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ABSTRACT

ON THE Q-ANALYSIS OF Q-HYPERGEOMETRIC DIFFERENCE EQUATION

Sevinik-Adidgizel, Rezan
Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Hasan Taseli

December 2010, 183 pages

In this thesis, a fairly detailed survey on thelassical orthogonal polynomials of the Hahn
class is presented. Such polynomials appear to be the bounded soluttbessofcalledy-
hypergeometric dierence equation having polynomial ¢heents of degree at most two. The
central idea behind our study is to discuss in a unified sense the orthidgonall possible
polynomial solutions of thg-hypergeometric dierence equation by means of a qualitative
analysis of the relevamf-Pearson equation. To be more specific, a geometrical approach has
been used by taking into account every posssible rational form of figaguuial codficients,
together with various relative positions of their zeros, indHeearson equation to describe a
desiredg-weight function on a suitable orthogonality interval. Therefore, our ntethiders

from the standard ones which are based on the Favard theorem ancethettm recurrence

relation.

Keywords: Special functions, Classical orthogonal polynomials of erelis variable, g-

polynomials, Orthogonal polynomials @plinear latticesg-Hahn class.
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Oz

Q-HIPERGEOMETRK FARK DENKLEM ININ Q-ANAL izl UZERINE

Sevinik-Adigizel, Rezan
Doktora, Matematik BIumu

Tez Yoneticisi : Prof. Dr. Hasan Taseli

Aralik 2010, 183 sayfa

Bu tezde, Hahn sinifina ajtklasik ortogonal polinomlar hakkinda oldukca detayli bir calisma
sunulmaktadir. Bu tip polinomlar, katsayilari en fazla ikinci dereceden puleroolang-
hipergeometrik fark denkleminin sinirlogziimleri olarak ortaya ¢cikmaktadirlar. Bu calismada
temel didince, ilgili g-Pearson denkleminin kalitatif analizi aragiyla g-hipergeometrik
fark denkleminin nimkin olan liitin polinom @ziimlerinin ortogonalliklerini genel anlamda
ele almaktir. Daha acik olarak, uygun bir ortogonalite gratia istenilen big-agirhk fonk-
siyonu tanimlamak icing-Pearson denklemindeki polinom katsayilarin sifirlarinigigik
goreceli pozisyonlariyla birlikte iimkiin olan her rasyonel formunu hesaba katarak bir ge-
ometriksel yaklasim kullaniimistir. Dolayisiyla, bu calisma Favard teorengn@terimli

rekiirans iliskisine dayanan standart metodlardan farkhdir.

Anahtar Kelimeler:Ozel fonksiyonlar, Ayrik dgiskenli klasik ortogonal polinomlag-poli-

nomlar,g-dogrusalorguli ortogonal polinomlarg-Hahn sinifi.



To my family

Vi



ACKNOWLEDGMENTS

This thesis is the result of many years of support from many people. It ipleasure to
have this opportunity to thank those, who, iifeient ways, have contributed to this thesis.
First of all, | would like to express my sincere gratitude to my supervisoif, Ba Hasan
Taseli, for his precious guidance, continuous encouragement arfideoce in me and my
work throughout the research. | would also like t@eo a special thank to Prof. Dr. Renato
Alvarez-Nodarse for his sincere support and guidance not onlydgimaut the thesis, but also
throughout my visit Sevilla, Spain. | would also like to thank him for his invale@omments

and suggestions for the thesis.

I would like to extend my thanks to the other members of the examining committee, Prof.
Dr. Agacik Zafer, Prof. Dr. Ramazan Sever and Prof. Dr. Haydar Bulgatheir valuable
suggestions and feedback on the manuscript of the thesis. Next, | deapk/all the mem-
bers of the Department of Mathematics for the friendly atmosphere theydpbvi am also

grateful to my friends for their moral support and good will.

Last, | dfer my special thanks to my family for their unconditional love, continuous @&nco

agement, patience and support that provide me the success in my life.

Vii



TABLE OF CONTENTS

ABSTRACT . . . o o e e iv
OZ . o v
ACKNOWLEDGMENTS . . . . . . . e e e e e e vii
TABLE OF CONTENTS . . . . . . e e e e e e e e viii
LISTOFTABLES . . . . . . e e Xi
LISTOFFIGURES . . . . . . . . e e Xiii
CHAPTERS
1 INTRODUCTION . . . . . . e e e e e 1
1.1 Classical Orthogonal Polynomials . . . . . . ... ... ....... 2
1.2 Classical Orthogonal Polynomials of Discrete Variable . . . . . . . . 5
121 Classical Discrete Polynomials . . . . . .. ... ..... 6
1.2.2 Classicag-Polynomials . . . . ... ... ... ..... 7
2 PRELIMINARIES . . . . . . e 13
2.1 Theg-Derivative . . . . . . . . . . . . ... . 13
2.2 Theg-Integral . . . . . . . . . . . ... .. 16
2.3 Hypergeometric Series . . . . . . . . . . . ... ... ... 18
2.4 g-Hypergeometric Series . . . . . . . ..o 19
2.5 Transformation Formulas . . . .. ... ... ... ... ...... 19
3  THEQ-POLYNOMIALS OF HYPERGEOMETRICTYPE . .. ... ... 21
3.1 Discrete Version of Dierential Equation of Hypergeometric Type:
g-Difference Equation of Hypergeometric TypeEHT) . . . . . . . 21
3.2 Theg-Weight Function . . . . . ... . ... ... .. ....... 25
3.2.1 Computation of thg-Weight Functions . . . . . . .. .. 26
3.3 Polynomial Solutions of thgeEHT of the 1stkind . . . . .. .. .. 32

viii



3.3.1 The Rodrigues Formula for Polynomial Solutions of the

O-EHT ofthe 1stkind . . . . . .. . ... ... ...... 35
3.4 Polynomial Solutions of thgeEHT of the 2nd kind . . . . .. ... 37
34.1 The Rodrigues Formula for Polynomial Solutions of the
g-EHT ofthe 2ndkind . . . . . .. .. ... ... .... 39
3.5 Hypergeometric Representation of hPolynomials . . . . . . . . 41

3.6 Orthogonality Property of thgz Polynomials of Hypergeometric Type 48

3.6.1 Orthogonality Property djgf)l P, (xq) ......... 51

3.6.2 Orthogonality Property @8‘) Po.(xa).......... 57
ANALYSIS OF THE ORTHOGONALITY OF THEQ-CLASSICAL POLY-
NOMIALS INTHEHAHN SENSE . . . . . . .. .. ... ... .. .... 60
4.1 TheMainResults . . . . . ... ... ... ... ... ... . 67
4.2 TheNon-zeroCase . .. ... ... ... . . . ... ... ..... 68

42.1 Constant Case: TlgeClassical)-HermitgJacobi Polyno-
mials . . ... 68

4.2.2 Linear Case: ThgClassical)-Laguerr¢éJacobi Polynomials 75
4.2.3 QuadraticCase . . . . .. . . . . i 88
4231 Theg-Classical)-JacobiJacobi Polynomials . 89
4.2.3.2 They-Classicalp)-JacobiLaguerre Polynomials 112
4.2.3.3 Theay-Classicald-JacobiHermite Polynomials 117
4.3 TheZeroCase . . . . . . . . i 120
4.3.1 LinearCase . . . . . . .. . ... ... ... 120
4.3.1.1 Theg-Classical 0-Laguerydacobi Polynomials 121
4.3.1.2 Theg-Classical 0-LagueryBessel Polynomials 126
4.3.2 QuadraticCase . . ... ... .. ... ... 127
4.3.2.1 Theg-Classical 0-Bessglacobi Polynomials . 128
4.3.2.2 Theg-Classical 0-Bess@essel Polynomials . 130
4.3.2.3 Theg-Classical 0-Bessglaguerre Polynomials 133
4.3.2.4 Theg-Classical 0-Jacohlacobi Polynomials . 134
4.3.2.5 Theg-Classical 0-JacofBBessel Polynomials . 145

4.3.2.6 Theg-Classical 0-Jacofiiaguerre Polynomials 148

iX



5 RELATIONS BETWEEN THEQ-CLASSICAL POLYNOMIALS . . . . .. 156

51 0-JacobiJacobie Big g-Jacobi polynomials . . . . ... ... ... 158
5.2 (0-JacobiJacobie g-Hahn polynomials . . . . . ... ... ... .. 158
5.3 0-Laguerrglacobie g-Meixner polynomials . . . . . . .. ... .. 159
5.4 0-Laguerrg¢Jacobie Quantumg-Kravchuk polynomials . . . . . . . 159
5.5 0-HermitgJacobie Al-Salam-Carlitz Il polynomials . . . . . . .. 160
5.6 0-HermitgJacobis Discreteg-Hermite Il polynomials . . . . . . . 161
5.7 0-JacobiLaguerres Big g-Laguerre polynomials . . . . . . .. .. 161
5.8 0-JacobiLaguerres Affineg-Kravchuk polynomials . . . . . . .. 162
5.9 0-JacobiHermites Al-Salam-Carlitz | polynomials . . . . . . . .. 162
5.10  0-Jacokdacobie Little g-Jacobi polynomials . . . . ... ... .. 163
5.11  0-Jacoldacobie g-Kravchuk polynomials . . . .. ... ... .. 163
5.12  O-Laguerrdacobis g-Laguerre polynomials . . . . . ... .. .. 164
5.13  0O-Laguerrdacobie g-Charlier polynomials . . . . . . ... .. .. 164
5.14  0-JacolBesseks Alternativeg-Charlier polynomials . . . . . . .. 165
5.15  O-LaguerrBesselk> Stieltjes-Wigert polynomials . . . . . . . . .. 165
5.16  0-JacobiLaguerres Little g-Laguerre (Wall) polynomials . . . . . 166
5.17 LimitRelations . . . . . ... ... . ... 167
6 CONCLUSION . . . . 178
REFERENCES . . . . . . . e 179
VITA e 182



LIST OF TABLES

TABLES
Table 1.1 The classical orthogonal polynomials . . . . .. .. ... ... .. ... 2
Table 1.2 The classical orthogonal polynomials of discrete variables . .. .. ... . . 6

Table 3.1 Theag-weight function for non-zero case according as the degrees ahd

Table 3.2 Alternativel-weight function for non-zero case according as the degrees of

the polynomial cofficients . . . . . . ... ... .. .. ... ... ... ... 27
Table 3.3 Thag-weight function for zero case according as the degreeg @ihdo, . 30

Table 3.4 Alternativeg-weight function for zero case according as the degrees of the

polynomial codficients . . . . . . . . ... 30
Table 4.1 Classification of thgclassical polynomials (positive definite cases) . . .. 61
Table 4.2 0-JacoblJacobie Big g-Jacobi Polynomials . . . . . ... ... ... ... 152
Table 4.3 0-LaguerréJacobie Alternative Bigg-Jacobi Polynomials . . . . . . . .. 152
Table 4.4 (¢-JacobiJacobie g-Hahn Polynomials . . . . .. .. ... ... ..... 152
Table 4.5 0-Laguerr¢Jacobie g-Meixner Polynomials . . . . . . . ... ... ... 152
Table 4.6 0-Laguerr¢Jacobie Alternativeg-Meixner Polynomials . . . . . . . . .. 153
Table 4.7 0-Laguerr¢gJacobie Quantumg-Kravchuk Polynomials . . . . . . . . .. 153
Table 4.8 0-HermitgJacobie Al-Salam Carlitz Il Polynomials . . . . . .. ... .. 153
Table 4.9 0-HermitgJacobie Discreteqt-Hermite Il Polynomials . . . . .. .. .. 153
Table 4.100-JacobiLaguerres Big g-Laguerre Polynomials . . . . . . ... ... .. 153
Table 4.110-JacobjLaguerres Affineg-Kravchuk Polynomials . . . . . ... .. .. 153
Table 4.120-JacobiHermite s Al-Salam Carlitz | Polynomials . . . . . . . .. .. .. 154

Xi



Table 4.13)-JacobiHermite< Discreteg-Hermite | Polynomials . . . . . . ... .. 154

Table 4.14 0-Jacohliacobie Little g-Jacobi Polynomials . . . . . .. ... ... ... 154
Table 4.15 0-Jacohllacobie g-Kravchuk Polynomials . . . . . ... ... ... ... 154
Table 4.16 0-Laguerféacobie g-Laguerre Polynomials . . . . . . ... ... .. .. 154
Table 4.17 O-Laguerrdacobie g-Charlier Polynomials . . . . . ... ... ... .. 154
Table 4.18 0-JacofBesselk= Alternativeg-Charlier Polynomials . . . . . . . . . .. 155
Table 4.19 O-LaguerfBesseks Stieltjes-Wigert Polynomials . . . . . ... ... .. 155
Table 4.20 0-Jacohiaguerres Little g-Laguerre (Wall) Polynomials . . . . . . . .. 155
Table 5.1 Relation between tlgeClassical and thg-Askey polynomials . . . . . . . 156

Xli



LIST OF FIGURES

FIGURES

Figure 4.1 Case 1. The functidifx, q) with Aq > 0,ax(q) <O < bx(@). . . . . . . .. 70

Figure 4.2 Case 2. The functidifx, g) with Aq < 0, Case 2(a)A: G ax(q) < b(q),

Case2(b)B:xax(q) =ba(qQ). . . . . . . o 71
Figure 4.3 Possible positive graph of correspongiigq) for Figure 4.2. . . . . . . 71
Figure 4.4 A figure ofy(x, q) corresponding to Figure 4.2A. . . . . . .. .. .. ... 72
Figure 4.5 Case2(c). The functidifx, g) with Aq < 0,ax(g),b2(q) e C. . . . .. .. 73
Figure 4.6 Possible positive graph of correspongiigq) for Figure4.5. . . . . .. 74
Figure 4.7 A figure of Ag(x, q), B: o1(x, q)o(x, g) XX related to Figure 4.5. . . . . . . 74

Figure 4.8 Case 1. The functidifx, g) with A: Aq < 0,ax(q) <0< qtay(q) < by(q),

B:Ag>0,qtai(g) <ax(q) <O<bp(@). - -« v 77
Figure 4.9 Possible positive graph of correspondifgq) for Figure 4.8A.. . . . . . 77
Figure 4.10 A figure of1(x, ) corresponding to Figure4.8a. . . . . . ... ... ... 78

Figure 4.11 A figure obr1(x, q)p(x, g)x*=0(q~1x, q)p(q~1x, g)x related to Figure 4.10. 78

Figure 4.12 Case 2(a). The functidx, ) with A: Aq < 0, g ltai(g) < 0 < ax(q) <

ba(q), B: Aq>0,0<ap(q) <bx(a) <qlai(@).. ... ... 79
Figure 4.13 Possible positive graph of correspongifxgq) for Figure 4.12A. . . . . . 80
Figure 4.14 A figure ofi(x, ) corresponding to Figure 4.12A. . . . . . ... ... .. 80

Figure 4.15 A figure obr1(x, q)p(x, g)x*=0(q~1x, q)p(q-1x, g)x related to Figure 4.14. 81
Figure 4.16 Possible positive graph of correspondgifxgq) for Figure 4.12B. . . . . . 82

Figure 4.17 Case 2(a). The functidx, g) with C: Aq > 0,0 < ax(q) < qlai(q) <

bo(0), D:iAq<0,ax(q) <by(q) <qlaa(@) <0. .. .............. 84
Figure 4.18 Possible positive graph of correspongifigq) for Figure 4.17D. . . . . . 85
Figure 4.19 A figure ofy(x, ) related to Figure 4.17D. . . . . .. .. ... ... ... 85

Xiii



Figure 4.20 A figure obr1(x, q)p(x, g)X¥ = oo(q~1x, g)p(q1x, g)xX related to Figure 4.19. 85
Figure 4.21 Case 2(c). The functidix, ) with Aq < 0,a1(q) < 0,ax(q),b2(q) € C. . . 87
Figure 4.22 Possible positive graph of correspongifigq) for Figure 4.21. . . . . . . 87

Figure 4.23 A figure of Ag(x,q), B: o1(x, q)p(x, g)X* = o2(q71x, g)p(q~1x, g)x* re-
lated to Figure 4.21. . . . . . . . .. e 87

Figure 4.24 Case 1.i) The functidi(x, ) with Aq > 1. A: g lai(q) < ax(q) < 0 <
b2(g) < g7tby(q), B: g tay(0) < ax(q) < 0 < g thy(q) <bx(Q).. . . . . . .. ... 91
Figure 4.25 A figure of(x, q) corresponding to Figure 4.24B. . . . . ... ... ... 92

Figure 4.26 Case 1.ii) The functiof(x, g) with 0 < Aq < 1, A: ax(q) < qltai(q) <

0 < g tby(q) < ba(q), B: ax(q) < g ta(q) <0< bp(g) < g toa(q). . . . ... .. 92
Figure 4.27 Possible positive graph of correspongif)gq) for Figure 4.26A. . . . . . 93
Figure 4.28 Case 2.(a)i) The functidix, ) with Aq > 1, A: 0 < ax(q) < g lai(g) <

bo(q) < g~tb1(q), B: 0 < ax(g) < g tay(q) < g tbi(g) <bx(@).. . . . . . .. ... 95
Figure 4.29 Case 2.(a)i) The functidifx, q) with Aq > 1, C: 0< g lai(q) < ax(q) <

bo(a) < qthi(q), D: ax(q) < bp(d) <0< qtas(a) <gtb(@). ... ....... 96
Figure 4.30 The functiorf(x, ) with Aq > 1, Case 2.(a)i)E: (< ax(q) < bx(q) <

g tai(g) < gtby(q), Case 2.(c)i)F: & qtay(g) < g~tbi(q), ax(g),b2(q) € C. . . 97
Figure 4.31 Possible positive graph of correspongifxgq) for Figure 4.30E. . . . . . 97
Figure 4.32 Case 2(a)ii) The functidi(x,q) with 0 < Aq < 1, A: 0 < qlai(g) <

22(a) < b(a) < g bu(q), B: 0 < &(q) < g *au(q) < q~*bu(@) < b(@). . . . . .. 99
Figure 4.33 Case 2(a)ii) The functioi(x,q) with 0 < Aq < 1, C: 0< qlai(g) <

qthi(q) < ax(q) < b2(q), D: ax(q) < ba(q) <0< g tay(q) < g tby(g). . . . . .. 100
Figure 4.34 The functiorf(x,q) with 0 < Aq < 1, Case 2(a)ii) E: O< g lai(q) <

ax(0) < qthy(q) < bz(q), Case 2(c)ii) F: O< g *as(q) < qth1(q), ax(q). bz(q) € C. 101
Figure 4.35 Possible positive graph of correspongifhgq) for Figure 4.34E. . . . . . 102

Figure 4.36 Case 3(a). The functib(x, g) with Aq < 0, A: g tay(q) < 0 < g tba(q) <

ax(q) < ba(g), B:qtai(q) <0< ax(g) < ba(@) < g tos(e). . . ... ....... 104
Figure 4.37 Possible positive graph of correspongifxgq) for Figure 4.36A. . . . . . 104
Figure 4.38 Possible positive graph of correspongifxgq) for Figure 4.36B. . . . . . 106

XV



Figure 4.39 The functiorf(x, g) with Aq < 0, Case 3(a)Cqtai(g) < 0 < ayx(q) <
g th1(q) < ba(q) Case 3(c)Dg*ay(q) < 0 < g thy(q), ax(g). ba(q) e C. . . . . . 107

Figure 4.40 Possible positive graph of correspongifigq) for Figure 4.39D. . . . . . 108

Figure 4.41 Case 4. The functidr{x,q) with Aq < 0, A: ax(q) < 0 < qlai(q) <
qthi(q) < b2(q), B:ax(q) < 0 < b(q) < qtas(@) < g tha(a).. . . . . ... ... 109

Figure 4.42 Case 4. The functidifx, g) with Aq < 0,ax(q) <0 < qtai(q) < by(q) <

Figure 4.43 Possible positive graph of correspongifxgq) for Figure 4.42C. . . . . . 110
Figure 4.44 Case 1. The functidifx, g) with Aq < 0, A: g tay(q) < 0 < g thy(q) <
a(q), B:gla(@) <O0<ax(q) <qtbu(@). .. ...... ... ... . ....... 113
Figure 4.45 Possible positive graph of correspongifigq) for Figure 4.44A. . . . . . 113
Figure 4.46 Case 2. The functidifx, q) with Aq > 0, C: 0< g tay(q) < q-1by(q) <
a(q),D:0<ax(q) <qla@ <gqtbu(@). .. ... ... 115

Figure 4.47 The functiorf(x, ) with Case 2.EAq > 0, 0 < g lai(q) < axq) <
g tbi(q), Case 3.FAq<0,a(q) <0< qglay(@) <gth(@. . . . ... ..... 116

Figure 4.48 Possible positive graph of correspongifgq) for Figure 4.47E. . . . . . 116

Figure 4.49 The functiorf(x, ) with Case 1.A:a;(g) < 0 < bs(q), Case 2.B: 0<
a1(Q) <bu(Q). . ... e 118

Figure 4.50 Possible positive graph of correspongifxgq) for Figure 4.49A. . . . . . 119

Figure 4.51 The functior(x, ) with Case 1.A:Aq > 0, ax(q) > 0, yp > 1, Case 2.B:

Ag<0,ax(0) <0,0<yo<d. ... ... 122
Figure 4.52 Possible positive graph of correspongifxgq) for Figure 4.51B. . . . . . 123
Figure 4.53 The functiorfi(x, ) with Case 3.CAq < 0,ax(q) > 0,y0<0. . . . .. .. 124
Figure 4.54 Possible positive graph of correspongifxgq) for Figure 4.53. . . . . . . 125

Figure 4.55 Case 1. The functidifx, ) with Aq < 0, ax(q) = 0, B: corresponding
POSItiVEP(X, Q). .« « v . e e 126

Figure 4.56 The functiorf(x, g) with Case 1.i)A:Aq > 1, ax(g) > 0, Case L.ii)B:
O<Ag<lia(@)>0........ .. . .. ... ... 129

Figure 4.57 The functiorfi(x, ) with Case 2.CAq <0,ax(@) >0. . . . . .. ... .. 130

XV



Figure 4.58 The functiorf(x, ) with Case 1.))A:Aq > 1, ax(q) = 0, Case L1.ii)B:

O<Ag<lia(q)=0......... . ... ... ... 131
Figure 4.59 The functiori(x, g) with Case 2.CAq <0,ax(q)=0. . . . . . . ... .. 132
Figure 4.60 The functiori(x,q) with Case 1Aq<0. . . . .. . ... ... ... ... 133

Figure 4.61 Case 1.i) The functiof(x,q) with Aq > 1, 0 < ax(q) < g lai(q), A:
O<yo<1,B:iyo>1. . . . . e 135

Figure 4.62 Case 1.i) The functiof(x,q) with Aq > 1, C: 0 < qtai(q) < a(q),
Yo > 1, D:glag(@) <0< a(q),Yo<0. ... ..o 137

Figure 4.63 Case 1.ii) The functidi(x, q) with 0 < Aq < 1, E: 0< ax(q) < qtai(q),
O<yo<1 Faxq) <0<qgla(@),yo<0. .. ... .. .. 138

Figure 4.64 Case L.ii) The functiof(x,q) with 0 < Aq < 1, 0 < gtas(q) < a(q),
G:O0<yo<l, Hiyo>1. . ... e 139

Figure 4.65 Possible positive graph of correspondifxgq) for Figure 4.64G. . . . . . 139

Figure 4.66 Case 2. The functioi(x,q) with Aq < 0, ax(g) < 0 < qtay(q), I:
O<yo<1,Jyo>1.. . . . @ e 141

Figure 4.67 Possible positive graph of correspongifxgq) for Figure 4.661. . . . . . 141

Figure 4.68 Case 2. The functidifx, ) with Aqg < 0,y0 < 0,K: 0 < qtay(q) < ax(q),
LiO<ax(q) <qlau(@). . . . . v v vt 143

Figure 4.69 Possible positive graph of correspongifxgq) for Figure 4.68L. . . . . . 143

Figure 4.70 The functiorf(x, g) with a;(q) > 0, Case 1.)A:Aq > 1, Case L.ii)B:

O<Ag<1 ... . 145
Figure 4.71 The functiori(x, g) with Case 2.CAq < 0,a1(q) >0. . . . . .. ... .. 146
Figure 4.72 Possible positive graph of correspongifxgq) for Figure 4.71. . . . . . . 147

Figure 4.73 The functiorf(x, ) with a;(q) > 0, Case 1l.)Ayp > 1, Case 1.ii)B:

O<yo< i . . . e e e 149
Figure 4.74 Possible positive graph of correspongifxgq) for Figure 4.73B. . . . . . 150
Figure 4.75 The functiori(x, q) with Case 2.Cyp < 0,a1(q) >0. . ... ... .. .. 151

XVi



CHAPTER 1

INTRODUCTION

Family ofg-classical polynomials in the Hahn sense, which is a part of clagsjalynomials,
is first introduced by Wolfgang Hahn in 1949 [32]. They satisfg-difference equation of
hypergeometric type (q-EHT) [3, 4, 6, 17, 42],

(X 0)DgDg1y(X) + 7(X, q)Dgy(X) + A(Q)y(X) = 0 (1.1)

where the coicientso(x, Q) andz(x, q) are polynomials of at most second and first degree

in x, respectivelyd(q) is a constant and

y(X) — Y(qx)

Dgy(x) = A—qx

x#0, Dqy(0)=y(0) (1.2)

stands for thel-Jackson derivative [3, 4, 6, 30, 53].

The so-calledy-polynomials have enormous applications in several problems on theoretical
and mathematical physics, e.g., in the continued fractions, Eulerian s@fig¢salgebras and
guantum groups [37, 38, 54], discrete mathematics, algebraic combisatooiding theory,
design theory, various theories of group representation) [20] hgg8mger equation and g-

harmonic oscillators [14, 15, 16, 18, 19, 40].

The classicab-polynomials are the discrete version of the classical orthogonal polyi®mia
(Hermite, Laguerre, Jacobi, Bessel). The theory of discrete polynoisiedsher developed
[3, 6,17, 32, 42, 49, 46, 47, 48]. There are several appraache study of these polyno-
mials [3, 4,5, 6, 11, 17, 36, 42, 43, 46, 47, 48, 49].



Literature Review
1.1 Classical Orthogonal Polynomials

Orthogonal polynomials are particularly useful in the category of sphaiations since they
have considerable superiority in miscellaneous problems [13] most of wdadho the clas-

sical hypergeometric flierential equation (EHT) [3, 22, 36, 42, 43, 51],
o(X)y’' +1(xX)y +1y=0 (1.3)

whereo(x) andr(x) are polynomials of at most second and first degree, respectively] an
is a constant [3, 46, 48]. It can be shown that EHT in (1.3) has polynuoiationsPy(x) of

exact degrea for particular values oft of the form [46, 48],
’ l 77
A=An=-nt" - En(n - 1o (1.4)

forn = 0,1,.... The famous classical orthogonal polynomials associated with the names
JacobiPﬁ“"B)(x), LaguerreL?(x) and HermiteH,(x) are all solutions of EHT witht defined

by (1.4). The parameters leading to these polynomials are listed in Table4&,4q].

Table 1.1: The classical orthogonal polynomials

Hermite Laguerre Jacobi Bessel
Pa(X) Hn(%) La(9) P (%) B (¥)
(a,b) (=0, o) (0, ) (-11) T:={l2=1zeC}
a(X) 1 X 1-x? X2
7(X) —2X a+1-x B—a—(a+pB+2)X (@ +2)x+2
An 2n n nn+a+pB+1) -n(n+a+ 1)
P ¥ xre (1= %)"(L+ P 7 Zico Harken (~3)"
a>-1 a,f>-1 a>-2

Definition 1.1 [4] We say that the orthogonal polynomial sequence (OPS) (TablgRBy1)s
a classical OPS with respect to the weight functidd6, 48] if

b
fa Yn(X)Yn ()P (X)X = Zmn (1.5)
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wheredmn is the Kronecker delta, dis the norm of the polynomial f?p is a solution of the

Pearson equation
2[00 = 79000 (1.6)

whereo andt are fixed polynomials of degree at most 2 and exactly 1, respectivelytisat

the following boundary conditions hold

o(@)p(@) = o(b)o(b) = 0. (1.7)

Remark 1.2 The boundary condition given in (1.7) is not valid for the Bessel polynomials

since Bessel polynomials are orthogonal on unit circle (For more desaiés[3]).

We remark that Hermite, Laguerre, Jacobi and Bessel families are thelaskical orthog-
onal polynomials satisfying the definition 1.1 [3, 4, 22, 46, 48]. Definitioni4.anly one
of the way to characterize the sequence of classical orthogonal poigtso There are also
other characteristics, one of them is TTRR. In particular, Chihara 22]yd [28], Nevai [45]
and Szeg [51] studied on the orthogonal polynomials starting from the TTRR.

Theorem 1.3 (TTRR [3, 46, 48]) The orthogonal polynomidR,), satisfy a three-term re-

currence relation of the form
XPn(X) = anPn;1(X) + BnPn(X) + ynPn-1(X) (1.8)

wherean, Bn, yn are some numerical sequences and(R) = 0, Py(x) = 1.

The converse statement of the theorem for TTRR implies the Favard thedn&in is con-

sidered by many authors.

Theorem 1.4 (The Favard Theorem [6, 22, 26]) L€P,)n-0 be a monic polynomial basis
sequence. Ther{Pn)n=0 is an MOPS if and only if there exist two sequences of complex

numberqdn)n=0 and(gn)n=1, such that g # 0, n > 1 and
XPa(X) = Pnya(X) + daPn(X) + 9nPn-1(x), P-1=0, Po=1, nx>0. (1.9)

Moreover, the functional u such that the polynomigds)-o are orthogonal with respect to

it, is positive definite if and only {{d,)n>0 is a real sequence andj,) > 0 for alln > 1.

3



Another point of view for the characterization of classical orthogoogimomials was devel-
oped by Sonine for Hermite, Laguerre and Jacobi polynomials in 188byakthhn [31] in
1939.

Theorem 1.5 (Sonine-Hahn [4, 31, 41]) A given sequence of orthogonal polyalsr(P,),
is a classical sequence if and only if the sequence of its derivai®/gs is an orthogonal

polynomial sequence.

Alternatively, in 1885, Routh [50] and in 1929, Bochner [21] deal with tiharacterization
problem in an another way and they propounded that the classical orthlbgolynomials
satisfy a second-orderftirential equation of hypergeometric type (1.3). Derivatives of (1.3)
give also a dierential equation of hypergeometric type but nowyi8t which is also derived

by Nikiforov and Uvarov [48].

Another characterization for the orthogonal polynomials is the well knoadrigues formula
which is derived by Tricomi [52] and Cryer [23]. The Rodrigues fofaprovides explicit
representation for the classical polynomials which satisfieffardntial equation of hyperge-

ometric type (1.3) (see [33]).

According to the all discussions above we perform the following theordraaed from [4].

Theorem 1.6 [4] Let (Pn), be an OPS. The following statements are equivalent:
(2) (Pn)n is a classical orthogonal polynomial sequence (COPS) (HildebraBaif)[
(2) The sequence of its derivative®),-1 is an OPS with respect to the weight function

p1(X) = o(X)p(X), wherep satisfies the Pearson equation (Sonine and Hahn [31])

[P = 790 (9. (1.10)

(3) (Pn)n satisfies the second order lineayf@drential equation with polynomial c@ieients of
the form (1.3) (Bochner [21]).
(4) (Pn)n can be expressed by the Rodrigues formula (Tricomi [52] and Cr3@}) [

B, d"
Pn(X) = 200 ﬁ[

(5) There exist three sequences of complex num(ag)s (bn)n, (Ch)n and a polynomiabr,

degg) < 2, such that [2]

"(p(x)|- (1.11)

a(X)PL(X) = @anPn1(X) + bnPr(X) + ciPno1(X), n> 1 (1.12)
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(6) There exist two sequences of complex numpkls and (g,)n such that the following
relation for the monic polynomials holds (Marcellan et al. [41])

P;Hl(x) ’ ’
Pn(X) = m + fnPn(X) + gnPn—l(X)’ On # ¥n» n=> 1, (113)

wherey,, is the corresponding cgkcient of the TTRR (1.9).

1.2 Classical Orthogonal Polynomials of Discrete Variable

The so-called discrete polynomials (Hahn, Kravtchouk, Meixner andi€hg22, 44, 46, 48])
and theg-polynomials [3, 36, 49, 46, 48] are both discrete version of the cldsziaéinuous
polynomials which were first realized by Hahn [32]. Actually, Hahn was vatdid by Cheby-
shev’s study done in 1855s on the orthogonal polynomials. In this reigat849, Hahn [32]
introduced a linear operatétqw

f(gx+w) — f(X)

Hawf(3) = Q- x+w

, g weR" (1.14)

together with the problem of finding all OP8{),, satisfying one of the following properties
(4,17, 22];
1. {HgwPn(X)} is an OPS.

2. Py(X) satisfies a dference equation of the form
T(IHGWP(X) + T()HgwPn(X) + AnPa(X) = 0, (1.15)

whereo(X) andr(x) are independent af, and are polynomials of degrees at most 2 and 1,
respectively.

3. Pn(x) has a Rodrigues-type representation
POIPA(X) = H[ 1100 200... (000, £i(¥) = fiaa(@x+w). (1.16)

4. 1f Pa(X) = SE_o Bnkék(X) With ¢i(x)X or ¢(X) = (x; Gk, where

1, k=0,
(X Qk = (1.17)
1-x1-9X..L-d<1x), k=12, ...

are theg-shifted factorials, them,x/ank-1 is a rational function oh andk or q" and qk,
respectively.

5.The moment#/, associated withiP,(x)}, defined by

f " gn()da(x) = My, (1.18)
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satisfy a recurrence relation of the form

_a+bd
Cc+dqn

M, Mn_1, ad-bc# 0, (1.19)

n=1, 2, ... see [1].

1.2.1 Classical Discrete Polynomials

Evaluating (1.14) fogq = w = 1 leads toH; 1 = A and the so-called discrete polynomials
(those of Hahn, Meixner, Krawtchouk and Charlier) which are solutidd#ference equation

of hypergeometric type of the form [46, 48]
o (S)AVPL(S) + T(S)AP(S) + AnPn(s) = 0 (1.20)

whereAf(s) = f(s+ 1) — f(s), VI(s) = f(s) — f(s— 1) and degf) < 2, degf) = 1, Anis a
constant. Some characteristics of the classical discrete polynomials catetériiable 1.2

[46, 48].

Table 1.2: The classical orthogonal polynomials of discrete variables

Hahn Meixner Krawtchouk Charlier
Pa(¥)  hi¥(sN) M2*(s) KR(9) Ca(9
(ab) [O,N] [0, c0) [O,N +1] [0, )
o(9) s(s-B-N-1) s s S
() —(@+1N+(@+B+2)s (u—1)s+uy e ©—s
An nn+a+p+1) A-wn %p n
I(N+a—9)[(B+s+1) I'(y+9) NI pS(1-p)N-3 s
OIS (e T KD 191D D
a,B>-1Ln<N-1 vy>0,0<pu<l O<p<ln<N-1 u>0

Definition 1.7 [4, 46, 48] We say that the discrete polynomial sequeifeg, (Table 1.2) is
a classical OPS of discrete variables if they are orthogonal on the intdgeb — 1] with
respect to the weight functigi{s) together with the relation

b-1
D P(9Pm(9p(S) = dZomn (1.21)
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provided that the boundary conditian(s)p(s)x* cab = 0, k = 0,1,... is satisfied. Here,

dn is the norm of the polynomial and the weight functiosatisfies the Pearson equation

Alo(5)p(9)] = 7(5)p(9).

There are dferent aspects for the characterization of discrete polynomials. For destan
definition 1.7 characterize the discrete polynomials. Another charactenzzitibe discrete
polynomials is the Rodrigues formula which is considered byeBidand Weber [25] in
1952. Lesky stated in 1962 that discrete orthogonal polynomials arécabigsand only if

its differences\P,, is an discrete OPS [29, 39].

1.2.2 Classicab-Polynomials

A g-analog of the Chebychev polynomials is due to Markov in 1884 [22] wharhhe re-
garded as the first example gfpolynomial family. In 1949, Hahn introduced tlggHahn
class [32] and obtained the most general orthogonal polynomial on plomertial lattice, the
so-called bigg-Jacobi polynomials, by taking = 0 andq € (0, 1) in the linear operatdtiq,y.

In the Hahn casefigo = Dq whereDy is the g-Jackson derivative defined in (1.2). Hahn
studied on they-polynomials included in thg-Hahn scheme which are the solutions of the
g-difference equation of hypergeometric type (1.1) and tp€lierivatives are also orthogonal
[32, 43].

Afterwards, around 1980s they have been considered by seughalawith diterent aspects.
Most popular ones are; G. Andrews, R. Askey and A. Nikiforov, Vatdév who generate the
Askey scheme and the Nikiforov-Uvarov scheme, respectively. Greéwsland R. Askey

[11] have only considered particular cases [36] based on the basécdgometric series [30]

ap, ..., ar .q, (al; q)k(ar, q)k Zk [(_1)qu(k—1)/2] p-r+1 (122)

Zl =
"“lo, .. by é(bl:q)k..(bp:q)k (a

where & Q) = [13(1-ad), (& a)o = 1 denotes the-shifted factorial. And the idea for the
Nikiforov-Uvarov approach is grounded on the second order lygmnetric type dference
eqguation on non-uniform lattices [3, 49, 46, 48],

A VPh[X(5)]
AX(s—1/2) Vx(s)

APq[X(s)]
AX(S)

o(9)

+17(9) + AnPa[X(9)] = O. (1.23)



Atakishiyev, Rahman and Suslov have proved that (1.23) has polynoohidgions of hyper-
geometric type if and only if the lattice(s) is a linear,g-linear (exponential), quadratic or

g-quadratic (exponential) of the form [17]

Clqgs+Cog® if q#1
x(s):{ 1 72 a (1.24)

Ca?+Cys  if g=1

whereq € C andCy, C5, C3,Cy4 are constants s.t.Cf,Cy) # (0,0), (C3,C4) # (0,0). The
lattice is linear ifC3 = 0; otherwise it is quadratic and it gslinear if one ofC4, C; is zero;
otherwise it isg-quadratic. Actually, the dficient part of this statement has been proved by

Nikiforov-Uvarov.

We remark that polynomial solutions of theférence equation of hypergeometric type (1.23)
with linear latticex(s) = s leads to the classical discrete polynomials (Hahn, Meixner,
Krawtchouk and Charlier) which are discrete polynomials on uniform latticedifference
equation (1.23) with non-uniform lattices such@énear lattice of the fornx(s) = ¢° or
X(s) = g S enable us thg-Hahn scheme [3, 4, 5, 36, 46, 48] (see [3, 17, 49, 46, 48] for

guadratic andj-quadratic lattices).

Another approach based on the functional analysis has been ceusiyeR Alvarez Nodarse,
F. Marcelfin and J. C. Medem [43] where the authors have proved severattd@zations of
such orthogonal polynomials (see also [4]) starting from the so-call&thdiSonalg-Pearson
equation. In particular, in [43] a classification of all possible families ofatmal polyno-
mials on the exponential lattice has been established, and latter on in [6] tharisonpwith
the g-Askey and the Nikiforov-Uvarov scheme has been done, obtaining emofamilies
of orthogonal polynomials. For more details on thpolynomials on the linear exponential
lattice we refer the readers to the works [3, 4, 5, 6, 24, 35, 42, 4A4618], and references

therein.

Some important characterizations for the classical orthogonal polynomigisatte vari-
able analogue to the classical continuous and discrete ones have lmeebydatakishiyev,

Rahman and Suslov [17] arkvarez-Nodarse [4] as in the following manner.

Definition 1.8 [17] An OPS{Py[X(9)]};>, on a real interval(x(a), x(b)) is classical if and
only if:
() Pn[x(s)] satisfies a dference equation of the form (1.23) witfexgiven by (1.24).
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(ii) A positive weight functiop(s) satisfying the Pearson-typeffilirence equation

%(S)[o-(s+ Lo(s+ 1] =1(9p(s), x1(s) = x(s+1/2) (1.25)

exists.

(iii) The boundary conditions-(s)p(s)X(s — %) b 0 holdfor k=0,1,2,....

Theorem 1.9 [4] Let (Pn), be an OPS on a linear type lattic€sy satisfying

b-1 1
2 Pr(9Pm(Sp(9AX(S ~ 5) = 6rmrh (1.26)

S=a

and leto(s) andp(s) be two functions such that the boundary conditic(s)o(s)x¥(s— %) b

0 holds for k=0,1,2,.... Then the following statements are equivalent

(2) (Pn)n is a classical OPS.

(2) The sequence of itsffiirenceqAP,/AX(S))n also is an OPS with respect to the weight

functionp1(s) = o(s+ 1L)p(s+ 1), wherep satisfy

Alo(s)p(9)] = 7()p(5)AX(s - %)- (1.27)

(3) (Pn)n satisfies the second order linearffdgrence equation with polynomial gfieients
(1.23).
(4) (Pn)n can be expressed by Rodrigues-type formula

E \Y \Y% \Y
p(8) VX1 () VX2(S) ~ Vxn(9)

Pn(s) = Lon(9)] (1.28)

wherepn(s) = p(s+ n) [T o(s+ M), X(S) = X(s+ Iz() and B, is a constant with B+ 0.
(5) There exist three sequences of complex numag)s (bn)n, (Cn)n, and a polynomiabp,
degg) < 2, s. t.

APR(9)

AX(S) = anPn+1(S) + bnPn(S) + chPn-1(s), n=> 1. (1.29)

¢(s)

(6) There exist three sequences of complex nuni{egks (fn)n, (gn)n, such that the following
relation holds for all n> 1

APn+l(s) APn(s) APn—l(s)

AX(9) “Ax(s) " Ax() (1.30)

Pn(s) = &

where @ # 0, gy # yn, for all n € N, andyy is the corresponding cgfcient of the TTRR.
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An important contribution to the theory of tlgepolynomials of the exponential lattice (the
so-calledg—Hahn tableau, named after the work of Koornwinder [38]) has beeg avothe
very recent book [35], which has a complete analysis of the orthogmhahomial solutions

of the diference equation of hypergeometric type with the help of the Favard theGnethe
other hand, in [24] the authors introduced thelahn scheme by using thefidirence calculus

on the linear lattice as well as a very simple geometrical analysis based orhthédref the
polynomial codficients of the dierence equation of hypergeometric type. In this thesis, we
deal with the orthogonality properties of tiggpolynomials of theg—Hahn tableau but from

a point of view diferent from the one used in [35]. In fact, we make a unified treatment of
the orthogonality following an idea by Nikiforov and partially published in [2@ur main

aim here is going further in the analysis started in [24] and study all possibigies of
orthogonal polynomials which are orthogonal with respect to a weigltifumsatisfying the

g-Pearson equation as well as certain boundary conditions.

We introduce the statement of our approach hereinbelow.

Statement of the Problem

In this section, we state the problem in the thesis. The thesis includes the sarcbprac-

terization of polynomial solutions of thepdifference equation (1.1) in the following aspect:

Definition 1.10 An OPS(P,)),, on a real interval(a, b) is classical if and only if

() Pn(x, g) satisfies a g-giference equation of the form
01(X; §)Dg-1DgPn(X, @) + 7(X, Q)DgPn(x, Q) + An(9)Pn(x,q) = 0
and equivalently,
02(X; ) DgDg-1Pn(X, @) + 7(X, @)Dg-1Pn(X, @) + An(@)Pn(x, @) = O
where the cogicientso1(X, ) ando(X, ) have the following relation
o2(% Q) = q|oa(x. Q) + (L - g H)xr(x q)] .

Here,deggr1) < 2, degp) < 2, degfr) = 1 and A,(q) is a constant.
(ii) {D§Pn(x Q)} = Dg...Dq Pn(x. @) and{D",Pn(x,q)} = Dg-1...Dg-1 Pa(x, @), n > O are or-
—_——— q N—

n n
thogonal polynomials.
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(i) P n(x, ) has the Rodrigues representation as follows

p(% G)Pn(x, Q) = B, (q)Dglora(x, ora(q X, 0)...oa(q ™%, Go(x. 9]

or equivalently

p(X, APn(x,6) = Ba,(Q)D] 1 [o2(X, )ora(qx. 6)...o2(d" . Qp(X, Q).

(iv) Pn(x, g) is orthogonal on the real lin€a, b) with respect to the(x, g) > 0 satisfying the

g-Pearson equation

Dq[U'l(X’ q)p(X, q)] = q_lT(X7 Q),O(X, q) or Dq‘l[O—Z(X’ q)p(X, q)] = QT(X, q)p(X, q)

in the following sense

b
f Pa(x O)Pm( (X )X = ormn

a
provided that the boundary conditiam (x, q)o(X, q)x'<|eLb = o2(q 1, Q)p(q1x, g)xk . 0

holds or in another sense
b
f P 6)Prn(X (% D)X = Loimn
a

if boundary conditionr1(gx g)p(ax, q)x'<|a’b = oo(X, Q)p(X, q)kaLb = Ois satisfied.

The principal results of the approach in definition 1.10 providegthelynomials in the Hahn

sense.

Our main purpose in the thesis is to develop the orthogonality of all possibleguoigl solu-
tions of theg-difference equation by use of the qualitative analysis otRearson equation.
For each family, we obtain all possible orthogonality intervals (that depertierange of
the parameters of each family) as well as the corresponding orthogoreditions. In fact,
for all those intervals we determine the correspondijngeight functionso(x, g) satisfying

theg-Pearson equation

plax )  oi(x )+ (1 -ghHxe(xa)  qloa(xq)

p(xa) o1(gx q) o1(gx q)

such thajp > 0 and certain boundary condition holds. The main idea behind the analysis of

the g-Pearson equation is to study the graphg(@fx, q)/o(X, ) which leads to the shape of
the graphs op(x, g). In particular, by the analysis @{gx q)/o(x, g) we obtain the behavior
of p(x,0), e.g., the interval wherp(gx g)/p(x,d) < 1, p(gx g)/p(x,d) > 1, wherex > 0,

0 < g< 1, lead us to the intervals whepgs increasing and decreasing, respectively.
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In the analysis op(gx, g)/p(x, q) we consider all possible degrees of the polynomial coef-
ficientso1(x, ) ando2(x, ) as well as various relative positions of their zerosdetx, Q)
ando(Xx, q)). By the study of every possible rational form of the polynomialfioents we

obtain all suitable intervals of orthogonality as well as the kind of orthogonaistions.

Organization of the Thesis

The thesis is arranged as follows:

In Chapter 2, we establish some basic definitions related gvithlculus for our purpose in

the thesis.

In Chapter 3, we study some known characterizations [3, 6, 46, 48kafthfference equa-

tion of hypergeometric type along the same line with definition 1.10.

In Chapter 4, which is the main part of this thesis, we discuss the orthogookditipossible
polynomial solutions of thej-difference equation of hypergeometric typeEHT) by use

of qualitative analysis of thg-Pearson equation. We mainly concentrate ongfiRearson
equation in accordance with zeros of the polynomialfitccients of theg-EHT considering
discrete orthogonality with some certain properties. First of all, we corigtilieorem which
shows the determination of the end points of the orthogonality intervals asgdothe zeros

of the polynomial cofficients of theg-difference equation. Next, we concentrate on the main
results of the geometrical approach of thBearson equation considering all possible degrees
of the polynomial cofficientso1(X, ) andoz(X, q) as well as every possible relative position
of their zeros. In this way, we obtain all suitable intervals of orthogonalitywel as the

kind of orthogonality relation that can take place in dependence of the néray (X, q) and

O-Z(X’ q)

In Chapter 5, we compare each family that we have obtained in Chapter 4 wigp/tbkey
scheme [6, 42] . Later, we introduce some known limit relations between théfidd g-

polynomials of the Hahn class and the classical continuous and discretg3an86].

Chapter 6 concludes the thesis with remarks.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some basic definitions concerninggagtilculus which we use

in the thesis and we consider the functions belonging to the following set

Q:=Q[J] =({f:J— R;JcR st f’(0) exists.

2.1 Theg-Derivative

Definition 2.1 (g and q*-derivatives [30, 36, 38, 53]) Let € Q. Then q and tt-Jackson

derivatives Qf, Dy f of a function f on an open interval are given by

f(X) - f(a%)
-~ 0
Dqf(x) = a—ox = 7 (2.1)
f/(0), x=0
e f() - f(a'x)
X) — f(g~X
—_— 0
Dy f(X) = (1-ghx o (2.2)
f/(0), x=0

where ge R such thaq| # 0, 1. Note thatimg_1 Dgf(X) = limg.1 Dy f(X) = f/(X) if fis

differentiable at x.

Throughout our study we consideOq < 1 which determines the following diagram.

I aix T axo?x PN dyay I aly t
q-"x X q'x qy y qy
A diagram of the lattice points.
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As a consequence of definition 2.1

_ @@y = 1@ _ -1p f(ay (2.3)

DafM, o = —(g= Dt

and more general
n — NN
qu(x)|X:at = a"DYf (at). (2.4)

Therefore the relation betweerandg-derivatives can be performed as [36, 53]

qu(x)szq_1t = qDgf(q7't) = D2 F(1). (2.5)

Example 2.2 Let f(x) = x", where ne Z, then

(X" - x" -1
Dgf(X) = DgX" = ~——=——— =[n]¢X" 2.6
af (9 = D" = S = [lg 26)
where
_qn_l_ n-1 _
[n]q = q—l_q +..+1, neZ [0]q=0 (2.7)

denotes the g-integer [36, 53].

—1y\N _ N
Dy f(X) = DgaX" = % = [n] q,lxn—l (2.8)
where
q'-1_
[Nlg2 = -1 =q +..+1, neZ [0]g1=0 (2.9)

stands for the gt-integer [30, 36, 53]. One can find the relation between q an@igtegers,
[30, 36, 53]
[Klgt = q*¥[Klq. (2.10)

Definition 2.3 Let fandg e Q. Then, product rule of q and é-differentiations can be
derived as follows:

Dq [f()9(X)] = f(X)Dqg(x) + 9(@X)Dqf(x) = f(aX)Dgg(x) + 9(X)Dgf(X), (2.11)
Dg1 [F(¥a(X)]= F(X)Dgq19(X) + g(q71x) Dy f(X)= f(q‘lx)Dq_lg(x) +9(X)Dg1f(¥). (2.12)

Definition 2.4 (g and q*-binomial [30, 35, 36]) The g andd-binomial are identified with

nl __ (@an
e = G oy (2.13)
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[n] _ (a; q_l)n
Kot ™ (g, g (0 gDk

where(q; ), and(g; g 1), are the q and gt-shifted factorial defined by

@gn=(1-a)(l-qga)(l- qza)...(l - qn_la), (aq):=1,

(@ Do = D (S

(a gt g
wherea# 0,k=0,1,...n,n=1,2,... and

@qYn =@ on-a)"qg®,

with(5) = 272

We list the followingg-shifted factorials that we use in the thesis:

@q™ o) = (@*q; Pn(-a)"al), az0,

(aq; o)n

(a_]_ql_k, q)n (a' q)kq_nk’ a :/t 0’

(ag™ Qi =

@ 9)n = (& Gn(—a; An

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Definition 2.5 [10, 34, 36] Let0 < q < 1. Then the infinite produdg, 9)., defined by

(@a) = [ |1 -ad).
n=0

is convergent.

Remark 2.6 [10, 34, 36] Note that if

converges, then the infinite product defined by (2.21) also converges

The infinite product implies that

(& 0w
@f; Qo

(& gn =

15
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2.2 Theg-Integral

The g-integral is introduced by Thomae in 1869 and later on, by Jackson in@Ridh has

the definition as the following.

Definition 2.7 (g-integral [30, 36, 38, 53]) Let £ Q[O, a]. The definite g-integral is defined

as
[ tdix= a- @y o't (2.23)
j=0

provided that the sum converges absolutely. Hgpeisl called the Fermat measure [10]. The
g-integral defined in (2.23) is a Riemann sum on an infinite partitaaff, n > 0} on the
interval [0, a].

A
[ f(x)

ga da ga gqa a

Using this definition we may consider an inner product by setting

(f,9) :fo f (1) g(t)dgt - (2.24)

The resulting Hilbert space is commonly denoted_éw, a). The spacé_a(o, a) is a separable
Hilbert space [12]. Then the orthogonality with respect to the weighttiomev(t) is defined

by the relation

(f,g) = foaf(t)g(t)w(t)dqt: 0. (2.25)

Note that in case of & a < b,

b b a
f f(x)dqx=f f(x)dqx—f f(X)dgx. (2.26)
a 0 0

16



On the other hand, in caseak 0 < b,

b b
f f(X)dgx = fof(x)dqx+f f(X)dgx. (2.27)
a a 0

Definition 2.8 [30, 36, 38, 53] Let fe Q[0, ) and Qfo, ), respectively. The improper

g-integral of f(x) on [0, c0) and on(—co, o) are defined to be

f f(X)dgx = Zf f(x)dgx, 0<qg<L1. (2.28)
0 j=—oo qj+l
Notice that
00 q’N
f f(x)dgx = lim f f(X)dgX, (2.29)
0 N—oo Jo

and the bilateral g-integral

| t0odex=@-a) ) allf(@) + f-a) (2.30)

j=—o0

Definition 2.9 (q~*-integral [30, 36, 38, 53]) Let fe Q[a, o). The following improper -
integral is defined by

f ) f(Q)dga1x=—(1- q‘l)ai qf(qla). (2.31)
a j:O

The improper gt-integral is a Riemann sum on an infinite partitigag™, n > 0} of the

interval[a, ).

A_ f(x)

S S R >
0 aaq qzaq3 aq4
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Note that in case of & a < b,

fab FO)dg-x = fa ) f(X)dg2x - fb ) f(X)dg-1X.

Remark 2.10 It is clear that, when §x) is continuous or{0, a)

qli_)rrfj; f(x)dqx=£ f(x)dx

(2.32)

(2.33)

Proposition 2.11 (Fundamental theorem of g-calculus [30, 53]) Le€ Q[a, b]. Then

b
f Dqf (X)dgx = f(b) - (a)

where0<a<b < oo.

Proposition 2.12 [30, 53] Let fand ge Q[a, b]. Then

b b
f(x)g(x)|x=a’b = f f(X)Dgg(X)dgx + f 9(gX)Dq f (X)dgx
a a
by using product rule defined in (2.11).
2.3 Hypergeometric Series

The function, F defined by

ap, .. @ o (8, ...a )k X
F 1z = Ao AR
r s[ b .. b kz:(:) (b1, ...bs)k k!

(2.34)

(2.35)

(2.36)

is called the hypergeometric series whag (, a- )k = (a1)k...(ar )k is the Pochhammer sym-

bol identifed with @)x = a(a+ 1)...(a+ k—-1), k=1,2, ..., (@) := 1. We remark that in case

of one of the numerator parametesequals to-n, n = 1,2, ..., the hypergeometric series

becomes a polynomial of degraén z. The radius of convergengeof the series is [30, 36]

oo if r<s+1
p=91 if r=s+1

O if r>s+1

18
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2.4 ¢-Hypergeometric Series

g-Hypergeometric serig®s is given by

(2.38)

(RO

ap, .. & | O (1, Q) (A+s-nky(1+s-n(k)
I’¢S ’q1 Z) = Z (bl b ,Q)k(_l) q 2
bl, ceey bs k=0 ’ s

where @y, .., a; Q) = (az; Q«k...(&; Q)k is theg-analogue of the Pochhammer symbol defined
by (2.15). Analogously, when one of the numerator parameiessq™, n = 1, 2,..., basic
hypergeometric series is a polynomial of degnge z. The radius of convergengeof the

series looks like as (2.37) [30, 36].

In particular, assuming= s+ 1 in (2.38) leads to

a, ., a (A, ..a QK
s+1@Ps ; :Zg 2.39
1¢[ 1, . Ds ’q Z] 4 (ba, ...bs; Ok (G5 Gk (2.39)

which was first introduced by Heine in 1846.

We remark that the limit relations [30, 35, 36]

. 1-q° I (¢ (o)
| = | = 2.4
imT—q=® Im 1o (@) (2.40)

which constitute a crucial role for the theory of ti@nalogues of the functions, lead to

. g*, .., o a, ., o
lim_vos| L | @= 172 = Fs 2|, (2.41)
a q 1’ seey q S bla seey bS
Another important limit properties far-hypergeometric functions are given in [30, 35, 36]
. a, .., o z a, ..., Q-1
lim ¢ |q;— =r-1¢s |q;z , (2.42)
& bl, ceey bs ar bl, ceey bs
ala cee ar—l, M a13 ceey af—l
rPs |q;z = 1651 |q;z : (2.43)
b]_, cees bsfl, 2 b]_, . b&l

2.5 Transformation Formulas

This section includes some essential transformation formulas extracte3@o3b, 36].

qg", a b (e/a; Qn _, qg", a d/b; bq
qf = i — 1, 2.44
3¢>2{ 0 e ‘q Q] &) a"3¢2 6 ad-1e ‘q o (2.44)
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q" a b
302 [ ’q,
d e

_ded _(e/a;q)nd) g, a d/b
ab (& n 302 d, aql‘”/e
C—lql—n
(C q) b—lql—n

b N - -n
Cc

q", b _
2¢1[ ’(1: Z] = (q"bz/c; Q)n3¢2[
c

2¢1[ T b |Q;
c

(C; On

1¢1[ T |q;z
a

q_n, a, b q_n, a b
3¢2{ 0 0 ’C‘?qJ=a”z¢o[ |q: T,

q™",
3¢2
[ O’

q

(& dn

o q] (b; g)n 2¢1[

b

q", 0
b~ 1ql n

ccg/bz

1-\n —n’ afl 1—
(a2 ¢1[ q

- 1 q™,
&2 = gz g q

n+1
q

]_( -2 q(2)2¢o[

1
CIZ‘ ’q, _qn] _ (Z)—nqn+(g)2¢l[ q

20

—n

—N

—n+1
q

o q],

bz

q", c/b, O| . ]

1 —n’ , bC _nZ
‘ (b(CC)q)n 302 141 ! |q a
q n bc_ q —n,

g b blc; bz\" q", qzl
2¢1[ ’q;%]: ( . Q)n(__) b2 i
c

2.
o |q,zz],

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)



CHAPTER 3

THE Q-POLYNOMIALS OF HYPERGEOMETRIC TYPE

There are several ways of introducing and classifying the classitalgonal polynomials but
probably the best one is to start with théfdiential or dfference equations that such polyno-
mials satisfy (see e.g. [3, 6, 35, 46, 48]). We deal here with the so-apjpetynomials of the
Hahn class (see e.g. [4, 38]), solution of the so-calledfigpidince equation of hypergeomet-
ric type. In this chapter, we study on the hypergeometric typdigrdince equation and we
introduce some characteristics along the same line with the definition 1.10.dntordo this,

we first pay our attention to the construction of the ffedience equation of hypergeometric

type.

3.1 Discrete Version of Diferential Equation of Hypergeometric Type:

g-Difference Equation of Hypergeometric Type ¢-EHT)

In this section, we begin with considering the discretization of the classiGatential equa-

tion of hypergeometric type (EHT) by use of the Taylor expansioy(xfaboutx = 0
h? h3
y(x+ h) = y(X) + hy' (X) + Ey’(x) + Ey’”(x) +o
By defining the latticdn as g — 1)x with 0 < g < 1 we have
1 ,
y(@x) = y0) + (@ - 1xy(x) + (A~ 1Y () + ..

Substitutingg™! instead ofg at the resulting expression and multiplying tyé-expression

with ¢? and then substracting this forgaexpression, we approximate the first derivative

y(¥) ~

11 q[qu(x) +0Dg1y(¥)] as q-—1, (3.1
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and multiplying theg™ expression withg, then adding this form tq expression gives
, 2q
Yy’ (X) ~ meDq_ly(x) as g—1 (3.2)

with order @ — 1)?, where the operators denoted By and D1 imply g and q! Jackson
derivatives ofy(x) (2.1) and (2.2), respectively, [30, 36, 38, 53]. By inserting thes@vdtive

operators into the classical EHT and using the operational equivalences

Dq = Dq—l +(g- 1)XDqu-1 (3.3)
and
DqDg1 = 0 'Dg-1Dy, (3.4)
we obtain theg-EHT
o1(X; ) Dg-1Dgy(X, 0) + 7(X, Q) Dgy(x, ) + A(Qy(x.d) = 0 (3.5)
where
2 1
o1(x;q) ;= m o(X) — E(q —Dxr(X)], (3.6)
7(x, Q) := 7(X), (3.7)
Q) =4, (3.8)
y(x, q) = y(X). (3.9)

It is clear that, the cd&cientso1(x; g) andr(x, ) of the g-EHT are polynomials of at most
2nd and 1st degree ix respectively. Notice that trepEHT in (3.5) approaches the classical
EHT asq — 1.

The use of the relations between the operalyyandD-1 in (3.3) and (3.4) makes it possible

to find an alternative representation of EHT,

02(X; Q)DgDg1y(X, Q) + 7(X, q)Dg1y(X. Q) + A(Q)y(x.q) = 0 (3.10)

where
oa(x.0) = qloa(x q) + (1 - g H)xr(x q)|. (3.11)

Notice also that (3.10) becomes the classical EHT as 1. Henceforward we call the first
equation in (3.5) as thg-EHT of the 1st kind and the one in (3.10) as tp&EHT of the
2nd kind. We note that thg-EHT of the 1st and 2nd kinds are nothing else than the second

order linear diference equations of hypergeometric type on the linear exponential lattices
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X(s) = c10%+ ¢ andx(s) = c1q~° + ¢y, respectively (for further details see e.qg. [3, 46]). In the
following, we refer to the solutions of (3.5), (3.10) g@slassical orthogonal polynomials (or

just g-polynomials). Here and through out the thesis we assurme & 1.

By using (3.3), (3.4) and (3.11) in (3.5) or (3.10) an alternatpgifference equation equiva-
lent to (3.5) and (3.10) follows

o2(X, A)Day(x, Q) — gor1(X, )Dg-1y(x, @) + (a4 - 1)xA(q)y(x, q) = 0. (3.12)

Theg-difference equations (3.5), (3.10) and (3.12) can be written as

or2(x, QY(A% 0) — [or2(x, G) + A1 (X D]y(x ) + Pera(x, DY %, )
+( - DPCAQy(xq) =0 (3.13)
with the help of the operatof3; andD1 defined by (2.1) and (2.2), respectively. Notice that

from (3.12) and (3.13); ando, are needed to classify tlygpolynomials.

We introduce

o106 4 H)DgD-1y(% g ) + (X 4 )Dgay(x, g ) + A y(x,.q ) = 0 (3.14)
and
o2(% g )Dg1Day(x 471 + (% T HDgy(x, 7Y + A Hy(x. g ) = 0 (3.15)
where
20607 = q (g ) + (g - Dxe(x g ) (3.16)

which we call these two pairs of equationsgd-EHT of the 1st kind and;*-EHT of the

2nd kind, respectively.

Remark 3.1 Notice that analysing the g-EHT of the 1st and 2nd kinds @ith g < 1 is
equivalent to g*-EHT with s= g > 1.

Remark 3.2 Throughout the thesis, we define theffioents of the g-EHT of the 1st and 2nd
kinds as the following Taylor polynomials by taking into account thatdeg 2, degr, < 2

and deg = 1:
1
r1(x.0) = 570, a)x% + (0, q)x + 1(0, g), (3.17)
1
72(%,.0) = 550, X% + 050, @)x + 02(0, 0), (3.18)
7(x,q) = 7(0,9)x + 7(0, q). (3.19)
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Remark 3.3 Notice that by using the relation betweei(x, q) ando»(X, q) defined by (3.11),

the cogficients have relations

—02(0 QA = a3 01(0 ) + (q-1)7'(0, ), (3.20)
a5(0,0) = qo7(0.9) + (g~ 1)r(0. ), (3.21)
02(0,0) = go1(0,0). (3.22)

In accordance with [3, 6, 43, 47], we can determine the degrees ob#fiecentso; and
o2 in (3.12) from the relation in (3.11), using the fact theat(0,q) = 0 & 02(0,q) = 0
(01(0,9) # 0 & 02(0,q) # 0). Therefore we have two classes: the non-zero class which
corresponds to the case whef(0, g) # 0 & 02(0,q) # 0 and the zero class when (0, q) =

0  02(0,g) = 0 which lead to the following proposition.

Proposition 3.4 Letp(x, g) be the g-weight function satisfying the q-Pearson equation (3.24)
witho1(X, Q) = 201 (0, o) x? +07(0, g)x+01(0, g) andr(x, g) = (0, g)x+7(0, q), 7'(0,q) # 0.

If 01(0, g) # O, the following cases arise
(1a) Ifdeglra(x, g)] < 2, then degf2(x, q)] = 2
(1b) If deglr1(x, )] = 2, then degF2(x, g)] < 2.

If 01(0,q) = 0, then:

(2a) If or1(x, Q) = lo-/l’(O qQ)x?, a7(0,q) # 0, then degf2(x, q)] = 2, or degf2(x, q)] = 1.
(2b) If 71(x,0) = 307(0, @)% + (0, 6)x, 7 (0, 6) # 0,0y (0, 6) # O, then degf(x, o)] = 2
or degpa(x, )] =

(2¢) If ora(x. @) = 4 (0, a)x, 4 (0, ) # O, then degf2(x. q)] =

Proof. (1a) If degpr1(x,g)] < 2. Then,oa(x, ) = (q - 1)’ (0,g)x% + .... It is obvious that
degla(x, )] = 2 sincer’(0,q) # 0.

(1b) If deglri(x, )] = 2, thenc](0,q) # 0. Using the relations of the ciients in (3.20),
1 //( q)
1

710 q) , then,o5(0,q) = 0. In case of(0,q) # - 11( qq)

(3.21) and (3 22) with’(0,q) # — providec? (0, q) # 0 & degl2(x, q)] = 2 and if

7(0,0) = & degpra(x, g)] =

1

and whenr(0,q) = — 710 q)

& degpra(x, q)] =
(2a) Inserting the polynomlalsl(x, ), 01(0, g) = 0 andr(x, g) into (3.11) gives,

oa(x0) =q %0’1’(0, Q) + (L -gH7(0,g) | + (1 - g (0, g)x.
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3570, q)

In the case of’(0,q) # — Tt 05(0,q) # O then degf2(x,q)] = 2. If 7/(0,0) =

307(0.9)
1-gt’

(2b) This case is obtained in a similar way as in part (a).

(2¢) r1(x @) = 74 (0, x = 2(x.q) = (d - D'(0,9) + [04(0,0) + (1 - a™)(0,0))] %

7/(0,q) # 0. O

05(0,q) = 0, then degf2(x,q)] = 1.

3.2 Theg-Weight Function

In this section, we discuss tlgeweight functions for polynomial solutions of two pairs of the
g-EHT. In order to do this, consider tlipEHT of the 1st and 2nd kinds in their self-adjoint

forms

Dq [or1(x, )p1(%. 6)Dg2y(¥)| + a Apa(x. QY(X) = O (3.23)
wherep1(X, ) is theg-weight function satisfying the so-callegPearson equation
Dq[or1(X @p1(x, )] = g 7(x, Ap1(x, O) (3.24)

and

Dg-+ [2(% @)pa(x. )DGY(¥)| + a(@p2(x. Ay(X) = 0 (3.25)

in which theg-weight functionos(x, q) satisfies the1-Pearson equation

D5 " [2(x, Q)p2(X, 6)] = (X, Dp2(X, 9). (3.26)

Remark 3.5 By use of (3.11), the g-Pearson equation and thkeRpgarson equation can be

rewritten as

p1(Ax Q) _ o1(x.0) + (- g Hxr(x.6) _ g roa(x q)
p1(X, d) o1(qx a) o1(gx, 0)

(3.27)

and

pAT X @) _ 7ax Q) + (- xe(x0) _ Goa(x) (3.28)

p2(X,0) o2(q71x, Q) o2(g7x g)’

respectively. It is clear thabi(x,q) = p2(% g). Then without loss of generality we define

p1(X, d) = p2(X, q) := p(X, g).

25



3.2.1 Computation of theg-Weight Functions

In this part, our aim is to calculate tlggpweight functions corresponding to the orthogonal
polynomials together Wit|’ép, Pﬁ> # 0,n > 0. The following lemma allows us to find the

explicit form of theg-weight function.

Lemma 3.6 Let f satisfy the relation

flaxa) _ axq)
f(x;a)  b(x;g)’

where a and b are given functions, and assume that the limits

(3.29)

Iimof(x; g) = f(0,gq and Xlimf(x; q) = f(c0, Q)
X— —00

exist. Then, f admits the following two g-integral representations, in thetbassrrespond-

ing integrals converge,

f(x,q) = f(0,q) exp[fo (q—ll)t log

where the g-integral is defined by (2.23), or

a(t, )
e q)} dqt] (3.30)

a(t C‘)] dq_lt} (3.31)

0 = e [ ool 30

where the gt-integral is identified by (2.31).

Proof. By applying the logarithmic function to (3.29), multiplying the obtained expression
by 1/(q — 1)t and taking they-integral we arrive at

1 f(qt,q) 1
fo (@-1x 'Og[ f(t,q)}d“t‘fo CEE

fo ! Iog[f(qt’q)]dqt = A%Z[Iog(f(qjx,q))—Iog(f(qj+1x,q))] (3.32)
i=0

a(t.q
T q)] ot

But

(-1t f(t,0)

log[f(x, 0)] —log[f(0,q)]. (3.33)

The last equality follows from the fact tha{q™'x,q) — f(0,q) asn — o0, 0 < q < 1. The

other representation can be proven in a similar way. O

Notice that we can use (3.30) in order to computatisfying theg-Pearson equation for all

possible degrees of the polynomiats ando-, identified by the Proposition 3.4.
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At first, we deal with the non-zero case, that i5;(0,q) # 0,02(0,q) # 0) together with

Proposition 3.4 which leads to the following well-known results [6, 42].

Theorem 3.7 Let (Pn)ns0 be a solution of the g-EHT in self-adjoint form in (3.23) with the
g-weight functiorp. If a1(q), bi(q) are the non-zero roots af1(x,q) and a(q), bx(q) of
o2(%, ). Then, we obtain the following situations for the g-weight function as Table 8.1 an
Table 3.2.

Table 3.1: Theg-weight function for non-zero case according as the degrees ahdo»

o1(x,q) o2(%, Q) g-Weight function

(1) %0’1’ (0. )[x — ay (][(x — ba())], %0’2’(0, QX — a(@)][x - b2(@)], (8 (@)ax by*(@)gx 9)e
2

20—3_/(07 dai(q)ba(q) # 0 0"2/(0, Qaz(q)bz(q) # 0 (agl(q)x, bzl(Q)X; Deo
(2) %o’l’(o, QIx—ar(@I(x=by(@)], 050, P[x—a(a)], (&% (@)ax by (g)ax 6)e
307 (0, a)ag(a)ba(a) # O o5(0,g)ax(q) # 0 (@&X Q)X O
(3) 307 (0, Q[x—au(@I(x-bs(a)],  02(0,q), a PN
zvi (0, g)ay(apba(a) # O 02(0,g) # 0 (8" (@)ax by *(@)ax 9w
(@) 0. b2 (@), 3050, Ql-2@lx-b@,  @@ax e
o1(0, q)ay(q) # 0 1070, 9)a(q)ba(q) # 0 (@A) B, (@)X e
() (0.9 5% (0, Q)lx-2s(@l[ x-ba(a)], !
o1(0.0) #0 507 (0, 6)az(a)bz(q) # 0 (@%(a)x b;1(0)%; )

Table 3.2: Alternativag-weight function for non-zero case according as the degrees of the
polynomial codicients

g-Weight function q*
_ o (82(0)a/%. b2()a/X; Q) 2750.99°
P =X (@i ba(@/x 0. 17(0,9)
@ pxg) = —2 (@2(a)a/X; Ao a5(0.0)q°°
T Jost ((0)/%, bi(0)/; ) 107(0.q)
@) P = o : 20,99
T X%t (@ (0)/%, ba(@)/X; Q) 3070.9)
. ’7 —2
4 : _ @ /5051 (32(Q)/% ba(9)a/X; G 305 (0,0)q
@ pted ) ((Aa(a)/%; oo o(0,q)

3050, o)

(5) p(xq) = x*xX°%*(ay(q)q/x, ba(Q)a/X; Qe 2000
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Proof. Proof is based on the g-Pearson equation defined by (3.27). Conagtel that is,

}a'l (0, 9) [x — a(a)] [x — ba(a)] .

q[oa6a) + (L - g Hxe(x 9] = —crz /(0. 0) [x— ax(a)] [x— ba()],

O']_(X, q)

O-Z(X7 q)

taking into accoung*o2(0, @) = o1(0,q) = q 3075 (0, g)ax(q)b2(q) = 30 (0, g)as(q)bs(q),
i.e., the polynomials|to,(x, g) ando1(x, q) have same independent term, we can write the

g-Pearson equation as the following form

paxaq) _ 9 1530750, 0)(x— a(@)(x - ba(q)) (1 - a;M(@)¥)(L - b3 (6)x)

- = < 2 (3.34)
p(a)  307(0,q9)(ax— aw(@))(ax-bi(q)) (1 -a*(@ax)(1- b (a)ax)
from whichp follows from (3.30) as
_ ) al 1l
p(x.d) = p(0,0) eXp{ fo - 1)t[ln(l o (a)t) + In(L — by (ant)
~ In(2-a;}(g)qt) - In(1 - b—l(q)qt)]dqt} (3.35)
Now with the definition (2.23) of the g-Jackson integsas equivalent to
p(x06) = p(0,0) exp{zln(l—ail(q)qK”X)+In(1—b11(q)qk+1><)
k=0
- In(1-a"(a)q%) - In(1- bgl(q)qu)}
= p(0,9) exp{ln [ [ - (@d“ (1 - by (a)d )]
k=0
- In[]]a-at@d¥a- b;l(q)qu)]}
k=0
-1 -1
I q)(al (@ax by (g% deo (3.36)

(@1 (a)x b3 (a)x; 6)c
in whichay(q)g17%, by(q)g~1%, k > 0 are zeros and,(q)q~!, bo(g)q~!, j > 0 are poles with

a1(q), b1(g) € C — {0} andax(q), b2(g) € C — {0}. Notice that the function obtained in (3.36)
is meromorphic and thus, it is continuous wit(0, g) # 0, then we can take without loss of

generality thap(0,q) = 1

All the other cases in Table 3.1 can be determined in a similar manner. Howleve&ases
defined in Table 3.2 are not based on the same idea. In order to identify ¢thsss we

consider case 2 in Table 3.2 satisfying the g-Pearson equation

paxq _ a(1 - ax(q)/%)
p(x0)  x(1-qtay(q)/x)(1 - q-tby(q)/x) (3.37)
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q-30%(0,q)

wherea = T,
Eo-l (O’ q)

. We can defing as a product of two functiong(x, ) = f(x, q)g(x, q)

paxa) _ f(axa) g(ax )
p(xq  f(xq) 90

flaxa) _a  9@x9 _ (1-2ax(a)/%)

fxa) — x " gxa)  (1-qgta(e)/X)(L - g tbi(a)/x)’
sponding functionf (x, q), we use the functioh® : [0, ) — R given in [6] identified by

Ve
hO) = V%% B g0,

To find the corre-

Hacker

We assume that(x, q) = h(|i(T|(x) a € C - {0} whereq® = a
x| a
fquo) = — I - 2txa)

X /Xlogq x—1

For the computation ofi(x, g), the equation (3.30) does not work since it gives a divergent

infinite product. Then, we use (3.31) which leads to

glaxa) _ (1-a2(q)/x) o 9axa) _ (1-a(0)/ 9 - bi(@)/)

gx.q)  (1-qgla(g)/x)(1- g bi(a)/X) (. q) (1 - ga(a)/X) ’

we attain the desired result

ged) © 1 (- @) - bi@))
o) exp[fx @-q ot '”[ - @@/ ]d‘*‘“]

exp

lim 3" [In(1 - g™*Jaz(6)/x) - In(L - d'as(6)/x) - In(L - qibl(q)/x)]}
j=0

(922(9)/X; d)eo
(a1(a)/x, b2(@)/%; Do’

(3.38)

Obviously, the product ig(x, g) is uniformly convergent in any compact subset of the com-
plex plane that does not include the poif8a;(qg), n > 0}, {q"b1(q),n > 0} and{0}. More-
over, this product is convergent as— oo, thusg(eo,q) = ¢ # 0 and hence without loss of

generality we can take it as 1. Then tpgveight function can be arranged as

IX* (922(a)/X; 9eo
x,d) = f(x, ag(x, g) = . 3.39
p(x.a) = f(x a)g(x q) ot (@a(Q)/x (@)X Q) (3.39)
The other cases defined in Table 3.2 can be constructed analogously. O

The next step is to compute tlgeweight function identified by (3.32) and (3.31) by taking
account of the zero case (0, q) = 02(0, ) = 0 together with all possible degrees identified

by the Proposition 3.4. In order to do this, we establish similar frameworklasvi
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Theorem 3.8 Let (Pn)ns0 be a solution of the g-EHT in self-adjoint form in (3.23) with the

g-weight functiom. If a1(q) and b (q) are the zeros af1(x, g) and &(qg) and () of o2(X, Q)

with by(q) =

0 and by(g) = 0. Then we obtain the Table 3.3 and Table 3.4 [6, 42].

Table 3.3: Thag-weight function for zero case according as the degrees a@hdo»

o1(X Q) o2(X, Q) g-Weight function qQ*

OF zfrl (0, a)x, 202 /0. a)X[x - ax(@)], __ X" 1 93030, 92:(q)
107(0.9) # 0 1050, q)ax(a) #0 VX% (@ H(AX Q) 107(0.9)

(2) 307(0.9)%%, 5(0,9)x, X Ve T 750,99
10(0,q) # 0 o5(0,q) £ 0 307/(0,q)

(3) 307(0, )X x-a1(a)], 305 (0, AYxX[x—ax(q)], e (@ (@)ax g)e 20-2(0 a)g2ax(q)

3070, 0)ag(q) # 0

43
%0’1’ (0, q)ay(q) £ 0

~—

07/ (0, o) X[ x—ay(a)] ,
écr’l’ (0, g)ay(q) # 0

OF;

(6) 1(0.9)x,

a7 (0, q)x[x—ay ()],

305(0,0)az(q) # 0 (@)X Ao 15(0,0)as(q)

(0. g)x, ¢ (a-L( e q%0%(0.9)
IX* (@ (A% Qoo _——
4(0.9) # 0 o L7(0.9)a(q)
—21 77
20’2 (0, 9)x?, X A /xlogq X‘l(all(q)qx; Qoo — 5075(0,0)

% o7(0, q)as(q)

~2107(0, q)ax(q)

3070, X{x-2(@l,

o,(0,q) # 0 14/(0,6)az(q) # O (@(@)X; Qe o(0,q)
(7) 74(0.9)x, 105(0.9)%, o JdoaI q?305(0.9)
7(0.6) %0 154(0.0) # 0 " v 0'1(0, )

Table 3.4: Alternativey-weight function for zero case according as the degrees of the poly-

nomial codficients

g-Weight function q*
—31 (0
(1) p(%,0) = X" (gae(a)/X; Qe M
(G2e(c)/% @) 2“1('9«?)@
_ a qan X; o 2
(3) p(x.0) =X @1(0)/% D —22 70,9
@ xg = 1 q “0%(0.9)
P = ot (au(0)/% 0) 1577(0.9)
O Y T —— T 50509
PRV = @@ x ). 37109
0
(6) p(%.0) = X VX°%*H(qap(d)/X; q)e 97272009
O'l(O,C])
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Proof. We compute thej-weight function by taking into account of the zero case identified
by the proposition 3.4 as two separate states since the ragiddaarson equation fiiers [6]
whether the polynomials1(x, g) ando(x, ) have zero roots with multiplicity two or not.
Starting with theg-Pearson equation (3.24), we consider

p(ax @) _ g toa(xq) _ g *xooz(x q)

p(xq)  oi(axd)  gxoou(axa)

whereo(X, ) = xo02(X, ) ando1(gx q) = xo01(gx ). Notice that constant terms of the

polynomialsog1 andog, may not be equivalent. We suppose thatdh&eight function can

be defined ap(x, q) = [X* po(X, q), @ € C — {0} where

po(Ax Q) _ 002X 9)
po(%Q)  oo1(gx Q)

Then, according to the cases defined in Table 3.3 we use (3.30) to copyfutg). To

show how it happens, we consider the 3th case which hag-theght function of the form

q72307%(0,9)a2(q)

L Oga@ VD

p(%.0) = X po(X, G) whereq” =
1(x.8) = 5070, + 1(0, X = 3070, XX - aa(a)],

o2(X.d) = _0'2 /(0,0)%% + 2(0, )X = _0'2 (0, g)x[x — az(q))]

and
po(@x @) _ (1-a"(@%) (3.40)
po(%.Q)  (1-a;X(q)ax)
By using (3.30) for (3.40) we get
(@ (9)ax a)e
)= ————, 3.41
pol% 0 = e (3.41)

then
@E'@axde ‘250-’2’ (0. d2e()

oo o a9 =
(G (6) D) 3070, au(a)
which is theg-weight function for 3th case given in Table 3.3. So as to determing-tixeight

(X q) =[x

function defined in Table 3.4 we concern with

o q_ZO'N(O, q)
where
po(@x @) _ (1-2(@)/¥ _ po(@*x0) _ (1-au(a)/x) (3.42)

po(x @)  (L-a(@al/X) ~ po(xq)  (1-ax(@)a/¥)’
By using (3.31) we arrive at
(a2(9)a/X, Ao

@)/ 0 (3.43)

pO(X’ q) =
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then
@@a/x s o 9°030.9

p(%d) =[x @@/x D a = log, —0"1’(0, 9

At last, we need to calculate tlgeweight function for the 2nd and 7th case where the function

identified by Hackerh®) : [0, ) — R
hO(x) = VX% 5, p#0 (3.44)

is used. Applying the property®)(qx) = ¥*h®)(x), for all x > 0 providespg(x, q) = hM(x)
for the 2nd case, aneh(x, q) = h-1(x) for the 7th [6].

The other cases can be obtained analogously. O

Remark 3.9 We remark that the g-Pearson equation have solutions which geretit from
the ones given in the Table 3.1, Table 3.2 and Table 3.3, Table 3.4. Feiedi forms arise
from the structure of the g-Pearson equation. The procedure of ciimgmew representations
is to define the g-weight function as the product of two or more functiondysatjsa g-
Pearson equation. Then, in order to determine the solutions we use thélsuidantity

among (3.30), (3.31) or the function identified by Hacker.

3.3 Polynomial Solutions of theg-EHT of the 1st kind

Polynomial solutions of thg-EHT of the 1st kind named-polynomials of the 1st kind are
presented by showing that ajtderivatives of the functions of the hypergeometric type are

also functions of hypergeometric type which can be proved in the followiegrém.

Theorem 3.10 Let w(x, Q) = Dgﬁ)ly(x, g) with vo(x, q) = y(x, ), then w(x,q), k= 0,1,... are

also solutions of a g-EHT.

Proof. Applying Dy to theg-EHT in (3.5) and by use of the product rule identified by (2.12)

and relation between the operators in (3.4), we have

01, (X g)Dg-1Dgva(X, Q) + 71, (X, @)Dgvi(X, 0) + 41, (Q)va(X, @) = 0
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where,

o1,(% 9) = o1(q7%, ),
71,(X @) = 7(X, @) + Dg101(X, 9),
A1,(09) = g7 A(Q) + Dgar(x, )]

It is seen that(x, g) also satisfies g-EHT of the 1st kind . By applying thg *-derivative
to theg-EHT of the 1st kind successively, tliegEHT for vk(x, q), k = 0, 1, ... is determined in

the form
01, (X @)Dg-1DgVk(x, Q) + 71, (X, G)DgVk(X, Q) + Az, (A)Vk(X, 0) = O (3.45)
where,
o1,(% ) = o1(d7x, 0, (3.46)
71,(% Q) = 73,, (X, Q) + D101, (X, 0), (3.47)
A1,(0) = g A1,,(9) + Dgary, 4 (x.G)] (3.48)

with o1,(X; ) = o1(X; q), 71,(X, 0) = 7(X, q) and11,(q) = A(q). It is obvious thatry, (X; q)
andty,(x, q) are the polynomials of degree at most two and exactly one, respectively a

A1,(0) is a constant. Themw(x, q) also satisfies g-EHT of the 1st kind. O

Moreover, by solving the cdicientsry, (X, ) andas,(q) successively, explicit forms

o1(q7*%, ) — or1(X, Q)
(gt -1)x

A1,(@) = g7 | A(q) + [Kg7' (0. q) + %[k — 1g2[Klqo7(0.9) (3.50)

71, (X, 0) = 7(X, Q) + (3.49)

are determined in whictk]q and K]+ are theq andgt-analogues ok defined by (2.7) and

(2.9), respectively.

Notice that by means of the relation betwegf(0, ) ando'(0, g) identified by (3.20);

o%(0,9) = q|o7(0,9) + 2(1- 4717 (0,9)] ,

K
A (@) = a7 [A(q) + ﬁ (a7o%(0.0) - g * Vo (0, q))] (3.51)

is determined in terms af; ando,. Now condition for polynomial solutions of trgeEHT

of the 1st kind are defined in the following theorem.
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Theorem 3.11 The g-EHT of the 1st kind have polynomial solutions, ga&y ¥ P4, (X, 9), of

degree n if and only if
’ 1 77

A@) = n(0) = ~[nlq [¥'(0.0) + 5[~ Lq107(0.0)[. n=01.. (352
Proof. For specific value ofi(q) given in (3.52) maked,, () = 0. Then, theg-EHT of the
1st kind forvy(x, Q) has a constant solution Sincevn(Xx, Q) = Dgl)ly(x) wherey(x) is the
solution of theg-EHT of the 1st kind andin(x,q) = c, then Dg])ly(x) = ¢ from which we
obtainy(x) := P1,(x ) is a polynomial of degree by performing g-integral successively
[30, 53]. To prove the converse of the theorem, suppose tha}-EteT of the 1st kind has

polynomial solutiorny(x) := P1,(x, ), theanI)1 P1,(x, q) = csatisfies @-EHT of the 1st kind
if and only if 25, (g) = 0, which completes the proof. O

Proposition 3.12 Let Ay,,(q) = g™[A(q) + [Klq7'(0.0) + 3[k — 1]¢-1[K]qo} (0. 6)] be the co-
gfficient of the g-EHT in (3.45) for g?lyn(x) = Vkn(X, ). Then,

’ 1 77
A1,(@) = ~[n K (r (0.0) +[n+k~ 11507 (0. q)), l1o(@) = An(@).  (3.53)
Proof. Proof is trivial by use oft,(q) defined by (3.52) and substituting this valuelir),. O

Remark 3.13 Itis possible to write the g-EHT of the 1st kind f@r(x, g) in self-adjoint form

D |71, (X, D1 (X, A)Dgr1Vin(X, D] + g A1, (D1 (X, AVkn(x, @) = O (3.54)

where ¥n(X, Q) = (Dg‘_)an(x; q)). Here, the g-weight functiopy, (x, g) is the solution of the

g-Pearson equation

Dg [, (% Do, (% D] = 4 71,(X, D1 (%, ). (3.55)

Proposition 3.14 Letp(x, g) be a solution of (3.24) anph, (x, g) a solution of (3.55). Then,
n-1

P1,060) = o1, (% Dp1, (6 Q) = ... = | [ ra(@™*x p(x. ), (3.56)
k=0

P1,(X.0) = p1(X. 0) = p(X, Q).

Proof. Starting from (3.55) and rewriting it in the equivalent form

- (qﬁlqgltgqx’ D o1,(% Q) + (1 — g Hxr1,(x,q) (3.57)
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and substituting (3.46) and (3.47) to the right hand side of (3.57)

0'1n_1(X, Q)pln_l(X, q) _ 01, 1(qx’ q)pln_l (qx, q) (X)
- n
p1,(X.9) p1,(0% 0)
is obtained where,(X) = c,(gx). Since it is enough to find a particular solution of tipe

Pearson equation fen, (X, g) (3.56) then we may take,(x) = 1 which makes

pln(X7 q) = O-ln—l(x’ q)pln—l(x’ q)

Thus, successive solution gives
n-1

p1,060) = o1 (@ % ). (@ % Do (x, Pp(x, @) = | [ ea(@™*x Dp(x, ).
k=0

3.3.1 The Rodrigues Formula for Polynomial Solutions of the}-EHT of the 1st kind

The representation of the polynomial solutions is characterized by thalleot&kodrigues

formula describing in the following theorem.

Theorem 3.15 Letp(x, q) be the g-weight function defined by the g-Pearson equation (3.24)

andps, (X, q) by (3.56). Then,
Dgle1,(x. 9)]

e (3:58)

P1,(x,0) = q"By,(0)
where
(1 ]q 1[2]q 1. [n]q- (n)
/llnn—l(q)/llnn—z(q) /llno(q) 10
stands for normalization constant wit Z?I{q) = W qfl P1,(x, Q).
o

Bi,(a) = (-1)" (@ (3.59)

Proof. By using (3.56) we consider (3.54) f@ﬁ”)(x Q): _WD P1.(x.0)= [T]lrlvnn where
o
[ = (g2l g

1
Dg [p1,(x APT(x.0)]| = [f] 10010 1,5 (6 P I(x.0)].

Then applying the operatdyy successwely. we obtain

D3 [p1,(¢ PY (X, Q)| = — o1, 4 (D A1,,(0) 01, (X P 2% )]

e [2]
q—3

Dalen 0 AP 0| =

g1 (@)A1 5(0) [P1, 506 P I (x, )]

(=1)g™
[l]q 1[2]q*1 [ ]q*

D [, (x QP (x 0)| = A1 (0)---A1,6(0) [P1, (% YPE (X, )]
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which is the desired result withy,,(q) := An(Q), p1,(X. Q) := p(X, Q), P(l?(x, g = P1,(x,0)
and P(lr;)(x, q) = P(lr;)(q) asP(lr;)(q) is independent ox. O

Remark 3.16 Notice that the normalization constant defined by (3.59) can be written in the

form

a0 PO (3.60)
[15=5 [7(0.0) + [n+ k= 1]g2 307(0. 9)] E

by using the expression fas,, defined by (3.53) and the relation betwedéh, and[K]q-1 in
(2.10).

B1,(0) =

Proposition 3.17 Normalization constant £(q) presented in the Rodrigues formula (3.59)
can be rewritten for monic polynomials @(q) =1)as

(-1 - gY@
(3070, )" (a"aa(@)ba(@)az (b3 (a); )
where a(q), b1(qg) are the roots of the polynomiat;(x, ) and &(q), b2(q) of the polynomial

B1,(Q) = (3.61)

o2(%, ) and(a, ), is the g-shifted factorial identified by (2.15).

Proof. Insertinga,,,(q), fork = 0,1,...,n - 1 into the product gives

]‘[m(q)—( D[ [nqﬂ( @)+ [+ k-1l 15070.0).

Later, we substitute this value into the normalization constant (3.59) with coimgjdie

property between-number and-number (2.10) and we arrive at the following expression
o)

(7(0.9) + [2n - 2]4130%(0.)) .. (7/(0.9) + [n - 1|1 207(0.))

Then, by using the relation defined by (3.20) and (3.22), we get

B1,(0) =

n-1 3(2) 1 //(O q)
n(r’(O, q)+%[n + k= 1]q107 (0, CI)) (<1 mr=y i (9™ "aa(@)ba(@)a; (A)b; (a); )
k=0

where(g) = n(n — 1)/2. Afterwards, substituting this product into the above equality for

By, (0), result is obtained. O

Rodrigues formula is particularly useful to identify the explicit expressiwiife polynomials
P1,. Alternatively, we introduce another representation of the polynomials inofleving

proposition by means of the following identity

DRf(x) = Z( 1)gikst/2=nk [ ] f(gfx) (3.62)

T-gn Q)”X”
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where|!'| is g-binomial identified by (2.13).
h Eq' bi ial identified by (2.13)

Proposition 3.18 Let Djf(x) be given with (3.62). Then,

q"B1, (@) [T o1(q7'%, ) e
P1,(x.q) = T=gra D, (FLfgtenrzniek]al
k=0

1553 o2(d'x, 0)
153 oa(a-1-Dx, q)

(3.63)

where B, (q) is the normalization constant defined by (3.60).

Proof. Puttinngf(x) given with (3.62) into the Rodrigues formula, we arrive at the following
representation dP,,

K
P1,(xQ) = iz ;n)(nq)zn Z( 1)¢gkkr1)/2-nk- k[ ]q%'

n-1

By use ofps,(x,0) = [ | ou(a™'x @)p(x q), and
i=0

pax Q) _ qloo(xq) _ p(ax9) _ goa(x.q)
p(x0)  oi(axq) p(x0Q)  oAatxq)’

we attain the result given in the proposition.

3.4 Polynomial Solutions of theg-EHT of the 2nd kind

We introduceg-polynomials of the 2nd kind analog tppolynomials of the 1st kind. We
begin with modifying the theorem 3.10:

Theorem 3.19 Let u(x, q) = (k)y(x q) with up(x, ) = y(x, ), then w(x,q), n=0,1,... are
also solutions of a g-EHT of the 2nd kind.

Proof. Applying Dq to theg-EHT of the 2nd kind and using the product rule defined by (2.11)

give g-difference equation far (x, q)

02,(X ) DgDg1u1(X, 0) + 72, (X, d)Dqua (X, 0) + A2, (A)ur(x, ) = O
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where,

02,(X 0) = o2(qx q),
72,(X, 0) = 7(X, 0) + Dgo2(X, 0),
A2,(0) = q[A(q) + Dqr(x, q)].

By applying theg-derivative to theg-EHT of the 2nd kind successively, we arrive at tipe
EHT for ug(x,g), k=0,1,...

(% Q) DgDg 1UK(X, G) + T2, (X, G)DgUk(X, G) + A2, (A)Uk(X, G) = O (3.64)
where,
T2,(%0) = o2(q, ), (3.65)
72X Q) = 73, (% O) + Dgora_,(X. O). (3.66)
A2,(0) = d[Az,,(0) + Dy, (% O] (3.67)
with o72,(X, @) = 072(X, 9), T2,(X, 9) = 7(x, ) andz,(q) = (7). O

We can write the explicit form of those cihieients

o2(gfx, §) — o2(X, Q)
(q-1)x

10 = ¢ [1@ + K7 @) + k- T30, (69

T2(X o) = 7(x,g) + (3.68)

in which g-number K]q andgt-number Klq: are defined by (2.7) and (2.9). Another repre-

sentation oft,, () follows from (3.20)

[k] -1 ’” —1 s
A2,(0) = o [A(q) + 2(1i 3 (007 (0.9) — ¢ (0, q))] . (3.70)

Remark 3.20 Notice that the g-EHT forgfx, q) (3.64) and for y¥(x, g) (3.45) are not equiv-

alent since while Mx, q) = D;k_)ly(x), (X, Q) = Dg‘)y(x).

We have polynomial solution of ttgEHT of the 2nd kind for specific value a{q) as in the

g-EHT of the 1st kind which can be stated in the following theorem.

Theorem 3.21 The g-EHT of the 2nd kind has polynomial solutions, &y ¥ P, (X, ), of

degree n if and only if

AQ) := An(Q) = —[n]g2|7'(0,Q) + %[n -1]qo50,q)f, n=0,1,... (3.71)
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Proof. Proof is done analogously as in Theorem 3.10. O

Remark 3.22 Notice that1,,,(q) defined by (3.69) can be rewritten as
’ 1 1’
A2,(@) = [N = K] 41 (T O, +[n+k- 1]qéa-2 (0, q)). (3.72)

by using (3.71).

Remark 3.23 It is possible to write the g-EHT of the 2nd kind in self-adjoint form

D+ |2, (% @)z, (X, A)Dq (D Pa(x; )| + A (o2 (x. 0) (DY Pa(x @) =0 (3.73)

where BY(x;q) = [1]1g‘> DEPa(x;a), [21§ = [Llq[2]q.-[nlg. Here, the g-weight function

02,(X, q) is the solution of the g-Pearson equation

Dgt [02,(X, Q)p2,(%, Q)] = dr2,(X, Q)p2,(X, 0). (3.74)

Proposition 3.24 Letp(x, q) be a solution of (3.26) anob, (X, ) the solution of (3.74). Then,

n-1
p2,060) = 2, 1 (% Dp3, (%, Q) = ... = [ [ ra(cx, A)o(x, 0. (3.75)
k=0

3.4.1 The Rodrigues Formula for Polynomial Solutions of the-EHT of the 2nd kind

Theorem 3.25 Letp(x, q) be the g-weight function defined by thé-dPearson equation (3.26)
andpy, (X, q) by (3.75). Then,

DT [p2,(x. )]

PMnm=¢%mmJ%@ﬁr— (3.76)

where

Wo2le-Ila
T @z (@@ 2D (3.77)

stands for normalization constant wit ';?-'(q) = ﬁDngn(x, q) = ﬁunn, [119=[1]...[n]q.

Bz, (0) = (-1)"

Remark 3.26 Notice that the normalization constant defined by (3.77) can be written as the
following form
) o
P57(Q) (3.78)
- ., 2

M55 [70.09) + [n+ k- 114305 (0.0)]
by means of the expression fof, defined by (3.72) and the relation betwd&hy and[k] 1
denoted with (2.10).

B2,(0) =
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Remark 3.27 Notice that, another representation of &) for monic polynomials (E)(q) =

1)
d®@-qr

By, (Q) = (3.79)
" ey 0.9 (g ta@by(Q)a A b g),
and by using the property (2.17),
—_1yg-20) (1 — g0
B2 (@) = g =1-9 (3.80)

3050, 9)]" (at-"a H(a)by (@)az(a)ba(a); 41)
where a(q), b1(q) are zeros otr1(x, q) and &(q), b2(q) of o2(x, Q).

Alternative representation for the momgjgpolynomials of the 2nd kind can be introduced via

the following finite sum
1 n
n — _1\Kq—k(k+1)/2+nk [n -k
D00 = gy 21 [l f@™) (3.81)

Where[E]crl is the g~2-binomial defined by (2.14) and(q 1), is the g-1-shifted factorial
defined by (2.17). By applying it to the Rodrigues formula defined in (3i7B)presented in

terms of coéicientso1(x, q) ando (X, q) in the following proposition.

Proposition 3.28 Let Df‘q,l f(x) be given with (3.81). Then,

q "Bz, (9) [1{y o2(a'x, q) _
PZH(Xa q) — (1 - ql_f)nxn Z (—l)kq k(k+1)/2+nk+k (382)

n
k=0

[n] H:(:_ol O'l(q_ixy a)
“at kL ora(qn11x, )

where B, (q) is the normalization constant defined by (3.78).

Remark 3.29 We remark that by using relations between the polynomigficants (3.20)
and (3.22), and also the fact that the g-EHT of the 1st and 2nd kindsqaiigadent to (3.12)
and (3.13), the g-polynomials of the 1st king,®&, g) and the 2nd kind B (x, q) are equiva-

lent.

Observe from the representation formula identified by sum in (3.63) thapiertds on the
polynomial codficientsoi(X, q) ando»(x, ). On the other hand, this formula allows us
to identify the hypergeometric representation of polynomial solutions oftBeIT. That's
why in the current study, hypergeometric representations of polynomiiatiens of theg-

EHT of the 1st kindP1,(x, ) are discussed according as all possible degrees ©f g) and
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(X, q) identified by the Proposition 3.4. We remark that hypergeometric repedsmaTs of
g-polynomials of the 2nd kiné,, (x, ) can also be found by use of the formula (3.82) which
have the equivalent form with the 1st kind polynomials. Then, without loggenérality we

assume tha®1,(x; q) = P2, (X; Q) := Pn(X; Q).

3.5 Hypergeometric Representation of the&-Polynomials

Hypergeometric representation of all kind of monic polynomials identified jeTd.1 are
introduced in the following by studying on the representation formula (3.@@&Xtber with all

possible degrees of1(X, ) ando (X, ) given in Proposition 3.4.

1. Letory(x,q) = 307 (0, )[x—as(q)][x—b1(q)] andora(x, q) = 5075 (0, ) [x—az(][ X~ ba(q)],
then the representation formula given in (3.63) becomes

. X" q"  x/axd), x/bxd) |
Prxi @) = ———oo——aee| N T (3.83)
@ 76g * Dn a"x/ai(@), g "x/by(0)
291

by computing theg-binomial [E]q with the help of (2.13) defined in Definition 2.4 and the

normalization constarB,, (q) of (3.60)

?G)(1- gy

B1,(d) = - TN (3.84)
— nfL /7 n n-22-2\">".
Remark 3.30 Note that
a17 ey al' al? ey ar
s 62| = nrgs a2 (3.85)
bl, aeey bs bl, aeey bs

where g is leading cogicient of the polynomial angdps is g-hypergeometric series defined
by (2.38).

Observe from the representation of tppolynomials defined by the formula (3.83), it is not
clear to see thd®, is polynomials of degreerin x. That's why, we perform the transformation

formulas defined by (2.44) and (2.45), successively to (3.83) by 8iigd), i.e.,o2(0,q) =
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qor1(0,9) & 307 (0, Q)az(g)ba(a) = g307; (0, g)az(q)by(q) which lead to
b3(a)(a1(g)/b2(0), b1(a)/b2(q); A)n
(gn-tas(g)bz(g)a, (@)by(q); On
(q-", o Lay (@)br()a (@b L),  X/ba(a) ]
Xag2 o
a1(g)/b2(a), bi(q)/b2(q)

Pn(x; Q)

(3.86)

and equivalently
a(a)(aw(g)/a2(q), b1(g)/a2(q); An
(g™ tay(a)br(g)as (@b (a); O)n
-n n-1 -1 -1
Xw[ q", g a(@bu(a)a;(g)by (a),  x/ax(q) |q;q]‘ (3.87)
a1(9)/az(q), bi(a)/a(q)

Pn(X; Q)

Note that sincer1(x, g) ando»(X, q) are invariant with respect to the transformatafiq) <
b1(q) andax(q) < bo(q), (3.87) is also obtained from (3.86) by using this kind of transfor-
mation. It is apparent from hypergeometric representations define8l®§)(@and (3.87) that
theg-classical)-JacobiJacobi (see Table 4.1) monic polynomilis a polynomial of degree

exactlynin x.

An alternative equivalent form for the-hypergeometric series is derived by applying the
transformation formula (2.44) to (3.87)
o®)[~ba(q)]"(@s(6)/2(). 21(c) /b2(q): G)n
(e tay(q)br(@)a; (@)by(a); )n
—n, n—la b -1 b—l , a X
q", o ay(a)bu(a)ay ()b (a),  aa(a)/ |q_ LI S
a1(g)/az(a), a1(q)/b2(q)

Pa(x ) =

X 1
w2 b1(q)
2. Letoy(x,q) = 3070, )[x — ar(q)][x — ba(g)] and o2(x, @) = (0, [x — a(q)], then
the hypergeometric representation of the correspondintassical@-JacobiLaguerre (see
Table 4.1) monic polynomials follows from (3.63) by substituting the polynomiefficeents
defined above and tlegbinomial [p]q in (2.13)

q"Br, (Q)[3077 (0, )]"g" VX"

Pa(xq) = (11_ o (aa(a)/x ba(a)/; Q)n

" x/a(q), O _
1-n 1-n |q’
g "x/ai(q), g "x/by(q)

X3p2 (3.89)

whereBy, (q) denotes the normalization constant derived from (3.60)
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A-gh"
(-1)era-n[ 307 (0.q)]"
Since it is not easy to see that the hypergeometric representation @fJdeobiLaguerre

B1,(q) =

(3.90)

type monic polynomials identified by (3.89) is a polynomial of degrée x, we first use the
transformation formula (2.44) as— 0, secondly, we apply (2.46) to the resulting formula

and last, we use (2.47) which allow us to construct the formula

el _ qa", x/a(g, O _
Pa(x; @)=a3(a)(au(6)/ax(c). br(a)/22(0); a2 o af- (3.91)
a1(g)/a2(q), bi(g)/a2(q)

We remark that hypergeometric representation of @hkacobiLaguerre type monic poly-
nomials identified by (3.91) can also be obtained by talop@) — <o in the case of the
0-JacobiJacobi type monic polynomials defined by (3.87) with the help of the relation that
02(0,9) = qo1(0, )
=3 %0-’2’ (0, @)ax(q)b2(q) = q%o-'l’ (0, g)azr(q)bs1(q) (for the further details see [6]).

3. Letoi(x Q) = 307(0,9)[x — ay(q)][x — bi(a)] andoo(x, q) = 2(0, 0), then the hyperge-
ometric representation of thieclassical)-JacobiHermite (see Table 4.1) monic polynomials

is derived from (3.63) as

q", 0 O

Pn(x; a) = X"(ax(@)/x ba(a)/X; q)nssoz[ |q; q] (3.92)

q“"x/au(a),  q-"x/bu(a)
with the help of theg-binomial || by (2.13) and the normalization constdt (q) by (3.60)
klg K
PG (1 - gy
(1507 (0. g™

In addition, one can also get hypergeometric representation equit@algh92) as the form

a"  a(g)/x |q'£
" bi(q)

by use of the transformation formula (2.44) wah— 0, b — 0 together with the idea (2.42)

B1,(a) = (3.93)

Pa(x @) = 4@ [-bs(q)]"201 (3.94)

and then (2.50). Notice that (3.94) is in more convenient form to figure atitlieg-classical

0-JacobiHermite polynomials are of degreen x.

We note that hypergeometric representation ofddacobiHermite type monic polynomials
defined by (3.94) can also be derived by assunaiz(@), b2(q) — o in the case of th®-
JacobiJacobi type monic polynomials identified by (3.88) by use of the expressi(nq)
=qo1(0,9) & %0-’2’ (0, @)ax(q)b2(q) = q%o-’l’ (0, g)ar(q)bs1(q) (for the further details see [6]).
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4. Letoi(x,q) = o(0, g)[x — ar(q)] andoa(x, §) = 3075 (0, [ x — ax(q)][x — bz(a)], then the
hypergeometric representation of the correspondiatassical)-Laguerr¢Jacobi (see Table

4.1) monic polynomials is obtained by (3.63) by use ofdHginomial [E]q defined by (2.13)

") (~1)"By, (@[, (0, )"

Pa(x ) = a_qn (a1(a)/X; An
" a(q), b
o q X/az(q),  X/ba(q) |q;q (3.95)
g "x/ai(q), O
where the normalization constaf, (q) follows from (3.60) as
-3 (- 1)y
By, (¢) = I (3.96)

[30%(0, Q)"
In order to make clear th&, defined by (3.95) is a polynomial of degree exactiy x, we

perform the transformation formula (2.44) with— 0 leading to

Puxa) = ¢ )1 {f(oq))] (21(0)/22(6); A
2
a", x/aq) | a(oq"
— 3.97
A a@/a) ; b() 397

Note that hypergeometric representation of thieaguerr¢glacobi type monic polynomials
identified by (3.97) can also be obtained by settinfg) — o in the 0-JacobiJacobi type
monic polynomials (3.87) together witt2(0,q) = qo1(0,9) & 2o- (0, @)azx(g)ba(q) =

as %o"l' (0, g)ar(q)b1(q) (for the further details see [6]).

5. Letoi1(x,q) = 01(0,q) ando(x, Q) = 20'2 /(0, g)[x—ax(q)][ X— b2(g)], then by use of the-
binomial [k]q defined by (2.13), in the representation formula (3.63Qgfpolynomials of the
1st kind, the hypergeometric representation of the correspoeitassical-HermitgJacobi

(see Table 4.1) monic polynomials follows

q"B1,(9[o1(0, q)]" a",  X/axa), x/bx(a)
Pn(x; q) = - ; 3.98
where the normalization constaif, (q) follows from (3.60) as
-3 (- 1N
Bu,(a) = W (3.99)
[3075(0,9)]
Another hypergeometric representation equivalent to (3.98) is deasived
e q"  x/ad) | oa
Po(x ) = [-b2()]"g (2)2900[ o o (3.100)

44



by applying the transformation formula (2.51) wi(0, g) = go1(0,q) & 20‘ ’(0, g)az(q)
ba(q) = gz0; (0, Q)aw (@b ().

We remark that hypergeometric representation of (itéermitgJacobi type monic poly-
nomials identified by (3.100) can also be derived by let@afn), bi1(q) — oo in the 0-
JacoblJacobi type monic polynomials given by (3.87) together wit(0, q) = go1(0,q)

107/(0. 9az(@)b2(a) = g2o; (0. Q)ar(@)bs(q) (for the details see [6]).

6. Letoi(x,q) = 20’ (0, )X[x — a1(q)] ando2(Xx, Q) = 20 /(0, g)X[x — ax(q)], then the hy-
pergeometric representation of the correspondiatassical 0-Jacoflacobi (see Table 4.1)

monic polynomials follows

q Bln(q)[zo'l (0 q)]an 2(2)

Pa(Xa) = a-qn (aw(a)/x; d)n
‘o0 qa", x/ax(q) o 20-12(5) a)az(q) (3.101)

ot "x/ay(q) qt-"307 (0, d)au ()
by use of the representation formula (3.63). Here, the normalization corit#q) can be
obtained from (3.60) as follows:
2(;)(1 q—l)n
(~1P[Eo7 . (2405 o)
In order to represent a nice hypergeometric representation for (3dédionstrating a poly-

B1,(d) = (3.102)

nomial of degreen in x, we first carry out the transformation formula (2.48) to (3.101) and
then we apply (2.44) together with— O to the resulting formula which bring about

1
[-a(q)]" q(>(% P
("21 o3(0,0)
”(0 Q)
O o zi ”(g a)
| Jodua . Fa|
qztrl (0, g)au(a)

Pa(x;q) =

o)l

(3.103)

We note that hypergeometric representation of the 0-Jakauibi polynomials identified by
(3.103) can also be obtained by lettimgq), b2(g) — 0 assuming that»(0, q) = qo1(0,q)
b1(q)/b2(q) = 20'2 (0, q)az(q)/qéa’l’(o, g)ai(q) in the 0-JacobiJacobi type monic polynomi-
als defined by (3.86) (for the further details see [6]).
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7. Letoi(xQq) = 20-1 "(0,)X[x — a1(q)] and o2(%, Q) = 20- /(0,q)x?, then inserting these
values with theg-binomial [k]q defined by (2.13) into the representation formula identified by
(3.63) generates the following hypergeometric representation of thespamdingy-classical

0-JacobiBessel (see Table 4.1) monic polynomials

q"Br, ([ 30 (0, )] "x"q2(2)

Pa(Xa) = a-qn (aa(a)/x; An
X101 : ’q; S S (3.104)
o x/ay(q) | 4@
where the normalization constai, () follows from (3.60)
2(3) 1- gl
By, (q) = (t-a7) (3.105)

(~1P[Eo7 . (2405 o),

In order to get a nice representation formula denoting Fds exactly of degrea in x, we

apply the transformation formulas (2.50) and then (2.48) with 0 together with the limit
relation used in (2.42) successively to (3.104) which yield

_ 05(0.9)

a n (3) q n’ qn 22 292\

P(x ) = = 5:1)(]0 3 01 17709 |q, =0 (3.106)
(qn 22 Z(Oq) q)n 0

It is obvious from the definition ofys in (3.85) and (2.38) thal, in (3.106) represents a

polynomial of degre@in Xx.

On the other hand, observe from the hypergeometric representatioe @JdcobiJacobi
polynomials given by (3.88) with the transformatian(q) < bi(q) andaz(q) < b(q),
limit relation by(q), ax(q), b2(q) — 0 in company with the property»(0,q) = go1(0,q)
b1(q)/ax(g)b2(q) = 20 /(0, q)/qég ’(0, g)a1(q) also leads to the 0-Jac@Bessel polynomials
identified by (3.106).

8. Letoi(x,q) = o7(0,g)x andoz(x,q) = 20'2 (0, g)X[x — a2(q)], then one can get the
following hypergeometric representation of the correspondiatassical 0-Laguerf@acobi

(see Table 4.1) monic polynomials starting with the representation formula idehyfi&.63)

qnsln(q)[(f;(o,ou)]”q-(5>2¢1 g x/aq) | 2070 q)a(a)

D= 3.107
(1-qn 0 a qt-"(0,q) ( )

Pn(x;0) =
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where the normalization consta{, (q) can be computed by using (3.60)

q‘(g) (g-21)"

B1,(Q) = (3.108)
T o091
Observe that insertinB1,(q) into (3.107) identifies
" 0.9\ [ a x/aa) | 1040, g)ax(a)
Pa(X; Q) = n-2(3) [_L] - _27 2\ VR 3.109
(9 =g 0d) ° . o g | G109

as a polynomial of degre®in x.

Note that another method to get the hypergeometric representation of thguetglacobi
polynomials identified by (3.109) is to l&t(q), bo(q) — 0 andai(g) — oo together with

2(0.9) = 6r1(0.0) & bi(q)/b2(0) = —3075 (0. g)az(a)/go (0. 4) in the ¢-JacobiJacobi type
monic polynomials defined by (3.87) (for the further details see [6]).

9. Lettingoi(x,q) = 20-1 (0, )X[x — a1(q)] and o2(x, q) = 05(0,g)x in the representation
formula identified by (3.63) provide the following hypergeometric repregem of the cor-

respondingy-classical 0-Jacofiiaguerre (see Table 4.1) monic polynomials

"By, (Q)[-10% (0, 9)]"q 2D x"

Pa(x Q) = T-qn (2a(a)/x; On
—n’ o / 0
xopr| O —— l(rf/( Y (3.110)
qt"x/a1(q) o "307(0,a)ai(q)
whereBy,(q) is calculated by (3.60) as
G- qn
Ba,(a) = -9 ) (3.111)

(-3 0. g™
In order to find a better representation to make clearPhas a polynomial of degree exactly
nin x, we first apply the transformation formula (2.49) to (3.110) lettings 0, afterwards
we perform (2.52) to the resulting function by substitutBig(q). As a result, we get

n ,( ,Q) q_n’ 0 qX
P.(x: Q) = [a1(q)]"g® (- ——2— Y . / - A7 (3112
060 = @A fn i |qm@ (3.112)
g307(0,0)a1(q)

Furthermore, the hypergeometric representation of the 0-Jaegierre polynomials defined

by (3.112) can also be derived by use of the limit relata(g), b2(q) — 0, ax(q) —»
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together with the property2(0, d) = qo1(0, A) & bi(q)/b2(q) = o5(0, 6)/az (0, ga(q) in
the @-JacobiJacobi polynomials given by (3.88) with the transformatéa(g) < bi(q) and
ax(q) < by(q) (for the further details see [6]).

10. Settingo1(x,q) = 07(0,q)x ando2(x,q) = %0-’2’(0, q)x? in the representation formula
identified by (3.63) brings about the following hypergeometric repretientaf the corre-

spondingg-classical 0-LagueryBessel (see Table 4.1) monic polynomials

01(0,0)

Pu(x ) = 20 [__
6@ = a0 |-

n -n 1
q 505 (0, 0)x
22 3.113
m[ o [ E (3113)

with the help ofBy,(q) computed from (3.60)

- (g - 1)
B,(q) = w

: 3.114
[305(0, 9" .

Observe from the representation formula identified by (3.113) that O«ragBessel type

g-polynomialsPy, is a polynomial of degrerin x.

On the other hand, hypergeometric representation of the O-LagiBessel polynomials given
with (3.113) can also be constructed with the help of the limit relatidq), b»(q), ax(q) — O,

. _ a(q) _ 30500.0) - )
b1(q) — oo together with the property>(0,q) = qo1(0,q) © a2<ql)b2(q) = av'i(o,q) in the
JacobiJacobi polynomials given by (3.88) (for the further details see [6]).

3.6 Orthogonality Property of the g-Polynomials of Hypergeometric Type

In this section, we perform the orthogonality conditions of the polynomialteols of the
g-EHT by means of standard method in the theory of orthogonal polynomi2)sig, 48].

We begin with introducing the orthogonality property as in the following theorem.

Theorem 3.31 Letp be a function satisfying the g-Pearson equation (3.24) and such that the

boundary condition

a1 Pex Y| = ocAa X D@ x| =0 (3.115)
x=a,b x=a,b
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is satisfied. Then, the polynomial solutions of the g-EHT are orthogoittal@spect tg(x, q)
(see (2.25)), i.e.,
b
| Putx Pt ot chlx = @i (3.116)
a

Analogously, if

Tax | =oaaxap@xadx| =0 (3.117)

x=a,b X=a,

holds, the g-polynomials satisfy the relation

b
fa Pa(X Q)Pm(X. (X, @)l 1X = L(@dmn (3.118)

where @(q) and £(q) denote the squared norm of the polynomials & is the Kronecker

delta.

Remark 3.32 Notice that

a1(x. Q)p(x. q) = g ro2(a7 % Qp(a X, 6) & o2(x, Qp(x,0) = T1(ax Qp(ax d)  (3.119)
by using (3.27) and (3.28) wittw (X, q) = p2(X, q) = p(X, g) which gives the equivalences of

the boundary conditions.

Proof. Consider theg-EHT of the 1st kind in self-adjoint form foP,(x; q) and Pn(X, q),

respectively,

Dq [p(% @)or1(X, A)Dg-1Pa(x; 6)| + 4™ An(@p(x GYPa(x; ) = O,
Dq [p(% D)or1(X, A)Dg-1Pm(x, G)| + 4™ Am(@Dp(x, G)Pm(x, q) = 0

where theg-weight function satisfies thg-Pearson equation
Dq[o1(x Dp(x 9] = g (%, Dp(x G) & Dg1 [or2(x p(x, Q)] = ar(x, Dp(x. g). (3.120)

Multiplying the first equation witfPy (X, g) and the second witR,(x; g) and subtracting the

second from the first, and applying theéntegral over &, b) to the resulting equation, we get
g [An(A) — Am(0)] fa ’ Pn(X; @)Pm(X; @)o(X, q)dgX
+ f P Dq [p(%, Q) 1(X, @)D 1Pa(; ) | dgx
- f P ) Da % e D 1P )] dyx = O
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By applying theg-integration by parts and fundamental theorengafalculus defined by

Proposition 2.11 and Proposition 2.12, respectively, we have
q* [An(A) — Am(A)] fa ’ Pn(X; @)Pm(X; @)o(X, q)dgX
+p(x, D)1 (% QW [P, Pol |,
+ fa bp(qx, Q)or1(a% G)DgPrm(x; 0) [Dq—an(X; q)lxﬁqx] dgX
- fa bp(qx, d)o1(ax q)DgPn(x; ) [qule(x; q)lxﬁqx] dgx =0

whereWq [Pm, Pn] = [Pm(x; d)Dg-2Pn(X; @) — Pn(X; @)Dg-1Pm(X, q)] is the g-Wronskian [6].

Since D1 Pr(; 0)| = DgPm(x; 0) and Dg1Pn(X; 9| = DgPn(x; @) the third and

X=X X=X

fourth terms are vanished and as a result of the boundary conditi@asdsterm

p(X, Q)o1(X, Wq [Pm, Pn] )x=a,b =0

since the WronskialVg [Pm, Pn] = [Pm(x; ) Dg-2Pn(X; 0) = Pn(X; @) Dg-1 Pm(X; q)] is a poly-

nomial of degreen + m— 1. Then, we arrive at

b
fa Pa(x )Pm(x; (X, G)lgX = O,

for all m# n, if

(@ = @) = -0 (/0,00 + [+ -~ TJq5307(0.0)| #0

= (T’(O, Q) +[n+m- 1]q71%o"1’(0, q)) # 0.
Nevertheless, whem = n = An(q) = Am(0),
[ P P o X
remains arbitrary. As a result, we get
fa ’ Pm(X; )Pn(X; Q)o(X, Q)dgx = d3(6)dmn (3.121)

wheredy(q) is the norm and, Kronecker delta. The proof of the relation in (3.118) can be

accomplished analogously. O

Definition 3.33 The g-polynomial solutions of the g-EHT of the 1st and 2nd kinds arsielas
cal provided thata, b) is an interval on the real axis and th€x, ) > 0 satisfies the g-Pearson

equation (3.120) and boundary conditions (3.119) or (3.117).
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In order to calculate the norm(q) we look for the orthogonality property of ttgg! and
g-derivatives of ordek (k = 1, 2, ...) of the polynomial solutions of thg-EHT of the 1st and
2nd kinds, i.e.D('fI_1 P, andDPy,,.

3.6.1 Orthogonality Property of Dék_)l P1,.. (X )

In this section, we generalize the orthogonality ofgh@olynomials of the 1st kind ta (X, q)
= Dgf)llek(x, g), k= 1,2, ... via the standard method [22, 46, 48].

Proposition 3.34 Letps, be a function satisfying the g-Pearson equation identified by (3.55)
with n= k. Then,

e If 0 < a < b, then the polynomialsyyhas the following orthogonality relation

d‘b
f Ven(%, Vi @)1, (% Q) = A2 (@)drmn (3.122)
a

provided that
1 (% Doz (% DX, i, = O (3.123)

e Ifa < b <0, then y, are orthogonal in the following sense

b
f Vien(% Vi @)1, (% Q) = A (@)drmn (3.124)
q

ka
on the condition that

1% Do (% DX, = O. (3.125)

e Ifa <0< b, then y, has the following representation for orthogonality

b
. ol vt o g = €, (@i (3.126)
q

a
only if

o1,(% D1 (% DX, _ep g = O- (3.127)

Here, d,,(q) is norm anddmn is Kronecker delta.

Proof. Proof includes the similar steps with Theorem 3.31. O
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Proposition 3.35 Let dy,,(q) be the norm illustrated with

g‘b
df (o) = f [Vikn(X, @)1 %01, (X, Q)dgx (3.128)
a
assuming thad < a < b. Then,

1 ¢ (a). (3.129)

2 —
d:I-kn(q) - /ll k(q) 1k+l,n

Proof. In order to find a recurrence relation fdy, (q) defined by (3.129), we concern with

the g-EHT for vik(X, g) = Dé'f)lyn(x) in self-adjoint form identified by (3.54)

Dq [p2,(X. @), (X, Q) Dg-2Vin(X, Q)| + 0~ A1, (@)1, (X, DVin(X. ) = O.

Multiplying above equation withyn(x, ) and applyingy-integral over &, g“b), we have

b
f Vin(X, @)Dg |01, (X, @)1, (X, O)Dg1Vkn(X, 6) | dgx + g~ A1, (@), (0) = O.
a

Using x = g1t transformation for therintegral in the above equation, we can rewrite it as

qk+lb
f Vi@, 9)0Dg [ o1, (0, Q)ory, (A7, Q) DgaVien(d . @) | 4 dgt+ A, (G2, (9) = O.
q

a

Now by use of the product rule for= g1t defined by (2.11)p1, (X, 0) = o1,(X, Q)o1, (X, ),

Vik1n(X, 0) = Dg-1Vin(X, 0) and
Dqf (><)ixz¢lt = qDq f(q't) = D1 (1),
we get

_ _ _ _ k+lb
P10t D1, (47, DVin(At, D 2Vkn(A ™ Q|
qk+1b

qt Ve, 1006 D1, (X DdgX + G A1, (A)dZ (0) =0
ga

where the first term is vanished from the boundary condition identifie&28). For the

second term we dividg-integral into two separate parts

a k+lb

q
0 | Ve1n(X D, (X Qdgx— g f Ve 1.n(% @10, (% DAgX + g7 A, (df =0
gqa a
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from which it is seen that the second terntisi,. We deal with the first term according to

definition ofg-integral that leads to

a a ga
f V2. (X D1 (% Q)clgX = fo V2, (% Q)1 (X, )X — fo V2,1 (% @ty s (% )l
q

a

a(1-q) > a2, (da Ppx,(da q)
i=0

= qal-0) > q"VE,,(d e Apa, (08 Q)
i=0

a(1 - Aoy, (@ Qi 14(2 )
which is vanished sincaps, ,, (a, q) = apy,(a, )1, (a, g) = 0. Then, we have
—q i, (@) + M, (@)di (o) =

which provides the desired recurrence relation

2 1 2
dlkn(q) = /ll k(q) d1k+1,n(q)'

Corollary 3.36 Let d;,,(q) with dy,,(Q) = dn(q) be the norm having the recurrence relation
given with (3.129). Then,

da(@) = (-1)"Aq,,BZ (9)K1, (3.130)
where
Alnn(q) = (—1)n/11nm1(Q)/llnmz(Q)~-/llno(Q), (3131)
1

B1,(0) =« A Van(Q), (3.132)

and )

qn
K]_n = f pln(X, Q)qu. (3.133)

Proof. Solving recurrence relation successively digy,(q) obtained in proposition 3.35 gives

@ = @ = d? (o) (3.134)

da(g) := df (q) =

1
o(q) lln /llno(q)/llnl(q) 12n HE;é /llnk(q)

where
q'b q'b 0
df (q) = f Van(X D)p1, (X, D)dgX = Vi, f P1,(X Q)dgX,  Vpn = D( Zyn(¥). (3.135)
a a
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According to the normalization constant in (3.59) defined in the Rodriguasula

1
Bi1,(q) = mVnn
in which
Agyr (@) = (-1 !
tom Ay 1 (@ A1y, 5(0) .- A1 ()

Then,

1

di(@) = ————d& (@) = —————VA Ky, = (-1)"Aq,,(0)B3 (Q)Ky,
L@ M T (@ .

where

q"b

o= [ prlcdex

a

can be compute in the following proposition. O

Proposition 3.37 Let Ky, be given with the g-integral identified by (3.133). Then,

oy (x.0)

+ —_—

K 277 (%,0)

b In (3.136)
K1n+l O-ln(xn’ q)

n

where ¥% is zero ofry, (X, ).

Proof. We begin with
qn+1b

Klm—l = f p1n+1(x’ q)qu.
a

By usingps,.,(x q) = o1,(% Q)p1, (% g) and taking account that < g™'b < g"b < b as

0 < a< b, Ky, should be rewritten

q'b q'b
Kaoa = [ caxaps(ecddex= [ o, 0x o, (x
a q

in which the second term is vanished by using the boundary condition ir3)3&aft2r applying
the definition ofg-integral in (2.23). Thus,

q'b
Kaoa = [ o x s (x ahd
a
By replacingoi, (%, q) = Au(Q)[71,(% )]? + B1(d)71,(X, g) + C1(0) into Ky,,., implies
q'b
Ki,,, = f [A1(@)71,(X%, 0) + B1(@)] 71,(X% D1, (X, D)gX + C1 (K4,
a
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which is equivalent to

q'b
Ki = f [Ac(@)r1,(% Q) + B1(Q)] Dgor,., (X QdgX + Ca(a)Ks,
a

by using theg-Pearson equation and recurrence relationpipfx, q) identified by (3.55) and
(3.56), respectively. Now applying transformatign= g-'t for the first term inKy,,, and

using theg-integration by parts defined by (2.35), we obtain

_ _ n+1b
Kio = A[AU@TL@ 't 6) + Bi(@)| p1,.: (a7t DL —
qn+1a
f P10 (t, @)D [Ar(A) 71, (t. @) + By ()] dgt + Ca()Ky,  (3.137)
q

a

where the first term is zero consideripg,, (X, q) = o1,(X, Q)p1,(X, ) and the boundary con-
dition (3.123). Taking the second term into consideration as two sepgiategrals leads

to

a
Kiy = - f P11 (t, A)Dgr1 [Ar ()71, (t, @) + By (q)] dgt -
qa

qn+1b
f p1oa(t. 00D 1 [As(@)ran(t. 6) + Ba(0)] cgt + Ca(@)Ka,
a

in which the first term is vanished by using the definitiomehtegral in (2.23), then applying

the boundary condition (3.123), we arrive at

Klml = _Al(q)Ta_n(X’ q) K1n+l + Cl(CI) K:I-n

sinceDg1 [A1(Q)71,(t, @) + B1(Q)] = Al(q)r’ln(x, ), which is the desired result. O

Remark 3.38 Notice that

Dg1 [A1(Q)71,(t, @) + B1(0)] = Aw(q)Dg171,(%, Q) = As(q)7y, (X, Q)

sincery, (X, g) is polynomial of degreé.

Remark 3.39 Note that

o7 (%9
Aui(g) = m (3.138)
C1(q) = 01,(x, 9) (3.139)

where ¥, is the root ofry, (X, Q).
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Proposition 3.40 Let Ky, given with (3.133) satisfy the recurrence relation identifed by (3.136).
Then

n-1 *
_ O-lk(xka q)
Kln = KlO lk:_[O W (3140)

27} (x,0)
where K, = fabp(x, Q)dgX.

Proof. The proof is based on the successive solution of the recurrence mgfati36). [

Alternative representation &f;, can be computed as in the following proposition.

Proposition 3.41 Let Ky, in (3.133) satisfy the recurrence relation denoted in (3.136). Then,

) o (x.0)
2T 20 (x0)

Ka, = (1-)qaos, (@2 q) | |

S NN (3.141)

withn<N-1and2 = g".

Proof. Consider the product of ratio fdt;, defined by (3.136) for=n,n+1, ..., N -1 which

gives

. e

N 2 (x.Q)

Ki =K ke 7

1, In-1 1k:r[ o-lk(X;, o))
where
qN—lb q—la
K= [ pnateade = [0 o (xadix
a a
= (1-d)q 'ap, 4(q ', 0)

by using the fact thagta = qN-1b and applying the definition of thg-integral. O

Proposition 3.42 Note that the norm identified by (3.118) can be accomplished analogously
regarding q1-derivatives of the g-polynomials of the 1st kind with the orthogonality relation

associated with tf-integral

%(Q) = (_1)nAlnnan(Q)M1n (3.142)

where Ann, B1,(q) are defined by (3.131), (3.132), respectively and

q"b
Mln = f £1, (X, Q)d(rl X. (3143)
a
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3.6.2 Orthogonality Property of Dg‘) P2, (X, Q)

Orthogonality property ofiky(x, q) = Dg‘) P2... (X, 0), k= 1,2, ... includes the similar analysis

as section 3.6.1.

Proposition 3.43 Let p,, be a function satisfying the~¢Pearson equation identified by

(3.74) with n= k. Then,

e If 0 < a < b, then the polynomialsiihave the following orthogonality relation

b
. ol e o (g = 6, (@i (3.144)
g—"a

provided that

o 2,(% Gz, (X, Q)Xk|xzq,kab =0. (3.145)

e If a < b < 0, then y, has the following representation for orthogonality

a b
f Ukn(X, ) Ukm(K) (X, @)z, (X, G)dgX = 03 _(@)dmn (3.146)
a

O_ZK(X’ Q)PZK(X’ q)xklx:a,q-kb = 0 (3147)

e Ifa <0< b, then y,is orthogonal in the following sense

b
f Ukn(X, O)Ukm(X, Q)2 (X, G)dgX = d5_(@)dmn (3.148)
a

only if
02,(%, Dp2,6 DX, ., = 0. (3.149)

Here &,,(q) is norm anddmp is Kronecker delta.

Remark 3.44 We remark that the orthogonality condition for the polynomiaglnglmk(x, Q)
and d;‘) P2... (X, 0), k= 1,2,... are not equivalent since the g-Pearson equatiorpfQr
p1(Ax Q) _ op (%0 +(1- g xry (X 0) | 02 (x.0)
P (X Q) o1,(9x 0) o1,(9x 9)

is not equal to the g-Pearson equation fo[

p2 a7 xq) _ o2 (x0) +(1-xra(x.q) ,  01(x0)
p2(%.q) o2(a7'x.q) o2(a7'x.q)
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Corollary 3.45 Let o, ,(q) be the norm illustrated with

b
B, @ = [ [l @ 0 (3.150)

assuming thad < a < b. Then,

1 o

B, (@) = 7 B @ (3.151)

Remark 3.46 Notice that successive solution of @q) with dy,,(9) = dn(q) in (3.151) gives

dA(@) = (-1)"As,,(A) B3 (DK, (3.152)
where
@ = e @ (8159)
Ba,(0) = g thn(@ (3.154)
and .
Ko, = fq . pa(x g (3.155)

Remark 3.47 Note that considering similar analysis as in the g-EHT, recurrence relation

oy (x.0)

+ —_—
Ky,  275,(%0) (3.156)
Koy 02,(X0, 0) '

n

is obtained. Here, xis the root of the equatiom, (X, q) = 0 and

02,(%, A) = Aa(@)[72,(X 9] + Ba(a)72,(X. ) + Ca(0)

where

oy (%)
Ax(Q) = W
Ca(a) = 072,(x, Q). (3.158)

(3.157)

Proposition 3.48 Let Ky, in (3.155) satisfy the recurrence relation identifed in (3.156). Then,

n-1 "
~ 02,(X- Q)
Kz, = Ko, lk—([) 7 (%0 (3.159)

27, (%.0)
where K, = fabp(x, 0)dgX.
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Another representation &f,, can be introduced as in the following proposition.

Proposition 3.49 Let K, given with (3.155) satisfy the recurrence relation identifed by (3.156).

Then,
o5 (X, 0)

N2 T 27/, (X
,0)
Kz, = (1 - Qbpay ,(b,9) [ | —2——

e (3.160)

withn< N -Z1and®2=qg™.

Proposition 3.50 Note that the norm identified by (3.118) can be obtained analogously by
considering g-derivatives of the g-polynomials of the 2nd kind with the gothality relation

together with g*-integral

(@) = (-1)"AznnB3 (Mo, (3.161)

where Ann, By, (q) are defined by (3.153), (3.154), respectively, and

b
Mo, = [ paxcdgax (3.162)
q"a
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CHAPTER 4

ANALYSIS OF THE ORTHOGONALITY OF THE
Q-CLASSICAL POLYNOMIALS IN THE HAHN SENSE

In this chapter, which is the main part of the thesis, we discuss the orthidgafall possible
polynomial solutions of the-difference equation by use of thegPearson equation. We are
interesting in finding a suitable intervad, ) wherep > 0 and boundary condition (3.119)
holds such that the polynomial solutions of tp&EHT of the 1st kind (3.5) (or equivalently
of theg-EHT of the 2nd kind (3.10)) which are orthogonal with respegt,tare supported at
the pointsegk andBok, o, € R, k= 0,1,2,...(3.5).

In accordance with Theorem 3.31, it is enough to find & O satisfying theg-Pearson

equation
plaxa) _ o0+ (@A -axr(xq) _ g roa(x0) @.1)
p(x. ) o1(ax q) o1(axq) ’ '
or, equivalently,
pA %0 _ oa(xq) +(1-gxr(xq) _ goi(x ) 4.2)

p(x,0) o2(g7x,0) o2(q7tx,q)
such that the boundary condition (3.115) holds. Notice from the abquessions that

a2(% Po(x, q) = qr1(@x Pe(Ax @) & o2(q 1%, D@ %, q) = g ro1 (X, Pp(x, ).  (4.3)

The idea is to provide a qualitative analysis of equations (4.1) and (4.2)wiislotving them
that gives the interval of orthogonality. In this analysis, a geometricaloagp similar to
the one partially presented in [24] has been used . Since we are inteirestetrmining
all the possible orthogonality intervals for thgpolynomials according to the behavior of the
g-weight functiono(x, g), we study the behavior @f(qx, q)/o(X, ), where we can obtain the
intervals in whichp(Xx, g) is increasing (e.gx > 0 ando(gqx, )/p(x, ) < 1) or decreasing (e.g.
x> 0 andp(gx d)/p(x, g) > 1).
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Before starting the analysis let us classify tippolynomials according to [3, 6, 43, 47] in
terms of the degrees of the polynomialsando in (3.12) and using the fact that (0, g) =

0 & 02(0,9) =0 (01(0,0) # 0 & 02(0,q) # 0). Therefore, as we mentioned before we have
the non-zero families correspond to the case wihgi®, q) # 0 © 02(0,q) # 0 and the zero
families whenor1(0,q) = 0 © 02(0,g) = 0. In every class we consider all possible degrees of
the polynomialsri(x, g) andou(X, g). In fact, from the relation betweem ando in (3.11),

we rewrite the next straightforward proposition in order to see the rel&ijpmsth Table 4.1:

Proposition 4.1 Letp(x, ) be the g-weight function satisfying the g-Pearson equation (3.24)
with or1(x, @) = 307 (0, g)x?+0 (0, g)x+01(0, ) and(x, q) = 7/(0, )x+7(0,g), 7/(0,q) # O.

If 1(0, g) # O, the following cases arise
(1a) Ifdeglr1(x, g)] < 2, then degf2(x, q)] = 2.
(1b) If degr1(x, g)] = 2, then degfa(x, q)] < 2.

If 1(0,q) = 0, then:

(2a) If r1(x, Q) = %a’l'(o, ) %2, a7(0,q) # 0, then degf2(x, q)] = 2 or degp2(x,g)] = 1.
(2b) If 1(%, Q) = %0’1’(0, @)x% + 0(0,9)x, o7 (0,q) # 0, 5%(0, ) # 0, then degfa(x, q)] = 2
or degp2(x, q)] = 1.

(2¢) If or1(x, ) = 01(0, g)%, 1(0,g) # O, then degf2(x, )] = 2.

Table 4.1: Classification of thgclassical polynomials (positive definite cases)

Non-zero families Zero families

degry / degr; degry / degr,
g-Jacobi/ g-Jacobi g-Jacobi/ g-Jacobi
g-Jacobi/ g-Laguerre g-Jacobi/ g-Laguerre
g-Jacoby g-Hermite g-Jacobi/ g-Bessel
g-Laguerrgg-Jacobi g-Laguerre/ g-Jacobi

g-Laguerre/ g-Bessel
g-Hermite/ g-Jacobi

Remark 4.2 Observe from the Table 4.1 that, while g-JacohiLaguerre corresponds the
casedegr1 = 2 and deg = 1, g-Hermite/ g-Jacobi means deg = 0 and deg = 2, etc.
(see [42, 43] for detalls).
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Remark 4.3 Notice that in non-zero families g-Lagueyig-Laguerre, g-Laguerrgg-Hermite,
g-Hermite/ g-Laguerre and g-Hermitég-Hermite can not appear owing to the relation be-
tween the coficientso1(X, ) ando2(x, ). And analogously, zero families has no g-Laguerre

/ g-Laguerre because of same reason and there are no g-Bégsédcobi, g-Bessel g-
Laguerre and g-Bessglg-Bessel since for these cases there is no suitable interval where

o > 0and boundary condition holds.

In order to find the interval of orthogonality, we make assumptiondahab in the following.
We also assume thatis a bounded function (in fact it should logintegrable antr q=*-

integrable, otherwise (3.116) or (3.118) may not have sense).

Let us start with the case whea, D) is a finite interval. There are several possibilities such

thatp satisfies the boundary condition (3.119).

Case |. The simplest case is whef(a, q) = o1(b, g) = 0. Using (4.2) rewritten of the form

—lX q) _ qo-l(x7 q)

= WP(X, Q) (4.4)

e(q

we see that the functign(x, q) vanishes for all values af kaandqg b, k = 1,2,.... But now

three diferent situations appear:

1. a< 0 < b. In this case(x, g) vanishes out of the intervad(b) (all the valuesy <a and
q kb, k=1,2,...are out of & b)) and therefore there could be a family of polynomials
defined on 4, b) orthogonal with respect to a measure supported at the paifiand
b, k=0,1,....

2. 0 < a < b. In this casep(x, g) vanishes at the pointg ¥a that belong to 4, b) and
also atq*b that are outd b). Then, the only possibility for having an OPS anlf)
satisfying the boundary condition is that there exNtsuch thatogq" = a. But, this
condition implies thabd¢ = aq- X, and therefore for abbf, k = 0,1,..., N p also

vanishes i.e., this case has not interest.

3. a = 0 < b (respectivelya < b = 0 but this case reduces to the one wiees 0).
This case deserves more attention. First of alf i 0 is a zero ofo1(X, g) then it
is also a zero otry(x, g), as we already pointed out. Then, tgd’earson equation

(4.1) (respectively (4.2)) simplifies and the above reasoning of cased 2 can not be
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applied. In fact, for this case we could have, in general, a family of patyals defined

on (a, b) orthogonal with respect to a measure supported at the duifit& = 0,1, .. ..

Case Il. Taking into account (4.3), there is also another possibility to &aathogonality
relation on &, b). Namely, ifq~ta andg b are both the zeros of,(x, ). But then from (4.1)

g loa(x Q)

T R (49)

p(ax ) =

it follows thatp(x, g) vanishes for all values @faandg*b, k = 0, 1,2, . ... Again two diferent
situations appear in dependenca it 0 < bor 0 < a < b. In the first case, all points of the
form gfa andgkb are both insided, b) so this has not any interest. In the second cfiaere
out (@& b) andp(bdf, ) = 0 wherebd! € (a, b), so we could have an OPS if there existsuch
thatagq™™ = bg . Butaq® = bg"-%1 andp vanishes in albdf, thus there is not a suitable

g-weight function for this case.

Case lIl. The next choice to get the boundary conditionaib)(is to choosey 1a as a zero
of o2(x, ) andb of o1(x, g). Then, from (4.4) and (4.5) it follows tha{x, g) vanishes for all
valuesq b, k = 1,2, ... andg¥a, k = 0, 1, .... Then, ifa < 0 < b, g*a are all inside 4 b) and

q kb are out of & b), therefore we can not find g@weight function satisfying the boundary
conditions. Nevertheless, as in the Case |, it could be happen avke@. In this case it is

possible to have g-weight function defined at the poirisf, k > 0.

For the case when & a < b, gfa andq b are all out &, b), thus there could be a family
of orthogonal polynomials defined oa, b) with a g-weight function supported at the points
q“b and on ¢ 1a, g 1b) supported at the pointg¥a, k > 0, but in order to have the boundary
condition (3.119) there should exids € N such thatag™N = b. This case could lead to a
g-weight function supported on a finite set of poiats¥ k = 0,1,..., N. Notice that, since
aq ¥ = bgV-K, we can also define thgweight functionp at the pointsbg k = 0,1,..., N

that coincide with the previous ones.

Case IV: Finally, we can assume thais a zero ofo1(x,q) andq b of o»(x, ). Then,
from (4.4) and (4.5) it follows that(x, q) vanishes for all valueg™a, k = 1,2,... andgb,
k = 0,1,.... This leads to the following cases: In the first case, when 0 < b, it is not
possible to find @-weight function satisfying the boundary conditions, but, as in the previou

case, one could havegqweight function only ifb = 0 and it is defined at the pointf,
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k > 0. Finally, in the case & a < b, it is not possible to find g-weight function satisfying

the required conditions.

Let us now go to the infinite case, i.e., whenkj) is an infinite interval. Assume thats finite
andb — oo (the casea — —oo is analogous and can be obtained by using the transformation

X=-to Xe(a o) ©te (-, —a)). Obviously the boundary condition (3.119)catreads
lim cr1(b. (b, qb“=0 or Jim cra(b. o (b, qb“=0, k=0,1,...

Let us consider the possible choicesdpr

Case V. Ifais root of o1(x, q), then from (4.4) it follows thap(x, ) vanishes for all points
qXa, k = 1,2, ... of the interval &, ) in case ofa > 0, and therefore there is not any OP

defined on &, ).

If a = 0is a root ofo1(X, ) then we could have g-weight function supported on (&)

defined at the pointsg* (@ > 0 arbitrary),k > 0 where a normal choice farisa = 1.

Whena < 0, then we can also havepavhich is supported ore( ) at points of the formad<

andag** (« > 0 arbitrary) k > 0 wherea = 1.

Case VI: If we now choosq'a as a zero ofry(x, q), as we already discussedjs zero at
q“a, k = 0,1, ... Therefore, fora > 0 we can have a weight function og ¢ta, ) supported
at the pointsq‘ka, k > 1. The case whea < 0 does not lead to an OPS. Finallyait 0, we

could get g defined on (Oco) at the pointsrg* (o > 0 arbitrary) k > 0.

Case VII: The last choice is whem — —c0, b — oo, then the boundary condition (3.119)

holds if
Jim_o1(a d)o(a, gak =0, lim cr1(b. (b, qb“=0, k=0,1,..

In this case is defined ontaq (o > 0 arbitrary) k > 0.

All the above discussions can be summarized in the following theorem.

Theorem 4.4 Let p be a bounded non negative function and let denotelg)ab:(q) the

zeros obry(x, q) and by &(q), b2(q), those obr(x, g). The functionp satisfying the g-Pearson
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equation (3.24) could satisfy the boundary condition (3.115), and therefarld be a suitable

g-weight function for the polynomial solutions of (3.5) in the following cases:

a) a= ai(q), b= b1(q); a1(q) < b1(g): a<0< b.

In this situationp is supported at the points &@nd bd, k = 1,2, ..., which leads to
the orthogonality relation orifa, b) of polynomial solutiongP,), of g-EHT defined by
g-integral (2.27)

b (a)
f o PrlC QPnx 0l = (G (4.6)
ai(q

b) a=ai(a), b= bi(q); ai(q) < by(a): a =0<b.

In this casep is defined at the point8 < --- < bX < ... < bg < b € (0,b] and the

orthogonality has the form

b1 (0)
[ Pax P ot g = R (4.7)
where the g-Jackson integral (2.23) is used.

c) a=ayx(q), b=ai(g); ax(q) < a1(q): 0=a<b.

In this casep is supported orf0, b) and the orthogonality reads
a1(q) 2
[ Pox @Pn(x ot g = (o (4.8)
where the g-Jackson integral (2.23) is used.

d) a=ax(q), b=a1(g); az(q) < a1(g): 0 <a<b.
In this casep is supported or{a, g 1b) at the points agf; a < aql <ag?2 < --- <
aqN = g b (or, equivalently, or{ga, b) at the points of the form Bgga = bg" <
.- < be? < bg < b). Therefore, the orthogonality of the polynomials is written in terms

of the g-Jackson integral (2.23)

ar ()
f Pa(X O)Pm(x D(%, G)lgX = A2(6)Srmn (4.9)
gae(q)=a1(q)gN
which is, in the case, the finite sum
a1 (q) a1 () ar(a)g
f [ldgx = f [-]dqx—f [-]dgx (4.10)
ag(q)oN 0 0
N-1

(1- das(0) ), Pn(da(a), A)Pm(da(a). Ao(qas(c), q).
k=0
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The above expression can be also written, at least formally, in terms gf tHategral

(2.32)

a~tag(@)=ax(a)q™ )
f . Pr(X G)Pr(X Qp(% D)X = d2(c)rmn (4.12)
a(q
which becomes into the finite sum
a(g)g™ = =
f [.]dq_lx = f —f [-]dq_lx (4.12)
ax(q) ax(q) Ja(a)g N
N-1
= (1-qax(0) ) Pa(d ™ ax(0), 6)Pm(d ™ ax(), p(q ™ ax(0), ).
k=0

e) a=ai1(q),b=0;a1(q) <0:a<b=0.

This case is similar to the case b) but herés defined at the points & ag < -+ <

af < --- < 0 € [a,0) and the orthogonality is given in terms of the g-integral (2.27)

0
f Pa(. §)Pm(X. Q)p(X. Q)dgX = A2(0)Smn (4.13)

ai(q)
f) a=a(q)=0b— .

In this case we have an orthogonality in terms of the integral (2.28)
[ Patx P o e = ci@om (4.14)

9) a=ay(q) <0,b— co.

In this case we have supported orfa, «) at the points atjand %, k=0, 1, .... Then

the polynomials satisfy the orthogonality
0

f Pn(X, q)Pm(X, @)o(X, q)dqx - f
a1(q)

a(q
where the first integral is given by (2.27) and the second by (2.28)ectively.

[1dgx + f [1dgx = B(@omn  (4.15)
) 0

h) a=ax(q) > 0,b— .
In this casep is defined at the points a§ k = 1,2,... and the orthogonality can be
written in terms of the tf-integral (2.31)

f - Palc QP el k1 = A (@omn (4.16)
ax(q

i) a=ay(q)=0,b— oo.

In this casep is defined orf0, o) and we have the orthogonality in terms of the integral
(2.28)
[ Putx Pux ot k= SR (4.17)
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j) Finally, when a— —co, b — oo.

We have the orthogonality in terms of the bilateral g-integral (2.30)

f_ Pa(X. @) Pr(X, D (X, Q)lgX = A2(c)drmn (4.18)

Remark 4.5 Notice that from the above analysis we can conclude that the following cases d
not lead to a suitable g-weight functign> 0 satisfying the g-Pearson equation (3.24) and

the boundary conditions:
1. a=a(q), b=b1(q); a1(q) < b(g), and0 <a < b,
2. a=ay(q), b =by(a); az(a) < b2(a),
3. a=ap(q), b= a(q); ax(q) < a1(q), anda< 0 < b,
4. a=a1(g),b=ax(g); a1(g) <0,a<0<bor0O<ax<hb,
5. a=a(qg), b — o, and a> 0,

6. a=ax(q),b— o, and a< 0.

We remark that a completely similar analysis can be done for the boundatifioar(3.117).

In fact, the results follow if we apply the transformatins= gt to the conditions (3.119).

4.1 The Main Results

In this section, we formulate our main results. We are interestipgatisfying theg-Pearson
equation such that > 0 and the boundary condition holds. In order to deterringe study
on the rational functiop(gx, )/o(X, g) and from the anaysis of the behaviour of such a func-
tion we deduce all possible families of orthogonal polynomials as well as thegamnality

relation including the interval of orthogonality.

Notice from theg-Pearson equation thatgx, g)/e(x, g) is a rational function consisting of
the ratio of two polynomials of at most second degeegx, q) and o1(x, @) at nominator
and denominator, respectively, i.e., it has at most two zeros and two padasally, in the

analysis ofo(gx, q)/o(X, ), we consider all possible degrees of the polynomialfocents
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o1(x,q) ando(x, q) and we construct all possible graphsedfix, q)/o(x, g). In particular,

we fix the intervals wherg(gx q)/p(x,0) < 1 orp(gx g)/p(x,q) > 1, that give us informa-
tion about the monotonicity gf(x, ). Another important data is the horizontal asymptote
p(ax g)/p(x,g) — ¢, asx — Foo. All these information allows us to determine the suitable
intervals forp(x, ) without solving theg-Pearson equation. In such a way we have a com-
plementary characterization for tiqgpolynomials similar to the one done in [35] but starting

from the three-term recurrence relation and the Favard Theorem.

4.2 The Non-zero Case

Let start with the non-zero case. i.5;1(0, ) = 02(0,q) # O.

4.2.1 Constant Case: Th@-Classical0-Hermite/Jacobi Polynomials

Letoi(x, Q) = 01(0,q) # 0, i.e., constant and(x, q) = 7/(0, q)x + 7(0, q), 7’(0,q) # 0. Then,

theg-Pearson equation follows from (4.1) as

plaxq) ok o)+ @-ghxr(xq) g loax )

p(x.q) o1(ax 0) ~ oi(ax q)
1y 70,9 _ o1, 7(0.9)
(1-q )0'1(0,q)x +(1-q )al(o,q)“l‘ (4.19)

Remark 4.6 Observe thatr1(x, ) = 01(0, q) gives

a(x Q) = qoa(x ) + (1 - g H)xe(x, 6| = (g - 1)7'(0,6)%* + (g — 1)7(0, )X + gor1(0, )

from which it is seen that»(x, q) is quadratic sincer’(0,q) # 0. Then, the g-Hermite type
g-polynomials of the 1st kind are the g-Jacobi type g-polynomials ofridekihxd (see Table
4.1).

Let denote by\q the constant

7(0,0)
0'1(0, q)

7/(0,q)

A= 1(0,0)°

(1-g7h

2
] ~-4(1-qh

Notice that the function at the right hand side of thPearson equation defined in (4.19) is

equivalent to

1, 7(0.9) :
(1-9 )m[x— ap(Q)][x — b(q)], if Aq# 0.
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In fact, if Aq > 0 thenay(q) andby(g) € R and we assume, without losing any generality that

az(q) < bo(q). If Aq <0, ax(q) andby(q) € C.

If Aq = O then it takes of the form (2 q‘l)m[x — ay(g)]%, whereay(q) € R.

1(0,0)
In order to determine the graphs of the rabi@x, q)/o(X, q) according to zeros af1(X, Q)
ando(x, q), we first consider all possible positions of the zerosr¢fx, ) ando2(x, g) in

the following lemma.

Lemma 4.7 Let f(x, Q) = p(gx q)/p(X, g) be the function defined in (4.19) and set

_ 709

- 0.
97 01(0,0)

Then, the roots of the equatiorixf q) = 0 has the following properties;

1. If Aq > O, there are two real distinct roots with opposite signs.
2. If Aq < 0O, there exist three possibilities, i.e.,

(a) if Aq > O, there are two real roots with same signs,
(b) if Aq = 0, there are equal real roots,

(c) if Aq < 0, there are no real roots.

Proof.

2 / . / .
L Ag=|1-q? chl(?éfg)] —4(1- q‘l)gl((%f‘(}) > 0in case of\q = ;1((%2) > 0 which shows
that f(x, ) = 0 has two real roots and multiplication of these roots+ Iy (0 which

is negative since & q < 1.
2. Aq < Ois not stificient condition. Then, according as the sigmgf properties of zeros

of the equatiorf (x, ) = O are determined.

O

Our next step is to analyse all possible graphg(@fx, 9)/o(X, ) in (4.19) according to all
possible relative positions of the zeroswof. We assume that the conditions of Lemma 4.7

holds.
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To obtain the behaviour of thg-weight functionp from the graphs op(gx q)/o(x, q), we
divide the whole real line into the intervals wheséx, g) is monotonic decreasing and in-
creasing. Our aim is to find suitable intervals (as the ones described imerhe&io4) where

p is defined and satisfies the required properties, d.e:,0 and that it fulfills the boundary
condition (3.119) or (3.117). Obviously for getting a positivave need to consider only
those intervals where(gx, g)/p(x,q) > 0. If p > 0 at some point of those intervals, then it
is positive in the whole interval. By thg Pearson equation (4.1) the positivity regions of the

ratio p(gx, q)/p(x, g) coincide with the positivity regions af2(x, 0)/o1(gx ).

Before starting the analysis let us point out th@ix, )/o(x, ) always intercepts thgaxis at

the pointy = 1 sinceo»(0,q) = qo1(0, q) (i.e., the constant terms of; ando-, are the same).

Let f(x,q) = p(gx 0)/p(X, g) be the function defined in (4.19).

y

0 X
‘ / ) o bz(q)\ ‘

Figure 4.1: Case 1. The functidifx, g) with Aq > 0, ax(q) < 0 < b(q).

Case 1:ax(q) < 0 < bo(g), Aq > 0. The graph off for this case is represented in Figure
4.1. Let us consider the possible intervals in which we can have a suitatdéght function

p. As we have already mentioned, they are defined by the zeros of theopubiso; and

0. First of all, notice that sincg should be a positive weight function arids negative in

the intervals €0, ax(g)) and p2(q), o), they are not suitable. On the other hand, the interval
(a2(q), b2(q)) is also eliminated due to Remark 4.5.2. As a result, this case does not lead to a

suitableg-weight function with the needed properties.

Case 2(a)A:0 < ax(q) < bx(q), Aq < 0. This situation appears in Figure 4.2A. In order to
find the possible intervals in which we can have a suitapleeight functionp we start the

analysis by applying the positivity gfwhich allows us to eliminate the intervaly(q), b2(q)).
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)X

0

Figure 4.2: Case 2. The functiof(x,g) with Aq < 0, Case 2(a)A: O< ax(q) < bx(0),
Case 2(b)B: G< ax(q) = b(q).

On the other hand, Remark 4.5.6 by symmetry property enables us to exctudsetval
(-0, b2(Q)). Let us consider the last intervddx(q), o). Notice that it coincides with the one
described in Theorem 4.4 h), so here it could be possible todpavaight functiono. Notice
also that since(gx, q)/o(x,q) = 1 atxg = —7(0,q)/7’(0, g), Xo > X = by(q), then from Figure
4.2A it follows thatp is decreasing orHr(0, ) /7’(0, g), ). Sinceo(gx, g)/p(X, g) has infinite
limit as X — +o0, then we have — 0 asx — . We can sketch behaviour pfaccording to

the above discussion in Figure 4.3.

a@ b

.
.
.
.
e
ooooooooooooooooooooo

Figure 4.3: Possible positive graph of correspondgitgq) for Figure 4.2.

It is seen from Figure 4.3 thab4(q), o), supported at the points(q)q ¥, k = 0,1, ... (see
Theorem 4.4 g)), could be suitable to hgve However, it is not enough to assure that
satisfies the boundary conditionssat. In fact, as it is stated in Theorem 4.4, we should

check thato1(x, Q)p(x, q)x¥ — 0 asx — oo. To this end, we use, instead of the Pearson
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equation (4.1), the followingxtended ¢Pearson equation:

o1 (ax Po(ax PER*  poi(x @)+ (L- g hHxe(xa) g loa(x q)

= = , 4.20
10 o (x. X 1000 g o 29
which is a consequence of the identity (seedtearson equation (4.1))
T1(@x Qp(@x a) _ g toa(x.0) (4.21)
o1(x g)p(x, Q) o1(x g)
Let define the functiog as the left hand side of (4.20)
alx. o) = THAX De(@x DEX*_ (oa(x.0) + (L - g Hxr(x,6) _ ¢ ora(x.0)
’ o1 (X, Q)p(x, )X« o1(x,0) o1(x, 0)
1, 7(0,9) _1, 7(0,9)
—qa-qhTCD e (1_g x+1|(4.22
) R xR P i R

which is represented in Figure 4.4.

a(q) b,(a)

Figure 4.4: A figure ofj(x, ) corresponding to Figure 4.2A.

If we now provide a similar anaysis with the functignwe see from Figure 4.4 and (4.20)
that, fork large enoughg has the same property with Therefore, it is clear from Figure 4.4

thato1(x, Q)p(x, Q)X — 0 asx — co.

Case 2(b)B:0 < ay(q) = b2(q), Aq < 0. This situation is represented in Figure 4.2B. Note that
this case leads to the same intental(@)), ) as Case 2(a)A but together wih(q) = bz(q).
Notice that Case 2(a)A and Case 2(b)B lead to the following theorem.

Theorem 4.8 Let a= by(q), be the zero ofr»(X, g) and b= co and assume thdl < ay(q) <

bo(0), Aq = ;/1((%,(3) < 0. Then, there exists a sequence of polynon(i@lg, orthogonal on

(a,b), i.e., they satisfy the orthogonality (4.16) with respect to the g-weight function
p(x,0) = X% (qap(0)/x, qoa(a)/X; Qo > 0, X € (b(0), ), (4.23)
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o 01305000
4 =<9

orem 4.4 h)).

which satisfies the g-Pearson equation and the boundary condition (gee Th

This case corresponds to the case lal in Chapter 11 of [35, pagesi8357].

An example of such family is the Al-Salam-Carlitz Il polynomials [35] whegéq) = a,
b2(q) =1,

O-l(X’ q) = aq—la O-Z(X’ q) = (1 - X)(a - X)’
1 l+a 1
7(x.q) = -1 g-1 An(Q) = m[n]q-
Al-Salam-Carlitz Il polynomials are orthogonal on, ) and the conditiong\q < 0 and
0 < ay(q) < by(q) give us the following restriction for the parameters @ < 1. By means of

Theorem 4.4 h) we can write the orthogonality
f X*19% X/ x, ad/x; Q) Vi 06 VS (6 A)dg1x = (@ =1)a ™" (G V(0 Dol (4.24)
1

together withO<a=q™@ < 1.

S S S S S B

Figure 4.5: Case2(c). The functidifx, ) with Aq < 0, ax(q), b2(q) € C.

Case 2(c):a2(0), b2(g) € C, Aq < 0. This situation is represented in Figure 4.5. It is seen
from Figure 4.5 that the only interval is-¢o, o) which is the one described in Theorem 4.4
i). Therefore, it could be possible to have a suitglleNotice thato(gx, q)/p(x,q) = 1 at
xo = —7(0,9)/7'(0, q), then from Figure 4.5, it follows that is increasing on-{co, Xp) and
decreasing onxg, ) with p — 0 asx — Foo sincep(qx g)/p(X,g) — . The previous

discussion brings about behaviourwin the following Figure 4.6.

Itis also seen from Figure 4.6 thatdo, oo) could be suitable fop. But we should analyse the

extended dPearson equation (4.20) to chaek(x, g)p(x, g)x* — 0 asx — Fco which leads
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Figure 4.6: Possible positive graph of correspondgifigq) for Figure 4.5.

to Figure 4.7A.

y y

Figure 4.7: A figure of Ag(x, g), B: o1(x, g)p(x, @)x¥ related to Figure 4.5.

Itis clear from Figure 4.7A thaj has the same property withasx — Fco. Then,qo1(X, Q)
(%, Q)X = oo(q71x, Q)p(q1x, g)x¥ — 0 asx — Feo, k = 0,1, ... (see Figure 4.7B). Thus, we

have the following theorem.

Theorem 4.9 Let a= —oco and b= co and assume thatéq), bo(q) € C, Aq = :1((%2‘)) < 0.
Then, there exists a sequence of polynom(i@j3, orthogonal on(a, b), i.e., they satisfy the

orthogonality (4.18) with respect to the g-weight function

p(x, Q) = x**1°% L (qap(q)/x, qba(6)/%; Q) > 0, X € (=00, 00), (4.25)
1ls7 . . g . .
q* = % which satisfies the g-Pearson equation and the boundary condition (gee Th
orem 4.4j)).
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This case corresponds to the case lal in Chapter 11 and case Vaptercof [35, pages

335, 357, 283 and 315].

An example of such family is the discrege'-Hermite Il polynomials [35] whereay(q), bo(q) €
C,

T a) =q",  oaxq) =1+x?
= g @ = Tl
Discreteq !-Hermite Il polynomials are orthogonal ordo, o0) and the conditiongq < 0
and 0< ax(q), bz(q) € C hold. By means of Theorem 4.4 ) we can write the orthogonality
(9.-9.-1, -1, -0, Qe
(i, —i,-ig,iq, —i.1,i0, -ig; O

[ ﬁﬁmm Ahn(x; )dgx = (1~ Q)™ (3 ODn S (4.26)

4.2.2 Linear Case: Theg-Classical@-Laguerre/Jacobi Polynomials

Let 1(x,Q) = 0(0.0)x + 01(0.6) = 0 (0.A)(x - a(@)), a(@) = ~FgH andr(x.q) =
7/(0,9)x + 7(0,0), 7’(0,g) # 0. Then, the g-Pearson equation can be rewritten according to

these datas as the following form

plaxq) o Q)+ (1 -gHxr(x,q) g loa(x q)

p(x,q) o1(9x% q) ~ o(ax0)
| - + A (- YFmh)x - a o
qx— a1(a) ' '

Remark 4.10 Notice that,o1(x,q) = 07(0,g)x + 01(0,q) = ¢7(0,9)(x — a1(q)) leads to
oa(%.0) = q[o(x q) + (1 - g H)xr(x Q)| = (q- 1)7'(0. 4)X + (4o} (0. @) + (4 - 1)7(0. )X -
qo;(0,g)ai(q). It is seen thatry(x, q) is quadratic sincer’(0, q) # 0. Hence, the g-Laguerre
type g-polynomials of the 1st kind are the g-Jacobi type g-polynomidtsea2nd kind (see
Table 4.1).

Let denote by\y the constant

7(0.9) |° _ 1, 7(0,0)
F@g| @A e .

Notice that the nominator in (4.27) can be written as

7(0.q)
01(0.9)

Agi=|1+(1-q

1-q9 [x— a(a)][x - b2()]. if Aq # 0.
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In fact, if Aq > 0 thenay(q) andby(g) € R and we assume, without losing any generality that

az(q) < bo(q). If Aq <0, ax(q) andby(q) € C.

If Aq =0 then the nominator takes the form<{Q™) :,1(((32)[x — ay(q)]?, whereay(q) € R.

We are interesting in knowing how behave the zeros of the nominator of) (@@ so, the

zeros ofp(gx g)/p(x, g)). This is given in the following straightforward lemma.

Lemma 4.11 Let f(x, q) = p(gx 0)/p(X, g) be the function defined in (4.27) and set

7/(0,0)
= # 0.
7 01(0.9)

Then, the roots of the equatiorixf q) = 0 have the following properties;

1. If Aq and a(q) have opposite signs, then there are two real distinct roots with opposite

signs.
2. If Aq and & (q) have same signs, then there exist three possibilities, i.e.,
(a) if Aq > 0, there are two real roots with same signs,

(b) if Aq = 0, there are equal real roots,

(c) if Aq <0, there are no real roots.

Proof. The proof, done for constant case, can be suitably modified by taking

7(0,9) | 1, 7(0,0)
700 +4ay(6)(1-q )0,1(0, %

SO as to obtain each case above. O

Ag=|1+(1-q™

Next step is to analyse all possible graphg@fx, q)/o(x, q) in (4.27) according to all possible
relative positions of the zeros of; ando, with the assumption of the conditions of Lemma

4.7. Letf(x q) = p(gx q)/p(x q) be the function defined in (4.27).

Case 1.A:ax(q) < 0 < g tay(g) < by(q), Aq < 0. This situation is represented in Figure
4.8A. We deal with the possible intervals in which we can have a suitableight function
p. To this end, we first start with positivity condition of tigeweight function which allows
us to exclude the intervals-6o, a>(0)) and @ a1 (q), bo(q)). Moreover, due to Remark 4.5.3,

(ax(q), q~ta1(q)) can not be used since the boundary condition (3.119) is not satigfed.
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d"a(a) 1@
|

Figure 4.8: Case 1. The functioi(x, g) with A: Aq < 0,a2(q) < 0 < gtay(q) < bx(q),
B: Aq > 0.0 "ay(q) < ax(q) < 0 < by(q).

us consider the last intervab4(q), ). Notice that it coincides with the one described in
Theorem 4.4 h), so here it could be possible to have a suitpbleight functionp. Notice
also that since(gx q)/p(x,q) = 1 atxg = —7(0,q)/7’(0,q), X0 > X = by(q), then from
Figure 4.8A it follows thaj is decreasing on—z(0,q)/7’(0, g), ). Sincep(gx q)/p(X, q)

has an infinite limit ax — +co, we haveo — 0 asx — o. We note that according to the
information we discussed above, the behavioyr odin be sketched as in Figure 4.9 assuming

a positive initial value for thg-weight function in each interval.

y

A

-------
......
.o
0.

.
.
o,

aa) qa@ b

Figure 4.9: Possible positive graph of correspondifgq) for Figure 4.8A.

It is also apparent from Figure 4.9 that> 0 asx — co. However, since it is infinite interval,
we should check that(x, q)o(x, @)x¥ — 0 asx — oo by using theextended dPearson
equation (4.20). Performing the same procedure teitended ¢Pearson equation leads to
Figures 4.10. It is clear that Figure 4.10 is analog to Figure 4.8A. Thatstldy have the

same property as — oo which can be seen in Figure 4.11.
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Figure 4.10: A figure o (x, q) corresponding to Figure 4.8a.

As a result, we deduce from Figure 4.11 tha(x, g)p(x, @)X — 0 asx — co. Therefore,
(b2(q), o) is suitable interval to havye with needed property. Thus, we perform the following

theorem.

R A

a(a) a@ b - a@ | a@ b@

Figure 4.11: A figure ofr(x, q)p(x, g)x¥=c(q~1x, g)p(q~1x, g)x¥ related to Figure 4.10.

Theorem 4.12 Let a= by(q) be the zero ofr2(x, g) and b= oo and assume that¥g) < 0 <

g tai(g) < bx(g) andAq = :,1((%2‘)) < 0. Then, there exists a sequence of polynontiaig,

orthogonal on(a, b), i.e., they satisfy the orthogonality (4.16) with respect to the g-weight

function

@+ 10g x-1 (93e(a)/X, qb(g)/X; d)e
(a1(9)/X; A)eo

p(x.q) = >0, xe (by(a), ), (4.28)

—-21
qQ* = %gg;’q) which satisfies the g-Pearson equation and the boundary condition (gee Th
10,

orem 4.4 h)).

This case corresponds to the case lla2 in Chapter 11 of [35, pagesd@358].
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An example of such family is thg-Meixner polynomials [35] whera;(q) = bq, a»(q) = —bc,
ba(q) =1,
o1(x q) = cg ¥ (x—ba), o2(x 0) = (x— 1)(x+ bo),

/ln(q) = %

1_
X+cq’ bc+1
1-q 1-q

7(x.Q) = -
g-Meixner polynomials are orthogonal on, ¢b) and the conditiong < 0 andax(q) < 0 <
a1(q) < by(g) give us the following restriction for the parameters 0, 0 < b < g™. By
means of Theorem 4.4 h) we can write the orthogonality

9 log, X1 (a/X%; O)o(—bC/ X; )0 . . . . s -n
fl X /0% o M0, G) M6 b, X = (47~ 10

! —c71q;9)n (G, —C; Qoo
(bgagn  (bg e

Smn (4.29)

together withc =g >0, 0<b < g™

Case 1.B:qtai(q) < ax(qg) < 0 < by(q), Aq > 0. This case is represented in Figure 4.8B. Let
us examine the possible intervals in which we have a suifabiférst of all, the positivity of

p enables us to skip the intervatstai(q), ax(0)), (b2(q), ). On the other hand, the rest two
intervals (oo, qtay(q)) and @x(q), bo(q)) are both eliminated due to Remark 4.5.5 (we first
need to do the transformatiosx) as well as Remark 4.5.2. Then, this case does not lead to

a suitablep with needed properties.

n —>

q a(a)

ﬁ“%@i aq) afa) ~~ba)

Figure 4.12: Case 2(a). The functid(x, q) with A: Aq < 0,qtas1(q) < 0 < ax(q) < bx(q),
B: Aq > 0,0 < ax(q) < by(q) < g *au(0).

Case 2(a).A:qtay(q) < 0 < ax(q) < ba(d), Aq < 0. The representation of this case appears
in Figure 4.12. We perform the analogous analysis in order to get thébfmsagervals in

which we have a suitablg-weight function. Thus, we begin with applying the positivity
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property which allows us to omit the intervalscp, gta;(q)) and @x(q), b2(q)). Afterwards,
Remark 4.5.4 enables us to exclude the intergatds(q), ax(g)). On the other hand, If we
consider the last intervab$(g), o), an analogous analysis as the one that has been done in

Case 1A yields Figure 4.13.

.
.

q'a(a) a(a) b(a)

Figure 4.13: Possible positive graph of correspongif)gq) for Figure 4.12A.

It is obvious from Figure 4.13 thai —» 0 asx — o. However, since we should check
a1(x, Q)p(x, @)Xk - 0 asx — oo, k = 0,1,..., the analogous procedure as in Case 1A, the

extended €Pearson equation (4.20), leads to the Figure 4.14 and therefore Bidre

[

Figure 4.14: A figure of(x, ) corresponding to Figure 4.12A.

As a result of the Figure 4.15, we arriveeat(x, g)p(x, @)X — 0 asx — co. Therefore, there
exists ag-weight function on I>(q), o) supported at the points;(q)g, k = 0,1, ... (see
Theorem 4.4 h)).

Notice that Case 2(b) includes the same graphs with Case 2(a).A togethes(@jth: b,(q).
That's why, case 2(b) also produce the intergdiy(q), ) associated witlay(q) = by(q).
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a(a) a(d) bya)
" S b BT R TG

DO

Figure 4.15: A figure ofr(x, q)p(x, g)x$=c2(q1x, g)p(q~1x, g)xX related to Figure 4.14.
Therefore, one can obtain the following theorem for this case.

Theorem 4.13 Let a = by(q) be the zero ofr»(x, q) and b= co and assume thatda;(q) <

0 < ay(q) < bx(g) andAq = % < 0. Then, there exists a sequence of polynon{iai,
orthogonal on(a, b), i.e., they satisfy the orthogonality (4.16) with respect to the g-weight
function

p(x.q) = x**2'°% X‘l(qag(?;/l )(Z?/bj(g;/ XD 50, xe (o). (430

—-21
qQ* = %gg;’q) which satisfies the g-Pearson equation and the boundary condition (gee Th
1,

orem 4.4 h)).

This case corresponds to the new orthogonality on the intdoy@d)( ).

An example of such family is thg-Meixner polynomials [35] where;(q) = bg, ax(q) = —bc,
b2(q) = 1,

o1(% Q) = cq 2 (x=ba), oa(x.q) = (x = 1)(x+ bo),

cql-bc+1 _ [nlq
1_qx+ l—q ’ /ll"l(q)__

1-q
g-Meixner polynomials are orthogonal on, ¢b) and the conditiong < 0 anday(q) < 0 <

(X, q) = -

ax(q) < bo(qg) give us the following restriction for the parameters 0, b < 0, 0 < —bc < 1.

By means of Theorem 4.4 h) we can write the orthogonalitg-bfeixner polynomials

o log 1 (A/% Qoo(=PC/X; Qoo T o~ TR _ (1 ~~Lya-n
flxwx ! B Mm(xb,cia) Ma(x;b,c;a)dy 1x = (1~ a7

(9. —c g, 9n (@, —C; Qoo
(bgagn  (bg 9w

Smn (4.31)
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which coincides with (4.29) but with ffierent choice of parametets= q“ >0, b < 0, 0 <

—bc < 1 which is the new orthogonality fa-Meixner polynomials.

Case 2(a).B:0 < ax(q) < bx(g) < gtai(q), Aq > 0. This situation is indicated in Figure
4.12B. We perform the analogous procedure to determine a suitable Intéwsaeo satisfies
the certain conditions. Hence, we first consider the positivigywhich enables us to remove
the intervals (), b2(q)) and @ 1asi(q), ). We secondly deal with the intervatéo, a>(q))
which is also eliminated due to Remark 4.5.6 (we first need the transformasont) since

the boundary condition is not satisfied.

We last look at the intervabg(q), g~ta1(qg)) which concides with the one given in Theorem 4.4
d). Then, here, it could be possible to have a suitgbMeight function. Notice from Figure
4.12B thaip(qx q)/p(x,q) = 1 atxo = —7(0,0)/7’(0,a), x = ba(q) < %o < x = g ay(q), then

it follows thatp is increasing ont(q), Xo) and decreasing orx4, gta; (q)) with the property
p(abz(a). @) = 0 andp(x,q) — 0 asx — g *au(q)” sincep(qbz(q), 9)/p(b2(q),q) = 0 and
p(ax )/p(x, q) — oo asx — g tai(q)~. Therefore, the behaviour pfcan be determined as

in Figure 4.16.

a@ bl L g'aa)

Figure 4.16: Possible positive graph of correspongifxgq) for Figure 4.12B.

Figure 4.16 also displays thagl{(q), a1(q)) is the suitable interval in whichp is defined.
Notice that the boundary condition (3.119) holdscat gl (g) andx = a;(q) sinceqby(q) is

the root ofo>(g~1x, ) anday (q) of o1(x, q) (see Theorem 4.4 d)). Observe from Theorem 4.4
d) that for this case whilg is supported ondb,(q), a1(q)) at the points(q)qf, k = 0,1, ... it
could also be supported obx(q), g~ ta;(g)) at the pointdu(a)g ¥, k= 0,1, ....
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Notice that Case 2(b) includes the same graphs with Case 2(a).B togethes(g)ts ba(q).
That's why, Case 2(b) also produces the intertm(d), gta;(g)) associated withay(q) =

b2(q). Therefore, we perform the following theorem for this case.

Theorem 4.14 Let a= glp(q) be the zero of>(q71x, g) and b= a;(qg) of o1(x, ) and assume

that0 < ax(q) < bx(g) < g tai(qg) and Aq = ;',((%Cc‘])) > 0. Then, there exists a sequence of
1@,
polynomials(Py), orthogonal on(a, b), i.e., they satisfy the orthogonality (4.9) and (4.11)

with respect to the g-weight function

p(x, Q) = X*x°%*(qa; (g)x, gae(q)/x, qo2(a)/X; Qe > O, X € (8, b) (4.32)

q = - q2304(0,0)
307/ (0.0)a1(q)

Theorem 4.4 d)).

which satisfies the g-Pearson equation and the boundary condition (see

This case corresponds to the case Ilb1l in Chapter 11 of [35, pagen83361].

An example of such family is the quantugpKravchuk polynomials [35] wherey(q) =

q N, ax(q) = prg Nt by(g) = 1

o1(x.0) = -q2(x—=qN),  oa(x.0) = (x— 1)(px— g™,

1. -N-1
p x+p qg-+g
-q 1-q¢

Quantung-Kravchuk polynomials are orthogonal on (tN-1) and the conditionaq > O and

r(xQ) = —3 - (@) = oIl

0 < ax(g) < bo(q) < a1(q) give us the following restriction for the parametgrs g N1, By
means of Theorem 4.4 d) we can write the orthogonality of quagtiravchuk polynomials
~N-1

q
f X% X (VX /%, pra N /% )oK . NS G)KA0x PN o) dgax= (g7 - 1)
1

(-1 pNgH- s1)+Nn (% Dn-n(Q, PG Dn

N gN*L: 0)ood 4.33
(@, PG, )N  DecOmn (4.33)

@ p g

together withp = g* > g N~1. Notice from Theorem 4.4 d) that one can also write the

orthogonality with finite sum by applying (2.31) to (4.33)

Z G5 (g)i(g)g); (- DN gOKE™ (@ pN; OKI(@ 7 p. N; @) = (-1)"pY

w§5_055+Nn(q;q)N—n(q,pq?Q)n

(0. g; O Omn- (4.34)

xq

83



0 /\ ‘ : X
‘az(q) : b(q) ) !q’lal(q : : >
|
. . . | . L

Figure 4.17: Case 2(a). The functidiix, g) with C: Aq > 0,0 < ax(q) < qtai(q) < bx(q),
D: Aq < 0,a2(q) < by(q) < g *au(q) < 0.

Case 2(a).C:0 < ap(q) < qtai(g) < ba(q), Aq > 0. This case is placed in Figure 4.17C.
Then, according to the graph 6fin Figure 4.17C, we analyse the possible intervals in which
the g-weight function is defined. Thus, let us start with excluding the negatievals
(ax(q), g tai(q)) and po(q), ). Afterwards, one can also eliminate the rest two intervals
(—c0, ap(q)) and @ tay(q), ba(qg)) with the help of the Remark 4.5.6 (we first need to use trans-
formationx = —t) and Remark 4.5.4, respectively. As a result, this case does not teeaera

suitable interval wherg is defined with needed properties.

Case 2(a).D:ax(q) < by(g) < qtai(q) < O, Aq < 0. The graph for this case is placed
in Figure 4.17D. We start to skip the negative intervalso(ax(q)) and @2(q), q-tai(q)).
Next, we eliminate the intervab{(q), b2(q)) by use of Remark 4.5.2. We last analyse the
interval @ ta1(q), ) which is the one identified in Theorem 4.4 g). Thus, we anticipate that
it could be possible to have a suitallen this interval. Notice thabt(gx, q)/o(x,q) = 1 at

Xo = —7(0,0)/7(0, ), Xo > X = q *ai(q), then it follows thap is increasing ondta;(q), Xo)

and decreasing orxd, o) which leads tgp — 0 asx — oo sincep(gx, q)/o(X, q) — . As a

result of the above discussion we can also construct Figure 4.18 fgntegght function.

We infer from Figure 4.18 that the boundary conditions (3.119) and {3 dld atx = a1(q)
andp — 0 asx — oo, but we still need to ensuke;(x, g)o(x, @)X — 0 asx — co by using
the extended ¢Pearson equation (4.20). For this reason, we get Figure 4.19 byiragp e
same procedure to tlextended €Pearson equation (4.20) which helps to construct the Figure

4.20 for the boundary condition (3.119).
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éz(q) 7 bz(q) ,qflaﬁq?

Figure 4.18: Possible positive graph of correspongifpgq) for Figure 4.17D.

.
oo |5 - - Te ey -

. .

. . . . Se,

)x

0 2 .
afa) bfa) a( ‘ ‘ : a(a) bga) él(q) 7

Figure 4.20: A figure ofr1(x, g)p(x, g)x< = o2(q~x, g)p(q~1x, q)xX related to Figure 4.19.
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Notice from Figure 4.19 that it looks like the one represented in Figure 4. TfA&x's why, it
leads to the similar properties, i.e., we gai(x, g)o(x, )X — 0 asx — oco. Consequently,
we get a suitable on the interval &1(q), o) supported at the poinegf andg™, k = 0, 1, ...
(see Theorem 4.4 g)).

Notice that Case 2(b) includes the same graphs with Case 2(a).D togethes(gjte by(q).
That's why, Case 2(b) also produce the intenea(d), ) associated witlax(q) = bx(q).

We next construct the following theorem indicating the result discussedse €(a).D.

Theorem 4.15Let a = a;(q) of o1(X, ) and b = c and assume that>é&q) < by(q) <

g tai(g) <0, Ag = :,((%Cc‘])) < 0. Then, there exists a sequence of polynongRl¥, orthogonal
1@,

on(a, b), i.e., they satisfy the orthogonality (4.15)

fa P, A)P(x @)p(x hdgx=(1-0) (az(adb2(ada; (@) (6 3 (@)an(q). by ()as(q): Ohn

(6 21(9). qay (@), a; (@b, "(Aa(@). Ga(AP2(3; (A): Do on 1) 5

(4.35)
* @1 @au(0). b;HDau(0). (). b;1(0). Gax(a). Aba(); O .
with respect to the g-weight function
(@ (9)ax 9w
p(x,d) = >0, xe (ab) (4.36)
(@1 (@)% b (a)x; 6)e
o _ 9'3075(0.0)2x(q)bz(0) : o : "
q* = 0D which satisfies the g-Pearson equation and the boundary condition

(see Theorem 4.4 g)).

This case corresponds to the case Vla2 in Chapter 10 of [35, pa§em@&815].

We note that this case leads to the new orthogonality on the intexM@)(c0) which does
not appear in the-Askey scheme. Actually, this case is analog to the one leading to the

g-Meixner polynomials. They dier by the orthogonality interval.

Case 2(c):ar(q) < 0,ax(q),b2(q) € C, Aq < 0. The situation of this case is represented
in Figure 4.21. Notice from Figure 4.21 thaita;(q), o) is the only interval wherd is
positive. Observe that this interval is exactly same with the one represen@ase 2(a).D.
Notice also from the Figure 4.21 and Figure 4.17D that they both have saperfyron the
interval (@ a1(q), ). Then, the result represented in Figure 4.17D is valid for this case also,

i.e., there exists a suitabeon (@ tai(q), o) which is also seen from Figure 4.22 (graph
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Figure 4.21: Case 2(c). The functidiix, g) with Aq < 0,a1(q) < 0, ax(q), b2(q) € C.

of p) and Figure 4.23 (graph of thextended éPearson equation aneh (x, Q)o(x, Q)x< =
a2(q %, Dp(atx, g)x).

© o qlaa)

Figure 4.22: Possible positive graph of correspongifygq) for Figure 4.21.

a(q)

Figure 4.23: A figure of Ag(x, q), B: o1(x, @)p(x, )X = o2(q~1x, g)p(q~1x, g)x¥ related to
Figure 4.21.

Thus, this case leads to the following theorem.
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Theorem 4.16 Let a= a;(q) of o1(x, Q) and b= oo and assume that;&g) < 0, ax(q), b2(q) €

C,Aq = ;ﬁl((%f‘q)) < 0. Then, there exists a sequence of polynon{®@i3, orthogonal on(a, b),

i.e., they satisfy the orthogonality (4.15)

fa Pn(x A)Pa(x @)p(x dgx=(1-0) (az(adb2(aday (@) (6 3 (@an(q). by ()as(a); g)n

y (9. a1(0), ga; 1(q), a5 (a)b; (a)aw (a). gae(g)b2(d)a; H(0); O
(a5 (@au(a). by (@a(a). a(a). by(a). gae(9), aba(a); Q)

with respect to the g-weight function

q " 1s0(4.37)

(a1 (@)ax o

p(x.q) = (agl(Q)X’ bgl(Q)X; Qoo

>0, xe (a,b) (4.38)

11
q =2 2(;%((8’2))25((2;@@ which satisfies the g-Pearson equation and the boundary condition
A

(see Theorem 4.4 g)).

This case corresponds to the case Vlal in Chapter 10 of [35, pa§em@&815].

We note that this case leads to the new orthogonality on the intexM@)(c0) which does
not appear in therAskey scheme. Actually, this case is analog to the one leading to the

g-Meixner polynomials. They dier by the orthogonality interval.

4.2.3 Quadratic Case

Assume thatri(x, g) = 307 (0,9)x? + (0, g)x + 1(0, ) = 30 (0, g)[x — ar ([ X — br ()],
a1(g) < b1(q) andr(x,q) = 7'(0,g)x + 7(0, ), 7'(0,q) # O.

Remark 4.17 We remark thatr»(x, q) follows from (3.11)

(%0 = g {[é(r'l'(o, @) + (1~ a7 (0.9 - 507 (0. (a(@) + ba(@)
- (A-gHr(0.9)|x+ %Gi’ . q)al(q)bl(q)}- (4.39)
Note that
e deg2(x,q)] =2 when 7/(0,q) # —%,
e degira(x.0)] = 1 when (0.0) = —24% and £(0,q) # LECHAWDI@)
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1-0-” X 1'0'” )
e degla(x,q)] =0 if 7/(0,q) = _2(1_1(5?1()‘), 7(0,q) = 2 1(0((11?;9;+b1(q)) and
307/ (0, q)ag (q)ba () # O.

That's why, the g-Jacobi type g-polynomials of the 1st kind are thecghiathe g-Laguerre
and the g-Hermite type g-polynomials of the 2nd kind (see Table 4.1).

4.2.3.1 Theg-Classical@-JacobyJacobi Polynomials

We deal with every degree of(X, q) starting withg-Jacobjig-Jacobi case by letting1 (X, q) =
307(0,0)% + ¢y(0,9)x + 0r1(0,q) = 307(0,g)[x — an(A][x - ba(q)], ar(q) < bi(q) and
7(X,q) = 7(0,g9)x + 7(0,q), 7(0,q) # 0. Then,o»(x,q) = 2o- (o2 q)x2 + 0-2(0 a)X+ 02(0,q)

where

_0'2 ,(0,0)

a5(0,q)

q[za (0.0) + (L-a™)7'(0,0)] 02(0, ) = —cr /(0. g)a(6)bs (0).

—q[ia'l'(o, q)(a1(0) + ba(a)) - (1 - g™H)7(0. ) -

Thus, theg-Pearson equation follows from (4.1)

[ra-an g |- + bi@ - @ - a )G @b

p(ax. )
p(x.q) [ax—au(q)][ax - ba(q)]
_ qloa(x.0)
~ ou(gxa) (4.40)
Let denote by\q the constant
o 1 gy FOq 2 _ o1y 70,9
Aq = [aa(q) + by() - (1-q )1 0 )] 4ag(q)by(q)[1+ (1 - )%U;(o,q)]'

Notice that the nominator in (4.40) can be writen as

7(0.q)

1+(1-ghH)+——
3070, 0)

l [x—a2(a)][x - b2(a)], if Aq#0.

In fact, if Aq > 0 thenay(q) andby(q) € R and we assume, without losing any generality that

ap(q) < bx(q). If Aq < 0, ax(q) andby(q) € C.

If Aq = 0 then the nominator takes the fo{m+ 1-gb 1T (fzg)q) [x —ax(q)]?, ax(q) € R.

We are interesting in the behavior of zeros of the nominator of (4.40) (@nths zeros of

p(ax g)/p(x, q)). This is given in the following straightforward lemma.
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Lemma 4.18 Let f(x, q) = p(qx q)/p(X, q) be the function defined in (4.40) and set

lT /(/0’ q) #0
20—1 (O’ q)

Then, the roots of the equatiorixf q) = 0 have the following properties;

Aq=q2|1+(@1-qt

1. If Ag> Oand a(q) < 0 < by(q), f has two real and distinct roots with opposite signs.
2. If Aq> 0and0 < a;(q) < b1(q), there exist three possibilities,

(a) if Aqg > 0, f has two real roots with the same signs,
(b) if Aqg =0, f has two equal real roots,

(c) if Aq <0, f has two complex roots.
3. If Ag < 0and a(qg) < 0 < by(q), there exist three possibilities,

(a) if Aqg > 0, f has two real roots with the same signs,
(b) if Aq =0, f has two equal real roots,

(c) if Aq <0, f has two complex roots.

4. If Aqg < 0and0 < ai(qg) < by(q), f has two real distinct roots with opposite signs.

Remark 4.19 Notice that y= Aq is the horizontal asymptote of the functiofx,fq).

Our next step is to analyse all possible graphg(ofx, g)/o(x, q) in (4.40) according to all
possible relative positions of the zerosxafando,. We assume that the conditions of Lemma

4.18 hold.

Before starting the analysis notice thagx, q)/p(X, q) always intercepts thg-axis at the
pointy = 1 sinceo»(0, ) = qo1(0, g) (i.e., the constant terms of; ando, are the same). In
addition, to give a full description of the items 1 and 2 of Lemma 4.18 we needitdhgm

in two separate cases: case i) when> 1 and case ii) when @ Aq < 1.

Let f(x, Q) = p(gx q)/p(X, g) be the function defined in (4.40).

Case 1.i))A:q tay(q) < ax(q) < 0 < by(q) < g *bi(d), Aq > 1. The graph of for this case is

represented in Figure 4.24A. Let us consider now the possible intervatsich we can have
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(@[ b,@) |l (6)

Figure 4.24: Case 1.i) The functidifx, g) with Aq > 1. A: g tas(q) < ax(q) < 0 < bp(q) <
q-*b1(q), B: q~tau(a) < a(a) < 0 < g bi(q) < by(q).

a suitableg-weight functionp. As we already mentioned, they are defined by the zeros of the
polynomialso; ando,. First of all, notice that sincg should be a positive weight function
and f is negative in the intervalsyt*a; (q), a2(q)) and @2(q), q*bs1(q)) they are not suitable.
The interval &2(Q), b2(q)) can not be used due to Remark 4.5.4 since the boundary conditions
can not be satisfied. The same happens with the inteqvab{(q), «) (see Remark 4.5.5),
and by the symmetry property with-¢o, q~*a;(q)). Therefore, this case does not lead to a

suitableg-weight function with the needed properties.

Case 1.)B:qtai(q) < ax(q) < 0 < gtba(q) < ba(g), Aq > 1. Let us now analyse the situa-
tion given in Figure 4.24B. The positivity gfallows us to skip the intervals(*a; (q), a>(q))
and @ 1b1(q), ba(g)). Using Remark 4.5.5 (we first need to do the transformation —t)
as well as Remark 4.5.3 we can eliminate the intervads, (@ ta;(q)) and @x(q), g 1b1(q)),
respectively. Let consider now the last interval(€]), o). Notice that it coincides with the
one described in Theorem 4.4 h), so here it could be possible to haveablesg-weight
functionp. Notice also that sincg(gx q)/p(x,q) = 1 atxg = —7(0,9)/7’(0,Q), Xo0 > X =
b2(q), then from Figure 4.24B it follows that is decreasing onr(0, q)/7’(0, q), ). Since
p(ax q)/p(x, g) has a finite limit asx — +c0, we have the chance that— 0 asx — oo, but

it is not enough to assure thasatisfies the boundary condition-ato. In fact, as it is stated

in Theorem 3.31, we should check that(x, g)o(x, q)X< — 0 asx — . To this end, we use,
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instead of they-Pearson equation (4.1), the followiegtended €Pearson equation (4.20):

. _ ou(ax ge(ax g)(gx*
WD =k dolx 4l

-1 709 |2 (1 _ ~1y_7(0.9
[ - a8 - | + ba@) - (- a7 720 o+ av(@ba(@

(x—a1(q))(x - b1(q)) ’

= q

which is represented in Figure 4.25.

/ b(a)

Figure 4.25: A figure of(x, ) corresponding to Figure 4.24B.

If we now provide a similar anaysis with the functigrmefined in (4.41), we see from Figure
4.25 that, fork large enoughg is an increasing positive function with a positive limit. There-
fore or1(x, Q)p(x, g)x€ 4> 0 asx — oo and the condition (3.117) does not hold. Thus we can

not use this interval for constructinggaweight functione.

y y

ERC)
|

(AN - (d"a@)d b, a(a)

Figure 4.26: Case 1.ii)) The functiol(x,g) with 0 < Aq < 1, A: ax(q) < g lai(q) < 0 <
qbu(q) < bz(a), B: a2(a) < g *ai(q) < 0 < by(q) < q~*ba(q).

Case 1.i))A:ax(q) < g tay(g) < 0 < g~tby(g) < by(q), 0 < Aq < 1. This case is represented

in Figure 4.26A. Let us examine all possible intervals in order to find in whiedsdhere
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could be defined a conveniettweight function. First of all by the positivity property of

we eliminate the intervalsag(q), q~*as(q)) and @ tb.(q), b2(g)). Notice from Figure 4.26A
that the interval lf(q), o) coincides with the one described in Theorem 4.4 h). However,
f(x,g) < 1 on this interval thup is increasing onlf(q), «) which leads tg 4 0 asx —
Thereforeo1(x, (X, q)x< 4 0,k = 0,1,2, ... asx — co. The same happens for the interval

(—o0, a2(Q)) by symmetry properties.

Let us consider the last intervai(as(q), g tb1(qg)). Observe that this case is described in
Theorem 4.4 a), then it could be possible to have a suigleight functionp. Notice that
sincep(ax o)/p(x.q) = 1 atxo = —7(0,9)/7'(0,q), g taw(q) < xo < qthi(q), thenp is
increasing ond*ay(q), Xo) and decreasing orxg, g *b1(q)) wherep — 0 asx — g ta;(g)*
andx — g tbi(q)~ sincep(gx q)/p(x,q) — . According to the above discussion we can
sketch the graph qgf which is represented in Figure 4.27 assuming a positive initial value for

theg-weight function in each interval.

<

afa q'a@| - d'b@ b

Figure 4.27: Possible positive graph of correspongif)gq) for Figure 4.26A.

We also figure out from Figure 4.27 that, there existg\@eight function on the interval
(a1(), b1(q)) supported at the points (q)d¥, b1(q)gk, k = 0,1, ... (see Theorem 4.4 a)) since
the boundary condition (3.115) holds at= a;(q) and x = by(g). Since this interval is
finite, then there is no needed to look at theéended dPearson equation. Thus, we have the

following Theorem.

Theorem 4.20 Let a = a1(q), b = bi(q), be the zeros af1(x, g) and assume that&g) <

g tay(a) < 0 < gtby(q) < ba(g), and0 < Aq =g 2[1 + (1 - q‘l)%] < 1. Then, there
201

exists a sequence of polynomiéif),, orthogonal on(a, b), i.e., they satisfy the orthogonality
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(4.6) with respect to the g-weight function

(x.0) = (9 (@)%, aby () X; O)eo
’ (@ ()%, b3 H(A)X; Oeo

which satisfies the g-Pearson equation and the boundary condition (eeaeim 4.4 a)).

>0, xe (a(a). ba(a)) (4.42)

This case corresponds to the case Vllal in Chapter 10 of [35, p@gemn? 318].

An example of such family is the biggJacobi polynomials [35] whei@ (q) = cq, b1(q) = aq,
ax(q) = b~tc, by(q) = 1,

O—l(X9 q) = q_z(x - aq)(x - Cq)a O-Z(X’ q) = aq(x - 1)(bX— C)’

1-ab?  a(bg- 1)+ c(ag- 1) 1 - abd"?!

(1-a) 1-q q-1 =

Big g-Jacobi polynomials are orthogonal arg(aqg) and the conditions constructed according

7(x,q) = . An(@) = g "[n]q

to the identity
o1(ax Ap(ax q) _ g toa(x q)
a1(x g)o(X, a) o1(x, )

as 0< g?Aq < 1 anday(q) < a1(q) < 0 < by(q) < by(g) give us the following restriction for

(4.43)

the parameters < 0, 0 < b < g1, 0 < a < 1. By means of Theorem 4.4 a) we can write

the orthogonality of bigy-Jacobi polynomials

29 (a1x, 71X O)eo . . ) . 1-abq
j;q mpm(X, a,b, c; q)Pn(X;a,b, c; g)dgx = ag(1 - Q)?qum
@ abd?, alc, aclq; g)w (0, bg, abcig; g)n

- Ny
(330G ca abc i), (agycq abg @)y 200 0 (4.44)

together withc < 0,0<b < g%, 0<a< q?*[36].

Case L.ii)B:ax(q) < gtai(g) < 0 < bp(g) < g tby(q), 0 < Aq < 1. The graph off for
this case is represented in Figure 4.26B. By the positivity e@fe eliminate the intervals
(ax(q), g ta1(q)) and @2(q), g tbi(q)). Moreover, ¢ tay(q), b2(q)) can not be used due to
Remark 4.5.4 since the boundary conditions can not be satisfied. The s@mpens with
the interval 1b1(q), o) (see Remark 4.5.5). For the last intervabq, a>(g)), an analogous
analysis as the one that has been done in Case 1lii)A yields that it is alsaitadies for

constructing.

Case 2.(a)i)A:0 < a(q) < qtai(g) < ba(d) < gqtbi(q), Aq > 1. The graph off for

this case is represented in Figure 4.28A. Let us now analyse the situaiidhssfcase. We
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Figure 4.28: Case 2.(a)i) The functidifx, g) with Aq > 1, A1 0 < ap(d) < qta(q) <
ba(a) < g *bs(q), B: 0 < ax(q) < q~*auw(a) < qbu(a) < ba(a).

first consider the positivity gb which allows to eliminate the intervala(q), g ta;(qg)) and
(bo(q), g b1(q)). The interval oo, ax(q)) is also omitted due to Remark 4.5.6 (by sym-
metry) since the boundary condition does not hold. The same happens withténvals
(q~a1(q), bo(q)) and @ tby(q), ) (see Remark 4.5.4 and Remark 4.5.5). As a result, this

case does not lead to any convenjent

Case 2.(a)))B:0 < ax(q) < g tai(q) < g~tbi(q) < ba(q), Aq > 1. This situation appears in
Figure 4.28B. Let us examine the possible intervals in which a suiteibldefined. We begin
with considering positivity b which allows us to eliminate the interval(q), g ta1(qg)) and
(q~1b1(q), bo(q)). The same happens by the symmetry property with the interal é>(q))
(Remark 4.5.6). dta1(qg), g tb1(qg)) also can not be used due to Remark 4.5.1. For the last
interval (2(q), =), it is seen from Figure 4.28B thdl(x,q) = 1 atxy = —7(0,q)/7’(0,q),

Xo > X = by(q), then it follows thaip is increasing onk>(q), Xp) and decreasing orxg, o).
Sincep is decreasing orxg, co) and f has a finite limit asx — oo, then we have a chance that

p — 0 asx — oo, but as we mentioned before it is not enough to assure that the boundary
condition holds atco. Thatis, we need the analysis of tdended €Pearson equation (4.41)
which leads to the analogous result as we obtained in Case 1.i)B-ibai)o(x, g)x< /4 0

asx — oo. That's why we can not obtain a convenignuith the needed properties.

Case 2.(a)i)C:0 < g~tay(q) < ax(q) < bo(q) < g~tby(q), Aq > 1. This case is represented in
Figure 4.29C. Let us start with performing the positivity property whiclvighes to eliminate
the intervals a1 (q), ax(g)) and 02(q), g~*b1(q)). Moreover, the intervalsag(q), bo(q)) and
(q~tb1(q), o) are both excluded due to Remark 4.5.2 and Remark 4.5.5, respectivelys Le
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Figure 4.29: Case 2.(a)i) The functid(x, g) with Aq > 1, C: 0< gqtay(q) < ax(q) < bz(q) <
q~*bs(q), D: @2(a) < bp(a) < 0 < g *au(q) < g *ba(a).

consider now the last intervak-éo, g~ta;(qg)). Notice that it coincides with the one described
in Theorem 4.4 g) with the symmetry property. Then, here it could be possigkt a suitable
p. Notice also thaf (x,q) = 1 atxg = —7(0,0)/7’(0, q), Xo < X = g~ *a1(qg). Then, it follows
from Figure 4.29C that is increasing on<co, o) and decreasing onxd, g ‘a1 (q)). Sincep

is increasing on-<{eo, Xg) andp(gx, q)/p(X, g) has a finite limit ax — —oo, we have chance
thatpo — 0 asx — —oo, but it is not enough to assure thasatisfies the boundary condition at
—o0. In fact, as we said before that we need to apply the analogous analjlsestdended ¢
Pearson equation in order to check thafx, q)p(x, g)x¥ — 0 asx — —co. One can easily see
from theextended €Pearson equation that (x, g)p(x, g)x¥ is decreasing on-eo, q~1a1(q))

for k large enough. Themri(x, g)p(x, g)x¢ 4> 0 asx — —co. As a result, this case does not

lead to any suitablg.

Case 2.(a)i)D:ax(q) < bz(q) < 0 < g tas(g) < gtbi(g), Aq > 1. This situation appears

in Figure 4.29D. We deal with the possible intervals in which we can have ebkiga
weight functiono. Notice that since should be a positive weight function arids negative

in the intervals »(q), b2(q)) and @ ta1(q), g*b.(q)) they are not suitable. Furthermore, the
intervals b2(q), q~tas(q)) and @ 1b1(q), o) can not be used due to Remark 4.5.3 and Remark
4.5.5, respectively. As the last interval, let us look-aio( ax(q)). Notice that it coicides with

the one described in Theorem 4.4 h) by the symmetry. That’s why, it coyddsmble to have

a suitablep. However, analogous analysis including thd¢ended €Pearson equation (4.41)
as we did before enables us to see that the boundary condition is noedatisti —» —co.

Therefore, we can not obtain a convenigweight function with the needed properties.
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Figure 4.30: The functiorii(x, q) with Aq > 1, Case 2.(a)i)E: & ax(q) < ba(q) < qtay(q) <
q *bi(q), Case 2.(c)i)F: G q~"au(q) < g bi(q), ax(q), ba(q) € C.

Case 2.(a)i)E:0 < ax(q) < bx(q) < g tai(q) < g tba(q), Aq > 1. This situation is identified
by Figure 4.30E. Analogously, we begin with excluding the negative inteea(q), b2(q))
and @ ta1(q), g tb1(q)). In fact, we also eliminate the intervalscp, ax(g)) and @ 1b1(q), =)
due to Remark 4.5.6 with the symmetry property and Remark 4.5.5, respectieélys how
consider the last intervabg(q), g ta;(q)). Notice that it coincides with the one described in
Theorem 4.4 d). Then, it could be possible to have a suifabiotice also from Figure 4.30E
that f(x,q) = 1 atxg = —7(0,q)/7’(0, ), bo(q) < Xo < q~tai(q), then it follows thap is in-
creasing onlfx(a), xo) with p(qbz(0), a) = 0 sincep(qb(a), a)/p(b2(g), ) = 0 and decreasing
on (xo, g *as1(q)) with p(x,q) — 0 asx — q *ai(q)~sincep(ax a)/p(x,0) — oo (see Figure
4.30E). As a result, above discussion leads to Figure 4.34 $tarting with positive initiap

for each interval.

a() - b © o qla) a'ba)

Figure 4.31: Possible positive graph of correspongif)gq) for Figure 4.30E.

Figure 4.31 exhibits thatgb,(q), a1(q)) is possible interval in whiclp is defined with the
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needed properties having the supporting paamts)q" = gbx(q) or qbo(q)g™N = ai(q) (The-
orem 4.4 d)). Notice that the boundary condition (3.119) and (3.117)dioteda; (q) is root
of o1(x, q) andqby(q) of oo(q1x, ). Observe that interval is finite, then there is no need

to look at theextended ¢Pearson equation. Notice that this case leads to a sujtabie

(qbx(q), a1(q))) supported at the pointgas(q), k= 0,1, ....

Remark 4.21 Note that Case 2(b)i) includes the same graphs with Case 2(a)i) whick lead
only to the intervalqgby(q), a1(q)) equivalent to the one in Case 2(a)i)E together witfog =
bo(q) and we remark that in case ofi(x, q) = 307/ (0, Q)[x—a1(q)]? andoa(x, @) = 30%5(0, )
[x—a2(q)][ x—b2(q)], similar figures whelar1(X, ) has two distinct roots are derived together
with &(q) = bi(g). However, only Figure 4.30E in company witi\@ = b;(q) leads to a
suitablep on (gbx(q), a1(q)) or (b2(q), g~ta1(q)) by performing the analogous analysis.

Therefore, according as all results discussed above, we corsteucilowing theorem.

Theorem 4.22 Let a= gby(q) be the zero of»(q~1x, g) and b= a;(q) of o-1(X, g) and assume

that0 < ax(q) < by(q) < g tas(q) < g by(q), andAq = q2[1 + (1 - q—l)%] > 1. Then,
201

there exists a sequence of polynomigts), orthogonal on(a, b) or (q~ta, q1b), i.e., they

satisfy the orthogonality (4.9) and (4.11), respectively with respect to theight function

p(x,q) = x2x°%X(ga; (a)x, ab; (@), gae(q)/x, ab(0)/X; Qe > 0, X € (@ b)  (4.45)

9 = at305(09)
307 (0.)as(a)bs ()
Theorem 4.4 d)).

which satisfies the g-Pearson equation and the boundary condition (see

This case corresponds to the case IlIb5 in Chapter 11 of [35, p&je 34

An example of such family is the-Hahn polynomials [35] wherey(q) = g™V, bi(g) = aq,
a(q) = g1 q Nt ba(a) = 1,

a6 0) = q2(x - g M(x-a0), 2% q) = aq(x - 1)Bx-q ),
1-aBq aq N +apq-a-qg N1 ~ 1— aBg™?!
Txq)= (1_§)?1 X+ ﬁq_ J 1 @=-q n[n]q_l__ﬁ?q —.

g-Hahn polynomials are orthogonal on ¢tN-1) and the conditionquo| > 1and O<ay(q) <

ba(g) < a1(q) < bi(q) give us the following restriction for the parameters q N1, g >
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g N-1. By means of Theorem 4.4 d) we can also write the orthogonalitylééihn polyno-
mials withg® = Aq

—N-1

q
fl X2 N9 o7, /%, 0N BTN /X ) QX @, B NIG)Qn(X; e, B, NIg)dg2x= (07-1)

(B n (A aBdN 280,00 1-afq (A O)e
(Ba; Dn(eN (aq.g™N, aBd; On 1 - aBg?™? (g, BN 0)e

together withe > gN-1, 8 > q"N-1. Notice from Theorem 4.4 d) that one can also write the

(—aq)"q@ N6, (4.46)

orthogonality with finite sum by applying (2.31) to (4.46)

(@9, q7; a)x XA (X x. (@B; AN

m b 9 7N n 1 b 7N -~ N

Z (0 510, (@A (@™ @ f. NIIQn(A ™ f. NIG) = o=
(PTG Dy L=0pA_(yne)-ting, (4.47)

(aq aN,aBg; Qn 1- aﬂqzm

Case 2.(c)i)F:0 < g tai(q) < g tbi(q), ax(q).bz(d) € C, Aq > 1. This situation is rep-
resented in Figure 4.30F. Sinpeshould be positive, we first start to exclude the negative
interval (@ ta1(q), g~ bi(q)). For the next step we consider the intervgil1(q, o)) which

is also eliminated due to Remark 4.5.5. Let us now deal with the last intervald a1 (q))
which coincides with the one described in Theorem 4.4 g) by symmetry. TWwhyshere,

it could be possible to have a convenigntHowever, an analogous analysis as the one that

has been done in Case 2(a)i)C leads to that it is also not suitable interdgffioingp. As a

B ‘ ‘ ‘ AI T
U

e [
N I

_______ ..____'__._

3\ la7a@ q7bla) /b,
If - Al : : : : [ S

result, we can not get a suitahidor this case.

Figure 4.32: Case 2(a)ii) The functidifx, q) with 0 < Aq < 1, A: 0 < g~ ay(q) < ax(q) <
ba(0) < g *bs(), B: 0 < ax(q) < q~*au(a) < g *bu(a) < ba(a).

Case 2(a)i)A:0 < g tai(g) < ax(q) < bx(q) < gthi(q), 0 < Aq < 1. The representation of

this situation appears in Figure 4.32A. We make analogous analysis forsalbp®intervals
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in order to find which ones lead to a suitalple Let us start with excluding the negative
intervals ¢ a1(q), ax(q)) and 02(q), g~tb1(qg)) sincep should be positive. On the other hand,
with the help of Remark 4.5.2 and Remark 4.5.5 we see théd)( bx(q)) and @by (q), =)
can not be used. Notice that the last interval( q~a1(q)) coincides with the one described
in Theorem 4.4 g) by symmetry. However, notice from Figure 4.32Agdt@, )/o(X, q) = 1
atxo = —-7(0,0)/7'(0,q), X0 > X = g tby(q). Therefore, it follows thap is decreasing on
(—oo0, g tay(qg)) which leads to thgb 4 0 asx — —co. However, as before since it is infinite
interval we need to check that(x, g)o(x, )X — 0 asx — —co by using theextended ¢
Pearson equation. But, the graphgaboks like the one represented in Figure 4.32A which
indicates thatr;(x, q)p(x, )Xk 4> 0 asx — —oo.

Case 2(a)ii)B:0 < ax(q) < g tai(q) < g thi(q) < ba(g), 0 < Aq < 1. The situation of this
case is represented in Figure 4.32B. Analogously, we begin with perfgrthanpositivity
which leads to eliminate the intervalax(q), g *a1(q)) and @ *bi(g), b2(qg)). On the other
hand, due to the Remark 4.5.6 by symmetry and Remark 4.5.1, we can not use s
(—o0, ax(q)) and @ ta1(q), g tb1(q)). We finish this case by considering the interia(¢), co)

which is the one described in Theorem 4.4 h). Thus, it could be possibevenadisuitable
p. But, notice from Figure 4.32B that is increasing on this interval. That's why /4 0

asx — oo which leads tari(x, g)o(x, @)x€ /> 0k = 0,1,2,... asx — co. As a result, it is

apparent that this case does not generate a supable

y y

@ . b

RGOt

Figure 4.33: Case 2(a)ii) The functidigx, q) with 0 < Aq < 1, C: 0< g tas(q) < g tby(q) <
az(q) < b2(q), D: ax(q) < by(a) < 0 < g~*au(q) < g~ *bu(0).

Case 2(a)ii)C:0 < g tai(g) < g~thi(q) < ax(q) < bz(q), 0 < Agq < 1. This case is repre-
sented in Figure 4.33C. Positivity pfenables us to skip the intervats ta; (q), g tb.(g)) and
(ax(q), bo(0))). One can also eliminate the intervaltbi(q), ax(q)) due to Remark 4.5.4. An
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analogous analysis as the one that has been done in Case 2(a)ii)A sa@(@xni)B for the
intervals (oo, g ta1(q)) and @o(q), ), respectively, yields the same result that these inter-
vals can also not be used to determimgweight function. Thus, this case does not generate

any intervals wherg is defined.

Case 2(a)ii)D:ax(q) < ba(q) < 0 < g~ ta(q) < g thi(q), 0 < Aq < 1. The graph off is rep-
resented in Figure 4.33D. Notice thits negative ondta1(q), g tb1(q)) and @x(q), bo(q).

That's why we skip these intervals. Note that the interviad&), g ta1(q)) and @ 1b1(q), =)

are both eliminated due to Remark 4.5.3 and Remark 4.5.5, respectively. Vixelisde the

last interval £o0, ax(q)) because of the analogous analysis that has been done in Case 2(a)B

together with the transformation= —t.

pla@)  /a@ o glh@l /50
| : : : |

Figure 4.34: The functiori(x, q) with 0 < Aq < 1, Case 2(a)ii) E: &< g lai(q) < ax(q) <
q bi(a) < bz(q), Case 2(c)ii) F: 0< g~*au(q) < q~*ba(q), a2(a), b2(q) € C.

Case 2(a)i)E:0 < g tai(g) < a(q) < qthi(q) < by(g), 0 < Aq < 1. The graph of
this situation appears in Figure 4.34E. The positivitypollows us to skip the intervals
(q~ta1(q), ax(q)) and @ tb1(q), bo(q)). Notice that similar analysis as the one that has been
done in Case 2(a)A and Case 2(a)B enables us to eliminate the intervadsg{ta;(q))
and p2(q), ). At last, let us analyse the intervaly(q), g 'b:(q)). Notice that this interval
is the one that is defined in Theorem 4.4 d). Therefore, there may existadls p on
this interval. Notice thap(gx g)/p(x,q) = 1 atxXp = —7(0,9)/7'(0,Q), X = ax(q) < X <
qb1(q), then from Figure 4.34E it follows thatis increasing onay(q), o) and decreasing
on (Xo, g tb1(q)) associated with(gax(q), ) = 0 andp(x,q) — 0 asx — q *bi(q)~ (since
p(aae(q), 9)/p(a2(a), A)=0, p(ax )/p(x, ) — oo asx — qtby(q)”). Thus, according to this
discussion, one can easily obtain the behavioyr & in Figure 4.35 by assuming a positive

initial value for theg-weight function in each interval.
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Figure 4.35: Possible positive graph of correspongifygq) for Figure 4.34E.

It is also clear from Figure 4.35 that the boundary condition holds at ax(q) and x =
qtb1(q) (see also Theorem 4.5 d)). Thus we can construct a sujtakith the needed prop-
erties on &(q), g~1b1(q)) supported at the poing(g)q ™, k = 0,1, ... and on (ax(q), b1(q))

at the pointg b1 (q)gf, k = 0, 1, ... (see Theorem 4.5 d)). Therefore, we arrive at the follow-

ing theorem.

Theorem 4.23 Let a= gap(q) be the zero of>(q1x, g) and b= by(q) of o-1(X, g) and assume

that 0 < g a1(Q) < ax(e) < g *ba(0) < ba(), and0 < Aq = q°[1 + (1 - ) 7ah] <

1. Then, there exists a sequence of polynon(ig}3, orthogonal on(a, b) or (qta, g~b),

i.e., they satisfy the orthogonality (4.9) and (4.11), respectively with respelce g-weight

function

() = a(02(0)/% b () X; O)eo _,307%(0,9)bz(q)
(a1(0)/x b1 (@)X Qo 307(0, g)ba(q)

which satisfies the g-Pearson equation and the boundary condition (gsaeim 4.4 d)).

>0, xe(@b) ¢?=q (4.48)

This case corresponds to the case IlIb9 in Chapter 11 of [35, pdije 36

An example of such family is thg-Hahn polynomials [35] wherey(q) = aq, bi(q) = g™V,
ap(q) = 1, bp(q) = g1 N,

o1(x q) = q2(x— g M)(x—a0), o2(x.q) = aq(x— 1)(Bx—q N,
1-aB? aq N +opq-a-qg Nt ~ 1— aBg™?!
Txq)= (1-§)(1| X+ ﬁq_ J T @=-q ”[n]q—l‘_ﬁg —.

g-Hahn polynomials are orthogonal on, (tN~1) and the conditions 0< q2Aq < 1 and

0 < a1(g) < ax(q) < bi(g) < by(g) give us the following restriction for the parameters
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0<a<(q?l 0<pB<qg?l By means of Theorem 4.4 d) we can also write the orthogonality

of g-Hahn polynomials withg? = «

T (gae(a)/ %, ab;H()X; Q) (@B QN
Xa m ;a,a b} n ;Of, s d “IA= T
fl b Qn 8 NDQus BN x=

(@ eBg"* 280 Q)n 1-aBd (g9 Q)w n()-Nng -1
(@0, &N, 0, Q) 1~ aBe™L (aq fq L o 0D 07 (4 7 1omn (4.49)

together with O< o < g%, 0 < 8 < gq~L. Notice from Theorem 4.4 d) that one can write the

orthogonality with finite sum by applying (2.31) to (4.49)

(ef; O

(aq,q” ,Q)x X X X T N
Z QTG g (P Qn(A B NIDYQN( ™ e NIG) = 727 s

(9.8 1q7N; g)x
(@, aﬁq’“*?ﬁq; dn 1-0pq
(9. a7N, aBq; Q)n 1 — epg2r1

which coincides with (4.47) but with a fiérent choice of parameters<0e < g, 0 < 8 <

(_aq)nq(g)_Nnémn (4.50)

q.

Case 2(c)ii) F:0 < qtai(q) < g tbi(g),ax(q),b2(q) € C, 0 < Aq < 1. The graph off
corresponds to this situation is represented in Figure 4.34F. Notice thateudeto eliminate

the interval §~tay(q), g 1b1(q)) sincep should be positive. Notice also that one can exclude
the interval §1b1(q), o) because of the reason described in Remark 4.5.5. On the other hand,
the interval (oo, q~tay(q)) can also be eliminated by use of the analogous analysis as the one
described in Case 2(a)ii)A. That's why, we can not obtain any suitabléh the needed

properties.

Remark 4.24 We remark that Case 2(b)ii) has similar graphs of f as the ones cornstiuc
Case 2(a)ii) together withq) = by(q). However, any graphs belong to Case 2(b)ii) do not

lead to a suitable.

Case 3(a)A:qtai(q) < 0 < g~ tbi(qg) < ax(q) < bx(q), Aq < 0. The graph off corresponds
to this case is represented in Figure 4.36A. In order to find the possibledlgevherep is
defined, we carry out the analogous procedure as before cakas, We first consider the
positivity property ofp which allows us to skip the intervals ¢, g ta1(q)), (tb.(q), a2(q))
and p2(q), ). On the other hand, the intervab(q), b2(q)) is also eliminated by using infor-
mation given in Remark 4.5.2. If we consider the last intergatd (q), g 1b.(q)), it is clear

from Theorem 4.4 a) that it could be possible to have a suijablethis interval. Notice that
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Figure 4.36: Case 3(a). The functidiix, g) with Aq < 0, A: qtay(q) < 0 < q~tby(q) <
ap(q) < bz(q), B: g *ay(q) < 0 < ap(q) < bz(q) < g~thi(q).

p(ax g)/p(x.0) = 1 atxe = —7(0,0)/7'(0,q), X = g a1(q) < Xo < x = q~thy(q), then from
Figure 4.36A, it follows thap is increasing onda(q), xo) and decreasing orxg, qb1(q))
together withp(x, g) — 0 asx — g tai(q)* andx — q~tby(q)~ sincep(gx q)/p(x, q) — co.

As a result of this information one can easily build the behavioyrad in Figure 4.37.

y

—A_

~ qla)  dh@  a LG

Figure 4.37: Possible positive graph of correspongif)gq) for Figure 4.36A.

It is obvious from Figure 4.37 thag{(q), b1(qQ)) is suitable interval fop supported at the
pointsay (q)gf andby(g)gk, k = 0,1,... (see Theorem 4.4 a)) since the boundary condition

(3.115) is satisfied at = a;(q), b1(q).

Remark 4.25 Note that Case 3(b) includes the same graphs with Case 3(a) which lets to
interval (a1(q), b1(q)) equivalent to the one build in Case 3(a)A together witfga= b,(q)

Thus, we construct the following theorem acording to the result of this.cas
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Theorem 4.26 Let a= a;(qg) and b= by(q) be the zeros af1(x, g) and assume thatday (g) <

0 < g tbi(q) < ax(q) < by(q), andAq = q2[1 + (1 - q‘l)%] < 0. Then, there exists

a sequence of polynomialBy), orthogonal on(a, b), i.e., they satisfy the orthogonality (4.6)

with respect to the g-weight function

(x.0) = (93, (@)%, ab; H(A)X; Qo
(@51(9)x, by (@)% Ao

which satisfies the g-Pearson equation and the boundary condition (gseim 4.4 a)).

>0, xe(a(9). bi(q)) (4.51)

This case leads to the new orthogonality on the intergby, b1(q)).

An example of such family is the bigtJacobi polynomials [35] whera (q) = cq, b1(qg) = aq,
ap(q) = b™'c, by(q) = 1,

r1(x0) = g (x—ag)(x—cd), o2(x 0) = agx — 1)(bx- o),

1 - abd"!
q-1 =

1-abg a(bg-1)+cag-1)
(1-09)q 1-q
Big g-Jacobi polynomials are orthogonal ag(aq) and the conditionquq < 0andai(qg) <

7(x,q) = ., An(a) = g7 "[n]q

0 < bi(g) < a2(q) < by(q) give us the following restriction for the parameters 0, b <

0, abclg< 1, 0<a< g™t By means of Theorem 4.4 a) we can write the orthogonality

1-abqg

a4 (a~1x,c1x; Q) n
@A AWop ; Q)Pn(x; ; =aq(l - 6)r—— 55 q?
~1 —1~- 1n-
(@ abef, a”c, aclq; ). (g, b abc g, Gy (—ac)"Smn (4.52)

(ag bg, cg abctg; o) (2 €g abG O)n
which coincides with (4.44) but with affiérent choice of parametersx< 0, b < 0, abclq <

1, 0 < a < g ! which is the new orthogonality for big-Jacobi polynomials.

Case 3(a)B:gtay(q) < 0 < ax(q) < ba(g) < q~thi(q), Aq < 0. The graph of is represented
in Figure 4.36B. We start with considering the positivityaf/hich allows us to skip the inter-
vals (oo, qta1(q)), (a2(q), b2(g)) and @ 1b. (), ). Notice that the interval(tay (), a>(q))
is also excluded by means of Remark 4.5.4. However, since the intep(g), @ 1b1(q)) is
the one described in Theorem 4.4 d), it could be possible to have a syitablthis interval.
Notice thatf(x,q) = 1 atxg = —7(0,q)/7’(0,q), X = bo(q) < Xo < X = q *b1(q), then from
Figure 4.36B, it follows thap is increasing onlix(q), Xo) and decreasing orxg, q*b1(q))
with p(qb(),q) = 0 andp(x,q) — 0 asx — g *bi(a)~ sincep(abe(a). 6)/p(b2(a). @) = O

p(ax )/p(x, q) — o asx — g tbi(g)~. At the end, one can easily construct the behaviour
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Figure 4.38: Possible positive graph of correspongifxgq) for Figure 4.36B.

of p as in Figure 4.38. Note that Figure 4.38 exhibits that there exists a sujiatie

(abz(q), ba(q)) together withg?Aq < 0, ay(0) < 0 < ap(q) < by(q) < bi(q) supported at
the pointsgfby(g), k=0, 1, ....

Remark 4.27 Note that Case 3(b) includes the same graphs with Case 3(a) which lethds to
interval (qbx(q), b1(g)) equivalent to the one build in Case 3(a)B together wittga= b(q).

Thus, the following theorem can be stated according to the above distussio

Theorem 4.28 Let a= gby(q) be the zero of>(q~1x, g) and b= by(q) of o-1(X, g) and assume

that ¢ "au(a) < 0 < az(q) < ba(A) < g7 *b1(a), andAq = g 2[1 + (1~ %) 77k] < 0. Then,
201

there exists a sequence of polynomidts), orthogonal on(a, b) or (q~ta, g 1b), i.e., they

satisfy the orthogonality (4.9) and (4.11), respectively, with respect to-theight function

p(x, @) = Xx%%X(qa; (a)x, qb; (a)x. gae(d)/%, qe(a) /% Q)w > 0, X € (&)  (4.53)

P = q*305(09)
307/ (0.0)az(q)ba (@)
Theorem 4.4 d)).

which satisfies the g-Pearson equation and the boundary condition (see

This case leads to the new orthogonality on the interyad(€), b1(q)).

An example of such family is thg-Hahn polynomials [35] wherey(q) = aq, bi(q) = q N,
a(q) =g N ba(a) = 1,

o1(x0) = g 2(x- g M)(x—eq), o2(x0q) = aq(x- 1)Ex-g N,
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1-apf?  aoqN+apg—a—-gN?t o L—apgtt
X+ s A == n °
(1_q)q 1_q n(Q) q [ ]q 1_q

g-Hahn polynomials are orthogonal on ¢tN-1) and the conditions?Aq < 0 anday(q) <

7(X, Q) =

0 < ax(q) < ba(g) < bi(q) give us the following restriction for the parameters< 0, 8 >
g N-1. By means of Theorem 4.4 d) we can write the orthogonality-Biahn polynomials

—N-1

q
f X% o 1x, a/x, gV X, A7 7N /X §)e0 QX @, B NIG)Qn(X; @, B, Nig)dg1x= (g~ *-1)
1

(@B’ N (9.aBN2 80,90 1-0Bq (.9 0w n()-Nn
- 454
"B DN (g, gV, afd; Q) 1 - ap™ (aq,ﬁqN“;q)m( Q) a= omn(4.54)

whereg® = 8g, which coincides with (4.46) but with afiierent choice of parameters,< 0,

B > g N-1. Notice from Theorem 4.4 d) that one can also write the orthogonality with finite

sum by applying (2.31) to (4.54)

(CYq, ’ q)X X —X. —X. (a/ﬁqu Q)N
m N n N T E———
Z Q5 1g . o, (@0 Q@ @B NIQN(A s 0 NI = 2
N+2 . _
(q’ (lﬁq 7ﬁq’ Q)n 1 Q’Bq (—G’Q)nq(g)_Nn(Smn (455)

(@, q™N, aBd; O)n 1 - afg?™
which coincides with (4.47) but with afierent choice of parameters< 0,3 > q N1 which

is the new orthogonality fog-Hahn polynomials.

Figure 4.39: The functiorf(x,q) with Aq < 0, Case 3(@)Cqltai(g) < 0 < a(q) <
q *bi(q) < by(q) Case 3(c)Dg *au(q) < 0 < qba(q), a(a). ba(q) € C.

Case 3(a)C:qtai(q) < 0 < ap(g) < g thy(a) < ba(q), Aq < 0. The graph off for this case
is represented in Figure 4.39C. We start by applying the analogousdorecd-irst of all, the
positivity of p enables us to skip the intervalscp, qta1(q)), (a2(q), g~*b1(q)) and 02(q), ).
Notice also that the intervalg|(*a1(q), ax(g)) and @ b.(q), bo(q)) are both eliminated due

to the Remark 4.5.4. Therefore, this case does not lead to a syitable
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Case 3(c)D:qtay(q) < 0 < qtbsi(q), ax(q), bo(q) € C, Aq < 0. This case is represented in
Figure 4.39D. Notice that is positive only on the intervattay(q), gtbi(q)). That's why,
we eliminate rest two intervals. We remark that the intergald,(q), g 1b.(q)) coincides
with the one described in Theorem 4.4 a). Then, here it could be possteéda suitablg.
Notice thato(qx, 0)/p(x,0) = 1 atxo = —7(0,)/7’(0,0), x = g tay(q) < Xo < x = q~*by(q),
then from Figure 4.39D, it follows that is increasing ondta;(q), Xo) and decreasing on

(%0, g b1 (@) with p(x, q) — 0 asx — q~*ai(q)* andx — q~*b(q)" sincep(qx g)/p(x, q) —
oo, Thus, it is obvious to construct the behavioupds in Figure 4.40.

y

A

qafa) b, ()

Figure 4.40: Possible positive graph of correspongifigq) for Figure 4.39D.

We deduce from Figure 4.40 that (), b1(q)) is suitable interval fop satisfying the needed
property supported at the poirds(q)q¢ andb:(g)g¥, k = 0, 1, ... Therefore, we introduce the

following theorem related with the result of above discussion.

Theorem 4.29 Let a= a;(qg) and b= by(q) be the zeros af1(x, g) and assume thatday (q) <

0 < g~tby(0), ax(q), b2(q) € C, andAq = q2[1 + (1 - q‘l)%] < 0. Then, there exists a

sequence of polynomiaP,), orthogonal on(a, b), i.e., they satisfy the orthogonality (4.6)

b1(q)
fa o PO BP0 @l a)dgx = (ba(e) — 2u(a) (1~ A" (~ay (@)ba(@)"

(a. gty (@)by (a)as(@)ba(a); On
X~ - ——(4.56)
(g as*(a)bsH(qas(a)ba(a), &5 (q)bs(@)az(d)bi(q); A)zn
(9, gbu(a)a;*(a), qas(@)by (a), a5 (@b (a)az (9)b(Q); A)eo
(a5 (a)ax(a). ay (a)br(a), by (a)as(a), by (a)b1(0); Oes
x(a;"(q)a(q), & (q)ba(a), by (A)aw(a). by (A)ba(Q); Andimn
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with respect to the g-weight function

_ (aa; (@)%, gb; (@)% O)es
PO D = T b e @)

>0, xe (ai(a), ba(a) (4.57)

which satisfies the g-Pearson equation and the boundary condition (Esaeim 4.4 a)).

This case leads to the new orthogonality on the interlyj, b1(q)).

We note that this case leads to the new orthogonality which does not appbargiAskey
scheme. Actually, this case is analog to the one leading to thg légobi polynomials. They

differ by the properties of the zeros®f ando-.

y y
17 B T 1
| i I |
P PSS AN DUt U oo
a(a) a'a@  qp@\b@ === == BE A s
0 B X 0 X
= - - —— 4 -k - ~ /(q) b d™a(a) b (d) >
S S T Lo

] s

0 0

Figure 4.41: Case 4. The functidiix, g) with Aq < 0, A: ax(q) < 0 < g tas(q) < g tby(q) <
ba(a), B: () < 0 < by(q) < g~*au(q) < g~ *ba(q).

Case 4A:ax(q) < 0 < g tai(q) < g~tby(q) < bo(q), Aq < 0. The graph off is represented in
Figure 4.41A. Our aim is to find the possible intervals in which we have a sujalfethis
figure, the intervals{co, ax(q), (q~ta1(0), g*b1(q)) and p2(q), ) are all excluded sincéis
negative. Moreover, the intervalax(q), g ta;(q)) and @ tb.(q), b2(q)) are both eliminated
due to Remark 4.5.3 and Remark 4.5.4, respectively. Hence, this caseatdesd to a

suitablep.

Case 4B:ay(q) < 0 < bp(d) < gqta(q) < g tbi(g), Aq < 0. The graph off is rep-
resented in Figure 4.41B. Sindeis negative on the intervals-¢o, a>(q)), (b2(q), g *a1(q))
and @ *bz(q), ), then they can not be used. On the other hand, the interaas).(02(q)),
(g~ tay(q), q~tb1(g)) are both eliminated due to Remark 4.5.2 and Remark 4.5.1, respectively.

As a result, we can not get a suitaplevith needed properties.
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Figure 4.42: Case 4. The functidifx, g) with Aq < 0, a(q) < 0 < g tai(q) < bp(g) <
q b1(0)-

Case 4C:ay(g) < 0 < gtay(g) < bo(q) < g~tbi(q), Aq < 0. The graph off corresponds
to this situation is represented in Figure 4.42. The positivity aflows to skip the intervals
(—o0, a2(q)), (g~ tar(q), b2(g)) and G tbi(q), ). Notice that one can also eliminate the inter-
val (a2(q), qtay(q)) due to Remark 4.5.3. Let us deal with the last interbald), q~*b1(q))
which is the one described in Theorem 4.4 d). Analogous procedure aséthat has been

done in Case 3(a)B allows to build Figure 4.43

y

A

a@) q’la;(q) T )

Figure 4.43: Possible positive graph of correspongif)gq) for Figure 4.42C.

It is clear from Figure 4.43 that there existsgaveight function defined on the interval

(b2(0), g~*ba(q)) supported at the pointg™*by(q), k = 0,1,... or on (b(q), ba(q)) at the
pointsg¥bs(q), k = 0, 1, ... which lead to the following theorem.

Theorem 4.30 Let a= gby(q) be the zero of>(q1x, g) and b= by(q) of o1 (X, g) and assume
that 2(c) < 0 < g as(a) < b2(e) < 4"'bu(0), andAq = 21+ (1- 4 151 < 0. Then,
201
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there exists a sequence of polynomigts), orthogonal on(a, b) or (q~ta, g 1b), i.e., they
satisfy the orthogonality (4.9) and (4.11), respectively with respect to theight function

X, gb- Q) X; 0)co 0,0)a
Xa(qaz(CI)/ qj (@)x;a) 0. xe(ab) o= q_zivz( aax()
(a1(9)/x, b5 (@)X; U)eo 507 (0,q)by(q)
which satisfies the g-Pearson equation and the boundary condition (ezaeim 4.4 d)).

p(X.q) =

(4.58)

This case leads to the new orthogonality on the interylad(€)), b1(q)).

An example of such family is the-Hahn polynomials [35] wherey(q) = oq, bi(q) = gN
a(a) =g N bo(g) = 1

o1(x0) = g Ax— g M)(x—aq), o2(xq) = aq(x-1)Ex-g ),
1-aff aqN+apg-—a-qgN?t e 1—apg™t
X+ , A - _ o P I
(1-0q)q 1-q n(d) = —q"[N]q 1-4q
g-Hahn polynomials are orthogonal on ¢tN-1) and the conditiong?Aq < 0 anday(q) <

7(x.q) =

0 < a1(q) < bp(g) < bi(q) give us the following restriction for the parameters<Oa <

gL, B < 0. By means of Theorem 4.4 d) we can write the orthogonality-Bifahn polyno-

mials
" (qae(a)/x. aby (A)X; G)eo 1 4\ (epd?; o)y
m( X @, ,N h(X a, ,N d, 1x= -1V
).~ @@/ g g 20 @A M0G0 5 NIy == g o o g
(q,aﬂqN+2 BGQn 1- n()-Nn
- 2 Omn 4.59
(aq, aN,aBq;Q)n 1- anZ””( A (4.59)

whereq?® = «, which coincides with the one given in (4.49) but with dfelient choice of
parameters, & @ < g, 8 < 0. Notice from Theorem 4.4 d) that one can write the orthogo-

nality with finite sum by applying (2.31) to (4.59)

((Yq, ' q)X X —X. —X. (aﬁqzi Q)N
m N n N —_—
Z (@ 1g - g @ QA 0 NIQN(A ™ 0 B NIG) = o7 o= o
N+2 .
(qa a’ﬁq 9Bqa Q)n 1- aﬁq (_aq)nq(g)—Nnémn (460)

(g, q™N, ad; O)n 1 - afg?™
which coincides with (4.47) but with a fierent choice of parameters,<0« < q %, 8 < 0

which is the new orthogonality for tregHahn polynomials.

Remark 4.31 We remark that in case of1(x,q) = 20- (0, q)[x — a1(q)]? and o2(x, q) =

202 /(0, g)[x—ax(q)][ Xx—b2(0)], similar figures wheir1(x, ) has two distinct roots are derived
together with a(q) = bi(g). However, only Figure 4.30E in company with(@ = b1(q)
leads to the interval of integration &g|bx(q), a1(g)) or (b2(q), g tai(q)) by performing the

analogous analysis. On the other hand, these intervals are also valid aggn= b,(q).
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4.2.3.2 Theg-Classical(-JacobjLaguerre Polynomials

Letoi(x,0) = 37(0,9)x% + 0(0, @)X + 1(0, @) = 307 (0, q)[x — ar(@)][x — bx(q)], az(q) <

bi(q) andt(x,q) = 7(0,q)x + 7(0,q) , 7(0,q) # 0. Then, in case of’(0,q) = —gj—q(?lq)), it

follows from (4.39) thatra(x, ) = 0%(0, g)x + 02(0, q) where

’ 1 ’7 — 1 77
05(0,9) = —Q[Eo'l (0. q)[as(®) + by(a)] - (1 - g~ H)7(0, ). o2(0. 0) = 0507 (0. Q)ay (@b (0.
Therefore, in this case, tlggPearson equation follows from (4.40) that

~[a1(@) + ba(@) - (1 - 1) 2L |x + ay () ba (0)

paxq _ 377009
p(x.0) [ax—ax(@)[ax— by(q)]
- [a@ b - @ - g g - 2@ wen
B [ax— ax(a)][ax - ba(q)] '
a(a)bs(0)
whereax(q) =
T (@@ - - g9 22

Let denote by\q the constant

7(0,0) ]

Aq:=[aa(q) + ba(@) - (1- g 1 0.0

Notice from (4.61) that we sketch the graphs #qx, g)/po(x, ) according to the sign okq

concerning with all possible positions of the zerosefx, q) ando»(x, ).

Before starting the analysis notice thédx, )/o(X, ) always intercepts thgaxis at the point

y = 1 sinceo»(0,9) = qgo1(0,q). Notice also that sign odix(q) depends of the signs of the
zeros ofoy and Aq. Therefore, in order not to lose any graphs, we split them into three
independent cases: Case 1. witgn< 0,a;(q) < 0 < by(q) (in the case\g > 0,a1(q) < 0 <
b1(q), the graphs are obtained from Case 1. by the transformatien-t.), Case 2. when

Aq > 0,0 < ai(g) < by(q) and Case 3. whefg < 0,0 < a;(q) < b1(0).

Let f(x, Q) := p(ax g)/p(X, g) be the function defined in (4.61).

Case 1.A:qtai(g) < 0 < g tbi(g) < ax(q), Aq < 0. The graph off corresponds to this
situation is represented in Figure 4.44A. Let us analyse each intervaliam wie have a-
weight function with needed properties. We first begin with performing dsitipity property

which allows us to skip the intervals-¢o, q~ta;(q)) and @ 1b1(q), ax(q)). Let us consider
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Figure 4.44: Case 1. The functidifx, q) with Aq < 0, A: qta1(q) < 0 < q by (q) < ax(q),
B: g tau(0) < 0 < ax(q) < q~bu(q).

the interval &,(q), ). It follows from Figure 4.44A thap(qx, q)/p(x,q) < 1 on @2(q), ).
Thus,p is increasing ondyx(q), o) which leads tg /£ 0 asx — co = o1(X, Q)p(x, §)xK 4 0,
k=0,12,..asx — o which indicates that this interval is not suitable for construcging
Let us now deal with last intervaty(*a;(q), q-b1(q)) which is the one described in Theorem
4.4 a). That's why, it could be possible to have a suitablotice thato(gx q)/p(x,q) = 1 at

Xo = —7(0,0)/7'(0,q), X = g tay(q) < X0 < x = g~*by(q). Then, it follows from Figure 4.44A
thatp is increasing ondtay(q), Xo) with p — 0 asx — g tai(q)* sincep(qx, g)/p(X, q) — oo
asx — g lai(q)* and decreasing orxd, g tbi(qg)) with p — 0 asx — g tby(g)~ since
p(ax q)/p(x, ) — o asx — g *hy(g)~. As a result of this discussion one can easily obtain

the following Figure 4.45 fop.

g Cab@  a

Figure 4.45: Possible positive graph of correspongifxgq) for Figure 4.44A.

It is obvious from Figure 4.45 that there exists a suitabda (@1(q), b1(q)) supporting at the
pointsx = gfai(g) andx = g¥by(q), k = 0,1,... (See Theorem 4.4 a)) since the boundary
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condition (3.119) holds at = a;(q) andx = by(q). As a result of this case we construct the

following theorem.

Theorem 4.32 Let a= a;(qg) and b= by(q) be the zeros af1(x, g) and assume thatday (g) <

- ’ 307 (0, - 7(0,
0 < a7bi(a) < ax(@), 7/(0.0) = ~47i andAq = [au(Q) + bu(@) ~ (L~ a7 A < 0

Then, there exists a sequence of polynom(i@j3, orthogonal on(a, b), i.e., they satisfy the

orthogonality (4.6) with respect to the g-weight function
(@& (@)%, qb; (@)% O)es
@&HA% Do

which satisfies the g-Pearson equation and the boundary condition (eza€im 4.4 a)).

p(X, q)

>0, xe (ab) (4.62)

This case corresponds to the case Vllal in Chapter 10 of [35, p@gesn2l 318].

An example of such family is the bigtLaguerre polynomials [35] whewg (q) = bg, b1(q) =
aq ax(q) = 1,

o1(%0) = g 2(x—ag)(x - ba),  o2(x, ) = abg(L - ),

q? a+b-abqg _qn
G T gor e M@=l
Big g-Laguerre polynomials are orthogonal dia(aq) and the conditionsq < 0 anday (q) <

T(X7 q) ==

0 < by(qg) < ax(q) give us the following restriction for the parametérs 0, 0 < a < g~ 1. By

means of Theorem 4.4 a) we can write the orthogonality ofjigiguerre polynomials

a1x, b 1x Q) n ;
fb q%Pm(x;a,b; Q)Pn(x; & b; g)dgx = aq(l—q)(—abq%'h(z)—(aé,qbg?;)
q ] [} y n
(g.a'b,ab ’q; 0)e
s 4.63
@gbg Qe (4.63)

associated witlh < 0, 0 < a< L.

Case 1.B:gta;(q) < 0 < ap(d) < g~tbi(q), Aq < 0. The graph off corresponds to this
situation is represented in Figure 4.44B. It is clear from Figure 4.44B taahould skip the
intervals (oo, qta1(q)) (ax(q), q-tbi(q)) due to the positivity property gf. Notice that we
eliminate the both intervalg)(ta;(qg), ax(q)) and @ bi(q), «) because of the Remark 4.5.4

and Remark 4.5.5, respectively. As a result, this case does not lead saitatylep.

Case 2.C:0 < g tai(9) < gtbi(q) < ax(q), Aq > 0. The graph off corresponds to

this situation is represented in Figure 4.46C. Notice that positivity aflows us to skip

114



Figure 4.46: Case 2. The functidifx, q) with Aq > 0, C: 0< g tay(q) < q tbi(q) < ax(q),
D: 0 < &(q) < g *au(a) < g 'bu(a).

the intervals §ta1(g), gtb.(q)) and éx(q), ). On the other hand, we exclude the interval
(q~tb1(q), ax(q)) due to Remark 4.5.4. Let us now consider the last intervad, @ *a1(q))
which coincides with the one described in Theorem 4.4 g) by symmetry. Notoe Fig-
ure 4.46C thap is decreasing on—{o, q tai(q)) with p — 0 asx — g tai(q)~ since
p(ax g)/p(x,q) — oo asx — g ltay(g)~. Thus,p /& 0 asx — —co which implies that
o1(x, Q)p(x, g)xK 4 0 asx —» —oo, k = 0,1,.... As a result, this case does not lead to any

suitable intervals for constructing

Case 2.D:0 < ax(q) < g tai(q) < qtbi(q), Aq > 0. The graph off corresponds to this
situation is represented in Figure 4.46D. We first start with applying the yitsitiroperty
which allows us to skip the intervalaf(q), g ta;(q)) and @ tbi(qg), ). Notice that we
can also not use the intervalscp, a>(q)) and @ tai(q), g *bi(q)) due to Remark 4.5.6 (by
symmetry) and Remark 4.5.1, respectively. That's why, we can not hauitablep with

needed properties.

Case 2.E:0 < g tai(q) < ax(q) < q tbi(q), Aq > 0. The graph off corresponds to this
situation is represented in Figure 4.47E. Sinshould be positive, themy(*as(q), ax(q)) and
(q~tb1(q), o) are not suitable. On the other hand, an analogous analysis as the bhastha
been done in Case 2.C yields that the intervab(q1ai(q)) is not suitable for construct-
ing p. Let us consider the last intervaiy(q), g tb1(q)) which is the one given in Theorem
4.4 d). That's why, it could be suitable for constructimg Notice from Figure 4.47E that
p(ax g)/p(x,q) = 1 atxo = —7(0,0)/7'(0,0), x = &(q) < %o < x = q~'b1(q). Thus, it follows
thatp is increasing ondy(0), xo) with p(qag(a), q) = 0 (sincep(qag(a), a)/p(a2(g), ) = 0)
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Figure 4.47: The functiorf(x, q) with Case 2.EAq > 0, 0 < g~tay(q) < ax(q) < g *hy(q),
Case 3.FAq < 0,a2(q) < 0 < g tai(g) < g~thy(q).

and decreasing orxd, q*by(g)) with p — 0 asx — g tby(q)~ (sincep(gx g)/p(x,q) — o

asx — g tby(q)") which allows us to construct Figure 4.48.

y

A

q’alq) afq) X O

Figure 4.48: Possible positive graph of correspongifygq) for Figure 4.47E.

It is apparent from Figure 4.48 thaqd(q), b1(q)) is suitable interval in which we have a
positive g-weight function satisfying the boundary condition (3.119) (see Thmote!l d))

which leads to the following theorem.

Theorem 4.33 Let a= gap(q) be the zero of>(q1x, g) and b= b;(q) of o1 (X, g) and assume
that 0 < ay(6) < ax(Q) < 4ba(Q), ¥(0.0) = —279P and Aq = [ay() + bale) - (1 -

q‘l)lg(,(,)—(’g)q)] > 0. Then, there exists a sequence of polynon{i@ig, orthogonal on(a, b),
291\%

i.e., they satisfy the orthogonality (4.9) or (4.11) with respect to the g-weighti@un

q-20%(0,q)
30/ (0, g)b1(0)

(922(a)/x, qb;H(A)X; Ao
(@1(9)/%; Do

o(x, Q) = x* >0, xe(ab) gq*=- (4.64)
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which satisfies the g-Pearson equation and the boundary condition (eeseeim 4.4 d)).

This case corresponds to the case IlIb3 in Chapter 11 of [35, pd@esiidl 363].

An example of such family is theffineg-Kravchuk polynomials [35] whera; (q) = pg, bi(q) =
g™ ax(a) = 1,

o1(xq) = g (x— g M)(x-pa), o2x.0q) = -pgN(x- 1),

1 pa+q - pg™
1-q 1-q
Affine g-Kravchuk polynomials are orthogonal on ¢tN-1) and the conditiongq > 0 and

T(xq) = . An(Q) = [n]q—

0 < a1(g) < ax(q) < by(q) give us the following restriction for the parameterss(@ < q*
By means of Theorem 4.4 d) we can write the orthogonalityfiri@g-Kravchuk polynomials

f XQ(Q/X V1% 0o KA
1

(pa/x; q) 06 p.N; K 2 (% p. N; 6)dg 1 x=(pg)" N(g ™t - 1)

. (G D% Dn-n (9, " 0o
(PG Dn(@ DN (PG Ao

Smn (4.65)

together with O< p = g* < g . Notice from Theorem 4.4 d) that one can also write the
orthogonality with finite sum by applying (2.31) to (4.65)

(PG Dx(G; DN, Aff Aff n-N (0 Dn (G Drn
Z (9 Dx( Pn-x (Pa) K (@™ P N Kn (G5 PN 6) = (PO) (PG On (9; AN O (4.66)

Case 3.F:ax(g) < 0 < qtai(q) < gtbi(g), Aq < 0. The graph off corresponds to this
situation is represented in Figure 4.47F. Note that positivity ehables us to eliminate the
intervals (oo, ax(q)) and @ a1(q), g tb1(q)). Moreover, the same happens for the rest inter-

vals (@(q), g tai(qg)) and @ 1b1(q), o) due to Remark 4.5.3 and Remark 4.5.5, respectively.

4.2.3.3 Theg-Classical®-JacobyHermite Polynomials

Let o1(x, Q) = 307/(0,0)x? + 0(0, g)x + 01(0, Q) = 307 (0, A)[x — ar(q)][x — b1(0)], au(a) <
b1(g) andr(x,q) = 7'(0,9)x + 7(0,q) , 7’(0,q) # 0. Then, in case of (0,q) = —201—((_)(]) and

(I~
107 .
7(0,q) = 2(1_1;?;‘;) [a1(q) + b1(q)], it follows from (4.39) that

72(%.0) = 02(0,0) = G507 (0, Pas(ahbi(e)
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Therefore, in this case, tliePearson equation follows from (4.40) that

p(axq) a1(q)by(q) (4.67)

p(x.9) [ax— ay(@)l[ax— by(a)]
We remark that this case leads to the Jagtdimite case (see Table 4.1). To predict the

eventual interval in which we have a suitalojeveight function with the needed properties,
we start studying with the possible graphs of the ratapx, )/o(x, ) given in theg-Pearson
equation identified by (4.67). The graphs of the ratio is performed entioglgrding as the
signs of the zeros af1(X, g). Thus, we split them into two cases; Casai(q) < 0 < bi(q)
and Case 2. & a1(q) < by(q). Before starting the analysis let us point out ih@tx, q)/0(X, q)

always intercepts thg-axis at the poiny = 1 sinceo»(0, q) = go1(0, q).

Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.67).

Figure 4.49: The functiori(x, q) with Case 1.Aa;(g) < 0 < by(qg), Case 2.B: O< a1(q) <
b1(q).

Case 1.A:qtai(q) < 0 < gtby(q). The graph off corresponds to this situation is rep-
resented in Figure 4.49A. Let us perfom analogous procedure @r ieéerval. First of
all, let us consider the positivity gf which enables us to omit the intervalsch, qta;(q))
and @ b1(q), ). The rest intervaldtai(q), g tb1(q)) coincides with the one represented
in Theorem 4.4 a). That's why, here it could be possible to get a suitablMotice that
p(ax0)/p(x.q) = 1 atxo = —7(0,0)/7'(0,0), x = g tau(q) < o < x = g *by(q). Then, it
follows from Figure 4.49A that is increasing ondtay (q), xo) with p — 0 asx — g tai(q)*
(sincep(gx 0)/p(x, q) — o) and decreasing orxg, g *b1(q)) with p — 0 asx — q~tby(g)~

(sincep(gx, q)/p(X, q) — o) which allows us to construct Figure 4.50.

We infer from Figure 4.50 that positivieweight function exists orgg(q), b1(q)). Itis obvious
that the boundary condition (3.119) holdsxat a;(q) andx = bs(q) since they are roots of
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o1(x, Q) (see Theorem 4.4 a)). Thus, we construct the following theorenr@iogpto this

case.

CRCYC) q'bjq)

Figure 4.50: Possible positive graph of correspongif)gq) for Figure 4.49A.

Theorem 4.34 Let a= a;(qg) and b= by(q) be the zeros af1(x, q) and assume thatda; (q) <

1o .
0 < g tbi(g) and7’(0,q) = — z(ljé?’l‘;). Then, there exists a sequence of polynoniglg,

orthogonal on(a, b), i.e., they satisfy the orthogonality (4.6) with respect to the g-weight

function
p(x Q) = (ga; (@)%, gb; (@)X, 9w > O, X € (&, b) (4.68)

which satisfies the g-Pearson equation and the boundary condition (Esaeim 4.4 a)).

This case corresponds to the case Vllal in Chapter 10 of [35, p@gesn? 318].

An example of such family is Al-Salam-Carlitz | polynomials [35] wheséq) =a, b1(g) =1,

cx Q) =g tl-x@-x, oAxq=a

1 l1+a gt
T(X7 q) - rqx_ mv An(q) - q- 1

Al-Salam-Carlitz | polynomials are orthogonal am {) and the conditiona; (q) < 0 < bs(q)

[n]gq.

give us the following restriction for the parametersc 0. By means of Theorem 4.4 a) we

can write the orthogonality of Al-Salam-Carlitz | polynomials

1
f (ax a1gx PeoUT (% YU (x 6)dgx = (-8)"qD(1 ~ q)(G; Pn(C, & 8 ; Deodmn (4.69)
a
associated witla < 0.
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Another example of this family is discreteHermite | polynomials which are special case of

Al-Salam-Carlitz | polynomials (see [36] for further details).

Case 2.B:0 < g tai(q) < g tbi(g). The graph off corresponds to this situation is repre-
sented in Figure 4.49B. We first skip the intervat¥a;(q), q*b.(g)) due to the positivity
of p. Moreover, we eliminate the interval(*b,(q), ) because of Remark 4.5.5 since the
boundary condition is not satisfied. The last interval( qta;(q)) is the one described in
Theorem 4.4 g) by symmetry. However, notice from Figure 4.49Bgdlimtlecreasing on this
interval withp — 0 asx — qtay(g)~ (sincep(gx, g)/p(X, q) — o) which leads to that /4 0
asx — —oo = o1(X go(x, QX 4 0,k = 0,1, ... asx — —co. Thus, this interval is also not

suitable for constructing.

4.3 The Zero Case

We now impose the analogous analysis to the zero case, i.e., we deal withsililpalegrees
of the polynomial cofficients with additional conditionr1(0,q) = 0 & 02(0,q) = 0. Notice
that for the zero cases, tihgPearson equation (3.119) has zero and pole=a0. Then, when

we determine the behaviour pfat x = 0 we use the following remark.

Remark 4.35 Behaviour of the g-weight function at=x0 depends on the succesive solution

of the g-Pearson equation

g loa(x, Q)
k-1 “1o.(d
e p(dx ) = p(x,0) ]_[ a_o2(qx Q) (4.70)

i=0 O—l(qi+1x’ q) ‘
It is apperant that as k— oo the behaviour op at x = 0 is accomplished which alters

according as the degrees of the polynomiai$x, q) ando»(X, q).

4.3.1 Linear Case
Letoi(x,q) = 07(0, q)x, i.e., linear witho1 (0, q) = 0 andr(x, q) = (0, gq)x + 7(0, g).

Remark 4.36 Notice thato»(x, q) is obtained from (3.11) as the forop(x, Q) = q[o-l(x, q)+
(1-g Hxr(x.0)| = a(1-g 7' (0, )x+ (0, @)+ (1- )7(0. 6)| = ax(1-q )7’ (0. g) [ x—
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az(q)], 7’(0,q) # 0. Note that;,l(?(’f;) = —(1_%1,1) conduces to #q) = 0. Thus, it can be easily
interpreted that the g-Laguerre type zero family of the 1st kind is the gbi&gpe zero family
of the 2nd kind and the g-Bessel type zero family of the 2nd kind wh€xeq) hasO as a

root with multiplicity two.

4.3.1.1 Theg-ClassicalO-Laguerre/Jacobi Polynomials

Let o1(x.q) = 07(0,9)%, 01(0,0) = 0 andr(x,q) = 7'(0,q)x + 7(0,q) and assume that

7(0.9)
o1(0.9)

# - & ap(q) # 0. Then,oa(x, g) = 3075 (0, 0)x2 + (0, g)x where

1
(1-g71)
%0’2’ (0.0) = q(1 - g H7'(0,q), 0%(0.) = qlo’y(0, ) + (1 — g~ H)7(0, q)].

As a result, the}-Pearson equation folows from (4.1) as

X, - 1, 7(0, 1, 7(0,
pp(?X qc;) = q ! (1 -q 1) ;—_/((0 (;)) X+ (1 -q 1) ;’((Oqc)]) +1 (471)
el 1 b l b
_ 1, 7(0,
- qi-a )5S aa)
1 ]
1 (1_q—l) T’(OYQ)
whereay(q) = — ’ 189 40

PTG )
(=057 00

Before starting the analysis let us point out th@tx, )/o(x, ) always interceptg-axis at the

point
7(0,q)
1(0,9)

y=Yo=q*|1+(1-qg?

Notice for the zero cases thabr b could be zero. That's why, we should know the behaviour

of p atx = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.37 Behaviour of the g-weight function at=x0 depends on the succesive solution

of the g-Pearson equation

paxa = q* 1+(l—q‘l);,(?(’)q;)}(l—X/az(q))p(x, )
l b
k
coaxa = at1+0-aH et Waaideea.  @72)
1 £l

It is apparent that as k- o the behaviour op at x = 0 is accomplished. Notice that if

O<vyo=qt1+(1- q‘l)of,(?c’)q&)] < 1, p(x,q) = 0as x— 0 otherwise it tends teoo.
1@,
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In order not to lose any graphs ofgx, g)/e(X, ), we perform independent graphs according

to the signs of the zeros of; andAq = ;l,l((%% together withyp < 1, yp > 1. We note that
we have three independent cases: Case 1. wlgen 0, ax(q) > 0 andyp > 1, Case 2. when
Aq < 0,ax(g) <0and0< yp < 1 and Case 3. whefyq < 0, ax(q) > 0 andyp < 0. Then, next

step is to execute the graphsagfix, q)/o(x, q) in (4.71).

Let f(x, Q) := p(gx q)/p(X, ) be the function defined in (4.71).

Y y

<O

Figure 4.51: The functioi(x, q) with Case 1.AAq > 0,a2(g) > 0,yp > 1, Case 2.BAq < O,
a(q) <0,0<yy < 1.

Case 1.A:ayx(@) > 0,y0 > 1, Aq > 0. The graph off corresponds to this situation is
represented in Figure 4.51A. By applying the analogous proceduraabgsa each interval.
First of all, by the positivity ofp, we skip the intervald,(q), ). The same happens for
the interval (Qaz(q)) due to Remark 4.5.4. Notice that the last intervado( 0) is the one
described in Theorem 4.4 i) by symmetry. Thus, here it could be possibkveaisuitable
p. Notice from 4.51A thap(gx g)/p(x, q) > 1 on (~c0, 0) which leads to that is increasing
on this interval withp — o asx — 0~ sinceyp > 1 (see Remark 4.37). Observe that sipce
is increasing ang(gx, )/p(X,q) — oo asx — —oo, thenp — 0 asx —» —co. However, it is
seen from the identity identified by (4.21) that the grapp ahdo 10 have the same property,
theno1p — oo asx — 0~ which is the boundary condition whén= 0. Therefore, there is

no suitablep for the interval oo, 0).

Case 2.B:ay(q) < 0,0< yp < 1, Aq < 0. The graph off corresponds to this situation is
represented in Figure 4.51B. Positivity @fallows us to skip the intervaHeo, ax(q)). The
interval @2(q), 0) is also eliminated due to Remark 4.5.4 by symmetry. Let us consider the

last interval (Qoo) which concides with the one described in Theorem 4.4 i). That's why,
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it could be possible to have a suitahklen this interval. Notice thap(gx, g)/p(x,q) = 1 at

X0 = —-7(0,09)/7’(0,q), X0 > x = 0. Then it follows from Figure 4.51B that is inreasing
on (Q xg) with p — 0 asx — 0* since 0< yg < 1 (see Remark 4.37) and decreasing on
(X0, o) which leads tgp — 0 asx — oo sincep(gx, q)/p(X, q) — . Then, according to this
discussion one can easily get Figure 4.52 by assuming a positive initialfealire g-weight

function in each interval.

afa)

ey

0 X

Figure 4.52: Possible positive graph of correspongifxgq) for Figure 4.51B.

It is also obvious from Figure 4.52 that it could be possible to have a suijtabie(Q, ).
But we need to checki(x, g)o(x, )X — 0 asx — oo, k = 0,1, ... by using theextended
g-Pearson equation (4.20). It is clear from (4.20) that grapd lofoks like the one repre-
sented in Figure 4.51B with theintercept, 0< g*lyg < 1, k = 0,1, ... that's why, we have
a1(x, Q)p(x, @)Xk — 0 asx — oo, k = 0,1,... As a result, there exists a convenigrin (Q o)

(see Theorem 4.4 i)) which leads to the following theorem.

Theorem 4.38Let a = O and b = co and assume thahg = ;',((%O('])) < 0, ax(g) < 0 and
1@,

O<yo=0qt|1+(1- q‘l);,l(?éf‘c)‘) < 1. Then, there exists a sequence of polynon{ig}3,
orthogonal on(a, b), i.e., they satisfy the orthogonality (4.17) with respect to the g-weight

function

q230%(0, g)az(q)
>0, xe(ab), g*=- 2;(0 )2 (4.73)
14%.q

which satisfies the g-Pearson equation and the boundary condition (eze€m 4.4 i)).

1
PO ) = X e D O

This case corresponds to the case llla2 in Chapter 10 of [35, pd@esia 309].
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An example of such family ig-Laguerre polynomials [35] whem®(q) = -1,

o1(% Q) =g 2% o2(%0) = g X(x + 1),

q° ql-q° ~ q°

g-Laguerre polynomials are orthogonal ond§) and the conditiong\q < 0, ax(q) < 0 and

T(X’ q) ==

0 < gyp < 1 give us the following restriction for the parameters> —1. By means of
Theorem 4.4 i) we can write the orthogonalitygpf.aguerre polynomials

@+ o)n (9. —cqL, —c g7 @)oo
(@dn (@1 —c,—c10; 0w

<Xy a 3 —
fo X @06 LD (x )dgx=07"(1-0) Sean(4-74)

(_X; q)oo
together withw > -1, ¢ > 0.

a@ .

Figure 4.53: The functiori(x, q) with Case 3.CAq < 0,ax(q) > 0,yp < 0.

Case 3.C:ax(q) > 0,yo < 0, Aq < 0. The graph off corresponds to this situation is repre-
sented in Figure 4.53C. Positivity pfenables us to skip the intervalscp, 0) and (Qax(q)).
That's why, we deal with only the intervad£(q), o0) which is the one described in Theorem
4.4 h). Then, here it could be possible to have a suitablbotice thato(qx q)/o(x,q) = 1
atxg = —7(0,9)/7'(0,0), X0 > x = ax(q). Therefore, it follows from Figure 4.53C that

is increasing ondy(q), Xo) with p(qag(0), ) = 0 (sincep(aax(a), a)/p(a2(a), a) = 0) and de-
creasing onXp, o) which leads tgp — 0 asx — oo (sincep(qx, g)/p(x,q) — o). Notice

that one can construct the grapheods in Figure 4.54 according as the above discussion by

assuming a positive initial value for tlyeweight function in each interval.

It is obvious from Figure 4.54 that it could be possible to have a convepien (ax(q), «).
But, it is not enough to assure thatsatisfies the boundary conditionsat. We should

checko1(x, Qp(x, g)x¥ — 0 asx — oo, k = 0,1,.... We note that the graph af looks like
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Figure 4.54: Possible positive graph of correspongifygq) for Figure 4.53.

the one represented in Figure 4.53. That's why, we ohtaifx, q)p(x, q)X< — 0 asx — oo,

k=0, 1, ... which leads to the following theorem.

Theorem 4.39 Let a = ax(q) be the zero obra(x,0) and b = co and assume thadg =

;',((%Cc‘])) <0,a(q)>0andy=q* [1 +(1-qgh ;,(?6% < 0. Then, there exists a sequence of
v v

polynomials(Pp), orthogonal on(a, b), i.e., they satisfy the orthogonality (4.16) with respect
to the g-weight function

q?305(0,0)

p(x Q) = X VX% Haae(@)/ % B > 0, X € (). ¢ = — s
1 ”

(4.75)

which satisfies the g-Pearson equation and the boundary condition (gseeim 4.4 h)).

This case corresponds to the case lla2 in Chapter 11 of [35, pages@358].

An example of such family ig-Charlier polynomials [35] wherax(q) = 1,

o1(x Q) = ag 2%, o2(x ) = X(x - 1),

1 i a+q
1-9 (1-99
g-Charlier polynomials are orthogonal on ¢) and the condition&y < 0, ax(q) > 0 and

7(x.0) = - (@ = Mo

Yo < O give us the following restriction for the parametars 0. By means of Theorem 4.4
h) we can write the orthogonality af Charlier polynomials

fl X" VX%H(/X; 6)oCin(X; & A)Cn(X; & A)dg-1x = (47 ~ 1)a™"(~a "0}, ; Qn(~2, G; Q)G (4.76)
with the relationa > 0.
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4.3.1.2 Theg-ClassicalO-Laguerre/Bessel Polynomials

Let o1(x,q) = 07(0,9)%, 01(0,0) = 0 andr(x,q) = 7'(0,q)x + 7(0,q) and assume that

Oy _ 1
o009 T (-9

result, theg-Pearson equation folows from (4.71)

& ap(q) = 0. Then,oz(x,q) = 30%(0,9)x% = q(1 - g 1)’ (0,0)x%. As a

7(0.9)

p(ax.q) «
o1(0.9)

p(X, )

qil-g? (4.77)
Before starting the analysis let us point out th@tx, )/o(x, ) always interceptg-axis at the
pointy ;= yo = 0. We perform analogous analysis in order to get the grapla€ q)/0(x, q)
according to sign of\q := % which leads to one independent graph as in Figure 4.55A.
Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.77).

. i.'-
0 N v N hd N N N ')X

Figure 4.55: Case 1. The functidifx, q) with Aq < 0, ax(q) = 0, B: corresponding positive
p(x.q).

Case 1. A:ayx(g) = 0,y0 = 0, Aq < 0. The graph off corresponds to this situation is
represented in Figure 4.55A. Notice tHais negative on<{co, 0) which enables us to skip it.
The other interval (0) is the one described in Theorem 4.4 i). That's why, here it could be
possible to construct a convenigntNotice thalp(gx, q)/p(x, q) = 1 atxy = —7(0, g)/7'(0, ),

Xo > X = 0. Then, it follows from Figure 4.55A thatis increasing on (xg) and decreasing

on (Xp, o) which leads to thgp — 0 asx — 0" andx — +co. It is obvious that one can
easily obtain the Figure 4.55B by assuming a positive initial value fogthveight function

in each interval which also indicates that it could be possible to have a syitall€Q, o).
However, we need to check the boundary conditior@tby using theextended €Pearson
equation (4.20). We note that the graphgdboks like the one represented in Figure 4.55A.

That's why, by the same reason performeddore getoi(x, g)p(x, Q)X — 0 asx — +co.
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Thus, we build the following theorem.

Theorem 4.40 Let a= 0 and b= oo and assume thatq = Z%9 < 0, ay(q) = Oand y, =

c1(0.9)
Hi+@-gh T,(?Oq%)] = 0. Then, there exists a sequence of polynon{l$, orthogonal
on (a, b), i.e., they satisfy the orthogonality (4.17) with respect to the g-weight function
q%30%(0,0)

p(x0Q) = X* VX% 15 0, xe (ab), o = (4.78)

1(0,0)

which satisfies the g-Pearson equation and the boundary condition (esseim 4.4 i)).

This case corresponds to the case Illa2 in Chapter 10 of [35, pd@emn2l 309].

An example of such family is Stieltjes-Wigert polynomials [35] whaség) = 0

o1(% Q) = g%, oa(xq) = X2,

1 N 1
qa @(@-a99
Stieltjes-Wigert polynomials are orthogonal ond§) and the conditiongy < 0, ax(q) =

() =~ 1@ = [Mlag—.

andyp = 0 are satisfied. By means of Theorem 4.4 i) we can write the orthogonality of

Stieltjes-Wigert polynomials

[ Vs o sy - -t St G, )

4.3.2 Quadratic Case

This part consists of two situations. One of them is when zero is the roqi&fq) with milti-

plicity two; o1(x, ) = 30/(0, g)x? and the other is onez1(x, ) = 304(0, @)x? + o (0, G)x.

We begin witho1(x, Q) = 2o-1 (0, %2, 7(x, g) = 7'(0, q)x + (0, g) which lead tao»(x, q) =
ax{[307(0.9) + (1 - gH7' (0. ) |x+ (1 - g )(0. )}.

i - 7(0.9)
Remark 4.41 Notice thatdegpra(x,q)] = 2 if 709 * T q 5

theno(x, ) has simple roots, otherwise it has zero as a root with multiplicity two. On the

Note that ifr(0,q) # O,

other hand, degf(x, )] = 1 if lT’f/(z’g)q) =@ q Ty That's why, theg-Bessel type zero family
20,

of the 1st kind is the-Jacobi type, the-Bessel type and thg-Laguerre type zero family of
the 2nd kind.
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4.3.2.1 Theg-ClassicalO-BesselJacobi Polynomials

Let or1(x, Q) = 20_1 (0, q)x?, T(x,g) = 7/(0, g)x + 7(0, g) and assume thail’—,(,(zgz) # -

and7(0,q) # 0. Then, it follows thatra(x, q) = 50’2’(0, QX2 + o5(0, gq)x where

1 ’7 1 ’7 — ’ ’ _
502(0.0) =4 [E"l 0.9+ (1-g )7, q)] # 0, 05(0,0) = q(1 - g ™)7(0, 9).
Thus, theg-Pearson equation takes the form

plaxa)  ou(x Q)+ 1 -gHxr(x.q) g loa(x q)

p(xq) o1(0% 0) ~ o(gx0)
-1\_7(09) -1y_7(09)
3 [l + (l q ) 1 ”(Oq) X+ (1 q ) 10.//(0 q) (4 80)
= 7 )
_ 1. 7(0, X — &
_ ql{“(l_ql)l 0.9 }[ 2(0)]
507(0,0) ax

1-g1 _t0q)
9100 37700

[“(1 a) 1T ff)(g)q)

whereax(q) = —

Remark 4.42 Let f(x,q) = p(gx q)/o(x, q) be the function defined in (4.80). Then notice

that
7/(0,q)

Aqi=0q7? 1+(1—q_1)l0_,,—(0q)
201U,

#0

is the horizontal asymptote of the functiofx.fq).

Before starting the analysis let us point out th@fx, q)/o(X, Q) is discontinues at = 0.

In order not to lose any graphs pfgx, q)/e(X, g), we consider every case by taking Case 1.
Aq > 0 and Case 2Aq < 0 concerning with the sign of the zero ob. Furthermore, as
before, we need to split 1st case into two separate cases: Case 1.ixwhehand Case 1.ii)

when 0< Aq < 1.

Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.80).

Case 1.)A:Aq > 1, ax(q) > 0. The graph off corresponds to this situation is represented
in Figure 4.56A. We start to analyse each interval in which we have a sujiatité certain
properties. Thus, we first exclude the intervalgflq)) due to the positivity property gf. In
the second part, let us look at the intervadq{, 0) which is the one described in Theorem 4.4

i) by symmetry. Hence, it could be possible to have a suitalitethis interval. Notice from
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Figure 4.56: The functiofi(x, q) with Case 1.))AAq > 1,a2(q) > 0, Case L.ii))B: 0< Aq < 1,
ax(q) > 0.

Figure 4.56A thap is increasing on<{co, 0) with p — oo asx — 0~ (sincep(gx g)/p(x, q) —
+00) which leads tgp — 0 asx —» —oco. We note that since the graph pfand o0 are
similar which is seen from th@-Pearson equation (4.1) and the identity given in (4.21), then
o1p — o asx — 0~ which is the boundary condition whér= 0. As a result, the boundary
condition is not satisfied at = 0. Then, we can not use the intervab¢, 0) for constructing

p. we lastly consider the intervad£(q), «o) which coincides with the one given in Theorem
4.4 h). Therefore, here it could be possible to get a convepieNbtice from Figure 4.56A
thatp(gx q)/p(x,q) = 1 atxy = —7(0,q)/7’(0,q), Xo > X = ax(q). Hence, it follows that

p is increasing ondx(q), Xo) and decreasing orxg, o) which leads tqgp — 0 asx — co.
However, it is not enough to assure tphatatisfies the boundary condition-at. We need to
checko1(x, g)p(x, @)Xk — 0 asx — oo, k = 0, 1, ... by using theextended €Pearson equation
(4.20). We remark that the graph @fooks like the one represented in Figure 4.56A but with
the horizontal asymptote @ g“*2A4 < 1 for k large enough. That's whyr1(x, @)p(X, g)x<
becomes increasing oay(q), ) which leads tari(x, q)p(x, q)x€ /4 0 asx — oo for k large

enough. Thus, this case does not lead to any suitabi¢h the needed properties.

Case 1.ii)B:0 < Aq < 1,ax(g) > 0. The graph of corresponds to this situation is represented
in Figure 4.56B. Notice that is negative on (0ax(q)) which enables us to skip this interval
due to the positivity op. Let us analyse the interval-¢, 0). Notice that this interval coin-
cides with the one given in Theorem 4.4 i) by the symmetry. Thus, here it beyddssible to
have a suitablp. Notice from Figure 4.56B that(qx, q)/p(x, q) = 1 atxg = —7(0,q)/7’(0, g),

Xo < X = 0. Then, it follows thap is decreasing on-co, Xg) and increasing onxg, 0) with

p — +oo asx — 0 (sincep(gx q)/p(x,q) — +o0). Observe that since is decreasing on
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(—o0, Xo), thenp 4 0 asx — —c0 = o1(X, P, PxK 4 0,k = 0,1,2,... asX — —oo.
Observe also that — +co asx — 0~. Since the graph qf ando1p are similar (see (4.1) and
(4.21)), thero1p — +o0 asx — 0~ which is the boundary condition whés= 0. Therefore,

the boundary condition is also not satisfiedxas 0~. On the other hand, let us consider the
last interval 62(q), o) which is the one described in Theorem 4.4 h). Thus, this interval could
be suitable for constructing Notice from Figure 4.56B that(x, q) < 1 on this interval, thus

p is increasing ondx(q), ). Then,p 4 0 asx — co which leads tari(x, g)p(x, q)x< 4 0,

k=0,1,2, ... asx — c. Hence, this case does not lead to any suitable

Figure 4.57: The functiori(x, ) with Case 2.CAq < 0, ax(q) > 0.

Case 2.C:Aq < 0, ax(q) > 0. The graph off corresponds to this situation is represented in
Figure 4.57C. By the positivity gf, the intervals €0, 0) and @x(q), o) are both eliminated.
The same happens for the intervaldf(q)) due to the Remark 4.5.4. That's why, in this case,

there is no suitable interval for constructipngvith the needed properties.

4.3.2.2 Theg-ClassicalO-BessegBessel Polynomials

Let o1 (X, Q) = 20-1 '(0,9)%?, 7(x,q) = 7/(0,g)x + 7(0, ) and assume thait’—ff’((%) i 1 1)

andr(0,q) = 0 & ay(q) = 0. Then, it follows thatra(x, q) = 202 (0, g)x?> where

204(0.0) = [1afwxv+(1—q4ﬁ%aq4.

Thus, one can perform tlgePearson equation as the following

ﬂmm}
307(0.9)

p(gx,q)
p(x )

=q? [1 +(1-qgh (4.81)
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Let denoteAq by the constant

Aq = q—2 1+ (1 _ q—l) 1T (Oa CI)
50 '1'(0, o)}
Before starting the analysis let us point out th@fx, q)/o(X, Q) is constant.

Notice for the zero cases thabr b could be zero. That's why, we should know the behaviour

of p atx = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.43 Behaviour of the g-weight function at=x0 depends on the succesive solution

of the g-Pearson equation

2 ~ 1, 700
p(xad) = g [1+(1 q )—%a;(o,q) p(x,0)
K _2k _1, 7(0,0) “
epdxa = X1+ Q- p(x 0. (4.82)
zo'l(O,Q)

It is apparent that as k- o the behaviour op at x = 0 is accomplished. Notice that if
O0<Aq=q2[1+(1- q‘l)%] <1, p(x,q) — 0as x— 0 otherwise it tends tgo.

201 M
We introduce analogous analysis in order to obtain grappép{ q)/o(x, ) according to the
sign of Aq by taking Case 1Aq > 0 and Case 2Aq < 0. Nevertheless, as before, we need to

split 1st case into two separate cases: Case 1.i) wlgen1 and Case 1.ii)) when @ Aq < 1.

Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.81).

y

A A

<

Figure 4.58: The functiof(x, q) with Case 1.))AAq > 1,a2(q) = 0, Case L.ii))B: 0< Aq < 1,
a(q) = 0.

Case 1.i))A:Aq > 1,ax(g) = 0. The graph off corresponds to this situation is represented in

Figure 4.58A. Notice from Figure 4.58A that we have two interval®(0) and (Q0). Let us
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first analyse the interval (60) which coincides with the one given in Theorem 4.4 i). Then,
it could be possible to have a suitapl®n (0 «). Observe that > 1 on this interval. Thus,

it follows thatp is decreasing on (@) with p — +c0 asx — 0" sinceAq > 1 (see Remark
4.43). Sincep(gx, g)/p(x, g) has finite limit asx — +o0, then we have chance that— 0 as

X — oo, But notice thap — +o0 asx — 0*. Since the graphs qf ando1p are similar (see
(4.1 and (4.21)), themrp — +o0 asx — 0% which is the boundary condition whén= 0.
That’s why, this interval does not lead to any suitablgith the needed properties. The same

happens for the interval-¢o, 0) by the symmetry.

Case 1.ii)B:0 < Aq < 1,ax(q) = 0. The graph of corresponds to this situation is represented
in Figure 4.58B. Notice that here also we have two intervals),(0) and (Q). Let us deal
with (0, o) which is the one described in Theorem 4.4 i). Then, it could be possibkvid
suitablep on (Q o). Notice from Figure 4.58B thatt < 1 on this interval which leads to that
p is increasing on (O») with p — 0 asx — 0" since 0< Aq < 1 (see Remark 4.43) which
leads top /4 0 asx — oo = o1(X Po(X, gYX¢ 4 0,k = 0,1,2,... asx — co. Therefore,

(0, ) is not suitable interval for constructing The same happens for the intervabg, 0)

by the symmetry.

Figure 4.59: The functiori(x, ) with Case 2.CAq < 0, ax(q) = 0.

Case 2.C:Aq < 0, ax(q) = 0. The graph off corresponds to this situation is represented in
Figure 4.59C. Notice that should be positive andl is negative on-{co, +0). Hence, there

is no interval for constructing positive
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4.3.2.3 Theg-ClassicalO-BesselLaguerre Polynomials

Letoi(x, Q) = 20-1 (0, q)x?, 7(x,q) = (0, g)x + 7(0, ) and assume thaﬂ% @ q =t

Then, it follows thatro(x, q) = 05(0, gq)x = q(1 - g 1)7(0,g)x. Thus, theg-Pearson equation

follows . 0
paxg _ 9 19 %6g
. (4.83)
p(x.q) gx
Let denoteAq by the constant
. 0.9
20'1 '(O, q)

By applying the analogous analysis according to the sigkyofe get one independent graph

of p(gx, g)/p(X, g) constructed in Figure 4.60.

Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.83).

Figure 4.60: The functiori(x, q) with Case 1Aq < 0.

Case 1:Aq < 0. The graph off corresponds to this situation is represented in Figure 4.60.
Notice that Positivity op allows to skip the interva{co, 0). Thus, we have only the interval
(0, o) to analyse if it is possible to have a suitalle Notice thatp(gx q)/o(x,q) = 1 at

Xo = —7(0,09)/7’(0,q), X0 > X = 0. Then, it follows thafo is decreasing on (&) with

p — o asx — 0% sincep(gx, q)/p(X,g) — o asx — oo and increasing onxg, o) which
leads tgp — oo asx — oo (sincep(qx, q)/p(x,q) — 0 asx — ) = o1(X, Pe(x, QPxK 4 0,
k=0,1,... asx — oco. As a result, this interval is not convenient for construcpngith the

needed properties.
We continue with the same analysis to include the situatidi, q) = %o’l'(o, q)x2+o-’1(0, Q)X
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= 20-1 "(0,g)X[x — a1(q)], 7(x,q) = 7’(0,g)x + 7(0,qg). Observe from (3.11) that(x, )

becomes

o2(x, Q) = qX{[l 7(0,9) + (L - g H7'(0,9) [ x+ (1 - g H)(0,q) - —a (0, q)al(q)}

Remark 4.44 We remark thadegpa(x,q)] = 2 in case of T(O((;“)q) ;t,—(l 2 Ty otherwise
T

degla(x,q)] = 1. We note tha*f(,o(g)) = (f_lécl)l), leads tooo(x,q) = 307/(0,g)x2. Con-
l

sequently, thel-Jacobi type zero family of the 1st kind is tqeJacobi, they-Bessel and the

g-Laguerre type zero family of the 2nd kind.

4.3.2.4 Theg-ClassicalO-JacobjJacobi Polynomials

Letoi(x,q) = % ”(0 a)x[x —ai(q)] andr(x, q) = 7/(0,q)x + (0, g), (0, g) # 0 and assume

7'(0.9) _
that 5 307(0,0) = q b

where

Then, observe from (3.11) thab(x, q) = 2o- (0, q)x% + 05(0, g)x

375(0.0 =4[ 304(0.0+ (1- G 700 7300.0) = a1~ (0.0~ 3070 D@

Hence, they-Pearson equation follows from (4.1) as the following form

plax @ _ ouxq+@-ahHxr(xq) _ g loa(x0)
p(x,0) o1(ax q) o1(ax )

|1+ @-a)325 [ - a7 ;00— au)
= 4.84
a2 (489
7(0,9) | x-a(q)

307/(0,q) | ax—au(a)

q—l

1+(1-q7Y

1y_7(0.9)
(=g 7505 -2

[1+(1 ah 1T ’(0.9)

whereax(q) = —
o q)]

Remark 4.45 Let f(x,q) = p(gx q)/o(x, q) be the function defined in (4.84). Then notice
that
1+(1-q7)

f@ml¢0

Aq:=q2
@-=4 157(0.9)

is the horizontal asymptote of the functiofx.fq).

Before starting the analysis let us point out thédx q)/o(x, g) in (4.84) always intercepts

y-axis at the point

u—q4)rmq)}

=yo=q*|1-
y:=Yo=4 [ a1(d) 10%(0,q)
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Notice for the zero cases thabr b could be zero. That's why, we should know the behaviour

of p atx = 0. To learn this we perform the following remark.

Remark 4.46 Notice that behaviour of the g-weight function a0 depends on the succe-

sive solution of the g-Pearson equation

Lora(x, Q) q toa(q'x, Q)
p(ax ) o1 (axa) ——=—2p(x.q) © p(dx,q) = p(x, 0) | | @
. .
opdxg = q*l1- (1-a) 0.9 [ (x/ax(e); o) P(%.0). (4.85)

ai(d) 2o7(0,q)| (@x/a(9);a)k
It is apparent that as k> oo the behaviour op at x = 0 is accomplished. Notice that if

O<yo=q¥1- (13_ 11(,? 9 _1<1, p(x, ) — 0as x— 0 otherwise it tends teoco.
1@ To7(0.0)

In order not to lose any graphs ptgx, q)/o(x, q), we consider every case by taking Case
1. Aq > 0 and Case 2Aq4 < 0 together withyp < 1,y > 1. Furthermore, as before, we
need to split 1st case into two separate cases: Case 1.i) aenl and Case 1.ii) when
0 < Aq < 1. Then, our next step is to dispose the order of the zerog ©f ) ando (X, g)

according to the knowledge that we discussed above which give aibgogsaphs for the

ratio p(qx, a)/p(x, 9).

Let f(x,q) = p(gx 0)/p(X, ) be the function defined in (4.84).

a(q)

a,(q : q'a(a) :

Figure 4.61: Case 1.i) The functidifx, ) with Aq > 1, 0< ax(q) < qlai(g), A:0<yp <1,
B:yo> 1.

Case 1.)A:0 < ax(q) < g tay(q), 0 < yo < 1, Aq > 1. The graph off for this case is
represented in Figure 4.61A. Let us consider now the possible intervatsich we can have

a suitableg-weight functiono. As we've already mentioned, they are defined by the zeros of
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the polynomialsr; ando, and the positions ofy according to one. First of all, notice that
sincep should be positive anél is negative in the intervabg(q), qta;(g)), it is not suitable.
The other intervals (@(q) and @ ta;(q), ) are both eliminated due to the Remark 4.5.4
and Remark 4.5.5, respectively. The last intervalk(0) is the one described in Theorem
4.4 1) by the symmetry aboytaxis. That's why, it could be possible to have a suitgble
on this interval. Notice that(gx, q)/p(x,q) = 1 atxg = —7(0,q)/7’(0,q), X0 < X = 0, then
from Figure 4.61A it follows thap is increasing on-<{co, Xg) and decreasing orx{, 0) with

p — 0asx — 0 since 0< yg < 1 (see Remark 4.46). Singéqx, q)/p(X, q) has a finite
limit as X — —co, we have also the chance that-> 0 asx — —oo, but it is not enough to
assure thap satisfies the boundary condition-ado. In fact, as it is stated in Theorem 3.31,
we should check that(x, q)p(x, g)x¥ — 0 asx — —co by using analysis of thextended
g-Pearson equation (4.20). However, the graph lmfoks like the one represented in Figure
4.61A together with the property thgfx, g) < 1 on (0, 0) for k large enough, which leads
to thato1(x, @)p(x, @)xK is decreasing on-{co, 0) with o1(X, (X, g)X¢ /4 0 asx — —co.

Therefore, this case does not lead to any suitable

Case 1.0)B:0 < ax(q) < g~ tay(q), yo > 1,Aq > 1. The graph of corresponds to this situation
is represented in Figure 4.61B. Notice that Figure 4.61B is analog to theeMgatA. They
differ only for they-interceptyyo. That's why, with the similar reason that we perform in Case
1.)A, we eliminate the intervalsag(q), q-tai(q)), (0, ax(q)) and g ta1(q), ). We only need

to analyse the intervaHco, 0). Notice thato(qx q)/p(X,q) = 1 atxy = —7(0,q)/7’(0, q),

X = 0 < Xg < X = ax(q), then from Figure 4.61B it follows that is increasing on-{c, 0).
Sinceyp > 1, thenp — 0 asx — 0~ (see Remark 4.46) and sing@x, g)/p(X, g) has a finite
limitasx — —oo, we have also the chance that> 0 asx — —oo, butitis not enough to assure
thatp satisfies the boundary conditions-ak. We should check that1(x, g)o(x, @)X — 0
asx — —oo by using analysis of thextended €Pearson equation (4.20). However, the graph
of g looks like the one discussed in Case 1.)A, that's why it leads to the same ttesiult

o1(X, p(X, G)XK > 0 asx — —oo.

Case 1.)C:0 < g tai(q) < ax(q), yo > 1, Aq > 1. The graph off is represented in Figure
4.62C. The positivity of allows us to skip the intervalgttai(q), a(q)). Let us consider
the intervals {0, 0) and (Qg~tai(q)) which coincide the ones described in Theorem 4.4 f)

(by symmetry) and Theorem 4.4 b). Singe> 1 andp(gx q)/o(X,q) > 1 on (~o0,0) and
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Figure 4.62: Case 1.i) The functidi{x, q) with Aq > 1, C: 0< g tay(q) < a(q), Yo > 1,
D: g tay(g) < 0 < ax(q), Yo < O.

(0, g tay(q)) it follows from Figure 4.62C thap is increasing on-{co, 0) and decreasing on

(0, g tay(q)) with p — co asx — 0. Notice from the identity

o1(ax Qp(ax @) _ g toa(x.)
O']_(X, Q)p(X, q) 0'1(X, q)

that the graph ofr1(X, 0)o(X, q) have the same property witlix, g). That's why, from Figure

4.62C we see that the boundary condition (3.115) does not satisfied-ad whenk = 0
which is the reason for eliminating them. Let us consider the last inteaw@)( o). Notice
thatp(gx q)/p(x,q) = 1L atxo = —7(0,9)/7’(0,q), X0 > X = ax(q), then from Figure 4.62C it
follows thatp is decreasing onr(0, g)/7’(0, g), ). Sinceop(gx, g)/e(x, q) has a finite limit
asx — +oo, we have the chance that— 0 asx — oo, but it is not enough to assure that
p satisfies the boundary conditions+ab. In fact, we should check that; (x, Q)o(x, )X —

0 asx — oo by using theextended €Pearson equation (4.20). But by the graphgofe
see thatr1(x, Q)p(x, q)X* is increasing ondy(q), o) for k large enough which implies that
a1(x Pp(x, Q)xK 4 0 asx — co. Therefore, this case does not lead to any suitablith the

needed properties.

Case 1.)D:g tay(g) < 0 < ax(q), Yo < 0, Aq > 1. The graph of corresponds to this situation
is represented in Figure 4.62D. Analogous analysis allows us to excludedhéve intervals
(q~ta1(q), 0) and (Qax(q)). On the other hand, the intervatdo, qta;(q)) is eliminated due
to Remark 4.5.5 with symmetry. The last intervad((]), «) is also excluded because of the

same reason applied in Case 1.i))C. That's why, we can not have a spitable

Case 1.)E:0 < ax(q) < g tai(g),0<yp < 1,0< Aq < 1. The graph off corresponds to this
situation is represented in Figure 4.63E. Notice that negative ondy(q), q-tai(q)). Then,
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Figure 4.63: Case 1.ii) The functiof(x,g) with 0 < Aq < 1, E: 0 < a(q) < g tay(q),
0 <y <1, Faxqg) <0< qgtag(q),yo <O.

it can not be used. Moreover, Remark 4.5.4 and Remark 4.5.5 by symmetwg alboto skip
the intervals (Oax(q)) and @ *ai(q), o) since they do not lead to a suitaklesatisfying the
g-Pearson equation (3.24) and the boundary conditions. Let us ndwitleshe last interval
(—o0, 0) which coincide with the one described in Theorem 4.4 i) by symmetry abaxis.

Therefore, here it could be possible to have a suitablbotice from Figure 4.63E thatis

decreasing on—co, 0) with the propertyp — 0 asx — 0 since 0< yp < 1. It seems that
o /> 0asx — —co which leads tar1(x, Q)o(x, q)x¢ 4 0,k = 0,1, 2, ... asx — —co. Therefore,

there is no suitable interval for.

Case 1.i)F:ax(q) < 0 < gta(g),yo < 0,0< Aq < 1. The graph of is represented in Figure
4.63F. The positivity property enables us to skip the intenal@], 0) and (0g~ta;(q)). The
same happens for the intervaftai(q), o) due to Remark 4.5.5. The last intervab$, a>(q))

is the one described in Theorem 4.4 h) by symmetry. That's why, it could$sle to obtain
a suitablep on this interval. Notice from Figure 4.63F thatis decreasing on—co, ax(q))
together withp(gae(q),q) = 0. Therefore, we have /~ 0 asx — —co which leads to
o1(x, Q)p(x, g)xK £ 0,k =0,1,2,... asX — —co.

Case 1.i))G:0 < gtay(g) < ax(q), 0 < yo < 1,0< Aq < 1. The graph off corresponds

to this situation is represented in Figure 4.64G. Let us analyse the eaclairsealog to the
before cases. First of all, one can eliminate the intenyala (g), a>(g)) due to the positivity.
The interval ¢, 0) is the one described in Theorem 4.4 i) by symmetry. However, it is
seen from Figure 4.64G thatis decreasing on-(o,0) with p — 0 asx — 0 since 0<

Yo < 1 (see Remark 4.46) which leadsdgo/s 0 asx — —co = o1(X, Qp(x, QXK /A 0,
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Figure 4.64: Case L.ii) The functiof(x,q) with 0 < Aq < 1, 0 < g tai(q) < ax(q),
G:0<yo< 1, Hiyo>1.

k=012,..asx —» —oo. Let us deal with the intervalag(q), o) which is the one given
in Theorem 4.4 h). Then, here it could be possible to have a suitablé follows from
Figure 4.64G thap is increasing ondx(q), o) with the property thap(gap(q), q) = 0 since

p(dae(a), 9)/p(az(a), @) = 0. Then, we have 4 0 asx — oo leading too1(x, Q)p(x, QX< />
0,k=0,1,2,...asX — o0,

In order to analyse the last interval, (0 a1(q)) which is the one described in Theorem 4.4
b) notice thaip(gx, q)/p(x,q) = 1 atxo = —7(0,0)/7'(0,q), X = 0 < X < X = ax(q), then
from Figure 4.64G it follows thap is increasing on () with p — 0 asx — 0 since

0 < yo < 1 and decreasing orxd, q tai(q)) with p(x,q) — 0 asx — g lai(g)~ since
p(gx 0)/p(x, q) — . According to the above discussion one can easily sketch the graph of
which is represented in Figure 4.65 assuming a positive initial value fajr#eight function

in each interval.

S qla@ a0

Figure 4.65: Possible positive graph of correspon@ifxgq) for Figure 4.64G.
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We also infer from Figure 4.65 that,@(q)) is suitable interval to have @weight function
supported at the points (q)gf, k = 0,1,... (See Theorem 4.4 b)). Thus, according to this

result we construct the following theorem.

Theorem 4.47 Let a = 0 and b = a;(q) be the zeros o0fr1(x,g) and assume thad <

- - 1-g7h =0 _
gla(q) < axq), 0 < yo = q* 1_((,11—‘(1(1))%;(,1,—(8’)(]) < 1,and0 < Aq = g1+ (1 -

V) 1;',(%1)(1)] < 1. Then, there exists a sequence of polynon(ig}3, orthogonal on(a, b),
291\%

i.e., they satisfy the orthogonality (4.7) with respect to the g-weight function

CER )N q-2357(0, g)ax(q)
T TR L0, b) o =
@a@xa. X E®D = da

which satisfies the g-Pearson equation and the boundary condition (gsaeim 4.4 b)).

o(x,q) = x* (4.86)

This case corresponds to the case IVa3 in Chapter 10 of [35, pagesdB311].

An example of such family is the littlg-Jacobi polynomials [35] whera;(q) = 1, ax(q) =
b‘lq‘l,
T1(%0) = 472x(x— 1), o2(x q) = axbax— 1),
1_abq2x+ ag—-1 1 - abg"?!
(1-ag (1Q-a9 1-q
Little g-Jacobi polynomials are orthogonal on {p and the conditions & q?Aq < 1, 0 <

7(x,q) = An(Q) = =g "[n]q

gyo < 1 and O< a;3(q) < ax(q) give us the following restriction for the parametersc@a <
g% 0 < b < g By means of Theorem 4.4 b) we can write the orthogonality relation of
little g-Jacobi polynomials

L (0% 0w (aQ"(1-abg (q,bga)n (a,abF; Qe
fo (bgx 0Q)e (x;2.blg)Pn(x; 2, big)dox (1-abg?™?) (ag abg g)n (ag bg; 9)e

omn (4.87)

withO<a=q*<q?!0<b<qg™

Case 1.i))H:0 < gtay(q) < ax(q), Yo > 1, 0 < Aq < 1. The graph off is represented in
Figure 4.64H. It is clear that Figure 4.64G and Figure 4.64ffedionly for they-intercept;
Yo. Then, we eliminate the intervals{ta;(q), ax(g)) and @x(q), ) because of the same
reason performed in Case 1.ii))G. Notice théqx q)/o(x,q) = 1 atxg = —7(0,q)/7'(0, ),

Xo < X = 0. Then, from Figure 4.64H it follows thatis decreasing onH{co, Xg) and increasing
on (xg, 0) withp — o0 asx — 0 sinceyy > 1 (see Remark 4.46). Observe that sineado 10
have the same graphs themo — o asx — 0 which indicates that the boundary condition

(3.115) does not satisfied at= 0 whenk = 0, that’'s why, ¢, 0) is not a suitable interval
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in order to get g with needed properties. Notice that the same happens for the interval

(0, g tay(q)) sincep — oo asx — 0.

Figure 4.66: Case 2. The functidifx, g) with Aq < 0,ax(q) < 0 < g ltay(q), : 0 < yp < 1,
Jyo > 1.

Case 2.l:ax(q) < 0 < g tai(g), 0 < yo < 1, Aq < 0. The graph off corresponds to this case
is represented in Figure 4.661. The positivityméallows us to skip the intervals-¢o, ax(q))
and @ tai(q), ). On the other handag(q), 0) is eliminated with the help of Remark 4.5.4
by symmetry. Notice that the last interval ¢0*a;(q)) is the one described in Theorem 4.4
b). Then, here it could be possible to have a suitabMotice thajp(gx, q)/p(x, Q) = 1 atxg =
-7(0,0)/7'(0,q), x = 0 < Xp < X = g tay(q). Thus, it follows thap is increasing on (o)
with p — 0 asx — 0 since 0< yp < 1 (see Remark 4.46) and decreasing x4 *a(q))
with p(x,q) — 0 asx — g tay(g)~ sincep(qx g)/p(x,g) — +co asx — g tai(q)~. Then,
according to above discussion it is clear to sketch Figure 4.67 by assurpogjtae initial
value for theg-weight function in each interval.

y

A

a(q) : ()

Figure 4.67: Possible positive graph of correspongifxgq) for Figure 4.66l.
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Itis obvious from Figure 4.67 that there exists a suitalba (0 a;(q)) supported at the points
a1(q)g<, k= 0,1, ... (see Theorem 4.4 b)) which leads to the following theorem.

Theorem 4.48 Let a= 0 and b= a;(q) be the zeros af1(X, ) and assume thatég) < 0 <

-1 — g1l - @&aH _=0q - g2 _ g-1).709)
qa(@, 0 <yo =07 |1-Fg 09| < L andAq=q1+(1-q )%0"1’(0,q)] < 0.

Then, there exists a sequence of polynom(i@j3, orthogonal on(a, b), i.e., they satisfy the

orthogonality (4.7) with respect to the g-weight function

(@3, (a)X; Qoo q 2507 (0, )az(q)
— >0, b * =
@@ @D a = Y

which satisfies the g-Pearson equation and the boundary condition (eseim 4.4 b)).

p(xq) =X*

(4.88)

This case corresponds to the case IVa4 in Chapter 10 of [35, pag§esd?312].

An example of such family is the littlg-Jacobi polynomials [35] wheray(q) = 1, ax(q) =
b~q,
T1(x ) = q?x(x=1), oa(xq) = ax(bgx- 1),
1—abq2X+ ag-1 1 - abd"?!
(1-ag (Q-ad 1-q
Little g-Jacobi polynomials are orthogonal on {pand the conditiong?Aq < 0, 0< qyp < 1

7(x, Q) = An(@) = - "[n]q

anday(q) < 0 < az(q) give us the following restriction for the parameters@ < g%, b <
0. By means of Theorem 4.4 b) we can write the orthogonality relation of Gttlacobi
polynomials

PACLTINN. | _ (ad(1-abd) (q,bq ). (0 abeF;q).
fo X (g g 06 & DPy (. bla)dax = o b o @a b g o™ (489

which coincides with (4.87) but with a filérent choice of parameters,<0a = q* < 1,

b<0.

Case 2.J:ax(q) < 0 < g tay(g), yo > 1, Aq < 0. The graph off corresponds to this
situation is represented in Figure 4.66J. Notice that Figure 4.66J is analogui@ B.66I.
The diference is thg-intercept;yo. Then, we all eliminate the intervals except0‘a;(q))
because of the same reason applied in Case 2.l. Notice thatygineel, thenp — oo as

x — 0. Thus, the interval (@ ta;(q)) does not have the same property with the one in Case
2.1. Observe that the graph pfandoip are same. Hence, we hawvgp — o asx — 0
which is the boundary condition whén= 0. That’s why, this interval can not be used for

Therefore, this case does not lead to any suitable
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Figure 4.68: Case 2. The functidifx,g) with Aq < 0, Yo < 0, K: 0 < qtai(q) < ax(q),
L: 0 < ax(q) < g~ tay(q).

Case 2.K:0 < qtay(q) < ax(q), yo < O, Aq < 0. The graph off corresponds to this case is
represented in Figure 4.68K. Notice that positivity@nables us to skip the intervals, 0),
(0, gtaz(q)) and @x(q), o). Note that one can also eliminate the rest intergatdy (g), a(q))

due to Remark 4.5.4. Therefore, this case does not lead to any syitable

Case 2.L:0 < ax(q) < g tai(q), Yo < O, Aq < 0. The graph off is represented in Fig-
ure 4.68L. (0, 0), (0 ax(q)) and @ tai(q), ) are eliminated sincg should be positive.
But, (a2(q), qtas(q)) which coincides with the one described in Theorem 4.4 d) could be
possible to construct a suitalpe Notice thato(gx, q)/p(x,q) = 1 atxg = —7(0, q)/7'(0, q),

X = ax(q) < Xg < X = g tay(q). Thus,p is increasing onay(q), Xo) with p(qax(q), ) = 0 since

p(a2e(a), 9)/p(az(q), a) = 0 and decreasing o, 4~ *a1(q)) with p — 0 asx — q'ai(q)"
sincep(qx, )/p(x,q) — oo asx — q tay(g)~. Itis obvious that, imposing the above discus-

sion to Figure 4.68L allows us to sketch Figure 4.69.

y

a(q) © qla)

Figure 4.69: Possible positive graph of correspongifxgq) for Figure 4.68L.
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We infer from Figure 4.69 thasb(q), g ta;(q)) is the suitable interval in which we can have

p supported at the points*ax(q), k = 0, 1, .... Therefore, we build the following theorem.

Theorem 4.49 Let a = gax(q) be the zero ob>(q1x,g) and b = a;(q) of o1(x, g) and

-qY A _
assume thad < ax(q) < g tai(q), yo = g1 [1— %% <0,andAq=q 21+ (1-

aq?d) 1f (%])q)] < 0. Then, there exists a sequence of polynon{i@ig, orthogonal on(a, b),

i.e., they satisfy the orthogonality (4.9) and (4.11) with respect to the g-wiigtition

p(%,q) = X VX% *L(qay(q)/x, qa; 1 (g)x; G)e > O, X € (a, b) (4.90)

q = q?307(0.9)
307 (0.9)a1(0)

Theorem 4.4 d)).

which satisfies the g-Pearson equation and the boundary condition (see

This case corresponds to the case Illb vgth 0 in Chapter 11 of [35, page 343] which is not

given explicitly.

An example of such family is thg-Kravchuk polynomials [35] wheray () = g™N, ax(q) = 1

o1(%0) = g2XX-q ™),  o2x ) = —px(x— 1),

1+ +q Nt e
) = ~FPA P @) = — g PE

(1-a)aq 1-q 1-q°

g-Kravchuk polynomials are orthogonal on ¢tN-1) and the conditiong?Aq < 0, qyo < O
and 0< ax(q) < a1(q) give us the following restriction for the parametgrs- 0. By means

of Theorem 4.4 d) we can write the orthogonality relatiomd€ravchuk polynomials

q
f XN VX% /%, VK Q) Km(X; P, N; @)Kn(X; p, N; Q)dgax = (72 = 1)p™
1

(-p.a™N;a)n

N+1

1+
xq @) (~pg Mg 1+pgzn(—pq:q)N(q, Qoo Smn  (4.91)

associated witlp > 0. Notice from Theorem 4.4 d) that one can write the orthogonality with

finite sum by applying (2.31) to (4.91)

(q vQ)X X —X. ‘= 0-Nag- O™ _ pgNyngn
Z G0, P K@ PN Ka(@ N Q)= M D (—pa ™)

@—pd*% A ¢
(=p,a™; g)n

(—pG; DN (4.92)

1+ pq2n
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4.3.2.5 Theg-ClassicalO-JacobyBessel Polynomials

Let ry(x.Q) = 307(0.9)x  [x - ay(e)] and (x.q) = 7(0.G)x + 7(0.q), (0.q) # O and

(0.9 __1 _ 009 _ _a@
assume tham * D andax(q) = 0 & 09 = Gad Then, observe from

(3.11) thatora(x, Q) = 305(0.0)x% = q[307(0.0) + (1 - g )7'(0.0)| 2. As a result, they-
Pearson equation follows from (4.1)
_ -1 7009
p(ax q) P+(1 q)%ﬂwm]x

o) T dax-ad (4.93)

Remark 4.50 Let f(x,q) = p(gx q)/p(X, q) be the function defined in (4.93). Then notice

that
7/(0,0)

307/(0,9)

Ag:=q2|1+(1-qg? #0

is the horizontal asymptote of the functiofx.fq).

Before starting the analysis let us point out thédx q)/o(x, g) in (4.93) always intercepts
y-axis aty :=yp = 0.

We introduce analogous analysis in order to obtain independent grapi{g>0q)/o(X, Q)
according to the sign dd;(q) (zero ofc;) and of Aq by taking Case 1Ay > 0 and Case 2.
Aq < 0. Nevertheless, as before, we need to split 1st case into two sepasate Case 1.i)

whenAq > 1 and Case 1.ii) when @ Aq < 1.

Let f(x, Q) := p(gx q)/p(X, ) be the function defined in (4.93).

Figure 4.70: The functiofi(x, q) with a;(g) > 0, Case 1.i))AAq > 1, Case L.ii)B: O< Aq < 1.

Case 1.)A:Aq > 1, a1(q) > 0. The graph off corresponds to this case is represented in

Figure 4.70A. First of all the interval (6 ta;(q)) is eliminated due to the positivity gf.
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The same happens for the intervait{a; (0), o) because of the reason given in Remark 4.5.5.
Notice that the last intervaHo, 0) is the one described in Theorem 4.4 i) by symmetry. That's
why, this interval could be possible to construct a suitablBlotice thato(gx, )/p(x,q) = 1
atxg = —7(0,q)/7'(0,q), X0 < x = 0. Thus, it follows thajp is incerasing on-{co, Xg) and
decreasing onx, 0) withp — 0 asx — 0~ sincep(gx, g)/p(X, g) — 0 asx — 0~ which leads
top — 0 asx — —oo. But since the interval is infinite we need to checKx, q)p(x, q)x< — 0

asx — —oo by usingextended ¢Pearson equation (4.20). We note that the grapiplobks

like the one represented Figure 4.70A but with the horizontal asympteieqb*zz\q <1
which leads to thatr1(x, g)o(x, q)X€ 4> 0 asx — —co. As a result, this case does not lead to

any suitablep.

Case 1.ii))B:0 < Aq < 1, a1(q) > 0. The graph off corresponds to this case is represented
in Figure 4.70B. Notice that an analogous analysis as the one that haslteenn Case
1.)A leads to eliminate the intervals,@'a;(q)) and @ *ai(q), ). Thus, we only analyse
the interval oo, 0) which coincides with the one described in Theorem 4.4 i) by symmetry.
Observe from Figure 4.70B thatis decreasing on-{o,0) with p — 0 asx — 0~ since
p(ax q)/p(x, g) — 0 asx — 0~ which leads tgp /4 0 asx — —co = o1(X, Q)p(X, X< 4 0,

k=0,1,2, .. asx —» —co. Hence, we can also not use the intervai( 0) for constructing.

Figure 4.71: The functiori(x, ) with Case 2.CAq < 0, a1(q) > 0.

Case 2.C:Aq < 0, a1(g) > 0. The graph off corresponds to this case is represented in
Figure 4.71C. Positivity op allows us to skip the intervals-¢o, 0) and ¢ *a;(q), ). Thus,

we only need to analyse the interval ¢0ta;(g)) which is the one defined in Theorem 4.4
b). Thus, this interval could be possible for constructingNotice thato(gx, q)/(x,q) = 1
atx = -7(0,0)/'(0,q), X = 0 < Xg < X = g ta(qg). Then, it follows tha is increasing
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on (0 xp) with p —» 0 asx — 0% sincep(gx g)/(x,g) = 0 atx = 0 and decreasing on
(X0, qtay(q)) with p — 0 asx — qtay(q)~ sincep(gx q)/(x, q) — oo which leads to Figure

4.72 for corresponding.

gl -

Figure 4.72: Possible positive graph of correspongif)gq) for Figure 4.71.

It is obvious from Figure 4.72 that there exists a suitabtefined on (0a;(q)) supported at

the pointsai(q)q*, k = 0, 1, ... (see Theorem 4.4 b)). Thus, we have the following theorem.

Theorem 4.51 Let a= 0 and b= a;(q) be the zeros af1(x, ) and assume that;&g) > 0

andAq = q2l+(1- q‘l)%] < 0. Then, there exists a sequence of polynon{iai$,
291

orthogonal on(a, b), i.e., they satisfy the orthogonality (4.7) with respect to the g-weight

function

q?305(0.0)

p(x, Q) = x* VX% Y(gx/a(); g > 0, X € (& D) o = -7
307(0,g)ai(g)

(4.94)

which satisfies the g-Pearson equation and the boundary condition (gsaeim 4.4 b)).

This case corresponds to the case IVa5 in Chapter 10 of [35, pag§esd313].

An example of such family is the alternatigeCharlier polynomials [35] where;(q) = 1,

o1(xq) = q2x(1 - X), oa(x.0) = ax,

1l+aq 1 g l+ad
1-oq  (1-9g An(@) = a7nlq 1-q°

Alternativeg-Charlier polynomials are orthogonal on {0 and the conditionqz/\q < 0and

T(X’ q) ==

a1(g) > 1 give us the following restriction for the parametars 0. By means of Theorem
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4.4 b) we can write the orthogonality relation of alternativ€harlier polynomials

1 (n+l)
fo X* VX% (g G)oo Km(X; & Q)Kn(X; &; Qdgx = 7 g q2n(q Dn(-ad’. G; Desdmn (4.95)

associated witla = gq* > 0.

4.3.2.6 Theg-Classical0-JacobjLaguerre Polynomials

Let o1(x, Q) = 20-1 (0,g)x[x — a1(q)] and 7(x,q) = 7’(0,q)x + 7(0,q), 7/(0,g) # O and

assume tha*lT fczg)q) = —@&m- Then, observe from (3.11) thaty(x,q) = (0, 0)x =
1

q [(1 q‘l)T(O q) — 2‘71 ’(0, q)al(q)] x and therefore thg-Pearson equation follows from (4.1)

as

plaxa)  oi(xa)+1-ghxe(xa)  gloa(xq)

p(x,q) o1(gx 0) ~ o1(gxq)

e T 10 ~ 21 .
alax - au(q] ' '

Remark 4.52 Let f(x,q) = p(gx q)/o(x, q) be the function defined in (4.96). Then notice
that y= 0 is the horizontal asymptote of the functiofx,fq).

Before starting the analysis let us point out thédx q)/o(x, g) in (4.96) always intercepts

y-axis at the point
fy (-9 (0.9
ai(@) 107(0.9)|

Y=Yo=(q

Notice for the zero cases thabr b could be zero. That's why, we should know the behaviour

of p atx = 0. To learn this we perform the following remark obtained from Remark 4.35.

Remark 4.53 Behaviour of the g-weight function at=x0 depends on the succesive solution
of the g-Pearson equation
(1-g (0.9 l

ai(d) 307(0,q) | (1-ax/a(q)

a—q4)rmq)}
ai(@) 1o7(0,q)| (ax/a(a); 9k

paxq = q* [1— p(x. )

e p(dx ) = q"‘[l— p(x.0).  (4.97)

It is apparent that as k- o the behaviour op at x = 0 is accomplished. Notice that if

O<yo=q1- (151‘1‘(3'(;)1) %;(’l?ég,)q)] <1, p(x,q) — 0as x— 0 otherwise it tends tao.
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We introduce analogous analysis in order to obtain independent gréapitg>0q)/e(X, Q)
according to the sign ddi1(q) (zero ofo1) and ofyp by taking Case 1yp > 0 and Case 2.
Vo < 0. Nevertheless, as before, we need to split 1st case into two sepasate €ase 1.i)

whenyy > 1 and Case 1.ii)) when @ yg < 1.

Let f(x, Q) := p(gx g)/p(X, g) be the function defined in (4.96).

Figure 4.73: The functiori(x, g) with a;(q) > 0, Case 1.i))Ayp > 1, Case 1.ii))B: &< yp < 1.

Case 1.DA:yo > 1, a4(q) > 0. The graph off corresponds to this case is represented in
Figure 4.73A. We first begin with considering the positivitypoivhich allows us to eliminate
the interval ¢1a1(q), ). Let us consider the next intervatdo, 0) which coincides with the
one described in Theorem 4.4 i) by symmetry. Thus, this interval could &silpe to have a
suitablep. Notice thato(gx q)/e(x,q) = 1 atxo = —7(0,q)/7’(0,0), Xo < X = 0. Therefore,

it follows thatp is decreasing on-Hco, Xg) and increasing onxg, 0) withp — oo asx — 0~
sinceyp > 1 (see Remark 4.53). Notice from (4.20) and (4.21) that grappsatic;p have
the same properties which lead to thap — o asx — 0. Observe that this is the boundary
condition wherk = 0. That's why, this interval does not lead to any suitablgth the needed
properties. Let us deal with the last interval §0%a;(q)) which is the one given in Theorem
4.4 b). Thus, we have a possibility to construct a suitagbte this interval. Notice from
Figure 4.73A thap is decreasing on (@ ta;(qg)) with p — c asx — 0* sinceyp > 1 (see
Remark 4.53) ang — 0 asx — g tay(g)~ sincep(qx g)/o(x,q) — o asx — q tay(q)".
Sincep — oo asx — 0%, theno1p — o asx — 0" because of the same reason that we used
for the interval £0, 0). As a result, this case does not lead to any suitalléh the needed

properties.
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Case 1.ii)B:0 < yp < 1, a1(q) > 0. The graph off corresponds to this case is represented
in Figure 4.73B. Notice that Figure 4.73A and Figure 4.73B are similar exceyercept;
yo. Thus, we exclude the intervad(*fa1(q), =) due to the positivity op. The next interval
(—o0,0) is the one described in Theorem 4.4 i) by symmetry. Noticedhatdecreasing on
this interval withp — 0 asx — 0~ which leads to thap — o asx — —oco (Observe that
p(@x )/p(x.0) = 0 asx — —w) = g1(X,Po(X, Px* £ 0,k = 0,1,2,... asx — —oo.
Hence, it is not possible to have a suitapl®n this interval. On the other hand the last
interval (Q g ta;(q)) could also be possible for constructingince it coincides with the one
given Theorem 4.4 b). Notice thafgx q)/o(x,q) = 1 atxg = —7(0,q)/7’(0,q), x =0 < Xg <

x = qtai(q). Therefore, it follows thap is increasing on () with p — 0 asx — 0* since

0 < yp < 1 (see Remark 4.53) and decreasing xpnq a1 (q)) with p(qx g)/p(x,q) — 0 as

x — g tai(g)~ sincep(gx q)/p(x, q) — o asx — g tay(q)~ which allows us to build Figure

4.74 for corresponding.

<

qa(q)

Figure 4.74: Possible positive graph of correspongifxgq) for Figure 4.73B.

It is also clear from Figure 4.74 that the boundary condition (3.119) hatlds= 0 andx =
a1(q), hence there exists a suitaplsatisfying the needed properties ondf{q)) supported at
the pointsg“ai(q), k = 0, 1, ... (see Theorem 4.4 b)). Thus we construct the following theorem

according as the result of this case.

Theorem 4.54 Let a= 0 and b= a;(q) be the zeros af1(x, ) and assume that;&g) > 0

andO<yp=qt|1- % %;g?ég?q) < 1. Then, there exists a sequence of polynonfial},

orthogonal on(a, b), i.e., they satisfy the orthogonality (4.7) with respect to the g-weight
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function

q?30%(0,0)
~ $07/(0.9)au(q)
which satisfies the g-Pearson equation and the boundary condition (eea€m 4.4 b)).

p(x. Q) = x*(ax/a1(0); @)= > 0, x€ (a,b) " = (4.98)

This case corresponds to the case IVa4 in Chapter 10 of [35, pag§esd?312].

An example of such family is the littlg-Laguerre (Wall) polynomials [35] whei (q) = 1,

o1(% Q) = q2x(1- %), o2(x Q) =ax

1 1-aq g™"
@-9q  (@-9q (@ =77 q

Little g-Laguerre (Wall) polynomials are orthogonal oniPand the conditions & qyp < 1

7(x.0) = - ——I[nlg.

anday(g) > 1 give us the following restriction for the parameters @ < g~X. By means of

Theorem 4.4 b) we can write the orthogonality relation of litgleaguerre (Wall) polynomials

(4w (G Dn
(0°*1; Q)0 (a7*1; Q)n

1
fo X (0% G)owPr(X; tlc)Pa(x; rle)dgx = 62" b (4.99)

together with < a = * < g%

Figure 4.75: The functiorfi(x, ) with Case 2.Cyp < 0, a1(q) > O.

Case 2.C:yp < 0, a1(g) > 0. The graph off corresponds to this case is represented in
Figure 4.75C. Notice that the intervalscp, 0) and (Qg~tay(q)) are both eliminated due to
the positivity ofp. The same happens for the intervagit{a;(q), o) due to Remark 4.5.5.

As a result of the qualitative analysis, in the following tables we show the mairvaise
of orthogonality depending on the range of the parameters of each familynote that the

relations given with * lead to the new relations obtained with our approactuaflg, they are
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the ones which have not been reported ingh&skey scheme in [36]. However, the relations

in Table 4.6 and Table 4.14 have been mentioned in the very recent bdok [35

Table 4.2:0-JacobiJacobie Big g-Jacobi Polynomials

o1(xq) =g (x-ag(x—cq),  o2(x ) =agx - 1)(bx- )

c<0,0<b<qgtO0<a<qg?
(cq ag)

*c<0,b<0abclqg<1l,0<a<qg?

Table 4.3:0-LaguerrgJacobie Alternative Bigg-Jacobi Polynomials

o1(x.6) = 307 (0, Q)[x — ay(@x - bu(@],  2(x.A) = 3075 (0, Q)[x — a(A][x ~ ba(a)]

(2a(@). b1(a)) L+ (1= g s <0.20). (@) € C

Table 4.4:0-JacoblJacobie g-Hahn Polynomials

o1(%0) = g2 (x- g V)(x—aq), o2x0) = aq(x—-1)Bx-q N

O<a<qlo<p<qgt?

*O0<a<qlpg<0

(Lg™Nt
a>q Nl g Nt

*a<0,B>q Nt

Table 4.5:0-Laguerrglacobie g-Meixner Polynomials

o1(x.0) = cq?(x=ba),  o2(x.q) = (x~1)(x + bo)

c>0,0<b<qg?
(1, 00)

*c>0,b<0, 0<-bc<1
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Table 4.6:0-Laguerr¢lacobie Alternativeg-Meixner Polynomials

g

1(x.Q) = 4 (0. Q[x ~ (@],  o2(x Q) = 505(0, X~ ax(A)][x — ba(q)]

* Loy < 0. ax(0) < by(g) < au(q) < 0

(a1(a), )

* :1((%% < 0,a,(q). bx(q) € Canday(q) < 0

Table 4.7:0-Laguerr¢Jacobie Quantumg-Kravchuk Polynomials

o1(x ) = —q2(x-qN),  oaxq) = (x-1)(px-q N1

(L, p>qght

Table 4.8:0-Hermitg¢Jacobie Al-Salam Carlitz Il Polynomials

cixa) =aqt,  o2xq) = (1-x@-x)

(1, ) O<ax<1

Table 4.9:0-HermitgJacobie Discreteq-Hermite 1l Polynomials

(%@ =gt  oax0q) =1+x

(—OO, OO)

Table 4.100-JacobiLaguerres Big g-Laguerre Polynomials

o1(x ) = g *(x—ag)(x—bg),  o2(x q) = abg(l-x)
(bg, ag) b<0,0<a<q?

Table 4.11:0-JacobiLaguerres Affine g-Kravchuk Polynomials

o1(x,0) = g x—gN)(x-pa), o2(xq) =-pgN(x-1)

(L.gNh O<p<qt
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Table 4.12:0-JacobiHermites Al-Salam Carlitz | Polynomials

o1(%. g) = (1 - x)(

a- X), O-Z(X’ q) =a

(a1)

a<0

Table 4.130-JacobiHermites

Discreteg-Hermite | Polynomials

o1(x.q) = —qH(1-

X%),  oax0) =-1

(_ 17 1)

Table 4.14: 0-Jacohiacobie Little g-Jacobi Polynomials

o1(x Q) = q2x(x - 1),

o2(x q) = ax(bgx— 1)

0.1)

O<a<qlO<b<qg?

*O<a<qib<O

Table 4.15: 0-Jacolliacobie g-Kravchuk Polynomials

1% q) = q2x(x—q™),

o2(X 0) = —pX(x-1)

(1,9

p>0

Table 4.16: 0-Laguerféacobie g-Laguerre Polynomials

O']_(X, q) = q—ZX,

o2(X, Q) = g*X(X + 1)

(0, )

a>-1

Table 4.17: 0-Laguerféacobie g-Charlier Polynomials

o1(x.q) = aq?x,

o2(x Q) = X(x-1)

(1, )

a>0
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Table 4.18: 0-JacofBesseks Alternativeg-Charlier Polynomials

O—l(x’ q) = q—ZX(l - X)! O_Z(X’ q) = aX2

(0,1) a>0

Table 4.19: 0-LaguerfBesselks Stieltjes-Wigert Polynomials

o1(%0) = a2 o(x0) =X

(0. )

Table 4.20: 0-Jacohiaguerres Little g-Laguerre (Wall) Polynomials

O-l(x’ Q) = q—ZX(l - X)! O-Z(X’ Q) =axX

0,1) O<a<qt
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CHAPTER 5

RELATIONS BETWEEN THE Q-CLASSICAL POLYNOMIALS

In this chapter, we introduce the relations between the g-classical polylsanithe classi-
cal continues (those of Jacobi, Laguerre, Hermite) and discrete those (f Hahn, Meixner,
Kravchuk, Charlier). First of all let us construct the following Table RB135, 36, 6, 42]

according to the identification of theepolynomials that we found in chapter 4.

Table 5.1: Relation between tlgeClassical and thg-Askey polynomials

Cases in KLS’s book ©g-Classical family=g-Askey scheme

CaseVllal.ChplQlIb5/9.Chpli=0-Jacobi/Jacobi <The bigg-Jacobig-Hahn
Casella2.Chp21Ib1.Chpll  <0-Laguerr@lacobi=g-Meixner, quantung-Kravchuk
Caselal.Chpl¥Na2.Chpl0 &0-HermitgJacobi o Al-Salam-Carlitz 11, discretet-Hermite |1
CaseVllal.Chp1Qllb3.Chpll <0-JacobiLaguerre=Big g-Laguerre, fiineg-Kravchuk
CaseVllal.Chp.10 <0-JacobiHermite ©Al-Salam-Carlitz |, discretg-Hermite
CaselVa@.ChplQlllb.Chpll <0-JacobhiJacobi < The little g-Jacobig-Kravchuk
Casellla2.ChplQla2.Chpll «<0-Laguerrglacobi=g-Laguerreg-Charlier

CaselVa5.Chp10 <0-JacohBessel <Alternativeg-Charlier
Casellla2.Chpl0 <0-LaguerrgBesse Stieltjes-Wigert
CaselVa4.Chp10 ©0-JacohiLaguerresLittle g-Laguerre (Wall)

We remark that the cases given in first column belong to [35] where

o2(x, q) 1'0'2 (0,9)%% + 05(0, @)x + 02(0, q) = eX + 2fqx+ g, (5.1)

’or1(xq) —01 '(0,q)%% + 07 (0, q)x + 0710, §) = ax? + Bax+ 9P (5.2)

in Chapter 10 (with the latticg(s) = g°) and

o?o1(x, g) 1'0'2 (0,g)%* + o5(0, Q)x + 072(0, Q) = eqf + 2fq"" + go?*,  (5.3)

1
5710, Q%% + 0y (0,9)x + 01(0,0) = @ + g L+ gt (5.4)

O_Z(Xv q)
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in Chapter 11 (with the latticg(s) = q~5).

One can also find the relation with the Nikiforov-Uvarov scheme [5, 47]dnsidering sec-
ond order linear dierence equation of hypergeometric type on non-uniform latitggiven
with (1.23)

A VP[x(9)]
AX(s—1/2) VX(s)

APq[X(9)]

XS + AnP[X(9)] = 0. (5.5)

o(s)

+ 7(9)

Notice that if the lattice igj-linear of the formx(s) = ¢10° := X, then

APR[X(s)]
AX(S)

VPa[Xx(s
% = Dg1Pn(X),  Pn(X) := Pa[x(s)]

= DgPn(X) and
andAx(s— 2) = q~¥2Ax(s). Therefore, (5.5) becomes

(DD 1Pn(X) + G /27(S)DgPn(X) + 42 2nPn(X) = 0. (5.6)

Furthermore, using the operational equivalences defined by (3.3Batjdorovide us to ob-

tain the alternative equation as the following form
|(9) + (@ = D)xq ?7(8)] DgDg1Pa(X) + G 27(9)Dg2Pn(X) + 4 2 1Pa(x) = 0. (5.7)

Notice that (5.6) and (5.7) are tlgEHT of the 1st and 2nd kinds of the form (3.5) and (3.10),

respectively, where
qlo(9) = a(x.0),  o(9) + (4 - 1xq Y?7(9) = oa(x. ),

qY%(9) = 7(x.q), g Y2 = (0.
On the other hand, setting the latticecpinear of the formx(s) = ¢;q~5 := x provides

APn[X(s)]
AX(S)

VP[x(s)]

= Dq—l Pn(X) and T(S)

= DgPn(X), Pn(X) := P[X(s)]
andAx(s— 3) = g¥2Ax(s). Inserting these values in (5.5) leads to

o (9 DgDg1Pn(X) + GY27(8)Dg-1Pn(X) + g2 2,Pn(X) = O (5.8)
and with the help of operational equivalences defined by (3.3) andwe.4et

|aor(9) + (1 - @)xq™?r(s) | DgDg-1Pn(X) + G27()DgPn(X) + 42AnPn(X) = 0.  (5.9)

Notice that (5.8) and (5.9) are tliegEHT of the 2nd and 1st kinds of the form (3.10) and (3.5),

respectively, where

o(9) + (g7 - Dxa?r(s) = r1(x%, @),  qo(9) = o2(%, ),
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ql/zT(S) = 7(x,0), ql/z;ln = An(Q).

Before introducing the limit relations we construct the hypergeometric septations of}-
classical polynomials in the Hahn sense by use of the formulas obtained jme€Ba More-

over, we perform the relations between them.

5.1 0-JacobyJacobi < Big g-Jacobi polynomials

By choosing the cdécients as

o1(x0) = g 2(x—ag)(x—cd), o2(x 0) = agx - 1)(bx~ o),

1-abg a(bg-1)+cag-1)
(1-a)q 1-q

we get the big g-Jacobi polynomidb(x; a, b, c; ). Settingai(q) = cq, b1(q) = aq, ax(q) =

1 - abd*?!

. An(@ = q"[n]q q-1

7(x.q) =

>

b~lc, by(q) = 1 in the representation formula identified by (3.86) leads to the following

hypergeometric representation of the monic dpidacobi polynomials

ag, cq g™, abdi,
Pa(X; @) := Pn(x;a,b,c; Q) = (ag,cq O [

X
30 gaql.  (5.10)
(abd"”: q)n3 2 ag, cq ' ]

5.2 (-JacobyJacobi < g-Hahn polynomials

Codficients of theg-difference equation of hypergeometric type for gldahn polynomials

Qn(x; a, b, N; g) look like

o1 q) = q2(x - g N)(x - aq),  o2(x ) = aq(x - 1)(Bx - g N,
1- ? N+ —a-q Nt 1— n+1
9= (1 —aﬁ)c(‘:] X+ = aﬁq_ qu A . An(Q) = _q_n[n]q+'82.

Hypergeometric representation of the mogiklahn polynomial®Qn(x; a, 3, N; q)

X
aa| 61

—N. —n n+1
Pn(X; q) = Qn(X; a’ﬂ’ N, q) — ((Iq, q ’ CI)n [ q ’ aﬁq s
aq

(@B T ) > g
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is obtained by use of the formula identified by (3.86) or (3.87) by seétit@ = g™, by(q) =
aq, 82(q) = 1 andby(q) = g~

Notice that settings = @, b = 8, ¢ = g"N"1 in the bigg-Jacobi polynomials (5.10) allows us
to get the representation of tgeHahn polynomials (5.11) (see [6])

Pa(x @8, 07V 0) = Qn(X @B, N; 0). (5.12)

5.3 0-Laguerre/Jacobi < g-Meixner polynomials

Theg-Meixner polynomialdM,(x; b, c; q) have the following cogicients
T1(% Q) = cq A (x=ba), a(x,q) = (x = 1)(x+ bo),
n
T p——— - (@) = 0

1-q 1-q 1-q
Representation formula defined by (3.97) associateday(id) = bqg, a»(q) = —bc, by(q) = 1

1 cql-bc+1

leads to the hypergeometric representation of the mgpieixner polynomialsM(x; b, c; q)

as the following form

—I’l’ X | qn+1

Pn(X; 0) := Mn(X; b, ; 0) = (=¢)"q™ (bg q)nz<p1[ f ] (5.13)

bq c

Observe that the-Meixner polynomialsMy(x; b, c; q) defined by (5.13) are also obtained
from the bigg-Jacobi polynomial®,(x; a, b, c; g) (5.10) and the-Hahn polynomial€Q,(X; «, 8, N; Q)
by using the limita — co with b := —¢™1, ¢ := bandN — cowitha := b, 8 := -b~1c g N1,
respectively (see [36]),

lim Pn(x;a,~¢™,b; ) = Mn(x; b, C; ), (5.14)

’\Ilim Qn(x; b, —btc g™t N; g) = Mn(x; b, c; q). (5.15)

5.4 (-Laguerre/Jacobi < Quantum g-Kravchuk polynomials

Codficients of theg-difference equation for the quantupiKravchuk polynomial$<ﬁtm(x; p,N; Q)

are as follows:

T ) = —q2(x—qN),  oa(x6) = (x- 1)(px—q N,
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-1 og-N-1
p X4+ P-9~-+9

1-q 1-q

Then, representation of the monic quantegpidravchuk polynomiald<

(x0) = - - (@) = oIl

gtm
n

(x; p, N; g) follows
from the formula defined by (3.97) as

—n

I q" X
Pa(x;6) := K& p,N; 6) = p"a™ (q N;q)nzsol[ L por“l]- (5.16)

q

Notice that the quantumKravchuk polynomials<™(x; p, N; g) (5.16) can also be obtained

by insertingb = gN-1,¢c = —p~! into theg-Meixner polynomialsM,(x; b, ¢; q) (5.13) (see
[6]) and by setting3 := p, @ — o in theg-Hahn polynomial®Qn(X; a, 8, N; q) identified by
(5.16) (see [36]);

Ma(x a1, —p™, N; 9) = K7 ™(x p, N; 0), (5.17)

lim Qn(x; ., p,N; q) = KI™(x; p, N; g). (5.18)

5.5 @-Hermite/Jacobi < Al-Salam-Carlitz Il polynomials

The Al-Salam-Carlitz Il polynomialyrﬁa)(x; q) have
ci(x g =aqt, oa(xq) =(1-X@-x,

An(q) = i[n]q,

(x )__ix_1+a
T 7q_ 1_q

1-9g q-1

and therefore the representation of mo‘t/i,ﬂ@(x; q) becomes

_n’ X n
e q—] (5.19)

Pa(x 0) := V(x; q) = (—a)”q‘(3)2¢o[ “

by use of the formula (3.100).

Observe that the Al-Salam Carlitz Il polynomials can also be obtained by futbes dimit
relationsc — 0 with b := —a/candN — co with p := a~tq"N-1 in the definitions (5.13) and

(5.16) of theg-Meixner and the quantuipKravchuk polynomials, respectively (see [36]),
im Ma(x -2, c;0) = 4 "VE (o, (5.20)
c—

lim K{Meca g™ L N; o) = Vi (x o). (5.21)
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5.6 0-Hermite/Jacobi < Discreteg-Hermite Il polynomials

The discretey-Hermite |l polynomialﬁn(x; q) have the following specific values
— a1 _ 2
c1(X Q) =g, o2(x0q)=1+Xx,

1 1
7(X, Q) = —mx, An(Q) = m[n]q,

which lead to the hypergeometric representation of the mimgic g) with the help of (3.100)

Po(x: ) = Pn(x ) = (i)_”q‘(g)zsm[ R —q”]. (5.22)

Notice that the Al-Salam Carlitz 1l polynomials defined by (5.19) together wittsthstitu-

tiona = -1, x — ix lead to the discretg-Hermite Il polynomials identified by (5.22),

i""V{(ix; g) = ha(x; ). (5.23)

5.7 (-JacobyLaguerre < Big g-Laguerre polynomials

Letting
o1(x.q) = g %(x—ag)(x— ba), o2(x, ) = abg(1 - X),

q? a+b-abqg _q"

give the bigg-Laguerre polynomial®,(X; a, b; q).

T(X’ q) ==

In addition to these values, one can get the hypergeometric represerdhtioa big g-

Laguerre polynomial®,(x; a, b; ) by use of (3.91) as the following form

qa” x 0
Pn(x; 9) := Pn(X & b; q) = (ag, bg; Q)nzp2 [ |q; q] : (5.24)
ag, bqg

We remark that the big-Laguerre polynomials defined by (5.24) can be derived from the big
g-Jacobi polynomials defined by (5.10) with substitutior= 0, ¢ := b [36],

Pn(X; & 0,b;0) = Pn(X; & b; ). (5.25)
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5.8 0-JacobyLaguerre & Affine g-Kravchuk polynomials

By choosing

o1(x.q) = g (x— g M) (x=pa). o2(xa) =-pgN(x-1),
1 pa+q - pg™

1
7(x.0) = 14 14 An(Q) = qu[n]q—l,
we obtain the fiineg-Kravchuk ponnomialS(ﬁff(x; p, N; Q)
aff N ", x 0
Pax; @) = KA''06 p.N6) = (@, PG Ghnagz| a:q (5.26)
g, Pq
with the help of (3.91). Notice that the moniffiae g-Kravchuk polynomialsKﬁ”(x; p, N; Q)

(5.26) can also be obtained from the monic bigaguerre (5.24) and thg-Hahn (5.11)
polynomials by takinga = gN=%, b = p (see [6]) andx := p, 8 := 0 (see [36]), respectively,

Pa(x g% o) = K& (% p, N; ), (5.27)

Qn(x; p,0,N; @) = K2'"(x; p, N; q). (5.28)

5.9 (-JacobyHermite & Al-Salam-Carlitz | polynomials

We enter the Al-Salam-Carlitz | polynomialéa)(x; g) with the following codficients

c(x Q) =g tl-x@-x, o2Axq=a

1 1+a gt"

7(x,0) = mX— i-q An(Q) = q-1

[n]q,

having the following representation

—n 1
Pa(x; 0) := UP(x, q)=(—a)“q<3)zm[ q ’O * ]q; %XJ (5.29)

obtained from (3.94). We remark that the monic Al-Salam Carlitz | polynomiagsiarived
by use of the transformation — agx b — abanda — 0 in the representation formula
obtained by applying the transformation formula (2.47) to the monigHigguerre polyno-
mials identified by (5.24) [36],

im Pn(agx ? ab; q)

— 11®) (.
lim o = Uy’ (X Q). (5.30)

Remark 5.1 We remark that the discrete g-Hermite | polynomials are obtained from the Al-

Salam-Carlitz | polynomials by setting-a—1 (see [36] for further details).
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5.10 0-JacobjJacobi< Little g-Jacobi polynomials

Setting

o1 q) = g 2X(x— 1), 2% 0) = ax(bgx- 1),
1—abq2X+ aq-1 1 - abg"?
(1-ag (1Q-o9 1-q °
leads to the littleg-Jacobi polynomial®n(x; a, b; q)

7(x,q) = An(Q) = —q"[nlq

—_1yq®) (ag: -n bg+!
Pn(X @) = Pn(x; 2,0, 0) = Sl L 1[ @ and
a

(@b 0, . @ qx] &30

with the help of (3.103). Note that one can also get the monic tittlecobi polynomials by
settingx — cgxwith ¢ — co andx — q Vx, @ := a,8 := bwith N — oo in the definitions of
the monic bigg-Jacobi polynomials defined by (5.10) and trelahn polynomials given by
(5.11), respectively, [36]

lim PCXEDED _ p (10 by, (5.32)
Jim g"Qn(a™"x; 2. b.N; 6) = Pn(x;a. b; q). (5.33)

5.11 0-JacobjJacobi < g-Kravchuk polynomials

Theg-Kravchuk polynomialK,(x; p, N; ) have the following cofficients

o1(% Q) = g 2x(x—q™), o2(xq) = —px(x - 1),

1+pg  p+q™? oo 1+ pd
X — . An(@) =-q"[n .
(1_q)q 1_q n(Q) q [ ]q 1_q

Moreover, from (3.103) we derivi€,(X; p, N; g) hereinbelow

(X, q) =

1~ NH(B) (_ pgN+1- no—
Pn(X; 0):=Kn(X; p,N;q)=( 1y CPa™: G m[q al

v —pa

Observe that the monig-Kravchuk polynomials with the formula obtained by applying the
transformation formula (2.48) to (5.34) are derived by use of the tramsfiiong = —a~1q~1p

anda — 0 in the monicg-Hahn polynomials [36],
lim Qu(X; @ —~*q™p; @) = Kn(x; p.N; q). (5.35)
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5.12 0-Laguerre/Jacobi < g-Laguerre polynomials

By setting
o1(% Q) = q72%  oo(X q) = qUX(X + 1),

qaf q—l _ qaf ~ qa

the hypergeometric representation of the maepiaguerre polynomialk: (x; g) follows from

(3.109)

(X q) = -

_n’ -X ’

q; qa+n+1] ) (536)
0

o q
Pa(x q) 1= L2(x ) = (-1)"g ™™ q “”2901[

Note that one can obtain the morgeLaguerre polynomials with the formula obtained by
applying successively the transformation formulas (2.49) with 0 and (2.50) to (5.36) by
settinga = %, X —» —b g tx with b - o andb = ¢, x = cof*x with ¢ — oo in the monic

little g-Jacobi (5.31) and thg-Meixner (5.13) polynomials, respectively,

im @ Oy~ o bia) = 7L ) (5:37)
lim MCERLED _ gom g, ) (539

5.13 0-Laguerre/Jacobi < g-Charlier polynomials

By choosing
o1(x.q) = aq?x,  o2(x 0) = X(x- 1),

1 -, a+q
-9 (-9
we get theg-Charlier polynomial€,(X; a; ). Note that the representation formula is obtained

() =~ 1@ = [Mlag—,

from the formula (3.109) as the following form

~ q—n’ X n+1
Pn(X; 0) := Cn(Xx;2;0) = (-a)"q ”zzwl[ 0 |q; _qa ] (5.39)

Observe that the monig-Laguerre polynomials (5.36) together with substitutior> —X,
q* = —a~%, the monicg-Meixner polynomials (5.13) associated with— 0 and the monic

g-Kravchuk polynomials with the formula obtained by applying the transformdtonula
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.48) to (5.34) together with the substitutipn= a-'q™N, N — oo generate the monig-
(2.48) to (5.34) her with the substituti 1gN, N h i

Charlier polynomials in the following way (see [36]),

(-1)"Ln(-x; —a*;q) = Ca(x a; ), (5.40)
Mn(x; 0,a; g) = Cn(X; & ), (5.41)
Jim Kn(a™q ™. N; g) = Ca(x ;). (5.42)

5.14 0-JacobjBesseks Alternative g-Charlier polynomials

Choosing the values for the alternatiyeharlier polynomiald,(x; a; q) hereinbelow

o1(x0) = g1 - x), o2 ) = ax,

1+aq 1 e 1+ ad”
- X+ , A = n R
(1-aq (1-09)q (@ = a1 1-q

leads to the following representation

(X, Q) =

(5.43)

—1)q®) ., -
Pn(x;q) ;= Kn(X;&;q) = %2¢1[ a ad’ ‘q; qx]

with the help of (3.106). Observe that one can get the alterngti@barlier polynomials
(5.43) by settindh — —a~1q~tb with a — 0 andx — g"Nx with N — oo in the definitions of
the little g-Jacobi (5.31) and thg-Kravchuk (5.34) polynomials, respectively, in the following
way [36],

- A
Ll_rpo Pn(x,a,—a, q) = Kn(x; b;q), (5.44)

IimoqN”Kn(q‘Nx; p,N; q) = Kn(X; p; ). (5.45)
a—

5.15 O0-Laguerre/Besseks Stieltjes-Wigert polynomials

In this case, (3.17), (3.18) and (3.19) become

O'l(X, q) = q—2x’ O-Z(X’ q) = XZ’

(X, Q) = - = X+ L
’ 1-9 (-9
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and therefore we attaif,(q) = [n]qﬁ from (3.52). Notice that with the help of the formula

(3.113) we get the representation of the Stieltjes-Wigert polynorSigls q)

(5.46)

- q"
Pn(X; @) := Sn(x;q) = (-1)"q ”Zm[ o o~ x|

We remark that the Stieltjes-Wigert polynomials can be derived frongtbaguerre (5.36),
the alternativeg-Charlier (5.43) and thg-Charlier (5.39) polynomials by setting— q~*x

with @ — o0, x = a~txwith a — co andx — axwith a — oo, respectively, [36]
lim q™"Li(q7x; q) = Sa(X; 0, (5.47)

Jim a”Kn(g; a;q) = Sn(x Q) (5.48)

im Cn(a>cn a; q)

a—oo a

= Sn(X; 0). (5.49)

5.16 0-JacobjLaguerre < Little g-Laguerre (Wall) polynomials

Polynomial coéficients of the littleg-Laguerre (wall)P,(X; a; ) polynomials look like

o1(% Q) = q2x(1-x), o2(x Q) =ax

1 1-ag
(1-ag @-a9

which lead to the representationBf(x; a; q) as

(% q) = (@) = 7l

. . 0@ (et g 0,
Pa(x; 0) = Pa(x & 6) = (-1)"d®(aq; d)ows o o (5.50)
aq

by inserting the needed values in (3.112). Note that the Gtlleaguerre polynomials can be
obtained from the big-Laguerre, the littleg-Jacobi and thefine g-Kravchuk polynomials
by settingx — bgxwith b — oo, b = 0 andx — g Nx with N — oo, respectively, in the

following way,

jim Po®axabia) o o) (5.51)

b— oo bn
Pn(X, & 0;0) = Pn(X; & q), (5.52)
lim gVKR"(@™x p.N; 6) = Po(x: p; ). (5.53)
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5.17 Limit Relations

Limit relations between thg-Hahn polynomials have been performed in each case above. In
the present section, we deal with the relations betweeg-f@ynomials on linear lattice (the
g-Hahn class) and the classical continuous and discrete ones identifladbleyl.1 and Table
1.2, respectively. By using the properties of the limit relation between therggpmetric
series;ps and F¢ and g-shifted factorial and Pochhammer symbol defined by (2.41) and

(2.40), respectively, all these limit relations are extracted from [36].
Notice that theg-EHT of the 1st kind

o1(X; ) Dg1Dqy(x, Q) + 7(X, q)Dgy(x, 0) + A(a)y(x, q) = 0

where

o1(x ) := o(x) - %(q - Dxe(x)|, 7(x,q) := 7(x), 4(q) := 1

1+q
and the 2nd kind

2(X q)DgDg-1y(X, @) + 7(X, ) Dg-1y(X, 0) + A(A)y(x, g) = 0
where
o2(%.0) 1= qo1(x 6) + (L - g )xr(x, G|
approach to the classical EHT
a(X)y”(x) + T(X)y'(X) + 2y(x) = 0

asq — 1. Observe that, bothr1(x, q) andoz(x, Q) tend too(X) asq — 1. As a result,
by using this property we obtain the well-known classical orthogonal potyals (those of

Jacobi, Laguerre, Hermite) in the following.

We first start to get the Jacobi ponnomiﬂg’B)(x) which have quadratio-(x) with distinct
roots. That's whyp-JacobiJacobi and 0-JacgBiacobi polynomials converge to the Jacobi

Polynomials ag) — 1. Some examples of such relations are as the following.

Big g-Jacobi— Jacobi

By settingc = 0,a= g% b =d’,q— 1intheg-EHT for the bigg-Jacobi polynomials we get
o1(x.q) = g4 (x—ag)(x —cg) - X(x— 1), o2(x ) = ag(x - 1)(bx-c) - x(x - 1),
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1-abq a(bg-1)+clag-1)
(1-0a)q 1-q
1 - abg™?!
qg-1
with the help of the limit relation of thg-numbers defined by (2.40) which leads to

7(X,Q) = > (@+p+2)x—(a+1),

An(@) = g "[nlq - -nn+a+pB+1)
XA=-XY'X)+[(@+1)—(@+B+2)X]Y(X) +n(n+a+ B+ L)y(x) = 0.
Notice that the transformatioxn= % leads to
Q-2 +[B-a)-(@+B+2Aty®)+n(n+a+B+1)yt) =0
which is the diferential equation for the Jacobi ponnomiE&’ﬁ)(t).

We remark that one can also obtain the hypergeometric representationJaictbig polyno-
mials from the one defined by (5.10) of the monic bigacobi polynomials with the same
relation on the parameters together with the definitiopggfin (2.38) and the limit relation
between¢s and;Fs, g-numbers and Pochhammer symbol defined by (2.41) and (2.40), re-

spectively, in the following way

PiA)(2x - 1)

l!|i£n>1 Pn(x g%, o, 0;q) = on (5.54)
where
2"(a + 1), -n, nNn+a+p+11-x
P8 (3 — X 5.55
n (9 N+a+pf+1)n2* ot ’ 2 (5:55)

here,oF1 is defined by (2.36) with = 2,s= 1.

Little g-Jacobi— Jacobi

Leta = g%, b = ¢ in the definition of the littleg-Jacobi polynomials (5.31) and take the
limit as q — 1 by using definition of¢s in (2.38) and the limit relation betwees and, Fg
defined by (2.41), we obtain the Jacobi polynomials identified by (5.55) ifotloeving way

PUA(1 - 2x)

=T (5.56)

lim Pn(x; g%, o%; q) =
g—1

One can also obtain theftkrential equation for the Jacobi polynomials from thEHT for

the little g-Jacobi polynomials by use of the analogous transformation.
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Notice that the Laguerre polynomials(x) can be obtained by use of the convenient limit
relations wherry ando are quadratic or linear sindg(x) has lineaw-(x). Some examples

of such relations are as the following.

Big g-Laguerre — Laguerre

If we seta = g%, b= (1-0g)1¢f andg — 1 in theg-EHT for the bigg-Laguerre polynomials,

we get

(9-1)or1(x 6) =0 (9~ 1)(x—ag)(x-be) — (x-1), (a-1)o2(x, ) = (- 1)abg(1-X) — (x~1),

P a+b—abq
(@-1r(x.a)=-(q 1)[q_1X+ q-1

with the help of the limit relation of thg-numbers defined by (2.40) which leads to

1= (@+1-x+1), (d-W(@)=q""[nlg—n,

X=1Y'(X)+[a+1-(x-1)]Y(X)+nyx) =0.
Notice that solution of this equation i (x — 1).
By letting same transformatica= g2, b = (1 — g)1¢f in the definition

q™", aq>(1| X

a; —] (5.57)
aq

Pa(x & b; 6) = (~b)"dl(aq; q>n2¢1[ -

of the monic bigg-Laguerre polynomials obtained by using the transformation formula (2.47)
to (5.24) and then concerning limit gs— 1 with the help of the definition ofps in (2.38)
and the limit relation betweers and, Fs defined by (2.41), we can also arrive at the monic

Laguerre polynomials in the following way

éiLnl(l - q)"Pn(x g%, (1 - 0)'df; q) = Li(x - 1) (5.58)

where the monic Laguerre polynomials are identified by

a+1

Lﬁ(x)=(—1)"(a+1)nla[ N |x]. (5.59)

Little g-Jacobi— Laguerre

Assuming thata = g%, b = —¢® andx — %(1 —g)xandq — 1 in the definition (5.31) of
the little g-Jacobi polynomials together with the idea in (2.40) and (2.41) lead to thesbagu
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polynomials (5.59) hereinbelow
im 2q Py (1 - o~ ) = Ly(x). (5.60)
g—

One can also obtain theftirential equation for the Laguerre polynomials from thEHT

for the little g-Jacobi polynomials by use of the analogous transformation.

Little g-Laguerre/Wall — Laguerre

Leta = gq* andx — (1 — g)x with the limit g — 1 in the little g-Laguerre polynomials
identified by (5.50), then we get the Laguerre polynomials (5.59) by ug240) and (2.41)

as follows:

lim 4 @Py((1 - @) o' 0) = L{(9). (5.61)

One can also obtain theftBrential equation for the Laguerre polynomials from ¢thEHT

for the little g-LaguerréWall polynomials by use of the analogous transformation.

g-Laguerre — Laguerre

If we setx — (1 - g)xwith g — 1 in the definition

—n

— —! 4 . q . (04
L2(x0) = (-1)"qg ™ "(q +11Q)n1§01[ o; —xq™ *1] (5.62)

qa+l |

of the moniag-Laguerre polynomials obtained by applying the transformation formula8)(2.4
with ¢ — 0 and (2.50) to (5.36), we arrive at the Laguerre polynomials (5.59) witthéhp
of (2.40) and (2.41) hereinbelow

fim oL (L~ 6% ) = LX), (569

One can also obtain theftirential equation for the Laguerre polynomials from ¢tREHT

for theg-Laguerre polynomials by use of the analogous transformation.

In order to get the Hermite polynomiatt,(X) we use the convenient limit relations when
and o are quadratic, linear or constant sirndg(x) has constani-(x). Some examples of

such relations are as the following.
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Discreteg-Hermite | — Hermite

By settingx — x+/1 - g2 andg — 1 in theg-EHT for the discretg-Hermite | polynomials,
we get
O-l(x’ q) = _q_l(l - X)(X + 1) - _l’ O—Z(X’ q) = _19
1-¢? 1-¢?
Lr(x g = —

1
V1-¢? Ji-q21-q

with the help of the limit relation of thg-numbers defined by (2.40) which leads to

X — 2%, (1-¢?)n(@) = —(1 + g)g* "[n]g — —2n

Y’ (%) = 2xy (X) + 2ny(x) = 0.
Notice that solution of this equation k(x).

By letting identical transformatior — x+/1 — ¢ in the definition

2n-1
o?; 2 ] (5.64)

—n —n+1
> q

X2

hn(X; Q) = q_anZ‘Pl[ k

of the monic discretg-Hermite | polynomials obtained by using the transformation (2.54) to
(5.29) witha = -1 and then concerning limit @s— 1 with the help of the definition gips in
(2.38) and the limit relation betwees and, Fs defined by (2.41) together with the g-shifted
factorial identified by (2.20) and (2.40), we can also arrive at the monimite polynomials

in the following way

- h(V1-g?x0q)

where the monic Hermite polynomials are identified by

-n/2, -(n-1)/2 | 1
Hn(X) = x”zFo[ | - Q] (5.66)
Discreteg-Hermite Il — Hermite
By settingx — x+/1 — g2 andqg — 1 in the in the definition
-n —n+1 2
— , q -
ha(X; Q) = antpo[ |q2; X_c;] (5.67)

of the monic discretg-Hermite 1l polynomials obtained by using the transformation (2.55) to

(5.22) and then concerning limit gs— 1 with the help of the definition gy in (2.38) and
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the limit relation betweepgs and,Fs defined by (2.41) together with the g-shifted factorial
identified by (2.20) and (2.40), we can also arrive at the monic Hermite poliais in the
following way

ha(v1-0?x0)

lim = Hn(X) (5.68)

1 (1-qn?

where the monic Hermite polynomials are identified by (5.66).

One can also obtain theftirential equation for the Hermite polynomials from theHT for

the discreta-Hermite 1l polynomials by use of the analogous transformation.

In the further study, we obtain the well-known classical discrete orthalgpolynomials
(those of Hahn, Meixner, Kravchuk, Charlier). To this end, we fitdam the relation be-
tweeng-EHT and diference equation on uniform lattice. Notice that tAEHT of the 1st

kind leads to

o (X)AVY(X) + T(X)Ay(X) + Ay(X) = 0
together with the transformation— g*, g — 1 and the relation

1=
I =X
qan1 1-q X

We note that (1 g)~%c1(x) tends taor(X) and (1- g)%c2(x, g) tends taor(X) + 7(X).
On the other hand, taking account of the transformatiem g * with g — 1 leads to
[o(x) + T(X)]AVY(X) + T(})VY(X) + Ay(X) = O

where (1- q)~201(X) tends taor(x) + 7(x) and (1- q)~202(x, q) tends toor(X). As a result of

this property, we perform the following limits.

We first start to get the Hahn polynomials wherg) ando(X) + 7(X) are quadratic. That's
why, we deal with the ones whery ando, are both quadratic. An example of such relation

is as the following.

g-Hahn — Hahn

By settinga = %, 8 = %, x —» g ¥ andq — 1 in theg-Hahn polynomials, we get

L(x=q™N) (x-aq)
l1-g 1-q

(q-1)201(x,q) =q — (X=N)(X+ @ + 1) = o(X) + 7(X),
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(x-1)(Bx-q "

(@-1)202(x,0) = aq — X(x=B-N=-1)=0(x),

1-q 1-q
(xq) 1-aBf  aqN+aepq-a-qN?
= X+ - (@ +B+2)x— (a+ 1N = 7(X),
1-9 (1-97% (1-097?
_ n+1
An(Q) = _q_n[n]q% >nnN+a+L+1)= 2,

with the help of the limit relation of thg-numbers defined by (2.40) which leads to

X(x == N = DAVY(X) + [ (@ + B+ 2)x — (@ + DN]AY(X) + n(n+a + B+ 1)y(X) = 0.
Notice that solution of this equation Iil%’ﬁ(x).
Letting same transformatian= g%, 8 = o/, x - g X andq — 1 in the hypergeometric repre-

sentation of the-Hahn polynomials defined by (5.11) we also arrive at the Hahn polynomials

with the help of (2.40) and (2.41) as the following form

lim Qn(@™ 9”&, N; @) = Qn(X; @. 3. N) (5.69)
whereQn(X; a, 8, N) is the Hahn polynomials identified as the following
_ _ (@+1)n(=N)y -n, n+a+p+1, -X

Qn(x; @, 8, N) = et N ‘1 . (5.70)

We remark that the-Meixner and thay-Kravchuk polynomials have linear(x) ando(X) +
7(x). That's why,g-polynomials which have quadratic and lineag and o, lead to theg-
Meixner and theg-Kravchuk polynomials. Some examples of such relations are as the fol-

lowing.

g-Meixner — Meixner

By settingb = o1, ¢ —» (1-¢)"1c, x - g ¥ in the definition (5.13) of the}-Meixner
polynomials and then lettingg— 1 concerning with (2.40) and (2.41) bring about the Meixner

polynomials as
c

lim Mn(q7% o™, ——; @) = Ma(X 8, €) (5.71)
g—1 1-c
whereMy(X; B, ¢) is the Meixner polynomials identified by
C _n’ =X 1
Mn(X;8,€) = (—)”(ﬁ)nzFl[ |1 - —]. (5.72)
c-1 8 c

One can also obtain theftirence equation for the Meixner polynomials from ¢REHT for

the g-Meixner polynomials by use of the analogous transformation.
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Quantum g-Kravchuk — Kravchuk

If we setp — p~1, x = g X in the definition (5.16) of the quantutpKravchuk polynomials
and then lettingg — 1 together with applying the limit in (2.40) and (2.41), we get the

Kravchuk polynomials in the following way
lim K3"(@™; p% N3 6) = Kn(x; p. N) (5.73)
g—

whereKn(x; p, N) is the Kravchuk polynomials defined by

-n, -X 1
Kn(%; P,N) = p“(—N)nzFl[ |—]. (5.74)
—N p

One can also obtain theftBrence equation for the Kravchuk polynomials from ¢REHT

for the quantung-Kravchuk polynomials by use of the analogous transformation.

g-Kravchuk — Kravchuk

Settingx — g% in the definition

—N. —n —
Kn(X p,N; q) = %3@2[ ’ ’q_N pqn(; ” \q; q] (5.75)

of the g-Kravchuk polynomials obtained by applying the transformation formula 28
(5.34), then letting] — 1 with the help of (2.40) and (2.41) lead to the Kravchuk polynomials
(5.74) as the following form

1
R —X. . _ .
éanl Kn(@™%; p, N; g) = Kn(X; 175 > N). (5.76)

One can also obtain theftBrence equation for the Kravchuk polynomials from ¢tREHT

for theg-Kravchuk polynomials by use of the analogous transformation.

Affine g-Kravchuk — Kravchuk

Letp - 1-p, x > g*¥andq — 1 in the definition (5.26) of thefline g-Kravchuk

polynomials, then we obtain the Kravchuk polynomials (5.74) in the following way

lim K3 (g 1- p,N; q) = Kn(x p. N) (5.77)
q—>
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by use of the definition of-shifted factorial defined by (2.15) and the limit relations (2.40),
(2.41).

One can also obtain theftBrence equation for the Kravchuk polynomials from ¢REHT

for the &fine g-Kravchuk polynomials by use of the analogous transformation.

We note that thg-Charlier polynomials have linear(x) and constant(x)+7(x). That's why,
g-polynomials which have quadratic, linear and constaniand o, lead to theg-Charlier

polynomials. Some examples of such relations are as the following.

Little g-Laguerre/Wall — Charlier

Lettinga — (1 - g)aandx — g*in theg-EHT for the little g-Laguerre polynomials, we get

O'l(X’Q)_ -2 (l—X)_)_ = o 0'2(X,Q): X - -—a=0 T
@-1 "9 g1 7T qog Togmr T AT

1 s 1-aq
(1-9a (@Q-aq
with the help of the limit relation of thg-numbers defined by (2.40) which lead to

7(x,q) = — x—a=1(x), (q-1)n(q) =g "[nlq— —-n= A,

XAVY(X) + (& — X)Ay(X) + ny(x) = 0.

Notice that solution of this equation @&,(x, a).

Setting identical transformatiam— (1 — gq)a andx — g* in the definition
—n’ X—l
Pn(X & Q) = a”q”(”‘l)zgoo[ ‘ ’q; g] (5.78)

of the little g-Laguerre (Wall) polynomials obtained from (5.50) by applying the tramsfo
mation formulas (2.49) withb — 0 and (2.51) successively, we also arrive at the Charlier

polynomials as
- Pn(@(1-0g)aq)
lim
-1 (1-9gn

by using (2.40) and (2.41). Her€,(x, a) is the Charlier polynomials given by

= Cp(x,a) (5.79)

a

-n, -X 1
Cn(x @) = (—a)”zFo[ | - —]. (5.80)
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g-Laguerre — Charlier

Using the transformation — —-q™*, g* = a}(q-1)! © a = —%ﬁ in the definition

(5.36) of theg-Laguerre polynomials and lettingg — 1 associated with the properties in

(2.40) and (2.41) lead to the Charlier polynomials (5.80) in the following way,

_In(@-1)a
lim L ‘(=g 09

fimy Q- 1r = Cp(X; Q). (5.81)

One can also obtain theftérence equation for the Charlier polynomials from ¢ieHT for

theg-Laguerre polynomials by use of the analogous transformation.

g-Charlier — Charlier

Assumingx — g%, a = (1 - g)ain the definition (5.39) of the-Charlier polynomials and
then taking the limit ag) — 1 together with the properties in (2.40) and (2.41), we arrive at
the Charlier polynomials (5.80) as

im Ch(@%a(1-q);0)

im a-qn = Cp(x; ). (5.82)

One can also obtain theftkrence equation for the Charlier polynomials from gpigHT for

theg-Charlier polynomials by use of the analogous transformation.

Alternative g-Charlier — Charlier

Insertingx — g* anda — (1 — g)a into the definition

ang™+ ) xn q", x1 —n+1
Kasad) = pmaann| T[S (5.83)

(-ad"; g)n a

of the alternative}-Charlier polynomials obtained from (5.43) by applying the transformation
formula (2.49) withc — 0 and then letting] — 1 associated with performing the properties
in (2.40) and (2.41) bring about the Charlier polynomials (5.80) as the fwipform

- Kn(a(l-q)q) .
(I;Lnl G- 17 = Ch(x; a). (5.84)

One can also obtain theftirence equation for the Charlier polynomials from gpReHT for

the alternativeg-Charlier polynomials by use of the analogous transformation.
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Al-Salam Catrlitz| — Charlier

Replacingx — g* anda — a(q — 1) in the definition (5.29) of the Al-Salam Carlitz | poly-
nomials and then taking the limit @s— 1 together with the properties in (2.40) and (2.41)
produce the Charlier polynomials as

im U (e q)

Im—G-1r = Cp(x; Q). (5.85)

One can also obtain theftérence equation for the Charlier polynomials from ¢eHT for

the Al-Salam Carlitz | polynomials by use of the analogous transformation.

Al-Salam Catrlitz I — Charlier

Insertingx — g * anda — a(q — 1) into the definition (5.19) of the Al-Salam Carlitz I
polynomials and taking the limit ag — 1 together with applying the properties (2.40) and
(2.41) lead to the Charlier polynomials as the following form

im Vo (e q)

m R, = Ch(x; a). (5.86)

One can also obtain theftkrence equation for the Charlier polynomials from gRgHT for

the Al-Salam Carlitz 1l polynomials by use of the analogous transformation.
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CHAPTER 6

CONCLUSION

The investigation of-difference equations is an old problem which has been studied by sev-
eral authors for a long time, especially, from the view point of the Favaedrém. In this
thesis, on the other hand, we present a more direct and a simpler geohagipiczach based

on the qualitative analysis of solutions of thdearson equation. In this way, we show that

it is possible to introduce in a unified manner all polynomial solutions ofgtdéterence

equation of the hypergeometric type, which are orthogonal on certainafger

Besides its simplicity and clarity, our approach enables to introduce somertiegonality
relations which have not been reported previously. The appeardrsteto new relations,
see, for example, Theorem 4.13, is due to the fact that we have catitier polynomial
codficients of the g-hypergeometric equation in their full generality dealing witruétklisle

structures.

Recall once more that g-polynomials of the Hahn class, defined on theay-lattices of
forms x(s) = g° andx(s) = g5, have been examined in this thesis. Actually, satisfactory
results are obtained and research articles on the subject are in r{gyrés Furthermore,
we have just started to study along the same lines the g-polynomials on a igigiadtice

of the formx(s) = c19° + c,q~° + c3, wherecy, ¢, andcg are definite constants. As another
extension of our thesis, we consider the g-Krall type polynomials on theundarm g-
quadratic lattices. Some partial results for g-Racah and for g-dual palgnomials have

been obtained, which will be reported in due course [7].
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