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ABSTRACT 

REAL-TIME ARBITRARY VIEW RENDERING FROM STEREO VIDEO AND 

TIME-OF-FLIGHT CAMERA 

 

Ateş, Tuğrul Kağan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

December 2010, 69 pages 

 

Generating in-between images from multiple views of a scene is a crucial task for both 

computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot 

navigation are some of many applications which benefit from arbitrary view synthesis, if it 

is achieved in real-time. Most modern commodity computer architectures include 

programmable processing chips, called Graphics Processing Units (GPU), which are 

specialized in rendering computer generated images. These devices excel in achieving high 

computation power by processing arrays of data in parallel, which make them ideal for real-

time computer vision applications. This thesis focuses on an arbitrary view rendering 

algorithm by using two high resolution color cameras along with a single low resolution 

time-of-flight depth camera and matching the programming paradigms of the GPUs to 

achieve real-time processing rates. Proposed method is divided into two stages. Depth 

estimation through fusion of stereo vision and time-of-flight measurements forms the data 

acquisition stage and second stage is intermediate view rendering from 3D representations 

of scenes. Ideas presented are examined in a common experimental framework and 

practical results attained are put forward. Based on the experimental results, it could be 

concluded that it is possible to realize content production and display stages of a free-

viewpoint system in real-time by using only low cost commodity computing devices. 
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ÖZ 

İKİ GÖRÜNTÜLÜ VİDEO VE UÇUŞ SÜRESİ KAMERASI İLE GERÇEK 

ZAMANLI GELİŞİGÜZEL GÖRÜ İMGESİ OLUŞTURULMASI 

 

Ateş, Tuğrul Kağan 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

Aralık 2010, 69 sayfa 

 

Bir sahnenin, çoklu görüntülerinden arada kalan görüntülerini oluşturmak, hem bilgisayarla 

görü hem de bilgisayar grafiği alanları için önemli bir iştir. Fotogerçekçi imge oluşturma, 

3BTV ve robot yön güdümü, gerçek-zamanlı elde ediliyorsa, gelişigüzel görü imgesi 

bireşiminden faydalanan birçok uygulamadan bazılarıdır. Tüketicilere yönelik bilgisayar 

mimarilerinin çoğunluğu Grafik İşleme Birimi (GPU) adında, bilgisayarla oluşturulmuş 

görüntüler oluşturmak için özelleşmiş, programlanabilir yongalar içermektedir. Bu 

aygıtların veri dizilimlerini paralel olarak işleyerek yüksek işlem gücü elde etmede üstünlük 

sağlamaları, onları gerçek-zamanlı bilgisayarla görü uygulamalarında tercih edilir kılar. Bu 

tezin odağında, iki yüksek çözünürlüklü renk kamerası ile bir düşük çözünürlüklü uçuş-

zamanı derinlik kamerası kullanan ve gerçek zamanda işleme hızını elde etmek için 

GPUların programlama tarzlarına eşlenik olan bir gelişigüzel görü imgesi oluşturma 

algoritması bulunmaktadır. Önerilen yöntem iki safhaya ayrılmaktadır. İkili görü ve uçuş-

zamanı ölçümleri sayesinde derinlik hesaplama ilk safhayı oluşturur ve ikinci safha 

sahnelerin 3B gösterimlerinden ara görü imgesi oluşturulmasıdır. Sunulan fikirler ortak bir 

deneysel çerçevede incelenmiş ve elde edilen pratik sonuçlar ortaya konmuştur. Deneysel 

sonuçlara dayanarak, bir serbest bakış açısı sisteminin içerik üretimi ve görüntüleme 

aşamalarının düşük maliyetli hesaplama cihazları ile gerçek zamanda gerçekleştiriminin 

mümkün olduğu çıkarımına varılabilir. 
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CHAPTERS

CHAPTER 1 

1. INTRODUCTION 

3D television (3DTV) is a display system that offers depth cues beyond 2D planar images 

to enable perception of 3D vision in multimedia. Free viewpoint television (FTV) is another 

system for viewing video with freely adjustable 3D viewpoints to view the content. 3DTV 

and FTV together define a new inventory of commodity display technologies aiming 

enriched user experience surpassing those of conventional 2D displays [1]. Research on 

these devices combines computer vision, computer graphics, multimedia, human-machine 

interaction, optics and many other fields. 

Arbitrary view rendering is generation of images for virtual cameras by using 3D video 

content and it can be accepted as a common task for certain FTV and 3DTV applications. 

Design of an arbitrary view rendering algorithm is closely related to content production, 

transmission and display needs along with corresponding technologies. 

Devices and gadgets that offer 3D perception of planar images are invented as early as 

during 19th century [2]. A stereoscope offers depth perception from two close views of a 

scene via crossing of the eyes as illustrated in Figure 1a. 3D perception devices evolved 

from stereoscope to parallax stereograms and holograms of 20th century [3]. Contemporary 

technologies to display 3D moving pictures build upon foundations of these early attempts. 

Stereoscopy refers to all 3D perception systems that employ two views of a scene to be 

perceived with respective eyes. Anaglyphic stereoscopy provides two views of the scene 

content with different colors. Specialized glasses with red-green or red-cyan spectral filters 

are used to pass each image into a different eye to stimulate binocular depth. Polarized 

stereoscopy solves the color loss problem of anaglyphic methods by filtering through 

passive polarizing filter glasses. A display system for polarized 3D requires two different 

types of projectors emitting lights at different orientation of oscillations. LCD shutter 

stereoscopy is a different color preserving and filter lens driven 3D technology that utilizes 

active viewing gadgets. LCD shutter displays emit two views of a scene with an alternating 
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sequence, synchronized to electronic shutter glasses which pass each view to its respective 

eye. Gadgets used for stereoscopic systems are shown in Figure 1. 

Autostereoscopy refers to stereoscopic display technologies that do not require special gears 

for viewing 3D content. Parallax barrier devices achieve this effect by pointed lights at 

two eyes to see different views, if the viewer is positioned in a defined spot in front of the 

display. Lenticular lenses are specialized lenses that magnify different colors for different 

viewing angles. An array of lenticular lenses is used in an autostereoscopic 3DTV which 

provides different views of a scene when viewed from different angles. 

 
(a) (b) 

  
(c) (d) 

Figure 1 (a) A stereoscope illustration from 1882. Modern variants are (b) anaglyphic, (c) 

RealD circularly polarized and (d) ASUS LCD shutter glasses (CC, Wikimedia Commons). 

Free viewpoint television (FTV) or freeview television is any television setup which allows 

fine control of view angle and position through a remote control. Freeview paradigm adds 

an enhancement of user experience by adding interactivity and choice over the presentation 

of video content. FTV can be combined with either traditional 2D displays or 3D 

technologies discussed here if 3D content is supplied to the device in appropriate formats. 

Free viewpoint, inherently, requires rendering of video content for requested arbitrary 

views. However, arbitrary view rendering can supplement display technologies even 
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without explicit viewpoint controls. Stereoscopic viewing technologies can benefit from 

arbitrary view rendering, if head-tracking is employed to estimate the viewing angle and 

position of the viewer; thus, interactive experience of 3D, which is similar to 

autostereoscopic displays, is achieved. On the other hand, autostereoscopic devices need to 

supply many different views of a scene to achieve acceptable results. Current lenticular lens 

based televisions on the market render up-to 46 views of video content. A feasible solution 

is dynamic generation of in-between views from multiview content captured with a less 

number of cameras. 

Handhelds device manufacturers made it possible to watch television, movies and other 

video content in these smaller devices. Sizes of these devices make arbitrary view 

navigation easier than remote controlled display devices. Viewpoint input through fingers 

or device orientation [4] to view multimedia content leads to a new human machine 

interaction paradigm. 

Advances in display technologies are coupled with advances in image capturing and 

generation technologies. 3DTV and FTV are made possible with new data acquisition 

devices and practices to create the three dimensional content required for novel display 

systems. Acquisition devices, which are aimed at obtaining 3D representations, are 

presented in Chapter 3, while Chapter 5 discusses different scene representation alternatives 

for transmission to 3D display systems. A broad comparison of 3D technologies and 

conventional broadcast systems is given in Figure 2. 

1.1 Scope 

Multimedia imaging for 3D video is an active topic where standards for content production, 

transmission and display are still being stabilized. This thesis work focuses on the scenario 

for 3D imaging where scenes are captured through a stereo camera pair and a time-of-flight 

camera, transmission is applied in compressed multiview video plus depth format and 

arbitrary view rendering is employed for 2D free viewpoint controlled display. 

Terminology is given in image based rendering context and strong emphasis is given upon 

graphics processing units. GPUs and their programming mindset enable high speed 

realization of the proposed algorithm. A summary of the scope of the thesis and comparison 

to more generic frameworks are given in Figure 2. 

Result of this thesis is a novel framework, which combines several methods in the literature 

to achieve real-time 3D capture of scenes and their freeview display. Main contribution of 



this work is a reinterpretation of these depth estimation and view rendering algorithms to 

match rendering paradigms of GPUs. Each component in the framework is presented in 

detail with related alternatives in the literature throughout the thesis. 

In this thesis, a depth estimation algorithm through fusion of time-of-flight measurements, 

stereo matching and bilateral filtering is proposed. Two color images along with their 

estimated depth maps are used in the rendering algorithm which utilizes pixel-by-pixel 

post-processing filters in order to create a novel intermediate view. Both depth estimation 

and view rendering stages are designed to work in real-time with graphical processing 

units. Solutions to common problems for time-of-flight depth measurement and arbitrary 

view rendering are formulated taking restrictions of GPUs into account. 

An experimental benchmark is also developed as a part of the thesis and results are 

presented in this work. 
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(a) (b) (c) 

Figure 2 (a) Conventional television broadcast architectures versus (b) 3DTV architectures. 

(c) Arbitrary view rendering architecture presented in this thesis. 

1.2 Related Work 

In computer vision terms, McMillan and Bishop [5] regard arbitrary view rendering as the 

estimation of the values of the plenoptic function [6] for a certain viewing angle. The 

plenoptic function maps viewing parameters, namely viewing angle, scene location and 

2D Display

CRT LCD

2D Data Transmission

Luminance Chroma

2D Content Acquisition

2D Cameras 2D 
Animations

3D Display

Stereoscopy Eyewear Lenticular 
lenses

3D Data Transmission

Multiview 3D models Depth

3D Content Acquisition

Range 
scanners

Depth 
estimation

3D 
animations

2D Display

Arbitrary view 
rendering FTV

3D Data Transmission

3D Content Acquisition

Stereo camera 
pair

Time-of-flight 
camera

Video plus 
depthStereo



 
 

5 

time, to the amount of light intensity that can be seen. Their plenoptic modeling approach 

achieves generation of arbitrary views from projections of interpolation of plenoptic 

function observations. 

Levoy and Hanrahan [7] decomposes source or target views into light fields that produce 

colors. Light field rendering creates intermediate images for aligned views from a database 

of color observations of image regions grouped by the orientation of the light rays with 

respect to camera axes. 

Yang et al. [8,9] generalizes the plane sweep algorithm for stereo disparity estimation to 

multiview case, provides an extension to estimate scene views and offers novelties for 

optimal utilization of graphics processing units for solving the freeview rendering problem. 

Weaknesses of their algorithm at discontinuities are solved by approximative occlusion 

handling [10]. 

Full extraction of 3D information from multiview images is offered in works of Yaguchi 

[11] and Ito [12] where volumetric methods are employed to form model based 

representations of scenes from correspondences between images, which are required for the 

camera calibration problem presented in Chapter 2. Arbitrary views are generated by 

rendering obtained models in 3D. 

Research in free viewpoint television has led to multiview video plus depth, a content 

format presented by Smolic et al. [13]. Arbitrary view rendering is accomplished by 

warping color plus depth data from source views to target views. 

Jung and Koch [14] offers ray casting on volumetric data to render in between views for 

full parallax displays of autostereoscopic televisions. Graphics processing units are utilized 

to accelerate generation of huge amounts of data required for proper operation of these 

displays. 

In computer graphics field, view dependent texture mapping, image based modeling and 

virtual reality are some of many problems which require generation of arbitrary views using 

several photographs of the scene. These problems are solved under image based rendering 

context. 
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Szeliski [15] provides an image mosaicing algorithm for registration and resampling of 

views and Kanade et al. [16] employs multi baseline stereo algorithm for generation of 

arbitrary depth and color views, both providing discussions on virtual reality applications. 

Debevec et al. [17,18] tries to combine traditional model based approaches with image 

based algorithms for realistic graphics rendering and presents projective texture mapping 

algorithm for view dependent mapping of scene textures. Buehler et al. [19] builds a 

common framework for view dependent texture mapping algorithms through unstructured 

lumigraph rendering algorithm. 

Robotics is a field where generation of depth or color maps for arbitrary views other than 

mounted camera orientations is utilized. Uyttendaele et al. [20] offers arbitrary view 

rendering for virtual exploration of real world environments with the help of camera 

mounted mobile robots. Tanaka et al. [21] applies view rendering to obtain 3D navigation 

models from images captured with a mobile robot. 

Research incorporating computer vision algorithms and time-of-flight cameras are vast. 

3D4YOU is a single and highly related EU funded ongoing project for establishing 3DTV 

techniques utilizing ToF sensors and high resolution cameras. Scope of this project spans 

from content acquisition and transmission to 3D displays [22]. 

1.3 Outline 

This thesis is organized into seven chapters, four of which focus on a single important 

subject of the overall work. These chapters are followed by experimental and conclusive 

discussions. 

Image based rendering, presented in Chapter 2, is a catalogue of algorithms dealing with 

creating novel views of scenes from their image based representations, such as taken 

photographs. It is a highly active topic with common grounds in computer vision and 

computer graphics and is presented in detail for accurate description of rendering methods 

employed in this thesis. Methods to infer 3D scene information from their 2D projections 

are given in image based rendering framework. Inverse projection within pinhole camera 

model, the core problem occurring in arbitrary view rendering is explained and solutions 

proposed in literature are given in stereo correspondence context. Afterwards, applications 

that use image based rendering are discussed. 
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Time-of-flight cameras, presented in Chapter 3, are relatively new, low spatial resolution 

range sensors capturing planar depth information of scenes at real-time rates. In this thesis, 

they are used to obtain supplementary depth cues for 3D modeling of scenes, prior to 

arbitrary view rendering. Working principles of ToF range sensors are explained and their 

drawbacks are exposed with respective proposed solutions. 

Graphics processing units, presented in Chapter 4, are highly parallel microprocessor chips 

specialized for digital computer graphics rendering. Ever-increasing throughput rates of 

commodity GPUs and their flexibility for adapting new paradigms via stream programming 

capabilities make them the ideal choice for 3D content production and display stages 

presented in this thesis. Design principles of GPUs are explained to achieve understanding 

of the rendering process and discussions on GPU programming are given. 

Central discussion on the proposed method of this thesis is explained in Chapter 5, on 

foundations of prior chapters. Depth estimation through stereo correspondence is discussed 

and methods to fuse time-of-flight depth information are presented. After content 

production via depth estimation, rendering from video plus estimated depth data for 3D 

display is elaborated. 

Chapter 6 provides a presentation of the experimental framework developed as part of this 

thesis work and puts forward experimental results obtained. 

Finally, Chapter 7 begins with a summary of the thesis and interpretations of obtained 

results are given afterwards. The thesis ends with a discussion on possible future extensions 

to this work. 
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CHAPTER 2 

2. IMAGE BASED RENDERING 

Realistic rendering is a commonly sought task under computer graphics and computer 

vision fields when digitized representations of artificial scenes are required. Realistic 

rendering is achievable with a realistic description of the scene with added details and 

complex modeling of illumination. 

Image based rendering is a category of algorithms that perform modeling and rendering 

using image descriptions of the scene. These images, commonly in the form of photographs 

or video streams, provide content for scene description, which becomes complex enough to 

enable realism yet too compact to be used with little further processing. 

This chapter introduces image based rendering, the backbone of the ideas presented in this 

thesis. The first section elaborates on the topic and gives comparison to other rendering 

methods. The second section models the mechanics between scenes and their photographic 

representations and introduces the inverse projection problem whereas the third section 

extends this discussion to stereo imaging case. Finally, the fourth section discusses 

applications in which image based rendering becomes useful. 

2.1 Rendering and Approaches 

In computer graphics, the term rendering denotes the process of creating digital images 

with computers, using the description of a scene, artificial or real-world. Rendering process 

is traditionally accepted as the final step in any computer graphics application following the 

production of the scene description. 

Digital images created by digital rendering can have a variety of forms. In this work, digital 

rendering approaches which produce artificially realistic images from 3D scenes are 

considered. 



Scene description consists of the geometry of objects in the scene, their material and texture 

properties, lighting sources, global shading details and eye geometry of the viewer. 

Computer representations of these descriptions differ from application to application. 

Differences in different approaches become eminent when comparing methods for 

representing objects in the scene. Object surfaces or volumes can be represented with 

meshes, equations, normal vectors, gradients, color projections and so on. Each approach 

excels in a different setting of production and rendering task. For some applications, it may 

be natural to choose one representation over another, because content to be rendered is 

already available in the corresponding format, e.g. volumetric rendering for computed 

tomography (CT) or magnetic resonance imaging (MRI) data [23,24]. On the other hand, 

some applications may utilize certain approaches to suit the needs of rendering stage, such 

as user interactivity and animation [25]. A general framework for rendering from model 

based scene descriptions is given in Figure 3. 

Objects
• Geometry
• Material
• Texture
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Figure 3 Model based rendering from scene description. (icosahedron image, CC, 

Wikimedia Commons). 

For real-time computer graphics, conventional approach to scene representation has been 

modeling the surfaces of scene objects with geometric primitives, such as triangles or 

quadrilaterals [26,27]. Rendering begins with transforming object representations in 3D 

surface meshes to view coordinates and then to 2D projection coordinates. After objects or 

portions of objects that fall outside the viewing volume are culled, remaining geometry is 

Lighting
• Ambient
• Specular
• Fog

View 
Geometry

Rendering

Digital Image



divided into block fragments on which coloring is applied. Finally, these fragments are 

placed onto the target image. This rendering pipeline is commonly used by most, if not all, 

of the real-time computer graphics applications [28]. Primary reason for this choice is the 

availability of mature hardware support in terms of graphical processing chips called 

graphics processing units. These chips are standard components of all commodity 

computers on the market today. Since utilization of these chips for rendering purposes is 

one of the primary focuses of this thesis, detailed discussion on the topic is presented in 

Chapter 4. 

By definition, rendering a three dimensional scene into a digital image requires three 

dimensional geometry representation of the scene. Scene descriptions with 3D models have 

this information inherently in terms of 3D geometric constructs, such as surface equations 

and meshes. However, 3D information is also inherent to the photographs or 2D projected 

representations of scenes and extracting or estimating this information has been one of the 

main problems of photogrammetry and computer vision fields [5]. Thus, still images can 

provide the necessary information for describing three dimensional scenes for rendering 

into digital images. Image based rendering (IBR) methods are those that utilize 2D 

photographic representations of scenes to render them. 

Images

View 
Geometry

Rendering

Digital Image

Figure 4 Image based rendering (icoashedron images, CC, Wikimedia Commons). 

Image based rendering algorithms perform rendering of digital images from a collection of 

scene images. Target digital image can be defined as the estimation of the artificial image 
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to be captured if a camera is positioned at a certain view location and orientation. Thus, 

IBR provides a solution to arbitrary view generation problem. Figure 4 illustrates image 

based rendering. 

2.2 Pinhole Camera Model and Inverse Projection Problem 

One common property of different image based rendering methods is the generation of the 

final image by reverse mapping of every target pixel to each of the source images supplied 

to the system. Reverse mapping process is explained by the pinhole camera model. 

Pinhole camera model defines the relation between 3D scene coordinates and their 2D 

projected correspondences. It is an ideal approximation model where camera aperture is 

assumed to be dimensionless, distortions caused by the actual physical lenses that perform 

real world projections are omitted and projection plane is parallel to aperture plane. 

Projections are usually regarded in front of the camera to work with aligned images as 

shown in Figure 5. The pinhole camera model is defined by (1) and (2) in a homogeneous 

right-handed coordinate system. In a homogeneous coordinate system, scalar multiples of a 

single vector represent the same point and in these equations, scalar equality is denoted 

with triple bars. 
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(2)

 

In (1) and (2), P denotes the 3D object coordinate of any point on the scene and p denotes 

the projected point on 2D target image coordinates, ݑ and ࡱ .ݒ represents the 4×4 matrix 

for extrinsic camera transformation which is composed of 3×3 camera orientation matrix ࡾ 

and 3×1 camera translation vector ࢀ . This matrix transforms scene points to camera 

coordinates so that the origin is located at the center of the imaginary pinhole where all rays 

are collected. Coordinate axes match those of principal camera directions in ࡵ .ࡱ represents 

the 4×4 matrix for intrinsic camera transformation, in which ࢻ combines focal length (݂) 

and pixel scale in a single vector and ࣆ represents the principal point on image coordinates. 



This matrix performs perspective transformation of 3D coordinates in camera space to 2D 

projected points on image space.  

Any scene point, if its 3D coordinates are known, can be projected to any source or target 

image with known camera matrices. Thus, pixels can be related in between different 

images. 
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Figure 5 Perspective projection with pinhole camera model. Placing projection plane 

behind the pinhole results in flipped reflections. Hypothetical projection plane produces 

non-flipped images of scenes. 

f 

Calculating camera models for image sources is not a humane task. Extrinsic matrices 

cannot be predicted accurately, even if intrinsic camera parameters are provided by the 

actual hardware, unless actual images taken by the cameras are used. Deduction of camera 

parameters from image sets is called the calibration problem. If some image coordinates 

from sets of images are accurately known, i.e. some pixels among images can be matched, 

unknown camera parameters can be estimated with linear regression [29]. Solutions can be 

refined by iterative approximation or coordinate filtering [30]. Source coordinates can be 

obtained by the help of a simple pattern with certain easy-to-extract features, e.g. a 

checkerboard. 

Time-of-flight sensors provide low resolution intensity maps, which makes calibration with 

other cameras possible. However, methods [31,32,33] exist that utilize depth information 

obtained from these cameras to obtain more accurate calibration results. 

Analyzing pinhole camera model helps understand difficulties in most computer vision 

problems. It is clear from (2) that the reverse transformation requires the explicit 

knowledge of depth value z’. In other words, the 3D image coordinate at which a pixel is to 

be rendered does not have a unique 3D representation in scene space. Instead, we have an 

infinite number of candidate coordinates along the line which passes through the pixel on 



the projection plane and the origin of the camera space, making inverse projection an ill-

posed problem [34,35,36]. 

2.3 Stereo Correspondence 

Stereo correspondence is a particular and well studied [37,38,39,18,40,41,42,43] related 

problem, where only corresponding points, rather than their 3D geometry, between 

different images are needed. If the geometry between two cameras is known beforehand, 

every coordinate on one image can correspond to any coordinate on the epipolar line of the 

other image. This line is the projection of the solution set of inverse projection problem 

onto the second image plane as shown in Figure 6. 

Block matching is one approach [40,41,42,43]  to relate pixels from one image to another in 

which blocks of pixels under corresponding epipolar lines are compared to each other. 

Correlation coefficients between raw pixel values inside neighborhood blocks provide a 

similarity measure to choose correspondences. 

 

Figure 6 Stereo correspondence for a scene point between a pair of views and respective 

epipolar lines for each view. 

Corresponding epipolar lines for all pixels can be made horizontal by applying rectification 

transformation on images. In this manner, every pixel obtains a horizontal distance to its 

correspondence, resulting in a disparity map which is easier and faster to obtain than a 

generic correspondence map for some applications [42,44,45,33,46]. Some methods [47] 

utilize hierarchical partitioning additionally to achieve further speed-ups. 

Free viewpoint image generation can be satisfied by finding correspondence pairs for some, 

if not all, pixels on the target view. These sparse estimation methods generally triangulate a 

mesh between generated pixels and interpolate intermediate pixels by morphing [12]. 
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Figure 7 shows an example to sparse correspondence pair matching. The focus of this thesis 

remains on dense estimation methods [41,44,48], which are more suitable for 

parallelization with graphics processing units [42,9,8]. Dense methods produce 

correspondence estimates for all pixels, possibly with a confidence map indicating the 

reliability of each estimate. 

 

Figure 7 Several stereo correspondence pairs for two views of the same scene. 

Disparity and confidence map results can be combined and pruned at a global 

approximation stage which tries to minimize a cost function over collected data and 

smoothness constraint [49]. Smoothness constraint is trivial to impose upon color and 

disparity; however, some approaches utilize optical flow as an additional constraint for 

moving images [45]. 

The methods utilizing cost minimization to solve stereo correspondence problem differ in 

the actual minimization algorithm used. Several Bayesian variants [50,36] as well as 

nonlinear diffusion [51] and graph cut approaches [52,53] exist. Global approximation 

methods can be backed up with a priori information obtained from time-of-flight cameras 

[31,54]. 

Stereo correspondence can also be performed over candidate depth values as shown in 

Figure 8. This way, correspondence problem can be extended to multiple image case by 

plane sweeping algorithm [9,8,55] where correspondences for all source images are sought 

at once rather than over several binary pairs. Scharstein and Szeliski [49] provide a detailed 

taxonomy and survey on dense stereo and correspondence algorithms. 

A stereo correspondence result, either a disparity value or 2D coordinate pair on different 

image planes, originate from a point on 3D scene space and this point is the intersection of 
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light rays passing through two correspondence points and respective camera origins. 

Distance of this 3D point to any source or target view is called the depth of the point to the 

image and provides the geometric information needed for image based rendering. 
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Figure 8 Plane sweeping for stereo depth estimation. A number of depth values are tested 

by projecting image points on the first view to the second view. 
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2.4 Applications 

Image based rendering methods have higher applicability for rendering problems where 

photographs of the scene are already available. Intermediate view generation, as discussed 

in the introduction of this thesis, is one problem where a scene is reconstructed from a set 

of photographs for an arbitrary viewpoint. Intermediate view generation has an important 

use in free viewpoint television. 

Photographs are realistic representations of the scene which they include. Although model 

based methods are achieving ever-increasing photorealistic results, further realism can be 

obtained with image base rendering methods in computer graphics [5]. Mixed reality, 

where artificial objects are augmented into real-world scenes or vice versa, is an application 

in which an increased realism leads to better user experience. Image based methods to 

mixed reality provides rendering of virtual objects that look more natural inside real-world 

photographic scenes [56]. IBR can also be utilized to render real-world scenes captured 

from multiple cameras onto other real world objects [57]. Photographic nature of both 
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elements increases the applicability of image based modeling to such virtual reality 

applications. 

Image based rendering methods can also be utilized to render textures, a vital supplement 

for model based graphical applications, to achieve realism. Projective texture mapping [17] 

generates more realistic view-dependent textures to be used for either image or model based 

rendering methods. IBR can also be used to build detailed 3D models [58,59] with image 

registration and mosaicing [15] and to create shadow and lighting effects [60] for further 

photorealistic rendering. 

Since image based rendering depends on creating new images from available ones, new 

views can also be created by previously generated output images in addition to the initial 

source images [7]. 

Image based rendering for arbitrary view generation is a vital component of this thesis 

work. There are several approaches to arbitrary view generation problem with image based 

rendering. 

Light field rendering [7], provides a solution to arbitrary view rendering problem by 

enforcing source images taken from cameras aligned on a single focal plane. Patches from 

the scene projected onto this focal plane are collected in a database along with their 

projection coordinates and angles. They are referenced when patches with similar angular 

properties at similar focal plane coordinates are requested. Free viewpoint image generation 

with light field rendering has limited view ranges due to focal plane alignment constraints. 

View dependent texture mapping [18] and projective texture mapping [17] can realistically 

generate an intermediate view by texturing a scene model with image based rendering 

techniques. 

Image based rendering also makes intermediate view generation possible if images are 

accompanied by depth maps, which are single channel images representing the distance of 

each pixel from the scene to the view. Video plus depth [61,62,63,13] is a broadcast 

standard covering free viewpoint image synthesis. Depth required for each view can be 

obtained with range sensors, such as time-of-flight cameras, or extracted with stereo 

correspondence. Details on video plus depth can be found in Chapter 5 while next chapter 

introduces time-of-flight cameras. 
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CHAPTER 3 

3. TIME-OF-FLIGHT CAMERAS 

Depth sensing is a fundamental task in both computer vision [31] and computer graphics 

[22]. Human machine interaction, virtual reality, robotic navigation, object reconstruction, 

intermediate view synthesis and many similar applications benefit from existing depth 

information of a world scene. Depth maps, if not present, can be extracted from inherent 3D 

information inside accompanying color information. 

Given two or more images from separate views of the same scene, stereo correspondence 

can lead to an estimate to the world coordinates of pixel locations on the images. However, 

state of the art techniques still try to overcome problems occurring at boundaries and 

textureless regions [31]. Object boundaries present occlusions where correspondence 

between images may not exist and textureless regions render block matching approaches 

useless in finding pairs between images. 

A hardware solution to the drawbacks of stereo matching algorithms is time-of-flight 

sensors, which are relatively new and superior to previous hardware solutions in many 

ways [22]. Common examples of time-of-flight solutions to depth sensing on the market is 

photonic-mixer-devices of PMDTechnologies [64] and MESA Imaging SwissRanger 

cameras [65] as seen in Figure 9. 

Time-of-flight sensor used in this thesis work is SwissRanger SR-3000. It provides a depth 

map of QCIF resolution (176x144), a distance range of 7.5 meters, depth accuracy in the 

order of a few centimeters at a speed of up to 30 frames per second and by using a default 

modulation frequency of 20MHz on 850nm infrared light waves [66]. 

This chapter introduces the time-of-flight cameras which are used in conjunction with color 

cameras to achieve free viewpoint image synthesis. The first section elaborates on the 

working principles of ToF sensors; the second section presents the drawbacks of their depth 

sensing mechanism and their solutions and workarounds; the third, and the last section 



provides a discussion on application areas which benefit from real-time planar depth 

sensing with ToF cameras. 

3.1 Working Principle 

Time-of-flight is a measure of time for an object, particle or wave to travel a distance 

through a medium. It can be used to find the duration, the distance or the medium 

properties of the travel, given other parameters. 

Time-of-flight cameras are sensors which measure distance to scene geometry by recording 

the time light travels from the device and gets reflected back. These are relatively new 

devices where whole screen depth is captured at once, in comparison to devices in light 

detection and ranging (LIDAR) category which operate with single rays at a time. 

  
(a) (b) 

Figure 9 (a) SwissRanger SR-4000 by MESA Imaging and (b) PMDvision CamCube (CC, 

Wikimedia Commons) 

Time-of-flight cameras have two main operations that take stage together. Illumination 

sends light rays with light emitting or laser diodes, preferably at infrared ranges to prevent 

visible effects. Sensing collects emitted rays through a lens and optical filter and the time 

light rays spent travelling is measured for each pixel on a two dimensional array of light 

sensing layer based on charge coupled device (CCD) principle [67]. 

Time required for light rays to hit scene objects and return back is proportional to the 

distance of the objects to the camera. Accurate time measurements are obtained with 

continuous wave modulation method [68,65] where emitted sinusoidal modulated light 

wave is cross-correlated with the captured wave by demodulation of the incoming signal 

[65]. Since modulation frequency is known, phase difference leads to time difference. 
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Operation inside a medium of known refractive index, such as air, enables convert time 

differences to scene distances. 

Emitted modulated signal and the captured signal can be represented by the equations (3)  

and (4), respectively. Phase offset (߮) is determined by the duration which light travels 

outside the sensor. Incoming signal has an additive constant component to model 

background illumination and amplitude component (ߙ) modeling power loss due to light 

absorption. 

݃ሺݐሻ ൌ cosሺ߱ݐሻ  (3)

ሻݐሺݏ ൌ 1  ߙ cosሺ߱ݐ െ ߮ሻ (4)

 

Mathematical expression for the cross-correlation between incoming and outgoing signals 

is defined by (5) [68]. Phase offset between signals can be calculated by sampling at certain 

phases via (6). The same procedure can be applied with utilizing synchronous sampling and 

DFT [68]. 

ܿሺ߬ሻ ൌ ሺݏ כ ݃ሻሺ߬ሻ ൌ
ߙ
2

cosሺ߮  ߬ሻ (5)

߮ ൌ tanିଵ ቆ
ܿሺ270°ሻ െ ܿሺ90°ሻ
ܿሺ0°ሻ െ ܿሺ180°ሻ ቇ (6)

 

Time-of-flight sensors can both record the time traveled in air using phase offset and 

returning intensity of light rays emitted from the device. These lead to scene depth and 

intensity correspondingly [68] as shown in Figure 10. 

3.2 Challenges 

Time-of-flight cameras provide a robust solution to depth sensing problems occurring in 

many computer graphics and computer vision applications. Although ToF sensors eliminate 

problems commonly faced in passive extraction methods, new challenges inherent to the 

nature of the time-of-flight mechanism are unfortunately introduced. 



Time-of-flight cameras provide depth images at a rate equal to or greater than real-time 

speeds. However, their pixel resolution is very low compared to contemporary color 

cameras. Although highest reported resolution is 484x648 [69], most cameras provide only 

ten thousands of pixels each frame. One approach to increase resolution of depth images 

obtained from range sensors is upscaling. Modern graphics processing units provide 

hardware support for bilinear filtering which may be satisfying, but bilateral filtering [70] 

is shown to perform better [71]. 

  
(a) (b) 

Figure 10 (a) Depth and (b) intensity maps acquired with SwissRanger SR-3000 camera. 

Brighter values indicate less depth and more intensity. 

Cross-correlation for phase estimation requires sampling of the incoming signal at least 

four times.  This introduces motion artifacts where depth values at object boundaries 

become erroneous for a dynamic scene [72]. 

Time-of-flight principle introduced previously depends on generation of ideal sinusoidal 

modulated signals and accurate sampling for cross-correlation. Since obtaining perfect 

results are not possible for both, acquired depth image has an error component caused by 

the sensor mechanism itself.  Kolb et al. [72] call this component the systematic error of the 

camera and presents a theoretical discussion on a possible solution [22]. A solution can be 

extending the sinusoidal correlation model to multiple Fourier coefficients but complexity 

of circuitry for demodulation of higher frequencies and required sampling rate will 
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increase. Some solutions by means of look-up tables [73] and B-splines [74] are also 

proposed. 

Other challenges related to the mechanics of time-of-flight cameras include intensity related 

distance error and depth inhomogeneity [22]. Moreover, utilization of multiple ToF 

cameras may lead to interference for older models [72]. 

3.3 Applications 

Time of flight cameras are utilized mainly for content acquisition for computer vision 

applications. Accurate disparity estimation is possible with incorporation of time-of-flight 

cameras with traditional stereo methods [44,31,54]. Generation of layered depth video [75] 

content is also subject to improvements with initial depth estimates from ToF sensors [76]. 

ToF sensors can also be utilized in estimation of patchlets, image patches with surface 

normals [77]. 

Mixed reality [78,79], user tracking [80] and gesture recognition [81] are some of human 

machine interface related applications that utilize environmental sensing nature of these 

depth cameras to provide interactive experience for larger systems. 
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CHAPTER 4 

4. GRAPHICS PROCESSING UNITS 

Graphics processing units (GPU) are specialized microprocessor chips intended to 

accelerate computer graphics applications. GPUs existing in modern commodity computers 

provide hardware support for dedicated floating point operations, 3D transform and 

lighting, primitive rendering and framebuffer manipulation enabling real-time high quality 

computer graphics. 

Hardware support for computer graphics is dated back to the emergence of first graphical 

displays on computers. Earlier chips that provided acceleration for common computer 

graphics tasks are ANTIC of Atari and VIC series of Commodore, both being graphical 

components of 8-bit personal computer architectures [82]. These graphical chips provide 

page flipping, sprite and mixed text-bitmap support, common to many 2D graphical 

rendering chips. Successor 2D graphics devices provide bit block image transfer (bitblit) 

[83] allowing combining multiple raster images with binary and arithmetic operators at 

once. 

Although evolution of 2D acceleration chips still continues, these devices are primarily 

found in low performance handheld devices today. Modern usage of graphics processing 

unit denotes 3D integrated hardware found in personal computers. One of the first devices 

to support complete support for 3D rendering pipeline is GeForce 256 of NVIDIA [84] with 

support for transform and lighting, triangle setup with clipping and rendering 10 million 

polygons per second. 

Contemporary 3D acceleration chips have hardware capabilities for image filtering, 

programmability for certain stages in rendering pipeline and digital video decoding; thus, 

extending their scope beyond simple computer graphics rendering. General purpose 

computing on graphics processing units (GPGPU) is an emerging paradigm that converts 

general engineering applications to computer graphics context to achieve high parallel 

computation power on GPUs. In contrast to other computing alternatives, such as FPGAs or 
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DSPs, GPUs exist on all commodity personal computers. In this manner, developed 

software using GPUs for high performance demanding applications are ready to run 

without accompanying dedicated hardware. Besides, GPUs have mature software and 

driver support. OpenGL and Direct3D are two major computer graphics software libraries 

whose design and development is tightly coupled with those of mainstream GPU models. 

This chapter provides information on graphics processing units and their programmability 

detailed to the extent of understanding the ideas of the scope of this thesis. The first section 

introduces the fixed graphics pipeline existing in modern GPUs. The second section focuses 

on programming the rendering pipeline to achieve user controlled behavior of these chips. 

Finally, the third chapter provides a brief discussion on compute unified frameworks which 

can utilize GPUs with general computing paradigms. 

4.1 Graphics Pipeline 

Rendering is a broad concept of converting scene description into digital images. Each 

rendering application is distinguished by the format of scene description and the actual 

process in which target image is formed. Chapter 2 provides detailed discussion on 

rendering concepts with a focus on image based rendering. 

Modern GPUs provide rendering support around a single data streaming framework called 

the 3D graphics pipeline [28]. GPUs act as a stream processor which transforms incoming 

3D object descriptions into pixel operations on the target image according to preset 

rendering state. Multiple data flow in one direction to another, from 3D representation to 

pixel values, hence the name pipeline. Figure 11 provides a flowchart of the data flow in 

graphics pipeline. 

Objects on the scene to be rendered are described with surface primitives, such as triangles 

or quadrilaterals and texture images that define their surface appearance [26,27]. Rendering 

begins with the supply of surface primitives to the GPU. A primitive is defined by its 

vertices and its description lies within vertex units which encapsulate 3D location, surface 

normal vectors, texturing and coloring information and material properties. 

Transform and lighting is the initial stage of rendering where vertex units are transformed 

through various coordinate spaces and colored using per vertex properties and global 

lighting state. Vertex locations are transformed from object coordinates to first scene 

coordinates and then to view (eye) coordinates consecutively. This transformation is 
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accomplished with the modelview matrix, which is part of the rendering state. Vertex 

coloring is accomplished with global ambient lighting, directed light sources and 

environment fog. These concepts are called vertex operations and defined inside the vertex 

kernel of the rendering pipeline. 

Primitives within the rendering pipeline can be filtered out to eliminate redundant 

primitives or new primitives can be generated to increase rendering quality. Final primitives 

are projected to target image coordinates through the projection matrix of the rendering 

state. Projections can either be orthographic or perspective depending on the application. 

Orthographic projection preserves Euclidean ratios in scene description and is suitable for 

computer aided design applications and scenes with complex 2D descriptions. Perspective 

projection emulates the biological eye and other lens driven cameras where distant objects 

project onto smaller portions of the target image. Enumeration and projection of primitives 

are called geometry operations and defined inside the geometry kernel of the pipeline. 

Primitive operations are followed by rasterization in which 3D geometry is converted to 2D 

in the form of rendering fragment units. Each fragment unit corresponds to a single pixel on 

the target framebuffer and embodies rendering information including color, depth, texture 

coordinates and transparency. During rasterization, vertex information is spread by 

interpolation in between primitive corners. Linear interpolation is a common approach to 

achieve realism in this stage. 

Fragments can be re-colored after texturing. Target pixels on the framebuffer are modified 

according to fragments and pixel operations defined in the rendering state. These operations 

can be copying, alpha compositing, selection (min, max) or a combination of these. 

Conversion of fragments to pixel values is called fragment operations and these are defined 

inside the fragment kernel of the pipeline. 

Standard pipeline is controlled through graphics APIs, such as OpenGL and Direct3D, 

which modify the rendering state and supply input to the pipeline. Applicability of the 

standard rendering pipeline to problems other than graphics rendering is limited due to its 

fixed nature. However, when combined with programmable parts of the GPU, rendering 

pipeline provides an efficient framework for most applications. Computer vision 

applications, in particular, can benefit from the hardwired algorithms inside the GPU for 

common tasks between computer vision and graphics. 
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Figure 11 Graphics rendering pipeline. 
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4.2 Programmable Pipelines 

3D graphics pipeline defines a single set of mind concerning rendering of 3D scenes. Its 

design intent is the realization of real-time computer graphics where speed is the main 

concern. It is this requirement, which makes the design of the graphics pipeline strictly 

connected to advances in microelectronics. However, real-time computer graphics becomes 

possible for different rendering strategies as advances in computing technologies surface. 

Backward compatibility concerns limit changes in hardware and software design for 3D 

rendering, allowing evolution only in smaller steps. On the other hand, advance leaps in 

software and hardware technologies make certain rendering strategies obsolete and others 

more optimal. This dilemma is solved by GPU manufacturers with added support for 

programmability over certain stages of the rendering pipeline. 

Programmability for vertex and fragment operations are introduced in 2003 [85]. User 

defined behavior for rendering is achieved with shaders, codes that are sent to GPUs to 

control rendering. A vertex shader is piece of software that controls per vertex operations, 

such as geometric and projection transformations, vertex coloring or lighting. It can be used 

to emulate lens distortions and provides faster control for dynamic objects. A fragment 

shader is a code that performs per fragment operations. Realistic rendering techniques such 

as per pixel lighting and projective texture mapping [17] are made possible with 

programmable fragment kernels. 

Programmability of geometry kernels is possible with a geometry shader, which is 

introduced in 2007 [85]. Geometry shaders provide support for dynamic generation and 

suppress of 3D geometry on the GPU. 

Other programmable parts of the pipeline are texture lookup and tessellation. The first one 

is responsible for generating filtered colors from texture images. A texture shader stands 

for user defined behavior for texture lookup, opening possibilities for further image 

processing support than simple linear filtering. Tessellation, the other programmable stage 

of the pipeline, performs division of primitives to smaller tiles and transformations on these 

tiles. A user provided tessellation shader provides fine control over the complexity of 

scenes with respect to other parameters, such as view distance or object size. Both shaders 

are introduced in 2010 [85]. 
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OpenGL introduces separate shader objects in 2010 [85] to combine characteristics of all 

shaders into a single framework. Separate shaders are software codes that can define 

different parts of the rendering pipeline and can be injected into any programmable kernel. 

Programming shaders is possible with constructs similar to machine language where each 

command maps to primitive operations on the GPU, although common approach is using 

high level shading languages, such as Cg, HLSL and GLSL. Idioms and paradigms used in 

programming shaders are common stream processing fundamentals, such as map, reduce, 

scatter or gather [28,86]. Owens et al. [28] provide detailed discussions on technologies and 

techniques related to programming the rendering pipeline. 

4.3 Compute Unified Architectures 

Programming GPUs provides a highly cost efficient parallel computing framework for 

many fields as well as increased flexibility for computer graphics applications. On the other 

hand, the fixed rendering pipeline can perform only a single rendering algorithm with tight 

limits on configurability and it is replaced by custom algorithms through shaders for real-

time computer graphics. Therefore, it is not surprising to find GPUs to be regarded as 

specialized computing devices rather than programmable graphics accelerators only. 

Indeed, latest OpenGL standard [87] deprecates fixed pipeline functionality and 

recommends rendering through user supplied software instead. 

Increased demand for graphics processing units for general purpose computing and the 

blurring of the differences between specialties of the programmable parts of these devices 

help them evolve into all purpose high performance computing devices. While differences 

between GPUs and CPUs, standard microprocessors of commodity computers, reduce to 

the degree of parallelization, a new paradigm called compute unified programming, which 

combines these two processors, surfaces. 

A general purpose computing architecture, Compute Unified Device Architecture (CUDA) 

is introduced in 2006 by NVIDIA [88]. CUDA is a programming framework including a 

programming language, a compiler suite and accompanying hardware support within 

NVIDIA’s GeForce series GPUs. It allows C-like written programs to execute with both 

CPUs and GPUs; thus, abstracting graphics nature of GPU programming from users. 
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A vendor independent and open compute unified architecture called Open Computing 

Language (OpenCL) is standardized by Apple Inc. and Khronos Group [89], obtaining full 

hardware support from vendors in 2008. 

Compute unified architectures perform efficient division of work for both GPUs and CPUs 

providing remarkable acceleration through parallelization [90]. Applications which utilize 

compute unified architectures and are related to arbitrary view synthesis quickly emerged. 

Fast depth upsampling [91] and disparity estimation [45] are shown to benefit from 

availability of compact parallel computing architectures. 
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CHAPTER 5 

5. PROPOSED METHOD 

Arbitrary view rendering is the generation of images of a scene that are not available during 

capture. Real image or video captures of the scene are used to create virtual realistic views 

with image based rendering. Generation of these views is a common task for 3DTV 

applications. 

Still photographs lack the explicit information which defines the locations of pixels in 3D 

scene space. Extracting this information is an ill-posed problem in the sense that no unique 

3D scene coordinate exists for any pixel on the photograph. Problems in creating arbitrary 

views propagate from these simpler computer vision concepts. 

Arbitrary views are rendered using depth information accompanying color in source views. 

Extracting this information can be in the form of depth warping or estimation through 

stereo vision. A fusion of these provide better results [54]. 

Although color and depth provide a compact description of the 3D scene, this description is 

not complete for arbitrary views due to occlusions and dissimilar viewing volumes. Robust 

measures have to be taken to fill-in absent information. 

This chapter, step-by-step, builds an arbitrary view algorithm that incorporates time-of-

flight depth measurements, stereo depth estimation and rendering from video plus depth 

data. The first section introduces the video plus depth content format which enables a 

broadcast system for arbitrary view rendering. Following section formulates the problem of 

generation of video plus depth data and arbitrary view rendering through this content 

format. The third section presents how depth maps for stereo views are estimated through 

depth warping, stereo matching and bilateral filtering. The fourth section is the crucial point 

where arbitrary view rendering from all obtained information is accomplished. The final 

section mentions implementation details of the whole system in GPU. 
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5.1 Content Format 

Arbitrary view rendering is an important task for 3D television (3DTV) where viewers 

receive and perceive 3D content broadcasted in appropriate formats. Numerous methods 

exist to describe 3D content for 3DTV applications [92]. Surface based representations 

describe 3D data in the form of surface geometry. Volumetric representations provide dense 

or hierarchical organization of volume pixels, also called voxels. Texture representations 

describe content in several texture images which form the scene geometry when warped 

around 3D objects. Image based representations provide compact descriptions of scenes to 

be broadcasted in the form of images from different views without support for explicit 3D 

geometry. Layered depth images (LDI) [75] is one format with the idea of supplementing 

color data with depth layer tags. Alatan et al. provides a detailed survey on different 

representations for 3DTV broadcast and rendering [92]. Schiller and Koch [93] provide a 

summary of data structures for scene representations obtained with time-of-flight cameras. 

Video plus depth defines an image based video format suitable for a variety of 3D 

applications, specifically the 3DTV [61]. Color video is supported with accompanying 

depth information through content generation, coding, broadcast and decoding. Since depth 

maps are technically single channel images as seen in Figure 12, their introduction is 

analogous to introduction of color to television. Broadcast is still decodable with older 

televisions where depth information is only interesting for supporting 3D setups. 

Video plus depth format also preserves applicability of existing techniques for 2D 

broadcast. Data hiding, for example, can be accomplished by 2D watermarks added to color 

maps and methods exists to decode watermarks from arbitrary views [94]. 

Video plus depth format does not suffer from back-projection problem since its depth 

component inherently exposes 3D scene coordinate of each pixel. Synthesis of an arbitrary 

view given a single color and depth image pair can be accomplished by projecting every 

pixel from their scene coordinates to target image coordinates preserving color information. 

Occlusion gaps can be prevented by warping a surface mesh instead of a point cloud. 

High quality intermediate view synthesis is achieved with multiview video plus depth, 

which describes the scene with color and depth for several views. Smolic et al. [13] 

provides a framework for correcting artifacts occurring after warping of several source 

views. Gaps in intermediate views are filled with neighboring pixels and outliers are 

eliminated with color consistency measures to obtain good synthesis results. 



  

  

  

  

Figure 12 Single frame example for multiview video plus depth content format taken from

ballet studio sequence of Zitnick et al. [95]. Each row of the figure shows the color and

depth map of a single viewpoint. 
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5.2 Problem Formulation 

A viewpoint is a combination of intrinsic and extrinsic camera parameters as given by the 

pinhole camera model presented in Chapter 2. A viewpoint ܸ , can be mathematically 

represented by ࡼ, a 4×4 projection matrix of a 3D homogeneous projective transformation 

as given in (7) and (8). 

ࡼ ൌ  ࡱࡵ

൦

Ԣݔ
Ԣݕ
1
Ԣݖ

൪ ൌ ࡼ 

ݔ
ݕ
ݖ
1

 

(7)

(8)

 

Extrinsic transformation matrix transforms space coordinates in 3D, from scene space to 

camera space. Points in front of the camera will have negative z-coordinates due to right 

handedness of the coordinate system. This z-coordinate ݖԢ, is made positive and passed as a 

factor by the intrinsic camera matrix, resulting in an irreversible perspective division as 

given in (9) and (10). 



ݑ
ݒ

Ԣݖ/1 ؠ ൦

Ԣݔ
Ԣݕ
1

൪ 

1 Ԣݖ

ቂݑ
ቃݒ ؠ ݔԢ

Ԣ൨ݕ Ԣൗݖ  

(9)

(10)

 

Perspective division is irreversible in the sense that depth values of projected points are lost 

and pixels in image space cannot be transformed back to scene space. This is called the 

back-projection problem and discussed in detail in Chapter 2. However, if depth values of 

image coordinates are known, inverse of ࡼ, provides a reverse transformation from image 

space to scene space as given in (11) and (12), thus back-projection problem is solved. 
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ࡼ
ିଵ 

ݑ
ݒ

Ԣݖ/1
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 ؠ ࡼ
ିଵ ൦

Ԣݖݑ
Ԣݖݒ
1
Ԣݖ
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The fundamental goal of arbitrary view rendering is to estimate the hypothetical photograph 

to be taken if an actual camera was used to capture the scene from a specific view 

geometry. Multiview plus depth content format is a common ground between 3D broadcast 

applications and arbitrary view rendering is formulated around this approach. 

This thesis covers content acquisition with two color cameras and a depth sensing time-of-

flight camera. Color images obtained from the stereo pair provides a trivial approach to 

choosing views for video plus depth format. These color images are augmented with 

estimated depth maps to generate the transmission format for this arbitrary view rendering 

system. 

Beginning with stereo viewpoints, ܮ and ܴ, their corresponding color images   and ோ , 

range sensor viewpoint ܶܨ and its respective depth map ்ࡰி, initial aim is to estimate 

the artificial depth maps, ࡰ and ࡰோ at stereo viewpoints in order to have a complete stereo 

video plus depth representation of the scene. This stage, which is called depth estimation, is 

summarized in (13). 

,ࡰ ோࡰ ൌ ݄ݐ݁ܦ ,ܮሺ݊݅ݐܽ݉݅ݐݏܧ , ܴ, ,ோ ,ܨܶ ிሻ (13)்ࡰ

 

Estimation of ࡰ and ࡰோ is a compound process in which both views from the stereo pair 

are utilized with stereo correspondence methods presented in Chapter 2. Elaboration on 

depth estimation is given in the next section. 

Second stage of the algorithm is arbitrary view rendering from multiview video plus depth 

and this stage is intended to be implemented on display side of the broadcast system. Two 

views, ܮ and ܴ, along with their color and depth maps are transmitted and intermediate 

views are generated upon request. Given an intermediate viewpoint ܸ, view rendering stage 

is formulated in (14). 
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 ൌ ݓܸ݁݅ ,ሺܸ݃݊݅ݎܴ݁݀݊݁ ,ܮ , ,ࡰ ܴ, ,ோ ோሻ (14)ࡰ

 

Depth estimation deals with content acquisition stage of the whole system whereas view 

rendering is a display algorithm. Inner workings of these two stages are presented in the 

remaining of this chapter. 

5.3 Depth Estimation 

Under image based rendering terms, a depth map can be rendered for any view, given other 

views of the same scene. Stereo correspondence provides an estimate to depth, as given in 

Chapter 2.  

Time-of-flight cameras also provide low resolution depth maps. Since depth maps are 

inherently 3D descriptions, they do not suffer the back projection problem and can easily be 

projected into other views. Therefore, depth maps obtained from such range sensors 

provide reference depth estimates to obtain video plus depth. However, upscaling of 

obtained depth maps is a problem, as discussed in Chapter 3. 

This thesis combines ideas from these passive and active methods in order to obtain 

auxiliary depth maps for the stereo cameras used in content acquisition. ்ࡰி, depth map 

obtained from time-of-flight camera is warped onto views ܮ  and ܴ  with measures to 

overcome occlusions. This provides an initial estimate to ࡰ and ࡰோ. Then, and bilateral 

filtering and stereo matching between  and ோ is performed around this initial estimate 

to refine obtained depth maps. 

5.3.1 Time-of-Flight Depth Warping 

Depth map captured with a time-of-flight camera is represented with ்ࡰி and represents 

the surface of scene content visible from viewpoint ܶܨ. Projection of any point on this 

surface to viewpoint ܸ is carried out with (15) and (16). 
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1

ி்ݖ ൌ ,ி்ݑிሺ்ࡰ  ிሻ்ݒ

(15)

(16)



 

Depth values of target viewpoint are given by (17). However, surface projection is not 

strictly a one-to-one mapping. Some pixels at the target depth map cannot be deduced and 

some others can have multiple projections due to occlusions. Multiple projection values can 

be singled out with depth testing and missing depth values can be interpolated from 

neighboring projections. Both of these solutions are provided by graphics processing units. 

ࡰ
௪ሺݑ, ሻݒ ൌ  (17)ݖ

 

Depth map projection can be implemented on the GPU by modeling the source depth map 

as a 3D surface in the form of a triangle mesh. Pixels of the depth map provided by the 

time-of-flight camera are converted to 3D vertices and triangles are formed in-between as 

shown in Figure 13 and (18). These triangles are first transformed to scene space and then 

projected onto target depth map. This operation is called warping and covers the entire 

target image leaving no gaps. 
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Figure 13 Triangulation of depth map into a surface mesh. 

 

212 8
3

11 10 9



 

Figure 14 Warping result from a 128x96 depth map (middle) to arbitrary left and right 

viewpoints with 512x384 pixel resolution. Breakdancers sequence from Zitnick et al. [95]. 

 

Figure 15 Depth map rendering with triangle suppression. 

Projection of the connected surface mesh to the target view is a rendering flow which 

begins by a vertex shader which transforms all vertices in the mesh according to ࡼ்ࡼி
ିଵ . 

This operation aligns source mesh onto target viewpoint and rendering with depth test 

results in an estimated depth which does not have gaps at occlusions. 
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After mesh warping, discontinuities are covered by larger triangles which usually span from 

background to foreground resulting in large depth patches. Areas of the target depth map 

that are not visible to ToF are interpolated between background and foreground, as seen in 

Figure 14. These rubber sheet artifacts remain at discontinuities after warping and they can 

be removed with mesh segmentation techniques [96]. Problematic triangles are detected 

inside a geometry shader and they are suppressed to background to limit their favorability 

over foreground patches from other views. Depth selection process for triangles is given in 

(19) and (20). Depth of the farthest vertex among neighboring triangles, which are marked 

in Figure 13, is used as the suppression depth. Comparison area ܽԢ is an empirical value to 
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detect occlusion patches. If depth testing is enabled, using depth and color information from 

these patches becomes only a last resort, thus occlusions are handled. Figure 15 shows the 

effects of triangle suppression. 
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(19)

(20)

 

Depth data coming from the time-of-flight sensor is warped onto ܮ and ܴ , resulting in 

initial estimates to ࡰ and ࡰோ. These maps lack the finer depth details as a result of the low 

resolution output of the range sensor and they are refined further with stereo matching and 

bilateral filtering.  

Incorporation of depth estimates from stereo matching and bilateral filtering is handled in a 

Bayesian framework that combines cost functions of different results. A cost function 

denotes the selection cost for all depth candidates for all pixels. Cost function for depth 

warping is built in a way that minimizes the cost of warped depth and increases the cost of 

other depth candidates as they deviate from this center. A quadratic formulation is used as 

suggested by previous works [54,71] and given in (21). Depth deviation factor (ߪ௪) is 

an application specific constant. 

ܳ
௪ሺݑ, ,ݒ ݀ሻ ൌ

൫ࡰ
௪ሺݑ, ሻݒ െ ݀൯ଶ

௪ଶߪ  (21)

 

Given a cost function, a depth map is constructed with a winner-takes-all approach in which 

the depth value with the minimum cost is selected as given in (22).  



 
 

38 

,ݑሺࡰ ሻݒ ൌ argmin
ௗ

ܳሺݑ, ,ݒ ݀ሻ (22)

 

The cost function constructed for depth warping always yields the original warped map. 

However this triviality is broken by the introduction of stereo matching and bilateral 

filtering. 

5.3.2 Stereo Matching 

In addition to the active range sensing device used, passive methods can also support the 

intermediate depth maps obtained. Stereo correspondence, presented in Chapter 2, is a set 

of algorithms for inferring depth from two different image based representations of the 

same scene. Fusion of depth maps from stereo correspondence and time-of-flight cameras 

provide even better depth estimates, surpassing both of these approaches [54]. 

Stereo matching is performed within the Bayesian framework of depth cost functions. 

Stereo matching cost function for left viewpoint is given by (23) and (24). In these 

equations, ܿ is the block distance between two coordinates on stereo images, N is the block 

size parameter, ߜ is the distance between pixels in image space, ܦ௦ is the empirical depth 

search range and ݏ is the Euclidean distance function for color comparison. All depth and 

color values are in range [0, 1] and practical values of ܦ  are around 1/20. ௦

ܳ
௦௧ሺݑ, ,ݒ ݀ሻ ൌ ቊ

minሺܿ, 1ሻ ; หࡰ
௪ሺݑ, ሻݒ െ ݀ห  ௦ܦ 2⁄

1 ; หࡰ
௪ሺݑ, ሻݒ െ ݀ห  ௦ܦ 2⁄

 (23)

ܿ ൌ
1

ሺ2ܰ  1ሻଶ   ݑሺ൫ݏ  ,ߜ݅ ݒ  ,ሻߜ݆ ᇱݑோሺ  ,ߜ݅ ᇱݒ  ሻ൯ߜ݆
ே

ୀିே

ே

ୀିே

 (24)

,ሺݏ ሻ ൌ ටሺܣௗ െ ௗሻଶܤ  ൫ܣ െ ൯ଶܤ  ሺܣ௨ െ ௨ሻଶ  (25)ܤ

 

Stereo matching is performed on the portions of epipolar lines enforced by the search range 

by comparing pixel values. This is the plane sweep method shown in Figure 8. Pixels are 

compared with Euclidean distances in RGB color space as given in (25). Candidate depth 

values are bounded inside a depth search range to eliminate outliers [54]. Image coordinates 

on the right image ሺݑᇱ, ᇱሻݒ  are calculated from image coordinates on the left image 
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ሺݑ,  ሻ and depth candidate ݀. Projection matrices of stereo viewpoints are used to relate 2Dݒ

projection coordinates from the left image to the right one as given in (26). Stereo search 

for the other direction is similar.  
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5.3.3 Bilateral Filtering 

Time-of-flight cameras provide real-time capture of depth information, unfortunately at low 

resolutions and up to a certain precision. Stereo matching is a well studied classical 

approach to depth estimation problem, which can be supplementary to the initial depth map 

obtained from range sensors. However, since stereo matching methods employ block 

matching to relate images, matching and therefore depth estimation performance at object 

boundaries and color discontinuities is not satisfying. 

Bilateral filtering [70] is a low-pass image filtering algorithm which aims preserving edges 

while smoothing the image. An adaptive pixel filter kernel, which takes high values for 

similar neighbors, is applied to all pixels and therefore smoothing is prevented at edges. 

Similarity is defined both in color and spatial domain.  

The idea of bilateral filtering can be extended to smoothing depth maps with respect to 

related color maps to align depth boundaries with color boundaries [71]. Depth values 

obtained from adaptive filter is found by (27) using similarity measures given in (28) and 

(29). Among similarity measures, ݓ  denotes color similarity and ݓ௦  denotes spatial 

similarity. Color similarity is the decay of Euclidean RGB distance and spatial similarity is 

the decay of pixel coordinate distance. 
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∑ ∑ ࡰ
௪ሺݑ  ݅, ݒ  ݆ሻݓሺ, ,ݑ ,ݒ ݅, ݆ሻݓ௦ሺ݅, ݆ሻெ
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In order to fuse the depth map obtained from bilateral filtering with the results of depth 

warping and stereo matching, a cost function similar to ܳ
௪ is constructed as in (30). 

ܳ
௧ሺݑ, ,ݒ ݀ሻ ൌ

൫ࡰ
௧ሺݑ, ሻݒ െ ݀൯ଶ

௧ଶߪ  (30)

 

5.3.4 Depth Cost Fusion 

Initial depth estimate for stereo viewpoints from the time-of-flight camera leads to three 

different depth cost functions. These cost functions are summed with different weights as 

given in (31) and (32) and a fused cost function is obtained for both viewpoints, ܮ and ܴ. 

ܳሺݑ, ,ݒ ݀ሻ ൌ ܳ
௪ሺݑ, ,ݒ ݀ሻ  ܳߙ

௦௧ሺݑ, ,ݒ ݀ሻ  ܳߚ
௧ሺݑ, ,ݒ ݀ሻ (31)

ܳோሺݑ, ,ݒ ݀ሻ ൌ ܳோ
௪ሺݑ, ,ݒ ݀ሻ  ோܳߙ

௦௧ሺݑ, ,ݒ ݀ሻ  ோܳߚ
௧ሺݑ, ,ݒ ݀ሻ (32)

 

Overall effect of stereo matching and bilateral filtering on the final depth cost function can 

be controlled with parameters ߙ  and ߚ  respectively. Final depth maps for left and right 

viewpoints are governed by the winner-takes-all approach given in (22). In this respect, 

depth estimations needed for multiview video plus depth format, ࡰ and ࡰோ are obtained 

using the fused cost functions as in (33) and (34). It is seen in Figure 16, how utilization of 

stereo color maps restores finer object details on the estimated depth map and Figure 17 

offers a general look at the whole depth estimation process. 

,ݑሺࡰ ሻݒ ൌ argmin
ௗ

ܳሺݑ, ,ݒ ݀ሻ (33)

,ݑோሺࡰ ሻݒ ൌ argmin
ௗ

ܳோሺݑ, ,ݒ ݀ሻ (34)

 

Estimations to ࡰሺݑ, ,ݑோሺࡰ ሻ andݒ ,ݑሺ ሻ along withݒ ,ݑோሺ ሻ andݒ  ሻ make up the stereoݒ

video plus depth data needed for arbitrary view rendering at the display side of the 

broadcast system. 



 

Figure 16 Depth estimation result for a stereo pair after stereo matching and bilateral 

filtering. 
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Figure 17 Flowchart for depth estimation stage. 
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5.4 Arbitrary View Rendering 

Image based rendering, as mentioned in Chapter 2, generates the final image by reverse 

projection of every target pixel to each of the source images supplied to the system. 

Analyzing pinhole camera model reveals that back projection of 2D image coordinates is an 

ill-posed problem. 

Given a supplementary depth map to any color image, its 3D characteristics are trivially 

revealed and the image can be projected back into the scene space. Similar to warping of 

time-of-flight depth images onto arbitrary viewpoints, a color surface represented in scene 

space can be warped onto any viewpoint of choice. Several image and depth based 

representations of the same scene help eliminate rubber sheet artifacts occurring at 

discontinuities of the warped image. 

Color image 
௪ or ோ

௪ are warped from two different color sources. These images 

provide an initial working ground for the final result of this thesis, an arbitrary rendered 

view. Selective median filtering and smoothing operations on this initial image leads to a 

natural looking estimation to the missing intermediate view representation. 

5.4.1 Video Plus Depth Warping 

Given any viewpoint ܸ and stereo video plus depth data, arbitrary view rendering for ܸ is 

governed by the input-output relation given in (14). ࡰ and ࡰோ store sufficient information 

to relate pixels in  and ோ to 3D scene space coordinates. Much like the depth warping 

process to transform nd ோ  can be back-

projected to scene space and then projected onto target viewpoint ܸ.  

ed to the pixels of the image spaces of ܮ and ܴ as 

given in (35) and (36). 

1 1
ݑ ோݑ

time-of-flight output to other viewpoints;   a

Pixels on the image space of ܸ are relat
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to convert color and depth maps of stereo view into 

polygonal me ader transforms incoming vertices according to ࡼ  ଵ and aିࡼ

ns to the depth 



ோ, can be obtained in a similar fashion. Fusion of two 

Similar to depth warping, these projections are not one-to-one mappings. Therefore, the 

same triangu tion app ach is used la ro

shes. A vertex sh  

geometry shader performs triangle transformation according to (19). 

Rendering of generated fragments through a fragment kernel with depth testing result in 

two alternative arbitrary view images, 
  and 

ோ.  Two separate estimatio

map at arbitrary viewpoint, ࡰ and ࡰ

color maps is performed through a selective blending scheme given in (37). 
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 ሺݑ, ሻݒ െ ࡰ
ோሺݑ, ሻݒ  ࡰ

 (37)

௧
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ߙ ൌ 1 െ

tሺܮ, ܸሻ
distሺܮ, ܸሻ  distሺܴ, ܸሻ (38)

dis
ோߙ ൌ 1 െ

tሺܴ, ܸሻ
distሺܮ, ܸሻ  distሺܴ, ܸሻ 

is

(39)

d tሺ ܸ, ܸሻ ൌ ԡࢀ െ ԡ (40)ࢀ

 

Color images are blende  counterparts. If a pixel from a 

iew is nearer than the respective pixel from the other view at least by ࡰ௧, it is directly 

 as ܸ moves from one 

viewpoint to another [13]. 

Single pixel artifacts remain on 
ௗ due to imperfect alignment of color and depth 

images during previous stages of the algorithm. These artifacts are corrected with 2D 

d primarily according to their depth

v

copied to the target color map. If corresponding depth values are similar, a weighted color 

is produced with weights calculated from the Euclidean distances between viewpoints 

inside the scene space, with ࢀ being the translation vector of viewpoint ܸ defined by the 

pinhole camera model. This interpolation ensures smooth transition

After combining two warped color maps to obtain an initial intermediate view, post-

processing measures, such as image filtering, are taken to eliminate pixel artifacts. 

5.4.2 Post-Processing 
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s ors and 

r h

i   is the 

median filter size param of pixel 

colors as given in (42
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ௗሺݑ, ,ሻݒ ݉൯  Ԣݏ
ௗሺݑ, ,ሻݒ ݉൯  Ԣݏ

 

݉ ൌ median୰ୣୣ୬൫൛
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eplaces others with the local median. Selective median operation is given in (41) w

s the Euclidean distance function given in (25), Ԣ is the selection threshold and K

 to the green channel 
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ݏ
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ቊ


ௗሺݑ, ሻݒ ; ൫ݏ


݉ ; ൫ݏ


ᇱ െ ݑ

(41)

ௗሺݑᇱ, ᇱሻݒ ܽ݊݀ െ ܭ  ሺݑ (42)

 

Mesh warping, selective color map fusion and selective median filtering add up to an 

unintentional sharpness over the generated arbitrary view. A final touch of selective low 

pass filtering at edges provides a more natural image. This low pass filter is explained by 

(43). In this equation, Sobel is the Sobel filtering response of the image, ݁ᇱ  is the edge 

threshold and Box is a linear smoothing filter. 

,ݑሺ ሻݒ ൌ ቊ


ௗሺݑ, ሻݒ ; Sobel൫ௗ൯ ሺݑ, ሻݒ  ݁Ԣ
Box൫  ݁

 

  
(a) (b) 

 

8 Arbitrary view generation after (a) warp combining and (b) post-pro

ncers sequence from Zitnick et al. [95]. 

rom 
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Figure 19 Flowchart for view rendering stage. 
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The effect of post-processing on the final generated image is best seen with an example. 

Figure 18 shows a generated view without and with post-processing. In the separate smaller 

boxes of content detail, loss of extraneous patches is due to selective median filtering and 

smoothing of jagged edges is achieved with box filtering at edges. A general overview of 

the display stage is found in Figure 19. 

A freeview display system applies the procedure to generate  from , ோ, ࡰ and ࡰோ 

whenever broadcast content or viewpoint ܸ changes. The result is an additive cue to the 

viewer and an enriched user experience compared to traditional 2D displays. 

5.5 Implementation with Graphics Processing Units 

Graphics processing units e devices that perform fast model based rendering as 

presented in Chapter 4. Arbitrary view rendering framework presented in this chapter has 

two important image based rendering stages to be performed in real-time. The first stage is 

depth estimation, which is rendering from raw camera inputs to obtain video plus depth 3D 

transmission format. The second stage is view rendering, which is rendering from video 

plus depth for arbitrary view display. 

Both color and depth maps are stored on the GPU memory in 2D texture format, a special 

data structure for coloring vertices and fragments. Depth estimation and intermediate view 

rendering are performed with shaders presented in Chapter 4. Since vector 3D modeling 

information is not available during both stages, dummy triangles are sent to the GPU to 

trigger the graphics rendering pipeline at various steps of the algorithm. 

Depth estimation performed by first warping an initial depth map from one view to another. 

This operation is carried out in a single rendering pass with twice as many triangles as there 

are pixels. These triangles are projected from one viewpoint to another using the vertex 

kernel of the programmable pipeline. Vertex shader is also programmed to trace neighbors 

of each vertex to find the farthest depth in (20). After triangles are aligned to target 

viewpoint, a shader in er occlusion regions. 

Since geometry kernels operate on a primitive level, triangles are filtered one-by-one, and 

vertices of larger triangles are suppressed to background. After these triangles are 

decomposed into fragments, warping operation continues with a trivial fragment kernel 

which passes incoming fragments to target buffers for depth testing. 

are hardwar

 geometry kernel finds and modifies triangles ov
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side opposite views with plane sweeping and three 

different cost functions per each view are constructed. Cost fu  is p r pixels 

Depth estimation stage, which is performed on content acquisition phase, is completed in 

ing pass used in depth projection. Thus, this pass 

performs the same division of work among different parts of the GPU. A per pixel fragment 

ork on pixel-by-pixel 

basis and intermediate buffers can be reused by overwriting. 

Cost fusion is a single rendering pass, which is triggered with a single quadrilateral 

covering the whole target rendering canvas. Inside the GPU stream, default vertex and 

geometry kernels generate all of the pixels on the target viewpoint. A fragment shader 

accesses depth and color maps of both stereo views. In this kernel; bilateral filtering is 

performed, matching pixels are traced in

sion erformed fo

on both left and right viewpoints and the winning depth candidate is passed to the 

framebuffer. 

three rendering passes on the GPU with the following order: 

1. Warp ்ࡰி onto ܮ and obtain ࡰ
௪. 

2. Warp ்ࡰி onto ܴ and obtain ࡰோ
௪. 

3. Construct ܳ and ܳோ by cost fusion to obtain ࡰ and ࡰோ. 

On the display side, projection of color maps with depth information onto target viewpoint 

is accomplished with the same warp

shader is responsible for another rendering pass to combine these two color maps. 

Post-processing is accomplished with a separate rendering pass for each filter used. Both 

selective median and selective box filtering are non-linear per pixel operations which are 

suitable for implementation with fragment shaders. 

On the display side, arbitrary view rendering is accomplished with the following five 

rendering passes: 

1. Warp  onto ܸ and obtain 
 . 

2. Warp ோ onto ܸ and obtain 
ோ. 

3. Combine 
  and  

ோ to obtain  
ௗ. 

4. Selective median filtering over 
ௗ to yield 

ௗ. 

5. Selective box filtering over 
ௗ to yield . 

For warping passes of both stages, depth testing is enabled to handle overlapping triangles, 

thus target buffers are cleared before rendering. All other passes w
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This chapter presents the experiments conducted to test the algorithm presented throughout 

6.1

Pro ameras and a real-time 

application is developed. a acquisition from the eras  display of arbitrary view 

ages for 

stereo vision. Histogram equalization [97] between cameras is performed in software to 

SwissRanger SR-3000 time-of-flight camera is used for range measurements. Systematic 

ed h software ing SDK of SR-3000. This correction includes both 

den n

this thesis. Experimental setup used to obtain video data is explained and empirical and 

numerical resu s are give . lt n

 Expe ntal etup rime S

posed algorithm is tested with color and time-of-flight c

Dat cam  and

generation results take stage together in a single architecture. Data acquisition setup is seen 

in Figure 20. 

Two LightWise LW-3-S-1394 FireWire cameras are used for obtaining color im

match their colors. This step ensures correct results in block matching of stereo 

correspondence and consistent color output in view rendering stage. 

error, which is mentioned in Chapter 3, in raw depth measurements from time-of-flight 

camera are co ectrr wit  us

oisi g and edian f tering. m il

 

Figure 20 Data acquisition setup used in the experiments. 
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Camera calibration is accomplished with OpenCV library functions, linked into the real-

time demo application. A flat board rd pattern is shown to all cameras 

and capture command is sent to align intrinsic and extrinsic properties of all cameras. 

Several variations of the checkerboard pattern is needed to obtain robust values for 

projection matrices ࡼ, ࡼோ an

6.2 Visual Results 

Typical captures obtained with the acquisition setup are given in Figure 21. The 

Depth warping and estimation results are given in Figure 22. Rubber sheet artifacts 

introduced by occlusions are almost eliminated with triangle suppression and bilateral 

filtering. However, jagged depth boundaries appear because of false alarms occurring at 

near occlusion areas. 

Several intermediate views generated at the display stage are given in Figure 23. 

Intermediate views from ballet studio and breakdancers sequences are obtained by using 

two high resolut  depth map in 

between stereo viewpoints. Numerical results for these sets are given in the next section. 

 with a checkerboa

d ்ࡼி. 

SwissRanger SR-3000 sensor emits 850nm infrared light ray, which FireWire cameras 

cannot completely filter out, resulting in directed red illumination on color images obtained 

from the stereo pair. 

  

 
(a) (b) (c) 

Figure 21 Several (a) left, (b) time-of-flight and (c) right frame groups. 

ion color maps from these sets and a single downscaled



  
(a) 
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(b) 

  
(c) 

Figure 22 (a) Depth warping without triangle suppression, (b) depth warping with triangle 

suppression and (c) depth estimation through fusion of cost functions. 
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(a) (b) (c) (d) 

  

Figure 23 Generated intermediate views for (a) (b) capture obtained from data acquisition 

setup, (c) ballet studio sequence and (d) breakdancers sequence. 
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6.3 Performance of the Algorithm 

Primary objective of arbitrary view rendering is to imitate real cameras in creating 

representations of 3D scenes from a requested viewpoint. Success of a specific method is 

assessed by human perception. In other words, subjective quality of the rendered output 

determines performance of the algorithm. 

Quality of the rendered color maps can be estimated with the peak signal-to-noise ratio 

(PSNR) with respect to a reference color map. Breakdancers and ballet studio datasets, 

which are multiview video plus depth frame sequences, are used to build a testing ground 

for the algorithm presented in this thesis. igure 24 shows the relative configuration of 

eight different color cameras used in obtaining the sequence and the estimated depth data. 

 
) 

 
) 

Figure 24 Camera alignments used in breakdancers and ballet studio sequences. (a) Behind 

the camera and (b) top view. 

The arbitrary view rendering algorithm is tested in different configurations. Camera 4 is 

selected as the reference viewpoint and its color map is estimated through neighboring 

color maps. 

Low resolution output of SR-3000 and its systematic errors are simulated by downscaling 

the depth map of Camera 4 and introduction of white Gaussian depth noise. An average 

PSNR value is calculated between the actual color map and its estimation over all frames 

and for both datasets. Obtained quality results are given in Table 1 with respect to the 

F

(a

(b

standard deviation of Gaussian noise added to the initial depth map. PSNR values obtained 

from high resolution depth maps without time-of-flight camera simulation is also given. 

4

7 
6

5 3 2
1

0

2 
7 6 1 0 3 4 5 
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in PSNR for different stereo setups and noise Table 1 Quality of the view rendering method 

levels. 

Dataset 
Stereo 

Pair 

High 

Res. 
ாߪ ൌ

0.01
255

ாߪ  ൌ
0.1
255

ாߪ  ൌ
1

255
ாߪ  ൌ

10
255

 

breakdancers 3 and 5 30.36 29.10 29.10 29.13 26.47

breakdancers 2 and 6 29.58 28.17 28.17 28.11 24.08

breakdancers 1 and 7 27.29 26.14 26.14 26.07 22.42

ballet studio 3 and 5 27.19 25.37 25.36 25.32 22.19

ballet studio 2 and 6 25.70 24.24 24.24 24.10 21.19

ballet studio 1 and 7 21.51 20.68 20.68 20.69 18.80
 

 

Individual performance of depth warping algorithm is calculated by comparing warping 

stereo depth views onto target view and rping target depth map onto its original 

viewpoint. Table 2 lists average depth PSNR values between source depth images and their 

back-projected counterparts for left and right views 

Table 2 Average signal preservation in PSNR due to depth warping from source view to 

target view and backwards. 

 wa

Dataset 3 and 5 2 and 6 1 and 7 

breakdancers 32.36 32.07 31.85 

ballet studio 24.20 23.07 22.72 
 

 

Quality comparison tests for both final rendered images and intermediate depth warping 

stage show that the algorithm performance is very susceptible to the stereo configuration 

used. Depth warping onto stereo viewpoints perform best when these camera position are 

nearer to the depth sensor. Furthermore, the algorithm is robust against depth distortions up 

to a certain noise level where performance decays beyond. 

The algorithm causes erosion of small object regions at both depth estimation and view 

rendering stages. This weakness is most exposed within both subjective and numerical 

results of the ballet studio dataset. 
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scussed in this thesis are implemented and tested under an arbitrary view synthesis 

framework. A benchmark application is d e wh h can h s data e n 

and  to t ce v n b th ls and target view camera 

can be freely moved around. A screenshot d 5. 

erimental benchmark. 

. The user is allowed to navigate the target camera inside a 

region on this surface near source cameras and the target camera always looks at a certain 

point in scene space manner, two sphe ctio sed for navigating 

camera around the scene and one radial parameter controls zoom. 

Real data capture is available through a  datas e the b ark. 

6.4 Software Benchmark 

Ideas di

ev loped, 

e switched 

 is provide

ic  users 

rough pane

in Figure 2

 c oo e , r solutio

 algorithm est. Sour iews ca

 

Figure 25 Screenshot from the exp

The benchmark developed offers navigation inside a view surface extracted from the 

geometry of source cameras

. In this rical dire ns are u

special et insid enchm
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CHAPTER 7 

This chapter begins with a summary of the work presented in this thesis. Second section 

provides remarks on the experimental results obtained and the third and final section 

provides a discussion of possible improvements to the methods presented. 

7.1 Summary 

Arbitrary view rendering is the problem of generating missing views of real world scenes 

from actual views. Generation of intermediate views is a primary concern for 3DTV 

systems. This thesis provides an intermediate viewing framework from content acquisition 

to display front e  resolution time-

of-flight sensor. 

planar depth 

maps from real world scenes. Despite their low resolution outputs, they provide valuable 

assistance to passive methods for depth estimation. 

Arbitrary view rendering is suitable for 3DTV applications only if achieved in real-time 

rates. Graphics processing units provide a sensible alternative to standard microprocessors 

by supporting hardwired rendering phases and programmability with high throughput. 

An arbitrary view rendering framework which consists of data acquisition and view display 

stages is presented in this thesis. Raw data obtained from stereo camera pair and ToF 

sensors are converted into multiview plus depth data format which is suitable for current 

7. CONCLUSIONS 

nd by using a high resolution camera pair and a single low

Arbitrary view rendering is explained in image based rendering context, which 

encapsulates special rendering techniques for creating digital images from photographic 

representations of scenes. Image based rendering is a step forward from model based 

rendering methods to achieve artificial photorealism. 

Time-of-flight cameras are relatively new range sensing devices which provide 
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transmission and broadcast infrastructures. Several alternative approaches for depth and 

arbitrary view estimation are compar

7.2 Discussions 

Depth sensing is strictly fu  task for computer vision and 

computer graphics applications. Passive methods like stereo matching have limitations 

mainly in textureless regions and discontinuities. Active range sensing devices, on the other 

hand, provide accurate depth information for large flat regions but they fail at regions with 

Overcoming limitations of both passive and active methods for depth estimation is possible 

ods. General layout of the scene in 3D space can be extracted with 

ented approaches can be time consuming but real-time rates can be 

te extraction of depth information. 

 a reliable acquisition system for 3D if 

it is followed by accurate data transformation. 

computing power through parallelization beyond stream processing paradigms, thus 

ed. 

ndamental yet a challenging

high texturing. Both low resolution output and intensity related errors of range sensing 

devices lead to erroneous results for non-flat image portions. 

with fusion of these meth

time-of-flight sensors, smaller disparity details can be corrected with stereo matching and 

boundaries can be aligned to accompanying color maps by bilateral filtering leading to 

depth maps more accurate than a single approach can achieve. 

After per pixel estimation of depth maps, global optimization methods can be utilized. Error 

minimization ori

achieved with compute unified programming [98]. Easy access to high performance 

parallelization on GPUs for general purpose tasks, as discussed in Chapter 4, is helpful 

when computing capabilities of CPUs are left alone for other tasks. 

Arbitrary view rendering is possible with accura

Although multiview video plus depth data transmission format is a viable choice for 3DTV 

applications, data acquisition for obtaining aligned depth maps for color images is a 

problem. Stereo plus ToF camera structure provides

7.3 Future Work 

Dense depth estimation is an active research area and a significant portion of literature on 

this topic focuses on global optimization methods as mentioned in Chapter 5. Cost 

minimization methods help align color and depth maps better and eliminate small artifacts 

occurring in depth maps. Compute unified architectures presented in Chapter 4 provide 
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augmented inside the framework with compute 

unified architectures to eliminate the need to switch between devices. 

Arbitrary view rendering systems commonly employ post-processing steps that correct 

providing the assistance of GPU acceleration for non-rendering related problems. Global 

depth approximation methods can be 

artifacts occurring after color warping. Smolic et al. [13] provide a set of correction 

techniques which are not trivial to parallelize with stream processing paradigms. Compute 

unified architectures, again, can be useful for extra view correction measures after 

rendering passes are completed. 
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