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submitted byREZAN SEVİN İK-ADIG ÜZEL in partial fulfillment of the requirements for
the degree ofDoctor of Philosophy in Mathematics Department, Middle East Technical
University by,

Prof. Dr. Canan̈Ozgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Zafer Nurlu
Head of Department,Mathematics

Prof. Dr. Hasan Taşeli
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Prof. Dr. Ağacık Zafer
Mathematics Dept., METU

Prof. Dr. Ramazan Sever
Mathematics Dept., METU

Prof. Dr. Haydar Bulgak
Mathematics Dept., Selçuk Univ.
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ABSTRACT

ON THE Q-ANALYSIS OF Q-HYPERGEOMETRIC DIFFERENCE EQUATION

Sevinik-Adıg̈uzel, Rezan

Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Hasan Taşeli

December 2010, 183 pages

In this thesis, a fairly detailed survey on theq-classical orthogonal polynomials of the Hahn

class is presented. Such polynomials appear to be the bounded solutions ofthe so calledq-

hypergeometric difference equation having polynomial coefficients of degree at most two. The

central idea behind our study is to discuss in a unified sense the orthogonality of all possible

polynomial solutions of theq-hypergeometric difference equation by means of a qualitative

analysis of the relevantq-Pearson equation. To be more specific, a geometrical approach has

been used by taking into account every posssible rational form of the polynomial coefficients,

together with various relative positions of their zeros, in theq-Pearson equation to describe a

desiredq-weight function on a suitable orthogonality interval. Therefore, our method differs

from the standard ones which are based on the Favard theorem and the three-term recurrence

relation.

Keywords: Special functions, Classical orthogonal polynomials of a discrete variable, q-

polynomials, Orthogonal polynomials onq-linear lattices,q-Hahn class.

iv



ÖZ

Q-HİPERGEOMETṘIK FARK DENKLEM İNİN Q-ANAL İZİ ÜZEṘINE

Sevinik-Adıg̈uzel, Rezan

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Hasan Taşeli

Aralık 2010, 183 sayfa

Bu tezde, Hahn sınıfına aitq-klasik ortogonal polinomlar hakkında oldukça detaylı bir çalışma

sunulmaktadır. Bu tip polinomlar, katsayıları en fazla ikinci dereceden polinomlar olanq-

hipergeometrik fark denkleminin sınırlı çözümleri olarak ortaya çıkmaktadırlar. Bu çalışmada

temel d̈uş̈unce, ilgili q-Pearson denkleminin kalitatif analizi aracılığıyla q-hipergeometrik

fark denkleminin m̈umkün olan b̈utün polinom ç̈ozümlerinin ortogonalliklerini genel anlamda

ele almaktır. Daha açık olarak, uygun bir ortogonalite aralığında istenilen birq-ağırlık fonk-

siyonu tanımlamak için,q-Pearson denklemindeki polinom katsayıların sıfırlarının değişik

göreceli pozisyonlarıyla birlikte m̈umkün olan her rasyonel formunu hesaba katarak bir ge-

ometriksel yaklaşım kullanılmıştır. Dolayısıyla, bu çalışma Favard teoremine ve 3-terimli

rekürans ilişkisine dayanan standart metodlardan farklıdır.

Anahtar Kelimeler:Özel fonksiyonlar, Ayrık dĕgişkenli klasik ortogonal polinomlar,q-poli-

nomlar,q-doğrusalörgülü ortogonal polinomlar,q-Hahn sınıfı.
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CHAPTER 1

INTRODUCTION

Family ofq-classical polynomials in the Hahn sense, which is a part of classicalq-polynomials,

is first introduced by Wolfgang Hahn in 1949 [32]. They satisfy aq-difference equation of

hypergeometric type (q-EHT) [3, 4, 6, 17, 42],

σ(x; q)DqDq−1y(x) + τ(x,q)Dqy(x) + λ(q)y(x) = 0 (1.1)

where the coefficientsσ(x,q) andτ(x,q) are polynomials of at most second and first degree

in x, respectively,λ(q) is a constant and

Dqy(x) =
y(x) − y(qx)

(1− q)x
, x , 0, Dqy(0) = y′(0) (1.2)

stands for theq-Jackson derivative [3, 4, 6, 30, 53].

The so-calledq-polynomials have enormous applications in several problems on theoretical

and mathematical physics, e.g., in the continued fractions, Eulerian series, [27], algebras and

quantum groups [37, 38, 54], discrete mathematics, algebraic combinatorics (coding theory,

design theory, various theories of group representation) [20], q-Schrödinger equation and q-

harmonic oscillators [14, 15, 16, 18, 19, 40].

The classicalq-polynomials are the discrete version of the classical orthogonal polynomials

(Hermite, Laguerre, Jacobi, Bessel). The theory of discrete polynomialsis rather developed

[3, 6, 17, 32, 42, 49, 46, 47, 48]. There are several approaches in the study of these polyno-

mials [3, 4, 5, 6, 11, 17, 36, 42, 43, 46, 47, 48, 49].
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Literature Review

1.1 Classical Orthogonal Polynomials

Orthogonal polynomials are particularly useful in the category of specialfunctions since they

have considerable superiority in miscellaneous problems [13] most of whichlead to the clas-

sical hypergeometric differential equation (EHT) [3, 22, 36, 42, 43, 51],

σ(x)y′′ + τ(x)y′ + λy = 0 (1.3)

whereσ(x) andτ(x) are polynomials of at most second and first degree, respectively, and λ

is a constant [3, 46, 48]. It can be shown that EHT in (1.3) has polynomialsolutionsPn(x) of

exact degreen for particular values ofλ of the form [46, 48],

λ = λn = −nτ′ −
1
2

n(n− 1)σ′′ (1.4)

for n = 0,1, .... The famous classical orthogonal polynomials associated with the names

JacobiP(α,β)
n (x), LaguerreLαn(x) and HermiteHn(x) are all solutions of EHT withλ defined

by (1.4). The parameters leading to these polynomials are listed in Table (1.1) [46, 48].

Table 1.1: The classical orthogonal polynomials

Hermite Laguerre Jacobi Bessel

Pn(x) Hn(x) Lαn(x) P(α,β)
n (x) Bαn (x)

(a,b) (−∞,∞) (0,∞) (−1,1) T := {|z| = 1, z ∈ C}

σ(x) 1 x 1− x2 x2

τ(x) −2x α + 1− x β − α − (α + β + 2)x (α + 2)x+ 2

λn 2n n n(n+ α + β + 1) −n(n+ α + 1)

ρ(x) e−x2
xαe−x (1− x)α(1+ x)β 1

2πi

∑∞
k=0

Γ(a+2)
Γ(a+k+1)(−

2
x)k

α > −1 α, β > −1 α > −2

Definition 1.1 [4] We say that the orthogonal polynomial sequence (OPS) (Table 1.1){Pn} is

a classical OPS with respect to the weight functionρ [46, 48] if

∫ b

a
ym(x)yn(x)ρ(x)dx= d2

nδmn (1.5)
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whereδmn is the Kronecker delta, dn is the norm of the polynomial Pn, ρ is a solution of the

Pearson equation
d
dx

[
σ(x)ρ(x)

]
= τ(x)ρ(x), (1.6)

whereσ andτ are fixed polynomials of degree at most 2 and exactly 1, respectively, such that

the following boundary conditions hold

σ(a)ρ(a) = σ(b)ρ(b) = 0. (1.7)

Remark 1.2 The boundary condition given in (1.7) is not valid for the Bessel polynomials

since Bessel polynomials are orthogonal on unit circle (For more detailssee [3]).

We remark that Hermite, Laguerre, Jacobi and Bessel families are the onlyclassical orthog-

onal polynomials satisfying the definition 1.1 [3, 4, 22, 46, 48]. Definition 1.1is only one

of the way to characterize the sequence of classical orthogonal polynomials. There are also

other characteristics, one of them is TTRR. In particular, Chihara [22],Freud [28], Nevai [45]

and Szeg̈o [51] studied on the orthogonal polynomials starting from the TTRR.

Theorem 1.3 (TTRR [3, 46, 48]) The orthogonal polynomials(Pn)n satisfy a three-term re-

currence relation of the form

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x) (1.8)

whereαn, βn, γn are some numerical sequences and P−1(x) = 0, P0(x) = 1.

The converse statement of the theorem for TTRR implies the Favard theoremwhich is con-

sidered by many authors.

Theorem 1.4 (The Favard Theorem [6, 22, 26]) Let(Pn)n≥0 be a monic polynomial basis

sequence. Then,(Pn)n≥0 is an MOPS if and only if there exist two sequences of complex

numbers(dn)n≥0 and(gn)n≥1, such that gn , 0, n ≥ 1 and

xPn(x) = Pn+1(x) + dnPn(x) + gnPn−1(x), P−1 = 0, P0 = 1, n ≥ 0. (1.9)

Moreover, the functional u such that the polynomials(Pn)n≥0 are orthogonal with respect to

it, is positive definite if and only if(dn)n≥0 is a real sequence and(gn) > 0 for all n ≥ 1.
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Another point of view for the characterization of classical orthogonal polynomials was devel-

oped by Sonine for Hermite, Laguerre and Jacobi polynomials in 1887 andby Hahn [31] in

1939.

Theorem 1.5 (Sonine-Hahn [4, 31, 41]) A given sequence of orthogonal polynomials (Pn)n

is a classical sequence if and only if the sequence of its derivatives(P′n)n is an orthogonal

polynomial sequence.

Alternatively, in 1885, Routh [50] and in 1929, Bochner [21] deal with the characterization

problem in an another way and they propounded that the classical orthogonal polynomials

satisfy a second-order differential equation of hypergeometric type (1.3). Derivatives of (1.3)

give also a differential equation of hypergeometric type but now fory(n) which is also derived

by Nikiforov and Uvarov [48].

Another characterization for the orthogonal polynomials is the well known Rodrigues formula

which is derived by Tricomi [52] and Cryer [23]. The Rodrigues formula provides explicit

representation for the classical polynomials which satisfies a differential equation of hyperge-

ometric type (1.3) (see [33]).

According to the all discussions above we perform the following theorem extracted from [4].

Theorem 1.6 [4] Let (Pn)n be an OPS. The following statements are equivalent:

(1) (Pn)n is a classical orthogonal polynomial sequence (COPS) (Hildebrandt [33]).

(2) The sequence of its derivatives(P′n)n≥1 is an OPS with respect to the weight function

ρ1(x) = σ(x)ρ(x), whereρ satisfies the Pearson equation (Sonine and Hahn [31])

[
σ(x)ρ(x)

]′
= τ(x)ρ(x). (1.10)

(3) (Pn)n satisfies the second order linear differential equation with polynomial coefficients of

the form (1.3) (Bochner [21]).

(4) (Pn)n can be expressed by the Rodrigues formula (Tricomi [52] and Cryer [23])

Pn(x) =
Bn

ρ(x)
dn

dxn

[
σn(x)ρ(x)

]
. (1.11)

(5) There exist three sequences of complex numbers(an)n, (bn)n, (cn)n and a polynomialσ,

deg(σ) ≤ 2, such that [2]

σ(x)P′n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1. (1.12)
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(6) There exist two sequences of complex numbers( fn)n and (gn)n such that the following

relation for the monic polynomials holds (Marcellán et al. [41])

Pn(x) =
P′n+1(x)

n+ 1
+ fnP′n(x) + gnP′n−1(x), gn , γn, n ≥ 1, (1.13)

whereγn is the corresponding coefficient of the TTRR (1.9).

1.2 Classical Orthogonal Polynomials of Discrete Variable

The so-called discrete polynomials (Hahn, Kravtchouk, Meixner and Charlier [22, 44, 46, 48])

and theq-polynomials [3, 36, 49, 46, 48] are both discrete version of the classical continuous

polynomials which were first realized by Hahn [32]. Actually, Hahn was motivated by Cheby-

shev’s study done in 1855s on the orthogonal polynomials. In this regard, in 1949, Hahn [32]

introduced a linear operatorHq,w

Hq,w f (x) =
f (qx+ w) − f (x)

(q− 1)x+ w
, q, w ∈ R+. (1.14)

together with the problem of finding all OPS (Pn)n satisfying one of the following properties

[4, 17, 22];

1. {Hq,wPn(x)} is an OPS.

2. Pn(x) satisfies a difference equation of the form

σ(x)H2
q,wPn(x) + τ(x)Hq,wPn(x) + λnPn(x) = 0, (1.15)

whereσ(x) andτ(x) are independent ofn, and are polynomials of degrees at most 2 and 1,

respectively.

3. Pn(x) has a Rodrigues-type representation

ρ(x)Pn(x) = Hn
q,w

[
f1(x) f2(x)... fn(x)ρ(x)

]
, fi(x) = fi+1(qx+ w). (1.16)

4. If Pn(x) =
∑n

k=0 an,kφk(x) with φk(x)xk or φk(x) = (x; q)k, where

(x; q)k =


1, k = 0,

(1− x)(1− qx)...(1− qk−1x), k = 1,2, ...
(1.17)

are theq-shifted factorials, thenan,k/an,k−1 is a rational function ofn and k or qn and qk,

respectively.

5.The momentsMn associated with{Pn(x)}, defined by
∫ ∞

−∞

φn(x)dα(x) = Mn, (1.18)
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satisfy a recurrence relation of the form

Mn =
a+ bqn

c+ dqn Mn−1, ad− bc, 0, (1.19)

n=1, 2, ... see [1].

1.2.1 Classical Discrete Polynomials

Evaluating (1.14) forq = w = 1 leads toH1,1 = ∆ and the so-called discrete polynomials

(those of Hahn, Meixner, Krawtchouk and Charlier) which are solutionsof difference equation

of hypergeometric type of the form [46, 48]

σ(s)∆∇Pn(s) + τ(s)∆Pn(s) + λnPn(s) = 0 (1.20)

where∆ f (s) = f (s+ 1)− f (s), ∇ f (s) = f (s) − f (s− 1) and deg(σ) ≤ 2, deg(τ) = 1, λn is a

constant. Some characteristics of the classical discrete polynomials can be listed in Table 1.2

[46, 48].

Table 1.2: The classical orthogonal polynomials of discrete variables

Hahn Meixner Krawtchouk Charlier

Pn(x) hα,βn (s; N) Mγ,µn (s) Kp
n (s) Cµn(s)

(a,b) [0,N] [0,∞) [0,N + 1] [0,∞)

σ(s) s(s− β − N − 1) s s s

τ(s) −(α + 1)N + (α + β + 2)s (µ − 1)s+ µγ Np−s
1−p µ − s

λn n(n+ α + β + 1) (1− µ)n n
1−p n

ρ(s) Γ(N+α−s)Γ(β+s+1)
Γ(N−s)Γ(s+1) µs Γ(γ+s)

Γ(γ)Γ(s+1)
N!ps(1−p)N−s

Γ(N+1−s)Γ(s+1)
e−µµs

Γ(s+1)

α, β > −1,n ≤ N − 1 γ > 0,0 < µ < 1 0< p < 1,n ≤ N − 1 µ > 0

Definition 1.7 [4, 46, 48] We say that the discrete polynomial sequence(Pn)n (Table 1.2) is

a classical OPS of discrete variables if they are orthogonal on the integers [a,b − 1] with

respect to the weight functionρ(s) together with the relation

b−1∑

s=a

Pn(s)Pm(s)ρ(s) = d2
nδmn (1.21)
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provided that the boundary conditionσ(s)ρ(s)xk
∣∣∣∣
s=a,b

= 0, k = 0,1, ... is satisfied. Here,

dn is the norm of the polynomial and the weight functionρ satisfies the Pearson equation

∆[σ(s)ρ(s)] = τ(s)ρ(s).

There are different aspects for the characterization of discrete polynomials. For instance,

definition 1.7 characterize the discrete polynomials. Another characterization of the discrete

polynomials is the Rodrigues formula which is considered by Erdélyi and Weber [25] in

1952. Lesky stated in 1962 that discrete orthogonal polynomials are classical if and only if

its differences∆Pn is an discrete OPS [29, 39].

1.2.2 Classicalq-Polynomials

A q-analog of the Chebychev polynomials is due to Markov in 1884 [22] which can be re-

garded as the first example ofq-polynomial family. In 1949, Hahn introduced theq-Hahn

class [32] and obtained the most general orthogonal polynomial on the exponential lattice, the

so-called bigq-Jacobi polynomials, by takingw = 0 andq ∈ (0,1) in the linear operatorHq,w.

In the Hahn case,Hq,0 = Dq whereDq is theq-Jackson derivative defined in (1.2). Hahn

studied on theq-polynomials included in theq-Hahn scheme which are the solutions of the

q-difference equation of hypergeometric type (1.1) and theirq-derivatives are also orthogonal

[32, 43].

Afterwards, around 1980s they have been considered by several authors with different aspects.

Most popular ones are; G. Andrews, R. Askey and A. Nikiforov, V. Uvarov who generate the

Askey scheme and the Nikiforov-Uvarov scheme, respectively. G. Andrews and R. Askey

[11] have only considered particular cases [36] based on the basic hypergeometric series [30]

r ϕp


a1, ...,ar

b1, ...,bp

; q, z

 =
∞∑

k=0

(a1; q)k...(ar ; q)k

(b1; q)k...(bp; q)k

zk

(q; q)k
[(−1)kqk(k−1)/2]p−r+1 (1.22)

where (a; q)k =
∏k−1

i=0 (1−aqi), (a; q)0 = 1 denotes theq-shifted factorial. And the idea for the

Nikiforov-Uvarov approach is grounded on the second order hypergeometric type difference

equation on non-uniform lattices [3, 49, 46, 48],

σ(s)
∆

∆x(s− 1/2)
∇Pn[x(s)]
∇x(s)

+ τ(s)
∆Pn[x(s)]
∆x(s)

+ λnPn[x(s)] = 0. (1.23)
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Atakishiyev, Rahman and Suslov have proved that (1.23) has polynomial solutions of hyper-

geometric type if and only if the latticex(s) is a linear,q-linear (exponential), quadratic or

q-quadratic (exponential) of the form [17]

x(s) =


C1q−s+C2qs i f q , 1

C3s2 +C4s i f q= 1
(1.24)

whereq ∈ C andC1,C2,C3,C4 are constants s.t. (C1,C2) , (0,0), (C3,C4) , (0,0). The

lattice is linear ifC3 = 0; otherwise it is quadratic and it isq-linear if one ofC1, C2 is zero;

otherwise it isq-quadratic. Actually, the sufficient part of this statement has been proved by

Nikiforov-Uvarov.

We remark that polynomial solutions of the difference equation of hypergeometric type (1.23)

with linear lattice x(s) = s leads to the classical discrete polynomials (Hahn, Meixner,

Krawtchouk and Charlier) which are discrete polynomials on uniform lattice and difference

equation (1.23) with non-uniform lattices such asq-linear lattice of the formx(s) = qs or

x(s) = q−s enable us theq-Hahn scheme [3, 4, 5, 36, 46, 48] (see [3, 17, 49, 46, 48] for

quadratic andq-quadratic lattices).

Another approach based on the functional analysis has been considered by R.Álvarez Nodarse,

F. Marcelĺan and J. C. Medem [43] where the authors have proved several characterizations of

such orthogonal polynomials (see also [4]) starting from the so-called distributionalq-Pearson

equation. In particular, in [43] a classification of all possible families of orthogonal polyno-

mials on the exponential lattice has been established, and latter on in [6] the comparison with

the q-Askey and the Nikiforov-Uvarov scheme has been done, obtaining two new families

of orthogonal polynomials. For more details on theq-polynomials on the linear exponential

lattice we refer the readers to the works [3, 4, 5, 6, 24, 35, 42, 49, 46,47, 48], and references

therein.

Some important characterizations for the classical orthogonal polynomials ofdiscrete vari-

able analogue to the classical continuous and discrete ones have been done by Atakishiyev,

Rahman and Suslov [17] and́Alvarez-Nodarse [4] as in the following manner.

Definition 1.8 [17] An OPS{Pn[x(s)]}∞n=0 on a real interval(x(a), x(b)) is classical if and

only if:

(i) Pn[x(s)] satisfies a difference equation of the form (1.23) with x(s) given by (1.24).
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(ii) A positive weight functionρ(s) satisfying the Pearson-type difference equation

∇

∇x1(s)
[σ(s+ 1)ρ(s+ 1)] = τ(s)ρ(s), x1(s) = x(s+ 1/2) (1.25)

exists.

(iii) The boundary conditionsσ(s)ρ(s)xk(s− 1
2)

∣∣∣∣
a,b
= 0 hold for k= 0,1,2, ....

Theorem 1.9 [4] Let (Pn)n be an OPS on a linear type lattice x(s) satisfying

b−1∑

s=a

Pn(s)Pm(s)ρ(s)∆x(s−
1
2

) = δmnd
2
n (1.26)

and letσ(s) andρ(s) be two functions such that the boundary conditionσ(s)ρ(s)xk(s− 1
2)

∣∣∣∣
a,b
=

0 holds for k= 0,1,2, .... Then the following statements are equivalent

(1) (Pn)n is a classical OPS.

(2) The sequence of its differences(∆Pn/∆x(s))n also is an OPS with respect to the weight

functionρ1(s) = σ(s+ 1)ρ(s+ 1), whereρ satisfy

∆[σ(s)ρ(s)] = τ(s)ρ(s)∆x(s−
1
2

). (1.27)

(3) (Pn)n satisfies the second order linear difference equation with polynomial coefficients

(1.23).

(4) (Pn)n can be expressed by Rodrigues-type formula

Pn(s) =
Bn

ρ(s)
∇

∇x1(s)
∇

∇x2(s)
...
∇

∇xn(s)
[ρn(s)] (1.28)

whereρn(s) = ρ(s+ n)
∏n

m=1σ(s+m), xk(s) = x(s+ k
2) and Bn is a constant with Bn , 0.

(5) There exist three sequences of complex numbers(an)n, (bn)n, (cn)n, and a polynomialφ,

deg(φ) ≤ 2, s. t.

φ(s)
∆Pn(s)
∆x(s)

= anPn+1(s) + bnPn(s) + cnPn−1(s), n ≥ 1. (1.29)

(6) There exist three sequences of complex numbers(en)n, ( fn)n, (gn)n, such that the following

relation holds for all n≥ 1

Pn(s) = en
∆Pn+1(s)
∆x(s)

+ fn
∆Pn(s)
∆x(s)

+ gn
∆Pn−1(s)
∆x(s)

, (1.30)

where en , 0, gn , γn, for all n ∈ N, andγn is the corresponding coefficient of the TTRR.
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An important contribution to the theory of theq-polynomials of the exponential lattice (the

so-calledq−Hahn tableau, named after the work of Koornwinder [38]) has been done in the

very recent book [35], which has a complete analysis of the orthogonalpolynomial solutions

of the difference equation of hypergeometric type with the help of the Favard theorem.On the

other hand, in [24] the authors introduced theq-Hahn scheme by using the difference calculus

on the linear lattice as well as a very simple geometrical analysis based on the behavior of the

polynomial coefficients of the difference equation of hypergeometric type. In this thesis, we

deal with the orthogonality properties of theq-polynomials of theq−Hahn tableau but from

a point of view different from the one used in [35]. In fact, we make a unified treatment of

the orthogonality following an idea by Nikiforov and partially published in [24]. Our main

aim here is going further in the analysis started in [24] and study all possiblefamilies of

orthogonal polynomials which are orthogonal with respect to a weight function satisfying the

q-Pearson equation as well as certain boundary conditions.

We introduce the statement of our approach hereinbelow.

Statement of the Problem

In this section, we state the problem in the thesis. The thesis includes the surveyon charac-

terization of polynomial solutions of theq-difference equation (1.1) in the following aspect:

Definition 1.10 An OPS(Pn)n on a real interval(a,b) is classical if and only if

(i) Pn(x,q) satisfies a q-difference equation of the form

σ1(x; q)Dq−1DqPn(x,q) + τ(x,q)DqPn(x,q) + λn(q)Pn(x,q) = 0

and equivalently,

σ2(x; q)DqDq−1Pn(x,q) + τ(x,q)Dq−1Pn(x,q) + λn(q)Pn(x,q) = 0

where the coefficientsσ1(x,q) andσ2(x,q) have the following relation

σ2(x,q) := q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]
.

Here,deg(σ1) ≤ 2, deg(σ2) ≤ 2, deg(τ) = 1 andλn(q) is a constant.

(ii) {Dn
qPn(x,q)} = Dq...Dq︸  ︷︷  ︸

n

Pn(x,q) and {Dn
q−1Pn(x,q)} = Dq−1...Dq−1

︸       ︷︷       ︸
n

Pn(x,q), n ≥ 0 are or-

thogonal polynomials.
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(iii) Pn(x,q) has the Rodrigues representation as follows

ρ(x,q)Pn(x,q) = B1n(q)Dn
q[σ1(x,q)σ1(q−1x,q)...σ1(q−n+1x,q)ρ(x,q)],

or equivalently

ρ(x,q)Pn(x,q) = B2n(q)Dn
q−1[σ2(x,q)σ2(qx,q)...σ2(qn−1x,q)ρ(x,q)].

(iv) Pn(x,q) is orthogonal on the real line(a,b) with respect to theρ(x,q) > 0 satisfying the

q-Pearson equation

Dq[σ1(x,q)ρ(x,q)] = q−1τ(x,q)ρ(x,q) or Dq−1[σ2(x,q)ρ(x,q)] = qτ(x,q)ρ(x,q)

in the following sense ∫ b

a
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

nδmn

provided that the boundary conditionσ1(x,q)ρ(x,q)xk
∣∣∣∣
a,b
= σ2(q−1x,q)ρ(q−1x,q)xk

∣∣∣∣
a,b
= 0

holds or in another sense
∫ b

a
Pn(x,q)Pm(x,q)ρ(x,q)dq−1 x = s2

nδmn

if boundary conditionσ1(qx,q)ρ(qx,q)xk
∣∣∣∣
a,b
= σ2(x,q)ρ(x,q)xk

∣∣∣∣
a,b
= 0 is satisfied.

The principal results of the approach in definition 1.10 provide theq-polynomials in the Hahn

sense.

Our main purpose in the thesis is to develop the orthogonality of all possible polynomial solu-

tions of theq-difference equation by use of the qualitative analysis of theq-Pearson equation.

For each family, we obtain all possible orthogonality intervals (that depend on the range of

the parameters of each family) as well as the corresponding orthogonality relations. In fact,

for all those intervals we determine the correspondingq-weight functionsρ(x,q) satisfying

theq-Pearson equation

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

such thatρ > 0 and certain boundary condition holds. The main idea behind the analysis of

theq-Pearson equation is to study the graphs ofρ(qx,q)/ρ(x,q) which leads to the shape of

the graphs ofρ(x,q). In particular, by the analysis ofρ(qx,q)/ρ(x,q) we obtain the behavior

of ρ(x,q), e.g., the interval whereρ(qx,q)/ρ(x,q) < 1, ρ(qx,q)/ρ(x,q) > 1, wherex > 0,

0 < q < 1, lead us to the intervals whereρ is increasing and decreasing, respectively.
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In the analysis ofρ(qx,q)/ρ(x,q) we consider all possible degrees of the polynomial coef-

ficientsσ1(x,q) andσ2(x,q) as well as various relative positions of their zeros (ofσ1(x,q)

andσ2(x,q)). By the study of every possible rational form of the polynomial coefficients we

obtain all suitable intervals of orthogonality as well as the kind of orthogonalityrelations.

Organization of the Thesis

The thesis is arranged as follows:

In Chapter 2, we establish some basic definitions related withq-calculus for our purpose in

the thesis.

In Chapter 3, we study some known characterizations [3, 6, 46, 48] of the q-difference equa-

tion of hypergeometric type along the same line with definition 1.10.

In Chapter 4, which is the main part of this thesis, we discuss the orthogonalityof all possible

polynomial solutions of theq-difference equation of hypergeometric type (q-EHT) by use

of qualitative analysis of theq-Pearson equation. We mainly concentrate on theq-Pearson

equation in accordance with zeros of the polynomial coefficients of theq-EHT considering

discrete orthogonality with some certain properties. First of all, we construct a theorem which

shows the determination of the end points of the orthogonality intervals according to the zeros

of the polynomial coefficients of theq-difference equation. Next, we concentrate on the main

results of the geometrical approach of theq-Pearson equation considering all possible degrees

of the polynomial coefficientsσ1(x,q) andσ2(x,q) as well as every possible relative position

of their zeros. In this way, we obtain all suitable intervals of orthogonality aswell as the

kind of orthogonality relation that can take place in dependence of the zeros ofσ1(x,q) and

σ2(x,q).

In Chapter 5, we compare each family that we have obtained in Chapter 4 with the q-Askey

scheme [6, 42] . Later, we introduce some known limit relations between the identified q-

polynomials of the Hahn class and the classical continuous and discrete ones [35, 36].

Chapter 6 concludes the thesis with remarks.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some basic definitions concerning withq-calculus which we use

in the thesis and we consider the functions belonging to the following set

Q := Q[J] = { f : J→ R; J ⊂ R s.t. f ′(0) exists}.

2.1 Theq-Derivative

Definition 2.1 (q and q−1-derivatives [30, 36, 38, 53]) Let f∈ Q. Then q and q−1-Jackson

derivatives Dq f , Dq−1 f of a function f on an open interval are given by

Dq f (x) =



f (x) − f (qx)
(1− q)x

, x , 0

f ′(0), x = 0
(2.1)

and

Dq−1 f (x) =



f (x) − f (q−1x)
(1− q−1)x

, x , 0

f ′(0), x = 0
(2.2)

where q∈ R such that|q| , 0,1. Note thatlimq→1 Dq f (x) = limq→1 Dq−1 f (x) = f ′(x) if f is

differentiable at x.

Throughout our study we consider 0< q < 1 which determines the following diagram.

s

0���

qnx

x

q−1x
wvutsrrq

6

q−nx

y x

qx6

x

w

q2x
v u uttsr q q q y

6

y

x

qy
w

q2y
vuuttsrqqq

@@I

qny

x

q−1y
w v u tsr r q

6

q−ny

A diagram of the lattice points.
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As a consequence of definition 2.1

Dq f (x)
∣∣∣∣
x=at
=

f (qat) − f (at)
(q− 1)at

= a−1Dq f (at) (2.3)

and more general

Dn
q f (x)

∣∣∣∣
x=at
= a−nDn

q f (at). (2.4)

Therefore the relation betweenq andq−1-derivatives can be performed as [36, 53]

Dq f (x)
∣∣∣
x=q−1t

= qDq f (q−1t) = Dq−1 f (t). (2.5)

Example 2.2 Let f(x) = xn, where n∈ Z, then

Dq f (x) = Dqxn =
(qx)n − xn

(q− 1)x
= [n]qxn−1 (2.6)

where

[n]q =
qn − 1
q− 1

= qn−1 + ... + 1, n ∈ Z, [0]q = 0 (2.7)

denotes the q-integer [36, 53].

Dq−1 f (x) = Dq−1 xn =
(q−1x)n − xn

(q−1 − 1)x
= [n]q−1 xn−1 (2.8)

where

[n]q−1 =
q−n − 1
q−1 − 1

= q−(n−1) + ... + 1, n ∈ Z [0]q−1 = 0 (2.9)

stands for the q−1-integer [30, 36, 53]. One can find the relation between q and q−1-integers,

[30, 36, 53]

[k]q−1 = q1−k[k]q. (2.10)

Definition 2.3 Let f and g ∈ Q. Then, product rule of q and q−1-differentiations can be

derived as follows:

Dq
[
f (x)g(x)

]
= f (x)Dqg(x) + g(qx)Dq f (x) = f (qx)Dqg(x) + g(x)Dq f (x), (2.11)

Dq−1
[
f (x)g(x)

]
= f (x)Dq−1g(x) + g(q−1x)Dq−1 f (x)= f (q−1x)Dq−1g(x) + g(x)Dq−1 f (x). (2.12)

Definition 2.4 (q and q−1-binomial [30, 35, 36]) The q and q−1-binomial are identified with

[
n
k

]
q
=

(q; q)n

(q; q)k(q; q)n−k
, (2.13)
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[
n
k

]
q−1 =

(q; q−1)n

(q; q−1)k(q; q−1)n−k
(2.14)

where(q; q)n and(q; q−1)n are the q and q−1-shifted factorial defined by

(a; q)n = (1− a)(1− qa)(1− q2a)...(1− qn−1a), (a; q)0 := 1, (2.15)

(a; q)n−k =
(a; q)n

(a−1q1−n; q)k
(−

q
a

)kq(k
2)−nk, (2.16)

where a, 0, k = 0,1, ...,n, n= 1,2, ... and

(a; q−1)n = (a−1; q)n(−a)nq−(
n
2), (2.17)

with
(
n
2

)
=

n(n−1)
2 .

We list the followingq-shifted factorials that we use in the thesis:

(aq−n; q)n = (a−1q; q)n(−a)nq(n
2), a , 0, (2.18)

(aq−n; q)k =
(a−1q; q)n

(a−1q1−k; q)n
(a; q)kq

−nk, a , 0, (2.19)

(a2; q2)n = (a; q)n(−a; q)n (2.20)

Definition 2.5 [10, 34, 36] Let0 < q < 1. Then the infinite product(a,q)∞ defined by

(a; q)∞ =
∞∏

n=0

(1− aqn). (2.21)

is convergent.

Remark 2.6 [10, 34, 36] Note that if
∞∑

n=0

aqn

converges, then the infinite product defined by (2.21) also converges.

The infinite product implies that

(a; q)n =
(a; q)∞

(aqn; q)∞
. (2.22)
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2.2 Theq-Integral

Theq-integral is introduced by Thomae in 1869 and later on, by Jackson in 1910which has

the definition as the following.

Definition 2.7 (q-integral [30, 36, 38, 53]) Let f∈ Q[0,a]. The definite q-integral is defined

as ∫ a

0
f (x)dqx = (1− q)a

∞∑

j=0

q j f (q ja) (2.23)

provided that the sum converges absolutely. Here dqx is called the Fermat measure [10]. The

q-integral defined in (2.23) is a Riemann sum on an infinite partition{aqn, n ≥ 0} on the

interval [0,a].

0 qaq4a... q2aq3a

f(x)

a

Using this definition we may consider an inner product by setting

〈 f ,g〉 =
∫ a

0
f (t) g(t)dqt . (2.24)

The resulting Hilbert space is commonly denoted byL2
q(0,a). The spaceL2

q(0,a) is a separable

Hilbert space [12]. Then the orthogonality with respect to the weight function w(t) is defined

by the relation

〈 f ,g〉 =
∫ a

0
f (t) g (t) w (t) dqt = 0 . (2.25)

Note that in case of 0< a < b,
∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx. (2.26)
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On the other hand, in case ofa < 0 < b,

∫ b

a
f (x)dqx :=

∫ 0

a
f (x)dqx+

∫ b

0
f (x)dqx. (2.27)

Definition 2.8 [30, 36, 38, 53] Let f∈ Q[0,∞) and Q(−∞,∞), respectively. The improper

q-integral of f(x) on [0,∞) and on(−∞,∞) are defined to be

∫ ∞

0
f (x)dqx =

∞∑

j=−∞

∫ q j

q j+1
f (x)dqx, 0 < q < 1. (2.28)

Notice that ∫ ∞

0
f (x)dqx = lim

N→∞

∫ q−N

0
f (x)dqx, (2.29)

and the bilateral q-integral

∫ ∞

−∞

f (x)dqx = (1− q)
∞∑

j=−∞

q j [ f (q j) + f (−q j)]. (2.30)

Definition 2.9 (q−1-integral [30, 36, 38, 53]) Let f∈ Q[a,∞). The following improper q−1-

integral is defined by

∫ ∞

a
f (x)dq−1 x = −(1− q−1)a

∞∑

j=0

q− j f (q− ja). (2.31)

The improper q−1-integral is a Riemann sum on an infinite partition{aq−n, n ≥ 0} of the

interval [a,∞).

0 ...

f(x)

a aq−3aq−1
aq−4aq−2
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Note that in case of 0< a < b,

∫ b

a
f (x)dq−1 x =

∫ ∞

a
f (x)dq−1 x−

∫ ∞

b
f (x)dq−1 x. (2.32)

Remark 2.10 It is clear that, when f(x) is continuous on(0,a)

lim
q→1−

∫ a

0
f (x)dqx =

∫ a

0
f (x)dx. (2.33)

Proposition 2.11 (Fundamental theorem of q-calculus [30, 53]) Let f∈ Q[a,b]. Then

∫ b

a
Dq f (x)dqx = f (b) − f (a) (2.34)

where0 ≤ a < b ≤ ∞.

Proposition 2.12 [30, 53] Let f and g∈ Q[a,b]. Then

f (x)g(x)
∣∣∣
x=a,b

=

∫ b

a
f (x)Dqg(x)dqx+

∫ b

a
g(qx)Dq f (x)dqx (2.35)

by using product rule defined in (2.11).

2.3 Hypergeometric Series

The functionr Fs defined by

r Fs


a1, ..., ar

b1, ..., bs

; z

 :=
∞∑

k=0

(a1, ...ar )k

(b1, ...bs)k

zk

k!
(2.36)

is called the hypergeometric series where (a1, ..,ar )k = (a1)k...(ar )k is the Pochhammer sym-

bol identifed with (a)k = a(a+ 1)...(a+ k− 1), k = 1,2, ..., (a)0 := 1. We remark that in case

of one of the numerator parametersai equals to−n, n = 1,2, ..., the hypergeometric series

becomes a polynomial of degreen in z. The radius of convergenceρ of the series is [30, 36]

ρ =



∞ i f r < s+ 1

1 i f r = s+ 1

0 i f r > s+ 1.

(2.37)
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2.4 q-Hypergeometric Series

q-Hypergeometric seriesrφs is given by

rφs


a1, ..., ar

b1, ..., bs

∣∣∣∣q; z

 :=
∞∑

k=0

(a1, ...ar ; q)k

(b1, ...bs; q)k
(−1)(1+s−r)kq(1+s−r)(k

2) zk

(q; q)k
(2.38)

where (a1, ..,ar ; q)k = (a1; q)k...(ar ; q)k is theq-analogue of the Pochhammer symbol defined

by (2.15). Analogously, when one of the numerator parametersai is q−n, n = 1,2, ..., basic

hypergeometric series is a polynomial of degreen in z. The radius of convergenceρ of the

series looks like as (2.37) [30, 36].

In particular, assumingr = s+ 1 in (2.38) leads to

s+1φs


a1, ..., ar

b1, ..., bs

∣∣∣∣q; z

 :=
∞∑

k=0

(a1, ...ar ; q)k

(b1, ...bs; q)k

zk

(q; q)k
(2.39)

which was first introduced by Heine in 1846.

We remark that the limit relations [30, 35, 36]

lim
q→1

1− qα

1− q
= α, lim

q→1

(qα; q)k

(1− q)k
= (α)k (2.40)

which constitute a crucial role for the theory of theq-analogues of the functions, lead to

lim
q−→1−

rφs


qa1, ..., qar

qb1, ..., qbs

∣∣∣∣q; (q− 1)1+s−rz

 =r Fs


a1, ..., ar

b1, ..., bs

; z

 . (2.41)

Another important limit properties forq-hypergeometric functions are given in [30, 35, 36]

lim
ar→∞

rφs


a1, ..., ar

b1, ..., bs

∣∣∣∣q;
z
ar

 = r−1φs


a1, ..., ar−1

b1, ..., bs

∣∣∣∣q; z

 , (2.42)

rφs


a1, ..., ar−1, µ

b1, ..., bs−1, µ

∣∣∣∣q; z

 = r−1φs−1


a1, ..., ar−1

b1, ..., bs−1

∣∣∣∣q; z

 . (2.43)

2.5 Transformation Formulas

This section includes some essential transformation formulas extracted from[30, 35, 36].

3φ2


q−n, a, b

d, e

∣∣∣∣q; q

 =
(e/a; q)n

(e; q)n
an

3φ2


q−n, a, d/b

d, aq1−n/e

∣∣∣∣q;
bq
e

 , (2.44)
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3φ2


q−n, a, b

d, e

∣∣∣∣q;
deqn

ab

 =
(e/a; q)n

(e; q)n
3φ2


q−n, a, d/b

d, aq1−n/e

∣∣∣∣q; q

 , (2.45)

2φ1


q−n, b

c

∣∣∣∣q; z

 =
(b; q)n

(c; q)n
q−n−(n

2)(−z)n
2φ1


q−n, c−1q1−n

b−1q1−n

∣∣∣∣q;
cqn+1

bz

 , (2.46)

2φ1


q−n, b

c

∣∣∣∣q; z

 = (q−nbz/c; q)n3φ2


q−n, c/b, 0

ccq/bz

∣∣∣∣q; q

 , (2.47)

2φ1


q−n, b

c

∣∣∣∣q; z

 =
(b−1c; q)n

(c; q)n
3φ2


q−n, b, bc−1q−nz

bc−1q1−n, 0

∣∣∣∣q; q

 , (2.48)

2φ1


q−n, b

c

∣∣∣∣q; z

 =
(b−1c; q)n

(c; q)n

(
bz
q

)n

3φ2


q−n, qz−1, c−1q1−n

bc−1q1−n,0

∣∣∣∣q; q

 , (2.49)

1φ1


q−n

a

∣∣∣∣q; z

 =
(q−1z)n

(a; q)n
2φ1


q−n, a−1q1−n

0

∣∣∣∣q;
aqn+1

z

 , (2.50)

3φ2


q−n, a, b

0, 0

∣∣∣∣q; q

 = an
2φ0


q−n, a

−

∣∣∣∣q;
bqn

a

 , (2.51)

3φ2


q−n, a, b

0, 0

∣∣∣∣q; q

 = (b; q)nan
2φ1


q−n, 0

b−1q1−n

∣∣∣∣q;
q
a

 , (2.52)

3φ2


q−n, b, −b

b2, q−nz

∣∣∣∣q;−z

 =
1

(q−nz; q)n
2φ1


q−n, q−n+1

qb2

∣∣∣∣q2; z2

 , (2.53)

2φ1


q−n, −q−nz

0

∣∣∣∣q;
qn+1

z

 = (−z)−nq(n
2)2φ0


q−n, q−n+1

−

∣∣∣∣q2;
z2

q

 , (2.54)

3φ2


q−n, qz−1

−

∣∣∣∣q;−qn

 = (z)−nqn+(n
2)2φ1


q−n, q−n+1

0

∣∣∣∣q2; z2

 . (2.55)
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CHAPTER 3

THE Q-POLYNOMIALS OF HYPERGEOMETRIC TYPE

There are several ways of introducing and classifying the classical orthogonal polynomials but

probably the best one is to start with the differential or difference equations that such polyno-

mials satisfy (see e.g. [3, 6, 35, 46, 48]). We deal here with the so-calledq-polynomials of the

Hahn class (see e.g. [4, 38]), solution of the so-called q-difference equation of hypergeomet-

ric type. In this chapter, we study on the hypergeometric type q-difference equation and we

introduce some characteristics along the same line with the definition 1.10. In order to do this,

we first pay our attention to the construction of the q-difference equation of hypergeometric

type.

3.1 Discrete Version of Differential Equation of Hypergeometric Type:

q-Difference Equation of Hypergeometric Type (q-EHT)

In this section, we begin with considering the discretization of the classical differential equa-

tion of hypergeometric type (EHT) by use of the Taylor expansion ofy(x) aboutx = 0

y(x+ h) = y(x) + hy′(x) +
h2

2!
y′′(x) +

h3

3!
y′′′(x) + ....

By defining the latticeh as (q− 1)x with 0 < q < 1 we have

y(qx) = y(x) + (q− 1)xy′(x) +
1
2!

(q− 1)2x2y′′(x) + ....

Substitutingq−1 instead ofq at the resulting expression and multiplying theq−1-expression

with q2 and then substracting this formq-expression, we approximate the first derivative

y′(x) ∼
1

1+ q
[Dqy(x) + qDq−1y(x)] as q→ 1, (3.1)
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and multiplying theq−1 expression withq, then adding this form toq expression gives

y′′(x) ∼
2q

1+ q
DqDq−1y(x) as q→ 1 (3.2)

with order (q − 1)2, where the operators denoted byDq andDq−1 imply q andq−1 Jackson

derivatives ofy(x) (2.1) and (2.2), respectively, [30, 36, 38, 53]. By inserting these derivative

operators into the classical EHT and using the operational equivalences

Dq = Dq−1 + (q− 1)xDqDq−1 (3.3)

and

DqDq−1 = q−1Dq−1Dq, (3.4)

we obtain theq-EHT

σ1(x; q)Dq−1Dqy(x,q) + τ(x,q)Dqy(x,q) + λ(q)y(x,q) = 0 (3.5)

where

σ1(x; q) :=
2

1+ q

[
σ(x) −

1
2

(q− 1)xτ(x)

]
, (3.6)

τ(x,q) := τ(x), (3.7)

λ(q) := λ, (3.8)

y(x,q) := y(x). (3.9)

It is clear that, the coefficientsσ1(x; q) andτ(x,q) of theq-EHT are polynomials of at most

2nd and 1st degree inx, respectively. Notice that theq-EHT in (3.5) approaches the classical

EHT asq→ 1.

The use of the relations between the operatorsDq andDq−1 in (3.3) and (3.4) makes it possible

to find an alternative representation of EHT,

σ2(x; q)DqDq−1y(x,q) + τ(x,q)Dq−1y(x,q) + λ(q)y(x,q) = 0 (3.10)

where

σ2(x,q) := q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]
. (3.11)

Notice also that (3.10) becomes the classical EHT asq→ 1. Henceforward we call the first

equation in (3.5) as theq-EHT of the 1st kind and the one in (3.10) as theq-EHT of the

2nd kind. We note that theq-EHT of the 1st and 2nd kinds are nothing else than the second

order linear difference equations of hypergeometric type on the linear exponential lattices
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x(s) = c1qs+ c2 andx(s) = c1q−s+ c2, respectively (for further details see e.g. [3, 46]). In the

following, we refer to the solutions of (3.5), (3.10) asq-classical orthogonal polynomials (or

justq-polynomials). Here and through out the thesis we assume 0< q < 1.

By using (3.3), (3.4) and (3.11) in (3.5) or (3.10) an alternativeq-difference equation equiva-

lent to (3.5) and (3.10) follows

σ2(x,q)Dqy(x,q) − qσ1(x,q)Dq−1y(x,q) + (q− 1)xλ(q)y(x,q) = 0. (3.12)

Theq-difference equations (3.5), (3.10) and (3.12) can be written as

σ2(x,q)y(qx,q) −
[
σ2(x,q) + q2σ1(x,q)

]
y(x,q) + q2σ1(x,q)y(q−1x,q)

+(q− 1)2x2λ(q)y(x,q) = 0 (3.13)

with the help of the operatorsDq andDq−1 defined by (2.1) and (2.2), respectively. Notice that

from (3.12) and (3.13)σ1 andσ2 are needed to classify theq-polynomials.

We introduce

σ1(x; q−1)DqDq−1y(x,q−1) + τ(x,q−1)Dq−1y(x,q−1) + λ(q−1)y(x,q−1) = 0 (3.14)

and

σ2(x; q−1)Dq−1Dqy(x,q−1) + τ(x,q−1)Dqy(x,q−1) + λ(q−1)y(x,q−1) = 0 (3.15)

where

σ2(x,q−1) = q−1σ1(x,q−1) + (q−1 − 1)xτ(x,q−1) (3.16)

which we call these two pairs of equations asq−1-EHT of the 1st kind andq−1-EHT of the

2nd kind, respectively.

Remark 3.1 Notice that analysing the q-EHT of the 1st and 2nd kinds with0 < q < 1 is

equivalent to q−1-EHT with s= q−1 > 1.

Remark 3.2 Throughout the thesis, we define the coefficients of the q-EHT of the 1st and 2nd

kinds as the following Taylor polynomials by taking into account that degσ1 ≤ 2, degσ2 ≤ 2

and degτ = 1:

σ1(x,q) =
1
2
σ′′1 (0,q)x2 + σ′1(0,q)x+ σ1(0,q), (3.17)

σ2(x,q) =
1
2
σ′′2 (0,q)x2 + σ′2(0,q)x+ σ2(0,q), (3.18)

τ(x,q) = τ′(0,q)x+ τ(0,q). (3.19)
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Remark 3.3 Notice that by using the relation betweenσ1(x,q) andσ2(x,q) defined by (3.11),

the coefficients have relations

1
2
σ′′2 (0,q) = q

1
2
σ′′1 (0,q) + (q− 1)τ′(0,q), (3.20)

σ′2(0,q) = qσ′1(0,q) + (q− 1)τ(0,q), (3.21)

σ2(0,q) = qσ1(0,q). (3.22)

In accordance with [3, 6, 43, 47], we can determine the degrees of the coefficientsσ1 and

σ2 in (3.12) from the relation in (3.11), using the fact thatσ1(0,q) = 0 ⇔ σ2(0,q) = 0

(σ1(0,q) , 0 ⇔ σ2(0,q) , 0). Therefore we have two classes: the non-zero class which

corresponds to the case whenσ1(0,q) , 0⇔ σ2(0,q) , 0 and the zero class whenσ1(0,q) =

0⇔ σ2(0,q) = 0 which lead to the following proposition.

Proposition 3.4 Letρ(x,q) be the q-weight function satisfying the q-Pearson equation (3.24)

withσ1(x,q) = 1
2σ
′′
1 (0,q)x2+σ′1(0,q)x+σ1(0,q) andτ(x,q) = τ′(0,q)x+τ(0,q), τ′(0,q) , 0.

If σ1(0,q) , 0, the following cases arise

(1a) If deg[σ1(x,q)] < 2, then deg[σ2(x,q)] = 2.

(1b) If deg[σ1(x,q)] = 2, then deg[σ2(x,q)] ≤ 2.

If σ1(0,q) = 0, then:

(2a) Ifσ1(x,q) = 1
2σ
′′
1 (0,q)x2, σ′′1 (0,q) , 0, then deg[σ2(x,q)] = 2, or deg[σ2(x,q)] = 1.

(2b) If σ1(x,q) = 1
2σ
′′
1 (0,q)x2 + σ′1(0,q)x, σ′′1 (0,q) , 0,σ′1(0,q) , 0, then deg[σ2(x,q)] = 2

or deg[σ2(x,q)] = 1.

(2c) If σ1(x,q) = σ′1(0,q)x, σ′1(0,q) , 0, then deg[σ2(x,q)] = 2.

Proof. (1a) If deg[σ1(x,q)] < 2. Then,σ2(x,q) = (q − 1)τ′(0,q)x2 + .... It is obvious that

deg[σ2(x,q)] = 2 sinceτ′(0,q) , 0.

(1b) If deg[σ1(x,q)] = 2, thenσ′′1 (0,q) , 0. Using the relations of the coefficients in (3.20),

(3.21) and (3.22) withτ′(0,q) , −
1
2σ
′′
1 (0,q)

1− q−1
provideσ′′2 (0,q) , 0⇔ deg[σ2(x,q)] = 2 and if

τ′(0,q) = −
1
2σ
′′
1 (0,q)

1− q−1
, then,σ′′2 (0,q) = 0. In case ofτ(0,q) , −

σ′1(0,q)

1− q−1
⇔ deg[σ2(x,q)] = 1

and whenτ(0,q) = −
σ′1(0,q)

1− q−1
⇔ deg[σ2(x,q)] = 0.

(2a) Inserting the polynomialsσ1(x,q), σ1(0,q) = 0 andτ(x,q) into (3.11) gives,

σ2(x,q) = q

[
1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
x2 + (1− q−1)τ(0,q)x.
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In the case ofτ′(0,q) , −
1
2σ
′′
1 (0,q)

1− q−1
, σ′′2 (0,q) , 0 then deg[σ2(x,q)] = 2. If τ′(0,q) =

−

1
2σ
′′
1 (0,q)

1− q−1
, σ′′2 (0,q) = 0, then deg[σ2(x,q)] = 1.

(2b) This case is obtained in a similar way as in part (a).

(2c) σ1(x,q) = σ′1(0,q)x ⇒ σ2(x,q) = (q − 1)τ′(0,q)x2 +
[
σ′1(0,q) + (1− q−1)τ(0,q))

]
x,

τ′(0,q) , 0. �

3.2 Theq-Weight Function

In this section, we discuss theq-weight functions for polynomial solutions of two pairs of the

q-EHT. In order to do this, consider theq-EHT of the 1st and 2nd kinds in their self-adjoint

forms

Dq

[
σ1(x,q)ρ1(x,q)Dq−1y(x)

]
+ q−1λ(q)ρ1(x,q)y(x) = 0 (3.23)

whereρ1(x,q) is theq-weight function satisfying the so-calledq-Pearson equation

Dq
[
σ1(x,q)ρ1(x,q)

]
= q−1τ(x,q)ρ1(x,q) (3.24)

and

Dq−1

[
σ2(x,q)ρ2(x,q)Dqy(x)

]
+ qλ(q)ρ2(x,q)y(x) = 0 (3.25)

in which theq-weight functionρ2(x,q) satisfies theq−1-Pearson equation

D−1
q

[
σ2(x,q)ρ2(x,q)

]
= qτ(x,q)ρ2(x,q). (3.26)

Remark 3.5 By use of (3.11), the q-Pearson equation and the q−1-Pearson equation can be

rewritten as

ρ1(qx,q)
ρ1(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

(3.27)

and

ρ2(q−1x,q)
ρ2(x,q)

=
σ2(x,q) + (1− q)xτ(x,q)

σ2(q−1x,q)
=

qσ1(x,q)
σ2(q−1x,q)

, (3.28)

respectively. It is clear thatρ1(x,q) ≡ ρ2(x,q). Then without loss of generality we define

ρ1(x,q) = ρ2(x,q) := ρ(x,q).
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3.2.1 Computation of theq-Weight Functions

In this part, our aim is to calculate theq-weight functions corresponding to the orthogonal

polynomials together with
〈
ρ,P2

n

〉
, 0, n ≥ 0. The following lemma allows us to find the

explicit form of theq-weight function.

Lemma 3.6 Let f satisfy the relation

f (qx; q)
f (x; q)

=
a(x; q)
b(x; q)

, (3.29)

where a and b are given functions, and assume that the limits

lim
x→0

f (x; q) = f (0,q) and lim
x→∞

f(x; q) = f(∞,q)

exist. Then, f admits the following two q-integral representations, in the casethe correspond-

ing integrals converge,

f (x,q) = f (0,q) exp

[∫ x

0

1
(q− 1)t

log

[
a(t,q)
b(t,q)

]
dqt

]
(3.30)

where the q-integral is defined by (2.23), or

f (x,q) = f (∞,q) exp

[∫ ∞

x

1
(1− q−1)t

log

[
a(t,q)
b(t,q)

]
dq−1t

]
(3.31)

where the q−1-integral is identified by (2.31).

Proof. By applying the logarithmic function to (3.29), multiplying the obtained expression

by 1/(q− 1)t and taking theq-integral we arrive at
∫ x

0

1
(q− 1)t

log

[
f (qt,q)
f (t,q)

]
dqt =

∫ x

0

1
(q− 1)t

log

[
a(t,q)
b(t,q)

]
dqt.

But
∫ x

0

1
(q− 1)t

log

[
f (qt,q)
f (t,q)

]
dqt = lim

n→∞

n∑

j=0

[
log

(
f (q j x,q)

)
− log

(
f (q j+1x,q)

)]
(3.32)

= log
[
f (x,q)

]
− log

[
f (0,q)

]
. (3.33)

The last equality follows from the fact thatf (qn+1x,q) → f (0,q) asn→ ∞, 0 < q < 1. The

other representation can be proven in a similar way. �

Notice that we can use (3.30) in order to computeρ satisfying theq-Pearson equation for all

possible degrees of the polynomialsσ1 andσ2 identified by the Proposition 3.4.
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At first, we deal with the non-zero case, that is, (σ1(0,q) , 0, σ2(0,q) , 0) together with

Proposition 3.4 which leads to the following well-known results [6, 42].

Theorem 3.7 Let (Pn)n≥0 be a solution of the q-EHT in self-adjoint form in (3.23) with the

q-weight functionρ. If a1(q), b1(q) are the non-zero roots ofσ1(x,q) and a2(q), b2(q) of

σ2(x,q). Then, we obtain the following situations for the q-weight function as Table 3.1 and

Table 3.2.

Table 3.1: Theq-weight function for non-zero case according as the degrees ofσ1 andσ2

σ1(x,q) σ2(x,q) q-Weight function

(1) 1
2σ
′′
1 (0,q)[x− a1(q)][( x− b1(q))], 1

2σ
′′
2 (0,q)[x− a2(q)][ x− b2(q)], (a−1

1 (q)qx, b−1
1 (q)qx; q)∞

(a−1
2 (q)x, b−1

2 (q)x; q)∞
1
2σ
′′
1 (0,q)a1(q)b1(q) , 0 1

2σ
′′
2 (0,q)a2(q)b2(q) , 0

(2) 1
2σ
′′
1 (0,q)[x−a1(q)][( x−b1(q))], σ′2(0,q)[x−a2(q)], (a−1

1 (q)qx, b−1
1 (q)qx; q)∞

(a−1
2 (q)x; q)∞

1
2σ
′′
1 (0,q)a1(q)b1(q) , 0 σ′2(0,q)a2(q) , 0

(3) 1
2σ
′′
1 (0,q)[x−a1(q)][( x−b1(q))], σ2(0,q),

(a−1
1 (q)qx, b−1

1 (q)qx; q)∞1
2σ
′′
1 (0,q)a1(q)b1(q) , 0 σ2(0,q) , 0

(4) σ′1(0,q)[x−a1(q)], 1
2σ
′′
2 (0,q)[x−a2(q)][ x−b2(q)], (a−1

1 (q)qx; q)∞
(a−1

2 (q)x, b−1
2 (q)x; q)∞σ1(0,q)a1(q) , 0 1

2σ
′′
2 (0,q)a2(q)b2(q) , 0

(5) σ1(0,q), 1
2σ
′′
2 (0,q)[x−a2(q)][ x−b2(q)], 1

(a−1
2 (q)x, b−1

2 (q)x; q)∞σ1(0,q) , 0 1
2σ
′′
2 (0,q)a2(q)b2(q) , 0

Table 3.2: Alternativeq-weight function for non-zero case according as the degrees of the
polynomial coefficients

q-Weight function qα

(1) ρ(x,q) = xα
(a2(q)q/x, b2(q)q/x; q)∞
(a1(q)/x, b1(q)/x; q)∞

1
2σ
′′
2 (0,q)q−3

1
2σ
′′
1 (0,q)

(2) ρ(x,q) =
xα

√
xlogq x−1

(a2(q)q/x; q)∞
(a1(q)/x, b1(q)/x; q)∞

σ′2(0,q)q−3

1
2σ
′′
1 (0,q)

(3) ρ(x,q) =
xα

xlogq x−1

1
(a1(q)/x, b1(q)/x; q)∞

σ2(0,q)q−3

1
2σ
′′
1 (0,q)

(4) ρ(x,q) = xα
√

xlogq x−1 (a2(q)q/x, b2(q)q/x; q)∞
((a1(q)/x; q)∞

1
2σ
′′
2 (0,q)q−2

σ′1(0,q)

(5) ρ(x,q) = xαxlogq x−1(a2(q)q/x, b2(q)q/x; q)∞
1
2σ
′′
2 (0,q)q−1

σ1(0,q)
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Proof. Proof is based on the q-Pearson equation defined by (3.27). Considercase 1 that is,

σ1(x,q) =
1
2
σ′′1 (0,q)

[
x− a1(q)

] [
x− b1(q)

]
,

σ2(x,q) = q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]
=

1
2
σ′′2 (0,q)

[
x− a2(q)

] [
x− b2(q)

]
,

taking into accountq−1σ2(0,q) = σ1(0,q)⇒ q−1 1
2σ
′′
2 (0,q)a2(q)b2(q) = 1

2σ
′′
1 (0,q)a1(q)b1(q),

i.e., the polynomialsq−1σ2(x,q) andσ1(x,q) have same independent term, we can write the

q-Pearson equation as the following form

ρ(qx,q)
ρ(x,q)

=
q−1 1

2σ
′′
2 (0,q)(x− a2(q))(x− b2(q))

1
2σ
′′
1 (0,q)(qx− a1(q))(qx− b1(q))

=
(1− a−1

2 (q)x)(1− b−1
2 (q)x)

(1− a−1
1 (q)qx)(1− b−1

1 (q)qx)
(3.34)

from whichρ follows from (3.30) as

ρ(x,q) = ρ(0,q) exp

{∫ x

0

1
(q− 1)t

[
ln(1− a−1

2 (q)t) + ln(1− b−1
2 (q)t)

− ln(1− a−1
1 (q)qt) − ln(1− b−1

1 (q)qt)
]
dqt

}
. (3.35)

Now with the definition (2.23) of the q-Jackson integralρ is equivalent to

ρ(x,q) = ρ(0,q) exp


∞∑

k=0

ln(1− a−1
1 (q)qk+1x) + ln(1− b−1

1 (q)qk+1x)

− ln (1− a−1
2 (q)qkx) − ln (1− b−1

2 (q)qkx)

}

= ρ(0,q) exp

ln
[ ∞∏

k=0

(1− a−1
1 (q)qk+1x)(1− b−1

1 (q)qk+1x)
]

− ln
[ ∞∏

k=0

(1− a−1
2 (q)qkx)(1− b−1

2 (q)qkx)
]


= ρ(0,q)
(a−1

1 (q)qx,b−1
1 (q)qx; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
(3.36)

in which a1(q)q−1−k, b1(q)q−1−k, k ≥ 0 are zeros anda2(q)q− j , b2(q)q− j , j ≥ 0 are poles with

a1(q),b1(q) ∈ C − {0} anda2(q),b2(q) ∈ C − {0}. Notice that the function obtained in (3.36)

is meromorphic and thus, it is continuous withρ(0,q) , 0, then we can take without loss of

generality thatρ(0,q) = 1.

All the other cases in Table 3.1 can be determined in a similar manner. However,the cases

defined in Table 3.2 are not based on the same idea. In order to identify those cases we

consider case 2 in Table 3.2 satisfying the q-Pearson equation

ρ(qx,q)
ρ(x,q)

=
a(1− a2(q)/x)

x(1− q−1a1(q)/x)(1− q−1b1(q)/x)
(3.37)
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wherea =
q−3σ′2(0,q)

1
2σ
′′
1 (0,q)

. We can defineρ as a product of two functionsρ(x,q) = f (x,q)g(x,q)

⇒
ρ(qx,q)
ρ(x,q)

=
f (qx,q)
f (x,q)

g(qx,q)
g(x,q)

where
f (qx,q)
f (x,q)

=
a
x

and
g(qx,q)
g(x,q)

=
(1− a2(q)/x)

(1− q−1a1(q)/x)(1− q−1b1(q)/x)
. To find the corre-

sponding functionf (x,q), we use the functionh(β) : [0,∞) → R given in [6] identified by

Häcker

h(β)(x) =

√
xlogxβ

q −β, β , 0.

We assume thatf (x,q) =
|x|α

h(1)(x)
, α ∈ C − {0} whereqα = a

f (qx,q) =
qα |x|α

x

√
xlogq x− 1

=
a
x

f (x,q).

For the computation ofg(x,q), the equation (3.30) does not work since it gives a divergent

infinite product. Then, we use (3.31) which leads to

g(qx,q)
g(x,q)

=
(1− a2(q)/x)

(1− q−1a1(q)/x)(1− q−1b1(q)/x)
⇔

g(q−1x,q)
g(x,q)

=
(1− a1(q)/x)(1− b1(q)/x)

(1− qa2(q)/x)
,

we attain the desired result

g(x,q)
g(∞,q)

= exp

[∫ ∞

x

1
(1− q−1)t

ln

[
(1− a1(q)/t)(1− b1(q)/t)

(1− qa2(q)/t)

]
dq−1t

]

= exp

 lim
n→∞

n∑

j=0

[
ln(1− q1+ ja2(q)/x) − ln(1− q ja1(q)/x) − ln(1− q jb1(q)/x)

]


=
(qa2(q)/x; q)∞

(a1(q)/x,b1(q)/x; q)∞
. (3.38)

Obviously, the product ing(x,q) is uniformly convergent in any compact subset of the com-

plex plane that does not include the points{qna1(q),n ≥ 0}, {qnb1(q),n ≥ 0} and{0}. More-

over, this product is convergent asx → ∞, thusg(∞,q) = c , 0 and hence without loss of

generality we can take it as 1. Then theq-weight function can be arranged as

ρ(x,q) = f (x,q)g(x,q) =
|x|α

√
xlogq x−1

(qa2(q)/x; q)∞
(a1(q)/x,b1(q)/x; q)∞

. (3.39)

The other cases defined in Table 3.2 can be constructed analogously. �

The next step is to compute theq-weight function identified by (3.32) and (3.31) by taking

account of the zero case;σ1(0,q) = σ2(0,q) = 0 together with all possible degrees identified

by the Proposition 3.4. In order to do this, we establish similar framework as follows:
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Theorem 3.8 Let (Pn)n≥0 be a solution of the q-EHT in self-adjoint form in (3.23) with the

q-weight functionρ. If a1(q) and b1(q) are the zeros ofσ1(x,q) and a2(q) and b2(q) ofσ2(x,q)

with b1(q) = 0 and b2(q) = 0. Then we obtain the Table 3.3 and Table 3.4 [6, 42].

Table 3.3: Theq-weight function for zero case according as the degrees ofσ1 andσ2

σ1(x,q) σ2(x,q) q-Weight function qα

(1) 1
2σ
′′
1 (0,q)x2, 1

2σ
′′
2 (0,q)x[x− a2(q)], |x|α√

xlogq x−1

1

(a−1
2 (q)x; q)∞

−
q−3 1

2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)1

2σ
′′
1 (0,q) , 0 1

2σ
′′
2 (0,q)a2(q) , 0

(2) 1
2σ
′′
1 (0,q)x2, σ′2(0,q)x,

|x|α
√

xlogq
1
x+1

σ′2(0,q)q−3

1
2σ
′′
1 (0,q)1

2σ
′′
1 (0,q) , 0 σ′2(0,q) , 0

(3) 1
2σ
′′
1 (0,q)x[x−a1(q)], 1

2σ
′′
2 (0,q)x[x−a2(q)],

|x|α
(a−1

1 (q)qx; q)∞
(a−1

2 (q)x; q)∞

1
2σ
′′
2 (0,q)q−2a2(q)

1
2σ
′′
1 (0,q)a1(q)1

2σ
′′
1 (0,q)a1(q) , 0 1

2σ
′′
2 (0,q)a2(q) , 0

(4) 1
2σ
′′
1 (0,q)x[x−a1(q)], σ′2(0,q)x,

|x|α (a−1
1 (q)qx; q)∞ −

q−2σ′2(0,q)
1
2σ
′′
1 (0,q)a1(q)1

2σ
′′
1 (0,q)a1(q) , 0 σ′2(0,q) , 0

(5) 1
2σ
′′
1 (0,q)x[x−a1(q)] , 1

2σ
′′
2 (0,q)x2,

|x|α
√

xlogq x−1(a−1
1 (q)qx; q)∞ −

q−2 1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)1

2σ
′′
1 (0,q)a1(q) , 0 1

2σ
′′
2 (0,q) , 0

(6) σ′1(0,q)x, 1
2σ
′′
2 (0,q)x[x−a2(q)],

|x|α
1

(a−1
2 (q)x; q)∞

−
q−2 1

2σ
′′
2 (0,q)a2(q)

σ′1(0,q)σ′1(0,q) , 0 1
2σ
′′
2 (0,q)a2(q) , 0

(7) σ′1(0,q)x, 1
2σ
′′
2 (0,q)x2,

|x|α
√

xlogq x−1 q−2 1
2σ
′′
2 (0,q)

σ′1(0,q)σ′1(0,q) , 0 1
2σ
′′
2 (0,q) , 0

Table 3.4: Alternativeq-weight function for zero case according as the degrees of the poly-
nomial coefficients

q-Weight function qα

(1) ρ(x,q) = |x|α (qa2(q)/x; q)∞
q−3 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

(3) ρ(x,q) = |x|α
(qa2(q)/x; q)∞
(a1(q)/x; q)∞

q−2 1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

(4) ρ(x,q) =
|x|α√

xlogq x−1

1
(a1(q)/x; q)∞

q−2σ′2(0,q)
1
2σ
′′
1 (0,q)

(5) ρ(x,q) = |x|α
1

(a1(q)/x; q)∞

q−2 1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

(6) ρ(x,q) = |x|α
√

xlogq x−1(qa2(q)/x; q)∞
q−2 1

2σ
′′
2 (0,q)

σ′1(0,q)

30



Proof. We compute theq-weight function by taking into account of the zero case identified

by the proposition 3.4 as two separate states since the ratio inq- Pearson equation differs [6]

whether the polynomialsσ1(x,q) andσ2(x,q) have zero roots with multiplicity two or not.

Starting with theq-Pearson equation (3.24), we consider

ρ(qx,q)
ρ(x,q)

=
q−1σ2(x,q)
σ1(qx,q)

=
q−1xσ02(x,q)
qxσ01(qx,q)

whereσ2(x,q) = xσ02(x,q) andσ1(qx,q) = xσ01(qx,q). Notice that constant terms of the

polynomialsσ01 andσ02 may not be equivalent. We suppose that theq-weight function can

be defined asρ(x,q) = |x|α ρ0(x,q), α ∈ C − {0} where

ρ0(qx,q)
ρ0(x,q)

=
σ02(x,q)
σ01(qx,q)

.

Then, according to the cases defined in Table 3.3 we use (3.30) to computeρ0(x,q). To

show how it happens, we consider the 3th case which has theq-weight function of the form

ρ(x,q) = |x|α ρ0(x,q) whereqα =
q−2 1

2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)a1(q)

with

σ1(x,q) =
1
2
σ′′1 (0,q)x2 + σ1(0,q)x =

1
2
σ′′1 (0,q)x[x− a1(q)],

σ2(x,q) =
1
2
σ′′2 (0,q)x2 + σ2(0,q)x =

1
2
σ′′2 (0,q)x[x− a2(q)]

and
ρ0(qx,q)
ρ0(x,q)

=
(1− a−1

2 (q)x)

(1− a−1
1 (q)qx)

. (3.40)

By using (3.30) for (3.40) we get

ρ0(x,q) =
(a−1

1 (q)qx,q)∞

(a−1
2 (q)x,q)∞

, (3.41)

then

ρ(x,q) = |x|α
(a−1

1 (q)qx,q)∞

(a−1
2 (q)x,q)∞

, qα =
q−2 1

2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)a1(q)

,

which is theq-weight function for 3th case given in Table 3.3. So as to determine theq-weight

function defined in Table 3.4 we concern with

ρ(x,q) = |x|α ρ0(x,q), α = logq

q−2σ′′2 (0,q)

σ′′1 (0,q)

where
ρ0(qx,q)
ρ0(x,q)

=
(1− a2(q)/x)

(1− a1(q)q−1/x)
⇔
ρ0(q−1x,q)
ρ0(x,q)

=
(1− a1(q)/x)
(1− a2(q)q/x)

. (3.42)

By using (3.31) we arrive at

ρ0(x,q) =
(a2(q)q/x,q)∞
(a1(q)/x,q)∞

, (3.43)
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then

ρ(x,q) = |x|α
(a2(q)q/x,q)∞
(a1(q)/x,q)∞

, α = logq

q−2σ′′2 (0,q)

σ′′1 (0,q)
.

At last, we need to calculate theq-weight function for the 2nd and 7th case where the function

identified by Ḧackerh(β) : [0,∞)→ R

h(β)(x) =

√
xlogxβ

q −β, β , 0 (3.44)

is used. Applying the propertyh(β)(qx) = xβh(β)(x), for all x ≥ 0 providesρ0(x,q) = h(1)(x)

for the 2nd case, andρ0(x,q) = h(−1)(x) for the 7th [6].

The other cases can be obtained analogously. �

Remark 3.9 We remark that the q-Pearson equation have solutions which are different from

the ones given in the Table 3.1, Table 3.2 and Table 3.3, Table 3.4. This different forms arise

from the structure of the q-Pearson equation. The procedure of computing new representations

is to define the q-weight function as the product of two or more functions satisfying a q-

Pearson equation. Then, in order to determine the solutions we use the suitable identity

among (3.30), (3.31) or the function identified by Häcker.

3.3 Polynomial Solutions of theq-EHT of the 1st kind

Polynomial solutions of theq-EHT of the 1st kind namedq-polynomials of the 1st kind are

presented by showing that allq-derivatives of the functions of the hypergeometric type are

also functions of hypergeometric type which can be proved in the following theorem.

Theorem 3.10 Let vk(x,q) = D(k)
q−1y(x,q) with v0(x,q) = y(x,q), then vk(x,q), k = 0,1, ... are

also solutions of a q-EHT.

Proof. Applying Dq−1 to theq-EHT in (3.5) and by use of the product rule identified by (2.12)

and relation between the operators in (3.4), we have

σ11(x; q)Dq−1Dqv1(x,q) + τ11(x,q)Dqv1(x,q) + λ11(q)v1(x,q) = 0
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where,

σ11(x; q) = σ1(q−1x,q),

τ11(x,q) = τ(x,q) + Dq−1σ1(x,q),

λ11(q) = q−1[λ(q) + Dq−1τ(x,q)].

It is seen thatv1(x,q) also satisfies aq-EHT of the 1st kind . By applying theq−1-derivative

to theq-EHT of the 1st kind successively, theq-EHT for vk(x,q), k = 0,1, ... is determined in

the form

σ1k(x; q)Dq−1Dqvk(x,q) + τ1k(x,q)Dqvk(x,q) + λ1k(q)vk(x,q) = 0 (3.45)

where,

σ1k(x; q) = σ1(q−kx,q), (3.46)

τ1k(x,q) = τ1k−1(x,q) + Dq−1σ1k−1(x,q), (3.47)

λ1k(q) = q−1
[
λ1k−1(q) + Dq−1τ1k−1(x,q)

]
(3.48)

with σ10(x; q) := σ1(x; q), τ10(x,q) = τ(x,q) andλ10(q) = λ(q). It is obvious thatσ1k(x; q)

and τ1k(x,q) are the polynomials of degree at most two and exactly one, respectively and

λ1k(q) is a constant. Then,vk(x,q) also satisfies aq-EHT of the 1st kind. �

Moreover, by solving the coefficientsτ1k(x,q) andλ1k(q) successively, explicit forms

τ1k(x,q) = τ(x,q) +
σ1(q−kx,q) − σ1(x,q)

(q−1 − 1)x
(3.49)

λ1k(q) = q−k
[
λ(q) + [k]qτ

′(0,q) +
1
2

[k− 1]q−1[k]qσ
′′
1 (0,q)

]
(3.50)

are determined in which [k]q and [k]q−1 are theq andq−1-analogues ofk defined by (2.7) and

(2.9), respectively.

Notice that by means of the relation betweenσ′′2 (0,q) andσ′′1 (0,q) identified by (3.20);

σ′′2 (0,q) = q
[
σ′′1 (0,q) + 2(1− q−1)τ′(0,q)

]
,

λ1k(q) = q−k
[
λ(q) +

[k]q

2(1− q−1)

(
q−1σ′′2 (0,q) − q−(k−1)σ′′1 (0,q)

)]
(3.51)

is determined in terms ofσ1 andσ2. Now condition for polynomial solutions of theq-EHT

of the 1st kind are defined in the following theorem.
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Theorem 3.11 The q-EHT of the 1st kind have polynomial solutions, say y(x) = P1n(x,q), of

degree n if and only if

λ(q) := λn(q) = −[n]q

[
τ′(0,q) +

1
2

[n− 1]q−1σ′′1 (0,q)

]
, n = 0,1, .... (3.52)

Proof. For specific value ofλ(q) given in (3.52) makesλ1n(q) = 0. Then, theq-EHT of the

1st kind forvn(x,q) has a constant solutionc. Sincevn(x,q) = D(n)
q−1y(x) wherey(x) is the

solution of theq-EHT of the 1st kind andvn(x,q) = c, thenD(n)
q−1y(x) = c from which we

obtainy(x) := P1n(x,q) is a polynomial of degreen by performing q-integral successively

[30, 53]. To prove the converse of the theorem, suppose that theq-EHT of the 1st kind has

polynomial solutiony(x) := P1n(x,q), thenD(n)
q−1P1n(x,q) = c satisfies aq-EHT of the 1st kind

if and only if λ1n(q) = 0, which completes the proof. �

Proposition 3.12 Letλ1nk(q) = q−k
[
λn(q) + [k]qτ

′(0,q) + 1
2[k− 1]q−1[k]qσ

′′
1 (0,q)

]
be the co-

efficient of the q-EHT in (3.45) for D(k)
q−1yn(x) := vkn(x,q). Then,

λ1nk(q) = −[n− k]q

(
τ′(0,q) + [n+ k− 1]q−1

1
2
σ′′1 (0,q)

)
, λ1n0(q) = λn(q). (3.53)

Proof. Proof is trivial by use ofλn(q) defined by (3.52) and substituting this value inλ1nk. �

Remark 3.13 It is possible to write the q-EHT of the 1st kind for vkn(x,q) in self-adjoint form

Dq

[
σ1k(x,q)ρ1k(x,q)Dq−1vkn(x,q)

]
+ q−1λ1nk(q)ρ1k(x,q)vkn(x,q) = 0 (3.54)

where vkn(x,q) =
(
D(k)

q−1Pn(x; q)
)
. Here, the q-weight functionρ1k(x,q) is the solution of the

q-Pearson equation

Dq
[
σ1k(x,q)ρ1k(x,q)

]
= q−1τ1k(x,q)ρ1k(x,q). (3.55)

Proposition 3.14 Letρ(x,q) be a solution of (3.24) andρ1n(x,q) a solution of (3.55). Then,

ρ1n(x,q) = σ1n−1(x,q)ρ1n−1(x,q) = ... =
n−1∏

k=0

σ1(q−kx,q)ρ(x,q), (3.56)

ρ10(x,q) = ρ1(x,q) = ρ(x,q).

Proof. Starting from (3.55) and rewriting it in the equivalent form

ρ1n(qx,q)σ1n(qx,q)

ρ1n(x,q)
= σ1n(x,q) + (1− q−1)xτ1n(x,q) (3.57)

34



and substituting (3.46) and (3.47) to the right hand side of (3.57)

σ1n−1(x,q)ρ1n−1(x,q)

ρ1n(x,q)
=
σ1n−1(qx,q)ρ1n−1(qx,q)

ρ1n(qx,q)
= cn(x)

is obtained wherecn(x) = cn(qx). Since it is enough to find a particular solution of theq-

Pearson equation forρ1n(x,q) (3.56) then we may takecn(x) = 1 which makes

ρ1n(x,q) = σ1n−1(x,q)ρ1n−1(x,q).

Thus, successive solution gives

ρ1n(x,q) = σ1(q−(n−1)x,q)...σ1(q−1x,q)σ1(x,q)ρ(x,q) =
n−1∏

k=0

σ1(q−kx,q)ρ(x,q).

�

3.3.1 The Rodrigues Formula for Polynomial Solutions of theq-EHT of the 1st kind

The representation of the polynomial solutions is characterized by the so-called Rodrigues

formula describing in the following theorem.

Theorem 3.15 Let ρ(x,q) be the q-weight function defined by the q-Pearson equation (3.24)

andρ1n(x,q) by (3.56). Then,

P1n(x,q) = qnB1n(q)
Dn

q
[
ρ1n(x,q)

]

ρ(x,q)
(3.58)

where

B1n(q) = (−1)n
[1]q−1[2]q−1...[n]q−1

λ1nn−1(q)λ1nn−2(q)...λ1n0(q)
P(n)

10
(q) (3.59)

stands for normalization constant with P(n)
10

(q) = 1
[1]n

q−1
Dn

q−1P1n(x,q).

Proof. By using (3.56) we consider (3.54) forP(n)
10

(x,q) := 1
[1]n

q−1
Dn

q−1P1n(x,q)= 1
[1]n

q−1
vnn where

[1](n)
q−1 = [1]q−1[2]q−1...[n]q−1

Dq

[
ρ1n(x,q)P(n)

10
(x,q)

]
= −

q−1

[1]q−1
λ1nn−1(q)

[
ρ1n−1(x,q)P(n−1)

11
(x,q)

]
.

Then applying the operatorDq successively. we obtain

D2
q

[
ρ1n(x,q)P(n)

10
(x,q)

]
= −

q−2

[1]q−1[2]q−1
λ1nn−1(q)λ1nn−2(q)

[
ρ1n−2(x,q)P(n−2)

12
(x,q)

]

D3
q

[
ρ1n(x,q)P(n)

10
(x,q)

]
=

q−3

[1]q−1[2]q−1[3]q−1
λ1nn−1(q)...λ1nn−3(q)

[
ρ1n−3(x,q)P(n−3)

13
(x,q)

]

...

Dn
q

[
ρ1n(x,q)P(n)

10
(x,q)

]
=

(−1)nq−n

[1]q−1[2]q−1...[n]q−1
λ1nn−1(q)...λ1n0(q)

[
ρ10(x,q)P(0)

1n
(x,q)

]
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which is the desired result withλ1n0(q) := λn(q), ρ10(x,q) := ρ(x,q), P(0)
1n

(x,q) := P1n(x,q)

andP(n)
10

(x,q) := P(n)
10

(q) asP(n)
10

(q) is independent ofx. �

Remark 3.16 Notice that the normalization constant defined by (3.59) can be written in the

form

B1n(q) =
q−(

n
2)

∏n−1
k=0

[
τ′(0,q) + [n+ k− 1]q−1

1
2σ
′′
1 (0,q)

]P(n)
10

(q) (3.60)

by using the expression forλ1nk defined by (3.53) and the relation between[k]q and [k]q−1 in

(2.10).

Proposition 3.17 Normalization constant B1n(q) presented in the Rodrigues formula (3.59)

can be rewritten for monic polynomials (P(n)
10

(q) = 1) as

B1n(q) =
(−1)n(1− q−1)nq2(n

2)

(1
2σ
′′
1 (0,q))n

(
qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q); q

)
n

(3.61)

where a1(q),b1(q) are the roots of the polynomialσ1(x,q) and a2(q),b2(q) of the polynomial

σ2(x,q) and(a,q)n is the q-shifted factorial identified by (2.15).

Proof. Insertingλ1nk(q), for k = 0,1, ...,n− 1 into the product gives

n−1∏

k=0

λ1nk(q) = (−1)n[1]q...[n]q

n−1∏

k=0

(
τ′(0,q) + [n+ k− 1]q−1

1
2
σ′′1 (0,q)

)
.

Later, we substitute this value into the normalization constant (3.59) with considering the

property betweenq-number andq−1-number (2.10) and we arrive at the following expression

B1n(q) =
q−(

n
2)

(
τ′(0,q) + [2n− 2]q−1

1
2σ
′′
1 (0,q)

)
...

(
τ′(0,q) + [n− 1]q−1

1
2σ
′′
1 (0,q)

) .

Then, by using the relation defined by (3.20) and (3.22), we get

n−1∏

k=0

(
τ′(0,q)+

1
2

[n+ k− 1]q−1σ′′1 (0,q)

)
=

q−3(n
2)
(
−1

2σ
′′
1 (0,q)

)n

(1− q−1)n

(
qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q); q

)
n

where
(
n
2

)
= n(n − 1)/2. Afterwards, substituting this product into the above equality for

B1n(q), result is obtained. �

Rodrigues formula is particularly useful to identify the explicit expression for the polynomials

P1n. Alternatively, we introduce another representation of the polynomials in the following

proposition by means of the following identity

Dn
q f (x) =

1
(1− q)nxn

n∑

k=o

(−1)kqk(k+1)/2−nk
[
n
k

]
q

f (qkx) (3.62)
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where
[
n
k

]
q

is q-binomial identified by (2.13).

Proposition 3.18 Let Dn
q f (x) be given with (3.62). Then,

P1n(x,q) =
qnB1n(q)

∏n−1
i=0 σ1(q−i x,q)

(1− q)nxn

n∑

k=0

(−1)kqk(k+1)/2−nk−k
[
n
k

]
q

×

∏k−1
i=0 σ2(qi x,q)

∏k−1
i=0 σ1(q−(n−1−i)x,q)

(3.63)

where B1n(q) is the normalization constant defined by (3.60).

Proof. PuttingDn
q f (x) given with (3.62) into the Rodrigues formula, we arrive at the following

representation ofP1n

P1n(x,q) =
qnB1n(q)

(1− q)nxn

n∑

k=0

(−1)kqk(k+1)/2−nk−k
[
n
k

]
q

ρ1n(q
kx,q)

ρ(x,q)
.

By use ofρ1n(x,q) =
n−1∏

i=0

σ1(q−i x,q)ρ(x,q), and

ρ(qx,q)
ρ(x,q)

=
q−1σ2(x,q)
σ1(qx,q)

⇔
ρ(q−1x,q)
ρ(x,q)

=
qσ1(x,q)
σ2(q−1x,q)

,

we attain the result given in the proposition.

�

3.4 Polynomial Solutions of theq-EHT of the 2nd kind

We introduceq-polynomials of the 2nd kind analog toq-polynomials of the 1st kind. We

begin with modifying the theorem 3.10:

Theorem 3.19 Let uk(x,q) = D(k)
q y(x,q) with u0(x,q) = y(x,q), then un(x,q), n = 0,1, ... are

also solutions of a q-EHT of the 2nd kind.

Proof. Applying Dq to theq-EHT of the 2nd kind and using the product rule defined by (2.11)

giveq-difference equation foru1(x,q)

σ21(x; q)DqDq−1u1(x,q) + τ21(x,q)Dqu1(x,q) + λ21(q)u1(x,q) = 0
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where,

σ21(x; q) = σ2(qx,q),

τ21(x,q) = τ(x,q) + Dqσ2(x,q),

λ21(q) = q[λ(q) + Dqτ(x,q)].

By applying theq-derivative to theq-EHT of the 2nd kind successively, we arrive at theq-

EHT for uk(x,q), k = 0,1, ...

σ2k(x,q)DqDq−1uk(x,q) + τ2k(x,q)Dquk(x,q) + λ2k(q)uk(x,q) = 0 (3.64)

where,

σ2k(x,q) = σ2(qkx,q), (3.65)

τ2k(x,q) = τ2k−1(x,q) + Dqσ2k−1(x,q), (3.66)

λ2k(q) = q
[
λ2k−1(q) + Dqτ2k−1(x,q)

]
(3.67)

with σ20(x,q) = σ2(x,q), τ20(x,q) = τ(x,q) andλ20(q) = λ(q). �

We can write the explicit form of those coefficients

τ2k(x,q) = τ(x,q) +
σ2(qkx,q) − σ2(x,q)

(q− 1)x
, (3.68)

λ2k(q) = qk
[
λ(q) + [k]q−1τ′(0,q) +

1
2

[k− 1]q[k]q−1σ′′2 (0,q)

]
, (3.69)

in which q-number [k]q andq−1-number [k]q−1 are defined by (2.7) and (2.9). Another repre-

sentation ofλ2k(q) follows from (3.20)

λ2k(q) = qk
[
λ(q) +

[k]q−1

2(1− q)

(
qσ′′1 (0,q) − qk−1σ′′2 (0,q)

)]
. (3.70)

Remark 3.20 Notice that the q-EHT for uk(x,q) (3.64) and for vk(x,q) (3.45) are not equiv-

alent since while vk(x,q) = D(k)
q−1y(x), uk(x,q) = D(k)

q y(x).

We have polynomial solution of theq-EHT of the 2nd kind for specific value ofλ(q) as in the

q-EHT of the 1st kind which can be stated in the following theorem.

Theorem 3.21 The q-EHT of the 2nd kind has polynomial solutions, say y(x) = P2n(x,q), of

degree n if and only if

λ(q) := λn(q) = −[n]q−1

[
τ′(0,q) +

1
2

[n− 1]qσ
′′
2 (0,q)

]
, n = 0,1, .... (3.71)
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Proof. Proof is done analogously as in Theorem 3.10. �

Remark 3.22 Notice thatλ2nk(q) defined by (3.69) can be rewritten as

λ2nk(q) = −[n− k]q−1

(
τ′(0,q) + [n+ k− 1]q

1
2
σ′′2 (0,q)

)
. (3.72)

by using (3.71).

Remark 3.23 It is possible to write the q-EHT of the 2nd kind in self-adjoint form

Dq−1

[
σ2k(x,q)ρ2k(x,q)Dq

(
D(k)

q Pn(x; q)
)]
+ qλ2k(q)ρ2k(x,q)

(
D(k)

q Pn(x; q)
)
= 0 (3.73)

where P(n)
0 (x; q) = 1

[1](n)
q

D(n)
q Pn(x; q), [1](n)

q = [1]q[2]q...[n]q. Here, the q-weight function

ρ2n(x,q) is the solution of the q-Pearson equation

Dq−1
[
σ2n(x,q)ρ2n(x,q)

]
= qτ2n(x,q)ρ2n(x,q). (3.74)

Proposition 3.24 Letρ(x,q) be a solution of (3.26) andρ2n(x,q) the solution of (3.74). Then,

ρ2n(x,q) = σ2n−1(x,q)ρ2n−1(x,q) = ... =
n−1∏

k=0

σ2(qkx,q)ρ(x,q). (3.75)

3.4.1 The Rodrigues Formula for Polynomial Solutions of theq-EHT of the 2nd kind

Theorem 3.25 Letρ(x,q) be the q-weight function defined by the q−1-Pearson equation (3.26)

andρ2n(x,q) by (3.75). Then,

P2n(x,q) = q−nB2n(q)
Dn

q−1

[
ρ2n(x,q)

]

ρ(x,q)
(3.76)

where

B2n(q) = (−1)n
[1]q[2]q...[n]q

λ2nn−1(q)λ2nn−2(q)...λ2n0(q)
P(n)

20
(q) (3.77)

stands for normalization constant with P(n)
20

(q) = 1
[1]n

q
Dn

qP2n(x,q) = 1
[1]n

q
unn, [1](n)

q =[1]q...[n]q.

Remark 3.26 Notice that the normalization constant defined by (3.77) can be written as the

following form

B2n(q) =
q(n

2)
∏n−1

k=0

[
τ′(0,q) + [n+ k− 1]q 1

2σ
′′
2 (0,q)

]P(n)
20

(q) (3.78)

by means of the expression forλ2nk defined by (3.72) and the relation between[k]q and [k]q−1

denoted with (2.10).
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Remark 3.27 Notice that, another representation of B2n(q) for monic polynomials (P(n)
20

(q) =

1)

B2n(q) =
q(n

2)(1− q)n

qn[ 1
2σ
′′
1 (0,q)]n

(
qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q); q

)
n

(3.79)

and by using the property (2.17),

B2n(q) =
(−1)nq−2(n

2)(1− q)n

[ 1
2σ
′′
2 (0,q)]n

(
q1−na−1

1 (q)b−1
1 (q)a2(q)b2(q); q−1

)
n

(3.80)

where a1(q),b1(q) are zeros ofσ1(x,q) and a2(q),b2(q) ofσ2(x,q).

Alternative representation for the monicq-polynomials of the 2nd kind can be introduced via

the following finite sum

Dn
q−1 f (x) =

1
(1− q−1)nxn

n∑

k=0

(−1)kq−k(k+1)/2+nk
[
n
k

]
q−1 f (q−kx) (3.81)

where
[
n
k

]
q−1 is theq−1-binomial defined by (2.14) and (a,q−1)n is theq−1-shifted factorial

defined by (2.17). By applying it to the Rodrigues formula defined in (3.76), it is presented in

terms of coefficientsσ1(x,q) andσ2(x,q) in the following proposition.

Proposition 3.28 Let Dn
q−1 f (x) be given with (3.81). Then,

P2n(x,q) =
q−nB2n(q)

∏n−1
i=0 σ2(qi x,q)

(1− q−1)nxn

n∑

k=0

(−1)kq−k(k+1)/2+nk+k (3.82)

[
n
k

]
q−1

∏k−1
i=0 σ1(q−i x,q)

∏k−1
i=0 σ2(qn−1−i x,q)

where B2n(q) is the normalization constant defined by (3.78).

Remark 3.29 We remark that by using relations between the polynomial coefficients (3.20)

and (3.22), and also the fact that the q-EHT of the 1st and 2nd kinds are equivalent to (3.12)

and (3.13), the q-polynomials of the 1st kind P1n(x,q) and the 2nd kind P2n(x,q) are equiva-

lent.

Observe from the representation formula identified by sum in (3.63) that it depends on the

polynomial coefficientsσ1(x,q) andσ2(x,q). On the other hand, this formula allows us

to identify the hypergeometric representation of polynomial solutions of theq-EHT. That’s

why in the current study, hypergeometric representations of polynomial solutions of theq-

EHT of the 1st kindP1n(x,q) are discussed according as all possible degrees ofσ1(x,q) and
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σ2(x,q) identified by the Proposition 3.4. We remark that hypergeometric representations of

q-polynomials of the 2nd kindP2n(x,q) can also be found by use of the formula (3.82) which

have the equivalent form with the 1st kind polynomials. Then, without loss ofgenerality we

assume thatP1n(x; q) = P2n(x; q) := Pn(x; q).

3.5 Hypergeometric Representation of theq-Polynomials

Hypergeometric representation of all kind of monic polynomials identified by Table 4.1 are

introduced in the following by studying on the representation formula (3.63) together with all

possible degrees ofσ1(x,q) andσ2(x,q) given in Proposition 3.4.

1. Letσ1(x,q) = 1
2σ
′′
1 (0,q)[x−a1(q)][ x−b1(q)] andσ2(x,q) = 1

2σ
′′
2 (0,q)[x−a2(q)][ x−b2(q)],

then the representation formula given in (3.63) becomes

Pn(x; q) =
xn

(qn−1 q−1 1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

3ϕ2


q−n, x/a2(q), x/b2(q)

q1−nx/a1(q), q1−nx/b1(q)

∣∣∣∣q; q

 (3.83)

by computing theq-binomial
[
n
k

]
q

with the help of (2.13) defined in Definition 2.4 and the

normalization constantB1n(q) of (3.60)

B1n(q) =
q2(n

2)(1− q−1)n

(−1)n[ 1
2σ
′′
1 (0,q)]n(qn−2

1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

. (3.84)

Remark 3.30 Note that

rφs


a1, ..., ar

b1, ..., bs

∣∣∣∣q; z

 = anrϕs


a1, ..., ar

b1, ..., bs

∣∣∣∣q; z

 (3.85)

where an is leading coefficient of the polynomial andrφs is q-hypergeometric series defined

by (2.38).

Observe from the representation of theq-polynomials defined by the formula (3.83), it is not

clear to see thatPn is polynomials of degreen in x. That’s why, we perform the transformation

formulas defined by (2.44) and (2.45), successively to (3.83) by using(3.11), i.e.,σ2(0,q) =
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qσ1(0,q)⇔ 1
2σ
′′
2 (0,q)a2(q)b2(q) = q1

2σ
′′
1 (0,q)a1(q)b1(q) which lead to

Pn(x; q) =
bn

2(q)(a1(q)/b2(q),b1(q)/b2(q); q)n

(qn−1a1(q)b1(q)a−1
2 (q)b−1

2 (q); q)n

×3ϕ2


q−n, qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q), x/b2(q)

a1(q)/b2(q), b1(q)/b2(q)

∣∣∣∣q; q

 (3.86)

and equivalently

Pn(x; q) =
an

2(q)(a1(q)/a2(q),b1(q)/a2(q); q)n

(qn−1a1(q)b1(q)a−1
2 (q)b−1

2 (q); q)n

×3ϕ2


q−n, qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q), x/a2(q)

a1(q)/a2(q), b1(q)/a2(q)

∣∣∣∣q; q

 . (3.87)

Note that sinceσ1(x,q) andσ2(x,q) are invariant with respect to the transformationa1(q) ↔

b1(q) anda2(q) ↔ b2(q), (3.87) is also obtained from (3.86) by using this kind of transfor-

mation. It is apparent from hypergeometric representations defined by (3.86) and (3.87) that

theq-classical∅-Jacobi/Jacobi (see Table 4.1) monic polynomialPn is a polynomial of degree

exactlyn in x.

An alternative equivalent form for theq-hypergeometric series is derived by applying the

transformation formula (2.44) to (3.87)

Pn(x; q) =
q(n

2)[−b1(q)]n(a1(q)/a2(q),a1(q)/b2(q); q)n

(qn−1a1(q)b1(q)a−1
2 (q)b−1

2 (q); q)n

×3ϕ2


q−n, qn−1a1(q)b1(q)a−1

2 (q)b−1
2 (q), a1(q)/x

a1(q)/a2(q), a1(q)/b2(q)

∣∣∣∣q;
qx

b1(q)

 . (3.88)

2. Letσ1(x,q) = 1
2σ
′′
1 (0,q)[x − a1(q)][ x − b1(q)] andσ2(x,q) = σ′2(0,q)[x − a2(q)], then

the hypergeometric representation of the correspondingq-classical∅-Jacobi/Laguerre (see

Table 4.1) monic polynomials follows from (3.63) by substituting the polynomial coefficients

defined above and theq-binomial
[
n
k

]
q

in (2.13)

Pn(x; q) =
qnB1n(q)[ 1

2σ
′′
1 (0,q)]nqn(1−n)xn

(1− q)n (a1(q)/x,b1(q)/x; q)n

×3ϕ2


q−n, x/a2(q), 0

q1−nx/a1(q), q1−nx/b1(q)

∣∣∣∣q; q

 (3.89)

whereB1n(q) denotes the normalization constant derived from (3.60)
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B1n(q) =
(1− q−1)n

(−1)nqn(1−n)[ 1
2σ
′′
1 (0,q)]n

. (3.90)

Since it is not easy to see that the hypergeometric representation of the∅-Jacobi/Laguerre

type monic polynomials identified by (3.89) is a polynomial of degreen in x, we first use the

transformation formula (2.44) asa → 0, secondly, we apply (2.46) to the resulting formula

and last, we use (2.47) which allow us to construct the formula

Pn(x; q)=an
2(q)(a1(q)/a2(q),b1(q)/a2(q); q)n3ϕ2


q−n, x/a2(q), 0

a1(q)/a2(q), b1(q)/a2(q)

∣∣∣∣q; q

 . (3.91)

We remark that hypergeometric representation of the∅-Jacobi/Laguerre type monic poly-

nomials identified by (3.91) can also be obtained by takingb2(q) → ∞ in the case of the

∅-Jacobi/Jacobi type monic polynomials defined by (3.87) with the help of the relation that

σ2(0,q) = qσ1(0,q)

⇔ 1
2σ
′′
2 (0,q)a2(q)b2(q) = q1

2σ
′′
1 (0,q)a1(q)b1(q) (for the further details see [6]).

3. Letσ1(x,q) = 1
2σ
′′
1 (0,q)[x − a1(q)][ x − b1(q)] andσ2(x,q) = σ2(0,q), then the hyperge-

ometric representation of theq-classical∅-Jacobi/Hermite (see Table 4.1) monic polynomials

is derived from (3.63) as

Pn(x; q) = xn(a1(q)/x,b1(q)/x; q)n3ϕ2


q−n, 0, 0

q1−nx/a1(q), q1−nx/b1(q)

∣∣∣∣q; q

 (3.92)

with the help of theq-binomial
[
n
k

]
q

by (2.13) and the normalization constantB1n(q) by (3.60)

B1n(q) =
q2(n

2)(1− q−1)n

(−1)n[ 1
2σ
′′
1 (0,q)]n

. (3.93)

In addition, one can also get hypergeometric representation equivalentto (3.92) as the form

Pn(x; q) = q(n
2)[−b1(q)]n

2ϕ1


q−n, a1(q)/x

0

∣∣∣∣q;
qx

b1(q)

 (3.94)

by use of the transformation formula (2.44) witha→ 0, b→ 0 together with the idea (2.42)

and then (2.50). Notice that (3.94) is in more convenient form to figure out that theq-classical

∅-Jacobi/Hermite polynomials are of degreen in x.

We note that hypergeometric representation of the∅-Jacobi/Hermite type monic polynomials

defined by (3.94) can also be derived by assuminga2(q), b2(q) → ∞ in the case of the∅-

Jacobi/Jacobi type monic polynomials identified by (3.88) by use of the expressionσ2(0,q)

= qσ1(0,q)⇔ 1
2σ
′′
2 (0,q)a2(q)b2(q) = q1

2σ
′′
1 (0,q)a1(q)b1(q) (for the further details see [6]).
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4. Letσ1(x,q) = σ′1(0,q)[x− a1(q)] andσ2(x,q) = 1
2σ
′′
2 (0,q)[x− a2(q)][ x− b2(q)], then the

hypergeometric representation of the correspondingq-classical∅-Laguerre/Jacobi (see Table

4.1) monic polynomials is obtained by (3.63) by use of theq-binomial
[
n
k

]
q

defined by (2.13)

Pn(x; q) =
qn−(n

2)(−1)nB1n(q)[σ′1(0,q)]n

(1− q)n (a1(q)/x; q)n

×3ϕ2


q−n, x/a2(q), x/b2(q)

q1−nx/a1(q), 0

∣∣∣∣q; q

 (3.95)

where the normalization constantB1n(q) follows from (3.60) as

B1n(q) =
q−(

n
2)(q− 1)n

[ 1
2σ
′′
2 (0,q)]n

. (3.96)

In order to make clear thatPn defined by (3.95) is a polynomial of degree exactlyn in x, we

perform the transformation formula (2.44) withd→ 0 leading to

Pn(x; q) = qn−2(n
2)[−

σ′1(0,q)
1
2σ
′′
2 (0,q)

]n(a1(q)/a2(q); q)n

×2ϕ1


q−n, x/a2(q)

a1(q)/a2(q)

∣∣∣∣q;
a1(q)qn

b2(q)

 . (3.97)

Note that hypergeometric representation of the∅-Laguerre/Jacobi type monic polynomials

identified by (3.97) can also be obtained by settingb1(q) → ∞ in the ∅-Jacobi/Jacobi type

monic polynomials (3.87) together withσ2(0,q) = qσ1(0,q) ⇔ 1
2σ
′′
2 (0,q)a2(q)b2(q) =

q1
2σ
′′
1 (0,q)a1(q)b1(q) (for the further details see [6]).

5. Letσ1(x,q) = σ1(0,q) andσ2(x,q) = 1
2σ
′′
2 (0,q)[x−a2(q)][ x−b2(q)], then by use of theq-

binomial
[
n
k

]
q

defined by (2.13), in the representation formula (3.63) forq-polynomials of the

1st kind, the hypergeometric representation of the correspondingq-classical∅-Hermite/Jacobi

(see Table 4.1) monic polynomials follows

Pn(x; q) =
qnB1n(q)[σ1(0,q)]n

(1− q)nxn 3ϕ2


q−n, x/a2(q), x/b2(q)

0, 0

∣∣∣∣q; q

 (3.98)

where the normalization constantB1n(q) follows from (3.60) as

B1n(q) =
q−(

n
2)(q− 1)n

[ 1
2σ
′′
2 (0,q)]n

. (3.99)

Another hypergeometric representation equivalent to (3.98) is derivedas

Pn(x; q) = [−b2(q)]nq−(
n
2)2ϕ0


q−n, x/a2(q)

−

∣∣∣∣q;
qna2(q)
b2(q)

 (3.100)
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by applying the transformation formula (2.51) withσ2(0,q) = qσ1(0,q)⇔ 1
2σ
′′
2 (0,q)a2(q)

b2(q) = q1
2σ
′′
1 (0,q)a1(q)b1(q).

We remark that hypergeometric representation of the∅-Hermite/Jacobi type monic poly-

nomials identified by (3.100) can also be derived by lettinga1(q), b1(q) → ∞ in the ∅-

Jacobi/Jacobi type monic polynomials given by (3.87) together withσ2(0,q) = qσ1(0,q) ⇔

1
2σ
′′
2 (0,q)a2(q)b2(q) = q1

2σ
′′
1 (0,q)a1(q)b1(q) (for the details see [6]).

6. Letσ1(x,q) = 1
2σ
′′
1 (0,q)x[x − a1(q)] andσ2(x,q) = 1

2σ
′′
2 (0,q)x[x − a2(q)], then the hy-

pergeometric representation of the correspondingq-classical 0-Jacobi/Jacobi (see Table 4.1)

monic polynomials follows

Pn(x; q) =
qnB1n(q)[ 1

2σ
′′
1 (0,q)]nxnq−2(n

2)

(1− q)n (a1(q)/x; q)n

×2ϕ1


q−n, x/a2(q)

q1−nx/a1(q)

∣∣∣∣q;
1
2σ
′′
2 (0,q)a2(q)

q1−n 1
2σ
′′
1 (0,q)a1(q)

 (3.101)

by use of the representation formula (3.63). Here, the normalization constant B1n(q) can be

obtained from (3.60) as follows:

B1n(q) =
q2(n

2)(1− q−1)n

(−1)n[ 1
2σ
′′
1 (0,q)]n(qn−2

1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

. (3.102)

In order to represent a nice hypergeometric representation for (3.101) demonstrating a poly-

nomial of degreen in x, we first carry out the transformation formula (2.48) to (3.101) and

then we apply (2.44) together withd→ 0 to the resulting formula which bring about

Pn(x; q) =

[−a1(q)]nq(n
2)(

1
2σ
′′
2 (0,q)a2(q)

q1
2σ
′′
1 (0,q)a1(q)

; q)n

(qn−2
1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

×2ϕ1



q−n, qn−2
1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

1
2σ
′′
2 (0,q)a2(q)

q1
2σ
′′
1 (0,q)a1(q)

∣∣∣∣q;
qx

a1(q)


. (3.103)

We note that hypergeometric representation of the 0-Jacobi/Jacobi polynomials identified by

(3.103) can also be obtained by lettingb1(q), b2(q)→ 0 assuming thatσ2(0,q) = qσ1(0,q)⇔

b1(q)/b2(q) = 1
2σ
′′
2 (0,q)a2(q)/q1

2σ
′′
1 (0,q)a1(q) in the∅-Jacobi/Jacobi type monic polynomi-

als defined by (3.86) (for the further details see [6]).
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7. Let σ1(x,q) = 1
2σ
′′
1 (0,q)x[x − a1(q)] andσ2(x,q) = 1

2σ
′′
2 (0,q)x2, then inserting these

values with theq-binomial
[
n
k

]
q

defined by (2.13) into the representation formula identified by

(3.63) generates the following hypergeometric representation of the correspondingq-classical

0-Jacobi/Bessel (see Table 4.1) monic polynomials

Pn(x; q) =
qnB1n(q)[ 1

2σ
′′
1 (0,q)]nxnq−2(n

2)

(1− q)n (a1(q)/x; q)n

×1ϕ1


q−n

q1−nx/a1(q)

∣∣∣∣q;
x

q1−na1(q)

 (3.104)

where the normalization constantB1n(q) follows from (3.60)

B1n(q) =
q2(n

2)(1− q−1)n

(−1)n[ 1
2σ
′′
1 (0,q)]n(qn−2

1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

. (3.105)

In order to get a nice representation formula denoting thatPn is exactly of degreen in x, we

apply the transformation formulas (2.50) and then (2.48) withc → 0 together with the limit

relation used in (2.42) successively to (3.104) which yield

Pn(x; q) =
[−a1(q)]nq(n

2)

(qn−2
1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

; q)n

2ϕ1


q−n, qn−2

1
2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)

0

∣∣∣∣q;
qx

a1(q)

 . (3.106)

It is obvious from the definition ofrϕs in (3.85) and (2.38) thatPn in (3.106) represents a

polynomial of degreen in x.

On the other hand, observe from the hypergeometric representation of the ∅-Jacobi/Jacobi

polynomials given by (3.88) with the transformationa1(q) ↔ b1(q) and a2(q) ↔ b2(q),

limit relation b1(q), a2(q), b2(q) → 0 in company with the propertyσ2(0,q) = qσ1(0,q) ⇔

b1(q)/a2(q)b2(q) = 1
2σ
′′
2 (0,q)/q1

2σ
′′
1 (0,q)a1(q) also leads to the 0-Jacobi/Bessel polynomials

identified by (3.106).

8. Let σ1(x,q) = σ′1(0,q)x andσ2(x,q) = 1
2σ
′′
2 (0,q)x[x − a2(q)], then one can get the

following hypergeometric representation of the correspondingq-classical 0-Laguerre/Jacobi

(see Table 4.1) monic polynomials starting with the representation formula identified by (3.63)

Pn(x; q) =
qnB1n(q)[σ′1(0,q)]nq−(

n
2)

(1− q)n 2ϕ1


q−n, x/a2(q)

0

∣∣∣∣q;−
1
2σ
′′
2 (0,q)a2(q)

q1−nσ′1(0,q)

 (3.107)
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where the normalization constantB1n(q) can be computed by using (3.60)

B1n(q) =
q−(

n
2)(q− 1)n

[ 1
2σ
′′
2 (0,q)]n

. (3.108)

Observe that insertingB1n(q) into (3.107) identifies

Pn(x; q) = qn−2(n
2)

−
σ′1(0,q)

1
2σ
′′
2 (0,q)


n

2ϕ1


q−n, x/a2(q)

0

∣∣∣∣q;−
1
2σ
′′
2 (0,q)a2(q)

q1−nσ′1(0,q)

 (3.109)

as a polynomial of degreen in x.

Note that another method to get the hypergeometric representation of the 0-Laguerre/Jacobi

polynomials identified by (3.109) is to letb1(q), b2(q) → 0 anda1(q) → ∞ together with

σ2(0,q) = qσ1(0,q) ⇔ b1(q)/b2(q) = −1
2σ
′′
2 (0,q)a2(q)/qσ′1(0,q) in the∅-Jacobi/Jacobi type

monic polynomials defined by (3.87) (for the further details see [6]).

9. Lettingσ1(x,q) = 1
2σ
′′
1 (0,q)x[x − a1(q)] andσ2(x,q) = σ′2(0,q)x in the representation

formula identified by (3.63) provide the following hypergeometric representation of the cor-

respondingq-classical 0-Jacobi/Laguerre (see Table 4.1) monic polynomials

Pn(x; q) =
qnB1n(q)[−1

2σ
′′
1 (0,q)]nq−2(n

2)xn

(1− q)n (a1(q)/x; q)n

×2ϕ1


q−n, 0

q1−nx/a1(q)

∣∣∣∣q;−
σ′2(0,q)

q1−n 1
2σ
′′
1 (0,q)a1(q)

 (3.110)

whereB1n(q) is calculated by (3.60) as

B1n(q) =
q2(n

2)(1− q−1)n

(−1)n[ 1
2σ
′′
1 (0,q)]n

. (3.111)

In order to find a better representation to make clear thatPn is a polynomial of degree exactly

n in x, we first apply the transformation formula (2.49) to (3.110) lettingb → 0, afterwards

we perform (2.52) to the resulting function by substitutingB1n(q). As a result, we get

Pn(x; q) = [a1(q)]nq(n
2)(−

σ′2(0,q)

q1
2σ
′′
1 (0,q)a1(q)

; q)n2ϕ1


q−n, 0

−
σ′2(0,q)

q1
2σ
′′
1 (0,q)a1(q)

∣∣∣∣q;
qx

a1(q)

 . (3.112)

Furthermore, the hypergeometric representation of the 0-Jacobi/Laguerre polynomials defined

by (3.112) can also be derived by use of the limit relationb1(q), b2(q) → 0, a2(q) → ∞
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together with the propertyσ2(0,q) = qσ1(0,q)⇔ b1(q)/b2(q) = σ′2(0,q)/q1
2σ
′′
1 (0,q)a1(q) in

the∅-Jacobi/Jacobi polynomials given by (3.88) with the transformationa1(q) ↔ b1(q) and

a2(q)↔ b2(q) (for the further details see [6]).

10. Settingσ1(x,q) = σ′1(0,q)x andσ2(x,q) = 1
2σ
′′
2 (0,q)x2 in the representation formula

identified by (3.63) brings about the following hypergeometric representation of the corre-

spondingq-classical 0-Laguerre/Bessel (see Table 4.1) monic polynomials

Pn(x; q) = qn−2(n
2)

−
σ′1(0,q)

1
2σ
′′
2 (0,q)


n

1ϕ1


q−n

0

∣∣∣∣q;−
1
2σ
′′
2 (0,q)x

σ′1(0,q)q1−n

 (3.113)

with the help ofB1n(q) computed from (3.60)

B1n(q) =
q−(

n
2)(q− 1)n

[ 1
2σ
′′
2 (0,q)]n

. (3.114)

Observe from the representation formula identified by (3.113) that 0-Laguerre/Bessel type

q-polynomialsPn is a polynomial of degreen in x.

On the other hand, hypergeometric representation of the 0-Laguerre/Bessel polynomials given

with (3.113) can also be constructed with the help of the limit relationa1(q),b2(q),a2(q)→ 0,

b1(q) → ∞ together with the propertyσ2(0,q) = qσ1(0,q) ⇔ a1(q)
a2(q)b2(q) =

1
2σ
′′
2 (0,q)

qσ′1(0,q) in the∅-

Jacobi/Jacobi polynomials given by (3.88) (for the further details see [6]).

3.6 Orthogonality Property of the q-Polynomials of Hypergeometric Type

In this section, we perform the orthogonality conditions of the polynomial solutions of the

q-EHT by means of standard method in the theory of orthogonal polynomials [22, 46, 48].

We begin with introducing the orthogonality property as in the following theorem.

Theorem 3.31 Letρ be a function satisfying the q-Pearson equation (3.24) and such that the

boundary condition

σ1(x,q)ρ(x,q)xk
∣∣∣∣∣
x=a,b

= σ2(q−1x,q)ρ(q−1x,q)xk
∣∣∣∣∣
x=a,b

= 0 (3.115)
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is satisfied. Then, the polynomial solutions of the q-EHT are orthogonal with respect toρ(x,q)

(see (2.25)), i.e., ∫ b

a
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn. (3.116)

Analogously, if

σ2(x,q)ρ(x,q)xk
∣∣∣∣∣
x=a,b

= σ1(qx,q)ρ(qx,q)xk
∣∣∣∣∣
x=a,b

= 0 (3.117)

holds, the q-polynomials satisfy the relation

∫ b

a
Pn(x,q)Pm(x,q)ρ(x,q)dq−1 x = s2

n(q)δmn, (3.118)

where d2n(q) and s2n(q) denote the squared norm of the polynomials Pn, δmn is the Kronecker

delta.

Remark 3.32 Notice that

σ1(x,q)ρ(x,q) = q−1σ2(q−1x,q)ρ(q−1x,q)⇔ σ2(x,q)ρ(x,q) = σ1(qx,q)ρ(qx,q) (3.119)

by using (3.27) and (3.28) withρ1(x,q) = ρ2(x,q) = ρ(x,q) which gives the equivalences of

the boundary conditions.

Proof. Consider theq-EHT of the 1st kind in self-adjoint form forPn(x; q) and Pm(x,q),

respectively,

Dq

[
ρ(x,q)σ1(x,q)Dq−1Pn(x; q)

]
+ q−1λn(q)ρ(x,q)Pn(x; q) = 0,

Dq

[
ρ(x,q)σ1(x,q)Dq−1Pm(x,q)

]
+ q−1λm(q)ρ(x,q)Pm(x,q) = 0

where theq-weight function satisfies theq-Pearson equation

Dq
[
σ1(x,q)ρ(x,q)

]
= q−1τ(x,q)ρ(x,q)⇔ Dq−1

[
σ2(x,q)ρ(x,q)

]
= qτ(x,q)ρ(x,q). (3.120)

Multiplying the first equation withPm(x,q) and the second withPn(x; q) and subtracting the

second from the first, and applying theq-integral over (a,b) to the resulting equation, we get

q−1 [
λn(q) − λm(q)

] ∫ b

a
Pn(x; q)Pm(x; q)ρ(x,q)dqx

+

∫ b

a
Pm(x; q)Dq

[
ρ(x,q)σ1(x,q)Dq−1Pn(x; q)

]
dqx

−

∫ b

a
Pn(x; q)Dq

[
ρ(x,q)σ1(x,q)Dq−1Pm(x; q)

]
dqx = 0.
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By applying theq-integration by parts and fundamental theorem ofq-calculus defined by

Proposition 2.11 and Proposition 2.12, respectively, we have

q−1 [
λn(q) − λm(q)

] ∫ b

a
Pn(x; q)Pm(x; q)ρ(x,q)dqx

+ρ(x,q)σ1(x,q)Wq [Pm,Pn]
∣∣∣
x=a,b

+

∫ b

a
ρ(qx,q)σ1(qx,q)DqPm(x; q)

[
Dq−1Pn(x; q)

∣∣∣
x→qx

]
dqx

−

∫ b

a
ρ(qx,q)σ1(qx,q)DqPn(x; q)

[
Dq−1Pm(x; q)

∣∣∣
x→qx

]
dqx = 0

whereWq [Pm,Pn] =
[
Pm(x; q)Dq−1Pn(x; q) − Pn(x; q)Dq−1Pm(x,q)

]
is theq-Wronskian [6].

Since Dq−1Pm(x; q)
∣∣∣
x→qx

= DqPm(x; q) and Dq−1Pn(x; q)
∣∣∣
x→qx

= DqPn(x; q) the third and

fourth terms are vanished and as a result of the boundary conditions, second term

ρ(x,q)σ1(x,q)Wq [Pm,Pn]
∣∣∣
x=a,b

= 0

since the WronskianWq [Pm,Pn] =
[
Pm(x; q)Dq−1Pn(x; q) − Pn(x; q)Dq−1Pm(x; q)

]
is a poly-

nomial of degreen+m− 1. Then, we arrive at
∫ b

a
Pn(x; q)Pm(x; q)ρ(x,q)dqx = 0,

for all m, n, if

λn(q) − λm(q) = −[n−m]q

(
τ′(0,q) + [n+m− 1]q−1

1
2
σ′′1 (0,q)

)
, 0

⇔

(
τ′(0,q) + [n+m− 1]q−1

1
2
σ′′1 (0,q)

)
, 0.

Nevertheless, whenm= n⇒ λn(q) = λm(q),
∫ b

a
Pn(x; q)Pn(x; q)ρ(x,q)dqx

remains arbitrary. As a result, we get
∫ b

a
Pm(x; q)Pn(x; q)ρ(x,q)dqx = d2

n(q)δmn (3.121)

wheredn(q) is the norm andδmn Kronecker delta. The proof of the relation in (3.118) can be

accomplished analogously. �

Definition 3.33 The q-polynomial solutions of the q-EHT of the 1st and 2nd kinds are classi-

cal provided that(a,b) is an interval on the real axis and theρ(x,q) > 0 satisfies the q-Pearson

equation (3.120) and boundary conditions (3.119) or (3.117).
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In order to calculate the normdn(q) we look for the orthogonality property of theq−1 and

q-derivatives of orderk (k = 1,2, ...) of the polynomial solutions of theq-EHT of the 1st and

2nd kinds, i.e.,Dk
q−1P1n+k andDk

qP2n+k.

3.6.1 Orthogonality Property of D(k)
q−1P1n+k(x,q)

In this section, we generalize the orthogonality of theq-polynomials of the 1st kind tovkn(x,q)

= D(k)
q−1P1n+k(x,q), k = 1,2, ... via the standard method [22, 46, 48].

Proposition 3.34 Letρ1k be a function satisfying the q-Pearson equation identified by (3.55)

with n= k. Then,

• If 0 < a < b, then the polynomials vkn has the following orthogonality relation

∫ qkb

a
vkn(x,q)vkm(x,q)ρ1k(x,q)dqx = d2

1kn
(q)δmn (3.122)

provided that

σ1k(x,q)ρ1k(x,q)xk
∣∣∣
x=a,qkb

= 0. (3.123)

• If a < b < 0, then vkn are orthogonal in the following sense

∫ b

qka
vkn(x,q)vkm(x,q)ρ1k(x,q)dqx = d2

1kn
(q)δmn (3.124)

on the condition that

σ1k(x,q)ρ1k(x,q)xk
∣∣∣
x=qka,b

= 0. (3.125)

• If a < 0 < b, then vkn has the following representation for orthogonality

∫ qkb

qka
vkn(x,q)vkm(x,q)ρ1k(x,q)dqx = d2

1kn
(q)δmn (3.126)

only if

σ1k(x,q)ρ1k(x,q)xk
∣∣∣
x=qka,qkb

= 0. (3.127)

Here, d1kn(q) is norm andδmn is Kronecker delta.

Proof. Proof includes the similar steps with Theorem 3.31. �

51



Proposition 3.35 Let d1kn(q) be the norm illustrated with

d2
1kn

(q) =
∫ qkb

a
[vkn(x,q)]2ρ1k(x,q)dqx (3.128)

assuming that0 < a < b. Then,

d2
1kn

(q) =
1

λ1nk(q)
d2

1k+1,n
(q). (3.129)

Proof. In order to find a recurrence relation ford1kn(q) defined by (3.129), we concern with

theq-EHT for vkn(x,q) = D(k)
q−1yn(x) in self-adjoint form identified by (3.54)

Dq

[
ρ1k(x,q)σ1k(x,q)Dq−1vkn(x,q)

]
+ q−1λ1nk(q)ρ1k(x,q)vkn(x,q) = 0.

Multiplying above equation withvkn(x,q) and applyingq-integral over (a,qkb), we have

∫ qkb

a
vkn(x,q)Dq

[
ρ1k(x,q)σ1k(x,q)Dq−1vkn(x,q)

]
dqx+ q−1λ1nk(q)d2

1kn
(q) = 0.

Usingx = q−1t transformation for theq-integral in the above equation, we can rewrite it as

∫ qk+1b

qa
vkn(q

−1t,q)qDq

[
ρ1k(q

−1t,q)σ1k(q
−1t,q)Dq−1vkn(q

−1t,q)
]
q−1dqt+q−1λ1nk(q)d2

1kn
(q) = 0.

Now by use of the product rule forx = q−1t defined by (2.11),ρ1k+1(x,q) = σ1k(x,q)ρ1k(x,q),

vk+1,n(x,q) = Dq−1vkn(x,q) and

Dq f (x)
∣∣∣
x=q−1t

= qDq f (q−1t) = Dq−1 f (t),

we get

ρ1k(q
−1t,q)σ1k(q

−1t,q)vkn(q
−1t,q)Dq−1vkn(q

−1t,q)
∣∣∣q

k+1b

t=qa

− q−1
∫ qk+1b

qa
v2

k+1,n(x,q)ρ1k+1(x,q)dqx+ q−1λ1nk(q)d2
1kn

(q) = 0

where the first term is vanished from the boundary condition identified by (3.123). For the

second term we divideq-integral into two separate parts

−q−1
∫ a

qa
v2

k+1,n(x,q)ρ1k+1(x,q)dqx− q−1
∫ qk+1b

a
v2

k+1,n(x,q)ρ1k+1(x,q)dqx+ q−1λ1nk(q)d2
1kn
= 0
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from which it is seen that the second term isdk+1,n. We deal with the first term according to

definition ofq-integral that leads to

∫ a

qa
v2

k+1,n(x,q)ρ1k+1(x,q)dqx =
∫ a

0
v2

k+1,n(x,q)ρ1k+1(x,q)dqx−
∫ qa

0
v2

k+1,n(x,q)ρ1k+1(x,q)dqx

= a(1− q)
∞∑

i=0

qnv2
k+1,n(qia,q)ρ1k+1(q

ia,q)

− qa(1− q)
∞∑

i=0

qnv2
k+1,n(qi+1a,q)ρ1k+1(q

i+1a,q)

= a(1− q)ρ1k+1(a,q)v2
k+1,n(a,q)

which is vanished sinceaρ1k+1(a,q) = aρ1k(a,q)σ1k(a,q) = 0. Then, we have

−q−1d2
1k+1,n

(q) + q−1λ1nk(q)d2
1kn

(q) = 0

which provides the desired recurrence relation

d2
1kn

(q) =
1

λ1nk(q)
d2

1k+1,n
(q).

�

Corollary 3.36 Let d1kn(q) with d10n(q) = dn(q) be the norm having the recurrence relation

given with (3.129). Then,

d2
n(q) = (−1)nA1nnB

2
1n

(q)K1n (3.130)

where

A1nn(q) = (−1)nλ1nn−1(q)λ1nn−2(q)...λ1n0(q), (3.131)

B1n(q) =
1

A1nn(q)
vnn(q), (3.132)

and

K1n =

∫ qnb

a
ρ1n(x,q)dqx. (3.133)

Proof. Solving recurrence relation successively ford1kn(q) obtained in proposition 3.35 gives

d2
n(q) := d2

10n
(q) =

1
λ1n0(q)

d2
11n

(q) =
1

λ1n0(q)λ1n1(q)
d2

12n
(q) = ...

1
∏n−1

k=0 λ1nk(q)
d2

1nn
(q) (3.134)

where

d2
1nn

(q) =
∫ qnb

a
v2

nn(x,q)ρ1n(x,q)dqx = v2
nn

∫ qnb

a
ρ1n(x,q)dqx, vnn = D(n)

q−1yn(x). (3.135)
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According to the normalization constant in (3.59) defined in the Rodrigues formula

B1n(q) =
1

A1nn(q)
vnn

in which

A1nn(q) = (−1)n
1

λ1nn−1(q)λ1nn−2(q)...λ1n0(q)
.

Then,

d2
n(q) =

1
∏n−1

k=0 λ1nk(q)
d2

1nn
(q) =

1
∏n−1

k=0 λ1nk(q)
v2

nnK1n = (−1)nA1nn(q)B2
1n

(q)K1n

where

K1n =

∫ qnb

a
ρ1n(x,q)dqx

can be compute in the following proposition. �

Proposition 3.37 Let K1n be given with the q-integral identified by (3.133). Then,

K1n

K1n+1

=

1+
σ′′1n

(x,q)

2τ′1n
(x,q)

σ1n(x
∗
n,q)

(3.136)

where x∗n is zero ofτ1n(x,q).

Proof. We begin with

K1n+1 =

∫ qn+1b

a
ρ1n+1(x,q)dqx.

By usingρ1n+1(x,q) = σ1n(x,q)ρ1n(x,q) and taking account thata < qn+1b < qnb < b as

0 < a < b, K1n should be rewritten

K1n+1 =

∫ qnb

a
σ1n(x,q)ρ1n(x,q)dqx−

∫ qnb

qn+1b
σ1n(x,q)ρ1n(x,q)dqx

in which the second term is vanished by using the boundary condition in (3.123) after applying

the definition ofq-integral in (2.23). Thus,

K1n+1 =

∫ qnb

a
σ1n(x,q)ρ1n(x,q)dqx.

By replacingσ1n(x,q) = A1(q)[τ1n(x,q)]2 + B1(q)τ1n(x,q) +C1(q) into K1n+1 implies

K1n+1 =

∫ qnb

a

[
A1(q)τ1n(x,q) + B1(q)

]
τ1n(x,q)ρ1n(x,q)dqx+C1(q)K1n
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which is equivalent to

K1n+1 = q
∫ qnb

a

[
A1(q)τ1n(x,q) + B1(q)

]
Dqρ1n+1(x,q)dqx+C1(q)K1n

by using theq-Pearson equation and recurrence relation forρ1n(x,q) identified by (3.55) and

(3.56), respectively. Now applying transformationx = q−1t for the first term inK1n+1 and

using theq-integration by parts defined by (2.35), we obtain

K1n+1 = q
[
A1(q)τ1n(q

−1t,q) + B1(q)
]
ρ1n+1(q

−1t,q)
∣∣∣q

n+1b

t=qa
−

∫ qn+1a

qa
ρ1n+1(t,q)Dq−1

[
A1(q)τ1n(t,q) + B1(q)

]
dqt +C1(q)K1n (3.137)

where the first term is zero consideringρ1n+1(x,q) = σ1n(x,q)ρ1n(x,q) and the boundary con-

dition (3.123). Taking the second term into consideration as two separateq-integrals leads

to

K1n+1 = −

∫ a

qa
ρ1n+1(t,q)Dq−1

[
A1(q)τ1n(t,q) + B1(q)

]
dqt −

∫ qn+1b

a
ρ1n+1(t,q)Dq−1

[
A1(q)τ1n(t,q) + B1(q)

]
dqt +C1(q)K1n

in which the first term is vanished by using the definition ofq-integral in (2.23), then applying

the boundary condition (3.123), we arrive at

K1n+1 = −A1(q)τ′1n
(x,q)K1n+1 +C1(q)K1n

sinceDq−1
[
A1(q)τ1n(t,q) + B1(q)

]
= A1(q)τ′1n

(x,q), which is the desired result. �

Remark 3.38 Notice that

Dq−1
[
A1(q)τ1n(t,q) + B1(q)

]
= A1(q)Dq−1τ1n(x,q) = A1(q)τ′1n

(x,q)

sinceτ1n(x,q) is polynomial of degree1.

Remark 3.39 Note that

A1(q) =
σ′′1n

(x,q)

2[τ′1n
(x,q)]2

(3.138)

C1(q) = σ1n(x
∗
n,q) (3.139)

where x∗n is the root ofτ1n(x,q).
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Proposition 3.40 Let K1n given with (3.133) satisfy the recurrence relation identifed by (3.136).

Then

K1n = K10

n−1∏

k=0

σ1k(x
∗
k,q)

1+
σ′′1k

(x,q)

2τ′1k
(x,q)

(3.140)

where K10 =
∫ b

a
ρ(x,q)dqx.

Proof. The proof is based on the successive solution of the recurrence relation (3.136). �

Alternative representation ofK1n can be computed as in the following proposition.

Proposition 3.41 Let K1n in (3.133) satisfy the recurrence relation denoted in (3.136). Then,

K1n = (1− q)q−1aρ1N−1(q
−1a,q)

N−2∏

k=n

1+
σ′′1k

(x,q)

2τ′1k
(x,q)

σ1k(x
∗
k,q)

(3.141)

with n< N − 1 and a
b = qN.

Proof. Consider the product of ratio forK1i defined by (3.136) fori = n,n+1, ...,N−1 which

gives

K1n = K1N−1

N−2∏

k=n

1+
σ′′1k

(x,q)

2τ′1k
(x,q)

σ1k(x
∗
k,q)

where

K1N−1 =

∫ qN−1b

a
ρ1N−1(x,q)dqx =

∫ q−1a

a
ρ1N−1(x,q)dqx

= (1− q)q−1aρ1N−1(q
−1a,q)

by using the fact thatq−1a = qN−1b and applying the definition of theq-integral. �

Proposition 3.42 Note that the norm identified by (3.118) can be accomplished analogously

regarding q−1-derivatives of the q-polynomials of the 1st kind with the orthogonality relation

associated with q−1-integral

s2
n(q) = (−1)nA1nnB2

1n
(q)M1n (3.142)

where A1nn, B1n(q) are defined by (3.131), (3.132), respectively and

M1n =

∫ qnb

a
ρ1n(x,q)dq−1 x. (3.143)
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3.6.2 Orthogonality Property of D(k)
q P2n+k(x,q)

Orthogonality property ofukn(x,q) = D(k)
q P2n+k(x,q), k = 1,2, ... includes the similar analysis

as section 3.6.1.

Proposition 3.43 Let ρ2k be a function satisfying the q−1-Pearson equation identified by

(3.74) with n= k. Then,

• If 0 < a < b, then the polynomials ukn have the following orthogonality relation
∫ b

q−ka
ukn(x,q)ukm(x,q)ρ2k(x,q)dqx = d2

2kn
(q)δmn (3.144)

provided that

σ2k(x,q)ρ2k(x,q)xk
∣∣∣
x=q−ka,b

= 0. (3.145)

• If a < b < 0, then ukn has the following representation for orthogonality

∫ q−kb

a
ukn(x,q)ukm(k)(x,q)ρ2k(x,q)dqx = d2

2kn
(q)δmn (3.146)

if

σ2k(x,q)ρ2k(x,q)xk
∣∣∣
x=a,q−kb

= 0. (3.147)

• If a < 0 < b, then ukn is orthogonal in the following sense
∫ b

a
ukn(x,q)ukm(x,q)ρ2k(x,q)dqx = d2

2kn
(q)δmn (3.148)

only if

σ2k(x,q)ρ2k(x,q)xk
∣∣∣
x=a,b

= 0. (3.149)

Here d2kn(q) is norm andδmn is Kronecker delta.

Remark 3.44 We remark that the orthogonality condition for the polynomials D(k)
q−1P1n+k(x,q)

and D(k)
q P2n+k(x,q), k = 1,2, ... are not equivalent since the q-Pearson equation forρ1k

ρ1k(qx,q)

ρ1k(x,q)
=
σ1k(x,q) + (1− q−1)xτ1k(x,q)

σ1k(qx,q)
,
σ2k(x,q)

σ1k(qx,q)

is not equal to the q-Pearson equation forρ2k

ρ2k(q
−1x,q)

ρ2k(x,q)
=
σ2k(x,q) + (1− q)xτ2k(x,q)

σ2k(q−1x,q)
,
σ1k(x,q)

σ2k(q−1x,q)
.
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Corollary 3.45 Let d2kn(q) be the norm illustrated with

d2
2kn

(q) =
∫ b

q−ka
[ukn(x,q)]2ρ2k(x,q)dqx (3.150)

assuming that0 < a < b. Then,

d2
2kn

(q) =
1

λ2nk(q)
d2

2k+1,n
(q). (3.151)

Remark 3.46 Notice that successive solution of d2kn(q) with d20n(q) = dn(q) in (3.151) gives

d2
n(q) = (−1)nA2nn(q)B2

2n
(q)K2n (3.152)

where

A2nn(q) = (−1)n
1

λ2nn−1(q)λ2nn−2(q)...λ2n0(q)
, (3.153)

B2n(q) =
1

A2nn(q)
unn(q), (3.154)

and

K2n =

∫ b

q−na
ρ2n(x,q)dqx. (3.155)

Remark 3.47 Note that considering similar analysis as in the q-EHT, recurrence relation

K2n

K2n+1

=

1+
σ′′2n

(x,q)

2τ′2n
(x,q)

σ2n(x
∗
n,q)

(3.156)

is obtained. Here, x∗n is the root of the equationτ2n(x,q) = 0 and

σ2n(x,q) = A2(q)[τ2n(x,q)]2 + B2(q)τ2n(x,q) +C2(q)

where

A2(q) =
σ′′2n

(x,q)

2[τ′2n
(x,q)]2

, (3.157)

C2(q) = σ2n(x
∗
n,q). (3.158)

Proposition 3.48 Let K2n in (3.155) satisfy the recurrence relation identifed in (3.156). Then,

K2n = K20

n−1∏

k=0

σ2k(x
∗
k,q)

1+
σ′′2k

(x,q)

2τ′2k
(x,q)

(3.159)

where K20 =
∫ b

a
ρ(x,q)dqx.
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Another representation ofK2n can be introduced as in the following proposition.

Proposition 3.49 Let K2n given with (3.155) satisfy the recurrence relation identifed by (3.156).

Then,

K2n = (1− q)bρ2N−1(b,q)
N−2∏

k=n

1+
σ′′2k

(x,q)

2τ′2k
(x,q)

σ2k(x
∗
k,q)

(3.160)

with n< N − 1 and b
a = q−N.

Proposition 3.50 Note that the norm identified by (3.118) can be obtained analogously by

considering q-derivatives of the q-polynomials of the 2nd kind with the orthogonality relation

together with q−1-integral

s2
n(q) = (−1)nA2nnB2

2n
(q)M2n (3.161)

where A2nn, B2n(q) are defined by (3.153), (3.154), respectively, and

M2n =

∫ b

q−na
ρ2n(x,q)dq−1 x. (3.162)
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CHAPTER 4

ANALYSIS OF THE ORTHOGONALITY OF THE

Q-CLASSICAL POLYNOMIALS IN THE HAHN SENSE

In this chapter, which is the main part of the thesis, we discuss the orthogonality of all possible

polynomial solutions of theq-difference equation by use of theq-Pearson equation. We are

interesting in finding a suitable interval (a,b) whereρ > 0 and boundary condition (3.119)

holds such that the polynomial solutions of theq-EHT of the 1st kind (3.5) (or equivalently

of theq-EHT of the 2nd kind (3.10)) which are orthogonal with respect toρ, are supported at

the pointsαq±k andβq±k, α, β ∈ R, k = 0,1,2, ...(3.5).

In accordance with Theorem 3.31, it is enough to find aρ > 0 satisfying theq-Pearson

equation
ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

, (4.1)

or, equivalently,

ρ(q−1x,q)
ρ(x,q)

=
σ2(x,q) + (1− q)xτ(x,q)

σ2(q−1x,q)
=

qσ1(x,q)
σ2(q−1x,q)

(4.2)

such that the boundary condition (3.115) holds. Notice from the above expressions that

σ2(x,q)ρ(x,q) = qσ1(qx,q)ρ(qx,q) ⇔ σ2(q−1x,q)ρ(q−1x,q) = q−1σ1(x,q)ρ(x,q). (4.3)

The idea is to provide a qualitative analysis of equations (4.1) and (4.2) without solving them

that gives the interval of orthogonality. In this analysis, a geometrical approach similar to

the one partially presented in [24] has been used . Since we are interestedin determining

all the possible orthogonality intervals for theq-polynomials according to the behavior of the

q-weight functionρ(x,q), we study the behavior ofρ(qx,q)/ρ(x,q), where we can obtain the

intervals in whichρ(x,q) is increasing (e.g.x > 0 andρ(qx,q)/ρ(x,q) < 1) or decreasing (e.g.

x > 0 andρ(qx,q)/ρ(x,q) > 1).

60



Before starting the analysis let us classify theq-polynomials according to [3, 6, 43, 47] in

terms of the degrees of the polynomialsσ1 andσ2 in (3.12) and using the fact thatσ1(0,q) =

0⇔ σ2(0,q) = 0 (σ1(0,q) , 0⇔ σ2(0,q) , 0). Therefore, as we mentioned before we have

the non-zero families correspond to the case whenσ1(0,q) , 0⇔ σ2(0,q) , 0 and the zero

families whenσ1(0,q) = 0⇔ σ2(0,q) = 0. In every class we consider all possible degrees of

the polynomialsσ1(x,q) andσ2(x,q). In fact, from the relation betweenσ1 andσ2 in (3.11),

we rewrite the next straightforward proposition in order to see the relationship with Table 4.1:

Proposition 4.1 Letρ(x,q) be the q-weight function satisfying the q-Pearson equation (3.24)

withσ1(x,q) = 1
2σ
′′
1 (0,q)x2+σ′1(0,q)x+σ1(0,q) andτ(x,q) = τ′(0,q)x+τ(0,q), τ′(0,q) , 0.

If σ1(0,q) , 0, the following cases arise

(1a) If deg[σ1(x,q)] < 2, then deg[σ2(x,q)] = 2.

(1b) If deg[σ1(x,q)] = 2, then deg[σ2(x,q)] ≤ 2.

If σ1(0,q) = 0, then:

(2a) Ifσ1(x,q) = 1
2σ
′′
1 (0,q)x2, σ′′1 (0,q) , 0, then deg[σ2(x,q)] = 2 or deg[σ2(x,q)] = 1.

(2b) If σ1(x,q) = 1
2σ
′′
1 (0,q)x2 + σ′1(0,q)x, σ′′1 (0,q) , 0,σ′1(0,q) , 0, then deg[σ2(x,q)] = 2

or deg[σ2(x,q)] = 1.

(2c) If σ1(x,q) = σ′1(0,q)x, σ′1(0,q) , 0, then deg[σ2(x,q)] = 2.

Table 4.1: Classification of theq-classical polynomials (positive definite cases)

Non-zero families Zero families

degσ1 / degσ2 degσ1 / degσ2

q-Jacobi/ q-Jacobi q-Jacobi/ q-Jacobi
q-Jacobi/ q-Laguerre q-Jacobi/ q-Laguerre
q-Jacobi/ q-Hermite q-Jacobi/ q-Bessel

q-Laguerre/q-Jacobi q-Laguerre/ q-Jacobi
q-Laguerre/ q-Bessel

q-Hermite/ q-Jacobi

Remark 4.2 Observe from the Table 4.1 that, while q-Jacobi/ q-Laguerre corresponds the

casedegσ1 = 2 and degσ2 = 1, q-Hermite/ q-Jacobi means degσ1 = 0 and degσ2 = 2, etc.

(see [42, 43] for details).
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Remark 4.3 Notice that in non-zero families q-Laguerre/ q-Laguerre, q-Laguerre/ q-Hermite,

q-Hermite/ q-Laguerre and q-Hermite/ q-Hermite can not appear owing to the relation be-

tween the coefficientsσ1(x,q) andσ2(x,q). And analogously, zero families has no q-Laguerre

/ q-Laguerre because of same reason and there are no q-Bessel/ q-Jacobi, q-Bessel/ q-

Laguerre and q-Bessel/ q-Bessel since for these cases there is no suitable interval where

ρ > 0 and boundary condition holds.

In order to find the interval of orthogonality, we make assumption thata < b in the following.

We also assume thatρ is a bounded function (in fact it should beq-integrable and/or q−1-

integrable, otherwise (3.116) or (3.118) may not have sense).

Let us start with the case when (a,b) is a finite interval. There are several possibilities such

thatρ satisfies the boundary condition (3.119).

Case I. The simplest case is whenσ1(a,q) = σ1(b,q) = 0. Using (4.2) rewritten of the form

ρ(q−1x,q) =
qσ1(x,q)
σ2(q−1x,q)

ρ(x,q), (4.4)

we see that the functionρ(x,q) vanishes for all values ofq−ka andq−kb, k = 1,2, . . .. But now

three different situations appear:

1. a < 0 < b. In this caseρ(x,q) vanishes out of the interval (a,b) (all the valuesq−ka and

q−kb, k = 1,2, . . . are out of (a,b)) and therefore there could be a family of polynomials

defined on (a,b) orthogonal with respect to a measure supported at the pointsaqk and

bqk, k = 0,1, . . ..

2. 0 < a < b. In this caseρ(x,q) vanishes at the pointsq−ka that belong to (a,b) and

also atq−kb that are out (a,b). Then, the only possibility for having an OPS on (a,b)

satisfying the boundary condition is that there existsN such thatbqN = a. But, this

condition implies thatbqk = aq−(N−k), and therefore for allbqk, k = 0,1, . . . ,N ρ also

vanishes i.e., this case has not interest.

3. a = 0 < b (respectively,a < b = 0 but this case reduces to the one whena = 0).

This case deserves more attention. First of all, ifa = 0 is a zero ofσ1(x,q) then it

is also a zero ofσ2(x,q), as we already pointed out. Then, theq-Pearson equation

(4.1) (respectively (4.2)) simplifies and the above reasoning of cases 1and 2 can not be
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applied. In fact, for this case we could have, in general, a family of polynomials defined

on (a,b) orthogonal with respect to a measure supported at the pointsbqk, k = 0,1, . . ..

Case II. Taking into account (4.3), there is also another possibility to havean orthogonality

relation on (a,b). Namely, ifq−1a andq−1b are both the zeros ofσ2(x,q). But then from (4.1)

ρ(qx,q) =
q−1σ2(x,q)
σ1(qx,q)

ρ(x,q), (4.5)

it follows thatρ(x,q) vanishes for all values ofqka andqkb, k = 0,1,2, . . .. Again two different

situations appear in dependence ifa < 0 < b or 0 < a < b. In the first case, all points of the

form qka andqkb are both inside (a,b) so this has not any interest. In the second caseqka are

out (a,b) andρ(bqk,q) = 0 wherebqk ∈ (a,b), so we could have an OPS if there existsN such

thataq−N = bq−1. But aq−k = bqN−k−1 andρ vanishes in allbqk, thus there is not a suitable

q-weight function for this case.

Case III. The next choice to get the boundary condition on (a,b) is to chooseq−1a as a zero

of σ2(x,q) andb of σ1(x,q). Then, from (4.4) and (4.5) it follows thatρ(x,q) vanishes for all

valuesq−kb, k = 1,2, ... andqka, k = 0,1, .... Then, ifa < 0 < b, qka are all inside (a,b) and

q−kb are out of (a,b), therefore we can not find aq-weight function satisfying the boundary

conditions. Nevertheless, as in the Case I, it could be happen whena = 0. In this case it is

possible to have aq-weight function defined at the pointsbqk, k ≥ 0.

For the case when 0< a < b, qka andq−kb are all out (a,b), thus there could be a family

of orthogonal polynomials defined on (a,b) with a q-weight function supported at the points

qkb and on (q−1a,q−1b) supported at the pointsq−ka, k ≥ 0, but in order to have the boundary

condition (3.119) there should existsN ∈ N such thataq−N = b. This case could lead to a

q-weight function supported on a finite set of pointsaq−k k = 0,1, . . . ,N. Notice that, since

aq−k = bqN−k, we can also define theq-weight functionρ at the pointsbqk k = 0,1, . . . ,N

that coincide with the previous ones.

Case IV: Finally, we can assume thata is a zero ofσ1(x,q) and q−1b of σ2(x,q). Then,

from (4.4) and (4.5) it follows thatρ(x,q) vanishes for all valuesq−ka, k = 1,2, ... andqkb,

k = 0,1, .... This leads to the following cases: In the first case, whena < 0 < b, it is not

possible to find aq-weight function satisfying the boundary conditions, but, as in the previous

case, one could have aq-weight function only ifb = 0 and it is defined at the pointsaqk,
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k ≥ 0. Finally, in the case 0< a < b, it is not possible to find aq-weight function satisfying

the required conditions.

Let us now go to the infinite case, i.e., when (a,b) is an infinite interval. Assume thata is finite

andb→ ∞ (the casea→ −∞ is analogous and can be obtained by using the transformation

x = −t ⇔ x ∈ (a,∞)⇔ t ∈ (−∞,−a)). Obviously the boundary condition (3.119) at∞ reads

lim
b→∞
σ1(b,q)ρ(b,q)bk = 0 or lim

b→∞
σ2(b,q)ρ(b,q)bk = 0, k = 0,1, ....

Let us consider the possible choices fora;

Case V: Ifa is root ofσ1(x,q), then from (4.4) it follows thatρ(x,q) vanishes for all points

q−ka, k = 1,2, ... of the interval (a,∞) in case ofa > 0, and therefore there is not any OP

defined on (a,∞).

If a = 0 is a root ofσ1(x,q) then we could have aq-weight function supported on (0,∞)

defined at the pointsαq±k (α > 0 arbitrary),k ≥ 0 where a normal choice forα is α = 1.

Whena < 0, then we can also have aρ which is supported on (a,∞) at points of the formaqk

andαq±k (α > 0 arbitrary),k ≥ 0 whereα = 1.

Case VI: If we now chooseq−1a as a zero ofσ2(x,q), as we already discussed,ρ is zero at

qka, k = 0,1, .... Therefore, fora > 0 we can have a weight function on (q−1a,∞) supported

at the pointsq−ka, k ≥ 1. The case whena < 0 does not lead to an OPS. Finally, ifa = 0, we

could get aρ defined on (0,∞) at the pointsαq±k (α > 0 arbitrary),k ≥ 0.

Case VII: The last choice is whena → −∞, b → ∞, then the boundary condition (3.119)

holds if

lim
a→−∞

σ1(a,q)ρ(a,q)ak = 0, lim
b→∞
σ1(b,q)ρ(b,q)bk = 0, k = 0,1, ...

In this caseρ is defined on±αq±k (α > 0 arbitrary),k ≥ 0.

All the above discussions can be summarized in the following theorem.

Theorem 4.4 Let ρ be a bounded non negative function and let denote by a1(q), b1(q) the

zeros ofσ1(x,q) and by a2(q), b2(q), those ofσ2(x,q). The functionρ satisfying the q-Pearson
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equation (3.24) could satisfy the boundary condition (3.115), and therefore could be a suitable

q-weight function for the polynomial solutions of (3.5) in the following cases:

a) a= a1(q), b = b1(q); a1(q) < b1(q): a < 0 < b.

In this situationρ is supported at the points aqk and bqk, k = 1,2, ..., which leads to

the orthogonality relation on(a,b) of polynomial solutions(Pn)n of q-EHT defined by

q-integral (2.27)
∫ b1(q)

a1(q)
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn. (4.6)

b) a= a1(q), b = b1(q); a1(q) < b1(q): a = 0 < b.

In this caseρ is defined at the points0 < · · · < bk < · · · < bq < b ∈ (0,b] and the

orthogonality has the form
∫ b1(q)

0
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn, (4.7)

where the q-Jackson integral (2.23) is used.

c) a= a2(q), b = a1(q); a2(q) < a1(q): 0 = a < b.

In this caseρ is supported on(0,b) and the orthogonality reads
∫ a1(q)

0
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn, (4.8)

where the q-Jackson integral (2.23) is used.

d) a= a2(q), b = a1(q); a2(q) < a1(q): 0 < a < b.

In this case,ρ is supported on(a,q−1b) at the points aq−k; a < aq−1 < aq−2 < · · · <

aq−N = q−1b (or, equivalently, on(qa,b) at the points of the form bqk; qa = bqN <

· · · < bq2 < bq< b). Therefore, the orthogonality of the polynomials is written in terms

of the q-Jackson integral (2.23)
∫ a1(q)

qa2(q)=a1(q)qN
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn, (4.9)

which is, in the case, the finite sum

∫ a1(q)

a1(q)qN
[·]dqx =

∫ a1(q)

0
[·]dqx−

∫ a1(q)qN

0
[·]dqx (4.10)

= (1− q)a1(q)
N−1∑

k=0

Pn(qka1(q),q)Pm(qka1(q),q)ρ(qka1(q),q).
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The above expression can be also written, at least formally, in terms of theq−1-integral

(2.32) ∫ q−1a1(q)=a2(q)q−N

a2(q)
Pn(x,q)Pm(x,q)ρ(x,q)dq−1 x = d2

n(q)δmn, (4.11)

which becomes into the finite sum
∫ a2(q)q−N

a2(q)
[·]dq−1 x =

∫ ∞

a2(q)
−

∫ ∞

a2(q)q−N
[·]dq−1 x (4.12)

= (1− q−1)a2(q)
N−1∑

k=0

Pn(q−ka2(q),q)Pm(q−ka2(q),q)ρ(q−ka2(q),q).

e) a= a1(q), b = 0; a1(q) < 0: a < b = 0.

This case is similar to the case b) but hereρ is defined at the points a< aq < · · · <

aqk < · · · < 0 ∈ [a,0) and the orthogonality is given in terms of the q-integral (2.27)
∫ 0

a1(q)
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn. (4.13)

f) a = a1(q) = 0, b→ ∞.

In this case we have an orthogonality in terms of the integral (2.28)
∫ ∞

0
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn. (4.14)

g) a= a1(q) < 0, b→ ∞.

In this case we haveρ supported on(a,∞) at the points aqk and q∓k, k = 0,1, . . .. Then

the polynomials satisfy the orthogonality
∫ ∞

a1(q)
Pn(x,q)Pm(x,q)ρ(x,q)dqx :=

∫ 0

a1(q)
[·]dqx+

∫ ∞

0
[·]dqx = d2

n(q)δmn, (4.15)

where the first integral is given by (2.27) and the second by (2.28), respectively.

h) a= a2(q) > 0, b→ ∞.

In this caseρ is defined at the points aq−k, k = 1,2, ... and the orthogonality can be

written in terms of the q−1-integral (2.31)
∫ ∞

a2(q)
Pn(x,q)Pm(x,q)ρ(x,q)dq−1 x = d2

n(q)δmn. (4.16)

i) a = a2(q) = 0, b→ ∞.

In this caseρ is defined on(0,∞) and we have the orthogonality in terms of the integral

(2.28) ∫ ∞

0
Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2

n(q)δmn. (4.17)
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j) Finally, when a→ −∞, b→ ∞.

We have the orthogonality in terms of the bilateral q-integral (2.30)

∫ ∞

−∞

Pn(x,q)Pm(x,q)ρ(x,q)dqx = d2
n(q)δmn. (4.18)

Remark 4.5 Notice that from the above analysis we can conclude that the following cases do

not lead to a suitable q-weight functionρ > 0 satisfying the q-Pearson equation (3.24) and

the boundary conditions:

1. a= a1(q), b = b1(q); a1(q) < b1(q), and0 < a < b,

2. a= a2(q), b = b2(q); a2(q) < b2(q),

3. a= a2(q), b = a1(q); a2(q) < a1(q), and a< 0 < b,

4. a= a1(q), b = a2(q); a1(q) < 0, a < 0 < b or 0 < a < b,

5. a= a1(q), b→ ∞, and a> 0,

6. a= a2(q), b→ ∞, and a< 0.

We remark that a completely similar analysis can be done for the boundary condition (3.117).

In fact, the results follow if we apply the transformationx = qt to the conditions (3.119).

4.1 The Main Results

In this section, we formulate our main results. We are interesting inρ satisfying theq-Pearson

equation such thatρ > 0 and the boundary condition holds. In order to determineρ, we study

on the rational functionρ(qx,q)/ρ(x,q) and from the anaysis of the behaviour of such a func-

tion we deduce all possible families of orthogonal polynomials as well as the orthogonality

relation including the interval of orthogonality.

Notice from theq-Pearson equation thatρ(qx,q)/ρ(x,q) is a rational function consisting of

the ratio of two polynomials of at most second degreeσ2(x,q) andσ1(x,q) at nominator

and denominator, respectively, i.e., it has at most two zeros and two poles.Actually, in the

analysis ofρ(qx,q)/ρ(x,q), we consider all possible degrees of the polynomial coefficients
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σ1(x,q) andσ2(x,q) and we construct all possible graphs ofρ(qx,q)/ρ(x,q). In particular,

we fix the intervals whereρ(qx,q)/ρ(x,q) < 1 or ρ(qx,q)/ρ(x,q) > 1, that give us informa-

tion about the monotonicity ofρ(x,q). Another important data is the horizontal asymptote

ρ(qx,q)/ρ(x,q) → c, asx → ∓∞. All these information allows us to determine the suitable

intervals forρ(x,q) without solving theq-Pearson equation. In such a way we have a com-

plementary characterization for theq-polynomials similar to the one done in [35] but starting

from the three-term recurrence relation and the Favard Theorem.

4.2 The Non-zero Case

Let start with the non-zero case. i.e.,qσ1(0,q) = σ2(0,q) , 0.

4.2.1 Constant Case: Theq-Classical∅-Hermite/Jacobi Polynomials

Letσ1(x,q) = σ1(0,q) , 0, i.e., constant andτ(x,q) = τ′(0,q)x+ τ(0,q), τ′(0,q) , 0. Then,

theq-Pearson equation follows from (4.1) as

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

= (1− q−1)
τ′(0,q)
σ1(0,q)

x2 + (1− q−1)
τ(0,q)
σ1(0,q)

x+ 1. (4.19)

Remark 4.6 Observe thatσ1(x,q) = σ1(0,q) gives

σ2(x,q) = q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]
= (q− 1)τ′(0,q)x2 + (q− 1)τ(0,q)x+ qσ1(0,q)

from which it is seen thatσ2(x,q) is quadratic sinceτ′(0,q) , 0. Then, the q-Hermite type

q-polynomials of the 1st kind are the q-Jacobi type q-polynomials of the 2nd kind (see Table

4.1).

Let denote by∆q the constant

∆q :=

[
(1− q−1)

τ(0,q)
σ1(0,q)

]2

− 4(1− q−1)
τ′(0,q)
σ1(0,q)

.

Notice that the function at the right hand side of theq-Pearson equation defined in (4.19) is

equivalent to

(1− q−1)
τ′(0,q)
σ1(0,q)

[x− a2(q)][ x− b2(q)], if ∆q , 0.
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In fact, if ∆q > 0 thena2(q) andb2(q) ∈ R and we assume, without losing any generality that

a2(q) < b2(q). If ∆q < 0, a2(q) andb2(q) ∈ C.

If ∆q = 0 then it takes of the form (1− q−1)
τ′(0,q)
σ1(0,q)

[x− a2(q)]2, wherea2(q) ∈ R.

In order to determine the graphs of the ratioρ(qx,q)/ρ(x,q) according to zeros ofσ1(x,q)

andσ2(x,q), we first consider all possible positions of the zeros ofσ1(x,q) andσ2(x,q) in

the following lemma.

Lemma 4.7 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.19) and set

Λq =
τ′(0,q)
σ1(0,q)

, 0.

Then, the roots of the equation f(x,q) = 0 has the following properties;

1. If Λq > 0, there are two real distinct roots with opposite signs.

2. If Λq < 0, there exist three possibilities, i.e.,

(a) if ∆q > 0, there are two real roots with same signs,

(b) if ∆q = 0, there are equal real roots,

(c) if ∆q < 0, there are no real roots.

Proof.

1. ∆q =
[
(1− q−1) τ(0,q)

σ1(0,q)

]2
− 4(1− q−1) τ

′(0,q)
σ1(0,q) > 0 in case ofΛq =

τ′(0,q)
σ1(0,q) > 0 which shows

that f (x,q) = 0 has two real roots and multiplication of these roots isσ1(0,q)
(1−q−1)τ′(0,q) which

is negative since 0< q < 1.

2. Λq < 0 is not sufficient condition. Then, according as the sign of∆q, properties of zeros

of the equationf (x,q) = 0 are determined.

�

Our next step is to analyse all possible graphs ofρ(qx,q)/ρ(x,q) in (4.19) according to all

possible relative positions of the zeros ofσ2. We assume that the conditions of Lemma 4.7

holds.
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To obtain the behaviour of theq-weight functionρ from the graphs ofρ(qx,q)/ρ(x,q), we

divide the whole real line into the intervals whereρ(x,q) is monotonic decreasing and in-

creasing. Our aim is to find suitable intervals (as the ones described in Theorem 4.4) where

ρ is defined and satisfies the required properties, i.e.,ρ > 0 and that it fulfills the boundary

condition (3.119) or (3.117). Obviously for getting a positiveρ we need to consider only

those intervals whereρ(qx,q)/ρ(x,q) > 0. If ρ > 0 at some point of those intervals, then it

is positive in the whole interval. By theq-Pearson equation (4.1) the positivity regions of the

ratioρ(qx,q)/ρ(x,q) coincide with the positivity regions ofσ2(x,q)/σ1(qx,q).

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) always intercepts they-axis at

the pointy = 1 sinceσ2(0,q) = qσ1(0,q) (i.e., the constant terms ofσ1 andσ2 are the same).

Let f (x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.19).

0

0

1

y

b
2
(q)

x
a

2
(q)

Figure 4.1: Case 1. The functionf (x,q) with Λq > 0, a2(q) < 0 < b2(q).

Case 1: a2(q) < 0 < b2(q), Λq > 0. The graph off for this case is represented in Figure

4.1. Let us consider the possible intervals in which we can have a suitableq-weight function

ρ. As we have already mentioned, they are defined by the zeros of the polynomialsσ1 and

σ2. First of all, notice that sinceρ should be a positive weight function andf is negative in

the intervals (−∞,a2(q)) and (b2(q),∞), they are not suitable. On the other hand, the interval

(a2(q),b2(q)) is also eliminated due to Remark 4.5.2. As a result, this case does not lead to a

suitableq-weight function with the needed properties.

Case 2(a)A:0 < a2(q) < b2(q), Λq < 0. This situation appears in Figure 4.2A. In order to

find the possible intervals in which we can have a suitableq-weight functionρ we start the

analysis by applying the positivity ofρwhich allows us to eliminate the interval (a2(q),b2(q)).
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Figure 4.2: Case 2. The functionf (x,q) with Λq < 0, Case 2(a)A: 0< a2(q) < b2(q),
Case 2(b)B: 0< a2(q) = b2(q).

On the other hand, Remark 4.5.6 by symmetry property enables us to exclude the interval

(−∞,b2(q)). Let us consider the last interval (b2(q),∞). Notice that it coincides with the one

described in Theorem 4.4 h), so here it could be possible to haveq-weight functionρ. Notice

also that sinceρ(qx,q)/ρ(x,q) = 1 atx0 = −τ(0,q)/τ′(0,q), x0 > x = b2(q), then from Figure

4.2A it follows thatρ is decreasing on (−τ(0,q)/τ′(0,q),∞). Sinceρ(qx,q)/ρ(x,q) has infinite

limit as x→ +∞, then we haveρ→ 0 asx→ ∞. We can sketch behaviour ofρ according to

the above discussion in Figure 4.3.
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2
(q)a

2
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Figure 4.3: Possible positive graph of correspondingρ(x,q) for Figure 4.2.

It is seen from Figure 4.3 that (b2(q),∞), supported at the pointsb2(q)q−k, k = 0,1, ... (see

Theorem 4.4 g)), could be suitable to haveρ. However, it is not enough to assure thatρ

satisfies the boundary conditions at+∞. In fact, as it is stated in Theorem 4.4, we should

check thatσ1(x,q)ρ(x,q)xk → 0 asx → ∞. To this end, we use, instead of the Pearson
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equation (4.1), the followingextended q-Pearson equation:

σ1(qx,q)ρ(qx,q)(qx)k

σ1(x,q)ρ(x,q)xk
= qkσ1(x,q) + (1− q−1)xτ(x,q)

σ1(x,q)
= qk q−1σ2(x,q)

σ1(x,q)
, (4.20)

which is a consequence of the identity (see theq-Pearson equation (4.1))

σ1(qx,q)ρ(qx,q)
σ1(x,q)ρ(x,q)

=
q−1σ2(x,q)
σ1(x,q)

. (4.21)

Let define the functiong as the left hand side of (4.20)

g(x,q)=
σ1(qx,q)ρ(qx,q)(qx)k

σ1(x,q)ρ(x,q)xk
=qkσ1(x,q) + (1− q−1)xτ(x,q)

σ1(x,q)
=

qk−1σ2(x,q)
σ1(x,q)

=qk
[
(1− q−1)

τ′(0,q)
σ1(0,q)

x2 + (1−q−1)
τ(0,q)
σ1(0,q)

x+1
]
(4.22)

which is represented in Figure 4.4.

0

qk
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2
(q)a

2
(q)

1

x

0

Figure 4.4: A figure ofg(x,q) corresponding to Figure 4.2A.

If we now provide a similar anaysis with the functiong, we see from Figure 4.4 and (4.20)

that, fork large enough,g has the same property withf . Therefore, it is clear from Figure 4.4

thatσ1(x,q)ρ(x,q)xk → 0 asx→ ∞.

Case 2(b)B:0 < a2(q) = b2(q),Λq < 0. This situation is represented in Figure 4.2B. Note that

this case leads to the same interval (b2(q),∞) as Case 2(a)A but together witha2(q) = b2(q).

Notice that Case 2(a)A and Case 2(b)B lead to the following theorem.

Theorem 4.8 Let a= b2(q), be the zero ofσ2(x,q) and b= ∞ and assume that0 < a2(q) ≤

b2(q), Λq =
τ′(0,q)
σ1(0,q) < 0. Then, there exists a sequence of polynomials(Pn)n orthogonal on

(a,b), i.e., they satisfy the orthogonality (4.16) with respect to the q-weight function

ρ(x,q) = xα+logq x−1(qa2(q)/x,qb2(q)/x; q)∞ > 0, x ∈ (b2(q),∞), (4.23)
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qα =
q−1 1

2σ
′′
2 (0,q)

σ1(0,q) which satisfies the q-Pearson equation and the boundary condition (see The-

orem 4.4 h)).

This case corresponds to the case Ia1 in Chapter 11 of [35, pages 335and 357].

An example of such family is the Al-Salam-Carlitz II polynomials [35] wherea2(q) = a,

b2(q) = 1,

σ1(x,q) = aq−1, σ2(x,q) = (1− x)(a− x),

τ(x,q) =
1

q− 1
x−

1+ a
q− 1

, λn(q) =
1

1− q
[n]q.

Al-Salam-Carlitz II polynomials are orthogonal on (1,∞) and the conditionsΛq < 0 and

0 < a2(q) ≤ b2(q) give us the following restriction for the parameters 0< a ≤ 1. By means of

Theorem 4.4 h) we can write the orthogonality
∫ ∞

1
xα+logq x−1(q/x,aq/x; q)∞V(α)

m (x; q)V(α)
n (x; q)dq−1 x = (q−1−1)q−αn−n2

(q; q)n(q; q)∞δmn (4.24)

together with 0< a = q−α ≤ 1.

0
0

1

x

y

Figure 4.5: Case2(c). The functionf (x,q) with Λq < 0, a2(q),b2(q) ∈ C.

Case 2(c):a2(q),b2(q) ∈ C, Λq < 0. This situation is represented in Figure 4.5. It is seen

from Figure 4.5 that the only interval is (−∞,∞) which is the one described in Theorem 4.4

j). Therefore, it could be possible to have a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 at

x0 = −τ(0,q)/τ′(0,q), then from Figure 4.5, it follows thatρ is increasing on (−∞, x0) and

decreasing on (x0,∞) with ρ → 0 asx → ∓∞ sinceρ(qx,q)/ρ(x,q) → ∞. The previous

discussion brings about behaviour ofρ in the following Figure 4.6.

It is also seen from Figure 4.6 that (−∞,∞) could be suitable forρ. But we should analyse the

extended q-Pearson equation (4.20) to checkσ1(x,q)ρ(x,q)xk → 0 asx → ∓∞ which leads
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Figure 4.6: Possible positive graph of correspondingρ(x,q) for Figure 4.5.

to Figure 4.7A.
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Figure 4.7: A figure of A:g(x,q), B: σ1(x,q)ρ(x,q)xk related to Figure 4.5.

It is clear from Figure 4.7A thatg has the same property withf asx→ ∓∞. Then,qσ1(x,q)

ρ(x,q)xk = σ2(q−1x,q)ρ(q−1x,q)xk → 0 asx→ ∓∞, k = 0,1, ... (see Figure 4.7B). Thus, we

have the following theorem.

Theorem 4.9 Let a = −∞ and b= ∞ and assume that a2(q),b2(q) ∈ C, Λq =
τ′(0,q)
σ1(0,q) < 0.

Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the

orthogonality (4.18) with respect to the q-weight function

ρ(x,q) = xα+logq x−1(qa2(q)/x,qb2(q)/x; q)∞ > 0, x ∈ (−∞,∞), (4.25)

qα =
q−1 1

2σ
′′
2 (0,q)

σ1(0,q) which satisfies the q-Pearson equation and the boundary condition (see The-

orem 4.4 j)).
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This case corresponds to the case Ia1 in Chapter 11 and case Va2 in chapter 10 of [35, pages

335, 357, 283 and 315].

An example of such family is the discreteq−1-Hermite II polynomials [35] wherea2(q),b2(q) ∈

C,

σ1(x,q) = q−1, σ2(x,q) = 1+ x.2,

τ(x,q) =
1

q− 1
x, λn(q) =

1
1− q

[n]q.

Discreteq−1-Hermite II polynomials are orthogonal on (−∞,∞) and the conditionsΛq < 0

and 0< a2(q),b2(q) ∈ C hold. By means of Theorem 4.4 j) we can write the orthogonality
∫ ∞

−∞

1
(−x2; q2)∞

h̃m(x; q)̃hn(x; q)dqx = (1− q)q−n2
(q; q)n

(q,−q,−1,−1,−q; q)∞
(i,−i,−iq, iq,−i, i, iq,−iq; q)∞

δmn. (4.26)

4.2.2 Linear Case: Theq-Classical∅-Laguerre/Jacobi Polynomials

Let σ1(x,q) = σ′1(0,q)x + σ1(0,q) = σ′1(0,q)(x − a1(q)), a1(q) = −σ1(0,q)
σ′1(0,q) and τ(x,q) =

τ′(0,q)x + τ(0,q), τ′(0,q) , 0. Then, the q-Pearson equation can be rewritten according to

these datas as the following form

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

=

(1− q−1) τ
′(0,q)
σ′1(0,q) x2 + (1+ (1− q−1) τ(0,q)

σ′1(0,q) )x− a1(q)

qx− a1(q)
. (4.27)

Remark 4.10 Notice that,σ1(x,q) = σ′1(0,q)x + σ1(0,q) = σ′1(0,q)(x − a1(q)) leads to

σ2(x,q) = q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]
= (q− 1)τ′(0,q)x2+ (qσ′1(0,q)+ (q− 1)τ(0,q))x−

qσ′1(0,q)a1(q). It is seen thatσ2(x,q) is quadratic sinceτ′(0,q) , 0. Hence, the q-Laguerre

type q-polynomials of the 1st kind are the q-Jacobi type q-polynomials ofthe 2nd kind (see

Table 4.1).

Let denote by∆q the constant

∆q :=

[
1+ (1− q−1)

τ(0,q)
σ′1(0,q)

]2

+ 4a1(q)(1− q−1)
τ′(0,q)
σ′1(0,q)

.

Notice that the nominator in (4.27) can be written as

(1− q−1)
τ′(0,q)
σ′1(0,q)

[x− a2(q)][ x− b2(q)], if ∆q , 0.
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In fact, if ∆q > 0 thena2(q) andb2(q) ∈ R and we assume, without losing any generality that

a2(q) < b2(q). If ∆q < 0, a2(q) andb2(q) ∈ C.

If ∆q = 0 then the nominator takes the form (1− q−1) τ
′(0,q)
σ′1(0,q) [x− a2(q)]2, wherea2(q) ∈ R.

We are interesting in knowing how behave the zeros of the nominator of (4.27) (and so, the

zeros ofρ(qx,q)/ρ(x,q)). This is given in the following straightforward lemma.

Lemma 4.11 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.27) and set

Λq =
τ′(0,q)
σ′1(0,q)

, 0.

Then, the roots of the equation f(x,q) = 0 have the following properties;

1. IfΛq and a1(q) have opposite signs, then there are two real distinct roots with opposite

signs.

2. If Λq and a1(q) have same signs, then there exist three possibilities, i.e.,

(a) if ∆q > 0, there are two real roots with same signs,

(b) if ∆q = 0, there are equal real roots,

(c) if ∆q < 0, there are no real roots.

Proof. The proof, done for constant case, can be suitably modified by taking

∆q =

[
1+ (1− q−1)

τ(0,q)
σ′1(0,q)

]2

+ 4a1(q)(1− q−1)
τ′(0,q)
σ′1(0,q)

so as to obtain each case above. �

Next step is to analyse all possible graphs ofρ(qx,q)/ρ(x,q) in (4.27) according to all possible

relative positions of the zeros ofσ1 andσ2 with the assumption of the conditions of Lemma

4.7. Let f (x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.27).

Case 1.A:a2(q) < 0 < q−1a1(q) < b2(q), Λq < 0. This situation is represented in Figure

4.8A. We deal with the possible intervals in which we can have a suitableq-weight function

ρ. To this end, we first start with positivity condition of theq-weight function which allows

us to exclude the intervals (−∞,a2(q)) and (q−1a1(q),b2(q)). Moreover, due to Remark 4.5.3,

(a2(q),q−1a1(q)) can not be used since the boundary condition (3.119) is not satisfied.Let
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Figure 4.8: Case 1. The functionf (x,q) with A: Λq < 0,a2(q) < 0 < q−1a1(q) < b2(q),
B: Λq > 0,q−1a1(q) < a2(q) < 0 < b2(q).

us consider the last interval (b2(q),∞). Notice that it coincides with the one described in

Theorem 4.4 h), so here it could be possible to have a suitableq-weight functionρ. Notice

also that sinceρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 > x = b2(q), then from

Figure 4.8A it follows thatρ is decreasing on (−τ(0,q)/τ′(0,q),∞). Sinceρ(qx,q)/ρ(x,q)

has an infinite limit asx → +∞, we haveρ → 0 asx → ∞. We note that according to the

information we discussed above, the behaviour ofρ can be sketched as in Figure 4.9 assuming

a positive initial value for theq-weight function in each interval.

0
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(q) b

2
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y

Figure 4.9: Possible positive graph of correspondingρ(x,q) for Figure 4.8A.

It is also apparent from Figure 4.9 thatρ→ 0 asx→ ∞. However, since it is infinite interval,

we should check thatσ1(x,q)ρ(x,q)xk → 0 as x → ∞ by using theextended q-Pearson

equation (4.20). Performing the same procedure to theextended q-Pearson equation leads to

Figures 4.10. It is clear that Figure 4.10 is analog to Figure 4.8A. That’s why they have the

same property asx→ ∞ which can be seen in Figure 4.11.

77



0

0

1

x

y

qk

a
2
(q) a

1
(q) b

2
(q)

Figure 4.10: A figure ofg1(x,q) corresponding to Figure 4.8a.

As a result, we deduce from Figure 4.11 thatσ1(x,q)ρ(x,q)xk → 0 asx → ∞. Therefore,

(b2(q),∞) is suitable interval to haveρ with needed property. Thus, we perform the following

theorem.
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Figure 4.11: A figure ofσ1(x,q)ρ(x,q)xk=σ2(q−1x,q)ρ(q−1x,q)xk related to Figure 4.10.

Theorem 4.12 Let a= b2(q) be the zero ofσ2(x,q) and b= ∞ and assume that a2(q) < 0 <

q−1a1(q) < b2(q) andΛq =
τ′(0,q)
σ′1(0,q) < 0. Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.16) with respect to the q-weight

function

ρ(x,q) = xα+
1
2 logq x−1 (qa2(q)/x,qb2(q)/x; q)∞

(a1(q)/x; q)∞
> 0, x ∈ (b2(q),∞), (4.28)

qα =
q−2 1

2σ
′′
2 (0,q)

σ′1(0,q) which satisfies the q-Pearson equation and the boundary condition (see The-

orem 4.4 h)).

This case corresponds to the case IIa2 in Chapter 11 of [35, pages 337 and 358].
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An example of such family is theq-Meixner polynomials [35] wherea1(q) = bq, a2(q) = −bc,

b2(q) = 1,

σ1(x,q) = cq−2(x− bq), σ2(x,q) = (x− 1)(x+ bc),

τ(x,q) = −
1

1− q
x+

cq−1 − bc+ 1
1− q

, λn(q) =
[n]q

1− q
.

q-Meixner polynomials are orthogonal on (1,∞) and the conditionsΛq < 0 anda2(q) < 0 <

a1(q) < b2(q) give us the following restriction for the parametersc > 0, 0 < b < q−1. By

means of Theorem 4.4 h) we can write the orthogonality

∫ ∞

1
xα

√
xlogq x−1 (q/x; q)∞(−bcq/x; q)∞

(bq/x; q)∞
Mm(x; b, c; q) Mn(x; b, c; q)dq−1 x = (q−1 − 1)q−n

×
(q,−c−1q; q)n

(bq; q)n

(q,−c; q)∞
(bq; q)∞

δmn (4.29)

together withc = q−α > 0, 0 < b < q−1.

Case 1.B:q−1a1(q) < a2(q) < 0 < b2(q),Λq > 0. This case is represented in Figure 4.8B. Let

us examine the possible intervals in which we have a suitableρ. First of all, the positivity of

ρ enables us to skip the intervals (q−1a1(q),a2(q)), (b2(q),∞). On the other hand, the rest two

intervals (−∞,q−1a1(q)) and (a2(q),b2(q)) are both eliminated due to Remark 4.5.5 (we first

need to do the transformation x=-t) as well as Remark 4.5.2. Then, this case does not lead to

a suitableρ with needed properties.
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Figure 4.12: Case 2(a). The functionf (x,q) with A: Λq < 0,q−1a1(q) < 0 < a2(q) < b2(q),
B: Λq > 0,0 < a2(q) < b2(q) < q−1a1(q).

Case 2(a).A:q−1a1(q) < 0 < a2(q) < b2(q), Λq < 0. The representation of this case appears

in Figure 4.12. We perform the analogous analysis in order to get the possible intervals in

which we have a suitableq-weight function. Thus, we begin with applying the positivity
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property which allows us to omit the intervals (−∞,q−1a1(q)) and (a2(q),b2(q)). Afterwards,

Remark 4.5.4 enables us to exclude the interval (q−1a1(q),a2(q)). On the other hand, If we

consider the last interval (b2(q),∞), an analogous analysis as the one that has been done in

Case 1A yields Figure 4.13.
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Figure 4.13: Possible positive graph of correspondingρ(x,q) for Figure 4.12A.

It is obvious from Figure 4.13 thatρ → 0 as x → ∞. However, since we should check

σ1(x,q)ρ(x,q)xk → 0 asx → ∞, k = 0,1, ..., the analogous procedure as in Case 1A, the

extended q-Pearson equation (4.20), leads to the Figure 4.14 and therefore Figure4.15.
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Figure 4.14: A figure ofg(x,q) corresponding to Figure 4.12A.

As a result of the Figure 4.15, we arrive atσ1(x,q)ρ(x,q)xk → 0 asx→ ∞. Therefore, there

exists aq-weight function on (b2(q),∞) supported at the pointsb2(q)q−k, k = 0,1, ... (see

Theorem 4.4 h)).

Notice that Case 2(b) includes the same graphs with Case 2(a).A together witha2(q) = b2(q).

That’s why, case 2(b) also produce the interval (qb2(q),∞) associated witha2(q) = b2(q).
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Figure 4.15: A figure ofσ1(x,q)ρ(x,q)xk=σ2(q−1x,q)ρ(q−1x,q)xk related to Figure 4.14.

Therefore, one can obtain the following theorem for this case.

Theorem 4.13 Let a= b2(q) be the zero ofσ2(x,q) and b= ∞ and assume that q−1a1(q) <

0 < a2(q) ≤ b2(q) andΛq =
τ′(0,q)
σ′1(0,q) < 0. Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.16) with respect to the q-weight

function

ρ(x,q) = xα+
1
2 logq x−1 (qa2(q)/x,qb2(q)/x; q)∞

(a1(q)/x; q)∞
> 0, x ∈ (b2(q),∞), (4.30)

qα =
q−2 1

2σ
′′
2 (0,q)

σ′1(0,q) which satisfies the q-Pearson equation and the boundary condition (see The-

orem 4.4 h)).

This case corresponds to the new orthogonality on the interval (b2(q),∞).

An example of such family is theq-Meixner polynomials [35] wherea1(q) = bq, a2(q) = −bc,

b2(q) = 1,

σ1(x,q) = cq−2(x− bq), σ2(x,q) = (x− 1)(x+ bc),

τ(x,q) = −
1

1− q
x+

cq−1 − bc+ 1
1− q

, λn(q) =
[n]q

1− q
.

q-Meixner polynomials are orthogonal on (1,∞) and the conditionsΛq < 0 anda1(q) < 0 <

a2(q) ≤ b2(q) give us the following restriction for the parametersc > 0, b < 0, 0 < −bc≤ 1.

By means of Theorem 4.4 h) we can write the orthogonality ofq-Meixner polynomials
∫ ∞

1
xα

√
xlogq x−1 (q/x; q)∞(−bcq/x; q)∞

(bq/x; q)∞
Mm(x; b, c; q) Mn(x; b, c; q)dq−1 x = (1− q−1)q−n

×
(q,−c−1q; q)n

(bq; q)n

(q,−c; q)∞
(bq; q)∞

δmn (4.31)
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which coincides with (4.29) but with different choice of parametersc = q−α > 0, b < 0, 0 <

−bc≤ 1 which is the new orthogonality forq-Meixner polynomials.

Case 2(a).B:0 < a2(q) < b2(q) < q−1a1(q), Λq > 0. This situation is indicated in Figure

4.12B. We perform the analogous procedure to determine a suitable interval whereρ satisfies

the certain conditions. Hence, we first consider the positivity ofρ which enables us to remove

the intervals (a2(q),b2(q)) and (q−1a1(q),∞). We secondly deal with the interval (−∞,a2(q))

which is also eliminated due to Remark 4.5.6 (we first need the transformationx = −t) since

the boundary condition is not satisfied.

We last look at the interval (b2(q),q−1a1(q)) which concides with the one given in Theorem 4.4

d). Then, here, it could be possible to have a suitableq-weight function. Notice from Figure

4.12B thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = b2(q) < x0 < x = q−1a1(q), then

it follows thatρ is increasing on (b2(q), x0) and decreasing on (x0,q−1a1(q)) with the property

ρ(qb2(q),q) = 0 andρ(x,q) → 0 asx → q−1a1(q)− sinceρ(qb2(q),q)/ρ(b2(q),q) = 0 and

ρ(qx,q)/ρ(x,q) → ∞ asx→ q−1a1(q)−. Therefore, the behaviour ofρ can be determined as

in Figure 4.16.
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Figure 4.16: Possible positive graph of correspondingρ(x,q) for Figure 4.12B.

Figure 4.16 also displays that (qb2(q),a1(q)) is the suitable interval in whichρ is defined.

Notice that the boundary condition (3.119) holds atx = qb2(q) andx = a1(q) sinceqb2(q) is

the root ofσ2(q−1x,q) anda1(q) of σ1(x,q) (see Theorem 4.4 d)). Observe from Theorem 4.4

d) that for this case whileρ is supported on (qb2(q),a1(q)) at the pointsa1(q)qk, k = 0,1, ... it

could also be supported on (b2(q),q−1a1(q)) at the pointsb2(q)q−k, k = 0,1, ....
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Notice that Case 2(b) includes the same graphs with Case 2(a).B together witha2(q) = b2(q).

That’s why, Case 2(b) also produces the interval (b2(q),q−1a1(q)) associated witha2(q) =

b2(q). Therefore, we perform the following theorem for this case.

Theorem 4.14 Let a= qb2(q) be the zero ofσ2(q−1x,q) and b= a1(q) ofσ1(x,q) and assume

that 0 < a2(q) ≤ b2(q) < q−1a1(q) andΛq =
τ′(0,q)
σ′1(0,q) > 0. Then, there exists a sequence of

polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the orthogonality (4.9) and (4.11)

with respect to the q-weight function

ρ(x,q) = xαxlogq x(qa−1
1 (q)x,qa2(q)/x,qb2(q)/x; q)∞ > 0, x ∈ (a,b) (4.32)

qα = −
q−2 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)

which satisfies the q-Pearson equation and the boundary condition (see

Theorem 4.4 d)).

This case corresponds to the case IIb1 in Chapter 11 of [35, pages 337 and 361].

An example of such family is the quantumq-Kravchuk polynomials [35] wherea1(q) =

q−N,a2(q) = p−1q−N−1,b2(q) = 1,

σ1(x,q) = −q−2(x− q−N), σ2(x,q) = (x− 1)(px− q−N−1),

τ(x,q) = −
p

1− q
x+

p− q−1 + q−N−1

1− q
, λn(q) =

p
1− q

[n]q.

Quantumq-Kravchuk polynomials are orthogonal on (1,q−N−1) and the conditionsΛq > 0 and

0 < a2(q) ≤ b2(q) < a1(q) give us the following restriction for the parametersp ≥ q−N−1. By

means of Theorem 4.4 d) we can write the orthogonality of quantumq-Kravchuk polynomials

∫ q−N−1

1
xα+N+logq x(qN+1x,q/x, p−1q−N/x; q)∞Kqtm

m (x; p,N; q)Kqtm
n (x; p,N; q)dq−1 x= (q−1 − 1)

×(−1)npNq(N+1
2 )−(n+1

2 )+Nn(q; q)N−n(q, pq; q)n

(q, pq; q)N
(q, p−1q−N,qN+1; q)∞δmn (4.33)

together withp = qα ≥ q−N−1. Notice from Theorem 4.4 d) that one can also write the

orthogonality with finite sum by applying (2.31) to (4.33)

N∑

x=0

(pq; q)N−x

(q; q)x(q; q)N−x
(−1)N−xq(x

2)Kqtm
m (q−x; p,N; q)Kqtm

n (q−x; p,N; q)= (−1)npN

×q(N+1
2 )−(n+1

2 )+Nn(q; q)N−n(q, pq; q)n

(q,q; q)N
δmn. (4.34)
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Figure 4.17: Case 2(a). The functionf (x,q) with C: Λq > 0,0 < a2(q) < q−1a1(q) < b2(q),
D: Λq < 0,a2(q) < b2(q) < q−1a1(q) < 0.

Case 2(a).C:0 < a2(q) < q−1a1(q) < b2(q), Λq > 0. This case is placed in Figure 4.17C.

Then, according to the graph off in Figure 4.17C, we analyse the possible intervals in which

the q-weight function is defined. Thus, let us start with excluding the negativeintervals

(a2(q),q−1a1(q)) and (b2(q),∞). Afterwards, one can also eliminate the rest two intervals

(−∞,a2(q)) and (q−1a1(q),b2(q)) with the help of the Remark 4.5.6 (we first need to use trans-

formationx = −t) and Remark 4.5.4, respectively. As a result, this case does not generate a

suitable interval whereρ is defined with needed properties.

Case 2(a).D:a2(q) < b2(q) < q−1a1(q) < 0, Λq < 0. The graph for this case is placed

in Figure 4.17D. We start to skip the negative intervals (−∞,a2(q)) and (b2(q),q−1a1(q)).

Next, we eliminate the interval (a2(q),b2(q)) by use of Remark 4.5.2. We last analyse the

interval (q−1a1(q),∞) which is the one identified in Theorem 4.4 g). Thus, we anticipate that

it could be possible to have a suitableρ on this interval. Notice thatρ(qx,q)/ρ(x,q) = 1 at

x0 = −τ(0,q)/τ′(0,q), x0 > x = q−1a1(q), then it follows thatρ is increasing on (q−1a1(q), x0)

and decreasing on (x0,∞) which leads toρ → 0 asx→ ∞ sinceρ(qx,q)/ρ(x,q) → ∞. As a

result of the above discussion we can also construct Figure 4.18 for theq-weight function.

We infer from Figure 4.18 that the boundary conditions (3.119) and (3.117) hold atx = a1(q)

andρ → 0 asx→ ∞, but we still need to ensureσ1(x,q)ρ(x,q)xk → 0 asx→ ∞ by using

theextended q-Pearson equation (4.20). For this reason, we get Figure 4.19 by applying the

same procedure to theextended q-Pearson equation (4.20) which helps to construct the Figure

4.20 for the boundary condition (3.119).
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Figure 4.18: Possible positive graph of correspondingρ(x,q) for Figure 4.17D.
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Figure 4.19: A figure ofg(x,q) related to Figure 4.17D.
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Figure 4.20: A figure ofσ1(x,q)ρ(x,q)xk = σ2(q−1x,q)ρ(q−1x,q)xk related to Figure 4.19.
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Notice from Figure 4.19 that it looks like the one represented in Figure 4.17D. That’s why, it

leads to the similar properties, i.e., we getσ1(x,q)ρ(x,q)xk → 0 asx → ∞. Consequently,

we get a suitableρ on the interval (a1(q),∞) supported at the pointsaqk andq∓k, k = 0,1, ...

(see Theorem 4.4 g)).

Notice that Case 2(b) includes the same graphs with Case 2(a).D together witha2(q) = b2(q).

That’s why, Case 2(b) also produce the interval (a1(q),∞) associated witha2(q) = b2(q).

We next construct the following theorem indicating the result discussed in Case 2(a).D.

Theorem 4.15 Let a = a1(q) of σ1(x,q) and b = ∞ and assume that a2(q) ≤ b2(q) <

q−1a1(q) < 0,Λq =
τ′(0,q)
σ′1(0,q) < 0. Then, there exists a sequence of polynomials(Pn)n orthogonal

on (a,b), i.e., they satisfy the orthogonality (4.15)

∫ ∞

a1(q)
Pm(x,q)Pn(x,q)ρ(x,q)dqx= (1−q)

(
a2(q)b2(q)a−1

1 (q)
)2n

(q,a−1
2 (q)a1(q),b−1

2 (q)a1(q); q)n

×
(q,a1(q),qa−1

1 (q),a−1
2 (q)b−1

2 (q)a1(q),qa2(q)b2(q)a−1
1 (q); q)∞

(a−1
2 (q)a1(q),b−1

2 (q)a1(q),a−1
2 (q),b−1

2 (q),qa2(q),qb2(q); q)∞
q−n(2n−1)δmn (4.35)

with respect to the q-weight function

ρ(x,q) =
(a−1

1 (q)qx; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
> 0, x ∈ (a,b) (4.36)

qα =
q−1 1

2σ
′′
2 (0,q)a2(q)b2(q)
σ′1(0,q)a1(q) which satisfies the q-Pearson equation and the boundary condition

(see Theorem 4.4 g)).

This case corresponds to the case VIa2 in Chapter 10 of [35, pages 285 and 315].

We note that this case leads to the new orthogonality on the interval (a1(q),∞) which does

not appear in theq-Askey scheme. Actually, this case is analog to the one leading to the

q-Meixner polynomials. They differ by the orthogonality interval.

Case 2(c): a1(q) < 0,a2(q),b2(q) ∈ C, Λq < 0. The situation of this case is represented

in Figure 4.21. Notice from Figure 4.21 that (q−1a1(q),∞) is the only interval wheref is

positive. Observe that this interval is exactly same with the one representedin Case 2(a).D.

Notice also from the Figure 4.21 and Figure 4.17D that they both have same property on the

interval (q−1a1(q),∞). Then, the result represented in Figure 4.17D is valid for this case also,

i.e., there exists a suitableρ on (q−1a1(q),∞) which is also seen from Figure 4.22 (graph
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Figure 4.21: Case 2(c). The functionf (x,q) with Λq < 0,a1(q) < 0,a2(q),b2(q) ∈ C.

of ρ) and Figure 4.23 (graph of theextended q-Pearson equation andσ1(x,q)ρ(x,q)xk =

σ2(q−1x,q)ρ(q−1x,q)xk).
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Figure 4.22: Possible positive graph of correspondingρ(x,q) for Figure 4.21.
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Figure 4.23: A figure of A:g(x,q), B: σ1(x,q)ρ(x,q)xk = σ2(q−1x,q)ρ(q−1x,q)xk related to
Figure 4.21.

Thus, this case leads to the following theorem.
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Theorem 4.16 Let a= a1(q) ofσ1(x,q) and b= ∞ and assume that a1(q) < 0,a2(q),b2(q) ∈

C, Λq =
τ′(0,q)
σ′1(0,q) < 0. Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b),

i.e., they satisfy the orthogonality (4.15)

∫ ∞

a1(q)
Pm(x,q)Pn(x,q)ρ(x,q)dqx= (1−q)

(
a2(q)b2(q)a−1

1 (q)
)2n

(q,a−1
2 (q)a1(q),b−1

2 (q)a1(q); q)n

×
(q,a1(q),qa−1

1 (q),a−1
2 (q)b−1

2 (q)a1(q),qa2(q)b2(q)a−1
1 (q); q)∞

(a−1
2 (q)a1(q),b−1

2 (q)a1(q),a−1
2 (q),b−1

2 (q),qa2(q),qb2(q); q)∞
q−n(2n−1)δmn (4.37)

with respect to the q-weight function

ρ(x,q) =
(a−1

1 (q)qx; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
> 0, x ∈ (a,b) (4.38)

qα =
q−1 1

2σ
′′
2 (0,q)a2(q)b2(q)
σ′1(0,q)a1(q) which satisfies the q-Pearson equation and the boundary condition

(see Theorem 4.4 g)).

This case corresponds to the case VIa1 in Chapter 10 of [35, pages 285 and 315].

We note that this case leads to the new orthogonality on the interval (a1(q),∞) which does

not appear in theq-Askey scheme. Actually, this case is analog to the one leading to the

q-Meixner polynomials. They differ by the orthogonality interval.

4.2.3 Quadratic Case

Assume thatσ1(x,q) = 1
2σ
′′
1 (0,q)x2 +σ′1(0,q)x+σ1(0,q) = 1

2σ
′′
1 (0,q)[x− a1(q)][ x− b1(q)],

a1(q) < b1(q) andτ(x,q) = τ′(0,q)x+ τ(0,q), τ′(0,q) , 0.

Remark 4.17 We remark thatσ2(x,q) follows from (3.11)

σ2(x,q) = q

{[1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
x2 −

[1
2
σ′′1 (0,q)(a1(q) + b1(q))

− (1− q−1)τ(0,q)
]
x+

1
2
σ′′1 (0,q)a1(q)b1(q)

}
. (4.39)

Note that

• deg[σ2(x,q)] = 2 when τ′(0,q) , −
1
2σ
′′
1 (0,q)

(1−q−1) ,

• deg[σ2(x,q)] = 1 when τ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) and τ(0,q) ,
1
2σ
′′
1 (0,q)(a1(q)+b1(q))

(1−q−1) ,
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• deg[σ2(x,q)] = 0 if τ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) , τ(0,q) =
1
2σ
′′
1 (0,q)(a1(q)+b1(q))

(1−q−1) and

1
2σ
′′
1 (0,q)a1(q)b1(q) , 0.

That’s why, the q-Jacobi type q-polynomials of the 1st kind are the q-Jacobi, the q-Laguerre

and the q-Hermite type q-polynomials of the 2nd kind (see Table 4.1).

4.2.3.1 Theq-Classical∅-Jacobi/Jacobi Polynomials

We deal with every degree ofσ2(x,q) starting withq-Jacobi/q-Jacobi case by lettingσ1(x,q) =

1
2σ
′′
1 (0,q)x2 + σ′1(0,q)x + σ1(0,q) = 1

2σ
′′
1 (0,q)[x − a1(q)][ x − b1(q)], a1(q) < b1(q) and

τ(x,q) = τ′(0,q)x+ τ(0,q), τ′(0,q) , 0. Then,σ2(x,q) = 1
2σ
′′
2 (0,q)x2 + σ′2(0,q)x+ σ2(0,q)

where

1
2
σ′′2 (0,q) = q

[1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
, σ2(0,q) =

1
2
σ′′1 (0,q)a1(q)b1(q),

σ′2(0,q) = −q
[1
2
σ′′1 (0,q)(a1(q) + b1(q)) − (1− q−1)τ(0,q)

]
.

Thus, theq-Pearson equation follows from (4.1)

ρ(qx,q)
ρ(x,q)

=

[
1+(1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
x2−

[
a1(q) + b1(q) − (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

]
x+a1(q)b1(q)

[qx− a1(q)][qx− b1(q)]

=
q−1σ2(x,q)
σ1(qx,q)

. (4.40)

Let denote by∆q the constant

∆q :=
[
a1(q) + b1(q) − (1− q−1)

τ(0,q)
1
2σ
′′
1 (0,q)

]2
− 4a1(q)b1(q)

[
1+ (1− q−1)

τ′(0,q)
1
2σ
′′
1 (0,q)

]
.

Notice that the nominator in (4.40) can be writen as
1+ (1− q−1)

τ′(0,q)
1
2σ
′′
1 (0,q)

 [x− a2(q)][ x− b2(q)], if ∆q , 0.

In fact, if ∆q > 0 thena2(q) andb2(q) ∈ R and we assume, without losing any generality that

a2(q) < b2(q). If ∆q < 0, a2(q) andb2(q) ∈ C.

If ∆q = 0 then the nominator takes the form
[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
[x− a2(q)]2, a2(q) ∈ R.

We are interesting in the behavior of zeros of the nominator of (4.40) (and so, the zeros of

ρ(qx,q)/ρ(x,q)). This is given in the following straightforward lemma.
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Lemma 4.18 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.40) and set

Λq = q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 , 0.

Then, the roots of the equation f(x,q) = 0 have the following properties;

1. If Λq > 0 and a1(q) < 0 < b1(q), f has two real and distinct roots with opposite signs.

2. If Λq > 0 and0 < a1(q) < b1(q), there exist three possibilities,

(a) if ∆q > 0, f has two real roots with the same signs,

(b) if ∆q = 0, f has two equal real roots,

(c) if ∆q < 0, f has two complex roots.

3. If Λq < 0 and a1(q) < 0 < b1(q), there exist three possibilities,

(a) if ∆q > 0, f has two real roots with the same signs,

(b) if ∆q = 0, f has two equal real roots,

(c) if ∆q < 0, f has two complex roots.

4. If Λq < 0 and0 < a1(q) < b1(q), f has two real distinct roots with opposite signs.

Remark 4.19 Notice that y= Λq is the horizontal asymptote of the function f(x,q).

Our next step is to analyse all possible graphs ofρ(qx,q)/ρ(x,q) in (4.40) according to all

possible relative positions of the zeros ofσ1 andσ2. We assume that the conditions of Lemma

4.18 hold.

Before starting the analysis notice thatρ(qx,q)/ρ(x,q) always intercepts they-axis at the

point y = 1 sinceσ2(0,q) = qσ1(0,q) (i.e., the constant terms ofσ1 andσ2 are the same). In

addition, to give a full description of the items 1 and 2 of Lemma 4.18 we need to split them

in two separate cases: case i) whenΛq > 1 and case ii) when 0< Λq < 1.

Let f (x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.40).

Case 1.i)A:q−1a1(q) < a2(q) < 0 < b2(q) < q−1b1(q), Λq > 1. The graph off for this case is

represented in Figure 4.24A. Let us consider now the possible intervals inwhich we can have
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Figure 4.24: Case 1.i) The functionf (x,q) with Λq > 1. A: q−1a1(q) < a2(q) < 0 < b2(q) <
q−1b1(q), B: q−1a1(q) < a2(q) < 0 < q−1b1(q) < b2(q).

a suitableq-weight functionρ. As we already mentioned, they are defined by the zeros of the

polynomialsσ1 andσ2. First of all, notice that sinceρ should be a positive weight function

and f is negative in the intervals (q−1a1(q),a2(q)) and (b2(q),q−1b1(q)) they are not suitable.

The interval (a2(q),b2(q)) can not be used due to Remark 4.5.4 since the boundary conditions

can not be satisfied. The same happens with the interval (q−1b1(q),∞) (see Remark 4.5.5),

and by the symmetry property with (−∞,q−1a1(q)). Therefore, this case does not lead to a

suitableq-weight function with the needed properties.

Case 1.i)B:q−1a1(q) < a2(q) < 0 < q−1b1(q) < b2(q), Λq > 1. Let us now analyse the situa-

tion given in Figure 4.24B. The positivity ofρ allows us to skip the intervals (q−1a1(q),a2(q))

and (q−1b1(q),b2(q)). Using Remark 4.5.5 (we first need to do the transformationx = −t)

as well as Remark 4.5.3 we can eliminate the intervals (−∞,q−1a1(q)) and (a2(q),q−1b1(q)),

respectively. Let consider now the last interval (b2(q),∞). Notice that it coincides with the

one described in Theorem 4.4 h), so here it could be possible to have a suitable q-weight

function ρ. Notice also that sinceρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 > x =

b2(q), then from Figure 4.24B it follows thatρ is decreasing on (−τ(0,q)/τ′(0,q),∞). Since

ρ(qx,q)/ρ(x,q) has a finite limit asx→ +∞, we have the chance thatρ → 0 asx→ ∞, but

it is not enough to assure thatρ satisfies the boundary condition at+∞. In fact, as it is stated

in Theorem 3.31, we should check thatσ1(x,q)ρ(x,q)xk → 0 asx→ ∞. To this end, we use,
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instead of theq-Pearson equation (4.1), the followingextended q-Pearson equation (4.20):

g(x,q) : =
σ1(qx,q)ρ(qx,q)(qx)k

σ1(x,q)ρ(x,q)xk
(4.41)

= qk

[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
x2 −

[
a1(q) + b1(q) − (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

]
x+ a1(q)b1(q)

(x− a1(q))(x− b1(q))
,

which is represented in Figure 4.25.
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Figure 4.25: A figure ofg(x,q) corresponding to Figure 4.24B.

If we now provide a similar anaysis with the functiong defined in (4.41), we see from Figure

4.25 that, fork large enough,g is an increasing positive function with a positive limit. There-

foreσ1(x,q)ρ(x,q)xk 6→ 0 asx → ∞ and the condition (3.117) does not hold. Thus we can

not use this interval for constructing aq-weight functionρ.
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Figure 4.26: Case 1.ii) The functionf (x,q) with 0 < Λq < 1, A: a2(q) < q−1a1(q) < 0 <
q−1b1(q) < b2(q), B: a2(q) < q−1a1(q) < 0 < b2(q) < q−1b1(q).

Case 1.ii)A:a2(q) < q−1a1(q) < 0 < q−1b1(q) < b2(q), 0 < Λq < 1. This case is represented

in Figure 4.26A. Let us examine all possible intervals in order to find in which ones there
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could be defined a convenientq-weight function. First of all by the positivity property ofρ

we eliminate the intervals (a2(q),q−1a1(q)) and (q−1b1(q),b2(q)). Notice from Figure 4.26A

that the interval (b2(q),∞) coincides with the one described in Theorem 4.4 h). However,

f (x,q) < 1 on this interval thusρ is increasing on (b2(q),∞) which leads toρ 6→ 0 asx→ ∞

Thereforeσ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1,2, ... asx→ ∞. The same happens for the interval

(−∞,a2(q)) by symmetry properties.

Let us consider the last interval (q−1a1(q),q−1b1(q)). Observe that this case is described in

Theorem 4.4 a), then it could be possible to have a suitableq-weight functionρ. Notice that

sinceρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), q−1a1(q) < x0 < q−1b1(q), thenρ is

increasing on (q−1a1(q), x0) and decreasing on (x0,q−1b1(q)) whereρ → 0 asx→ q−1a1(q)+

andx → q−1b1(q)− sinceρ(qx,q)/ρ(x,q) → ∞. According to the above discussion we can

sketch the graph ofρ which is represented in Figure 4.27 assuming a positive initial value for

theq-weight function in each interval.

0
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y

x

b
2
(q)q−1b

1
(q)q−1a

1
(q)a

2
(q)

Figure 4.27: Possible positive graph of correspondingρ(x,q) for Figure 4.26A.

We also figure out from Figure 4.27 that, there exists aq-weight function on the interval

(a1(q),b1(q)) supported at the pointsa1(q)qk, b1(q)qk, k = 0,1, ... (see Theorem 4.4 a)) since

the boundary condition (3.115) holds atx = a1(q) and x = b1(q). Since this interval is

finite, then there is no needed to look at theextended q-Pearson equation. Thus, we have the

following Theorem.

Theorem 4.20 Let a = a1(q), b = b1(q), be the zeros ofσ1(x,q) and assume that a2(q) <

q−1a1(q) < 0 < q−1b1(q) < b2(q), and0 < Λq = q−2[1 + (1− q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 1. Then, there

exists a sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the orthogonality
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(4.6) with respect to the q-weight function

ρ(x,q) =
(qa−1

1 (q)x,qb−1
1 (q)x; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
> 0, x ∈ (a1(q),b1(q)) (4.42)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 a)).

This case corresponds to the case VIIa1 in Chapter 10 of [35, pages 292 and 318].

An example of such family is the bigq-Jacobi polynomials [35] wherea1(q) = cq, b1(q) = aq,

a2(q) = b−1c, b2(q) = 1,

σ1(x,q) = q−2(x− aq)(x− cq), σ2(x,q) = aq(x− 1)(bx− c),

τ(x,q) =
1− abq2

(1− q)q
x+

a(bq− 1)+ c(aq− 1)
1− q

, λn(q) = q−n[n]q
1− abqn+1

q− 1
.

Big q-Jacobi polynomials are orthogonal on (cq,aq) and the conditions constructed according

to the identity
σ1(qx,q)ρ(qx,q)
σ1(x,q)ρ(x,q)

=
q−1σ2(x,q)
σ1(x,q)

(4.43)

as 0< q2Λq < 1 anda2(q) < a1(q) < 0 < b1(q) < b2(q) give us the following restriction for

the parametersc < 0, 0 < b < q−1, 0 < a < q−1. By means of Theorem 4.4 a) we can write

the orthogonality of bigq-Jacobi polynomials

∫ aq

cq

(a−1x, c−1x; q)∞
(x,bc−1x; q)∞

Pm(x; a,b, c; q)Pn(x; a,b, c; q)dqx = aq(1− q)
1− abq

1− abq2n+1

×
(q,abq2,a−1c,ac−1q; q)∞
(aq,bq, cq,abc−1q; q)∞

(q,bq,abc−1q; q)n

(aq, cq,abq; q)n
(−acq2)nq(n

2)δmn (4.44)

together withc < 0, 0< b < q−1, 0 < a < q−1 [36].

Case 1.ii)B:a2(q) < q−1a1(q) < 0 < b2(q) < q−1b1(q), 0 < Λq < 1. The graph off for

this case is represented in Figure 4.26B. By the positivity ofρ we eliminate the intervals

(a2(q),q−1a1(q)) and (b2(q),q−1b1(q)). Moreover, (q−1a1(q),b2(q)) can not be used due to

Remark 4.5.4 since the boundary conditions can not be satisfied. The same happens with

the interval (q−1b1(q),∞) (see Remark 4.5.5). For the last interval (−∞,a2(q)), an analogous

analysis as the one that has been done in Case 1ii)A yields that it is also not suitable for

constructingρ.

Case 2.(a)i)A:0 < a2(q) < q−1a1(q) < b2(q) < q−1b1(q), Λq > 1. The graph off for

this case is represented in Figure 4.28A. Let us now analyse the situations for this case. We
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Figure 4.28: Case 2.(a)i) The functionf (x,q) with Λq > 1, A: 0 < a2(q) < q−1a1(q) <
b2(q) < q−1b1(q), B: 0 < a2(q) < q−1a1(q) < q−1b1(q) < b2(q).

first consider the positivity ofρ which allows to eliminate the intervals (a2(q),q−1a1(q)) and

(b2(q),q−1b1(q)). The interval (−∞,a2(q)) is also omitted due to Remark 4.5.6 (by sym-

metry) since the boundary condition does not hold. The same happens with the intervals

(q−1a1(q),b2(q)) and (q−1b1(q),∞) (see Remark 4.5.4 and Remark 4.5.5). As a result, this

case does not lead to any convenientρ.

Case 2.(a)i)B:0 < a2(q) < q−1a1(q) < q−1b1(q) < b2(q), Λq > 1. This situation appears in

Figure 4.28B. Let us examine the possible intervals in which a suitableρ is defined. We begin

with considering positivity ofρwhich allows us to eliminate the intervals (a2(q),q−1a1(q)) and

(q−1b1(q),b2(q)). The same happens by the symmetry property with the interval (−∞,a2(q))

(Remark 4.5.6). (q−1a1(q),q−1b1(q)) also can not be used due to Remark 4.5.1. For the last

interval (b2(q),∞), it is seen from Figure 4.28B thatf (x,q) = 1 at x0 = −τ(0,q)/τ′(0,q),

x0 > x = b2(q), then it follows thatρ is increasing on (b2(q), x0) and decreasing on (x0,∞).

Sinceρ is decreasing on (x0,∞) and f has a finite limit asx→ ∞, then we have a chance that

ρ → 0 asx → ∞, but as we mentioned before it is not enough to assure that the boundary

condition holds at+∞. That is, we need the analysis of theextended q-Pearson equation (4.41)

which leads to the analogous result as we obtained in Case 1.i)B thatσ2(x,q)ρ(x,q)xk 6→ 0

asx→ ∞. That’s why we can not obtain a convenientρ with the needed properties.

Case 2.(a)i)C:0 < q−1a1(q) < a2(q) < b2(q) < q−1b1(q), Λq > 1. This case is represented in

Figure 4.29C. Let us start with performing the positivity property which provides to eliminate

the intervals (q−1a1(q),a2(q)) and (b2(q),q−1b1(q)). Moreover, the intervals (a2(q),b2(q)) and

(q−1b1(q),∞) are both excluded due to Remark 4.5.2 and Remark 4.5.5, respectively. Let us
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Figure 4.29: Case 2.(a)i) The functionf (x,q) withΛq > 1, C: 0< q−1a1(q) < a2(q) < b2(q) <
q−1b1(q), D: a2(q) < b2(q) < 0 < q−1a1(q) < q−1b1(q).

consider now the last interval (−∞,q−1a1(q)). Notice that it coincides with the one described

in Theorem 4.4 g) with the symmetry property. Then, here it could be possibleto get a suitable

ρ. Notice also thatf (x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 < x = q−1a1(q). Then, it follows

from Figure 4.29C thatρ is increasing on (−∞, x0) and decreasing on (x0,q−1a1(q)). Sinceρ

is increasing on (−∞, x0) andρ(qx,q)/ρ(x,q) has a finite limit asx → −∞, we have chance

thatρ→ 0 asx→ −∞, but it is not enough to assure thatρ satisfies the boundary condition at

−∞. In fact, as we said before that we need to apply the analogous analysis totheextended q-

Pearson equation in order to check thatσ1(x,q)ρ(x,q)xk → 0 asx→ −∞. One can easily see

from theextended q-Pearson equation thatσ1(x,q)ρ(x,q)xk is decreasing on (−∞,q−1a1(q))

for k large enough. Then,σ1(x,q)ρ(x,q)xk 6→ 0 asx→ −∞. As a result, this case does not

lead to any suitableρ.

Case 2.(a)i)D:a2(q) < b2(q) < 0 < q−1a1(q) < q−1b1(q), Λq > 1. This situation appears

in Figure 4.29D. We deal with the possible intervals in which we can have a suitable q-

weight functionρ. Notice that sinceρ should be a positive weight function andf is negative

in the intervals (a2(q),b2(q)) and (q−1a1(q),q−1b1(q)) they are not suitable. Furthermore, the

intervals (b2(q),q−1a1(q)) and (q−1b1(q),∞) can not be used due to Remark 4.5.3 and Remark

4.5.5, respectively. As the last interval, let us look at (−∞,a2(q)). Notice that it coicides with

the one described in Theorem 4.4 h) by the symmetry. That’s why, it could bepossible to have

a suitableρ. However, analogous analysis including theextended q-Pearson equation (4.41)

as we did before enables us to see that the boundary condition is not satisfied asx → −∞.

Therefore, we can not obtain a convenientq-weight function with the needed properties.
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Figure 4.30: The functionf (x,q) with Λq > 1, Case 2.(a)i)E: 0< a2(q) < b2(q) < q−1a1(q) <
q−1b1(q), Case 2.(c)i)F: 0< q−1a1(q) < q−1b1(q), a2(q),b2(q) ∈ C.

Case 2.(a)i)E:0 < a2(q) < b2(q) < q−1a1(q) < q−1b1(q), Λq > 1. This situation is identified

by Figure 4.30E. Analogously, we begin with excluding the negative intervals (a2(q),b2(q))

and (q−1a1(q),q−1b1(q)). In fact, we also eliminate the intervals (−∞,a2(q)) and (q−1b1(q),∞)

due to Remark 4.5.6 with the symmetry property and Remark 4.5.5, respectively. Let us now

consider the last interval (b2(q),q−1a1(q)). Notice that it coincides with the one described in

Theorem 4.4 d). Then, it could be possible to have a suitableρ. Notice also from Figure 4.30E

that f (x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), b2(q) < x0 < q−1a1(q), then it follows thatρ is in-

creasing on (b2(q), x0) with ρ(qb2(q),q) = 0 sinceρ(qb2(q),q)/ρ(b2(q),q) = 0 and decreasing

on (x0,q−1a1(q)) with ρ(x,q) → 0 asx → q−1a1(q)−sinceρ(qx,q)/ρ(x,q) → ∞ (see Figure

4.30E). As a result, above discussion leads to Figure 4.31 forρ starting with positive initialρ

for each interval.
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Figure 4.31: Possible positive graph of correspondingρ(x,q) for Figure 4.30E.

Figure 4.31 exhibits that (qb2(q),a1(q)) is possible interval in whichρ is defined with the
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needed properties having the supporting pointsa1(q)qN = qb2(q) or qb2(q)q−N = a1(q) (The-

orem 4.4 d)). Notice that the boundary condition (3.119) and (3.117) holdsincea1(q) is root

of σ1(x,q) andqb2(q) of σ2(q−1x,q). Observe that interval is finite, then there is no need

to look at theextended q-Pearson equation. Notice that this case leads to a suitableρ on

(qb2(q),a1(q)) supported at the pointsqka1(q), k = 0,1, ....

Remark 4.21 Note that Case 2(b)i) includes the same graphs with Case 2(a)i) which leads

only to the interval(qb2(q),a1(q)) equivalent to the one in Case 2(a)i)E together with a2(q) =

b2(q) and we remark that in case ofσ1(x,q) = 1
2σ
′′
1 (0,q)[x−a1(q)]2 andσ2(x,q) = 1

2σ
′′
2 (0,q)

[x−a2(q)][ x−b2(q)], similar figures whenσ1(x,q) has two distinct roots are derived together

with a1(q) = b1(q). However, only Figure 4.30E in company with a1(q) = b1(q) leads to a

suitableρ on (qb2(q),a1(q)) or (b2(q),q−1a1(q)) by performing the analogous analysis.

Therefore, according as all results discussed above, we constructthe following theorem.

Theorem 4.22 Let a= qb2(q) be the zero ofσ2(q−1x,q) and b= a1(q) ofσ1(x,q) and assume

that0 < a2(q) ≤ b2(q) < q−1a1(q) ≤ q−1b1(q), andΛq = q−2[1+ (1−q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] > 1. Then,

there exists a sequence of polynomials(Pn)n orthogonal on(a,b) or (q−1a,q−1b), i.e., they

satisfy the orthogonality (4.9) and (4.11), respectively with respect to the q-weight function

ρ(x,q) = xaxlogq x(qa−1
1 (q)x,qb−1

1 (q)x,qa2(q)/x,qb2(q)/x; q)∞ > 0, x ∈ (a,b) (4.45)

qa =
q−1 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)b1(q)

which satisfies the q-Pearson equation and the boundary condition (see

Theorem 4.4 d)).

This case corresponds to the case IIIb5 in Chapter 11 of [35, page 343].

An example of such family is theq-Hahn polynomials [35] wherea1(q) = q−N, b1(q) = αq,

a2(q) = β−1q−N−1, b2(q) = 1,

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1),

τ(x,q) =
1− αβq2

(1− q)q
x+
αq−N + αβq− α − q−N−1

1− q
, λn(q) = −q−n[n]q

1− αβqn+1

1− q
.

q-Hahn polynomials are orthogonal on (1,q−N−1) and the conditionsq2Λq > 1 and 0<a2(q)≤

b2(q) < a1(q) ≤ b1(q) give us the following restriction for the parametersα ≥ q−N−1, β ≥
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q−N−1. By means of Theorem 4.4 d) we can also write the orthogonality ofq-Hahn polyno-

mials withqb = βq

∫ q−N−1

1
xb+N+logq x(α−1x,q/x,qN+1x, β−1q−N/x; q)∞Qm(x;α, β,N|q)Qn(x;α, β,N|q)dq−1 x= (q−1−1)

×
(αβq2; q)N

(βq; q)N(αq)N

(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(q,qN+1; q)∞
(αq, βqN+1; q)∞

(−αq)nq(n
2)−Nnδmn (4.46)

together withα ≥ q−N−1, β ≥ q−N−1. Notice from Theorem 4.4 d) that one can also write the

orthogonality with finite sum by applying (2.31) to (4.46)

N∑

x=0

(αq,q−N; q)x

(q, β−1q−N; q)x
(αβq)−xQm(q−x;α, β,N|q)Qn(q−x;α, β,N|q)=

(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(−αq)nq(n
2)−Nnδmn. (4.47)

Case 2.(c)i)F:0 < q−1a1(q) < q−1b1(q), a2(q),b2(q) ∈ C, Λq > 1. This situation is rep-

resented in Figure 4.30F. Sinceρ should be positive, we first start to exclude the negative

interval (q−1a1(q),q−1b1(q)). For the next step we consider the interval (q−1b1(q,∞)) which

is also eliminated due to Remark 4.5.5. Let us now deal with the last interval (−∞,q−1a1(q))

which coincides with the one described in Theorem 4.4 g) by symmetry. That’swhy, here,

it could be possible to have a convenientρ. However, an analogous analysis as the one that

has been done in Case 2(a)i)C leads to that it is also not suitable interval for definingρ. As a

result, we can not get a suitableρ for this case.
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Figure 4.32: Case 2(a)ii) The functionf (x,q) with 0 < Λq < 1, A: 0 < q−1a1(q) < a2(q) <
b2(q) < q−1b1(q), B: 0 < a2(q) < q−1a1(q) < q−1b1(q) < b2(q).

Case 2(a)ii)A:0 < q−1a1(q) < a2(q) < b2(q) < q−1b1(q), 0 < Λq < 1. The representation of

this situation appears in Figure 4.32A. We make analogous analysis for all possible intervals

99



in order to find which ones lead to a suitableρ. Let us start with excluding the negative

intervals (q−1a1(q),a2(q)) and (b2(q),q−1b1(q)) sinceρ should be positive. On the other hand,

with the help of Remark 4.5.2 and Remark 4.5.5 we see that (a2(q),b2(q)) and (q−1b1(q),∞)

can not be used. Notice that the last interval (−∞,q−1a1(q)) coincides with the one described

in Theorem 4.4 g) by symmetry. However, notice from Figure 4.32A thatρ(qx,q)/ρ(x,q) = 1

at x0 = −τ(0,q)/τ′(0,q), x0 > x = q−1b1(q). Therefore, it follows thatρ is decreasing on

(−∞,q−1a1(q)) which leads to thatρ 6→ 0 asx→ −∞. However, as before since it is infinite

interval we need to check thatσ1(x,q)ρ(x,q)xk → 0 asx → −∞ by using theextended q-

Pearson equation. But, the graph ofg looks like the one represented in Figure 4.32A which

indicates thatσ1(x,q)ρ(x,q)xk 6→ 0 asx→ −∞.

Case 2(a)ii)B:0 < a2(q) < q−1a1(q) < q−1b1(q) < b2(q), 0 < Λq < 1. The situation of this

case is represented in Figure 4.32B. Analogously, we begin with performing the positivity

which leads to eliminate the intervals (a2(q),q−1a1(q)) and (q−1b1(q),b2(q)). On the other

hand, due to the Remark 4.5.6 by symmetry and Remark 4.5.1, we can not use theintervals

(−∞,a2(q)) and (q−1a1(q),q−1b1(q)). We finish this case by considering the interval (b2(q),∞)

which is the one described in Theorem 4.4 h). Thus, it could be possible to have a suitable

ρ. But, notice from Figure 4.32B thatρ is increasing on this interval. That’s whyρ 6→ 0

asx → ∞ which leads toσ1(x,q)ρ(x,q)xk 6→ 0 k = 0,1,2, ... as x → ∞. As a result, it is

apparent that this case does not generate a suitableρ.
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Figure 4.33: Case 2(a)ii) The functionf (x,q) with 0 < Λq < 1, C: 0< q−1a1(q) < q−1b1(q) <
a2(q) < b2(q), D: a2(q) < b2(q) < 0 < q−1a1(q) < q−1b1(q).

Case 2(a)ii)C:0 < q−1a1(q) < q−1b1(q) < a2(q) < b2(q), 0 < Λq < 1. This case is repre-

sented in Figure 4.33C. Positivity ofρ enables us to skip the intervals (q−1a1(q),q−1b1(q)) and

(a2(q),b2(q)). One can also eliminate the interval (q−1b1(q),a2(q)) due to Remark 4.5.4. An
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analogous analysis as the one that has been done in Case 2(a)ii)A and Case 2(a)ii)B for the

intervals (−∞,q−1a1(q)) and (b2(q),∞), respectively, yields the same result that these inter-

vals can also not be used to determine aq-weight function. Thus, this case does not generate

any intervals whereρ is defined.

Case 2(a)ii)D:a2(q) < b2(q) < 0 < q−1a1(q) < q−1b1(q), 0 < Λq < 1. The graph off is rep-

resented in Figure 4.33D. Notice thatf is negative on (q−1a1(q),q−1b1(q)) and (a2(q),b2(q)).

That’s why we skip these intervals. Note that the intervals (b2(q),q−1a1(q)) and (q−1b1(q),∞)

are both eliminated due to Remark 4.5.3 and Remark 4.5.5, respectively. We alsoexclude the

last interval (−∞,a2(q)) because of the analogous analysis that has been done in Case 2(a)B

together with the transformationx = −t.
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Figure 4.34: The functionf (x,q) with 0 < Λq < 1, Case 2(a)ii) E: 0< q−1a1(q) < a2(q) <
q−1b1(q) < b2(q), Case 2(c)ii) F: 0< q−1a1(q) < q−1b1(q),a2(q),b2(q) ∈ C.

Case 2(a)ii)E: 0 < q−1a1(q) < a2(q) < q−1b1(q) < b2(q), 0 < Λq < 1. The graph of

this situation appears in Figure 4.34E. The positivity ofρ allows us to skip the intervals

(q−1a1(q),a2(q)) and (q−1b1(q),b2(q)). Notice that similar analysis as the one that has been

done in Case 2(a)A and Case 2(a)B enables us to eliminate the intervals; (−∞,q−1a1(q))

and (b2(q),∞). At last, let us analyse the interval (a2(q),q−1b1(q)). Notice that this interval

is the one that is defined in Theorem 4.4 d). Therefore, there may exist a suitable ρ on

this interval. Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = a2(q) < x0 <

q−1b1(q), then from Figure 4.34E it follows thatρ is increasing on (a2(q), x0) and decreasing

on (x0,q−1b1(q)) associated withρ(qa2(q),q) = 0 andρ(x,q) → 0 asx → q−1b1(q)− (since

ρ(qa2(q),q)/ρ(a2(q),q)=0, ρ(qx,q)/ρ(x,q) → ∞ asx→ q−1b1(q)−). Thus, according to this

discussion, one can easily obtain the behaviour ofρ as in Figure 4.35 by assuming a positive

initial value for theq-weight function in each interval.
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Figure 4.35: Possible positive graph of correspondingρ(x,q) for Figure 4.34E.

It is also clear from Figure 4.35 that the boundary condition holds atx = a2(q) and x =

q−1b1(q) (see also Theorem 4.5 d)). Thus we can construct a suitableρ with the needed prop-

erties on (a2(q),q−1b1(q)) supported at the pointsa2(q)q−k, k = 0,1, ... and on (qa2(q),b1(q))

at the pointsq−1b1(q)qk, k = 0,1, ... (see Theorem 4.5 d)). Therefore, we arrive at the follow-

ing theorem.

Theorem 4.23 Let a= qa2(q) be the zero ofσ2(q−1x,q) and b= b1(q) ofσ1(x,q) and assume

that 0 < q−1a1(q) < a2(q) < q−1b1(q) < b2(q), and0 < Λq = q−2[1 + (1 − q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] <

1. Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b) or (q−1a,q−1b),

i.e., they satisfy the orthogonality (4.9) and (4.11), respectively with respectto the q-weight

function

ρ(x,q) = xa (qa2(q)/x,qb−1
1 (q)x; q)∞

(a1(q)/x,b−1
2 (q)x; q)∞

> 0, x ∈ (a,b) qa = q−2
1
2σ
′′
2 (0,q)b2(q)

1
2σ
′′
1 (0,q)b1(q)

(4.48)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 d)).

This case corresponds to the case IIIb9 in Chapter 11 of [35, page 366].

An example of such family is theq-Hahn polynomials [35] wherea1(q) = αq, b1(q) = q−N,

a2(q) = 1, b2(q) = β−1q−N−1,

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1),

τ(x,q) =
1− αβq2

(1− q)q
x+
αq−N + αβq− α − q−N−1

1− q
, λn(q) = −q−n[n]q

1− αβqn+1

1− q
.

q-Hahn polynomials are orthogonal on (1,q−N−1) and the conditions 0< q2Λq < 1 and

0 < a1(q) < a2(q) < b1(q) < b2(q) give us the following restriction for the parameters
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0 < α < q−1, 0 < β < q−1. By means of Theorem 4.4 d) we can also write the orthogonality

of q-Hahn polynomials withqa = α

∫ q−N−1

1
xa(qa2(q)/x,qb−1

1 (q)x; q)∞

(a1(q)/x,b−1
2 (q)x; q)∞

Qm(x;α, β,N|q)Qn(x;α, β,N|q)dq−1 x=
(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(q,qN+1; q)∞
(αq, βqN+1; q)∞

(−αq)nq(n
2)−Nn(q−1 − 1)δmn (4.49)

together with 0< α < q−1, 0 < β < q−1. Notice from Theorem 4.4 d) that one can write the

orthogonality with finite sum by applying (2.31) to (4.49)

N∑

x=0

(αq,q−N; q)x

(q, β−1q−N; q)x
(αβq)−xQm(q−x;α, β,N|q)Qn(q−x;α, β,N|q)=

(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(−αq)nq(n
2)−Nnδmn (4.50)

which coincides with (4.47) but with a different choice of parameters, 0< α < q−1, 0 < β <

q−1.

Case 2(c)ii) F:0 < q−1a1(q) < q−1b1(q),a2(q),b2(q) ∈ C, 0 < Λq < 1. The graph off

corresponds to this situation is represented in Figure 4.34F. Notice that we need to eliminate

the interval (q−1a1(q),q−1b1(q)) sinceρ should be positive. Notice also that one can exclude

the interval (q−1b1(q),∞) because of the reason described in Remark 4.5.5. On the other hand,

the interval (−∞,q−1a1(q)) can also be eliminated by use of the analogous analysis as the one

described in Case 2(a)ii)A. That’s why, we can not obtain any suitableρ with the needed

properties.

Remark 4.24 We remark that Case 2(b)ii) has similar graphs of f as the ones constructed in

Case 2(a)ii) together with a2(q) = b2(q). However, any graphs belong to Case 2(b)ii) do not

lead to a suitableρ.

Case 3(a)A:q−1a1(q) < 0 < q−1b1(q) < a2(q) < b2(q), Λq < 0. The graph off corresponds

to this case is represented in Figure 4.36A. In order to find the possible intervals whereρ is

defined, we carry out the analogous procedure as before cases. Thus, we first consider the

positivity property ofρ which allows us to skip the intervals (−∞,q−1a1(q)), (q−1b1(q),a2(q))

and (b2(q),∞). On the other hand, the interval (a2(q),b2(q)) is also eliminated by using infor-

mation given in Remark 4.5.2. If we consider the last interval (q−1a1(q),q−1b1(q)), it is clear

from Theorem 4.4 a) that it could be possible to have a suitableρ on this interval. Notice that
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Figure 4.36: Case 3(a). The functionf (x,q) with Λq < 0, A: q−1a1(q) < 0 < q−1b1(q) <
a2(q) < b2(q), B: q−1a1(q) < 0 < a2(q) < b2(q) < q−1b1(q).

ρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = q−1a1(q) < x0 < x = q−1b1(q), then from

Figure 4.36A, it follows thatρ is increasing on (q−1a1(q), x0) and decreasing on (x0,q−1b1(q))

together withρ(x,q) → 0 asx→ q−1a1(q)+ andx→ q−1b1(q)− sinceρ(qx,q)/ρ(x,q) → ∞.

As a result of this information one can easily build the behaviour ofρ as in Figure 4.37.
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Figure 4.37: Possible positive graph of correspondingρ(x,q) for Figure 4.36A.

It is obvious from Figure 4.37 that (a1(q),b1(q)) is suitable interval forρ supported at the

pointsa1(q)qk andb1(q)qk, k = 0,1, ... (see Theorem 4.4 a)) since the boundary condition

(3.115) is satisfied atx = a1(q),b1(q).

Remark 4.25 Note that Case 3(b) includes the same graphs with Case 3(a) which leads tothe

interval (a1(q),b1(q)) equivalent to the one build in Case 3(a)A together with a2(q) = b2(q)

Thus, we construct the following theorem acording to the result of this case.
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Theorem 4.26 Let a= a1(q) and b= b1(q) be the zeros ofσ1(x,q) and assume that q−1a1(q) <

0 < q−1b1(q) < a2(q) ≤ b2(q), andΛq = q−2[1 + (1 − q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then, there exists

a sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the orthogonality (4.6)

with respect to the q-weight function

ρ(x,q) =
(qa−1

1 (q)x,qb−1
1 (q)x; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
> 0, x ∈ (a1(q),b1(q)) (4.51)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 a)).

This case leads to the new orthogonality on the interval (a1(q),b1(q)).

An example of such family is the bigq-Jacobi polynomials [35] wherea1(q) = cq, b1(q) = aq,

a2(q) = b−1c, b2(q) = 1,

σ1(x,q) = q−2(x− aq)(x− cq), σ2(x,q) = aq(x− 1)(bx− c),

τ(x,q) =
1− abq2

(1− q)q
x+

a(bq− 1)+ c(aq− 1)
1− q

, λn(q) = q−n[n]q
1− abqn+1

q− 1
.

Big q-Jacobi polynomials are orthogonal on (cq,aq) and the conditionsq2Λq < 0 anda1(q) <

0 < b1(q) < a2(q) ≤ b2(q) give us the following restriction for the parametersc < 0, b <

0, abc−1q ≤ 1, 0 < a < q−1. By means of Theorem 4.4 a) we can write the orthogonality

∫ aq

cq

(a−1x, c−1x; q)∞
(x,bc−1x; q)∞

Pm(x; a,b, c; q)Pn(x; a,b, c; q)dqx=aq(1− q)
1− abq

1− abq2n+1
q(n

2)

×
(q,abq2,a−1c,ac−1q; q)∞
(aq,bq, cq,abc−1q; q)∞

(q,bq,abc−1q; q)n

(aq, cq,abq; q)n
(−acq2)nδmn (4.52)

which coincides with (4.44) but with a different choice of parameters,c < 0, b < 0, abc−1q ≤

1, 0 < a < q−1 which is the new orthogonality for bigq-Jacobi polynomials.

Case 3(a)B:q−1a1(q) < 0 < a2(q) < b2(q) < q−1b1(q), Λq < 0. The graph off is represented

in Figure 4.36B. We start with considering the positivity ofρwhich allows us to skip the inter-

vals (−∞,q−1a1(q)), (a2(q),b2(q)) and (q−1b1(q),∞). Notice that the interval (q−1a1(q),a2(q))

is also excluded by means of Remark 4.5.4. However, since the interval (b2(q),q−1b1(q)) is

the one described in Theorem 4.4 d), it could be possible to have a suitableρ on this interval.

Notice that f (x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = b2(q) < x0 < x = q−1b1(q), then from

Figure 4.36B, it follows thatρ is increasing on (b2(q), x0) and decreasing on (x0,q−1b1(q))

with ρ(qb2(q),q) = 0 andρ(x,q) → 0 asx → q−1b1(q)− sinceρ(qb2(q),q)/ρ(b2(q),q) = 0

ρ(qx,q)/ρ(x,q) → ∞ asx → q−1b1(q)−. At the end, one can easily construct the behaviour
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Figure 4.38: Possible positive graph of correspondingρ(x,q) for Figure 4.36B.

of ρ as in Figure 4.38. Note that Figure 4.38 exhibits that there exists a suitableρ on

(qb2(q),b1(q)) together withq2Λq < 0, a1(q) < 0 < a2(q) < b2(q) < b1(q) supported at

the pointsqkb1(q), k = 0,1, ....

Remark 4.27 Note that Case 3(b) includes the same graphs with Case 3(a) which leads tothe

interval (qb2(q),b1(q)) equivalent to the one build in Case 3(a)B together with a2(q) = b2(q).

Thus, the following theorem can be stated according to the above discussion.

Theorem 4.28 Let a= qb2(q) be the zero ofσ2(q−1x,q) and b= b1(q) ofσ1(x,q) and assume

that q−1a1(q) < 0 < a2(q) ≤ b2(q) < q−1b1(q), andΛq = q−2[1+ (1−q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then,

there exists a sequence of polynomials(Pn)n orthogonal on(a,b) or (q−1a,q−1b), i.e., they

satisfy the orthogonality (4.9) and (4.11), respectively, with respect to the q-weight function

ρ(x,q) = xaxlogq x(qa−1
1 (q)x,qb−1

1 (q)x,qa2(q)/x,qb2(q)/x; q)∞ > 0, x ∈ (a,b) (4.53)

qa =
q−1 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)b1(q)

which satisfies the q-Pearson equation and the boundary condition (see

Theorem 4.4 d)).

This case leads to the new orthogonality on the interval (qb2(q),b1(q)).

An example of such family is theq-Hahn polynomials [35] wherea1(q) = αq, b1(q) = q−N,

a2(q) = β−1q−N−1, b2(q) = 1,

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1),
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τ(x,q) =
1− αβq2

(1− q)q
x+
αq−N + αβq− α − q−N−1

1− q
, λn(q) = −q−n[n]q

1− αβqn+1

1− q
.

q-Hahn polynomials are orthogonal on (1,q−N−1) and the conditionsq2Λq < 0 anda1(q) <

0 < a2(q) ≤ b2(q) < b1(q) give us the following restriction for the parametersα < 0, β ≥

q−N−1. By means of Theorem 4.4 d) we can write the orthogonality ofq-Hahn polynomials

∫ q−N−1

1
xb+Nxlogq x(α−1x,q/x,qN+1x, β−1q−N/x; q)∞Qm(x;α, β,N|q)Qn(x;α, β,N|q)dq−1 x= (q−1−1)

×
(αβq2; q)N

(βq; q)N(αq)N

(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(q,qN+1; q)∞
(αq, βqN+1; q)∞

(−αq)nq(n
2)−Nnδmn(4.54)

whereqb = βq, which coincides with (4.46) but with a different choice of parameters,α < 0,

β ≥ q−N−1. Notice from Theorem 4.4 d) that one can also write the orthogonality with finite

sum by applying (2.31) to (4.54)

N∑

x=0

(αq,q−N; q)x

(q, β−1q−N; q)x
(αβq)−xQm(q−x;α, β,N|q)Qn(q−x;α, β,N|q)=

(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(−αq)nq(n
2)−Nnδmn (4.55)

which coincides with (4.47) but with a different choice of parameters,α < 0,β ≥ q−N−1 which

is the new orthogonality forq-Hahn polynomials.
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Figure 4.39: The functionf (x,q) with Λq < 0, Case 3(a)C:q−1a1(q) < 0 < a2(q) <
q−1b1(q) < b2(q) Case 3(c)D:q−1a1(q) < 0 < q−1b1(q),a2(q),b2(q) ∈ C.

Case 3(a)C:q−1a1(q) < 0 < a2(q) < q−1b1(q) < b2(q), Λq < 0. The graph off for this case

is represented in Figure 4.39C. We start by applying the analogous procedure. First of all, the

positivity ofρ enables us to skip the intervals (−∞,q−1a1(q)), (a2(q),q−1b1(q)) and (b2(q),∞).

Notice also that the intervals (q−1a1(q),a2(q)) and (q−1b1(q),b2(q)) are both eliminated due

to the Remark 4.5.4. Therefore, this case does not lead to a suitableρ.
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Case 3(c)D:q−1a1(q) < 0 < q−1b1(q),a2(q),b2(q) ∈ C, Λq < 0. This case is represented in

Figure 4.39D. Notice thatf is positive only on the interval (q−1a1(q),q−1b1(q)). That’s why,

we eliminate rest two intervals. We remark that the interval (q−1a1(q),q−1b1(q)) coincides

with the one described in Theorem 4.4 a). Then, here it could be possible tohave a suitableρ.

Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = q−1a1(q) < x0 < x = q−1b1(q),

then from Figure 4.39D, it follows thatρ is increasing on (q−1a1(q), x0) and decreasing on

(x0,q−1b1(q)) with ρ(x,q)→ 0 asx→ q−1a1(q)+ andx→ q−1b1(q)− sinceρ(qx,q)/ρ(x,q)→

∞. Thus, it is obvious to construct the behaviour ofρ as in Figure 4.40.
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Figure 4.40: Possible positive graph of correspondingρ(x,q) for Figure 4.39D.

We deduce from Figure 4.40 that (a1(q),b1(q)) is suitable interval forρ satisfying the needed

property supported at the pointsa1(q)qk andb1(q)qk, k = 0,1, ... Therefore, we introduce the

following theorem related with the result of above discussion.

Theorem 4.29 Let a= a1(q) and b= b1(q) be the zeros ofσ1(x,q) and assume that q−1a1(q) <

0 < q−1b1(q), a2(q),b2(q) ∈ C, andΛq = q−2[1 + (1− q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then, there exists a

sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the orthogonality (4.6)

∫ b1(q)

a1(q)
Pm(x,q)Pn(x,q)ρ(x,q)dqx = (b1(q) − a1(q)) (1− q)qn(n−1)/2 (−a1(q)b1(q))n

×
(q,q−1a−1

2 (q)b−1
2 (q)a1(q)b1(q); q)n

(q−1a−1
2 (q)b−1

2 (q)a1(q)b1(q),a−1
2 (q)b−1

2 (q)a1(q)b1(q); q)2n
(4.56)

×
(q,qb1(q)a−1

1 (q),qa1(q)b−1
1 (q),a−1

2 (q)b−1
2 (q)a1(q)b1(q); q)∞

(a−1
2 (q)a1(q),a−1

2 (q)b1(q),b−1
2 (q)a1(q),b−1

2 (q)b1(q); q)∞

×(a−1
2 (q)a1(q),a−1

2 (q)b1(q),b−1
2 (q)a1(q),b−1

2 (q)b1(q); q)nδmn
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with respect to the q-weight function

ρ(x,q) =
(qa−1

1 (q)x,qb−1
1 (q)x; q)∞

(a−1
2 (q)x,b−1

2 (q)x; q)∞
> 0, x ∈ (a1(q),b1(q)) (4.57)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 a)).

This case leads to the new orthogonality on the interval (a1(q),b1(q)).

We note that this case leads to the new orthogonality which does not appear intheq-Askey

scheme. Actually, this case is analog to the one leading to the bigq-Jacobi polynomials. They

differ by the properties of the zeros ofσ1 andσ2.
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Figure 4.41: Case 4. The functionf (x,q) with Λq < 0, A: a2(q) < 0 < q−1a1(q) < q−1b1(q) <
b2(q), B: a2(q) < 0 < b2(q) < q−1a1(q) < q−1b1(q).

Case 4A:a2(q) < 0 < q−1a1(q) < q−1b1(q) < b2(q), Λq < 0. The graph off is represented in

Figure 4.41A. Our aim is to find the possible intervals in which we have a suitableρ. In this

figure, the intervals (−∞,a2(q)), (q−1a1(q),q−1b1(q)) and (b2(q),∞) are all excluded sincef is

negative. Moreover, the intervals (a2(q),q−1a1(q)) and (q−1b1(q),b2(q)) are both eliminated

due to Remark 4.5.3 and Remark 4.5.4, respectively. Hence, this case doesnot lead to a

suitableρ.

Case 4B:a2(q) < 0 < b2(q) < q−1a1(q) < q−1b1(q), Λq < 0. The graph off is rep-

resented in Figure 4.41B. Sincef is negative on the intervals (−∞,a2(q)), (b2(q),q−1a1(q))

and (q−1b1(q),∞), then they can not be used. On the other hand, the intervals (a2(q),b2(q)),

(q−1a1(q),q−1b1(q)) are both eliminated due to Remark 4.5.2 and Remark 4.5.1, respectively.

As a result, we can not get a suitableρ with needed properties.
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Figure 4.42: Case 4. The functionf (x,q) with Λq < 0, a2(q) < 0 < q−1a1(q) < b2(q) <
q−1b1(q).

Case 4C:a2(q) < 0 < q−1a1(q) < b2(q) < q−1b1(q), Λq < 0. The graph off corresponds

to this situation is represented in Figure 4.42. The positivity ofρ allows to skip the intervals

(−∞,a2(q)), (q−1a1(q),b2(q)) and (q−1b1(q),∞). Notice that one can also eliminate the inter-

val (a2(q),q−1a1(q)) due to Remark 4.5.3. Let us deal with the last interval (b2(q),q−1b1(q))

which is the one described in Theorem 4.4 d). Analogous procedure as the one that has been

done in Case 3(a)B allows to build Figure 4.43
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1
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Figure 4.43: Possible positive graph of correspondingρ(x,q) for Figure 4.42C.

It is clear from Figure 4.43 that there exists aq-weight function defined on the interval

(b2(q),q−1b1(q)) supported at the pointsq−kb2(q), k = 0,1, ... or on (qb2(q),b1(q)) at the

pointsqkb1(q), k = 0,1, ... which lead to the following theorem.

Theorem 4.30 Let a= qb2(q) be the zero ofσ2(q−1x,q) and b= b1(q) ofσ1(x,q) and assume

that a2(q) < 0 < q−1a1(q) < b2(q) < q−1b1(q), andΛq = q−2[1+ (1−q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then,
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there exists a sequence of polynomials(Pn)n orthogonal on(a,b) or (q−1a,q−1b), i.e., they

satisfy the orthogonality (4.9) and (4.11), respectively with respect to the q-weight function

ρ(x,q) = xa (qa2(q)/x,qb−1
1 (q)x; q)∞

(a1(q)/x,b−1
2 (q)x; q)∞

> 0, x ∈ (a,b) qa = q−2
1
2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)b1(q)

(4.58)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 d)).

This case leads to the new orthogonality on the interval (qb2(q),b1(q)).

An example of such family is theq-Hahn polynomials [35] wherea1(q) = αq, b1(q) = q−N,

a2(q) = β−1q−N−1, b2(q) = 1,

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1),

τ(x,q) =
1− αβq2

(1− q)q
x+
αq−N + αβq− α − q−N−1

1− q
, λn(q) = −q−n[n]q

1− αβqn+1

1− q
.

q-Hahn polynomials are orthogonal on (1,q−N−1) and the conditionsq2Λq < 0 anda2(q) <

0 < a1(q) < b2(q) < b1(q) give us the following restriction for the parameters 0< α <

q−1, β < 0. By means of Theorem 4.4 d) we can write the orthogonality ofq-Hahn polyno-

mials
∫ q−N−1

1
xa (qa2(q)/x,qb−1

1 (q)x; q)∞

(a1(q)/x,b−1
2 (q)x; q)∞

Qm(x;α, β,N|q)Qn(x;α, β,N|q)dq−1 x= (q−1−1)
(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(−αq)nq(n
2)−Nnδmn (4.59)

whereqa = α, which coincides with the one given in (4.49) but with a different choice of

parameters, 0< α < q−1, β < 0. Notice from Theorem 4.4 d) that one can write the orthogo-

nality with finite sum by applying (2.31) to (4.59)

N∑

x=0

(αq,q−N; q)x

(q, β−1q−N; q)x
(αβq)−xQm(q−x;α, β,N|q)Qn(q−x;α, β,N|q)=

(αβq2; q)N

(βq; q)N(αq)N

×
(q, αβqN+2, βq; q)n

(αq,q−N, αβq; q)n

1− αβq
1− αβq2n+1

(−αq)nq(n
2)−Nnδmn (4.60)

which coincides with (4.47) but with a different choice of parameters, 0< α < q−1, β < 0

which is the new orthogonality for theq-Hahn polynomials.

Remark 4.31 We remark that in case ofσ1(x,q) = 1
2σ
′′
1 (0,q)[x − a1(q)]2 andσ2(x,q) =

1
2σ
′′
2 (0,q)[x−a2(q)][ x−b2(q)], similar figures whenσ1(x,q) has two distinct roots are derived

together with a1(q) = b1(q). However, only Figure 4.30E in company with a1(q) = b1(q)

leads to the interval of integration as(qb2(q),a1(q)) or (b2(q),q−1a1(q)) by performing the

analogous analysis. On the other hand, these intervals are also valid whena2(q) = b2(q).

111



4.2.3.2 Theq-Classical∅-Jacobi/Laguerre Polynomials

Letσ1(x,q) = 1
2σ
′′
1 (0,q)x2 + σ′1(0,q)x+ σ1(0,q) = 1

2σ
′′
1 (0,q)[x− a1(q)][ x− b1(q)], a1(q) <

b1(q) andτ(x,q) = τ′(0,q)x + τ(0,q) , τ′(0,q) , 0. Then, in case ofτ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) , it

follows from (4.39) thatσ2(x,q) = σ′2(0,q)x+ σ2(0,q) where

σ′2(0,q) = −q
[1
2
σ′′1 (0,q)[a1(q) + b1(q)] − (1− q−1)τ(0,q)

]
, σ2(0,q) = q

1
2
σ′′1 (0,q)a1(q)b1(q).

Therefore, in this case, theq-Pearson equation follows from (4.40) that

ρ(qx,q)
ρ(x,q)

=

−
[
a1(q) + b1(q) − (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

]
x+ a1(q)b1(q)

[qx− a1(q)][qx− b1(q)]

=

−
[
a1(q) + b1(q) − (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

]
[x− a2(q)]

[qx− a1(q)][qx− b1(q)]
(4.61)

wherea2(q) =
a1(q)b1(q)[

a1(q) + b1(q) − (1− q−1) τ(0,q)
1
2σ
′′
1 (0,q)

] .

Let denote byΛq the constant

Λq :=
[
a1(q) + b1(q) − (1− q−1)

τ(0,q)
1
2σ
′′
1 (0,q)

]
.

Notice from (4.61) that we sketch the graphs forρ(qx,q)/ρ(x,q) according to the sign ofΛq

concerning with all possible positions of the zeros ofσ1(x,q) andσ2(x,q).

Before starting the analysis notice thatρ(qx,q)/ρ(x,q) always intercepts they-axis at the point

y = 1 sinceσ2(0,q) = qσ1(0,q). Notice also that sign ofa2(q) depends of the signs of the

zeros ofσ1 andΛq. Therefore, in order not to lose any graphs, we split them into three

independent cases: Case 1. whenΛq < 0,a1(q) < 0 < b1(q) (in the caseΛq > 0,a1(q) < 0 <

b1(q), the graphs are obtained from Case 1. by the transformationx = −t.), Case 2. when

Λq > 0,0 < a1(q) < b1(q) and Case 3. whenΛq < 0,0 < a1(q) < b1(q).

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.61).

Case 1.A:q−1a1(q) < 0 < q−1b1(q) < a2(q), Λq < 0. The graph off corresponds to this

situation is represented in Figure 4.44A. Let us analyse each interval in which we have aq-

weight function with needed properties. We first begin with performing the positivity property

which allows us to skip the intervals (−∞,q−1a1(q)) and (q−1b1(q),a2(q)). Let us consider
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Figure 4.44: Case 1. The functionf (x,q) with Λq < 0, A: q−1a1(q) < 0 < q−1b1(q) < a2(q),
B: q−1a1(q) < 0 < a2(q) < q−1b1(q).

the interval (a2(q),∞). It follows from Figure 4.44A thatρ(qx,q)/ρ(x,q) < 1 on (a2(q),∞).

Thus,ρ is increasing on (a2(q),∞) which leads toρ 6→ 0 asx→ ∞ =⇒ σ1(x,q)ρ(x,q)xk 6→ 0,

k = 0,1,2, ... asx → ∞ which indicates that this interval is not suitable for constructingρ.

Let us now deal with last interval (q−1a1(q),q−1b1(q)) which is the one described in Theorem

4.4 a). That’s why, it could be possible to have a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 at

x0 = −τ(0,q)/τ′(0,q), x = q−1a1(q) < x0 < x = q−1b1(q). Then, it follows from Figure 4.44A

thatρ is increasing on (q−1a1(q), x0) with ρ→ 0 asx→ q−1a1(q)+ sinceρ(qx,q)/ρ(x,q)→ ∞

as x → q−1a1(q)+ and decreasing on (x0,q−1b1(q)) with ρ → 0 as x → q−1b1(q)− since

ρ(qx,q)/ρ(x,q) → ∞ asx→ q−1b1(q)−. As a result of this discussion one can easily obtain

the following Figure 4.45 forρ.

0

0
q−1a

1
(q) q−1b
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y

x

Figure 4.45: Possible positive graph of correspondingρ(x,q) for Figure 4.44A.

It is obvious from Figure 4.45 that there exists a suitableρ on (a1(q),b1(q)) supporting at the

points x = qka1(q) and x = qkb1(q), k = 0,1, ... (see Theorem 4.4 a)) since the boundary
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condition (3.119) holds atx = a1(q) andx = b1(q). As a result of this case we construct the

following theorem.

Theorem 4.32 Let a= a1(q) and b= b1(q) be the zeros ofσ1(x,q) and assume that q−1a1(q) <

0 < q−1b1(q) < a2(q), τ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) andΛq = [a1(q) + b1(q) − (1− q−1) τ(0,q)
1
2σ
′′
1 (0,q)

] < 0.

Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the

orthogonality (4.6) with respect to the q-weight function

ρ(x,q) =
(qa−1

1 (q)x,qb−1
1 (q)x; q)∞

(a−1
2 (q)x; q)∞

> 0, x ∈ (a,b) (4.62)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 a)).

This case corresponds to the case VIIa1 in Chapter 10 of [35, pages 292 and 318].

An example of such family is the bigq-Laguerre polynomials [35] wherea1(q) = bq, b1(q) =

aq, a2(q) = 1,

σ1(x,q) = q−2(x− aq)(x− bq), σ2(x,q) = abq(1− x),

τ(x,q) = −
q−1

q− 1
x+

a+ b− abq
q− 1

, λn(q) =
q−n

q− 1
[n]q.

Big q-Laguerre polynomials are orthogonal on (bq,aq) and the conditionsΛq < 0 anda1(q) <

0 < b1(q) < a2(q) give us the following restriction for the parametersb < 0, 0 < a < q−1. By

means of Theorem 4.4 a) we can write the orthogonality of bigq-Laguerre polynomials
∫ aq

bq

(a−1x,b−1x; q)∞
(x; q)∞

Pm(x; a,b; q)Pn(x; a,b; q)dqx = aq(1− q)(−abq2)nq(n
2) (q; q)n

(aq,bq; q)n

×
(q,a−1b,ab−1q; q)∞

(aq,bq; q)∞
δmn (4.63)

associated withb < 0, 0 < a < q−1.

Case 1.B:q−1a1(q) < 0 < a2(q) < q−1b1(q), Λq < 0. The graph off corresponds to this

situation is represented in Figure 4.44B. It is clear from Figure 4.44B that we should skip the

intervals (−∞,q−1a1(q)) (a2(q),q−1b1(q)) due to the positivity property ofρ. Notice that we

eliminate the both intervals (q−1a1(q),a2(q)) and (q−1b1(q),∞) because of the Remark 4.5.4

and Remark 4.5.5, respectively. As a result, this case does not lead to anysuitableρ.

Case 2.C:0 < q−1a1(q) < q−1b1(q) < a2(q), Λq > 0. The graph off corresponds to

this situation is represented in Figure 4.46C. Notice that positivity ofρ allows us to skip
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Figure 4.46: Case 2. The functionf (x,q) with Λq > 0, C: 0< q−1a1(q) < q−1b1(q) < a2(q),
D: 0 < a2(q) < q−1a1(q) < q−1b1(q).

the intervals (q−1a1(q),q−1b1(q)) and (a2(q),∞). On the other hand, we exclude the interval

(q−1b1(q),a2(q)) due to Remark 4.5.4. Let us now consider the last interval (−∞,q−1a1(q))

which coincides with the one described in Theorem 4.4 g) by symmetry. Notice from Fig-

ure 4.46C thatρ is decreasing on (−∞,q−1a1(q)) with ρ → 0 as x → q−1a1(q)− since

ρ(qx,q)/ρ(x,q) → ∞ as x → q−1a1(q)−. Thus,ρ 6→ 0 as x → −∞ which implies that

σ1(x,q)ρ(x,q)xk 6→ 0 asx → −∞, k = 0,1, .... As a result, this case does not lead to any

suitable intervals for constructingρ.

Case 2.D:0 < a2(q) < q−1a1(q) < q−1b1(q), Λq > 0. The graph off corresponds to this

situation is represented in Figure 4.46D. We first start with applying the positivity property

which allows us to skip the intervals (a2(q),q−1a1(q)) and (q−1b1(q),∞). Notice that we

can also not use the intervals (−∞,a2(q)) and (q−1a1(q),q−1b1(q)) due to Remark 4.5.6 (by

symmetry) and Remark 4.5.1, respectively. That’s why, we can not have asuitableρ with

needed properties.

Case 2.E:0 < q−1a1(q) < a2(q) < q−1b1(q), Λq > 0. The graph off corresponds to this

situation is represented in Figure 4.47E. Sinceρ should be positive, then (q−1a1(q),a2(q)) and

(q−1b1(q),∞) are not suitable. On the other hand, an analogous analysis as the one that has

been done in Case 2.C yields that the interval (−∞,q−1a1(q)) is not suitable for construct-

ing ρ. Let us consider the last interval (a2(q),q−1b1(q)) which is the one given in Theorem

4.4 d). That’s why, it could be suitable for constructingρ. Notice from Figure 4.47E that

ρ(qx,q)/ρ(x,q) = 1 atx0 = −τ(0,q)/τ′(0,q), x = a2(q) < x0 < x = q−1b1(q). Thus, it follows

that ρ is increasing on (a2(q), x0) with ρ(qa2(q),q) = 0 (sinceρ(qa2(q),q)/ρ(a2(q),q) = 0)
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Figure 4.47: The functionf (x,q) with Case 2.E:Λq > 0, 0 < q−1a1(q) < a2(q) < q−1b1(q),
Case 3.F:Λq < 0, a2(q) < 0 < q−1a1(q) < q−1b1(q).

and decreasing on (x0,q−1b1(q)) with ρ → 0 asx → q−1b1(q)− (sinceρ(qx,q)/ρ(x,q) → ∞

asx→ q−1b1(q)−) which allows us to construct Figure 4.48.
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Figure 4.48: Possible positive graph of correspondingρ(x,q) for Figure 4.47E.

It is apparent from Figure 4.48 that (qa2(q),b1(q)) is suitable interval in which we have a

positiveq-weight function satisfying the boundary condition (3.119) (see Theorem 4.4 d))

which leads to the following theorem.

Theorem 4.33 Let a= qa2(q) be the zero ofσ2(q−1x,q) and b= b1(q) ofσ1(x,q) and assume

that 0 < q−1a1(q) < a2(q) < q−1b1(q), τ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) andΛq = [a1(q) + b1(q) − (1 −

q−1) τ(0,q)
1
2σ
′′
1 (0,q)

] > 0. Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b),

i.e., they satisfy the orthogonality (4.9) or (4.11) with respect to the q-weight function

ρ(x,q) = xα
(qa2(q)/x,qb−1

1 (q)x; q)∞
(a1(q)/x; q)∞

> 0, x ∈ (a,b) qα = −
q−2σ′2(0,q)

1
2σ
′′
1 (0,q)b1(q)

(4.64)
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which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 d)).

This case corresponds to the case IIIb3 in Chapter 11 of [35, pages 343 and 363].

An example of such family is the affineq-Kravchuk polynomials [35] wherea1(q) = pq,b1(q) =

q−N,a2(q) = 1,

σ1(x,q) = q−1(x− q−N)(x− pq), σ2(x,q) = −pq1−N(x− 1),

τ(x,q) =
1

1− q
x−

pq+ q−N − pq1−N

1− q
, λn(q) =

1
q− 1

[n]q−1.

Affineq-Kravchuk polynomials are orthogonal on (1,q−N−1) and the conditionsΛq > 0 and

0 < a1(q) < a2(q) < b1(q) give us the following restriction for the parameters 0< p < q−1.

By means of Theorem 4.4 d) we can write the orthogonality of affineq-Kravchuk polynomials

∫ q−N−1

1
xα

(q/x,qN+1x; q)∞
(pq/x; q)∞

KA f f
m (x; p,N; q)K A f f

n (x; p,N; q)dq−1 x= (pq)n−N(q−1 − 1)

×
(q; q)n(q; q)N−n

(pq; q)n(q; q)N

(q,qN+1; q)∞
(pq; q)∞

δmn (4.65)

together with 0< p = qα < q−1. Notice from Theorem 4.4 d) that one can also write the

orthogonality with finite sum by applying (2.31) to (4.65)

N∑

x=0

(pq; q)x(q; q)N

(q; q)x(q; q)N−x
(pq)−xKA f f

m (q−x; p,N; q)KA f f
n (q−x; p,N; q) = (pq)n−N (q; q)n

(pq; q)n

(q; q)N−n

(q; q)N
δmn. (4.66)

Case 3.F:a2(q) < 0 < q−1a1(q) < q−1b1(q), Λq < 0. The graph off corresponds to this

situation is represented in Figure 4.47F. Note that positivity ofρ enables us to eliminate the

intervals (−∞,a2(q)) and (q−1a1(q),q−1b1(q)). Moreover, the same happens for the rest inter-

vals (a2(q),q−1a1(q)) and (q−1b1(q),∞) due to Remark 4.5.3 and Remark 4.5.5, respectively.

4.2.3.3 Theq-Classical∅-Jacobi/Hermite Polynomials

Letσ1(x,q) = 1
2σ
′′
1 (0,q)x2 + σ′1(0,q)x+ σ1(0,q) = 1

2σ
′′
1 (0,q)[x− a1(q)][ x− b1(q)], a1(q) <

b1(q) andτ(x,q) = τ′(0,q)x+ τ(0,q) , τ′(0,q) , 0. Then, in case ofτ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) and

τ(0,q) =
1
2σ
′′
1 (0,q)

(1−q−1) [a1(q) + b1(q)], it follows from (4.39) that

σ2(x,q) = σ2(0,q) = q
1
2
σ′′1 (0,q)a1(q)b1(q).
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Therefore, in this case, theq-Pearson equation follows from (4.40) that

ρ(qx,q)
ρ(x,q)

=
a1(q)b1(q)

[qx− a1(q)][qx− b1(q)]
. (4.67)

We remark that this case leads to the Jacobi/Hermite case (see Table 4.1). To predict the

eventual interval in which we have a suitableq-weight function with the needed properties,

we start studying with the possible graphs of the ratioρ(qx,q)/ρ(x,q) given in theq-Pearson

equation identified by (4.67). The graphs of the ratio is performed entirely according as the

signs of the zeros ofσ1(x,q). Thus, we split them into two cases; Case1.a1(q) < 0 < b1(q)

and Case 2. 0< a1(q) < b1(q). Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q)

always intercepts they-axis at the pointy = 1 sinceσ2(0,q) = qσ1(0,q).

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.67).
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Figure 4.49: The functionf (x,q) with Case 1.A:a1(q) < 0 < b1(q), Case 2.B: 0< a1(q) <
b1(q).

Case 1.A:q−1a1(q) < 0 < q−1b1(q). The graph off corresponds to this situation is rep-

resented in Figure 4.49A. Let us perfom analogous procedure for each interval. First of

all, let us consider the positivity ofρ which enables us to omit the intervals (−∞,q−1a1(q))

and (q−1b1(q),∞). The rest interval (q−1a1(q),q−1b1(q)) coincides with the one represented

in Theorem 4.4 a). That’s why, here it could be possible to get a suitableρ. Notice that

ρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = q−1a1(q) < x0 < x = q−1b1(q). Then, it

follows from Figure 4.49A thatρ is increasing on (q−1a1(q), x0) with ρ→ 0 asx→ q−1a1(q)+

(sinceρ(qx,q)/ρ(x,q) → ∞) and decreasing on (x0,q−1b1(q)) with ρ → 0 asx→ q−1b1(q)−

(sinceρ(qx,q)/ρ(x,q)→ ∞) which allows us to construct Figure 4.50.

We infer from Figure 4.50 that positiveq-weight function exists on (a1(q),b1(q)). It is obvious

that the boundary condition (3.119) holds atx = a1(q) andx = b1(q) since they are roots of
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σ1(x,q) (see Theorem 4.4 a)). Thus, we construct the following theorem according to this

case.

0

0

q−1a
1
(q) q−1b

1
(q)

y

x

Figure 4.50: Possible positive graph of correspondingρ(x,q) for Figure 4.49A.

Theorem 4.34 Let a= a1(q) and b= b1(q) be the zeros ofσ1(x,q) and assume that q−1a1(q)<

0 < q−1b1(q) and τ′(0,q) = −
1
2σ
′′
1 (0,q)

(1−q−1) . Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.6) with respect to the q-weight

function

ρ(x,q) = (qa−1
1 (q)x,qb−1

1 (q)x; q)∞ > 0, x ∈ (a,b) (4.68)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 a)).

This case corresponds to the case VIIa1 in Chapter 10 of [35, pages 292 and 318].

An example of such family is Al-Salam-Carlitz I polynomials [35] wherea1(q)=a,b1(q)=1,

σ1(x,q) = q−1(1− x)(a− x), σ2(x,q) = a,

τ(x,q) =
1

1− q
x−

1+ a
1− q

, λn(q) =
q1−n

q− 1
[n]q.

Al-Salam-Carlitz I polynomials are orthogonal on (a,1) and the conditionsa1(q) < 0 < b1(q)

give us the following restriction for the parametersa < 0. By means of Theorem 4.4 a) we

can write the orthogonality of Al-Salam-Carlitz I polynomials

∫ 1

a
(qx,a−1qx; q)∞U(a)

m (x; q)U(a)
n (x; q)dqx = (−a)nq(n

2)(1− q)(q; q)n(q,a,a−1q; q)∞δmn (4.69)

associated witha < 0.
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Another example of this family is discreteq-Hermite I polynomials which are special case of

Al-Salam-Carlitz I polynomials (see [36] for further details).

Case 2.B:0 < q−1a1(q) < q−1b1(q). The graph off corresponds to this situation is repre-

sented in Figure 4.49B. We first skip the interval (q−1a1(q),q−1b1(q)) due to the positivity

of ρ. Moreover, we eliminate the interval (q−1b1(q),∞) because of Remark 4.5.5 since the

boundary condition is not satisfied. The last interval (−∞,q−1a1(q)) is the one described in

Theorem 4.4 g) by symmetry. However, notice from Figure 4.49B thatρ is decreasing on this

interval withρ→ 0 asx→ q−1a1(q)− (sinceρ(qx,q)/ρ(x,q)→ ∞) which leads to thatρ 6→ 0

asx→ −∞ ⇒ σ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1, ... asx→ −∞. Thus, this interval is also not

suitable for constructingρ.

4.3 The Zero Case

We now impose the analogous analysis to the zero case, i.e., we deal with all possible degrees

of the polynomial coefficients with additional conditionσ1(0,q) = 0⇔ σ2(0,q) = 0. Notice

that for the zero cases, theq-Pearson equation (3.119) has zero and pole atx = 0. Then, when

we determine the behaviour ofρ at x = 0 we use the following remark.

Remark 4.35 Behaviour of the q-weight function at x= 0 depends on the succesive solution

of the q-Pearson equation

ρ(qx,q) =
q−1σ2(x,q)
σ1(qx,q)

ρ(x,q)

⇔ ρ(qkx,q) = ρ(x,q)
k−1∏

i=0

q−1σ2(qi x,q)
σ1(qi+1x,q)

. (4.70)

It is apperant that as k→ ∞ the behaviour ofρ at x = 0 is accomplished which alters

according as the degrees of the polynomialsσ1(x,q) andσ2(x,q).

4.3.1 Linear Case

Letσ1(x,q) = σ′1(0,q)x, i.e., linear withσ1(0,q) = 0 andτ(x,q) = τ′(0,q)x+ τ(0,q).

Remark 4.36 Notice thatσ2(x,q) is obtained from (3.11) as the formσ2(x,q) = q
[
σ1(x,q)+

(1−q−1)xτ(x,q))
]
= qx

[
(1−q−1)τ′(0,q)x+σ′1(0,q)+(1−q−1)τ(0,q)

]
= qx(1−q−1)τ′(0,q)

[
x−
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a2(q)
]
, τ′(0,q) , 0. Note that τ(0,q)

σ′1(0,q) = −
1

(1−q−1) conduces to a2(q) = 0. Thus, it can be easily

interpreted that the q-Laguerre type zero family of the 1st kind is the q-Jacobi type zero family

of the 2nd kind and the q-Bessel type zero family of the 2nd kind whereσ2(x,q) has0 as a

root with multiplicity two.

4.3.1.1 Theq-Classical0-Laguerre/Jacobi Polynomials

Let σ1(x,q) = σ′1(0,q)x, σ1(0,q) = 0 andτ(x,q) = τ′(0,q)x + τ(0,q) and assume that
τ(0,q)
σ′1(0,q) , −

1
(1−q−1) ⇔ a2(q) , 0. Then,σ2(x,q) = 1

2σ
′′
2 (0,q)x2 + σ′2(0,q)x where

1
2
σ′′2 (0,q) = q(1− q−1)τ′(0,q), σ′2(0,q) = q[σ′1(0,q) + (1− q−1)τ(0,q)].

As a result, theq-Pearson equation folows from (4.1) as

ρ(qx,q)
ρ(x,q)

= q−1
[
(1− q−1)

τ′(0,q)
σ′1(0,q)

x+ (1− q−1)
τ(0,q)
σ′1(0,q)

+ 1

]
(4.71)

= q−1(1− q−1)
τ′(0,q)
σ′1(0,q)

[x− a2(q)]

wherea2(q) = −
1+(1−q−1) τ(0,q)

σ′1(0,q)

(1−q−1) τ
′(0,q)
σ′1(0,q)

, 0.

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) always interceptsy-axis at the

point

y := y0 = q−1
[
1+ (1− q−1)

τ(0,q)
σ′1(0,q)

]
.

Notice for the zero cases thata or b could be zero. That’s why, we should know the behaviour

of ρ at x = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.37 Behaviour of the q-weight function at x= 0 depends on the succesive solution

of the q-Pearson equation

ρ(qx,q) = q−1
[
1+ (1− q−1)

τ(0,q)
σ′1(0,q)

]
(1− x/a2(q))ρ(x,q)

⇔ ρ(qkx,q) = q−k
[
1+ (1− q−1)

τ(0,q)
σ′1(0,q)

]k

(x/a2(q); q)kρ(x,q). (4.72)

It is apparent that as k→ ∞ the behaviour ofρ at x = 0 is accomplished. Notice that if

0 < y0 = q−1
[
1+ (1− q−1) τ(0,q)

σ′1(0,q)

]
< 1, ρ(x,q)→ 0 as x→ 0 otherwise it tends to∓∞.
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In order not to lose any graphs ofρ(qx,q)/ρ(x,q), we perform independent graphs according

to the signs of the zeros ofσ2 andΛq := τ′(0,q)
σ′1(0,q) together withy0 < 1, y0 > 1. We note that

we have three independent cases: Case 1. whenΛq > 0, a2(q) > 0 andy0 > 1, Case 2. when

Λq < 0, a2(q) < 0 and 0< y0 < 1 and Case 3. whenΛq < 0, a2(q) > 0 andy0 < 0. Then, next

step is to execute the graphs ofρ(qx,q)/ρ(x,q) in (4.71).

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.71).

0

0

1

a
2
(q)

x

y
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0

1

y

a
2
(q)

x

B

Figure 4.51: The functionf (x,q) with Case 1.A:Λq > 0,a2(q) > 0,y0 > 1, Case 2.B:Λq < 0,
a2(q) < 0, 0< y0 < 1.

Case 1.A:a2(q) > 0, y0 > 1, Λq > 0. The graph off corresponds to this situation is

represented in Figure 4.51A. By applying the analogous procedure we analyse each interval.

First of all, by the positivity ofρ, we skip the interval (a2(q),∞). The same happens for

the interval (0,a2(q)) due to Remark 4.5.4. Notice that the last interval (−∞,0) is the one

described in Theorem 4.4 i) by symmetry. Thus, here it could be possible to have a suitable

ρ. Notice from 4.51A thatρ(qx,q)/ρ(x,q) > 1 on (−∞,0) which leads to thatρ is increasing

on this interval withρ → ∞ asx→ 0− sincey0 > 1 (see Remark 4.37). Observe that sinceρ

is increasing andρ(qx,q)/ρ(x,q) → ∞ asx→ −∞, thenρ → 0 asx→ −∞. However, it is

seen from the identity identified by (4.21) that the graph ofρ andσ1ρ have the same property,

thenσ1ρ → ∞ asx → 0− which is the boundary condition whenk = 0. Therefore, there is

no suitableρ for the interval (−∞,0).

Case 2.B:a2(q) < 0, 0 < y0 < 1, Λq < 0. The graph off corresponds to this situation is

represented in Figure 4.51B. Positivity ofρ allows us to skip the interval (−∞,a2(q)). The

interval (a2(q),0) is also eliminated due to Remark 4.5.4 by symmetry. Let us consider the

last interval (0,∞) which concides with the one described in Theorem 4.4 i). That’s why,
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it could be possible to have a suitableρ in this interval. Notice thatρ(qx,q)/ρ(x,q) = 1 at

x0 = −τ(0,q)/τ′(0,q), x0 > x = 0. Then it follows from Figure 4.51B thatρ is inreasing

on (0, x0) with ρ → 0 asx → 0+ since 0< y0 < 1 (see Remark 4.37) and decreasing on

(x0,∞) which leads toρ → 0 asx→ ∞ sinceρ(qx,q)/ρ(x,q) → ∞. Then, according to this

discussion one can easily get Figure 4.52 by assuming a positive initial valuefor theq-weight

function in each interval.

0
0

y

x

a
2
(q)

Figure 4.52: Possible positive graph of correspondingρ(x,q) for Figure 4.51B.

It is also obvious from Figure 4.52 that it could be possible to have a suitableρ on (0,∞).

But we need to checkσ1(x,q)ρ(x,q)xk → 0 asx → ∞, k = 0,1, ... by using theextended

q-Pearson equation (4.20). It is clear from (4.20) that graph ofg looks like the one repre-

sented in Figure 4.51B with they-intercept, 0< qk+1y0 < 1, k = 0,1, ... that’s why, we have

σ1(x,q)ρ(x,q)xk → 0 asx→ ∞, k = 0,1, ... As a result, there exists a convenientρ on (0,∞)

(see Theorem 4.4 i)) which leads to the following theorem.

Theorem 4.38 Let a = 0 and b = ∞ and assume thatΛq =
τ′(0,q)
σ′1(0,q) < 0, a2(q) < 0 and

0 < y0 = q−1
[
1+ (1− q−1) τ(0,q)

σ′1(0,q)

]
< 1. Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.17) with respect to the q-weight

function

ρ(x,q) = xα
1

(x/a2(q); q)∞
> 0, x ∈ (a,b), qα = −

q−2 1
2σ
′′
2 (0,q)a2(q)

σ′1(0,q)
(4.73)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 i)).

This case corresponds to the case IIIa2 in Chapter 10 of [35, pages 272 and 309].
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An example of such family isq-Laguerre polynomials [35] wherea2(q) = −1,

σ1(x,q) = q−2x, σ2(x,q) = qαx(x+ 1),

τ(x,q) = −
qα

1− q
x+

q−1 − qα

1− q
, λn(q) = [n]q

qα

1− q
.

q-Laguerre polynomials are orthogonal on (0,∞) and the conditionsΛq < 0, a2(q) < 0 and

0 < qy0 < 1 give us the following restriction for the parametersα > −1. By means of

Theorem 4.4 i) we can write the orthogonality ofq-Laguerre polynomials

∫ ∞

0

xα

(−x; q)∞
L(α)

m (x; q)L(α)
n (x; q)dqx=q−n(1−q)

(qα+1; q)n

(q; q)n

(q,−cqα+1,−c−1q−α; q)∞
(qα+1,−c,−c−1q; q)∞

δmn(4.74)

together withα > −1, c > 0.
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Figure 4.53: The functionf (x,q) with Case 3.C:Λq < 0, a2(q) > 0, y0 < 0.

Case 3.C:a2(q) > 0, y0 < 0,Λq < 0. The graph off corresponds to this situation is repre-

sented in Figure 4.53C. Positivity ofρ enables us to skip the intervals (−∞,0) and (0,a2(q)).

That’s why, we deal with only the interval (a2(q),∞) which is the one described in Theorem

4.4 h). Then, here it could be possible to have a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1

at x0 = −τ(0,q)/τ′(0,q), x0 > x = a2(q). Therefore, it follows from Figure 4.53C thatρ

is increasing on (a2(q), x0) with ρ(qa2(q),q) = 0 (sinceρ(qa2(q),q)/ρ(a2(q),q) = 0) and de-

creasing on (x0,∞) which leads toρ → 0 asx → ∞ (sinceρ(qx,q)/ρ(x,q) → ∞). Notice

that one can construct the graph ofρ as in Figure 4.54 according as the above discussion by

assuming a positive initial value for theq-weight function in each interval.

It is obvious from Figure 4.54 that it could be possible to have a convenient ρ on (a2(q),∞).

But, it is not enough to assure thatρ satisfies the boundary conditions at+∞. We should

checkσ1(x,q)ρ(x,q)xk → 0 asx → ∞, k = 0,1, .... We note that the graph ofg looks like
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Figure 4.54: Possible positive graph of correspondingρ(x,q) for Figure 4.53.

the one represented in Figure 4.53. That’s why, we obtainσ1(x,q)ρ(x,q)xk → 0 asx → ∞,

k = 0,1, ... which leads to the following theorem.

Theorem 4.39 Let a = a2(q) be the zero ofσ2(x,q) and b = ∞ and assume thatΛq =

τ′(0,q)
σ′1(0,q) < 0, a2(q) > 0 and y0 = q−1

[
1+ (1− q−1) τ(0,q)

σ′1(0,q)

]
< 0. Then, there exists a sequence of

polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the orthogonality (4.16) with respect

to the q-weight function

ρ(x,q) = xα
√

xlogq x−1(qa2(q)/x; q)∞ > 0, x ∈ (a,b), qα =
q−2 1

2σ
′′
2 (0,q)

σ′1(0,q)
(4.75)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 h)).

This case corresponds to the case IIa2 in Chapter 11 of [35, pages 337 and 358].

An example of such family isq-Charlier polynomials [35] wherea2(q) = 1,

σ1(x,q) = aq−2x, σ2(x,q) = x(x− 1),

τ(x,q) = −
1

1− q
x+

a+ q
(1− q)q

, λn(q) = [n]q
1

1− q
.

q-Charlier polynomials are orthogonal on (1,∞) and the conditionsΛq < 0, a2(q) > 0 and

y0 < 0 give us the following restriction for the parametersa > 0. By means of Theorem 4.4

h) we can write the orthogonality ofq-Charlier polynomials
∫ ∞

1
xα

√
xlogq x−1(q/x; q)∞Cm(x; a; q)Cn(x; a; q)dq−1 x = (q−1 − 1)q−n(−a−1q,q; q)n(−a,q; q)∞δmn(4.76)

with the relationa > 0.
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4.3.1.2 Theq-Classical0-Laguerre/Bessel Polynomials

Let σ1(x,q) = σ′1(0,q)x, σ1(0,q) = 0 andτ(x,q) = τ′(0,q)x + τ(0,q) and assume that
τ(0,q)
σ′1(0,q) = −

1
(1−q−1) ⇔ a2(q) = 0. Then,σ2(x,q) = 1

2σ
′′
2 (0,q)x2 = q(1 − q−1)τ′(0,q)x2. As a

result, theq-Pearson equation folows from (4.71)

ρ(qx,q)
ρ(x,q)

= q−1(1− q−1)
τ′(0,q)
σ′1(0,q)

x. (4.77)

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) always interceptsy-axis at the

pointy := y0 = 0. We perform analogous analysis in order to get the graph ofρ(qx,q)/ρ(x,q)

according to sign ofΛq := τ′(0,q)
σ′1(0,q) which leads to one independent graph as in Figure 4.55A.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.77).
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Figure 4.55: Case 1. The functionf (x,q) with Λq < 0, a2(q) = 0, B: corresponding positive
ρ(x,q).

Case 1.A:a2(q) = 0, y0 = 0, Λq < 0. The graph off corresponds to this situation is

represented in Figure 4.55A. Notice thatf is negative on (−∞,0) which enables us to skip it.

The other interval (0,∞) is the one described in Theorem 4.4 i). That’s why, here it could be

possible to construct a convenientρ. Notice thatρ(qx,q)/ρ(x,q) = 1 atx0 = −τ(0,q)/τ′(0,q),

x0 > x = 0. Then, it follows from Figure 4.55A thatρ is increasing on (0, x0) and decreasing

on (x0,∞) which leads to thatρ → 0 asx → 0+ and x → +∞. It is obvious that one can

easily obtain the Figure 4.55B by assuming a positive initial value for theq-weight function

in each interval which also indicates that it could be possible to have a suitableρ on (0,∞).

However, we need to check the boundary condition at+∞ by using theextended q-Pearson

equation (4.20). We note that the graph ofg looks like the one represented in Figure 4.55A.

That’s why, by the same reason performed forρ we getσ1(x,q)ρ(x,q)xk → 0 asx → +∞.
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Thus, we build the following theorem.

Theorem 4.40 Let a= 0 and b= ∞ and assume thatΛq =
τ′(0,q)
σ′1(0,q) < 0, a2(q) = 0 and y0 =

q−1
[
1+ (1− q−1) τ(0,q)

σ′1(0,q)

]
= 0. Then, there exists a sequence of polynomials(Pn)n orthogonal

on (a,b), i.e., they satisfy the orthogonality (4.17) with respect to the q-weight function

ρ(x,q) = xα
√

xlogq x−1 > 0, x ∈ (a,b), qα =
q−2 1

2σ
′′
2 (0,q)

σ′1(0,q)
(4.78)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 i)).

This case corresponds to the case IIIa2 in Chapter 10 of [35, pages 272 and 309].

An example of such family is Stieltjes-Wigert polynomials [35] wherea2(q) = 0,

σ1(x,q) = q−2x, σ2(x,q) = x2,

τ(x,q) = −
1

1− q
x+

1
(1− q)q

, λn(q) = [n]q
1

1− q
.

Stieltjes-Wigert polynomials are orthogonal on (0,∞) and the conditionsΛq < 0, a2(q) = 0

and y0 = 0 are satisfied. By means of Theorem 4.4 i) we can write the orthogonality of

Stieltjes-Wigert polynomials

∫ ∞

0

√
xlogq x−1Sm(x; q)Sn(x; q)dqx = q−n(1− q)

(−tq,−1/t,q; q)∞
(q2; q)n

δmn. (4.79)

4.3.2 Quadratic Case

This part consists of two situations. One of them is when zero is the root ofσ1(x,q) with milti-

plicity two; σ1(x,q) = 1
2σ
′′
1 (0,q)x2 and the other is one;σ1(x,q) = 1

2σ
′′
1 (0,q)x2 + σ′1(0,q)x.

We begin withσ1(x,q) = 1
2σ
′′
1 (0,q)x2, τ(x,q) = τ′(0,q)x + τ(0,q) which lead toσ2(x,q) =

qx
{[

1
2σ
′′
1 (0,q) + (1− q−1)τ′(0,q)

]
x+ (1− q−1)τ(0,q)

}
.

Remark 4.41 Notice thatdeg[σ2(x,q)] = 2 if τ′(0,q)
1
2σ
′′
1 (0,q)

, − 1
(1−q−1) . Note that ifτ(0,q) , 0,

thenσ2(x,q) has simple roots, otherwise it has zero as a root with multiplicity two. On the

other hand, deg[σ2(x,q)] = 1 if τ′(0,q)
1
2σ
′′
1 (0,q)

= − 1
(1−q−1) . That’s why, theq-Bessel type zero family

of the 1st kind is theq-Jacobi type, theq-Bessel type and theq-Laguerre type zero family of

the 2nd kind.
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4.3.2.1 Theq-Classical0-Bessel/Jacobi Polynomials

Let σ1(x,q) = 1
2σ
′′
1 (0,q)x2, τ(x,q) = τ′(0,q)x + τ(0,q) and assume thatτ

′(0,q)
1
2σ
′′
1 (0,q)

, − 1
(1−q−1)

andτ(0,q) , 0. Then, it follows thatσ2(x,q) = 1
2σ
′′
2 (0,q)x2 + σ′2(0,q)x where

1
2
σ′′2 (0,q) = q

[
1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
, 0, σ′2(0,q) = q(1− q−1)τ(0,q).

Thus, theq-Pearson equation takes the form

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

=

[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
x+ (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

q2x
(4.80)

= q−1

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)


[x− a2(q)]

qx

wherea2(q) = −
(1−q−1) τ(0,q)

1
2σ
′′
1 (0,q)[

1+(1−q−1) τ′(0,q)
1
2σ
′′
1 (0,q)

] , 0.

Remark 4.42 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.80). Then notice

that

Λq := q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 , 0

is the horizontal asymptote of the function f(x,q).

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) is discontinues atx = 0.

In order not to lose any graphs ofρ(qx,q)/ρ(x,q), we consider every case by taking Case 1.

Λq > 0 and Case 2.Λq < 0 concerning with the sign of the zero ofσ2. Furthermore, as

before, we need to split 1st case into two separate cases: Case 1.i) whenΛq > 1 and Case 1.ii)

when 0< Λq < 1.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.80).

Case 1.i)A:Λq > 1, a2(q) > 0. The graph off corresponds to this situation is represented

in Figure 4.56A. We start to analyse each interval in which we have a suitableρ with certain

properties. Thus, we first exclude the interval (0,a2(q)) due to the positivity property ofρ. In

the second part, let us look at the interval (−∞,0) which is the one described in Theorem 4.4

i) by symmetry. Hence, it could be possible to have a suitableρ in this interval. Notice from
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Figure 4.56: The functionf (x,q) with Case 1.i)A:Λq > 1,a2(q) > 0, Case 1.ii)B: 0< Λq < 1,
a2(q) > 0.

Figure 4.56A thatρ is increasing on (−∞,0) with ρ→ ∞ asx→ 0− (sinceρ(qx,q)/ρ(x,q)→

+∞) which leads toρ → 0 asx → −∞. We note that since the graph ofρ andσ1ρ are

similar which is seen from theq-Pearson equation (4.1) and the identity given in (4.21), then

σ1ρ → ∞ asx→ 0− which is the boundary condition whenk = 0. As a result, the boundary

condition is not satisfied atx = 0. Then, we can not use the interval (−∞,0) for constructing

ρ. we lastly consider the interval (a2(q),∞) which coincides with the one given in Theorem

4.4 h). Therefore, here it could be possible to get a convenientρ. Notice from Figure 4.56A

that ρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 > x = a2(q). Hence, it follows that

ρ is increasing on (a2(q), x0) and decreasing on (x0,∞) which leads toρ → 0 asx → ∞.

However, it is not enough to assure thatρ satisfies the boundary condition at+∞. We need to

checkσ1(x,q)ρ(x,q)xk → 0 asx→ ∞, k = 0,1, ... by using theextended q-Pearson equation

(4.20). We remark that the graph ofg looks like the one represented in Figure 4.56A but with

the horizontal asymptote 0< qk+2Λq < 1 for k large enough. That’s why,σ1(x,q)ρ(x,q)xk

becomes increasing on (a2(q),∞) which leads toσ1(x,q)ρ(x,q)xk 6→ 0 asx→ ∞ for k large

enough. Thus, this case does not lead to any suitableρ with the needed properties.

Case 1.ii)B:0 < Λq < 1,a2(q) > 0. The graph off corresponds to this situation is represented

in Figure 4.56B. Notice thatf is negative on (0,a2(q)) which enables us to skip this interval

due to the positivity ofρ. Let us analyse the interval (−∞,0). Notice that this interval coin-

cides with the one given in Theorem 4.4 i) by the symmetry. Thus, here it couldbe possible to

have a suitableρ. Notice from Figure 4.56B thatρ(qx,q)/ρ(x,q) = 1 atx0 = −τ(0,q)/τ′(0,q),

x0 < x = 0. Then, it follows thatρ is decreasing on (−∞, x0) and increasing on (x0,0) with

ρ → +∞ as x → 0− (sinceρ(qx,q)/ρ(x,q) → +∞). Observe that sinceρ is decreasing on
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(−∞, x0), thenρ 6→ 0 asx → −∞ =⇒ σ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1,2, ... as x → −∞.

Observe also thatρ→ +∞ asx→ 0−. Since the graph ofρ andσ1ρ are similar (see (4.1) and

(4.21)), thenσ1ρ → +∞ asx→ 0− which is the boundary condition whenk = 0. Therefore,

the boundary condition is also not satisfied asx→ 0−. On the other hand, let us consider the

last interval (a2(q),∞) which is the one described in Theorem 4.4 h). Thus, this interval could

be suitable for constructingρ. Notice from Figure 4.56B thatf (x,q) < 1 on this interval, thus

ρ is increasing on (a2(q),∞). Then,ρ 6→ 0 asx→ ∞ which leads toσ1(x,q)ρ(x,q)xk 6→ 0,

k = 0,1,2, ... asx→ ∞. Hence, this case does not lead to any suitableρ.
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Figure 4.57: The functionf (x,q) with Case 2.C:Λq < 0, a2(q) > 0.

Case 2.C:Λq < 0, a2(q) > 0. The graph off corresponds to this situation is represented in

Figure 4.57C. By the positivity ofρ, the intervals (−∞,0) and (a2(q),∞) are both eliminated.

The same happens for the interval (0,a2(q)) due to the Remark 4.5.4. That’s why, in this case,

there is no suitable interval for constructingρ with the needed properties.

4.3.2.2 Theq-Classical0-Bessel/Bessel Polynomials

Let σ1(x,q) = 1
2σ
′′
1 (0,q)x2, τ(x,q) = τ′(0,q)x + τ(0,q) and assume thatτ

′(0,q)
1
2σ
′′
1 (0,q)

, − 1
(1−q−1)

andτ(0,q) = 0⇔ a2(q) = 0. Then, it follows thatσ2(x,q) = 1
2σ
′′
2 (0,q)x2 where

1
2
σ′′2 (0,q) = q

[
1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
.

Thus, one can perform theq-Pearson equation as the following

ρ(qx,q)
ρ(x,q)

= q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 . (4.81)
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Let denoteΛq by the constant

Λq := q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 , 0.

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) is constant.

Notice for the zero cases thata or b could be zero. That’s why, we should know the behaviour

of ρ at x = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.43 Behaviour of the q-weight function at x= 0 depends on the succesive solution

of the q-Pearson equation

ρ(qx,q) = q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 ρ(x,q)

⇔ ρ(qkx,q) = q−2k

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)


k

ρ(x,q). (4.82)

It is apparent that as k→ ∞ the behaviour ofρ at x = 0 is accomplished. Notice that if

0 < Λq = q−2
[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
< 1, ρ(x,q)→ 0 as x→ 0 otherwise it tends to∓∞.

We introduce analogous analysis in order to obtain graphs ofρ(qx,q)/ρ(x,q) according to the

sign ofΛq by taking Case 1.Λq > 0 and Case 2.Λq < 0. Nevertheless, as before, we need to

split 1st case into two separate cases: Case 1.i) whenΛq > 1 and Case 1.ii) when 0< Λq < 1.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.81).
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Figure 4.58: The functionf (x,q) with Case 1.i)A:Λq > 1,a2(q) = 0, Case 1.ii)B: 0< Λq < 1,
a2(q) = 0.

Case 1.i)A:Λq > 1, a2(q) = 0. The graph off corresponds to this situation is represented in

Figure 4.58A. Notice from Figure 4.58A that we have two intervals (−∞,0) and (0,∞). Let us
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first analyse the interval (0,∞) which coincides with the one given in Theorem 4.4 i). Then,

it could be possible to have a suitableρ on (0,∞). Observe thatf > 1 on this interval. Thus,

it follows thatρ is decreasing on (0,∞) with ρ → +∞ asx→ 0+ sinceΛq > 1 (see Remark

4.43). Sinceρ(qx,q)/ρ(x,q) has finite limit asx→ +∞, then we have chance thatρ → 0 as

x→ ∞. But notice thatρ → +∞ asx→ 0+. Since the graphs ofρ andσ1ρ are similar (see

(4.1 and (4.21)), thenσ1ρ → +∞ asx → 0+ which is the boundary condition whenk = 0.

That’s why, this interval does not lead to any suitableρ with the needed properties. The same

happens for the interval (−∞,0) by the symmetry.

Case 1.ii)B:0 < Λq < 1,a2(q) = 0. The graph off corresponds to this situation is represented

in Figure 4.58B. Notice that here also we have two intervals; (−∞,0) and (0,∞). Let us deal

with (0,∞) which is the one described in Theorem 4.4 i). Then, it could be possible to have a

suitableρ on (0,∞). Notice from Figure 4.58B thatf < 1 on this interval which leads to that

ρ is increasing on (0,∞) with ρ → 0 asx→ 0+ since 0< Λq < 1 (see Remark 4.43) which

leads toρ 6→ 0 asx → ∞ ⇒ σ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1,2, ... as x → ∞. Therefore,

(0,∞) is not suitable interval for constructingρ. The same happens for the interval (−∞,0)

by the symmetry.
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y
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C

Figure 4.59: The functionf (x,q) with Case 2.C:Λq < 0, a2(q) = 0.

Case 2.C:Λq < 0, a2(q) = 0. The graph off corresponds to this situation is represented in

Figure 4.59C. Notice thatρ should be positive andf is negative on (−∞,+∞). Hence, there

is no interval for constructing positiveρ.
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4.3.2.3 Theq-Classical0-Bessel/Laguerre Polynomials

Let σ1(x,q) = 1
2σ
′′
1 (0,q)x2, τ(x,q) = τ′(0,q)x + τ(0,q) and assume thatτ

′(0,q)
1
2σ
′′
1 (0,q)

= − 1
(1−q−1) .

Then, it follows thatσ2(x,q) = σ′2(0,q)x = q(1− q−1)τ(0,q)x. Thus, theq-Pearson equation

follows

ρ(qx,q)
ρ(x,q)

=

q−1(1− q−1) τ(0,q)
1
2σ
′′
1 (0,q)

qx
. (4.83)

Let denoteΛq by the constant

Λq :=
τ(0,q)

1
2σ
′′
1 (0,q)

.

By applying the analogous analysis according to the sign ofΛq we get one independent graph

of ρ(qx,q)/ρ(x,q) constructed in Figure 4.60.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.83).

0
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1

y

x

Figure 4.60: The functionf (x,q) with Case 1.Λq < 0.

Case 1:Λq < 0. The graph off corresponds to this situation is represented in Figure 4.60.

Notice that Positivity ofρ allows to skip the interval (−∞,0). Thus, we have only the interval

(0,∞) to analyse if it is possible to have a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 at

x0 = −τ(0,q)/τ′(0,q), x0 > x = 0. Then, it follows thatρ is decreasing on (0, x0) with

ρ → ∞ asx → 0+ sinceρ(qx,q)/ρ(x,q) → ∞ as x → ∞ and increasing on (x0,∞) which

leads toρ → ∞ asx→ ∞ (sinceρ(qx,q)/ρ(x,q) → 0 asx→ ∞)⇒ σ1(x,q)ρ(x,q)xk 6→ 0,

k = 0,1, ... asx→ ∞. As a result, this interval is not convenient for constructingρ with the

needed properties.

We continue with the same analysis to include the situationσ1(x,q) = 1
2σ
′′
1 (0,q)x2+σ′1(0,q)x
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= 1
2σ
′′
1 (0,q)x[x − a1(q)], τ(x,q) = τ′(0,q)x + τ(0,q). Observe from (3.11) thatσ2(x,q)

becomes

σ2(x,q) = qx

{[
1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
x+ (1− q−1)τ(0,q) −

1
2
σ′′1 (0,q)a1(q)

}
.

Remark 4.44 We remark thatdeg[σ2(x,q)] = 2 in case of τ
′(0,q)

1
2σ
′′
1 (0,q)

,,− 1
(1−q−1) otherwise

deg[σ2(x,q)] = 1. We note that τ(0,q)
1
2σ
′′
1 (0,q)

=
a1(q)

(1−q−1) , leads toσ2(x,q) = 1
2σ
′′
1 (0,q)x2. Con-

sequently, theq-Jacobi type zero family of the 1st kind is theq-Jacobi, theq-Bessel and the

q-Laguerre type zero family of the 2nd kind.

4.3.2.4 Theq-Classical0-Jacobi/Jacobi Polynomials

Letσ1(x,q) = 1
2σ
′′
1 (0,q)x[x− a1(q)] andτ(x,q) = τ′(0,q)x+ τ(0,q), τ′(0,q) , 0 and assume

that τ
′(0,q)

1
2σ
′′
1 (0,q)

, − 1
(1−q−1) . Then, observe from (3.11) thatσ2(x,q) = 1

2σ
′′
2 (0,q)x2 + σ′2(0,q)x

where

1
2
σ′′2 (0,q) = q

[
1
2
σ′′1 (0,q) + (1− q−1)τ′(0,q)

]
, σ′2(0,q) = q(1−q−1)τ(0,q)−

1
2
σ′′1 (0,q)a1(q).

Hence, theq-Pearson equation follows from (4.1) as the following form

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

=

[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
x+ (1− q−1) τ(0,q)

1
2σ
′′
1 (0,q)

− a1(q)

q[qx− a1(q]
(4.84)

= q−1

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)


x− a2(q)

qx− a1(q)

wherea2(q) = −
(1−q−1) τ(0,q)

1
2σ
′′
1 (0,q)

−a1(q)
[
1+(1−q−1) τ′(0,q)

1
2σ
′′
1 (0,q)

] , 0.

Remark 4.45 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.84). Then notice

that

Λq := q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 , 0

is the horizontal asymptote of the function f(x,q).

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) in (4.84) always intercepts

y-axis at the point

y := y0 = q−1

1−
(1− q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

 .
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Notice for the zero cases thata or b could be zero. That’s why, we should know the behaviour

of ρ at x = 0. To learn this we perform the following remark.

Remark 4.46 Notice that behaviour of the q-weight function at x= 0 depends on the succe-

sive solution of the q-Pearson equation

ρ(qx,q) =
q−1σ2(x,q)
σ1(qx,q)

ρ(x,q)⇔ ρ(qkx,q) = ρ(x,q)
k−1∏

i=0

q−1σ2(qi x,q)
σ1(qi+1x,q)

⇔ ρ(qkx,q) = q−k

1−
(1− q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)


k

(x/a2(q); q)k

(qx/a1(q); q)k
ρ(x,q). (4.85)

It is apparent that as k→ ∞ the behaviour ofρ at x = 0 is accomplished. Notice that if

0 < y0 = q−1[1− (1−q−1)
a1(q)

τ(0,q)
1
2σ
′′
1 (0,q)

]<1, ρ(x,q)→ 0 as x→ 0 otherwise it tends to∓∞.

In order not to lose any graphs ofρ(qx,q)/ρ(x,q), we consider every case by taking Case

1. Λq > 0 and Case 2.Λq < 0 together withy0 < 1, y0 > 1. Furthermore, as before, we

need to split 1st case into two separate cases: Case 1.i) whenΛq > 1 and Case 1.ii) when

0 < Λq < 1. Then, our next step is to dispose the order of the zeros ofσ1(x,q) andσ2(x,q)

according to the knowledge that we discussed above which give all possible graphs for the

ratioρ(qx,q)/ρ(x,q).

Let f (x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.84).
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Figure 4.61: Case 1.i) The functionf (x,q) with Λq > 1, 0< a2(q) < q−1a1(q), A: 0 < y0 < 1,
B: y0 > 1.

Case 1.i)A: 0 < a2(q) < q−1a1(q), 0 < y0 < 1, Λq > 1. The graph off for this case is

represented in Figure 4.61A. Let us consider now the possible intervals inwhich we can have

a suitableq-weight functionρ. As we’ve already mentioned, they are defined by the zeros of
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the polynomialsσ1 andσ2 and the positions ofy0 according to one. First of all, notice that

sinceρ should be positive andf is negative in the interval (a2(q),q−1a1(q)), it is not suitable.

The other intervals (0,a2(q)) and (q−1a1(q),∞) are both eliminated due to the Remark 4.5.4

and Remark 4.5.5, respectively. The last interval (−∞,0) is the one described in Theorem

4.4 i) by the symmetry abouty-axis. That’s why, it could be possible to have a suitableρ

on this interval. Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 < x = 0, then

from Figure 4.61A it follows thatρ is increasing on (−∞, x0) and decreasing on (x0,0) with

ρ → 0 asx → 0− since 0< y0 < 1 (see Remark 4.46). Sinceρ(qx,q)/ρ(x,q) has a finite

limit as x → −∞, we have also the chance thatρ → 0 asx → −∞, but it is not enough to

assure thatρ satisfies the boundary condition at−∞. In fact, as it is stated in Theorem 3.31,

we should check thatσ1(x,q)ρ(x,q)xk → 0 asx → −∞ by using analysis of theextended

q-Pearson equation (4.20). However, the graph ofg looks like the one represented in Figure

4.61A together with the property thatg(x,q) < 1 on (−∞,0) for k large enough, which leads

to thatσ1(x,q)ρ(x,q)xk is decreasing on (−∞,0) with σ1(x,q)ρ(x,q)xk 6→ 0 asx → −∞.

Therefore, this case does not lead to any suitableρ.

Case 1.i)B:0 < a2(q) < q−1a1(q), y0 > 1,Λq > 1. The graph off corresponds to this situation

is represented in Figure 4.61B. Notice that Figure 4.61B is analog to the Figure 4.61A. They

differ only for they-intercept;y0. That’s why, with the similar reason that we perform in Case

1.i)A, we eliminate the intervals (a2(q),q−1a1(q)), (0,a2(q)) and (q−1a1(q),∞). We only need

to analyse the interval (−∞,0). Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q),

x = 0 < x0 < x = a2(q), then from Figure 4.61B it follows thatρ is increasing on (−∞,0).

Sincey0 > 1, thenρ→ ∞ asx→ 0− (see Remark 4.46) and sinceρ(qx,q)/ρ(x,q) has a finite

limit asx→ −∞, we have also the chance thatρ→ 0 asx→ −∞, but it is not enough to assure

thatρ satisfies the boundary conditions at−∞. We should check thatσ1(x,q)ρ(x,q)xk → 0

asx→ −∞ by using analysis of theextended q-Pearson equation (4.20). However, the graph

of g looks like the one discussed in Case 1.i)A, that’s why it leads to the same resultthat

σ1(x,q)ρ(x,q)xk 6→ 0 asx→ −∞.

Case 1.i)C:0 < q−1a1(q) < a2(q), y0 > 1, Λq > 1. The graph off is represented in Figure

4.62C. The positivity ofρ allows us to skip the interval (q−1a1(q),a2(q)). Let us consider

the intervals (−∞,0) and (0,q−1a1(q)) which coincide the ones described in Theorem 4.4 f)

(by symmetry) and Theorem 4.4 b). Sincey0 > 1 andρ(qx,q)/ρ(x,q) > 1 on (−∞,0) and
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Figure 4.62: Case 1.i) The functionf (x,q) with Λq > 1, C: 0 < q−1a1(q) < a2(q), y0 > 1,
D: q−1a1(q) < 0 < a2(q), y0 < 0.

(0,q−1a1(q)) it follows from Figure 4.62C thatρ is increasing on (−∞,0) and decreasing on

(0,q−1a1(q)) with ρ→ ∞ asx→ 0. Notice from the identity

σ1(qx,q)ρ(qx,q)
σ1(x,q)ρ(x,q)

=
q−1σ2(x,q)
σ1(x,q)

that the graph ofσ1(x,q)ρ(x,q) have the same property withρ(x,q). That’s why, from Figure

4.62C we see that the boundary condition (3.115) does not satisfied atx = 0 whenk = 0

which is the reason for eliminating them. Let us consider the last interval (a2(q),∞). Notice

thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 > x = a2(q), then from Figure 4.62C it

follows thatρ is decreasing on (−τ(0,q)/τ′(0,q),∞). Sinceρ(qx,q)/ρ(x,q) has a finite limit

as x → +∞, we have the chance thatρ → 0 asx → ∞, but it is not enough to assure that

ρ satisfies the boundary conditions at+∞. In fact, we should check thatσ1(x,q)ρ(x,q)xk →

0 asx → ∞ by using theextended q-Pearson equation (4.20). But by the graph ofg we

see thatσ1(x,q)ρ(x,q)xk is increasing on (a2(q),∞) for k large enough which implies that

σ1(x,q)ρ(x,q)xk 6→ 0 asx→ ∞. Therefore, this case does not lead to any suitableρ with the

needed properties.

Case 1.i)D:q−1a1(q) < 0 < a2(q), y0 < 0,Λq > 1. The graph off corresponds to this situation

is represented in Figure 4.62D. Analogous analysis allows us to exclude thenegative intervals

(q−1a1(q),0) and (0,a2(q)). On the other hand, the interval (−∞,q−1a1(q)) is eliminated due

to Remark 4.5.5 with symmetry. The last interval (a2(q),∞) is also excluded because of the

same reason applied in Case 1.i)C. That’s why, we can not have a suitableρ.

Case 1.i)E:0 < a2(q) < q−1a1(q), 0 < y0 < 1, 0< Λq < 1. The graph off corresponds to this

situation is represented in Figure 4.63E. Notice thatf is negative on (a2(q),q−1a1(q)). Then,
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Figure 4.63: Case 1.ii) The functionf (x,q) with 0 < Λq < 1, E: 0 < a2(q) < q−1a1(q),
0 < y0 < 1, F:a2(q) < 0 < q−1a1(q), y0 < 0.

it can not be used. Moreover, Remark 4.5.4 and Remark 4.5.5 by symmetry allows us to skip

the intervals (0,a2(q)) and (q−1a1(q),∞) since they do not lead to a suitableρ satisfying the

q-Pearson equation (3.24) and the boundary conditions. Let us now deal with the last interval

(−∞,0) which coincide with the one described in Theorem 4.4 i) by symmetry abouty-axis.

Therefore, here it could be possible to have a suitableρ. Notice from Figure 4.63E thatρ is

decreasing on (−∞,0) with the propertyρ → 0 asx → 0 since 0< y0 < 1. It seems that

ρ 6→ 0 asx→ −∞which leads toσ1(x,q)ρ(x,q)xk 6→ 0,k = 0,1,2, ... asx→ −∞. Therefore,

there is no suitable interval forρ.

Case 1.i)F:a2(q) < 0 < q−1a1(q), y0 < 0, 0< Λq < 1. The graph off is represented in Figure

4.63F. The positivity property enables us to skip the intervals (a2(q),0) and (0,q−1a1(q)). The

same happens for the interval (q−1a1(q),∞) due to Remark 4.5.5. The last interval (−∞,a2(q))

is the one described in Theorem 4.4 h) by symmetry. That’s why, it could be possible to obtain

a suitableρ on this interval. Notice from Figure 4.63F thatρ is decreasing on (−∞,a2(q))

together withρ(qa2(q),q) = 0. Therefore, we haveρ 6→ 0 as x → −∞ which leads to

σ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1,2, ... asx→ −∞.

Case 1.ii)G:0 < q−1a1(q) < a2(q), 0 < y0 < 1, 0 < Λq < 1. The graph off corresponds

to this situation is represented in Figure 4.64G. Let us analyse the each interval analog to the

before cases. First of all, one can eliminate the interval (q−1a1(q),a2(q)) due to the positivity.

The interval (−∞,0) is the one described in Theorem 4.4 i) by symmetry. However, it is

seen from Figure 4.64G thatρ is decreasing on (−∞,0) with ρ → 0 asx → 0 since 0<

y0 < 1 (see Remark 4.46) which leads toρ 6→ 0 asx → −∞ =⇒ σ1(x,q)ρ(x,q)xk 6→ 0,
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Figure 4.64: Case 1.ii) The functionf (x,q) with 0 < Λq < 1, 0 < q−1a1(q) < a2(q),
G: 0< y0 < 1, H: y0 > 1.

k = 0,1,2, ... as x → −∞. Let us deal with the interval (a2(q),∞) which is the one given

in Theorem 4.4 h). Then, here it could be possible to have a suitableρ. It follows from

Figure 4.64G thatρ is increasing on (a2(q),∞) with the property thatρ(qa2(q),q) = 0 since

ρ(qa2(q),q)/ρ(a2(q),q) = 0. Then, we haveρ 6→ 0 asx→ ∞ leading toσ1(x,q)ρ(x,q)xk 6→

0, k = 0,1,2, ... asx→ ∞.

In order to analyse the last interval (0,q−1a1(q)) which is the one described in Theorem 4.4

b) notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x = 0 < x0 < x = a2(q), then

from Figure 4.64G it follows thatρ is increasing on (0, x0) with ρ → 0 as x → 0 since

0 < y0 < 1 and decreasing on (x0,q−1a1(q)) with ρ(x,q) → 0 as x → q−1a1(q)− since

ρ(qx,q)/ρ(x,q)→ ∞. According to the above discussion one can easily sketch the graph ofρ

which is represented in Figure 4.65 assuming a positive initial value for theq-weight function

in each interval.
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Figure 4.65: Possible positive graph of correspondingρ(x,q) for Figure 4.64G.
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We also infer from Figure 4.65 that (0,a1(q)) is suitable interval to have aq-weight function

supported at the pointsa1(q)qk, k = 0,1, ... (see Theorem 4.4 b)). Thus, according to this

result we construct the following theorem.

Theorem 4.47 Let a = 0 and b = a1(q) be the zeros ofσ1(x,q) and assume that0 <

q−1a1(q) < a2(q), 0 < y0 = q−1
[
1− (1−q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

]
< 1, and 0 < Λq = q−2[1 + (1 −

q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 1. Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b),

i.e., they satisfy the orthogonality (4.7) with respect to the q-weight function

ρ(x,q) = xα
(qa−1

1 (q)x; q)∞

(a−1
2 (q)x; q)∞

> 0, x ∈ (a,b) qα =
q−2 1

2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)a1(q)

(4.86)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 b)).

This case corresponds to the case IVa3 in Chapter 10 of [35, pages 277 and 311].

An example of such family is the littleq-Jacobi polynomials [35] wherea1(q) = 1, a2(q) =

b−1q−1,

σ1(x,q) = q−2x(x− 1), σ2(x,q) = ax(bqx− 1),

τ(x,q) =
1− abq2

(1− q)q
x+

aq− 1
(1− q)q

, λn(q) = −q−n[n]q
1− abqn+1

1− q
.

Little q-Jacobi polynomials are orthogonal on (0,1) and the conditions 0< q2Λq < 1, 0 <

qy0 < 1 and 0< a1(q) < a2(q) give us the following restriction for the parameters 0< a <

q−1, 0 < b < q−1. By means of Theorem 4.4 b) we can write the orthogonality relation of

little q-Jacobi polynomials
∫ 1

0
xα

(qx; q)∞
(bqx; q)∞

Pm(x; a,b|q)Pn(x; a,b|q)dqx =
(aq)n(1− abq)
(1− abq2n+1)

(q,bq; q)n

(aq,abq; q)n

(q,abq2; q)∞
(aq,bq; q)∞

δmn (4.87)

with 0 < a = qα < q−1, 0 < b < q−1.

Case 1.ii)H: 0 < q−1a1(q) < a2(q), y0 > 1, 0 < Λq < 1. The graph off is represented in

Figure 4.64H. It is clear that Figure 4.64G and Figure 4.64H differ only for they-intercept;

y0. Then, we eliminate the intervals (q−1a1(q),a2(q)) and (a2(q),∞) because of the same

reason performed in Case 1.ii)G. Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q),

x0 < x = 0. Then, from Figure 4.64H it follows thatρ is decreasing on (−∞, x0) and increasing

on (x0,0) with ρ→ ∞ asx→ 0 sincey0 > 1 (see Remark 4.46). Observe that sinceρ andσ1ρ

have the same graphs thenσ1ρ → ∞ asx → 0 which indicates that the boundary condition

(3.115) does not satisfied atx = 0 whenk = 0, that’s why, (−∞,0) is not a suitable interval
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in order to get aρ with needed properties. Notice that the same happens for the interval

(0,q−1a1(q)) sinceρ→ ∞ asx→ 0.
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Figure 4.66: Case 2. The functionf (x,q) with Λq < 0, a2(q) < 0 < q−1a1(q), I: 0 < y0 < 1,
J:y0 > 1.

Case 2.I:a2(q) < 0 < q−1a1(q), 0 < y0 < 1,Λq < 0. The graph off corresponds to this case

is represented in Figure 4.66I. The positivity ofρ allows us to skip the intervals (−∞,a2(q))

and (q−1a1(q),∞). On the other hand, (a2(q),0) is eliminated with the help of Remark 4.5.4

by symmetry. Notice that the last interval (0,q−1a1(q)) is the one described in Theorem 4.4

b). Then, here it could be possible to have a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 atx0 =

−τ(0,q)/τ′(0,q), x = 0 < x0 < x = q−1a1(q). Thus, it follows thatρ is increasing on (0, x0)

with ρ → 0 asx → 0 since 0< y0 < 1 (see Remark 4.46) and decreasing on (x0,q−1a1(q))

with ρ(x,q) → 0 asx → q−1a1(q)− sinceρ(qx,q)/ρ(x,q) → +∞ asx → q−1a1(q)−. Then,

according to above discussion it is clear to sketch Figure 4.67 by assuming apositive initial

value for theq-weight function in each interval.
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Figure 4.67: Possible positive graph of correspondingρ(x,q) for Figure 4.66I.
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It is obvious from Figure 4.67 that there exists a suitableρ on (0,a1(q)) supported at the points

a1(q)qk, k = 0,1, ... (see Theorem 4.4 b)) which leads to the following theorem.

Theorem 4.48 Let a= 0 and b= a1(q) be the zeros ofσ1(x,q) and assume that a2(q) < 0 <

q−1a1(q), 0 < y0 = q−1
[
1− (1−q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

]
< 1, andΛq = q−2[1 + (1 − q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

] < 0.

Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b), i.e., they satisfy the

orthogonality (4.7) with respect to the q-weight function

ρ(x,q) = xα
(qa−1

1 (q)x; q)∞

(a−1
2 (q)x; q)∞

> 0, x ∈ (a,b) qα =
q−2 1

2σ
′′
2 (0,q)a2(q)

1
2σ
′′
1 (0,q)a1(q)

(4.88)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 b)).

This case corresponds to the case IVa4 in Chapter 10 of [35, pages 278 and 312].

An example of such family is the littleq-Jacobi polynomials [35] wherea1(q) = 1, a2(q) =

b−1q−1,

σ1(x,q) = q−2x(x− 1), σ2(x,q) = ax(bqx− 1),

τ(x,q) =
1− abq2

(1− q)q
x+

aq− 1
(1− q)q

, λn(q) = −q−n[n]q
1− abqn+1

1− q
.

Little q-Jacobi polynomials are orthogonal on (0,1) and the conditionsq2Λq < 0, 0< qy0 < 1

anda2(q) < 0 < a1(q) give us the following restriction for the parameters 0< a < q−1, b <

0. By means of Theorem 4.4 b) we can write the orthogonality relation of littleq-Jacobi

polynomials
∫ 1

0
xα

(qx; q)∞
(bqx; q)∞

Pm(x; a,b|q)Pn(x; a,b|q)dqx =
(aq)n(1− abq)
(1− abq2n+1)

(q,bq; q)n

(aq,abq; q)n

(q,abq2; q)∞
(aq,bq; q)∞

δmn (4.89)

which coincides with (4.87) but with a different choice of parameters, 0< a = qα < q−1,

b < 0.

Case 2.J:a2(q) < 0 < q−1a1(q), y0 > 1, Λq < 0. The graph off corresponds to this

situation is represented in Figure 4.66J. Notice that Figure 4.66J is analog to Figure 4.66I.

The difference is they-intercept;y0. Then, we all eliminate the intervals except (0,q−1a1(q))

because of the same reason applied in Case 2.I. Notice that sincey0 > 1, thenρ → ∞ as

x→ 0. Thus, the interval (0,q−1a1(q)) does not have the same property with the one in Case

2.I. Observe that the graph ofρ andσ1ρ are same. Hence, we haveσ1ρ → ∞ as x → 0

which is the boundary condition whenk = 0. That’s why, this interval can not be used forρ.

Therefore, this case does not lead to any suitableρ.
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Figure 4.68: Case 2. The functionf (x,q) with Λq < 0, y0 < 0, K: 0 < q−1a1(q) < a2(q),
L: 0 < a2(q) < q−1a1(q).

Case 2.K:0 < q−1a1(q) < a2(q), y0 < 0,Λq < 0. The graph off corresponds to this case is

represented in Figure 4.68K. Notice that positivity ofρ enables us to skip the intervals (−∞,0),

(0,q−1a1(q)) and (a2(q),∞). Note that one can also eliminate the rest interval (q−1a1(q),a2(q))

due to Remark 4.5.4. Therefore, this case does not lead to any suitableρ.

Case 2.L: 0 < a2(q) < q−1a1(q), y0 < 0, Λq < 0. The graph off is represented in Fig-

ure 4.68L. (−∞,0), (0,a2(q)) and (q−1a1(q),∞) are eliminated sinceρ should be positive.

But, (a2(q),q−1a1(q)) which coincides with the one described in Theorem 4.4 d) could be

possible to construct a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q),

x = a2(q) < x0 < x = q−1a1(q). Thus,ρ is increasing on (a2(q), x0) with ρ(qa2(q),q) = 0 since

ρ(qa2(q),q)/ρ(a2(q),q) = 0 and decreasing on (x0,q−1a1(q)) with ρ → 0 asx → q−1a1(q)−

sinceρ(qx,q)/ρ(x,q) → ∞ asx→ q−1a1(q)−. It is obvious that, imposing the above discus-

sion to Figure 4.68L allows us to sketch Figure 4.69.
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Figure 4.69: Possible positive graph of correspondingρ(x,q) for Figure 4.68L.
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We infer from Figure 4.69 that (a2(q),q−1a1(q)) is the suitable interval in which we can have

ρ supported at the pointsq−ka2(q), k = 0,1, .... Therefore, we build the following theorem.

Theorem 4.49 Let a = qa2(q) be the zero ofσ2(q−1x,q) and b = a1(q) of σ1(x,q) and

assume that0 < a2(q) < q−1a1(q), y0 = q−1
[
1− (1−q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

]
< 0, andΛq = q−2[1 + (1−

q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then, there exists a sequence of polynomials(Pn)n orthogonal on(a,b),

i.e., they satisfy the orthogonality (4.9) and (4.11) with respect to the q-weightfunction

ρ(x,q) = xα
√

xlogq x−1(qa2(q)/x,qa−1
1 (q)x; q)∞ > 0, x ∈ (a,b) (4.90)

qα =
q−2 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)

which satisfies the q-Pearson equation and the boundary condition (see

Theorem 4.4 d)).

This case corresponds to the case IIIb withg = 0 in Chapter 11 of [35, page 343] which is not

given explicitly.

An example of such family is theq-Kravchuk polynomials [35] wherea1(q) = q−N, a2(q) = 1,

σ1(x,q) = q−2x(x− q−N), σ2(x,q) = −px(x− 1),

τ(x,q) =
1+ pq

(1− q)q
x−

p+ q−N−1

1− q
, λn(q) = −q−n[n]q

1+ pqn

1− q
.

q-Kravchuk polynomials are orthogonal on (1,q−N−1) and the conditionsq2Λq < 0, qy0 < 0

and 0< a2(q) < a1(q) give us the following restriction for the parametersp > 0. By means

of Theorem 4.4 d) we can write the orthogonality relation ofq-Kravchuk polynomials

∫ q−N−1

1
xα+N

√
xlogq x−1(q/x,qN+1x; q)∞Km(x; p,N; q)Kn(x; p,N; q)dq−1 x = (q−1 − 1)p−N

×q−(N+1
2 )(−pq−N)nqn2 1+ p

1+ pq2n
(−pq; q)N(q,qN+1; q)∞

(q,−pqN+1; q)n

(−p,q−N; q)n
δmn (4.91)

associated withp > 0. Notice from Theorem 4.4 d) that one can write the orthogonality with

finite sum by applying (2.31) to (4.91)

N∑

x=0

(q−N; q)x

(q; q)x
(−p)−xKm(q−x; p,N; q)Kn(q−x; p,N; q)= p−Nq−(N+1

2 )(−pq−N)nqn2

×
1+ p

1+ pq2n
(−pq; q)N

(q,−pqN+1; q)n

(−p,q−N; q)n
δmn. (4.92)
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4.3.2.5 Theq-Classical0-Jacobi/Bessel Polynomials

Let σ1(x,q) = 1
2σ
′′
1 (0,q)x [x − a1(q)] and τ(x,q) = τ′(0,q)x + τ(0,q), τ′(0,q) , 0 and

assume that τ
′(0,q)

1
2σ
′′
1 (0,q)

, − 1
(1−q−1) anda2(q) = 0 ⇔ τ(0,q)

1
2σ
′′
1 (0,q)

=
a1(q)

(1−q−1) . Then, observe from

(3.11) thatσ2(x,q) = 1
2σ
′′
2 (0,q)x2 = q

[
1
2σ
′′
1 (0,q) + (1− q−1)τ′(0,q)

]
x2. As a result, theq-

Pearson equation follows from (4.1)

ρ(qx,q)
ρ(x,q)

=

[
1+ (1− q−1) τ

′(0,q)
1
2σ
′′
1 (0,q)

]
x

q[qx− a1(q]
. (4.93)

Remark 4.50 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.93). Then notice

that

Λq := q−2

1+ (1− q−1)
τ′(0,q)

1
2σ
′′
1 (0,q)

 , 0

is the horizontal asymptote of the function f(x,q).

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) in (4.93) always intercepts

y-axis aty := y0 = 0.

We introduce analogous analysis in order to obtain independent graphs of ρ(qx,q)/ρ(x,q)

according to the sign ofa1(q) (zero ofσ1) and ofΛq by taking Case 1.Λq > 0 and Case 2.

Λq < 0. Nevertheless, as before, we need to split 1st case into two separate cases: Case 1.i)

whenΛq > 1 and Case 1.ii) when 0< Λq < 1.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.93).
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Figure 4.70: The functionf (x,q) with a1(q) > 0, Case 1.i)A:Λq > 1, Case 1.ii)B: 0< Λq < 1.

Case 1.i)A:Λq > 1, a1(q) > 0. The graph off corresponds to this case is represented in

Figure 4.70A. First of all the interval (0,q−1a1(q)) is eliminated due to the positivity ofρ.

145



The same happens for the interval (q−1a1(q),∞) because of the reason given in Remark 4.5.5.

Notice that the last interval (−∞,0) is the one described in Theorem 4.4 i) by symmetry. That’s

why, this interval could be possible to construct a suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1

at x0 = −τ(0,q)/τ′(0,q), x0 < x = 0. Thus, it follows thatρ is incerasing on (−∞, x0) and

decreasing on (x0,0) with ρ→ 0 asx→ 0− sinceρ(qx,q)/ρ(x,q)→ 0 asx→ 0− which leads

to ρ→ 0 asx→ −∞. But since the interval is infinite we need to checkσ1(x,q)ρ(x,q)xk → 0

asx→ −∞ by usingextended q-Pearson equation (4.20). We note that the graph ofg looks

like the one represented Figure 4.70A but with the horizontal asymptote 0< qk+2Λq < 1

which leads to thatσ1(x,q)ρ(x,q)xk 6→ 0 asx→ −∞. As a result, this case does not lead to

any suitableρ.

Case 1.ii)B:0 < Λq < 1, a1(q) > 0. The graph off corresponds to this case is represented

in Figure 4.70B. Notice that an analogous analysis as the one that has beendone in Case

1.i)A leads to eliminate the intervals (0,q−1a1(q)) and (q−1a1(q),∞). Thus, we only analyse

the interval (−∞,0) which coincides with the one described in Theorem 4.4 i) by symmetry.

Observe from Figure 4.70B thatρ is decreasing on (−∞,0) with ρ → 0 asx → 0− since

ρ(qx,q)/ρ(x,q)→ 0 asx→ 0− which leads toρ 6→ 0 asx→ −∞ =⇒ σ1(x,q)ρ(x,q)xk 6→ 0,

k = 0,1,2, ... asx→ −∞. Hence, we can also not use the interval (−∞,0) for constructingρ.
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q−1a
1
(q)

Figure 4.71: The functionf (x,q) with Case 2.C:Λq < 0, a1(q) > 0.

Case 2.C:Λq < 0, a1(q) > 0. The graph off corresponds to this case is represented in

Figure 4.71C. Positivity ofρ allows us to skip the intervals (−∞,0) and (q−1a1(q),∞). Thus,

we only need to analyse the interval (0,q−1a1(q)) which is the one defined in Theorem 4.4

b). Thus, this interval could be possible for constructingρ. Notice thatρ(qx,q)/(x,q) = 1

at x0 = −τ(0,q)/′(0,q), x = 0 < x0 < x = q−1a1(q). Then, it follows thatρ is increasing
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on (0, x0) with ρ → 0 as x → 0+ sinceρ(qx,q)/(x,q) = 0 at x = 0 and decreasing on

(x0,q−1a1(q)) with ρ → 0 asx→ q−1a1(q)− sinceρ(qx,q)/(x,q) → ∞ which leads to Figure

4.72 for correspondingρ.
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q−1a
1
(q)

y

x

Figure 4.72: Possible positive graph of correspondingρ(x,q) for Figure 4.71.

It is obvious from Figure 4.72 that there exists a suitableρ defined on (0,a1(q)) supported at

the pointsa1(q)qk, k = 0,1, ... (see Theorem 4.4 b)). Thus, we have the following theorem.

Theorem 4.51 Let a = 0 and b= a1(q) be the zeros ofσ1(x,q) and assume that a1(q) > 0

andΛq = q−2[1 + (1− q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

] < 0. Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.7) with respect to the q-weight

function

ρ(x,q) = xα
√

xlogq x−1(qx/a1(q); q)∞ > 0, x ∈ (a,b) qα = −
q−2 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)

(4.94)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 b)).

This case corresponds to the case IVa5 in Chapter 10 of [35, pages 278 and 313].

An example of such family is the alternativeq-Charlier polynomials [35] wherea1(q) = 1,

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax2,

τ(x,q) = −
1+ aq

(1− q)q
x+

1
(1− q)q

, λn(q) = q−n[n]q
1+ aqn

1− q
.

Alternativeq-Charlier polynomials are orthogonal on (0,1) and the conditionsq2Λq < 0 and

a1(q) > 1 give us the following restriction for the parametersa > 0. By means of Theorem
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4.4 b) we can write the orthogonality relation of alternativeq-Charlier polynomials

∫ 1

0
xα

√
xlogq x−1(qx; q)∞Km(x; a; q)Kn(x; a; q)dqx =

anq(n+1
2 )

1+ aq2n
(q; q)n(−aqn,q; q)∞δmn (4.95)

associated witha = qα > 0.

4.3.2.6 Theq-Classical0-Jacobi/Laguerre Polynomials

Let σ1(x,q) = 1
2σ
′′
1 (0,q)x[x − a1(q)] and τ(x,q) = τ′(0,q)x + τ(0,q), τ′(0,q) , 0 and

assume that τ
′(0,q)

1
2σ
′′
1 (0,q)

= − 1
(1−q−1) . Then, observe from (3.11) thatσ2(x,q) = σ′2(0,q)x =

q
[
(1− q−1)τ(0,q) − 1

2σ
′′
1 (0,q)a1(q)

]
xand therefore theq-Pearson equation follows from (4.1)

as

ρ(qx,q)
ρ(x,q)

=
σ1(x,q) + (1− q−1)xτ(x,q)

σ1(qx,q)
=

q−1σ2(x,q)
σ1(qx,q)

=

(1− q−1) τ(0,q)
1
2σ
′′
1 (0,q)

− a1(q)

q[qx− a1(q]
. (4.96)

Remark 4.52 Let f(x,q) = ρ(qx,q)/ρ(x,q) be the function defined in (4.96). Then notice

that y= 0 is the horizontal asymptote of the function f(x,q).

Before starting the analysis let us point out thatρ(qx,q)/ρ(x,q) in (4.96) always intercepts

y-axis at the point

y := y0 = q−1

1−
(1− q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

 .

Notice for the zero cases thata or b could be zero. That’s why, we should know the behaviour

of ρ at x = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.53 Behaviour of the q-weight function at x= 0 depends on the succesive solution

of the q-Pearson equation

ρ(qx,q) = q−1

1−
(1− q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)


1

(1− qx/a1(q))
ρ(x,q)

⇔ ρ(qkx,q) = q−k

1−
(1− q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)


k

1
(qx/a1(q); q)k

ρ(x,q). (4.97)

It is apparent that as k→ ∞ the behaviour ofρ at x = 0 is accomplished. Notice that if

0 < y0 = q−1[1 − (1−q−1)
a1(q)

τ(0,q)
1
2σ
′′
1 (0,q)

] < 1, ρ(x,q)→ 0 as x→ 0 otherwise it tends to∓∞.
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We introduce analogous analysis in order to obtain independent graphs of ρ(qx,q)/ρ(x,q)

according to the sign ofa1(q) (zero ofσ1) and ofy0 by taking Case 1.y0 > 0 and Case 2.

y0 < 0. Nevertheless, as before, we need to split 1st case into two separate cases: Case 1.i)

wheny0 > 1 and Case 1.ii) when 0< y0 < 1.

Let f (x,q) := ρ(qx,q)/ρ(x,q) be the function defined in (4.96).

0

0
q−1a

1
(q)

x

1

y
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0
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1
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y
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1
(q)

B

Figure 4.73: The functionf (x,q) with a1(q) > 0, Case 1.i)A:y0 > 1, Case 1.ii)B: 0< y0 < 1.

Case 1.i)A: y0 > 1, a1(q) > 0. The graph off corresponds to this case is represented in

Figure 4.73A. We first begin with considering the positivity ofρ which allows us to eliminate

the interval (q−1a1(q),∞). Let us consider the next interval (−∞,0) which coincides with the

one described in Theorem 4.4 i) by symmetry. Thus, this interval could be possible to have a

suitableρ. Notice thatρ(qx,q)/ρ(x,q) = 1 at x0 = −τ(0,q)/τ′(0,q), x0 < x = 0. Therefore,

it follows thatρ is decreasing on (−∞, x0) and increasing on (x0,0) with ρ → ∞ asx → 0−

sincey0 > 1 (see Remark 4.53). Notice from (4.20) and (4.21) that graphs ofρ andσ1ρ have

the same properties which lead to thatσ1ρ→ ∞ asx→ 0−. Observe that this is the boundary

condition whenk = 0. That’s why, this interval does not lead to any suitableρwith the needed

properties. Let us deal with the last interval (0,q−1a1(q)) which is the one given in Theorem

4.4 b). Thus, we have a possibility to construct a suitableρ on this interval. Notice from

Figure 4.73A thatρ is decreasing on (0,q−1a1(q)) with ρ → ∞ asx→ 0+ sincey0 > 1 (see

Remark 4.53) andρ → 0 asx → q−1a1(q)− sinceρ(qx,q)/ρ(x,q) → ∞ asx → q−1a1(q)−.

Sinceρ → ∞ asx→ 0+, thenσ1ρ → ∞ asx→ 0+ because of the same reason that we used

for the interval (−∞,0). As a result, this case does not lead to any suitableρ with the needed

properties.
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Case 1.ii)B:0 < y0 < 1, a1(q) > 0. The graph off corresponds to this case is represented

in Figure 4.73B. Notice that Figure 4.73A and Figure 4.73B are similar excepty-intercept;

y0. Thus, we exclude the interval (q−1a1(q),∞) due to the positivity ofρ. The next interval

(−∞,0) is the one described in Theorem 4.4 i) by symmetry. Notice thatρ is decreasing on

this interval withρ → 0 asx → 0− which leads to thatρ → ∞ as x → −∞ (Observe that

ρ(qx,q)/ρ(x,q) → 0 asx → −∞) =⇒ σ1(x,q)ρ(x,q)xk 6→ 0, k = 0,1,2, ... as x → −∞.

Hence, it is not possible to have a suitableρ on this interval. On the other hand the last

interval (0,q−1a1(q)) could also be possible for constructingρ since it coincides with the one

given Theorem 4.4 b). Notice thatρ(qx,q)/ρ(x,q) = 1 atx0 = −τ(0,q)/τ′(0,q), x = 0 < x0 <

x = q−1a1(q). Therefore, it follows thatρ is increasing on (0, x0) with ρ→ 0 asx→ 0+ since

0 < y0 < 1 (see Remark 4.53) and decreasing on (x0,q−1a1(q)) with ρ(qx,q)/ρ(x,q) → 0 as

x→ q−1a1(q)− sinceρ(qx,q)/ρ(x,q)→ ∞ asx→ q−1a1(q)− which allows us to build Figure

4.74 for correspondingρ.
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1
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Figure 4.74: Possible positive graph of correspondingρ(x,q) for Figure 4.73B.

It is also clear from Figure 4.74 that the boundary condition (3.119) holdsat x = 0 andx =

a1(q), hence there exists a suitableρ satisfying the needed properties on (0,a1(q)) supported at

the pointsqka1(q), k = 0,1, ... (see Theorem 4.4 b)). Thus we construct the following theorem

according as the result of this case.

Theorem 4.54 Let a = 0 and b= a1(q) be the zeros ofσ1(x,q) and assume that a1(q) > 0

and0 < y0 = q−1
[
1− (1−q−1)

a1(q)
τ(0,q)

1
2σ
′′
1 (0,q)

]
< 1. Then, there exists a sequence of polynomials(Pn)n

orthogonal on(a,b), i.e., they satisfy the orthogonality (4.7) with respect to the q-weight
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function

ρ(x,q) = xα(qx/a1(q); q)∞ > 0, x ∈ (a,b) qα = −
q−2 1

2σ
′′
2 (0,q)

1
2σ
′′
1 (0,q)a1(q)

(4.98)

which satisfies the q-Pearson equation and the boundary condition (see Theorem 4.4 b)).

This case corresponds to the case IVa4 in Chapter 10 of [35, pages 278 and 312].

An example of such family is the littleq-Laguerre (Wall) polynomials [35] wherea1(q) = 1,

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax,

τ(x,q) = −
1

(1− q)q
x+

1− aq
(1− q)q

, λn(q) =
q−n

1− q
[n]q.

Little q-Laguerre (Wall) polynomials are orthogonal on (0,1) and the conditions 0< qy0 < 1

anda1(q) > 1 give us the following restriction for the parameters 0< a < q−1. By means of

Theorem 4.4 b) we can write the orthogonality relation of littleq-Laguerre (Wall) polynomials

∫ 1

0
xα(qx; q)∞Pm(x;α|q)Pn(x;α|q)dqx = q(α+1)n (q; q)∞

(qα+1; q)∞

(q; q)n

(qα+1; q)n
δmn (4.99)

together with 0< a = qα < q−1.
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Figure 4.75: The functionf (x,q) with Case 2.C:y0 < 0, a1(q) > 0.

Case 2.C:y0 < 0, a1(q) > 0. The graph off corresponds to this case is represented in

Figure 4.75C. Notice that the intervals (−∞,0) and (0,q−1a1(q)) are both eliminated due to

the positivity ofρ. The same happens for the interval (q−1a1(q),∞) due to Remark 4.5.5.

As a result of the qualitative analysis, in the following tables we show the main intervals

of orthogonality depending on the range of the parameters of each family. We note that the

relations given with * lead to the new relations obtained with our approach. Actually, they are
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the ones which have not been reported in theq-Askey scheme in [36]. However, the relations

in Table 4.6 and Table 4.14 have been mentioned in the very recent book [35].

Table 4.2:∅-Jacobi/Jacobi⇔ Big q-Jacobi Polynomials

σ1(x,q) = q−2(x− aq)(x− cq), σ2(x,q) = aq(x− 1)(bx− c)

(cq,aq)
c < 0, 0 < b < q−1, 0 < a < q−1

* c < 0, b < 0, abc−1q ≤ 1, 0 < a < q−1

Table 4.3:∅-Laguerre/Jacobi⇔ Alternative Bigq-Jacobi Polynomials

σ1(x,q) = 1
2σ
′′
1 (0,q)[x− a1(q)][ x− b1(q)], σ2(x,q) = 1

2σ
′′
2 (0,q)[x− a2(q)][ x− b2(q)]

(a1(q),b1(q)) * 1 + (1− q−1) τ
′(0,q)

1
2σ
′′
1 (0,q)

< 0, a2(q),b2(q) ∈ C

Table 4.4:∅-Jacobi/Jacobi⇔ q-Hahn Polynomials

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1)

(1,q−N−1)

0 < α < q−1, 0 < β < q−1

* 0 < α < q−1, β < 0

α ≥ q−N−1, β ≥ q−N−1

* α < 0, β ≥ q−N−1

Table 4.5:∅-Laguerre/Jacobi⇔ q-Meixner Polynomials

σ1(x,q) = cq−2(x− bq), σ2(x,q) = (x− 1)(x+ bc)

(1,∞)
c > 0, 0 < b < q−1

* c > 0, b < 0, 0 < −bc≤ 1

152



Table 4.6:∅-Laguerre/Jacobi⇔ Alternativeq-Meixner Polynomials

σ1(x,q) = σ′1(0,q)[x− a1(q)], σ2(x,q) = 1
2σ
′′
2 (0,q)[x− a2(q)][ x− b2(q)]

(a1(q),∞)
* τ′(0,q)
σ′1(0,q) < 0, a2(q) ≤ b2(q) < a1(q) < 0

* τ′(0,q)
σ1(0,q) < 0, a2(q),b2(q) ∈ C anda1(q) < 0

Table 4.7:∅-Laguerre/Jacobi⇔ Quantumq-Kravchuk Polynomials

σ1(x,q) = −q−2(x− q−N), σ2(x,q) = (x− 1)(px− q−N−1)

(1,q−N−1) p ≥ q−N−1

Table 4.8:∅-Hermite/Jacobi⇔ Al-Salam Carlitz II Polynomials

σ1(x,q) = aq−1, σ2(x,q) = (1− x)(a− x)

(1,∞) 0 < a ≤ 1

Table 4.9:∅-Hermite/Jacobi⇔ Discreteq−1-Hermite II Polynomials

σ1(x,q) = q−1, σ2(x,q) = 1+ x2

(−∞,∞)

Table 4.10:∅-Jacobi/Laguerre⇔ Big q-Laguerre Polynomials

σ1(x,q) = q−2(x− aq)(x− bq), σ2(x,q) = abq(1− x)

(bq,aq) b < 0, 0 < a < q−1

Table 4.11:∅-Jacobi/Laguerre⇔ Affineq-Kravchuk Polynomials

σ1(x,q) = q−1(x− q−N)(x− pq), σ2(x,q) = −pq1−N(x− 1)

(1,q−N−1) 0 < p < q−1
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Table 4.12:∅-Jacobi/Hermite⇔ Al-Salam Carlitz I Polynomials

σ1(x,q) = q−1(1− x)(a− x), σ2(x,q) = a

(a,1) a < 0

Table 4.13:∅-Jacobi/Hermite⇔ Discreteq-Hermite I Polynomials

σ1(x,q) = −q−1(1− x2), σ2(x,q) = −1

(−1,1)

Table 4.14: 0-Jacobi/Jacobi⇔ Little q-Jacobi Polynomials

σ1(x,q) = q−2x(x− 1), σ2(x,q) = ax(bqx− 1)

(0,1)
0 < a < q−1, 0 < b < q−1

* 0 < a < q−1, b < 0

Table 4.15: 0-Jacobi/Jacobi⇔ q-Kravchuk Polynomials

σ1(x,q) = q−2x(x− q−N), σ2(x,q) = −px(x− 1)

(1,q−N−1) p > 0

Table 4.16: 0-Laguerre/Jacobi⇔ q-Laguerre Polynomials

σ1(x,q) = q−2x, σ2(x,q) = qαx(x+ 1)

(0,∞) α > −1

Table 4.17: 0-Laguerre/Jacobi⇔ q-Charlier Polynomials

σ1(x,q) = aq−2x, σ2(x,q) = x(x− 1)

(1,∞) a > 0
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Table 4.18: 0-Jacobi/Bessel⇔ Alternativeq-Charlier Polynomials

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax2

(0,1) a > 0

Table 4.19: 0-Laguerre/Bessel⇔ Stieltjes-Wigert Polynomials

σ1(x,q) = q−2x, σ2(x,q) = x2

(0,∞)

Table 4.20: 0-Jacobi/Laguerre⇔ Little q-Laguerre (Wall) Polynomials

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax

(0,1) 0< a < q−1
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CHAPTER 5

RELATIONS BETWEEN THE Q-CLASSICAL POLYNOMIALS

In this chapter, we introduce the relations between the q-classical polynomials and the classi-

cal continues (those of Jacobi, Laguerre, Hermite) and discrete ones (those of Hahn, Meixner,

Kravchuk, Charlier). First of all let us construct the following Table 5.1[3, 35, 36, 6, 42]

according to the identification of theq-polynomials that we found in chapter 4.

Table 5.1: Relation between theq-Classical and theq-Askey polynomials

Cases in KLS’s book ⇔q-Classical family⇔q-Askey scheme

CaseVIIa1.Chp10/ IIIb5/9.Chp11⇔∅-Jacobi/Jacobi ⇔The bigq-Jacobi,q-Hahn
CaseIIa2.Chp11/ IIb1.Chp11 ⇔∅-Laguerre/Jacobi⇔q-Meixner, quantumq-Kravchuk
CaseIa1.Chp11/ Va2.Chp10 ⇔∅-Hermite/Jacobi⇔Al-Salam-Carlitz II, discreteq−1-Hermite II
CaseVIIa1.Chp10/ IIIb3.Chp11 ⇔∅-Jacobi/Laguerre⇔Big q-Laguerre, affineq-Kravchuk
CaseVIIa1.Chp.10 ⇔∅-Jacobi/Hermite⇔Al-Salam-Carlitz I, discreteq-Hermite
CaseIVa3/4.Chp10/ IIIb.Chp11 ⇔0-Jacobi/Jacobi ⇔The littleq-Jacobi,q-Kravchuk
CaseIIIa2.Chp10/ IIa2.Chp11 ⇔0-Laguerre/Jacobi⇔q-Laguerre,q-Charlier
CaseIVa5.Chp10 ⇔0-Jacobi/Bessel ⇔Alternativeq-Charlier
CaseIIIa2.Chp10 ⇔0-Laguerre/Bessel⇔Stieltjes-Wigert
CaseIVa4.Chp10 ⇔0-Jacobi/Laguerre⇔Little q-Laguerre (Wall)

We remark that the cases given in first column belong to [35] where

σ2(x,q) =
1
2
σ′′2 (0,q)x2 + σ′2(0,q)x+ σ2(0,q) = ex2 + 2 f qx+ gq2, (5.1)

q2σ1(x,q) =
1
2
σ′′1 (0,q)x2 + σ′1(0,q)x+ σ1(0,q) = αx2 + βqx+ gq2 (5.2)

in Chapter 10 (with the latticex(s) = qs) and

q2σ1(x,q) =
1
2
σ′′2 (0,q)x2 + σ′2(0,q)x+ σ2(0,q) = eq2 + 2 f qx+1 + gq2x, (5.3)

σ2(x,q) =
1
2
σ′′1 (0,q)x2 + σ′1(0,q)x+ σ1(0,q) = α∗ + β∗qx−1 + gq2x−1 (5.4)
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in Chapter 11 (with the latticex(s) = q−s).

One can also find the relation with the Nikiforov-Uvarov scheme [5, 47] by considering sec-

ond order linear difference equation of hypergeometric type on non-uniform latticesx(s) given

with (1.23)

σ(s)
∆

∆x(s− 1/2)
∇Pn[x(s)]
∇x(s)

+ τ(s)
∆Pn[x(s)]
∆x(s)

+ λ̂nPn[x(s)] = 0. (5.5)

Notice that if the lattice isq-linear of the form,x(s) = c1qs := x, then

∆Pn[x(s)]
∆x(s)

= DqPn(x) and
∇Pn[x(s)]
∇x(s)

= Dq−1Pn(x), Pn(x) := Pn[x(s)]

and∆x(s− 1
2) = q−1/2∆x(s). Therefore, (5.5) becomes

σ(s)DqDq−1Pn(x) + q−1/2τ(s)DqPn(x) + q−1/2λ̂nPn(x) = 0. (5.6)

Furthermore, using the operational equivalences defined by (3.3) and(3.4) provide us to ob-

tain the alternative equation as the following form

[
σ(s) + (q− 1)xq−1/2τ(s)

]
DqDq−1Pn(x) + q−1/2τ(s)Dq−1Pn(x) + q−1/2λ̂nPn(x) = 0. (5.7)

Notice that (5.6) and (5.7) are theq-EHT of the 1st and 2nd kinds of the form (3.5) and (3.10),

respectively, where

q−1σ(s) = σ1(x,q), σ(s) + (q− 1)xq−1/2τ(s) = σ2(x,q),

q−1/2τ(s) = τ(x,q), q−1/2λ̂n = λn(q).

On the other hand, setting the lattice asq-linear of the formx(s) = c1q−s := x provides

∆Pn[x(s)]
∆x(s)

= Dq−1Pn(x) and
∇Pn[x(s)]
∇x(s)

= DqPn(x), Pn(x) := Pn[x(s)]

and∆x(s− 1
2) = q1/2∆x(s). Inserting these values in (5.5) leads to

qσ(s)DqDq−1Pn(x) + q1/2τ(s)Dq−1Pn(x) + q1/2λ̂nPn(x) = 0 (5.8)

and with the help of operational equivalences defined by (3.3) and (3.4)we get

[
qσ(s) + (1− q)xq1/2τ(s)

]
DqDq−1Pn(x) + q1/2τ(s)DqPn(x) + q1/2λ̂nPn(x) = 0. (5.9)

Notice that (5.8) and (5.9) are theq-EHT of the 2nd and 1st kinds of the form (3.10) and (3.5),

respectively, where

σ(s) + (q−1 − 1)xq1/2τ(s) = σ1(x,q), qσ(s) = σ2(x,q),
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q1/2τ(s) = τ(x,q), q1/2λ̂n = λn(q).

Before introducing the limit relations we construct the hypergeometric representations ofq-

classical polynomials in the Hahn sense by use of the formulas obtained in Chapter 3. More-

over, we perform the relations between them.

5.1 ∅-Jacobi/Jacobi⇔ Big q-Jacobi polynomials

By choosing the coefficients as

σ1(x,q) = q−2(x− aq)(x− cq), σ2(x,q) = aq(x− 1)(bx− c),

τ(x,q) =
1− abq2

(1− q)q
x+

a(bq− 1)+ c(aq− 1)
1− q

, λn(q) = q−n[n]q
1− abqn+1

q− 1
,

we get the big q-Jacobi polynomialsPn(x; a,b, c; q). Settinga1(q) = cq, b1(q) = aq, a2(q) =

b−1c, b2(q) = 1 in the representation formula identified by (3.86) leads to the following

hypergeometric representation of the monic bigq-Jacobi polynomials

Pn(x; q) := Pn(x; a,b, c; q) =
(aq, cq; q)n

(abqn+1; q)n
3ϕ2


q−n, abqn+1, x

aq, cq

∣∣∣∣q; q

 . (5.10)

5.2 ∅-Jacobi/Jacobi⇔ q-Hahn polynomials

Coefficients of theq-difference equation of hypergeometric type for theq-Hahn polynomials

Qn(x; a,b,N; q) look like

σ1(x,q) = q−2(x− q−N)(x− αq), σ2(x,q) = αq(x− 1)(βx− q−N−1),

τ(x,q) =
1− αβq2

(1− q)q
x+
αq−N + αβq− α − q−N−1

1− q
, λn(q) = −q−n[n]q

1− αβqn+1

1− q
.

Hypergeometric representation of the monicq-Hahn polynomialsQn(x;α, β,N; q)

Pn(x; q) := Qn(x;α, β,N; q) =
(αq,q−N; q)n

(αβqn+1; q)n
3ϕ2


q−n, αβqn+1, x

αq, q−N

∣∣∣∣q; q

 (5.11)

158



is obtained by use of the formula identified by (3.86) or (3.87) by settinga1(q) = q−N, b1(q) =

αq, a2(q) = 1 andb2(q) = β−1q−N−1.

Notice that settinga = α, b = β, c = q−N−1 in the bigq-Jacobi polynomials (5.10) allows us

to get the representation of theq-Hahn polynomials (5.11) (see [6])

Pn(x, α, β,q−N−1; q) = Qn(x, α, β,N; q). (5.12)

5.3 ∅-Laguerre/Jacobi⇔ q-Meixner polynomials

Theq-Meixner polynomialsMn(x; b, c; q) have the following coefficients

σ1(x,q) = cq−2(x− bq), σ2(x,q) = (x− 1)(x+ bc),

τ(x,q) = −
1

1− q
x+

cq−1 − bc+ 1
1− q

, λn(q) =
[n]q

1− q
.

Representation formula defined by (3.97) associated witha1(q) = bq, a2(q) = −bc, b2(q) = 1

leads to the hypergeometric representation of the monicq-Meixner polynomialsMn(x; b, c; q)

as the following form

Pn(x; q) := Mn(x; b, c; q) = (−c)nq−n2
(bq; q)n2ϕ1


q−n, x

bq

∣∣∣∣q;−
qn+1

c

 . (5.13)

Observe that theq-Meixner polynomialsMn(x; b, c; q) defined by (5.13) are also obtained

from the bigq-Jacobi polynomialsPn(x; a,b, c; q) (5.10) and theq-Hahn polynomialsQn(x;α, β,N; q)

by using the limita→ ∞with b := −c−1, c := b andN→ ∞with α := b, β := −b−1c−1q−N−1,

respectively (see [36]),

lim
a→∞

Pn(x; a,−c−1,b; q) = Mn(x; b, c; q), (5.14)

lim
N→∞

Qn(x; b,−b−1c−1q−N−1,N; q) = Mn(x; b, c; q). (5.15)

5.4 ∅-Laguerre/Jacobi⇔ Quantum q-Kravchuk polynomials

Coefficients of theq-difference equation for the quantumq-Kravchuk polynomialsKqtm
n (x; p,N; q)

are as follows:

σ1(x,q) = −q−2(x− q−N), σ2(x,q) = (x− 1)(px− q−N−1),
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τ(x,q) = −
p

1− q
x+

p− q−1 + q−N−1

1− q
, λn(q) =

p
1− q

[n]q.

Then, representation of the monic quantumq-Kravchuk polynomialsKqtm
n (x; p,N; q) follows

from the formula defined by (3.97) as

Pn(x; q) := Kqtm
n (x; p,N; q) = p−nq−n2

(q−N; q)n2ϕ1


q−n, x

q−N

∣∣∣∣q; pqn+1

 . (5.16)

Notice that the quantumq-Kravchuk polynomialsKqtm
n (x; p,N; q) (5.16) can also be obtained

by insertingb = q−N−1, c = −p−1 into theq-Meixner polynomialsMn(x; b, c; q) (5.13) (see

[6]) and by settingβ := p, α → ∞ in theq-Hahn polynomialsQn(x;α, β,N; q) identified by

(5.16) (see [36]);

Mn(x; q−N−1,−p−1,N; q) = Kqtm
n (x; p,N; q), (5.17)

lim
α→∞

Qn(x;α, p,N; q) = Kqtm
n (x; p,N; q). (5.18)

5.5 ∅-Hermite/Jacobi⇔ Al-Salam-Carlitz II polynomials

The Al-Salam-Carlitz II polynomialsV(a)
n (x; q) have

σ1(x,q) = aq−1, σ2(x,q) = (1− x)(a− x),

τ(x,q) = −
1

1− q
x−

1+ a
q− 1

, λn(q) =
1

1− q
[n]q,

and therefore the representation of monicV(a)
n (x; q) becomes

Pn(x; q) := V(a)
n (x; q) = (−a)nq−(

n
2)2ϕ0


q−n, x

−

∣∣∣∣q;
qn

a

 (5.19)

by use of the formula (3.100).

Observe that the Al-Salam Carlitz II polynomials can also be obtained by use of the limit

relationsc→ 0 with b := −a/c andN → ∞ with p := a−1q−N−1 in the definitions (5.13) and

(5.16) of theq-Meixner and the quantumq-Kravchuk polynomials, respectively (see [36]),

lim
c→0

Mn(x;−
a
c
, c; q) = q−nV(a)

n (x; q), (5.20)

lim
N→∞

Kqtm
n (x; a−1q−N−1,N; q) = V(a)

n (x; q). (5.21)
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5.6 ∅-Hermite/Jacobi⇔ Discreteq-Hermite II polynomials

The discreteq-Hermite II polynomials̃hn(x; q) have the following specific values

σ1(x,q) = q−1, σ2(x,q) = 1+ x2,

τ(x,q) = −
1

1− q
x, λn(q) =

1
1− q

[n]q,

which lead to the hypergeometric representation of the monich̃n(x; q) with the help of (3.100)

Pn(x; q) := h̃n(x; q) = (i)−nq−(
n
2)2ϕ0


q−n, ix

−

∣∣∣∣q;−qn

 . (5.22)

Notice that the Al-Salam Carlitz II polynomials defined by (5.19) together with thesubstitu-

tion a = −1, x→ ix lead to the discreteq-Hermite II polynomials identified by (5.22),

i−nV(−1)
n (ix; q) = h̃n(x; q). (5.23)

5.7 ∅-Jacobi/Laguerre⇔ Big q-Laguerre polynomials

Letting

σ1(x,q) = q−2(x− aq)(x− bq), σ2(x,q) = abq(1− x),

τ(x,q) = −
q−1

q− 1
x+

a+ b− abq
q− 1

, λn(q) =
q−n

q− 1
[n]q,

give the bigq-Laguerre polynomialsPn(x; a,b; q).

In addition to these values, one can get the hypergeometric representationof the big q-

Laguerre polynomialsPn(x; a,b; q) by use of (3.91) as the following form

Pn(x; q) := Pn(x; a,b; q) = (aq,bq; q)n3ϕ2


q−n, x, 0

aq, bq

∣∣∣∣q; q

 . (5.24)

We remark that the bigq-Laguerre polynomials defined by (5.24) can be derived from the big

q-Jacobi polynomials defined by (5.10) with substitutionb := 0, c := b [36],

Pn(x; a,0,b; q) = Pn(x; a,b; q). (5.25)
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5.8 ∅-Jacobi/Laguerre⇔ Affineq-Kravchuk polynomials

By choosing

σ1(x,q) = q−1(x− q−N)(x− pq), σ2(x,q) = −pq1−N(x− 1),

τ(x,q) =
1

1− q
x−

pq+ q−N − pq1−N

1− q
, λn(q) =

1
q− 1

[n]q−1,

we obtain the affineq-Kravchuk polynomialsKa f f
n (x; p,N; q)

Pn(x; q) := Ka f f
n (x; p,N; q) = (q−N, pq; q)n3ϕ2


q−n, x, 0

q−N, pq

∣∣∣∣q; q

 (5.26)

with the help of (3.91). Notice that the monic affineq-Kravchuk polynomialsKa f f
n (x; p,N; q)

(5.26) can also be obtained from the monic bigq-Laguerre (5.24) and theq-Hahn (5.11)

polynomials by takinga = q−N−1, b = p (see [6]) andα := p, β := 0 (see [36]), respectively,

Pn(x; q−N−1, p; q) = Ka f f
n (x; p,N; q), (5.27)

Qn(x; p,0,N; q) = Ka f f
n (x; p,N; q). (5.28)

5.9 ∅-Jacobi/Hermite ⇔ Al-Salam-Carlitz I polynomials

We enter the Al-Salam-Carlitz I polynomialsU(a)
n (x; q) with the following coefficients

σ1(x,q) = q−1(1− x)(a− x), σ2(x,q) = a,

τ(x,q) =
1

1− q
x−

1+ a
1− q

, λn(q) =
q1−n

q− 1
[n]q,

having the following representation

Pn(x; q) := U(a)
n (x; q) = (−a)nq(n

2)2ϕ1


q−n, x−1

0

∣∣∣∣q;
qx
a

 (5.29)

obtained from (3.94). We remark that the monic Al-Salam Carlitz I polynomials are derived

by use of the transformationx → aqx, b → ab anda → 0 in the representation formula

obtained by applying the transformation formula (2.47) to the monic bigq-Laguerre polyno-

mials identified by (5.24) [36],

lim
a→0

Pn(aqx; a,ab; q)
an = U(b)

n (x; q). (5.30)

Remark 5.1 We remark that the discrete q-Hermite I polynomials are obtained from the Al-

Salam-Carlitz I polynomials by setting a= −1 (see [36] for further details).
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5.10 0-Jacobi/Jacobi⇔ Little q-Jacobi polynomials

Setting

σ1(x,q) = q−2x(x− 1), σ2(x,q) = ax(bqx− 1),

τ(x,q) =
1− abq2

(1− q)q
x+

aq− 1
(1− q)q

, λn(q) = −q−n[n]q
1− abqn+1

1− q
,

leads to the littleq-Jacobi polynomialsPn(x; a,b; q)

Pn(x; q) := Pn(x; a,b; q) =
(−1)nq(n

2)(aq; q)n

(abqn+1; q)n
2ϕ1


q−n, abqn+1

aq

∣∣∣∣q; qx

 (5.31)

with the help of (3.103). Note that one can also get the monic littleq-Jacobi polynomials by

settingx→ cqxwith c→ ∞ andx→ q−Nx, α := a, β := b with N → ∞ in the definitions of

the monic bigq-Jacobi polynomials defined by (5.10) and theq-Hahn polynomials given by

(5.11), respectively, [36]

lim
c→∞

Pn(cqx; a,b, c; q)
cn = Pn(x; a,b; q), (5.32)

lim
N→∞

qNQn(q−Nx; a,b,N; q) = Pn(x; a,b; q). (5.33)

5.11 0-Jacobi/Jacobi⇔ q-Kravchuk polynomials

Theq-Kravchuk polynomialsKn(x; p,N; q) have the following coefficients

σ1(x,q) = q−2x(x− q−N), σ2(x,q) = −px(x− 1),

τ(x,q) =
1+ pq

(1− q)q
x−

p+ q−N−1

1− q
, λn(q) = −q−n[n]q

1+ pqn

1− q
.

Moreover, from (3.103) we deriveKn(x; p,N; q) hereinbelow

Pn(x; q):=Kn(x; p,N; q)=
(−1)nq−Nn+(n

2)(−pqN+1; q)n

(−pqn; q)n
2ϕ1


q−n, −pqn

−pqN+1

∣∣∣∣q; qN+1x

 . (5.34)

Observe that the monicq-Kravchuk polynomials with the formula obtained by applying the

transformation formula (2.48) to (5.34) are derived by use of the transformationβ = −α−1q−1p

andα→ 0 in the monicq-Hahn polynomials [36],

lim
α→0

Qn(x;α,−α−1q−1p; q) = Kn(x; p,N; q). (5.35)
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5.12 0-Laguerre/Jacobi⇔ q-Laguerre polynomials

By setting

σ1(x,q) = q−2x, σ2(x,q) = qαx(x+ 1),

τ(x,q) = −
qα

1− q
x+

q−1 − qα

1− q
, λn(q) = [n]q

qα

1− q
,

the hypergeometric representation of the monicq-Laguerre polynomialsLαn(x; q) follows from

(3.109)

Pn(x; q) := Lαn(x; q) = (−1)nq−n2
q−αn2ϕ1


q−n, −x

0

∣∣∣∣q; qα+n+1

 . (5.36)

Note that one can obtain the monicq-Laguerre polynomials with the formula obtained by

applying successively the transformation formulas (2.49) withc→ 0 and (2.50) to (5.36) by

settinga = qα, x→ −b−1q−1x with b→ ∞ andb = qα, x→ cqαx with c→ ∞ in the monic

little q-Jacobi (5.31) and theq-Meixner (5.13) polynomials, respectively,

lim
b→∞

q−(
n
2)Pn(−

x
bq

; qα,b; q) = qn2+αnLαn(x; q), (5.37)

lim
c→∞

Mn(cqαx; qα, c; q)
cn = qαnLαn(x; q). (5.38)

5.13 0-Laguerre/Jacobi⇔ q-Charlier polynomials

By choosing

σ1(x,q) = aq−2x, σ2(x,q) = x(x− 1),

τ(x,q) = −
1

1− q
x+

a+ q
(1− q)q

, λn(q) = [n]q
1

1− q
,

we get theq-Charlier polynomialsCn(x; a; q). Note that the representation formula is obtained

from the formula (3.109) as the following form

Pn(x; q) := Cn(x; a; q) = (−a)nq−n2

2ϕ1


q−n, x

0

∣∣∣∣q;−
qn+1

a

 . (5.39)

Observe that the monicq-Laguerre polynomials (5.36) together with substitutionx → −x,

qα = −a−1, the monicq-Meixner polynomials (5.13) associated withb → 0 and the monic

q-Kravchuk polynomials with the formula obtained by applying the transformationformula
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(2.48) to (5.34) together with the substitutionp = a−1q−N, N → ∞ generate the monicq-

Charlier polynomials in the following way (see [36]),

(−1)nLn(−x;−a−1; q) = Cn(x; a; q), (5.40)

Mn(x; 0,a; q) = Cn(x; a; q), (5.41)

lim
N→∞

Kn(x; a−1q−N,N; q) = Cn(x; a; q). (5.42)

5.14 0-Jacobi/Bessel⇔ Alternative q-Charlier polynomials

Choosing the values for the alternativeq-Charlier polynomialsKn(x; a; q) hereinbelow

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax2,

τ(x,q) = −
1+ aq

(1− q)q
x+

1
(1− q)q

, λn(q) = q−n[n]q
1+ aqn

1− q
,

leads to the following representation

Pn(x; q) := Kn(x; a; q) =
(−1)nq(n

2)

(−aqn; q)n
2ϕ1


q−n, −aqn

0

∣∣∣∣q; qx

 (5.43)

with the help of (3.106). Observe that one can get the alternativeq-Charlier polynomials

(5.43) by settingb→ −a−1q−1b with a→ 0 andx→ q−Nx with N → ∞ in the definitions of

the littleq-Jacobi (5.31) and theq-Kravchuk (5.34) polynomials, respectively, in the following

way [36],

lim
a→0

Pn(x; a,−
b
aq

; q) = Kn(x; b; q), (5.44)

lim
a→0

qNnKn(q−Nx; p,N; q) = Kn(x; p; q). (5.45)

5.15 0-Laguerre/Bessel⇔ Stieltjes-Wigert polynomials

In this case, (3.17), (3.18) and (3.19) become

σ1(x,q) = q−2x, σ2(x,q) = x2,

τ(x,q) = −
1

1− q
x+

1
(1− q)q

,
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and therefore we attainλn(q) = [n]q
1

1−q from (3.52). Notice that with the help of the formula

(3.113) we get the representation of the Stieltjes-Wigert polynomialsSn(x; q)

Pn(x; q) := Sn(x; q) = (−1)nq−n2

1ϕ1


q−n

0

∣∣∣∣q;−qn+1x

 . (5.46)

We remark that the Stieltjes-Wigert polynomials can be derived from theq-Laguerre (5.36),

the alternativeq-Charlier (5.43) and theq-Charlier (5.39) polynomials by settingx → q−αx

with α→ ∞, x→ a−1x with a→ ∞ andx→ ax with a→ ∞, respectively, [36]

lim
α→∞

qαnLαn(q−αx; q) = Sn(x; q), (5.47)

lim
a→∞

anKn(
x
a

; a; q) = Sn(x; q), (5.48)

lim
a→∞

Cn(ax; a; q)
an = Sn(x; q). (5.49)

5.16 0-Jacobi/Laguerre⇔ Little q-Laguerre (Wall) polynomials

Polynomial coefficients of the littleq-Laguerre (wall)Pn(x; a; q) polynomials look like

σ1(x,q) = q−2x(1− x), σ2(x,q) = ax,

τ(x,q) = −
1

(1− q)q
x+

1− aq
(1− q)q

, λn(q) =
q−n

1− q
[n]q,

which lead to the representation ofPn(x; a; q) as

Pn(x; q) := Pn(x; a; q) = (−1)nq(n
2)(aq; q)n2ϕ1


q−n, 0

aq

∣∣∣∣q; qx

 (5.50)

by inserting the needed values in (3.112). Note that the littleq-Laguerre polynomials can be

obtained from the bigq-Laguerre, the littleq-Jacobi and the affineq-Kravchuk polynomials

by settingx → bqx with b → ∞, b = 0 andx → q−Nx with N → ∞, respectively, in the

following way,

lim
b→∞

Pn(bqx,a,b; q)
bn = Pn(x; a; q), (5.51)

Pn(x,a,0;q) = Pn(x; a; q), (5.52)

lim
N→∞

qNKa f f
n (q−Nx, p,N; q) = Pn(x; p; q). (5.53)
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5.17 Limit Relations

Limit relations between theq-Hahn polynomials have been performed in each case above. In

the present section, we deal with the relations between theq-polynomials on linear lattice (the

q-Hahn class) and the classical continuous and discrete ones identified byTable 1.1 and Table

1.2, respectively. By using the properties of the limit relation between the hypergeometric

seriesrϕs and r Fs and q-shifted factorial and Pochhammer symbol defined by (2.41) and

(2.40), respectively, all these limit relations are extracted from [36].

Notice that theq-EHT of the 1st kind

σ1(x; q)Dq−1Dqy(x,q) + τ(x,q)Dqy(x,q) + λ(q)y(x,q) = 0

where

σ1(x; q) :=
2

1+ q

[
σ(x) −

1
2

(q− 1)xτ(x)

]
, τ(x,q) := τ(x), λ(q) := λ

and the 2nd kind

σ2(x; q)DqDq−1y(x,q) + τ(x,q)Dq−1y(x,q) + λ(q)y(x,q) = 0

where

σ2(x,q) := q
[
σ1(x,q) + (1− q−1)xτ(x,q)

]

approach to the classical EHT

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0

as q → 1. Observe that, bothσ1(x,q) andσ2(x,q) tend toσ(x) as q → 1. As a result,

by using this property we obtain the well-known classical orthogonal polynomials (those of

Jacobi, Laguerre, Hermite) in the following.

We first start to get the Jacobi polynomialsP(α,β)
n (x) which have quadraticσ(x) with distinct

roots. That’s why,∅-Jacobi/Jacobi and 0-Jacobi/Jacobi polynomials converge to the Jacobi

Polynomials asq→ 1. Some examples of such relations are as the following.

Big q-Jacobi→ Jacobi

By settingc = 0, a = qα, b = qβ, q→ 1 in theq-EHT for the bigq-Jacobi polynomials we get

σ1(x,q) = q−2(x− aq)(x− cq)→ x(x− 1), σ2(x,q) = aq(x− 1)(bx− c)→ x(x− 1),
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τ(x,q) =
1− abq2

(1− q)q
x+

a(bq− 1)+ c(aq− 1)
1− q

→ (α + β + 2)x− (α + 1),

λn(q) = q−n[n]q
1− abqn+1

q− 1
→ −n(n+ α + β + 1)

with the help of the limit relation of theq-numbers defined by (2.40) which leads to

x(1− x)y′′(x) +
[
(α + 1)− (α + β + 2)x

]
y′(x) + n(n+ α + β + 1)y(x) = 0.

Notice that the transformationx = 1−t
2 leads to

(1− t2)y′′(t) +
[
(β − α) − (α + β + 2)t

]
y′(t) + n(n+ α + β + 1)y(t) = 0

which is the differential equation for the Jacobi polynomialsP(α,β)
n (t).

We remark that one can also obtain the hypergeometric representation of theJacobi polyno-

mials from the one defined by (5.10) of the monic bigq-Jacobi polynomials with the same

relation on the parameters together with the definition ofrφs in (2.38) and the limit relation

betweenrφs and r Fs, q-numbers and Pochhammer symbol defined by (2.41) and (2.40), re-

spectively, in the following way

lim
q→1

Pn(x; qα,qβ,0;q) =
P(α,β)

n (2x− 1)
2n (5.54)

where

P(α,β)
n (x) =

2n(α + 1)n
(n+ α + β + 1)n

2F1


−n, n+ α + β + 1

α + 1

∣∣∣∣
1− x

2

 (5.55)

here,2F1 is defined by (2.36) withr = 2, s= 1.

Little q-Jacobi→ Jacobi

Let a = qα, b = qβ in the definition of the littleq-Jacobi polynomials (5.31) and take the

limit as q→ 1 by using definition ofrφs in (2.38) and the limit relation betweenrφs andr Fs

defined by (2.41), we obtain the Jacobi polynomials identified by (5.55) in thefollowing way

lim
q→1

Pn(x; qα,qβ; q) =
P(α,β)

n (1− 2x)
(−2)n

. (5.56)

One can also obtain the differential equation for the Jacobi polynomials from theq-EHT for

the littleq-Jacobi polynomials by use of the analogous transformation.
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Notice that the Laguerre polynomialsLαn(x) can be obtained by use of the convenient limit

relations whenσ1 andσ2 are quadratic or linear sinceLαn(x) has linearσ(x). Some examples

of such relations are as the following.

Big q-Laguerre→ Laguerre

If we seta = qα, b = (1−q)−1qβ andq→ 1 in theq-EHT for the bigq-Laguerre polynomials,

we get

(q−1)σ1(x,q)=q−2(q−1)(x−aq)(x−bq)→ (x−1), (q−1)σ2(x,q)= (q−1)abq(1−x)→ (x−1),

(q− 1)τ(x,q)=−(q− 1)[
q−1

q− 1
x+

a+ b− abq
q− 1

]→ (α + 1− x+ 1), (q− 1)λn(q)=q−n[n]q→n,

with the help of the limit relation of theq-numbers defined by (2.40) which leads to

(x− 1)y′′(x) + [α + 1− (x− 1)] y′(x) + ny(x) = 0.

Notice that solution of this equation isLαn(x− 1).

By letting same transformationa = qα, b = (1− q)−1qβ in the definition

Pn(x; a,b; q) = (−b)nq(n
2)(aq; q)n2ϕ1


q−n, aqx−1

aq

∣∣∣∣q;
x
b

 (5.57)

of the monic bigq-Laguerre polynomials obtained by using the transformation formula (2.47)

to (5.24) and then concerning limit asq → 1 with the help of the definition ofrφs in (2.38)

and the limit relation betweenrφs andr Fs defined by (2.41), we can also arrive at the monic

Laguerre polynomials in the following way

lim
q→1

(1− q)nPn(x,qα, (1− q)−1qβ; q) = Lαn(x− 1) (5.58)

where the monic Laguerre polynomials are identified by

Lαn(x) = (−1)n(α + 1)n1F1


−n

α + 1

∣∣∣∣x

 . (5.59)

Little q-Jacobi→ Laguerre

Assuming thata = qα, b = −qβ and x → 1
2(1 − q)x andq → 1 in the definition (5.31) of

the littleq-Jacobi polynomials together with the idea in (2.40) and (2.41) lead to the Laguerre
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polynomials (5.59) hereinbelow

lim
q→1

2nq−(
n
2)Pn(

1
2

(1− q)x; qα,−qβ; q) = Lαn(x). (5.60)

One can also obtain the differential equation for the Laguerre polynomials from theq-EHT

for the littleq-Jacobi polynomials by use of the analogous transformation.

Little q-Laguerre/Wall → Laguerre

Let a = qα and x → (1 − q)x with the limit q → 1 in the little q-Laguerre polynomials

identified by (5.50), then we get the Laguerre polynomials (5.59) by use of(2.40) and (2.41)

as follows:

lim
q→1

q−(
n
2)Pn((1− q)x; qα; q) = Lαn(x). (5.61)

One can also obtain the differential equation for the Laguerre polynomials from theq-EHT

for the littleq-Laguerre/Wall polynomials by use of the analogous transformation.

q-Laguerre→ Laguerre

If we setx→ (1− q)x with q→ 1 in the definition

Lαn(x; q) = (−1)nq−n2−αn(qα+1; q)n1ϕ1


q−n

qα+1

∣∣∣∣q;−xqn+α+1

 (5.62)

of the monicq-Laguerre polynomials obtained by applying the transformation formulas (2.49)

with c → 0 and (2.50) to (5.36), we arrive at the Laguerre polynomials (5.59) with the help

of (2.40) and (2.41) hereinbelow

lim
q→1

qn2+αnLαn((1− q)x; q) = Lαn(x). (5.63)

One can also obtain the differential equation for the Laguerre polynomials from theq-EHT

for theq-Laguerre polynomials by use of the analogous transformation.

In order to get the Hermite polynomialsHn(x) we use the convenient limit relations whenσ1

andσ2 are quadratic, linear or constant sinceHn(x) has constantσ(x). Some examples of

such relations are as the following.

170



Discreteq-Hermite I → Hermite

By settingx→ x
√

1− q2 andq→ 1 in theq-EHT for the discreteq-Hermite I polynomials,

we get

σ1(x,q) = −q−1(1− x)(x+ 1)→ −1, σ2(x,q) = −1,

1− q2

√
1− q2

τ(x,q) =
1− q2

√
1− q2

1
1− q

x→ 2x, (1− q2)λn(q) = −(1+ q)q1−n[n]q→ −2n

with the help of the limit relation of theq-numbers defined by (2.40) which leads to

y′′(x) − 2xy′(x) + 2ny(x) = 0.

Notice that solution of this equation isHn(x).

By letting identical transformationx→ x
√

1− q2 in the definition

hn(x; q) = q−nxn
2ϕ1


q−n, q−n+1

−

∣∣∣∣q2;
q2n−1

x2

 (5.64)

of the monic discreteq-Hermite I polynomials obtained by using the transformation (2.54) to

(5.29) witha = −1 and then concerning limit asq→ 1 with the help of the definition ofrφs in

(2.38) and the limit relation betweenrφs andr Fs defined by (2.41) together with the q-shifted

factorial identified by (2.20) and (2.40), we can also arrive at the monic Hermite polynomials

in the following way

lim
q→1

hn(
√

1− q2x,q)

(1− q)n/2
= Hn(x) (5.65)

where the monic Hermite polynomials are identified by

Hn(x) = xn
2F0


−n/2, −(n− 1)/2

−

∣∣∣∣ −
1
x2

 . (5.66)

Discreteq-Hermite II → Hermite

By settingx→ x
√

1− q2 andq→ 1 in the in the definition

h̃n(x; q) = xn
2ϕ0


q−n, q−n+1

0

∣∣∣∣q2;
−q2

x2

 (5.67)

of the monic discreteq-Hermite II polynomials obtained by using the transformation (2.55) to

(5.22) and then concerning limit asq→ 1 with the help of the definition ofrφs in (2.38) and
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the limit relation betweenrφs andr Fs defined by (2.41) together with the q-shifted factorial

identified by (2.20) and (2.40), we can also arrive at the monic Hermite polynomials in the

following way

lim
q→1

h̃n(
√

1− q2x,q)

(1− q)n/2
= Hn(x) (5.68)

where the monic Hermite polynomials are identified by (5.66).

One can also obtain the differential equation for the Hermite polynomials from theq-EHT for

the discreteq-Hermite II polynomials by use of the analogous transformation.

In the further study, we obtain the well-known classical discrete orthogonal polynomials

(those of Hahn, Meixner, Kravchuk, Charlier). To this end, we first obtain the relation be-

tweenq-EHT and difference equation on uniform lattice. Notice that theq-EHT of the 1st

kind leads to

σ(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0

together with the transformationx→ qx, q→ 1 and the relation

lim
q→1

1− qx

1− q
= x.

We note that (1− q)−2σ1(x) tends toσ(x) and (1− q)−2σ2(x,q) tends toσ(x) + τ(x).

On the other hand, taking account of the transformationx→ q−x with q→ 1 leads to

[
σ(x) + τ(x)

]
∆∇y(x) + τ(x)∇y(x) + λy(x) = 0

where (1− q)−2σ1(x) tends toσ(x) + τ(x) and (1− q)−2σ2(x,q) tends toσ(x). As a result of

this property, we perform the following limits.

We first start to get the Hahn polynomials whereσ(x) andσ(x) + τ(x) are quadratic. That’s

why, we deal with the ones whenσ1 andσ2 are both quadratic. An example of such relation

is as the following.

q-Hahn→ Hahn

By settingα = qα, β = qβ, x→ q−x andq→ 1 in theq-Hahn polynomials, we get

(q− 1)−2σ1(x,q) = q−2 (x− q−N)
1− q

(x− αq)
1− q

→ (x− N)(x+ α + 1) = σ(x) + τ(x),
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(q− 1)−2σ2(x,q) = αq
(x− 1)
1− q

(βx− q−N−1)
1− q

→ x(x− β − N − 1) = σ(x),

τ(x,q)
1− q

=
1− αβq2

(1− q)2q
x+
αq−N + αβq− α − q−N−1

(1− q)2
→ (α + β + 2)x− (α + 1)N = τ(x),

λn(q) = −q−n[n]q
1− αβqn+1

1− q
→ n(n+ α + β + 1) = λn,

with the help of the limit relation of theq-numbers defined by (2.40) which leads to

x(x− β − N − 1)∆∇y(x) +
[
(α + β + 2)x− (α + 1)N

]
∆y(x) + n(n+ α + β + 1)y(x) = 0.

Notice that solution of this equation ishα,βn (x).

Letting same transformationα = qα, β = qβ, x→ q−x andq→ 1 in the hypergeometric repre-

sentation of theq-Hahn polynomials defined by (5.11) we also arrive at the Hahn polynomials

with the help of (2.40) and (2.41) as the following form

lim
q→1

Qn(q−x; qα,qβ,N; q) = Qn(x;α, β,N) (5.69)

whereQn(x;α, β,N) is the Hahn polynomials identified as the following

Qn(x;α, β,N) =
(α + 1)n(−N)n

(α + β + n+ 1)n
3F2


−n, n+ α + β + 1, −x

α + 1, −N

∣∣∣∣1

 . (5.70)

We remark that theq-Meixner and theq-Kravchuk polynomials have linearσ(x) andσ(x) +

τ(x). That’s why,q-polynomials which have quadratic and linearσ1 andσ2 lead to theq-

Meixner and theq-Kravchuk polynomials. Some examples of such relations are as the fol-

lowing.

q-Meixner → Meixner

By settingb = qβ−1, c → (1 − c)−1c, x → q−x in the definition (5.13) of theq-Meixner

polynomials and then lettingq→ 1 concerning with (2.40) and (2.41) bring about the Meixner

polynomials as

lim
q→1

Mn(q−x; qβ−1,
c

1− c
; q) = Mn(x; β, c) (5.71)

whereMn(x; β, c) is the Meixner polynomials identified by

Mn(x; β, c) = (
c

c− 1
)n(β)n2F1


−n, −x

β

∣∣∣∣1−
1
c

 . (5.72)

One can also obtain the difference equation for the Meixner polynomials from theq-EHT for

theq-Meixner polynomials by use of the analogous transformation.
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Quantum q-Kravchuk → Kravchuk

If we setp→ p−1, x→ q−x in the definition (5.16) of the quantumq-Kravchuk polynomials

and then lettingq → 1 together with applying the limit in (2.40) and (2.41), we get the

Kravchuk polynomials in the following way

lim
q→1

Kqtm
n (q−x; p−1,N; q) = Kn(x; p,N) (5.73)

whereKn(x; p,N) is the Kravchuk polynomials defined by

Kn(x; p,N) = pn(−N)n2F1


−n, −x

−N

∣∣∣∣
1
p

 . (5.74)

One can also obtain the difference equation for the Kravchuk polynomials from theq-EHT

for the quantumq-Kravchuk polynomials by use of the analogous transformation.

q-Kravchuk → Kravchuk

Settingx→ q−x in the definition

Kn(x; p,N; q) =
(q−N; q)n

(−pqn; q)n
3ϕ2


q−n, −pqn, x

q−N, 0

∣∣∣∣q; q

 (5.75)

of the q-Kravchuk polynomials obtained by applying the transformation formula (2.48) to

(5.34), then lettingq→ 1 with the help of (2.40) and (2.41) lead to the Kravchuk polynomials

(5.74) as the following form

lim
q→1

Kn(q−x; p,N; q) = Kn(x;
1

1+ p
,N). (5.76)

One can also obtain the difference equation for the Kravchuk polynomials from theq-EHT

for theq-Kravchuk polynomials by use of the analogous transformation.

Affineq-Kravchuk → Kravchuk

Let p → 1 − p, x → q−x and q → 1 in the definition (5.26) of the affine q-Kravchuk

polynomials, then we obtain the Kravchuk polynomials (5.74) in the following way

lim
q→1

Ka f f
n (q−x; 1− p,N; q) = Kn(x; p,N) (5.77)
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by use of the definition ofq-shifted factorial defined by (2.15) and the limit relations (2.40),

(2.41).

One can also obtain the difference equation for the Kravchuk polynomials from theq-EHT

for the affineq-Kravchuk polynomials by use of the analogous transformation.

We note that theq-Charlier polynomials have linearσ(x) and constantσ(x)+τ(x). That’s why,

q-polynomials which have quadratic, linear and constantσ1 andσ2 lead to theq-Charlier

polynomials. Some examples of such relations are as the following.

Little q-Laguerre/Wall → Charlier

Lettinga→ (1− q)a andx→ qx in theq-EHT for the littleq-Laguerre polynomials, we get

σ1(x,q)
(q− 1)

= q−2x
(1− x)
q− 1

→ −x = σ(x),
σ2(x,q)
(q− 1)

= a
x

q− 1
→ −a = σ(x) + τ(x),

τ(x,q) = −
1

(1− q)q
x+

1− aq
(1− q)q

→ x− a = τ(x), (q− 1)λn(q) = q−n[n]q→ −n = λn,

with the help of the limit relation of theq-numbers defined by (2.40) which lead to

x∆∇y(x) + (a− x)∆y(x) + ny(x) = 0.

Notice that solution of this equation isCn(x,a).

Setting identical transformationa→ (1− q)a andx→ qx in the definition

Pn(x; a; q) = anqn(n−1)
2ϕ0


q−n, x−1

−

∣∣∣∣q;
x
a

 (5.78)

of the little q-Laguerre (Wall) polynomials obtained from (5.50) by applying the transfor-

mation formulas (2.49) withb → 0 and (2.51) successively, we also arrive at the Charlier

polynomials as

lim
q→1

Pn(qx; (1− q)a; q)
(1− q)n = Cn(x,a) (5.79)

by using (2.40) and (2.41). Here,Cn(x,a) is the Charlier polynomials given by

Cn(x; a) = (−a)n
2F0


−n, −x

−

∣∣∣∣ −
1
a

 . (5.80)
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q-Laguerre→ Charlier

Using the transformationx → −q−x, qα = a−1(q − 1)−1 ⇔ α = −
ln(q−1)a

ln q in the definition

(5.36) of theq-Laguerre polynomials and lettingq → 1 associated with the properties in

(2.40) and (2.41) lead to the Charlier polynomials (5.80) in the following way,

lim
q→1

L
−

ln(q−1)a
ln q

n (−q−x; q)
(q− 1)n

= Cn(x; a). (5.81)

One can also obtain the difference equation for the Charlier polynomials from theq-EHT for

theq-Laguerre polynomials by use of the analogous transformation.

q-Charlier → Charlier

Assumingx→ q−x, a→ (1− q)a in the definition (5.39) of theq-Charlier polynomials and

then taking the limit asq→ 1 together with the properties in (2.40) and (2.41), we arrive at

the Charlier polynomials (5.80) as

lim
q→1

Cn(q−x; a(1− q); q)
(1− q)n = Cn(x; a). (5.82)

One can also obtain the difference equation for the Charlier polynomials from theq-EHT for

theq-Charlier polynomials by use of the analogous transformation.

Alternative q-Charlier → Charlier

Insertingx→ qx anda→ (1− q)a into the definition

Kn(x; a; q) =
anqn2+(n

2)xn

(−aqn; q)n
2ϕ1


q−n, x−1

0

∣∣∣∣ −
q−n+1

a

 (5.83)

of the alternativeq-Charlier polynomials obtained from (5.43) by applying the transformation

formula (2.49) withc→ 0 and then lettingq→ 1 associated with performing the properties

in (2.40) and (2.41) bring about the Charlier polynomials (5.80) as the following form

lim
q→1

Kn(qx; a(1− q); q)
(q− 1)n

= Cn(x; a). (5.84)

One can also obtain the difference equation for the Charlier polynomials from theq-EHT for

the alternativeq-Charlier polynomials by use of the analogous transformation.
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Al-Salam Carlitz I → Charlier

Replacingx → qx anda → a(q − 1) in the definition (5.29) of the Al-Salam Carlitz I poly-

nomials and then taking the limit asq → 1 together with the properties in (2.40) and (2.41)

produce the Charlier polynomials as

lim
q→1

U(a(q−1))
n (qx; q)

(q− 1)n
= Cn(x; a). (5.85)

One can also obtain the difference equation for the Charlier polynomials from theq-EHT for

the Al-Salam Carlitz I polynomials by use of the analogous transformation.

Al-Salam Carlitz II → Charlier

Insertingx → q−x anda → a(q − 1) into the definition (5.19) of the Al-Salam Carlitz II

polynomials and taking the limit asq → 1 together with applying the properties (2.40) and

(2.41) lead to the Charlier polynomials as the following form

lim
q→1

V(a(q−1))
n (q−x; q)

(q− 1)n
= Cn(x; a). (5.86)

One can also obtain the difference equation for the Charlier polynomials from theq-EHT for

the Al-Salam Carlitz II polynomials by use of the analogous transformation.
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CHAPTER 6

CONCLUSION

The investigation ofq-difference equations is an old problem which has been studied by sev-

eral authors for a long time, especially, from the view point of the Favard theorem. In this

thesis, on the other hand, we present a more direct and a simpler geometrical approach based

on the qualitative analysis of solutions of theq-Pearson equation. In this way, we show that

it is possible to introduce in a unified manner all polynomial solutions of theq-difference

equation of the hypergeometric type, which are orthogonal on certain intervals.

Besides its simplicity and clarity, our approach enables to introduce some new orthogonality

relations which have not been reported previously. The appearance of such new relations,

see, for example, Theorem 4.13, is due to the fact that we have considered the polynomial

coefficients of the q-hypergeometric equation in their full generality dealing with all suitable

structures.

Recall once more that q-polynomials of the Hahn class, defined on the q-linear lattices of

forms x(s) = qs and x(s) = q−s, have been examined in this thesis. Actually, satisfactory

results are obtained and research articles on the subject are in progress [8, 9]. Furthermore,

we have just started to study along the same lines the q-polynomials on a q-quadratic lattice

of the formx(s) = c1qs + c2q−s + c3, wherec1, c2 andc3 are definite constants. As another

extension of our thesis, we consider the q-Krall type polynomials on the non-uniform q-

quadratic lattices. Some partial results for q-Racah and for q-dual Hahnpolynomials have

been obtained, which will be reported in due course [7].
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