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ABSTRACT

ON THE REPRESENTATION OF FINITE FIELDS

Akleylek, Sedat
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. FerruBzbudak

December 2010, 66 pages

The representation of field elements has a great impact on the perfornfahediaite field
arithmetic. In this thesis, we give a modified version of redundant repiesen which works
for any finite fields of arbitrary characteristics to design arithmetic circuits svithll com-
plexity. Using our modified redundant representation, we improve manyeotdmplexity
values. We then propose new representations as an alternative wayetsens finite fields of
characteristic two by using Charlier and Hermite polynomials. We show that mutijolic
in these representations can be achieved with subquadratic space domiléarlier and
Hermite representations enable us to find binomial, trinomial or quadranonadlaible
polynomials which allows us faster modular reduction over binary fields where is no
desirable such low weight irreducible polynomial in other representatibhese represen-
tations are very interesting for the NIST and SEC recommended binary Géi¢2°8%) and
GF(2°"}) since there is no optimal normal basis (ONB) for the corresponding siptes It
is also shown that in some cases the proposed representations havepzteecomplexity

even if there exists an ONB for the corresponding extension.
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Oz

SONLU ASIMLERIN GOSTERMI UZERINE

Akleylek, Sedat
Doktora, Kriptografi BIUmi
Tez Yoneticisi : Prof. Dr. Ferrul®zbudak

Aralik 2010, 66 sayfa

Cisim elemanlarinin @sterimi sonlu cisim aritmetik uygulamalarinin performainserinde
blyiik ®neme sahiptir. Bu tezde, herhangi bir karaktgjestsahip sonlu cisimlerdelidik
carpimsal karmasiida sahip devre ihtiyacl icin tasarlanan, gerekenden fazla eleman kul-
lanan @sterimin d@istirilmis versiyonu veriliyor. Bu gsterimi kullanarak bir cok dgerin
karmasiklgini azaltiyoruz. Sonra, karaktergti2 olan sonlu cisimlerin @sterimlerine al-
ternatif bir yol olmasi icin Charlier ve Hermite polinomlarin kullaniimasineriyoruz. Bu
gosterimlerde ¢arpma isleminin logaritmik alan karmagikile yapilabildgini gosteriyoruz.
Charlier ve Hermite gsterimleri, hizh modler aritmetik yapmamiza ve baskasgerimler
kullanilarak istenilen dzeyde az terimli indirgenemez polinom elde edilergedurumlarda,
iki, Uc¢ ve drt terimli indirgenemez polinomlari bulabilmemize olanaljlsanaktadir. Bu
gosterimler, NIST ve SEC standartlarinda karaktdgigtiolan cisimlerde kullaniimagnerilen
GF(2%8) ve GF(2°'}) cisim genislemeleri icin optimal normalgterim bulunmadyndan
oldukga ilging sonuclar vermektedir. Bunlara ek olarak, bazi cisiniggemeleri igin optimal
normal d@sterim olsa bilénerilen bu yeni gsterimlerin daha iyi alan karmasigina sahip

oldugunu gsteriyoruz.

Vi



Anahtar Kelimeler: sonlu cisimleringgterimleri, polinom carpimi, logaritmik alan karmagikji

eliptik egri kriptografisi
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CHAPTER 1

INTRODUCTION

Finite fields have many applications in coding theory, digital signal procgssid cryptogra-
phy ([12], [17], [26], [27], [28], [29], [31] ). Hiicient arithmetic of finite field is an important
factor for cryptographic applications. Finite field multiplication is the main opanéfiio
most of the cryptographic applications. The measurefagiency in hardware implementa-
tions is the number of AND gates and XOR gates. An improvement in complexaysrad
a decrease in the number of AND gates and XOR gates simultaneously inanarimple-
mentations. Its complexity depends on the representation of the field elementh@ine
of reduction polynomial [18]. From the implementation point of view, polynorb&asdis and
normal basis representations are mostly recommended to represent fidigdirents [22].
It is well-known that normal basis, especially optimal normal basis (ONB)dnaat advan-
tegous on squaring. With an optimal choice of field, the space complexity of iedtipn
is about the same as for a polynomial representation. However, ONBndbexist for all
extensions. Therefore, there is a big demand to represent finite fielddifie@ent way for
the extension degrees recommended in NIST and SEC standards GE2], [n this thesis,
we focus on the representation of elements of finite fields and multiplicationrokels in a

finite field of characteristip, wherep > 2.

The representation of field elements has a great impact on the perfornfahediaite field
arithmetic [26]. There are mainly three types of representation of finite fi¢lkisawacteristic
p, namely canonical (polynomial) basis, normal basis and redundaetesgation. Recently,
Dickson polynomial representation has been proposed to olfaiiert binary field multipli-
cation using low weight irreducible polynomial in [20] and [21]. Hasan Biedre formulate
the multiplication of two elements in the field as a product of Toeplitz or Hankel ma&ick-

son polynomials seem interesting when no optimal normal basis (ONB) in aeekigts for



the field. This is the case for NIST recommended binary fi€@$21%%) andGF(228%). By
using Dickson polynomial representation, one can obtain irreducible &icksomials or
trinomials. Depending on the choice of basis, binary field multiplication can tferpeed in

different ways.

The extension field multiplication can be performed in two steps: polynomial multijpica
over GF(p) and modular reduction ovésF(p"). As the complexity of finite field multipli-
cation depends on the number of non-zero terms in the reduction polynoinigidesirable
to use the reduction polynomials with as few non-zero terms as possible biDeey fields,
the use of trinomial or when trinomial does not exist for the corresponehtension, pen-
tanomial is preferred since there is no irreducible binomial or quadranexsabpt forx + 1
in GF(2)[X].

It is well-known that two parameters for hardware implementations are ofimifabrtance:
space complexity and time complexity. In this thesis, the complexity of the algorithms fo
arithmetic operations in finite fields are given by the number of operations igrthend
field. For example, an addition and a multiplicationGi-(2) can be defined by a two-input
XOR gate and a two-input AND gate, respectively. The space complexian @lgorithm

for a given input is the number of AND gates and XOR gates that the algoriheuds to
store during its execution. To find the space complexity of the algorithm is hepful to
obtain compact VLSI implementations. The time complexity i.e. the total gate delay of the
circuit of an algorithm for a given input is the number of AND gates and Xfakes that the
algorithm executes. This number is computed with respect to size of the inprgduted
space complexity is one of the crucial point for the applications based ort sards and
mobile phones. Similarly, if the performance is the most critical parameter,adegrepace

complexity is acceptable while there is an improvement in the total gate delay.

We classify our contributions in three parts. In Chapter 2, we give a mddéw@undant repre-
sentation. Using our modified redundant representation, we improve ni#imy complexity
values significantly. Our method works for any finite field. We give more exsisifor finite

fields of characteristic 2. We also give some applications in cryptography.

In Chapter 3, we give a new way to represent certain finite fiél8&2"). This representation
is based on Charlier polynomials. We show that multiplication in Charlier polynamal

resentation can be performed with subquadratic space complexity. Ordizan binomial



or trinomial irreducible polynomials in Charlier polynomial representation whitbws us
faster modular reduction over binary fields when there is no desirablelswoveight irre-
ducible polynomial in other representations. This representation is vergstiteg for NIST
recommended binary field F(2283) since there is no ONB for the corresponding extension.
We also note that recommended NIST and SEC binary fields can be cdedtwith low
weight Charlier polynomials such &F(211%), GF(2131) andGF(22%9).

In Chapter 4, Hermite polynomial representation is proposed as an akeraay to repre-
sent finite fields of characteristic two. We show that multiplication in Hermite polynomia
representation can be achieved with subquadratic space complexity.ephesentation en-
ables us to find binomial, trinomial or quadranomial irreducible polynomials whictvaus
faster modular reduction over binary fields when there is no desirableleswoweight irre-
ducible polynomial in other representations. We then show that the profiwad elements in
Hermite polynomial representation can be performed as Toeplitz matrix-y@ciduct. This
representation is very interesting for NIST recommended binary@€&l(2°’Y) since there is

no ONB for the corresponding extension. We note that an advantages oéfresentation is

that it can be used to obtain morgieent finite field arithmetic.

A summary of the thesis is presented in Chapter 5.



CHAPTER 2

MODIFIED REDUNDANT REPRESENTATION FOR
DESIGNING ARITHMETIC CIRCUITS WITH SMALL
COMPLEXITY

Efficient hardware implementations of the arithmetic operations in the finite field leere b
widely studied in coding theory, computer algebra and cryptographic apipis. Itoh and
Tsuijii [23] first gave a method to construct a multiplier for a class of fielggagented by
irreducible all-one-polynomials and equally-spaced-polynomials. A raltirepresentation
of field elements is proposed in [23] as well as later in [10], [37], [38] §41l]. Redun-
dant representation allows multiplication and squaring to be achieved more siraplgther
representations. In cryptographic applications, finite fields, repteddry low weight poly-

nomials, are desired due to th@eency of finite field operations.

The main idea in the redundant representation is to represent the finitéGgR") as a
subring of the quotient polynomial rirgF(2")/(x" — 1), provided thah > mand there is a
subring of GF(2")[x]/(x" — 1) which is isomorphic t@&F(2™) as a ring. This representation
allows a kind of parallel multiplier design yielding small complexity for multiplication in
GF(2™) for somem. For a better complexity, it is necessary to choose the smalggtsfying

the condition above.

Geiselmann, Quade and Steinwandt gave a characterization of the smalllest @ N with

GF(2)[X]/(x" — 1) containing an isomorphic copy &F(2™) in [14]. They showed that the
values found in [10] are not optimal in many cases. Similarly, Wu, HasarkeBiad Gao
proved in [42] that some values found in [10] can be reduced significahen there exists a

type Il optimal normal basis iGF(2™). Then, Geiselmann and Steinwandt generalized their



idea to finite fields of arbitrary characteristic in [15].

In this chapter, we give a modified redundant representation which eaorsidered as a
generalization of [10], [14] and [15]. Using our modified redundapresentation, we im-
prove many of the complexity values in [10], [14] and [15] significantly.r @ethod works
for any finite field. We give more emphasis for finite fields of characteristid/g also give

some applications in cryptography.

This chapter is organized as follows: Section 2.1 describes a modifieddaniurepresenta-
tion. In Section 2.2, we illustrate our method with an explicit example and we recale
facts which we need in order to compare our method with previous one®clios 2.3, we
demonstrate our improvements in tables and give an analysis of the redsbasmprove-

ments. We give certain applications in cryptography in Section 2.4.

The material presented in this chapter is partially included in [4].

2.1 A Modified Redundant Representation

In this section, we recall previous works and describe our method.

2.1.1 The Redundant Representation

Let p be an arbitrary prime number and> 2 be a positive integer. Note that the finite field
GF(p™) can be considered as a ring as well. het mbe an integer and consider the finite
quotient ringGF(p)[X]/(x"-1). If there exists a subring of the quotient ri@d(p)[x] /(X"-1)
which is isomorphic t& F(p™) as a ring, then it is well-known that we can represghr{p™)
using the ring representation of the quotient i (p)[X] /(X" — 1). Such a representation of
GF(p™M) is called aredundant representatiofi[14], [37], [41] ) or apolynomial ring repre-
sentation( [10] ).

Let the canonical factorization ok{ — 1) € GF(p)[X] be given as
X'=1=f1(x) (%) - fi(X), (2.1)

where f1(X), fo(X), - - - , fi(X) are monic (not necessarily distinct) irreducible polynomials in

GF(p)[x].



In order to design arithmetic circuits with small complexity using redundanesgmtation
of GF(p™) in GF(p)[X]/(X" — 1), it is important to choose as small as possible ([10], [14],
[15], [41]).

Let S1(p, m) be the set of integers consistingro$uch than > mand there exists at least one

irreducible factor of degresnin (2.1).

Let Sy(p, M) be the set of integers consisting mkuch thatn > m and there exists at least
one irreducible factor of degree- m, where( is a positive integer, in (2.1). It is clear that

S1(p,m) € Sy(p, m). Note that if¢ = 1, thenS1(p, m) = Sa(p, M)
In [10], using

n = min{S1(p, m)}, (2.2)

arithmetic circuits with small complexity via redundant representatigg ™) in the quo-
tient ringGF(p)[x]/(X" — 1) are obtained. Remember that the main idea in [10] is to find the

smallestn such thaix” — 1 has an irreducible polynomial factor of degrae
In [14], using

n = min{Sy(p, M)}, (2.3)

arithmetic circuits with small complexity via redundant representatiggef™) in the quo-
tient ringGF(p)[X]/(X"-1) are obtained. Remember that the main idea in [14] is to determine
the smallesh such thatx" — 1 has an irreducible polynomial divisor of degieen wherel is

a positive integer.

It is shown that using,(p, m) instead ofS(p, m) improves the complexity of various arith-

metic operations for many values pfandm ( [14] ).

Now we explain the main idea of our contribution.

2.1.2 Our Contribution

Letk be a positive integer such that

kim and k<m (2.4)



Let mg be the positive integer such that= k - m. Note that 1< my < m. Let the canonical

factorization of " — 1) € GF(pX)[x] be given as

X" =1 =g1(X)g2(x) - - - gs(X), (2.5)

wheregi(X), g2(X), - - - , gs(X) are monic (not necessarily distinct) irreducible polynomials in
GF(p")[A.

Let Tk(p, mk) be the set of integers consistingrosuch thain > mg and there exists at least
one irreducible factor of degree- my, where( is a positive integer, in (2.5). Note that if
k =1, thenme = mandT(p, mk) = Sz(p, m). However ifk > 1 andk satisfies (2.4), then we

observe that

min{Tk(p, M)} << min{Sz(p, m)} (2.6)
for many values op andm (see Table 2.1 and Table 2.2 in Section 2.3).

In this paper, we use redundant representation in the following formararithmetic oper-
ation, assume that we know an arithmetic circuit desigrGB(p¥). For p = 2, this means,
in particular, we know the number of AND gates, XOR gates of the desigB fgp¥). Then

using

Nk = Min{Ty(p, Mk)} (2.7)

via redundant representation®F(p™) in GF(pX)[x]/(x™—1) and the design of the arithmetic
operation foIGF(pX), we get an arithmetic circuit for the corresponding arithmetic operation
in GF(p™). Moreover, we optimize the complexity of the arithmetic operation consideling a

divisorsk of m satisfying (2.4).

Our method depends on the following fact, which is a simple generalizatioropbBition 1

in [14]. We call our method as modified redundant representation.

Proposition 2.1.1 Let p be a prime number. Let m 2 be a positive integer. Let k be a
positive integer with kn and k< m. Let mp = m/k. Then, the smallest positive integet n
such that there exists a subring of the quotient ring(@%x]/(x™ — 1) which is isomorphic
to GF(p™) as a ring, ismin{n : n is a positive integer and the canonical factorization of
(X" — 1) e GF(p[x] has an irreducible factor of degree m where¢ is a positive integey.

Moreover, i is not divisible by p.



Proof. Assume thaty is divisible byp. In this structure, one can fing such that ™ - 1) =
(x"% — 1)P. Then, k" — 1) contains an irreducible divisor of degréemy with £ > 1 and this

contradicts with the minimality afi. Thereforeng is not divisible byp.

The observation in the paragraph above implies that« 1) has no multiple roots since

god((x* — 1), Z(x* - 1)) = 1.

Let gi(x) be the factor of X — 1) with degreemy,. Canonical factorization ofx(* — 1) €
GF(pN[X] is given as

(X = 1) = ga(X)g2(x) - -~ gs(X), (2.8)

whereg:(X), g2(X), - - - , gs(x) are distinct and monic irreducible polynomials GF(p¥)[X].

Then, by using Chinese Remainder Theorem, the ring is isomorphic to profdieids.

GF(PM[X/(x™ - 1) = GF(PY)[X/g1(X) X ... x GF(pX)[X]/gs(X) (2.9)

It is well-known thatGF(pk™) is a subfield o F(p)[x]/gi(X) if and only if m|my, for some
i €{1,2,..,s}. This completes the proof. [ |

Now we consider Proposition 2.1.1 with an algorithmic approach. To find thédestay, it
is important to obtain an algorithm. Theorem 2.1.2, a modification of Theorem4R2irt¢

our structure, characterizes the relationship betwgemdmy.

Theorem 2.1.2 Let m= k- my and q= pX, where p is a prime number and*0 is a positive
integer. There exists a subring of the quotient ring(@)Fx] /(X" — 1) isomorphic to GEq™)

as a ring with i > my is and only if i divides the multiplicative order of gmod ny).

Algorithm 1 gives the smallest; such that there exists a subring®@F(q)[X] /(x™ — 1) iso-
morphic toGF(g™) as a ring withny > my. Algorithm 1 is a consequence of Theorem 2.1.2.

Note that Algorithm 1 is a simple generalization of the idea given in [41].

8



Algorithm 1 Computing the smallest such that there exists a subring of the quotient ring
GF(g)[X]/(x™1) isomorphic toGF(q™) as a ring withn > my
Input: g=p, m=k-mg

Output: ng
1: Find all the factorsg; > (m + 1) of 2™ — 1 and list them in an increasing ordek;: - d -
ceoide=2™ -1

2: whilei <cdo

w

if mdlp(di) and the multiplicative order af in Zg: is m then
4: t « di and BREAK

5. else

6: i—i+1
7. endif

8: end while

9: Leth be the largest positive integer such thathm
10: if h> 2then
11:  fori=2tohdo

12; Find all the factorsd; > i - m¢ of 2™ — 1 and list them in an increasing order:

13: whilei < ¢j do

14 if i - mde(di) and the multiplicative order af in Zg: isi - my then
15: n <« mint, di} and BREAK

16: else

17: le—i+1

18: end if

19: end while

20: end for

21: end if




2.2 Multiplication Using Modified Redundant Representation and Complexity

In this section, we keep the notation of Section 2. Recall that in the modifiethdecit
representation method, we assume that we know an arithmetic circuit desitire fmter-
mediate fieldsGF(pX). In our examples, we use intermediate fields viite 2,3 and 5. In
this section, we explain various finite field multiplication circuit designs for theimeeliate
field GF(pX). We now summarize the schoolbook method, Karatsuba method and Tom-Cook
method in view of required multiplications and additions. These methods caretidarshe

corresponding arithmetic circuits design in the intermediate fields.

2.2.1 Overview of Multiplication Methods

Let f(x) be an irreducible polynomial of degr&eén GF(p)[X]. Multiplication in
GF(p) = GF(p)[X/ < f(x) >

is computed as a multiplication of polynomials with modulQx) reduction. A simple and
generic design for finite field multiplication i@ F(p¥) is the schoolbook method. Consider

two k—term polynomials

k-1 k-1
a() = > ax,b() = > bjx! (2.10)
i=0 j=0
By using the schoolbook multiplication method, one can comp{xe= a(x) - b(x) as
k-1 k-1 o
o(x) = ZZa,—bjx'“ (2.11)
i=0 j=0

Assume that reduction polynomidi(x), is binomial. Then,

. Xt if i+j<k
X+ = { " (2.12)
XHKif i+j>k
Then, for binomials, schoolbook multiplication method can be performed atkhosiltipli-
cations and(k — 1) additions inGF(p). By using the same idea, if the reduction polynomial,
f(x), is trinomial or pentanomial, then the number of addition&#sX)(k—1) or (k+3)(k—1),

respectively [25].

Karatsuba method splits elements into 2 parts [24]. We show this technique vaxaarple.

Let GF(2%) = GF(2)[X]/ < (X + x+ 1) >, a(X) = ap + arx andb(x) = by + byx. Karatsuba

10



method computea(x) - b(x) as

c(X) = cg + C1X, (2.13)
where
Co = agbp+aib;
CL = (ao + al)(bo + bl) + aobo + albl.

Multiplication in GF(p?) can be computed with three multiplications and four additions in

GF(p) by using Karatsuba method.

Tom-Cook method is based on interpolation and uges 2 distinct elements of finite field
with point ateo [8]. This method works in the following order: Lef be the interpolation
points. Choose a familyx} for 0 < i < 2k — 1 of distinct points inGF(p). Evaluate
the producia(x)b(x) € GF(p) for eachi. Then, interpolate the evaluation points to obtain

a(x) - b(x) € GF(p)[A].

One multiplication inGF(p3) theoretically costs 5 multiplication and 33 additions3f(p)
by using Tom-Cook multiplication method. In this structure, Tom-Cook methodatera
used for allGF(p). For example, lek = 3. We need 23—-2 = 4 elements itGF(p). If p < 3,
then, there is not enough points to apply Tom-Cook method for cubic exte(io p). For
this reason, Karatsuba method is one of the best choic&Fg%) andGF(3%) [30]. One
multiplication in GF(p?) theoretically costs 6 multiplication and 13 additionsGiF(p) by

using Karatsuba method.

Montgomery gave explicit formula for the extension degree 5 in [30]. Onképhcation in

GF(p°) theoretically costs 13 multiplication and 22 additionsSiF(p).

2.2.2 Multiplication Using Modified Method

In this part, we explain how we obtain an arithmetic design for finite field multiplication in
GF(p™) assuming an arithmetic design for finite field multiplication in the intermediate field

GF(pX) in the case thap = 2. The same method works for the general charactegstic

The multiplication inGF(pX)[x]/(x™ — 1) can be performed with a linear feedback shift regis-

ter with feedback polynomiak(® — 1). Leta(x) = 3% " a - X andb(x) = X% " b; - X where

11



aj, b € GF(pY). Then,

n—1 =1 .
c() =a()-b(x) = ) [Za - b (modnk)) x (2.14)
j=0 \i=0

Multiplier structure of redundant basis is given in Figure 2.1.

T ey, T A o |

@ : Binary Tree

ré as W
g 2)2 bl

ﬁ{ n—1
'I)D bn.—l 2}11—2 Yn—3

Figure 2.1: Bit Serial Multiplier for Redundant Basis

Figure 2.2 shows a parallel version of the multiplier using redundant bésie.that in Figure

2.2, B refers to Figure 2.1.

— ] cyclic 4&% cyclic

shift

- shift |/ —

bn-l r —‘
e s e

|

;= \\‘

a:;-i J

Figure 2.2: Parallelization of the Bit Serial Multiplier for Redundant Basis
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In the following example, we give an illustration of our method and we showtbaalculate

the cost of multiplication.

Example 2.2.1Let p= 2and m= 12 Let k= 3. Then, m = 4. This means that we need to
find the smallestine N with GF(2K)[x]/(x™ — 1) containing an isomorphic copy of G8™).
We build GR2'?) as

GF(8)[X/(x° - 1) = GF(8)[X]/g1(X) x GF(8)[X]/g2(x). (2.15)
with GF(8) = GF(2)[yl/(y® + y + 1) since
0 —1) = g1(X)(X) = (x— )¢+ + X% + x+ 1) (2.16)

over GH8). An element &) € GF(2'?) is represented asga+ ai;x + a,x* + agx>, where

a; € GF(8).

Let a(x), b(x) € GF(8)[x]/(x° — 1) and

4
c(X) = a(x) - b(X) = Z G- X, (2.17)
i=0

where ¢ € GF(8). Then, one can computg<cby using the formula defined below. This
is a parallel-in-parallel-out multiplier [10]. The multiplication of two elements irething

GF(8)[X]/(x° — 1) can be performed by a matrix multiplication.

(b bp by by bo | [as| [ oo
b bs bs bp by ag C1
bs bs bp b1 by || & |[=]| (2.18)
by bp by by bz a1 C3

| Do b1 by bg bs| [@ | |Ca

If one uses the schoolbook method for intermediate field multiplication, thigxnmatrti-
plication needs3? - 52 AND gates since it require§*> multiplications in GK23) and one
multiplication in GH23) requires3? multiplications in GR2). The number of XOR gates is
8.5% + 3-4-5since one need¥ — 1 additions in GR2) for one multiplication in GF22)
and3 additions in GR2) for one addition in GF2%). Note that one requires- 4 additions in
GF(23) to perform one multiplication in GR'?). If one uses Karatsuba-like method defined
above for intermediate field multiplication, then the cost of multiplication if@&K] /(x>—1)

is 6- 52 AND gates and.3- 52 + 3- 4- 5 XOR gates.

13



One can determine the number of AND gates and XOR gates for the extergi@eanultiple
of k by using the following formulas for binary fields. These are the uppent®dor the
multiplication. AN Dy or XOR refers to the number of multiplications or additionsGi(2)

to perform a multiplication itGF(2), respectively.

#ANDs = ANDy-ng

#XORs

XOR - nZ + k- n - (nk — 1)

Now, we explain how to compute the number of AND gates and XOR gates jok and
ng. Assume that one needs to work in a fi@d&(2™) with m = k- my. Let (X — 1) have an
irreducible factor with degreé- my wheref is a positive integer. To perform a multiplication
in GF(2™ n2 multiplications inGF(2) and n(nx — 1) additions inGF(2*) are required.
One multiplication inG F(2¥) requiresAN D, multiplications inGF(2) andXOR; additions in
GF(2), with ANDy = k? by using the schoolbook multiplication for any extensiaihl Dy = 3,
XOR, = 5 for quadratic extensio®ANDy = 6, XOR = 13 for cubic extension andNDy =
13, XOR, = 22 for quintic extension by using Karatsuba-like method. If one uses trinomial
or pentanomial as a reduction polynomial while performing the schoolbook ticdtipn,
thenXOR = (k+ 1)(k — 1) or (k + 3)(k — 1), respectively. One addition @F(2¥) requiresk
additions inGF(2).

These formulae are used to construct Table 2.1 in Section 4. Note thaevee for use the

schoolbook multiplication method for intermediate field arithmetic.

We observe that multiplication by and squaring are also affieient as given in [15]. This

observation is stated as a remark.

Remark 2.2.2 Let a= (an,_1, an,2, - - , &1, ), Where ae GF(p*). Multiplication by X for

0 < i < ngisitimes cyclic shift. Then,

X -a= (@n_1-i»8n2-i» - 81,80, - »Bryei+1> Bni)-

Remark 2.2.3 Similarly, squaring is a permutation of the element’s coordinates. Let a

(-1, 8ne—2, -+ » 1, &), Where g e GF(p).

2

2 2 2 A2 2
& = (A, 8, g5+ > 8, 8 s )
2 2
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2.3 Improved Results

In this section, we obtainy’s by using modified redundant representaion. Then, we compute
the number of AND gates and XOR gates according to the derived formulseciion 2.2.2.
Remember that, in this paper, we use the complexity to compute the required rafrAbdd

gates and XOR gates for multiplication of two elements.

All values listed in the tables are found by using Magma Computational Algefstea [6].
we obtaimy’s by using Algorithm 1. Then, we check these results by factorizing atirnials

with an odd extension degreg into irreducible polynomials over corresponding finite field.

We demonstrate some of our improvements in complexities, i.e. the number of AleD ga
and XOR gates, according to [14] in Table 2.1. These are computed by sdioglbook
multiplication method. The complexity of all values listed in Table 2.1 of our method isimuc
better than the one given in [14] in view of the number of AND gates and X&iBsy In Table
2.1, we give the respective change in percentage of AND gates andyd@R. Table 2.1 also
shows the smallest andn, with GF(2)[x]/(X" — 1) andGF(2K)[x]/(x™ — 1) an isomorphic
copy of GF(2¢™). According to Table 2.1, all values of, is much more smaller than the
correspondingn given in [14]. Note that if one uses Karatsuba-like method for intermediate
field arithmetic, the complexity of all values listed in Table 2.1 of our method is alsdymuc

better than the one given in [14] in view of the number of AND gates and X&Bsgy

Now we give an example to show how the smalleandny are computed.

Example 2.3.1 Let us consider GR?%). Then, m = 131and k= 2. By using the method
given in [14], one computes the smallest value #89with GF(2)[x]/(x’8°-1) containing an
isomorphic copy of GR2%9). To illustrate our modified method, we need to build(@3€?)
as

GF(A)[X/(x™ ~ 1) = GF(4)[X/91(x) x - - - x GF(4)[X]/9s(X)

with GF(4) = GF(2)[y]/(y? + y + 1). Then, by using our modified method the smallgss n
263 such that(x™ — 1) over GH4) has an irreducible factor of degree- my, where¢ is a
positive integer. Note that dégi (X)) = 1 and dedgx(X)) = deggs(x)) = 131

Some observations for the Table 2.1 can be listed as remarks. Remark 2&<2 sbw to

find better values than given in [14].
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Table 2.1: The Smallestandn, with GF(2)[x]/(x"—1) andG F(2¥)[x] /(x*—1) an Isomorphic
Copy of GF(2K™) and Complexities

Our Results Redundant Representation [14inprovements in Gates
m |k| nc | #ANDs | #XORs | n | #ANDs | #XORs |ANDs|  XORs
15 |3 11| 1089 1298 61 3721 3660 %70.7 %64.5
22 |2| 23| 2116 2599 67 4489 4422 %52.8 %41.2
30 [3| 11| 1089 1298 61 3721 3660 %70.7 %64.5
46 |2| 47| 8836 10951 | 139 | 19321 19182 | %54.2 %42.9
84 |3/ 29| 7569 9164 | 203 | 41209 41006 |%81.6 %77.6
102 |2|103| 42436 | 52839 | 307 | 94249 93942 | %54.9 %43.7
140° |5| 29 | 21025 | 24244 | 319| 101761 101442 |%79.3 %76.1
174 |3| 59| 31329 | 38114 | 349| 121801 121452 |%74.2 %68.6
190 |2|191| 145924 | 182023 | 573 | 328329 327756 | %55.5 %44.4
246 |3| 83| 62001 | 75530 | 581 | 337561 336980 |%81.6 %77.5
249 13| 167| 251001 | 306278 |1169| 1366561| 1365392 |%81.6 %77.5
260 |5| 53| 70225 | 81196 | 521 | 271441 270920 |%74.1 %70.0
262 |2|263| 276676 | 345319 | 789 | 622521 621732 | %55.5 %44.4
2702|271 293764 | 366663 | 811 | 657721 656910 |%55.3 %44.1
290 |5| 59| 87025 | 100654 | 649 | 421201 420552 | %79.3 %76.0
300 |3|101| 91809 | 111908 | 707 | 499849 499142 | %81.6 %77.5
310 |2|311| 386884 | 482983 | 933 | 870489 869556 | %55.5 %44.4
318 |3|107| 103041 | 125618 | 729 | 531441 530712 |%80.6 %76.3
330 |5| 67 | 112225 | 129846 | 661 | 436921 436260 |%74.3 %70.2
358 |2|359| 515524 | 643687 |1077| 1159929| 1158852 |%55.5 %44.4
390" |3|131| 154449 | 188378 | 869 | 755161 754292 | %79.5 %75.0
410 |5| 83| 172225 | 199366 | 821 | 674041 673220 |%74.4 %70.3
444 | 3|149| 199809 | 243764 |1043| 1087849 10868067 |%81.6 %77.5
478 |2|479| 917764 | 1146247|1437| 2064969 2063532 |%55.5 %44.4
502 | 2|503| 1012036 1264039|1509| 2277081| 2275572 |%55.5 %44.4
516° |3|173| 269361 | 328700 |1211| 1466521| 1465310 |%81.6 %77.5
530 |5|107| 286225 | 331486 |1061| 11257721 1124660 |%74.5 %70.5
534 |3|179| 288369 | 351914 |1253| 1570009| 1568756 |%81.6 %77.5
588 |3]|197| 349281 | 426308 |1379| 1901641| 1900262 |%81.6 %77.5
598 | 2| 599| 1435204 | 1792807 |1797| 3229209| 3227412 |%55.5 %44.4
646 | 2|647| 1674436| 2091751|1941| 3767481| 3765540 |%55.5 %44.4
678 |3|227| 463761 | 566138 |1589| 2524921| 2523332 |%81.6 %77.5
718 | 2| 719| 2067844 | 2583367 |2157| 4652649| 4650492 |%55.5 %44.4
804" |3|269| 651249 | 795164 |1883| 3545689| 3543806 |%81.6 %77.5
1380|3|461|19412689 2336348|5699| 32478601 32472902 | %94.1 %92.8
1380|5|611| 9333025|10823254 5699| 32478601 32472902 |%71.2 %66.6
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Remark 2.3.2 Let m= k- my where k> 2 is a prime number. If jp+ 1 is prime and2 is
a primitive element of GR¥), then the smallestyn= my + 1. This ensures thgix™+1 — 1)
has an irreducible factor with degreeymver GR2Y). In this setting, GRg)[x]/(xX™ — 1) is

isomorphic to GEq™) x GF(q), where o= 2%,

Note that Remark 2.3.2 is a simple generalization of the idea given in [42].

Remark 2.3.3 Let m= k- mg where k> 2 is a prime number. Then, foikn> 2- mg + 1, the

cost of multiplication in generalized redundant representation increases

Remark 2.3.2 and Remark 2.3.3 explain in which cases arithmetic circuits with small co
plexity can be obtained by using generalized redundant represent®ion.we compare
the modified redundant representation with the polynomial basis and optimmabhbasis

(ONB).

Although the modified redundant representatidieis almost free squaring as normal basis
does, the number of required AND gates and XOR gates in the modifieddaaiurepre-
sentation is not as small as that of polynomial basis representation to multiplyeéme s

in GF(2™) since one needs - nk bits to represent each element in the modified redundant
representation, whera = k - me with ng > mg and this causes a modest increase in the space
complexity (see Example 2.3.4). Thus, the polynomial basis multiplier is muchisupem-
pared to the modified redundant representation in view of the number of et and XOR
gates. However, the modified redundant representation yields a vemnylan@dichitecture.

As a consequence, the modified redundant representation leads to mecHfio@nt design
than polynomial basis in some applications having many repeated squarihg®@nfew

multiplications.

Although the number of required AND gates in the modified redundantseptation is much
more than ONB to multiply two elements GF(2™), the modified redundant representation
gives better addition complexity i.e. the number of required XOR gates cothpatgpe |
ONB for values ofm € {30,174, 330,410 530,690 810,1398 1758. We use the complexity
formulae defined for ONB multipliers in composite fields in [34] to give comparisd/e
give an illustrating example to compare the multipliers in view of the number of mdjuir

AND gates and XOR gates.
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Example 2.3.4 Let us consider nr& 174. Then, m = 58and k= 3. By using the modified re-
dundant representation, the smallegi®59 such tha(x™ — 1) over GH8) has an irreducible
factor of degree i Then, one needs 31329 AND gates and 38114 XOR gates to perform the
multiplication in GR2X)[x]/(x™ — 1). If one uses polynomial basis or type Il ONB, then the
cost of multiplication in GE2™) is 30276 AND gates and 36830 XOR gates or 30276 AND
gates and 50457 XOR gates, respectively. Note that we buil@T Rs G F(2<)™).

Similarly, one reduces the addition complexity far= 1380 where type | ONB exists. Fur-
thermore, for values ah marked with an asteriks in Table 2.1 in which there is no ONB, the
modified redundant representation can be used to reduce the numbguiéd XOR gates.
As a result, in some applications needing small space complexity the modifieddeatu

representation is advantageous over ONB.

Table 2.2 compares the selectafbr the corresponding smallest for the method in [15] and
given in this study for the finite fields of characteristic 3. Since the complegitypuitation is
similar to binary fields given in Section 3, we focus on the smaiig&ir this case. For values
of m marked with asterisk, the listed valuemfis smaller than given in [15]. According to
Table 2.2, in many cases, the method given in this thesis gives better results.

Table 2.2: The Smallestandny with GF(3)[x]/(x"-1) andG F(3¥)[X] /(x*—1) an Isomorphic
Copy of GF(3k™)

Our Results| [15]

m k Nk n
12 2 35 35
12 3 5 35
3-97 | 3 389 | 1747
5.97 | 5 389 971
6-97 | 3 389 | 1747
6-97 | 6 389 | 1747
3-193 | 3 773 | 6949
6-193 | 3 773 | 6949
6-193 | 6 773 | 6949
2-239 | 2 479 958
3:239 | 3 479 | 6227
5.239 | 5 479 | 5269
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2.4 Inversion in the Redundant Basis

In this section we briefly describe inversion operationGR(2X)[X]/(x™* — 1). Inversion

in GF(24[x]/(x™ — 1) can be achieved with fierent methods. Since not all elements of
GF(2"™) is invertible, we only consider the elementsGiF(2™). Leta(x) = Y, a - X and
b(x) = Zi”:kal b - X wherea;, bj € GF(2X). Then, froma(x) - b(x) = 1 we have a set of linear
eqguations

n—1 =1
() -b(x) = ) [Za« - bj-iy (modnk)] X =1 (2.19)
j=0 \i=0
We can write the set of equations in matrix form. Note that this matrix is alwaysisingnd
is a special case of Toeplitz matrix. Any algorithm for solving Toeplitz systamaiso be

used to solve this matrix.

(b b - bog bo | ana | [ 1]

b2 b3 bO bl an-2 0

b3 by --- by by || ans|[=| O (2.20)
| bo b1 bn—2 bn—l 11 a0 ] L 0 ]

2.5 Some Applications of The Modified Method

In this section, we show that our modified representation can be useslsesnd dhciently

in elliptic curve cryptographic applications.

If one needs to work in a fielF(2k™) with a very fast multiplication and squaring opera-
tions for elliptic curve cryptographic applications, then the values spedifigdble 2.3 can

be used. The values of marked with an asterisk are stated to be secure for elliptic curve
cryptography in [7]. For examplésF(2%29) offers the same security level against Gaudry,
Hess and Smart attack [13] as the recommended@&l2>%) in elliptic curve digital signa-
ture algorithm standards. The valuesnof {502 718 862 give better complexity than the

ones in [14].
Special attention to the finite fields of characteristic three has been givaggtographic

19



Table 2.3: Some Values of the Smallegwith GF(2¥)[x]/(x™ — 1) for Elliptic Curve Cryp-
tographic Applications

| m [k me] o
174 | 3| 58 | 59
226 | 2 | 113 | 227
410 | 5| 82 | 83
502" | 2 | 251 | 503
718 | 2 | 359 | 719
862 | 2 | 431 863

applications since there are useful properties in pairing-based crgptog[19]. In charac-
teristic three, most commonly used extensions are of the form,% - m and 6- m, where
m € {97,193 239. The modified method in this thesis leads to much mdtieient designs
than the ones in [15] (See Table 2.2).
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CHAPTER 3

POLYNOMIAL MULTIPLICATION OVER BINARY FIELDS
USING CHARLIER POLYNOMIAL REPRESENTATION
WITH LOW SPACE COMPLEXITY

In this chapter, we give a new way to represent certain finite fiele&"). This represen-
tation is based on Charlier polynomials. We show that multiplication in Charlier poliaio
representation can be performed with subquadratic space complexityca@rabtain bino-
mial or trinomial irreducible polynomials in Charlier polynomial representatioicivallows

us faster modular reduction over binary fields when there is no desinadid®v weight irre-
ducible polynomial in other representations. This representation is vergstiteg for NIST
recommended binary fiel@ F(2283) since there is no ONB for the corresponding extension.
We also note that recommended NIST and SEC binary fields can be cdedtwith low

weight Charlier polynomials such &F(2113), GF(2131) andGF(2%%9).

This chapter is organized as follows: Section 3.1 describes Charliergulghand gives
some general results on Charlier polynomialsGR(2)[x]. In Section 3.2, we present the
general method to multiply two polynomials in Charlier polynomial representatidrgae
the total arithmetic complexity. We compare complexity of multipliers in viewARND and

#XORgates in Section 3.3. We give an idea about other arithmetic operations inrS&etio

This chapter was presented in [2].
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3.1 Charlier Polynomials

In this section, we give preliminaries and describe a new representatiomeny fields. Char-

lier polynomials are the monic orthogonal polynomials associated with the inoeduqr[16].

Definition 3.1.1 The Charlier polynomials are §x) = 1, C1(x) = x with the recursion
Cn(¥) = (x=n+1)-Cha(X)

forn> 2.

Since we work in binary fields, we give the Charlier polynomial&iR(2)[x] for n < 10 in
Table 3.1. All values in Table 3.1 are computed by using Software for Atgebd Geometry
Experimentation (Sage) [35].

Table 3.1: Charlier Polynomials i@ F(2)[X]

CO(X) 1

Ci(¥) | x

Co(X) | X2+ x

Ca(x) | X2+ X2

Ca(x) | X+ X2

Cs(x) | X+

Cs(X) | XB+ X2+ x+ 3
C/(x) | X+ x84 x3+ X
C8(X) x& + x4

Co(x) | X+ x°

Cio(¥) | X0+ x° + x5 +x°

3.1.1 Conversion of Cofficients From Polynomial Representation to Charlier Polyno-

mial Representation

The polynomial basi$l, X, x2,--- ,x"~1} wherex is a root of an irreducible polynomial of
degreen over GF(2) is usually preferred to represent the element&B({2)[x]. Let a(x) =
aT’]_lx”‘1 + .-+ & X + &, wherea] € GF(2) be a polynomial with the standard (canonical)

representation. Le€,(X) = B, be then-th Charlier polynomial inGF(2)[x], wheren > 0.
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Algorithm 2 Conversion of Co#icients From Polynomial Representation to Charlier Poly-
nomial Representation

Input: a(x) = Y ax

Output: (8, a1, ,an-1), wherea = 3"} a3

1: T«a

2: for i = ndownto 1do
if dedT) =ithen

w

4: g «1

5: T« T+p
6: else

7: a <0

8. endif

9: end for

10: a9« T

a(x) can be represented by using Charlier polynomiala asa,_18n-1 + - - - + @181 + agBo,

wherea € GF(2) by using Algorithm 2.

Note that since we are working in characteristic two, Algorithm 2 is self-s&erThat is
in Algorithm 2, if the input is a polynomial representation, then the output is thenie
representation, and conversely if the input is an Hermite representagorthié output is the

polynomial representation.

3.1.2 Charlier Basis

A basis for the finite fieldsF(2") is a set ofn elementdBo, 1, - - - ,Bn-1} € GF(2") such that
every element of the binary field can be represented uniquely as a limabiradion of basis

elements. For a giveme GF(2"), we can write

n-1
a=> a-f
i=0

wherea; € GF(2) forO<i<n-1.

Theorem 3.1.2Let f = X', fi - B be an irreducible polynomial of degree n in GH[X].

The setfBo.B1.- - ,pn-1} forms a basis of GR") = GF(2)[x]/(f).
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Proof. Consequences of Algorithm 2 show that the{ggi31, - - - ,Bn-1} is linearly indepen-
dent and each element ®&F(2") is uniquely expressed by using the §84,51, - ,Bn-1}-
Then, the sefBo, 51, - - ,Bn_1) forms a basis o6 F(2") = GF(2)[x]/(f). |

Theorem 3.1.3 Let C(X) = B, be the n-th Charlier polynomial in GR)[x], where n> 0.

Then, for all i j > 0 Charlier basis satisfies the following equation

Bi - Bj = Bi+j + - Bisj-1

wheref € GF(2). Ifi and j are both odd number, theh= 1. If i or jis an even number, then

¢=0.

Proof. We will prove the theorem by induction orand j. By using Table 3.1, the theorem is
true for few terms. Assume that theorem is trueifern — 1. Then we need to show that it is

true fori = n. We have four cases:

i. niseven and is odd

ii. nisevenand is even

iii. nisodd andjis odd

iv. nis odd andj is even

Letj<n-1.

i. Letnbe even and be odd. Note thag; = x

(B1Bn-1 + Pr-1)B]
Bn-1(Bj(B1 + 1))

= Po-aBj+1+Bj +Bj)
= Pntj

BB
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ii. Letnandj be even.

(B1Bn-1 + Pr-1)B]

= Pn-1(Bj(B1+ 1))
Bn-1(Bj+1 + B))

= Bn+j + Pn+j-1+Pnrj-1

ﬁn+j

BrBj

iii. Letnandj be odd. Remember that addition of two odd integers is even.

BB = (B1Bn-1)B]
= PBn-1(Bj+1+Bj)
= PBnsj +Bnsj-1
iv. Letnbe odd and be even.
BBi = (B1Bn-1)B]
= ﬁn—]ﬂj+l
= Bn+j

Note that ifj = n— 1 or j = n, then this case can be proved by considering the factgss of

or Bj+1 as shown above. [ |

3.2 Polynomial Multiplication Using Charlier Polynomials Over Binary Fields

In this section, we describe polynomial multiplication in Charlier polynomial regméation

for binary fields and give the total arithmetic complexity. Remember that multiplication
finite fields can be performed in two steps: multiplication o&d¥(2) and modular reduc-
tion overGF(2"). Therefore, we divide this section into multiplication and reduction parts.
Throughout this sectioryi(n) and A(n) denote the minimum number of multiplications and

the minimum number of additions for corresponding algorithm for haterm polynomials
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multiplication, respectively. The upper bounds of the required number tifphzcations and

additions to multiply polynomials in Charlier basis is given in the following theorem.

Theorem 3.2.1Leta= a,-18n-1 + -+ - + agBo and b= b,_18,-1 + - - - + bgBg be n-term poly-
nomials over GF2) and a- b = ¢ = cyn282n-2 + - -+ + CoBo. Then, the cgficients of the

polynomial, ¢ are computed with

M(n) + M(EJ) multiplications and
A(n) + A(EJ) 12 EJ _ 1 additions

by using any multiplication method.

Proof.
Co = aoho
CL = aobl + albo + albl
C = aob2 + azbo + a1b1
C3 = aob3 + agbo + albz + a2b1 + albg + a3b1

Con3 = @pobn1+an1bno+-an by

Con-2 an-1bn-1

wherel = 1 if n— 1 is odd, otherwise{ = 0. There are extra terms when we compare this
multiplication with ordinary multiplication. The extra terms can be expressedaaithy;. 1,
where 0< i,j < |3-1] - 1. These elements correspond to multiplication of §4¢-
term polynomials. Therefore, the total multiplication complexityMgn) + M([%J). We
need 42J — 1 extra additions to combine these. Similarly, the total addition complexity is

A +A(3)+2|5] -1 (]

Example 3.2.2Let n = pl, where p is a prime number and | is a positive integer. Let
a=an18n-1+- - +agBoand b= b,_18n-1 + - + bgBo be n-term polynomials over GB)

and a-b = ¢ = cn_oBon2+ - - - +CoBo- Then, by using Karatsuba multiplication method [39],

Jlog23

1. If p = 2, the required number of multiplications i&%3 + [g and the required

number of additions i8n'°%3 — 11n + 3.
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2. If p = 3, the required number of multiplications &% + [gJ ° and the required

number of additions i$3en'©9® — 2n 4 .
We give an example to show that Theorem 3.2.1 is working.

Example 3.2.3 Let a= agB3+ayB2 + a1B1 + agBo and b= bzB3+byB2+b1B1 + bgBy bed-term
polynomials over GR2) in Charlier polynomial representation. Letta= ¢ = cgBs+: - -+CoB0-

Then,

Co = aghg

Ci = agbg+aibg+ a1_b1

C; = agbo +aghg +aib;

C3 = agbs+ asbg+aiby + agby + ajbs + azb;
Cp = albg + a3b1 + a2b2

Cs = a2b3 + a3b2 + a3_b3

Cg = a3b3

a1bs, (a1bs + ashi) and abs are the extra terms when we compare this multiplication with
ordinary multiplication. The computation of these extra terms can be aahigyénhe follow-
ing method:

Let X = a1, Yo = b1, X1 = agand y1 = bs. Then, the extra terms can be computed as follows:

m, = XoYo
m, = (Xo+X1)(Yo+y1)—m—ny,
m; = Xiy1

The computation of extra terms requires 3 multiplications and 4 additions.n®eds at most
9 + 3 = 12 multiplications and24 + 4 + 3 = 31 additions by using Karatsuba method to

compute ab =c=cgBs+ - - + CoBo.

Remark 3.2.4 Note that some or all elements of extra terms may be obtained without any
cost, i.e. these are computed in n-term polynomials product. This, ofeodepends your
choice on multiplication method. Therefore, this reduces multiplication andiaddom-

plexity. However, in this chapter, we give upper bounds.
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Example 3.2.5 Let us consider Example 3.2.3. Consider #w@rm polynomials in standard
representation &) = §]i3:0a,-xi and kx) = Z?:o bix. Karatsuba algorithm computes the

product ¢x) = a(x)b(x) = Zf’:o cix' with the following 9 multiplications:

My = agho

aiby

3
I

= aghy
= agbs
= (ag+ag)(bg + by)
(a0 + a2)(bo + b2)
= (ag+ag)(b1 + bs3)

= (az+ ag)(by + b)

3 3 3 3 3 3 3
Il

= (a0+a1+a2+a3)(bo+b1+b2+b3)

The extra terms in Charlier polynomial representation, i.dna(aibs + agb;) and abs, are

obtained without any cost:

M} = Mo, M, = Mg + Mo + Mg, M = Mg

Thus, one needs 9 multiplications and+3427 additions by using Karatsuba method to

compute c=a-b=cgBs + - + CoBo

Now, we show how modular reduction process can be performed fatuitiiele Charlier

polynomials.

3.2.1 Irreducible Charlier Binomials

Selected irreducible Charlier binomials are given in Table 3.2.

3.2.1.1 Reduction

By using irreducible Charlier binomial, one can perform reduction operatsdfollows:

Let f = Bh+Bo be anirreducible polynomial of degra@verGF(2). Letn <i < 2n-2. Then,
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Table 3.2: Irreducible Charlier Binomials

B2+pBo | B3+ Po
Bs+Bo | B7+Po
Boa+PBo | Bai+Po
Bez+Bo | B71+ Po
Bios+ PBo | P27+ Po
Biso+ Bo | Bi77+ Po

BBi-n = Bi+tBi-1-C

BoBi-n = Bi+pi1-t
Bi = Bint+pfi-1-t
Bi = PBi-n+ Bi-n-1Bn+fi-2-t1) - €
Bi = Bin+Pina-t

If i —nandnori—-n-1andnare both odd, thefi = 1 or¢; = 1, respectively. Otherwise,
¢ =0or¢1 =0. Note thas, = 1. - {1 = O since ifi — nis odd, thenj —n— 1 is even. Same

trick is applicable for trinomial case.

3.2.2 Irreducible Charlier Trinomials

Table 3.3 tabulates selected irreducible Charlier trinomials. According to Bahlé should
be noted that recommended NIST or SEC binary fields suGr481%), GF(213Y), GF(22%3)

andGF(2283) can be constructed with irreducible Charlier trinomials [32] and [36].

3.2.2.1 Reduction

By using irreducible Charlier trinomial, one can perform reduction oparasofollows:

Let f = By + Bk + Bo be an irreducible polynomial of degreeoverGF(2) andk be even. Let
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n<i<2n-2. Then,

Table 3.3: Irreducible Charlier Trinomials

B113+ B1o+ Po

B131+ B2g + Bo

Bie7+ B2+ Po

Bieg+ B3 + Bo

Biri+ Ba+ Bo

Bis7+ B3+ Bo

B211+ B1o+ Po

B221+ B2+ Bo

B227+ B3+ Bo

B231+ P13+ Po

B23z+ P11+ Po

B233+ P17+ Po

B283+ B3+ Bo

B283+ P14+ Po

B291+ P21+ Po

Bs11+ B3+ Bo

B323+ B22+ Po

B331+ P21+ Po

B3a7+ B2s + Po

B3sg+ P24+ Po

Bao1+ P13+ Po

Bao3+ P26+ Po

Barg+ P14+ Po

Baaz+ Bo + Bo

Bass + P11+ Po

Baso + P23 + Po

Bs11+ P11+ Po

Bsa1+ B3+ Bo

Bss1+ B1s + Po

PBss7+ P11+ Po

BrBi-n Bi+pBi-1-t
Bk +Bo)Bi-n = Bi+Pi-1-t
Bi Bi-n+k + Bi-n + Bi-1- €
Bi Bi-n+k + Bi-n + (Bi-n+k-1 + fi-n-1) - €

If i —nandn are odd, the = 1. Otherwise{ = 0.

Let f = By + Bk + Bo be an irreducible polynomial of degreeover GF(2) andk be odd. Let

n<i<2n-2. Then,

BrBi-n Bi+pBi-1-t
(B + Bo)Bi-n Bi+pi-1-t
Bi = Bi-nik+Bi-n+ Birk-n-1+pBi-1) - £
Bi Bi-n+k + Bi-n + Bi-n-1- L

If i —nandnare odd, theif = 1. Otherwisef = 0.
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3.2.3 Reduction Complexity

Table 3.4 shows reduction complexity for irreducible Charlier binomials andrtrials.

Table 3.4: Reduction Complexity

| Form | #XOR]

Charlier Binomial | B, + Bo 3
Charlier Trinomial| B, + Bk + B0 | 3n

Remember that the cost of reduction process in polynomial basis refatgerstrictly de-
pends on the choice of reduction polynomial. Then, if one uses trinomiatmiapomial,

reduction process requires @r 4n XOR gates, respectively.

3.3 Multiplication Complexity

In this section, we give modular multiplication complexity of multipliers in view &fMD

and #XORgates. Len = p!. Table 3.5 compares the space complexity and time complex-
ity of selected multipliers. Note that this table is prepared by using Karatsuba licaliipn
method for Charlier basis [39]. According to Table 3.5, Charlier polynomg@afesentation
has better complexity than Dickson polynomial representation and ONBéteTdre, binary
fields can be constructed with low weight Charlier polynomidiciently when there does
not exist ONB for the corresponding extension. Remember that we giperibounds for
Charlier binomials and trinomials. The complexity of the field multiplication for Charlier
polynomials can be further reduced by cleverly combining computed valeesEgsample
3.2.5). Therefore, for some cases, multiplication complexity for Charliemuohjal repre-

sentation is also comparable with ONB 1.

Remark 3.3.1 NIST recommended binary field G£23) can be constructedffciently by

using Charlier polynomials since there is no ONB for the correspondingnsixte.
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3.4

Table 3.5: Space Complexity Comparison of Selected Multipliers

[ #XOR

\ Critical Delay

Charlier Binomial

8n1°%3 — 10n + 3

3logo(N)Tx + Ta

Charlier Binomial

116006 _ 29, , 7
5 sN+s5

4|Ogg(n)Tx +Ta

Charlier Trinomial

8nl°%3 — 8n + 3

3logo(N)Tx + Ta

Charlier Trinomial

116006 _ 14, 7
5 1 5N+ 5

4|Ogg(n)Tx +Ta

p

2

3

2

3
Polynomial Basis [39] | 2 | nf°%3 6n°%3 _gn+2 | (3l0ga(n) — )Ty + Ta
Polynomial Basis [39] | 3 | n°%:6 2pos6 _gn+ 2 | (4logs(n) — 1)Tx + Ta
Dickson Binomial [20]| 2 | 2n/0%:3 11n/°%3 _ 11n (2loga(n) + 1)Tx + Ta
Dickson Binomial [20]| 3 | 2n/©%:6 48po%6 ~ 11+ 2 | (3logs(n) + 1)Tx + Ta
Dickson Trinomial [20] 2 | 2n'°%3 110°%3 _4n+ 1 | (2loga(n) + 6)Tx + Ta
Dickson Trinomial [20] 3 | 2n/©%:¢ Brjowst —2n+ 1 | (3logs(n) + 6)Tx + Ta
OnB T1L] 2|W°%4n | Bne*—dn-} |(@logs(n) +L)Tx + T
ONB I [11] 3|n°% 4 n Zplost _ 30— 4 [(3logs(n) + 1)Tx + Ta
ONB 11 [11] 2 | 2nfoe3 110°%3 _ 120+ 1 | (2loga(n) + 1)Tx + Ta
ONB II[11] 3| 2nfossd 28006 _ 10n— 2 | (3logs(n) + 1)Tx + Ta

Other Arithmetic Operations

3.4.1 Squaring

Leta = an_18n-1 + - - - + agBp be n-term polynomial oveGF(2) anda® = ¢ = Con_2Bon-2 +

-+ 4+ CgBo. Then,

wheref = 1 if n— 1 is odd. Otherwisef = 0. Proof of squaring is very similar to Theorem

3.2.1. Note that the cost of squaring in Charlier polynomial representatjostiseduction.

3.4.2

Let a and b be the polynomials in Charlier representation o@&#¥(2) of degree ih — 1)

and k — 1), respectively andn > k > 0. Then, there exist polynomiats(quotient) and

C=an-1B2n-2+an1-Bon-3+ -+ 083 + a5 + a1 + agPo,

Inversion

(remainder) inGF(2)[X] such that

a=q-b+rwith0O<r<h.
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Note that deg() < degp). The idea of the division algorithm is the consequence of the
multiplication of 5; andg;j which is more complicated compared to the usual multiplication
in GF(2)[X] (see Theorem 3.1.3). By using division algorithm recursively, osdyeabtains
the Euclidean algorithm foF to find the greatest common divisors @fndb. Therefore,
Euclidean algorithm can be usefiieiently to find an inversion of an element. Moreover, one

can use the following two well-known methods.

Problem 3.4.1 Leta= a,_18n-1 + - - - + agBo. Find a suchthataa™™ = 1.

e Computea?'~2 equal toa™L. This method is based on Fermat theorem.

e Use extended Euclidean algorithm in polynomial representation. By usingyifkim
2, conversion between polynomial representation and Charlier repatise can be
achieved very fiiciently. Inversion of an elemeiatcan be computed as follows:
1. Convertagiven in Charlier representation to polynomial representation.
2. Compute the inverse ! of amodulof (x) by using extended Euclidean algorithm.

3. Converta~! expressed in polynomial representation to Charlier representation.
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CHAPTER 4

A NEW REPRESENTATION OF ELEMENTS OF BINARY
FIELDS WITH SUBQUADRATIC SPACE COMPLEXITY

In this chapter, Hermite polynomial representation is proposed as an éilterway to rep-
resent finite fields of characteristic two. We show that multiplication in Hermite pohyal
representation can be achieved with subquadratic space complexity.ephesentation en-
ables us to find binomial, trinomial or quadranomial irreducible polynomials whiotvaus
faster modular reduction over binary fields when there is no desirabltelswoveight irre-
ducible polynomial in other representations. We then show that the profiwad elements in
Hermite polynomial representation can be performed as Toeplitz matrix-yaauact. This
representation is very interesting for NIST recommended binary@&l(2°"%) since there is
no ONB for the corresponding extension. We note that an advantages oéfinesentation is

that it can be used to obtain morgieient finite field arithmetic.

This chapter is organized as follows: Section 4.1 describes Hermite polyinantayives
some general results on Hermite polynomial$GiR(2)[x]. In Section 4.2, we present the
general method to multiply two polynomials in Hermite polynomial representation igad g
the total arithmetic complexity. In Section 4.3, we give polynomial multiplication in Hermite
basis with Toeplitz matrix-vector multiplication design. We compare multipliers in view of
#AND and #OR gates and the complexity of the multiplication of two basis elements in

Section 4.4.

The material presented in this chapter is partially included in [3].
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4.1 Hermite Polynomials

In this section, we give preliminaries and describe a new representatimneoy fields. Her-
mite polynomials are in the class of orthogonal polynomials. Hermite polynomiaésdeaw
eral applications in quantum mechanics, numerical computation, algorithm&].1[There
are two kinds of Hermite polynomials: probabilists and physicists. In this chapeeare

interested in probabilists Hermite polynomials [1].

Definition 4.1.1 [9] The Hermite polynomials are §{x) = 1, H1(X) = x with the recursion
Hn(X) = X+ Hp-1(X) = (N = 1) - Hp-2(X)

forn> 2.

It should be noted thategdH,) = n. We give the Hermite polynomials @F(2)[x] for n < 10

in Table 4.1.
Table 4.1: Hermite Polynomials i@ F(2)[X]

Ho(x) |1
Hi(x) | x
Ho(x) | X2+ 1
Ha(x) | X3+ x
Ha(x) | xX*+1

Hs(x) | x>+ x

He(X) | X0+ x*+x2+1

Hy(x) | X +x3+x3+x

He(x) | x8+1

Ho(X) | X+ x

Hig(X) | x20+x® +x2 +1

4.1.1 Conversion of Cofficients From Polynomial Representation to Hermite Polyno-

mial Representation

The polynomial basigl, x, X2, --- , x"1} is usually preferred to represent the elements of

GF(2)[x], where x is a root of an irreducible polynomial of degreeover GF(2). Let
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a(x) = a;_lx”‘1+- --+a| x+ay, wherea € GF(2) be a polynomial with the standard represen-
tation. LetHn(X) = Bn be then-th Hermite polynomial irGF(2)[x], wheren > 0. The polyno-
mial a(x) can be represented by using Hermite polynomiabsasy,_18n-1+: - - +a181+agBo,
whereg; € GF(2). Algorithm 3 shows how conversion of d@eients from polynomial rep-

resentation to Hermite polynomial representation can be performed.

Algorithm 3 Conversion of Cofficients From Polynomial Representation to Hermite Poly-

nomial Representation
Input: a(x) = Yt ax

Output: (8, a1, ,an-1), wherea = Y"1 a3
1. Tea
2: for i = ndownto 1do

if dedT) =ithen

w

4: a1

5: T« T+p
6: else

7: a <0

8 endif

9: end for

10 ag« T

Note that Algorithm 3 is self-inverse. That is in Algorithm 3, if the input is a polyial
representation, then the output is the Hermite representation, and adpvetise input is an

Hermite representation, then the output is the polynomial representation.

4.1.2 Hermite Basis

A basis for the finite fieldsF(2") is a set ofn elementdBo, 1, - - - ,Bn-1} € GF(2") such that
every element of the binary field can be represented uniquely as a limabiradion of basis

elements. For a giveme GF(2"), we can write
n-1
a= Z & - i
i=0
wherea; € GF(2) forO<i<n-1.
Note thaiGF(2)[x] is a free vector space ov&iF(2) with the free basifl, x, X2, - -+, x"1, ...},
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Moreover,GF(2)[X] is a commutative algebra ov€&F(2). In particular for arbitrary poly-
nomials f1(X), f2(x) € GF(2)[X], the productfi(x) - f2(X) is defined iNGF(2)[x]. Next using
another free basis we obtain another commutative algeb@Fg8)[x] over GF(2). Assume
that{Bo = 1,81, -+ ,Bn-1,- -} IS the Hermite basis. LeH +) be the free vector space over
GF(2) generated byB. We explain this in detail in Theorem 4.1.8. We put a commutative
algebra onF over GF(2) by introducing the multiplication on F. Proof of the following

theorem is given after defining the algebra (see 4.1.3).

Theorem 4.1.2 Let H,(X) = Bn be the n-th Hermite polynomial in GB)[x], where n> 0.

Then, for all i j > 0 the Hermite basi$Bo,81, - ,Bn-1, - - } satisfies the following equation
Bi-Bj = Pi+j + - Birj-2

wherel € GF(2) is defined as

1 ifi and j are both odd number
0 otherwise

4.1.3 The Algebra

LetB = {Bo = 1,81, - ,Bn-1, - - } be the Hermite basis. LeF(+) be the free vector space
overGF(2) generated b. The multiplication on F has the following properties:
i. Forthe zero element 0 &F(2) we have
Bi-0=0-5=0
foralli=0,1,---.
ii. The identity element of is the elemenBy = | that is
Bi-1=1-Bi=pi
foralli=0,1,---.
iii. Forallce GF(2) andg;,s; € B we have
c(Bi - Bj) = (cBi) - Bi = P1- (6B2).
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Note that it is enough to define and check the properties of the multiplicationcontize

Hermite basis, as the multiplication is extendedFtaia linearity.

Remark 4.1.3 The multiplication is associative, that is, for ang, 8, 8« € B we have

Bi- (Bj - Bx) = (Bi - Bj) - P

Proof. Using Theorem 4.1.2 we obtain that

Bi - (Bj - Bx) = Bi+jrk + Bixjsk—2(f1 + €2) + Bitjsk-a(l1 - £2), (4.1)

and
(Bi - Bj) - Bx) = Bixj+k + Bixjrk—2(] + €5) + Bixjrk-a(l] - £5) (4.2)

wherety, £, 01,5 € GF(2). If j andk are both odd numbers, thép= 1. If i andj + k are
both odd numbers, thefd = 0. If i and j are both odd numbers, théh= 1. If i + j andk are
both odd numbers, thefa = 0. For the other cases = 0, £, = 0, ¢, =0,¢,=0. Note that’;
and{, cannot be equal to 1 at the same time since the addition of two odd integersvisran e
integer. This case is also applicable fgrand¢;. Therefore, using 4.1 and 4.2 we conclude

that

Bi - (Bj - Bx) = (Bi - Bj) - B)-

Remark 4.1.4 The distributive law holds; that is, for i, 5, 5« € B
Bi - (Bj +Bk) =i - Bj + Bi - Bxs

(Bj + Bx) - Bi = Bj - Bi + Bk - Bi-

Leta=ap-Bo+ Zi”:‘fa; - Bi be an element of whereg € GF(2) fori = 0,1,---,(n-1)
andm- 1 is the largest positive integer such that; = 1. We define the degree dejof the

elementa € F as follows:

—00 ifa=0,
deg@) =4 0 ifa=1,

n-1 otherwise.
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Note thata = 0 means all co@cients ofai.e. g fori = 0,1,---,(n - 1) are equal to 0.

Similarly,a=lifandonlyifag=1anda; =a; =--- = a,-1 = 0.

We define the division algorithm o as follows: Leta andb be elements oF overGF(2)
of degree ih— 1) and k — 1), respectively andh > k > 0. Then, there exist polynomiatp

(quotient) and (remainder) inF such that
a=q-b+rwith0O<r<hb.

Note that deg() < degp). The idea of the division algorithm is the consequence of the
multiplication of 8; andg; which is more complicated compared to the usual multiplication
in GF(2)[X] (see Theorem 4.1.2). By using division algorithm recursively, os#yeabtains

the Euclidean algorithm fdf to find the greatest common divisorsa&ndb.

Remark 4.1.5 Division algorithm for F allows a suitable generalization of the Euclidean

algorithm. Thus, F is a Euclidean domain and also a principal ideal domain.

Let f = X1 fi-B6,a= Y " a B andb = Y53 b - B be arbitrary elements df with
fi,a, b € GF(2). We define an equivalence relation Brusing f as follows: we calla = b
(mod f) if and only if f|(a—b). This relation is reflexive, symmetric and transitive. Recall that
f € F, non-constant, is irreducible if it cannot be written as the product of wveaonstant

elements irF.

Remark 4.1.6 Let f be an irreducible polynomial over GQE) of degree n. Then, Kk F/(f)

is a finite field of dimension n over GE).

In Proposition 4.1.7 we show that agy cannot be obtained by linear combinationgy’s

with i # .
Proposition 4.1.7 The sefBo,B1, - ,Bn-1} € GF(2") is linearly independent.

Proof. We prove the proposition by using induction. l&j3y = 0. Then, it is clear that
ap = 0 sinceBy = 1. This corresponds to= 1 case. Assume that the 46,51, - ,Bn-2} IS

linearly independent, i.e. proposition is true foe n— 1.
afo+af1+ - +a2bn2=00a=a1=---=an2
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Now, we need to show that the theorem is truekfer n.

agBo + a1+ +an-1Bn-1=0

Then, we obtain
an-16n-1=0

Remember thatlegBn-1) > 0 for n > 1 andB,-1 cannot be expressed as a linear combi-
nation of{Bg,B1, - ,Bn-2}. Thereforea,_1 = 0. Thus, the sefBo,B1, - ,Bn-1} IS linearly
independent. [ |

The following theorem shows th8t= {30,531, - - ,Bn-1} iS a basis 0GF(2") = GF(2)[x]/(f)

for an irreducible polynomiaf.

Theorem4.1.8Let f = X fi - B be an irreducible polynomial of degree n in GH[X].

The setBo,B1,- - ,pn-1} forms a basis of GR") = GF(2)[x]/(f).

Proof. SinceGF(2") is a vector space, the s@o.B1,- - ,Bn-1} is linearly independent
by Proposition 4.1.7 and each elementGii(2") is uniquely expressed by using the set
{Bo.B1,- - ,Bn-1} by using Algorithm 3, the s€Bo,B1, -+ ,Bn-1} SpansGF(2"). Then, the
set{Bo,B1, " - »Bn_1} forms a basis 06 F(2") = GF(2)[X]/(f). |

Note that the s€jBo, 81, - - - ,Bn} is linearly dependent since ddg(= nandg, = Z{L_ol fiBi.
Theorem 4.1.9 F is isomorphic to GE2)[X].

Now we give proof of Theorem 4.1.2

Proof. We will prove the theorem by induction érandj. By using Table 4.1, the theorem is
true for few terms. Assume that theorem is trueifern — 1. Then we need to show that it is
true fori = n. Let j < n— 1. We have four cases:

i. nisevenand is odd

ii. nisevenand is even

iii. nisodd andj is odd

iv. nis odd andj is even
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i. Letnbe even and be odd. Note thag; = x

BB = (B1Bn-1+ Pn-2)Bj
= PBn-1(8jB1) + Bn-2B]
= Bn-1Bj+1 + Bj-1) + Pnrj-2
= Bn-j +Bnrj-2 + Bn+j-2
= ,3n+j
i. Letnandj be even.
BB = (B1Bn-1 +ﬁn—2)ﬁj

Bn-1(8jB1) + Pn-2Bj
Bn-1Bj+1 + Bn+j-2
Bn-j + Bn+j-2 + Pnrj-2

= ﬁn+j

iii. Letnandj be odd. Remember that addition of two odd integers is even.

BrBi = (B1Bn-1)B]
= Bn-1(Bj+1+Bj-1)

= PBntj*Bnsj-2

iv. Letnbe odd and be even.

(ﬁlﬂn—l)ﬁj
= ﬂn—lﬂj+l
ﬁn+j

BrBj

Note that ifj = n— 1 or j = n, then this case can be proved by considering the factgss of

or B8j+1 as shown above. [ |
Note that addition of two elements in Hermite basis representation is juSicoemt-wise.
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Remark 4.1.10 The set B= {B0,81,82, - -} is multiplicatively closed since it satisfies the

following properties: i) 1= Bo € Biii) if 8, 8j € B, theng; - j € B.

4.2 Polynomial Multiplication Using Hermite Polynomials Over Binary Fields

In this section, we describe polynomial multiplication in Hermite polynomial reptatien
for binary fields and give the total arithmetic complexity. Remember that multiplication
finite fields can be performed in two steps: multiplication of polynomials &#&(2) and
modular reduction oveGF(2"). Therefore, we divide this section into multiplication and
reduction parts. Throughout this sectidvi(n) and A(n) denote the minimum number of
multiplications and the minimum number of additions for corresponding algorithrnwimr
n-term polynomials multiplication, respectively. The required number of multiplinatand

additions to multiply polynomials in Hermite basis is given in the following theorem.

Theorem4.2.1Let a = ap_18n-1 + -+ + aBo and b = bp_18n-1 + - -+ + bgBo be n-term
polynomials over GR2) and a- b = ¢ = Con_282n-2 + - - - + CgBo. Then, the cogcients of the
polynomial ¢ are computed with

M(n) + M(EJ) multiplications and

A(n) + A(EJ) ; 2{9

ZJ — 1 additions

by using any multiplication method.

Proof. By using Theorem 4.1.2, we write explicitly,

Co = agbo+aib;

ci = agbi+aibg

C = aob2 + a2b0 + alb]_ + a1b3 + a3b1
Con3 = @n-obn-1+an-1bno
Con—2 = @8n-1bn-1

There are extra terms when we compare this multiplication with ordinary multiplicafiua.

extra terms can be expressed W, 10,j,1, where 0< i, | < [gJ — 1. These elements
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correspond to multiplication of twt)gJ-term polynomials. Therefore, the total multiplication
complexity isM(n) + M(| 3 |). We need 23| - 1 extra additions to combine these. Similarly,

the total addition complexity i&(n) + A([%J) +2 [gJ -1. [ |

Example 4.2.2Let n = pl, where p is a prime number and j is a positive integer. Let
a=an16n-1+- - +agBoand b= by_18n-1 + - - - + bgBo be n-term polynomials over GB)

and a-b = ¢ = cn_2B2n-2+ - - - + CoBo- Then, by using Karatsuba multiplication method [39],

J|ng3

1. If p = 2, the required number of multiplications i£%3 + [g and the required

number of additions i8n'°%3 — 11n + 3.

J|0936 and the required

2. If p = 3, the required number of multiplications i€%® + [g

number of additions i§en'©%® — 2n 4 .

Remark 4.2.3 Let a= an_18n-1 + - - - + agBo be n-term polynomial over GB) and & = ¢ =
Con-2B2n-2 + - -+ + CoBo- Then,

C=an18mn-2+ (an-1- €+ an_2)Bon-3+ -+ (a3 + @)Bs + a1f2 + a1B1 + (a1 + a)Bo

Proof of this remark is very similar to Theorem 4.2.1. Note that the cosjuafring in Hermite

polynomial representation is just reduction a[r‘giJ additions.

We give an example to show that Theorem 4.2.1 is working.

Example 4.2.4 Let a = agB3 + apB2 + a181 + agBo and b = bgB3 + bpBy + byB1 + bgBy be

4-term polynomials over GR). Leta-b=c=cgBs + - - - + CgBo. Then,

Co = aghp+aiby

c1 = agbi+aibg

C; = agby +aghp +ajhy + ajbs + aghy
C3 = agbs+aghbo+aihy + apbs

Cs = aibs+ agb; +axby + agbs

Cs = aghs+aghy

Ce = aghs
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aib1, (a1bs + agby) and abs are the extra terms when we compare this multiplication with
polynomial basis representation. The computation of these extra temizecachieved by the
following method:

Let % = a1, Yo = b1, X1 = az and y1 = bs. Then, the extra terms can be computed as follows:

M = XoYo,

mp (X0 + X1)(Yo + Y1) — My — Mg,

m X1y1

The computation of extra terms requires 3 multiplications and 4 additions.n@eeé® + 3 =
12 multiplications and24 + 4 + 3 = 31 additions by using Karatsuba method to compute

a-b=c=cgBs+ -+ CoPo.

Remark 4.2.5 Note that some or all elements of extra terms may be obtained without any
cost, i.e. these are computed in n-term polynomials product. This, ofeodepends your
choice on multiplication method. Therefore, this reduces multiplication andiaddtom-

plexity.

To obtain better multiplication complexity, we recall Karatsuba multiplication method ove
GF(2) and then we present our observation.
Leta andb be polynomials of degree— 1 overGF(2) wheren is a power of 2. By splitting
a andb into two blocks of siz%, one obtains
a = ax?+ag
b = b.x?+bg
Then, multiplication ofa andb, i.e.,c = a- b by using Karatsuba multiplication method is

computed as follows:
c = a-b

(aLx? + ar)(bLX? + bg)

aLbe” + (aLbR + aRbL)xg + aRbR

abux + ((au +ar)(bu + br) — aLby — arbr)X? + arbr

Karatsuba multiplication method uses divide-conquer idea recursivelytaindietter multi-

plication complexity. Therefore, the complexity of this idea can be viewed as

M(n) = 3M(g)
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Remark 4.2.6 Leta= a,_1X" 1+ .-+ ayx+ap and b= b_1 X" 1 + - - + byx + by be n-term
polynomials over GE2) where n is a power of 2. Let d and e @8-term polynomials over
GF(2) with the cogicients a5 and by, 2, where0 < i < g respectively. Let e a- b and

f = d-e. Assume that we have all required multiplications to compute th@aests of c by
using Karatsuba multiplication method. Then, theforents of f are obtained with at most

nylogp3 o - . .. . .- . .
(2)392 —n 323 multiplications. Similarly, for n= 3%, where k is a positive integer, the required

nylogz6
number of multiplications i§2)3—3.

Remark 4.2.6 is the consequence of recursive structure of Karatsubglication method.

Note that this observation can be used in [2] since they have similar structure

Example 4.2.7 Let us remember Example 4.2.4. Consider #isterm polynomials in stan-
dard representation () = Z?:O aix' and H(x) = Zf’zo biX . Karatsuba algorithm computes the

product ¢x) = a(x)b(x) = Zf’:o ¢ix' with the following 9 multiplications:

My = agho

aiby

3
I

= aghy
= agbs
= (ag+ag)(bg + by)
(a0 + az)(bo + b2)
= (ap+ag)(b1 + bs3)

= (az+ ag)(by + b)

3 3 3 3 3 3 3
Il

= (a0+a1+a2+a3)(bo+b1+b2+b3)

The extra terms in Hermite polynomial representation, i#na(a;bs + asb;) and abs, are

obtained without any cost:
M} = Mo, M, = Mg + Mo + Mg, M = Mg

Thus, one needs 9 multiplications and+3427 additions by using Karatsuba method to

compute = a-b = cgBs+ - - + CoBo

Now, we show how reduction process is performed for irreducible Heipoitgnomials.
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4.2.1 Irreducible Hermite Binomials

Table 4.2 gives selected irreducible Hermite binomials. We have mainly two kindeo

ducible Hermite binomials of the forng, + Bo andg + Bi.

Table 4.2: Irreducible Hermite Binomials

B3s+Bo | B2 +p1
Br+Bo | Bat+pa
Boa+Bo | Be+p1
Bis+Po | P2+ B
Be3+Po | B2s+pP1
B127+Bo | Pas+ B
Bari+Po | Bs2+ 1

4.2.1.1 Reduction

By using irreducible Hermite binomial, one can perform reduction operasdollaws:

Let f = B,+Bo be anirreducible polynomial of degra@verGF(2). Letn <i < 2n-2. Then,

BrBi-n = Bi+pi2-t
BoBi-n = Bi+PBi2-t
Bi = Bin+piz-t
Bi = PBi-n+ Bi-n-2Bn+PBi-n-a-)- L

Bi = Bin+ Bicn-2+Bin-a)-

If i—nisodd, thert = 1. Otherwise{ = 0. Note thap, = Bo and ifi —nis odd, then —n-2

is also odd.
Let f = Bh+B1 be anirreducible polynomial of degra@verGF(2). Letn <i < 2n-2. Then,
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Brbi-n = Bi+Bi2-t
BiBi-n = Bi+Piz-t
B = Bi-n1+ Bz +Pin-1) - €
Bi = Piner+ Bin-aBn+Pina-l+pBina)-l
Bi = PBi—ns1+ Bicn-1+Bi-n-3 - {+Pin-a-{+Pin-1) L
Bi = PBi-ne1+ Bi-n-3+Pin-a) L

If i —nis odd, thert = 1. Otherwisef = 0.

4.2.2 Irreducible Hermite Trinomials

Table 4.3 gives selected irreducible Hermite trinomials. We have mainly two kinidseo
ducible Hermite trinomials of the forng, + Bk + 8o andgBn + Bk + B1. According to Table 4.3,
it should be noted that recommended NIST or SEC binary fields suGhré&13), GF(2239),
GF(2%8%) andGF (257} can be constructed with irreducible Hermite trinomials [32], [36].

Table 4.3: Irreducible Hermite Trinomials

B137+ B17 + Bo

B113+ P12+ 1

Biso + Bs + Bo

B1og + B2g + f1

B223+ P17+ Po

B271+ P24+ P1

B233+ Bs + Bo

B209 + P26 + 1

Bar1+ B7+ Bo

Bosi+ Ps + 1

B311+ B2s + Po

B283+ Be6 + P1

B3sz+ B21+ Po

B3e1+ B1e + P1

Baz1+ Pes + Po

PBas7+ P24+ P1

Bagr+ B3+ Bo | Bag1+ Be+ B1
Bs77+p7+Bo | Bsri+ Baz+ 1
Bea1r+ P11+ Po | Pes3+ P2 + 1
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4.2.2.1 Reduction

By using irreducible Hermite trinomial, one can perform reduction operagdolbws:
Let f = Bn+ Bk +Bo be an irreducible polynomial of degreeverGF(2). Letn <i < 2n-2.

Note tha{B, = Bk + Bo. Then,

Bi = Pi-nik +Bi-n+Bi-2- €

Bi = Bi-nik+Bin+ (beta-noBn+Bina-) €

Bi = Bi-nek + Bin + Bi-nsk—2 + Binik-4 - €+ Pi-n-2 + Bi-n-a- ) - €
Bi = PBi-nek +Bi-n + Bi-nsk-2 + Bi-ntk-4 + Bi-n-2 + fi-n-4) - €

If i —nis odd, thert = 1. Otherwisef = 0. Note that ifi — nis odd,i — n— 2 is also odd.

Let f = B,+ Bk +B1 be an irreducible polynomial of degre@verGF(2). Letn <i < 2n-2.

Note thaiB, = Bk + B1. Then,

Bi = Bi-nik+Bi-ne1+ Bi-n-1+Pi-2) - €

Bi = Bi-nik +Bi-ne1+ Bi-n-1+ fi-n-2Bn + Pi-n-a- ) - €

Bi = PBi-nsk + Bi-ns1 + Bi-n-1 + Bi-nik-2 + Pi-n-1 + Pi-n-2 - €+ Pin-a- ) - L
Bi = Bi-nk +Bioni1 + Bi-nik-2+Bin-2+Pin-a) - L

If i —nis odd, thert = 1. Otherwisef = 0.

4.2.3 Reduction Complexity

Table 4.4 shows reduction complexity for irreducible Hermite binomials and trinemia

4.3 Toeplitz Matrix Vector Product for Hermite Basis with Subquadratic Space

Complexity

In this section we recall Toeplitz matrix-vector multiplication scheme. Then, we gply-
nomial multiplication in Hermite basis with Toeplitz matrix-vector multiplication design. Re-

member that a Toeplitz matrix is defined as
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Table 4.4: Reduction Complexity

| Form | #XOR |
Hermite Binomial | B + o 2n
Hermite Binomial | B, + 31 2n

Hermite Trinomial| Bn + Bk + Bo | 4n
Hermite Trinomial| Bn + Bk + B | 2

Definition 4.3.1 An nx n Toeplitz matrix is a matrix () with Ty j = Tj_y j_1 for2 <i, j <n.

Let n = 2¢ wherek is a positive integer. LeA be ann x n Toeplitz matrix. LetB be ann x 1
column vector. Le€C = A- BoverGF(2). Then,

Al Ao
A A

Co
C,

Bo
B1

where eachho, A; and A; is Toeplitz matrix in size off x 5. Bo, B1,Co andCy are5 x 1

column vectors. Then, by [40]

Co = Po+P2
Ci = P1+P
where
Po = (Ao+A1)B1
Pi = (Ac+A2)Bo
P2 = Au(Bo+Ba)

Forn = 2, the required number of multiplications and additions to comg@ute 3 and 5
respectively. In[11], they give complexity results for compui@fpr binary fields as follows:
#AND = n°%3

#XOR = 55n°%3 _6n+05

Similarly, for n = 3% wherek is a positive integer, one can use the following formula to
compute Toeplitz matrix-vector multiplication [40]

A2 Al Ao Bo CO

Az Ao AL || B |= Cl

Ay As A B2 C,
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whereAy, A1, Az and A4 are individually Toeplitz matrix of siz@ X g andBy, By, BoCo, C1

andC; are§ x 1 column vectors. Then, by [40]

Co = P0+P3+P4
Cl = P1+P3+P5

C2 = P2 + P4 + P5
where

Po = (Ao+Ar+A2)B
P1 = (Ao+As+Ag)B;
P2 = (A2+Ag+ Ag)Bo
P;s = A(B1+Bp)
Py = Ax(Bo+Bp)

Ps = Agz(Bo+ By)

Forn = 3, the required number of multiplications and additions to com@uie 6 and 14

respectively. In[11], they give complexity results for compuithfpr binary fields as follows:

#AND = nl0ds6

24 1
#XOR = —nl°%6 _5n4 =
5 5

Note that it is also possible to obtain similar complexity resultsrfer 2'3/ by combining
the above approaches in the recursive manner. Now, we show that ttiglication of two
elements, i.e.A andB over GF(2") in Hermite polynomial representation can be computed

as a Toeplitz matrix-vector product.

Theorem 4.3.2 Let f = g,+B1 be anirreducible polynomial over GB"). Let A= an_18n-1+

-+ + ayBp and B = bp_18n-1 + -+ + bgBo be n-term polynomials over GB) and A- B
(mod f) = C = cp_18n-1+- - - + CBo. Then, the cgfcients of the polynomial C are computed
with
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ag ag an-1 an-2 ag ap bo Co
a a+an1 an2 an1+an-3z - ap ap+ag b1 C1
ah-2 ap-1+an-3 a4 an-3 -+ @+ap1 ar+an bn-2 Ch-2
| an-1 an-2 an-3 a4+t an1 - ap a+an-1 | | b | | Cno1 |

Proof. We give the sketch of the proof. Lét- B = C’' = ¢} _,Bon-2+ -+ CjBo andA- B
(mod f) = C = cp_1B8n-1 + - - - + CoBo. LetBn + B1 be an irreducible polynomial ov&F(2").
Then,B, = B1. By Theorem 4.1.2,

Bnv1 = P2+po
P2 = P3+P1+PBn=03
Priz = Pat+p2

Pria = Ps+B3+Pni2 =05

Bon-3 = Pn2+Pna
Bon2 = Pna

Then,

C’ = (Con_p+Ch_1)Bn-1+(Con_3+C_o)Bn-2 - - +(Ch,3+Ch 1 +Co)B2+(Cr+C)B1+(Cp, 1 +Co)Bo = C

_ / /
C = Cn+l + C0
CL = Ch+C)
C = C .+C .+C
2 = “ns3 n+1 0
_ / /
Ch-2 = Cpr3tChop
_ ’ /
Ch-2 = CrotCyg

After writing these variables in the matrix-vector product form, one obtaimsliésired form.

Now, we give an example.
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Example 4.3.3 Let f = 84 + 81 be an irreducible polynomial over GB). Let A= azB3 +
aB2 + a1f1 + agBo and B = byBz + byBr + biB1 + byBo be 4-term polynomials over G).
Let A-B=C'=cyBe + - +CyBoand A- B (mod f) = C = cf3 + - - - + CoBo.

C’ (mod f)

where

and

C1
C1
C2
C2
Ca

C3

Ba = P
Bs = B2+po
Bs = B3+P1+Pa=p3

CeB33 + C5(B2 + Bo) + CyB1 + C5B3 + Cyf2 + C1B1 + Cyfo

(g + C5)B3 + (C + Cy)B2 + (Cy + C)B1 + (c5 + CH)Bo = C

Cp = agbg+aiby
C, = aghby+aibg
C’2 = aobz + a2b0 + a1b1 + a1b3 + a3b1
Cé = a0b3 + a3b0 + albz + a2b1
C;f = a1b3 + agbl + azbz + a3b3
C’/S = a2b3 + agbz
Ce = ashs
Cs + G

agbg + a;by + aghy + agbs

Cy+C)

a1bg + aghy + agby + axhy + a1bs + agbs

Cs + G

axbp + a1by + agby + agh, + ash, + a1hs + asbs
Cg + C3

agbo + a2b1 + albz + aob3 + 83b3

Then, by using above formula one can obtain the following Toeplitz matrix.

Ab A
AT A

Bo
B

Co
Cy
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Ao =il ag =) a ap + az
Ao = s A]_ = s A2 =
da; adp+asz dy a; +ag dpt+az a+ag
bo b Co C3
Bo = s Bl = s Co = s C]_ =
by bs C1 C2
Then, by changing of rows we obtain,
Al A Bo C
Ao As B1 Co

Then, we compute

Co = (Ar+A2)By+ Ai(Bo+ By)

C1 (Ao + A1)Bo + A1(Bo + By)

4.4 Multiplication Complexity

In this section, we give modular multiplication complexity of multipliers in view &fMD

and #XORgates. Table 4.5 compares the complexity of selected multipli€gsand Ta

represent respectively the delay of an XOR gate and an AND gate. Nadtthititable is pre-
pared by using Karatsuba multiplication method for Hermite basis [39]. Acupitd Table
4.5, Hermite polynomial representation has better complexity than Charliergrolgthrep-
resentation, Dickson polynomial representation, ONB Il and in some €d$Bd. Therefore,
binary fields can be constructed with low weight Hermite polynomiffisiently when there

does not exist ONB for the corresponding extension.

Remark 4.4.1 NIST recommended binary field @) can be constructedfgciently by

using Hermite polynomials since there is no ONB for the correspondingseaten
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Table 4.5: Complexity Comparison of Selected Multipliers

|

[4AND #XOR [Critical Delay |
pou3 FnoeS —6n+ 5 | 20ga(n)Tx +Ta
1006 oot _Bn+ 1| 3logs(N)Tx + Ta
plog3 # 8n°%3 —7n+3  [(2logy(n) + L)Tx + Ta
o T4 2] | oo+ 01, T
nj0g:3 6n'°%3 —8n+2 | (3loga(n) - 1)Tx + Ta
Piogs6 Fnos® —gn+ & | (4logs(n) - 1)Tx + Ta
8n'°%:3 _ 10n + 3 3|ng(n)TX +Ta
11_156n|0936 _ 2_5:3n + % Alogz(N)Tx + Ta
8n°%3 _8n+3 | 3logy(N)Tx + Ta
11_156n|0936 _ 1_54n + % Alogz(N)Tx + Ta
o083 11n'°%3 — 11n (20ga(n) + 1)Tx + Ta

Hermite Binomial
Hermite Binomial
Hermite Trinomial

Hermite Trinomial
Polynomial Basis [39]
Polynomial Basis [39]

Charlier Binomial [2]

Charlier Binomial [2]

Charlier Trinomial [2]

Charlier Trinomial [2]
Dickson Binomial [20]

WIN[WINWINWINWINIWINWNWINW|IN||T
=5
9]
«
N
w

Dickson Binomial [20] | 3 | 2n'°%® 2Bow6 _ 11n+ 2 | (3logs(n) + 1)Tx + Ta
Dickson Trinomial [20] 2 | 2n'°%3 11n°%3 —4n+1 | (2logz(n) + 6)Tx + Ta
Dickson Trinomial [20] 3 | 2n'0%:¢ 0wt —2n+ 1 | (3logs(n) + 6)Tx + Ta
ONB L) n5+n |50 —an—; |(@oge(n) + UTx +Ta
ONB I [11] n'o%:0 + n 2pjosss _3n— 4 [ (3logs(n) + 1)Tx + Ta
ONB Il [11] 2n/og:3 11093 — 12n + 1 | (2l0ga(n) + 1)Tx + Ta
N NIH 2000 2now — 100 - 2 [ (Blogs() + )Tx + T

The normalized number of requiredN D gates andXOR gates to multiply two elements

in GF(2") for p = 2 case for the selected multipliers given in Table 4.5 are depicted in
Figure 4.1. Dashed lines correspond to the normalized number of reg@&bates. The
normalized number cAN D gates ancKORgated are obtained by simply dividing the number
of requiredAND gates andKORgates by the number of requirdd\N D gates andKORgates

in polynomial basis, respectively. It should be noticed that the numbeeqfired AND
gates in Hermite polynomial representation with a binomial is as good as polynoasial
Furthermore, the number of requirg®Rgates in Hermite polynomial representation with a

binomial is the least one among all of those multipliers.

Figure 4.2 demonstrates the normalized number of requiie® gates andXOR gates to
multiply two elements irGF(2") for p = 3 for the selected multipliers given in Table 4.5.
Dashed lines correspond to the normalized number of requ{@R gates. Note that the
normalized number cAN D gates ancKORgated are obtained by simply dividing the number

of requiredAND gates andKORgates by the number of requirddN D gates andKORgates

54



—— AND Hermite Binomial
—— AND Hermite Trinomial
—— AND Dickson Binomial
~—— AND Dickson Trinomial
/| —— AND ONB |
—AND ONB 1l
---- XOR Hermie Binomial
----XOR Hermite Trinomial
--- XOR Dickson Binomial
- XOR Dickson Trinomial
-~ XOR ONB |
-+ XOR ONB I

Normalized AND Gates and XOR Gates

4 100 196 292 38 484 58D

Figure 4.1: The Normalized Number of Required AND Gates and XOR Gatgs+d?

L]

g —— AND Hemite Binomial
5] —— AND Hemite Trinomial
§ | | —— AND Dicksen Binomial
2 154 ——— AND Dickson Trinomial
e | ~—ANDONBI

% i .
o - - - XOR Hermite Binorial
g - -~ XOR Hemite Trinomial
= T - - XOR Dickson Binomial
5 - XOR Dickson Trinamial
g - XORONBI

s - -~ XORONBI

054

1 100 199 298 397 496 595

Figure 4.2: The Normalized Number of Required AND Gates and XOR Gatgs=+d3
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in polynomial basis, respectively. It should be noticed that the numbeeqfired AND
gates in Hermite polynomial representation with a binomial is as good as polynoasial
Furthermore, the number of requirg®Rgates in Hermite polynomial representation with a

binomial is the least one among all of those multipliers.

Now, we give the complexity of the multiplication of two basis elements. This ideziatesl
in [38]. LetB = {B0.B1.- - ,Bn-1} be a basis folGF(2"). Then, multiplication of two basis

elements, i.e. multiplication law, can be viewed as

n-1
BiBj = Z ﬁi(}()ﬂk
k=0

Where/li(}‘) € GF(2). The complexity of the multiplication law relative to the basis is computed

by the number oﬂi(}‘) =1.

>

C(B) =

Sl

1n-1
®
24
0i.j=0

=~
I

Note thatC(B) > nsince we are working i F(2"). This complexity notion can be considered
as basis density [33]. We give some examples to comp#ierelt representations of binary

fields.

Example 4.4.2 Let R= GF(2)[x]/(f (X)), where {X) is an irreducible polynomial of degree
n. Assume that there is an elemgnt R is a primitive element of degree n over @fsuch
that the set B= {8,82,5%,--- , %} is a basis for R. A basis of this form is called a normal

basis for R. The complexity of normal basis satisfies te following inequality
CB)=2n-1

A basis satisfying (B) = 2n — 1 is called optimal normal basis.

Example 4.4.3Let R= GF(2)[x]/(X" — 1) be the finite quotient ring which is isomorphic
to GF(2") as a ring with the basis 8, x, X, --- , X" ~1}. Note that h = n +r, where r is the

redundancy. Then

L {ﬂﬂ ifi+j<n
XX =

xi+=n ifi+j>n
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|
) 0 otherwise

The complexity of B is

C(B) = %(n’(n’; 1) . (n —21)n’) -

since there is exactly one k Wiﬁﬁ() # 0 for each(i, j).

Example 4.4.4 Let R= GF(2)[X]/(X" — x— 1) be the finite quotient ring which is isomorphic
to GF(2") as a ring with the basis &, x, X2, --- , X" ~1}. Note that = n +r, where r is the

redundancy. Then

o X+ ifi+j<n
X - x =

Xi+j—n/+1 + Xi+j—n’ ifi+ J >

The complexity of B is

1l +1) (n-1)n 3 -1
C(B)‘ﬁ( 2 T2 T2

Remark 4.4.5 By changing hto n, one obtains the complexity result for polynomial repre-

sentation with an irreducible trinomial polynomial.

Example 4.4.6 Let R = GF(2)[x]/(X" — x> — x — 1) be the finite quotient ring which is
isomorphic to GF2") as a ring with the basis @&, x,x%,--- ,x"~1}. Note thath = n+r,

where r is the redundancy. Then

Nl ifi+j<n
X ooxh = g2 il i jen ifn <i+j>2n-3
XL =0 52 4 x4+ 1 ifi+j=2n-2
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The complexity of B is

e ’_ ’ ’ 2 ’
n(n2+1)+(n l)n2+2n 2'3+5:2n +n?n+2

qm:%(

Example 4.4.7 Let B = {B0,B1, - ,Bn-1} be the Charlier basis. Let & B, + Bo be an
irreducible polynomial of degree n over @F) and R= GF(2)[x]/(f). Then

Bitj-n+ Bi+j-n-1-C ifi+j>n

If i and j are both odd, theid = 1. Otherwisef = 0.

ivi +Bivi—1- € ifi+j<n
ﬂi‘ﬂj={ﬁj Bi+j-1 J

The complexity of B is

C(B):%(n(n+1)+ n(n+1)Jr (n—l)n+(n—1)n):3_n

2 2-2 2 2-2 2
Example 4.4.8 Let B= {B0,B1, - ,Bn-1} be the Charlier basis. Let £ B8, + Bk + Bo be an
irreducible polynomial of degree n over @ and R= GF(2)[x]/(f). Then
Bisj-nik + Bixj-n + Bisj-ntk-1 + Bitj-n-1) - € ifi+j>n
Ifiand j are both odd, thei = 1. Otherwisel = 0.

The complexity of B is

nn+1) n(n+1) (n—l)n.2+(n—1)n.2:9n—3

1
qm‘ﬁ( 2 "T22 T2 2.2 4

Example 4.4.9Let B = {B0,B1," - ,Bn-1} be the Hermite basis. Let £ g, + Bo be an
irreducible polynomial of degree n over G& and R= GF(2)[X]/(f). Then
Bi+j + Bivj-2- L ifi+j<n
B ‘18] _ i+] i+] o
Bitj-n+ Bitj-n-2+Bisjn-a)- € ifi+j=n
If i and j are both odd, theid = 1. Otherwisef = 0.

The complexity of B is

nn+1) nh+1) (M-Ln (n-21)n _n-1
> Y22 YT 2 T2 YT

qm:%(
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Example 4.4.10Let B= {80,081, - ,Bn-1} be the Hermite basis. Let#£ 8, + Bk + Bo be an
irreducible polynomial of degree n over @ and R= GF(2)[x]/(f). Then

Bi+j + Bixj-2- € ifi +j<n
Bi-Bj= L
Bisj-nsk + Bisj-n + (Bitj-n+k=2 + Bi+j-n+k-4 + Bisj-n-2 + Bi+j-n-4) - { ifi+j>n

Ifiand j are both odd, thei = 1. Otherwisel = 0.

The complexity of B is

nn+1) nh+1) (nh—21)n (n=21)n _1In-5
2 "TT22 T2 ?tT32 YT

qm:%(

Example 4.4.11Let B = {8y = 1,81, - ,Bn-1} be the Dickson basis given in [20]. Let
f = Bn + Bk + Bo be an irreducible polynomial of degree n over @Fand R= GF(2)[x]/(f).
Then

IBi-IBj _ ﬁi+j+,3|i—j| ?fi+1:<n
Bi+j-n+k + Bii+j-n—k + Bixj-n + Bon-i-j ifi+j>n

The complexity of B is

nn+1) (n-1)n 3
> + 5 '4)_3n—1

qmzé(

According to examples, in some cases especially when there is no ONB €&tistdier rep-
resentation and Hermite representation has better multiplication complexity. or&ave
have a Charlier binomial or an Hermite binomial for the corresponding erterthe multi-
plication complexity is the lowest one even if there exists an ONB for this extendiote
that in Example 4.4.3, 4.4.4 and 4.4.6 if the redundandy, very small for example = 1 as
explained in Chapter 2, then the (modified) redundant representatioa & ¢time best choice

for corresponding extension foffieient implementations in hardware.
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CHAPTER 5

CONCLUSION

In Chapter 2, we give a modified redundant representation which ceors&ered as a gen-
eralization of [10], [14] and [15]. Using our modified redundant esgntation, we improve
many of the complexity values in [10], [14] and [15] significantly. Our methaaks for any
finite field. We give more emphasis for finite fields of characteristic 2. We gilsosome

applications in cryptography.

In Chapter 3, we give a new way to represent certain finite filéldg"). This representation

is based on Charlier polynomials. We show that multiplication in Charlier polynamjzl
resentation can be performed with subquadratic space complexity. Ordizan binomial

or trinomial irreducible polynomials in Charlier polynomial representation whitdws us
faster modular reduction over binary fields when there is no desirablelewoweight irre-
ducible polynomial in other representations. This representation is vergsiiteg for NIST
recommended binary fiel@ F(2283) since there is no ONB for the corresponding extension.
We also note that recommended NIST and SEC binary fields can be cdedtwith low

weight Charlier polynomials such &F(211%), GF(2'31) andGF(2%%9).

In Chapter 4, we propose a new representation of finite fields of deaistic two by us-
ing Hermite polynomials. After recalling well-known finite field multiplication technigue
we show that multiplication in Hermite polynomial representation can be achieiedub-
gquadratic space complexity. Then, we discuss how to implement tharieetly. This rep-
resentation enables us to find binomial, trinomial or quadranomial irreducibhy@gmials
which allows us faster modular reduction over binary fields when there desivable such
low weight irreducible polynomial in other representations. We then shotthiegproduct

of two elements in Hermite polynomial representation can be performed as Towptitx-
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vector product. It is shown that in some cases the proposed repraseias better space
complexity even if there exists an ONB for the corresponding extensioereldre, this rep-
resentation is very interesting for NIST and SEC recommended binary $iglds these can
be constructed with low weight Hermite polynomials. This representation is aisoggeneric
in the sense that it is independent on the choice of extension degreesd\eote that this

work naturally extends to other characteristics, especially characteristic 3
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