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ABSTRACT

MULTI-ITEM TWO-ECHELON SPARE PARTS INVENTORY CONTROL
PROBLEM WITH BATCH ORDERING IN THE CENTRAL WAREHOUSE

Topan, Engin

Ph.D, Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Z. Pelin Bayındır

Co-Supervisor : Assist. Prof. Dr. Tarkan Tan

October 2010, 187 pages

In this dissertation, we consider a multi-item two-echeloninventory distribution sys-

tem in which the central warehouse operates with (Q,R) policy, and each local ware-

house implements base-stock policy. The objective is to findthe policy parameters

minimizing the relevant system-wide costs subject to an aggregate mean response

time constraint at each facility.

We first propose an exact solution procedure based on a branch-and-price algorithm

to find the relevant policy parameters of the system considered. Then, we propose

four alternative heuristics to find the optimal or near-optimal policy parameters of

large practical-size systems. The first heuristic, which wecall the Lagrangian heuris-

tic, is based on the simultaneous approach and relies on the integration of a column

generation method and a greedy algorithm. The other three heuristics are based on

the sequential approach, in which first the order quantitiesare determined using a

batch size heuristic, then the reorder levels at the centralwarehouse and the base-

stock levels at the local warehouses are determined throughthe same method used
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for the Lagrangian heuristic. We also propose a lower bound for the system-wide

cost. Later, we extend our study to compound Poisson demand.

The performance of the Lagrangian heuristic is found to be extremely well and im-

proves even further as the number of parts increases. Also the computational require-

ment of the heuristic is quite tolerable. This makes the heuristic very promising for

large practical industry-size problems. The performance of the sequential heuristics

is also satisfactory, but not as much as the Lagrangian heuristic.

Keywords: inventory, two-echelon, multi-item, batch ordering, spare parts
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ÖZ

MERKEZİ DEPODA TOPLU ṠIPARİŞİN OLDUĞU ÇOKÜRÜNLÜ İK İ
SEV̇IYEL İ YEDEK PARÇA ENVANTER KONTROLÜ

Topan, Engin

Doktora, End̈ustri Mühendislĭgi Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Z. Pelin Bayındır

Ortak Tez Ÿoneticisi : Yrd. Doç. Dr. Tarkan Tan

Ekim 2010, 187 sayfa

Bu tezde, merkezi deponun (Q,R) politikası ile, ve yerel depoların ise seviye esaslı

envanter sistemi ile çalıştığı çokürünlü, iki seviyeli yedek parça envanter dağıtım sis-

temi incelenmiştir. Amaç depolardaki ortalama toplaşık yanıt zamanı kısıtları altında

sistemin b̈utününe ait maliyetleri enazlayan politika parametrelerinin bulunmasıdır.

Uygun politika parametrelerini bulmak için ilk olarak kesin çözüm prosed̈urü olan

dal-ve-fiyatlandırma algoritması tasarlanmıştır. Daha sonra, b̈uyük ölçekli gerçek

sistemlerin en iyi yada en iyiye yakın politika parametrelerini bulmak amacıyla d̈ort

adet alternatif sezgisel metot geliştirilmiştir. Lagranj sezgiseli adını verdiğimiz bir-

inci sezgisel metot, eşzamanlı yaklaşım baz alınarak sütun ẗuretimi ve obur algo-

ritma metotlarının birleşimine dayanmaktadır. Diğerüç sezgisel metot ise, ilk olarak

sipariş miktarının b̈olüt büyüklüğü sezgiseliyle, daha sonra merkezi deponun yeniden

ısmarlama d̈uzeyinin ve yerel depoların seviye esaslı envanter düzeylerinin Lagranj

sezgiselinde kullanılan ÿontemlerin kullanılmasıyla belirlendiği ardışık yaklaşıma

dayanmaktadır. Daha sonra, geliştirdiğimiz yöntemler bileşik Poisson talep varsayımlı
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modeli kapsayacak şekilde genişletilmiştir.

Lagranj sezgiselinin performansı çok iyi olup, parça sayısı arttıkça sezgiselin perfor-

mansının daha da iyileştiği görülmüşẗur. Ayrıca sezgiseli hesaplamak için gereken

zaman kabul edilebilir̈olçülerdedir. Bunlar, sezgisel metodun büyük ölçekli gerçek

end̈ustriyel sistemlerde kullanılabilmesi için umut verici olduğunu g̈ostermektedir.

Lagranj sezgiseli kadar olmasa da politika parametrelerinin ardışık belirlenmesini de

tatmin edici sonuçlar vermiştir.

Anahtar Kelimeler: envanter, iki seviyeli, çokürünlü, toplu sipariş, yedek parça
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and Assist. Prof. Dr. Haluk Ayg̈uneş for their understanding and support that I need

especially towards the end of my dissertation.
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CHAPTER 1

INTRODUCTION

Today’s manufacturing companies differ from the traditional ones mainly in the sense

that they do not only manufacture products, but also offer after-sales services for their

customer. Deloitte (2006) investigates the largest manufacturing companies in the

world, and reports that these manufacturing companies make46% of the profits from

their service and parts operations. Similarly, AMR Research(2002), a research com-

pany focusing on the global supply chain issues, reports that manufacturing compa-

nies make nearly 25% of their revenues and 40 to 50% of their profits from after-sales

services. All these reports indicate that after-sales services are highly important as

well as attractive for the manufacturers.

The after-sales services that a typical manufacturer offers may involve any kind of

service activities such as provisioning of spare parts, preventive and/or corrective

maintenance, repair activities. Spare parts management isin the center of all these

service activities.

A spare part is often a component of a larger system that has a critical function such

a machine, an equipment or a vehicle. For the customers of manufacturers, equip-

ment breakdowns are of essential importance since these maylead to discontinuing

a critical process at the customer site. This often results in high down-time costs.

Therefore, availability of the parts becomes critically important for the customers.

In such an environment, customers are protected against down-time risks by service

level agreements (SLAs). In these agreements, the manufacturer promises service

requirements of customers, which are usually expressed as atarget level on a cer-

tain service measure, such as fill rate, probability of no-stockout and response time.

1



However, the demand for spare parts is highly unpredictable. It is also difficult to

control the demand, although there are some tools for that purpose, e.g., applying

forecasting methods, scheduled preventive maintenance, advertising and organizing

sales campaigns. Consequently, the significance of availability and the unpredictable

nature of the demand put pressure on the manufacturers to hold inventory. Neverthe-

less, running a spare parts inventory system costs to the manufacturer. The basic trade

off between costs and service requirements in spare parts logistics makes spare parts

inventory control one of the most critical after-sales services for the manufacturers.

This dissertation is motivated by a spare parts inventory control problem that we ob-

serve in two different capital goods manufacturers providing equipments and services

for capital intensive markets. Although the problem is based on these two manufac-

turers, it generalizes to other manufacturers facing a similar problem.

The first manufacturer that we consider is a leading supplierof advanced tools to the

nanotechnology market. The manufacturer, as a service provider, operates a spare

parts inventory system consisting of a central warehouse and a number of local ware-

houses at different locations to be responsive to their customers geographically dis-

persed around the world and manages nearly 14,000 parts involving very cheap parts

as well as highly expensive ones, e.g., the value of the most expensive part exceeds

hundreds of thousands of euros. The value of the spare parts only in the central ware-

house accounts for more than 12 million dollars. The other manufacturer is a leading

manufacturer of industrial printing systems. They operatea similar inventory system,

involving more (approximately 20,000), but relatively less expensive parts compared

to the first manufacturer. The value of the spare parts only inthe central warehouse

accounts for almost 2 million euros. Although the manufacturers serve totally differ-

ent markets with different part characteristics, the following observations are common

for them.

• Since the manufacturers should supply spare parts for different customers at

different locations, they operate an inventory distribution system that consists

of a number of local warehouses at different locations and a central warehouse

replenishing them. This type of two-echelon distribution systems are prevalent

in spare parts logistics (Cohen et al. 1997).

2



• All warehouses can respond to customer requirements. Hence, the central

warehouse has both internal requests from the local warehouses and external

requests from the customers.

• Most of the spare parts that the manufacturers provide are rarely used, slow

moving items, a majority of which have a demand rate of less than 5 parts per

year. In addition, since ordering between the lower and the upper echelons is

internal and automated, fixed ordering costs are insignificant at the lower eche-

lon facilities. Hence, the batch sizes are low, often equivalent to one. Therefore,

both manufacturers operate under a continuous-review installation-stock base-

stock policy, i.e., (S−1,S) policy, at the lower echelon facilities. This situation

is common and often justified in other spare parts inventory control practices

(Wong et al. 2007b, Hopp et al. 1999).

• At the central warehouse, parts move faster due to the accumulation of inter-

nal demands from local warehouses. Moreover, the central warehouse typically

replenishes from external suppliers, resulting in high fixed procurement/ trans-

portation costs. Therefore, the manufacturers place orders in batches instead

of individual units at the upper echelon, i.e., they apply a batch ordering pol-

icy at the central warehouse. There are situations where batching decisions are

motivated by aggregate performance targets on the order frequencies at the cen-

tral warehouse or production smoothing requirements of a third-party supplier

(Hopp et al. 1999, Al-Rifai and Rossetti 2007), although this is not the case for

the manufacturers considered. Under these conditions, it is more reasonable for

the central warehouse to operate under a continuous-reviewinstallation-stock

reorder point, order quantity policy, i.e., (Q,R) policy. In the manufacturers

that we consider, the corresponding policy parameters are determined based on

the experience of the inventory controller or some simple heuristics.

• Each of these manufacturers produces equipment that has a critical function

for their customers, e.g., printing machine, electron microscope etc. There-

fore, for the customers of these manufacturers, resulting down-time costs are

expressed on the order of thousands of euros per hour. For both manufacturers,

service levels committed to customers are formally defined via SLAs. The first

manufacturer sets the response time, time to respond for a customer request as
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a service measure. The second manufacturer sets fill rate as the performance

measure. Although the manufacturers differ in the service level types, the SLAs

play an important role in their spare parts inventory system.

• SLAs that are defined between the manufacturers and the customers can typi-

cally be classified into two groups: Under the “item approach”, a target service

level is defined for each individual part. It is widely considered in the inventory

literature (Thonemann et al. 2002). Another approach is the“system approach”,

in which a target service level is defined for the demand weighted average of

the relevant performance measure over all parts. Hence, thesystem approach

defines an aggregate service measure. Although the number ofend products

that a typical manufacturer produces is quite limited, the number of spare parts

associated with the products can be very large, often on the order of thousands

or ten thousands. Since customers are primarily interestedin their equipment or

entire system being up and running, setting a target servicelevel for each part

does not make sense for them. Instead, they are interested inthe availability of

parts at an aggregate level. Since the system approach is based on the demand

weighted average of the relevant performance over all parts, it enables holding

more inventories for cheap parts while fewer for expensive parts. This brings

substantial savings in inventory holding costs in comparison with the situation

under the item approach (Thonemann et al. 2002) to the manufacturer. Hence,

the system approach is more applicable and widely adopted inthe SLAs for

spare parts (Hopp et al. 1999, Al-Rifai and Rossetti 2007, Çağlar et al. 2004,

Wong et al. 2007b), which is also the case for the manufacturers that we con-

sider.

In this dissertation, similar to the two examples that we mention, we consider a multi-

item two-echelon spare-parts inventory distribution system consisting of a number

of local warehouses and a central warehouse. Local warehouses operate under an a

continuous-review installation-stock (S − 1,S) base-stock policy, while the central

warehouse operates under a continuous-review installation-stock (Q,R) policy. Our

focus is on the corrective maintenance activities of the service provider. Also, our

emphasize is on the consumable parts, that is, we ignore the repairable parts or we

model them as if they are consumable. For this system, our objective is to find the
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optimal or the near-optimal policy parameters minimizing the expected system-wide

inventory holding and fixed ordering costs subject to an aggregate mean response time

constraint.

Finding the optimal or near-optimal policy parameters of such an inventory system is

generally difficult. The main reasons are as follows:

• Even a medium scale inventory system involves thousands of stock keeping

units, for each of which the policy parameters should be optimized. Further-

more, under a system approach, the policy parameters for each part interacts

with the others through constraints on an aggregate performance measure. This

makes the resulting optimization problem very complex.

• The evaluation of the objective function and the constraints of such an optimiza-

tion problem requires evaluating the probability distributions of the inventory

levels, which are difficult to compute even in a single-item case.

• Finding the optimal policy parameters of a typical system under batch ordering

is much more involved compared to the one in which each facility operates

under a pure base-stock policy since the reorder levels and the order quantities

at the central warehouse need to be determined simultaneously with the base-

stock levels at each local warehouse for each part, where thepolicy parameters

of the parts interact with each other.

Since finding the policy parameters of multi-item two-echelon inventory distribution

systems is difficult, all the solution procedures developed for these systems rely on

heuristics. To the best of our knowledge, there is no exact solution algorithm devel-

oped for multi-item two-echelon inventory distribution systems. Even though approx-

imations and heuristics are prevalent approaches, an exactsolution procedure can be

considered for two reasons:

• Cost reductions: The average inventory value of a typical company in the cap-

ital goods industry is of the order of tens of millions of euros (Cohen 1997,

Sleptchenko 2002). This means that even a small percentage reduction in in-

ventories may correspond to savings on the order of hundredsof thousands of

euros.

5



• Benchmarking purposes: Due to the lack of an exact solution algorithm, heuris-

tics in the literature are usually compared to each other, orlower bounds, or

simulation-based optimization results. However, not all of these benchmark

solutions can guarantee satisfactory performance: Their performance may dif-

fer depending on the problem parameters leading to difficulties in assessing the

performance of a proposed heuristic (Al-Rifai and Rossetti 2007, Çăglar et al.

2004). In addition, it is possible to use an exact solution algorithm to test the

performance of a lower bound for small size problems, beforeusing it as a

benchmark for larger problems.

In this dissertation, we aim to propose an exact solution procedure to find the optimal

policy parameters of the multi-item two-echelon inventorydistribution system con-

sidered. Nevertheless, for practical size problems, an exact solution requires signif-

icant computational effort. However, considering that even a moderate industry-size

problem requires to optimize the policy parameters of thousands of items, an efficient

solution method is of critical importance. Hence, one may need to apply heuristic ap-

proaches for the solution of practical size problems. Thereare many efforts devoted

to propose heuristics to find the policy parameters of multi-item multi-echelon sys-

tems under pure base-stock policy (Çağlar et al. 2004, Wong et al. 2007b, Caggiano

et al. 2007) and batch ordering policy (Hopp et al. 1999, Al-Rifai and Rossetti 2007).

Almost all of these heuristics are based on approximate evaluation of the probability

distributions of the inventory levels, hence, they do not guarantee feasible solutions

with respect to constraints on service levels. The only heuristic that is based on an

exact evaluation method is proposed by Wong et al. (2007b), which is developed for

systems under base-stock policy. Also, for many of these heuristics, finding the policy

parameters of a practical size problem becomes an issue. In this dissertation, one of

our aim is to develop heuristics guaranteeing feasibility and at the same time yielding

satisfactory results in terms of both the relative errors and the computation time for

practical-size systems.

As an alternative to an exact solution procedure, one may consider a heuristic ap-

proach to find the policy parameters of the inventory system that we pose. A com-

mon practice is to follow a sequential approach, which assumes the dominance of the

batching decisions over the others, and hence it necessitates determining the batch
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sizes first (in most applications independent of the servicelevel requirements), and

then the other policy parameters. The method brings a significant computational sav-

ing and also results in very low percentage cost penalty in single-item single-echelon

systems which is verified both empirically and theoretically by several researches

(Zheng 1992, Axs̈ater 1996, Silver et al. 1998, Gallego 1998). Due to its excellent

performance in single-item single-echelon systems, it is also widely used in general

system settings (Hopp et al. 1997, Axsäter 1998, Hopp et al. 1999, Axsäter 2003)

as well as in practical applications, e.g., the manufacturers considered in our disser-

tation adopt the sequential approach to find the policy parameters of their inventory

control systems. Although the sequential approach is widely used in multi-item multi-

echelon inventory control applications, its performance has not been fully assessed

in the literature. One of the objectives of this dissertation is to investigate the per-

formance of the sequential approach in a multi-item two-echelon inventory control

system.

Just like finding the optimal policy parameters, finding an efficient and tractable

benchmark solution, e.g., a tight lower bound on the optimalexpected total cost,

for an inventory control policy for multi-item multi-echelon system is also difficult.

This makes it hard to evaluate the performance of the heuristics (Çăglar et al. 2004,

Al-Rifai and Rossetti 2007). In this dissertation, we also propose a lower bound that

can be used as a benchmark solution to test the performance ofthe heuristics.

Since most of the spare parts are slow moving items and their demand is intermittent,

the Poisson distribution often provides a reasonable representation of the demand

process in many situations. Hence, it is quite common in the literature to assume

that demand is Poisson. However, the Poisson distribution is not verified for parts

whose demand sizes varies from one transaction to another and also those parts whose

total demand variance is higher. For instance in the case of preventive maintenance,

the number of spare parts demanded is quite often more than one. In this situation,

the Poisson demand assumption, which relies on the unit sizedemand assumption,

fails. As opposed to Poisson distribution, the compound Poisson distribution, where

customer arrivals occur according to a Poisson process withrandom demand sizes,

provides a better representation of the demand process for certain spare parts. There

are empirical results verifying that compound Poisson distribution better characterizes
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the demand distribution for spare parts (Eaves 2002). In thetwo manufacturing firms

that we observe, there are spare parts for which a customer’sdemand is more than

one. While proposing solution procedures for the problem that we introduce, we also

consider these issues and develop solution procedures for both Poisson and compound

Poisson settings.

Our work contributes to the relevant literature in the following directions:

• In Chapter 3, we propose an exact solution procedure to find theoptimal policy

parameters minimizing the system-wide expected inventoryholding and fixed

ordering cost subject to an aggregate mean response time constraint at each fa-

cility. We experimentally show that the branch-and-price algorithm can be used

in applications as long as the number of items and the number of warehouses

are limited. Even if this is the case, an exact solution is desirable due to signif-

icant cost reductions and benchmark purposes. To the best ofour knowledge,

our work is the first to propose an exact solution procedure tofind the optimal

policy parameters of a multi-item two-echelon inventory system. A slightly

different version of this chapter is published in Operations Research Letters

(Topan et al. 2010a).

• In Chapter 4, we propose four alternative heuristics to find the policy param-

eters of large, practical-size multi-item two-echelon inventory control systems

with batch ordering at the central warehouse. Our heuristics are based on the

exact evaluation of the probability distributions of the inventory levels. Hence,

in contrast to most of the studies in the literature, our heuristics guarantee fea-

sible solutions. The first heuristic, which we call the Lagrangian heuristic, is

based on the simultaneous approach and relies on the integration of a column

generation method and a greedy algorithm. The other three heuristics are based

on the sequential approach, in which first the order quantities are determined

using a batch size heuristic, then the reorder levels at the central warehouse

and the base-stock levels at the local warehouses are determined through the

same method used for the Lagrangian heuristic, i.e., a column generation and a

greedy algorithm. These three heuristics differ in the batch size heuristic used.

We have a working paper covering the issues in Chapter 4 (see Topan et al.
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2010b).

• In Chapter 3, we also propose a lower bound for the optimal expected total

cost. Later, in Chapter 4 we show that this bound is asymptotically tight in

the number of parts. Considering the difficulties encountered in evaluating the

performance of heuristics for different multi-item two-echelon inventory sys-

tems in the literature (Çağlar et al. 2004, Al-Rifai and Rossetti 2007), the lower

bound that we propose also makes a significant contribution to the relevant lit-

erature.

• All our developments and findings presented in Chapters 3 and 4are for a pure

Poisson demand model. Later, in Chapter 5 by using our findingsas build-

ing blocks, we extend the solution procedures for compound Poisson demand

model. To the best of our knowledge, our work is the first to propose heuris-

tics for finding the parameters of a multi-item two-echelon inventory control

systems facing a compound Poisson process. Since the exact evaluation of

this system is intractable, for large practical size problems, we consider four

approximate evaluation methods. The first approximation relies on a disaggre-

gation method, which is exact for pure Poisson demand. The other two are

based on two-moment approximations, one of which is an extension of an ex-

isting method, while the other is considered for the first time in this work. The

forth one is the extension of the Multi-Echelon Technique for Recoverable Item

Control (METRIC) to our problem. We also compare the performances of these

approximations. To the best of our knowledge, there is no previous work that

compares the approximations commonly used in the literature under compound

Poisson demand model. We also have a working paper covering the issues in

Chapter 5 (see Topan et al. 2010c).

Our findings can be summarized as follows:

• In Chapter 4, we empirically show that the performance of the Lagrangian

heuristic is quite well. As the number of parts increases, the performance of

the heuristic improves further, making the heuristic very promising for practical

applications. The computational requirement of the heuristic is quite tolerable.
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To be more specific, the experiment with 10,000 parts and 12 warehouses re-

veals that the relative difference between the expected total cost of the solution

obtained by the Lagrangian heuristic and the lower bound is 0.04%; problems

of this size can be solved within 12 hours on an Intel 3 GHz processor with

3.5 GB RAM. That is, we propose an efficient and effective heuristic for large

practical industry-size problems.

• In Chapter 4, we also show that some of the qualitative conclusions regarding

the performance of the sequential approach in the single-item single-echelon

literature (Zheng 1992, Axsäter 1996, Silver et al. 1998, Gallego 1998) do not

hold for the multi-item two-echelon setting, which is more representative of

practical situations. First, we empirically observe that the relative cost differ-

ence may reach up to 31.03%, which is fairly high compared to findings in

the aforementioned papers on single-item single-echelon systems. Second, the

computation times required for sequential heuristics are comparable to that of

the Lagrangian heuristic, showing that the computational advantages of the se-

quential determination of policy parameters are limited inmulti-item systems.

• For the compound Poisson demand setting, the Lagrangian heuristic, which is

quite efficient in terms of the computational effort for Poisson demand model

is found to be tractable only for relatively small problems,e.g., problems with

100 parts and 3 local warehouses. This also shows that exact evaluation of the

system is tractable for the compound Poisson demand only when the number

of parts and the number of local warehouses are limited. We show that the

Lagrangian heuristic obtained by using two-moment approximations yield sub-

stantially better results than the ones that are obtained byusing the METRIC or

the disaggregation approximation. Both two-moment approximations perform

quite well. We also show that many of the results that are valid in the Pois-

son demand setting are also valid in the compound Poisson demand setting,

e.g., the performance of the heuristics improves with the number of parts, the

Lagrangian heuristic is superior to sequential heuristic as in the pure Poisson

demand case.

The organization of this dissertation is as follows. Chapter2 provides a review of the
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literature relevant to the dissertation. First, we review the literature on multi-echelon

inventory distribution systems in Section 2.1. This coversthe papers on single-item

as well as multi-item systems, which are presented in Sections 2.1.1 and 2.1.2, re-

spectively. Then, the papers related to sequential heuristics are provided in Section

2.2.

In Chapter 3, we propose an exact solution procedure for the problem. First, in Sec-

tion 3.1, we specify the problem environment and then formulate the problem. In

Section 3.2, the branch-and-price algorithm and the basic procedures used in the al-

gorithm are presented, such as column generation algorithm(Section 3.2.1), an algo-

rithm used to solve the single-item problem (Section 3.2.2), a greedy algorithm used

to obtain an upper bound for the branch-and-price algorithm(Section 3.2.3). Finally,

in Section 3.4, we provide the computational results.

In Chapter 4, we develop the heuristics that we consider in thedissertation. Section

4.1 introduces the Lagrangian heuristic whereas Section 4.2 introduces the sequential

heuristics. In Section 4.3, we study the asymptotic behavior of the lower bound.

We also present theoretical results associated with the asymptotic performance. In

Section 4.4, we report and discuss our computational results. Here, the performances

of the Lagrangian dual bound (Section 4.4.2), Lagrangian heuristic (Section 4.4.3),

the sequential heuristics (Section 4.4.4) as well as the computational requirements

of the methods (Section 4.4.5) are discussed. Finally in Section 4.5, we draw the

conclusions.

In Chapter 5, we extend the developments in this dissertationto compound Poisson

demand setting. In Section 5.1, we present the compound Poisson demand model

and then develop the exact (Section 5.2) and the approximateevaluation methods

(Section 5.3) considered for this model. In Section 5.4, we describe how the heuristics

are extended to compound Poisson demand. In Section 5.5, we report and discuss

our computational results. Finally, we draw the conclusions and discuss possible

extensions in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

This dissertation mainly contributes to the vast literature on multi-echelon inventory

control systems. We present the papers related to this field in Section 2.1. Another

direction of research related to our dissertation is the development of the sequential

heuristics and investigation of their performance in single and multi-echelon inven-

tory systems. The papers related to this field are reviewed inSection 2.2.

2.1 Multi-Echelon Inventory Distribution Systems

In our work, we consider a two-echelon inventory distribution system under contin-

uous review installation-stock policies. Since the analysis of other types of systems,

e.g., serial, assembly or more general systems; periodic review inventory systems;

echelon-stock policies are quite different than the analysis of distribution systems

under continuous review installation-stock policies, they are not included in this re-

view. For studies on periodic review inventory systems and echelon-stock policies,

the reader may refer to Cachon (2001); Chen and Zheng (1997), Axsäter (1997),

Simchi-Levi and Zhao (2010) and the references there in, respectively. On the other

hand, our review includes the papers on systems with repairable and condemned parts,

even though we limit ourselves to the systems with consumable parts in this disser-

tation. Since the analysis of systems with repairable and condemned parts are not

completely different than that of the consumable parts.

There are three main directions of research in multi-echelon inventory control: opti-

mal policy characterization, policy evaluation and policyoptimization (Simchi-Levi
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and Zhao 2010). The main focus of the optimal policy characterization is the deter-

mination of the optimal policy and identification of its certain characteristics. Among

the papers that we review, none of the papers deal with this issue. Since determining

the optimal policy for complex network structures like distribution systems is gen-

erally difficult, for these systems, a common approach is to adopt an appropriative

inventory control policy (probably a suboptimal one) and then to find the parameters

minimizing the system-wide cost for the given policy.

There are two main issues in this approach: (i) Policy evaluation, that is, deriva-

tion of the system-wide performance measures: In general, it is difficult to derive

the steady-state probabilities of inventory and backorderlevels in multi-echelon in-

ventory distribution systems. The first stream of papers that we review is on policy

evaluation. Most of these evaluation methods rely on approximations. Nevertheless,

there are exact evaluation methods proposed as well. (ii) Policy optimization, that

is, the development of methods to search for the optimal or near-optimal policy pa-

rameters: A second -but more recent- stream of papers that wereview deals with the

policy optimization of multi-echelon inventory systems byproposing either exact so-

lution methods to guarantee optimality or heuristics to findoptimal or near-optimal

solutions or both.

Although there are many papers that focus on both policy evaluation and policy op-

timization in this review, they can be basically classified in one of these two main

categories. Our work belongs to the policy optimization part of the literature. Al-

though we resort to both exact and approximate evaluation methods to obtain the

steady-state analysis of the system, the policy evaluationis not the main focus of our

work. In this dissertation, for the Poisson demand case, we propose an exact as well

as alternative heuristic procedures to find the policy parameters of our system. For

the compound Poisson demand, we only consider heuristics. From the perspective of

evaluation method, we consider an exact evaluation method for the Poisson demand

setting, whereas for the analysis of the compound Poisson model, we consider both

exact and the approximate evaluation methods.

The papers in the literature can also be classified with respect to the following char-

acteristics in order to position our work in Chapters 3, 4 and 5.
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• Number of items: There are two main categories: single-itemand multi-item.

Many of the seminal works study single-item systems. More recent body of

literature deals with multi-item systems. The main focus oflatter group is the

development of efficient and effective heuristics to obtain the optimal or near-

optimal policy parameters of industry-size systems, just like the one in this

dissertation. Although multi-indenture models with single type of products can

be considered as a multi-item system, their analysis differ from both those of

single-item and multi-item systems. Hence, it is also possible to consider them

as a third group.

• Number of echelons: The papers that we review either consider two-echelon or

more than two echelon systems.

• Demand distribution: Most papers assume a Poisson demand model for the

demand process. There are also papers considering compoundPoisson model.

There are only two papers considering a general demand distribution.

• Inventory policy: There are mainly two groups of inventory control policies

considered in the papers. These are base-stock policies andbatch ordering

policies. For the pure Poisson case, (S − 1,S) base-stock and (Q,R) policies

are implemented. For the compound Poisson demand model, order-up-to S and

(nQ,R) policies are considered, which are the adapted versions of(S − 1,S)

and (Q,R) policies to compound Poisson demand.

• Service motivator: There are two streams of papers according to the service

motivator in the papers. The first stream of papers considersa cost model,

whereas the second stream considers a service-constrainedmodels.

A complete summary of the papers that we review and their position in the literature

based on our taxonomy is given in Table 2.1. The details of these papers are discussed

in the following section. In the following sections, we firstreview the papers on

single-item systems, then we review the papers most relevant to this dissertation,

multi-item systems.
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2.1.1 Single-Item Systems

One of the seminal works in this area is proposed by Sherbrooke (1968). He proposes

an approximate model called METRIC for two-echelon repairable inventory distribu-

tion system consisting of a number of identical bases and a depot. All facilities oper-

ate under a base-stock policy. The system faces a compound Poisson demand and the

repair times are stochastic. The objective is to find the base-stock levels minimizing

the expected number of backorders subject to a budget constraint. In METRIC, Sher-

brooke (1968) replaces the stochastic repair (lead) time atthe bases by its mean to

approximate the probability distributions of the number ofinventory and backorder

levels at the bases. This simplifies the derivation of the system-related performance

measures, e.g., the number of outstanding orders at the bases has a Poisson distribu-

tion. Furthermore, this brings a significant computationaladvantage for the method.

Therefore, the METRIC becomes one of the most common approximation used for

multi-echelon inventory systems. Although the model is developed for single-item

systems, it is adopted in multi-item setting by many researchers (Çăglar et al. 2004,

Wong et al. 2007b). Nevertheless, since the METRIC ignores that the replenishment

lead time and the average delay at the bases are dependent on the inventory level at

the depot, the number of backorders is underestimated and this results in highly in-

feasible solutions (Graves 1985, Wong et al. 2007b). This isthe main disadvantage of

the METRIC. Sherbrooke does not consider the optimization problem of the system.

Muckstadt (1973) extends Sherbrooke’s METRIC to a multi-item multi-indenture set-

ting by proposing an approximation called MOD-METRIC. He considers the same

problem structure with Sherbrooke (1968) but in a multi-item and multi-indenture

setting, e.g., a two-echelon repairable inventory distribution system operating under

a base-stock policy and the objective is to find the base-stock levels minimizing the

expected number of backorders. The only difference is that, in this model, a Poisson

demand is assumed. Although the main focus of the METRIC is thepolicy evaluation,

in MOD-METRIC, Muckstadt (1973) also focuses on the policy optimization issue

and proposes a heuristic search method to find the base-stocklevels of the system.

Similar to the METRIC, the MOD-METRIC underestimates the expected backorder

levels.
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Graves (1985) considers a multi-echelon inventory distribution system for repairable

items consisting of a repair depot and a number of nonidentical operating sites under

a base-stock policy. He assumes a compound Poisson demand. To find the base-stock

levels, he proposes an exact evaluation method for the system and derive the station-

ary distribution of the inventory and the backorder levels at all facilities. For the exact

evaluation he uses an earlier result by Simon (1971), which we call the binomial dis-

aggregation, which suggests that given the number of backorders at the depot, a back-

order emanating from a certain site follows a binomial distribution. He also proposes

an approximate evaluation method for the system based on a two-moment approxi-

mation. Accordingly, the distribution of the outstanding orders is approximated by

fitting a two-parameter family of distribution, i.e., a negative binomial distribution.

The approximate model is only implemented for the pure Poisson demand model.

The performance of the approximation is tested against the METRIC. The author

reports that the two-moment approximation is superior to the METRIC, i.e., the solu-

tion obtained by using the METRIC differ from the optimal solution at least one unit

in 11.5% of the problem instances, while that of obtained by using his method is only

0.9%. This shows that the understocking problem of the METRICis solved up to a

certain level by using the two-moment approximation, whichrequires keeping more

stock than the METRIC. The author also reports that the computational requirements

of the two methods are comparable. These results make Graves’ two-moment approx-

imation a commonly used evaluation method for multi-echelon inventory distribution

systems. Similar to the METRIC, it is also widely used in multi-item systems (Hopp

et al. 1999, Wong et al. 2007b).

Sherbrooke (1986) considers the same setting as Muckstadt (1973). Similar to the

manner the METRIC is improved by Graves (1985), he proposes a two-moment ap-

proximation for the number of outstanding orders, i.e., units in supply or in repair

to improve the MOD-METRIC. Through a simulation study, he shows that the ex-

pected backorder level estimations are close to the simulated values. He also states

that the performance of the two-moment approximation improves further compared to

the METRIC in multi-item systems compared to the single-item. In this sense, Sher-

brooke (1986) extends the earlier findings obtained by Graves (1985) for single-item

systems to multi-item ones. Sherbrooke (1986) deals only with the policy evaluation
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issue, hence, does not provide a solution procedure to find the base-stock levels.

Ettl et al. (2000) consider a multi-echelon inventory and production distribution and

assembly system, facing a compound Poisson demand. All facilities operate under

an (S − 1,S) policy. The objective is to minimize the expected cost of onhand and

WIP inventory subject to service level constraints based on the time-based fill rates.

They propose an approximate evaluation method and a heuristic procedure to find

the policy parameters. The approximation is a queueing-based approximation for the

system to estimate the replenishment lead time (the sum of the transportation lead

time and the delay due to stockout). For this purpose, the number of jobs in the retail-

ers, each of which is modelled asMx/G/1 (M/G/1 with compound Poisson arrivals)

queueing system, are approximated by a normal distribution. For the optimization

of the system, they use a conjugate gradient method to solve the nonlinear objective

function. The algorithm iterates by computing the gradients until the value of the

objective function converges. They test the performance ofthe entire method using

simulation. The simulation runs show that both the approximation and the heuristic

perform quite well. They report that the method can be used inlarge complex supply

chain networks.

Svoronos and Zipkin (1991) consider a more complex tree-structure multi-echelon

inventory distribution system having a warehouse and a number of nonidentical re-

tailers, all operating under a base-stock policy. They assume that the demand is Pois-

son, transposition lead times are stochastic. In order to analyze the entire system, first

they study the single-facility problem and characterize the exact distributions of the

outstanding orders, inventory and backorder levels for this system. Later, they extend

these results to general multi-echelon systems. They also propose an approximation

for the steady-state distribution of the number of inventory and the backorder levels

for given base-stock levels. Their method relies on applying a two-moment approxi-

mation by fitting a negative binomial distribution to the distribution of the outstanding

orders at the retailers.

In a recent study, Gallego et al. (2007) consider a two-echelon distribution system

consisting of a warehouse and a number of nonidentical retailers. All facilities oper-

ate under base-stock polices. The demand is Poisson, although a compound Poisson
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extension is considered as well. The objective is to minimize the average inventory

and backordering costs. In this paper, they evaluate the performances of the local

control, i.e., installation stock policies, and the central control, i.e., echelon stock

policies. In order to analyze the system behaviour under thelocal control, they use

the exact analysis developed by Simon (1971) and Graves (1985). They also propose

two approximations. The first one is the normal approximation for the demand, while

the second uses a distribution-free bound to approximate the average cost function.

In order to optimize the policy parameters, they consider anexact solution procedure

similar to the one developed by Axsäter (1990) and a heuristic method. For the latter

one, they apply three simple subheuristics. First one assumes that the warehouse does

not hold stock, while the second one assumes that the warehouse holds maximum

stock. Third one assumes that the warehouse holds inventorybut does not hold safety

stock. Among all these subheuristics they select the best. In this paper, they also

consider the compound Poisson demand case. For the compoundPoisson demand

setting, they approximate the overshoot due to demand sizesat the retailers using

a two-moment approximation. They apply the two-moment approximation for the

distribution of backorders emanating from retailers, which is binomially distributed

in the Poisson demand case. To estimate the variance of the corresponding random

term, they distribute the overshoot among the retailers as they distribute the demand.

Through a computational study, the performances of the local and the central controls

are compared. They find that the local control performs better when the holding cost

at the warehouse, the penalty cost and the demand rates are low, the lead time for the

warehouse is shorter relative the lead time at the retailers. Finally, they show that the

central control is superior to the local control, however the results highly vary. They

also test the performance of the approximations and the heuristics are tested against

the exact evaluation and the optimization methods, respectively. Accordingly, the gap

between the results obtained by using the exact method and that by the approxima-

tions is quite large. The percentage cost penalty of using the heuristic is 1.23% on

the average. The heuristic is reported to be more accurate when the warehouse lead

time is shorter. They also show that the heuristic is asymptotically optimal in the

number of warehouses. For the performance of the approximation that is considered

for the compound Poisson demand, they show that the corresponding approximation

yields better results when the demand size distributions atdifferent retailers are sim-
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ilar, and the overshoot is a small part of the total number of backorders at the central

warehouse.

Özer and Xiong (2008) extend Gallego et al. (2007) to a similar system with service

level constraints. The objective is to minimize the averageinventory costs subject

to fill rate constraints. For the evaluation of the system, both exact and approximate

methods are considered. For the approximate evaluation of the system, they consider

two different alternatives. The first one is a normal approximation of the demand at

the retailers. The second one extends the distribution-free approximation proposed by

Gallego et al. (2007) to their system setting. To find the optimal policy parameters,

they propose an exact algorithm similar to Axsäter (1990). However, this algorithm,

at each iteration, also checks whether the service level constraints are satisfied or

not. They also consider two alternative heuristics to obtain the policy parameters.

First one is the extension of the heuristic proposed by Gallego et al. (2007) to their

system. The second heuristic decomposes the multi-echelonsystem to two-location

serial inventory systems. They also consider extensions ofthe methods to compound

Poisson demand, general multi-echelon tree structure distribution systems as well as

multi-item systems with aggregate service measures. Through a computational study,

the authors show that the average percentage cost penalty ofusing the first heuristic is

less than 1.2%. It is also reported that the first heuristic performs better when the lead

time are shorter and the holding costs are lower. For the second heuristic, the average

percentage cost penalty is found to be quite high, although it is computationally much

faster than the former. The algorithms are reported to be quite efficient in terms of the

computational requirements.

Apart from the approximations for base-stock systems in theliterature, there are ap-

proximations proposed to evaluate the multi-echelon inventory distribution systems

with batch ordering policy. A common approach among these papers is to approx-

imate each facility as a single-facility inventory system.In one of these works,

Svoronos and Zipkin (1988) consider a two-echelon inventory system consisting of a

number of identical retailers and a warehouse replenishingthem. They assume that

all facilities operate under a (Q,R) policy and demand is Poisson. The objective is to

minimize the average inventory holding and backordering costs. In order to approx-

imate the average inventory and backorder levels at the warehouse and the retailers,
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they decompose the problem and solve the problem of each facility separately. For the

analysis of the warehouse, they consider both an exact and anapproximate method.

They approximate distribution of the demand during replenishment lead time, i.e.,

the sum of transportation time and delay at the central warehouse due to backorders,

by using two-moment approximations, using three alternative two-parameter fam-

ily of distributions. This simplifies the estimation of the average inventory and the

backorder levels at the central warehouse. For the analysisof the retailer, first they

approximate the probability distribution of the replenishment lead time at the retailer

using a two-moment approximation based on a negative binomial distribution. Then,

by using this approximate distribution and the variance estimates for backorders at

the warehouse, they approximate the steady-state distributions of the outstanding or-

ders and the inventory and the backorder levels at the retailers. In this way, these

probability distributions are obtained by considering thedependencies between the

facilities. Through a computational study, the performance of their method is tested

against those of Deuermeyer and Schwarz (1981) and Lee and Moinzadeh (1984a, b),

who study the same problem, by simulating the solutions obtained by each method.

The simulation results show that their method is more accurate than the other meth-

ods. Although the main focus of the paper is the evaluation ofthe system, they also

study the optimization problem of this system. They assume that the order quantities

at all facilities are predetermined. To find the optimal reorder levels given the order

quantities they use a simple search procedure based that given the reorder levels at

the warehouse, for each retailer, the resulting cost function is convex in the reorder

level.

Moinzadeh and Lee (1986) consider a two-echelon inventory system for repairable

items. The system consists of a number of site and a depot replenishing them. All sites

operate under a (Q,R) policy, whereas the depot operates under an (S − 1,S) policy.

In this sense, their system is exactly the opposite of our setting. They assume that the

order quantity is identical for all sites, while the reorderlevels are nonidentical. The

objective is to minimize the average inventory holding, backordering and setup costs.

To obtain the optimal or near-optimal policy parameters forthe system, they propose

a 2-step procedure. In the first step, the order quantity for the retailers is obtained

by using a power approximation in which the average total cost is approximated as a

23



nonlinear function of the order quantity. To obtain such an expression, a regression fit

is performed by using 600 problem instances. In the second step, after determining

the order quantity using the power approximations, the reorder levels at the sites and

the depots are obtained by using a one-pass heuristic searchprocedure. That is, first

for a given value of the reorder level at the depot, the optimal reorder levels at the sites

are obtained. In this situation, the resulting average costfunction is convex. Hence,

it is quite simple to obtain the reorder levels at the sites. Then, after finding these

parameters, a search for the optimal reorder level at the depot is made. In this case,

the total cost function is not necessarily convex. However,one-pass heuristic iterates

as if it is convex. The whole procedure also involves approximating the number of

outstanding orders at each site by using a two-moment approximation by Lee and

Moinzadeh (1984a). They show that the entire procedure gives the optimal solution

in 95% of the instances. The method is also used to test whether the (S−1,S) policy is

optimal or not for repairable items. They show that when demand is low, the number

of sites is high and average transportation or repair time islong, (S − 1,S) policy is

more likely to be optimal.

Cheung and Hausmann (2000) study a two-echelon inventory system consisting of

a supplier and a number of nonidentical retailers. The objective is to minimize the

average inventory holding, backordering and setup costs. All facilities operate under

a (Q,R) policy. A general demand distribution is assumed. The authors show that

the distribution of the inventory position is independent of the distribution of the

inventory position at other facilities and as well as the lead time demand distribution

at the supplier and also show that this distribution is uniform. This simplifies the

derivation of the average inventory and backorder levels. Therefore, this makes it

possible to have a closed form expression for the backorder levels at the supplier.

They assume that retailer parameters are given. In this situation, the problems reduces

to single-echelon (Q,R) policy, hence, since the average total cost function is jointly

convex in the reorder level and the order quantity, it becomes relatively easy to obtain

the policy parameters. They also test the performance of using the Poisson demand

approximation, which is quite often used in the literature.The results show that the

performance of Poisson approximation is well but using it inthe optimization of a

two-echelon system may result in high loses.
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There are also papers studying the batch ordering problem oftwo-echelon inventory

distribution systems facing a compound Poisson demand. Axsäter et al. (1994) con-

sider such a system consisting of a central warehouse and a number of nonidentical

retailers facing a compound Poisson demand. They propose anapproximate evalua-

tion method to analyze this system assuming that all facilities operate under a base-

stock policy. They also consider the extension of the methodto batch ordering. In

this method, the compound Poisson demand model is replaced by a Poisson demand

model such that the mean to variance ratio is preserved. In this way, they also question

whether a Poisson demand model can be used although the demand is not Poisson.

After replacing the compound Poisson demand model, the policy parameters of the

Poisson demand model is obtained by using a heuristic similar to Moinzadeh and

Lee (1986). They also consider the optimal solution of the policy parameters using

the method proposed by Axsäter (1990) (Axs̈ater’s paper is reviewed under the exact

evaluation methods) for two-echelon systems facing Poisson demand. The optimal

solution is used to test the performance of the approximation as well as the heuris-

tic. For the batch ordering model, since order quantities are assumed to be given,

hence, the algorithms are extended to the batch ordering problem easily. Through a

computational analysis, the solution is found to be very close to optimum. However

there are variations in the performance of the method, e.g.,in some of the problem

instances the method is outperformed by another method, probably a worst possible

alternative, in which Poisson model is directly used without any scaling. The average

percentage cost penalty of using this model is found to be about 1%.

Axsäter et al. (1997) consider a two-echelon inventory distribution system consisting

of a central warehouse and a set of nonidentical retailers. All facilities operate under a

(nQ,R) policy. The demand is assumed to be compound Poisson. The objective is to

minimize the system-wide inventory holding and shortage costs. The author proposes

an approximate method to evaluate the system-wide cost. Themethod is based on two

approximations. First, the correlation between the numberof backorders from retail-

ers at the central warehouse and the outstanding orders at other retailers are ignored so

that each retailer is considered separately. The errors dueto the first approximation

is found to be negligible. Second, Poisson demand process isdiscretized by using

multiple discrete time steps. To expedite the procedure, helimits the number of time
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steps and implements a linear extrapolation to estimate thesystem-wide cost as func-

tion of the number of time step. Through a computational study the author shows that

the relative error between the exact cost and the approximate cost is less 0.43%. The

author also proposes an exact solution procedure for the optimization of the policy

parameters. Since the order quantities are assumed to be given, to find the optimal

reorder levels at the central warehouse and the retailers heextends the exact solution

procedure proposed by Axsäter (1990) to compound Poisson setting.

Axsäter (2001) considers a system with a central warehouse and anumber of noniden-

tical retailers system, where all facilities operate undera (nQ,R) policy and demand

is compound Poisson. The objective is to minimize the average inventory holding,

backordering costs. He focuses on systems with high demand and develops an ap-

proximation for such systems by approximating the high demand case with a low

demand case. First, the demand is scaled down such that the variance-to-mean ratio

is preserved. Then, the system is optimized based on the low demand model. He

assumes that the order quantities are determined in advanced. The reorder levels are

optimized by using a method similar to Moinzadeh and Lee (1986). After finding

the optimal parameters of the low demand system, the solution of the low demand

model is transformed back to the high demand case. This step requires scaling down

the average demand, order quantities and reorder levels by the same factor. Since the

method requires scaling down the reorder level, order quantities by a common factor,

it is only suitable for high demand models, e.g., it is not an appropriate model for

systems in which the optimal order quantity for an item couldbe 1 such as the one

considered in this dissertation. Since the exact evaluation of the system is intractable,

they consider simulating the system. The simulation runs show that the percentage

cost penalty of using the method is around 2.0% but increasesas the demand size

increases.

Axsäter (2003) considers a system with a central warehouse and anumber of non-

identical retailers system. The demand is assumed to be compound Poisson. The

objective is to minimize the average inventory holding, backordering costs. All fa-

cilities apply a (nQ,R) policy. He approximates the lead time demand distribution

using a normal distribution. Similar to Axsäter (2001), order quantities are assumed

to be given or predetermined. In order to find the reorder levels, similar to Moinzadeh
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and Lee (1986), a heuristic procedure is used based on the assumption that the cost

function is convex in reorder level at the central warehouse. He also considers a lower

and an upper bound to expedite the procedure. Later, the method is extended to sys-

tems with more than two-echelons as well. The method is suitable for large systems,

hence, tractable for practical size systems. The percentage cost penalty of using the

method is 0.6%, which is quite satisfactory.

Forsberg (1997) considers a two-echelon inventory system with a central warehouse

and a number of retailers. All facilities operate under a (Q,R) policy. This paper

differs from the other papers in that the customer inter-arrivaltimes are assumed to

be generally distributed and the demand is assumed to be unitdemand. The author

only considers the policy evaluation issues. First he extends the exact evaluation

method proposed by Forsberg (1996) to this setting. He also proposes two different

approximations each of which is based on approximating the generally distributed

inter-arrival times by an Erlang distribution. The performance of the approximations

are tested against the simulation runs. The two approximation methods give the same

results in all instances. The average relative difference between the simulated and the

approximated values for the average inventory and backorder levels is reported to be

1.5%. Nevertheless, he also reports that there are variations in the results.

Although the approximations are prevalent in the literature, using them in a policy

optimization problem for a multi-item system under servicelevel constraints may re-

sult in infeasible solutions. In this situation, the measure of the infeasibility of the

solution obtained by a certain approximation becomes very important. The two most

commonly used approaches in multi-echelon inventory distribution systems, i.e., the

METRIC and the two moment approximation, are tested in a single-item (Graves

1985) and a multi-item setting (Wong et al. 2007) and it is shown that the performance

of the Graves’s two-moment approximation is quite well, whereas the METRIC may

yield highly infeasible solutions. Therefore, whether onecan use an approxima-

tion depends on the performance of the corresponding approximation. Although the

performance of the commonly used approximations are testedin single-item multi-

echelon inventory distribution systems facing Poisson demand, their performances

are not investigated under a multi-item, compound Poisson demand setting. In this

dissertation, in Chapter 5, we consider several approximations for the analysis of the
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system under the compound Poisson demand setting. Three of these approximations

correspond to the extensions of the METRIC and the two-momentapproximations

to our setting. We provide a comparison of these approximations and the results of

this comparison contributes to the relevant literature. Asopposed to the approxima-

tions, exact methods guarantee feasible solutions when they are employed to find the

optimal or near-optimal policy parameters.

There exists exact evaluation methods proposed for multi-echelon inventory systems

as well. Although the main contribution of Graves (1985) is the proposal of the two-

moment approximation for base-stock systems, he also proposes an exact evaluation

method for multi-echelon inventory distribution systems.Therefore, this work also

belongs to the stream of literature that propose exact evaluation methods proposed for

multi-echelon inventory systems. The method relies on the lead-time demand method

and utilizes the binomial disaggregation.

Axsäter (1990) considers a two-echelon inventory system with awarehouse and a set

of retailers. All facilities operate under a base-stock policy. The demand is Pois-

son. The objective is to minimize the average inventory holding and backordering

costs. In this seminal work, Axsäter develops both an exact evaluation and an exact

optimization algorithm for the system. The exact evaluation method is based on keep-

ing track of each unit as it moves through the system, which isknown as flow-unit

method (Simchi-Levi and Zhao 2010). The method facilitatesdirectly evaluation of

the average system-wide cost function for a given base-stock policy. In this sense, it

differs from the lead time demand method, which requires determining of the station-

ary distribution of the inventory and the backorder levels (Simon 1971 and Graves

1985). The exact optimization algorithm is summarized as follows. First, for a given

base-stock level at the warehouse, the base-stock levels atthe retailers are obtained.

In this situation, the entire problem decomposes into single facility problems, hence,

obtaining the solution for these subproblems becomes quitesimple since the cost

function is convex. After finding the solutions of all subproblems, the system-wide

cost function is optimized over the base-stock level at the warehouse. This requires

an exhaustive search since the function is not necessarily convex in base-stock level at

the central facility. However, to expedite the procedure, he proposes lower and upper

bounds on the base-stock level at the warehouse. After this seminal work, many of
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the papers published use this exact method or a similar one tosearch for the optimal

solution of the two-echelon inventory distribution systems. In this dissertation, we

consider a similar procedure to solve single-item subproblems, which is later used in

the development of the exact solution procedure and the heuristics for our problem.

Our algorithm differs from Axs̈ater (1990) in that it is proposed for a batch ordering

system.

There are exact evaluation methods proposed for batch ordering systems as well. In

one of the seminal works, Simon (1971) extends Sherbrooke’sMETRIC to a different

setting allowing the analysis of consumable, repairable and condemned parts together.

However, he assumes a Poisson demand and constant repair (lead) time. Similar to

our system setting, he assumes a batch ordering at the depot,a base-stock policy at

the bases. The difference from our system setting is that the depot operates under an

(s,S) policy. He deals with the exact analysis of the system and derives the steady-

state probability distributions of the inventory and the backorder levels at all facilities

and as well as the number of items in repair. The method is based on the lead time

demand method, in which the distributions of the inventory and the backorder lev-

els are obtained based on the lead time demand distribution (Simchi-Levi and Zhao

2010). His findings are seminal and used by many other researchers for the analysis

of two-echelon inventory distribution systems with different settings, e.g., he shows

that binomial disaggregation is exact for two-echelon inventory distribution systems

under Poisson demand.

Axsäter (1993) considers a two-echelon inventory system with acentral warehouse

and a number of identical retailers. All facilities operateunder a (Q,R) policy. The

demand is Poisson. He proposes to express the system-wide cost under the (Q,R) pol-

icy as a weighted average of system-wide costs under base-stock policies. He shows

that, in this situation, many of the results obtained for base-stock policies by Axs̈ater

(1990) can be extended to batch ordering problem. His methodrelies on the flow-unit

method, in which a single unit is followed. In this method, first he introduces two

probabilities, i.e.,pi j , probability thati th subsequent system demand will trigger the

j th subsequent retailer order, andqm j, the probability thatm demands arrive at the

retailer during the waiting for thej th subsequent retailer order. Then he defines the

entire cost function based on these probabilities. First, he proposes an exact evalua-
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tion method to calculate these probabilities, as well as, the system-wide cost function.

However, since the exact evaluation is computationally prohibitive, he proposes three

alternative approximations forpi j . Since the method proposed by Svoronos and Zip-

kin (1988) outperforms those of Deuermeyer and Schwarz (1981) and Lee and Moin-

zadeh (1984a, b), he compares the performances of the approximations with that of

Svoronos and Zipkin (1988). The results show that third approximation is slightly

more accurate than that of Svoronos and Zipkin (1988). For the optimization of the

system, he assumes that order quantities are predetermined.

Axsäter (1998) extends the analysis of Axsäter (1993) to a similar system with non-

identical retailers. First, he proposes an exact evaluation method for the two retailer

case. Then using this model, he approximates systems with more than two retailers.

In latter case, when a retailer is analyzed, the other retailers are aggregated into a sin-

gle dummy retailer so that the entire problem becomes a two-retailer problem. Since

the sum of Poisson processes is also Poisson process, the method is quite reasonable

for Poisson demand. For the optimization problem, he assumes that the order quan-

tities are predetermined. Then the reorder levels are optimized using an exact search

procedure similar to Axs̈ater (1990).

In another related work in this steam, Forsberg (1996) considers a two-echelon system

with one warehouse and a number of nonidentical retailers. Just like Axs̈ater (1993),

he proposes an exact evaluation method for two-echelon systems with batch ordering

policy. Just like Axs̈ater (1993), the average system-wide cost for this batch ordering

system is expressed as a weighted average of base-stock costs. Therefore, the average

cost is obtained by using the results in Axsäter (1990). Through a computational

study, the performance of the exact method is tested with theextension of Svoronos

and Zipkin’s (1988) to nonidentical retailers. In this study, as in many of the papers

studying the batch ordering problems, he assumes that orderquantities are given.

The methods proposed by Axsäter (1993), Axs̈ater (1998) and Forsberg (1996) rely

on the flow-unit method, which is based on keeping track of each unit as it moves

through the system. The main disadvantage of their method isthat they require re-

calculation of the expressions and the convolution when theorder quantities at the

retailers change. Therefore, the methods is not suitable when the system is optimized
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with respect to the order quantities at the retailers.

There are also studies proposing exact evaluation methods for systems facing com-

pound Poisson. However, compound Poisson demand introduces many challenges

to the evaluation of multi-echelon inventory distributionsystems. First, the binomial

disaggregation fails, hence, exact evaluation methods based on lead-time demand

method become quite complicated (Shanker 1981). Similarly, the flow-unit method,

which is involved even for Poisson demand, still works but becomes more involved

(Axsäter 2006). Shanker (1981) considers a two-echelon item inventory distribution

system in which items can be consumable, repairable and condemned. The system

consists of a set of bases and a central depot replenishing them. The bases operate

an (S − 1,S) base-stock policy and the depot applies an (s,S) policy. Hence, just

like in our system, the author considers batch ordering onlyat the central warehouse,

but, with a different batch ordering policy. The demand is assumed to be compound

Poisson. For the corresponding system, he derives the exactsteady-state distributions

of the inventory position at the central warehouse and show that it is uniform. He also

obtain the exact steady-state distributions of the inventory and the backorder levels

at all facilities. The author only deals with the evaluationof the system. He does

not provide a solution method for the problem. Instead, he indicates that the exact

evaluation method can be used to obtain a total cost functionas well as the system

performance measures and all these later can be used in the optimization of the over-

all systems. However, he argues that this is quite computationally complicated since

the method requires computation of several expressions andconvolutions.

Forsberg (1995) analyzes a two-echelon system with one warehouse and a number of

nonidentical retailers. He assumes a compound Poisson demand. All facilities operate

under an order-up-to-S policy, which is the extension of (S − 1,S) base-stock policy

to compound Poisson demand. He proposes an exact evaluationmethod to obtain the

average system-wide inventory holding and backordering costs. The method relies

on replacing the compound Poisson demand with a Poisson demand. He expresses

the average system-wide cost as a weighted average of system-wide costs for the

Poisson demand case and solves the Poisson demand case usingthe method proposed

by Axsäter (1990). To optimize the problem he extends the search algorithm proposed

by Axsäter (1990) to compound Poisson setting.
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Axsäter and Zhang (1996) study a two-echelon inventory system with one warehouse

and a number of nonidentical retailers. The demand is compound Poisson. All facil-

ities operate under an order-up-to-S policy. The objectiveis to minimize the average

inventory holding and shortage costs. They provide a recursive procedure for the eval-

uation of this system by extending the exact evaluation method proposed by Axs̈ater

(1990) to a compound Poisson demand setting. Although Forsberg (1995) derives the

exact distribution for the compound Poisson case by solvingseveral Poisson demand

models, Axs̈ater and Zhang (1996) derive the cost function directly. To optimize the

systems, they consider the algorithm in Axsäter (1990). Just like other papers on

batch ordering policies, they optimize the system parameters assuming that the order

quantities are determined in advance.

The exact evaluation of batch ordering systems with (Q,R) policy under a compound

Poisson setting is considered only by Axsäter (2000). In this paper, Axsäter (2000)

considers a two-echelon inventory system having a warehouse and a number of non-

identical retailers. The demand is compound Poisson. To evaluate the system, he

proposes an exact evaluation method, by extending the earlier methods based on the

flow-unit method. First, the steady-state probabilities ofthe inventory and the back-

order levels at the retailers are obtained. Then, using these probabilities, the average

inventory and the backorder levels are obtained. Finally, the average inventory and

the backorder levels at the central warehouses is obtained by using the average in-

ventory and the backorder levels at the retailers. As opposed to earlier studies, e.g.,

Axsäter (1998), that are based on deriving the average cost function without finding

these steady state probabilities of inventory and backorder levels, this method requires

evaluating the steady-state probabilities of the inventory and the backorder levels di-

rectly. Hence, the main advantage of the method is that it is applicable to systems

with any type of cost structure. Also in this method, system-wide cost is directly

generated for the compound Poisson demand, whereas in Forsberg (1995) they are

obtained from the Poisson demand costs and this makes the method more efficient

than the latter. Nevertheless, the procedure is not tractable for problems with large

demands and large order quantities. Therefore, he suggest amethod making it possi-

ble to replacing the high demand system with a low one similarto the one discussed in

Axsäter (2001). The method is quite tractable when the order quantities are between
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1 and 10, but becomes involved as they increase, especially when order quantities are

optimized as well. As in many of the papers on batch ordering policies, order quan-

tities are assumed to be predetermined. The exact analysis of the compound Poisson

demand model that we provide in Chapter 5 mainly relies on the method developed

by Axsäter (2000).

In a recent work, Zhao (2008) considers a more complex supplychain structure in

which there is at most one directed path between stages. Thissystem structure in-

volves assembly, distribution systems, tree structure distribution systems as well as

two-echelon distributions systems. The demand is compoundPoisson. All facili-

ties operate under a base-stock policy. He provides an exactand an approximate

evaluation for the analysis of the system. The author arguesthat method developed

by Forsberg (1995) and Axsäter (2000) are computationally more efficient than this

method. The advantage of Zhao’s method is that it is a more generic one and can

be applied to various, more general supply chain systems. Tofind the optimal base-

stock polices they consider a method based on a dynamic programming (DP) based

algorithm originally developed by Simchi-Levi and Zhao (2005).

2.1.2 Multi-Item Systems

Apart from studies on single-item multi-echelon inventorydistribution systems, a -

more recent- body of papers study the multi-item systems. Wemainly contribute to

this body of the literature. Mostly, these papers propose heuristics to obtain the policy

parameters of the multi-item multi-echelon inventory distribution systems. Therefore,

solving practical industry-size problems is critically important. A common approach

is to decompose the problem by facilities and/or parts, predominantly by means of

a Lagrangian relaxation, then apply an iterative procedureto combine the resulting

subproblems, which is also the case in our work. Also, most ofthe papers rely on

approximations, although there are heuristics based on exact evaluation methods as

well. Recall that in our study, we consider exact evaluation for the Poisson demand,

whereas for the compound Poisson demand we consider both methods. Just like the

one in this dissertation, the system approach is common among all these papers.

In an earlier work, Muckstadt and Thomas (1980) consider a multi-item two-echelon
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inventory system having a distribution center and a number of customer-service ware-

houses. All facilities operate under an (S − 1,S) policy. The demand is Poisson. The

authors investigate the advantage of multi-echelon inventory systems over single-

echelon model, hence, compare the performance of the single-echelon model with

that of the multi-echelon model. In the single-echelon model, the base-stock levels

are determined separately for each echelon and location, where the objective is to

minimize the inventory investment subject to an aggregate service level constraint. In

the multi-echelon model, the base-stock levels at different locations are determined

simultaneously, where the objective is to minimize the expected replenishment lead

time for a customer demand subject to budget constraint. To approximate expected

replenishment lead time, they consider an approximation used in a earlier study due

to Feeney and Sherbrooke (1966). Both models are solved by using a Lagrangian re-

laxation of the constraints. They report that the single-echelon model requires twice

as much inventory as the multi-echelon model. For low demandand high cost items,

the multi-echelon model is much more suitable. The computational requirements of

the multi-echelon model is comparable with that of the single-echelon model. Hence

they conclude that it is worth to use multi-echelon models.

Hausmann and Erkip (1994) extend the results of Muckstadt and Thomas (1980).

Similarly, they compare the multi-echelon model and the single-echelon model in

which the latter is used to approximate the former. They propose an iterative search

procedure to find the base-stock levels. They find the single-echelon model is more

appropriate when the budget constraint is less tight. They report that the percentage

cost penalty of using single-echelon models is less than 5%.

Çăglar et al. (2004) study a two-echelon spare parts inventorydistribution system

consisting of a central warehouse and a number of field depots. All facilities imple-

ment base-stock policies. The demand is Poisson. The objective is to minimize the

system-wide inventory cost subject to an aggregate mean response time constraint.

The authors propose a heuristic to find the policy parameters. First, they decompose

the problem by echelons, each of which is solved using the METRIC approximation

due to Sherbrooke (1968). Then, they apply an iterative procedure to combine the

subproblems. The experimental study shows that their heuristic yields more accurate

results than that of Hopp et al. (1999).
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Wong et al. (2007b) study the same problem as Çağlar et al. (2004). He propose four

different heuristics to find the optimal base-stock levels for a two-echelon pure base-

stock system. The heuristics are based on various combinations of a greedy heuristic,

a local search and the decomposition and column generation (DCG) method. Through

extensive experiments with problem instances up to a size of100 parts and 20 lo-

cal warehouses, the performances of the heuristics are tested against a lower bound

proposed in the study. They report that the greedy heuristiccombined with the de-

composition and column generation (DCG) yields quite satisfactory results in their

setting, but the heuristic is tractable for problems up to a size of 100 parts and 20

local warehouses. They report that the greedy heuristic combined with DCG yields

quite satisfactory results, with an average relative gap less than 2% and the maximum

below 10%. The Lagrangian heuristic that we develop for our problem in Chapter 4

is a similar procedure. Using the Lagrangian heuristic, we obtain quite satisfactory

results for our batch ordering problem. While implementing the method, (1) we em-

ploy an algorithm to solve the subproblems arising as a result of the decomposition

in the entire procedure based on using lower and upper boundson the optimal policy

parameters, and (2) we also consider variants of this methodthat are based on the se-

quential approach. Consequently, while our problem is more complicated than Wong

et al. (2007b) -as we consider (Q,R) policy in the upper echelon-, our heuristics solve

yet larger-scale problems with up to 10,000 parts. The otherheuristics proposed by

Wong et al. (2007b) are tractable for larger problems, but they yield less satisfac-

tory results compared to the DCG, e.g., for the problem instances with 100 parts, the

relative gap between the DCG and a lower bound proposed is 0.71%, while for the

greedy heuristic which is tractable for large-scale problems, the maximum relative

gap is 9.65%.

Caggiano et al. (2007) consider a multi-echelon spare parts inventory distribution

system. All facilities operate under a base-stock policy. The demand is Poisson. The

objective is to minimize the inventory investments subjectto service-level constraints.

They consider time-based service levels, e.g., 90% of partsare instantaneously sat-

isfied, 95% of the parts are within 8 hours. They propose two alternative heuristics

to obtain the base-stock levels at all locations. The first heuristic, FastIncrement, im-

plements a greedy algorithm relying on increasing one of thebase-stock levels at a
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time until service level constraints are satisfied. The second heuristic, PrimalDual,

resembles our Lagrangian heuristic and that of Wong et al. (2007). In this method

the multi-item problem is decomposed into a number of single-item problems using a

Lagrangian relaxation. The dual search is accomplished by changing the Lagrangian

multipliers until a user-specified limit is reached. Finally this lower bound solution

is converted to a feasible integral solution using a greedy algorithm based on incre-

menting the basetock levels until feasibility is achieved.Both heuristics are shown

to be quite efficient and effective. They can solve problems with 27175 part-location

combinations in almost 21 hours. The relative gaps with their lower bound are 0.59%

for such problems. Hence, this is one of the papers in the literature having quite high

accuracy and efficiency in terms of the computational requirements. As opposed to

Caggiano et al. (2007), in our dissertation by using the Lagrangian heuristic, we can

solve 130,000 part-location combinations within 12 hours,while the optimality gaps

are slightly better than theirs. Although they consider a much more complicated sys-

tems than the one in this dissertation, our system is a batch ordering system, which

is a generalization of the base-stock systems. Furthermore, in contrast to Caggiano

et al. (2007), we consider a column generation method guaranteeing the optimal

Lagrangian multipliers to implement the Lagrangian procedure.

There are also papers that deal with the multi-item multi-echelon inventory distribu-

tion systems with batch ordering. In an earlier study, Cohen et al. (1990) consider

a large spare parts inventory distribution problem for IBM, in which there are mil-

lions of part-location combinations. All facilities operate with an (s,S) policy. They

also consider the parts commonality among the products. Although their system is

a periodic review model, we include in our literature reviewbecause of the solution

technique is based on the decomposition technique. They develop a multi-item multi-

echelon model allowing parts commonality to minimize the inventory investments

subject to service constraints. They solve this gigantic problem in three stages. In

the first stage, the overall problem is reduced to solving multiple single-item single-

facility problems, and then in stage 2, by integrating theseproblems a multi-item

single-facility problem is solved. In the last stage, the solutions of the problems in

stage 2 are embedded into the solution of the overall multi-product multi-location

problem. To solve the problem, a level by level decomposition algorithm is used,
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whereas a greedy heuristic is used in order to solve the multi-item single-facility

problem.

Among the studies on batch ordering, the papers that are mostrelevant to our work

are Hopp et al. (1999) and Al-Rifai and Rosetti (2007). Hopp et al. (1999) consider

a two-echelon spare parts inventory distribution system consisting of a distribution

center and multiple nonidentical regional facilities in which the distribution center

operates under (Q,R) policy, whereas the regional facilities operate under base-stock

policies. The demand is Poisson. The objective is to minimize the inventory holding

costs subject to aggregate fill rate and target order frequency constraints. The sys-

tem differs from ours in two aspects: First, it involves a target level on the aggregate

ordering frequency rather than explicit part-specific fixedordering costs at the upper

echelon facility. Second, aggregate fill rate is consideredas a service measure, while

we consider the aggregate mean response time as a service measure in our work. To

find the policy parameters of this system, they decompose theresulting problem by

echelons using a Lagrangian relaxation, and then to solve each subproblem, they use

the two-moment approximation by Graves (1985) and a sequential heuristic proposed

by Hopp et al. (1997), in which the order quantities and the reorder levels are ob-

tained separately. The performance of the heuristic is tested against two alternative

lower bounds in a computational study. The results of the experiments reveal that the

relative gap between the heuristic solutions and the tighter lower bound is less than

5%. Also, it is experimentally shown that the algorithm can solve a larger problem

instance with 1263 parts and 2 regional facilities. Hence, the authors argue that there

is a need for further improvements in the algorithm to solve much larger problems

encountered in practice.

Al-Rifai and Rosetti (2007) consider a two-echelon spare parts inventory distribu-

tion system consisting of one warehouse and multiple identical retailers, all of which

operate under (Q,R) policy. The demand is Poisson. The objective is to minimize

the average inventory investment subject to average ordering frequency and average

backorder constraints. Their system setting differs from ours in three aspects: First,

a target level is considered for aggregate ordering frequency rather than fixed order-

ing costs for each facility. Second, the total expected number of backorders is set

as the performance measure rather than the aggregate mean response times. Third,
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they consider only the identical retailer case, whereas ourmodel allows for noniden-

tical local warehouses. Their heuristic can solve large-scale problems. Similar to

Hopp et al. (1999), Al-Rifai and Rossetti (2007) propose a heuristic to find the policy

parameters by decomposing the problem by echelons and then applying an iterative

heuristic procedure to generate Lagrangian multipliers. Their heuristic relies on the

normal approximation of the lead time demand distribution at retailers. Since the

order quantities and the reorder levels are determined simultaneously, it can be seen

as an application of simultaneous approach. Through a computational study, the per-

formance of the heuristic is tested against the solutions obtained by an optimization

software and the results of simulation runs. They show that the heuristic can solve

a large-scale problem. Nevertheless, since an analytical solution or a bound is not

available for large-scale problems, they encounter difficulties in evaluating the per-

formance of their method in an analytical sense.

In terms of the solution procedure followed, our work in Chapter 4 differs from these

two papers in two aspects. (1) In our study, the evaluation ofaverage inventory levels

is exact, while Hopp et al. (1999) use a negative binomial approximation, Al-Rifai

and Rosetti (2007) use a normal approximation for the lead time demand distribution.

(2) The heuristics in both studies, and also ours, rely on theLagrangian approach, and

hence, each one requires a search procedure to obtain the best possible Lagrangian

multipliers. In order to find the Lagrangian multipliers, wefollow an exact search

procedure while the aforementioned studies use iterative heuristic search procedures.

Apart from these papers, there are three review papers on multi-echelon inventory

systems. Kennedy et al. (2002) review works on spare parts inventories studying

different aspects of spare parts inventory management such as managerial issues,

multi-echelon inventory problems, obsolescence, repairable, age-based replacement.

Simchi-Levi and Zhao (2010) investigate the methods and themodels developed for

multi-echelon inventory systems for different network types, inventory polices and

demand process. G̈umüş and G̈uneri (2007) survey studies on multi-echelon inven-

tory management published between the years 1996 and 2005 from the perspective of

operations research.

This dissertation contributes to the multi-item multi-echelon inventory literature in
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the following three aspects. First, the exact solution procedure that is developed for

our system is the first in the literature on multi-item multi-echelon inventory distri-

bution systems. Second, we note that almost none of the algorithms in the literature

(except Wong et al. 2007b) guarantee feasible solutions since these algorithms rely

on approximate evaluation of the objective function and theconstraints. Further-

more, for some of the heuristics, it is not clear whether theyare tractable for large,

practical size problems (Hopp et al. (1999), Çağlar et al. 2004). The ones that are

reported to be tractable for large-scale problems either encounter difficulties in eval-

uating the performance of their heuristics against an analytical solution or a bound

(Al-Rifai and Rossetti 2007), or they are developed for systems under pure base-

stock policy (Caggiano et al. 2007), Wong et al. 2007b). Hence, our dissertation

contributes to the vast literature on multi-item multi-echelon inventory optimization

problems by proposing an exact solution method and efficient heuristics based on an

exact evaluation -hence guaranteeing feasible solutions-and also a tight lower bound

for large-scale practical-size multi-item two-echelon inventory problems with batch

ordering at the central warehouse. Third, to the best of our knowledge, our work is

the first to propose heuristics for finding optimal or near-optimal policy parameters of

a practical industry-size multi-item two-echelon inventory control system with batch

ordering facing a compound Poisson demand.

2.2 Sequential Heuristics

Another direction of research related to this dissertationis the development of sequen-

tial heuristics and investigation of their performances. There are a number of papers

studying the sequential heuristic in single-echelon (Q,R) model. Zheng (1992) ana-

lyzes the performance of the EOQ with planned backorders formula in a sequential

heuristic to obtain the order quantity in a single-item single-echelon (Q,R) model un-

der a general demand distribution. He analytically shows that the EOQ with planned

backorders performs well, resulting in a percentage cost penalty of less than 12.50%

theoretically. Through a computational study, he shows that the numerical findings

are much better: In 80% of the numerical problem instances the percentage cost

penalty is less than 1.00%, and the maximum percentage cost penalty is found to be
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2.90%. He also reports that the EOQ with planned backorders performs better when

fixed ordering cost is high. Following this line of research,Axsäter (1996), who stud-

ies the same problem with Zheng (1992), improves the bound onthe percentage cost

penalty of using the EOQ with planned backorders down to 11.80%. Silver et al.

(1998) focus on the performance of the sequential determination of the order quanti-

ties and the reorder levels in single-item single-echelon (Q,R) model and compare its

performance against the exact solution obtained by determining Q andR simultane-

ously. They show that, depending on the problem setting, thepercentage cost penalty

of using the sequential approach may be high. The authors also suggest making pre-

liminary tests to see whether the simultaneous approach is worthwhile before using

it. Gallego (1998) proposes a batch size heuristic that can be used to determine the

order quantity in a (Q,R) policy in a sequential approach for a (Q,R) model based on

the lower and the upper bounds that he proposes on the order quantity. He assumes

a general demand distribution, the analysis is extended to Poisson demand case as

well. Both the heuristic and the bounds are reported to perform well. The percent-

age cost penalty of using the heuristic is shown to be less than 6.07% theoretically.

He empirically shows that the average and the maximum percentage cost penalties of

the heuristic are 0.32% and 2.64 respectively, while those of the EOQ with planned

backorders are 1.56% and 10.61 respectively. In this dissertation, in Section 4.2, we

adapt this heuristic to a multi-echelon setting.

In a multi-item setting, Hopp et al. (1997) considers a single-echelon inventory sys-

tem operating under a (Q,R) policy. The objective is to minimize the inventory invest-

ment subject to aggregate fill rate and target order frequency constraints. The demand

is Poisson. To obtain the policy parameters they propose three easily implementable

heuristics obtained through using closed form expressions. In the first heuristic, the

order quantities and the reorder levels are solved separately. The second one requires

solving these parameters simultaneously. The third one combines the closed form

expressions obtained for the three. Through a computational study they show that the

first heuristic, which is based on the sequential approach, may perform poorly but per-

forms better when the target service level is very high and the target order frequency

is very low. They report that only in these situation it becomes reasonable to use a

sequential approach.
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As seen from the review of papers in Section 2.1, obtaining the order quantities inde-

pendently or assuming that order quantities are predetermined by using a determin-

istic model is a very common assumption among the papers on multi-echelon inven-

tory systems (Svoronos and Zipkin 1988, Svoronos and Zipkin1988, Moinzadeh and

Lee 1986, Axs̈ater 1994, Axs̈ater 2001, Axs̈ater 2001, Axs̈ater 2003, Axs̈ater 1993,

Axsäter 1998, Forsberg 1996, Axsäter 2000). The method is also widely used in prac-

tical applications due to its simplicity. However, although the sequential approach is

a common approach, its consequences in multi-echelon systems are not investigated

yet. In a multi-item multi-echelon setting, Hopp et al. (1999), who consider a sequen-

tial heuristic to predetermine the order quantities, can beconsidered as an application

of sequential approach. They test the performance of the heuristic with a lower bound

again obtained through sequential approach. Hence, its performance with respect to

a simultaneous approach is not considered. In this dissertation, one of our objectives

is to evaluate the performance of the widely used sequentialapproach against the

simultaneous approach in multi-item two-echelon batch ordering systems.
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CHAPTER 3

AN EXACT SOLUTION PROCEDURE

In this study, a multi-item two-echelon spare parts inventory system is considered.

The system consists of a central warehouse and a number of local warehouses, each

of which (including the central warehouse) can respond to external customer demand.

The central warehouse also responds to the replenishment orders from local ware-

houses, implying that it has both internal and external demands to satisfy. The central

warehouse operates under a continuous-review installation-stock (Q,R) policy and

the local warehouses implements a continuous-review installation-stock (S − 1,S)

policy. The stocks at the central warehouse are replenishedfrom an outside supplier.

We assume that the outside supplier has ample stock. Unsatisfied demand is backo-

rdered at all locations for each of which an aggregate service level target is set.

Our objective is to find the inventory control policy parameters for this system that

will minimize the sum of expected inventory holding and fixedordering costs sub-

ject to constraints on the aggregate mean response time of each facility, which is the

demand weighted average of response times. In this chapter,we propose an exact

solution procedure based on a branch-and-price algorithm to find the relevant pol-

icy parameters of the system considered. The procedure corresponds to solving the

Lagrangian dual problem by using a column generation method, and then using this

solution as a lower bound in a branch and bound algorithm. Thebranch-and-price

algorithm also involves a greedy algorithm applied on the corresponding Lagrangian

dual solution to find an upper bound. Since the column generation method facilitates

decomposing the multi-item problem into multiple single-item problems, we also de-

velop an algorithm to solve the single-item problems.
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To the best of our knowledge, there is no exact solution algorithm for finding opti-

mal policy parameters of the multi-item two-echelon inventory problems. Hence, our

work contributes to the relevant literature by introducingan exact solution algorithm

guaranteeing optimality of the policy parameters for the multi-item two-echelon in-

ventory system that we pose. First, in Section 3.1, we formulate the problem. In

Section 3.2, the branch-and-price algorithm is presented.The basic procedures used

in the branch-and-price algorithm, i.e., the column generation method, the algorithm

developed for solving single-item problems and the greedy algorithm are introduced

in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. Finally,in Section 3.4, we provide the

computational results.

3.1 The model

We consider a two-echelon distribution network in which thelower echelon com-

prises a set,N, of local warehouses, each is denoted byn = 1,2, . . . |N|, while the

upper echelon corresponds to a central warehouse, which is denoted byn = 0. There

is a set,I , of parts, each is denoted byi = 1,2, . . . |I |. In this system, we assume that

the external customer demand for parti at warehousen ∈ N ∪ {0} occurs according

to a Poisson process with rateλin. The external demand is independent across parts

and warehouses. In addition to external demands, the central warehouse also faces

internal demands from local warehouses. Internal and external demands are not dif-

ferentiated and are satisfied according to the FCFS rule. For simplicity, we consider

a single-indenture model, implying that each part is managed at a product level, but

not at the component level. Note that this is validated in many situations (Kim et al.

2009). We assume part-specific holding costs for all facilities and part-specific fixed

ordering costs for the central warehouse. There is no incentive for joint ordering of

different part types. The demand that can not be satisfied from stock is backordered.

Warehouses have no capacity restrictions.

As for the control policies, for each parti ∈ I , local warehousen ∈ N operates

under a base-stock levelSin, whereas the central warehouse operates under a batch

ordering policy with reorder levelRi and order quantityQi. The system operates

as follows: Whenever a demand for any parti arrives at warehousen ∈ N ∪ {0},
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it is immediately satisfied from stocks if there is an available part; otherwise, the

demand is backordered. In both cases, if the external demandis directed to a local

warehouse, an order of size one is placed at the central warehouse. This internal

request is satisfied within a constant transportation lead time of Tin, if the part is

available in the central warehouse. Otherwise, the internal demand is backordered as

well. In any case, if the inventory position of the central warehouse drops to reorder

level Ri, an order of sizeQi is placed at the outside supplier. It is assumed that the

supplier has ample stock and can always satisfy requests forpart i in a constant lead

time of Ti0. The inventory positions are restricted to be nonnegative,implying that

Ri ≥ −1 andSin ≥ 0 for each parti ∈ I and each warehousen ∈ N. The manufactures

considered in our dissertation operate in this manner. Thisrestriction is imposed by

other researchers as well (see Hopp et al. 1999, Axsäter 1997). We note that this

restriction is not essential for our analysis.

Based on this system definition, our problem can be stated as that of finding policy

parameters minimizing the sum of the inventory holding and fixed ordering costs

subject to constraints on the demand weighted average of individual part response

times over all parts at each warehouse, which we refer to as aggregate mean response

time. Our notation is given in Table 3.1.

For sake of brevity, we omit the parameters that the variables depend on (unless there

is ambiguity) e.g.,I in(t,Qi ,Ri ,Sin) is simply denoted asI in(t). Also, when our fo-

cus is on the limiting behavior of a stochastic variable, we omit the time component,

e.g.,I in = lim
t→∞

I in(t). Similarly, demands during the respective lead times at the cen-

tral warehouse and the local warehousen ∈ N are shortly denoted byYi0 andYin,

respectively.

Let Λn =
∑

i∈I λin denote the total demand rate for warehousen ∈ N ∪ {0}. By using

Little’s law, the aggregate mean response time at local warehousen ∈ N, Wn( ~Q, ~R, ~S),

can be expressed as a function of expected number of backorders for part i ∈ I ,

E[Bin(Qi ,Ri ,Sin)].
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Table 3.1: General Notation.

i Part index,i ∈ I
n Warehouse indexn ∈ N ∪ {0}
ci Unit variable cost of parti
h Inventory carrying charge

Ki Fixed ordering cost of parti at the central warehouse
λin Demand rate for parti at local warehousen ∈ N
λe

i0 External demand rate for parti at the central warehouse
λi0 Demand rate (sum of internal and external) for parti at the central warehouse
Λe

n Total external demand rate at the central warehouse
Λn Total demand rate for warehousen ∈ N ∪ {0}
Ti0 Lead time for parti at the central warehouse from the outside supplier
Tin Transportation lead time from the central warehouse to local warehousen ∈ N for part i

Wmax
n Target aggregate mean response time at warehousen ∈ N ∪ {0}
Ri Reorder level for parti at the central warehouse (decision variable)
Qi Order quantity for parti at the central warehouse (decision variable)
Sin Base-stock level for parti at local warehousen ∈ N (decision variable)
~Si [Si1,Si2, . . . ,Si|N|] = Vector of base-stock levels for parti
~S [~S1, ~S2, . . . , ~S|I |] = Vector of base-stock levels
~Q [Q1,Q2, . . . ,Q|I |] = Vector of order quantities
~R [R1,R2, . . . ,R|I |] = Vector of reorder levels

I in(t,Qi ,Ri ,Sin) On-hand inventory level for parti at warehousen ∈ N at timet
I i0(t,Qi ,Ri) On-hand inventory level for parti at the central warehouse at timet

IPi0(t,Qi ,Ri) Inventory position for parti at the central warehouse at timet
Xin(t,Qi ,Ri ,Sin) Number of outstanding orders for parti at warehousen ∈ N at timet

Yin(t, t + τ) Demand accumulated for parti at warehousen ∈ N ∪ {0} in time interval (t, t + τ)
Bin(t,Qi ,Ri ,Sin) Backorder level for parti at warehousen ∈ N at timet

Bi0(t,Qi ,Ri) Backorder level for parti at the central warehouse at timet
B(n)

i0 (t,Qi ,Ri) Backorder level of local warehousen for part i at the central warehouse at timet
Win(t,Qi ,Ri ,Sin) Response time for parti at warehousen ∈ N at timet

Wi0(t,Qi ,Ri) Response time for parti at the central warehouse at timet
We

i0(t,Qi ,Ri) Response time for parti at the central warehouse (for external customers) at timet
Wn(t, ~Q, ~R, ~S) Aggregate mean response time at warehousen ∈ N at timet

W0(t, ~Q, ~R) Aggregate mean response time at the central warehouse at timet
We

0(t, ~Q, ~R) Aggregate mean response time at the central warehouse (for external customers) at timet
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Wn( ~Q, ~R, ~S) =
∑

i∈I

λin

Λn
E[Win(Qi ,Ri ,Sin)] =

∑

i∈I

λin

Λn

E[Bin(Qi ,Ri ,Sin)]
λin

=
∑

i∈I

E[Bin(Qi ,Ri ,Sin)]
Λn

.

Similarly, for the central warehouse, we obtainW0( ~Q, ~R) =
∑

i∈I
E[Bi0(Qi ,Ri )]

Λ0
. Accord-

ingly, the problem (P) is formulated as follows.

Min
∑

i∈I

cih

E[I i0(Qi ,Ri)] +
∑

n∈N
E[I in(Qi ,Ri ,Sin)]

 +
λi0Ki

Qi

 (3.1)

s.t.
∑

i∈I

E[Bi0(Qi ,Ri)]
Λ0

≤Wmax
0 , (3.2)

∑

i∈I

E[Bin(Qi ,Ri ,Sin)]
Λn

≤Wmax
n , for ∀ n ∈ N, (3.3)

Qi ≥ 1, Ri ≥ −1, Sin ≥ 0, and Qi , Ri , Sin ∈ Z, for ∀ i ∈ I , ∀ n ∈ N.

In problemP, the objective function (3.1) minimizes the expected system-wide in-

ventory holding and fixed ordering costs. Note that, since weassume full backo-

rdering, variable ordering cost are not included in the objective function. Constraint

(3.2) and (3.3) guarantee that aggregate mean response times at the central and lo-

cal warehouses do not exceed target aggregate mean responsetimes,Wmax
0 andWmax

n ,

respectively.

Alternatively, one could also model the situation in which only the external customers

are incorporated in evaluating the performance of the central warehouse. In that

case, the aggregate mean response time at the central warehouse is stated as follows:

We
0( ~Q, ~R) =

∑
i∈I
λe

i0
Λe

0
E[We

i0(Qi ,Ri)], whereλe
i0 = λi0 −

∑
n∈N λin is the external demand

for part i ∈ I andΛe
0 = Λ0 −

∑
n∈NΛn is the total external demand, at the central

warehouse. Since there is no differentiation between the external and the internal

customers we simply haveWe
0( ~Q, ~R) =W0( ~Q, ~R). Then, we obtain

We
0( ~Q, ~R) =

∑

i∈I

λe
i0

Λe
0

E[Wi0(Qi ,Ri)] =
∑

i∈I

λe
i0

Λe
0

E[Bi0(Qi ,Ri)]
λi0

,
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which replaces constraint (3.2). In a way, this alternativemodel corresponds to weigh-

ing the individual aggregate mean response time values onlywith the rate of external

customers. The rest of this section is devoted to deriving the expected inventory levels

in (3.1) and backorder levels in (3.2) and (3.3).

In order to obtain the expected inventory levels and the backorder levels, we use a

method similar to the disaggregation method by Axsäter (2006), or so called the lead-

time demand method (Simchi-Levi and Zhao 2010). First, since the local warehouses

operate under base-stock policies, any demand arrival concurrently triggers an order

at the central warehouse, the demand at the central warehouse is the sum of Poisson

random variables and its distribution is also Poisson due tosuperpositioning. Further-

more, since the net inventory for parti at the central warehouse at timet + Ti0 is the

inventory position at timet minus the demand during lead timeTi0, the corresponding

inventory balance equation is given byI i0(t+Ti0)−Bi0(t+Ti0) = IPi0(t)−Yi0(t, t+Ti0).

Consequently, sinceIPi0 is uniformly distributed betweenRi +1 andRi +Qi (Axsäter

2006), the steady state distributions ofI i0 andBi0 are as follows:

P{I i0 (Qi ,Ri) = x} =



1
Qi

Ri+Qi∑
k=max(Ri+1,x)

P{Yi0 = k− x}, for 1 ≤ x ≤ Ri + Qi ,

1
Qi

Ri+Qi∑
k=Ri+1

P{Yi0 ≥ k}, for x = 0,
(3.4)

P{Bi0 (Qi ,Ri) = x} =



1
Qi

Ri+Qi∑
k=Ri+1

P{Yi0 = k+ x}, for x ≥ 1,

1
Qi

Ri+Qi∑
k=Ri+1

P{Yi0 ≤ k}, for x = 0,
(3.5)

whereYi0 has a Poisson distribution with meanλi0Ti0. Next, we evaluate the steady

state distributions of the inventory levels at local warehouses. Under a base-stock

policy, since every demand triggers an order, the inventoryposition, which is the sum

of the net inventory level and the number of outstanding orders, is always constant at

the base-stock level. Hence, the inventory position of parti at local warehousen at

time t is

IPin(t) = Sin = I in(t) − Bin(t) + Xin(t). (3.6)
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Furthermore, since for each parti, the number of outstanding orders at timet at ware-

housen is the number of backorders dedicated to warehousen at the central ware-

house att − Tin plus the demand during lead timeTin at warehousen, Xin(t) can be

expressed as

Xin(t) = B(n)
i0 (t − Tin) + Yin(t − Tin, t). (3.7)

Note thatB(n)
i0 (t,Qi ,Ri) can be obtained by conditioning onBi0(Qi ,Ri) as

P{B(n)
i0 (Qi ,Ri) = x} =

∞∑

y=x

P{B(n)
i0 (Qi ,Ri) = x|Bi0(Qi ,Ri) = y} · P{Bi0(Qi ,Ri) = y}, (3.8)

for x ≥ 0, whereB(n)
i0 |Bi0 is binomially distributed with parametersBi0 and λin

λi0
. In

this way, the number of backorders (at the central warehouse) emanating from each

local warehousen ∈ N is obtained by disaggregation the total number of backorders

at the central warehouse. This is known as the binomial disaggregation. It is exact for

two-echelon distribution systems with Poisson demand and retailers operating under

an (S − 1,S) policy (Axsäter 2006), which is the case for system. The binomial

disaggregation simplifies the derivations quite a lot. Similarly, by using (3.7), the

steady state distribution ofXin(Qi ,Ri) can be expressed in terms of the distribution of

B(n)
i0 (Qi ,Ri) as

P{Xin(Qi ,Ri) = x} =
x∑

y=0

P{Yin = y} · P{B(n)
i0 (Qi ,Ri) = x− y}, for x ≥ 0,

whereYin has a Poisson distribution with meanλinTin. As a result, from (3.6), the

steady state distribution ofI in (Qi ,Ri ,Sin) is

P {I in (Qi ,Ri ,Sin) = x} =



P{Xin(Qi ,Ri) = Sin − x}, for 1 ≤ x ≤ Sin,

1−
Sin∑
x=1

P{I in (Qi ,Ri ,Sin) = x}, for x = 0.

(3.9)
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Using the distributions of inventory levels in (3.4) and (3.9), the expected inventory

costs in the objective function (3.1) are derived. Finally,the expected backorder ex-

pressions in constraints (3.2) and (3.3) are

E[Bi0] = E[Yi0] − Ri −
(Qi + 1)

2
+ E[I i0], (3.10)

E[Bin] = E[Xin] − Sin + E[I in], (3.11)

which avoids solving a nested set of convolutions.

3.2 The branch-and-price algorithm

In this section, an exact solution procedure based on a branch-and-price algorithm is

proposed. Branch-and-price is a generalization of the branch and bound algorithm

with LP-relaxation. A column generation method is used to obtain a lower bound for

each subproblem (node) of the branch and bound tree. First, ahigh-level description

of the algorithm is provided, then in Sections 3.2.1-3.2.3,the basic procedures that

are used as building blocks of the algorithm are explained.

In the branch-and-price algorithm, at each node of the branch and bound tree, first,

by iterating a column generation algorithm we obtain the Lagrangian dual solution

of the corresponding node, then, by applying a greedy heuristic on the corresponding

Lagrangian dual solution, we find a feasible solution to the original problemP. The

former solution is used as a lower bound for the corresponding node, and the latter

one is used as a candidate for the global upper bound to tighten the bounding scheme

and expedite the procedure. Depending on these bounds, a node is either fathomed, or

further explored by branching. The procedure is repeated until all nodes are fathomed.

As a lower bound, we consider the Lagrangian dual solution for three reasons. (i) The

Lagrangian relaxation ofP makes it possible to decompose the multi-item problem

into multiple single-item problems. (ii ) The Lagrangian dual of our problem does not

have the integrality property, i.e., the Lagrangian relaxation of P does not necessarily

give an integer solution. As a direct consequence of that, the Lagrangian relaxation

has the potential to give a better lower bound than the one that LP-relaxation gives
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(Lübbecke and Desrosiers 2002). (iii ) It is known to be a tight lower bound for multi-

item two-echelon inventory problems with base-stock control policies (Wong et al.

2007b).

At each iteration of the algorithm, we select the node that provides the lowest aver-

age of lower and upper bounds to explore first, because of the superior performance

observed in the experiments. As for the branching decision,we consider variable di-

chotomy, which corresponds to imposing branching constraints on the original vari-

ables. That is, any fractionalQi or Ri or Sin whose remainder is closest to 1/2 is

selected for branching.

An overview of the branch-and-price algorithm is presentedin Figure 3.1. In Section

3.2.1, we introduce the column generation method. As discussed in Section 3.2.1, the

problemP decomposes by part after implementing the method. In Section 3.2.2, a

subroutine is proposed to solve each of these single-item two-echelon subproblems.

Finally, in Section 3.2.3, we obtain an upper bound forP.

3.2.1 Obtaining the Lagrangian dual bound for the problem: Column Genera-

tion Method

In this section, first, we introduce the column generation method, based on its imple-

mentation on the root node. The additional requirements to implement the algorithm

to non-root nodes will be discussed later.

The column generation method is an application of Dantzig-Wolfe decomposition

(Guignard 2003), which is widely used in the literature to solve both linear and non-

linear integer programming problems (Barnhart et al. 1998, Lübbecke and Desrosiers

2002). The method relies on an alternative formulation of the original problemP,

which is known as the master problem (Lübbecke and Desrosiers 2002). The master

problem simply corresponds to listing all set of feasible policies for each parti ∈ I

and then selecting exactly one of them. Since the column generation procedure works

with the principle of generating only the policies (or as thename suggests columns)

that improve the overall solution, it is not necessary to generate all set of columns,

instead, one can continue with a restricted set. The method is widely used for solving
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Figure 3.1: The Flowchart of the Branch-and-Price Algorithm.
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various integer programming problems (Lübbecke and Desrosiers 2002, Guignard

2003).

Before giving the details of the algorithm, we first introduceour notation. LetL

denote the set of columns, i.e., control policy parameters (Qi ,Ri , ~Si), for each parti,

andxil be a decision variable indicating whether columnl ∈ L is selected for parti or

not. The parameters of our model are defined as follows: LetCil = cihE[I i0(Ql
i ,R

l
i)] +

cih
∑

n∈N E[I in(Ql
i ,R

l
i ,S

l
in)] + λi0Ki

Ql
i

be the expected total inventory holding and fixed

ordering costs associated with columnl ∈ L for part i. Similarly let Ail0 =
E[Bi0(Ql

i ,R
l
i )]

Λ0

andAiln =
E[Bin(Ql

i ,R
l
i ,S

l
in)]

Λn
be the relevant terms for constraints (3.2) and (3.3) associated

with columnl ∈ L for part i for each warehousen ∈ N, respectively.

The master problem (MP) is formulated as follows:

ProblemMP:

Min Z =
∑

i∈I

∑

l∈L
Cil xil

s.t.
∑

i∈I

∑

l∈L
Ailn xil ≤Wmax

n , for ∀ n ∈ N ∪ {0}, (αn) (3.12)

∑

l∈L
xil = 1, for ∀ i ∈ I , (βi) (3.13)

xil = 0/1, for ∀ i ∈ I , ∀ l ∈ L.

The problem is known as the Master Problem (MP). It is a tighter formulation than

problemP, and corresponds to a special case of the set packing problem, which is

known to beNP-hard (Garey and Johnson 1979). The solution of theLP-relaxation

of problemMP (LPMP) provides a lower bound on the optimal objective function

value ofMP and hence on that ofP. This bound corresponds to the Lagrangian dual

bound obtained through the Lagrangian relaxation of the constraints of problemP

(Guignard 2003). In order to solve problemLPMP, we follow a column generation

method by generating only the columns that improve the objective function value

of LPMP at each iteration. This restricted version of the problem isknown as the

Restricted Master Problem (RMP). This step requires solving an integer program-

ming problem known as the column generation (CG) or pricing problem. In light

of these, lettingCi(Qi ,Ri , ~Si) = cihE[I i0(Qi ,Ri)] + cih
∑

n∈N E[I in(Qi ,Ri ,Sin)] + λi0Ki

Qi
,

52



Ai0 =
E[Bi0(Qi ,Ri )]

Λ0
, andAin =

E[Bin(Qi ,Ri ,Sin)]
Λn

for i ∈ I andn ∈ N, we introduce the column

generation (pricing) problem (CG) as

ProblemCG:

Min
∑
i∈I

(
Ci(Qi ,Ri , ~Si) −

∑
n∈N∪{0}

αnAin − βi

)

s.t.

Qi ≥ 1, Ri ≥ −1, ~Si ≥ ~0, and Qi , Ri , Sin ∈ Z, for ∀ i ∈ I , ∀ n ∈ N,

whereαn ≤ 0 for eachn ∈ N ∪ {0} andβi unrestricted in sign for eachi ∈ I are the

dual variables (or equivalently Lagrangian multipliers) of problemMP, which can be

obtained from the solution ofRMP. In this sense,CG is equivalent to the Lagrangian

relaxation of problemP (Barnhart et al. 1998). In an iterative procedure,CGprovides

the columns that are required for the solution ofLPMP, whereasLPMPprovides the

dual variables required for the solution ofCG.

Although the optimal decisions for different items are linked via constraints (3.2)

and (3.3) inP, after the Lagrangian relaxation, the corresponding decisions become

independent inCG, which is an unconstrained problem. Hence, the problemCG is

decomposable by parts, and we decompose it into|I | subproblems. Letθn =
−αn

Λn
for

eachn ∈ N ∪ {0} and~θ = [θ1, θ2, . . . , θ|N|], then the subproblem for parti ∈ I for a

given value of~θ is given as follows.

SPi(~θ):

Min G
(
Qi ,Ri , ~Si

)
= cih

E[I i0(Qi ,Ri)] +
∑

n∈N
E[I in(Qi ,Ri ,Sin)]

 +
λi0Ki

Qi

+ θ0E[Bi0(Qi ,Ri)] +
∑

n∈N
θnE[Bin(Qi ,Ri ,Sin)]

s.t. Qi ≥ 1, Ri ≥ −1, ~Si ≥ ~0, and Qi , Ri , Sin ∈ Z, for ∀ n ∈ N.

Let Z(~θ) and Zi(~θ) be the optimal objective function values for problemsCG and

SPi(~θ), respectively, thenZ(~θ) can be obtained usingZ(~θ) =
∑

i∈I
(
Zi(~θ) − βi

)
. Further,

if at least one of the subproblemsSPi(~θ) yields a negative optimal objective function

value, i.e.,Zi(~θ) < 0, then the combination of solutions of subproblems with negative

objectives is added to setL as a new promising column (solution). Otherwise, opti-

mality is achieved and we conclude that the optimal solutionof theLP relaxation of
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RMPbecomes optimal for theLP relaxation ofMP as well. Note that each time we

solveSPi(~θ), we generate a column for parti ∈ I , i.e., (Ql
i ,R

l
i ,
~Sl

i), that is required for

solvingMP.

The column generation algorithm converges to a solution, provided that a nondegener-

ate basic feasible solution exists for the master problem (Dantzig 1963). A nondegen-

erate basic feasible solution for the linear relaxation ofMP can be obtained by gener-

ating the initial columns that satisfy
∑
i∈I

Ai0nxi0 ≤ Wmax
n in the strict sense for eachn ∈

N. Hence, the corresponding basic feasible solution consists of the positive slack vari-

ables associated with
∑
i∈I

∑
l∈L

Ailn xil ≤Wmax
n for eachn ∈ N and the variablesxi0 = 1 for

eachi ∈ I . We generate the initial solution for the linear relaxationof MP as follows:

First, the order quantities are determined by using the EOQ model. Then, using these

order quantities, assuming that the target aggregate mean response time at each ware-

housen ∈ N, i.e.,Wmax
n , should be reached by each part individually, the initial values

for the remaining control parameters, i.e.,R0
i andS0

in for i ∈ I andn ∈ N, are ob-

tained. This corresponds to obtainingQ0
i , R0

i , andS0
in by using the following formulas

in the given order:Q0
i = ⌊EOQi⌋, R0

i = Min
{
Ri ∈ {−1,0,1, . . .} :

E[Bi0(Q0
i ,Ri )]

λi0
≤Wmax

0

}
,

S0
in = Min

{
Sin ∈ {0,1,2, . . .} :

E[Bin(Q0
i ,R

0
i ,Sin)]

λin
≤Wmax

n

}
.

Related with the non-root nodes, we have some additional considerations.

• Any column generated by a parent node is introduced also to a child node as

long as that column satisfies the branching constraint dedicated to the corre-

sponding child node.

• Although pricing problemCG is an unconstrained problem at the root node, it

will involve branching constraints at non-root nodes.

3.2.2 Solution Procedure for Subproblems: Single-item Two-echelon Batch Or-

dering Problem

To the best of our knowledge, there is no exact solution algorithm proposed for our

single-item two-echelon batch ordering problem,SPi(~θ), although there exist exact

procedures for different versions of the problem (Axsäter 1998, Cachon 2001, Moin-
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zadeh and Lee 1986). Therefore, we develop an algorithm to minimizeG(Qi ,Ri , ~Si)

in (3.14) based on the result that whenQi andRi are fixed it is easy to find the optimal

~Si, i.e., ~S∗i (Qi ,Ri). For this purpose, two nested loops are required; the outer loop

searches for the optimalQi, the inner loop searches for the optimalRi for a fixedQi

values, whereas an innermost subroutine optimizesSin for given values ofQi andRi.

In Section 3.2.2.1, we derive the optimality conditions forthe problem that is solved

by the innermost subroutine of this algorithm. In order to reduce the search space,

upper boundsQUB
i andRUB

i , and lower boundsQLB
i andRLB

i , are proposed for the

optimal values forQi andRi, respectively.

In the remainder of this subsection we develop these bounds based on the notions

of stochastic domination and supermodularity. The reader is referred to Ross (1996)

and Topkis (1998) for further details on stochastic ordering of random variables and

supermodularity, respectively.

Lemma 3.2.1 For any Q+i > Qi and R+i > Ri,

a) Bi0 (Qi ,Ri) �st Bi0

(
Qi ,R+i

)
,

b) Bi0 (Qi ,Ri) �st Bi0

(
Q+i ,Ri

)
,

c) B(n)
i0 (Qi ,Ri) �st B(n)

i0

(
Qi ,R+i

)
,

d) B(n)
i0 (Qi ,Ri) �st B(n)

i0

(
Q+i ,Ri

)
,

e) Xin (Qi ,Ri) �st Xin

(
Qi ,R+i

)
,

f) Xin (Qi ,Ri) �st Xin

(
Q+i ,Ri

)
,

where�st denotes stochastic dominance, and�st is defined similarly.

Proof. Proofs of part (a) and (b): By using (3.5), we obtainP{Bi0 (Qi ,Ri) ≤ x} =
1
Qi

Ri+Qi∑
k=Ri+1

P{Yi0 ≤ k+x}. This can be used to showP{Bi0 (Qi ,Ri) ≤ x} ≤ P{Bi0

(
Qi ,R+i

)
≤

x} andP{Bi0 (Qi ,Ri) ≤ x} ≤ P{Bi0

(
Q+i ,Ri

)
≤ x} for everyx ≥ 0.

Proofs of part (c) and (d): From (3.8), we have

P{B(n)
i0 (Qi ,Ri) = x} =

∞∑

y=x


y

x



(
λin

λi0

)x (
1− λin

λi0

)y−x

P(Bi0(Qi ,Ri) = y). (3.14)

From Lemma 3.2.1(a) we haveBi0(Qi ,Ri) �st Bi0(Qi ,R+i ). Then, B(n)
i0 (Qi ,Ri) �st
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B(n)
i0 (Qi ,R+i ) as well (see the proof of Lemma 2 (iii) in Moinzadeh and Lee 1986).

Part (d) is proved similarly.

Proofs of part (e) and (f): SinceXin (Qi ,Ri) = B(n)
i0 (Qi ,Ri) + Yin, (e) and (f) are direct

consequences of (c) and (d), respectively. �

Lemma 3.2.2 For any Q+i > Qi, R+i > Ri, S+in > Sin, the difference function∇
Sin

(Qi ,Ri)

= I in

(
Qi ,Ri ,S+in

)
− I in (Qi ,Ri ,Sin) satisfies

a) ∇
Sin

(Qi ,Ri) �st ∇
Sin

(
Qi ,R+i

)
,

b) ∇
Sin

(Qi ,Ri) �st ∇
Sin

(
Q+i ,Ri

)
.

Proof. Proof of part (a): SinceI in (Qi ,Ri ,Sin) = (Sin − Xin (Qi ,Ri))
+, we have

∇
Sin

(Qi ,Ri) =
(
S+in − Xin (Qi ,Ri)

)+ − (Sin − Xin (Qi ,Ri))
+ ,

where(·)+ = max(0, ·). Therefore, we have

∇
Sin

(Qi ,Ri) =



S+in − Sin, for Sin ≥ Xin (Qi ,Ri),

S+in − Xin (Qi ,Ri) , for Sin < Xin (Qi ,Ri) ≤ S+in,

0, for S+in < Xin (Qi ,Ri),

P{∇
Sin

(Qi ,Ri) = x} =



P{Xin (Qi ,Ri) ≥ S+in}, for x = 0,

P{Xin (Qi ,Ri) = S+in − x}, for 0 < x < S+in − Sin,

P{Xin (Qi ,Ri) ≤ S+in − x}, for x = S+in − Sin,

P{∇
Sin

(Qi ,Ri) ≤ x} =



P{Xin (Qi ,Ri) ≥ S+in}, for x = 0,

P{Xin (Qi ,Ri) ≥ S+in − x}, for 0 < x < S+in − Sin,

1, for x ≥ S+in − Sin.

(3.15)

Note that for anyx ≥ 0, due to Lemma 3.2.1(e), we have

P{Xin (Qi ,Ri) ≤ S+in − x− 1} ≤ P{Xin
(
Qi ,R

+
i

)
≤ S+in − x− 1},
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or equivalentlyP{Xin (Qi ,Ri) ≥ S+in − x} ≥ P{Xin

(
Qi ,R+i

)
≥ S+in − x}. Combining this

result and (3.15), we establishP{∇
Sin

(Qi ,Ri) ≤ x} ≥ P{∇
Sin

(
Qi ,R+i

)
≤ x} for anyx ≥ 0.

Proof of part (b): Similarly, by using Lemma 3.2.1(f) and (3.15), we establish

P{∇
Sin

(Qi ,Ri) ≤ x} ≥ P{∇
Sin

(
Q+i ,Ri

)
≤ x}. �

Corollary 3.2.3 For any Q+i > Qi, R+i > Ri and S+in > Sin,

a) E
[
I in

(
Qi ,Ri ,S+in

)]
− E [I in (Qi ,Ri ,Sin)] ≤ E

[
I in

(
Qi ,R+i ,S

+
in

)]

−E
[
I in

(
Qi ,R+i ,Sin

)]
, i.e., E

[
∇
Sin

(Qi ,Ri)
]
≤ E

[
∇
Sin

(
Qi ,R+i

)]
,

b) E
[
I in

(
Qi ,Ri ,S+in

)]
− E [I in (Qi ,Ri ,Sin)] ≤ E

[
I in

(
Q+i ,Ri ,S+in

)]

i.e.,−E
[
I in

(
Q+i ,Ri ,Sin

)]
,E

[
∇
Sin

(Qi ,Ri)
]
≤ E

[
∇
Sin

(
Q+i ,Ri

)]
.

Theorem 3.2.4G
(
Qi ,Ri , ~Si

)
is supermodular in

a) Ri and ~Si,

b) Qi and ~Si.

Proof. Proof of part (a): By definition, in order to show thatG
(
Qi ,Ri , ~Si

)
is super-

modular inRi and ~Si, we need to show that for a given value ofQi, G
(
Qi ,Ri , ~S+i

)
−

G
(
Qi ,Ri , ~Si

)
≤ G

(
Qi ,R+i , ~S

+
i

)
− G

(
Qi ,R+i , ~Si

)
holds for any~Si

+

> ~Si andR+i > Ri.

First, by using the results thatB(n)
i0 |Bi0 is binomially distributed with parametersBi0

and λin

λi0
, (3.7) and (3.11),E [Bin (Sin,Qi ,Ri)] or E [I in (Sin,Qi ,Ri)] can be expressed in

terms of the other via

E [Bin (Sin,Qi ,Ri)] =
λin

λi0
E [Bi0 (Qi ,Ri)] + λinTin − Sin

+ E [I in (Sin,Qi ,Ri)] (3.16)
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Then, substituting (3.16) into the objective function ofSPi(~θ), we obtain

G
(
Qi ,Ri , ~Si

)
= cih

E[I i0(Qi ,Ri)] +
∑

n∈N
E[I in(Qi ,Ri ,Sin)]



+
λi0Ki

Qi
+ θ0E[Bi0(Qi ,Ri)]

+
∑

n∈N
θn

(
λin

λi0
E [Bi0 (Qi ,Ri)] + λinTin − Sin + E [I in (Sin,Qi ,Ri)]

)

= cihE [I i0 (Qi ,Ri)] +
λi0Ki

Qi
+

θ0 +
∑

n∈N
θn
λin

λi0

 E [Bi0 (Qi ,Ri)]

+
∑

n∈N
(cih+ θn) E [I in (Qi ,Ri ,Sin)] +

∑

n∈N
θn (λinTin − Sin) . (3.17)

Using (3.17), showingG
(
Qi ,Ri , ~S+i

)
−G

(
Qi ,Ri , ~Si

)
≤ G

(
Qi ,R+i , ~S

+
i

)
−G

(
Qi ,R+i , ~Si

)

reduces to Corollary 3.2.3(a).

Proof of part (b): Similarly, using (3.17),G
(
Qi ,Ri , ~S+i

)
−G

(
Qi ,Ri , ~Si

)
≤ G

(
Q+i ,Ri , ~S+i

)

−G
(
Q+i ,Ri , ~Si

)
reduces to Corollary 3.2.3(b). �

Corollary 3.2.5 For a given value of Qi, the optimal Ri as Sin → ∞ for each n∈ N,

i.e., R∗i (Qi , lim
~Si→~∞

~Si) is a lower bound on the optimal Ri; the optimal Ri for Sin = 0 for

each n∈ N, i.e., R∗i (Qi , ~Si = ~0) is an upper bound on the optimal Ri.

In a similar way, we develop a lower bound on the optimalQi.

Proposition 3.2.6 For any R+i > Ri, Q∗i (Ri , lim
~Si→~∞

~Si) ≥ Q∗i (R
+
i , lim
~Si→~∞

~Si).

Proof. First, by using (3.16) in (3.14) we establish

G
(
Qi ,Ri , ~Si

)
= cihE[I i0(Qi ,Ri)] +

λi0Ki

Qi
+

θ0 − cih
∑

n∈N

λin

λi0

 E[Bi0(Qi ,Ri)]

+ cih
∑

n∈N
(Sin − λinTin) +

∑

n∈N
(cih+ θn) E[Bin(Qi ,Ri ,Sin)]. (3.18)

For any given value ofSin, cih
∑

n∈N
(Sin − λinTin) is a constant, so it can be excluded

from the optimization of (3.18) overQi. Furthermore, asSin → ∞ for eachn ∈ N,
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E[Bin(Qi ,Ri ,Sin)] = 0. Hence, minimizing (3.18) reduces to minimizingG (Qi ,Ri) =

cihE[I i0(Qi ,Ri)] +
λi0Ki

Qi
+

(
θ0 − cih

∑
n∈N

λin

λi0

)
E[Bi0(Qi ,Ri)]. Note that this function cor-

responds to the cost function for single echelon (Q,R) policy (see Federgruen and

Zheng 1992), for which we haveQ∗i (Ri) ≥ Q∗i (R
+
i ). �

Proposition 3.2.7 QLB
i = Q∗i ( lim

Ri→∞
Ri , lim
~Si→~∞

~Si) is a lower bound on the optimal Qi.

Proof. As a direct consequence of Theorem 3.2.4(b), for anyRi we haveQ∗i (Ri , lim
~Si→~∞

~Si)

≤ Q∗i (Ri , ~Si). Due to Proposition 3.2.6,Q∗i ( lim
Ri→∞

Ri , lim
~Si→~∞

~Si) ≤ Q∗i (Ri , lim
~Si→~∞

~Si). Hence,

Q∗i ( lim
Ri→∞

Ri , lim
~Si→~∞

~Si) ≤ Q∗i (Ri , ~Si) holds for anyRi and~Si. �

Finally, to obtain an upper bound on the optimalQi we utilize the upper bound on the

optimal order quantities in single echelon (Q,R) policies (Gallego 1998).

Proposition 3.2.8 QUB
i =

√
(2Kiλi0 + (cih+ pi) λi0Ti0) /Hi, where Hi =

cihpi

cih+pi
, and

pi = θ0 +
∑

n∈N θn
λin

λi0
, is an upper bound on the optimal Qi.

Proof. In order to show thatQUB
i is an upper bound on the optimalQi, it is sufficient

to show that for anyQi > QUB
i , ~Si andRi, G

(
Qi ,Ri , ~Si

)
> G

(
Q−i ,Ri , ~Si

)
holds, where

G
(
Qi ,Ri , ~Si

)
is given in (3.17) andQ−i < Qi. Let C (Qi ,Ri) = cihE [I i0 (Qi ,Ri)] +

λi0Ki

Qi
+

(
θ0 +

∑
n∈N
θn
λin

λi0

)
E [Bi0 (Qi ,Ri)]. Then,C (Qi ,Ri) corresponds to the cost function

in Gallego (1998) where it is shown thatQUB
i is an upper bound on the optimalQi for

C (Qi ,Ri). Furthermore, sinceC (Qi ,Ri) is unimodal with respect toQi (Federgruen

and Zheng 1992), for anyQi > QUB
i we haveC (Qi ,Ri) > C

(
Q−i ,Ri

)
. Finally, using

this result,E [I in (Qi ,Ri ,Sin)] ≥ E
[
I in

(
Q−i ,Ri ,Sin

)]
, and that

∑
n∈N
θn (λinTin − Sin) is

constant with respect toQi, we establishG
(
Qi ,Ri , ~Si

)
> G

(
Q−i ,Ri , ~Si

)
. �

3.2.2.1 Finding Optimal Solution for Subproblems for GivenValues of Reorder

Level and Order Quantity

For a given parti ∈ I , and given values ofQi andRi, SPi(~θ) reduces to|N| independent

subproblems, each of which is denoted byS Pin(θn,Qi ,Ri).
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Min cihE[I in(Qi ,Ri ,Sin)] + θnE[Bin(Qi ,Ri ,Sin)]

s.t. Sin ≥ 0, and∈ Z.

By using equation (3.11), the objective function inS Pin(θn,Qi ,Ri) can be restated as

G(Sin) = (cih+ θn)E[I in(Qi ,Ri ,Sin)] + θnE[Xin(Qi ,Ri)] − θnSin.

Proposition 3.2.9 G(Sin) is unimodal.

Proof. Let∆
x

and∆
x

2 be the first and second order difference equations with respect to

variablex, respectively. Then,∆
Sin

2G (Sin) ≥ 0, is a sufficient condition forG(Sin) to

be unimodal. First, from (3.9) we have

E[I in(Qi ,Ri ,Sin)] =
Sin−1∑

x=0

(Sin − x) · P{Xin(Qi ,Ri) = x}.

Using this result, next, we have

∆
Sin

G (Sin) = (cih+ θn)
Sin∑

x=0

P{Xin(Qi ,Ri) = x} − θn,

∆
Sin

2G (Sin) = (cih+ θn)P{Xin(Qi ,Ri) = Sin + 1},

which satisfies∆
Sin

2G (Sin) ≥ 0. �

Proposition 3.2.10 The optimal solution of S Pin(θn,Qi ,Ri) is

Min
Sin∈{0,1,2,...}

Sin :
Sin∑

x=0

P(Xin(Qi ,Ri) = x) ≥ θn

cih+ θn

 .

Proof. As a direct consequence of Proposition 3.2.9, the optimalSin is the smallest

integer that satisfies the first order condition, i.e.,∆
Sin

G(Sin) ≥ 0. �
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3.2.3 Generating Upper Bounds: Greedy Algorithm

We obtain an upper bound for each node of the branch and bound tree using a greedy

heuristic. The greedy algorithm is a simple search algorithm that can be used to

generate a feasible solution from an integer but infeasible(dual) solution. The method

is known to perform quite well in multi-item two-echelon inventory control problems

(Wong et al. 2005, 2006, 2007a, 2007b). The main idea of the greedy algorithm is as

follows: Starting with an infeasible solution, at each iteration, the algorithm iterates

to a solution that is as close to the feasible region as possible while incurring as

low additional cost as possible. This procedure is repeateduntil a feasible solution

is obtained. Since the initial dual solution may yield fractional variables, this may

require rounding fractional variables down to make sure that the new solution satisfies

constraints (3.2) and (3.3) before iterating the greedy algorithm.

Recall that~Q, ~R, and~S are vectors of order quantities, reorder levels, and base-stock

levels, respectively. Then, one can define the maximum constraint violation for given

values of~Q, ~R, and~S as

ω( ~Q, ~R, ~S) = max
n∈N∪{0}

{(
Wn( ~Q, ~R, ~S) −Wmax

n

)+}
.

Also, letZ( ~Q, ~R, ~S) be the value of objective function (3.1) for given values of~Q, ~R,

and ~S. Then, the neighborhood of (~Q, ~R, ~S), V( ~Q, ~R, ~S), is defined as the set of all

vectors [~Q, ~R, ~S]+ε, whereε is a vector in which exactly one of the entries is one and

the rest are zero. Then, the greedy algorithm searches for the solution (~Q′, ~R′, ~S′) ∈
V( ~Q, ~R, ~S) that yields the maximumr( ~Q′, ~R′, ~S′) = ω( ~Q′,~R′,~S′)−ω( ~Q,~R,~S)

Z( ~Q′,~R′,~S′)−Z( ~Q,~R,~S)
ratio. The greedy

algorithm converges finitely by nature.

In our study we use the optimal solution of the LP relaxation of the MP as a start-

ing dual solution for the greedy algorithm, and this often yields fractional solutions.

However, the greedy algorithm can only work with integer solutions. To fix this prob-

lem, we round down the fractional decision variables.

The greedy algorithm always finds a feasible solution in a finite number of steps.

Also, as shown in Section 3.2.1, the column generation algorithm guarantees conver-
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gence. These two show that the overall procedure guaranteesconvergence.

In this dissertation, we use the greedy algorithm for two more reasons: (1) To solve

the problemP heuristically by combining it with the column generation method intro-

duced, which we call the overall procedure as the Lagrangianheuristic, (2) To obtain

alternative heuristics forP by integrating it with the sequential heuristics. How it is

used in the development of the heuristics are to be discussedin Chapter 4.

3.3 Computational Results

To provide insight into the size of problems that can be solved by the exact algorithm,

we provide some computational results. We randomly generate a testbed based on the

available data obtained from the practical applications mentioned in Chapter 1. We

consider problems with 5-30 parts and 2-4 local warehouses.For each pair of these

parameters, 10 random instances are generated, where the demand rate, the fixed

ordering cost, the unit variable cost and the lead time are randomly generated, while

other parameters are not varied as shown in Table 3.2. The demand rates for each part

i is generated from a uniform distributionU[0.01,0.05]. Further, by multiplying this

random number with another uniform random number generatedfrom U[0.5,1.5],

we obtain part-specific location-dependent demand rates, i.e.,λin, for each parti and

warehousen ∈ N ∪ {0}. The algorithm is coded in C++ and the experiment is run

on an Intel 3 GHz processor with 3.5 GB RAM. The results of the experiment are

presented in Table 3.3. As can be seen in Table 3.2, the exact solution procedure

that we propose can be used in applications as long as the number of items and the

number of warehouses are limited: as the number of parts and especially the number

of warehouses increase, the solution requires significant computational effort. Hence,

one may need to apply heuristic approaches for the solution of larger problems.

3.4 Conclusion

In this chapter, we propose a branch-and-price algorithm tofind the relevant policy

parameters of a multi-item two-echelon inventory distribution system in which the
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Table 3.2: Parameter values for the testbed.

Parameters Values 
 inλ  (units/days) U[0.01, 0.05] X U[0.5, 1.5] 

 ic  ($/unit) U[1000, 5000] 

 iK  ($/order) U[50, 150] 

 inT  (days) U[0.5, 1.5] 
 h  (per year) 0.25 
 0iT  (days) 5 

 max
0W  (days) 1 

 max
nW  (days) 0.2 

 

Table 3.3: CPU times for different problem sizes.

Number of 
parts 

Number of 
local 

warehouses 

Average 
CPU time 

(sec) 
5 2 1.05 
10 2 15.59 
15 2 182.77 
20 2 208.43 
25 2 788.24 
30 2 6184.72 
5 3 2.02 
10 3 88.69 
15 3 773.84 
20 3 8175.12 
25 3 17859.96 
5 4 4.42 
10 4 362.66 
15 4 3298.28 
20 4 20392.54 
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central warehouse operates under a (Q,R) policy, and each local warehouse imple-

ments an (S-1,S) policy. The procedure involves a column generation algorithm to

find the Lagrangian dual bound and a greedy algorithm to convert this solution to a

feasible solution. Using the Lagrangian dual bound as a lower bound and the feasible

solution as an upper bound in the solution of each node of the branch-and-bound tree,

we develop the branch-and-price algorithm. We experimentally show that the branch-

and-price algorithm can be used in applications as long as the number of items and

the number of warehouses are limited. Even if this is the case, an exact solution is

desirable due to significant cost reductions and benchmark purposes. For the solu-

tion of large practical problems, one may need to apply heuristic approaches. For

this purpose, one can use the column generation method and the greedy algorithm as

building blocks and develop heuristics for the problem, which is the subject of the

next chapter.
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CHAPTER 4

HEURISTIC PROCEDURES

In this chapter, we propose four alternative heuristics to find the optimal or near-

optimal policy parameters of the multi-item two-echelon inventory distribution sys-

tem considered in Chapter 3. Our emphasize is on large industry-size problems. First,

we develop a Lagrangian heuristic employing the column generation method and the

greedy algorithm introduced in Chapter 3. We also consider three variants of this

heuristic, which are based on the sequential determinationof policy parameters, as

done frequently in practice. That is, first the order quantities are determined using

a batch size heuristic, then the reorder levels at the central warehouse and the base-

stock levels at the local warehouses are determined throughthe same method used

for the Lagrangian heuristic. As opposed to the heuristics for multi-echelon inven-

tory optimization problems in the literature, our heuristics guarantee feasibility. In an

extensive computational study, we test the performances ofthe heuristics. Since the

exact solution is intractable for practical size problems,we consider the Lagrangian

dual bound that we develop in Section 3.2.1 as a benchmark solution in the exper-

iments. Therefore, we also investigate performance of the Lagrangian dual bound

both theoretically and empirically. We show that this boundis asymptotically tight in

the number of parts.

First, the Lagrangian heuristic and the sequential heuristics are introduced in Sections

4.1 and 4.2, respectively. Then, we study the asymptotic analysis of the Lagrangian

dual bound in Section 4.3. In Section 4.4, we present and discuss the results of the

computational study through which we evaluate the performance of the heuristics and

the Lagrangian dual bound. Finally, in Section 4.5 we draw the conclusions.
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4.1 Lagrangian Heuristic

“Lagrangian heuristic” is a generic name given to heuristics that first employ a La-

grangian relaxation to find a good -but often infeasible- relaxed solution, and then

an algorithm to transform this relaxed solution into a feasible solution (Guignard

2003). In our dissertation, the Lagrangian heuristic simply corresponds to the en-

tire procedure in which the column generation and the greedyalgorithms introduced

in Chapter 3 are integrated. By using the column generation algorithm in Section

3.2.1, we obtain the Lagrangian dual solution for problemP. Since this solution is

quite often infeasible, we use the greedy algorithm in Section 3.2.3 to convert this

solution to a feasible solution. In this way, we obtain the Lagrangian heuristic. Note

that this solution procedure corresponds to the upper bounding procedure used in the

branch-and-price algorithm. Therefore, the solution itself corresponds to the upper

bound obtained for the root node of the branch-and-price algorithm for the problem.

Similarly, the Lagrangian dual bound corresponds to the lower bound obtained for

the root node of the branch-and-price algorithm for the problem. This explains the

basic relationship between our branch-and-price algorithm, Lagrangian heuristic and

Lagrangian dual bound. Note that since the Lagrangian heuristic is based on deter-

mining the order quantities and the reorder levels simultaneously, it is a simultaneous

approach heuristic. An overview of the Lagrangian heuristic is given in Figure 4.1.

4.2 Sequential Heuristics

Similar to the Lagrangian heuristic, the sequential heuristics rely on the integration

of the column generation and the greedy algorithm. However,in contrast to the La-

grangian heuristic, the order quantities at the central warehouse are determined of-

fline. The sequential heuristics iterate as follows: First,the order quantities are deter-

mined through a batch size heuristic. Then, given the order quantities, the remaining

policy parameters, i.e., the reorder levels at the central warehouse and the base-stock

levels at the local warehouses, are determined by using the entire procedure devel-

oped for the Lagrangian heuristic. This results in changes in the overall procedure:

In the column generation algorithm in Section 3.2.1,Qi is discarded from problem
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Generate initial 
columns for each 

part Ii ∈  

( )θiSP  yields a 

nonnegative objective 
function value for 

each Ii ∈ ? 

Add the new columns 
and solve MP  to 

determine the dual prices  

nα  ( )nθ  and iβ  

Round down the solution 
obtained by the column 

generation algorithm 

Apply greedy algorithm 
to find an integer 
feasible solution 

Yes 

No 

Solve ( )θiSP  to 

generate a new column 
for each part Ii ∈  

 

Figure 4.1: The Flowchart of the Lagrangian Heuristic.
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SPi(~θ) for eachi ∈ I , hence the outer loop of the algorithm proposed to solveSPi(~θ)

is eliminated. This also brings a computational advantage to the sequential heuristics

over the Lagrangian heuristic. An overview of the sequential heuristics is given in

Figure 4.2.

To implement the sequential approach, we consider three alternatives for setting the

order quantities:

• the EOQ formula, i.e.,Qi =

√
2λi0Ki

cih
,

• the EOQ with planned backorders (EOQB) formula, i.e.,Qi =

√
2λi0Ki (cih+pi )

(cih)pi

(Zheng 1992, Gallego 1998), wherepi is the shortage cost defined per unit short

of part i ∈ I per unit time and obtained as it is described in Proposition 3.2.8 in

Section 3.2.2,

• an alternative batch size heuristicQLU based on the lower and upper bounds,

QLB
i and QUB

i , that we obtain for the single-item two-echelon batch order-

ing problemSPi(~θ) in Propositions 3.2.7 and 3.2.8, respectively in Section

3.2.2. The heuristic is similar to the batch size heuristic proposed by Gallego

(1998) for the single-echelon (Q,R) model. However, when Gallego’s batch

size heuristic is directly used in our model, i.e.,Qi = min
(√

2QLB
i ,

√
QLB

i · QUB
i

)
,

the optimal order quantities are overestimated. Hence, we adopt it in our model

by using the harmonic mean ofQLB
i andQUB

i instead of using a geometric mean,

which is less than or equal to the latter. In this way, we achieve better results.

Accordingly, the order quantities are found fromQi = min
(√

2QLB
i ,

2QLB
i QUB

i

QLB
i +QUB

i

)
.

In this manner, we obtain three alternative sequential heuristics, S1, S2 andS3, re-

spectively.

The batch size heuristics differ depending on how the service level requirements are

taken into account in determining the order quantities. InS1, the order quantities are

determined independent of the service level requirements.This is the case in many

practical applications, e.g., the manufacturers considered in our work determine the

order quantities using the EOQ. However,S2 and S3 incorporate the service level

requirements by means of a part-specific shortage cost,pi, for each parti ∈ I . In
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Figure 4.2: The Flowchart of the Sequential Heuristics.
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order to obtain each part-speci�c shortage cost, pi, �rst, we apply the entire procedure
in Figure 4.2 by using the EOQ, and then under the solution obtained, we compute
the probability of no stockouts, γi, for each part i ∈ I. Then, by substituting γi in
the newsboy ratio γi =

pi
cih+pi

, we determine pi. Finally, the entire procedure iterates
once more to obtain the solution of the corresponding sequential heuristic. Therefore,
while the corresponding procedure iterates once in S 1, it iterates twice in S 2 and S 3;
�rst to �nd the part part-speci�c shortage costs, second to obtain the overall solution.
Since the greedy algorithm converges �nitely and the column generation algorithm is
guaranteed to converge to a solution, all our heuristics guarantee convergence. The
heuristics proposed in this chapter are summarized in Table 4.1.

Table 4.1: Heuristics proposed.

 
Solution Approach Heuristics 

Simultaneous Approach 
• All the control parameters are 
determined simultaneously. 
 

• The order quantities and reorder points at the 
central warehouse, basestock levels at local 
warehouses are obtained by using the column 
generation and the greedy algorithms. 

Sequential Approach 
• Order quantities are predetermined 

by using a batch size heuristic.  
o EOQ 
o EOQB 
o QLU 

•  Given order quantities, reorder points at the 
central warehouse, and basestock levels at 
local warehouses are obtained by using the 
column generation and the greedy algorithms. 

o S1 (uses EOQ) 
o S2

 (uses EOQB) 
o S3

 (uses QLU) 
 

4.3 Asymptotic analysis of the Lagrangian dual bound

In this chapter, we use the Lagrangian dual bound to test the performance of the
heuristics for practical size problems. Before that, we �rst analyze the performance
of the Lagrangian dual bound. In this section, we study the asymptotic behaviour
of the Lagrangian dual bound for our problem and show that the Lagrangian dual
bound is asymptotically tight in the number of parts. The analysis relies on the prob-
abilistic analysis of combinatorial problems (Kellerer et al. 2004). Accordingly, we
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assume that for eachi ∈ I andn ∈ N ∪ {0}, ci, Ki, λin andWmax
n are independent and

identically distributed random variables drawn from a uniform distributionU[c, c],

U[K,K], U[λ, λ] and U[W,W], respectively. We further assume thatc,W > 0 and

K, c, λ < ∞, implying that

• the fixed ordering cost is strictly finite for each parti ∈ I , i.e.,Ki < ∞,

• the unit holding cost is strictly positive and finite for eachpart i ∈ I , i.e., 0<

cih < ∞,

• the target aggregate mean response time at each warehousen ∈ N∪{0} is strictly

positive, i.e.,Wmax
n > 0,

• the average lead time demand for each parti ∈ I at each warehousen ∈ N∪ {0}
is finite, i.e.,λinTin < ∞.

Note that these four assumptions are practically nonrestrictive, but necessary for our

model to be stable and the problems to have finite solutions.

Through Theorem 4.3.2, we first show that the optimal objective function value of

MP, zMP, increases at least linearly with the number of parts. Then,in Theorem 4.3.5,

we show that the gap between the optimal objective function value ofMP, zMP, and

its LP-relaxation,zLPMP, grows only with an order of the number of local ware-

houses, meaning that this gap is independent of the number ofparts. Finally, in

Theorem 4.3.6, we combine the results of Theorem 4.3.2 and 4.3.5 and show that

for a given number of local warehouses, as the number of partsincreases the relative

gap betweenzMP andzLPMP with respect tozMP approaches to zero since the abso-

lute gap betweenzMP andzLPMP grows faster thanzMP. Hence, this shows that the

Lagrangian dual bound for problemP is asymptotically tight in the number of parts.

Under the assumptions given above, we show that the following propositions hold for

every realization of random parametersci, Ki, λin andWmax
n for eachi ∈ I and each

n ∈ N.

The following lemma shows that for any parti ∈ I , the cost associated with each

column generated through the column generation algorithm is bounded below by the

optimal objective function value of the EOQ model with unit backorder cost ofθ0,
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i.e.,zEOQ(θ0)
i =

√
2Ki λi0 cih θ0

cih+θ0
(Gallego 1998).

Lemma 4.3.1 For a given value ofθ0, Cil ≥ zEOQ(θ0)
i for each i∈ I and l ∈ L.

Proof. In problemSPi(~θ) let θn = 0 for all n ∈ N, meaning that no penalty cost is

incurred due to backorders at each local warehousen ∈ N. This yields an optimal

solution in whichSin = 0 for eachi ∈ I andn ∈ N and the optimal expected inventory

holding and backorder cost at each local warehouse is zero. In this situation, the sub-

problemSPi(~θ) is reduced to a single-echelon batch ordering problem withexpected

cost functioncihE[I i0(Qi ,Ri)] + θ0E[Bi0(Qi ,Ri)] +
λi0Ki

Qi
(Zheng 1992, Gallego 1998).

Note that for a given value ofθ0, the solution of this single-echelon batch ordering

problem is a lower bound to the optimal objective function value of SPi(~θ). Further-

more, it is known that the optimal objective function value of the EOQ model with

backorders, i.e.,zEOQ(θ0)
i , is a lower bound to the solution of the single-echelon batch

ordering problem whose cost function is given above (Gallego 1998). Combining

these two arguments we establishCil ≥ zEOQ(θ0)
i for eachi ∈ I andl ∈ L. �

Theorem 4.3.2 The optimal objective function value of MP, zMP, is in Ω(|I |), i.e.,

zMP is asymptotically bounded below by a function in the order of|I | with probability

1.

Proof. Using the result of Lemma 4.3.1 in constraint (3.13), we have
∑
l∈L

Cil xil ≥

zEOQ(θ0)
i for eachi ∈ I . Then, by summing up these expressions over alli ∈ I , we

obtain
∑
i∈I

∑
l∈L

Cil xil ≥
∑
i∈I

zEOQ(θ0)
i . Let Cave be the average ofzEOQ(θ0)

i over all i ∈ I ,

hence, defined asCave(I ) = 1
|I |

∑
i∈I zEOQ(θ0)

i , then, we simply have
∑
i∈I

∑
l∈L

Cil xil ≥ |I | ·
Cave(I ). Since this holds for all feasible solutions for problemMP, we also have

zMP ≥ |I | ·Cave(I ). Furthermore, since we define eachci, Ki, λi0, θ0 as an independent

and identically distributed random variable,zEOQ(θ0)
i is an independent and identically

distributed random variable for eachi ∈ I as well. From the convergence of random

variables,Cave(I ) converges to a constant with probability 1 as|I | goes to infinity. This

suffices to show thatzMP is asymptotically bounded below by a function in the order

of |I | with probability 1. �
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Lemma 4.3.3 z

a) The column generation method yields finite solutions (columns).

b) The total cost associated with each column generated by the column generation

method is finite and increases only with the order of|N|.

Proof. Proof of part (a): The proof is rather intuitive. SinceKi < ∞, cih > 0,

Wmax
n > 0 andλinTin < ∞, SPi(~θ) is guaranteed to yield finite solutions, e.g., for each

n ∈ N∪{0}, Wmax
n > 0 impliesθn < ∞ sinceθn has correspondence withWmax

n through

αn, the dual price for the relevant constraint (3.12), and thisis necessary to have finite

Ri andSin. Hence, our column generation method yields finite columns.

Proof of part (b): Provided that the objective function parameters inSPi(~θ) are finite,

e.g.,Ki < ∞, cih < ∞, Wmax
n > 0, i.e.,θn < ∞, the optimal objective function value

of SPi(~θ) is finite. Hence, the total cost associated with each columngenerated by the

column generation method is finite. The proof of the second part relies on that due

to the decomposition of problemCG into parts, the size of each subproblemSPi(~θ)

grows only with the order of|N|. �

Lemma 4.3.4 The optimal solution of LPMP contains at most|N| + 1 non-integer

variables.

Proof. The proof is based on an alternative formulation of problemMP obtained by

substituting the equality constraints (3.13) in (3.12): Arbitrarily, we selectxi1 and

then substitutexi1 = 1 −
∑
l∈L′

xil in (3.12) for eachi ∈ I , whereL′ = L − {1}. In this

way, we establish the alternative formulationAP.

ProblemAP:

Min Z =
∑

i∈I

∑

l∈L′
Cil xil

s.t.
∑

i∈I

∑

l∈L′
(Ailn − Ai1n)xil ≤Wmax

n − Ai1n, for ∀ n ∈ N ∪ {0},

xil = 0/1, for ∀ i ∈ I , ∀ l ∈ L′,

Note that in the optimal solution of theLP-relaxation ofAP(LPAP), there exist|N|+1

basic variables. Furthermore, a variable has a fractional value only if it is a basic
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variable. Hence, the optimal solution ofLPAPcontains at most|N|+1 variables with

fractional values. Finally, sinceAP is exactly the same problem asMP, this result

also holds forLPMP. �

Theorem 4.3.5 The gap between the optimal objective function value of MP, zMP,

and its LP-relaxation, zLPMP, is in O(|N|2), meaning that the gap is asymptotically

bounded above by a function of|N|2.

Proof. Our proof consists of two parts. In the first part, we introduce a repair algo-

rithm to generate an integer feasible solution toMP by adjusting only the fractional

variables in the solution ofLPMP. Then in the second part, by using the repair

algorithm, we show that the gap between the expected cost obtained by the repair

algorithm and the Lagrangian dual solution is asymptotically bounded above by a

function of |N|2.

The repair algorithm relies on the following observation: For each parti ∈ I , the

LPMP yields a solution that is a convex combination of columns generated by the

column generation algorithm. Accordingly, the solution for each parti ∈ I corre-

sponds to either

• an integer solution corresponding to one of the columns generated by the algo-

rithm (pure policy), i.e., one of the variablesxil in constraint (3.13) is 1 while

the others are 0, or,

• a fractional solution that is a mixture of a set of columns generated by the

algorithm (randomized policy), i.e., a set of variablesxil in constraint (3.13)

have fractional values summing to 1 while others are 0.

Based on these observations, the following repair algorithmgenerates an integer so-

lution for each parti ∈ I whose solution is fractional so that the overall solution still

remains feasible.
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The Repair Algorithm:

1. For each parti ∈ I having an integer solution, do nothing.

2. For each parti ∈ I having a fractional solution, generate a new solution by tak-

ing the maximum value of the policy parameters defined by the columns that

constitute the fractional solution, and replace the corresponding fractional so-

lution with this new one. To be more specific, letm ∈ I be any of those parts

whose solution is fractional and (Qm,Rm, ~Sm) be the corresponding fractional

solution. Then, we replace the fractional solution (Qm,Rm, ~Sm) with the solu-

tion (Q̃m, R̃m,
~̃Sm) =

(
max
k∈Γm

{
Qk

m

}
,max

k∈Γm

{
Rk

m

}
,max

k∈Γm

{
~Sk

m

})
, whereΓm is the set of

(integer) columns that constitutes (Qm,Rm, ~Sm).

The entire solution is feasible forMP, because (1) for each parti ∈ I , the solution

generated by the repair algorithm satisfies integrality, (2) for each parti ∈ I , the

new solution yields lowerE[Bi0(Qi ,Ri)] and E[Bin(Qi ,Ri ,Sin)] values for alln ∈ N

than the fractional solution yields. Therefore, just like the former columns, the new

solutions are guaranteed to satisfy the constraints (3.12).

After introducing the repair algorithm and our notation, now we begin our proof:

First, it is a direct consequence of Lemma 4.3.3 that the additional cost incurred by

switching from (Qm,Rm, ~Sm) to (Q̃m, R̃m,
~̃Sm) is finite and bounded above by an order

of N. Hence, for any parti ∈ I , the solution obtained through the repair algorithm has

an additional cost bounded above by a finite value in the orderof |N|. Furthermore, it

follows from Lemma 4.3.3 that we need to reassign at most|N|+1 fractional variables

to obtain a feasible integer solution forMP by using the solution ofLPMP. Let the

objective function value of this integer feasible solutionbezH. Then, by combining

the arguments above, we establish thatzH − zLP is asymptotically bounded above by

a function of|N|2. SincezH is an upper bound onzMP, the result also holds forzMP.

Hence,zMP−zLP is in O(|N|2). This also proves thatzH −zLP grows only with an order

of |N|. �

Theorem 4.3.6 For a given number of local warehouses|N|, the Lagrangian dual

bound for problem P is asymptotically tight in the number of parts |I | with probability

1.
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Proof. It follows from Theorem 4.3.2 and Theorem 4.3.5 that for any given value of

|N|, lim
|I |→∞

zMP−zLPMP

zMP → 0 with probability 1. SinceP andMP are identical problems,

we havezP = zMP. Also, since the solution ofLPMP gives the Lagrangian dual

solution ofP, zLD, we obtainzLD = zLPMP. Hence, for any given value of|N|, we have

lim
|I |→∞

zP−zLD

zP → 0 with probability 1. This shows thatzLD is asymptotically tight in the

number of parts (Anily and Federgruen, 1990). �

Theorem 4.3.6 shows that the Lagrangian dual bound can be used as a benchmark

solution for problemP with large number of parts. Since the size of the problems

in practice grows especially with the number of parts (compared to the number of

local warehouses), this also shows that the corresponding bound can be used as a

benchmark solution for practical problems.

4.4 Computational Study

In this section, we conduct an extensive computational study to further explore the

performances of the heuristics and the Lagrangian dual bound developed Section

3.2.1. First, the performance of the Lagrangian dual bound is tested against the

optimal solution for small-size problems to see how reasonable it is to employ the

Lagrangian dual bound as a benchmark solution. Then, the performances of the

heuristics, i.e.,S1, S2, S3 and the Lagrangian heuristic are evaluated relative to the

Lagrangian dual bound for larger problems, where this boundyields better results. In

our analysis, the expected total cost corresponding to eachsolution is considered as

the performance criterion. The performance of the Lagrangian dual bound is mainly

evaluated in terms of the percentage dual gap with the optimal expected total cost,

PGAP. However, we also consider the absolute dual gap,GAP. Similarly, the perfor-

mances of the heuristics are mainly evaluated in terms of thepercentage cost differ-

ence between the solution obtained by the heuristic and the Lagrangian dual bound,

PCD, but we also consider the absolute cost difference between the solution and the

bound,ACD. Letz∗ be the optimal objective function value,zLD be the objective func-

tion value of the Lagrangian dual solution, andzbe the objective function value of any

solution to be tested, then theGAPand thePGAPare computed asGAP= |zLD − z∗|
andPGAP= |zLD−z∗ |

z∗ , whereas thePCDand theACDare calculated asACD= |z−zLD|
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andPCD= |z−zLD |
zLD

.

4.4.1 Experimental Design

We consider the following six system parameters as the experimental factors: (i)

number of parts,|I |, (ii) number of local warehouses,|N|, (iii) demand rates,λin,

(iv) unit variable costs,ci, (v) fixed ordering costs,Ki, and (vi) target aggregate mean

response times at the warehouses,Wmax
n . Since lead time,Tin, contributes to the model

in the form of lead time demand,λinTin, we do not consider it as a distinct factor.

This also means that we do not distinguish the effect of demand rate from that of

lead time demand. Using these factors, we conduct a full factorial experiment to

investigate the overall performance of the heuristics and the Lagrangian dual bound

and perform an analysis of variance (ANOVA) to investigate (i) the individual effect

of each factor on the performance of the heuristics and the Lagrangian dual bound

and (ii) the interactions between factors.

To generate the problem instances, we first generate a base case setting. Then, based

on this base case setting, we build the testbeds for the experiments. For the base case

setting, the following parameters are set identical; lead time at the central warehouse,

Ti0, across all parts, the target aggregate mean response timesat the warehouses,

Wmax
n , across all warehouses, the lead times at the local warehouses,Tin, across all

parts and local warehouses. We assume that the unit variablecosts,ci, and the fixed

ordering costs,Ki, are nonidentical across all parts, the demand rates,λin, are non-

identical across all parts and warehouses. The fixed ordering cost of each part is

generated from a uniform distribution. To represent skewnesses of the demand rates

and the unit variable costs across the population of parts, we follow an approach sim-

ilar to the one described in Thonemann et al. (2002). Following this approach, the

demand rates are generated through a two-step procedure: First, a part-specific av-

erage demand rate is generated randomly for each part, then by multiplying it with

a second random number representing the demand intensity ateach warehouse part-

specific and location-dependent rates are obtained, whereas the unit variable costs are

generated in one step since they are only part-specific. To obtain the part-specific

average demand rate for any parti ∈ I , sayνi, we first randomly generate a contin-
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uous number,ud ∼ U[0,1], representing the percentile of parti ∈ I with respect to

demand. Next, we obtainνi from νi(λ) = λ
ρd

ud

1−ρd
ρd , whereρd is the demand skewness

parameter, andλ is the average demand rate of all parts. Similarly, the unit variable

cost,ci, for any parti ∈ I is generated fromci(c) = c
ρc

uc

1−ρc
ρc , whereρc is the cost

skewness parameter,c is the average unit variable cost of parts, anduc ∼ U[0,1] is

the percentile of parti ∈ I with respect to unit variable costs. In this way, we obtain

the part-specific average demand rate,νi, and the unit variable cost,ci, for each part

i ∈ I . Finally, by multiplyingνi with a second random number generated for each lo-

cation fromU[0,2], we obtain the part-specific location-dependent demand rate,λin,

at each warehousen ∈ N. To obtain the part-specific location-dependent demand rate

λi0 for each parti ∈ I at the central warehouse, we first generate the corresponding

external demand rate,λe
i0, the same way we generateλin. After obtainingλe

i0 andλin

for all n ∈ N, λi0 is obtained fromλi0 = λ
e
i0 +

∑
n∈N λin. For any given part, this en-

sures the differences in the demand rates among warehouses. However, the demand

of each part relative to that of the others remains identicalat each warehouse. Note

that this corresponds to a practical situation where each warehouse serves a market

with a similar demand structure. We refer to this case as the symmetric demand case.

However, in different geographical regions or markets, the demand of spare parts rel-

ative to each other may differ. In order to represent the demand asymmetry across

warehouses, the second multiplier is generated fromU[0,2] for each parti ∈ I and

each warehousen ∈ N ∪ {0}. We call this second case the asymmetric demand case.

Based on the data available for the spare parts systems considered in our work, the

demand rate (unit variable cost) skewness is approximated as 20%/80% (20%/90%),

i.e.,ρd = 0.139 (ρc = 0.097), meaning that 20% of the parts represent approximately

80% (90%) of the total demand rate (cost) of parts. Table 4.2 summarizes the base

setting used.

For the full factorial analysis, we consider 3 levels of the average demand rates, av-

erage unit variable costs, average fixed ordering costs and target aggregate mean re-

sponse times. To generate the problem instances for the experiments, we first generate

the base case setting, then we multiply the value of each parameter in the base case

setting by the multiplier associated with each level in Table 4.3. Furthermore, to avoid

explosion of the number of problem instances, we consider 2 levels of the number of
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parts and the number of local warehouses. For the �rst set of experiments, we con-
sider small-size problems; the number of parts is set to 4 and 8, and the number of
local warehouses is set to 2 and 4. In the second set of experiments, in which we
experiment with larger problems, the number of parts is set to 100 and 500, and the
number of local warehouses is set to 4 and 9.

Table 4.2: Base case setting for the experiments.

Parameters Values 
 inλ  (units/days) 015.0=λ  

 ic  ($/unit) c =3000 

 iK  ($/order) U[50, 100] 

 max
0W  (days) 0.3 

 max
nW  (days) 0.3 

 h  (per year) 0.25 
 0iT  (days) 10 

 inT  (days) 1 

 

Table 4.3: Multipliers for the average demand rates, average unit variable cost of
parts, average �xed ordering costs and target aggregate mean response times..

Parameters Number of Levels Level Multipliers 

inλ  3 1/3, 1, 10/3 

ic  3 1/3, 1, 10/3 

iK  3 1/3, 1, 10/3 
max

nW  3 1/3, 1, 3 
 

Based on these, 20 random problem instances are generated for each of the 243 (34 ×
22) different settings, resulting in a total of 6480 problem instances for each set of
experiments.
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In addition to the full factorial analysis, we also carry outsensitivity analysis to pre-

cisely observe the effect of each factor on the performance of the heuristics and the

Lagrangian dual bound. The problem instances for the sensitivity analysis are gen-

erated by using the base case setting in Table 4.2 in a similarway that the testbeds

for the factorial analysis are generated. The results that we present here are based on

those of the experiments with problem instances with symmetric demand structure.

We also experiment with problem instances with asymmetric demand structure. We

report the results of the latter only when there is an inconsistency between these two

settings. In our experiments, we consider the cases in which(1) only external cus-

tomers, (2) both type of customers are incorporated in evaluating the performance of

the central warehouse. The experiments do not reveal any significant difference be-

tween the results of the two cases (in the symmetric demand case both models are the

same). Therefore we only present the results for the former case, which is more com-

mon. In all experiments, the inventory carrying charge is taken as 25% annual. The

algorithms are coded in C++ and the experiments are run on an Intel 3 GHz processor

with 3.5 GB RAM. In the remainder of this section the results ofthe experiments are

presented and discussed.

4.4.2 Performance of the Lagrangian Dual Bound

A summary of the results regarding the factorial experimentto test the performance

of the Lagrangian dual bound is given in Table 4.4. The main findings are as follows:

• As depicted in Table 4.4, both the average and the maximumPGAPare high,

however, both improve when the number of parts is larger.

• Table 4.4 also indicates that the results are sensitive to the factors considered.

According to the ANOVA results, all the parameters are foundto be significant

at 0.05 significance level. The results also show that the parameters highly

interact. The most significant interaction effects are the interactions between

the number of parts and the average demand rate, the number ofparts and target

aggregate mean response time and the average demand rate andtarget aggregate

mean response time, each having a p-value of 0.000.
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The effect of the number of parts on the performance of the Lagrangian dual bound

deserves further attention since it is used as a benchmark solution in the second part

of experiments, in which we experiment with larger number ofparts. Therefore, we

carry out a sensitivity analysis to observe the effect of number of parts more deeply.

We examine 9 cases with|I | = 10, 15, 20, 25, 30, 35, 40, 45, 50, in each of which|N| =
2. For each case, we generate 5 random problem instances using the base case setting

in Table 4.2. Figure 4.3 shows the results of the sensitivityanalysis. Each point in

the figure represents the average ofPGAPs for 5 problem instances. As shown in this

figure, the performance of the Lagrangian dual bound improves with the number of

parts. Note that this result is consistent with Theorem 4.3.6, in which the Lagrangian

dual bound is shown to be asymptotically tight in the number of parts. This result

together with Theorem 4.3.6 suggests that the Lagrangian dual bound can confidently

be used as a benchmark solution in the experiments with larger problems, which will

be the case in the remaining of this chapter. Considering the difficulties encountered

in evaluating the performance of heuristics for large industry-size multi-item two-

echelon inventory systems in the literature (Çağlar et al. 2004, Al-Rifai and Rossetti

2007), this finding makes a significant contribution to the relevant literature.

4.4.3 Performance of the Lagrangian Heuristic

The results of the experiments are summarized in Table 4.5. Based on the results, we

make the following observations:

• As shown in Table 4.5, the performance of the Lagrangian heuristic is quite

satisfactory. The averagePCD obtained by the Lagrangian heuristic is less

than 1%. This result is even better for problem instances with large number of

parts. When the number of parts is 500, thePCD obtained by the Lagrangian

heuristic is less than 1% for all of the 3240 problem instances studied.

• The ANOVA results reveal that the main effects of all the parameters except

the number of local warehouses are significant at 0.05 significance level, each

having a p-value of 0.000. On the other hand, the effect of the number of local

warehouses on the performance of the Lagrangian heuristic is insignificant in

terms of thePCD, but significant in terms of theACD. The most significant
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Table 4.4: Effect of the parameters on the performance of the Lagrangian dual bound.

GAP PGAP 
Parameters 

Avg. Max. Avg. Max. 

All instances   524.6 26662.5 3.84% 53.87% 

4 556.5 26662.5 4.48% 53.87% 
Number of Parts 

8 492.7 13918.0 3.21% 32.20% 

2 456.1 19033.5 4.06% 53.87% Number of LWHs 
4 592.2 26662.5 3.63% 46.16% 

0.005 517.6 19033.5 5.17% 53.87% 

0.015 472.3 13918.0 3.42% 31.68% 
Average Demand Rate 

(units/day) 
0.05 610.1 26662.5 2.37% 21.17% 

1000 106.4 1907.4 2.73% 27.59% 

3000 305.3 10331.5 3.76% 39.39% 
Average Unit Cost 

($/unit) 
10000 1147.8 26662.5 5.02% 53.87% 

25 521.5 19021.2 5.07% 53.87% 

75 569.0 24202.5 3.86% 40.88% 
Average Fixed Ordering 

Cost  ($/order) 
250 486.5 26662.5 2.71% 27.59% 

0.1 509.4 10919.8 2.82% 22.24% 

0.3 839.6 26662.5 4.49% 29.02% 
Target Aggregate Mean 

Response Time (day) 
0.9 308.9 13637.6 4.26% 53.87% 
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Table 4.5: Effect of the parameters on the performance of the Lagrangian heuristic.

ACD PCD 
Parameters 

Avg. Max. Avg. Max. 

All instances   2686.7 94984.1 0.61% 10.33% 

100 3206.3 94984.1 1.08% 10.33% 
Number of Parts 

500 2167.1 39792.7 0.14% 0.93% 

4 2063.2 37882.6 0.61% 8.16% Number of LWHs 
9 3310.1 94984.1 0.61% 10.33% 

0.005 2910.3 51784.2 0.83% 8.16% 

0.015 2785.2 94984.1 0.62% 10.33% 
Average Demand Rate 

(units/day) 
0.05 2364.6 57048.9 0.38% 4.94% 

1000 586.0 7065.2 0.48% 8.16% 

3000 1699.1 17733.2 0.60% 7.53% 
Average Unit Cost 

($/unit) 
10000 5774.9 94984.1 0.75% 10.33% 

25 2713.2 94984.1 0.74% 10.33% 

75 2678.9 50501.8 0.62% 7.61% 
Average Fixed Ordering 

Cost  ($/order) 
250 2668.0 57048.9 0.47% 8.16% 

0.1 4859.1 94984.1 0.79% 10.33% 

0.3 2420.7 35131.3 0.63% 7.82% 
Target Aggregate Mean 

Response Time (day) 
0.9 780.2 9147.9 0.41% 7.45% 
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Figure 4.3: Effect of number of parts on the performance of the Lagrangian dual
bound.

interaction effects are the interactions of the number of parts with the average
demand rate, the average unit variable cost, the average �xed ordering cost
and the target aggregate mean response time and those of the target aggregate
mean response time with the average demand rate and the number of local
warehouses. Each of these interactions is signi�cant with a p-value of 0.000.

To identify the effect of parameters more precisely, we perform a sensitivity analysis
for each factor. Figure 4.4 show the results of the sensitivity analysis for the average
demand rate, average unit variable cost, average �xed ordering cost and target aggre-
gate mean response time, whereas Figure 4.5 illustrates the results of the analysis for
the number of parts. As shown in Figure 4.4, we consider 10 levels for each of the
average demand rate (λ = 0.005, 0.010,..., 0.050), the average unit variable cost (c =

1000, 2000,..., 10000), the average �xed ordering cost (K = 25, 50,..., 250) and the
target aggregate mean response time (Wn = 0.1, 0.2,..., 1.0). We also consider two
different values of the number of parts (|I| = 50 and 250), abbreviated as NumPart
in Figure 4.4, to explore the interactions between the effect of the number of parts
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and the effects of the corresponding four parameters. As shown in Figure 4.5, for the

analysis of the effect of the number of parts, we consider 7 levels with|I | = 50, 100,

250, 500, 1000, 3000 and 5000. To see the effect of the number of local warehouses

in the same figure, we also consider four different values of the number of local ware-

houses (|N| = 3, 6, 9 and 12), abbreviated as NumWare in Figure 4.5. We randomly

generate 10 problem instances for each level of the parameters, using the base case

setting in Table 4.2. Hence, each point in the figures represents the average ofPCDs

for 10 problem instances. The main observations drawn from the sensitivity analysis

are given as follows:

• Figure 4.4 indicate that the Lagrangian heuristic offers a better performance for

problem instances with

– high average demand rate,

– low average unit variable cost,

– high average fixed ordering cost,

The results are similar forACDs and in line with the results of the factorial anal-

ysis presented in Table 4.5. We interpret these three observations as follows:

Each problem instance conforming the conditions given above corresponds to

a situation where the optimal inventory policy parameters,i.e., Qi, Ri andSin,

are high. Hence, this shows that when the value of optimal policy parame-

ters are high, both thePCD and theACD obtained by the Lagrangian heuristic

decrease. This observation is in line with Wong et al. (2007a) and (2007b).

• The results of the factorial analysis in Table 4.5 shows thatthe PCD obtained

by the Lagrangian heuristic decreases with the number of parts. Figure 4.5

further shows that as the number of parts increases, independent of the number

of local warehouses, thePCDobtained by the Lagrangian heuristic approaches

to zero.

Note that this observation is similar to our findings regarding the asymptotic

behavior of the Lagrangian dual solution. Intuitively, since the solution that

the Lagrangian heuristic yields and the Lagrangian dual solution are the pri-

mal and dual solutions obtained through Lagrangian relaxation, respectively, it
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Performance of LH with respect to average demand rate 
for different values of number of parts 
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Performance of LH with respect to average unit cost 
for different values of number of parts 
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 Figure 4.4: Sensitivity Analysis: The effects of parameters on the performance of

the Lagrangian heuristic - average demand rates, average unit variable cost of parts,
average �xed ordering costs and target aggregate mean response times.
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Performance of LH with respect to average fixed ordering cost 
for different values of number of parts 
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Performance of LH with respect to target aggregate mean response time
for different values of number of parts 
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Figure 4.4 (continued)

87



Performance of LH with respect to number of parts for different values of 
number of warehouses
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Figure 4.5: Sensitivity Analysis: The effects of parameters on the performance of the
Lagrangian heuristic - number of parts, number of local warehouses.
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makes sense to have similar results for both the Lagrangian heuristic and the

Lagrangian dual bound. We argue that these two results has some connection

with the multi-item approach. Under the multi-item approach, which makes

risk pooling possible among parts, as the number of parts increases, the bene-

fits of risk pooling increases. This will also increase the number of alternative

near-optimal solutions. In this situation, it is more likely to find a feasible so-

lution that is close to the optimum by using an appropriate heuristic method,

e.g., the Lagrangian heuristic. In a similar way, one can finda lower bound

for our problem, e.g., the Lagrangian dual bound, by using anappropriate re-

laxation method, e.g., the Lagrangian relaxation. Similarresults exist in the

literature for other combinatorial problems as well, e.g.,there are greedy al-

gorithms guaranteeing asymptotically optimal solutions for multidimensional

knapsack problem and generalized assignment problem (Rinnooy Kan et al.

1993, Romeijn and Morales 2000); the relative gap between theLP relaxation

of the knapsack problem and its optimal solution approachesto zero as the

number of items increases (Kellerer et al. 2004).

• Figure 4.4 and Table 4.5 also show that the Lagrangian heuristic offers a better

performance for problem instances with long target aggregate mean response

time. This finding is also in line with our previous observation. Intuitively, long

target aggregate mean response times yield loose constraints for the problemP.

Under the multi-item approach, such loose constraints increase the risk pooling

among parts. This increases the number of alternative near-optimal solutions.

Hence, under long target aggregate mean response times, it is more likely to find

a feasible solution that is close to the optimal solution by using the Lagrangian

heuristic.

• Figures 4.4 and 4.5 also indicate that the effect of other parameters vanishes as

the number of parts increases. Hence, as the problem gets larger the Lagrangian

heuristic becomes more robust.

• In general, we observe that the Lagrangian heuristic yieldsbetter results in

problem instances with asymmetric demand, and this corresponds to practical

situations in which each warehouse serves a distinct marketwith a different

demand structure. This result is in line with Wong et al. (2007b), reporting that
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the greedy heuristic performs better with asymmetric demand instances.

4.4.4 Performance of the Sequential Heuristics

The results of the experiments to evaluate the performance of the sequential heuristics

S1, S2, andS3 are summarized in Table 4.6. Accordingly, we make the following

observations:

• The average and worst case performances ofS2 andS3 are better than those

of S1, indicating that the sequential approach performs better when service

level requirements are taken into account in calculating the order quantities.

However, the results indicate that none of the methods dominates the others.

S3 outperformsS1 and S2 in 95.73% and 70.73% of all problem instances,

respectively, andS2 outperformsS1 in 92.25% of all problem instances.

• The average and the maximumPCDs that the sequential approach yield are

higher compared to the corresponding results of single-echelon systems operat-

ing under (Q,R) policy (Zheng 1992, Axs̈ater 1996, Silver et al. 1998, Gallego

1998): ThePCD obtained byS2, which usesEOQB to determine order quan-

tities, can be as high as 21.75% in our experiments, while themaximumPCD

obtained by theEOQB in single-echelon systems is 2.90% (Zheng 1992), em-

pirically, and 11.80%, theoretically (Axsäter 1996). Similarly, the average and

the maximumPCDs obtained byS1, which uses EOQ, are 5.22% and 31.03%,

respectively, which are fairly high for a batch size heuristic commonly used in

practical applications. In contrast to findings for single-item models, our re-

sults are comparable with Hopp et al. (1997), who report thatthe relative gap

between the solution that their sequential heuristic yields and a lower bound

may reach 15.37% in multi-item single-echelon inventory systems. Therefore,

we conclude that in multi-item systems, which is a more realistic setting for

spare parts, the performance of the sequential approach is not as satisfactory

as in single-item systems. Although sequential approach iscommonly used in

practice, the results show that the approach results in veryhigh errors. Note that

all sequential heuristics considered in our study utilizesa column generation
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and a greedy algorithm to determine the reorder levels at thecentral warehouse

and the base-stock levels at the local warehouses. However,in practical appli-

cations these parameters are typically determined by usingsimpler methods,

which may yield much higher errors than thePCDs presented here. All these

indicate that some of the conjectures in the literature about the performance of

the sequential approach are misleading, and using the sequential approach in

practical applications may not be the best option.

• The Lagrangian heuristic generally performs better than the sequential heuris-

tics. When the number of parts is 100, the Lagrangian heuristic outperforms

S2 (S3) in 95.77% (94.51%) of the problem instances, whereas when the num-

ber of parts is 500, the Lagrangian heuristic outperformsS2 (S3) in 99.88%

(99.48%) of the problem instances. This shows that as the number of parts in-

creases, the Lagrangian heuristic, which is based on the simultaneous approach,

becomes much more dominant over the sequential heuristics.Intuitively, un-

der the multi-item approach, determining the order quantity of each part inde-

pendent of the other parts’ parameters benefits less from theopportunities of

risk-pooling among parts. Therefore, for a system operating under the multi-

item approach, (1) as the number of parts increases, or (2) aswe switch from

single-item to multi-item setting, the performance of the sequential heuristics

deteriorates relative to that of the simultaneous approach.

In addition to the observations given above, the ANOVA results indicate the follow-

ings:

• The effects of all the parameters considered in the factorial analysis are signifi-

cant at 0.05 significance level, each having a p-value less than 0.005. The most

significant observation is that the sequential heuristics generally perform better

in problem instances with

– high average fixed ordering cost,

– short target aggregate mean response time,

– low average demand rate.
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These findings are in line with the literature (Zheng 1992, Hopp et al. 1997).

However, even with those problem instances that are in favorof the sequential

heuristics, thePCD obtained by the sequential approach is still higher com-

pared to that of using the Lagrangian heuristic. This can be seen also in Table

4.6.

• Almost all the interactions between the factors are significant at 0.05 level.

Especially the average demand rate, the average fixed ordering cost, and the

average unit variable cost highly interact with each other.This makes it diffi-

cult to draw conclusions only by looking at the results of theindividual (main)

effects of parameters. Therefore, we also analyze and interpret the effects of

parameters considering the interactions. The most critical observation is that

the sequential approach performs best either when the average demand rate

and the average fixed ordering cost are low, the average unit variable cost is

high, and the target aggregate mean response time is short; or when the aver-

age demand rate and the average fixed ordering cost are high, the average unit

variable cost is low, and the target aggregate mean responsetime is short. Con-

sistent with this result, the performance of the sequentialheuristics relative to

that of the Lagrangian heuristics is best when the average demand rate and the

average fixed cost are low, the average unit variable cost is high, and the target

aggregate mean response time is short. Note that this corresponds to problem

instances in which our problem becomes much more tighter andthe optimal

policy parameters become smaller. We note that this corresponds to instances

in which the performance of the Lagrangian heuristic performs worse. The re-

sults show that even in this setting, the Lagrangian heuristic outperforms the

sequential heuristics in most of instances. Under this specific setting, when the

number of parts is 100, the Lagrangian heuristic outperforms S3 (S2) in 70.0%

(65.0%) of the problem instances, whereas when the number ofparts is 500, the

Lagrangian heuristic outperformsS3 (S2) in 95.5% (100.0%) of the problem in-

stances. Again, this shows that as the number of parts increases, the Lagrangian

heuristic becomes much more dominant over the sequential heuristics even for

the problem instances less favorable for the Lagrangian heuristic.
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We further perform a sensitivity analysis to identify the effect of parameters more

precisely. We conduct the experiments based on the testbed used for the sensitivity

analysis of the Lagrangian heuristic. The main observations drawn from the sensitiv-

ity analysis are given as follows: Figures 4.6 and 4.7 illustrate the result of analysis

regarding the effect of the number of parts on the performance of the heuristics based

on thePCDs andACDs, respectively. As shown in Figure 4.6, similar to the find-

ings regarding the performance of the Lagrangian heuristic, as the number of parts

increases, thePCD obtained by the sequential heuristics decreases. However,Figure

4.6 also shows that neither of them converges to zero, although that of the Lagrangian

heuristic does, e.g., the averagePCD obtained by the sequential heuristic with EOQ

is 4.38% even the number of parts is 5,000. Figure 4.7 shows that theACD obtained

by the sequential heuristics increases with the number of parts quite faster than that

of the Lagrangian heuristic.

We also consider setting the order quantities to one and, then, applying the sequential

approach. This way, we explore the performance of using a base-stock policy approx-

imation to our batch ordering problem. Therefore, we carry out experiments by using

the testbed that for the factorial analysis. Based on the results, the performance of

the base-stock policy approximation is found to be very poor. Even the average PCP

is larger than 105%. As a result, we conclude that in the presence of fixed ordering

costs, it is not reasonable to operate under a base-stock policy.

4.4.5 Computational requirements of the solution procedures and experiments

with Practical-Size Problems

In this section, we test the performance of the heuristics interms of the computational

requirements. Figure 4.8 illustrates the computational requirements of the heuristics

that have run to test the effect of the number of parts on the heuristics in Sections

4.4.3 and 4.4.4. The figure shows only the results for|N| = 9 and 12. As shown in

the figure the average CPU time required by heuristics increases with the number of

parts. This is rather intuitive. The figure also shows that the average CPU time for

the Lagrangian heuristic is higher than those for the sequential heuristics, but they

are comparable even when|I | = 5,000. This indicates the computational savings that
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Performance of Heuristics with respect to number of parts for NumWare=3

S1

S3

S2

LH
0.00%

0.75%

1.50%

2.25%

3.00%

3.75%

4.50%

5.25%

6.00%

6.75%

7.50%

50 100 250 500 1000 3000 5000
Number of parts

PCD

S3 S2 LH S1
   

 
 

Performance of Heuristics with respect to number of parts for NumWare=6
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Figure 4.6: Performance of the heuristics with respect to number of parts and number
of local warehouses - PCD.
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Performance of Heuristics with respect to number of parts for NumWare=9
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Performance of Heuristics with respect to number of parts for NumWare=12
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Figure 4.6 (continued)
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Performance of Heuristics with respect to number of parts for NumWare=9
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Performance of Heuristics with respect to number of parts for NumWare=12
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Figure 4.7: Performance of the heuristics with respect to number of parts and number
of local warehouses - ACD.
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can be obtained by sequential heuristics are quite limited.Recall that by using the se-

quential heuristics, the computational time required to solve the problemP is reduced

by eliminating the outer loop in the single-item two-echelon subroutine in the column

generation algorithm. However, the experiments reveal that for small-size problems,

the bulk of the computational effort is devoted to the column generation algorithm,

whereas for problems with larger number of parts, the most ofthe computational time

is spent by the greedy algorithm. Thus, elimination of the subroutine, which makes

sequential heuristics faster, contributes less to computational savings of the overall

method for large-scale problems.

Furthermore, we experiment with larger problem instances to further explore the per-

formance of the Lagrangian heuristic in practical-size problems. The number of parts

is set to 10000, and the number of local warehouses is set to 12. The problem in-

stances are generated by using the base case setting in Table4.2. We consider both

the symmetric and the asymmetric problem instances. The results of the experiment

show that the averagePCDs obtained by the Lagrangian heuristic are 0.09% and

0.04%, and the average CPU times required by the Lagrangian heuristic are 15.55

and 11.94 hours for the symmetric and the asymmetric probleminstances, respec-

tively.

Although the papers in the literature deal with systems under different settings, a

comparison with them is still possible to a certain extent. Hopp et al. (1999) who

consider a multi-item two-echelon batch ordering system similar to ours report that

their heuristic can solve problem instances with 1263 partsand 2 regional facilities.

They also show that for relatively small problem instances (with up to 10 parts and

5 regional facilities) the relative gap between the expected total cost of the solution

obtained by the heuristic and the lower bound that they propose is less than 5%. Com-

pared to Hopp et al. (1999), our heuristics seem to be significantly better both in terms

of relative errors and the computational efficiency. When we compare our results with

Wong et al. (2007b), who apply a column generation and decomposition method sim-

ilar to our column generation algorithm for a multi-item two-echelon system under

pure base-stock policy, our results seem to be comparable interms of relative errors.

Furthermore, although our problem is more difficult than theirs, our results are sig-

nificantly better in terms of the computational efficiency, e.g., while they can solve
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Performance of Heuristics with respect to number of parts for NumWare=9
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Performance of Heuristics with respect to number of parts for NumWare=12
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Figure 4.8: Computational requirements of the heuristics with respect to number of
parts and number of local warehouses.
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problems problems up to a size of 100 parts, we can solve problems with up to 10,000

parts. Note that when we fix the order quantities at 1, our model reduces to their sys-

tem, hence our heuristics are applicable in their setting aswell. We also compare

our results with Caggiano et al. (2007), who propose heuristics to solve large-scale

multi-item multi-echelon systems under base-stock policy. Although their system is

very different from our system (our model involves batch ordering decision, while

their model is applicable to more than two-echelon), one cansee that our results are

slightly better than theirs both in terms of relative errorsand computational efficiency.

For example, while they can solve problems with 27175 part-location combinations in

almost 21 hours, using the Lagrangian heuristic, we can solve 130,000 part-location

combinations (10,000 parts, 12 local warehouses and 1 central warehouse) within 12

hours. As evident from these comparisons, our work contributes to the relevant litera-

ture by proposing an efficient and tractable heuristic for large-scale spare parts inven-

tory problems. As opposed to these papers, a comparison withAl-Rifai and Rossetti

(2007) is not possible since the performance of their heuristic is not compared against

an analytical solution or a bound, since such a solution or a bound is not available for

large-scale problems. Çağlar et al. (2004) encounter a similar problem. They report

that the lower bound that they use to test their heuristic is not tight, and hence, the

relative gap between their heuristics and the lower bound isused as a conservative

estimate of the true relative error. As opposed to these studies, the Lagrangian dual

bound for our problem is tractable and performs quite well for larger-scale problems.

Hence, our findings regarding the performance of the Lagrangian dual bound also

contribute to the relevant literature.

4.5 Conclusion

We propose four alternative heuristics to find the optimal ornear-optimal policy pa-

rameters of a multi-item two-echelon inventory distribution system with batch or-

dering in the central warehouse. The first heuristic, which we call the Lagrangian

heuristic, is based on the simultaneous approach and relieson the integration of a col-

umn generation method and a greedy algorithm. The other three heuristics are based

on the sequential approach, in which first the order quantities are determined using
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a batch size heuristic, then the reorder levels at the central warehouse and the base-

stock levels at the local warehouses are determined throughthe same method used

for the Lagrangian heuristic, i.e., a column generation anda greedy algorithm. We

explore the performance of the Lagrangian dual bound that wedevelop in Chapter 3

and analytically show that this bound is asymptotically tight in the number of parts.

By making use of the results of the computational study we develop several insights,

some of which are summarized as follows: The lower bound for the optimal expected

total cost is found to be quite tight, especially when the number of parts is high, e.g.,

the relative gap between the bound and the optimal expected total cost is less than 1%

even when the number of parts is only 50. These results together with the asymptotic

tightness of the lower bound with the number of parts motivates us using it in further

numerical experiments with large number of parts as a benchmark solution. Based

on the results of these further experiments, the Lagrangianheuristic performs quite

well in terms of the relative difference between the expected total cost of the solution

obtained by the heuristic and the lower bound. As the number of parts increases, the

performance of the heuristic improves further, making the heuristic very promising

for practical applications. The computational requirement of the heuristic is also quite

tolerable. To be more specific, the experiment with 10,000 parts and 12 warehouses

reveals that the relative cost difference is 0.04%; problems of this size can be solved

within 12 hours on an Intel 3 GHz processor with 3.5 GB RAM. Furthermore, as

the number of parts increases, the Lagrangian heuristic becomes robust and becomes

insensitive to other parameters and whether the demand is symmetric or not. The

heuristic is also quite tractable. It can be used to solve very large practical problems

in reasonable computation time. This makes the Lagrangian heuristic very promising

for practical applications. The performance of the heuristics that are based on the

sequential approach are also satisfactory, but not as much as the Lagrangian heuristic.

As the number of parts increases the performance of the sequential approach deteri-

orates compared to that of the Lagrangian heuristic. Furthermore, the computational

advantage of the sequential heuristics is found to be limited compared to the La-

grangian heuristic. The errors in practical applications are expected to be even higher

considering that our sequential heuristics involve a column generation method, which

is more sophisticated than the methods used in sequential approach applications in

practice. Hence, despite the fact that the sequential approach is widely used in prac-
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tice and that its performance is experimentally verified in single-item problems, our

work shows that in a multi-item setting and under a multi-item approach, the perfor-

mance of the sequential approach heuristics is inferior compared to the Lagrangian

heuristic, which yields superior results even for large problems in reasonable time.

We also find that the performance of the sequential heuristics depends on the batch

size heuristic used. The batch size heuristic that take service level requirements into

account outperforms the EOQ. This shows that if the sequential heuristics are used

to solve batching problems in multi-item two-echelon inventory systems, it is better

to take the service level requirements into account in calculating the order quantities.

For this purpose, one can use the batch size heuristics that we consider in this chapter.

To summarize, we contribute to the literature by proposing efficient and tractable

heuristics to solve large, practical-size multi-item two-echelon inventory control prob-

lems with batch ordering at the central warehouse, one of which significantly outper-

forms the others. The comparisons based on our heuristics also makes a contribution

to the literature in evaluating the performance of the sequential approach against the

simultaneous approach in a multi-item multi-echelon setting. Our work also con-

tributes to the literature by proposing a tight and efficient lower bound on the optimal

total cost for practical-size problems.
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CHAPTER 5

EXTENSIONS TO COMPOUND POISSON DEMAND

In this chapter, we extend the heuristics and the lower bound, which are shown to

perform quite well for the pure Poisson demand setting, to the compound Poisson de-

mand setting. To the best of our knowledge, our work is the first to propose heuristics

for a multi-item two echelon inventory system facing compound Poisson demand. To

evaluate the steady-state performance of the system and also the objective function

and the constraints of the problem, we consider both an exactand approximate meth-

ods. For the approximate evaluation, we propose four alternative methods. The first

method is based on the binomial disaggregation, which is exact for the Poisson de-

mand. The second approximation is the extension of the two-moment approximation

developed by Gallego et al. (2007) to a batch ordering system. As a third approx-

imation, we extend the two-moment approximation developedby Graves (1985) to

the compound Poisson demand setting. The fourth approximation corresponds to the

implementation of the METRIC to our inventory system. For theexact evaluation, we

adopt the flow-unit method by Axsater (2000). We also show that the Lagrangian dual

bound is asymptotically tight in the number of parts. Later,in a computational study,

we test the performances of the heuristics against the lowerbound, the performance

of the approximations against the results obtained by the exact evaluation method.

To the best of our knowledge, our work is the first to investigate the performance of

the approximations most commonly used in the literature, i.e., the METRIC and the

two-moment approximation, for a multi-item two-echelon system facing a compound

Poisson demand.

In Section 5.1, we introduce the compound Poisson demand model. We describe the

exact and the approximate evaluation methods considered for this model in Sections
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5.2 and 5.3, respectively. Later, in Section 5.4, we explainhow we extend the heuris-

tics developed in Chapter 4 to compound Poisson demand. Finally, in Section 5.5, we

report and discuss our computational results.

5.1 The model

The extensions of the developments in Chapters 3 and 4 to compound Poisson demand

setting requires revising the model in Section 3.1. Similarto the model in Section 3.1,

we consider a two-echelon distribution network in which thelower echelon consists

of a set,N, of local warehouses, each is denoted byn = 1,2, . . . |N|, while the upper

echelon corresponds to a central warehouse, which is denoted by n = 0. There is a

set,I , of parts, each is denoted byi = 1,2, . . . |I |. In contrast to the Poisson demand

model, the external customer demands for parti at the central warehouse and the

local warehousen ∈ N follow a compound Poisson process with customer arrival

ratesλe
i0 andλin, having demand sizes ofve

i0 andvin with probabilitiesP(Ve
i0 = ve

i0)

andP(Vin = vin), respectively. As in Section 3.1, the central warehouse also faces

internal demands from local warehouses; the internal and external demands are not

differentiated and are satisfied according to the FCFS rule. Finally, we assume part-

specific holding costs for all facilities and part-specific fixed ordering costs for the

central warehouse.

Under the compound Poisson demand, our system operates as follows: Whenever

a demand of sizevin for any parti arrives at warehousen ∈ N, it is immediately

satisfied from stocks if there arevin parts available; otherwise, the unsatisfied portion

of demand is backordered. In both cases, if the external demand is directed to a local

warehouse, an order of sizevin is placed at the central warehouse so that the inventory

position reachesSin. Therefore, this policy is known as order-up-to S policy (Forsberg

1995). This internal request is satisfied within a constant transportation lead time of

Tin, if the part is available in the central warehouse. Otherwise, the internal demand

is backordered as well. In any case, if the inventory position of the central warehouse

drops to or below reorder levelRi, a sufficient number of orders with batch sizeQi

are placed at the outside supplier so that the inventory position exceedsRi. Note that

in the pure Poisson demand case, only a single batch of sizeQi is placed since the

104



demand size is always one. Under compound Poisson demand model, the inventory

position at the central warehouse may overshoot the reorderlevelRi since the demand

size is a random variable. Since the number of orders is a variable depending on

the overshoot quantity, but the batch size is constant this policy is known as (nQ,R)

policy (Axsäter 2000). It is assumed that the supplier has ample stock and can always

satisfy requests for parti in a constant lead time ofTi0. We also assume that partial

backlogging is allowed since this simplifies the analysis.

Based on the system definition, our problem can be stated as in Section 3.1: finding

the policy parameters minimizing the sum of the inventory holding and fixed ordering

costs subject to constraints on the aggregate mean responsetime. To formulate this

problem, we revise our notation and extend it to compound Poisson setting as it is

given in Table 5.1. As in Section 3.1, for sake of brevity, we omit the parameters that

the variables depend on, e.g.,I in(t,Qi ,Ri ,Sin) is simply denoted asI in(t). Similarly,

since our focus is on the limiting behavior of stochastic variables, we also omit the

time component, e.g.,I in = lim
t→∞

I in(t). The additional notation for the compound

Poisson demand model is as follows: LetYin be the number of customer arrivals

during lead timeTin and Vin be the size of a demand for each parti ∈ I at each

warehousen ∈ N ∪ {0}. Then, the demand during lead timeTin, Din, is expressed in

terms ofYin andVin as follows: Letυk
in be the size ofkth demand occurred during the

lead timeTin at warehousen ∈ N ∪ {0} for part i ∈ I , thenDin =
Yin∑
k=1
υk

in for each part

i ∈ I and each local warehousen ∈ N. Then, the average demand rate per unit time,

µin, and the average demand during lead timeTin, E[Din], are given asµin = λinE[Vin]

and E[Din] = λinTinE[Vin], respectively for each parti ∈ I at warehousen ∈ N.

Similarly, the external demand at the central warehouse during lead timeTi0, De
i0,

is expressed in terms ofYe
in andVe

in for each parti ∈ I , whereYe
in andVe

in are the

corresponding variables associated with the external customers. Then, the average

external demand rate per unit time,µe
i0, and the average external demand during lead

time Ti0, E[De
i0], at the central warehouse are given asµe

i0 = λ
e
i0E[Ve

i0] and E[De
i0] =

λe
i0Ti0E[Ve

i0], respectively for each parti ∈ I . Based on the definitions, the demand

per unit time for parti ∈ I at warehousen ∈ N has a compound Poisson distribution

with meanµin = λinE[Vin] andσ2
in = λinE[V2

in] (Axsäter 2006). Similarly, the external

demand per unit time for parti ∈ I at the central warehouse has a compound Poisson
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distribution. By usingµe
i0 andµin, the average demand rate per unit time at the cental

warehouse,µi0, is defined asµi0 = µ
e
i0 +

∑
n∈N µin for each parti ∈ I .

An important parameter, not for the evaluation of the system, but for the experimental

analysis is the variance-to-mean ratio, simply denoted by
σ2

in

µin
. The main difference

between the pure Poisson demand and the compound Poisson demand lies on the
σ2

in

µin
ratio. The compound Poisson demand distribution makes it possible to have a

demand with
σ2

in

µin
≥ 1, while for the Poisson demand this ratio is strictly 1. In a way,

for the rest of chapter, we extend the results for pure Poisson case, i.e.,
σ2

in

µin
= 1, to a

compound Poisson case (high variance case), e.g.,
σ2

in

µin
≥ 1. In experimental analysis,

the variance-to-mean ratio for the total demand has a critical importance.

Furthermore, letMn =
∑

i∈I µin denote the average total demand rate per unit time for

warehousen ∈ N∪{0}. Then, by using Little’s law, the aggregate mean response time

at warehousen ∈ N can be reformulated for the compound Poisson demand case as

Wn( ~Q, ~R, ~S) =
∑

i∈I

µin

Mn
E[Win(Qi ,Ri ,Sin)] =

∑

i∈I

µin

Mn

E[Bin(Qi ,Ri ,Sin)]
µin

=
∑

i∈I

E[Bin(Qi ,Ri ,Sin)]
Mn

.

Similarly, we haveW0( ~Q, ~R) =
∑

i∈I
E[Bi0(Qi ,Ri )]

M0
. Then the problem for compound Pois-

son demand (Pc) is formulated as

Min
∑

i∈I

cih

E[I i0(Qi ,Ri)] +
∑

n∈N
E[I in(Qi ,Ri ,Sin)]

 +
µi0Ki

Qi

 (5.1)

s.t.
∑

i∈I

E[Bi0(Qi ,Ri)]
M0

≤Wmax
0 , (5.2)

∑

i∈I

E[Bin(Qi ,Ri ,Sin)]
Mn

≤Wmax
n , for ∀ n ∈ N, (5.3)

Qi ≥ 1, Ri ≥ −1, Sin ≥ 0, and Qi , Ri , Sin ∈ Z, for ∀ i ∈ I , ∀ n ∈ N.

where the objective function (5.1) minimizes the system-wide inventory holding and

fixed ordering costs, while constraint (5.2) and (5.3) guarantee that aggregate mean

response times at the central and local warehouses do not exceedWmax
0 andWmax

n ,

respectively.
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Table 5.1: General Notation.

i Part index,i ∈ I
n Warehouse indexn ∈ N ∪ {0}
ci Unit variable cost of parti
h Inventory carrying charge

Ki Fixed ordering cost of parti at the central warehouse
λin Customer arrival rate for parti at local warehousen ∈ N
λe

i0 External customer arrival rate for parti at the central warehouse
λi0 Customer arrival rate (sum of internal and external) for parti at the central warehouse
µin Demand rate for parti at local warehousen ∈ N
µe

i0 External demand rate for parti at the central warehouse
µi0 Demand rate (sum of internal and external) for parti at the central warehouse
σ2

in Demand variance for parti at local warehousen ∈ N ∪ {0}
Me

n Total external demand rate at the central warehouse
Mn Total demand rate for warehousen ∈ N ∪ {0}
Ti0 Lead time for parti at the central warehouse from the outside supplier
Tin Transportation lead timeTin from the central warehouse to local warehousen ∈ N for part i
Yin Number of customer arrivals during lead timeTin at warehousen ∈ N ∪ {0} for part i
Vin Demand size for parti at warehousen ∈ N ∪ {0}
Din Demand during lead timeTin at warehousen ∈ N ∪ {0} for part i
Ye

i0 Number of external customer arrivals during lead timeTi0 at the central warehouse for parti
Ve

i0 External demand size for parti at the central warehouse
De

i0 External demand during lead timeTi0 at the central warehouse for parti
υk

in Size ofkth demand occurred during the lead timeTin at warehousen ∈ N ∪ {0} for part i
Wmax

n Target aggregate mean response time at warehousen ∈ N ∪ {0}
Ri Reorder level for parti at the central warehouse (decision variable)
Qi Order quantity for parti at the central warehouse (decision variable)
Sin Base-stock level for parti at local warehousen ∈ N (decision variable)
~Si [Si1,Si2, . . . ,Si|N|] = Vector of base-stock levels for parti
~S [~S1, ~S2, . . . , ~S|I |] = Vector of base-stock levels
~Q [Q1,Q2, . . . ,Q|I |] = Vector of order quantities
~R [R1,R2, . . . ,R|I |] = Vector of reorder levels

I in(Qi ,Ri ,Sin) On-hand inventory level for parti at warehousen ∈ N in the steady state
I i0(Qi ,Ri) On-hand inventory level for parti at the central warehouse in the steady state

Xin(Qi ,Ri) Number of outstanding orders for parti at warehousen ∈ N in the steady state
Bin(Qi ,Ri ,Sin) Backorder level for parti at warehousen ∈ N in the steady state

Bi0(Qi ,Ri) Backorder level for parti at the central warehouse in the steady state
B(n)

i0 (Qi ,Ri) Backorder level of local warehousen for part i at the central warehouse in the steady state
Win(Qi ,Ri ,Sin) Response time for parti at warehousen ∈ N in the steady state

Wi0(Qi ,Ri) Response time for parti at the central warehouse in the steady state
We

i0(Qi ,Ri) Response time for parti at the central warehouse (based on external customers)
Wn( ~Q, ~R, ~S) Aggregate mean response time at warehousen ∈ N in the steady state

W0( ~Q, ~R) Aggregate mean response time at the central warehouse in the steady state
We

0( ~Q, ~R) Aggregate mean response time at the central warehouse (based on external customers)
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As in the Poisson demand model, one could also model the problem by consider-

ing only the external customers to evaluate the performanceof the central ware-

house. Then, the aggregate mean response time at the centralwarehouse is stated by

We
0( ~Q, ~R) =

∑
i∈I
µe

i0
Me

0
E[We

i0(Qi ,Ri)], whereµe
i0 = µi0−

∑
n∈N µin andMe

0 = M0−
∑

n∈N Mn

are the corresponding demand rates associated with the external demands at the cen-

tral warehouse. Since there is no differentiation between the external and the internal

demands we simply haveWe
i0( ~Q, ~R) =Wi0( ~Q, ~R). Then, we obtain

We
0( ~Q, ~R) =

∑

i∈I

µe
i0

Me
0

E[Wi0(Qi ,Ri)] =
∑

i∈I

µe
i0

Me
0

E[Bi0(Qi ,Ri)]
µi0

,

which replaces constraint (5.2).

In the rest of this section, first, we obtain the distributionof Din for eachi ∈ I and

n ∈ N ∪ {0}. Then, we introduce the exact and the approximate methods considered

to evaluate the-steady state performance of the system.

5.1.1 Obtaining the Lead Time Demand Distributions

For eachi ∈ I andn ∈ N, the distribution of the external demand during lead time

of Tin is obtained by usingDin =
Yin∑

Vin and the distributions ofYin andVin, whereYin

has a Poisson distribution with customer arrival rateλin andVin has a compounding

distribution denoted byP(Vin = v). Without loss of generality, the demand sizes

are assumed to be non-zero, i.e.,P(Vin = 0) = 0. Let P(Vk
in = v) give thev−fold

convolution ofP(Vin = v), i.e., the probability thatk customers yields a total demand

of v. Then,P(Vk
in = v) is obtained recursively by using

P(Vk
in = v) =

v−1∑

i=k−1

P(Vk−1
in = i)P(Vin = v− i),

for eachk ≥ 2, n ∈ N andi ∈ I . Finally, the distribution ofDin is determined by using

P(Din = d) =
d∑

x=1

P(Yin = x)P(Vx
in = d),

whereP(V1
in = v) = P(Vin = v) and P(V0

in = v) = 0 for eachn ∈ N and i ∈ I .
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In a similar way, the distribution of the external demand during lead timeTi0 for

part i ∈ I at the central warehouse,De
i0, is determined by using the distributions

of Ye
i0 and Ve

in, whereYe
i0 has a Poisson distribution with customer arrival rateλe

in

andVe
in has a compounding distribution denoted byP(Ve

in = v). Since for each part

i ∈ I , Din for all n ∈ N andDe
i0 are independent compound Poisson random variables

with customer arrival rateλin andλe
in and compounding distributionsP(Vin = v) and

P(Ve
in = v), respectively,Di0 has also a compound Poisson distribution with customer

arrival rateλi0 = λ
e
i0+

∑
n∈N λin and compounding distributionP(Vi0 = v) =

λe
i0
λi0

P(Ve
i0 =

v)+
∑

n∈N
λin

λi0
P(Vin = v) (Kaas et al. 2001). Therefore, the distribution ofDi0 is obtained

in a similar way.

5.2 An Exact Evaluation Based on a Flow-Unit Method

We adopt the exact evaluation method proposed by Axsäter (2000) for the exact eval-

uation of our system. The method relies on the flow-unit method widely used in the

literature (Forsberg 1995, Axsäter 1995, Axs̈ater and Zhang 1996, Axsäter 1998).

Axsäter’s method is originally developed for a two-echelon inventory distribution

system in which both the central warehouse and the local warehouses operate under

a (Q,R) policy. Note that for a given parti ∈ I , our system is a special case of this

system. At each local warehousen ∈ N, the order quantities are multiples of 1 and

the reorder level isSin − 1, i.e., whenever the inventory position of local warehouse

n ∈ N drops to or below reorder levelSin − 1, a sufficient number of orders with

batch size one are placed so that the inventory position exceedsSin −1. At the central

warehouse, the order quantities are multiples ofQi and the reorder level isRi, i.e.,

whenever the inventory position of the central warehouse drops to or below reorder

levelRi, a sufficient number of orders with batch sizeQi are placed so that the inven-

tory position exceedsRi. Therefore, Axs̈ater’s method is adopted to our system by

setting the batch size (based on the definition of Axsäter 2000) and inventory position

for each parti ∈ I at each local warehousen ∈ N to 1 andSin, respectively. After

using this method, we obtain the steady-state probabilities for I in andBin. Then, by

using these probabilities, we calculateE[I in] in (5.1) andE[Bin] in (5.3) for eachi ∈ I

andn ∈ N. Finally, it remains to obtainE[I i0] andE[Bi0] for eachi ∈ I .
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For compound Poisson demand, under a base-stock policy, since every demand trig-

gers an order, the inventory position is constant at the base-stock level. Hence, equa-

tion (3.6) holds for the compound Poisson model as well. Therefore, we simply have

Sin = I in − Bin + Xin. (5.4)

Similarly, since for each parti ∈ I the number of outstanding orders at timet at local

warehousen ∈ N equals to the sum of the number of backorders dedicated to local

warehousen ∈ N at the central warehouse att − Tin and the demand during lead time

Tin, we have

Xin(t) = B(n)
i0 (t − Tin) + Din(t − Tin, t), (5.5)

or simply Xin = B(n)
i0 + Din. Furthermore, since customer orders at the central ware-

house are not differentiated, the average waiting time at the central warehouse is the

same for all parts no matter from which warehouse the part comes from. There-

fore, for any parti, average waiting time of orders emanating from local warehouse

n at the central warehouse,E[W(n)
i0 ], is given asE[W(n)

i0 ] = E[Wi0], or equivalently
E[B(n)

i0 ]

µin
=

E[Bi0]
µi0

. Therefore, we have

E[B(n)
i0 ] =

µin

µi0
E[Bi0]. (5.6)

Note that this result is valid also for the external customers at the central warehouse.

Based on these results, we obtainE[I i0] in (5.1) andE[Bi0] in (5.2) for eachi ∈ I

as follows: First, from (5.6), we haveE[Bi0] =
µi0
µin

E[B(n)
i0 ]. Then, by using (5.5),

we obtainE[Bi0] =
µi0

µin
(E[Xin] − E[Din]). Furthermore, by using (5.4), we establish

E[Bi0] =
µi0

µin
(E[Bin] + Sin − E[I in] − E[Din]). Finally, one can obtainE[I i0] easily by

usingE[Bi0], see (5.10). Therefore, in the flow-unit method, after finding E[I in] and

E[Bin] one can obtainE[I i0] andE[Bi0] directly by usingE[I in] andE[Bin]. Neverthe-

less, the method is intractable for large problems since it requires too many expres-

sions and convolutions to be computed (Axsäter 2000).
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5.3 Approximate Evaluation Methods Based on a Disaggregation Method

In this section, we introduce four alternative approximations for the evaluation of the

steady-state behaviour of our system. Although approximate evaluation methods do

not guarantee feasibility when they are employed in a policyoptimization problem, it

is necessary to solve practical size problems under a compound Poisson setting. The

first method relies on the disaggregation method (or so called the lead-time demand

method) that we use for the Poisson demand setting in Chapter 3. The other three

approximations can be derived from the first one. Therefore,we start with introducing

the first method, and then explain the other three approximations based on the first

one.

For the first approximation, we follow exactly the same the procedure in Section 3.1.

That is, first, we find the steady-state probability distributions of the inventory and

the backorder levels at the central warehouse by using

P{I i0 (Qi ,Ri) = x} =



1
Qi

Ri+Qi∑
k=max(Ri+1,x)

P{Di0 = k− x}, for 1 ≤ x ≤ Ri + Qi ,

1
Qi

Ri+Qi∑
k=Ri+1

P{Di0 ≥ k}, for x = 0,
(5.7)

P{Bi0 (Qi ,Ri) = x} =



1
Qi

Ri+Qi∑
k=Ri+1

P{Di0 = k+ x}, for x ≥ 1,

1
Qi

Ri+Qi∑
k=Ri+1

P{Di0 ≤ k}, for x = 0,
(5.8)

Then, we obtain the steady-state probability distributionof P{B(n)
i0 (Qi ,Ri)} by using

(3.8) as in the Poisson demand case. Recall that in the Poissondemand setting,

B(n)
i0 |Bi0 is binomially distributed with parametersBi0 and λin

λi0
, which is also known

as binomial disaggregation in the literature. Although this holds for the Poisson de-

mand setting, it is not true for the compound Poisson demand case. Assuming that

B(n)
i0 |Bi0 is binomially distributed with parametersBi0 and µin

µi0
(or equivalently one may

consider alsoλin

λi0
) and then using (3.8) to obtainB(n)

i0 is our first approximation. We

simply call this method “binomial approximation”. By using this approximation and

(5.5) the steady-state probability distribution ofXin(Qi ,Ri) is obtained as follows:
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P{Xin(Qi ,Ri) = x} =
x∑

y=0

P{Din = y} · P{B(n)
i0 (Qi ,Ri) = x− y}, for x ≥ 0. (5.9)

Then, the steady-state probability distribution ofI in (Qi ,Ri ,Sin) is obtained from (3.9)

as in the Poisson demand case. By using the distributions of inventory levels at the

warehouses, the expected inventory levelsE[I i0] and E[I in] for eachn ∈ N in the

objective function (5.1) are derived. Finally, the expected backorder expressions in

constraints (5.2) and (5.3) are obtained from

E[Bi0] = E[Di0] − Ri −
(Qi + 1)

2
+ E[I i0], (5.10)

E[Bin] = E[Xin] − Sin + E[I in]. (5.11)

Recall that under the compound Poisson demand, the inventoryposition at the central

warehouse may overshoot the reorder levelRi since demand sizes are random. Gal-

lego et al. (2007) propose a two-moment approximation for a single-item two-echelon

distribution system operating under a base-stock policy. It is based on distributing the

overshoot quantity among the local warehouses in the same way as the demand. The

method is also considered byÖzer and Xiong (2008) for approximating a single-item

two-echelon distribution system with service-level constraints. It yields satisfactory

results and offers a better performance when the compounding distributions at the lo-

cal warehouses are similar and the overshoot is a small part of the backorder levelBi0

at the central warehouse, which corresponds to the case withlow demand variance

(Gallego et al. 2007,̈Ozer and Xiong 2008). As a second approximation, we extend

this method to multi-item batch ordering systems and instead of using (3.8) to obtain

the distribution ofB(n)
i0 , we approximate it by using a two-moment approximation in

Gallego et al. (2007). Based on this method,E[B(n)
i0 ] is obtained from (5.6), while

Var(B(n)
i0 ) is obtained from

Var(B(n)
i0 ) = (

µin

µi0
)2Var(Bi0) +

(
λin

λi0
E[V2

in] − (
µin

µi0
)2E[V2

i0]

)
E[Bi0]
E[Vi0]

. (5.12)

We call this second approximation “two-moment approximation for the distribution

of backorders at the central warehouse emanating from localwarehouses”, or simply

“two-moment approximation for backorders”.
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As a third approximation, instead of using (3.8) and then (5.9) to obtain the distribu-

tion of Xin, we directly approximate it by using a two-moment approximation similar

to the one described in Graves (1985). The method is widely used in evaluating

the two-echelon inventory control systems under a base-stock policy (Caggiano et

al. 2007,Özer and Xiong 2008) and also the systems under a batch ordering policy

(Graves 1985, Hopp et al. 1999). Furthermore, it outperforms METRIC under single-

item (Graves 1985) and multi-item settings (Wong et al. 2007b). Note that Graves’

method is originally developed for the pure Poisson case in which it is relatively easy

to obtainVar(B(n)
i0 ) sinceB(n)

i0 |Bi0 is binomially distributed with parametersBi0 andλin

λi0
.

Nevertheless, findingVar(Xin) is quite involved in the compound Poisson demand

setting. Several papers in the literature extend this method to a compound setting

(Gallego et al. 2007,̈Ozer and Xiong 2008, Zipkin 2000). As opposed these papers,

here, we extend Graves’ two-moment approximation to a batchordering system un-

der a compound Poisson setting by using the results in Gallego et al. 2007 and̈Ozer

and Xiong (2008). Accordingly, we obtain the relevant moments from

E[Xin] = E[B(n)
i0 ] + E[Din],

Var(Xin) = Var(B(n)
i0 ) + Var(Din), (5.13)

which are obtained from (5.5), whileE[B(n)
i0 ] and Var(B(n)

i0 ) are obtained from (5.6)

and (5.12), respectively. In this approximation, although(5.5) is exact,Var(Xin) is

approximate becauseVar(B(n)
i0 ), which is obtained from equation (5.12), is not exact.

Therefore, our method involves an additional approximation compared to the original

method (Graves 1985), in which the first and second moments are exact. Later, in

the computational study we see that this has some negative effect on the performance

of the approximation in comparison to the results of Graves’method under Poisson

demand settings (Graves 1985, Wong et al. 2007b). We call this third approximation

“two-moment approximation for outstanding orders”.

Finally, we also adapt the METRIC approximation (Sherbrooke1968) to our problem.

The method relies on replacing the replenishment lead time at the local warehouse

n ∈ N for each parti ∈ I by its mean, e.g.,Tin+E[Wi0]. Since the stochastic lead time

is replaced by a constant, it simplifies the evaluation of thesystem (Axs̈ater 2000).
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Therefore, the method is quite common in the literature. However it is also known that

the METRIC underestimate the correct lead time. Therefore results in understocking

and, hence, high level of infeasibility (Wong et al. 2007b, Graves 1985).

5.4 Solution Procedures

In this section, we extend the heuristics and the lower boundproposed for the Poisson

demand case to compound Poisson demand setting. The column generation method,

greedy algorithm and the sequential heuristics are directly applicable to problemPc.

The column generation method introduced for the Poisson demand model in Section

3.1 requires the following minor changes:

• In the master problemMP, Ail0 andAiln are redefined asAil0 =
E[Bi0(Ql

i ,R
l
i )]

M0
and

Ailn =
E[Bin(Ql

i ,R
l
i ,S

l
in)]

Mn
for each columnl ∈ L, for parti ∈ I and for each warehouse

n ∈ N.

• In the pricing problem (CG), Ai0 andAin are redefined asAi0 =
E[Bi0(Qi ,Ri )]

M0
and

Ain =
E[Bin(Qi ,Ri ,Sin)]

Mn
for each parti ∈ I and for warehousen ∈ N.

• In subproblemSPi(~θ), θn is redefined asθn =
−αn

Mn
for eachn ∈ N ∪ {0} and for

each parti ∈ I .

After making these changes, the column generation procedure is implemented in a

similar way to obtain the Lagrangian dual solution for problem Pc. Hence, in an

iterative procedureCG is solved to obtain the columns required for the solution ofLP-

relaxation ofMP, i.e., (Ql
i ,R

l
i ,
~Sl

i) for eachi ∈ I , theLP-relaxation ofMP is solved to

obtain the dual variables required for the solution ofCG, i.e.,αn for eachn ∈ N ∪ {0}
andβi for eachi ∈ I . Similarly, to solve problemCG, we solve subproblemsSPi(~θ)

for all i ∈ I . The procedure is repeated until none of the subproblemsSPi(~θ) yields a

negative optimal objective function value.

To solve each subproblemSPi(~θ), we adapt the algorithm proposed for solving single-

item two-echelon batching problems with Poisson demand in Section 3.2.2 to a com-

pound Poisson setting. This requires extension of the results in Section 3.2.2 to com-

pound Poisson setting. Therefore, we propose upper boundsQUB
i andRUB

i and lower
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boundsQLB
i andRLB

i for the optimal values forQi andRi for each parti ∈ I , respec-

tively. We explain how to find the optimal solution for subproblems for given values

of reorder level and order quantity. These are necessary forthe implementation of the

corresponding algorithm. The details are given in AppendixA.

After finding the Lagrangian dual solution, we use the greedyalgorithm in Section

3.2.3 to obtain a feasible solution starting from the Lagrangian dual solution. In this

way, we develop the Lagrangian heuristic for the compound Poisson model.

In order to implement the sequential heuristics we follow the procedure in Section

2.2. The sequential heuristic requires the following minorchanges: The EOQ and

the EOQ with planned backorders (EOQB) formulae are revised for the compound

Poisson model asQi =

√
2µi0Ki

cih
andQi =

√
2µi0Ki (cih+pi )

(cih)pi
, respectively. To implement

the third batch size heuristic, we use the upper boundQUB
i and the lower boundQLB

i

developed for the solution of the subproblemsSPi(~θ) provided in Appendix A. In this

manner, similar to Section 2.2, we obtain three alternativesequential heuristics:S1,

S2 andS3.

The Lagrangian dual bound, obtained through the column generation algorithm, is

asymptotically tight in the number of parts for the compoundPoisson setting as well.

This is easy to show since our proof for the Poisson demand model in Section 4.3

is free of the demand distribution. Therefore this result also holds for the compound

Poisson demand setting. Similarly, since the column generation method converge (as

shown in Chapter 3) all our heuristics guarantee convergence.

5.5 Computational Study

In this section, we conduct a computational study to test theperformances of the

heuristics and the approximations. Our computational study comprises four parts.

First, the performance of the Lagrangian heuristic implemented by using the exact

evaluation method is tested against the Lagrangian dual bound. Note that since this

bound is known to be asymptotically tight in the number of parts, its performance is

verified at least for problem instances with large number of parts. In this way, we

evaluate the performance of Lagrangian heuristic, which yields quite satisfactory re-
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sults in the pure Poisson demand case, as we show in Chapter 4, and we extend some

of the findings in Chapter 4 to compound Poisson demand setting. The experiment

also makes it possible to explore the size of the problems that can be solved by us-

ing the exact evaluation method. The performance of the Lagrangian heuristic based

on the exact method is evaluated in terms of the percentage cost deviation from the

Lagrangian dual solution, which is simply denoted byPCDLD. Let zLD be the ob-

jective function value of the solution obtained by the Lagrangian dual solution when

the exact method is used (exact Lagrangian dual bound) and let zLH be the objective

function value of the solution obtained by the Lagrangian heuristic when the exact

method is used, thenPCDLD is computed as follows:PCDLD =
|zLH−zLD |

zLD
.

Second, the performances of the Lagrangian and the sequential heuristics imple-

mented by using the approximate evaluation methods are tested against the Lagrangian

heuristic that is implemented by using the exact evaluation. In this way, we gain

insights about the performances of the heuristics and test the accuracy of the ap-

proximations at the same time. Since exact evaluation is only possible for small-size

problems, we do not perform a computational study to analyzethe performance of the

sequential heuristics under the exact method although we dothat for the Lagrangian

heuristic. Hence, we test the performance of the solutions obtained by the three se-

quential heuristic based on the approximate evaluation methods. The performance

of the heuristics under the approximate evaluation methodsis evaluated in terms of

the percentage cost difference between the corresponding solution and the solution

obtained by the Lagrangian heuristic based on the exact method, which is denoted

by PCDLH. Let z be the objective function value of any solution to be tested,then

PCDLH is computed as follows:PCDLH =
|z−zLH |

zLH . To obtainPCDLH, we compute the

correct value ofz. That is, for all heuristics that are based on approximate evaluation

methods, after we obtain a solution by applying the heuristic and the correspond-

ing approximation, then we obtain evaluate the resulting objective function by using

the exact method. Hence, while we compute thePCDLH for any solution, we use

the exactz value for the corresponding solution. To test the performances of the

heuristics that are based on the approximations, we are alsointerested in the num-

ber/percentage of instances that the corresponding method yields a feasible solution.

For infeasible solutions, also it makes sense to measure thelevel of infeasibility. An
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appropriate measure for the level of infeasibility can be the relative distance to feasi-

ble region, which is also considered by Wong et al. (2007b). It is defined as follows:

Let X be the solution obtained by any one of the heuristics that is obtained by us-

ing one of the approximate evaluation methods and letWn(X) is the aggregate mean

response time at warehousen ∈ N in the steady state for the corresponding solu-

tion, then the relative distance to the feasible region, simply RDFR, is obtained by

RDFR=
∑

n∈N∪{0}

{(
Wn(X) −Wmax

n

)+}
/

∑
n∈N∪{0}

Wmax
n . Note that this expression is simi-

lar to the measure of violation of the constraints used in theevolution of the greedy

algorithm in Section 3.2.3.

Third, we test the performance of the Lagrangian dual solutions obtained by using the

approximate evaluation methods so that we can find a solutionto be used as a bench-

mark solution later in the experiments with large, practical-size problems. Therefore,

we compare the performances of the Lagrangian dual solutions that are based on the

approximate evaluation methods against the exact Lagrangian dual solution, or sim-

ply the exact Lagrangian dual bound for the problem. To do so,we consider the gap

between the corresponding solution and the Lagrangian dualbound, which is denoted

by PGAP′. Let z′ be the objective function value of the Lagrangian dual solution ob-

tained by any approximate evaluation method, thenPGAP′ is computed as follows:

PGAP′ = |z
′−zLD |
zLD

.

Finally, using the results of the previous parts of the computational study, we con-

duct experiments with larger problems so that we can obtain results for more realistic

cases. As a benchmark solution, we use the solution of the Lagrangian heuristic ob-

tained by using the approximation that yields the best performance. We decide on the

best approximation based on the results of the experimentalstudy in the second part

of the computational analysis. Hence, the performance of the heuristics is evaluated

in terms of the percentage cost difference between the solution obtained by the corre-

sponding method and the benchmark solution. This performance measure is denoted

by PCDLHapp =
|z−zapp|

zapp
, wherezapp is the objective function value of the benchmark

solution, i.e., the Lagrangian heuristic that is obtained by using the most appropri-

ate approximation. Since the exact evaluation is intractable for large-scale problems,

measuring the level of infeasibility is not possible for thelarger problems. Hence,

in this part, we rely on thePCDLH and also the results of earlier experiments with
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small-size problems in the second part of the experiments. Hence, all our findings

are based on the approximate evaluation, i.e.,z, the objective function value of any

solution to be tested, is evaluated under the correspondingapproximation. However,

even if this is the case, testing the heuristics obtained by using the approximations is

still possible to a certain extent and also it makes sense as we see in the following

sections.

The performances of the approximations can also be tested bycomparing the com-

plete distributions associated with the approximations with the exact distribution. In

the dissertation, we exclude the corresponding analysis and consider it as a future

work. We suppose that after making such an analysis our findings make more sense.

In Section 5.5.1, we introduce our experimental design. Then, in Section 5.5.2, the

performance of the Lagrangian heuristic implemented by using the exact evaluation

method is tested against the Lagrangian dual bound. Later, in Section 5.5.3, the per-

formances of the Lagrangian and the sequential heuristics implemented by using the

approximate evaluation methods are tested against the Lagrangian heuristic under the

exact evaluation. In Section 5.5.4, we test the performanceof the Lagrangian dual

solutions obtained by using the approximate evaluation methods. Finally, in Section

5.5.5, using the results of the computational study in 5.5.4, we present results from

experiments conducted for large-size problems.

5.5.1 Experimental Design

In our experiments, we consider the following seven parameters as the experimental

factors: (i) number of parts,|I |, (ii) number of local warehouses,|N|, (iii) customer

arrival rate,λin, (iv) variance-to-mean ratio of the demand distribution,
σ2

in

µin
, (v) unit

variable costs,ci, (vi) fixed ordering costs,Ki, (vii) target aggregate mean response

times at the warehouses,Wmax
n . Since the lead timeTin at warehousen ∈ N ∪ {0}

contributes to the model in the form of lead time demandλinTin, we do not consider it

as a distinct factor. In our computational study, we consider three testbeds. The first

testbed is used to explore the effects of all parameters, whereas the second testbed

is to observe the effects of the number of parts, the number of local warehouses and

the variance-to-mean ratio of the demand more deeply, whichare the most critical
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parameters that effect the performances of the heuristics and the approximations. In

both testbeds, we consider relatively small problems. Thismakes it possible to im-

plement both the exact and approximate evaluation methods.These testbeds are used

in the computational study in Sections 5.5.2-5.5.4. The third testbed is to extend the

findings in 5.5.2-5.5.4 to large, practical size problems. This testbed is used in the

computational study in Section 5.5.5. For all testbeds, thefollowing considerations

are common: The lead time at the central warehouse,Ti0, across all parts, the tar-

get aggregate mean response times at the warehouses,Wmax
n , across all warehouses,

the lead times at the local warehouses,Tin, across all parts and local warehouses are

assumed to be identical. We assume that the unit variable costs, ci, and the fixed or-

dering costs,Ki, are nonidentical across all parts, the customer arrival rates,λin, and

the variance-to-mean ratio of the demand distribution,
σ2

in

µin
are nonidentical across all

parts and warehouses. The fixed ordering cost of each part andthe variance-to-mean

ratio
σ2

in

µin
of demand distribution of each part at each location are assumed to be ran-

dom. Each is generated from a uniform distribution. To represent skewnesses of the

customer arrival rates and the unit variable costs across parts, i.e., the Pareto princi-

ple, we follow the same approach that we consider for the Poisson demand in Section

4.4.1. Recall that in Section 4.4.1, we obtain instances for symmetric and assymetric

demand cases. In a similar way, we obtain symmetric and assymetric demand cases

for the Poisson demand setting. However, we consider only the asymmetric demand

case, since it is more realistic and there is no significant difference between the two

cases in the pure Poisson demand setting.

For the first testbed, we consider 2 levels of each parameter,except the
σ2

in

µin
ratio,

to avoid explosion of the number of problem instances. To analyze the effect of
σ2

in

µin
ratio more deeply, we consider 3 levels. The first level, i.e., the one generated

from U[1,1.001], corresponds to the special case where
σ2

in

µin
is almost 1 and resembles

the pure Poisson demand setting the most. The other two levels corresponds to the

situations where
σ2

in

µin
is higher. The number of parts is set to 20 and 50, whereas the

number of local warehouses is set to 2 and 3. Table 5.2 summarizes the values of the

parameters used in testbed 1. Based on this setting, 5 random problem instances are

generated for each of the 192 (26 × 3) different settings, resulting in a total of 960

problem instances.

119



Table 5.2: Parameter values used in testbed 1.

Parameters 
Number of 

Levels Values 

I  2 20 and 50 
N  2 2 and 3 

inλ  (arrivals/day) 2 0.02 and 0.005 

ic  ($/unit) 2 1000 and 5000 
max

nW  (day) 2 0.1 and 0.9 

iK  ($/order) 2 U[50/3, 100/3] and U[50/3, 100/3]  

inin µσ /2  3 U[1,1.001], U[1,1.5], U[1,2]  
 

As we mention before, we also generate a second testbed to explore the effect of
three parameters simultaneously, i.e., the number of parts, the number of warehouses
and the variance-to-mean ratio of the demand distribution. We generate the problem
instances for the second testbed in a similar way as we generate the �rst testbed. We
consider 10 levels of the number of parts, 2 levels of the number of local warehouses
and 3 levels of the variance-to-mean ratio. We consider a single level of each of the
remaining parameter. Here, we take an average setting for these parameters. Table
5.3 summarizes the values of the parameters used in testbed 2. Based on this setting,
12 random problem instances are generated for each of the 60 (10 × 2 × 3) different
parameters setting, resulting in a total of 720 problem instances.

For the third testbed, through which we aim at extending our analysis to large-scale
problem instances, we consider 7 levels of the number of parts and 2 levels of the
variance-to-mean ratio. In order to observe the effect of much higher variance-to-
mean ratios, we also consider a setting in which this ratio is generated from U[1, 4].
For the rest of the parameters we consider a single level. The values of the parameters
used in this third testbed is summarized in Table 5.4. Based on this setting, 5 random
problem instances are generated for each of the different parameters setting. Apart
from that, using the same testbed we also carry out experiments for problem instances
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Table 5.3: Parameter values used in testbed 2.

Parameters 
Number of 

Levels Values 

I  10 10, 20, 30, 40, 50, 60, 70, 60, 90 and 100 
N  2 2 and 3 

inλ  (arrivals/day) 1 0.01 

ic  ($/unit) 1 3000 
max

nW  (day) 1 0.3 

iK  ($/order) 1 U[100/3, 200/3] 

inin µσ /2  3 U[1,1.001], U[1,1.5], U[1,2]  
 

with 5,000 parts and 12 local warehouses so that we can further see the performances
of the heuristics and the approximations for larger problem instances in terms of the
number of local warehouses.

The logarithmic and the geometric distributions are empirically shown to be best �t-
ting distributions for spare parts, with having almost the same �tting rates (Eaves
2002). Although the two distributions are very similar distributions (Eaves 2002,
Axsäter 2006), in the case of logarithmic distribution, the demand distribution turns
out to be a negative binomial distribution. This simpli�es the computations. For the
sake of simplicity, we use the logarithmic distribution as a compounding distribution
in our experiments. However, since all the heuristics and approximations developed
in this chapter are free of the compounding distribution, it is also possible to consider
other distributions as well. To illustrate the effect of variance-to-mean ratio on the
demand distribution, consider the following example. Let the external customer ar-
rival rate for any two parts at the central warehouse be 0.015 and 0.05 per day, i.e.,
say λ1n = 0.015 and λ2n = 0.05. This corresponds to a situation in which demand
arrivals occurs in almost every two months and every 20 days, which are very rea-
sonable frequencies for spare parts in practice. Then, for the corresponding values of
customer arrival rates, the probability distribution (since we use a logarithmic com-
pounding distribution, this corresponds to a negative binomial distribution), the mean
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Table 5.4: Parameter values used in testbed 3.

Parameters 
Number of 

Levels Values 

I  7 50, 100, 250, 500, 1000, 3000 and 5000 
N  1 6 

inλ  (arrivals/day) 1 0.015 

ic  ($/unit) 1 3000 
max

nW  (day) 1 0.3 

iK  ($/order) 1 U[50, 100] 

inin µσ /2  3 U[1,2], U[1,4]  
 

and the variance of the lead time demand for different values of variance-to-mean ra-
tio, σ

2
in
µin

are shown in Figure 5.1 (lead time at the central warehouse is assumed to be 10
days). Figure 5.1 shows how the tail of the lead time demand probability distribution
at the central warehouse extends and the increase of the mean and the variance of the
corresponding distribution with the variance-to-mean ratio.

In all our experiments, it is possible to consider the cases in which (1) only external
customers, (2) both type of customers are incorporated in evaluating the performance
of the central warehouse. Since the experiments do not reveal any signi�cant differ-
ence between the results of the two cases in the Poisson demand case (as shown in
Chapter 3), we consider only the latter case since it is more realistic. The inventory
carrying charge is taken as 25% annual. The algorithms are coded in C++ and the
experiments are run on an Intel 3 GHz processor with 3.5 GB RAM. In the remainder
of this section the results of the experiments are presented and discussed.

5.5.2 Performance of the Lagrangian Heuristic under the exact evaluation

As we mention before, to test the performance of the heuristics we use testbed 1,
whereas to explore the effects of the number of parts, the number of local warehouses
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Probability distribution of the lead time demand under different variance-to-mean ratios 
(average demand rate = 0.015) 

Variance-to-mean ratio Total demand 
size 1 1.5 2 2.5 3 3.5 4 

0 86.07% 86.07% 86.07% 86.07% 86.07% 86.07% 86.07% 

1 12.91% 10.61% 9.31% 8.45% 7.83% 7.36% 6.98% 

2 0.97% 2.42% 2.83% 2.95% 2.97% 2.94% 2.90% 

3 0.05% 0.64% 1.05% 1.28% 1.41% 1.49% 1.53% 

4 0.00% 0.18% 0.42% 0.61% 0.74% 0.83% 0.89% 

5 0.00% 0.05% 0.18% 0.30% 0.41% 0.49% 0.55% 

6 0.00% 0.02% 0.08% 0.16% 0.23% 0.30% 0.35% 

7 0.00% 0.00% 0.03% 0.08% 0.14% 0.19% 0.23% 

8 0.00% 0.00% 0.02% 0.04% 0.08% 0.12% 0.15% 

9 0.00% 0.00% 0.01% 0.02% 0.05% 0.08% 0.10% 

10 0.00% 0.00% 0.00% 0.01% 0.03% 0.05% 0.07% 

…..               

Mean 0.1500 0.1850 0.2164 0.2456 0.2731 0.2993 0.3246 

Variance 0.1500 0.2775 0.4328 0.6139 0.8192 1.0477 1.2984 

 
 

Probability distribution of the lead time demand under different variance-to-mean ratios 
(average demand rate = 0.05) 

Variance-to-mean ratio Total demand 
size 1 1.5 2 2.5 3 3.5 4 

0 60.65% 60.65% 60.65% 60.65% 60.65% 60.65% 60.65% 

1 30.33% 24.93% 21.88% 19.86% 18.40% 17.29% 16.41% 

2 7.58% 9.28% 9.41% 9.21% 8.93% 8.64% 8.37% 

3 1.26% 3.33% 4.27% 4.69% 4.87% 4.94% 4.94% 

4 0.16% 1.18% 1.99% 2.49% 2.80% 3.00% 3.11% 

5 0.02% 0.41% 0.94% 1.36% 1.67% 1.88% 2.04% 

6 0.00% 0.14% 0.45% 0.75% 1.01% 1.21% 1.36% 

7 0.00% 0.05% 0.21% 0.42% 0.62% 0.79% 0.93% 

8 0.00% 0.02% 0.10% 0.24% 0.39% 0.52% 0.64% 

9 0.00% 0.01% 0.05% 0.14% 0.24% 0.35% 0.45% 

10 0.00% 0.00% 0.02% 0.08% 0.15% 0.23% 0.31% 

…..               

Mean 0.5000 0.6166 0.7213 0.8185 0.9102 0.9978 1.0820 

Variance 0.5000 0.9249 1.4427 2.0463 2.7307 3.4923 4.3281 

 

Figure 5.1: Effect of variance-to-mean ratio on the lead time demand distribution, its
mean and variance.
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and the variance-to-mean ratio more deeply, we use testbed 2. We consider the per-
centage cost difference between the Lagrangian heuristic under the exact evaluation
and the Lagrangian dual bound, PCDLD, as a performance measure. We also evaluate
the performance of the Lagrangian heuristic in terms of the computational require-
ments based on our experiments conducted by using testbed 1. A summary of the
results for testbed 1 is given in Table 5.5, whereas the results for testbed 2 is summa-
rized in Figure 5.2. The CPU time requirements of the Lagrangian heuristic in testbed
1 is presented in Table 5.6

Table 5.5: Effects of parameters on the performance of the Lagrangian heuristic when
the exact evaluation method is used.

Exact 
Parameters 

Avg. Max 
All instances   3.472% 26.448% 

20 4.738% 26.448% Number of Parts 
50 2.206% 16.013% 

3 3.363% 20.852% Number of Warehouses 
4 3.582% 26.448% 

[1,1.001] 4.425% 26.448% 

[1,1.5] 3.605% 21.358% Variance to Mean Ratio 

[1,2] 2.387% 12.292% 

0.005 3.847% 20.852% Average Demand Arrival 
Rate (units/day) 0.02 3.098% 26.448% 

1000 3.023% 18.886% Average Unit Cost 
($/unit) 5000 3.922% 26.448% 

25 3.847% 26.448% Average Fixed Ordering 
Cost  ($/order) 75 3.097% 20.809% 

0.1 3.457% 26.448% Target Aggregate Mean 
Response Time (day) 0.9 3.487% 20.852% 

 

The main �ndings are as follows:

• As depicted in Table 5.5, both the average and the maximum PCDLD are found
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to be high. However, both improve as the number of parts becomes larger. Fig-

ure 5.2 displays that the averagePCDLD that the Lagrangian heuristic yields for

all 12 random instances in testbed 2 improves with the numberof parts. Ac-

cordingly, when the number of parts is 100 and the number of local warehouses

is 2, the averagePCDLD are found to be 1.32%, 0.83% and 0.50% for the low,

mid and high variance-to-mean ratios (or simply demand variance cases), re-

spectively. Similarly, when the number of parts is 100 and the number of local

warehouses is 3, the averagePCDLD are 2.09%, 0.93% and 0.78% for the low,

mid and high demand variance cases, respectively. Both experimental results

for testbed 1 and 2 show that thePCDLD that the Lagrangian heuristic yields

increases with the number of local warehouses. However, theeffect of the num-

ber of parts seems to be more strong compared to the that of thenumber of local

warehouses. All these results are in line with our findings for the pure Poisson

case in Section 4.4.3.

• Figure 5.2 also shows that the averagePCDLD of the Lagrangian heuristic is

lower when the demand variance is higher. This reveals that the Lagrangian

heuristic, whose performance is tested to be quite well in the pure Poisson (low

variance) case, yields much better results in the compound Poisson demand

case as the demand variance increases.

• The average and the maximum CPU time required by the Lagrangian heuris-

tic obtained by using the exact evaluation method (also the ones obtained by

using alternative approximation methods) are summarized in Table 5.6. In this

table and as well as the others in the rest of this chapter, we abbreviate the

two-moment approximation for outstanding orders and the two-moment ap-

proximation for backorders as two-moment app. (out) and two-moment app.

(back), respectively. Table 5.6 displays that average and the maximum CPU

time (in sec.) required by the Lagrangian heuristic are quite high under the

exact evaluation even when the number of parts is relativelysmall, such as 20

and 50. However, they are quite low when approximations are used. These re-

sults highlight how the exact evaluation procedure becomeshighly involved for

the compound Poisson demand and also explain why approximations are very

necessary to solve problems under the compound Poisson demand such as the
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Performance of LH under exact evaluation with respect to number of parts 
for different settings of variance to mean ratio (NumWare = 2)
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Performance of LH under exact evaluation with respect to number of parts 
for different settings of variance to mean ratio (NumWare = 3)
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Figure 5.2: Effect of variance-to-mean ratio on the lead time demand distribution, its
mean and variance.
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one in this dissertation. Therefore, in the rest of this section, we investigate the
performance of the approximations and and try to �nd out an approximation(s)
that can substitute the exact evaluation for larger problems.

Table 5.6: Computational requirements of the Lagrangian heuristics under the exact
and approximate evaluation methods (CPU time in sec.)

Exact method Binomial 
app. Metric app. 

Two-
moment 

app. (out) 

Two-
moment 

app. (back) Parameters 

Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max 

All instances (over 960 instances) 2732.25 125646.28 0.23 2.00 0.06 0.23 0.06 0.25 0.10 0.55 

20 1815.96 125646.28 0.12 0.99 0.03 0.13 0.04 0.13 0.06 0.33 Number of Parts 
50 3648.55 101447.61 0.34 2.00 0.08 0.23 0.09 0.25 0.15 0.55 

2 1347.11 84336.36 0.14 0.78 0.04 0.13 0.05 0.13 0.07 0.27 Number of Warehouses 
3 4117.40 125646.28 0.33 2.00 0.07 0.23 0.08 0.25 0.13 0.55 

 

5.5.3 Performance of the heuristics under the approximate evaluation methods

As mentioned before at the beginning of this section, we consider three different
measures to evaluate the performance of the heuristics that are obtained by using the
approximate evaluation methods. These are the percentage cost difference between
the solution and the exact solution of the Lagrangian heuristic, PCDLH, the number
of feasible solutions and the relative distance to the feasible region, RDFR. Among
these three measures, the PCDLH evaluates the performance of the solutions obtained
by the heuristic (as well as the approximations) in terms of the objective function
values. However, the latter two measures are related with whether the constraints are
satis�ed, and if not, what level of violation is incurred and how far the solution is
from the feasible region.

5.5.3.1 The performance of the Lagrangian heuristic under the approximate
evaluation methods

The results for testbed 1 are summarized for each measure separately in Tables 5.7-
5.9. The results for testbed 2 are presented in Figures 5.3 and 5.4, where each point
in the �gure represents the average and the maximum PCDLH and RDFR for the 12
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problem instances in testbed 2, respectively. In the corresponding figures, we present

the results for the settings in which the number of local warehouse is 2. The results

for the settings in which the number of local warehouse is 3 are similar. The main

findings based on thePCDLH that the Lagrangian heuristic yields are as follows:

• As depicted in Table 5.7, under each one of the approximations, the average

PCDLH that the Lagrangian heuristic yields is quite satisfactory, but the max-

imum PCDLH is considerably high. However, both the average and the maxi-

mum PCDLH that the Lagrangian heuristic yields are quite tolerable inlarger,

more realistic problem sizes as we discuss later.

• Among four approximate evaluation methods, the two-momentapproximations

yields better results compared to the binomial approximation and the METRIC.

It is well known that the binomial disaggregation fails in the compound Pois-

son demand setting. Our empirical findings verifies this result and show that

the performance of the binomial disaggregation is relatively poor. It is also

known that the two-moment approximation yields better results than METRIC

in pure Poisson case (Graves 1985, Wong et al. 2007b). Our findings show that

this conclusion holds for the compound Poisson demand as well. Finally, the

experiments reveal that the two-moment approximation for outstanding orders

yields slightly better results than the two-moment approximation for backo-

rders. These results can also be seen in Figure 5.3.

• Although the performance of the Lagrangian heuristic underexact evaluation

is found to be better for problems with high demand variance,the result is the

opposite when we rely on the approximate evaluation methods. This shows that

as the variance-to-mean ratio increases, approximating the outstanding backo-

rders by using any one of the approximations works less. However the effect of

demand variance is much more significant for the binomial approximation and

performs better when the demand variance is low such as the case in the pure

Poisson demand. This can also be seen in Figure 5.3.

• As shown in Table 5.7, under the binomial and the two-moment approxima-

tions, the Lagrangian heuristic yields a better performance when the number

of parts is higher. Note that this is in line with our findings in the pure Pois-
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Performance of LH under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Performance of LH under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,2], Number of local warehouses = 2)
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Figure 5.3: Effect of the number of parts on the performance of the Lagrangian heuris-
tic under various approximations (PCDLH).
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Performance of LH under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Figure 5.3 (continued)
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son demand case. We interpret this finding as follows: Under the multi-item

approach, which makes risk pooling possible among parts, the benefits of risk

pooling increases as the number of parts increases. Hence, it is more likely to

find a feasible solution close to the optimum by using the Lagrangian heuristic.

• Table 5.7 displays that under all approximations, the Lagrangian heuristic yields

more accurate results in terms of thePCDLH when the number of local ware-

houses is high. Note that for the Poisson demand, we do not have such an

observation. Hence, this finding is related with using approximations. That is,

binomial disaggregation (binomial approximation), constant lead time assump-

tion (METRIC), and two-moment approximations work better as the number of

local warehouses increases. Our findings are in line with Wong et al. (2007b).

• These two observations are important in the sense that the Lagrangian heuristic

under the approximate evaluation methods offers a better performance for large-

size practical systems. For instance, as shown in Figure 5.3even in the high de-

mand variance case, both the average and the maximumPCDLH of the solution

obtained by the Lagrangian heuristic under the two-moment approximation for

outstanding orders decrease down to tolerable levels as thenumber of parts in-

creases, e.g., when the number of parts is 100, the average and the maximum

PCDLH that the Lagrangian heuristic yields are 0.77% and 1.41%, respectively

for the two-moment approximation for outstanding orders, whereas those for

the two-moment approximation for backorders are 0.79% and 1.44%, respec-

tively.

• As shown in Table 5.7 and Figure 5.3, the binomial disaggregation which is

exact in the pure Poisson demand case, yields quite satisfactory results when

the variance-to-mean ratio is almost 1. Nevertheless, whenthe demand variance

is higher, its performance deteriorates and it becomes almost as poor as that of

the METRIC. Later, we also show that its performance is even worse than the

METRIC when the demand variance is much higher.

• The Lagrangian heuristic yields a better performance for problem instances

with

– high average customer arrival rate,
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– low average unit variable cost,

– high average fixed ordering cost,

– long target aggregate mean response time.

These findings are common for all approximations, except that the METRIC

yields a better performance when the average customer arrival rate is low. These

results are in line with the results in pure Poisson demand case in Section 4.4.3.

The first three conditions correspond to a situation where the optimal inventory

policy parameters, i.e.,Qi, Ri andSin, are high. This shows that when the value

of optimal policy parameters are high, the Lagrangian heuristic performs better.

This observation is also in line with Wong et al. (2007b). We interpret the

fourth observation as follows: Long target aggregate mean response times yield

loose constraints for the problemP. Under the multi-item approach, such loose

constraints increase the risk pooling among parts. This increases the number

of alternative near-optimal solutions. Hence, under long target aggregate mean

response times, it is more likely to find a feasible solution that is close to the

optimal solution by using the Lagrangian heuristic. The fourth observation is

also in line with our findings for the Poisson demand setting in Section 4.4.3.

The main findings based on the feasibility measures that the Lagrangian heuristic

yields are as follows:

• As depicted in Tables 5.8, the number of feasible solutions obtained by the La-

grangian heuristic under approximate evaluation methods seems to be relatively

few. It decreases with as the following factors increases: the number of parts,

the number of local warehouses and the demand variance. Notethat these are

the most critical factors in our analysis. The former two defines the size of

the problems, whereas the latter is a measure specific to the compound Poisson

distribution.

• Both the two-moment approximations yield higher performance in terms of the

number of feasible solutions than the binomial approximation and METRIC.

The two-moment approximation for outstanding orders offers a slightly better

performance than the two-moment approximation for backorders.
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• As shown in Table 5.9, the averageRDFRof the solutions obtained by the La-

grangian heuristic under two-moment approximations are quite tolerable and

considerably lower than the binomial approximation and theMETRIC. How-

ever, the maximumRDFRis considerably high. Nevertheless, as shown in 5.4,

when either one of the two-moment approximations is used, the average and the

maximumRDFRobtained by using the Lagrangian heuristic decrease with the

number of parts. For instance, when the number of parts is 100, even in the high

demand variance case; when the two-moment approximation for outstanding

orders is used, the average and the maximumRDFRof the solutions obtained

by the Lagrangian heuristic are 1.81% and 3.44%, respectively, whereas for the

two-moment approximation for backorders the corresponding values are 1.93%

and 3.57%, respectively. This implies when the target aggregate mean response

time Wmax
n is 0.3 days (approximately 7 hours) the two-moment approxima-

tion for outstanding orders overshoots this target at most with an average of

15 minutes, which is quite tolerable in practice. The figure reveals that this

result improves further as the number of parts increases. The results also show

that although the number of infeasible solutions increaseswith the number of

parts, the number of local warehouses and the demand variance, the level of

infeasibility, so to sayRDFR, stays at tolerable levels.

• Similar to our findings forPCDLH, the Lagrangian heuristic under the approx-

imate evaluation methods yields a better performance for problem instances

with

– high average customer arrival rate,

– low average unit variable cost,

– high average fixed ordering cost,

– long target aggregate mean response time.

Recall that Wong et al. (2007b) considers a decomposition andcolumn generation

(DCG) method similar to our Lagrangian heuristic to find the policy parameters of

a multi-item two-echelon system operating under a base-stock policy. In this pa-

per, they also consider the METRIC and Graves’ two-moment approximation for the

analysis of the system. The authors consider the same performance measures as ours
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Performance of LH under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)

0.00%

0.40%

0.80%

1.20%

1.60%

2.00%

2.40%

2.80%

3.20%

3.60%

4.00%

10 20 30 40 50 60 70 80 90 100
Number of 

parts

Average
RDFR

Binomial Metric Two-moment (out.) Two-moment (back.)
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Figure 5.4: Effect of the number of parts on the performance of the Lagrangian heuris-
tic under various approximations (RDFR).

137



Performance of LH under various approximations with respect to number of 
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Figure 5.4 (continued)
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to test the approximations. Here, we compare our results with that of Wong et al.

(2007b). Accordingly, the relative errors that we obtain inthe experiments are consid-

erably higher than that of obtained by the two-moment approximation in Wong et al.

(2007b). The relative errors due to using METRIC are only slightly higher than those

in Wong et al. (2007b). Due to the computational burden that compound Poisson

demand brings, in this work, we have to experiment with relatively small size prob-

lems, where the approximations performs worse. This explains the slight difference

between the results for METRIC in Wong et al. (2007b) and our work. Neverthe-

less, the difference between the results for the two-moment approximation in Wong

et al. (2007b) and our work is quite significant. That is, the two moment approxima-

tion yields an average total difference (in our work, this corresponds toPCDLH) less

than 0.10% in Wong et al. (2007b), while in our experiments wefind that the aver-

agePCDLH under the two-moment approximation for outstanding ordersis around

1.32%. Similarly, the average and the maximumRDFRunder the two-moment ap-

proximation in Wong et al. (2007b) are less than 0.11% and 0.75%, whereas in our

experiments the average and the maximumRDFRunder the two-moment approxima-

tion for outstanding orders are 1.00% and 14.84%, respectively. We interpret these

results as follows: Recall that applying the two-moment approximation to compound

Poisson demand setting requires estimation of the varianceof the number of outstand-

ing ordersVar(Xin) and this is quite involved for the compound Poisson distribution,

i.e., we obtainVar(Xin) by using equation (5.12) and this is only an approximation.

Nevertheless, it is easy to obtain the corresponding term inthe pure Poisson case

(Wong et al. 2007b). The difference between figures in the two works are attributed

to the additional approximation required to adapt the two-moment approximation for

compound Poisson demand. Since equation (5.12) is used alsoto implement the two-

moment approximation for backorders, this explains the differences in figures for the

two-moment approximation for backorders as well.

Finally, we evaluate the resulting stocking levels that theLagrangian heuristic yields

under different approximations. Both the METRIC and the binomial approxima-

tion result in understocking. For both approximations, thelevel of understocking

increases even further with the increase in variance-to-mean ratio. Although there

are exceptional cases, the two-moment approximations tendto overstock especially
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when the variance-to-mean ratio is high. However, the two-moment approximation

for outstanding orders overstocks less compared to the two-moment approximation

for backorders. These results also effect the total cost estimations obtained by the ap-

proximations in a similar way. For instance, the METRIC and the binomial approxi-

mation results underestimate the exact costs, while the two-moment approximations

have a tendency to overestimate the real costs. These results are in line with the re-

sults reported by Graves (1985), who compares the performance of the two-moment

approximation and the METRIC for a base-stock system facing aPoisson demand.

5.5.3.2 Performance of the sequential heuristics under theapproximate evalu-

ation methods

The results of the experiments for testbed 1 for sequential heuristicsS1, S2 andS3

are summarized in Tables B.1-B.3, B.4-B.6 and B.7-B.9, respectively in Appendix

B. The CPU time requirements of the sequential heuristics under the approximate

evaluation in the experiment with testbed 1 are depicted in Table 5.10. Based on

these results, we make the following observations:

• The average and the maximumPCDLH obtained by theS2 andS3 heuristics are

lower than those ofS1. This implies that taking the service level requirements

into account to obtain the order quantities yields better results for sequential

heuristics. The average and the maximumPCDLH obtained by theS3 are found

to be significantly better than those ofS2. However, neither of the heuristics

dominate the others. All these findings are in line with the findings regarding

the performance of the sequential heuristic in the pure Poisson demand case.

• In terms of thePCDLH, each of the three sequential heuristics obtained by us-

ing the approximate methods yield inferior results compared to the Lagrangian

heuristic obtained by using the approximate methods. For instance, under the

two-moment approximation for outstanding orders, while the averagePCDLH

of using the Lagrangian heuristic is only 1.32%, those ofS1, S2 andS3 are

5.64%, 4.49%, 4.09%, respectively. Nevertheless, this gapdecreases as the

number of parts or the demand variance increases. However, even for those

problem instances that are in favor of the sequential heuristics, the Lagrangian
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heuristic yields quite better results. For instance, when the number of parts

is 50, the averagePCDLH of using the Lagrangian heuristic is 0.92%, those

of S1, S2 andS3 are 4.13%, 2.89% and 2.62%, respectively. Similarly in the

high demand variance case, while the averagePCDLH of using the Lagrangian

heuristic is 2.00%, those ofS1, S2 andS3 are 5.40%, 4.44% and 3.83%, respec-

tively. Furthermore, the maximumPCDLH of using the sequential heuristics are

found to be too high in all of the problem instances.

• In terms of thePCDLH, the performances of the approximations do not differ

much.

• As opposed to the results in terms of thePCDLH, the sequential heuristic yield

comparable results with the Lagrangian heuristic in terms of the feasibility mea-

sures, e.g., under the two-moment approximation for outstanding orders, while

theRDRFof the solution obtained by the Lagrangian heuristic is 1.00%, those

of S1, S2 andS3 are 1.04%, 1.03% and 1.01%, respectively. Intuitively, under

any given approximation, no matter what type of heuristic weuse, the level of

feasibility seems to be the same. Since the approximations mainly affects on

the feasibility of the solutions, the results of the sequential and the Lagrangian

heuristics turn out to be similar in terms of the measures of feasibility. Never-

theless, since these two heuristics differ in the way they search for the optimal

solution, their performances mainly differ in terms of thePCDLH.

• In terms of the feasibility measures, the sequential heuristics obtained by ap-

plying the two-moment approximations are found to be superior to the one

obtained by using the other approximations. The sequentialheuristics that are

obtained by using the two-moment approximation for outstanding orders yields

slightly better results than the one obtained by the two-moment approximation

for backorders.

Finally we evaluate the performance of the sequential heuristic in terms of the com-

putational requirements. Table 5.10 summarizes the results. Based on the results,

the computational requirements of the sequential heuristics are comparable with the

computational requirement of the Lagrangian heuristic given in Table 5.6. This shows

that the computational savings of using the sequential heuristics seem to be limited
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compared to that of the Lagrangian heuristic as in the pure Poisson demand case.

5.5.4 Performance of the Lagrangian dual solution under the approximate eval-

uation methods

The summary of the results for testbed 1 and testbed 2 are presented in Table 5.11

and Figures 5.5, 5.6, respectively. The main findings are as follows:

• As can be seen from both Table 5.11 and Figures 5.5 and 5.6, theLagrangian

dual solution obtained by using the two-moment approximations yields quite

satisfactory results. The results are considerably betterthan those of the La-

grangian dual solutions obtained by using other two approximate evaluation

methods. Furthermore, the Lagrangian dual solution implemented by using the

two-moment approximation for outstanding orders yields a slightly better per-

formance than the one obtained by using the two-moment approximation for

backorders.

• Figures 5.5 and 5.6 reveal that for all the approximations, thePGAPis bounded

above. Furthermore, for the two-moment approximations, the average and the

maximumPGAP′ decrease with the number of parts.

• As shown in Table 5.11 and Figures 5.5 and 5.6, the performance of the La-

grangian dual solution obtained by using the approximate methods deteriorates

as the demand variance increases. However, Figures 5.5 and 5.6 also show

that even in the high demand variance case, the average and the maximum

PGAP′s are at quite tolerable levels. For instance, when the number of local

warehouses is 2 and the number of parts is 100, the average andthe maxi-

mumPGAP′ that the two-moment approximation for outstanding orders yields

are 0.76% and 1.17%, while these figures are 0.80% and 1.19% for the two-

moment approximation for backorders, respectively. Similarly, when the num-

ber of local warehouses is 3 and the number of parts is 100, theaverage and the

maximumPGAP′s that the two-moment approximation for outstanding orders

yields are 0.61% and 1.30%, while these figures are 0.74% and 1.31% for the

two-moment approximation for backorders, respectively.
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• Similar to our findings for the Lagrangian heuristic obtained by using the ap-

proximate evaluation methods in Section 5.5.3.1, the Lagrangian dual solution

obtained by using the approximate evaluation methods yields a better perfor-

mance for problem instances with

– high average customer arrival rate,

– low average unit variable cost,

– high average fixed ordering cost,

– long target aggregate mean response time.

5.5.5 Performance of the heuristics under the approximate evaluation methods

in large-scale problems

Since the exact Lagrangian dual solution becomes intractable for large practical size

problems and the Lagrangian dual solution obtained by usingthe two-moment ap-

proximation for outstanding orders yields satisfactory results in the experiments as

discussed in Section 5.5.4, we use the latter as a benchmark solution in our ex-

periments with large-scale problems. We use testbed 3 for this purpose. Figures

5.7-5.10 summarizes the results. Figures 5.7 and 5.9 display the averagePCDLHapp

and the average CPU time for the Lagrangian and the sequentialheuristics when the

two-moment approximation for outstanding orders is used, respectively. Figures 5.8

and 5.10 show the averagePCDLHapp and the average CPU time for the Lagrangian

heuristics under the approximations considered in this dissertation. Each point in the

figures shows the average of the corresponding measures over10 problem instances

for each setting generated in testbed 3. To illustrate the stocking levels under differ-

ent approximations, we also analyze the average base-stocklevels that the Lagrangian

heuristic yields under four different approximations. The results are summarized in

Figure 5.7. The main findings are given as follows:

• The averagePCDLHapp of the Lagrangian heuristic obtained by the two-moment

approximation for outstanding orders approaches to zero asthe number of parts

increases. This is intuitive. Under a given approximation,the gap between the

Lagrangian heuristic and the Lagrangian dual solution is expected to approach
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,2], Number of local warehouses = 2)
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Figure 5.5: Effect of the number of parts on the performance of the Lagrangian dual
solution under various approximations (PGAP′ - Number of local warehouses = 2).
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 2)
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Performance of LD under various approximations with respect to number of 
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0.00%

0.90%

1.80%

2.70%

3.60%

4.50%

5.40%

6.30%

7.20%

8.10%

9.00%

10 20 30 40 50 60 70 80 90 100
Number of 

parts

Max
PGAP

Binomial Metric Two-moment (out.) Two-moment (back.)

 

Figure 5.5 (continued)
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 3)
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,2], Number of local warehouses = 3)
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Figure 5.6: Effect of the number of parts on the performance of the Lagrangian dual
solution under various approximations (PGAP′ - Number of local warehouses = 3).
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Performance of LD under various approximations with respect to number of 
parts (Variance to mean ratio ~ U[1,1.001], Number of local warehouses = 3)
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Figure 5.6 (continued)
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to zero as the number of parts increases. We show that this result holds for
the exact evaluation case. Now, we observe this result is valid under the two-
moment approximation for outstanding orders. The PCDLHapp of the sequential
heuristics decreases with the number of parts as well, but does not converge to
zero, e.g., as shown in Figure 5.7, when the number of parts increases to 5,000,
the average PCDLHapp that S 1, S 2 and S 3 yield approaches to 1.18%, 3.22%
and 4.09%, respectively. Also, the average PCDLHapp that S 3 yields is found to
be quite lower than those of the S 1 and S 2. All these �ndings are is line with
the �ndings in pure Poisson case.

Performance of heuristics under the two-moment approximation for 
outstanding orders with respect to number of parts
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Figure 5.7: Effect of the number of parts on the performance of the Lagrangian and
the sequential heuristic under the two-moment approximation for outstanding orders
(PCDLHapp).

• Figure 5.8 reveals that PCDLHapp of the Lagrangian heuristic obtained by the
two-moment approximation for backorders is also very low. However for the
binomial approximation and METRIC, the PCDLHapp is very high and increases
with the number of parts.

• As can be seen from Figure 5.9, the sequential heuristics do not bring a signi�-
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Performance of the Lagrangian heuristic under various approximations 
(Variance to mean ratio ~ U[1,2], Number of local warehouses = 6)
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Performance of the Lagrangian heuristic under various approximations 
(Variance to mean ratio ~ U[1,4], Number of local warehouses = 6)

0.00%

0.55%

1.10%

1.65%

2.20%

2.75%

3.30%

3.85%

4.40%

4.95%

5.50%

50 100 250 500 1000 3000 5000
Number of 

parts

Average
PCPLHapp

Binomial Metric Two-moment (out.) Two-moment (back.)

 

Figure 5.8: Effect of the number of parts on the performance of the Lagrangian heuris-
tic under various approximations (PCDLHapp).
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cant computational advantage over the Lagrangian heuristic. Note that this �nd-
ing is in line with our earlier �nding in Section 4.4.5. Figure 5.10 indicates that
the two-moment approximation for outstanding orders is quite efficient in terms
of the computational requirements; the CPU time required for the Lagrangian
heuristic obtained by using the two-moment approximation for outstanding or-
ders is found to be comparable with the one obtained by using METRIC and
quite lower than that obtained by using other two approximations.

Computational requirement of the heuristics under the two-moment 
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0

100

200

300

400

500

600

700

800

900

1000

1100

50 100 250 500 1000 3000 5000

Number of parts

Average
CPU (sec)

LH S3 S2 S1

 

Figure 5.9: Computational requirements of the heuristics evaluated under the two-
moment approximation for outstanding orders (CPU time in sec).

• As shown in Figure 5.11, the Lagrangian heuristic yields higher average base-
stock levels at the local warehouses when either one of the two-moment ap-
proximations are used compared to the situation in which the other two approx-
imations are used.

• The results of the experiment for the problem instances with 5,000 parts and 12
local warehouses show that the average PCDLHapp that the Lagrangian heuris-
tic by using the two-moment approximation for outstanding orders yields is
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Computational requirement of the heuristics under the two-moment 
approximation for outstanding orders (Number of local warehouses =6)
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Figure 5.10: Computational requirements of the Lagrangian heuristic under various
approximations (CPU time in sec).
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0.004%, whereas the average CPU time required to obtain the solution of the
corresponding heuristic is 1.58 hours. The average PCDLHapp and the aver-
age CPU time for the two-moment approximation for backorders are 0.06%
and 2.97 hours, respectively. These results indicate that under the two-moment
approximation, the Lagrangian heuristic is quite efficient in terms of the com-
putational requirements, furthermore, it yields quite promising results.

Performance of the Lagrangian heuristic under various approximations
(Number of local warehouses = 6) 
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Figure 5.11: Average stocking level obtained by the Lagrangian heuristic evaluated
under the two-moment approximation for outstanding orders.

5.6 Conclusion

In this work, we extend the Lagrangian heuristic, the sequential heuristics and the
Lagrangian dual bound that we develop for the Poisson demand setting in previous
chapters to a compound Poisson demand setting. To analyze the steady-state be-
haviour of the system, we consider an exact and approximate evaluation methods.
For the approximate evaluation, we consider four alternatives. The �rst approxima-
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tion corresponds to the binomial disaggregation method, which is used for the analy-

sis of Poisson demand model in Chapter 3. Note that although ismethod is exact for

the Poisson demand model, it is an approximation for the compound Poisson demand

model. For the second approximation and the third approximation, we extend the

two-moment approximations proposed by Gallego et al. (2007) and Graves (1985)

to our system. In a computational study, we test the performance of the heuristics

against the lower bound, the performance of the approximations against the results

of exact evaluation method. To the best of our knowledge, ourwork is the first to

propose heuristics for a multi-item two-echelon inventorysystem facing compound

Poisson demand.

The results of the computational study reveal that the Lagrangian heuristic under the

exact evaluation method is tractable only for relatively small problems, e.g., prob-

lems with 100 parts and 3 local warehouses. The approximations considered in our

dissertation are found to be efficient in terms of the computational requirements. The

two-moment approximations yield quite satisfactory results compared to the other

two approximations. We also investigate the effect of parameters on the performance

of the heuristics under the approximate evaluation methods. The performance of the

heuristics gets better as the number of parts increases, andit deteriorates as the de-

mand variance increases. Among these two parameters, the effect of number of parts

is found to be dominant. This shows that for problem with large number of parts,

which is the case in most of the practical application, our heuristics under approxi-

mate evaluation methods offer better performances.

We also extend some of the results obtained for the Poisson demand setting to com-

pound Poisson setting: The Lagrangian heuristics under theapproximate evaluation

methods yields more accurate results compared to the sequential heuristic under the

approximate evaluation methods. The Lagrangian heuristicunder the two-moment

approximation for outstanding orders yield satisfactory results, e.g., when the number

of parts is 100, the average percentage cost difference between the exact Lagrangian

heuristic and the Lagrangian heuristic implemented by using the two-moment ap-

proximation for outstanding orders is only 0.77%, which is expected to decrease even

more as the number of parts increases. The CPU time required bythe Lagrangian

heuristic is found to be comparable with those of the sequential heuristics.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we consider a multi-item two-echelonspare parts inventory dis-

tribution problem. This problem can be observed in capital goods manufacturers who

provide equipments and services for capital intensive markets. Since the equipments

have critical functions, provisioning of the spare parts isof essential importance for

the customers. In this environment, it is the manufacturer’s responsibility to keep

spare parts that will satisfy service requirements. Nevertheless, even in medium-scale

inventory system, this requires controlling of thousands of parts, worth of millions of

dollars. Therefore, for the manufacturers guaranteeing service requirements and at

the same time minimizing the inventory investment is quite essential.

In this dissertation, we consider a multi-item two-echelonspare parts inventory distri-

bution system consisting of a central warehouse operating under a continuous-review

installation-stock (Q,R) policy and a number of local warehouses operating under a

continuous-review installation-stock (S − 1,S) policy. Our objective is to find the

optimal or near-optimal policy parameters minimizing the system-wide expected in-

ventory holding and fixed ordering cost subject to an aggregate mean response time

constraint at each facility. First, we assume that demand isPoisson. Later, we extend

the results that we obtain for the Poisson demand case to compound Poisson setting.

Our work contributes to the literature as follows: First, wepropose an exact solution

procedure based on a branch-and-price algorithm to find the relevant policy parame-

ters of the system considered. The procedure corresponds tosolving the Lagrangian

dual problem by using a column generation method, and then using this solution as

a lower bound in a branch and bound algorithm. To the best of our knowledge, our
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work is the first to propose an exact solution procedure to findthe optimal policy

parameters of a multi-item two-echelon inventory system. We experimentally show

that the branch-and-price algorithm can be used in applications as long as the number

of items and the number of warehouses are limited. Even if this is the case, an exact

solution is desirable due to significant cost reductions andbenchmark purposes.

We propose four alternative heuristics to find the policy parameters of larger, more

practical-size systems. Our heuristics are based on the exact evaluation of the system.

The first heuristic, which we call the Lagrangian heuristic,is based on the simulta-

neous approach and relies on the integration of a column generation method and a

greedy algorithm. The other three heuristics are based on the sequential approach, in

which first the order quantities are determined using a batchsize heuristic, then the re-

order levels at the central warehouse and the base-stock levels at the local warehouses

are determined through the same method used for the Lagrangian heuristic.

We also propose a lower bound for the optimal system-wide cost based on the column

generation and the Lagrangian relaxation. We show that thisbound is asymptotically

tight in the number of parts. This makes the lower bound very promising for large

practical-size problems.

Later, by using our findings and developments as building blocks, we extend our work

to a compound Poisson demand setting. To analyze the steady-state behavior of the

corresponding system, we consider an exact and approximateevaluation methods.

For the approximate evaluation, we consider four alternatives. The first approxima-

tion relies on a disaggregation method, which is exact for pure Poisson demand. The

other two are the extensions of the two-moment approximations proposed by Graves

(1985) and Gallego et al. (2007) to our system setting. The forth one is the extension

of the METRIC. To the best of our knowledge, our work is the first to propose heuris-

tics for finding the parameters of a multi-item two-echelon inventory control systems

facing a compound Poisson process.

Our major findings can be summarized as follows:

• We empirically show that the performance of the Lagrangian heuristic is quite

satisfactory. As the number of parts increases, the performance of the heuris-
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tic improves further, making the heuristic very promising for practical appli-

cations. Also the computational requirement of the heuristic is quite tolerable.

The experiments with practical size problems show that the heuristic is efficient

and effective for large practical industry-size problems.

• The performance of the sequential heuristics are also shownto be satisfactory,

but not as much as the Lagrangian heuristic. We also show thatsome of the

qualitative conclusions regarding the performance of the sequential approach

in the single-item single-echelon literature do not hold for the multi-item two-

echelon setting: The relative cost difference for the sequential heuristics can

be quite high compared to the Lagrangian heuristic, which issimultaneous ap-

proach based heuristic. The computational advantages of the sequential deter-

mination of policy parameters are limited compared to the Lagrangian heuristic.

• Under the compound Poisson demand setting, we show that the exact evaluation

of the system is tractable only when the number parts and the number of local

warehouses are limited. However, the two-moment approximations that we

consider perform well with Lagrangian heuristic, especially when we compare

it with the METRIC and the binomial disaggregation. We also extend some of

the results that we obtain for the Poisson demand setting to compound Poisson

demand setting, e.g., we show that the performance of the heuristics improves

with the number of parts, the Lagrangian heuristic is superior to sequential

heuristic as in the pure Poisson demand case.

There are many extensions that can be considered for our work. These extensions

involve the ones that fit into our work and do not require significant changes in the

method that we develop in this dissertation as well as the ones that requires significant

changes. The first group of -immediate- extensions are as follows: First, the exact so-

lution procedure, the heuristics and the lower bound developed in the dissertation

can be directly extended to systems with target ordering frequency constraints and/or

backorder costs. Target ordering frequency constraints make sense in situations where

the estimation of fixed ordering costs is difficult. Furthermore, cost models, in which

backorder costs are motivated instead of service constraints, are quite common in the

literature. Extension of our work to a system with ordering frequency constraints is
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quite immediate since after the relaxation of the target ordering frequency constraints,

the corresponding model reduces to ours. This requires introduction of an additional

Lagrangian multiplier for each part in the master problem inthe column generation

method, which is the backbone of the solution method proposed in this dissertation.

Similarly, it is quite simple to implement the methods proposed in this dissertation to

a cost model since after the relaxation of the service constraints, our problem imme-

diately reduces to a cost model.

It is also possible to extend our work to systems with other service measures such as

fill rate, time-based fill rates, i.e., combination of fill rate and response time. These

service measures are widely used in practical applications. The extension of our

work to these systems requires evaluation of the corresponding service measures.

After their evaluation, the solution methods in this dissertation can directly be used

to optimize these systems.

Since the Lagrangian heuristic and the Lagrangian dual bound yield quite satisfactory

results with practical size problems, they can be used to provide several managerial

insights about problems encountered in practice, e.g., cost-benefit analysis of opening

up a new local warehouses, determining the optimal number oflocal warehouses, and

cost-benefit analysis of increasing the service levels at the warehouses.

The numerical study with the compound Poisson demand model shows that the per-

formance of the two-moment approximations is not satisfactory as much as in the

pure Poisson demand model, hence, there is still room for improvement in the per-

formance of the approximations. Another fruitful researchdirection is to improve the

approximations for the compound Poisson model. For this purpose, one can find a

better estimate for the variance of the backorders at the local warehouses. A better

approximation integrated with the Lagrangian heuristic can yield quite satisfactory

results.

Apart from these immediate extensions, there are several future research directions

that requires significant changes in the solution method that we develop in this dis-

sertation. These are as follows: Since both the heuristics and the lower bound that

we propose have a general framework, they can be adapted to more complex systems

as well, e.g., multi-item, more than two-echelon systems, the ones with more com-
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plex control policies, systems with repairable and condemned parts. In this situation,

again, to obtain a lower bound, the column generation can be used to decompose

the resulting problem into single-item problems, and the greedy algorithm can be

employed to find a feasible solution using the lower bound obtained by the column

generation. Similarly, the sequential approach can be extended to more complex sys-

tems using the batch size heuristics proposed in this dissertation. For these extensions,

the difficulty arises in solving the resulting single-item (multi-echelon) problems, just

like the one in this dissertation. Since the structure of thecorresponding systems

will resemble ours, we expect that one can obtain results similar to ours, such as the

asymptotic tightness of the Lagrangian dual bound, and the improvement of the La-

grangian heuristic’s performance in the number of parts. Furthermore, it may also be

interesting to investigate the issues raised in this dissertation in a more general system

setting, e.g., exploring the performance of the sequentialapproach.

Note that the central warehouse serves two types of customers, the internal and the

external customers. This creates a rationing problem for the central warehouse. This

rationing problem of the central warehouse can be a quite interesting research issue.

Considering that joint ordering, lateral transshipment andemergency shipments are

common in practice, investigating the batching decision under joint ordering, lateral

transshipments and emergency shipments deserves further investigation. Neverthe-

less, under these system settings, the analysis of the system and the extension of the

methods that we develop in the dissertation will be quite involved.
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[16] D. Çăglar, C.L. Li, and D. Simchi-Levi. Two-echelon spare parts inventory sys-
tem subject to a service constraint.IIE Transactions, 36, 655-666, 2004.

[17] M. Cohen, P.V. Kamesam, P. Kleindorfer, H. Lee, and A. Tekerian. Optimizer:
IBM’s multi echelon inventory system for managing service logistics, Inter-
faces, 20, 65-82, 1990.

[18] M.A. Cohen, Y.S. Zheng, and V. Agrawal. Service parts logistics: a benchmark
analysis.IIE Transactions, 29, 627-639, 1997.

[19] K.E. Caggiano, J.A. Muckstadt, and J.A. Rappold. Integrated real-time capac-
ity and inventory allocation for reparable service parts ina two-echelon supply
system.Manufacturing and Service Operations Management, 8, 292-318, 2006.

[20] K.E. Caggiano, P.L. Jackson, J.A. Muckstadt, and J.A. Rappold. Optimizing
Service Parts Inventory in a Multiechelon, Multi-Item Supply Chain with Time-
Based Customer Service-Level Agreements.Operations Research, 55 (2), 303-
318, 2007.

[21] F. Chen and Y.S. Zheng. One warehouse multi-retailer systems with centralized
stock information.Operation Research, 45, 275-287, 1997.

[22] G.B. Dantzig.Linear programming and extensions. Princeton University Press,
Princeton, NJ, 1963.

[23] Deloitte. The service revolution in global manufacturing industries.Deloitte Re-
search, 24, 2006.

[24] A. Diaz and M.C. Fu. Multi-echelon models for repairableitems: A review.
Document in Decision, Operations and Information Technologies Research
Works, University of Maryland, 2005.

[25] B. Deuermeyer, L.B. Schwarz. A model for the analysis of system service
level in warehouse/retailer distribution systems: the identical retailer case. In
L. Schwarz (eds.).Multilevel production/inventory control systems: Theory and
Practice, Elsevier, North-Holland, 1981.

[26] A.H.C. Eaves.Forecasting for the ordering and stock- holding of consumable
spare parts. Ph.D. Dissertation, University of Lancaster, 2002.

[27] A. Federgruen and Y.Zheng. An efficient algorithm for computing an optimal
(r,q) policy in contiuous review stochastic inventory systems.Operations Re-
search, 40, 808-813, 1992.

[28] G.J. Feeney and C.C. Sherbrooke. The (S − 1,S) Inventory Policy Under Com-
pound Poisson Demand.Management Science, 12, 391-411, 1966.

162



[29] R. Forsberg. Optimization of order-up-to-S policies for two-level inventory sys-
tems with compound Poisson demand.European Journal of Operational Re-
search, 81, 143-153, 1995.

[30] R. Forsberg. Exact Evaluation of (R,Q) Policies for Two-Level Inventory Sys-
tems with Compound Poisson Demand.European Journal of Operational Re-
search, 96, 130-138, 1996.

[31] R. Forsberg. Evaluation of (R,Q) policies for two-level inventory systems with
generally distributed customer inter-arrival times.European Journal of Opera-
tional Research, 99, 401-411, 1997.

[32] G. Gallego. New bounds and heuristics for (q, r) policies.Management Science,
44 (2), 219-233, 1998.
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APPENDIX A

EXTENDING THE SOLUTION PROCEDURE FOR

SUBPROBLEMS TO COMPOUND POISSON DEMAND

SETTING

A.1 Solution Procedure for Subproblems: Single-item Two-echelon Batch Or-

dering Problem

In this part, we develop the theoretical framework for the solution procedure in Sec-

tion 5.4. In this way, we extend the results in Section 3.2.2 to compound Poisson

setting. As in Section 3.2.2, our analysis is based on the notions of stochastic domi-

nation and supermodularity (see Ross, 1996 and Topkins, 1998).

Lemma A.1.1 For any Q+i > Qi and R+i > Ri,

a) Xin (Qi ,Ri) �st Xin

(
Qi ,R+i

)
,

b) Xin (Qi ,Ri) �st Xin

(
Q+i ,Ri

)
,

where�st denotes stochastic dominance, and�st is defined similarly.

Proof. Using equation (5.8), it is easy to show thatP{Bi0 (Qi ,Ri) ≤ x} ≤ P{Bi0

(
Qi ,R+i

)

≤ x} or equivalentlyBi0 (Qi ,Ri) �st Bi0

(
Qi ,R+i

)
. Similarly, we haveBi0 (Qi ,Ri) �st

Bi0

(
Q+i ,Ri

)
. Since the internal demand from different warehouses are not differenti-

ated at the central warehouse, these results hold forBn
i0 (Qi ,Ri), i.e., Bn

i0 (Qi ,Ri) �st

Bn
i0

(
Qi ,R+i

)
andBn

i0 (Qi ,Ri) �st Bn
i0

(
Q+i ,Ri

)
. SinceXin (Qi ,Ri) = B(n)

i0 (Qi ,Ri) + Yin, the

results also hold forXin (Qi ,Ri). �
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Lemma A.1.2 For any Q+i > Qi, R+i > Ri, S+in > Sin, the difference function∇
Sin

(Qi ,Ri)

= I in

(
Qi ,Ri ,S+in

)
− I in (Qi ,Ri ,Sin) satisfies

a) ∇
Sin

(Qi ,Ri) �st ∇
Sin

(
Qi ,R+i

)
,

b) ∇
Sin

(Qi ,Ri) �st ∇
Sin

(
Q+i ,Ri

)
.

Proof. Proof of part (a) and (b) follows from Lemma A.1.1(a) and (b),respectively.

The rest of the proofs are the same as that of Lemma 3.2.2 in Section 3.2.2. �

Corollary A.1.3 For any Q+i > Qi, R+i > Ri and S+in > Sin,

a) E
[
I in

(
Qi ,Ri ,S+in

)]
− E [I in (Qi ,Ri ,Sin)] ≤ E

[
I in

(
Qi ,R+i ,S

+
in

)]
− E

[
I in

(
Qi ,R+i ,Sin

)]
,

i.e., E
[
∇
Sin

(Qi ,Ri)
]
≤ E

[
∇
Sin

(
Qi ,R+i

)]
,

b) E
[
I in

(
Qi ,Ri ,S+in

)]
− E [I in (Qi ,Ri ,Sin)] ≤ E

[
I in

(
Q+i ,Ri ,S+in

)]
− E

[
I in

(
Q+i ,Ri ,Sin

)]
,

i.e., E
[
∇
Sin

(Qi ,Ri)
]
≤ E

[
∇
Sin

(
Q+i ,Ri

)]
.

Theorem A.1.4 G
(
Qi ,Ri , ~Si

)
is supermodular in

a) Ri and ~Si,

b) Qi and ~Si.

Proof. Proof of part (a): To show the supermodularity ofG
(
Qi ,Ri , ~Si

)
in Ri and

~Si, it suffices show that for a given value ofQi, G
(
Qi ,Ri , ~S+i

)
− G

(
Qi ,Ri , ~Si

)
≤

G
(
Qi ,R+i , ~S

+
i

)
− G

(
Qi ,R+i , ~Si

)
for any ~Si

+

> ~Si andR+i > Ri. First, by using (5.5),

(5.6) and (5.11), we have

E [Bin (Sin,Qi ,Ri)] =
µin

µi0
E [Bi0 (Qi ,Ri)] + E [Din] − Sin

+ E [I in (Sin,Qi ,Ri)] (A.1)

whereE [Din] = µinTin. Then, by substituting (A.1) into the objective function of

SPi(~θ) we obtain
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G
(
Qi ,Ri , ~Si

)
= cih

E[I i0(Qi ,Ri)] +
∑

n∈N
E[I in(Qi ,Ri ,Sin)]



+
µi0Ki

Qi
+ θ0E[Bi0(Qi ,Ri)]

+
∑

n∈N
θn

(
µin

µi0
E [Bi0 (Qi ,Ri)] + E [Din] − Sin + E [I in (Sin,Qi ,Ri)]

)

= cihE [I i0 (Qi ,Ri)] +
λi0Ki

Qi
+

θ0 +
∑

n∈N
θn
µin

µi0

 E [Bi0 (Qi ,Ri)]

+
∑

n∈N
(cih+ θn) E [I in (Qi ,Ri ,Sin)] +

∑

n∈N
θn (E [Din] − Sin) . (A.2)

Then, it is a direct consequence of Corollary A.1.3(a) thatG
(
Qi ,Ri , ~S+i

)
−G

(
Qi ,Ri , ~Si

)
≤

G
(
Qi ,R+i , ~S

+
i

)
−G

(
Qi ,R+i , ~Si

)
.

Proof of part (b): After following the steps of the proof of part (a), the rest of the

proof follows from Corollary A.1.3(b). �

Corollary A.1.5 For a given value of Qi, the optimal Ri as Sin → ∞ for each n∈ N,

i.e., R∗i (Qi , lim
~Si→~∞

~Si) is a lower bound on the optimal Ri; the optimal Ri for Sin = 0 for

each n∈ N, i.e., R∗i (Qi , ~Si = ~0) is an upper bound on the optimal Ri.

Proposition A.1.6 For any R+i > Ri, Q∗i (Ri , lim
~Si→~∞

~Si) ≥ Q∗i (R
+
i , lim
~Si→~∞

~Si).

Proof. By using (A.1) into the objective function ofSPi(~θ) we establish

G
(
Qi ,Ri , ~Si

)
= cihE[I i0(Qi ,Ri)] +

µi0Ki

Qi
+

θ0 − cih
∑

n∈N

µin

µi0

 E[Bi0(Qi ,Ri)]

+ cih
∑

n∈N
(Sin − E [Din]) +

∑

n∈N
(cih+ θn) E[Bin(Qi ,Ri ,Sin)]. (A.3)

Then, for any given value ofSin, cih
∑

n∈N
(Sin − E [Din]) is a constant, so it can be

excluded from the optimization of (A.3) overQi. As Sin → ∞ for eachn ∈ N,

E[Bin(Qi ,Ri ,Sin)] = 0. In this situation, optimizing (A.3) reduces to minimizing

G (Qi ,Ri) = cihE[I i0(Qi ,Ri)] +
µi0Ki

Qi
+

(
θ0 − cih

∑
n∈N

µin

µi0

)
E[Bi0(Qi ,Ri)]. This function
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corresponds to the cost function for single echelon (Q,R) policy, for which we have

Q∗i (Ri) ≥ Q∗i (R
+
i ). �

Proposition A.1.7 Q∗i ( lim
Ri→∞

Ri , lim
~Si→~∞

~Si) is a lower bound on the optimal Qi.

Proof. Proof follows from Theorem A.1.4(b) and Proposition A.1.6.The rest of the

proof is the same as that of Proposition 3.2.7 in Section 3.2.2. �

Proposition A.1.8 QUB
i =

√
(2Kiµi0 + (cih+ pi) Var(Di0)) /Hi, where Hi =

cihpi

cih+pi
,

and pi = θ0 +
∑

n∈N θn
µin

µi0
, is an upper bound on the optimal Qi.

Proof. The proof will be complete if we show thatG
(
Qi ,Ri , ~Si

)
> G

(
Q−i ,Ri , ~Si

)
for

anyQi > QUB
i , ~Si andRi, whereQ−i < Qi. Let C (Qi ,Ri) = cihE [I i0 (Qi ,Ri)] +

λi0Ki

Qi
+(

θ0 +
∑

n∈N
θn
λin

λi0

)
E [Bi0 (Qi ,Ri)]. We note thatC (Qi ,Ri) corresponds to the cost function

in Gallego (1998). Based on this study,QUB
i is an upper bound on the optimalQi for

C (Qi ,Ri). Furthermore, sinceC (Qi ,Ri) is unimodal with respect toQi (Federgruen

and Zipkin 1992), for anyQi > QUB
i , we haveC (Qi ,Ri) > C

(
Q−i ,Ri

)
. Finally, using

this result,E [I in (Qi ,Ri ,Sin)] ≥ E
[
I in

(
Q−i ,Ri ,Sin

)]
, and that

∑
n∈N
θn (E[Din] − Sin) is

constant with respect toQi in (A.2), we establishG
(
Qi ,Ri , ~Si

)
> G

(
Q−i ,Ri , ~Si

)
. �

A.1.1 Finding Optimal Solution for Subproblems for Given Values of Reorder

Level and Order Quantity

For a given parti ∈ I , and given values ofQi andRi, SPi(~θ) reduces to|N| independent

subproblems, each of which is denoted byS Pin(θn,Qi ,Ri).

Min cihE[I in(Qi ,Ri ,Sin)] + θnE[Bin(Qi ,Ri ,Sin)]

s.t. Sin ≥ 0, and∈ Z.

By substituting (5.11), the objective function ofS Pin(θn,Qi ,Ri) can be restated as

G(Sin) = (cih+ θn)E[I in(Qi ,Ri ,Sin)] + θnE[Xin(Qi ,Ri)] − θnSin.
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Proposition A.1.9 G(Sin) is unimodal.

Proposition A.1.10 The optimal solution of S Pin(θn,Qi ,Ri) is

Min
Sin∈{0,1,2,...}

Sin :
Sin∑

x=0

P(Xin(Qi ,Ri) = x) ≥ θn

cih+ θn

 .

Proof. Proofs of Proposition A.1.9 and A.1.10 are the same as that ofProposi-

tion 3.2.9 and 3.2.10 in Section 3.2.2. �
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APPENDIX B

THE RESULTS OF THE EXPERIMENTERS FOR TESTBED 1

FOR THE SEQUENTIAL HEURISTICS
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APPENDIX C

NOTATIONS USED IN THE DISSERTATION

Notations used in the dissertation are given below.

PARAMETERS and VARIABLES

I : Set of parts

i : Part index,i ∈ I

N : Set of Local warehouses

n : Warehouse indexn ∈ N ∪ {0}
ci : Unit variable cost of parti ∈ I

h : Inventory carrying charge

Ki : Fixed ordering cost of parti ∈ I at the central warehouse

λin : Customer arrival rate for parti ∈ I at local warehousen ∈ N

λe
i0 : External customer arrival rate for parti ∈ I at the central warehouse

λi0 : Customer arrival rate (sum of internal and external) for part i ∈ I at the central

warehouse

µin : Demand rate for parti ∈ I at local warehousen ∈ N

µe
i0 : External demand rate for parti ∈ I at the central warehouse

µi0 : Demand rate (sum of internal and external) for parti ∈ I at the central warehouse

σ2
in : Total demand variance for parti ∈ I at local warehousen ∈ N ∪ {0}

Me
n : Total external demand rate at the central warehouse

Mn : Total demand rate for warehousen ∈ N ∪ {0}
Ti0 : Lead time for parti ∈ I at the central warehouse from the outside supplier

Tin : Transportation lead timeTin from the central warehouse to local warehouse

n ∈ N for part i ∈ I

181



Yin : Number of customer arrivals during lead timeTin at warehousen ∈ N ∪ {0} for

part i ∈ I

Vin : Demand size for parti ∈ I at warehousen ∈ N ∪ {0}
Din : Total demand during lead timeTin at warehousen ∈ N ∪ {0} for part i ∈ I

Ye
i0 : Number of external customer arrivals during lead timeTi0 at the central ware-

house for parti ∈ I

Ve
i0 : External demand size for parti ∈ I at the central warehouse

De
i0 : Total external demand during lead timeTi0 at the central warehouse for parti ∈ I

υk
in : Size ofkth demand occurred during the lead timeTin at warehousen ∈ N ∪ {0}

for part i ∈ I

Wmax
n : Target aggregate mean response time at warehousen ∈ N ∪ {0}

Ri : Reorder level for parti ∈ I at the central warehouse

Qi : Order quantity for parti ∈ I at the central warehouse

Sin : Base-stock level for parti ∈ I at local warehousen ∈ N

~Si : [Si1,Si2, . . . ,Si|N|] = Vector of base-stock levels for parti ∈ I

~S : [~S1, ~S2, . . . , ~S|I |] = Vector of base-stock levels

~Q : [Q1,Q2, . . . ,Q|I |] = Vector of order quantities

~R : [R1,R2, . . . ,R|I |] = Vector of reorder levels

I in(Qi ,Ri ,Sin) : On-hand inventory level for parti ∈ I at warehousen ∈ N in the

steady state

I i0(Qi ,Ri) : On-hand inventory level for parti ∈ I at the central warehouse in the

steady state

Xin(Qi ,Ri) : Number of outstanding orders for parti ∈ I at warehousen ∈ N in the

steady state

Bin(Qi ,Ri ,Sin) : Backorder level for parti ∈ I at warehousen ∈ N in the steady state

Bi0(Qi ,Ri) : Backorder level for parti ∈ I at the central warehouse in the steady state

B(n)
i0 (Qi ,Ri) : Backorder level of local warehousen ∈ N for part i ∈ I at the central

warehouse in the steady state

Win(Qi ,Ri ,Sin) : Response time for parti ∈ I at warehousen ∈ N in the steady state

Wi0(Qi ,Ri) : Response time for parti ∈ I at the central warehouse in the steady state

We
i0(Qi ,Ri) : Response time for parti ∈ I at the central warehouse (based on external

customers)

Wn( ~Q, ~R, ~S) : Aggregate mean response time at warehousen ∈ N in the steady state
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W0( ~Q, ~R) : Aggregate mean response time at the central warehouse in the steady state

We
0( ~Q, ~R) : Aggregate mean response time at the central warehouse (based on external

customers)

L : Set of columns in master problemMP

l : Column index,l ∈ L

xil : variable indicating whether columnl ∈ L is selected for parti ∈ I or not in master

problemMP

Cil : expected total inventory holding and fixed ordering costs associated with column

l ∈ L for part i ∈ I in master problemMP

Ailn : E[Bin]
Λn

, technological coefficient associated with columnl ∈ L for part i ∈ I for

warehousen ∈ N ∪ {0} in master problemMP

αn : Lagrangian multiplier for the constraint (3.12) associated with warehousen ∈
N ∪ {0} in master problemMP

βi : Lagrangian multiplier for the constraint (3.13) associated with parti ∈ I in master

problemMP

θn : −αn

Λn
, penalty cost implied by relaxation of the aggregate mean response time con-

straint for warehousen ∈ N ∪ {0}
~θ : [θ1, θ2, . . . , θ|N|]

Z(~θ) : Optimal objective function value for problemCG

Zi(~θ) : Optimal objective function value for problemSPi(~θ)

QLB
i : Lower bound for the optimal values forQi

QUB
i : Upper bound for the optimal values forQi

RLB
i : Lower bound for the optimal values forRi

RUB
i : Upper bound for the optimal values forRi

pi : θ0 +
∑

n∈N θn
λin

λi0
, shortage cost defined per unit short of parti ∈ I

Hi : cihpi

cih+pi

γi : Probability of no stockouts for parti ∈ I

EOQ :
√

2λi0Ki

cih
, economic order quantity, batch size heuristic consideredfor sequen-

tial heuristicS2

EOQB :
√

2λi0Ki (cih+pi )
(cih)pi

, EOQ with planned backorders, batch size heuristic considered

for sequential heuristicS2

QLU : min
(√

2QLB
i ,

√
QLB

i · QUB
i

)
, batch size heuristic considered for sequential heuris-

tic S3
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z∗, zP : Optimal objective function value of problemP

z : Objective function value of any solution to be tested

zMP : Optimal objective function value of problemMP

zLPMP : Optimal objective function value of problemLPMP

zLD : Objective function value of the solution obtained by the Lagrangian dual solu-

tion (Lagrangian dual bound) for problemP

z′ : Objective function value of the Lagrangian dual solution obtained by any approx-

imate evaluation method to be tested

zLH : Objective function value of the solution obtained by the Lagrangian heuristic

when the exact method is used

zapp : Objective function value of the solution of the Lagrangianheuristic that is ob-

tained by using the two-moment approximation for outstanding orders

zEOQ(θ0)
i :

√
2Ki λi0 cih θ0

cih+θ0
, optimal objective function value of the EOQ model with unit

backorder cost ofθ0

ρd: demand skewness parameter

λ : average demand rate of all parts

ρc : cost skewness parameter

c : average unit variable cost of parts

νi: part-specific average demand rate for parti ∈ I

P(Vk
in = x) : k−fold convolution ofP(Vin = v), probability thatk customers yields a

total demand ofx for part i ∈ I at warehousen ∈ N

PGAP: |z
LD−z∗ |

z∗ , percentage dual gap with the optimal expected total cost

GAP: |zLD − z∗|, absolute dual gap with the optimal expected total cost

PCD : |z−zLD |
zLD , percentage cost difference between the expected total cost of the solu-

tion to be tested and the Lagrangian dual bound

ACD : |z− zLD|, absolute cost difference between the expected total cost of the solu-

tion to be tested and the Lagrangian dual bound

RDFR :
∑

n∈N∪{0}

{(
Wn(X) −Wmax

n

)+}
/

∑
n∈N∪{0}

Wmax
n , relative distance to the feasible re-

gion

PGAP′: |z′−zLD |
zLD , percentage gap between the expected total cost of the Lagrangian

dual solution obtained by the approximate evaluation method to be tested and the La-

grangian dual bound

PCDLH : |z−zLH |
zLH , percentage cost difference between the expected total cost of the solu-
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tion to be tested and the expected total cost of the solution of the Lagrangian heuristic

(that is obtained by using the exact evaluation)

PCDLD : |z−zLD |
zLD , percentage cost difference between the expected total cost of the so-

lution to be tested and the Lagrangian dual bound

PCDLHapp : |z−zapp|
zapp

, percentage cost difference between the expected total cost of the

solution to be tested and the expected total cost of the solution of the Lagrangian

heuristic that is obtained by using the two-moment approximation for outstanding or-

ders

ABBREVIATIONS

P : Original problem considered in the dissertation

MP : Master problem for problemP

LPMP : LP-relaxation of master problemMP

RMP: Restricted master problem

CG : Column generation or pricing problem

AP : Alternative formulation of problemMP

LPAP: LP-relaxation of problemAP

SPi(~θ) : Subproblem for parti ∈ I for a given~θ

Pc : Original problem for the compound Poisson demand model

S1 : Sequential heuristic based on the EOQ

S2 : Sequential heuristic based on the EOQ with planned backorders

S3 : Sequential heuristic based onQLU

O(g) : Asymptotically bounded above by functiong

LWH : Local warehouse

NumPart: Number of parts

DCG : Decomposition and column generation

FCFS : First come, first served
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