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ABSTRACT

PRICING INFLATION INDEXED SWAPS USING AN EXTENDED HIM FRAMEWORK
WITH JUMP PROCESS

Karahan, Ceren

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

December 2010, 57 pages

Inflation indexed instruments are designed to help protect investors against the changes in the
general level of prices. So, they are frequently preferred by investors and they have become
increasingly developing part of the market. In this study, firstly, the HIM model and foreign
currency analogy used to price of inflation indexed instruments are investigated. Then, the
HIM model is extended with finite number of Poisson process. Finally, under the extended
HJM model, a pricing derivation of inflation indexed swaps, which are the most liquid ones

among inflation indexed instruments in the market, is given.

Keywords: inflation indexed swap, HIM model, jump process, foreign currency analogy,

inflation
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ENFLASYONA ENDEKSLI SWAPLARIN SICRAMA SURECI ICEREN
GENISLETILMIS HIM MODELI KULLANILARAK FIYATLANDIRILMASI

Karahan, Ceren

Yiiksek Lisans, Finansal Matematik Bolimii

Tez Yoneticisi : Dog. Dr. Azize Hayfavi

Aralik 2010, 57 sayfa

Enflasyona endeksli enstriimanlar yatirnmcilar: genel fiyat seviyesindeki degisimlere karsi ko-
rumaya yardimct olmak icin dizayn edilmistir. Bu nedenle, yatirimcilar tarafindan siklikla
tercih edilmekte ve piyasanin hizla biiyliyen bir parcasi haline gelmektedir. Bu ¢alismada,
ilk olarak, enflasyona endeksli enstriimanlarin fiyatlanmasinda kullanilan HIM model ve
doviz analojisi incelenmistir. Daha sonra, HIM model sonlu sayida Poisson siireci eklenerek
genigletilmigtir. Son olarak, genisletilmis bu yeni HIM model altinda, piyasada yer alan en-
flasyona endeksli enstriimanlar arasinda likitidesi en fazla olan enflasyona endeksli swaplarin

fiyatlandirilmas1 yapilmisgtir.

Anahtar Kelimeler: enflasyona endeksli swap, HIM model, sigrama siire¢leri, doviz analojisi,

enflasyon
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CHAPTER 1

INTRODUCTION

In the financial analysis, savers are interested in the real purchasing power of their savings.
Since securities and other savings derivatives have been based on a nominal basis, new in-
struments have been offered to get future real value. Inflation indexed securities are among
these new instruments. In fact, no other asset class is able to provide such a level of protection
against the erosion of purchasing power (see [13]). Hence, these securities are getting more
and more popular with this protection advantage. The main subject about inflation indexed
securities is pricing. Foreign currency analogy has been used for modeling such as these se-
curities. This analogy is based on Heath, Jarrow and Morton (HIM) [20] framework. So, it
is important to learn HIM framework and foreign currency analogy to price inflation indexed

securities.

The purposes of this thesis are to investigate importance of the inflation indexed securities,
to review HIM framework and foreign currency analogy, to extend HIM framework with
jumps under foreign currency analogy and to price inflation indexed swaps using this extended

model.

The outline of this thesis is as follows. In Chapter 2, we present a review of the studies on
the subject of inflation indexed securities. In Chapter 3, the mathematical preliminaries on
stochastic calculus, jump process are given. Chapter 4 presents HIM framework and foreign
currency analogy in detail that is introduced by Jarrow and Yildirim. In Chapter 5, the ex-
tended HIM framework with jumps is introduced. In Chapter 6, derivation is given for prices

inflation indexed swaps using the model in Chapter 5. Chapter 7 includes the conclusion part.



1.1 Inflation

In an economy, inflation is a rise in the general level of prices about a basket of goods and
services over a period of time. If the prices decrease then it is called deflation. According
to this basket components and their respective weights different inflation indexes can be de-
fined. For example, the Consumer Price Index (CPI), the Producer Price Index (PPI) and the
Gross Domestic Product (GDP) are the most common indexes. There are also product spe-
cific indexes like UK PRIX, which excludes mortgage interest payments and Euroland CPI
ex-tobacco which excludes price changes on tobacco. Some indexes are connected with a
category of the society like CPI-U for urban consumers in the USA and CPI for employees

and workers in Italy.

The most common form of inflation in the financial market is the CPI. The CPI measures
changes in the price level of consumer goods and services which are purchased by households
to meet particular needs. Since following the price of whole goods and services in the market
is difficult, the ones with more shares in the total of the consumer expenditures are taken
into account. These specific goods and services and their weights are usually based upon

expenditure data obtained from expenditure surveys for a sample of households.

So, the inflation rate is a measure of average change in prices across the economy over a
specified period. In Turkey, it is published monthly by national statistic institutes. If the
monthly rate is 2, it means that the prices would be 2 % higher than previous month. That is,

a typical goods and services costing 100 TL last month would cost 102 TL this month.

If we have a look causes of the inflation, we can talk about three main reasons the first one
is the level of monetary demand in the economy. In the case total demand is less than total
supply; the price level will tend to rise, so inflation rises. The other factor is the level of costs.
Increasing the cost of the row materials and productive effort raises inflation. The last factor
is expectation of inflation. Increasing expectation affects wages and prices. Because today’s
wages can buy today’s goods and services. The wages must rise to protect purchasing power.
So, companies increase their costs because of the wages. This costing increase reflects to
consumers such as high prices. Figure 1.1 shows monthly inflation rates between years 2009

and 2010.

Up to now we mentioned about definition and meaning of inflation and its causes. So, we
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Figure 1.1: Annual Inflation Rate in Turkey

can say that inflation is one of the most important components of economy. Investors want to
protect themselves from the purchasing power of money that changes with uncertainty future
inflation. According to this, inflation indexed securities can be used as one of the most popular

protection ways nowadays.

1.2 Inflation Indexed Securities

Cash flows of securities can base on an index in order to protect investors and issuers from
the fluctuations in price of goods and services affected by that index. If that index is inflation,

then these securities are called inflation indexed securities.

Although indexation theory has grown for the last two decades, its background started with
the 18th century. Deacon, Derry and Mirfendereski [13] gives the history of indexation. In
1707, Bishop William Fleetwood did a study about purchasing power of money. A fellowship
was established in 1450 with membership restricted with an annual income of less than £5.
He examined changes in prices of corn, meat, drink, clothes between 1450 and 1700; and
found a huge increase in the prices. At the end of the study, he showed that in 1707 an
individual with a real annual income less than £5 would participate into the fellowship. In
1742 the State of Massachusetts issued bills indexed to the cost of silver on the London

Exchange. When the silver price appreciated with great speed according to general price



level, a group of commodities price were inserted indexation method. Then, a basket of goods
and associated price index was defined for the first time. After the State of Massachusetts
indexation definition, works on this subject increase rapidly. The first studies constructed on
index to represent level of prices came from Sir George Shuckburgh Evelyn (1798), Joseph
Lowe (1822) and Poulett Scope (1833). Stanly Jevons (1875) suggest that gold price be used
by a price index. During the second half of the 20th century index debt become popular in
the financial markets and several countries begin issuing indexed securities. In Turkey, the
first inflation indexed bond was issued in 1994 based on Wholesale Price Index. After these

bonds, new issued bonds were based on CPI.

The difference between conventional bonds and inflation indexed bonds is while Conventional
bonds give fixed nominal return, inflation indexed bonds give real rate of return known in
advance and return changes with the rate of the inflation. When conventional bonds are issued,
real returns are not known because future inflation is not known. For example, a one-year
conventional bond for 1000 TL pays out principal and nominal rate of return 5 %. This bond
pays 1050 TL at maturity. Suppose inflation is 3 % over the year, so it will cost 1030 TL to buy
what 1000 TL buys at the beginning of the investment. Thus, 20 TL is the extra purchasing
power at the maturity. Suppose inflation is 7 %, it will cost 1070 TL to buy what 1000 TL
buys at the beginning of the investment. Thus, purchasing power decreases with inflation risk.
However, if we buy an inflation indexed bond, we know that at maturity we will able to buy a

certain number of baskets of goods and services.

Inflation indexed securities help issuers and investors to reduce their risk arising from infla-
tion. Governments like issuer get some benefits from inflation indexed securities. By issuing
indexed bonds eliminates the inflation risk premium which is one part of the yield of conven-
tional nominal bonds. Since indexed bonds are free of inflation risk, it can be thought there
is no need for the inflation risk premium component. So the governments obtain cheaper bor-
rowing. At the same time, issuing inflation indexed securities give signal to the market about
controlling inflation by government. And these derivatives help conducting asset-liability
management more realistically. At the sight of investors, the certain real return can be attrac-
tive for investors who are risk averse and who want to protect their savings from being eroded

by inflation.

There are some limitations of the benefits of inflation indexed securities. Since the indexes



are not immediately available in the market, a lagged index must be used. For example, in
the most countries CPI for a given month is published in the middle of the following month.
So, it is more significant for the derivatives whose cash flows due in the second half of the
publication month. On the other hand, different indexes give different measure of inflation.
For example, while the GDP deflator is the best measure for the treasury, the CPI is the best

measure for investors.



CHAPTER 2

LITERATURE REVIEW

In the 1990s, markets trading inflation indexed derivatives began to develop. So, the rise of

inflation indexed markets has sparked some academic research activity.

Deacon, Derry and Mirfendereski [13] give one of the most detailed studies in the literature
about inflation indexed securities. Their study includes the history of indexed bond markets
county by country. Also, some fundamental information about indexed securities is given in

detail.

Hughston [25] introduces a general theory for pricing and hedging of inflation indexed deriva-
tives. He uses the foreign currency analogy with nominal, real discounted bonds and inflation
index under such as domestic economy, foreign economy and exchange rate between these

two economies, respectively.

Dodgson and Kainth [14] use two-process Hull-White model to price inflation indexed deriva-
tives. They give the closed-form solutions with constant volatilities. Then, they extend their
model with local stochastic volatility. Finally, they price inflation indexed caps and floors

using Monte Carlo sampling with local volatility of inflation.

Stewart [36] uses Hull-White extended Vasicek model to price inflation indexed swaps, caps
and floors. He gives the calibration of the inflation model and also gives the calibration of

inflation indexed swaptions, caps and floors.

Jarrow and Yildirim [27] use three-factor HIM model to price TIPS. They use the model with
time series evolutions of the inflation index, nominal and real zero coupon bond price curves.

They find that there is a negative correlation between real rate ad inflation rate. They give the



hedging performance of the model. Finally, they give the pricing derivation of the inflation

indexed call option.

Leung and Wu [29] give pricing derivation of inflation indexed derivatives under an extended
HJM model which includes continuous compounding nominal and inflation forward rates.
They introduce an extended market model for inflation rates and they give pricing formulas

for this market model. They conclude with the calibration to the market data.

Mercurio [31] uses Jarrow-Yildirim approach to model inflation. He gives pricing derivation
of inflation indexed swaps and options using this model. Then, he introduces two market
models and he gives pricing derivation of inflation indexed swaps and options using these
market models. Finally, he tests the performance of the two market models by the calibration

to the market data for inflation indexed swaps.

Beletski [2] presents the extended Vasicek model for inflation rate and a geometric Brownian
motion for consumer price index. Under risk neutral measure pricing formulas of inflation

indexed products are given. He also studies on the continuous time optimization problems.

Malvaez [30] gives pricing derivation of swaps and swaptions using Jarrow-Yildirim model.
He studies estimation of parameters for European swaptions using quasi-Monte Carlo simu-

lation.

Belgrade, Benhamou and Koehler [3] give the relationship between zero coupon bond price
and year on year swaps under no arbitrage assumption. Their model is driven only by the term
structure of volatilities. They compute convexity adjustments for pricing of inflation indexed

derivatives.

Haastrecht and Pelsser [19] use a multi-currency model to give the pricing of FX, inflation
and stock options. They give their model with stochastic interest rate, stochastic volatility and
with correlations. They derive pricing formulas for vanilla call/put options, forward starting
options, inflation indexed swaps, caps and floors. Finally, they give an example of calibration

to the market data.

Chiarella and Sklibosios [10] use Shirakawa framework to derive a stochastic dynamics sys-
tem for instantaneous forward rates. They give bond pricing formulas. Finally, they give some

numerical simulations.



Bjork, Kabanov and Runggaldier [5] give the term structure of zero coupon bonds with inter-
est rate that is modeled by Wiener and marked point process. They investigate the complete-

ness and the uniqueness of a martingale measure for finite jump process.

Runggaldier [34] investigates pricing and hedging of contingent claims in financial markets
which includes jump diffusion type models. He considers the stochastic volatility correlated
with jump diffusions. He discusses completion of the market under jump diffusion setting.

Finally, he gives hedging strategies both under incomplete and complete market condition.

Hinnerich [23] uses and extended HIM model to price inflation indexed swaps. Her model
includes Wiener process and general marked point process for forward rates and inflation
index. She also prices options on TIPS-bonds under the model driven by Wiener process. She
introduces an inflation swap market model and gives pricing derivation of inflation indexed

swaptions under this model.

Takadong [37] uses Levy distributions, macro economic factors, no arbitrage and pricing
kernel models to improve the match between model prices and observed prices. He gives

empirical study on market data of South Africa and America.



CHAPTER 3

PRELIMINARIES

This chapter gives definitions and basic rules that are used in this thesis. Stochastic process,
jump process and change of numeraire sections are prepared using Shreve [35], Lamberton
and Lapeyre [28], Bjork [4], Brigo and Mercurio [8], Giiney [18], Hinerrich [23], Cont and
Tankov [11] and Runggaldier [34].

3.1 Fundamentals of Stochastic Process

Definition 3.1.1 A continuous time stochastic process in a space E endowed with a o-algebra
& is a family X; of random variables defined on a probability space (€, A, P) with values in

a measurable space (E,E).

Definition 3.1.2 Consider the probability space (QQ, A, P) a filtration (F)>0 is an increasing
family of o-algebras included in A.

Definition 3.1.3 Let (Q, A, P) be a probability space. A Brownian motion is a real valued

continuous stochastic process (X;) ;>0 with independent and stationary increments.

o Continuity: P- a.s. the map s — X(w) is continuous.

o Independent increments: If s < t, then X; — Xy is independent of ¥ s = o (X, u < ).

o Stationary increments: If s < t, then X; — X5 and X,;_; — Xo have the same probability

law.



Definition 3.1.4 [fis Brownian motion then X; — X is a normal random variable with mean

rt and variance o*t, where r and o are constant real numbers.

Definition 3.1.5 On probability space (Q, A,P) a stochastic process (X;);>0 is an adapted

adapted process to filtration F if for all t X; is F, - measurable.

Definition 3.1.6 An adapted sequence (X;) >0 on a probability space (2, A, P) with a filtra-

tion (F 1) >0 on this space martingale if for any s < t
E[X; | Fsl = M.

Definition 3.1.7 An adapted sequence (X;);>o of random variables is predictable if, for all

t > 1, Xy is F,_1 - measurable.

Definition 3.1.8 .

o [f'Y and Z are stochastic random variables and Z is F;— - measurable, then

E[ZY | = ZE[Y|%l

o [fY is stochastic random variable , and if s < t, then

E[E[Y |F]|1Fs] = EY|Fl

Definition 3.1.9 Let (Q,F,(F:) =0, P) be a filtered probability space and (W;) >0 an F -
Brownian motion. (X;)o<<t is an R- valued Ito process if it can be written as P a.s. V¥
t<T,

t !
X;=Xo+ f stsf +H dW;, (3.1)
0 0

where

e Xy is Fo- measurable.
o (Ky)o<i<t and (H;) o<;<1 are T adapted processes.
° fot K| ds < oo.

10



. fot H?ds < o P a.s..
Definition 3.1.10 The quadratic variation of the Ito process is (X, X); = fot H? ds.

Theorem 3.1.11 Let (X;) << be an Ito process satisfying (3.1) and f be twice continuously

differentiable function, then
t 1 !
%) = 100+ [ oot 3 oo,

where by definition (X, X), = fot H? ds and

! ! !
[ ravax = [ rookdss [ roomdawe,
0 0 0
Theorem 3.1.12 (Ito-Doeblin Formula) Let (X;) ;>0 be an Ito process and f{t,x) be a function

for which the partial derivatives, fi(t, x), fx(t, x), fix(t, x) are defined and continuous. Then,

forevery T > 0,

f(T.X) = f(0,X0)+f0ﬁ(t,Xz)de(;fx(t,Xz)dXt
1 !
+_ffxx(taXt)d<X’X>t-
2 Jo

Proposition 3.1.1 (Ito-Integration by Parts Formula) Let (X)) ;>0 and (Y;) >0 be two Ito

processes such that

! !
Xt:X0+stds+stdWs
0 0

t 1
Yi=Yy+ f Mds + f N dW;,
0 0

t t
XY, = X0Y0+f Xdes+f YodXs + (X, Y)
0 0

and

then

with (X, Y), = [ H.N; ds.

Definition 3.1.13 Let (Q, F) be probability space. Two probability measure P and P on

(Q, F) are said to be equivalent if they agree, which sets in F have probability zero.

11



Definition 3.1.14 Let (Q, 7, P) be a probability space. Let P be another probability measure
on (Q, %) that is equivalent to P and let Z be almost surely positive random variable that
relates P and P. Then Z is called the Radon-Nikodym derivative of P with respect to P, and

we write

Definition 3.1.15 (Radon-Nikodym) Let P and P be equivalent probability measures defined
on (Q, F). There exists an almost surely positive random variable Z such that E|Z] = 1, and

for every A € F holds

ﬁm:fawwwy
A

Theorem 3.1.16 (Girsanov Theorem) Let (Q), 7, P) be a probability space and let (W;);>0

be a Brownian motion for this space. Let (6;)1>0 be an adapted process. Define

! 1 !
ﬁp&l[HMmQ—Ejﬂ%dm
0 0

!
W, m+f@m
0

Z

and assume that
T
g[ﬁﬁm<m
0

Set Z = Z(T). Then EZ = 1, and under probability measure P the process W, is a Brownian

motion.

Theorem 3.1.17 (Girsanov Theorem for multiple dimensions) Let T be a fixed positive

time and 6, = (6(1), ..., 0(d)) be a d-dimensional adapted process. Define

Z

! 1 !
exp (= | 6,dW, =3 f 16,11 du)
0 0
A

W, m+f@m
0
and assume that
T
gfwMﬁW<m
0

Set Z = Z(T). Then EZ = 1, and under probability measure P the process W, is a d-

dimensional Brownian motion.

12



Definition 3.1.18 (X)) o<;<7 is an Ito process if

¢ p t
X, = X0+stds+ZfH§dW§
0 ' Jo

where

e K, and all the processes H! are adapted to F
T
o ) IKlds <o,

° fOT(HQ 2ds < 0.

Proposition 3.1.2 Let (X!, X?, .., X") be n Ito processes

t p 't )
X = X5+fK;ds+Zfo;JdW§
0 1Yo

Then, if fis twice differentiable with respect to x and once differentiable with respect to t with

continuous partial derivatives in (1,x),

!
d
f@&, X!, . X" F0, X5, ... X)) + fo a—J;(s, X! . X"ds

+i ta—f(s X! L XMdX;
< 0 aXl ’ $9 Ky 4

1w (1 8 o
+—Zf (XD, XX X
2i,j:1 0

0X,0X ;
where

. . p P .

o dXi=Kids+ ) Hdw]
j=1

. . p . H

o d(X', Xy, = Z H"HI™ ds.
m=1

Definition 3.1.19 A T maturity zero-coupon bond is a contract that guarantees its holder the
payment of one unit of currency at time T with no intermediate payments. The contract value

at time t < T is denoted by P(t,T). Clearly, P(t,T) is equal to I for all T.

13



Definition 3.1.20 The bank account/money market account process is defined by

t
B; = expf reds
0

with
dBt = r,B; dt

By =1

Definition 3.1.21 A discount factor D(t,T) between to time instants at time t and T is the
amount at time t that is equivalent to one unit of currency payable at time T and is given by
B() r
D1, T)= — = exp(—f r(s)ds).
B(T) t
Definition 3.1.22 The simple compounded forward rate contracted at time t for expiry T and
maturity S, t < S < T is defined as

P, T)- P(t,S)

oS 1) = = —gpa )

Definition 3.1.23 The simple spot rate for [T, S] is defined as

P, T)-1

LS. 1) = T(T=$HPS.T)

Definition 3.1.24 The continuously compounded forward rate contracted at time t for expiry

T and maturity S, t < S < T, is defined as

log P(¢,T) — log P(¢,S)
T-S '

R(t;S,T) =

Definition 3.1.25 The instantaneous forward rate which maturity T, contracted at time t, is

defined as
Oln P, T)

f@.T) = Jim L, T,8) = ———

Definition 3.1.26 The instantaneous short rate at time t is defined as

r(t) = f(t,1).

14



Definition 3.1.27 Any simply compounded forward rate spanning a time interval ending in T

is a martingale under the T-forward measure for each0 <u<t<S <T

E[F;S,T) | F:] = L(u; S, T).

Definition 3.1.28 Fort<s<T

T
P, T) = P(t,s)exp(—f f(t, u)du)

and, in particular,

T
Pt T) = exp(—f f(t, s)ds).

3.2 Fundamentals of Jump Process

Definition 3.2.1 Let (7;);>0 be a sequence of independent exponential random variables with

parameter % and T, = 3| 7; the process (N;) 1o defined by

N; = Z li>T,

n>1

is called a Poisson process with intensity A.

Proposition 3.2.1 (Poisson Process) Let (N;) ;>0 be a Poisson process.

1. Foranyt > 0, (N,) is almost surely finite.

2. For any w, the sample path , t — N(w) is piecewise constant and increasing.
3. The sample paths t — Ny are right continuous with left limits (cadlag process).
4. For anyt > 0, N;,_= N; with probability 1.

5. Ny is continuous in probability, Vt > 0 as s — t, Ny = N,.

6. For anyt > 0, N, follows a Poisson distribution with parameter At, Yn € N

exp(—Af)(A1)"

P(N, = n) = .

15



7. The characteristic function of N; is given by

E(e"V1) = exp(At(e™ - 1)), Yu € R

8. N; has independent increments: for any t; < ty < .. < t,; Ny, = N;,_,, Ny, = Ny poeens

N;, — Ny, Ny, are independent random variables.

9. The increments of N, are stationary: for any t > s, N, — N has the same distribution of

Ni—s.

10. N; has the Markov property: Nt > s

E(f(N) | Nusu < 5) = E(f(Ny) | Ny).

Lemma 3.2.2 Let X, be a counting process with stationary independent increments. Then X,

is a Poisson process.

Theorem 3.2.3 Let N, be a Poisson process with intensity A. Then the compensated Poisson
process

M[:N[—/lt

is a martingale.

Proposition 3.2.2 Let W, be a Brownian motion and M; = N; — At be a compensated Poisson

process relative to the same filtration. Then
(W, M], = 0.

Definition 3.2.4 Let be given E c RY. A radon measure on (E,B) is a measure y such that

for every compact measurable set B € B, u(B) < oo.

Definition 3.2.5 (Poisson Random Measure) Ler (Q, 7, P) be a probability space, and u a
Radon measure on (E, E). A Poisson random measure on E with intensity measure u is an

integer valued random measure:
M:Qx&E—-N
such that
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1. For allw € Q, M(w, .) is an integer valued radon measure on E: for any bounded

measurable A € E, M(A) < oo is an integer valued random variable.

2. For each measurable set A € E M(.,A) = M(A) is a Poisson random variable with

parameter w(A): Yk e N

exp(=(A)) (u(A))*

P(M(A) = k) = o

3. For disjoint measurable sets Ay, ...,A, € &, the variables M(A,), ..., M(A,) are inde-

pendent.

Theorem 3.2.6 Let M be a Poisson random measure with intensity . Then compensated

Poisson random measure

is a martingale.

Proposition 3.2.3 Let M be a Poison random measure on E = [0, T] X R4\ {0} with intensity

u with compensated random measure M = M — yand f : E — RY. Then the process

f f f(s,y) M(ds, dy)
0 Jri\(0)

f f F(s.y) M(ds, dy) - f f Fs.y) u(ds, dy)
0 JR4\{0} 0 JRA\{0}

X

is a martingale.

Definition 3.2.7 (Marked Point Process) A marked point process on (Q, ¥, P) is a sequence
(T, YnInz1, where

1. (Ty)ps>1 is an increasing sequence of random times with T,, — oo almost surely as

n— oo,

2. Y, is a sequence of random variables taking values in E.

3. The value of Y, is Fr, measurable.
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Definition 3.2.8 (Compound Poisson Process) A compound Poisson process with intensity

A > 0 and jump size distribution f, is a stochastic Process Q; defined as

N:
O = Z Y;,
i=1

where jump sizes are independent identically distributed random variables with distribution f
and Ny is a Poisson process with intensity A, independent from (Y;)i>1. The jumps in Q; occur

at the same time as the jumps in N;.

Definition 3.2.9 (Levy Process) A stochastic process X; on (Q, ¥, P) with values in R? such

that Xo = 0 is called a Levy process if it satisfies the following prosperities:

1. Independent increments: for every increasing sequence of times ty, ...,t, the random
variables X, Xy, — Xzy, s Xo, — X4,

2. Stationary increments: the law of X;1n, — X, does not depend on t.

3. Stochastic continuity: for all € > 0, lim,—o0 P(|X;+n, — Xi| =2 €) = 0.

Definition 3.2.10 A probability distribution F on R? is said to be infinitely divisible if for
any integer n > 2, there exists n i.i.d random variables Y1, ..., Y, such that Y| + ... + Y;, has

distribution F.
Definition 3.2.11 (Levy Measure) Let X, be a Levy process on RY. The measure v on R¢
defined by:
Y(A) = E[number of {t € [0,1] : AX; £ 0,AX; € A}] (A € B(RY))
is called the Levy measure of X: v(A) is expected number per unit time of jumps whose size

belongs to A.

Proposition 3.2.4 Let M be a random measure with intensity u. Then the following for-

mula holds for every measurable set B such that u(B) < oo and for all functions f such that

[ exp(f())u(dx) < oo:

Elexp( L f(OM(dx))] = exp( j; (exp(f(x)) = Du(dx)).
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Proposition 3.2.5 (Levy-Ito decomposition) Let X, be a Levy process on R and v its Levy

measure.

1. v is a radon measure on R% \ {0} and verifies:

f Ix[>v(dx) < o0 f W(dx) < oo
[x|<1 |x|>1

2. The Jump measure of X, denoted by u, is a Poisson random measure on [0, co[xR? with

intensity v(dx)(dt).

X, = yt+Bt+th+lin(1)f(f (3.2)
€
where

X,l = f xu(ds, dx)
[x>1

X = f x(u(ds, dx) — v(dx)ds).
e<|x|<1

The terms in (3.2) are independent and convergence in the last term is almost sure and uniform

inton [0,T].

Definition 3.2.12 Ler X, be a Levy process with the Poisson random measure y on E =

[0, T] x R4\ {0} and N, Poisson process.

X, = X0+fa(s)ds+f,8(s)dW(s)+f fy(s,y)u(ds,dy).
0 0 0 JE

Given a f € CY2(R?), ito formula defined by

dft,X,) = filt, Xpdt + fx(t, Xp)a(t)dt + %fxx(l, X)B(t)dt
+fx(t, X, )BOdW (1) + fE f (5, Xe +¥(2, ) — f(2, X, )]u(dt, dy)
3.3 Change of Measure

Definition 3.3.1 A numeraire is any positive non-dividend paying asset.
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Theorem 3.3.2 Let N be a positive non-dividend paying asset, either primary or derivative,

in the multidimensional market. Then there exist a vector volatility process

V(1) = (vi(0), ..., va(D))

such that

dN(t) = RON(6)dt + N(t)v(t) dW(¢).

This equation is equivalent to each of the equations

d(D(ON(1) = DON@)V() dW (1)

t 5 1 t
D(ON(@) = N(O)exp(j(; V(u)dW(u)—EIOIIV(M)IIZdu)

! B ! 1
N(@) = N(O)eXp(j(; V(u)dW(u)+£(R(u)—EIIV(M)IIZ)du)-

In the other words under the risk neutral measure every asset has a mean return equal to the

interest rate.

According to multidimensional Girsanov theorem we can use the volatility vector of N(¢) to

change the measure:

!
W) = —fo viwdu+Wit),j=1,..d
and a new probability measure:

PNA) = - f D(ON@)P for all A€ F.
A

Theorem 3.3.3 Let S(t) and N(t) be the prices of two assets denominated in a common cur-
rency and let o(t) = (o((t), .., 04(t)) and v(t) = (v{(2), ..., v4(?)) denote their respective volatil-
ity vector processes:

d(D()S (1)) = D()S (H)o(t) AW (1)

d(D(t)N(t)) = D{OON()v(t) AW (7).

Take N(t) as a numeraire so that the price of S (t) becomes S N = % Under the measure

PN the process SN (1) is a martingale. Moreover
ds™ () = SN()(o(t) — v() AWV (p).
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Proposition 3.3.1 Assume that there exist a numeraire N and a probability measure QV,
equivalent to the initial Qq, such that the price of any traded asset X (with no-dividend pay-

ment) relative to N is a martingale under QV, i.e.,
Xi Xr

_:EN(

N, N, | o)

Let U be a arbitrary numeraire. Then exist a probability measure QU, equivalent to the initial

Qo, such that the price of any attainable claim Y normalized by U is a martingale under QV,

ie.,
Yt U Y T
— =E(— | ).
U, (UT | F0)
Moreover the Radon-Nikodym derivative defining the measure QU is given by
dQY  UrNy
dON  UoNr'

Proposition 3.3.2 Let Q'F and Q" are probability measures

or-1P
Zr = o on¥,;
where
B'P(r) B"(0)
T =

B'(t) BP(0)

then is Q' a martingale measure for the numeraire B'P. Here B'P(t) = I(t)B'F(¢).

Proposition 3.3.3 Ler Q" and Q" are probability measures and S"(t) is arbitrage free process

in the nominal economy
.

Zr = %onﬁ

where

70 = B"(nI(t) B"(0)
"B BOI0)

then is Q" a martingale measure for the numeraire B'(t) and

S™*t) =S"()I().

S0
B’ (1)

is a Q" martingale. Here,

Proposition 3.3.4 Let Q7" and Q" are probability measures and S"(t) is arbitrage free pro-

cess in the nominal economy
-

0
Zr = o onT;
where
4 _Pani)  B'0)
T=77Bu)y PO, T)I0)

then QT is a martingale measure for the numeraire P'(t,T), and

S'()

. T,r .
P s a Q""" martingale.
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Theorem 3.3.4 (Multi Currency Change of Numeraire) Let X(t) an exchange rate between
domestic and foreign economies and N(t) is a numeraire in the domestic currency with mar-
tingale measure QV, M(t) is numeraire in the foreign currency with martingale measure QY.
Then Radon-Nikodyn derivative looks as follows on Fr

do¥  N(T) X(0)M(0)
doM — X(T)M(T)  N(0)

Theorem 3.3.5 (Bayes Formula) Let X; be a stochastic process on (Q, A,P) and P and Q
are probability measures on this space and & be o- algebra with & C F. Since, the Radon-

Nikodyn derivative is

d
Z= _dIQ’ on ¥,
The Bayes formula as follows
EP[ZX | &/
ECX | &) = ———n.
XIel="rz1e,
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CHAPTER 4

HEATH JARROW MORTON FRAMEWORK AND FOREIGN
CURRENCY ANALOGY

In this chapter, we give Heath Jarrow Morton (HIM) framework and foreign currency analogy

that is known as the fundamental of pricing inflation indexed derivatives.

4.1 Heath Jarrow Morton Framework

It is a framework to be used for modeling the dynamics of the instantaneous forward rates. The
main insight of this framework is the relationship between the drift and volatility parameters

of the forward rate dynamics for no arbitrage opportunity market.

HJM model represents the yield curve in terms of the forward rates, f(¢, T), which can be
locked in at time ¢ for borrowing at time 7 > t. For fixed ¢, the function T +— f(t,T)
is defined as the forward rate curve. The stochastic structure of the model is based on the

evolution of the forward rate curve.

HIJM model has a necessary and sufficient condition for a model driven by Brownian motion
to be free of arbitrage. So, every Brownian motion driven model can be shown in HIM model
with no arbitrage condition. In this chapter, we study HIM model with its drift conditions

under no-arbitrage assumption and risk neutral probability measure.

4.1.1 No Arbitrage Condition

Assume a continuous trading economy with a trading interval 0 < 7 < 7 for a fixed 7 > 0.

A probability space (2, ¥, P) with the probability measure P and filtration {F: ¢ € [0, 7]}.
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P(t, T) denotes the time ¢ price of the T maturity bond for all T € [0, 7] and r € [0,T]. The

forward rate, f(z,T), satisfies the following equation:

t t
f@,T) = fO,T)+ f (s, T)ds + f o (s, T) dW(s), (4.1)
0 0

where {f(0,T): T € [0,7]} is a fixed, nonrandom initial condition, a(t,T) and o(¢, T) are
adapted processes. The advantage of the initial condition is to provide a perfect fit between
observed and theoretical bond at + = 0. The following relation between zero coupon bond

prices and forward rates holds.

T
P(t,T) = exp(- f £(t, $)ds). (4.2)

From the equation (4.1), we can reduce the dynamics of the bond prices given by the equation

(4.2). Firstly, we compute the differential of — ftT f(t, s)ds :
T T
d(—f f(t, s)ds)y = f(t,ndt—- f df(t, s)ds.
t t

We know r(t) = f(t,t) and

dfit, Ty = at,T)dt+0o@,T)dW(), 0<t<T.
So, we get

T T

d(— f f(t, s)ds) = r(dt—- f [a(t, s)dt + o(t, s) dW(1)]ds.
t t

Let define

a,T)

T
f a(t, s)ds

T
o, T) = f o(t,s)ds

The formula becomes
T
d(- f f@t,s)ds) = r(dt—a(t,T)dt— o, T)dW(t).
t

We want to find the dynamics of the bond price given in the equation (4.2). Now, we use

Ito-Doeblin formula according to g(x) = ¥, g’(x) = e*, g”’(x) = ¢* and
T
PT) = o= [ s,
t
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Then,

T T
dP(.T) = g(- f £, ) ds) d(- f £, $)ds)

1 T T
438 f b, $)ds) [ d(- f Flt,8)ds) T
t t
= Pt,T)[r(dt—at,T)dt -6, T)dW(r) ]

1
+§P(z, T)o(t, T)>dt

P, TY[r(t)—a(t,T)+ %&(I, T)2 1dt — &, T)dW(t)). “4.3)

After derivation of the bond price dynamics we can turn the drift condition derivation. The
drift condition gives us the relationship between the drift a(z, T) and the volatility o (¢, T') of
the forward rate dynamics under no arbitrage assumption. There exits a probability measure
P under which discounted asset prices are martingale in the arbitrage free market. Give the

discounted bond price, P(t, T), with

t
P(t,T) = P@T) wq?(-f r(s)ds),
0
using integration by parts formula yields

dbP@,T)

—-P(t,T) exp(— f r(s) ds) r(t)dt
0

+exp(— f r(s)ds)dP(t,T)
0

= —P@t, T)r(t)dt

/
+ exp(— f r(s)ds) P(t,T) [ r(t) — a(t, T) + %5‘([, T)2 1dt
0
—exp(— f r(s)ds) P(t,T)6(¢t, T)dW(r)
0

= P, T[-atT)dt+ %6'([, T)? dt—&(t,T)dW(1)].

By Girsanov theorem, we change the probability measure to equivalent probability measure

P under which

W(7)

f A(s)ds + W(t),
0
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where A(s) is the market price of risk. So, discounted asset dynamics can be rewrite as
dP(t,T) = -Pt,T)c(tT)dW().
For the market price of risk, A(s), we must solve the subsequent equation
1
[—a(t, T) dt + E&(t’ 7Y dt— (1, T)dW(t) = -6, T)[dW() + ) dr).
or
- 1. 2 -
[-a(, T) + Eo-(t, T 1dt = —6@T)A)dt
To solve A(t); 6(¢t, T) and a(t, T) will be differentiated with respect to T';
0 a(1,T) = a(t,T) g o (1,T) =o(t,T)
aTa £ =a B ’ aTO- ] =0 £
Hence,
—at,T)+ 5, T)o(t, T) = —-o@T)A®)
or

at, T) = o, T)[6@T)+ A0 1.

So, we finally find the drift term of the forward rate dynamics can be written in terms of the

volatility term under no arbitrage assumption.

Theorem 4.1.1 (HJM Drift Condition) A term structure model for a zero coupon bond
prices of all maturities [0, 1] and driven by a Brownian motion does not admit arbitrage if

there exist a process A(t) such that
at,T) = o@,T)[6@T)+ A1) ]
Here o(t,T) and a(t, T) are drift and diffusion, respectively of the forward rate
dft, T) = a@,T)dt+o(t, T)dW(s),
where ftT o(t,s)ds = 6(t,T) and A(t) is the market price of risk.
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4.1.2 Under Risk Neutral Measure

Under risk neutral measure, the local rate of return is equal to the short rate. In equation (4.3),

- I )

r(t)—a(,T)+ 50’(1‘, T) = r(.

Hence, we get

- I ’

at, T) = Ea(t, T)
using definition of @, & and differentiation with respect to 7', which gives

at,T) = o@T) 6T).

Hence, we get the drift term of the forward the forward rate under risk neutral measure. The

following theorem gives the term structure evolution under this measure.

Theorem 4.1.2 (Term-structure evolution under risk neutral measure) In a term structure
model satisfying the HIM no arbitrage condition of Theorem (4.1.1), the forward rates evolve

according to the equation
dft,T) = o@T) &t T)dt+o(t, T)dW ()
and the zero coupon bond prices evolve according to the equation
dP(t,T) = r(t)P(t,T)dt - &1, T)P(t,T)dW(t) 4.4)

where W(t) is a Brownian motion under a risk neutral measure P. Here, r(t) = f(t,1) is the

short rate. The discounted bond prices satisfy
dP(t,T) = -PtT)&tT)dW().

The solution to the stochastic differential equation (4.4) is

t t T
P, T) P(0, T)exp{f r(u) du — f Fu, T) dW(u) — % f a(u, T)2 du}
0 0 0

PO, T)

t T
= BO) exp{—‘fofr(u,T)dW(u)—%‘fO (7'(u,T)2 duy}.
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As we mentioned before, every Brownian motion driven model can be shown in HIM model
with no arbitrage condition. To better understand this, we will give an example with the one

factor Hull-White model. The interest rate dynamics of the model are of the form
dr(t) = (a(t) - b(t)r)dt + o(t,T)dW(t),

where W() is a Brownian motion under a risk neutral measure and a(t), b(f), o(¢) are nonran-

dom positive functions. The zero coupon bond price in this model is given by

P(t,T) = e "OCED-ACT)

where

T X
cit, T) = f exp(—f b(u) du) ds,
t t

T
ALT) = f (a(s)C(s,T)—%a'z(s)Cz(s,T))ds
t

By using forward rate definition we get

_InP(t,T)

0 0
T = r(t)ﬁC(t, T)+ ﬁA(t, T)

f@71) =

and with C’(¢,T), A’(¢t,T) denoting derivatives with respect to ¢, we get the forward rate

differential:

df,T)

0 o q ,
ﬁC(I, T)dr(t) + r(t)ﬁC (t, T)dt + ﬁA (t, T)dt

= aiTC(t, T){(a(t) — b(t)r)dt + o () AW (1)}

9, 9 .,
+r(t)a—TC (t, T)dt + B_TA (¢, T)dt

(9 (9 ’ 6 ’
= [55CE D@ = bOr) + D72 C' (@ T) + 22 A Tl

0 -
T 4.
+ aTC(t, Yo (t) dW (1) 4.5)
Hence the HIM no arbitrage condition becomes,
9 C(t,T)a(t) — b(t)r) + r(t)—(9 C'(t,T)+ 9 A'(t,T)
ar 7 T
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= —C(l‘ ) (t)f —C([ ) ( )d
S Z loa t ,u)olu u
= 5 a s 4

— 9 2
= [5:CDICE Doty

4.2 Foreign Currency Analogy

For modeling inflation, there are two types of approaches. the first one is the econometrics
models. These type of models forecast the inflation rate using time series data. The second
one is option pricing based models. These type of models are used to price inflation indexed
derivatives. The most well-know application of pricing inflation indexed derivatives is the

study of Jarrow and Yildirim. They used foreign currency analogy.

In foreign currency analogy, nominal dollars correspond to domestic currency, real dollars
correspond to foreign currency and inflation index correspond to exchange rate between two
economies under no-arbitrage assumption. In this section, we will give basic rules of foreign

currency analogy that is based on Jarrow and Yildirim model.

Definitions and Notations:

o (Q, 7, P) is a probability space with filtration {7 : t € [0,T]} and objective probability
P.

e Nominal is denoted by n, real is denoted by r and inflation is denoted by I. There are
three Brownian motions nominal, real and inflation (W"(¢), W’ (r), W (¢)) with correla-
tions

dAW"()dW'(t) = py,dt
AW"()dW! (1) = pudt
AW (£)dW' (1) = pydt
e P'(t,T) is the price of a real zero-coupon bond at time t with maturity T.
e P'(t,T) is the price of a nominal zero-coupon bond at time t with maturity T.
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I(t) is the inflation index at time t with dynamics;

i)

1 1 1
10 w@®dt + o (HdW' (1)

fi(t,T) is the forward rates at time t for date T, for i = r, n, with

dfi(t,T) = a'(t,T)dt + o'(t, T)AW'(r)

ri(t) is the spot rate at time t with 7/(f) = fi(t,1)

Bi(¢) is the money market account

The price in dollars of a real zero-coupon bond is denoted by PT/?S (¢, T), where

PTIPS (1, T) = I()P"(1,T). (4.6)

Under these definitions, an example to better understand the foreign currency analogy will be
given below.

If 1(¢) is the price of a Hamburger, then we have the followings:

A nominal bond:

e pays out 1 dollar at maturity

e P"(t,T) is the price of a nominal bond in dollar

A hamburger indexed bond:

e pays out a dollar amount that is enough to buy 1 Hamburger at maturity

o PTIPS(t T) is the price of a Hamburger-inflation protected bond in dollar

A real bond:

e Pays out 1 Hamburger at maturity
e P'(t,T) is the price of a real bond in Hamburgers
According to these definitions and notations, Jarrow and Yildirim model continues with two

important propositions. The first one gives the drift conditions under no-arbitrage assumption.
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Proposition 4.2.1 In the arbitrage free market P;,(f(’g ) I(’)l;r((tt)’n and I(gﬁgt) are martingales if

and only if the following conditions hold.

T
', T)=d"(, T)(f o' (t, s)ds — W' (1)) 4.7
T
a @, T)=0o"(t, T)(f a'(t, s)ds — o ()p,; — W (1)) 4.8)
w'@) =r'@0) -0 - ' (O @) (4.9)

where

W@:W@—fmmag

0

szwm—fmmm@
0

t
W@:W@—f#@mﬂ
0

Proof. Let Z ;ﬁt(g ) be martingale under P measure. In the previous section we have already

found the dynamics of P"(¢, T') as follows
dP'(t,T) = P't,TD[r@®) —-a"tT)+ %o:”(t, 7Y 1dt — o, T)dW"(®). (4.10)
The money market account B"(¢) has the dynamics
dB"(t) = B"(t)r'*(1)dt

Then,

P, T)

— 7 1=l
B = AP EDE W™

d(

= dP'(t,T)B"®)~" + P'(t, T)dB"(t)"" + d(P",(B")™ "),

_ P L, 1, o )
= gy LD+ 35 @D = & @ DAV )]

To change the measure from objective P measure to martingale P measure, we use 4"(f) as

the market price of risk as follows
dW"(t) = dW"(t) - h"(t)dt.
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Then the new dynamics is equal to

P"(t,T)) _ P
B (1) B B(1)

d( &"'(t, T)dW"(¢).

Hence the subsequent equation must be satisfied
1 -
(-a"(t,T)+ 55‘"(1‘, T)?)dt — 3'(t, T)AW"™(t) = —&"(t, T)dW"(r).
Since

T
a', T) = fa”(t,s)ds

T
f o' (¢, s)ds
t

and taking the derivative with respect to 7' gives the result

a'(t,T)

T
a"(t,T) = o(1, T)(f a'(t, s)ds — W' (¥)).

Let [0B'®)

o) be martingale under P measure. Since

d(B" (B (™" = (B" (B (O™ I (t) - F(D]dt.

Under the objective measure P, we get

d( I(Zf;;;t)) = dl(l)Br(t)B"(t)_l 4 I(l)d(Br(t)B"(t)_l) Ll B’(B")—1>t
B I(gﬁgt) [ (0) + 7 (1) = (et + o () dW' ()],

To change the measure from objective P measure to martingale P measure, we use 4/(¢) as the

market price of risk as follows
AWl (1) = dWl(r) - k! (1)d.

Then the new dynamics is equal to

OB @, TOBW

d( B (1) B (1)

Hence the subsequent equation must be satisfied:
W @) + " (0) = F"@)dt + o (AW (1) = o ()dW ().
So, it gives the result
p@ =@ @) - o On' @),
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Let 1P (1,T)

0 be martingale under P measure. We know that we have already found the dy-

namics of P’(¢, T) in the previous section
1
dP'(t,T) = P, ®)-a ¢ T)+ 56—’0, T)2\dt — P'(t, )& (¢, T)dAW' (¢)

so that by the integration by parts formula we obtain

AP, T)) = dIP (t,T)+dP (t,T)I(1) + d{I, P",
= IOP (0, D ') +r (1)=& (1,T) + %&’(r, T)?
—a ()" (&, T)py 1dt
—~IOP (1, T)[ & (t, TYAW'(t) — o' (HdW' (1) 1. 4.11)
and, then,
d(%&’n) = %((;T)[u’m +r(1) =& (1, T) = r"(1)

1
ol ()" (t, T)p,1 + 5&’@, T)*\dt

MO G, oy ry— oWl
B0 [0, T)dW'(t) — o' ()dW" (1)]
By using (4.9), we finally get:
IOpP ¢, T), _ IOP@T) . gl
™) =~ v en-d oo

1
+507(, T)? — al()G" (1, T)p,1dt

N IOP (1, T)

~r r 1 1
0 [-6" (@, T)dW' () + o (H)dW' (1)].

To change the measure from objective P measure to martingale P measure, we use 4’ (f) and

h!(t) as the market price of risks as follows
dW'(t) = dW' (1) - h' (t)dt

AWl () = dW' (1) — W (1)dt.

Then the new dynamics is equal to

IOPT). _ IOP(T), _, . I
om ) = a0 DAV + o 0dW ).
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Hence, the subsequent equation must be satisfied

[-&"(t, T) - o (Oh' (1) + %&’(t, T} - ol ()6 (1, T)p,)dt — & (2, T)AW' (1) + o () dW' (2)

= —&"(t, T)dAW'(t) + o ()dW' (1)
Using the definitions of @ and &, and taking derivative with respect to 7" we get the result

T
& (t,T)=0"(t, T) f o’(t, 5)ds — o (Dp,; — W (1)).

|
Proposition 4.2.2 Under risk neutral measure the following dynamics are satisfied:
T
D df',T) =", T)f o’\(t, s)ds + o' (t, T)dW"(t) (4.12)
T
2) dffa,T)=0'(t, T)(f o' (t, )ds — o (O)dt + o' (t, T)AW' () (4.13)
3) % = [F"(t) - (1)) dt + o ()dW' (1) (4.14)
dP"t,T) o .
D gy 0= ft o' (t, s)ds)dW" (1) (4.15)
dPTIPS ([’ T) B T . .
5 sy = Odt+ o (dW' (1) - ( ft o’ (¢, 5)ds)dW' (1) (4.16)
r T T
6) % =[r'(¥) —pﬂo-I(t)j; o’ (t, s)ds]dt — (f[ o’ (t, $)ds)dW' (1)
“4.17)

Proof. We know
df'(t,T) = a"(t, T)dt + o (t, T)dW"(¢)

df' ¢, T) =a' (¢, T)dt + o (t, T)dW'(¢)

al(m _ I 1
m =u dt+ o' (H)dW' (1)

Substituting o, @ and u! which are found in the previous proposition into these equations
and then using

dW (1) = dW(1)
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since under risk neutral measure the local rate of return is equal to short rate, finally we will
get the equations in (1), (2) and (3).

The dynamics P"(¢, T)) which is found in the previous proposition
~ 1.
dP't, Ty = P't,D(r"@) —a™t,T)+ 50‘"0, T)?)dt — (1, T)dW(r)]. (4.18)
Integrating subsequent equation from # to T
T
', T) =o"(t, T)(f o' (t, s)ds — W'(1))
t
using the definitions a”, ™ and A"(t) = 0 yields
~ 1. )
an(t’ T) = Eo-n(t’ T)

and we know from the risk neutral measure: dW(t) = dW(?).
These two equations give (4).

The dynamics P’(t, T') which is found in the previous proposition

1

dP't,T) = P&, D@ -a ¢ T)+ Eﬁr(t, T)1dt — P'(t, T)& (t, T)dW' (¢)
Integrating subsequent equation from ¢ to T gives
T
o (t,T)=0"(t,T) f o’ (t, s)ds — o (D), — W' (1))
t
and using the definitions a”, o and A’ (¢) = 0 gives
1
&) = 5&’@, T) - & (t, T)o (t)pyr.

From the risk neutral measure we know dW () = dW(r).

These two equations give (6).

The last dynamics, PT/PS (¢, T), can be found using P"/P5 (t, T) = P"(t, T)I(t) with (3) and (6).
By integration by parts formula, we obtain

dPTIPS (l, T)

PR GT) (1) = P (D)dt + o (AW (1)]

+ [(F" () — pra’ (OF (1, T))dt — & (t, T)AW' (1]
- o ()" (t, T)p,dt

T
= AOdt + o (OdW (@) - ( f o’ (t, s)ds)dW' ().
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CHAPTER 5

THE EXTENDED HEATH JARROW MORTON FRAMEWORK

Models included jump processes provide more realistic representation of price dynamics and
more flexibility in modeling. In this section, we give structure of the HIM model allowing
for jumps. Dynamics of nominal bonds, real bonds, inflation indexed bonds and inflation are

given under the martingale measure.

Assumption 5.1 Let (Q, ¥, P) be a probability space where P is the objective probability
measure. The filtration {F };>0 is generated by both Wiener process W(t) and a Poisson

random measure u(dt, dz) on R, X Z, Z € B(R), with compensator A(dt,dz) = v(dz)dt.

Assumption 5.2 Assume that there exists a market with bonds and inflation indexed bonds
for all maturities T > 0. In that market, P"(t, T) and P'F(t, T) are differentiable with respect

toT.

In this chapter, we denote P"(¢, T) as the price in dollar at time ¢ of a nominal zero coupon
bond which pays one dollar at the maturity 7. We write /() for the consumer price index,
PP (¢, T) for the price in dollar at time ¢ of a contract which pays dollar value of one CPI unit
at time 7T, P’(¢, T) for the price of an inflation indexed zero coupon bond. Furthermore, we
define P"(t,T) by

PP, T)

Pr(l, T) T

We can say that P"(¢, T) is the price in CPI baskets of a real bond which pays one CPI basket

at time 7.

Assumption 5.3 Under the objective probability measure P the dynamics of forward rates
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and inflation are given by

dfi(t,T) = a"(z,T)dt+ﬁ"(z,T)dW”(z)+fy"(t,z,T)u(dz,dz) Ji=nor  (5.1)
V4

di(ry = d @I dt+ b OIF) dWE (@) + I(12) f cl(t, 2) u(dt, dz) (5.2)
Z

where &', d', ,Bi, b, o, ,81 are adapted processes.
Assumption 5.4 Assume that the market is arbitrage free.

This assumption implies that there exists an equivalent martingale measure Q" such that,

PYt,T) PP, T)
B(t) © BM1)

are Q"martingales.

Proposition 5.1 If f"(t,T), f"(t,T) and I(t) satisfies Assumption (5.3) then under nominal

martingale measure Q" the following dynamics hold:

% = [F(t) - (D] dt + b (£) dW(r) + fz ! (t,2) fudt, dz) (5.3)
% r(Hydt+o"(t, T)dW (1) + fz o"(t,z,T) fi(dt, dz) (5.4)
% PO dt+ o', T)dW (1) + fz 6'"(t,2,T) jidt, dz) (5.5)
% a'(t,Tydt+ o' (6, T)dW(1) + fz §"(t,2, T) fi(dt, dz) (5.6)

where
. T .
o', T) = —f B (t,u)ydu , fori=n,r
t

P, Ty = b@O)+0(,T)

. T .
0'(t,z,T) = exp(—f v'(t, z,u)du) — 1

t

6""(1,2.T) = &(t.2.T)+c'(t,2) + 6 (1,2, T)c!(t,2)

awT) = @O -b o, T)- f §(t,z, T)c (1,2 VP (d7)
V4
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Proof. We know the zero coupon bond price is defined by

T
Pi(t,T) = exp(— f Fit, uydu)
t

and say X(t,T) = — ft ! fit,u)du , so Pi(t,T) = exp(X(t,T)) and we also know the forward

rate dynamics from Assumption (5.3) and integrating equation (5.1), we have

fitt,u) = fi(O,u)+fai(s,u)ds+fﬁi(s,u)dWP(s)+ffyi(s,z,u),u(ds,dz)
0 0 0 Jz

By using relation between instantaneous interest rate and forward rate, r'(f) = f(t, 1), we get
@ = £10,0+ f a'(s,0)ds + f B(s, ) dWF(s) + f f ¥Y'(s,z, 1) u(ds, dz).
0 0 0 Jz

Hence, — ft r fi(t, u)du can be found using Fubini theorem and some integral splitting as fol-

T T ot T
—f fi(O,u)du—f fo/(s,u)dsdu—f fﬁi(s,u)dWP(s)du
t t 0 t 0
T '
—f ffy’(s,z,u),u(ds,dz)du
t 0 JZ
T r t T
= —f fl(O,M)du+ff’(0,u)du—ff a'(s,u)duds
0 0 0 Js
topt t T
+ffa’(s,u)duds—ff Bi(s,u) dudWF(s)
0 Js 0 Js
topt t T .
+f fﬁ’(S,M)dudWP(S)—ff fy’(s,z,u)du,u(ds,dz)
0 Js 0 Js VA
+f f fyi(s,z, u) du u(ds, dz)
0 Js JZ
T t T t T
= —f fl(O,u)du—ff a/’(s,u)duds—ff Bi(s, u) dudW¥(s)
0 0 Js 0 Js
t T ) r
—ff fy’(s,z,u)duu(ds,dz)+ff’(O,u)du
0 Js VA 0
t U ! U
+ff ai(s,u)dsdu+f f ,Bi(s,u)dWP(s)du
0 Jo 0o Jo
+f fufyi(s,z,u),u(ds,dz)du.
0o Jo Jz
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. . - . .
Since the four last terms give fo r'(s)ds, we can rewrite the above equation as follows

1 ! T
X, T) = X(0,T)+ f ri(s)ds — f f @' (s,u)duds
0 0 K

! T t T
- f f Bi(s, u) dudWF(s) - f f f Y (s, 2, u) du p(ds, dz)
0 s 0 K Z

Let define
A, T) = —f a'(t,u) du, 5.7)
. T .
o't,T) = —f B(t,u)du, (5.3)
. T .
D'(t,z,T) = —f v'(t,z, u) du, 5.9)

and using definitions (5.7), (5.8), (5.9) and dfi(t,T) is found by
dXa,T) = [F@)+A'(t,T)]dt+ o', T)dWF @) + f Di(t,z, T) u(dt, dz).
Z

Using Ito formula with Pi(t,T) = g(X(t,T)) we will get the the zero coupon bond price

dynamics under objective probability P

dPi(t,T) B ; ; 1 . 5 i .
PG T) @)+ AW T) + 50" T ) di + o' (1, T) AW (1)
+ f 5'(t, 2, T) u(dt, d), (5.10)
z
where
: . T
§.oT) = exp(D'(t2T)-1= exp(—f Y'(t,z,u)du) — 1. (5.11)

We know the dynamics of /(¢) from Assumption (5.3) and P"(¢,T) from equation (5.10) for
i = r, to find P'P(¢,T) we will use P'*(t,T) = I(t)P"(t, T) with integration by parts formula.

At the end of the calculation, we will get the below equation,
dP'’'(t,T) = P'(t,T)dI(t) + I(t)dP"(t,T) +d < P, 1 >,

dP'?(t,T)

r r l r 2 1
T () + AT T) + 50 0T +a' ()

+o(t, b (O dt + (o (1, T) + b (1)) dWF (1)
+ f 6" (t,z, T) p(dt, dz)
Z
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where

P, 2,T) 8 (t,z2,T) + c(t,2) + ¢l (1,26 (1,2, T),

P&, T) o’ (1,T) + b (D).

Up to now, we find the dynamics of P*(t,T), P"(t,T), P'P(¢, T) under objective probability
measure P. But here we need these dynamics under martingale measure Q". So the next
step is changing measure from P to Q". By using Girsanov theorem for jump processes
intensity measure of Poisson process under new measure, A(dt, dz) = 6(t, 2)AP(dt, dz), will be
get and dWP(¢) = h(t)dt + dW(t) where W is Q"-Wiener process. Furthermore we will use
fi(dt, dz) = u(dt,dz) — A(dt, dz). Hence the dynamics of P"(t,T), P'(t,T), P'*(t, T) under Q"

are given by,

% = [d'(t) + b (h(D)] dt + b' (1) dW(t)
+ f c!(t,2)6(t,2) A" (dt, dz) + f c!(t,2) fdt, dz), (5.12)
7 VA
dP"(1,T) 0 . L, 0. n
BT [F(t) + A"(t, T) + EO- @, T) + o (¢, T)D)]dt + (1, T) dW(r)
N f §"(t, 7, T, 2) AP (dt, d2) + f 8"(t,2.T) u(dt, dz). (5.13)
7 Z
dPPT) s AT+ A TR+ d ) + 0T D)
P[p(t_’T) — I% , 20’ s a o (1,

+0” (¢, (1) + b (OhD] dt + o'F (@, T) dW ()

+ f §'P(t,z, T)O(t, 2) A¥ (dt, dz) + f §'"P(t, 2, T) idt, dz).  (5.14)
Z Z

P"(t,T) PIP(1,T)
B and g

Since B'(?) is the risk neutral numeraire are Q" martingales, the drift terms

of P'(t,T) and P'P(¢, T) must be equal to the nominal short rate:

e = O +A"q,T)+ %O'”(t, ) + o(1, T)h(t)

+ f 51,2, T)O(t, 2) v (d?) (5.15)
Z
and

) = FO+A@T) + %0"(1‘, 7Y +d' (1) + o (¢, T)b' (1)
+0” (¢, TYh(F) + b (D) + f 5P, 2, O, 2) vF (d). (5.16)
Z
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Hence we find the dynamics of P"(z, T) and P'F(z, T) follows

dP'(t,T) . ) )
PaT) Pty dt + (1, T) dW(1) + fz 8"'(t,z, T) fu(dt, dz),
dP'P(1,T) )

PPG.T) @ dt+ P, T)dW () + fz 6" (1,2, T) fi(dt, dz).

From equations (5.15), (5.16) and using 6'7(t,z, T) = 6"(t,z, T) + ! (t,2) + ¢! (t,2)6"(t, 2, T) we

get three drift conditions:

A1, T) = —%o-”(t,T)Z—O'”(t,T)h(t)— f 8"(t,z, T)O(t, 2) vF (dz)
VA
A1, T) = —%a’(t, )2 — o (t, T)b' (1) — o (¢, T)h(7)

- f 5"(t,z, T)(1 + (2, 2)0(t, 2) v (d2)

V4

d@ = 'O -r@-b o) - f cl(t, 20, 2)VF (d7).

V4

By using (5.12) and the drift condition of a/(r) we get the dynamics of I(¢) as follows

dI(t
F(; = [ -r®] dt+b1(t)dW(t)+fcl(t,z)ﬂ(dt,dz). 5.17)
- z
Finally, we will find the dynamics of P"(¢,T) using P"(t,T) = P “;((:;T). Here, we use the
dynamics of P!P(t, T) and I(r) which are found in the previous steps to calculate d( P”;((;)’T)):
PP, T) PP, T) P I I 2
= " -r)+r @) - t,T
d( 0 ) 10 (@) =@ +r' (1) —o " (0, T)b'(t) + b’ (1) ]dt
PP, T I, )™ (1,2, T) - (¢
(t, )fC(,Z)( (t,z,T) c(’Z))vP(dz)dt
(1) Jz 1+c(t,2)
PP@e, T
S Dy ir 7y~ bl prawn
1(1)
PP, T) (6'(t,2,T) - I,
( )f (t,z,T) C(Z)ﬂ(dt,dz)
I(t) - 1+cl(t,2)
and, more simply,
dpP (1, T)
— "(t,T "(t, T)dW(t
paTy = CEDTI DAV
+f6r(t,z, T) ja(dt,dz)
z
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where

aw,T) = r@)-o'@ T () - f 8 (1,2, T)C (1,2 vF (d?).
V4

So, we finally get the last dynamics P’(t, T') as follows:

dP(1,T)

P T) a @, T)ydt+o'(t, T)dW(r) + fér(t, z, T) fi(dt, dz). (5.18)

z

Proposition 5.2 The drift conditions that has to be satisfied in order to be free of arbitrage

market are:
T
amj>=ﬁ%1&fﬂmmw—m»

+fa+w¢anwmﬁjwmafwa
7z

T
a(t,T) = B'@TX f B (1, u) du — b (1) - (1))

+ f (1 + (1, 2)A + 8 (1,2, T))Y (1,2, T)O(t, 2) vE (dz)
Z

d@ = 'O -r@-boh) - f cl(t, 20, )V (d7).
Z

P(t,T)
B"(1)

Proof. We know the discounted asset price is martingale under Q" measure. Proposi-

dP"(t,T)

POT) under this measure:

tion (5.1) gives

dP"(1,T)

n 1 n 2 n n
P T) [7'()) + A™(t,T) + 57 (t, T)" + o'(t, T)h(®)] dt + " (t, T) dW(¢)

+ f 8'(t,z, T)O(t, z) AL (dt, dz) + f 6"(t,z, T) u(dt, dz)
z z
The nominal money market account has the following dynamics
!
dB"(t) = exp(f r'(1) dr).
0
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By the integration by parts formula, we receive

Pt,T)
B (1)

d( ) = dP"(t,T)B"(®")

= dP'@, T)B'®)" + P'(t, T)dB ()" + d(P",(B")™"),

- DRI 30T 4 Do) dr
P;(n;ét?g”(t, T)dW(r)
s ;i’ét? Sz D) AP (dt, dz)
% i o"(t,z, T) f(dt, dz).

Since the discounted asset prices are martingale, we get

A", T) = —%o-"(t, T)? — (1, T)h(t) — fd"(t, 7. T, 2) vl (dz)
z

Differentiating both sides with respect to 7" and using the definitions given before, we get

T
A, T) = —f a"(t,u) du
T
AT = - | Bt u)du
t
T
o(t,z,T) = exp(—f v'(t,z,u) du) — 1.

Finally, we get the first drift condition of (¢, T):
T
a'(t,T) = p'G, T)(f B'(t,5)ds — h(1))
t

N f (1 +8"(t.2. )y (t.2. TYO(t. 2) v*(d2).
7z

For the second drift condition that belongs to f7(¢, T), we will the use martingale property of

PPaT) dP'P(1,T)

B0 PTGy under

discounted asset price

under the measure Q". Proposition (5.1) gives

43



this measure.

dP'™t,T)

TS ,
PG @)+ A" T) + 507, TY +d (1) + o (1, )b (1, T)

+a(t, D) + b (Oh®O] dt + P, T) dW ()
+ f 8'P(t,z, T)O(t, 2) A¥ (dt, dz) + f 6" (1,2, T) fildt, dz).
V4 V4

Using integration by parts formula, we obtain

d(P'"P, T)B"(H)™ " d(P'"Pt, T)B ()" + dB,(t) ' PP (2, T)

_ PP@,T) . 1, .
= B,,—(t)[r O=r"O+AT) + 30", T) +a'(®)

+0’(t, )b (1, T) + o (1, Th(7) + b (Hh(1)] dt

PP(t,T)

1P
By O TAWD)

PIP@,T) ( ,p ,
B fza (t,2, T)6(t,2) A" (dt, dz)

PP(t_,T)

o' (t,z, T) fi(dt, dz).
B J, ( ) fi( )

Using martingale property of discounted asset prices and 6'°(t,z,T) = 6"(t,z, T) + c!(t,z) +

cl(t,2)6"(t, z, T), separate drift term of d(P'F (1, T)B"(1)~!) into two equations as follows

A'(t,T)

_%a’u, TY* - o' (t, )b () — o (¢, T)h(t)

- f 5" (t,z, T)(1 + (2, 2)0(t, 2) v (d2)

z

and
d® = '@ -r @) -boht) - f (1, 20(t, ) VF (d?).
Z

The latter one gives directly the drift condition of I(¢). For the drift condition of f"(¢,T),

differentiating both sides of the former one with respect to 7" and using the definitions A”(¢, T),
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o’ (t,T), 0"(t,z, T) given before as follows:

T
A1, T) = —f a'(t,u)du
T
o, T) = - B (t,u)du
T
6 (t,z,T) = exp(—f v'(t,z,u)du) — 1.

Then we get

T
(1, T) = B'TX f B (t,u) du — b' (1) — h(1))

+ f (A + (@, 2)(1 + 6 (t,2, 1))y (1,2, TO(t, 2) v (dz).
zZ
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CHAPTER 6

PRICING INFLATION INDEXED SWAPS WITH THE
EXTENDED HEATH JARROW MORTON FRAMEWORK

In this chapter, we will give pricing derivation of zero coupon and year-on-year inflation
indexed swaps in the extended HIM framework built in the previous chapter. The main aim
under pricing inflation indexed swaps is that these are the most popular and commonly traded

derivatives among inflation indexed derivatives in the market.

A swap is an agreement that on each payment date Party A pays out Party B a floating rate over
a predefined period, while Party B pays out Party A a fixed rate. Payment dates start with 7'
and continue with 75, ..., Ty where T is the start date which has no payment. In the inflation
indexed derivatives market, the floating rate is the inflation rate which is the percentage return

of the CPI index over a period of a time.

6.1 Pricing of Zero Coupon Inflation Indexed Swaps

In a zero coupon inflation indexed swap (ZCIIS) one party pays a fixed rate and receives
inflation rate over the time interval [T, 7] with only one payment at time T;. Let K be the

contract fixed rate and N be the nominal value then the fixed amount is

N((1 + Ky~ To 1)

and the floating amount is

I(Ty)
N(—I(To) - 1.
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If ZC1IS (t, Ty, 1(0), N) denotes the value of the zero coupon inflation indexed swap at time ¢

and t € [Ty, Ty], then

Ty
ZCIIS (t,Ty,1(0),N) = NE™[exp(- f r”(s)ds)(%—(l+K)TM_T°)| F,]
t

where E,{M(. | F;) denotes the conditional expectation with respect to nominal 7-forward
measure and the expectation based on the information at time ¢. Notice that this pricing
valuation is for the party who pays out fixed amount and receives floating amount. When we

rewrite the equation noticing the definition of P"(¢, Tjs) we get

I(T
ZCHS (@, Ty, IOLN) = NPt Ty E[2) | g
I(To)
~NP"t,Ty) (1 + K)Tn=To, (6.1)
Since I(Ty) is F; measurable and
IOP (t, T
% is a Q"1 martingale
the conditional expectation in equation (6.1) becomes
I(Ty) 1 I(Ty)P (T, Tp)
EgM[_M | F] = E;M[ Mn M> 1L ym | F,]
1(To) 1(To) P(Tp, Tm)
1 I®P'(t,Ty)
I(Ty) P"t,Tm)
Hence the value of ZCIIS at time ¢ is
I(t
ZCIIS(t, Tag, 1(0),N) = N%P’(t, Tm) — NP (t, Ty) (1 + K10, (6.2)
0

If we take t = T, that is, swap is initially traded equation (6.2) becomes
ZCHS(To, Ty, I(0),N) = N P'(To,Tar) = N P (To, Tpr) (1 + K)" 7o (6.3)

The obtained price is not based on any specific assumptions about asset dynamics, but only it
depends on the absence of arbitrage. Hence, it is model independent we note take that there

is also a simple replicating argument that proves the equation (6.2):
e Attime Ty buy ﬁ inflation indexed bond with maturity 7.
e At time T, receive the dollar value of ﬁ CPI units. This value will be %

o At time 7 find the price of ﬁ inflation indexed bond. This price will be P"(To, T'y).

47



6.2 Pricing of Year-on-Year Inflation Indexed Swaps

In a year-on-year inflation indexed swap(Y YILS) one party pays the fixed amount and receives
the inflation rate at each payment time 7,41, T )42, ..., Ty for the interval [T, Ty/] where T,
is the start date of the agreement. So, for each period [T}, Ti+1] , i = p,..., M — 1, the fixed

amount is

NT,‘K

and the floating amount is

I(Ty)
I(Ti-1)

Ni( -1

where 7; is the year fraction such as 7; = T; — T;_. Let YYIIS (¢, T;+1, T;, N) denote the value

of YYIIS at time ¢ then the pricing formula can be written by following expression

M-1 Tiv1
YYHS(@Tit, TiN) = 3 N7iwt Eylexp(= | r'(s)ds)( g(;;) —(1+K)| F]
i= =p t
M-1
T,
= 2N P'(t, Tiar) Eg[ E(T*;) | Fil
M-1
= D N7 P, Tia) (14 K). (6:4)
i=p

In the above equation we must find the value of the conditional expectation to get the price of
YYIIS. We know

IOP'¢Tiv)

a Q"™ martingale
P(t, Tis1)

and I(T;) is Fr, measurable. Using these measurable and martingale properties, the expecta-

tion becomes

I(T; _ 1 )
Elmy E(T*;)m] = Bl BT | Frl| F
. 1 : I(Ti+1)Pr(Ti+1, Ti+1)
Epi [—— Eb| | Fr.]| F/]
I(T)) P'(Tis1, Tis1) f
- P(T;, T;
= pre BT T oy 6.5)

P (T, Tiv1)
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In equation (6.5), the numeraire is P*(T;, Tr;+1) which is a martingale under 0"Ti. So, chang-
ing the measure from Q™7 to Q™! enables us to compute the conditional expectation. The

Radon-Nikodym derivative for the measure changing is

n,T;
Zn,Ti+1/n,Ti _ agrm |
t = t

dQn,T,-

P'(t,Tiv1) P"(0,T)
P (t,T;) P"0,Ti1)

By using Bayes formula, we obtain

P (Ti,Tiv1) »n.Tiv1/nT;
T B (Tis Tiv1) [P"(T 7o Zr, | F
E o= | Fil T
PY(T;, Tit1) gz Tit/n,

t

[P (T:,Tiv1) P'(Ti,Tiv1) _P(0,T}) | F/]
P (T;,Tiv1) P'(Ti,T;)) P"(0,Tis1) !
P(t,Tivy) _P0,T;)
P, T;)) P*(0,Tis1)

PT) 1
= ———E,'[P (T, T; Fq]. 6.6
Pn(t,Ti+1) n[ ( i l+1)| I] ( )

Hence, the equation (6.5) reduces the equation (6.6). The conditional expectation in equation
(6.6) is the nominal price of the real zero coupon bond price P'(T;, T;+1) at time T;. If real

rates were deterministic, then this expectation would reduce the
EJ[P(T;, i) | Fil = P'(Ti Tin)

However, we assumed real rates are stochastic. It shows us unlike the model independency
of ZCIIS, YYIIS is model dependent. So, to calculate the conditional expectation in equation
(6.6), we need to use the model that was built in previous chapter. In this step we need to
change the measure from the nominal Q™7 to the real Q"7 forward measure. The Radon-

Nikodym derivative of this changing is

nT;/r,T; _ dQn’Ti
AT = g
_ P't,T)) P(0,T)I0) 67
- PTHID PO, T) '
By using Bayes formula, we get
ET[WZnT/rT | F]
ENP/ (T, Tiw) | Fi] = @1 (6.8)

Z;’LT/rT
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When the above conditional expectation is calculated we will use the dynamics of I, P", P"

defined in the previous chapter:

dl(t
_I(t(; = [F'(t) - (O]dt + b (1) dW (1) + f It 2) fildt, dz)
- z

dP"(1,T) f )

TP D (O dt+ o (1, T)dW(t §"(t,z. T) fi(dt, d

Py = [Odir o @DAWD + | 802 T)idr d2)
dP'(t,T) , f )
__ 7 T, r T " T .
P T) a>” ()dt+o'(t, T)dW(r) + i §"(t,z, T) f(dt, dz)

Firstly, our aim is to find the dynamics of —pﬁj,(}’,.f}it) by using above dynamics. By integration

by parts formula for jump processes

Pr(t’ Tl)l(t) _ n - r . I r . r AL
d(m) = [FO-rO+o'@,T)+b o' t,T)ldt+ fZ(S (t,z, Ti)c (t,z) Adt, dz)

+o' (1, T)) + b (1)) dW ()

+ f (6" (t,2, T)) + ¢! (t,2) + 6°(t, 2, T)) ! (1, 2) ildt, dz).
Z

We find P (¢, T;)I(¢) and we already know P"(z, T;), then we can find % and obtain

Pn(l,Ti) _ Pn(l,Ti) NN T Ny . .
d(—P’(t,Ti)I(t)) = —P’(t,Tl-)I(t)[r (O —r' (@) —-o'(t,T) - b o' (1,Ti)

- f 8"(t,z, T (¢, 2) A(dt, d7)
Z

—B'@) + @ T, T + (B @) + (1, T))* ] dr +

P, Ty) (6" (t,2,T)) (6"(1, 2, T)) = 61,2, T1))

- Adt, d
Pr(t, THI®) Jz (1 +6(t,2,T)) (.4
_— t,TH)-b'(t)-oc"(t,T))dW(t
Pr(t,T,-)I(t)(U (. T) = b () —o'(t,T)dW(1)
PYt_, T; 8"(t,z, T;) — 6" (t,2, T;
N (-, T;) f( (1,2, T;) (1,2 ))ﬂ(dt,dz).
Pre-, Tolt-) Jz - (1 + 67,2, Th)
Since X(¢) = LUTD ot the same time we get dynamics of ﬂ under Q"1
Pr(t,THI(t)’ y Z:’;Ti/r’T" .
dz"""rtax @ ©9)
Zn,Ti/r,T; - X(t_) ' :

1
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We know Z,"’Ti/ "Tijsa martingale under 0”7/, so changing measure from Q"7 to 0”7/ change
only the drift term not the others. Hence the dynamics of Z;' TirTi ynder 0"Ti is given by

n,Ti/r,T;

d(—rr) = (" T) = b0 = o' (6. T) daW"™ "' (1)
Zn, il L

T

T; _
) a"Tidt, dz).

+ f (6!’!(1.’ 2, Tl) - 6IP(ta <,
7z (1L+67(t,2,T))

On the other hand, P' (T}, T;;1) = PUTi) g also martingale under 0°Ti ; and its dynamics is

Pr(t,T;)
given by
P(t,Tis1) P'(t,Tit1) T,
d = "(t, Tiz1) — o (¢, TH)dW" (¢
T BTy (@@ T = 0 TAW (0
P(t_,Tix1)  (6"(t,2,Tiz1) — 6" (1,2, T7)) 2 Ti(dt, dz)
Pr(t_,T) (1+06"(t,z,T))
n.T;/r.Ti P (t.Ti) . .
Hence, we get the dynamics of Z, and T By the integration by parts formula, we
obtain
Pr(t’Ti+1) n,T;/r,T; P(t Tl+1) nT/rT
d(————=7"""") = ———= t,T; t,T;
( PraT) 2 ) P Z o', Tiv1) — o' (1, T)))
(1, T;) = b'(t) — o' (1, T)))dt + f (mn) 1"Ti(dt, dz)]
z
P (t, Tix1) n1,/rT;
PaT ZP o8, T) + o7 (1, Ti)
—207(t,T;) — b (0)]1dW"Ti(2)
Pr(t-,Tiy1) Z0 Tl T
TT) (m +n+ mn)// i(dt, dZ)
(6.10)
where
(0" (t,2,Tisy) = 6" (1,2, T)) and n = (8"(1,2,Ti) = 6""(1,2,T)))
(L+06"(t,2,T))) (1+6"P@t,2,T))
Let
P'(t,Tix1) n1i/rT,
St) = —————=Z""1"
® Pr(t,T)) "
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and Y (¢) = InS (¢v); then, the solution of the this stochastic equation is

T;
S(T) = S(expl f (0 (5, Tix1) — (s, T (s, T;) = b'(s) = 0" (5, T:))d's

T;
- f f (m +n)A"Ti(ds, dz)
t VA

T;
+f (0 (s,T;) + 0" (s, Tir1) — 207 (s, T;) — b' (s))dW"Ti(s)
t
Ti
B f 5@ T) + 07 (s, Tiw1) = 2075, T) = b'(s))*ds

T;
+ f f In(1 + m + n + mn)u"ti(ds, dz)].
t Z

Here, we assume that the coefficients are deterministic to ensure closed-form solution.

From moment generating function for Brownian motion

T;
El'[exp f (0" (5, T}) + 0 (5, Ti1) — 207 (5, T;) — b' (5))dW"Ti(5)]
t

1 (7
= eXp(E f (0" (5, T}) + 0" (5, Ti1) — 207 (5, T;) — b'(s5))°ds,
t

and from exponential formula for Poisson random measure
T,' Ti
El [eXp(f fln(l +m+n+mn)du"Ti(ds,dz))] = exp(f f(m +n+mn)A"Ti(ds, dz)
t Z t VA
we finally get

T;
ENS(T)] = S eXp(f (@ (5, Tix1) = 0 (5, TN (5, Tj) = b'(s) — o (1, T1))ds

T;
+ f f (mn)A"Ti(ds, d7)).
t Z

Hence, if we go back to the conditional expectation in the equation (6.8), we will get

P(T;, Tis1) 2T B = P, i) 70Tl T; O T i) (6.11)

El =
o'l Pr(T,T) T Pr(1,T;)) '

where

T;
C(t,Ti,Tiv1) = exp( f (0 (5, Tix1) — (s, T1)) (0" (5, Ti) — 0" (s, T;) — b'(s)) d(5)

A7Ti(ds, d7).

+f (6"(s,2, Tis1) = 6"(5,2, T1) (6" (5,2, Ti) = 6" (5,2, T0))
z (1+06"(s,2,T7) (1+6"(s,2,T7)
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If we insert equation (6.11) into the equation (6.6), then we get

P Tiv) cartin

T; T, _
En [Pr(Tt, T1+1) | Ft] - Pr([, Ti)

(6.12)

Finally, using equations (6.5), (6.6), (6.12), we obtain the expectation which is mentioned

firstly in the beginning of the section

I(Ti+1)) | F] = P (t,T;) P'(t,Tiz1) CUTiTinn).

EZ;H»I [( I =
(T) P t,Tiy) P(1,T))

(6.13)

The general formula of the YYIIS valuation is given at the beginning of this chapter in equa-
tion (6.4). Inserting result (6.13) into this valuation formula, we get

M-1
YYUS(t,Tis1, T N) = > Nty P, T)
i=p

Pt Ti1) ceri
P, Ty)

M-1
= > NTis1 Pt Ti) (1 + K). (6.14)

i=p
The forward swap rate which is value of K for which the price of the swap is zero can be

shown when YYTIS (¢, Tjs1, Tj, N) = 0 with the notation R) (1),

Pri.T)
SN T P Tis)

SN i P T) Tyt 0Tl — SMUN T4y PP Tie)

RM(n = =L L :

Here, the pricing formula depends on real and nominal bond prices and their volatilities. We
can rewrite this formula that depends on the inflation indexed bonds and their volatilities
instead of real bonds and their volatilities. It enables to strip real zero coupon bond prices
from inflation indexed bonds. Using the definition of inflation indexed bonds PP, T) =
I(t)P'(t, T), if we product the left hand side of the pricing equation (6.14) by % then we get
new pricing formula and forward swap rate

M-1
YYHS (6, Tin, T N) = > N 7oy P2, T)
i=p

PP Ti) coran
PIP(,T))

M-1
= > N7t Pt Ti) (1 + K)
i=p

and

- PP(1T; T -
SN i P, T ﬁ eCOTeli) — VN 714 P2, Tis)

SN T P Tin)

R (1)
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CHAPTER 7

CONCLUSION

Inflation indexed securities are designed to help protect both issuers and investors from changes
in the general level of prices in the real economy. These instruments have become increas-
ingly popular in the last two decades. Hence, also pricing of these instruments has became
important. There is a group of studies on pricing. If we look these studies, we can see that
they use HIM model and foreign currency analogy in principle. In our study, we add jump
process to these principle models. Because, the reality of financial markets can be given by
models with the jump process than models based on only Brownian motion. In the real world,
we know that asset price processes have jumps and taking them into consideration gives more

accurate results in the studies.

In this thesis, firstly we give structure of inflation with its causes, history of indexation, def-
initions and advantages of inflation indexed securities. Then, we introduce HIM framework
which models instantaneous forward rates under no-arbitrage condition. For pricing of in-
dexed securities we have to know foreign currency analogy which is based on HIM frame-
work. So, we give foreign currency analogy in detail. And then, we present a HIM framework
allowing for jumps. In these extended model, instantaneous forward rates and inflation index
are allowed to be driven by both Wiener and Poisson process. Since in the real world asset
prices have jumps, inserting jump process into the pricing models gives more realistic results.
Finally, under this extended HIM model, we give a pricing derivation of inflation indexed

swaps which are the most commonly used in the financial markets.

Our further studies will continue with pricing inflation indexed options, swaptions and the
other new derivatives. Stochastic volatility of price process dynamics can be taken into con-

sideration. By calibration to the market data, the performance of our models can be tested.
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