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ABSTRACT 

 

 

 

A NONLINEAR EQUIVALENT FRAME MODEL FOR DISPLACEMENT 

BASED ANALYSIS OF UNREINFORCED BRICK MASONRY BUILDINGS   

 

 

 

 

Demirel, Ġsmail Ozan  

M.Sc., Department of Civil Engineering 

Supervisor: Prof. Dr. Haluk Sucuoğlu   

 

December 2010, 208 pages  

 

Although performance based assessment procedures are mainly developed for 

reinforced concrete and steel buildings, URM buildings occupy significant portion of 

building stock in earthquake prone areas of the world as well as in Turkey. 

Variability of material properties, non-engineered nature of the construction and 

difficulties in structural analysis of perforated walls make analysis of URM buildings 

challenging. Despite sophisticated finite element models satisfy the modeling 

requirements, extensive experimental data for definition of material behavior and 

high computational resources are needed. Recently, nonlinear equivalent frame 

models which are developed assigning lumped plastic hinges to isotropic and 

homogenous equivalent frame elements are used for nonlinear modeling of URM 

buildings.      

 

The work presented in this thesis is about performance assessment of unreinforced 

brick masonry buildings in Turkey through nonlinear equivalent frame modeling 

technique. 
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Reliability of the proposed model is tested with a reversed cyclic experiment 

conducted on a full scale, two-story URM building at the University of Pavia and a 

dynamic shake table test on a half scale, two story URM building at the Ismes 

Laboratory at Bergamo. Good agreement between numerical and experimental 

results is found. 

 

Finally, pushover and nonlinear time history analyses of three unreinforced brick 

masonry buildings which are damaged in 1995 earthquake of Dinar is conducted 

using the proposed three dimensional nonlinear equivalent model. After 

displacement demands of the buildings are determined utilizing Turkish Earthquake 

Code 2007, performance based assessment of the buildings are done. 

 

Keywords: Unreinforced Masonry Buildings, Equivalent Frame Modeling, Pushover 

Analysis, Nonlinear Time History Analysis, Performance Assessment  
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ÖZ 

 

 

 

TUĞLA YIĞMA YAPILARIN DEPLASMANA BAĞLI ANALĠZĠ ĠÇĠN 

DOĞRUSAL OLMAYAN EġDEĞER ÇERÇEVE MODELĠ   

 

 

 

 

Demirel, Ġsmail Ozan  

Yüksek Lisans, ĠnĢaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Haluk Sucuoğlu   

 

Aralık 2010, 208 sayfa  

 

Performansa dayalı değerlendirme yöntemleri her ne kadar öncelikle betonarme ve 

çelik binalar için geliĢtirilmiĢ olsa da, yığma yapılar bugün dünyanın depreme 

eğilimli bir çok bölgesinde ve Türkiye‟de yapı stoğunun önemli bir kısmını 

oluĢturmaktadır. Yığma yapıların malzeme özelliklerindeki değiĢkenlik, mühendis 

hizmeti görmeden yapılmıĢ oluĢları ve boĢluklu duvarların yapısal 

değerlendirilmesindeki güçlükler analiz edilmelerini güçleĢtirmektedir. GeliĢmiĢ 

sonlu elemanlar modelleri modelleme ihtiyacını karĢılasa da malzeme davranıĢını 

tanımlayabilmek için çok sayıda deneysel veri gerekmekte ve çok fazla hesaplama 

eforu istemektedir. Son dönemlerde eĢyönlü ve bağdaĢık eĢdeğer çubuk elemanlarla 

oluĢturulan yığma bina modellerine yığılı plastik mafsallar atanarak oluĢturulan 

doğrusal olmayan çubuk çerçeve modelleri, yığma yapıların modellenmesinde 

kullanılmaktadır. 
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Bu çalıĢmada Türkiye‟de bulunan tuğla yığma yapıların doğrusal olmayan çubuk 

çerçeve elemanlarla modellenerek performansa bağlı değerlendirilmesi tarif 

edilmektedir.  

 

Önerilen modelin güvenilirliği Pavia Üniversitesi‟nde gerçek boyutlu ve iki katlı bir 

yığma bina üzerinde gerçekleĢtirilen döngüsel itme deneyi ve Bergamo‟da bulunan 

Ġsmes Loratuarı‟nda yarı ölçekli ve iki katlı bir yığma bina üzerinde gerçekleĢtirilen 

dinamik sarsma tablası deneyiyle karĢılaĢtırılarak sınanmıĢtır. Deneysel ve sayısal 

sonuçlar arasında tatmin edici bir uyum gözlemlenmiĢtir. 

 

Son olarak 1995 Dinar depreminde hasar gören üç adet tuğla yığma binanın statik 

itme ve zaman tanım alanında doğrusal olmayan dinamik analizleri, doğrusal 

olmayan eĢdeğer çerçeve metoduna göre oluĢturulan üç boyutlu bilgisayar modeli 

kullanılarak yapılmıĢtır. 2007 Türkiye Deprem Yönetmeliği‟ne göre binaların 

deplasman istemi hesaplandıktan sonra performansa dayalı değerlendirmeleri 

yapılmıĢtır.   

 

Anahtar Kelimeler: Tuğla Yığma Yapılar, EĢdeğer Çerçeve Modeli, Statik Ġtme 

Analizi, Zaman Tanım Alanında Doğrusal Olmayan Dinamik Analiz, Performansa 

Dayalı Değerlendirme 
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Living is no joke, 

you must live with great seriousness 

like a squirrel for example, 

I mean expecting nothing except and beyond living, 

I mean living must be your whole occupation. 

 

You must take living seriously, 

I mean to such an extent that, 

for example your arms are tied from your back, your back is on the wall, 

or in a laboratory with your white shirt, with your huge eye glasses, 

you must be able to die for people, 

even for people you have never seen, 

although nobody forced you to do this, 

although you know that 

living is the most real, most beautiful thing. 

 

I mean you must take living so seriously that, 

even when you are seventy, you must plant olive trees, 

not because you think they will be left to your children, 

because you don’t believe in death although you are afraid of it 

because, I mean, life weighs heavier.  

 

Nazım Hikmet
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 An Overview on Masonry Construction 

 

Throughout his fight against challenging actions of the nature, mankind laid pieces of 

stones on top of each other, building shelters on the purpose of protection and 

accommodation. Starting from the simplest shelters to modern reinforced masonry 

buildings, masonry construction has a long history. Although there is a great 

improvement in utilized material properties and construction techniques, the main 

idea behind masonry construction is still the same; reproduction of nature for 

accommodation needs.  

 

Being the only construction alternative, masonry construction dictated the structural 

and architectural characteristics of structures in the past. Many civilizations are 

remembered with tremendous masonry structures build in their era. Egyptian 

pyramids, Greek temples, Roman aqueducts, Ottoman mosques, Gothic cathedrals, 

Renaissance age structures (see Figure 1.1) are all examples of masonry construction 

survived as cultural heritages from old civilizations.   

 

Today, URM construction maintains its popularity over many urban areas world-

wide. Low cost, durability, widespread geographic availability, low maintenance, 

thermal insulation, fire protection and easiness to construct make masonry an 

appealing construction material for residential buildings. Since it requires little 

technology and skill, masonry buildings are often constructed without an engineering 

touch.  

 

Together with the inherent uncertainties in material and structural level, high inertial 

forces proportional to high mass of the structure makes URM buildings vulnerable to 

earthquakes.    
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Figure 1.1 Ancient URM Structures a) Great Pyramid of Giza, Egypt b) Greek 

Temple, Greece c) Hagia Sophia, Turkey d) Coliseum, Italy e) Pisa Tower, Italy 

 

Unfortunately nonlinear response of URM buildings under earthquake induced 

lateral loads is a challenging task. According to Abrams (2001) despite being the 

oldest construction material, masonry is still the least understood in terms of strength 

and deformation characteristics.  

 

As a result, steel and RC have been replacing masonry as a construction material in 

earthquake prone areas of the world. Instead of using as a construction material, 

masonry has been mostly used as a non-structural material such as infill of reinforced 

concrete frames in the last decades (Vasconcelos, 2005). This situation increased the 

research on masonry as an infill material for reinforced concrete structures (Binici et 

al., 2007) but also led to limited knowledge of masonry as a construction material. 

Prior to 1950‟s, majority of these buildings were designed only for gravity loads 

without considering the seismic effects. After this period, seismic design principles 

were introduced into building codes (Erbay, 2007).  

 

e) d) c) 

b) a) 
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Despite all its drawbacks, masonry still has many advantages over RC for low-height 

residential building construction. Contrary to RC counterparts, masonry buildings 

save in overall construction time and cost by eliminating the need for expensive 

formwork, heavy machinery and special equipment for concrete pouring (Akan, 

2008).  

 

Also according to comparative analysis conducted by Akan (2008) on a typical three-

story residential building (see Figure 1.2), selection of masonry instead of RC as 

construction material nearly halves the cost.  

 

 

Figure 1.2 Typical Residential Building Designed by Akan (2008) a) RC Structural 

System b) Masonry Structural System 

 

1.2 Need for Research 

 

Existing URM structures, whether residential buildings or historical structures pose 

risk in case of seismic disturbances. Neither loss of lives nor loss of cultural heritage 

due to collapse of URM structures is irreversible. Thus, investigations on 

conservation of both in case of an earthquake should be conducted.   

  

According to Orduna (2003), earthquakes in 1997 destroyed and damaged more than 

200 churches in Italy and earthquake in 1999 destroyed or damaged near 300 ancient 

churches in Mexico. 

a) b) 
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Turkey is a rich country considering cultural heritage. A lot of important civilizations 

lived in Anatolia leaving georgeous masonry structures behind as rich historical 

heritages (see Figure 1.3). Since historic structures are strong links revealing the 

cultural evolution of Turkey between past and the present, they should be preserved 

by means of strengthening against earthquakes. 

 

Iran Bam earthquake of 26 December 2003, Pakistan earthquake of October 2005 

and Haiti earthquake of January 2010 are the nearest earthquakes resulting in 

enormous loss of lives due to the poor performance of URM buildings world-wide.  

 

Likewise, Turkey also suffered from many earthquakes affecting URM building 

stock in the past. Most recently an earthquake with a magnitude of 6.0 resulted in 

loss of 42 lives in Elazığ Kovancılar earthquake of March 2010 (Akkar et al., 2010). 

 

According to the report of Housing Development Administration of Turkey, in urban 

areas 30% of all buildings are the reinforced concrete frame type, 48% are brick 

masonry or timber framed and 22% are adobe or rubble masonry. In rural areas 82% 

of the housing stock is masonry of some form (Erdik and Aydınoğlu, 2002). 

 

Since in addition to rich cultural URM heritage, URM construction is also wide 

spread in Turkey which is an earthquake country, seismic assessment of URM 

building stock need to be conducted via performance based seismic assessment 

methods.   

 

Displacement based concepts are used for the purpose of determining the expected 

performance of a building under an expected seismic action. Due to the prejudgment 

that masonry is a brittle material with limited deformation capacity, displacement 

based concepts have been predominantly developed for RC and steel. However, after 

displacement capacity of masonry is revealed from many experimental tests (FEMA 

307, 1999) displacement based analysis of masonry buildings are allowed by many 

building codes including FEMA 356, Eurocode 8, Italian and Mexican national 

earthquake codes in the last decade. Also according to Orduna (2004) “application of 
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modern concepts of mechanics and the development of tools for the structural 

analysis of ancient masonry constructions have been the topic of very active research 

mainly in the past decade.”   

 

 

 
Figure 1.3 Historic URM Heritage of Anatolia a) Malabadi Bridge-Diyarbakır 

(1140), b) Dual Arch Bridge-Artvin (18th century) c) The Mosque of Soliman-

Ġstanbul (1558) d) Aspendos Theatre-Antalya (2nd century)  

 

1.3 Assumptions Involved in Research  

 

In order to simplify complex nature of masonry for modeling purposes, some 

assumptions and idealizations have been made throughout the research. Collection of 

the assumptions and idealizations which are made throughout the dissertation is 

given in this section. It should be remembered that conclusions achieved as a result 

of this research is valid only under given assumptions.  

a) b) 

c) d) 
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1 Although masonry walls which are composed of mortar and brick units show 

heterogeneous and anisotropic behavior, in case global behavior of the structure 

is concerned, masonry is idealized as a homogenous and isotropic medium. This 

assumption is made for elastic stiffness calculations of masonry walls in Chapter 

3 and equivalent frame modeling of masonry buildings in Chapter 5.    

 

2 For homogenous and isotropic materials, constitutive relationship is identified by 

two constants. Namely, modulus of elasticity (E) and poison‟s ratio (υ). 

Representative values of these constants for Turkish brick masonry construction 

practice are taken as 2000 MPa and 0.2 respectively (Aldemir, 2010). 

 

3 Compressive strength of masonry walls is taken as 5 MPa considering typical 

solid bricks and mortar utilized in Turkey. 5 MPa is also the minimum limit for 

compressive strength of URM walls in TEC97.    

 

4 It is assumed that although spandrels are prone to early cracking due to low level 

of axial load on them, ultimate resistance of a masonry building is dictated by 

pier failure. This assumption is also supported by Calvi et al. (1996) who claim 

that “final collapse of URM structures is almost always a result of pier failure.” 

 

5 Inelastic actions are assumed to take place in piers only. Spandrels are modeled as 

linear elastic (Belmouden and Lestuzzi, 2007 and Gilmore et al., 2009). 

 

6 Out of plane failure of the walls are not concerned. It is assumed that sufficient 

precautions such as good connection between walls and the slab is satisfied by 

means of bond beams, steel anvhors, etc.   

 

7 It is assumed that resistance to lateral loadings is solely provided by in plane 

walls. Out of plane resistance of the frames are neglected. As analytically and 

experimentally observed by Yi et al. (2003), the level of this assumption is 

negligible and effect on total stiffness and strength is around 5-8 %.  
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8 In Chapter 6, rigid diaphragm action is assumed. Story masses are lumped to 

center of mass of each floor which is calculated taking weights of the slab and 

walls into account. 

 

9 The calculations for 3-D masonry building are further simplified by taking into 

account only one horizontal component of the seismic ground motion and 

analyzing the structure in each orthogonal direction separately (Tomazevic et al., 

2004). 

 

10 Equivalent viscous damping for demand calculations of the masonry buildings 

according to TEC2007  are taken as 10%.  

 

1.4 Organization of the Thesis 

 

The present dissertation is divided into seven Chapters and four Appendices. 

Chapters are organized to follow a path going from simple elastic response to 

complicated plastic response in both component and structural levels. 

 

Chapter 2 is a review of the main concepts and previous investigations on 

experimental and analytical researches illustrating nonlinear response of URM walls 

and structures which are essential in implementing displacement based concepts for 

URM buildings. In the component level, experimental studies and simple analytical 

formulas illustrating ultimate strength, softening behavior and ultimate drift of URM 

walls related to four primary failure modes (i.e. rocking, sliding, diagonal tension, 

toe crushing) are reviewed. In the structural level, nonlinear modeling techniques 

utilized to simulate nonlinear behavior of URM structures are summarized. Emphasis 

is given on equivalent frame method which will be further investigated in the 

upcoming chapters. Finally performance limit states for URM walls and buildings 

are presented which is also essential for performance assessment of URM buildings. 

 

Chapter 3 deals with elastic response of solid and perforated URM walls. Derivation 

of analytical equations illustrating elastic lateral stiffness of solid URM walls is 
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made. Influence of coupling imposed by beams on lateral stiffness of cantilever walls 

is investigated and an analytical equation is proposed for elastic lateral stiffness of 

masonry walls coupled with spandrels. A modeling technique, named as equivalent 

frame method, idealizing perforated URM walls as frame elements such as piers and 

spandrels is introduced for elastic lateral stiffness calculation of perforated walls. 

Calibration of the method is made via comparative analyses between finite element 

model and equivalent frame model.  

 

Chapter 4 introduces a finite element macro model that has been developed by 

Aldemir (2010) for the simulation of nonlinear response of URM walls. The model is 

capable of reflecting effects of cracking, estimating damage propagation and ultimate 

failure mechanism of masonry walls. After properties and assumptions of the model 

are illustrated, reliability of the model is tested. First, comparison of the equations 

proposed by Aldemir (Equation 4.1 and 4.2) with simple strength formulas and 

ultimate drift capacities of URM walls that are proposed by FEMA 356(2000) is 

made. Second, detailed comparison of the model with the results of two experimental 

studies is made. Results of the proposed model form the basis for the nonlinear 

modeling of URM buildings in the following chapters. 

 

Chapter 5 deals with derivation and verification of a nonlinear equivalent frame 

model proposed for nonlinear static and nonlinear dynamic analyses of URM 

buildings. Proposed nonlinear model is a combination of equivalent frame model that 

has been mentioned in Chapter 3 whose nonlinear response of its components is 

defined according to finite element macro model results mentioned in Chapter 4. 

Validation of the model is performed by means of two experimental tests. First, 

cyclic experimental test results of the URM building tested at University of Pavia is 

compared with pushover analysis results of the proposed model. Second, dynamic 

experimental test results of the URM building tested at Ismes Laboratory at Bergamo 

is compared with nonlinear time history analysis results of the proposed model. 

Additionally, influence of different approaches for the determination of axial load 

level on URM walls, which is crucial for the determination of hinge characteristics, 

is investigated. A step by step hand calculation method which takes axial force - 
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shear force interaction into account is proposed. Steps of the procedure is outlined 

and demonstrated.  

 

Chapter 6 contains the application of the model developed in the previous chapter to 

three existing URM buildings located in Dinar, Turkey. Capacity curves of the 

buildings are derived according to equations proposed by Aldemir and equations 

proposed by FEMA 356 for comparison. After determination of the capacities 

utilizing the nonlinear equivalent frame model proposed in Chapter 5, earthquake 

demand of the buildings under the design earthquake specified in TEC2007 are 

calculated and performance assessment of the buildings are made according to both 

assessment of member displacement demands and a simple approach proposed by 

Tomazevic (2007). Nonlinear time history analyses of the buildings are made and 

calculated demands according to TEC2007 and nonlinear THA are compared.  

 

 Chapter 7 presents the findings and conclusions derived from this study and 

provides suggestions for future research. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

 

2.1 Nonlinear Response of URM Walls 

 

Nonlinear behavior of masonry walls is highly complicated. Nonlinearity is mainly 

dependent on cracking and crushing of masonry which is heterogeneous and 

anisotropic by nature. Depending on the mechanical properties, boundary conditions, 

axial load level and aspect ratio of the wall, different failure mechanisms are 

observed. Each failure mechanism possesses its own strength and displacement 

characteristics. Thus, in order to define the nonlinear behavior of a masonry wall, its 

failure mode needs to be determined first.  

 

To illustrate the effect of failure mechanism on response, hysteretic behavior of two 

masonry walls under cyclic load reversals are illustrated in Figure 2.1 (Magenes and 

Calvi, 1997).  

 

In case of flexural response such as rocking of a pier, response is roughly nonlinear 

elastic with low hysteretic energy dissipation, considerable displacement capacity 

and limited strength degradation (see Figure 2.1a). On the other hand, in case of 

shear dominated response such as diagonal tension failure, nonlinear response is 

characterized by higher hysteretic energy dissipation, limited displacement capacity, 

sudden strength and stiffness degradation (see Figure 2.1b).  
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Figure 2.1 Hysteretic Response of Masonry Walls a) Flexure Dominated Response 

b) Shear Dominated Response (Magenes and Calvi, 1997)  

 

Chapter 2 starts with an investigation on definition and unique characteristics of 

failure modes of URM walls. Since failure of a URM wall is characterized by 

strength and ultimate drift, special attention is given on simple strength formulas 

defined in the literature followed by ultimate drift limit and softening behavior 

investigation of URM walls under lateral loading. Then, nonlinear modeling 

techniques utilized for URM is reviewed. Emphasize is given on equivalent frame 

modeling which will be further investigated in the following chapters. Finally, recent 

studies on the performance assessment of URM walls and buildings will be 

summarized. 

        

2.1.1 Failure Modes of URM Walls 

 

Depending on the difficulty in analytical modeling, the knowledge about nonlinear 

behavior of masonry is mostly extracted from experimental studies. Four primary in-

plane failure modes of URM walls such as rocking, bed joint sliding, diagonal 

tension failure along masonry units or along head and bed joints in a stair stepped 

fashion and toe crushing (see Figure 2.2) are identified in these experimental works.  

 

However, even four primary discrete failure mechanisms are not sufficient to define 

inelastic behavior of a masonry wall. Initiation of a failure mechanism might trigger 

another failure mechanism (TianYi., 2006) or overturning moment due to lateral 

b) a) 
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loads might increase or decrease axial load on the walls of a URM building , turning 

flexural failure to shear dominated failure (Magenes et al., 1995). 

 
Figure 2.2 Failure Modes of In-plane Masonry Walls (Tianyi, 2006) 

 

As a result, ultimate failure of a pier might be idealized as a combination of four 

primary modes. According to FEMA 306 “Evaluation of Earthquake Damaged 

Concrete and Masonry Wall Buildings - Basic Procedure Manual” (1999) in addition 

to previously mentioned four primary failure modes, coupled failure modes such as: 

Flexural Cracking / Toe Crushing / Bed Joint Sliding, Flexural Cracking / Toe 

Crushing, Flexural Cracking / Diagonal Tension are also defined. A summary of 

experimental studies illustrating combined failure mechanisms are illustrated in 

FEMA 307 (1999).  

 

The summarized experimental results suggest that aspect ratio and vertical stress are 

the most important factors in determination of the failure mechanisms of URM walls. 

Rocking and sliding governs the response under low levels of axial force and high 

aspect ratio. These failure modes are capable of exhibiting large ultimate drifts. At 

higher levels of axial force and low aspect ratios, toe-crushing and diagonal tension 

failures are more common. Although these failure modes are typically assumed to be 

brittle, if diagonal crack is formed in a stair stepped manner, large displacement 

capacities have been observed due to the resulting sliding deformations (Franklin L. 

Moon, 2004).  

 

Definitions and related nonlinear response characteristics of four primary failure 

modes of URM walls are illustrated below.  

 

a) Rocking      b) Sliding                c) Diagonal tension       d) Toe crushing 
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2.1.1.1 Rocking  

 

Rocking failure is a flexure dominated mechanism which is distinguished by flexural 

cracks developing at the bottom and the top of the wall. Under the overturning effect 

of lateral forces, wall makes a rigid body rotation about the compression zone in the 

direction of lateral force. Large deformations without significant strength reduction is 

observed under force reversals since flexural cracks close and uncracked section 

resist overturning moment in each reversal.  While some authors (Tianyi, 2004) 

conceive rocking as a working condition not as a failure mechanism, a displacement 

based failure mode with a generalized force deformation relationship is defined for 

rocking in FEMA 356 (2000). Equation proposed for rocking strength of piers in 

FEMA 356 is given below: 

 

        
 

    
    (2.1) 

Where; 

α = Support condition factor; 0.5 for cantilever wall, 1 for both ends fixed wall 

P = Axial compressive force on wall 

L = Length of wall 

heff = Effective height of wall 

 

2.1.1.2 Shear Sliding along Bed Joints 

 

Bed-joint sliding failure is characterized by either horizontal cracks along bed-joints 

or stair stepped cracks along bed-joints and head joints. Under the shear force 

implemented by lateral force, bricks slide on one another producing resistance 

offered by friction alone between masonry units and mortar. Large deformation 

without significant strength deterioration is observed and large amount of energy is 

dissipated due to frictional resistance. Bed-joint sliding is defined as a displacement 

based failure mechanism in FEMA 356 (2000). Equation proposed for bed-joint 

sliding strength of URM walls in FEMA 356 is given below: 
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        (         )      (2.2) 

Where; 

L = Length of wall 

t = Thickness of wall 

p = Mean compressive stress on wall 

νte = Bed joint shear strength (0.75 factor on νte shall not be applied for single wythe 

masonry walls.) 

 

2.1.1.3 Diagonal Tension  

 

Diagonal tension failure is a shear dominated failure mechanism which is identified 

by diagonal cracking in the middle of the wall. It is caused by the maximum 

principle stress (tension) which exceeds the tension strength of masonry. If strong 

units and weak mortar is utilized cracking takes place through bed and head joints, 

otherwise diagonal cracks propagate along brick units and mortar. From 

experimental studies it is found that the cracking that goes through brick units and 

mortar results in a brittle failure with sudden decrease of strength, whereas second 

type of cracking exhibits relatively large ultimate drifts. FEMA 356 (2000) does not 

distinguish between two types of diagonal cracking and defines diagonal tension 

failure as a force based failure. However it is also observed that cracking going 

through bed-joints and head-joints resulted in a ductile behavior similar to bed-joint 

sliding mechanism. 

 

Equation proposed for diagonal tension strength of piers in FEMA 356 is given 

below: 

 

       
  

 

    
√  

 

   
     (2.3) 

Where; 

   
 = lower bound masonry diagonal tension strength  

A = Area of cross section 

L = Length of the wall 
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heff = Effective height of wall 

p = Mean compressive stress on wall  

 

2.1.1.4 Toe Crushing   

 

Toe crushing failure is defined as crushing of masonry taking place at the maximum 

compression zone which is located at the bottom end of the wall. It is usually related 

with rocking failure. Compressive failure of masonry units results in a sudden 

decrease in strength and stiffness. Thus, toe crushing is defined to be a force based 

failure mode in FEMA 356 (2000). Equation proposed for toe crushing strength of 

piers in FEMA 356 is given below: 

 

      
 

    
(  

 

     
 )    (2.4) 

Where; 

α = Support condition factor; 0.5 for cantilever wall, 1 for both ends fixed wall 

P = Axial compressive force 

L = Length of wall 

heff = Effective height of wall 

p = Mean compressive stress on wall 

  
 = Lower bound masonry compressive strength 

L/ heff shall not be taken less than 0.67  

 

2.1.2 Softening Behavior of URM Walls  

 

Lateral stiffness of URM walls degrade with the increase in lateral displacement. 

Softening of the lateral resistance in URM takes place due to progressive internal 

crack growth reducing effective area of the wall which resists lateral load. This 

phenomenon is observed in several experimental studies. While some authors tried to 

relate post-elastic stiffness degradation to lateral drift, others assume that post-elastic 

stiffness might be taken as zero for practical purposes.  
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According to Gürel et al. (2005) elastic lateral stiffness values of the unreinforced 

masonry columns decrease dramatically with the increase in lateral displacements 

caused by cracking and second-order effects. P-Δ effects for masonry piers might be 

ignored since limit states for the ultimate drift of piers are low. However cracking 

results in significant stiffness drop especially for shear dominant mechanisms.  

 

Based on an experimental study on in-plane loaded full scale masonry walls and half 

scale confined masonry buildings through shaking table tests, Ruiz García and 

Alcocer (1998) established a relationship between damage, lateral drift, crack 

pattern, degradation of lateral strength and stiffness of confined masonry walls (see 

Figure 2.3). In structural level, they observed that stiffness decays at low drift ratios, 

even before inclined cracking takes place. They explained this fact by flexural 

cracking, micro-cracking not visible by naked eye, local loss of mortar bond and 

adjustment of brick position. They also stated that after first inclined cracking, 

stiffness decay increased with drift until maximum strength is reached. At larger drift 

ratios stiffness remained nearly constant (Alcocer et al., 2004). 

 

 
 

Figure 2.3 Evolution of Damage and Structural Degradation in Confined Masonry 

Walls Failing under Diagonal Tension (Ruiz-García and Alcocer, 1998)  

 

In Figure 2.3, lateral stiffness (K) corresponding to a particular level of inter-story 

drift (D) is normalized by initial stiffness (Ko). Similarly, shear force (V) 

corresponding to a particular level of inter-story drift is normalized by maximum 

shear strength of masonry wall (Vmax). Decrease in lateral stiffness starts in the very 
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first stages of loading, just after the formation of first hairline cracks. After the 

formation of first diagonal cracking due to diagonal tension, lateral stiffness 

decreases to 35% of its initial value. Decrease in lateral stiffness and increase in 

shear force is parabolic until the walls are heavily damaged. Afterwards both shear 

force and lateral displacement tend to be constant till masonry walls fail at a ultimate 

drift level of 0.5%.    

 

According to experimental studies made by Tomazevic et al. (1996) it is observed 

that independent of vertical load and loading history, shape of the stiffness 

degradation function is constant. The change in stiffness of a pier might be related 

with lateral displacement using Equation 2.9. Utilizing stiffness degradation 

parameters proposed by Tomazevic, stiffness degradation functions are drawn for 

different levels of vertical force on piers (see Figure 2.4).  

 

 

  
   (

 

     
)
 

    (2.9) 

Where; 

K = Lateral stiffness  

  = Secant stiffness evaluated at the occurrence of the first significant cracks  

d = lateral displacement  

      = lateral displacement evaluated at maximum resistance  

α, β = parameters of stiffness degradation  

  

Figure 2.4 Stiffness Degradation Function for Different Levels of Vertical Load, 

Proposed by Tomazevic et al. (1996) 
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Bosiljkov et al. (2005) investigated the effect of precompression on the stiffness 

degradation of URM walls. According to an experimental study result”, shape of the 

stiffness degradation curve for cantilever elements depend on the level of 

precompression (see Figure 2.5). Figure 2.5 also verifies Equation 2.9 in the way that 

although stiffness degradation function depends on level of precompression, its shape 

remains unchanged.    

 
Figure 2.5 Stiffness Degradation vs. Shear Stresses for Different Levels of 

Precompression, Bosiljkov et al. (2005)  
 

Similar observations were also made by Tian Yi et al (2006). According to the 

experimental research on a full-scale two-story URM frame which is tested in a 

quasistatic fashion, it is observed that effective elastic modulus of the masonry 

decreased rapidly from the initial value of 7 GPa to about 0.9 GPa at a roof 

displacement of 6.4 mm which corresponds to an inter-story drift of about 0.14% for 

the first story and about 0.05% for the second story. At this stage only 13% of initial 

stiffness could be preserved.  

  

The reason why large elastic stiffness of squat masonry walls decreases rapidly, with 

a small increase in lateral drift, is explained by Anderson and Brzev (2009). They 

state that the response is initially elastic until cracking takes place. Then there is a 

large drop in stiffness. This is particularly pronounced after the development of 

diagonal shear cracks. After a few major cracks develop, the load resistance is taken 
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over by the diagonal strut mechanism. However, the stiffness drops significantly 

shortly after the strut mechanism is formed, and can be considered to be zero for 

most practical purposes. 

 

2.1.3 Ultimate Drift Limit for URM Walls 

 

Ultimate drift limit is an important parameter indicating the deformation capacity of 

the wall. In force-based approach, member strength is compared with force demand 

and ultimate drift is not needed. Whereas in displacement-based assessment of 

structures, structure is pushed into nonlinear range and only members which are 

capable of accommodating imposed displacement can survive.   

  

Ultimate drift limit for a masonry wall depends on the failure mode of the wall. 

Flexure dominant failures such as bed joint sliding and rocking results in larger 

ultimate drifts whereas shear dominant failures such as diagonal tension failure ends 

up in a brittle failure with smaller ultimate drifts.  

 

Based on the experimental test results collected by FEMA 307 (1999), deformation 

capacity of URM walls corresponding to different failure mechanisms are illustrated 

in Table 2.1. 

 

Table 2.1 Ultimate Drift of URM Walls Corresponding to Different Failure Modes 

(FEMA 307, 1999) 

Failure mode Ultimate drift (%) Reference 

Rocking 0.6 to 1.3 
Anthonie (1995), Magenes&Calvi 

(1995), Costley&Abrams (1996) 

Rocking / Toe Crushing 0.8 Abrams&Shah (1992) 

Flexural Cracking / Toe 

Crushing / Bed-joint 

Sliding 

0.8 to 1.3 Manzouri et al. (1995) 

Flexural Cracking / 

Diagonal Tension 
0.5 to 0.8 

Anthonie (1995), Magenes&Calvi 

(1992), Magenes&Calvi (1995) 

Flexural Cracking / Toe 

Crushing 
0.2 to 0.4 

Abrams&Shah (1992), Epperson 

and Abrams (1989) 
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According to Magenes and Calvi (1997), pure rocking and bed-joint sliding failure 

modes are stable and an ultimate displacement limit for these failures has no meaning 

because other failures like toe crushing and diagonal tension determines the 

displacement limit before wall fails under pure rocking or sliding. To illustrate, in 

case of rocking failure, if no other failure mechanism takes place, ultimate 

displacement can be attained only by a decrease in strength depending on P-Δ effects 

which may correspond to lateral displacement of 10% of the wall height.   

 

As a result of experimental tests, Magenes and Calvi concluded that, in diagonal 

shear failure, drift at ultimate state tends to be a uniform number with a mean 0.53% 

and coefficient of variation of 10% (see Table 2.2).  

 

Table 2.2 Ultimate Drift Associated with Diagonal Shear Failure from Experimental 

Quasi-static Tests (Magenes and Calvi, 1997) 

Wall h/L p (MPa) δu/h (%) δu/δy 

MI1 (+) 1.33 1.12 0.51 4.25 

MI2 (-) 1.33 0.68 0.60 2.53 

MI3 (+) 2.00 1.24 0.48 3.27 

MI3 (-) 2.00 1.24 0.49 4.63 

MI4 (+) 2.00 0.69 0.50 1.83 

MI4 (-) 2.00 0.69 0.60 2.28 

ISP1 (+) 1.35 0.6 0.44 4.54 

ISP1 (-) 1.35 0.6 0.54 7.30 

ISP3 (+) 1.35 1.08 0.53 6.45 

ISP3 (-) 1.35 1.08 0.62 7.55 

  
mean 0.53 4.46 

  
c.o.v (%) 10.39 43.94 

 

2.2 Nonlinear Modeling of Masonry  

 

A certain number of methods have been utilized for the study of URM buildings so 

far. Due to the diversity and high level of complexity inherent to masonry, the 

approach towards the analytical modeling has led researchers to seek for several 

constitutive models characterized by different levels of complexity. 
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From sophisticated finite element micro models to limit analysis approaches, a wide 

range of numerical methods are available in literature. Equivalent frame models and 

limit analysis methods are user friendly and require lesser amount of data. However 

compared to FEM models both of them is limited in terms of simulating distribution 

of nonlinearity, force redistribution, coupling effect between orthogonal walls, mode 

of failure prediction and so on.  

 

Although finite element models are the most reliable among all, the best method 

might be defined as “the method that provides the sought information in a reliable 

manner, i.e. within an acceptable error, with the least cost” (Oliviera, 2003).  

 

Lourencho (1996) summaries finite element modeling strategies defined in literature 

depending on the level of refinement used for the structural analysis as below (see 

Figure 2.6):  

 

• Detailed micro-modeling – requires discrete modeling of mortar, brick units with 

continuum elements and unit mortar interface with discontinuous elements. 

 

• Simplified micro-modeling – brick units are modeled with continuum elements 

whereas the behavior of the mortar joints and unit-mortar interface is lumped in 

discontinuous elements; 

 

• Macro-modeling - units, mortar and unit-mortar interface are smeared out in the 

continuum. 

 

Each modeling technique starting from the most sophisticated to least will be 

investigated in detail in the following sections. 
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Figure 2.6 Modeling Strategies for Brick Masonry: a) typical masonry sample, b) 

detailed micro modeling, c) simplified micro-modeling, d) macro-modeling 

(Lourencho, 1996) 
 

2.2.1 Finite Element Micro-Model 

 

Masonry is a composite material consisting of brick units and mortar joints. In order 

to reflect the complex nature of the masonry, a complete model should accommodate 

discrete brick units, mortar joints and the unit-mortar interface whose mechanical 

properties are different. Finite element micro models represent masonry from the 

knowledge of mechanical properties of each constituent and the unit mortar interface 

which require detailed experimental description.  

 

Gathering reliable description of mechanical properties of brick units, mortar joints 

and interface between them requires massive experimental study due to the diversity 

inherent to masonry materials and construction practices. According to Lourencho 

(1996), “the properties of masonry are influenced by a large number of factors, such 

as material properties of the units and mortar, arrangement of bed and head joints, 

anisotropy of units, dimension of units, joint width, quality of workmanship, degree 

of curing, environment and age.”  
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Furthermore finite element micro models require extensive computational facility 

and complicated failure criterion (Elgawady et al, 2006). As a result finite element 

micro models are practically applicable to small structural elements in which stress 

and strain states are heterogeneous.  

 

After studying finite element modeling techniques in detail, Lourencho (1996) 

concludes that “for large structures, the memory and time requirements become too 

large and, if a compromise between accuracy and economy is needed, a macro-

modeling strategy is likely to be more efficient.” 

 

2.2.2 Finite Element Macro-Model 

 

In the modeling of large structural elements, a relation might be defined between 

average masonry stresses and average masonry strains since neglecting 

heterogeneous nature of local stress distribution does not have a great influence on 

global response. Instead of discrete modeling, homogenization of brick units and 

mortar joints is utilized to generate finite element macro model of masonry.   

 

Compared to micro models, fewer amounts of material parameters which means 

fewer amounts of experimental work is sufficient for macro model generation. To 

illustrate, tests on brick units, mortar cubes and small wallets are needed to be 

conducted to define mechanical properties of masonry constituents and brick mortar 

interface for micro model generation. Whereas tests conducted on sufficiently large 

size of composite materials are enough for mechanical property definition of URM 

walls for macro model generation.    

 

The major drawback of the approach is that under weak mortar strong brick unit 

combination or vice versa, homogenization of structural properties leads to improper 

simulation of the local weaknesses of the bricks or the mortar. Moreover some 

failure modes of masonry such as diagonal tension or sliding in a stair stepped 

manner could not be caught by macro models.  
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2.2.3 Equivalent Frame Model 

 

Equivalent frame method is a simple way to conduct nonlinear analyses on URM 

structures. Least amount of data is required to describe material property among 

other modeling strategies since homogenous, isotropic material idealization is made. 

Local nonlinear behavior of each wall is described with nonlinear hinges whose force 

displacement properties are usually defined from experimental test results.  

 

Being both simple and effective, a wide range of studies to improve the reliability of 

the EFM is found in the literature. Attempts to simulate nonlinear behavior of URM 

with equivalent frame models are summarized below:   

 

Gilmore et al. (2009) proposed an equivalent frame model to perform pushover 

analysis of confined masonry buildings. Structural degradation of confined masonry 

walls is associated with shear behavior and a rotational shear spring to idealize 

nonlinear response of masonry walls is proposed. Rotational spring is used to relate 

shear force on the wall with inter-story drift due to shear deformation. For this 

purpose hinge is located at the bottom of the wall (see Figure 2.7). 

 

Figure 2.7 Modified Wide Column Model for PO Analysis (Gilmore at al., 2009) 

 

Main limitation of the model is; proposed force-deformation relationship of the 

springs is independent of aspect ratio and axial load level (see Figure 2.8). It is 

determined from idealized backbone curve for confined walls which are build using 
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confined handmade clay brick used in Mexico. As a result, authors give a warning 

that proposed shear hinge model meant to describe a general state of structural 

degradation only in the critical story of buildings having similar design and 

construction practices of Mexico.    

     

 

Figure 2.8 Idealized Backbone Curve for Confined Masonry Walls (Gilmore at al., 

2009) 

 

Finally a lateral load distribution proportional to modal shape of fundamental mode 

is used for pushover analysis of a typical confined masonry building in Mexico 

whose experimental results are satisfactory captured with the proposed computer 

model.  

 

Kappos et al. (2002) conducted elastic and plastic comparative analyses on two and 

three dimensional masonry structures aiming to evaluate accuracy of equivalent 

frame modeling technique. In elastic analyses of a two dimensional perforated wall, 

equivalent frame and finite element models are formed. Extend of rigid offsets to be 

employed in equivalent frame model (i.e. full horizontal rigid offsets, full horizontal 

and vertical rigid offsets and full horizontal and half vertical rigid offsets) and 

diaphragm constraint are determined as parameters under evaluation. According to 

analysis results, equivalent frame model with full horizontal and vertical rigid offset 

yields results closest to finite element model. Also effect of diaphragm constrain is 

found to be negligible for planar structures whereas crucial for three dimensional 

structures. For nonlinear analyses finite element model is generated using ANSYS 

V/Vcracking 

𝑑 (%) 

0.8 
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1.25 
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and equivalent frame model is generated using SAP2000. After proposed model is 

validated against test data conducted in University of Pavia and Ismes laboratory, 

EFM is found to be effective and reasonably accurate for nonlinear analysis of 

masonry buildings.  

  

Salonikios et al. (2003) conducted comparative inelastic analyses on nonlinear 

equivalent frames and finite element models of 2D masonry frames. Influence of 

different lateral force distributions on pushover analysis of masonry frames is 

investigated due to the fact that important fraction of the total mass is distributed 

along the wall height in masonry buildings which makes it harder to determine load 

distribution during pushover analyses. 

 

In equivalent frame modeling of masonry elements, flexural and shear hinges are 

employed together. It is claimed that when an URM building is subjected to 

earthquake both bending and shear mechanisms are activated and failure will first 

appear at the location with the smallest strength. Thus, moment-rotation hinges are 

located at both ends and shear-displacement hinge is located at the mid-span of the 

element (see Figure 2.9). The constitutive laws of the plastic hinges are defined 

according to FEMA 273.  

 

Figure 2.9 Modeling Details for Piers in the Computer Program (Salonikios et al., 

2003) 
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Lateral load distributions imposed on the structure are uniform distribution, inverse 

triangular distribution and first mode shape distribution. According to analysis 

results, lateral load distribution does not have an affect on base shear capacity of the 

structure since ultimate condition is reached by shear failure of all piers in the first 

storey. Comparing initial stiffnesses under different lateral distribution of lateral 

loads, higher stiffness under uniform distribution is observed. Although same shear is 

applied to base story piers for different load distributions, shear force at the upper 

story piers are higher for inverse rectangular and modal distribution than uniform 

distribution. Thus a lower roof displacement is observed for uniform distribution of 

lateral forces.    

 

Pasticier et al. (2007) aimed to utilize SAP2000 for seismic analyses of masonry 

buildings using EFM. In nonlinear modeling of masonry piers, two rocking hinges at 

the end of the rigid offsets and one shear hinge at the middle of the pier is used. On 

the other hand, only one shear hinge was introduced for nonlinear modeling of 

spandrels. Lateral loads are applied by assuming the inverted triangular distribution. 

Since SAP2000 does not allow for automatic update of shear strengths due to change 

in axial load level caused by overturning effect, two different axial load distribution 

on piers are tested. In the first distribution, axial load on piers are calculated under 

dead loads only whereas in the second distribution hinge properties are determined 

under axial load levels calculated by applying dead loads and increasing the lateral 

loads up to the attainment of the elastic limit of the frame.   

 

According to analysis results, ultimate strength and top displacement are not affected 

due to different methods to determine axial load distribution on piers. It is stated that 

main drawback of the SAP2000 which is the impossibility to update the strengths of 

the piers based on the variation of axial force seem not to be so crucial in pushover 

analyses on equivalent frames. 

 

Two different distributions of lateral loads (i.e.  uniform distribution, inverted 

triangular distribution) are utilized for pushover analyses. In inverted triangular 
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distribution the collapse is due to storey mechanism at the second story, while with 

the uniform distribution mechanism occurred at the base story.  

 

Belmouden and Lestuzzi (2007) come up with and equivalent frame model for 

seismic analysis of masonry buildings. Unlike other proposed models up to the 

present, analytical model is based on smeared crack and distributed plasticity 

approach. Moreover interaction between both axial force-bending moment and axial 

force-shear force are considered. Inelastic flexural as well as inelastic shear 

deformations are allowed for piers and spandrels. Translational shear springs are 

added at the middle of the span and flexural hinges are added at the ends of the span. 

However since piers and spandrels are discretized into series of slices, nonlinearity is 

distributed along the length of the spans (see Figure 2.10).  

 

Figure 2.10 Spread Nonlinearity Approach in EFM (Belmouden and Lestuzzi, 2007) 

 

Spandrels which provide coupling to piers are modeled as elastic and the length of 

the spandrels are taken equal to zero moment length which is updated at each step of 

the pushover analysis depending on the end moments of the spandrels. Reliability of 

the model is sustained by comparing model results with experimental results 

conducted in University of Pavia.  
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Roca et al. (2005) studied 2D wall panels as equivalent systems of one-dimensional 

members, namely equivalent frames. Force deformation characteristic of masonry in 

compression is modeled with Kent and Park model. Axial force-shear force 

interaction is considered through use of Mohr-Coulomb criterion as biaxial stress 

envelope. After comparing numerical model with experimental results conducted by 

D‟Asdia in 1972, it is concluded that EFM is capable of predicting failure 

mechanism and ultimate loading capacity of load-bearing wall masonry systems.  

 

Penelis (2006) developed a method for pushover analysis of URM buildings using 

EFM. Rotational hinges using lumped plasticity approach are utilized at the ends of 

structural elements for nonlinear action. Constitutive law of the nonlinear springs is 

defined by moment rotation curve of each element under constant axial load where 

rotation is taken as sum of rotation due to flexure and rotation due to shear. Since 

axial force-bending moment interaction is ignored in material model, axial load level 

on piers at which hinge properties defined are determined by a linear analysis where 

in addition to gravity loads and an estimate of lateral load corresponding to base 

shear capacity is taken into account. Use of vertical rigid offsets is avoided claiming 

that vertical rigid offsets restrain the extent of cracking unrealistically. Finally model 

proposed by Penelis is verified with experimental results conducted at the University 

of Pavia and Ismes laboratory at Bergamo. 

 

Magenes and Fontana (1998) proposed a method named as SAM (simplified analysis 

of masonry buildings) for simplified non-linear seismic analysis of masonry 

buildings through equivalent frame idealization of URM walls subjected to in-plane 

loadings. Constitutive relation of structural members is idealized as elastic-perfectly 

plastic where shear strength of members are calculated from simple strength 

equations in literature. A limit to total chord rotation (i.e. flexural rotation plus shear 

rotation) is assigned as 0.5% for shear failures and 1% for flexural failures.  An 

effective height is used for structural elements in terms of rigid end offsets proposed 

by Dolce (1989) for the definition of the stiffness matrix in the elastic range. After 

generation of computer model, parametric analyses are made to determine rigid 
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offset length. Due to analysis results, full rigid offsets in piers and spandrels 

prevailed full rigid offset in spandrels only and no rigid offsets at all.  

 

2.2.4 Limit Analysis 

 

Limit analysis is an analysis method especially used to estimate the maximum load 

that a structure can sustain prior to failure. It is based on the application of the limit 

theorems of plasticity over possible ultimate mechanisms. In order to consider 

various possible ultimate mechanisms an iterative solution is required (Roca et al., 

2005). It might be regarded as a practical computational tool for failure pattern and 

ultimate load calculation of URM structures since it only requires a reduced number 

of material parameters (Oliviera, 2003).  

 

Orduna (2003) applied limit analysis method to URM structures which are modeled 

as assemblages of rigid blocks connected through joints (see Figure 2.11). Proposed 

model composed of rigid-perfectly plastic blocks possessing yield surfaces. For 

critical stress levels on the yield surface, the material becomes plastic and flows 

normal to the direction of yield surface. In order to apply limit analysis to URM 

structures some assumptions are made:  

 

 Masonry has no tensile strength. 

 Masonry has an infinite compressive strength 

 Sliding failure cannot occur 

 Failure occur under small displacements 
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Figure 2.11 Limit Analysis Model for Perforated URM Wall; a) wall, b) failure 

mechanism (Orduna, 2003) 
 

2.3 Performance Assessment of URM 

 

Performance based assessment of a URM building requires estimation of system 

damage under a given earthquake demand. According to Tomazevic (2007) structural 

damage in masonry buildings might be directly related to storey drift and it is 

independent of type of the masonry. As a result experimental works which relate 

performance level of URM walls and buildings with lateral drift have a great 

importance for application of performance based concepts for URM. 

 

2.3.1 Performance Limit States of URM Walls 

 

In order to assess system damage, one has to start from assessment of seismic 

performance of single structural element (Bosiljkov et al., 2008). Since damage state 

of a building is directly related to damage of its force resisting members, many 

researchers investigate the relationship between drift and damage of masonry walls. 

  

Alcocer et al. (2004) conducted drift-controlled cyclic tests on confined masonry 

walls in order to investigate relationship between lateral drift, wall aspect ratio, wall 

b) a) 
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vertical stress, type of brick units, type of mortar, reinforcement detailing of 

confining columns and transverse reinforcement.  

 

According to test results three limit states for masonry piers, namely, serviceability, 

reparability and safety is identified. Serviceability limit state is associated to onset of 

masonry inclined cracking, reparability limit state is associated to formation of full 

inclined cracking and safety limit state is associated to large masonry cracks with a 

residual width of 5 mm.  

 

Detailed explanation of limit states in relation with crack width and drift angle is 

illustrated in Table 2.3. 

 

Table 2.3 Performance Criteria for Confined Masonry Structures with Solid Clay 

Units (Alcocer et al., 2004) 

Limit State Criterion 

Residual 

crack 

width, 

mm 

Driftt 

angle, 

% 

Serviceability Onset of masonry inclined cracking 0.1 0.15 

Reparability 

Inclined cracking fully formed over masonry 

wall; hairline cracking into tie-columns; onset 

of masonry crushing 

2 0.25 

Safety 

Shear strength of wall; wall cracking penetrates 

into tie-column ends; yielding of tie-column 

reinforcement due to shearing; onset of tie-

column crushing 

5 0.4 

 

Four performance levels are defined by Bosiljkov et al (2008) for the performance 

assessment of URM walls, namely, fully operational, immediate occupancy, life 

safety and near collapse. In fully operational limit state operation of the building is 

not disturbed and slight damage occurs. In functional limit state operation of facility 

continues with minor damage. In life safety limit state, damage is moderate to 

extensive. In near collapse limit state damage is severe but structural collapse is 

prevented. 
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Drift limits on force-displacement curve of masonry walls is identified in order to 

relate performance states to lateral drift. Crack limit is described by displacement δcr 

and resistance Hcr. Formation of first flexural cracks which usually corresponds to 

first change in slope of lateral force-displacement diagram is the identification of 

crack limit. Shear crack limit which is denoted by displacement δdt and resistance Hdt 

is identified by occurrence of diagonal shear cracks or horizontal flexural cracks 

depending on the type of failure. Maximum resistance limit is denoted by δHmax and 

Hmax. Finally ultimate state is denoted by maximum displacement δmax and 

corresponding resistance Hδmax (See Figure 2.12).  

 

 

Figure 2.12 Displacement Limits Illustrating Performance Limit States Defined by 

Bosiljkov et al. (2008) and FEMA 356 (dashed) 

 

According to the laboratory tests made by Bosiljkov et al. (2005) on URM specimens 

made with various mortar types and different overburden pressures, drifts 

corresponding to performance levels are shown in Table 2.4. As it is seen on the 

table, level of axial load determines the failure mechanism, altering deformation 

capacity of piers. Under low axial load levels flexure dominated failure modes 

resulted in larger drift values, whereas  as axial load level increases shear 

mechanisms dominate behavior resulting in a brittle, less ductile behavior.  
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Table 2.4 Performance Drift Limits for URM Cantilever Walls, Bosiljkov et al. 

(2005) 

  
Performance (%) 

Failure mode Precompression 
Fully 

operational 

Immediate 

occupancy 

Life    

safety 

Collapse 

prevention 

Sliding failure 1/16 fm  0.0 - 0.9 1.8 

Rocking failure 1/12 fm 0.0 - 1.8 1.8 

Rocking failure 1/8 fm 0.1 - 1.2 2.5 

Diagonal failure 1/6 fm 0.1 0.5 0.7 0.9 

Diagonal failure 1/3 fm 0.1 0.2 0.5 0.5 

 

In FEMA 356 masonry piers are categorized as force controlled or deformation 

controlled depending on the failure mechanism of the pier. First a comparison 

between simple strength equations indicating rocking, sliding, diagonal tension and 

toe crushing strength are made. Among calculated strengths lowermost prevails the 

response. If diagonal tension or toe crushing strength overcomes, response is 

supposed to be force controlled. Otherwise displacement controlled response is 

assumed with the limit states defined for bed-joint sliding as 0.1%, 0.3%, 0.4% for 

IO, LS, CP performance levels respectively and for rocking as 0.1%, 0.3heff/L%, 

0.4heff/L% for IO, LS, CP performance levels respectively.     

 

Performance limit states of URM walls defined in literature is summarized in Table 

2.5 below: 

 

Table 2.5 Performance Drift Limits for URM Walls 

  
Performance Level (%) 

Author Failure mode IO LS CP 

FEMA 356 (2000) 

Rocking 

0.1 0.3heff/L 0.4heff/L 

Franklin et al. (2001) 0.1 0.9-1.5 1.2-1.9 

Bosiljkov et al. (2008) 0.1 1.2-1.8 1.8-2.5 

FEMA 356 (2000) 
Sliding 

0.1 0.3 0.4 

Bosiljkov et al. (2008) - 0.9 1.8 

Alcocer et al. (2004) 
Diagonal tension 

0.15 0.25 0.4 

Bosiljkov et al. (2008) 0.2-0.5 0.5-0.7 0.5-0.9 
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2.3.2 Performance Limit States of URM Buildings 

 

From force-displacement relationship of components, capacity curve of global 

structure might be obtained. In order to assess structural performance, limits on 

global resistance curve should be determined. Several authors investigate the 

relationship between structural damage and structural performance.  

 

In order to find a correlation between the occurrence of damage, limit states and 

lateral displacement capacity, Tomazevic (2007) conduct lateral resistance tests on 

masonry walls and shaking table tests on masonry buildings.  He defined four limit 

states on the capacity curve in order to be used for seismic resistance verification of 

masonry buildings (see Figure 2.13).  

 

1. Crack limit state: It is identified by formation of first cracks in the walls. This 

limit is associated by serviceability limit state of the structure. 

2. Maximum resistance 

3. Design ultimate limit state: Resistance of the system degrades below 

acceptable level which corresponds to 20% degradation of maximum resistance 

4. Collapse limit state: defined by partial or total collapse of the structure 

     

 

Figure 2.13 Elasto-plastic Idealization and Limit States on the Capacity Curve of 

URM Buildings (Tomazevic, 2007) 
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As a result of laboratory tests on confined and URM masonry buildings, Tomazevic 

propose following story rotation values associated to corresponding limit states for 

masonry buildings: 

 

Crack limit state = 0.2% - 0.4% 

Maximum resistance = 0.3% - 0.6% 

Collapse limit state = 2% - 4% 

 

However these numbers are calculated from a set of plain and confined masonry 

building test results. Since confinement enhances ultimate displacement capacity, 

collapse limit states for URM buildings will be lower than proposed values. 

Manipulating drift limits considering only URM building test results, collapse limit 

state will be reduced to 1% and 2%. 

  

Another effort is made by Calvi (1999) for the evaluation of the vulnerability of 

different classes of masonry buildings. Starting with definition of limit states that 

indicate performance levels, Calvi proposed a relation between inter-story drift and 

the four limit states. Namely, 

 

LS1: No damage. Expected response is linear elastic 

LS2: Minor structural damage. The building can be utilized after the earthquake 

without any need for repair. 

LS3: Significant structural damage. The building cannot be used after the earthquake 

without significant repair 

LS4: Collapse. Repairing the building is neither possible nor economical. Beyond 

this limit total collapse with danger for human life is expected.         

 

Calvi proposed base storey drift values for limit states of masonry buildings: 

 

LS1-LS2 = 0.1% 

LS3 = 0.3% 

LS4 = 0.5% 
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In the light of past experimental studies, threshold values utilized by Ömer Onur 

Erbay (2007) for his analytical study on URM buildings are given below: 

 

Immediate Occupancy = 0.1% 

Life Safety = 0.6% 

Collapse Prevention = 1% 

Total Collapse = 2% 

 

Also in FEMA 356, structural performance levels associated with level of damage is 

provided in Table C1-3.  

 

Immediate Occupancy = 0.3% 

Life Safety = 0.6% 

Collapse Prevention = 1% 

 

To sum up performance limit states for masonry buildings are defined in Table 2.6 

below. 

 

 

Table 2.6 Performance Drift Limits for URM Buildings 

 
Performance Level (%) 

Author IO LS CP 

FEMA 356 (2000) 0.3 0.6 1.0 

Tomazevic (2007) 0.2-0.4 0.3-0.6 1.0-2.0 

Calvi (1999) 0.1 0.3 0.5 

Erbay (2007) 0.1 0.6 1.0 
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CHAPTER 3  

 

 

LATERAL ELASTIC RESPONSE OF URM WALLS 

 

 

 

Resistance of URM buildings to lateral loads such as earthquake and wind load are 

achieved by in plane walls which are oriented parallel to the direction of the force. In 

the elastic range where Hooke‟s law is valid, relation between lateral forces and 

displacements are determined by lateral stiffness. Elastic lateral stiffness indicates 

the resistance of a wall to lateral forces, determines overall dynamic behavior and 

distribution of seismic forces in the structure.     

 

Elastic lateral stiffness of URM walls is a combination of flexural and shear 

stiffness‟s which are functions of wall dimensions (see Figure 3.1), boundary 

conditions and mechanical properties of the wall.  

 

Figure 3.1 Dimensions of a Rectangular Brick URM Wall 

 

Chapter 3 deals with elastic lateral stiffness calculation of solid and perforated URM 

walls.  “ and shear mechanisms on total stiffness for extreme boundary conditions 

(i.e. cantilever wall and both ends fixed wall). Then, total elastic lateral stiffness of a 

masonry wall coupled with spandrels is derived assuming isotropic and homogenous 

material behavior.  

 

h 

t L 
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In section 3.2; a modeling technique which idealizes perforated URM walls as frame 

elements such as piers and spandrels is presented and it is calibrated by varying 

effective heights of piers and spandrels. For this purpose, some comparative linear 

analyses between finite element models derived using ANSYS (2007) and equivalent 

frame models derived using SAP2000 (2009) for selected frames are conducted. As a 

result of comparative analyses, the best approach for RO length for masonry piers 

and spandrels are determined.  

 

3.1 Lateral Stiffness of Solid URM Walls  

 

Lateral stiffness of solid URM walls is composed of shear stiffness and flexural 

stiffness. Unlike typical one dimensional frame members like beams and columns of 

a RC or steel frame; contribution of shear is usually dominant in masonry walls.  

Shear stiffness is related to shear rigidity and height of the wall, whereas flexural 

stiffness is related to flexural rigidity and height of the wall as well as the boundary 

conditions of the wall.  

 

Since lateral flexural stiffness depends on the boundary conditions, total lateral 

stiffness is often calculated for two extreme boundary cases using equation 3.1. 

 

    (
  

   
 

 

   
)
  

    (3.1) 

Where; 

h is the height  

β is boundary condition parameter  

EI is flexural rigidity  

κAG is shear rigidity  

 

The first and the second term inside the parenthesis represent contribution of flexure 

and shear mechanisms respectively. Boundary condition parameter depends on the 

rotational restrain on the top of the wall.  For cantilever walls (see Figure 3.2a) which 

are free to rotate and move horizontally at the top, it is equal to 3.This case is 

appropriate for single story masonry building walls with flexible diaphragm. On the 
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other hand for both ends fixed walls (see Figure 3.2b) which are free to move 

horizontally but restrained to rotate at the top, boundary condition parameter is equal 

to 12. This case is appropriate for walls where restraining effect of slab, lintel beam 

and the spandrels are dominant.     

                                 
 

Figure 3.2 Extreme Boundary Conditions of Walls a) Cantilever Boundary 

Condition b) Both end Fixed Boundary Condition 

 

For masonry walls with rectangular cross sections (see Figure 3.1) below equations 

hold: 

 

Moment of inertia of wall ( )   

  
    

Area of cross section (A)     

Aspect ratio of wall = 
 

 
 

Shear coefficient ( )   
 

 
 

Shear modulus ( )  
 

 (   )
 

 

When relations above for walls with rectangular cross sections are inserted into 

Equation 3.1, elastic lateral stiffness for solid rectangular URM walls simplifies to 

equation below:  

 

   *
    

  ( )     (   )( )
+    (3.2) 

 

From basic relation between force and displacement of linear systems, lateral 

displacement due to unit lateral force might be defined below (see Equation 3.3). 

   
 

  
     (3.3) 

    u 

    F 

  h 

      u 

    F 

  h 

a) b) 
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In order to explore the contributions of shear and flexure to total elastic lateral 

displacement, shear displacement over flexural displacement is plotted in Figure 3.3.  

 
Figure 3.3 Shear Displacement over Flexural Displacement  

 

Another representation of the same information is provided for a better 

understanding of contribution of shear and flexural displacement to total 

displacement. Figure 3.4 is drawn for cantilever boundary conditions and Figure 3.5 

is drawn for both ends fixed boundary conditions. 

 
Figure 3.4 Contribution of Shear and Flexure to Total Lateral Displacement for 

Cantilever Walls 
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Figure 3.5 Contribution of Shear and Flexure to Total Lateral Displacement for Both 

ends Fixed Walls 

 

As it is inferred from figures above, both flexural displacement and shear 

displacement increase with the increase in aspect ratio. However, increase in flexural 

displacement is cubic whereas increase in shear displacement is linear. As a result, 

although shear dominates behavior for squat walls, with the increase in aspect ratio, 

flexure starts to dominate the behavior. Shear displacement is equal to flexural 

displacement at λ = 0.85 under cantilever boundary conditions and at λ = 1.7 under 

both ends fixed boundary conditions.  

 

Shear stiffness of masonry walls are not affected by boundary conditions whereas 

flexural stiffness is linearly dependent to boundary condition constant (see Equation 

3.1). Boundary condition coefficient (β) depends on the rotational restraints at the tip 

of the wall. In a masonry frame, rotational restraints of piers are strongly affected by 

the coupling effect of horizontal elements connecting to piers such as spandrels, rigid 

slabs and reinforced concrete ring beams. Flexure is dominant for slender piers 

connected with weak spandrels and flexible slabs since aspect ratio is high and 

boundaries approach to cantilever type boundary conditions. On the other hand, shear 

dominates the behavior for short piers connected with strong spandrels and rigid 

diaphragms since aspect ratio is low and boundaries approach to both end fixed type 

boundary conditions.   



 

 
 43   
 

 

Depending on the coupling effect of spandrels, lateral stiffness of masonry piers 

change abruptly. In case of weak coupling between piers (see Figure 3.6a), cantilever 

boundary conditions might be assumed. Nevertheless, in case of strong coupling 

between walls (see Figure 3.6b), both ends fixed boundary conditions might be 

assumed.  

 

                 

Figure 3.6 a) Weak Coupling Between Masonry Piers due to Poor Spandrels b) 

Strong Coupling Between Masonry Piers due to Robust Spandrels 

 

So as to reveal the coupling effect of spandrels in detail, a rotational spring 

simulating rotational restrain of spandrels and upper story piers connecting to the 

wall might be utilized so that piers belonging to first story of a complex structure are 

idealized taking spandrel coupling into account (see Figure 3.12). Then, coupling 

effect of spandrels might be analyzed by identifying influence of spring constant on 

lateral stiffness.  

 

In order to calculate lateral stiffness of one dimensional frame elements, instead of 

utilizing Euler-Bernoulli beam theory which assumes that deformations are due to 

bending only, shear deformations included formulation is preferred (see Figure 3.7) 

since shear deformations are often significant in lateral deflection of members with 

low aspect ratios.   

b) a) 
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Figure 3.7 Infinitesimal Area on Cantilever Wall Showing Bending and Shear 

Deformations 

 

As a result frame element stiffness matrix with shearing deformations (see Appendix 

A) is utilized for calculations. In order to calculate lateral stiffness of a masonry wall 

with cantilever boundary conditions, in addition to constrained degree of freedoms at 

the base, DOF in longitudinal direction at the tip is not taken into account since 

lateral stiffness is not affected by axial deformation.  

 

Stiffness matrix of 2 DOF cantilever wall which is extracted from element stiffness 

matrix in Appendix A is given in Figure 3.8.  

Undeformed  Bending Deformation  Shear Deformation  

F  
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Figure 3.8 Stiffness Matrix of Cantilever Wall with Shearing Deformations 

Considered 

 

Lateral stiffness of the wall in Figure 3.8 is calculated using static condensation. 

Application of static condensation is illustrated below: 

 

First equation of equilibrium is written dividing DOF‟s in two sets: t (translation) and 

r (rotation). Translational DOF‟s will be kept and rotational DOF‟s will be reduced 

in static condensation process.  

[
      

      
]  *

  

  
+  *

 
 

+    (3.4) 

 

Equation of equilibrium results in these equations: 

 

                  (3.5) 

                   (3.6) 

 

Solving ur from second equation gives: 

 

                      
  (       )    (3.7) 

 

Inserting Equation 3.7 into Equation 3.5 results: 

h 
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{          
     }             

      (3.8) 

 

Where: 

 

             
      is named as condensed stiffness matrix, 

           
    is named as condensed force vector. 

 

When static condensation is applied to the cantilever wall, lateral stiffness is 

calculated as: 

       
    

  (   )
 

   

  (   )
 (

  (   )

 (   )
)
  

 
   

  (   )
    (3.9) 

       
    

  (   )
*  

3

(   )
+     (3.10) 

 

Assuming homogenous, isotropic material properties and rectangular cross section 

for masonry walls parameter ‟ ‟ in above equation simplifies to: 

 

 =
    

       
        ⁄      

  ⁄              
    

   (3.11) 

 

Thus, lateral stiffness of a cantilever masonry wall modeled with shear deformations 

included beam simplifies to Equation 3.12 when Equation 3.11 is inserted into 

Equation 3.10. Equation 3.12 is also identical to Equation 3.1 when boundary 

condition parameter (β) is taken as 3. 

 

           *(
 


  3

) (  
3

(  3  )
)+    (3.12) 

 

Second extreme boundary condition is both ends fixed wall. Since rotational DOF is 

fully restrained at the top, stiffness matrix is built for translational DOF only. 

Boundary conditions and corresponding stiffness matrix with shearing deformations 

included are provided in Figure 3.9.  
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Figure 3.9 Stiffness Matrix of Both ends Fixed Wall with Shearing Deformations 

Considered 

 

Lateral stiffness of both ends fixed masonry wall modeled with shear deformations 

included beam simplifies to Equation 3.13 which is also identical to Equation 3.5 

when boundary condition parameter (β) is taken as 12. 

 

                                             *
   

(  3)
+     (3.13) 

 

As it is easily identified by looking at Equation 3.12 and Equation 3.13 that elastic 

lateral stiffness walls depend linearly on modulus of elasticity (E) and thickness (t) of 

the wall. Contribution of aspect ratio is more complex illustrated in Figure 3.10.  

 
Figure 3.10 Lateral Stiffness versus Aspect Ratio for Different Boundary Conditions 
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Same information might be illustrated by dividing lateral stiffness of both ends fixed 

wall to lateral stiffness of cantilever wall for various aspect ratios (see Figure 3.11).  

 

 

Figure 3.11 Ratio of Elastic Lateral Stiffness of Both ends Fixed Wall to Cantilever 

Wall 

 

When aspect ratio approaches to zero, influence of boundary conditions on lateral 

stiffness vanishes (i.e. Kfix-fix/Kfix-free = 1). This is because for squatter walls shear 

contribution on total stiffness is dominant and it is independent of boundary 

conditions. On the other hand when aspect ratio approaches to infinity, flexure 

contribution to total stiffness is dominant and shear contribution vanishes. Thus ratio 

approaches to 4 which is also ratio of lateral flexural stiffness of both ends fixed wall 

to lateral flexural stiffness of cantilever wall.     

 

Lateral stiffness of cantilever walls increase as spandrels and upper story walls are 

connected to the wall. Basically lateral stiffness of rotationally restrained cantilever 

walls is in between cantilever wall stiffness and both ends fixed wall stiffness. 

Analytical solution of lateral stiffness of rotationally restrained cantilever beam is 

illustrated below (see Figure 3.12).                             
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Figure 3.12 a) Idealization of Spandrel Coupling with Rotational Spring b) Free 

Body Diagram 

 

First, flexural contribution to total stiffness is calculated ignoring shear deformations. 

Slope deflection method will be employed for this purpose. Then shear contribution 

to total stiffness will be combined with flexural counterpart forming total stiffness.  

 

Slope deflection equations related to free body diagram in Figure 3.12b is given 

below: 

    
   

 
(  

3 

 
)      (3.14) 

    
   

 
(2  

3 

 
)     (3.15) 

Equilibrium equations to solve two unknown in slope deflection equations are: 

               (3.16) 

               (3.17) 

Inserting     and     into equilibrium equations: 
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Solving two equations, tip rotation and flexural component of lateral displacement 

are calculated as below: 

   
   

 (      )
     3.20) 

  
   

    
[
  

   

  

  
   

  

]     (3.21) 

Finally lateral flexural stiffness is calculated using linear relation between force and 

displacement (i.e.   
 

 
).  

   
3  

  [
(   

   

  
)

(  
   

  
)
]             (3.22) 

 

Figure 3.13 illustrates Equation 3.22 such that lateral flexural stiffness is normalized 

with 
3  

   and rotational spring constant (βs) is normalized with 
 

  
. It is clear in Figure 

3.13 that when spring constant is taken as zero meaning no rotational restrain at tip, 

lateral flexural stiffness approaches to 
3  

  . On the other hand when spring constant is 

taken as infinity meaning full rotational restrain at tip, lateral flexural stiffness 

approaches to 
    

  . 

 

Figure 3.13 Normalized Lateral Flexural Stiffness versus Normalized Rotational 

Spring Constant of Rotationally Restrained Cantilever Wall  
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Although lateral flexural stiffness of rotationally restrained cantilever wall might be 

expressed in terms of normalized rotational spring constant, estimation of spring 

constant is uneasy. Instead, normalized rotational spring constant might be calculated 

from relative stiffnesses of piers and spandrels connecting to the pier in 

consideration. For that reason Equation 3.22 is manipulated as below.   

 

   
3  

  [

(   
  

(
   
 

)
)

(  
  

(
   
 

)
)

]     (3.23) 

 

In this equation, spring constant (βs) is equal to sum of rotational stiffness‟s of piers 

and spandrels connecting to cantilever wall. If masonry piers are assumed to be 

axially rigid, rotational stiffness of connecting piers and spandrels might be 

approximated to be in between far end fixed wall rotational stiffness and far end 

pinned wall rotational stiffness (see Figure 3.14). These stiffness values are directly 

taken from element stiffness matrices of unmodified and modified shear 

deformations included beam element which is supplied in Appendix A.   

 

      

Figure 3.14 Rotational Stiffness of Shear Deformations Considered Beams: a) Far 

End Fixed Beam, b) Far End Pinned Beam 

 

Although rotational stiffness depends on restrain on far end rotation of the beams, in 

order to further simplify Equation 3.23, a simple equation which is independent of 

far end support conditions is proposed below: 

 

𝐸𝐼(4  Ψ)

𝐿(  Ψ)
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       √ 
  

 
 

   

 
    (3.24) 

 

Comparison of proposed equation with its lower and upper limits, namely far end 

fixed and far end pinned beams is illustrated in Figure 3.15. It could be identified 

from figure that in addition to its being simple, proposed equation complies well with 

its upper and lower limits. Since upper boundary converges to 
   

 
 when aspect ratio 

goes to infinity, contribution of each connecting pier or spandrel to spring constant is 

not allowed to go beyond that limit.  

 

 

Figure 3.15 Comparison of Proposed Equation for Rotational Spring Constant with 

Upper and Lower Limits 

 

When Equation 3.23 is combined with Equation 3.24, elastic lateral flexural stiffness 

of rotationally restrained cantilever pier with rectangular cross section and 

homogenous and isotropic material properties simplified to; 

 

   
  

  [
(      

∑√      ⁄

  ⁄
)

(       
∑√      ⁄

  ⁄
)
]        (3.25) 

Where, 

E is modulus of elasticity  

I is moment of inertia of the pier  
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L is length of the pier 

λi aspect ratio of spandrels and piers connecting to the wall. 

Ii moment of inertia of spandrels and piers connecting to the wall. 

Li length of spandrels and piers connecting to the wall. 

  

The term inside the parenthesis in Equation 3.25 is the boundary condition parameter 

utilized in Equation 3.1. When the ratio of total rotational stiffness of coupling 

spandrels and piers to the rotational stiffness of the wall approaches to zero (i.e. 

weak coupling), it converges to 3 which represent cantilever boundary conditions. 

Whereas if the spandrel coupling is infinite (i.e. strong coupling), it converges to 12 

which represents both ends fixed boundary conditions. 

 

3.2 Lateral Stiffness of Perforated URM Walls 

 

3.2.1  Equivalent Frame Modeling of Perforated URM Walls 

 

Masonry buildings are composed of internal and external walls. Internal walls are 

usually solid but in most cases peripheral walls are perforated as a result of both door 

and window openings. Structural components on perforated masonry walls are 

named as piers or spandrels due to their orientation (see Figure 3.16).     

  

 

Figure 3.16 Spandrels and Piers on a Perforated Wall 

 

Among the different modeling approaches to model perforated walls, equivalent 

frame modeling will be investigated in detail. In equivalent frame modeling method, 

Spandrel 

Pier 
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each pier and spandrel is modeled with frame elements passing through their 

centerline (see Figure 3.18a). Since cross sectional and mechanical properties of each 

member is squeezed to a line element, we expect each equivalent frame element to 

reflect similar structural behavior with their counterpart at perforated wall.  

 

As it enables to implement displacement based concepts, equivalent frame method is 

frequently used for the modeling of masonry buildings in the literature. Compared to 

more sophisticated finite element models, equivalent frame models are simple and 

easy to apply. Besides, according to Magenes and Fontana (1998), “equivalent frame 

idealization of masonry structures are effective for; good prediction of strength of a 

building subjected to a pattern of increasing horizontal forces, good prediction of the 

failure mechanism in the single sub elements and good prediction of the overall 

deformation of the building particularly at the ultimate state.”    

 

3.2.2 Determination of Effective Height for Masonry Piers and Spandrels  

 

Although it is easy to idealize each pier and spandrel as equivalent frames with their 

cross section dimensions, height and mechanical properties, defining connection 

between them is challenging. In order to take coupling effect between piers and 

spandrels into account rigid end offsets are assigned at the ends of frame elements.  

 

Assigning full RO for spandrels is a widely used assumption. However, being the 

most important element of in plane load carrying mechanism, RO length of piers 

should be carefully assigned. Different methods for assigning rigidity at pier-

spandrel interaction are found in the literature. One method proposed by Dolce 

(1989) is to take a portion of pier-spandrel interaction as rigid (see Figure 3.17) 

whereas another approach is to take pier-spandrel interaction as fully rigid (see 

Figure 3.18).  

 

In order to decide which approach to use, a comparative study will be performed. 

The aim is to determine the closest approximation to finite element results of a 

perforated frame by equivalent frame models whose rigid end offset patterns are 
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variable. For this purpose, 3 different perforated frames are modeled with different 

modeling approaches and results are compared. Three criteria will be checked for 

comparison. Namely, story displacements, axial force on base piers and shear force 

on base piers.  

 

ANSYS (2007) is utilized for finite element modeling and SAP2000 (2009) is 

utilized for equivalent frame modeling. ANSYS results are assumed to be exact and 

the method which approximates ANSYS results best will be selected to be used in 

following chapters.    

 

Figure 3.17 Effective Height Determination Offered by Dolce 

 

 

Figure 3.18 a-) Equivalent Frame Model, b-) EFM with Dolce RO, c-) EFM with 

Full RO 
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3.2.2.1 Comparative Elastic Analysis of 1 Bay 2 Story (1B2S) Perforated 

Masonry Frame  

 

1 bay 2 story masonry frame whose nonlinear behavior is investigated by Salonikios 

et al. (2003) is chosen for linear comparative analysise(see Figure 3.19).   

 

 
Figure 3.19 1B2S Masonry Frame Investigated by Salonikios et al., (2003) 

 

Plane stress assumption is made for finite element modeling in ANSYS. Two 

dimensional, 8 node, rectangular, linear, isotropic shell281 element with constant 

thickness is selected. Mapped mesh with 444 elements is applied (see Figure 3.20d). 

In order to ensure that mesh size is sufficient a finer mesh with 1776 elements (see 

Figure 3.20e) is applied and results are compared in Table 3.1. According to the 

analysis results there is no need for a finer mesh size.  

 

Table 3.1 Analysis Results of Coarse and Fine Meshed Models of 1B2S Masonry 

Frame 

  
ANSYS 

(Coarse) 

ANSYS 

(Fine) 
% difference 

Axial Force (kN) 
Pier1 229.4 229.6 -0.11 

Pier2 505.8 505.6 0.05 

Base Shear (kN) 
Pier1 44.4 44.3 0.21 

Pier2 66.6 66.7 -0.14 

Lateral Roof 

Displacement (mm) 

1st Floor 1.45 1.46 -0.55 

2nd Floor 3.07 3.09 -0.59 

 

Linear beam element is used for equivalent frame modeling (EFM) in SAP2000. 

Analyses are conducted on three different rigid end offset (RO) alternatives (see 

t=0.6m 
ρ=1.8t/m³ 
E=1650 MPa 
ν=0.2 
fm=3 MPa 
ft=0.1MPa 

 
 

   Pier 1              Pier 2 
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Figure 3.20a, 3.20b and 3.20c). Loading on each model is imposed in a two-step 

sequence. First, dead load plus distributed slab loading on spandrels are imposed. 

Second, lateral loads at story levels which sum up to 15% of total weight is applied 

in proportion to first mode story displacements calculated using EFM with Dolce 

offset. Floors are assumed to be rigid so diaphragm constraints are assigned at floor 

levels.         

    
Figure 3.20 2B3S Frame Models a-) EFM without RO, b-) EFM with Dolce RO, c-) 

EFM with full RO, d-) FEM Coarse Mesh, e-) FEM Fine Mesh 

 

 

Results of the analyses are summarized in Table 3.2. As it is clearly seen, RO 

proposed by Dolce (1989) gives the best approximation to finite element analyses 

considering deflected shape, axial force and shear force on base piers.  

 

Not assigning any rigid end zone results in a more flexible behavior compared to 

finite element analysis. On the contrary assigning full rigid end offset results in a 

stiffer behavior.  

 

For a better comparison between FEM and its best estimator EFM with Dolce offset, 

lateral story displacements are plotted below (see Figure 3.21).     

 

 

 

 

 

  Pier 1            Pier 2 
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Table 3.2 Analysis Results of FEM and EFM for 1B2S Masonry Frame 

  
ANSYS 

(FEM) 

SAP (EFM) % Differance 

No 

RO 

Dolce 

RO 

Full 

RO 

No 

RO 

Dolce 

RO 

Full 

RO 

Axial Force (kN) 
Pier1 229.4 245.3 230.4 226.3 6.9 0.5 -1.3 

Pier2 505.8 489.9 504.8 508.9 -3.2 -0.2 0.6 

Base Shear (kN) 
Pier1 44.4 46.1 44.2 43.4 3.9 -0.4 -2.2 

Pier2 66.6 64.9 66.8 67.6 -2.6 0.2 1.4 

Lateral Roof 

Displacement (mm) 

1st Floor 1.45 2.04 1.52 1.39 40.9 5.3 -4.3 

2nd Floor 3.07 4.56 3.18 2.84 48.5 3.6 -7.5 

 

 

Figure 3.21 Lateral Story Displacements of FEM and EFM on 1B2S Masonry Frame 

 

3.2.2.2 Comparative Elastic Analyses of 2 Bay 2 Story (2B2S) Perforated 

Masonry Frame with Strong Spandrels 

 

Same analyses that were conducted on 1B2S masonry frame are also conducted for 

2B2S masonry frame (see Figure 3.22).  Meshing of the finite element model and 

rigid end offsets of equivalent frame models are drawn in Figure 3.23.      
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Figure 3.22 2B2S Masonry Frame with Strong Spandrels  

 

 

 

Figure 3.23 Models 2B2S Masonry Frame a-) EFM without RO, b-) EFM with 

Dolce RO, c-) EFM with full RO, d-) FEM 

 

Results of the analyses are summarized in Table 3.3. Considering the shear and axial 

force on base piers, both Dolce and Full rigid end offsets give satisfactory results. 

Lateral displacement of first story which is most critical story under lateral loads is 

best approximated by Dolce offset. Again FEM results are in between full RO and 

Dolce RO.   

 

t=0.2m 
ρ=1.8t/m

3
 

E=2000 MPa 
v=0.2 
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For a visual comparison between FEM and its best estimator EFM with Dolce RO, 

lateral displacement at the base is drawn below (see Figure 3.24).     

 

Table 3.3 Analyses Results of FEM and EFM for 2B2S Masonry Frame 

   
ANSYS 

(FEM) 

SAP (EFM) % Differance 

No 

RO 

Dolce 

RO 

Full 

RO 

No 

RO 

Dolce 

RO 

Full 

RO 

Axial Force (kN) 

Pier1 27.3 27.9 28.8 30.6 2.3 5.4 12.2 

Pier2 66.0 75.6 74.3 71.3 14.5 12.5 8.0 

Pier3 77.1 66.9 67.4 68.6 -13.2 -12.6 -11.1 

Base Shear (kN) 

Pier1 2.7 4.5 2.9 1.2 66.1 7.9 -53.7 

Pier2 12.9 12.7 11.9 13.6 -1.6 -7.3 5.4 

Pier3 10.2 8.6 10.9 10.9 -15.5 7.0 7.0 

Lateral Roof 

Displacement (mm) 

1st Floor 0.30 0.62 0.39 0.19 105.1 28.2 -35.8 

2nd Floor 0.57 1.18 0.80 0.42 106.5 40.3 -26.4 

 

 

Figure 3.24 Lateral Story Displacements of FEM and EFM on 2B2S Frame 

 

3.2.2.3 Comparative Elastic Analyses of 2 Bay 3 Story (2B3S) Perforated 

Masonry Frame with Weak Spandrels 

 

2 bay 3 story masonry frame whose nonlinear behavior is investigated by Roca et al., 

(2005) is chosen for comparative linear analyses (see Figure 3.25). Same analyses 
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that were conducted on 1B1S and 1B2S frames are conducted again. Meshing of the 

finite element model and RO patterns of equivalent frame model are drawn below 

(see Figure 3.26).   

 

 
Figure 3.25 2B3S Masonry Frame Investigated by Roca et al., (2005) 

 

 
Figure 3.26 2B3S Frame Models a-) EFM without RO, b-) EFM with Dolce RO, c-) 

EFM with Full RO, d-) FEM  

 

Results are summarized in Table 3.4. Similar to previous analyses considering the 

finite element model, SAP2000 model without RO results in larger story 

displacements indicating that equivalent frame without RO is flexible. Full RO 

model result in smaller displacements indicating that model is stiffer. Dolce RO is 

the best approximation to story displacements. It also approximates base shear and 

axial force in base piers satisfactorily.       

Table 3.4 Analyses Results of FEM and EFM for 2B3S Masonry Frame 

t=0.5m 
ρ=14 kN/m

3
 

E=726 MPa 
v=0.2 
 
Slab Loading: 
1st floor: 15kN/m 
2nd floor: 15kN/m 
3rd floor: 12kN/m 
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ANSYS 

(FEM) 

SAP (EFM) % Difference 

No 

RO 

Dolce 

RO 

Full 

RO 

No 

RO 

Dolce 

RO 

Full 

RO 

Axial Force 

(kN) 

Pier1 52.9 70.3 70.8 74.6 33.0 34.0 41.0 

Pier2 211.3 206.7 200.2 198.4 -2.2 -5.2 -6.1 

Pier3 231.0 218.2 224.1 222.2 -5.5 -3.0 -3.8 

Base Shear 

(kN) 

Pier1 18.9 14.2 16.9 18.4 -24.9 -10.7 -2.9 

Pier2 32.6 35.2 40.2 43.5 8.0 23.4 33.5 

Pier3 22.7 24.9 17.2 12.4 9.7 -24.2 -45.3 

Lateral Roof 

Displacement 

(mm) 

1st Floor 1.51 2.57 1.28 0.96 70.13 -15.12 -36.5 

2nd Floor 3.08 5.41 2.71 2.22 75.34 -12.26 -27.9 

3rd Floor 4.34 7.60 3.83 3.27 74.95 -11.82 -24.6 

 

For a visual comparison between FEM and its best estimator EFM with Dolce offset, 

lateral displacement profile at the base is plotted below (see Figure 3.27). 

 
Figure 3.27 Lateral Story Displacements for FEM and EFM Analyses on 2B3S 

Masonry Frame 

 

As a result of elastic linear analyses on perforated frames with different RO patterns, 

it might be concluded that considering story displacements, axial load on base piers 

and shear force on base piers, best approximation to finite element model is 

SAP2000 model with Dolce RO. Comparison of shear force (see Figure 3.28) and 

axial load at base piers (see Figure 3.29) between finite element method and its best 

approximation; EFM with Dolce RO are plotted below.  
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Figure 3.28 Comparison of Shear Forces on Base Piers of Masonry Frames 

 

  

Figure 3.29 Comparison of Axial Load on Base Piers of Masonry Frames 
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CHAPTER 4 

 

 

NONLINEAR FINITE ELEMENT MODEL FOR IN-PLANE ANALYSIS OF 

URM WALLS 

 

 

 

Due to its complex nature, simulation of the in-plane lateral force-displacement 

relationship of masonry walls under varying material properties, axial loads and 

boundary conditions is a challenging job. Although simple strength equations, 

empirical formulas for softening behavior and ultimate drift values for URM walls 

are found in the literature, in order to obtain a reliable lateral force-displacement 

relationship, finite element modeling should be employed. Only finite element 

models give the opportunity to simulate crack pattern, distribution of damage and 

failure mechanism of masonry walls which are essential in simulation of nonlinear 

response of URM walls.   

 

A finite element macro model which is capable of reflecting effects of cracking, 

estimating damage propagation and ultimate failure mechanism of masonry walls is 

built by Alper Aldemir (2010) utilizing ANSYS Software (2007). In forthcoming 

sections, modeling properties and assumptions made by Alper Aldemir are illustrated 

and then the reliability of the proposed model is tested. Results of the model 

proposed by Aldemir will form the basis for the nonlinear modeling of URM 

buildings in the following chapters. 

  

4.1 Model Properties and Assumptions 

 

Among various element types in ANSYS, Solid 65 which is built for the purpose of 

3-D modeling of solids is selected for the modeling of URM masonry. Although it is 

usually utilized for reinforced concrete, as it is capable of implementing reinforcing 

bars in the element, masonry might also be modeled without defining reinforcement, 

selecting proper plasticity models and modifying material constants. It is stated in 

element reference for ANSYS that Solid 65 is also applicable to geological materials 
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such as rocks and probably masonry since it is capable of cracking in tension and 

crushing in compression.     

 

The element is defined by eight nodes having three degrees of freedom at each node: 

translations in the nodal x, y, and z directions (see Figure 4.1).  

 

Figure 4.1 3-D Solid 65 Element Used to Model Masonry in ANSYS 

 

Element assumptions which are either defined in Theory Reference or made by 

Aldemir (2010) are given below: 

 

1. Cracking is permitted in three orthogonal directions  

2. If cracking occurs, the cracking is modeled through an adjustment of material 

properties so as to insert a plane of weakness in the normal direction to the crack 

face. 

3. The concrete material is assumed to be initially isotropic  

4. If the material at an integration point fails in uni-axial, bi-axial or tri-axial 

compression, material is assumed to be crushed. Crushing is defined as the complete 

deterioration of the structural integrity of the material e.g. material spalling. The 

stiffness contribution of a crushed element is ignored by taking its value as 1x10
-
6. 

5. In addition to cracking and crushing, the concrete may also undergo plasticity, 

with the Drucker-Prager failure surface being most commonly used.  

6. Shear transfer across an open crack is zero, whereas there is full shear transfer 

across a closed crack. (assumption made by Aldemir) 

7. The stress relaxation after cracking is cancelled as it is only needed to accelerate 

the convergence. (assumption made by Aldemir) 
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8. The plasticity is defined as multilinear isotropic hardening (See Figure 4.2). 

(assumption made by Aldemir) 

 
Figure 4.2 Multilinear Isotropic Plasticity Model used in Analytical Model 

(Aldemir, 2010) 

 

Aldemir adopted Willam–Warnke‟s five parameter failure theory developed for 

modeling the tri-axial behavior of concrete in order to model the failure of masonry 

materials. Vyas and Reddy (2009) who modeled masonry wallets under compression 

with similar approach defines application of Willam–Warnke‟s failure theory for 

masonry as: When the state of stress reaches a certain critical value, the material fails 

by fracturing which means either cracking (tension-tension, compression-tension) or 

by crushing (compression–compression). For compressive type of stress, crushing is 

assumed to occur when the state of stress reaches the critical shear stress value. For a 

tensile type of stress, cracking is assumed to occur when the state of stress reaches 

the critical tensile stress value. 

 

After derivation of finite element model, Aldemir conducted a parametric study on 

masonry walls taking thickness, length, aspect ratio, compressive strength of the wall 

and overburden pressure on the wall as variables. Investigating more than 300 

imaginary walls, he derived capacity curves and bilinearized them using equal 

energy principle. Finally using bilinearized capacity curves he derived equations 

from regression analysis for the yield force, ultimate force (Equation 4.1), and 

ultimate displacement (Equation 4.2) capacities utilizing SPSS. Coefficients related 

to proposed equations are given in Table 4.1.  
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               (4.1) 

 

                             (4.2) 

 

Where, 

p = Overburden pressure on the wall 

fm = Compressive strength of masonry wall 

 = Aspect ratio of the wall 

h = Height of cross section 

t = Thickness of the wall 

 

Table 4.1 Coefficients Utilized in Equation 4.1and Equation 4.2 

Coefficients Yield Lateral Load 
Ultimate Lateral 

Load Capacity 

Ultimate Lateral 

Displacement Capacity 

C1 353.2 352.2 2.385 

C2 0.604 0.498 -0.540 

C3 0.414 0.501 0.319 

C4 -0.931 -0.856 1.414 

 

4.2 Verification of the Nonlinear Pier Model 

 

In order to ensure reliability of the proposed equations; shear strength and 

displacement capacity of a total of 152 piers which belong to 3 case study buildings 

investigated in Chapter 6 is calculated according to proposed equations and 

compared with shear strength and ultimate drift values specified in FEMA 356. 

Then, analysis results of the proposed model is compared with the results of selected 

experimental studies. Two experimental studies are selected for this purpose such 

that shear dominated response and flexure dominated response is observed 

respectively. Detailed investigation of the model is made in terms of unique 

characteristics of shear and flexure dominated failures such as cracking patterns, 

stress distributions and strain distributions at various drift levels.    
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4.2.1 Comparison with FEMA 356   

 

Definition of force displacement relation of masonry piers according to FEMA 356 is 

illustrated below:   

 
Figure 4.3 Force Displacement Relationship of Masonry Piers Defined in FEMA 

356   

 

Four primary failure modes are defined for URM piers in FEMA 356 (see Table 4.2). 

Rocking and sliding are described as displacement based failure modes. In addition 

to shear strengths, ultimate drifts associated to these failure modes are provided in 

FEMA 356. Diagonal tension and toe crushing are described as force based failure 

modes and only shear strengths associated to these modes are provided. It is believed 

that piers failing under these modes do not possess any plastic rotation capacity.  

 

Table 4.2 Shear Strength Equations of URM Walls Defined in FEMA 356 
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Mode 
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For the piers belonging to case study buildings investigated in Chapter 6, shear 

strengths and ultimate drifts are calculated according to proposed equations 

(Equation 4.1 and Equation 4.2) and equations proposed in FEMA 356. Results are 

tabulated in Appendix C.  

 

Minimum shear strength calculated according to rocking, diagonal tension, sliding 

and toe crushing equations in FEMA 356 is identified as the shear strength of the 

wall and corresponding failure mode is identified as governing failure mode of the 

wall. Then ultimate drift values are determined corresponding to each displacement 

based failure mode (see Table 4.3).  

 

Table 4.3 Ultimate Drift Limits of Masonry Walls Defined in FEMA 356 

Failure 

Mode 
δmax δu 

ROCKING 0.4*λ 0.8*λ 

SLIDING 0.4 0.8 

 

After shear strength and displacement capacity of each pier is calculated according to 

proposed equations, comparison is made in terms of shear strength ratios and 

ultimate drift ratios.  

 

Equation proposed by Aldemir (Equation 4.1) and the equation in FEMA 356 for 

rocking strength (Equation 2.1) is in a good agreement in terms of shear strength 

values with a mean value of 1.01. Proposed equation results in conservative shear 

strength values due to sliding and unconservative values due to toe crushing (see 

Figure 4.4). Unconservative values for toe crushing are expected since crushing is 

disabled in ANSYS model due to convergence problems. Diagonal tension failure 

has not been observed in any pier probably due to low level of axial load over 

compressive strength ratio.  
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Figure 4.4 Comparison of Shear Strengths Due to Various Failure Modes a) Rocking 

b) Sliding c) Toe Crushing 

 

Although there is some scatter, mean value of ultimate drift ratios for rocking (see 

Figure 4.5) and sliding (see Figure 4.6) is 1.05 and 1.13 respectively. Despite 

ultimate drift ratio for sliding failure is constant (i.e. 0.8%) in FEMA 356, depending 

on the aspect ratio and axial load level, ultimate drift changes in the proposed 

equations. So the scatter is expected.      

 

 
Figure 4.5 Comparison of Rocking Failure in terms of a) Ultimate Displacement b) 

Ultimate Drift  
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Figure 4.6 Comparison of Sliding Failure in terms of a) Ultimate Displacement, b) 

Ultimate Drift 
 

4.2.2 Comparison with Experimental Results 

 

In addition to shear strength and ultimate drift comparisons with literature, 

verification of the nonlinear pier model is further accomplished by a detailed 

investigation on crack patterns, stress variation and strain distributions of 

experimentally tested masonry walls.  

 

Among many experimental studies available in literature, test conducted by Franklin 

et al. (2001) and Ganz and Thurlimann (1982) is chosen for verification. Franklin et 

al. (2001) worked on slender walls exhibiting flexure dominated behavior whereas 

Ganz and Thurlimann (1982) worked on squat walls exhibiting shear dominated 

behavior. 3-D models generated for nonlinear analysis of piers are presented below 

(see Figure 4.7). 
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Figure 4.7 a) 3-D Model of Wall (1GT) Tested by Ganz and Thurlimann, (1982), b) 

3-D Model of Wall (1F) Tested by Franklin et al., (2001) 

 

4.2.2.1 URM Wall Tested by Franklin (1F) 

 

Wall 1F investigated by Franklin has 840 mm length, 1500 mm height and 200 mm 

thickness. Compressive and tensile strength of the wall is determined as 7.86 MPa 

and 0.28 MPa respectively. Modulus of elasticity is measured as 4275 MPa. 

Overburden pressure on the wall is 0.29 MPa. Cantilever type boundary conditions 

are maintained through the test. Having a high aspect ratio (h/L=1.79) and low 

overburden pressure (ζ/fm=0.037), wall 1F exhibited a “ductile” response with 

ultimate drift of 1.3%.  

 

Model properties of 1F are input into ANSYS as explained in section 4.5.1.    

       mapped meshed elements are used for the model generation. Nonlinear 

solution properties of ANSYS such as line search, DOF predictor, convergence limit 

and maximum number of iterations are utilized whenever convergence is disturbed. 

Final force-displacement curve of the wall is displayed together with experimental 

data in Figure 4.8.  

a) b) 
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Figure 4.8 Comparison of PO Analysis Conducted on Finite Element Macro Model 

and Experimental Data for the Wall Tested by Franklin et al., (2001) 

 

Pushover curve obtained by nonlinear pier model approximates experimental data 

well. Error in maximum strength is 13% and error in ultimate drift is 15%. 

Degradation of strength after maximum strength is observed in experiment. However 

nonlinear pier model could not catch degradation since Newton-Rapson iteration is 

used by ANSYS (Aldemir, 2010).  

 

Minimum principal stress distribution, maximum principal strain distribution and 

crack pattern in which out of plane cracks and small cracks discarded are given for 

0.1%, 0.5% and ultimate (1.3%) drift levels (See Figure 4.9).  
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Figure 4.9 Minimum Principal Stress Distribution, Maximum Principal Strain 

Distribution and Crack Pattern Corresponding to 0.1%, 0.5% and 1.3% (ultimate) 

Drift of Wall 1F  

 

Overturning effect produced by lateral force at top is clearly seen on Figure 4.9a, 

4.9b and 4.9c. As drift increases, compressive stresses are concentrated at the toe 

located at lower right of the wall.  However maximum compressive stress could not 



 

 
 75   
 

reach to compressive strength of masonry. So rocking without toe crushing is 

observed as experienced in experiment.  

 

Maximum principal strains illustrated in Figure 4.9d, 4.9e and 4.9f also points out 

typical rocking failure. As lateral displacements increase to the right, overturning 

moment creates tension at the lower left corner. Elongation of members at lower left 

corner forces the wall to make a turn over the toe.   

 

Cracking pattern (see Figure 4.9g, 4.9h and 4.9i) also demonstrates flexure dominant 

behavior. Horizontal cracks which are formed at the early stages and propagate with 

increasing drift are indicators of tension in a direction perpendicular to crack surface. 

When tension produced by overturning moment is larger than compression supplied 

from overburden pressure plus tension strength of masonry, horizontal cracks takes 

place.   

 

4.2.2.2 URM Wall Tested by Ganz and Thurlimann (1GT) 

 

Wall investigated by Ganz and Thurlimann (1982) has 3600 mm length, 2000 mm 

height and 150 mm thickness. Compressive and tensile strength of the wall is 7.61 

MPa and 0.28 MPa respectively. Modulus of elasticity is measured as 2460 MPa. 

Initial vertical stress of 0.61MPa is applied before implementing lateral 

displacement. Boundary conditions are fixed at bottom, concrete slab of 160 mm 

placed at top. Also additional brick units are placed at two ends in order to reflect 

flange effect of supporting walls (See Figure 4.7a). Wall aspect ratio is low 

(h/L=0.56) and low level of vertical pressure (ζ/fm=0.08) is applied on the wall. 

Diagonal tension failure might be expected due to low aspect ratio.  

  

According to test results, despite diagonal tension failure is believed to be a brittle 

failure mode, an ultimate drift of 0.73 is observed. Lourencho (1996) explained this 

fact by confinement effect of flanges and concrete slab. Another explanation might 

be effect of sliding between masonry units because stair stepped failure going 

through mortar joints is observed.   
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Model properties of the wall are defined as explained in section 4.1.  24       2 

mapped meshed elements are used for the model generation. Again, nonlinear 

solution properties of ANSYS such as line search, DOF predictor, convergence limit 

and maximum number of iterations are utilized whenever convergence is disturbed. 

Final force-displacement curve of the wall is given in Figure 4.10. 

 

 
Figure 4.10 Comparison of PO Analysis Conducted on Finite Element Macro Model 

and Experimental Data for the Wall Tested by Ganz and Thürlimann (1982) 

 

It can easily be realized that the nonlinear pier model approximates the response of 

the test wall well. Error in maximum lateral strength and top displacement is 8.3% 

and 4.5% respectively. Once again degradation of strength after maximum strength 

level could not be captured.  

 

In order to make a detailed investigation, minimum principal stress distribution, 

maximum principal strain distribution and crack pattern in which out of plane cracks 

and small cracks discarded are drawn for 0.1%, 0.4% and ultimate (0.73%) drift 

levels (See Figure 4.12). 
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At the early levels of lateral displacement, failure mechanism could not be identified. 

Minimum principal stress is distributed such that compressive stress increases going 

from left to right which is an indication of effect of overturning moment (see Figure 

4.12a). At this level, maximum tensile strains are cumulated at lower left (see Figure 

4.12d) and cracks originated consistent to maximum tensile strains (see Figure 

4.12g).  

  

Further increasing lateral displacement, unique characteristics of diagonal tension 

failure arises such as formation of diagonal compression and tension struts (see 

Figure 4.11). Compression strut might be identified looking at Figure 4.12b. Two 

yellow bands of compression region are visible. Tension strut might be identified by 

looking at Figure 4.8e and 4.8h. Both maximum tensile strain and resulting cracks 

which are oriented perpendicular to tension strut is visible.  

 
Figure 4.11 Compression and Tension Strut Formation in Diagonal Tension Failure 

 

At the final stage two compression bands combined developing a final clear 

compression strut (see Figure 4.12c). Final principal strain distribution (see Figure 

4.12f) is consistent with tension strut and final crack pattern (see Figure 4.12i) is 

compatible with experimental results.   
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Figure 4.12 Minimum Principal Stress Distribution, Maximum Principal Strain 

Distribution and Crack Pattern Corresponding to 0.1%, 0.4% and 0.73% (ultimate) 

Drift of the Wall 1GT. 
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CHAPTER 5 

 

 

COMPUTER MODEL FOR NONLINEAR ANALYSIS OF URM BUILDINGS 

 

 

 

It has been revealed in Chapter 3 that when applied on perforated masonry frames, 

equivalent frame modeling technique yields acceptable results considering lateral 

displacement profile, base shear and axial load level on base story piers in the elastic 

range. In this chapter, the ability of this technique in modeling elastic behavior of 

masonry frames will be advanced by defining nonlinear force-deformation 

characteristics of masonry piers existing in equivalent frames utilizing so called shear 

hinges. Thus, nonlinear model of URM frames and buildings are developed for static 

pushover analysis which is essential for displacement based assessment of buildings.  

 

Chapter 5 starts with definition of plastic hinges to be employed for the idealization 

of masonry piers passing into nonlinear range. Concepts which are discussed and 

accepted for the inelastic behavior of masonry walls in Chapter 4 will be briefly 

refreshed for this purpose. After definition of nonlinear behavior of each pier through 

shear hinges, equivalent frame model will be made capable of nonlinear response. 

Finally proposed nonlinear model for URM is verified by comparing the model with 

experimental results of one cyclic and one shake table tests conducted at University 

of Pavia and Ismes Laboratory at Bergamo respectively.     

 

5.1 Plastic Hinge Definition to be used for Nonlinear Pushover Analysis 

 

In the elastic range, lateral force is related to lateral displacement solely by lateral 

elastic stiffness (Ke) which is a function of aspect ratio, boundary conditions, 

modulus of elasticity and thickness of the wall (Equation 3.2). Whereas in the post 

elastic range, non-linear properties such as lateral strength (Vu), ultimate drift (δu) 

and post elastic stiffness (Ki) are needed to be determined for full identification of 

the bilinear idealization of force deformation relationship (see Figure 5.1).    
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Figure 5.1 Bilinear Idealization of Force-Deformation Relationship for Masonry 

Walls 

 

As it is discussed in Chapter 4, nonlinear response of masonry walls is very complex 

and there exists no properly determined simple method illustrating the nonlinear 

force-deformation characteristics of masonry walls on which failure mode is strongly 

dependent. As a result, nonlinear finite element modeling of masonry is probably the 

most sophisticated and convenient way of distinguishing between different failure 

modes and simulating nonlinear response of masonry walls.   

 

A finite element model proposed by Aldemir (2010) to model masonry walls is 

investigated in the previous chapter and it performed well in terms of simulating 

flexure and shear dominated responses, damage propagation through cracking, base 

shear capacity and ultimate drift ratios. Since nonlinearity in URM walls is mainly 

due to shear, shear hinges whose constitutive relationship is determined according to 

Equations 4.1 and 4.2 are assigned at the base of each pier.   

 

Proposed equations account for axial load level, aspect ratio and compressive 

strength of the wall on the force deformation relationship. In order to illustrate the 

influence of these variables on the response, force displacement curves of 4 

cantilever walls each having a length of 1 meter and thickness of 0.25 meter and 

other properties given in Table 5.1 are determined according to proposed equations 

(see Figure 5.2).  
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Table 5.1 Compressive Strength, Overburden Pressure and Aspect Ratio of Piers 

Whose Force-Deformation Curves are drawn in Figure 5.2 

 
fm 

(Mpa) 

p 

(Mpa) 
λ 

P1 2 0.2 1.5 

P2 6 0.2 1.5 

P3 6 0.4 1.5 

P4 6 0.4 1 

 

Walls in Table 5.1 are selected such that going from P1 to P4, compressive strength 

and overburden pressure is increased and aspect ratio is decreased keeping all other 

variables constant in each step. Difference between; P1 and P2 is due only to 

increase in compressive strength, P2 and  P3 is due only to increase in overburden 

pressure, P3 and P4 is due only to decrease in aspect ratio.   

 

Figure 5.2 Shear Force versus Lateral Displacement Curves of Cantilever Walls 

Specified in Table 5.2.   

 

As it is clearly seen from the figure, yield force and ultimate force capacity increases 

as aspect ratio decreases and axial load, compressive strength increases. At the same 

time, deformation capacity increases with the increase in aspect ratio, compressive 

strength and decrease in axial load on the wall.   
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Although aspect ratio, compressive strength and overburden pressure is reflected on 

derivation of these curves, effect of modulus of elasticity and boundary conditions 

are not taken into account due to assumptions made in their derivation (i.e. modulus 

of elasticity is taken as 2000MPa and cantilever boundary conditions are assumed for 

all walls). Since boundary conditions directly affect elastic lateral stiffness of walls, 

these curves could not be directly imposed on piers existed in a masonry building. 

Fortunately, as it is illustrated in Chapter 3, elastic lateral stiffness of masonry piers 

is successfully captured when equivalent frame method is applied. Since nonlinear 

hinges are activated after “yielding” take place, major drawback of the hinges is 

compensated. 

 

5.2 Nonlinear Equivalent Frame Modeling Approach for Masonry Buildings  

 

For reinforced concrete or steel structures, typical structural elements are the 

columns and the beams whose cross sectional dimensions are much smaller than 

their length. As a result, shear deformations of these members might be neglected 

and they might be idealized as flexural members. Under earthquake induced lateral 

loading, maximum moments are experienced at the ends of these flexural members. 

Consequently, curvature is accumulated at the end spans.  

 

When a RC or steel structure is modeled with one dimensional frame elements, 

accumulation of plastic curvature might be idealized with plastic hinges. Moment 

curvature or moment rotation relation of these hinges might be defined from cross 

sectional properties of members taking axial load moment interaction into account. 

 

In case of laterally loaded cantilever columns, lateral force versus tip deflection 

relationship might be derived analytically for RC and steel members. After 

determining yield moment from cross sectional properties, lateral tip deflection at 

yield might be calculated without significant error by neglecting shear deformations 

(see Figure 5.3.a).  

Yielding due to moment takes place wherever curvature demand on the column is 

greater than yield curvature. As explained in the preceding paragraph, this 
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phenomenon usually takes places at the bottom or top of the columns. For a laterally 

loaded cantilever column, moment reaches its maximum value at the bottom (see 

Figure 5.3.a). 

 

 It might be assumed that sections which are forced to pass into nonlinear range fall 

inside plastic length of the column which might be approximated to be equal to the 

half of the height of the cross section (see Figure 5.3.b).  

 

Upon determining distribution of curvature along the columns length, lateral 

deflection is calculated by summing lateral elastic and lateral plastic deflections. In 

order to calculate lateral plastic deflection, plastic rotation which is equal to 

integration of plastic curvature along plastic length is assumed to be lumped at the 

middle of the plastic length of the column (see Figure 5.3.c). 

 

 Multiplication of plastic rotation with the length of column above plastic hinge gives 

the plastic component lateral displacement.   
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Figure 5.3 Derivation of Force Displacement Relationship for Flexural Members 

with Cantilever Boundary Conditions a) Distribution of Moment and Curvature at 

Yield, b) Distribution of Moment and Curvature at Plastic Range, c) Plastic Hinge 

Idealization 

 

𝑢𝑦  
𝐹𝑦ℎ

3

 𝐸𝐼
 

𝑢𝑚  𝑢𝑦  𝑢𝑝 

                             
𝐹𝑦ℎ

3

 𝐸𝐼
 𝜃𝑝 (ℎ  

ℎ𝑝

2
) 

Fm 
up 

Mp 

Φy 

uy 

My 

Φp 

um 

θp 

hp 

 ∅𝑑𝑥 ≈ 𝜃𝑦   ∅𝑝  ∅𝑦 ℎ𝑝 ≈ 𝜃𝑦  𝜃𝑝

𝐿

 

≈ 𝜃𝑢 

a) 

b) 

uy 

h 

My Φy 

Fy 

F 

0.5hp 

𝛿𝑢 

𝐹𝑦 

𝐹𝑢 

θ 
c) 



 

 
 85   
 

Contrary to typical RC or steel frame elements whose nonlinear behavior is governed 

by flexure, masonry piers and spandrels are squat members on which shear 

deformations are effective in the elastic range. Sinha et al. (1971) demonstrated 

experimentally that, after cracking, deformations due to shear become highly 

nonlinear in URM walls. Also, Gilmore et al. (2009) state that shear deformations 

dominate flexural deformations as level of damage increases and unlike the elastic 

response, shear domination in inelastic range is independent from aspect ratio of 

walls.  

 

Moreover, unlike RC or steel frame elements, masonry piers and spandrels do not 

actually „yield‟. In the absence of reinforcement, masonry is not capable of resisting 

tension induced by moment action. Instead plastic response is achieved by cracking 

and crushing of masonry which results in various mechanisms namely; sliding, 

rocking, diagonal tension and toe crushing.  

 

Plastic response of masonry elements could only be identified by sophisticated finite 

element analyses. However, the ability of equivalent frame modeling technique in 

computational easiness and the ability of computationally costly FEM in simulating 

the nonlinear behavior of masonry walls might be combined.  

 

As it is illustrated in Chapter 3, when masonry frames are modeled with equivalent 

frames, satisfactory results are taken in the elastic range. In order to provide inelastic 

behavior to frame elements, plastic hinges might be assigned. Since hinge properties 

for masonry members could not be determined from cross section properties as in the 

case of reinforced concrete or steel members, force deformation relationship is taken 

directly from finite element analysis results. That is, although plastic hinge formation 

is not observed in reality; plastic hinges are assigned in order to reflect plastic 

response of masonry walls which are derived from sophisticated finite element 

analyses.   

         

Since inelastic behavior in masonry walls is governed by shear, instead of moment 

hinge, shear hinge is assigned at the bottom of equivalent frames (see Figure 5.4). 
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Figure 5.4 Equivalent Frame Idealization of URM Piers with Shear Hinge for 

Nonlinear Static Analysis 

 

To sum up, after masonry walls are modeled with equivalent frame method which 

easily captures elastic behavior, a shear hinge is assigned for the idealization of 

nonlinear response. Properties of the shear hinge are determined from Equations 4.1, 

4.2. Since these equations are derived from bilinearization of finite element analysis 

of the wall, they are assumed to simulate nonlinear behavior.  

 

5.3 Application of Nonlinear Equivalent Frame Model on Computer Software 

 

For the equivalent frame modeling of masonry buildings, well known computer 

software SAP2000 (2009) will be utilized. Nonlinear material behavior is available 

through the use of frame hinges which might be defined manually. Software is 

capable of conducting nonlinear static analyses through these hinges where all plastic 

deformation occurs within the point hinge (i.e. lumped plasticity). 

  

User defined hinges that can be assigned to any degree of freedom according to SAP 

Reference Manual (2009) is defined by five points, A-B-C-D-E, as shown in Figure 

5.5. For moment hinges horizontal and vertical axes represent moment and rotation 

whereas for a shear hinge they represent force and lateral translation respectively.    
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Figure 5.5 User Defined Plastic Hinge Definition in SAP2000 

 

The shape of the curve in Figure 5.5 is inspired from hinge recommended by FEMA 

356 for pushover analyses. Although 5 points (i.e. A, B, C, D, E) are available for 

definition of the curve, 3 points are enough for a bilinear curve. Thus, same values 

will be assigned for point C, D and E. 

 

Definition of each point on the curve is explained below:  

 

• Point A is the origin. 

• Point B represents yielding. Deformation up to this point is elastic and linear 

relation between force and displacement is automatically determined from material, 

geometrical properties and boundary conditions. So, no deformation occurs in the 

hinge up to point B. When the force or moment associated with this point is reached 

force - displacement curve of the member starts to follow the hinge.   

• Point C represents the ultimate capacity for pushover analysis.  

• Point D represents a residual strength for pushover analysis.  

• Point E represents total failure. Beyond point E the hinge might drop to zero or 

might be interpolated according to selection. 

 

Although strength loss or negative slopes are permitted in the hinge definition, use of 

these features is not advised in the SAP2000 Reference Manual (2009). It is stated 

that sudden strength loss is often unrealistic and can be very difficult to analyze, 

A 

B 

C 

D E 

Displacement 

F
o
rc

e IO LS CP 



 

 
 88   
 

especially when elastic snap-back occurs. It is also stated that anytime negative 

stiffness‟s are present in the model, the solution may not be mathematically unique.  

 

Hopefully, bilinear idealization of force deformation relationship which is used for 

shear hinge definition of masonry does not result in aforementioned discrepancies. 

  

Hinges might also be defined such that axial force and two bending moments may be 

coupled through an interaction surface. Thus, yielding of the hinge takes place 

depending on the axial force and bi-axial bending moment levels at the hinge 

location. Unfortunately software does not allow definition of a hinge that accounts 

for coupling of axial load with shear. Since axial load on a masonry wall is an 

important parameter influencing plastic behavior, neglecting effect of change in axial 

load level on individual piers to the structural response will be investigated in section 

5.4.1.3.  

 

Another assumption made for the modeling is; nonlinearity is restricted to masonry 

piers only. Spandrels remain elastic through analysis but piers pass into nonlinear 

range when they are pushed above the elastic limit. This is because very little 

experimental information is available on cyclic behavior of unreinforced masonry 

beams, especially regarding the deformational behavior (Magenes and Fontana, 

1998) and ultimate failure of the masonry buildings is controlled by piers.      

 

5.4 Verification of Proposed Computer Model 

 

Tests conducted on masonry specimens at the University of Pavia and Ismes 

Laboratory at Bergamo are the most preferred reference for the verification of 

different URM modeling techniques in the literature. After definition of experimental 

work, results of proposed nonlinear equivalent frame model will be compared with 

the results of these experiments for the purpose of verification.  
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5.4.1 Seismic testing of a Full-Scale, Two-Story Masonry Building at the 

University of Pavia 

 

Seismic testing of a full-scale, two story URM building conducted at the University 

of Pavia and seismic dynamic testing of the 3/8 scaled prototype of the same 

buildings at the University of Illinois (Magenes et al, 1995) gives an opportunity to 

verify proposed computer model. 

 

The geometry and the loading direction of the tested building are given in Figure 5.6. 

Displacements are applied in the longitudinal direction at the story levels. Transverse 

walls are solid whereas longitudinal walls are perforated such that the wall with door 

openings is named as door wall and the wall with window openings is named as 

window wall. Despite window wall is connected to transverse walls with an 

interlocking brick pattern around the corner, there exists no connection between door 

wall and the adjacent walls. As a result 2-D modeling of the door wall is 

implementable.     

 

 
Figure 5.6 Two-Story Masonry Building Tested at the University of Pavia, 

(Magenes et al., 1995) 
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According to Magenes and Calvi, in determination of testing procedure for the 

masonry buildings two difficulties arise: 

 

 Lumped mass approximation is not applicable in case of masonry buildings. Due 

to heavy weight of walls which is distributed over the buildings height, determination 

of mass matrix is challenging. As a result, pseudo dynamic testing methods are not 

considered applicable for these structures (Calvi et al., 1995). 

 

 Since cracking is highly dependent on loading rate, monotonic testing methods are 

not considered to be realistic for URM systems (Paulson et al., 1990). 

 

As a result, quasistatic application of standard pattern of displacement cycles (see 

Figure 5.7) is selected to be the most appropriate testing method for URM specimen 

tested at University of Pavia.  

 

In order to determine the loading pattern of the full scale building tested at 

University of Pavia, 3/8 scaled prototype of the test building is tested dynamically on 

a shaking table at the University of Illinois. According to variation in effective height 

of restoring forces, general trend in effective height is observed towards 0.75 which 

indicates uniform distribution. (Magenes et al., 1995)  

 

As a result, uniform loading pattern is applied at each floor level in the quasistatic 

tests. Roof displacement is selected as the main controlling parameter. First floor 

displacement is controlled such that the applied force at first floor is equated to 

applied force at the second floor.   
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Figure 5.7 Sequence of Displacements Applied to the Second Floor of Tested 

Building in University of Pavia (Magenes et al., 1995) 

 

The response of the tested frame to applied displacements is illustrated in Figure 5.8. 

It is reported that cracking started at a roof drift of 0.1% and maximum drift is 

measured as 0.3% at the end of run 6. Tested frame resisted approximately 150kN of 

base shear which corresponds to 40% of its total weight. Inter-story drift in the first 

floor at failure is measured as 0.37%.   

 

 
Figure 5.8 Total Base Shear vs. Top Displacement of Pavia Door Wall (Magenes et 

al., 1995) 
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Although cracking took place in the spandrels first, ultimate resistance is determined 

by pier failure. According to final crack pattern of the tested frame (see Figure 5.9), 

interior pier at the base experienced a clear diagonal shear failure. Whereas exterior 

piers at the base experienced a mixed failure mechanism where flexural dominated 

bed joint sliding and shear dominated diagonal shear modes are both observed.    

 
Figure 5.9 Final Crack Pattern of Pavia Door Wall (Magenes et al., 1995) 

 

In order to conduct pushover analyses, computer model of the tested frame is built 

using SAP2000 software. Poisson‟s ratio and modulus of elasticity are the material 

constants to be defined since masonry is idealized as a homogenous and isotropic 

material. Poisson‟s ratio for masonry is taken as 0.2 and modulus elasticity is 

calculated as 1700 MPa from elastic stiffness of experimental data. RO lengths of 

piers are determined according to empirical approach proposed by Dolce (1989) as 

explained in Chapter 3, whereas full rigid offset is used for spandrels (Belmouden et 

al. 2007). Geometry of the model, rigid offsets and labels of the spandrels and piers 

are illustrated in the figure below. 
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Figure 5.10 Equivalent Frame Model of Pavia Door Wall 

 

Sectional properties of each pier are calculated from dimensions of the cross sections 

(see Table 5.2). Aspect ratio is calculated taking effective height of the member into 

account.  

 

Table 5.2 Cross Sectional Properties of Pavia Door Wall Piers  

Pier 

Label 
L (m) t (m) heff (m) λ Area (m²) 

Shear 

Area (m²) 
I (m

4
) 

P1 1.15 0.25 2.477 2.15 0.288 0.240 0.0317 

P2 1.82 0.25 2.145 1.18 0.455 0.379 0.1256 

P3 1.15 0.25 2.477 2.15 0.288 0.240 0.0317 

P4 1.15 0.25 1.899 1.65 0.288 0.240 0.0317 

P5 1.82 0.25 1.235 0.68 0.455 0.379 0.1256 

P6 1.15 0.25 1.899 1.65 0.288 0.240 0.0317 
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In order to determine inelastic response of piers according to Equations 4.1 and 4.2; 

compressive strength, aspect ratio, axial load level, length and thickness of each 

individual pier is needed to be known.  

 

Before testing Pavia Door Wall, tests were conducted on masonry wallets for the 

determination of material properties. According to test results, mean compressive 

strength of the masonry walls is calculated as 6.2MPa (Magenes et al., 1995). 

Thickness, length and aspect ratio of each wall might be determined from geometry 

of the test specimen (see Table 5.2). However determination of axial load level on 

each pier is required.    

 

Due to overturning effect of earthquake induced lateral forces, axial load level on 

masonry piers are altered throughout the PO analysis of URM buildings. 

Unfortunately like many other structural analysis software, SAP2000 is incapable of 

taking coupling effect of axial load with shear force in the definition of shear hinges.  

 

Since axial force is an important parameter affecting nonlinear response of masonry 

piers, 3 different approaches are employed and results are compared to determine the 

importance of overturning effect on the structural response. 

 

First approach does not account for changes in the axial load level of piers on global 

response. Although second approach takes influence of axial load change on piers 

due to overturning effect of earthquake induced lateral loads, axial load level on piers 

are still assumed to be kept constant throughout the analysis. The third and the most 

sophisticated approach “step by step hand calculation” is capable of updating hinge 

properties in each step due to change in axial force as a result of overturning effect.   

 

In PO analyses conducted on forthcoming sections (5.4.1.2 and 5.4.1.3), controlling 

parameter is selected as roof displacement. After force controlled nonlinear static 

analysis is conducted under dead load, displacement controlled nonlinear static 

analysis under uniform distribution of lateral forces are conducted from end state of 

the dead load analysis. Nonlinear parameters of the software, in which solution 
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control option and hinge unloading methods are determined, is taken as default 

values of the software.  

 

PO analysis of section 5.4.1.4 is more sophisticated and it will be illustrated later on.  

 

5.4.1.1 Hinge Properties Defined Under Dead Load 

 

In order to calculate axial load level on each pier of the tested frame, linear analysis 

is conducted on computer model of the frame under the dead loads. Dead load of the 

test specimen has two sources: weight of the masonry walls calculated taking density 

of the masonry as 1.7 ton/m
3
 and additional weights added to first and second floor 

levels idealizing slab load. As a result of dead load analysis, axial loads on each pier 

is determined as below. 

 

Table 5.3 Vertical Load, Pressure and Stress over Strength Ratio of Pavia Door Wall 

Piers under Dead Load 

 
N (kN) p (MPa) p/fm (%) 

P1 99.23 0.345 5.6 

P2 178.6 0.393 6.3 

P3 99.23 0.345 5.6 

P4 44.62 0.155 2.5 

P5 82.23 0.181 2.9 

P6 44.62 0.155 2.5 

 

 

After axial load on each pier is calculated, shear hinge properties are determined 

using equations 4.1 and 4.2 (see Figure 5.11).   

 

Upon derivation of force displacement relationship of each pier, compatible shear 

hinges are assigned to each pier and PO analysis is conducted (see Figure 5.12). Base 

shear capacity is found to be 133kN which approximates experimental result with 

12.8% error and ultimate drift is approximated less than 3% error.   
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Figure 5.11 Idealized Nonlinear Pier Responses of Pavia Door Wall under Dead 

Load 

 

 

 
Figure 5.12 Comparison of Experimental Backbone Curve with Computer Model 

whose Hinges are Determined under Dead Load 
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Distribution of shear hinges at the final stage of the PO analysis is provided in Figure 

5.13. Light grey hinges represent yielding of the hinge whereas dark grey hinge 

represents failure of the hinge. As it is understood from the figure, ultimate condition 

is reached when interior pier at the base reaches its ultimate capacity. Comparing 

final hinging pattern derived from computer model with experimental results (see 

Figure 5.9), it might be concluded that distribution of damage is well approximated 

by the computer model.      

 

Figure 5.13 Final Hinging Pattern of Computer Model whose Hinges are 

Determined under Dead Load 

 

5.4.1.2 Hinge Properties Defined Under Dead + EQ Load 

 

In the second modeling approach, axial load level on each pier of the tested frame is 

determined from linear analysis of computer model under dead load plus lateral loads 

at floor levels idealizing earthquake induced lateral forces. 20% of the total weight 

(75kN) which approximately corresponds to the initiation of plastic region of 

structural response (see Figure 5.8) is applied laterally to computer model of the 

tested frame in a reverse triangular fashion. 

 

 It is assumed that axial load level on piers just before starting of plastification is a 

better approximation to exact behavior.  As a result of dead plus earthquake load 

analysis, axial loads on each pier are determined as below (see table 5.4). 

Yielding 

Failure 
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Table 5.4 Vertical Load, Pressure and Stress over Strength Ratio of Pavia Door Wall 

Piers under Dead plus Earthquake Load 

 
N (kN) p (MPa) p/fm (%) 

P1 47.25 0.164 2.7 

P2 179.98 0.396 6.4 

P3 149.85 0.521 8.4 

P4 30.93 0.108 1.7 

P5 82.61 0.182 2.9 

P6 57.92 0.201 3.2 

 
 

After axial load on each pier is calculated, shear hinge properties are determined 

from Equations 4.1 and 4.2 (see Figure 5.14).   

 

 

Figure 5.14 Idealized Nonlinear Pier Responses of Pavia Door Wall under Dead plus 

Earthquake Load 
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After shear hinge properties under dead plus earthquake load is determined pushover 

analysis is conducted (see Figure 5.15). Base shear capacity is found to be 132kN 

which approximates experimental result with 13.6% error and ultimate drift is 

approximated with 3.24% error. 

 

 

Figure 5.15 Comparison of Experimental Backbone Curve with Computer Model 

whose Hinges are Determined under Dead plus Earthquake Load 

 

Distribution of shear hinges at the final stage of the pushover analysis is provided in 

Figure 5.16. Although force deformation relationship of individual piers altered due 

to change in axial load level final hinge pattern remained the same compared with 

previous analysis.     
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Figure 5.16 Final Hinging Pattern of Computer Model whose Hinges are 

Determined under Dead Load plus Earthquake Load 

 

5.4.1.3 Step by Step Hand Calculation 

 

In the third and the most sophisticated modeling approach, axial load level on the 

piers of the tested frame is updated in each step of the pushover analysis. This 

requires regeneration of shear hinge properties and imposes an iterative solution. 

Since utilized software is not capable of conducting such an analysis by default, PO 

analysis is conducted manually. Solution algorithm might be summarized in the flow 

chart below: 

  

Table 5.5 Solution Algorithm for Incremental Nonlinear Static Analysis 

Step 1 

1. Model the masonry frame with equivalent frame method,  

2. Apply lateral load increment at story levels in an uniform pattern,  

3. Determine axial loads and shear forces on piers due to dead load 

plus applied lateral load, 

4. Determine yield capacity of each pier under calculated axial load, 

5. Compare shear force with yield capacity on each pier, 

6. If any pier reaches yield capacity stop and note axial force in each 

pier (Npier), shear force in each pier (Vpier), base shear (Vbase) and top 

displacement (utop), 

7. Otherwise repeat steps from Step 1.2 

Yielding 

Failure 
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Table 5.5 (Continued) 

 Step 2 

1. Modify computer model to account for yielding, 

 Assign a shear hinge to yielded pier having zero yield force. In fact 

post elastic region of shear hinge  defined under Npier is assigned.  

2. Conduct PO analysis up to a top displacement increment,   

3. Determine incremental axial loads (Ninc), incremental shear forces 

(Vinc), incremenral base shear (Vbase_inc) and incremental top 

displacement (utop_inc) from pushover analysis,  

4. Determine final axial force and final shear force, 

 Npier = Npier + Ninc 

 Vpier = Vpier + Vinc 

5. Find yield (Vyield) and ultimate (Vult) capacity of piers under Npier, 

6. Compare Vpier with Vyield and Vult, 

7. If any pier reaches yield or ultimate capacity stop and note: 

 Axial force in each pier (Npier) 

 Shear force in each pier (Vpier) 

 Vbase = Vbase + Vbase_inc 

 utop = utop + utop_inc 

8. Otherwise repeat steps from Step2.2 

Step 3 

1. Modify computer model to account for yielding and failure, 

 This time in addition to just yielded or failed piers, previously 

yielded piers are also modified since Npier is changing 

 Failed piers lose 80% of its load carrying capacity (FEMA 356) 

2. Follow Steps from Step 2.2  

Step 4 
1. Extract Vbase and utop from each step and plot the capacity curve 

for the entire structure 

 

Because an incremental analysis is carried out after each successful step, computer 

model needs to be modified after any change in force displacement relationship of 

any pier. When yielding takes place in one of the piers, its stiffness should be 
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decreased for the modified computer model formation. Assigning a shear hinge with 

zero yield force satisfies this requirement since it yields at the very beginning of the 

analysis enforcing pier to follow post elastic region. However due to change in the 

axial load level, post elastic region of the pier also changes in the following steps. In 

order to reflect this change, force displacement relation of the assigned shear hinge is 

regenerated (see Figure 5.17). As a result together with recently yielded or failed 

piers, shear hinge properties of previously yielded piers are modified in each step.               

\ 

 

 
 

 

Figure 5.17 Definition and Regeneration of Shear Hinges Due to Change in Axial 

Load, a) V-u of Masonry Pier under N1, b) V-u of Masonry Pier under N2, c) V-u of 

Masonry Pier under N3, d) Definition and Regeneration of Shear Hinge under 

Decreasing Axial Load 
 

Shear force on each pier changes through each step since base shear is increasing. 

Likewise shear capacity of the piers also change due to overturning effect of lateral 

forces through each step. Thus, comparison of capacity with demand requires an 
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iterative solution. Successful steps on which convergence is satisfied are given in 

Table 5.6.  

 

Table 5.6 Successful Steps Involved in Iterative Nonlinear Static Analysis; grey = 

yielding of pier, dark grey = failure of pier  

Step 

No 

Pier 

Id 

N 

(kN) 

V 

(kN) 

+N 

(kN) 

+V 

(kN) 

Nfinal 

(kN) 

Vfinal 

(kN) 

Vy 

(kN) 

Vu 

(kN) 

S
te

p
 1

 P1 61.3 11.4 0.0 0.0 61.3 11.4 11.5 18.5 

P2 179.3 36.6 0.0 0.0 179.3 36.6 65.2 91.7 

P3 136.4 14.8 0.0 0.0 136.4 14.8 18.6 27.6 

P4 36.0 -0.9 0.0 0.0 36.0 0.9 13.3 21.8 

P5 82.1 19.0 0.0 0.0 82.1 19.0 64.8 95.3 

P6 53.6 13.3 0.0 0.0 53.6 13.3 16.9 26.6 

S
te

p
 2

 P1 61.3 11.4 -11.4 0.1 49.9 11.5 10.1 16.7 

P2 179.3 36.6 -1.1 15.1 178.2 51.7 64.9 91.4 

P3 136.4 14.8 12.6 4.8 149.0 19.6 19.6 28.8 

P4 36.0 -0.9 -3.3 2.7 32.7 1.8 12.5 20.8 

P5 82.1 19.0 0.7 5.5 82.9 24.5 65.1 95.8 

P6 53.6 13.3 2.5 1.8 56.2 15.1 17.4 27.2 

S
te

p
 3

 P1 49.9 11.5 -8.1 0.0 41.8 11.6 9.1 15.3 

P2 178.2 51.7 0.0 13.3 178.2 64.9 64.9 91.4 

P3 149.0 19.6 8.1 0.1 157.1 19.7 20.2 29.6 

P4 32.7 1.8 -2.0 1.8 30.7 3.6 12.1 20.2 

P5 82.9 24.5 0.0 3.2 82.9 27.7 65.1 95.8 

P6 56.2 15.1 2.0 1.7 58.2 16.8 17.7 27.7 

S
te

p
 4

 P1 41.8 11.6 -7.8 0.6 34.0 12.1 8.0 13.8 

P2 178.2 64.9 -0.6 9.9 177.7 74.8 64.8 91.2 

P3 157.1 19.7 8.4 3.0 165.4 22.7 20.9 30.3 

P4 30.7 3.6 -2.1 1.7 28.5 5.3 11.5 19.4 

P5 82.9 27.7 0.4 3.7 83.3 31.4 65.3 96.0 

P6 58.2 16.8 1.8 1.3 59.9 18.0 18.1 28.1 

S
te

p
 5

 P1 34.0 12.1 -7.0 0.2 26.9 12.3 7.0 12.3 

P2 177.7 74.8 -0.2 8.7 177.5 83.5 64.8 91.2 

P3 165.4 22.7 7.2 3.0 172.6 25.6 21.4 31.0 

P4 28.5 5.3 -2.1 1.7 26.5 7.0 11.0 18.7 

P5 83.3 31.4 0.7 4.2 84.0 35.6 65.6 96.4 

P6 59.9 18.0 1.4 0.0 61.3 18.1 18.3 28.5 

S
te

p
 6

 P1 26.9 12.3 -6.4 0.0 20.6 12.3 5.9 10.7 

P2 177.5 83.5 -0.3 7.7 177.2 91.2 64.7 91.1 

P3 172.6 25.6 6.7 3.2 179.3 28.8 21.9 31.6 

P4 26.5 7.0 -1.9 1.6 24.6 8.6 10.5 18.1 

P5 84.0 35.6 0.7 3.8 84.7 39.4 66.0 96.8 

P6 61.3 18.1 1.2 0.0 62.5 18.1 18.5 28.7 
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Since an incremental solution is carried out, force and displacement values at the end 

of step “i” become initial force and displacement values of step i+1. Each successful 

step provides information (i.e. incremental force and displacement values) needed to 

pass to the further step (see Table 5.6).  

 

In order to draw pushover curve of the frame base shear and top displacement values 

associated to each successful step should be extracted. This information is provided 

in Table 5.7 and plotted in Figure 5.18.  

 

Table 5.7 Base Shear and Top Displacement Values Associated with Successful 

Steps in Iterative Nonlinear Static Analysis 

  Step1 Step2 Step3 Step4 Step5 Step6 

Incremental Base 

Shear (kN) 
0.00 19.96 13.39 13.45 11.86 10.88 

Total Base       

Shear (kN) 
62.80 82.76 96.15 109.60 121.46 132.34 

Incremental Roof 

Displacement (mm) 
0.00 0.44 0.35 6.00 5.20 4.51 

Total Roof 

Displacement (mm) 
1.21 1.66 2.00 8.00 13.20 17.72 

 

Figure 5.18 Comparison of Experimental Backbone Curve with Step by Step Hand 

Calculation 
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Distribution of shear hinges at the final stage of the step by step hand solution is 

provided in Figure 5.20.  Unlike other two analyses P1 failed due to decrease in axial 

load. As axial load decreases on P1 during the analysis, shear capacity of the pier 

decreases and it reaches to ultimate capacity before P2. Compared to experimental 

final crack pattern (see Figure 5.19) hand solution gives satisfactory results.  

 

Figure 5.19 Final Hinging Pattern of Step by Step Hand Solution 

 

5.4.2 Seismic testing of a Half-Scale, Two-Story URM Building at the ISMES 

Laboratory at Bergamo 
 

2 story brick URM building (see Figure 5.20) tested on a shake table located at Ismes 

Laboratory at Bergamo is selected for verification of the proposed nonlinear 

equivalent frame model. Due to capability of the shake table, a length scale of ½ is 

used in the experiments. Thus, in order to achieve similitude between model and the 

real behavior, time scale is taken as  √2⁄  and density scale is taken as 2. However 

since same material is used for the scaled model, additional masses of the same order 

of the total mass is applied at the slabs. 

Yielding 

Failure 
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Figure 5.20 Geometry of the Building Tested at ISMES Laboratory 

 

Base excitations derived from the signal recorded at Calitri during Irpinia earthquake 

is simultaneously applied at two orthogonal directions and the vertical direction (see 

Figure 5.21). Increasing order of 5 sets of base inputs obtained by scaling 

accelerations of mentioned earthquake is applied to the specimen. Peak values of the 

accelerations in x and y directions are shown in the Table 5.8.  

 

 
Figure 5.21 a) Ground Acceleration and b) Corresponding Response Spectrum (ζ = 

5%) of Irpinia Earthquake  

 

a) b) 
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It is stated in the test report (Benedetti et al., 1996) that for the first excitation set P7, 

a fairly linear response is observed. However for the ultimate shock P11 strong non-

linearity is observed. Comparing first and ultimate shocks, two dominant periods in x 

and y directions increase 240 % and 253 % respectively.  

 

Third shock P9 is stated to be the event marking the yield point of the building with a 

base shear coefficient of 19 % in x direction. Ultimate lateral resistance and ultimate 

roof drift is identified as 22 % of the total weight and 0.33 % in the x direction 

respectively.    

 

Table 5.8 Peak Ground Accelerations Applied to Specimen at Ismes Laboratory 

TEST ax,max (g) ay,max (g) 

P7 0.055 0.064 

P8 0.098 0.098 

P9 0.179 0.155 

P10 0.250 0.217 

P11 0.326 0.275 

 

In order to conduct nonlinear THA, computer model of the tested building is built 

using SAP2000 software. Poisson‟s ratio for masonry is taken as 0.2 and modulus of 

elasticity is calculated as 920 MPa from elastic stiffness of experimental data. Mean 

compressive strength of the walls is given as 2.2MPa (Benedetti et al, 1996). 

  

RO proposed by Dolce (1979) is utilized for the perforated walls of the tested 

building. Spandrel and pier labels of equivalent frame model of the tested building is 

illustrated in the figure below. 
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Figure 5.22 Equivalent Frame Model of URM Building Tested at ISMES 

Laboratory, (dimensions refer to the half-scale model) 

 

After sectional properties of each pier are calculated from dimensions of the cross 

sections, linear dead load analysis is conducted and compressive stress on each pier 

is determined (see Table 5.9). Aspect ratio is calculated taking effective height of the 

walls into account. Out of plane stiffness of the equivalent frames are neglected as 

recommended by FEMA 356.  

 

Table 5.9 Cross Sectional Properties and Axial Load Levels of Piers of ½ Scaled 

ISMES Test Specimen   

Pier 

Label 
L (m) t (m) 

heff 

(m) 
λ Area (m²) 

Shear 

Area (m²) 
I (m

4
) 

p 

(MPa) 

P1 0.40 0.225 1.316 3.29 0.090 0.075 0.0012 0.137 

P2 0.75 0.225 0.975 1.30 0.169 0.141 0.0079 0.138 

P3 0.40 0.225 0.981 2.45 0.090 0.075 0.0012 0.131 

P4-P6 0.40 0.225 0.981 2.45 0.090 0.075 0.0012 0.058 

P5 0.75 0.225 0.750 1.00 0.169 0.141 0.0079 0.057 

P7-P8 0.80 0.225 1.125 1.41 0.180 0.150 0.0096 0.125 

P9-P10 0.80 0.225 1.125 1.41 0.180 0.150 0.0096 0.057 

 

After axial load level and effective height of piers are calculated, shear hinges 

corresponding to each pier is determined (see Figure 5.23) according to finite 

element macro model illustrated in Chapter 4.  

P1 P2 P3 

P4 P5 P6 
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Figure 5.23 Idealized Nonlinear Pier Responses of the Building Tested at Ismes a) 

X-direction b) Y-direction  

 

In order to simulate the cyclic behavior of masonry walls, degrading hysteresis 

model developed by Takeda et al. (1970) is employed. It is stated in Analysis 

Reference Manual of SAP2000 (2009) that this model is suitable for concrete and 

other brittle materials. It is also the default hysteresis model for concrete materials in 

the program.  

 

In Takeda model, hinges follow backbone curve defined according to Equations 4.1 

and 4.2 until unloading. Up to horizontal axis, hinge unloads parallel to initial 

stiffness. After crossing the horizontal axis, curve follows a secant path to the 

backbone force deformation relationship for the opposite loading direction (SAP2000 

Analysis Reference Manual, 2009). 

 

For visual illustration of the hysteresis model, response of pier 2 of the test specimen 

to excitation P9 is drawn (see Figure 5.24).  

 

 

a) b) 
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Figure 5.24 Cyclic Response of P2 to Excitation P9 according to Takeda Hysteresis 

Model 

 

After test specimen is modeled with proposed nonlinear EFM and Takeda hysteresis 

model is assigned to shear hinges, nonlinear direct integration time history analysis is 

conducted. 

 

 Since Rayleigh damping is utilized in time history analyses, 2 damping values 

associated to fundamental modes in x and y directions are needed. Luckily these 

values are provided in the test report (Benedetti et al, 1996). 6 % and 5.8 % damping 

ratios are assigned to fundamental mode in x direction (i.e. 0.154 sec) and 

fundamental mode in y direction (i.e. 0.132 sec) respectively.   

 

Number of output time step is taken as 4420 and output step size is taken as 

0.011314 seconds which corresponds to experimental measurements (i.e. 

4420*0.011314=50 seconds).  

 

Comparison of Nonlinear THA results with experimental records are illustrated in 

Appendix B. During shake table tests absolute acceleration records are taken in X 

and Y directions and at first and second stories. Since 5 sets of base excitations with 

increasing order of peak ground accelerations (see Table 5.9) are applied in both 
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directions; totally 2 directions * 2 stories * 5 excitations = 20 absolute acceleration 

records are compared (see Appendix B).  

 

Since frequency of acceleration data is high, for a better visualization, comparison is 

made only between 10
th

 and 20
th

 seconds where the peak responses are observed.    

 

Table 5.10 shows the ratios of peak response accelerations to the peak ground 

displacements at the two storey levels in both x and y directions. Both experimental 

and analytical results are illustrated.  

 

Table 5.10 Analytical and Experimental Results of Peak Response Accelerations 

over Peak Ground Accelerations for Ismes Test Specimen 

  PGA   

(g) 

Peak Response Acceleration / Peak Ground 

Acceleration 

  

  

Experiment 
Computer 

Model 
% error 

X
-d

ir
ec

ti
o

n
 TEST   

1
st
 

storey 

2
nd 

storey 

1
st
 

storey 

2
nd 

storey 

1
st
 

storey 

2
nd 

storey 

P7 0.055 1.770 2.756 1.417 2.012 20.0 % 27.0 % 

P8 0.098 1.496 2.246 0.949 1.651 36.3 % 26.5 % 

P9 0.179 1.342 1.867 1.159 1.216 13.6 % 34.9 % 

P10 0.250 1.102 1.728 0.797 0.938 27.6 % 45.7 % 

P11 0.326 1.008 1.458 0.741 0.827 26.6 % 43.3 % 

 Y
-d

ir
ec

ti
o
n

 TEST   
1

st
 

storey 

2
nd 

storey 

1
st
 

storey 

2
nd 

storey 

1
st
 

storey 

2
nd 

storey 

P7 0.065 1.097 1.305 0.950 1.414 13.4 % -8.4 % 

P8 0.098 1.135 1.392 1.043 1.556 8.1 % -11.8 % 

P9 0.155 1.276 1.598 1.380 1.460 -8.2 % 8.6 % 

P10 0.217 1.341 1.650 1.071 1.308 20.1 % 20.8 % 

P11 0.275 1.050 1.467 0.933 1.129 11.1 % 23.0 % 

 

 

 

 

 

 

 



 

 
 112   
 

5.4.3 Discussion of Results 

 

5.4.3.1. Pavia Tests 

 

In order to predict envelope of cyclic response, three analysis methods are proposed. 

PO curves and final cracking patterns of methods have been provided. For 

comparison, capacity curve of the Pavia door wall achieved from experimental data 

and results of three methods are plotted together (see Figure 5.25). 

 

Although capacity curves derived from three different methods are slightly different 

from each other, this is unique case for this specific structure only. As it is 

understood from experimental and analytical results, ultimate and yield resistance of 

the Pavia door wall is dictated by piers at the base. Especially being large in length 

and short in height, interior pier at the base (P2) is dominant on the response. 

Although three methods differ in dealing with influence of axial load level on 

individual piers, axial load on P2 is nearly the same and constant throughout the 

analyses in all methods due to symmetry of the structure. As lateral loads increase 

axial load on P1 decreases and axial load on P3 increases but axial load on P2 does 

not change. Because ultimate condition is reached by failure of P2 in all three 

methods, ultimate drift is nearly the same for all. 

 

Furthermore due also to symmetry of the system, when lateral forces are applied, 

decrease in yield force of P1 is nearly equal to increase in yield force of P3 since 

decrease in axial load level of P1 is nearly equal to increase in axial load level of P3. 

As a result, sum of the yield forces of P1, P2 and P3 which identifies yielding of the 

frame is the same for three methods. To illustrate yield force of P1, P3 and P2 are 

equal to 15.3kN, 15.3kN and 65.14kN respectively for hinge properties defined 

under dead load case. On the other hand yield force of same piers are equal to 

9.78kN, 19.66kN and 65.34kN due to overturning effect of lateral forces (i.e. hinge 

properties defined under dead plus earthquake load).  Since sum of first set 

(15.3+15.3+65.14=95.74) is nearly equal to sum of second set 

(9.78+19.66+65.34=94.78), both systems yield at the same base shear.         
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Figure 5.25 Comparison of Capacity Curves Derived from Different Methods 

 

Difference between step by step hand calculation and others at the end of the analysis 

might be understood by comparing final hinge pattern of three analyses. Different 

from other two analyses base pier at left (P1) failed during step by step hand 

calculation due to decrease in axial load level. The reason for the difference is failure 

of P1 before P2.   

 

According to Magenes and Fontana (1998), “Variation in the axial force of the piers 

may take place under the overturning effect of the horizontal loads, affecting the 

flexural and shear strength of the individual piers. This effect may not be of 

relevance in low-rise squat buildings but it can be in a more general context.” In 

addition to their statement, it can be said that for symmetric frames effect of 

overturning minimizes as decrease in resistance of axial load decreasing piers are 

compensated by increase in resistance of axial load increasing piers.     

 

To conclude, all methods describe general state of damage well and reflect structural 

degradation in the critical story of the tested frame satisfactorily. Hinge properties 
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determined under gravity load gives satisfactory results for modeling of low-height 

URM buildings. 

  

5.4.3.2. Ismes Tests 

 

According to figures listed in Appendix B, it might be stated that general trend in 

variation of recorded accelerations are successfully captured by the proposed model 

especially for the initial shocks. According to Table 5.11, recorded maximum 

accelerations and maximum accelerations calculated from the proposed model are in 

good correlation in Y direction with a maximum error of 23 %.    

 

As it is stated in the experimental report (Benedetti et al., 1996), significant yielding 

point is identified as the end of shock P9 in the X direction. However nonlinearity 

started at the end of shock P8 in the model. During shock P9 high hysteresis 

dissipation is observed for the central pier at the base (see Figure 5.25). Also ultimate 

lateral resistance of the test specimen in X direction, which is calculated from 

multiplication of joint accelerations with corresponding mass, is stated as 22 % 

whereas it is calculated as 17.5% in the computer model.  

 

The main reason for these shortcomings is that hinge capacities predicted by the 

Equation  4.1 is low for the building. Also assumptions made during the modeling 

and limitations of the model which are listed below might be the other reasons.  

 

 Although the test specimen is modeled as 3-D, out of plane resistance of the 

walls are neglected. Thus, interaction of out-of-plane walls with resisting in-

plane walls (i.e. flange effect) is not taken into account.  

 

 Base accelerations in 3 orthogonal directions are applied simultaneously in 

the experiment. Whereas shocks in each direction is applied separately in the 

computer model. 
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 Although steel connector is utilized to achieve connection between the slab 

and the walls, 2cm thick wooden plate over wooden beams are employed to 

idealize flexible boundary conditions in the experiment. However rigid 

diagrahm is assigned to each floor in the computer model.  

 

 Takeda model which is employed to idealize hysteresis behavior of URM is 

not the best model to represent exact masonry behavior which is strongly 

dependent on the failure mechanism of the pier (see Figure 2.1). It is clearly 

seen that energy dissipation capacity of this model (see Figure 5.24) is 

superior that the experimental recordings illustrated in Figure 2.1.   

 

 It is assumed in the proposed approach that nonlinearity is restricted in piers 

only. Spandrels are modeled as elastic. However, although ultimate failure is 

due to piers, high spandrel damage is also observed in the experiment 

 

 The reason for better correlation for the first, less better correlation for second 

story might be shortcoming of finite element macro model. Equations 4.1 and 

4.2 which are utilized for the definition of nonlinear response are derived 

using walls with cantilever boundary conditions. Although first story walls 

are fixed at the base, base of second story walls are flexible. Also second 

story piers have less overburden pressure resulting in bad prediction of finite 

element results with Equations 4.1 and 4.2.     
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CHAPTER 6 

 

 

PERFORMANCE ASSESSMENT OF EXISTING URM BUILDINGS USING 

PROPOSED NONLINEAR MODEL 

 

 

 

Performance assessment of three brick URM buildings (see Figure 6.2, 6.17 and 

6.27) which was exposed to Dinar earthquake of October 1995 (see Figure 6.1) and 

investigated after the earthquake (METU-EERC, 1996) will be carried out. 

 

Capacity curves of the buildings are determined through pushover analyses on the 

proposed nonlinear equivalent frame models of the buildings. Member force-

displacement relationships are determined both according to equations proposed by 

Aldemir (i.e. Equations 4.1 and 4.2) and equations recommended by FEMA 356 (see 

Tables 4.2 and 4.3) for comparison.  After capacity curves are bilinearized using the 

method recommended by FEMA 356 (2000), earthquake demands of the buildings 

are calculated according to TEC2007.  

 

In order to check reliability of the calculated demands, nonlinear time history 

analyses of the buildings are made under Dinar earthquake east-west ground motion 

component. Roof displacement demands calculated from nonlinear THA will be 

compared with demands calculated according to method proposed by TEC2007.  

 

After plastic deformation demands of each pier belonging to performance point of 

the buildings are determined, they are compared with critical drifts identifying 

performance limit states to assess the expected performances of the buildings.  

 

Finally, simple approach proposed by Tomazevic (2007) for the assessment of 

performance of a building using its capacity curve will be utilized for performance 

assessment and results will be discussed.   
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Figure 6.1 a) Ground Acceleration and b) Corresponding Response and Design 

Spectrums (ζ = 10%) of Dinar Earthquake East-West Component 

 

6.1 Case Study Building No: 1  

 

2 story brick URM building located at Konak District no: 39 which is investigated by 

METU-EERC research team after Dinar earthquake of 1995, is selected for 

performance assessment (see Figure 6.2). Damage score of the building after a 

preliminary assessment is reported as medium (Özcebe, 1996).  

 
Figure 6.2 General View of the CSB No: 1 

 

a) b) 
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6.1.1. Generation of the Computer Model 

 

In order to perform performance assessment, equivalent frame model of the URM 

building is generated using computer software (see Figure 6.3). Labels of the walls 

on the first and second story plans are provided in Figure D.1 and Figure D.2 

respectively.  

 

 

Figure 6.3 Computer Model of CSB No: 1 

 

Since there is no laboratory data illustrating material properties of the building, 

average values representing Turkish construction practice is utilized (Aldemir, 2010). 

Compressive strength, modulus of elasticity and Poisson‟s ratio are taken as 5 MPa, 

2000 MPa and 0.2 respectively. Unit weight of the concrete slab is taken as 2.5 

ton/m³ and unit weight of the brick masonry walls is taken as 1.8 ton/m³ for the 

weight calculations. 

Y X 



 

 
 119   
 

Geometrical properties of the walls such as area, shear area in strong direction and 

moment of inertia in strong direction are calculated from dimensions of the walls and 

used as input data for the computer software. Walls are assumed to resist in-plane 

forces acting on their strong direction only.    

 

Rigid end offsets of the perforated walls which are crucial in EFM are determined 

according to method proposed by Dolce (1989) (see Figure 6.4).  

 

Story masses compatible with story weights are calculated taking both the weight of 

the slabs and the walls into account. Slab weight is calculated considering dead load 

of the slab and 30 % of the live load on the slab recommended by TS 498 (1997). At 

the roof level, additional dead load representing roof weight is applied on the slab 

according to TS ISO 9194 (1997). After center of mass of the stories are calculated at 

which story masses are lumped, rigid diaphragm is assigned at each story level.  

 

Then, modal analysis is conducted and dynamic characteristics of the building are 

identified (see Table 6.1). Due to non-symmetric distribution of walls in the plan, 

although modal participating mass ratios in both directions are low, they are slightly 

higher than code allowed limits for PO analysis which is equal to 0.7 (TEC2007).   

 

Table 6.1 Modal Properties of CSB No: 1 

mode 

number 
direction 

period 

(sec) 

modal 

participating 

mass ratio (α) 

modal 

participation 

factor (PF) 

PF*Φr 

1 y-direction 0.118 0.715 11.46 1.104 

2 x-direction 0.103 0.720 11.50 1.082 

3 torsion 0.068    
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Figure 6.4 Equivalent Frame Modeling of Perforated Walls of CSB No: 1; a) Front 

View, b) Right View c) Left View 
 

 

a) 

b) 

c) 
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Before pushover analysis of the case study building is conducted, force-deformation 

relationship of its walls in the nonlinear range should be determined. Equations 

proposed by Aldemir (2010) are utilized for this purpose. However, since axial load 

is an important input to equations influencing nonlinear behavior of piers, an initial 

linear dead load analysis is conducted to determine axial load level of each wall.  

 

In order to conduct linear analysis under dead load of the building, slab loads should 

be distributed to surrounding walls. For one way slabs, loads are distributed in short 

direction only whereas for two way slabs, loads are distributed in both directions 

according to corresponding trapezoidal or triangular areas.  

 

After slab loads are distributed to walls, building is analyzed under gravity loads. 

Using compressive stress on each wall, nonlinear properties of each wall are 

determined utilizing Equations 4.1 and 4.2. Calculations are tabulated in Table C.1. 

Average ultimate drift of first story and second story walls are found to be 0.67% and 

0.77% respectively. 

 

6.1.2. Static Pushover Analysis  

 

After nonlinear shear hinges compatible with calculated nonlinear properties of each 

wall is assigned, pushover analysis is conducted. Building is pushed in positive X 

direction, negative X direction, positive Y direction and negative Y direction 

separately. Because hinge properties are not dependent on the change in the axial 

load level of walls throughout the pushover analysis, there is no difference between 

capacity curves of positive and negative directions.  

 

In order to check the reliability of the equations utilized for the determination of 

nonlinear response of URM walls, capacity curve of the building is also derived 

according to procedure recommended by FEMA 356. 

 

However, force-deformation relationship defined for URM walls in FEMA 356 is 

vulnerable to convergence problems due to perfectly plastic plateau between B – C 
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and sudden drop at point C (see Figure 6.5a). It is observed that when default hinges 

defined by FEMA 356 (HP1) is utilized, unreliable results are encountered upon 

“yielding” of every member at one of the stories. In order to satisfy equilibrium upon 

increasing roof displacement to pass to the next step, hinges violate their predefined 

force-displacement path. Since “yielding” takes place at the very early stages of 

displacement increment due to the high initial stiffness of wall elements, analysis 

results might be considered as unreliable.  

 

To overcome this drawback of elastic-perfectly plastic hinges, a small post elastic 

stiffness is needed to be implemented. This is achieved by 10% increment of “yield” 

force at point C (HP2). This corresponds to a strain hardening ratio of 2.1% at 

maximum which does not alters hinge behavior noticeably.  

 

Although hinges follow their predefined force-displacement curve after the 

modification, this time convergence problems arise when first hinge arises to point C 

due to sudden drop in force. Although base shear capacity of the building is not 

affected, low ultimate drift values are encountered in this case. To overcome this 

shortcoming of the modified HP2 hinges, second modification is made and sudden 

drop in force is removed (HP3). With this final modification, no convergence 

problems or unreliable solutions arise throughout the analysis and a sound solution is 

achieved.  

 

 

Figure 6.5 Modification of Hinges Defined in FEMA 356. a) Hinge Pattern 1 (HP1), 

b) Hinge Pattern 2 (HP2), c) Hinge Pattern 3 (HP3) 

 

F/Fy F/F
y
 F/F

y
 

drift drift drift 

a) b) c) 
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Final PO curves in X and Y directions are illustrated in Figure 6.6 and 6.7 

respectively. Vertical axis of the capacity curve represents lateral resistance of the 

building which is normalized with weight of the building. Horizontal axis of the 

capacity curve represents lateral roof displacement which is expressed in terms of 

story rotations instead of story translations. 

 

 
Figure 6.6 Normalized Capacity Curves of the CSB No: 1 in X-direction 

 

 
Figure 6.7 Normalized Capacity Curves of the CSB No: 1 in Y-direction 
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PO curve with hinges derived from equations 4.1 and 4.2 (i.e. Ansys Hinges) is 

similar to PO curve in which modified hinges proposed by FEMA 356 (i.e. HP3) is 

utilized in terms of “yield” force, base shear capacity and ultimate roof drift.   

 

The building is capable of carrying 66 % of its total weight in strong direction and  

41 % of its total weight in weak direction. Ultimate total drift of the building is 0.56 

% and 0.36 % in strong and weak directions respectively. Also ultimate ISD of 1
st
 

story is 63% and 34 % in strong and weak directions respectively.  

 

Ultimate failure is dictated by base story walls in X direction. Thinner interior walls 

(i.e. W1017, W1018 and W1019) failed and thicker outer walls cracked at the 

ultimate state. In Y direction, failure of predominantly first story and some second 

story walls (i.e. W201, W202, W203 and W2012a) in perforated frames dictated the 

ultimate condition.  

 

6.1.3.   Bilinearization of Capacity Curve 

 

In order to calculate displacement demand of the buildings, PO curve derived from 

nonlinear static analysis with ansys hinges will be utilized. Method proposed by 

FEMA 356 (2000) will be employed for bilinearization process. Proposed method 

requires an iterative graphical procedure which equates the areas under capacity 

curve and bilinear idealization.  

 

Elastic lateral stiffness should be taken as secant stiffness calculated at a base shear 

force equal to 60 % of the effective yield strength of the structure. Post-elastic range 

is determined by a line connecting effective yield point to final point on capacity 

curve (FEMA 356). 

 

Bilinearized curves are illustrated below (see Figure 6.8). 
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Figure 6.8 Bilinearized Capacity Curves of CSB No: 1 According to FEMA 356 

 

6.1.4. Calculation of Demand According to TEC2007 

 

For the roof displacement demand calculation of the building, design spectrum 

provided by TEC2007 will be utilized. Earthquake zone and soil type are selected as 

Zone 1 and Z3 respectively. 

 

Unfortunately, design spectrum is specified for 5% damping ratio only. Yet, 

dissipation of energy in masonry buildings is usually idealized with higher equivalent 

damping ratios.  

 

According to Magenes and Calvi (1997), depending on the domination of shear or 

flexure on behavior, equivalent damping increases with damage (see Figure 6.9). A 

total equivalent viscous damping (i.e. hysteretic + radiation + impact damping) of 15 

per cent for rocking and 10 per cent for diagonal cracking is recommended.  
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Figure 6.9 Equivalent Hysteretic Damping from the Cyclic Tests, (Magenes and 

Calvi, 1997) 

 

According to shaking table tests on 24 sample masonry buildings Benedetti et al. 

(1998) also state that initial viscous damping is between 6% and 10% for undamaged 

brick masonry buildings. 

 

As a result, design spectrum specified in TEC2007 for 5% damping ratio is only 

applicable to undamaged URM buildings, yet 10% equivalent damping is appropriate 

for damaged URM buildings.   

 

Thus elastic design spectrum specified in TEC2007 for 5% damping should be 

converted to elastic design spectrum with 10% damping. For this purpose method 

illustrated by Chopra (2007) which utilizes amplification factors proposed by 

Newmark and Hall (1982) will be used (see Equations 6.1 and 6.2).  

 

      2    6          (6.1) 

    2      4          (6.2) 

Where, 

ζ = Damping ratio in per cent 

 

Before shear cracking After shear cracking 

1st cycle 

2nd cycle 

3rd cycle 
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In order to derive design spectrum with 10% damping, constant acceleration region 

of the spectrum is scaled with   
  = αA (ζ=0.10) / αA (ζ=0.05) and constant velocity region 

of the spectrum is scaled with   
  = αV (ζ=0.10) / αV (ζ=0.05). Since scale factors are 

different to the right and to the left of the corner period (i.e. TB in TEC2007), corner 

period shifts to the right. New value of the corner period might be calculated with the 

Equation 6.3. 

  
      (

  
 

  
 )

    

      (6.3) 

 

Elastic design spectra to be used for the demand calculation of the case study 

building are plotted below (see Figure 6.10). 

 

 

Figure 6.10 Elastic Design Spectrums for Earthquake Region 1 and Soil Type Z3 

 

In order to calculate earthquake demand of the case study building, both bilinearized 

capacity curves of the building and the 10% design spectrum should be converted to 

ADRS format (see Figure 6.11). Conversion of design spectra is made according to 

simple relation between spectral displacements and spectral accelerations (see 

Equation 6.4). Since spectral accelerations corresponding to periods are presented in 

design spectrum, spectral displacements are easily calculated.  
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   (
   

 
)
 

         (6.4) 

Where, 

Sa = Spectral Acceleration 

Sd = Spectral Displacement 

T = Period  

 

Conversion of bilinearized capacity curves are made according to equations below 

(see Equation 6.5 and 6.6). Since modal mass participation, modal participation 

factor and amplitude of the mode at roof level are determined from modal analysis 

before (see table 6.1) spectral acceleration and spectral displacements are easily 

calculated.   

 

      
  

  
       (6.5) 

Where, 

V = Base shear 

η = Mass participation factor 

W = Weight of the building 

 

 

      
  

     
       (6.6) 

Where, 

u = Roof displacement  

PF = Modal participation factor 

φr = Modal amplitude at roof 
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Figure 6.11 ADRS Representation of Capacity and Demand for CSB No: 1 

 

Finally inelastic spectral displacement demand of the CSB no: 1 in X and Y 

directions are calculated according to 10% design spectrum using procedure 

proposed by TEC2007. Since effective periods of the building in both directions are 

smaller than the corner period TB, instead of equal displacement rule, equal energy 

rule is implemented which requires an iterative solution.  

 

Final roof displacement demands of the building is calculated as 8.8 mm (0.16 %) 

and 1.7 mm (0.03%) in x and y directions respectively. Calculated demands are 

pointed with a black dot on the capacity curves of the building in the following 

graphs.  

 

Displacement demand calculated according to TEC2007 relies on design spectrum 

and results in larger values compared to nonlinear THA results which relies of 

response spectrum (see Figure 6.2b). This trend is observed in all case study 

buildings.  
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6.1.5. Nonlinear Time History Analysis 

 

Nonlinear THA of the CSB no: 1 is made in both directions utilizing the proposed 

nonlinear EFM. East-West component of the Dinar ground motion is utilized in both 

directions. Cyclic behavior of equivalent frame members is defined according to 

hysteresis response proposed by Takeda et al. (1970). 

 

In addition to energy dissipation due to hysteresis behavior, 5 % viscous damping is 

assigned to the building.  

 

Analysis results are illustrated in Table 6.2. Maximum base shear demand of the 

CSB no: 1 is 34 % and 32% of its weight in X and Y directions respectively. 

 

Table 6.2 Nonlinear Time History Analyses Results for CSB No: 1 

 
X-Direction Y-Direction 

Ø1st story,max 0.019% 0.053% 

Øroof,max 0.023% 0.074% 

Vb,max / W 0.34 0.32 

 

Figure 6.12 and Figure 6.13 illustrates normalized base shear - roof displacement 

relationship of the CSB no: 1 together with normalized PO curve drawn according to 

ansys hinges in x and y directions respectively. Roof demand calculated according to 

procedure recommended by TEC2007 in the previous section is identified with a 

black dot on the PO curves. 

 

A significant increase of loop areas in Y-direction denotes increasing energy 

dissipation due to nonlinear response which is an identification of increase damage.  
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Figure 6.12 Nonlinear THA Results with Capacity Curve of CSB No: 1 in X-

direction 
 

 

Figure 6.13 Nonlinear THA Results with Capacity Curve of CSB No: 1 in Y-

direction 
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6.1.6. Determination of Performance Level 

 

Performance level of the building in each direction will be determined according to 2 

methods; from element plastic displacement demands and from simple approach 

proposed by Tomazevic (2007).  

 

In the first method, performance of the building is determined by comparing element 

displacement demands with the capacity of the members. Performance states of each 

member are illustrated on the figure below (see Figure 6.14). 

 

Figure 6.14 Performance Limit States of URM Walls 

 

Immediate occupancy performance level is restricted below 0.1 % drift level. This 

limit is widely accepted as the initiation of the cracking by many authors (see Table 

2.5). Upper limit of LS performance level is associated with 0.75 % of the ultimate 

drift limit calculated according to Equation 4.2. Remaining part of the curve marks 

the collapse prevention performance level.    

 

After the building is pushed to the performance point calculated in section 6.1.4, 

deformation demand of each pier belonging to CSB no: 1 is determined and 

compared to capacities of piers which are tabulated in Table C.1. Results are given in 

the table below (see Table 6.3).  

 

In addition to performance level of the piers, total curvature over ultimate curvature 

ratios are given to have a better understanding of what percent of total capacity is 

reached for each pier.  
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Table 6.3 Element Performance States of CSB No: 1 

 

  Performance Limits Performance Point Performance 

Frame Id ΦIO (%) ΦLS (%) ΦCP (%) Φp (%) Φt (%) Status Φt/Φu 

  
  
 Y

-D
ir

e
ct

io
n

 

  
  
  
  
  
  
  
  
 1

st
 s

to
ry

 

W101 0.10 0.51 0.68 0.16 0.21 LS 31% 

W102 0.10 0.73 0.97 0.50 0.53 LS 54% 

W103 0.10 0.86 1.15 0.28 0.30 LS 26% 

W104 0.10 0.66 0.89 0.07 0.13 LS 15% 

W105 0.10 0.42 0.56 0.08 0.14 LS 24% 

W106 0.10 0.68 0.90 0.07 0.14 LS 15% 

W107 0.10 0.56 0.75 0.06 0.14 LS 18% 

W108 0.10 0.42 0.55 0.08 0.14 LS 25% 

W109 0.10 0.77 1.02 0.09 0.14 LS 14% 

W110 0.10 0.43 0.57 0.07 0.14 LS 25% 

W111 0.10 0.93 1.25 0.17 0.19 LS 15% 

W112 0.10 0.64 0.85 0.25 0.28 LS 32% 

W113 0.10 0.91 1.22 0.17 0.20 LS 16% 

2
n

d
 s

to
ry

 

W201 0.10 0.53 0.70 0.23 0.27 LS 38% 

W202 0.10 0.76 1.01 0.77 0.83 CP 82% 

W203 0.10 0.93 1.24 0.40 0.43 LS 34% 

W204 0.10 0.94 1.25 0.06 0.17 LS 14% 

W205 0.10 0.60 0.80 0.08 0.18 LS 22% 

W206 0.10 0.96 1.28 0.05 0.18 LS 14% 

W207 0.10 0.79 1.06 0.04 0.18 LS 17% 

W208 0.10 0.59 0.79 0.08 0.18 LS 23% 

W209 0.10 1.10 1.46 0.08 0.18 LS 13% 

W210 0.10 0.61 0.81 0.06 0.18 LS 23% 

W211 0.10 0.81 1.08 0.23 0.29 LS 26% 

W212a 0.10 0.83 1.10 0.37 0.37 LS 34% 

W212b 0.10 0.75 0.99 0.28 0.30 LS 30% 

W213 0.10 0.82 1.09 0.24 0.28 LS 26% 

X
-D

ir
e
ct

io
n

 

1
st

 s
to

ry
 

W114 0.10 0.88 1.17 0.09 0.11 LS 10% 

W115 0.10 0.79 1.05 0.10 0.13 LS 12% 

W116 0.10 0.60 0.80 0.07 0.09 IO 12% 

W117 0.10 0.46 0.61 0.03 0.08 IO 13% 

W118 0.10 0.39 0.52 0.03 0.08 IO 16% 

W119 0.10 0.45 0.60 0.04 0.08 IO 13% 

W120 0.10 0.54 0.71 0.05 0.08 IO 11% 

2
n

d
 s

to
ry

 

W214 0.10 0.81 1.09 0.10 0.15 LS 14% 

W215 0.10 0.73 0.98 0.12 0.17 LS 17% 

W216a 0.10 0.69 0.92 0.14 0.17 LS 18% 

W216b 0.10 0.80 1.06 0.14 0.16 LS 15% 

W217 0.10 0.65 0.87 0.00 0.09 IO 11% 

W218 0.10 0.54 0.72 0.02 0.09 IO 13% 

W219 0.10 0.64 0.85 0.02 0.08 IO 10% 

W220 0.10 0.45 0.60 0.05 0.08 IO 12% 
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It might be concluded that CSB no: 1 satisfies life safety performance level in strong 

y-direction and immediate occupancy performance level in weak x-direction.  

 

In the second method, as discussed in Chapter 2, limit states defined by Tomazevic 

on the PO curve of the URM buildings indicating different performance levels (see 

Figure 2.13) are utilized. 

 

Cracking limit state is reached when first influencing cracks resulting in degradation 

of elastic stiffness takes place. Up to this level slight damage is observed. When 

story drifts reaches three times the story drifts attained at the first crack formation, 

acceptable damage limit state is reached. Although moderate level of damage is 

observed, building is still assumed to be safe and usable. Remaining region of the 

capacity curve is associated with heavy damage up to collapse of the building. 

Structural damages are beyond acceptable level for this region. 

 

Displacement demands of the building in both directions are shown on the PO curves 

below (see Figure 6.15 and 6.16). CSB no: 1 is slightly below the cracking limit in 

strong direction satisfying immediate occupancy performance level.  However, in 

weak direction it is between cracking and acceptable damage limits which 

corresponds to life safety performance level.  

 

According to method proposed by Tomazevic, CSB no: 1 is expected to show slight 

damage in strong direction and moderate damage in weak direction under expected 

earthquake defined in TEC2007. 
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Figure 6.15 Performance Assessment of CSB No: 1 in x-direction 

 

 

Figure 6.16 Performance Assessment of CSB No: 1 in y-direction 
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6.2 Case Study Building No: 2 

 

2 story historical URM building which is built in 1934 is investigated by METU-

EERC research team after Dinar earthquake of 1995 (see Figure 6.17). Building is 

located at Adliye District no: 7, Dinar. According to a preliminary assessment, 

building damage is reported as medium (Balkaya, 1996) and it is strengthened by 

wire mesh application with concrete shotcrete on outer walls. Solid brick and 

concrete is used as construction materials for walls and the slabs respectively.      

  

 

Figure 6.17 General View of the CSB No: 2 
 

6.2.1. Generation of the Computer Model 

 

In order to perform performance assessment, equivalent frame model of the CSB no: 

2 is generated using computer software (see Figure 6.18). Labels of the walls on the 

first and second story plans are provided in Figure D.3 and Figure D.4 respectively. 
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Figure 6.18 Computer Model of CSB No: 2 
 

Since there are no laboratory tests illustrating material properties, same material 

properties which are assigned to CSB no: 1 is assumed for the CSB no: 2.    

 

Rigid end offsets of the perforated walls are determined according to method 

proposed by Dolce (1989) (see Figure 6.19). 

 

Story masses compatible with story weights are calculated taking both the weight of 

the slabs and the walls into account. Slab and roof weights are calculated according 

to TS 498 (1997) and TS ISO 9194 (1997) respectively. Since first story wall at the 

rear side of the building (See Figure D.3) is removed, second story walls above the 

removed wall are taken as additional weight on the slab.  

 

After story masses are lumped to center of mass of each story, rigid diaphragm is 

assigned at each story level and modal analysis is conducted. Dynamic 

characteristics of the building are illustrated in Table 6.4. Due to L-shaped irregular 

Y 

X 
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story plan and non-symmetric distribution of walls in the plan, modal participating 

mass ratios of the building in both directions are slightly lower than the minimum 

limit (i.e. 0.7) specified in TEC2007.   

 

Table 6.4 Modal Properties of CSB No: 2 

mode 

number 
direction 

period 

(sec) 

modal 

participating 

mass ratio (α) 

modal 

participation 

factor (PF) 
PF*Φr 

1 y-direction 0.155 0.694 22.73 0.998 

2 x-direction 0.125 0.689 22.65 1.069 

3 torsion 0.115    

 

 

Figure 6.19 Equivalent Frame Modeling of Perforated Walls of CSB No: 2; a) Front 

View, b) Left View  
 

a) 

b) 
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6.2.2. Static Pushover Analysis  

 

In order to conduct PO analyses, building is first analyzed under gravity loads to 

calculate compressive stresses on each pier. Nonlinear properties of each wall are 

determined utilizing Equations 4.1 and 4.2 (see Table C.2). Average ultimate drift of 

first story and second story walls are found to be 0.98% and 1.55% respectively. The 

reason why ultimate drift values are high is the story height of the case story building 

no: 2 which is equal to 3.65 m and 4.10 m for the first and second stories. 

 

Normalized PO curves of the case story building no: 2 in x and y directions are 

drawn both according to hinges proposed by Aldemir (2010) and according to hinges 

proposed by FEMA 356 (2000). Default hinges proposed by FEMA 356 is modified 

as discussed in section 6.1.2 (see Figure 6.5).  

 

 

Figure 6.20 Normalized Capacity Curves of the CSB No: 2 in x-direction 
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Figure 6.21 Normalized Capacity Curves of the CSB No: 2 in y-direction 

 

PO curve with hinges derived from equations 4.1 and 4.2 (i.e. Ansys Hinges) is 

similar to PO curve in which modification of hinges proposed by FEMA 356 (i.e. 

HP3) is utilized in terms of “yield” force, base shear capacity and ultimate roof drift 

for y-direction. Although there is a disagreement in base shear capacity and “yield” 

force in x-direction, hinges derived from equations 4.1 and 4.2 results in conservative 

values.  

 

The building is capable of carrying 43 % of its total weight in strong direction and  

42 % of its total weight in weak direction. Ultimate total drift of the building is    

0.23 % and 0.50 % in strong and weak directions respectively.  

 

6.2.3. Bilinearization of Capacity Curve 

 

After capacity curves of the CSB no: 2 is derived they are bilinearized according to 

procedure recommended by FEMA 356 (2000) to calculate the seismic demand of 

the building (see Figure 6.22). 
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Figure 6.22 Bilinearized Capacity Curves of CSB No: 2 According to FEMA 356 

 

6.2.4. Calculation of Demand According to TEC2007 

 

For the roof displacement demand calculation of the building, design spectrum 

provided by TEC2007 for earthquake zone 1, soil type Z3 and 5% damping is 

converted to design spectrum for 10% damping as illustrated in section 6.1.4. 

 

After capacity curve of the CSB no: 2 and the 10% design spectrum is converted to 

ADRS format, inelastic spectral displacement demand of the CSB no: 2 is 

determined for x and y directions according to iterative procedure recommended by 

TEC2007.  

 

Final roof displacement demands of the building in both directions are calculated as 

7.86 mm (0.10 %) and 12.39 mm (0.16%) in x and y directions respectively. 

Calculated demands are pointed with a black dot on the capacity curves of the 

building in the following graphs.  
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6.2.5. Nonlinear Time History Analysis 

 

After hysteresis response proposed by Takeda et al. (1970) is assigned to the 

predefined shear hinges, nonlinear THA of the CSB no: 2 is made in x and y 

directions.  

 

In addition to energy dissipation due to hysteresis behavior, 5 % viscous damping is 

assigned to the building similar to CSB no: 1.  

 

As it is illustrated in Table 6.5, maximum base shear demand of the CSB no: 2 is 33 

% and 34 % of its weight in X and Y directions respectively. 

 

Table 6.5 Nonlinear Time History Analyses Results for CSB No: 2 

 
X-Direction Y-Direction 

Ø1st story,max 0.016% 0.020% 

Øroof,max 0.032% 0.036% 

Vb,max / W 0.33 0.34 

 

Base shear coefficient versus roof drift of the CSB no: 2 is drawn together with 

normalized PO curves in Figure 6.23 and Figure 6.24 for x and y directions 

respectively. Roof demand calculated according to procedure recommended by 

TEC2007 is identified with a black dot on the PO curves. 

 

It is inferred from increase of loop areas that nonlinear response is observed both in x 

and y directions.  
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Figure 6.23 Nonlinear THA Results with Capacity Curve of CSB No: 2 in x-

direction 

 

 
Figure 6.24 Nonlinear THA Results with Capacity Curve of CSB No: 2 in y-

direction 
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6.2.6. Determination of Performance Level 

 

After inelastic roof displacement demand of the building is calculated according to 

TEC2007 (2007), CSB no: 2 is pushed to the performance point.  Pier displacement 

demands calculated at the performance point is then compared with the displacement 

capacity of the piers which are tabulated in Table C.2.  

 

Performance state of each pier belonging to CSB no: 2 which are illustrated in Figure 

D.3 and Figure D.4 is tabulated below (see Table 6.6).  

 

It might be inferred from table 6.6 that CSB no: 2 satisfies life safety performance 

level in both directions with a better performance in x-direction. 

 

Table 6.6 Element Performance States of CSB No: 2 

  
  Performance Limits Performance Point Performance 

  

Frame Id ΦIO (%) ΦLS (%) ΦCP (%) Φp (%) Φt (%) Status Φt/Φu 

Y
-D

ir
e
ct

io
n

 

1
st

 S
to

ry
 

W101 0.10 0.29 0.38 0.09 0.12 LS 33% 

W102 0.10 0.64 0.85 0.09 0.12 LS 14% 

W103 0.10 0.39 0.53 0.06 0.12 LS 23% 

W104 0.10 0.39 0.52 0.06 0.12 LS 23% 

W105 0.10 0.39 0.53 0.06 0.12 LS 23% 

W106 0.10 0.38 0.51 0.06 0.12 LS 23% 

W107 0.10 1.49 1.99 0.13 0.15 LS 7% 

W108 0.10 1.16 1.54 0.14 0.16 LS 10% 

W109 0.10 1.15 1.53 0.03 0.17 LS 11% 

W110 0.10 1.31 1.74 0.05 0.15 LS 9% 

2
n

d
 S

to
ry

 

W202 0.10 1.00 1.33 0.17 0.19 LS 27% 

W203 0.10 0.59 0.79 0.09 0.19 LS 14% 

W204 0.10 0.58 0.78 0.09 0.19 LS 24% 

W205 0.10 0.59 0.79 0.09 0.19 LS 24% 

W206 0.10 0.57 0.76 0.09 0.19 LS 25% 

W207 0.10 2.26 3.01 0.22 0.24 LS 8% 

W208 0.10 1.71 2.29 0.27 0.29 LS 13% 

W209 0.10 1.73 2.31 0.24 0.28 LS 12% 

W210 0.10 2.05 2.74 0.21 0.24 LS 9% 
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Table 6.6 (Continued) 

  
  Performance Limits Performance Point Performance 

  

Frame Id ΦIO (%) ΦLS (%) ΦCP (%) Φp (%) Φt (%) Status Φt/Φu 

X
-D

ir
e
ct

io
n

 

1
st

 S
to

ry
 

W111 0.10 0.65 0.87 0.00 0.03 IO 4% 

W112 0.10 0.83 1.10 0.01 0.03 IO 3% 

W113 0.10 1.00 1.33 0.01 0.04 IO 3% 

W114 0.10 1.34 1.79 0.01 0.03 IO 2% 

W115 0.10 1.06 1.42 0.00 0.02 IO 1% 

W116 0.10 0.36 0.48 0.00 0.03 IO 5% 

W117 0.10 0.35 0.46 0.00 0.02 IO 5% 

W118 0.10 0.41 0.55 0.00 0.02 IO 4% 

W119 0.10 0.36 0.48 0.00 0.02 IO 5% 

W120 0.10 0.66 0.88 0.00 0.02 IO 2% 

W121 0.10 0.77 1.03 0.00 0.02 IO 2% 

2
n

d
 S

to
ry

 

W211a 0.10 1.63 2.17 0.40 0.41 LS 19% 

W211b 0.10 1.07 1.43 0.52 0.58 LS 41% 

W212a 0.10 1.34 1.79 0.46 0.48 LS 27% 

W212b 0.10 1.87 2.49 0.88 0.88 LS 15% 

W213 0.10 1.61 2.15 0.54 0.58 LS 48% 

W214 0.10 2.05 2.74 0.39 0.41 LS 43% 

W216 0.10 0.50 0.67 0.23 0.33 LS 26% 

W217 0.10 0.49 0.66 0.21 0.28 LS 30% 

W218 0.10 0.59 0.79 0.08 0.21 LS 10% 

W219 0.10 0.52 0.69 0.09 0.21 LS 30% 

W220a 0.10 1.31 1.74 0.08 0.18 LS 10% 

W220b 0.10 0.41 0.55 0.10 0.16 LS 30% 

W220c 0.10 0.50 0.67 0.03 0.15 LS  23% 

W221 0.10 1.14 1.53 0.10 0.24 LS 16% 

 

Performance assessment of the CSB no: 2 is further made by the simple method 

proposed by Tomazevic (2007). For this purpose performance levels proposed by 

Tomazevic is drawn together with the normalized PO curves of the building in both 

directions (see Figures 6.25 and 6.26). 

 

CSB no: 2 is slightly above the acceptable limit in weak direction satisfying collapse 

prevention performance level and between acceptable and cracking performance 

limits in strong direction satisfying life safety performance level under expected 

earthquake defined in TEC2007. 
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Figure 6.25 Performance Assessment of CSB No: 2 in X-direction 
 

 

Figure 6.26 Performance Assessment of CSB No: 2 in Y-direction 
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6.3 Case Study Building No: 3 

 

3 storey URM building located at Konak District no: 5 which is investigated by 

METU-EERC research team after Dinar earthquake of 1995 (see Figure 6.27) is 

selected for performance assessment using proposed nonlinear equivalent frame 

model. According to a preliminary assessment, building damage is reported as low 

(Özcebe, 1996) and in addition to reducing window openings it is strengthened by 

wire mesh application with concrete shotcrete on outer walls. Solid factory brick and 

concrete is used as construction materials for walls and the slabs respectively.    

 

Height of the base, first and second stories are 2.4m, 2.75m and 2.75m respectively. 

Also thickness of the perforated walls in the base, first and second stories are 40cm, 

30cm and 20cm respectively.  

            

 

Figure 6.27 General View of the CSB No: 3 
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6.3.1. Generation of the Computer Model 

 

Equivalent frame model of the CSB no: 2 is generated using computer software (see 

Figure 6.18) to conduct performance assessment of the building. Labels of the walls 

on the first, second and third story plans are provided in Figure D.5, Figure D.6 and 

Figure D.7 respectively. 

 

 

Figure 6.28 Computer Model of CSB No: 3 
 

Since there are no laboratory tests illustrating material properties, same material 

properties which are assigned to CSB no: 1 and CSB no: 2 is also assumed for the 

CSB no: 3.    

 

Rigid end offsets of the perforated walls determined according to method proposed 

by Dolce (1989) is illustrated in Figure 6.29. 

 

Y X 
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Story masses compatible with story weights are calculated taking both the weight of 

the slabs and the walls into account. Slab and roof weights are calculated according 

to TS 498 (1997) and TS ISO 9194 (1997) respectively.  

 

Then, modal analysis is conducted and dynamic characteristics of the building are 

identified. Initially due to thick and low walls at the base, distribution of stiffness 

along the height of the CSB no: 3 was irregular and modal participating mass ratios 

were calculated well below the code allowed limits. Conducting PO analyses on the 

building illustrated that due to high stiffness and strength, base story walls actually 

stands still as second and third storey walls pass into plastic range.  

 

As a result, assuming base story walls satisfies immediate occupancy performance 

level, they are removed from the building and the calculations are made for the 

remaining two storeys. 

 

Modal properties of modified 2 story CSB no: 3 is recalculated and it is realized that 

modal mass participation factors are now sufficiently large to conduct PO analyses 

(see Table 6.7).      

 

Table 6.7 Modal Properties of CSB No: 3 

mode 

number 
direction 

period 

(sec) 

modal 

participating 

mass ratio (α) 

modal 

participation 

factor (PF) 

PF*Φr 

1 y-direction 0.122 0.776 12.08 1.144 

2 x-direction 0.114 0.647 11.03 0.985 

3 torsion 0.078    
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Figure 6.29 Equivalent Frame Modeling of Perforated Walls of CSB No: 3; a) Front 

View, b) Right View, c) Rear View  
 

 

a) 

b) 

c) 
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6.3.2.  Static Pushover Analysis  

 

In order to conduct PO analyses, an initial dead load analysis of the CSB no: 3 is 

made to calculate compressive stresses on each pier. Nonlinear force-displacement 

relationship of each wall is determined utilizing Equations 4.1 and 4.2 (see Table 

C.3). Average ultimate drift of second and third storey walls are calculated as 0.78% 

and 0.89% respectively. The reason why ultimate drift values are high for the upper 

story is low level of compressive stresses. 

 

Normalized PO curves of the case story building no: 3 in x and y directions are 

drawn according to hinges proposed by Aldemir (2010) and according to hinges 

proposed by FEMA 356 (2000). Default hinges proposed by FEMA 356 is modified 

as discussed in section 6.1.2 (see Figure 6.5).  

 

 
Figure 6.30 Normalized Capacity Curves of the CSB No: 3 in x-direction 
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Figure 6.31 Normalized Capacity Curves of the CSB No: 3 in y-direction 

 

It might be inferred from Figure 6.30 and Figure 6.31 that PO curves derived using 

ansys hinges yields higher ultimate drift values compared with PO curves derived 

using modified FEMA 356 hinges. There is a good match between base shear 

capacities in y-direction. Ansys hinges give conservative base shear capacity in x-

direction. 

  

The building is capable to carry 45 % of its total weight in weak (X) direction and  

50 % of its total weight in strong (y) direction. Ultimate roof drift of the building is 

0.30 % and 0.33 % in weak and strong directions respectively.  
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6.3.3. Bilinearization of Capacity Curve 

 

After capacity curves of the CSB no: 3 is derived they are bilinearized according to 

FEMA 356 (2000) to calculate the seismic demand of the building (see Figure 6.32). 

 

 
Figure 6.32 Bilinearized Capacity Curves of CSB No: 3 According to FEMA 356 

 

6.3.4. Calculation of Demand According to TEC2007 

 

10 % design spectrum for earthquake zone 1 and soil type Z3 is utilized for roof 

displacement demand calculation of the CSB no: 3 (see Figure 6.10).  

 

After capacity and 10% design spectrum is converted to ADRS format, inelastic 

spectral displacement demand of the CSB no: 3 is determined according to 

TEC2007.  

 

Final roof displacement demands of the building in both directions are calculated as 

8.50 mm (0.15 %) and 3.26 mm (0.06%) in x and y directions respectively. 
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Calculated demands are pointed with a black dot on the capacity curves of the 

building in the following graphs.  

 

6.3.5. Nonlinear Time History Analysis 

 

Nonlinear THA of the CSB no: 3 is made in x and y directions after hysteresis 

response proposed by Takeda et al. (1970) is assigned to the predefined shear hinges. 

5 % viscous damping is assigned to the building similar to CSB no: 1and CSB no: 2.  

 

As it is illustrated in Table 6.8, maximum base shear demand of the CSB no: 3 is    

34 % and 33 % of its total weight in x and y directions respectively. 

 

Table 6.8 Nonlinear Time History Analyses Results for CSB No: 3 

 
X-Direction Y-Direction 

Ø1st story,max 0.051% 0.019% 

Øroof,max 0.048% 0.034% 

Vb,max / W 0.34 0.33 

 

Base shear coefficient versus roof drift of the CSB no: 3 is drawn together with 

normalized PO curves in Figure 6.33 and Figure 6.34 for x and y directions 

respectively. Roof demand calculated according to procedure recommended by 

TEC2007 is identified with a black dot on the PO curves. 

 

It is inferred from increase of loop areas in x-direction that nonlinearity and the 

damage in x direction is more than y direction. 
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Figure 6.33 Nonlinear THA Results with Capacity Curve of CSB No: 3 in X-

direction 

 
Figure 6.34 Nonlinear THA Results with Capacity Curve of CSB No: 3 in y-

direction 
 

6.3.6. Determination of Performance Level 

 

After inelastic roof displacement demand of the CSB no: 3 is calculated according to 

TEC2007, it is pushed to the performance point. Pier displacement demands 
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calculated at the performance point is then compared with the displacement capacity 

of the piers which are tabulated in Table C.3.  

 

Since base story of the building is removed, performance state of each piers 

belonging to second and third storeys of CSB no: 3 (see Figure D.6 and D.7) is 

tabulated below (see Table 6.9). Note that Φt/Φu ratio at the last column of the table 

indicates percent of total capacity reached by the corresponding pier. 

 

It might be inferred from table 6.9 that CSB no: 3 satisfies life safety performance 

level in both directions with a better performance in y-direction. 

 

Table 6.9 Element Performance Level of CSB No: 3 

 

  Performance Limits Performance Point Performance 

Frame Id ΦIO (%) ΦLS (%) ΦCP (%) Φp (%) Φt (%) Status Φt/Φu 

Y
-D

ir
e
ct

io
n

 

2
n

d
 S

to
ry

 

W201 0.10 0.53 0.71 0.04 0.06 IO 8% 

W202 0.10 0.54 0.72 0.05 0.07 IO 9% 

W203a 0.10 0.37 0.50 0.03 0.07 IO 13% 

W203b 0.10 0.43 0.58 0.05 0.07 IO 12% 

W204 0.10 0.41 0.55 0.03 0.07 IO 12% 

W205 0.10 0.53 0.70 0.01 0.07 IO 10% 

W206 0.10 0.44 0.59 0.02 0.07 IO 13% 

W207 0.10 0.63 0.84 0.08 0.11 LS 13% 

W208a 0.10 0.67 0.89 0.10 0.13 LS 15% 

W208b 0.10 0.84 1.13 0.09 0.12 LS 11% 

3
rd

 S
to

ry
 

W301 0.10 0.45 0.61 0.12 0.15 LS 24% 

W302 0.10 0.79 1.06 0.15 0.17 LS 16% 

W303a 0.10 0.54 0.72 0.12 0.17 LS 23% 

W303b 0.10 0.63 0.85 0.17 0.17 LS 20% 

W304 0.10 0.60 0.80 0.12 0.17 LS 21% 

W305 0.10 0.77 1.02 0.07 0.18 LS 18% 

W306 0.10 0.64 0.85 0.09 0.18 LS 21% 

W307a 0.10 1.00 1.34 0.29 0.32 LS 24% 

W307b 0.10 0.73 0.97 0.39 0.43 LS 44% 

W308a 0.10 0.66 0.88 0.38 0.43 LS 49% 

W308b 0.10 0.56 0.74 0.33 0.37 LS 50% 

W308c 0.10 0.83 1.11 0.26 0.30 LS 28% 
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Table 6.9 (Continued) 

 

  Performance Limits Performance Point Performance 

Frame Id ΦIO (%) ΦLS (%) ΦCP (%) Φp (%) Φt (%) Status Φt/Φu 

X
-D

ir
e
ct

io
n

 

2
n

d
 S

to
ry

 

W209 0.10 0.85 1.13 0.29 0.32 LS 28% 

W210 0.10 1.00 1.33 0.39 0.39 LS 30% 

W211 0.10 0.64 0.85 0.21 0.24 LS 29% 

W212 0.10 0.45 0.60 0.17 0.22 LS 37% 

W213 0.10 0.31 0.42 0.17 0.22 LS 53% 

W214 0.10 0.36 0.48 0.18 0.23 LS 47% 

W215 0.10 0.33 0.44 0.20 0.23 LS 52% 

W216 0.10 0.31 0.42 0.17 0.23 LS 54% 

W217 0.10 0.93 1.25 0.32 0.34 LS 28% 

W218 0.10 0.65 0.86 0.45 0.49 LS 57% 

W219 0.10 0.72 0.96 0.47 0.49 LS 51% 

W220 0.10 0.88 1.17 0.33 0.34 LS 29% 

3
rd

 S
to

ry
 

W309 0.10 0.76 1.01 0.05 0.10 LS 10% 

W310 0.10 0.97 1.29 0.17 0.17 LS 13% 

W311 0.10 0.55 0.73 0.04 0.08 IO 11% 

W312 0.10 0.65 0.87 0.00 0.08 IO 9% 

W313 0.10 0.45 0.60 0.01 0.08 IO 13% 

W314 0.10 0.53 0.71 0.03 0.09 IO 12% 

W315 0.10 0.48 0.63 0.07 0.09 IO 14% 

W316 0.10 0.45 0.61 0.03 0.09 IO 14% 

W317 0.10 0.88 1.18 0.10 0.14 LS 12% 

W318 0.10 0.62 0.82 0.14 0.20 LS 24% 

W319 0.10 0.66 0.88 0.17 0.20 LS 23% 

W320 0.10 0.85 1.13 0.12 0.14 LS 12% 

 

Performance assessment of the CSB no: 3 is also made by the simple method 

proposed by Tomazevic (2007). For this purpose performance levels proposed by 

Tomazevic is drawn together with the normalized PO curves of the building in both 

directions (see Figures 6.35 and 6.36). 

 

CSB no: 2 is just on the acceptable limit in weak direction satisfying life safety 

performance level and between acceptable and cracking performance limits in strong 

direction satisfying life safety performance level under expected earthquake defined 

in TEC2007. 
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Figure 6.35 Performance Assessment of CSB No: 3 in x-direction 
 

 
 

Figure 6.36 Performance Assessment of CSB No: 3 in y-direction 
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CHAPTER 7 
 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

The work presented in this thesis is mainly concentrated on the nonlinear modeling 

and structural assessment of URM buildings through  equivalent frame method.  

 

Proposed method encloses an integrated technique in which component response is 

determined from simple equations which are results of reliable monotonic finite 

element analyses on a macro model proposed by Aldemir (2010), whereas structural 

response is determined through nonlinear static or nonlinear dynamic analysis of 

equivalent frame model of the URM building.  

 

Nonlinearity is adopted into equivalent frames through lumped shear hinges. Input 

parameters to simulate shear hinge response are geometrical properties, aspect ratio, 

axial load level and compressive strength of the wall. Effective height of the frames 

are identified through rigid end offsets whose length is determined according to 

approach proposed by Dolce (1989).  

 

In the component level, reliability is checked against shear strength equations and 

ultimate drift limits proposed by FEMA 356. In the structural level verification of the 

proposed model is made through:  

 

 Nonlinear static analysis of a full scale, two-story URM building tested with a 

reversed cyclic experiment conducted at the University of Pavia 

 Nonlinear dynamic analysis of a ½ scale URM building tested on a shake 

table at the ISMES Laboratory at Bergamo. 

 Nonlinear static and nonlinear dynamic analyses of three existing case study 

buildings damaged after Dinar earthquake of  1995. 
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Performance assessment of three existing case study buildings are made and 

compared with their damages after Dinar earthquake of 1995. Capacities of the case 

study buildings are established by proposed nonlinear equivalent frame method. 

Earthquake demand is calculated according to iterative procedure suggested by 

TEC2007. Performance of the buildings is determined through two different 

methods. In the first method, hinge performance levels are compared with hinge 

displacement demands for each wall and building performance is identified through 

performance of hinges. In the second simple method, which is proposed by 

Tomazevic (2007), after performance point on the capacity curve is calculated, 

performance limits associated to a specific level of displacements on the capacity 

curve is utilized in order to assess performance of the structure for the expected 

seismic action. 

 

Chapter 3 illustrates elastic response of solid and perforated URM walls to lateral 

forces. Effect of aspect ratio and boundary conditions on the response of solid walls  

is investigated in detail. Equations which take shear deformations into account are 

derived for extreme boundary conditions (i.e. both ends fixed, cantilever) and 

intermediate cases where coupling of spandrels are idealized with rotational hinges. 

An equation (Equation 3.25) is proposed for elastic lateral stiffness calculation of 

coupled walls. Equation requires cross-section properties of connecting members and 

complies well with upper and lower limits.  

 

In order to simulate elastic lateral response of perforated walls equivalent frame 

method is employed. Rigid offset lengths of piers and spandrels are calibrated by 

comparing equivalent frame model results with finite element model results. 

According to analyses results conducted on various perforated walls, equivalent 

frame method with Dolce offset approximates finite element solution satisfactory in 

terms of lateral stiffness, shear force on base piers and axial force on base piers (see 

Table 7.1). 
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Table 7.1 Percent Error Between FEM and EFM with Dolce RO 

 
Story 

Drift 
Axial Force at Base Piers Shear Force at Base Piers 

1B2S 

Frame 

4.8 
0.5 0.2 0.4 0.2 

3.5 

2B2S 

Frame 

30.0 
5.4 12.5 12.6 7.9 7.3 7.0 

40.4 

2B3S 

frame 

15.1 

34.0 5.2 3.0 10.7 23.4 24.2 12.3 

11.8 

  

Chapter 4 is about presentation and verification of finite element macro model, 

strength equation (Equation 4.1) and ultimate drift equation (equation 4.2) proposed 

by Aldemir (2010). Reliability of the proposed equations is tested against simple 

strength formulas and ultimate drift values specified in FEMA 356. 152 URM walls 

which belong to three case study buildings are utilized for comparison. There is a 

good agreement between rocking strength and sliding strength with mean values of 

1.01 and 1.25 respectively. Mean value of ultimate drift ratios for rocking and sliding 

modes is 1.05 and 1.13 respectively.   

 

Reliability of proposed macro model is tested by comparison of two experimental 

results with model results. Experiments are selected such that shear dominated 

diagonal tension failure and flexure dominated rocking failure are both observed. 

Proposed model succeeds in prediction of final crack pattern, distribution of damage, 

ultimate strength and ultimate drift. Error in prediction of ultimate strength and 

ultimate drift is 8.3% and 4.5% for shear dominated response and 13% and 15% in 

flexure dominated response respectively. 

 

Chapter 5 presents application of nonlinearity to equivalent frame method. 

Validation of the nonlinear equivalent frame model is first performed with a 

comparison between the calculated analytical results and test results of full scale, 

two-story URM building tested in University of Pavia. Good prediction of base shear 
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capacity, failure mechanism and overall deformation of the building is achieved.  

Base shear capacity and ultimate drift are approximated with errors 13.6% and 

3.24% respectively. 

 

Additionally three different distributions of axial loads on piers resulting in different 

nonlinear properties are assumed and results are compared. It is concluded that in 

case of low-rise structures with symmetric distribution of piers, determination of 

nonlinear force-displacement relation of piers under dead load is sufficient. 

Regeneration of axial load level at each step of the pushover analysis or 

determination of axial load on piers under dead plus earthquake load does not alter 

structural response noticeably for low-rise buildings.  

 

Validation of the nonlinear equivalent frame model is further performed with a 

comparison between the nonlinear time history analyses results and test results of 

half scale, two-story URM building tested in ISMES Laboratory at Bergamo through 

shake table. Base shear capacity in x direction is predicted with 20.5% error. 

Maximum accelerations on first and second story of the test specimen are 

approximated with a maximum error of 23% for 5 incremental shocks in Y direction. 

Possible reasons of insufficient performance in X direction with a maximum error of 

45.7% are explained in section 5.4.3.2.  

 

Chapter 6 illustrates performance assessment of three existing case study URM 

buildings exposed to Dinar earthquake of 1995. Calculated performance of the 

buildings is in good agreement with observed performances (see Table 7.2).   

 

Table 7.2 Observed Damages and Calculated Damages in Weak Direction 

 
Observed 

Damage 

Element 

Displacement 

Demands 

Tomazevic 

(2007) 

Nonlinear 

THA 

Case Study 

Building No: 1 
Medium Medium Medium 

Low to 

Medium 

Case Study 

Building No: 2 

Medium to 

Heavy 
Medium 

Medium to 

Heavy 
Medium 

Case Study 

Building No: 3 
Medium Medium Medium Medium 
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The reason why second story performs worse performance than first stoy in CSB2 

and CSB3 is increase of openings and decrease of wall thicknesses for the second 

story. 

 

Limitations of the proposed model are illustrated below: 

 

At material level, simple assumptions are made for brick masonry walls constructed 

in Turkey. Compressive strength is assumed to be 5 MPa and modulus of elasticity is 

assumed to be 2000 MPa. Thus, main limitation of the proposed model is 

assumptions made in material level. On one hand, utilized material properties 

represent overall characteristics of masonry employed in Turkey. So they can be used 

for analysis of a couple of buildings in Turkey. On the other hand, analysis of a 

specific building requires determination of unique material properties such as 

modulus of elasticity of the analyzed building at which proposed model is incapable.  

 

At component level, plasticity is adopted for piers only. Spandrels remain elastic 

throughout the analysis. Although depending on the low level of axial loading 

spandrels are prone to early cracking, it is assumed that ultimate response of the 

structure is characterized by pier failure. Also, Takeda hysteresis model employed in 

nonlinear THA is not a good representative of cyclic behavior of masonry which is 

strongly dependent on the failure mechanism. 

 

At structural level, coupling between shear strength and compressive force on the 

pier is not taken into account. Although proposed step by step hand calculation 

compensates this limitation, application is time consuming unless it is imposed into 

computer software. Moreover rigid diaphragm is required to be assigned at floor 

levels. URM buildings without concrete slabs could not be analyzed. 

 

For future research, displacement controlled experimental analyses on URM walls 

and frames representing Turkish construction practice might be conducted in order to 

calibrate nonlinear force-displacement parameters of utilized shear hinges and 

support reliability of the model with experiments.   
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APPENDIX A 

 

 

ELEMENT STIFFNESS MATRICES WITH SHEARING DEFORMATIONS 

 

 

 

Frame Element Stiffness Matrix with Shearing Deformations Considered 
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APPENDIX B 

 

 

COMPARISON OF ISMES SHAKE TABLE TEST RESULTS with 

NONLINEAR THA ANALYSES  

 

 

 

Figure B. 1 Y-direction 1st Story Accelerations of ISMES Specimen under Shock P7 

(PGA=0.064g) 
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Figure B. 2 Y-direction 1st Story Accelerations of ISMES Specimen under Shock P8 

(PGA=0.098g) 
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Figure B. 3 Y-direction 1st Story Accelerations of ISMES Specimen under Shock P9 

(PGA=0.155g) 
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Figure B. 4 Y-direction 1st Story Accelerations of ISMES Specimen under Shock 

P10 (PGA=0.217g) 
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Figure B. 5 Y-direction 1st Story Accelerations of ISMES Specimen under Shock 

P11 (PGA=0.275g) 
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Figure B. 6 Y-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P7 (PGA=0.064g) 
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Figure B. 7 Y-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P8 (PGA=0.098g) 
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Figure B. 8 Y-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P9 (PGA=0.155g) 
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Figure B. 9 Y-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P10 (PGA=0.217g) 
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Figure B. 10 Y-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P11 (PGA=0.275g) 
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Figure B. 11 X-direction 1st Story Accelerations of ISMES Specimen under Shock 

P7 (PGA=0.055g) 
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Figure B. 12 X-direction 1st Story Accelerations of ISMES Specimen under Shock 

P8 (PGA=0.098g) 
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Figure B. 13 X-direction 1st Story Accelerations of ISMES Specimen under Shock 

P9 (PGA=0.179g) 
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Figure B. 14 X-direction 1st Story Accelerations of ISMES Specimen under Shock 

P10 (PGA=0.250g) 
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Figure B. 15 X-direction 1st Story Accelerations of ISMES Specimen under Shock 

P11 (PGA=0.326g) 
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Figure B. 16 X-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P8 (PGA=0.055g) 
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Figure B. 17 X-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P8 (PGA=0.098g) 
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Figure B. 18 X-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P9 (PGA=0.179g) 
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Figure B. 19 X-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P10 (PGA=0.250g) 
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Figure B. 20 X-direction 2nd Story Accelerations of ISMES Specimen under Shock 

P11 (PGA=0.326g) 
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APPENDIX C 

 

 

HINGE PROPERTIES of PIERS BELONGING TO CASE STUDY 

BUILDINGS 

 

 

 

Table C.1 Hinge Properties of CSB No:1 Piers According to Equations 4.1 and 

Equation 4.2 

Pier Id 
L 

(m) 

t 

(m) 

heff 

(m) 

p 

(Mpa) 
λ 

p/fm 

(%) 

Fy 

(kN) 

Fu 

(kN) 

δu 

(mm) 

W101 5.20 0.3 1.78 0.13 0.34 2.6 228.5 333.2 12.06 

W102 0.80 0.3 0.70 0.14 0.88 2.8 22.2 33.5 6.80 

W103 0.90 0.3 1.22 0.14 1.36 2.8 16.2 25.2 14.04 

W104 1.60 0.2 2.85 0.13 1.78 2.7 12.5 20.2 25.22 

W105 2.90 0.2 2.85 0.20 0.98 4.0 60.2 88.1 15.97 

W106 1.00 0.2 2.85 0.19 2.85 3.7 3.5 5.9 25.75 

W107 1.50 0.2 2.85 0.19 1.90 3.8 13.0 20.4 21.41 

W108 2.90 0.2 2.85 0.20 0.98 4.0 60.9 89.0 15.80 

W109 0.80 0.2 2.85 0.17 3.56 3.5 1.4 2.5 29.17 

W110 2.40 0.2 2.85 0.22 1.19 4.5 44.3 65.0 16.17 

W111 1.30 0.3 2.15 0.14 1.65 2.9 17.8 28.3 26.79 

W112 2.60 0.3 1.50 0.13 0.58 2.6 90.8 135.0 12.78 

W113 1.20 0.3 2.12 0.16 1.77 3.1 15.6 24.9 25.78 

W114 1.25 0.3 2.14 0.16 1.71 3.3 17.6 27.8 25.03 

W115 1.35 0.3 1.89 0.17 1.40 3.5 26.2 40.2 19.80 

W116 4.60 0.3 2.58 0.14 0.56 2.8 173.9 255.4 20.48 

W117 2.70 0.2 2.85 0.18 1.06 3.5 48.9 72.8 17.49 

W118 3.80 0.2 2.85 0.19 0.75 3.7 94.4 136.7 14.76 

W119 3.60 0.2 2.85 0.15 0.79 3.0 75.1 111.6 17.05 

W120 10.40 0.3 2.85 0.10 0.27 2.0 415.3 619.4 20.37 

W201 5.20 0.2 1.70 0.06 0.33 1.1 92.4 147.2 11.98 

W202 0.80 0.2 0.55 0.05 0.69 1.0 9.5 15.8 5.58 

W203 0.90 0.2 1.07 0.05 1.19 1.0 6.9 11.8 13.31 

W204 1.60 0.2 2.70 0.07 1.69 1.4 9.0 15.6 33.83 

W205 2.90 0.2 2.70 0.10 0.93 2.0 41.5 65.1 21.54 

W206 1.00 0.2 2.70 0.09 2.70 1.9 2.7 4.8 34.64 

W207 1.50 0.2 2.70 0.10 1.80 2.0 9.5 15.9 28.49 

W208 2.90 0.2 2.70 0.10 0.93 2.0 42.0 65.7 21.31 

W209 0.80 0.2 2.70 0.09 3.38 1.7 1.1 2.1 39.54 

W210 2.40 0.2 2.70 0.11 1.13 2.2 30.9 48.5 21.79 

W211 1.30 0.2 1.83 0.08 1.40 1.5 10.3 17.2 19.77 

W212a 0.50 0.2 1.39 0.13 2.79 2.5 1.5 2.6 15.35 

W212b 1.65 0.2 1.73 0.07 1.05 1.4 17.5 28.6 17.16 

W213 1.45 0.2 1.87 0.07 1.29 1.4 12.2 20.3 20.42 
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Table C.1 (Continued)  

Pier Id 
L 

(m) 

t 

(m) 

heff 

(m) 

p 

(Mpa) 
λ 

p/fm 

(%) 

Fy 

(kN) 

Fu 

(kN) 

δu 

(mm) 

W214 1.50 0.2 1.88 0.07 1.26 1.4 12.9 21.5 20.45 

W215 1.60 0.2 1.71 0.08 1.07 1.5 17.1 27.9 16.75 

W216a 1.73 0.2 1.75 0.08 1.01 1.6 20.2 32.7 16.18 

W216b 1.37 0.2 1.84 0.08 1.34 1.5 11.5 19.2 19.46 

W217 2.70 0.2 2.70 0.09 1.00 1.8 34.1 54.3 23.43 

W218 3.80 0.2 2.70 0.10 0.71 2.0 66.3 102.4 19.39 

W219 3.60 0.2 2.70 0.07 0.75 1.5 51.1 81.6 23.05 

W220 10.40 0.2 2.70 0.06 0.26 1.3 211.0 330.5 16.23 

 

Table C.2 Hinge Properties of CSB No:2 Piers According to Equations 4.1 and 

Equation 4.2 

Pier Id 
L  

(m) 

t 

(m) 

heff 

(m) 

p 

(Mpa) 
λ 

p/fm 

(%) 

Fy   

(kN) 

Fu 

(kN) 

δu 

(mm) 

W101 11.70 0.2 3.64 0.17 0.31 3.3 407.3 577.75 13.95 

W102 16.50 0.5 3.64 0.16 0.22 3.2 1518 2150.3 31.01 

W103 3.95 0.2 3.64 0.21 0.92 4.2 90.30 130.64 19.17 

W104 4.10 0.2 3.64 0.21 0.89 4.2 96.25 139.01 18.96 

W105 3.95 0.2 3.64 0.21 0.92 4.3 90.58 130.97 19.11 

W106 4.10 0.2 3.64 0.22 0.89 4.4 98.46 141.64 18.58 

W107 1.25 0.5 2.87 0.20 2.30 4.0 19.14 30.88 57.07 

W108 2.50 0.5 2.68 0.18 1.07 3.5 111.7 166.43 41.30 

W109 2.05 0.5 2.47 0.20 1.21 3.9 86.16 128.26 37.81 

W110 1.70 0.5 2.75 0.19 1.62 3.9 48.26 74.22 47.88 

W111 5.75 0.5 2.45 0.25 0.43 5.1 581.6 795.46 21.24 

W112 2.85 0.5 2.45 0.28 0.86 5.6 203.3 284.51 27.06 

W113 1.90 0.5 2.10 0.24 1.11 4.8 98.63 142.77 27.88 

W114 1.50 0.5 2.87 0.21 1.91 4.2 33.96 52.92 51.29 

W115 6.80 0.5 3.64 0.12 0.54 2.4 398.8 594.27 51.56 

W116 2.05 0.2 3.00 0.36 1.46 7.2 38.87 55.39 14.41 

W117 2.55 0.2 3.29 0.35 1.29 7.0 56.12 79.12 15.16 

W118 1.40 0.2 3.29 0.40 2.35 8.1 12.51 18.81 18.01 

W119 2.55 0.2 3.29 0.33 1.29 6.5 53.67 76.25 15.78 

W120 17.70 0.5 3.64 0.14 0.21 2.8 1537.8 2202 32.11 

W121 9.90 0.5 3.64 0.17 0.37 3.3 818.4 1165. 37.32 

W202 16.50 0.5 4.09 0.08 0.25 1.5 949.6 1456.1 54.32 

W203 3.95 0.2 4.09 0.11 1.03 2.2 54.71 85.54 32.16 

W204 4.10 0.2 4.09 0.11 1.00 2.2 58.54 91.35 31.81 

W205 3.95 0.2 4.09 0.11 1.03 2.2 54.87 85.75 32.08 

W206 4.10 0.2 4.09 0.11 1.00 2.3 59.84 93.02 31.19 

W207 1.25 0.5 3.09 0.10 2.47 2.0 10.57 18.62 93.00 

W208 1.40 0.5 2.58 0.13 1.84 2.6 25.32 41.31 58.85 

W209 1.55 0.5 2.64 0.12 1.70 2.4 30.31 49.36 61.04 

W210 1.70 0.5 3.14 0.09 1.84 1.9 25.04 42.33 85.83 
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Table C.2 (Continued)  

Pier Id 
L  

(m) 

t 

(m) 

heff 

(m) 

p 

(Mpa) 
λ 

p/fm 

(%) 

Fy   

(kN) 

Fu 

(kN) 

δu 

(mm) 

W211a 1.50 0.5 3.09 0.15 2.06 3.1 24.65 40.12 67.11 

W211b 2.85 0.5 2.20 0.16 0.77 3.2 157.28 232.0 31.45 

W212a 2.05 0.5 2.66 0.16 1.30 3.1 68.79 105.7 47.48 

W212b 0.85 0.5 1.45 0.10 1.70 2.1 15.32 25.31 36.01 

W213 1.90 0.5 2.20 0.10 1.16 2.0 56.03 89.12 47.26 

W214 1.50 0.5 3.09 0.10 2.06 2.0 19.06 32.44 84.50 

W216 2.05 0.2 3.00 0.19 1.46 3.8 26.66 40.57 20.19 

W217 2.55 0.2 3.48 0.19 1.36 3.8 36.13 54.66 22.86 

W218 1.40 0.2 3.48 0.21 2.48 4.2 7.51 12.19 27.54 

W219 2.55 0.2 3.48 0.17 1.36 3.5 34.35 52.43 23.92 

W220a 7.80 0.5 4.09 0.08 0.52 1.6 363.70 564.7 71.08 

W220b 1.32 0.2 2.60 0.35 1.97 7.1 15.49 22.96 14.23 

W220c 0.90 0.2 2.85 0.35 3.17 7.1 3.47 5.62 18.99 

W221 9.90 0.5 4.09 0.09 0.41 1.7 530.68 812.0 62.35 

 

Table C.3 Hinge Properties of CSB No:3 Piers According to Equations 4.1 and 

Equation 4.2 

Pier Id L (m) t (m) 
heff 

(m) 
p (Mpa) λ 

p/fm 

(%) 

Fy 

(kN) 

Fu 

(kN) 

δu 

(mm) 

W101 9.60 0.5 2.35 0.11 0.24 2.2 703.3 1034.1 25.12 

W102 1.10 0.5 2.35 0.17 2.14 3.5 18.1 29.2 48.66 

W103 4.80 0.5 2.35 0.16 0.49 3.2 343.7 496.6 27.87 

W104 1.90 0.5 2.35 0.18 1.24 3.6 73.9 111.2 37.92 

W105 2.10 0.5 2.35 0.12 1.12 2.4 71.0 110.6 45.50 

W106 2.90 0.5 2.35 0.13 0.81 2.6 136.5 206.3 38.27 

W107 3.90 0.5 1.58 0.13 0.40 2.7 273.1 399.1 18.90 

W108 4.20 0.5 1.58 0.13 0.38 2.7 302.6 441.2 18.30 

W109 1.30 0.5 1.45 0.17 1.11 3.4 54.7 82.1 23.08 

W110 0.85 0.5 1.15 0.16 1.35 3.3 28.1 43.1 20.22 

W111 4.65 0.5 2.18 0.13 0.47 2.6 298.6 440.6 28.43 

W112 2.80 0.5 2.35 0.13 0.84 2.6 127.8 193.6 38.98 

W113 4.65 0.5 2.35 0.16 0.51 3.2 329.7 476.5 28.12 

W114 2.80 0.5 2.35 0.17 0.84 3.5 152.8 224.5 33.21 

W115 1.85 0.5 2.35 0.28 1.27 5.6 90.1 130.0 30.50 

W116 1.90 0.5 2.35 0.29 1.24 5.8 97.7 140.0 29.56 

W117 1.00 0.5 1.36 0.17 1.36 3.5 33.7 51.4 23.43 

W118 1.30 0.5 0.80 0.22 0.62 4.4 100.8 142.0 8.75 

W119 0.90 0.5 0.80 0.24 0.89 4.8 57.2 81.4 9.70 

W120 1.00 0.5 1.36 0.19 1.36 3.8 35.5 53.7 22.38 

W201 9.60 0.3 2.80 0.11 0.29 2.1 390.5 579.6 19.91 

W202 1.10 0.2 2.80 0.26 2.55 5.1 6.2 10.0 20.27 

W203a 2.35 0.2 2.80 0.29 1.19 5.8 50.3 71.9 13.90 
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Table C.3 (Continued)  

Pier Id L (m) t (m) 
heff 

(m) 
p (Mpa) λ 

p/fm 

(%) 

Fy 

(kN) 

Fu 

(kN) 

δu 

(mm) 

W203b 1.40 0.2 2.80 0.32 2.00 6.4 15.1 22.7 16.20 

W204 1.90 0.2 2.80 0.28 1.47 5.6 30.6 44.9 15.45 

W205 2.10 0.2 2.80 0.16 1.33 3.3 28.1 43.0 19.71 

W206 2.90 0.2 2.80 0.18 0.97 3.6 57.6 85.0 16.44 

W207 3.90 0.3 2.05 0.12 0.53 2.5 139.2 207.1 17.21 

W208a 1.40 0.3 1.71 0.21 1.22 4.2 36.4 53.9 15.12 

W208b 0.90 0.3 1.84 0.20 2.04 4.0 10.6 16.8 20.64 

W209 1.30 0.3 1.95 0.16 1.50 3.1 21.8 34.0 22.06 

W210 0.85 0.3 1.55 0.14 1.83 2.7 9.6 15.6 20.66 

W211 4.65 0.3 2.53 0.12 0.54 2.5 163.4 243.4 21.47 

W212 2.80 0.2 2.80 0.18 1.00 3.6 53.6 79.4 16.76 

W213 4.65 0.2 2.80 0.24 0.60 4.7 152.9 213.6 11.65 

W214 2.80 0.2 2.80 0.27 1.00 5.3 68.2 96.9 13.50 

W215 1.85 0.2 2.80 0.44 1.51 8.7 37.8 52.9 12.24 

W216 1.90 0.2 2.80 0.47 1.47 9.3 41.9 58.1 11.68 

W217 1.00 0.3 1.86 0.16 1.86 3.1 11.9 19.0 23.22 

W218 1.30 0.3 1.30 0.19 1.00 3.8 38.9 57.3 11.23 

W219 0.90 0.3 1.30 0.21 1.44 4.2 18.8 28.3 12.50 

W220 1.00 0.3 1.86 0.17 1.86 3.5 12.7 20.1 21.86 

W301 9.60 0.2 2.80 0.07 0.29 1.3 197.7 307.9 16.98 

W302 1.10 0.2 2.80 0.13 2.55 2.5 4.1 7.0 29.57 

W303a 2.35 0.2 2.80 0.14 1.19 2.9 33.3 51.1 20.11 

W303b 1.40 0.2 2.80 0.16 2.00 3.2 9.9 16.0 23.68 

W304 1.90 0.2 2.80 0.14 1.47 2.8 20.2 31.8 22.44 

W305 2.10 0.2 2.80 0.08 1.33 1.6 18.5 30.5 28.65 

W306 2.90 0.2 2.80 0.09 0.97 1.8 37.9 60.2 23.90 

W307a 0.75 0.2 1.73 0.08 2.31 1.5 2.5 4.5 23.15 

W307b 0.85 0.2 1.30 0.10 1.53 2.0 7.0 11.5 12.64 

W308a 1.25 0.2 1.30 0.09 1.04 1.8 15.3 24.4 11.41 

W308b 0.55 0.2 1.52 0.26 2.76 5.2 2.6 4.2 11.25 

W308c 0.90 0.2 1.84 0.10 2.04 2.0 4.6 7.8 20.31 

W309 1.30 0.2 1.95 0.09 1.50 1.8 10.5 17.3 19.65 

W310 0.85 0.2 1.55 0.07 1.82 1.4 4.2 7.4 19.94 

W311 4.65 0.2 2.53 0.08 0.54 1.5 82.2 128.7 18.41 

W312 2.80 0.2 2.80 0.09 1.00 1.8 35.2 56.2 24.36 

W313 4.65 0.2 2.80 0.12 0.60 2.4 100.7 151.2 16.93 

W314 2.80 0.2 2.80 0.13 1.00 2.6 44.4 68.0 19.82 

W315 1.85 0.2 2.80 0.22 1.51 4.4 25.0 37.6 17.74 

W316 1.90 0.2 2.80 0.23 1.47 4.7 27.6 41.1 16.98 

W317 1.00 0.2 1.86 0.08 1.86 1.6 5.4 9.2 21.89 

W318 1.30 0.2 1.30 0.10 1.00 2.0 17.4 27.5 10.69 

W319 0.90 0.2 1.30 0.12 1.44 2.3 8.8 14.1 11.39 

W320 1.00 0.2 1.86 0.09 1.86 1.8 5.6 9.6 21.01 
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Table C.4 Hinge Properties and Failure Modes of CSB No:1 Piers According to 

FEMA 356 

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W101 536.7 199.3 715.1 560.7 SLIDING 199.3 14.2 

W102 34.3 31.7 44.9 35.6 SLIDING 31.7 5.60 

W103 25.4 36.0 33.1 26.4 ROCKING 25.4 13.23 

W104 21.7 41.5 28.7 22.6 ROCKING 21.7 40.61 

W105 105.3 93.7 127.2 106.4 SLIDING 93.7 22.80 

W106 11.7 31.0 14.3 11.9 ROCKING 11.7 64.98 

W107 27.1 47.4 33.1 27.5 ROCKING 27.1 43.32 

W108 107.4 94.9 129.3 108.3 SLIDING 94.9 22.80 

W109 7.1 24.0 8.8 7.2 ROCKING 7.1 81.23 

W110 81.4 83.7 96.2 81.2 TOE CRUSHING 81.2 NA 

W111 30.2 52.2 39.4 31.4 ROCKING 30.2 28.45 

W112 156.1 98.8 209.0 163.3 SLIDING 98.8 12.00 

W113 28.8 50.8 36.6 29.7 ROCKING 28.8 29.99 

W114 32.3 54.1 40.7 33.2 ROCKING 32.3 29.20 

W115 45.0 60.3 56.0 46.0 ROCKING 45.0 21.17 

W116 316.0 184.5 411.5 328.2 SLIDING 184.5 20.60 

W117 81.5 81.5 100.8 83.2 ROCKING 81.5 24.07 

W118 170.0 118.3 208.0 172.8 SLIDING 118.3 22.80 

W119 121.7 98.5 156.8 126.1 SLIDING 98.5 22.80 

W120 1028.1 351.5 1480.8 1090.0 SLIDING 351.5 22.80 

W201 159.4 94.0 288.1 172.6 SLIDING 94.0 13.60 

W202 10.5 14.0 19.9 11.4 ROCKING 10.5 3.03 

W203 7.1 16.0 13.3 7.7 ROCKING 7.1 10.18 

W204 11.5 30.8 19.2 12.4 ROCKING 11.5 36.45 

W205 55.4 64.9 80.2 58.8 ROCKING 55.4 20.11 

W206 6.2 21.8 9.1 6.6 ROCKING 6.2 58.32 

W207 14.6 33.4 21.3 15.5 ROCKING 14.6 38.88 

W208 56.5 65.5 81.3 59.9 ROCKING 56.5 20.11 

W209 3.7 16.9 5.6 3.9 ROCKING 3.7 72.90 

W210 42.9 56.8 59.8 45.3 ROCKING 42.9 24.30 

W211 12.8 26.2 20.3 13.7 ROCKING 12.8 20.50 

W212a 4.1 12.6 5.5 4.3 ROCKING 4.1 31.09 

W212b 20.4 32.5 33.1 21.9 ROCKING 20.4 14.44 

W213 14.3 28.4 23.4 15.4 ROCKING 14.3 19.27 

W214 15.1 29.3 24.7 16.2 ROCKING 15.1 18.91 

W215 20.3 32.1 32.3 21.8 ROCKING 20.3 14.65 
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Table C.4 (Continued)  

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W216a 24.7 35.5 38.4 26.4 ROCKING 24.7 14.15 

W216b 14.2 27.7 22.4 15.2 ROCKING 14.2 19.66 

W217 43.4 57.9 65.0 46.3 ROCKING 43.4 21.60 

W218 93.9 84.6 136.5 99.7 SLIDING 84.6 21.60 

W219 63.8 71.6 102.4 68.5 ROCKING 63.8 16.20 

W220 451.2 195.1 774.8 487.0 SLIDING 195.1 21.60 

 

Table C.5 Hinge Properties and Failure Modes of CSB No:2 Piers According to 

FEMA 356 

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W101 1121.6 340.1 1408.4 1151.8 SLIDING 340.1 29.12 

W102 5321.7 1167.8 6755.2 5485.6 SLIDING 1167.8 29.12 

W103 163.2 133.0 194.8 163.8 SLIDING 133.0 29.12 

W104 174.5 137.3 208.5 175.3 SLIDING 137.3 29.12 

W105 164.1 133.4 195.6 164.6 SLIDING 133.4 29.12 

W106 181.2 140.6 215.0 181.2 SLIDING 140.6 29.12 

W107 48.7 101.1 58.8 49.2 ROCKING 48.7 52.72 

W108 186.0 188.7 230.1 189.9 ROCKING 186.0 22.93 

W109 150.8 165.2 182.5 152.5 ROCKING 150.8 23.87 

W110 91.7 135.4 111.3 92.8 ROCKING 91.7 35.51 

W111 1541.1 544.5 1780.8 1513.7 SLIDING 544.5 19.60 

W112 414.3 286.9 472.0 401.9 SLIDING 286.9 19.60 

W113 185.3 173.1 216.2 183.3 SLIDING 173.1 16.80 

W114 74.3 125.8 88.7 74.6 ROCKING 74.3 43.93 

W115 695.9 419.5 945.4 730.2 SLIDING 419.5 29.12 

W116 90.2 99.0 99.3 83.9 TOE CRUSHING 83.9 NA 

W117 124.8 121.3 137.6 116.4 TOE CRUSHING 116.4 NA 

W118 43.3 74.1 47.0 39.2 TOE CRUSHING 39.2 NA 

W119 115.9 114.9 129.0 109.6 TOE CRUSHING 109.6 NA 

W120 5438.6 1174.5 7108.4 5654.9 SLIDING 1174.5 29.12 

W121 2011.8 720.3 2524.9 2065.6 SLIDING 720.3 29.12 

W202 2270.6 827.9 3610.5 2435.5 SLIDING 827.9 32.68 

W203 75.4 92.7 105.6 79.6 ROCKING 75.4 33.80 

W204 80.6 95.9 113.2 85.1 ROCKING 80.6 32.56 

W205 75.8 92.9 106.0 80.0 ROCKING 75.8 33.80 

W206 83.6 97.5 116.1 88.1 ROCKING 83.6 32.56 

W207 22.2 69.6 32.3 23.6 ROCKING 22.2 61.23 
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Table C.5 (Continued)  

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W208 44.3 89.1 59.2 46.4 ROCKING 44.3 37.89 

W209 49.0 94.8 66.9 51.4 ROCKING 49.0 36.03 

W210 38.5 92.6 56.9 41.0 ROCKING 38.5 46.25 

W211a 50.8 105.0 64.8 52.5 ROCKING 50.8 50.86 

W211b 263.4 202.0 334.1 271.4 SLIDING 202.0 17.60 

W212a 111.0 143.9 141.3 114.5 ROCKING 111.0 27.51 

W212b 23.4 48.7 33.3 24.8 ROCKING 23.4 19.68 

W213 75.2 107.7 107.7 79.6 ROCKING 75.2 20.38 

W214 33.2 84.8 47.6 35.1 ROCKING 33.2 50.86 

W216 48.3 64.9 58.8 49.0 ROCKING 48.3 35.12 

W217 63.7 80.1 77.7 64.7 ROCKING 63.7 37.88 

W218 21.6 47.2 25.7 21.6 ROCKING 21.6 69.00 

W219 58.6 76.2 72.8 59.9 ROCKING 58.6 37.88 

W220a 548.1 403.2 846.8 586.2 SLIDING 403.2 32.68 

W220b 42.6 63.1 46.9 39.7 TOE CRUSHING 39.7 NA 

W220c 18.1 43.0 19.9 16.8 TOE CRUSHING 16.8 NA 

W221 937.2 524.2 1417.3 1000.0 SLIDING 524.2 32.68 

 

Table C.6 Hinge Properties and Failure Modes of CSB No:3 Piers According to 

FEMA 356 

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W101 1984.3 569.9 2758.6 2091.4 SLIDING 569.9 18.80 

W102 40.4 82.3 50.2 41.3 ROCKING 40.4 40.16 

W103 696.9 339.5 884.8 718.4 SLIDING 339.5 18.80 

W104 125.7 145.8 154.7 128.1 ROCKING 125.7 23.25 

W105 101.5 128.7 138.4 106.6 ROCKING 101.5 21.04 

W106 208.1 184.3 278.1 217.6 SLIDING 184.3 18.80 

W107 579.5 251.9 767.8 604.7 SLIDING 251.9 12.60 

W108 674.0 271.7 892.2 703.1 SLIDING 271.7 12.60 

W109 90.0 96.2 112.2 92.2 ROCKING 90.0 12.87 

W110 46.8 61.6 58.8 48.0 ROCKING 46.8 12.36 

W111 570.4 293.6 764.8 596.8 SLIDING 293.6 17.41 

W112 192.7 177.3 257.9 201.5 SLIDING 177.3 18.80 

W113 659.1 330.4 835.4 679.1 SLIDING 330.4 18.80 

W114 259.2 208.4 322.5 265.3 SLIDING 208.4 18.80 

W115 182.2 186.4 207.5 176.7 TOE CRUSHING 176.7 NA 

W116 199.5 196.4 225.9 192.4 TOE CRUSHING 192.4 NA 
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Table C.6 (Continued)  

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W117 57.5 74.8 71.4 58.8 ROCKING 57.5 14.86 

W118 207.9 111.7 246.6 207.9 SLIDING 111.7 6.40 

W119 109.2 82.1 127.4 108.1 SLIDING 82.1 6.40 

W120 62.7 78.7 76.4 63.6 ROCKING 62.7 14.86 

W201 944.7 333.1 1336.0 998.6 SLIDING 333.1 22.40 

W202 19.9 41.9 23.0 19.5 TOE CRUSHING 19.5 NA 

W203a 102.1 97.0 115.7 98.5 SLIDING 97.0 22.40 

W203b 40.6 62.6 45.3 38.5 TOE CRUSHING 38.5 NA 

W204 64.6 76.6 73.5 62.6 TOE CRUSHING 62.6 NA 

W205 46.5 60.7 58.6 47.8 ROCKING 46.5 29.87 

W206 96.9 88.2 119.6 98.8 SLIDING 88.2 22.40 

W207 246.1 145.0 333.5 258.1 SLIDING 145.0 16.40 

W208a 65.6 70.7 78.3 65.9 ROCKING 65.6 16.61 

W208b 24.1 44.2 29.0 24.3 ROCKING 24.1 29.93 

W209 36.9 55.1 46.9 38.0 ROCKING 36.9 23.33 

W210 17.1 33.3 22.6 17.9 ROCKING 17.1 22.73 

W211 284.2 172.9 385.1 298.1 SLIDING 172.9 20.20 

W212 89.6 84.8 110.7 91.4 SLIDING 84.8 22.40 

W213 328.4 168.0 384.1 325.5 SLIDING 168.0 22.40 

W214 133.7 109.3 153.4 130.6 SLIDING 109.3 22.40 

W215 96.2 104.0 103.5 85.5 TOE CRUSHING 85.5 NA 

W216 108.3 112.5 115.7 94.7 TOE CRUSHING 94.7 NA 

W217 22.6 42.2 28.8 23.3 ROCKING 22.6 27.77 

W218 67.0 61.6 81.6 67.9 SLIDING 61.6 10.40 

W219 34.9 44.9 41.8 35.1 ROCKING 34.9 15.02 

W220 25.3 44.9 31.4 25.9 ROCKING 25.3 27.77 

W301 399.1 184.7 664.6 429.8 SLIDING 184.7 22.40 

W302 9.9 27.7 13.3 10.4 ROCKING 9.9 57.02 

W303a 51.5 63.4 66.7 53.4 ROCKING 51.5 26.69 

W303b 20.1 39.8 25.5 20.7 ROCKING 20.1 44.80 

W304 32.3 50.2 42.3 33.6 ROCKING 32.3 33.01 

W305 23.3 43.5 35.9 24.9 ROCKING 23.3 29.87 

W306 48.5 62.2 72.5 51.6 ROCKING 48.5 21.63 

W307a 4.5 15.1 7.1 4.8 ROCKING 4.5 32.04 

W307b 10.0 19.1 14.4 10.6 ROCKING 10.0 15.91 

W308a 19.5 26.9 29.1 20.8 ROCKING 19.5 10.82 

W308b 9.3 21.2 10.7 9.1 TOE CRUSHING 9.1 NA 

W308c 7.8 20.1 11.3 8.3 ROCKING 7.8 29.93 
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Table C.6 (Continued)  

Pier Id Vr 

(kN) 

Vbjs 

(kN) 

Vdt 

(kN) 

Vtc 

(kN) 
Failure Mode 

Fy 

(kN) 

δu 

(mm) 

W309 14.4 28.3 21.3 15.3 ROCKING 14.4 23.40 

W310 5.7 16.4 9.5 6.1 ROCKING 5.7 22.47 

W311 118.9 94.0 187.7 127.5 SLIDING 94.0 20.20 

W312 44.8 59.9 67.2 47.7 ROCKING 44.8 22.40 

W313 164.2 113.1 225.0 172.6 SLIDING 113.1 22.40 

W314 65.6 71.5 87.5 68.6 ROCKING 65.6 22.40 

W315 48.4 63.8 57.3 48.4 TOE CRUSHING 48.4 NA 

W316 54.2 68.1 63.5 53.8 TOE CRUSHING 53.8 NA 

W317 7.9 20.7 12.2 8.5 ROCKING 7.9 27.77 

W318 23.1 29.1 33.4 24.5 ROCKING 23.1 10.40 

W319 13.0 21.7 18.0 13.7 ROCKING 13.0 15.02 

W320 8.6 21.4 12.9 9.1 ROCKING 8.6 27.77 
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APPENDIX D 

 

 

PLAN VIEWS AND WALL LABELS OF CASE STUDY BUILDINGS  

 

 

 

 
 

 

 

Figure D.1 Plan View of CSB No:1 – First Floor 
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Figure D.2 Plan View of CSB No:1 – Second Floor 
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Figure D.3 Plan View of CSB No:2 – First Floor 
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Figure D.4 Plan View of CSB No:2 – Second Floor 
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Figure D.5 Plan View of CSB No:3 – First Floor 
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Figure D.6 Plan View of CSB No:3 – Second Floor 
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Figure D.7 Plan View of CSB No:3 – Third Floor 
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