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ABSTRACT

DEVELOPMENT OF AN ITERATIVE METHOD FOR LIQUID-PROPELLANT
COMBUSTION CHAMBER INSTABILITY ANALYSIS

Cengiz, Kenan
M.S., Department of Aerospace Engineering
Supervisor : Prof. Dr. YusubZYORUK

December 2010, 58 pages

Controlling unsteady combustion induced gas flow fluctuetiand the resultant motor vi-
brations is a very significant step in rocket motor desigroctturs when the unsteady heat
release due to combustion happens to feed the acoustitatisos of the closed duct forming
a feed-back system. The resultant vibrations concernedavety lead to total failure of the
rocket system unless analysed and tested thoroughly. fbsistaims developing a linear
numerical analysis method for the growth rate of instabgitand possible mode shape of a
liquid-propelled chamber geometry. In particular, A 3-Dltdboltz code, utilizing Culick’s
spatial averaging linear iterative method, is developeéing the form of deformed mode
shapes iteratively to obtain possiblffests of heat source and impedance boundary condi-
tions. The natural mode shape phase is solved through fioitene discretization and the
open-source eigenvalue extractor, ARPACK, and its pdratiplementation PARPACK. The
iterative method is particularly used for analyzing themetries with complex shapes and
essentially for disturbances of small magnitudes to nhtnoale shapes. The developed tools
are tested via two simple cases, a duct with inactive flameadrigke tube, used as validation
cases for the code particularly with only boundary contidouand heat contribution respec-

tively. A sample 2-D and 3-D liquid-propelled combustioraatber is also analysed with heat
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sources. After comparing with the expected values, it isaly proved that the method
should be only used for determining the mode’s instabilitalgsis, as to whether it keeps
vibrating or decays. The methodology described can be usadeeliminary design tool for
the design of liquid-propellant rocket engine combustmapjdly revealing only the onset of

instabilities.

Keywords: combustion instability, thermoacoustic conglirijke tube, duct acoustics, liquid-

propellant rocket engine, Culick’s method
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SIVI YAKITLI ROKET MOTORLARINDA YANMA KARARSIZLI GININ SAYISAL
ANAL IZ]

Cengiz, Kenan
Yilksek Lisans, Havacilik ve Uzay Mihendisligi Bolum™
Tez Yoneticisi : Prof. Dr. Yusu®ZYORUK

Eylul 2010, 58 sayfa

Yanma kararsizligi ve kontrolu, sivi ve kati yakitli rokeotorlari tasariminda karsilasilabilen
onemli muhendislik problemlerindendir. Ortamdaki gsdalgalanmalariyla yakitin yan-
masindan elde edilen 1si enerjisinin birbirini beslemlesiyrtaya cikar. Bu calismada sivi
yakitl roket motoru yanma odasi kararsizligi problemigdgrusal analizini gerceklestirmek
maksadiyla gelistiriimekte olan bir sayisal yontem aihfesakta ve basit iki drnek probleme
uygulamasi sunulmaktadir. Sayisal analiz, ilk asamagalkaldugu varsayilan yanma odasinin
akustik yapisini belirleyen Helmholtz denkleminin 2 bdywgonlu hacimlerle ayristiriimasi
sonucu ortaya ¢ikan dogrusal denklem takiminin 6zgigederinin ve karsilik gelen akustik
mod yapilarinin ARPACK yazilimi yardimiyla elde edilmdsibaslar.izleyen asamada elde
edilen akustik modlarin ve karsilik gelen dalga numanaiar gercek ortamdaki 1s1 kaynagi
ve diger fiziksel sartlardan kaynakl etkilesimler ilasn degistiginin tespiti yapilir. Bunun
icin karmasik geometriler icin uygulamasi nispetenaléblay olan ve bu ylzden yaygin
kullanim bulan Culick’in yinelemeli dogrusal bilyimezhanalizi yontemi kullaniimaktadir.
Gelistirilen bilgisayar programi, ilk asamada Rijkeiiiproblemine uygulanmis ve sonuclar
beklenen dogrultuda ¢ikmistir. Sonuclar gostermaiktki mod sekli sonuclari guvenilirligi

bilinmemekle birlikte, dalga numarasinin sanal kismi nroicrarsizhgini belirlemede pekala
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kullanilabilir. Hazirlanmis olan bu yontem, sivi yakllr roket motor tasariminin ilk asamalarinda

kararsizliklarin ortaya ¢ikma kosullarini belirlemddeli bir arag olarak kullanilabilir.

Anahtar Kelimeler: yanma kararsizligi, roket motor, teakustik, rijke tiipt, akustik mod
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tim sabirla bekleyenlere..
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Rocketry has been developing since the first demonstratewdiks of Chinese people back
in the ninth century. In a search for "elixir of immortalityChinese alchemists eventually
discovered gunpowder, being the precursor of rockets, Bant guns in any sort. Chinese
military then used bamboo tubes to fire mortars with gunpavedepropellant. First rocket
was used against Mongols around 1232 AD. Consequentlyetif@ology spread towards
west during the Mongolian conquests of Eastern Europe addI®lEast. There are historical
records that in 13th century the Mongolian Horde used guneoyeropelled rockets against
Magyars in Europe, Arabs and Turks in Middle East [1]. Sid@nt solid-propellant rockets
have been increasingly used in European wars. Howeveregh@chievements were done in
the 20th century World Wars. The need of combustion chamdxedsiring higher pressures
and nozzles with more elaborate designs allowing superdtonis led to the modern rocket
technology. Robert Goddard launched the first liquid rodket926 [1]. In the following
decades, inter-continental and multi-stage inter-pkameliquid-fuelled rockets were devel-
oped, resulting in sound impacts on human history and dpuedot. Today, shuttles with
a number of liquid-propellant (LOX, liquid hydrogen) rotkengines (Figure 1.1) are able
to accomplish demanding space missions, generatingyt@almillion hps of power, and 2

million Newtons of thrust each [2].

A liquid rocket simply consists of fuel and oxidizer tanksgiehydrogen and oxygen), com-
bustion chamber, and a nozzle. The basics are quite sirikulid-propellant rockets, using

liquid fuels and oxidizer instead. Main design and prinesphre illustrated in Figure 1.2.



Figure 1.1: Shuttle main engine firing test [2]

Principally in a rocket engine, the chemical energy is carekinto kinetic energy, as a high-
speed jet aft the nozzle. Combustion chamber is the placeevthe injection, mixing and
ignition of the fuel and oxidizer occurs. Pressure levets guite high, whereas flow speed
is low. In the nozzle, the potential energy of the high pressilow is converted to high ki-
netic energy, supplying an incredible momentum to the nmechAft the nozzle, pressure is
usually expands to the ambient pressure (for an ideally redgxh nozzle), and the velocity
reaches a maximum. In a choked flow, in the diverging partefibzzle, the flow is always
supersonic. The change of pressure and temperature lavelgyh a choked nozzle can be

viewed in Figure 1.3.



Liquid Rocket Engine

Combustion
Oxidizer Pumps Chamber ReZIE

. Exit - P
V = Velocity xi-e °
0 Throat
m = mass flow rate
p = pressure

Thrust= F=m V, + (Pe-Py) Ae

Figure 1.2: A liquid-propelled rocket [2]

Figure 1.3: Flow variables through the nozzle [2]



1.2 COMBUSTION INSTABILITIES

In modern rocket and gas turbine technology, combusti@aiedlinstabilities in the chamber
have been a challenging issue in design and aft-designdpewbere the with-coming oscil-

lations must be kept in practical ranges. These oscillafionless controlled, might impair
the dficiency of the combustor, cause unbearable noise to the-giltailable, cause ther-

mally damage on internal walls, interfere with control de& and injectors, or might even
damage the system utterly. Therefore, a thorough analgsisests must be performed prior
to any expensive and painstaking phase of the project. Tudtseshould be used to change
the design of the chamber geometry, injector design, aneciéssary, to include someftias

to modify and absorb vibrations.

In late 1930s, the occurrence of uncontrollable oscilfetiovere first discovered in liquid
and solid-propellant rockets. The phenomenon was at#ibtd high density energy release
in a duct with minor losses. The imbalance of energy gainslessks was the fundamen-
tal reasoning behind these excitations and sustainedatsnis. However, prediction and
controlling of instabilities had still been a mystery in rhoases. No considerable progress
was made until World War 1l and particularly, the lunar pragrin 1960s. Since then, So-
viet, French and American scientists have been the piomeersompetitive environment, of
the progresses on understanding, analysis and eliminatioombustion instabilities, owing
to the works such as inter-continental ballistic missilkZBMs), space programs and some
other launch systems. In space missions, the giféatt® and funds spent for development
of propulsion systems (e.g. F-1 engine), involving fuldecfiring tests, contributed much to
the experimental methods and available data for furtheiegements (see Fig.1.4). Specif-
ically, "Project First” aimed at curing the serious comlmstinstabilities of the F-1 engine.
Approximately 2000 full-scale firing tests were done thitoogt "Project First”. Figure 1.5
demonstrates pressure trace of the F-1 engine, reveakngptintaneous instabilities during
a firing test. Gas turbines was not usually problematic asdostic instabilities in the early
years. The advent of gas turbines in 1940s did not troublestiggneers with challenge of
controlling combustion instabilities. However, contaation restrictions imposed in the last
decades caused the manufacturers to prefer lean-premixelustion in gas turbine cham-
bers, leading to serious instabilitiegfaiult to simulate and control. In addition, instabilities

in afterburners always stood as a problem to solve.
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The most considerable contributions, like always, wereigno by the development of com-
puter systems and numerical methods of solution for phlprcdlems. Computational envi-
ronment enabled us to describe the unsteady problems asdieinent discretizations (FEM,
FVM, FDM). The most complete solution is given by the DNS orS.Eret, computational

resources still does not meet the requirements of both fiogdometry problems. Thus, alter-
native methods of solution have been suggested, such asbletnsolvers, linearized Euler
equation solvers, etc. They focus on the most crucial aspddhe unsteady behaviour via
appropriate assumptions, and thus reducing the compughtiosts down to practical levels.
However, proper models for mechanisms like fuel injectidmoplet formation, vaporization,

combustion and b#e/liner damping are still great challenges for the engineklsnce, nu-

merical simulation is a step to have an idea before costlyfirests of the propulsion system.

1940 1950 1960 1970 1980 1990 2000
| | | | | | |
LIQUID AFTERBEURNERS APOLLO AFTERBURNERS GAS
& & (LIQUIDY) & TUREBINES
SOLID RAMJETS RAMIETS (LOW FO)
ROCKETS ( HIGH f) (LOW f) (HIGH f)
POLARIS MINUTEMAN ARIANE SPACE ARIANE 35
(SOLID) [SOLID) VIKING SHUTTLE (SOLID)

(LIQUID) (SOLID)

LOW SMOKE AND
—
SMOKELESS TACTICAL MOTORS

| LABORATORY TESTS _ |  NONLINEAR | ACTIVE
| LINEAR THEORY | THEORY |  CONTROL

Figure 1.4: A chronology of combustion instabilities [9]

In most cases, combustion itself is stable (in an open-aie far example). What makes the
system unstable is the coupling of unsteady combustion elifmber acoustic motions. Ba-
sically, the concerned acoustic vibrations in the chambedeaven by the combustion itself
when coupled with the acoustic modes of the chamber. For soates of oscillations, it

turns out to be a positively coupling, whence a feedback rsciubetween, resulting in a
tendency of the amplitudes to increase. Otherwise, thélatgmns diminish before any per-

ception. The phenomenon can be described as a closed-kedipaiek system as in Figure 1.6.

In a chamber with flow oscillations, the thermal energy isiféd acoustic energy resulting in
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3.45 MPa (500 PSI) CHAMBER PRESSURE
- = . el Tt
b <3 X M-

s 4
_1_ =

_t .| .I__.__ _.]_ Ir_-. _l- ! a ..I

Figure 1.5: Pulses of the injected fuel stream in the F-1renff].

acoustic oscillations with several modes. The oscillaflagl parameters in turnfiects the
combustion process, resulting in unsteady heat release piienomenon is widely called "a
thermoacoustic coupling”, and when sustained oscillatixist, "thermoacoustic instability”.
Itis first explained by Rayleigh in 1878 [10, 3] by the famotaament which can be deemed

as a proverb for thermoacoustics:

"If heat be communicated to, and abstracted from, a mass oViarating in a cylinder

bounded by a piston, thgfect produced will depend upon the phase of the vibration athwh
the transfer of heat takes place. If heat be given to the athatmoment of greatest con-
densation, the vibration is encouraged. On the other hafagat be given at the moment of
greatest rarefaction, or abstracted at the moment of gitatendensation, the vibration is

discouraged.”

Thus, the Rayleigh criterion may be simply formulated foieaigd of oscillation

j; p'qdt>0 (1.1)

wherep’ andq’ are pressure and heat release oscillations respectivédythie condition for

spontaneously excited acoustic oscillations to appeardig to the Rayleigh criterion.

Another indispensable step towards understanding coimbuststabilities is the time lag
modelling of the coupling, first introduced by Crocco and &hén 1956 [4]. They observed
that, there is always a time interval between injection ef and heat release due to physical
procedures like droplet formation, vaporization, wavegaigation, etc. This "time lag” delays
the response of the acoustic system, generating a phisesdce in the temporal behaviour.

This way, the oscillations may grow or decay according toRlagleigh criterion [9, 4], as

6



External Chamber -
Acoustics > P
Heat P
, Release -
q'. Energy
Addition

Figure 1.6: Unsteady heat release feeds energy into chaaubastics.

stated above. Now assume the pressure varies sinusoidally,
p’ = psinwt (1.2
and assume the energy variation shows up with a constant, dela
g =qsinw(t-1) (1.3)

For low Mach numbers, which is usually the case in a combogtimmber due to very high
temperatures (and sound speed, consequently), energgreatisn equation gives for a pe-
riod of oscillation,
y— 1 t+21/w t+21/w
AE = —— dvf P = fdvf)qf sinwt’ sinw(t’” — 7)dt’ (1.4)
Poy Jv t % t
AT
= f pd— coswtdy
\Vi w
Therefore, Rayleigh criterion tells us that the oscillaicare encouraged if cag is posi-
tive; that is, if the heat release is in phase with pressuuhtions. Simply, the problem
can be overcome by keeping the time lag in intengs< 7 < % However, in realistic
situations, the time lag is always dependant on flow vars@allghin complex-geometries,
eventually necessitating CFD-CAA (Computational Fluidn2gnics, Computational Aeroa-
coustics) analysis of the problem together with adequatéetsdor heat release, damping,

etc.

1.3 LITERATURE SURVEY

In 1887 Lord Rayleigh in his book [3] first addressed the ra&thermoacoustic coupling
phenomenon in closed ducts. He discovered a correlatianeleetthe moment of heat addi-

tion and the moment of acoustic response. Later in 195@&Wallg the highly experimental
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discoveries achieved in World War II, Crocco an Cheng [4hgetd the theory for combustion
instabilities in liquid rocket engines and introduced thbject as one of the most challenging

topics in combustion and rocket science.

Harrje and Reardon [5] prepared a review on the topic. Lateseveral reviews were also
published by Culick [6]. Most recently, valuable compitets [7, 8, 9, 10] appeared as exten-

sive materials.

Pieringer and Sattelmayer [45] examined the feasibilityirnae-domain approach for the so-
lution of linearized governing equations in 3-D liquid retlengine chamber. Although the
equations are linearized for convenience, little asswnpivas made about the oscillation

behaviour.

A frequency-domain wave equation approach, like in the césikis thesis, mostly requires
solution of eigenvalue problems. Without any mode-shapearaptions, Nicoud and Benoit,
and Nicoud et al. [35, 38] posed problem as quadratic naafieigenvalue problems. Hence,
the whole problem was formed as a challenging solution oétgenvalue problem. The care
of boundary conditions in the problem was included in a farmpaper by Lamarque and
Poinsot [34]. Solution of the related complex eigenvalugbjfgms are tested in the thesis by
Van Leeuwen [36]. The classical Arnoldi method and Jacadi@son method are employed
for the solution of thermoacoustic problems to compare #mopmances. Arnoldi method
turned out that it is faster in simple linear problems, whsrdacobi-Davidson proved to be

promising for the most complex non-linear and quadratiemiglue problems.

Rubin [31] looked into another aspect of the liquid motortatdities, POGO instabilities
where rocket structural longitudinal mode is coupled wite fluid system, leading to even
higher fluid oscillations. The name comes from "pogo stidd€cause the rocket stretches and

compresses like a pogo stick.

The Rijke tube, a tube open both ends with a heater wire mesheocross-section to excite
longitudinal acoustic oscillations, may be conceived a&ssiimplest case of thermoacoustic
instabilities in a duct. Thus, its analysis is definitelyalwable for the general understanding
of the instabilities and Rayleigh criterion. Hantschk arattmieyer [39] utilized a commer-

cially available CFD software for the solution of Navieekes equation with appropriate

boundary conditions in a Rijke tube. They presented nicestilations of self-excitation in



Rijke tubes, realization of Rayleigh criterion and limitctgs. However, the most compre-
hensive work about the Rijke tube in both nhumerical and expantal aspects is perhaps the
thesis of Matveev [44]. He developed a theory to model Rijgeilations and utilized both
linear and non-linear heat models with accompanying erpartal work. Prediction of the
onset of instabilities was fulfilled by a linear analysis,esas behaviour of the limit cycles
was scrutinized by the non-linear modelling together whid nean flow ffect. Culick [43]
analytically obtained the stability boundaries of the Rijlube approximately. Vijayakrishnan
and Ananthkrishnan in their review [40], summarized thesees and role of Rijke tube in
thermoacoustic instabilities, and presented the onséteoinstabilities with a simple exam-
ple. Heckl and Howe [41] developed an analytical solutiontfie Rijke tube using Green’s
function approach. Later, Heckl [42] examined several flamesfer functions in frequency

domain as to theirféect on the stability.

Camporeale et al. [47] proposed a methodology to preditaliilgies in a simplified 1-D
chamber with passive controlling devices. The passiverobing involves damping using
Helmholtz resonators with certain resonant frequenciemstering two flame models, the
damper not only caused the acoustic energy to be dissigatedlso modified the lag between
heat release and its acoustic response. Hence, some ofstableneigenfrequencies forced

to be stable with proper use of resonators of the correspgridéquencies.

Another novel method was developed by Cha et al. [48] wher®agas turbine combustor
is modelled as a feed-back system, so that classical cahi&olies apply even for complex
systems. Heat addition is considered as an input to thedtlosg feed-back system and
transfer matrices are formed. Variation of temperaturelmmodelled by using multi sec-
tions through the duct. It is also reported to be straightfod to extend the method to 3-D
analysis. Figure 1.7 demonstrates the feed-back loop afah@ustion procesdd; andH,

stand for the transfer functions between the velocity arad redeasédJs, Q.

Sohn et al.[51] utilized a linear acoustic analysis to itigege the dampingfiects of gas-
liquid injectors in liquid rocket combustion chambers. Bes their original use, fuel injec-
tion, optimum designs of gas-liquid injectors plays a digant role as damper, eliminating

the need of other means of acoustic absorbers suchidessbhand liners.

Gudmundsson and Colonius [19] investigated the noise tetuaf chevron nozzles in turbo-

fan engines through a linear stability analysis involvingpanpressible flow solver and eigen-



Figure 1.7: Combustion feed-back system model

system solver, ARPACK, in a coupled fashion. The methodoperéd well in simulation of

low-frequency noise reduction, which is the primary rolebévron nozzles.

Bogey et al. [52] constructed source terms for linearizeteEuequations taking into ac-
count the mean flowfEect and vorticity waves. An acoustic analogy is formed to pota
the acoustic field once the reference flow field is obtainedL#8& to construct the source
terms. This hybrid method (propagation & generation) cantbiged in instability problems
where acoustic-mean flow interactions are significant. Bexna@l., Nicoud and Poinsot [33]
also used wave equation together with LES for a reacting floa swirled combustor. LES
solution of the flow supplies mean temperature field and flaarester function for the acous-
tic analysis. Acoustic energy balance methodology sergeghaevaluation basis for the LES

results by realizing the Rayleigh criterion.

Flandro [22] studied theffects of vortex shedding on pressure oscillations in salapellant
rocket motors. There is a energy flow from the vortex fluctrgtito the acoustic field, cre-
ating a dipole or quadrapole mechanism. Figure 1.8 showsarh/sis model for vortex-
generated sound. Itis found that the location and oriemtadf vortical structures with respect
to acoustic waves is quite decisive on damping or drivingattaristic of vorticity waves. In
a solid-propellant rocket, the rotationdtects significantly modifies the longitudinal modes
of oscillation due to slip condition on burning surface. Maver, the radial modes are also
disturbed because of normal vertical oscillations causedabtical structures. Flandro, in
a following work [23] constructed an approach for the inm@uasof rotational €ects in the
"Standart Stability Prediction Program (SSP)”. It was ab &nprovement to the Culick’s
one-dimensional flow-turning correction, where radialoegly corrections on the burning
surface is also included. The outcome revealed that this exiving dfect makes the solid

rocket less stable than previously predicted in SSP.
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Figure 1.8: Hydrodynamic-acoustic interactions [22].

French et al.[24, 26, 27, 28, 29, 30] came up with many imprevgs and automations for

the solid rocket stability programs SSP & SPP (Standardilya®rogram & Solid Propellant

Performance). The works mostly puf@t on tangential modes of vibration where previously
difficulties existed with accuracy aspects. To obtain the temssvmode shapes accurately,

they implemented Green’s Function Discretization (GFD),[25] requiring less nodes per

wave length. A novel technique is employed for the eigervalxtraction of the discretized

equations. A range of frequencies are solved with an arpigaurce term on the right-hand

side of the discretized form of the eigenvalue problem [#, 2

Mij¢j = &

(1.5)

whereg is the small perturbation to the system acting as a sourcéheéddesired frequency

range is swept with small intervals, the resonant modes jreakplitude as shown in Fig-

ure 1.9. This method proved to be faster than standard gebsiwhen a wide range of

frequencies is in question.

1.4 OBJECTIVES

The objective of this thesis is to develop a 3-D homogeneaelmHoltz solver and iterative

combustion instability code for finding acoustic mode slsaged complex wavenumbers in
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Figure 1.9: The French method for eigen-problem solutie} [2

3-D combustion chambers. The iterative combustion inktyalsode is a linear analysis tool,
which iteratively imposes inhomogeneous terms on the hemegus Helmholtz equation
(sources such as heat source; and inhomogeneous boundditiats, such as an impedance
condition), consequently supplying the actual mode shapecamplex wavenumber to de-
termine the growth and damping characteristics of the laticihs as a first step towards sta-
bility analysis of the combustion chambers. In Chapter &,ttieory behind the developed
codeHELM2D/3D and YAKARIs explained thoroughly. Eigenvalue problem solution pro-
cess is also explained both for serial and parallel impldatiems. In Chapter 3, a duct with
impedance boundary condition and inactive flame is examime@hapter 4, the well-known
Rijke tube case is considered as to the vibration behavibilredundamental acoustic mode.
Chapter 5 is intended to simulate a fictional liquid-propelrocket combustion chamber in
choked condition, both for 2-D and 3-D cases. Finally, Caaftsummarizes what have been

studied and concludes the results of the various cases.

12



CHAPTER 2

EQUATIONS OF LINEAR COMBUSTION INSTABILITIES

The method described in this chapter will be for linear costiom analysis in a chamber.
Methods used for analysis of nonlinear behaviour mostlyeh@eots in this linear analysis
developed in early works of Culick [21, 20]. The analysis @inty based on the assumption

of small deviations from a homogeneous problem, making t&r@en’s function theorem.

2.1 THE WAVE EQUATION

In order to obtain inhomogeneous wave equation, one mudtwiln inhomogeneous set
of flow equations. Because viscoueets are most of the time negligible in acoustic pro-
cesses having small perturbations of flow variables, Egleatons are best to start with. The

following assumptions would guide us in the conservationagigns to be used [10].

e Cp, Cy andy are constants

e Do, Uy, po are uniform throughout the chamber. For a liquid-propelimgine, it is not
a problem to assume uniform flow throughout the chamber whigite pressures and
temperatures exist, whereas Mach numbers are low (excefitfmozzle). However it

is not very realistic to assunig constant in a rocket combustor.
e Steady flow and waves.
e Only a heat source will be taken into account, being the leaase of combusting fuel.

e Fluctuations ofu, p, T, p andq are small enough.

13



therefore, the linearized Euler equations can be derivesl Appendix A):

op’

E+V-(po\7’) =0 (2.1)
NG 1,
G o VP = 0 (2.2)
op’ )
D hymv V= (-1 2.3)

whereq is the oscillatory heat source. Now, subtractifg(qu.Z.B) fromypoV-(EQ.2.2), we

obtain the wave equation

YPoo, 0P oo
Vg - = —(y-1
00 o2 o=D%
which becomes,
1 62p/
vZp - = =h 2.4a
2 o (2.42)
n-vp =—f (2.4b)

wherea? = Vp—‘;" is the mean sound speed, ahds a possible boundary condition revealing
reflective behaviour of the internal boundaries of the chemib= —%% is the source term
consisting purely of heat release of combusting fuel.

Equations (2.4) are the equations to be solved througheutttamber for the steady waves.
However, determining the pressure oscillations would neldythe stability behaviour by

itself. We will need further interpretations for the phereron.

2.2 EXPANSION IN MODES AND SOLUTION BY ITERATION

Now that wave equation is derived, the procedure explainektiail in [9] may be developed.
For the solution of pressure, Green’s function expressiiinbe utilized together with some
other expressions.

Because the fluctuations are assumed small for an acoustiegs in the chamber, they can

be taken as small harmonic oscillations around a mean:

14



p/ — rje—iakt ; q/ — qe—iakt (25)
whereais the mean sound speed dni$ the complex wave number unknown initially,
1 .
k= 5_(w +ia) (2.6)

Here,a is known as the growth rate. It is obvious that a positivmeans the wave is grow-
ing in amplitude,p’ ~ €, whereas a negative value causes the oscillations to dimirin
classical acoustics, it is known that= f = 0 inherently; hence the wave turns out to be sta-
tionary with no imaginary part of the wave number. Moreowet, < w would be a reasonable
assumption for combustion processes where the waves aagidgor growing slowly. It is
also a reasonable assumption that sources are small it of the classical field with

no sources. Therefore, we can write,

~

h=khel®t . f = felak (2.7)

wherex is a small parameter included to guarantee the smallnessaofl f. Hence the

equation (2.5) yields the inhomogeneous Helmholtz egnatio

V2p+ K2p = kh (2.8a)

A-Vp = —«f (2.8b)

The best method here to solve the linear problem is the useedfrfunction to convert the
differential equation into integral equation [9]. Thereby, tenative method may be con-

structed to obtain the complex wavenumber explicitly.

2.2.1 Green’s Function, Modal Expansion and Spatial Averaigg

Now, define a Green'’s function with homogeneous boundargiton,
V2G(r|ro) + K2G(r|ro) = 8(rIro) (2.9a)

n-VG(rirg) =0 (2.9b)

whereG(r|ro) is the Green’s function of the wave observed due to the source ap.

Multiply (2.8a) by G(r|rg); (2.9a) byp(r), subtract the results and integrate over the volume

15



in question to obtain

ffj\: G(r|ro)V2p(r) — p(r)V2G(r|ro)]dV (2.10)
:Kfffvemro)ﬁ(r)dv-fffv B — ro)dV

Utilizing Green'’s theorem for the first integral, and siffiproperty of the delta function is

applied to the second integral on the right-hand side:

S@g[e(flfo)vﬁ(f)—f’(f)VG(flfo)]'ﬁd5=K f f fv G(rr)h(dV - pre)  (2.11)

Applying the boundary conditions (2.8b) and (2.9b) gives,

p(ro) = K{ f f fv G(r|ro)h(r)dV + 5@@ G(rgro) f‘(rs)ds} (2.12)

where the subscript "s” ensures that it lies on the boundarfase.
Physically, the wave observed rmtlue to a point source ap has the samefkect as for the
wave observed aty subject to a point source at Hence, the Green’s function for the wave

operator possesses symmetry property

G(rlro) = G(rolr) (2.13)

Then the equation (2.12) becomes,

p(r) = K{fffv G(r|ro)h(ro)dVo + ﬁgG(flfos)f(fos)dSo} (2.14)

Now on, it comes to determine the Green’s function. The mosvenient way to express
it for the case is expansion in normal modes of the chambat,igh eigenfunctiong (r) of

classical acoustics problem (see section2.3).
G(rlro) = ) Aun(r) (2.15)
n=0

The natural modeg,, satisfy the homogeneous Helmholtz equation (2.24) andrdregonal

functions,

f f fv Ym(O)Wn(r)dV = E26mn (2.16)

16



Substituting (2.15) in (2.9), then multiplying Ipy.(r) gives after integration over the volume,
ff lﬁmZAanwnvar K2 ff meAnlﬁndV = ff Ym(r)o(r —ro)dV
v n=0 v n=0 v

A, can be determined by using (2.24), (2.16) and sifting prtyperdelta function,

A, = %“)k)% 2.17)

Eventually, the modal expansion of the Green’s functioreappg as

G(rlro) = Z ‘é’;((rk)%‘[’”(iig; (2.18)

Substitution of the expansion in (2.14) leads to the exjgansf the pressure field

OO

PO = Ez(‘f(’;(”kn) I sntoteosve + df untrodftraiso) (219

The pressure field should approach the unperturbed mode ghapwhile « is approach-
ing zero. To provide grounds for this condition, isolatidrttee N term from the pressure

expansion yields

B(r) = wN(r)m { f f fv n(ro)P(ro)dVo + g@@ n(ro) f“(ros)dso} (2.20)

oo /

_yn(r)
O LT snteatae + o untra feass

The prime sign means tme= Nth term is missing among the terms of summation. To provide
.~ k—0 . . .
p = W, the term multiplyingyy must be unity. Hence, the formula for the perturbed

wavenumber can be obtained as

Y. Lﬁ { f f VwN(ro)ﬁ(ro)dVo + 9565 wn(ro,) f‘(ros)dso} (2.21)

And the pressure expansion is simply

OO

PO = 0 0) Ezzl”(’;“)kn) T sntoheasve + df untradftroiso) - (222)

(2.21) may also be derived more directly. Multiply (2.4) #y, integrate over the volume,

together with (2.24) after manipulations to obtain

2 _ 1,2 K ~ ~
k®=ky + T onpav { f f VwN(ro)h(ro)dvo + 5@2 ll’N(fos)f(ros)dSQ} (2.23)
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It can be shown from (2.22) that the integral on the denoroimat (2.23) is equal t(EﬁI if
the series in (2.22) converges. However, the validity of #guation is subject to discussion
[10]. Hence, the former is adopted.

The equations gathered (2.22),(2.21) are means to buildiagsofor the complex wavenum-
ber, k. However, the wavenumber is always dependant on presssifeard f are mostly
dependant on pressure. Therefore, an iterative method jsritmary choice for solution. Be-
cause the deviation from the unperturbed mdgg,is taken to be small by the order ofin

iterative procedure should be legitimate.

2.2.2 lterative method

It can be proved that wavenumber and pressure distributoect to the ordemin « requires
those of ordem - 1. Hence, a successive iteration is straightforward.

Now, initialize p with k = 0,
PO = yn

Substitution into (2.23) givek? correct to first order in, (k3. Similarly, p first-order ac-
curate ink requiresp’andk? to zeroth-order accurate valugs?) = yy and &%)© = k2. This

way, an iteration can be performed until both values corazerg

Up to this point, the theory behind the iterative method iglaxed. To summarize the pro-
cedure to be followed, a schema of the pathway towards thahbitisy analysis is shown in

Fig.2.1. The principal result to be obtained is the inforioratvhether the mode will vibrate
or not, by solely checking whether the imaginary part of tedyrbed wavenumber is positive

or negative.

2.3 HARD-WALL NATURAL MODES

Natural mode shape is the modal solution of the homogeneelmshdltz equation of a closed
chamber, giving possible oscillation spectra of any péestion in the chamber. It depends
purely on the geometry of the closed section in questionarthee discretized simply by uti-

lizing a finite element method throughout the closed chaptben posing it as an eigenvalue
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Figure 2.1: Waypoints for the linear combustion stabilitakysis

problem. Homogeneous Helmholtz equation

V2 + K = 0 (2.24a)

A-Vin=0 (2.24b)

is the equation to be solved with homogeneous boundary tondhe find the natural modes

of the combustion chamber.

2.3.1 FINITE VOLUME DISCRETIZATION

A 2" order 2-D finite volume discretization code, and a 3-D versitELM2D & HELM3D

are developed. A higher order finitefigirence would seem attractive at a first glance, but
the ease of grid generation even for the most complex gemadagmpted to choose finite
volume method. Therefore an accuracy analysis will haveetpdrformed for selection of
the correct fineness of the mesh. The code is able to form thémomatrix dficiently and

swiftly, always working with sparse forms in complex domain
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The homogeneous Helmholtz equation (2.24) can be exprasggtégral form as

95 Vun - ds+ f kntndQ = 0 (2.25)
Q

It is now obviously described throughout a volume. Provitleal equation is conformed to

finite tetrahedral volumes of a 3-D domain,
4
Z Vinis- AS + kaQiypnj =0 (2.26)
s=1

where the subscriph defines eigenvalue indices,is the cell number index, andis for
the surfaces of the tetrahedral cell. A cell-based finiteivad scheme is employed for this
discretization. On boundary cells, necessary care is takdiminish in-flux and equate the

values on ghost cells.

2.3.2 EIGENVALUE PROBLEM SOLUTION

The discretized form of the finite volume solution is consted as an eigenvalue prob-
lem. The open-source software ARPACK and PARPACK are etilifor the iterative so-
lution of the large-scale eigenvalue problem to be solvedhfie mode shape [12, 13, 14, 17].
PARPACK [15] is the parallelized version of ARPACK, both ohigh are based on an algo-
rithmic variant of Arnoldi process called Implicitly Restiad Arnoldi Method (IRAM). Some
remarkable works are available in the literature whichiagilARPACK [19, 24, 29, 32, 34].
However, the fact that it only allows limited number of eigalues to be extracted renders
our work a bit of cumbersome. In the equations (2.21), (2i2Zi8)obvious that theoretically
infinite; practically all eigenvalues are needed for rei@lisonvergence. A finite number of
eigenmodes would solely be an approximate approach, aseatteaitself is. In a discrete
system, a limited number of mode shapes would be possiblaptoie after all.

Particularly for the 3-D problem, essentially PARPACK shibbe employed. For that pur-
pose, a driver routine that can handle partitioning, pekatlatrix-vector multiplication and
data gathering have been developed. The driver routine bl blocking message pass-
ing routines for communication(MP$end, MPIReceive, MPIBcast, MP1Gatterv). "MPL-
Send, MPIReceive” is used to distribute the work among the procesgeally. The mul-
tiplication is conveniently performed via "MBReduceScatter” routine with "MPISUM”
operator. The results are then collected on the master ggoga "MPLGatterv”. The de-

signed way of sharing of work and matrix multiplication cam $imply illustrated through
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Figure 2.2 for a world of 3 processes. The routine also actishgs the necessary tasks and

communication in sparse sense, reducing the amount of nyeneguired and CPU clock.

Figure 2.2: Parallel matrix-vector multiplication

2.3.3 VALIDATION OF MODE SHAPE ANALYSIS

The eigenfunction extraction algorithm must be validatefble any progress in further anal-
ysis. A block-shape domain is chosen for validation, for akhanalytic solution of the
Helmholtz equation is simply available through harmonitusons together with the dis-

persion relation,

Yimn = Ad 3%d BYE (2.27a)
I7\2  mm\2 )2
kumn=(§) +(F) +(?) (2.27h)

Here,a, b andc are lengths of the sides any andz direction respectively. In the figure
2.3, a comparison of the analytical solution and discrehetism is depicted. The numerical
solution is normalized with maximum magnitude availabfepiider to eliminate calculation
of A. It can be observed that the results do not match adequdgiglyré 2.4). Most impor-
tantly, the wavenumber is deviated from the expected valigace, finer meshes and higher
orders of discretizations may be needed. However, afteedoals with million cells, it is
concluded that any improvement on fineness wouldn't helpabse of the implicit limit im-

posed by the ® order finite volume discretization. Hopefully, a finite elent discretization
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with quadratic interpolation functions and natural bougdaondition imposition will elimi-
nate the deviations and numerical oscillations. For the tiging, it is solely considered as a
future work. Therefore, except for the rough estimatiomgtie rocket chamber in Chapter 5,

2-D simulation is adopted.

Figure 2.3: (11, 3) mode shape of the analytical solution (left) and of the nicagsolution
(right)

Owing to the fact that choice of adequate number of cellsdoeptable accuracy isfardable
and that boundary condition have been imposed flawlessitg finlume natural mode extrac-
tor works well in 2-D discretization. Longitudinal and colep mode shape of a rectangular
domain of length Inis examined (Figure 2.5, 2.6). The mesh resolution is apprately
30 longitudinal intervals per wave length for the tenth litliginal mode, and the same num-
ber of intervals per wave length for the first transverse mdlearly, the modes shown are
resolved accurately. However, it's for sure that higher esodill fail beyond a limit, all of

which must be avoided for the sake of reliable analysis.

2.4 SOURCE TERM

As mentioned earlier, only heat source term on the Eulertensais considered in this study.
Physically, it stands for a heat addition due to combustibfuel with neglected mass and
momentum. The region of heat release can be modelled as dldhie enclosed by the

cross-section of the duct at a location in the axis. Theegefarl-D heat release model can be
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Figure 2.4: Comparison of (1, 3)"" mode shape of the analytical solution (solid line) and of
the numerical solution (dashed line)zat 2.5 plane

developed making use of the time-lag model by Crocco [4]. odding to his general time-
lag description, the heat release at a point is dependantessyre and velocity at that point
at a former time. Moreover, whatever the physical procegghitie, pressure and velocity
contributions must be formed as a linear combination of bfathsolely linear behaviour is

accounted in the analysis. Then the heat source becomes
q = AP (X t—1p) + BU(Xt - 1) (2.28)
or equivalently in frequency domain
a(x, w) = AP(X, w)e ™ + BU(X, w)e ™ (2.29)

Depending on the combustion dynamics, specifidfodents and lags may be chosen. The
codticients and lags are normally distributed fields hardly deddoom LES and experimen-
tal results [52, 33]. Generally, however, combustion incked motor is taken to be dependant
on pressure mostly, whereas for a Rijke tube, heat releatstésmined by velocity at most,
controlling the rate of heat transfer through the hot winge&fic choices will be made in the

cases discussed in the next chapters.
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Figure 2.6: (2,1) natural mode shape (lines: analyticaltsmi k = 16.9180 ragm; dots:
numerical solutiork = 16.9163 ragm.)

2.5 BOUNDARY CONDITIONS

As stated earlier in (2.8) is a term included on boundaries, imposing the influence ofilo
ary conditions on the wave system. Provided it is taken todve, zhe boundary in question
will spontaneously be a hard wall, without any flow in pergenthr direction. However, if
an impedance condition is to be imposed on the boundaryjrtpedance definition must be

considered first
p

Z=—— (2.30)
poal - N
From momentum equation (2.1) in frequency domain we have
. Vp
= 2.31
u ika (2.31)
Then, one can get a formula for
~ ikp
f=-—— 2.32
> (2:32)

Any impedance conditiod can be used to simulate a boundary’s behaviour. Impedamze co
dition of a damping device or nozzle mostly depends on frequeand flow parameters. Spe-

cial treatment must be done for open atmosphere (infinigetyel medium) conditiop = O,
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though. Clearly,f must have such a value that all pressure oscillation vatueslis on the

boundary are forced to be zero. This can be achieved simpigbgiting pressure to zero in
equation (2.22), resulting in a system of linear equatitinsughout the boundary cells with
f as unknowns. This procedure is crucial on every step of énatibns. Thus, a linear system

solver from LAPACK [18] package is simply employed on ea@hdtion step.

2.6 NUMERICAL ASPECTS

In the 2-D analysis explained, since rank of matrices -beupgal to number of cells- are not
extremely large most of the time, the serial version of ARRAGQffices on Opteron machines
with 6 GB of memory (the "akbaba” cluster in METREE). Extraction of modes never
took more than tens of minutes. Despite ARPACK’s iteratiaéure, the memory is a severe
computational requirement for 3-D cases due to large nestrizeing unable to compute about
matrices of 150000 rank or more. Moreover, for such matticesArnoldi vectors generated
and Arnoldi iterations in ARPACK increase in number, cagdime simulation to take longer
computational time. The parallel implementation PARPAGHK good solution for such cases,
sharing both memory and work among the computers of a clusteiexample, a matrix with
1.7 million of rank can be solved for few eigenvalues at atb@if hours on 15 processes.
As to the simulation with the iterative method YAKAR2D, depking on the complexity of
heat and boundary condition terms, the iterations condefigen 4-5 iterations up to 30-40
iterations, taking tens of minutes at most. The 3-D case mooile iterations and time, up to 1-
2 hours depending on the conditions. In addition, althobghterative code is not developed
to work in parallel, a "quasi-parallel” means of computatieelped much in simulations, in
which different machines were assigned independently to simulatifferent modes at the
same time without any need of communication. It should betaib&ay to share work among

the machines.

Up to here, the necessary tools and methods for the analylsear combustion instability
in ducts has been constructed. In the following chaptel&jatéon, analysis and experimen-

tation of various cases of ducts will be performed.
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CHAPTER 3

A TEST CASE WITHOUT FLAME

In this chapter, a simple test case with inactive flame andrgredance boundary condition
on one wall is considered. Several tests are performed t@@mand the behaviour of the

iterative solution method as various parameters of saiwdi@ changed.

3.1 VALIDATION OF NATURAL MODES

Before studying any cases with perturbation, the naturalevemapes must be validated prop-
erly. In this chapter a test case, which is also examined by et al. [38], is analysed. It
is a simple rectangular 2-D duct with dimensidns= 1 x 0.2 m. The domain is divided
into uniform triangular cells in an aim to reduce numericabes. As discussed in Chapter
2, about 60 cells per wave length@033n of intervals in longitudinal direction) will be safe
to use up to 10 longitudinal mode and™ transverse mode. That makes a total of 36000
uniform triangular cells, which results in a matrix with ankathe serial eigenvalue solver
can handle. The error comparisons with other resolutioaspagsented in Fig. 3.1. The
mesh with 000125n of longitudinal uniform intervals resulted in so many cefiat the serial
eigenvalue solver failed due to memory restrictions. Hetloe parallel version had to be

employed benefiting from distributed memory architecture.

3.2 VALIDATION OF THE ITERATIVE ANALYSIS

The iterative method described in Chapter 2 must be validat in several cases. Before in-

cluding any sort of heating, a simple rectangular chambtrout heat release, but impedance
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Figure 3.1: Natural mode wave number error percentages sti@savith uniform longitudinal
intervals 000125 00025, 00033, and @05 m

boundary condition on walls shall be examined. The tesipsedin be viewed in Figure 3.2,
where the wall on the right has an impedance boundary conditnd hard wall condition on
the rest. The iterative solution is expected to deviate tbdershape from normal mode with
hard wall condition everywhere to the case mentioned.

To validate the solution, an analytical solution should bestructed first. The longitudinal

waves can be determined through Helmholtz equation in 1-D

4°p 2
W-’-kp 0
witha—p =0atx=0
0X
op ik,
and&—zp_Oatx_L (3.1)

The wave number can be found through a harmonic solutionAppendix B)
r 1 .
Ko = nE + L arctan¢i/z), neN (3.2)
Starting from the natural modes with hard wall conditiohs, iterative procedure described in
section 2.2 deviates the modes towards the conditions iegiheetup. Taking = 0,b = -0.8
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Figure 3.2: A chamber geometry without heat release, bt wipedance wall condition.

in Figure 3.2, the solutions are found and compared with tady#ical results in Table 3.1.
Although the expected values are captured to some exterdpmsider the computations are
successful because together with the mixed modes, tot@li;pddes were included in the
analysis. Nevertheless, infinite number of modes shoulthbleded theoretically (see Eq.
(2.21) and (2.22)). Higher resolution of the natural modesild make it possible to include
more modes into the analysis, resulting in more accuraigtisns. Thus, results with 20
modes of vibration are also included in the table. It shoddrientioned that an unresolved
mixed mode, occurring when 20 modes are extracted, is sdldotbe excluded from the
analysis, not to ruin the whole solution. Still, (4,0) longlinal mode solution was unable to
converge, probably due to the inclusion of some unresoligiteh modes. It can be observed
that inclusion of more modes occasionally improves thetgwmiu The expectation of better
results does not hold for all modes, however. The reasorhoexceptions is perhaps lack
of crucial dfects of some specific higher modes to some specific modes Bidewation.
Inclusion of infinite number of modes is not possible, afterBesides, "small perturbations
to the wavenumber” assumption should always be born in nhiighly perturbing boundary

conditions may supply inaccurate mode shapes.

A finer mesh (interval size.0025 m), including fects of 10 modes of vibration, can also
be compared to the one with an uniform longitudinal intesiaé of 00033 m (Table 3.2).

The tendencies do not obey to the expectations. Whereagmhatodes are proved to be
improved (see Fig. 3.1), the iterative solver working ongame mesh does not benefit from
the increase of resolution. Likewise, the reason of thigasibn may be attributed to lack of

effect of some crucial higher modes, or highly perturbifig& of the boundary condition.
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Mod number| analytical(ragm) | numerical (10 modes) numerical (20 modes
(1,0) 4.03764 3.97800 3.95604
(2,0 7.17924 7.27429 7.22032
(3,0 10.3208 10.5705 10.4633
(4,0) 13.4624 13.8985 not converged

Table 3.1: Atest case with inactive flame and impedance walllitionZ = —0.8i (The dfect
of 10 and 20 natural modes are included)

Mod number| analytical(ragm) | numerical (0.0033 m) numerical (0.0025 m
(1,0) 4.03764 3.97800 3.97809
(2,0) 7.17924 7.27429 7.27530
(3,0) 10.3208 10.5705 10.5759
(4,0) 13.4624 13.8985 13.9375

Table 3.2: A test case with inactive flame and impedance vealdition Z = —0.8i and two
resolutions of solution

As discussed, the "small perturbation to the wavenumbestimption may be violated. Ap-
parently, due to the imposed boundary condition, any modeadified considerably. For
example, the first longitudinal mode deviated fror43.59 to 397809 ragim to comply with
the condition. Therefore from Eq. 2.32, a large-in-magiétimpedance is expected to stick
to the assumption more consistently. Results Witk 160 are presented in Table 3.3. Ob-
viously, the error ratios are smaller for all modes. Addititly, there was a benefit from the

inclusion of more mode numbers.

Mod number| analytical(ragm) | numerical (10 modes) numerical (20 modes
(1,0) 3.1353428 3.1353206 3.1353195
(2,0) 6.2769356 6.2768245 6.2768219
(3,0) 9.4185283 9.4181530 9.4181486
(4,0) 12.560121 12.559224 12.559217

Table 3.3: A test case with inactive flame and impedance waldlitionZ = 160 (The dfect
of 10 and 20 natural modes are included)

No particular rule for the convergence behaviour of iteetnethod solution can be argued
up to here. It is just expected by theory that inclusion of enand more natural modes

would benefit to the solution success. 10 or 20 modes may nsighdicant against infinite
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numbers, however it should give an estimate for the solutigrinclusion of infinite number
of modes also would. Moreover, as it is emphasized beforealisperturbation to the wave
number” assumption should always be born in mind as a firesaasent for solution success.
However, as there will always be considerable amount olupeations to the wave number
in real combusting cases with realistic boundary condtidhere is no need to be meticulous
anyway . To conclude, all together what discussed in thiptelngorove the foresight to be
true, that the linear analysis constructed cannot be thé ralisble way to find mode shape
and wave number. Nevertheless, in the next chapter it sbaltdved to be a tool to determine

whether a mode of vibration in a duct will be excited or not.
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CHAPTER 4

AN ELEMANTARY THERMOACOUSTIC DEVICE: THE
RIJKE TUBE

Rijke tube has been simplest device to experiment, obserdenalyse thermoacoustic os-
cillations and couplings. The first realization of thermomastic excitation of the tube was
observed by P.L. Rijke in 19th century. He used a verticaktapen at both ends, with a
wire mesh placed in the tube cross-section. Heating the nggalted in an intense noise
at one tone. The heated air through the wire rises up and dogls immediately by the

wall, resulting in a mean flow upwards. At the same time, tlmease of flux stemming

from heating increases heat transfer. Under specific cistamees this phenomenon coin-
cides pressure increase and causes excitation of the femiahmode, resulting in emission
of sound [40, 43, 44]. In this chapter, a horizontal type Rijbe is to be analysed with
respect to instability of the fundamental mode. The onlyiision of the horizontal type of

Rijke tube is that the lack of natural convection necessstat trivial mean flow through the
tube to initiate any acoustic motion (Figure 4.1). In thedetion, the geometry and mesh

discussed in the previous chapter will be used.

’7ﬁ>
)

o}

0 lg

Figure 4.1: A horizontal Rijke tube
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4.1 HEAT SOURCE

As discussed in Sec.2.4, the heat release is usually demteoilgressure and velocity. For
a Rijke tube in Eq.(2.28), because of the dependency of reafer on velocity across the
wire, the velocity term dominates over pressure term. Thtusan be assumed that heat
release depends purely on velocity in the case of Rijke tMlmeeover, as the wire mesh may

be taken as a compact flame, Crocco’srj4] - model can be employed,

Q) = f g (x,t)dQ = Srefyypolnu’(xref,t —-7)-n 4.2)
o _

whereS;¢+ is the flame areage+ is its location, anah is called interaction index, indicating the
strength of coupling between acoustics and heat releaseedtation can also be constructed
in local form as [38]:

Y Po

(xt) = 2P0 ki)
q(x,t)_éfy_lu (Xt=7)-n 4.2)

whereds stands for the thickness of the flame. In numerical sensewihilld be the thickness
of the cell layer that takes over the release of heat for thigeesystem. With harmonic

oscillation assumption and the momentum equation, thetiequean be substituted in Eq.2.8
as

h= Lekaryp. p 4.3)
of

The gradient of pressure oscillation magnitude can beyeapjproximated numerically via
Green-Gauss theoremx direction is taken to be positive direction for the gradiealfcula-

tion which means the mean flow is towards direction.

4.2 BOUNDARY CONDITIONS

Hard wall boundary is chosen for the circumference of the t(Fig.4.1). To simulate the
open atmosphere conditions at both ends, the pressurtatisnimagnitude will be forced to
be zero. As discussed earlier in Sec. 2.5, a linear systemuatien solver is implemented to
solve for thef values for each cell on the boundaries. The system is singpigtoucted from
Eq.(2.22),

oo /

B0 =)+ Y gt { o untra) o s (4.2

n=0
Clearly, at each iterative step, only unknowns arefthvalues throughout the boundary cells

in question, accompanied by the same number of equatiortedaells to close the system.
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4.3 INSTABILITY ANALYSIS OF THE FUNDAMENTAL MODE

Through simplified analytical definitions and experimeitthas been observed that the first

longitudinal mode of Rijke tube is excited under the follagriconditions [40, 43, 44]:

0<2klg<m (4.5a)

O<wit<m (4.5b)

Here, the inequalities obtained [43] are adapted to theeptdsarmonic assumptions. Nor-

mally, sincek; = /L, the inequalities would be interpreted as

L
O<lg< > (4.6a)
O<t< i (4.6b)
a

However, for the time being, let's use the calculated valuk,dn (4.5) together withw, =

kia.

The first condition implies that the mode is excited if theteewvire is located in the first half
of the tube, when there is a mean flow+im direction. The second one determines whether
the heat addition is in phase with the acoustic oscillatimneot, according to the Rayleigh
criterion [10, 40].

Using then — = heat model and the boundary condition implementation destrin the
previous sections, the simulation will be examined if it @nsistent with these conditions.
The first condition is examined first, taking= 10*sandL = 1 m (Table 4.1). As stated
earlier, the negative imaginary values of wave numbersiegaghe mode is stable, whereas
positive-valued ones are excited modes. The results shaittie condition is satisfied in
all cases. That is, the excited mode is immediately attexduathen the heat source travels
from the first half to the other half of the tube. Figure 4.2 ibadter visualization of the
behaviour. It is observed that the wave number does not fitetmuch with respect to the
heater position. That is, the mode already vibrates in @éguency provided it is excited.
The position of heat source only determines its activengssontrast, growth rate changes
its sign as switched to the other half of the tube, meaningrbde will decay. It should
also be noted that the fundamental natural mode (0,0), whave number and pressure are
spontaneously all zero, mutates and becomes the funddmréarant mode upon enforcing
the open atmosphere boundary conditions at both ends. dinigeation to call the vibrant

mode with its corresponding hard-wall natural acoustic enod
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Iy (M) 0.25 0.4 0.75
Real part 3.4182 3.4178 3.4171
Imaginary part| 8.72x 107° | 1.98x 10° | -8.78x 10™°

Table 4.1: (0,0) mode wavenumber approximations for thkeRijbe with the heat source on
various locationst(= 107%s).
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Figure 4.2: Wave number (upper) and growth rate (lower)ati@am of the fundamental mode
whent =10%s

Likewise, the adherence to the first condition in Eq. (4.9b also be examined. According
to the selected condition, thatlis= 1 m anda = 350 m's, 0< 7 < 2.62 x 10-3s should be
satisfied. Approximate wave numbers versus various timedaiges are presented in Table
4.2. If the imaginary values, that is growth rates of the ltzt@ns are to be inspected, it
can be observed that the stability limit agrees with theyaially found limit (Fig. 4.3).

In fact, some dierence would be expected in-between, because even moraass are
adopted in Culick’'s simple analysis, to obtain the tendesmi@asily [43]. Up to this point,
the numerical analysis seems to be quiticeent and dexterous. However, wave number of
the first modek;, should have givelk; = n/L reasonably, as adopted in (4.6). Therefore,

the instability condition would be & 7 < 2.86 x 1072 instead. It can be concluded that the
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obtained wave number result does not reflect the realityrately.

7(3) 107° 10 1073 26x10° | 27x10°3
Real part 3.4182 3.4182 3.4178 3.4171 3.4171
Imaginary part| 6.75x 10° | 6.72x 10° | 526x 10% | 1.82x 107° | -4.96x 10™°

Table 4.2: (0,0) mode wavenumber approximations for thkeRijbe with various time-lag
values (3 = 0.25m)
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Figure 4.3: Wave number (upper) and growth rate (lower)ati@anm of the fundamental mode
whenlg = 0.25m

To exemplify, the excited mode shape can be viewed in Fig. flogether with the chosen

mean sound speed, 35Qsnthe obtained value corresponds to a medium-pitch sound with
a frequency of 190 Hz in audible range. Of course, it is foeghat the wave number has a
considerable amount of error, as discussed in Chapter acinthe wave shape is obviously a
full wave (see Fig.4.4) with a wave-length & L = 1 m. Hence, the real wave number and
the frequency are expected to be- 7 radm, and 175 Hz respectively (with inactive flame

and p = 0 boundary conditions, analytically = Asinnrx)). After all, it was apparent that
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because of violently deviating behaviour of the open-afghese boundary conditions, the
natural mode shape (0,0) deviates tremendously, expgatsliliting in a dramatic amount of
error. As to the instability analysis however, there seelretoo significant error. Provided the
heat model and selected boundary conditions are good erolgjimulate the phenomenon,
any other inspections can be performed safely unless tBemeserious violation of stated

assumptions.

-0.002 |

-0.004 |

-0.006 |

Figure 4.4: The excited mode (0,0) whign= 0.25 m andr = 104 s

36



CHAPTER 5

A SAMPLE INSTABILITY ANALYSIS OF A
LIQUID-PROPELLED COMBUSTION CHAMBER MODEL

The last step of analysis will certainly be of a sample ligpidpelled combustion chamber.

In a real liquid-propelled rocket engine, high levels ofgsgre and temperature exist in the
chamber, followed by a narrow throat of the nozzle entry.sBuee levels are usually on the
order of 10 bars and volumetric heat release on the order @iBfyawatts per meter cube
(e.g. Aestus rocket engine [45, 46]). Thus, flow is essdntsalpersonic in the nozzle, neces-
sitating sonic condition on the throat. The simulation petlnould be constructed considering
this condition. Hence, this chapter examines a chamberchibked flow at the throat. Mean

flow effects are neglected as before, despite its significanceui ligcket chambers.

5.1 THE ROCKET ENGINE SETUP AND NATURAL MODE SHAPES

A fictional rocket motor geometry is generated with dimensigiven in Fig. 5.1. To realize
choked condition, the geometry and mesh of subsonic nogzplit through throat. That
makes a domain of 21245 triangular cells. Because highdiegrs are expected, the mesh in
the proximity of the throat section is set to be finer (Fig.) 5Respite not very physical, the
mass input of the propellants and resultant velocity indeidition is neglected in the analysis.
A constant velocity perturbation conditidn= —ikai - n could also have been imposed on the
inlet - which is already taken as zero by definition. Taking ithlet as hard wall is adequate

for the time being for the fictional engine.

Before inclusion of any féects of the natural modes iteratively, they should be verified

identified first. The shapes of 12 modes of vibration are destnated in Fig. 5.3 followed
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throat diameter
4cm

w

nozzle
diameter
20 cm

Length =45 cm

Figure 5.1: A fictional liquid-propelled rocket motor

by corresponding wave numbers in Table 5.1. Each mode skagentified via capitals and
consecutive numbers: "L” meaning longitudinal; "R” radilabth followed by mode numbers.

For instance, L1R1 stands for first longitudinal first radiaked mode.

index number| Mode identity | Wave number k (rgth)
1 L1 12.93510
2 L2 23.05547
3 R1 23.53690
4 L1R1 30.83868
5 L3 34.00244
6 L3R1 41.37291
7 L4 44.84321
8 R2 45.99022
9 L4R1 51.52343
10 L2R2 51.57302
11 L5 56.01193
12 L3R2 60.75879

Table 5.1: Wave numbers of the natural modes considered
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Figure 5.2: The choked rocket motor

5.2 HEAT SOURCE

A simplen — r model for heat release by Crocco and Cheng is adopted [4]

n

' = qT/ PcH

[P - P t-7)] (5.1)

wheredjy is the volumetric heat releas@cy is the chamber mean pressure ané the
interaction index and the time lag between acoustics and heat release. Unlikesicdbke
of Rijke tube studied in Chapter 4, pressure is assumed t@pendient purely on pressure
fluctuation. Harmonic variation assumption leads to theamterm for the inhomogeneous

Helmholtz equation (Eq. (2.8a)),

h= %(ik)% p(L — ke (5.2)
Upon the application of Rayleigh integral locally [45],$tproved that this flame model never
has damping féect. However, as the chamber has damping type of boundaditicon that
is, some acoustic loss must exist, stability of modes is epected.
A cloud of heat source is formed by marking triangular cellscgether forming an approx-

imate cylinder shape with a height of 0.4 cm., about a ceriserldcated close to the motor
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Figure 5.3: The mode shapes included in the stability aisalys

head. Totally, the set consists of 1246 cells all contritutd the system as a separate volume

of heat source in equal magnitude.

5.3 BOUNDARY CONDITIONS

The reasoning behind cuttingfahe nozzle through the throat in choked flow condition is that
a sonic line attaches to the throat, preventing the acousties from propagating upstream
of the throat. Hence, there is no acoustic reflection at altha plane, which can also be
interpreted as a total loss of acoustic waves through theeplBhe realization of this condition
normally requires determination of impedance value fohdaequency. Solution of quasi-

one dimensional Euler equation on sonic line gives [34]
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_ Zg—gl* —iw

where the starred values refer to the ones on sonic line. ®l#ian procedure assumes

(5.3)

uniform mean flow, then the impedance simply becomes

Z, =1 (5.4)

This is indeed the widely used value for the particular cdgafmitely long duct where no
reflection occurs without dependence on frequency. Thikheilused in the analysis for

convenience.

5.4 RESULTS

For the fictional engine, following representative projsrare used in the analysis:

Mean speed of sound:a = 440 m's
Mean chamber pressure:pcy = 800 KPa

Mean volumetric heat releasey = 200MW/m?

A range of interaction index and time lag values will be usefotm a stability map of the
engine.n andr generally depend on spatial coordinates. Besides, fieltsesk parameters
are usually quite diicult to obtain experimentally. It is also possible to obttiem by the
help of compressible reacting LES for a similar case to dedue response of turbulent flame
to acoustic perturbations [49, 50]. In this work, they shwltaken constant like the other
flame parameters. For the case of hypergolic propellantscaasial injectors, empirical

values obtained by Harrje and Reardon [5] are generallydrrdnges of

0.14x103s< 7t <020x1073s (5.5)

06<n<0.8 (5.6)

Therefore, the ranges should used initially to form stgbithaps. Any other desired range
during design stage can also be examined. In Fig. 5.6 stahilaps of the engine for the

first 6 acoustic modes are depicted. The plots imply thatdhgitudinal modes tend to be
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stable, because the nozzle has an intensive damiiagt ®n the longitudinal modes due to
flow choking. The supersonic conditions beyond the chokeshthsection attenuate most of
the acoustic energy of longitudinal oscillations, reswjtin stability. This is in fact the case
for the first four longitudinal modes. More generally, alltbé pure longitudinal modes are
subject to the same intensive stabilizinfjeet. As to the first radial mode, stability is ob-
served in all cases, except there are some points whereethdadns did not converge. L1R1
mixed mode, however, seems to be excited in the ranges probeel most remarkable of

the modes observed is L3R1 mixed mode. In some interval &f tag value, it appears to
be unstable. On the contrary, as the strength of couplingdsaed, that interval diminishes,
rendering the mode stable beyond. If a mode vibrates pgdsilal limit cycle, characteristics

of which cannot be deduced in this very linear analysis, iy mause huge troubles during
firing tests unless cured in simulation phase. The desigaldttben be tuned involving a
geometry change or inclusion of means of acoustic dampinth&d specific frequency and

shape such as liners on the walls, offles on the injectors.

The excited mode L1R1 can be illustrated in Fig. 5.4. As oleskrthere is no obvious
difference in the shape compared with the hard-wall naturaéspondent (Fig. 5.5). There
is only small deviations due to the heat addition and the seddoundary condition on the
throat. The shape should solely be taken as an approximgtitive initial shape just at the
moment of triggering of the mode. As discussed, non-lingces and unsteadiness would
govern beyond that level converging into a limit cycle. Sbelmaviour is another subject of

study involving temporal evolution of flow field.

Eventually, It should be mentioned that in a rocket engiaegéntial modes, or mixtures of
tangential modes are typically not only more easily setfited ones, but also they are the
most troublesome modes in prevention and controlling aspdterefore, a comprehensive
3-D analysis is of the most value than any means of 2-D maodgtif the phenomenon. More-
over, it should also be noted that the iterative nature ofiikéhod allows implementation of
more complex non-linear flame models and application of liear boundary conditions

when needed.
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Figure 5.6: The choked rocket motor stability map for selverades. "0” stands for stable;
"X" unstable mode.

5.5 THE CHOKED ROCKET MOTOR CASE IN 3-D

For demonstrative purposes, the exactly same setup camealsgamined in 3-D. What 3-
D case involves are extra computational burden, tetrahedetls instead of triangles, and
volumes instead of areas. Additionally, tangential modédch do not even exist in 2-D case,
can also be inspected as to stability conditionings. TherBelBh with 91815 tetrahedral cells
is shown in Fig.5.7. The hard wall natural modes are compefiéciently via PARPACK,

as discussed in chapter 2. Totally 15 modes are computedéoinuhe analysis. Table 5.2
presents the mode numbers computed for the iterative itigtamalysis. Some of the mode

shapes can be viewed in Fig. 5.8. It is interesting that tatigjemodes and mixed tangential
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modes appeared as pairs. The equivalent pairs are excludeel figure.

index number| Mode identity | Wave number k (rgdn)
1 L1 15.2831
2 L2 25.3825
3 Tl 28.5526
4 T1 28.5711
5 L3 36.1271
6 L1T1 35.6129
7 L1T1 35.6312
8 L4 47.0956
9 T2 46.7427
10 T2 46.7017
11 L2T1 46.5996
12 L2T1 46.5809

Table 5.2: Wave numbers of the natural modes consideretiéd3-D chamber

An iterative analysis for instability is performed for thdentical parameters of combustion
on this 3-D version of the chamber in the previous sectionwél@r, the results should not
be reliable due to the fact that the 3-D natural mode solstioave considerable amount
of inaccuracy, as proved and discussed in Chapter 2. $tdlstability map of the rocket
engine can be seen in Figure 5.9. "?” denotes the cases fohithrations did not converge.
Longitudinal modes turned out to be stable in the intenadsexpected and found in the 2-D
case. Tangential modes (i.e.. T1) were expected to be uadiabause there is no obvious
internal or external damping in transverse directions.yTdre found to be unstable, at least
in the present time lag and interaction index intervals. E\wv, as discussed in Section 5.2,
the flame model never has dampirfteet, therefore the tangential modes are not expected to
be unstable in any interval. On the contrary, mixed modesuatogect to the nozzle’s damping
effect. The mixed mode L1T1 had serious converging problemsehemmost probably due
to the fact that the natural modes were not accurate enougtasl expected to be stable in

some intervals.

In summary, the 3-D hard-wall natural mode shape has to hdatatl before any use of
the 3-D stability analysis, despite the fact that the lamdjital modes and tangential mode
analysis complied with the expectations. For the time heamyy 2-D analysis can be used

in a work concerning combustion stability in a duct, where @iscillating modes are to be
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Figure 5.9: The 3-D choked rocket motor stability map foresal modes. "0” stands for
stable; "x” unstable mode.

thrown outside operation interval of the duct by decisivargies in the design of the duct.
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CHAPTER 6

CONCLUSION

In this thesis, for the analysis of linear combustion ingités particularly in liquid-propellant
rocket engines, a methodology, involving Culick’s itevatmethod, is constructed. It was de-
signed as a first step towards simulation and design of caimbusstabilities in 3-D ducts,
mostly applicable to liquid rocket motor chambers. It isya® that the neglection of non-
linear d@fects and mean flowfkects simplifies the analysis down to practical levels where
self-excitement behaviour of possible modes are deteotditei first place. Obtained mode
shapes are not supposed to be reliable solutions as to agh@eause of various assumptions
made. Nevertheless, the information obtained whether teenm question will sustain its
oscillations or be diminished, serves well as a primary itteaughout conceptual design of a
chamber geometry. In case of the instability of a mode, tbhertirand convergence behaviour
of oscillations will always be a mystery in the lack of nondar éfects, for limit cycles are
known to be a mere non-linear phenomenon. On the contratyoanon-linear &ects does
not disrupt any design intended for stability, becauseusioh of them would serve as extra
dissipation, having the tendency to add to the stabilityhefgystem. Thoseffects might be
included in further studies in a step by step manner.

To serve for these purposes, a finite volume natural modessipactor HELM2D) and a
iterative solver YAKAR are developed, taking into account the heatiffgas and bound-
ary condition forcing. Both of them have 2-D and 3-D versiohtowever, the 3-D natural
mode shape extractor requires further improvements wihdriorders of accuracy, due to
the fact that the modes are not captured well enough with @nsegrder of accuracy finite
volume discretization. A finite element discretizationiwifuadratic interpolation functions
is expected to diice for that purpose. Therefore, 2-D analysis of two casesmhasized

for now. Still, an example of rocket combustion is simulate8-D. In chapter 3, solution for
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a duct with inactive flame but with impedance wall conditiervalidated, whereas in chapter
4, the famous Rijke tube is analysed as to the behaviour dfirgtetone of vibration. The
method performed well in both cases with some exceptionahieurs. A sample instabil-
ity analysis of a simple liquid-propellant combustion cheamnis also assessed in Chapter 5.
Some mixed modes tended to be unstable whereas all of thedgwency longitudinal mode
oscillations were decayed because of intensive damptiegteof nozzle. A 3-D analysis was
found to be vital, which additionally includes the resulfstangential modes. Hence, the
rocket is also tested in 3-D analysis for the sake of compardd those tangential modes. It
was already predicted that the 3-D solution would be probt&rbecause of the inaccuracy
of natural mode shape basis. Eventually, some mixed mods daded to converge for the
3-D case, whereas the rest was found to comply with the 2-Dtses

To conclude, the methodology discussed proved to be sdat@ssractical applications
where a duct with proper heat and boundary models is to bese$evhether it sustains any
acoustic vibrations or not before any following design stdpue to the assumptions involved,
the reliance on mode shape solutions should be avoided farthough. The time required
for solution of cases is also extremely small compared tawther works which might even
extend to several days. Moreover, the fact, that heat anddawy condition implementations
are simple flexible functions dependent on current flow édes on the iterative step, over-
whelms some other methods involving quadratic non-linégerevalue problems with large
matrices which have always been quitéidult to solve. The flexibility of the method might
also make it easier to include non-linear models of combnstind application of bound-
ary conditions as non-linear functions, not less than &rrimplementations and models in

further progresses.
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Appendix A

DERIVATION OF LINEARIZED EULER EQUATIONS

Throughout the linearization of Euler equations, the felltgy assumptions are adopted for
the problem in consideration:

¢ Inviscid and adiabatic flow

e Cp, Cy andy are constant

e Fluctuations oly, p, T, o andQ are small

¢ Uniform steady state pressure and dengiy;og are constant

A.1 Continuity equation

The conservation of mass inffirential form without a source nor sink can be written as,

dp
5V (V) = (A.1)

Linearization of the parameters around mean values leads to

Moot 2) v (oo + ) Vo + V) = O (12
Then,
o,y (p\70)+ +v (V) + V- (0'Vo) + V - (o'V') = 0 (A.3)

ot
The mean flow already obeys conservation law, hence the \icstérms are zero. Mean

velocity field is assumed to be uniform, making fifth term zewlso eliminating second
order fluctuating term results in the linearised contineityiation :

op’

V.V =0 A.4
5 T PO (A.4)
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A.2 Momentum equation

The conservation of momentum infiirential form without viscosity stresses and body forces
can be described as,
DV
—+V 0 A.5
por TVP= (A.5)
Linearise the gas properties around mean values,
D(Vo + V)

(o +p") Dt

+V(po+p)=0 (A.6)
Expanding,

No N’ No o N
00— +p0V YWo+po— +poV - YV + p/ — 0 +p'N-Wo+p' — +p' NV +V(po+p) = 0
ot ot ot ot
(A.7)
AssumeVy = 0 as a special case of classical acoustics. And eliminateatiges of uniform

and constant termgo, oo;

po—; VV +p'6a—\f +p'V VW +Vp =0 (A.8)

Finally, by eliminating the second order fluctuations,

N’
A.9
PO (A.9)
gives the linearised momentum equation.
A.3 Energy Equation
The diferential energy equation with a heat source term is simpbyvknas,
E
G—T +V-|V(Er +p)|=Q (A.10)
And it can be rewritten in per volume form as,
dper
—'(;t +V- [V(peT + p)] =q (A.11)

whereer = e+ %|\7|2 is the total energy per mass a@e C,T is the internal energy per mass.

It can be derived using ideal gas relations that,

p=p(y-1e (A.12)
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Then,
9 p

p
=P
ot ( ply—-1) ey -1)
Linearise the gas properties around mean values,

+ %p|\7|2) +V-V (p + %p|\7|2 + p) =q (A.13)

(B S+ V)

+V- (Vo + V) (py°+f + %(po +0 ) (Vo + V') + pg + p’) =q (A.14)

As before, the mean velocity is assumed to be zero and messupesand density be uniform.

Also neglect second order fluctuating terms,

1 9p Po
— 4+ V.V 4 VWV = Al
it Ty-o1 + Po q (A.15)
After some manipulations linearised energy equation shgws

op’
ot

+poyV-V = (y - 1) (A.16)
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Appendix B

ANALYTICAL SOLUTION OF THE SIMPLE CASE

The following PDE is to be solved analytically

PP,
e THP=0
witha—p =0atx=0
ox
op ik,
and&—zp_Oatx_L (B.1)

To begin with, assume a general harmonic solution satigfyfre equation with arbitrary
codficients in complex domain
p = ¢tk 4 cogknx (B.2)
op . gknX _ il giknx
vl Chikn - C,ikn€e (B.3)
And for the first boundary condition at= 0

Ch =C, =Cn (B.4)
For the second condition at= L
o . . ik . .
Chikn*t — crikpe Kl — ?”(cne"‘nL +cekly =0 (B.5)
or,
) . 1 . .
elknl— _ e—lknl- — Z(elknL + e—lknl—) (86)
and substituting trigonometric forms by Euler’s formula
isink,L 1
coskL Z
—i
tank\L = — B.7
ol = = (8.7)
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equivalently,

tan(k,L — nr) = %I (B.8)
Finally, . _
Vs Ry

kn = nE + Etan 1(?) (Bg)

is the general solution of the dispersion relation wiresé\.
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