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Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: CEREN KARAHAN

Signature :

iii



ABSTRACT

PRICING INFLATION INDEXED SWAPS USING AN EXTENDED HJM FRAMEWORK
WITH JUMP PROCESS

Karahan, Ceren

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

December 2010, 57 pages

Inflation indexed instruments are designed to help protect investors against the changes in the

general level of prices. So, they are frequently preferred by investors and they have become

increasingly developing part of the market. In this study, firstly, the HJM model and foreign

currency analogy used to price of inflation indexed instruments are investigated. Then, the

HJM model is extended with finite number of Poisson process. Finally, under the extended

HJM model, a pricing derivation of inflation indexed swaps, which are the most liquid ones

among inflation indexed instruments in the market, is given.

Keywords: inflation indexed swap, HJM model, jump process, foreign currency analogy,

inflation
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ÖZ

ENFLASYONA ENDEKSLİ SWAPLARIN SIÇRAMA SÜRECİ İÇEREN
GENİŞLETİLMİŞ HJM MODELİ KULLANILARAK FİYATLANDIRILMASI

Karahan, Ceren

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Aralık 2010, 57 sayfa

Enflasyona endeksli enstrümanlar yatırımcıları genel fiyat seviyesindeki deg̃işimlere karşı ko-

rumaya yardımcı olmak için dizayn edilmiştir. Bu nedenle, yatırımcılar tarafından sıklıkla

tercih edilmekte ve piyasanın hızla büyüyen bir parçası haline gelmektedir. Bu çalışmada,

ilk olarak, enflasyona endeksli enstrümanların fiyatlanmasında kullanılan HJM model ve

döviz analojisi incelenmiştir. Daha sonra, HJM model sonlu sayıda Poisson süreci eklenerek

genişletilmiştir. Son olarak, genişletilmiş bu yeni HJM model altında, piyasada yer alan en-

flasyona endeksli enstrümanlar arasında likitidesi en fazla olan enflasyona endeksli swapların

fiyatlandırılması yapılmıştır.

Anahtar Kelimeler: enflasyona endeksli swap, HJM model, sıçrama süreçleri, döviz analojisi,

enflasyon
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CHAPTER 1

INTRODUCTION

In the financial analysis, savers are interested in the real purchasing power of their savings.

Since securities and other savings derivatives have been based on a nominal basis, new in-

struments have been offered to get future real value. Inflation indexed securities are among

these new instruments. In fact, no other asset class is able to provide such a level of protection

against the erosion of purchasing power (see [13]). Hence, these securities are getting more

and more popular with this protection advantage. The main subject about inflation indexed

securities is pricing. Foreign currency analogy has been used for modeling such as these se-

curities. This analogy is based on Heath, Jarrow and Morton (HJM) [20] framework. So, it

is important to learn HJM framework and foreign currency analogy to price inflation indexed

securities.

The purposes of this thesis are to investigate importance of the inflation indexed securities,

to review HJM framework and foreign currency analogy, to extend HJM framework with

jumps under foreign currency analogy and to price inflation indexed swaps using this extended

model.

The outline of this thesis is as follows. In Chapter 2, we present a review of the studies on

the subject of inflation indexed securities. In Chapter 3, the mathematical preliminaries on

stochastic calculus, jump process are given. Chapter 4 presents HJM framework and foreign

currency analogy in detail that is introduced by Jarrow and Yıldırım. In Chapter 5, the ex-

tended HJM framework with jumps is introduced. In Chapter 6, derivation is given for prices

inflation indexed swaps using the model in Chapter 5. Chapter 7 includes the conclusion part.
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1.1 Inflation

In an economy, inflation is a rise in the general level of prices about a basket of goods and

services over a period of time. If the prices decrease then it is called deflation. According

to this basket components and their respective weights different inflation indexes can be de-

fined. For example, the Consumer Price Index (CPI), the Producer Price Index (PPI) and the

Gross Domestic Product (GDP) are the most common indexes. There are also product spe-

cific indexes like UK PRIX, which excludes mortgage interest payments and Euroland CPI

ex-tobacco which excludes price changes on tobacco. Some indexes are connected with a

category of the society like CPI-U for urban consumers in the USA and CPI for employees

and workers in Italy.

The most common form of inflation in the financial market is the CPI. The CPI measures

changes in the price level of consumer goods and services which are purchased by households

to meet particular needs. Since following the price of whole goods and services in the market

is difficult, the ones with more shares in the total of the consumer expenditures are taken

into account. These specific goods and services and their weights are usually based upon

expenditure data obtained from expenditure surveys for a sample of households.

So, the inflation rate is a measure of average change in prices across the economy over a

specified period. In Turkey, it is published monthly by national statistic institutes. If the

monthly rate is 2, it means that the prices would be 2 % higher than previous month. That is,

a typical goods and services costing 100 TL last month would cost 102 TL this month.

If we have a look causes of the inflation, we can talk about three main reasons the first one

is the level of monetary demand in the economy. In the case total demand is less than total

supply; the price level will tend to rise, so inflation rises. The other factor is the level of costs.

Increasing the cost of the row materials and productive effort raises inflation. The last factor

is expectation of inflation. Increasing expectation affects wages and prices. Because today’s

wages can buy today’s goods and services. The wages must rise to protect purchasing power.

So, companies increase their costs because of the wages. This costing increase reflects to

consumers such as high prices. Figure 1.1 shows monthly inflation rates between years 2009

and 2010.

Up to now we mentioned about definition and meaning of inflation and its causes. So, we
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Figure 1.1: Annual Inflation Rate in Turkey

can say that inflation is one of the most important components of economy. Investors want to

protect themselves from the purchasing power of money that changes with uncertainty future

inflation. According to this, inflation indexed securities can be used as one of the most popular

protection ways nowadays.

1.2 Inflation Indexed Securities

Cash flows of securities can base on an index in order to protect investors and issuers from

the fluctuations in price of goods and services affected by that index. If that index is inflation,

then these securities are called inflation indexed securities.

Although indexation theory has grown for the last two decades, its background started with

the 18th century. Deacon, Derry and Mirfendereski [13] gives the history of indexation. In

1707, Bishop William Fleetwood did a study about purchasing power of money. A fellowship

was established in 1450 with membership restricted with an annual income of less than £5.

He examined changes in prices of corn, meat, drink, clothes between 1450 and 1700; and

found a huge increase in the prices. At the end of the study, he showed that in 1707 an

individual with a real annual income less than £5 would participate into the fellowship. In

1742 the State of Massachusetts issued bills indexed to the cost of silver on the London

Exchange. When the silver price appreciated with great speed according to general price
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level, a group of commodities price were inserted indexation method. Then, a basket of goods

and associated price index was defined for the first time. After the State of Massachusetts

indexation definition, works on this subject increase rapidly. The first studies constructed on

index to represent level of prices came from Sir George Shuckburgh Evelyn (1798), Joseph

Lowe (1822) and Poulett Scope (1833). Stanly Jevons (1875) suggest that gold price be used

by a price index. During the second half of the 20th century index debt become popular in

the financial markets and several countries begin issuing indexed securities. In Turkey, the

first inflation indexed bond was issued in 1994 based on Wholesale Price Index. After these

bonds, new issued bonds were based on CPI.

The difference between conventional bonds and inflation indexed bonds is while Conventional

bonds give fixed nominal return, inflation indexed bonds give real rate of return known in

advance and return changes with the rate of the inflation. When conventional bonds are issued,

real returns are not known because future inflation is not known. For example, a one-year

conventional bond for 1000 TL pays out principal and nominal rate of return 5 %. This bond

pays 1050 TL at maturity. Suppose inflation is 3% over the year, so it will cost 1030 TL to buy

what 1000 TL buys at the beginning of the investment. Thus, 20 TL is the extra purchasing

power at the maturity. Suppose inflation is 7 %, it will cost 1070 TL to buy what 1000 TL

buys at the beginning of the investment. Thus, purchasing power decreases with inflation risk.

However, if we buy an inflation indexed bond, we know that at maturity we will able to buy a

certain number of baskets of goods and services.

Inflation indexed securities help issuers and investors to reduce their risk arising from infla-

tion. Governments like issuer get some benefits from inflation indexed securities. By issuing

indexed bonds eliminates the inflation risk premium which is one part of the yield of conven-

tional nominal bonds. Since indexed bonds are free of inflation risk, it can be thought there

is no need for the inflation risk premium component. So the governments obtain cheaper bor-

rowing. At the same time, issuing inflation indexed securities give signal to the market about

controlling inflation by government. And these derivatives help conducting asset-liability

management more realistically. At the sight of investors, the certain real return can be attrac-

tive for investors who are risk averse and who want to protect their savings from being eroded

by inflation.

There are some limitations of the benefits of inflation indexed securities. Since the indexes
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are not immediately available in the market, a lagged index must be used. For example, in

the most countries CPI for a given month is published in the middle of the following month.

So, it is more significant for the derivatives whose cash flows due in the second half of the

publication month. On the other hand, different indexes give different measure of inflation.

For example, while the GDP deflator is the best measure for the treasury, the CPI is the best

measure for investors.
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CHAPTER 2

LITERATURE REVIEW

In the 1990s, markets trading inflation indexed derivatives began to develop. So, the rise of

inflation indexed markets has sparked some academic research activity.

Deacon, Derry and Mirfendereski [13] give one of the most detailed studies in the literature

about inflation indexed securities. Their study includes the history of indexed bond markets

county by country. Also, some fundamental information about indexed securities is given in

detail.

Hughston [25] introduces a general theory for pricing and hedging of inflation indexed deriva-

tives. He uses the foreign currency analogy with nominal, real discounted bonds and inflation

index under such as domestic economy, foreign economy and exchange rate between these

two economies, respectively.

Dodgson and Kainth [14] use two-process Hull-White model to price inflation indexed deriva-

tives. They give the closed-form solutions with constant volatilities. Then, they extend their

model with local stochastic volatility. Finally, they price inflation indexed caps and floors

using Monte Carlo sampling with local volatility of inflation.

Stewart [36] uses Hull-White extended Vasicek model to price inflation indexed swaps, caps

and floors. He gives the calibration of the inflation model and also gives the calibration of

inflation indexed swaptions, caps and floors.

Jarrow and Yıldırım [27] use three-factor HJM model to price TIPS. They use the model with

time series evolutions of the inflation index, nominal and real zero coupon bond price curves.

They find that there is a negative correlation between real rate ad inflation rate. They give the
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hedging performance of the model. Finally, they give the pricing derivation of the inflation

indexed call option.

Leung and Wu [29] give pricing derivation of inflation indexed derivatives under an extended

HJM model which includes continuous compounding nominal and inflation forward rates.

They introduce an extended market model for inflation rates and they give pricing formulas

for this market model. They conclude with the calibration to the market data.

Mercurio [31] uses Jarrow-Yıldırım approach to model inflation. He gives pricing derivation

of inflation indexed swaps and options using this model. Then, he introduces two market

models and he gives pricing derivation of inflation indexed swaps and options using these

market models. Finally, he tests the performance of the two market models by the calibration

to the market data for inflation indexed swaps.

Beletski [2] presents the extended Vasicek model for inflation rate and a geometric Brownian

motion for consumer price index. Under risk neutral measure pricing formulas of inflation

indexed products are given. He also studies on the continuous time optimization problems.

Malvaez [30] gives pricing derivation of swaps and swaptions using Jarrow-Yıldırım model.

He studies estimation of parameters for European swaptions using quasi-Monte Carlo simu-

lation.

Belgrade, Benhamou and Koehler [3] give the relationship between zero coupon bond price

and year on year swaps under no arbitrage assumption. Their model is driven only by the term

structure of volatilities. They compute convexity adjustments for pricing of inflation indexed

derivatives.

Haastrecht and Pelsser [19] use a multi-currency model to give the pricing of FX, inflation

and stock options. They give their model with stochastic interest rate, stochastic volatility and

with correlations. They derive pricing formulas for vanilla call/put options, forward starting

options, inflation indexed swaps, caps and floors. Finally, they give an example of calibration

to the market data.

Chiarella and Sklibosios [10] use Shirakawa framework to derive a stochastic dynamics sys-

tem for instantaneous forward rates. They give bond pricing formulas. Finally, they give some

numerical simulations.
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Björk, Kabanov and Runggaldier [5] give the term structure of zero coupon bonds with inter-

est rate that is modeled by Wiener and marked point process. They investigate the complete-

ness and the uniqueness of a martingale measure for finite jump process.

Runggaldier [34] investigates pricing and hedging of contingent claims in financial markets

which includes jump diffusion type models. He considers the stochastic volatility correlated

with jump diffusions. He discusses completion of the market under jump diffusion setting.

Finally, he gives hedging strategies both under incomplete and complete market condition.

Hinnerich [23] uses and extended HJM model to price inflation indexed swaps. Her model

includes Wiener process and general marked point process for forward rates and inflation

index. She also prices options on TIPS-bonds under the model driven by Wiener process. She

introduces an inflation swap market model and gives pricing derivation of inflation indexed

swaptions under this model.

Takadong [37] uses Levy distributions, macro economic factors, no arbitrage and pricing

kernel models to improve the match between model prices and observed prices. He gives

empirical study on market data of South Africa and America.
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CHAPTER 3

PRELIMINARIES

This chapter gives definitions and basic rules that are used in this thesis. Stochastic process,

jump process and change of numeraire sections are prepared using Shreve [35], Lamberton

and Lapeyre [28], Björk [4], Brigo and Mercurio [8], Güney [18], Hinerrich [23], Cont and

Tankov [11] and Runggaldier [34].

3.1 Fundamentals of Stochastic Process

Definition 3.1.1 A continuous time stochastic process in a space E endowed with aσ-algebra

E is a family Xt of random variables defined on a probability space (Ω, A, P) with values in

a measurable space (E,E).

Definition 3.1.2 Consider the probability space (Ω,A, P) a filtration (Ft)t≥0 is an increasing

family of σ-algebras included inA.

Definition 3.1.3 Let (Ω, A, P) be a probability space. A Brownian motion is a real valued

continuous stochastic process (Xt) t≥ 0 with independent and stationary increments.

• Continuity: P- a.s. the map s 7−→ Xs(w) is continuous.

• Independent increments: If s ≤ t, then Xt − Xs is independent of F s = σ (Xu, u ≤ s).

• Stationary increments: If s ≤ t, then Xt − Xs and Xt−s − X0 have the same probability

law.
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Definition 3.1.4 If is Brownian motion then Xt − X0 is a normal random variable with mean

rt and variance σ2t, where r and σ are constant real numbers.

Definition 3.1.5 On probability space (Ω,A,P) a stochastic process (Xt)t≥0 is an adapted

adapted process to filtration F if for all t Xt is F t - measurable.

Definition 3.1.6 An adapted sequence (Xt) t≥0 on a probability space (Ω,A,P) with a filtra-

tion (F t) t≥0 on this space martingale if for any s ≤ t

E[Xt | Fs] = Ms.

Definition 3.1.7 An adapted sequence (Xt)t≥0 of random variables is predictable if, for all

t ≥ 1, Xt is Ft−1 - measurable.

Definition 3.1.8 .

• If Y and Z are stochastic random variables and Z is Ft−1 - measurable, then

E[ZY | Ft] = ZE[Y | Ft].

• If Y is stochastic random variable , and if s < t, then

E[E[Y | Ft] | Fs] = E[Y | Fs].

Definition 3.1.9 Let (Ω,F , (Ft) t≥0,P) be a filtered probability space and (Wt) t≥0 an F -

Brownian motion. (Xt) 0≤t≤T is an R- valued Ito process if it can be written as P a.s. ∀

t ≤ T,

Xt = X0 +

∫ t

0
Ksds

∫ t

0
+HsdWs, (3.1)

where

• X0 is F 0- measurable.

• (Kt) 0≤t≤T and (Ht) 0≤t≤T are F t adapted processes.

•
∫ t

0 |Ks| ds < ∞.

10



•
∫ t

0 H2
s ds < ∞ P a.s..

Definition 3.1.10 The quadratic variation of the Ito process is 〈X, X〉t =
∫ t

0 H2
s ds.

Theorem 3.1.11 Let (Xt) 0≤t≤T be an Ito process satisfying (3.1) and f be twice continuously

differentiable function, then

f (Xt) = f (X0) +

∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs) d〈X, X〉s

where by definition 〈X, X〉t =
∫ t

0 H2
s ds and∫ t

0
f ′(Xs) dXs =

∫ t

0
f ′(Xs)Ks ds +

∫ t

0
f ′(Xs)Hs dW(s).

Theorem 3.1.12 (Ito-Doeblin Formula) Let (Xt) t≥0 be an Ito process and f(t,x) be a function

for which the partial derivatives, ft(t, x), fx(t, x), fxx(t, x) are defined and continuous. Then,

for every T ≥ 0,

f (T, Xt) = f (0, X0) +

∫ t

0
ft(t, Xt) dt +

∫ t

0
fx(t, Xt) dXt

+
1
2

∫ t

0
fxx(t, Xt) d〈X, X〉t.

Proposition 3.1.1 (Ito-Integration by Parts Formula) Let (Xt) t≥0 and (Yt) t≥0 be two Ito

processes such that

Xt = X0 +

∫ t

0
Ks ds +

∫ t

0
Hs dWs

and

Yt = Y0 +

∫ t

0
Ms ds +

∫ t

0
Ns dWs,

then

XtYt = X0Y0 +

∫ t

0
Xs dYs +

∫ t

0
Ys dXs + 〈X,Y〉t

with 〈X,Y〉t =
∫ t

0 HsNs ds.

Definition 3.1.13 Let (Ω,F ) be probability space. Two probability measure P and P̃ on

(Ω,F ) are said to be equivalent if they agree, which sets in F have probability zero.
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Definition 3.1.14 Let (Ω,F ,P) be a probability space. Let P̃ be another probability measure

on (Ω,F ) that is equivalent to P and let Z be almost surely positive random variable that

relates P and P̃. Then Z is called the Radon-Nikodym derivative of P̃ with respect to P, and

we write

Z =
dP̃
dP

.

Definition 3.1.15 (Radon-Nikodym) Let P and P̃ be equivalent probability measures defined

on (Ω,F ). There exists an almost surely positive random variable Z such that E[Z] = 1, and

for every A ∈ F holds

P̃(A) =

∫
A

Z(ω)dP(ω).

Theorem 3.1.16 (Girsanov Theorem) Let (Ω, F , P) be a probability space and let (Wt)t≥0

be a Brownian motion for this space. Let (θt)t≥0 be an adapted process. Define

Zt = exp (−
∫ t

0
θu dWu −

1
2

∫ t

0
θ2

u du)

W̃t = Wt +

∫ t

0
θu du

and assume that

E
∫ T

0
θ2

uZ2
u du < ∞.

Set Z = Z(T ). Then EZ = 1, and under probability measure P̃ the process W̃t is a Brownian

motion.

Theorem 3.1.17 (Girsanov Theorem for multiple dimensions) Let T be a fixed positive

time and θu = (θ(1), ..., θ(d)) be a d-dimensional adapted process. Define

Zt = exp (−
∫ t

0
θu dWu −

1
2

∫ t

0
‖θu‖

2 du)

W̃t = Wt +

∫ t

0
θu du

and assume that

E
∫ T

0
‖θu‖

2Z2
u du < ∞.

Set Z = Z(T ). Then EZ = 1, and under probability measure P̃ the process W̃t is a d-

dimensional Brownian motion.
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Definition 3.1.18 (Xt) 0≤t≤T is an Ito process if

Xt = X0 +

∫ t

0
Ks ds +

p∑
i=1

∫ t

0
Hi

s dW i
s

where

• Kt and all the processes Hi
t are adapted to F t

•
∫ T

0 |Ks| ds < ∞ ,

•
∫ T

0 (Hi
s)

2 ds < ∞ .

Proposition 3.1.2 Let (X1
t , X

2
t , .., X

n
t ) be n Ito processes

Xi
t = Xi

0 +

∫ t

0
Ki

s ds +

p∑
j=1

∫ t

0
Hi, j

s dW i
s

Then, if f is twice differentiable with respect to x and once differentiable with respect to t with

continuous partial derivatives in (t,x),

f (t, X1
t , .., X

n
t ) = f (0, X1

0 , .., X
n
0) +

∫ t

0

∂ f
∂s

(s, X1
s , .., X

n
s )ds

+

n∑
i=1

∫ t

0

∂ f
∂Xi

(s, X1
s , .., X

n
s )dXi

+
1
2

n∑
i, j=1

∫ t

0

∂2 f
∂Xi∂X j

(s, X1
s , .., X

n
s )d〈Xi, X j〉s

where

• dXi
s = Ki

sds +

p∑
j=1

Hi, j
s dW j

s

• d〈Xi, X j〉s =

p∑
m=1

Hi,m
s H j,m

s ds.

Definition 3.1.19 A T maturity zero-coupon bond is a contract that guarantees its holder the

payment of one unit of currency at time T with no intermediate payments. The contract value

at time t < T is denoted by P(t,T ). Clearly, P(t,T ) is equal to 1 for all T.
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Definition 3.1.20 The bank account/money market account process is defined by

Bt = exp
∫ t

0
rs ds

with

dBt = rtBt dt

B0 = 1

Definition 3.1.21 A discount factor D(t,T ) between to time instants at time t and T is the

amount at time t that is equivalent to one unit of currency payable at time T and is given by

D(t,T ) =
B(t)
B(T )

= exp(−
∫ T

t
r(s)ds).

Definition 3.1.22 The simple compounded forward rate contracted at time t for expiry T and

maturity S, t < S < T is defined as

L(t; S ,T ) = −
P(t,T ) − P(t, S )
(T − S )P(t,T )

.

Definition 3.1.23 The simple spot rate for [T, S ] is defined as

L(S ,T ) = −
P(S ,T ) − 1

(T − S )P(S ,T )
.

Definition 3.1.24 The continuously compounded forward rate contracted at time t for expiry

T and maturity S, t < S < T, is defined as

R(t; S ,T ) = −
log P(t,T ) − log P(t, S )

T − S
.

Definition 3.1.25 The instantaneous forward rate which maturity T, contracted at time t, is

defined as

f (t,T ) = lim
S→T

L(t,T, S ) = −
∂ ln P(t,T )

∂T
.

Definition 3.1.26 The instantaneous short rate at time t is defined as

r(t) = f (t, t).

14



Definition 3.1.27 Any simply compounded forward rate spanning a time interval ending in T

is a martingale under the T-forward measure for each 0 ≤ u ≤ t ≤ S ≤ T

E[F(t; S ,T ) | Ft] = L(u; S ,T ).

Definition 3.1.28 For t ≤ s ≤ T

P(t,T ) = P(t, s) exp(−
∫ T

s
f (t, u) du)

and, in particular,

P(t,T ) = exp(−
∫ T

t
f (t, s) ds).

3.2 Fundamentals of Jump Process

Definition 3.2.1 Let (τi)i≥0 be a sequence of independent exponential random variables with

parameter 1
λ and Tn =

∑n
i=1 τi the process (Nt) t≥0 defined by

Nt =
∑
n≥1

1t≥Tn

is called a Poisson process with intensity λ.

Proposition 3.2.1 (Poisson Process) Let (Nt) t≥0 be a Poisson process.

1. For any t > 0, (Nt) is almost surely finite.

2. For any ω, the sample path , t 7−→ Nt(ω) is piecewise constant and increasing.

3. The sample paths t 7−→ Nt are right continuous with left limits (cadlag process).

4. For any t > 0, Nt−= Nt with probability 1.

5. Nt is continuous in probability, ∀t > 0 as s→ t, Ns → Nt.

6. For any t > 0, Nt follows a Poisson distribution with parameter λt, ∀n ∈ N

P(Nt = n) =
exp(−λt)(λt)n

n!
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7. The characteristic function of Nt is given by

E(eiuNt ) = exp(λt(eiu − 1)), ∀u ∈ R

8. Nt has independent increments: for any t1 < t2 < .. < tn; Ntn − Ntn−1 , Ntn−1 − Ntn−2 ,...,

Nt2 − Nt1 , Nt1 are independent random variables.

9. The increments of Nt are stationary: for any t > s, Nt − Ns has the same distribution of

Nt−s.

10. Nt has the Markov property: ∀t > s

E( f (Nt) | Nu, u ≤ s) = E( f (Nt) | Ns).

Lemma 3.2.2 Let Xt be a counting process with stationary independent increments. Then Xt

is a Poisson process.

Theorem 3.2.3 Let Nt be a Poisson process with intensity λ. Then the compensated Poisson

process

Mt = Nt − λt

is a martingale.

Proposition 3.2.2 Let Wt be a Brownian motion and Mt = Nt − λt be a compensated Poisson

process relative to the same filtration. Then

[W,M]t = 0.

Definition 3.2.4 Let be given E ⊂ Rd. A radon measure on (E,B) is a measure µ such that

for every compact measurable set B ∈ B, µ(B) < ∞.

Definition 3.2.5 (Poisson Random Measure) Let (Ω,F ,P) be a probability space, and µ a

Radon measure on (E, E). A Poisson random measure on E with intensity measure µ is an

integer valued random measure:

M : Ω × E → N

such that

16



1. For all w ∈ Ω, M(w, .) is an integer valued radon measure on E: for any bounded

measurable A ∈ E, M(A) < ∞ is an integer valued random variable.

2. For each measurable set A ∈ E M(., A) = M(A) is a Poisson random variable with

parameter µ(A): ∀k ∈ N

P(M(A) = k) =
exp(−µ(A))(µ(A))k

k!

3. For disjoint measurable sets A1, ..., An ∈ E, the variables M(A1), ...,M(An) are inde-

pendent.

Theorem 3.2.6 Let M be a Poisson random measure with intensity µ. Then compensated

Poisson random measure

M̃ = M − µ

is a martingale.

Proposition 3.2.3 Let M be a Poison random measure on E = [0,T ]×Rd \ {0} with intensity

µ with compensated random measure M̃ = M − µ and f : E → Rd. Then the process

Xt =

∫ t

0

∫
Rd\{0}

f (s, y) M̃(ds, dy)

=

∫ t

0

∫
Rd\{0}

f (s, y) M(ds, dy) −
∫ t

0

∫
Rd\{0}

f (s, y) µ(ds, dy)

is a martingale.

Definition 3.2.7 (Marked Point Process) A marked point process on (Ω,F ,P) is a sequence

(Tn,Yn)n≥1, where

1. (Tn)n≥1 is an increasing sequence of random times with Tn −→ ∞ almost surely as

n −→ ∞.

2. Yn is a sequence of random variables taking values in E.

3. The value of Yn is FTn measurable.
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Definition 3.2.8 (Compound Poisson Process) A compound Poisson process with intensity

λ > 0 and jump size distribution f, is a stochastic Process Qt defined as

Qt =

Nt∑
i=1

Yi,

where jump sizes are independent identically distributed random variables with distribution f

and Nt is a Poisson process with intensity λ, independent from (Yi)i≥1. The jumps in Qt occur

at the same time as the jumps in Nt.

Definition 3.2.9 (Levy Process) A stochastic process Xt on (Ω,F ,P) with values in Rd such

that X0 = 0 is called a Levy process if it satisfies the following prosperities:

1. Independent increments: for every increasing sequence of times t0, ..., tn the random

variables Xt0 , Xt1 − Xt0 , ..., Xtn − Xtn−1 .

2. Stationary increments: the law of Xt+h − Xt does not depend on t.

3. Stochastic continuity: for all ε > 0, limh→0 P(|Xt+h − Xt| ≥ ε) = 0.

Definition 3.2.10 A probability distribution F on Rd is said to be infinitely divisible if for

any integer n ≥ 2, there exists n i.i.d random variables Y1, ...,Yn such that Y1 + ... + Yn has

distribution F.

Definition 3.2.11 (Levy Measure) Let Xt be a Levy process on Rd. The measure ν on Rd

defined by:

ν(A) = E[number o f {t ∈ [0, 1] : ∆Xt , 0,∆Xt ∈ A} ] (A ∈ B(Rd))

is called the Levy measure of X: ν(A) is expected number per unit time of jumps whose size

belongs to A.

Proposition 3.2.4 Let M be a random measure with intensity µ. Then the following for-

mula holds for every measurable set B such that µ(B) < ∞ and for all functions f such that∫
B exp( f (x))µ(dx) < ∞:

E[exp(
∫

B
f (x)M(dx))] = exp(

∫
B
(exp( f (x)) − 1)µ(dx)).
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Proposition 3.2.5 (Levy-Ito decomposition) Let Xt be a Levy process on Rd and ν its Levy

measure.

1. ν is a radon measure on Rd \ {0} and verifies:∫
|x|≤1
|x|2ν(dx) < ∞

∫
|x|≥1

ν(dx) < ∞

2. The Jump measure of X, denoted by µ, is a Poisson random measure on [0,∞[×Rd with

intensity ν(dx)(dt).

3.

Xt = γt + Bt + Xl
t + lim

ε→0
X̃ε

t (3.2)

where

Xl
t =

∫
|x|≥1

xµ(ds, dx)

X̃ε
t =

∫
ε≤|x|<1

x(µ(ds, dx) − ν(dx)ds).

The terms in (3.2) are independent and convergence in the last term is almost sure and uniform

in t on [0,T].

Definition 3.2.12 Let Xt be a Levy process with the Poisson random measure µ on E =

[0,T ] × Rd \ {0} and Nt Poisson process.

Xt = X0 +

∫ t

0
α(s)ds +

∫ t

0
β(s)dW(s) +

∫ t

0

∫
E
γ(s, y) µ(ds, dy).

Given a f ∈ C1,2(R2), ito formula defined by

d f (t, Xt) = ft(t, Xt)dt + fX(t, Xt)α(t)dt +
1
2

fXX(t, Xt)β(t)2dt

+ fX(t, Xt−)β(t)dW(t) +

∫
E

[ f (t, Xt + γ(t, y)) − f (t, Xt−)]µ(dt, dy)

3.3 Change of Measure

Definition 3.3.1 A numeraire is any positive non-dividend paying asset.
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Theorem 3.3.2 Let N be a positive non-dividend paying asset, either primary or derivative,

in the multidimensional market. Then there exist a vector volatility process

v(t) = (v1(t), ..., vd(t))

such that

dN(t) = R(t)N(t)dt + N(t)v(t) dW̃(t).

This equation is equivalent to each of the equations

d(D(t)N(t)) = D(t)N(t)v(t) dW̃(t)

D(t)N(t) = N(0) exp(
∫ t

0
v(u) dW̃(u) −

1
2

∫ t

0
‖v(u)‖2 du)

N(t) = N(0) exp(
∫ t

0
v(u) dW̃(u) +

∫ t

0
(R(u) −

1
2
‖v(u)‖2) du).

In the other words under the risk neutral measure every asset has a mean return equal to the

interest rate.

According to multidimensional Girsanov theorem we can use the volatility vector of N(t) to

change the measure:

W̃N
j (t) = −

∫ t

0
v j(u) du + W̃ j(t), j = 1, ..., d

and a new probability measure:

P̃N(A) = −

∫
A

D(t)N(t)dP̃ f or all A ∈ F .

Theorem 3.3.3 Let S(t) and N(t) be the prices of two assets denominated in a common cur-

rency and let σ(t) = (σ1(t), .., σd(t)) and v(t) = (v1(t), ..., vd(t)) denote their respective volatil-

ity vector processes:

d(D(t)S (t)) = D(t)S (t)σ(t) dW̃(t)

d(D(t)N(t)) = D(t)N(t)v(t) dW̃(t).

Take N(t) as a numeraire so that the price of S (t) becomes S N(t) =
S (t)
N(t) . Under the measure

P̃N the process S N(t) is a martingale. Moreover

dS N(t) = S N(t)(σ(t) − v(t)) dW̃N(t).
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Proposition 3.3.1 Assume that there exist a numeraire N and a probability measure QN ,

equivalent to the initial Q0, such that the price of any traded asset X (with no-dividend pay-

ment) relative to N is a martingale under QN , i.e.,

Xt

Nt
= EN(

XT

NT
| Ft)

Let U be a arbitrary numeraire. Then exist a probability measure QU , equivalent to the initial

Q0, such that the price of any attainable claim Y normalized by U is a martingale under QU ,

i.e.,
Yt

Ut
= EU(

YT

UT
| Ft).

Moreover the Radon-Nikodym derivative defining the measure QU is given by

dQU

dQN =
UT N0

U0NT
.

Proposition 3.3.2 Let QIP and Qn are probability measures

ZT =
QT−IP

Qn onFt

where

ZT =
BIP(t)
Bn(t)

Bn(0)
BIP(0)

then is QIP a martingale measure for the numeraire BIP. Here BIP(t) = I(t)BIP(t).

Proposition 3.3.3 Let Qr and Qn are probability measures and S n(t) is arbitrage free process

in the nominal economy

ZT =
Qr

Qn onFt

where

ZT =
Br(t)I(t)

Bn(t)
Bn(0)

Br(0)I(0)

then is Qr a martingale measure for the numeraire Br(t) and S r(t)
Br(t) is a Qr martingale. Here,

S n(t) = S r(t)I(t).

Proposition 3.3.4 Let QT,r and Qn are probability measures and S n(t) is arbitrage free pro-

cess in the nominal economy

ZT =
Qr

Qn onFt

where

ZT =
Pr(t,T )I(t)

Bn(t)
Bn(0)

Pr(0,T )I(0)

then QT,r is a martingale measure for the numeraire Pr(t,T ), and S r(t)
Pr(t,T ) is a QT,r martingale.
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Theorem 3.3.4 (Multi Currency Change of Numeraire) Let X(t) an exchange rate between

domestic and foreign economies and N(t) is a numeraire in the domestic currency with mar-

tingale measure QN , M(t) is numeraire in the foreign currency with martingale measure QM.

Then Radon-Nikodyn derivative looks as follows on FT

dQN

dQM =
N(T )

X(T )M(T )
X(0)M(0)

N(0)
.

Theorem 3.3.5 (Bayes Formula) Let Xt be a stochastic process on (Ω,A,P) and P and Q

are probability measures on this space and E be σ- algebra with E ⊆ F . Since, the Radon-

Nikodyn derivative is

Z =
dQ
dP

onFt

The Bayes formula as follows

EQ[X | Et] =
EP[Z X | Et]
EP[Z | Et]

.
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CHAPTER 4

HEATH JARROW MORTON FRAMEWORK AND FOREIGN

CURRENCY ANALOGY

In this chapter, we give Heath Jarrow Morton (HJM) framework and foreign currency analogy

that is known as the fundamental of pricing inflation indexed derivatives.

4.1 Heath Jarrow Morton Framework

It is a framework to be used for modeling the dynamics of the instantaneous forward rates. The

main insight of this framework is the relationship between the drift and volatility parameters

of the forward rate dynamics for no arbitrage opportunity market.

HJM model represents the yield curve in terms of the forward rates, f (t,T ), which can be

locked in at time t for borrowing at time T ≥ t. For fixed t, the function T 7−→ f (t,T )

is defined as the forward rate curve. The stochastic structure of the model is based on the

evolution of the forward rate curve.

HJM model has a necessary and sufficient condition for a model driven by Brownian motion

to be free of arbitrage. So, every Brownian motion driven model can be shown in HJM model

with no arbitrage condition. In this chapter, we study HJM model with its drift conditions

under no-arbitrage assumption and risk neutral probability measure.

4.1.1 No Arbitrage Condition

Assume a continuous trading economy with a trading interval 0 ≤ T ≤ τ for a fixed τ > 0.

A probability space (Ω, F , P) with the probability measure P and filtration {F t: t ∈ [0, τ]}.
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P(t,T ) denotes the time t price of the T maturity bond for all T ∈ [0, τ] and t ∈ [0,T ]. The

forward rate, f (t,T ), satisfies the following equation:

f (t,T ) = f (0,T ) +

∫ t

0
α(s,T ) ds +

∫ t

0
σ(s,T ) dW(s), (4.1)

where { f (0,T ): T ∈ [0, τ]} is a fixed, nonrandom initial condition, α(t,T ) and σ(t,T ) are

adapted processes. The advantage of the initial condition is to provide a perfect fit between

observed and theoretical bond at t = 0. The following relation between zero coupon bond

prices and forward rates holds.

P(t,T ) = exp(−
∫ T

t
f (t, s)ds). (4.2)

From the equation (4.1), we can reduce the dynamics of the bond prices given by the equation

(4.2). Firstly, we compute the differential of −
∫ T

t f (t, s)ds :

d(−
∫ T

t
f (t, s)ds) = f (t, t)dt −

∫ T

t
d f (t, s)ds.

We know r(t) = f (t, t) and

d f (t,T ) = α(t,T ) dt + σ(t,T ) dW(t), 0 ≤ t ≤ T.

So, we get

d(−
∫ T

t
f (t, s)ds) = r(t)dt −

∫ T

t
[α(t, s) dt + σ(t, s) dW(t)]ds.

Let define

α̃(t,T ) =

∫ T

t
α(t, s)ds

σ̃(t,T ) =

∫ T

t
σ(t, s)ds

The formula becomes

d(−
∫ T

t
f (t, s) ds) = r(t)dt − α̃(t,T ) dt − σ̃(t,T ) dW(t).

We want to find the dynamics of the bond price given in the equation (4.2). Now, we use

Ito-Doeblin formula according to g(x) = ex, g′(x) = ex, g′′(x) = ex and

P(t,T ) = g(−
∫ T

t
f (t, s)ds).
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Then,

dP(t,T ) = g′(−
∫ T

t
f (t, s) ds) d(−

∫ T

t
f (t, s)ds)

+
1
2

g′′(−
∫ T

t
f (t, s) ds) [ d(−

∫ T

t
f (t, s) ds) ]2

= P(t,T ) [ r(t)dt − α̃(t,T ) dt − σ̃(t,T ) dW(t) ]

+
1
2

P(t,T )σ̃(t,T )2dt

= P(t,T )([ r(t) − α̃(t,T ) +
1
2
σ̃(t,T )2 ] dt − σ̃(t,T ) dW(t)). (4.3)

After derivation of the bond price dynamics we can turn the drift condition derivation. The

drift condition gives us the relationship between the drift α(t,T ) and the volatility σ(t,T ) of

the forward rate dynamics under no arbitrage assumption. There exits a probability measure

P̂ under which discounted asset prices are martingale in the arbitrage free market. Give the

discounted bond price, P̃(t,T ), with

P̃(t,T ) = P(t,T ) exp(−
∫ t

0
r(s) ds),

using integration by parts formula yields

dP̃(t,T ) = −P(t,T ) exp(−
∫ t

0
r(s) ds) r(t)dt

+exp(−
∫ t

0
r(s) ds) dP(t,T )

= −P̃(t,T )r(t)dt

+ exp(−
∫ t

0
r(s) ds) P(t,T ) [ r(t) − α̃(t,T ) +

1
2
σ̃(t,T )2 ] dt

− exp(−
∫ t

0
r(s) ds) P(t,T ) σ̃(t,T ) dW(t)

= P̃(t,T )[−α̃(t,T ) dt +
1
2
σ̃(t,T )2 dt − σ̃(t,T ) dW(t)].

By Girsanov theorem, we change the probability measure to equivalent probability measure

P̂ under which

Ŵ(t) =

∫ t

0
λ(s)ds + W(t),
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where λ(s) is the market price of risk. So, discounted asset dynamics can be rewrite as

dP̃(t,T ) = −P̃(t,T ) σ̃(t,T ) dŴ(t).

For the market price of risk, λ(s), we must solve the subsequent equation

[−α̃(t,T ) dt +
1
2
σ̃(t,T )2 dt − σ̃(t,T ) dW(t) = −σ̃(t,T ) [dW(t) + λ(t) dt].

or

[−α̃(t,T ) +
1
2
σ̃(t,T )2 ] dt = −σ̃(t,T ) λ(t) dt

To solve λ(t); σ̃(t,T ) and α̃(t,T ) will be differentiated with respect to T ;

∂

∂T
α̃(t,T ) = α(t,T ),

∂

∂T
σ̃(t,T ) = σ(t,T )

Hence,

−α(t,T ) + σ̃(t,T )σ(t,T ) = −σ(t,T ) λ(t)

or

α(t,T ) = σ(t,T ) [ σ̃(t,T ) + λ(t) ].

So, we finally find the drift term of the forward rate dynamics can be written in terms of the

volatility term under no arbitrage assumption.

Theorem 4.1.1 (HJM Drift Condition) A term structure model for a zero coupon bond

prices of all maturities [0, τ] and driven by a Brownian motion does not admit arbitrage if

there exist a process λ(t) such that

α(t,T ) = σ(t,T ) [ σ̃(t,T ) + λ(t) ].

Here σ(t,T ) and α(t,T ) are drift and diffusion, respectively of the forward rate

d f (t,T ) = α(t,T ) dt + σ(t,T ) dW(t),

where
∫ T

t σ(t, s)ds = σ̃(t,T ) and λ(t) is the market price of risk.
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4.1.2 Under Risk Neutral Measure

Under risk neutral measure, the local rate of return is equal to the short rate. In equation (4.3),

r(t) − α̃(t,T ) +
1
2
σ̃(t,T )2 = r(t).

Hence, we get

α̃(t,T ) =
1
2
σ̃(t,T )2

using definition of α̃, σ̃ and differentiation with respect to T , which gives

α(t,T ) = σ(t,T ) σ̃(t,T ).

Hence, we get the drift term of the forward the forward rate under risk neutral measure. The

following theorem gives the term structure evolution under this measure.

Theorem 4.1.2 (Term-structure evolution under risk neutral measure) In a term structure

model satisfying the HJM no arbitrage condition of Theorem (4.1.1), the forward rates evolve

according to the equation

d f (t,T ) = σ(t,T ) σ̃(t,T )dt + σ(t,T ) dŴ(t)

and the zero coupon bond prices evolve according to the equation

dP(t,T ) = r(t)P(t,T )dt − σ̃(t,T )P(t,T ) dŴ(t) (4.4)

where Ŵ(t) is a Brownian motion under a risk neutral measure P̂. Here, r(t) = f (t, t) is the

short rate. The discounted bond prices satisfy

dP̃(t,T ) = −P̃(t,T ) σ̃(t,T ) dŴ(t).

The solution to the stochastic differential equation (4.4) is

P(t,T ) = P(0,T )exp{
∫ t

0
r(u) du −

∫ t

0
σ̃(u,T ) dŴ(u) −

1
2

∫ T

0
σ̃(u,T )2 du}

=
P(0,T )

B(t)
exp{−

∫ t

0
σ̃(u,T ) dŴ(u) −

1
2

∫ T

0
σ̃(u,T )2 du}.
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As we mentioned before, every Brownian motion driven model can be shown in HJM model

with no arbitrage condition. To better understand this, we will give an example with the one

factor Hull-White model. The interest rate dynamics of the model are of the form

dr(t) = (a(t) − b(t)r)dt + σ(t,T ) dŴ(t),

where Ŵ(t) is a Brownian motion under a risk neutral measure and a(t), b(t), σ(t) are nonran-

dom positive functions. The zero coupon bond price in this model is given by

P(t,T ) = e−r(t)C(t.T )−A(t,T ),

where

C(t,T ) =

∫ T

t
exp(−

∫ s

t
b(u) du) ds,

A(t,T ) =

∫ T

t
(a(s)C(s,T ) −

1
2
σ2(s)C2(s,T )) ds

By using forward rate definition we get

f (t,T ) = −
∂ ln P(t,T )

∂T
= r(t)

∂

∂T
C(t,T ) +

∂

∂T
A(t,T )

and with C′(t,T ), A′(t,T ) denoting derivatives with respect to t, we get the forward rate

differential:

d f (t,T ) =
∂

∂T
C(t,T )dr(t) + r(t)

∂

∂T
C′(t,T )dt +

∂

∂T
A′(t,T )dt

=
∂

∂T
C(t,T ){(a(t) − b(t)r)dt + σ(t) dŴ(t)}

+r(t)
∂

∂T
C′(t,T )dt +

∂

∂T
A′(t,T )dt

= [
∂

∂T
C(t,T ){(a(t) − b(t)r) + r(t)

∂

∂T
C′(t,T ) +

∂

∂T
A′(t,T )]dt

+
∂

∂T
C(t,T )σ(t) dŴ(t) (4.5)

Hence the HJM no arbitrage condition becomes,

∂

∂T
C(t,T )(a(t) − b(t)r) + r(t)

∂

∂T
C′(t,T ) +

∂

∂T
A′(t,T )
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=
∂

∂T
C(t,T )σ(t)

∫ T

t

∂

∂u
C(t, u)σ(u) du

=
∂

∂T
C(t,T )σ(t)[C(t,T ) −C(t, t)]σ(t)

= [
∂

∂T
C(t,T )]C(t,T )σ(t)2.

4.2 Foreign Currency Analogy

For modeling inflation, there are two types of approaches. the first one is the econometrics

models. These type of models forecast the inflation rate using time series data. The second

one is option pricing based models. These type of models are used to price inflation indexed

derivatives. The most well-know application of pricing inflation indexed derivatives is the

study of Jarrow and Yıldırım. They used foreign currency analogy.

In foreign currency analogy, nominal dollars correspond to domestic currency, real dollars

correspond to foreign currency and inflation index correspond to exchange rate between two

economies under no-arbitrage assumption. In this section, we will give basic rules of foreign

currency analogy that is based on Jarrow and Yıldırım model.

Definitions and Notations:

• (Ω, F , P) is a probability space with filtration {Ft : t ∈ [0,T ]} and objective probability

P.

• Nominal is denoted by n, real is denoted by r and inflation is denoted by I. There are

three Brownian motions nominal, real and inflation (Wn(t),Wr(t),W I(t)) with correla-

tions

dWn(t)dWr(t) = ρnrdt

dWn(t)dW I(t) = ρnIdt

dWr(t)dW I(t) = ρrIdt

• Pr(t,T ) is the price of a real zero-coupon bond at time t with maturity T.

• Pn(t,T ) is the price of a nominal zero-coupon bond at time t with maturity T.
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• I(t) is the inflation index at time t with dynamics;

dI(t)
I(t)

= µI(t)dt + σI(t)dW I(t)

• f i(t,T ) is the forward rates at time t for date T, for i = r, n, with

d f i(t,T ) = αi(t,T )dt + σi(t,T )dW i(t)

• ri(t) is the spot rate at time t with ri(t) = f i(t, t)

• Bi(t) is the money market account

• The price in dollars of a real zero-coupon bond is denoted by PT IPS (t,T ), where

PT IPS (t,T ) = I(t)Pr(t,T ). (4.6)

Under these definitions, an example to better understand the foreign currency analogy will be

given below.

If I(t) is the price of a Hamburger, then we have the followings:

A nominal bond:

• pays out 1 dollar at maturity

• Pn(t,T ) is the price of a nominal bond in dollar

A hamburger indexed bond:

• pays out a dollar amount that is enough to buy 1 Hamburger at maturity

• PT IPS (t,T ) is the price of a Hamburger-inflation protected bond in dollar

A real bond:

• Pays out 1 Hamburger at maturity

• Pr(t,T ) is the price of a real bond in Hamburgers

According to these definitions and notations, Jarrow and Yıldırım model continues with two

important propositions. The first one gives the drift conditions under no-arbitrage assumption.
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Proposition 4.2.1 In the arbitrage free market Pn(t,T )
Bn(t) , I(t)Pr(t,T )

Bn(t) and I(t)Br(t)
Bn(t) are martingales if

and only if the following conditions hold.

αn(t,T ) = σn(t,T )(
∫ T

t
σn(t, s)ds − hn(t)) (4.7)

αr(t,T ) = σr(t,T )(
∫ T

t
σr(t, s)ds − σI(t)ρrI − hr(t)) (4.8)

µI(t) = rn(t) − rr(t) − σI(t)hI(t) (4.9)

where

W̃n(t) = Wn(t) −
∫ t

0
hn(s)d(s)

W̃r(t) = Wr(t) −
∫ t

0
hr(s)d(s)

W̃ I(t) = W I(t) −
∫ t

0
hI(s)d(s).

Proof. Let Pn(t,T )
Bn(t) be martingale under P̃ measure. In the previous section we have already

found the dynamics of Pn(t,T ) as follows

dPn(t,T ) = Pn(t,T )[ rn(t) − α̃n(t,T ) +
1
2
σ̃n(t,T )2 ] dt − σ̃n(t,T ) dWn(t). (4.10)

The money market account Bn(t) has the dynamics

dBn(t) = Bn(t)rn(t)dt

Then,

d(
Pn(t,T )

Bn(t)
) = d((Pn(t,T )Bn(t)−1)

= dPn(t,T )Bn(t)−1 + Pn(t,T )dBn(t)−1 + d〈Pn, (Bn)−1〉t

=
Pn(t,T )

Bn(t)
[(−α̃n(t,T ) +

1
2
σ̃n(t,T )2)dt − σ̃n(t,T )dWn(t)].

To change the measure from objective P measure to martingale P̃ measure, we use hn(t) as

the market price of risk as follows

dW̃n(t) = dWn(t) − hn(t)dt.
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Then the new dynamics is equal to

d(
Pn(t,T )

Bn(t)
) = −

Pn(t,T )
Bn(t)

σ̃n(t,T )dW̃n(t).

Hence the subsequent equation must be satisfied

(−α̃n(t,T ) +
1
2
σ̃n(t,T )2)dt − σ̃n(t,T )dWn(t) = −σ̃n(t,T )dW̃n(t).

Since

α̃n(t,T ) =

∫ T

t
αn(t, s)ds

σ̃n(t,T ) =

∫ T

t
σn(t, s)ds

and taking the derivative with respect to T gives the result

αn(t,T ) = σn(t,T )(
∫ T

t
σn(t, s)ds − hn(t)).

Let I(t)Br(t)
Bn(t) be martingale under P̃ measure. Since

d(Br(t)Bn(t)−1) = (Br(t)Bn(t)−1)[rr(t) − rn(t)]dt.

Under the objective measure P, we get

d(
I(t)Br(t)

Bn(t)
) = dI(t)Br(t)Bn(t)−1 + I(t)d(Br(t)Bn(t)−1) + d〈I, Br(Bn)−1〉t

=
I(t)Br(t)

Bn(t)
[(µI(t) + rr(t) − rn(t))dt + σI(t)dW I(t)].

To change the measure from objective P measure to martingale P̃ measure, we use hI(t) as the

market price of risk as follows

dW̃ I(t) = dW I(t) − hI(t)dt.

Then the new dynamics is equal to

d(
I(t)Br(t)

Bn(t)
) =

I(t)Br(t)
Bn(t)

σI(t)dW̃ I(t).

Hence the subsequent equation must be satisfied:

(µI(t) + rr(t) − rn(t))dt + σI(t)dW I(t) = σI(t)dW̃ I(t).

So, it gives the result

µI(t) = rn(t) − rr(t) − σI(t)hI(t).
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Let I(t)Pr(t,T )
Bn(t) be martingale under P̃ measure. We know that we have already found the dy-

namics of Pr(t,T ) in the previous section

dPr(t,T ) = Pr(t,T )[rr(t) − α̃r(t,T ) +
1
2
σ̃r(t,T )2]dt − Pr(t,T )σ̃r(t,T )dWr(t)

so that by the integration by parts formula we obtain

d(I(t)Pr(t,T )) = dI(t)Pr(t,T ) + dPr(t,T )I(t) + d〈I, Pr〉t

= I(t)Pr(t,T )[ µI(t) + rr(t) − α̃r(t,T ) +
1
2
σ̃r(t,T )2

−σI(t)σ̃r(t,T )ρrI ]dt

−I(t)Pr(t,T )[ σ̃r(t,T )dWr(t) − σI(t)dW I(t) ]. (4.11)

and, then,

d(
I(t)Pr(t,T )

Bn(t)
) =

I(t)Pr(t,T )
Bn(t)

[µI(t) + rr(t) − α̃r(t,T ) − rn(t)

−σI(t)σ̃r(t,T )ρrI +
1
2
σ̃r(t,T )2]dt

−
I(t)Pr(t,T )

Bn(t)
[σ̃r(t,T )dWr(t) − σI(t)dW I(t)]

By using (4.9), we finally get:

d(
I(t)Pr(t,T )

Bn(t)
) =

I(t)Pr(t,T )
Bn(t)

[−α̃r(t,T ) − σI(t)hI(t)

+
1
2
σ̃r(t,T )2 − σI(t)σ̃r(t,T )ρrI]dt

+
I(t)Pr(t,T )

Bn(t)
[−σ̃r(t,T )dWr(t) + σI(t)dW I(t)].

To change the measure from objective P measure to martingale P̃ measure, we use hr(t) and

hI(t) as the market price of risks as follows

dW̃r(t) = dWr(t) − hr(t)dt

dW̃ I(t) = dW I(t) − hI(t)dt.

Then the new dynamics is equal to

d(
I(t)Pr(t,T )

Bn(t)
) =

I(t)Pr(t,T )
Bn(t)

(−σ̃r(t,T )dW̃r(t) + σI(t)dW̃ I(t)).
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Hence, the subsequent equation must be satisfied

[−α̃r(t,T ) − σI(t)hI(t) +
1
2
σ̃r(t,T )2 − σI(t)σ̃r(t,T )ρrI]dt − σ̃r(t,T )dWr(t) + σI(t)dW I(t)

= −σ̃r(t,T )dW̃r(t) + σI(t)dW̃ I(t)

Using the definitions of α̃ and σ̃, and taking derivative with respect to T we get the result

αr(t,T ) = σr(t,T )(
∫ T

t
σr(t, s)ds − σI(t)ρrI − hr(t)).

�

Proposition 4.2.2 Under risk neutral measure the following dynamics are satisfied:

1) d f n(t,T ) = σn(t,T )
∫ T

t
σn(t, s)ds + σn(t,T )dW̃n(t) (4.12)

2) d f r(t,T ) = σr(t,T )(
∫ T

t
σr(t, s)ds − ρrIσ

I(t))dt + σr(t,T )dW̃r(t) (4.13)

3)
dI(t)
I(t)

=
[
rn(t) − rr(t)

]
dt + σI(t)dW̃ I(t) (4.14)

4)
dPn(t,T )
Pn(t,T )

= rn(t)dt − (
∫ T

t
σn(t, s)ds)dW̃n(t) (4.15)

5)
dPT IPS (t,T )
PT IPS (t,T )

= rn(t)dt + σI(t)dW̃ I(t) − (
∫ T

t
σr(t, s)ds)dW̃r(t) (4.16)

6)
dPr(t,T )
Pr(t,T )

= [rr(t) − ρrIσ
I(t)

∫ T

t
σr(t, s)ds]dt − (

∫ T

t
σr(t, s)ds)dW̃r(t)

(4.17)

Proof. We know

d f n(t,T ) = αn(t,T )dt + σn(t,T )dWn(t)

d f r(t,T ) = αr(t,T )dt + σr(t,T )dWr(t)

dI(t)
I(t)

= µIdt + σI(t)dW I(t)

Substituting αn, αr and µI which are found in the previous proposition into these equations

and then using

dW̃(t) = dW(t)
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since under risk neutral measure the local rate of return is equal to short rate, finally we will

get the equations in (1), (2) and (3).

The dynamics Pn(t,T ) which is found in the previous proposition

dPn(t,T ) = Pn(t,T )[( rn(t) − α̃n(t,T ) +
1
2
σ̃n(t,T )2 ) dt − σ̃(t,T ) dW(t)]. (4.18)

Integrating subsequent equation from t to T

αn(t,T ) = σn(t,T )(
∫ T

t
σn(t, s)ds − hn(t))

using the definitions α̃n, σ̃n and hn(t) = 0 yields

α̃n(t,T ) =
1
2
σ̃n(t,T )2

and we know from the risk neutral measure: dW̃(t) = dW(t).

These two equations give (4).

The dynamics Pr(t,T ) which is found in the previous proposition

dPr(t,T ) = Pr(t,T )[rr(t) − α̃r(t,T ) +
1
2
σ̃r(t,T )2]dt − Pr(t,T )σ̃r(t,T )dWr(t)

Integrating subsequent equation from t to T gives

αr(t,T ) = σr(t,T )(
∫ T

t
σr(t, s)ds − σI(t)ρrI − hr(t))

and using the definitions α̃n, σ̃n and hr(t) = 0 gives

α̃r(t,T ) =
1
2
σ̃r(t,T )2 − σ̃r(t,T )σI(t)ρrI .

From the risk neutral measure we know dW̃(t) = dW(t).

These two equations give (6).

The last dynamics, PT IPS (t,T ), can be found using PT IPS (t,T ) = Pr(t,T )I(t) with (3) and (6).

By integration by parts formula, we obtain

dPT IPS (t,T )
PT IPS (t,T )

= [(rn(t) − rr(t))dt + σI(t)dW̃ I(t)]

+ [(rr(t) − ρrIσ
I(t)σ̃r(t,T ))dt − σ̃r(t,T )dW̃r(t)]

− σI(t)σ̃r(t,T )ρrIdt

= rn(t)dt + σI(t)dW̃ I(t) − (
∫ T

t
σr(t, s)ds)dW̃r(t).

�
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CHAPTER 5

THE EXTENDED HEATH JARROW MORTON FRAMEWORK

Models included jump processes provide more realistic representation of price dynamics and

more flexibility in modeling. In this section, we give structure of the HJM model allowing

for jumps. Dynamics of nominal bonds, real bonds, inflation indexed bonds and inflation are

given under the martingale measure.

Assumption 5.1 Let (Ω, F , P) be a probability space where P is the objective probability

measure. The filtration {F t}t≥0 is generated by both Wiener process W(t) and a Poisson

random measure µ(dt, dz) on R+ × Z, Z ∈ B(R), with compensator λ(dt, dz) = ν(dz)dt.

Assumption 5.2 Assume that there exists a market with bonds and inflation indexed bonds

for all maturities T > 0. In that market, Pn(t,T ) and PIP(t,T ) are differentiable with respect

to T .

In this chapter, we denote Pn(t,T ) as the price in dollar at time t of a nominal zero coupon

bond which pays one dollar at the maturity T . We write I(t) for the consumer price index,

PIP(t,T ) for the price in dollar at time t of a contract which pays dollar value of one CPI unit

at time T , Pr(t,T ) for the price of an inflation indexed zero coupon bond. Furthermore, we

define Pr(t,T ) by

Pr(t,T ) =
PIP(t,T )

I(t)
.

We can say that Pr(t,T ) is the price in CPI baskets of a real bond which pays one CPI basket

at time T .

Assumption 5.3 Under the objective probability measure P the dynamics of forward rates
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and inflation are given by

d f i(t,T ) = αi(t,T ) dt + βi(t,T ) dWP(t) +

∫
Z
γi(t, z,T ) µ(dt, dz) , i = n, r (5.1)

dI(t) = aI(t)I(t) dt + bI(t)I(t) dWP(t) + I(t−)
∫

Z
cI(t, z) µ(dt, dz) (5.2)

where αi, ai, βi, bI , σI , βI are adapted processes.

Assumption 5.4 Assume that the market is arbitrage free.

This assumption implies that there exists an equivalent martingale measure Qn such that,

Pn(t,T )
Bn(t)

,
PIP(t,T )

Bn(t)
are Qnmartingales.

Proposition 5.1 If f n(t,T ), f r(t,T ) and I(t) satisfies Assumption (5.3) then under nominal

martingale measure Qn the following dynamics hold:

dI(t)
I(t−)

= [rn(t) − rr(t)] dt + bI(t) dW(t) +

∫
Z

cI(t, z) µ̃(dt, dz) (5.3)

dPn(t,T )
Pn(t−,T )

= rn(t) dt + σn(t,T ) dW(t) +

∫
Z
δn(t, z,T ) µ̃(dt, dz) (5.4)

dPIP(t,T )
PIP(t−,T )

= rn(t) dt + σIP(t,T ) dW(t) +

∫
Z
δIP(t, z,T ) µ̃(dt, dz) (5.5)

dPr(t,T )
Pr(t−,T )

= ar(t,T ) dt + σr(t,T ) dW(t) +

∫
Z
δr(t, z,T ) µ̃(dt, dz) (5.6)

where

σi(t,T ) = −

∫ T

t
βi(t, u) du , f or i = n, r

σIP(t,T ) = bI(t) + σr(t,T )

δi(t, z,T ) = exp(−
∫ T

t
γi(t, z, u) du) − 1

δIP(t, z,T ) = δr(t, z,T ) + cI(t, z) + δr(t, z,T )cI(t, z)

ar(t,T ) = rr(t) − bI(t)σr(t,T ) −
∫

Z
δr(t, z,T )cI(t, z) νP(dz)
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Proof. We know the zero coupon bond price is defined by

Pi(t,T ) = exp(−
∫ T

t
f i(t, u)du)

and say X(t,T ) = −
∫ T

t f i(t, u)du , so Pi(t,T ) = exp(X(t,T )) and we also know the forward

rate dynamics from Assumption (5.3) and integrating equation (5.1), we have

f i(t, u) = f i(0, u) +

∫ t

0
αi(s, u) ds +

∫ t

0
βi(s, u) dWP(s) +

∫ t

0

∫
Z
γi(s, z, u) µ(ds, dz)

By using relation between instantaneous interest rate and forward rate, ri(t) = f i(t, t), we get

ri(t) = f i(0, t) +

∫ t

0
αi(s, t) ds +

∫ t

0
βi(s, t) dWP(s) +

∫ t

0

∫
Z
γi(s, z, t) µ(ds, dz).

Hence, −
∫ T

t f i(t, u)du can be found using Fubini theorem and some integral splitting as fol-

lows:

X(t,T ) = −

∫ T

t
f i(0, u) du −

∫ T

t

∫ t

0
αi(s, u) ds du −

∫ T

t

∫ t

0
βi(s, u) dWP(s) du

−

∫ T

t

∫ t

0

∫
Z
γi(s, z, u) µ(ds, dz) du

= −

∫ T

0
f i(0, u) du +

∫ t

0
f i(0, u) du −

∫ t

0

∫ T

s
αi(s, u) du ds

+

∫ t

0

∫ t

s
αi(s, u) du ds −

∫ t

0

∫ T

s
βi(s, u) du dWP(s)

+

∫ t

0

∫ t

s
βi(s, u) du dWP(s) −

∫ t

0

∫ T

s

∫
Z
γi(s, z, u) du µ(ds, dz)

+

∫ t

0

∫ t

s

∫
Z
γi(s, z, u) du µ(ds, dz)

= −

∫ T

0
f i(0, u) du −

∫ t

0

∫ T

s
αi(s, u) du ds −

∫ t

0

∫ T

s
βi(s, u) du dWP(s)

−

∫ t

0

∫ T

s

∫
Z
γi(s, z, u) du µ(ds, dz) +

∫ t

0
f i(0, u) du

+

∫ t

0

∫ u

0
αi(s, u) ds du +

∫ t

0

∫ u

0
βi(s, u) dWP(s) du

+

∫ t

0

∫ u

0

∫
Z
γi(s, z, u) µ(ds, dz) du.
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Since the four last terms give
∫ t

0 ri(s) ds, we can rewrite the above equation as follows

X(t,T ) = X(0,T ) +

∫ t

0
ri(s) ds −

∫ t

0

∫ T

s
αi(s, u) du ds

−

∫ t

0

∫ T

s
βi(s, u) du dWP(s) −

∫ t

0

∫ T

s

∫
Z
γi(s, z, u) du µ(ds, dz)

Let define

Ai(t,T ) = −

∫ T

t
αi(t, u) du, (5.7)

σi(t,T ) = −

∫ T

t
βi(t, u) du, (5.8)

Di(t, z,T ) = −

∫ T

t
γi(t, z, u) du, (5.9)

and using definitions (5.7), (5.8), (5.9) and d f i(t,T ) is found by

dX(t,T ) = [ri(t) + Ai(t,T )] dt + σi(t,T ) dWP(t) +

∫
Z

Di(t, z,T ) µ(dt, dz).

Using Ito formula with Pi(t,T ) = g(X(t,T )) we will get the the zero coupon bond price

dynamics under objective probability P

dPi(t,T )
Pi(t−,T )

= (ri(t) + Ai(t,T ) +
1
2
σi(t,T )2) dt + σi(t,T ) dWP(t)

+

∫
Z
δi(t, z,T ) µ(dt, dz), (5.10)

where

δi(t, z,T ) = exp((Di(t, z,T )) − 1 = exp(−
∫ T

t
γi(t, z, u) du) − 1. (5.11)

We know the dynamics of I(t) from Assumption (5.3) and Pr(t,T ) from equation (5.10) for

i = r, to find PIP(t,T ) we will use PIP(t,T ) = I(t)Pr(t,T ) with integration by parts formula.

At the end of the calculation, we will get the below equation,

dPIP(t,T ) = Pr(t,T )dI(t) + I(t)dPr(t,T ) + d < Pr, I >t

dPIP(t,T )
PIP(t−,T )

= [rr(t) + Ar(t,T ) +
1
2
σr(t,T )2 + aI(t)

+σr(t,T )bI(t)] dt + (σr(t,T ) + bI(t)) dWP(t)

+

∫
Z
δIP(t, z,T ) µ(dt, dz)
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where

δIP(t, z,T ) = δr(t, z,T ) + cI(t, z) + cI(t, z)δr(t, z,T ),

σIP(t,T ) = σr(t,T ) + bI(t).

Up to now, we find the dynamics of Pn(t,T ), Pr(t,T ), PIP(t,T ) under objective probability

measure P. But here we need these dynamics under martingale measure Qn. So the next

step is changing measure from P to Qn. By using Girsanov theorem for jump processes

intensity measure of Poisson process under new measure, λ(dt, dz) = θ(t, z)λP(dt, dz), will be

get and dWP(t) = h(t)dt + dW(t) where W is Qn-Wiener process. Furthermore we will use

µ̃(dt, dz) = µ(dt, dz) − λ(dt, dz). Hence the dynamics of Pn(t,T ), Pr(t,T ), PIP(t,T ) under Qn

are given by,

dI(t)
I(t−)

= [aI(t) + bI(t)h(t)] dt + bI(t) dW(t)

+

∫
Z

cI(t, z)θ(t, z) λP(dt, dz) +

∫
Z

cI(t, z) µ̃(dt, dz), (5.12)

dPn(t,T )
Pn(t−,T )

= [rn(t) + An(t,T ) +
1
2
σn(t,T )2 + σn(t,T )h(t)] dt + σn(t,T ) dW(t)

+

∫
Z
δn(t, z,T )θ(t, z) λP(dt, dz) +

∫
Z
δn(t, z,T ) µ̃(dt, dz), (5.13)

dPIP(t,T )
PIP(t−,T )

= [rr(t) + Ar(t,T ) +
1
2
σr(t,T )2 + aI(t) + σr(t,T )bI(t)

+σr(t,T )h(t) + bI(t)h(t)] dt + σIP(t,T ) dW(t)

+

∫
Z
δIP(t, z,T )θ(t, z) λP(dt, dz) +

∫
Z
δIP(t, z,T ) µ̃(dt, dz). (5.14)

Since Bn(t) is the risk neutral numeraire Pn(t,T )
Bn(t) and PIP(t,T )

Bn(t) are Qn martingales, the drift terms

of Pn(t,T ) and PIP(t,T ) must be equal to the nominal short rate:

rn(t) = rn(t) + An(t,T ) +
1
2
σn(t,T )2 + σn(t,T )h(t)

+

∫
Z
δn(t, z,T )θ(t, z) νP(dz) (5.15)

and

rn(t) = rr(t) + Ar(t,T ) +
1
2
σr(t,T )2 + aI(t) + σr(t,T )bI(t)

+σr(t,T )h(t) + bI(t)h(t) +

∫
Z
δIP(t, z,T )θ(t, z) νP(dz). (5.16)
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Hence we find the dynamics of Pn(t,T ) and PIP(t,T ) follows

dPn(t,T )
Pn(t−,T )

= rn(t) dt + σn(t,T ) dW(t) +

∫
Z
δn(t, z,T ) µ̃(dt, dz),

dPIP(t,T )
PIP(t−,T )

= rn(t) dt + σIP(t,T ) dW(t) +

∫
Z
δIP(t, z,T ) µ̃(dt, dz).

From equations (5.15), (5.16) and using δIP(t, z,T ) = δr(t, z,T ) + cI(t, z) + cI(t, z)δr(t, z,T ) we

get three drift conditions:

An(t,T ) = −
1
2
σn(t,T )2 − σn(t,T )h(t) −

∫
Z
δn(t, z,T )θ(t, z) νP(dz)

Ar(t,T ) = −
1
2
σr(t,T )2 − σr(t,T )bI(t) − σr(t,T )h(t)

−

∫
Z
δr(t, z,T )(1 + cI(t, z))θ(t, z) νP(dz)

aI(t) = rn(t) − rr(t) − bI(t)h(t) −
∫

Z
cI(t, z)θ(t, z) νP(dz).

By using (5.12) and the drift condition of aI(t) we get the dynamics of I(t) as follows

dI(t)
I(t−)

= [rn(t) − rr(t)] dt + bI(t) dW(t) +

∫
Z

cI(t, z) µ̃(dt, dz). (5.17)

Finally, we will find the dynamics of Pr(t,T ) using Pr(t,T ) =
PIP(t,T )

I(t) . Here, we use the

dynamics of PIP(t,T ) and I(t) which are found in the previous steps to calculate d( PIP(t,T )
I(t) ):

d(
PIP(t,T )

I(t)
) =

PIP(t,T )
I(t)

[rn(t) − rn(t) + rr(t) − σIP(t,T )bI(t) + bI(t)2]dt

+
PIP(t,T )

I(t)

∫
Z

cI(t, z)(δIP(t, z,T ) − cI(t, z))
1 + cI(t, z)

νP(dz)dt

+
PIP(t,T )

I(t)
[σIP(t,T ) − bI(t)]dW(t)

+
PIP(t−,T )

I(t−)

∫
Z

δIP(t, z,T ) − cI(t, z)
1 + cI(t, z)

µ̃(dt, dz)

and, more simply,

dPr(t,T )
Pr(t−,T )

= ar(t,T ) + σr(t,T ) dW(t)

+

∫
Z
δr(t, z,T ) µ̃(dt, dz)
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where

ar(t,T ) = rr(t) − σr(t,T )bI(t) −
∫

Z
δr(t, z,T )cI(t, z) νP(dz).

So, we finally get the last dynamics Pr(t,T ) as follows:

dPr(t,T )
Pr(t−,T )

= ar(t,T ) dt + σr(t,T ) dW(t) +

∫
Z
δr(t, z,T ) µ̃(dt, dz). (5.18)

�

Proposition 5.2 The drift conditions that has to be satisfied in order to be free of arbitrage

market are:

αn(t,T ) = βn(t,T )(
∫ T

t
βr(t, u) du − h(t))

+

∫
Z
(1 + δn(t, z,T ))γn(t, z,T )θ(t, z) νP(dz).

αr(t,T ) = βr(t,T )(
∫ T

t
βr(t, u) du − bI(t) − h(t))

+

∫
Z
(1 + cI(t, z))(1 + δr(t, z,T ))γr(t, z,T )θ(t, z) νP(dz)

aI(t) = rn(t) − rr(t) − bI(t)h(t) −
∫

Z
cI(t, z)θ(t, z) νP(dz).

Proof. We know the discounted asset price Pn(t,T )
Bn(t) is martingale under Qn measure. Proposi-

tion (5.1) gives dPn(t,T )
Pn(t−,T ) under this measure:

dPn(t,T )
Pn(t−,T )

= [rn(t) + An(t,T ) +
1
2
σn(t,T )2 + σn(t,T )h(t)] dt + σn(t,T ) dW(t)

+

∫
Z
δn(t, z,T )θ(t, z) λP(dt, dz) +

∫
Z
δn(t, z,T ) µ̃(dt, dz)

The nominal money market account has the following dynamics

dBn(t) = exp(
∫ t

0
rn(t) dt).
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By the integration by parts formula, we receive

d(
Pn(t,T )

Bn(t)
) = d(Pn(t,T )Bn(t)−1)

= dPn(t,T )Bn(t)−1 + Pn(t,T )dBn(t)−1 + d〈Pn, (Bn)−1〉t

=
Pn(t,T )

Bn(t)
[An(t,T ) +

1
2
σn(t,T )2 + σn(t,T )h(t)] dt

+
Pn(t,T )

Bn(t)
σn(t,T ) dW(t)

+
Pn(t,T )

Bn(t)

∫
Z
δn(t, z,T )θ(t, z) λP(dt, dz)

+
Pn(t−,T )

Bn(t−)

∫
Z
δn(t, z,T ) µ̃(dt, dz).

Since the discounted asset prices are martingale, we get

An(t,T ) = −
1
2
σn(t,T )2 − σn(t,T )h(t) −

∫
Z
δn(t, z,T )θ(t, z) νP(dz)

Differentiating both sides with respect to T and using the definitions given before, we get

An(t,T ) = −

∫ T

t
αn(t, u) du

σn(t,T ) = −

∫ T

t
βn(t, u) du

δn(t, z,T ) = exp(−
∫ T

t
γn(t, z, u) du) − 1.

Finally, we get the first drift condition of f n(t,T ):

αn(t,T ) = βn(t,T )(
∫ T

t
βr(t, s) ds − h(t))

+

∫
Z
(1 + δn(t, z,T ))γn(t, z,T )θ(t, z) νP(dz).

For the second drift condition that belongs to f r(t,T ), we will the use martingale property of

discounted asset price PIP(t,T )
Bn(t) under the measure Qn. Proposition (5.1) gives dPIP(t,T )

PIP(t−,T ) under
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this measure.

dPIP(t,T )
PIP(t−,T )

= [rr(t) + Ar(t,T ) +
1
2
σr(t,T )2 + aI(t) + σr(t,T )bI(t,T )

+σr(t,T )h(t) + bI(t)h(t)] dt + σIP(t,T ) dW(t)

+

∫
Z
δIP(t, z,T )θ(t, z) λP(dt, dz) +

∫
Z
δIP(t, z,T ) µ̃(dt, dz).

Using integration by parts formula, we obtain

d(PIP(t,T ))Bn(t)−1) = d(PIP(t,T )Bn(t)−1 + dBn(t)−1PIP(t,T )

=
PIP(t,T )

Bn(t)
[rr(t) − rn(t) + Ar(t,T ) +

1
2
σr(t,T )2 + aI(t)

+σr(t,T )bI(t,T ) + σr(t,T )h(t) + bI(t)h(t)] dt

+
PIP(t,T )

Bn(t)
σIP(t,T ) dW(t)

+
PIP(t,T )

Bn(t)

∫
Z
δIP(t, z,T )θ(t, z) λP(dt, dz)

+
PIP(t−,T )

Bn(t−)

∫
Z
δIP(t, z,T ) µ̃(dt, dz).

Using martingale property of discounted asset prices and δIP(t, z,T ) = δr(t, z,T ) + cI(t, z) +

cI(t, z)δr(t, z,T ), separate drift term of d(PIP(t,T )Bn(t)−1) into two equations as follows

Ar(t,T ) = −
1
2
σr(t,T )2 − σr(t,T )bI(t) − σr(t,T )h(t)

−

∫
Z
δr(t, z,T )(1 + cI(t, z))θ(t, z) νP(dz)

and

aI(t) = rn(t) − rr(t) − bI(t)h(t) −
∫

Z
cI(t, z)θ(t, z) νP(dz).

The latter one gives directly the drift condition of I(t). For the drift condition of f r(t,T ),

differentiating both sides of the former one with respect to T and using the definitions Ar(t,T ),
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σr(t,T ), δr(t, z,T ) given before as follows:

Ar(t,T ) = −

∫ T

t
αr(t, u) du

σr(t,T ) = −

∫ T

t
βr(t, u) du

δr(t, z,T ) = exp(−
∫ T

t
γr(t, z, u) du) − 1.

Then we get

αr(t,T ) = βr(t,T )(
∫ T

t
βr(t, u) du − bI(t) − h(t))

+

∫
Z
(1 + cI(t, z))(1 + δr(t, z,T ))γr(t, z,T )θ(t, z) νP(dz).

�
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CHAPTER 6

PRICING INFLATION INDEXED SWAPS WITH THE

EXTENDED HEATH JARROW MORTON FRAMEWORK

In this chapter, we will give pricing derivation of zero coupon and year-on-year inflation

indexed swaps in the extended HJM framework built in the previous chapter. The main aim

under pricing inflation indexed swaps is that these are the most popular and commonly traded

derivatives among inflation indexed derivatives in the market.

A swap is an agreement that on each payment date Party A pays out Party B a floating rate over

a predefined period, while Party B pays out Party A a fixed rate. Payment dates start with T1

and continue with T2, ...,TM where T0 is the start date which has no payment. In the inflation

indexed derivatives market, the floating rate is the inflation rate which is the percentage return

of the CPI index over a period of a time.

6.1 Pricing of Zero Coupon Inflation Indexed Swaps

In a zero coupon inflation indexed swap (ZCIIS) one party pays a fixed rate and receives

inflation rate over the time interval [T0,TM] with only one payment at time TM. Let K be the

contract fixed rate and N be the nominal value then the fixed amount is

N((1 + K)TM−T0 − 1)

and the floating amount is

N(
I(TM)
I(T0)

− 1).
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If ZCIIS (t,TM, I(0),N) denotes the value of the zero coupon inflation indexed swap at time t

and t ∈ [T0,TM], then

ZCIIS (t,TM, I(0),N) = N ETM
n [exp(−

∫ TM

t
rn(s) ds) (

I(TM)
I(T0)

− (1 + K)TM−T0) | Ft]

where ETM
n (. | Ft) denotes the conditional expectation with respect to nominal T -forward

measure and the expectation based on the information at time t. Notice that this pricing

valuation is for the party who pays out fixed amount and receives floating amount. When we

rewrite the equation noticing the definition of Pn(t,TM) we get

ZCIIS (t,TM, I(0),N) = N Pn(t,TM) ETM
n [

I(TM)
I(T0)

| Ft]

−N Pn(t,TM) (1 + K)TM−T0 . (6.1)

Since I(T0) is Ft measurable and

I(t)Pr(t,T )
Pn(t,T )

is a Qn,T martingale

the conditional expectation in equation (6.1) becomes

ETM
n [

I(TM)
I(T0)

| Ft] =
1

I(T0)
ETM

n [
I(TM)Pr(TM,TM)

Pn(TM,TM)
| Ft]

=
1

I(T0)
I(t)Pr(t,TM)

Pn(t,TM)
.

Hence the value of ZCIIS at time t is

ZCIIS (t,TM, I(0),N) = N
I(t)

I(T0)
Pr(t,TM) − N Pn(t,TM) (1 + K)TM−T0 . (6.2)

If we take t = T0, that is, swap is initially traded equation (6.2) becomes

ZCIIS (T0,TM, I(0),N) = N Pr(T0,TM) − N Pn(T0,TM) (1 + K)TM−T0 . (6.3)

The obtained price is not based on any specific assumptions about asset dynamics, but only it

depends on the absence of arbitrage. Hence, it is model independent we note take that there

is also a simple replicating argument that proves the equation (6.2):

• At time T0 buy 1
I(T0) inflation indexed bond with maturity TM.

• At time TM receive the dollar value of 1
I(T0) CPI units. This value will be I(TM)

I(T0) .

• At time T0 find the price of 1
I(T0) inflation indexed bond. This price will be Pr(T0,TM).
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6.2 Pricing of Year-on-Year Inflation Indexed Swaps

In a year-on-year inflation indexed swap(YYIIS) one party pays the fixed amount and receives

the inflation rate at each payment time Tp+1,Tp+2, ...,TM for the interval [Tp,TM] where Tp

is the start date of the agreement. So, for each period [Ti,Ti+1] , i = p, ...,M − 1, the fixed

amount is

N τi K

and the floating amount is

N τi (
I(Ti)

I(Ti−1)
− 1)

where τi is the year fraction such as τi = Ti − Ti−1. Let YYIIS (t,Ti+1,Ti,N) denote the value

of YYIIS at time t then the pricing formula can be written by following expression

YYIIS (t,Ti+1,Ti,N) =

M−1∑
i=p

N τi+1 ETi+1
n [exp(−

∫ Ti+1

t
rn(s) ds) (

I(Ti+1)
I(Ti)

− (1 + K)) | Ft]

=

M−1∑
i=p

N τi+1 Pn(t,Ti+1) ETi+1
n [

I(Ti+1)
I(Ti)

| Ft]

−

M−1∑
i=p

N τi+1 Pn(t,Ti+1) (1 + K). (6.4)

In the above equation we must find the value of the conditional expectation to get the price of

YYIIS. We know

I(t)Pr(t,Ti+1)
Pn(t,Ti+1)

is a Qn,Ti+1 martingale

and I(Ti) is FTi measurable. Using these measurable and martingale properties, the expecta-

tion becomes

ETi+1
n [

I(Ti+1)
I(Ti)

| Ft] = ETi+1
n [

1
I(Ti)

ETi+1
n [I(Ti+1) | FTi] | Ft]

= ETi+1
n [

1
I(Ti)

ETi+1
n [

I(Ti+1)Pr(Ti+1,Ti+1)
Pn(Ti+1,Ti+1)

| FTi] | Ft]

= ETi+1
n [

Pr(Ti,Ti+1)
Pn(Ti,Ti+1)

| Ft]. (6.5)
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In equation (6.5), the numeraire is Pn(Ti,TTi+1) which is a martingale under Qn,Ti . So, chang-

ing the measure from Qn,Ti+1 to Qn,Ti enables us to compute the conditional expectation. The

Radon-Nikodym derivative for the measure changing is

Zn,Ti+1/n,Ti
t =

dQn,Ti+1

dQn,Ti
|t

=
Pn(t,Ti+1)
Pn(t,Ti)

Pn(0,Ti)
Pn(0,Ti+1)

.

By using Bayes formula, we obtain

ETi+1
n [

Pr(Ti,Ti+1)
Pn(Ti,Ti+1)

| Ft] =
ETi

n [ Pr(Ti,Ti+1)
Pn(Ti,Ti+1) Zn,Ti+1/n,Ti

Ti
| Ft]

Zn,Ti+1/n,Ti
t

=
ETi

n [ Pr(Ti,Ti+1)
Pn(Ti,Ti+1)

Pn(Ti,Ti+1)
Pn(Ti,Ti)

Pn(0,Ti)
Pn(0,Ti+1) | Ft]

Pn(t,Ti+1)
Pn(t,Ti)

Pn(0,Ti)
Pn(0,Ti+1)

=
Pn(t,Ti)

Pn(t,Ti+1)
ETi

n [Pr(Ti,Ti+1) | Ft]. (6.6)

Hence, the equation (6.5) reduces the equation (6.6). The conditional expectation in equation

(6.6) is the nominal price of the real zero coupon bond price Pr(Ti,Ti+1) at time Ti. If real

rates were deterministic, then this expectation would reduce the

ETi
n [Pr(Ti,Ti+1) | Ft] = Pr(Ti,Ti+1)

However, we assumed real rates are stochastic. It shows us unlike the model independency

of ZCIIS, YYIIS is model dependent. So, to calculate the conditional expectation in equation

(6.6), we need to use the model that was built in previous chapter. In this step we need to

change the measure from the nominal Qn,Ti to the real Qr,Ti forward measure. The Radon-

Nikodym derivative of this changing is

Zn,Ti/r,Ti
t =

dQn,Ti

dQr,Ti
|t

=
Pn(t,Ti)

Pr(t,Ti) I(t)
Pr(0,Ti)I(0)

Pn(0,Ti)
. (6.7)

By using Bayes formula, we get

ETi
n [Pr(Ti,Ti+1) | Ft] =

ETi
r [ Pr(Ti,Ti+1)

Pr(Ti,Ti)
Zn,Ti/r,Ti

Ti
| Ft]

Zn,Ti/r,Ti
t

. (6.8)

49



When the above conditional expectation is calculated we will use the dynamics of I, Pn, Pr

defined in the previous chapter:

dI(t)
I(t−)

= [rn(t) − rr(t)] dt + bI(t) dW(t) +

∫
Z

cI(t, z) µ̃(dt, dz)

dPn(t,T )
Pn(t−,T )

= rn(t) dt + σn(t,T ) dW(t) +

∫
Z
δn(t, z,T ) µ̃(dt, dz)

dPr(t,T )
Pr(t−,T )

= ar,T (t) dt + σr(t,T ) dW(t) +

∫
Z
δr(t, z,T ) µ̃(dt, dz).

Firstly, our aim is to find the dynamics of Pn(t,Ti)
Pr(t,Ti)I(t) by using above dynamics. By integration

by parts formula for jump processes

d(
Pr(t,Ti)I(t)

Pr(t−,Ti)I(t−)
) = [rn(t) − rr(t) + σr(t,Ti) + bI(t)σr(t,Ti)] dt +

∫
Z
δr(t, z,Ti)cI(t, z) λ(dt, dz)

+(σr(t,Ti) + bI(t)) dW(t)

+

∫
Z
(δr(t, z,Ti) + cI(t, z) + δr(t, z,Ti)cI(t, z)) µ̃(dt, dz).

We find Pr(t,Ti)I(t) and we already know Pn(t,Ti), then we can find Pn(t,Ti)
Pr(t,Ti)I(t) and obtain

d(
Pn(t,Ti)

Pr(t,Ti)I(t)
) =

Pn(t,Ti)
Pr(t,Ti)I(t)

[rn(t) − rr(t) − σr(t,Ti) − bI(t)σr(t,Ti)

−

∫
Z
δr(t, z,Ti)cI(t, z) λ(dt, dz)

−(bI(t) + σr(t,Ti))σn(t,Ti) + (bI(t) + σr(t,Ti))2] dt +

−
Pn(t,Ti)

Pr(t,Ti)I(t)

∫
Z

(δIP(t, z,Ti)) (δn(t, z,Ti) − δIP(t, z,Ti))
(1 + δIP(t, z,Ti))

λ(dt, dz)

+
Pn(t,Ti)

Pr(t,Ti)I(t)
(σn(t,Ti) − bI(t) − σr(t,Ti)) dW(t)

+
Pn(t−,Ti)

Pr(t−,Ti)I(t−)

∫
Z

(δn(t, z,Ti) − δIP(t, z,Ti))
(1 + δIP(t, z,Ti))

µ̃(dt, dz).

Since X(t) =
Pn(t,Ti)

Pr(t,Ti)I(t) , at the same time we get dynamics of Zn,Ti/r,Ti
t

Zn,Ti/r,Ti
t−

under Qn,Ti .

dZn,Ti/r,Ti
t

Zn,Ti/r,Ti
t−

=
dX(t)
X(t−)

. (6.9)
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We know Zn,Ti/r,Ti
t is a martingale under Qr,Ti , so changing measure from Qn,Ti to Qr,Ti change

only the drift term not the others. Hence the dynamics of Zn,Ti/r,Ti
t under Qr,Ti is given by

d(
Zn,Ti/r,Ti

t

Zn,Ti/r,Ti
t−

) = (σn(t,Ti) − bI(t) − σr(t,Ti)) dWr,Ti(t)

+

∫
Z

(δn(t, z,Ti) − δIP(t, z,Ti))
(1 + δIP(t, z,Ti))

µ̃r,Ti(dt, dz).

On the other hand, Pr(Ti,Ti+1) =
Pr(t,Ti+1)
Pr(t,Ti)

is also martingale under Qr,Ti ; and its dynamics is

given by

d
Pr(t,Ti+1)
Pr(t,Ti)

=
Pr(t,Ti+1)
Pr(t,Ti)

(σr(t,Ti+1) − σr(t,Ti))dWr,Ti(t)

+
Pr(t−,Ti+1)
Pr(t−,Ti)

∫
Z

(δr(t, z,Ti+1) − δr(t, z,Ti))
(1 + δr(t, z,Ti))

µ̃r,Ti(dt, dz)

Hence, we get the dynamics of Zn,Ti/r,Ti
t and Pr(t,Ti+1)

Pr(t,Ti)
. By the integration by parts formula, we

obtain

d(
Pr(t,Ti+1)
Pr(t,Ti)

Zn,Ti/r,Ti
t ) =

Pr(t,Ti+1)
Pr(t,Ti)

Zn,Ti/r,Ti
t [(σr(t,Ti+1) − σr(t,Ti))

(σn(t,Ti) − bI(t) − σr(t,Ti))dt +

∫
Z
(mn) λ r,Ti(dt, dz)]

+
Pr(t,Ti+1)
Pr(t,Ti)

Zn,Ti/r,Ti
t [σn(t,Ti) + σr(t,Ti+1)

−2σr(t,Ti) − bI(t)]dWr,Ti(t)

+
Pr(t−,Ti+1)
Pr(t−,Ti)

Zn,Ti/r,Ti
t−

∫
Z
(m + n + mn) µ̃r,Ti(dt, dz)

(6.10)

where

m =
(δr(t, z,Ti+1) − δr(t, z,Ti))

(1 + δr(t, z,Ti))
and n =

(δn(t, z,Ti) − δIP(t, z,Ti))
(1 + δIP(t, z,Ti))

.

Let

S (t) =
Pr(t,Ti+1)
Pr(t,Ti)

Zn,Ti/r,Ti
t
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and Y(t) = lnS (t); then, the solution of the this stochastic equation is

S (Ti) = S (t) exp[
∫ Ti

t
(σr(s,Ti+1) − σr(s,Ti))(σn(s,Ti) − bI(s) − σr(s,Ti))ds

−

∫ Ti

t

∫
Z
(m + n)λ r,Ti(ds, dz)

+

∫ Ti

t
(σn(s,Ti) + σr(s,Ti+1) − 2σr(s,Ti) − bI(s))dWr,Ti(s)

−

∫ Ti

t

1
2

(σn(s,Ti) + σr(s,Ti+1) − 2σr(s,Ti) − bI(s))2ds

+

∫ Ti

t

∫
Z

ln(1 + m + n + mn)µ r,Ti(ds, dz)].

Here, we assume that the coefficients are deterministic to ensure closed-form solution.

From moment generating function for Brownian motion

ETi
r [exp

∫ Ti

t
(σn(s,Ti) + σr(s,Ti+1) − 2σr(s,Ti) − bI(s))dWr,Ti(s)]

= exp(
1
2

∫ Ti

t
(σn(s,Ti) + σr(s,Ti+1) − 2σr(s,Ti) − bI(s))2ds,

and from exponential formula for Poisson random measure

ETi
r [exp(

∫ Ti

t

∫
Z

ln(1 + m + n + mn)dµ r,Ti(ds, dz))] = exp(
∫ Ti

t

∫
Z
(m + n + mn)λ r,Ti(ds, dz)

we finally get

ETi
r [S (Ti)] = S (t) exp(

∫ Ti

t
(σr(s,Ti+1) − σr(s,Ti))(σn(s,Ti) − bI(s) − σr(t,Ti))ds

+

∫ Ti

t

∫
Z
(mn)λ r,Ti(ds, dz)).

Hence, if we go back to the conditional expectation in the equation (6.8), we will get

ETi
r [

Pr(Ti,Ti+1)
Pr(Ti,Ti)

Zn,Ti/r,Ti
Ti

| Ft] =
Pr(t,Ti+1)
Pr(t,Ti)

Zn,Ti/r,Ti
t eC(t,Ti,Ti+1) (6.11)

where

C(t,Ti,Ti+1) = exp(
∫ Ti

t
(σr(s,Ti+1) − σr(s,Ti)) (σn(s,Ti) − σr(s,Ti) − bI(s)) d(s)

+

∫
Z

(δr(s, z,Ti+1) − δr(s, z,Ti))
(1 + δr(s, z,Ti))

(δn(s, z,Ti) − δIP(s, z,Ti))
(1 + δIP(s, z,Ti))

λ r,Ti(ds, dz).
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If we insert equation (6.11) into the equation (6.6), then we get

ETi
n [Pr(Ti,Ti+1) | Ft] =

Pr(t,Ti+1)
Pr(t,Ti)

eC(t,Ti,Ti+1). (6.12)

Finally, using equations (6.5), (6.6), (6.12), we obtain the expectation which is mentioned

firstly in the beginning of the section

ETi+1
n [(

I(Ti+1)
I(Ti)

) | Ft] =
Pn(t,Ti)

Pn(t,Ti+1)
Pr(t,Ti+1)
Pr(t,Ti)

eC(t,Ti,Ti+1). (6.13)

The general formula of the YYIIS valuation is given at the beginning of this chapter in equa-

tion (6.4). Inserting result (6.13) into this valuation formula, we get

YYIIS (t,Ti+1,Ti,N) =

M−1∑
i=p

N τi+1 Pn(t,Ti)
Pr(t,Ti+1)
Pr(t,Ti)

eC(t,Ti,Ti+1)

−

M−1∑
i=p

N τi+1 Pn(t,Ti+1) (1 + K). (6.14)

The forward swap rate which is value of K for which the price of the swap is zero can be

shown when YYIIS (t,Ti+1,Ti,N) = 0 with the notation RM
p (t),

RM
p (t) =

∑M−1
i=p N τi+1 Pn(t,Ti)

Pr(t,Ti+1)
Pr(t,Ti)

eC(t,Ti,Ti+1) −
∑M−1

i=p N τi+1 Pn(t,Ti+1)∑M−1
i=p N τi+1 Pn(t,Ti+1)

.

Here, the pricing formula depends on real and nominal bond prices and their volatilities. We

can rewrite this formula that depends on the inflation indexed bonds and their volatilities

instead of real bonds and their volatilities. It enables to strip real zero coupon bond prices

from inflation indexed bonds. Using the definition of inflation indexed bonds PIP(t,T ) =

I(t)Pr(t,T ), if we product the left hand side of the pricing equation (6.14) by I(t)
I(t) , then we get

new pricing formula and forward swap rate

YYIIS (t,Ti+1,Ti,N) =

M−1∑
i=p

N τi+1 Pn(t,Ti)
PIP(t,Ti+1)
PIP(t,Ti)

eC(t,Ti,Ti+1)

−

M−1∑
i=p

N τi+1 Pn(t,Ti+1) (1 + K)

and

RM
p (t) =

∑M−1
i=p N τi+1 Pn(t,Ti)

PIP(t,Ti+1)
PIP(t,Ti)

eC(t,Ti,Ti+1) −
∑M−1

i=p N τi+1 Pn(t,Ti+1)∑M−1
i=p N τi+1 Pn(t,Ti+1)

.
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CHAPTER 7

CONCLUSION

Inflation indexed securities are designed to help protect both issuers and investors from changes

in the general level of prices in the real economy. These instruments have become increas-

ingly popular in the last two decades. Hence, also pricing of these instruments has became

important. There is a group of studies on pricing. If we look these studies, we can see that

they use HJM model and foreign currency analogy in principle. In our study, we add jump

process to these principle models. Because, the reality of financial markets can be given by

models with the jump process than models based on only Brownian motion. In the real world,

we know that asset price processes have jumps and taking them into consideration gives more

accurate results in the studies.

In this thesis, firstly we give structure of inflation with its causes, history of indexation, def-

initions and advantages of inflation indexed securities. Then, we introduce HJM framework

which models instantaneous forward rates under no-arbitrage condition. For pricing of in-

dexed securities we have to know foreign currency analogy which is based on HJM frame-

work. So, we give foreign currency analogy in detail. And then, we present a HJM framework

allowing for jumps. In these extended model, instantaneous forward rates and inflation index

are allowed to be driven by both Wiener and Poisson process. Since in the real world asset

prices have jumps, inserting jump process into the pricing models gives more realistic results.

Finally, under this extended HJM model, we give a pricing derivation of inflation indexed

swaps which are the most commonly used in the financial markets.

Our further studies will continue with pricing inflation indexed options, swaptions and the

other new derivatives. Stochastic volatility of price process dynamics can be taken into con-

sideration. By calibration to the market data, the performance of our models can be tested.
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