in the scene, their material and texture

properties, lighting sources, global shading details and eye geometry of the viewer.

Computer representations of these descriptions differ from application to application.

Differences in different approaches become eminent when comparing methods for

representing objects in the scene. Object surfaces or volumes can be represented with

meshes, equations, normal vectors, gradients, color projections and so on. Each approach

excels in a different setting of production and rendering task. For some applications, it may

be natural to choose one representation over another, because content to be rendered is

already available in the corresponding format, e.g. volumetric rendering for computed

tomography (CT) or magnetic resonance imaging (MRI) data [23,24]. On the other hand,

some applications may utilize certain approaches to suit the needs of rendering stage, such

as user interactivity and animation [25]. A general framework for rendering from model

based scene descriptions is given in Figure 3.

Objects
• Geometry
• Material
• Texture

9

Figure 3 Model based rendering from scene description. (icosahedron image, CC,

Wikimedia Commons).

For real-time computer graphics, conventional approach to scene representation has been

modeling the surfaces of scene objects with geometric primitives, such as triangles or

quadrilaterals [26,27]. Rendering begins with transforming object representations in 3D

surface meshes to view coordinates and then to 2D projection coordinates. After objects or

portions of objects that fall outside the viewing volume are culled, remaining geometry is

Lighting
• Ambient
• Specular
• Fog

View
Geometry

Rendering

Digital Image

divided into block fragments on which coloring is applied. Finally, these fragments are

placed onto the target image. This rendering pipeline is commonly used by most, if not all,

of the real-time computer graphics applications [28]. Primary reason for this choice is the

availability of mature hardware support in terms of graphical processing chips called

graphics processing units. These chips are standard components of all commodity

computers on the market today. Since utilization of these chips for rendering purposes is

one of the primary focuses of this thesis, detailed discussion on the topic is presented in

Chapter 4.

By definition, rendering a three dimensional scene into a digital image requires three

dimensional geometry representation of the scene. Scene descriptions with 3D models have

this information inherently in terms of 3D geometric constructs, such as surface equations

and meshes. However, 3D information is also inherent to the photographs or 2D projected

representations of scenes and extracting or estimating this information has been one of the

main problems of photogrammetry and computer vision fields [5]. Thus, still images can

provide the necessary information for describing three dimensional scenes for rendering

into digital images. Image based rendering (IBR) methods are those that utilize 2D

photographic representations of scenes to render them.

Images

View
Geometry

Rendering

Digital Image

Figure 4 Image based rendering (icoashedron images, CC, Wikimedia Commons).

Image based rendering algorithms perform rendering of digital images from a collection of

scene images. Target digital image can be defined as the estimation of the artificial image

10

11

to be captured if a camera is positioned at a certain view location and orientation. Thus,

IBR provides a solution to arbitrary view generation problem. Figure 4 illustrates image

based rendering.

2.2 Pinhole Camera Model and Inverse Projection Problem

One common property of different image based rendering methods is the generation of the

final image by reverse mapping of every target pixel to each of the source images supplied

to the system. Reverse mapping process is explained by the pinhole camera model.

Pinhole camera model defines the relation between 3D scene coordinates and their 2D

projected correspondences. It is an ideal approximation model where camera aperture is

assumed to be dimensionless, distortions caused by the actual physical lenses that perform

real world projections are omitted and projection plane is parallel to aperture plane.

Projections are usually regarded in front of the camera to work with aligned images as

shown in Figure 5. The pinhole camera model is defined by (1) and (2) in a homogeneous

right-handed coordinate system. In a homogeneous coordinate system, scalar multiples of a

single vector represent the same point and in these equations, scalar equality is denoted

with triple bars.

 ൌ ܲࡱࡵ

ݑ
ݒ

Ԣݖ/1
1

 ؠ ൦

௫ߙ 0 െߤ௨ 0
0 ௬ߙ െߤ௩ 0
0
0

0
0

0 1
െ1 0

൪ ቂ ࡾ ࢀ
0 0 0 1ቃ

ݔ
ݕ
ݖ
1

(1)

(2)

In (1) and (2), P denotes the 3D object coordinate of any point on the scene and p denotes

the projected point on 2D target image coordinates, ݑ and ࡱ .ݒ represents the 4×4 matrix

for extrinsic camera transformation which is composed of 3×3 camera orientation matrix ࡾ

and 3×1 camera translation vector ࢀ . This matrix transforms scene points to camera

coordinates so that the origin is located at the center of the imaginary pinhole where all rays

are collected. Coordinate axes match those of principal camera directions in ࡵ .ࡱ represents

the 4×4 matrix for intrinsic camera transformation, in which ࢻ combines focal length (݂)

and pixel scale in a single vector and ࣆ represents the principal point on image coordinates.

This matrix performs perspective transformation of 3D coordinates in camera space to 2D

projected points on image space.

Any scene point, if its 3D coordinates are known, can be projected to any source or target

image with known camera matrices. Thus, pixels can be related in between different

images.

12

f

Figure 5 Perspective projection with pinhole camera model. Placing projection plane

behind the pinhole results in flipped reflections. Hypothetical projection plane produces

non-flipped images of scenes.

f

Calculating camera models for image sources is not a humane task. Extrinsic matrices

cannot be predicted accurately, even if intrinsic camera parameters are provided by the

actual hardware, unless actual images taken by the cameras are used. Deduction of camera

parameters from image sets is called the calibration problem. If some image coordinates

from sets of images are accurately known, i.e. some pixels among images can be matched,

unknown camera parameters can be estimated with linear regression [29]. Solutions can be

refined by iterative approximation or coordinate filtering [30]. Source coordinates can be

obtained by the help of a simple pattern with certain easy-to-extract features, e.g. a

checkerboard.

Time-of-flight sensors provide low resolution intensity maps, which makes calibration with

other cameras possible. However, methods [31,32,33] exist that utilize depth information

obtained from these cameras to obtain more accurate calibration results.

Analyzing pinhole camera model helps understand difficulties in most computer vision

problems. It is clear from (2) that the reverse transformation requires the explicit

knowledge of depth value z’. In other words, the 3D image coordinate at which a pixel is to

be rendered does not have a unique 3D representation in scene space. Instead, we have an

infinite number of candidate coordinates along the line which passes through the pixel on

the projection plane and the origin of the camera space, making inverse projection an ill-

posed problem [34,35,36].

2.3 Stereo Correspondence

Stereo correspondence is a particular and well studied [37,38,39,18,40,41,42,43] related

problem, where only corresponding points, rather than their 3D geometry, between

different images are needed. If the geometry between two cameras is known beforehand,

every coordinate on one image can correspond to any coordinate on the epipolar line of the

other image. This line is the projection of the solution set of inverse projection problem

onto the second image plane as shown in Figure 6.

Block matching is one approach [40,41,42,43] to relate pixels from one image to another in

which blocks of pixels under corresponding epipolar lines are compared to each other.

Correlation coefficients between raw pixel values inside neighborhood blocks provide a

similarity measure to choose correspondences.

Figure 6 Stereo correspondence for a scene point between a pair of views and respective

epipolar lines for each view.

Corresponding epipolar lines for all pixels can be made horizontal by applying rectification

transformation on images. In this manner, every pixel obtains a horizontal distance to its

correspondence, resulting in a disparity map which is easier and faster to obtain than a

generic correspondence map for some applications [42,44,45,33,46]. Some methods [47]

utilize hierarchical partitioning additionally to achieve further speed-ups.

Free viewpoint image generation can be satisfied by finding correspondence pairs for some,

if not all, pixels on the target view. These sparse estimation methods generally triangulate a

mesh between generated pixels and interpolate intermediate pixels by morphing [12].

13

Figure 7 shows an example to sparse correspondence pair matching. The focus of this thesis

remains on dense estimation methods [41,44,48], which are more suitable for

parallelization with graphics processing units [42,9,8]. Dense methods produce

correspondence estimates for all pixels, possibly with a confidence map indicating the

reliability of each estimate.

Figure 7 Several stereo correspondence pairs for two views of the same scene.

Disparity and confidence map results can be combined and pruned at a global

approximation stage which tries to minimize a cost function over collected data and

smoothness constraint [49]. Smoothness constraint is trivial to impose upon color and

disparity; however, some approaches utilize optical flow as an additional constraint for

moving images [45].

The methods utilizing cost minimization to solve stereo correspondence problem differ in

the actual minimization algorithm used. Several Bayesian variants [50,36] as well as

nonlinear diffusion [51] and graph cut approaches [52,53] exist. Global approximation

methods can be backed up with a priori information obtained from time-of-flight cameras

[31,54].

Stereo correspondence can also be performed over candidate depth values as shown in

Figure 8. This way, correspondence problem can be extended to multiple image case by

plane sweeping algorithm [9,8,55] where correspondences for all source images are sought

at once rather than over several binary pairs. Scharstein and Szeliski [49] provide a detailed

taxonomy and survey on dense stereo and correspondence algorithms.

A stereo correspondence result, either a disparity value or 2D coordinate pair on different

image planes, originate from a point on 3D scene space and this point is the intersection of

14

light rays passing through two correspondence points and respective camera origins.

Distance of this 3D point to any source or target view is called the depth of the point to the

image and provides the geometric information needed for image based rendering.

15

Figure 8 Plane sweeping for stereo depth estimation. A number of depth values are tested

by projecting image points on the first view to the second view.

N
ea

r
Fa

r

2.4 Applications

Image based rendering methods have higher applicability for rendering problems where

photographs of the scene are already available. Intermediate view generation, as discussed

in the introduction of this thesis, is one problem where a scene is reconstructed from a set

of photographs for an arbitrary viewpoint. Intermediate view generation has an important

use in free viewpoint television.

Photographs are realistic representations of the scene which they include. Although model

based methods are achieving ever-increasing photorealistic results, further realism can be

obtained with image base rendering methods in computer graphics [5]. Mixed reality,

where artificial objects are augmented into real-world scenes or vice versa, is an application

in which an increased realism leads to better user experience. Image based methods to

mixed reality provides rendering of virtual objects that look more natural inside real-world

photographic scenes [56]. IBR can also be utilized to render real-world scenes captured

from multiple cameras onto other real world objects [57]. Photographic nature of both

16

elements increases the applicability of image based modeling to such virtual reality

applications.

Image based rendering methods can also be utilized to render textures, a vital supplement

for model based graphical applications, to achieve realism. Projective texture mapping [17]

generates more realistic view-dependent textures to be used for either image or model based

rendering methods. IBR can also be used to build detailed 3D models [58,59] with image

registration and mosaicing [15] and to create shadow and lighting effects [60] for further

photorealistic rendering.

Since image based rendering depends on creating new images from available ones, new

views can also be created by previously generated output images in addition to the initial

source images [7].

Image based rendering for arbitrary view generation is a vital component of this thesis

work. There are several approaches to arbitrary view generation problem with image based

rendering.

Light field rendering [7], provides a solution to arbitrary view rendering problem by

enforcing source images taken from cameras aligned on a single focal plane. Patches from

the scene projected onto this focal plane are collected in a database along with their

projection coordinates and angles. They are referenced when patches with similar angular

properties at similar focal plane coordinates are requested. Free viewpoint image generation

with light field rendering has limited view ranges due to focal plane alignment constraints.

View dependent texture mapping [18] and projective texture mapping [17] can realistically

generate an intermediate view by texturing a scene model with image based rendering

techniques.

Image based rendering also makes intermediate view generation possible if images are

accompanied by depth maps, which are single channel images representing the distance of

each pixel from the scene to the view. Video plus depth [61,62,63,13] is a broadcast

standard covering free viewpoint image synthesis. Depth required for each view can be

obtained with range sensors, such as time-of-flight cameras, or extracted with stereo

correspondence. Details on video plus depth can be found in Chapter 5 while next chapter

introduces time-of-flight cameras.

17

CHAPTER 3

3. TIME-OF-FLIGHT CAMERAS

Depth sensing is a fundamental task in both computer vision [31] and computer graphics

[22]. Human machine interaction, virtual reality, robotic navigation, object reconstruction,

intermediate view synthesis and many similar applications benefit from existing depth

information of a world scene. Depth maps, if not present, can be extracted from inherent 3D

information inside accompanying color information.

Given two or more images from separate views of the same scene, stereo correspondence

can lead to an estimate to the world coordinates of pixel locations on the images. However,

state of the art techniques still try to overcome problems occurring at boundaries and

textureless regions [31]. Object boundaries present occlusions where correspondence

between images may not exist and textureless regions render block matching approaches

useless in finding pairs between images.

A hardware solution to the drawbacks of stereo matching algorithms is time-of-flight

sensors, which are relatively new and superior to previous hardware solutions in many

ways [22]. Common examples of time-of-flight solutions to depth sensing on the market is

photonic-mixer-devices of PMDTechnologies [64] and MESA Imaging SwissRanger

cameras [65] as seen in Figure 9.

Time-of-flight sensor used in this thesis work is SwissRanger SR-3000. It provides a depth

map of QCIF resolution (176x144), a distance range of 7.5 meters, depth accuracy in the

order of a few centimeters at a speed of up to 30 frames per second and by using a default

modulation frequency of 20MHz on 850nm infrared light waves [66].

This chapter introduces the time-of-flight cameras which are used in conjunction with color

cameras to achieve free viewpoint image synthesis. The first section elaborates on the

working principles of ToF sensors; the second section presents the drawbacks of their depth

sensing mechanism and their solutions and workarounds; the third, and the last section

provides a discussion on application areas which benefit from real-time planar depth

sensing with ToF cameras.

3.1 Working Principle

Time-of-flight is a measure of time for an object, particle or wave to travel a distance

through a medium. It can be used to find the duration, the distance or the medium

properties of the travel, given other parameters.

Time-of-flight cameras are sensors which measure distance to scene geometry by recording

the time light travels from the device and gets reflected back. These are relatively new

devices where whole screen depth is captured at once, in comparison to devices in light

detection and ranging (LIDAR) category which operate with single rays at a time.

(a) (b)

Figure 9 (a) SwissRanger SR-4000 by MESA Imaging and (b) PMDvision CamCube (CC,

Wikimedia Commons)

Time-of-flight cameras have two main operations that take stage together. Illumination

sends light rays with light emitting or laser diodes, preferably at infrared ranges to prevent

visible effects. Sensing collects emitted rays through a lens and optical filter and the time

light rays spent travelling is measured for each pixel on a two dimensional array of light

sensing layer based on charge coupled device (CCD) principle [67].

Time required for light rays to hit scene objects and return back is proportional to the

distance of the objects to the camera. Accurate time measurements are obtained with

continuous wave modulation method [68,65] where emitted sinusoidal modulated light

wave is cross-correlated with the captured wave by demodulation of the incoming signal

[65]. Since modulation frequency is known, phase difference leads to time difference.

18

19

Operation inside a medium of known refractive index, such as air, enables convert time

differences to scene distances.

Emitted modulated signal and the captured signal can be represented by the equations (3)

and (4), respectively. Phase offset (߮) is determined by the duration which light travels

outside the sensor. Incoming signal has an additive constant component to model

background illumination and amplitude component (ߙ) modeling power loss due to light

absorption.

݃ሺݐሻ ൌ cosሺ߱ݐሻ (3)

ሻݐሺݏ ൌ 1 ߙ cosሺ߱ݐ െ ߮ሻ (4)

Mathematical expression for the cross-correlation between incoming and outgoing signals

is defined by (5) [68]. Phase offset between signals can be calculated by sampling at certain

phases via (6). The same procedure can be applied with utilizing synchronous sampling and

DFT [68].

ܿሺ߬ሻ ൌ ሺݏ כ ݃ሻሺ߬ሻ ൌ
ߙ
2

cosሺ߮ ߬ሻ (5)

߮ ൌ tanିଵ ቆ
ܿሺ270°ሻ െ ܿሺ90°ሻ
ܿሺ0°ሻ െ ܿሺ180°ሻ ቇ (6)

Time-of-flight sensors can both record the time traveled in air using phase offset and

returning intensity of light rays emitted from the device. These lead to scene depth and

intensity correspondingly [68] as shown in Figure 10.

3.2 Challenges

Time-of-flight cameras provide a robust solution to depth sensing problems occurring in

many computer graphics and computer vision applications. Although ToF sensors eliminate

problems commonly faced in passive extraction methods, new challenges inherent to the

nature of the time-of-flight mechanism are unfortunately introduced.

Time-of-flight cameras provide depth images at a rate equal to or greater than real-time

speeds. However, their pixel resolution is very low compared to contemporary color

cameras. Although highest reported resolution is 484x648 [69], most cameras provide only

ten thousands of pixels each frame. One approach to increase resolution of depth images

obtained from range sensors is upscaling. Modern graphics processing units provide

hardware support for bilinear filtering which may be satisfying, but bilateral filtering [70]

is shown to perform better [71].

(a) (b)

Figure 10 (a) Depth and (b) intensity maps acquired with SwissRanger SR-3000 camera.

Brighter values indicate less depth and more intensity.

Cross-correlation for phase estimation requires sampling of the incoming signal at least

four times. This introduces motion artifacts where depth values at object boundaries

become erroneous for a dynamic scene [72].

Time-of-flight principle introduced previously depends on generation of ideal sinusoidal

modulated signals and accurate sampling for cross-correlation. Since obtaining perfect

results are not possible for both, acquired depth image has an error component caused by

the sensor mechanism itself. Kolb et al. [72] call this component the systematic error of the

camera and presents a theoretical discussion on a possible solution [22]. A solution can be

extending the sinusoidal correlation model to multiple Fourier coefficients but complexity

of circuitry for demodulation of higher frequencies and required sampling rate will

20

21

increase. Some solutions by means of look-up tables [73] and B-splines [74] are also

proposed.

Other challenges related to the mechanics of time-of-flight cameras include intensity related

distance error and depth inhomogeneity [22]. Moreover, utilization of multiple ToF

cameras may lead to interference for older models [72].

3.3 Applications

Time of flight cameras are utilized mainly for content acquisition for computer vision

applications. Accurate disparity estimation is possible with incorporation of time-of-flight

cameras with traditional stereo methods [44,31,54]. Generation of layered depth video [75]

content is also subject to improvements with initial depth estimates from ToF sensors [76].

ToF sensors can also be utilized in estimation of patchlets, image patches with surface

normals [77].

Mixed reality [78,79], user tracking [80] and gesture recognition [81] are some of human

machine interface related applications that utilize environmental sensing nature of these

depth cameras to provide interactive experience for larger systems.

22

CHAPTER 4

4. GRAPHICS PROCESSING UNITS

Graphics processing units (GPU) are specialized microprocessor chips intended to

accelerate computer graphics applications. GPUs existing in modern commodity computers

provide hardware support for dedicated floating point operations, 3D transform and

lighting, primitive rendering and framebuffer manipulation enabling real-time high quality

computer graphics.

Hardware support for computer graphics is dated back to the emergence of first graphical

displays on computers. Earlier chips that provided acceleration for common computer

graphics tasks are ANTIC of Atari and VIC series of Commodore, both being graphical

components of 8-bit personal computer architectures [82]. These graphical chips provide

page flipping, sprite and mixed text-bitmap support, common to many 2D graphical

rendering chips. Successor 2D graphics devices provide bit block image transfer (bitblit)

[83] allowing combining multiple raster images with binary and arithmetic operators at

once.

Although evolution of 2D acceleration chips still continues, these devices are primarily

found in low performance handheld devices today. Modern usage of graphics processing

unit denotes 3D integrated hardware found in personal computers. One of the first devices

to support complete support for 3D rendering pipeline is GeForce 256 of NVIDIA [84] with

support for transform and lighting, triangle setup with clipping and rendering 10 million

polygons per second.

Contemporary 3D acceleration chips have hardware capabilities for image filtering,

programmability for certain stages in rendering pipeline and digital video decoding; thus,

extending their scope beyond simple computer graphics rendering. General purpose

computing on graphics processing units (GPGPU) is an emerging paradigm that converts

general engineering applications to computer graphics context to achieve high parallel

computation power on GPUs. In contrast to other computing alternatives, such as FPGAs or

23

DSPs, GPUs exist on all commodity personal computers. In this manner, developed

software using GPUs for high performance demanding applications are ready to run

without accompanying dedicated hardware. Besides, GPUs have mature software and

driver support. OpenGL and Direct3D are two major computer graphics software libraries

whose design and development is tightly coupled with those of mainstream GPU models.

This chapter provides information on graphics processing units and their programmability

detailed to the extent of understanding the ideas of the scope of this thesis. The first section

introduces the fixed graphics pipeline existing in modern GPUs. The second section focuses

on programming the rendering pipeline to achieve user controlled behavior of these chips.

Finally, the third chapter provides a brief discussion on compute unified frameworks which

can utilize GPUs with general computing paradigms.

4.1 Graphics Pipeline

Rendering is a broad concept of converting scene description into digital images. Each

rendering application is distinguished by the format of scene description and the actual

process in which target image is formed. Chapter 2 provides detailed discussion on

rendering concepts with a focus on image based rendering.

Modern GPUs provide rendering support around a single data streaming framework called

the 3D graphics pipeline [28]. GPUs act as a stream processor which transforms incoming

3D object descriptions into pixel operations on the target image according to preset

rendering state. Multiple data flow in one direction to another, from 3D representation to

pixel values, hence the name pipeline. Figure 11 provides a flowchart of the data flow in

graphics pipeline.

Objects on the scene to be rendered are described with surface primitives, such as triangles

or quadrilaterals and texture images that define their surface appearance [26,27]. Rendering

begins with the supply of surface primitives to the GPU. A primitive is defined by its

vertices and its description lies within vertex units which encapsulate 3D location, surface

normal vectors, texturing and coloring information and material properties.

Transform and lighting is the initial stage of rendering where vertex units are transformed

through various coordinate spaces and colored using per vertex properties and global

lighting state. Vertex locations are transformed from object coordinates to first scene

coordinates and then to view (eye) coordinates consecutively. This transformation is

24

accomplished with the modelview matrix, which is part of the rendering state. Vertex

coloring is accomplished with global ambient lighting, directed light sources and

environment fog. These concepts are called vertex operations and defined inside the vertex

kernel of the rendering pipeline.

Primitives within the rendering pipeline can be filtered out to eliminate redundant

primitives or new primitives can be generated to increase rendering quality. Final primitives

are projected to target image coordinates through the projection matrix of the rendering

state. Projections can either be orthographic or perspective depending on the application.

Orthographic projection preserves Euclidean ratios in scene description and is suitable for

computer aided design applications and scenes with complex 2D descriptions. Perspective

projection emulates the biological eye and other lens driven cameras where distant objects

project onto smaller portions of the target image. Enumeration and projection of primitives

are called geometry operations and defined inside the geometry kernel of the pipeline.

Primitive operations are followed by rasterization in which 3D geometry is converted to 2D

in the form of rendering fragment units. Each fragment unit corresponds to a single pixel on

the target framebuffer and embodies rendering information including color, depth, texture

coordinates and transparency. During rasterization, vertex information is spread by

interpolation in between primitive corners. Linear interpolation is a common approach to

achieve realism in this stage.

Fragments can be re-colored after texturing. Target pixels on the framebuffer are modified

according to fragments and pixel operations defined in the rendering state. These operations

can be copying, alpha compositing, selection (min, max) or a combination of these.

Conversion of fragments to pixel values is called fragment operations and these are defined

inside the fragment kernel of the pipeline.

Standard pipeline is controlled through graphics APIs, such as OpenGL and Direct3D,

which modify the rendering state and supply input to the pipeline. Applicability of the

standard rendering pipeline to problems other than graphics rendering is limited due to its

fixed nature. However, when combined with programmable parts of the GPU, rendering

pipeline provides an efficient framework for most applications. Computer vision

applications, in particular, can benefit from the hardwired algorithms inside the GPU for

common tasks between computer vision and graphics.

R
en

de
rin

g
St

at
e

• Object Geometry
• Textures
• Lighting Sources
• View Camera

Scene Description

Vertex
Kernel

• Vertex Transform
• Vertex Lighting

Geometry
Kernel

• Primitive Enumeration
• Projection

Rasterization
• Fragment Generation

Fragment
Kernel

• Coloring
• Texturing
• Transparency
• Fragment Lighting

25

Figure 11 Graphics rendering pipeline.

• Color
• Depth

Digital Image (Framebuffer)

26

4.2 Programmable Pipelines

3D graphics pipeline defines a single set of mind concerning rendering of 3D scenes. Its

design intent is the realization of real-time computer graphics where speed is the main

concern. It is this requirement, which makes the design of the graphics pipeline strictly

connected to advances in microelectronics. However, real-time computer graphics becomes

possible for different rendering strategies as advances in computing technologies surface.

Backward compatibility concerns limit changes in hardware and software design for 3D

rendering, allowing evolution only in smaller steps. On the other hand, advance leaps in

software and hardware technologies make certain rendering strategies obsolete and others

more optimal. This dilemma is solved by GPU manufacturers with added support for

programmability over certain stages of the rendering pipeline.

Programmability for vertex and fragment operations are introduced in 2003 [85]. User

defined behavior for rendering is achieved with shaders, codes that are sent to GPUs to

control rendering. A vertex shader is piece of software that controls per vertex operations,

such as geometric and projection transformations, vertex coloring or lighting. It can be used

to emulate lens distortions and provides faster control for dynamic objects. A fragment

shader is a code that performs per fragment operations. Realistic rendering techniques such

as per pixel lighting and projective texture mapping [17] are made possible with

programmable fragment kernels.

Programmability of geometry kernels is possible with a geometry shader, which is

introduced in 2007 [85]. Geometry shaders provide support for dynamic generation and

suppress of 3D geometry on the GPU.

Other programmable parts of the pipeline are texture lookup and tessellation. The first one

is responsible for generating filtered colors from texture images. A texture shader stands

for user defined behavior for texture lookup, opening possibilities for further image

processing support than simple linear filtering. Tessellation, the other programmable stage

of the pipeline, performs division of primitives to smaller tiles and transformations on these

tiles. A user provided tessellation shader provides fine control over the complexity of

scenes with respect to other parameters, such as view distance or object size. Both shaders

are introduced in 2010 [85].

27

OpenGL introduces separate shader objects in 2010 [85] to combine characteristics of all

shaders into a single framework. Separate shaders are software codes that can define

different parts of the rendering pipeline and can be injected into any programmable kernel.

Programming shaders is possible with constructs similar to machine language where each

command maps to primitive operations on the GPU, although common approach is using

high level shading languages, such as Cg, HLSL and GLSL. Idioms and paradigms used in

programming shaders are common stream processing fundamentals, such as map, reduce,

scatter or gather [28,86]. Owens et al. [28] provide detailed discussions on technologies and

techniques related to programming the rendering pipeline.

4.3 Compute Unified Architectures

Programming GPUs provides a highly cost efficient parallel computing framework for

many fields as well as increased flexibility for computer graphics applications. On the other

hand, the fixed rendering pipeline can perform only a single rendering algorithm with tight

limits on configurability and it is replaced by custom algorithms through shaders for real-

time computer graphics. Therefore, it is not surprising to find GPUs to be regarded as

specialized computing devices rather than programmable graphics accelerators only.

Indeed, latest OpenGL standard [87] deprecates fixed pipeline functionality and

recommends rendering through user supplied software instead.

Increased demand for graphics processing units for general purpose computing and the

blurring of the differences between specialties of the programmable parts of these devices

help them evolve into all purpose high performance computing devices. While differences

between GPUs and CPUs, standard microprocessors of commodity computers, reduce to

the degree of parallelization, a new paradigm called compute unified programming, which

combines these two processors, surfaces.

A general purpose computing architecture, Compute Unified Device Architecture (CUDA)

is introduced in 2006 by NVIDIA [88]. CUDA is a programming framework including a

programming language, a compiler suite and accompanying hardware support within

NVIDIA’s GeForce series GPUs. It allows C-like written programs to execute with both

CPUs and GPUs; thus, abstracting graphics nature of GPU programming from users.

28

A vendor independent and open compute unified architecture called Open Computing

Language (OpenCL) is standardized by Apple Inc. and Khronos Group [89], obtaining full

hardware support from vendors in 2008.

Compute unified architectures perform efficient division of work for both GPUs and CPUs

providing remarkable acceleration through parallelization [90]. Applications which utilize

compute unified architectures and are related to arbitrary view synthesis quickly emerged.

Fast depth upsampling [91] and disparity estimation [45] are shown to benefit from

availability of compact parallel computing architectures.

29

CHAPTER 5

5. PROPOSED METHOD

Arbitrary view rendering is the generation of images of a scene that are not available during

capture. Real image or video captures of the scene are used to create virtual realistic views

with image based rendering. Generation of these views is a common task for 3DTV

applications.

Still photographs lack the explicit information which defines the locations of pixels in 3D

scene space. Extracting this information is an ill-posed problem in the sense that no unique

3D scene coordinate exists for any pixel on the photograph. Problems in creating arbitrary

views propagate from these simpler computer vision concepts.

Arbitrary views are rendered using depth information accompanying color in source views.

Extracting this information can be in the form of depth warping or estimation through

stereo vision. A fusion of these provide better results [54].

Although color and depth provide a compact description of the 3D scene, this description is

not complete for arbitrary views due to occlusions and dissimilar viewing volumes. Robust

measures have to be taken to fill-in absent information.

This chapter, step-by-step, builds an arbitrary view algorithm that incorporates time-of-

flight depth measurements, stereo depth estimation and rendering from video plus depth

data. The first section introduces the video plus depth content format which enables a

broadcast system for arbitrary view rendering. Following section formulates the problem of

generation of video plus depth data and arbitrary view rendering through this content

format. The third section presents how depth maps for stereo views are estimated through

depth warping, stereo matching and bilateral filtering. The fourth section is the crucial point

where arbitrary view rendering from all obtained information is accomplished. The final

section mentions implementation details of the whole system in GPU.

30

5.1 Content Format

Arbitrary view rendering is an important task for 3D television (3DTV) where viewers

receive and perceive 3D content broadcasted in appropriate formats. Numerous methods

exist to describe 3D content for 3DTV applications [92]. Surface based representations

describe 3D data in the form of surface geometry. Volumetric representations provide dense

or hierarchical organization of volume pixels, also called voxels. Texture representations

describe content in several texture images which form the scene geometry when warped

around 3D objects. Image based representations provide compact descriptions of scenes to

be broadcasted in the form of images from different views without support for explicit 3D

geometry. Layered depth images (LDI) [75] is one format with the idea of supplementing

color data with depth layer tags. Alatan et al. provides a detailed survey on different

representations for 3DTV broadcast and rendering [92]. Schiller and Koch [93] provide a

summary of data structures for scene representations obtained with time-of-flight cameras.

Video plus depth defines an image based video format suitable for a variety of 3D

applications, specifically the 3DTV [61]. Color video is supported with accompanying

depth information through content generation, coding, broadcast and decoding. Since depth

maps are technically single channel images as seen in Figure 12, their introduction is

analogous to introduction of color to television. Broadcast is still decodable with older

televisions where depth information is only interesting for supporting 3D setups.

Video plus depth format also preserves applicability of existing techniques for 2D

broadcast. Data hiding, for example, can be accomplished by 2D watermarks added to color

maps and methods exists to decode watermarks from arbitrary views [94].

Video plus depth format does not suffer from back-projection problem since its depth

component inherently exposes 3D scene coordinate of each pixel. Synthesis of an arbitrary

view given a single color and depth image pair can be accomplished by projecting every

pixel from their scene coordinates to target image coordinates preserving color information.

Occlusion gaps can be prevented by warping a surface mesh instead of a point cloud.

High quality intermediate view synthesis is achieved with multiview video plus depth,

which describes the scene with color and depth for several views. Smolic et al. [13]

provides a framework for correcting artifacts occurring after warping of several source

views. Gaps in intermediate views are filled with neighboring pixels and outliers are

eliminated with color consistency measures to obtain good synthesis results.

Figure 12 Single frame example for multiview video plus depth content format taken from

ballet studio sequence of Zitnick et al. [95]. Each row of the figure shows the color and

depth map of a single viewpoint.

31

32

5.2 Problem Formulation

A viewpoint is a combination of intrinsic and extrinsic camera parameters as given by the

pinhole camera model presented in Chapter 2. A viewpoint ܸ , can be mathematically

represented by ࡼ, a 4×4 projection matrix of a 3D homogeneous projective transformation

as given in (7) and (8).

ࡼ ൌ ࡱࡵ

൦

Ԣݔ
Ԣݕ
1
Ԣݖ

൪ ൌ ࡼ

ݔ
ݕ
ݖ
1

(7)

(8)

Extrinsic transformation matrix transforms space coordinates in 3D, from scene space to

camera space. Points in front of the camera will have negative z-coordinates due to right

handedness of the coordinate system. This z-coordinate ݖԢ, is made positive and passed as a

factor by the intrinsic camera matrix, resulting in an irreversible perspective division as

given in (9) and (10).

ݑ
ݒ

Ԣݖ/1 ؠ ൦

Ԣݔ
Ԣݕ
1

൪

1 Ԣݖ

ቂݑ
ቃݒ ؠ ݔԢ

Ԣ൨ݕ Ԣൗݖ

(9)

(10)

Perspective division is irreversible in the sense that depth values of projected points are lost

and pixels in image space cannot be transformed back to scene space. This is called the

back-projection problem and discussed in detail in Chapter 2. However, if depth values of

image coordinates are known, inverse of ࡼ, provides a reverse transformation from image

space to scene space as given in (11) and (12), thus back-projection problem is solved.

ݔ
ݕ
ݖ
1

 ؠ ࡼ
ିଵ

ݑ
ݒ

Ԣݖ/1
1

 (11)

33

ࡼ
ିଵ

ݑ
ݒ

Ԣݖ/1
1

 ؠ ࡼ
ିଵ ൦

Ԣݖݑ
Ԣݖݒ
1
Ԣݖ

൪ (12)

The fundamental goal of arbitrary view rendering is to estimate the hypothetical photograph

to be taken if an actual camera was used to capture the scene from a specific view

geometry. Multiview plus depth content format is a common ground between 3D broadcast

applications and arbitrary view rendering is formulated around this approach.

This thesis covers content acquisition with two color cameras and a depth sensing time-of-

flight camera. Color images obtained from the stereo pair provides a trivial approach to

choosing views for video plus depth format. These color images are augmented with

estimated depth maps to generate the transmission format for this arbitrary view rendering

system.

Beginning with stereo viewpoints, ܮ and ܴ, their corresponding color images and ோ ,

range sensor viewpoint ܶܨ and its respective depth map ்ࡰி, initial aim is to estimate

the artificial depth maps, ࡰ and ࡰோ at stereo viewpoints in order to have a complete stereo

video plus depth representation of the scene. This stage, which is called depth estimation, is

summarized in (13).

,ࡰ ோࡰ ൌ ݄ݐ݁ܦ ,ܮሺ݊݅ݐܽ݉݅ݐݏܧ , ܴ, ,ோ ,ܨܶ ிሻ (13)்ࡰ

Estimation of ࡰ and ࡰோ is a compound process in which both views from the stereo pair

are utilized with stereo correspondence methods presented in Chapter 2. Elaboration on

depth estimation is given in the next section.

Second stage of the algorithm is arbitrary view rendering from multiview video plus depth

and this stage is intended to be implemented on display side of the broadcast system. Two

views, ܮ and ܴ, along with their color and depth maps are transmitted and intermediate

views are generated upon request. Given an intermediate viewpoint ܸ, view rendering stage

is formulated in (14).

34

 ൌ ݓܸ݁݅ ,ሺܸ݃݊݅ݎܴ݁݀݊݁ ,ܮ , ,ࡰ ܴ, ,ோ ோሻ (14)ࡰ

Depth estimation deals with content acquisition stage of the whole system whereas view

rendering is a display algorithm. Inner workings of these two stages are presented in the

remaining of this chapter.

5.3 Depth Estimation

Under image based rendering terms, a depth map can be rendered for any view, given other

views of the same scene. Stereo correspondence provides an estimate to depth, as given in

Chapter 2.

Time-of-flight cameras also provide low resolution depth maps. Since depth maps are

inherently 3D descriptions, they do not suffer the back projection problem and can easily be

projected into other views. Therefore, depth maps obtained from such range sensors

provide reference depth estimates to obtain video plus depth. However, upscaling of

obtained depth maps is a problem, as discussed in Chapter 3.

This thesis combines ideas from these passive and active methods in order to obtain

auxiliary depth maps for the stereo cameras used in content acquisition. ்ࡰி, depth map

obtained from time-of-flight camera is warped onto views ܮ and ܴ with measures to

overcome occlusions. This provides an initial estimate to ࡰ and ࡰோ. Then, and bilateral

filtering and stereo matching between and ோ is performed around this initial estimate

to refine obtained depth maps.

5.3.1 Time-of-Flight Depth Warping

Depth map captured with a time-of-flight camera is represented with ்ࡰி and represents

the surface of scene content visible from viewpoint ܶܨ. Projection of any point on this

surface to viewpoint ܸ is carried out with (15) and (16).

ݑ
ݒ

ݖ/1
1

 ؠ ி்ࡼࡼ
ିଵ

ி்ݑ
ி்ݒ

ி்ݖ/1

1

ி்ݖ ൌ ,ி்ݑிሺ்ࡰ ிሻ்ݒ

(15)

(16)

Depth values of target viewpoint are given by (17). However, surface projection is not

strictly a one-to-one mapping. Some pixels at the target depth map cannot be deduced and

some others can have multiple projections due to occlusions. Multiple projection values can

be singled out with depth testing and missing depth values can be interpolated from

neighboring projections. Both of these solutions are provided by graphics processing units.

ࡰ
௪ሺݑ, ሻݒ ൌ (17)ݖ

Depth map projection can be implemented on the GPU by modeling the source depth map

as a 3D surface in the form of a triangle mesh. Pixels of the depth map provided by the

time-of-flight camera are converted to 3D vertices and triangles are formed in-between as

shown in Figure 13 and (18). These triangles are first transformed to scene space and then

projected onto target depth map. This operation is called warping and covers the entire

target image leaving no gaps.

5 6

4 1 7

35

Figure 13 Triangulation of depth map into a surface mesh.

212 8
3

11 10 9

Figure 14 Warping result from a 128x96 depth map (middle) to arbitrary left and right

viewpoints with 512x384 pixel resolution. Breakdancers sequence from Zitnick et al. [95].

Figure 15 Depth map rendering with triangle suppression.

Projection of the connected surface mesh to the target view is a rendering flow which

begins by a vertex shader which transforms all vertices in the mesh according to ࡼ்ࡼி
ିଵ .

This operation aligns source mesh onto target viewpoint and rendering with depth test

results in an estimated depth which does not have gaps at occlusions.

36

After mesh warping, discontinuities are covered by larger triangles which usually span from

background to foreground resulting in large depth patches. Areas of the target depth map

that are not visible to ToF are interpolated between background and foreground, as seen in

Figure 14. These rubber sheet artifacts remain at discontinuities after warping and they can

be removed with mesh segmentation techniques [96]. Problematic triangles are detected

inside a geometry shader and they are suppressed to background to limit their favorability

over foreground patches from other views. Depth selection process for triangles is given in

(19) and (20). Depth of the farthest vertex among neighboring triangles, which are marked

in Figure 13, is used as the suppression depth. Comparison area ܽԢ is an empirical value to

37

detect occlusion patches. If depth testing is enabled, using depth and color information from

these patches becomes only a last resort, thus occlusions are handled. Figure 15 shows the

effects of triangle suppression.

ܶ ൌ ቐ

ଵݑ
ଵݒ

1/ ,

ଶݑ
ଶݒ ,

ଷݑ
ଷݒ ቑ ݖଵ

1
ଶݖ/1

1
ଷݖ/1

1

ܶԢ ൌ

ە

(18)

ۖ
۔

ۖ
ۓ ܶ ; areaሺܶሻ ൏ ܽԢ

ቐ

ଵݑ
ଵݒ

௫ݖ/1
 ,

ଶݑ
ଶݒ

௫ݖ/1
1

 ,

ଷݑ
ଷݒ

௫ݖ/1
ቑ ; areaሺܶሻ ܽԢ

1 1

௫ݖ ൌ maxሺݖଵ, ,ଶݖ ,ଷݖ ,ସݖ ,ହݖ ,ݖ ,ݖ ,଼ݖ ,ଽݖ ,ଵݖ ,ଵଵݖ ଵଶሻݖ

(19)

(20)

Depth data coming from the time-of-flight sensor is warped onto ܮ and ܴ , resulting in

initial estimates to ࡰ and ࡰோ. These maps lack the finer depth details as a result of the low

resolution output of the range sensor and they are refined further with stereo matching and

bilateral filtering.

Incorporation of depth estimates from stereo matching and bilateral filtering is handled in a

Bayesian framework that combines cost functions of different results. A cost function

denotes the selection cost for all depth candidates for all pixels. Cost function for depth

warping is built in a way that minimizes the cost of warped depth and increases the cost of

other depth candidates as they deviate from this center. A quadratic formulation is used as

suggested by previous works [54,71] and given in (21). Depth deviation factor (ߪ௪) is

an application specific constant.

ܳ
௪ሺݑ, ,ݒ ݀ሻ ൌ

൫ࡰ
௪ሺݑ, ሻݒ െ ݀൯ଶ

௪ଶߪ (21)

Given a cost function, a depth map is constructed with a winner-takes-all approach in which

the depth value with the minimum cost is selected as given in (22).

38

,ݑሺࡰ ሻݒ ൌ argmin
ௗ

ܳሺݑ, ,ݒ ݀ሻ (22)

The cost function constructed for depth warping always yields the original warped map.

However this triviality is broken by the introduction of stereo matching and bilateral

filtering.

5.3.2 Stereo Matching

In addition to the active range sensing device used, passive methods can also support the

intermediate depth maps obtained. Stereo correspondence, presented in Chapter 2, is a set

of algorithms for inferring depth from two different image based representations of the

same scene. Fusion of depth maps from stereo correspondence and time-of-flight cameras

provide even better depth estimates, surpassing both of these approaches [54].

Stereo matching is performed within the Bayesian framework of depth cost functions.

Stereo matching cost function for left viewpoint is given by (23) and (24). In these

equations, ܿ is the block distance between two coordinates on stereo images, N is the block

size parameter, ߜ is the distance between pixels in image space, ܦ௦ is the empirical depth

search range and ݏ is the Euclidean distance function for color comparison. All depth and

color values are in range [0, 1] and practical values of ܦ are around 1/20. ௦

ܳ
௦௧ሺݑ, ,ݒ ݀ሻ ൌ ቊ

minሺܿ, 1ሻ ; หࡰ
௪ሺݑ, ሻݒ െ ݀ห ௦ܦ 2⁄

1 ; หࡰ
௪ሺݑ, ሻݒ െ ݀ห ௦ܦ 2⁄

 (23)

ܿ ൌ
1

ሺ2ܰ 1ሻଶ ݑሺ൫ݏ ,ߜ݅ ݒ ,ሻߜ݆ ᇱݑோሺ ,ߜ݅ ᇱݒ ሻ൯ߜ݆
ே

ୀିே

ே

ୀିே

 (24)

,ሺݏ ሻ ൌ ටሺܣௗ െ ௗሻଶܤ ൫ܣ െ ൯ଶܤ ሺܣ௨ െ ௨ሻଶ (25)ܤ

Stereo matching is performed on the portions of epipolar lines enforced by the search range

by comparing pixel values. This is the plane sweep method shown in Figure 8. Pixels are

compared with Euclidean distances in RGB color space as given in (25). Candidate depth

values are bounded inside a depth search range to eliminate outliers [54]. Image coordinates

on the right image ሺݑᇱ, ᇱሻݒ are calculated from image coordinates on the left image

39

ሺݑ, ሻ and depth candidate ݀. Projection matrices of stereo viewpoints are used to relate 2Dݒ

projection coordinates from the left image to the right one as given in (26). Stereo search

for the other direction is similar.

ோݑ
ோݒ

1/݀ோ
1

 ؠ ࡼோࡼ
ିଵ

ݑ
ݒ

1/݀
1

 (26)

5.3.3 Bilateral Filtering

Time-of-flight cameras provide real-time capture of depth information, unfortunately at low

resolutions and up to a certain precision. Stereo matching is a well studied classical

approach to depth estimation problem, which can be supplementary to the initial depth map

obtained from range sensors. However, since stereo matching methods employ block

matching to relate images, matching and therefore depth estimation performance at object

boundaries and color discontinuities is not satisfying.

Bilateral filtering [70] is a low-pass image filtering algorithm which aims preserving edges

while smoothing the image. An adaptive pixel filter kernel, which takes high values for

similar neighbors, is applied to all pixels and therefore smoothing is prevented at edges.

Similarity is defined both in color and spatial domain.

The idea of bilateral filtering can be extended to smoothing depth maps with respect to

related color maps to align depth boundaries with color boundaries [71]. Depth values

obtained from adaptive filter is found by (27) using similarity measures given in (28) and

(29). Among similarity measures, ݓ denotes color similarity and ݓ௦ denotes spatial

similarity. Color similarity is the decay of Euclidean RGB distance and spatial similarity is

the decay of pixel coordinate distance.

ࡰ
௧ሺݑ, ሻݒ ൌ

∑ ∑ ࡰ
௪ሺݑ ݅, ݒ ݆ሻݓሺ, ,ݑ ,ݒ ݅, ݆ሻݓ௦ሺ݅, ݆ሻெ

ୀିெ
ெ
ୀିெ

∑ ∑ ,ሺݓ ,ݑ ,ݒ ݅, ݆ሻݓ௦ሺ݅, ݆ሻெ
ୀିெ

ெ
ୀିெ

 (27)

,ሺݓ ,ݑ ,ݒ ݅, ݆ሻ ൌ ݁ି
௦൫ሺ௨,௩ሻ,ሺ௨ାఋ,௩ାఋሻ൯

ఊ
(28)

,௦ሺ݅ݓ ݆ሻ ൌ ݁ି ඥమାమ

ఊೞ
(29)

40

In order to fuse the depth map obtained from bilateral filtering with the results of depth

warping and stereo matching, a cost function similar to ܳ
௪ is constructed as in (30).

ܳ
௧ሺݑ, ,ݒ ݀ሻ ൌ

൫ࡰ
௧ሺݑ, ሻݒ െ ݀൯ଶ

௧ଶߪ (30)

5.3.4 Depth Cost Fusion

Initial depth estimate for stereo viewpoints from the time-of-flight camera leads to three

different depth cost functions. These cost functions are summed with different weights as

given in (31) and (32) and a fused cost function is obtained for both viewpoints, ܮ and ܴ.

ܳሺݑ, ,ݒ ݀ሻ ൌ ܳ
௪ሺݑ, ,ݒ ݀ሻ ܳߙ

௦௧ሺݑ, ,ݒ ݀ሻ ܳߚ
௧ሺݑ, ,ݒ ݀ሻ (31)

ܳோሺݑ, ,ݒ ݀ሻ ൌ ܳோ
௪ሺݑ, ,ݒ ݀ሻ ோܳߙ

௦௧ሺݑ, ,ݒ ݀ሻ ோܳߚ
௧ሺݑ, ,ݒ ݀ሻ (32)

Overall effect of stereo matching and bilateral filtering on the final depth cost function can

be controlled with parameters ߙ and ߚ respectively. Final depth maps for left and right

viewpoints are governed by the winner-takes-all approach given in (22). In this respect,

depth estimations needed for multiview video plus depth format, ࡰ and ࡰோ are obtained

using the fused cost functions as in (33) and (34). It is seen in Figure 16, how utilization of

stereo color maps restores finer object details on the estimated depth map and Figure 17

offers a general look at the whole depth estimation process.

,ݑሺࡰ ሻݒ ൌ argmin
ௗ

ܳሺݑ, ,ݒ ݀ሻ (33)

,ݑோሺࡰ ሻݒ ൌ argmin
ௗ

ܳோሺݑ, ,ݒ ݀ሻ (34)

Estimations to ࡰሺݑ, ,ݑோሺࡰ ሻ andݒ ,ݑሺ ሻ along withݒ ,ݑோሺ ሻ andݒ ሻ make up the stereoݒ

video plus depth data needed for arbitrary view rendering at the display side of the

broadcast system.

Figure 16 Depth estimation result for a stereo pair after stereo matching and bilateral

filtering.

41

Figure 17 Flowchart for depth estimation stage.

 ோࡰ ࡰ

 ோ
 ி்ࡰ

ࡰ
௪ ࡰோ

௪

ܳ
௦௧ ܳோ

௦௧

ܳோ
௧ ܳ

௧

ܳோ ܳ

ܳ
௪ ܳோ

௪

Left Color ToF Depth Right Color

Warping Warping

Stereo Correspondence

Bilateral Filtering Bilateral Filtering

Cost Fusion Cost Fusion

Left Depth Right Depth

42

5.4 Arbitrary View Rendering

Image based rendering, as mentioned in Chapter 2, generates the final image by reverse

projection of every target pixel to each of the source images supplied to the system.

Analyzing pinhole camera model reveals that back projection of 2D image coordinates is an

ill-posed problem.

Given a supplementary depth map to any color image, its 3D characteristics are trivially

revealed and the image can be projected back into the scene space. Similar to warping of

time-of-flight depth images onto arbitrary viewpoints, a color surface represented in scene

space can be warped onto any viewpoint of choice. Several image and depth based

representations of the same scene help eliminate rubber sheet artifacts occurring at

discontinuities of the warped image.

Color image
௪ or ோ

௪ are warped from two different color sources. These images

provide an initial working ground for the final result of this thesis, an arbitrary rendered

view. Selective median filtering and smoothing operations on this initial image leads to a

natural looking estimation to the missing intermediate view representation.

5.4.1 Video Plus Depth Warping

Given any viewpoint ܸ and stereo video plus depth data, arbitrary view rendering for ܸ is

governed by the input-output relation given in (14). ࡰ and ࡰோ store sufficient information

to relate pixels in and ோ to 3D scene space coordinates. Much like the depth warping

process to transform nd ோ can be back-

projected to scene space and then projected onto target viewpoint ܸ.

ed to the pixels of the image spaces of ܮ and ܴ as

given in (35) and (36).

1 1
ݑ ோݑ

time-of-flight output to other viewpoints; a

Pixels on the image space of ܸ are relat

ݑ
ݒ

ݖ/1
 ؠ ࡼࡼ

ିଵ ൦

ݑ
ݒ

,ݑሺࡰ/1 ሻ൪ (35)ݒ

ݒ

ݖ/1
1

 ؠ ோࡼࡼ
ିଵ ൦

ோݒ
,ோݑோሺࡰ/1 ோሻݒ

1

൪ (36)

43

to convert color and depth maps of stereo view into

polygonal me ader transforms incoming vertices according to ࡼ ଵ and aିࡼ

ns to the depth

ோ, can be obtained in a similar fashion. Fusion of two

Similar to depth warping, these projections are not one-to-one mappings. Therefore, the

same triangu tion app ach is used la ro

shes. A vertex sh

geometry shader performs triangle transformation according to (19).

Rendering of generated fragments through a fragment kernel with depth testing result in

two alternative arbitrary view images,
 and

ோ. Two separate estimatio

map at arbitrary viewpoint, ࡰ and ࡰ

color maps is performed through a selective blending scheme given in (37).

ௗሺݑ, ሻݒ ൌ

ە
ۖ
۔

ۖ
ۓ

 ሺݑ, ሻݒ ; ࡰ
 ሺݑ, ሻݒ െ ࡰ

ோሺݑ, ሻݒ െࡰ௧
ߙ

 ሺݑ, ሻݒ ோߙ
ோሺݑ, ሻݒ

ߙ ோߙ
; หࡰ

 ሺݑ, ሻݒ െ ࡰ
ோሺݑ, ሻหݒ ൏ ௧ࡰ

 ሺݑ, ሻݒ ; ࡰ

 ሺݑ, ሻݒ െ ࡰ
ோሺݑ, ሻݒ ࡰ

 (37)

௧

dis
ߙ ൌ 1 െ

tሺܮ, ܸሻ
distሺܮ, ܸሻ distሺܴ, ܸሻ (38)

dis
ோߙ ൌ 1 െ

tሺܴ, ܸሻ
distሺܮ, ܸሻ distሺܴ, ܸሻ

is

(39)

d tሺ ܸ, ܸሻ ൌ ԡࢀ െ ԡ (40)ࢀ

Color images are blende counterparts. If a pixel from a

iew is nearer than the respective pixel from the other view at least by ࡰ௧, it is directly

 as ܸ moves from one

viewpoint to another [13].

Single pixel artifacts remain on
ௗ due to imperfect alignment of color and depth

images during previous stages of the algorithm. These artifacts are corrected with 2D

d primarily according to their depth

v

copied to the target color map. If corresponding depth values are similar, a weighted color

is produced with weights calculated from the Euclidean distances between viewpoints

inside the scene space, with ࢀ being the translation vector of viewpoint ܸ defined by the

pinhole camera model. This interpolation ensures smooth transition

After combining two warped color maps to obtain an initial intermediate view, post-

processing measures, such as image filtering, are taken to eliminate pixel artifacts.

5.4.2 Post-Processing

44

s ors and

r h

i is the

median filter size param of pixel

colors as given in (42

ௗሺݑ, ሻݒ ൌ

ௗሺݑ, ,ሻݒ ݉൯ Ԣݏ
ௗሺݑ, ,ሻݒ ݉൯ Ԣݏ

݉ ൌ median୰ୣୣ୬൫൛
 ሻߜ, ሺݒᇱ െ ߜሻݒ ൟ൯ܭ

ௗ൯ ሺݑ, ሻݒ ; Sobel൫

ௗ൯ ሺݑ, ሻݒ Ԣ
 (43)

Figure 1 cessing f

breakda

ere ݏ

elective median filtering which preserves pixels which are similar to their neighb

eplaces others with the local median. Selective median operation is given in (41) w

s the Euclidean distance function given in (25), Ԣ is the selection threshold and K

 to the green channel

).

ݏ

eter. Median is chosen according

ቊ

ௗሺݑ, ሻݒ ; ൫ݏ

݉ ; ൫ݏ

ᇱ െ ݑ

(41)

ௗሺݑᇱ, ᇱሻݒ ܽ݊݀ െ ܭ ሺݑ (42)

Mesh warping, selective color map fusion and selective median filtering add up to an

unintentional sharpness over the generated arbitrary view. A final touch of selective low

pass filtering at edges provides a more natural image. This low pass filter is explained by

(43). In this equation, Sobel is the Sobel filtering response of the image, ݁ᇱ is the edge

threshold and Box is a linear smoothing filter.

,ݑሺ ሻݒ ൌ ቊ

ௗሺݑ, ሻݒ ; Sobel൫ௗ൯ ሺݑ, ሻݒ ݁Ԣ
Box൫ ݁

(a) (b)

8 Arbitrary view generation after (a) warp combining and (b) post-pro

ncers sequence from Zitnick et al. [95].

rom

45

Figure 19 Flowchart for view rendering stage.

Warping

Left Color Right Color

Warping

Left Depth Right Depth

Combine

Median Filtering

Box Filtering

 ோ

 ࡰ ோࡰ

ோ

ௗ

ௗ

Intermediate View

46

The effect of post-processing on the final generated image is best seen with an example.

Figure 18 shows a generated view without and with post-processing. In the separate smaller

boxes of content detail, loss of extraneous patches is due to selective median filtering and

smoothing of jagged edges is achieved with box filtering at edges. A general overview of

the display stage is found in Figure 19.

A freeview display system applies the procedure to generate from , ோ, ࡰ and ࡰோ

whenever broadcast content or viewpoint ܸ changes. The result is an additive cue to the

viewer and an enriched user experience compared to traditional 2D displays.

5.5 Implementation with Graphics Processing Units

Graphics processing units e devices that perform fast model based rendering as

presented in Chapter 4. Arbitrary view rendering framework presented in this chapter has

two important image based rendering stages to be performed in real-time. The first stage is

depth estimation, which is rendering from raw camera inputs to obtain video plus depth 3D

transmission format. The second stage is view rendering, which is rendering from video

plus depth for arbitrary view display.

Both color and depth maps are stored on the GPU memory in 2D texture format, a special

data structure for coloring vertices and fragments. Depth estimation and intermediate view

rendering are performed with shaders presented in Chapter 4. Since vector 3D modeling

information is not available during both stages, dummy triangles are sent to the GPU to

trigger the graphics rendering pipeline at various steps of the algorithm.

Depth estimation performed by first warping an initial depth map from one view to another.

This operation is carried out in a single rendering pass with twice as many triangles as there

are pixels. These triangles are projected from one viewpoint to another using the vertex

kernel of the programmable pipeline. Vertex shader is also programmed to trace neighbors

of each vertex to find the farthest depth in (20). After triangles are aligned to target

viewpoint, a shader in er occlusion regions.

Since geometry kernels operate on a primitive level, triangles are filtered one-by-one, and

vertices of larger triangles are suppressed to background. After these triangles are

decomposed into fragments, warping operation continues with a trivial fragment kernel

which passes incoming fragments to target buffers for depth testing.

are hardwar

 geometry kernel finds and modifies triangles ov

47

side opposite views with plane sweeping and three

different cost functions per each view are constructed. Cost fu is p r pixels

Depth estimation stage, which is performed on content acquisition phase, is completed in

ing pass used in depth projection. Thus, this pass

performs the same division of work among different parts of the GPU. A per pixel fragment

ork on pixel-by-pixel

basis and intermediate buffers can be reused by overwriting.

Cost fusion is a single rendering pass, which is triggered with a single quadrilateral

covering the whole target rendering canvas. Inside the GPU stream, default vertex and

geometry kernels generate all of the pixels on the target viewpoint. A fragment shader

accesses depth and color maps of both stereo views. In this kernel; bilateral filtering is

performed, matching pixels are traced in

sion erformed fo

on both left and right viewpoints and the winning depth candidate is passed to the

framebuffer.

three rendering passes on the GPU with the following order:

1. Warp ்ࡰி onto ܮ and obtain ࡰ
௪.

2. Warp ்ࡰி onto ܴ and obtain ࡰோ
௪.

3. Construct ܳ and ܳோ by cost fusion to obtain ࡰ and ࡰோ.

On the display side, projection of color maps with depth information onto target viewpoint

is accomplished with the same warp

shader is responsible for another rendering pass to combine these two color maps.

Post-processing is accomplished with a separate rendering pass for each filter used. Both

selective median and selective box filtering are non-linear per pixel operations which are

suitable for implementation with fragment shaders.

On the display side, arbitrary view rendering is accomplished with the following five

rendering passes:

1. Warp onto ܸ and obtain
 .

2. Warp ோ onto ܸ and obtain
ோ.

3. Combine
 and

ோ to obtain
ௗ.

4. Selective median filtering over
ௗ to yield

ௗ.

5. Selective box filtering over
ௗ to yield .

For warping passes of both stages, depth testing is enabled to handle overlapping triangles,

thus target buffers are cleared before rendering. All other passes w

CHAPTER 6

6. EXPERIMENTS

48

This chapter presents the experiments conducted to test the algorithm presented throughout

6.1

Pro ameras and a real-time

application is developed. a acquisition from the eras display of arbitrary view

ages for

stereo vision. Histogram equalization [97] between cameras is performed in software to

SwissRanger SR-3000 time-of-flight camera is used for range measurements. Systematic

ed h software ing SDK of SR-3000. This correction includes both

den n

this thesis. Experimental setup used to obtain video data is explained and empirical and

numerical resu s are give . lt n

 Expe ntal etup rime S

posed algorithm is tested with color and time-of-flight c

Dat cam and

generation results take stage together in a single architecture. Data acquisition setup is seen

in Figure 20.

Two LightWise LW-3-S-1394 FireWire cameras are used for obtaining color im

match their colors. This step ensures correct results in block matching of stereo

correspondence and consistent color output in view rendering stage.

error, which is mentioned in Chapter 3, in raw depth measurements from time-of-flight

camera are co ectrr wit us

oisi g and edian f tering. m il

Figure 20 Data acquisition setup used in the experiments.

49

Camera calibration is accomplished with OpenCV library functions, linked into the real-

time demo application. A flat board rd pattern is shown to all cameras

and capture command is sent to align intrinsic and extrinsic properties of all cameras.

Several variations of the checkerboard pattern is needed to obtain robust values for

projection matrices ࡼ, ࡼோ an

6.2 Visual Results

Typical captures obtained with the acquisition setup are given in Figure 21. The

Depth warping and estimation results are given in Figure 22. Rubber sheet artifacts

introduced by occlusions are almost eliminated with triangle suppression and bilateral

filtering. However, jagged depth boundaries appear because of false alarms occurring at

near occlusion areas.

Several intermediate views generated at the display stage are given in Figure 23.

Intermediate views from ballet studio and breakdancers sequences are obtained by using

two high resolut depth map in

between stereo viewpoints. Numerical results for these sets are given in the next section.

 with a checkerboa

d ்ࡼி.

SwissRanger SR-3000 sensor emits 850nm infrared light ray, which FireWire cameras

cannot completely filter out, resulting in directed red illumination on color images obtained

from the stereo pair.

(a) (b) (c)

Figure 21 Several (a) left, (b) time-of-flight and (c) right frame groups.

ion color maps from these sets and a single downscaled

(a)

50

(b)

(c)

Figure 22 (a) Depth warping without triangle suppression, (b) depth warping with triangle

suppression and (c) depth estimation through fusion of cost functions.

51

(a) (b) (c) (d)

Figure 23 Generated intermediate views for (a) (b) capture obtained from data acquisition

setup, (c) ballet studio sequence and (d) breakdancers sequence.

52

6.3 Performance of the Algorithm

Primary objective of arbitrary view rendering is to imitate real cameras in creating

representations of 3D scenes from a requested viewpoint. Success of a specific method is

assessed by human perception. In other words, subjective quality of the rendered output

determines performance of the algorithm.

Quality of the rendered color maps can be estimated with the peak signal-to-noise ratio

(PSNR) with respect to a reference color map. Breakdancers and ballet studio datasets,

which are multiview video plus depth frame sequences, are used to build a testing ground

for the algorithm presented in this thesis. igure 24 shows the relative configuration of

eight different color cameras used in obtaining the sequence and the estimated depth data.

)

)

Figure 24 Camera alignments used in breakdancers and ballet studio sequences. (a) Behind

the camera and (b) top view.

The arbitrary view rendering algorithm is tested in different configurations. Camera 4 is

selected as the reference viewpoint and its color map is estimated through neighboring

color maps.

Low resolution output of SR-3000 and its systematic errors are simulated by downscaling

the depth map of Camera 4 and introduction of white Gaussian depth noise. An average

PSNR value is calculated between the actual color map and its estimation over all frames

and for both datasets. Obtained quality results are given in Table 1 with respect to the

F

(a

(b

standard deviation of Gaussian noise added to the initial depth map. PSNR values obtained

from high resolution depth maps without time-of-flight camera simulation is also given.

4

7
6

5 3 2
1

0

2
7 6 1 0 3 4 5

53

in PSNR for different stereo setups and noise Table 1 Quality of the view rendering method

levels.

Dataset
Stereo

Pair

High

Res.
ாߪ ൌ

0.01
255

ாߪ ൌ
0.1
255

ாߪ ൌ
1

255
ாߪ ൌ

10
255

breakdancers 3 and 5 30.36 29.10 29.10 29.13 26.47

breakdancers 2 and 6 29.58 28.17 28.17 28.11 24.08

breakdancers 1 and 7 27.29 26.14 26.14 26.07 22.42

ballet studio 3 and 5 27.19 25.37 25.36 25.32 22.19

ballet studio 2 and 6 25.70 24.24 24.24 24.10 21.19

ballet studio 1 and 7 21.51 20.68 20.68 20.69 18.80

Individual performance of depth warping algorithm is calculated by comparing warping

stereo depth views onto target view and rping target depth map onto its original

viewpoint. Table 2 lists average depth PSNR values between source depth images and their

back-projected counterparts for left and right views

Table 2 Average signal preservation in PSNR due to depth warping from source view to

target view and backwards.

 wa

Dataset 3 and 5 2 and 6 1 and 7

breakdancers 32.36 32.07 31.85

ballet studio 24.20 23.07 22.72

Quality comparison tests for both final rendered images and intermediate depth warping

stage show that the algorithm performance is very susceptible to the stereo configuration

used. Depth warping onto stereo viewpoints perform best when these camera position are

nearer to the depth sensor. Furthermore, the algorithm is robust against depth distortions up

to a certain noise level where performance decays beyond.

The algorithm causes erosion of small object regions at both depth estimation and view

rendering stages. This weakness is most exposed within both subjective and numerical

results of the ballet studio dataset.

54

scussed in this thesis are implemented and tested under an arbitrary view synthesis

framework. A benchmark application is d e wh h can h s data e n

and to t ce v n b th ls and target view camera

can be freely moved around. A screenshot d 5.

erimental benchmark.

. The user is allowed to navigate the target camera inside a

region on this surface near source cameras and the target camera always looks at a certain

point in scene space manner, two sphe ctio sed for navigating

camera around the scene and one radial parameter controls zoom.

Real data capture is available through a datas e the b ark.

6.4 Software Benchmark

Ideas di

ev loped,

e switched

 is provide

ic users

rough pane

in Figure 2

 c oo e , r solutio

 algorithm est. Sour iews ca

Figure 25 Screenshot from the exp

The benchmark developed offers navigation inside a view surface extracted from the

geometry of source cameras

. In this rical dire ns are u

special et insid enchm

55

CHAPTER 7

This chapter begins with a summary of the work presented in this thesis. Second section

provides remarks on the experimental results obtained and the third and final section

provides a discussion of possible improvements to the methods presented.

7.1 Summary

Arbitrary view rendering is the problem of generating missing views of real world scenes

from actual views. Generation of intermediate views is a primary concern for 3DTV

systems. This thesis provides an intermediate viewing framework from content acquisition

to display front e resolution time-

of-flight sensor.

planar depth

maps from real world scenes. Despite their low resolution outputs, they provide valuable

assistance to passive methods for depth estimation.

Arbitrary view rendering is suitable for 3DTV applications only if achieved in real-time

rates. Graphics processing units provide a sensible alternative to standard microprocessors

by supporting hardwired rendering phases and programmability with high throughput.

An arbitrary view rendering framework which consists of data acquisition and view display

stages is presented in this thesis. Raw data obtained from stereo camera pair and ToF

sensors are converted into multiview plus depth data format which is suitable for current

7. CONCLUSIONS

nd by using a high resolution camera pair and a single low

Arbitrary view rendering is explained in image based rendering context, which

encapsulates special rendering techniques for creating digital images from photographic

representations of scenes. Image based rendering is a step forward from model based

rendering methods to achieve artificial photorealism.

Time-of-flight cameras are relatively new range sensing devices which provide

56

transmission and broadcast infrastructures. Several alternative approaches for depth and

arbitrary view estimation are compar

7.2 Discussions

Depth sensing is strictly fu task for computer vision and

computer graphics applications. Passive methods like stereo matching have limitations

mainly in textureless regions and discontinuities. Active range sensing devices, on the other

hand, provide accurate depth information for large flat regions but they fail at regions with

Overcoming limitations of both passive and active methods for depth estimation is possible

ods. General layout of the scene in 3D space can be extracted with

ented approaches can be time consuming but real-time rates can be

te extraction of depth information.

 a reliable acquisition system for 3D if

it is followed by accurate data transformation.

computing power through parallelization beyond stream processing paradigms, thus

ed.

ndamental yet a challenging

high texturing. Both low resolution output and intensity related errors of range sensing

devices lead to erroneous results for non-flat image portions.

with fusion of these meth

time-of-flight sensors, smaller disparity details can be corrected with stereo matching and

boundaries can be aligned to accompanying color maps by bilateral filtering leading to

depth maps more accurate than a single approach can achieve.

After per pixel estimation of depth maps, global optimization methods can be utilized. Error

minimization ori

achieved with compute unified programming [98]. Easy access to high performance

parallelization on GPUs for general purpose tasks, as discussed in Chapter 4, is helpful

when computing capabilities of CPUs are left alone for other tasks.

Arbitrary view rendering is possible with accura

Although multiview video plus depth data transmission format is a viable choice for 3DTV

applications, data acquisition for obtaining aligned depth maps for color images is a

problem. Stereo plus ToF camera structure provides

7.3 Future Work

Dense depth estimation is an active research area and a significant portion of literature on

this topic focuses on global optimization methods as mentioned in Chapter 5. Cost

minimization methods help align color and depth maps better and eliminate small artifacts

occurring in depth maps. Compute unified architectures presented in Chapter 4 provide

57

augmented inside the framework with compute

unified architectures to eliminate the need to switch between devices.

Arbitrary view rendering systems commonly employ post-processing steps that correct

providing the assistance of GPU acceleration for non-rendering related problems. Global

depth approximation methods can be

artifacts occurring after color warping. Smolic et al. [13] provide a set of correction

techniques which are not trivial to parallelize with stream processing paradigms. Compute

unified architectures, again, can be useful for extra view correction measures after

rendering passes are completed.

58

[2] Robert A. Weale, "Brewster and Wheatstone on vision," Journal of Modern Optics,

vol. 31, no. 3, p. 274, March 1984.

[3] Janusz Konrad and Michael Halle, "3-d displays and signal processing: an answer to 3-

d ills?," IEEE Signal Processing Magazine, vol. 24, no. 6, pp. 97-111, November

2007.

[4] Mürsel Yıldız and Gözde Bozdağı Akar, "User directed view synthesis on omap

processors," in Proceedings of 3DTV Conference (3DTV), Tampere, Finland, 2010.

[5] Leonard McMillan and Gary Bishop, "Plenoptic modeling: an image-

REFERENCES

[1] Akira Kubota, Aljoscha Smolic, Marcus Magnor, Masayuki Tanimoto, and Tsuhan

Chen, "Multiview imaging and 3dtv," IEEE Signal Processing Magazine, vol. 24, no.

6, pp. 10-21, November 2007.

based rendering

system," in Proceedings of the 22nd International Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH), Los Angeles, California, U.S.A., 1995, pp.

29-46.

[6] Edward H. Adelson and James R. Bergen, "The plenoptic function and the elements of

early vision," in Computational Models of Visual Processing, Michael Landy and J.

Anthony Movshon, Eds. Cambridge, Massachusetts, United States: The MIT Press,

1991, ch. 1, pp. 3-20.

[7] Marc Levoy and Pat Hanrahan, "Light field rendering," in Proceedings of the 23rd

International Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), New Orleans, Louisiana, U.S.A., 1996, pp. 31-42.

[8] Ruigang Yang, Marc Pollefeys, Hua Yang, and Greg Welch, "A unified approach to

real-time, multi-resolution, multi-baseline 2d view synthesis and 3d depth estimation

using commodity graphics hardware," International Journal of Image and Graphics

59

(IJIG), vol. 4, pp. 627-651, October 2004.

[9] Ruigang Yang and Marc Pollefey

graphics hardware," in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Chapel Hill, North Carolina, U.S.A., 2003, pp. 211-217.

[10]

ndling," in Proceedings of the 1st European Conference

on Visual Media Production (CVMP), London, United Kingdom, 2004, pp. 245-254.

[11] Arbitrary viewpoint video synthesis from multiple

uncalibrated cameras," IEEE Transactions on Systems, Man, and Cybernetics (SMC),

[12] Ito and Hideo Saito, "Free-viewpoint image synthesis from multiple-view

images taken with uncalibrated moving cameras," in Proceedings of the IEEE

[13] Aljoscha Smolic et al., "Intermediate view interpolation based on multiview video plus

[14] Daniel Jung and Reinhard Koch, "Efficient depth-compensated interpolation for full

[15] ge mosaicing for tele-reality applications," in Proceedings of the

Second IEEE Workshop on Applications of Computer Vision (WACV), Sarasota,

[16] zed reality: concepts

and early results," in Proceedings of the IEEE Workshop on Representation of Visual

[17]

image-based rendering with projective texture-mapping," University of California at

s, "Multi-resolution real-time stereo on commodity

 Jan Woetzel and Reinhard Koch, "Real-time multi-stereo depth estimation on gpu with

approximative discontinuity ha

 Satoshi Yaguchi and Hideo Saito, "

Part B: Cybernetics, vol. 34, no. 1, pp. 430-439, February 2004.

 Yosuke

International Conference On Image Processing (ICIP), Genoa, Italy, 2005, pp. 29-32.

depth for advanced 3D video systems," in Proceedings of the IEEE International

Conference on Image Processing (ICIP), San Diego, California, U.S.A., 2008, pp.

2448-2451.

parallax displays," in International Symposium on 3D Data Processing, Visualization

and Transmission (3DPVT), Paris, France, 2010.

 Richard Szeliski, "Ima

Florida, U.S.A., 1994, pp. 44-53.

 Takeo Kanade, P. J. Narayanan, and Peter W. Rander, "Virtuali

Scenes, Cambridge, Massachusetts, U.S.A., 1995, pp. 69-76.

 Paul E. Debevec, Yizhou Yu, and George Boshokov, "Efficient view-dependent

60

hnical Report CSD-98-1003, 1998.

Interactive Techniques (SIGGRAPH), New Orleans, Louisiana, U.S.A., 1996, pp. 11-

[19] l

Cohen, "Unstructured lumigraph rendering," in Proceedings of the 28th International

[20] Matthew Uyttendaele et al., "High-quality image-based interactive exploration of real-

[21] Kanji Tanaka, Kuniaki Otsuka, Mitsuru Hirayama, and Eiji Kondo, "View synthesis

[22] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus Larsen, "Time-of-flight

[23] Marc Levoy, "Display of surfaces from volume data," IEEE Computer Graphics and

[24] ter, and Pat Hanrahan, "Volume rendering," AC

Berkeley, Berkeley, California, U.S.A., Tec

[18] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik, "Modeling and rendering

architecture from photographs: a hybrid geometry- and image-based approach," in

Proceedings of the 23rd International Conference on Computer Graphics and

20.

 Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michae

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New

York City, New York, U.S.A., 2001, pp. 425-432.

world environments," IEEE Computer Graphics and Applications (CG&A), vol. 24,

no. 3, pp. 52-63, May/June 2004.

on mobile robot image database," in Proceedings of the IEEE International

Conference on Robotics and Biomimetics (ROBIO), Hong Kong SAR and Macau

SAR, P. R. China, 2005, pp. 455-461.

cameras in computer graphics," Computer Graphics Forum, vol. 29, no. 1, pp. 141-

159, February 2010.

Applications, vol. 8, no. 3, pp. 29-37, May 1988.

 Robert A. Drebin, Loren Carpen M

SIGGRAPH Computer Graphics, vol. 22, no. 4, pp. 65-74, August 1988.

[25] Rick Parent, Computer animation: algorithms and techniques, 2nd ed.: Morgan

Kaufmann, 2007.

[26] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, and Richard L.

Phillips, Introduction to computer graphics.: Addison-Wesley Longman Publishing

61

[28] D. Owens et al., "A survey of general-purpose computation on graphics

hardware," Computer Graphics Forum, vol. 26, no. 1, pp. 80-113, March 2007.

[29]

[30] algorithm," IEEE Transactions on

[31]

racy depth maps," in Proceedings of the IEEE

[32]

together with a multi-camera setup," The

[33] ietro Zanuttigh, and Guido M. Cortelazzo, "A probabilistic

n and Transmission (3DPVT), Paris,

France, 2010.

[34] cGraw-Hill,

1974.

[35] , Sur les problèmes aux dérivés partielles et leur signification

Co., Inc., 1994.

[27] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer

graphics: principles and practice, 2nd ed.: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

 John

 H. Christopher Longuet-Higgins, "A computer algorithm for reconstructing a scene

from two projections," Nature, vol. 293, pp. 133-135, September 1981.

 Richard I. Hartley, "In defense of the eight-point

Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580-593, June 1997.

 Jiejie Zhu, Liang Wang, Ruigang Yang, and James Davis, "Fusion of time-of-flight

depth and stereo for high accu

Conference on Computer Vision and Pattern Recognition (CVPR), Lexington,

Kentucky, U.S.A., 2008.

 Ingo Schiller, Christian Beder, and Reinhard Koch, "Calibration of a pmd-camera

using a planar calibration pattern

International Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences (ISPRS), vol. XXXVII, no. B5, pp. 297-302, July 2008.

 Carlo Dal Mutto, P

approach to tof and stereo data fusion," in Proceedings of the 5th International

Symposium on 3D Data Processing, Visualizatio

 Daniel N. Lapedes, Dictionary of scientific and technical terms, 4th ed.: M

 Jacques Hadamard

physique., 1902.

[36] Jose Marroquin, Sanjoy Mitter, and Tomaso Poggio, "Probabilistic solution of ill-

62

 in computational vision," Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA, Technical Report AIM-897, 1987.

[37]

Proceedings of the 7th International Joint conference on Artificial

Intelligence (IJCAI), Vancouver, British Columbia, Canada, 1981, pp. 631-636.

[38]

posed problems

 H. Harlyn Baker and Thomas O. Binford, "Depth from edge and intensity based

stereo," in

 David J. Fleet, Allan D. Jepson, and Michael R. M. Jenkin, "Phase-based disparity

measurement," Computer Vision Graphics and Image Processing (CVGIP): Image

[39] David G. Jones and Jitendra Malik, "Computational framework for determining stereo

01, pp. 30-36.

[42] Christopher Zach, Konrad Karner, and Horst Bischof, "Hierarchical disparity

[43] Kuk-Jin Yoon and In So Kweon, "Adaptive support-weight approach for

nce (PAMI), vol. 28, no. 4, pp. 650-656, January 2006.

f-flight imaging for improved 3d estimation," International Journal

Understanding, vol. 53, no. 2, pp. 198-210, March 1991.

correspondence from a set of linear spatial filters," Image and Vision Computing, vol.

10, no. 10, pp. 699-708, December 1992.

[40] Karsten Mühlmann, Dennis Maier, Jürgen Hesser, and Reinhard Männer, "Calculating

dense disparity maps from color stereo images, an efficient implementation," in

Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV),

Kauai, Hawaii, U.S.A., 20

[41] Geoffrey Egnal and Richard P. Wildes, "Detecting binocular half-occlusions:

empirical comparisons of five approaches," IEEE Transactions on Pattern Analysis

and Machine Inteligence (PAMI), vol. 22, no. 7, pp. 1127-1133, July 2002.

estimation with programmable 3D hardware," in Proceedings of the 12th International

Conference in Central Europe on Computer Graphics (WSCG), Plzeň, Czech

Republic, 2004, pp. 275-282.

correspondence search," IEEE Transactions on Pattern Analysis and Machine

Intelige

[44] Sigurjón Árni Guðmundsson, Henrik Aanæs, and Rasmus Larsen, "Fusion of stereo

vision and time-o

of Intelligent Systems Technologies and Applications (IJISTA), vol. 5, no. 3, pp. 425-

63

[45] Bogumil Bartczak, Daniel Jung, and and Reinhard Koch, "Real-time neighborhood

[46] Carlo Dal Mutto, Pietro Zanuttigh, and Guido M. Cortelazzo, "Accurate 3d

[47] Geert Van Meerbergen, Maarten Vergauwen, Marc Pollefeys, and Luc Van Gool, "A

[48] Yasutaka Furukawa and Jean Ponce, "Accurate, dense, and robust multi-view

[49] "A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms," International Journal on Computer Vision

[50] n approach

to layer extraction from image sequences," in Proceedings of the 7th IEEE

[51] Szeliski, "Stereo matching with nonlinear diffusion,"

International Journal on Computer Vision (IJCV), vol. 28, no. 2, pp. 155-174, June

[52] te energy minimization

via graph cuts," IEEE Transactions on Pattern Analysis and Machine Intelligence

[53]

433, November 2008.

based disparity estimation incorporating temporal evidence," Lecture Notes in

Computer Science (LNCS): Pattern Recognition, vol. 5096, pp. 153-162, June 2008.

reconstruction by stereo and tof data fusion," in Proceedings of the Italian Academic

Association of Telecommunications Meeting (GTTI), Brescia, Italy, 2010.

hierarchical symmetric stereo algorithm using dynamic programming," International

Journal of Computer Vision (IJCV), vol. 47, no. 3, pp. 275-285, June 2002.

stereopsis," in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Minneapolis, Minnesota, U.S.A., 2007.

 Daniel Scharstein and Richard Szeliski,

(IJCV), vol. 47, pp. 7-42, April 2002.

 Philip H. S. Torr, Richard Szeliski, and P. Anandan, "An integrated bayesia

International Conference on Computer Vision (ICCV), Kerkyra, Corfu, Greece, 1999,

pp. 983-990.

 Daniel Scharstein and Richard

1998.

 Yuri Boykov, Olga Veksler, and Ramin Zabih, "Fast approxima

(PAMI), vol. 23, no. 11, pp. 1222-1239, November 2001.

 Marshall F. Tappen and William T. Freeman, "Comparison of graph cuts with belief

propagation for stereo, using identical mrf parameters," in Proceedings of the 9th

64

ce on Computer Vision (ICCV), Nice, France, 2003, pp. 900-

906.

[54]

al

Symposium on Visual Computing (ISVC), Las Vegas, Nevada, U.S.A., 2009, pp. 228-

[55] algorithm:

various tools for computer vision," The Institute of Electronics, Information and

[56] for mixed

reality," Computer Graphics Forum, vol. 25, no. 1, pp. 29-51, March 2006.

[57]

International Conferen

 Bogumil Bartczak and Reinhard Koch, "Dense depth maps from low resolution time-

of-flight depth and high resolution color views," in Proceedings of the Internation

239.

 Vincent Nozick, François de Sorbier, and Hideo Saito, "Plane-sweep

Communication Engineers (IEICE), Technical Report PRMU2007-259, 2008.

 Katrien Jacobs and Céline Loscos, "Classification of illumination methods

 Naho Inamoto and Hideo Saito, "Free viewpoint video synthesis and presentation of

sporting events for mixed reality entertainment," in Proceedings of the 2004 ACM

SIGCHI International Conference on Advances in Computer Entertainment

[58] teven M. Seitz, "Multi-view stereo revisited," in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

[59]

uction," in Third International Symposium on 3D Data Processing,

Visualization and Transmission (3DPVT), Chapel Hill, North Carolina, U.S.A., 2006,

[60] egal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli, "Fast

shadows and lighting effects using texture mapping," ACM SIGGRAPH Computer

[61] d approach on 3d-tv," in

Proceedings of the International Broadcast Conference (IBC), Amsterdam,

Technology (ACE), Singapore, 2004, pp. 42-50.

 Michael Goesele, Brian Curless, and S

(CVPR), New York City, New York, U.S.A., 2006, pp. 2402-2409.

 Christopher Zach, Mario Sormann, and and Konrad Karner, "High-performance multi-

view reconstr

pp. 113-120.

 Mark S

Graphics, vol. 26, no. 2, pp. 249-252, July 1992.

 Christoph Fehn et al., "An evolutionary and optimise

Netherlands, 2002, pp. 357-365.

65

[62]

peg standards," in Proceedings of the IEEE International Conference on

Multimedia and Expo (ICME), Toronto, Ontario, Canada, 2006, pp. 2161-2164.

[63]

rence on Image Processing (ICIP), San Antonio, Texas, U.S.A., 2007, pp. 201-

204.

[64]

l. 5, pp.

135-146, June 2007.

[65] e imaging

with sub-centimeter depth resolution (SwissRanger™)," in Proceedings of SPIE:

[66] -3000 manual, version 1.03. SR-3000

Delivery Package.

[67]

 Aljoscha Smolic et al., "3d video and free viewpoint video - technologies, applications

and m

 Philipp Merkle, Aljoscha Smolic, Karsten Müller, and Thomas Wiegand, "Multi-view

video plus depth representation and coding," in Proceedings of the IEEE International

Confe

 Thorsten Ringbeck, Tobias Möller, and Bianca Hagebeuker, "Multidimensional

measurement by using 3-d pmd sensors," Advances in Radio Science (ARS), vo

 Thierry Oggier et al., "An all-solid-state optical range camera for 3D real-tim

Optical Design and Engineering, vol. 5249, doi. 10.1117/12.513307, St. Etienne,

France, 2003, pp. 534-545.

 MESA Imaging. (2006, October) Swissranger sr

 Willard S. Boyle and George E. Smith, "Charge coupled semiconductor devices," Bell

System Technical Journal, vol. 49, no. 4, pp. 587-593, April 1970.

[68] Robert Lange and Peter Seitz, "Solid-state time-of-flight range camera," IEEE Journal

of Quantum Electronics, vol. 37, no. 3, pp. 390-397, March 2001.

 Antonio Medi[69] na, Francisco Gayá, and Francisco del Pozo, "Compact laser radar and

three-dimensional camera," Journal of the Optical Society of America (JOSA) A:

[70] filtering for gray and color images,"

in Proceedings of the 6th International Conference on Computer Vision (ICCV),

[71] James Davis, and David Nistér, "Spatial-depth super

resolution for range images," in Proceedings of the IEEE Conference on Computer

Optics, Image Science, and Vision, vol. 23, no. 4, pp. 800-805, April 2006.

 Carlo Tomasi and Roberto Manduchi, "Bilateral

Bombay, India, 1998, pp. 839-846.

 Qingxiong Yang, Ruigang Yang,

66

[72] ns for

realism and interactivity," in Workshop on ToF-Camera based Computer Vision with

[73] Kahlmann, Fabio Remondino, and Sébastien Guillaume, "Range imaging

technology: new developments and applications for people identification and

[74] Marvin Lindner and Andreas Kolb, "Lateral and depth calibration of pmd-distance

[75] rtler, Li-wei He, and Richard Szeliski, "Layered depth

images," in Proceedings of the 25th International Conference on Computer Graphics

Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, U.S.A., 2007.

 Andreas Kolb, Erhardt Barth, and Reinhard Koch, "ToF-sensors: new dimensio

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage,

Alaska, U.S.A., 2008.

 Timo

tracking," in Proceedings of SPIE: Videometrics IX, vol. 6491, doi.

10.1117/12.702512, San Jose, California, USA, 2007.

sensors," Lecture Notes in Computer Science (LNCS): Advances in Visual Computing,

vol. 4292, pp. 524-533, November 2006.

 Jonathan Shade, Steven Go

and Interactive Techniques (SIGGRAPH), New York City, New York, U.S.A., 1998,

pp. 231-242.

[76] Anatol Frick, Falko Kellner, Bogumil Bartczak, and Reinhard Koch, "Generation of

3d-tv ldv-content with time of flight camera," in Proceedings of 3DTV Conference

(3DTV), Potsdam, Germany, 2009.

[77] bined approach for

estimating patchlets from pmd depth images and stereo intensity images," Lecture

[78] Bogumil Bartczak, Ingo Schiller, Christian Beder, and Reinhard Koch, "Integration o

 Christian Beder, Bogumil Bartczak, and Reinhard Koch, "A com

Notes in Computer Science (LNCS): Pattern Recognition, vol. 4713, pp. 11-20,

November 2007.

f

ata Processing, Visualization and Transmission

a time-of-flight camera into a mixed reality system for handling dynamic scenes,

moving viewpoints and occlusions in real-time," in Proceedings of the 4th

International Symposium on 3D D

(3DPVT), Atlanta, Georgia, U.S.A., 2008.

67

[79] asing

realism and supporting content planning for dynamic scenes in a mixed reality system

[80] Böhme, Thomas Martinetz, and Erhardt Barth, "Geometric

invariants for facial feature tracking with 3d tof cameras," in IEEE International

[81] Fihl, "View invariant gesture

recognition using the csem swissranger sr-2 camera," International Journal o

 Ingo Schiller, Bogumil Bartczak, Falko Kellner, and Reinhard Koch, "Incre

incorporating a time-of-flight camera," in Proceedings of the 5th European

Conference on Visual Media Production (CVMP), London, United Kingdom, 2008.

 Martin Haker, Martin

Symposium on Signals, Circuits and Systems (ISSCS), Iaşi, Romania, 2007, pp. 109-

112.

 Michael B. Holte, Thomas B. Moeslund, and Preben

f

[82] Steven Collins, "Game graphics during the 8-bit computer era," ACM SIGGRAP

Intelligent Systems Technologies and Applications (IJISTA), vol. 5, no. 3/4, pp. 295-

303, November 2008.

H

[83]

.: CRC Press, 2007, p. 690.

Computer Graphics, vol. 32, no. 2, pp. 47-51, May 1998.

 Julio Sanchez and Maria P. Canton, "Displaying bit-mapped images," in Software

Solutions for Engineers and Scientists

[84] NVIDA Corporation. (retrieved in 2010, December) Geforce 256: the world's first gpu.

[Online]. http://www.nvidia.com/page/geforce256.html

[85] Khronos Group. (retrieved in 2010, December) Opengl registry.

[Online]. http://www.opengl.org/registry/

 John D. Owens et al., "Gpu computing," Proceedings of the IEEE, vol. 96, no. 5, pp.

879-899, May 2008.

[86]

[88]

[89] 010, December) Opencl overview.

[Online]. http://www.khronos.org/opencl/

[87] Khronos Group. (2010, July) Opengl 4.1 core profile specification.

 NVIDA Corporation. (2010, June) Nvidia cuda c programming guide, version 3.1.1.

CUDA Toolkit 3.1.

 Khronos Group. (retrieved in 2

68

mputer Vision (ECCV), Marseille, France, 2008.

[93] Ingo Schiller and Reinhard Koch, "Datastructures for capturing dynamic scenes with a

[90] K. Berker Loğoğlu and Tuğrul K. Ateş, "Speeding-up pearson correlation coefficient

calculation on graphical processing units," in Proceedings of the IEEE 18th Signal

Processing, Communication and Applications Conference (SIU), Diyarbakır, Turkey,

2010.

[91] Derek Chan, Hylke Buisman, Christian Theobalt, and Sebastian Thrun, "A noise-

aware filter for real-time depth upsampling," in Workshop on Multi-camera and Multi-

modal Sensor Fusion Algorithms and Applications with Tenth European Conference

on Co

[92] A. Aydın Alatan et al., "Scene representation technologies for 3dtv - a survey," IEEE

Transactions on Circuits and Systems for Video Technology (CSVT), vol. 17, no. 11,

pp. 1587-1605, November 2007.

time-of-flight camera," Lecture Notes In Computer Science (LNCS): Dynamic 3D

Imaging, vol. 5742, pp. 42-57, October 2009.

[94] Eren Halici and A. Aydin Alatan, "Watermarking for depth image-based rendering," in

Proceedings of the IEEE International Conference on Image Processing (ICIP), Cairo,

Egypt, 2009, pp. 4217-4220.

[95] daele, Simon Winder, and

Richard Szeliski, "High-quality video view interpolation using a layered

GRAPH), Los Angeles, California, U.S.A.,

[96] uel Sainz, and Yu Meng, "Dmesh: fast depth-image meshing and

 4, pp. 653-681,

October 2004.

[97] Digital image processing, 3rd ed.: Pearson

Education, Inc., 2008.

[98] Barandiaran, and Oscar Ruiz, "Realtime

 C. Lawrence Zitnick, Sing Bing Kang, Matthew Uytten

representation," in Proceedings of the 31st International Conference on Computer

Graphics and Interactive Techniques (SIG

2004, pp. 600-608.

 Renato Pajarola, Mig

warping," International Journal on Image Graphics (IJIG), vol. 4, no.

 Rafael C. Gonzalez and Richard E. Woods,

 John Congote, Javier Barandiaran, Iñigo

69

dense stereo matching with dynamic programming in CUDA," in Proceedings of the

19th Spanish Congress of Graphical Informatics (CEIG), San Sebastián, Spain, 2009,

pp. 231-234.

	Abstract
	Öz
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapters
	1. Introduction
	1.1 Scope
	1.2 Related Work
	1.3 Outline

	2. Image Based Rendering
	2.1 Rendering and Approaches
	2.2 Pinhole Camera Model and Inverse Projection Problem
	2.3 Stereo Correspondence
	2.4 Applications

	3. Time-of-Flight Cameras
	3.1 Working Principle
	3.2 Challenges
	3.3 Applications

	4. Graphics Processing Units
	4.1 Graphics Pipeline
	4.2 Programmable Pipelines
	4.3 Compute Unified Architectures

	5. Proposed Method
	5.1 Content Format
	5.2 Problem Formulation
	5.3 Depth Estimation
	5.3.1 Time-of-Flight Depth Warping
	5.3.2 Stereo Matching
	5.3.3 Bilateral Filtering
	5.3.4 Depth Cost Fusion

	5.4 Arbitrary View Rendering
	5.4.1 Video Plus Depth Warping
	5.4.2 Post-Processing

	5.5 Implementation with Graphics Processing Units

	6. Experiments
	6.1 Experimental Setup
	6.2 Visual Results
	6.3 Performance of the Algorithm
	6.4 Software Benchmark

	7. Conclusions
	7.1 Summary
	7.2 Discussions
	7.3 Future Work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 /TRK ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

