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Informatics Institute, METU

Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: İLKAY ATIL
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ABSTRACT

FUNCTION AND APPEARANCE-BASED EMERGENCE OF OBJECT CONCEPTS
THROUGH AFFORDANCES

Atıl, İlkay

M.Sc., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Sinan Kalkan

Co-Supervisor : Asst. Prof. Dr. Erol Şahin

November 2010, 58 pages

One view to cognition is that the symbol manipulating brain interprets the symbols of lan-

guage based on the sensori-motor experiences of the agent. Such symbols, for example, what

we refer to as nouns and verbs, are generalizations that the agent discovers through interac-

tions with the environment. Given that an important subset of nouns correspond to objects

(and object concepts), in this thesis, how function and appearance-based object concepts can

be created through affordances has been studied. For this, a computational system, which is

able to create object concepts through simple interactions with the objects in the environment,

is proposed. Namely, the robot applies a set of built-in behaviors (such as pushing, lifting,

grasping) on a set of objects to learn their affordances, through which objects affording sim-

ilar functions are grouped into object concepts. Moreover, the thesis demonstrates that the

discovered object concepts are beneficial for learning new tasks by analyzing the learning

performance of learning a new task with and without object concepts.

Keywords: concepts, affordances, multi-task learning, language embodiment and grounding

iv



ÖZ

İŞLEV VE GÖRÜNÜM TEMELLİ NESNE KAVRAMLARININ SAĞLARLIKLAR
ARACILIĞIYLA OLUŞTURULMASI

Atıl, İlkay

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Kasım 2010, 58 sayfa

Bilişsellik hakkındaki bir görüşe göre semboller işleyen beyin, dile ait sembolleri kişinin

duyu-motor deneyimleri üzerinden yorumlamaktadır. Bu tür semboller, örneğin isim ve fiil

dediklerimiz, kişinin çevreyle olan etkileşimlerinden genellemeler yapmasıyla keşfedilmekte-

dir. İsimlerin büyük çoğunluğunun nesnelere (ve nesne kavramlarına) karşılık geldiği düşünü-

lürse, bu tezde, işleyiş ve görünüm temelli nesne kavramlarının sağlarlıklar aracılığıyla nasıl

elde edilebileceği araştırılmıştır. Bunun için, ortamdaki nesnelerle basit etkileşimler üzerinden

nesne kavramları oluşturabilen hesapsal (ing. computational) bir sistem sunulmuştur. Daha

detaylı anlatmak gerekirse, bir robot sahip olduğu belirli davranışları (itme, kaldırma, tutma

gibi) nesnelere uygulayarak sağlarlıkları öğrenmekte ve bu yolla benzer fonksiyonları sağla-

yan nesneleri gruplayarak nesne kavramlarını oluşturmaktadır. Dahası, tezdeki çalışmalar

keşfedilen nesne kavramlarının yeni görevlerin öğrenilmesinde fayda sağladığını yeni görevle-

rin öğrenme performanslarının nesne kavramlarının kullanılıp kullanılmamasıyla nasıl değişti-

ğinin incelenmesi aracılığıyla göstermektedir.
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joyful hours we spent. Doruk Tunaoğlu for his friendship and our shared interest of rock
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CHAPTER 1

Introduction

We use language to communicate with others. Such communication is possible because we

share the same meanings for the words we use. The meaning of the word “chair” is given by

the concept created by our sensori-motor experiences with different kinds of chairs, which in-

volve the appearances as well as the functionalities of chairs. We form our concepts ourselves

in an embodied fashion and use them to acquire a language. All of these may sound easy but

the underlying mechanisms which enable us to do all of these without our conscious efforts

are still waiting to be discovered.

Language acquisition is a topic at the intersection of many different disciplines; linguistics,

psychology, neuroscience, cognitive science, et cetera. People from these disciplines try to un-

derstand the underlying mechanisms that enable us to learn and speak languages. In cognitive

science, many researchers suggest that language is learned based on sensori-motor represen-

tations [6, 16, 24, 50, 54] of the environment. Babies play with toys, try to shake them, bite

them, etc. What seems like a sheer child game actually serves as building sensori-motor rep-

resentations as a grounding for future skills. This enables learning gradually more complex

tasks in the future. Still, how those representations are formed, how they are stored and used

are hardly known. In this thesis, we propose a system which learns certain affordances and

create concepts about the objects as grounded on sensori-motor information at the same time.

Affordances, as first coined by J.J. Gibson [23], describe the action possibilities presented by

the environment to an agent. Affordance relations can be analyzed to discover the properties

of objects enable us to perform certain actions and what kind of objects share such properties.

Using such informations derived from affordances, we can find the functional and appearence-

based similarities between objects which enables us to create object concepts.
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When Gibson described the term affordances, he stated that affordances are “directly per-

ceivable”, meaning that we can perceive the action possibilities offered by the environment

without recognition. For example, detecting a sittability affordance does not require the per-

son to recognize that the object is a chair. Hence, the sittability affordance is not bounded

with a chair but with direct perception of features (a small flat surface strong enough to carry

a person).

The idea of direct perception was strongly disagreed by some researchers. Ullman [60]

strongly counter-argued the idea of direct perception with a memo in 1980. Fodor and

Pylyshyn discussed whether it is possible to have directly perceivable affordances and how

direct this perception can be [18]. Sun et al. [56] show that using object categories for af-

fordance learning (indirect perception) yields better results than using direct perception. Al-

though Sun’s work demonstrates usefulness of object categories, this categorization is more

like recognition of objects (independent categorization from robot’s abilities, solely depend-

ing on appearance) which in a way does not agree with the Gibsonian view of affordances.

Different from the works above, our stand about the directness of affordances is more similar

to what Neisser states as his own understanding from direct perception. In his editorial book

[41], Neisser says that:

“At the basic level1, then, objects are categorized by their looks and by their

affordances. Because affordances can be perceived directly, [. . . ], both of these

criteria are essentially perceptual.”

We can show the difference of these ideas about perception of affordances graphically. Figure

1.1 shows the direct and indirect perception of affordances and our approach to the perception

of affordances in this thesis.

1.1 Contributions

This thesis makes the following contributions:

1Concept of a basic level object category is described by Rosch and Mervis [48, 49, 38]. They state that objects

are categorized hierarchically. In this hierarchy, the middle level corresponds to the basic level of categorization

where categories like chair, bed, dog, cow reside.
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Figure 1.1: Different approaches to the perception of affordances. The entity space is the
space of the initial views of the objects whereas the effect space is the space of the effects that
can be achieved through executing behaviors on the entities in the entity space. The data in the
entity and the effect space is raw in the sense that the information is as simple and low-level
as possible.
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• A computational system which can form “object concepts” grounded on sensori-motor

experiences of an agent has been proposed.

• Acquisition of object categories depend on both appearances and functionalities of ob-

jects.

• It has been demonstrated that affordance relations are suitable for acquiring object con-

cepts.

• Object concepts were acquired incrementally through simple physical interactions with

the objects in the environment.

• The proposed system can both use its own interactions with the environment or demon-

strations of a teacher to acquire object concepts. This makes both embodied learning

and learning-by-demonstration present in the same system.

• To show the benefits of object concepts, object concepts have been used as grounding

for learning affordances. It has been shown that object concepts provide reduction on

the necessary training set size and training times.

• The Multi-Task Learning approach was used to learn affordances.

These contributions have appeared in the following papers:

• N. Dag̃, İ. Atıl, S. Kalkan, E. Şahin, Emergence of Object and Verb Concepts through

Affordances, Cognitive Processing, International Quaterly of Cognitive Science, Spe-

cial Issue on ”Cognitive Robotics - Perception-Action-Interaction: Systems and Archi-

tectures”, 2011, submitted.

• İ. Atıl, N. Dag̃, S. Kalkan, E. Şahin, Affordances and Emergence of Concepts, 10th

International Conference on Epigenetic Robotics (EPIROB), pages 11-18, 2010.

• N. Dag̃, İ. Atıl, S. Kalkan, E. Şahin, Learning Affordances for Categorizing Objects and

Their Properties, 20th International Conference of Pattern Recognition (ICPR), pages

3089-3092, 2010.

• B. Akgün, N. Dag̃, İ. Atıl, T. Bilal, E. Şahin, Unsupervised Learning of Affordance

Relations on a Humanoid Robot, 24th International Symposium on Computer and In-

formation Sciences, pages 254-259, 2009.
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1.2 Organization of the Thesis

The organization of this thesis is as follows: The following chapter is dedicated to back-

ground information and literature survey. In chapter 3, we describe our experimental setup,

the methods used in our experiments and our system for creation of object concepts. Chap-

ter 4 describes the acquired concepts and shows the benefits of using the developed object

concepts in learning new affordances. Chapter 5 concludes the thesis with a discussion and a

summary of the contributions and a list of extensions.

5



CHAPTER 2

Background and Literature Survey

In this chapter, we first present the literature about the relation between perception-action-

language and how our proposed system differs from the literature. Then, we describe what

affordances and their formalizations are and how they can be used to derive object concepts.

Afterwards, we describe how we define object concepts and the literature about them. Finally,

we present what Multi-Task Learning method is and why this method is used in this thesis.

2.1 Perception-Action-Language

The close relation between action and language has been pointed out by many experimen-

tal researchers which investigate perception, action and language processing mechanisms in

humans and animals [2, 7, 24, 42, 47] . The common conclusion suggests that language is

grounded in the organism’s sensori-motor experiences. Animals with similar action capabili-

ties (affordances) end up with a similar grounding for their sensori-motor experiences which

as a result enables them to communicate based on the same meanings.

Association of meanings to symbols is a long debated topic in many disciplines, especially

in Artificial Intelligence that thrives to define intelligence. Alan Turing [1] claimed that if a

human engaging a non-verbal communication with a computer behind a curtain cannot decide

whether the one behind the curtain is a computer or not, then we can claim that we have built

a computer (program) which has intelligence. Now, this test is known as the Turing Test. It

set a goal for much of the artificial intelligence research and caused philosophical debates on

what intelligence is. J. Searle used a thought experiment, the Chinese room experiment [52],

to argue that the ability of merely deceiving a human from behind a curtain does not make

6



the program intelligent, or cognitive. Searle claimed that, if the program is unaware of the

meanings of the symbols it manipulates, then it is not reasonable to talk about intelligence.

Harnad [26] stated the problem of linking meanings with symbols as the symbol grounding

problem. He argued that the gap between the meanings and symbols cannot be bridged by an

external programmer and trying to close this gap by external programming is like “learning

Chinese from the Chinese dictionary”. Instead, he proposed that symbols should be grounded

in the sensory projections of objects and events in the environment. Harnad discusses three

kinds of symbolic representations and their groundings as:

“(1) iconic representations, which are analogs of the proximal sensory projec-
tions of distal objects and events, and (2) categorical representations, which are
learned and innate feature-detectors that pick out the invariant features of object
and event categories from their sensory projections. [. . . ] Higher-order (3) sym-
bolic representations grounded in these [. . . ] symbols, consist of symbol strings
describing category membership relations (e.g.,“An X is a Y that is Z”).”

The symbol grounding problem becomes more obvious for robots. Robots are able to interact

with the environment physically and they might have similar sensori-motor experiences with

humans depending on their physical bodies. However, their sensori-motor experiences will

always be different from ours and the issue of how they can develop a shared set of symbols

to represent the basic concepts of a language (nouns, verbs etc.) remains as an open question.

Rizzolatti et. al. [47] discovered a neuron system in monkeys that underlies such a shared

grounding. Specifically, they found mirror neurons in the area F5 of the monkey brain which

are activated during the execution of certain actions and also during the passive observation

(perceptual observation without any movements) of the same actions. For example, when a

monkey eats a nut, certain neurons in area F5 fires. When the same monkey sees another mon-

key (or even a human) eating a nut, the same neurons in area F5 fires again. These findings

show that mirror neurons take role both at action generation and understanding. This prop-

erty of mirror neurons make them candidates as the underlying mechanism for understanding

others’ actions and intentions. After the discovery of such mirror neurons, many researchers

[2, 12, 21, 29, 32] believe that the mirror neurons serve for sharing the same grounding for

perception action representations, enabling members of a species to communicate.

Nishitani et. al. [42] reports the presence of a close perception-action-language relation by

pointing to the research on Broca’s region in the human brain. They state the difference of

7



their current understanding about the Broca’s region from the early works as follows. In the

early works, Broca’s region was considered to be an exclusive speech-production area. How-

ever, recent findings show that the Broca’s region contains representations of hand actions and

mouth-face gestures. In other words, Broca’s region takes role in both language and action

generation. This shows us the close connections between actions and language.

Apart from these neuroscientific findings, computational and robotic studies try to create

mechanisms for the solution of the symbol grounding problem. In their study, Marocco et.

al. [35] indicate the grounding of language on actions and propose a system for the embod-

iment of action words. They demonstrate how the iCub humanoid robot platform can learn

the meanings of action words by physically interacting with its environment. The system

performs actions using trained Back-Propagation-Through-Time neural networks to interact

and manipulate the objects in the environment. Then, the system links the effects of its own

actions with the observed action on the objects before and after the action. This study stresses

the formation of links between words and actions by a process based on the interaction of the

agent with its environment (on the agent’s sensori-motor experiences).

Steels and Kaplan [54] demonstrates the role of social learning on language acquisition. They

explore the hypothesis that language communication is bootstrapped by social learning. The

robot platform SONY AIBO plays simple social games with a human to correlate words with

objects. During these social games, the human presents an object and speaks a word for

AIBO to correlate. The results of the work shows that the category formation is bootstrapped

(guided) by the social learning. In this thesis, we will facilitate such social learning in a

slightly different form. In our setup, the learner will perform some behaviors on the objects

in the environment and a teacher will provide words (labels) for the effects.

Roy et. al. [50] proposes a computational model of word acquisition which can learn from

multi-modal sensory input. The CELL (Cross-channel Early Lexical Learning) system uses

utterences of an infant with their corresponding video images of simple objects to discover

words and categorize objects. The system can successfully acquire words from the raw sensor

data without the need for a human transcription or labeling. However, this work does not allow

the observer to interact with the environment, the learning is passive. The proposed system in

this thesis uses the learner as an active participant in the formation process of object concepts.

Cangelosi et. al. [6] proposes an embodied model for grounding of language on actions.
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The work investigates the generation of grounding and grounding transfer between multiple

robots. The word grounding achieved as follows; each robot learns to execute eight basic ac-

tions by observing another robot and imitating its movements. Meanwhile, the corresponding

words to each action is presented to the input of the learner’s neural system. Since the words

are learned together with the actions, they become grounded on actions. The grounding trans-

fer is achieved by learning high-level actions using a human’s description of the high-level

action in terms of the previously learned eight basic actions. The ability to learn new high-

level actions based on ground level actions is an important ability for any embodied system.

Similarly in this thesis, we will show that how our acquired object concepts enable us to learn

affordances better.

In this thesis, we propose a computational perception-action system which forms appearance

and function-based object concepts from an agent’s sensori-motor experiences. The proposed

system differs from the literature with its property of using both appearance and function-

ality of objects to acquire object concepts. Different from the passive observant systems in

the literature, the proposed system actively interacts with the objects in the environment to

gather knowledge about the objects in order to use them for concept acquisition. We further

demonstrate how these object concepts can be used to learn the affordances of an agent in the

environment. Up to our knowledge, the demonstration of how Multi-Task Learning can be

used for learning affordances is the first in the literature.

2.2 Affordances

The term “affordance” is first coined by J. J. Gibson [23], an American psychologist, to refer

to “action possibilities presented to an actor by its environment”. Affordances depend on both

the actor and the environment, they are neither a property of the actor nor the property of the

environment. Affordances encapsulate both the actor and the environment and represent their

relation in terms of actions. Depending on the actor, objects in the environment may provide

different affordances. A pebble, for example, is throwable for a human but is not throwable

for an insect. On the other hand, the same pebble affords hiding to an insect whereas the

hiding affordance by the pebble is not valid for a human.

One of the important properties of the affordances is that they are detected by online sensori-
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motor information (e.g. visual, tactile) and does not require recognition. For example, in

order to detect the sittability affordance a chair provide us, we do not have to first recognize

the chair and then understand it provides sittability. We perceive the flat surface of a chair and

understand that it provides sittability to us. This property of affordances makes them a good

tool for investigation of perception-action-language relations by helping us to understand the

formation of sensori-motor groundings for language.

Representation of affordances is an important issue. There are different formalizations for

representing affordances in the literature (e.g. [11, 53, 55, 58]). Turvey [58] defined an

affordance as a potential of a thing. Such potentials are activated or become realized when

they are combined with their complements (e.g. an actor). This formalization explicitly

attaches affordances to the environment instead of defining them as a relation between an

agent and the environment.

Stoffregen [55] argues the formalization of Turvey and claims that affordances are properties

of the agent-environment system. In this view, instead of being properties of an actor or the

environment, affordances are emergent properties of the agent-environment system.

Chemero [11] proposed a definition for affordances which is similar to the definition of Stof-

fregen. While Stoffregen defined the affordances as the properties of the actor-environment

system, Chemero defined them as the relations between the abilities of actors and features of

the environment. For example, if an agent can lift weights smaller than 10 kg, then an object

which is 5 kg provides liftability to this agent.

Steedman [53] has a view of affordances different than the three views presented above. In this

view, an agent creates object schemas which define the set of affordances an object provides

to the agent. Object schemas are defined with events and actions. For example, Steedman

suggests that a door is linked with actions of pushing and going-through and the pre and post-

conditions of applying these actions to the door. In this example, the object schema of the door

has an affordance-set consisting pushability and traversability. Such set of affordances for any

object schema can be extended via learning. This formalization is suitable for planning where

Steedman argues that reactive/forward-chaining planning is the best candidate.

In Şahin et. al. [51], an affordance is represented by a relation between an entity (e), a

behavior (b) and an effect (f) which can be shown with a relation:
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a = (e, b, f ). (2.1)

An entity is the sensori-motor perception of an object in the environment by an actor. This

perception can be visual or multi-modal (e.g. visual, tactile, auditory). A behavior is an action

the actor can perform, for example pushing or pulling. An effect is the observable outcome

of applying one of actor’s behaviors on an entity. For example, when we squeeze an egg our

sensori-motor perception of egg will change, this change in the perception makes our effect.

As we can see, an affordance relation includes both the actor (behavior) and the environment

(entity) via their relation (effect).

When we analyze the possible affordance relations for actor-environment couples, we can

see that there is a many-to-many relation between entities, behaviors and effects. Figure 2.1

shows these relations. An entity can have more than one behavior-effect couple simply be-

cause different behaviors yield different effects. Similarly, a behavior can be applied on many

entities and may yield many effects. To clarify this many-to-many relations, let us analyze the

affordance relations for an apple, egg and a glass (cup) with a human actor. Assume our actor

can bite, push and squeeze. The full list of affordance relations we have is as follows:

− (apple, bite, bitten)

− (apple, push, rolled)

− (apple, squeeze, no change)

− (egg, bite, bitten)

− (egg, push, rolled)

− (egg, squeeze, crushed)

− (glass, bite, no change)

− (glass, push, slided)

− (glass, squeeze, no change)

Affordance relations are important for us because they enable us to make generalizations

which leads to creation of object concepts. Assume we have a single affordance relation

(green-apple, bite, bitten) which does not tells us much. Then we see a red-apple and apply

our bite behavior to get a second affordance relation (red-apple, bite, bitten) which does not
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tells us much either. However, we can combine this two affordance relations by finding the

invariant properties of the entities and discarding the variant properties to get the generalized

affordance relation (<*-apple>, bite, bitten). <*-apple> in the affordance relation denotes

the invariant properties of entities which have the (bite,bitten) behavior-effect couple in their

affordance relations1. This affordance relation tells us much more then the two separate rela-

tions we had before. Now we know that regardless the color we can bite an apple and get the

effect bitten. This generalization enables us to make predictions. For example, when we see a

yellow-apple we can predict it can be bitten by using the affordance relation (<*-apple>, bite,

bitten).

2.2.1 Literature on Usage of Affordances

Affordances are used in the literature for different purposes. Montesano et. al. [40] uses affor-

dances for imitation. A robot first learns affordances by interacting with the environment. The

benefits of learning such affordances are demonstrated via simple imitation games between a

human and a robot. First, the human applies a behavior on an object and the robot observes

the created effect. Then, the human presents different objects for the robot to choose one and

interact with. The robot selects the correct object and the behavior to perform to get the same

effect as the human created.

Doğar et. al. [15] uses affordances to create goal-directed actions from primitive behaviors

(turn left, turn right etc.). In the concept of affordances, a robot first learns what kind of effects

it can create and links these effects with the perceptual properties of the environment. Then,

the robot is asked to perform one of the goal-directed actions (avoid, approach or traverse) in

an environment with different kinds of objects and obstacles. The robot performs successfully

by using learned affordances to predict the effects of its actions and match them with the

desired goal-directed action.

In this thesis, we will use our affordance relations to acquire different object concepts. The

proposed system will interact with the objects in the environment to learn affordance relations

and then find the invariant properties of entities which will result as object concepts. The

acquired object concepts will further be used for learning new affordances.

1 In the general form, (<e>, b, f) denotes the invariant properties of all e entities (an equivalence class) which
has the b,f behavior-effect couple.
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Figure 2.1: Relations of entities, behaviors and effects in our affordance formalization

2.3 Object Concepts

E. J. Gibson [22] claims that learning affordances leads to discovering features and invariant

properties of objects. We argue that such invariant object properties correspond to “object con-

cepts”. Object concepts can refer to perceptually and/or functionally different sets of features

which are also known as appearance-based categorization and function-based categorization

respectively. Most of the object categorization works in the computer vision area falls into the

appearance-based categorization. Function-based categorization categorizes objects accord-

ing to their functional capabilities (object categorization using affordances by Dağ et al. [14]).

There are studies using appearance-based or function-based categorization but as Borghi et

al. [4] states “adult humans perform both appearance and function-based categorization of

objects”. In this thesis, our understanding of “object concepts” depend on both appearance

and functionality of objects. Hence, the proposed system in this thesis uses both appearance

and function of objects to create object concepts.

When we use a certain word in our communication, we make the assumption that this word

has the same meaning for the listener. If a word does not correspond to the same meaning

for both the speaker and the listener, then a healthy communication is not possible. This is

where the significance of concepts are understood. Concepts (e.g. concepts of verbs,nouns

etc.) provide grounding for the meanings of words in any language. Psychologists define the

term “concept” as the knowledge we associate with the referent of the concept and what we

know about the object [5]. For example, the concept of heavy includes our knowledge about

it. When someone says: “The ball is heavy.”, we can understand what heavy means by using
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our heavy concept. We interacted with many objects during our infancy and discovered that

we cannot lift some objects. We later learn that things we cannot lift are called heavy so we

link our past experiences which we conceptualized with the word “heavy”. These discoveries

yield to the emergence of object concepts, in this case the heavy concept. Hence, the word

heavy becomes grounded on our object concepts.

Object concepts can be formalized as (< e >, b, f ), where <> denotes the invariant properties

of entities which give the same effect f when we apply the same behavior b on them, with our

affordance formalization as shown in equation 2.1. Figure 2.1b shows the graphical represen-

tation of an object concept. It is the set of all entities which share the same behavior-effect

pair in their affordance relation. For example, the object concept of heavy can be described as

(<*-heavy>, lift, not-affected) which can be derived from three affordance relations; (green

heavy ball, lift, not-affected), (blue heavy sphere, lift, not-affected) and (orange heavy box,

lift, not-affected). This formalization enables us to easily create object concepts out of affor-

dance relations.

2.3.1 Literature on Object Concepts

The creation of object concepts through interactions with the environment gained interest in

the literature. Nolfi and Marocco [43] uses tactile-sensing in order to categorize objects by

using a robot arm with tactile sensing ability. The robot arm used is a three segment robot arm

with crude touch sensors at each segment. They present objects to the robot arm to interact

with. After the evolutionary learning process, the robot arm finds the correct movements to

interact with the presented object and understand its category by using the touch sensors’

responses.

In Dağ et. al. [14], a robot first discovers the affordances of different objects and use these

affordances to categorize objects. They first create effect prototypes by finding the significant

changes on the features of objects (e.g. increase in the x position due to push left behavior).

Then objects are categorized by their set of effect prototypes. They also demonstrate the

generalization ability of their system by presenting novel objects to the system which system

never interacted before and calculate the object category. Effect prototypes in this work can

be considered as verb concepts since each effect prototype consists generalized information

about affordances of objects.
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In Sun et al. [56] work, a room cleaning robot categorizes objects by affordances to success-

fully clean a floor. Their proposed system is called Category-Affordance (CA) where robot

first discovers the categories of objects then it learns the affordances of objects through their

categories. They argue that the direct perception of affordances limits systems’ learning and

generalization abilities and by using object categories to perceive affordance they follow an

indirect perception approach. Similarly, Ug̃ur et al. [59] shows the usage of affordances to

detect the traversability affordance in the environment by a mobile robot.

2.4 Multi-Task Learning

Multi-Task Learning is an approach which uses similarities between multiple tasks in order

to improve the performance of a learning system. Many empirical studies show that learning

related tasks together gives better results than learning them separately [3, 8, 9, 10, 17, 27, 57].

This is done by transferring knowledge between tasks while learning multiple tasks in parallel.

Learning similar tasks together enables the system to use learning signals of one task to be

used for another task which shares a similarity. These properties of Multi-Task Learning

approach makes it better than Single-Task Learning approaches where every task is learned

independently. For the sake of clarity, we will refer to the Multi-Task Learning and Single-

Task Learning approaches as MTL and STL from now on.

MTL has proven to be a promising learning approach. Caruana is one of the first to point to the

benefits of the MTL [8, 9, 10]. In his works, he demonstrates the benefits of the MTL over the

STL by comparing their learning performances on simulated and real-world problems using

backpropagation neural networks. He lists five mechanisms to achieve MTL which depend

on different principles. Here we will explain one of them in detail, representation bias.

To clarify the working principle of the MTL, let us use an example. One of the simplest

ways to achieve MTL is using neural networks with backpropagation. Assume we have four

similar tasks which give a single output given an input vector. Figure 2.2 shows the four

neural networks which we use to learn four tasks independently. Since all of the networks are

independent from one another, there is no possibility for sharing information. Even if all four

tasks are exactly the same, we have no choice but to learn all of them from scratch.

Figure 2.3 shows the MTL approach. Since all tasks work on the same input, we can combine
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Figure 2.3: Learning four tasks in a single neural network

them as the output layer of our new neural network. This way we have the same input layer

and all our tasks in the output layer. Notice that all of the tasks are connected to the same

hidden layer. Since the hidden layer is serving to all of our tasks the learning process in the

hidden layer will be guided by all of the tasks. If our tasks are similar, then their combined

learning signals (calculated by the learning function of the neural network) will boost the

learning process. Furthermore, the weights in the hidden layer will form a shared grounding

for all tasks. If we add another similar task to the output layer, the learning process will

not start from scratch. On the contrary, the already learned weights in the hidden layer will

serve as a grounding for the new task and this will provide a benefit in terms of learning

performance.
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CHAPTER 3

Methods and Experimental Setup

In this chapter, we first describe our experimental framework then, we introduce our methods

for creation of object concepts and their further usage in Multi-Task Learning.

3.1 Range Camera

During recent years, usage of range information of the scene gained popularity among re-

searchers. We know that human brain and many other animal brains extract depth information

from 2D visual input from eyes by using depth cues (including stereo vision). There are large

number of studies trying to develop artificial vision systems [20, 28, 36, 45]; however, such

artificial vision systems are far from extracting reliable depth information in all environments.

Range cameras, on the other hand, do not use stereo vision and directly perceive the envi-

ronment and create a range image which contains the depth information of the scene. This

property of range cameras makes them desirable for researchers whose main interest is not

the process of depth information but its further usage. Although, range sensors were not so

precise and affordable in the past decades. They are more available and affordable due to the

many developments on range sensors (time-of flight sensors).

There are multiple types of range sensors which differ according to their measuring principle

and used signal type. For example, laser range finders use a laser beam to measure the dis-

tance of a single point by measuring the required time of flight in order to laser to go to the

measurement point and come back to the camera. Multiplying the time-of flight by the speed

of the laser beam gives the distance of that point. Measuring multiple points around the scene

(e.g a window of scene) gives a range image. Other range finders use infrared light or sonar
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Figure 3.1: SwissRange SR4000 Range Camera

sound to measure the distance and get a range image of the environment. There are works

which use range sensors as the main sensor of a robot in order to navigate, map or segment

the environment around the robot [30, 34, 62].

The range camera we used in our experiments is SwissRanger SR4000 infrared range finder
1 which can be seen in figure 3.1. The camera can capture range images with a resolution

of 176×144 at 30 frames per second. The camera provides three kinds of images; range,

amplitude and confidence images. Range image contains the depth information of the scene.

Amplitude image contains the returning signal strength which tells us how much reflective

each point in the image (like a greyscale image). Confidence image describes the amount of

certainty about the measurement of a point. High confidence corresponds to static parts of the

scene whereas low confidence might correspond to dynamic or problematic (multiple path,

glass, overexposure etc.) parts of the environment.

3.2 Behaviors

We apply five simple behaviors to the objects in our experiments. Our behaviors are, push-left,

push-right, grasp, lift and rotate-45 degrees. Push-left and push-right behaviors are relevant

in terms of their effects on objects. If an object is rollable, it will be rolled by both push-left

and push-right behaviors, the only difference is the direction of the movement. Similarly,

grasp and lift behaviors are relevant in terms of their effects. If an object is graspable, then

it is also liftable (because grasping precedes lifting and none of the objects are too heavy).

Rotate behavior does not have any similarity with other behaviors and is added to the behavior

1Website of the product: “http://www.mesa-imaging.ch/prodview4k.php”
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repertoire for this reason.

Figure 3.2 illustrates how our behaviors are executed by a human.

(a) Initial positioning (b) Push-Left Behavior (c) Push-Right Behavior

(d) Grasp Behavior (e) Lift Behavior (f) Rotate Behavior

Figure 3.2: Behaviors used for interacting with objects

3.3 Data

We used 9 different objects composed of three different kinds of shapes and three different

sizes which are shown in figure 3.3. We have boxes, spheres and cylinders where all have

roughly three different sizes; small, medium and big.

We capture the data at two points of the execution of a behavior, one before the execution

and one after the execution. We name the captured features before the execution as initial

features. Initial features also corresponds to the initial state of the entities. Features captured

after the execution are called final features since they represent the final situation. In order

to get our effects, we take the difference between final and initial features. Hence, our effects

will represent the change on the features of objects.

We apply five simple behaviors which are described in section 3.2 on each object five times
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(a) Used objects in experiments (b) Perception by the range camera

Figure 3.3: Used objects in the experiments. Object set contains three different shapes;
spheres, cubes and cylinder with three different sizes; small, medium and big.

with slightly different initial positioning of objects. In total, we have 5 behaviors × 9 objects

× 5 repetitions = 225 samples.

3.4 Feature Extraction

Feature extraction from captured raw experimental data is an important step for the system.

Extracted features refine the raw data and depending on the selected features, it elaborates

some properties of the environment. The proposed system assumes that any affordance to be

learned is perceivable through the available features. Thus, our features should be suitable

to perceive affordances of the object in the environment. Also, depending on the goal, some

features can be more useful than others. For example, Haar-like features are widely used for

object and face detection due to their good-performance on encoding a scene, especially faces

and objects [39, 61].

In our system, the features are extracted only from the object in front of the camera. The data

from the camera consists of the complete perception of the environment besides the object.

Thus, we first segment the scene into two; the object and the background.

For background segmentation, we apply thresholding on the amplitude image obtained from

the range camera. We constructed our background as a low reflective scene to get a diffe rence

in amplitude between the object and the background. Then we apply amplitude thresholding

on the average amplitude value difference to get the object only.

As summarized in [13], there are a variety of features that can be extracted from range data.
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In this thesis, we utilize the following features whose extraction methods were developed by

Dağ N. in [13]:

• 3D position of the object as X, Y and Z coordinates relative to the range camera.

• 10 features for the shape of the object. These 10 features are formed as a 10-bin his-

togram of the shape indexes as shown in the figure 3.4. Details of the shape indexes are

described in the work by Koenderink and van Doorn [31].

• 3D orientation of the object in discretized form. The direction along which the object

is longest is considered to be the orientation of the object. A Support Vector Machine

classifier is trained to categorize the orientation of the object into one of 8 directions.

• 3 features for the size of the object in three axes. Object size at each orientation is

measured from one extrema to another (e.g. in x axis, distance from the leftmost part

to the rightmost part of object).

Figure 3.4: Visual description of the shape indexes. This figure is taken from [13] by the
courtesy of Dağ N.

There are in total 17 features, which have been used in the rest of the thesis for the experi-

ments.

3.5 Feature Selection

We use ReliefF [33] for feature selection. The algorithm calculates a weight for each of the

given features according to a class label as described in Algorithm 1. The features which are
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relevant with the class label take high scores whereas the features which are not relevant with

the class label take low scores.

Algorithm 1 Pseudo code for ReliefF Algorithm
Each training instance is described by a vector of attributes and a class label

A: number of features

m: number of instances

k: number of nearest neighbours

set all weights[A] = 0;

for i = 1 to m do

Randomly select an instance R;

find k nearest hits H with the same class;

find k nearest miss M(C) from each of other classes where C , class(R);

for a = 1 to A do

weights[a] = weights[a] -
∑k

j=1 distance(R,H, a)/(m × k)

+
∑

C,class(R)[
∑k

j=1 distance(R,M(C))]

end for

end for

3.6 Unsupervised Clustering: Robust Growing Neural Gas

In order to select an unsupervised clustering method, we first determined the properties our

method should have. We list our expectations from an unsupervised clustering method as

follows:

• Ability to find natural clusters in the data

• Ability to find the correct number of clusters automatically (no under or over partition-

ing of data)

• Not affected by ordering of the data

• Not affected by noise and outliers in the data

After the literature survey, we found two candidates for unsupervised clustering; x-Means

[44] and Robust Growing Neural Gas (RGNG) [46]. x-Means is able to determine the opti-
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mal number of clusters automatically. Similarly, RGNG uses Minimum Description Length

(MDL) criteria to find the optimal number of clusters for the given data. RGNG also has the

ability to form clusters incrementally, real-time and able to track changing distributions over

time. Furthermore, RGNG is able to capture the topology of the clusters with its dynamic

neighbourhood relations. RGNG is not affected by the ordering of the data and robust against

noise and outliers. x-Means does not have any of these properties; so, we decided to use

RGNG as our unsupervised clustering method. The authors of the RGNG compare their work

with x-Means and G-Means algorithms:

“The x-Means algorithm [44] and G-Means algorithm [25] are two famous

representatives. However, the performance of most of these growing approaches

may deteriorate significantly when data sets are contaminated by several outliers.

Further, even if the actual number of clusters is detected, the obtained positions

of corresponding cluster centers will be deviated significantly from the actual

positions due to outliers.”

The Robust Growing Neural Gas algorithm is an incremental self-organizing network with a

dynamic topological structure. The self-organizing network consists nodes where each node

has a vector which holds the position of the node in the training data space. The RGNG

performs a competitive learning between nodes to find the closest node each training data

point. At the end of training, the nodes represent the center position of the clusters in the data

and topological connections between these clusters.

The RGNG algorithm is the improved version of the Growing Neural Gas (GNG) [19] algo-

rithm. The Growing Neural Gas algorithm itself is an improved version of the the Neural Gas

algorithm by Martinetz et al [37]. While the neural gas and the growing neural gas algorithms

are suitable to learn multi-dimensional data distributions successfully, the RGNG can be used

to cluster multi-dimensional data due to its ability to determine the optimal number of clusters

by using MDL criteria.

Algorithm 2 shows the pseudo-code for RGNG. The RGNG algorithm typically starts with

two nodes. After a predetermined number of iterations over the training set a new node has

been inserted between the node with the highest error rate and its neighbour with the highest

error rate among all of the neighbours. Each node has a vector which determines its position
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in the n-dimensional input space (where n is the dimensionality of the training data). For

every instance of the training data, the algorithm finds the closest node (e.g. winner node)

and updates its vector. The algorithm also updates the vector of the closest neighbour of the

winner node (e.g. second winner).

Algorithm 2 Pseudo code for Robust Growing Neural Gas Algorithm
max c: max number of nodes

max e: number of epochs

m: number of instances

for node count = 2 to max c do

for epoch = 1 to max e do

for instance i=1 to m do

Find the winner node for the ith instance

Update the position of the winner node and its neighbour

Update the connections between the winner and its neighbour

end for

end for

end for

Add a new node between the node with the highest error and its neighbour

To demonstrate the working RGNG, we will use a 2 dimensional synthetic data where there

are five natural clusters with noise and some outliers. Figure 3.5(a) shows the synthetic data

distribution. We can see the positions of the nodes of RGNG as the number of nodes increase

in the figure 3.5(b)-(h). We can see that after positioning five nodes, new nodes cannot find

stable positions for themselves. Figure 3.6 shows the calculated MDL values for each number

of nodes. After finding the minimum value of MDL, the RGNG determines there are five

clusters in the data. We also run x-Means on the same data for comparison. x-Means algo-

rithm finds four clusters in the data. We present the final cluster positions of the x-Means and

RGNG algorithms in the figure 3.7. It is clear that the clustering of the RGNG is better than

the xMeans since we know there are five clusters in the synthetic data and RGNG gives the

correct result.

Topology management of the RGNG is done by adding or removing connections between

nodes: some connections get removed if they are not reinforced for a long time (e.g. aged

enough) and other connections are created according to the update rules. See [46] for details.
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(a) Synthetic Data Distribution
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(b) RGNG with 2 clusters
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(c) RGNG with 3 clusters
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(d) RGNG with 4 clusters
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(e) RGNG with 5 clusters
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(f) RGNG with 6 clusters

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(g) RGNG with 7 clusters
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(h) RGNG with 8 clusters

Figure 3.5: Steps of the RGNG
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Figure 3.6: Minimum Description Length values for different number of clusters
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(a) x-Means
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(b) RGNG

Figure 3.7: Comparison of x-Means and RGNG clustering results
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3.7 The System Proposed in This Thesis

The proposed system has three main steps. The graphical representations of these steps are

shown in Figure 3.8:

• Obtaining Effect Clusters: Learning the Separation

• Feature Selection: Analysis of the Entity Space

• Creation of Object Concepts: Unsupervised Clustering of the Entity Space

These three steps enable us to use both the appearances of objects and their affordances to

create our object concepts. Object concepts are created by clustering the entity space as

can be seen in Figure 3.8(c). The entity space contains the perception of objects before any

behavior applied to them; hence, this space mainly represents the appearance of an object.

If we cluster the entity space without feature selection, then the object concepts will only

depend on the appearance. This does not satisfy our goal of using both appearances and

affordances for creation of object concepts. The entity space also contains invariant features

of affordances; so, we must find a way to select them in order to make our concepts depend on

both appearance and affordances. In order to do this, we must first find what our affordances

depend on.

3.7.1 Obtaining Effect Clusters

Whether an object provides a certain affordance or not can be determined by looking at the

effect space. The effect space consists the results of applying behaviors to presented objects.

If an object has liftability affordance and we applied lift behavior on it, then the result must be

a success (lifted). Similarly, the effect on an object which does not have liftability affordance

will be a failure (no-change). Figure 3.9 shows the effects of all behaviors on all object types.

Separation of effect space into two as success and fail is performed by a human. We can think

of this process as a teacher telling us what is considered as a success and what is considered

as a failure. In this way, the teacher transfers its understanding of success and fail (grounding

for their meanings) to us which enable us to create a similar grounding with the teacher. In

the long run, it enables us to communicate on the same meaning ground.
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Figure 3.8: The three steps of Our Proposed System
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Figure 3.9: Effects of behaviors on all object types

At the end of this step, our system looks like Figure 3.8a.

3.7.2 Feature Selection: Analysis of the Entity Space

We have the success and fail clusters for each behavior. The next step is to find what causes

the effect of a behavior to result as a success or a failure. As we mentioned before, entity

space contains information about an object before a behavior is applied. If we analyze the

entity space, we can find an invariant feature which is shared among objects which fall to

success and objects which fall to fail effect clusters.

As can be seen in the Figure 3.9, object types which result as success indeed share some

invariant property. In the case of push behaviors (both left and right), round objects are

labeled as success (rolled) where cornered objects are labeled as failure (dragged). Thus, we

can perform a feature selection to find which feature best describe this separation for each

behavior in the entity space.

At the end of this step, our system looks like Figure 3.8b.

3.7.3 Creation of Object Concepts: Unsupervised Clustering of the Entity Space

Now, we have a single feature which best separates the success-fail groups. Before continu-

ing to learning part, let us further analyze the previous steps. We first formed groups in the

effect space in a supervised way. Then, we analyzed the entity space to find the best feature
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that captures the success-fail separation. By doing so, we transfer information from the ef-

fect space to the entity space which satisfies our goal of learning affordances based on both

appearances and affordances (appearance information is already present in the entity space,

affordance information is transferred via feature selection according to the supervised effect

groups).

Our next step is unsupervised clustering of the entity space over the best feature which resulted

from the feature selection. We apply Robust Growing Neural Gas (RGNG) algorithm to create

clusters. The number of clusters is determined by RGNG automatically. This step completes

the creation of high-level object concepts which are based on both functions and appearances

of objects. As we stated before, we could have performed unsupervised clustering on the

entity space without performing the previous steps but that would not satisfy our goal 1. The

previous steps created a clustering in the entity space that is grounded on both the affordances

and appearances. At the end of this step, our system looks like Figure 3.8c.

In order to justify the necessity of the steps of our system, we would like to take a reverse

approach to the ordering of the steps. Assume we have the same set of objects. When we try

to cluster our objects, we face a decision problem; “what property of objects our clustering

will depend on?”. It is known that in unsupervised clustering, the set of features play a crucial

role on the resulting clusters. Since clustering gives equal weight to all of the features given,

a feature which can give us the desired clustering result can be easily suppressed by irrelevant

features. Our system solves this by looking at the effect space. Let us say the affordance

we want to learn is grasping. The condition of grasping an object is its size (assuming no

handles are available). If the object is bigger than the hand of the actor (single hand grasp by

a human or robot) then it is not graspable. The ideal clustering of the entity space should be

grounded on the size property of the objects. Our system analyzes the success-fail grouping

on the effect space and finds that the size feature is the best discriminative feature between

the success-fail groups. Then the system performs the unsupervised clustering over the size

feature. This, in the end, gives us object concepts which are based on both appearances and

functions of our objects.

1 We actually performed unsupervised clustering on the entity space without selecting any features and using
the whole feature set out of curiosity. The system resulted with four clusters where the first cluster included small
and medium sized balls, the second cluster included the big ball and the small cube, the third cluster included
medium and big sized boxes and the final cluster included all cylinders. The reason for such clustering is that
shape is a big part of our features.
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3.7.4 Benefits of the Object Concepts

Creation of object concepts creates a grounding based on the functions and appearances of

objects. This grounding can be used for many purposes, for example creation of higher-level

concepts, language grounding, affordance learning, etc. In order to show the benefits of the

object concepts, we use them in affordance learning. In this thesis, we consider learning

an affordance as being able to predict the effect of a certain behavior given the entity. For

example, when the system can successfully predict the effects of the lift behavior, we say that

the system has learned the liftability affordance.

One of the ways of affordance learning is to learn a mapping from the entity space to the

effect space over raw data or basic features which we can call direct perception approach as

we have shown in Figure 1.1a. Although this approach may yield good results, using raw data

makes the system sensitive to noises, low success rate against novel situations, incapability to

deal with high number of affordances and most of all the system cannot use the knowledge of

previously learned affordances for learning new ones. As Sun et. al. [56] stated:

“For each new affordance, the robot would need to acquire substantial addi-

tional training datasets and construct additional independent classifiers. This is

the defining property of the DP (Direct Perception) approach, and a major barrier

to scalability.”

Our object concepts eliminate the problems related with the direct perception approach. In

order to show the benefits of the acquired object concepts, we perform Multi-Task Learning

over our object concepts to learn affordances. As described in section 2.4, Multi-Task learning

(MTL) facilitates inter-task similarities and transfers knowledge from one learned task to

another in order to perform a better learning. Learning a new task for us corresponds to

learning a new affordance. Knowledge transfer can greatly reduce the cost of learning a new

affordance, for example if the system has already learned the push-left affordance, learning the

push-right affordance becomes very easy due to high similarity between push-left and push-

right affordances. Details of the MTL learning process has been described in the following

section.
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Figure 3.10: Multi-Task learning method

3.8 Performing Multi-Task Learning

From the concepts derived by the system, we construct the MTL network shown in Figure

3.10. The entity and the effect spaces consist features extracted from the raw perceptual data,

which is captured by the range camera. We use feedforward neural networks with backprop-

agation for learning different steps of the MTL network. After our system creates object con-

cepts, we prepare the training data for the MTL network. Training data of the MTL network

consists three levels:

• Level 1: Entity Space Features

• Level 2: Object Concepts

• Level 3: Effect Space Features

First, the MTL network learns the mapping from entity space features to object concepts

(from level 1 to level 2). This step is performed whenever new object concepts have been

created (e.g. learning a new affordance) by the system. So, we have more than one learned
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mapping from all entity features to object concepts. Having more than one mapping here is

necessary because each newly created object concept depend on a different separation of the

entity space.

Second, the MTL network learns the mapping from object concepts to the effect space (from

level 2 to level 3). Contrary to the first part of the MTL network, this part is shared among all

affordances in order to obtain the Multi-Task Learning property. The input of this part of the

MTL network is all created object concepts and the output is all effect features of all learned

affordances. This way, knowledge transfer between similar affordances is possible.
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CHAPTER 4

Acquired Concepts and Multi-Task Learning

In this chapter, we present the acquired object concepts acquired by our system as described

in the previous chapter. We further analyze the acquired object concepts by analyzing their

contents and similarities between each other. We also show the benefit of our object concepts

by using Multi-Task Learning (MTL) and comparing it with Single-Task Learning (STL).

4.1 Concepts

We acquire our concepts by applying the steps described in section 3.7. Object concepts are

acquired for all affordances separately. We will now analyze the results of the system for all

affordances.

4.1.1 Push-left and Push-right

Figure 4.1 illustrates the entity and effect spaces and created clusters for push-left and push-

right affordances. On the left hand side, we can see the four clusters which correspond to our

object concepts. On the right hand side, we can see the desired separation of the effect space.

When we inspect the contents of the acquired concepts, we can see that one concept includes

small and middle sized balls. Another concept includes only large balls. Another concept

includes small sized cubes and small and middle sized cylinders and the last concept includes

medium and large sized cubes and large cylinders.

The acquired concepts for the push-left and push-right affordances depend on the shape of

the objects. The feature which encodes the roundness of the object surface, 10th bin of the
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Figure 4.2: Weights of features for the push-left and push-right behaviors calculated by Reli-
efF

shape histogram, was discovered as the most relevant feature. Figure 4.2 shows the calculated

weights of features by ReliefF algorithm. Unsupervised clustering of the entity space over

the selected feature creates a separation which is based on object roundness. We can see that

the desired separation on the effect space has been successfully captured by the system since

none of the created clusters violate the desired separation. In other words, we can represent

the separation on the effect space by combining acquired object concepts on the entity space.

We further analyze the acquired concepts by analyzing the distribution of our objects through

the most relevant feature dimension. Figure 4.3 shows our objects’ distribution through the
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Figure 4.3: Detailed visualization of the acquired concepts for push-left and push-right

most relevant feature dimension. Round objects have higher values than the angular objects.

The small and medium sized balls have the highest values and create a distant concept from

others. The large ball is closer to the angular objects than to the small and medium sized balls

according to the 9th bin of the shape index. Due to its large size, curvature on the surface of

the large ball is smaller compared to the small and middle sized balls, which causes surface

patches to look like flat. Since other angular objects has flat surfaces, the large ball is close

to them. Still, our system does not mix the large ball with other angular objects and creates a

cluster which contains only the large ball.

4.1.2 Grasp

Figure 4.4 illustrates the entity and effect spaces and created clusters. On the left hand side,

we can see the four clusters which correspond to our object concepts. On the right hand

side, we can see the desired separation on the effect space. When we inspect the contents of

the acquired concepts we can see that one concept includes only small sized balls. Another

concept includes small sized cubes and cylinders and middle sized balls. Another concept

includes only large cylinders and the last one includes small and medium sized cubes, medium

sized cylinders and large balls.

The acquired concepts for the grasp affordance depends on the size of the objects as we

expected. The feature which encodes the height of the objects has been discovered as the

most relevant feature. Figure 4.5 shows the calculated weights of features by ReliefF algo-

rithm. Unsupervised clustering of the entity space over the selected feature creates a separa-
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Figure 4.4: Object concepts for grasp

tion which is based on object size. Acquired object concepts capture the desired separation

on the effect space. When we look at the contents of our concepts, we can see that graspable

objects are represented by two concepts, which include small balls, cubes and cylinders and

also medium sized balls, and non-graspable objects are represented by the other two concepts,

which include medium sized cubes and cylinders and large sized balls, cubes and cylinders.

We further analyze the acquired concepts by analyzing the distribution of our objects through

the most relevant feature dimension. Figure 4.6 shows our objects’ distribution through the

most relevant feature dimension. As we go from left to right along the feature dimension, the

height of objects increases. The small ball, which is the smallest object among our object set,

is placed at the leftmost of the distribution and creates a concept on its own. The small sized

cube and cylinder with the medium sized ball create another concept since their heights are

very close to each other. The large cylinder is positioned at the rightmost of the distribution

since it is the tallest object and creates a concept on its own. Other objects which are medium

sized cube and cylinder and large ball and cube create the final concept. One might expect to

find three concepts with all small, middle and large sized objects, respectively. However, the

actual sizes of our objects creates a distribution based on height as in figure 4.6, where we see

the formation of four clusters.
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Figure 4.5: Weights of features for the grasp behavior calculated by ReliefF

Figure 4.6: Detailed visualization of the acquired concepts for grasp
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Figure 4.8: Detailed visualization of the acquired concepts for lift

4.1.3 Lift

Figure 4.7 illustrates the created concepts for the lift affordance. On the left hand side, we can

see the four clusters which correspond to our object concepts. On the right hand side, we can

see the desired separation on the effect space.

The acquired concepts for the lift affordance are the same with the concepts of grasp affor-

dance because liftability depends on graspability (in our experimental setup, we cannot lift

an object without first grasping it). Lifting depends on the size and weight of the objects but

since the weight of the objects are best perceivable over the size of an object with our fea-

ture set, the most relevant feature for the lift behavior is size, as it is for grasp. The ReliefF

algorithm gives the same weights as it gives for the grasp affordance shown in figure 4.5.
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Figure 4.9: Object concepts for rotate

4.1.4 Rotate

Figure 4.9 illustrates the entity and the effect spaces and the created clusters. On the left

hand side, we can see the five clusters which correspond to our object concepts. On the

right hand side, we can see the desired separation on the effect space. When we inspect the

contents of the acquired concepts, we can see that one concept includes small and medium

sized balls, where big balls create a concept on their own. Cylinders with all sizes create a

third concept. Another concept includes small and medium sized cubes and the last concept

includes medium and large sized cubes. The acquired concepts for the rotate affordance

depend on the shape of the objects. The 4th bin of the shape histogram has been discovered to

be the most relevant feature. Figure 4.10 shows the calculated weights of features by ReliefF

algorithm. Clustering over the selected feature creates a separation based on the symmetry of

the objects. Symmetrical objects in our object set are balls and cylinders and non-symmetrical

objects are cubes. If the shape of an object is symmetrical, then no visible change happens

when we rotate the object 45 degrees. If the object is non-symmetrical, then the perceptual

shape of the object changes (of course, the shape of the object remains same in reality).

We further analyze the acquired concepts by analyzing the distribution of our objects through

the most relevant feature dimension. Figure 4.11 shows our objects’ distribution through the

most relevant feature dimension. We can say that the objects with similar shapes are close to

each other. One exception to this is large balls. As mentioned in the section 4.1.1, large balls

look similar to cubes due to the fact that their surface curvature is small and they seem to have

flat surface patches.
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Figure 4.10: Weights of features for the rotate behavior calculated by ReliefF

Figure 4.11: Detailed visualization of the acquired concepts for rotate
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4.2 Multi-Task Learning

In this thesis, we show that our object concepts are beneficial for learning affordances. We

will use multi-task affordance learning (MTL) to learn our affordances as we described in

section 3.8 and our object concepts will serve as a grounding for all of our affordances. In

the following four experiments, we will compare the MTL method which will learn with our

object concepts with the STL method which will learn in a traditional way.

4.2.1 Object Concepts and Learning Time

The main benefit of MTL is the faster learning of related tasks, affordances in our case, due

to the knowledge transfer between tasks and the ability to add or remove tasks as we please.

In the first two experiments we will show how our object concepts can provide a faster learn-

ing. First, we will train the MTL network with two affordances. Then, we will measure the

learning times of a third affordance by MTL and STL (Single-Task Learning) methods to find

which method is more beneficial. The main difference between MTL and STL is that MTL

will be using our object concepts as a grounding whereas STL will learn the affordance with-

out using any object concepts. Moreover, in the first experiment, the new affordance will be

relevant with one of the affordances the MTL network has been trained with. In the second

experiment, there will be no relevancy between the new affordance and the already known

affordances by the MTL network. In both experiments, the STL network will learn the new

affordance as an independent task.

4.2.1.1 First Experiment - Similar Behaviors

The first experiment aims to show that the acquired object concepts create a grounding and

accelerate the learning of a new affordance, which is relevant to one of the already-learned

affordances by the MTL network. We start by training the MTL network with the push-left

and the grasp affordances. Structure of the MTL network and the learned affordances can

be seen in Figure 4.12. Then, we choose the new affordance to be the push-right affordance,

which is relevant with the push-left affordance. Feature selection step of the system chooses

the same feature, 9th bin of the shape histogram, for the push-left and push-right affordances.

Since the system already created object concepts for push-left over the selected feature and
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Figure 4.12: Structure of the MTL network and previously learned affordances

learned the mapping in the MTL network, the system does not perform another clustering over

the selected feature. This decision saves up time at the first part of the MTL network, where

the mapping from the entity space to object concepts has been learned. However, the major

reduction of learning time is achieved at the second part of the MTL network where mapping

from object concepts to the effect space has been learned. Since no new object concepts has

been created, the only change on the training data of the second part of the MTL network

is the prediction of push-right effects. In order to learn the push-right affordance, the STL

network learns the mapping from the entity space to the effect space. Figure 4.13 shows the

structure of the STL network.

Figure 4.14 shows the learning times of push-right affordance with MTL and STL. We re-

peated the learning process 200 times in order to get an averaged learning time. Each learning

process continued until the mean-squared error reduces to 0.02 for both methods. It can be

clearly seen that usage of object concepts greatly reduces the learning time of a new affor-

dance.

4.2.1.2 Second Experiment - Different Behaviors

In the first experiment, the new affordance was relevant with one of the affordances the MTL

network learned. In the second experiment, there will be no relevance between the new af-
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Figure 4.14: Learning times of push-right affordance by MTL and STL
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Figure 4.15: The structure of the Multi-Task Learning and previously learned affordances

fordance and the affordances the MTL network has already learned. This experiment shows

that if the new affordance to be learned is not relevant with the already learned affordances,

then object concepts do not provide a faster learning time. That is because the grounding,

which is created by the object concepts, cannot provide help for a non-relevant affordance.

However, the learning speed is not the only benefit our object concepts provide. The new

object concepts will improve the already present grounding and provide faster learning for

future relevant affordances. We first train the MTL network with rotate and grasp affordances.

The structure of the MTL network and learned affordances can be seen in Figure 4.15.

The new affordance to be learned is the push-right affordance as it was in the first experi-

ment. The feature selection step chooses the 9th bin of the shape histogram, as expected. The

system looks whether the selected feature has been used to acquire object concepts or not in

the past to prevent redundant object concept acquisition. Since both rotate and grasp object

concepts have been created over different features in the entity space, the system acquires

object concepts for the push-right affordance and perform learning at the first part of the MTL

network. This causes an increase in the learning time. Still, like in the first experiment, the

major increase in the learning time is caused by the second part of the MTL network. Since

there is no similarity between the learned affordances and the new affordance, it takes longer

for the MTL network to learn the new affordance than the STL network. Figure 4.16 shows

the learning times of the MTL and STL networks for push-right affordance. We repeated the
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Figure 4.16: Learning times of push-right affordance by MTL and STL

learning process 200 times in order to get an averaged learning time. Each learning process

continued until the mean-squared error reduces to 0.02 for both methods.

4.2.2 Object Concepts and Training Set Size

Having a grounding for some topic means we have gathered and processed knowledge on

that topic. In the first two experiments we show that our object concepts, grounding for

affordances, shorten the learning time of new affordances. Although the learning time is

reduced, we still need to gather data before we start learning. Gathering data may not be

easy depending on the setup. For example, gathering 1000 samples with a robot arm requires

significant amount of time and generally machine learning tasks require larger data sets to be

able to learn the given task appropriately. Thus, reducing the size of the learning set is more

important than reducing the learning time because reducing the size of the learning set gives

us two advantages; reduced data gathering time and reduced learning time, since there is less

data to process.

Another benefit is the reduction in the number of interactions to learn a new affordance. Object

concepts hold generalized knowledge about the known affordances which we can use for other

related affordances. In other words, if a new affordance we try to learn is related with one of

the affordances we already know then we need less number of learning samples to learn it
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properly.

In our third and fourth experiments, we will mainly analyze the effect of different training set

sizes on the performance. We have 45 training samples for each of our affordances. We will

change the size of the training set between 15 and 45 samples with steps of 5 samples (e.g.

15,20,25. . . 40,45). While we change the training set size, there are two ways we can compare

the MTL and STL methods. We can fix the number of epochs the learning systems can use

and then compare the performances or we can fix a performance goal and compare how many

epochs the methods need to reach that performance goal, as we did in the first and second

experiments. In the following subsections we will compare the MTL and STL methods by

both ways. In all of our experiments we will use our object concepts as a grounding in the

MTL method and we will not use any object concepts in the STL method.

4.2.2.1 Third Experiment: Fixed Number of Epochs

In the third experiment, we will fix the number of epochs we will allow both the MTL and

STL networks to learn the new affordance. Then, we will compare the performances of MTL

and STL methods to find which one can learn better with less number of training samples.

Figure 4.17 shows the acquired performances with MTL and STL when we allow them to

learn a single epoch (a single pass over the training set). We see that MTL achieves better

performance than STL. Moreover, regardless of the training set size, STL does not perform

better than the MTL. Even when STL is given 45 training samples, it cannot achieve better

performance than MTL, which is trained with only 15 training samples.

We further increased the number of epochs we allow the systems to learn and found out that

the dominance of the MTL method over STL method does not change with the number of

epochs. This result shows that due to the usage of object concepts and the grounding they

create we can learn new affordances better and faster with less number of training samples

than traditional STL approaches.

4.2.2.2 Fourth Experiment: Fixed Mean Squared Error

In the fourth experiment, we will fix a performance goal (mean squared error) for MTL and

STL and compare which method requires less number of training epochs with less number
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Figure 4.17: Comparison of performances of MTL and STL

of training samples. The main difference of this experiment from the first and second experi-

ments is that we are focused on the effect of the training set size over the learning time.

Figure 4.18 shows the results of our fourth experiment. Both the MTL and STL networks

try to lower the mean squared error to 0.02 as a performance goal and we repeat the learning

process for each training set size 200 times to get an averaged value. The y-axis of the figure

shows the required number of training epochs by the MTL and STL networks for different

training set sizes. Similarly with the third experiment, MTL is better than STL for all sizes of

training data. The longest training time is required for training set size of 25 samples. After

this size, the required training time decreases as we increase the size of the training set.

All of the experiments we conducted show the benefits of using object concepts for the af-

fordance learning. The first and the second experiments show the benefits of object concepts

for learning time while they show the importance of task relevance for the system. When the

new task, affordance, is relevant with the known tasks, learning takes shorter time. The third

and the fourth experiments show the benefits of object concepts by reducing the necessary

training set size and shortening the learning time. As we stated before, reduced training set

size saves us time at both data gathering processes and the learning processes and is an im-

portant benefit of our system. In this thesis, we have shown the benefits of object concepts for

learning affordances as a proof of concept demonstration. Object concepts create a grounding

for high-level processes and can be successfully used for many different purposes.
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Figure 4.18: Comparison of learning times of MTL and STL

4.3 Discussion over Using Single Feature for Acquisition of Concepts

The second step of our system is the feature selection step, as we explained in section 3.7.2.

The system performs a feature selection on the entity space and selects a single feature which

best represents the desired separation. In this section, we will try to clarify the reasons of

using a single feature for acquiring object concepts.

Since we have a set of features which encode different properties of the perceptual world (size,

shape, position, orientation) we need to separate the relevant features from the irrelevant fea-

tures. The system decides on the relevancy of each feature by grading its ability to represent

the desired separation, as we explained in detail in section 3.7.2. A desired separation is given

by a demonstrator/teacher/actor and it represents how the outcomes of a certain action should

be divided. For example, the desired separation for the push behavior separate the effect of

the push behavior into two as rolled and non-rolled. This clarifies the reason of performing

feature selection but does not clarify why we use a single feature instead of three or five or

more features. There are two reasons why we use a single feature in our system.

The first reason can be best explained by a generic example. Assume we want to acquire

object concepts for a certain behavior and instead of using a single feature, we decided to use

the two best features selected by our feature selection algorithm. Figure 4.19 shows the dis-

tribution of the data in our two selected artificial features. As we can see in both figures, there
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Figure 4.19: Data distribution of our artificial features

are clusters of data which will be detected as natural clusters by our unsupervised clustering

algorithm and eventually become our object concepts. According to our artificial feature 1

there should be three concepts (since the unsupervised clustering algorithm will create three

clusters) and according to artificial feature 2 there should be four concepts. If we were using

a single feature, there would be three or four concepts according to which one of the features

is the most relevant one. But, in this example, we will use both of the two best features to

acquire our object concepts.

When we use both of the artificial features, we obtain a distribution as in the figure 4.20 1. It

becomes clear that the number of clusters increases because the combination of the two fea-

tures creates a multiplication effect. Our decision to use two features caused to create twelve

object concepts. This is not good for us because we want to have as few concepts as possible

in order to keep them as “concepts”. As number of concepts increase for a certain behav-

ior, their ability of being a concept decreases since their representation becomes specialized

instead of generalized.

The second reason is an ability which we want our system to have, preventing redundant work.

Intuitively, we can predict that object concepts for push-left and push-right behaviors will be

the same since the only changing factor is the direction of the push. However, detecting that

both push-left and push-right behaviors will yield the same object concepts is not an easy

task for a computer. How can we make our system detect such similarities and prevent any

1 We are assuming that our artificial features are not correlated. Figure 4.20 demonstrates the worst case
combination. In the best case (in minimum), there can be four clusters.
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Figure 4.20: Combined data distribution of our artificial features

redundant work and duplicate concepts? We certainly do not want any duplicate concepts

since they will not have any positive effects on the system.

One way to solve this problem is to compare concepts with each other to find duplicate ones

according to a similarity metric which will be defined by the user. This may solve the duplicate

concept problem but does not solve the redundant work problem. We still have to acquire

concepts before detecting that they are duplicate. The previous step of acquiring concepts is

the feature selection. Push-left and push-right behaviors both depend on the same features

because they are very similar. Thus, if we compare the selected features before applying

unsupervised clustering we may get rid of our redundant work problem. However, there is

no guarantee that two similar behaviors will select the same set of features. If we compare a

large set of features our chances of having the same set of features will decrease. In order to

maximize our chances we should compare only the best feature selected by the two behaviors

to decide whether to perform an unsupervised clustering or not.

These two reasons we described above supports why we use only the best feature in our sys-

tem. In order to provide more experimental data, we also acquired our concepts by increasing

the number of features we use to two and three features for all behaviors 2. Figure 4.21 shows

2 When we further increase the number of features we use (e.g. to 10 or more) we get the shape based
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(a) Acquired concepts for push-left and push-right using two and three features

(b) Acquired concepts for grasp and lift using two features

(c) Acquired concepts for grasp and lift using three features

(d) Acquired concepts for rotate using two features

(e) Acquired concepts for rotate using three features

Figure 4.21: Acquired object concepts by using different number of features

the acquired concepts for all of our behaviors using two or three best features. Using two or

three features gives more concepts than using a single feature. When we analyze the contents

of the acquired concepts we can see that as we increase the number of features, some of the

concepts are separated. For example, in figure 4.21(a), the fifth and the sixth concepts are due

to such separation.

clustering which we mentioned in the section 3.7.3.
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CHAPTER 5

Discussion

In this thesis, we presented a system which creates object concepts based on both objects’

appearances and functionalities (i.e., what the objects afford). Appearance and function of

objects have been used in many works separately, our work presents a novel approach by

combining both of them. The object concepts acquired have been shown to be useful for

learning new tasks in a simple Multi-Task Learning scenario. We compared the learning

times and the training set sizes of Multi-Task Learning and Single-Task Learning to show the

benefits of the object concepts.

We pointed out to the connection between object concepts and the language. Our system

learned the lift, grasp, push and rotate affordances and created the object concepts via each

of them. We can say that the system has created the grounding for the meanings of small,

big, round, angular, light, heavy and circular words. Emergence of such object concepts may

explain the creation process of a shared knowledge grounding of different agents and how a

common grounding emerges.

Our experiments with MTL and STL also demonstrated the usefulness of the MTL approach

for the machine learning. We think the robotics, embodied cognition and similar fields can

gain much from MTL approaches since those fields are dominated by the STL approach cur-

rently.

We stated that the object concepts create a grounding for further uses. We pointed to the flow

of knowledge during the explanation of our system which we think is an important property of

our system. As system continues to interact with the environment to discover new affordances,

the knowledge in the object concept grounding is used to learn the new affordance. This ability

of the system facilitates the learning of new affordances.
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5.1 Future Work

There are several directions which this work can be further improved. The current system

uses supervised effect clusters in order to start the object concept creation process. Although

this dependence of supervision for creation of effect clusters has its own benefits, performing

this step as an unsupervised process may present better advantages. The system can create

its own clusters in the effect space in an unsupervised way and later link them to a clustering

shown by a teacher. This improvement enables the system to develop concepts without a

teacher (e.g. self development). When another person (e.g. teacher) appears, the system can

link this other person’s meanings with its own grounding to create a common ground for the

meanings. We believe this improvement can make our proposed system more open-ended and

approvable. One effect of such an improvement will be the discovery of actor’s affordances on

its own without a need for someone to tell what to learn. This direction of future work is also

relevant with the research of how similar but independent agents form a common language

and grammar to communicate via simple interactions.

Another improvement can be on the feature sets. As we mentioned in section 3.4, our deci-

sions on a feature set makes some properties of the environment more distinct or more subtle.

Such a bias by a designer can and will constrain the scalability of the system (e.g. some tasks

cannot be learned). A feature creation system, which creates features according to the needs

of the system (current task), can greatly improve the scalability of the system. The system,

as it is, assumes that any affordance to be learned is observable through the feature set and

there exists at least one feature which is able to separate the success-fail groups in the effect

space without much intersection. In the case that the feature set does not include a separat-

ing feature for the given task, our system is helpless and cannot correctly create the object

concepts. However, with a feature creation mechanism the system can continue to learn new

affordances regardless of their feature dependence. A literature survey reveals that the field of

new feature creation is not intensely researched and this direction shows promising results.
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