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ABSTRACT

MULTI-ITEM TWO-ECHELON SPARE PARTS INVENTORY CONTROL
PROBLEM WITH BATCH ORDERING IN THE CENTRAL WAREHOUSE

Topan, Engin
Ph.D, Department of Industrial Engineering
Supervisor . Assist. Prof. Dr. Z. Pelin Bayindir
Co-Supervisor : Assist. Prof. Dr. Tarkan Tan

October 2010, 187 pages

In this dissertation, we consider a multi-item two-echélorentory distribution sys-
tem in which the central warehouse operates W@hR) policy, and each local ware-
house implements base-stock policy. The objective is totfedpolicy parameters
minimizing the relevant system-wide costs subject to arreggje mean response
time constraint at each facility.

We first propose an exact solution procedure based on a beartprice algorithm
to find the relevant policy parameters of the system consdieiThen, we propose
four alternative heuristics to find the optimal or near-oai policy parameters of
large practical-size systems. The first heuristic, whictcalethe Lagrangian heuris-
tic, is based on the simultaneous approach and relies omtibgration of a column
generation method and a greedy algorithm. The other threesties are based on
the sequential approach, in which first the order quantdresdetermined using a
batch size heuristic, then the reorder levels at the ceniaa¢house and the base-

stock levels at the local warehouses are determined thrthegekame method used
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for the Lagrangian heuristic. We also propose a lower boandhe system-wide

cost. Later, we extend our study to compound Poisson demand.

The performance of the Lagrangian heuristic is found to leemely well and im-
proves even further as the number of parts increases. Adstatimputational require-
ment of the heuristic is quite tolerable. This makes the isgarvery promising for
large practical industry-size problems. The performarfdde sequential heuristics

is also satisfactory, but not as much as the Lagrangiandgteuri

Keywords: inventory, two-echelon, multi-item, batch aidg, spare parts
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MERKEZI DEPODA TOPLU SPARISIN OLDUGU GOK URUNLU K|
SEVIYEL | YEDEK PARGA ENVANTER KONTROLU

Topan, Engin
Doktora, Endistri Muhendislgi Bolumi
Tez Yoneticisi : Yrd. Dog. Dr. Z. Pelin Bayindir
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Tarkan Tan

Ekim 2010, 187 sayfa

Bu tezde, merkezi deponun (Q,R) politikasi ile, ve yerel dapolise seviye esasli
envanter sistemi ile caligm coktrlinlu, iki seviyeli yedek parca envantergiam sis-
temi incelenmistir. Amac depolardaki ortalama togaganit zamani kisitlari altinda

sistemin litinine ait maliyetleri enazlayan politika parametrelerinutummasidir.

Uygun politika parametrelerini bulmak i¢in ilk olarak kesozum prosedri olan
dal-ve-fiyatlandirma algoritmasi tasarlanmistir. Dabara, kiyuk olcekli gercek
sistemlerin en iyi yada en iyiye yakin politika parametrelebulmak amaciyla drt
adet alternatif sezgisel metot gelistiriimistir. Lagfaezgiseli adini verdimiz bir-

inci sezgisel metot, eszamanli yaklasim baz alinatdakrsiiretimi ve obur algo-
ritma metotlarinin birlesimine dayanmaktadirgbilic sezgisel metot ise, ilk olarak
siparis miktarinin blit blyuklugu sezgiseliyle, daha sonra merkezi deponun yeniden
Ismarlama dzeyinin ve yerel depolarin seviye esasli envantereglerinin Lagran;
sezgiselinde kullanilandntemlerin kullaniimasiyla belirlengii ardisik yaklasima

dayanmaktadir. Daha sonra, gelistijidniz yontemler bilesik Poisson talep varsayimli
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modeli kapsayacak sekilde genisletilmistir.

Lagranj sezgiselinin performansi ¢ok iyi olup, parcaisagrttikca sezgiselin perfor-
mansinin daha da iyilegji gorulmustir. Ayrica sezgiseli hesaplamak icin gereken
zaman kabul edilebiliblciilerdedir. Bunlar, sezgisel metoduiiyiik olcekli gercek
endistriyel sistemlerde kullanilabilmesi icin umut veriddagunu gistermektedir.
Lagranj sezgiseli kadar olmasa da politika parametrateardisik belirlenmesini de

tatmin edici sonuclar vermistir.

Anahtar Kelimeler: envanter, iki seviyeli, cakunlu, toplu siparis, yedek parca
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CHAPTER 1

INTRODUCTION

Today’s manufacturing companiedfér from the traditional ones mainly in the sense
that they do not only manufacture products, but al$erafter-sales services for their
customer. Deloitte (2006) investigates the largest mantufeng companies in the
world, and reports that these manufacturing companies aékeof the profits from
their service and parts operations. Similarly, AMR Rese&20l02), a research com-
pany focusing on the global supply chain issues, reportsniaaufacturing compa-
nies make nearly 25% of their revenues and 40 to 50% of thefitpfrom after-sales
services. All these reports indicate that after-salesisesvare highly important as

well as attractive for the manufacturers.

The after-sales services that a typical manufactufér® may involve any kind of
service activities such as provisioning of spare partsygrive angor corrective
maintenance, repair activities. Spare parts managemémthe center of all these
service activities.

A spare part is often a component of a larger system that hagsaalkcfunction such

a machine, an equipment or a vehicle. For the customers otif@emrers, equip-
ment breakdowns are of essential importance since thesdeaayo discontinuing
a critical process at the customer site. This often resalisigh down-time costs.
Therefore, availability of the parts becomes criticallypontant for the customers.
In such an environment, customers are protected against-tiove risks by service
level agreements (SLAS). In these agreements, the manuagiromises service
requirements of customers, which are usually expressediaget level on a cer-

tain service measure, such as fill rate, probability of ralsdut and response time.



However, the demand for spare parts is highly unpredictaltles also dificult to
control the demand, although there are some tools for thatoge, e.g., applying
forecasting methods, scheduled preventive maintenadeertegsing and organizing
sales campaigns. Consequently, the significance of avéyedmd the unpredictable
nature of the demand put pressure on the manufacturersdarveintory. Neverthe-
less, running a spare parts inventory system costs to thafaarer. The basic trade
off between costs and service requirements in spare partsidsgisakes spare parts

inventory control one of the most critical after-sales sas for the manufacturers.

This dissertation is motivated by a spare parts inventongrobproblem that we ob-
serve in two diferent capital goods manufacturers providing equipmerdsarvices
for capital intensive markets. Although the problem is loase these two manufac-

turers, it generalizes to other manufacturers facing daimroblem.

The first manufacturer that we consider is a leading supgpfiadvanced tools to the
nanotechnology market. The manufacturer, as a servicadao\wperates a spare
parts inventory system consisting of a central warehoudearumber of local ware-
houses at dierent locations to be responsive to their customers gebgalfy dis-
persed around the world and manages nearly 14,000 partsimyaery cheap parts
as well as highly expensive ones, e.g., the value of the nxp&Ensive part exceeds
hundreds of thousands of euros. The value of the spare paytsi\dhe central ware-
house accounts for more than 12 million dollars. The otherufacturer is a leading
manufacturer of industrial printing systems. They opeaatamilar inventory system,
involving more (approximately 20,000), but relativelyse=xpensive parts compared
to the first manufacturer. The value of the spare parts ontiiencentral warehouse
accounts for almost 2 million euros. Although the manufeartsiserve totally dier-
ent markets with dferent part characteristics, the following observatioescammon

for them.

¢ Since the manufacturers should supply spare parts fterdnt customers at
different locations, they operate an inventory distributiostesy that consists
of a number of local warehouses affdrent locations and a central warehouse
replenishing them. This type of two-echelon distributigetems are prevalent

in spare parts logistics (Cohen et al. 1997).
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¢ All warehouses can respond to customer requirements. Heheecentral
warehouse has both internal requests from the local waselsoand external

requests from the customers.

e Most of the spare parts that the manufacturers provide aetyrased, slow
moving items, a majority of which have a demand rate of leas thparts per
year. In addition, since ordering between the lower and tipeuechelons is
internal and automated, fixed ordering costs are insigmifiaathe lower eche-
lon facilities. Hence, the batch sizes are low, often edeiveo one. Therefore,
both manufacturers operate under a continuous-reviealiagson-stock base-
stock policy, i.e., -1, S) policy, at the lower echelon facilities. This situation
is common and often justified in other spare parts inventorntrol practices
(Wong et al. 2007b, Hopp et al. 1999).

e At the central warehouse, parts move faster due to the adatioruof inter-
nal demands from local warehouses. Moreover, the centrahease typically
replenishes from external suppliers, resulting in highdigeocuremerittrans-
portation costs. Therefore, the manufacturers place sidebatches instead
of individual units at the upper echelon, i.e., they applyagch ordering pol-
icy at the central warehouse. There are situations wheohipgtdecisions are
motivated by aggregate performance targets on the ordgrdrecies at the cen-
tral warehouse or production smoothing requirements oird-frarty supplier
(Hopp et al. 1999, Al-Rifai and Rossetti 2007), although thisat the case for
the manufacturers considered. Under these conditiorssyiore reasonable for
the central warehouse to operate under a continuous-rengtallation-stock
reorder point, order quantity policy, i.e Q(R) policy. In the manufacturers
that we consider, the corresponding policy parametersetegrdined based on

the experience of the inventory controller or some simplérisécs.

e Each of these manufacturers produces equipment that hascaldunction
for their customers, e.g., printing machine, electron oscope etc. There-
fore, for the customers of these manufacturers, resultovgnetime costs are
expressed on the order of thousands of euros per hour. Fontatufacturers,
service levels committed to customers are formally defina®lLAs. The first

manufacturer sets the response time, time to respond fostaroer request as

3



a service measure. The second manufacturer sets fill ratee gsetformance
measure. Although the manufacturer§etiin the service level types, the SLAs

play an important role in their spare parts inventory system

SLAs that are defined between the manufacturers and thenceitaan typi-
cally be classified into two groups: Under the “item apprdaaharget service
level is defined for each individual part. It is widely corsidd in the inventory
literature (Thonemann et al. 2002). Another approach isy&tem approach”,
in which a target service level is defined for the demand weijlaverage of
the relevant performance measure over all parts. Henceytem approach
defines an aggregate service measure. Although the numlesrdabroducts
that a typical manufacturer produces is quite limited, thmber of spare parts
associated with the products can be very large, often onrther of thousands
or ten thousands. Since customers are primarily inter@stbeir equipment or
entire system being up and running, setting a target selsvet for each part
does not make sense for them. Instead, they are interestieel availability of
parts at an aggregate level. Since the system approached baghe demand
weighted average of the relevant performance over all pagaables holding
more inventories for cheap parts while fewer for expensaesp This brings
substantial savings in inventory holding costs in comperisith the situation
under the item approach (Thonemann et al. 2002) to the metowés. Hence,
the system approach is more applicable and widely adoptéaeirSLAs for
spare parts (Hopp et al. 1999, Al-Rifai and Rossetti 200 gl&aet al. 2004,
Wong et al. 2007b), which is also the case for the manufactuhat we con-

sider.

In this dissertation, similar to the two examples that we toenwe consider a multi-

item two-echelon spare-parts inventory distribution egstconsisting of a number

of local warehouses and a central warehouse. Local warebk@pserate under an a

continuous-review installation-stocls (- 1, S) base-stock policy, while the central

warehouse operates under a continuous-review instailatimck Q, R) policy. Our

focus is on the corrective maintenance activities of theiserprovider. Also, our

emphasize is on the consumable parts, that is, we ignorespj@rable parts or we

model them as if they are consumable. For this system, o@ctig is to find the
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optimal or the near-optimal policy parameters minimizihg expected system-wide
inventory holding and fixed ordering costs subject to an eggie mean response time

constraint.

Finding the optimal or near-optimal policy parameters afrsan inventory system is

generally dificult. The main reasons are as follows:

e Even a medium scale inventory system involves thousandsook &eeping
units, for each of which the policy parameters should benoggd. Further-
more, under a system approach, the policy parameters for gt interacts
with the others through constraints on an aggregate pediocenmeasure. This

makes the resulting optimization problem very complex.

e The evaluation of the objective function and the constsanfisuch an optimiza-
tion problem requires evaluating the probability disttibos of the inventory

levels, which are dficult to compute even in a single-item case.

e Finding the optimal policy parameters of a typical systerdarnbatch ordering
is much more involved compared to the one in which each faaiperates
under a pure base-stock policy since the reorder levelstendrtler quantities
at the central warehouse need to be determined simultayesitls the base-
stock levels at each local warehouse for each part, whenealiey parameters

of the parts interact with each other.

Since finding the policy parameters of multi-item two-ecdmeinventory distribution
systems is dficult, all the solution procedures developed for these systeely on
heuristics. To the best of our knowledge, there is no exdatisa algorithm devel-
oped for multi-item two-echelon inventory distributiorssggms. Even though approx-
imations and heuristics are prevalent approaches, an saktion procedure can be

considered for two reasons:

e Cost reductions: The average inventory value of a typicalpaomg in the cap-
ital goods industry is of the order of tens of millions of esif@ohen 1997,
Sleptchenko 2002). This means that even a small percengdgetion in in-
ventories may correspond to savings on the order of hundretti®usands of

euros.



e Benchmarking purposes: Due to the lack of an exact solutmgoréhm, heuris-
tics in the literature are usually compared to each othelpwer bounds, or
simulation-based optimization results. However, not &lthese benchmark
solutions can guarantee satisfactory performance: Tleefopnance may dif-
fer depending on the problem parameters leadingfticdities in assessing the
performance of a proposed heuristic (Al-Rifai and Rosse@i2@Cdlar et al.
2004). In addition, it is possible to use an exact solutiggoathm to test the
performance of a lower bound for small size problems, befmiag it as a

benchmark for larger problems.

In this dissertation, we aim to propose an exact solutiocgxtare to find the optimal
policy parameters of the multi-item two-echelon inventdrstribution system con-
sidered. Nevertheless, for practical size problems, antesaution requires signif-
icant computationalféort. However, considering that even a moderate indusig-si
problem requires to optimize the policy parameters of thads of items, anficient
solution method is of critical importance. Hence, one magdie apply heuristic ap-
proaches for the solution of practical size problems. Tlageemany &orts devoted
to propose heuristics to find the policy parameters of midtia multi-echelon sys-
tems under pure base-stock policy iz et al. 2004, Wong et al. 2007b, Caggiano
et al. 2007) and batch ordering policy (Hopp et al. 1999, AkRind Rossetti 2007).
Almost all of these heuristics are based on approximataiatiah of the probability
distributions of the inventory levels, hence, they do nairgntee feasible solutions
with respect to constraints on service levels. The only isgarthat is based on an
exact evaluation method is proposed by Wong et al. (2007hi;wis developed for
systems under base-stock policy. Also, for many of thesastas, finding the policy
parameters of a practical size problem becomes an issubisldissertation, one of
our aim is to develop heuristics guaranteeing feasibility at the same time yielding
satisfactory results in terms of both the relative errord e computation time for

practical-size systems.

As an alternative to an exact solution procedure, one magidena heuristic ap-
proach to find the policy parameters of the inventory systean Wwe pose. A com-
mon practice is to follow a sequential approach, which agsutme dominance of the

batching decisions over the others, and hence it necessiigtermining the batch
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sizes first (in most applications independent of the sereel requirements), and
then the other policy parameters. The method brings a ssgnificomputational sav-
ing and also results in very low percentage cost penaltyniglstitem single-echelon
systems which is verified both empirically and theoreticély several researches
(Zheng 1992, Axater 1996, Silver et al. 1998, Gallego 1998). Due to its d&nél
performance in single-item single-echelon systems, itss widely used in general
system settings (Hopp et al. 1997, Axsr 1998, Hopp et al. 1999, Axer 2003)
as well as in practical applications, e.g., the manufacsurensidered in our disser-
tation adopt the sequential approach to find the policy patars of their inventory
control systems. Although the sequential approach is widsdd in multi-item multi-
echelon inventory control applications, its performanas hot been fully assessed
in the literature. One of the objectives of this dissertai® to investigate the per-
formance of the sequential approach in a multi-item twoeémt inventory control

system.

Just like finding the optimal policy parameters, finding dficeent and tractable
benchmark solution, e.g., a tight lower bound on the optiexglected total cost,
for an inventory control policy for multi-item multi-eche system is also dicult.
This makes it hard to evaluate the performance of the hagi€Calar et al. 2004,
Al-Rifai and Rossetti 2007). In this dissertation, we alsggose a lower bound that
can be used as a benchmark solution to test the performarice béuristics.

Since most of the spare parts are slow moving items and teeiadd is intermittent,

the Poisson distribution often provides a reasonable septation of the demand
process in many situations. Hence, it is quite common in itkeature to assume
that demand is Poisson. However, the Poisson distribusiarot verified for parts

whose demand sizes varies from one transaction to anotti@smthose parts whose
total demand variance is higher. For instance in the caseswEptive maintenance,
the number of spare parts demanded is quite often more thanlorthis situation,

the Poisson demand assumption, which relies on the unitdgzeand assumption,
fails. As opposed to Poisson distribution, the compounddgmi distribution, where
customer arrivals occur according to a Poisson processratittiom demand sizes,
provides a better representation of the demand proceseff@ic spare parts. There

are empirical results verifying that compound Poissonithstion better characterizes



the demand distribution for spare parts (Eaves 2002). Itvtbenanufacturing firms
that we observe, there are spare parts for which a custoehemrsnd is more than
one. While proposing solution procedures for the problerhwintroduce, we also
consider these issues and develop solution procedurestfoPleisson and compound

Poisson settings.

Our work contributes to the relevant literature in the falliog directions:

¢ In Chapter 3, we propose an exact solution procedure to findgtieal policy
parameters minimizing the system-wide expected inverttofgling and fixed
ordering cost subject to an aggregate mean response tirsgaiohat each fa-
cility. We experimentally show that the branch-and-prilggathm can be used
in applications as long as the number of items and the nunfbga@houses
are limited. Even if this is the case, an exact solution isrdbke due to signif-
icant cost reductions and benchmark purposes. To the bestr &dhowledge,
our work is the first to propose an exact solution procedufetbthe optimal
policy parameters of a multi-item two-echelon inventorgteyn. A slightly
different version of this chapter is published in Operations &ebel etters
(Topan et al. 2010a).

e In Chapter 4, we propose four alternative heuristics to firdgblicy param-
eters of large, practical-size multi-item two-echeloneintory control systems
with batch ordering at the central warehouse. Our heusistie based on the
exact evaluation of the probability distributions of theentory levels. Hence,
in contrast to most of the studies in the literature, our tstios guarantee fea-
sible solutions. The first heuristic, which we call the Laggian heuristic, is
based on the simultaneous approach and relies on the ititggod a column
generation method and a greedy algorithm. The other thnedshies are based
on the sequential approach, in which first the order quast#ire determined
using a batch size heuristic, then the reorder levels at éhéral warehouse
and the base-stock levels at the local warehouses are de¢erthrough the
same method used for the Lagrangian heuristic, i.e., a golygneration and a
greedy algorithm. These three heuristic8etiin the batch size heuristic used.
We have a working paper covering the issues in Chapter 4 (seanTet al.

8



2010b).

e In Chapter 3, we also propose a lower bound for the optimal aegdetotal
cost. Later, in Chapter 4 we show that this bound is asymjatibtitight in
the number of parts. Considering théfdiulties encountered in evaluating the
performance of heuristics for fiierent multi-item two-echelon inventory sys-
tems in the literature (@gar et al. 2004, Al-Rifai and Rossetti 2007), the lower
bound that we propose also makes a significant contributidinet relevant lit-

erature.

¢ All our developments and findings presented in Chapters 3 amd fr a pure
Poisson demand model. Later, in Chapter 5 by using our findasgisuild-
ing blocks, we extend the solution procedures for compouwigsen demand
model. To the best of our knowledge, our work is the first topps®e heuris-
tics for finding the parameters of a multi-item two-echelowentory control
systems facing a compound Poisson process. Since the exdoaton of
this system is intractable, for large practical size protdewe consider four
approximate evaluation methods. The first approximatiiese®n a disaggre-
gation method, which is exact for pure Poisson demand. Therdwo are
based on two-moment approximations, one of which is an sidarof an ex-
isting method, while the other is considered for the firsitiimthis work. The
forth one is the extension of the Multi-Echelon TechniqueRecoverable Item
Control (METRIC) to our problem. We also compare the performneard these
approximations. To the best of our knowledge, there is nuipus work that
compares the approximations commonly used in the litezatnder compound
Poisson demand model. We also have a working paper covérnggues in

Chapter 5 (see Topan et al. 2010c).

Our findings can be summarized as follows:

¢ In Chapter 4, we empirically show that the performance of thgrangian
heuristic is quite well. As the number of parts increases,gbrformance of
the heuristic improves further, making the heuristic vexyrpising for practical

applications. The computational requirement of the héarnis quite tolerable.
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To be more specific, the experiment with 10,000 parts and I2veaises re-
veals that the relative flerence between the expected total cost of the solution
obtained by the Lagrangian heuristic and the lower bounddi4%; problems
of this size can be solved within 12 hours on an Intel 3 GHz @ssor with
3.5 GB RAM. That is, we propose affficient and &ective heuristic for large

practical industry-size problems.

¢ In Chapter 4, we also show that some of the qualitative cormissegarding
the performance of the sequential approach in the singie-gingle-echelon
literature (Zheng 1992, Adder 1996, Silver et al. 1998, Gallego 1998) do not
hold for the multi-item two-echelon setting, which is moepresentative of
practical situations. First, we empirically observe the telative cost dier-
ence may reach up to 31.03%, which is fairly high comparedngirigs in
the aforementioned papers on single-item single-echsistesis. Second, the
computation times required for sequential heuristics araparable to that of
the Lagrangian heuristic, showing that the computatiodehatages of the se-
guential determination of policy parameters are limitechuiti-item systems.

e For the compound Poisson demand setting, the Lagrangiarstieuwhich is
quite dficient in terms of the computationaffert for Poisson demand model
is found to be tractable only for relatively small probleragy., problems with
100 parts and 3 local warehouses. This also shows that exalaaéon of the
system is tractable for the compound Poisson demand only Wieenumber
of parts and the number of local warehouses are limited. Ve dhat the
Lagrangian heuristic obtained by using two-moment appnaxions yield sub-
stantially better results than the ones that are obtainecing the METRIC or
the disaggregation approximation. Both two-moment appnations perform
quite well. We also show that many of the results that aredvalithe Pois-
son demand setting are also valid in the compound Poissomarksetting,
e.g., the performance of the heuristics improves with thalwer of parts, the
Lagrangian heuristic is superior to sequential heuristicnathe pure Poisson

demand case.

The organization of this dissertation is as follows. Chaptprovides a review of the

10



literature relevant to the dissertation. First, we revibe literature on multi-echelon
inventory distribution systems in Section 2.1. This covbespapers on single-item
as well as multi-item systems, which are presented in Sect®l.1 and 2.1.2, re-
spectively. Then, the papers related to sequential heagrigte provided in Section
2.2.

In Chapter 3, we propose an exact solution procedure for thigdlgm. First, in Sec-
tion 3.1, we specify the problem environment and then foateuthe problem. In
Section 3.2, the branch-and-price algorithm and the basicgaures used in the al-
gorithm are presented, such as column generation algo(Bection 3.2.1), an algo-
rithm used to solve the single-item problem (Section 3,2a2)reedy algorithm used
to obtain an upper bound for the branch-and-price algoritBection 3.2.3). Finally,

in Section 3.4, we provide the computational results.

In Chapter 4, we develop the heuristics that we consider imigsgertation. Section
4.1 introduces the Lagrangian heuristic whereas Sectiim#&oduces the sequential
heuristics. In Section 4.3, we study the asymptotic belmavidhe lower bound.
We also present theoretical results associated with theateyic performance. In
Section 4.4, we report and discuss our computational sedd#re, the performances
of the Lagrangian dual bound (Section 4.4.2), Lagrangiamisigc (Section 4.4.3),
the sequential heuristics (Section 4.4.4) as well as thepatetional requirements
of the methods (Section 4.4.5) are discussed. Finally ini@ed.5, we draw the

conclusions.

In Chapter 5, we extend the developments in this dissert&i@ompound Poisson
demand setting. In Section 5.1, we present the compoundgdtoemand model
and then develop the exact (Section 5.2) and the approxienati@ation methods
(Section 5.3) considered for this model. In Section 5.4, escdbe how the heuristics
are extended to compound Poisson demand. In Section 5.5¢peet rand discuss
our computational results. Finally, we draw the conclusiand discuss possible

extensions in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

This dissertation mainly contributes to the vast literatan multi-echelon inventory
control systems. We present the papers related to this figkkction 2.1. Another
direction of research related to our dissertation is theeld@ment of the sequential
heuristics and investigation of their performance in snghd multi-echelon inven-

tory systems. The papers related to this field are review&aation 2.2.

2.1 Multi-Echelon Inventory Distribution Systems

In our work, we consider a two-echelon inventory distribatsystem under contin-
uous review installation-stock policies. Since the analg$ other types of systems,
e.g., serial, assembly or more general systems; periodiewanventory systems;
echelon-stock policies are quitefidirent than the analysis of distribution systems
under continuous review installation-stock policies ythee not included in this re-
view. For studies on periodic review inventory systems actteion-stock policies,
the reader may refer to Cachon (2001); Chen and Zheng (199 &3tex(1997),
Simchi-Levi and Zhao (2010) and the references there ipeaely. On the other
hand, our review includes the papers on systems with rdpaiaad condemned parts,
even though we limit ourselves to the systems with consuenpaits in this disser-
tation. Since the analysis of systems with repairable amflemned parts are not

completely diferent than that of the consumable parts.

There are three main directions of research in multi-ech&ieentory control: opti-

mal policy characterization, policy evaluation and polaptimization (Simchi-Levi
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and Zhao 2010). The main focus of the optimal policy charazgon is the deter-
mination of the optimal policy and identification of its cairt characteristics. Among
the papers that we review, none of the papers deal with thiisSince determining
the optimal policy for complex network structures like distition systems is gen-
erally difficult, for these systems, a common approach is to adopt ar@ive
inventory control policy (probably a suboptimal one) anerilto find the parameters

minimizing the system-wide cost for the given policy.

There are two main issues in this approach: (i) Policy evaloathat is, deriva-
tion of the system-wide performance measures: In gendra,difficult to derive
the steady-state probabilities of inventory and backolelels in multi-echelon in-
ventory distribution systems. The first stream of paperswleareview is on policy
evaluation. Most of these evaluation methods rely on apprattons. Nevertheless,
there are exact evaluation methods proposed as well. (iigyPoptimization, that
is, the development of methods to search for the optimal ar-optimal policy pa-
rameters: A second -but more recent- stream of papers thegwev deals with the
policy optimization of multi-echelon inventory systemsgpposing either exact so-
lution methods to guarantee optimality or heuristics to fapdimal or near-optimal
solutions or both.

Although there are many papers that focus on both policyuesi@in and policy op-

timization in this review, they can be basically classifiadone of these two main
categories. Our work belongs to the policy optimizationt mdirthe literature. Al-

though we resort to both exact and approximate evaluatioads to obtain the
steady-state analysis of the system, the policy evalu&ioot the main focus of our
work. In this dissertation, for the Poisson demand case,naegse an exact as well
as alternative heuristic procedures to find the policy patars of our system. For
the compound Poisson demand, we only consider heuristiom the perspective of
evaluation method, we consider an exact evaluation methothé Poisson demand
setting, whereas for the analysis of the compound Poissateinawe consider both

exact and the approximate evaluation methods.

The papers in the literature can also be classified with sttpehe following char-

acteristics in order to position our work in Chapters 3, 4 and 5
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¢ Number of items: There are two main categories: single-geich multi-item.
Many of the seminal works study single-item systems. Moozmé body of
literature deals with multi-item systems. The main focusatter group is the
development of gicient and &ective heuristics to obtain the optimal or near-
optimal policy parameters of industry-size systems, jik& the one in this
dissertation. Although multi-indenture models with seglpe of products can
be considered as a multi-item system, their analydtedirom both those of
single-item and multi-item systems. Hence, it is also gmedb consider them

as a third group.

e Number of echelons: The papers that we review either consigeeechelon or

more than two echelon systems.

e Demand distribution: Most papers assume a Poisson demaddl rfay the
demand process. There are also papers considering compoissbn model.

There are only two papers considering a general demandbdisbn.

e Inventory policy: There are mainly two groups of inventogntrol policies
considered in the papers. These are base-stock policiebatod ordering
policies. For the pure Poisson cas8,« 1, S) base-stock andd, R) policies
are implemented. For the compound Poisson demand model:opdto S and
(nQ,R) policies are considered, which are the adapted versiofS ef1, S)

and @, R) policies to compound Poisson demand.

e Service motivator: There are two streams of papers acapitdirthe service
motivator in the papers. The first stream of papers considergst model,

whereas the second stream considers a service-constraousls.

A complete summary of the papers that we review and theitipasn the literature
based on our taxonomy is given in Table 2.1. The details cietlpapers are discussed
in the following section. In the following sections, we firgview the papers on
single-item systems, then we review the papers most relg¢vathis dissertation,

multi-item systems.
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2.1.1 Single-ltem Systems

One of the seminal works in this area is proposed by Sherler(i868). He proposes
an approximate model called METRIC for two-echelon repadgaiventory distribu-
tion system consisting of a number of identical bases angbatdall facilities oper-
ate under a base-stock policy. The system faces a compoussbRalemand and the
repair times are stochastic. The objective is to find the4s&sek levels minimizing
the expected number of backorders subject to a budget aortstin METRIC, Sher-
brooke (1968) replaces the stochastic repair (lead) tinteeabases by its mean to
approximate the probability distributions of the numbeirsentory and backorder
levels at the bases. This simplifies the derivation of théesygelated performance
measures, e.g., the number of outstanding orders at the base Poisson distribu-
tion. Furthermore, this brings a significant computaticadlantage for the method.
Therefore, the METRIC becomes one of the most common appetikamused for
multi-echelon inventory systems. Although the model isaligped for single-item
systems, it is adopted in multi-item setting by many redsen< (Calar et al. 2004,
Wong et al. 2007b). Nevertheless, since the METRIC ignorasstite replenishment
lead time and the average delay at the bases are dependdret ionentory level at
the depot, the number of backorders is underestimated andegults in highly in-
feasible solutions (Graves 1985, Wong et al. 2007b). Thisdsnain disadvantage of

the METRIC. Sherbrooke does not consider the optimizatioblpro of the system.

Muckstadt (1973) extends Sherbrooke’s METRIC to a multnitaulti-indenture set-
ting by proposing an approximation called MOD-METRIC. He ddess the same
problem structure with Sherbrooke (1968) but in a multmtand multi-indenture
setting, e.g., a two-echelon repairable inventory digtidn system operating under
a base-stock policy and the objective is to find the baseéesevels minimizing the
expected number of backorders. The onlffatence is that, in this model, a Poisson
demand is assumed. Although the main focus of the METRIC ipdkiey evaluation,
in MOD-METRIC, Muckstadt (1973) also focuses on the policyimjzation issue
and proposes a heuristic search method to find the base{stadk of the system.
Similar to the METRIC, the MOD-METRIC underestimates the expedackorder

levels.
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Graves (1985) considers a multi-echelon inventory distrdm system for repairable
items consisting of a repair depot and a number of nonidaindigerating sites under
a base-stock policy. He assumes a compound Poisson denwafidd The base-stock
levels, he proposes an exact evaluation method for themsyate derive the station-
ary distribution of the inventory and the backorder levekslEfacilities. For the exact
evaluation he uses an earlier result by Simon (1971), whieleall the binomial dis-
aggregation, which suggests that given the number of bdeksat the depot, a back-
order emanating from a certain site follows a binomial disttion. He also proposes
an approximate evaluation method for the system based on-antvwment approxi-
mation. Accordingly, the distribution of the outstandinglers is approximated by
fitting a two-parameter family of distribution, i.e., a néga binomial distribution.
The approximate model is only implemented for the pure Boistemand model.
The performance of the approximation is tested against tBHRIC. The author
reports that the two-moment approximation is superior eOMETRIC, i.e., the solu-
tion obtained by using the METRIC ftler from the optimal solution at least one unit
in 11.5% of the problem instances, while that of obtainedsiggihis method is only
0.9%. This shows that the understocking problem of the METRISblved up to a
certain level by using the two-moment approximation, whietjuires keeping more
stock than the METRIC. The author also reports that the cortipatd requirements
of the two methods are comparable. These results make Gragesioment approx-
imation a commonly used evaluation method for multi-echéhwentory distribution
systems. Similar to the METRIC, it is also widely used in mitkim systems (Hopp
et al. 1999, Wong et al. 2007b).

Sherbrooke (1986) considers the same setting as Muckgt@d8). Similar to the
manner the METRIC is improved by Graves (1985), he proposes-artoment ap-
proximation for the number of outstanding orders, i.e.tsum supply or in repair
to improve the MOD-METRIC. Through a simulation study, he shdtat the ex-
pected backorder level estimations are close to the sisuillues. He also states
that the performance of the two-moment approximation imgsdurther compared to
the METRIC in multi-item systems compared to the single-itémthis sense, Sher-
brooke (1986) extends the earlier findings obtained by Gr&i@85) for single-item

systems to multi-item ones. Sherbrooke (1986) deals ortly thie policy evaluation
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issue, hence, does not provide a solution procedure to fenddke-stock levels.

Ettl et al. (2000) consider a multi-echelon inventory anddurction distribution and
assembly system, facing a compound Poisson demand. Alitiegioperate under
an S — 1,S) policy. The objective is to minimize the expected cost ofhamd and
WIP inventory subject to service level constraints basecdertime-based fill rates.
They propose an approximate evaluation method and a heyistcedure to find
the policy parameters. The approximation is a queueingébapproximation for the
system to estimate the replenishment lead time (the sumeofréimsportation lead
time and the delay due to stockout). For this purpose, thebeuwf jobs in the retail-
ers, each of which is modelled 8*/G/1 (M/G/1 with compound Poisson arrivals)
gueueing system, are approximated by a normal distributieor the optimization
of the system, they use a conjugate gradient method to dodvednlinear objective
function. The algorithm iterates by computing the gradiamttil the value of the
objective function converges. They test the performanab@®entire method using
simulation. The simulation runs show that both the appratiom and the heuristic
perform quite well. They report that the method can be usdarge complex supply
chain networks.

Svoronos and Zipkin (1991) consider a more complex tragsgire multi-echelon
inventory distribution system having a warehouse and a eurabnonidentical re-
tailers, all operating under a base-stock policy. Theymasstinat the demand is Pois-
son, transposition lead times are stochastic. In orderdtyae the entire system, first
they study the single-facility problem and characteriz= ¢kact distributions of the
outstanding orders, inventory and backorder levels fardistem. Later, they extend
these results to general multi-echelon systems. They atgmpe an approximation
for the steady-state distribution of the number of inveptand the backorder levels
for given base-stock levels. Their method relies on appglartiwo-moment approxi-
mation by fitting a negative binomial distribution to thetdisution of the outstanding
orders at the retailers.

In a recent study, Gallego et al. (2007) consider a two-@chdistribution system
consisting of a warehouse and a number of nonidenticaleetaiAll facilities oper-

ate under base-stock polices. The demand is Poisson, gltteoaompound Poisson
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extension is considered as well. The objective is to minentiee average inventory
and backordering costs. In this paper, they evaluate thiempeances of the local
control, i.e., installation stock policies, and the cent@ntrol, i.e., echelon stock
policies. In order to analyze the system behaviour undefaited control, they use
the exact analysis developed by Simon (1971) and Grave$)1%98ey also propose
two approximations. The first one is the normal approxinretay the demand, while
the second uses a distribution-free bound to approxima&tevtkrage cost function.
In order to optimize the policy parameters, they considesxatt solution procedure
similar to the one developed by Axter (1990) and a heuristic method. For the latter
one, they apply three simple subheuristics. First one asstnat the warehouse does
not hold stock, while the second one assumes that the wasehwlds maximum
stock. Third one assumes that the warehouse holds inveniiboes not hold safety
stock. Among all these subheuristics they select the besthi$ paper, they also
consider the compound Poisson demand case. For the compaisgbn demand
setting, they approximate the overshoot due to demand aizéhge retailers using
a two-moment approximation. They apply the two-moment exipration for the
distribution of backorders emanating from retailers, whi binomially distributed
in the Poisson demand case. To estimate the variance of thesponding random
term, they distribute the overshoot among the retailere@gdistribute the demand.
Through a computational study, the performances of thd &whthe central controls
are compared. They find that the local control performs betten the holding cost
at the warehouse, the penalty cost and the demand ratesatbddead time for the
warehouse is shorter relative the lead time at the retaifenslly, they show that the
central control is superior to the local control, however tasults highly vary. They
also test the performance of the approximations and thadtiesrare tested against
the exact evaluation and the optimization methods, resdctAccordingly, the gap
between the results obtained by using the exact method amdbyhithe approxima-
tions is quite large. The percentage cost penalty of usiagh#uristic is 1.23% on
the average. The heuristic is reported to be more accurate tie warehouse lead
time is shorter. They also show that the heuristic is asytigatitly optimal in the
number of warehouses. For the performance of the approximétat is considered
for the compound Poisson demand, they show that the comdsmpapproximation

yields better results when the demand size distributiosrent retailers are sim-
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ilar, and the overshoot is a small part of the total numberaakbrders at the central

warehouse.

Ozer and Xiong (2008) extend Gallego et al. (2007) to a sirsijatem with service
level constraints. The objective is to minimize the averegyentory costs subject
to fill rate constraints. For the evaluation of the systenthlexact and approximate
methods are considered. For the approximate evaluatidreaytstem, they consider
two different alternatives. The first one is a normal approximatfahe demand at
the retailers. The second one extends the distributiandpproximation proposed by
Gallego et al. (2007) to their system setting. To find theroptipolicy parameters,
they propose an exact algorithm similar to Ater (1990). However, this algorithm,
at each iteration, also checks whether the service levedtaints are satisfied or
not. They also consider two alternative heuristics to obthe policy parameters.
First one is the extension of the heuristic proposed by @alkt al. (2007) to their
system. The second heuristic decomposes the multi-eclsgiam to two-location
serial inventory systems. They also consider extensiotiseofmethods to compound
Poisson demand, general multi-echelon tree structurgldison systems as well as
multi-item systems with aggregate service measures. Tirawcomputational study,
the authors show that the average percentage cost penakingfthe first heuristic is
less than 1.2%. Itis also reported that the first heuristitop@s better when the lead
time are shorter and the holding costs are lower. For thenskeeuristic, the average
percentage cost penalty is found to be quite high, althougltomputationally much
faster than the former. The algorithms are reported to bie @ffiicient in terms of the

computational requirements.

Apart from the approximations for base-stock systems ifiteeture, there are ap-
proximations proposed to evaluate the multi-echelon itergndistribution systems
with batch ordering policy. A common approach among thegeizais to approx-
imate each facility as a single-facility inventory systerin one of these works,
Svoronos and Zipkin (1988) consider a two-echelon invensgstem consisting of a
number of identical retailers and a warehouse replenistmem. They assume that
all facilities operate under & R) policy and demand is Poisson. The objective is to
minimize the average inventory holding and backorderingioln order to approx-

imate the average inventory and backorder levels at thehoase and the retailers,
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they decompose the problem and solve the problem of eadityffaeparately. For the
analysis of the warehouse, they consider both an exact aag@oximate method.
They approximate distribution of the demand during reglement lead time, i.e.,
the sum of transportation time and delay at the central vearsd due to backorders,
by using two-moment approximations, using three alteveativo-parameter fam-
ily of distributions. This simplifies the estimation of theesage inventory and the
backorder levels at the central warehouse. For the analy¢ige retailer, first they
approximate the probability distribution of the replemsmt lead time at the retailer
using a two-moment approximation based on a negative badaiistribution. Then,
by using this approximate distribution and the variancéredes for backorders at
the warehouse, they approximate the steady-state distmisuof the outstanding or-
ders and the inventory and the backorder levels at the eetailin this way, these
probability distributions are obtained by considering tiependencies between the
facilities. Through a computational study, the perforneaonttheir method is tested
against those of Deuermeyer and Schwarz (1981) and Lee amzadtzh (1984a, b),
who study the same problem, by simulating the solutionsindtbby each method.
The simulation results show that their method is more a¢euran the other meth-
ods. Although the main focus of the paper is the evaluatiah@fystem, they also
study the optimization problem of this system. They assurmatthe order quantities
at all facilities are predetermined. To find the optimal cearlevels given the order
guantities they use a simple search procedure based tleat tfie reorder levels at
the warehouse, for each retailer, the resulting cost fands convex in the reorder
level.

Moinzadeh and Lee (1986) consider a two-echelon inventgsiesn for repairable

items. The system consists of a number of site and a depehisping them. All sites

operate under &, R) policy, whereas the depot operates under&nr (, S) policy.

In this sense, their system is exactly the opposite of otingetThey assume that the
order quantity is identical for all sites, while the reort¢krels are nonidentical. The
objective is to minimize the average inventory holding,kmadering and setup costs.
To obtain the optimal or near-optimal policy parametergiiersystem, they propose
a 2-step procedure. In the first step, the order quantityHerrétailers is obtained

by using a power approximation in which the average total isogpproximated as a

23



nonlinear function of the order quantity. To obtain such:gpression, a regression fit
is performed by using 600 problem instances. In the secan after determining
the order quantity using the power approximations, thedeolevels at the sites and
the depots are obtained by using a one-pass heuristic sgarobdure. That is, first
for a given value of the reorder level at the depot, the ogdtie@der levels at the sites
are obtained. In this situation, the resulting average ftogttion is convex. Hence,
it is quite simple to obtain the reorder levels at the siteber, after finding these
parameters, a search for the optimal reorder level at thetdepnade. In this case,
the total cost function is not necessarily convex. Howewee-pass heuristic iterates
as if it is convex. The whole procedure also involves appmating the number of
outstanding orders at each site by using a two-moment appabtion by Lee and
Moinzadeh (1984a). They show that the entire proceduresgive optimal solution
in 95% of the instances. The method is also used to test whiiiné& — 1, S) policy is
optimal or not for repairable items. They show that when daihia low, the number
of sites is high and average transportation or repair tinkeng, (S — 1, S) policy is

more likely to be optimal.

Cheung and Hausmann (2000) study a two-echelon inventotgraysonsisting of
a supplier and a number of nonidentical retailers. The d¢ilEes to minimize the
average inventory holding, backordering and setup codtgadilities operate under
a (Q,R) policy. A general demand distribution is assumed. The@stshow that
the distribution of the inventory position is independehtttte distribution of the
inventory position at other facilities and as well as thalleme demand distribution
at the supplier and also show that this distribution is unifo This simplifies the
derivation of the average inventory and backorder levelser&fore, this makes it
possible to have a closed form expression for the backomletd at the supplier.
They assume that retailer parameters are given. In thetgty the problems reduces
to single-echelon@, R) policy, hence, since the average total cost function isli
convex in the reorder level and the order quantity, it becoratatively easy to obtain
the policy parameters. They also test the performance afjubie Poisson demand
approximation, which is quite often used in the literatufée results show that the
performance of Poisson approximation is well but using ithe optimization of a

two-echelon system may result in high loses.
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There are also papers studying the batch ordering problamaséchelon inventory
distribution systems facing a compound Poisson demandataxet al. (1994) con-
sider such a system consisting of a central warehouse anthbemwf nonidentical
retailers facing a compound Poisson demand. They propoap@onximate evalua-
tion method to analyze this system assuming that all faslioperate under a base-
stock policy. They also consider the extension of the metbdgatch ordering. In
this method, the compound Poisson demand model is replacadPbisson demand
model such that the mean to variance ratio is preservedidwty, they also question
whether a Poisson demand model can be used although the désmamt Poisson.
After replacing the compound Poisson demand model, theyphrameters of the
Poisson demand model is obtained by using a heuristic sitaldloinzadeh and
Lee (1986). They also consider the optimal solution of thikcpgarameters using
the method proposed by Aater (1990) (Axater’s paper is reviewed under the exact
evaluation methods) for two-echelon systems facing Poissmand. The optimal
solution is used to test the performance of the approxima®well as the heuris-
tic. For the batch ordering model, since order quantitiesemsumed to be given,
hence, the algorithms are extended to the batch orderirgemoeasily. Through a
computational analysis, the solution is found to be vergeltw optimum. However
there are variations in the performance of the method, m.gome of the problem
instances the method is outperformed by another methobaphp a worst possible
alternative, in which Poisson model is directly used withemy scaling. The average

percentage cost penalty of using this model is found to betali%.

Axsater et al. (1997) consider a two-echelon inventory digtridm system consisting
of a central warehouse and a set of nonidentical retaildt$adilities operate under a
(nQ, R) policy. The demand is assumed to be compound Poisson. Téetiob is to
minimize the system-wide inventory holding and shortagescol he author proposes
an approximate method to evaluate the system-wide costméligod is based on two
approximations. First, the correlation between the nunobbackorders from retail-
ers at the central warehouse and the outstanding ordefseaitretailers are ignored so
that each retailer is considered separately. The errorsadtie first approximation
is found to be negligible. Second, Poisson demand procedisasetized by using

multiple discrete time steps. To expedite the procedurdinits the number of time
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steps and implements a linear extrapolation to estimatsytstem-wide cost as func-
tion of the number of time step. Through a computationalysthd author shows that
the relative error between the exact cost and the approgiowt is less 0.43%. The
author also proposes an exact solution procedure for theigption of the policy
parameters. Since the order quantities are assumed to &, govfind the optimal
reorder levels at the central warehouse and the retailezgtbads the exact solution
procedure proposed by Axker (1990) to compound Poisson setting.

Axsater (2001) considers a system with a central warehousernalber of noniden-
tical retailers system, where all facilities operate ural@rQ, R) policy and demand
is compound Poisson. The objective is to minimize the aweragentory holding,
backordering costs. He focuses on systems with high demashdl@velops an ap-
proximation for such systems by approximating the high deinease with a low
demand case. First, the demand is scaled down such thatribacsxto-mean ratio
is preserved. Then, the system is optimized based on the éomadd model. He
assumes that the order quantities are determined in advaimbe reorder levels are
optimized by using a method similar to Moinzadeh and Lee §)L9&\fter finding
the optimal parameters of the low demand system, the saolaiigche low demand
model is transformed back to the high demand case. This stgpres scaling down
the average demand, order quantities and reorder levelelgame factor. Since the
method requires scaling down the reorder level, order gtizsby a common factor,
it is only suitable for high demand models, e.g., it is not aprapriate model for
systems in which the optimal order quantity for an item cdegdl such as the one
considered in this dissertation. Since the exact evaloatithe system is intractable,
they consider simulating the system. The simulation rumsvsifhat the percentage
cost penalty of using the method is around 2.0% but increaséle demand size

increases.

Axsater (2003) considers a system with a central warehouse andhaer of non-
identical retailers system. The demand is assumed to be aamdpPoisson. The
objective is to minimize the average inventory holding, kmadering costs. All fa-
cilities apply a 6Q,R) policy. He approximates the lead time demand distribution
using a normal distribution. Similar to Aager (2001), order quantities are assumed

to be given or predetermined. In order to find the reordedsegemilar to Moinzadeh
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and Lee (1986), a heuristic procedure is used based on thmpsen that the cost
function is convex in reorder level at the central warehotieealso considers a lower
and an upper bound to expedite the procedure. Later, theoshétlextended to sys-
tems with more than two-echelons as well. The method isldeitar large systems,
hence, tractable for practical size systems. The percertast penalty of using the

method is 0.6%, which is quite satisfactory.

Forsberg (1997) considers a two-echelon inventory systémancentral warehouse
and a number of retailers. All facilities operate undeiaR) policy. This paper
differs from the other papers in that the customer inter-artiveds are assumed to
be generally distributed and the demand is assumed to belemiand. The author
only considers the policy evaluation issues. First he eldehe exact evaluation
method proposed by Forsberg (1996) to this setting. He algjposes two dierent
approximations each of which is based on approximating greerally distributed
inter-arrival times by an Erlang distribution. The perfamee of the approximations
are tested against the simulation runs. The two approximatiethods give the same
results in all instances. The average relatiedence between the simulated and the
approximated values for the average inventory and backéedels is reported to be

1.5%. Nevertheless, he also reports that there are vargitiathe results.

Although the approximations are prevalent in the literatwsing them in a policy
optimization problem for a multi-item system under sery@e| constraints may re-
sult in infeasible solutions. In this situation, the measaf the infeasibility of the
solution obtained by a certain approximation becomes vaportant. The two most
commonly used approaches in multi-echelon inventory ifigion systems, i.e., the
METRIC and the two moment approximation, are tested in a siitghn (Graves
1985) and a multi-item setting (Wong et al. 2007) and it issghthat the performance
of the Graves’s two-moment approximation is quite well, veas the METRIC may
yield highly infeasible solutions. Therefore, whether aram use an approxima-
tion depends on the performance of the corresponding appation. Although the
performance of the commonly used approximations are testeshgle-item multi-
echelon inventory distribution systems facing Poisson atein their performances
are not investigated under a multi-item, compound Poissmashd setting. In this

dissertation, in Chapter 5, we consider several approxamafior the analysis of the
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system under the compound Poisson demand setting. Threes# &pproximations
correspond to the extensions of the METRIC and the two-morapptoximations

to our setting. We provide a comparison of these approxonatand the results of
this comparison contributes to the relevant literature.opgosed to the approxima-
tions, exact methods guarantee feasible solutions wheratieeemployed to find the

optimal or near-optimal policy parameters.

There exists exact evaluation methods proposed for meftglen inventory systems
as well. Although the main contribution of Graves (1985his proposal of the two-
moment approximation for base-stock systems, he also pespan exact evaluation
method for multi-echelon inventory distribution systeni$ierefore, this work also
belongs to the stream of literature that propose exact atralumethods proposed for
multi-echelon inventory systems. The method relies onghd-time demand method

and utilizes the binomial disaggregation.

Axsater (1990) considers a two-echelon inventory system witar@house and a set
of retailers. All facilities operate under a base-stockiqyol The demand is Pois-
son. The objective is to minimize the average inventory imgicand backordering
costs. In this seminal work, Agser develops both an exact evaluation and an exact
optimization algorithm for the system. The exact evaluatieethod is based on keep-
ing track of each unit as it moves through the system, whidm@vn as flow-unit
method (Simchi-Levi and Zhao 2010). The method facilitatiesctly evaluation of
the average system-wide cost function for a given basdegtolicy. In this sense, it
differs from the lead time demand method, which requires det@ngof the station-
ary distribution of the inventory and the backorder lev&sr(on 1971 and Graves
1985). The exact optimization algorithm is summarized #evs. First, for a given
base-stock level at the warehouse, the base-stock levidle agtailers are obtained.
In this situation, the entire problem decomposes into sif@tility problems, hence,
obtaining the solution for these subproblems becomes gint@le since the cost
function is convex. After finding the solutions of all subplems, the system-wide
cost function is optimized over the base-stock level at taestwouse. This requires
an exhaustive search since the function is not necessarniyeg in base-stock level at
the central facility. However, to expedite the procedueeptoposes lower and upper

bounds on the base-stock level at the warehouse. After ¢nmsngl work, many of
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the papers published use this exact method or a similar oseatich for the optimal
solution of the two-echelon inventory distribution sysgenin this dissertation, we
consider a similar procedure to solve single-item submls| which is later used in
the development of the exact solution procedure and thagtiesrfor our problem.
Our algorithm difers from Axg&ter (1990) in that it is proposed for a batch ordering
system.

There are exact evaluation methods proposed for batchingdgystems as well. In
one of the seminal works, Simon (1971) extends SherbrodkEERIC to a diferent
setting allowing the analysis of consumable, repairabtecamdemned parts together.
However, he assumes a Poisson demand and constant repdjrt{fee. Similar to
our system setting, he assumes a batch ordering at the depase-stock policy at
the bases. The filerence from our system setting is that the depot operatesy @amd
(s, S) policy. He deals with the exact analysis of the system amiekethe steady-
state probability distributions of the inventory and thekader levels at all facilities
and as well as the number of items in repair. The method isdbasehe lead time
demand method, in which the distributions of the inventang éhe backorder lev-
els are obtained based on the lead time demand distribuSiomchi-Levi and Zhao
2010). His findings are seminal and used by many other resex@tor the analysis
of two-echelon inventory distribution systems witlfdrent settings, e.g., he shows
that binomial disaggregation is exact for two-echelon mwey distribution systems

under Poisson demand.

Axsater (1993) considers a two-echelon inventory system witkrdaral warehouse
and a number of identical retailers. All facilities operateder a Q, R) policy. The
demand is Poisson. He proposes to express the system-vgidencier the @, R) pol-

icy as a weighted average of system-wide costs under basksblicies. He shows
that, in this situation, many of the results obtained forebst®ck policies by Axater
(1990) can be extended to batch ordering problem. His metims on the flow-unit
method, in which a single unit is followed. In this methodsftfihe introduces two
probabilities, i.e. pi;, probability thati™" subsequent system demand will trigger the
j™" subsequent retailer order, aggl;, the probability thaim demands arrive at the
retailer during the waiting for th¢" subsequent retailer order. Then he defines the

entire cost function based on these probabilities. Fiesfpioposes an exact evalua-
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tion method to calculate these probabilities, as well assttstem-wide cost function.
However, since the exact evaluation is computationallyiitive, he proposes three
alternative approximations fqg;. Since the method proposed by Svoronos and Zip-
kin (1988) outperforms those of Deuermeyer and Schwarzl(1&8d Lee and Moin-
zadeh (1984a, b), he compares the performances of the ap@ations with that of
Svoronos and Zipkin (1988). The results show that third expration is slightly
more accurate than that of Svoronos and Zipkin (1988). Feotitimization of the

system, he assumes that order quantities are predetermined

Axsater (1998) extends the analysis of Ak (1993) to a similar system with non-
identical retailers. First, he proposes an exact evalnatiethod for the two retailer
case. Then using this model, he approximates systems wité than two retailers.
In latter case, when a retailer is analyzed, the other egtadlre aggregated into a sin-
gle dummy retailer so that the entire problem becomes a étailer problem. Since
the sum of Poisson processes is also Poisson process, thednetfuite reasonable
for Poisson demand. For the optimization problem, he assuha the order quan-
tities are predetermined. Then the reorder levels are @husing an exact search
procedure similar to Axaer (1990).

In another related work in this steam, Forsberg (1996) clemsia two-echelon system
with one warehouse and a number of nonidentical retaileis. like Axsater (1993),
he proposes an exact evaluation method for two-echeloarmagstith batch ordering
policy. Just like Ax&ter (1993), the average system-wide cost for this batoériomgl
system is expressed as a weighted average of base-stosk Tostefore, the average
cost is obtained by using the results in Aksr (1990). Through a computational
study, the performance of the exact method is tested witlextension of Svoronos
and Zipkin’s (1988) to nonidentical retailers. In this studs in many of the papers

studying the batch ordering problems, he assumes that quaettities are given.

The methods proposed by Axter (1993), Axater (1998) and Forsberg (1996) rely
on the flow-unit method, which is based on keeping track oheaut as it moves
through the system. The main disadvantage of their methtthisthey require re-
calculation of the expressions and the convolution wherotider quantities at the

retailers change. Therefore, the methods is not suitabétre system is optimized
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with respect to the order quantities at the retailers.

There are also studies proposing exact evaluation metlowds/$tems facing com-
pound Poisson. However, compound Poisson demand intreduaay challenges
to the evaluation of multi-echelon inventory distributigystems. First, the binomial
disaggregation fails, hence, exact evaluation methodsdbas lead-time demand
method become quite complicated (Shanker 1981). Simjltnéyflow-unit method,
which is involved even for Poisson demand, still works butdmees more involved
(Axsater 2006). Shanker (1981) considers a two-echelon iteeniovy distribution
system in which items can be consumable, repairable andecomed. The system
consists of a set of bases and a central depot replenishemg. tithe bases operate
an S - 1,S) base-stock policy and the depot applies a8 policy. Hence, just
like in our system, the author considers batch ordering ahtiie central warehouse,
but, with a diferent batch ordering policy. The demand is assumed to be @amap
Poisson. For the corresponding system, he derives the sbeacty-state distributions
of the inventory position at the central warehouse and shawitis uniform. He also
obtain the exact steady-state distributions of the inugnamd the backorder levels
at all facilities. The author only deals with the evaluatminthe system. He does
not provide a solution method for the problem. Instead, liécates that the exact
evaluation method can be used to obtain a total cost funetsowell as the system
performance measures and all these later can be used inttimezagion of the over-
all systems. However, he argues that this is quite comumally complicated since

the method requires computation of several expressions@malutions.

Forsberg (1995) analyzes a two-echelon system with onehwase and a number of
nonidentical retailers. He assumes a compound PoissormdkerAd facilities operate
under an order-up-to-S policy, which is the extension®#(1, S) base-stock policy
to compound Poisson demand. He proposes an exact evalusibiod to obtain the
average system-wide inventory holding and backorderirgjscoThe method relies
on replacing the compound Poisson demand with a Poissonmdkeniée expresses
the average system-wide cost as a weighted average of systencosts for the
Poisson demand case and solves the Poisson demand casthesmeghod proposed
by Axsater (1990). To optimize the problem he extends the seagchitdm proposed
by Axsater (1990) to compound Poisson setting.
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Axsater and Zhang (1996) study a two-echelon inventory systégmame warehouse
and a number of nonidentical retailers. The demand is congh&wisson. All facil-
ities operate under an order-up-to-S policy. The objediie minimize the average
inventory holding and shortage costs. They provide a re@ipsocedure for the eval-
uation of this system by extending the exact evaluation otefitoposed by Axaer
(1990) to a compound Poisson demand setting. Although Ecgg995) derives the
exact distribution for the compound Poisson case by solsawgral Poisson demand
models, Axaiter and Zhang (1996) derive the cost function directly. ptnoize the
systems, they consider the algorithm in Atex (1990). Just like other papers on
batch ordering policies, they optimize the system pararseigsuming that the order

guantities are determined in advance.

The exact evaluation of batch ordering systems wW@hR) policy under a compound
Poisson setting is considered only by Akesr (2000). In this paper, A&ser (2000)
considers a two-echelon inventory system having a warehand a number of non-
identical retailers. The demand is compound Poisson. Tateathe system, he
proposes an exact evaluation method, by extending theearkthods based on the
flow-unit method. First, the steady-state probabilitieshaf inventory and the back-
order levels at the retailers are obtained. Then, usingthesbabilities, the average
inventory and the backorder levels are obtained. Findly,average inventory and
the backorder levels at the central warehouses is obtaipesibg the average in-
ventory and the backorder levels at the retailers. As ogptusearlier studies, e.g.,
Axsater (1998), that are based on deriving the average codiidaneithout finding
these steady state probabilities of inventory and backadestels, this method requires
evaluating the steady-state probabilities of the invgnémd the backorder levels di-
rectly. Hence, the main advantage of the method is that ipjdi@able to systems
with any type of cost structure. Also in this method, sysiside cost is directly
generated for the compound Poisson demand, whereas ingfgrEl®95) they are
obtained from the Poisson demand costs and this makes th®dnetore icient
than the latter. Nevertheless, the procedure is not trictab problems with large
demands and large order quantities. Therefore, he suggestheod making it possi-
ble to replacing the high demand system with a low one sirtoléte one discussed in

Axsater (2001). The method is quite tractable when the ordentiies are between
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1 and 10, but becomes involved as they increase, especiady arder quantities are
optimized as well. As in many of the papers on batch orderoigies, order quan-
tities are assumed to be predetermined. The exact anafytsis compound Poisson
demand model that we provide in Chapter 5 mainly relies on tethaud developed
by Axsater (2000).

In a recent work, Zhao (2008) considers a more complex sugmdyn structure in

which there is at most one directed path between stages. sykism structure in-
volves assembly, distribution systems, tree structurtiligion systems as well as
two-echelon distributions systems. The demand is comp®&osson. All facili-

ties operate under a base-stock policy. He provides an exattan approximate
evaluation for the analysis of the system. The author arthwgsmethod developed
by Forsberg (1995) and Aaser (2000) are computationally morg&ieient than this

method. The advantage of Zhao's method is that it is a morergeone and can
be applied to various, more general supply chain systeméinddhe optimal base-
stock polices they consider a method based on a dynamicgmging (DP) based

algorithm originally developed by Simchi-Levi and Zhao (20.

2.1.2 Multi-ltem Systems

Apart from studies on single-item multi-echelon inventdigtribution systems, a -
more recent- body of papers study the multi-item systemsmadaly contribute to
this body of the literature. Mostly, these papers proposeisics to obtain the policy
parameters of the multi-item multi-echelon inventory dsttion systems. Therefore,
solving practical industry-size problems is criticallyportant. A common approach
is to decompose the problem by facilities grdparts, predominantly by means of
a Lagrangian relaxation, then apply an iterative procetlum@mbine the resulting
subproblems, which is also the case in our work. Also, moshefpapers rely on
approximations, although there are heuristics based oct exaluation methods as
well. Recall that in our study, we consider exact evaluatmrilie Poisson demand,
whereas for the compound Poisson demand we consider boltodsetJust like the

one in this dissertation, the system approach is common gbthese papers.
In an earlier work, Muckstadt and Thomas (1980) consider ki-item two-echelon
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inventory system having a distribution center and a numbeustomer-service ware-
houses. All facilities operate under &€ 1, S) policy. The demand is Poisson. The
authors investigate the advantage of multi-echelon irgnsystems over single-
echelon model, hence, compare the performance of the statielon model with
that of the multi-echelon model. In the single-echelon nhottiee base-stock levels
are determined separately for each echelon and locatioarenthe objective is to
minimize the inventory investment subject to an aggregat@ce level constraint. In
the multi-echelon model, the base-stock levels &edent locations are determined
simultaneously, where the objective is to minimize the expe replenishment lead
time for a customer demand subject to budget constraint.ppooximate expected
replenishment lead time, they consider an approximatied urs a earlier study due
to Feeney and Sherbrooke (1966). Both models are solved by adiagrangian re-
laxation of the constraints. They report that the singleeémn model requires twice
as much inventory as the multi-echelon model. For low den@anathigh cost items,
the multi-echelon model is much more suitable. The commurtat requirements of
the multi-echelon model is comparable with that of the gngthelon model. Hence

they conclude that it is worth to use multi-echelon models.

Hausmann and Erkip (1994) extend the results of MuckstadtTdromas (1980).
Similarly, they compare the multi-echelon model and thelsitechelon model in
which the latter is used to approximate the former. They psepan iterative search
procedure to find the base-stock levels. They find the siaghelon model is more
appropriate when the budget constraint is less tight. Thpgnt that the percentage

cost penalty of using single-echelon models is less than 5%.

Calar et al. (2004) study a two-echelon spare parts invend@tribution system
consisting of a central warehouse and a number of field depditéacilities imple-
ment base-stock policies. The demand is Poisson. The olgestto minimize the
system-wide inventory cost subject to an aggregate megomes time constraint.
The authors propose a heuristic to find the policy paramekerst, they decompose
the problem by echelons, each of which is solved using the RIETapproximation
due to Sherbrooke (1968). Then, they apply an iterativequoe to combine the
subproblems. The experimental study shows that their $ieiyiields more accurate
results than that of Hopp et al. (1999).
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Wong et al. (2007b) study the same problem a§l@eet al. (2004). He propose four
different heuristics to find the optimal base-stock levels favaé¢chelon pure base-
stock system. The heuristics are based on various comtmsadi a greedy heuristic,
alocal search and the decomposition and column gener&@©6] method. Through
extensive experiments with problem instances up to a siZ€0fparts and 20 lo-
cal warehouses, the performances of the heuristics aedltagainst a lower bound
proposed in the study. They report that the greedy heugsticbined with the de-
composition and column generation (DCG) yields quite satisiry results in their
setting, but the heuristic is tractable for problems up taza sf 100 parts and 20
local warehouses. They report that the greedy heuristidawed with DCG vyields
quite satisfactory results, with an average relative gaptlean 2% and the maximum
below 10%. The Lagrangian heuristic that we develop for sabjem in Chapter 4
is a similar procedure. Using the Lagrangian heuristic, Wio quite satisfactory
results for our batch ordering problem. While implementing method, (1) we em-
ploy an algorithm to solve the subproblems arising as a re$uhe decomposition
in the entire procedure based on using lower and upper baamtse optimal policy
parameters, and (2) we also consider variants of this mettaidire based on the se-
guential approach. Consequently, while our problem is monepticated than Wong
et al. (2007b) -as we considgd(R) policy in the upper echelon-, our heuristics solve
yet larger-scale problems with up to 10,000 parts. The dtkeristics proposed by
Wong et al. (2007b) are tractable for larger problems, bay tyield less satisfac-
tory results compared to the DCG, e.g., for the problem irgamvith 100 parts, the
relative gap between the DCG and a lower bound proposed i84).while for the
greedy heuristic which is tractable for large-scale protdethe maximum relative
gap is 9.65%.

Caggiano et al. (2007) consider a multi-echelon spare pawentory distribution
system. All facilities operate under a base-stock polidye demand is Poisson. The
objective is to minimize the inventory investments subjedervice-level constraints.
They consider time-based service levels, e.g., 90% of paetsnstantaneously sat-
isfied, 95% of the parts are within 8 hours. They propose twer@dtive heuristics
to obtain the base-stock levels at all locations. The firatis&c, Fastincrement, im-

plements a greedy algorithm relying on increasing one obtme-stock levels at a
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time until service level constraints are satisfied. The sddweuristic, PrimalDual,
resembles our Lagrangian heuristic and that of Wong et &0{R In this method
the multi-item problem is decomposed into a number of skitgi® problems using a
Lagrangian relaxation. The dual search is accomplishedhbypging the Lagrangian
multipliers until a user-specified limit is reached. Figahis lower bound solution
is converted to a feasible integral solution using a gredggrahm based on incre-
menting the basetock levels until feasibility is achiev&ihth heuristics are shown
to be quite icient and éective. They can solve problems with 27175 part-location
combinations in almost 21 hours. The relative gaps withr floeier bound are 0.59%
for such problems. Hence, this is one of the papers in thatitee having quite high
accuracy andf&ciency in terms of the computational requirements. As opgdse
Caggiano et al. (2007), in our dissertation by using the Liagjemn heuristic, we can
solve 130,000 part-location combinations within 12 howrsile the optimality gaps
are slightly better than theirs. Although they consider &immore complicated sys-
tems than the one in this dissertation, our system is a bati#ring system, which
is a generalization of the base-stock systems. Furthernmomntrast to Caggiano
et al. (2007), we consider a column generation method gteesng the optimal

Lagrangian multipliers to implement the Lagrangian praced

There are also papers that deal with the multi-item multiedan inventory distribu-
tion systems with batch ordering. In an earlier study, Cohead.e(1990) consider
a large spare parts inventory distribution problem for IBRIwhich there are mil-
lions of part-location combinations. All facilities opéeavith an €, S) policy. They

also consider the parts commonality among the productoAgh their system is
a periodic review model, we include in our literature reviegacause of the solution
technique is based on the decomposition technique. Thetajea multi-item multi-

echelon model allowing parts commonality to minimize theemtory investments
subject to service constraints. They solve this gigantabfam in three stages. In
the first stage, the overall problem is reduced to solvingipialsingle-item single-
facility problems, and then in stage 2, by integrating thps®blems a multi-item
single-facility problem is solved. In the last stage, theugons of the problems in
stage 2 are embedded into the solution of the overall mubtthpct multi-location

problem. To solve the problem, a level by level decompasitigorithm is used,
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whereas a greedy heuristic is used in order to solve the -ierti single-facility

problem.

Among the studies on batch ordering, the papers that are nrelestint to our work
are Hopp et al. (1999) and Al-Rifai and Rosetti (2007). Hoppl.ef1®99) consider
a two-echelon spare parts inventory distribution systensisting of a distribution
center and multiple nonidentical regional facilities inieththe distribution center
operates undeKy, R) policy, whereas the regional facilities operate undeeksteck
policies. The demand is Poisson. The objective is to mirertie inventory holding
costs subject to aggregate fill rate and target order frexyueonstraints. The sys-
tem difers from ours in two aspects: First, it involves a targetllevethe aggregate
ordering frequency rather than explicit part-specific fieedering costs at the upper
echelon facility. Second, aggregate fill rate is consid@®d service measure, while
we consider the aggregate mean response time as a servisermgaour work. To
find the policy parameters of this system, they decomposeethdting problem by
echelons using a Lagrangian relaxation, and then to solue ®#problem, they use
the two-moment approximation by Graves (1985) and a se@ideuristic proposed
by Hopp et al. (1997), in which the order quantities and tlerder levels are ob-
tained separately. The performance of the heuristic iedeagainst two alternative
lower bounds in a computational study. The results of theerpents reveal that the
relative gap between the heuristic solutions and the tighteer bound is less than
5%. Also, it is experimentally shown that the algorithm calve a larger problem
instance with 1263 parts and 2 regional facilities. Henloe authors argue that there
is a need for further improvements in the algorithm to solwvemlarger problems

encountered in practice.

Al-Rifai and Rosetti (2007) consider a two-echelon sparespaxtentory distribu-
tion system consisting of one warehouse and multiple idahtetailers, all of which
operate under@, R) policy. The demand is Poisson. The objective is to minimize
the average inventory investment subject to average oglérequency and average
backorder constraints. Their system settinjeds from ours in three aspects: First,
a target level is considered for aggregate ordering frecyueather than fixed order-
ing costs for each facility. Second, the total expected remab backorders is set
as the performance measure rather than the aggregate nspamse times. Third,
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they consider only the identical retailer case, whereasrmdgel allows for noniden-
tical local warehouses. Their heuristic can solve largdesproblems. Similar to
Hopp et al. (1999), Al-Rifai and Rossetti (2007) propose ais&arto find the policy

parameters by decomposing the problem by echelons and pipdyireg an iterative

heuristic procedure to generate Lagrangian multiplietseiTheuristic relies on the
normal approximation of the lead time demand distributibmegailers. Since the
order quantities and the reorder levels are determinedlsinaously, it can be seen
as an application of simultaneous approach. Through a ctatipoal study, the per-
formance of the heuristic is tested against the solutionaioéd by an optimization
software and the results of simulation runs. They show tmathieuristic can solve
a large-scale problem. Nevertheless, since an analytalien or a bound is not
available for large-scale problems, they encountéiadities in evaluating the per-

formance of their method in an analytical sense.

In terms of the solution procedure followed, our work in Clesk difers from these
two papers in two aspects. (1) In our study, the evaluatiavefage inventory levels
is exact, while Hopp et al. (1999) use a negative binomiat@pmation, Al-Rifai
and Rosetti (2007) use a normal approximation for the lead tiemand distribution.
(2) The heuristics in both studies, and also ours, rely oh#ggangian approach, and
hence, each one requires a search procedure to obtain thedss#le Lagrangian
multipliers. In order to find the Lagrangian multipliers, d@low an exact search

procedure while the aforementioned studies use iteragueistic search procedures.

Apart from these papers, there are three review papers oti-@stielon inventory
systems. Kennedy et al. (2002) review works on spare pareniaries studying
different aspects of spare parts inventory management such resgenel issues,
multi-echelon inventory problems, obsolescence, replErage-based replacement.
Simchi-Levi and Zhao (2010) investigate the methods andrtbdels developed for
multi-echelon inventory systems forftérent network types, inventory polices and
demand process. itnis and Gineri (2007) survey studies on multi-echelon inven-
tory management published between the years 1996 and 28/@5tie perspective of

operations research.

This dissertation contributes to the multi-item multi-eldn inventory literature in
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the following three aspects. First, the exact solution edoce that is developed for
our system is the first in the literature on multi-item m@thelon inventory distri-
bution systems. Second, we note that almost none of theitignsrin the literature
(except Wong et al. 2007b) guarantee feasible solutioredimese algorithms rely
on approximate evaluation of the objective function and ¢bestraints. Further-
more, for some of the heuristics, it is not clear whether theytractable for large,
practical size problems (Hopp et al. (1999),2a et al. 2004). The ones that are
reported to be tractable for large-scale problems eitheow@mter dificulties in eval-
uating the performance of their heuristics against an aicalysolution or a bound
(Al-Rifai and Rossetti 2007), or they are developed for systemder pure base-
stock policy (Caggiano et al. 2007), Wong et al. 2007b). Hewce dissertation
contributes to the vast literature on multi-item multi-eldn inventory optimization
problems by proposing an exact solution method afidient heuristics based on an
exact evaluation -hence guaranteeing feasible solutem$also a tight lower bound
for large-scale practical-size multi-item two-echelowentory problems with batch
ordering at the central warehouse. Third, to the best of aomkedge, our work is
the first to propose heuristics for finding optimal or neatiopl policy parameters of
a practical industry-size multi-item two-echelon invagtoontrol system with batch
ordering facing a compound Poisson demand.

2.2 Sequential Heuristics

Another direction of research related to this dissertadhe development of sequen-
tial heuristics and investigation of their performancekere are a number of papers
studying the sequential heuristic in single-echel@nR) model. Zheng (1992) ana-
lyzes the performance of the EOQ with planned backorderaita in a sequential
heuristic to obtain the order quantity in a single-item &pgchelon Q, R) model un-
der a general demand distribution. He analytically showastthe EOQ with planned
backorders performs well, resulting in a percentage castlpeof less than 12.50%
theoretically. Through a computational study, he shows tthe numerical findings
are much better: In 80% of the numerical problem instancesp#rcentage cost

penalty is less than 1.00%, and the maximum percentage epattp is found to be
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2.90%. He also reports that the EOQ with planned backordsfenms better when
fixed ordering cost is high. Following this line of resear8iksater (1996), who stud-
ies the same problem with Zheng (1992), improves the bourti@percentage cost
penalty of using the EOQ with planned backorders down to .8 Silver et al.
(1998) focus on the performance of the sequential detetroimaf the order quanti-
ties and the reorder levels in single-item single-eche@iR] model and compare its
performance against the exact solution obtained by deténn@Q andR simultane-
ously. They show that, depending on the problem settingpéneentage cost penalty
of using the sequential approach may be high. The autharssatggest making pre-
liminary tests to see whether the simultaneous approacloigwhile before using
it. Gallego (1998) proposes a batch size heuristic that eansed to determine the
order quantity in a@, R) policy in a sequential approach for @,[R) model based on
the lower and the upper bounds that he proposes on the ordatityu He assumes
a general demand distribution, the analysis is extendediss® demand case as
well. Both the heuristic and the bounds are reported to parfeell. The percent-
age cost penalty of using the heuristic is shown to be less 6l@7% theoretically.
He empirically shows that the average and the maximum p&gertost penalties of
the heuristic are 0.32% and 2.64 respectively, while thdsbeoEOQ with planned
backorders are 1.56% and 10.61 respectively. In this degsamn, in Section 4.2, we
adapt this heuristic to a multi-echelon setting.

In a multi-item setting, Hopp et al. (1997) considers a srgthelon inventory sys-
tem operating under &) R) policy. The objective is to minimize the inventory invest-
ment subject to aggregate fill rate and target order frequemiestraints. The demand
is Poisson. To obtain the policy parameters they propose thasily implementable
heuristics obtained through using closed form expressibmghe first heuristic, the
order quantities and the reorder levels are solved separatee second one requires
solving these parameters simultaneously. The third onebows the closed form
expressions obtained for the three. Through a computadtstudy they show that the
first heuristic, which is based on the sequential approaely,parform poorly but per-
forms better when the target service level is very high aeddinget order frequency
is very low. They report that only in these situation it beesmeasonable to use a

sequential approach.
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As seen from the review of papers in Section 2.1, obtainiegtider quantities inde-
pendently or assuming that order quantities are predetedry using a determin-
istic model is a very common assumption among the papers ¢tir@chelon inven-
tory systems (Svoronos and Zipkin 1988, Svoronos and Zip888, Moinzadeh and
Lee 1986, Axater 1994, Axater 2001, Axater 2001, Axater 2003, Axater 1993,
Axsater 1998, Forsberg 1996, Aater 2000). The method is also widely used in prac-
tical applications due to its simplicity. However, althduipe sequential approach is
a common approach, its consequences in multi-echelonmsgsiee not investigated
yet. In a multi-item multi-echelon setting, Hopp et al. (899vho consider a sequen-
tial heuristic to predetermine the order quantities, caodresidered as an application
of sequential approach. They test the performance of thedtiewith a lower bound
again obtained through sequential approach. Hence, itsrpgnce with respect to
a simultaneous approach is not considered. In this disgert@ne of our objectives
is to evaluate the performance of the widely used sequesmpipfoach against the

simultaneous approach in multi-item two-echelon batcleond) systems.
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CHAPTER 3

AN EXACT SOLUTION PROCEDURE

In this study, a multi-item two-echelon spare parts inven&ystem is considered.
The system consists of a central warehouse and a numberadiwacehouses, each
of which (including the central warehouse) can respond tereal customer demand.
The central warehouse also responds to the replenishmeetsoirom local ware-
houses, implying that it has both internal and external adeln#o satisfy. The central
warehouse operates under a continuous-review installatimck Q, R) policy and
the local warehouses implements a continuous-reviewliasta-stock S — 1, S)
policy. The stocks at the central warehouse are replenigsbedan outside supplier.
We assume that the outside supplier has ample stock. Ulesa@tiemand is backo-

rdered at all locations for each of which an aggregate seienel target is set.

Our objective is to find the inventory control policy parasrstfor this system that
will minimize the sum of expected inventory holding and fixadering costs sub-
ject to constraints on the aggregate mean response timelfacility, which is the

demand weighted average of response times. In this chaptepropose an exact
solution procedure based on a branch-and-price algorithfmd the relevant pol-

icy parameters of the system considered. The procedurespands to solving the
Lagrangian dual problem by using a column generation method then using this
solution as a lower bound in a branch and bound algorithm. braach-and-price
algorithm also involves a greedy algorithm applied on theesponding Lagrangian
dual solution to find an upper bound. Since the column geioeratethod facilitates

decomposing the multi-item problem into multiple singienn problems, we also de-

velop an algorithm to solve the single-item problems.
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To the best of our knowledge, there is no exact solution &lgaorfor finding opti-
mal policy parameters of the multi-item two-echelon inaeptproblems. Hence, our
work contributes to the relevant literature by introducargexact solution algorithm
guaranteeing optimality of the policy parameters for thdtriiem two-echelon in-
ventory system that we pose. First, in Section 3.1, we foateulhe problem. In
Section 3.2, the branch-and-price algorithm is presentéé.basic procedures used
in the branch-and-price algorithm, i.e., the column geti@manethod, the algorithm
developed for solving single-item problems and the greéglyrihm are introduced
in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. Finallection 3.4, we provide the

computational results.

3.1 The model

We consider a two-echelon distribution network in which tber echelon com-
prises a setN, of local warehouses, each is denotedrby 1,2, ...|N|, while the
upper echelon corresponds to a central warehouse, whi@nwed byn = 0. There

is a set,|, of parts, each is denoted by 1,2, ...]|l|. In this system, we assume that
the external customer demand for piaatt warehous@ € N U {0} occurs according
to a Poisson process with ratg. The external demand is independent across parts
and warehouses. In addition to external demands, the tevdrahouse also faces
internal demands from local warehouses. Internal and extelemands are not dif-
ferentiated and are satisfied according to the FCFS rule. ifimiisity, we consider

a single-indenture model, implying that each part is madage product level, but
not at the component level. Note that this is validated inyr&tuations (Kim et al.
2009). We assume part-specific holding costs for all faediand part-specific fixed
ordering costs for the central warehouse. There is no in@efdr joint ordering of
different part types. The demand that can not be satisfied frack stdvackordered.

Warehouses have no capacity restrictions.

As for the control policies, for each parte |, local warehous& € N operates
under a base-stock lev8l,, whereas the central warehouse operates under a batch
ordering policy with reorder levelR and order quantityQ;. The system operates

as follows: Whenever a demand for any padrrives at warehouse € N U {0},
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it is immediately satisfied from stocks if there is an avdeapart; otherwise, the
demand is backordered. In both cases, if the external demsaticected to a local
warehouse, an order of size one is placed at the central aaseh This internal
request is satisfied within a constant transportation lead bf T;,, if the part is
available in the central warehouse. Otherwise, the intelemand is backordered as
well. In any case, if the inventory position of the centrakrgl@use drops to reorder
level R, an order of size&); is placed at the outside supplier. It is assumed that the
supplier has ample stock and can always satisfy requesgaftirin a constant lead
time of Tjgp. The inventory positions are restricted to be nonnegaiiaplying that
R > -1 andS;, > 0 for each part € | and each warehouses N. The manufactures
considered in our dissertation operate in this manner. fEsigiction is imposed by
other researchers as well (see Hopp et al. 1999 a#xs1997). We note that this

restriction is not essential for our analysis.

Based on this system definition, our problem can be statedaa®tlinding policy
parameters minimizing the sum of the inventory holding amddiordering costs
subject to constraints on the demand weighted average oidndl part response
times over all parts at each warehouse, which we refer togreggte mean response

time. Our notation is given in Table 3.1.

For sake of brevity, we omit the parameters that the varsatdgend on (unless there
is ambiguity) e.g.lin(t, Qi, R, Sin) is simply denoted a$,(t). Also, when our fo-
cus is on the limiting behavior of a stochastic variable, wetahe time component,
e.g.lin = t"_To lin(t). Similarly, demands during the respective lead times aftcdn-
tral warehouse and the local warehouse N are shortly denoted by, andY;,,

respectively.

Let A, = Y Ain denote the total demand rate for warehonseN U {0}. By using
Little’s law, the aggregate mean response time at localfarsen € N, Wy(G, R S),

can be expressed as a function of expected number of backdiateparti € I,
E[Bin(Qi, R, Sin)]-
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Table 3.1: General Notation.

i

n

G

h

Ki

/1in

Ao

Aio

Aq

An

Tio

Tin

Mnax

R

Q

Sin

S

S

Q

R

|in(ta Qi, Ri, Sin)
lio(t, Qi, R)
IPio(t, Qi, R)
Xin(ts Qi > Ri, Sin)
Yin(t,t +7)
Bin(t’ Qi > Ri, Sin)
BiO(L in Ri)
BO(t Q. R)
Win(t, Qi, R, Sin)
Wio(t, Q1. R)
Vv|%(t7 in Ri)
Wa(t,G,R S)
WO(t’ 5’ I3)
We(t. . R

Part index|j € |

Warehouse inder € N U {0}

Unit variable cost of paiit

Inventory carrying charge

Fixed ordering cost of partat the central warehouse

Demand rate for paitat local warehouse € N

External demand rate for parat the central warehouse

Demand rate (sum of internal and external) for pattthe central warehouse
Total external demand rate at the central warehouse

Total demand rate for warehouse& N U {0}

Lead time for part at the central warehouse from the outside supplier
Transportation lead time from the central warehouse to local waremoaidéfor parti
Target aggregate mean response time at warehoage U {0}

Reorder level for paitat the central warehouse (decision variable)

Order quantity for pari at the central warehouse (decision variable)
Base-stock level for partat local warehouse € N (decision variable)

[Si1, Siz, - - ., Sing] = Vector of base-stock levels for part

[S1.S,. ..., Syl = Vector of base-stock levels

[Q1.Qz,....Qu] = Vector of order quantities

[Ri, Ry, ..., Ry] = Vector of reorder levels

On-hand inventory level for partat warehouse € N at timet

On-hand inventory level for partat the central warehouse at tirhe

Inventory position for pari at the central warehouse at tirhe

Number of outstanding orders for padt warehouse € N at timet

Demand accumulated for parat warehouse € N U {0} in time interval ¢, t + 7)
Backorder level for paritat warehouse € N at timet

Backorder level for paiitat the central warehouse at tirne

Backorder level of local warehousdor parti at the central warehouse at tirne
Response time for pairat warehouse € N at timet

Response time for parat the central warehouse at tirhe

Response time for parat the central warehouse (for external customers) attime
Aggregate mean response time at warehousé\ at timet

Aggregate mean response time at the central warehouse &t time
Aggregate mean response time at the central warehouse (for éxtest@mers) at timé
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Ain ﬂ E[Bin(Qia Ri, Sin)]

W(QRS) = > 7 EWn(Q.R.Snl = 3 3 :
i€l iel n in

- E[Bn(Q:. R.. Sin)]

An '

i€l

Similarly, for the central warehouse, we obtalg(Q, R) = ¥, S24%R1 Accord-

ingly, the problem ) is formulated as follows.

Min Z [CI (E[Ilo(Ql, Ri)] + Z E[Iln(Ql’ R| Sln)]) ﬂgK (3-1)
icl neN !
sty —E[B‘(’[(\Qi’ R _ W (3.2)
i€l 0
> E[Bi”(Q/i\’ RSl wmax for ¥neN, (3.3)

i€l

Q>1LR>-1S,>0, and Q, R, Siy € Z for Yiel, YVneN.

In problemP, the objective function (3.1) minimizes the expected systade in-
ventory holding and fixed ordering costs. Note that, sinceaggume full backo-
rdering, variable ordering cost are not included in the ciioje function. Constraint
(3.2) and (3.3) guarantee that aggregate mean response dintiee central and lo-
cal warehouses do not exceed target aggregate mean resipoesd\Vy'>* andW;?,

respectively.

Alternatively, one could also model the situation in whictiyathe external customers
are incorporated in evaluating the performance of the akmarehouse. In that
case, the aggregate mean response time at the central wsedbatated as follows:
WG, R) = i i—ﬁgE[V\/i%(Qi, R)], wheres, = Aip — Y en Ain i the external demand
for parti € | andA§ = Ag — XN An IS the total external demand, at the central
warehouse. Since there is ndfdrentiation between the external and the internal
customers we simply haws(GQ, B) = Wy(G, R). Then, we obtain

Ao E[Bio(Q1, R)]

" 8
WS(Q.R) = ) ReEIW(Q.R)] = ), 8= =2,

el 0 iel
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which replaces constraint (3.2). In a way, this alternatinaglel corresponds to weigh-
ing the individual aggregate mean response time valueswvaitiythe rate of external
customers. The rest of this section is devoted to deriviegipected inventory levels
in (3.1) and backorder levels in (3.2) and (3.3).

In order to obtain the expected inventory levels and the ek levels, we use a
method similar to the disaggregation method by #&es (2006), or so called the lead-
time demand method (Simchi-Levi and Zhao 2010). First,esthe local warehouses
operate under base-stock policies, any demand arrivaucmrdly triggers an order
at the central warehouse, the demand at the central ware®tlsee sum of Poisson
random variables and its distribution is also Poisson dseperpositioning. Further-
more, since the net inventory for parat the central warehouse at time Tjg is the
inventory position at timéminus the demand during lead tinig, the corresponding
inventory balance equation is given by(t+ Tio) — Bio(t+ Tig) = I1Pio(t) — Yio(t, t+ Tig).
Consequently, sincPjq is uniformly distributed betweeR; + 1 andR, + Q; (Axsater

2006), the steady state distributionsl gfandB;q are as follows:

R+Q

é 3 P(Yo=k-x}, for 1<x<R+Q,
Plio(Q.R) =x} ={ JTo®Y (3.4)
& 2 PlYoxKk, for x=0,
" k=Ri+1
R+Qj
é S P{Yio=k+x}, for x>1,
P(Bo(Q.R)=x}={ 'Ff* (3.5)
é P{Yio < ki, for x=0,
' k=Ri+1

whereYjq has a Poisson distribution with meagT;o. Next, we evaluate the steady
state distributions of the inventory levels at local wanetes. Under a base-stock
policy, since every demand triggers an order, the invergosjtion, which is the sum
of the net inventory level and the number of outstanding i&de always constant at
the base-stock level. Hence, the inventory position of pattlocal warehousa at
timetis

IPin(t) = Sin = lin(t) = Bin(t) + Xin(1). (3.6)
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Furthermore, since for each parthe number of outstanding orders at titreg ware-
housen is the number of backorders dedicated to warehauaethe central ware-
house at — Tj, plus the demand during lead ting, at warehousa, Xi,(t) can be

expressed as

Xin(t) = BO(t = Tin) + Yin(t = Tin, 1). (3.7)

Note thatB(t, Q;, R) can be obtained by conditioning @w(Q;, R) as

[ee)

PBD(Q.R) =x = » PBY(Q.R) = xBio(Q.R) =y} - P{Bio(Qi, R) =y}, (3.8)

y=x

for x > 0, Whererg)lBio Is binomially distributed with parametei, and j—"; In
this way, the number of backorders (at the central warehamanating from each
local warehouse@ € N is obtained by disaggregation the total number of backsrder
at the central warehouse. This is known as the binomial dregtion. It is exact for
two-echelon distribution systems with Poisson demand atailers operating under
an S — 1,S) policy (Axsater 2006), which is the case for system. The binomial
disaggregation simplifies the derivations quite a lot. &y, by using (3.7), the

steady state distribution &,(Q;, R) can be expressed in terms of the distribution of
BY(Q.R) as

X

(Xn(Q.R) =Xt = > PYn =y} PBY(Q.R) = x—y, for x20,

y=0

whereY;, has a Poisson distribution with meadpT;,. As a result, from (3.6), the
steady state distribution of, (Q;, R, Sin) is

|n(Q|, RI) Sln - X for 1 <X< Sin,

P{lih(Qi,R,Sih) = =
HnQRSD=X=0 1 S b, @RS =1, for x=0
x=1

(3.9)
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Using the distributions of inventory levels in (3.4) and9(3.the expected inventory
costs in the objective function (3.1) are derived. Findtg expected backorder ex-
pressions in constraints (3.2) and (3.3) are

E[Bio] E[Yio] - R + E[lio], (3.10)
E[Bn] = E[Xin] = Sin + E[lin], (3.11)

(@ +1)
2

which avoids solving a nested set of convolutions.

3.2 The branch-and-price algorithm

In this section, an exact solution procedure based on a lyand-price algorithm is
proposed. Branch-and-price is a generalization of the lbramcl bound algorithm
with LP-relaxation. A column generation method is used to obtaoweet bound for
each subproblem (node) of the branch and bound tree. Fingghaevel description
of the algorithm is provided, then in Sections 3.2.1-3.218, basic procedures that

are used as building blocks of the algorithm are explained.

In the branch-and-price algorithm, at each node of the lbramcl bound tree, first,
by iterating a column generation algorithm we obtain therhagian dual solution
of the corresponding node, then, by applying a greedy heuas the corresponding
Lagrangian dual solution, we find a feasible solution to thgioal problemP. The

former solution is used as a lower bound for the correspandode, and the latter
one is used as a candidate for the global upper bound to tighéebounding scheme
and expedite the procedure. Depending on these boundseaswither fathomed, or

further explored by branching. The procedure is repeat@balimodes are fathomed.

As a lower bound, we consider the Lagrangian dual solutiothi@e reasonsi)(The
Lagrangian relaxation d? makes it possible to decompose the multi-item problem
into multiple single-item problemsii{ The Lagrangian dual of our problem does not
have the integrality property, i.e., the Lagrangian refimxeof P does not necessarily
give an integer solution. As a direct consequence of that| #Hgrangian relaxation

has the potential to give a better lower bound than the onelfaelaxation gives
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(Lubbecke and Desrosiers 2004i.)(It is known to be a tight lower bound for multi-
item two-echelon inventory problems with base-stock adrtolicies (Wong et al.
2007D).

At each iteration of the algorithm, we select the node thavides the lowest aver-
age of lower and upper bounds to explore first, because ofugherior performance
observed in the experiments. As for the branching deciswenconsider variable di-
chotomy, which corresponds to imposing branching congsain the original vari-
ables. That is, any fraction&);, or R or S;; whose remainder is closest t@2lis

selected for branching.

An overview of the branch-and-price algorithm is presemefigure 3.1. In Section
3.2.1, we introduce the column generation method. As dssmlisn Section 3.2.1, the
problemP decomposes by part after implementing the method. In Se&ti2.2, a

subroutine is proposed to solve each of these single-itasretthhelon subproblems.

Finally, in Section 3.2.3, we obtain an upper boundRor

3.2.1 Obtaining the Lagrangian dual bound for the problem: Cdumn Genera-
tion Method

In this section, first, we introduce the column generatiothoe, based on its imple-
mentation on the root node. The additional requirementsifdament the algorithm

to non-root nodes will be discussed later.

The column generation method is an application of Dantzaf$Vdecomposition
(Guignard 2003), which is widely used in the literature ttvedoth linear and non-
linear integer programming problems (Barnhart et al. 19@®decke and Desrosiers
2002). The method relies on an alternative formulation ef @hginal problemp,
which is known as the master probleniigtbecke and Desrosiers 2002). The master
problem simply corresponds to listing all set of feasibléiques for each pari € |

and then selecting exactly one of them. Since the columnrgg&ae procedure works
with the principle of generating only the policies (or as tfane suggests columns)
that improve the overall solution, it is not necessary toggate all set of columns,

instead, one can continue with a restricted set. The methwitely used for solving
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Figure 3.1: The Flowchart of the Branch-and-Price Algorithm.
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various integer programming problemsufibecke and Desrosiers 2002, Guignard
2003).

Before giving the details of the algorithm, we first introdumar notation. LetL
denote the set of columns, i.e., control policy parame®rsR, S)), for each part,
andx; be a decision variable indicating whether coluhaL is selected for paitor
not. The parameters of our model are defined as followsCl.et ¢;hE[lio(Q!, R)] +

Gih Ynen Ellin(QL R, ST + % be the expected total inventory holding and fixed
ordering costs associated with coluina L for parti. Similarly let Ajp = %‘W
andAj, = %ﬁsﬂ)l be the relevant terms for constraints (3.2) and (3.3) agtaxti

with columnl € L for parti for each warehousee N, respectively.
The master problemMP) is formulated as follows:

ProblemMP:

MinZ=>"%"Cix

iel leL
st.
D70 Anxi W for Vne NU{O, (@)  (3.12)
iel leL
Z xi =1, for Viel, ) (3.13)
leL
i = 0/1, for Yiel, VI el.

The problem is known as the Master ProbladP). It is a tighter formulation than
problemP, and corresponds to a special case of the set packing prphibith is
known to beNP-hard (Garey and Johnson 1979). The solution ofltReelaxation

of problemMP (LPMP) provides a lower bound on the optimal objective function
value of MP and hence on that &?. This bound corresponds to the Lagrangian dual
bound obtained through the Lagrangian relaxation of thesttaimts of problenP
(Guignard 2003). In order to solve probldolPMP, we follow a column generation
method by generating only the columns that improve the dibgdunction value

of LPMP at each iteration. This restricted version of the problerkniswn as the
Restricted Master ProblenRMP). This step requires solving an integer program-
ming problem known as the column generati@Gj or pricing problem. In light
of these, lettindgZi(Qi, R, Si) = GhE[lio(Qi, R)] + Gh Znen E[1in(Q1, R, Sin)] + Aigi(i,
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Ao = EBAORI andA,, = EBQRSul for j ¢ | andn € N, we introduce the column

generation (pricing) problenCG) as
ProblemCG:

Min Z(Ci(Qi,Ri,éi)_ 2 anAin —,Bi)
iel neNU{0}
st.

Q>LR>-1,S52>0 and Q,R,Sn€Z for Viel, VneN,

wherea, < 0 for eachn € N U {0} andg; unrestricted in sign for eadhe | are the
dual variables (or equivalently Lagrangian multiplierspooblemMP, which can be
obtained from the solution @®MP. In this senseCG is equivalent to the Lagrangian
relaxation of problenf? (Barnhart et al. 1998). In an iterative procedu€& provides
the columns that are required for the solution.&MP, whereas. PMP provides the

dual variables required for the solution©G.

Although the optimal decisions for filerent items are linked via constraints (3.2)
and (3.3) inP, after the Lagrangian relaxation, the corresponding d@tssbecome
independent irCG, which is an unconstrained problem. Hence, the prol¥anis
decomposable by parts, and we decompose it|Ihsubproblems. Lef, = % for
eachn € N U {0} andd = [61,02,...,6n], then the subproblem for parte | for a

. = . .
given value o is given as follows.

SR(6):

AioK
Q

Min G(Qi,Ri,gi):Cih[E[IiO(QiaRi)]+ZE[|in(Qi,Ri,Sin)] +

neN

+ GE[Bo(Q.R) + ) 6nEIBin(Q: R, Sin)]

neN

st Q>1LR>-1,52>0, and Q,R,SneZ for YneN.

Let Z(F) and Z;(d) be the optimal objective function values for proble®& and
SR(f), respectively, the@(f) can be obtained using(d) = Y., (z(9) - 5. Further,

if at least one of the subproblerB& () yields a negative optimal objective function
value, i.e.Z () < 0, then the combination of solutions of subproblems withatieg
objectives is added to sktas a new promising column (solution). Otherwise, opti-

mality is achieved and we conclude that the optimal solutibthe LP relaxation of
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RMP becomes optimal for theP relaxation ofMP as well. Note that each time we
solveSR(#), we generate a column for pare |, i.e., @, R,S)), that is required for

solvingMP.

The column generation algorithm converges to a solutianiged that a nondegener-
ate basic feasible solution exists for the master probleam{zlg 1963). A nondegen-
erate basic feasible solution for the linear relaxatioM&fcan be obtained by gener-
ating the initial columns that satisfy AionXio < W in the strict sense for eache

N. Hence, the corresponding basilélfeasible solution cansishe positive slack vari-
ables associated with 3, Ainxi < W@ for eachn € N and the variablesi, = 1 for
eachi € I. We generzl[éekhe initial solution for the linear relaxatdMP as follows:
First, the order quantities are determined by using the E@Qeai Then, using these
order quantities, assuming that the target aggregate naspomse time at each ware-
housen € N, i.e., W"®, should be reached by each part individually, the initidliea
for the remaining control parameters, i.B%, andS?, for i € | andn € N, are ob-
tained. This corresponds to obtaini@g, R°, andS? by using the following formulas
in the given orderQ® = |[EOQ], R’ = Min {R €{-1,0,1,...}: %ﬁ‘ow < W{)“ax},

Si?1 = Min {Sin €{0,1,2,...}: w < Wrr]nax}.

Related with the non-root nodes, we have some additionalderations.

e Any column generated by a parent node is introduced also tolé mode as
long as that column satisfies the branching constraint desticto the corre-
sponding child node.

e Although pricing problenCG is an unconstrained problem at the root node, it

will involve branching constraints at non-root nodes.

3.2.2 Solution Procedure for Subproblems: Single-item Twachelon Batch Or-

dering Problem

To the best of our knowledge, there is no exact solution #@lyarproposed for our
single-item two-echelon batch ordering proble®R(d), although there exist exact

procedures for dierent versions of the problem (Axier 1998, Cachon 2001, Moin-
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zadeh and Lee 1986). Therefore, we develop an algorithm namide G(Q, R, S))

in (3.14) based on the result that wh@nandR, are fixed it is easy to find the optimal
S, ie. §i* (Qi,R). For this purpose, two nested loops are required; the ootgr |
searches for the optim&);, the inner loop searches for the optinkalfor a fixed Q;
values, whereas an innermost subroutine optim&ge#or given values of), andR..

In Section 3.2.2.1, we derive the optimality conditionstfoe problem that is solved
by the innermost subroutine of this algorithm. In order tduee the search space,
upper bound®Q’® andR”E, and lower bound€)'® and R-E, are proposed for the

optimal values foQ; andR;, respectively.

In the remainder of this subsection we develop these bouassdoon the notions
of stochastic domination and supermodularity. The reaslezferred to Ross (1996)
and Topkis (1998) for further details on stochastic ordgohrandom variables and

supermodularity, respectively.

Lemma3.2.1Forany Q > Q and R > R,

a) Bio (Qi,R) =t Bio (Qi’ R+),
b) Bo (Q R) =5t Bo(Q", R),
0) BY (Q.R) >« BY (Q.RY).
d) BY (Q.R) = BY (Q".R),
€) Xin (Q1, R) =t Xin (Qi, RY),
f) Xin (Q. R) 2 Xn (Q.R),

wherex>g denotes stochastic dominance, afglis defined similarly.

Proof. Proofs of part (a) and (b): By using (3.5), we obt&{Bj, (Q,R) < x} =
R+Q
é ZQ P{Yio < k+Xx}. This can be used to shaWBj, (Q;, R) < x} < P{Big (Qi, R,*-*) <
" k=R+1
x} andP{Bjs (Q;,R) < X} < P{Bio(Qi*, R) < x} for everyx > 0.

Proofs of part (c) and (d): From (3.8), we have
o r xS Y |(2) (1- 4\ pe.(0. R)
P(B} (Q.,R)—x}—;[ X]( ﬂio) (1 ﬂio) P(Bo(Q.R)=Y).  (314)
From Lemma 3.2.1(a) we havBo(Q,R) >« Bio(Q,R"). Then, BY(Q,R) =«
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Bi(g)(Qi, R") as well (see the proof of Lemma 2 (iii) in Moinzadeh and Le&d)9

Part (d) is proved similarly.
Proofs of part (e) and (f): Sincé, (Q, R) = BY (Qi,R) + Yin, (€) and (f) are direct

consequences of (c) and (d), respectively. [ |

Lemma3.2.2 Forany Q > Q, R" > R, S > §;;, the djference functiorSV (Q,R)
= 1in(Q.R.S;) - In (Q.. R, Si) satisfies

8) ¥ (Q.R) =« ¥ (Q.R"),

b) ¥ (Q.R) = ¥ (Q".R).

Proof. Proof of part (a): Sincé, (Qi, R, Sin) = (Sin — Xin (Qi, R))", we have

SYH (Q.R) = (Sih = Xin (Q,R))" = (Sin — Xin (QLR))",

where(-)" = max(0, -). Therefore, we have

SIT] - Sin’ for Sin Z Xil"l (Qi’ RI)’
SV (Qi,R) =1 S —Xin(Q,R), for Siy <Xn(Q,R)<S;,
0, for S} < Xin (Qi.R),

P{Xin (Qi,R) > S{}, for x=0,
PV (Q.R) =x =1 P{Xn(Q,R)=S;~x, for 0<x<Sj ~Sp,
P{Xil’] (Qia Ri) S S;] - X}7 for X= S;::] - Sina

P{Xin (Qi,R) = S;;}, for x=0,
PV (Q.R) <X} = P{Xn(Q,R) = Sj,—x), for 0<x<S}-Sy (315
1, for x> S; - Sip.

Note that for anyx > 0, due to Lemma 3.2.1(e), we have

P{Xin (Q,R) < S — x— 1} < P{Xn (Q,R") < S — x— 1},
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or equivalentlyP{X, (Qi,R) > S; — X} > P{Xi, (Q, R*) > S;° — x}. Combining this
result and (3.15), we establlﬂw (Q,R) < x} > P{V (Q, RIH) < x} for anyx > 0.

Proof of part (b): Similarly, by using Lemma 3.2.1(f) and1®), we establish
PLY (Q.R) <X} 2 PlY (QF.R) < x 0

Corollary 3.2.3 Forany @ > Q;, R" > R and §, > Siy,

) E[In(Q.R.S;)| - E[ln (Q.R.Sin)] < E[lin(Q. RS}
~E[lin (Q.R". Si)]  i-e., E[Sz (Qi,Ri)] < E[svm (Qiﬂ*)],
b) E [1in (Qu.R. S})| - Ellin (Qu.R. Si)] < E[1in (Q7.R. S};)]|
i.e.,—E[lin (Qf,Ri,Sin)],E[SYn (Qi,Ri)] < E[SZ (Qr’R')]

Theorem 3.2.4G (Qi, R, §,) is supermodular in

a) R andS;
b) Qi andS..

Proof. Proof of part (a): By definition, in order to show tha{ Q. R. S;) is super-
modular inR, and§i, we need to show that for a given value@f G (Qi, R, S?*) -
G(Qi,Ra,§i) < G(Qi,F{f,S?) - G(Qi,R*,§i) holds for anyS;” > S andR* > R.
First, by using the results th&|By is binomially distributed with parameteB,
andj—:g, (3.7) and (3.11)E[Bi, (Sin, Qi, R)] or E[lin (Sin, Qi, R)] can be expressed in
terms of the other via

E[Bn (S QuR)] = %E[B.O(Q. R)] + AnTin - Sin

+ E[lin (Sin, Qi, R)] (3.16)
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Then, substituting (3.16) into the objective functions#¥(d), we obtain

G(Qi,RiaS—)i)

Cih[E[IiO(Qia R)] + Z Ellin(Qi, R, Sin)])

neN

AioK;
Q

+ Z O (j—:)E [Bio (Qi, R)] + AinTin = Sin + E[lin (Sin, Qi Ri)])

neN

+ 6oE[Bio(Qi, R)]

= GhE[lo(Q.R)] + ”‘g‘f‘ + [90 + ZNej—o] E [Bio (Q.R)]

+ Z (cih+6,) E[lin (Q1, R, Sin)] + Z Or (AinTin —Sin) . (3.17)

neN neN

Using (3.17), showin@ (Q..R.S/) - G(Q..R.S)) < G(Q.R".S/) - G(Q.R".S)

reduces to Corollary 3.2.3(a).

Proof of part (b): Similarly, using (3.17% Q.. R. S )-G(Q..R.S)) < G(Q'.R.S})
—G( |+R.§.) reduces to Corollary 3.2.3(b). [ |

Corollary 3.2.5 For a given value of Q the optimal Ras S, — ~ for each ne N,

e, R(Q, §Iim S)) is a lower bound on the optimal Rhe optimal Rfor S;, = 0 for

>
j—00

each ne N, i.e., R(Qi,éi = 0) is an upper bound on the optimal.R
In a similar way, we develop a lower bound on the opti@al
Proposition 3.2.6 For any R > R, Qi*(Ra,é!im S) > QT(R*,é!im S).

Proof. First, by using (3.16) in (3.14) we establish

G(Q.R.S) = GhElIa(Q.R)] + 73" +(90—Cih§ j—:ZJE[Bio(Qi,Ri)]

+ 6h Y (Sn—AnTw) + ) (Gh+6) E[BA(Q, R, Sn)]. (3.18)

neN neN

For any given value 08;,, ¢cih X (Sih — AinTin) IS @ constant, so it can be excluded

neN
from the optimization of (3.18) ove®;. Furthermore, a8, — oo for eachn € N,
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E[Bin(Qi, R, Sin)] = 0. Hence, minimizing (3.18) reduces to minimiziﬁg{Qi, R) =
GhE[lio(Qi, R)] + % + (90 ch Z ”"”) E[Bio(Qi, R)]. Note that this function cor-
responds to the cost function for smgle echel@R) policy (see Federgruen and
Zheng 1992), for which we hav@;(R) > Q/(R"). [

Proposition 3.2.7 Q- = Q; ( I|m R, lim §) is a lower bound on the optimal;Q

|—)DO

Proof. As a direct consequence of Theorem 3.2.4(b), forRnye haveQ;' (R, I|m §)

|—)OO

< Q'(R,S)). Due to Proposition 3.2.&; (Jim R, I|m S) < QR, I|m S)). Hence,

|—>0<) |—>DO

Q(Jim R, I|m S) < Q'(R. S)) holds for anyR, andS;. |

|—)OO

Finally, to obtain an upper bound on the optin@aiwe utilize the upper bound on the
optimal order quantities in single echeld®, R) policies (Gallego 1998).

and

Proposition 3.2.8 Q'® = /(2KiAio + (cih+ pi) 4ioTio) /Hi, Where H =
Pi = 60+ Ynen i, is an upper bound on the optimal.Q

ch+p

Proof. In order to show thaQ"® is an upper bound on the optim@, it is suficient
to show that for ang; > QVB, S; andR, G(Qi, R§.) > G(Qi‘, R§.) holds, where
G(Q.R.S)) is given in (3.17) andd, < Q. LetC(Q.R) = GhE[ljo(Q.R)] +
”gK' +(6 + Z Hn”'“) E[Bio (Qi, R)]. Then,C (Q;, R) corresponds to the cost function
in Gallego (1998) where it is shown th@}'® is an upper bound on the optim@j for
C(Qi,R). Furthermore, sinc€ (Q;, R) is unimodal with respect tQ; (Federgruen
and Zheng 1992), for an@ > Q® we haveC (Q;,R) > C( - R). Finally, using
this result,E [1in (Q. R, Sin)] > E|[lin(Q.R.Si)|, and that 3, 6 (4nTin = Si) is

constant with respect 1©;, we establisiG (Qi, R, §.) > G(Qi‘, R, §.) u

3.2.2.1 Finding Optimal Solution for Subproblems for GivenValues of Reorder
Level and Order Quantity

For a given part € |, and given values o andR,, SR(6) reduces t¢N| independent
subproblems, each of which is denoted®§,,(6,, Qi, R).
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Min chE[lin(Qi, R, Sin)] + 6,E[Bin(Qi, R, Sin)]
st. Si, > 0, ande Z.

By using equation (3.11), the objective functiorSiR,(6,, Q;, R) can be restated as

G(Sin) = (6h+ 60)E[1in(Qi, R, Sin)] + OnE[Xin(Qi, R)] = 6nSin.

Proposition 3.2.9 G(S;,) is unimodal.

Proof. Let A andA? be the first and second ordefférence equations with respect to
X X
variablex, respectively. Thené_sz (Sin) = 0, is a stficient condition forG(S;,) to

be unimodal. First, from (3.9) we have

Sin—1

E[lin(Qi, R, Sin)] = Z (Sin = X) - P{Xin(Qi,R) = x}.
x=0
Using this result, next, we have

Sin

AG(Sn) = (ch+6r) Zo P{Xin(Q1, R) = X} — 6,

A%G(Si) = (6 + 0)P{Xin(Q. R) = Sin + 11,

which satisfiesSAzG (Sin) > 0. ]

Proposition 3.2.10 The optimal solution of S{i{6,, Q;, R) is

Sin

Proof. As a direct consequence of Proposition 3.2.9, the optByails the smallest
integer that satisfies the first order condition, iéeG(Sm) > 0. [
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3.2.3 Generating Upper Bounds: Greedy Algorithm

We obtain an upper bound for each node of the branch and boemdsing a greedy
heuristic. The greedy algorithm is a simple search algarithat can be used to
generate a feasible solution from an integer but infea¢thlal) solution. The method
is known to perform quite well in multi-item two-echelon amntory control problems
(Wong et al. 2005, 2006, 2007a, 2007b). The main idea of tbedyr algorithm is as
follows: Starting with an infeasible solution, at eachatgon, the algorithm iterates
to a solution that is as close to the feasible region as plesaibile incurring as

low additional cost as possible. This procedure is repeatditl a feasible solution

is obtained. Since the initial dual solution may yield fraotl variables, this may
require rounding fractional variables down to make surettifenew solution satisfies

constraints (3.2) and (3.3) before iterating the greedgrétym.

Recall thatQ, R, andS are vectors of order guantities, reorder levels, and bisxcs
levels, respectively. Then, one can define the maximum mnsviolation for given

values ofG, R, andS as

(G RS) = max (WG RS- wr=)'}.

Also, letZ(G, R S) be the value of objective function (3.1) for given valueshHiR,
andS. Then, the neighborhood ofX R, S), V(G, R, 9), is defined as the set of all
vectors [3 R §] + &, wheree is a vector in which exactly one of the entries is one and
the rest are zero. Then, the greedy algorithm searchesdmdiution (', R, S’) €

V(Q, R S) that yields the maximum(Q, R, S') = ;éggg;:‘é’gsg ratio. The greedy

algorithm converges finitely by nature.

In our study we use the optimal solution of the LP relaxatibthe MP as a start-
ing dual solution for the greedy algorithm, and this ofteelgs fractional solutions.
However, the greedy algorithm can only work with integeusions. To fix this prob-

lem, we round down the fractional decision variables.

The greedy algorithm always finds a feasible solution in adinumber of steps.

Also, as shown in Section 3.2.1, the column generation glgorguarantees conver-
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gence. These two show that the overall procedure guaracmegsrgence.

In this dissertation, we use the greedy algorithm for twoenmaasons: (1) To solve
the problenP heuristically by combining it with the column generationtimeed intro-
duced, which we call the overall procedure as the Lagrarugamistic, (2) To obtain
alternative heuristics foP by integrating it with the sequential heuristics. How it is

used in the development of the heuristics are to be discus<&dapter 4.

3.3 Computational Results

To provide insight into the size of problems that can be sbiwethe exact algorithm,
we provide some computational results. We randomly geeertéstbed based on the
available data obtained from the practical applicationstioaed in Chapter 1. We
consider problems with 5-30 parts and 2-4 local warehouseseach pair of these
parameters, 10 random instances are generated, where rttendeate, the fixed
ordering cost, the unit variable cost and the lead time ardawmly generated, while
other parameters are not varied as shown in Table 3.2. Tharmterates for each part
i is generated from a uniform distributidf[0.01, 0.05]. Further, by multiplying this
random number with another uniform random number geneirfabed U[0.5, 1.5],
we obtain part-specific location-dependent demand ratesy;,, for each part and
warehousen € N U {0}. The algorithm is coded in €+ and the experiment is run
on an Intel 3 GHz processor with 3.5 GB RAM. The results of theeexnent are
presented in Table 3.3. As can be seen in Table 3.2, the eshutiosn procedure
that we propose can be used in applications as long as theemwhliems and the
number of warehouses are limited: as the number of partsspetmlly the number
of warehouses increase, the solution requires significanpatational &ort. Hence,

one may need to apply heuristic approaches for the solufi@rger problems.

3.4 Conclusion

In this chapter, we propose a branch-and-price algorithfimtbthe relevant policy

parameters of a multi-item two-echelon inventory disttidau system in which the
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Table 3.2: Parameter values for the testbed.

Parameters Values
A, (units/days) | U[0.01, 0.05] X U[0.5, 1.5]
¢ ($/unit) U[1000, 5000]
K, ($/order) U[50, 150]
T., (days) U[0.5, 1.5]
h (per year) 0.25
T, (days) 5
W,™ (days) 1
W™ (days) 0.2

Table 3.3: CPU times for different problem sizes.

Number of Average
Nu;)nakitesr of local CPU tiﬁwe
warehouses (sec)
5 2 1.05
10 2 15.59
15 2 182.77
20 2 208.43
25 2 788.24
30 2 6184.72
5 3 2.02
10 3 88.69
15 3 773.84
20 3 8175.12
25 3 17859.96
5 4 4.42
10 4 362.66
15 4 3298.28
20 4 20392.54

63



central warehouse operates undeQaR) policy, and each local warehouse imple-
ments an (S-1,S) policy. The procedure involves a columreggion algorithm to
find the Lagrangian dual bound and a greedy algorithm to gothis solution to a
feasible solution. Using the Lagrangian dual bound as arteend and the feasible
solution as an upper bound in the solution of each node ofrdnech-and-bound tree,
we develop the branch-and-price algorithm. We experintigrahow that the branch-
and-price algorithm can be used in applications as longasitimber of items and
the number of warehouses are limited. Even if this is the ,casexact solution is
desirable due to significant cost reductions and benchmanpoges. For the solu-
tion of large practical problems, one may need to apply ls@arapproaches. For
this purpose, one can use the column generation method amplidbdy algorithm as
building blocks and develop heuristics for the problem, clihis the subject of the
next chapter.
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CHAPTER 4

HEURISTIC PROCEDURES

In this chapter, we propose four alternative heuristics rid the optimal or near-
optimal policy parameters of the multi-item two-echelowentory distribution sys-
tem considered in Chapter 3. Our emphasize is on large irnydsigie problems. First,
we develop a Lagrangian heuristic employing the column gieen method and the
greedy algorithm introduced in Chapter 3. We also consideretivariants of this
heuristic, which are based on the sequential determinafiguolicy parameters, as
done frequently in practice. That is, first the order quatitire determined using
a batch size heuristic, then the reorder levels at the demén@house and the base-
stock levels at the local warehouses are determined thrthegekame method used
for the Lagrangian heuristic. As opposed to the heuristicsrfulti-echelon inven-
tory optimization problems in the literature, our heudstguarantee feasibility. In an
extensive computational study, we test the performancéseoieuristics. Since the
exact solution is intractable for practical size problems,consider the Lagrangian
dual bound that we develop in Section 3.2.1 as a benchmauki@olin the exper-
iments. Therefore, we also investigate performance of #xgrdngian dual bound
both theoretically and empirically. We show that this boisidsymptotically tight in

the number of parts.

First, the Lagrangian heuristic and the sequential hacsiate introduced in Sections
4.1 and 4.2, respectively. Then, we study the asymptotitysiseof the Lagrangian

dual bound in Section 4.3. In Section 4.4, we present andisksthe results of the
computational study through which we evaluate the perfogeaaf the heuristics and

the Lagrangian dual bound. Finally, in Section 4.5 we drasvdbnclusions.
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4.1 Lagrangian Heuristic

“Lagrangian heuristic” is a generic name given to heursstiaat first employ a La-
grangian relaxation to find a good -but often infeasibleaxet solution, and then
an algorithm to transform this relaxed solution into a fbksisolution (Guignard

2003). In our dissertation, the Lagrangian heuristic syrgarresponds to the en-
tire procedure in which the column generation and the gredglyrithms introduced
in Chapter 3 are integrated. By using the column generatioorighgn in Section

3.2.1, we obtain the Lagrangian dual solution for problensince this solution is
quite often infeasible, we use the greedy algorithm in $ac8.2.3 to convert this
solution to a feasible solution. In this way, we obtain thgiaagian heuristic. Note
that this solution procedure corresponds to the upper bognmocedure used in the
branch-and-price algorithm. Therefore, the solutionlfitserresponds to the upper
bound obtained for the root node of the branch-and-pricerdkgn for the problem.

Similarly, the Lagrangian dual bound corresponds to thestolmound obtained for
the root node of the branch-and-price algorithm for the |gnob This explains the
basic relationship between our branch-and-price algorittagrangian heuristic and
Lagrangian dual bound. Note that since the Lagrangian $tguis based on deter-
mining the order quantities and the reorder levels simelasly, it is a simultaneous

approach heuristic. An overview of the Lagrangian heuristgiven in Figure 4.1.

4.2 Sequential Heuristics

Similar to the Lagrangian heuristic, the sequential héigasely on the integration
of the column generation and the greedy algorithm. Howemerontrast to the La-
grangian heuristic, the order quantities at the centrakhvause are determined of-
fline. The sequential heuristics iterate as follows: Fitst,order quantities are deter-
mined through a batch size heuristic. Then, given the ordantties, the remaining
policy parameters, i.e., the reorder levels at the centaaélnouse and the base-stock
levels at the local warehouses, are determined by usingritire @rocedure devel-
oped for the Lagrangian heuristic. This results in changdabe overall procedure:

In the column generation algorithm in Section 3.2.,is discarded from problem
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L Add the new columns
Generateinitial |
columnsforeach | —p and solve MP to
art 10| determine the dual prices
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Round down the solution
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generation algorithm
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L

Apply greedy algorithm
to find an integer
feasible solution

Figure 4.1: The Flowchart of the Lagrangian Heuristic.
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SR(6) for eachi € I, hence the outer loop of the algorithm proposed to s6RE)
is eliminated. This also brings a computational advantadbd sequential heuristics
over the Lagrangian heuristic. An overview of the sequémhigaristics is given in

Figure 4.2.

To implement the sequential approach, we consider threenaliives for setting the

order quantities:

o the EOQ formula, i.eQ = /28,

o the EOQ with planned backorderEQQF) formula, i.e.,Q = /2ianR)
(Zheng 1992, Gallego 1998), whepgis the shortage cost defined per unit short
of parti € | per unit time and obtained as it is described in Propositi@r8an

Section 3.2.2,

e an alternative batch size heuris@V based on the lower and upper bounds,
Q- and QB, that we obtain for the single-item two-echelon batch order
ing problemSR(d) in Propositions 3.2.7 and 3.2.8, respectively in Section
3.2.2. The heuristic is similar to the batch size heuristappsed by Gallego
(1998) for the single-echelort R) model. However, when Gallego’s batch
size heuristic is directly used in our model, i®;,= min( V2QLE, /Q-B. QY B),
the optimal order quantities are overestimated. Hence deptat in our model
by using the harmonic mean @ andQ® instead of using a geometric mean,

which is less than or equal to the latter. In this way, we aehlgetter results.
LB ZQFBQPB)

[ QiI_B+QilJB

Accordingly, the order quantities are found frapn= min( V2Q

In this manner, we obtain three alternative sequentialib&es, S;, S, and S, re-

spectively.

The batch size heuristicsfter depending on how the service level requirements are
taken into account in determining the order quantitiesSnthe order quantities are
determined independent of the service level requiremértiss is the case in many
practical applications, e.g., the manufacturers consaler our work determine the
order quantities using the EOQ. Howev8g and S; incorporate the service level

requirements by means of a part-specific shortage gpstor each pari € |. In
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Figure 4.2: The Flowchart of the Sequential Heuristics.
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order to obtain each part-specific shortage cost, p;, first, we apply the entire procedure
in Figure 4.2 by using the EOQ, and then under the solution obtained, we compute

the probability of no stockouts, y;, for each part i € I. Then, by substituting y; in

Di
C,‘h+[7,'

the newsboy ratio y; = , we determine p;. Finally, the entire procedure iterates
once more to obtain the solution of the corresponding sequential heuristic. Therefore,
while the corresponding procedure iterates once in S, it iterates twice in S, and S 3;
first to find the part part-specific shortage costs, second to obtain the overall solution.
Since the greedy algorithm converges finitely and the column generation algorithm is
guaranteed to converge to a solution, all our heuristics guarantee convergence. The

heuristics proposed in this chapter are summarized in Table 4.1.

Table 4.1: Heuristics proposed.

Solution Approach Heuristics
Simultaneous Approach « The order quantities and reorder points at the
e All the control parameters are | central warehouse, basestock levels at local
determined simultaneously. warehouses are obtained by using the column

generation and the greedy algorithms.
e Given order quantities, reorder points at the

Sequential Approach central warehouse, and basestock levels at
* Order quantities are predetermined | local warehouses are obtained by using the
by using a batch size heuristic. column generation and the greedy a gorithms.

o EOQ 0 S (usesEOQ)
o EOQ? 0 S (usesEOQ")
o @V 0 Ss(usesQ™)

4.3 Asymptotic analysis of the Lagrangian dual bound

In this chapter, we use the Lagrangian dual bound to test the performance of the
heuristics for practical size problems. Before that, we first analyze the performance
of the Lagrangian dual bound. In this section, we study the asymptotic behaviour
of the Lagrangian dual bound for our problem and show that the Lagrangian dual
bound is asymptotically tight in the number of parts. The analysis relies on the prob-

abilistic analysis of combinatorial problems (Kellerer et al. 2004). Accordingly, we
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assume that for eadhe | andn € N U {0}, ¢, Kj, 4, andW"® are independent and
identically distributed random variables drawn from a amf distributionU[c, €],
U[K, K], U[4, 1] and U[W, W], respectively. We further assume tl@mV > 0 and
K,T, A < oo, implying that

¢ the fixed ordering cost is strictly finite for each pa#l, i.e.,K; < oo,

¢ the unit holding cost is strictly positive and finite for egquduti € I, i.e., 0<

Cih < oo,

¢ the target aggregate mean response time at each wareheuse{0} is strictly

positive, i.e. W™ > 0,

¢ the average lead time demand for each part at each warehousec N U {0}

is finite, i.e.,AinTin < 0.

Note that these four assumptions are practically nonosise| but necessary for our
model to be stable and the problems to have finite solutions.

Through Theorem 4.3.2, we first show that the optimal objectiinction value of
MP, ZMP increases at least linearly with the number of parts. Timehheorem 4.3.5,
we show that the gap between the optimal objective functanesof MP, ZVP, and

its LP-relaxation, Z-"MP grows only with an order of the number of local ware-
houses, meaning that this gap is independent of the numbparts. Finally, in
Theorem 4.3.6, we combine the results of Theorem 4.3.2 &8 4nd show that
for a given number of local warehouses, as the number of pentsases the relative
gap betwee"? and Z-"MP with respect tazMP approaches to zero since the abso-
lute gap betweeaP andZ-PMP grows faster thaz“®. Hence, this shows that the
Lagrangian dual bound for problekis asymptotically tight in the number of parts.
Under the assumptions given above, we show that the folgpwinpositions hold for
every realization of random parametersK;, 1, andW'® for eachi € | and each

ne N.

The following lemma shows that for any pare I, the cost associated with each
column generated through the column generation algorighbounded below by the

optimal objective function value of the EOQ model with unéckorder cost of),
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e, z700) = |Hidodh® (Gallego 1998).
Lemma 4.3.1 For a given value o, C; > z °?® for eachie | and | € L.

Proof. In problemSP.(ﬁ) let 6, = O for all n € N, meaning that no penalty cost is
incurred due to backorders at each local warehouseN. This yields an optimal
solution in whichS;, = 0 for each € | andn € N and the optimal expected inventory
holding and backorder cost at each local warehouse is zethid situation, the sub-
problemSR(f) is reduced to a single-echelon batch ordering problem wifrected
cost functionchE[lio(Qi, R)] + 60E[Bio(Qi, R)] + % (Zheng 1992, Gallego 1998).
Note that for a given value df, the solution of this single-echelon batch ordering
problem is a lower bound to the optimal objective functiotueaof SR(6). Further-
more, it is known that the optimal objective function valdelee EOQ model with
backorders, i.ez-°%*) is a lower bound to the solution of the single-echelon batch
ordering problem whose cost function is given above (Gall&§98). Combining

these two arguments we establh> z-°%* for eachi € | andl € L. u

Theorem 4.3.2 The optimal objective function value of MP'?z is in Q(l]), i.e.,
ZMP is asymptotically bounded below by a function in the ordgt|afith probability
1.

Proof. Using the result of Lemma 4.3.1 in constraint (3.13), we hav€;x; >
leL

ziEoQ(HO) for eachi € I. Then, by summing up these expressions over alll, we
obtainy ¥ Cyxy > X Z79%%). Let C,e be the average af- %™ over alli € I,

iel leL i€l

hence, defined aBad(l) = & Xie 2 0%, then, we simply hav% IeZLCan > 1] -
Cal). Since this holds for all feasible solutions for probléviP, we also have
ZMP > |I] - Caudl). Furthermore, since we define eaghK;, Aig, 6y as an independent
and identically distributed random variab#°® is an independent and identically
distributed random variable for eack | as well. From the convergence of random
variablesC,,d(1) converges to a constant with probability 1j/ldgoes to infinity. This
suffices to show thatV'® is asymptotically bounded below by a function in the order

of |I| with probability 1. [ |
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Lemma 4.3.3

a) The column generation method yields finite solutions (ools).
b) The total cost associated with each column generated bydiuent generation

method is finite and increases only with the ordejiNjf

Proof. Proof of part (a): The proof is rather intuitive. Sin&g < oo, ¢h > 0,
W > 0 andAj, Tin < oo, SP.(@) is guaranteed to yield finite solutions, e.g., for each
n e NU{0}, W™ > 0 impliesf, < oo sinced, has correspondence wil{;'®* through

an, the dual price for the relevant constraint (3.12), andithiecessary to have finite

R andS;,. Hence, our column generation method yields finite columns.

Proof of part (b): Provided that the objective function paesers inSF{(ﬁ) are finite,
e.0.,Ki < o0, ¢ih < 0o, W™ > 0, i.e.,6, < oo, the optimal objective function value
of SR(d) is finite. Hence, the total cost associated with each colgemerated by the
column generation method is finite. The proof of the secontineéies on that due
to the decomposition of proble®G into parts, the size of each subprobl&R(6)
grows only with the order diN|. |

Lemma 4.3.4 The optimal solution of LPMP contains at mdist + 1 non-integer

variables.

Proof. The proof is based on an alternative formulation of probMi obtained by

substituting the equality constraints (3.13) in (3.12):bifnarily, we selectx; and

then substitutes; = 1 — Y x; in (3.12) for each € I, wherel” = L — {1}. In this
|

el’
way, we establish the alternative formulatidp.

ProblemAP:

Min Z = ZZC”X"

iel lel’
s.t.
303 (A — An)xi < W~ Auo, for Vne NU{O),
iel leL’
x; = 0/1, for Yiel, VIel’,

Note that in the optimal solution of tHeP-relaxation ofAP (LPAP), there exisiN|+1

basic variables. Furthermore, a variable has a fractioaklevonly if it is a basic
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variable. Hence, the optimal solutionloP AP contains at mogiN| + 1 variables with
fractional values. Finally, sincAP is exactly the same problem &P, this result
also holds folLPMP. [ |

Theorem 4.3.5 The gap between the optimal objective function value of M, z
and its LP-relaxation, 'ZMP, is in O(IN|?), meaning that the gap is asymptotically

bounded above by a function |dff.

Proof. Our proof consists of two parts. In the first part, we intraglacrepair algo-
rithm to generate an integer feasible solutiorM® by adjusting only the fractional
variables in the solution cEPMP. Then in the second part, by using the repair
algorithm, we show that the gap between the expected coainelot by the repair
algorithm and the Lagrangian dual solution is asymptdiicabunded above by a
function of |NJ2.

The repair algorithm relies on the following observatioror leach pari € I, the
LPMP yields a solution that is a convex combination of columnsegated by the
column generation algorithm. Accordingly, the solutiom &ach pari € | corre-

sponds to either

e an integer solution corresponding to one of the columnsrgeéee by the algo-
rithm (pure policy), i.e., one of the variableg in constraint (3.13) is 1 while

the others are 0, or,

e a fractional solution that is a mixture of a set of columnsegated by the
algorithm (randomized policy), i.e., a set of variablgsin constraint (3.13)

have fractional values summing to 1 while others are 0.
Based on these observations, the following repair algorijlemerates an integer so-

lution for each part € | whose solution is fractional so that the overall solutiah st

remains feasible.
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The Repair Algorithm:

1. For each paiite | having an integer solution, do nothing.

2. For each paiite | having a fractional solution, generate a new solution by tak
ing the maximum value of the policy parameters defined by thenans that
constitute the fractional solution, and replace the cpoading fractional so-
lution with this new one. To be more specific, tate | be any of those parts
whose solution is fractional an@f,, Rn, Sm) be the corresponding fractional
solution. Then, we replace the fractional soluti@(Rn, Sm) with the solu-
tion (Qm, R, §m) = (rkrggmx{Qm , Qg%x{%}@%x{@r‘n}) wherel,, is the set of

(integer) columns that constitute®, Rm, Si).

The entire solution is feasible favP, because (1) for each pare I, the solution
generated by the repair algorithm satisfies integrality,f¢2 each part < I, the
new solution yields loweE[Bijo(Q;, R)] and E[Bin(Qi, R, Sin)] values for alln € N
than the fractional solution yields. Therefore, just like former columns, the new

solutions are guaranteed to satisfy the constraints (3.12)

After introducing the repair algorithm and our notationwnwe begin our proof:
First, it is a direct consequence of Lemma 4.3.3 that thetiadai cost incurred by
switching from Qum, R Sm) t0 (Qm, R, §m) is finite and bounded above by an order
of N. Hence, for any paite |, the solution obtained through the repair algorithm has
an additional cost bounded above by a finite value in the ati®|. Furthermore, it
follows from Lemma 4.3.3 that we need to reassign at ridjst1 fractional variables
to obtain a feasible integer solution ffP by using the solution oEPMP. Let the
objective function value of this integer feasible solutlmaz. Then, by combining
the arguments above, we establish that Z-P is asymptotically bounded above by
a function of|NJ2. SinceZz" is an upper bound omM?, the result also holds fa'.
HencezZMP — 7Z-" is in O(INJ?). This also proves that' — Z- grows only with an order
of |NJ. [ |

Theorem 4.3.6 For a given number of local warehousgy|, the Lagrangian dual
bound for problem P is asymptotically tight in the numberartp|l| with probability
1.
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Proof. It follows from Theorem 4.3.2 and Theorem 4.3.5 that for aiweig value of
IN], lim

|l|[—00

we havez” = ZMP. Also, since the solution of PMP gives the Lagrangian dual

MP_JLPMP

- — 0 with probability 1. Since® and MP are identical problems,

solution ofP, Z-P, we obtainz-® = Z-"MP, Hence, for any given value ¢ifl|, we have
F_AD
ZP

lim — 0 with probability 1. This shows thatP is asymptotically tight in the

|l|—00

number of parts (Anily and Federgruen, 1990). [ |

Theorem 4.3.6 shows that the Lagrangian dual bound can lzeasse benchmark
solution for problemP with large number of parts. Since the size of the problems
in practice grows especially with the number of parts (core@ao the number of
local warehouses), this also shows that the correspondngdcan be used as a

benchmark solution for practical problems.

4.4 Computational Study

In this section, we conduct an extensive computationalystadurther explore the
performances of the heuristics and the Lagrangian dual da@veloped Section
3.2.1. First, the performance of the Lagrangian dual bogntested against the
optimal solution for small-size problems to see how reaklnd is to employ the
Lagrangian dual bound as a benchmark solution. Then, therpances of the
heuristics, i.e.S;, Sy, Sz and the Lagrangian heuristic are evaluated relative to the
Lagrangian dual bound for larger problems, where this bguelds better results. In
our analysis, the expected total cost corresponding to salciion is considered as
the performance criterion. The performance of the Lag@mgdual bound is mainly
evaluated in terms of the percentage dual gap with the opex@ected total cost,
PGAP. However, we also consider the absolute dual GaP. Similarly, the perfor-
mances of the heuristics are mainly evaluated in terms opéneentage cost fier-
ence between the solution obtained by the heuristic and dlgealngian dual bound,
PCD, but we also consider the absolute costatence between the solution and the
bound,ACD. Letz' be the optimal objective function valugp be the objective func-
tion value of the Lagrangian dual solution, artae the objective function value of any
solution to be tested, then tileAP and thePGAPare computed aSAP = |z p — Z'|
andPGAP= 'Z”;T‘Z*' whereas th€CD and theACD are calculated a&CD = |z— 2z p|
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_ |zzpl
andPCD = ZL—DD

4.4.1 Experimental Design

We consider the following six system parameters as the arpatal factors: (i)
number of partsjl|, (i) number of local warehouse#\|, (iii) demand ratesj,,
(iv) unit variable costsg;, (v) fixed ordering cost;, and (vi) target aggregate mean
response times at the warehous®8*. Since lead timeT,, contributes to the model
in the form of lead time demand,,T;,, we do not consider it as a distinct factor.
This also means that we do not distinguish tliea of demand rate from that of
lead time demand. Using these factors, we conduct a fulbfedtexperiment to
investigate the overall performance of the heuristics &ed.iagrangian dual bound
and perform an analysis of variance (ANOVA) to investigatehe individual dfect
of each factor on the performance of the heuristics and tlgearayian dual bound

and (ii) the interactions between factors.

To generate the problem instances, we first generate a bsseeting. Then, based
on this base case setting, we build the testbeds for the iexgets. For the base case
setting, the following parameters are set identical; |&ae &t the central warehouse,
Tio, across all parts, the target aggregate mean response dintks warehouses,
WX across all warehouses, the lead times at the local warebglg, across alll
parts and local warehouses. We assume that the unit vadasls,c;, and the fixed
ordering costsK;, are nonidentical across all parts, the demand raigsare non-
identical across all parts and warehouses. The fixed ogleast of each part is
generated from a uniform distribution. To represent skessas of the demand rates
and the unit variable costs across the population of paggpilow an approach sim-
ilar to the one described in Thonemann et al. (2002). Foligwhis approach, the
demand rates are generated through a two-step procedusg,; d&part-specific av-
erage demand rate is generated randomly for each part, thewubiplying it with

a second random number representing the demand intensigchtwarehouse part-
specific and location-dependent rates are obtained, wh#reainit variable costs are
generated in one step since they are only part-specific. Tarothe part-specific

average demand rate for any pe# I, sayv;, we first randomly generate a contin-
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uous numberyy ~ UJO, 1], representing the percentile of par¢ | with respect to
demand. Next, we obtaip from v;(1) = pidud%, wherepq is the demand skewness
parameter, and is the average demand rate of all parts. Similarly, the wemiable
cost, ¢, for any parti € | is generated frong;(c) = p%uc%, wherep, is the cost
skewness parametarjs the average unit variable cost of parts, apd- U[0, 1] is

the percentile of paiite | with respect to unit variable costs. In this way, we obtain
the part-specific average demand rateand the unit variable cost;, for each part

i € |. Finally, by multiplyingv; with a second random number generated for each lo-
cation fromU[0, 2], we obtain the part-specific location-dependent demate] t;,,

at each warehousee N. To obtain the part-specific location-dependent demard rat
Adio for each part € | at the central warehouse, we first generate the corresppndin
external demand ratdy), the same way we generatg. After obtainingA? andaj,

for all n € N, 4jo is obtained fromijp = A7 + XN Ain- FOr any given part, this en-
sures the dierences in the demand rates among warehouses. Howevegnttand

of each part relative to that of the others remains identic@ach warehouse. Note
that this corresponds to a practical situation where eacklveaise serves a market
with a similar demand structure. We refer to this case asyimretric demand case.
However, in diterent geographical regions or markets, the demand of spaiergl-
ative to each other may féler. In order to represent the demand asymmetry across
warehouses, the second multiplier is generated ftjth 2] for each part € | and
each warehouse € N U {0}. We call this second case the asymmetric demand case.
Based on the data available for the spare parts systems eoggioh our work, the
demand rate (unit variable cost) skewness is approximat@0%/80% (20%490%),
i.e.,pq = 0.139 (b, = 0.097), meaning that 20% of the parts represent approximately
80% (90%) of the total demand rate (cost) of parts. Table d@nsarizes the base

setting used.

For the full factorial analysis, we consider 3 levels of therage demand rates, av-
erage unit variable costs, average fixed ordering costsaagdttaggregate mean re-
sponse times. To generate the problem instances for theieques, we first generate
the base case setting, then we multiply the value of eachmedea in the base case
setting by the multiplier associated with each level in €&ahB. Furthermore, to avoid

explosion of the number of problem instances, we considev@d of the number of
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parts and the number of local warehouses. For the first set of experiments, we con-
sider small-size problems; the number of parts is set to 4 and 8, and the number of
local warehouses is set to 2 and 4. In the second set of experiments, in which we
experiment with larger problems, the number of parts is set to 100 and 500, and the

number of local warehouses is set to 4 and 9.

Table 4.2: Base case setting for the experiments.

Parameters Values
A, (units/days) A=0.015
C, ($/unit) c=3000
K; ($/order) U[50, 100]
W,™ (days) 0.3
W,™ (days) 0.3
h (per year) 0.25
T, (days) 10
T, (days) 1

Table 4.3: Multipliers for the average demand rates, average unit variable cost of
parts, average fixed ordering costs and target aggregate mean response times..

Parameters | Number of Levels | Level Multipliers
Ain 3 1/3, 1, 10/3
G 3 1/3,1,10/3
Ki 3 1/3,1,10/3
W™ 3 1/3,1,3

Based on these, 20 random problem instances are generated for each of the 243 (3% x
2?) different settings, resulting in a total of 6480 problem instances for each set of

experiments.
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In addition to the full factorial analysis, we also carry sensitivity analysis to pre-
cisely observe thefiect of each factor on the performance of the heuristics aad th
Lagrangian dual bound. The problem instances for the $@hsinalysis are gen-
erated by using the base case setting in Table 4.2 in a simdgrthat the testbeds
for the factorial analysis are generated. The results tlegine@sent here are based on
those of the experiments with problem instances with symmédemand structure.
We also experiment with problem instances with asymmetioahd structure. We
report the results of the latter only when there is an ingiascy between these two
settings. In our experiments, we consider the cases in wlichnly external cus-
tomers, (2) both type of customers are incorporated in etalg the performance of
the central warehouse. The experiments do not reveal anifisant diference be-
tween the results of the two cases (in the symmetric demasellmath models are the
same). Therefore we only present the results for the formse,ovhich is more com-
mon. In all experiments, the inventory carrying charge ketaas 25% annual. The
algorithms are coded in-£+ and the experiments are run on an Intel 3 GHz processor
with 3.5 GB RAM. In the remainder of this section the resultshaf experiments are

presented and discussed.

4.4.2 Performance of the Lagrangian Dual Bound

A summary of the results regarding the factorial experimernéest the performance

of the Lagrangian dual bound is given in Table 4.4. The mautfigs are as follows:

e As depicted in Table 4.4, both the average and the maxifR@APare high,

however, both improve when the number of parts is larger.

e Table 4.4 also indicates that the results are sensitiveetdetttors considered.
According to the ANOVA results, all the parameters are fotmbe significant
at 005 significance level. The results also show that the paemsiétighly
interact. The most significant interactioffexts are the interactions between
the number of parts and the average demand rate, the numpeteaind target
aggregate mean response time and the average demand reteg@heggregate

mean response time, each having a p-value @@
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The dfect of the number of parts on the performance of the Lagrandual bound
deserves further attention since it is used as a benchmhrtkosoin the second part
of experiments, in which we experiment with larger numbepaits. Therefore, we
carry out a sensitivity analysis to observe tlikeet of number of parts more deeply.
We examine 9 cases with = 10, 15, 20, 25, 30, 35, 40, 45, 50, in each of whNh=

2. For each case, we generate 5 random problem instancgdlhisibase case setting
in Table 4.2. Figure 4.3 shows the results of the sensitaitglysis. Each point in
the figure represents the averagd>@&APs for 5 problem instances. As shown in this
figure, the performance of the Lagrangian dual bound imgovith the number of
parts. Note that this result is consistent with Theoremt4i8.which the Lagrangian
dual bound is shown to be asymptotically tight in the numldgpants. This result
together with Theorem 4.3.6 suggests that the Lagrangialdwnd can confidently
be used as a benchmark solution in the experiments withrlargblems, which will
be the case in the remaining of this chapter. Consideringithieudties encountered
in evaluating the performance of heuristics for large indusize multi-item two-
echelon inventory systems in the literature §@a et al. 2004, Al-Rifai and Rossetti
2007), this finding makes a significant contribution to tHevant literature.

4.4.3 Performance of the Lagrangian Heuristic

The results of the experiments are summarized in Table 4 fedan the results, we

make the following observations:

e As shown in Table 4.5, the performance of the Lagrangianistziis quite
satisfactory. The averageCD obtained by the Lagrangian heuristic is less
than 1%. This result is even better for problem instancels laige number of
parts. When the number of parts is 500, B@D obtained by the Lagrangian
heuristic is less than 1% for all of the 3240 problem instarstadied.

e The ANOVA results reveal that the mairfitects of all the parameters except
the number of local warehouses are significant.@b @ignificance level, each
having a p-value of @00. On the other hand, thé&ect of the number of local
warehouses on the performance of the Lagrangian heursstnsignificant in

terms of thePCD, but significant in terms of th&ACD. The most significant
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Table 4.4: Effect of the parameters on the performance of the Lagrangian dual bound.

GAP PGAP
Parameters
Avg. Max. Avg. Max.
All instances 524.6 26662.5 3.84% 53.87%
0, 0,
Number of Parts 4 556.5 26662.5 4.48% 53.87%
8 492.7 13918.0 3.21% 32.20%
Number of LWHs 2 456.1 19033.5 4.06% 53.87%
4 592.2 26662.5 3.63% 46.16%
Average Demand Rete 0.005 517.6 19033.5 5.17% 53.87%
(units/day) 0.015 472.3 13918.0 3.42% 31.68%
0.05 610.1 26662.5 2.37% 21.17%
. 1000 106.4 1907.4 2.73% 27.59%
Average Unit Cost
(®/unit) 3000 305.3 103315 3.76% 39.39%
10000 1147.8 26662.5 5.02% 53.87%
Average Fixed Ordering 25 521.5 19021.2 5.07% 53.87%
Cost (Sorder) 75 569.0 24202.5 3.86% 40.88%
250 486.5 26662.5 2.71% 27.59%
oo A "y 0.1 500.4 10919.8 2.82% 22.24%
arget Aggregate Mean
Response Time (day) 0.3 839.6 26662.5 4.49% 29.02%
0.9 308.9 13637.6 4.26% 53.87%
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Table 4.5: Effect of the parameters on the performance of the Lagrangian heuristic.

ACD PCD
Parameters

Avg. Max. Avg. M ax.
All instances 2686.7 94984.1 0.61% 10.33%

0, 0,
Number of Parts 100 3206.3 94984.1 1.08% 10.33%
500 2167.1 39792.7 0.14% 0.93%
Number of LWHSs 4 2063.2 37882.6 0.61% 8.16%
9 3310.1 94984.1 0.61% 10.33%
Aver age Demand Rate 0.005 2910.3 51784.2 0.83% 8.16%
(units/day) 0.015 2785.2 94984.1 0.62% 10.33%
0.05 2364.6 57048.9 0.38% 4.94%
. 1000 586.0 7065.2 0.48% 8.16%

Aver age Unit Cost

($unit) 3000 1699.1 17733.2 0.60% 7.53%
10000 5774.9 94984.1 0.75% 10.33%
. . 25 2713.2 94984.1 0.74% 10.33%

Average Fixed Ordering 0 0
Cosgt (H/order) 75 2678.9 50501.8 0.62% 7.61%
250 2668.0 57048.9 0.47% 8.16%
Target A oM 0.1 4859.1 94984.1 0.79% 10.33%

arget Aggregate Mean

Response Time (day) 0.3 2420.7 35131.3 0.63% 7.82%
0.9 780.2 9147.9 0.41% 7.45%
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Performance of the Lagrangean dual bound
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Figure 4.3: Effect of number of parts on the performance of the Lagrangian dual
bound.

interaction effects are the interactions of the number of parts with the average
demand rate, the average unit variable cost, the average fixed ordering cost
and the target aggregate mean response time and those of the target aggregate
mean response time with the average demand rate and the number of local

warehouses. Each of these interactions is significant with a p-value of 0.000.

To identify the effect of parameters more precisely, we perform a sensitivity analysis
for each factor. Figure 4.4 show the results of the sensitivity analysis for the average
demand rate, average unit variable cost, average fixed ordering cost and target aggre-
gate mean response time, whereas Figure 4.5 illustrates the results of the analysis for
the number of parts. As shown in Figure 4.4, we consider 10 levels for each of the
average demand rate (4 = 0.005, 0.010,..., 0.050), the average unit variable cost (¢ =
1000, 2000,..., 10000), the average fixed ordering cost (K = 25, 50,..., 250) and the
target aggregate mean response time (W, = 0.1, 0.2,..., 1.0). We also consider two
different values of the number of parts (/| = 50 and 250), abbreviated as NumPart

in Figure 4.4, to explore the interactions between the effect of the number of parts
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and the &ects of the corresponding four parameters. As shown in EigL, for the
analysis of the fect of the number of parts, we consider 7 levels Wit 50, 100,
250, 500, 1000, 3000 and 5000. To see tfieat of the number of local warehouses
in the same figure, we also consider foufelient values of the number of local ware-
houses|(N| = 3, 6, 9 and 12), abbreviated as NumWare in Figure 4.5. We ralydo
generate 10 problem instances for each level of the parasnetging the base case
setting in Table 4.2. Hence, each point in the figures repteshe average d?CDs
for 10 problem instances. The main observations drawn frasénsitivity analysis

are given as follows:

e Figure 4.4 indicate that the Lagrangian heuristters a better performance for

problem instances with

— high average demand rate,
— low average unit variable cost,

— high average fixed ordering cost,

The results are similar fokC Ds and in line with the results of the factorial anal-
ysis presented in Table 4.5. We interpret these three cdiseng as follows:
Each problem instance conforming the conditions given almmrresponds to
a situation where the optimal inventory policy parametees, Q;, R andS;,,
are high. Hence, this shows that when the value of optimatyg@arame-
ters are high, both theCD and theACD obtained by the Lagrangian heuristic
decrease. This observation is in line with Wong et al. (20@na (2007b).

e The results of the factorial analysis in Table 4.5 shows ti@PC D obtained
by the Lagrangian heuristic decreases with the number aé.pafigure 4.5
further shows that as the number of parts increases, indepénf the number
of local warehouses, tHeC D obtained by the Lagrangian heuristic approaches

to zero.

Note that this observation is similar to our findings regagdihe asymptotic
behavior of the Lagrangian dual solution. Intuitively, centhe solution that
the Lagrangian heuristic yields and the Lagrangian dualtewl are the pri-

mal and dual solutions obtained through Lagrangian relenxatespectively, it
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Performance of LH with respect to average demand rate
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Figure 4.4: Sensitivity Analysis: The effects of parameters on the performance of
the Lagrangian heuristic - average demand rates, average unit variable cost of parts,
average fixed ordering costs and target aggregate mean response times.

86



Performance of LH with respect to average fixed ordering cost
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Figure 4.4 (continued)
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Performance of LH with respect to number of parts for different values of
number of warehouses
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Figure 4.5: Sensitivity Analysis: The effects of parameters on the performance of the
Lagrangian heuristic - number of parts, number of local warehouses.
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makes sense to have similar results for both the Lagranganstic and the
Lagrangian dual bound. We argue that these two results mas sonnection
with the multi-item approach. Under the multi-item appioawhich makes
risk pooling possible among parts, as the number of parteases, the bene-
fits of risk pooling increases. This will also increase thenber of alternative
near-optimal solutions. In this situation, it is more lkéb find a feasible so-
lution that is close to the optimum by using an appropriatariséc method,
e.g., the Lagrangian heuristic. In a similar way, one can éiridwer bound
for our problem, e.g., the Lagrangian dual bound, by using@ropriate re-
laxation method, e.g., the Lagrangian relaxation. Simmésults exist in the
literature for other combinatorial problems as well, etgere are greedy al-
gorithms guaranteeing asymptotically optimal solutiomsrhultidimensional
knapsack problem and generalized assignment problem (BynKan et al.
1993, Romeijn and Morales 2000); the relative gap betweehPheeslaxation
of the knapsack problem and its optimal solution approatbemero as the
number of items increases (Kellerer et al. 2004).

Figure 4.4 and Table 4.5 also show that the Lagrangian heunt¥ers a better
performance for problem instances with long target agdesgeean response
time. This finding is also in line with our previous obsereati Intuitively, long
target aggregate mean response times yield loose cortsti@ithe problent.
Under the multi-item approach, such loose constrainteamsx the risk pooling
among parts. This increases the number of alternative opganal solutions.
Hence, under long target aggregate mean response tinssate likely to find
a feasible solution that is close to the optimal solution byg the Lagrangian

heuristic.

Figures 4.4 and 4.5 also indicate that tifiieet of other parameters vanishes as
the number of parts increases. Hence, as the problem gges the Lagrangian
heuristic becomes more robust.

In general, we observe that the Lagrangian heuristic yibktter results in
problem instances with asymmetric demand, and this casrefspto practical
situations in which each warehouse serves a distinct maviteta different

demand structure. This resultis in line with Wong et al. (200 reporting that
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the greedy heuristic performs better with asymmetric dehiastances.

4.4.4 Performance of the Sequential Heuristics

The results of the experiments to evaluate the performaitte sequential heuristics
S1, S, andS; are summarized in Table 4.6. Accordingly, we make the falhgw

observations:

e The average and worst case performanceS,cdnd S; are better than those
of S;, indicating that the sequential approach performs betteznnservice
level requirements are taken into account in calculatirggdider quantities.
However, the results indicate that none of the methods datesnthe others.
S; outperformsS; and S, in 95.73% and 70.73% of all problem instances,

respectively, an&, outperformsS; in 92.25% of all problem instances.

e The average and the maximuRCDs that the sequential approach yield are
higher compared to the corresponding results of singlelearsystems operat-
ing under Q, R) policy (Zheng 1992, Ax&ter 1996, Silver et al. 1998, Gallego
1998): ThePCD obtained byS,, which uses£OQ® to determine order quan-
tities, can be as high as 21.75% in our experiments, whilents@mumPCD
obtained by theeOCP in single-echelon systems is 2.90% (Zheng 1992), em-
pirically, and 11.80%, theoretically (A&ser 1996). Similarly, the average and
the maximumPCDs obtained bys,, which uses EOQ, are 5.22% and 31.03%,
respectively, which are fairly high for a batch size helugisommonly used in
practical applications. In contrast to findings for singm models, our re-
sults are comparable with Hopp et al. (1997), who reportttmatelative gap
between the solution that their sequential heuristic gieldd a lower bound
may reach 187% in multi-item single-echelon inventory systems. Tane
we conclude that in multi-item systems, which is a more s#ialisetting for
spare parts, the performance of the sequential approaatt msnsatisfactory
as in single-item systems. Although sequential approacbrsmonly used in
practice, the results show that the approach results inhighyerrors. Note that

all sequential heuristics considered in our study utilizesolumn generation
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and a greedy algorithm to determine the reorder levels ateh&ral warehouse
and the base-stock levels at the local warehouses. Howevm@ctical appli-
cations these parameters are typically determined by wsmgler methods,
which may yield much higher errors than tR€ Ds presented here. All these
indicate that some of the conjectures in the literature atfmperformance of
the sequential approach are misleading, and using the is&ajugpproach in

practical applications may not be the best option.

e The Lagrangian heuristic generally performs better thamnstiquential heuris-
tics. When the number of parts is 100, the Lagrangian hetstiperforms
S, (S3) in 95.77% (94.51%) of the problem instances, whereas wienam-
ber of parts is 500, the Lagrangian heuristic outperfoBpgS3) in 99.88%
(99.48%) of the problem instances. This shows that as théauof parts in-
creases, the Lagrangian heuristic, which is based on thétaineous approach,
becomes much more dominant over the sequential heurigtiogtively, un-
der the multi-item approach, determining the order qugiatiteach part inde-
pendent of the other parts’ parameters benefits less frorogpertunities of
risk-pooling among parts. Therefore, for a system opegatimder the multi-
item approach, (1) as the number of parts increases, or (@gasvitch from
single-item to multi-item setting, the performance of tlegential heuristics

deteriorates relative to that of the simultaneous approach

In addition to the observations given above, the ANOVA ressimdicate the follow-

ings:

e The dfects of all the parameters considered in the factorial @sagre signifi-
cant at 005 significance level, each having a p-value less th@@3 The most
significant observation is that the sequential heuristessegally perform better
in problem instances with

— high average fixed ordering cost,

— short target aggregate mean response time,

— low average demand rate.
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These findings are in line with the literature (Zheng 1992ppiet al. 1997).
However, even with those problem instances that are in falvtite sequential
heuristics, thePCD obtained by the sequential approach is still higher com-
pared to that of using the Lagrangian heuristic. This canelea slso in Table
4.6.

Almost all the interactions between the factors are sigaificat 005 level.
Especially the average demand rate, the average fixed ongdeost, and the
average unit variable cost highly interact with each otfAdis makes it dfi-
cult to draw conclusions only by looking at the results of ithaividual (main)
effects of parameters. Therefore, we also analyze and intatregfects of
parameters considering the interactions. The most driblegervation is that
the sequential approach performs best either when the gevelamand rate
and the average fixed ordering cost are low, the average anéble cost is
high, and the target aggregate mean response time is shevtjem the aver-
age demand rate and the average fixed ordering cost are hegay¢rage unit
variable cost is low, and the target aggregate mean respiomsés short. Con-
sistent with this result, the performance of the sequehgakistics relative to
that of the Lagrangian heuristics is best when the averagmde rate and the
average fixed cost are low, the average unit variable cosgls And the target
aggregate mean response time is short. Note that this pomds to problem
instances in which our problem becomes much more tightertlamaptimal
policy parameters become smaller. We note that this carrelspto instances
in which the performance of the Lagrangian heuristic penfoworse. The re-
sults show that even in this setting, the Lagrangian hearsitperforms the
sequential heuristics in most of instances. Under thisiBpsetting, when the
number of parts is 100, the Lagrangian heuristic outperé@g(S,) in 70.0%
(65.0%) of the problem instances, whereas when the numipartsfis 500, the
Lagrangian heuristic outperfornss (S,) in 95.5% (100.0%) of the problem in-
stances. Again, this shows that as the number of parts isEsethe Lagrangian
heuristic becomes much more dominant over the sequentiakties even for

the problem instances less favorable for the Lagrangiangteu
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We further perform a sensitivity analysis to identify thiéeet of parameters more
precisely. We conduct the experiments based on the testmtifar the sensitivity
analysis of the Lagrangian heuristic. The main observatdyawn from the sensitiv-
ity analysis are given as follows: Figures 4.6 and 4.7 ithtst the result of analysis
regarding the #ect of the number of parts on the performance of the hewibased
on thePCDs andACDs, respectively. As shown in Figure 4.6, similar to the find-
ings regarding the performance of the Lagrangian heuriagidhe number of parts
increases, theCD obtained by the sequential heuristics decreases. Howegerre
4.6 also shows that neither of them converges to zero, aththat of the Lagrangian
heuristic does, e.g., the averd@€ D obtained by the sequential heuristic with EOQ
is 4.38% even the number of parts is 5,000. Figure 4.7 shoatshRACD obtained
by the sequential heuristics increases with the number v$ p@ite faster than that

of the Lagrangian heuristic.

We also consider setting the order quantities to one and, #pplying the sequential
approach. This way, we explore the performance of using etk policy approx-
imation to our batch ordering problem. Therefore, we catyexperiments by using
the testbed that for the factorial analysis. Based on thdtsesbe performance of
the base-stock policy approximation is found to be very p&oen the average PCP
is larger than 105%. As a result, we conclude that in the piesef fixed ordering

costs, it is not reasonable to operate under a base-stack.pol

4.4.5 Computational requirements of the solution procedues and experiments

with Practical-Size Problems

In this section, we test the performance of the heuristi¢srims of the computational
requirements. Figure 4.8 illustrates the computationglirements of the heuristics
that have run to test thefect of the number of parts on the heuristics in Sections
4.4.3 and 4.4.4. The figure shows only the resultgfpr= 9 and 12. As shown in
the figure the average CPU time required by heuristics ines2a#th the number of
parts. This is rather intuitive. The figure also shows thatdfierage CPU time for
the Lagrangian heuristic is higher than those for the setpléreuristics, but they

are comparable even whidih= 5,000. This indicates the computational savings that
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PCD Performance of Heuristics with respect to number of parts for NumWare=3
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Figure 4.6: Performance of the heuristics with respect to number of parts and number
of local warehouses - PCD.
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PCD Performance of Heuristics with respect to number of parts for NumWare=9
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Figure 4.6 (continued)
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ACD Performance of Heuristics with respect to number of parts for Numware=9
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Figure 4.7: Performance of the heuristics with respect to number of parts and number
of local warehouses - ACD.
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can be obtained by sequential heuristics are quite limRedtall that by using the se-
guential heuristics, the computational time required teesthe problenP is reduced
by eliminating the outer loop in the single-item two-echmesoibroutine in the column
generation algorithm. However, the experiments revedlftresmall-size problems,
the bulk of the computationalffert is devoted to the column generation algorithm,
whereas for problems with larger number of parts, the mogte@€omputational time
is spent by the greedy algorithm. Thus, elimination of thiergutine, which makes
sequential heuristics faster, contributes less to contipn savings of the overall

method for large-scale problems.

Furthermore, we experiment with larger problem instanodsrther explore the per-
formance of the Lagrangian heuristic in practical-sizebpgms. The number of parts

is set to 10000, and the number of local warehouses is set.td i€ problem in-
stances are generated by using the base case setting indT2bM/e consider both
the symmetric and the asymmetric problem instances. Thitsesf the experiment
show that the averageéCDs obtained by the Lagrangian heuristic are 0.09% and
0.04%, and the average CPU times required by the Lagrangiamstie are 15.55
and 11.94 hours for the symmetric and the asymmetric prolstances, respec-
tively.

Although the papers in the literature deal with systems uwlféerent settings, a
comparison with them is still possible to a certain extentppl et al. (1999) who
consider a multi-item two-echelon batch ordering systemilar to ours report that
their heuristic can solve problem instances with 1263 pamts 2 regional facilities.
They also show that for relatively small problem instanaesh(up to 10 parts and
5 regional facilities) the relative gap between the expktdeal cost of the solution
obtained by the heuristic and the lower bound that they pejmless than 5%. Com-
pared to Hopp et al. (1999), our heuristics seem to be signifig better both in terms
of relative errors and the computation&i@ency. When we compare our results with
Wong et al. (2007b), who apply a column generation and deositipn method sim-
ilar to our column generation algorithm for a multi-item t@ohelon system under
pure base-stock policy, our results seem to be comparalens of relative errors.
Furthermore, although our problem is moréidult than theirs, our results are sig-

nificantly better in terms of the computationdlieiency, e.g., while they can solve
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problems problems up to a size of 100 parts, we can solvegrabivith up to 10,000
parts. Note that when we fix the order quantities at 1, our rn@adieices to their sys-
tem, hence our heuristics are applicable in their settinggls We also compare
our results with Caggiano et al. (2007), who propose heasigt solve large-scale
multi-item multi-echelon systems under base-stock polfdghough their system is
very different from our system (our model involves batch orderingsitae, while
their model is applicable to more than two-echelon), oneseanthat our results are
slightly better than theirs both in terms of relative erransl computationalfgciency.
For example, while they can solve problems with 27175 parétion combinations in
almost 21 hours, using the Lagrangian heuristic, we caresb®d,000 part-location
combinations (10,000 parts, 12 local warehouses and latevdrehouse) within 12
hours. As evident from these comparisons, our work corte#to the relevant litera-
ture by proposing anficient and tractable heuristic for large-scale spare paven-
tory problems. As opposed to these papers, a comparisorAlviifai and Rossetti
(2007) is not possible since the performance of their hearsnot compared against
an analytical solution or a bound, since such a solution aua8 is not available for
large-scale problems. @kar et al. (2004) encounter a similar problem. They report
that the lower bound that they use to test their heuristioitstight, and hence, the
relative gap between their heuristics and the lower boundgésl as a conservative
estimate of the true relative error. As opposed to thesaestuthe Lagrangian dual
bound for our problem is tractable and performs quite welldoger-scale problems.
Hence, our findings regarding the performance of the Lagaandual bound also
contribute to the relevant literature.

4.5 Conclusion

We propose four alternative heuristics to find the optimatear-optimal policy pa-
rameters of a multi-item two-echelon inventory distrilbatisystem with batch or-
dering in the central warehouse. The first heuristic, whiehoall the Lagrangian
heuristic, is based on the simultaneous approach and oslithee integration of a col-
umn generation method and a greedy algorithm. The otheg thgaristics are based

on the sequential approach, in which first the order quastiéire determined using
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a batch size heuristic, then the reorder levels at the demén@house and the base-
stock levels at the local warehouses are determined thrthegsame method used
for the Lagrangian heuristic, i.e., a column generation ampleedy algorithm. We
explore the performance of the Lagrangian dual bound thadevelop in Chapter 3
and analytically show that this bound is asymptoticallytign the number of parts.
By making use of the results of the computational study we l[dpv&everal insights,
some of which are summarized as follows: The lower boundieoptimal expected
total cost is found to be quite tight, especially when the banof parts is high, e.g.,
the relative gap between the bound and the optimal expeat&ictbst is less than 1%
even when the number of parts is only 50. These results tegetith the asymptotic
tightness of the lower bound with the number of parts maodisats using it in further
numerical experiments with large number of parts as a beadhsolution. Based
on the results of these further experiments, the Lagranggamistic performs quite
well in terms of the relative dierence between the expected total cost of the solution
obtained by the heuristic and the lower bound. As the numbpaxs increases, the
performance of the heuristic improves further, making thartstic very promising
for practical applications. The computational requirehaéthe heuristic is also quite
tolerable. To be more specific, the experiment with 10,000s@nd 12 warehouses
reveals that the relative costfidirence is 0.04%; problems of this size can be solved
within 12 hours on an Intel 3 GHz processor with 3.5 GB RAM. Rartmore, as
the number of parts increases, the Lagrangian heuristimnbes robust and becomes
insensitive to other parameters and whether the demandrimsyric or not. The
heuristic is also quite tractable. It can be used to solvg lage practical problems
in reasonable computation time. This makes the Lagranggaristic very promising
for practical applications. The performance of the heigssthat are based on the
sequential approach are also satisfactory, but not as nautie & agrangian heuristic.
As the number of parts increases the performance of the stgugpproach deteri-
orates compared to that of the Lagrangian heuristic. Furtbee, the computational
advantage of the sequential heuristics is found to be linttempared to the La-
grangian heuristic. The errors in practical applicatiorsexpected to be even higher
considering that our sequential heuristics involve a colgeneration method, which
is more sophisticated than the methods used in sequenpabagh applications in

practice. Hence, despite the fact that the sequential appns widely used in prac-
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tice and that its performance is experimentally verifiedingke-item problems, our
work shows that in a multi-item setting and under a multitepproach, the perfor-
mance of the sequential approach heuristics is inferiorpaoed to the Lagrangian
heuristic, which yields superior results even for largebtems in reasonable time.
We also find that the performance of the sequential hewsislipends on the batch
size heuristic used. The batch size heuristic that takecgel®vel requirements into
account outperforms the EOQ. This shows that if the secalemduristics are used
to solve batching problems in multi-item two-echelon inwep systems, it is better
to take the service level requirements into account in ¢afityy the order quantities.
For this purpose, one can use the batch size heuristics thedmsider in this chapter.

To summarize, we contribute to the literature by proposifigient and tractable

heuristics to solve large, practical-size multi-item techelon inventory control prob-
lems with batch ordering at the central warehouse, one afwsignificantly outper-

forms the others. The comparisons based on our heuristiosyakes a contribution
to the literature in evaluating the performance of the setiaeapproach against the
simultaneous approach in a multi-item multi-echelon sgtti Our work also con-

tributes to the literature by proposing a tight arfidogent lower bound on the optimal
total cost for practical-size problems.
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CHAPTER 5

EXTENSIONS TO COMPOUND POISSON DEMAND

In this chapter, we extend the heuristics and the lower bowmich are shown to

perform quite well for the pure Poisson demand setting,éacttimpound Poisson de-
mand setting. To the best of our knowledge, our work is thetlrpropose heuristics
for a multi-item two echelon inventory system facing compo&oisson demand. To
evaluate the steady-state performance of the system amdh@&bjective function

and the constraints of the problem, we consider both an exatapproximate meth-
ods. For the approximate evaluation, we propose four @teemethods. The first
method is based on the binomial disaggregation, which isteéra the Poisson de-
mand. The second approximation is the extension of the twovemt approximation

developed by Gallego et al. (2007) to a batch ordering syst&sna third approx-

imation, we extend the two-moment approximation develdperaves (1985) to

the compound Poisson demand setting. The fourth approximedrresponds to the
implementation of the METRIC to our inventory system. Forgkact evaluation, we
adopt the flow-unit method by Axsater (2000). We also showttiel agrangian dual
bound is asymptotically tight in the number of parts. Laiteg computational study,
we test the performances of the heuristics against the |lbaend, the performance
of the approximations against the results obtained by tlaetesvaluation method.
To the best of our knowledge, our work is the first to invesaghae performance of
the approximations most commonly used in the literatuee, ihe METRIC and the
two-moment approximation, for a multi-item two-echelostgmn facing a compound

Poisson demand.

In Section 5.1, we introduce the compound Poisson demane&lndé describe the

exact and the approximate evaluation methods considerdgdigomodel in Sections

103



5.2 and 5.3, respectively. Later, in Section 5.4, we exgiaiw we extend the heuris-
tics developed in Chapter 4 to compound Poisson demand l\imebection 5.5, we

report and discuss our computational results.

5.1 The model

The extensions of the developments in Chapters 3 and 4 to aomdgoisson demand
setting requires revising the model in Section 3.1. Sintddhe model in Section 3.1,
we consider a two-echelon distribution network in which linveer echelon consists
of a set,N, of local warehouses, each is denotedhby 1, 2, ... |N|, while the upper
echelon corresponds to a central warehouse, which is ditbyte = 0. There is a
set, |, of parts, each is denoted by 1,2,...]|l|. In contrast to the Poisson demand
model, the external customer demands for paat the central warehouse and the
local warehousen € N follow a compound Poisson process with customer arrival
ratesAy and 4y, having demand sizes of, andv;, with probabilitiesP(Vg = V)
andP(Vi, = vin), respectively. As in Section 3.1, the central warehouse fdces
internal demands from local warehouses; the internal atetread demands are not
differentiated and are satisfied according to the FCFS rule. |{;imad assume part-
specific holding costs for all facilities and part-specificefi ordering costs for the

central warehouse.

Under the compound Poisson demand, our system operatefcagsfoWhenever

a demand of size, for any parti arrives at warehouse € N, it is immediately
satisfied from stocks if there awg parts available; otherwise, the unsatisfied portion
of demand is backordered. In both cases, if the external dénisadirected to a local
warehouse, an order of sizg is placed at the central warehouse so that the inventory
position reacheS;,. Therefore, this policy is known as order-up-to S policyréberg
1995). This internal request is satisfied within a constaartgportation lead time of
Tin, if the part is available in the central warehouse. Otheswitise internal demand
is backordered as well. In any case, if the inventory pasitibthe central warehouse
drops to or below reorder lev&, a suficient number of orders with batch sigk

are placed at the outside supplier so that the inventoryippsxceed$k . Note that

in the pure Poisson demand case, only a single batch ofGize placed since the
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demand size is always one. Under compound Poisson demarel, rtiwelinventory
position at the central warehouse may overshoot the reted&iR; since the demand
size is a random variable. Since the number of orders is ahlardepending on
the overshoot quantity, but the batch size is constant tiisypis known as 1Q, R)
policy (Axsater 2000). It is assumed that the supplier has ample statkamalways
satisfy requests for partin a constant lead time df,,. We also assume that partial

backlogging is allowed since this simplifies the analysis.

Based on the system definition, our problem can be stated a=ctio8 3.1: finding
the policy parameters minimizing the sum of the inventorlgimg and fixed ordering
costs subject to constraints on the aggregate mean respareseTo formulate this
problem, we revise our notation and extend it to compoungd®oi setting as it is
given in Table 5.1. As in Section 3.1, for sake of brevity, weitdthe parameters that
the variables depend on, e.gx(t, Q;, R, Sin) is simply denoted ak,(t). Similarly,
since our focus is on the limiting behavior of stochastidalales, we also omit the
time component, e.gl;, = t||_)l‘2 lin(t). The additional notation for the compound
Poisson demand model is as follows: D&t be the number of customer arrivals
during lead timeT;, and Vi, be the size of a demand for each par | at each
warehouse € N U {0}. Then, the demand during lead tirnig, Dj,, iS expressed in
terms ofY;, andV, as follows: Letvikn be the size ok demand occurred during the
lead timeT;, at warehous@ € N U {0} for parti € I, thenD;, = E Uikn for each part

i € I and each local warehouse= N. Then, the average demzka:r%d rate per unit time,
Uin, and the average demand during lead timeE[Di,], are given agi, = AinE[Vin]

and E[Di,] = AinTinE[Vin], respectively for each pait e | at warehousen € N.
Similarly, the external demand at the central warehousegead timeT;o, D5,
is expressed in terms of° andV? for each pari € |, whereYZ andV? are the
corresponding variables associated with the externabmests. Then, the average
external demand rate per unit time,, and the average external demand during lead
time Tio, E[D], at the central warehouse are givernuds= ALE[Vi] and E[Df] =

A5 TioE[V], respectively for each parte |. Based on the definitions, the demand
per unit time for part € | at warehous@ € N has a compound Poisson distribution
with meanuin = AinE[Vin] ando?, = 2i,E[V2] (Axsater 2006). Similarly, the external

demand per unit time for part | at the central warehouse has a compound Poisson
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distribution. By using: andu;y, the average demand rate per unit time at the cental

warehouseyio, is defined agio = ) + X inen 1in fOr each part € 1.

An important parameter, not for the evaluation of the systaumhfor the experimental

analysis is the variance-to-mean ratio, simply denote(%i—izn’byThe main diference

between the pure Poisson demand and the compound Poiss@mdidies on the

Z—'Z: ratio. The compound Poisson demand distribution makesssipte to have a
o2 : . : . .

demand Withﬁ > 1, while for the Poisson demand this ratio is strictly 1. Inayw

(o

2
for the rest of chapter, we extend the results for pure Poisase, i.e.p—;: =1,toa
o2 . .
compound Poisson case (high variance case),ﬁ@, 1. In experimental analysis,

the variance-to-mean ratio for the total demand has a aritigportance.

Furthermore, leM, = >, uin denote the average total demand rate per unit time for
warehous@ € NU{0}. Then, by using Little’s law, the aggregate mean response ti

at warehouse € N can be reformulated for the compound Poisson demand case as

Wh(Q,R S) = Z %E[V\/in(Qi, R, Sin)] = Z % E[Bin(Q’Ll', R, Sin)]
iel n iel n in
_ Z E[Bin(Qi, R, Sin)]
= " '

i€l

Similarly, we haveo(Q, R) = ¥ EBA2RI Then the problem for compound Pois-
son demandK,) is formulated as

Min > {cih(E[ho(Qi, R+ ) Elln(QuR, sm>]) + “g& (5.1)
icl neN !
st. Z w < W, (5.2)
iel 0
Z E[Bi”(Ql\i/’l R Sw)l < Wmax, for ¥neN, (5.3)

iel

Q>1LR>-1S,>0, and Q,R,Si,€2Z for Yiel, YneN.
where the objective function (5.1) minimizes the systerdeninventory holding and
fixed ordering costs, while constraint (5.2) and (5.3) gotga that aggregate mean

response times at the central and local warehouses do ne¢@Wg'™™ and W™,
respectively.
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Table 5.1: General Notation.

4]

i | Partindexj € |
n | Warehouse inder € N U {0}
¢ | Unit variable cost of paiit
h | Inventory carrying charge
Ki | Fixed ordering cost of partat the central warehouse
Ain | Customer arrival rate for pairat local warehouse € N
A% | External customer arrival rate for part the central warehouse
dio | Customer arrival rate (sum of internal and external) for pattthe central warehouse
uin | Demand rate for paitat local warehouse € N
up | External demand rate for pdrat the central warehouse
tio | Demand rate (sum of internal and external) for pattthe central warehouse
o2 | Demand variance for paiat local warehouse € N U {0}
Mg | Total external demand rate at the central warehouse
M, | Total demand rate for warehouse& N U {0}
Tio | Lead time for part at the central warehouse from the outside supplier
Tin | Transportation lead tim&, from the central warehouse to local warehonseN for parti
Yin | Number of customer arrivals during lead tiffig at warehouse € N U {0} for parti
Vin | Demand size for paitat warehouse € N U {0}
Din» | Demand during lead tim&, at warehouse € N U {0} for parti
Yo | Number of external customer arrivals during lead tifpgat the central warehouse for par
V5 | External demand size for parat the central warehouse
D, | External demand during lead tinTg at the central warehouse for part
Uikn Size ofk!" demand occurred during the lead tiffig at warehouse € N U {0} for parti
W | Target aggregate mean response time at warehroade U {0}
R | Reorder level for paitat the central warehouse (decision variable)
Qi | Order quantity for part at the central warehouse (decision variable)
Sin | Base-stock level for paitat local warehouse € N (decision variable)
S [Si1, Siz. . - ., Sin] = Vector of base-stock levels for part
S | [81.S,..... 5] = Vector of base-stock levels
(j [Q1. Qz,....Qu] = Vector of order quantities
R [Ri, Ry, ..., Ry] = Vector of reorder levels
Iin(Qi, R, Sin) | On-hand inventory level for partat warehouse € N in the steady state
1i0(Qi,R) | On-hand inventory level for partat the central warehouse in the steady state
Xin(Qi, R) | Number of outstanding orders for padt warehouse € N in the steady state
Bin(Qi, R, Sin) | Backorder level for paitat warehouse € N in the steady state
Bio(Qi, R) | Backorder level for paritat the central warehouse in the steady state
Bi(g)(Qi, R) | Backorder level of local warehousdor parti at the central warehouse in the steady stat
Wih(Qi, R, Sin) | Response time for pairat warehouse € N in the steady state
Wo(Qi,R) | Response time for pairat the central warehouse in the steady state
W3 (Qi.R) | Response time for parat the central warehouse (based on external customers)
W,(G,R S) | Aggregate mean response time at warehouseN in the steady state
Wo(G,R) | Aggregate mean response time at the central warehouse in the steady sta
Wg((‘j, R) | Aggregate mean response time at the central warehouse (basetgraksustomers)
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As in the Poisson demand model, one could also model the gobly consider-
ing only the external customers to evaluate the performarfidbe central ware-
house. Then, the aggregate mean response time at the estedlouse is stated by
WS(G,R) = Nict FREIWE(Q, R)], Wherepst, = ptio— Ynen fin 1AM = Mo= Ty My

are the corresponding demand rates associated with thmalkteemands at the cen-
tral warehouse. Since there is ndétdrentiation between the external and the internal
demands we simply haw8 (G, R) = Wio(G, R). Then, we obtain

WS(GR) = 3" K Ewi(@, R = Ao BBl R

iel 0 iel 0 Hio

which replaces constraint (5.2).

In the rest of this section, first, we obtain the distributafrD;, for eachi € | and
n € N U {0}. Then, we introduce the exact and the approximate methousd=red

to evaluate the-steady state performance of the system.

5.1.1 Obtaining the Lead Time Demand Distributions

For eachi € | andn € N, the distribution of the external demand during lead time
of Ti, is obtained by usin®;, = Evin and the distributions of;, andV;,, whereYi,
has a Poisson distribution with customer arrival rateandV;, has a compounding
distribution denoted byP(Vi, = v). Without loss of generality, the demand sizes
are assumed to be non-zero, i(V;, = 0) = 0. LetP(VX = v) give thev-fold
convolution ofP(Vi, = V), i.e., the probability thak customers yields a total demand

of v. Then,P(VK = V) is obtained recursively by using

<

POVE =) = 3 POV = )PV = v— 1),

1
i=k-1

foreachk > 2,n € N andi € |. Finally, the distribution oDj, is determined by using

d
P(Din = d) = ) P(Yin = YP(V}; = d),

x=1
whereP(VE = v) = P(Vi, = v) andP(V? = v) = 0 for eachn € N andi € I.
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In a similar way, the distribution of the external demandimigiliead timeT;q for
parti € | at the central warehous®S, is determined by using the distributions
of Y andV;

in?

whereY{ has a Poisson distribution with customer arrival rage
andVg has a compounding distribution denoted vy = v). Since for each part

i €1, Dj, forall n e N andD7, are independent compound Poisson random variables
with customer arrival ratg;, andA? and compounding distributior¥Vj, = v) and
P(V; = V), respectivelyD;o has also a compound Poisson distribution with customer
arrival ratedig = A% + Y nen Ain @nd compounding distributioR(Vip = V) = j—:egP(Vi% =

V)+ Y hen j—:gP(Vin = V) (Kaas et al. 2001). Therefore, the distributiorDg{ is obtained

in a similar way.

5.2 An Exact Evaluation Based on a Flow-Unit Method

We adopt the exact evaluation method proposed byafexg2000) for the exact eval-
uation of our system. The method relies on the flow-unit methaely used in the
literature (Forsberg 1995, Aager 1995, Axater and Zhang 1996, Aater 1998).
Axsater’s method is originally developed for a two-echelonemory distribution
system in which both the central warehouse and the localheaisees operate under
a (Q,R) policy. Note that for a given parte I, our system is a special case of this
system. At each local warehouse= N, the order quantities are multiples of 1 and
the reorder level i§;, — 1, i.e., whenever the inventory position of local warehouse
n € N drops to or below reorder lev&;, — 1, a suficient number of orders with
batch size one are placed so that the inventory positioreelsSg, — 1. At the central
warehouse, the order quantities are multiple®Qpaind the reorder level IR, i.e.,
whenever the inventory position of the central warehous@sito or below reorder
level R, a suficient number of orders with batch sigg are placed so that the inven-
tory position exceedR,. Therefore, Axater's method is adopted to our system by
setting the batch size (based on the definition ofé&s2000) and inventory position
for each pari € | at each local warehousee N to 1 andS;,, respectively. After
using this method, we obtain the steady-state probakilitel;, andBj,. Then, by
using these probabilities, we calculd&f;,] in (5.1) andE[By,] in (5.3) for each € |

andn € N. Finally, it remains to obtai[lig] and E[B;o] for eachi € I.
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For compound Poisson demand, under a base-stock policg suery demand trig-
gers an order, the inventory position is constant at the-bask level. Hence, equa-

tion (3.6) holds for the compound Poisson model as well. dtoee, we simply have
Sin = lin = Bin + Xin. (5-4)

Similarly, since for each pairte | the number of outstanding orders at titreg local
warehouse € N equals to the sum of the number of backorders dedicated & loc
warehouse € N at the central warehousetat T;, and the demand during lead time

Tin, We have

Xin(t) = BY'(t = Tin) + Din(t — Tin, 1), (5.5)

or simply Xi, = Bi({)‘) + Di,. Furthermore, since customer orders at the central ware-
house are not tlierentiated, the average waiting time at the central wargh@ithe
same for all parts no matter from which warehouse the partesofrom. There-
fore, for any pari, average waiting time of orders emanating from local wansko
rEl[;:)]theE([:Bentral warehous&[W"], is given asE[W'] = E[W], or equivalently

0

— o’ _ ElBd Therefore, we have
Hin Hio

E[BY = " E[Bdl (5.6)

Note that this result is valid also for the external cust®vagrthe central warehouse.
Based on these results, we obt&fijo] in (5.1) andE[B;o] in (5.2) for eachi € |

as follows: First, from (5.6), we havg[B,] = ““E[B{]. Then, by using (5.5),
we obtainE[Bjg] = ﬁ%:(E[Xin] — E[Din]). Furthermore, by using (5.4), we establish
E[Bi] = ﬁ(E[Bm] + Sin — E[lin] — E[Djn]). Finally, one can obtaitke[l;] easily by
usingE[Big], see (5.10). Therefore, in the flow-unit method, after fivgdke[1;,] and
E[Bin] one can obtair[lijg] and E[Bjg] directly by usingE[l;i,] andE[Bj,]. Neverthe-
less, the method is intractable for large problems sincequires too many expres-

sions and convolutions to be computed (Ates 2000).
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5.3 Approximate Evaluation Methods Based on a Disaggregation Mkeod

In this section, we introduce four alternative approximasi for the evaluation of the
steady-state behaviour of our system. Although approxareaaluation methods do
not guarantee feasibility when they are employed in a pajymization problem, it
IS necessary to solve practical size problems under a congp@aisson setting. The
first method relies on the disaggregation method (or soct#tle lead-time demand
method) that we use for the Poisson demand setting in Chapt&h& other three
approximations can be derived from the first one. Therefeesstart with introducing
the first method, and then explain the other three approamabased on the first

one.

For the first approximation, we follow exactly the same thacpdure in Section 3.1.
That is, first, we find the steady-state probability disttidos of the inventory and
the backorder levels at the central warehouse by using

R+Q
é 3 PDip=k-x}, for 1<x<R +Q,
Pllo(Q.R)=x} =1 'gTa® (5.7)
é 2. P{Dio >k}, for x=0,
k=R+1
R+Q
é > P{Dip = k+x}, for x> 1,
P(Bo(Q.R)=x}={ ‘§7 (5.8)
é k_% ) P{Dio < K}, for x=0,

Then, we obtain the steady-state probability distributidriP{ Bi(g)(Qi, R)} by using
(3.8) as in the Poisson demand case. Recall that in the Poiksoand setting,
Bi(g)lBio is binomially distributed with parametei, and j—'; which is also known
as binomial disaggregation in the literature. Althougts thwlds for the Poisson de-
mand setting, it is not true for the compound Poisson demasd.cAssuming that
Bi(g)lBio is binomially distributed with parameteBg andl’ﬁ (or equivalently one may
consider alsq%) and then using (3.8) to obtala(g) is our first approximation. We
simply call this method “binomial approximation”. By usingd approximation and
(5.5) the steady-state probability distributionX(Q;, R) is obtained as follows:
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X

P{Xn(Q,R) =% = > P{Din =y} - PBY(Q,R) = x—y}, for x=0. (5.9)
y=0
Then, the steady-state probability distributiorl e{Q;, R, Si») is obtained from (3.9)
as in the Poisson demand case. By using the distributionsseniary levels at the
warehouses, the expected inventory levelso] and E[li,] for eachn € N in the
objective function (5.1) are derived. Finally, the expediackorder expressions in

constraints (5.2) and (5.3) are obtained from

_(Qi+1)
2

E[Bio] E[Dio] -

+ E[lio], (5.10)
E[Bn] = E[Xin] - Sin + E[lin]. (5.11)

Recall that under the compound Poisson demand, the invgmbsiijon at the central
warehouse may overshoot the reorder ld&edince demand sizes are random. Gal-
lego et al. (2007) propose a two-moment approximation fangle-item two-echelon
distribution system operating under a base-stock poltég.dased on distributing the
overshoot quantity among the local warehouses in the sapasvde demand. The
method is also considered Bzer and Xiong (2008) for approximating a single-item
two-echelon distribution system with service-level coaisits. It yields satisfactory
results and fiers a better performance when the compounding distribsitthe lo-
cal warehouses are similar and the overshoot is a small e dackorder leveBg

at the central warehouse, which corresponds to the casdawitdemand variance
(Gallego et al. 2007Ozer and Xiong 2008). As a second approximation, we extend
this method to multi-item batch ordering systems and irstéaising (3.8) to obtain
the distribution ofB), we approximate it by using a two-moment approximation in
Gallego et al. (2007). Based on this meth&lB)] is obtained from (5.6), while
Var(BY) is obtained from

E[Bio]
E[Vio]

var(B?) = (2M)2var(Bo) + (”‘— E[V2] - (“'” 2E[V2] (5.12)
Hio Aio

We call this second approximation “two-moment approximtior the distribution
of backorders at the central warehouse emanating from Veahouses”, or simply

“two-moment approximation for backorders”.
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As a third approximation, instead of using (3.8) and thef)(& obtain the distribu-
tion of Xi,, we directly approximate it by using a two-moment approxXiorasimilar

to the one described in Graves (1985). The method is widedyl uis evaluating
the two-echelon inventory control systems under a basskgiolicy (Caggiano et
al. 2007,0zer and Xiong 2008) and also the systems under a batch ngdeoiicy
(Graves 1985, Hopp et al. 1999). Furthermore, it outpersd&E TRIC under single-
item (Graves 1985) and multi-item settings (Wong et al. 2)0Note that Graves’
method is originally developed for the pure Poisson casehicinit is relatively easy

to obtainVar(B{)) sinceBf)|B;o is binomially distributed with parametes, and42.
Nevertheless, findinyar(X;,) is quite involved in the compound Poisson demand
setting. Several papers in the literature extend this ntetbca compound setting
(Gallego et al. 2007Qzer and Xiong 2008, Zipkin 2000). As opposed these papers,
here, we extend Graves’ two-moment approximation to a batdaring system un-
der a compound Poisson setting by using the results in Gaélegl. 2007 an@®zer

and Xiong (2008). Accordingly, we obtain the relevant motedrom

E[xin]
Var(Xin)

E[B] + E[Dinl,
Var(BY) + Var(Dj,), (5.13)

which are obtained from (5.5), whilE[B{'] and Var(BY) are obtained from (5.6)
and (5.12), respectively. In this approximation, althoglb) is exactVar(X,) is
approximate becaus&éar(Bi(g)), which is obtained from equation (5.12), is not exact.
Therefore, our method involves an additional approxinmatiompared to the original
method (Graves 1985), in which the first and second momeetgxact. Later, in
the computational study we see that this has some negditaet en the performance
of the approximation in comparison to the results of Gravesthod under Poisson
demand settings (Graves 1985, Wong et al. 2007b). We calthirid approximation

“two-moment approximation for outstanding orders”.

Finally, we also adapt the METRIC approximation (Sherbrob@@8) to our problem.
The method relies on replacing the replenishment lead tintkeealocal warehouse
n € N for each part € | by its mean, e.gTi, + E[Wjo]. Since the stochastic lead time

is replaced by a constant, it simplifies the evaluation ofsyem (Ax&ter 2000).

113



Therefore, the method is quite common in the literature. el@wit is also known that
the METRIC underestimate the correct lead time. Therefaelt®in understocking
and, hence, high level of infeasibility (Wong et al. 2007bags 1985).

5.4 Solution Procedures

In this section, we extend the heuristics and the lower bguapgosed for the Poisson
demand case to compound Poisson demand setting. The cokmeragjon method,
greedy algorithm and the sequential heuristics are dyreqtplicable to problen..

The column generation method introduced for the Poissoraddrmodel in Section

3.1 requires the following minor changes:

and

¢ In the master problerMP, Ajo and A, are redefined a8y, = %‘W

X | pl <l
A = w for each column € L, for parti € | and for each warehouse
ne N.

« In the pricing problemEG), Ap andA;, are redefined a8y = E292-R and
A = HEa@R:S0ll for each part € | and for warehouse € N.

e In subproblenSP.(ﬁ), 6, is redefined a$g, = ‘,\jf: for eachn € N U {0} and for
each part e I.

After making these changes, the column generation proeedumplemented in a
similar way to obtain the Lagrangian dual solution for peshlP.. Hence, in an
iterative procedur€Gis solved to obtain the columns required for the solutiobf{
relaxation ofMP, i.e., @, R, S!) for eachi € I, theLP-relaxation ofMP is solved to
obtain the dual variables required for the solutiorC@3, i.e.,a, for eachn € N U {0}
andg; for eachi € |. Similarly, to solve problenCG, we solve subproblemSR(6)
for alli € 1. The procedure is repeated until none of the subprobB&{(§) yields a

negative optimal objective function value.

To solve each subprobleﬁﬂ(ﬁ), we adapt the algorithm proposed for solving single-
item two-echelon batching problems with Poisson demaneatié 3.2.2 to a com-
pound Poisson setting. This requires extension of theteesuSection 3.2.2 to com-

pound Poisson setting. Therefore, we propose upper ba@ngisndR’® and lower
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boundsQ-® andR"® for the optimal values fo; andR, for each part € I, respec-
tively. We explain how to find the optimal solution for subplems for given values
of reorder level and order quantity. These are necessatligamplementation of the

corresponding algorithm. The details are given in Apperdix

After finding the Lagrangian dual solution, we use the grealdprithm in Section
3.2.3 to obtain a feasible solution starting from the Lagran dual solution. In this

way, we develop the Lagrangian heuristic for the compoundgéa model.

In order to implement the sequential heuristics we follow fitocedure in Section
2.2. The sequential heuristic requires the following miobanges: The EOQ and
the EOQ with planned backorder8 QQP) formulae are revised for the compound
Poisson model a®; = \/@ andQ; = 1/% respectively. To implement
the third batch size heuristic, we use the upper bo@H# and the lower boun@-?
developed for the solution of the subproble(d) provided in Appendix A. In this
manner, similar to Section 2.2, we obtain three alternaaguential heuristicsS,,

S, andS;.

The Lagrangian dual bound, obtained through the columnrgéna algorithm, is
asymptotically tight in the number of parts for the compo&aisson setting as well.
This is easy to show since our proof for the Poisson demandcehiodsection 4.3
is free of the demand distribution. Therefore this resdodlolds for the compound
Poisson demand setting. Similarly, since the column ge¢ieerenethod converge (as

shown in Chapter 3) all our heuristics guarantee convergence

5.5 Computational Study

In this section, we conduct a computational study to testpgrdormances of the
heuristics and the approximations. Our computationalystamprises four parts.
First, the performance of the Lagrangian heuristic impletee by using the exact
evaluation method is tested against the Lagrangian dualdoMote that since this
bound is known to be asymptotically tight in the number oftpats performance is
verified at least for problem instances with large numberastg In this way, we

evaluate the performance of Lagrangian heuristic, whiekdgi quite satisfactory re-
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sults in the pure Poisson demand case, as we show in Chaptet wesextend some
of the findings in Chapter 4 to compound Poisson demand seflihg experiment
also makes it possible to explore the size of the problentscdrabe solved by us-
ing the exact evaluation method. The performance of thedragian heuristic based
on the exact method is evaluated in terms of the percentagjedewiation from the
Lagrangian dual solution, which is simply denoted gD, p. Let z p be the ob-
jective function value of the solution obtained by the Lagyian dual solution when
the exact method is used (exact Lagrangian dual bound) aat'lbée the objective

function value of the solution obtained by the Lagrangiaaristic when the exact

method is used, theRCD,p is computed as followsPCD,p = 'ZLZL;;LD'

Second, the performances of the Lagrangian and the seguéetiristics imple-
mented by using the approximate evaluation methods aesgitagainst the Lagrangian
heuristic that is implemented by using the exact evaluatibnthis way, we gain
insights about the performances of the heuristics and esatcuracy of the ap-
proximations at the same time. Since exact evaluation i podsible for small-size
problems, we do not perform a computational study to analyg@erformance of the
sequential heuristics under the exact method although vikatdor the Lagrangian
heuristic. Hence, we test the performance of the solutidmaimed by the three se-
guential heuristic based on the approximate evaluatiomoast The performance
of the heuristics under the approximate evaluation metiedsaluated in terms of
the percentage costfterence between the corresponding solution and the solution
obtained by the Lagrangian heuristic based on the exactadgetkhich is denoted
by PCD_y. Letzbe the objective function value of any solution to be testbdn

PCDyy is computed as followsPCD, y = 'Z;ZEH‘. To obtainPCD, 4, we compute the

correct value ok. That is, for all heuristics that are based on approximaaduesion

methods, after we obtain a solution by applying the hewriatid the correspond-
ing approximation, then we obtain evaluate the resultingailve function by using
the exact method. Hence, while we compute B@D,  for any solution, we use
the exactz value for the corresponding solution. To test the perforreanof the

heuristics that are based on the approximations, we arerdls@sted in the num-
berpercentage of instances that the corresponding methadkyaegieasible solution.

For infeasible solutions, also it makes sense to measuilevbkof infeasibility. An
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appropriate measure for the level of infeasibility can kertlative distance to feasi-
ble region, which is also considered by Wong et al. (2007} defined as follows:
Let X be the solution obtained by any one of the heuristics thabiained by us-
ing one of the approximate evaluation methods antgiX) is the aggregate mean
response time at warehousec N in the steady state for the corresponding solu-
tion, then the relative distance to the feasible regionpsiMRDFR is obtained by
RDFR = ne,\%{o} {(Wn(X) - er,"axf} / ne%{o} W', Note that this expression is simi-

lar to the measure of violation of the constraints used inetr@ution of the greedy

algorithm in Section 3.2.3.

Third, we test the performance of the Lagrangian dual smhstbbtained by using the
approximate evaluation methods so that we can find a soltdgibe used as a bench-
mark solution later in the experiments with large, pradigiae problems. Therefore,
we compare the performances of the Lagrangian dual sotutiaat are based on the
approximate evaluation methods against the exact Lagaardyial solution, or sim-
ply the exact Lagrangian dual bound for the problem. To dav&ogonsider the gap
between the corresponding solution and the Lagrangianuadd, which is denoted
by PGAP. LetZ be the objective function value of the Lagrangian dual sotubb-
tained by any approximate evaluation method, tR&AP is computed as follows:
PGAP = Z-2ol

zp

Finally, using the results of the previous parts of the cotatonal study, we con-
duct experiments with larger problems so that we can ob&sults for more realistic
cases. As a benchmark solution, we use the solution of theabhg@n heuristic ob-
tained by using the approximation that yields the best perémce. We decide on the
best approximation based on the results of the experimstutdy in the second part
of the computational analysis. Hence, the performanceeh#uristics is evaluated

in terms of the percentage cosftdrence between the solution obtained by the corre-

sponding method and the benchmark solution. This perfoceareasure is denoted

by PCDLhapp = 'ZZ‘:E”', wherez,,, is the objective function value of the benchmark
solution, i.e., the Lagrangian heuristic that is obtaingdubing the most appropri-
ate approximation. Since the exact evaluation is intrdettds large-scale problems,
measuring the level of infeasibility is not possible for taeger problems. Hence,

in this part, we rely on th€CD,_ and also the results of earlier experiments with
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small-size problems in the second part of the experimenenckl, all our findings

are based on the approximate evaluation, zethe objective function value of any
solution to be tested, is evaluated under the corresporagipgpximation. However,
even if this is the case, testing the heuristics obtainedsiiyguhe approximations is
still possible to a certain extent and also it makes senseeasew in the following

sections.

The performances of the approximations can also be testedroparing the com-
plete distributions associated with the approximatiorth wie exact distribution. In
the dissertation, we exclude the corresponding analysiscansider it as a future

work. We suppose that after making such an analysis our fysdimke more sense.

In Section 5.5.1, we introduce our experimental design.nThreSection 5.5.2, the
performance of the Lagrangian heuristic implemented bggiie exact evaluation
method is tested against the Lagrangian dual bound. Lat&ection 5.5.3, the per-
formances of the Lagrangian and the sequential heuristipfemented by using the
approximate evaluation methods are tested against thehgigin heuristic under the
exact evaluation. In Section 5.5.4, we test the performafdhe Lagrangian dual
solutions obtained by using the approximate evaluatiorhods. Finally, in Section
5.5.5, using the results of the computational study in 5¥el present results from

experiments conducted for large-size problems.

5.5.1 Experimental Design

In our experiments, we consider the following seven pararsets the experimental
factors: (i) number of partsl|, (i) number of local warehousepBy|, (iii) customer
arrival rate,;,, (iv) variance-to-mean ratio of the demand distributi%%, (V) unit
variable costsg;, (vi) fixed ordering costsK;, (vii) target aggregate mean response
times at the warehouse®/["™. Since the lead tim&;, at warehouse € N U {0}
contributes to the model in the form of lead time demagd;,, we do not consider it
as a distinct factor. In our computational study, we consildieee testbeds. The first
testbed is used to explore th&exts of all parameters, whereas the second testbed
is to observe thefeects of the number of parts, the number of local warehousgs an

the variance-to-mean ratio of the demand more deeply, wénielthe most critical
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parameters thatfiect the performances of the heuristics and the approximstim
both testbeds, we consider relatively small problems. Tages it possible to im-
plement both the exact and approximate evaluation metfiddse testbeds are used
in the computational study in Sections 5.5.2-5.5.4. Thelttastbed is to extend the
findings in 5.5.2-5.5.4 to large, practical size problembisTestbed is used in the
computational study in Section 5.5.5. For all testbedsfdhewing considerations
are common: The lead time at the central wareholige,across all parts, the tar-
get aggregate mean response times at the warehdl8€%,across all warehouses,
the lead times at the local warehousgg, across all parts and local warehouses are
assumed to be identical. We assume that the unit variabte,cpsand the fixed or-
dering costsK;, are nonidentical across all parts, the customer arrivabkra;,, and
the variance-to-mean ratio of the demand distribut‘;rq'znhare nonidentical across all
parts and warehouses. The fixed ordering cost of each pathan@riance-to-mean
ratio Z—'Zn” of demand distribution of each part at each location areraeduo be ran-
dom. Each is generated from a uniform distribution. To repné skewnesses of the
customer arrival rates and the unit variable costs acrass, p2., the Pareto princi-
ple, we follow the same approach that we consider for thesBoidemand in Section
4.4.1. Recall that in Section 4.4.1, we obtain instancesyiomsetric and assymetric
demand cases. In a similar way, we obtain symmetric and assigndemand cases
for the Poisson demand setting. However, we consider oelyalymmetric demand
case, since it is more realistic and there is no significdifiérdince between the two

cases in the pure Poisson demand setting.

For the first testbed, we consider 2 levels of each parametegpt theZ—:zn” ratio,

to avoid explosion of the number of problem instances. Tdyaeathe dfect of

Z—'Z: ratio more deeply, we consider 3 levels. The first level, tlee one generated

o2

from U[1, 1.001], corresponds to the special case wfﬁres almost 1 and resembles
the pure Poisson demand setting the most. The other twcsleeetesponds to the
situations Wheré;i‘—z'n1 is higher. The number of parts is set to 20 and 50, whereas the
number of local warehouses is set to 2 and 3. Table 5.2 surpasdtie values of the
parameters used in testbed 1. Based on this setting, 5 ranchdmeim instances are
generated for each of the 192°( 3) different settings, resulting in a total of 960

problem instances.
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Table 5.2: Parameter values used in testbed 1.

Number of

Parameters Levels Values
| 2 20 and 50
N 2 2and 3
A, (arrivals/day) 2 0.02 and 0.005
¢ ($/unit) 2 1000 and 5000
W™ (day) 2 0.1and 0.9
K; ($/order) 2 U[50/3, 100/3] and U[50/3, 100/3]
anl 3 U[1,1.001], U[1,1.5], U[1,2]

As we mention before, we also generate a second testbed to explore the effect of
three parameters simultaneously, i.e., the number of parts, the number of warehouses
and the variance-to-mean ratio of the demand distribution. We generate the problem
instances for the second testbed in a similar way as we generate the first testbed. We
consider 10 levels of the number of parts, 2 levels of the number of local warehouses
and 3 levels of the variance-to-mean ratio. We consider a single level of each of the
remaining parameter. Here, we take an average setting for these parameters. Table
5.3 summarizes the values of the parameters used in testbed 2. Based on this setting,
12 random problem instances are generated for each of the 60 (10 x 2 x 3) different

parameters setting, resulting in a total of 720 problem instances.

For the third testbed, through which we aim at extending our analysis to large-scale
problem instances, we consider 7 levels of the number of parts and 2 levels of the
variance-to-mean ratio. In order to observe the effect of much higher variance-to-
mean ratios, we also consider a setting in which this ratio is generated from U[1, 4].
For the rest of the parameters we consider a single level. The values of the parameters
used in this third testbed is summarized in Table 5.4. Based on this setting, 5 random
problem instances are generated for each of the different parameters setting. Apart

from that, using the same testbed we also carry out experiments for problem instances
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Table 5.3: Parameter values used in testbed 2.

Number of

Parameters Levels Values
I 10 10, 20, 30, 40, 50, 60, 70, 60, 90 and 100
N 2 2and 3
A, (arrivals/day) 1 0.01
¢ ($unit) 1 3000
W™ (day) 1 0.3
K; ($lorder) 1 U[100/3, 200/3]
Tl th, 3 U[1,1.001], U[1,1.5], U[1,2]

with 5,000 parts and 12 local warehouses so that we can further see the performances
of the heuristics and the approximations for larger problem instances in terms of the

number of local warehouses.

The logarithmic and the geometric distributions are empirically shown to be best fit-
ting distributions for spare parts, with having almost the same fitting rates (Eaves
2002). Although the two distributions are very similar distributions (Eaves 2002,
Axsiter 2006), in the case of logarithmic distribution, the demand distribution turns
out to be a negative binomial distribution. This simplifies the computations. For the
sake of simplicity, we use the logarithmic distribution as a compounding distribution
in our experiments. However, since all the heuristics and approximations developed
in this chapter are free of the compounding distribution, it is also possible to consider
other distributions as well. To illustrate the effect of variance-to-mean ratio on the
demand distribution, consider the following example. Let the external customer ar-
rival rate for any two parts at the central warehouse be 0.015 and 0.05 per day, i.e.,
say Ay, = 0.015 and 4,, = 0.05. This corresponds to a situation in which demand
arrivals occurs in almost every two months and every 20 days, which are very rea-
sonable frequencies for spare parts in practice. Then, for the corresponding values of
customer arrival rates, the probability distribution (since we use a logarithmic com-

pounding distribution, this corresponds to a negative binomial distribution), the mean
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Table 5.4: Parameter values used in testbed 3.

Number of

Parameters Levels Values
| 7 50, 100, 250, 500, 1000, 3000 and 5000
N 1 6
A, (arrivals/day) 1 0.015
¢ ($unit) 1 3000
W™ (day) 1 0.3
K; ($/order) 1 U[50, 100]
Tl ths 3 U[1,2], U[L,4]

and the variance of the lead time demand for different values of variance-to-mean ra-
tio, Z—i’ are shown in Figure 5.1 (lead time at the central warehouse is assumed to be 10
days). Figure 5.1 shows how the tail of the lead time demand probability distribution
at the central warehouse extends and the increase of the mean and the variance of the

corresponding distribution with the variance-to-mean ratio.

In all our experiments, it is possible to consider the cases in which (1) only external
customers, (2) both type of customers are incorporated in evaluating the performance
of the central warehouse. Since the experiments do not reveal any significant differ-
ence between the results of the two cases in the Poisson demand case (as shown in
Chapter 3), we consider only the latter case since it is more realistic. The inventory
carrying charge is taken as 25% annual. The algorithms are coded in C++ and the
experiments are run on an Intel 3 GHz processor with 3.5 GB RAM. In the remainder

of this section the results of the experiments are presented and discussed.

5.5.2 Performance of the Lagrangian Heuristic under the exact evaluation

As we mention before, to test the performance of the heuristics we use testbed 1,

whereas to explore the effects of the number of parts, the number of local warehouses
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Probability distribution of the lead time demand under different variance-to-mean ratios
(average demand rate = 0.015)
Total Fiemand Variance-to-mean ratio
Size 1 15 2 2.5 3 35 4
0 86.07% 86.07% 86.07% 86.07% 86.07% 86.07% 86.07%
1 1291% 10.61% 9.31% 8.45% 7.83% 7.36% 6.98%
2 097%  2.42% 2.83% 295% 297% 2.94% 2.90%
3 0.05% 0.64% 1.05% 1.28% 1.41% 1.49% 1.53%
4 0.00% 0.18% 0.42% 061% 0.74% 0.83% 0.89%
5 0.00% 0.05% 0.18% 0.30% 041% 0.49%  0.5%%
6 0.00% 0.02% 0.08% 0.16% 0.23% 0.30% 0.3%%
7 0.00% 0.00% 0.03% 0.08% 0.14% 0.19% 0.23%
8 0.00% 0.00% 0.02% 0.04% 0.08% 0.12% 0.1%%
9 0.00% 0.00% 0.01% 0.02% 0.05% 0.08% 0.10%
10 0.00% 0.00% 0.00% 0.01% 0.03% 0.05% 0.0T%
Mean 0.1500 0.1850 0.2164 0.2456 0.2731 0.2993 46.32
Variance 0.1500 0.2775 0.4328 0.6139 0.8192 1.0477.2984

Probability distribution of the lead time demand under different variance-to-mean ratios
(average demand rate = 0.05)
Total demand Variance-to-mean ratio

size 1 15 2 25 3 35 4
0 60.65% 60.65% 60.65% 60.65% 60.65% 60.65% 60.65%
1 30.33% 24.93% 21.88% 19.86% 18.40% 17.29% 16.41%
2 7.58%  9.28% 941% 9.21% 893% 8.64% 8.31%
3 1.26% 333% 427% 469% 487% 4.94% 4.94%
4 0.16% 1.18% 199%  249%  2.80%  3.00% 3.11%
5 0.02%  0.41%  0.94% 1.36% 1.67% 1.88%  2.04%
6 0.00% 0.14% 0.45% 0.75% 1.01% 1.21% 1.36%
7 0.00% 0.05% 0.21% 042% 0.62% 0.79%  0.93%
8 0.00% 0.02% 0.10% 0.24% 0.39% 0.52% 0.64%
9 0.00% 0.01% 0.05% 0.14% 0.24% 0.35% 0.45%
10 0.00%  0.00% 0.02% 0.08% 0.15% 0.23% 0.31%

Mean 0.5000 0.6166 0.7213 0.8185 0.9102 0.9978 20.48
Variance 0.5000 0.9249  1.4427 2.0463 2.7307  3.49283281

Figure 5.1: Effect of variance-to-mean ratio on the lead time demand distribution, its
mean and variance.

123



and the variance-to-mean ratio more deeply, we use testbed 2. We consider the per-
centage cost difference between the Lagrangian heuristic under the exact evaluation
and the Lagrangian dual bound, PCD, ), as a performance measure. We also evaluate
the performance of the Lagrangian heuristic in terms of the computational require-
ments based on our experiments conducted by using testbed 1. A summary of the
results for testbed 1 is given in Table 5.5, whereas the results for testbed 2 is summa-
rized in Figure 5.2. The CPU time requirements of the Lagrangian heuristic in testbed

1 is presented in Table 5.6

Table 5.5: Effects of parameters on the performance of the LLagrangian heuristic when
the exact evaluation method is used.

Parameters Exact

Avg. M ax
All instances 3.472% 26.448%
Number of Parts 20 4.738% 26.448%
50 2.206% 16.013%
Number of Warehouses 3 3.363% 20.852%
4 3.582% 26.448%
[1,1.001] 4.425% 26.448%
Varianceto Mean Ratio  [1,1.5] 3.605% 21.358%
[1,2] 2.387% 12.292%
Average Demand Arrival 0.005 3.847% 20.852%
Rate (units/day) 0.02 3.098% 26.448%
Average Unit Cost 1000 3.023% 18.886%
($/unit) 5000 3.922% 26.448%
Average Fixed Ordering 25 3.847% 26.448%
Cost ($/order) 75 3.097% 20.809%
Target Aggregate Mean 0.1 3.457% 26.448%
Response Time (day) 0.9 3.487% 20.852%

The main findings are as follows:

e As depicted in Table 5.5, both the average and the maximum PCDy, are found
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to be high. However, both improve as the number of parts besdarger. Fig-
ure 5.2 displays that the averag€ D, p that the Lagrangian heuristic yields for
all 12 random instances in testbed 2 improves with the nurobparts. Ac-
cordingly, when the number of parts is 100 and the numberaail evarehouses
is 2, the averagCD,p are found to be 1.32%, 0.83% and 0.50% for the low,
mid and high variance-to-mean ratios (or simply demandavae cases), re-
spectively. Similarly, when the number of parts is 100 aredrthmber of local
warehouses is 3, the avera@€D_p are 2.09%, 0.93% and 0.78% for the low,
mid and high demand variance cases, respectively. Both iexpetal results
for testbed 1 and 2 show that tiRC D, p that the Lagrangian heuristic yields
increases with the number of local warehouses. Howeveefiibet of the num-
ber of parts seems to be more strong compared to the that o@ithber of local
warehouses. All these results are in line with our findinggte pure Poisson

case in Section 4.4.3.

Figure 5.2 also shows that the averd&®@D, p of the Lagrangian heuristic is
lower when the demand variance is higher. This reveals teat.agrangian
heuristic, whose performance is tested to be quite wellerptire Poisson (low
variance) case, yields much better results in the compowigséh demand

case as the demand variance increases.

The average and the maximum CPU time required by the Lagnarngaris-

tic obtained by using the exact evaluation method (also ttes @btained by
using alternative approximation methods) are summarizd@éble 5.6. In this
table and as well as the others in the rest of this chapter,bliecaiate the
two-moment approximation for outstanding orders and the-mvoment ap-
proximation for backorders as two-moment app. (out) andrvement app.
(back), respectively. Table 5.6 displays that average hadrtaximum CPU
time (in sec.) required by the Lagrangian heuristic areegbigh under the
exact evaluation even when the number of parts is relatswlgll, such as 20
and 50. However, they are quite low when approximations seeluThese re-
sults highlight how the exact evaluation procedure becdngdgy involved for

the compound Poisson demand and also explain why appragimsedre very

necessary to solve problems under the compound Poissomdesuah as the

125



Average performance of LHunder exact evaluation with respect to number of parts

PCDp for different settings of variance to mean ratio (NumwWare = 2)
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Figure 5.2: Effect of variance-to-mean ratio on the lead time demand distribution, its
mean and variance.
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one in this dissertation. Therefore, in the rest of this section, we investigate the
performance of the approximations and and try to find out an approximation(s)

that can substitute the exact evaluation for larger problems.

Table 5.6: Computational requirements of the Lagrangian heuristics under the exact
and approximate evaluation methods (CPU time in sec.)

; ; Two- Two-
Exact method Bu;omlal Metric app. moment moment
Parameters pp. app. (out) app. (back)

Avg. Max Avg. Max | Avg. Max | Avg. Max | Avg. Max
Allinstances (over 960 instances) | 273225 12564628 | 023 200 | 006 023 [ 006 025 | 010 055
20 | 181596 12564628 | 012 099 | 003 013 | 004 013 | 006 0.33
50 | 364855 10144761 | 034 200 | 008 023 | 009 025 | 015 055
134711 8433636 | 014 078 | 004 013 | 005 013 | 007 027
411740 125646.28 | 033 200 | 007 023 | 008 025 | 013 055

Number of Parts

Number of Warehouses

5.5.3 Performance of the heuristics under the approximate evaluation methods

As mentioned before at the beginning of this section, we consider three different
measures to evaluate the performance of the heuristics that are obtained by using the
approximate evaluation methods. These are the percentage cost difference between
the solution and the exact solution of the Lagrangian heuristic, PCD, y, the number
of feasible solutions and the relative distance to the feasible region, RDFR. Among
these three measures, the PCD, 4 evaluates the performance of the solutions obtained
by the heuristic (as well as the approximations) in terms of the objective function
values. However, the latter two measures are related with whether the constraints are
satisfied, and if not, what level of violation is incurred and how far the solution is

from the feasible region.

5.5.3.1 The performance of the Lagrangian heuristic under the approximate

evaluation methods

The results for testbed 1 are summarized for each measure separately in Tables 5.7-
5.9. The results for testbed 2 are presented in Figures 5.3 and 5.4, where each point
in the figure represents the average and the maximum PCD,y and RDFR for the 12
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problem instances in testbed 2, respectively. In the cpomding figures, we present
the results for the settings in which the number of local Watese is 2. The results
for the settings in which the number of local warehouse ise3samilar. The main

findings based on theCD_4 that the Lagrangian heuristic yields are as follows:

e As depicted in Table 5.7, under each one of the approximstithe average
PCD.4 that the Lagrangian heuristic yields is quite satisfactbrt the max-
imum PCD_y is considerably high. However, both the average and the-maxi
mum PCD_y that the Lagrangian heuristic yields are quite tolerableiger,

more realistic problem sizes as we discuss later.

e Among four approximate evaluation methods, the two-morapptoximations
yields better results compared to the binomial approxiomegind the METRIC.
It is well known that the binomial disaggregation fails iretbtompound Pois-
son demand setting. Our empirical findings verifies thislteswd show that
the performance of the binomial disaggregation is rel§tip®or. It is also
known that the two-moment approximation yields better teghan METRIC
in pure Poisson case (Graves 1985, Wong et al. 2007b). Oumdimghow that
this conclusion holds for the compound Poisson demand ds fieklly, the
experiments reveal that the two-moment approximation édstanding orders
yields slightly better results than the two-moment appration for backo-

rders. These results can also be seen in Figure 5.3.

e Although the performance of the Lagrangian heuristic ured@rct evaluation
is found to be better for problems with high demand variatioe result is the
opposite when we rely on the approximate evaluation methblis shows that
as the variance-to-mean ratio increases, approximatmgulstanding backo-
rders by using any one of the approximations works less. Mentbe dfect of
demand variance is much more significant for the binomiat@amation and
performs better when the demand variance is low such as Heeicdahe pure

Poisson demand. This can also be seen in Figure 5.3.

e As shown in Table 5.7, under the binomial and the two-momept@&ima-
tions, the Lagrangian heuristic yields a better perforreanben the number

of parts is higher. Note that this is in line with our findingsthe pure Pois-
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AVerage performance of LH under various approximations with respect to number of

PCOLH parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
2.75%

2.48% A

2.20% \
1.93%
1.65%
1.38%
1.10%
0.83%
0.55%

10 20 30 40 50 60 70 80 90 100
Number of
parts

‘+ Binomial —A— Metric —e— Two-moment (out.) —8— Two-moment (back.)

AVerage performance of LH under various approximations with respect to number of

PCOLH parts (Variance to mean ratio ~ U1,2], Number of local warehouses = 2)
4.00%

3.60% - x
3.20%

2.80% +
2.40% - A
2.00% Xe X ~—
1.60% WV)%
1.20%

0.80% - \5/5*9

0.40%
0.00%

10 20 30 40 50 60 70 80 a0 100
Number of
parts

—¥— Binomial —A— Metric —e— Two-moment (out.) —=— Two-moment (back.)

Figure 5.3: Effect of the number of parts on the performance of the LL.agrangian heuris-
tic under various approximations (PCD, ).
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Max  performance of LH under various approximations with respect to number of
PCDLH parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Figure 5.3 (continued)
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son demand case. We interpret this finding as follows: Undemtulti-item
approach, which makes risk pooling possible among partshémefits of risk
pooling increases as the number of parts increases. Hensenore likely to

find a feasible solution close to the optimum by using the Aagran heuristic.

Table 5.7 displays that under all approximations, the Liagjien heuristic yields
more accurate results in terms of tRE D,y when the number of local ware-
houses is high. Note that for the Poisson demand, we do na $izach an
observation. Hence, this finding is related with using appnations. That is,
binomial disaggregation (binomial approximation), camsiead time assump-
tion (METRIC), and two-moment approximations work betterresnumber of

local warehouses increases. Our findings are in line withg/\éral. (2007Db).

These two observations are important in the sense that tp@hgian heuristic
under the approximate evaluation methoffeis a better performance for large-
size practical systems. For instance, as shown in Figure@in the high de-
mand variance case, both the average and the maxiR@m 4 of the solution
obtained by the Lagrangian heuristic under the two-momgepitaximation for
outstanding orders decrease down to tolerable levels asithber of parts in-
creases, e.g., when the number of parts is 100, the averdgdbe@maximum
PCD_y that the Lagrangian heuristic yields are 0.77% and 1.41%peively
for the two-moment approximation for outstanding orderbereas those for
the two-moment approximation for backorders are 0.79% a#d%, respec-

tively.

As shown in Table 5.7 and Figure 5.3, the binomial disaggregavhich is
exact in the pure Poisson demand case, yields quite satisfaesults when
the variance-to-mean ratio is almost 1. Nevertheless, Wiedemand variance
is higher, its performance deteriorates and it becomessilasopoor as that of
the METRIC. Later, we also show that its performance is eversatran the

METRIC when the demand variance is much higher.

The Lagrangian heuristic yields a better performance foblem instances
with

— high average customer arrival rate,
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— low average unit variable cost,
— high average fixed ordering cost,

— long target aggregate mean response time.

These findings are common for all approximations, exceptttte METRIC
yields a better performance when the average customeaknate is low. These
results are in line with the results in pure Poisson demase iteSection 4.4.3.
The first three conditions correspond to a situation whezeftimal inventory
policy parameters, i.eQ;, R andS;,, are high. This shows that when the value
of optimal policy parameters are high, the Lagrangian Istianperforms better.
This observation is also in line with Wong et al. (2007b). Weerpret the
fourth observation as follows: Long target aggregate mespanse times yield
loose constraints for the problelf Under the multi-item approach, such loose
constraints increase the risk pooling among parts. Thieases the number
of alternative near-optimal solutions. Hence, under l@rgdt aggregate mean
response times, it is more likely to find a feasible solutioat tis close to the
optimal solution by using the Lagrangian heuristic. Therflowbservation is

also in line with our findings for the Poisson demand settm§ection 4.4.3.

The main findings based on the feasibility measures that #ygrangian heuristic
yields are as follows:

e As depicted in Tables 5.8, the number of feasible solutidiained by the La-
grangian heuristic under approximate evaluation metheesns to be relatively
few. It decreases with as the following factors increasies:number of parts,
the number of local warehouses and the demand variance.tiNtdtéhese are
the most critical factors in our analysis. The former two nkedi the size of
the problems, whereas the latter is a measure specific tothpaund Poisson
distribution.

¢ Both the two-moment approximations yield higher perforngimaderms of the
number of feasible solutions than the binomial approxiovaand METRIC.
The two-moment approximation for outstanding orddters a slightly better

performance than the two-moment approximation for backaerd
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e As shown in Table 5.9, the averaB®FRof the solutions obtained by the La-
grangian heuristic under two-moment approximations artedalerable and
considerably lower than the binomial approximation andNHETRIC. How-
ever, the maximunRDFRIis considerably high. Nevertheless, as shown in 5.4,
when either one of the two-moment approximations is usedhvierage and the
maximumRDFRobtained by using the Lagrangian heuristic decrease wéth th
number of parts. For instance, when the number of parts iseM@d in the high
demand variance case; when the two-moment approximatioauistanding
orders is used, the average and the maxinRID# R of the solutions obtained
by the Lagrangian heuristic are 1.81% and 3.44%, respégtivBereas for the
two-moment approximation for backorders the correspandatues are 1.93%
and 3.57%, respectively. This implies when the target agggeemean response
time W™ is 0.3 days (approximately 7 hours) the two-moment appraxim
tion for outstanding orders overshoots this target at matt an average of
15 minutes, which is quite tolerable in practice. The figueeeals that this
result improves further as the number of parts increases.rdsults also show
that although the number of infeasible solutions increagtésthe number of
parts, the number of local warehouses and the demand veritine level of

infeasibility, so to sa\RDFR stays at tolerable levels.

e Similar to our findings foPCD_4, the Lagrangian heuristic under the approx-
imate evaluation methods vyields a better performance foblpm instances
with

— high average customer arrival rate,
— low average unit variable cost,
— high average fixed ordering cost,

— long target aggregate mean response time.

Recall that Wong et al. (2007b) considers a decompositioncahdnn generation
(DCG) method similar to our Lagrangian heuristic to find théigyoparameters of
a multi-item two-echelon system operating under a basgkgpolicy. In this pa-
per, they also consider the METRIC and Graves’ two-momentaqimation for the

analysis of the system. The authors consider the same peifime measures as ours
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Average performance of LH under various approximations with respect to number of
RDFR  parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Figure 5.4: Effect of the number of parts on the performance of the Lagrangian heuris-
tic under various approximations (RDFR).
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to test the approximations. Here, we compare our results that of Wong et al.
(2007b). Accordingly, the relative errors that we obtaithi@ experiments are consid-
erably higher than that of obtained by the two-moment appration in Wong et al.
(2007Db). The relative errors due to using METRIC are onlyrdhghigher than those
in Wong et al. (2007b). Due to the computational burden tloamound Poisson
demand brings, in this work, we have to experiment with netht small size prob-
lems, where the approximations performs worse. This expltdie slight dierence
between the results for METRIC in Wong et al. (2007b) and ourkwdeverthe-
less, the dierence between the results for the two-moment approximati®/ong
et al. (2007b) and our work is quite significant. That is, the moment approxima-
tion yields an average totalftierence (in our work, this correspondsRE€D_ ) less
than 0.10% in Wong et al. (2007b), while in our experimentsfiwe that the aver-
agePCD.y under the two-moment approximation for outstanding oréeeround
1.32%. Similarly, the average and the maximRDFRunder the two-moment ap-
proximation in Wong et al. (2007b) are less than 0.11% an8%, Aavhereas in our
experiments the average and the maxinRIDFRunder the two-moment approxima-
tion for outstanding orders are 1.00% and 14.84%, respgtivVe interpret these
results as follows: Recall that applying the two-moment appnation to compound
Poisson demand setting requires estimation of the variafitbe number of outstand-
ing ordersVar(Xi,) and this is quite involved for the compound Poisson distrdn,
i.e., we obtainvar(X,) by using equation (5.12) and this is only an approximation.
Nevertheless, it is easy to obtain the corresponding terthenpure Poisson case
(Wong et al. 2007b). The flerence between figures in the two works are attributed
to the additional approximation required to adapt the twarvrant approximation for
compound Poisson demand. Since equation (5.12) is usetbataplement the two-
moment approximation for backorders, this explains tikeddnces in figures for the

two-moment approximation for backorders as well.

Finally, we evaluate the resulting stocking levels thatlthgrangian heuristic yields
under diferent approximations. Both the METRIC and the binomial apipnax

tion result in understocking. For both approximations, el of understocking
increases even further with the increase in variance-tammatio. Although there

are exceptional cases, the two-moment approximationsttenderstock especially
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when the variance-to-mean ratio is high. However, the tvama@nt approximation
for outstanding orders overstocks less compared to tharament approximation
for backorders. These results aldteet the total cost estimations obtained by the ap-
proximations in a similar way. For instance, the METRIC ane bimomial approxi-
mation results underestimate the exact costs, while thetsmment approximations
have a tendency to overestimate the real costs. Thesesraselin line with the re-
sults reported by Graves (1985), who compares the perfarenaihthe two-moment

approximation and the METRIC for a base-stock system faciRgisson demand.

5.5.3.2 Performance of the sequential heuristics under thapproximate evalu-
ation methods

The results of the experiments for testbed 1 for sequengiatisticsS;, S, andS;
are summarized in Tables B.1-B.3, B.4-B.6 and B.7-B.9, respégtimeAppendix
B. The CPU time requirements of the sequential heuristics rutideapproximate
evaluation in the experiment with testbed 1 are depictedaiblel'’5.10. Based on

these results, we make the following observations:

e The average and the maximuP&€ D,y obtained by thé&, andS; heuristics are
lower than those 08;. This implies that taking the service level requirements
into account to obtain the order quantities yields bettsults for sequential
heuristics. The average and the maximB@D, 4 obtained by thé&; are found
to be significantly better than those 8. However, neither of the heuristics
dominate the others. All these findings are in line with thdifigs regarding

the performance of the sequential heuristic in the puresBaislemand case.

¢ In terms of thePCD_y, each of the three sequential heuristics obtained by us-
ing the approximate methods yield inferior results comgdoethe Lagrangian
heuristic obtained by using the approximate methods. Fiante, under the
two-moment approximation for outstanding orders, while séiveragd’CD_ 4
of using the Lagrangian heuristic is only 1.32%, those&Sgf S, and S; are
5.64%, 4.49%, 4.09%, respectively. Nevertheless, thisdgpeases as the
number of parts or the demand variance increases. Howexar, fer those

problem instances that are in favor of the sequential hiszgjghe Lagrangian
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heuristic yields quite better results. For instance, whenrtumber of parts

is 50, the averag®CD_y of using the Lagrangian heuristic is 0.92%, those
of S;, S, andS; are 4.13%, 2.89% and 2.62%, respectively. Similarly in the
high demand variance case, while the ave@@®_ of using the Lagrangian
heuristic is 2.00%, those &, S, andS; are 5.40%, 4.44% and 3.83%, respec-
tively. Furthermore, the maximuPC D,y of using the sequential heuristics are

found to be too high in all of the problem instances.

In terms of thePCD, 4, the performances of the approximations do ndtedi

much.

As opposed to the results in terms of fRED, 4, the sequential heuristic yield
comparable results with the Lagrangian heuristic in terhtiseofeasibility mea-
sures, e.g., under the two-moment approximation for ondiste orders, while
theRDRF of the solution obtained by the Lagrangian heuristic is %0those
of Sy, S, andS; are 1.04%, 1.03% and 1.01%, respectively. Intuitively,amd
any given approximation, no matter what type of heuristicuse, the level of
feasibility seems to be the same. Since the approximatiaislynaffects on
the feasibility of the solutions, the results of the segiaaind the Lagrangian
heuristics turn out to be similar in terms of the measure®asibility. Never-
theless, since these two heuristiceli in the way they search for the optimal

solution, their performances mainlyfidr in terms of thd?CD, .

In terms of the feasibility measures, the sequential hecsi®btained by ap-
plying the two-moment approximations are found to be sapdo the one
obtained by using the other approximations. The sequemiatistics that are
obtained by using the two-moment approximation for outditagnorders yields
slightly better results than the one obtained by the two-emrmapproximation
for backorders.

Finally we evaluate the performance of the sequential bBaiin terms of the com-

putational requirements. Table 5.10 summarizes the sees@ased on the results,

the computational requirements of the sequential hecsistie comparable with the

computational requirement of the Lagrangian heuristiegiv Table 5.6. This shows

that the computational savings of using the sequentialistezg seem to be limited
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compared to that of the Lagrangian heuristic as in the puigsBo demand case.

5.5.4 Performance of the Lagrangian dual solution under the pproximate eval-

uation methods

The summary of the results for testbed 1 and testbed 2 aremgessin Table 5.11
and Figures 5.5, 5.6, respectively. The main findings arelésifs:

e As can be seen from both Table 5.11 and Figures 5.5 and 5.6atjrangian
dual solution obtained by using the two-moment approxiametiyields quite
satisfactory results. The results are considerably b#ttar those of the La-
grangian dual solutions obtained by using other two appnaie evaluation
methods. Furthermore, the Lagrangian dual solution implged by using the
two-moment approximation for outstanding orders yield§gh#y better per-
formance than the one obtained by using the two-moment appation for

backorders.

e Figures 5.5 and 5.6 reveal that for all the approximatidmsPG APis bounded
above. Furthermore, for the two-moment approximations atrerage and the

maximumPGAP decrease with the number of parts.

e As shown in Table 5.11 and Figures 5.5 and 5.6, the perforenahthe La-
grangian dual solution obtained by using the approximatinous deteriorates
as the demand variance increases. However, Figures 5.5.aralsd show
that even in the high demand variance case, the average andakimum
PGAPs are at quite tolerable levels. For instance, when the nuofdecal
warehouses is 2 and the number of parts is 100, the averagthandaxi-
mumPGAP that the two-moment approximation for outstanding ordezklg
are 0.76% and 1.17%, while these figures are 0.80% and 1.10%e&dwo-
moment approximation for backorders, respectively. Sirty) when the num-
ber of local warehouses is 3 and the number of parts is 10@viérage and the
maximumPGAPs that the two-moment approximation for outstanding orders
yields are 0.61% and 1.30%, while these figures are 0.74% &id4lfor the

two-moment approximation for backorders, respectively.
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e Similar to our findings for the Lagrangian heuristic obtair®y using the ap-
proximate evaluation methods in Section 5.5.3.1, the Lragjean dual solution
obtained by using the approximate evaluation methods yialtetter perfor-
mance for problem instances with

— high average customer arrival rate,
— low average unit variable cost,
— high average fixed ordering cost,

— long target aggregate mean response time.

5.5.5 Performance of the heuristics under the approximatewvaluation methods

in large-scale problems

Since the exact Lagrangian dual solution becomes intrectablarge practical size
problems and the Lagrangian dual solution obtained by ugiagwo-moment ap-
proximation for outstanding orders yields satisfactorsuits in the experiments as
discussed in Section 5.5.4, we use the latter as a benchrolutios in our ex-
periments with large-scale problems. We use testbed 3 ferpilrpose. Figures
5.7-5.10 summarizes the results. Figures 5.7 and 5.9 glisipéaaveragd>C Dy yapp
and the average CPU time for the Lagrangian and the sequbkatiaktics when the
two-moment approximation for outstanding orders is usespectively. Figures 5.8
and 5.10 show the avera®C D, napp and the average CPU time for the Lagrangian
heuristics under the approximations considered in thisediiation. Each point in the
figures shows the average of the corresponding measured @yeopblem instances
for each setting generated in testbed 3. To illustrate thekstg levels under dier-
ent approximations, we also analyze the average baseist@ik that the Lagrangian
heuristic yields under four ffierent approximations. The results are summarized in

Figure 5.7. The main findings are given as follows:

e The averag®C D yapp 0f the Lagrangian heuristic obtained by the two-moment
approximation for outstanding orders approaches to zetteeasumber of parts
increases. This is intuitive. Under a given approximattbe,gap between the

Lagrangian heuristic and the Lagrangian dual solution jseeted to approach
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Average Performance of LD under various approximations with respect to number of
PGAP  parts (Variance to mean ratio ~ U1,1.001], Number of local warehouses = 2)
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Figure 5.5: Effect of the number of parts on the performance of the Lagrangian dual
solution under various approximations (PGAP’ - Number of local warehouses = 2).
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Max  performance of LD under various approximations with respect to number of
PGAP  parts (Variance to mean ratio ~ U1,1.001], Number of local warehouses = 2)
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Figure 5.5 (continued)
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Average performance of LD under various approximations with respect to number of
PGAP  parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 3)
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Figure 5.6: Effect of the number of parts on the performance of the LLagrangian dual
solution under various approximations (PGAP’ - Number of local warehouses = 3).
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Max  performance of LD under various approximations with respect to number of
PGAP parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 3)
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Figure 5.6 (continued)
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to zero as the number of parts increases. We show that this result holds for
the exact evaluation case. Now, we observe this result is valid under the two-
moment approximation for outstanding orders. The PCD), y,,, of the sequential
heuristics decreases with the number of parts as well, but does not converge to
zero, e.g., as shown in Figure 5.7, when the number of parts increases to 5,000,
the average PCD,y,p, that S, S, and S5 yield approaches to 1.18%, 3.22%
and 4.09%, respectively. Also, the average PCD, 4, that S5 yields is found to
be quite lower than those of the §; and S,. All these findings are is line with

the findings in pure Poisson case.

Average Performance of heuristics under the two-moment approximation for
PCDL Happ outstanding orders with respect to number of parts
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Figure 5.7: Effect of the number of parts on the performance of the Lagrangian and
the sequential heuristic under the two-moment approximation for outstanding orders
(P CDLHapp)-

e Figure 5.8 reveals that PCDyp,p, of the Lagrangian heuristic obtained by the
two-moment approximation for backorders is also very low. However for the
binomial approximation and METRIC, the PCD;y,,,, is very high and increases

with the number of parts.

e As can be seen from Figure 5.9, the sequential heuristics do not bring a signifi-
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Average Performance of the Lagrangian heuristic under various approximations
PCDLHapp (Variance to mean ratio ~ U[1,2], Number of local warehouses = 6)
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Figure 5.8: Effect of the number of parts on the performance of the Lagrangian heuris-
tic under various approximations (PCDygp)p).
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cant computational advantage over the Lagrangian heuristic. Note that this find-
ing is in line with our earlier finding in Section 4.4.5. Figure 5.10 indicates that
the two-moment approximation for outstanding orders is quite efficient in terms
of the computational requirements; the CPU time required for the Lagrangian
heuristic obtained by using the two-moment approximation for outstanding or-
ders is found to be comparable with the one obtained by using METRIC and

quite lower than that obtained by using other two approximations.

Average
CPU (sec)
1100
1000
900
800
700

Computational requirement of the heuristics under the two-moment
approximation for outstanding orders

S &

100 250 500 1000 3000 5000

= IH—-2-S3—0-S2-—5-S1 Number of parts

Figure 5.9: Computational requirements of the heuristics evaluated under the two-
moment approximation for outstanding orders (CPU time in sec).

e As shown in Figure 5.11, the Lagrangian heuristic yields higher average base-
stock levels at the local warehouses when either one of the two-moment ap-
proximations are used compared to the situation in which the other two approx-

imations are used.

e The results of the experiment for the problem instances with 5,000 parts and 12
local warehouses show that the average PCD) y,,, that the Lagrangian heuris-

tic by using the two-moment approximation for outstanding orders yields is
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Figure 5.10: Computational requirements of the Lagrangian heuristic under various
approximations (CPU time in sec).
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0.004%, whereas the average CPU time required to obtain the solution of the
corresponding heuristic is 1.58 hours. The average PCD;p,,, and the aver-
age CPU time for the two-moment approximation for backorders are 0.06%
and 2.97 hours, respectively. These results indicate that under the two-moment
approximation, the Lagrangian heuristic is quite efficient in terms of the com-

putational requirements, furthermore, it yields quite promising results.

Averagek Performance of the Lagrangian heuristic under various approximations
Basestoc (Number of local warehouses = 6)
38
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Figure 5.11: Average stocking level obtained by the Lagrangian heuristic evaluated
under the two-moment approximation for outstanding orders.

5.6 Conclusion

In this work, we extend the Lagrangian heuristic, the sequential heuristics and the
Lagrangian dual bound that we develop for the Poisson demand setting in previous
chapters to a compound Poisson demand setting. To analyze the steady-state be-
haviour of the system, we consider an exact and approximate evaluation methods.

For the approximate evaluation, we consider four alternatives. The first approxima-
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tion corresponds to the binomial disaggregation method;wis used for the analy-
sis of Poisson demand model in Chapter 3. Note that althougieikod is exact for
the Poisson demand model, it is an approximation for the camg Poisson demand
model. For the second approximation and the third appraximawe extend the
two-moment approximations proposed by Gallego et al. (2@dd Graves (1985)
to our system. In a computational study, we test the perfoomaf the heuristics
against the lower bound, the performance of the approxanatagainst the results
of exact evaluation method. To the best of our knowledge wark is the first to

propose heuristics for a multi-item two-echelon inventsygtem facing compound

Poisson demand.

The results of the computational study reveal that the Lragjean heuristic under the
exact evaluation method is tractable only for relativelyaimproblems, e.g., prob-
lems with 100 parts and 3 local warehouses. The approximatonsidered in our
dissertation are found to béieient in terms of the computational requirements. The
two-moment approximations yield quite satisfactory resebmpared to the other
two approximations. We also investigate tlkeet of parameters on the performance
of the heuristics under the approximate evaluation methdde performance of the
heuristics gets better as the number of parts increasest datériorates as the de-
mand variance increases. Among these two parameterdiéoe @ number of parts
is found to be dominant. This shows that for problem with éargimber of parts,
which is the case in most of the practical application, owristics under approxi-

mate evaluation methodster better performances.

We also extend some of the results obtained for the Poissoarmi® setting to com-
pound Poisson setting: The Lagrangian heuristics undeapbeoximate evaluation
methods yields more accurate results compared to the sgjusguristic under the
approximate evaluation methods. The Lagrangian heutstier the two-moment
approximation for outstanding orders yield satisfactasults, e.g., when the number
of parts is 100, the average percentage ca&tmince between the exact Lagrangian
heuristic and the Lagrangian heuristic implemented bygisie two-moment ap-
proximation for outstanding orders is only 0.77%, which¥pe&cted to decrease even
more as the number of parts increases. The CPU time requirggdeblyagrangian
heuristic is found to be comparable with those of the sedaldmuristics.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we consider a multi-item two-echedpare parts inventory dis-
tribution problem. This problem can be observed in capitaids manufacturers who
provide equipments and services for capital intensive gtarkSince the equipments
have critical functions, provisioning of the spare partefigssential importance for
the customers. In this environment, it is the manufactaregsponsibility to keep

spare parts that will satisfy service requirements. N&ebess, even in medium-scale
inventory system, this requires controlling of thousanidsaots, worth of millions of

dollars. Therefore, for the manufacturers guaranteeingceerequirements and at

the same time minimizing the inventory investment is quiseatial.

In this dissertation, we consider a multi-item two-echedpare parts inventory distri-
bution system consisting of a central warehouse operatidgra continuous-review
installation-stock Q, R) policy and a number of local warehouses operating under a
continuous-review installation-stocls (- 1, S) policy. Our objective is to find the
optimal or near-optimal policy parameters minimizing tgstem-wide expected in-
ventory holding and fixed ordering cost subject to an agdesgeean response time
constraint at each facility. First, we assume that demaRaisson. Later, we extend

the results that we obtain for the Poisson demand case toawgrdgPoisson setting.

Our work contributes to the literature as follows: First, prepose an exact solution
procedure based on a branch-and-price algorithm to findellegant policy parame-
ters of the system considered. The procedure corresporsddviag the Lagrangian
dual problem by using a column generation method, and thiegy @isis solution as

a lower bound in a branch and bound algorithm. To the best okoowledge, our
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work is the first to propose an exact solution procedure to tivedoptimal policy
parameters of a multi-item two-echelon inventory systeng aXperimentally show
that the branch-and-price algorithm can be used in appitaias long as the number
of items and the number of warehouses are limited. Evendfithihe case, an exact

solution is desirable due to significant cost reductionsk@mthmark purposes.

We propose four alternative heuristics to find the policyapagters of larger, more
practical-size systems. Our heuristics are based on tlot exaluation of the system.
The first heuristic, which we call the Lagrangian heurisschased on the simulta-
neous approach and relies on the integration of a columnrgeme method and a
greedy algorithm. The other three heuristics are basedeogatjuential approach, in
which first the order quantities are determined using a bsirehheuristic, then the re-
order levels at the central warehouse and the base-staglk Evthe local warehouses

are determined through the same method used for the Lagrahguristic.

We also propose a lower bound for the optimal system-widelzased on the column
generation and the Lagrangian relaxation. We show thabtiusid is asymptotically
tight in the number of parts. This makes the lower bound veompsing for large

practical-size problems.

Later, by using our findings and developments as buildingkdpwe extend our work
to a compound Poisson demand setting. To analyze the sgtatdybehavior of the
corresponding system, we consider an exact and approxievataation methods.
For the approximate evaluation, we consider four alteveati The first approxima-
tion relies on a disaggregation method, which is exact foe [roisson demand. The
other two are the extensions of the two-moment approximatpoposed by Graves
(1985) and Gallego et al. (2007) to our system setting. The fane is the extension
of the METRIC. To the best of our knowledge, our work is the fiogbtopose heuris-
tics for finding the parameters of a multi-item two-echeloveintory control systems

facing a compound Poisson process.

Our major findings can be summarized as follows:

e We empirically show that the performance of the Lagrangiauristic is quite

satisfactory. As the number of parts increases, the pedoce of the heuris-
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tic improves further, making the heuristic very promisimg practical appli-
cations. Also the computational requirement of the hearistquite tolerable.
The experiments with practical size problems show that gugiktic is éficient

and dfective for large practical industry-size problems.

e The performance of the sequential heuristics are also showa satisfactory,
but not as much as the Lagrangian heuristic. We also showstimagé of the
gualitative conclusions regarding the performance of grgpuential approach
in the single-item single-echelon literature do not holdtfee multi-item two-
echelon setting: The relative costiérence for the sequential heuristics can
be quite high compared to the Lagrangian heuristic, whidinmiltaneous ap-
proach based heuristic. The computational advantage® dethuential deter-

mination of policy parameters are limited compared to thgraagian heuristic.

e Under the compound Poisson demand setting, we show thatdlceevaluation
of the system is tractable only when the number parts anduh#ar of local
warehouses are limited. However, the two-moment appraioms that we
consider perform well with Lagrangian heuristic, espégiahen we compare
it with the METRIC and the binomial disaggregation. We alstead some of
the results that we obtain for the Poisson demand settingrtgpound Poisson
demand setting, e.g., we show that the performance of thesties improves
with the number of parts, the Lagrangian heuristic is s@pen sequential

heuristic as in the pure Poisson demand case.

There are many extensions that can be considered for our. Widrkse extensions
involve the ones that fit into our work and do not require digant changes in the
method that we develop in this dissertation as well as the tira requires significant
changes. The first group of -immediate- extensions are ksvi&l First, the exact so-
lution procedure, the heuristics and the lower bound dg@ezlan the dissertation
can be directly extended to systems with target orderinguiacy constraints ayat
backorder costs. Target ordering frequency constrainkems@nse in situations where
the estimation of fixed ordering costs igfdiult. Furthermore, cost models, in which
backorder costs are motivated instead of service contraire quite common in the

literature. Extension of our work to a system with orderingguiency constraints is
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quite immediate since after the relaxation of the targe¢ng) frequency constraints,
the corresponding model reduces to ours. This requiresdattion of an additional
Lagrangian multiplier for each part in the master problenthis column generation
method, which is the backbone of the solution method prapaséhis dissertation.
Similarly, it is quite simple to implement the methods preed in this dissertation to
a cost model since after the relaxation of the service cams$;, our problem imme-

diately reduces to a cost model.

It is also possible to extend our work to systems with otherise measures such as
fill rate, time-based fill rates, i.e., combination of fill gaind response time. These
service measures are widely used in practical applicatioftse extension of our
work to these systems requires evaluation of the correspgrgkrvice measures.
After their evaluation, the solution methods in this dissgon can directly be used

to optimize these systems.

Since the Lagrangian heuristic and the Lagrangian dualdgiehd quite satisfactory
results with practical size problems, they can be used teigecseveral managerial
insights about problems encountered in practice, e.gt-;lmgefit analysis of opening
up a new local warehouses, determining the optimal numbdecaf warehouses, and

cost-benefit analysis of increasing the service levelseatvdrehouses.

The numerical study with the compound Poisson demand mbdelssthat the per-
formance of the two-moment approximations is not satisfgcas much as in the
pure Poisson demand model, hence, there is still room forawgment in the per-
formance of the approximations. Another fruitful reseadtlection is to improve the
approximations for the compound Poisson model. For thipgae, one can find a
better estimate for the variance of the backorders at thed lwarehouses. A better
approximation integrated with the Lagrangian heuristio geeld quite satisfactory

results.

Apart from these immediate extensions, there are seveaiefuesearch directions
that requires significant changes in the solution methotweadevelop in this dis-
sertation. These are as follows: Since both the heuristidstlze lower bound that
we propose have a general framework, they can be adaptedécmmplex systems

as well, e.g., multi-item, more than two-echelon systeims,danes with more com-
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plex control policies, systems with repairable and condshparts. In this situation,
again, to obtain a lower bound, the column generation cansee to decompose
the resulting problem into single-item problems, and theedy algorithm can be
employed to find a feasible solution using the lower boundcioled by the column
generation. Similarly, the sequential approach can bendetdto more complex sys-
tems using the batch size heuristics proposed in this déger. For these extensions,
the dfficulty arises in solving the resulting single-item (multkelon) problems, just
like the one in this dissertation. Since the structure ofdbeesponding systems
will resemble ours, we expect that one can obtain resultgasito ours, such as the
asymptotic tightness of the Lagrangian dual bound, andnipeavement of the La-
grangian heuristic’s performance in the number of partstiiéumore, it may also be
interesting to investigate the issues raised in this digBen in a more general system

setting, e.g., exploring the performance of the sequeagiptoach.

Note that the central warehouse serves two types of cussorier internal and the
external customers. This creates a rationing problem focémtral warehouse. This
rationing problem of the central warehouse can be a quieeasting research issue.
Considering that joint ordering, lateral transshipment amgtrgency shipments are
common in practice, investigating the batching decisiodennoint ordering, lateral
transshipments and emergency shipments deserves funtlestigation. Neverthe-
less, under these system settings, the analysis of thexsyste the extension of the
methods that we develop in the dissertation will be quitelved.
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APPENDIX A

EXTENDING THE SOLUTION PROCEDURE FOR
SUBPROBLEMS TO COMPOUND POISSON DEMAND
SETTING

A.1 Solution Procedure for Subproblems: Single-item Two-ehelon Batch Or-

dering Problem

In this part, we develop the theoretical framework for thieison procedure in Sec-
tion 5.4. In this way, we extend the results in Section 3.8.2dmpound Poisson
setting. As in Section 3.2.2, our analysis is based on them®bf stochastic domi-
nation and supermodularity (see Ross, 1996 and Topkins)1998

LemmaA.l1.1 Forany @ > Q and R > R,
a) Xin (Q1.R) 2t Xin (@1, R),
b) Xin (Q,R) =t Xin (Q/ R),

where> denotes stochastic dominance, atglis defined similarly.

Proof. Using equation (5.8), itis easy to show tR4B;, (Qi, R) < X} < P{Bio(Qi, F{*)
< x} or equivalentlyBio (Q., R) =« Bio(Q:. RY). Similarly, we haveBo (Q..R) =z«
Bio(Qr, R). Since the internal demand fromfiiirent warehouses are noffdrenti-
ated at the central warehouse, these results hol8JdQ;, R), i.e., B} (Q, R) >
B}, (Q. R") andB}, (Qi. R) >« B} (Q7.R). SinceXin (Q.R) = BY (Q.R) + Yin, the
results also hold foK;, (Q;, R). [ |
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LemmaA.1.2 Forany Q > Q, R" > R, S}, > Si, the diference functiory (Q:. R)
= lin (Qi, R, Sﬁl) - Iin (Qi, R, Sin) satisfies

3) ¥ (Q.R) = ¥ (Q.R),
b) ¥ (Q.R) =« ¥ (Q".R).

Proof. Proof of part (a) and (b) follows from Lemma A.1.1(a) and (espectively.
The rest of the proofs are the same as that of Lemma 3.2.2 tio8&c2.2. [ |

Corollary A.1.3 Forany @ > Q;, R" > R and S, > Sjy,

3) E [l (Q.R. )| - Ellin (Qu.R. Sin)] < E [1n (QR%.S})| = E[1n (Q1. R7 Sin) |
e, E|V(Q.R)|<E|¥(Q.R)

b) E [1in (Q:. R ;1) | =~ Ellin (Qi. R Sin)] < E [1n Q7. R, S1)| = E[1in Q. R. Sin) |
i.e.,E_SVm(Qi,Ri)A <E|V( T,R)_-

| Sin

Theorem A.1.4 G (Qi, R, §,) is supermodular in
a) R andS;

b) Q andS..

Proof. Proof of part (a): To show the supermodularity@(Qi, R.§.) in R and
S, it suffices show that for a given value @, G(Qi,Ri,§i+) - G(Qi,Ri,STi) <

G(Q.R".S/) - G(Q.R".S)) foranyS" > S andR" > R. First, by using (5.5),
(5.6) and (5.11), we have

A0 E [Bio (Q1. R)] + E[Din] — Sin
Hio

+ E[Iin (Sina Qi, RI)] (A.l)

E [Bin (Sina Qia Ri)]

whereE[Di,] = uinTin. Then, by substituting (A.1) into the objective function of
SR(#) we obtain
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G(Q.R.S) Cih(E[IiO(Qi, R)I + Z E[lin(Q:. R, Sin)])

neN
HioK
Qi
+ Zgn (ZIHE[Blo (Qh R|)] + E[Dm] Sln + E[Im (Sm’ Q|9 R|)])

neN

= cihE[no(Qi,R)]ﬁg*_“ (eo+§]en”f“]E[B.o(Q.,R)]
! nen Mo

+ > (Ch+6)Elln(Q.R. Sl + > 6a(E[Dn] = Sw).  (A2)

neN neN

+ 6oE[Bio(Qi, R)]

Then, itis a direct consequence of Corollary A.l.3(a)(hé®i, R, S?)—G (Qi, R, §.) <
G(Q.R".S')-G(Q.R"S).

Proof of part (b): After following the steps of the proof ofrpéa), the rest of the
proof follows from Corollary A.1.3(b). [ |

Corollary A.1.5 For a given value of Qthe optimal Ras S, — oo for each ne N,
ie., F{(Q., lim S)) is a lower bound on the optimal Rhe optimal Rfor S;, = 0 for

|—>OO

eachne N, i.e., R(Q.,§. = 5) is an upper bound on the optimaj.R

Proposition A.1.6 Forany R > R, Q'(R, I|m S) > QR I|m S).

|%OO |—)OO

Proof. By using (A.1) into the objective function &R (6) we establish

G(Q.R.S) = chE[lo(Q.R)] + ““’ ' (eo—th“'”]E[B.o(Q. R)]

neN

+ CihZ (Sin — E[Din]) + Z (cih + 6n) E[Bin(Qi, R, Sin)]- (A.3)
neN neN
Then, for any given value d%;,, ch Z (Sin — E[Djy]) is a constant, so it can be
excluded from the optimization of (A 3) ové),. As Sj, — oo for eachn € N,
E[Bn(Qi,R,Sin)] = 0. In this situation, optimizing (A.3) reduces to minimigin
G(Qi,R) = GhE[lio(Q,R)] + "'OK' + (00 —¢ch Z “'“) E[Bio(Q, R)]. This function
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corresponds to the cost function for single echel@nR) policy, for which we have

Q(R) = Q'(R). |

Proposition A.1.7 Q;*(Fiim R, gim S)) is a lower bound on the optimal;Q

j— 00

Proof. Proof follows from Theorem A.1.4(b) and Proposition A.1Tée rest of the
proof is the same as that of Proposition 3.2.7 in Sectior23.2. [ |

Proposition A.1.8 QY8 = /(2Kiuio + (cih + p)) Var(Dio)) /Hi, where H = ;hrl‘:)

and p = 6o + X nenN Hn/%, is an upper bound on the optimal.Q

Proof. The proof will be complete if we show tha(Qi, Ri,STi) > G(Qi—, Ri,§i) for
anyQ > Q% Si andR, whereQ < Q.. LetC(Q;,R) = ¢hE[lio(Qi, R)] + 5% +
0o+ > enj—;g) E [Bio (Qi, R)]. We note tha€ (Q;, R) corresponds to the cost function
in GaTIEggo (1998). Based on this study}'® is an upper bound on the optim@| for
C(Qi,R). Furthermore, sinc€ (Q;, R) is unimodal with respect tQ; (Federgruen
and Zipkin 1992), for any, > Q"®, we haveC (Q;,R) > C(Qi‘, R). Finally, using
this result,E [l (Q. R, Sin)] > E[lin(Q. R, Sin)|, and that 3, ¢ (E[Din] — Sin) s
constant with respect 1@, in (A.2), we establisiG (Qi, R, §.) > G( ” Ré) u

A.1.1 Finding Optimal Solution for Subproblems for Given Values of Reorder
Level and Order Quantity

For a given part € |, and given values o andR,, SR(6) reduces t¢N| independent
subproblems, each of which is denoted®§,,(6,, Qi, R).

Min chE[lin(Qi, R, Sin)] + 6,E[Bin(Qi, R, Sin)]
st. Siy > 0, ande Z

By substituting (5.11), the objective function 1R, (6., Qi, R) can be restated as

G(Sin) = (ch+ 6)E[1in(Qi, R, Sin)] + 6nE[Xin(Qi, R)] — 6:Sin.
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Proposition A.1.9 G(S;,) is unimodal.

Proposition A.1.10 The optimal solution of S;{6,, Q;,R) Iis

Sin
Min {Sin : Z P(Xin(Qi, RI) = X) 2 Qn }
x=0

Sine{0,1,2....} ch+6,

Proof. Proofs of Proposition A.1.9 and A.1.10 are the same as th&roposi-
tion 3.2.9 and 3.2.10 in Section 3.2.2. [ |
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APPENDIX B

THE RESULTS OF THE EXPERIMENTERS FOR TESTBED 1
FOR THE SEQUENTIAL HEURISTICS
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APPENDIX C

NOTATIONS USED IN THE DISSERTATION

Notations used in the dissertation are given below.

PARAMETERS and VARIABLES

| : Set of parts

i : Partindexj € |

N : Set of Local warehouses

n: Warehouse inder € N U {0}

¢ : Unit variable cost of paiite |

h: Inventory carrying charge

Ki : Fixed ordering cost of parte | at the central warehouse

/1in .
A5
Aio -

Customer arrival rate for part | at local warehouse € N
External customer arrival rate for part | at the central warehouse

Customer arrival rate (sum of internal and external) fot par| at the central

warehouse

Min -
i :
Hio -

2
Tin

n

M, :
TiO .
Tin :

Demand rate for paite | at local warehouse € N
External demand rate for par€ | at the central warehouse

Demand rate (sum of internal and external) for part at the central warehouse

: Total demand variance for par€ | at local warehouse € N U {0}
M¢S:

Total external demand rate at the central warehouse
Total demand rate for warehouse N U {0}
Lead time for part € | at the central warehouse from the outside supplier

Transportation lead tim&;, from the central warehouse to local warehouse

n e N for parti € |
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Yin : Number of customer arrivals during lead tirig at warehous@ € N U {0} for
parti € |

Vin : Demand size for paite | at warehouse € N U {0}

Di, : Total demand during lead timg, at warehouse € N U {0} for parti € |

Y5 - Number of external customer arrivals during lead tifiigat the central ware-
house for part € |

Vi, - External demand size for pare | at the central warehouse

D, : Total external demand during lead tifig at the central warehouse for past |

vk : Size ofk™ demand occurred during the lead tifig at warehouse € N U {0}
for parti € |

W : Target aggregate mean response time at warehoade U {0}

R : Reorder level for parite | at the central warehouse

Q; : Order quantity for part € | at the central warehouse

Sin : Base-stock level for parte | at local warehouse € N

S : [Si1, Siz, - - ., Sin] = Vector of base-stock levels for part |

S:[S1.S,..... S]] = Vector of base-stock levels

6: [Q1, Qz, ..., Q] = Vector of order quantities

R: [Ri, R, ..., Ry] = Vector of reorder levels

lin(Qi, R, Sin) : On-hand inventory level for parte | at warehouseé € N in the
steady state

lio(Qi, R) : On-hand inventory level for paite | at the central warehouse in the
steady state

Xin(Qi, R) : Number of outstanding orders for pare | at warehous@ € N in the
steady state

Bin(Qi, R, Sin) : Backorder level for patite | at warehouse € N in the steady state
Bio(Qi, R) : Backorder level for pairite | at the central warehouse in the steady state
Bi(g)(Qi,Ri) : Backorder level of local warehousee N for parti € | at the central
warehouse in the steady state

Wi (Qi, R, Sin) : Response time for parte | at warehouse € N in the steady state
Wio(Qi, R) : Response time for part | at the central warehouse in the steady state
WS (Qi, R) : Response time for parte | at the central warehouse (based on external
customers)

Wn((j, R §) : Aggregate mean response time at warehaousé\ in the steady state
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Wo(3, R) : Aggregate mean response time at the central warehouse tdady state
Wg((j, R) : Aggregate mean response time at the central warehousedlba external
customers)

L : Set of columns in master probleliP

| : Column index] € L

X . variable indicating whether columre L is selected for paite | or not in master
problemMP

Ci : expected total inventory holding and fixed ordering costoaiated with column
| € L for parti € | in master problenMP

Ain : %‘n] technological coicient associated with colunine L for parti € | for
warehouse € N U {0} in master problenMP

an - Lagrangian multiplier for the constraint (3.12) assasthtvith warehousea e
N U {0} in master problenMP

Bi : Lagrangian multiplier for the constraint (3.13) assamiawvith part € | in master
problemMP

On - ‘A—‘T penalty cost implied by relaxation of the aggregate meapamse time con-
straint for warehouse € N U {0}

6: (61,65 ....0n]

Z(f) : Optimal objective function value for proble@®G

Zi(6) : Optimal objective function value for probleSR(d)

Q8 : Lower bound for the optimal values f&j;

QB : Upper bound for the optimal values fQ

R-B : Lower bound for the optimal values f&

RYE : Upper bound for the optimal values fBr

Pi: B0+ Xnen an—:g, shortage cost defined per unit short of partl

Hi . Ghp

©gh+p
vi - Probability of no stockouts for paire |

EOQ: % economic order quantity, batch size heuristic consideyedequen-

tial heuristicS,
EOQP: /2Bl EOQ with planned backorders, batch size heuristic consitle
for sequential heuristi§,

Q'Y min( V2QB, \/Q-B. QiUB), batch size heuristic considered for sequential heuris-
tic S3
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z, Z° . Optimal objective function value of problem

z: Objective function value of any solution to be tested

ZMP . Optimal objective function value of probleMP

Z-PMP . Optimal objective function value of problebnPMP

z p : Objective function value of the solution obtained by theytangian dual solu-
tion (Lagrangian dual bound) for probleim

Z . Objective function value of the Lagrangian dual solutidmtained by any approx-
imate evaluation method to be tested

Z-H . Obijective function value of the solution obtained by theytangian heuristic
when the exact method is used

Zapp - Objective function value of the solution of the Lagrangieuristic that is ob-

tained by using the two-moment approximation for outstagdairders

EOQ(o) . 2K djo cih g
Zi ) cih+6g

backorder cost of,

, optimal objective function value of the EOQ model with unit

pq: demand skewness parameter

A . average demand rate of all parts

pc . cost skewness parameter

C : average unit variable cost of parts

vi: part-specific average demand rate for part

P(VX = X) : k—fold convolution ofP(Vi, = V), probability thatk customers yields a
total demand ok for parti € | at warehousa € N

PGAP: 'ZLDZ*—‘Z“' percentage dual gap with the optimal expected total cost

GAP: |2P — 7|, absolute dual gap with the optimal expected total cost

PCD: 'Z;LZEL,D‘, percentage costfilerence between the expected total cost of the solu-
tion to be tested and the Lagrangian dual bound

ACD: |z- 7P|, absolute cost dlierence between the expected total cost of the solu-
tion to be tested and the Lagrangian dual bound

R-DFR: ne%{o} {(Wh(X) - Win)*} / neN%{O} WM relative distance to the feasible re-
gion

PGAP: % percentage gap between the expected total cost of the ngigra
dual solution obtained by the approximate evaluation nektbdoe tested and the La-
grangian dual bound

PCDy: 'Z;L—Z:H' percentage costflierence between the expected total cost of the solu-
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tion to be tested and the expected total cost of the solufitred_agrangian heuristic

(that is obtained by using the exact evaluation)

PCDp: 'Z;LZSD', percentage costflierence between the expected total cost of the so-

lution to be tested and the Lagrangian dual bound

PCDiHapp : 'Z;azzzp', percentage costfilerence between the expected total cost of the
solution to be tested and the expected total cost of theigplutf the Lagrangian
heuristic that is obtained by using the two-moment appratiom for outstanding or-

ders

ABBREVIATIONS

P : Original problem considered in the dissertation

MP : Master problem for probler®

LPMP : LP-relaxation of master proble P

RMP: Restricted master problem

CG: Column generation or pricing problem

AP : Alternative formulation of problenMP

LPAP: LP-relaxation of problenAP

SR(d) : Subproblem for paite | for a givend

P. : Original problem for the compound Poisson demand model
S, : Sequential heuristic based on the EOQ

S, : Sequential heuristic based on the EOQ with planned baeksrd
S; : Sequential heuristic based QY

O(g) : Asymptotically bounded above by functign

LWH : Local warehouse

NumPart: Number of parts

DCG : Decomposition and column generation

FCFS: First come, first served
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